Security Measurements of Cyber

Networks

Special Issue Editor in Chief: Zheng Yan
Guest Editors: Yuging Zhang, Raymond Choo, and Yang Xiang

Security Measurements of Cyber Networks

Security Measurements of Cyber Networks

Special Issue Editor in Chief: Zheng Yan
Guest Editors: Yuqing Zhang, Raymond Choo, and Yang Xiang

Copyright © 2018 Hindawi. All rights reserved.

This is a special issue published in “Security and Communication Networks.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Editorial Board

Mamoun Alazab, Australia
Cristina Alcaraz, Spain
Angelos Antonopoulos, Spain
Frederik Armknecht, Germany
Benjamin Aziz, UK
Alessandro Barenghi, Italy
Pablo Garcia Bringas, Spain
Michele Bugliesi, Italy

Pino Caballero-Gil, Spain

Tom Chen, UK

Kim-Kwang Raymond Choo, USA
Alessandro Cilardo, Italy
Stelvio Cimato, Italy

Vincenzo Conti, Italy

Salvatore D’Antonio, Italy
Paolo D’Arco, Italy

Alfredo De Santis, Italy

Angel M. Del Rey, Spain
Roberto Di Pietro, France
Jesus Diaz-Verdejo, Spain
Nicola Dragoni, Denmark
Carmen Fernandez-Gago, Spain
Clemente Galdi, Italy

Dimitrios Geneiatakis, Italy
Bela Genge, Romania
Debasis Giri, India

Prosanta Gope, UK
Francesco Gringoli, Italy
Jiankun Hu, Australia

Ray Huang, Taiwan

Tao Jiang, China

Minho Jo, Republic of Korea
Bruce M. Kapron, Canada
Kiseon Kim, Republic of Korea
Sanjeev Kumar, USA
Maryline Laurent, France
Jong-Hyouk Lee, Republic of Korea
Huaizhi Li, USA

Zhe Liu, Canada

Pascal Lorenz, France
Leandros Maglaras, UK
Emanuele Maiorana, Italy
Vincente Martin, Spain
Fabio Martinelli, Italy
Barbara Masucci, Italy
Jimson Mathew, UK

David Megias, Spain
Leonardo Mostarda, Italy
Qiang Ni, UK

Petros Nicopolitidis, Greece
David Nuiez, USA

A. Peinado, Spain

Gerardo Pelosi, Italy
Gregorio Martinez Perez, Spain
Pedro Peris-Lopez, Spain
Kai Rannenberg, Germany
Francesco Regazzoni, Switzerland
Khaled Salah, UAE
Salvatore Sorce, Italy
Angelo Spognardi, Italy
Sana Ullah, Saudi Arabia
Ivan Visconti, Italy

Guojun Wang, China
Zheng Yan, China

Qing Yang, USA

Kuo-Hui Yeh, Taiwan
Sherali Zeadally, USA
Zonghua Zhang, France

Contents

Security Measurements of Cyber Networks
Zheng Yan (2, Yuqing Zhang, Kim-Kwang Raymond Choo, and Yang Xiang
Editorial (3 pages), Article ID 6545314, Volume 2018 (2018)

An Imbalanced Malicious Domains Detection Method Based on Passive DNS Traffic Analysis
Zhenyan Liu (12, Yifei Zeng, Pengfei Zhang, Jingfeng Xue (), Ji Zhang, and Jiangtao Liu
Research Article (7 pages), Article ID 6510381, Volume 2018 (2018)

OFFDTAN: A New Approach of Offline Dynamic Taint Analysis for Binaries
Xiajing Wang (2), Rui Ma (), Bowen Dou (%), Zefeng Jian (2}, and Hongzhou Chen
Research Article (13 pages), Article ID 7693861, Volume 2018 (2018)

Security Measurement for Unknown Threats Based on Attack Preferences
Lihua Yin, Yanwei Sun (2), Zhen Wang, Yunchuan Guo (), Fenghua Li, and Binxing Fang
Research Article (13 pages), Article ID 7412627, Volume 2018 (2018)

HAC: Hybrid Access Control for Online Social Networks
Fangfang Shan (), Hui Li, Fenghua Li, Yunchuan Guo(®), and Ben Niu
Research Article (11 pages), Article ID 7384194, Volume 2018 (2018)

Data Fusion for Network Intrusion Detection: A Review
Guoquan Li, Zheng Yan (), Yulong Fu(®, and Hanlu Chen
Review Article (16 pages), Article ID 8210614, Volume 2018 (2018)

Uncovering Tor: An Examination of the Network Structure
Bryan Monk, Julianna Mitchell (), Richard Frank, and Garth Davies
Research Article (12 pages), Article ID 4231326, Volume 2018 (2018)

An Approach for Internal Network Security Metric Based on Attack Probability
Chun Shan (), Benfu Jiang, Jingfeng Xue (), Fang Guan, and Na Xiao
Research Article (11 pages), Article ID 3652170, Volume 2018 (2018)

A Dynamic Hidden Forwarding Path Planning Method Based on Improved Q-Learning in SDN
Environments

Yun Chen (2, Kun Lv(#), and Changzhen Hu

Research Article (12 pages), Article ID 2058429, Volume 2018 (2018)

A New Type of Graphical Passwords Based on Odd-Elegant Labelled Graphs
Hongyu Wang (), Jin Xu, Mingyuan Ma, and Hongyan Zhang
Research Article (11 pages), Article ID 9482345, Volume 2018 (2018)

Analysis on Influential Functions in the Weighted Software Network
Haitao He, Chun Shan (), Xiangmin Tian (), Yalei Wei, and Guoyan Huang
Research Article (10 pages), Article ID 1525186, Volume 2018 (2018)

Security Feature Measurement for Frequent Dynamic Execution Paths in Software System
Qian Wang (2, Jiadong Ren, Xiaoli Yang, Yongqiang Cheng (), Darryl N. Davis, and Changzhen Hu
Research Article (10 pages), Article ID 5716878, Volume 2018 (2018)

http://orcid.org/0000-0002-9697-2108
http://orcid.org/0000-0003-1079-357X
http://orcid.org/0000-0002-3087-9701
http://orcid.org/0000-0002-9897-0579
http://orcid.org/0000-0003-1954-5775
http://orcid.org/0000-0003-2940-5557
http://orcid.org/0000-0002-8832-9323
http://orcid.org/0000-0002-6037-9353
http://orcid.org/0000-0002-7024-7573
http://orcid.org/0000-0002-9611-5368
http://orcid.org/0000-0001-5586-6715
http://orcid.org/0000-0002-9611-5368
http://orcid.org/0000-0002-9697-2108
http://orcid.org/0000-0002-1778-4943
http://orcid.org/0000-0003-2784-2526
http://orcid.org/0000-0002-1090-026X
http://orcid.org/0000-0002-3087-9701
http://orcid.org/0000-0001-9106-594X
http://orcid.org/0000-0002-5411-5466
http://orcid.org/0000-0002-2711-7060
http://orcid.org/0000-0001-6165-5690
http://orcid.org/0000-0002-1090-026X
http://orcid.org/0000-0001-9117-1136
http://orcid.org/0000-0001-7159-1424
http://orcid.org/0000-0001-7282-7638

Hindawi

Security and Communication Networks
Volume 2018, Article ID 6545314, 3 pages
https://doi.org/10.1155/2018/6545314

Editorial

Security Measurements of Cyber Networks

Zheng Yan ®,"? Yuqing Zhang,” Kim-Kwang Raymond Choo,* and Yang Xiang®

""The State Key Lab of ISN, School of Cyber Engineering, Xidian University, Xian, China

*The Department of Communications and Networking, Aalto University, Espoo, Finland

*School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China
*Department of Information Systems and Cyber Security, University of Texas at San Antonio, TX 78249, USA
*School of Software and Electrical Engineering, Swinburne University of Technology, Hawthorn, Australia

Correspondence should be addressed to Zheng Yan; zheng.yan@aalto.fi

Received 7 May 2018; Accepted 7 May 2018; Published 10 October 2018

Copyright © 2018 Zheng Yan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cyber networks facilitate and expedite the development of
information systems, communication technologies, and digi-
tal economies. However, as the cyber networks become large,
heterogeneous, and pluralistic, evaluating the security of
cyber networks becomes increasingly challenging. Successful
attacks and intrusions against cyber networks can result in
significant impacts, ranging from personal risk to national-
level security. Thus, there is an increasing need to understand
and measure network security by considering a range of
requirements and standards, and in the context of differ-
ent network scenarios. Although many prior studies have
focused on network intrusion detection, malware detection,
and security threat defense, a generally accepted security
measurement framework is still lacking. Such a framework
is urgently required for quick identification of security holes,
assessment of potential threats, and implementation of effi-
cient countermeasures.

Security measurement theories and methods concern
several pertinent questions in terms of security-related data
collection, composition, analytics, and processing. This is
especially crucial for detecting security threats and mea-
suring cyber network security in a quantified, precise, and
efficient manner. (i) How can we adaptively collect related
data for security measurement for large-scale heterogeneous
networks in a generic and pervasive way? (ii) How can
we compose and fuse collected big data without incurring
expensive data storage and transmission costs, as well as
ensuring efficient data processing to facilitate precise security
threat detection and judgment? (iii) How can we protect

valuable data, preserve data privacy, and effectively control
access to key data, as well as manage its storage? (iv) How
can we aggregate and mine security-related data to measure
the security of the whole network in a quantifiable manner
and with high trustworthiness? These open and interesting
issues are now attracting attention from both the research
community and the practitioner community.

This special issue brings together recent advances on
security-related data processing and analytics, detection of
malware, virus and network intrusion, and network system
protection, in the context of network security assessment
and measurement. We selected 12 research papers from more
than 30 submissions after rigorous peer-reviews. Next, we
categorize these 12 accepted papers into three categories and
briefly discuss each paper.

1. Intrusion Detection and
Network Security Measurement

In the survey entitled “Data Fusion for Network Intrusion
Detection: A Review”, G. Li et al. conducted a comprehensive
review on massively high dimensional data fusion techniques
for network intrusion detection in order to accurately detect
complex or synthetic network attacks.

Based on attack prediction, L. Yin et al. proposed a
method of security measurement in their paper entitled
“Security Measurement for Unknown Threats Based on
Attack Preferences”. They computed optimal attack timing

http://orcid.org/0000-0002-9697-2108
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6545314

from the perspective of attackers. They used a long-term
game to estimate the risk of being found in terms of
choosing optimal timing according to risk and profit. On
the basis of game theoretical analysis, the likelihood of being
attacked for each node is estimated as a security metric
result.

Z. Liu et al. attempted to build a malicious domains
detection model oriented to imbalanced data. They proposed
an imbalanced malicious domain detection method based
on passive DNS traffic analysis in the paper entitled “An
Imbalanced Malicious Domains Detection Method Based
on Passive DNS Traffic Analysis”. It can deal with not
only between-class imbalance problem but also within-class
imbalance problem.

Y. Xu et al. explored the metrics of network security in the
paper entitled “Security Metrics Methods of the Network Sys-
tem”. They considered network security from three aspects:
environment security, reliability security, and vulnerability
security. Based on the discussion on fragility distribution,
the authors proposed a technical tool, vulnerability graph, to
characterize the properties of vulnerabilities and introduced
a metric function to measure the degree of damage of
vulnerabilities.

In the paper entitled “Uncovering Tor: An Examination
of the Network Structure”, B. Monk et al. used social network
analysis to examine hyperlink connections and the structure
of website communities they form on Tor and how charac-
teristics of these communities could have implications for
criminal activity on Tor as understood through the lens of
social disorganization theory.

In the paper entitled “An Approach for Internal Net-
work Security Metric Based on Attack Probability”, C.
Shan et al. proposed an internal network security metric
based on attack probability. It simplifies network attack
graph for a large-scale network and assists network security
detection.

2. Software Fault Location and Maintenance

In the paper entitled “Security Feature Measurement for
Frequent Dynamic Execution Paths in Software System”,
Q. Wang et al. proposed a security feature measurement
algorithm of frequent dynamic execution paths in software
to provide a basis for improving the security and reliability
of software. By using a complex network model and a
sequence model and combining them with the invocation
and dependency relationships between function nodes, the
authors can analyze fault cumulative effect and spread
effect. The function node security features of the soft-
ware complex network are also defined and measured. In
addition, frequent software execution paths are mined and
weighted in order to obtain security metrics of the frequent
paths.

For understanding software design patterns and control-
ling their development and maintenance process, H. He et al.
proposed an approach to define node importance for mining
influential software nodes based on invoking dependency
relationships among the nodes in the paper entitled “Analysis
on Influential Functions in the Weighted Software Network”.

Security and Communication Networks

The authors constructed a weighted software network to
represent software execution dependency structure and pro-
posed an algorithm to evaluate node importance to further
obtain the most influential nodes in the software network
based on it.

In the paper entitled “OFFDTAN: A New Approach of
Offline Dynamic Taint Analysis for Binaries”, X. Wang et al.
proposed an approach to offline dynamic taint analysis for
binaries through four stages: dynamic information acquisi-
tion, vulnerability modeling, offline analysis, and backtrace
analysis.

3. Network Security Countermeasures

In the paper entitled “A Dynamic Hidden Forwarding
Path Planning Method Based on Improved Q-Learning
in SDN Environments”, Y. Chen et al. proposed an
improved Q-learning algorithm to automatically plan
an optimal attack path. They adopted Software-Defined
Network (SDN) to adjust routing paths and dynamically
create hidden forwarding paths to filter vicious attack
requests.

E Shan et al. proposed a hybrid access control model
(HAC) that leverages attributes and relationships to control
access to resources in the paper entitled “HAC: Hybrid
Access Control for Online Social Networks”. They designed
a new policy specification language to express both the
relationships and attributes of users and proposed a path
checking algorithm to figure out if a path between two users
can satisfy with a hybrid policy.

H. Wang et al. studied graphical password (GPW) used
in information communications in the paper entitled “A New
Type of Graphical Passwords Based on Odd-Elegant Labelled
Graphs”. The authors designed new Topsnut-GPWs by means
of a graph labelling, called odd-elegant labelling. The new
Topsnut-GPWs are constructed using Topsnut-GPWs (a type
of GPWs) with smaller vertex numbers and more robust
to deciphering attacks, compared with traditional Topsnut-
GPWs.

4. Summary

Editing this special issue has been an invaluable experience
for us. We hope this special issue will provide a useful
reference to its readers and contribute to advances
in network security, as well as stimulate additional
innovation.

Acknowledgments

This work is sponsored by the National Key Research and
Development Program of China (Grant 2016YFB0800700),
the NSFC (Grants 61672410 and U1536202), the Project
Supported by Natural Science Basic Research Plan in Shaanxi
Province of China (Program no. 2016ZDJC-06), and the
111 project (Grants B08038 and B16037). We would like to
express our appreciation to all authors for their contributions
and the reviewers for their valuable review comments. We

Security and Communication Networks

also sincerely thank the Editorial Board of Security and
Communication Networks for approving this special issue
and their continuous support on its final publication.

Zheng Yan

Yuqing Zhang

Kim-Kwang Raymond Choo
Yang Xiang

Hindawi

Security and Communication Networks
Volume 2018, Article ID 6510381, 7 pages
https://doi.org/10.1155/2018/6510381

Research Article

An Imbalanced Malicious Domains Detection Method Based on

Passive DNS Traffic Analysis

Zhenyan Liu

, Yifei Zeng, Pengfei Zhang, Jingfeng Xue

» Ji Zhang, and Jiangtao Liu

Beijing Key Laboratory of Software Security Engineering Technology, School of Software, Beijing Institute of Technology,

Beijing 100081, China

Correspondence should be addressed to Zhenyan Liu; zhenyanliu@bit.edu.cn

Received 9 January 2018; Accepted 19 April 2018; Published 20 June 2018

Academic Editor: Yuging Zhang

Copyright © 2018 Zhenyan Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although existing malicious domains detection techniques have shown great success in many real-world applications, the problem
of learning from imbalanced data is rarely concerned with this day. But the actual DNS traffic is inherently imbalanced; thus how
to build malicious domains detection model oriented to imbalanced data is a very important issue worthy of study. This paper
proposes a novel imbalanced malicious domains detection method based on passive DNS traffic analysis, which can effectively deal
with not only the between-class imbalance problem but also the within-class imbalance problem. The experiments show that this
proposed method has favorable performance compared to the existing algorithms.

1. Introduction

With the rapid development of the Internet and information
technology, network security threats are escalating, the secu-
rity of cyberspace is becoming more and more complex and
hidden, the risk of network security is increasing, and various
network malicious attacks emerge endlessly. In these network
malicious attacks, most of them are based on DNS (Domain
Name System). The reason why DNS can provide an available
infrastructure for attackers is that it is open and ease of use.

The core of the network malicious attack based on DNS
is C&C (Command and Control) server. By means of the
C&C server, the attackers can order remote hosts to perform
malicious activities, such as spamming, phishing, DDOS
(Distributed Denial of Service), and distributing malware
which may be used to steal information, disrupt computer,
extort money, etc. Therefore, it is urgent to detect this
kind of malicious domain of C&C server and further take
corresponding countermeasure.

It is very popular to employ the classification algorithm
in machine learning to detect malicious domains in the
current research [1, 2]. However, these existing studies pay
no or little attention to the problem of imbalanced data.
In fact, the actual DNS traffic is inherently imbalanced, in
which most of the cases are benign and far fewer cases are

malicious. As a result, this tends to construct an imbalanced
training dataset in which there are many more samples
of some categories than others. When learning from an
imbalanced dataset, class information must be considered;
otherwise the classifier will be overwhelmed by the majority
classes and ignores the minority ones, and then the overall
classification performance will undoubtedly be degraded.
To address this shortfall, this paper will propose an imbal-
anced malicious domains detection method which can build
malicious domains detection model by learning imbalanced
dataset based on passive DNS traffic analysis.
In this paper we make the following contributions:

(1) We especially focus on learning from the imbalanced
data in the malicious domains detection field. And
the latest research progress of learning from the
imbalanced data in other fields is invited in the
malicious domains detection field.

(2) We construct the stronger discriminative features to
profile malicious domains based on passive DNS
traffic analysis.

(3) We propose an improved imbalanced malicious
domains detection method which is an extension of
EasyEnsemble and demonstrate its favorable perfor-
mance by the comparative experiments.

http://orcid.org/0000-0003-1079-357X
http://orcid.org/0000-0002-3087-9701
https://doi.org/10.1155/2018/6510381

The remainder of this paper is organized as follows. In
Section 2, we briefly review related work. Section 3 describes
how to profile malicious domains based on passive DNS
traffic analysis. We elaborate on an imbalanced malicious
domains detection method in Section 4. Section 5 presents
our comparative experiments of this new method. Finally, we
conclude the paper in Section 6.

2. Related Work

2.1. Learning from Imbalanced Data. Although rarely in net-
work security, learning from the imbalanced data has already
made considerable progress in other fields. In general, there
are three ways to tackle the imbalanced learning problem.
The first one is from the data perspective, which mainly uses
resampling approaches to modify the class distribution of
the data. The second one is from the algorithm perspective,
which mostly focuses on optimizing various algorithms, such
as SVM (Support Vector Machine), Decision Tree and Neural
Network, based on cost-sensitive learning which considers
the costs associated with misclassifying samples [3]. In addi-
tion, some researches also utilize one-class learning [4] which
is particularly useful when used on extremely imbalanced
data sets. The third one is from data feature perspective,
which can build a fair feature space attaching much weight
to the minority classes by means of some improved feature
selection methods. This third approach is applied in many
applications, including fraud/churn detection, text catego-
rization, medical diagnosis, detection of software defects, and
many others [5].

Most researches have been focused on the first approach,
resampling which is more practical than the other two
approaches. The resampling includes undersampling, over-
sampling, and the integration of undersampling and over-
sampling [6]. The key idea of undersampling is to remove the
majority class samples from the original data set, and the key
idea of oversampling is to append the minority class samples
to the original data set.

The simplest resampling technique is random. But ran-
dom undersampling can potentially rmove certain important
samples, and random oversampling can lead to overfit-
ting. Various improved undersampling algorithms, including
EasyEnsemble and BalanceCascade, have been proposed [7].
Both methods utilize ensemble learning to overcome the
deficiency of information loss introduced in the traditional
random undersampling, since ensemble learning is based on
multiple subsets which contain more information than a sin-
gle one [8]. The famous improved oversampling algorithms
are SMOTE (Synthetic Minority Oversampling Technique)
[9] and its variants, such as Borderline-SMOTE [10] and
ADASYN (Adaptive Synthetic Sampling) [11]. They devote
to create the excellent artificial minority class samples using
different strategies.

In practical application, when the samples of the minor-
ity classes are absolutely rare, oversampling is generally
employed to increase the samples of the minority classes. Or
else when the samples of the minority classes are relatively
rare, undersampling is generally employed to decrease the
samples of the majority classes.

Security and Communication Networks

2.2. Malicious Domain Detection Based on Passive DNS Traffic
Analysis. The majority of detection methods based on DNS
traffic are data-driven, most commonly having machine
learning algorithms at their core. These methods require
accurate ground truth of both malicious and benign DNS
traffic for model training as well as for the performance
evaluation [12]. The methods of DNS data collection can be
generally divided into two subcategories: active and passive.
Active method obtains DNS data by deliberately sending DNS
queries and record the corresponding DNS responses, while
passive method is passively to backup real DNS queries and
responses.

Compare with active DNS data collection, passive DNS
data collection is more representative and more comprehen-
sive. As a result, the detection of malicious domain based on
passive DN traffic analysis has received increasing attention
from the research community over the past decade. “Passive
DNS” was invented by Weimer [13] in 2004. After that, many
researchers have an insight into the important value of passive
DNS when doing incident response investigations. And many
passive DNS systems have developed, in which the most
famous and popular one is DNSDB from Farsight Security.
Farsight collects passive DNS data from its global sensor
array, and then filters and verifies the DNS transactions before
inserting them into the DNSDB [14]. The trends within this
set are believed to be representative of Internet-wide trends
and therefore provide valuable insight.

Antonakakis et al. [1] proposed a dynamic reputation
system for DNS, called Notos, to automatically assign a
low reputation score to a malicious domain. To measure
a number of statistical features of a domain, Notos used
historical DNS information collected passively from multiple
recursive DNS resolvers distributed across the Internet.
Bilge et al. [2] introduced a passive DNS analysis approach
and a detection system, EXPOSURE, to detect domain
names that are involved in malicious activities. The data
that EXPOSURE used for the initial training consist of
DNS traffic from the real-time response data from author-
itative Name Servers located in North America and in
Europe.

Perdisci et al. [15] presented FluxBuster, a novel detection
system that used a purely passive approach for detecting
and tracking malicious flux networks. FluxBuster is based
on large-scale passive analysis of DNS traffic generated by
hundreds of local recursive DNS (RDNS) servers located
in different networks and scattered across several differ-
ent geographical locations. Zhou et al. [16] proposed a
model which can detect Fast-Flux Domains using ran-
dom forest algorithm. It used passive DNS to log domain
name query history of real campus network environ-
ment.

Analyzing these existing related works, we discovered
that most of them are to collect DNS traffic in a period time
to form a passive DNS set. This kind of passive DNS set is
only a DNS data fragment and needs more collection cost.
While DNSDB is relatively comprehensive, as a result, we
determined to use the passive DNS traffic from DNSDB in
this paper.

Security and Communication Networks

3. Profiling Malicious Domains Based on
Passive DNS Traffic Analysis

To profile malicious domains, based on passive DNS traffic
analysis we extract two groups features of malicious domains:
static lexical features and dynamic DNS resolving features.
Static lexical features mainly origin from the lexical informa-
tion of domain name. Dynamic DNS resolving features are
constructed based on DNS response attributes. Table 1 gives
an overview of these features.

The results of statistical analysis of some features are
selected to show in Figure 1. From these, we can find that these
features have the stronger ability to distinguish the malicious
domains from the benign ones.

In this section, we will present 12 static lexical features and
4 dynamic DNS resolving features and the motivation that we
construct these features to profile malicious domains.

3.1 Static Lexical Features. To avoid detection, the attackers
generally employ domain generation algorithms (DGA) to
dynamically produce a large number of random domain
names. The lexical features of these malicious domain names
are largely different from benign domain names. We con-
struct 12 static lexical features to profile malicious domains.

So far the short domain names have been almost reg-
istered; therefore the majority of malicious domain names
generated by DGA are longer than benign domain names.
And max length of labels (i.e., parts delimited by dots) in
subdomain of malicious domain names is also commonly
longer. So we construct two features based on the length
measure: first, length of domain name (Feature 1), and
second, max length of labels in subdomain (Feature 2).

The most distinctive property of domain names generated
by DGA is that the distribution of characters is random.
We know that information entropy is defined as the average
amount of information produced by a stochastic source of
data [17]. So, we employ information entropy to measure the
disorder of characters.

Let d be a domain name and m be the number of distinct
characters in d. We define entropy (d) as character entropy of
d (Feature 3).

&, (count (a;) count (a;)
Entropy (d) Zl (length)) log, <length (d)) M

where a; (i = 1...m) means a character in d, count(a;) is
the number of a; in d, and length(d) is the length of d,.

If the character entropy value of d is greater, then more
likely d will be identified to be malicious.

In addition, malicious domain names are used by mal-
wares not by human, so they are not easy-to-remember or
human pronounceable. Thus the appearance of numerical
and alphabetic characters in malicious domain names is
also very important indicative signs. With this insight, we
construct five features as follows: number of numerical char-
acters (Feature 4), ratio of numerical characters (Feature 5),
conversion frequency of numerical and alphabetic character
(Feature 6), max length of continuous numerical characters
(Feature 7), max length of continuous alphabetic characters

(Feature 8), and max length of continuous same alphabetic
characters (Feature 9).

As we all know, the consonant letters in the English
alphabet are much more than the vowel letters. Therefore,
in random malicious domain names, the ratio of vowels
(Feature 10) is smaller, the length of continuous consonants
(Feature 11) is longer, and conversion frequency of vowel and
consonant (Feature 12) is very higher.

3.2. Dynamic DNS Resolving Features. The Internet-scale
attacks using DNS leave unavoidably a trail of footmarks
which are hidden into the DNS resolving records, so we may
mine these footmarks (i.e., DNS resolving features) to profile
malicious domains. In this section, we will present 4 dynamic
resolving features origin from the DNS resolving records.

In order to evade blacklists and resist takedowns, the
DNS answer that is returned by the server for a malicious
domain generally consists of multiple DNS A records (i.e.,
Address records) or NS records (i.e., Name Server records).
And the slippery attackers do not usually target specific Name
Server or IP ranges. Therefore, we construct four statistical
features as follows: number of distinct A records (Feature 13),
IP entropy of domain name (Feature 14), number of distinct
NS records (Feature 15), and similarity of NS domain name
(Feature 16).

Number of distinct A records (Feature 13) records the
total number of IP addresses resolved in DNSDB. Further-
more, IP entropy of domain name (Feature 14) is constructed
to measure the dispersion of these IP addresses resolved. Let d
be a domain name, S be the set of these IP addresses resolved,
and n be the number of distinct IP/16 prefixes in S. We define
IP_Entropy(d) as IP entropy of domain name (Feature 14).

IP_Entropy (d)

& (count (ipx;) count (ipx;) @)
——Z(§)k’gz(si)

i=1

where ipx, i = 1...n) means an IP/16 prefix in S,
count(ipx;) is the number of ipx; in S, and |S| is the size of
S.

If the IP entropy value of d is greater, then more likely d
will be identified to be malicious.

Number of distinct NS records (Feature 15) records
the total number of Name Servers resolved in DNSDB.
Furthermore, Similarity of NS domain name (Feature 16) is
constructed to measure the difference of these Name Servers
resolved. We calculate the Edit Distance between every pair
of Name Server names of a domain, and then the average
of these distances is defined as the similarity of NS domain
name. If the similarity of NS domain name of d is bigger, then
more likely d will be identified to be malicious.

4. An Imbalanced Malicious Domains
Detection Method

Almost all classification algorithms seem to be powerless
to learn from an extremely imbalanced training data set.
In consideration of the actual imbalanced distribution of

Security and Communication Networks

TABLE 1: An overview of domain features.

Feature group No. Feature Name Malicious domain profile
1 Length of domain name Longer
2 Max length of labels in subdomain Longer
3 Character entropy Greater
4 Number of numerical characters Higher
5 Ratio of numerical characters Higher
Static lexical features 6 Conversion frequency of numerical and- alphabetic character Higher
7 Max length of continuous numerical characters Shorter
8 Max length of continuous alphabetic characters Longer
9 Max length of continuous same alphabetic characters Shorter
10 Ratio of vowels Lower
1 Max length of continuous consonants Longer
12 Conversion frequency of vowel and consonant Higher
13 Number of distinct A records Higher
Dynamic DNS resolving features 14 IP entropy ?f fiomam name H%gher
15 Number of distinct NS records Higher
16 Similarity of NS domain name Bigger
10 1. 10
08 0.8 08
- Q
£ E :
] To6 A
gﬂ 6 :‘D 6 ‘:UC-‘U 6|
a [e
o . Coa
L 2]
0.2 6 0.2
008 160 a0 500 0% 100 400 500 oo}’ 160 200 300 400 500

200 300
Domain_Number

200 300
Domain_Number

Domain_Number

Max_Len_CAC
12 <

ol 100

200 300
Domain_Number

400 500 5 100 200
Domain_Number

200 400 500 o 100 400 500

200 300
Domain_Number

----------- Malicious Domain

Benign Domain

FIGURE 1: The results of statistical analysis of some features.

DNS traffic data (i.e., malicious domains are relatively rare),
inspired by existing methods, our research focuses on the
combination of undersampling and ensemble learning.

In existing methods, EasyEnsemble [7] is a typical
improved algorithm combining undersampling with ensem-
ble learning. As we know, the main deficiency of under-
sampling is that potentially useful information contained
in the unselected examples is neglected. To remedy this
deficiency, EasyEnsemble incorporates ensemble learning
into undersampling.

The idea behind EasyEnsemble is quite simple. Given

the majority class instances set N, and the minority

class instances set N,,;., this method independently samples
several subsets N, N,,...... » Ny from N,,,;, where |N;| =
INpinl G=1,2,...... ,T). For each subset N, a base classifier
is trained using N; and N, ;.. All base classifiers are combined
for the final decision. Remarkably, many learning algorithms
can be employed to generate the base classifier.
EasyEnsemble make better use of the majority class than
undersampling by ensemble learning, so it is very helpful for
between-class imbalance learning. However, EasyEnsemble
ignores within-class imbalance, especially for the majority
class. That is, in the majority class some instances are highly
similar which may form several clusters, and more other

Security and Communication Networks

[Nl <IN,

maj

J
(3) ie0

(4) repeat
(B)i—i+l

(9) Learn H; using N; and N,
(10)until i =T

in>

(1) {Input: A set of minority class examples N, .., a set of majority class examples N,
|, the number of subsets T to sample from N,
(2) N, are clustered into several small groups G,,G,, ..

(6) Select randomly (ocj|G jl) instances from each cluster G ; (=1,2,...) with a total of K

(7) Select randomly |N;| -K instances from N, - £G;

(8) Combine the dataset sampled from step (6) and (7) to form a subset N;, where |N;; = [N, |
Hi is a base classifier employed Decision Tree

(11) Output: An ensemble H(x) = argmax_ ZL I(Hi(x) = ¢)

maj>

maj }

.. by HAC

ArGoriTHM I: The HAC_EasyEnsemble algorithm.

instances are almost unique. This kind of phenomena is com-
monly called “long-tailed distribution” in the statistical sense.

We should select a representative subset from each
cluster and combine them with a subset selected randomly
from the other unique instances set to form a preliminary
subset. According to this idea, we proposed an improved
EasyEnsemble method to learn imbalanced DNS traffic data.

In this novel method, firstly the instances in the
majority class are clustered together in several small
groups G, Gy, by Hierarchical Agglomerative Cluster-
ing (HAC). For each cluster G; (j=12.....), according
to the size of G, we select randomly several instances with
a total of K. And then we select randomly |N;| -K (i =
1,2,...... , T) instances from Nmaj- ZGj to form a subset N,
where |N;| = [N, |- Base classifier H; is trained using N; and
Noin- Al T base classifiers are combined for the final decision.
Note that Decision Tree algorithm is employed to generate the
base classifier.

The pseudocode of the improved EasyEnsemble named
HAC_EasyEnsemble is shown in Algorithm 1.

Noted that here I is an indicative function, and c is
the class label, if the parameter of I is true, then return 1,
or else return 0. In HAC, we may employ various cluster
proximity measures which are typically complete link, group
average, Ward’s method [18], etc. For the complete link,
the proximity of two clusters is defined as the maximum
of distance (minimum of the similarity) between any two
points in the two different clusters. For the group average, the
proximity of two clusters is defined as the average pairwise
proximity among all pairs of points in the different clusters.
For Ward’s method, the proximity of two clusters is defined
as the increase in the squared error that results when two
clusters are merged [19].

5. Experiment

In order to verify the novel HAC_EasyEnsemble algorithm
used to learn imbalanced DNS traffic data, we do a
series of experiments to compare the performance of
HAC_EasyEnsemble and EasyEnsemble based on the
same dataset. And we use three different cluster proximity

measures in HAC: complete link, group average, and Ward’s
method.

Originally, we construct an imbalanced training set which
contains 6400 benign domains (from alexa.com) and 3000
malicious domains (from cybercrime-tracker.net, malware-
domains.com, and hosts-file.net etc.). The reason for this
ratio of malicious domains is that the HAC_EasyEnsemble
algorithm is more effective for relatively rare malicious
domains, not absolutely. The DNS resolving records of these
domains are obtained by DNSDB API, and then 12 static
lexical features and 4 dynamic DNS resolving features listed
in Section 3 are constructed based on these records.

Commonly the evaluation measures for the imbalanced
classification are macroaveraged precision, macroaveraged
recall, macroaveraged F1 [20]. Since macroaveraged scores
are averaged values over the number of categories, then
the performance of classifier is not dominated by major
categories. Let P be the precision, R be recall, and m denote
the total number of categories, then macroaveraged precision
is (1/m) Y, P;, macroaveraged recallis (1/m) Y| R;, maro-
averaged Flis (1/m))", F1;, where F1is2PR/(P + R).

In order to get the number of base classifiers T’ mentioned
in Section 4 of HAC_EasyEnsemble classification model, we
firstly do a series of experiments. In these experiments we
set different T for HAC_EasyEnsemble classification model,
then we observe the error rate of classification in different T
Figure 2 shows the relationship between the number of base
classifiers of HAC_EasyEnsemble classification model and the
error rate of classification.

From Figure 2, we can find that when the number of
base classifiers equals approximately 10, the error rate of
classification tends to be unchanged. Consequently, in the
next comparing experiments, the number of base classifiers
is set as 10.

Tenfold cross validation is performed on the experiment
dataset. For this purpose, the corpus is initially partitioned
into tenfold. In each experiment, ninefold data are used to
train while onefold data are used to test. Ten experiment
results are showed in Figure 3 and the average value of ten
experiment results is reported in Table 2.

Figure 3 gets further insight about the comparison of
complete link clustering, group average clustering, Ward’s

6 Security and Communication Networks
TABLE 2: The macroaveraged P, R, and F1 score comparison of four schemes.
HAC_EasyEnsemble EasyEnsemble
Complete Link Group Average Ward’s Method non-clustering
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Benign 0.9712 0.9500 0.9605 0.9774 0.9591 0.9682 0.9837 0.9622 0.9728 0.9534 0.9375 0.9454
Malicious 0.9552 0.9533 0.9542 0.9491 0.9567 0.9529 0.9651 0.9667 0.9659 0.9181 0.9300 0.9240
Macro-ave 0.9632 0.9517 0.9574 0.9633 0.9579 0.9605 0.9744 0.9645 0.9694 0.9358 0.9338 0.9347

error rate

/KNWMW JUR LA AIM !“ M‘ U V| . | |
VWY T 1l W W ¥

400

0 100 200 300
the number of base classifier

FIGURE 2: The relationship between the number of base classifiers of
HAC_EasyEnsemble and the error rate of classification.

0.98

0.96

F1 score
o
©o
>

‘\

0.92

- non-clustering
- Ward's method
- complete link

- group average

0.90

64

2 4 6 8

FIGURE 3: The F1 scores comparison of four schemes.

method clustering, and nonclustering with line chart form,
from which it can be seen that the scores with clustering are
nearly higher than ones with nonclustering overall in each
experiment. And Ward’s method is the best among of them
in performance, while complete link and group average are
almost in same level.

Table 2 shows the macroaveraged P, R, and F1 score
of each scheme. For example, compared to nonclustering,
the macroaverage F1 scores of Ward’s method clustering, of
group average clustering, and of complete link clustering are
approximately improved 3.5%, 2.6%, and 2.3%, respectively,
and then we can draw a conclusion that sampling with HAC
will be very helpful to improve the performance of classifier.

Finally, to find out whether the HAC_EasyEnsemble is
able to show its advantage in different ratio of malicious
domains, we do the other 6 experiments to compare the
detection performance of HAC_EasyEnsemble. In the 6
experiments, the number of benign domains in training set

0.98

macro-ave F1 score
o
[
R

- non-clustering

- complete link
- group average

*
-+
-®- Ward's method
*
L
.1

0.2 0.7

0.3 0.4 .5 0.6
The ratio of malicious domains to benign domains

FIGURE 4: The macroaveraged F1 score in different ratio of malicious
domains to benign domains.

is 6400, and the number of malicious domains is 700, 1000,
1500, 2000, 4000, and 5000, respectively. Figure 4 shows the
experimental results.

From Figure 4, we can see that the detection perfor-
mance of HAC_EasyEnsemble is almost in line with the
previous 3000:6400 (see Figure 3 and Table 2) in any other
ratio greater than 1000:6400(=16%). So, if properly used,
HAC_EasyEnsemble can be used to detect malicious domains
by learning from imbalanced DNS traffic data.

6. Conclusions

In this paper, we proposed an improved version of
EasyEnsemble for detecting malicious domains named
HAC_EasyEnsemble, which can effectively deal with
the within-class imbalance problem in tandem with the
between-class imbalance problem, while EasyEnsemble can
only deal with the between-class imbalance problem. The
key idea of this improvement is to incorporate HAC into
undersampling of EasyEnsemble, and three typical cluster
proximity measures which are complete link, group average,
and Wards method are also compared by experiments.
Moreover, to profile malicious domains, we construct 12
static lexical features and 4 dynamic DNS resolving features
based on passive DNS data from DNSDB. The comparative
experiments show that the HAC_EasyEnsemble is superior
for the malicious domains detection oriented to imbalanced
DNS traffic. And it is worth emphasizing that this novel
method is extremely suitable for the tasks in which enough
malicious domains cannot be obtained in a limited amount
of time.

Security and Communication Networks

We believe that HAC_EasyEnsemble is an effective
method that can help us to cope with cybercrime. As future
work, we plan to construct more discriminative features
to profile malicious domains and further to enhance the
performance of the HAC_EasyEnsemble algorithm.

Data Availability

The authors declare that the data used in our manuscript
can be accessed by the following method. Firstly, the benign
domain names are downloaded from alexa.com and the
malicious domain names are downloaded from cybercrime-
tracker.net, malwaredomains.com, hosts-file.net, etc. And
then the DNS resolving records of these domains are obtained
by DNSDB API with additional charge.

Disclosure

The funders (Dr. Xue and Dr. Shan) were involved in the
manuscript editing, approval, or decision to publish.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was financially supported by National Key R&D
Program of China (2016 YFB0801304) and Scientific Research
Project of Beijing Institute of Technology (2017CX02029).

References

[1] M. Antonakakis, R. Perdisci, D. Dagon et al, “Building a
dynamic reputation system for DNS,” Usenix Security Sympo-
sium, pp. 273-290, 2010.

[2] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel,
“EXPOSURE: a passive DNS analysis service to detect and
report malicious domains,” ACM Transactions on Information
and System Security, vol. 16, no. 4, p. 14, 2014.

[3] N. Nikolaou, Cost-Sensitive Boosting: A Unified Approach, The
University of Manchester, 2016.

[4] S.Wang and X. Yao, “Relationships between diversity of classifi-

cation ensembles and single-class performance measures,” IEEE

Transactions on Knowledge and Data Engineering, vol. 25, no. 1,

pp. 206-219, 2013.

S. Maldonado, R. Weber, and F. Famili, “Feature selection

for high-dimensional class-imbalanced data sets using support

vector machines,” Information Sciences, vol. 286, pp. 228-246,

2014.

[6] Y. Peng and J. Yao, “AdaOUBoost: adaptive over-sampling and
under-sampling to boost the concept learning in large scale
imbalanced data sets,” in Proceedings of the ACM SIGMM
International Conference on Multimedia Information Retrieval
(MIR ’10), pp. 111-118, March 2010.

[7] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling
for class-imbalance learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 2, pp. 539-
550, 2009.

[5

[8] V. Lopez, A. Fernindez, S. Garcia, V. Palade, and F. Herrera,
“An insight into classification with imbalanced data: empirical
results and current trends on using data intrinsic characteris-
tics,” Information Sciences, vol. 250, no. 11, pp. 113-141, 2013.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal
of Artificial Intelligence Research, vol. 16, no. 1, pp. 321-357, 2002.

[10] H. Han, W. Y. Wang, and B. H. Mao, “Borderline-SMOTE: a
new over-sampling method in imbalanced data sets learning;’
in Proceedings of the International Conference on Intelligent
Computing, vol. 3644 of Lecture Notes in Computer Science, pp.
878-887, Springer, 2005.

[11] H. He, Y. Bai, E. A. Garcia, and S. Li, ADASYN: adaptive
synthetic sampling approach for imbalanced learning,” in Pro-
ceedings of the International Joint Conference on Neural Networks
(IICNN °08), pp. 13221328, June 2008.

[12] M. Stevanovic, J. M. Pedersen, A. D’Alconzo, S. Ruehrup, and A.
Berger, “On the ground truth problem of malicious DNS traffic
analysis,” Computers & Security, vol. 55, pp. 142-158, 2015.

[13] E Weimer, “Passive DNS replication,” in Proceedings of the
FIRST Conference on Computer Security Incident, pp. 1-13,2004.

[14] https://www.farsightsecurity.com/solutions/dnsdb/.

[15] R.Perdisci, I. Corona, and G. Giacinto, “Early detection of mali-
cious flux networks via large-scale passive DNS traffic analysis,”
IEEE Transactions on Dependable and Secure Computing, vol. 9,
no. 5, pp. 714-726, 2012.

[16] C. Zhou, K. Chen, X. Gong, P. Chen, and H. Ma, “Detection
of fast-flux domains based on passive DNS analysis,” Acta
Scientiarum Naturalium Universitatis Pekinensis, vol. 52, no. 3,
Pp. 396-402, 2016.

(17] https://en.wikipedia.org/wiki/Entropy_(information_theory).

(18

E Murtagh and P. Contreras, “Algorithms for hierarchical

clustering: an overview;” Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, vol. 2, no. 1, pp. 86-97, 2012.

[19] S. Miyamoto, R. Abe, Y. Endo, and J.-I. Takeshita, “Ward
method of hierarchical clustering for non-Euclidean similarity
measures,” in Proceedings of the 7th International Conference of
Soft Computing and Pattern Recognition (SoCPaR ’15), pp. 60—
63, IEEE, November 2015.

[20] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to

Information Retrieval, Cambridge University Press, 2010.

https://www.farsightsecurity.com/solutions/dnsdb/
https://en.wikipedia.org/wiki/Entropy_(information_theory)

Hindawi

Security and Communication Networks
Volume 2018, Article ID 7693861, 13 pages
https://doi.org/10.1155/2018/7693861

Research Article

OFFDTAN: A New Approach of Offline Dynamic Taint

Analysis for Binaries

Xiajing Wang®, Rui Ma (@, Bowen Dou (), Zefeng Jian (), and Hongzhou Chen
Beijing Key Laboratory of Software Security Engineering Technology, School of Software, Beijing Institute of Technology,

Beijing 100081, China

Correspondence should be addressed to Rui Ma; mary@bit.edu.cn

Received 11 January 2018; Revised 10 March 2018; Accepted 8 April 2018; Published 30 May 2018
Academic Editor: Raymond Choo

Copyright © 2018 Xiajing Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dynamic taint analysis is a powerful technique for tracking the flow of sensitive information. Different approaches have been
proposed to accelerate this process in an online or offline manner. Unfortunately, most of these approaches still have performance
bottlenecks and thus reduce analytical efficiency. To address this limitation, we present OFFDTAN, a new approach of offline
dynamic taint analysis for binaries. OFFDTAN can be described in terms of four stages: dynamic information acquisition,
vulnerability modeling, offline analysis, and backtrace analysis. It first records program runtime information and models the stack
buffer overflow vulnerabilities and controlled jump vulnerabilities. Then it performs offline analysis and backtrace analysis to locate
vulnerabilities. We implement OFFDTAN on the basis of QEMU virtual machine and apply it to off-the-shelf applications. In order
to illustrate how our approach works, we first employ a case study. Furthermore, six applications have been verified so as to evaluate
our approach. Experimental results demonstrate that our approach is correct and effective. Compared with other offline analysis

tools, OFFDTAN has much lower application runtime overhead.

1. Introduction

Software vulnerabilities are the root of various cyber-attacks.
Common attacks, such as XSS and buffer overflows, all exploit
software vulnerabilities; thus vulnerability analysis attracts
extensive research during the past decade. One of the research
hotspots is vulnerability analysis for binary program, which
can be performed dynamically or statically. In the dynamic
analysis, the taint analysis techniques have been studied
recently, and numerous taint analysis tools have been imple-
mented and applied extensively to the field of vulnerability
analysis for binary program [1].

Taint analysis was first proposed by funnywei at the sum-
mit of XCon2003 [2]. The basic idea is to label data originat-
ing from or arithmetically derived from untrusted sources,
such as network input or user input, as tainted, then keep
track of the propagation of tainted data, and further detect
whether tainted data is used in dangerous ways. At present,
taint analysis could be divided into static taint analysis
and dynamic taint analysis on the basis of running state
of analysis object. The former keeps track of tainted data

by performing semantic and grammatical analysis of the
source code. That has some advantages, like higher path
coverage and better analysis efficiency, but there still exist
false positives. However, the latter marks and tracks certain
data during program runtime. That has better accuracy, but
there also exist some problems such as lower path coverage,
larger space overhead, and lower analysis efficiency.

To address these limitations, in this paper, we present
OFFDTAN, an approach of offline dynamic taint analysis for
binary program, implement it on top of QEMU [3] to support
fine-grained real-time monitoring for target program, and
evaluate it in six realistic applications. In order to illustrate
how our approach works, we employ an extended case study.
Specifically, in the proposed method, OFFDTAN uses Hook
technology to mark taint source and acquires the program
runtime information such as register and memory infor-
mation. Additionally, we summarize the applicable model
of stack buffer overflow vulnerabilities and controlled jump
vulnerabilities, which can be further used for offline analysis.
Moreover, to obtain accurate tainting results, we improve
existing taint propagation policy, mainly considering the

http://orcid.org/0000-0002-9897-0579
http://orcid.org/0000-0003-1954-5775
http://orcid.org/0000-0003-2940-5557
http://orcid.org/0000-0002-8832-9323
http://orcid.org/0000-0002-6037-9353
https://doi.org/10.1155/2018/7693861

effect of the tainted instruction operation on flag registers and
associated registers, which makes taint propagation policy
more accurate than previous approach. In particular, taint
propagation flow graph has been established to backtrack
taint data and locate its specific offset within taint source file.

The contributions of this paper can be summarized as
follows:

(i) Presentation of framework: we present OFFDTAN, a
generic offline dynamic taint analysis framework that
uses KVM acceleration on QEMU virtual machine to
detect vulnerabilities.

(ii) Enhancement of propagation policy: we enhance taint
propagation policy of flag register and related register
and summarize two types of specific vulnerability
models applicable to this method.

(iil) Construction of propagation flow graph: we propose
the construction method of taint propagation flow
graph to backtrack taint source, which can precisely
locate the specific offset of taint data.

(iv) Evaluation of framework: we evaluate OFFDTAN by
applying it to large off-the-shelf applications such as
FeiQ and Microsoft Word 2010. The experimental
results show that our approach is effective and has
better performance.

The remainder of this paper is organized as follows.
Related work was discussed in Section 2. Section 3 presents
the details of proposed approach. Section 4 discusses the
experimental results and validation, and our conclusions
were finally proposed in Section 5.

2. Related Work

Dynamic taint analysis can be performed online or offline.
Online analysis handles taint propagation during the pro-
gram execution, while offline analysis first records the trace
of program execution and then performs the taint analysis by
replaying program.

Online analysis usually leverages instrumentation tech-
nology to monitor the taint propagation. Common instru-
mentation tools, such as Valgrind [4], Pin [5], and Dynamo
[6], have been used extensively to implement most of online
analysis tools. James Newsome et al. released TaintCheck [7]
on the basis of Valgrind, which provides taint analysis for data
flow and enables the detection of buffer overflow vulnera-
bilities. However, this tool needs larger space overhead and
ignores the analysis for control flow. Considering the effect of
control flow, Clause et al. propose Dytan [8], which achieves
the analysis for control flow, but this tool still presents the
limitation of time overhead. LIFT [9] is developed by Qin et
al. based on StarDBT, which sharply shortens the duration
of taint analysis by screening for unnecessary data flow
information whereas the problem of memory consumption
has not been properly addressed.

Due to the rise of symbolic execution, some researchers
attempt to provide a combination method of dynamic taint
analysis and symbolic execution, such as DTA++ [10], Bit-
Blaze [11], and DECAF [12], which can improve the path

Security and Communication Networks

coverage of dynamic taint analysis. Lai et al. [13] mark each
byte of external input data to perform fine-grained taint
analysis, which improves the granularity of dynamic taint
analysis. Wang et al. [14] propose a method to bypass the
checksum mechanism, which combines with symbolic exe-
cution and fine-grained dynamic taint analysis, to develop
TaintScope. Zhuge et al. [15] present a method of type-based
dynamic taint analysis, according to the type information of
instructions and functions, which provides better semantic
support. In addition, this method presents the combination
of taint analysis and symbolic execution at variable level.
Although above methods have improved the performance of
online analysis, many problems are still not fundamentally
solved, especially the limitation of high runtime overhead.

To address these limitations, several researchers propose
the method of offline analysis, which is attractive at present.
Jee et al. propose a dynamic taint analysis method based
on shadow memory, which separates taint analysis from
program execution and develops ShadowReplica [16]. Dan
Caselden et al. introduce a hybrid information and control-
flow graph (HI-CFG) and give algorithm to infer it from
an instruction-level trace. Then they use the Tracecap tool
of BitBlaze to record instruction traces [17]. Manolis Stam-
atogiannakis et al. [18] leverage full-system execution trace
logging and replaying to decouple analysis from the original
execution. Shi et al. [19] propose a combination of coarse-
grained and fine-grained dynamic taint analysis (DTA)
method. It executes online coarse-grained DTA to screen out
effective instruction and then uses offline fine-grained DTA
to calculate taint information. Wang et al. [20] introduce
the propagation policy of multi-tainted label and implement
the prototype system FlowWalker. Their taint propagation
strategy makes a further support for the extended instruction
set of MMX/SSE family. Ma et al. [21] present a taint analysis
method based on trace offline indices which are byte-grained
and utilize taint tags. Their approach fixes the problem of
taint loss which resulted from just-in-time translation first
time. Ming et al. [22] propose a full-featured offline taint
analysis tool StraightTaint, which completely decouples the
program execution and taint analysis, resulting in much
lower execution slowdown. Dolan-Gavitt et al. [23] present
a full-system analysis tool PANDA that is based on QEMU
emulator and has the ability to record and replay executions.

The above-mentioned offline analysis methods alleviate
the problem of lower analysis efficiency to a certain extent.
However, most analysis tools or methods are running on
the same operating system as the target program and thus
cannot eliminate the impact of vulnerability analysis tool on
the target program. PANDA eliminates above impact, but
its performance is a bit slow. In particular, the propagation
policies of these methods are still not complete.

To address the first problem, we managed to use QEMU
virtual machine that supports KVM acceleration to create a
simulated computer environment isolated from the host and
precede fine-grained observation for relevant target program
in the client. In addition, this paper develops appropriate
propagation policy and vulnerability checking strategy to
improve the accuracy of analysis. In the aspect of propagation
policy, we focus on improving the taint update policy of flag

Security and Communication Networks

Program running
track file

Taint sourcelogfile | ™

Vulnerability modeling for binaries

Dynamic information
acquisition

Capturing binary program
information

Marking taint sources

Vulnerability
modeling

B

Security strategy

QEMU virtual machine

Target binary

e

Offline analysis

Taint propagation Backtrace analysis

policy
@ vulnerability log
e file (| analysis log
Dynamic taint \L
analysis

N Vulnerability
checking

N

Taint propagation
flow graph

Backtrace analysis

L5

program

External input

X86 entity machine

FIGURE 1: The OFFDTAN framework.

register and related register. To check vulnerabilities, this
paper summarizes two types of specific vulnerability models
applicable to this method and establishes the vulnerability
checking strategy by studying the cause of released vulner-
abilities. Moreover, the approach of backtrace analysis has
been presented to locate taint data’s specific offset within taint
source file. This method further reduces the proportion of
manual analysis and improves the efficiency of vulnerability
analysis.

3. OFFDTAN

In this section, we first outline the framework of OFFDTAN
and then detail each stage.

3.1. General Framework. This paper proposes OFFDTAN, an
approach of offline dynamic taint analysis for binary pro-
gram. We employ KVM acceleration on QEMU to implement
OFFDTAN, because it is isolated from the operating system
of the host. In order to better describe this method, it can
be divided into the following four stages: dynamic informa-
tion acquisition, vulnerability modeling, offline analysis, and
backtrace analysis, as shown in Figure 1.

More precisely, dynamic information acquisition stage is
used for dynamically recording the trace of program exe-
cution and taint source log, which can be used for offline
analysis stage. The basic condition of this stage is that QEMU
simulates the CPU and memory state. Vulnerability modeling
stage establishes the vulnerability model by summarizing
existing vulnerability characteristics and then generates the
vulnerability checking strategy. Offline analysis stage loads
the trace file of program execution and taint source log file
to perform offline analysis on the basis of taint propaga-
tion policy and vulnerability checking strategy. Additionally,
offline analysis stage builds taint propagation flow graph and
generates vulnerability log file. Finally, backtrace analysis
stage takes vulnerability log file and taint propagation flow
graph as input to backtrack taint data to locate vulnerability.

3.2. Dynamic Information Acquisition. This stage is mainly to
extract the runtime information of target program and mark
the taint source. Moreover, the generated trace file of program
execution and taint source file are used for offline analysis.
The key processes of this stage are the capture of program
runtime information and the marking of taint sources.

3.2.1. Capturing Program Runtime Information. The capture
of program runtime information is mainly to obtain four
aspects of information, namely, the information of CPU
running state, memory information, process information,
and the trace file of program execution.

(1) Acquiring the Information of CPU Running State. The
indispensable CPU state information mainly includes general
register, instruction register, flag register, segment register,
control register, and the internal variable of QEMU. This
information can be obtained by capturing the current CPU
pointer.

(2) Acquiring Memory Information. Clearly, there are four
types of memory addresses in the QEMU, namely, client
virtual address, client physical address, host virtual address,
and host physical address.

Reading and writing the QEMU memory should actually
be working in the physical address of host. Therefore, the
key point is performing the address translation from client
address to host address to acquire current memory informa-
tion.

(3) Acquiring Process Information. The processes store much
program information, and offline analysis is accompanied
by the virtual replaying of program which requires a large
number of data types and semantic information. Therefore,
the acquisition of process information is the core during the
capture of program runtime information.

In the Windows operating system, data structures asso-
ciated with the process include five structures: KPROCESS,
EPROCESS, KTHREAD, KPRCB, and KAPC_STATE. That
almost describes all the information about processes and
threads. To obtain current process, our method first needs the
memory address of KPRCB, which can be acquired by the
reverse analysis of the Windows kernel. On the basis of
KPRCB, our approach can further calculate KTHREAD,
KAPC_STATE, KPROCESS, and EPROCESS, respectively, to
acquire process information.

(4) Generating the Trace File of Program Execution. Actually,
the generating process of trace file is to integrate captured
program runtime information in accordance with the orga-
nization and management way of kernel data structure.
The trace file mainly includes obtained CPU running state

information, memory information, and process information.
The generated trace file of program execution records instruc-
tion running number, current process number, thread num-
ber, instruction, operand, register, and other information.
Specifically, it can be divided into the following five steps:

(a) Through CPU running state information to obtain
instructions, registers, and other information.

(b) Taking instruction information and relevant register
information as input, the instruction opcode and
operand can be obtained through memory informa-
tion.

(c) Obtaining process-related information by acquired
register information, memory information, and pro-
cess information.

(d) The acquired information is integrated into the trace
file of program execution, including register infor-
mation, instruction opcode, instruction operand, and
process information.

(e) Generate the trace file of program execution.

3.2.2. Marking Taint Sources. Taint markings are prerequisite
for taint propagation, and the way of taint markings and taint
operation recordings has a great influence on the efficiency
of dynamic taint analysis. In the dynamic taint analysis,
the external data, such as file input or network input, are
generally marked as taint data. In order to mark taint source,
the corresponding system services that are responsible for
reading external data need to be monitored. In the Windows
operating system, some system services, such as NtReadFile,
NtCreateFile, NtWriteFile, NtClose, WSARecv, and recv, are
responsible for file input and network input. Thus, in this
paper, OFFDTAN marks taint sources of network input and
file input by coding the Hook function for above system
services to monitor the parameters and return value of those
system services. As a result, our method obtains and records
the offset of taint data in the taint source file, the length of
taint data, and the head address of memory where taint data
is stored.

3.3. Vulnerability Modeling. This paper focuses on the
research of stack buffer overflow vulnerabilities and con-
trolled jump vulnerabilities, so corresponding models have
been established according to the characteristic of offline
analysis.

3.3.1. Stack Buffer Overflow Vulnerabilities Model. Since the
strepy, memcpy, and other string manipulation functions are
optimized in the process of compiling, this paper summarizes
the assembly code of string library functions to analyze the
program path that could trigger buffer overflows. Moreover,
this paper establishes the dependency among the execution
paths and combines offline analysis with modeling buffer
overflow vulnerabilities.

The stack buffer overflow vulnerabilities model of this
paper mainly concerns whether the operand of instruction
rep movsd can override function return address or EBP to
further affect the control flow of program.

Security and Communication Networks

In order to better represent this model, firstly, we explain
various terms used in below definition. The symbol EDI rep-
resents destination address operated by crucial instruction.
The symbols EBP and ESP denote stack base address and
stack top pointer, respectively, and symbol RA represents
function return address. The program counter register is
denoted as ECX. Then the following definitions are giv-
en.

Definition 1. The symbol I denotes whether there is a crucial
instruction, I € {0,1}. The value of I is 1 if and only if
instruction rep movsd exists in the trace of program execu-
tion.

Definition 2. The symbol F denotes whether the instruction
I writes on stack memory, F € {0, 1}. The value of F is 1 if and
only if ESP < EDI < EBP (or ESP < EDI < RA), which can
determine that instruction I is operating the stack memory.

Definition 3. 'The symbol P denotes the safe distance of stack
buffer, P € [0,2097152]. The safe distance is defined as P =
EBP —EDI or P = RA - EDI.

Definition 4. The symbol D denotes whether EBP (or RA) is
overwritten, D € {0, 1}. In this case, the length of source data
operated by instruction I is expressed as L, which is 4 * ECX.
The value of D is 1if and only if L > P.

Definition 5. The symbol E represents whether ECX is
tainted, E € {0, 1}. The value of E is 1 if and only if ECX is
tainted.

Definition 6. The symbol C denotes whether ECX has a
comparison instruction before instruction I, C € {0, 1}. The
value of C is 1 if and only if there is a comparison instruction
to ECX before instruction I.

Definition 7. The symbol T' denotes whether the parameters
compared with ECX are tainted, T' € {0, 1}. The value of T is
1if and only if the parameters are tainted

Definition 8. The symbol V expresses whether the program
has stack bufter overflows and V is byte type. The values of I,
F,D, E, C, T are the lower six bits of V in turn. For example,
the value of V is 00111010 if the values of I, F, D, E, C, T are 1,
L, 1,0,1, 0, respectively.

In summary, this model considers two modes of stack
buffer overflows primarily.

(1) The triggered mode of stack buffer vulnerabilities: in
this mode, L > P, i.e.,, D = 1; thus the data written
to stack could overwrite EBP or RA. The value of V is
00111XXX.

(2) The nontriggered mode of stack buffer vulnerabilities:
in this mode, ECX is tainted, thus triggering potential
stack buffer vulnerabilities. This model is divided into
two cases on the basis of the value of C. (i) When C =
0, the value of V' is 0011010X. (ii)When C = 1 and
T = 1, the value of V is 00110111.

Security and Communication Networks

3.3.2. Controlled Jump Vulnerabilities Model. Controlled
jump usually refers to the fact that taint data is used for return
address, function pointer, and destination address, etc. and
makes the program hijacked to the shellcode code, which
causes the program to be controlled by the attacker. First, this
model locates this type of jump instruction by the sequence of
instruction during the program execution. Second, according
to offline analysis, the coincident conditions that triggered
vulnerabilities can be concluded. For any of jump instruc-
tions, it can trigger vulnerabilities if and only if its destination
address is tainted.

This model mainly considers three types of jump modes.

Mode 9 (call/jump register mode). In this mode, the operand
of the instruction is only one register. If the register is tainted,
this instruction operation is tainted.

Mode 10 (call/jump [register + offset] mode). In this mode,
the operand adds the offset on the basis of register. If the
operand or register of instruction is tainted, this instruction
operation is tainted.

Mode 11 (Ret/Retf mode). This instruction is used for func-
tion return, and usually ESP will be assigned to EIP (the
instruction address of CPU execution) before return. If the
data pointed by ESP is tainted, this instruction operation is
tainted.

3.4. Offline Dynamic Taint Analysis. Due to the logic com-
plexity of internal system call, the traditional dynamic
taint analysis has the disadvantages of lower analysis effi-
ciency and higher runtime overhead while analyzing large-
scale programs. OFFDTAN presents an approach of offline
dynamic taint propagation, which combines instruction and
the system call, and separates dynamic analysis from program
execution. More precisely, our approach leverages the trace
file of program execution and taint log file to implement
the offline analysis through virtually replaying program. That
ultimately improves the accuracy and efficiency of dynamic
taint analysis.

3.4.1. Overview of Offline Dynamic Taint Analysis. The oftline
dynamic taint analysis can be mainly divided into three key
points.

(1) Program virtual replaying: by loading instructions
and contexts recorded by the trace file of program exe-
cution, it is possible to simulate program execution
according to the order of instruction.

(2) Dynamic taint analysis: by loading taint source log file,
it performs taint analysis during the virtual replaying.
This analysis is guided by propagation policy.

(3) Program vulnerability analysis: it checks the program

vulnerabilities in the process of dynamic taint analy-
sis, which is guided by security policy.

The (1) is mainly to simulate CPU’s running process, and
in this context, the semantics of different instructions are
parsed to implement program virtual execution. Specifically,

OFFDTAN first loads the trace file of program execution,
reads line by line, and stores the necessary information such
as instruction and register information. With the help of
udis86, a third-party disassembly engine, read instruction
information then needs to be disassembled. At the same time,
some relevant program runtime information will be copied
to the simulated CPU. Finally, we perform semantic and
syntactic analysis for each instruction within the context of
simulated CPU.

Since (3) is described in Section 3.3, this section will focus
on dynamic taint analysis, which mainly includes taint data
recording and taint propagation. The former records the taint
state of memory and register during the taint propagation.
The latter primarily provides proper propagation policy for
taint analysis. According to the taint data recording and cor-
responding taint propagation, this stage ultimately generates
the taint propagation flow graph, which provides data input
for backtrack analysis and forward analysis.

3.4.2. Taint Data Recording. Taint data recording primarily
includes the introduction of taint source and the state update
of taint data. The introduction of taint source is the first step
in taint analysis. Unlike traditional dynamic taint analysis,
offline analysis introduces taint source by analyzing taint
source log file. Specifically, according to the instruction
number of virtual replaying, the taint source information
with the same number would be loaded into the taint state
space. Next, this method uses shadow memory to store
and maintain taint state of memory address and register in
taint state space. It updates taint state in real time based
on taint propagation policy during the dynamic taint analy-
sis.

Taint state space records the taint state of memory address
and register, as shown in Figure 2. However, most of previous
approaches have not recorded taint operation; thus taint
propagation path cannot be stored. In order to support the
backtrace analysis of taint data, taint operation needs to be
recorded according to different storage carrier.

(1) Taint operation recording for memory: the tainted
memory of each byte is stored in the form of data
structure TM, which is arrayed in a form of linked
list based on the order of taint operation when taint
is propagated. Data structure TM mainly contains
memory address, taint state, memory address of taint
source, and pointer to the node of taint propagation
flow graph, as shown in the upper part of Figure 2.

(2) Taint operation recording for register: by learning from
the value of register enumerated variable ud_type,
which is the third-party disassembler udis86, seri-
alized storage management would be taken for the
taint state information of register. In the udis86, the
value of register enumerated has 141 types; thus this
paper defines the structure array TRArray[141] of
TR to store the taint state of register, where array
index corresponds to the specific register. The data
structure TR mainly contains taint state, pointer to the
node of taint propagation flow graph, and taint source
operation, as shown in the lower part of Figure 2.

Security and Communication Networks

Startin

Taint state
space L~ TM1 state | address5 PTPG_Node
address1 == T™2 state | ... address3 PTPG_Node
S
address2 M /& T™3 state | ... addressl PTPG_Node
Y
address3 . /\\) _5 TM4 state | ... address4 PTPG_Node
address4 - B .
BP0
7 \,
g L,/ TM5 I state I I address2 PTPG_Node
regl ~o_
B ~=> TRI1 state | S_address PTPG_Node
reg ~
reg3 =2 TR2 state | ... S_address PTPG_Node
"3 TR3 state | S_address PTPG_Node
T~

FIGURE 2: Taint state space and corresponding taint propagation flow graph.

3.4.3. Taint Propagation Policy. Taint propagation is the
key to taint analysis. Furthermore, a complete and proper
propagation policy, which describes how taint data should
be propagated during program replaying, is crucial for taint
propagation. In order to develop taint propagation policy,
we first extract and analyze common instruction set in
the complex instruction space and instruction semantics
through many program tests. Then we study six categories
of instruction, such as data transfer class, operation class,
shifting instruction class, string operation class, and control
transfer class. According to its instruction semantics, source
operands, destination operands, and addressing mode, taint
propagation policy is developed. Finally, we set query inter-
face, tainting interface, and sanitization interface, which is
used for updating the taint state in real time.

A corresponding taint propagation policy is made for
above six instruction categories.

(1) Data transfer class: MOV, PUSH, XCHG, etc.

(i) If one of the source operands is tainted, the
destination operands will be tainted.

(ii) If source operands are untainted, the destination
operands need to be sanitized.

(2) Operation class: ADD, ADC, AND, XOR, etc.

(i) If any of the operands of an instruction is
tainted, this result of operation is tainted and
destination operands are also marked as tainted.

(ii) If the conditional flag of processor is affected by
tainted operand, the affected conditional flag is
also marked as taint data.

(iii) For instruction XOR, if the source operand and
destination operand have identical register or
memory address, the operand of instruction
needs to be sanitized.

(3) Shifting instructions: SAL, SHL, SHLD, RCL, etc.

(i) If the arbitrary operands of this instruction are
tainted, this result of operation is tainted and
destination operands are also marked as taint
data.

(ii) If the conditional flag of the processor is affected
by tainted operand during the shifting, the
affected conditional flag is also tainted.

(4) String operation class: MOVS, LOAD, STOS, etc.

(i) If the source operands of this instruction are
tainted, the destination operands are tainted.

(ii) If an instruction with REP exists, the ECX needs
to be sanitized after this instruction has been
executed.

(5) Control transfer class: JMP, CALL, RET, etc.

(i) If these instruction operands are tainted, the EIP
is tainted.

(ii) If instruction operands are indirect addressing,
the EIP is marked as taint data as long as the
internal register of operand is tainted.

(6) Others: CLD, CLC, STC, CBW, efc.

Security and Communication Networks

(i) For these instructions of clear direction flag reg-
ister, such as CLD and CLC, the corresponding
flag registers need to be sanitized.

(ii) The instruction STC does not need to be pro-
cessed.

(iii) For extended instructions such as CBW, the
extended high register is marked as taint data if
the low register is tainted.

In summary, our propagation policy focuses on improv-
ing the update ways for the taint state of flag register and as-
sociated register. For example, when the taint state of accu-
mulator AX changes, it is necessary to modify the taint state
of associated registers, such as the AL register, AH register,
and EAX register.

3.4.4. Constructing Taint Propagation Flow Graph. Dynamic
taint analysis is the fundamental of the constructing of taint
propagation flow graph. During the offline dynamic taint
analysis, taint operation would be recorded to provide the
data dependency between instruction operands and function
parameters for building taint propagation flow graph. More
precisely, OFFDTAN first loads the trace file of program exe-
cution and analyzes those instructions during the program
virtual replaying. According to the propagation policy and
the taint state space of operand, OFFDTAN then determines
the effect of each instruction on the taint state space. If there
is a change in the taint state space, OFFDTAN will record this
trace of taint operation and point to the corresponding nodes
in the taint propagation flow graph.

Dynamic taint analysis can achieve the forward analysis
and backtrace analysis to taint data by using taint propagation
flow graph. The traditional taint propagation flow graph is
composed of instruction nodes and directed edges. In this
method, the taint state recording structure can reflect the
distribution of taint data in the taint state space. In order to
locate taint source, our method employs a bidirectional edge
as connection edge and adds a serial number for each node
in the taint propagation flow graph to distinguish the upper
and lower relations between the nodes.

In a word, a taint propagation flow graph is composed
of instruction nodes and bidirectional edges, as shown in
Figure 2, which also demonstrates the relationship between
taint state space and the node of taint propagation flow graph.

The node, which is composed a triple, has two types:
the starting node and the intermediate node. Taint source is
taken as starting node, and intermediate node is established
by determining whether the direct or indirect operand of
relevant operation instruction is tainted. If it is, a node is
generated for this instruction. In particular, a pointer of
the taint state recording structure corresponding to tainted
operand points to the node of taint propagation flow graph.
Then intermediate nodes would be created sequentially until
the end of program execution.

The edges are used for connecting these nodes according
to the dependencies between the operands of instruction
nodes. Based on the real-time mapping relationship between
the recording structure of taint state and the corresponding
node of taint propagation flow graph, our approach can find

the corresponding node from the recording structure of taint
state and then connect the current node and the queried node
through bidirectional edge.

3.5. Backtrace Analysis for Taint Data. The backtrace analysis
of taint data can be used for locating taint source. In addition,
the backtrace analysis has a significant effect on improving
vulnerability analysis and assisting manual analysis.

This paper first takes the taint data in the recorded
program vulnerabilities as the source of backtrace analysis.
According to its address, the corresponding node of taint
propagation flow graph can be found from taint state space.
Then, according to the taint source information of this
node, the prior node of taint propagation flow graph can be
further inquired from taint state space. Finally, our approach
successively backtracks taint propagation flow graph until it
located to the source of taint information. In a word, the
process of backtrace analysis is to continuously find a feasible
path from program vulnerabilities to taint source.

Backtrace analysis could be formally described as follows.
Firstly, taint source information can be defined as S, which
is the n-tuple of all the set of taint source information and
is denoted as S = (s1,5,,...,5,). We assume that any of
the propagation paths can be represented by the elements in
the n-tuple V. = (v;,v,,...,v,), where v; (i € [0,n]) is the
node of taint propagation flow graph and » is the number of
nodes. The data structure of v; is (src;, ins;, dst;), where src;
represents its source operand, ins; is the current operation
instruction, and dst; refers to the destination operand. The
goal of backtrace analysis is to obtain the sr¢; in the taint
operation v; of program vulnerabilities. Then propagation
path i-tuple V = (v;,v,, ..., v;) will be traversed reversely, so
that the src; in v; belongs to any elements of S; i.e., v;- > src; €
S.

4, Evaluation

This section describes the verification process of proposed
approach. We first analyze the implementation step by step
through a small case and illustrate the correctness and
feasibility of our method. Then, we apply it to six large appli-
cations, such as FeiQ 2.5 and Word 2010, to further verify the
correctness and effectiveness of proposed approach. Finally,
we set a comparative experiment to evaluate OFFDTAN’s
performance.

4.1. Experimental Setup. Our approach is implemented on
QEMU 1.2.0 that supports KVM acceleration. Host hardware
is Dell 8900 with Intel Core i7-4770 processor and 32 GB
memory, and host operating system is 64-bit CentOS 7. Client
hardware is the x86 architecture simulated by QEMU with a
virtual CPU and 512 M memory, and client operating system
is 32-bit Windows 7.

4.2. Case Study

4.2.1. Case Design. In this case analysis, we manually con-
struct C program with vulnerability, which is test.cpp, and
then generate test.exe by compiling it. Algorithm1 is the

Security and Communication Networks

(1) void myMemcpy(char si[], int count){
(2) char dest[10];

3) memcpy(dest, si, count);

(4) }

(5) int main(int argc, char =argv([]){

7)

(8) count = readCount(buf);

9) newBuf = readNewBuf(buf);
(10) myMemcpy(newBuf, count);
11) return 0

(6) HANDLE hOpenFile = (HANDLE)CreateFile(argv[1],
GENERIC_READ,
FILE_.SHARE_READ, NULL,
OPEN_EXISTING, NULL, NULL);

//building program
//vulnerability point

//reading taint
//source file test.txt

/Ireading the count
//reading the string

ALGORITHM l: Source code of test.cpp.

source file of target program test.exe. In this program, the
test.txt is taken as input file, which is taint source file, and
its contents are “l6aaaaaaaa...aaaa”. From the fest.cpp and
test.txt, we can draw a conclusion that the test program
reads “16” in taint source file as the value of count in the
memcpy(dest, si,count), and reads “aaaaaaaa...aaaa” as the
value of string newBuf. Moreover, count is the counter that
tracks how many times function memcpy writes data to
destination address dest, where dest is an array whose size is
10. Therefore, this case must cause an overflows.

We first use debugging tool Ollydbg to analyze test.exe in
the local Windows 7 operating system, and then the address
of stack buffer can be obtained, which is 0x401046. At this
time, becuase the value of ECX is too large, the function
return address 0xI2FE30 is covered by taint data when the
rep movsd is executed. The taint data that covers the function
return address is “aaaa”.

4.2.2. Case Analysis. This part will analyze this case in
detail in accordance with the implementation process of
OFFDTAN.

(1) Capturing Program Runtime Information. This case exe-
cutes target program fest.exe to acquire the program dynamic
information. Specifically, the data structure TraceNode is
defined to integrate the CPU, memory, and process infor-
mation. The trace file of program execution record.log ulti-
mately will be generated. Figure 3 demonstrates the infor-
mation contained in the trace file of program execution,
mainly including instruction running number, thread num-
ber, instruction register, assembly instruction, and general
register. These will be used for program virtual replaying.

(2) Recording Taint Sources. This method writes Hook func-
tion for some services that is related to file input and network
input (such as NtCreateFile, NtReadFile, and recv) to mark
taint source. At last, the taint source log file taintsource.log
will be generated. We take a taint source information as an
example to illustrate the information contained in the taint
source log file, as shown in Table 1. This information will

Records Count : 178301696 the total number of instructions

_—— instruction number
id: 1, tid : 2068 , eip : 0x4010d8 , asm : push esi
thread number ™ instruction register
eax : 0x1, ecx : 0x76389754 , edx : 0x775570b4 , ebx : 0x7{fda000
esp : 0x12fe3c, ebp : 0x0, edi : 0x0, esi : 0x38
op[0] : 0x38, op[IKOXO ,op[2] : 0x0
the value of operand
id:2,tid : 2068, eip : 0x4010d9 , asm : call dword [0x406000]
eax: 0x1, ecx : 0x76389754 , edx : 0x775570b4 , ebx : 0x7{fda000
esp : 0x12fe38 , ebp : 0x0 , edi : 0x0 , esi : 0x38
op[0] : 0x7638ca7c, op[1] : 0x0 , op[2] : 0x0

assembly
instruction

general register

FIGURE 3: The trace file of program execution.

TaBLE 1: The content of taint source log file.

Name Content
No. 1

The head address of taint data in memory 0X12FE54
The length of taint data 200
The offset of taint data in taint source file 0

be used for marking taint source in the process of oftline
dynamic taint analysis.

(3) Offline Dynamic Taint Analysis. This step takes the taint
source log file taintsource.log and the trace file of program
execution record.log as input to perform offline dynamic
taint analysis in accordance with the taint propagation
policy and program vulnerability checking strategy. It will
ultimately generate program vulnerability log file sink.log
(Figure 4(a)) and corresponding taint propagation flow graph
(Figure 4(b)).

As can be seen from Figure 4(a), our method detects five
program vulnerabilities. The information of each vulnera-
bility includes instruction number, the memory or register
address of taint data, and the length of taint data. All these
will be used for the backtrace analysis of taint data.

Security and Communication Networks

<396 ><0x4 4>, <0x12fed0 4 > ,yzfew 4>

the length of
taint data

memory address

<3784 > < 0xe0 4 > obigter address

<4067 > < 0xe0 4 >
(a) Program vulnerability log file

<DS:[<%KER

st it NEL32.ReadFi <SS:[ESP+14], <DS:[ESI],
162z le>], MOV, REP MOV,
aaa...a Eole o

(b) An example of taint propagation path

FIGURE 4: The results of offline dynamic taint analysis.

<396 ><0x44>,<0x12fed0 4 >, < 0x12fe30 4 >

< 0x401046 rep movsd 0 Function return address is overwritten and stack overflow occurs, the address of ECX is tainted, the
address of ESI is tainted. The address of ECX is 0x4; the address of ESI is 0x12fed0; the function return address is 0x12fe30 >

< 0xe0000000 , 0xe0000001 > | < 0xe0000004 , 0xe0000007 > | < 0xe0000000 , 0xe0000001 > < 0xe0000010 , 0xe0000013>
the offset of taint the offset of taint data that

data in ESI

the offset of taint
data in ECX overrides function return address

F1GURE 5: Offline analysis log file.

7" taint data that overrides function return address
00000010h : 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 ; aaaaaaaaaaaaaaaa
00000020h : 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 ; aaaaaaaaaaaaaaaa
00000030h : 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 ; aaaaaaaaaaaaaaaa

FIGURE 6: Taint source file.

(4) Backtrace Analysis. This step uses program vulnerability
log file as input and then backtracks taint data according
to the corresponding relationship between taint propagation
flow graph and taint state space. In Figure 4(b), we take
the first program vulnerability as an example to show the
corresponding taint propagation path V and illustrate how
to backtrack taint source. Each intermediate node has three
elements, namely, src;, ins;, and dst;. We start with the src;
of last node, which is DS [ESI], and inquire it from
taint state space to get the prior node in which the dst; is
ESI. Then, the src; of obtained node is inquired, which is
SS : [ESP + 14], to acquire the prior node related to SS :
[ESP + 14]. Next, we successively traverse acquired node to
inquire its src; until it belongs to taint source S, and DS : [<
%KERNEL32.ReadFile >] is the entry address of function
ReadFile. The memory block SS : [ESP + 14] is the buffer
address read by function ReadFile, and this memory block
stores the string loaded from taint source file fest.txt. This step
will ultimately generate the offline analysis log file result.log,
as shown in Figure 5.

As can be seen from Figure 5, each offline analysis log is
corresponding to the program vulnerability log file, indicat-
ing that our method backtracks each of program vulnerabil-
ities. Taking the first record in Figure 5 as an example, the
address 0xI2FE30, which is detected by proposed method,
is covered by taint data when the instruction rep movs is
executed. This is consistent with the result of Ollydbg analysis.
In addition, the result of backtrace analysis is that the offset

of taint data within taint source file, which covers return
address, is 0x10 ~ 0x13. The taint source file (see Figure 6)
shows that the “aaaa” covers return address, which also
coincides with the analysis in Figure 5.

According to above case analysis, we elaborate the analy-
sis procedure of our approach and verify the correctness and
feasibility of this method as well.

4.3. Off-The-Shelf Applications. To evaluate our method’s
ability to detect vulnerabilities for real applications, we take
FeiQ and Microsoft Office Word as an example and analyze
the vulnerability information of these two projects in detail.

4.3.1. Experimental Objective. This experiment is mainly
to verify the correctness and effectiveness of taint source
marking, the vulnerability model, and the final experimental
results of this method.

4.3.2. Experimental Design. The design of this experiment is
to use realistic application as test object. Through analyzing
application program, the correctness and effectiveness of
proposed method can be verified.

Two programs have been selected first. FeiQ 2.5 is a
network communication program and widely used in the
enterprise. Microsoft Office Word 2010 is a word processing
program, which is the mainstream of current word processing
software.

10

Security and Communication Networks

< 50487 > < 0x4 4>
< 0x49d04e rep movsd 0 There may be a stack overflow, the address of ECX is
tainted, the address of ECX is 0x4 >
< 0xe0000026 , 0xe000002f > the offset of taint data in
taint source file

(a) Offline analysis log file

00000000h : 31 5F 6C 62 74 34 5F 31 23 36 35 36 36 34 23 36 ; 1_1bt4_1#65664#6
00000010h : 43 46 30 34 39 38 37 43 43 31 41 23 35 37 30 23 ; CF04987CC1A#570#
00000020h : 33 31 37 34 31 23 34 32 39 34 39 36 37 32 39 35 ; 31741#4294967295

(b) UDP message

FIGURE 7: The analysis results of FeiQ.

program crash address
< 62092316W
< 0x66€9195d call dword [eax+0x4] 0 the address is tainted [0x275a48e8] >

< 0xe0001d3f, 0xe0001d3f > < 0xe0001d4a , 0xe0001d4a >
< 0xe0001d54 , 0xe0001d54 > < 0xe0001e18 , 0xe0001ela >

<1 0X2C1E000 4096 0> T
<213263 0X2C1D000 4096 1000> read the taint data

<283973 0X2C1C000 4096 2000> in CVE-2014- the offset of taint data

<63203752 0X2C1A000 4096 3000> 1761 POC file

(a) Taint source log file

in taint source file

(b) Offline analysis log file

FIGURE 8: The analysis results of Word 2010.

Next, in order to perform experiment, taint sources
need to be introduced. In this paper, two different ways are
adopted, respectively. For FeiQ, this paper writes the Python
script and sends UDP packets to the client on QEMU to
introduce network taint source. More precisely, the 2425 port
of the client on QEMU is employed to send UDP packets “I1_
Ibt4_1#65664#6CF04987 CClA#570#31741#4294967295#2.5a:
1317316152: admin:XXCCLI-A10D5C26:288:AAAAAAAAA-
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA”. Where-
as for Word 2010, this paper uses the POC file of CVE-2014-
1761, which is provided by CVE, as input to introduce file
taint source.

4.3.3. Results and Discussion for FeiQ. In order to verify this
method, we first use debugging tool Ollydbg to analyze the
results of FeiQ. Then, the experimental results of proposed
method are given. By comparing two results, it is possible to
verify that our method is correct and effective.

By the analysis of Ollydbg, we obtain the crash address,
which is 0x49D04E. The cause of program crash is that the
value of ECX is too large, resulting in stack overflows when
the instruction rep movsd is executed. In addition, ECX is
assigned to EAX at address 0x49D047, and the tainted value
is “4294967295” in the UDP message, which can be converted
to hexadecimal OxFFFFFFFF.

In our approach, OFFDTAN can generate the trace file of
program execution, taint source log file, program vulnerabil-
ity log file, and offline analysis log file to verify experiment
objective. In this section, we only focus on taint source log
file (Table 2) and offline analysis log file (Figure 7(a)). It can
be seen from Table 2 that this method successfully marks the
UDP message, and the length of taint data is 129, which is
consistent with the length of UDP message. It can be seen
from Figure 7(a) that the address of program vulnerability
is 0x49D04E, which corresponds to the assembly instruction
rep movsd. In addition, OFFDTAN analyzes the cause of stack

TaBLE 2: The content of taint source log file for FeiQ.

Name Content
No. 1
The head address of taint data in memory 0X11F1C4
The length of taint data 129
The offset of taint data in taint source file 0

overflows, which is that ECX is tainted. Furthermore, this
method uses backtrace analysis to analyze taint data in the
ECX derived from the UDP message whose offset is from
0x26 to 0x2F. The specific characters of UDP message is
listed in Figure 7(b). The characters, from 0x26 to 0x2F, are
“4294967295”, and their hexadecimal form is OxFFFFFFFF,
which is consistent with the results of Ollydbg. Therefore,
we verify the correctness and effectiveness of marking taint
source and stack buffer overflows model proposed by this
method.

4.3.4. Results and Discussion for Microsoft Office Word 2010.
To verify this approach, we first analyze the vulnerability
analysis processes given by CVE. Then, the experimental
results of proposed method are given.

By the analysis of CVE, we find that the crash address of
program is 0x66E9195D. The reason for vulnerability is that
the data in the memory corresponding to the operand [EAX +
4] of call instruction is tainted, leading to a controlled jump
when the instruction call dword[EAX + 4] is executed. The
jump address is [0x275A48ES8].

This experiment uses the POC file of CVE-2014-1761
to analyze Microsoft Office Word 2010 and generates the
taint source log file (as shown in Figure 8(a)) and offline
analysis log file (as shown in Figure 8(b)) to verify experiment
objective.

Security and Communication Networks 1
TABLE 3: Program description and evaluation results.
Program Version Vulnerability Crash Address Crash Instruction Offset of Taint
Adobe Reader 9.3.4 CVE-2010-2883 0x0803DDAB call strcat 0x12C
Microsoft Office Excel 2003 CVE-2011-0104 0x300DE834 rep movs 0x300
Firefox 3.6.16 CVE-2011-0073 0x1046659B call dword ptr [ECX + 70h] 0x4A
Microsoft Office Word 2003 CVE-2012-0158 0x275C8A0A rep movs 0xAOF
TABLE 4: The overhead of OFFDTAN and PANDA when running FeiQ and Word.
s PANDA OFFDTAN

Applications

Record Time (sec.) Replay Time (sec.) CPU% Mem% Record Time (sec.) Replay Time (sec.) CPU% Mem%
FeiQ 53.67 86.09 17.4% 35.3% 47.04 69.58 12.4% 34.5%
Word 2010 74.02 127.95 18.3% 36.2% 65.92 94.81 14.6% 34.9%

As is depicted in Figure 8(a), OFFDTAN successfully
marks the POC file read by Microsoft Office Word 2010. In
Figure 8(b), OFFDTAN analyzes the vulnerability address of
Microsoft Office Word 2010, which is 0x66E9195D, and the
corresponding assembly instructions is call dword[EAX + 4].
It also found that the reason of program controlled jump
is that the memory address of [0x275A48ES8] is tainted,
which is consistent with the analysis result provided by CVE
previously. In addition, this method uses backtrace analysis
to analyze the taint data in [0x275A48E8] derived from the
POC file of CVE-2014-1761 whose offset is 0xID3F, 0xID4A,
0x1D54, and from 0xIEIS8 to OxIEIA. Therefore, we verify the
correctness and effectiveness of marking taint source and
controlled jump model proposed by OFFDTAN.

4.4. Further Verification. We proceed to evaluate our ap-
proach on four other applications to further verify the cor-
rectness and effectiveness of OFFDTAN. In addition, we
compared the performance overhead of this method with
other tools to verify the analysis efliciency of proposed
method.

4.4.1. Effectiveness. We analyze the security vulnerabilities of
four programs: Adobe Reader, Excel 2003, Firefox, and Word
2003. For each of these projects, our method generates the
valid description of vulnerability analysis. Table 3 provides
an overview of these results, showing the program and its
version, crash address, crash instruction, and the offset of
taint source. Moreover, the vulnerabilities are shown and
denoted by their CVE-identifiers.

In Table 3, the crash address and crash instruction are the
memory address and corresponding instruction that crashed
during program execution, respectively. The offset of taint
refers to the offset address of taint data in taint source
file.

We take the first vulnerability as an example to briefly
illustrate analysis result. We use the POC file of CVE-2010-
2883 to analyze Adobe Reader and generate taint source
log file. The result shows that the program crashed when
the instruction call strcat at 0x0803DDAB is called, and the

reason for crash is that the string length of field uniqueName
is not judged, causing stack overflows, which is consistent
with the result of CVE. Moreover, our method uses backtrace
analysis to obtain the offset of taint data in taint source file,
which is 0x12C.

4.4.2. Performance. In this experiment, we describe the
performance overheads introduced in two real applica-
tions by our approach to taint analysis and compare them
with PANDA, which is another state-of-the-art whole-
system offline taint analysis tool built on QEMU 2.1.0. Similar
to OFFDTAN, PANDA also has the ability to record and
replay executions. We evaluate both tools on four items that
represent time and space overheads.

The comparison results of performance overheads are
shown in Table 4. The record time refers to the time of infor-
mation recording during program execution, and replay time
includes program simulation replay time and taint analysis
time. The CPU% and Mem% mean the percentage of CPU
and memory used during program execution, respective-
ly.

As shown in Table 4, in addition to memory usage, our
tool has improved significantly in terms of other perfor-
mance. OFFDTAN is about 1.13x faster than PANDA during
the recording, and its offline analysis is faster than PANDA
with a factor of 1.29. Overall, OFFDTAN operates about 1.23x
faster than PANDA. Besides, OFFDTAN’s CPU usage is about
24.4% smaller than PANDA, and the memory usage is 2.9%
lower than PANDA. We attribute this to the employ of KVM
acceleration on QEMU.

4.5. Experimental Summary. OFFDTAN can detect two
kinds of vulnerabilities, i.e., stack buffer overflows and con-
trolled jump, which fully validate that the two-vulnerability
model combined with offline dynamic taint analysis can
better achieve analysis effects.

In addition, whether with small program or large-scale
program, such as FeiQ and Microsoft Office Word 2010,
OFFDTAN can correctly analyze the address of program vul-
nerability, the cause of program crash, and the specific offset

12

of taint data within taint source file, thus ensuring that
our approach is strictly correct and effective. Compared
with PANDA, our method runs about 1.23x faster than
PANDA. Moreover, OFFDTAN enhances the automation of
vulnerability analysis as well.

5. Conclusion

The analysis efficiency of online dynamic taint analysis is a
challenging problem, which usually occupies a considerable
number of resources. In this paper, we generally eliminate this
limitation by using the research approach of offline dynamic
taint analysis, and on this point we propose OFFDTAN, an
approach of offline taint analysis for binary program, which
includes four stages: dynamic information acquisition, vul-
nerability modeling, offline analysis, and backtrace analysis.
Our evaluation shows the effectiveness and correctness of this
approach, as well as better performance.

However, OFFDTAN still has some deficiencies. First,
program path coverage heavily depends on test cases; thus
test cases will affect the accuracy of our method. Second,
our experimental verification is still not sufficient, which
needs further verification. Moreover, our approach can only
detect stack buffer overflow vulnerabilities and controlled
jump vulnerabilities. As future work, we are confident that
the similar concepts can also be applied to model other types
of vulnerabilities to adapt more scenes.

Data Availability

The data used to support the findings of this study are
avaijlable from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key R&D Program
of China (no. 2016QY07X1404).

References

[1] W. Shizhong, G. Tao, D. Guowei, Z. Puhan et al., Software
Vulnerability Analysis Technology, The Science Publishing Com-
pany, Beijing, China, 2014.

[2] Funnywei, “Buffer Overflow Vulnerability Mining Model
[Z/OL], 2003, http://xcon.xfocus.net/XCon2003/archives/
Xcon2003_funnywei.pdf.

[3] E B. Qemu and E B. Qemu, “A Fast and Portable Dynamic
Translator,” in Proceedings of the Atec 05: Conference on Usenix
Technical Conference, 2005.

[4] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” ACM SIGPLAN
Notices, vol. 42, no. 6, pp. 89-100, 2007.

[5] C. K. Luk, R. Cohn, R. Muth et al., “Pin: building customized
program analysis tools with dynamic instrumentation,” Pro-
gramming Language Design & Implementation, vol. 9, no. 8, pp.
190-200, 2005.

Security and Communication Networks

[6] V.Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a transpar-
ent dynamic optimization system,” SIGPLAN Notices, vol. 35,
no. 5, pp. 1-12, 2000.

[7] J. Newsome and D. Song, “Dynamic taint analysis for automatic
dedection, analysis, and signature generation of exploits on
commodity software,” Network and Distributed System Security
Symposium (NDSS), 2005.

[8] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint
analysis framework,” in Proceedings of the 2007 ACM Interna-
tional Symposium on Software Testing and Analysis (ISSTA °07)
and PADTAD-V Workshop, pp.196-206, London, UK, July 2007.

[9] E Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu,
“LIFT: a low-overhead practical information flow tracking
system for detecting security attacks,” in Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO ’39), pp. 135-146, December 2006.

[10] M. Kang G, S. Mccamant, P. Poosankam et al, “DTA++:
dynamic taint analysis with targeted control-flow;” in Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS ’11), San Diego, Calif, USA, February 2011.

[11] D.Song, D.Brumley, H. Yin et al., “A new approach to computer
security via binary analysis,” in Proceedings of the 4th Inter-
national Conference on Information Systems Security, pp. 1-25,
Springer-Verlag, 2010.

[12] A. Henderson, A. Prakash, L. K. Yan et al., “Make it work,
make it right, make it fast: building a platform-neutral whole-
system dynamic binary analysis platform,” in Proceedings of the
23rd International Symposium on Software Testing and Analysis
(ISSTA ’14), pp. 248-258, July 2014.

[13] L. Zhiquan, Study of Fuzzing for Implementation of Stateful
Network Protocol Based on Dynamic Taint Analysis, National
University of Defense Technology, 2010.

[14] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: a checksum-
aware directed fuzzing tool for automatic software vulnerability
detection,” in Proceedings of the 31st IEEE Symposium on Security
and Privacy (SP’10), pp. 497-512, IEEE Computer Society, May
2010.

(15] Z. Jianwei, C. Libo, and F. Tian, “Type-based dynamic taint
analysis technology,” Journal of Tsinghua University (Science and
Technology), vol. 10, pp. 13201328, 2012.

[16] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis,
“ShadowReplica: efficient parallelization of dynamic data flow
tracking;” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’13), pp. 235-
246, November 2013.

[17] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D.
Song, “HI-CFG: Construction by binary analysis and applica-
tion to attack polymorphism,” in Computer Security—ESORICS,
pp. 164-181, Springer Berlin Heidelberg, 2013.

[18] S. Manolis, P. Groth, and H. Bos, “Decoupling provenance
capture and analysis from execution,” in Proceedings of the 7th
USENIX Workshop on the Theory and Practice of Provenance
(TaPP’I5), 2015.

[19] S. Dawei and Y. Tianwei, “A dynamic taint analysis method
combined with coarse-grained and fine-grained,” Computer
Engineering, vol. 40, no. 3, pp. 12-17, 2014.

[20] W. Fuwei, Research on Taint Analysis-Oriented Binary Program
Analysis and Vulnerability Mining, Beijing University of Posts
and Telecommunications, 2015.

[21] J.-X. Ma, Z.-]. Li, T. Zhang, D. Shen, and Z.-K. Zhang, “Taint
analysis method based on offline indices of instruction trace;’
Journal of Software, vol. 28, no. 9, pp. 2388-2401, 2017.

http://xcon.xfocus.net/XCon2003/archives/Xcon2003_funnywei.pdf
http://xcon.xfocus.net/XCon2003/archives/Xcon2003_funnywei.pdf

Security and Communication Networks

[22] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu, “StraightTaint:
decoupled ofline symbolic taint analysis,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering (ASE ’16), pp. 308-319, September 2016.

[23] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan,
“Repeatable reverse engineering with PANDA,” Computer Sci-
ence, 2014.

13

Hindawi

Security and Communication Networks
Volume 2018, Article ID 7412627, 13 pages
https://doi.org/10.1155/2018/7412627

Research Article

Security Measurement for Unknown Threats Based on

Attack Preferences

Lihua Yin,' Yanwei Sun®,>* Zhen Wang,4 Yunchuan Guo @),

Fenghua Li,> and Binxing Fang’

2

'Cyberspace Institute of Advanced Technology (CIAT), Guangzhou University, Guangzhou, China

“State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3School of Cyberspace Security, University of Chinese Academy of Sciences, Beijing, China

*School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China

*Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, China

Correspondence should be addressed to Yunchuan Guo; guoyunchuan@iie.ac.cn

Received 12 January 2018; Revised 14 March 2018; Accepted 10 April 2018; Published 20 May 2018

Academic Editor: Huaizhi Li

Copyright © 2018 Lihua Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Security measurement matters to every stakeholder in network security. It provides security practitioners the exact security
awareness. However, most of the works are not applicable to the unknown threat. What is more, existing efforts on security
metric mainly focus on the ease of certain attack from a theoretical point of view, ignoring the “likelihood of exploitation.” To
help administrator have a better understanding, we analyze the behavior of attackers who exploit the zero-day vulnerabilities and
predict their attack timing. Based on the prediction, we propose a method of security measurement. In detail, we compute the
optimal attack timing from the perspective of attacker, using a long-term game to estimate the risk of being found and then choose
the optimal timing based on the risk and profit. We design a learning strategy to model the information sharing mechanism among
multiattackers and use spatial structure to model the long-term process. After calculating the Nash equilibrium for each subgame,
we consider the likelihood of being attacked for each node as the security metric result. The experiment results show the efficiency

of our approach.

1. Introduction

Security measurement matters to every stakeholder in net-
work security and involves all the stages and aspects of
the entire life cycle. There would be no effective secu-
rity awareness and actions without accurate security meas-
urement. The existing security measurements mainly focus
on the relationship between exploits and system vulnera-
bilities, and their security measurements of unknown threats
like zero-day loophole are very limited. In addition, zero-day
attacks targeting governments and corporates are growing
with time. An increasing number of hackers, motivated by
their persistent love for technology or tempted by profits, are
attempting to discover and propagate zero-day exploits. In
2016, 10822 vulnerabilities were found in China, and 2203 of
them were zero-day vulnerabilities (http://www.cert.org.cn/
publish/main/upload/File/2016 CNVDannuall.pdf), which

may cause serious consequences. According to The Hacker
News, hackers exploited the zero-day vulnerability to attack
Bangladesh’s central bank in 2016 and stole over $80 million
from the Federal Reserve Bank (http://thehackernews.com/
2016/03/bank-hacking-malware.html). In such case, it poses
a great challenge as to carry out effective measurements
of threats posed by zero-day vulnerabilities to help system
administrators better understand and guard against them.
Current security measurements are mostly around
known vulnerabilities. They get the result of the measurement
after analyzing the attacks and coming up with corresponding
rules. Such measurement can be a distortion from real-life
situation. For example, some vulnerabilities proven highly
threatening according to CVSS’ measurement are not actually
exploited too much by the attackers. The work proposed
by Wang et al. [1] has similar problems; this is one of the
few measurement works targeting hidden vulnerability. The

http://orcid.org/0000-0002-7024-7573
http://orcid.org/0000-0002-9611-5368
http://www.cert.org.cn/publish/main/upload/File/2016CNVDannual1.pdf
http://www.cert.org.cn/publish/main/upload/File/2016CNVDannual1.pdf
http://thehackernews.com/2016/03/bank-hacking-malware.html
http://thehackernews.com/2016/03/bank-hacking-malware.html
https://doi.org/10.1155/2018/7412627

\ Exchange
N information

Exchange information:
(1) Have you launched an attack?
(2) Have you been discovered?
(3) What’s your estimation about the

defense capability of defender?

Security and Communication Networks

> - g » .
.) h
// 7 NG

o N
“r é? Exchange =
Y information - B

FIGURE 1: Multiattackers versus a certain company.

paper uses attack graph to analyze and decide the minimal
number of vulnerabilities needed to achieve a set goal,
assuming that there is a hidden vulnerability on any of the
nodes. The number will be used as a reference for security
measurements. This study measures only from the dimension
of complexity, not taking the differences in the attackers’
preference, and the result is only a theoretical one, so there
is not too much reference value for the result. For example,
if there is a network with weak protection and only one hole
is needed to break into the network, then the measurement
result should be highly risky according to the method above.
However, the attackers will not attack a network that they
deem of no value; Honeynet is a case in point. Therefore,
when measuring unknown threats, we need to include the
attacking decision of the attacker as a significant metric and
take the degree of complexity, possible risks, benefits, and so
on into consideration. This way, we can analyze the decision
the attacker is most likely to take and get a more realistic
measurement result. That is to say, if, during a certain period,
the attackers are eager to attack a node, then we will think
this node is facing serious threats at this time; otherwise, the
result should not be labeled as highly threatening.

The security measurement of unknown threats with the
attack behavior preferences in mind faces the following three
major challenges:

(i) Modeling zero-day attacks from the time dimen-
sion: current studies express unknown vulnerabili-
ties using attack graph, which are mainly from the
spatial dimension. But zero-day attack is a long-
term process. The zero-day exploit (also called cyber
resources) will always be available unless the vulner-
ability is fixed by the defender. As the process goes
on, the attacker needs to make a tradeoff between risk
and profit for each time point: if the vulnerability is

exploited, the attacker may get some profit but the risk
of being noticed may also increase. On the contrary, if
the zero-day vulnerability is exploited too late or not
exploited, there is also a chance for the defender to
fix it, leaving no chances for the attacker. So the first
challenge is how to model this process properly from
the dimension of time.

(ii) Identify and calculate the factors that change over
time: in the course of the zero-day attack and defense,
the factors that influence the attacker’s decision-
making include the potential profits, the attacker’s
knowledge of the defending party, and the risks
related to the attack. A comprehensive and reasonable
expression and calculation of these factors are the
basis for predicting attack decision.

(iii) Predict the attack decision and measure the unknown
threat: after setting the relevant parameters, how
to use these parameters to accurately predict the
attacker’s possible decision at each time point deter-
mines the accuracy and reliability of the entire secu-
rity measurement.

To overcome these challenges, this paper, which is based
on our previous work [2], uses long-term game theory to
predict the behavior of the attacker (the attack-defense sce-
nario is shown in Figure 1) and then propose a new security
metric based on the prediction. The main contributions are
as follows:

(i) We present a multiple game model: we consider zero-
day attacks as a long-term process. The attacker’s
decision (attack or wait) at any point in time will
have a corresponding effect on the later game process.
Therefore, we discuss the continuous game process in
a certain period of time.

Security and Communication Networks

(i) We discuss the factors that affect the attack and
defense: we discuss the factors that affect the attack
and defense, particularly the change of the attacker’s
understanding of the defensive ability of the defender.
At the beginning of the game, attackers know little
about the defender. But with the game process, their
understandings become more and more accurate
due to their observation and information sharing.
We design a learning mechanism to simulate the
correction process.

(iii) We propose a new security metric based on attack
prediction: from the attacker’s point of view, we
calculate the Nash equilibria for each subgame. Using
the result as an important reference, we propose a new
security metric for unknown threat.

The rest of the paper is organized as follows. Section 2 sur-
veys the related work. Section 3 introduces the preliminaries.
Section 4 introduces long-term game formulation. Section 5
discusses the details about the security measurement method.
Section 6 reports experimental results, and Section 7 gives the
conclusions.

2. Related Work

There have been plenty of research studies on network
security metrics. They focus on different aspects, such as
metrics of system vulnerabilities, metrics of defense power,
metrics of situations, and metrics of attack or threat severity
[3]. In detail, when assessing the risk of malware threat,
Hardy et al. [4] proposed the targeted threat index combining
the social engineering and technical sophistication. Thakore
[5] provided a set of metrics such as coverage, redundancy;,
confidence, and cost to quantitatively evaluate monitor
deployments. Kiihrer et al. [6] focused on the effectiveness
of malware blacklists and showed that the current blacklist is
insufficient to protect against the variety of malware threats.
There are other studies focused on evaluating the strength
of IDS or other security products [7, 8], strength of user
password [9, 10], and so on. However, the effects of all the
metrics mentioned above are not ideal when faced with
unknown threats.

In order to make a better understanding of zero-day
attack, some researches focus on analyzing the attack itself
such as detecting and identifying the attack. To identify the
unknown files, Avasarala et al. [11] introduced the class-
matching approach. Mishra and Gupta [12] proposed a hybrid
solution which uses the concept of CSS matching and URI
matching to defend against zero-day phishing attacks. Wang
et al. proposed some representative works on measuring
the zero-day attack [1, 13, 14]. To evaluate the robustness of
networks, [13, 14] modeled network diversity as a security
metric and then proposed two complementary diversity
metrics. The paper [1] conducted the evaluation process
based on how many zero-day vulnerabilities are required to
compromise a network asset. However, all these works are
conducted based on attack graph and do not consider the
attacker behavior.

3
TaBLE 1: Payoff in the two-player one-shot game.
Protect Not protect
Attack -C,,-C, G-C,-G
Not attack 0,-C, 0,0

Analyzing the attacker behavior is of great importance
when measuring the network security. Ekelhart et al. [15]
developed a simulation-driven approach which took attack
strategies and attacker behavior into consideration. Al-
Jarrah and Arafat [16] used the time delay neural network
which embedded the temporal behavior of the attacks to
maximize the recognition rate of network. Mitchell and
Chen [17] proposed specification-based IDS which can adapt
to different attacker types such as reckless, random, and
opportunistic attackers. In this way, it could get a higher
detection accuracy. Allodi and Massacci first pointed out
that not all the vulnerabilities were equally exploited by the
attacker [18] and then focused on the choice of attackers [19].
By validating the actual “traces” attacks left on real systems,
they claimed that the real attacker would behave less powerful
than we thought and would not exploit every vulnerability.
The attackers would strategically choose the busy periods
and some certain vulnerabilities, while the efforts of security
professionals were diffused across many vulnerabilities [20,
21]. Based on this observation, Dumitras [22] proposed a
novel metrics that enabled a more accurate assessment of
the risk of cyberattacks. Bozorgi et al. [23] used machine
learning method with high dimensional feature vectors input
to predict the vulnerability which was most likely to be
exploited by the attacker. All these analyses, however, are
from the perspective of defender, ignoring the information
sharing mechanism among attackers where the mechanism
is the most important part during the attack and can guide
attackers to changer their strategies dynamically.

3. Preliminaries

Before introducing the long-term game, we begin with the
simple attack-defense game. The players of the game are
attacker and defender. Liang and Xiao [24] divide the game
applications into two subclasses: general analysis and the
specialized analysis. In general analysis, the networks are
often not specific but abstract, and the strategy set of attacker
SA = {attack, not attack}; meanwhile, the set of defender SD
= {protect, not protect}. Let C, represent the attack cost, C,
represent the defense cost, and G represent the profit of a
successful attack. In this section, G is a fixed value. Their
payofls are as shown in Table 1. In [25], a Remainder cost was
defined to indicate the damage that the attack brought to the
system after the defender implemented the defense strategy,
and Remainder cost = G x & where € € [0, 1]. For simplicity,
we assume that ¢ = 0 in this section; that is, if the defender
implemented the defense strategy, there is no damage to the
system and no reward to the attacker.

According to Table 1, we can see that when the attack
cost is fixed, if the attacker and the defender are completely
rational, both of them will make their decisions by calculating

the Nash equilibrium, and the Nash equilibrium is related to
the parameter discussed below:

(1) If G < C,, the attacker will not attack and the defender
will not protect. In this case, we can say the network
is pretty safe.

2)IfC; = G > C,, the attacker will attack, but the
defender still not protect. In this case, we can say the
network is of great danger.

3)IfG » C,and G > C,, no pure Nash equilibrium
exists, but there is a mixed Nash equilibrium; that
is the attacker will choose to launch an attack with
the probability of P, = C,;/G, and the protecting
probability Py, = (G — C,,)/G. In this case, we can say
the network is a little bit safer than case two, but more
dangerous than case one.

It can be seen from the above model that if the defender
decides to protect the target, the attacker cannot finish his
attack successfully, consequently getting no reward. As time
goes on, this one-shot game is repeated time after time,
and there is no necessary correlation between each of them.
This is a simple case for security metrics, but it does not
apply to the attacker who holds the zero-day exploits of
certain target, mainly for the following two reasons. First,
the payoff is much different. According to the stealth of
zero-day exploits [26], most of the software and the security
products cannot detect the existence of it and thus difficult
to resist the zero-day attacks effectively. So, the attacker
can get the corresponding profit only if he/she launches an
attack. Second, the strategy is much different. Compared with
the one-shot game, attacker with zero-day exploits is more
concerned about the persistence of the resource, he/she has
to make sure if this resource will still be useful after this attack
and then makes a tradeoff between risk and profit. Therefore,
the key points to the entire game process are the attacker’s
decision and the defense capability. In next section, we will
discuss the detail of the long-term game.

4. Long-Term Game Formulation

We analyze the attack-defense scenario between multiple
attackers and a single target. The target could be a company
or an organization, and it contains a lot of nodes. And
we assume that each node has at least one cyber resource
(where the node has no resource is out of our discussion).
All of these vulnerable nodes are protected by the same
administrator, so we assume that all the nodes share the
same defense capability. We define an attack-defense game as
a combination of one resource and one node. The attacker
who owns more than one resource means that he will be
involved in more than one attack-defense game. So the
relationship is a many-to-many mapping. As mentioned
above, our discussion takes place over a certain period of
time since the zero-day attack is a long-term process. We
assume that it takes one-time tick to complete an attack, and
if the vulnerability was not discovered by the administrator
this time, it will still be useful to the attacker next time. For
each time tick, we compute the probability of being attacked

Security and Communication Networks

for every node and take these results as the security metric.
In this section, we first introduce the game formulation and
some key parameters and then we focus on the attackers
learning strategy.

4.1. Attack-Defense Game

Cyber Resource. We call a zero-day exploit or a set of zero-day
exploits a cyber resource to the attacker [27]. A cyber resource
could help attacker to finish a certain attack. If one or more
exploits are fixed or expired, which could cause the failure of
the attack, then we say the resource is expired.

The Number of Long-Term Game. In this attack-defense sce-
nario, there are total m attackers, n cyber resource, and
q nodes. During the game, g is a constant, but m and n
will change from time to time. Compared with the number
of attackers, we are more concerned about the number of
resources, because 1 resource means # attack-defense games.
We use n(t) to represent the total number at time tick ¢.
There are three main aspects that will influence the number.
First, at the beginning of time tick t, n,,(t) is used to
denote the newly joined resource. Second, at the end of time
point £, e, (t) is used to denote the number of expired
resources. Third, according to the defense capability, some
of the resources are randomly eliminated at the end of time
point ¢, and the number is notated as ny; (). Then the total
number of attack-defense games at time point ¢ + 1 is

n(t+1) = n(t) + ey (£) = A () = Ny, (£) -)

The Duration of Each Long-Term Game. Different from the
one-shot game, zero-day attack-defense game is a long-term
game. It consists of multiple subgames over a period of time.
The game will go on as long as the resource is still useful.
There are mainly three possibilities to terminate the game:

(1) The resource is expired. We use notation L to rep-
resent the lifecycle of certain resource. Different
vulnerabilities have different lifecycles. For example,
compared with buffer overflow and executable code,
other vulnerabilities such as PHP vulnerability or SQL
injection often have longer lifecycles [28]. If one of
these vulnerabilities expired, we say the resource is
expired.

(2) The resource was found and patched due to the attack
action. We call this the passive-defense capability
of the administrator, denoted as P,, indicating the
probability of discovering the vulnerability after being
attacked.

(3) The resource was found and patched when nothing
happens. We call this the initiative-defense capability
of the administrator, denoted as P, indicating the
probability of discovering the vulnerability before
being attacked.

P, and P, are determined by the capability of the admin-
istrator itself, and both are fixed values which are known to
the administrator and unknown to the attackers during the

Security and Communication Networks

10
Q
g
8
Q
£ 5 i
Y
Q
S
<
0

Sun 0~2
Mon 8~10
Tues 16~18
Thur 0~2
Fri 8~10
Sat 16~18

Time period

(a) gi(t) of attacking a video platform

10

Attack income

Sun 0~2
Mon 8~10
Tues 16~18
Thur 0~2
Fri 8~10
Sat 16~18

Time period

(b) gi(t) of attacking a bank

FIGURE 2: Sample of gi(t).

game process. Each attacker has its own assessment about
these two values, denoted as P;(t) and P[;(t). After each
subgame, the attacker will revise the assessment by observing
the state of other neighbors and exchanging information
with each other. This is consistent with the values of most
hackers who believe that all the information should be free.
They think everyone has the rights to access information,
so, many hacker groups form a unique “black ecosystem” to
share information more effectively. According to the director
of Baidu security laboratory (Baidu is the predominant
search engine in China), the information sharing mechanism
among such black ecology is much better than those among
white ecosystem. The details about the update rules will be
discussed at the next subsection.

The Strategy Set for Each Subgame. The same as the one-
shot game mentioned above, the strategy set of attacker SA
= {attack, not attack}; meanwhile, the set of defender SD =
{defend, not defend}.

The Payoff for Each Subgame. For any resource i, at any time
t, the payoft of the subgame consists of three parts: the attack
cost denoted as C;, the one-time attack income gi(t), and the
long-term profit expectancy from time ¢ to the end of the
long-term game, denoted as E'(t). E'(t) is dependent on four
factors including gi(t), P;(t), P,’;(t), and the attacker’s action
last subgame. When making a decision, what the attacker
really cares about is not only the one-time attack income for
the attack, but also the long-term profit expectancy during the
whole lifecycle. The specific parameter settings are discussed
in the next subsection. For the administrator, the loss also
includes two parts, the defense cost denoted as C; and the
loss caused by the attack. In order to reduce the complexity
of this model, it is assumed that the attacking loss equals the
negative of the attacker’s attack revenue.

Game Rules. For each subgame, given the payoffs, both
attacker and administrator determine their decisions by
calculating the Nash equilibrium. At the end of each subgame,
ifthe resource is still useful, attacker will revise the assessment
by observing the state of other neighbors and exchanging
information with each other in order to recalculate the
payofts for next subgame.

4.2. Some Key Parameters. Notations lists the key parameters
used in our long-term game model. In this paper, we assume
that C', C4, P,, P,, and L are fixed value, and we mainly
discuss the following three parameters.

Gain Function of Time g'(t). For certain resource i, gain
function of time g'(t) represents the one-time attack income
that the attacker can get when he attacks the node at the
certain time t. This gi(t) could be a fixed value or a function of
time, and that depends on the target type. For example, if the
attacker wants to attack some e-commerce platforms, he can
get better rewards in some specific days such as Black Friday.
For the sake of discussion, Figure 2 shows the instantaneous
yield curves of attacks against a live video platform and a bank
over different time periods. It can be seen that, for a bank
attack, the attack revenue on weekdays is higher than that
on weekends, and the attacks on working hours are higher
than the off-hours. On the contrary, the attack revenue is
relatively higher on weekends and late nights when the attack
target is changed to the video platform. In general, we assume
that g'(t) is affected by the target’s visiting traffic, business
process, and customer’s work schedule. The specific values
are beyond the scope of this article. This article assumes
that both attackers and administrator have a good under-
standing of the target of the attack, so the value of g'(t) is
known.

Profit Expectancy E'(t). For the certain resource i, we use E' (t)
to represent the profit expectancy from time ¢ to the end
of the lifecycle, so E'(t) = Zﬁ;t PA(G)g'(a), where g'(a) =
max{g(o) - C,,0} and ¢ € [t,L]. So, we need to compute
all the P,(0) foro =t,t + 1,..., L. If notation Q is used to
indicate that the resource is still available at time point o and
notation R is used to indicate that the attacker will choose to
attack, then P,(0) = P(Q) * P(R). So we have

Py(0)=[Py(c-1)*(1-P,)+(1-P4(c-1)) o
#*(1-P)] * Py (t~1).

P,(0 — 1) * (1 — P,) means that the attacker has attacked
last time but has not been discovered, and (1 — P4(0 — 1)) *
(1 — P,) means that the attacker has not attacked last time
and has not been discovered. To simplify the computation,
it is assumed that the defender will always be protected when
calculating P, (o). And P,(t—1) used in (4) is an approximate
value. Because the exact value of P, (t) which is determined
by calculating the Nash equilibrium of the subgame at time
point ¢ could not be known, the probability P, (t — 1) is used
instead. According to the above recursive formula, we can get

(1-P,) % Py(t—1)

Py(0)=|Py(t-1)+ (P,-P)xPy(t—-1)—-1

(B - P) * Pyt - D] 3)
(1-P,) * Py(t—1)
(P,=P,)xPy(t-1)-1

a

The Estimation of Administrators Defense Capability P.(t) and
Pj(t). During the game, the attacker does not know the real P,
and P, but each attacker has its own assessment about these
two values, denoted as P;(t) and P;;(t). After each subgame,
the attacker will update the assessment by observing the state
of other neighbors and exchanging information with each
other. The update rule includes the following main steps.

(i) Initializing the assessment randomly at the beginning
of the game: the initial assessments are random
because the attacker knows little about the defender.

(ii) Calculating the observed result of P, and P,: at the
end of the time point ¢, the attacker observes his
neighbors and counts the numbers of them (1) who
had attacked this time and been discovered and (2)
who had not attacked this time and been discovered
and then calculates the observed result of P, and P,.

(iii) Combining the observed result, neighbors’ assess-
ment with his previous assessment to be his new
assessment: when combining these three results, the
reference value difference should be considered. For
the neighbor who has survived longer, its assessment
has a higher reference value. What is more, at the
beginning of the game, the observed result plays
an important role. However, as the game goes on,
this importance diminished. Because the observed

Security and Communication Networks

samples, that is, attacker’s neighbors, are limited, the
observed result has a strong randomness.

Some new parameters and notations are introduced as
follows. Let P, denote the probability of the attacker being
eliminated after attack, so P,, = P, x Pp,. Similarly, P, is
used to denote the probability of being eliminated without
attack, so P, = P, x Pp. For any attacker i € AT at
the end of time point t € [0,L;], P.(t) and P,(¢) represent
the attacker’s assessment of P, and P, P.(0), and P,(0) are
the initial estimates. We use s = {stl,s;, .. .,sfct} to denote
the neighbors’ strategy and f = {f}, f3,-.., f,i} to denote
whether these neighbors are found by the defender or not,
where k, is the total number of neighbors of i, s; € Sa,
th € 0,1. AD is used to denote the neighbors who had
attacked this time and had been found, so AD = {j | sj- =
1A f; = 1,j € [0,k]}. ND is used to denote the neighbors
who were not attacked and had been found, so ND = {j |s§- =
0A th = 1,7 € [0,k]}. PtD(j) is used to denote the P,
calculated by neighbor j. Let P{, denote the observed value
of P, 50 P;baD(i) =|AD|/)’ s;; let PgbbD denote the observed
value of P, so P;bbD(i) = |ND|/(k - s?). After introducing
above notations, this paper presents three plans for revising
the parameters P, and P,; we will make a brief introduction.

Plan I: Average Summation. Record all the P! and P}, for each
neighbor and resource i itself, and then take the average with
P;bbD(i) to calculating P;D, donated as

Yy Py (7) P (j) + P () Ph () + Plyopy ()

Pl _ (4)
ab k, +2
and then calculate
k; t o[to.
DT _ Zj:lpD(])+PD(l))
b k, +1
SO
a Pgl
(X5 PLG) PL () + P () P) +|ADI /S,) (K + 1)
(k; +2) (21;21 PL(j) + P4 (l)) ' ©)
T
pt = 2
P

(3%, B () P () + B) Py i) + INDI/ (k= 1)) (, +1)
(k, +2) (374 P () + Ph () '

Plan 2: Staged Average Summation. In the first half of the
resource life cycle, revise P, and P, according to Plan 1, and
remove P!, (i) and P',, (i) when calculating P'7} and P}}}
in the second half. That is because when this long-term game

Security and Communication Networks 7
goes to a certain stage, the estimated value P;“ (i) and Pg” (1) uncertainty in the observations, so we removed the Pg oD
are already close to the actual value, but there is a large and P;bbD(i) in the second half.
(X5, PL(7) Ph () + B () Phy () + |AD| /s5) (k, + 1) ol
+ —
kt . . > - >
L) = (k +2) (Zj:l PtD(])"'P]t;(l)) 2
a (l) = k, tr o pt [oo of e
Yiti P () Py () + B, () Pp, (i) L
k e . t+1> E,
(zj:IPD(])+PD(l)) o)
7
(S B G) P () + AR @+INDI/ (k=) (e + 1) 1
+ —
k ; . > =5
PHy=1 (k¢ +2) (ijl Plt)(])"'PtD(’)) 2
’ Yy Py () P () + By () P, (i) L
(X1 Ph () + P) 2

Plan 3: Staged and Weighted Average Summation. Based on
plan two, we introduce the concept of neighbor weight; that
is, the longer the neighbor exists, the greater reference value it
can provide. It should be noted that the notation t in P;(i) and

(S, P

() P (j) t; + Ph (i) P (i) t + |AD| /s%) (k; + 1)

P} (i) is the existing time of resource i but not the existing time
of certain neighbor. So we use T' = {t,,t,, ..., t;} to represent
the existing time of k neighbors. Then the formula of plan
three is as follows:

L

gl (Bt +e+1) (T, PL(j) + PL () =y

‘ (X5 Ba () P ()85 + Py () P () E) (K + 1) L
(X5t + 1) (25, PL () + Ph () 2’ o

(X5, PLG) Ph ()t + By () Phy (i) t + |AD] /s (k, + 1) ool

pig=] (St) (L B0+ By () Y

(erzlPli(])PtD(])tj+P£(1)P1t)(l)t)(kt+1) t+1>£

(Xt +6) (25, P () + PL ()

5. Measure the Network Security

5.1. Calculate the Nash Equilibrium for Each Subgame. After
calculating the above parameters, we can fill the payoffs
matrix for each subgame (see Table 2) where

Ga=g (O+(1-Py)E(t+1),

G =(1-P)E(t+1),
9)
GilP=g ®)+E(t+1),

GNE=E(t+1).

Here is a brief discussion of the game’s Nash equilibrium,
also the optimal timing selection guidelines:

(1) At some time t, when g'(t) <0and C; < P E(t + 1),
attacker will not attack but the defender will protect.

When g'(t) < 0and C; > P,E(t + 1), attacker will not
attack and the defender will not protect.

Because g'(t) < 0 and P, > P,, s0 G4° < GN&; the
best choice for attackers is not attacking whatever the
defending choice is. But in terms of the defenders, if
C, < P,E(t + 1), that means there is some probability
of discovering the vulnerability by expending a little
defending cost, so the defender will defend. But if the
cost is high, that is, C; > P,E(t + 1), the defender will

not defend.

(2) At some time t, when g'(t) > (P, — P,)E(t + 1) and
C,; < P,E(t + 1), attacker will attack and the defender
will protect. When g'(t) > (P, — B)E(t + 1) and
C,; = P,E(t + 1), attacker will attack and the defender
will not protect.

Because g'(t) > (P,—P,)E(t+1), that means the profit
of this attack is higher than the loss caused by the
discovery of the attack, so the best choice for attackers
is attacking whatever the defending choice is. But
in terms of the defender, under this circumstance, if

8
TABLE 2: Payoff in the multiplayer evolutionary game.
Protect Not protect
Attack GL,-GY -¢, GYP, -G
Not attack GR,,-GR, -C, GNE,-GRR

C, < P,E(t + 1), the defender will defend, but if C; >
P E(t + 1), that means the defending cost is higher
than the loss caused by being attacked, so defender
will not protect.

(3) At some time t, when 0 < g'(t) < (P,-PB)E(t+1)

and C; > P E(t + 1), the defender will not protect and
the attacker will attack.
Because C, < P,E(t + 1) and P, > P, s0 -G - C, <
-G\P and -Gy, - C,; < —~G%; due to the high cost
of protection, the defender will not defend whatever
the attacking choice is. Under this circumstance, the
attacker will choose attack.

(4) At some time t, when 0 < g'(t) < (P,-PB)E(t+1)

and C; < P,E(t + 1), the defender will protect and the
attacker will not attack.
Because C; < P,E(t + 1) and P, > P,, so -G -
C; > -GhPand -GR, - C; > —~G\%; due to the low
cost of protection, the defender will defend whatever
the attacking choice is. Under this circumstance, the
attacker will not choose attack.

(5) At some time ¢, when 0 < g'(t) < (P,-P)E(t+1)
and PE(t + 1) < C; < P,E(t + 1), there is no pure
Nash equilibrium, but only mixed Nash equilibrium;
that is, the attacker will attack with the probability of
(C;—P,E(t+1))/((P,—P,)E(t +1)), and the defender
will defend with the probability of g'(t) /((P,—P,)E(t+
1)).

We use X to denote the probability of attack for the
attacker and Y to denote the probability of defending.
So the expected utility function of the attacker is

Uy =X[YG, +(1-Y)G)"]
+(1-X) [YGR, + (1-Y)Gral»
(10)
Up=Y[X (-G} -Cy)+(1-X)(-Gx,—Cy)]

+(1-Y) [X(-G}7) + (1 - X) (-Gxg)] -
Differentiate the above-mentioned function:

U, _ D _ ND
= [YGZ+(1-NG”] o

- [vGR + (1 -7)GRL].
Let 0U,/0X = 0; we get

Gha — Gy g ®

= = (12
GO+ GND GNP GD (B P EG+D)

Security and Communication Networks

Similarly,

ou
SR = [x(-62-Ca) + (1-%) (-G, -)])

-[x(-6iP) + 1 -x)(-GR)] -
Let 0Up/0Y = 0; we get

D ND
Gna —Gna +Cy

=~ ~D_~ND, ~ND, D
Ga—Gua+Gy +GRu

(14)

C;-PE(t+1)

(Pa _Pb)E(t+ 1).

5.2. Measure the Network Security Using the Nash Equilibrium.
After calculating the Nash equilibrium for each subgame, we
use this result as a reference for the safety measurement of
unknown threat.

At any time ¢, for the jth node in the target, let non-
negative vector pj(t) = [pj’l(t), s pj’Kj(t)]T denote the
probability distribution of K i unknown vulnerabilities, where
pj,m(t) € [0,1],m = 1,... » K and pj,m(t) represents the
probability of mth resource being used by the attacker. So we
can compute the probability that the node j is being attacked
at time £:

K;

Pi(t)=1-[](1-pju(®). (15)

n=1

Assume P(t) = [P,(t),D,(t),..., Pq(t)]T which models
the attack probability distribution of all nodes in the target;
W(t) = [w(t), w,(t),..., wq(t)] represent the weight of each
node in the target. We use S(t) to denote the final result of the
security measurement:

q
S =P;(t)- W)=Y P,(t)-w,(6). (16)

n=1

From the above equation we can see that the higher the
value of S(t), the greater the threat level. In next section, we
will show how to calculate this score in detail.

6. Experiment

We evaluate the effectiveness of the proposed evolutionary
games by synthetic data set. All experiments are conducted
ona Windows 7 system with Intel Core i7-6700 3.4 GHz CPUs
and 8 G memory.

Expl: Numbers of Subgames. We first conduct our experiment
and observe the total number of subgames. We provide
ten types of gain functions with vary monotonicity and
codomain. We set the lifecycle of each resource as 20 (for
each subgame, it equals 1), and the total number of subgames
for the beginning is 12000 (different attackers may keep
the same resource), distributed at a 200 * 100 matrix. The
numbers of new joins can be regarded as a statistic process
obeying Gaussian distribution. We pick different P, and P,

Security and Communication Networks

12000 12000
2 100004 o] 2 10000 1o] 8
2 = 2
2 8000 2 80004 il { 2
9 gl
%5 6000 1|% %5 6000 -)
= 5)
_é 4000 - 2 4000 -
S 2000 1 2 20001 2 /
0 : . : 0 . 0 .
0 100 200 0 100 200 0 100 200
Time Time Time
— P,=08,B,=0.1 — P,=08,B,=0.1 — P,=08,B,=0.1
—— P,=08,P,=02 —— P,=08,P,=02 —— P,=08,P,=02
— P, =09,P,=0.1 — P,=09,B,=0.1 — P,=09,B,=0.1
— P,=09,P,=02 — P,=09,P, =02 — P,=09,P, =02
(a) C, = g(t)/2; new = 2000 (b) C, = g(t)/3; new = 2000 (c) C, = g(t)/4; new = 2000
14000 14000 14000
§ 12000 4% § 12000 4 § 12000 4 - - - 4
5 10000 - 5 10000 {\A- 5 10000
2 2 2
S 8000 - S 8000 4| 8 8000
[N Sy ey
° 6000 { S 6000 \ S 6000 {
B 2 ‘ 2
S 4000 { - . 2 4000 - Ce < £ 4000 :
- e IR = I R R R 3 ‘
Zo2000 4 - R Z 2000 4 - - AR EER RS 1 Z 2000 { 3
0 : . : 0 . 0 .
0 100 200 0 100 200 0 100 200
Time Time Time

P, =08,DP,=0.1
P, =08,P, =02
P, =09,P,=0.1
P, =09,P,=02

(d) C, = g(t)/2; new = 4000

P, =08,P,=0.1
P, =08,P, =02
P, =09,P,=0.1
P, =09,P,=02

(e) C, = g(t)/3; new = 4000

P, =08,DP,=0.1
P,=08,D,=02
P, =09,P,=0.1
P, =09,P,=02

(f) C, = g(£)/4; new = 4000

FIGURE 3: Numbers of resources with varying parameters C, and new;.

to see whether the number could get stable with different
number of new joins. Figure 3 shows the total number of
subgames where the average of new joins equals 2000 and
4000; meanwhile, we set different attack cost.

We can see that the number of subgames can get stable in
all these six experiments. We also can see there are so many
factors that affect the number of subgames during the game.
For example, different attack cost values lead to different
experimental results. The average number in Figure 3(a) is
higher than that in Figures 3(b) and 3(c). This is because when
the cost of the attack is too high, the attacker’s probability
of attack will drop drastically, so the probability of being
discovered is relatively lower. We can also find that when P,
equals 0.1 (notated as the black line and blue line), the number
is greater than those where P, equals 0.2 (the red line and
pink line). This is because the greater P, is, the greater the
number of discovered vulnerabilities is. However, compared
with P, the difference of P, does not have a major impact on
the change of total number. That is reasonable because during
the whole game process, the probability of attack is much less
than the probability of waiting, so the impact of P, is much
less.

Exp2: Measure the Network Security Using the Attack Prob-
abilities. After calculating the attack probability for each
vulnerability at each time, we use these results as important
references to measure the network security. This experiment
aims to show how to measure the network security using
the attack probabilities. Due to the space limitation, it is
impossible to list all the nodes and the attack probabilities
of the game, so we use a lite version to explain our method.
We assume that the target has seven nodes and each node
has at least one vulnerability. Table 3 lists the probabilities
of these nodes at the certain time period. The attack prob-
ability for each vulnerability is computed through the game
Nash equilibrium, and the attack probability for each node,
recorded as “tot” in the table, is computed through (15). From
the table we can see that, for some vulnerability, the attack
probability decreased to zero and never increase, such as the
vulnerability 2 in node 1, which means this vulnerability had
been fixed at certain time. And for some other vulnerability,
the attack probability stayed at zero for a period and then
increased such as vulnerability 2 in node 2, which means
the vulnerability is newly discovered at time t;. We take
node 1 as an example; there are total 2 vulnerabilities, and at

Security and Communication Networks

10

LE0 910 60°0 8T°0 €6°0 0 0 160 0 0 0 0 0 B!
99°0 L0 cro Ly'0 w0 810 0 8C°0 60 90°0 100 99°0 L0 5
SS°0 6£0 Yo €0°0 ¥L0 90 0 se0 ¥5°0 70 S0°0 80°0 o %
Lo 8¢€°0 LE0 670 S0 Y70 0 ST'0 SL0 w0 €0 480 €0 4
68°0 ¥¥0 ¥€0 120 ¥50 €0 ¥€0 0 g8'0 19°0 €¥'0 (4 810 °1
850 w0 STo 1’0 8L°0 810 120 80°0 ¥6°0 8¢°0 9,0 o 950 “
18°0 €0 60°0 690 L8°0 90°0 ¥8°0 ST'0 850 o o S0°0 670 "
60 €0 80°0 90 ¥80 €0 se0 90 I o S9°0 I o g
0 o 610 910 6,0 o ¥9°0 ¥€0 190 910 Sy 610 €00]
S8°0 1’0 ¥€0 vL0 L6°0 S8°0 v€0 99°0 L0 80°0 1o ¥€0 jadY g
10 €[na cma mna 10 €Mna ma Ima 10 yma €Mna cma [na sury,
/9PON 99pON GOPON :
(@
99°0 €90 80°0 0 €ro €ro Lo LT°0 LE0 Lv'0 1’0 0 444 B!
850 ¥v'0 S 0 o o 69°0 o 0 8¢0 0 0 0 5
w0 8C°0 60 0 91’0 91’0 Sv'0 ST0 {4y 810 90°0 0 90°0 %
€0 610 90°0 0 0 0 9.0 €00 90 £9°0 150 0 15°0 4
Lv'0 LE0 VARV 0 0 0 690 0 sTo €90 €0 0 €0 %
980 ¥9°0 <00 190 S0°0 S0°0 ¥9°0 910 0 LSO o 0 (44 3
6.0 €0 v€0 650 ST'0 ST'0 €0 S0°0 0 9T°0 LT0 0 L10 "
£9°0 ro LT0 6v°0 0 0 A 600 0 810 ve0 0 €0 g
60 SL0 70 S€0 0 0 6,0 910 0 SL0 I 1 ST'0 g
£vo 910 €ro o v€0 €0 LT0 €ro 0 910 €0 900 S0 ki
10 cma 7ma ma 10 ma 10 cma ma ma 10 7ma ma _—
F9PON €o9pON 79PON [9PON :

(®)

"sapou /£ 10§ Ay1Iqeqoid yoeye oy, :¢ F14V],

1

Security and Communication Networks

0 70 LE°0 0 €6°0 70 0 0 990 T0 ¢€ro T0 L0 70 710 oty
LY 0 0 99°0 170 170 10 760 0 850 10 70 170 69°0 0 0 61
€6¢°0 0 Sg'0 T0 YL 0 T0 7S50 0 170 T0 910 10 Svo 0 90°0 81
S67°0 0 L0 10 S0 10 SL’0 0 €0 T0 0 170 9L°0 0 1S°0 4
7S50 0 680 170 7S50 T0 <80 0 LV'0 170 0 170 69°0 0 €0 °1
LSS0 0 850 10 8,0 70 760 0 980 10 90°0 70 ¥9°0 70 o 1
7¥S0 0 18°0 170 £8°0 170 890 0 6,0 170 <ro 170 €0 0 LT°0]
<Is0 0 50 170 780 T0 ! 0 £9°0 T0 0 10 T 0 v€0 £
169°0 0 9%°0 10 6,0 T0 19°0 0 60 10 0 170 6,0 0 1 4
¥¥S0 0 <S80 10 L6°0 10 L0 0 €70 10 ¥¢€0 10 L0 0 €0 5!
s m d m d m d m d m d m d m d sy
91008 /9PON 99pON GOPON $9PON €OPON 79PON [9PON :

'$9102s [euly AT, :f HIAV],

12

time ¢,, we compute each probability of vulnerability being
exploited, that is, 0.25 and 0.06. After that we compute the
probability of node 1 being attacked, that is, 0.3. Similarly,
we can get the probability of being attacked for each node
at time t,. Finally, we measure the network security through
(16) and the final score of the system at time ¢, to t,, is shown
in Table 4.

7. Conclusion

This paper focuses on measuring the network security with
unknown threats. Although there are a lot of research studies
on network security metrics, most of them are not ideal
when faced with unknown threats. To help administrator
have a better understanding about the potential zero-day
attack, we analyzed the behavior of attackers and predict
their attack timing. Due to the stealth and persistence feature,
we modeled the zero-day attack as a long-term game. We
specified and computed all the key parameters during the
game and then got the Nash equilibrium for each subgame.
We use these results as important references to measure the
network security. The experiment showed the efficiency of
our approach.

Main Parameters and Descriptions

C!: Attacking cost
C;: Defending cost

P,: Real passive-defending capability of the
administrator

P,: Real initiative-defending capability of the
administrator

P; (t): The estimation of administrator’s
passive-defense capability at time ¢

P[;(t): The estimation of administrator’s
initiative-defense capability at time ¢

L: Resource lifecycle

gi(t): The gain function of time for certain
attacker n

E!(t): Profit expectation from time t to the end
of lifecycle.

Data Availability
The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key R&D Program
of China (no. 2016YFB0800702) and DongGuan Innovative
Research Team Program (no. 201636000100038).

Security and Communication Networks

References

[1] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel, “K-zero
day safety: a network security metric for measuring the risk
of unknown vulnerabilities;,” IEEE Transactions on Dependable
and Secure Computing, vol. 11, no. 1, pp. 30-44, 2014.

[2] Y. Sun, L. Yin, Y. Guo, E Li, and B. Fang, “Optimally selecting
the timing of zero-day attack via spatial evolutionary game,” in
Proceedings of the International Conference on Algorithms and
Architectures for Parallel Processing, pp. 313-327, Springer, 2017.

[3] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey
on systems security metrics,” ACM Computing Surveys, vol. 49,
no. 4, article no. 62, 2016.

[4] S. Hardy, M. Crete-Nishihata, K. Kleemola et al., “Tar-
geted threat index: Characterizing and quantifying politically-
motivated targeted malware,” in Proceedings of the in USENIX
Security Symposium, pp. 527-541, 2014.

[5] U. Thakore, A quantitative methodology for evaluating and
deploying security monitors [Ph.D. thesis], 2015.

[6] M. Kiihrer, C. Rossow, and T. Holz, “Paint it black: Evaluating
the effectiveness of malware blacklists,” in Proceedings of the
International Workshop on Recent Advances in Intrusion Detec-
tion, vol. 8688, pp. 1-21, Springer, 2014.

[7] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D.
Payne, “Evaluating computer intrusion detection systems: a
survey of common practices,” ACM Computing Surveys, vol. 48,
no. 1, pp. 1-41, 2015.

[8] N.Boggs, S. Du, and S. J. Stolfo, “Measuring drive-by download
defense in depth,” in Proceedings of the International Workshop
on Recent Advances in Intrusion Detection, vol. 8688, pp. 172-191,
Springer, 2014.

[9] X. De Carné De Carnavalet and M. Mannan, “A large-scale
evaluation of high-impact password strength meters,” ACM
Transactions on Information and System Security, vol. 18, no. 1,
2015.

[10] B. Ur, S. M. Segreti, L. Bauer et al., “Measuring real-world
accuracies and biases in modeling password guessability,” in
Proceedings of the USENIX Security Symposium, pp. 463-481,
2015.

[11] B. R. Avasarala, J. C. Day, D. Steiner et al., “System and method
for automated machine-learning, zero-day malware detection,”
US Patent 9,292,688, March 2016.

[12] A.Mishra and B. B. Gupta, “Hybrid solution to detect and filter
zero-day phishing attacks,” in Proceedings of the In Proceedings
of the Second International Conference on Emerging Research in
Computing, Information, pp. 373-379, 2014.

[13] L. Wang, M. Zhang, S. Jajodia, A. Singhal, and M. Albanese,
“Modeling network diversity for evaluating the robustness
of networks against zero-day attacks,” in Proceedings of the
European Symposium on Research in Computer Security, pp.
494-511, 2014.

(14] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese,
“Network Diversity: A Security Metric for Evaluating the
Resilience of Networks Against Zero-Day Attacks,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 5, pp.
1071-1086, 2016.

[15] A. Ekelhart, E. Kiesling, B. Grill, C. Strauss, and C. Stummer,
“Integrating attacker behavior in IT security analysis: a discrete-
event simulation approach,” Information Technology and Man-
agement, vol. 16, no. 3, pp. 221-233, 2015.

[16] O. Al-Jarrah and A. Arafat, “Network intrusion detection
system using attack behavior classification,” in Proceedings of the

Security and Communication Networks

(17]

(18]

(19]

(20]

(25

(26]

5th International Conference on Information and Communica-
tion Systems, ICICS 2014, pp. 1-6, April 2014.

R. Mitchell and I.-R. Chen, “Adaptive intrusion detection of
malicious unmanned air vehicles using behavior rule specifi-
cations,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44, no. 5, pp- 593-604, 2014.

L. Allodi and F. Massacci, “Comparing vulnerability severity
and exploits using case-control studies,” ACM Transactions on
Information and System Security, vol. 17, no. 1, article no. 1, 2014.
L. Allodi, F Massacci, and J. M. Williams, “The work-averse
cyber attacker model,” 2016.

K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitras, “Some
Vulnerabilities Are Different Than Others,” in Proceedings of the
International Workshop on Recent Advances in Intrusion Detec-
tion, vol. 8688, pp. 426-446, Springer International Publishing.
S. Mitra and S. Ransbotham, “Information disclosure and the
diffusion of information security attacks,” Information Systems
Research, vol. 26, no. 3, pp. 565-584, 2015.

T. Dumitras, “Understanding the vulnerability lifecycle for risk
assessment and defense against sophisticated cyber attacks,” in
Cyber Warfare, pp. 265-285, Springer, 2015.

M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond
heuristics: Learning to classify vulnerabilities and predict
exploits,” in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD-
2010, pp. 105-113, ACM, July 2010.

X. Liang and Y. Xiao, “Game theory for network security;” IEEE
Communications Surveys & Tutorials, vol. 15, no. 1, pp- 472-486,
2013.

W. Jiang, B.-X. Fang, Z.-H. Tian, and H.-L. Zhang, “Evaluating
network security and optimal active defense based on attack-
defense game model,” Jisuanji Xuebao/Chinese Journal of Com-
puters, vol. 32, no. 4, pp. 817-827, 2009.

L. Bilge and T. Dumitras, “Before we knew it: An empirical study
of zero-day attacks in the real world,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security,
CCS 2012, pp. 833-844, ACM, October 2012.

R. Axelrod and R. Iliev, “Timing of cyber conflict,” Proceedings
of the National Acadamy of Sciences of the United States of
America, vol. 111, no. 4, pp. 1298-1303, 2014.

M. Shahzad, M. Z. Shafig, and A. X. Liu, “A large scale
exploratory analysis of software vulnerability life cycles,” in
Proceedings of the 34th International Conference on Software
Engineering, ICSE 2012, pp. 771-781, IEEE Press, June 2012.

13

Hindawi

Security and Communication Networks
Volume 2018, Article ID 7384194, 11 pages
https://doi.org/10.1155/2018/7384194

Research Article

HAC: Hybrid Access Control for Online Social Networks

Fangfang Shan ®," Hui Li,' Fenghua Li,>* Yunchuan Guo ®,’ and Ben Niu’

!State Key Laboratory of Integrated Service Network, School of Cyber Engineering, Xidian University, Xian 710071, China
2School of Computer Science, Zhongyuan University of Technology, Zhengzhou 450000, China
*State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China

*School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100093, China

Correspondence should be addressed to Yunchuan Guo; guoyunchuan@iie.ac.cn

Received 23 October 2017; Accepted 2 April 2018; Published 17 May 2018

Academic Editor: Raymond Choo

Copyright © 2018 Fangfang Shan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The rapid development of communication and network technologies including mobile networks and GPS presents new
characteristics of OSNs. These new characteristics pose extra requirements on the access control schemes of OSNs, which cannot
be satisfied by relationship-based access control currently. In this paper, we propose a hybrid access control model (HAC) which
leverages attributes and relationships to control access to resources. A new policy specification language is developed to define
policies considering the relationships and attributes of users. A path checking algorithm is proposed to figure out whether paths
between two users can fit in with the hybrid policy. We develop a prototype system and demonstrate the feasibility of the proposed

model.

1. Introduction

Online social networks (OSNs) have attracted widespread
popularity nowadays. Users can conveniently share personal
information with friends via OSNs. More than 300 hours
of videos are uploaded to YouTube and nearly 25 million
photos are posted to Instagram every minute [1]. Consid-
ering the fact that sensitive information may be leaked,
the protection of users’ privacy becomes a challenging task.
To address this problem, researchers have proposed the
relationship-based access control (ReBAC) mechanism [2-5].
Resource owners specify access control policies on the basis
of relationships between individual users. By maintaining the
balance between ease of use and flexibility, ReBAC has been
commonly applied in real OSN systems. It has also been
recognized as one of the most straightforward and useful
ways in protecting user’s privacy.

With the development of mobile technologies, plenty of
smart devices are connected to the network. These devices
may generate a large amount of private information, such as
location and health status, and then share the information
through OSNs [6]. In general, mobile technology contributes
the following features to the online social networks.

(i) More and more privacy information collected through
smart mobile devices may be uploaded to online social
networks.

(ii) Privacy information collected by smart mobile devices
can be used for access control scheme of OSNs.

These features have brought about new challenges for
access control schemes of online social networks. For exam-
ple, Alice is shopping at Bergdorf Goodman in New York.
She has recorded a video of the megamall with her Google
glasses and published it in OSN to see if any female friends
can give her some pieces of advice in choosing cosmetics.
Perhaps some of her friends nearby may come to have lunch
together. She does not want every friend to know what
she is doing now, so friends who do not live in New York
will not be granted access to this video. The widely used
relationship-based access control methods cannot describe
the attribute “location: in New York” and cannot meet Alice’s
needs. To provide finer-grained access control over private
data generated by wearable devices or m-health, researchers
should take attributes such as location, profession, and gender
into consideration.

The access control mechanism named UURAC, [4]
was the first mechanism that took attributes of users into

http://orcid.org/0000-0001-5586-6715
http://orcid.org/0000-0002-9611-5368
https://doi.org/10.1155/2018/7384194

consideration. Better expression ability and finer-grained
access control policies are characteristic of it. However, the
attribute-based policy is separated from the relationship-
based one. In other words, the policy of UURAC, falls into
two parts: the relationship-based policy and the attribute-
based policy. For this reason, UURAC, can merely figure out
common attributes of one or several users on the relationship
path instead of specifically identifying different attribute of
different users.

In this paper, we propose a hybrid access control model
based on both attribute and relationship. It designs a new
language of policy specification to specify policies based on
attributes and relationships. Compared with the study of
Cheng et al. [4], the policy specification language is char-
acteristic of better expression effectiveness and easier usage.
It presents detailed instructions on the policy specification
language and several application examples. A path checking
algorithm is proposed to find out whether paths between two
users involved in OSNs would fit in with the attribute-based
policy. The path checking algorithm is implemented to con-
duct experiments to validate the feasibility and performance
of the scheme.

2. Related Work

As large amounts of private personal data are created by
Web 2.0 applications, Carrie [7] summarized four techni-
cal requirements of access control mechanisms for social
networks based on Web 2.0 technologies. He emphasized
that the access control mechanisms for Web 2.0-based social
networks should have characteristics of relationship-based,
fine-grained, interoperability, and sticky policies and named
it relationship-based access control (ReBAC).

To meet these requirements and protect privacy of
social network users, researchers have proposed a variety of
access control mechanisms for OSNs. These mechanisms are
broadly divided into three categories. Methods of the first
type leverage relationships between users and resources to
constrain the access of privacy information. Some researchers
introduce modal and hybrid logic into their access control
model of OSNs. Others make use of cryptography to prevent
unwanted access.

Most access control schemes made use of various rela-
tionships between users and resources to protect sensitive
information in OSNSs. In [8], the authors tried to define access
control policies based on the type, depth, and trust level of
relationships between web-based social networks (WBSNs)
users. They proposed an access control model for WBSNs
which is characterized by using certificates for verifying
the authenticity of relationships and enforcing a rule-based
access control approach at the client side. Carminati et al. [9]
extended the mechanism presented in [8] by providing details
on the enforcement of the access control model. They defined
two protocols to verify the authenticity of relationships and
analyzed the security of them. In [10, 11], Carminati et al.
leveraged OWL, SWRL, and semantic web technologies to
express filtering, administration, and authorization policies.
They proposed an access control model to describe the rela-
tionships between users and resources. A relationship-based

Security and Communication Networks

access control model was proposed by Cheng et al. [12]
which utilized user-to-user, user-to-resource, and resource-
to-resource relationships to define access control policies. It
can be used to capture controls of administrative activities
of users together with other normal usage activities. In
[13], the authors presented an object-to-object relationship-
based access control model (OOReBAC) which leveraged
relationships between objects to control access of them. In
[14], the authors presented a graph-based access control
model which can be used in various systems, not just social
networks. It introduced concepts of path conditions and
principal matching and has better policy expression ability
and request evaluation efficiency.

With the development of semantic web technology, some
researchers considered using modal and hybrid logic in their
access control schemes of OSNs. Masoumzadeh and Joshi
[15] presented a scheme of access control based on ontology
that can be used on semantic web-based social networks
to support both system and user policies. Fong et al. [16]
formalized the privacy preservation mechanism of Facebook-
style social network systems and proposed an access control
model for them. The policies of this model are able to express
access control requirements such as common friends and
clique. Fong [17] defined a modal logic-based language to
specify and do composition of ReBAC policies. He presented
a case study of EHR systems to prove that ReBAC can be used
in application domains other than social computing. In [3],
the authors demonstrated that policy language proposed in
[17] was incomplete and it was unable to express all ReBAC
policies. They extended the policy language of [17] to identify
vertex and support for disjoint intermediaries and proved it
to be representationally complete. As an extension of modal
logic, Bruns et al. [18] utilized hybrid logic to specify policies
and enforce access control decisions in relationship-based
access control approach. A fragment of hybrid logic was used
to express complex relationship-based access control policies
such as “at least three friends”. Several other works [19-21]
also utilized the hybrid logic to support better expression
capacity of access control needs.

Researchers then considered adopting cryptography and
other technologies to the access control mechanisms of
OSNs. Anwar and Fong [22] designed a visualization tool
to show the result of policy configurations. In [23], the
authors presented an access control mechanism to pro-
tect textual contents in online social networks which is
enforced to be transparent to content publishers and readers.
The proposed system leveraged automatic semantic anno-
tation to analyze the semantics of the contents in order to
generate different versions according to types of readers.
Apart from relationship-based access control mechanisms,
other works concentrated on security protocols that leverage
cryptographic techniques to achieve access control goals
[24-30].

3. HAC Model Foundation

This section presents the foundation of HAC, including the
attributes in OSN, the social graph with attributes, and the
model components.

Security and Communication Networks

Ken Paul
paris KEN friend PAUL male
engineer landon

o .
2%
o C/o\\e @ e+
= =)
@ a6
o oS
< R % 28
o () 4.
&P Ly, 7
Bob s]/ (@% Alice t@/J;Q’ Dave
aris BOB female ™ male
P landon teacher

FIGURE 1: A sample social graph.

3.1. Attributes in OSN. Most of the recent access control
schemes for OSN make access control decision based on rela-
tionships. By considering the relationships only, data owners
cannot make proper access control policies based on location
and time. Recent studies have shown that attribute-based
access control (ABAC) can provide flexible and fine-grained
access control in dynamic distributed systems [31-34]. As
only the attributes of the subject, object, and environment are
considered, most current solutions of typical ABAC schemes
cannot be directly used in OSNs. Relationship of users should
also be checked here. When registering an OSN account,
users are always required to submit personal information,
such as name and gender. This personal information is
recognized as profile attribute, which can be used to define
policies.

Attributes are categorized into profile attributes and
relationship attributes in HAC.

Profile Attribute. Profile attribute contains information of
environment and identity, or characteristics of users. In
HAC, profile attributes fall into two types: user-defined
attribute and objective attribute. The user-defined attributes
are specified by the profile owner, such as gender, name, job,
hometown, and hobbies. In contrast, the objective attributes
are gained or defined by the OSN systems, such as time,
location, and IP address.

Relationship Attribute. Relationship attribute is used to
describe type, weight, and other information of relationships
in OSNG.

3.2. Social Graph with Attributes. As shown in Figure 1, the
researchers use a directed labeled simple graph G to abstract
an OSN. The nodes of G represent users while edges represent
the relationships between them. Each user is associated
with a profile containing his profile attributes. Relationships
between users are noted as relationship attributes. The social
graph of HAC contains two types of information: (1) users and
their profile attributes and (2) relationship attributes between
the users.

The researchers use a triple G = (N, £, E) to describe the
social graph in an OSN.

N = {{u, pro_attr_group) | u € U, pro_attr_group € P}
denotes the set of nodes (or vertices) of the graph, containing

-— Input
<»» 1-nmap
——— Attachment

FIGURE 2: Model overview.

profile attribute information of users in an OSN. U represents
user set while P is the set of profile attributes.

> = {r;,1y...,1,} is the set of relationship attributes,
each element of which represents a relationship attribute.

E = N x N x Y is the set of edges in the social
graph, representing relationship attributes between users in
the OSN.

3.3. HAC Model Components. Figure 2 shows the conceptual
diagram of HAC. Model components are access requester,
target user, access requester attribute, target user attribute,
environment attribute, sessions of access requester and target
user, policy, authorization, and social graph.

Access requester (u,) is a registered human being who
may initiate an access request to a profile or a resource of
a target user in the OSN. Each access requester has a set
of attributes (a,) to describe his personal information, such
as gender, name, job, and hometown. Target user (u,) is
a registered human being whose profile or resource is the
recipient of access. Each target user is also related to a set
of attributes (a,). Environment attribute (a,) represents envi-
ronment information used in access control procedure, such
as time, location, and IP address. Session of access requester
(s,) is an active instance of an access requester logged into
the OSN system while session of target user (s,) represents

the active instance of a target user. Policy (p) is defined by
the target user based on various attributes governing the
access of his profile or resources. According to different kinds
of attributes, policies are categorized into profile attribute-
based policy and relationship attribute-based policy. Social
graph (G) describes the relationships between users on social
networks. It is denoted as a directed labeled simple graph.
Authorization is an abstract function with attributes, request,
social graph, and policy as inputs. It makes a decision to grant
or deny the access of the target user. Request represents an
access requester’s initiation of access. It is described as a tuple
(u,, operation, target), where u, is the access requester, target
may be a profile or resource of the target user, and operation
represents the access that can be performed on targets.

4. HAC Policy Specification and Evaluation

In this section, the researchers present policy language, policy
specification, and the policy evaluation of HAC.

4.1. Policy Language. Policy of HAC is defined by the target
user. It constrains the profile and relationship attributes of
users along the relationship path. The policy language is
defined as follows.

(i) N and E are user (or node) set and relationship (or
edge) set, respectively.

(i) PN = {n;,n,...,n} (1 < s < §) is the profile
attribute name set for users (or nodes), where S is the number
of profile attribute names.

(iii) PV = {v;, v5, ..., v} (1 < m < M) is the predefined
profile attribute value set for users (or nodes), where M is the
number of profile attribute values.

(iv) RA = {r,1,,..., 1} (1 £ k < K) is the predefined
attribute set for relationships (or edges), where K denotes the
number of relationship attributes.

(v) AT (n) and AT (e) are attributes of node n and edge e,
respectively. AT'(n) € PN x PV is a binary relation on sets
PN and PV, and AT'(e) € RA. The node attribute is a profile
attribute while the edge attribute is a relationship attribute.

Profile attribute of a node is a binary relation on profile
attribute name set and profile attribute value set. A profile
attribute-based policy rule is composed of a profile attribute
name, a relationship specifier, and a profile attribute value as
shown below.

(i) profile attribute name, AT (n), profile attribute value.

Note that the profile attribute-based policy rule is spec-
ified by the data owner. For example, policy rule RI says,
“the current user’s profession must be teacher”. Policy rule
R2 requests the current user to be an adult.

RI: profession = “teacher”

R2: age > 18

A complete attribute-based policy rule is composed of
one relationship attribute and several profile attributes as
shown below.

(i) [relationship_attribute,, (profile_attribute, ;.. .; pro-
file_attribute,,,)] [relationship_attribute,, (profile
attribute;...; profile_attributey,)]

For example, R3 indicates that “the requester must be a
teacher living in New York, and he should be a friend of the

Security and Communication Networks

TABLE 1: Grammar for path sentences.

path_sentence == path_word | path_word connector path_word
connector ==V | A

path_word == “(” path . hop_count “)”

hop_count == num

Path == attr_specs | attr_specs path

attr_specs == “[” rel_attr “.” pro_attr_group “]”

rel_attr==r, | ry | ..| 7, | RA where RA = {r,1,,...,1}
pro_attr_group == pro_attr_pair | pro_attr_pair pro_attr_group
pro_attr_pair == “(” pro_attr_name “,” pro_attr_value “)”
pro_attr_name ==n, | n, | .. | n; | PN where PN = {n,n,,...,n}
pro_attr_value == v, | v, | .. | v,, | PV where PV = {v,v,,...,v,}

num == [0 - 9]+

data owner”. R4 specifies a rule saying that “only the adult
male colleagues of the owner can access the resource”. In R5,
the relationship attribute is not used and it is shown as “-
”, which indicates that the relationship is not constrained.
R5 requires that the location of the requester should be
London and the access time must between 2017-09-05 and
2017-10-05.

R3: [f, (occupation = “teacher”; howetown = “New York™)]
R4: [c, (gender = “male”; age > 18)]

R5: [-, (time € “2017-09-05: 2017-10-05; location = “Lon-
don’)]

4.2. Policy Specification. Policies are evaluated according to
the paths between the access requester and the target user
in social graph. The access control policy is composed of
an operation and a path sentence. As shown in Table 1, the
syntax of the path sentence is defined with Backus-Naur Form
(BNF).

A path sentence consists of several path words that are
connected by connectors. Every path word is composed
of path and hopcount. The path specifies the relationships
from the access requester to the target user. The hopcount
represents the maximal number of edges along the path.

Unlike UURAC and UURAC,, our path is aiming at
expressing policies based on attributes. The researchers use
relationship attribute and profile attribute to express the
restriction on users and the relationship between them.

Several examples are given to show how to use hybrid
rules to express the access control need in OSNG.

Example 1 (relationship attribute and profile attribute policy).
If Jim wants to allow some users to access his photos, those
users should share a common friend named “Jack” with him
and their occupation must be doctor. He can specify a policy
like this:

PI: {photo_access, ([f, (name = “Jack”)] [f, (occupation =
“Doctor’;)], 2))

If Jim wants to show his photos to his friend Jack or his
colleagues who are interested in medicine, the policy can be
specified as below:

Security and Communication Networks

(1) for all (attr_specs) of path

(2) path_reg_exp = path_reg_exp + attr_spec.rel_attr
(3) if (attr_specs) is the last one on the path then

(4) return path_reg_exp

(5) else

(6) break

ALGORITHM l: RegularExpressionTrans(path).

P2: (photo_access, ([f, (name = “Jack”)],1) v ([c, (interest
= “medicine”)], 1))

For PJ, the system has to figure out the basic path (ff, 2)
according to the social graph and examine profile attributes
of users along the path. If the access requester is a doctor and
he has a common friend named “Jack” with Jim, he may get
the permission. For P2, two kinds of access requesters can get
the permission. First, the user’s name is equal to “Jack”, and
an (f, 1) path is found between him and Jim. Second, the user
is interested in medicine and there is a (c, 1) path in the social
graph between him and Jim.

For each policy, the last attribute spec restrains the
attributes of the access requester.

Example 2 (relationship attribute policy). Profile attributes
of the following policy are empty. The policy specifies that
coworkers of Jim’s friends can access his profile. Policies like
this can capture UURAC policies.

P3: (profile_access, ([f, (-)]lc, ()], 2))

4.3. Policy Evaluation. Algorithms of policy evaluation are
presented in this section. The algorithms are used to eval-
uate whether the access requests should be granted. The
algorithms have to find a required path between the access
requester and the target user according to the social graph.
The required path found in the social graph may ensure that
the relationships between the access requester and the target
user can satisfy the hybrid policy.

Regular Expression Transformation Procedure. Relationship
attributes can be extracted from the path to form a regular
expression as shown in Algorithm 1. For a path (attr_specs
| attr_specs path), the algorithm traverses each attribute
specification in the path and gets the relation attribute.
All relation attributes are then catenated to be a regular
expression which is used to match the paths in the social
graph.

Path Checking Algorithm. Algorithm 2 shows the path check-
ing method of HAC. It takes the social graph G, the path,
the number of relationship attributes’ limit hopcount, the
source node start, and the target node end as input. It returns
a Boolean value, of which the output T means the access
request will be granted and F means denied. Here, the source
node start and the target node end represent the target user
and the access requester, respectively.

Similar to [8], the path checking method leverages a
depth first search (DES) to find the proper path in the social

(1) currentPath < NIL; h < 0

(2) nodeHistory « start

(3) path_reg_exp — RegularExpressionTrans(path)
(4) if hopcount # 0 then

(5) return ADFS(start)

ALGORITHM 2: PathCheck (G, path, hopcount, start, end).

graph. Without the limit of hopcount, DFS may search along
a path in the social graph too deep to find the proper path.
Operations in OSNs always occur between the people with
close relationships. Limited with hopcount, DES is suitable
for our model. The researchers improve the DFS to cope with
profile attribute check and name it ADFS.

The variable currentPath is used to hold the node
sequence traversed from the source node start to the current
node. Variable h is used to tell if the currentPath exceeds the
limit of hopcount. All nodes traversed are recorded by variable
nodeHistory. These variables are initialized with NIL, 0, and
the source node start, respectively. The main procedure gets
regular expression of relationship attributes through Regu-
larExpressionTrans(path). Then, it launches traversal function
ADFS() with parameter start to find out if the proper path
exists in the social graph.

The function ADFS() is shown in Algorithm 3. It takes u
as the only parameter. If the algorithm takes a further step
from the node u and makes i + 1 bigger than the hopcount,
it returns F. Otherwise, the further step is legal. ADFS() picks
up one edge (u, v, o) starting with node u in the social graph.
Then, the algorithm faces five cases. For if 1, the current target
node v belongs to the variable currentPath. This means that
the edge (u, v, 0) has been visited. The algorithm breaks from
the loop. For if 2, the node v is unvisited and it is exactly the
target node end. ADFS() first checks whether the relationship
attribute of the current edge (u, v, o) is equal to the dth
regular expression of relationship attributes extracted from
the attribute-based access control policy. If not, the algorithm
breaks. Otherwise, it means that the path between start and
end matching the regular expression is found. If the profile
attribute of node v fits the requirement of the attribute-based
access control policy, the algorithm sets & to be h + 1 and
concatenates the edge to currentPath. Then, it saves the node v
in nodeHistory. In if 3, the node v is unvisited, and it is exactly
the target node end. But the relationship attribute of the
current edge (u, v) is not equal to the hth regular expression
of relationship attributes extracted from the attribute-based
access control policy. The algorithm will break from the
current loop. In if 4, node v is unvisited and it is not the
target node end. The relationship o is not path_reg_exp[h],
and the algorithm breaks from if 4. In if 5, node v is unvisited,
and it is not the target node end. The relationship attribute
of the current edge (u, v, 0) is equal to the dth regular
expression of relationship attributes. The algorithm sets h
to be h + 1, concatenates (u, v, 0) to currentPath, sets v to
be currentNode, and saves the current node to nodeHistory.
Then, the function ADFS() is called recursively from node v.
If a matching path is found, the algorithm will return T from

Security and Communication Networks

(1) if h+ 1 > hopcount then
(2) returnF

(3) else

(5) if 1 (v € currentPath)
(6) break

9) break

11) break

(13) currentNode «— v

(15) return T

(33) return F

(4) for all (v, o) where (u, v,0) in G do

7) if 2 ((v ¢ currentPath) && (v = end))

(8) if (path_reg_exp[h] != o) then

(10) if (! match (path.attre_spec[h].pro_attr_group, v.pro_atr_group)) then
(12) h « h+ 1; currentPah < currentPath.(u, v, o)

(14) nodeHistory «— nodeHistory.(currentNode)

(16) if 3 ((v ¢ currentPath) && (v = end) && (path_reg_exp[h] != 0))

17) break

(18) if 4 ((v ¢ currentPath) && (v # end) && (path_reg_exp[h] != 0))
19) break

(20) if 5 ((v ¢ currentPath) && (v # end) && (path_reg_exp[h] = o))
(21) h = h + 1; currentPath « currentPath.(u, v, o)

(22) currentNode «— v

(23) nodeHistory « nodeHistory.(currentNode)

(24) if (ADFS(v)) then

(25) return T

(26) else

(27) break

(28) if & = 0 then

(29) return F

(30) else

(31) h = h — 1; currentPath < currentPath\(u, v, o)

(32) nodeHistory < nodeHistory\currentNode

ALGORITHM 3: ADFS(u).

if 5. Otherwise, the algorithm will set /1 to be i — 1, remove
(u, v, 0) from currentPath, remove v from nodeHistory, and
move to another edge from node u.

The algorithm will test all paths from start to end. If any of
them fits the access control policy, the algorithm will return
T. Otherwise, it may return F as the depth of each path which
will be checked is constrained by hopcount. We use min and
max to represent the minimum and maximum out degree of
node on the social graph, respectively. The time complexity
of this algorithm will fall into the range of O(min"P" and
O(max"P°®*t) The check of profile attribute will bring about
extra overhead to the algorithm. In the first experiment, we
evaluated this overhead which proved it to be acceptable. This
experiment is presented in Section 5. So, the path checking
algorithm of HAC is effective.

5. Implementation

This section presents the implementation of the path check-
ingalgorithm. Five sets of experiments are arranged to test the
usability and performance of the algorithm. The researchers
implement the algorithm in Java and store the social graph
and sample access control policies in MySQL databases. All

the experiments are conducted on a machine with 4 GB
memory and an Intel quad-core CPU at 3.6 GHz which runs
the operating system of an Ubuntu 12.04 image.

5.1 Datasets. When selecting datasets in the organization
of the experiments, there are two choices as reported in
[35]: public available real datasets and synthetic datasets.
As collected from real-world OSN systems, most of the
public available datasets do not consider multiple relationship
types or attribute information [36]. In order to meet the
requirements, this necessary information should be added
manually. However, if the dataset is modified, it may no
longer present user behaviors [36]. Hence, synthetic dataset
is a better choice for us in this evaluation. The researchers
generate a random regular graph with n nodes, and each node
has a fixed number of edges. Graphs with different nodes
and edges can be created by changing parameters n and d
according to the need of the experiments.

In the first experiment, to evaluate the effect of attribute
evaluation on performance of the algorithm, the researchers
test the time of ADFS to make an access control decision and
compare it with the one without attribute support described
in [36] (DFS). To do this, the researchers comment out the

Security and Communication Networks

4.5

25t
2|

Time (millisec)

1 1.5 2 2.5 3 3.5 4
Hopcount

—— DFS

ADFS

(a) True case

9000
8000
7000
6000
5000
4000

Time (millisec)

3000
2000
1000

1 1.5 2 2.5

Hopcount

—— DFS
ADFS

(b) False case

FIGURE 3: Time of path checking.

code of the profile attribute match. As discussed in [36], n
is set to be 1000. On average, main users of Facebook have
173.6 friends as described in [37]. Then, the researchers set
that each node has 174 randomly selected neighbors. Only
one relationship attribute is considered in this experiment.
Five profile attributes, such as user name, gender, career, date
of birth, and hometown, are assigned to each node. The user
names are set to be different from each other. The gender of
each user is randomly selected from male and female. The
researchers collected twenty different careers in the career
set which are randomly assigned to each user in the social
graph. The date of birth is randomly chosen between 1927
and 2007. The hometown of each node is randomly selected
from a location set which includes twenty cities. Two sets
of experiments are arranged. One set returns the true and
the other returns the false. Each 4-hopcount policy runs
five times over the two algorithms on 1000 nodes randomly
selected from the node set. The average value of those 5000
runs is the final result.

Before the path checking algorithm is invoked, the rela-
tionship attributes should be extracted from the path to form
aregular expression by the regular expression transformation
procedure. This procedure is also called preprocessing. In
order to confirm that the policy language is appropriate
to be used in an attribute-based access control model, the
researchers should make sure that the preprocessing would
not take too much time compared with the ADFS algorithm.
So, the time of preprocessing is evaluated in the second
experiment where the parameters are set to be the same as
those in the first experiment.

In the near future, OSNs may support more than one
type of relationship. To evaluate if HAC can meet the access
control needs of multiple types of relationships in OSNs, in
the third experiment, the researchers discuss the variety of
time with the increase of the relationship attribute types. The
number of relationship attribute types varies from 1 to 8.
Other parameters are the same as in the first experiment.

To evaluate how the scale of OSN will impact the
performance of the algorithm, in the fourth experiment,
the researchers test the variety of time with the number of
nodes in the social graph. The number of nodes is set to
be 1000, 2000, 5000, and 20000, respectively. The rest of the
parameters are the same as in the first experiment.

To evaluate how he density of OSN will impact the
performance of the algorithm, in the last experiment, the
researchers examine the variety of time with the number of
neighbors. The number of neighbors is set to be 100, 174, 200,
and 500, respectively. The social graph becomes denser as the
number grows. Other parameters are kept consistent with the
first experiment.

5.2. Performance. DFS and ADEFS algorithms are compared
in the first experiment. The researchers consider four policies
with different numbers of relationship attributes (hopcount)
which varied from 1 to 4. Figure 3 presents the result of the
experiment. It takes slightly more time for ADFS to make an
access control decision than DFS does, as ADFS takes profile
attribute check after finding a qualified relationship attribute.
More relationship attributes mean more profile attributes
should be checked. So, the time gap of those two algorithms
increases as the number of relationship attributes grows. The
slight increase of time in ADFS is acceptable, as the use of the
profile attribute makes access control policy more powerful.
In the false case experiments, it takes significantly more time
to finish the path evaluation as more paths in the social graph
have to be checked.

Figure 4 presents the result of the second experiment. It
shows a comparison of the time of preprocessing and ADFS
algorithm. Both of them increase along with the number
of hopcounts. For each hopcount, the time of preprocessing
is nearly a tenth of ADFS. This result is acceptable which
indicates that the policy language is appropriate to be used
in an attribute-based access control model.

Security and Communication Networks

Time (millisec)
w

2.5 3 3.5 4

Hopcount

—6— Preprocessing
ADEFS-True case

FIGURE 4: Time of preprocessing.

0.14

002 F - S BN
O S
0.08 |

0.06 |

Time (millisec)

0.04

0.02 ¥

—o— DEFS
ADFS

(a) True case

10000

9000 | e
8000 f- -]
7000 F- oo
6000 |- [
5000 F oo
4000 |

Time (millisec)

3000
2000
1000

0

1 2 3 4 5 6 7 8

—— DFS
ADFS

(b) False case

FIGURE 5: Time of path checking versus types (hopcount = 4).

The result of the third experiment is shown in Figure 5.
Since people always tend to share information with friends
within a close distance, 4-hopcount policies are used here.
In both true and false cases, the time of ADFS to make
access control decision increases linearly with the number
of relationship attribute types. It reaches the peak value as
4 types of relationship attributes exist in the social graph. A
larger number of relationship attributes may not affect the
time of policy check as 4-hopcount policies are used in the
experiment. The result means that our algorithm will work
well with the future social networks as more relationship
attribute types will be supported.

Figure 6 shows the result of the fourth experiment. Time
of path checking grows with the increase of nodes from 1000
to 20000. In the true case, it takes no more than 1 millisecond
to make the access control decision. For the false case, the

time it takes becomes longer because all possible paths should
be checked.

The result of the last experiment is presented in Figure 7.
In both true and false cases, the time of path checking
increases as the social graph gets denser. The time grows
sharply as the number of degrees exceeds 200. In most
social network systems, the number of friends may be
approximately 200 [37], so ADFS algorithm is feasible.

6. Comparison

This section discusses several related works of relationship-
based access control schemes and compares HAC with [4, 5,
16, 36] (see Table 2).

The first column of Table 2 represents nine characteristics
discussed in this section. The next three columns represent

Security and Communication Networks

0.8

0.7 b o
0.6 F- i
0.5 F- o

04 b T

Time (millisec)

03 L v]
02}

0.1}

o Le—
0 02 04 06 08 1 12 14 16 18 2

Number of Nodes x10*

—o— DFS
ADEFES

(a) True case

14

12 ¢

10 b

Time (millisec)
[o2]

4+ i
"
2 1 1 1 1 1 1 1 1 1
0 02 04 06 038 1 1.2 14 16 1.8 2
Number of Nodes x10*
—— DFS
ADFS

(b) False case

FIGURE 6: Time of path checking versus number of nodes (hopcount = 4).

Time (millisec)

300 350 400 450

Degree

150 200 250

0.03
100

500

—— DFS
ADFS

(a) True case

800

F00 b 1
600 F -t e
500 F oo

400 F- - bl L

Time (millisec)

BOOF- oo S
200 |

100

0 I I I I
100 300 350 400 450

Degree

250 500

DFS
ADFS

(b) False case

FIGURE 7: Time of path checking versus degree (hopcount = 4).

the characteristics of the access control schemes discussed
above. Characteristics of HAC are listed in the last column.

The scheme in [16] is a formal algebraic access control
model for Facebook-style systems. But user attributes and
relationships beyond friendship are not supported in this
model. OSNs access control models presented in [5, 36] have
similar user graphs to HAC. However, these models do not
explicitly take into account user attributes.

This work is similar to [4]. Despite its flexibility, UURAC ,
[4] is still far from perfect. It does not support specific user
attribute. More concretely, its policy specification language
can merely figure out common attribute requirements of one
or several users on the relationship path, lacking specification

ability of different attribute requirements of different users
along the path. Additionally, it cannot describe some policies,
such as “the adult colleagues of my friend Tom can access the
resource”, which requires the attribute of my friend “name is
Tom” and the attribute of the colleagues of my friend Tom
“age >18”. Besides, compared with UURAC,, HAC is simple
and easy to understand. It is easier for users in the OSNs to
set up access control policies with HAC.

7. Conclusion

This research proposes an attribute and relationship-based
hybrid access control model HAC for OSNs based on two

10 Security and Communication Networks
TaBLE 2: Comparison.
Fong et al. [16] UURAC [5, 36] UURAC, (4] HAC

Multiple Relationship Types v v v

User Profile Attributes N v/

Specific User Attribute v

User-user Relationship v v v v
Directional Relationship v v N
Relationship Depth v v v N

Policy Individualization v N v N

Attribute Composition none none attributes of user set attributes of exact user
Relationship Description ff path pattern of different types path pattern of different types exact type sequence

aspects, including policy language and path checking. The
policy language contributes to the literature on ReBAC by
allowing users to specify spatial, temporal, and historical
based policies with better expressiveness and flexibility. This
research also presents several attribute and relationship-
based hybrid policies and formally expresses them in the
proposed policy language. Path checking algorithm enables
users to figure out whether an access request can be satisfied.
A prototype is implemented, and several experiments are
evaluated to validate the feasibility of the scheme. HAC is
advantageous compared with existing OSN access control
models in terms of the expressiveness ability of policy
language and the evaluation algorithm of access request.

In the future, researchers plan to improve the hybrid
policy language to gain better expressiveness ability and
support for more relationship types including one-to-many
relationship and temporary relationship.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The research activities described in this paper have been
conducted within the Research Project “the National
Key Research and Development Program of China
(2016YFB0801001)” and “General Program of National
Natural Science Foundation of China (61672515)”.

References

[1] J. Xiong, Y. Zhang, X. Li, M. Lin, Z. Yao, and G. Liu, “RSE-
PoW: a role symmetric encryption PoW scheme with autho-
rized deduplication for multimedia data,” Mobile Networks and
Applications, pp. 1-14, 2017.

[2] P. W. L. Fong, “Relationship-based access control: protection
model and policy language,” in Proceedings of the 1st ACM
Conference on Data and Application Security and Privacy,
CODASPY 11, pp. 191-201, February 2011.

[3] P.W.L. Fong and I. Siahaan, “Relationship-based access control
policies and their policy languages,” in Proceedings of the 16th
ACM Symposium on Access Control Models and Technologies,
SACMAT 11, pp. 51-60, June 2011.

[4] Y. Cheng, J. Park, and R. Sandhu, “Attribute-aware relationship-
based access control for online social networks,” in Proceedings
of the IFIP Annual Conference on Data and Applications Security
and Privacy, pp. 292-306, Springer, Berlin, Germany, 2014.

[5] Y. Cheng, J. Park, and R. Sandhu, “A user-to-user relationship-
based access control model for online social networks,” in Pro-
ceedings of the IFIP Annual Conference on Data and Applications
Security and Privacy, pp. 8-24, Springer, Berlin, Germany, July
2012.

[6] D. Wu, J. Yan, H. Wang, D. Wu, and R. Wang, “Social attribute
aware incentive mechanism for device-to-device video distribu-
tion,” IEEE Transactions on Multimedia, vol. 19, no. 8, pp. 1908-
1920, 2017.

[7] E. G. Carrie, “Access control requirements for web 2.0 security
and privacy;,” in Proceedings of the IEEE Web 2.0 privacy and
security workship (W2SP °07), 2007.

[8] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access
control for social networks,” in Proceedings of the Move to
Meaningful Internet Systems Workshops, OTM 06, pp. 1734-
1744, Springer, Berlin, Germany, 2006.

[9] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access
control in Web-based social networks,” ACM Transactions on
Information and System Security, vol. 13, no. 1, pp. 1-38, 2009.

[10] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.
Thurainsingham, “A semantic web based framework for social
network access control,” in Proceedings of the 14th ACM Sympo-
sium on Access Control Models and Technologies, SACMAT 2009,
pp. 177-186, June 2009.

[11] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and
B. Thuraisingham, “Semantic web-based social network access
control,” Computers & Security, vol. 30, no. 2-3, pp. 108-115, 2011.

[12] Y. Cheng, J. Park, and R. Sandhu, “Relationship-based access
control for online social networks: Beyond user-to-user rela-
tionships,” in Proceedings of the Proceedings of the Privacy,
Security, Risk and Trust, pp. 646-655, 2012.

[13] T. Ahmed, E. Patwa, and R. Sandhu, “Object-to-object relation-
ship-based access control: Model and multi-cloud demonstra-
tion,” in Proceedings of the 17th IEEE International Conference
on Information Reuse and Integration, IRI ’16, pp. 297-304, July
2016.

[14] J. Crampton and J. Sellwood, “Path conditions and principal
matching: a new approach to access control,” in Proceedings
of the 19th ACM Symposium on Access Control Models and
Technologies, SACMAT ’14, pp. 187-198, 2014.

[15] A. Masoumzadeh and J. Joshi, “OSNAC: an ontology-based
access control model for social networking systems,” in Pro-
ceedings of the 2nd IEEE International Conference on Social

Security and Communication Networks

(16]

[17]

(20]

(21]

(22]

(26]

(27]

Computing, SocialCom 2010, 2nd IEEE International Conference
on Privacy, Security, Risk and Trust, PASSAT 10, pp. 751-759,
August 2010.

P. W. Fong, M. Anwar, and Z. Zhao, “A privacy preservation
model for facebook-style social network systems,” in Proceed-
ings of the European Symposium on Research in Computer
Security, pp. 303-320, Springer, Berlin, Germany, September
2009.

P. W. Fong, “Relationship-based access control: Protection
model and policy language,” in Proceedings of the 1st ACM
Conference on Data and Application Security and Privacy,
CODASPY 11, pp. 191-201, February 2011.

G. Bruns, P. W. Fong, 1. Siahaan, and M. Huth, “Relationship-
based access control: its expression and enforcement through
hybrid logic,” in Proceedings of the second ACM conference on
Data and Application Security and Privacy, pp. 117-124, Feburary
2012.

E. Tarameshloo and P. W. Fong, “Access control models for
Geo-Social Computing systems,” in Proceedings of the 19th
ACM Symposium on Access Control Models and Technologies,
SACMAT 14, pp. 115-126, June 2014.

E. Tarameshloo, P. W. L. Fong, and P. Mohassel, “On protection
in federated social computing systems,” in Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy,
CODASPY 14, pp. 75-86, March 2014.

M. Cramer, J. Pang, and Y. Zhang, “A logical approach to
restricting access in online social networks,” in Proceedings
of the 20th ACM Symposium on Access Control Models and
Technologies, SACMAT 15, pp. 75-86, June 2015.

M. Anwar and P. W. L. Fong, “A visualization tool for evalu-
ating access control policies in facebook-style social network
systems,” in Proceedings of the 27th Annual ACM Symposium on
Applied Computing, SAC 12, pp. 1443-1450, Italy, March 2012.

M. Imran-Daud, D. Sanchez, and A. Viejo, “Privacy-driven
access control in social networks by means of automatic
semantic annotation,” Computer Communications, vol. 76, pp.
12-25, 2016.

B. Carminati and E. Ferrari, “Privacy-aware collaborative access
control in web-based social networks,” in Proceedings of the
IFIP Annual Conference on Data and Applications Security and
Privacy, pp. 81-96, Springer, Berlin, Germany, July 2008.

J. Domingo-Ferrer, A. Viejo, E Sebé, and U. Gonzélez-Nicolas,
“Privacy homomorphisms for social networks with private
relationships,” Computer Networks, vol. 52, no. 15, pp. 3007-
3016, 2008.

B. Carminati and E. Ferrari, “Enforcing relationships privacy
through collaborative access control in web-based social net-
works,” in Proceedings of the Proceedings of the Collaborative
Computing: Networking, Applications and Worksharing, pp. 1-9,
November 2009.

K. B. Frikken and P. Srinivas, “Key allocation schemes for
private social networks,” in Proceedings of the Proceedings of the
8th ACM workshop on Privacy in the electronic society, pp. 11-20,
November 2009.

G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos,
“Privacy-preserving relationship path discovery in social net-
works,” in Proceedings of the International Conference on Cryp-
tology and Network Security, pp. 189-208, Springer, Berlin,
Germany, December 2009.

M. Xue, B. Carminati, and E. Ferrari, “P3D-privacy-preserving
path discovery in decentralized online social networks,” in

(33]

(34]

(35]

(36]

[37]

1

Proceedings of the Computer Software and Applications, pp. 48—
57, July 2011.

M. Backes, M. Maffei, and K. Pecina, “A Security API for
Distributed Social Networks,” in Proceedings of the NDSS, vol.
11, pp. 35-51, February 2011.

X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-
based access control model covering DAC, MAC and RBAC,”
in Proceedings of the IFIP Annual Conference on Data and
Applications Security and Privacy, pp. 41-55, Springer, Berlin,
Germany, July 2012.

H.-B. Shen and E Hong, “An attribute-based access control
model for web services,” in Proceedings of the 7th International
Conference on Parallel and Distributed Computing, Applications
and Technologies, PDCAT 06, pp. 74-79, December 2006.

E. Yuan and J. Tong, “Attributed based access control (ABAC)
for web services,” in Proceedings of the Web Services, pp. 561-
569, July 2005.

X. Li, S. Tang, L. Xu, H. Wang, and J. Chen, “Two-Factor Data
Access Control With Efficient Revocation for Multi-Authority
Cloud Storage Systems,” IEEE Access, vol. 5, pp. 393-405, 2017.
B. Carminati, E. Ferrari, and J. Girardi, “Performance analysis
of relationship-based access control in OSNs,” in Proceedings
of the 13th International Conference on Information Reuse and
Integration, IRI ’12, pp. 449-456, August 2012.

Y. Cheng, J. Park, and R. Sandhu, “An access control model for
online social networks using user-to-user relationships,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no.
4, pp. 424-436, 2016.

S. W. Lee and J. Lee, “A comparative study of KakaoStory and

facebook: focusing on use patterns and use motives,” Telematics
and Informatics, vol. 34, no. 1, pp. 220-229, 2017.

Hindawi

Security and Communication Networks
Volume 2018, Article ID 8210614, 16 pages
https://doi.org/10.1155/2018/8210614

Review Article

Data Fusion for Network Intrusion Detection: A Review

Guoquan Li,! Zheng Yan 12 Yulong Fu

,! and Hanlu Chen'

!State Key Laboratory of ISN, School of Cyber Engineering, Xidian University, Xian, China
*Department of Communications and Networking, Aalto University, Espoo, Finland

Correspondence should be addressed to Yulong Fu; ylfu@xidian.edu.cn

Received 20 December 2017; Revised 26 March 2018; Accepted 11 April 2018; Published 15 May 2018

Academic Editor: Jesus Diaz-Verdejo

Copyright © 2018 Guoquan Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Rapid progress of networking technologies leads to an exponential growth in the number of unauthorized or malicious network
actions. As a component of defense-in-depth, Network Intrusion Detection System (NIDS) has been expected to detect malicious
behaviors. Currently, NIDSs are implemented by various classification techniques, but these techniques are not advanced enough
to accurately detect complex or synthetic attacks, especially in the situation of facing massive high-dimensional data. Besides, the
inherent defects of NIDSs, namely, high false alarm rate and low detection rate, have not been effectively solved. In order to solve
these problems, data fusion (DF) has been applied into network intrusion detection and has achieved good results. However, the
literature still lacks thorough analysis and evaluation on data fusion techniques in the field of intrusion detection. Therefore, it is
necessary to conduct a comprehensive review on them. In this article, we focus on DF techniques for network intrusion detection
and propose a specific definition to describe it. We review the recent advances of DF techniques and propose a series of criteria
to compare their performance. Finally, based on the results of the literature review, a number of open issues and future research

directions are proposed at the end of this work.

1. Introduction

Network Intrusion Detection System (NIDS) is a new gener-
ation of network security equipment following the traditional
security measures such as firewall and data encryption
[1], which has been rapidly developed in recent years. It
successfully resists many attacks and malicious actions and
is called the second line of defense in the Internet. However,
in the current big data era, the large amount of traffic data
makes NIDS face critical challenges. First, large amounts of
high-dimensional data increase processing complexity and
need huge computing and storage resources. Second, many
redundant and unrelated data could adversely affect network
security detection. Third, some new attacks are difficult to
detect due to big data process and analytics. Besides, the
inherent weakness of NIDSs, such as high false positives
(FP) and high false negatives (FN), raises urgent requests
on effective solutions. Data Fusion (DF), as a promising
technology of big data, has been applied into the domain
of network intrusion detection to overcome the above-
mentioned challenges in recent years.

The concept of DF originated from the US Air Force
project; the US Department of Defense first proposed a
Joint Directors of Laboratories (JDL) DF model based on
national defense monitoring needs in 1987 [2]. Subsequently,
DF was gradually studied and applied in other fields, such as
automatic control, image recognition, target detection, and
cyber security, and many scholars have proposed definition
of DF based on their own studies and researches [3]. In
order to clearly show the role of DF technology in network
intrusion detection, an expression of DF in the field of NIDS
is presented in this article.

In general, DF can be applied into three layers according
to where fusions are needed, namely, data layer, feature
layer, and decision layer. The data layer is the lowest system
layer, playing the role of processing and integrating raw
network data; the feature layer is the middle layer, fusing and
reducing features of the preprocessed data; the decision layer
is the highest layer, fusing and combining the inferences or
decisions of various processing units. In the field of NIDS,
most researches of data fusion only focus on the feature layer
and the decision layer. It is because the network data they

http://orcid.org/0000-0002-9697-2108
http://orcid.org/0000-0002-1778-4943
https://doi.org/10.1155/2018/8210614

need to fuse comes from public datasets that have already
been fused at the data layer. The use of DF technology at the
feature level can greatly reduce the size of data processing,
thereby enhancing the efficiency of NIDSs. Besides, useful
and refined data generated by feature fusion can support
decision-making and further improve the robustness and
accuracy of the system. As for using of DF technology at the
decision level, the decision fusion center fuses the decisions of
multiple local detectors to obtain more accurate and reliable
identifications of network behaviors.

Currently, a lot of research work has been carried out on
DF for intrusion detection in order to improve the perfor-
mance of NIDS. However, we found that the open datasets,
the number of experimental data samples, and the fusion
techniques used in many literatures are diverse. It is difficult
to understand and analyze the strengths and weaknesses of
different fusion techniques. Thus, it becomes essential to
specify uniform criteria to evaluate them in view of a large
number of references and give performance statistics of the
current literature. This work is meaningful because it can
make it easier for researchers and practitioners to under-
stand the characteristics of the current DF techniques and
methods.

In this article, we provide a thorough review on DF
techniques in NIDS. We first describe DF for NIDS by
representing the process and role of fusion for motivating
this research work. We review existing DF techniques used
in intrusion detection and propose evaluation criteria to
analyze and compare the characteristics and performance
of different fusion techniques. Besides, we simply analyze
different open network datasets that can be used for testing
intrusion detection techniques. Based on our review, we put
forward current main challenges and point out promising
research directions in this field.

The main contributions of this survey are listed as follows.

(1) We give a description of DF for NIDS in order to
motivate related research in this field.

(2) We propose a number of evaluation criteria for
evaluating fusion techniques for network intrusion
detection.

(3) We further employ the proposed criteria to review
the performance of different fusion techniques, which
offers a good reference for scholars in the fields of
network security and information fusion.

(4) We propose the challenges and promising research
directions of DF for network intrusion detection
based on our review.

The remainder of this article is organized as follows.
Section 2 gives a brief introduction about the background
knowledge of NIDS and DF. Several commonly used fusion
techniques are elaborated in Section 3. Section 4 puts for-
ward the evaluation criteria of data fusion techniques based
on a large amount of literatures. The power of different
fusion techniques is analyzed and compared in Section 5.
In Section 6, the existing issues of DF are discussed, and
some promising research directions are proposed. Section 7
summarizes the whole article.

Security and Communication Networks

2. Background Knowledge

In order to better understand this article, this section
introduces some basic theory, including network intrusion
detection and DFE. Network intrusion detection is an old
topic that has been repeatedly studied. We mainly present
two kinds of intrusion detection techniques, anomaly-based
and misuse-based, and explain their advantages and disad-
vantages, separately. As regards DF, we introduce it from its
source, definitions, levels, and applications and put forward
a general DF framework for intrusion detection to facilitate
intuitive understanding.

2.1. Network Intrusion Detection. NIDS is a kind of network
security scheme that can monitor the network transmission
in real time and alert or take corresponding measures when
detecting some behaviors that threaten network security.
Actually, NIDS can be regarded as a pattern of recognition
system that can distinguish malicious attacks from normal
network behaviors. Intrusion detection technology plays an
important role in the process of identifying malicious behav-
iors. The intrusion detection techniques based upon data
mining generally fall into two categories: misuse detection
and anomaly detection [4, 5]. The misuse-based detection,
also called signature-based detection, is based on known
attack signatures. It usually uses the well-known attack
signatures to match and identify attacks. The advantages and
disadvantages of the misuse-based detection are as follows

[6].
(1) Advantages

(i) Fast and efficient detection of known attacks or
specific attack tools.
(ii) Detecting attacks without generating an over-
whelming number of false alarms.
(iii) Allowing system administrators, regardless of
their security skills, to track their system secu-
rity issues and run exception handlers.

(2) Disadvantages

(i) Hard to detect novel or unknown attacks.
(ii) Hard to detect the variants of known attacks.

Due to the efficient detection and low false positive rate
(FPR), the misuse-based IDSs are widely used in commercial
networks. Furthermore, much excellent open-source soft-
ware has also been implemented, typically represented by
Snort. The Snort IDS is one of the commonly used misuse-
based NIDSs, which performs real-time traffic analysis,
content searching, and content matching to discover attacks
using preidentified attack signatures [7]. It is popular with
many researchers because of its open source and adaptability
to various platforms. In [1], Tian et al. fused the alerts through
Snort to test the performance of their proposed detection
fusion system.

Although the misuse-based detection is efficient, it can
only detect known attacks and cannot detect novel or zero-
day attacks [38]. To detect novel attacks, the anomaly-
based NIDS have been proposed. In many related literatures,

Security and Communication Networks

most of the network behaviors acquired by researchers are
normal, so NIDSs usually uses the anomaly-based detection
techniques. Anomaly detection is a recognition model based
on normal behaviors of the network connections. Any devi-
ation from the established pattern of normal behaviors is
considered to be a suspicious action. The anomaly detection
seems to be able to detect all types of attacks, including
unknown attacks. However, it indicates that some activities
are suspicious but not malicious, resulting in high FP [39].
The advantages and disadvantages of the anomaly-based
detection are as follows [6].

(1) Advantages

(i) It can detect novel or unknown attacks.

(ii) It Produces information that can in turn be used
to define signatures for misuse detectors.

(2) Disadvantages:

(i) It requires extensive training data of network
connections and behaviors.

(ii) FPR is not ideal.

The misuse-based detection is efficient in detecting
known attacks but cannot detect novel attacks, while the
anomaly-based detection can detect unknown attacks but
usually has a high FPR. Therefore, NIDS used only one
of these two which could be limited in performance and
scope of application. To avoid the above defects, many
hybrid approaches have been proposed, which combine the
advantages of both misuse and anomaly detection [40].
Hybrid intrusion detection technology can be divided into
three categories as follows.

(1) Anomaly-based detection on top of misuse-based
detection

(2) Misuse-based detection followed on top of anomaly-
based detection

(3) Misuse-based and anomaly-based detection in paral-
lel

Zhang et al. [15] implemented a hybrid system through
the following first approach. This hybrid system can be
used to detect known intrusions in real time and to detect
unknown intrusions offline. Generally, in the past two
decades, NIDSs have been fully studied. Intrusion detection
technologies continue to improve and update. The perfor-
mance of NIDSs has been greatly optimized accordingly, but
NIDSs still face many challenges. The use of DF technology
in the field of NIDS is a very promising research direction,
which holds great potential to deal with these challenges.

2.2. Data Fusion

2.2.1. Data Fusion Definition. The concept of DF first
appeared and applied in the military field in the 1980s, with
strong military characteristics, which was called “intelligence
synthesis.” Joint Directors of Laboratories (JDL) defines DF

from the perspective of military applications as follows: DF is
a process dealing with the association, correlation, and com-
bination of data and information from single and multiple
sources to achieve refined position and identity estimates,
complete and timely assessments of situations, threats, and
their significance. Waltz and Llinas [41] supplemented and
modified the above definition in their work, replaced the
“position estimate” with the “state estimate,” and added the
detection function, which gave the definition: data fusion is a
multilevel and multifaceted process and mainly completes the
detection, integration, correlation, estimation, and combina-
tion of data from single and multiple data sources. Its purpose
is to achieve an accurate estimate of the status and identity
of the target and to make a complete and timely assessment
of the situation and threats. Many other DF definitions are
presented by some scholars based on their own researches
and analysis. Although these definitions give us inspiration
and guidance to some extent, they are not exhaustive in
a particular area. A more specific expression of DF in the
field of intrusion detection is beneficial to researchers within
the field and motivates their own work. Therefore, based
on these facts, we presented a specific description of DF in
NIDS: “single source or multisource data collected from the
network is preprocessed to obtain a uniform data format.
More refining data of greater quality is obtained through
feature fusion and association, which greatly improves the
identification of malicious network behaviors. The initial
decisions generated from multisource data are integrated
in a decision fusion center to achieve more accurate and
comprehensive inferences or decisions.” This expression is
based on network intrusion detection; the goal of DF is
to improve efficiency, accuracy rate (ACC) and robustness
while reducing FNR and FPR, saving computing resources
of system. We believe that the proposed definition is helpful
to practitioners and researchers in the field of intrusion
detection.

2.2.2. Data Fusion Levels. The data fusion is mainly applied
at three levels with respect to the processing stage of the
fusion [42]. Normally, three main levels are discerned: data,
feature, and decision. At different levels, the representation of
information is different: the outputs of the data level fusion
and the feature level fusion are the “states,” “characteristics,”
and “attributes,” and the outputs of the decision level fusion
are “inferences” or “decisions.” Different fusion techniques
and methods are usually used in different levels to improve
overall performance of data processing.

The brief description of fusion levels is shown as below.

(1) Data level fusion: it is also called low level fusion,
which combines several different raw data sources
to produce refined data that is expected to be more
informative and synthetic.

(2) Feature level fusion: it combines many data features
and is also known as intermediate level fusion. The
objective of feature fusion is to extract or select a lim-
ited number of important features for subsequent data
analysis through feature reduction methods, which
can reduce computation and memory resources.

(3) Decision level fusion: it is also called high level
fusion, which fuses decisions coming from multiple
detectors. Each detector completes basic detection
locally including preprocess, feature reduction, and
identification to establish preliminary inferences on
observed objectives. And then these inferences are
fused into a comprehensive and accurate decision
through the decision fusion techniques.

2.2.3. Data Fusion Applications. As a technology, DF is a
multidisciplinary research field with a wide range of poten-
tial applications in such areas as automatic control, image
recognition, target detection, and intrusion detection. The
following is a brief introduction to DF applications based on
the review of some related literatures.

In [43], Cao et al. presented a fire automation control
system based on DF by applying it into intelligent building.
The control system consists of six layers (sensor layer, sensor
subsystem layer, primary fusion subsystem layer, decision
management subsystem layer, actuator subsystem layer, and
actuator layer). It can be applied into intelligent building to
automatically realize accurate fire alarm and fire protection.

Zhang et al. proposed a DF based smart home control
system [44]. The proposed smart home control framework
includes the Internet access module, information acquisition
module, and internal network service module with Bluetooth
connection, data fusion controller that uses fuzzy logic and
fuzzy neural network, and embedded computer in household
appliances. It integrates information from multiple sources
to control household appliances to create an intelligent home
environment.

In [45], DF system based on D-S (Dempster-Shafer)
evidence reasoning was proposed, in which two Charge
Coupled Device (CCD) cameras and an Infrared Radia-
tion (IR) sensor are used to extract the characteristics for
identifying a missile target. Based on the D-S evidence
reasoning, the authors recognized missile target and jamming
light on region square feature and clutter and fire pile on
position feature, respectively. The probability of identification
obtained by integrating the three sensors with D-S evidence
is greatly improved comparing with the method of using a
single sensor.

Hu and Wang applied DF fuzzy theory to develop
a fire alarm system based on a wireless sensor network
[46]. This system not only offers detection correctness, but
also improves the intelligence of monitoring. The proposed
method has excellent performance and it is superior to
traditional diagnostic methods with a single sensor.

In [47], a deep model for remote sensing DF and clas-
sification was proposed. The Convolutional Neural Network
(CNN) is used to efficiently extract abstract information char-
acteristics from Hyperspectral Image/Multispectral Image
(MSI/HSI) and Light Detection and Ranging (LIDAR) data,
respectively. Then, Deep Neural Networks (DNN) was used
to fuse the heterogeneous characteristics obtained by CNN.
The proposed depth fusion model provides competitive
results in terms of classification accuracy. In addition, the
proposed deep learning idea opens a new window for future
remote sensing data fusion.

Security and Communication Networks

In [48], Yan et al. applied DF to reputation generation and
proposed a reputation generation method based on opinion
fusion and mining. The opinions were fused and classified
into a number of major opinion sets containing opinions
with similar or identical attitudes. Based on these opinion
sets, the rating is aggregated to normalize the reputation of
the entity. The experimental results from actual data analysis
of several popular Chinese and English commercial websites
demonstrated the versatility and accuracy of the method.

Liu et al. collected four articles to study the application of
DF in the Internet of Things (IoT) [49]. With a large number
of wireless sensor devices, IoT generates a large amount
of data, which are massive, multisourced, heterogeneous,
dynamic, and sparse. In the special issue, they believed that
DF was an important tool for processing and managing these
data to improve processing efficiency and provide advanced
intelligence. By exploiting the synergy among the datasets,
DF can reduce the amount of data, filter noise measurements,
and make inferences at any stage of data processing in
IoT.

A DF model for intrusion detection was presented in
[42], based on clustering. The model uses a centralized
approach to fuse data from different analyzers and then
make a final analysis decision. The main strength of the
proposed approach lies in its accuracy to fuse information
from different detection modules and its adaptability to
scalability. In addition, the DF module takes into account the
efficiency of each analyzer in the process of fusion and can
predict upcoming network threats.

2.2.4. A General Fusion Framework for Network Intrusion
Detection. Herein, we specify a general fusion framework
for network intrusion detection, as shown in Figure 1. The
framework is comprised of the following parts.

(a) Input/Data Source. In order to monitor network status
and detect and prevent attacks, we need to collect data from
multiple sources in the network. These data include different
types of packets and the statistical logs of network devices,
for example, hosts, routers, and switches. They have different
types and formats and cannot be processed directly.

(b) Data Preprocessing. 'The function of data preprocessing
is to eliminate obviously wrong, invalid, or duplicate data
and to get the valid data that can be used. The raw data
is normalized and digitized through data preprocess, which
is then converted into a unified format for analysis and
processing.

(c) Feature Fusion. The network data has the characteristics
of big data. Massive network data not only overly consumes
computing and storage resources, but also cause dimensional
disasters. Feature fusion occurs at the feature level and can
reduce a large number of features to few features. The more
streamlined data after feature fusion play a more important
role in decision-making than the original features while
accelerating data processing and increasing the detection
accuracy of NIDS.

Security and Communication Networks

Feature
Data .
selection/
B extraction

Feature

Data Feature

preprocessing selection/

Data . .
selection/ Classifier 2
preprocessulg H S isi
Decision level Decision
L]
L]
L]
i Classifier N
extraction

Classifier 1

fusion

FIGURE 1: A general fusion framework for network intrusion detection.

(d) Classification. Intrusion detection can be seen as a pattern
recognition system. Its performance is determined by the
classifiers. Classifier models are obtained through training
to identify abnormal network behaviors and make timely
responses to the network attacks.

(e) Decision Fusion. Decision fusion is the integration of
multiple results of basic detectors. The so-called decisions in
the intrusion detection can be understood as the detection
results of network behaviors. Decision fusion can achieve
improved accuracy and more specific inference than the way
of using a single detector alone. Besides, decision fusion
can effectively detect complex attacks by integrating multiple
decisions.

(f) Output/Decision. Output is the final decision, which
usually is a judgment in the NIDS, either an abnormal
behavior (e.g., an attack) or a normal behavior.

3. Data Fusion Techniques for NIDS

This section introduces the data fusion techniques, mainly
focusing on feature fusion and decision fusion. We classify
the fusion techniques shown in Figure 2 and describe the
commonly used fusion techniques.

As mentioned above, DF techniques in NIDS can be
classified into the data layer fusion, the feature layer fusion,
and the decision layer fusion. To the best of our knowledge,
the majority of researches on NIDS are based on open
datasets, which leads to the result that the data level fusion is
omitted in the related literatures. Therefore, we mainly review
the DF techniques at the feature layer and the decision layer.

There are two main categories for feature fusion in
NIDS: filters and wrappers [50]. The filters are applied
through statistical methods, information theory based meth-
ods, or searching techniques [51], such as Principal Com-
ponent Analysis (PCA), Latent Dirichlet Allocation (LDA),
Independent Component Correlation Algorithm (ICA), and
Correlation-Based Feature Selection (CES). The wrapper uses
a machine learning algorithm to evaluate and fuse features to
identify the best subset representing the original dataset. The

wrapper is based on two parts: feature search and evaluation
algorithms. The wrapper approach is generally considered
to generate better feature subsets but costs more computing
and storage resources than the filter [27]. The filter and
the wrapper are two complementary modes, which can be
combined. A hybrid method is usually composed of two
stages. First, the filter method is used to eliminate most of the
useless or unimportant features, leaving only few important
ones, which can effectively reduce the size of data processing.
In the second stage, the remaining few features representing
the original data are used as input parameters to send into
the wrapper to further optimize the selection of important
features.

The decision fusion methods are divided into two classes:
winner-take-all and weighted sum, by considering how to
combine decisions from basic classifiers [32]. Majority vote,
weighted majority vote, Naive-Bayes, RF (Random Forest),
Adaboost, and D-S evidence theories are classified as the
type of winner-take-all because they all have measured values
for each basic classifier and the final decision depends on
the classifier with the highest measured value. In case of the
weighted sum, the weight of each basic classifier depends
on its own capabilities. The weights of basic classifiers are
calculated, and then their outputs with the weights are added
to give a final decision. The method of weighted sum mainly
includes average and neural network. Figure2 gives the
categories of fusion techniques. In what follows, we briefly
described several commonly used feature fusion and decision
fusion techniques, respectively.

3.1. Feature Fusion Techniques. There are many types of fea-
ture fusion methods in the literature. We introduce some of
them due to space limitations. Some classic fusion techniques
are described below.

3.1.1. PCA. Principal Component Analysis (PCA) is a multi-
variate statistical technique used for feature reduction [12, 52].
The goal of PCA in intrusion detection is to extract n (small
integer) most important features representing the dataset.
It can achieve dimensionality reduction while removing
noise from the data and improving the performance of

Security and Communication Networks

Data Fusion

Techniques
I
[|
Feature Decision
Fusion Fusion
Techniques Techniques
. 'Winner-Take- Weighted
Filter Wrapper All Sum
| MI — SA-SVM —Majority Vote Average
— PCA — GA-LR || Weighted NN
Majority Vote
— — NN
LDA | NB
| ! Fisher- — NB
Fisher-Score - RE
— CART
] CFS — AdaBoost
— mRMR | |D-S Evidence
Theories
|| Fuzzy Set
Theory

FIGURE 2: Categories of fusion techniques.

the system. In order to achieve these goals, PCA needs to
extract new variables, that is, the main components. The
first principal component has the largest variance that is
the most representative of the entire dataset. The second
principal component is computed under the constraint of
being orthogonal to the first component and to have the
largest possible variance. The other principal elements are
calculated in the same way. These principal components form
the new features of the original data. Before applying PCA,
the data must be averaged and normalized to avoid the
imbalance between the data values. PCA is popular in feature
fusion because its simplicity and high precision. Nonetheless,
in fact, each principal component can be represented by a
linear combination of primitive features, which leads to a lack
of interpretability for these principal components, especially
when a large number of features are involved.

3.1.2. CFS. Correlation-Based Feature Selection (CFS) evalu-
ates and ranks feature subsets rather than individual features
[27]. It tends to have a set of attributes highly correlated
with the class but with low intercorrelation. CFS often uses a
variety of heuristic search strategies (such as hill climbing and
best-first) to search a feature subset space within a reasonable
time period. It first calculates the matrix of feature-class and
the feature-feature correlation from the training data and

then uses best-first to search the feature subset space [50]. The
equation for CFS is

kr_cf

Jk+kGe=1r W

where M, is the heuristic of the feature subset S con-
taining k features, r~; is the average value of all feature-

M, =

classification correlations, and r~ 4, is the average value of

all feature-feature correlations. The molecular kr™; means
the predictive ability of features, and the denominator

vk +k(k—1)r #f indicates the redundancy between fea-

tures.

3.1.3. GA. Genetic Algorithm (GA) is a search heuristic
model for simulating natural selection processes [53]. This
heuristic approach is often used to generate useful solutions
for optimization and search problems. GA is a kind of
Evolutionary Algorithm (EA), which uses natural evolution-
inspired techniques (such as genetic, mutation, selection, and
crossover) to generate solutions for optimizing results. We
can use the evaluation function to calculate the goodness of
each chromosome. This operation begins with the initial pop-
ulation of randomly generated generations of chromosomes,

Security and Communication Networks

and the quality of each individual is gradually increased.
Each individual chooses three basic GA operators, namely,
selection, crossover, and mutation. In intrusion detection,
in the face of a large number of features of original data,
the GA can search for a subset of the raw features through
Support Vector Machine (SVM), Neural Networks (NN), or
other classifiers as evaluation functions. The advantage of this
approach is that it has a flexible and powerful global search
capability that converges from multiple directions without
regard to previous knowledge of system behaviors. The main
drawback is the high consumption of computing resources.

3.2. Decision Fusion Techniques. Comparing with feature
fusion, the level of decision fusion is higher, and the data
to be merged is more abstract. The decision fusion further
improves the performance of the detection system, especially
when a single detector is difficult to identify complex network
behaviors. In what follows, we introduce several common
decision fusion techniques.

3.2.1. Weighted Majority Vote. Weighted majority vote can
assign weights to each basic classifier, which indicates the
importance of the outputs of different classifiers for a final
decision [32]. The weight varies according to the ability of
the basic classifier to separate the samples. The formula is as
below.

L L
by (x) = bd,; (x), 2
Zl i (%) ;n]ale 5 (%))

where d = [d;},....d;.]" € {0,1),i = 1---Lis the
outputs of the classifiers from the decision vector d, where L
is the number of classifiers and d; ; = 1is 1 or 0 depending
on whether classifier i chooses j, or not, respectively. The
final decision to fuse multiple classifiers is determined by the
base classifier’s output d; ;(x) and corresponding weights b,
This method assigns a higher weight to the basic classifier
with higher accuracy, but it ignores other inaccurate base
classifiers. The weights for the base classifiers are difficult
to obtain and adjust. Therefore, it is difficult to detect new
network attacks.

3.2.2. Bayesian Estimation. Bayesian estimation is applied
to DF for a long time. It is an excellent method if prior
probability is known. In order to obtain the most accurate and
comprehensive information, this method first analyzes the
compatibility of various sensors, removes false information
with low confidence, and makes the Bayesian estimate of use-
tul information under the assumption that the corresponding
prior probabilities are known. The advantages of Bayesian
approach include explicit uncertainty characterization and
fast and efficient computation. Moreover, Bayesian networks
offer good generalization with limited training data and easy
maintenance when adding new features or new training data
[23]. The disadvantage of Bayesian estimation is that it cannot
distinguish unaware and uncertain information, and it can
only handle the related events. In particular, it is difficult
to know the prior probabilities in practical applications.

When the hypothetical prior probabilities are contradictory
to reality, the results of the inference will be undesirable and
will become quite complicated when dealing with multiple
hypotheses and multiple conditions. In fact, the Bayesian
inference methods are now rarely applied in DF because of
these defects.

3.2.3. D-S Evidence Theory. The Dempster-Shafer evidence
theory, abbreviated as D-S theory, is a complete theory of
dealing with uncertainty. Its most notable feature is the
usage of “interval estimates” rather than “point estimates”
for the description of uncertainty information. It shows
great flexibility in distinguishing between unknown and
uncertain. These advantages make it widely applicable to
information fusion, expert systems, intelligence analysis, and
multiattribute decision analysis.

In the NIDS using the DS evidence theory, the results of
each basic classifier are considered to be different “evidences.”
Different pieces of evidence of the same hypothesis (e.g.,
network connection categories, such as normal or attack) are
integrated to obtain the supporting degree of the hypothesis.
On the basis of the supporting degree, whether the network
connection is normal or intrusion can be finally judged [31].
Zhao et al. used D-S theory to fuse several basic classifiers
[33]. The correct rates of fused results in terms of every
kind of intrusions are all close to, or even higher than, the
highest correct rates of all basic detectors, which achieves
a high correct rate to all intrusions. D-S Evidence Theory
is considered as the generalization of the Bayesian theory.
It can well represent “uncertainty” and does not need to
know prior probabilities, compared with the Bayesian theory.
Besides, it also has some drawbacks, such as the fact that the
evidence is required to be independent and there is a potential
exponential explosion in computation.

3.2.4. Neural Network. Neural Network (NN) is a supervised
learning method that consists of input neurons, output
neurons, and hidden neurons. In order to represent the rela-
tionship between the input neuron and the output neuron,
the neural network needs a large amount of labelled data to
train and obtain an accurate model. NN has the character-
istics of self-learning, self-adaptation, self-organization, and
fault-tolerant, which enable it to solve complex nonlinear
problems. Furthermore, the advantage of NN is that it
can automatically adjust the connection weights without
any domain-specific knowledge, while other methods use
preselected weights to combine outputs [32]. Therefore, its
strong capabilities can be well adapted to the requirements of
multisource DF in NIDS. In network intrusion detection, the
classification results of multiple detectors are used as input
neurons, and the output neurons are integrated classification
results. The output of the neural network is used as feedback
to adjust the training parameters. With the improved param-
eters, the detectors can be fused to produce an improved
resultant output. The main drawback of NN is the lack of valid
criteria for creating, selecting, and combining the results of
the base classifiers. For example, one may use a Multilayer
Perceptron (MLP) or a radial basis function to find fusion
weights with different structure.

Please note that the DF techniques are not limited to
the above-mentioned ones. Other techniques are no longer
described in detail. These techniques can be applied to
fuse network data. The performance comparison of different
fusion techniques is given in Section 5 based on the criteria
proposed in Section 4.

4. Evaluation Criteria of DF Techniques

The application of DF techniques in intrusion detection has
received particular attention in the field of network security.
Many studies on DF have been conducted to improve the
performance of NIDS. However, DF in NIDS still faces many
serious challenges, such as how to reduce the complexity
of massive data, how to ensure data security, and how to
overcome the complexity and improve the efficiency of the
fusion. Therefore, in order to facilitate the analysis and
comparison of different fusion techniques, we propose a
number of criteria for evaluating the performance of fusion
techniques in NIDS based on the traditional criteria of
IDS performance. Herein, we introduce specific evaluation
criteria. Since most of the experiments for NIDS performance
testing are based on a few public datasets, we firstly introduce
the commonly used datasets for intrusion detection.

4.1. Datasets. Since real-time network data brings personal
or organizational privacy issues and cannot be used for
comparison of different algorithms, most of researches con-
duct experiments based on open datasets. Fusion techniques
may show different performance based on different datasets.
Herein, we introduce some classic datasets and new but
more realistic datasets that are used in the field of intrusion
detection research.

4.1.1. DARPA Dataset. In order to evaluate difficult intru-
sion detection techniques, the United States MIT Lincoln
Laboratory successfully constructed a complete dataset in
1998, namely, DARPA 1998. The dataset is a 9-week network
connection data collected from a simulated US Air Force
LAN, dividing into training data and testing data. The testing
data contains some types of attacks that do not appear in the
training data, which makes the dataset more realistic. The
KDD99 dataset was generated for the KDD cup competition,
which extracts 41 features from the DARPA 1998 dataset.
It is one of the most popular and comprehensive intrusion
detection datasets and is widely applied to evaluate the
performance of NIDSs [54]. It includes a complete training
set, 10% training set, and a testing set. Each connection record
in the KDD99 training dataset contains 41 feature attributes
and an attack type label. The type of attack in KDD99 training
dataset mainly includes Denial-of-Service (DOS) attacks,
Probe attacks, User-to-Root (U2R) attacks, and Remote-to-
Local (R2L) attacks. The KDD99_10% packet is a 10% sample
of KDD99 packets, with approximately 490,000 data records,
which is used in most of the literatures. However, there
are many problems in KDD99; for example, the number
of different types of attacks is not balanced and some data
records are duplicate or invalid. To address these problems

Security and Communication Networks

in the KDD99 dataset, as a new revision of the KDD99, NSL-
KDD was proposed by Tavallaee et al. [55]. The training and
testing datasets of the NSL-KDD consist of approximately
125,973 and 22,544 connection records, respectively. Similar
to the KDD99 dataset, each record in this dataset has 41
quantitative and qualitative features.

4.1.2. Kyoto 2006+ Dataset. There is a fatal problem in the
existing dataset benchmark (KDD99) for network security,
which does not reflect the current network security situa-
tion and the latest attack characteristics. This is because it
generated from a simulated network nearly 20 years ago.
To overcome its limitations, the Kyoto 2006+ dataset was
presented by Song et al. [56]. It is a dataset based on
actual traffic data from 2006 to 2009, which comes from
different types of honeypots installed in the Kyoto University.
The dataset consists of 14 conventional features captured by
honeypots based on the KDD99 dataset and 10 additional
features. Conventional features include the duration of the
session, service, source byte, and destination byte, which is
meaningful and important for subsequent data processing
or decision-making. In addition to 14 statistical features,
additional features were extracted, which may enable us to
investigate effectively what kinds of attacks happened in
networks. It can be used for further analysis and evaluation
of NIDSs. The Kyoto 2006+ dataset includes about 50,033,015
normal sessions and 434,343,255 attacks, in which 425,719
attacks are unknown. Each connection in the dataset has
23 features. Compared to the KDD99 dataset, the Kyoto
2006+ dataset is generated in the real network. By using the
Kyoto 2006+ dataset, researchers can access more realistic
and practical network security attacks.

4.1.3. UNSW-NBI5 Dataset. The above-mentioned datasets
cannot meet the needs of research on the current network
security situation, especially KDD99 and NSL-KDD. The
UNSW-NBI5 [57] was created by the IXIA PerfectStorm tool
in the Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) for generating a dataset that consists of
real modern normal activities and synthetic contemporary
attacks. The data collection period was 16 hours on January
22, 2015, and 15 hours on February 17, 2015. Tcpdump tool
is used to capture 100 GB of the raw traffic. This dataset
contains nine types of attacks, namely, Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code, and Worms. Moreover, the Argus and Bro-IDS tools
are used and twelve algorithms are developed to generate in
total 49 features with class labels. There are 175,341 records
in the training set and 82,332 records in the testing set. The
key characteristics of the UNSW-NBI5 dataset are a hybrid
of the real modern normal behaviors and the synthetic attack
activities. Thus, this dataset is considered as a new benchmark
dataset that can be used for evaluating NIDSs by the NIDS
research community [57]. It is worth noting that the IXIA tool
contains all the information about the new attacks that are
continuously updated from CVE site 4. This site is a public
information security vulnerability and exposure dictionary.
However, it is undeniable that the UNSW-NBI5 dataset is
more complex than the KDD99 dataset [58].

Security and Communication Networks

TABLE 1: The formulas of the metrics.

Measures Equations

ACC (TP + TN)/(TP + FP + TN + FN)
PR TP/(TP + FP)

RR TP/(TP + EN)
F-Measure (2 * PR * RR)/(PR + RR)
FPR FP/(TN + FP)

FNR FN/(FN + TP)

FAR (FPR + FNR)/2

4.2. Validity. The validity is the key to measuring the quality
of the NIDS. The purpose of the application of fusion tech-
nology is to improve the performance of intrusion detection.
Therefore, the validity can still be used to measure the fusion
technology.

The elements of the validity evaluation metrics include
TP (the number of positive samples predicted to be positive),
FP (the number of negative samples predicted to be positive),
EN (the number of positive samples predicted to be negative),
and TN (the number of negative samples predicted to be neg-
ative). Based on these measurement elements, the accuracy
(ACC), precision rate (PR), recall rate (RR), F-Measure, FPR,
and FNR are applied to evaluate the performance of the fusion
techniques. These metrics’ formulas are listed in Table 1.

4.3. Efficiency. In the big data era, communications and
activities between people generate high volume and high-
dimensional network data that require real-time classifica-
tion. In NIDS, not only the network behavior classification
technology needs to be efficient, but also the efficiency of
data fusion is crucial [59], which determines the efficiency
of NIDS. Training time and testing time can be used to
measure the efficiency of fusion technology. Besides, the
number of features produced by feature fusion also measures
the efficiency of the fusion technique.

4.4. Data Security. In actual network monitoring, DF and
classification techniques concern data security issues in order
to provide trustworthy data fusion results, such as data
confidentiality, integrity, and creditability. We must consider
that the privacy of individuals or organizations cannot be
compromised when we analyze and fuse network data.
Therefore, data security and data privacy also need to be
considered in data fusion.

4.5. Scalability. Digital communications will enter the era
of 5G with the rapid technology development. Large-scale
heterogeneous networks have become the trend of network
development, and mass data and heterogeneous DF tech-
nologies are increasingly important. Fusion techniques and
frameworks should take scalability into consideration, such
as compatibility with different data formats and scalability of
memory and CPU, which, therefore, becomes a measure of
fusion technologies.

5. Comparisons and Discussions

Based on the above evaluation criteria, we conduct a rig-
orous review and analysis on 31 related studies, of which
23 are feature fusion techniques and the remaining 8 are
decision fusion techniques. The results of research and
analysis are listed in Tables 2 and 3, respectively. The exper-
iments reported in the above work were conducted based
on published datasets, including KDD99, NSL-KDD, Kyoto
2006+, and UNSW-NBI15. We analyzed and compared the
performance of different fusion techniques in terms of the
feature fusion and the decision fusion based on the proposed
criteria and specified metrics. It must be mentioned that the
following comparisons are made based on different datasets.
In addition, the experimental details in the literature are
different, which may affect the performance evaluation of
data fusion techniques.

5.1. Comparison of Feature Fusion Techniques. In this part,
we review feature fusion techniques based on our proposed
criteria and show our evaluation results in Table 2.

The original intention of feature fusion is to reduce the
size of data and improve the operation efficiency of NIDS.
Therefore, the efficiency is the key to measure the quality
of feature fusion. We concern with training time compared
with testing time in evaluating the efficiency of feature fusion.
This is because the training time is usually far longer than
the corresponding testing time. We first analyze and compare
the training time of classifiers using different feature fusion
techniques based on different datasets. For the KDD dataset
series (DARPA99, KDD99, and KDD99_10%), we can find
that the training time of network intrusion classifier using
the following feature fusion techniques is shorter than others,
such as GFR, FRM-SFM [18], and CART [23]; CFS-GA [25]
is very efficient for the NSL-KDD dataset; based on the Kyoto
2006+ dataset, PLS [12] helps to reduce time consumption
of classifier training. In summary, these mentioned fusion
techniques are outstandingly efficient in the training time
of network behavior classifier. What these fusion techniques
have in common is that fewer features are generated regard-
less of the dataset, with a minimum of 4 features in [25].
The filter is more efficient than the wrapper among these
feature fusion techniques, and the hybrid methods usually
have excellent efficiency.

In addition to efficiency, the validity is also an important
measure of feature fusion techniques. For the KDD dataset
series, SA-SVM [20], GA-LR [16], (Filter-MISE EMIES) [17],
PCA [11], MIFS [24], (FRM-SEM, GFR) [18], SVM [9, 10, 19],
(GeFS-mRMR, GeFS-CFES) [19], and NN [9] achieved very
high accuracy, exceeding 99.20%, and the highest was 99.96%
of SA-SVM. In addition, the FPR of Filter-MISE, GA-LR,
Filter, MIFS, MLCFS [24], and SVM are less than 0.50%.
We found out that GA-LR, SVM, Filter-MISE, and MISF
perform very well in terms of validity in the KDD dataset
series. As for the NSL-KDD dataset, (FMISE, MIFS, FLCES)
[24], Chi-Square [21], FVBRM [27], and CFS [30] performed
excellently in accuracy, both exceeding 96.75% and up to
99.91% of FMIFS. The FPR of FMISE, MIFS, and FLCEFS are
all lower than 0.53%, and Chi-Square’s FAR is 0.13%. These

Security and Communication Networks

10

*A[9A1302d$31 ‘UOISNY I9)JE PUE 210J9q SIINJE JO IDGUNU Y} Ju2s91doI 1 pue 1t :(1/1d) $9IMIE] JO IDQUINN "PIUOHUIW JON,, “UIAIS JON, 991} UOISIP T PUe 21enbs 1583 :§7 ‘PIemI0)-pasy JoLe[mnur
TN $Surfesuue paje[nuils 1y§ pOYIdUW dINJL3J [0S IS POYIOW [BAOWAT dINJL3] JANY] ‘POYIAW [BAOTUAI 2INJed) A[[enperd 3D UOID3[9S aINJed] paseq-UONBULIOJU] [BMNA :ASTIAL U0Issa13a1 onst3o] T

. . WAS - ~
* * * * %ET0 * * * * * %0086 1A% R — 1€/Ty SL6VT/STES A SN lic] arenbg-1yd
X X * * * * * * * * %96'66 v LA-VS (39114 I7¥01/696£6 66 [0z] INAS-VS
X X 90'T €91 * * %050 * * * %CS66 [PULION/oeny IWAS €U/ 000£/000£ 66ddX (6]
X X * * * * * * * * %0€'66 2qo0id puesoq WAS L1/TY 901/¥T¥ %0166 [61] WAS
. . . WAS
X X 9¢'9 8T'18 * * * * * * %1966 v ssep-nIA 0¢/T% * %0166 [o1]
X X 8L oro * * * * * * %8986 WAS o1/T% NAS-INYT
S0LSTI/0SS %0166 81
X X €9'F% 450 * * * * * * %79'86 v SSe-NMN 61/1v / ’ aai (81 :ER)
X X * * * * %ET0 WYE66 %E66 * %0L'66 STTY ASIN
X X : VA * * %LTO %VE %ET" * %SL 1 1t
yooE £8L8 L0 LGS %EV66 %sL66 [EWLION/APENY IWAS-ST out SLLBLY/OVTST %0T"66AAM [£1] mmﬂﬂm
X X €L 6I'¢9 * * %L0°0 %ES66 %E6'66 * %06°66 9/T% R
X X * * * * nxvmm..m * *4 * &Nv..ﬁw [PUTION eI S¥O 0Z/6¥ 0002/000T mﬁm%‘ngD [o1] TI-VO
X X * * * * %110 * %1866 * %06'66 Lk 8I/T% 0001/0001 %0I"66ddX
X X * * * * %01'T * %0776 * * [BULION /APRRY Bk 43114 8€867/61691 %01" 66 [s1] EL:
X X 170 S0°¢€l * * %¥LTL * * %1596 * /1y
X X 8T'0 L06 * * %19 * * %0L'S6 * 8T/ 31055
RULION]/>0®1Y - S1/00S %01 i1
« o . gc's . . 000z . . oy . [BWION/PENY NN-A9Y ey 00S1/00ST %0I" 66 (v1 st
X X €ro 129 * * %0¥°S * * %EE'S8 * STy
X X * * * * * %8L'E8 %S6'€E8 %6798 * v NN €Uy 00022/1L65TT AAISN [e1]
X X * yIee %L8°C %Y1 %6 * * * %TCIL6 [eUWLION AenY dTIN S/81 0%0L¥/09¢1€ +9090C 0104y [e1] Vod
X X * LET * * * %ES66 %6£66 %0566 %0L66 Al WAS 01/1% 0005/000S %0I"66AdX ()
X X * 9T * * * %LL66 %0L66 %S866 %8L66 2qoId WAS o1/1% 0005/000S %0166
X X * * %TT6 %STO %6I'8T * * * %LST8 [EWION/oeny NN ey * %0166 [oT]
X X * * * * * * * * %I¥'66 [BUWLION/PeRY NN /Ty 000£/000Z 66dd [6] NN
X X * * * * * * * * * v JTN LE/V8 6L9€/6189 66VAUVA (8]
(s) (s) swn EX(eh]N saanyesy ejep Gunsay sonbruuss
Aynoas own Sunsay, Surureiy, uvd N ddd -1 o ud o0V sad£y ypene jo /Surureny e
Aypiqereog IaYISse[D jesere(] spnIy uorsny
elR(q \»u:uﬁm@m 56:4«5 Ppagnuapy IoquinN Jo raqunN ammyeaq
SOLIIAIN
(®)

“STUYILIOS[E UOTIONPAT 2INJedJ JUISPIP JO doueuIofIdd o7, :g 14V],

1

Security and Communication Networks

“A[oA102dsa1 ‘UOISN] I9)Je PUE 910Jq SIINJL JO JoqUINU
3y Juasaidar u pue ws :(u/u4) S9INIEY JO I2qUINN] "PAUOHUIW JON],, "UIALS JON], "UOISs213a1 saxenbs jses] [enaed :$Td pue (UORII[ES S[qRLIEA 10§ OSLINAY :SAH SUTUIW S[NI UOKBIIOSSE ATV POYIW UOHONPII
paseq A1[eiia aanjed) “TIAl POYISUT UOONPAI Paseq AI[eIIA aInjea) I I A SIS £A9] yaim wiyyrioSe jeq Areurq :Ty g SUONO3[as 91NJed] UOIIBWLIOFUT [ENINW J[QIX3[f :S:DT ‘UOIII[OS 2INJLd] UOTIBULIOJUT [eN)nur
:SATIN €UOTIOI[3S 2INJedJ UOTIBWLIOFUT [eNINW A[qIXI :STIN 991} UOISS2IZI pu. UOIRdYISSE[D (VD) SHIOMIaU UeIsakeq (N 9OUBAI[DI [EWIXEW AOULPUNPAT [BUWITUTUI AW UOTI[AS 2INJedJ JLIAUT 1§00

%08°C %676 v da1[opuey 8/1¥ 0S8II/T61ST AdX TSN [og] S0
X X €00 200 %LTS W0F %S9 * * * %TLY6 [BUWLION/ENY STd S/81 * +9007 0104 [z1] S1d
X X 200 LV'%9 %0LT %SE0 %SO'€ * * * %8786 [PULION/eNY dTN S/81 0¥0L¥/09€1€ SAH
X x * * * * * * * * Hxvom.nm v aN /6% * STAN-MSNN l67] IV
X X * * * * * * * * %7079 1/T¥ * 66ddX
X X * * * * * * * * %CIL8 [EWION/Yeny 8/€¢ 00001/00006 +900T 0304y
X x * * * * * * * * %S€'68 [BULION/PENY INAS /¥ 00001/00006 Ad TSN (82l TN
X X * * * * * * * * %9¢°06 |\ 9l/TH 00001/00006 66Aa
X X w6 * * * * * * * %8LL6 v AN e/ 6679/£8995 A TSN [£2] NHIAL
X X LL89 * * * %68°C * %L8'S6 * * WAS ol/T¥ . INAS-TVdd
X X 9L°0 * * * %EL'S * %T9°'16 * * [PUHONPRERY AN SI/TY 0057/9956 A@IN o] AN-TVId
X X 0 LE'T * * * * * * %9816 [EWION/3oeny 8¥(¥/1¥ FPSTT/EL6STT Ad TSN [s7] VO-SI0
X X * * * * %850 * %01°86 * %CI'66 * +900T 0104
x x * * * * %L¥"0 * %9T°€6 * %SGL96 [EULION/PENY INAS-ST LU/TY * Ad TSN ¥el SIOTA
X X * * * * %¥¢<0 * %9768 * %€9L6 * 66Ad
X X * * * * %910 * %6586 * %TE'66 * +9007 0104
X X * * * * %€S0 * %96'S6 * %96L6 [EWION/Yeny NAS-ST ST/ * A TSN [¥e] SN
X X * * * * %€ET0 * %8¢'66 * %0L'66 * 66AAX
X x * * * * %€ET°0 * %V9°66 * %LL66 * +9007 0104
X x * * * * %870 * %986 * %16'66 [EWION/}oeny NAS-ST 61/T% * da TSN [¥2] SATNA
X X * * * * %€ET'0 * %9%'66 * %6L'66 * 660X
x x * * * * * * * * %0€¥6 2q01d pue soq IdVO 4714 901/¥T¥ %01"66dA le1] Vo
X X 610 98¢ * * * * * * %7588 v IdVO (4754 0689/260S 66AA [e2]
X X ¥6s ren * * * * * * %9016 v Nd LU/TY 0689/260S 66adM [eT] N4
X X * VvLE * * * * * * %ET'E8 v Nd 0¢/I¥ 004¥%/00L% 66ddX [cT]
Joxue[g
x X * * * * * * * * %0L'86 Na LUTY -AOY I
. . - YW
X X * ® * * * * * * %0966 2q01d pue soq S¥O S1/1¥ 901/¥TH %01"66Ad [61] PN
X X * * * * * * * * %0766 S/ SdD-S4°D
s s) awny 21008 sarnjedj eyep Surysd)
Aymoas Eliiisl anwuh wﬂcvﬁ:ﬁ 1, avd 4N 4dd -1 o 4d ooV sadfy jo /3ururen sonbruyoa;
Ayiqereog 121158 jasere(q apnIYy uorsny
el Aouaniyg Ayprrep Yoene AJnuapy pquny JO IdquInN sameay
SOOI

(@

Security and Communication Networks

12

“A[oanyoadsar ‘uorsny 19)je pue 210joq $2I1NJeJ JO IquINU) Judsaidar u pue
W (14 1r) $9IMYLIJ JO IIQUINN "PIUOHUIW JON], “UIAIZ JON, IOYISSeIO AZE])] PUe 931, UOISA WOpURINNIA 1IN 1030939p A[ewoue 1afe] uonesrdde :qy Ty ‘waysks uonoayep Afewoue 1apeay 3oxoed :qQvHA

owLSE wv‘:\ﬂu.mv.w
X X * B * * * *
? 0€-dTIN
X X * %b6'€T * * * * soamyeR)
’ wen 61-dTN
[eWIOU MENY saInyeay 9¢hL/c€8 66 [¢] dIN
X X * %STT * * * * JU2JU0D
L-dTIN
saInjeay
X X * %61°¢ * * * * STISULIIUT
Y-d TN
o . o . o . GO_mS,w
X X * * %0766 %0766 %0166 * oyisse))
X X * * %0976 %06°C6 %0586 * WAS
o Sunoa
X X * * %0586 %0586 %0586 * [ewiou/deny 8% (S6911/S018 AdXISN [9¢] fuofepy
X X * * %0966 %0966 %0966 * dI o
X X * * %02°T6 %0616 %01°€6 * Nd
X X * %€9°0 * * * %6566 soq NN-I9d * 66ddX [z€] NN-Id
uorsny
X X * * %09 %0089 %6€ %66 juapuadap
-ejeq
x x * * %St %00TS %6 %66 v 1oug * 66VAAVa [se] NN
X X * * %S¢ %00°C¢ %8¢ %66 aviv
X X * * %IE %00'8C %S¢ %66 dVHd
sdumys
X X * %891 * %¢0°06 * * [ewrou/oeny worspa(6C0TIE/TCOV 67 66ddX [¥€] 1sooqepy
X X * %0T'T * %076 * * [ewIou/XoeRy Bk 8¢86¥/61691 %01"66d A [s1] ks
X X ® * * * * %0T'66 uorsny §-(
X X * * * * * %0€'98 LA
x x * * * * * %0766 [ewwiou/PENY NN 0000£/0000€ 660 (€]
X X * * * * * %0496 N4 A109y7,
X X * * * * * %06°86 SyD wuﬂmﬁv_\rm S-a
X X * %IL°0 * * * %80°66 soq NN-I9d * 66ddX [zg]
. . . WAS
x x %bLY %610 * %01'S6 * * [euLIOU/ eIy ssepuN * 66Aa> [t€]
9100G- eyep Sunsay/Sururen) sanbrupa)
Amqeress Aumoas ejeq Nd 4dd Sd fapren o 4d o0V sad£ ypene paynuapy I2YISSe[D) vwo wwn_c\gz ' jasee(q JpnIy roﬁwm_d
SO UoISI(]

"SWILIOS[E UOTIONPAI UOISIOIP JUSISPIP Jo douewriojrad YT, :¢ A19V],

Security and Communication Networks

feature fusion techniques have outstanding characteristics in
NIDSs based on NSL-KDD datasets. In the Kyoto 2006+
dataset, the accuracy of (FMIFS, MIFS, FLCES) [24] and
(HVS, PCA) [12] was all higher than 9712%, and the FPR of
FMIFS, MIFS, and FLCES are all below 0.58%.

A notable fact is that the accuracy of the classification
in the new dataset (UNSW-NBI15) is not as good as the old
datasets mentioned earlier (such as KDD dataset series). The
major reason is that the UNSW-NBI5 dataset is considered
complex due to the similar behaviors of the modern attack
and normal network traffic compared to the KDD99 dataset
[55]. So far, the effectiveness of network intrusion detection
is not good based on the UNSW-NBI5 dataset. The accuracy
in [16] reached the highest accuracy 81.42% based on our
statistics, and the corresponding feature fusion technique
and classifier are GA-LR, C4.5, respectively. Decision Tree
(DT) classifier has indeed performed better in the UNSW-
NBI15 dataset [55] than other methods. The misfortune is
not alone. The FAR of NIDSs in the UNSW-NBI5 dataset is
also bad. Therefore, advanced classification techniques and
feature fusion techniques need further study. In general, GA-
LR, SVM, Filter-MISE, and MISF show excellent validity
in the KDD dataset series; FMISE, MIFS, FLCFS, and Chi-
Square are more valid in the NSL-KDD dataset; the feature
fusion techniques with high-validity are FMIFS, MIFS, and
FLCEFS in the Kyoto 2006+ dataset. Because the performance
of network intrusion detection based on UNSW-NBI5 dataset
is not very good, more advanced fusion and classification
techniques should be further investigated in order to identify
the anomalies from this complex dataset.

Unfortunately, the fusion techniques in the literature we
have reviewed have not considered the security of data fusion.
The data privacy issues were not covered because existing
experiments were based on the public datasets. In addition,
the scalability of fusion technologies and frameworks were
normally not mentioned in the past work. However, these
properties of data fusion are particularly important in the big
data era. More efforts are needed in order to solve these issues.

5.2. Comparison of Decision Fusion Techniques. In this sub-
section, we analyze the performance of different decision
fusion techniques based on the proposed criteria and show
our evaluation results in Table 3.

According to Table 3, we can find that the training and
testing time of the classifiers are not recorded. The reason is
that decision fusion techniques fuse the recognition results
of basic classifiers. Although the training and testing time
of classifiers can reflect the efficiency of classifiers, it cannot
reflect the merits of decision fusion techniques. Besides, the
KDD dataset series are used in the most statistical literature.
So herein, we mainly analyze the validity of decision fusion
techniques based on the KDD dataset series. The accuracy
of D-S Evidence Theory [32, 33] and NN [33] is over 99%,
which is usually higher than the accuracy of a single basic
classifier. The FPR is also reduced through the integration
of basic classifiers. The FPR in [31] (D-S Evidence Theory)
is as low as 0.19%. As a group, D-S Evidence Theory, Data-
Dependent Fusion, NN, RE and Adaboost show good fusion
performance in combining multiple basic decisions.

13

Like the feature fusion techniques, the existing decision
fusion techniques did not consider the credibility of basic
decisions and data security in the process of integration,
which will affect the reliability of the final results or cause
privacy leakage. Besides, most of the literatures also fail to
analyze the scalability of decision fusion. We believe that
these aspects are very important and should attract special
attention.

6. Open Issues and Future
Research Directions

In recent years, DF has achieved special attention and
has developed rapidly in many fields. In the field of net-
work intrusion detection, scholars have conducted extensive
researches in DF and have made significant progress. How-
ever, the current data fusion techniques still face some serious
challenges or open issues, which are summarized as below
according to our literature review.

First, most of the existing researches were conducted
based on open datasets and the practicability of these
fusion algorithms or techniques needs further validation. Few
researches used real network data because it is easy to expose
privacy and cannot measure or compare with other existing
works, which is not conductive to the development of data
fusion technology. In fact, this is a difficult contradiction,
which hinders the further development of network intrusion
detection.

Second, in the era of big data, the network security
monitoring and prevention may need real-time fusion and
processing of massive network data. However, large data
communication overhead and long computation delay are
obviously a big challenge to overcome.

Third, existing DF technologies do not consider data
security, including confidentiality and credibility. The feature
fusion techniques could reveal the privacy of individuals or
organizations, and the decision fusion techniques need to
identify the credibility of local decisions. All above are not
considered in the past work.

Fourth, since most of the researches conducted their work
over some public datasets and these datasets are prepro-
cessed, there are few data level fusion techniques used in
intrusion detection. However, we are facing a large number of
different types of raw data in actual networks. Thus, the data
layer fusion becomes indispensable for intrusion detection.
Special efforts are expected on data fusion with regard to
network intrusion detection.

Fifth, there is a lack of studies on the visualization of data
fusion. Through utilizing the visualization algorithm, we can
not only deeply understand the features and effectiveness of
the fusion technology, but also easily identify the distribution
characteristics of the fused data. Few articles use a visual
method to analyze classical datasets. In [60], Ruan et al.
performed a visual analysis of the KDD99 dataset using MDC
and PCA techniques to clearly identify normal and attack
clusters. Based on this research, we believe that it is also
necessary to provide a beautiful and comprehensive data
fusion expression.

14

In addition, based on the above open issues, we further
proposed a number of promising research directions in the
field of data fusion for network intrusion detection.

First, the improvement of data fusion technology depends
on new datasets to evaluate and verify. Most of the fusion
techniques and intrusion detection technology show excel-
lent performance on some old datasets, such as KDD99 and
NSL-KDD. However, these datasets are out of date and do
not represent the current network security situation, which
deviates from the actual network security detection. More
research needs to be done on new dataset collection, such as
UNSW-NBI5. The existing problem is that the performance
of feature fusion based on the UNSW-NBI5 dataset is not
good. We should further study more advanced or appropriate
fusion techniques to better identify abnormalities from com-
plex network data.

Second, big network data fusion techniques should be
investigated. The current fusion techniques are difficult to
effectively and adaptively integrate network data of high-
velocity, varieties of formats and types. In the era of big data,
in addition to the large amount of data, the network data that
needs to be collected come from different sources in different
types of networks. Therefore, the collection of heterogeneous
network data is required to research more advanced fusion
methods.

Third, universal, flexible, and extensible fusion frame-
work should be studied. There are many kinds of data fusion
technologies, and the principles and mathematical theories
of some fusion technologies are not easy to understand.
Therefore, the simple, easy-to-use, universal, and easy-to-
expand network data fusion architecture is worth studying. It
can modularize mature fusion techniques and provide open
interfaces for new fusion methods and architectures; thus, it
greatly promotes the development of data fusion in the field
of intrusion detection.

Fourth, data security in data fusion should be ensured.
Most of the existing researches are based on public datasets,
and security issues were not considered at all. In an actual
network, network data includes personal or organizational
information, which is easily revealed during the integration
process, and the credibility and integrity of network data are
difficult to guarantee. Data security and privacy should be
protected and ensured in order to achieve trustworthy data
fusion.

Finally, data layer fusion is an essential part of study
towards efficient and practical data fusion in real-time
network intrusion detection. The data layer fusion has not
been seriously studied by relevant literature because of the
widespread use of public datasets. The study of data layer
fusion is also very significant, especially for practical applica-
tions. However, it is very difficult to collect and evaluate the
original network data containing various modern attacks.

7. Conclusion

In this article, we categorically presented a detailed review
on the feature fusion techniques and the decision fusion
techniques used in NIDSs. A specific description of DF in

Security and Communication Networks

the field of intrusion detection was presented in order to
motivate this work. Based on the literature study, we proposed
the evaluation criteria of data fusion techniques in terms of
NIDS. The performance of different data fusion techniques
is measured using the proposed criteria. We found that,
in the feature fusion, in addition to some excellent fusion
techniques, such as SVM and MIFS, the improved types of
fusion techniques and hybrid fusion techniques are generally
efficient and valid. For the decision fusion techniques, D-
S Evidence Theory, NN, RF, and Adaboost can combine
multiple decisions more precisely than other methods regard-
ing the studies based on KDD dataset series. In addition,
we found many effective classification algorithms in NIDS,
namely, RF, C4.5, NN, and SVM, as well as their variants.
Unfortunately, the current fusion techniques normally did
not consider the security and the scalability of DE.

DF has been regarded as one of the most important
technologies in improving the performance of the NIDSs. The
use of DF can well alleviate the defects of network intrusion
detection and improve the comprehensive performance of
NIDSs. However, there are still many deficiencies in current
DF techniques. Based on our review, we pointed out the main
challenges and promising future research directions in this
field of research. In summary, this article provides a good
reference for researchers and practitioners in the field of
network intrusion detection.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is sponsored by the National Key Research and
Development Program of China (Grant 2016YFB0800700),
the NSFC (Grants 61602359, 61672410, and U1536202), the
Project Supported by Natural Science Basic Research Plan
in Shaanxi Province of China (Program no. 2016ZDJC-06),
the Fundamental Research Funds for the Central Universities
(JB181503), the 111 Project (Grants B08038 and B16037), and
Academy of Finland (Grant no. 308087).

References

(1] J. Tian, W. Zhao, R. Du, and Z. Zhang, “A New Data Fusion
Model of Intrusion Detection-IDSFP,” in Parallel and Dis-
tributed Processing and Applications, vol. 3758 of Lecture Notes
in Computer Science, pp. 371-382, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[2] E E.White, “Data Fusion Lexicon,” Defense Technical Informa-
tion Center, 1991.

[3] H. Bostrom, S. F. Andler, M. Brohede et al., “On the definition
of information fusion as a field of research,” Neoplasia, vol. 13,
pp. 98-107, 2007, INL.

[4] B. R. Raghunath and S. N. Mahadeo, “Network Intrusion
Detection System (NIDS),” in Proceedings of the 2008 First
International Conference on Emerging Trends in Engineering and
Technology, pp. 1272-1277, Nagpur, Maharashtra, India, July
2008.

Security and Communication Networks

(5]

(6]

(8]

(10]

(14]

(15]

(16]

(17]

(19]

(20]

Y. Fu, Z. Yan, J. Cao, O. Koné, and X. Cao, “An Automata Based
Intrusion Detection Method for Internet of Things,” Mobile
Information Systems, vol. 2017, Article ID 1750637, 13 pages, 2017.

L. Wang and H. Xiao, “An integrated decision system for
intrusion detection,” in Proceedings of the Ist International
Conference on Multimedia Information Networking and Security,
MINES 2009, pp. 417-421, chn, November 2009.

M. A. Aydin, A. H. Zaim, and K. G. Ceylan, “A hybrid intru-
sion detection system design for computer network security;’
Computers and Electrical Engineering, vol. 35, no. 3, pp. 517-526,
2009.

H. Wang, X. Liu, J. Lai, and Y. Liang, “Network security situation
awareness based on heterogeneous multi-sensor data fusion
and neural network;” in Proceedings of the International Multi-
Symposiums on Computer and Computational Sciences, pp. 352-
359, 2007.

S. Mukkamala, G. Janoski, and A. Sung, “Audit data reduction
for intrusion detection,” Training, 2008.

A. H. Sung and S. Mukkamala, “Identifying important features
for intrusion detection using support vector machines and
neural networks,” in Proceedings of the International Symposium
on Applications and the Internet, pp. 209-216, IEEE, Orlando,
Fla, USA, January 2003.

I. S. Thaseen and C. A. Kumar, “Intrusion detection model
using fusion of PCA and optimized SVM;” in Proceedings of the
2014 International Conference on Contemporary Computing and
Informatics, IC31 2014, pp. 879-884, ind, November 2014.

A. Ammar, “Comparison of Feature Reduction Techniques for
the Binominal Classification of Network Traffic,” Journal of Data
Analysis Information Processing, vol. 03, pp. 11-19, 2015.

N. A. Biswas, E M. Shah, W. M. Tammi, and S. Chakraborty,
“FP-ANK: An improvised intrusion detection system with
hybridization of neural network and K-means clustering over
feature selection by PCA,” in Proceedings of the 18th Interna-
tional Conference on Computer and Information Technology,
ICCIT 2015, pp. 317-322, bgd, December 2015.

J. Zhou,]. Wang, and Z. Qun, The Research on Fisher-RBF Data
Fusion Model of Network Security Detection, Springer, Berlin,
Heidelberg, Germany, 2012.

J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-
based network intrusion detection systems,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 38, no. 5, pp. 649-659, 2008.

C. Khammassi and S. Krichen, “A GA-LR wrapper approach for
feature selection in network intrusion detection,” Computers &
Security, vol. 70, pp. 255-277, 2017.

M. A. Ambusaidi, X. He, Z. Tan, P. Nanda, L. F. Ly, and U. T.
Nagar, “A novel feature selection approach for intrusion detec-
tion data classification,” in Proceedings of the IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications, pp. 82-89, 2015.

Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, “An efficient
intrusion detection system based on support vector machines
and gradually feature removal method,” Expert Systems with
Applications, vol. 39, no. 1, pp. 424-430, 2012.

H. T. Nguyen, S. Petrovi¢, and K. Franke, “A comparison of
feature-selection methods for intrusion detection,” in Lecture
Notes in Computer Science, 1. Kotenko and V. Skormin, Eds., vol.
6258, pp. 242-255, 2010.

S.-W. Lin, K.-C. Ying, C.-Y. Lee, and Z.-]. Lee, “An intelligent
algorithm with feature selection and decision rules applied to

(21]

(22]

(31]

(33]

[34]

15

anomaly intrusion detection,” Applied Soft Computing, vol. 12,
no. 10, pp. 3285-3290, 2012.

I. Sumaiya Thaseen and C. Aswani Kumar, “Intrusion detection
model using fusion of chi-square feature selection and multi
class SVM,” Journal of King Saud University - Computer and
Information Sciences, vol. 29, no. 4, pp. 462-472, 2017.

Y. Xu and W.-B. Zhang, “A novel IDS model based on a
Bayesian fusion approach,” in Proceedings of the Ist International
Conference on Multimedia Information Networking and Security,
MINES 2009, pp. 546-549, chn, November 2009.

S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature deduction
and ensemble design of intrusion detection systems,” Computers
& Security, vol. 24, no. 4, pp. 295-307, 2005.

M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an
intrusion detection system using a filter-based feature selection
algorithm,” Institute of Electrical and Electronics Engineers.
Transactions on Computers, vol. 65, no. 10, pp. 2986-2998, 2016.

K. S. Desale and R. Ade, “Genetic algorithm based feature
selection approach for effective intrusion detection system,”
in Proceedings of the International Conference on Computer
Communication and Informatics, pp. 1-6, 2015.

A.-C. Enache, V. Sgarciu, and A. Petrescu-Nitd, “Intelligent
feature selection method rooted in Binary Bat Algorithm
for intrusion detection,” in Proceedings of the Jubilee IEEE
International Symposium on Applied Computational Intelligence
and Informatics, SACI 2015, pp. 517-521, 2015.

S. Mukherjee and N. Sharma, “Intrusion Detection using Naive
Bayes Classifier with Feature Reduction,” Procedia Technology,
vol. 4, pp. 119128, 2012.

M. A. Ambusaidi, X. He, and P. Nanda, “Unsupervised Feature
Selection Method for Intrusion Detection System,” in Proceed-
ings of the 2015 IEEE Trustcom/BigDataSE/ISPA, pp. 295-301,
2015.

N. Moustafa and J. Slay, “The significant features of the UNSW-
NBI5 and the KDD99 data sets for Network Intrusion Detection
Systems,” in Proceedings of the International Workshop on
Building Analysis Datasets and Gathering Experience Returns for
Security, 2017.

S. Thaseen and C. A. Kumar, “An analysis of supervised tree
based classifiers for intrusion detection system,” in Proceedings
of the International Conference on Pattern Recognition, Infor-
matics and Mobile Engineering, pp. 294-299, 2013.

E Xie, H. Yang, Y. Peng, and H. Gao, “Data fusion detection
model based on SVM and evidence theory;” in Proceedings of
the 2012 IEEE I4th International Conference on Communication
Technology, ICCT 2012, pp. 814-818, chn, November 2012.

A.P. Chan, D. S. Yeung, E. C. Tsang, and W. W. Ng, “Empirical
study on fusion methods using ensemble of RBENN for network
intrusion detection,” in Lecture Notes in Artificial Intelligence, S.
Yeung, Z. Q. Liu, X. Z. Wang, and H. Yan, Eds., vol. 3930, pp.
682-690, 2006.

X. Zhao, H. Jiang, and L. Jiao, “A Data Fusion Based Intrusion
Detection Model,” in Proceedings of the 2009 First International
Workshop on Education Technology and Computer Science, pp.
1017-1021, Wuhan, Hubei, China, March 2009.

W. Hu and S. Maybank, “Adaboost-Based Algorithm for Net-
work Intrusion Detection,” IEEE Transactions on Systems Man
Cybernetics Part B Cybernetics A Publication of the IEEE Systems
Man Cybernetics Society, vol. 38, pp. 577-83, 2008.

C. Thomas and N. Balakrishnan, “Advanced sensor fusion

technique for enhanced intrusion detection,” in Proceedings of

16

[36]

(37]

(38]

(39]

(47]

[48]

(49]

[50]

the IEEE International Conference on Intelligence and Security
Informatics (ISI "08), pp. 173178, Taipei, Taiwan, June 2008.

K. Saleem Malik Raja and K. Jeya Kumar, “Diversified intrusion
detection using Various Detection methodologies with sensor
fusion,” in Proceedings of the 2014 International Conference On
Computation of Power , Energy, Information and Communica-
tion (ICCPEIC), pp. 442-448, Chennai, India, April 2014.

G. Giacinto, E Roli, and L. Didaci, “Fusion of multiple classifiers
for intrusion detection in computer networks,” Pattern Recogni-
tion Letters, vol. 24, no. 12, pp. 1795-1803, 2003.

J. Song, H. Takakura, and Y. Kwon, “A generalized feature
extraction scheme to detect 0-day attacks via IDS alerts,” in
Proceedings of the 2008 International Symposium on Applications
and the Internet (SAINT 08), pp. 55-61, fin, August 2008.

M. Beheshti, J. Han, K. Kowalski, J. Ortiz, J. Tomelden, and
D. Alvillar, “Packet information collection and transformation
for network intrusion detection and prevention,” in Proceedings
of the 2008 International Symposium on Telecommunications
(IST’08), pp. 42-48, irn, August 2008.

O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, “An
intelligent intrusion detection system (IDS) for anomaly and
misuse detection in computer networks,” Expert Systems with
Applications, vol. 29, no. 4, pp. 713-722, 2005.

E. Waltz and J. Llinas, Handbook of Multisensor Data Fusion,
CRC Press, 2001.

B. A. Fessi, S. Benabdallah, Y. Djemaiel, and N. Boudriga, “A
clustering data fusion method for intrusion detection system,”
in Proceedings of the 11th IEEE International Conference on
Computer and Information Technology, CIT 2011 and 1ith IEEE
International Conference on Scalable Computing and Communi-
cations, SCALCOM 2011, pp. 539-545, cyp, September 2011.

L. Cao, J. Tian, and W. Jiang, “Information fusion technology
and its application to fire automatic control system of intelligent
building,” in Proceedings of the International Conference on
Information Acquisition (ICIA07), pp. 445-450, Seogwipo-si,
South Korea, July 2007.

L. Zhang, H. Leung, and K. C. C. Chan, “Information fusion
based smart home control system and its application,” IEEE
Transactions on Consumer Electronics, vol. 54, no. 3, pp. 1157-
1165, 2008.

Y. Xiao and Z. Shi, “Application of multi-sensor data fusion
technology in target recognition,” in Proceedings of the 3rd
IEEE International Conference on Advanced Computer Control
(ICACC’11), pp. 441-444, chn, January 2011.

X. Hu and X. Wang, “Application of fuzzy data fusion in multi-
sensor fire monitoring,” in Proceedings of the 2012 International
Symposium on Instrumentation and Measurement, Sensor Net-
work and Automation (IMSNA ’12), vol. 1, pp. 157-159, August
2012.

Y. Chen, C. Li, P. Ghamisi, X. Jia, and Y. Gu, “Deep fusion of
remote sensing data for accurate classification,” IEEE Geoscience
and Remote Sensing Letters, vol. 14, no. 8, pp. 1253-1257, 2017.
Z. Yan, X. Jing, and W. Pedrycz, “Fusing and mining opinions
for reputation generation,” Information Fusion, vol. 36, pp. 172-
184, 2017.

J. Liu, Z. Yan, and L. T. Yang, “Fusion - An aide to data mining
in Internet of Things,” Information Fusion, vol. 23, pp. 1-2, 2015.
G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant Features
and the Subset Selection Problem,” in Proceedings of the
Eleventh International Conference on International Conference
on Machine Learning, pp. 121-129, 1994.

(51]

(58]

[59]

[60]

Security and Communication Networks

E. De La Hoz, E. De La Hoz, A. Ortiz, J. Ortega, and A.
Martinez-Alvarez, “Feature selection by multi-objective optimi-
sation: Application to network anomaly detection by hierarchi-
cal self-organising maps,” Knowledge-Based Systems, vol. 71, pp.
322-338, 2014.

H. Chen, Y. Fu, and Z. Yan, “Survey on big data analysis
algorithms for network security measurement,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics): Preface, vol.
10394, pp. 128-142, 2017.

D. Paudel, A hybrid network intrusion detection system using
SVM and GA, 2016.

C.-F. Tsai, Y.-FE Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion
detection by machine learning: a review;,” Expert Systems with
Applications, vol. 36, no. 10, pp. 1199412000, 2009.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, A
detailed analysis of the KDD CUP 99 data set,” in Proceedings
of the International Conference on Computational Intelligence for
Security and Defense Applications, pp. 33-58, 2009.

J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K.
Nakao, “Statistical analysis of honeypot data and building of
Kyoto 2006+ dataset for NIDS evaluation,” in Proceedings of
the Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security, pp. 29-36, 2011.

N. Moustafa and J. Slay, “UNSW-NBI5: A comprehensive data
set for network intrusion detection systems (UNSW-NBI5 net-
work data set),” in Proceedings of the Military Communications
and Information Systems Conference, pp. 1-6, 2015.

N. Moustafa and J. Slay, “The evaluation of Network Anomaly
Detection Systems: Statistical analysis of the UNSW-NBI5 data
set and the comparison with the KDD99 data set,” Information
Security Journal, vol. 25, no. 1-3, pp. 18-31, 2016.

D. Wu, B. Yang, and R. Wang, “Scalable privacy-preserving
big data aggregation mechanism,” Digital Communications and
Networks, vol. 2, no. 3, pp. 122-129, 2016.

Z. Ruan, Y. Miao, L. Pan, N. Patterson, and J. Zhang, “Visual-
ization of big data security: a case study on the KDD99 cup
data set,” Digital Communications and Networks, vol. 3, no. 4,
pp. 250-259, 2017,

Hindawi

Security and Communication Networks
Volume 2018, Article ID 4231326, 12 pages
https://doi.org/10.1155/2018/4231326

Research Article

Uncovering Tor: An Examination of the Network Structure

Bryan Monk, Julianna Mitchell @, Richard Frank, and Garth Davies

International CyberCrime Research Center (ICCRC), School of Criminology, Simon Fraser University, Burnaby, BC, Canada

Correspondence should be addressed to Julianna Mitchell; jdm17@sfu.ca

Received 3 November 2017; Revised 21 March 2018; Accepted 2 April 2018; Published 9 May 2018

Academic Editor: Zheng Yan

Copyright © 2018 Bryan Monk et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The dark web is a concealed portion of the Internet that can only be accessed through specialized software. Although multiple dark
web technologies exist, with a common trait of using encryption to enforce anonymity, the Tor network remains the most prominent
dark web network. To visit websites on the network, the user must use a heavily modified Firefox browser. The use of encryption
to achieve anonymity poses a significant challenge for law enforcement that wishes to monitor users and content for illicit activity.
This study examines Tor by focusing on the network structures created between websites via hyperlinks. Examining hyperlinks
can provide insight into how virtual communities form on a network. We explore traditional social disorganization principles as a
basis to draw comparisons between these virtual communities and real-life crime-prone neighborhoods. Automated data collection
techniques were used to leverage the interconnected nature of domains on Tor. Using social network analysis, website hyperlinks
are examined and core sites are identified. The analysis shows that these core sites form a significant portion of all connections made
on the network with a density of 0.132. This core serves a critical function and has implications for detecting how users connect on

Tor.

1. Introduction

The Internet has been shown to be a very powerful com-
munication tool, enabling individuals to connect globally
to access and exchange material with very few obstacles,
including governmental or jurisdictional interference. While
the Internet has been a significant driving force in the
globalization of knowledge, it has simultaneously created an
environment where nefarious users can disseminate illicit
content, connect users with similar interests, and facilitate
the proliferation of virtual illicit communities. Today, the
majority of global Internet users still only access a fraction
of the Internet, the portion known as “the surface web” [1].
As opposed to the surface web, which is open and reachable
by anyone with an Internet connection, the “dark web” uses
the infrastructure of the surface web but, through encryp-
tion, creates a subnetwork that is anonymous, concealed,
largely unindexed, and only accessible through encrypted
Internet browsers [1, 2]. A true dark web has three central
characteristics [2]: (i) it uses peer-to-peer technology rather
than centralized servers that information can be tracked back
to; (ii) it uses the infrastructure of the Internet; and (iii)
it operates through nonstandard protocols and ports. As a

result of these characteristics, the structure of the dark web
is constantly evolving. At the same time, these characteristics
can foster a potentially risky environment within which illicit
behaviors can more easily occur.

Dark webs are employed for a multitude of objectives,
including keeping Internet activities and identities anony-
mous, evading censorship, and communicating sensitive
information securely. Simultaneously, dark webs also increase
opportunities and support for individuals conducting illicit
activities [3]. Online connections can be created instanta-
neously and those interested in pursuing malicious activities
or accessing illicit content can network with little effort
[4]. This has led to growing concerns over the extent to
which dark webs may be facilitating and fostering serious
criminal activity, as well as assisting the operations of ter-
rorists and violent extremist groups [5]. Law enforcement
and researchers have realized the need to understand the
extent of criminal activity on dark webs but have faced
three related challenges. First, the extent of criminal activity
remains unclear due to the sheer size and dynamic structure
of dark web networks. Second, research is hindered by a lack
of adequate tools and methods to examine the immensity
and evolving structure of dark webs. Finally, criminological

http://orcid.org/0000-0003-2784-2526
https://doi.org/10.1155/2018/4231326

theories have yet to be applied to the dark web as a means of
understanding how crime can flourish in this environment.

This study responds to these challenges by examining
dark web-based networks through the use of advanced data
collection tools and analytic methods. While many dark
web browsers exist, the Tor network remains one of the
most well-known and frequently operated networks used
to access and operate on the dark web [1] and, as such, is
well suited to provide an in-depth understanding of network
structures. Tor is a peer-to-peer network that operates by
connecting users through specialized software designed to
anonymize and encrypt data sent between those users. The
Tor network allows users to access the dark web through a
specially developed web browser. Since its inception in 2002,
Tor has become one of the most universally used dark web
technologies due to its anonymity features and its ability
to efficiently access dark web content and information [6].
Although Tor developers maintain that the network’s primary
mission is to provide users with the technology to evade
intrusive surveillance and data collection by governments
and corporations while simultaneously fostering innovative
research in online anonymity and privacy, there are increas-
ing concerns about the illicit opportunities that could be
provided to malicious users.

L1. Content on Tor. A key research interest has been the
nature of the content available on the Tor network. Con-
tent analyses have revealed that an extremely high volume
of unethical content is available through the network [5],
where unethical content was defined as negative behavior
and included “anti-social behavior, drugs, weapons, hacking,
cannibalism, bomb making, hit man services, black mar-
kets, and child pornography” [5]. Some researchers have
concluded that the prominence and pervasiveness of this
unethical content far outweigh the benefits of Tor services
[5]. However, such findings have been based exclusively
on content found on forum discussions from three main
databases, potentially limiting their generalizability [5]. Past
research has also demonstrated a varying degree of illegal
activity on the network where virtual interaction and illegal
file sharing were found to be the most prominent illegitimate
uses of dark webs such as Tor [7]. File sharing includes
sharing copyright-infringing files, such as music, movies, and
TV [5]. Cybercriminals also have been known to utilize the
network in order to exchange information and transfer data
for hacking, identity fraud, and buying and selling illegal
goods [8].

1.2. Malicious Uses of Tor. Tor and similar dark webs allow
users to access websites that sell illegal goods and services,
similar in functionality and structure to eBay, although car-
rying illicit material.. Such sites, known as dark markets, carry
a variety of illegal commodities and appear to cater to users
looking for specific materials. Most of these markets require
Bitcoin as virtual trading currency. Bitcoin is an increasingly
popular peer-to-peer decentralized payment system [9]. Var-
ious types of malware have also been identified on the Tor
network. Such malware presents a highly dangerous threat to
individuals and uses ransomware to encrypt individual’s files

Security and Communication Networks

and prohibit access to these files until a payment is provided
[2]. It has been speculated that terrorist organizations operate
on these markets to finance their activities through the
selling of illegal weapons and drugs. This is possible for two
important reasons: first, unlike the regular Internet, these
domains are not registered to a central authority; and second,
Tor is highly anonymized, which means users feel safe posting
this content.

1.3. Tor Hyperlinks. Tor websites, like those found on the
regular Internet, do not exist in a vacuum; rather, they are
hyperlinked both with themselves and to each other. Without
hyperlinks, websites could only be found if the exact URL
was known to the user. Hyperlinks thus form the basis for
how users traverse this network, connect to domains, explore
content, and connect with other users. Social network analy-
sis allows for the analysis of these hyperlinks and illuminates
website connectivity. Websites with more incoming and out-
going hyperlinks may be considered to be more popular and
more important to the dissemination of information within
the Tor network. Network analysis can help to determine not
only how information is being distributed and shared among
network structures but also the importance of particular
websites to the network. Like other Internet structures, there
may be a small dense cluster of nodes that form the center
of the network and guide the way information travels. This
would have significant implications for how the structures
of communities develop and function and could improve
strategies used by law enforcement agencies to detect and
remove illicit users and content.

In this study, we examine Tor’s hyperlink connections
through social network measures to gain insight into the
network structures that form on Tor and how these structures
create conditions favorable to deviant or criminal activity. An
automated data collection tool, known as The Dark Crawler
(TDC), was employed to collect and capture a sample of
dark web content. TDC was able to navigate and collect
hyperlink information for 1,220 unique dark web websites
on the Tor network. This study also explores whether the
core principles of social disorganization theory can explain
the prevalence of “bad” communities on Tor. Traditional
social disorganization theory hypothesizes that community
structures characterized by instability, heterogeneity, and
weak social ties can foster crime and disorder [10]. We
suggest that Tor social network structures, formed through
hyperlinks, have a similar nature in that sparse and unstable
networks composed of weak connections could potentially
foster illicit online activity and content. Although no known
studies have yet to determine the time Tor domains are
online and offline, the transitivity and instability of Tor
have been widely speculated by researchers [11]. Additionally,
like crime-prone neighborhoods, networks that form on
Tor lack regulation or monitoring by law enforcement and
government. Social disorganization theory proposes that
the absence of a governing system can limit community
members’ ability to formally or informally control the behav-
ior of others and increase opportunities for individuals to
engage in criminal activities. If connections on Tor are
found to be unstable and weak, coupled with a lack of

Security and Communication Networks

regulation, it is possible that these characteristics present
unique opportunities for users to leverage the network to
engage in devious activity similar to that of socially disor-
ganized communities. There is currently a void in research
that has specifically examined this link between dark web
online communities and offline communities and, as such,
the application of this criminological theory is only used
as an exploratory lens in the current study. Previous work
on Tor has examined individual websites such as The Silk
Road, an online black market, [9, 12] or as a larger con-
struct providing a content analysis of the domains found
within the network [2, 5]. Using social network analysis,
this study aims to examine (a) hyperlink connections and
the structure of website communities they form on Tor
and (b) how characteristics of these communities could
have implications for criminal activity on Tor as understood
through the lens of social disorganization theory. From a
law enforcement perspective this may have implications for
disruption strategies or target selection for policing interven-
tions.

2. Theoretical Background

Past research has examined how Internet communities cre-
ated through hyperlink connections can be understood as
individuals connecting and developing ties, thereby form-
ing small online communities within a large network [4].
These virtual communities are not constrained by geographic
barriers and have provided an avenue for users to connect
worldwide [13]. This has resulted in the development of
large, globally connected social networks that allow users
to connect with like-minded individuals, gain social sup-
port, and share information and material. Researchers have
suggested that communities that form online have a sim-
ilar nature to offline communities, where complex social
networks are formed through similar interests or purposes
and are sustained through continuous interactions among
users [7, 14]. Further, researchers have proposed that, like
the offline world, the Internet also contains “bad neigh-
borhoods” with crime distributions resembling the offline
world. These virtual neighborhoods have been considered
to have greater concentrations of crime to the extent that
they are largely composed of IP addresses hosting illicit
content or performing malicious activities. Malicious users
can also acquire criminal capital through formed connections
by sharing information and material within online criminal
communities [4]. As part of this study, we draw inspiration
from a major criminological approach to explore whether
this could be true of dark web network connections. While
parallels can be drawn between regular Internet structures
and dark web structures in how they connect websites,
they are distinct enough to warrant a separate examination
of Tor’s hyperlinking structures. That said, it is probable
that Tor is used in the same manner by malicious users.
As such, the primary assumptions of social disorganization
theory are used as basis to understand how the structure
of Tor itself, and how users connect on the network, could
potentially increase the opportunities for deviant or criminal
activity.

2.1. Social Disorganization Theory. Many criminologists have
focused on the relationship between urban and community
organization and crime [15-17]. Social disorganization theory
specifically draws attention to the reciprocal connection
between communities and crime and has become one of the
most influential models of crime within criminology over
time. Central to the social disorganization approach is the
idea that community organization and social ties are impor-
tant mechanisms through which communities can control
crime. As such, the theory suggests urban organization can
influence patterns of crime. In particular, the research of [10]
proposed that four structural factors, instability, heterogene-
ity, weak social ties, and lack of supervision, can increase
the likelihood of crime and delinquency in a community. It
is argued that such factors disrupt the social organization
in a community, where social organization is measured by
the prevalence and interconnectedness of social networks.
As such, they theorized that weak social structures decrease
the ability of the community to maintain informal social
control over members’” behavior. Informal control in a com-
munity has been known to occur when members can control
crime through informal surveillance of the neighborhood
and intervene in problematic or suspicious activity. Strong
and cohesive social ties within community networks have,
therefore, been shown to increase the effectiveness of social
control in reducing crime because community members are
more willing to engage in monitoring and guardianship
behaviors against crime [16, 18]. Thus, the prevalence of
community organization or community disorganization are
regarded as separate traits that have an influence on crime
rates.

Social disorganization theory has generally been used
to analyze urban crime geographies where researchers have
focused on demographic, economic, social, familial, and
urban factors when assessing criminal activity. The three
variables most often assessed are those related to poverty,
ethnic heterogeneity, stability, and population mobility in a
community, as these are viewed as factors that can weaken
a community’s ability to manage the prevalence of crime
[17]. In examining and testing these factors, researchers have
found that such characteristics present in a community do
appear to have a relationship with increased crime rates. With
regard to the role of poverty, studies have found that commu-
nities of low socioeconomic status lack money and resource
to organize and mobilize a community [19, 20]. In a study
by [21] ethnic heterogeneity present among communities was
found to be associated with social disorganization, where the
degree of ethnic mix and population density to violent crime
was analyzed. With regard to population mobility, meaning
the rate of incoming and outgoing community members,
[17] found that residential instability had a negative effect
on network connections in a community, which in turn was
related to an increase in crime. Additionally, [22] found that
instability, measured by residents living in a community less
than 2 years, had a reciprocal relationship with community
disorder where the more instability that was present in a
community led to increased disorder, and vice versa.

Network density has also been proposed as an influential
characteristic by indicating the extent to which individuals

are connected to each other by direct relations [17]. For
instance, high network density within a community has been
found to increase its ability to control criminal behavior as
community members are more apt to monitor and respond to
such behavior. Alternatively, low network density and weak
social ties can result in the inability to exert social control
[17]. Social disorganization theorists have proposed that
supervision is an important component within communities
[23]. Crime and disorder can develop where there is lack of
supervision over activities and these activities are not held
in check through social control. A lack of supervision or
regulation of activities within a community can lead to higher
rates of crime, whereas cohesive communities are able to exert
control and intervene in criminal or delinquent activities.
Indeed, in studies on teenage delinquency, researchers found
that gang developed in communities when teenagers were
left unsupervised whereas more cohesive communities were
better able to collectively supervise teenagers and control
potentially delinquent behaviors [10, 17].

Overall, criminological studies of social disorganization
principle have consistently demonstrated how characteristics
of a disorganized community, sparse networks, unsuper-
vised groups, instability, and heterogeneity, are important in
explaining variation in crime rates across geographies. How-
ever, it is noted that these studies measured concepts related
to disorganization and are thus subject to measurement error,
with the potential that other underlying variables could be
influencing crime rates. Despite such limitations, the results
of these studies have proved to be consistent with the key
principles proposed by social disorganization theory.

Drawing on social disorganization theory, we propose
that Tor structures exhibit similar characteristics to offline
crime-prone communities. In this study, these characteristics
will be adapted in a more general sense through the results of
social network analysis and what such measures reveal about
the Tor network. Weak connectivity, low network density,
and large diversity within Tor could indicate disorganization
within these structures. Structural disorganization could be
a contributing factor to the presence of illicit activity and
material on Tor. Due to its anonymization features, Tor is
also inherently void of regulation and guardianship, which is
likely to increase or attract malicious users operating within
the network. We propose that examining hyperlink structures
is an important step to understanding Tor networks, as
hyperlinks play a crucial role in facilitating the transmission
of information and content, connecting malicious users and
websites, and providing opportunities to engage in criminal
activities.

2.2. Current Study. Examining the Tor network, how it
is deployed, and who comprises the Tor community is
an imperative undertaking to better understand the dark
web. The current research aims to achieve an in-depth
understanding of the network’s structure through the use
of innovative collection and analytic techniques. Using a
specialized web crawler enables efficient collection and the
ability to filter a vast amount of information from the Tor
network. Subsequent analysis of this information can help
determine the extent to which Tor websites are connecting

Security and Communication Networks

to other websites within the network through hyperlinks.
Social network analysis can assess these connections and
provide a macro-level understanding of the network struc-
tures within Tor. The social network measures serve as a
way to analyze how legitimate and illegitimate users are
able to navigate and connect on Tor. These connections are
implicit in understanding the structures within the network
and determining the impact of each website within this
dark web. This can generate insights into what content exists
within Tor and how the structures of the network may
foster online illicit activity. The overall network form will
be examined along with social network measures including
cohesion, homophily, and core-periphery to provide insight
into whether the network structures are characterized by
sparse, weak, and heterogeneous social connections between
domains.

Networks can take many forms but generally exhibit
two dichotomous structures: random or scale-free. Random
networks are composed of a disconnected set of nodes that
are paired with a certain probability [24]. These networks
often have low heterogeneity, in contrast to real world
observed networks where edge formation is likely a product
of choice [24]. Scale-free networks often follow a power-law
distribution where nodes are more likely to connect to a
central few nodes rather than forming connections to only
unique nodes [25]. New nodes in the network are more likely
to select edges to these central actors rather than follow
a random pattern. These scale-free networks characterize
the regular Internet, which may provide insight into the
connections between nodes on the dark web (Tor). Scale-
free networks may contain a central core of hubs that contain
most of the connections within the network. These hubs then
are important to how information and users traverse the
network. Identifying these hubs through a core-peripheral
model will provide insight into how a user may traverse the
network with an additional focus on how criminal activity
may proliferate within Tor. Legal domains acting as hubs may
provide access and opportunities to illicit ones, which would
be largely isolated otherwise. The presence of a core then
reduces the distance that a user will have to travel to find illicit
content increasing criminal opportunities.

3. Data and Methods

The Dark Crawler (TDC) is a modified version of the
webcrawler presented in previous research [26-28] and is
shown in detail in Appendix. It operates by collecting and
downloading webpages into an offline database. Prior to data
collection, a list of seed websites was compiled to provide
the crawler points of departure. Seed websites are universal
resource locators (URLs) that are manually selected and can
be as few as one website or more than 1,000 websites. In the
current study, Tor domains were used as seed websites. These
Tor domains were found through a Google search of the most
widely known.onion directory called the Hidden Wiki, with
additional URLs found on Reddit and other regular Internet
sites. The Hidden Wiki categorizes and shares known Tor
domains, allowing users to search for various types of legal
and illicit content. Overall, a collection of 150 seed websites

Security and Communication Networks

were identified to start the search process. These 150 websites
were selected at random using a random number generator
and through content analysis the domain was categorized
(Drugs, Child Exploitation, Directory, Hosting, Weapons,
etc.) The categories were modeled from previous studies
[2, 5] with some categories collapsed into others (guns and
hitman services were coded as weapons) while others were
expanded. Often the “Other” or “Misc.” categories were used
as a catchall for hard to identify websites and those were
disaggregated for this study into appropriate subcategories
such as politics.

Starting with the seed websites, the crawler downloaded
each top level domain and added any found hyperlinks
containing a.onion address to its internal queue. It recursively
followed these links from the queue until either no.onion
domains were found or it reached the termination criteria.
For the purposes of this study, the termination criterion was
the downloading of 1 million webpages across any number of
domains. Among the 1 million Tor webpages that comprise
the sample there were 1,220 unique domains.

3.1. Social Network Analysis

3.1.1. Homophily. Homophily looks to explain why nodes
with similar features are more likely to share social relation-
ships or ties [29]. This relationship has not been explored
through the analysis of the links between top level domains
in an online network. If domains are more likely to share
hyperlinks with similar domains, this can be compared
to homophily observed through website content. Network
topography may play a more prominent role in which
webpages hyperlink to other webpages rather than simply
connecting to webpages with similar content. This has impli-
cations about the nature of node hyperlinkages operating
within the dark web. Tor nodes are not necessarily looking
to increase visibility and might only be interested in remain-
ing part of the underground community. The presence of
homophily within the network would indicate the possibility
that websites were more likely to form connections with
similar others. Alternatively, a lack of homophily would
indicate that the network structure was not driven by homo-
geneous website connections but instead was driven by a
motley crew of users and content. If network connections are
dissimilar and diverse, this could be a contributing factor to
the presence of illicit activity on Tor. As social disorganization
theory proposes, diversity within a community can lead to
higher delinquency as it interferes with members’ ability
to develop strong social connections and effectively work
together to communicate and provide surveillance within the
community [10].

3.1.2. Cohesion. A scale-free network features highly central-
ized nodes or hubs connecting to other nodes forming large
clusters [30]. Traditionally, a network that is characterized by
the small-world phenomenon has an average path length of
6 [31]. The Internet is characterized as having small-world
features despite containing an average path length of 19 [30].
This is due to the sheer size of the Internet which follows
logarithmic scaling, where the degree centralization remains

relatively high despite the sheer volume of domains present
[32]. Similar to the regular Internet, Tor will likely follow
these properties, which has important considerations regard-
ing network traversal, information flow, and law enforcement
disruption.

Given the novel nature of examining Tor through social
network analysis, examining these properties was essential
before comparing results and the generalizability of this
network to the regular Internet. If Tor does not resemble
the regular Internet, then comparing the importance of the
nodes within the network would be ill-advised. Determining
the nature of the Tor network would also allow additional
network measures to be examined on the overall network.
A core-periphery analysis was conducted to determine the
importance that some hubs might be having on the overall
network. If there was no identified core, this would indicate
that the websites were connected to each other and had a
similar number of network ties. Alternatively, the presence
of a core would suggest that the Tor network was operated
by a few centralized hubs that serve as crucial links to the
entire network. As the adoption of Tor by users remains
relatively low, accessing content on Tor can be difficult
without prior knowledge of where to look. To remedy this
problem, it is likely that central hubs have emerged which are
responsible for linking new users to onion domains. Without
hubs directing users to various domains, Tor users would
have difficulty accessing desired content. The Tor network
takes advantage of the high density of users to operate on a
peer-to-peer system which increases anonymity for the entire
community. Social disorganization theory would suggest that
this anonymity within a dense network increases criminal
activity as it interferes with accountability to other Tor users.
Further, opportunities to engage in illicit activity on Tor
are not constrained by isolation. While some studies have
suggested that living in a sparsely populated area can reduce
opportunities for offending due to the offender’s distance
from targets [33], this is unlikely to impact deviant users
in the online realm. Users wishing to access or share illicit
content can do so without being constrained by geographical
barriers and likely desire to remain hidden and disconnected
on the network to avoid law enforcement.

3.2. Core-Periphery Analysis. Core-periphery analysis has
been used successfully on smaller pockets of the Internet.
Researchers hypothesize that the Internet, due to its archi-
tecture, retains an inherent core structure [34]. Although
researchers suggest that the core is formed by connections
based upon network traffic, hyperlinks serve as another way
to measure connectivity. Most of the research focusing on
online communities uses core-periphery to look at user social
relationships [35, 36], but few use websites to examine these
connections. While the existence of a core is briefly discussed
in [10], no social network analysis regarding the structure was
conducted. We propose that while a core may be present in
the network and even necessary for users to find content,
hyperlink connections outside of the core are likely to be
infrequent and weak. Tor users interested in accessing or
distributing illicit content can be expected to remain isolated
in order to avoid detection. Assuming website linkages are

Security and Communication Networks

TaBLE 1: Comparison of categorical and continuous core-periphery models.

One mode categorical One mode continuous minres

One-mode continuous

N =61 N=s score (Corene) Website content Website type
N531 N531 0.76 Offline Offline
N514 N514 0.31 Links Directory
N1007 N1007 0.26 Wiki Hosting
N899 N899 0.20 Politics Directory
N938 N938 0.20 Politics Directory
N937 N937 0.19 Politics Directory
N898 N898 0.19 Politics Directory
N515 N515 0.16 Links Directory
Fit = 0.22 Fit=0.07

a valid form of network construction, and the nature of the
Tor network is to be covert, then examining offline covert
networks appears to be the logical choice from which to
draw comparisons. The Tor network most closely resembles
criminal networks, where the actors are attempting to avoid
detection. The types of offline networks that share these
characteristics would most likely be gang affiliation networks,
given that actors are actively trying to avoid detection and are
interested in conducting illicit activities.

Core-periphery analysis has been shown to be effective
in determining who the central actors are within numerous
networks, both offline and online [34, 37, 38]. Core-periphery
analysis can potentially reveal websites that provide highly
important positions within the network, even though they
would not appear to be influential based upon network
scores or using the naked eye. A person may appear highly
influential in a network while actually not being a central
component of the core. Some nodes that may appear as
peripheral entities actually have significance to the core of the
network and would be overlooked. Previous studies utilizing
the various forms of the TDC have discussed the biases
and limitations associated with using this data collection
technique [26]. The current sample of the Tor network relied
upon the manual data collection of seed websites through
content analysis which may influence what Tor nodes are
represented within the network [26, 28].

4. Results

The analysis of the 1,220 nodes in the Tor sample revealed
a sparse network with an average degree score of 2.27. Each
node was connected to only a couple of other websites,
showing the scale-free nature of the network. There were
2,763 ties between the nodes, leading to a network density of
0.002. This indicated that less than one percent of all possible
connections exist within the network. Websites within the
network were only connected to a few select nodes. These
ties were directed, as not all hyperlinks are reciprocated back
between websites. Of the 2,763 edges within the network
only 136 were reciprocal between nodes, while 2,627 were
not. Node reciprocity then only happened in 4.9% of all
connections within the network. The average distance of this
network was 4.95, meaning that it took, on average, about

5 connections to get from one end of the network to the
other when consideringall possible links between pairs of two
nodes. The surface web, on average, has an average distance
of 16-19 connections [25], suggesting that Tor exhibits a
different structure. The average score additionally suggested
that the network contained properties associated with small-
world networks. The degree centralization for the network is
41.88%, which indicated there were scale-free features present
within the network. We suggest the identification of these
sparse connections and a lack of reciprocity between the
hyperlinks contributes to the presence of crime among the
Tor community as compared to the surface web. This allows
domains to remain hidden from unwanted attention, such
as law enforcement, while still retaining the ability to attract
interested users.

4.1. Categorical versus Continuous Models. Multiple tests
were conducted using core-periphery analysis to determine
the best model fit for the dataset. The final results, reported
in Tablel, compared the categorical model and the one-
mode continuous model using the minres algorithm. The
minres algorithm is a form of factor analysis that can be
used if the diagonal values within the relational matrices
are not valued and only detect the presence or absence of
a tie [39]. The minres algorithm works best with binary
networks where the presence of a tie is captured. Model fit
is represented as a Pearson’s correlation coefficient between
the current model and an ideal model with a maximized
core structure [39]. The procedure inherently maximized
nodes with connections into one block in a matrix (the
core) while the nodes with few connections (the periphery)
were minimized and placed into a second block [39]. This
immediately biased any significance testing and thus model
fit was largely a descriptive process, rather than reaching an
arbitrary cut-point. The categorical model suggested a core
of 61 websites with a periphery of 1,159 nodes and had a
model fit of 0.22. The one-mode continuous analysis was
conducted using the minres algorithm and a core of eight
nodes with 1,212 periphery nodes was suggested with a model
fit of 0.07. Comparison between the categorical model and the
continuous model demonstrated the categorical model was
a better fit for the data given the large differences between
the scores in model fit. Table 1 contains the top 8 websites as

Security and Communication Networks 7
TABLE 2: Group densities between core and periphery across categorical and continuous models.

Categorical (Fit = 0.22) Core Periphery Continuous (Fit = 0.07) Core Periphery

Core 0.132 0.019 Core 0.250 0.160

Periphery 0.001 0.001 Periphery 0.001 0.001

e

FIGURE I: Core-periphery categorical model. Note: dark grey squares
represent core nodes; light grey squares represent periphery nodes.

ranked by the continuous model and their associated corene
scores.

Determining the variability of subject matter through
content analysis on all sixty-one core domains indicated by
the categorical model proved cumbersome, therefore only
the nodes present in both models were analyzed; this was
a limitation with the data capture which could be solved
by automated methods in future. Eight nodes from the
continuous model were used to highlight the types of websites
found within the core and it is important to note that these
eight nodes were identified as part of the core structures of
both models. The structural position of the core within the
network is shown in Figure 1. With the addition of more
attributes, the core 61 nodes could be assessed to determine
if there were any similarities between them. There may be a
correlation between domain membership and content, with
certain typologies more likely to exist in the core.

A content analysis of the core eight nodes was conducted
to determine if any particular type of website or content was
contributing to the core. The top eight nodes all appeared
to have similar domain structures (directory sites), while
the content varied between the sites. Notably, the website
with the highest corene score was offline when the content
analysis was conducted two months after data capture. While
the continuous model was not selected to represent the
network visually, the corene scores demonstrated which core
nodes were the most central to the network. The core is
represented by the dark grey squares, while the periphery
is represented by the light grey squares in Figure 1. Visually,
these 61 nodes, given their centralization and large number
of ties, represented what would be expected of a core as
demonstrated by their position in the network. The large
cluster of dark grey squares, shown centre left in Figure 1,
represented approximately 60% of the core. Many nodes
overlapped, which suggested they held a similar place within
the network and may be part of the same community.

4.2. Core-Periphery Analysis. Group densities were also com-
pared to determine the best model to use for the core-
periphery analysis and are shown in Table 2. These com-
parisons helped to identify how connected the core is to
itself and the periphery. If the core connections were not
above the network average it could have indicated the
model was a poor fit for the data. The density measured
the proportion of connections that existed as a ratio of all
possible connections available within the network [39]. In the
categorical model the core density was 0.132, as compared to
the overall network density of 0.002. The large discrepancy
indicated that there was in fact a core present within the
network. The density from the core to the periphery was .019
and from the periphery back to the core it was 0.001. The
connection of the core nodes to the peripheral nodes was low,
having only formed connections to 1.9% of possible nodes.
From periphery to periphery the density was also 0.001, less
than the total network. The peripheral connectivity was the
same for both the core and other peripheral nodes making
connections with only 1.16 nodes. The core nodes connected
to an average of eight other members of the core. The core
also connected, on average, to approximately 22 periphery
nodes. This was in comparison to the periphery which linked
to other peripheral nodes at just over one connection per
node. These large differences indicated that there was a core
present within this network and was consistent with other
online communities containing scale-free properties.

In the continuous model the core density was 0.25; mean-
ing 25% of all the possible ties between core members were
present. Each core node on average connected to at least two
other members in the core. The core to periphery was 0.16,
which was also quite large given that the periphery consisted
of 1,212 nodes. On average, the core nodes connected to 194
periphery nodes within the network. The periphery back
to the core was 0.001 and the periphery to the periphery
nodes remained the same at 0.001. While the continuous
model had a much denser core, the categorical model retained
connectivity while including more nodes. This was ideal for
identifying the nodes that possessed a significant number of
the connections within the network. Adding the ties from all
dyadic pairs within the core, and ties from the core to the
periphery in the continuous model, 57% of all the ties in the
network were present. In the categorical model this rises to
66%, indicating that the core was responsible for almost two-
thirds of all present ties.

4.3. Network Structure. 'The fundamental assumption under-
lying a network using websites as nodes was that domains
can have social relationships or meaningful connections to
other websites [26]. These assumed relationships suggest that
websites have properties that can be considered analogous
to the connections made by people. Websites at their core

are still operated by users, so while this remains a possible
limitation, the hyperlinks are still chosen by individuals,
an action no different than choosing friendships offline.
Comparing networks across group typologies then should
be considered in this context, such as those containing child
exploitation materials [4, 30], terrorist networks [40], or
abstract structures [25, 32]. Domains hyperlinking to other
domains are a product of this decision-making process and
do not significantly differ from how edges are formed in other
contemporary groups in different contexts. In this study,
examining the network characteristics revealed that Tor
shared some similarities with these other observed networks.
Without an extensive meta-analysis of all network types, it
was impossible to place Tor into a specific category.

Comparing results across online networks can help to
clarify how online networks operate. For example, a compar-
ison of the cohesion measures indicated that the density of
0.002 found in the Tor network was lower than those found
in two regular Internet child exploitation networks (0.05
and 0.11, resp.) [30]. It is possible this observed difference
was due to network size; however, networks containing
CE materials may be the best comparison available due to
criminal domain saturation. Comparing the features of the
network to licit alternatives provides little benefit except to
simply say that Tor is in fact different. The average distance of
4.95 hops (the sum of all dyadic pairs between nodes) within
the Tor network is consistent with the literature regarding
online networks exhibiting small-world properties [32]. As
defined by Milgram, small-world properties are networks
with an average path length of six or less [41]. In addition to
containing properties associated with small-world networks
the Tor network also had features consistent with a power-law
distribution that defines scale-free networks [32]. This was
measured through the degree centralization score, which in
the Tor network was 42%; this was quite large and surpasses
other online networks [32, 42]. Although it was difficult to
speculate as to the exact network structure of Tor without
a more exhaustive review, the Tor network appeared to
share similar properties with other online networks although
definitively more centralized.

5. Discussion

5.1. Core-Periphery. The results of the core-periphery model
were consistent with the findings regarding the overall degree
centralization of the network. As noted above, the reported
degree centralization of 42% indicated the network contained
properties associated with a scale-free network: few hubs with
many connections. This indicated there were some parallel
attributes between the regular Internet and the dark web, as
both contained features of a scale-free network. A core of
61 nodes (or 5% of the network) was identified and had an
overall group density of 0.132. At 18.019, the core to periphery
densities were also larger than those of the overall network
(0.002). This core contingent accounted for a significant
portion of all ties in the network and connections to other
core nodes, indicating this data reduction technique may
be useful for examining the Tor network. Core-periphery
analysis works best in an environment that cannot be divided

Security and Communication Networks

reasonably into cohesive subgroups [39]. Without a dataset
containing attributes to interpret these subgroups or factions,
core-periphery allowed for the identification of a subset of
nodes containing a significant majority of the connections
[39]. The Internet was also typically considered to reflect a
core-periphery model as conceptualized by [34, 43] when
they describe how links are formed through specific network
paths, as opposed to random chance. These authors suggested
the Internet was inherently designed in such a way that
information travels along designated paths to form a core
[34]. The idea that new nodes within the network were more
likely to form connections with existing popular nodes. For
example, a newly registered domain will link to Google™
at a significantly higher rate than cbc.ca. Again, the Tor
network appeared to operate in a similar manner, with
websites connected to a small number of central nodes
rather than similar peripheral websites. This demonstrated
that new nodes, or websites, were more likely to form
connections to older, more well-established websites than to
newer sites. New domains on Tor were more likely to link
to this centralized core than form connections to peripheral
nodes. This could be due to the relative anonymity associated
with domain creation within Tor, where users are simply
unaware of the other nodes’ existence. Either way it has
implications for law enforcement regarding authorship and
domain generation, nodes which connected outside of the
norm to more peripheral nodes may be authored or created
by the same individual.

The results also deviate from those found in relation to
an offline gang network [44], insofar as the current study
suggested a much denser core. The similarities between the
two types of networks both being elusive and illicit in nature
did not seem to link these structures. The core-periphery
analysis in the current model is more conducive to Internet-
based networks, suggesting that network topography plays a
larger role than network typology. Online networks may not
be comparable to offline networks despite the symmetries in
the content of those networks due to the scale-free nature of
online networks. The presence of overlapping nodes indicated
they belong to the same community on the network. This
finding suggested that connections between websites were
not driven by homogeneous characteristics and content. The
core-periphery analysis also suggested that connections on
the network are dispersed and cannot be tied into reasonably
cohesive subgroups. It was also more difficult to determine
any key members within the network - obfuscating the enti-
ties that produced the majority of illicit activity or content.
This made sense given the Tor network is employed by users
aiming to avoid detection by law enforcement.

The absence of homophily in the network structures also
showed that websites were dissimilar in content and that
ties were not created or limited by shared characteristics.
However, this can be seen as a benefit for Tor users. Forming
connections with dissimilar websites can increase embedded-
ness and the ability of users to operate without being tracked
or monitored, a key objective of Tor users. These ties were also
more likely to dissolve, which may contribute to the transient
nature of the Tor network [29]. As social disorganization the-
ory suggests, the diversity of users can interfere with the Tor

Security and Communication Networks

community’s ability to form relationships between users and
develop effective communication. Without communication,
surveillance of activities on the network is greatly inhibited
and dissimilarity between users can instead breed mistrust
among the community. Thus, the weak ties and heterogeneity
found within network communities lend credence to the
possible roles these characteristics have in fostering illicit
activity on the Tor network.

Online illicit networks provide an additional advantage
for individuals seeking to engage in malicious or illicit
activities as compared to offline illicit networks. Unlike offline
networks, websites do not need to spend costly resources
to maintain social capital and sustain relevancy within the
network. Thus, core membership was likely less intensive in
online networks, allowing these key sites to maintain their
structural positioning within the network. This was differ-
ent from offline networks where core-periphery structures
provided different network contexts. Larger cores allowed
the network to sustain its structure if users left, while larger
peripheries allowed more adaptability within networks [44].
For law enforcement removing nodes within a network
with a large core would have little disruption effect as the
pathways through the network are easily attained through
other avenues. Targeting of nodes for removal then should
not be based upon the principles of disruption or fragmen-
tation but instead should be aimed towards deterrence or
desistance where the impact would affect the largest number
of users possible. Cryptomarkets and large forums would
make ideal targets where users have made investments into
accounts whether financially or through gaining trust and
reputation. Additionally, dispersed cores are not impacted
when peripheral nodes continually enter and exit the net-
work. A single core node does not serve as the only linkage
between the cluster of peripheral nodes and the rest of
the network. Conversely, removing core nodes within larger
peripheries, as in the case of the current study where the core
is characterized by scale-free features, will have a substantially
larger impact on network traversal. For example, the targeted
law enforcement efforts on the “Silk Road” by the FBI saw
a large disruption effect for Tor users who were not simply
displaced to competing cryptomarkets [12].

In determining if the Tor network shared similar proper-
ties to the regular Internet, it is likely that the connections
between domains are formed using the same principles
[25]. Edge formation was not random and not all nodes
within the network have the same probabilities of forming
connections [25]. There was, to some degree, a form of
preferential selection taking place, where new nodes were
more likely to link back to these already established core
nodes. The encrypted nature of Tor means information is not
routed in exactly the same way, as data still travels through
a designated path. Core modeling of the regular Internet
further reinforced the use of this analysis in assessing these
models within a social network context [34]. The 61 core
nodes identified through the categorical model should be
compared further with attribute data to speculate about the
types of websites comprising this crucial component. The
results of the content analysis for the core eight domains
indicated that over half are primarily focused on supplying

hyperlinks to other domains on Tor. Due to the anonymity
and obscurity of Tor, it is likely these directory sites are
necessary for users to find content. If the dissemination of
information on Tor is reliant upon these directory sites to
such a large degree, it has implications for how crime occurs
within this context. Future research is necessary to assess
if directory sites are linking illegal or criminal websites to
other criminal sites or if these sites are forming their own
communities.

Following a power-law distribution, the network prop-
erties of Tor indicate that it is less likely to recover fol-
lowing domain failures of the hub nodes [25, 43]. Two
important considerations are that this leaves the network
vulnerable to attack from groups looking to disrupt the
network (law enforcement, hacktivists, governments, etc.) or
internal causes such as the lack of infrastructure may cause
significant disruptions to accessibility and network fluidity.
While removing one node remains a challenge and has shown
to be a costly endeavour by law enforcement [12], targeting of
a select few nodes representing the core structure may have
larger and more impactful disruption effects than focusing
on the criminal activities within a single domain. The core
structure will also regulate how new users can move from
domain to domain on Tor likely having to pass through
a hub before specific URLs are identified. A hub which is
offline for a significant amount of time may vastly restrict
the access of users to content which may funnel them into
following a different path. Consider the example of a user
looking to purchase a firearm in the context of the results.
They download the Tor browser and follow the steps and find
the Hidden Wiki. This domain has links to a few domains
which reportedly sell firearms; however the links are dead or
broken. The person decides to try one of the marketplaces and
see if someone is selling there. On the marketplace someone
may be advertising a different domain which sells firearms
because it may go against the policies of the marketplace. The
person then follows the hyperlink to the final domain and is
able to purchase the gun. Alternatively, in a less centralized
network, the domain which sells firearms may be directly
hyperlinked by many websites and is accessible by simply
clicking it directly from the Hidden Wiki. The addition of one
domain does not seem like a preventative factor in stopping a
motivated user from purchasing the firearm but due to the
factors listed above may be critical. The user needs to find
the content on the marketplace, law enforcement has another
avenue for intervention and both need to remain stable long
enough for this user to make the critical leaps.

6. Conclusions

The Tor network is a relatively unknown and unexplored
region of the dark web allowing users to anonymously
communicate and browse content through encrypted means.
Past research has speculated on the content of Tor through
limited studies focused on small sections of the network [5, 7].
A more thorough and systematic process was necessary to
conduct analysis of the Tor network. In the current study,
an automated tool was used to collect data and social net-
work analysis was applied to examine how websites formed

10

connections through hyperlinks to other websites. This type
of analysis adds a further dimension to how users access
content on Tor.

The results of the social network analysis provided insight
into the characteristics of the virtual communities formed
through hyperlink connections. Support for a homophily
effect regarding the way Tor nodes were connecting to others
within the network was found. This was also supported
by the notion that the Tor nodes had, on average, more
incoming ties than the link sites. The core-periphery model
identified the main 61 central nodes within the network and
guide users through this dark network. Although there was
a slight homophily effect regarding the core nodes, websites
within the networks appeared to be largely composed of
heterophilous connections. As such, similar content did not
appear to be the driving force connecting websites. Reference
[4] found a similar finding when analyzing online child
exploitation communities and suggested that connections
with similar content may have a negative impact; similar
connected websites may experience decreased traffic to their
domains as users can access the information on competitor’s
sites. When considered under a social disorganization per-
spective, it is also probable that dissimilar and heterogeneous
connections are contributing to the Tor community’s inability
to effectively surveil deviant users and activity.

Social disorganization principles can provide insight into
how network structures may foster illicit activity on Tor. The
sparse online networks appear to share similar characteristics
to real world crime-prone neighborhoods; they are largely
composed of weak and heterophilous ties between domains.
Although it was not specifically examined in this current
study, Tor is also known for its inherently transient nature;
a vast number of domains are created and taken down on
a daily basis. Such instability may amplify the facilitation
of illicit activity; users specifically choose to operate on
Tor and other dark webs to avoid detection and obfuscate
their activities. The extension of a criminological theory and
concepts should be further explicated to understand how
dark web community structures could be fostering illicit
activity. The integration of criminology theory is useful to
the extent that it can potentially help inform police strategies
and reduce criminal activity by targeting formed network
communities. Further, it would be advantageous to take a
later sample of the data to determine if the characteristics of
Tor network structures remain consistent. Due to the sheer
volume and size of Tor, measuring change over time within
the network structures is needed to refine and corroborate
our findings.

As the data was not collected through a randomized
sample and may be reflective of the seed websites, the results
are not without limitations. For example, if the seed websites
were entirely focused on drug markets, without attribute
data it would not be possible to tell if the entire sample
consists of drug related websites. The seed sites may be biasing
the sample based upon content rather than overall network
position. The lack of attribute data hampers the ability of
the data to be generalizable to a broader sample without
first examining what types of websites were collected. Future
research should include as many attributes as possible from

Security and Communication Networks

each website such as content, legality, page views, visitors,
registered users, and Bitcoin wallets to allow comparison
between the network measures and website characteristics
as was previously done in child exploitation research [4].
The attributes would also allow for community detection
to be used to examine how these websites were grouping
together to form connections. The core-periphery analysis
used in the study examined only one set of these communities
and it is likely that many others exist. Moreover, applying
criminological concepts and measures to the online realm
has many challenges and this study did not empirically
test social disorganization theory or examine how other
structural factors can mediate or influence the relationship
between communities and crime [23].

Dark web networks have received significant attention in
the past decade, in both the public and political realm, and are
being viewed as the only way to protect one’s information and
privacy in a world where the collection and flow of personal
data are nearly inescapable for Internet users. It remains an
important task for researchers and law enforcement to pursue
a further understanding of how these networks are exploited
by individuals and entities for criminal purposes, as this may
better inform strategies to disrupt illicit activities on Tor
and other dark webs. By understanding the characteristics
that foster criminal structures on the network, this could
aid enforcement in targeting malicious users and removing
illicit content. Still, only a portion of the Tor network was
explored in this study, leaving a significant portion still in
the dark. Employing social network analysis to examine more
domains and the networks they form will allow for a better
picture of how users are traversing the Tor network and can
better indicate whether social disorganization principles can
provide an understanding of crime on Tor.

Appendix

In the seed data collection 1000 domains were found using
Google, Reddit, and the Hidden Wiki. Of which 150 were
selected using a random number generator to seed the
crawler to start the data collection period. This was done to
eliminate potential selection bias where if a core structure
was identified it would simply represent the seeds chosen.
If the core was made up of primarily seed domains the
network structure would more accurately represent the ego
networks of the seeds rather than a representative sample
of the Tor network as a whole. The results of a QAP
regression (UCINet 6 v. 6.644) showed that (R* = 0.13)
seed domains did not significantly predict core membership
(exp(B) = 1.05,p > .05); however, seed domains did have
significantly greater indegree (exp(B) = 0.31,p < .001)
and average geodesic distances (exp(B) = 0.13,p < .01).
The crawler recursively followed found hyperlinks on each
collected webpage subsequently stored in a queue. A webpage
was scraped and the XML document which comprises the
underlying structure of the webpage was stored in the crawler
database. The webpage could then be viewed offline from
the database and visually verified by a researcher at a later
date for content analysis. Data collection could be terminated
by manually cancelling the TDC after a certain time period

Security and Communication Networks

or by specifying a criterion. For this study TDC ran until
it had collected 1 million webpages and lasted ~90 days or
3 months. The 1 million webpages comprise 1,220 unique
domains. Each hyperlink found on a webpage then was
collapsed into representing a specific domain. If a hyperlink
was found on page 1 or page 820 (the mean number of
webpages per website) of Website A both represented a tie
to Website B and C and was coded as such. The hyperlinks
were then aggregated for each domain and used to generate
the networks.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] S. Lu, “What is the dark web and who uses it? The Globe and
Mail,” https://www.theglobeandmail.com/technology/tech-news/
what-is-the-dark-web-and-who-uses-it/article26026082/.

[2] S. Mansfield-Devine, “Darknets,” Computer Fraud & Security,
vol. 12, pp. 4-6, 2009.

[3] S. Dredge, “What is tor? A beginners guide to the pri-
vacy tool,” The Guardian, 2013, http://www.theguardian.com/
technology/2013/nov/05/tor-beginners-guide-nsa-browser.

[4] B. G. Westlake and M. Bouchard, “Liking and hyperlinking:
Community detection in online child sexual exploitation net-
works,” Social Science Research, vol. 59, pp. 23-36, 2016.

[5] C. Guitton, “A review of the available content on Tor hidden
services: The case against further development,” Computers in
Human Behavior, vol. 29, no. 6, pp. 2805-2815, 2013.

[6] K. Misata, “The Tor Project,” XRDS: Crossroads, The ACM Mag-
azine for Students, vol. 20, no. 1, p. 45, 2013.

[7] A.J. Kim, Community building on the web: Secret strategies for
successful online communities, Addison-Wesley Longman Pub-
lishing Co., Inc, Boston, MASS, USA, 2000, http://dl.acm.org
.proxy.lib.sfu.ca/citation.cfm.

[8] G. Moura, R. Sadre, and A. Pras, “Bad neighborhoods on the
internet,” IEEE Communications Magazine, vol. 52, no. 7, pp.
132-139, 2014.

[9] N. Christin, “Traveling the Silk Road: A Measurement of a
Large Anonymous Online Marketplace,” Defense Technical
Information Center, 2012.

[10] C. R. Shaw and H. D. McKay, Juvenile delinquency and urban
areas, University of Chicago Press, Chicago, Ill, USA, 1942.

[11] D. Moore and T. Rid, “Cryptopolitik and the darknet,” Survival,
vol. 58, no. 1, pp. 7-38, 2016.

[12] D. Décary-Hétu and L. Giommoni, “Do police crackdowns
disrupt drug cryptomarkets? A longitudinal analysis of the
effects of Operation Onymous,” Crime, Law and Social Change,
vol. 67, no. 1, pp. 55-75, 2017.

[13] I. Goodwin, “Book Review: H. Rheingold. 1993. The Virtual
Community: Homesteading on the Electronic Frontier. Read-
ing, Massachusetts: Addison-Wesley. ISBN 0-201-60870-7 H.
Rheingold. 2000. The Virtual Community: Homesteading on
the Electronic Frontier (2nd Edition). C;” Westminster Papers
in Communication and Culture, vol. 1, no. 1, p. 103, 2015.

[14] R.P. Bagozzi and U. M. Dholakia, “Intentional social action in
virtual communities,” Journal of Interactive Marketing, vol. 16,
no. 2, pp. 2-21, 2002.

1

[15] R. J. Sampson and R. B. Groves, “Community structure and
crime: testing social disorganization theory,” American Journal
of Sociology, vol. 94, no. 4, pp. 774-802, 1989.

[16] J. Bursik, “Ecological theories of crime and delinquency since
Shaw and McKay,” Annals of the American Academy of Political
and Social Science, vol. 338, pp. 119-136, 1984.

[17] R. J. Sampson, “Neighborhood and crime: The structural
determinants of personal victimization,” Journal of Research in
Crime and Delinquency, vol. 22, no. 1, pp. 7-40, 1985.

[18] F. E. Markowitz, P. E. Bellair, A. E. Liska, and J. Liu, “Extend-
ing social disorganization theory: Modeling the relationships
between cohesion, disorder, and fear,” Criminology, vol. 39, no.
2, pp. 293319, 2001

[19] R. Kornhauser, Social sciences of delinquency, University of
Chicago Press, Chicago, Ill, USA, 1978.

[20] J. Byrne and R. J. Sampson, “Key issues in the social ecology
of crime,” in The Social Ecology of Crime, J. Byrne and R. J.
Sampson, Eds., pp. 1-22, Springer-Verlag, New York, NY, USA,
1986.

[21] M. E. Cahill and G. FE Mulligan, “The determinants of crime in
Tucson, Arizona,” Urban Geography, vol. 24, no. 7, pp. 582-610,
2003.

[22] S. Wouter and J. R. Hipp, “A longitudinal test of social disorgani-
zarion theory: Feedback effects among cohesion, social control,
and disorder,” Criminology, vol. 49, no. 3, pp. 833-871, 2011.

[23] C.E. Kubrin and R. Weitzer, “New directions in social disorga-
nization theory;” Journal of Research in Crime and Delinquency,
vol. 40, no. 4, pp. 374-402, 2003.

[24] A. Barabdsi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

[25] A.L.Barabdsiand E. Bonabeau, “Scale-free networks,” Scientific
American, vol. 288, no. 5, pp. 50-59, 2003.

[26] B. Westlake, M. Bouchard, and R. Frank, “Finding the key play-
ers in online child exploitation networks,” Policy and Internet,
vol. 3, pp. 1-25, 2011.

[27] M. Bouchard, K. Joffres, and R. Frank, “Preliminary analytical
considerations in designing a terrorism and extremism online
network extractor,” Intelligent Systems Reference Library, vol. 53,
pp. 171-184, 2014.

[28] B. Monk, R. Allsup, and R. Frank, “LECENing places to hide:
Geo-mapping child exploitation material,” in Proceedings of the
13th IEEE International Conference on Intelligence and Security
Informatics (ISI'15), pp. 73-78, usa, May 2015.

[29] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of
a feather: homophily in social networks,” Annual Review of
Sociology, vol. 27, pp. 415-444, 2001.

[30] K. Joffres and M. Bouchard, “Vulnerabilities in online child
pornography networks,” in Using Network Analysis to Prevent
Crime. Crime Prevention Studies, A. Malm and G. Bichler, Eds.,
Criminal Justice Press, New York, NY, USA, 2015.

[31] G. Kadianakis and K. Loesing, “Extrapolating network totals
from hidden-service statistics,” Tor Tech Report 01(001),
2015, https://research.torproject.org/techreports/extrapolating-
hidserv-stats-2015-01-31.pdfRetrieved from.

[32] A.-L. Barabdsi, “The physics of the Web,” Physics World, vol. 14,
no. 7, pp. 33-38, 2001,

[33] L. Cohen and M. Felson, “Social change and crime rate trends:
A routine activity approach,” American Sociological Review, vol.
44, no. 4, pp. 588-608, 1979.

[34] R. Pastor-Satorras and A. Vespignani, Evolution and structure of
the internet: A statistical physics approach, Cambridge Univer-
sity Press, Cambridge, UK, 2004.

https://www.theglobeandmail.com/technology/tech-news/what-is-the-dark-web-and-who-uses-it/article26026082/
https://www.theglobeandmail.com/technology/tech-news/what-is-the-dark-web-and-who-uses-it/article26026082/
http://www.theguardian.com/technology/2013/nov/05/tor-beginners-guide-nsa-browser
http://www.theguardian.com/technology/2013/nov/05/tor-beginners-guide-nsa-browser
http://dl.acm.org.proxy.lib.sfu.ca/citation.cfm
http://dl.acm.org.proxy.lib.sfu.ca/citation.cfm
https://research.torproject.org/techreports/extrapolating-hidserv-stats-2015-01-31.pdfRetrieved from
https://research.torproject.org/techreports/extrapolating-hidserv-stats-2015-01-31.pdfRetrieved from

12

(35]

(36]

(37]

J. C. Wang and C. C. Chiu, “Recommending trusted online
auction sellers using social network analysis,” Expert Systems
with Applications, vol. 34, no. 3, 2008.

S. L. Toral, M. R. Martinez-Torres, and F. Barrero, “Analysis
of virtual communities supporting OSS projects using social
network analysis,” Information and Software Technology, vol. 52,
no. 3, pp. 296-303, 2010.

M. Bouchard and R. Konarski, “Assessing the core membership
of a youth gang from its co-offending network,” in Crime and
Networks, C. Morselli, Ed., Criminology and Justice Series,
Routledge, New York, NY, USA, 2014.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltval, and A.-L. Barabasl,
“The large-scale organization of metabolic networks,” Nature,
vol. 407, no. 6804, pp. 651-654, 2000.

S. P. Borgatti and M. G. Everett, “Models of core-periphery
structures,” Social Networks, vol. 21, no. 4, pp. 375-395, 2000.

J. Xu and H. Chen, “The topology of dark networks,” Commu-
nications of the ACM, vol. 51, no. 10, pp. 58-65, 2008.

S. Milgram, “The small world problem,” Psychology Today, vol.
1, no. 1, pp. 61-67, 1967, http://snap.stanford.edu/class/cs224w-
readings/milgram67smallworld.pdf.

L. A. Adamic, “The Small World Web,” in Research and
Advanced Technology for Digital Libraries, pp. 443-452,
Springer, Berlin, Heidelberg, Germany, 1999.

A. L. Barabdsi, R. Albert, and H. Jeong, “Scale-free characteris-
tics of random networks: the topology of the world-wide web,”
Physica A, vol. 281, no. 1, pp. 68-77, 2000.

B. Hoppe and C. Reinelt, “Social network analysis and the
evaluation of leadership networks,” The Leadership Quarterly,
vol. 21, no. 4, pp- 600-619, 2010.

Security and Communication Networks

http://snap.stanford.edu/class/cs224w-readings/milgram67smallworld.pdf
http://snap.stanford.edu/class/cs224w-readings/milgram67smallworld.pdf

Hindawi

Security and Communication Networks
Volume 2018, Article ID 3652170, 11 pages
https://doi.org/10.1155/2018/3652170

Research Article

An Approach for Internal Network Security Metric Based on

Attack Probability

Chun Shan ®,' Benfu Iiang,1 Jingfeng Xue ! Fang Guan,' and Na Xiao'?

' Beijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of Technology, 5 South Zhongguancun Street,

Haidian District, Beijing 100081, China

2State Grid Jibei Information & Telecommunication Company, Beijing 100053, China

Correspondence should be addressed to Jingfeng Xue; xuejf@bit.edu.cn

Received 2 November 2017; Revised 10 February 2018; Accepted 15 March 2018; Published 24 April 2018

Academic Editor: Zheng Yan

Copyright © 2018 Chun Shan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A network security metric may provide quantifiable evidence to assist security practitioners in securing computer networks.
However, research on security metrics based on attack graph is not applicable to the characteristics of internal attack; therefore
we propose an internal network security metric method based on attack probability. Our approach has the following benefits:
it provides the method of attack graph simplification with monitoring event node which could solve the attack graph exponential
growth with the network size, while undermining the disguise of internal attacks and improving the efficiency of the entire method;
the method of attack probability calculation based on simplified attack graph can simplify the complexity of internal attacks and

improve the accuracy of the approach.

1. Introduction

With the rapid development of network and information
technology, the role of information system in enterprise
becomes more and more important. At the same time, the
number of attacks from internal network has also increased.
Therefore, it is necessary to build an effective security metric
technology for the internal network.

According to the definition and analysis of internal
attacks provided by Computer Emergency Response Team
(CERT) [1], the internal attacks have the transparency to
defense intercepts, such as access control or firewalls. Internal
attacks also have the camouflage system privileges, high
risk to access the core confidential resources easily, and
the complexity of gradual attacks. The security metric as a
proactive defense technology, whose role is actively analyzing
and evaluating what is existing in the current security risks
or potential security risks before the attacks. When the
attack action occurred, the security metric method needs to
analyze and assess the threat of attack incidents, then predict
the attack paths, and take appropriate measures to defend

[2].

The analysis method in network security can be divided
into two types: one is the unknown vulnerabilities in a
network, mainly considering the prevention measures; the
other one is the known vulnerabilities in a network, repairing
the weak parts of the network and improving the security of
the whole network. As for the unknown vulnerabilities, the
information security experts have already carried out a lot of
research; the main methods are as follows:

(i) Analysis protocol vulnerabilities, such as ARP address
resolution protocol: researchers try to find out the
protocol vulnerabilities, sum up the vulnerability
in some areas, give the solutions for the lack of
agreement, and achieve the purpose of prevention.

(ii) Analyze the source code of the software: mistakes
are unavoidable when programming, such as buffer
overflow vulnerabilities. By studying some important
codes, researchers take necessary precautions against
possible errors and give patches of software, so as to
improve the overall safety of software.

Although these methods are effective, they are very
abstract and not easy to implement, and the results are

http://orcid.org/0000-0002-1090-026X
http://orcid.org/0000-0002-3087-9701
https://doi.org/10.1155/2018/3652170

relatively few. But if we start from the known network security
vulnerabilities, it is relatively easy, for example, all kinds
of graph theory based model checking methods, such as
attack graph. The attack graph is a kind of graph theory
method to judge the network security by studying the nodes
and the relationship between nodes in the network. By
building the actual network into a theoretical graph theory
model, the attack graph can give us many places to think
deeply, sometimes with unexpected results. For example,
constructing a model from the known aspects to simplify or
idealize the actual elements allows us to focus on the most
important or important aspects of cybersecurity, ignoring
the secondary and quickly determining the security of the
network. The attack graph model has great advantages over
other assessment models, becoming one of the most widely
used and most studied security metrics models.

Although the attack graph can visually indicate the origin
and destination of the network attack, it cannot quantitatively
describe the network security. In order to conduct quanti-
tative analysis of the possibility of attacks, we introduce the
cumulative reachable probability for each node. Above all, we
proposed an internal network security metric method based
on attack probability to solve the problem of the existing
security metrics with attack graph for the internal network.

2. Related Work

The numerous existing researches on network security met-
rics based on attack graph mainly focus on the representation
of attack graph models, the metrics of indicators, and the con-
clusions of network security metric. Those early researchers
conducted research mainly including the following aspects.

The representation of attack graph models. Xie et al. [3]
firstly explored three sources of uncertainty in the attack
graph, but the attack graph model they established is carrying
on probability derivation only when the attack behaviors are
determined, resulting in the fact that the probability of uncer-
tainty testing data is not calculated in the final derivation
process. Wang et al. [4] proposed the probabilistic attribute
description of the attack graph based on the probability of
attacks and the cost of the network deployments, using the
method of cumulative reachable probability to evaluate the
safety of the whole network, but they did not take into account
the impacts of other uncertain factors.

The metrics of indicators: Li et al. [5] used CVSS to
evaluate vulnerabilities and proposed a general approach for
the network security metrics based on vulnerabilities, but
they only considered the probability of a single vulnerability
node, while ignoring the vulnerability of the vulnerability
node in the whole system, especially the indicators between
the vulnerability nodes.

The conclusions of network security metric: in terms of
attack probability calculation, Wang et al. [6] use Bayesian
network algorithm to calculate the risk probability for inter-
nal nodes and quantify the node variables, the node variable
values, and the conditional probability distribution. Based on
the improved likelihood weighting algorithm, the calculation
of Bayesian network node parameter is more convenient;
the internal threat forecast also is more accurate. However,

Security and Communication Networks

this approach did not take into account the vulnerability of
their own indicators. Zhang et al. [7] proposed satistying
the temporal order of attack evidence, using the Bayesian
network algorithm to analyze the security for all attack paths.
However, the probability confidence of nodes in the attack
graph is complicated and lacks mathematical theory, and
the computational model is also too complicated to work
efficiently.

We proposed an internal network security metric of the
attack probability based on the attack graph model [8] in
this paper. Because of the internal attacks” characteristics of
camouflage and complexity, we decided to add the monitor-
ing event node and the key-value pair in the attack graph.
Compared with other security metrics, our internal network
security metric improved the efliciency and the accuracy
obviously with the help of attack graph simplification method
and cumulative reachable probability calculation method.

3. An Approach for Internal Network Security
Metric Based on Attack Probability

3.1. Method Overview. In order to understand the charac-
teristics and the occurrence environment for the internal
attacks, first of all, according to the original attack graph
and the attack evidence provided by the security monitoring
system, we could get the temporal difference relationship of
the monitoring event nodes and simplify the attack graph
with the temporal difference relationship. Second, we divide
the simplified attack graph into key-value pairs and then
calculate the probability of the key-value pairs. Third, we
calculate the cumulative reachable probability by the method
of attack probability calculation we proposed. Finally, the
quantitative evaluation of the current internal network is
represented by the cumulative reachable probability of target
node. The specific steps are shown in Figure 1.

3.2. The Attack Graph Model. Based on the complexity of
internal attacks, internal attack events are mostly multistep
and continuous attack behaviors. An attack event includes
multiple attack subtargets and a series of related subattack
events; that is, from a resource node to the next resource,
the event requires a minimum set of basic attack actions. In
the initial stage, the attacker has a certain system access or
operating authority and through an atomic attack can help
the attacker to reach the next state node, so as to obtain
more resources and permissions to achieve the next attack
subtarget. Therefore, in the attack graph model constructed
in this paper, the resource state node is mapped to the original
attribute node; the attack action node is mapped to the
original atomic attack action node. The attack graph model
includes the following contents.

(1) The Atomic Attack. An attack action is a different
instruction or a set of operations, which could divide into
different basic actions. For example, to open a word file,
we need two methods. Method 1: open the file by double-
clicking it; Method 2: click on the file, and then click “Enter”
to open it. These two methods can open the file but are
composed of different operations; we will set those different

Security and Communication Networks

Internal network + Safety
monitoring system + Vulnerability

p
Attack graph generation
algorithm
Target network attack graph
4 N\
Attack graph
simplification
Simplified attack graph
4 N
Attack probability
calculation

Cumulative reachable probability of
target node

FIGURE I: The schematic diagram of internal network security metric
based on attack probability.

but similar function operations or instructions as one basic
action.

And from one resource state node to another resource
state node, the attacker needs a combination of multiple basic
actions to achieve; such a series of basic actions is called the
atomic attack. An atomic attack is the minimum set of basic
actions that an attacker needs from a resource state node to
another resource state node [4].

(2) The Monitoring Event Node. In order to simplify the
attack graph, the monitoring event node is introduced in
the attack graph model. Because each atomic attack contains
a series of the basic attack actions, although the internal
attack has camouflage, some basic actions more or less will
trigger the security monitoring system, and attacks and other
related information will be recorded in alarm log. The set
of information recorded in the alarm log is called attack
evidence. The monitoring event node refers to the attacker
from one resource state to the next resource state, and the
implementation of atomic attack triggers the monitoring
system, recorded in the alarm log as attack evidence. We use
one monitoring event node to record one kind of atomic
attacK’s set of basic actions execute time sequence.

(3) The Attack Graph Model. In order to construct an attack
graph model applicable to the internal network security
metric, an improved probability attack graph is proposed
based on the attribute attack graph [6, 7, 9]. Among them,
the nodes represent the conditions of using vulnerability
(the necessary resources and permissions of exploiting the
vulnerability) and the use of the vulnerability of the atomic

attack action; the directed edge represents the dependency
between nodes, clearing the probability of attack process
distribution conditions can be intuitive to show all the attack
paths that may exist in the internal network. The formal
definitions of the attack graph and its constraints are as
follows.

Definition 1 (attack graph model [7, 10]). AG=(S, A,O,E, P)
is a directed acyclic graph.

(i) S represents the system resource state node set, S =
soUs;Us, (i = 1,2,...,e), where s, represents the
initial node, describing the resource state that the
attacker has occupied at the first time. s; represents a
single resource state node that describes the resources
which an attacker gets during an attack. s, represents
the target resource state node that describes the
attacker’s final attack target.

(ii) A represents the set of attack action nodes, and g;
represents an atomic attack.

(iii) O denotes the set of monitoring event nodes. The
value of node o; can be T or F, which indicates
whether the attack behaviors of g; have been detected.
When an attack action a; occurs, the security moni-
toring system can capture these actions and provide
the appropriate evidence of the attack recorded in the
alarm log.

(iv) E represents the set of directed edges between nodes.
The attack graph defined in this paper is a directed
acyclic graph; the edges between the various nodes
are directed edges. E = E, UE, UE_, E, is S x A,
represents the attacker has some resources before they
can initiate an attack; E, = A x S represents the
attacker could get some resources in the condition
of the attack action success; E, = A x O represents
the corresponding attack evidence of the attack action
captured by the security monitoring system.

(v) P represents the probability of attack, P = P, U
P,s, where P, represents the probability that the
attack behavior g; occurs after having some resources;
that is, the probability of attacking the attack action
node, P,g, represents the probability that g; succeeds
into the next resource state s;, that is, the success
probability of attack action.

(4) The Directed Edges Relationship. Considering the attack
graph is a directed acyclic graph, it is necessary to effectively
define the relationship between the edges which point to
the same node, including “AND” and “OR” relationship. The
specific content is Definition.

Definition 2 (directed edges relationship).

(i) The “AND” relationship between two state nodes s;
and s, indicating that the attacker needs to have both
of the resources in order to carry out the next attack.

(ii) The “OR” relationship between two state nodes s; and
Sjs indicating that if the attacker has any of these two
resources, he can proceed to the next attack.

Security and Communication Networks

Procedure IsAvailableMonitor
Input: AO, EO

Method:

(01) String function(AO)
(02) initialize EO

(03) A= getS(AO)

(04) t=0

(05) s={}

(06) for i=1:EQ.size()
(07) count=0;

(08) for j=1:A.size()
(09) n=j, m=i

11) count++, m++, n++;
(12) t++;

(13) S{t}=count

(14) f=max(S)

(15) if (f>= EQ.size()) return True;
(16) else return False;

/IAO - Sequence of attack evidence of a monitoring event node in the alarm log;
/IEO - Attack evidence sequence of the corresponding atomic attack action
Output: The confidence value of the monitoring event node

(10) while (A(n)==EO(m) && m<=A.size()&&n<=EOQ.size())

PseupocopDk 1: The pseudocode of confidence analysis.

(iii) The “AND” relationship between two attack action
nodes g; and a;, indicating the attacker needs two
attack actions to occupy the next state node.

(iv) The “OR” relationship between two attack action
nodes a; and a;, indicating that the attacker can send
any attack to occupy the next state node.

(v) Thereisa “OR” relationship between two attack action
nodes pointing to the same monitoring event node o;;
that is, any attack action can independently trigger o;.

(5) Temporal Difference Relationship. The temporal difference
relationship means that if the monitoring event node g; is
detected by the security monitoring system earlier than the
monitoring event node a; all the time, then we could say
the monitoring events ; and a; have a temporal difference

relationship.

3.3. The Method of Attack Graph Simplification. Although
the time complexity of the current attack graph generation
algorithm [10] can be controlled in O(n*) (n is the number
of hosts in the network) [11], the network structure becomes
more and more complex and the connection between the
various terminal nodes becomes more and more close,
resulting in an increasingly complex attack graph structure.
But the happening probability of some attack paths is very low
or does not satisfy the current actual situation. The removal
of these paths does not influence the whole metric model, and
even their existence only increases the amount of subsequent
work. Therefore, we propose the monitoring event node to
prune the attack path in attack graph to simplify the whole
structure of attack graph.

(1) Pruning Attack Nodes with Confidence Analysis. The alarm
log as input, we reference the attack evidence confidence
analysis algorithm defined by Wang et al. [6]; the probability
of basic action of attack evidence covers the basic action set
in atomic attack determining the confidence of monitoring
event. For example, assume the basic attacks contained in
the atomic attack are a = {ba,,ba,,bas,ba,}. If the attack
evidence provided by the security monitoring system is a, =
{ba,, bas, ba,, ba,,bas}, the coverage rate is 0.75, and the
attack evidence value of al is F. Assuming another evidence
is a, = {ba,,ba,,ba,,bas,bas,ba,,bas}, the coverage rate
is 1, and the attack evidence confidence value of a, is
T. Then we should remove all the attack action nodes of
the attack evidence confidence value F. The pseudocode
implementation of the algorithm is shown in Pseudocode 1.

The complexity of confidence analysis is g(n) = O(kn), n
is the number of atomic attack nodes, and k is the number
of basic attacks. Because the number of basic attacks is a
constant, we can get g(n) = O(kn) = O(n).

(2) Pruning Paths with Temporal Difference Relationship.
According to the alarm log provided by the security monitor-
ing system, we can obtain the temporal difference relationship
of the monitoring event node. Then prune the path of the
existing attack graph with temporal difference relationship;
the attack paths would be deleted which do not match the
temporal difference relationship; otherwise the attack paths
will be preserved. Finish all these jobs, and the simplified
work of the attack graph is completed.

For example, in Figure 2, the cycle g; is the basic action of
attack evidence, the square s jis the state node of hosts [6], and
the cycle o, is the monitoring event nodes. We could know

Security and Communication Networks

Procedure IsTemporalDifferenceRelationship

Input: G,0td,01,02,Wol,Wo2

//Attack graph G; Otd --The temporal difference relationship of the
//monitoring event nodes; 01,02 -- Two monitoring event nodes of
//temporal difference relationship; Wol, Wo2 -- Two sets of sequence
//that let the values of 01,02 are T.

Output: Whether there is a timing difference between Wol and Wo2,

“Yes” or “No”.
Method:

(02) if((0O1-02)€ Otd)
(03) foreach(Ale Wol,A2e Wo2)

(05) end for (03)
(06) return Yes;
(07) else (02)
(08) return Yes;
(09) end if (02)

(01) b«—G //The topological sequence of attack action nodes

(04) if((A2—Al) € b) return No;

Pseupocopbk 2: The pseudocode of confidence analysis.

FIGURE 2: The temporal difference relationship.

there are two paths from the initial state node s, to the final
target node s,.

Pathl:sy = a, = s, = a; = s3 = a; — s,

Path2:s) —a, = s, 2 a, > s, = ag — s,.

If we do not consider the temporal difference relationship
between the monitoring event nodes, then the conclusion
is that the attack is likely to have two attack paths. But
when we consider the temporal difference relationship of the
monitoring event nodes, the temporal difference relationship
of the monitoring event nodes in Figure 2 is 0, — 0, — o0;.
Because Path 2 triggers the monitoring event o, at the first
time, not matching the temporal difference relationship of the
monitoring event nodes provided by the security monitoring
system, Path 2 should be deleted. Similarly, if the temporal
difference relationship is 0, — 0, — 05, delete Path 1 that
needs to be deleted. The pseudocode implementation of the
algorithm is shown in Pseudocode 2.

The complexity of the temporal difference relationship is
decided by the number of attack paths in attach graph which
shows that the problem is NP-hard. According to attack graph
generation algorithm [10], it can be controlled in On*) (nis
the number of hosts in the network).

According to the above definition, we designed the
schematic diagram of attack graph simplification in Figure 3.

(Start)
-

| Alarm log |

Step 1 <

Confidence analysis of
monitoring event node

F

_ | Keep the node | Delete the node

- | Time positioning |

Define temporal
difference relationship

Step 2 <

Attack path decision

NO

N | Keep the path | | Delete the path

End

FIGURE 3: The schematic diagram of attack graph simplification.

The two steps in Figure 3 would simplify attack graph.
By the monitoring event nodes confidence analysis and the
temporal difference relationship of monitoring events, we
can remove the interference attack graph nodes and attack

6
TABLE 1: The weight value of hosts.
Name Host location Indicator Description
value
Office Host is located on the office
2
. network network, easy to be used

i Core network Host is located on the core
network, difficult to be used

paths and improve the efficiency and accuracy of our security
metric.

3.4. The Method of Attack Probability Calculation. After the
attack graph simplification, each subpath is a subprocess in
which the attackers initiate an atomic attack by using the
vulnerability state of the current resource state and obtain
more resource states after attacking. Therefore, we propose
an approach for dividing the attack graph nodes into key-
value pairs composed of “resource state node, attack action,
and resource state node.” The probability of key-value pairs is
defined as P = (P, Psg). P, is the probability of attack action,
which represents the probability from the first resource state
node to the attack action node; P,y means the probability
from the attack action node to the next resource state node,
also called the probability of attack success.

This paper proposes the cumulative reachable probability
calculation method for target node with the simplified attack
graph. The specific steps are as follows.

(1) Divide the Key-Value Pairs. According to the dependency
relationship between the simplified attack graphs, divide all
nodes and edges into the key-value pairs in the form of
“resource state node, attack action, and resource state node.”

(2) Calculate the Initial Attack Probability. (a) The probability
of an attack action is P,.
The formula is

P, = @ €]

H; represents the weight where the host is located. The
location of the host in the internal network is different, so
the weight will be different, as shown in Table 1. The internal
network is divided into the core network and the office
network.

Vs represents its own probability, which indicates the
probability of being used vulnerability. According to the
CVSS metric method of individual vulnerabilities: Access
Vector (AV), Authentication (AU), and Access Complexity
(AQC) [9] are shown in Table 2.

The formula is

Vi = AV + AU + AC. (2)

(b) The attack action success probability is P,g, which
could assess the success probability for a vulnerability that
the attackers use it to attack. The influencing factors include
the information of vulnerability (K), the method of atomic

Security and Communication Networks

TABLE 2: The CVSS metric method of individual vulnerabilities.

Degree of Indicator -
Name difficulty value Description
. The vulnerability is very
High ! difficult to use
. The vulnerability is a little
AC Medium 2 difficult to use
Low 3 The vulnerability is easy to
use
Multiple] The vulnerability is difficult
to use
. Vulnerability is a little
AU Single 2 difficult to use
None 3 The vulnerability is easy to
use
The vulnerability only can be
Local : used locally and difficulty
A Adjacent) The vulnerability can be used
Vv network and is harder to use
Network 3 The vulnerability can be

exploited remotely and easily

attack (M), and whether corresponding attack tool is used
(N). Based on the relevant research papers, with reference
to the calculation method of the success rate of independent
vulnerability from CVSS and Wu et al. [12], consider the
following.

The formula is

P,g=K+M+N, (3)

where K is in the range of {0,0.1}, indicating whether the
vulnerability information is published. The vulnerability has
been issued; K value is 0.1; otherwise, the value is 0.

Here, M is in the range of {0, 0.2, 0.4}, indicating whether
the atomic attack method or step is currently available. If the
vulnerability has a detailed attack step scheme, then the value
of M is 0.4. If there is a simple attack scheme, then M is 0.2.
Otherwise, M is 0.

N is in the range of {0,0.2,0.4}, indicating whether
the attack tools are required in the atomic attack. If the
vulnerability is not required to use the attack tools, N is 0.4.
If the vulnerability exploited needs to use the attack tools and
the corresponding attack tools are available, N is 0.2; and if
you need to use the attack tools, but there are no available
attack tools, the value of N is 0.

(3) Calculating the Cumulative Reachable Probability of Attack
Action Node P . Py means the cumulative reachable prob-
ability of attack action except for the initial node. Due to
the complexity of the internal network, we will discuss the
classification of the key-value pairs with the directional edges.
(a) The cumulative occurrence probability of common
key-value pairs: normally, there is only one directed edge of
an action node; that is, after obtaining the resources of one
resource node, you can use the vulnerability to attack.
Therefore, when an atomic attack is initiated, the attack
probability of all the front nodes is evaluated, and the value

Security and Communication Networks

S1

)

S2

FIGURE 4: The “AND” relationship between two resource state
nodes.

S1

OR 6 83

S2

FIGURE 5: The “OR” relationship between two resource state nodes.

is the cumulative reachable probability of the first resource

state node in the key-value pair. Then, we can calculate the

cumulative reachable probability of current action node.
The formula is

Pyc = Pgx P, (4)

P represents the cumulative reachable probability of the
first resource state node in a key-value pair and P, represents
the probability of the attack action carrying out the attack.

(b) The directed edges to the same attack action with
“AND?” relationship.

The form is shown in Figure 4.

The formula is

Pyc = Pg; x Pg; X Py. (5)

P;, Pg; represent the cumulative reachable probability of
two resource state nodes pointing to the same attack action.

(c) The directed edges to the same attack action with “OR”
relationship.

The form is shown in Figure 5.

The formula is

Py = (Pg ® Pgj) x Py (6)

(4) Calculating the Cumulative Reachable Probability Ps for
the Target Node. (a) The cumulative reachable probability of
common resource state node. In the usual case, there are
only one directed edge points to the resource state node.
That means to obtain another resource state node only one
vulnerability is needed.

The formula is

Pg; = Py X Pys. (7)

. %
AND S3

F1GURE 6: The “AND?” relationship between two attack action nodes.

!
OR S3
.

FIGURE 7: The “OR” relationship between two attack action nodes.

(b) The directed edges to the same resource state node
with “AND” relationship, as shown in Figure 6.
The formula is

Pg; = (Pacy X Pagi) % (Paca % Pasy) - (8)

(c) The directed edges to the same resource state node
with “OR” relationship.

The concrete form is shown in Figure 7.

The formula is

Pg; = (Pycy X Pag1) ® (Pacy X Pasy) -)

The complexity of the method of attack probability
calculation is decided by the number of atomic attack nodes.
According to attack graph generation algorithm [10], we
can get a certain attack graph, so it is countable but is not
predictable.

4. Experiment and Analysis

4.1. Experiment Environment. To verify the method proposed
in this paper, we build a representative virtual simulation
environment of an internal network which comprised hosts
with VMware and network devices with GNS3. The key
network topology is shown in Figure 8.

The firewall isolates the network structure into two parts,
the external network and the internal network. The hosts in
office network are as follows: Host 0 is an ordinary computer
with Windows system for office users; Host 1 is the DNS
server, which provides DNS services for all internal network
hosts; Host 2 is the Web server and provides HTTP service
for all internal network hosts. The hosts in the core network
are as follows: Host 3 and Host 4 provide SSH services, with
Linux system; Host 5 is the FTP server; Host 6 is the database
SQL server.

Firewall

Web Server DNS Server

Linux
Central

Security and Communication Networks

Office

network

Host 1
Linux

Windows XP
Internal

Linux

Core
network

Host 4
Linux
Central

Linux
FTP Server

FIGURE 8: The network topology diagram.

TaBLE 3: The vulnerability information for each terminal.

Host Name of software Vulnerability description CVEID
Hl BIND 9 Stack buffer overflow vulnerability CVE-2015-7547
H2 1IS 7.0 1IS Buffer Overflow Vulnerability CVE-2008-0075
H3 OPENSSH Mode information disclosure vulnerability CVE-2008-5161
(SSH2) Local privilege elevation vulnerability CVE-2007-2063
H4 OPENSSH Mode information disclosure vulnerability CVE-2008-5161
(SSH2) Local privilege elevation vulnerability CVE-2007-2063
H5 Ser-U Read the vulnerability CVE-2015-7601
10.5.0.19 FTP buffer overflow vulnerability CVE-2015-7768
H6 SQLServer Buffer Overflow Vulnerability CVE-2008-0086
2005 Information disclosure and buffer overflow

1 CVE-2008-0106
vulnerability

The security monitoring system is deployed in the two
subnetworks to monitor the hosts; then we could obtain
the appropriate attacking alarm log. The specific security
monitoring systems include the OSSEC intrusion detection
system, which monitors the abnormal activities of the host
PC and the Trojan horse and Tripwire security monitor-
ing tools deployed on the file server for system integrity
check.

The attacker originally owns the resources as normal staft
user on Host 0 in the office network. The final target is to get
the root privilege of Host 5 or Host 6 in the core network.
At the first time, the corresponding security policies are as
follows: (1) the office network Web server Host 2 and DNS
server Host 1 provide internal network service for internal
users; all internal hosts can connect to the office network by
accessing the services on Host 1 and Host 2. (2) Host 4 in the

office network is allowed to access the SQL services on Host 6
for specific data but cannot browse all information and could
not modify or download; (3) Host 3 and Host 4 in the core
network are allowed to access the rest of the terminals and the
corresponding services and own the permissions to modify
specific data.

We scanned the vulnerabilities on each host with Nessus.
The vulnerability scanned results and related information of
each host are shown in Table 3.

The security monitoring system was deployed to monitor
the hosts; we could obtain the appropriate attacking alarm
log. The specific security monitoring systems included the
OSSEC intrusion detection system, which monitored the
abnormal activities of hosts and the Trojan horse, and
Tripwire security monitoring tools are deployed on FTP
server and SQL server for system integrity check.

Security and Communication Networks

Attack (Root 0)

@ 1IS_bof(0, 2)

DNS_bof(0, 1)

H_bof(1, 4) SSH_pof(2, 3)
@’ ‘@ @ SSH_bof(2, 4)
«—

<

FIGURE 9: The initial attack graph.

4.2. Experiment Verification. After determining the topology
of the internal network and the information of each terminal,
attack graph automatic generation algorithm would help us
to generate the attack graph of the internal network, and the
atomic attack edges pointing to the same resource state node
all present “OR” relationship. The concrete structure is shown
in Figure 9.

In Figure 9, the rectangle represents the resource state
node and the resource rights that can be obtained after
each atomic attack; the hollow circle represents the atomic
attack action node and marked the corresponding terminal
vulnerability on the left or right side of the atomic attack; the
red solid circle is the monitoring event node.

According to the method of attack graph simplification,
we got the simplified attack graph in Figure 10. We can
simplify the attack graph with the temporal difference rela-
tionship of monitoring event node, removing the attack paths
that do not match the temporal difference relationship.

After simplifying the attack graph, we can divide the
simplified attack graph into key-value pairs and calculate the
cumulative reachable probability for target nodes. The key-
value pairs and attack probability are shown in Table 4.

Attack (Root 0)

IIS_bof(0, 2)

SSH_bof(2, 4)

()
\&)

Trust(4, 3)

FTP_bof(3, 5)

FTP_bof(5, 5)

FIGURE 10: The simplified attack graph.

TABLE 4: The key-value pairs with attack probability.

Key-value pair Attack probability ((P4, Pxg))

(Root 0, a,, User 1) (0.83,0.7)
(Root 0, a,, User 2) (0.92,0.5)
(User 1, a;, User 3) (0.67,0.3)
(User 1, a, User 4) (0.67,0.3)
(User 2, as, User 3) (0.67,0.3)
(User 2, a4, User 4) (0.67,0.3)
(User 4, aq, User 3) (0.58,0.5)
(User 3, ay, User 5) (0.83,0.7)
(User 4, a,, User 5) (0.83,0.7)
(User 5, a5, Root 5) (0.83,0.7)

The cumulative reachable probability values for subre-
source state nodes and target node are shown in Table 5.

The cumulative reachable probability from HO to H5 is
3.95% by using the other terminal’s vulnerabilities. Compared
with the frequency of internal attacks and the safety reports
of the enterprise system from daily inspection, the two values
are basically in line. Based on such an internal network,
where the attacker only has privilege in the office network, the

10

TABLE 5: The cumulative reachable probability for target nodes.

Subresource state node Cumulative reachable probability

User 1 0.581
User 2 0.46
User 3 0.117
User 4 0.117
User 5 0.068
Root 5 0.0395

of target node

The cumulative reachable probability

The number of nodes in the target network

—~@— This paper
~®— Document [5]

FIGURE 11: The comparison of cumulative reachable probability.

probability of stealing the core data successfully is relatively
low.

4.3. Experiment Analysis. In order to assess the accuracy
of our method, we performed five times’ experiments with
different cumulative reachable calculation method of target
node on the same internal network. We compared the data
based on the attack probability of the attack graph proposed
by Li et al. [5] with the data obtained by the method
proposed in our paper. The results are shown in Figure 11, the
abscissa indicates the number of target network nodes and
the ordinate indicates the cumulative reachable probability of
target node.

Comparing the data in Figure 11, the cumulative reachable
probability of target node changed more smooth and more
stable with our method than Li et al. [5] that our security
metric should be more accurate than Li et al’s [5].

At the same time, the approach we proposed could prune
the attack graph paths and not only reduce the calculation
greatly but also improve the accuracy of the attack graph
obviously. Therefore, the computational effort is absolutely
less than Document [5], as shown in Figure 12.

5. Conclusion

In our paper, we propose an internal network security metric
method based on attack probability to solve the problem of
the existing security metrics based on attack graph lacking the

Security and Communication Networks

The number of attack paths in
destination network

0 T T T T T
6 12 18 24 100

The number of nodes in the target network

—o— This paper
—o— Document [5]

FIGURE 12: The comparison of attack paths.

applicability of the internal network. We use the monitoring
event node and the temporal difference relationship to
simplify the attack graph, put forward the concept of the
key-value pair to analyze the attack graph, and propose the
calculation method of cumulative reachable probability for
different kind of target nodes based on vulnerabilities with
CVSS metric indicators and the directed edges relationship.
The simulation results show that the method of attack graph
simplification has a significant improvement in efficiency,
and the method of attack probability calculation improves
the quantitative analysis accuracy obviously. The next step
of the work will focus on the refinement attack probability
calculation, finding a more comprehensive internal network
to improve the accuracy of the final probability value.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This article is supported by National Key R&D Program of
China (Grant no. 2016YFB0800700) and National Natural
Science Foundation of China (Grant no. U1636115).

References

[1] G.Yang,]. Ma, and A. Yu, “Study on internal threat detection,”
Journal of Information Security, vol. 1, no. 3, 2016.

[2] X.Lu, “Research on information system security metrics theory
and method,” Computer Science, vol. 35, no. 11, pp. 42-44, 2008.

[3] P.Xie, J. H. Li, X. Ou et al., “Using Bayesian networks for cyber
security analysis,” in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems & Networks, vol. 23, pp. 211-
220, 2010.

[4] L. Wang, T. Islam, T. Long et al, “An Attack Graph-Based
Probabilistic Security Metrics,” in Proceedings of the Conference
on Data & Applications Security XXII, 5094, pp. 283-296, 2008.

Security and Communication Networks

[5] Q.Li, B. Wang, X. Wang et al., “Network security measurement

(6]

=)

(12]

method based on probability of attack graph node,” Application
Research of Computers, vol. 30, no. 3, pp. 906-908, 2013.

H. Wang, G. Yang, and D. Han, “Study on internal threat
prediction based on bayesian networks,” Application Research
of Computers, vol. 30, no. 9, pp. 2767-2771, 2013.

S. Zhang, G. Li, S. Song et al., “Application of Bayesian Rea-
soning in the Confidence Calculation of Attack Graph Node,”
Journal of Software, vol. 21, no. 9, pp. 2376-2386, 2010.

N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk
management using Bayesian attack graphs,” IEEE Transactions
on Dependable and Secure Computing, vol. 9, no. 1, pp. 61-74,
2012.

X. Chen, B. Fang, Q. Tan et al., “Study on inference algorithm
of internal attack intention based on probability attack graph,”
Journal of Computers, vol. 37, no. 1, pp. 62-72, 2014.

Y. Ye, X.-S. Xu, Y. Jia, and Z.-C. Qi, “An attack graph-based
probabilistic computing approach of network security;” Jisuanji
Xuebao/Chinese Journal of Computers, vol. 33, no. 10, pp. 1987-
1996, 2010.

X. Ou, S. Govindavajhala, and A. W. Appel, “MULVAL: a logic-
based network security analyzer;” in Proceedings of the 14th
Usenix Security Symposium, pp. 113-117, Baltimore, MD, USA,
2005.

D. Wu, D.-G. Feng, Y.-F. Lian, and K. Chen, “Efficiency
evaluation model of system security measures in the given
vulnerabilities set,” Journal of Software , vol. 23, no. 7, pp. 1880-
1898, 2012.

1

Hindawi

Security and Communication Networks
Volume 2018, Article ID 2058429, 12 pages
https://doi.org/10.1155/2018/2058429

Research Article

A Dynamic Hidden Forwarding Path Planning Method Based on
Improved Q-Learning in SDN Environments

Yun Chen @), Kun Lv (@), and Changzhen Hu

School of Software, Beijing Institute of Technology, Beijing, China
Correspondence should be addressed to Kun Lv; kunlv@bit.edu.cn

Received 10 January 2018; Accepted 12 March 2018; Published 23 April 2018
Academic Editor: Zheng Yan

Copyright © 2018 Yun Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, many methods are available to improve the target network’ security. The vast majority of them cannot obtain an optimal
attack path and interdict it dynamically and conveniently. Almost all defense strategies aim to repair known vulnerabilities or limit
services in target network to improve security of network. These methods cannot response to the attacks in real-time because
sometimes they need to wait for manufacturers releasing corresponding countermeasures to repair vulnerabilities. In this paper,
we propose an improved Q-learning algorithm to plan an optimal attack path directly and automatically. Based on this path, we use
software-defined network (SDN) to adjust routing paths and create hidden forwarding paths dynamically to filter vicious attack
requests. Compared to other machine learning algorithms, Q-learning only needs to input the target state to its agents, which
can avoid early complex training process. We improve Q-learning algorithm in two aspects. First, a reward function based on the
weights of hosts and attack success rates of vulnerabilities is proposed, which can adapt to different network topologies precisely.
Second, we remove the actions and merge them into every state that reduces complexity from O(N?) to O(N?). In experiments,
after deploying hidden forwarding paths, the security of target network is boosted significantly without having to repair network

vulnerabilities immediately.

1. Introduction

A defense strategy represents a series of defense methods
in the target information system network that can reduce
the attack success rate of attackers. Currently, many methods
are available to generate a defense strategy. The most impor-
tant problem is the game between cost and performance.
The defense strategy may own excellent performance, but
defenders scan and recapture the information system in most
instances, which is very uneconomic.

Generally speaking, whether it is SDN or traditional
network, we can plan defense strategy through locate optimal
attack path. Regarding this method, a majority of previous
papers specify generating a complete attack graph [1-3];
however, in a very large computer cluster, the state explosion
problem tends to affect the attack graph generation. Thus,
the optimal attack path cannot be modeled quickly, and in
extreme cases, it may not be possible to determine the optimal
attack path. In [4], authors use the ant colony optimization
(ACO) approach to search the optimal attack path based

on the minimal attack path [5], but ACO can easily fall
into a local optimum. Reference [6] proposes a HMM-
based attack graph generation method, and then authors
use ACO-based algorithm to compute the optimal attack
path. Based on this path, evaluating the security of target
network can be evaluated and corresponding countermea-
sures can be planned. But this method primarily handles the
known vulnerabilities. Reference [7] proposes a malicious
nodes-based security model enacting method, but its per-
formance on handling zero-day vulnerability is not strong
enough.

Reinforcement learning [8] is an area of machine learning
inspired by behaviorist psychology, concerned with how
software agents ought to take actions in an environment so
as to maximize a cumulative reward. It differs from standard
supervised learning in that correct input/output pairs are
never presented, nor are suboptimal actions explicitly cor-
rected. Further, the focus is on online performance, which
involves finding a balance between exploration (of uncharted
territory) and exploitation (of current knowledge).

http://orcid.org/0000-0001-9106-594X
http://orcid.org/0000-0002-5411-5466
http://orcid.org/0000-0002-2711-7060
https://doi.org/10.1155/2018/2058429

To determine a method that can model the optimal
defense strategy in many conditions, the algorithm of the
method must not depend on all states of the target network
and it should be able to decide which atomic attack should be
picked to be the next state dynamically. These abilities depend
on the characteristics of the specific algorithm.

In this paper, the optimal attack path between source
node and target node is computed by the improved Q-
learning algorithm. Concretely, in the first stage, we collect
information of known vulnerabilities and corresponding type
of hosts from national vulnerability database (NVD) [9].
Then, a fuzzy neural network will be used to train these
samples to gain the host weight. After getting host weight, the
reward function of improved Q-learning can be built. Using
this function, the optimal attack path can be located between
source node and target node.

In Section 2, we will introduce Q-learning, which is
followed by an overview of the main contributions of this
paper. In Section 3, the definition of a network model will be
discussed. We propose a reward function, and the optimal
forwarding path will be built based on this function. In
Section 4, we will discuss how to implement this method in a
real information system network.

Section 5 provides the experimental results for the opti-
mal protective path and discusses how to improve the Q-
learning algorithm. The paper concludes with a summary and
future work in Section 6.

1.1 Related Work. There are several works in defense strategy
planning in recent years. Currently, many methods are
available to generate a defense strategy and these methods can
be classified into three categories. First, we can compute the
optimal attack path using attack graph and enact policies to
destroy the path. Second, we can locate the not-trust nodes
in target network and plan countermeasures to prevent these
nodes from being exploited by attackers. Third, special strate-
gies can be designed to aim to specific network environments
specific attack types. But all of these methods have inherent
defects.

Regarding the first method, the intrinsic of this method
is that system generates attack graph of target network and
then finds and interdicts the optimal attack path in the
attack graph. Wang et al. [6] propose a HMM-based attack
graph generation method and ACO-based algorithm to eval-
uate the security of target network and plan corresponding
countermeasures. This method can compute the transition
probability between each two states. Based on the probability
and ACO-based algorithm, the shortest attack path can be
found, which can be used to evaluate security metrics. But
this method owns some defects. Firstly, the complexity of
ACO algorithm is O(Nc * n* «m) (Nc is the iteration number,
n is the number of vertices, and m is the number of ants
in ant colony) that is too high to computation if we process
computer cluster. Secondly, this technique’s performance is
not good enough when it deals with APT and zero-day
vulnerabilities, because the interval of time series of HMM
is slight less than the interval of APT and this method uses
Common Vulnerability and Exposures (CVE) [10]. Ghosh
et al. [4] proposes an ACO-based defense strategy planning

Security and Communication Networks

method. This method is similar as [6]. It uses minimal attack
graph to locate the optimal attack path, but this path may not
be the global optimal and this attack graph will also show state
explosion issue if it is used in very large computer clusters.

For the second technique, the core of this technique
is to find the malicious nodes. Akbar et al. [7] propose a
Support Vector Machine (SVM) and rough set-based security
model building method. In that paper, authors use SVM and
rough set to classify the nodes in target network as trust
nodes, strange nodes, and malicious nodes. This technique
can also acquire the transaction success rate. This method
can handle zero-day vulnerabilities in some conditions, but
it needs a large number of sample data to training SVM that
is impossible to obtain enough data set in some network
environments because the data need to spend a lot of time
to collect.

Regarding the third method, the key of this method is
to handle specific attack types or vulnerabilities. Hu et al.
[11] characterize the interaction between defender and APT
attacker and an information-trading game among insiders as
a two-layer game model. Through their analysis, the existence
of Nash Equilibrium for both games is certified and the
security metric can be evaluated. But this method can only
process APT; the generalization of it is limited. Same as
[11], Wang et al. [12] propose a k-zero-day safety method.
It starts with the worst case assumption that this is not
measurable which unknown vulnerabilities are more likely
to exist in the target network and ends to the number of
zero-day vulnerabilities that can destroy the network asset.
But the complexity of computing this metric is exponential
in the size of the zero-day attack graph. Furthermore, the
zero-day attack graph cannot reflect the condition of known
vulnerabilities related work.

1.2. Contribution. In this paper, we use an improved Q-
learning algorithm to generate the optimal attack path. In Q-
learning [8], which action will be selected is based on a reward
function. In other words, a large number of sample data are
not required, as is the case in many other machine learning
algorithms. Compared to temporal difference learning, Q-
learning can directly iterate an optimal policy, which in this
paper is the optimal attack path. Defining the reward function
is the key issue in Q-learning. In this paper, we use the host
weight and attack success rate of atomic attacks to build a
reward function. Specifically, the host weight is decided by the
position the host stays in and services the host offers. Besides,
we improve the structure of state matrix in Q-learning. The
dimension of the matrix is reduced, which can lower the space
complexity. Furthermore, the network model that reflects the
configuration of the target network will be used to analyze the
result of Q-learning.

Our ultimate goal is to build a hidden forwarding path.
In this path, we create virtual hosts that provide specific
defense strategies in SDN to filter specific attacks. These
hosts can be created or deleted dynamically, which can
ensure the computation of hidden forwarding paths will
occupy the SDN controller’s minimal memory space when
we want to change the routing path. Furthermore, through
using the hidden forwarding paths, vulnerabilities are filtered,

Security and Communication Networks

Cost-to-go
function

Q-factor

Policy Policy
evaluation improvement

Transfer
probability

F1GURE 1: Illustration of policy iteration in reinforcement learning.

which can guarantee the system’s security without repairing
vulnerabilities or limiting services on hosts.

The other contribution of this paper is to render the
defense strategy to be economical. Our method does not need
scan or monitor hosts at all time. The hosts will be scanned
only if our algorithm thinks it is not-trust node.

2. Preliminary

2.1. Description of Q-Learning Algorithm. Q-learning is a
model-free reinforcement learning technique and it derives
from policy iteration. The flow diagram of policy iteration
is shown in Figure 1. Specifically, Q-learning can be used to
find an optimal action-selection policy for any given (finite)
Markov decision process (MDP). Therefore, the definition of
Q-learning is given in

G = (iG>)
1

Sp = (in’ ay> jn’ gn) :

This formula denotes that the state i, transfers to j, = i,
using action a,,, and the cost of this process is g,. Above, n
represents the discrete time sequence.

In Section 2.1, Q-factor is considered as the sum of the
immediate cost and all of the successor states’ discount costs
which are followed by the current state in policy .

However, different from policy iteration, Q-learning is an
incremental dynamic programming process, and it is very
suitable to solve MDP which does not have an apparent trans-
fer probability. Furthermore, Q-learning works by learning
an action-value function that ultimately gives the expected
utility of taking a given action in a given state and following
the optimal policy thereafter. A policy is a rule that the agent
follows in selecting actions, given the state it is in. When such
an action-value function is learned, the optimal policy can be
constructed by simply selecting the action with the highest
value in each state. Thus, the update formula of Q-factor is
given in

T (j) = maxQ, (j.b)
Qi (ba) = (1-96,(G,a))Q, (i,a) (2)
+6, (,a)[g(ia, j) +y], ()]

j is the successor state and J,(i,a) is the learning rate
of state-action (i,a) in time n. A is the action set. y is the
discount factor. Generally, in order to ensure the algorithm
converges to the optimal value, the learning rate can be set
based on

(04
= — n=

" (Bn)

In this formula, «, 3 are positive numbers. After we
evaluated a series of values of & and 3, we found that, if a/f3
is approximately 0.1, the convergence speed and the accuracy
of the Q-learning agent are suitable.

But the traditional Q-learning algorithm owns some
problems. Firstly, the Q-learning agent should choose an
action when a state transfers to other state, but in the infor-
mation system, we can fuse the action into state. Secondly,
the traditional Q-learning may generate redundant terms,
although the total reward of this path is the highest one. In
Section 3, we will discuss and solve these problems.

1,2,3,.... (3)

2.2. Software-Defined Network. Software-defined network-
ing (SDN) is an approach to computer networking that
allows network administrators to programmatically initialize,
control, change, and manage network behavior dynamically
via open interfaces [13] and abstraction of lower-level func-
tionality. SDN is meant to address the fact that the static
architecture of traditional networks does not support the
dynamic, scalable computing and storage needs of more
modern computing environments such as data centers. This
is done by decoupling or disassociating the system that makes
decisions about where traffic is sent (the SDN controller
or control plane) from the underlying systems that forward
traffic to the selected destination (the data plane). The SDN
structure is shown in Figure 2.

3. Building the Optimal Attack Path

The optimal attack path is the most cost-effective attack path
from source node to target node in an information system
network. Using the optimal attack path, the attacker can
achieve his/her goal at minimum cost. In this paper, we use
the optimal attack path to build the hidden forwarding path.

3.1. Network Model. A network model reflects host informa-
tion in the target network, including software applications,
host name, host’s IP address and operating system, and
communication link. Using a network model, we can produce
a network topology graph and installed software applications
configuration. In this paper, our network model refers to [14],
but we have improved this model to suit our system. The
structure of our network model is shown in Figure 3.

3.2. Evaluating Weights of the Hosts. In reinforcement learn-
ing, the reward function is the core facilitator. If and only if we
have a reward function, the policy iteration or value iteration
can be executed. Currently, two methods are available to
obtain the reward function.

The first is to obtain the state set and the action set
and determine the relationship between them. A reward

Security and Communication Networks

Application layer |
Business applications
I API IAPI IAPI
Control layer
Control data plane interface
(e.g., OpenFlow)
Infrastructer layer

FIGURE 2: Model of software-defined network.

Network host
Network interface: <Vector>
Software application: <Vector>

Vulnerability: <Vector>

Contains

Software application

Application name: <String>

Host IP: <String>

Vulnerability: <Vector>

Host name: <String> ~——_

Network interface

/ Host IP: <String>

Link: communication link

Contains
Reference
Communication link
Source node: network interface
Contains Target node: network interface
Contains.
Vulnerability

CVEId: <String>

Possible privilege: <String>

FIGURE 3: Network model.

function can then be fitted, which is named the state-action (15, 16]. But to use the inverse reinforcement learning, the
function or Q-factor. Furthermore, about several decades optimal policy should be specified beforehand. Thus, in this
ago, another method that can also obtain the reward func- paper, we use the first method to obtain the reward func-

tion was proposed, named inverse reinforcement learning tion.

Security and Communication Networks

Input X Fuzzy u
layer layer

Fuzzy rule Output
calculation w put | Yn
e P layer

FIGURE 4: T-S fuzzy neural network structure.

Definition 1. Attack success rate of single weakness represents
the rate at which a weakness in the information system is
successfully exploited by attackers and the degree of difficulty
in carrying out the attack. This element is denoted as Pr.

The attack success rate of a single weakness can be
affected by a large number of factors, for instance, available
information on the weakness, the attack method, the attack
tool, and whether there is a communication link between the
source host and target node. The level of detail known about
a weakness will affect the attack success rate. The value of the
success rate of a single weakness attack can be found from the
Common Vulnerability Scoring System (CVSS) [17-19].

Definition 2. Host weight denotes a host’s weight in the target
network. It is the function defined by

Hw = f (pos,sev). (4)

In this equation, Hw is the host weight, pos represents
the host’s position (Internet, DMZ, Intranet), and sev denotes
which services the host offers (MAIL, WEB, DNS, SQL, FTP,
Management, etc.). Therefore, this equation indicates that
host weight is decided by the host’s position and the services
it provides. Unfortunately, all services and position are not
known, nor is the relationship between the position and a
service. However, we can estimate the importance of these
attributes based on basic knowledge of computer networks.
For instance, the importance of different positions in an
information system is Intranet > DMZ > Internet, and
for the services, Management > SQL > FTP > DHCP >
MAIL > DNS >= WEB. Furthermore, we know that pos
and sev are positively correlated. Thus, we can build a fuzzy
set based on this knowledge and use fuzzy computation to
determine the value of the host weight. In this paper, we use a
T-S fuzzy neural network (FNN) to fit the weight of host. The
structure of the neural network is shown in Figure 4.

In this figure, X; is an input vector. In this paper,
in order to simplify the calculation and fit our network,
it is denoted as a ten-element tuple <Pos;, Pos;, Posy,
Sevy, Sev,, Sevs, Sevy, Sevs, Sevg, Sev,>. pos and sev are the
type of position and service, respectively. y represents the
membership function, w is the result of the fuzzy compu-
tation, and P denotes the coefficient of the neural network.
Yn is the neural network’s output and is a single-element
tuple <Weight>. Weight denotes the host weight. Ye is the
expectation output. It represents the host weight. At first, we
just categorize all hosts into five different degrees based on
the impact of their confidentiality, integrity, and availability
on the target network, Danger, High, Medium, Low, and Very

Low, but these only reflect the weight of a host roughly. In the
next step, we use our algorithm to fit more accurate results.

In this paper, the proposed host weight is computed
based on a fuzzy self-adaption weight correction algorithm.
In the first stage of the algorithm, we quantify the sample
data. Because accurate results will be obtained by the fuzzy
computation, we just need an initial value that reflects the
importance of different attributes. We then normalize the
sample and initialize the T-S fuzzy neural network, including
the number of neurons in every layer, the initial learning rate
and P, and the evolution times of the network. After training
the network, for every input’s attribute, ji, a coeflicient vector
of the parameters in (4), which is defined in (5), can be
obtained using the algorithm

ﬁ:Z‘blj, j:1,2,...,k. (5)
J

In this equation, k is the number of inputs parameters. Thus,
(4) can be redefined as

Hw = jiX,. (6)

X, is the set of pos, sev in the target network. Therefore,
the host weight can be solved from (6).

3.3. Modeling Optimal Attack Path Using Improved Q-
Learning Algorithm. After we obtain the information on
vulnerabilities and hosts in the target network, the process of
Q-learning begins.

Definition 3. Optimal attack path is an attack path which has
the highest probability to be chosen by intruders.

Definition 4. The not-trust nodes are the nodes in the optimal
attack path.

After we acquire the state set and action set, if we can fit
the reward function (cost function), the optimal attack path
can be determined.

3.3.1. The Proposed Reward Function. The reward function
(cost-to-go function) decides which action will be chosen
in the current state. Using the reward function, we can
obtain an optimal policy, which is the optimal attack path.
Because a state node represents a host-vulnerability pair, the
information of host and vulnerability will decide the reward
function. In this paper we formulate the reward function
based on host weight (Hw) and the attack success rate on

Security and Communication Networks

Require:
(1) Host weight Hw

(3) Vulnerability V/
(4) Host Name HN

(5) function IQL(Hw, Pr, V, HN)

(14) end if

(15) endfor " «— ip,iy,..., 10
(16) return m”

(17) end function

n

(2) The attack success rate of vulnerability Pr

Ensure: Optimal policy (attack path) 7"

(6) n « size(V') obtain the number of vulnerabilities
(7) m « size(HN) obtain the number of hosts
(8) S «getstate(V, HN) gain state set
9) y «getNumber() initialize discount factor
(10) initialQ = 0 initialize value matrix
(11) Reward < R(S,HN,Hw, S -V - P,) build reward matrix
(12) for t = 1: n nisiteration step do Q,,,(i,,,) «—
funcQ(Q,(i,), 8, y> R(i;» iyy1)> J;(i,,1)) obtain the optimal policy
(13) if Q,,,(i) = Q,(i) then break

ArGoriTHM l: Planning optimal attack path based on improved Q-learning algorithm.

a single weakness (Pr). Therefore, the reward function is
defined by

R = f (Hw,Pr). (7)

From this equation, we know that the reward function
is decided by Hw and Pr, but the relationship between the
host weight and attack success rate of a single weakness
is not known. Generally, there is a positive relationship
between Hw and Pr, and they are interdependent. Thus,
we use a multiplication sign to connect Hw and Pr. We
should also consider the impact of a host on the information
system network (see the intermediate item in (8)). For the
relationship between attack success rate and host weight,
we believe the host weight is less important than the attack
success rate, because the calculation aims to vulnerabilities;
thus, the square root of Pr is used in (8), which ensures the
variation range of the value of attack success rate is bigger
than host weights. The reward function is rewritten as

Hw; -
X

R= \Ex 5 H\l/vj T (8)

m

In this equation, Hw; is the weight of host H; which owns
a specific vulnerability. ! denotes the mth privilege which
can be captured on H; based on a specific vulnerability. Hw is
the weight of a host in the target network. c is the total number
of hosts in the target network.

3.3.2. Improved Q-Learning Algorithm Structure. After ob-
taining the reward function, we determine g, in (2) and
calculate the Q-factor. In this paper, we use deterministic state
transition model. Our contribution is that we merge actions
into state set, because we actions and states are bounder
together. Thus, the dimension of state transition matrix in
Q-learning is reduced, that means the space complexity of

improved Q-learning is lower than traditional Q-learning
algorithm. In addition, to avoid the attack circle, we set P, to
a small number if the target host is the source host; thus the
reward matrix is recalculated based on the new P,. Using this
Q-factor, the optimal policy/attack path from source node
to target node can be acquired. The improved Q-learning
algorithm to identify the optimal attack path is shown in
Algorithm 1.

In this algorithm, i, represents a state in time n. In
this paper, a state is a two-element tuple <HostName,
Vulnerability>. Because the states in the Q-learning system
are host-vulnerability pairs, attaining the optimal policy
means obtaining a set of host-vulnerability pairs that define
the optimal attack path.

4. Building Dynamic Forwarding Paths in
a SDN Environment

Nowadays, for an information system network, the most
common defense strategy is to divide the target network
into Intranet and DMZ. In the Intranet, some hosts are
prohibited to visit other hosts or services, but the restrictions
are very inconvenient for users. If the administrators find
new vulnerabilities in a target network, some services or
applications must be stopped to repair these vulnerabilities,
which is uneconomic. Besides, if firewalls and/or IDS do not
have a specific property, they cannot defend from specific
attacks. To solve these problems, we propose the hidden
forwarding path in this paper.

4.1. Building Hidden Forwarding Paths Using SDN. Using
SDN, we can build forwarding nodes arbitrarily. In
Figure 5(a), all hosts in the target network can connect
with each other. In this case, the security of the target
network cannot be very high because the forwarding

Security and Communication Networks

Roter

=)
=

o

Web Server 1

Application Server 1 Database Server 1

Application Server 1

8 o

Application Server 2 Application Server t

i
0

C

Web Server 2 Database Server 2

Application Server 2

@

Application Server t ‘Web Server n

Database Server m

(a)

Virtual Host 1 Virtual Host 2

/K Web Server 1

...... @
i i i ‘Web Server 2

Database Server 1 Database Server 2 Database Server m

W

Web Server n

()

Virtual Host 3

‘Web Server 1

‘Web Server n

s
&0

Application Server 1

C 8
‘Web Server 2

Application Server 2

O 0

Application Server ¢

Database Server 1

Database Server 2

Database Server m

FIGURE 5: (a) An information system network’s forwarding structure without any router. (b) The forwarding structure using traditional three-

layer switching. (c) The forwarding path using SDN.

structure is too complex to monitor. To solve this issue,
traditional networks use routers and switches to control
the forwarding path (see Figure 5(b)). Generally, the core
switch divides the information system network into two
zones, DMZ and Intranet. If we change the forwarding path
using the optimal attack path, the network structure should
be altered. For example, if the web server visits application
server, the application server responds to the requests of
the web server by accessing data in the database server.
If the application server is located in optimal attack path,
the initial routing path should be changed or prohibited to
protect system’s security; for example, theoretically speaking,
the web server can send packets to other servers, and these
severs will visit database server. But this is unpractical
scheme, because in traditional network, part of network

topology is fixed. Thus, we cannot modify the forwarding
path directly, meaning we cannot avoid the not-trust nodes
without repairing vulnerabilities or limiting some services.
In this paper, we use SDN to create the specific virtual hosts
being used as forwarding nodes. In the first step, according
to the not-trust nodes, we create virtual hosts that offer
specific services, defense strategies, or interfaces to keep the
original network structure in SDN environments. A sample
of a hidden forwarding path is shown in Figure 5(c). In this
network, the optimal attack path is

WebServer — ApplicationServer — DatabaseServer. (9)

According to this attack path, we can add virtual hosts
to be forwarding nodes between each two nodes and specific

8.8

.

Name: Host 8
Attacker = Name: Host 5 S 08: Windows XP
Name: Host 0 OS: Linux Application: IE6.0
ame: Hos) Application: MySQ L5.7.16 Host 8
OS: Linux U
Application: attack Host 5 N H
tools DS Name: Host 6 ame: Host 7
08: Linux OS: Windows
) Application: MySQ L5.7.16 Server 2008 R2
(‘) O P e o Q Application: Serv-U 10.5.x
J Host 6 Host 7

User

Host 1
Name: Host 1
OS: Windows 10
Application: Office, IE

Name: Host 2
OS: Windows 7

‘

Name: Host 3 Host 4
OS: Windows 7
()" Application: IIS7.0

Host 3

Name: Host 4
OS: Linux

Application: 1IS7.0
Host 2 Application: Bind9, Sendmail8.13

Security and Communication Networks

U

Intranet Lan 1

FIGURE 6: Network topology graph.

security strategies can be enacted on these virtual hosts, and
the hidden forwarding path is shown as follows:

(VirtualHost1-->) WebServer — (VirtualHost2--)
(10)
ApplicationServer — (VirtualHost3--») DatabaseServer

In virtual Host 1, we just analyze the packets that represent
an HTTP request, and the function of Host 2 and Host 3
is similar to Host 1. Thus, every virtual host can defend
against specific attacks, which is more effective and cost-
effective than placing firewalls between every not-trust node.
Concretely, in Figure 5(b), if the web server wants to commu-
nicate with application server, it will send the request packets
to router and the router will send packets to application server
through its routing table. But in Figure 5(c), if the web server
sends packets, they will be sent to virtual Host 2 first. Then,
virtual Host 2 will send packets application server. For the
defense strategy in this optimal attack path, we should add
filters that can filter attacks aimed at web, application, and
database servers. We have two methods to add filters. First,
we add web, ftp, and database filters into the first node (virtual
Host 1). Second, because different servers are divided into
different blocks in SDN environments, we can add specific
filters on corresponding virtual hosts. In the first method,
we must change the defense strategy if the optimal attack
path changes. In the second method, we just need to add

or delete corresponding virtual hosts in SDN environments,
which is much more convenient and efficient than the first
method.

After implementing these specific functions on the virtual
hosts, they form the hidden forwarding path. We can easily
monitor the security logs of these virtual hosts. Further-
more, because the route is computed by the controller, we
can change the hidden forwarding path dynamically and
update the mapping table in the DNS server, which will not
influence the physical components of the information system
network. By using this method, administrators need not
repair known and 0-day vulnerabilities in the target network
immediately.

5. Experiment

In this experiment, we offer an example of building a hidden
forwarding path. The network topology graph which is
shown in Figure 6 is based on the network model mentioned
in Section 2.1. Some security policies are implemented in
this network: the firewall divides the information system
network into three zones which represent Internet, DMZ,
and Intranet, respectively. The web servers are configured in
DMLZ to offer web service to users. Hosts in the Intranet are
not allowed to access the Internet. In addition, there is an
intrusion detection system (IDS) in the Intranet to supervise

Security and Communication Networks

TaBLE 1: Information of software and vulnerabilities on the terminals in the target network.

Host Network segment Service CVE number Success rate
H, Internet Attack Tools None 0
H, Internet Office None 0
H, DMZ [IS7.0(HTTP) CVE-2015-1635 0.9
H, DMZ [IS7.0(HTTP) CVE-2015-1635 0.9
H, DMZ BIND9(DNS) CVE-2015-5477 0.6
Sendmail(Mail) CVE-2009-4565 0.5
OpenSSH 5.4(SSH) CVE-2016-0778 0.3
H; Intranet OpenSSH 5.4(SSH) CVE-2016-0778 0.3
MySQL 5.712(SQL) CVE-2016-3521 0.6
CVE-2016-3614 0.3
Hy Intranet MySQL 5.7.12(SQL) CVE-2016-3521 0.6
CVE-2016-3614 0.3
H, Intranet Serv-U 10.5.0.19(FTP) CVE-2011-4800 0.7
Hy Intranet Outlook(Mail) CVE-2015-6172 0.4
System CVE-2003-0352 0.6
TABLE 2: Grade of pos and sev in host weight.
Internet DMZ Intranet Web DNS MAIL DHCP SQL FTP Manager
Initial value 1 2 3 1 2 3 4 5 6 7
Coeflicient 0.279 0.362 0.363 0.345 0.378 0.337 0.355 0.375 0.399 0.384
Result 0.28 0.72 1.09 0.25 0.76 1.01 1.42 1.88 2.39 2.69
the entire target network. Also, Internet users can only access . Testing instance prediction
the IIS web services on Host 2 and Host 3 and the domain ' ' ' ' ' ' ' ' '
name service on Host 4. At the same time, Host 2 and Host 3
can access Host 4’s Sendmail service and the SQL service on
Host 5 and Host 6. Host 7 is a FTP server which can also be
accessed by Host 2 and Host 3. But Host 2, Host 3, and Host 4
are prohibited from accessing Host 8 (Intranet management =
terminal) directly. Host 8 can access and download data from g
Hosts 2 to 7. The software applications and vulnerabilities on 3
every terminal are shown in Table 1. e
In this paper, we extract 3000 fuzzy information items
from the hosts to build the sample data. Because we only need
the initial value of the input’s attributes (X in Section 3.2)
to represent the importance of different attributes, if a host
does not offer a service or is not installed in the position, O)))))))))

the attribute’s value is set to 0. In contrast, if the host offers a
service or is installed in the position, the value of the attribute
is set to a number based on the importance of the attribute.
Initially, an attribute with least importance is set to 1, and
other attributes’ values will in turn increment at an interval
of 1 based on the least important attribute’s value. Thus, the
initial values of sev and pos are shown in the first line in
Table 2.

Based on this table, we obtain the value of input data.
The neural network’s output is the host weight. Because the
expectation output (Ye) only reflects the host weight roughly,
it is only necessary for the networks output to display a
similar trend to the expectation results. Thus, the result of
testing instance prediction is shown in Figure 7.

Sample

—— Expectation
—— Prediction
—— Error

FIGURE 7: Results of training instance of host weight using FNN.

From Figure 7, the prediction of testing instance follows
the same trend as the expectation result of testing instance. If
we round off the prediction result (Figure 8), the prediction
is equal to the expectation. Therefore, the parameters trained
by the fuzzy neural network are assumed to be correct.

10

5 Testing instance prediction (rounding off)

w
T

Host weight
[8]
v

2+ i
1.5+ i
1r i
0.5 F 1
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Sample
—— Expectation
—— Prediction
—— Error

FIGURE 8: Results of training instance of host weight using FNN
(round off).

The coeflicients and the grading standards of pos and sev
defined in (4) are shown in the second and third lines in

Security and Communication Networks

15

008 OOOO OO

o o

090 o o

690 00%69&0 Qe

10 8080 0(58@08 0¥
o8 38539

Current state

FIGURE 9: Reward matrix of improved Q-learning algorithm.

Table 2. In this table, the first line shows the membership
of every pos and sev, and the second shows every element’s
factor.

According to Table 2, the initial reward matrix is obtained
and is shown in Figure 9.

In this paper, we set Pr to 0.1 if the target host is the source
host and the reward matrix is recalculated based on the new
P.. Besides, we assume that the attackers’ goal is to destroy the
database of the target network; thus the optimal attack path
is

Hjpoot — CVE = 2015 — 1635 — Hj gy —> CVE — 2011 - 4800 — Hj goor- (1)

Thus, we can find the not-trust nodes. Based on these
nodes” information and SDN, the hidden forwarding path
can be built. Thus, the new network topology is shown in
Figure 10.

5.1. Testing Results. In this section, we test the performance
of the hidden forwarding path (Figure 10) and the traditional
forwarding path (Figure5) in a real information system
network. We assume that the firewall cannot prevent the
attacker. We use CVE — 1025 — 1635 and CVE — 2011 — 4800
to be the test vulnerabilities, because they have the highest
attack success rate in the DMZ and Intranet, respectively. The
test results are shown in Table 3.

In Table 3, the reason for “Maybe” in the third line
is that the firewall and IDS may not provide an effective

defense against a specific type of attack, that is, a poten-
tially dangerous function. But in the hidden forwarding
path, the defense strategy is designed to ensure that the
suspicious packet is filtered by the virtual host. Further-
more, because we implement fewer defense strategies on a
virtual host, the cost of the operation will not be exces-
sive. On the other hand, adding some virtual forwarding
nodes in the target network will add memory utilization
and CPU utilization in the target network, although the
total cost of this defense strategy is much lower than
stopping some servers until the system vulnerabilities are
repaired.

Besides, we also offer the optimal attack path using
traditional Q-learning algorithm:

Hj goot — CVE = 2015 - 1635 — Hj o — CVE - 2015 - 1635 — Hj ., — CVE - 2011 - 4800 — H, .. (12)

Comparing the optimal attack path obtained from
improved Q-learning algorithm with the path gained from
traditional Q-learning algorithm, we can see that the result
of improved Q-learning algorithm is terser than traditional
Q-learning.

We also compare our method with other defense strate-
gies. The results are shown in Table 4. The computing method

of value of “Cost” of an algorithm refers to security metrics
and defense cost mentioned in [6]. The “Cost” consists of two
parts: one is defense cost, and the other is attack cost. The
“Complexity” and “Cost” determine “Performance.”

In Table 4, IQL is the method proposed in this paper, TQL
is traditional Q-learning algorithm, and DG-HMM is the
algorithm proposed in [6]. From this table, we can find that

Security and Communication Networks

TABLE 3: Test result of attack target node.

1

Network structure Vulnerability name Attack vector Filter or not Attack successfully or not
Original routing path CVE-1025-1635 Network No Yes
Hidden routing path CVE-2015-1635 Network Yes No
Original routing path CVE-2011-4800 Network Maybe Maybe
Hidden routing path CVE-2011-4800 Network Yes Not
TABLE 4: Result of comparing test.
Method Time complexity Space complexity Cost Performance
IQL O(e * N) O(N?) (10.4, 29) High
TQL O(e # N) O(N?) (10.4, 29) Middle
AG-HMM O(T * N?) O(N?) (14.3, 20.9) Middle
Name: Host 5
OS: Linux

O

Host 5
Attacker)
acker Host 0 Name: Host 6
OS: Linux
Name: Host 1) Application: MySQL5.7.16
OS: Linux 1

Application: attack tools

O
o O
User
Host 1
Name: Host 0

OS: Windows 10

Application: Office

i Application: MySQL5.7.16

Host 6

@ Monitor/filter

\ database

%“ request
VM2

Monitor/filte
P

Q Monitor/filter
\ HTTP
% request

N
\ Q <]
request
M1 ‘
VM3
Name: Host 2
OS: Windows 7 Name: Host 4
OS: Linux

0' Application: I1IS7.0
Application: Bind9, Sendmail8.13

Host 2
Host 4

Name: Host 3
@ OS: Windows 7
Application: IIS7.0
Host 3

FIGURE 10: Implementing hidden routing path.

12

our approach is superior to the other two methods, whether
in time complexity or at cost.

6. Conclusion

In this paper, we propose a dynamic hidden forwarding
path planning method using improved Q-learning (IQL).
The IQL improves running speed of Q-learning agent. Using
IQL, the optimal attack path can be obtained quickly and
does not rely on the complete or minimal attack graph. The
defense strategy obtained from optimal attack path, hidden
forwarding path, can be implemented in many different kinds
of network environments. SDN can allocate the bandwidth
based on the network traffic condition, that means although
a large number of packets may be sent to one virtual host,
these data will not trigger a DoS attack indirectly.

In the next stage, we aim to optimize the cost function to
improve the speed of convergence. In addition, we are going
to implement this method in a traditional office network
without triggering a Do§ attack.

Conflicts of Interest

There are not any conflicts of interest related to this paper.

Acknowledgments

This work is supported by funding from the Basic Scientific
Research Program of Chinese Ministry of Industry and
Information Technology (Grant no. JCKY2016602B001).

References

[1] R.Ritchey, B. O’Berry, and S. Noel, “Representing TCP/IP con-
nectivity for topological analysis of network security,” in Pro-
ceedings of the 18th Annual Computer Security Application, 2002.

[2] R. W. Ritchey and P. Ammann, “Using model checking to ana-
lyze network vulnerabilities,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy, pp. 156-165, IEEE, May 2000.

[3] O. Sheynar, Scenario Graphs and Attack Graphs [Ph.D. thesis],
Carnegie Mellon University, Pittsburgh, Penn, USA, 2004.

[4] N.Ghosh, S.Nanda, and S. K. Ghosh, “An ACO Based Approach
for Detection of an Optimal Attack Path in a Dynamic Envi-
ronment;” in Proceedings of the 1ith International Conference
Distributed Computing and Networking.

[5] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs, “Efficient min-
imum-cost network hardening via exploit dependency graphs,”
in Proceedings of the 19th Annual Computer Security Applications
Conference, ACSAC 2003, pp. 86-95, December 2003.

[6] S.Wang,Z.Zhang,and Y. Kadobayashi, “Exploring attack graph
for cost-benefit security hardening: a probabilistic approach,”
Computers & Security, vol. 32, pp. 158-169, 2013.

[7] S. Akbar, J. A. Chandulal, K. Nageswara Rao, and G. Sudheer
Kumar, “Improving network security using machine learning
techniques,” in Proceedings of the 2012 3rd IEEE Interna-
tional Conference on Computational Intelligence and Computing
Research, ICCIC 2012, December 2012.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, The MIT Press, Cambridge, Mass, USA, 2016.

[9] Natl Institute of Standards and Technology, National Vulnera-
bility Database Version 2.2, 2008, http://www.nvd.org.

Security and Communication Networks

[10] Common vulnerabilities and exposures. http://cve.mitre.org/.

[11] P. Hu, H. Li, H. Fu, D. Cansever, and P. Mohapatra, “Dynamic
defense strategy against advanced persistent threat with insid-
ers,” in Proceedings of the 34th IEEE Annual Conference on Com-
puter Communications and Networks, IEEE INFOCOM 2015, pp.
747-755, May 2015.

[12] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel, “K-zero

day safety: A network security metric for measuring the risk

of unknown vulnerabilities;,” IEEE Transactions on Dependable

and Secure Computing, vol. 11, no. 1, pp. 30-44, 2014.

Software Defined Networking (SDN): Layers and Architecture

Terminology. https://www.rfc-editor.org/rfc/rfc7426.txt.

[14] Y. Chen, K. Lv, and C. Hu, “Optimal Attack Path Generation
Based on Supervised Kohonen Neural Network,” Network and
System Security, pp. 399-412, 2017.

[15] K. Shiarlis, J. Messias, and S. Whiteson, “Inverse reinforcement
learning from failure,” in Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2016, pp. 1060-1068, May 2016.

[16] A. Y. Ng and S. J. Russell, “Algorithms for Inverse Reinforce-
ment,” in Proceedings of the 17th International Conference on
Machine Learning, pp. 663-670, 2000.

(17] Common vulnerability scoring system. https://www.first.org/
cvss.

=
=

[18] Y. Zhang, X. Yun, and M. Hu, “Research on privilege-escalating
based vulnerability taxonomy with multidimensional quatita-
tive attribute,” Journal of China Institute of Communications (in
Chinese with English abstract), pp. 107-114, 2004.

[19] G. Stoneburner, A. Goguen, and A. Feringa, “Risk management

guide for information technology systems :,” National Institute
of Standards and Technology NIST SP 800-30, 2002.

http://www.nvd.org
http://cve.mitre.org/
https://www.rfc-editor.org/rfc/rfc7426.txt
https://www.first.org/cvss
https://www.first.org/cvss

Hindawi

Security and Communication Networks
Volume 2018, Article ID 9482345, 11 pages
https://doi.org/10.1155/2018/9482345

Research Article

A New Type of Graphical Passwords Based on Odd-Elegant

Labelled Graphs

Hongyu Wang ®,' Jin Xu,' Mingyuan Ma,' and Hongyan Zhang’

!School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2School of Management Science and Engineering, Shandong Normal University, Jinan 250014, China

Correspondence should be addressed to Hongyu Wang; why5126@pku.edu.cn

Received 11 January 2018; Accepted 1 March 2018; Published 11 April 2018

Academic Editor: Zheng Yan

Copyright © 2018 Hongyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Graphical password (GPW) is one of various passwords used in information communication. The QR code, which is widely used
in the current world, is one of GPWs. Topsnut-GPWs are new-type GPW's made by topological structures (also, called graphs) and
number theory, but the existing GPWs use pictures/images almost. We design new Topsnut-GPWs by means of a graph labelling,
called odd-elegant labelling. The new Topsnut-GPWs will be constructed by Topsnut-GPWs having smaller vertex numbers; in
other words, they are compound Topsnut-GPWs such that they are more robust to deciphering attacks. Furthermore, the new
Topsnut-GPWs can induce some mathematical problems and conjectures.

1. Introduction and Preliminary

LI Researching Background. Graphical passwords (GPWs)
have been investigated for over 20 years, and many impor-
tant results can be found in three surveys [1-3]. GPW
schemes have been proposed as a possible alternative to
text-based schemes. However, the existing GPWs have (i)
no mathematical computation; (ii) more storage space; (iii)
no individuality; (iv) geometric positions; (v) slow running
speed; (vi) vulnerable to attack; and (vii) no transformation
from lower safe level to high security. However, QR code is
a successful example of GPW” applications in mobile devices
by fast, relatively reliable and other functions [4, 5]. GPWs
may be accepted by users having mobile devices with touch
screen [6, 7].

Wang et al. show an idea of “topological structures plus
number theory” for designing new-type GPWs (abbreviated

as Topsnut-GPWs, [8-10]). All topological structures used in
Topsnut-GPWs can be stored in a computer through ordinary
algebraic matrices. And Topsnut-GPWs have no requirement
of geometric positions for users and allow users to make their
individual passwords rather than learning more rules they do
not like and so on.

How to quickly build up a large scale of Topsnut-GPWs
from those Topsnut-GPWs having smaller vertex numbers?
How to construct a one-key versus more-locks (one-lock
versus more-keys) for some Topsnut-GPWs? And how to
compute Topsnut-GPWSs’ space by the basic computing unit
2"? Obviously, we need enough graphs and lots of graph col-
oring/labellings, and we can turn more things into Topsnut-
GPWs. Let G, be the number of graphs having p vertices.
From [11], we know

p G, bits
18 1787577725145611700547878190848 100
19 24637809253125004524383007491432768 114

20 645490122795799841856164638490742749440 129
21 32220272899808983433502244253755283616097664 145
22 3070846483094144300637568517187105410586657814272 161

23 559946939699792080597976380819462179812276348458981632 179

24 195704906302078447922174862416726256004122075267063365754368 197

http://orcid.org/0000-0001-6165-5690
https://doi.org/10.1155/2018/9482345

Security and Communication Networks

FIGURE 1: (a) An odd-elegant tree; (b) an odd-elegant graph; (c) a set-ordered odd-elegant tree; (d) a set-ordered odd-elegant graph.

where Gp ~ 2% for p = 18,19,...,24. It means that adding
various graph labellings enables us to design tremendous
Topsnut-GPWs with huge topological structures and vast
of graph coloring/labellings, since there are over 150 graph

labellings introduced in [12]. As a fact, Topsnut-GPWs can
generate alphanumeric passwords with longer units. As an
example, we take a path v, v,,v;,v,, in Figure 6(d) to produce
an alphanumeric password

W =1'1816141210201'10'11517211110"11'10202011'20" 111579320’ (1)

by selecting the neighbors of each vertex of these four vertices
V> Vig> V11> and vy, Clearly, such password W may have
longer unit in a large scale of Topsnut-GPW for meeting the
need of high level security.

In this article, we will apply a graph labelling called odd-
elegant labelling [13]. And we will define some construction
operations under odd-elegant labelling for designing our
compound Topsnut-GPWs.

1.2. Preliminary. We use standard notation and terminology
of graph theory. Graphs mentioned are loopless, with no
multiple edges, undirected, connected, and finite, unless
otherwise specified. Others can be found in [14]. Here, we will
use A (p, q)-graph G which is one with p vertices and g edges;
the symbol [m,n] stands for an integer set {m,m + 1,...,n}
for integers m and n with 0 < m < n; [s,t]° indicating an odd-
set {s,s + 2,...,t}, where s and ¢ both are odd integers with
1 < s < t;and [k, €]° represents an even-set {k, k + 2,...,¢},
where k and € are both even integers with respectto0 < k < €.

Definition I (see [13]). Suppose that a (p, q)-graph G admits
a mapping f : V(G) — [0,2g — 1] such that f(u) # f(v) for
distinct vertices u, v € V(G), and the label f(uv) of every edge
uv € E(QG) is defined as f(uv) = f(u) + f(v) (mod2q) and
the set of all edge labels is equal to [1,2q — 1]°. One considers
f to be an odd-elegant labelling and G to be an odd-elegant.

Definition 2 (see [15]). Suppose that a bipartite graph G
receives a labelling f such that max{f(x) : x e X} <
min{f(y) : y € Y}, where (X,Y) is the bipartition of vertex
set V(G) of G. We call f a set-ordered labelling (So-labelling
for short).

As shown in Figure 1, there are four different examples of
Definitions 1 and 2.

Definition 3. Let G; be a (p;,q;)-graph with j = 1,2. A
graph G obtained by identifying each vertex x;, of G; with

a vertex x;, of G, into one vertex x; = x;; o x;, with

i € [1,m] is called an m-identification graph and denoted as
G = (O,,(G;,G,); the vertices x;,x,,...,x,, are called the
identification-vertices.

Moreover, the m-identification graph G = (©,,(G,,G,)
defined in Definition 3 has p; + p, — m vertices and q; + ¢,
edges. One can split each identification-vertex x; = x;; © x;,
into two vertices x;) and x;, (called the splitting-vertices) for
i € [1,m], such that G is split into two parts G, and G, . For the
purpose of convenience, the above procedure of producing
am m-identification graph G = (©,,(G;,G,) is called an m-
identification operation; conversely, the procedure of splitting
G = O,,(G,,G,) into two parts G, and G, is named as the
m-splitting operation.

Definition 4. Let G, be a connected (p;, q)-graph withi = 1,2,
and let p = p, + p, — 2. If the 2-identification (p, q)-graph
G = (O,(G;,G,) hasamapping f : V(G) — [0,q—1] holding
the following: (i) f(x) # f(y) for each pair of vertices x, y €
V(G), (ii) f is an odd-elegant labelling of G; withi = 1,2, and
(ii) LF(V(G) N F(V(G,)] = 2 and F(V(G)) U F(V(G,)) €
[0, g — 1], then one calls G a twin odd-elegant graph (a TOE-
graph), f a TOE-labelling, G, a TOE-source graph, G, a TOE-
associated graph, and (G,, G,) a TOE-matching pair.

We illustrate Definition 4 with Figure 2. In other words, a
twin odd-elegant graph G = (-),(G;, G,) with its TOE-source
graph G, and TOE-associated graph G,, where (G,,G,) is a
TOE-matching pair.

Furthermore, if each G; with i = 1,2 is a connected
graph in Definition 4, and the TOE-source G, is a bipartite
connected graph having its own bipartition (X,,Y;) and a
labelling f satisfying Definition 2, we call the 2-identification
graph G = (0),(G,,G,) a set-ordered twin odd-elegant
graph (So-TOE-graph) and f a set-ordered twin odd-elegant
labelling (So-TOE-labelling). Notice that the source graph G,
is a set-ordered odd-elegant graph by Definitions 1 and 2.
In vivid speaking, a source graph and its associated graph

Security and Communication Networks

(b) G,

FIGURE 2: The formation process of Definition 4.

S

(d) G = O, (H;, Hy)

4P
4
el

FIGURE 3: A scheme of the edge-series operation.

defined in Definition 4 can be called a TOE-lock-model and
a TOE-key-model ([10]), respectively.

1.3. Techniques for Constructing 2-Identification Graphs. The
following three operations, CA-operation, edge-series opera-
tion, and base-pasted operation, will be used in this article.

(O-1) CA-Operation. Suppose each graph G; has an odd-
elegant labelling f; and V(G,) = {x;‘ 2l =1,2,...,[V(GI}
with k € [1,m]. Clearly, for a # b with a,b € [1,m],
there are vertices x{ € V(G,) and xl; € V(G,) such that
falx?) = fb(xl]’.). For example, some G, has a vertex xf.‘ such

that the label fk(xf.‘) = 0 with k € [1,m]. We can combine
those vertices that have the same labels into one vertex, which
gives us a new graph, denoted by G = (O(G;,G,,...,G,,).
This process is called a CA-operation on G,,G,,...,G,,.

(O-2) Edge-Series Operation. Given two groups of disjoint
trees G}, G),...,G,, with r = 1,2 there are vertices x}, y;, €
V(Gy) with k € [1,m]. Joining the vertex y; with the vertex
xgﬂ by an edge for j € [1,m—1] produces a tree H, (denoted
by H, = e}’ G}) with r = 1,2; next we let one vertex u. €
V(H,) coincide with one vertex vf € V(H,) into one vertex
a, = u} o v with s = 1,2. The resulting graph (O, (H,, H,) is
just a 2-identification graph.

(O-3) Base-Pasted Operation. Given two disjoint trees T,
(called base-trees) having vertices x7,x5,...,x,, and two
groups of disjoint trees G}, G, ...,G, with r = 1,2, we let
a vertex 1, € V(Gy) coincide with the vertex x; € V(T,)
into one vertex uy o x; for k € [1,m] such that the resulting
tree F, (ie., F, = T,(OiL,Gp) has V(E,) = Ui, V(GY),
E(F,) = (Uil E(GY) U E(T,) for r = 1,2. We overlap one
vertex ws1 € V(F,) with one vertex 252 € V(F,) into one vertex

by = w! oz’ with s = 1,2 to build up a 2-identification
graph F = (),(F,, F,) holding V(F,) N V(F,) = {a;,a,} and
E(F) = E(F,) U E(F,).

In the following, we give the diagrams with m = 2 for
edge-series operation and base-pasted operation, shown in

Figures 3 and 4, respectively.

2. Main Results and Their Proofs

Lemma 5. Each star K, ,, is a TOE-source tree of a So-TOE-
tree.

Proof of Lemma 5 is shown in Figure 5. It describes the
construction process of the So-TOE-tree ()(K,,,K,,) by
any TOE-source tree K ,.

Theorem 6. Every set-ordered odd-elegant graph being not a
star is a So-TOE-source graph of at least two So-TOE graphs.

Proof. Suppose that (p,,q)-graph G, having vertex biparti-
tion is (X,Y), where X = {x; : i € [1,s]},Y = {yj 1€
[1,t]}, s+t = p;, and min{s,t} > 2. By the hypothesis of
the theorem, G, has a set-ordered odd-elegant labelling f;
defined by fi(x;) + 2 < fi(x;41),1 € [1,s = 1]; fi(y;) =
Hx)+ L fi(y)+2 < fi(yja)i€ [Li-1]; f1(0) <2q-1.
Hence, f,(E(G))) = {fi(xy) = fi(x) + fi(y) (mod2q) :
xy € E(G))} = [1,2g - 1]°. It is not difficult to observe
that f,(V(G;)) € {0,2,..., fi(x), fi(y1),...,2q — 1}; that is,
f1(X)/2 cNand (f(Y)+1)/2 cN.

Case 1. We construct a labelling f, of a new tree T, having g+1
vertices by the labelling f, such that f,(V(T})) = [1, f(x,) +
11° U [fi(n) = 1,2q - 2]%, such that f,(E(T)) = {f,(uv) =
f,@) + f,(v) (mod2q) : uv € E(T,)} = [1,2q — 1]°, where
() # f,(v) for u,v € V(T,). This tree T, can be built up
in the following way: a bipartition (U,, V) with U; = {u; :

Security and Communication Networks

(dG= ®2<F1’Fz>

FIGURE 4: A scheme of the base-pasted operation.

FIGURE 5: An example of illustrating Lemma 5.

i€[l,s]}andV, = {vj :j € [1,t,]}, wheres, +t, =g+ 1,
such that f,(u;) = 2i - 1,7 € [Ls;]; f,(v;) = 2(s; =2+ j),
j € [1,t;]. Any edge u;v; € E(T5) satisfies fz(uivj) = f(u;) +
fz(vj) (mod2q) withi € [1,s,] and j € [1,¢,]. We construct
the edge set of T, as {u,vj,uv, @i € [L,5],j € [1,£; - 1]}
such that the edge labels are f,(u;v,) = 2i -3, f(uv;) =
2j+2s;—3 (mod2q)fori € [1,s,]and j € [1,¢, —1]. Observe
that £,(E(Ly) = [L.24 - 1 fy(y) = fy(u,), and f,(x,) =
().

Now, we can combine the vertex y, and x, of G, with the
vertex u, and v, of T, into one (two identification-vertices)
w,; and w,, respectively, so we obtain the desired graph G =
(),(G,,T,). And G has a labelling f defined as f(x;) =
Hxg)sie[Ls=11 f(y) = fi(y))si € [2,1]; f(u) = fr(u),
ke [l,s;—1], f(v) = fL(n), I € [2,t,], f(w) = f1(n)
and f(w,) = f,(x,). Clearly, any pair of two vertices of G are
assigned different numbers. According to Definition 4, G is
an So-TOE-graph having the source graph G,. Examples that
illustrate Case 1 of Theorem 6 are shown by Figures 6(a), 6(b),
and 6(d).

Case 2. Similarly to Case 1, we can get the following results:
let £,(V(T3)) = [1, fy(x,) = 11° U [f1(3n) — 1,2 - 2]° U {0},
fz(E(TZ')) = [1,2gq - 1]°, and furthermore f,(u) # f,(v) for
u,v € V(Tz'). This tree T2' can be built up in the following
way: a bipartition (U,,V,) with U, = {u; : i € [1,s; — 1]}
and V, = {vj . j € [1,t; + 1]}, such that f,(u;) = 2i — 1,
i€ [Ls =1} fo(v)) = 2(s=2+j), j € [L, 1], fr(v; 41) = 0. Any
edge u;v; € E(TZ') satisfies fz(uiv]-) = fz(ui)+f2(vj) (mod 2g)
withi € [1,s, — 1] and j € [1,; + 1]. We construct the edge
set osz' as {ulvj,uivH1 11 €[2,5; — 1], € [1,£,]} such that

the edge labels are f,(u;v,,,) = 2i — 1, fori € [1,s; — 1], and
fz(ulvj) =2(s+j)-3,forj e [l,tl].Observethatfz(E(Tz')) =
(1,29 -1]° fi(x;) = fZ(Vt1+1)’ and f;(x,) = f,(vy).

Now, we can combine the vertex x; and x, of T} with the
vertex v, ,; and v; of T, into one (the identified vertex) w,
and w,, so we obtain the desired tree G' = (9),(G,,T;). And
G' hasa labelling f defined as f(x;) = fi(x;),i € [2,s - 1];
FOp) = Ly i € [Lit] flu) = frlu), k € [1,5 - 1],
flv) = f,in), 1 € [2,t4], f(w;) = 0, and f(w,) = f,(x,).
Clearly, any pair of two vertices of G' are assigned different
numbers. According to Definition 4, G' is a So-TOE-graph
having the source graph G,. An example for illustrating Case
2 of Theorem 6 is given by Figures 6(a), 6(c), and 6(e). O

Theorem 7. Suppose that G, = (O,(G},Gy) is a So-TOE-
graph, where each G, is a source tree for k € [1,m]. Then
G = (O,(H,, H,) obtained by the edge-series operation has
a So-TOE-labelling.

Proof. By the hypothesis of the theorem, every (p; + p; —
2,2q,)-graph G; has a set-ordered odd-elegant source-
(Pe> qi)-graph G, and an associated-(py, q;)-graph G; for k €
[1,m]. Let V(G,i) n V(Gi) = {w,i, wi}; the vertex set of each
graph G can be partitioned into (X}, Y}) withr = 1,2, where
X = {x; o i e [Lslh Y = {y; + j € [Lgl} and
sp + 1 = pp fork € [1,m] and r = 1,2. By Definition 4,
every Gy has a So-TOE-labelling 6, with k € [1, m] such that
Oc(xry) = 1= 1 0(xp) +2 < O,y with i € [1,5];
000 = O(x) - (-1 Oulyf) + 2 < O(yf) for
i€[1,t];and 9k(ytr;) <2q 1.

1%

Security and Communication Networks

(d) G= Oz(GpTz)

() G = O,(G1, Ty)

FIGURE 6: Examples of Theorem 6.

Therefore, O,(E(G)) = {0(xy) = 0Ox) +
fi(y) (mod2gq,) : xy € EG)} = [L2g - 1]°
where 0,(x) # 0.(y) for distinct vertices x,y € V(Gy),
which means Gk(x}c)sk) = Ok (y,il) = Gk(w,i) and 6, (y,i’l)
= Gk(xi)sk) = 0,(w}). Clearly, the labels of other vertices of
G, U G; differ from each other.

Firstly, we split G into two parts G, and G, that is, doing
a 2-splitting operation on every G, with k € [1,m]. Secondly,
our discussion focuses on G}c and G,i with k € [1,m]. We
construct a graph by joining the vertex y;, with the vertex

Xj,1, Dy an edge, where k € [I,m — 1] and r = 1,2,
called H,. For the purpose of convenience, we set S(a,b) =

Zlb:a ez(xll)sll) +2,Q(1,¢) = 22;:1(‘11 +1),Q, = Zeril(‘ﬂ +
m—1),8(1,0) = 0,and Q(1,0) = 0. Forr = 1,2,i € [1,s;],
and j € [1,t;], we define a new labelling f as follows:

(T-1) f(xp;) = Op(xp;) +S(L k- 1);

(T2) f(3p,) = 600f) + QLK — 1) + S(k + 1m);

(T-3) flxiivi;) = fxi) + f(;) (mod Q,,);

(T-4) W, Xher,) = f) + fOky,) (mod Q).

By the labelling forms (T-1) and (T-2) above, we can verify
flxg,) € [0, f(x:n,sm)]e = [0,S(1,m) —2]° with k € [1,m] and
have the following properties: (i) f (xi,i) € [Lf (xfn)sm)]o =
(LS m)~11°%) f(p) € Lf L F (o 1 = [S(Lom) -
1,Q,,~11%and (i) f(yz ;) € [f (7)) f (G DI = [S(1,m)—
2,Q,, — 2%

Computing the labelling forms (T-3) and (T-4) enables
us to obtain f(E(H,)) = [1,Q,, — 1]° for r = 1,2. Now,
we combine the vertex xj”,sm with the vertex yil into one

vertex and then combine the vertex yll)l with the vertex xfn)s

into one vertex. (i.e., do the 2-identification operation). Thus
the labelling f is a So-TOE-labelling of G = (O),(H;, H,);
therefore, G is a So-TOE-graph too. O

See Figures 7, 8 and 9 for understanding Theorem 7.
In experiments, for each arrangement Gy , Gy ,..., Gy of

G}, G,,...,G,,, there are many possible constructions of G =
(O, (H;, H,) for holding Theorem 7 (as shown in Figure 9).

Theorem 8. Suppose that G, = (), (G}{,Gi) is a So-TOE-

graph, where each G, is a source graph for k € [1, p]. Then
G = (D),(S,,S,) obtained by the base-pasted operation has a
So-TOE-labelling if two base-trees T| and T, are set-ordered.

Proof. By the hypothesis of the theorem, every (p, + p; —
2,2q)-graph G, = (©,(G;, G;) has a set-ordered odd-elegant
source-(p;,q)-graph G, and an associated-(p;, q)-graph G;
for k € [1,p]. Let G,lc n G,i = {wi,wz}; the vertex set of
each graph G can be partitioned into (X}, Y;) withr = 1,2,
where X; = {x;; : i € [Ls]}, Yy = {y,z]. 2 joe (Ll
sp < tp,and s+t = pfork € [1,pland r = 1,2.
Every G, by Definition 4, has a So-TOE-labelling 7, with
k € [1, p], and m; has the following properties: 7 (x) ;) =
r—1; nk(xz)i) +2 < nk(xi)m) fori e [1,s:]; nk(xz)sk) =
M -1+rm(y,) = ﬂk(xz)sz) -(-1)'=M-1+r-(-1}
(Vi) +2 < (Y jp) With i € [L] ﬂk(y:;) =2g-r;and
(X k) = (X) + ey) (mod 2g).

Thus, the properties of each So-TOE-labelling ;. induce

m(E(Gy)) = {m(xy) = m(x) + fi(y) (mod2q) : xy €
E(G})}, and also

(d) G

Security and Communication Networks

FIGURE 8: A So-TOE-graph made by the graphs shown in Figure 7 for illustrating Theorem 7.

m (E (GZ))
= [nk (x,’()l) + M (y,:,l) STl ('xl’;,sl’() + 70 (yi,t;)] 2)

-(mod2q) = [1,29 - 1]°,

where m(x) # m(y) if x # y and x, ¥y € V(G). In other
words, we have nk(x,ﬁ’sk) = nk(y,il) = nk(w,i) and nk(y,i’l) =
ﬂk(x,%,sk) = m(w;). The labels of other vertices of Gy U Gy
differ from each other.

Let V(T,) = {z;,zg,...,z;}, such that there exists a
set-ordered odd-elegant labelling f7*, satisfying f7°(z]) <
f;f(zirﬂ) with i € [1, p — 1], and the bipartition (U,,V,) of
vertex set of T, satisfies |U,| < |V,| for |U,| =land r = 1, 2.

Next, we discuss all graphs G,l(and Gi with k € [1, p] by
the parity of positive integer p in the following two cases.

Case 1. For considering the case p = 2+ l and r = 1,2, we
define a new labelling f with i € [1,s;] and j € [1,#;] in the
following way:

(C-1) f(y 1) = My (K1) +2(q + Dk — 1) with k €
[1,8+1];

(C-2) f(Xy;) = iy (xhy) +2(g + 1)(B+k) =2 = (=1)" with
ke [1, Bl;

(C3) fer) = Tt (Wyr) + 2@ + D(B +k — 1) with
kel[Lp+1];

(C-4) f(y;k’j) = ﬂZk(ygk,j) +2(q+ 1)(k—1) + 2+ (-1)" with
ke [1,Bl;

(C-5) f(xiivi;) = fOh) + f(x;) (mod2p(q +1) - 2).
Based upon the labelling forms (C-1)-(C-4), we compute

(Ur e)o(Urom)

=[0,2(g+1) B+ M|;

Security and Communication Networks

56 19 64 1 23 68 |
69 OO 83 \94 1 3 5 i
65 79 G

5 7 0 % s

O73 038 Ow l

17 |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 9: Another So-TOE-graph made by the graphs shown in Figure 7 for illustrating Theorem 7.

(Uros)o(Ure)

=[2(qg+1)B+M+1,2p(g+1)-3]°,

r=1,
p+1 R B R
<1<L=J1f (sz—1)> U <kL:J1f (sz))
=[L2(g+1)B+M+1]%;
prio B ,
(Urea0)u(Ure)
=[2(q+1)B+M,2p(q+1)-4],
r=2.
(3)

Thereby, we have shown that [J2_, Ub_, f(V(Gy) < o,
2p(g+1)—-3]and

@Qf(E(G;)))u@f(E(T»))

=[L2p(q+1)-3]",

and furthermore the labels of vertices, except f (x;,’) =
f(yil) and f (xf,,s) = f(yll’l), differ from each other, and the
labels of edges differ from each other.

Next, after computing the labelling forms (C-5) with k €

[1, p], we obtain
fE(Gy) =[AQ),BD)’, ke[LB+1];

f(E(Gy)) =[A(1),B(0)]°, kel[Lp]. (5)
(mod2p(g+1)-2),

where A(x) = M+ 1+ 2(q+ 1)(f + 2k — x) and B(y) =
M -3 +2(q+ 1)(B+ 2k — y). By the above deduction, we can
know that

fE@GY))=[12p(g+1)-3]"\F, (6)

(G

k

where F={M-1+2(q+1)(f+1+k),M+1+2(q+ 1k:
k =0,1,2,..., 3 - 1}. Next, for each vertex z;. € V(T,) with
k e [1, p]landr = 1,2, we set

£(2) = f(%hors,)
f(zi) = f(yg(ﬁ+k—l)+l,l)>

1

ke [L1];
£ (aie) = f (x21)
F () = £ (V) 7)
ke [1,B];
F@tp) = F ()

f (le+k) =f <y21(l+k)—1,t§(l+k)71>’
ke[l,p+1-1].

According to formula (7), we obtain f (zi’z;) = f(z)) +
f(Z%) € Fwithi € [L1], j € [l +1,p],and r = 1,2, which
means

f(E(T)) = F. (8)

Doing a CA-operation on G;. and T, having labelling f
for k € [1, p] produces a new graph S, with r = 1,2. Now, we

combine the vertex x; . with the vertex y; | into one vertex
) .
_ 1 2 . . 1 .
Wy = Xpa 0y and moreover identify the vertex y, | with
2 . | 2 s
the vertex x psy I0tO ONE Vertex wy = yy; © X, q (ie, doa
2-identification operation).

8 Security and Communication Networks

29 6 , 15
27 8 2517] 19
23

27119 3 20
17 27
1 15 114 21)7 29

O

(® (h)

FIGURE 10: Seven So-TOE-graphs G, with k € [1,7] and two base-trees T| and T, described in the proof of Case 1 of Theorem 8.

By Definitions 2 and 4 and formulae (3)-(8), the labelling From the above labelling forms (L-1)-(L-4), we can
f is a So-TOE-labelling of G = (),(S,,S,). Hence, Gisa So- compute

TOE-graph. Here, we have proven Case 1. For understanding

Case 1, see Figures 10 and 11. B) B .
Ur () Jol UF (v20)
k=1 k=1

- [0.2(q+ 1) B-2]";

r _ r _ . B B
(L-1) fcl(,%f;_l’i) = Tyy (K1) +2(q + (k- 1) with k € (U s (Y§k1)> y (U s (Xik)>
k=1

Case 2. We, for the case p = 23 and r = 1,2, define a new
labelling f fori € [1,s;] and j € [1, ;] in the following way:

k=1
(L-2) f(xly)) = iy (i) + 2(q + D(B+K) = M —4— (~1) = [2(q+1)B-1.2p(q+1)-3]°,
with k € [1, B];
r=1,
(L-3) f(ygk_).):ﬂzk_l(ygk_).)+2(q+1)(ﬁ+k—1)—M—2 B B
e - et Ve (Uf(x;kl)) y (Uf(yzk))
k=1 k=1
(L-4) fOhj) = mau(yae) +2(q + D(k = 1) + 2+ (-1)" with =[1,2(qg+1)p-1];
ke [1,Bl;

B B
Y2 X2
(L-5) fxp 9k ,) = fOr) + fxg,) (mod2p(q + 1) - 2). (f ()> ; <ka (2")>

Security and Communication Networks 9

155 13315118 153

161 165
16 149 163

'165 52 169

F1GURE 11: A So-TOE-graph (1),(S,, S,) made by the graphs shown in Figure 10 for understanding the proof of Case 1 of Theorem 8.

=[2(qg+1)B-2,2p(q+1)- 4]e , k) =3 (mod2p(q+1) —2) : k € [1,23 — 1]}. For each vertex
.5 z; € T, with € [1, p] and r = 1,2, we set
) f(zllc) = f(x;k—1,1)>
Thereby, lude that |2, P, f(V(GL) = [0, 2\ _
2p(q Do sad Uret Ui VG = £ (@) = £ (g,)
2 p 2 ke [l,l];
FEG)) |V [f(E (Tr))]
|:TL—J1kL—J1 rL:J1 (10) f (zll+k) =f (x;k,s;k)’
=[1,2p(q+1)-3]", f(z§+k) _ f(xik—l,l)’ (12)
in which the labels of vertices and edges, except f(y; a) = kelL,p];
P
f(yil) and f(y;’t;) = f(yil), differ from each other, . ~)
respectively. f (zl+ﬁ+k) =f (J’zk,tgk)’
Again, by computing the labelling form (L-5) for each k €))
[1, p], we obtain f (Zl+k) =f (y2(1+k)—1,1)’
£ (EGyr)) = [(@), O] kell.p-1l.
fF(E(Gy)) = [«(1), B(0)], a1) The above formula (12) enables us to obtain f(z]z}) =
f(z) +f(z;) € F' withi ¢ [1,]],jell+1,pl,andr = 1,2.
(mod2p(q+1)-2), ke [LB], Thereby, we have shown
;vlflir;;x(_xg =2(g+1)(f+2k—-x)—1and B(y) = 2(q+ 1)(B+ F(E(T) = r (13)
Synthesizing the above argument, we get [J;_, f(E(G})) After performing a CA-operation on G}, and T, having

= [1,2p(g+ 1) - 3]°\ F', where the set F' = 2(q+ DB+ labelling f for k € [1, p], then we obtain a new graph S, with

10

Security and Communication Networks

25

7 6 2317
2

29

8 1

I

2
Zl

2
Z4

(e)
FIGURE 12: Six So-TOE-graphs G, with k € [1, 6] and two base-trees T and T, described in the proof of Case 2 of Theorem 8.

T 2
r = 1,2. Now, we overlap the vertex y Dt with the vertex y;
into one vertex w = yjl,)t; °)’%,1 and overlap the vertex yil with
the vertex y;)t; into one vertex w), = y},l ° yzzz,tf, (i.e,doa2-

identification operation) in order to obtain G' = (©),(S;,S,).
Furthermore, by Definitions 2 and 4 and formulae (9)-(13),
the labelling f is a So-TOE-labelling of G', which implies that
G' is a So-TOE-graph.

Hence, the proof of Case 2 is finished, and illustrating this
case is given in Figures 12 and 13.

The proof of the theorem is complete. O

3. Conclusion and Further Research

There are new Topsnut-GPWs having twin odd-elegant
labellings introduced here. We define the twin odd-elegant
labelling and investigate the 2-identification graph G =
(D),(G,,G,), called twin odd-elegant graph. We think that
finding all possible TOE-matching pairs (G, H) defined in
Definition 4 may be interesting for a given TOE-graph G with
an odd-elegant labelling g. Let

Mrog (G, g)
= {H : (G, H) is a TOE-matching pair}

be the set of all TOE-associated graphs H, so, we have a TOE-
book B(G,9) = Unemyopcg) ©O2(G H) with book-back G
and book-pages H € Mqg(G, g).

We should pay attention to the following problems:

(i) Since G = (O,(G,H) n (O,(G,H') for any
pair of book-pages H,H' € Myox(G,g), does V(G) =
Ubremyo, 6.9 (V(G) NV(H))?

(ii) Suppose that G has m pairwise different odd-elegant
labellings g, g5, ..., g,,- Find some possible relationships
among TOE-books B(G, g;) with i € [1,m].

For the future researching work on Topsnut-GPWs, we
propose the following.

(14)

Z

Zb9

Conjecture 9. Let each (),(G,,G;) be a TOE-graph for k €
[1,m] with m > 2. The 2-identification graph G = (),(H;,
H,) obtained by the edge-series operation (resp., the base-
pasted operation) admits a TOE-labelling. r

Conjecture 10. Every simple and connected TOE-graph
admits an odd-elegant labelling.

Conjecture 11. Each connected graph is the TOE-source graph
of a certain TOE-graph.

A more interesting problem is to design super Topsnut-
GPWs such that each super Topsnut-GPW will not be
deciphered by attacks of nonquantum computers, since (i)
our methods introduced here can construct quickly large
scale of Topsnut-GPWs having hundreds vertices; (ii) the
space of the Topsnut-GPWs given in Theorem 8 is quite
tremendous; (iii) the 2-identification graphs (), (H;, H,) of
Theorem 7 and (1),(S;,S,) of Theorem 8 are the compound
type of Topsnut-GPWs based on smaller scale of Topsnut-
GPWs G, = @Z(G,IC,G,E) with k € [1,m], and they
induce the TOE-books B(H, f) and B(S;,g); it may be
guessed that there is no polynomial algorithm for deter-
mining the TOE-books; and (iv) no polynomial algorithm
was reported for finding all odd-elegant labellings of a given
graph.

Thereby, we hope to discover such super Topsnut-GPW's
which can be used in the era of quantum information.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Security and Communication Networks

ey

145 146 47
: O O

FIGURE 13: A So-TOE-graph (1),(S,, S,) made by the graphs shown in Figure 12 for understanding the proof of Case 2 of Theorem 8.

Acknowledgments

This work was supported by the National Key R&D Program
of China (no. 2016YFB0800700) and the National Natural
Science Foundation of China (nos. 61572046, 61502012,
61672050, 61672052, 61363060, and 61662066).

References

[1] X.Suo,Y.Zhu, and G. S. Owen, “Graphical passwords: a survey,”
in Proceedings of the 21st Annual Computer Security Applications
Conference (ACSAC °05), pp. 463-472, Tucson, Ariz, USA,
December 2005.

R. Biddle, S. Chiasson, and P. C. Van Oorschot, “Graphical pass-
words: learning from the first twelve years,” ACM Computing
Surveys, vol. 44, no. 4, Article 19:1-41. Technical Report TR-09-
09, School of Computer Science, Carleton University, Ottawa,
Canada. 2009. (25 pages, 145 reference papers), 2012.

[3] H.Gao, W.Jia, E Ye, and L. Ma, “A survey on the use of graphical
passwords in security;,” Journal of Software, vol. 8, no. 7, pp. 320-
329, 2013.

[4] “QR Code Essentials“. Denso ADC. 2011. Retrieved 12 March
2013.

[5] “QR Code features”. Denso-Wave. Archived from the original
on 2013-01-29. Retrieved 3 October 2011.

[6] X. Suo, “A Study of Graphical Password for Mobile Devices,”
in Mobile Computing, Applications, and Services, vol. 130 of
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pp. 202-214,
Springer International Publishing, Cham, 2014.

[7] B.Yao, H. Sun, X. Zhang, H. Wang, J. Li, and G. Yan, “Graph the-
ory towards designing graphical passwords for mobile devices,”
in Proceedings of the 2017 IEEE 2nd Information Technology,

S

Networking, Electronic and Automation Control Conference
(ITNEC), pp. 1640-1644, Chengdu, China, December 2017.

[8] H. Wang, J. Xu, and B. Yao, “Exploring new cryptographical
construction of complex network data,” in Proceedings of the Ist
IEEE International Conference on Data Science in Cyberspace,
DSC 2016, pp. 155-160, June 2016.

[9] H. Wang, J. Xu, and B. Yao, “The key-models and their lock-
models for designing new labellings of networks,” in Proceedings
of the 2016 IEEE Advanced Information Management, Commu-
nicates, Electronic and Automation Control Conference, IMCEC
2016, pp. 565-568, October 2016.

[10] H. Wang, J. Xu, and B. Yao, “Twin Odd-graceful Trees Towards
Information Security;” in Proceedings of the 7th International
Congress of Information and Communication Technology, ICICT
2017, pp- 15-20, Elsevier Science Publishers B. V., February 2017.

[11] E Harary and E. M. Palmer, Graphical enumeration, Academic
Press, 1973.

[12] J. A. Gallian, “A Dynamic Survey of Graph Labeling,” The
Electronic Journal of Combinatorics, vol. 17, DS6. (440 pages,
2265 reference papers), 2013.

[13] X. Zhou, B. Yao, and X. Chen, “Every lobster is odd-elegant,’
Information Processing Letters, vol. 113, no. 1-2, pp. 30-33, 2013.

[14] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, London,
UK, 2008.

[15] B. Yao, H. Cheng, M. Yao, and M. Zhao, “A note on strongly
graceful trees,” Ars Combinatoria, vol. 92, pp. 155-169, 2009.

Hindawi

Security and Communication Networks
Volume 2018, Article ID 1525186, 10 pages
https://doi.org/10.1155/2018/1525186

Research Article

Analysis on Influential Functions in the Weighted

Software Network

Haitao He,"** Chun Shan (»,* Xiangmin Tian ®,"** Yalei Wei,"** and Guoyan Huang

1,2,3

! College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China

*The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao, Hebei 066004, China
*The Key Laboratory for Software Engineering of Hebei Province, Qinhuangdao, Hebei 066004, China

*Beijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of Technology, 5 South Zhongguancun Street,

Haidian District, Beijing 100081, China

Correspondence should be addressed to Chun Shan; sherryshan@bit.edu.cn

Received 24 October 2017; Revised 5 January 2018; Accepted 4 February 2018; Published 1 April 2018

Academic Editor: Zheng Yan

Copyright © 2018 Haitao He et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Identifying influential nodes is important for software in terms of understanding the design patterns and controlling the
development and the maintenance process. However, there are no efficient methods to discover them so far. Based on the invoking
dependency relationships between the nodes, this paper proposes a novel approach to define the node importance for mining the
influential software nodes. First, according to the multiple execution information, we construct a weighted software network (WSN)
to denote the software execution dependency structure. Second, considering the invoking times and outdegree about software
nodes, we improve the method PageRank and put forward the targeted algorithm FunctionRank to evaluate the node importance
(NI) in weighted software network. It has higher influence when the node has lager value of NI. Finally, comparing the NI of nodes,
we can obtain the most influential nodes in the software network. In addition, the experimental results show that the proposed
approach has good performance in identifying the influential nodes.

1. Introduction

Measuring accurately the importance of the node in the
software networks is the premise to improve the security and
robustness of software [1, 2]. Moreover, with the development
of the software, measuring the importance of nodes in
the network has practical significance for defending and
protecting the influential nodes in the software network
[3], if these nodes are suffered by deliberate attacks, maybe
cascading failure occurs [4, 5]. Accordingly, how to mine the
potential characteristics of software to control the evolution
process of the software structure has become a hot spot for
researching [6-9].

Many researchers introduced the idea of complex net-
works to the field of software structure and abstracted
software to a network from different granularity point [10].
With the network structure, many potential characteristics
can be discovered directly. Ma et al. [11] abstracted interaction
relationship between packages into a software network, and

they defined functions in package as nodes and dependencies
among functions as edges. Wang et al. [12] proposed an
approach to study the evolution of special software kernel
components, which adopted the theory of complex networks.
They also proposed a generic method to find major structural
changes that happened during the evolution of software
systems. Li et al. [13] proposed a modular attachment mech-
anism of software network evolution. Their approach treated
object-oriented software system as a modular network, which
was more realistic. A new definition of asymmetric prob-
abilities was given to acquire links in directed networks
when new nodes attached to the existing network. With the
directed network, both of the “scale-free” and “small-world”
properties were verified to be present in the software network.
In [14], David proposed a method to simplify the complexity
of the software network. With the method, some valuable
characteristics in the network could be obtained easily. From
the researches above, the complex network was proved to
be applicative in the software engineering and it brought

http://orcid.org/0000-0002-1090-026X
http://orcid.org/0000-0001-9117-1136
https://doi.org/10.1155/2018/1525186

us a new perspective to research the software structure.
However, these methods of modeling the software mentioned
above were based on the static structure of the source code.
The execution characteristic during the software running
process was neglected in these methods. For the software,
most of the characteristics are exhibited during the execution
process.

The characteristics of the software execution can help us
to understand the software better. It is obvious that the node
is an important part of the network and it has enormous
influence on the stability, reliability, and robustness of the
network [15]. For a software network, the software function
plays a critical role in the stability and robustness of the
software during the execution process. In the structure of the
software, the functions carry most of the feature characteris-
tics and topology information and they can affect each other.
In most cases, the fault of a function is not only caused by
itself but also infected by the other functions. Recently, the
importance of the node in the network was defined from
different aspects. Bhattacharya et al. [2] defined a measure
to evaluate relative importance of the nodes in software
by assigning a numerical weight to each node of software
graph. By the value of the betweenness and the clustering
coeflicient, Zhang et al. [16] measured the importance of
each node to analyze the influence of each node to the
entire network. According to the propagation field of the
classes, Li et al. [17] put forward an indicator to measure
the importance classes in the software network at class level.
Based on the value of the indegree and the outdegree of
each node, Wang and Lii [18] proposed a method to mine
the influential nodes. With the method, they proved that the
fault appeared with a large probability in those nodes with
large degree value. In the researches above, the node was
proved to play a key role to analyze the network. However,
the node was regarded as an individual unit, as well as
the relationship between the node and the entire network
was ignored. In practical application, the network should be
considered as a whole, in which the nodes can interact with
each other.

Considering the above-mentioned shortcomings, the
dependency relationship between the function nodes, and the
absence of efficient analysis methods, we construct the WSN
to show the software structure according to the information
of multiple execution. Based on the dependency relationship
between the function nodes, we present a targeted method
FunctionRank to evaluate the importance of the software
nodes. With the analysis result of each node, we rank the
influence of each node to mine the top-k nodes. These
function nodes have played an important part in ensuring
software reliability and stability. So they should be paid more
attention in the process of software updating and software
maintenance.

The primary contributions of this paper can be summa-
rized as follows:

(i) A novel method is proposed to construct weighted
software network (WSN). So we make the under-
standing and recognition of software structure more
accurate.

Security and Communication Networks

main

treatﬁl

R

F1GURE 1: The software network.

add_envopt

get_istat

deflate

(ii) A measurement node importance (NI) is put forward
to evaluate the importance of each node in the
network.

(iii) The IC (independent cascade) model as an attack
model is used to evaluate the influential functions for
software system.

(iv) The proposed algorithm is an effective method
for security measurements of cybernetwork and
provides basis for software security and reliability
improvement.

The rest of this paper is organized as follows. The construction
process of the weighted software network (WSN) is described
in Section 2. The node importance of each function node is
given definition in Section 3. Then, in Section 4, the method
FunctionRank is given to mine the most influential nodes.
In Section 5, the performances of the proposed algorithm
are showed by experiments. Finally, conclusions and future
works of the paper are presented in Section 6.

2. Definitions of Weighted Software Network

Complex networks are suitable to show the invoking rela-
tionships between the software functions. Based on the
information of the multiple execution processes, we define
the software execution dependency structure with a directed-
weighted network.

2.1. Software Network. In this section, according to the
multiple execution information, we define a software network
to demonstrate the software execution dependency structure.
Figure 1 shows a real example of software network.

Where each node represents a software function and
each edge is the invoking relationship between the functions.
In the software network, most of the characteristics can be
exhibited during the software execution process.

2.2. Weighted Software Network. Next, in order to guarantee
the completeness of the experimental data and make the
understanding and recognition of software structure more
accurate, we define a weighted software network. Compared
with the software network, we consider invoking times

Security and Communication Networks

: S 7
P tar_cRegksum
2 Aylls ha

FIGURE 2: Weighted software network.

between the software functions in multiple execution pro-
cesses as the weight of each edge. The weighted software
network is suitable to demonstrate the complex invoking
relationships between the software functions. The definition
of weighted software network (WSN) is given as follows:

WSN = {Node, Edge, W}, Node, Edge € software. (1)

Figure 2 shows a weighted software network, where Node is a
software functions set and Edge is an invoking relationship set
between the software functions. W, that stands for the weight
of edge e is calculated by the following formula:

W, = Zwe, e € Edge,)
j

where j is the times of the trials with different experiment
cases. w, is a value of 1 or 0. If the edge e of one calling
relationship appears in an execution trace, no matter how
many times of it, let w, be 1; otherwise it is 0.

Figure 3 presents a simple process of the WSN estab-
lished. As shown in Figure 3(a), si (1 < i < 5) is a function
invoking trace in one-time execution of the software. The
trace si contains a series of function calling relationships
which can reflect the software execution process. Figure 3(b)
shows a structure of WSN, in which the node and the edge
of the network are defined as the function and the calling
relationship between the functions appearing in sl~s5 in
Figure 3(a), the weight of edges represents the number of each
calling process executed in the 5 times’ execution, and the
times of a calling relationship in some execution processes
were ignored.

Based on multiple execution information under the
different experimental cases of software, we guarantee the
completeness of the experimental data. Function nodes
which have appeared during the software multiple execution
processes are considered as a set of nodes of the network
structure, calling relationship between the software functions
is considered as a set of edges, the weight of the edge, we
consider the weight ¢ to stand for the edge appearing c times
in the N execution traces of the software, and we ignore the
times appearing in an execution trace si. In this way, WSN is
built.

3. Node Importance

According to the complex invoking relationships for software
system, we show the most common topology structures of

the weighted software network in Figure 4 to explain the
importance of the function node.

Definition 1 (IN (indegree nodes)). For a node vi, IN is a set
of functions which call node vi directly. The IN of node vi is
gotten by only one call step.

As shown in Figure 4(a), IN(A) = {B, C}. The influence of
node vi is based on IN (vi) which call vi directly.

Definition 2 (ON (outdegree nodes)). For a node vi, ON is
a set of functions which are called by node vi directly. The
number of ON(vi) is vi’s outdegree, CO.

As shown in Figure 4(a), ON(A) = {B, C, D} and CO (A)
=3.

Definition 3 (TN (terminal nodes)). The nodes that have no
outdegree and have no contribution to the influence of other
nodes are defined as terminal nodes.

As shown in Figure 4(b), C is a terminal node.

Definition 4 (LTN (loop terminal nodes)). The nodes that
only have an outlink to their own are defined as loop terminal
nodes.

As shown in Figure 4(c), C only has an outlink to its own.
So C is a loop terminal node.

Definition 5 (OD (output degree)). The weight sum of each
edge for a node vi to its outdegree nodes, OD (vi), is named
as output degree of the node vi.

In Figure 4(a), the weight of each edge for A to ON (A) is
2,2, and 5, respectively. OD (A) is the sum of these weights,
namely, A’s output degree.

Definition 6 (WC (weighted contribution)). The ratio of the
weight for node vi to node vj and vi’s output degree, WC (vj),
is the weighted contribution of vi to vj.

In Figure 4(a), the weight of A to B is 2. The weighted
contribution of A to B is given as follows:

2 2 2

WC(B) = = = -,
B) OD(A) 2+2+5 9

3)

Based on the above definitions, the node importance (NT) of
node vj is given as follows:

NI(V;) =

)=la+1-a) Y WC(V;)*NI(V;)

IN(Vj) (4)
(co(v;)+1),

where « is the certain probability of calling a random node for
LTN, and the probability of invoking each node is the same.
It is set as 0.15 with experimental verification.

4. Important Nodes Mining

In this section, we first provide an algorithm outdegree
nodes to get the outdegree node list of all nodes, according
to the outdegree nodes of each node in the software net-
work, and then we provide another algorithm FunctionRank

Security and Communication Networks

3 calls 5 calls

4 N/ N N N/~ A
sl s2 s3 s4 s5
A= B A= B A=C A= B A=C
A= B A= B B=D A= C A= C

3 calls 1 call
A= B A= C B—E B=D A=C
A=C B=D B=E B=D B=E
A= C B=D E=F B=D C=E
C=E E=F ESF C=E ESF
C—E E=F D= G C=F F=G
E=F D=G D= G C=F F=G
- AN AN AN U\ J

(a) The 5 times’ execution traces

(b) The structure of WSN

FIGURE 3: The constructing process of WSN.

FIGURE 4: Three kinds of topology structures.

Input: node set V, edge set E

Output: childStr //the out-degree node list of all nodes
(01) for (each vi € V) {

(02) for ({vsi,vej) € E) {

(03) if (vi = vsi)

(04) childStr += " + vej;

(05) }

(06) print (vi + childStr);

(07) }

ALGORITHM 1: Outdegree nodes.

to calculate NI of each node. In the method Function-
Rank, we evaluate the importance of nodes iteratively (see
Algorithms 1 and 2).

As shown in algorithm outdegree nodes, for each node in
set V we traverse the edges in set E in line (1) and line (2). We
define the nodes of an edge as start node vsi and end node
vej, respectively. In line (3) to line (4) we add the end node

vej of an edge to the childStr of node vi, when node vi equals
the start node vsi of the edge. Finally, we print the childStr of
vi in line (6).

We evaluate the importance of each node in the network
by an iterative process, as shown in Algorithm 2. In line (1),
we initialise NI(vi) as importance of nodes and « as the
certain probability to call a random node, respectively. Line
(2) to (19) is the iterative process to compute the importance
coming from outdegree of the current node and other nodes
which call the current node. The computational formula of
node importance (NI) is given in line (18); it has higher
influence when the node has lager value of N1. Ultimately, the
importance for a node (NI) is obtained when error of current
NI value and previous NI value is less than a given threshold
for all nodes.

With the measuring results obtained from Algorithm 2,
we choose the top-k nodes as the influential nodes for the
software network. In Algorithm 3, we illustrate the process of
top-k nodes (KN).

In Algorithm 3, we initialise list as the measurement list
for all the nodes in line (1). Lines (2) to (4) are a looping

Security and Communication Networks

Input: node vi, childStr (vi)

Output: the NI of node vi //evaluate the importance of nodes
Process:

(01) Initialize NI(vi) =1f, = 0.15f

(02) if (childStr[vi] != null) {

(03) outdegree = childStr.size ();

(04) for (each vj € childStr [vi]) {

(05) if (vjis equal vi) {
(06) outdegree - -;
(07) lelsef

10) }
1) }

(13) if (vjis not equal vi) {
(15) 1}

(16) }

(17) }

(19) NI (vi) = tempNI (vi);

(08) weighMap.put (vj,weight (vi — vj));
(09) weigh += weight (vi — vj);

(12) for (each vj € childStr [vi]) {

(14) tempNI (vj) += NI (vi) * weighMap.get (vj)/weigh;

(18) tempNI (vi) = (« + (1 — «) * tempNI (vi)) * (outdegree (vi) +1);

ALGORITHM 2: FunctionRank.

Input: node set N, NI of each node
Output: the top - k influential nodes
Process:

(01) Initialize list //store the importance of nodes
(02) for (each node v € N)

(03) list.add (NI(v));

(04) end for

(05) Collections.sort (list);

(06) Collections.reverse (list);

(07) print list.get (k)

ALGoRrITHM 3: Top-k nodes (KN).

process to store the NI value for each node. The sorting
process is given in line (5) and line (6), the top-k nodes are
chosen from the list in line (7).

5. Experimental Analysis

A series of experiments were conducted to compare the
performance of the proposed algorithm (named as Func-
tionRank) with different parameter values. They were imple-
mented in JDKI.6.0 and executed on a PC with 3.30 GHz CPU
and 5 GB memory.

5.1. Experimental Datasets. Firstly, several dynamic software
datasets are used to evaluate the performance of the algo-
rithms. The classical software is obtained from the open-
source community. These software programs are coded in C
or C++, including program software tar and cflow.

In the experiment, we chose different versions of tar and
cflow, respectively, for experiment. tar is a decompression
software for Linux, and cflow is an analysis tool for C program
to extract the relationship of function calls (download from
the open-source software library: Https://sourceforge.net).

5.2. Evaluation on the FunctionRank. We run the algorithm
on each version of tar and cflow. By the algorithm Function-
Rank, we calculate the NI of each function node. Here we
mine top-10 nodes in each version about software tar and
cflow. It is shown in Tables 1 and 2, respectively.

As it is shown in Table 1, for versions tar-1.21 and tar-
1.23, the NI of the top-10 are almost the same. The reason is
that the difference between the three versions only reflects
the number of function calls. In other words, there is no
change of the component function of these two versions.
In the latest three versions, developers changed the logical
contents of some functions or insert new functions into the
software to enrich the features of software; on the other
hand, the software was simplified or some features were
removed to improve the robustness, which results in the
ranking variation. For example, in the prior versions node
_gnu_flush_read ranked 2nd or 3rd but it ranked 7th and
8th in versions tar-1.25, tar-1.27, and tar-1.28. Table 2 shows
the top-10 influential functions of software cflow in different
versions. The ranking of some functions in each version
of cflow varies but with little range. For example, function
print_symbol’s ranking ranges from 1 to 2. So we can make
a prediction that it may still be more influential than most
others in the next new version. Meanwhile, there is no
function alloc_cons for the latest versions cflow-1.3 and cflow-
1.4 results in the ranking variation. In other words, there is
change of the component function of these two versions.

https://sourceforge.net/

Security and Communication Networks

TaBLE 1: Top-10 influential nodes for each version of software tar.

Function name V1.21 V1.23 V1.25 V1.27 V1.28
Rank/value Rank/value Rank/value Rank/value Rank/value
dump-_file0 1/3.020 1/2.808 1/2.804 1/2.604 1/2.603
flush_archive 2/2.245 5/1.969 4/1.949 4/1.943 4/1.939
_gnu_flush_read 3/2.212 2/2.130 7/1.593 7/1.592 8/1.591
update_archive 4/2.139 4/2.108 2/2.270 2/2.270 2/2.246
to_chars 5/2.124 3/2.124 3/2.127 3/2.124 3/2.124
_gnu_flush_write 6/1.865 6/1.738 12/1.152 13/1.151 14/1.149
start_header 7/1.672 7/1.673 6/1.698 6/1.674 7/1.674
_open_archive 8/1.589 8/1.581 8/1.578 8/1.578 6/1.803
dump_regular_file 9/1.460 9/1.468 10/1.305 9/1.478 9/1.478
find_next_block 10/1.317 13/1.102 13/1.105 15/1.100 15/1.097
TABLE 2: Top-10 influential nodes for each version of software cflow.
Function name cflow-1.0 cflow-1.1 cflow-1.2 cflow-1.3 cflow-1.4
Rank/value Rank/value Rank/value Rank/value Rank/val
print_symbol 1/4.195 1/4.195 1/4.195 1/4.196 2/4.104
yylex 2/3.822 2/3.822 2/3.822 2/3.823 3/4.074
nexttoken 3/2.985 3/2.985 3/2.985 3/2.987 4/3.334
parse_variable_declaration 4/2.309 4/2.309 4/2.309 5/2.310 10/2.310
parse_dcl 5/2.200 5/2.200 5/2.200 7/2.200 11/2.200
gnu_output_handler 6/2.068 6/2.068 6/2.068 8/2.068 12/2.011
yyrestart 7/2.042 7/2.042 7/2.042 9/2.050 8/2.593
alloc_cons 8/2.037 9/42.010 8/2.010 — —
tree_output 9/1.985 10/1.985 9/1.985 10/1.993 5/3.101
lookup 10/1.906 11/1.892 11/1.880 11/1.831 14/1.822
In addition, the number of nodes which have high NI 20
is rather small in each version. These high value nodes |
have taken a great part in ensuring software reliability and 60
stability. It means that there are little functions that should 1
be paid more attention in software updating and software 50 +
maintenance. We calculate the count for different range of = 40]
NI values. The results of software tar and cflow are shown 2
in Figures 5 and 6, respectively. © 30
As we can see in Figure 5, most of nodes are ordinary .
functions. We would not pay more attention to them. Mean- 20
while, a handful of nodes that have high NI should be paid 1
more attention. They play important roles in the process 10'_
of software updating and software maintenance. For cflow, 0

the number of nodes in each scope is shown in Figure 6. It
has the same characteristic with tar. The number of nodes

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

NI value
with high NI is much less than that of low NI. By paying
more attention to these influential nodes in future versions, . tar-1.20 = taf‘i;?
we can improve software reliability and stability. Thereby we . tar-1.21 tar-1.
P 4 4 Y I tar-1.23 Il tar-1.28

can greatly reduce the amount of work and improve work
efficiency.

At the same time, NI of the same ranking nodes within
different versions has slight wave, as shown in Figures 7 and
8.

As it is shown in Figure 7, the NI distribution of software
tar is similar extremely in the six versions. With the increasing
of node ranking, the NI of each node shows a decrease trend.

FIGURE 5: Number of nodes in value scope of tar.

As the lower rank, the value shows a trend of increase. The
higher NI ranges from 0.7 to 3.0; most nodes” values are
around 0.4. The development of versions follows the same

Security and Communication Networks

Count

0 1 2 3 4
NI value

H cflow-1.0 mm cflow-1.3

B cflow-1.1 m cflow-14

Bl cflow-1.2

FIGURE 6: Number of nodes in value scope of cflow.

rank

—a— tar-1.20
—o— tar-1.21
—A— tar-1.23

—w— tar-1.25
—<4— tar-1.27
—»— tar-1.28

FiGURE 7: NI distribution of tar.

laws, the NI of a certain ranking remains stable and the NI
distribution of different software versions is nearly the same.
So, we can predict the future versions’ trends based on this.
Meanwhile, Figure 8 shows the NI distribution of software
cflow, the higher NI ranges from 0.8 to 4.0, and most nodes’
values are around 0.5. The curve of each version has the
same tendency; namely, the NI distribution of software cflow
follows the same trend.

5.3. Performance Evaluation. In the study of complex net-
work, we often examine the effectiveness of a method [19,
20] through the analysis of spreading influence about top-
k nodes. Therefore, this paper will introduce IC (indepen-
dent cascade) model. The IC model derived from the SIR
(Susceptible-Infected-Recovered) model, the SIR model is a
theory about virus spreading and has to be researched widely

NI value

Rank

—a— cflow-1.0
—o— cflow-1.1
—A— cflow-1.2

—— cflow-1.3
—< cflow-1.4

FiGuURE 8: NI distribution of cflow.

in complex networks, such as the marketing, advertising,
early warning, and social stability. In software engineering,
the similar algorithms were used to analyze the change impact
[21] and error propagation [22].

The IC model is a probability model; when a node v is
activated, it will attempt to activate its inactive outdegree
nodes with probability p only once [23]. Whether node v can
activate its neighbor nodes successfully, v is still active, but
it has no influence later. The communication process is over
when there are no influential active nodes in the network,
while, in the actual execution process of software, the running
fault can affect the other function running due to the invoking
relationship. When running fault, all of the invoked functions
would affect the normal execution of the parent function. So
the faults can widely spread among the function nodes during
the running process. So we take IC model as a software attack
model to evaluate the effectiveness of our method. A software
attack instance is shown in Figure 9.

We assume the node a and node b are attacked as
Figure 9(a) shows, and then a and d will attack its inactive
outdegree nodes with probability p only once, where b and
c are attacked successfully by a; meanwhile e and h are
attacked successfully by d in Figure 9(b), next a and d have no
aggressivity, and the nodes attacked by a and d can attack their
inactive outdegree nodes with probability p in the same way.
Finally, the number of attacked nodes represents the influence
of original attacked nodes.

When calculating the influence of the top-k important
nodes obtained by different methods, we will separately run
IC model about 10 times and then consider the average of
active nodes as the performance evaluation of the method.

The software key entities typically account for a small
proportion and only account for one point five percent to
two percent in the study of class size [24]. At the same time,
it is not acceptable for the cost of checking most of the key
entities. So an appropriate number of key entities is needed
to be selected. By ranking all functions as descending order

Security and Communication Networks

()

FIGURE 9: A software attack instance.

70
w
L
3
S 60
(5]
=
k3]
<
S
5]
E 50
g
=]
=]
L
= 40
T T T T T T T T T 1
S) — ~) <
— — — — —
z z 2 2 2
S 9] 9] 9])
= = =) = =
(9] (9] |9} |9} (9}
Versions

—m— FunctionRank
—e— PageRank
—A— MKN

w

3 4

2 50

S

[S]

L

2

=}

3

o 40 4

o

-

L

e

£

=

o 30 4

20 4 0——0‘.\./0/‘
T T T T T T T T T T T 1
(=) — o e} []
Q S [N N N
— — — — — —
i o i i = i
«© < < © < <
S S S S = S
Versions

—m— FunctionRank
—e— PageRank
—A— MKN

F1GURE 10: The curves of the number of active nodes.

according to the measurements, we chose little key functions
for different systems: top 20 for tar and top 30 for cflow.
Figure 10 shows the average of active nodes for different
software versions. In all the different versions of the software
systems, key functions identified by NI can activate more
nodes than that identified by the method PageRank and MKN
[25] as Figure 10 shows. Visibly, compared with another two
methods, NI is more effective in the identification of the
key functions. The key functions play an important role in
software system in terms of reducing the numbers of test
data, detecting the vulnerabilities of software structure, and
analyzing software reliability, and they should be paid more
attention in the process of software updating and software

maintenance. Measuring accurately the importance of the
node in the software networks is the premise to improve
the security and robustness of software. Moreover, with the
development of the software, measuring the importance of
nodes in the network has practical significance for protecting
the influential nodes from deliberate attacks in the software
network.

6. Conclusions and Future Work

In order to understand and recognize software structure
better, a novel method is proposed in this paper to mine the
influential nodes in weighted software network. Firstly, taking

Security and Communication Networks

into account the invoking times, we construct a directed-
weighted network structure to make the understanding and
recognization of software structure more accurate. Then, a
measurement of NI is put forward to evaluate the node
importance, where we provide an idea of importing PageR-
ank and WSN to Software engineering domain. Furthermore,
we also consider the outdegree value as a key parameter
to the node importance. The outdegree value can reflect
the complexity of the node. Finally, the algorithm named
FunctionRank is presented to calculate the NI and the
change trends of nodes’ importance are analyzed by different
software versions. In addition, the experimental results show
that the proposed feasible approach has good performance in
identifying the influential software nodes.

Although the approach we proposed shows some feasi-
bilities in identifying influence nodes in complex software
network, the broad validity of our approach should be
demonstrated further. Our future work is using more open-
source software network to evaluate the validity to improve
our approach.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Key R&D Pro-
gram of China (2016YFB0800700), the National Natural
Science Foundation of China under Grants no. 61472341, no.
61572420, and no. 61772449, the Natural Science Foundation
of Hebei Province of China under Grants no. F2015203326
and no. F2016203330, and the Advanced Program of Postdoc-
toral Scientific Research under Grant no. B2017003005.

References

[1] W.-E Pan, B. Li, Y.-T. Ma, Y.-Y. Qin, and X.-Y. Zhou, “Mea-
suring structural quality of object-oriented softwares via bug
propagation analysis on weighted software networks,” Journal of
Computer Science and Technology, vol. 25, no. 6, pp. 1202-1213,
2010.

[2] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based analysis and prediction for software evolution,”
in Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12), pp. 419-429, IEEE, Ziirich, Switzerland,
June 2012.

[3] D. Chen, L. Lii, M. Shang, Y. Zhang, and T. Zhou, “Identifying
influential nodes in complex networks,” Physica A: Statistical
Mechanics and its Applications, vol. 391, no. 4, pp. 1777-1787,
2012.

[4] E. Zio, L. R. Golea, and G. Sansavini, “Optimizing protections
against cascades in network systems: a modified binary differ-
ential evolution algorithm,” Reliability Engineering and System
Safety, vol. 103, pp. 72-83, 2012.

[5] S. M. Chen, X. Q. Zou, H. Lv, and Q. G. Xu, “Research on
robustness of interdependent network for suppressing cascad-
ing failure,” Acta Physica Sinica, vol. 63, no. 2, 2014.

[6] M. Kitsak, L. K. Gallos, S. Havlin et al., “Identification of
influential spreaders in complex networks,” Nature Physics, vol.
6, no. 11, pp. 888-893, 2010.

[7] N. Masuda and H. Kori, “Dynamics-based centrality for
directed networks,” Physical Review E: Statistical, Nonlinear, and
Soft Matter Physics, vol. 82, no. 5, Article ID 056107, 2010.

[8] G.Huang, B. Zhang, R. Ren, and J. Ren, “An algorithm to find
critical execution paths of software based on complex network,”
International Journal of Modern Physics C, vol. 26, no. 9, Article
ID 1550101, 2015.

[9] G.Huang, P. Zhang, B. Zhang, T. Yin, and J. Ren, “The optimal
community detection of software based on complex networks,”
International Journal of Modern Physics C, vol. 27, no. 8, Article
ID 1650085, 2016.

[10] S. M. Chen, X. Q. Zou, H. Lu, and Q. G. Xu, “Research on
robustness of interdependent network for suppressing cascad-
ing failure,” Acta Physica Sinica, 2013.

[11] J. Ma, D. Zeng, and H. Zhao, “Modeling the growth of complex
software function dependency networks,” Information Systems
Frontiers, vol. 14, no. 2, pp. 301-315, 2012.

[12] L. Wang, P. Yu, Z. Wang, C. Yang, and Q. Ye, “On the evolution
of Linux kernels: a complex network perspective,” Journal of
Software: Evolution and Process, vol. 25, no. 5, pp. 439-458, 2013.

[13] H. Li, H. Zhao, W. Cai, J.-Q. Xu, and J. Ai, “A modular attach-
ment mechanism for software network evolution,” Physica A:
Statistical Mechanics and its Applications, vol. 392, no. 9, pp.
2025-2037, 2013.

(14] F Thung, D. Lo, M. H. Osman, and M. R. V. Chaudron,
“Condensing class diagrams by analyzing design and network
metrics using optimistic classification,” in Proceedings of the
22nd International Conference on Program Comprehension,
ICPC ’14, pp. 110-121, ACM, Hyderabad, India, June 2014.

[15] K. Zhuang, H. Shen, and H. Zhang, “User spread influence
measurement in microblog,” Multimedia Tools and Applications,
vol. 76, no. 3, pp. 3169-3185, 2017.

[16] X.Zhang, G. Zhao, T. Lv, Y. Yin, and B. Zhang, “Analysis on Key
Nodes Behavior for Complex Software Network,” in Information
Computing and Applications, vol. 7473 of Lecture Notes in
Computer Science, pp. 59-66, Springer, Berlin, Germany, 2012.

[17] D. W. Li, B. Li, P. He, and W. E. Pan, “Ranking the importance of
classes via software structural analysis,” in Future Communica-
tion, Computing, Control and Management, vol. 141 of Lecture
Notes in Electrical Engineering, pp. 441-449, Springer, Berlin,
Germany, 2012.

[18] B.-Y. Wang and J.-H. Lii, “Software networks nodes impact
analysis of complex software systems,” Journal of Software, vol.
24, no. 12, pp. 2814-2829, 2013.

(19] V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani, “The
role of the airline transportation network in the prediction and
predictability of global epidemics,” Proceedings of the National
Acadamy of Sciences of the United States of America, vol. 103, no.
7, pp- 2015-2020, 2006.

[20] A. Garas, P. Argyrakis, C. Rozenblat, M. Tomassini, and S.
Havlin, “Worldwide spreading of economic crisis,” New Journal
of Physics , vol. 12, Article ID 113043, 2010.

[21] L. Zhang, G.-Q. Qian, and L. Li, “Software stability analysis
based on change impact simulation,” Chinese Journal of Com-
puters, vol. 33, no. 3, pp. 440-451, 2010.

[22] W. E. Pan and B. Li, “Software quality measurement based on
error propagation analysis in software networks,” Journal of
Central South University (Science and Technology), vol. 43, no.
11, pp. 4339-4347, 2012.

10

[23] Y. Zhao, S. Li, and E Jin, “Identification of influential nodes
in social networks with community structure based on label
propagation,” Neurocomputing, vol. 210, pp. 34-44, 2016.

[24] A. Zaidman and S. Demeyer, “Automatic identification of key
classes in a software system using webmining techniques,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 6, pp. 387-417, 2008.

[25] G. Huang, P. Zhang, Y. Li, and J. Ren, “Mining the important
nodes of software based on complex networks,” ICIC Express
Letters, vol. 9, no. 12, pp. 3263-3268, 2015.

Security and Communication Networks

Hindawi

Security and Communication Networks
Volume 2018, Article ID 5716878, 10 pages
https://doi.org/10.1155/2018/5716878

Research Article

Security Feature Measurement for Frequent Dynamic
Execution Paths in Software System

Qian Wang ®,"? Jiadong Ren,"” Xiaoli Yang,"* Yongqiang Cheng ®,

Darryl N. Davis,’ and Changzhen Hu*

3

!College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066000, China
*Computer Virtual Technology and System Integration Laboratory of Hebei Province, Hebei 066000, China

3Computer Science, University of Hull, Hull HU6 7RX, UK

*Beijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of Technology,
5 South Zhongguancun Street, Haidian District, Beijing 100081, China

Correspondence should be addressed to Qian Wang; wangqianysu@163.com

Received 12 October 2017; Accepted 19 February 2018; Published 22 March 2018

Academic Editor: Zheng Yan

Copyright © 2018 Qian Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The scale and complexity of software systems are constantly increasing, imposing new challenges for software fault location and
daily maintenance. In this paper, the Security Feature measurement algorithm of Frequent dynamic execution Paths in Software,
SFFPS, is proposed to provide a basis for improving the security and reliability of software. First, the dynamic execution of a
complex software system is mapped onto a complex network model and sequence model. This, combined with the invocation and
dependency relationships between function nodes, fault cumulative effect, and spread effect, can be analyzed. The function node
security features of the software complex network are defined and measured according to the degree distribution and global step
attenuation factor. Finally, frequent software execution paths are mined and weighted, and security metrics of the frequent paths
are obtained and sorted. The experimental results show that SFFPS has good time performance and scalability, and the security
features of the important paths in the software can be effectively measured. This study provides a guide for the research of defect

propagation, software reliability, and software integration testing.

1. Introduction

The increase in complexity of software requirements makes
software developers unsure of the development quality of
software system; in effect the “software crisis” still has not
been completely solved. How to effectively excavate the
inherent characteristics of the software system structure, to
recognize, measure, manage, and control the complexity of
software structure, becomes a key problem for solving the
development bottleneck in the software industry.

Research on the complexity of software network struc-
ture can combine the methods of complex system sci-
ence and statistical physics. Depending on the granularity,
software systems can be composed of different types of
software entities, such as functions, classes, subroutines,
packages, and artifacts. With these entities interacting with
each other, software systems can achieve specific functional

requirements. If the software entities are viewed as nodes and
the relationship between the nodes is abstracted as edges,
the software execution process presents a nonlinear network
structure according to the relationship of the entities [1] and
also a linear sequence structure according to the sequential
characteristics of the execution order. Then, the software
system can be expressed as an abstracted complex network
model and a sequence model, which provides a new train of
thought [2] for the description of the software system.

The root cause of the security danger hidden in software
lies in the vulnerability of the entity itself. The vulnerability
is the measurement of the potential danger of a software
entity to be used as an attack and can be discussed from the
perspective of computer network [3, 4] or software static code
analysis, but the integrity (whole structure) and the dynamic
execution (behavior characteristic) of software system are
ignored. In addition, the degree to which software system

http://orcid.org/0000-0001-7159-1424
http://orcid.org/0000-0001-7282-7638
https://doi.org/10.1155/2018/5716878

security is threatened depends not only on the severity of the
fault, but also on the fault propagation capacity of the entity.
If one or more functions fail, the fault may be propagated
to other functions by invocation relationships and further
lead to a part of or the whole software system crashing,
known as “cascading failure” [5]. Therefore, the software
security feature measurement should take into account the
vulnerability and propagation of software entities.

How to quantitatively measure the security features of
nodes from the software complex network is the premise and
basis for further analysis of the software behavior trajectory
path. At present, there are lots of methods for discovering the
important nodes in complex networks. The classic methods
based on centricity contain degree centrality [6], closeness
centrality [7], betweenness centrality [8], eigenvector cen-
trality [9], subgraph centricity [10], and so on. The classic
methods based on random walk model include PageRank
[11], LeaderRank [12], and their improved algorithm NodeR-
ank [13]. Wang and Lii [14] by means of the influence node
mining method prove that the defect propagation capacity
of a node is stronger if the in-degree and out-degree of the
node are bigger. Huang et al. [15] based on the invocation and
dependency relationships between functions with the fault
probability of nodes calculate the fault accumulation degree
of upper nodes by the iteration from the leaf nodes. These
methods attempt to describe the relevance of software node
importance to fault generation and propagation, but fail to
form a measurement of software security.

Sequence or path is the most basic and important way
for the description of dynamic software execution process.
The full execution path of the whole software can reflect
the occurrence order and frequency of the software internal
entities. However, the method of path extraction and mining
is restricted by the nested, circulatory, iteration and the
continuous invocation relationships of entities. Most software
path mining algorithms are extracted on the basis of complex
networks. For example, Tang et al. [16] propose an algorithm
for shortest path mining between any two vertices in complex
network. Zhang et al. [17] minimize the length of the
extracted path and reduce the unnecessary time overhead by
further processing the repetitive structure. The GP method
proposed by Nguyen et al. [18] can automatically detect
and fix software vulnerabilities according to the software
execution path. Murtaza et al. [19] predict future software
possible defects by analyzing the historical vulnerability
sequence data with characteristics of Markov to provide
adequate response time. Zou et al. [20] analyze the reliability
of Digital Instrumentation and Control software system
based on the flow network model by finding sensitive paths
in the complexity software. These algorithms are based on the
network to extract path, which can lead to the phenomenon
of repeated reading and approximate connection; also, these
software security analyses cannot work without existing
vulnerability information or real faults as their training data.

In this paper, the Security Feature measurement algo-
rithm of Frequent dynamic execution Paths in Software,
SEFPS, is proposed. A complex network model and a se-
quence model are formed based on software dynamic exe-
cution behavior. It is for early security feature measurement,

Security and Communication Networks

ITTITRo T —x
! Analytic 1| Software system
function
l [t iaiuteiviuint’
Fem oY o ——y i Dynamic | Data
| GNU compiler | | execution | collection
:_ toolchain (gcc) 1 | -----———- -
File trace.txt
for tracking results b
I Tool Pvtrace |
Data simplification
Invocation relationship |
_________ [IR
i Tracking | | Tool —F—
: results | : Addr2line |
Adjacency matrix | | Sequence model |
P mmm e | Data
! Tool N Tool ! visualization
| Addr2line | || Graphviz
Complex
network model

FI1GURE 1: Theory process of model construction.

before there are real vulnerabilities or faults generated, which
can provide the premise for the software quality and reliability
evaluation. The main contributions are as follows.

(1) The software system is mapped to a complex network
model and sequence model, from the nonlinear perspective
to effectively express the characterization of complex correla-
tion between software entities and from the linear perspective
to capture sequential characteristics of the dynamic execu-
tion.

(2) The behavior nature of fault accumulation and prop-
agation is analyzed based on the system structure of software
dynamic execution and standard measurement of security
features (vulnerability and propagation) being defined.

(3) Frequent paths in software dynamic execution are
mined and weighted by the node security features. The key
paths which are worthy of attention are ensured by both their
frequency and security features.

The remainder of the paper is organized as follows.
Section 2 gives the model construction. Sections 3 and 4
develop the definition of the security features and the SFFPS
algorithm. Section5 provides some examples. Section 6
presents the performance study of SFFPS and shows the rank
of the important paths. Section 7 contains the concluding
remarks.

2. Constructions of Complex Network
Model and Sequence Model

The dynamic execution trace of software systems contains
three phases, which are data collection, tracking data sim-
plification, and data visualization as shown in Figure 1. The
modeling process of simple functions is shown in Figure 2.

Phase 1. Match the entry and exit configuration functions of
the GNU compiler toolchain (gcc), and insert the analysis
function into the entry and exit of the application functions

Security and Communication Networks

sample.c trace.txt
void BO) {F();} EO0x8048690 |:> MBCGEFGDEFGFG
{CO); void F() E0x804854d
E()s} {GOs} E0x8048585
void C() void G() E0x8048656
{GO)s} { X0x8048656
void D() int main() X0x8048585
{EO {BO; E0x80485f0 0x8048690 calls 0x804854d
FO b0 E0x8048623 0x804854d calls 0x8048585
void E() return;} :> 0x8048585 calls 0x8048656
graph.dot 0x804854d calls 0x80485{0
digraph sample { @
main[shape=ellipse]
Blshape=ellipse] ST u oy
Clshape=ellipse] g o 0 ln B Y9
G[shape=ellipse] <::| § § § § § § §
E[shape=ellipse] 58888888
F[shape=ellipse]
S
main=B 0x8048585 1
main—D 0x80485b8 11
B-C 0x80485£0 1
B—E 0x8048623 1
0x8048656

FIGURE 2: Modeling process of invocation relationship between simple functions.

to trace the function execution process. The tracking results
are recorded in the file trace.txt.

Phase 2. 'Theletters “E” and “X” before the tracking addresses
represent the entry and exit of a function, respectively. A
simplification tool Pvtrace is used to analyze the function
invocation according to the letters “E” and “X.” An address
transformation tool Addr2line is used and the address is
transformed to function name.

Phase 3. Map the function invocation order to sequence
model and a visualization tool Graphviz is used to form
the complex network, which defines the global relationship
between all the functions.

According to Figure 2, the corresponding relationships of
function address and function name are as follows:

0x8048690 — M(main); 0x804854d — B;
0x8048585 — C; 0x80485b8 — D.

0x80485f0 — E; 0x8048623 — F, 0x8048656 — G.

Only the addresses with the letter “E” are used for
sequence model construction.

3. The Security Feature Definition and
Measurement of Function Nodes

The security feature measurement of a function node is
based on the software structure; the analysis of vulnerability
and propagation is according to cumulative effect and the

spread effect caused by the mechanism of fault production
and propagation. The global accessibility and fault tolerance
with step attenuation effect are fully considered, so the
node security features are calculated according to the degree
distribution and step attenuation factor.

Definition 4 (software complex network). In a software
complex network, functions are defined as the nodes; the
invocation relationships between functions are defined as
edges.

Definition 5 (vulnerability). Vulnerability of a function node
is the characteristic that a function node may break down
because of the effect of its invocated fault node through
invocation relationship.

Typically, if a node invocates more other nodes, it is more
functional and vulnerable. That is to say, it is more likely to be
affected and be faulted. The calculation of V' (vulnerability) is
as follows:

V (u) = outDegree (u) + Z 0%V (w), 0
weOS(u)

where u, w represent function nodes, V(1) represents the
vulnerability of node u, OutDegree (1) represents the out-
degree of node u, 0 represents the step attenuation factor,
which satisfies 8 € (0, 1), and OS(u) represents the direct out-
neighbor set of node u.

Definition 6 (propagation). Propagation of a function node
is the characteristic that a function node may propagate its

Input: Complex network CN, step attenuation factor 6
Output: Node list with security features NFlist
for each node u in CN
{ V(u) = calculation_V (u);
P(u) = calculation_P(u);
NFlist.add (u, V (1), P(u)); }
Procedure calculation_V'(u)
{ V(u) = outDegree(u);
For each node w € OS(u)
V(u) += calculation_V (w);
return V(u); }
Procedure calculation_P(u)
{ P(u) = inDegree(u);
for each node w € IS(u)
P(u) += calculation_P(w);
return P(u); }

ArLGoriTHM I: Calculation of node security features.

fault to the nodes by which it is invocated. The calculation of
P (propagation) is as follows:

P (u) = inDegree (u) + Z 0 x P(w), @)
welS(u)

where P(u) represents the propagation capacity of node u,
inDegree (u) represents the in-degree of node u, and IS(u)
represents the direct in-neighbor set of node u.

Algorithm 1 describes the calculation process of vulnera-
bility and propagation.

4. Mining Frequent Paths from
Dynamic Execution with Security
Feature Measurement

The importance of a software dynamic execution path takes
into account two aspects: one is the occurrence frequency
of the path and the other one is the security feature coming
from the nonrepetitive nodes contained in the path. These
two aspects are complementary. For example, if there are
lots of loop bodies in the software execution, loop body
and its subset are always frequent. But because most of its
contained nodes are the same, the fault influence range is
small. Similarly, if a path contains many different nodes
with a lower occurrence frequency, its impact range is large,
but its occurrence possibility is small. That is to say, if the
frequency of a path is very high and the path contains
more nonrepetitive nodes, the path is worthy of more atten-
tion.

4.1. Relative Definitions of Frequent Path. Let F = {f},
fas f3r-- o> fu} be a set of function symbols. S is a software
execution path, and it is composed of function symbols
with time-ordered occurrence. Minimal support count (min-
count) can be calculated by mincount = minsup * |S|, where
minsup is a given threshold and [S] is the number of function
symbols in S. If there are k symbols in S, S is a k-path.

Security and Communication Networks

FIGURE 3: Complex network model of simple function invocation
relationship.

Definition 7 (subpath and superpath). A path S, = (a,,

a,,...,a,,) is a subpath of another path S, = (b;,b,,...,b,),
denotedas S; € S,, if thereare numbersiy, iy, ..., i, such that
1<i; <i,<---<i,<nanda, Cb;,a,<b,,...,a, <bh,.

It can also be said that S, is a superpath of path S;.

Definition 8 (support number). S is a path; the support
number of S, denoted as sup(S), is defined as its occurrence
number in the software execution.

Property 9 (frequent path). A path S is frequent if its support
number sup(S) is equal to or more than mincount.

Property 10 (antimonotone). If path A is not a frequent path,
any path B containing A, which is a superpath of A, cannot
be a frequent path.

4.2. Weighting the Frequent Path Based on the Security
Features of Function Node. SFFPS algorithm is for mining
the security features of frequent paths based on the dynamic
execution sequence model and the node security features in
the complex network model. It contains two phases: one is
frequent path mining and the other one is security feature
weighting. First, the function nodes in the sequence model
are read to form the function position set. Then, the position
index is used for pattern growth; this self-growth strategy
can avoid candidate generation and ensure the continuity
of function execution. Finally, path frequency is validated
by minimum support count mincount, and path is weighted
according to the security feature of the nonrepetitive nodes
contained in it. The security features of the frequent paths are
measured. Algorithm 2 describes the mining and weighting
process.

5. An Illustrative Example

The complex network in Figure 2 is a variant of the tree-like
structure in Figure 3, which is redrawn for easier understand-
ing.

Without losing generality, the coordination factor is set
to 0.5. Security features of each node are calculated as follows.

Security and Communication Networks

mincount = minsup * [S];
for each node S; in S
{ Pos(S;).add(S;.pos); }
for each Pos(S;)
{sup(S;) = [Pos(S;)[;
if(sup(S;) < mincount)
Delete Pos(S;);
else

for (k = 2; L;_,! = 0; k++)
{gen_mine(L,_,);
foreachl,, € L

{V(I,)+=V(u);
P(l,,)+=P(u);}}}

Procedure gen_mine (L;_,)
{foreachl € L,_,

{Sj = S[pos + 1];

sup(liSj) = IPos(liSj)l;

delete Pos(liSj);
else

Input: Function execution path S, minimal support threshold minsup
Output: Path list with security features Slist

L, =L,.add(S;, sup(S;)); }

{ for each different function symbol in |

Sorteachl, € LbyV(l,), P(l,,) and form Slist;

{ for each position pos in Pos(/;)
for each position pos in Pos(l;)
{if (pos+1 exists in Pos(S;))
{Pos([;S;).add(pos + 1);} } }

if (sup(l;S ;) < mincount)

Ly = Liadd(,S)):})

m

ALGORITHM 2: Security feature measurement of frequent paths in software.

As the “main” function is special (vulnerability is always large

and propagation is 0), it is excluded for measurement.
Vulnerability

V(G) = outDegree (G) = 0.
V(C) = outDegree (C) + 0 = V(G) =1+ 0.5 % 0 = 1.
V(F) = outDegree (F)+0 * V(G) =1+0.5 % 0 = 1.

V(E) = outDegree (E) +0 = V(F) =1+0.5% 1= 1.5.

V(D) = outDegree (D) +0 # {V(E)+V(F)} = 2+0.5 %

(1.5+1) = 3.25.
V(B) = outDegree (B)+0 = {V(C)+ V(E)} = 2+0.5 *
(1+1.5) = 3.25.

Propagation

P(B) = inDegree (B) = 1; P(D) = inDegree (D) = 1.
P(C) = inDegree (C) + 0 * P(B) =1+ 0.5 % 1 = 1.5,
P(E) = inDegree (E) + 0 = {P(B) + P(D)} =2 + 0.5 #

1+1)=3.
P(F) = inDegree (F) + 0 = {P(E) + P(D)} =2+ 0.5 *
(3+1)=4.

P(G) = inDegree (G) + 0 * {P(C) + P(F)} =2+ 0.5 =
(1.5 + 4) = 4.75.

According to the sequence model of the example,
S = (M)BCGEFGDEFGFG, if the minsup is set to 0.15,
mincount = 0.15 % 12 = 2.

Pos(B) = {1}; Pos(C) = {2}; Pos(D) = {7}; Pos(E) =
{4, 8}.
Pos(F) = {5,9, 11}; Pos(G) = {3,6,10,12}.

Frequent 1-Path

E, sup(E) = 2, Pos(E) = {4, 8}.
F, sup(F) = 3, Pos(F) = {5,9,11}.
G, sup(G) =4, Pos(G) = {3,6, 10, 12}.

The mining method of frequent 2-path is based on the
position set of the frequent l-path by using the adjacent
position value as index to find the extended paths. For
example, the position set of node E is {4, 8}, and its extended
position set is {5, 9}. The function nodes in positions 5 and 9
both correspond to node F. So, Pos (EF) = {5, 9} is obtained,
sup(EF) = 2, and path EF is a frequent 2-path.

Security and Communication Networks

900
800 -
700 -
600 -
500 -
400
300
200
100 -

Runtime (s)

Minsup (%)

- Tar-1.27
- Tar-1.28

(b) Runtime test of SFFPS in Tar

FIGURE 4: Runtime test of SFFPS with different support thresholds.

6
25
20
Z 15t
£
g 10+
&
5+
0 1 1 1 1 1
0 5 6 7 8 9 10
Minsup (%)
- Cflow-1.3
- Cflow-1.4
(a) Runtime test of SFFPS in Cflow
TABLE 1: The security features of frequent paths.
Frequent paths sup \% P
E 2 1.5 3
F 3 3
G 4 0 4.75
EF 2 2.5 7
FG 4 1 8.75

Frequent 2-Path

EF, sup(EF) = 2, Pos (EF) = {5,9}; FG, sup (FG) = 3.
Pos (FG) = {6, 10, 12}.

The security features of frequent 1-path included in the
function nodes are calculated as before, and the security
features of frequent 2-path are calculated as follows. Table 1
shows the security features of all the frequent paths.

V(EF)=V(E)+V (F) = 15+1 = 2.5;

(3)
P(EF)=P(E)+P(F)=3+4=7.

6. Experimental Results

Experiments are performed on a PC with Intel® Core™
3.6 GHz CPU and 16 G main memory, running on Windows
8. We evaluate the runtime and scalability of the algorithm
SFEPS and calculate the fault feature ranks of nodes and
important paths. To test the algorithms in the same coding
environment, all the programs are written in Java using
MyEclipse. Datasets used in the experiment are open-source
software programs of Cflow and Tar obtained from open-
source software library (https://sourceforge.net).

6.1. Runtime and Scalability Tests of SFFPS. By testing the
runtime and scalability of SFFPS, two newest versions of each
Cflow and Tar are selected. The support threshold is from
0.005 to 0.01 for runtime test, and the upper threshold 0.01
is used for scalability test. The total runtime is composed of

three parts, node fault feature calculation, frequent pattern
mining, and weight appending. Figure 4 is the runtime test
of SFFPS with different support thresholds and Figure 5 is
the scalability test with different length percentages of the
sequence when the support threshold is set to 0.01.

From Figure 4, SFFPS performs well in the support
threshold range [0.005, 0.010]. This is due to the adjacency
table which is for the storage of the complex network model.
The calculation of the out-degree and in-degree of the nodes
is made easier, which improves the calculation of node
security feature. Furthermore, as the sequence model is based
on the start order of each function, the detailed invocation
and end time of a node are ignored, and the length of the
sequence model is simplified. Also, position value index is
used for the mining and pattern growth of the paths, which
avoids candidate generation, and index methods are always
effective. Finally, the weight appending process achieves
efficiency because fewer nodes are involved by the strategy
of nonrepetition.

From Figure 5, SFFPS shows good scalability on the soft-
ware Cflow. With the increase of the length of the sequence,
the execution time of SFFPS is essentially a linear growth.
From the experimental data, the number of frequent sequen-
ces is also increasing. This indicates that the functions of
Cflow are uniformly distributed. However, the time overhead
of software Tar is quite expensive around 40% of sequence
length; the number of frequent sequences increases rapidly
from 194 when the percentage is 20% to 1123. After that,
the time overhead and the number of frequent sequences
reduces. This indicates that there are more core functions in
software Tar and there are more invocations of core functions
in the early stage of the program.

6.2. The Security Features of the Function Nodes. Tables 2 and
3 show the security feature rank and value of the function
nodes in the newest versions of Cflow and Tar.

From Tables 2 and 3, the security features of the same
function nodes are relatively stable for different versions of
the same software. So, in the process of version evolution, it
can be inferred and predicted that the same function should

https://sourceforge.net

Security and Communication Networks 7
25 10
9L
20 + 8
=2 = /T
< 15t < 6F
g E st
2 10} E af
E Z
5k 2L
1+
O 1 1 1 1 0 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
Percentage (minsup = 0.005) Percentage (minsup = 0.010)
- Cflow-1.3 —-@- Cflow-1.3
- Cflow-1.4 - Cflow-1.4
(a) Scalability test of Cflow with minsup = 0.005 (b) Scalability test of Cflow with minsup = 0.010
10000 1800
9000 1600 |
8000 | 1400 -
. 7000 — 1200}
2 6000 F <
Y 1000 -
£ 5000 £ 500
S 4000 | E i
5
& 3000 - &~ 600 -
2000 400 |-
1000 200 |-
0 1 1 1 0 I I -
0 20 40 60 80 100 0 20 40 60 80 100
Percentage (minsup = 0.005) Percentage (minsup = 0.010)
- Tar-1.27 - Tar-1.27
- Tar-1.28 - Tar-1.28
(c) Scalability test of Tar with minsup = 0.005 (d) Scalability test of Tar with minsup = 0.010
FIGURE 5: Scalability test of SFFPS with different percentages of sequence length.
TaBLE 2: Rank and value of function node security features in Cflow.
Vulnerability Propagation
. Cflow-1.3 Cflow-1.4 . Cflow-1.3 Cflow-1.4
Function name Function name
(rank/value) (rank/value)
parse_variable_declaration 1/45.05 1/47.07 nexttoken 1/33.73 1/36.17
parse_declaration 2/40.77 2/41.85 tokpush 2/19.74 3/20.96
yyparse 3/37.50 4/38.82 putback 3/19.32 4/19.32
parse_typedef 4/19.33 6/20.78 get_token 4/17.86 5/19.08
tree_output 5/18.50 5/25.56 linked_list_append 5/15.47 2/21.06
func_body 6/18.15 7/18.28 lookup 6/13.79 6/13.94
parse_function_declaration 7/17.80 8/17.99 hash_symbol_hasher 7/12.90 8/13.04
parse_dcl 8/16.92 9/17.41 hash_symbol_compare 7/12.90 8/13.04
expression 9/16.17 10/16.42 yy-load_buffer_state 8/12.86 7/13.27
initializer_list 10/12.53 13/12.72 yylex 9/9.93 11/10.54

have approximate rank in a new software version. Also, the
function rank in the old version can be used as a basis for the
version upgrade process with function nodes remove, merger,
or update. The nodes with larger rank changes should be

given more attention.

Tables 4 and 5 show the frequent paths of Cflow-1.4 in the
top 10 security feature ranks of vulnerability and propagation.

There are double meanings of the paths listed in Tables 4

and 5. One is that the paths are frequent, which first affirms
that the occurrence possibility of the path is relatively large.
The other one is that the security feature values of the paths
are larger, which evaluates the security risk of the path. Only
when both of them work together can we make a persuasive
security measurement.

Security and Communication Networks

TABLE 3: Rank and value of function node security features in Tar.

Vulnerability Propagation

. Tar-1.27 Tar-1.28 . Tar-1.27 Tar-1.28

Function name Function name
(rank/value) (rank/value)
dump_file0 1/42.84 1/44.09 to_chars 1/17.28 1/17.28
create_archive 2/32.02 2/33.21 assign_string 2/11.67 2/11.67
dump_file 3/25.92 4/27.04 to_octal 3/9.64 3/9.64
dump_regular_file 4/19.37 5/19.37 tar_copy_str 4/713 4/713
dump_hard_link 5/17.37 6/17.37 set_next_block_after 5/6.64 5/6.64
start_header 6/15.62 8/15.62 find_next_block 6/6.16 6/6.16
dump_dir0 7/15.37 7/16.37 start_header 7/5.84 7/5.84
dump_dir 8/10.68 9/11.18 finish_header 7/5.84 7/5.84
close_archive 9/7.50 11/8.00 current_block_ordinal 7/5.84 7/5.84
_open_archive 10/7.25 10/8.75 flush_archive 8/5.83 8/5.83
TABLE 4: Vulnerability rank and value of frequent paths (minsup = 0.01).

Paths Rank/value
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, 116.75
print_level, print_function_name, newline, gnu_output_handler, set_active
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, 116.75
print_level, print_function_name, newline
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, 116.75
print_level, print_function_name, newline, gnu_output_handler
direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 21575
print_function_name, newline
include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 21575
print_function_name, newline, gnu_output_handler, set_active
include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 21575
print_function_name, newline, gnu_output_handler
include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 21575
print_function_name, newline
direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 21575
print_function_name, newline, gnu_output_handler
direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 21575
print_function_name, newline, gnu_output_handler, set_active
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol 3/14.75

In addition, the frequency of the path can be used to
predict the function nodes that are going to be affected,
and the security features of the path can be used to
evaluate the possible impact scale of the abnormal path.
For example, the main consideration of random fault
detection is the vulnerability. According to the first path
of Table4, from the perspective of frequency, if the
first three functions of a fault path are “is_printable,”
“include_symbol,” and “direct_tree,” then the next func-
tions which are likely to be affected are “include_symbol,”
“print_symbol,” “gnu_output_handler,” and so on. From the
perspective of security features, the path displays higher rank
and value in vulnerability, which indicates the fault location
is relatively accurate. If it is a hostile attack detection, the
attacker expects a wider range effect, so the propagation
should be considered more. In this case, the analysis method
is similar.

7. Conclusion

In this paper, a novel algorithm, SFFPS, is proposed to define
and measure the security feature of dynamic execution path
in software. Complex network model and sequence model
are constructed for the record of invocation relationship and
function execution order. The node degree in the complex
network is used for security feature analysis from a structural
perspective before real fault occurrence. The paths extracted
from the sequence model are used for frequency test and
weighted by the node security features. Finally, frequent
dynamic execution paths with top security feature rank
are mined as important paths which should be of greater
concern. With the experiment, SFFPS can effectively mine
the important paths from the newest versions of software
programs Cflow and Tar. SFFPS can be applied as a basis
for software evolution, a tool for software internal structure

Security and Communication Networks

TABLE 5: Propagation rank and value of frequent paths (minsup = 0.01).

Paths Rank/value
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, 136,35
print_level, print_function_name, newline, gnu_output_handler, set_active ’
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, 2/34.48
print_level, print_function_name, newline :
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, 2/34.48
print_level, print_function_name, newline, gnu_output_handler ’
include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 3/34.42
print_function_name, newline, gnu_output_handler, set_active ’
direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 3/34.42
print_function_name, newline, gnu_output_handler, set_active '
include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, print_function_name, newline, 4/32.67
gnu_output_handler, set_active ’
is_printable, include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, 5/32.60
print_level, print_function_name ’
direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 6/32.54
print_function_name, newline :
include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 6/32.54
print_function_name, newline, gnu_output_handler ’
include_symbol, direct_tree, include_symbol, print_symbol, gnu_output_handler, print_symbol, print_level, 6/32.54

print_function_name, newline

analysis, and a guidance to fault location and attack detection,
which are helpful for software quality assurance.

Conflicts of Interest

There are no conflicts of interest related to this paper.

Acknowledgments

This work is supported by the National Key R&D Pro-
gram of China (2016YFB0800700), the National Natural
Science Foundation of China under Grant nos. 61472341,
61772449, and 61572420, the Natural Science Foundation
of Hebei Province, China, under Grant nos. F2016203330
and F2015203326, the Advanced Program of Postdoctoral
Scientific Research under Grant no. B2017003005, and the
Doctoral Foundation of Yanshan University under Grant no.
B1036.

References

[1] Y.-T. Ma, K.-Q. He, B. Li, and J. Liu, “Empirical study on the
characteristics of complex networks in networked software;”
Ruan Jian Xue Bao/Journal of Software, vol. 22, no. 3, pp. 381-
407, 2011.

[2] X. Wang and W. Yichen, Research Progress on Error Propagation
Model in Software System[]], vol. 43, Computer Science, 2016.

[3] H.L.Vu,K.K.Khaw, T. Y. Chen, and E.-C. Kuo, “A new approach
for network vulnerability analysis,” IEEE Conference on Local
Computer Networks, vol. 58, no. 4, pp. 200-206, 2008.

[4] X.J.Qin, L. Zhou, Z.N. Chen, and S. . Gan, “Software vulnerable
trace’s solving algorithm based on lazy symbolic execution,”
Chinese Journal of Computers. Jisuanji Xuebao, vol. 38, no. 11,
pp. 2290-2300, 2015.

[5] J. Wang, Y.-H. Liu, and X.-L. Liu, “Model for cascading faults in
complex software,” Jisuanji Xuebao/Chinese Journal of Comput-
ers, vol. 34, no. 6, pp. 1137-1147, 2011.

[6] D.Wei, Y.Li, Y. Zhang, and Y. Deng, “Degree centrality based on
the weighted network,” in Proceedings of the 2012 24th Chinese
Control and Decision Conference, CCDC 2012, pp. 3976-3979,
China, May 2012.

[7] K. Okamoto, W. Chen, and Y. Li X, “Ranking of Closeness
Centrality for Large-Scale Social Networks,” in International
Workshop on Frontiers in Algorithmics, pp. 186-195, Springer-

Verlag, 2008.

[8] M. Kitsak, S. Havlin, G. Paul, M. Riccaboni, F. Pammolli, and
H. E. Stanley, “Betweenness centrality of fractal and nonfractal
scale-free model networks and tests on real networks,” Physical
Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 75,
no. 5, Article ID 056115, 2007.

[9] X. Wu, M. Zhang, and Y. Han, “Research on centrality of node
importance in scale-free complex networks,” in Proceedings of
the 31st Chinese Control Conference, CCC 2012, pp. 1073-1077,
chn, July 2012.

[10] X. Yan, C. Li, L. Zhang, and Y. Hu, “A new method optimizing
the subgraph centrality of large networks,” Physica A: Statistical
Mechanics and its Applications, vol. 444, pp. 373-387, 2016.

[11] L. Page, “The PageRank citation ranking: Bringing order to the
web,” Stanford Digital Libraries Working Paper, vol. 9, no. 1, pp.
1-14,1998.

[12] S. Xu and P. Wang, “Identifying important nodes by adaptive
LeaderRank,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 469, pp. 654-664, 2017.

[13] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based analysis and prediction for software evolution,”
in Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12), pp. 419-429, IEEE, Zirich, Switzerland,
June 2012.

10

[14] B.-Y. Wang and J.-H. Lii, “Software networks nodes impact anal-
ysis of complex software systems,” Ruan Jian Xue Bao/Journal of
Software, vol. 24, no. 12, pp. 2814-2829, 2013.

(15] G. Huang, P. Zhang, Y. Li, and J. Ren, “Mining the important
nodes of software based on complex networks,” ICIC Express
Letters, vol. 9, no. 12, pp- 3263-3268, 2015.

[16] J.-T. Tang, T. Wang, and J. Wang, “Shortest path approximate
algorithm for complex network analysis,” Journal of Software,
vol. 22, no. 10, pp. 2279-2290, 2011.

[17] B. Zhang, G. Huang, H. He, and J. Ren, “Approach to mine
influential functions based on software execution sequence,”
IET Software, vol. 11, no. 2, pp. 48-54, 2017.

[18] T. Nguyen, W. Weimery, C. Le Gouesy, and S. Forrest, “Using
execution paths to evolve software patches,” in Proceedings of the
IEEE International Conference on Software Testing, Verification,
and Validation Workshops, ICSTW 2009, pp. 152-153, USA, April
2009.

[19] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and A. B. Bener,
“Mining trends and patterns of software vulnerabilities,” The
Journal of Systems and Software, vol. 117, pp. 218-228, 2016.

[20] B.Zou, M. Yang, E.-R. Benjamin, and H. Yoshikawa, “Reliability
analysis of Digital Instrumentation and Control software sys-
tem,” Progress in Nuclear Energy, vol. 98, pp. 85-93, 2017.

Security and Communication Networks

