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Te SIRDV (Susceptible, Infected, Recovered, Death, Vaccinated) compartmental model along with time-varying parameters is
used to model the spread of COVID-19 in the United States. Time-varying parameters account for changes in transmission rates,
people’s behaviors, safety precautions, government regulations, the rate of vaccinations, and also the probabilities of recovery and
death. By using a parameter estimation based on the simplex algorithm, the system of diferential equations is able to match real
COVID-19 data for infections, deaths, and vaccinations in the United States of America with relatively high precision.
Autoregression is used to forecast parameters in order to forecast solutions. Van den Driessche’s next-generation approach for
basic reproduction number agrees well across the entire time period. Analyses on sensitivity and elasticity are performed on the
reproduction number with respect to transmission, exit, and natural death rates in order to observe the changes from a small
change in parameter values. Model validation through the Akaike Information Criterion ensures that the model is suitable and
optimal for modeling the spread of COVID-19.

1. Introduction

Te Kermack–McKendrick SIR-type model and its variants
have become one of the most useful tools for modeling the
spread of infectious diseases. Much research has been done
on exploring the capabilities and extensions of SIR-type
models through applications in many infectious diseases [1].
Te SIR and SEIR model variants are commonly used to
analyze the spread of infectious diseases in population. Te
SIR model divides the population into three compartments:
Susceptible (S), iInfected (I), and Recovered (R). It assumes
that individuals can be categorized into one of these com-
partments, with recovered individuals gaining lifelong im-
munity. Te model tracks the transitions between
compartments, such as susceptible individuals becoming
infected and infected individuals recovering. Te SEIR
model expands on this by adding an Exposed (E)

compartment to represent individuals in the incubation
period. It accounts for the fact that individuals can transmit
the infection before showing symptoms [2]. Both models
help researchers understand disease dynamics, evaluate
interventions, and make predictions. While these models
simplify real-world complexities, they provide valuable in-
sights into how diseases spread and can inform public health
strategies.

Due to COVID-19, mathematical epidemiology, par-
ticularly the use of the SIR model, has gained popularity and
is used by many researchers throughout the world who are
interested in studying the topic [3–13]. Since COVID-19 is
a disease with a latent period, some include the exposed
compartment in the SIR model [2]. SEIR models are also
suitable and popular amongst epidemiologists to study the
outbreak of COVID-19 in diferent countries and regions
[8]. On December 31, 2020, WHO issues its frst emergency
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use validation for a COVID-19 vaccine [14]. Te vaccinated
compartment, along with other compartments such as
quarantined and death, is added to the SEIR or SIR model
[15]. However, while the models previously mentioned are
able to simulate and match real COVID-19 data for a rela-
tively short span of time of around a few weeks to months,
they fail to compare to the data over a long period of time
due to many factors changing and afecting the disease.
Tese models often assume constant, time-independent
parameters for transmission, death, and recovery rates,
which would be sufcient for a short time span; however, it is
not realistic due to the changes in safety regulations set by
the government, the behavior of people, the ability to cure
COVID-19 patients, and the rate at which people are getting
vaccinated.

Tere are several publications with similar interests in
modeling the spread of COVID-19 over a long period of
time using varying parameters. An example of a model using
time-varying parameters for a longer time span include
Nastasi’s use of nine diferent time-dependent transmission
frequency parameter values throughout the span of 400 days
in order to account for diferent policy measures in Great
Britain and Israel [16]. Similarly, Girardi and Gaetan apply
the concept of time-varying parameters to the transmission
rate, which is able to qualitatively describe the number of
cases over the span of several months in three diferent
countries [17]. Another research explores the same notion of
time-varying parameters in the sense of parameter esti-
mation through deep learning on the transmission rate and
deceased rate [18]. Furthermore, a study involving the es-
timation of the time-varying reproduction number has been
done based on various cities in China [19]. From these
works, it can be seen that the time-varying parameters are
what make SIR-type models capable of modeling COVID-19
over a longer period of time, accounting for changes that
afect the spread of the disease.

Te objective of this research is to use an SIRDV model
to match the United State’s real COVID-19 data with high
precision. Te compartments compared with real data are
infected (I), death (D), and vaccinated (V). In order to
achieve high precision, this model varies the transmission
rate β, death probability p, and vaccination rates σ on a daily
basis. Te method used for parameter estimation is de-
veloped based on MATLAB’s fminsearch function and the
simplex algorithm. Specifcally, the fminsearch function in
MATLAB utilizes the Nelder–Mead simplex algorithm,
a derivative-free optimization method, to fnd the minimum
value of a given function. It constructs a simplex in the
parameter space, iteratively updating its vertices based on
function evaluations, aiming to converge towards the
minimum. fminsearch is particularly useful for optimizing
functions without readily available derivative information or
in cases where computing derivatives is challenging. Since
the simplex algorithm is lightweight and fast, all three pa-
rameters with over 800 fnal values each after 10 attempts of
optimization are able to be obtained in under 6minutes. Te
solutions are plotted against real active cases data from
Worldometer [20], deaths, and fully vaccinated people on
Our World in Data [21].

Te parameters obtained by the method are used to
compute time-varying basic reproduction numbers and are
compared to reproduction rates presented by Our World in
Data [21]. Sensitivity analysis is performed by day since
diferent parameter values yield diferent values for sensi-
tivity. Elasticity values are calculated in order to observe the
basic reproduction numbers’ response to each parameter.
Error analysis is performed, and Akaike Information Cri-
terion (AIC) values are also computed on a daily basis in
order to show that the model is indeed valid when compared
to similar models [22].

2. Model

Te constructed SIRDV model is similar to a typical SIR-
type model, with the same compartments being susceptible
(S), infected (I), and recovered (R); however, with the
addition of deaths (D) due to COVID-19 and vaccinated
(V), the infected class has the same exit rate for recovery and
death, with the diference being the death probability p. It is
allowed for recovered people to become susceptible again at
the rate of α and for fully vaccinated people to become
infected, but with a probability factor of r. Te diagram and
the nonlinear diferential equation for the SIRDV model are
represented in Figure 1 and equations (1)–(5), respectively.

dS

dt
� μN −

βSI
N

− (σ + μ)S + αR, (1)

dI

dt
�
βSI
N

+ r
βVI
N

− (c + μ)I, (2)

dR

dt
� (1 − p)cI − (α + μ)R, (3)

dD

dt
� pcI. (4)

When the vaccinated compartment is considered, there
are two diferential equations used for vaccinations, (5) and
(6). When optimizing for compartments other than V,
equation (5) is used. Since the vaccination data are only
a count of who has received the vaccine (not accounting for
people who are infected or died after the vaccination),
equation (6) must be used for optimizing the vaccination
compartment. Equation (6) is a modifcation of equation (5),
where all negative terms denoting the population exiting the
vaccination compartment are omitted.

dV

dt
� − r

βVI
N

+ σS − μV, (5)

dV

dt
� σS. (6)

Te term N denotes the current population, in which
only the alive population takes into account, thus excluding
people in compartment D.

N � S + I + R + V. (7)
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3. Parameter Estimation

3.1. Parameters. Constant parameters are kept as a single
value throughout the simulation under the assumption that
there are no signifcant changes in the values over the entire
time span. It is assumed that the average exit rate from
infectious, recovery to susceptible, natural death rate, and
probability of infection from being vaccinated do not change
over the entire time span. Constant parameter values are
listed in Table 1; meanwhile, varying parameters will attain
many diferent values upon optimization, their values will
not be presented within Table 1.

3.2. Time-Varying Parameter Estimation. Constant param-
eter values are not realistic due to the changes in safety
regulations set by the government, behavior of people, ability
to cure COVID-19 patients, and vaccination rate; hence,
there are many previous studies implementing the time-
varying parameters in the models [16–19]. Terefore, the
time-varying parameter estimation is an essential technique
to optimize the parameter in the SIRDV model. Parameters
c, α, μ, and r are kept constant throughout all time steps, as
there are no reported signifcant changes in the rate at which
people recover, become susceptible again, die of other
causes, or change in the probability of being infected after
being fully vaccinated. Te transmission rate, probability of
death, and vaccination rate are expected to change
throughout the course of the pandemic, and will also have
the greatest impact when attempting to match the solutions
of themodel to the real data.Terefore, only parameters β, p,
and σ vary with time and undergo the parameter estimation
method.

MATLAB’s built-infminsearch function which is based
on the simplex algorithm is used to minimize the sum of
squared errors (SSE) of the solution computed by MAT-
LAB’s ode45 based on the Runge–Kutta numerical scheme
and the real data in time steps of a single day by one pa-
rameter at a time. In MATLAB, ode45 is a numerical in-
tegration algorithm used to solve ODEs. It employs
a variable step-size, Runge–Kutta method of order 4(5),
meaning it combines the fourth and ffth-order Run-
ge–Kutta methods to achieve higher accuracy. ode45 sub-
divides the integration interval into smaller intervals and
approximates the solution by iteratively computing in-
termediate values using the Runge–Kutta formulae. It

dynamically adjusts the step-size based on the estimated
error, aiming to maintain accuracy while efciently in-
tegrating the ODE. ode45 is a popular choice for solving
a wide range of ODE problems due to its balance between
accuracy and computational efciency.

Te fminsearch function in MATLAB is a numerical
optimization algorithm that aims to fnd the minimum value
of a given function without requiring derivative information.
It utilizes the Nelder–Mead simplex algorithm, which
constructs a geometric fgure called a simplex in the pa-
rameter space.Te algorithm iteratively adjusts the simplex’s
vertices based on function evaluations, such as refecting,
expanding, contracting, or shrinking, in order to converge
towards the minimum. By iteratively updating the simplex,
fminsearch searches for the optimal solution within the
parameter space, making it useful for optimizing functions
where derivatives are not readily available or difcult to
compute.

In the parameter estimation method in Figure 2, the
initial parameter value guesses are improved upon via the
simplex algorithm, leading to the optimal parameter values
by minimizing the error between the real data and the
numerical solution. Te parameters can be estimated in any
order and will yield the same results; however, choosing the
order from left to right in the model results in less time and
optimization attempts are needed. After performing the
optimization algorithm for one time step, the optimized
parameter value and its corresponding solution value are
then stored in the parameters and solution arrays, re-
spectively. Te process is then repeated by taking the
endpoint of the solution array as the initial condition for
when the dynamical system is to be solved and optimized
again, and the next initial guess for the parameter is reset
to 0.

Te fminsearch function is highly efcient, however
unconstrained; therefore, it may return values that are in-
valid for being less than 0 or greater than 1 for certain
parameters. In order to avoid negative parameters, a lower
bound condition is placed such that the dynamical system is
solved with the assumption that the parameter is 0 if the
optimal parameter returned by the algorithm is negative. An
upper bound condition is also in place for p and σ, since
those parameters must be strictly less than 1. Since fmin-
search operates by searching for a local minimum in the
neighborhood of the initial guess, the initial guess for every
parameter is 0. Te optimization procedure is applied
multiple times to yield the best results for all classes.

3.3.Results ofEstimatedParameters. Te values of β, p, and σ
obtained from the parameter estimation technique are
plotted starting from January 1st, 2020, in Figure 3, in order
to demonstrate the change in people’s behavior over the time
span, as well as to observe any trends that may be present.

Te estimated parameter values appear to generally
follow a nonlinear trend with very few outliers, which lead to
the ability to analyze people’s behavior over the course of the
pandemic. Te transmission rate β appears to take a drop
signifcantly during the months of COVID-19 lockdown,

rβ

β

α

(1-p)γ

pγσ

Figure 1: Diagram of the SIRDV model.
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Table 1: Parameter interpretation and values.

Parameters Description Values (da y− 1) Types
β Transmission rate — Varying
c Infectious exit rate 1/14 Constant
α Recovery to susceptible rate 1/30 Constant
p Probability of death — Varying
σ Vaccination rate — Varying
μ Natural death rate 0.0000248 Constant
r Probability of infection after vaccinated 0.01 Constant

Time step t is less than
time period T

(t < T) 

Parameter is
set to upper

bound

Parameter is greater
than upper bound

Time-varying
parameters set

to zeros for
initial guess

Initial
parameter

guess

First attempt
only ODE45 with

FMINSEARCH

Store solution
and parameter
in designated

matrix

Time step t
increases by 1

(t = t + 1)

Reset time step t to
initial time step t0

(t = t0). Choose new
parameter to optimize

Parameters
become initial

parameter
guesses for

next attempt

Parameter
value is set to
lower bound

Parameter is less than
lower bound

Time step t is equal to
time period T

(t = T)

Figure 2: Parameter estimation fowchart.

Plot of Parameter β 
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Figure 3: Plots of parameters used in order to attain optimized solutions.
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which is around late March to late May of 2020 (dates of
lockdown vary by state). Te parameter β steadily increases
between March 2021 and February 2022, then rapidly in-
creases after, which corresponds well to the real behavior of
people practicing strict safety precautions during lockdown,
then gradually increasing transmission, and currently having
little to no safety precautions after month 25. Te death
probability p was initially high in the frst few days of
COVID-19, then quickly dropped to less than 0.05 and
eventually converged to 0 aroundMay 2020.Te vaccination
rate increases rapidly from around January until May 2021,
which was when vaccines were frst issued to the public in
the United States.

Te frst peak in the vaccination rate likely corresponds
to when the COVID-19 vaccines were frst released to the
public, where large numbers of people were receiving the
vaccines at around the same time. Following that frst peak,
there are smaller peaks that follow, which suggests that there
are people who became vaccinated in the months following
the period in which the vaccines were frst rolled out. Te
vaccination rate in later months was signifcantly lower than
the vaccines that were frst available, suggesting that ev-
eryone who wanted the vaccine had received it. Te pa-
rameter values yielded from the parameter estimation
method correlate well with people’s behavior over the course
of the pandemic.

4. Basic Reproduction Number

Te basic reproduction number denoted by R0 is the ex-
pected number of cases from one infected case. Since the
parameters are functions of time, the basic reproduction
number is also computed as a function of time. Here, R0 is
computed using two diferent methods, one based on the
transmission rate and mean infectious time, while the other
uses Van den Driessche’s next-generation approach [23]. It
is able to be observed that the next-generation approach
yields better results when compared to the reproduction rate
data [21].

4.1. Computing Basic Reproduction Number with Trans-
mission Rate and Infectious Period. Te basic reproduction
number R0 is often approximated using the simple def-
nition of the transmission rate multiplied by the exit rate
from the infectious compartment.

R0 � βτ, (8)

where

τ � (c + μ)
− 1

. (9)

Te R0 values obtained from the transmission rate and
mean infectious time agree with the reproduction rate data
up until around month 15 in Figure 4. Its inability to match
the trend of the data throughout the entire time span
suggests another method may be able to yield results closer
to the data.

4.2. Basic Reproduction Number (Van den Driessche and
WatmoughNextGeneration). In the attempt to obtain better
results for R0, Van den Driessche’s next-generation ap-
proach is used [23]. Let F denote the terms entering the
infected compartment and V be the exiting terms from the
infected compartment.

F �
βSI
N

+ r
βVI
N

,

V � (c + μ)I.

(10)

Let F and V be partial derivatives with respect to the
active infected cases I at initial value x0.

F �
zF x0( 􏼁

zI
�
βS0

N
+ r

βV0

N
,

V �
zV x0( 􏼁

zI
� (c + μ),

(11)

whereR0 is defned as FV − 1. Terefore, substituting F and
V yields

R0 � FV− 1
�
β S0 + rV0( 􏼁

N(c + μ)
. (12)

Te R0 values obtained from the transmission rate and
mean infectious time in Figure 5 are able to agree with the
reproduction rate data for only around the frst year. Te
next-generation approach, however, agrees well with the
reproduction rate data throughout the entire two years. Te
dynamical system is solved repeatedly with diferent pa-
rameters at each time step; the initial values S0 and V0 are
considered to be the endpoints of the previous solution
values. Since the R0 values from the next-generation
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Figure 4: Plot of basic reproduction number obtained by the
transmission rate and the mean infectious time.
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approach agree well with the data, it can be stated that the
estimated values of the time-varying parameter β and the
chosen constant parameters r, c, and μ are suitable.

5. Results and Discussion

5.1. Numerical Solutions and Data Comparison. Te data for
active infected cases, deaths from COVID-19, and vacci-
nations are available by day; therefore, numerical results of
compartments I, D, and V are able to be compared to
real data.

After obtaining the solutions for active infected cases,
deaths, and vaccinations, each class is plotted against their
respective real data for visual comparison (Figure 6). Te
solutions for all three compartments seem to agree well with
the real data across the entire time span. Te major ad-
vantage of varying parameter values by day is the ability to
capture every detail such as small and large peaks in active
infected cases and to account for sudden increases or de-
creases. It can also be seen that the plots for vaccinations and
deaths are able to capture changes in rates despite being
monotonically increasing solutions. Te plot of vaccinations
here is the count for the number of vaccinations, which
neglects the population that has exited the compartment and
has become infected or died (from reasons other than
COVID-19) after vaccinations.

5.2.Numerical Solutions forAllCompartments. Te solutions
for all compartments are plotted in the same fgure in order
to compare the populations in each compartment and the
magnitude of each trajectory relative to one another.

Te numerical solutions shown in the plot of all solu-
tions (Figure 7) are representative of the population cur-
rently in each class. It should be noted that the solution curve
for the vaccinated class V here represents the number of
vaccinated people who have not become infected after
vaccination, not to be confused with the vaccinated plot
previously shown (Figure 6), which is the count of the
number of people who are fully vaccinated. Similarly, the
solution curve for the recovered class R represents the
number of people who have recently recovered and are not
yet susceptible to reinfection.

Te rapid decline of the solutions to the susceptible class
S suggests that the number of susceptible people will soon
approach 0, which suggests the number of COVID-19 in-
fections would likely also reach 0 at around the same time.
Although the vaccinated class V is similar to the susceptible
class S in the way that people in both compartments are able
to become infected, the plots show that signifcantly more
people are protected by the vaccine, since at the moment the
solution for V is signifcantly higher than the solution for S.

Despite the high number of deaths, the magnitude of the
solution curve for deaths is relatively low throughout the
entire time span when compared to solutions of the other
compartments. Te curve of recovered class R follows the
same trends as the curve of infected class I, confrming the
fact that most people who are infected with COVID-19 do
indeed recover, keeping in mind that R is continuously
losing its population to S at the rate of α.

6. Forecasting Parameters and Solutions

6.1. Forecasting Parameters. An autoregressive (AR) model
based on MATLAB’s ar function is used on the parameters
β, p, and σ in order to predict the future parameter values for
the next 365 days based on all past respective parameter
values. Previous research utilizing the AR model used the
method directly on the solutions of the dynamical system
[24]. Meanwhile, in this research, it is applied to the pa-
rameters, which are then used when solving the dynamical
system. White noise is then added to the forecasted pa-
rameters in order to simulate the noise present in the pa-
rameter values obtained through the parameter estimation
method.

6.2. Forecasting Solutions. Past parameter values and fore-
casted parameter values are shown together on the same
plots in Figure 8. Te forecasted parameter values are then
used in the model in order to forecast the solutions for I, D,
and V. Te prediction shows that all parameter values will
eventually converge rapidly to 0.

Additional data corresponding to these compartments
are added in order to evaluate the performance of the
forecasting method in Figure 9. From the plot of active
infected cases, it is able to be observed that the solution using
the forecasted parameters follows the same trend as the real
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Figure 5: Plot of the basic reproduction number obtained by Van
den Driessche’s next-generation approach.
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data, except the real data decrease at a slightly faster rate.Te
predictions for deaths and vaccinations suggest that both
classes will no longer increase due to the parameter values
for p and σ being 0 in the forecast.

7. Sensitivity and Elasticity Analysis

7.1. Sensitivity. Te objective of the sensitivity analysis is to
determine which parameters are most infuential on the
solution of the model. Sensitivity is defned as follows:

S �
zQ

zP
. (13)

In which the sensitivity of quantity Q is being analyzed
with respect to the parameter P. Te reproduction number
R0 obtained by the next-generation method is the quantity
whose sensitivity is chosen to be analyzed. Let the disease-
free equilibrium be E � (S∗, I∗, R∗, D∗, V∗) � (N, 0, 0, 0, 0).
Te reproduction number at disease-free equilibrium is

R0 �
β

c + μ
. (14)

Taking the partial derivative of R0 with respect to each
parameter yields

S
c

R0
�

zR0

zc
� −

β
(c + μ)

2 , (15)

S
μ
R0

�
zR0

zμ
� −

β
(c + μ)

2 , (16)

S
β
R0

�
zR0

zβ
�

1
c + μ

. (17)

SinceSR0
β only depends on constant parameters, it may

be easily computed as a constant scalar value.

S
β
R0

� 0.9998. (18)

However, SR0
c and SR0

μ depend on β, which is
a variable parameter which can be a wide range of values.
Many diferent values of sensitivity will arise from this
simple formula. Terefore, a range of sensitivity values may
be observed.

maxβS
c

R0
≤Sc

R0
≤minβS

c

R0
,

maxβS
μ
R0
≤Sμ

R0
≤minβS

μ
R0

.
(19)

Since SR0
c � SR0

μ, upon substituting with appropriate
values for sensitivity formulae (15) or (16), yields the sen-
sitivity range

− 473.2930≤Sc

R0
,S

μ
R0
≤ 0. (20)

Te average values of SR0
c and SR0

μ are obtained by
letting β be the mean value of all the β values.

S
c

R0
,S

μ
R0

� − 18.6214. (21)

In order for the model to match the data towards the
beginning of the pandemic, the transmission rate β had to be
signifcantly higher due to the small initial infected pop-
ulation I0. Terefore, when computing SR0

c and SR0
μ

which depend on β, the sensitivity spikes all the way to
− 473.2930. To demonstrate the sensitivity of each parameter,
a perturbation of +0.001 is applied to one parameter (β, c, or
μ), while the other parameters, both variables and constants,
are kept at their original values after optimization. Te
solutions using the perturbed parameter values are then
plotted in Figure 10 against the real data for all three classes
in order to observe the efects of the perturbation.

Te active cases and deaths are greatly afected by the
small changes in parameter values. Vaccinations, however,
experience slight changes throughout perturbations of all
three parameters, although they are still visually observable.
As expected, the solutions exhibit the same characteristics as
the original parameter values, although they increase and
decrease at diferent rates.
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7.2. Elasticity. Since the sensitivity analysis is local, it does
not take into account the range of values that can be input as
parameters [2]. Terefore, the more useful concept elasticity
is computed, where elasticity is defned as follows:

E
P
Q �

zQ

zP

P

Q
. (22)

Using the results previously obtained from the section on
sensitivity, elasticity may be computed. Since formulae
obtained for elasticity are dependent only on constant pa-
rameters, singular scalar values for elasticities may be
obtained.

E
c

R0
�

zR0

zc

c

R0
� −

β
(c + μ)

2
c

R0
� −

c

c + μ
� − 0.9998,

E
μ
R0

�
zR0

zμ
μ
R0

� −
β

(c + μ)
2

μ
R0

� −
μ

c + μ
� − 2.4794 × 10− 4

,

E
β
R0

�
zR0

zβ
β
R0

�
1

(c + μ)

β
R0

� 1.

(23)

Te value obtained for ER0
β is 1, which is expected. Te

R0 observes a 0.9998% decrease after a 1% increase in c.
Similarly, R0 decreases by 2.4794 × 10− 4% after a 1% in-
crease in μ. Te impacts of β and c are very similar,
meanwhile μ has a signifcantly less signifcance (Figure 11).

8. Model Validation

Model validation is used in order to check accuracy and
performance of a certain model. Since the nature of this
research is able to be interpreted as a model solved separately
over small time steps or as one large model covering a long
period of time, the validation process is performed using
both interpretations.

8.1. Error Analysis. In order to measure the error between
the solution and the data, some basic regression analysis
techniques are used [25]. Te sum of squared errors (SSE)

and the sum of squared total (SST) are computed. Points
where there are no data present are excluded from the
computation of SSE. Let xi denote the value of the class at
time step i and 􏽢xi denote corresponding data at the same
time step. Furthermore, let x be the mean of the corre-
sponding data. Te time step i is a single day.

SSE � 􏽘
N

i�1
xi − 􏽢xi( 􏼁

2
,

SST � 􏽘
N

i�1
xi − x( 􏼁

2
,

FVU �
SSE
SST

,

R
2

� 1 − FVU.

(24)

Table 2 shows the SSE, SST, R2, and FVU of infected,
deaths, and vaccinated compartments. Te SSE values
computed for each class are notably high for infected and
vaccinated classes, which is contributed by several diferent
factors. Temodel handles very large populations; therefore,
relatively small errors between the solutions and the real data
are in reality quite large when compared to models that work
with smaller populations.Te model covers a long time span
and therefore contains more data, which are prone to having
higher SSE values. Te parameter estimation also has lim-
itations, as the optimized solution is the best possible so-
lution obtained by fminsearch, which is inferior to more
sophisticated optimization techniques in machine learning.
Te R2 values, however, are approximately 1 for all classes,
with the fraction of variance unexplained (FVU) being
insignifcantly small.

8.2. Single Time StepAIC. Te Akaike Information Criterion
(AIC) is applied to the model and data in order to determine
the validity of the model. Since the model is solved multiple
times in small time steps, the SSE and AIC values are cal-
culated for every time step j. Let m denote the number of
data points and k denote the number of parameters. For
a single time step, m � 2 and k � 7.

AICj � m log
SSEj

m
􏼠 􏼡 + 2k. (25)

From the plot of AIC values (Figure 12), the range of AIC
values from where the spread of COVID-19 started in the
United States appears to be in the typical range of AIC values
for SIR-type models [2].
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Figure 11: Solutions after perturbing each parameter value by +0.001: (a) perturbation of β, (b) perturbation of c, and (c) perturbation of μ.

Table 2: Error.

Class SSE SST R2 FVU
Infected 3.3845 × 1011 3.7574 × 1016 1.0000 9.2507 × 10− 6

Deaths 6.3502 × 107 7.1267 × 1013 1.0000 8.9103 × 10− 7

Vaccinated 6.5550 × 1012 9.1546 × 1018 1.0000 7.1663 × 10− 7
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8.3. Total AIC. Te total AIC is calculated using the SSE
between the solutions and respective data over the entire
time span previously calculated in Section 7.1, along with the
total number of parameters used, which account for every
single value for each varying parameter. For total AIC, m �

805 and k � 3(805) + 4 � 2410 (3 sets of varying parameters
and 4 constant parameters).

Te total AIC values are similar to those calculated based
on the study of dynamic epidemic models via iterated fl-
tering [26]. Te AIC values for all three in Table 3 are
signifcantly high due to the large sample size and number of
parameters used in total.

9. Conclusion

By allowing the parameters to vary, the numbers of in-
fections, deaths, and vaccinations are able to be matched
relatively well to the real data on a daily basis for over two
years by a very simple model and optimization technique. A
major advantage of using the simplex algorithm for opti-
mization of many thousand parameter values is its ability to
yield satisfactory results within merely a few minutes on
a personal machine. Te basic reproduction number cal-
culated based on the parameter values obtained by the
parameter estimation method agrees well with the re-
production rate data. However, the model may be vulnerable
to data overftting, as the solutions depend heavily on the
parameter values, where future parameter values may not be

precisely determined, possibly leading to the future solutions
being inaccurate.

Performing the sensitivity analysis shows that there is
a wide range of sensitivity due to the many values of the
transmission rate β. Elasticity may be computed as singular
scalar values due to not depending on any variable pa-
rameters. Te SSE along with the AIC values falls within the
typical range for models of similar nature. From the results,
it can be concluded that the model along with the parameter
estimation algorithm is able to handle the United States’
COVID-19 data well and therefore should be able to handle
simulating the spread of other infectious diseases with more
intricate behavior, in which models with constant param-
eters are unable to. A limitation worth mentioning is that the
model is designed around COVID-19 data in the
United States, which makes the use of this model applicable
only to similar types of data.Temodel may be modifed and
adjusted accordingly in order to be applied to other in-
fectious diseases that are similar in nature.
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In this article, our goal is to study the system of extended nonlinear mixed variational-like inequalities (in short, SENMVLI) with
a nonconvex functional in the setting of real Hilbert spaces and discuss the existence of solution of our considered problem. We
propose a three-step iterative algorithm to calculate the approximate solutions of SENMVLI and investigate the convergence
analysis as well as stability analysis of the proposed algorithm. Furthermore, we also study the proximal dynamical system for
SENMVLI and prove that the trajectory of the solution of the extended proximal dynamical system converges globally expo-
nentially to a unique solution of SENMVLI. Our suggested iterative algorithm and results have become the signifcant im-
provement, enhancement, and generalization of many previously known results in the literature.

1. Introduction

In prior 1960s, the concept of variational inequality origi-
nated by Hartmann and Stampacchia [1] has appeared as
a fruitful and methodical mechanism to study a wide range
of applications in economics, fnance, pure and applied
sciences, and optimization, see, e.g. [2–5]. Using novel and
regenerated techniques, several extensions and generaliza-
tions of variational inequalities have been explored and
developed in recent years. Te functional, pivotal, and ap-
plicable generalizations of variational inequalities are
variational-like inequalities and mixed variational-like in-
equalities which have signifcant applications in nonconvex
optimizations and mathematical programming problems.
For details, we refer to [6–8] and references therein.

In classical variational inequality theory, ones have been
failing to exploit the projection method and its modifed
forms to analyze the existence of solutions of mixed
variational-like inequalities involving the nonlinear term. To
vanquish this faw, it is assumed that the nonlinear term
involving the mixed variational-like inequalities is a proper,

convex, and lower-semicontinuous functional. It is well-
known that the subdiferential of a proper, convex, and
lower-semicontinuous functional is a maximal monotone
operator. Tis characterization enables to defne the re-
solvent operator associated with the maximal monotone
operator. Te resolvent operator technique is used to es-
tablish the equivalence between the mixed variational-like
inequalities and fxed point problems. Such type of methods
is called the operators splitting methods. For recent devel-
opment of the subject, we refer to [9–12]. Noor [13, 14] has
used the resolvent operator technique to propose and study
some two-step forward-backward splitting methods. It has
been noticed that the convergence of such type of splitting
algorithms needs relatively relaxed strong monotonicity,
which is a weaker constraint than cocoercivity. Glowinski
and Tallec [15] and many authors have suggested and an-
alyzed some three-step forward-backward splitting methods
for solving various classes of variational inequalities by using
the Lagrangian multipliers and auxiliary principle tech-
niques. Tey have shown that three-step splitting methods
are numerically more efcient and handy as compared with
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one-step and two-step splitting methods. Tey have studied
the convergence of these splitting methods under the as-
sumption that the underlying operators are monotone and
Lipschitz continuous. For the convergence analysis of
iterative-type splitting methods and their applications, we
refer to [16–19] and references therein.

Te dynamical system has appeared as a feasible substitute
for solving variational inequalities with a specifc interest on
optimization problems. Dupuis andNagurney [20], Friesz et al.
[21], Noor [22], and many authors introduced and studied
many projected dynamical systems associated with variational
inequalities. In these dynamical systems, discontinuity appears
due to the discontinuity of the projection operator which
occurs on the right side of the ordinary diferential equation.
Te novel importance of projected dynamical systems is that
the set of stationary points of the projected dynamical systems
is the set of solutions of the associated variational inequalities
and all those problems which can be studied in the structure of
variational inequalities. Since proximal dynamical systems are
generalization of projected dynamical systems, therefore clearly
the results enhance to global stability of modifed projected
dynamical systems. Moreover, a vast category of optimization
problems can be considered as special cases of mixed varia-
tional inequalities (variational-like inequalities) and, therefore,
can be solved by using the proximal dynamical systems.

Inspired and motivated by the research works mentioned
above, in this article, we introduce and study a system of
extended nonlinear mixed variational-like inequalities in real
Hilbert space and discuss the existence of solution of our
problem. Next, we propose and analyze a new three-step it-
erative scheme for solving the system of extended nonlinear
mixed variational-like inequalities. Te convergence and sta-
bility analysis for the system of extended nonlinear mixed
variational-like inequalities are established. We also study
proximal dynamical system associated with the system of
extended nonlinear mixed variational-like inequalities. Finally,
we show that the trajectory of the solution of extended non-
linear mixed variational-like proximal dynamical system
converges globally exponentially to a unique solution of system
of extended nonlinear mixed variational-like inequalities.

2. Preliminaries

Troughout this article, we assume that H is a real Hilbert
space whose norm and inner product are denoted by ‖ · ‖

and 〈·, ·〉, respectively.

Let us recall the following well-known concepts and
results.

Defnition 1 (see [9, 23]). Let g, T: H⟶H and ζ: H ×

H⟶H be the single-valued mappings. Ten,

(i) ζ is said to be τ-Lipschitz continuous if, there exists
a constant τ > 0 such that

‖ζ(p, q)‖≤ τ‖p − q‖, ∀p, q ∈H. (1)

(ii) ζ is said to be δ-strongly monotone if, there exists
a constant δ > 0 such that

〈ζ(p, q), p − q〉≥ δ‖p − q‖
2
, ∀p, q ∈H. (2)

(iii) g is said to be μg-strongly monotone if, there exists
a constant μg > 0 such that

〈g(p) − g(q), p − q〉≥ μg‖p − q‖
2
, ∀p, q ∈H. (3)

(iv) g is said to be λg-Lipschitz continuous if, there
exists a constant λg > 0 such that

‖g(p) − g(q)‖ ≤ λg‖p − q‖, ∀p, q ∈H. (4)

(v) T is said to be ζ-relaxed Lipschitz continuous if,
there exists a constant α> 0 such that

〈T(p) − T(q), ζ(p, q)〉≤ − α‖p − q‖
2
, ∀p, q ∈H. (5)

(vi) T is said to be μT-strongly monotone with respect to
g if, there exists a constant μT > 0 such that

〈T(g(p)) − T(g(q)), g(p) − g(q)〉

≥ μT‖p − q‖
2
, ∀p, q ∈H.

(6)

Defnition 2 (see [9]). For each i � 1, 2, . . . , m, let
hi: Hi⟶Hi and Ai: 􏽑

m
i�1Hi⟶Hi be the single-valued

mappings. Ten, Ai is said to be

(i) c-Lipschitz continuous in the ith-argument if, there
exist a constant c> 0 such that

Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁
����

����i
≤ c pi − 􏽢pi

����
����i

, ∀pi, 􏽢pi ∈Hi. (7)

(ii) ϱ-strongly monotone in the ith-argument if, there
exists a constant ϱ > 0 such that

〈Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁, pi − 􏽢pi〉 ≥ ϱ pi − 􏽢pi

����
����
2
i
, ∀pi, 􏽢pi ∈Hi.

(8)
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(iii) μgi
-strongly monotone with respect to gi in the

ith-argument if, there exists a constant μgi
> 0 such

that

〈Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁, gi pi( 􏼁 − gi
􏽢pi( 􏼁〉

≥ μgi
gi pi( 􏼁 − gi

􏽢pi( 􏼁
����

����
2
i
, ∀pi, 􏽢pi ∈Hi.

(9)

Defnition 3 (see [24]). A functional f: H × H⟶ R is
said to be 0-diagonally quasi-concave (inshort, 0 − DQCV)

in p if, for any fnite set p1, p2, . . . , pn􏼈 􏼉 ⊂H and for any
q � 􏽐

n
i�1tipi with ti ≥ 0 and 􏽐

n
i�1ti � 1,

min
1≤i≤n

f pi, q( 􏼁≤ 0. (10)

Defnition 4 (see [24]). Let ζ: H × H⟶H be a mapping
and ψ: H⟶ R∪ ∞{ } be a proper functional. A vector
f∗ ∈ H is called an ζ-subgradient of ψ at p ∈ domψ if

〈f∗, ζ(q, p)〉 ≤ψ(q) − ψ(p), ∀q ∈H. (11)

Each ψ can be associated with the following map zζψ,
called ζ-subdiferential of ψ at p, defned by

zζψ(p) �
f
∗ ∈H: 〈f∗, ζ(q, p)〉 ≤ψ(q) − ψ(p), ∀q ∈H, p ∈ domψ,

∅, p ∉ domψ.
􏼨 (12)

Defnition 5 (see [12]). Let ψ: H⟶ R∪ +∞{ } be a proper,
ζ-subdiferential (may not be convex) functional,
ζ: H × H⟶H, T: H⟶H be the mappings, and
I: H⟶H be an identity mapping. If for any given z ∈H
and ρ> 0, there exists a unique point p ∈H satisfying

〈(I − T)p − z, ζ(q, p)〉≥ ρψ(p) − ρψ(q), ∀q ∈H,

(13)

then the mapping z⟼p, denoted by Jzζψ
ρ,T (z), is said to be

relaxed ζ-proximal operator of ψ. We have
z − (I − T)p ∈ ρzζψ(p), and it follows that

J
zζψ
ρ,T (z) � (I − T) + ρzζψ􏽨 􏽩

− 1
(z). (14)

Defnition 6 (see [25]). Let S, T: H⟶H be the single-
valued mappings, p0 ∈H and

pn+1 � S T, pn( 􏼁, (15)

defnes an iterative sequence which yields a sequence of
points pn􏼈 􏼉 in H. Suppose that Fix(T) � p ∈H:􏼈 Tp �

p}≠∅ and pn􏼈 􏼉 converges to a fxed point p∗ of T. Let
un􏼈 􏼉 ⊂H and

ϑn � un+1 − S T, un( 􏼁
����

����. (16)

If limn⟶∞ϑn � 0, which implies that un⟶ p∗, then
the iterative sequence pn􏼈 􏼉 is said to be T-stable or stable
with respect to T.

Theorem 1 (see [12]). Let ζ: H × H⟶H be a δ-strongly
monotone and τ-Lipschitz continuous mapping such that
ζ(p, q) � − ζ(q, p), for all p, q ∈H. Let T: H⟶H be
ζ-relaxed Lipschitz continuous mapping with constant α and
I: H⟶ H be an identity mapping. Let ψ: H⟶ R∪

+∞{ } be a proper, lower-semicontinuous, ζ-subdiferential
functional which may not be convex, and for any z, p ∈H,
the mapping f(q, p) � 〈z − (I − R)p, ζ(q, p)〉 is 0-DQCV in
q. Ten, for any ρ> 0, and any z ∈H, there exists a unique
p ∈H such that p � J

zζψ
ρ,T (z), and hence, the relaxed

ζ-proximal operator J
zζψ
ρ,T of ψ is well-defned and

(T/(α + δ))-Lipschitz continuous, i.e.,

J
zζψ
ρ,T (p) − J

zζψ
ρ,T (q)

�����

�����≤
τ

(α + δ)
‖p − q‖, ∀p, q ∈H. (17)

Lemma 1 (see [26]). Let ℘n􏼈 􏼉, ]n􏼈 􏼉, and 9n􏼈 􏼉 be nonnegative
real sequences satisfying the following condition: there exists
a natural number n0 such that

℘n+1 ≤ 1 − ϖn( 􏼁℘n + ]nϖn + ϱn, ∀n≥ n0, (18)

where ϖ ∈ [0, 1], 􏽐
∞
n�0ϖn �∞, limn⟶∞]n � 0, 􏽐

∞
n�0ϱn <∞.

Ten, limn⟶∞℘n � 0.

3. Formulation of the Problem and
Existence Result

For each i ∈ Λ � 1, 2, 3, . . . , m{ }, let Hi be a real Hilbert
space equipped with the norm ‖.‖i, and let
hi, gi, Ti: Hi⟶Hi, ζ i: Hi × Hi⟶Hi, and
Ai: 􏽑

m
j�1Hj⟶Hi be the nonlinear single-valued map-

pings, respectively. Let ψi: Hi × Hi⟶ R∪ +∞{ } be such
that for each fxed pi ∈Hi, ψi(·, pi) is lower semicontinuous,
ζ i-subdiferential, proper functional on Hi × Hi (may not
be convex) satisfying hi(Hi)∩ dom(zψζ i

(·, pi))≠∅, where
zψζ i

(·, pi) is a ζ i-subdiferential of ψi(·, pi). We consider the
following system of extended nonlinear mixed variational-
like inequalities (in short, SENMVLI).
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For each ρi > 0, fnd (p1, p2, . . . , pm) ∈ 􏽑
m
i�1Hi such that

hi(pi) ∈ dom(zζ i
ψi(·, pi)) and for all qi ∈Hi

〈h1 p1( 􏼁 − g1 p1( 􏼁 − ρ1A1 p1, p2, . . . , pm( 􏼁( 􏼁, ζ1 q1, h1 p1( 􏼁( 􏼁〉 ≥ ρ1ψ1 h1 p1( 􏼁, p1( 􏼁 − ρ1ψ1 q1, p1( 􏼁,

〈h2 p2( 􏼁 − g2 p2( 􏼁 − ρ2A2 p1, p2, . . . , pm( 􏼁( 􏼁, ζ2 q2, h2 p2( 􏼁( 􏼁〉 ≥ ρ2ψ2 h2 p2( 􏼁, p2( 􏼁 − ρ2ψ2 q2, p2( 􏼁,

〈h3 p3( 􏼁 − g3 p3( 􏼁 − ρ3A3 p1, p2, . . . , pm( 􏼁( 􏼁, ζ3 q3, h3 p3( 􏼁( 􏼁〉 ≥ ρ3ψ3 h3 p3( 􏼁, p3( 􏼁 − ρ3ψ3 q3, p3( 􏼁,

⋮

〈hm pm( 􏼁 − gm pm( 􏼁 − ρmAm p1, p2, . . . , pm( 􏼁( 􏼁, ζm qm, hm pm( 􏼁( 􏼁〉≥ ρmψm hm pm( 􏼁, pm( 􏼁 − ρmψm qm, pm( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Equivalently, for each i ∈ Λ, above system can be written
as

〈hi pi( 􏼁 − gi pi( 􏼁 − ρiAi p1, p2, . . . , pm( 􏼁( 􏼁, ζ i qi, hi pi( 􏼁( 􏼁〉

≥ ρiψi hi pi( 􏼁, pi( 􏼁 − ρiψi qi, pi( 􏼁.

(20)

Some special cases of problem (19) are as follows:

(i) If ρi � 1,ψi � 0, hi, gi � Ii (identity mappings) and
ψi(qi, pi) � ψi(qi), for each i ∈ Λ, then problem (20)
reduces to the problem of fnding (p1, p2, . . . , pm) ∈
􏽑

m
i�1Hi such that

〈Ai p1, p2, . . . , pm( 􏼁, ζ i qi, pi( 􏼁〉 ≥ψi pi( 􏼁 − ψi qi( 􏼁.

(21)

Problem (21) was considered and studied by
Balooee [27].

(ii) If ρi � 1,ψi � 0, hi, gi � Ii (identity mappings), and
ζ i(qi, hi(pi)) � qi − pi, for each i ∈ Λ, then problem
(19) reduces to the problem of fnding
(p1, p2, . . . , pm) ∈ 􏽑

m
i�1Hi such that

〈A1 p1, p2, . . . , pm( 􏼁, q1 − p1〉 ≥ 0,

〈A2 p1, p2, . . . , pm( 􏼁, q2 − p2〉 ≥ 0,

〈A3 p1, p2, . . . , pm( 􏼁, q3 − p3〉 ≥ 0,

⋮

〈Am p1, p2, . . . , pm( 􏼁, qm − pm〉≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Problem (22) was considered and studied by Tang
et al. [28].

By taking suitable choices of the mappings gi, hi, Ti,ψi, ζ i

and the spaceHi, for each i ∈ Λ, in above problem (19), one
can easily obtain the problems considered and studied in
[9, 13, 14, 22, 29, 30] and references therein.

Example 1. Let R � (− ∞,∞),Hi � [a, b]. Let
G(p1, p2, . . . , pm) be a continuous real m-variable function
with G ∈ C(1)(Hi). Ten, there exists an element
p0 � (p0,1, p0,2, . . . , p0,m) ∈ 􏽑

m
i�1Hi such that

G p0,1, p0,2, . . . , p0,m􏼐 􏼑 � min
p1 ,p2 ,...,pm( )

∈ 􏽙
m

i�1
HiG p1, p2, . . . , pm( 􏼁.

(23)

Tis element p0 must be a solution of the following
system of variational inequalities:

〈
zG

zp1
p1, p2, . . . , pm( 􏼁, q1 − p1〉 ≥ 0,

〈
zG

zp2
p1, p2, . . . , pm( 􏼁, q2 − p2〉 ≥ 0,

〈
zG

zp3
p1, p2, . . . , pm( 􏼁, q3 − p3〉 ≥ 0,

⋮

〈
zG

zpm

p1, p2, . . . , pm( 􏼁, qm − pm〉 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

If fact, we have

zG

zpi

p1, p2, . . . , pm( 􏼁

� 0, p0,i ∈ (a, b),

≥ 0, p0,i � a,

≤ 0, p0,i � b,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

for all i � 1, 2, . . . , m. Hence, p0 must satisfy (24). In ad-
dition, the system of variational inequalities (24) is equiv-
alent to

〈gradG(p), q − p〉≥ 0, (26)

where gradG(x) � ((zG/zp1), (zG/zp2), . . . , (zG/zpm)).
Tis example is special case of a practical background of
problem (19), where Ai � (zG/zpi), hi, gi � Ii, ρi � 1 and
ψi � 0, for all i � 1, 2, . . . , m and gradG(x) � A∗.

Te following lemma ensures the equivalence between
the system of extended nonlinear mixed variational-like
inequalities (19) and fxed point problem.
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Lemma 2. For each i ∈ Λ, let (p1, p2, . . . , pm) ∈ 􏽑
m
i�1Hi is

a solution of the system of extended nonlinear mixed
variational-like inequalities (19) if and only if
(p1, p2, . . . , pm) satisfes the following equation:

hi pi( 􏼁 � J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃, (27)

where J
zζi

ψi(.,pi)

ρi ,Ti
� [(Ii − Ti) + ρizζ i

ψi(., pi)]
− 1, Ti is ζ i-re-

laxed Lipschitz continuous mapping with constant αi, and Ii is
the identity mapping onHi.

Proof. Assume that (p1, p2, . . . , pm) ∈ 􏽑
m
i�1Hi satisfes re-

lation (27), i.e.,

hi pi( 􏼁 � J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃. (28)

Since J
zζi

ψi(.,pi)

ρi ,Ti
� [(Ii − Ti) + ρizζ i

(., pi)]
− 1, the above

equality holds if and only if

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁

∈ hi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρizζ i
ψi hi pi( 􏼁, pi( 􏼁.

(29)

By using the defnition of ζ i-subdiferential of ψi(., pi),
the above relation holds if and only if

〈 gi pi( 􏼁 − ρiAi p1, p2, . . . , pm( 􏼁( 􏼁 − hi pi( 􏼁, ζ i qi, hi pi( 􏼁( 􏼁〉

≤ ρiψi qi, pi( 􏼁 − ρiψi hi pi( 􏼁, pi( 􏼁.

(30)

Hence, we have

〈hi pi( 􏼁 − gi pi( 􏼁 − ρiAi p1, p2, . . . , pm( 􏼁( 􏼁, ζ i qi, hi pi( 􏼁( 􏼁〉

≥ ρiψi hi pi( 􏼁, pi( 􏼁 − ρiψi qi, pi( 􏼁,

(31)

i.e., (p1, p2, . . . , pm) is a solution of system of extended
nonlinear mixed variational-like inequalities (19). □

In the next theorem, we discuss the existence and
uniqueness of the solution of the SENMVLI (19).

Theorem 2. For each i ∈ Λ, let gi, hi, Ti: Hi⟶Hi,
ζ i: Hi × Hi⟶Hi, and Ai: 􏽑

m
i�1Hi⟶Hi be the non-

linear single-valued mappings such that gi is λgi
-Lipschitz

continuous and μgi
-strongly monotone, hi is λhi

-Lipschitz
continuous and μhi

-strongly monotone such that
hi(Hi) � Hi, Ti is λTi

-Lipschitz continuous, relaxed
αi-Lipschitz continuous, and μTi

-strongly monotone with
respect to hi, ζ i is τi-Lipschitz continuous, and ζ i is δi-strongly
monotone such that ζ i(pi, qi) � − ζ i(qi, pi), for each
pi, qi ∈Hi, Ai is λAii

-Lipschitz continuous in the ith-argument

and ]i,j-Lipschitz continuous in the jth-argument for each
j ∈ Λ, i≠ j, and μAii

-strongly monotone in the ith-argument
with respect to gi, respectively. Let
ψi: Hi × Hi⟶ R∪ +∞{ } be such that for each fxed
pi ∈Hi, ψi(·, pi) is lower-semicontinuous, ζ i-subdiferential,
proper functional on Hi × Hi (may not be convex) satisfying
hi(Hi)∩ dom(zψζ i

(·, pi))≠∅, where zψζ i
(·, pi) is a ζ i-

subdiferential of ψi(·, pi). Suppose that there exist constants
ρi > 0, ξi > 0 such that for each zi ∈Hi

J
zζi

ψi .,pi( )
ρi ,Ti

zi( 􏼁 − J
zζi

ψi .,qi( )
ρi ,Ti

zi( 􏼁

������

������≤ ξi pi − qi

����
����, (32)

and the following conditions are satisfed:

θi � ξi +

������������

1 − 2μhi
+ λ2hi

􏼐 􏼑

􏽱

+ 􏽘
k∈Λ,k≠ i

τk ρk

αk + δk

]k,i < 1,

τi

������������������

λ2gi
− 2ρiμAii

+ ρ2i λ
2
Aii

􏼐 􏼑

􏽱

< 1 − θi( 􏼁 αi + δi( 􏼁 − τiλTi
λhi

􏽨 􏽩,

2μhi
< 1 + λ2hi

,

2ρiμAii
< λ2gi

+ ρ2i λ
2
Aii

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Ten, the SENMVLI (19) admits a unique solution
(p∗1 , p∗2 , . . . , p∗m).

Proof. By Lemma 2, it is sufcient to prove that there exist
(p∗1 , p∗2 , . . . , p∗m) which satisfying (27). For each i ∈ Λ, we
defne ϕi: 􏽑

m
i�1Hi⟶Hi by

ϕi p1, p2, . . . , pm( 􏼁 � pi − hi pi( 􏼁 + J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃, (34)

for all (p1, p2, . . . , pm) ∈ 􏽑
m
i�1Hi. Defne ‖.‖∗ on 􏽑

m
i�1Hi by

Journal of Mathematics 5



p1, p2, p3, . . . , pm( 􏼁
����

����∗ � 􏽘
m

i�1
pi

����
����i

,∀ p1, p2, . . . , pm( 􏼁 ∈ 􏽙
m

i�1
Hi.

(35)

It is easy to see that (􏽑
m
i�1Hi, ‖.‖∗) is a Hilbert space.

Also, defne G: 􏽑
m
i�1Hi⟶ 􏽑

m
i�1Hi as follows:

G p1, p2, . . . , pm( 􏼁 � ϕ1 p1, p2, . . . , pm( 􏼁,ϕ2 p1, p2, . . . , pm( 􏼁, . . . , ϕm p1, p2, . . . , pm( 􏼁( 􏼁, (36)

for all (p1, p2, . . . , pm) ∈ 􏽑
m
i�1Hi. First of all, we prove that

G is a contraction mapping.
Let (p1, p2, . . . , pm), (􏽢p1, 􏽢p2, . . . , 􏽢pm) ∈ 􏽑

m
i�1Hi be

given. By using (32) and (34) andTeorem 1, for each i ∈ Λ,
we have

ϕi p1, p2, . . . , pm( 􏼁 − ϕi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁

����
����i

� pi − hi pi( 􏼁 + J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃􏼔 􏼕 − 􏽢pi − hi
􏽢pi( 􏼁 + J

zζi
ψi .,􏽢pi( 􏼁

ρi ,Ti
gi

􏽢pi( 􏼁 − Ti hi
􏽢pi( 􏼁( 􏼁 + ρiAi

􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁( 􏼁􏼂 􏼃􏼢 􏼣

��������

��������
i

≤ pi − hi pi( 􏼁( 􏼁 − 􏽢pi − hi
􏽢pi( 􏼁( 􏼁

����
����i

+ J
zζiψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁( +ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼁􏼂 􏼃 − J
zζi

ψi .,􏽢pi( 􏼁
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁( +ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼁􏼂 􏼃

�������

�������i

+ J
zζiψi .,􏽢pi( 􏼁
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁( +ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼁􏼂 􏼃 − J
zζi

ψi .,􏽢pi( 􏼁
ρi ,Ti

gi
􏽢pi( 􏼁 − Ti hi

􏽢pi( 􏼁( 􏼁( +ρiAi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁􏼁􏼂 􏼃

�������

�������i

≤ pi − hi pi( 􏼁( 􏼁 − 􏽢pi − hi
􏽢pi( 􏼁( 􏼁

����
����i

+ ξi pi − 􏽢pi

����
����i

+ J
zζiψi .,􏽢pi( 􏼁
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − J
zζi

ψi .,􏽢pi( 􏼁
ρi ,Ti

gi
􏽢pi( 􏼁 − Ti hi

􏽢pi( 􏼁( 􏼁 + ρiAi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁( 􏼁􏼂 􏼃

�������

�������i

+
τi

αi + δi

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − gi
􏽢pi( 􏼁 − Ti hi

􏽢pi( 􏼁( 􏼁 + ρiAi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁( 􏼁􏼂 􏼃

����
����i
≤ pi − hi pi( 􏼁( 􏼁 − 􏽢pi − hi

􏽢pi( 􏼁( 􏼁
����

����i
+ ξi pi − 􏽢pi

����
����i

+
τi

αi + δi

gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁 − Ti hi pi( 􏼁( 􏼁 − Ti hi

􏽢pi( 􏼁( 􏼁( 􏼁􏼂 􏼃 − ρi Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁􏼂 􏼃
����

����i

+
ρiτi

αi + δi

1 Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , 􏽢pm( 􏼁
����

����m
+ Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , 􏽢pm( 􏼁 − Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , 􏽢pm( 􏼁

����
����m− 1

+ Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , 􏽢pm( 􏼁 − Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , 􏽢pm( 􏼁
����

����m− 2 · · · + Ai p1, 􏽢p2, . . . , 􏽢pi− 1, 􏽢pi, 􏽢pi+1, . . . , 􏽢pm( 􏼁 − Ai
􏽢p1, 􏽢p2, . . . , 􏽢pi− 1, 􏽢pi, 􏽢pi+1, . . . , 􏽢pm( 􏼁

����
����1

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

≤ pi − hi pi( 􏼁( 􏼁 − 􏽢pi − hi
􏽢pi( 􏼁( 􏼁

����
����i

+ ξi pi − 􏽢pi

����
����i

+
τi

αi + δi

gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁 − Ti hi pi( 􏼁( 􏼁 − Ti hi

􏽢pi( 􏼁( 􏼁( 􏼁􏼂 􏼃 − ρi Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁􏼂 􏼃
����

����i

+
τiρi

αi + δi

􏽘
j∈Λ,i≠ j

Ai p1, p2, . . . , pj− 1, pj, pj+1, . . . , pm􏼐 􏼑 − Ai p1, p2, . . . , pj− 1, 􏽢pj, pj+1, . . . , 􏽢pm􏼐 􏼑
�����

�����i
􏼒 􏼓≤ pi − 􏽢pi( 􏼁 − hi pi( 􏼁 − hi

􏽢pi( 􏼁( 􏼁
����

����i
+ ξi pi − 􏽢pi

����
����i

+
τi

αi + δi

Ti hi pi( 􏼁( 􏼁 − Ti hi
􏽢pi( 􏼁( 􏼁

����
����i

+ gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁 − ρi Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁􏼂 􏼃

����
����i

􏽨 􏽩

+
τiρi

αi + δi

􏽘
j∈Λ,i≠ j

Ai p1, p2, . . . , pj− 1, pj, pj+1, . . . , pm􏼐 􏼑 − Ai p1, p2, . . . , pj− 1, 􏽢pj, pj+1, . . . , 􏽢pm􏼐 􏼑
�����

�����i
􏼒 􏼓≤ pi − 􏽢pi( 􏼁 − hi pi( 􏼁 − hi

􏽢pi( 􏼁( 􏼁
����

����i
+ ξi pi − 􏽢pi

����
����i

+
τi

αi + δi

λTi
λhi

pi − 􏽢pi

����
����i

+ gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁 − ρi Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁􏼂 􏼃

����
����i

􏽨 􏽩

+
τiρi

αi + δi

􏽘
j∈Λ,i≠ j

Ai p1, p2, . . . , pj− 1, pj, pj+1, . . . , pm􏼐 􏼑 − Ai p1, p2, . . . , pj− 1, 􏽢pj, pj+1, . . . , 􏽢pm􏼐 􏼑
�����

�����i
􏼒 􏼓.

(37)

It follows from μhi
-strongly monotonicity and λhi

-Lip-
schitz continuity of hi that

pi − 􏽢pi − hi pi( 􏼁 − hi
􏽢pi( 􏼁( 􏼁

����
����
2
i

� pi − 􏽢pi

����
����
2
i

− 2〈hi pi( 􏼁 − hi
􏽢pi( 􏼁, pi − 􏽢pi〉 + hi pi( 􏼁 − hi

􏽢pi( 􏼁
����

����
2
i

≤ pi − 􏽢pi

����
����
2
i

− 2μhi
pi − 􏽢pi

����
����
2
i

+ λ2hi
pi − 􏽢pi

����
����
2
i

� 1 − 2μhi
+ λ2hi

􏼐 􏼑 pi − 􏽢pi

����
����
2
i
,

(38)
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i.e.,

pi − 􏽢pi − hi pi( 􏼁 − hi
􏽢pi( 􏼁( 􏼁

�������i

≤
�������������

1 − 2μhi
+ λ2hi

􏼐 􏼑

􏽱�������

�������
pi − 􏽢pi

�������i

.

(39)

By using the λAii
-Lipschitz continuity of Ai and

μAii
-strongly monotonicity of Ai with respect to gi and

λgi
-Lipschitz continuity of gi, respectively, we evaluate

gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁 − ρi Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁􏼂 􏼃

����
����
2
i

≤ gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁

����
����
2

− 2ρi〈Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁, gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁〉

+ ρ2i Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁〉
����

����
2
i

≤ λ2gi
pi − 􏽢pi

����
����
2
i

− 2ρi〈Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁, gi pi( 􏼁 − gi
􏽢pi( 􏼁〉

+ ρ2i λ
2
Aii

pi − 􏽢pi

����
����
2
i

≤ λ2gi
pi − 􏽢pi

����
����
2
i

− 2ρiμAii
pi − 􏽢pi

����
����
2
i

+ ρ2i λ
2
Aii

pi − 􏽢pi

����
����
2
i

� λ2gi
− 2ρiμAii

+ ρ2i λ
2
Aii

􏼐 􏼑 pi − 􏽢pi

����
����
2
i
,

(40)

which implies that

gi pi( 􏼁 − gi
􏽢pi( 􏼁( 􏼁 − ρi Ai p1, p2, . . . , pi− 1, pi, pi+1, . . . , pm( 􏼁 − Ai p1, p2, . . . , pi− 1, 􏽢pi, pi+1, . . . , pm( 􏼁􏼂 􏼃

����
����i

≤
������������������

λ2gi
− 2ρiμAii

+ ρ2i λ
2
Aii

􏼐 􏼑

􏽱

pi − 􏽢pi

����
����i

.
(41)

Since for i ∈ Λ, Ai is ]i,j-Lipschitz continuous in the jth

argument (j ∈ Λ, j≠ i), we have

Ai p1, p2, . . . , pj− 1, pj, pj+1, . . . , pm􏼐 􏼑 − Ai p1, p2, . . . , pj− 1, 􏽢pj, pj+1, . . . , pm􏼐 􏼑
i
≤ ]i,j

�����

�����pj − 􏽢pjj
. (42)

Substituting (39)–(42) in (37), for i ∈ Λ, we deduce that

ϕi p1, p2, . . . , pm( 􏼁 − ϕi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁

����
����i
≤ ξi +

������������

1 − 2μhi
+ λ2hi

􏼐 􏼑

􏽱

+
τi λTi

λhi
+

������������������

λ2gi
− 2ρiμAii

+ ρ2i λ
2
Aii

􏼐 􏼑

􏽱

􏼒 􏼓

αi + δi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ pi − 􏽢pi

����
����i

+
τiρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j pj − 􏽢pj

�����

�����j
,

(43)

i.e.,

ϕi p1, p2, . . . , pm( 􏼁 − ϕi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁

����
����i
≤Θi pi − 􏽢pii +

τi ρi

αi + δi

􏽘
j ∈ Λ,i≠ j

]i,j

����������

����������
pj − 􏽢pj

����������
j

, (44)
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where Θi � ξi +
������������
(1 − 2μhi

+ λ2hi
)

􏽱
+ τi(λTi

λhi
+

������������������
(λ2gi

− 2ρiμAii
+ ρ2i λ

2
Aii

)
􏽱

)/αi + δi.

From (36) and (42), we get

G p1, p2, . . . , pm( 􏼁 − G 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁
����

����∗ � 􏽘
m

i�1
ϕi p1, p2, . . . , pm( 􏼁 − ϕi

􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁
����

����i

≤ 􏽘
m

i�1
Θi pi − 􏽢pi‖i +

τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j

����������

����������
pj − 􏽢pj‖j

⎛⎝ ⎞⎠

� Θ1 + 􏽘
m

k�2

τk ρk

αk + δk

]k,1
⎛⎝ ⎞⎠ p1 − 􏽢p1

����
����1

+ Θ2 + 􏽘
k∈Λ,k≠ 2

τk ρk

αk + δk

]k,2
⎛⎝ ⎞⎠ p2 − 􏽢p2

����
����2 + · · · + Θm + 􏽘

m− 1

k�1

τk ρk

αk + δk

]k,m
⎛⎝ ⎞⎠ pm − 􏽢pm

����
����m

≤max Θi + 􏽘
k∈Λ,k≠ i

τkρk

αk + δk

]k,i: i ∈ Λ
⎧⎨

⎩

⎫⎬

⎭ 􏽘

m

i�1
pi − 􏽢pi

����
����i

,

(45)

i.e.,

G p1, p2, . . . , pm( 􏼁 − G 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁‖∗ ≤Ω
����

���� p1, p2, . . . , pm( 􏼁 − 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁‖∗, (46)

where Ω � max Θi + 􏽐k∈Λ,k≠i(τkρk)/(αk + δk)]k,i: i ∈ Λ􏽮 􏽯.
Te condition (33) guarantees that 0≤Ω< 1. By the in-
equality (44), we note that G is a contraction mapping.
Terefore, there exists a unique point (p∗1 , p∗2 , . . . , p∗m) ∈

􏽑
m
i�1Hi such that G(p∗1 , p∗2 , . . . , p∗m) � (p∗1 , p∗2 , . . . , p∗m).

From (34) and (36), it follows that (p∗1 , p∗2 , . . . , p∗m) satisfes
in equation (27), i.e., for each i ∈ Λ,

hi p
∗
i( 􏼁 � J

zζi
ψi .,p∗

i( )
ρi ,Ti

gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃. (47)

By Lemma 2, we conclude that (p∗1 , p∗2 , . . . , p∗m) ∈
􏽑

m
i�1Hi is a unique solution of SENMVLI (19). Tis com-

pletes the proof. □

4. Proximal Iterative Schemes and
Stability Analysis

In this section, we frst recall some defnitions related to
nearly uniformly Lipschitzian mapping. Furthermore, we
use a nearly uniformly Lipschitzian mapping Qi, i ∈ Λ, to
defne a self-mapping S � (Q1, Q2, . . . , Qm) on 􏽑

m
i�1Hi, by

using the equivalent alternative formulation (27) to suggest
and analyze some proximal iterative algorithms for fnding
an element of the set of the fxed points of S which is the
unique solution of the problem SENMVLI (19).

Defnition 7 (see [9]). A nonlinear mapping Q: H⟶H is
said to be

(i) generalized Lipschitzian if, there exists a constant
k′ > 0 such that

‖Q(p) − Q(q)‖≤ k
′
(‖p − q‖ + 1), ∀p, q ∈H, (48)

(ii) uniformly k-Lipschitzian if, there exists a constant
k> 0 such that for each n ∈ N,

Q
n
(p) − Q

n
(q)

����
����≤ k‖p − q‖, ∀p, q ∈H, (49)

(iii) nearly Lipschitzian with respect to the sequence
αn􏼈 􏼉 if, for each n ∈ N, there exists a constant κn > 0
such that
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Q
n
(x) − Q

n
(y)

����
����≤ κn ‖p − q‖ + αn( 􏼁, ∀p, q ∈H,

(50)

where αn􏼈 􏼉 is a fxed sequence in [0,∞] with
αn⟶ 0 as n⟶∞.
For an arbitrary, but fxed n ∈ N, the infmum of
constants κn in (50) is called nearly Lipschitz
constant and it is denoted by β(Qn). Notice that

β Q
n

( 􏼁 � sup
Q

n
(p) − Q

n
(q)

����
����

‖p − q‖ + αn

: p, q ∈H, p≠ q􏼨 􏼩.

(51)

Defnition 8 (see [9]). A nearly Lipschitzian mapping
Q: H⟶H with the sequence (αn, β(Qn))􏼈 􏼉 is said to be
nearly uniformly K-Lipschitzian mapping if, β(Qn)<K, for
all n ∈ N. In other words, αn � K, for all n ∈ N.

For each i ∈ Λ, let Qi: Hi⟶Hi be a nearly uniformly
Ki-Lipschitzian mapping with the sequence li,n􏽮 􏽯. We defne
the self-mapping S of 􏽑

m
i�1Hi by

S p1, p2, . . . , pm( 􏼁 � Q1p1, Q2p2, . . . , Qmpm( 􏼁,∀ p1, p2, . . . , pm( 􏼁 ∈ 􏽙
m

i�1
Hi. (52)

Ten, S � (Q1, Q2, . . . , Qm): 􏽑
m
i�1Hi⟶ 􏽑

m
i�1Hi is

a nearly uniformly max Ki: i ∈ Λ􏼈 􏼉-Lipschitzian mapping
with the sequence 􏽐

m
i�1li,n􏽮 􏽯

∞
n�1 with respect to the norm ‖.‖∗

in 􏽑
m
i�1Hi. To see this fact, let

(p1, p2, . . . , pm), (􏽢p1, 􏽢p2, . . . , 􏽢pm) ∈ 􏽑
m
i�1Hi be given. Ten

for any n ∈ N, we have

S
n

p1, p2, . . . , pm( 􏼁 − S
n 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁

����
����∗ � Q

n
1p1, Q

n
2p2, . . . , Q

n
mpm( 􏼁 − Q

n
1􏽢p1, Q

n
2􏽢p2, . . . , Q

n
m

􏽢pm( 􏼁
����

����∗

� Q
n
1p1 − Q

n
1􏽢p1, Q

n
2p2 − Q

n
2􏽢p2, . . . , Q

n
mpm − Q

n
m

􏽢pm( 􏼁
����

����∗

� 􏽘
m

i�1
Q

n
i pi − Q

n
i
􏽢pi

����
����i
≤ 􏽘

m

i�1
Ki pi − 􏽢pi

����
����i

+ li,n􏼐 􏼑

≤max Ki: i ∈ Λ􏼈 􏼉 􏽘

m

i�1
(‖pi − 􏽢pi‖i + li,n

⎞⎠

� max Ki: i ∈ Λ􏼈 􏼉 p1, p2, . . . , pm( 􏼁 − 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁
����

����∗ + 􏽘
m

i�1
li,n

⎛⎝ ⎞⎠.

(53)

We denote the sets of all the fxed points of Qi, i ∈ Λ and
S by Fix(Qi) and Fix(S), respectively, and the set of all the
solutions of SENMVLI (19) by SENMVLI(Hi, gi, hi,

Ti,ψi, Ai, i ∈ Λ). In view of (52), for any (p1, p2, . . . , pm) ∈
􏽑

m
i�1Hi, (p1, p2, . . . , pm) ∈ Fix(S) if and only if

pi ∈ Fix(Qi), i ∈ Λ, i.e., Fix(S) � Fix(Q1, Q2, . . . , Qm) �

􏽑
m
i�1Fix(Qi).
If (p∗1 , p∗2 , . . . , p∗m) ∈ Fix(S)∩ SENMVLI(Hi, gi, hi, Ti,

ψi, Ai, i ∈ Λ), then by using Lemma 2, one can easily to see
that for each i ∈ Λ and for all n ∈ N,

p
∗
i � Q

n
i p
∗
i � p
∗
i − hi p

∗
i( 􏼁 + J

zζi
ψi .,p∗

i( )
ρi ,Ti

gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃

� Q
n
i p
∗
i − hi p

∗
i( 􏼁 + J

zζi
ψi .,p∗

i( )
ρi ,Ti

gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃􏼔 􏼕.

⎧⎪⎪⎨

⎪⎪⎩
(54)

Te fxed point formulation (54) enables us to suggest
the following proximal iterative algorithm with mixed errors
for fnding an element of the set of the fxed points of the
nearly uniformly Lipschitzian mapping
S � (Q1, Q2, . . . , Qm) which is also a unique solution of
SENMVLI (19).

Iterative Algorithm 1. For each i ∈ Λ, let Hi, gi, hi, Ti,ψi, ζ i

and ρi > 0 be the same as in SENMVLI (19). For any given
(p1,1, p2,1, . . . , pm,1) ∈ 􏽑

m
i�1Hi, compute the iterative se-

quences pi,n􏽮 􏽯
∞
n�1 � (p1,n, p2,n, . . . , pm,n)􏽮 􏽯

∞
n�1 <i> , </i>

ui,n􏽮 􏽯
∞
n�1 � (u1,n, u2,n, . . . , um,n)􏽮 􏽯

∞
n�1 <i> , </i> vi,n􏽮 􏽯

∞
n�1 �
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(v1,n, v2,n, . . . , vm,n)􏽮 􏽯
∞
n�1 </i> , < //i> si,n􏽮 􏽯

∞
n�1 � (s1,n, s2,n,􏽮

. . . , sm,n)}∞n�1 by the following iterative process:

pi,n+1 � 1 − σn − εn( 􏼁pi,n + σn Q
n
i ui,n − hi ui,n􏼐 􏼑 + J

zζi
ψi .,ui,n( )

ρi ,Ti,n
gi ui,n􏼐 􏼑 − Ti hi ui,n􏼐 􏼑􏼐 􏼑 + ρiAi u1,n, u2,n, . . . , um,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓 + ηi,n􏼔 􏼕 + εnϑi,n + ri,n,

ui,n � 1 − σn
′ − εn
′( 􏼁pi,n + σn

′ Q
n
i vi,n − hi vi,n􏼐 􏼑 + J

zζi
ψi .,vi,n( )

ρi ,Ti,n
gi vi,n􏼐 􏼑 − Ti hi vi,n􏼐 􏼑􏼐 􏼑 + ρiAi v1,n, v2,n, . . . , vm,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓 + ηi,n

′􏼔 􏼕 + εn
′ϑi,n
′ + ri,n
′ ,

vi,n � 1 − σn
″ − εn
″( 􏼁pi,n + σn

″ Q
n
i pi,n − hi pi,n􏼐 􏼑 + J

zζi
ψi .,pi,n( )

ρi ,Ti,n
gi pi,n􏼐 􏼑 − Ti hi pi,n􏼐 􏼑􏼐 􏼑 + ρiAi p1,n, p2,n, . . . , pm,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓 + ηi,n

″􏼔 􏼕 + εn
″ϑi,n
″ + ri,n
″ .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(55)

Let zi,n􏽮 􏽯
∞
n�1 � (z1,n, z2,n, . . . , zm,n)􏽮 􏽯

∞
n�1, si,n􏽮 􏽯

∞
n�1 � (s1,n,􏽮

s2,n, . . . , sm,n)}∞n�1, and ti,n􏽮 􏽯
∞
n�1 � (t1,n, t2,n,􏽮 . . . , tm,n)}∞n�1 be

the sequences in 􏽑
m
i�1Hi, and defne φi,n􏽮 􏽯

∞
n�1 �

(φ1,n,φ2,n, . . . ,φm,n)􏽮 􏽯
∞
n�1 by

φi,n � zi,n+1 − 1 − σn − εn( 􏼁zi,n + σn Q
n
i si,n − hi si,n􏼐 􏼑 + J

zζi
ψi .,si,n( )

ρi ,Ti,n
gi si,n􏼐 􏼑 − Ti hi si,n􏼐 􏼑􏼐 􏼑 + ρiAi s1,n, s2,n, . . . , sm,n􏼐 􏼑􏼐 􏼑􏽨 􏽩 + ηi,n􏼒 􏼓􏼒 􏼓 + εnϑi,n + ri,n􏼔 􏼕

������

������
i
,

si,n � 1 − σn
′ − εn
′( 􏼁zi,n + σn

′ Q
n
i ti,n − hi ti,n􏼐 􏼑 + J

zζi
ψi .,ti,n( )

ρi ,Ti,n
gi ti,n􏼐 􏼑 − Ti hi ti,n􏼐 􏼑􏼐 􏼑 + ρiAi t1,n, t2,n, . . . , tm,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓 + ηi,n

′􏼔 􏼕 + εn
′ϑi,n
′ + ri,n
′ ,

ti,n � 1 − σn
″ − εn
″( 􏼁zi,n + σn

″ Q
n
i zi,n − hi zi,n􏼐 􏼑 + J

zζi
ψi .,zi,n( )

ρi ,Ti,n
gi zi,n􏼐 􏼑 − Ti hi zi,n􏼐 􏼑􏼐 􏼑 + ρiAi z1,n, z2,n, . . . , zm,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓 + ηi,n

″􏼔 􏼕 + εn
″ϑi,n
″ + ri,n
″ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(56)

where Si: Hi⟶Hi i ∈ Λ is nearly uniformly Lipschitzian
mapping, and the sequences σn􏼈 􏼉, εn􏼈 􏼉, σn

′􏼈 􏼉, εn
′􏼈 􏼉, σn
″􏼈 􏼉, and

ε″􏽮 􏽯 satisfy the conditions 0< σn + εn, σn
′ + εn
′, σn
″ + ε″ < 1,

􏽐
∞
n�0εn <∞, and 􏽐

∞
n�0σn �∞. For each i ∈ 1, 2, . . . , m{ } and

for all n ∈ N, ϑi,n􏽮 􏽯, ϑi,n
′􏽮 􏽯, and ϑi,n

″􏽮 􏽯 are bounded sequences

in Hi, and ηi,n􏽮 􏽯, ηi,n
′􏽮 􏽯, ηi,n
″􏽮 􏽯, ri,n􏽮 􏽯, ri,n

′􏽮 􏽯, and ri,n
″􏽮 􏽯 are six

sequences in Hi to take into account the possible inexact
computation satisfying the following conditions:

ηi,n � 􏽢ηi,n + ηi,n, ηi,n
′ � 􏽢ηi,n
′ + ηi,n
′ , ηi,n
″ � 􏽢ηi,n
″ + ηi,n
″ ,

􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑
�����

�����∗
� lim

n⟶∞
􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑‖∗ � lim
n⟶∞

������

������ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑

������∗
� 0,

􏽘

∞

n�1

���������
η1,n, η2,n, . . . , ηm,n􏼐 􏼑‖∗ <∞, 􏽘

∞

n�1

���������
η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑‖∗ <∞, 􏽘
∞

n�1

���������
η1,n
″ , η2,n
″ , . . . , ηm,n

″􏼐 􏼑‖∗ <∞,

􏽘

∞

n�1

���������
r1,n, r2,n, . . . , rm,n􏼐 􏼑‖∗ <∞, 􏽘

∞

n�1

���������
r1,n
′ , r2,n
′ , . . . , rm,n

′􏼐 􏼑‖∗ <∞, 􏽘
∞

n�1

���������
r1,n
″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑‖∗ <∞.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

Now, we establish the following strong convergence result
for the sequences generated by the proximal iterative Algo-
rithm 1 and stability analysis under some suitable conditions.

Theorem  . For each i ∈ Λ, let Hi, gi, hi, Ti,ψi, ζ i and ρi > 0
be the same as in Teorem 2, and let all the conditions of
Teorem 2 hold. For each i ∈ Λ, suppose that Qi: Hi⟶Hi

is a nearly uniformly Ki-Lipschitzian mapping with the se-
quence li,n􏽮 􏽯, and S: 􏽑

m
i�1Hi⟶ 􏽑

m
i�1Hi is a nearly uni-

formly max Ki: i ∈ Λ􏼈 􏼉-Lipschitzian mapping with the
sequence 􏽐

m
i�1lm,i􏽮 􏽯

∞
m�1 defned by (52) such that

Fix(S)∩ SENMVLI(Hi, gi, hi, Ti,ψi, Ai, i ∈ Λ)≠∅. Suppose

that Ω< min 1, 1/Ki􏼈 􏼉, for each i ∈ Λ, where Ω is same as in
(44). Ten,

(i) the iterative sequence (p1,n, p2,n, . . . , pm,n)􏽮 􏽯
∞
n�1 gen-

erated by Algorithm 1 converges strongly to a unique
element of Fix(S)∩ SENMVLI(Hi, gi, hi, Ti,

ψi, Ai, i ∈ Λ)

(ii) Furthermore, if 0< κ< σn, then limn⟶∞
(z1,n, z2,n, . . . , zm,n) � (p∗1 , p∗2 , . . . , p∗m) if and only if
limn⟶∞(􏽐

m
i�1φi,n) � 0, where φi,n is given in (55); i.e.,

the sequence (p1,n, p2,n, . . . , pm,n)􏽮 􏽯
∞
n�1 generated by

(55) is J
zζi

ψi(.,pi)

ρi ,Ti
− stable, for each i ∈ Λ
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Proof (i) Suppose (p∗1 , p∗2 , . . . , p∗m) is a unique solution of
SENMVLI (19). For each i ∈ Λ, we have

hi p
∗
i( 􏼁 � J

zζi
ψi .,p∗

i( )
ρi ,Ti,n

gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃􏼓􏼕. (58)

Since SEMVLI(Hi, gi, hi, Ti,ψi, Ai, i ∈ Λ) is a sin-
gleton set and Fix(S)∩ SEMVLI(Hi, gi, hi, Ti,

ψi, Ai, i ∈ Λ)≠∅, we conclude that for each i ∈ Λ,

p∗i ∈ Fix(Qi). Hence, for each n ∈ N and for each
i ∈ Λ, we can write

p
∗
i � 1 − σn − εn( 􏼁p

∗
i + σn Q

n
i p
∗
i − hi p

∗
i( 􏼁 + J

zζi
ψi .,p∗

i( )
ρi ,Ti,n

gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃􏼒 􏼓􏼔 􏼕 + εnp

∗
i ,

� 1 − σn
′ − εn
′( 􏼁p
∗
i + σn
′ Q

n
i p
∗
i − hi p

∗
i( 􏼁 + J

zζi
ψi .,p∗

i( )
ρi ,Ti,n

gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃􏼒 􏼓􏼔 􏼕 + εn

′p∗i ,

� 1 − σn
″ − εn
″( 􏼁p
∗
i + σn
″ Q

n
i p
∗
i − hi p

∗
i( 􏼁 + J

zζi
ψi .,p∗

i( )
ρi ,Ti,n

gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃􏼒 􏼓􏼔 􏼕 + εn

″p∗i ,

(59)

where the sequences σn􏼈 􏼉, εn􏼈 􏼉, σn
′􏼈 􏼉, εn
′􏼈 􏼉, σn
″􏼈 􏼉, and

εn
″􏼈 􏼉 are same as in Algorithm 1.

Now, let L � max supn≥1‖ϑi,n − p∗i ‖i, i ∈ Λ􏽮 􏽯, L′ �

max supn≥1‖ϑi,n
′ − p∗i ‖i, i ∈ Λ􏽮 􏽯 and L″ � max

supn≥1‖ϑi,n
″ − p∗i ‖i, i ∈ Λ􏽮 􏽯. Using Algorithm 1 and

(44), it follows that

pi,n+1 − p
∗
i

����
����i

�

1 − σn − εn( 􏼁pi,n + σn Qn
i ui,n − hi ui,n􏼐 􏼑 + J

zζi
ψi .,ui,n( )

ρi ,Ti,n
gi ui,n􏼐 􏼑 − Ti hi ui,n􏼐 􏼑􏼐 􏼑 + ρiAi u1,n, u2,n, . . . , um,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓 + ηi,n􏼒 􏼓 + εnϑi,n + ri,n􏼔 􏼕

− 1 − σn − εn( 􏼁p∗i + σn Qn
i p∗i − hi p∗i( 􏼁 + J

zζi
ψi .,p∗

i( )
ρi ,Ti,n

gi p∗i( 􏼁 − Ti hi p∗i( 􏼁( 􏼁 + ρiAi p∗1 , p∗2 , . . . , p∗m( 􏼁( 􏼁􏼂 􏼃􏼒 􏼓􏼔 􏼕 + εnp∗i􏼔 􏼕

����������������

����������������
i

≤ 1 − σn − εn( 􏼁 pi,n − p
∗
i

����
����i

+ σn

Qn
i ui,n − hi ui,n􏼐 􏼑 + J

zζi
ψi .,pi,n( )

ρi ,Ti,n
gi ui,n􏼐 􏼑 − Ti hi ui,n􏼐 􏼑􏼐 􏼑 + ρiAi u1,n, u2,n, . . . , um,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓

− Qn
i p∗i − hi p∗i( 􏼁 + J

zζi
ψi .,p∗

i( )
ρi ,Ti,n

gi p∗i( 􏼁 − Ti hi p∗i( 􏼁( 􏼁 + ρiAi p∗1 , p∗2 , . . . , p∗m( 􏼁( 􏼁􏼂 􏼃􏼒 􏼓

����������������

����������������
i

· ϑi,n − p
∗
i

����
����i

+ σn ηi,n

����
����i

+ ri,n

����
����i

≤ 1 − σn − εn( 􏼁 pi,n − p
∗
i

����
����i

+ σnKi

ui,n − hi ui,n􏼐 􏼑 + J
zζi

ψi .,ui,n( )
ρi ,Ti,n

gi ui,n􏼐 􏼑 − Ti hi ui,n􏼐 􏼑􏼐 􏼑 + ρiAi u1,n, u2,n, . . . , um,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓

− p∗i − hi p∗i( 􏼁 + J
zζi

ψi .,p∗
i( )

ρi ,Ti,n
gi p∗i( 􏼁 − Ti hi p∗i( 􏼁( 􏼁 + ρiAi p∗1 , p∗2 , . . . , p∗m( 􏼁( 􏼁􏼂 􏼃􏼒 􏼓

����������������

����������������
i

+ li,n

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

· ϑi,n − p
∗
i

����
����i

+ σn ηi,n

����
����i

+ ri,n

����
����i

≤ 1 − σn − εn( 􏼁 pi,n − p
∗
i

����
����i

+ σnKi

ui,n − hi ui,n􏼐 􏼑 + J
zζi

ψi .,ui,n( )
ρi ,Ti,n

gi ui,n􏼐 􏼑 − Ti hi ui,n􏼐 􏼑􏼐 􏼑 + ρiAi u1,n, u2,n, . . . , um,n􏼐 􏼑􏼐 􏼑􏽨 􏽩􏼒 􏼓

− p∗i − hi p∗i( 􏼁 + J
zζi

ψi .,p∗
i( )

ρi ,Ti,n
gi p∗i( 􏼁 − Ti hi p∗i( 􏼁( 􏼁 + ρiAi p∗1 , p∗2 , . . . , p∗m( 􏼁( 􏼁􏼂 􏼃􏼒 􏼓

����������������

����������������
i

+ σnKili,n + εnL + σn 􏽢ηi,n‖i+
����

����ηi,n‖i􏼐 􏼑 + ri,n

����
����i
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≤ 1 − σn − εn( 􏼁 pi,n − p
∗
i

����
����i

+ σnKi Θi ui,n − 􏽢pi

����
����i

+
τiρi

αi + δi

􏽘
j∈Λ,i ≠ j

]i,j uj,n − 􏽢pj

�����

�����j
⎛⎝ ⎞⎠

+ σnKili,n + εnL + σn 􏽢ηi,n‖i+
����

����ηi,n‖i􏼐 􏼑 + ri,n

����
����i

≤ 1 − σn − εn( 􏼁 pi,n − p
∗
i

����
����i

+ σnKi Θi ui,n − 􏽢pi

����
����i

+
τiρi

αi + δi

􏽘
j∈Λ,i ≠ j

]i,j uj,n − 􏽢pj

�����

�����j
⎛⎝ ⎞⎠

+ σnKili,n + σn 􏽢ηi,n‖i+
����

����ηi,n‖i􏼐 􏼑 + ri,n

����
����i

+ εnL.

(60)

Using the similar arguments of (60), we can establish
that for each i ∈ Λ,

ui,n+1 − p
∗
i

����
����i
≤ 1 − σn

′ − εn
′( 􏼁 pi,n − p

∗
i

����
����i

+ σn
′Ki Θi vi,n − p

∗
i

����
����i

+
τiρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j vj,n − 􏽢pj

�����

�����j
⎛⎝ ⎞⎠ 􏽢ηi,n

′
����

����i
+ ηi,n
′

����
����i

+ ri,n
′

����
����i

+ εn
′L′,

(61)

vi,n+1 − p
∗
i

����
����i
≤ 1 − σn

″ − εn
″( 􏼁 pi,n − p

∗
i

����
����i

+ σn
″Ki Θi pi,n − p

∗
i

����
����i

+
τiρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j pj,n − 􏽢pj

�����

�����j
⎛⎝ ⎞⎠

+ σn
″Kili,n + σn

″ 􏽢ηi,n
″

����
����i

+ ηi,n
″

����
����i

+ ri,n
″

����
����i

+ εn
″L″.

(62)

Let K � max Ki: i ∈ Λ􏼈 􏼉. Combining (60)–(62), we
obtain

p1,n+1, p2,n+1, . . . , pm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn − εn( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σnK 􏽘
m

i�1
Θi ui,n − 􏽢pi‖i +

τiρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j

����������

����������
uj,n − 􏽢pj‖j

⎛⎝ ⎞⎠

+ σnK 􏽘
m

i�1
li,n + σn 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑

�����

�����∗

+ η1,n, η2,n, . . . , ηm,n􏼐 􏼑
�����

�����∗
+ r1,n, r2,n, . . . , rm,n

����
����∗

+ mεnL � 1 − σn − εn( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
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+ Θ1 + 􏽘

m

k�2

τk ρk

αk + δk

]k,1
⎛⎝ ⎞⎠ u1,n − p

∗
1

����
����1

⎡⎢⎢⎣

+ left Θ2 + 􏽘
m

k ∈ Λ,k≠ 2

τk ρk

αk + δk

]k,2
⎛⎝ ⎞⎠ u2,n − p

∗
2

����
����2 + · · · + Θm + 􏽘

m− 1

k�1

τk ρk

αk + δk

]k,m
⎛⎝ ⎞⎠ um,n − p

∗
m

����
����m

]

+ σnK 􏽘
m

i�1
li,n + σn 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑

�����

�����∗
+ η1,n, η2,n, . . . , ηm,n

����
����∗ + r1,n, r2,n, . . . , rm,n􏼐 􏼑

�����

�����∗
+ mεnL

≤ 1 − σn − εn( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
+ σnKΩ􏽘

m

i�1
ui,n − p

∗
i

����
����i

+ σnK 􏽘
m

i�1
li,n

+ σn 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑
�����

�����∗
+ η1,n, η2,n, . . . , ηm,n

����
����∗ + r1,n, r2,n, . . . , rm,n􏼐 􏼑

�����

�����∗
+ mεnL

� 1 − σn − εn( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σnKΩ u1,n, u2,n, . . . , um,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
+ σnK 􏽘

m

i�1
li,n

+ σn 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑
�����

�����∗
+ η1,n, η2,n, . . . , ηm,n

����
����∗ + r1,n, r2,n, . . . , rm,n􏼐 􏼑

�����

�����∗
+ mεnL.

(63)

Applying equivalent logics of (63), we can compute
that

u1,n+1, u2,n+1, . . . , um,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn

′ − εn
′( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′KΩ v1,n, v2,n, . . . , vm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗

+ η1,n
′ , η2,n
′ , · · · , ηm,n

′􏼐 􏼑
�����

�����∗
+ r1,n
′ , r2,n
′ , . . . , rm,n

′
����

����∗ + mεn
′L′,

(64)

v1,n+1, v2,n+1, . . . , vm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn

″ − εn
″( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
″KΩ p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
″K 􏽘

m

i�1
li,n + σn
″ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗

+ η1,n
″ , η2,n
″ , . . . , ηm,n

″􏼐 􏼑
�����

�����∗
+ r1,n
″ , r2,n
″ , . . . , rm,n

″
����

����∗ + mεn
″L″.

(65)

Since (1 − σn
″(1 − KΩ))≤ 1, therefore (65) becomes
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v1,n+1, v2,n+1, . . . , vm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn

″(1 − KΩ)( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
″K 􏽘

m

i�1
li,n + σn
″ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ η1,n
″ , η2,n
″ , . . . , ηm,n

″􏼐 􏼑
�����

�����∗

+ r1,n
″ , r2,n
″ , . . . , rm,n

″
����

����∗ + mεn
″L″

≤ p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
+ σn
″K 􏽘

m

i�1
li,n

+ σn
″ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ η1,n
″ , η2,n
″ , . . . , ηm,n

″􏼐 􏼑
�����

�����∗

+ r1,n
″ , r2,n
″ , . . . , rm,n

″
����

����∗ + mεn
″L″.

(66)

Since (1 − σn
″(1 − KΩ))≤ 1, therefore using (64) and

(66) becomes

u1,n+1, u2,n+1, . . . , um,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn

′ − εn
′( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′KΩ p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
􏼔

+ σn
″ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ σn
″K 􏽘

m

i�1
li,n + r1,n

″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ mεn
″L″⎤⎦

+ σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗
+ η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑
�����

�����∗

+ r1,n
′ , r2,n
′ , . . . , rm,n

′
����

����∗ + mεn
′L′

≤ 1 − σn
′(1 − KΩ)( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′σn
″KΩ 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′σn
″K2Ω􏽘

m

i�1
li,n

+ σn
′KΩ r1,n

″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ σn
′KΩ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗
+ η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑
�����

�����∗

+ r1,n
′ , r2,n
′ , . . . , rm,n

′
����

����∗ + mσn
′εn
″KΩL

″
+ mεn
′L′

≤ p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′σn
″KΩ 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′σn
″K2Ω􏽘

m

i�1
li,n

+ σn
′KΩ r1,n

″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ σn
′KΩ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗

+ η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑
�����

�����∗
+ r1,n
′ , r2,n
′ , . . . , rm,n

′
����

����∗ + mσn
′εn
″KΩL

″
+ mεn
′L′.

(67)

Using (63) and (67) becomes
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p1,n+1, p2,n+1, . . . , pm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn − εn( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σnKΩ

p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
+ σn
′σn
″KΩ 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′σn
″K2Ω􏽘

m

i�1
li,n + σn
′KΩ r1,n

″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ σn
′KΩ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗
+ η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑
�����

�����∗
+ r1,n
′ , r2,n
′ , . . . , rm,n

′
����

����∗ + mσn
′εn
″KΩL

″
+ mεn
′L′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ σnK 􏽘
m

i�1
li,n + η1,n, η2,n, . . . , ηm,n􏼐 􏼑

�����

�����∗
+ r1,n, r2,n, . . . , rm,n

����
����∗ + mεnL

≤ 1 − σn(1 − KΩ)( 􏼁 p1,n, p2,n, . . . , pm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn(1 − KΩ)
1

(1 − KΩ)

σn
′σn
″K2Ω2 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′K2Ω2 η1,n

″ , η2,n
″ , . . . , ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′K2Ω2 r1,n

″ , r2,n
″ , . . . , rm,n

″
����

����∗ + σn
′KΩ 􏽢η1,n

′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗
+ KΩ η1,n

′ , η2,n
′ , . . . , ηm,n

′
����

����∗

+ KΩ r1,n
′ , r2,n
′ , . . . , rm,n

′􏼐 􏼑
�����

�����∗
+ 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n

����
����∗ + σn
′σn
″K3Ω2 + σn

′K2Ω + K􏼐 􏼑 􏽘

m

i�1
li,n + mσn

′εn
″K2Ω2L″ + mεn

′KΩL
′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ η1,n, η2,n, . . . , ηm,n􏼐 􏼑
�����

�����∗
+ r1,n, r2,n, . . . , rm,n

����
����∗ + mεnL.

(68)

On setting,

℘n+1 � p1,n+1, p2,n+1, . . . , pm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
;ϖn � σn(1 − KΩ);

ϱn � η1,n, η2,n, . . . , ηm,n􏼐 􏼑
�����

�����∗
+ r1,n, r2,n, . . . , rm,n

����
����∗ + mεnL,

(69)

]n �
1

(1 − KΩ)

σn
′σn
″K2Ω2 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′K2Ω2 η1,n

″ , η2,n
″ , . . . , ηm,n

″􏼐 􏼑‖∗ + σn
′K2Ω2

�����

����� r1,n
″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑‖∗

+ σn
′KΩ 􏽢η1,n

′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑‖∗ + KΩ
�����

����� η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑‖∗ + KΩ r1,n
′ , r2,n
′ , . . . , rm,n

′􏼐 􏼑‖∗+
�����

����� 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑‖∗

+ σn
′σn
″K3Ω2 + σn

′K2ΩK􏼐 􏼑 􏽘
m

i�1
li,n + mσn

′εn
″K2Ω2L″ + mεn

′KΩL
′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (70)

Equation (68) can be written as

℘n+1 ≤ 1 − ϖn( 􏼁℘n + ]nϖn + ϱn, (71)

where Ω � max Θi + 􏽐k∈Λ,k≠i(τk ρk)/(αk + δk)􏽮 ]k,i:

i ∈ Λ}. Since limn⟶∞li,n � 0, for each i ∈ Λ, and
􏽐

m
i�1εn <∞, in view of (57), it follows that the

conditions of Lemma 1 are satisfed.Terefore, using
Lemma 1 and (68), we deduce that (p1,n+1,

p2,n+1, . . . , pm,n+1)⟶ (p∗1 , p∗2 , . . . , p∗m), as n⟶
∞, and so the sequence (p1,n+1, p2,n+1, . . . ,􏽮

pm,n+1)}
∞
n�1 generated by Algorithm 1 converges

strongly to the only element (p∗1 , p∗2 , . . . , p∗m) of the
singleton set Fix(S)∩ SEMVI(Hi, gi, hi, Ti,ψi, Ai,

i ∈ Λ). Tis completes the part (I).
(ii) Next, we prove the second conclusion. Let H(p∗i ) �

Sn
i (p∗i − hi (p∗i ) + J

zζi
ψi(.,p∗

i
)

ρi ,Ti,n
[gi(p∗i )− (Ti(hi(p∗i )) +

ρiAi(p∗1 , p∗2 , . . . , p∗m))]). Using (59) and Algorithm 1,
we have

zi,n+1 − p
∗
i

����
����i
≤ zi,n+1 − 1 − σn − εn( 􏼁zi,n + σn H si,n􏼐 􏼑 + ηi,n􏼐 􏼑 + εnϑi,n + ri,n􏽨 􏽩

�����

�����

+ 1 − σn − εn( 􏼁zi,n + σn H si,n􏼐 􏼑 + ηi,n􏼐 􏼑 + εnϑi,n + ri,n􏽨 􏽩 − 1 − σn − εn( 􏼁p
∗
i + σnH p

∗
i( 􏼁 + εnp

∗
n􏼂 􏼃

�����

�����i

≤φi,n + 1 − σn − εn( 􏼁 zi,n − p
∗
i

����
����i

+ σnKi Θi si,n − p
∗
i

����
����i

+
τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j sj,n − p
∗
j

�����

�����j
⎛⎝ ⎞⎠

+ σnKili,n + σn 􏽢ηi,n

����
����i

+ ηi,n

����
����i

+ ri,n

����
����i

+ εnL.

(72)
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On similar manner of (73), we can deduce that

si,n+1 − p
∗
i ‖i ≤ 1 − σn

′ − εn
′( 􏼁

����
����zi,n − p

∗
i ‖i + σn
′Ki Θi ti,n − p

∗
i

����
����i

+
τiρi

αi + δi

􏽘
j∈Λ,i≠j

]i,j tj,n − p
∗
j

�����

�����j
⎛⎝ ⎞⎠

+ σn
′Kili,n + σn

′ η̂i,n
′

�����

�����i
+ �ηi,n
′ ‖i+

����
����ri,n
′ ‖i + εn

′L′,

(73)

ti,n+1 − p
∗
i

����
����i
≤ 1 − σn

″ − εn
″( 􏼁 zi,n − p

∗
i

����
����i

+ σn
″Ki Θi pi,n − p

∗
i

����
����i

+
τiρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j zj,n − p
∗
j

�����

�����j
⎛⎝ ⎞⎠

+ σn
″Kili,n + σn

″ 􏽢ηi,n
″

����
����i

+ ηi,n
″ ‖i+

����
����ri,n
″‖i + εn
″L″.

(74)

Using the similar arguments of (63) and combining
(72)–(74), we obtain that

z1,n+1, z2,n+1, . . . , zm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

≤ 􏽘
m

i�1
φi,n + 1 − σn − εn( 􏼁 zi,n − p

∗
i

����
����i

+ σnKi Θi si,n − p
∗
i

����
����i

+
τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j sj,n − p
∗
j

�����

�����j
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣

+ σnKili,n + σn 􏽢ηi,n

����
����i

+ ηi,n‖i+
����

����ri,n‖i + εnL􏽩

≤ 􏽘

m

i�1
φi,n + 1 − σn − εn( 􏼁 z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σnKΩ s1,n, s2,n, . . . , sm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
+ σnK 􏽘

m

i�1
li,n

+ σn 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑‖∗+
�����

����� η1,n, η2,n, . . . , ηm,n􏼐 􏼑‖∗

+ r1,n, r2,n, . . . , rm,n􏼐 􏼑
�����

�����∗
+ mεnL.

(75)

Similarly, we have

s1,n+1, s2,n+1, . . . , sm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn

′ − εn
′( 􏼁 z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′KΩ t1,n, t2,n, . . . , tm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗
+ η1,n
′ , η2,n
′ , . . . , ηm,n

′
����

����∗

+ r1,n
′ , r2,n
′ , . . . , rm,n

′􏼐 􏼑
�����

�����∗
+ mεn
′L′.

(76)
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Since (1 − σn
″(1 − KΩ))≤ 1, therefore we obtain

t1,n+1, t2,n+1, . . . , tm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 1 − σn

″ − εn
″( 􏼁 z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
″KΩ z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
″K 􏽘

m

i�1
li,n + σn
″ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ r1,n
″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ mεn
″L″

≤ 1 − σn
″(1 − KΩ)( 􏼁 z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
″ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ r1,n
″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ σn
″K 􏽘

m

i�1
li,n + mεn

″L″

≤ z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
″K 􏽘

m

i�1
li,n + σn
″ 􏽢η1,n
″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ r1,n
″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ mεn
″L″.

(77)

Since (1 − σn
′(1 − KΩ))≤ 1, therefore using (76) and

(77) becomes

s1,n+1, s2,n+1, . . . , sm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn
′σn
″KΩ 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′σn
″K2Ω􏽘

m

i�1
li,n

+ σn
′KΩ r1,n

″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ σn
′KΩ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗

+ σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗
+ η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑
�����

�����∗

+ r1,n
′ , r2,n
′ , . . . , rm,n

′
����

����∗ + mσn
′εn
″KΩL

″
+ mεn
′L′.

(78)

Using (77) and (78), (75) implies that
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z1,n+1, z2,n+1, . . . , zm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
≤ 􏽘

m

i�1
φi,n + 1 − σn − εn( 􏼁 z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σnKΩ

z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
+ σn
′σn
″KΩ 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′σn
″K2Ω􏽘

m

i�1
li,n

+ σn
′KΩ r1,n

″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑
�����

�����∗
+ σn
′KΩ η1,n
″ , η2,n
″ , . . . , ηm,n

″
����

����∗ + σn
′K 􏽘

m

i�1
li,n + σn
′ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑
�����

�����∗
+ η1,n
′ , η2,n
′ , . . . , ηm,n

′
����

����∗ + r1,n
′ , r2,n
′ , . . . , rm,n

′􏼐 􏼑
�����

�����∗
+ mσn
′εn
″KΩL

″
+ mεn
′L′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ σnK 􏽘

m

i�1
li,n + σn η1,n, η2,n, . . . , ηm,n􏼐 􏼑‖∗+

�����

����� r1,n, r2,n, . . . , rm,n􏼐 􏼑‖∗ + mεnL

≤ 1 − σn(1 − KΩ)( 􏼁 z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗
+ σn(1 − KΩ)

􏽐
m
i�1φi,n

κ(1 − KΩ)
+

1
(1 − KΩ)

σn
′σn
″K2Ω2 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′K2Ω2 η1,n

″ , η2,n
″ , . . . , ηm,n

″􏼐 􏼑
�����

�����∗
+ σn
′K2Ω2 r1,n

″ , r2,n
″ , . . . , rm,n

″
����

����∗ + σn
′KΩ 􏽢η1,n
′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′
����

����∗ + KΩ η1,n
′ , η2,n
′ , . . . , ηm,n

′
����

����∗

+ KΩ r1,n
′ , r2,n
′ , . . . , rm,n

′􏼐 􏼑
�����

�����∗
+ 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n

����
����∗ + σn
′σn
″K3Ω2 + σn

′K2Ω + K􏼐 􏼑 􏽘

m

i�1
li,n + mσn

′εn
″K2Ω2L″ + mεn

′KΩL
′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ η1,n, η2,n, . . . , ηm,n􏼐 􏼑
�����

�����∗
+ r1,n, r2,n, . . . , rm,n

����
����∗ + mεnL,

(79)

Since it is given that limn⟶∞􏽐
m
i�1φi,n � 0, therefore,

limn⟶∞(z1,n+1, z2,n+1, . . . , zm,n+1) � (p∗1 , p∗2 , . . . ,

p∗m), and the result follows.

Conversely, assume that limn⟶∞(z1,n+1, z2,n+1,

. . . , zm,n+1) � (p∗1 , p∗2 , . . . , p∗m). From (59) and
limn⟶∞li,n � 0, we have

φi,n � zi,n+1 − 1 − σn − εn( 􏼁zi,n + σn H ti,n􏼐 􏼑 + ηn􏼐 􏼑 + εnϑi,n + rn􏽨 􏽩
�����

�����i

≤ zi,n+1 − p
∗
i

����
����i

+ 1 − σn − εn( 􏼁zi,n + σn H ti,n􏼐 􏼑 + ηn􏼐 􏼑 + εnϑi,n + rn􏽨 􏽩 − p
∗
i

�����

�����i

≤ zi,n+1 − p
∗
i

����
����i

+ 1 − σn − εn( 􏼁zi,n + σn H ti,n􏼐 􏼑 + ηn􏼐 􏼑 + εnϑi,n + rn􏽨 􏽩 − 1 − σn − εn( 􏼁p
∗
i + σnH p

∗
i( 􏼁 + εnp

∗
i􏼂 􏼃

�����

�����i

· zi,n+1 − p
∗
i

����
����i

+ 1 − σn − εn( 􏼁 zi,n − p
∗
i

����
����i

+ σn H ti,n􏼐 􏼑 − H p
∗
i( 􏼁

�����

�����i

+ σn 􏽢ηi,n

����
����i

+ ηi,n

����
����i

+ εn ϑi,n − p
∗
i

����
����i

+ ri,n

����
����i

.

(80)

By using (80), we have

􏽘

m

i�1
φi,n ≤ 􏽘

m

i�1
zi,n+1 − p

∗
i

����
����i

+ 1 − σn − εn( 􏼁 zi,n − p
∗
i

����
����i

+ σn H ti,n􏼐 􏼑 − H p
∗
i( 􏼁

�����i

+ σn 􏽢ηi,n‖i+
����

����ηi,n‖i + εn ϑi,n − p
∗
i ‖i+

����
����ri,n‖i􏼐 􏼑

≤ z1,n+1, z2,n+1, . . . , zm,n+1􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ 1 − σn(1 − KΩ)( 􏼁 z1,n, z2,n, . . . , zm,n􏼐 􏼑 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

�����

�����∗

+ σn σn
′σn
″K2Ω2 􏽢η1,n

″ , 􏽢η2,n
″ , . . . , 􏽢ηm,n

″􏼐 􏼑
�����

�����∗
􏼒

+ σn
′K2Ω2 η1,n

″ , η2,n
″ , . . . , ηm,n􏼐 􏼑‖∗ + σn

′K2Ω2
�����

����� r1,n
″ , r2,n
″ , . . . , rm,n

″􏼐 􏼑‖∗

+ σn
′KΩ 􏽢η1,n

′ , 􏽢η2,n
′ , . . . , 􏽢ηm,n

′􏼐 􏼑‖∗ + KΩ
�����

����� η1,n
′ , η2,n
′ , . . . , ηm,n

′􏼐 􏼑‖∗

+ KΩ r1,n
′ , r2,n
′ , . . . , rm,n

′􏼐 􏼑‖∗+
�����

����� 􏽢η1,n, 􏽢η2,n, . . . , 􏽢ηm,n􏼐 􏼑‖∗

+ σn
′σn
″K3Ω2 + σn

′K2Ω + K􏼐 􏼑 􏽘

m

i�1
li,n + mσn

′εn
″K2Ω2L″ + mεn

′KΩL
′
􏼓

+ η1,n, η2,n, . . . , ηm,n􏼐 􏼑‖∗+
�����

����� r1,n, r2,n, . . . , rm,n􏼐 􏼑‖∗ + mεnL,

(81)
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which implies that limn⟶∞(􏽐
m
i�1φi,n) � 0.

Hence, the sequence (p1,n, p2,n, . . . , pm,n)􏽮 􏽯
∞
n�1 gen-

erated by (56) is J
zζi

ψi(.,pi)

ρi ,Ti
− stable, for each i ∈ Λ.

Tis completes the proof. □

5. Proximal Dynamical System

In this section, we consider the proximal dynamical system
technique to study the existence and uniqueness of the

solution of SENMVLI (19). In Section 3, we have shown that
the SENMVLI (19) is equivalent to a fxed point problem. By
using this equivalent result, we suggest and analyze the
following proximal dynamical system associated with the
SENMVLI (19). For each i ∈ Λ, we defne the residue vector
as follows:

Gi pi( 􏼁 � hi pi( 􏼁 − J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃. (82)

It is evident form Lemma 2 that SENMVLI (19) has
a solution (p1, p2, . . . , pm) ∈ 􏽑

m
i�1Hi if and only if

(p1, p2, . . . , pm) is a zero of the equation

Gi pi( 􏼁 � 0, for each i ∈ Λ. (83)

Using the residue vector equations (82) and (83) and
fxed point formulation (27), we suggest the following
proximal dynamical system:

dpi

dt
� − ωiGi pi( 􏼁

� ωi J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − hi pi( 􏼁􏼚 􏼛, pi t0( 􏼁 � ci ∈Hi,

(84)

associated with SENMVLI (19), where ωi > 0 is parameter. We
call the proximal dynamical system (84) as extended nonlinear
mixed variational-like proximal dynamical system. Here, the
right hand side is related to the proximal operator and is
discontinuous on the boundary ofHi. From the defnition, it is
defnite that the solution of the extended nonlinear mixed
variational-like proximal dynamical system (84) belongs to the
constraint setHi. Tis points out that the approximate results
such as the existence, uniqueness, and continuous dependence
of the solution of (84) can be investigated.

To state our results, we need the following well-known
concepts.

Defnition 9 (see [23]). Te dynamical system is said to be
converge to the solution set Γ∗ of the problem (19), if,
irrespective of the initial point, the trajectory of the dy-
namical system satisfes

lim
t⟶∞

dist pi(t), Γ∗( 􏼁 � 0, (85)

where dist(pi(t), Γ∗) � infqi∈Γ∗‖pi − qi‖.

If the solution set Γ∗ has a unique solution
(p∗1 , p∗2 , . . . , p∗m) ∈ 􏽑

m
i�1Hi, then (84) implies that

limt⟶∞(p1(t), p2(t), . . . , pm(t)) � (p∗1 , p∗2 , . . . , p∗m).

Defnition 10 (see [23]). Te dynamical system is said to be
globally exponentially stable with degree θ at p∗, if, irre-
spective of the initial point, the trajectory of the dynamical
system satisfes

p(t) − p
∗����
����≤ c0 p(t) − p

∗����
���� exp − θ t − t0( 􏼁( 􏼁,∀t≥ t0,

(86)

where c0 and θ are positive constants, independent of the
initial point.

Lemma  (see [23]). Let 􏽢p and 􏽢q be real-valued nonnegative
continuous functions with domain t: t≥ t0􏼈 􏼉 and let
α(t) � α0(|t − t0|), where α0 is a monotone increasing
function. If, for all t≥ t0,

􏽢p(t)≤ α(t) + 􏽚
t

t0

􏽢p(s)􏽢q(s)ds, (87)

holds, then

􏽢p(t)≤ α(t) exp 􏽚
t

t0

􏽢q(s)ds􏼨 􏼩. (88)

Te existence and uniqueness of the solution of
SENMVLI (19) is shown in Teorem 2. Now, by combining
Lemma 3 and Teorem 2, we obtain the unique solution of
extended nonlinear mixed variational-like proximal dy-
namical system (84).

Theorem 4. For each i ∈ Λ, letHi, gi, hi, Ti,ψi, ζ i, and ρi > 0
be the same as in Teorem 2 and let all the conditions of
Teorem 2 hold. For each i ∈ Λ, suppose that
Qi: Hi⟶HiKi-Lipschitzian mapping with the sequence
li,n􏽮 􏽯, and S: 􏽑

m
i�1Hi is a nearly uniformly⟶ 􏽑

m
i�1Hi is
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a nearly uniformly max Ki: i ∈ Λ􏼈 􏼉-Lipschitzian mapping
with the sequence 􏽐

m
i�1li,n􏽮 􏽯

∞
m�1 defned by (52) such that

Fix(S)∩ SEMVLI(Hi, gi, hi, Ti,ψi, Ai, i ∈ Λ)≠∅. Suppose
thatΩ< min 1, 1/Ki􏼈 􏼉, for each i ∈ Λ, whereΩ is the same as
in (42). Ten, there exists a unique continuous solution
(p1(t), p2(t), . . . , pm(t)) of extended nonlinear mixed

variational-like proximal dynamical system (84) with
pi(t0) � ci over [t0,∞].

Proof. By Lemma 2, we have hi(pi) � J
zζi

ψi(.,pi)

ρi ,Ti
[gi(pi) −

(Ti(hi(pi)) + ρiAi(p1, p2, . . . , pm))] is a solution of
SENMVLI (19). For each i ∈ Λ, we defne
Fi: 􏽑

m
i�1Hi⟶Hi by

Fi p1, p2, p3, . . . , pm( 􏼁 � ωi J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − hi pi( 􏼁􏼚 􏼛, (89)

for all (p1, p2, . . . , pm) ∈ 􏽑
m
i�1Hi. Defne ‖.‖∗ on 􏽑

m
i�1Hi by

p1, p2, p3, . . . , pm( 􏼁
����

����∗ � 􏽘

m

i�1
pi

����
����i

,∀ p1, p2, . . . , pm( 􏼁 ∈ 􏽙

m

i�1
Hi.

(90)

It is easy to see that (􏽑
m
i�1Hi, ‖.‖∗) is a Hilbert space.

Also, defne G: 􏽑
m
i�1Hi⟶ 􏽑

m
i�1Hi as follows:

G p1, p2, . . . , pm( 􏼁 � F1 p1, p2, . . . , pm( 􏼁,F2 p1, p2, . . . , pm( 􏼁, . . . ,Fm p1, p2, . . . , pm( 􏼁( 􏼁, (91)

for all (p1, p2, . . . , pm) ∈ 􏽑
m
i�1Hi.

To prove that G(p1, p2, . . . , pm) is a locally Lipschitz
continuous mapping, suppose that (p1, p2, · · · , pm)≠

(􏽢p1, 􏽢p2, . . . , 􏽢pm) ∈ 􏽑
m
i�1Hi are given. By using (32) and (34)

and Teorem 1, for each i ∈ Λ, we have

Fi p1, p2, . . . , pm( 􏼁 − Fi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁

����
����i

� ωi

�������
J

zζi
ψi .,pi( )

ρi ,Ti
gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − hi pi( 􏼁􏼒 􏼓􏼢

− J
zζi

ψi .,􏽢pi( 􏼁
ρi ,Ti

gi
􏽢pi( 􏼁 − Ti hi

􏽢pi( 􏼁( 􏼁 + ρiAi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁( 􏼁􏼂 􏼃 − hi

􏽢pi( 􏼁􏼠 􏼡

�������i
􏼣

≤ωi pi − 􏽢pi‖i + ωi

����
���� pi − hi pi( 􏼁 + J

zζi
ψi .,pi( )

ρi ,Ti
gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁􏼂􏼒

+ ρiAi p1, p2, . . . , pm( 􏼁􏼁􏼃 − 􏽢pi − hi
􏽢pi( 􏼁 + J

zζi
ψi .,pi( )

ρi ,Ti
gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁(􏼂􏼒

+ ρiAi p1, p2, . . . , pm( 􏼁􏼁􏼃‖i.

(92)

Using the same technique of (35)–(39) and (42) and (92)
becomes

Fi p1, p2, . . . , pm( 􏼁 − Fi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁

����
����i

≤ωi pi − 􏽢pi

����
����i

+ ωi Θi pi − 􏽢pi

����
����i

+
τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j pj − 􏽢pj

�����

�����j
⎛⎝ ⎞⎠,

(93)

where Θi � ξi +
������������
(1 − 2μhi

+ λ2hi
)

􏽱
+ (τi(λTi

λhi
+

������������������
(λ2gi

− 2ρiμAii
+ ρ2i λ

2
Aii

)
􏽱

))/(αi + δi). Applying the
similar arguments of (36) and (44), we have

G p1, p2, . . . , pm( 􏼁 − G 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁
����

����∗

� 􏽘
m

i�1
Fi

���� p1, p2, . . . , pm( 􏼁 − Fi
􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁‖i

≤max ωi: i ∈ Λ􏼈 􏼉 􏽘

m

i�1
p1 − 􏽢p1

����
����i

+ max Θi􏼈⎛⎝

+ 􏽘
k∈Λ,k≠ i

τk ρk

αk + δk

]k,i: i ∈ Λ
⎫⎬

⎭ 􏽘

m

i�1
p1 − 􏽢p1

����
����i

≤ω 􏽘
m

i�1
p1 − 􏽢p1

����
����i

+Ω􏽘
m

i�1
p1 − 􏽢p1

����
����i

⎛⎝ ⎞⎠,

(94)
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i.e.,

G p1, p2, . . . , pm( 􏼁 − G 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁‖∗ ≤ω(1 +Ω)
����

���� p1, p2, . . . , pm( 􏼁 − 􏽢p1, 􏽢p2, . . . , 􏽢pm( 􏼁‖∗, (95)

where Ω � max Θi + 􏽐k∈Λ,k≠i(τk ρk)/(αk + δk)]k,i: i ∈ Λ􏽮 􏽯

and ω � max ωi: i ∈ Λ􏼈 􏼉. Terefore, G is a locally Lipschitz
continuous mapping. Hence, for each
(c1, c2, . . . , cm) ∈ 􏽑

m
i�1Hi, there exists a unique and con-

tinuous solution (p1(t), p2(t), . . . , pm(t)) of the extended
nonlinear mixed variational-like proximal dynamical system

(84), defned in an interval t0 ≤ t≤B with the initial con-
dition pi(t0) � ci, for each i ∈ Λ. Suppose that [t0,B] is the
maximal interval of the existence of the solutions of (84).
Now, we have to show that B �∞. For any
(p1, p2, . . . , pm) ∈ 􏽑

m
i�1Hi, we have

dpi

dt

�������

�������i

� Fi p1, p2, . . . , pm( 􏼁
����

����i

� ωi J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − hi pi( 􏼁

������

������i

≤ωi‖J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃

− J
zζi

ψi .,p∗
i( )

ρi ,Ti
gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃‖i

+ ωi pi − p
∗
i

����
����i

≤ωi ‖J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃􏼔

− J
zζi

ψi .,p∗
i( )

ρi ,Ti
gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃‖i

+ ‖J
zζi

ψi .,p∗
i( )

ρi ,Ti
gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃

− J
zζi

ψi .,p∗
i( )

ρi ,Ti
gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁􏼂 􏼃‖i􏼕

≤ωi pi − p
∗
i

����
����i

+ ωi Θi pi − p
∗
i ‖i +

τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j

����������

����������
pj − p

∗
j ‖j

⎛⎝ ⎞⎠.

(96)

Now, we calculate
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G p1, p2, . . . , pm( 􏼁
����

����∗ � 􏽘
m

i�1
Fi

���� p1, p2, . . . , pm( 􏼁‖i � 􏽘
m

i�1

dpi

dt

�������

�������i

≤ 􏽘
m

i�1
ωi pi − p

∗
i

����
����i

+ Θi pi − p
∗
i

����
����i

+
τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j pj − p
∗
j

�����

�����j
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤max ωi: i ∈ Λ􏼈 􏼉 􏽘

m

i�1
pi − p

∗
i

����
����i

+ max Θi􏼈⎛⎝

+ 􏽘
k∈Λ,k≠ i

τk ρk

αk + δk

]k,i: i ∈ Λ
⎫⎬

⎭ 􏽘

m

i�1
pj − p

∗
j

�����

�����i

≤ω 􏽘
m

i�1
pi − p

∗
i

����
����i

+Ω􏽘
m

i�1
pi − p

∗
i

����
����i

⎛⎝ ⎞⎠

≤ω(1 +Ω) 􏽘
m

i�1
pi − p

∗
i

����
����i

� ω(1 +Ω) p1, p2, . . . , pm( 􏼁 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁

����
����∗

≤ω(1 +Ω) p1, p2, . . . , pm( 􏼁‖∗ + ω(1 +Ω)
����

���� p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁‖∗,

(97)

and therefore,

p1(t), p2(t), . . . , pm(t)( 􏼁
����

����∗ ≤ p1 t0( 􏼁, p2 t0( 􏼁, . . . , pm t0( 􏼁( 􏼁
����

����∗

+ 􏽚
t

t0

‖G p1(s), p2(s), . . . , pm(s)( 􏼁‖∗ds

≤ p1 t0( 􏼁, p2 t0( 􏼁, . . . , pm t0( 􏼁( 􏼁
����

����∗ + k1 t − t0( 􏼁􏼐 􏼑

+ k2 􏽚
t

t0

p1(s), p2(s), . . . , pm(s)( 􏼁
����

����∗ds,

(98)

where k1 � ω(1 +Ω)‖(p∗1 , p∗2 , . . . , p∗m)‖∗ and k2 � ω(1 +Ω).
Using Lemma 3, we have

p1(t), p2(t), . . . , pm(t)( 􏼁‖∗ ≤ p1 t0( 􏼁, p2 t0( 􏼁, . . . , pm t0( 􏼁( 􏼁
����

����∗ + k1 t − t0( 􏼁􏼐 􏼑
����� e

k2 t− t0( ),∀t ∈ t0,B􏼂 􏼃􏼓. (99)

Hence, the solution is bounded for t ∈ (t0,B), if B is
fnite. Tus, B �∞. Tis completes the proof. □

Applying the approach of Xia and Feng [31, 32], we now
show that the trajectory of the solution of extended non-
linear mixed variational-like proximal dynamical system
(84) converges to a unique solution of SENMVLI (19).

Theorem 5. For each i ∈ Λ, let Hi, gi, hi,Ti,ψi, ζ i,
and ρi > 0 be the same as in Teorem 2 and let all the

conditions of Teorem 2 hold. If the following conditions
are satisfed:

χi � μhi
+

τi ρi

αi + δi

􏽘
j∈Λ,i≠j

]i,j,

τi

������������������

λ2gi
− 2ρiμAii

+ ρ2i λ
2
Aii

􏼐 􏼑

􏽱

< χi − ξi( 􏼁 αi + δi( 􏼁 − τiλTi
λhi

􏽨 􏽩,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(100)
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then, the extended nonlinear mixed variational-like proximal
dynamical system (84) converges globally exponentially to
a unique solution of SENMVLI (19).

Proof. In Teorem 2, we prove the existence of a unique
solution (p∗1 , p∗2 , . . . , p∗m) of the problem SENMVLI (19).
By Lemma 2, we have hi(p∗i ) � J

zζi
ψi(.,p∗

i
)

ρi ,Ti

[gi(p∗i ) − (Ti(hi(p∗i )) + ρiAi(p∗1 , p∗2 , . . . , p∗m))]. Also, in

view of Teorem 4, the extended mixed variational-like
resolvent dynamical system (82) has a unique solution
(p1(t), p2(t), . . . , pm(t)) over [t0,B] for any fxed ci ∈Hi,
for each i ∈ Λ. Let (p1(t), p2(t), . . . , pm(t)) �

(p1(t, t0; c1), p2(t, t0; c2), . . . , pm(t, t0; cm)) be the solution
of the initial value problem (84) with pi(t0) � ci, for each
i ∈ Λ. Now, we consider the Lyapunov function L defned
on 􏽑

m
i�1Hi by

L p1, p2, . . . , pm( 􏼁 � ‖ p1, p2, . . . , pm( 􏼁 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁‖‖

2
∗,∀ p1, p2, . . . , pm( 􏼁 ∈ 􏽙

m

i�1
Hi. (101)

For each i ∈ Λ, from (82), (91)–(95), and (101), and using
μhi

-strongly monotonicity of hi, we have

zL

zpi

dpi

dt
� 2〈pi(t) − p

∗
i ,

dpi

dt
〉i

� 2ωi〈pi(t) − p
∗
i ,J

zζi
ψi .,pi( )

ρi ,Ti
gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − hi pi( 􏼁〉i

� − 2ωi〈pi(t) − p
∗
i , hi pi( 􏼁 − hi p

∗
i( 􏼁〉i

+ 2ωi〈pi(t) − p
∗
i ,J

zζi
ψi .,pi( )

ρi ,Ti
gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁 + ρiAi p1, p2, . . . , pm( 􏼁( 􏼁􏼂 􏼃 − hi p

∗
i( 􏼁〉i

≤ − 2ωiμhi
pi(t) − p

∗
i

����
����
2
i

+ 2ωi pi(t) − p
∗
i

����
����i

J
zζi

ψi .,pi( )
ρi ,Ti

gi pi( 􏼁 − Ti hi pi( 􏼁( 􏼁(

������

+ ρiAi p1, p2, . . . , pm( 􏼁 − J
zζi

ψi .,p∗
i( )

ρi ,Ti
gi p
∗
i( 􏼁 − Ti hi p

∗
i( 􏼁( 􏼁 + ρiAi p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁( 􏼁‖i

≤ − 2ωi μhi
−
ξi αi + δi( 􏼁 + τi λTi

λhi
+

������������������

λ2gi
− 2ρiμAii

+ ρ2i λ
2
Aii

􏼐 􏼑

􏽱

􏼒 􏼓

αi + δi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠‖pi(t) − p

∗
i ‖‖

2
i

− ωi

τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j‖pj − 􏽢pj‖‖
2
j

≤ − 2ωi Φi pi(t) − p
∗
i ‖‖

2
i +

τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j

����������

����������
pj(t) − p

∗
j ‖‖

2
j

⎛⎝ ⎞⎠,

(102)

where Φi � μhi
− ξi(αi + δi) + τi(λTi

λhi

+
������������������
(λ2gi

− 2ρiμAii
+ ρ2i λ

2
Aii

)
􏽱

)/(αi + δi). By using (102), we have
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dL

dt
� 􏽘

m

i�1

zLi

zpi

dpi

dt
� 2􏽘

m

i�1
〈pi(t) − p

∗
i ,

dpi

dt
〉i

≤ − 2􏽘
m

i�1
ωiΦi pi(t) − p

∗
i

����
����
2
i

+ ωi

τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j pj − 􏽢pj

�����

�����
2

j

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

≤ − 2ωmax Φi +
τi ρi

αi + δi

􏽘
j∈Λ,i≠ j

]i,j: i � 1, 2, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
􏽘

m

i�1
pi(t) − p

∗
i

����
����
2
i
,

(103)

i.e.,

d

dt
p1, p2, . . . , pm( 􏼁 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁􏼁‖‖

2
∗≤ − 2ω∆

����
���� p1, p2, . . . , pm( 􏼁 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁‖‖

2
∗, (104)

where ∆ � max Φi + (τi ρi)/(αi + δi)􏽐j∈Λ,i≠j]i,j: i ∈ Λ􏽮 􏽯 and
ω � ωi: i ∈ Λ􏼈 􏼉. Terefore, we have

p1, p2, . . . , pm( 􏼁 − p
∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁‖∗ ≤

����
���� p1, p2, . . . , pm( 􏼁 − p

∗
1 , p
∗
2 , . . . , p

∗
m( 􏼁‖∗ e

− ω∆ t− t0( ). (105)

Using the conditions (32) and (100), we conclude that
∆> 0. Hence, the trajectory of the solution of extended
nonlinear mixed variational-like proximal dynamical system
(84) converges globally exponentially to a unique solution of
SENMVLI (19). Tis completes the proof. □

6. Conclusion

In this work, we have studied a new system of extended
nonlinear mixed variational-like inequalities involving dif-
ferent nonlinear mappings in the setting of real Hilbert
spaces. Using the proximal operator technique, we have
shown that the system of extended nonlinear mixed
variational-like inequalities is equivalent to the corre-
sponding fxed point problem, and applying this equivalent
result, we have proved the existence and uniqueness of
solution of the system of extended nonlinear mixed
variational-like inequalities. Making use of equivalent fxed
point formulation and nearly uniformly Lipschizian map-
ping, we have proposed a new three-step iterative algorithm
with mixed errors to examine the convergence and stability
analysis of the suggested iterative algorithm under some
suitable conditions. Finally, we have analyzed and suggested
a proximal dynamical system associated with the system of
extended nonlinear mixed variational-like inequalities. We
have shown that the trajectory of the solution of the
proximal dynamical system converges globally exponentially
to a unique solution of the considered problem. We would
like to emphasize that the problem considered in this article
can be further investigated from diferent aspects such as
sensitivity analysis, well-posedness, approximation, and
numerical analysis. Te concepts and method of the

proposed operator splitting scheme may be extended for
solving the system of quasi variational-like inequalities,
system of equilibrium problems, and other related gener-
alized systems.
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Te goal of this paper is to fnd the best of two sixth-order methods, namely, RK-Huta and RK–Butcher methods for solving the
fuzzy hybrid systems. We state a necessary defnition and theorem in terms of consistency for convergence, and fnally, we
compare the obtained numerical results of two diferent methods with analytical solution using two diferent numerical examples.
In addition to that, we generalize the solutions obtained by RK-6 Huta and RK-6 Butcher methods (same order diferent stage
methods) for both the problems we handled. We are proposing these two methods in order to reduce the error in accuracy and to
establish these two methods are better than any other existing numerical methods.Te best of two sixth-order methods are found
by the error analysis study for both the problems. Also, we show whether the change in number of stages of same order methods
afects the accuracy of the approximation or not.

1. Introduction

Te hybrid systems are the dynamic systems which in-
volve both continuous and discrete actions. We shall
discuss about the hybrid systems in detail. Te term
hybrid is not a new thing to the world. We are using the
term hybrid everywhere knowingly or unknowingly. Te
botanist often used this term while some plants, fruits,
and vegetables are produced by the technique of hy-
bridization. Tis hybrid plantation is quite common in all
the developing countries. Te people are used to compare
these hybrid products and original organic products
though some of the hybrid products are even organic. Te
industrialists often use this term hybrid in making of
innovative technologies. Nowadays, we are ofered to use
the hybrid cars which are making use of two diferent
fuels as a combination of liquid fuel and electric motor.

Now, in mathematics, it is used to call some functions as
hybrid functions. Te system which is involving two or
more functions are termed as hybrid systems. Te
functions which are both continuous and discrete
depending upon the interval of time being considered as
hybrid functions. Sometimes, we have to call a function as
a hybrid function when it exhibits continuous disconti-
nuities such as modulus functions and trigonometric
functions.

Te hybrid system is often modeled with the aid of
diferential equations. Obviously, we can easily grasp that
it should be a nonlinear equations. Since it is tedious to
obtain the exact solutions, we prefer to apply the concept
of numerical techniques to adopt the solutions. After
achieving the approximate solutions, it is our prior most
duty to assure the readers that our method is providing
the better approximations. For that, we can take two
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diferent methods but one can easily say higher order
method will automatically provide better approximation.
So instead of taking two diferent order methods, we are
using same sixth-order methods and going to compare
them in order to fnd the method providing better
approximations.

Tese dynamic behaviors with Zadeh’s fuzzy theory
[1] paved a way to fuzzy diferential equations [2–5] and
fuzzy hybrid diferential equations (FHDEs) [5–15]. In
the present paper, two sixth-order methods called RK-
Huta and RK–Butcher, respectively, having eight stages
and seven stages are used to obtain approximate solutions
of FHDE. Since they are the higher-order methods, the
solution converges rapidly to exact solutions than any
other numerical methods. Numerical solutions of FHDE
are studied over a period of time using various methods
such as Euler and Runge–Kutta, by various authors like
Pederson and Sambandham [16, 17] and Jayakumar and
Kanagarajan [18, 19]. Other than them, Salahshour along
with Allahviranloo and Ahmadian et al. made remarkable
contributions in hybrid fuzzy diferential equations
[20, 21]. Te readers are encouraged to go through the
various applications of numerical methods to solve
various types of diferential equations through
[4–15, 22–24].

We are eager to present one such study of FHDE for the
beneft of the authors. Two diferent sixth-order methods
such as RK-Huta and Bucher methods are presented and
compared while solving these types of nonlinear diferential
equations.

Te whole study was split as four sections in which FHDE
and two RK-6 methods such as Huta and Butcher methods are
presented in Section 2. Section 3 contains numerical examples,
and fnally, the study is concluded in Section 4.

2. FuzzyHybridDifferential Equations (FHDEs)
and RK-6 Methods

Te picture of the hybrid system is shown in Figure 1 in
a way as P.B. Dhandapani et al. showed it in the disconti-
nuity between continuity or continuity between disconti-
nuity in [15].

Following the preliminaries of [16], the hybrid systems
are treated via the continuous and discrete parameters.

En represents the set of yH: Rn⟶ [0, 1] in the fol-
lowing manner:

(i) yH is always normal, as there exists an t0 ∈ Rn such
that yH(t0) � 1

(ii) yH is convex under fuzzy defnitions, as for
t1, t2, yH ∈ Rn and 0≤ α≤ 1

yH αt1 +(1 − α)t2( 􏼁≥min yH t1( 􏼁, yH t2( 􏼁􏼂 􏼃. (1)

(iii) yH is always upper-semi continuous
(iv) [yH]0 ≡ the closure of [t ∈ Rn: yH(t)> 0] is

compact

For 0< α≤ 1, we defne [yH(2t)]α � [t ∈ Rn: yH(t)≥ α].
Te α− level sets of yH(t) throughout the paper are given by
the following equation:

yH(t; α) � y
H

(t; α), yH(t; α)􏽨 􏽩. (2)

Here, H is used to represent the association of hybrid
systems in the system. Since we are dealing with fuzzy
functions, we are defning below the minimum and maxi-
mum of yH(t), i.e.,

y
H

(t; α) � [0.75 + 0.25α]yH(t),

yH(t; α) � [1.125 − 0.125α]yH(t).
(3)

Consider the FHDE, similar to [16, 18, 19]

∆yH(t) � δ t, yH(t),ωk yHk
􏼐 􏼑􏼐 􏼑, t ∈ tk, tk+1􏼂 􏼃,

yH tk( 􏼁 � yHk
,

⎧⎪⎨

⎪⎩

ωk uk( 􏼁 �
􏽢0, if k � 0,

uk, if k ∈ 1, 2, . . .{ },

⎧⎨

⎩

(4)

where ∆ denotes Seikkala’s diferentiation, 0≤ t0 < t1
< · · · < tr < · · · , tr⟶∞,

δ ∈ C R
+

× E
1

× E
1
, E

1
􏽨 􏽩,ωr ∈ C E

1
, E

1
􏽨 􏽩. (5)

We may alter (4) by an equivalent system

∆y
H

(t) � δ t, yH,ωk yHk
􏼐 􏼑􏼐 􏼑 ≡ Pk t, yH , yH􏼐 􏼑, yH tk( 􏼁 � yH

k
,

∆yH(t) � δ t, yH,ωk yHk
􏼐 􏼑􏼐 􏼑 ≡ Qk t, yH , yH􏼐 􏼑, yH tk( 􏼁 � yHk

,

⎧⎪⎨

⎪⎩
(6)

[yH (t; α), yH(t; α)] is a fuzzy number, and also the solu-
tions of the parametric form given by the following equation:
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∆yH (t; α) � Pk t, yH
k
(t; α), yH(t; α)􏼢 􏼣, ∆yH tk; α( 􏼁 � yH

k
(α),

∆yH(t; α) � Qk t, yH
k
(t; α), yH(t; α)􏼢 􏼣, yH tk; α( 􏼁 � yHk

(α), α ∈ [0, 1],

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where Pk[t, yH
k
(t; α), yH(t; α)] and Qk[t, yH

k
(t; α),

yH(t; α)] are the parametric forms to represent the
function.

2.1. Convergence. From the notes of [25], the general single-
step method for (4) is given by ym+1 � ym + ϕ(tm, ym, h),

m � 0, 1, . . . , M − 1. Here, ϕ(tm, ym, h) is the increment
function. Te true value of y(tm) will satisfy y(tm+1) �

y(tm) + hϕ(tm, y (tm), h) + Tn, n � 0, 1, 2, . . . , N − 1. Here,
Tn is the truncation error.

Defnition 1 (see [25]). Te general single-step method
ym+1 � ym + ϕ(tm, ym, h), m � 0, 1, . . . , M − 1 is said to be
consistent if ϕ(t, y, 0) � ψ(t, y)

Theorem  (see [25]). A necessary and sufcient condition
for the convergence of a single step method which is regular of
order p≥ 1 is consistency.

Proof 1. According to Jain [25],“there exist a unique solu-
tion y(t) on [t0, h] where a≤ t0 ≤ t≤ t0 + h≤ b and also
y(t) ∈ Cp+1[t0, b], for p≥ 1. Te solution y(t) can be ex-
panded in a Taylor series about any point tn.

y(t) � y tn( 􏼁 + t − tn( 􏼁∆y tn( 􏼁 +
1
2!

t − tn( 􏼁
2∆2y tn( 􏼁 + . . .

+
1
p!

t − tn( 􏼁
p∆p

y tn( 􏼁 +
1

(p + 1)
! t − tn( 􏼁

2∆p+1
y tn( 􏼁ϵnf.

(8)

Tis expansion holds good for t ∈ [t0, b], tn < ϵ< t.
Substituting t � tn+1 in (8), we obtain the following equation:

y tn+1( 􏼁 � y tn( 􏼁 + h∆y tn( 􏼁 +
h
2

2
!∆2y tn( 􏼁 + · · · +

h
p

p!
∆p

y tn( 􏼁,

(9)

and hϕ(tn, y(tn), h) is to be obtained from hϕ(tn, y(tn), h)

by using an approximate value yn in place of the exact value
y(tn). We compute yn+1 � yn + hϕ(tn, yn, h), n � 0, 1, 2, . . . ,

N − 1 to approximate y(tn+1). Tis is called Taylor’s series
method of order p. When p � 1, the Taylor series method
becomes Euler’s method as yn+1 � yn + hf(tn, yn), n �

0, 1, 2, . . . N − 1. Te values of δ2(y(tn)) and higher de-
rivatives can be computed by substituting t � tn. Terefore,
we can compute y(tn+1) with an error

h
p+1

(p + 1)!y
(p+1) ϵn( 􏼁

, tn < ϵn < tn+1. (10)

By which consistency could be established since
number of terms in Taylor’s series is fxed by means of
permissible error. From the theorem, the result ensures
that the approximate solution converges to the exact
solution since the convergence of Euler’s method and
Runge–Kutta method for hybrid fuzzy diferential
equations are proved by Pederson et al., [16, 17]. Also
from the theorem of [16, 17], the point-to-point con-
vergence for all k in α is fxed. □

2.2. Numerical Methods. In order to get better clarity about
the terms involved in Runge–Kutta methods, we shall
present here the fourth-order Runge–Kutta method. When
the hybrid term involves, the representation will change
accordingly which will be shown on following sixth-order
RK-Huta method.

2.3. Fourth-Order Runge–Kutta Method for ODE. For non-
fuzzy ODE,

∆yH(t) � δ(t, y(t)), t ∈ tk, tk+1􏼂 􏼃,

y tk( 􏼁 � yk,
􏼨 (11)

Discontinuity arising in continuity

Hybrid Systems Output

Input

Figure 1: Hybrid systems.
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we have
k1 � hδ t, yk( 􏼁,

k2 � hδ t +
h

2
, yk +

k1

2
􏼠 􏼡,

k3 � hδ t +
h

2
, yk +

k2

2
􏼠 􏼡,

k3 � hδ t + h, yk + k3( 􏼁,

yn+1 � yn +
1
6

k1 + 2k2 + 2k3 + k4( 􏼁,

(12)

where k1, k2, . . . represents stages. yn represents previous
stage when yn+1 represents present iteration. Te number of
iterations to move from yn to yn+1 is decided by the factor
called step size h; i.e., if we take h� 0.1., then to reach y(1)

from y(0), we have 11 iterations such that y(0), y(0.1),

y(0.2), . . . y(1).

Since it is too complex to show these two sixth-order
methods in stage form involving terms like yHk,n

(α),
yHk,n+1

(α), and ki (which is explained previously), we are just
giving the coefcients involved in these two sixth-order
methods, namely, Huta method and Butcher method from
the study of [25].With the belief that the readermay be familiar
with conversion from the coefcient form to the stage form of
numerical methods, we present that coefcient terms involved
in sixth-order RK–Butcher and RK-Huta methods.Te readers
may refer basic studies like [18, 25] given in reference. Tables 1
and 2 represent the Sixth Order RK-Huta and Butcher values,
which can be expanded as the following equation:

yH
k,n+1

(α) − yH
k,n

(α) � 􏽘
8

i�1
]iki tk,n; yHk,n

(α)􏼐 􏼑,

yHk,n+1
(α) − yHk,n

(α) � 􏽘
8

i�1
]iki tk,n; yHk,n

(α)􏼐 􏼑,

(13)

Table 1: Sixth-order RK-Huta [25].

1/9 1/9
1/6 1/24 3/24
1/3 1/6 − 3/6 4/6
1/2 − 5/8 27/8 − 24/8 6/8
2/3 221/9 − 981/9 867/9 − 102/9 1/9
5/6 − 183/48 678/48 − 472/48 − 66/48 80/48 3/48
1 716/82 − 2079/82 1002/82 834/82 − 454/82 − 9/82 72/82

41/840 0 216/840 27/840 272/840 27/840 216/840 41/840

Table 2: Sixth-order RK–Butcher [25].

1/3 1/3
2/3 0 2/3
1/3 1/12 1/3 − 1/12
1/2 − 1/16 9/8 − 3/16 − 3/8
1/2 0 9/8 − 3/8 − 3/4 1/2
1 9/44 − 9/11 63/44 18/11 0 − 16/11

11/120 0 27/40 27/40 − 4/15 − 4/15 11/120
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where ]1, ]2, ]3, ]4, ]5, ]6, ]7, and ]8 are constants and
k1 tk,n; yHk,n

(α)􏼐 􏼑 � min hkδ tk,n, u,ωk uk( 􏼁􏼐 􏼑􏽮
􏼌􏼌􏼌􏼌􏼌

u ∈ yH
k,n

(α), yHk,n
(α)􏼢 􏼣, uk ∈ yH

k,0
(α), (α)􏼢 􏼣􏼩,

k1 tk,n; yHk,n
(α)􏼐 􏼑 � max hkδ tk,n, u,ωk uk( 􏼁􏼐 􏼑􏽮

􏼌􏼌􏼌􏼌􏼌

u ∈ yH
k,n

(α), yHk,n
(α)􏼢 􏼣, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k2 tk,n; yHk,n
(α)􏼐 􏼑 � min hkδ tk,n +

1
9
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k1

tk,n, yHk,n
(α)􏼐 􏼑, ζk1

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k2 tk,n; yHk,n
(α)􏼐 􏼑 � max hkδ tk,n +

1
9
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k1

tk,n, yHk,n
(α)􏼐 􏼑, ζk1

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k3 tk,n; yHk,n
(α)􏼐 􏼑 � min hkδ tk,n +

1
6
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k2

tk,n, yHk,n
(α)􏼐 􏼑, ζk2

tk,n, yHk,n
(r)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k3 tk,n; yHk,n
(α)􏼐 􏼑 � max hkδ tk,n +

1
6
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k2

tk,n, yHk,n
(α)􏼐 􏼑, ζk2

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k4 tk,n; yHk,n
(α)􏼐 􏼑 � min hkδ tk,n +

1
3
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k3

tk,n, yHk,n
(α)􏼐 􏼑, ζk3

tk,n, yHk,n
(r)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k4 tk,n; yHk,n
(α)􏼐 􏼑 � max hkδ tk,n +

1
3
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k3

tk,n, yHk,n
(α)􏼐 􏼑, ζk3

tk,n, yHk,n
(r)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k5 tk,n; yHk,n
(α)􏼐 􏼑 � min hkδ tk,n +

1
2
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k4

tk,n, yHk,n
(α)􏼐 􏼑, ζk4

tk,n, yHk,n
(r)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k5 tk,n; yHk,n
(r)􏼐 􏼑 � max hkδ tk,n +

1
2
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k4

tk,n, yHk,n
(α)􏼐 􏼑, ζk4

tk,n, yHk,n
(r)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k6 tk,n; yHk,n
(α)􏼐 􏼑 � min hkδ tk,n +

2
3
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k5

tk,n, yHk,n
(α)􏼐 􏼑, ζk5

tk,n, yHk,n
(r)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k6 tk,n; yHk,n
(α)􏼐 􏼑 � min hkδ tk,n +

2
3
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k5

tk,n, yHk,n
(α)􏼐 􏼑, ζk5

tk,n, yHk,n
(r)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k6 tk,n; yHk,n
(α)􏼐 􏼑 � max hkδ tk,n +

2
3
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k5

tk,n, yHk,n
(α)􏼐 􏼑, ζk5

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k7 tk,n; yHk,n
(r)􏼐 􏼑 � min hkδ tk,n +

5
6
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k6

tk,n, yHk,n
(α)􏼐 􏼑, ζk6

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

u ∈ ζ
k6

tk,n, yHk,n
(α)􏼐 􏼑, ζk6

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k7 tk,n; yHk,n
(α)􏼐 􏼑 � max hkδ tk,n +

5
6
hk, u,ωk uk( 􏼁􏼒 􏼓􏼚

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k6

tk,n, yHk,n
(α)􏼐 􏼑, ζk6

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k8 tk,n; yHk,n
(α)􏼐 􏼑 � min hkδ tk,n + hk, u,ωk uk( 􏼁􏼐 􏼑􏽮

􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k7

tk,n, yHk,n
(α)􏼐 􏼑, ζk7

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

k8 tk,n; yHk,n
(α)􏼐 􏼑 � max hkδ tk,n + hk, u,ωk uk( 􏼁􏼐 􏼑􏽮

􏼌􏼌􏼌􏼌􏼌

u ∈ ζ
k7

tk,n, yHk,n
(α)􏼐 􏼑, ζk7

tk,n, yHk,n
(α)􏼐 􏼑􏼔 􏼕, uk ∈ yH

k,0
(α), yHk,0

(α)􏼢 􏼣􏼩,

(14)
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Next, we are defning

ζ
k1

tk,n, yHk,n
(α)􏼐 􏼑 � yH

k,n
(α) +

1
9
k1 tk,n, yHk,n

(α)􏼐 􏼑,

ζk1
tk,n, yHk,n

(α)􏼐 􏼑 � yHk,n
(α) +

1
9
k1 tk,n, yHk,n

(α)􏼐 􏼑,

ζ
k2

tk,n, yHk,n
(α)􏼐 􏼑 � yH

k,n
(α) +

1
24

k1 tk,n, yHk,n
(r)􏼐 􏼑 +

3
24

k2 tk,n, yHk,n
(α)􏼐 􏼑,

ζk2
tk,n, yHk,n

(α)􏼐 􏼑 � yHk,n
(r) +

3
24

k1 tk,n, yHk,n
(r)􏼐 􏼑 +

3
24

k2 tk,n, yHk,n
(r)􏼐 􏼑,

ζ
k3

tk,n, yHk,n
(α)􏼐 􏼑 � yH

k,n
(r) +

1
6
k1 tk,n, yHk,n

(α)􏼐 􏼑

−
3
6
k2 tk,n, yHk,n

(α)􏼐 􏼑 +
4
6
k3 tk,n, yHk,n

(α)􏼐 􏼑,

ζk3
tk,n, yHk,n

(α)􏼐 􏼑 � yHk,n
(α) +

1
6
k1 tk,n, yHk,n

(α)􏼐 􏼑

−
3
6
k2 tk,n, yHk,n

(α)􏼐 􏼑 +
4
6
k3 tk,n, yHk,n

(α)􏼐 􏼑,

ζ
k4

tk,n, yHk,n
(α)􏼐 􏼑 � yH

k,n
(α) −

5
8
k1 tk,n, yHk,n

(α)􏼐 􏼑

+
27
8

k2 tk,n, yHk,n
(α)􏼐 􏼑 −

24
8

k3 tk,n, yHk,n
(α)􏼐 􏼑 +

6
8
k4 tk,n, yHk,n

(α)􏼐 􏼑,

ζk4
tk,n, yHk,n

(α)􏼐 􏼑 � yHk,n
(α) −

5
8
k1 tk,n, yHk,n

(α)􏼐 􏼑

+
27
8

k2 tk,n, yHk,n
(α)􏼐 􏼑 −

24
8

k3 tk,n, yHk,n
(α)􏼐 􏼑 +

6
8
k4 tk,n; yHk,n

(α)􏼐 􏼑,

ζ
k5

tk,n, yHk,n
(α)􏼐 􏼑 � yH

k,n
(α) +

221
9

k1 tk,n, yHk,n
(α)􏼐 􏼑 −

981
9

k2 tk,n, yHk,n
(α)􏼐 􏼑

+
867
9

k3 tk,n, yHk,n
(α)􏼐 􏼑 −

102
9

k4 tk,n, yHk,n
(α)􏼐 􏼑 +

1
9
k5 tk,n, yHk,n

(α)􏼐 􏼑,

ζk5
tk,n, yHk,n

(α)􏼐 􏼑 � yHk,n
(α) +

221
9

k1 tk,n, yHk,n
(α)􏼐 􏼑 +

981
9

k2 tk,n, yHk,n
(α)􏼐 􏼑

+
867
9

k3 tk,n, yHk,n
(α)􏼐 􏼑 +

102
9

k4 tk,n, yHk,n
(α)􏼐 􏼑,

1
9
k5 tk,n, yHk,n

(α)􏼐 􏼑,

ζ
k6

tk,n, yHk,n
(α)􏼐 􏼑 � yH

k,n
(α) −

183
48

k1 tk,n, yHk,n
(α)􏼐 􏼑 +

678
48

k2 tk,n, yHk,n
(α)􏼐 􏼑

−
472
48

k3 tk,n, yHk,n
(α)􏼐 􏼑 −

66
48

k4 tk,n; yHk,n
(α)􏼐 􏼑 +

80
48

k5 tk,n, yHk,n
(α)􏼐 􏼑

+
3
48

k6 tk,n, yHk,n
(α)􏼐 􏼑,

ζk6
tk,n, yHk,n

(α)􏼐 􏼑 � yHk,n
(α) +

183
48

k1 tk,n, yHk,n
(α)􏼐 􏼑 +

678
48

k2 tk,n, yHk,n
(α)􏼐 􏼑

+
472
48

k3 tk,n, yHk,n
(α)􏼐 􏼑 +

66
48

k4 tk,n, yHk,n
(α)􏼐 􏼑,

80
48

k5 tk,n, yHk,n
(α)􏼐 􏼑

+
3
48

k6 tk,n, yHk,n
(α)􏼐 􏼑,

ζ
k7

tk,n, yHk,n
(α)􏼐 􏼑 � yH

k,n
(α) −

716
82

k1 tk,n, yHk,n
(α)􏼐 􏼑

−
2079
82

k2 tk,n, yHk,n
(α)􏼐 􏼑 +

1002
82

k3 tk,n, yHk,n
(α)􏼐 􏼑 +

834
82

k4 tk,n; yHk,n
(α)􏼐 􏼑

−
454
82

k5 tk,n; yHk,n
(α)􏼐 􏼑 −

9
82

k6 tk,n; yHk,n
(r)􏼐 􏼑 +

72
82

k7 tk,n; yHk,n
(α)􏼐 􏼑,

ζk7
tk,n, yHk,n

(α)􏼐 􏼑 � yHk,n
(α) +

716
82

k1 tk,n, yHk,n
(α)􏼐 􏼑

−
2079
82

k2 tk,n, yHk,n
(α)􏼐 􏼑 +

1002
82

k3 tk,n, yHk,n
(α)􏼐 􏼑 +

834
82

k4 tk,n; yHk,n
(α)􏼐 􏼑

−
454
82

k5 tk,n; yHk,n
(α)􏼐 􏼑 −

9
82

k6 tk,n; yHk,n
(α)􏼐 􏼑 +

72
82

k6 tk,n; yHk,n
(α)􏼐 􏼑.

(15)
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Next, we defne

Sk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣 � 41k1 + 0k2 + 216k3 + 27k4 + 272k5 + 27k6 + 216k7 + 41k8,

Tk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣 � 41k1 + 0k2 + 216k3 + 27k4 + 272k5 + 27k6 + 216k7 + 41k8,

(16)

where k1, k2, . . . represents the stages involved in Run-
ge–Kutta methods. Te exact solution at tk,n+1 is given by

YH
k,n+1

(α) ≈ yH
k,n

(α) +
1
840

Sk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣,

YHk,n+1
(α) ≈ yHk,n

(α) +
1
840

Tk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(17)

Te approximate solution is given by

yH
k,n+1

(α) ≈ yH
k,n

(α) +
1
840

Sk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣,

yHk,n+1
(α) ≈ yHk,n

(α) +
1
840

Tk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

In the similar fashion of RK-Huta expansion, we can also
expand RK–Butcher method. As it is similar, we are not
providing the expansion here. Tese methods are fuzzifed
and treated for fuzzy hybrid diferential equations as fol-
lowed by Pederson and Sambandham in [16, 17]. Ten, from
theory of [18, 19], we solve a numerical example from which
these two RK-6 methods can be easily understood.

3. Numerical Example

Example 1. Similar to [16], the fuzzy hybrid IVP is taken.

∆yH(t) � yH(t) + ξH(t)ωkyH tk( 􏼁, t ∈ tk, tk+1􏼂 􏼃, tk � k, k � 0, 1, 2, 3, . . . ,

yH(0; α) �
750
1000

+
250α
1000

􏼒 􏼓,
1125
1000

−
125α
1000

􏼒 􏼓􏼔 􏼕, 0≤ α≤ 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

where

ξH(t) �

10
5

(1 − t(mod 1), for t(mod 1)>
5
10

,

10
5

(t(mod 1)), for t(mod 1)≤
5
10

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ωk uk( 􏼁 �

􏽢0, if k � 0,

uk, if k ∈ 1, 2, . . .{ }.

⎧⎪⎨

⎪⎩

(20)

In (19), yH(tk) + ξH(tk)ωk(yH(tk) is continuous func-
tion of t, y and ωk(yH(tk).

∆yH(t) � yH(t) + ξH(t)ωk y tk( 􏼁( 􏼁, t ∈ tk, tk+1􏼂 􏼃, tk � k,

yH tk( 􏼁 � yHtk
,

⎧⎨

⎩

(21)

∆yH (t) has a continuous solution on [tk, tk+1].

3.1. Numerical Solution by RK–Butcher. For numerically
solving the Fuzzy Hybrid IVP (19), let δ: [0,∞)
× R × R⟶ R be given by the following equation:

δ t, yH,ωk yH tk( 􏼁( 􏼁( 􏼁 � yH(t) + ξH(t)ωk yH tk( 􏼁( 􏼁,

tk � k, k � 0, 1, 2, . . . ,
(22)

where ωk: R⟶ R is given by the following equation:

ωk yH( 􏼁 tk( 􏼁 �
0, if k � 0,

yH tk( 􏼁, if k ∈ 1, 2, . . .{ }.
􏼨 (23)

By example 3 of [2], (19) gives

yH1

10
10

, α􏼒 􏼓 �
750
1000

+
250α
1000

􏼒 􏼓 D1,0􏼐 􏼑
10

,
1125
1000

−
125α
1000

􏼒 􏼓 D1,0􏼐 􏼑
10

􏼔 􏼕.

(24)

Now, we defne
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Lk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣 � 11k1 + 0k2 + 810k3 − 32k4 + 11k5,

Mk tk,n, yH
k,n

(α), yHk,n
(α)􏼢 􏼣 � 11k1 + 0k2 + 810k3 − 32k4 + 11k5.

(25)

From which, we obtain

yH1

11
10

; α􏼒 􏼓 � yH1

10
10

; α􏼒 􏼓 +
1
120

Lk

10
10

, yH1

10
10

; α􏼒 􏼓, yH1

10
10

; α􏼒 􏼓􏼔 􏼕,

yH1

11
10

; α􏼒 􏼓 � yH1

10
10

; α􏼒 􏼓 +
1
120

Mk

10
10

, yH1

10
10

; α􏼒 􏼓, yH1

10
10

; α􏼒 􏼓􏼔 􏼕.

(26)

To obtain yH1
((20/10); α),

D1,0 � 1 + d + d
2

+
d
3

3
+

d
4

24
+

d
5

120
+

d
6

720
−

d
7

2160
,

D1 � d
2

+
d
3

3
+

d
4

12
+

d
5

60
+

d
6

360
+

d
7

1080
,

D2 � 3d
2

+
4d

3

3
+
5d

4

12
+
6d

5

60
+
7d

6

360
+
8h

7

540
−

d
8

1080
,

D3 � 5d
2

+
7d

3

3
+
3d

4

4
+
11d

5

60
+
13d

6

360
+

d
7

216
−

d
8

540
,

D4 � 7d
2

+
10d

3

3
+
13d

4

12
+
4d

5

60
+
19d

6

360
+

d
7

135
−

d
8

360
,

D5 � 9d
2

+
13d

3

3
+
17d

4

12
+
7d

5

20
+
5d

6

72
+
11d

7

1080
−

d
8

270
,

D6 � 2d − 10d
2

− 5d
3

−
5d

4

3
−
5d

5

12
−

d
6

12
−

d
7

72
+

d
8

216
,

D7 � 2d − 12d
2

− 6d
3

− 2d
4

−
d
5

2
−

d
6

10
−

d
7

60
+

d
8

180
,

D8 � 2d − 14d
2

− 7d
3

−
7d

4

3
−
7d

5

12
−
7d

6

60
−
7d

7

360
+

7d
8

1080
,

D9 � 2d − 16d
2

− 8d
3

−
8d

4

3
−
5d

5

12
−

d
6

12
−

d
7

72
+

d
8

216
,

D10 � 2d − 10d
2

− 5d
3

−
5d

4

3
−
5d

5

12
−

d
6

12
−

d
7

72
+

d
8

216
,

yH1

i

10
; α􏼒 􏼓 �

750
1000

+
250α
1000

􏼒 􏼓 D1,0􏼐 􏼑
i
,
1125
1000

−
125α
1000

􏼒 􏼓 D1,0􏼐 􏼑
i

􏼔 􏼕, i � 1, 2, . . . , 10,

yH1

i

10
; α􏼒 􏼓 � D1,0􏼐 􏼑

i
+ D1,0􏼐 􏼑

10
Di− 10( 􏼁, i � 11, 12, . . . , 20.

(27)
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3.2. Numerical Solution by RK-Huta. To numerically solve
the Fuzzy Hybrid IVP (19),

δ t, yH,ωr yH tk( 􏼁( 􏼁( 􏼁 � yH(t) + ξH(t)ωk yH tk( 􏼁( 􏼁,

tk � k, k � 0, 1, 2, . . . ,
(28)

where ωk: R⟶ R is given by the following equation:

ωk uk( 􏼁 �
0, if k � 0,

uk, if k ∈ 1, 2, . . .{ }.
􏼨 (29)

By example 3 of [2], (19) gives

yH1

10
10

, α􏼒 􏼓 �
750
1000

+
250α
1000

􏼒 􏼓 D1,0􏼐 􏼑
10

,
1125
1000

−
125α
1000

􏼒 􏼓 D1,0􏼐 􏼑
10

􏼔 􏼕, (30)

where

D1,0 � 1 + d +
d
2

2
+

d
3

6
+

d
4

24
+

d
5

120
+

d
6

720
+

d
7

4480
+

d
8

483840
,

yH1

11
10

; α􏼒 􏼓 � yH1

10
10

; α􏼒 􏼓 +
1
840

Sk

10
10

, yH
1

10
10

; α􏼒 􏼓, yH1

10
10

; α􏼒 􏼓􏼔 􏼕,

yH1

11
10

; α􏼒 􏼓 � yH1

10
10

; α􏼒 􏼓 +
1
840

TK

10
10

; yH1

10
10

; α􏼒 􏼓, yH1

10
10

; α􏼒 􏼓􏼔 􏼕.

(31)

To obtain yH1
((20/10); α), i � 1, 2, 3, 4, 5

y
H

1 +
i

10
; α􏼒 􏼓 � y

H
1 +

i − 1
10

; α􏼒 􏼓D1,0 + (2i − 1)d
2

+
(3i − 2)h

3

3
+

(4i − 3)d
4

12
􏼢

+
(5i − 4)d

5

60
+

(6i − 1)d
6

360
+

(56i − 47)d
7

20160
+

(108i − 107)d
8

241920

+
(5i − 5)d

9

120960
􏼣y

H

10
10

; α􏼒 􏼓,

yH 1 +
i

10
; α􏼒 􏼓 � yH 1 +

i − 1
10

; α􏼒 􏼓D1,0 + (2i − 1)d
2

+
(3i − 2)d

3

3
+

(4i − 3)d
4

12
􏼢

+
(5i − 4)d

5

60
+

(6i − 1)d
6

360
+

(56i − 47)d
7

20160
+

(108i − 107)d
8

241920

+
(5i − 5)d

9

120960
􏼣yH

10
10

; α􏼒 􏼓.

(32)

Ten, for i � 6, 7, 8, 9, 10,
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y
H

1 +
i

10
; α􏼒 􏼓 � y

H
1 +

i − 1
10

; α􏼒 􏼓D1,0 +
1
5

− (2i − 2)d
2

+(i − 1)d
3

+
(i − 1)d

4

3
􏼠􏼢

+
(i − 1)d

5

12
+

(i − 1)d
6

60
+

(i − 1)d
7

360
+

(i − 1)d
8

2240

+
(i − 1)d

9

241920
􏼡􏼣y

H
(10/10; α),

yH 1 +
i

10
; α􏼒 􏼓 � yH 1 +

i − 1
10

; α􏼒 􏼓D1,0 +
1
5

− (2i − 2)h
2

+(i − 1)h
3

+
(i − 1)h

4

3
􏼠􏼢

+
(i − 1)h

5

12
+

(i − 1)h
6

60
+

(i − 1)h
7

360
+

(i − 1)h
8

2240

+
(i − 1)h

9

241920
􏼡􏼣yH

10
10

; α􏼒 􏼓.

(33)

3.3.Exact Solution. Te analytically obtained solution of (19)
for t ∈ [1, 1.5] is

yH(t; α) � yH(1; α) 3e
t− 1

− 2t􏼐 􏼑, 0≤ α≤ 1,

yH(1.5; α) � yH(1; α)(3
�
e

√
− 3), 0≤ α≤ 1.

(34)

Ten, yH(1.5; 1) is nearly approximate to
5.290221725637059, and yH1

(1.5, 1) is approximately nearer
to 5.290221725881617.

Since the exact solution of (19) for t ∈ [1.5, 2] is

yH(t; α) � yH(1; α) 2t − 2 + e
t− 1.5

(3
�
e

√
− 4)􏼐 􏼑, 0≤ α≤ 1.

(35)

Terefore, yH(2.0; α) � yH(1; α)(2 + 3e − 4
�
e

√
).

Ten, yH(2.0; 1) is nearly approximate to
9.67697567235778, and yH1

(2.0; 1) is nearly approximate to
9.676975672823584.

Te approximate solution by RK-Huta is plotted at
t ∈ [0, 2], α ∈ [0, 1] (see Figure 2), and the error analysis has
also been shown (see Table 3). Te comparison of ap-
proximately obtained solutions by sixth-order methods and
exact solutions are plotted at t � 2, α ∈ [0, 1] (see Tables 4
and 5 and Figure 3).

Next, consider the following hybrid fuzzy IVP.

Example 2

∆yH(t) � y(t) + ξ(t)ωkyH tk( 􏼁, t ∈ tk, tk+1􏼂 􏼃, tk � k, k � 0, 1, 2, 3, . . . ,

yH(0, α) � [(0.75 + 0.25α), (1.125 − 0.125α)], 0≤ α≤ 1,
􏼨 (36)

where ξ(t) � |sin(πt)|, k � 0, 1, 2, . . .,

ωk uk( 􏼁 �
0, if k � 0,

uk, if k ∈ 1, 2, . . .{ }.
􏼨 (37)

Ten, yH(t) + ξH(t)ωk(yH(tk) is continuous function
of t, y and ωk(y(tk). Terefore, by example 6.1 of Kaleva [3],
for each k � 0, 1, 2, . . ., the fuzzy IVP

∆yH(t) � yH(t) + ξH(t)ωk yH tk( 􏼁( , t ∈ tk, tk+1􏼂 􏼃, tk � k,

y tk( 􏼁 � yHtk
,

⎧⎨

⎩

(38)

has a unique solution on [tk, tk+1].

3.4. Numerical Solution by RK–Butcher. For numerically
solving the hybrid fuzzy IVP (36), we will apply the
RK–Butcher method of order six for hybrid fuzzy diferential

equations with N � 10. To obtain yH1
(2.0, α), yH1

(2.0; α) is
approximated. Let δ: [0,∞) × R × R⟶ R be given by the
following equation:

δ t, yH,ωk yH tk( 􏼁( 􏼁( 􏼁 � yH(t) + ξH(t)ωk yH tk( 􏼁( 􏼁,

tk � k, k � 0, 1, 2, . . . ,
(39)

where ωk: R⟶ R is given by the following equation:

ωk uk( 􏼁 �
0, if k � 0,

uk, if k ∈ 1, 2, . . .{ }.
􏼨 (40)

By example 3 of [2], (36) gives

yH1
(1.0, α) � (0.75 + 0.25α) D1,0􏼐 􏼑

10
, (1.125 − 0.125α) D1,0􏼐 􏼑

10
􏼔 􏼕.

(41)

Ten,
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Figure 2: Approximate solution by sixth-order RK-Huta method (for h� 0.1) in Example 1.

Table 3: Approximate solutions by RK-Butcher and RK-Huta in Example 1.

α
Sixth-order RK–Butcher method Sixth-order RK-Huta method

y
H

(ti; α) yH(ti; α) y
H

(ti; α) yH(ti; α)

0 7.25773174395989 10.8865976159398 7.25773175461769 10.8865976319265
0.1 7.49965613542523 10.7656354202072 7.49965614643828 10.7656354360162
0.2 7.74158052689056 10.6446732244745 7.74158053825887 10.6446732401059
0.3 7.98350491835588 10.5237110287418 7.98350493007946 10.5237110441956
0.4 8.22542930982121 10.4027488330092 8.22542932190005 10.4027488482854
0.5 8.46735370128655 10.2817866372765 8.46735371372064 10.2817866523751
0.6 8.70927809275187 10.1608244415439 8.70927810554123 10.1608244564648
0.7 8.95120248421720 10.0398622458112 8.95120249736182 10.0398622605545
0.8 9.19312687568253 9.91890005007852 9.19312688918240 9.91890006464417
0.9 9.43505126714786 9.79793785434586 9.43505128100300 9.79793786873388
1.0 9.67697565861319 9.67697565861319 9.67697567282358 9.67697567282358

Table 4: Exact solution in Example 1.

α
Exact solution

y
H

(ti; α) yH(ti; α)

0 7.25773175426834 10.8865976314025
0.1 7.49965614607728 10.7656354354980
0.2 7.74158053788623 10.6446732395936
0.3 7.98350492969517 10.5237110436891
0.4 8.22542932150411 10.4027488477846
0.5 8.46735371331306 10.2817866518801
0.6 8.70927810512201 10.1608244559757
0.7 8.95120249693095 10.0398622600712
0.8 9.19312688873989 9.91890006416673
0.9 9.43505128054884 9.79793786826225
1.0 9.67697567235778 9.67697567235778

Table 5: Error in sixth-order RK-Butcher method and sixth-order RK-Huta method in Example 1.

α
Sixth-order RK-Butcher method Sixth-order RK-Huta method

YH(ti; α) YH(ti; α) YH(ti; α) YH(ti; α)

0 1.03085 × 10− 8 1.54627 × 10− 8 3.49350 × 10− 10 5.24000 × 10− 10

0.1 1.06520 × 10− 8 1.52908 × 10− 8 3.61000 × 10− 10 5.18201 × 10− 10

0.2 1.09957 × 10− 8 1.51191 × 10− 8 3.72641 × 10− 10 5.12301 × 10− 10

0.3 1.13393 × 10− 8 1.49473 × 10− 8 3.84290 × 10− 10 5.06500 × 10− 10

0.4 1.16829 × 10− 8 1.47754 × 10− 8 3.95939 × 10− 10 5.00799 × 10− 10
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yH1
(1.1; α) � yH1

(1.0; α) +
1
120

Lk 1.0, yH1
(1.0; α), yH1

(1.0; α)􏼔 􏼕,

yH1
(1.1; α) � yH1

(1.0; α) +
1
120

Mk 1.0; yH1
(1.0; α), yH1

(1.0; α)􏼔 􏼕.

(42)

To obtain yH1
(2.0; α) for h� 0.1, let

yH1

i

10
; α􏼒 􏼓 � D1,0􏼐 􏼑, i � 1, 2, . . . , 10

yH1

i

10
; α􏼒 􏼓 � D1,0􏼐 􏼑

i
+ D1,0􏼐 􏼑

10
sin 1 +

h

3
􏼠 􏼡π􏼠 􏼡 A1( 􏼁 − sin 1 +

h

2
􏼠 􏼡π􏼠 􏼡 A2( 􏼁 + sin 1 +

2h

3
􏼠 􏼡π􏼠 􏼡 A3( 􏼁 +(sin(1 + h)π) A4( 􏼁i � 11

y1
i

10
; α􏼒 􏼓 � D1,0􏼐 􏼑

i
+ D1,0􏼐 􏼑

10
􏼓􏼒 Di− 10( 􏼁i � 12, 13, . . . , 20

Di− 10 � sin((1 +(i − 11)h)π)B1 + sin 1 +
((i − 8 + 2j)h)

3
􏼠 􏼡π􏼠 􏼡B2 + sin 1 +

((i − 9 + j)h)

3
􏼠 􏼡π􏼠 􏼡B3+

sin 1 +
((i − 8 + 2j)h)

3
􏼠 􏼡π􏼠 􏼡A3 + sin((1 +(i − 10)h)π)A4 for i � i � 11, 12, . . . , 20, j � i − 12,

(43)

Table 5: Continued.

α
Sixth-order RK-Butcher method Sixth-order RK-Huta method

YH(ti; α) YH(ti; α) YH(ti; α) YH(ti; α)

0.5 1.20265 × 10− 8 1.46036 × 10− 8 4.07580 × 10− 10 4.95000 × 10− 10

0.6 1.23701 × 10− 8 1.44318 × 10− 8 4.19220 × 10− 10 4.89100 × 10− 10

0.7 1.27138 × 10− 8 1.42600 × 10− 8 4.30870 × 10− 10 4.83301 × 10− 10

0.8 1.30574 × 10− 8 1.40882 × 10− 8 4.42510 × 10− 10 4.77440 × 10− 10

0.9 1.34010 × 10− 8 1.39164 × 10− 8 4.54159 × 10− 10 4.71630 × 10− 10

1.0 1.37446 × 10− 8 1.37446 × 10− 8 4.65800 × 10− 10 4.65800 × 10− 10

Comparing two Sixth Order Methods 

* RK−Huta
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− Exact
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Figure 3: Comparison of approximate solution with exact solution (for h� 0.1) in Example 1.
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for i � 11, 12, . . . , 20, j � i − 12 where

A1 �
27h

40
+
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2

20
+
3h

3

20
+

h
4

40
+

h
5

120
+

h
6

720

A2 �
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+
4h

2

15
+

h
3

15

A3 �
27h

40
+
9h

2

40
+
3h

3

80
−

h
5

480

A4 �
11h

120

B1 �
11h

120
+
11h

2

120
+
11h

3

240
+

h
4

60
+

h
5

480
+

h
6

360
+

h
7

2160

B2 �
27h

40
+
9h

2

40
+
3h

3

80
+

h
4

40
+

h
5

120
−

h
6

720

B3 �
− 8h

15
−
4h

2

15
−

h
3

15

(44)

3.5. Numerical Solution by RK-Huta. For numerically solving
the hybrid fuzzy IVP (36), we will apply the RK-Hutamethod of
order six for hybrid fuzzy diferential equations withN � 10. To
obtain y1(2.0; α), y(2.0; α) is approximated. Let δ: [0,∞)
×R × R⟶ R be given by the following equation:

δ t, yH,ωk y tk( 􏼁( 􏼁( 􏼁 � y(t) + ξ(t)ωk y tk( 􏼁( 􏼁,

tk � k, k � 0, 1, 2, . . . ,
(45)

where ωk: R⟶ R is given by the following equation:

ωk uk( 􏼁 �
0, if k � 0,

uk, if k ∈ 1, 2, . . .{ }.
􏼨 (46)

By example 3 of [2], (36) gives

yH1
(1.0, α) � (0.75 + 0.25α) D1,0􏼐 􏼑

10
, (1.125 − 0.125α) D1,0􏼐 􏼑

10
􏼔 􏼕,

(47)

where

D1,0 � 1 + h +
h
2

2
+

h
3

6
+

h
4

24
+

h
5

120
+

h
6

720
+

h
7

4480
+

h
8

483840
,

yH1
(1.1; α) � y1(1.0; α) +

1
840

Sk 1.0, y1(1.0; α), yH1
(1.0; α)􏽨 􏽩,

y1(1.1; α) � y1(1.0; α) +
1
840

Tk 1.0; y1(1.0; α), y1(1.0; α)􏽨 􏽩.

(48)

To obtain y1(2.0; α) for h� 0.1, let

D1 � 23616h + 23616h
2

+ 5328h
3

+ 7920h
4

+ 1872h5 − 264h6 + 99h
7

+ h
8
,

D2 � − 5292h
5

+ 864h
6

+ 99h
7
,

D3 � 124416h + 103680h
2

+ 67392h
3

+ 432h
4

+ 7344h
5

+ 72h
6
,

D4 � 15552h + 103680h
2

− 28512h
3

+ 11664h
4

+ 108h
5
,

D5 � 156672h + 78336h
2

+ 35136h
3

+ 144h
4
,

D6 � 15552h + 5184h
2

+ 1296h
3
,

D7 � 124416h + 20736h
2
,

D8 � 23616h,

y (1.1; α) � y (1.0; α) D1,0􏼐 􏼑 +
1

483840
D2 sin

π
90

+ D3 sin
π
60

+ D4 sin
π
30

􏼔 ,

+ D5 sin
π
20

+ D6 sin
2π
30

+ D7 sin
5π
60

+ D8 sin
π
10

􏼕 y (1.0; α),

y(1.1; α) � y(1.0; α) D1,0􏼐 􏼑 +
1

483840
D2 sin

π
90

+ D3 sin
π
60

+ D4 sin
π
30

􏼔 ,

+ D5 sin
π
20

+ D6 sin
2π
30

+ D7 sin
5π
60

+ D8 sin
π
10

􏼕y(1.0; α).

(49)
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Ten, for i� 1, 2, 3, . . ., 10,

y 1 +
i

10
; α􏼒 􏼓 � y 1 +

i − 1
10

; α􏼒 􏼓 D1,0􏼐 􏼑 +
1
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10

􏼣 y (1.0; α),

y 1 +
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i − 1
10

; α􏼒 􏼓 D1,0􏼐 􏼑 +
1

483840
D1 sin
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+ D2 sin
(9i − 8)π

90
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(3i − 2)π
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+ D6 sin
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+ D7 sin
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60

+ D8 sin
(i)π
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􏼣y(1.0; α).

(50)

Let

D2,0 � D1,0􏼐 􏼑
10

+ 􏽘
10

k�1
D1,0􏼐 􏼑

10− k 1
483840

D1 sin
(k − 1)π

10
+ D2 sin

(9k − 8)π
90

􏼢

+ D3 sin
(6k − 5)π
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+ D4 sin
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20

+ D6 sin
(3k − 1)π

30
+ D7 sin

(6k − 1)π
60

+ D8 sin
(k)π
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􏼣.

(51)

Ten,

y2.0;α � D2,0y1(1.0; α)

� D2,0(0.75 + 0.25α) D1,0􏼐 􏼑
10

, D2,0(1.125 − 0.125α) D1,0􏼐 􏼑
10

􏼔 􏼕, 0≤ α≤ 1,
(52)

for t ∈ [1, 2]. 3.6. Exact Solution. Te exact solution of (36) satisfes

y
H

(t; α) � y
H

(1; α)
π cos(πt) + sin(πt)

π2
+ 1

+ e
t− 1 1 +

π
π2

+ 1
􏼠 􏼡􏼢 􏼣,

yH(t; α) � yH(1; α)
π cos(πt) + sin(πt)

π2
+ 1

+ e
t− 1 1 +

π
π2

+ 1
􏼠 􏼡􏼢 􏼣.

(53)
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Figure 4: Approximate solution by sixth-order RK-Huta method (for h� 0.1) in Example 2.

Table 6: Approximate solutions by RK–Butcher and RK-Huta in Example 2.

α
Sixth-order RK–Butcher method Sixth-order RK-Huta method

y
H

(ti; α) yH(ti; α) y
H

(ti; α) yH(ti; α)

0 7.73275073110805 11.5991260966621 7.73275073776977 11.5991261066547
0.1 7.99050908881165 11.4702469178103 7.99050909569543 11.4702469276918
0.2 8.24826744651526 11.3413677389585 8.24826745362109 11.3413677487290
0.3 8.50602580421886 11.2124885601067 8.50602581154675 11.2124885697662
0.4 8.76378416192246 11.0836093812549 8.76378416947241 11.0836093908033
0.5 9.02154251962606 10.9547302024031 9.02154252739807 10.9547302118405
0.6 9.27930087732966 10.8258510235513 9.27930088532373 10.8258510328777
0.7 9.53705923503326 10.6969718446995 9.53705924324938 10.6969718539149
0.8 9.79481759273686 10.5680926658477 9.79481760117504 10.5680926749520
0.9 10.0525759504405 10.4392134869959 10.0525759591007 10.4392134959892
1.0 10.3103343081441 10.3103343081441 10.3103343170264 10.3103343170264

Table 7: Exact solution in Example 2.

α
Exact solution

YH(ti; α) Yh(ti; α)

0 7.73275073803317 11.5991261070497
0.1 7.99050909596760 11.4702469280825
0.2 8.24826745390204 11.3413677491153
0.3 8.50602581183648 11.2124885701481
0.4 8.76378416977092 11.0836093911809
0.5 9.02154252770536 10.9547302122137
0.6 9.27930088563980 10.8258510332464
0.7 9.53705924357424 10.6969718542792
0.8 9.79481760150867 10.5680926753120
0.9 10.0525759594431 10.4392134963448
1.0 10.3103343173776 10.3103343173776

Table 8: Error in sixth-order RK-Butcher method and sixth-order RK-Huta method in Example 2.

α
Sixth-order RK–Butcher method Sixth-order RK-Huta method

YH(ti; α) YH(ti; α) YH(ti; α) Yh(ti; α)

0 6.92512 × 10− 9 1.03876 × 10− 8 2.63400 × 10− 10 3.95001 × 10− 10

0.1 7.15595 × 10− 9 1.02722 × 10− 8 2.72171 × 10− 10 3.90699 × 10− 10

0.2 7.38678 × 10− 9 1.01568 × 10− 8 2.80950 × 10− 10 3.86299 × 10− 10

0.3 7.61762 × 10− 9 1.00414 × 10− 8 2.89729 × 10− 10 3.81910 × 10− 10
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Table 8: Continued.

α
Sixth-order RK–Butcher method Sixth-order RK-Huta method

YH(ti; α) YH(ti; α) YH(ti; α) Yh(ti; α)

0.4 7.84846 × 10− 9 9.92600 × 10− 9 2.98510 × 10− 10 3.77600 × 10− 10

0.5 8.07930 × 10− 9 9.81060 × 10− 9 3.07290 × 10− 10 3.73200 × 10− 10

0.6 8.31014 × 10− 9 9.69510 × 10− 9 3.16071 × 10− 10 3.68699 × 10− 10

0.7 8.54098 × 10− 9 9.57970 × 10− 9 3.24858 × 10− 10 3.64300 × 10− 10

0.8 8.77181 × 10− 9 9.46430 × 10− 9 3.33630 × 10− 10 3.60000 × 10− 10

0.9 9.00260 × 10− 9 9.34890 × 10− 9 3.42400 × 10− 10 3.55600 × 10− 10

1.0 9.23350 × 10− 9 9.23350 × 10− 9 3.51200 × 10− 10 3.51200 × 10− 10
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Figure 5: Comparison of approximate solution with exact solution (for h� 0.1) in Example 2.
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Terefore,

y(1; α) � [(0.75 + 0.25α)e, (1.125 − 0.125α)e],

y(2; α) �
π

π2
+ 1

+ e 1 +
π

π2
+ 1

􏼠 􏼡􏼠 􏼡y(1; α).

(54)

Ten, y(2.0; 1) is nearly approximate to
10.310334317377553, whereas y1(2.0; 1) is nearly approxi-
mate to 10.310334317026362. Te approximate solution by
RK-Huta is plotted at t ∈ [0, 2], α ∈ [0, 1] (see Figure 4), and
the error analysis has also been shown (see Table 6). Te
comparison of approximately obtained solutions by sixth
order methods and exact solutions are plotted at
t � 2, α ∈ [0, 1] (see Tables 7 and 8 and Figure 5).

4. Conclusion

We can show our conclusion simply via the fow chart in
Figure 6.

For clarifying the readers about convergence of numerical
results, we stated the theorem by means of consistency. We
solved famous-two problems of fuzzy hybrid systems and found
numerical solution by sixth order eight stage RK-Huta method
and sixth order seven stage RK–Butcher method and gener-
alized them for both the problems by which the future readers
can extend the numerical solution to next stage even without
solving the problem. Comparison of solutions shows that sixth
order RK-Huta method gives better results than sixth order
RK–Butcher method for solving any fuzzy hybrid diferential
equations by the application of error analysis study (see Tables 3
and Table 6). As a part of our study, we are also arriving at the
following results:

(1) When comparing two numerical methods of dif-
ferent order, the higher order will give better ac-
curacy. For example, fourth order Runge–Kutta
method will give better accuracy of approximation
than Euler method.

(2) When comparing two numerical methods of same
order, the higher stage will give better accuracy. Te
result was obtained by our research in this paper as we
had shown sixth order 8 stage method (RK-Huta
method) gives better accuracy than sixth order 7 stage
method (RK–Butcher method) in numerical solutions.

(3) Previously many authors did their work on fuzzy
hybrid systems found big errors in accuracy [16–21].
Tese errors are highly reduced by the above-given
two sixth-order methods.

(4) As far as the numerical solution is concerned, these
two methods are better than any other existing
numerical methods, in fact RK-Huta of order 6-stage
8 is still best from our study but the thingmay change
when compare them with approximate analytical
methods which will be our future work.
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Te main objective of this article is to propose two novel parallel methods for solving common variational inclusion and common
fxed point problems in a real Hilbert space. Strong convergence theorems of both methods are established by allowing for some
mild conditions. Moreover, numerical studies of the signal recovery problem consisting of various blurred flters demonstrate the
computational behavior of the proposed methods and other existing methods.

1. Introduction

Troughout this article, a real Hilbert space is denoted byH
with inner product 〈·, ·〉 and associated norm ‖·‖. It is defned
that [K] :� 1, 2, . . . , K{ } is the index set for any positive
integer K. Let R and N be the sets of real numbers and
nonnegative integers, respectively. Te problem of identi-
fying a point v ∈H such that

0 ∈ Fi + Gi( 􏼁v, (1)

is called the common variational inclusion problem (CVIP),
where Fi: H⟶H is a single valued mapping and
Gi: H⟶2H is a multivalued mapping for all i ∈ [K]. If
[K] � 1{ }, then the CVIP (1) becomes the variational in-
clusion problem (VIP). Te VIP is widely acknowledged as
a fundamental aspect of nonlinear analysis, and it plays
a pivotal role in numerous mathematical models, such as

composite minimization problems, variational inequality
problems, split feasibility problems, and convex pro-
gramming. Its broad range of applications extends to various
areas, including machine learning, signal and image re-
covery, and beyond (see [1–7]). To solve the VIP, several
splitting algorithms have been created and refned; one of the
most prominent splitting algorithms is the forward-
backward splitting method (see [8, 9] for more in-
formation). Chen and Rockafellar [10] used this method in
1997 to obtain a weak convergence result. Later, Tseng [11]
created a modifcation of the forward-backward splitting
method, known as the forward-backward-forward method
or Tseng’s method. Tis approach makes use of an adaptive
line-search rule and relaxes the assumptions of [10] in order
to prove weak convergence. In 1964, Polyak [12] introduced
the inertial extrapolation technique as a means to expedite
the convergence of iterative algorithms, commonly known
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as the heavy ball method. Tis powerful optimization al-
gorithm has since demonstrated its efcacy in accelerating
the rate of convergence of the classical gradient descent
method and found applications in various felds, such as
machine learning, computer vision, and control theory.
Padcharoen et al. [13] recently presented a splitting method
for solving the VIP inH, which was developed from Tseng’s
method with the inertial extrapolation technique. Weak
convergence of this method was established under usual
assumptions.Tis method also solved the problems of image
deblurring and image recovery. Some recent results for the
VIP and related problems are stated in the studies of [14–25].
In order to solve the VIP when both the operators are
multivalued maximal monotone mappings, two of the most
often used splitting algorithms include the Peace-
man–Rachford splitting algorithm [26] and the Dou-
glas–Rachford splitting algorithm [27]. Tese splitting
algorithms have been extensively studied, see [28–30].

In many practical situations, it is necessary to identify
a solution that satisfes multiple constraints. Such con-
straints can be expressed in terms of a nonlinear functional
model. In this paper, our focus is on the investigation of
common variational inclusion and common fxed point
problems. Te motivation for this study arises from their
potential utility in addressing real-world challenges, such as
signal and image recovery problems, wherein a diverse set of
blur flters may be present, see [31, 32]. Furthermore, in
Section 4, we demonstrate the applicability of our proposed
method in solving signal recovery problems using a variety
of blurred flters. Tis problem consists of fnding a point
x ∈H such that

0 ∈ Fi + Gi( 􏼁x andx � Six, (2)

where Gi: H⟶2H is a multivalued mapping and Fi, Si are
single valued mappings on H for all i ∈ [K]. Suantai et al.
[31] proposed a parallel algorithm based on the shrinking
projection method of a fnite family of G-nonexpansive
mappings in H with directed graphs to identify a common
fxed point. Tis approach has been applied to solve signal
recovery problems in scenarios where the noise type is
unknown. Similarly, Suparatulatorn and Chaichana [32]
investigated the problem of image recovery using CVIP (1)
as the mathematical model, specifcally for multiple blurred
flters. Chang et al. [33] introduced an algorithm based on
the viscosity approximating scheme to obtain strong con-
vergence for solving CVIP in a uniformly convex and
q-uniformly smooth Banach space. In a recent study,
Mouktonglang et al. [34] proposed a parallel algorithm that
utilizes the inertial Mann iteration process to demonstrate
a weak convergence result for solving problem (2) subject to
certain control conditions in H. Numerous intriguing
fndings have been reported in the literature concerning
problem (2) and related problems. For further details, see
[35–39].

Motivated by these results, we develop two parallel al-
gorithms based on Tseng’s method, the viscosity approxi-
mating scheme, and the inertial extrapolation technique for
solving the problem (2) inH. Strong convergence results of

the proposed methods are provided under standard and
mild conditions. As applications, we apply our algorithms in
order to solve the signal recovery problem using a variety of
blurred flters.

2. Preliminaries

We refer to⇀ and⟶, respectively, as weak and strong
convergence. We then gather the defnitions and lemmas re-
quired to support our key results. Let C be a nonempty, closed,
and convex subset of a real Hilbert space H. Te metric pro-
jection PC fromH onto C is defned by the following equation:

PCz ≔ argmin
w∈C

‖z − w‖, (3)

for all z ∈H. From this defnition, it follows that

〈z − PCz, w − PCz〉 ≤ 0, (4)

for any z ∈H and w ∈ C. It is important to mention that the
following equalities and inequality hold true in inner
product spaces. Assume z, w ∈H,

‖z + w‖
2

� ‖z‖
2

+ 2〈z, w〉 +‖w‖
2
, (5)

‖z + w‖
2 ≤ ‖z‖

2
+ 2〈w, z + w〉, (6)

‖az +(1 − a)w‖
2

� a‖z‖
2

+(1 − a)‖w‖
2
− a(1 − a)‖z − w‖

2
,

(7)

for any a ∈ R. Assume that G: H⟶2H is a multivalued
mapping and S: H⟶H is a self-mapping.

Defnition 1. S is considered to be

(i) L-Lipschitz continuous if there is L> 0 such that
for all z, w ∈H,

‖Sz − Sw‖≤L‖z − w‖. (8)

(ii) nonexpansive if S is 1-Lipschitz continuous,
(iii) μ-demicontractive [40, 41] if Fix(S)≠∅ and there is
µ μ ∈ (0, 1) such that for all p ∈ Fix(S) and all
z ∈H,

‖Sz − p‖
2 ≤ ‖z − p‖

2
+ μ‖z − Sz‖

2
. (9)

Defnition 2. G is considered to be

(i) monotone if for all (x, z), (y, w) ∈ graph(G) (the
graph of mapping G), 〈z − w, x − y〉≥ 0,

(ii) maximal monotone if for every (x, z) ∈H × H,
〈z − w, x − y〉≥ 0 for all (y, w) ∈ graph(G) if and
only if (x, z) ∈ graph(G).

Defnition 3 (See [42]). Suppose that Fix(S)≠∅. Ten, I − S

is considered to be demiclosed at zero if for any vk􏼈 􏼉 ⊂H,
the following statement is valid:

(I − S)vk⟶0 and vk⇀v⟹ v∈ Fix(S). (10)
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Lemma 4 (See [43]). S + G is maximal monotone mapping,
where S is a Lipschitz continuous and monotone mapping,
and G is a maximal monotone mapping.

Lemma 5 (See [44]). Let G be a maximal monotone map-
ping. If Tc :� (I + cG)− 1(I − cS) and c> 0, then
Fix(Tc) � (S + G)− 1(0).

Lemma 6 (See [45]). Suppose that S is a μ-demicontractive
mapping with Fix(S)≠∅ and let Sα � αI + (1 − α)S, where
α ∈ (μ, 1). Ten ‖Sλz − p‖2 ≤ ‖z − p‖2 − (1 − α)(α − μ)

‖Sz − z‖2 for all p ∈ Fix(S) and all z ∈H.

Lemma 7 (See [46]). Let bk􏼈 􏼉 denote a sequence of real
numbers such that lim supk⟶∞bk ≤ 0, and let ak􏼈 􏼉 and ck􏼈 􏼉 be
nonnegative sequences of real numbers such that 􏽐

∞
k�1ck <∞.

If for any k ∈ N such that

ak+1 ≤ 1 − ck( 􏼁ak + ckbk + ck, (11)

where ck􏼈 􏼉 is a sequence in (0, 1) such that 􏽐
∞
k�1ck �∞, then

limk⟶∞ak � 0.

Lemma 8. (See [47]) Let Γk􏼈 􏼉 denote a sequence of real

numbers such that there exists a subsequence Γkq
􏼚 􏼛

q∈N
of Γk􏼈 􏼉

satisfying Γkq
< Γkq+1 for all q ∈ N. Suppose ψ(k)􏼈 􏼉k≥k∗ is

a sequence of integers defned by

ψ(k) ≔ max n≤ k: Γn <Γn+1􏼈 􏼉. (12)

Ten, ψ(k)􏼈 􏼉k≥k∗ is a nondecreasing sequence such that
limk⟶∞ψ(k) �∞, and for all k≥ k∗, we have that
Γψ(k) ≤Γψ(k)+1 and Γk ≤Γψ(k)+1.

3. Convergence Analysis

Tis section aims at presenting Algorithms 1 and 2 for
coping with the problem (2). Let us begin by introducing
some assumptions that will be required for the ensuing
convergence analysis, for all i ∈ [K].

Assumption 9. Fi: H⟶H isLi-Lipschitz continuous and
monotone mapping.

Assumption 10. Gi: H⟶2H is maximal monotone
mapping.

Assumption 11. Si: H⟶H is μi-demicontractive map-
ping and ϕ: H⟶R is a diferentiable function.

Assumption 12. Ψ: � ∩ i∈[K](Fi + Gi)
− 1(0)∩ ∩ i∈[K]Fix(Si)

is nonempty.

Assumption 13. θk􏼈 􏼉 ⊂ (0, 1), ξk􏼈 􏼉 ⊂ (0,∞) and
αi

k􏼈 􏼉 ⊂ (μi, αi) ⊂ (0, 1), for some αi > 0.

Assumption 14. τi
k􏼈 􏼉 ⊂ [τi, τi] ⊂ (0, 1/Li), for some

τi, τi > 0.

Assumption 15. I − Si is demiclosed at zero.

Assumption 16. limk⟶∞θk � limk⟶∞ ξk/θk‖vk − vk− 1‖ �

0, 􏽐
∞
k�1θk �∞ and Φ: � ∇ϕ is contraction with constant

ρ ∈ (0, 1), where vk􏼈 􏼉 is defned in Algorithms 1 and 2.

Lemma 17. Let Si: H⟶H be a mapping and
Fi: H⟶H be a Li-Lipschitz continuous mapping for all
i ∈ [K]. If Assumption 10 holds, τi

k > 0 and ρk � hi
k � Sij

i
k for

all i ∈ [K] in Algorithms 1, then ρk ∈ Ψ.

Proof. From ρk � hi
k, we have that, for all i ∈ [K],

ρk � I + τi
kGi􏼐 􏼑

− 1
I − τi

kFi􏼐 􏼑ρk. (13)

Using Lemma 5, we get that ρk ∈ ∩ i∈[K](Fi + Gi)
− 1(0).

Because of the Lipschitz condition of Fi, it is evident that, for
all i ∈ [K],

h
i
k − j

i
k

����
����≤ τi

kLi ρk − h
i
k

����
����. (14)

Since τi
kLi > 0 and ρk � hi

k, it follows that hi
k � ji

k and so
ρk � hi

k � ji
k � Sij

i
k for all i ∈ [K]. Tat is,

ρk ∈ ∩ i∈[K]Fix(Si). Terefore, ρk ∈ Ψ. □

Lemma 18. Assume that Assumptions 9–14 are satisfed.
Ten, we have

u
i
k − v

����
����
2

+ 1 − αi
k􏼐 􏼑 αi

k − μi􏼐 􏼑 Sij
i
k − j

i
k

����
����
2

+ 1 − τiLi( 􏼁
2

􏽨 􏽩 ρk − h
i
k

����
����
2
≤ ρk − v

����
����
2
, (15)

j
i
k − ρk

����
����≤ 1 + τiLi( 􏼁 ρk − h

i
k

����
����, (16)
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for all v ∈ Ψ and i ∈ [K]. Proof. Let v ∈ Ψ. Using (5) with the conditions of τi
k and Fi,

it follows that, for all i ∈ [K],

j
i
k − v

����
����
2

� h
i
k − v

����
����
2

− 2τi
k〈h

i
k − v, Fih

i
k − Fiρk〉 + τi

k􏼐 􏼑
2

Fih
i
k − Fiρk

����
����
2

� h
i
k − ρk

����
����
2

− 2〈hi
k − ρk, h

i
k − ρk〉 + 2〈hi

k − ρk, h
i
k − v〉 + ρk − v

����
����
2

− 2τi
k〈h

i
k − v, Fih

i
k − Fiρk〉 + τiLi( 􏼁

2
h

i
k − ρk

����
����
2

≤ ρk − v
����

����
2

− 1 − τiLi( 􏼁
2

􏽨 􏽩 ρk − h
i
k

����
����
2

− 2〈hi
k − v, ρk − h

i
k − τi

k Fiρk − Fih
i
k􏼐 􏼑〉.

(17)

Te defnition of hi
k implies that for all i ∈ [K],

I − τi
kFi􏼐 􏼑ρk ∈ I + τi

kGi􏼐 􏼑h
i
k. (18)

Tis implies that there is gi
k ∈ Gih

i
k such that

g
i
k �

1
τi

k

ρk − h
i
k − τi

kFiρk􏼐 􏼑, (19)

for all i ∈ [K]. Te maximally monotonic nature of Fi + Gi

leads us to the conclusion that for all i ∈ [K],

〈Fih
i
k + g

i
k, h

i
k − v〉 ≥ 0, (20)

implying that for all i ∈ [K],

〈hi
k − v, ρk − h

i
k − τi

k Fiρk − Fih
i
k􏼐 􏼑〉 ≥ 0. (21)

Tis combined with (17) yields that for all i ∈ [K],

j
i
k − v

����
����
2
≤ ρk − v

����
����
2

− 1 − τiLi( 􏼁
2

􏽨 􏽩 ρk − h
i
k

����
����
2
. (22)

Tis follows from Lemma 6 that for all i ∈ [K],

u
i
k − v

����
����
2
≤ j

i
k − v

����
����
2

− 1 − αi
k􏼐 􏼑 αi

k − μi􏼐 􏼑 Sij
i
k − j

i
k

����
����
2

≤ ρk − v
����

����
2

− 1 − τiLi( 􏼁
2

􏽨 􏽩 ρk − h
i
k

����
2

− 1 − αi
k􏼐 􏼑 αi

k − μi􏼐 􏼑
�����

�����Sij
i
k − j

i
k

�����
2
.

(23)

Furthermore, using the inequality (14) with the condi-
tion of τi

k and triangle inequality, we derive that inequality
(16) is true. □

Lemma 19. Assume that Assumptions 9–15 hold. If there is
a subsequence ρkm

􏽮 􏽯 of ρk􏼈 􏼉 such that ρkm
⇀ r∈H and

limm⟶∞‖ρkm
− hi

km
‖ � limm⟶∞‖Sij

i
km

− ji
km

‖ � 0 for all
i ∈ [K]. Ten, r∈ Ψ.

Proof. Applying the inequality (16) with
limm⟶∞‖ρkm

− hi
km

‖ � 0 for all i ∈ [K], we get that
limm⟶∞‖ρkm

− ji
km

‖ � 0 for all i ∈ [K]. It follows that
ji

km
⇀ r for all i ∈ [K], which together with limm⟶∞‖Sij

i
km

−

ji
km

‖ � 0 and Assumption 15 indicates that r∈ ∩ i∈[K]Fix(Si).
Next, we exhibit r∈ ∩ i∈[K](Fi + Gi)

− 1(0). For all i ∈ [K], let
(vi, ui) ∈ graph(Fi + Gi) be equivalent to ui − Fivi ∈ Givi.
Tis implies, based on the defnition of hi

k, that 1/τ
i
km

(ρkm
−

Initialization: Select arbitrary elements v0, v1 ∈H and set k :� 1.
Iterative Steps: Create vk􏼈 􏼉 through the following process:
Step 1. Set
ρk � vk + θk(Φ(vk) − vk) + ξk(vk − vk− 1)

and calculate, for all i ∈ [K],
hi

k � (I + τi
kGi)

− 1(I − τi
kFi)ρk.

Step 2. Compute, for all i ∈ [K],
ji

k � hi
k − τi

k(Fih
i
k − Fiρk) andui

k � Sij
i
k − αi

k(Sij
i
k − ji

k).

If ρk � hi
k � Sij

i
k for all i ∈ [K], then stop and ρk ∈ Ψ. Otherwise, go to Step 3.

Step 3. Evaluate
vk+1 � argmax ‖ui

k − ρk‖: i ∈ [K]􏼈 􏼉.

Replace k by k + 1 and go back to Step 1.

ALGORITHM 1: Inertial Tseng Mann parallel algorithm 1.
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hi
km

− τi
km

Fiρkm
) ∈ Gih

i
km

for all i ∈ [K]. By the maximal
monotonicity of Gi, we have that, for all i ∈ [K],

〈vi − h
i
km

, ui − Fivi −
1
τi

km

ρkm
− h

i
km

− τi
km

Fiρkm
􏼐 􏼑〉≥ 0.

(24)

So, for all i ∈ [K],

〈vi − h
i
km

, ui〉 ≥ 〈vi − h
i
km

, Fivi +
1
τi

km

ρkm
− h

i
km

− τi
km

Fiρkm
􏼐 􏼑〉

�〈vi − h
i
km

, Fivi − Fih
i
km
〉 +〈vi − h

i
km

, Fih
i
km

− Fiρkm
〉

+
1
τi

km

〈vi − h
i
km

, ρkm
− h

i
km
〉

≥ 〈vi − h
i
km

, Fih
i
km

− Fiρkm
〉 +

1
τi

km

〈vi − h
i
km

, ρkm
− h

i
km
〉.

(25)

Tis can be deduced from the Lipschitz continuity of Fi,
limm⟶∞‖ρkm

− hi
km

‖ � 0 and τi
km
∈ [τi, τi] that

〈vi − r, ui〉 � lim
m⟶∞
〈vi − h

i
km

, ui〉 ≥ 0, (26)

For all i ∈ [K], when considered together with the
maximal monotonicity of Fi + Gi, leads to the conclusion
that 0 ∈ (Fi + Gi)r for all i ∈ [K], is equivalent to
r∈ ∩ i∈[K](Fi + Gi)

− 1(0). As a result, r ∈ Ψ. □

Theorem 2 . If Assumptions 9–16 hold, then the sequence
vk􏼈 􏼉 generated by Algorithms 1 converges strongly to
υ :� (PΨ ∘Φ)υ.

Proof. Let p ∈ Ψ. From limk⟶∞ξk/θk‖vk − vk− 1‖ � 0, we
obtain the following equation:

ξk vk − vk− 1
����

����≤ θkR1, (27)

for some R1 > 0. Since Φ is contraction with constant ρ ∈ [0,
1) and using (27), we have to compute the following
expression:

ρk − p
����

���� � vk + θk Φ vk( 􏼁 − vk( 􏼁 + ξk vk − vk− 1( 􏼁 − p
����

����

≤ θk Φ vk( 􏼁 − p
����

���� + 1 − θk( 􏼁 vk − p
����

���� + ξk vk − vk− 1
����

����

≤ θk Φ vk( 􏼁 − Φ(p)
����

���� + θk ‖Φ(p) − p‖ + R1( 􏼁 + 1 − θk( 􏼁 vk − p
����

����

≤ 1 − ck( 􏼁 vk − p
����

���� + ckR2

≤max vk − p
����

����, R2􏽮 􏽯,

(28)

where ck � θk(1 − ρ) and R2 � ‖Φ(p) − p‖ + R1/1 − ρ. Us-
ing the inequality (15) with the defnition of vk+1 and As-
sumptions 13 and 14 implies that

vk+1 − p
����

����≤ ρk − p
����

����. (29)

Terefore, we can conclude that
‖vk+1 − p‖≤max ‖vk − p‖, R2􏼈 􏼉 for any k ∈ N. Consequently,
vk􏼈 􏼉 is bounded sequence. Moreover, the sequence Φ(vk)􏼈 􏼉

is bounded. Since the set Ψ is nonempty, closed and convex,
there is a unique υ ∈ Ψ such that υ � (PΨ ∘Φ)υ. By (4), we
also get that for any y ∈ Ψ,

〈Φ(υ) − υ, y − υ〉≤ 0. (30)

Now, for each k ∈ N, set Ξk :� ‖vk − υ‖2. Applying (28),
we have the following equation:

ρk − υ
����

����
2 ≤ 1 − ck( 􏼁 vk − υ

����
���� + ckR2􏼐 􏼑

2

� 1 − ck( 􏼁
2Ξk + ck 2R2 1 − ck( 􏼁 vk − υ

����
���� + ckR

2
2􏼐 􏼑

≤Ξk + ckR3,

(31)

for some R3 > 0. Tis follows from (15) that
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1 − αi
k􏼐 􏼑 αi

k − μi􏼐 􏼑 Sij
i
k − j

i
k

����
����
2

+ 1 − τiLi( 􏼁
2

􏽨 􏽩 ρk − h
i
k

����
����
2
≤Ξk−

����u
i
k − υ

����
����
2

+ ckR3.

(32)

For all i ∈ [K]. It implies by (32) that there is ik ∈ [K]

such that

1 − αik
k􏼐 􏼑 αik

k − μik
􏼐 􏼑 Sik

j
ik
k − j

ik
k

�����

�����
2

+ 1 − τik
Lik

􏼐 􏼑
2

􏼔 􏼕 ρk − h
ik
k

�����

�����
2
≤Ξk − Ξk+1 + ckR3. (33)

□

Case 21. Assume that there exists an integer N ∈ N such that
Ξk+1 ≤Ξk for all k≥N. Tis together with the boundedness
of Ξk􏼈 􏼉, it is convergent. Since limk⟶∞ck � 0 and using
Assumptions 13 and 14, and by (33),

lim
k⟶∞

ρk − h
ik
k

�����

����� � lim
k⟶∞

Sik
j

ik
k − j

ik
k

�����

����� � 0. (34)

Tis combined with (16) yields that for all i ∈ [K],

vk+1 − ρk

����
����≤ vk+1 − j

ik
k

�����

����� + j
ik
k − ρk

�����

�����

≤ 1 − αik
k􏼐 􏼑 Sik

j
ik
k − j

ik
k

�����

����� + 1 + τik
Lik

􏼐 􏼑 ρk − h
ik
k

�����

�����⟶0 as k⟶∞.
(35)

Tis can be deduced from the defnition of vk+1 that

lim
k⟶∞

ρk − u
i
k

����
���� � 0, (36)

for all i ∈ [K]. Using (15) again, we have

1 − αi
k􏼐 􏼑 αi

k − μi􏼐 􏼑 Sij
i
k − j

i
k

����
����
2

+ 1 − τiLi( 􏼁
2

􏽨 􏽩 ρk − h
i
k

����
����
2
≤ ρk − υ

����
����
2

− u
i
k − υ

����
����
2

≤R4 ρk − u
i
k

����
����,

(37)

for all i ∈ [K] and for some R4 > 0. From the combination of
this with (35) using Assumptions 13 and 14, we can derive
that for all i ∈ [K],

lim
k⟶∞

ρk − h
i
k

����
���� � lim

k⟶∞
Sij

i
k − j

i
k

����
���� � 0. (38)

From the defnition of ρk, the inequality (27) and
limk⟶∞θk � 0, we have

ρk − vk

����
����≤ θk Φ vk( 􏼁 − vk

����
���� + ξk vk − vk− 1

����
����,

≤ θk Φ vk( 􏼁 − vk

����
���� + R1􏼐 􏼑⟶0 as n⟶∞.

(39)

Tis together with (35) implies that

lim
k⟶∞

vk+1 − vk

����
���� � 0. (40)

Initialization: Let v0, v1 ∈H, λi > 0 and τi
1 ∈ (0, 1/Li) for all i ∈ [K], and set k: � 1.

Iterative Steps: Create vk􏼈 􏼉 through the following process:
Step 1. Set
ρk � vk + θk(Φ(vk) − vk) + ξk(vk − vk− 1)

and calculate, for all i ∈ [K],
hi

k � (I + τi
kGi)

− 1(I − τi
kFi)ρk.

Step 2. Compute, for all i ∈ [K],
ji

k � hi
k − τi

k(Fih
i
k − Fiρk) and ui

k � Sij
i
k − αi

k(Sij
i
k − ji

k).

If ρk � hi
k � Sij

i
k for all i ∈ [K], then stop and ρk ∈ Ψ. Otherwise, go to Step 3.

Step 3. Evaluate
vk+1 � argmax ‖ui

k − ρk‖: i ∈ [K]􏼈 􏼉

and update, for all i ∈ [K],

τi
k+1 �

min (λi‖ρk − h
i
k‖/‖Fiρk − Fih

i
k‖), τi

k􏽮 􏽯, if Fiρk ≠Fih
i
k,

τi
k otherwise.

􏼨

Replace k by k + 1 and go back to Step 1.

ALGORITHM 2: Inertial Tseng Mann parallel algorithm 2.
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Moreover, because vk􏼈 􏼉 is bounded, there is r ∈H such
that vkm
⇀ r as m⟶∞ for some subsequence vkm

􏽮 􏽯 of vk􏼈 􏼉.
From (39), we get ρkm

⇀ r as m⟶∞. Ten using (38) with

Lemma 19 implies that r∈ Ψ. By (30), it is easy to dem-
onstrate that

lim sup
k⟶∞
〈Φ(υ) − υ, vk − υ〉 � lim

m⟶∞
〈Φ(υ) − υ, vkm

− υ〉 � 〈Φ(υ) − υ, r − υ〉≤ 0. (41)

Tus, we have by combining this with (40) that

lim sup
k⟶∞
〈Φ(υ) − υ, vk+1 − υ〉 ≤ lim sup

k⟶∞
〈Φ(υ) − υ, vk+1 − vk〉 + lim sup

k⟶∞
〈Φ(υ) − υ, vk − υ〉 ≤ 0. (42)

Hence, from the assumption on Φ, (6), (7) and (29), we
obtain

Ξk+1 ≤ ρk − υ
����

����
2

� θk Φ vk( 􏼁 − Φ(υ)( 􏼁 + 1 − θk( 􏼁 vk − υ( 􏼁 + ξk vk − vk− 1( 􏼁 + θk(Φ(υ) − υ)
����

����
2

≤ θk Φ vk( 􏼁 − Φ(υ)( 􏼁 + 1 − θk( 􏼁 vk − υ( 􏼁
����

����
2

+ 2〈ξk vk − vk− 1( 􏼁 + θk(Φ(υ) − υ), vk+1 − υ〉

≤ θk Φ vk( 􏼁 − Φ(υ)
����

����
2

+ 1 − θk( 􏼁Ξk + 2ξk〈vk − vk− 1, vk+1 − υ〉 + 2θk〈Φ(υ) − υ, vk+1 − υ〉

≤ θkρ
2Ξk + 1 − θk( 􏼁Ξk + 2ξk vk − vk− 1

����
���� vk+1 − υ
����

���� + 2θk〈Φ(υ) − υ, vk+1 − υ〉

≤ θkρΞk + 1 − θk( 􏼁Ξk + 2θk ·
ξk

θk

vk − vk− 1
����

���� vk+1 − υ
����

���� + 2θk〈Φ(υ) − υ, vk+1 − υ〉

≤ 1 − ck( 􏼁Ξk + ck R5
ξk

θk

vk − vk− 1
����

���� +
2

1 − ρ
〈Φ(υ) − υ, vk+1 − υ〉􏼢 􏼣,

(43)

for some R5 > 0. As a consequence of applying this to the
inequality (42) with Lemma 7, it can be inferred that
limk⟶∞Ξk � 0.

Case 22. We can fnd a subsequence Ξkq
􏼚 􏼛 of Ξk􏼈 􏼉 such that

Ξkq
<Ξkq+1 for all q ∈ N. Te inequality Ξψ(k) ≤Ξψ(k)+1 is

derived by applying Lemma 8, where ψ: N⟶N is defned
by (12), and k≥ k∗ for some k∗ ∈ N. By similar arguments as
in Case 21, we obtain that

lim
k⟶∞

ρψ(k) − h
i
ψ(k)

�����

����� � lim
k⟶∞

Sij
i
ψ(k) − j

i
ψ(k)

�����

����� � 0, (44)

for all i ∈ [K] and

lim sup
k⟶∞
〈Φ(υ) − υ, vψ(k)+1 − υ〉 ≤ 0. (45)

Finally, from Ξψ(k) ≤Ξψ(k)+1 and by (43), for all k≥ k∗, we
obtain

Ξψ(k)+1 ≤ 1 − cψ(k)􏼐 􏼑Ξψ(k)+1 + cψ(k) R5
ξψ(k)

θψ(k)

vψ(k) − vψ(k)− 1

�����

����� +
2

1 − ρ
〈Φ(υ) − υ, vψ(k)+1 − υ〉􏼢 􏼣. (46)

Some simple calculations yield
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Ξψ(k)+1 ≤R5
ξψ(k)

θψ(k)

vψ(k) − vψ(k)− 1

�����

����� +
2

1 − ρ
〈Φ(υ) − υ, vψ(k)+1 − υ〉. (47)

Tis implies that lim supk⟶∞Ξψ(k)+1 ≤ 0. Tus,
limk⟶∞Ξψ(k)+1 � 0. In addition, by Lemma 8,

lim
k⟶∞
Ξk ≤ lim

k⟶∞
Ξψ(k)+1 � 0. (48)

Terefore, it can be concluded that vk⟶υ as k⟶∞.

Theorem 23. Assume that Assum ptions 9–16 are satisfed.
Ten, the sequence vk􏼈 􏼉 generated by Algorithm 2 converges
strongly to υ: � (PΨ ∘Φ)υ.

Proof. Employing the same methodology as in the proof of
([48], Lemma 3.1.), we conclude that
τi

k􏼈 􏼉 ⊂ [min τi
1, λi/Li􏼈 􏼉, τi

1] ⊂ (0, 1/Li) for all i ∈ [K], that

is, Assumption 14 holds. Te rest is similar to the proof of
Teorem 20. □

4. Application to Signal Recovery Problem

Signal recovery is a fundamental challenge in diverse sci-
entifc and engineering domains, and recent developments
in signal recovery algorithms have resulted in substantial
enhancements in the accuracy and efcacy of signal pro-
cessing applications. Efcient signal recovery techniques are
critical for numerous tasks, such as image and audio
analysis, data compression, and communication systems.
Consequently, sustained research and development eforts
aimed at advancing signal recovery algorithms are

Measured values with SNR=40 by using A3
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Figure 1: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 100.

Table 1: Numerical comparison of four algorithms.

m nonzero elements
m � 100 m � 200 m � 300

Algorithm 2.2 Number of iterations 1183 1271 1326
CPU time (s) 10.0271 10.2887 10.7556

Algorithm 3 Number of iterations 381 433 481
CPU time (s) 6.3097 6.9989 7.5401

Algorithm 1 Number of iterations 159 180 198
CPU time (s) 3.9039 4.1992 4.5897

Algorithm 2 Number of iterations 169 193 212
CPU time (s) 4.1950 4.5258 4.9377

8 Journal of Mathematics
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Figure 3: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 300.
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Figure 2: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 200.
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imperative to further enhance the performance and capa-
bilities of these applications.

Te signal recovery problem involving diverse blurring
flters can be mathematically expressed as follows:

bi � Aix + εi, (49)

where bi ∈ RM is the observed signal with noise εi, x ∈ RN is
the original signal and Ai ∈ RM×N (M<N) is flter matrix
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Figure 5: From top to bottom: the reconstructed signals by four algorithms for m � 200.
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Figure 4: From top to bottom: the reconstructed signals by four algorithms for m � 100.
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Figure 7: Plots of Ek over iter when m � 100.
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Figure 6: From top to bottom: the reconstructed signals by four algorithms for m � 300.
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Table 2: Numerical results of Algorithms 1.

Inputs m nonzero elements
m � 50 m � 100 m � 150

A1
Number of iterations 2373 3143 4474

CPU time (s) 3.4571 4.4129 6.2303

A2
Number of iterations 2328 3407 4297

CPU time (s) 3.1495 4.8879 5.8837

A3
Number of iterations 2334 3162 4316

CPU time (s) 3.1203 4.2016 6.1732

A1, A2
Number of iterations 581 564 762

CPU time (s) 2.0524 1.9764 2.9730

A1, A3
Number of iterations 548 589 685

CPU time (s) 2.8591 2.0762 3.5921

A2, A3
Number of iterations 598 629 644

CPU time (s) 2.3680 2.1654 2.9194

A1, A2, A3
Number of iterations 138 145 154

CPU time (s) 0.8413 0.7845 0.8708
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Figure 9: Plots of Ek over iter when m � 300.
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Figure 8: Plots of Ek over iter when m � 200.
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Figure 10: From top to bottom: the original signal and the measurement by using A1, A2, and A3, respectively, with m � 50.
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Figure 16: Plots of Ek over iter when m � 50.
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for all i ∈ [K]. Subsequently, we direct our attention toward
the following problem:

min
x∈RN

1
2

‖A1x − b1‖
2
2 +‖x‖1,

min
x∈RN

1
2

‖A2x − b2‖
2
2 +‖x‖1,

min
x∈RN

1
2

‖A3x − b3‖
2
2 +‖x‖1,

⋮

min
x∈RN

1
2

‖AKx − bK‖
2
2 +‖x‖1,

(50)

for all i ∈ [K]. According to Proposition 3.1 (iii) presented in
[49], the problem at hand can be recast as problem (2)
through the following settings: H � RN,
Si(·) � proxζ i‖·‖1

(I − ζ i∇hi)(·), Gi(·) � z(‖ · ‖1) and Fi � ∇hi,
where ζ i > 0, hi(·) � 1/2‖Ai(·) − bi‖

2
2 for all i ∈ [K]. It is

known that Si is nonexpansive mapping for ζ i ∈ (0, 2/‖Ai‖
2
2)

and hence 0-demicontractive. Besides, Gi is maximal
monotonemapping, and Fi is monotone and ‖Ai‖

2
2-Lipschitz

continuous mapping.
In this part, we perform two numerical experiments to

present the computational efciency of Algorithms 1 and 2
for signal recovery problems consisting of various blurring
flters. All computations were performed using Matlab
R2021a on an iMac equipped with an Apple M1 chip and
16GB of RAM.Experiment (∗∗∗) During the frst experi-
ment, we provide the numerical comparison of Algorithms 1
and 2 with Algorithm of Corollary 2.2 in [31] (Algorithm
2.2) and Algorithm 3 in [50]. Select the signal size to be N �

4000 and M � 2000. Set the original signal x is generated by
the uniform distribution in [− 2, 2] with m nonzero elements

and Ai be the Gaussian matrix generated by command
randn(M, N). Let the observation bi be generated by white
Gaussian noise with signal-to-noise ratio SNR� 40, the
initial points be the vectors generated randomly and ζ i �

1/‖Ai‖
2
2 for all i ∈ 1, 2, 3{ }. Measuring the accuracy of the

restoration using the mean-squared error, which is defned
as: Ek � 1/N‖vk − x‖22 < 5 × 10− 5.Te control parameters are
defned in the following manner:

(i) Algorithm 2.2: αn
i � 0.5;

(ii) Algorithm 3: λi � 0.5,φ(·) � 0.9(·), ci
1 � 9/10 ‖Ai‖

2
2,

ak � 1/k + 1, bk � 99k/100(k + 1) and ξk �

min 1/(k + 1)
1.1 max ‖uk − uk− 1‖2, ‖uk − uk− 1‖

2
2􏽮 􏽯, 0.25􏽮 􏽯 if uk ≠ uk− 1;

0.25 otherwise;
􏼚

(iii) Algorithm 1: αi
k � 0.25,Φ(·) � 0.9(·), τi

k � 9/10
‖Ai‖

2
2, θk � 1/k + 1 and ξk �

min 1/(k + 1)
1.1 max ‖vk − vk− 1‖2, ‖vk − vk− 1‖

2
2􏽮 􏽯, 0.25􏽮 􏽯 if vk ≠ vk− 1;

0.25 otherwise;
􏼚

(iv) Algorithm 2: λi � 0.5, αi
k � 0.25,Φ(·) � 0.9(·), τi

1 �

9/10‖Ai‖
2
2, θk � 1/k + 1 and ξk �

min 1/(k + 1)
1.1 max ‖vk − vk− 1‖2, ‖vk − vk− 1‖

2
2􏽮 􏽯, 0.25􏽮 􏽯 if vk ≠ vk− 1;

0.25 otherwise;
􏼚

Te following results are shown.
Te numerical results of Experiment (∗∗∗) clearly

demonstrate that both proposed algorithms are more ef-
fective than the two previous algorithms, as indicated in
Table 1 and Figures 1–9.

Experiment 24. In the second experiment, we present the
numerical results obtained via Algorithm 1 for solving
problem (4.1) with multiple inputs Ai.Te signal size is set to
be N � 2000 and M � 1000, with the original signal x being
generated via a uniform distribution over the interval
[− 2, 2], featuring m nonzero elements. Te matrices Ai are
Gaussian matrices generated using the command
randn(M, N). For i ∈ 1, 2, 3{ }, the observations bi are gen-
erated via the addition of white Gaussian noise εi with
variance σ2i , with initial points being randomly generated
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Figure 18: Plots of Ek over iter when m � 150.
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and ζ i � 1/‖Ai‖
2
2. Measuring the accuracy of the restoration

using the mean-squared error, which is defned as follows:
Ek � 1/N‖vk − x‖22 < 5 × 10− 5. For Algorithm 1, let
σi � 0.01(i), αi

k � 0.25,Φ(·) � 0.9(·), τi
k � 9/10‖Ai‖

2
2, θk � 1/

k + 1 and ξk � min 1/(k + 1)
1.1 max ‖vk − vk− 1‖2,􏼈􏽮􏽮

‖vk − vk− 1‖
2
2}, 0.25}if vk ≠ vk− 1; 0.25otherwise; Te ensuing

section depicts the results.
Based on the numerical results obtained from Experi-

ment 24, it is evident that incorporating all three Gaussian
matrices (A1, A2, and A3) into Algorithm 1 leads to more
efective outcomes in terms of time and number of itera-
tions, as compared to the usage of only one or two of the
matrices. Tese results are presented in Table 2 and
Figures 10–18.

5. Conclusions

In this research, we obtain strong convergence results for
common variational inclusion and common fxed point
problems using two new parallel methods. Our results ex-
tend and generalize several previously published fndings,
and the numerical results indicate that our suggested ap-
proaches to the signal recovery problem including multiple
blurring flters outperform the two preceding approaches.
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Te plant-pollinator model is a common model widely researched by scholars in population dynamics. In fact, its complex
dynamical behaviors are universally and simply expressed as a class of delay diferential-diference equations. In this paper, based
on several early plant-pollinator models, we consider a plant-pollinator model with two combined delays to further describe the
mutual constraints between the two populations under diferent time delays and qualitatively analyze its stability and Hopf
bifurcation. Specifcally, by selecting diferent combinations of two delays as branch parameters and analyzing in detail the
distribution of roots of the corresponding characteristic transcendental equation, we investigate the local stability of the positive
equilibrium point of equations, derive the sufcient conditions of asymptotic stability, and demonstrate the Hopf bifurcation for
the system. Under the condition that two delays are not equal, some explicit formulas for determining the direction of Hopf
bifurcation and some conditions for the stability of periodic solutions of bifurcation are obtained for delay diferential equations
by using the theory of norm form and the theorem of center manifold. In the end, some examples are presented and corresponding
computer numerical simulations are taken to demonstrate and support efectiveness of our theoretical predictions.

1. Introduction

It is estimated that there are about 3,50,000 plant species in
the nature world, which are classifed as seed plants,
bryophytes, ferns, and algae. Until 2004, almost certainly
over 2,87,655 species had been identifed, including 2,58,650
fowering plants, 16,000 bryophytes, 11,000 ferns, and 8000
green algae. Obviously, the fowering plants, accounting for
about 90%, make up the majority of the identifed plants. It
indicated that most of fowering plants rely on some certain
medium to transmit pollen, and 90% of medium are animals,
especially insects, except for a few by wind and water.
Terefore, the research on the interaction between plants
and pollinators has important application value in bio-
diversity conservation and agriculture.

Pollinators are an important part of the ecosystem; their
species composition, quantity change, and pollination ob-
jects directly or indirectly refect the ecological environment
and its development trend. In addition, they also provide
important ecological services for the ecosystem, which plays
an important role in maintaining the dynamic balance and

relative stability of the ecosystem. Te plant pollinator
population system, as an important branch of population
ecology, has been a hot issue in the feld of biomathematics
for half a century. Discussing about the dynamic charac-
teristics between plants and pollinators has real signifcance
in biodiversity conservation, species origin and formation
mechanism, and agricultural production. It suggested that
the species categories and ecological evolution processes of
organisms are diverse. Tere are complex interactive re-
lationships between plants and pollinators, including reci-
procity, hostility, and defense that are generally expressed by
diferential equation models.

It is a hot topic on the plant-pollinator population dy-
namics for a half century. As early as 1976, considering about
saturation efects of the benefts that the plant derives from
the pollinator, May proposed a model of an obligate re-
lationship between a plant and its pollinator and discussed
the curvilinear isoclines with stabilizing efect [1, 2]. In 1981,
Soberon et al. presented a mathematical model describing
the dynamics of the plant-pollinator dynamical interaction
with function response. Tey mainly considered the efects
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of two parameters on the stability of their system, including
the nectar reward provided by plants to pollinators and the
specifcity of pollinators to plants [3]. In 1955, Lundberg and
Ingvarsson [4] generalized an earlier model of the in-
teractions between plants and pollinators and analyzed the
equilibrium points of the system. It showed that there is
a threshold standard in the system, which would not last
long when it is lower than the standard, and the impact of the
existence of the threshold standard on the persistence of
plants was further discussed.

After then, some dynamic models of three population
interactions appeared, such as the herbivore-plant-
pollinator interactions proposed by Jang [5] and the plant-
pollinator-robber system raised by Wang et al. [6, 7]. In [5],
by analyzing the parameter energy reward and the specifcity
of pollinators to plants, Jang et al. considered the efect of
herbivores on the pollinator’s fower visiting rate and further
discussed the possible mechanism of herbivores accompa-
nying pollinators to increase the pollinator’s fower visiting
rate. Te results showed that this mechanism could promote
the persistence of the interaction between the three pop-
ulations. Te literature [6, 7] focused on the factors that led
to the widespread occurrence and stability of interaction by
analyzing the mathematical model of plant-pollinator-
robber coexistence and dynamic properties by using the
relevant theory of the dynamic system. Fishman and Hadany
formulated and discussed a multigeneration population
dynamics model for plants’ interaction with central place
pollinators [8]. In [9], Wang et al. investigated a plant-
pollinator model with difusion and analyzed the uniqueness
and stability of positive steady state solution by using the
regular perturbation theorem and the monotone dynamical
system theory. However, in these existing mathematical
models, most researchers did not consider the time delay
factor. Due to its inevitability and importance, the infuence
of time delay on dynamic behavior has been adequately
considered in somemodels, such as the predator-prey model
[10–14], the competition and cooperation model of two
enterprises [15–19], the neuron network model [20–22], the
competition model of internet [23, 24], the chemical re-
action model [25, 26], and the epidemic model [27–31]. Te
introduction of the delay factor can more accurately refect
the objective facts and development laws of things. Tere-
fore, most of the scholars tend to be more interested in
analyzing the delay diferential system when analyzing the
diferential equation model.

In [7], Wang et al. derived a classical plant-pollinator
model.

dN1

dt
� r1N1 +

α12N1N2

1 + aN1 + bN2
− β1N1N2 − d1N1

2
,

dN2

dt
�

α21N1N2

1 + aN1 + bN2
− d2N2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where a, b, r1, β1, d1, d2, α12, and α21 are the positive
constants. N1(t) denotes the population densities of plants,

N2(t) denotes the population densities of pollinators, r1
represents the intrinsic growth rate of plants, d1 is the self-
incompatible degree, a is the efective equilibrium constant
for plant-pollinator interactions, b is the intensity of ex-
ploitation competition among pollinators, α12 represents the
plants efciency in translation plant-pollinator interactions
into ftness, α21 is the corresponding value for the polli-
nators, β1 denotes the per-capita negative efect of polli-
nators on plants, and d2 is the per-capita mortality rate of
pollinators.

Recently, Huang et al. [32] considered the following
plant-pollinator model with a difusion term and a time
delay:

zN1

zt
� N1 r1 +

α12N2

1 + aN1 + bN2
− β1N2 − d1N1􏼢 􏼣,

zN2

zt
� D2∆N2 + N2

α21N1(t − τ, x)

1 + aN1(t − τ, x) + bN2(t − τ, x)
− d2􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where τ > 0 is a time delay, ∆ is the Laplacian operator, and
D2 > 0 is a difusion coefcient. By analyzing eigenvalues of
the linearized equation, Huang et al. gave some conditions
about the stability of the positive constant steady state and
existence of spatially homogeneous and spatially in-
homogeneous periodic solutions.

Based on (1) and (2), we incorporate two diferent delays
into the model to refect the dynamical behaviours
depending on the histories. We shall consider the following
system:

dN1

dt
� r1N1 +

α12N1N2

1 + aN1 + bN2
− β1N1N2 − d1N1

2
,

dN2

dt
� N2

α21N1 t − τ1( 􏼁

1 + aN1 t − τ1( 􏼁 + bN2 t − τ2( 􏼁
− d2􏼢 􏼣,

N1(t) � ϕ(t), N2(t) � ψ(t), t ∈ − max
i�1,2

τi􏼈 􏼉, 0􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where τi ≥ 0(i � 1, 2) denotes the delay efects in the process
when the pollinators translate plant-pollinator interactions
into the ftness.

Te present article is organized as follows: In Section 2,
by selecting two diferent varying delays τi(i � 1, 2) as the
bifurcation parameters and considering the distribution of
corresponding characteristic roots, we shall give the con-
ditions on the stability of the positive equilibrium and the
existence of Hopf bifurcation of system (3). In Section 3,
based on the normal form method and the center manifold
reduction used by Hassard et al. in [33], we shall derivate
some formulas for deciding the stability and the directions of
periodic solutions and Hopf bifurcation. In Section 4, some
numerical simulations are carried out to illustrate the val-
idity of the main results.
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2. Model Description

In this section, we shall mainly analyze the local stability of
the positive constant steady state and the existence of Hopf
bifurcation of system (3) by using the methods in
[32, 34, 35].

According to [32], for the existence and uniqueness of
the positive equilibrium of (3), we have the following result:

Lemma 1. Assume that one of the following conditions holds:

(A1) α21 > ad2, a1 < 0, a1
2 − 4a0a2 � 0;

(A2) α21 > ad2, 4a0a2 < 0;

where a0 � bβ1/(α21 − ad2) + d1d2b
2/(α21 − ad2)

2, a1 �

(β1 − br1)/(α21 − ad2) + 2d1d2b/(α21 − ad2)
2− α12/α21, and

a2 � −
r1

α21 − ad2
+

d1d2

α21 − ad2( 􏼁
2 . (4)

Ten, (3) has two boundary equilibria, E0(0, 0) and
E1(r1/d1, 0), and a unique positive equilibrium,
E∗(N∗1 , N∗2 ), where

N
∗
1 �

2a0d2 − a1bd2 + bd2

����������

a1
2

− 4a0a2

􏽱

2a0 α21 − ad2( 􏼁
,

N
∗
2 �

− a1 +

����������

a1
2

− 4a0a2

􏽱

2a0
.

(5)

Let u1 � N1 − N∗1 and u2 � N2 − N∗2 , then (3) can be
rewritten as follows:

du1

dt
� u1 + N

∗
1( 􏼁 r1 +

α12 u2 + N
∗
2( 􏼁

1 + a u1 + N
∗
1( 􏼁 + b u2 + N

∗
2( 􏼁

− β1 u2 + N
∗
2( 􏼁 − d1 u1 + N

∗
1( 􏼁􏼢 􏼣,

du2

dt
� u2 + N

∗
2( 􏼁

α21 u1 t − τ1( 􏼁 + N
∗
1( 􏼁

1 + a u1 t − τ1( 􏼁 + N
∗
1( 􏼁 + b u2 t − τ2( 􏼁 + N

∗
2( 􏼁

− d2􏼢 􏼣,

u1(t) � ϕ(t) − N
∗
1 , u2(t) � ψ(t) − N

∗
2 , t ∈ − max

i�1,2
τi􏼈 􏼉, 0􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Tus, the positive equilibrium point E∗(N∗1 , N∗2 ) of
system (3) coincides with the zero equilibrium of system (6).

Let

f
(1)

u1, u2( 􏼁 � u1 + N
∗
1( 􏼁 r1 +

α12 u2 + N
∗
2( 􏼁

1 + a u1 + N
∗
1( 􏼁 + b u2 + N

∗
2( 􏼁

− β1 u2 + N
∗
2( 􏼁 − d1 u1 + N

∗
1( 􏼁􏼢 􏼣,

f
(2)

u1, u2, w( 􏼁 � w + N
∗
2( 􏼁

α21 u1 + N
∗
1( 􏼁

1 + a u1 + N
∗
1( 􏼁 + b u2 + N

∗
2( 􏼁

− d2􏼢 􏼣.

(7)

For i, j, l ∈ N0 � 0, 1, 2, . . .{ }, we defne f
(1)
ij (i + j≥ 1)

and f
(2)
ijl (i + j + l≥ 1) as follows:

f
(1)
ij �

z
i+j

f
(1)

(0, 0)

zu
i
1zu

j
2

, f
(2)
ijl �

z
i+j+l

f
(2)

(0, 0, 0)

zu
i
1zu

j
2zw

l
, (8)

in particular.

α1 � f
(1)
10 � − d1N

∗
1 −

α12aN
∗
1N
∗
2

1 + aN
∗
1 + bN

∗
2( 􏼁

2 < 0, α2 � f
(1)
01 �

α12N
∗
1 1 + aN

∗
1( 􏼁

1 + aN
∗
1 + bN

∗
2( 􏼁

2 − β1N
∗
1 ,

c1 � f
(2)
100 �

α21N
∗
2 1 + bN

∗
2( 􏼁

1 + aN
∗
1 + bN

∗
2( 􏼁

2 > 0, c2 � f
(2)
010 � −

bα21N
∗
1N
∗
2

1 + aN
∗
1 + bN

∗
2( 􏼁

2 < 0.

(9)

By Taylor expansion, (6) can become as follows:

Journal of Mathematics 3



du1

dt
� α1u1(t) + α2u2(t) + 􏽘

i+j≥2

1
i!j!

f
(1)
ij u1

i
(t)u2

j
(t),

du2

dt
� c1u1 t − τ1( 􏼁 + c2u2 t − τ2( 􏼁 + 􏽘

i+j+l≥2

1
i!j!l!

f
(2)
ijl u1

i
t − τ1( 􏼁u2

j
t − τ2( 􏼁u2

l
(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

and u1(t) � ϕ(t) − N∗1 , u2(t) � ψ(t) − N∗2 , t ∈
[− max

i�1,2
τi􏼈 􏼉, 0].

It is easy to see that system (10) about the equilibrium
point (0, 0) yields the following linear system:

du1

dt
� α1u1(t) + α2u2(t),

du2

dt
� c1u1 t − τ1( 􏼁 + c2u2 t − τ2( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

Te corresponding characteristic equation of the system
(11) is as follows:

λ2 − α1λ − c2λ − c2α1( 􏼁e
− λτ2 − c1α2e

− λτ1 � 0. (12)

We use the following Lemma in [35] to investigate the
distribution of roots of the transcendental equation (12).

Lemma 2. For the transcendental equation,
P λ, e

− λτ1 , · · · , e
− λτm􏼐 􏼑 � λn

+ p
(0)
1 λn− 1

+ · · · + p
(0)
n− 1λ + p

(0)
n

+ p
(1)
1 λn− 1

+ · · · + p
(1)
n− 1λ + p

(1)
n􏽨 􏽩e

− λτ1

+ · · · + p
(m)
1 λn− 1

+ · · · + p
(m)
n− 1λ + p

(m)
n􏽨 􏽩e

− λτm

� 0.

(13)

As (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros
of P(λ, e− λτ1 , . . . , e− λτm ) in the open right half plane can
change only if a zero appears on or crosses the
imaginary axis.

Now, we shall consider the following diferent cases:

Case 1. τ1 � τ2 � 0. Ten, (12) becomes

λ2 − α1 + c2( 􏼁λ + c2α1 − c1α2 � 0. (14)

Since α1 < 0, c2 < 0, − (α1 + c2)> 0 holds. It is obvious that
when τ1 � τ2 � 0, the condition that all roots of (14) have
negative real parts is given in the following form:

(H1): c2α1 − c1α2 > 0 (15)

Tus, we have the following result:

Lemma 3. Assume that (H1) holds. Ten, for τ1 � τ2 � 0, the
positive equilibrium point E∗ of (3) is asymptotically stable.

Case 2. τ1 > 0, τ2 � 0. Ten, (12) becomes

λ2 − α1 + c2( 􏼁λ + c2α1 − c1α2e
− λτ1 � 0. (16)

Suppose that τ1 > 0, τ2 � 0 and λ � iω1(ω1 > 0) are roots of
(16). Ten, we have

− ω1
2

− iω1 α1 + c2( 􏼁 + c2α1
− c1α2 cosω1τ1 − i sinω1τ1( 􏼁 � 0.

(17)

Separating the real and imaginary parts of (17), we can
obtain

ω2
1 − c2α1 � − c1α2 cosω1τ1,

ω1 α1 + c2( 􏼁 � c1α2 sinω1τ1.

⎧⎨

⎩ (18)

By simple calculation, we can have

ω4
1 + α1

2
+ c2

2
􏼐 􏼑ω2

1 + c2α1( 􏼁
2

− c1α2( 􏼁
2

� 0. (19)

Let z � ω2
1, then (19) becomes

z
2

+ α1
2

+ c2
2

􏼐 􏼑z + c2α1( 􏼁
2

− c1α2( 􏼁
2

� 0. (20)

Notice that α12 + c2
2 > 0. If the following condition (H2):

(c2α1)
2 − (c1α2)

2 > 0 holds, then (20) has no positive so-
lution. Tus, all solutions of (16) have negative real parts
when τ1 > 0 under (H2). So, we have the following result:

Theorem 1. Let τ2 � 0 and (A1) or (A2) holds. When (H2)
holds, the positive equilibrium point E∗ of (3) is asymptoti-
cally stable for all τ1 > 0.

However, if the condition (H3): (c2α1)
2 − (c1α2)

2 < 0
holds, then (20) has a unique positive root.

z0 � ω2
10 �

1
2

− α1
2

+ c2
2

􏼐 􏼑 +

�����������������

α21 − c
2
2􏼐 􏼑

2
+ 4c1

2α2
2

􏽲

􏼢 􏼣.

(21)

Tus, ω10 � 1/2[− (α12 + c2
2) +􏼈

�����������������

(α21 − c2
2)

2 + 4c1
2α22

􏽱

]}1/2,
and (16) has a pair of purely imaginary roots ±iω10.
Substituting ω10 into (18), we can get

τ1j
�

1
ω10

arccos
ω10

2
− c2α1

− c1α2
􏼨 􏼩 +

2jπ
ω10

, j ∈ N0( 􏼁. (22)

Let

F λ, τ1( 􏼁 � λ2 − α1 + c2( 􏼁λ + c2α1 + c1α2e
− λτ1 . (23)
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Ten, F(± iω10, τ1j) � 0. Suppose λ(τ1) � α(τ1) + iω(τ1) is
a root of (16) near τ1 � τ1j and α(τ1j) � 0, ω(τ1j) � ω10.
From the function diferential equation (FDE) theory, for
every τ1j (j � 0, 1, 2, . . .) there exists ε> 0, such that λ(τ1) is
continuously diferentiable at τ1 for |τ1 − τ1j|< ε.
Substituting λ(τ1) into the left-hand side of (16) and dif-
ferentiating with respect to τ1, we can have

dλ
dτ1

􏼠 􏼡

− 1

�
2λ − α1 + c2( 􏼁􏼂 􏼃e

λτ1

− λc1α2
−
τ1
λ

. (24)

Hence,

dλ
dτ1

􏼠 􏼡

− 1􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ1j

�
2iω10 − α1 + c2( 􏼁􏼂 􏼃 cosω10τ1j + i sinω10τ1j􏼐 􏼑

− iω10c1α2
−

τ1j

iω10
. (25)

Noting that,

d(Reλ)

dτ1
􏼨 􏼩

− 1

τ1�τ1j

�
2ω10

2
+ α1

2
+ c2

2

c1α2( 􏼁
2 > 0. (26)

From the above discussions, we can get d(Reλ)/dτ1|τ1�τ1j
> 0

and derive the following theorem:

Theorem 2. For τ2 � 0, we assume that (A1) or (A2) holds.
Assume further that (H3) holds. Te following conclusions are
true:

(i) If τ1 ∈ [0, τ10), then the positive equilibrium E∗ of (3)
is asymptotically stable

(ii) If τ1 > τ10, then the positive equilibrium E∗ of (3) is
unstable

(iii) If τ1 � τ10, then system (3) undergoes a Hopf bi-
furcation at the positive equilibrium E∗

Case 3. τ1 � 0, τ2 > 0. Ten, (12) becomes

λ2 − α1λ − c1α2 − c2λ − c2α1( 􏼁e
− λτ2 � 0. (27)

Similar to the second case, we suppose that τ1 � 0, τ2 > 0 and
λ � iω2(ω2 > 0) is a root of (27). Trough some calculations,
we can get

z
2

+ α1
2

+ 2c1α2 − c2
2

􏼐 􏼑z + c1α2( 􏼁
2

− c2α1( 􏼁
2

� 0, (28)

where z � ω2
2. It is easy to see that if the condition (H4):

α12 + 2c1α2 − c2
2 > 0, (c1α2)

2 − (c2α1)
2 > 0 holds, (28) has

no positive solution. Tus, all solutions of (27) have negative
real parts when τ2 > 0 under (H4).

Theorem 3. Let τ1 � 0 and (A1) or (A2) holds. When (H4)
holds, then the positive equilibrium E∗ of system (3) is as-
ymptotically stable for all τ2 > 0.

However, if the condition

(H5): α12 + 2c1α2 − c2
2 > 0, (c1α2)

2 − (c2α1)
2 < 0

holds, then (28) has a unique positive solution z0 � ω2
20

and (27) has a pair of purely imaginary roots ±iω20,
where

ω20 �
1
2

− α1
2

+ 2c1α2 − c2
2

􏼐 􏼑 +

����������������������������������

α12 + 2c1α2 − c2
2( 􏼁

2
− 4 c1

2α22 − c2
2α12( 􏼁

􏽱

􏼔 􏼕􏼚 􏼛
1/2

. (29)

At this time, we have

τ2j �
1
ω20

arccos
c1α1α2

c2 ω2
20 + α1

2
􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭

+
2jπ
ω20

, j ∈ N0.

(30)

Let F(λ, τ2) � λ2 − α1λ + c1α2 + (− c2λ + c2α1)e− λτ2 ,
then F(± iω20, τ2j) � 0.
Suppose λ(τ2) � α(τ2) + iω(τ2) is a root of (27) near
τ2 � τ2j and α(τ2j) � 0, then ω(τ2j) � ω20. Substituting
λ(τ2) into (27) and diferentiating with respect to τ2, we
can obtain
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dλ
dτ2

􏼠 􏼡

− 1

�
2λ − α1( 􏼁e

λτ2 − c2

c2α1 − c2λ( 􏼁λ
−
τ2
λ

,

dλ
dτ2

􏼠 􏼡

− 1􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ2�τ2j

�
2iω20 − α1( 􏼁 cosω20τ2j + i sinω20τ2j􏼐 􏼑 − c2

c2α1 − iω20c2( 􏼁iω20
−

τ2j

iω20
,

d(Reλ)

dτ2
􏼨 􏼩

− 1

τ2�τ2j

�
2c1α2 − c2

2
+ α21 + 2ω2

0

c2
2 ω2

0 + α21􏼐 􏼑
> 0.

(31)

Terefore, we can easily get d(Reλ)/dτ2|τ2�τ2j
> 0. Based

on the above analysis, we have the following theorem:

Theorem  . For τ1 � 0, assume that (A1) or (A2) holds.
Assume further that (H5) holds.Te following results are true:

(i) If τ2 ∈ [0, τ20), then the positive equilibrium E∗ of (3)
is asymptotically stable

(ii) If τ2 > τ20, then the positive equilibrium E∗ of (3) is
unstable

(iii) If τ2 � τ20, then system (3) undergoes a Hopf bi-
furcation at the positive equilibrium E∗

Case 4. τ1 > 0, τ2 ∈ [0, τ20]. We consider (12) with τ2 in its
stable interval. Regarding τ1 as a parameter, without loss of

generality, we consider system (3) under assumption (A1) or
(A2) and Case 3. Let iω(ω> 0) be a root of (12), by cal-
culating, we can obtain

ω4
+ k1ω

3
+ k2ω

2
+ k3ω + k4 � 0, (32)

where k1 � 2c2 sinωτ2, k2 � c2
2 + α12, k3 � 2c2α12

sinωτ2, k4 � (c2α1)
2 − (c1α2)

2.
Denoting H(ω) � ω4 + k1ω3 + k2ω2 + k3ω + k4, we

make the assumption that
(H6): equation (32) has fnite positive roots

ω1,ω2, . . . ,ωn, and for every fxed ωi, i � 1, 2, . . . , k, there
exists a sequence τj

3i | j � 0, 1, 2, . . .􏽮 􏽯, such that (32) holds,
where

τj

3i �
1
ω(i)
3

arccos
− ω(i)

3􏼐 􏼑
2

+ c2α1 cosω
(i)
3 τ2 − c2ω

(i)
3 sinω(i)

3 τ2
α2c1

+
2πj

ω(i)
3

.

i � 1, 2, . . . , k; j � 0, 1, 2, . . .

(33)

Let

τ30 � min τj
3i

􏼌􏼌􏼌􏼌􏼌 i � 1, 2, . . . , k; j � 0, 1, 2, . . .􏼚 􏼛. (34)

When τ1 � τ30, (12) has a pair of purely imaginary roots
±iω∗ for τ2 ∈ [0, τ20]. In the following, we further
assume that (H7): [d(Reλ)/dτ1]τ1�τ30 ≠ 0. By the general
Hopf bifurcation theorem for FDE, we have a result on the
stability and Hopf bifurcation for system (3).

Theorem 5. For system (3), we assume that (A1) or (A2)
holds and assume further that (H5), (H6), and (H7) are
satisfed, and τ2 ∈ [0, τ20). Ten, the positive equilibrium E∗

is asymptotically stable for τ1 ∈ (0, τ30) and is unstable for

τ1 ∈ (τ30, +∞). System (3) undergoes a Hopf bifurcation at
the E∗ for τ1 � τ30.

Case 5. τ2 > 0, τ1 ∈ [0, τ10]. We consider (12) with τ1 in its
stable interval. Regarding τ2 as a parameter, without loss of
generality, we consider system (3) under assumption (A1) or
(A2) and Case 2. Let iω(ω> 0) be a root of (12), by cal-
culating, we can obtain

ω4
+ k1ω

2
+ k2ω + k3 � 0, (35)

where k1 � α12 − c2
2 + 2c1α2 cosωτ1, k2 � − 2c1α1α2

sinωτ1, k3 � (c1α2)
2 − (c2α1)

2. Denoting H(ω) � ω4+

k1ω2 + k2ω + k3, we make the assumption that (H8):
equation (35) has fnite positive roots ω1,ω2, . . . ,ωn, and for
every fxed ωi, i � 1, 2, . . . , k, there exists a sequence
τj
4i | j � 0, 1, 2, . . .􏽮 􏽯 such that (35) holds, where
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τj
4i �

1
ω(i)
4

arccos
− ω(i)

4􏼐 􏼑
2

+ c2α1 cosω
(i)
4 τ2 − c2ω

(i)
4 sinω(i)

4 τ2
α2c1

+
2πj

ω(i)
4

.

i � 1, 2, . . . , k; j � 0, 1, 2, . . .

(36)

Let

τ40 � min τj

4i

􏼌􏼌􏼌􏼌􏼌 i � 1, 2, . . . , k; j � 0, 1, 2, . . .􏼚 􏼛. (37)

When τ2 � τ40, (12) has a pair of purely imaginary roots
±iω∗ for τ1 ∈ [0, τ10]. In the following, we further
assume that (H9): [d(Reλ)/dτ2]τ2�τ40 ≠ 0 Similarly, we have
a result on the stability and Hopf bifurcation for system (3).

Theorem 6. For system (3), assume that (A1) or (A2) holds
and further assume that (H8) and (H9) are satisfed, and
τ1 ∈ [0, τ10). Ten, the positive equilibrium E∗ is asymptot-
ically stable for τ2 ∈ (0, τ40) and is unstable for
τ2 ∈ (τ40, +∞). System (3) undergoes a Hopf bifurcation at
the E∗ for τ2 � τ40.

3. Direction ofHopf Bifurcation and Stability of
Bifurcating Periodic Solution

In the previous section, we have obtained stability and
existence of Hopf bifurcation of system (3) at the positive

equilibrium E∗ by taking delay τi (i � 1, 2) as the bifurcation
parameter and applying the linearization method. In the
present section, we will discuss the direction of Hopf bi-
furcation and the stability of bifurcation periodic solutions
by employing the normal form method and the center
manifold theorem by Hassard et al. [33]. We always assume
that system (3) undergoes Hopf bifurcation at the positive
equilibrium E∗ for τ2 � τ20, and ±iω∗ denotes the corre-
sponding purely imaginary roots of the characteristic
equation at E∗.

Without loss of generality, we assume τ∗1 < τ40, where
τ∗1 ∈ (0, τ40) and τ40 is defned by (37). For convenience, let
ui(t) � ui(τt), ui(t) � Ni(t) − N∗i , (i � 1, 2), τ2 � τ40 + μ,
and μ ∈ R, then μ � 0 is the Hopf bifurcation value of (3).
Tus, (3) can be rewritten as an FDE inC � C([− 1, 0],R2) as
follows:

_u(t) � Lμ ut( 􏼁 + F μ, ut( 􏼁, (38)

where u(t) � (u1(t), u2(t))T ∈ C and ut(θ) � u(t + θ).
Defne the linear operator Lμ: C⟶ R by

Lμ(ϕ) � τ40 + μ( 􏼁 B

ϕ1(0)

ϕ2(0)

⎛⎝ ⎞⎠ + C

ϕ1 −
τ∗1
τ40

􏼠 􏼡

ϕ2 −
τ∗1
τ40

􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ D

ϕ1(− 1)

ϕ2(− 1)

⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (39)

and nonlinear operator F(μ, ·): R × C⟶ R by

F(μ, ϕ) � τ40 + μ( 􏼁 f1, f2( 􏼁
T
, (40)

where ϕ(θ) � (ϕ1(θ), ϕ2(θ))T ∈ C, B �
α1 α2
0 0􏼠 􏼡,

C �
0 0
0 c2

􏼠 􏼡, D �
0 0
c1 0􏼠 􏼡, and

f1 � 􏽘
i+j≥2

1
i!j!

f
(1)
ij ϕ1

i
(0)ϕ2

j
(0),

f2 � 􏽘
i+j+l≥2

1
i!j!l!

f
(2)
ijl ϕ1

i
(− 1)ϕ2

j
−
τ∗1
τ40

􏼠 􏼡ϕ2
l
(0).

(41)

Based on the Riesz representation theorem, we know
that there is a matrix function with bounded variation
components η(θ, μ) and θ ∈ [− 1, 0], such that
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Lμ(ϕ) � 􏽚
0

− 1
dη(θ, μ)ϕ(θ), ϕ(θ) ∈ C [− 1, 0],R

2
􏼐 􏼑. (42)

In fact, we can take

η(θ, μ) �

τ40 + μ( 􏼁(B + C + D), θ � 0

τ40 + μ( 􏼁(C + D), θ ∈ −
τ∗1
τ40

, 0􏼢 􏼣

τ40 + μ( 􏼁D, θ ∈ − 1, −
τ∗1
τ40

􏼠 􏼡

0. θ � − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

In the sequel, we defne the operators A(μ) and R(μ) by

A(μ)ϕ �

dϕ(θ)

dθ
, θ ∈ [− 1, 0)

􏽚
0

− 1
dη(s, μ)ϕ(s), θ � 0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, R(μ)ϕ �

0, θ ∈ [− 1, 0)

F(μ, ϕ), θ � 0

⎧⎪⎨

⎪⎩
.

(44)

Ten, (38) can be further rewritten into the following
equation:

_u(t) � A(μ)ut + R(μ)ut, (45)

where ut(θ) � u(t + θ), θ ∈ [− 1, 0]. For
ψ ∈ C([0, 1], (R2)∗), we defne

A
∗ψ(s) �

−
dψ(s)

ds
, s ∈ (0, 1],

􏽚
0

− 1
dηT

(t, 0)ψ(− t), s � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

For ϕ ∈ C([− 1, 0], (R2)
∗
) and ψ ∈ C([0, 1], (R2)∗), we

defne the bilinear inner product.

〈ψ(s), ϕ(θ)〉 � ψ(0)ϕ(0) − 􏽚
0

− 1
􏽚
θ

ξ�0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ,

(47)

where η(θ) � η(θ, 0). Let A � A(0), then A and A∗ are a pair
of adjoint operators. Since ±iω∗τ40 is a pair of eigenvalues of
A(0), it follows that they are also a pair of eigenvalues of A∗.

Suppose that q(θ) � (1, α)Teiω∗τ40θ is an eigenvector of
the operator A(0) corresponding to the eigenvalues iω∗τ40
and q∗(s) � M(1, α∗)eiω∗τ40s is an eigenvector of A∗(0)

corresponding to − iω∗τ40, where M � 1/K. From the def-
nitions of A, Lμϕ, and η(θ, μ), we can obtain

iω∗ − α1 − α2
− c1e

− λτ1 iω∗ − c2e
− λτ2

⎛⎝ ⎞⎠
1

α
􏼠 􏼡 �

0

0
􏼠 􏼡. (48)

Based on discussions in the last section, we can see

det
iω∗ − α1 − α2
− c1e

− λτ1 iω∗ − c2e
− λτ2

⎛⎝ ⎞⎠ � 0. (49)

Terefore, we can take α � (iω∗ − α1)/α2 and
α∗ � (− )(iω∗ + α1)/c1e

− iω∗τ40 .
Let K ∈ C and q∗(s) � M(1, α∗)eiω∗τ40s such that

〈q∗(s), q(θ)〉 � 1. Ten, we can see that q∗(s) is still an
eigenvector of the operator A∗ corresponding to the ei-
genvalue − iω∗τ40.

From the bilinear inner product of (47), we can get
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〈q∗(s), q(θ)〉 � q
∗
(0)q(0) − 􏽚

0

− 1
􏽚
θ

ξ�0
q
∗
(ξ − θ)dη(θ)q(ξ)dξ

� M 1, α∗( 􏼁(1, α)
T

− 􏽚
0

− 1
􏽚
θ

ξ�0
M 1, α∗( 􏼁e

− iω∗τ40(ξ− θ)
dη(θ)(1, α)

T
e

iω∗τ40ξdξ

� M 1, α∗( 􏼁(1, α)
T

− M 1, α∗( 􏼁 􏽚
0

− 1
􏽚
θ

ξ�0
dη(θ)(1, α)

T
e

iω∗τ40θdξ

� M 1, α∗( 􏼁(1, α)
T

− M 1, α∗( 􏼁 􏽚
0

− 1
θe

iω∗τ40θdη(θ)(1, α)
T

� M 1, α∗( 􏼁(1, α)
T

− M 1, α∗( 􏼁 τ40Bϕ(0) + τ40Cϕ −
τ∗1
τ40

􏼠 􏼡 + τ40Dϕ(− 1)􏼢 􏼣(1, α)
T

� M 1, α∗( 􏼁(1, α)
T

− M 1, α∗( 􏼁 τ40
0 0

0 c2

⎛⎝ ⎞⎠ −
τ∗1
τ40

􏼠 􏼡e
− iω∗τ∗1 − τ40

0 0

c1 0
⎛⎝ ⎞⎠e

− iω∗τ40⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦(1, α)
T

� M 1 + αα∗( 􏼁 + Mτ∗1c2αα
∗
e

− iω∗τ∗1 + Mτ40c1α
∗
e

− iω∗τ40 .

(50)

Tus, we can choose K as follows:

K � 1 + αα∗ + τ∗1c2αα
∗
e

− iω∗τ∗1 + τ40c1α
∗
e

− iω∗τ40 ,

K � 1 + αα∗ + c2αα
∗τ∗1 e

iω∗τ∗1 + c1τ40α
∗
e

iω∗τ40 .
(51)

In addition, from 〈ψ, Aϕ〉 � 〈A∗ψ, ϕ〉 and
Aq(θ) � − iω∗q(θ), we can get

− iω∗〈q∗, q〉 �〈q∗, Aq〉 �〈A∗q∗, q〉 �〈 − iω∗q∗, q〉

� iω∗〈q∗, q〉.
(52)

Hence, 〈q∗(θ), q(θ)〉 � 0.
Next, using the algorithms given in [4], we can calculate

the projection system of (3) on the center manifold C0 when
μ � 0. For the solution ut of (38), let z(t) � 〈q∗, ut〉, and
then by (45) and (47), we can have

_z(t) �〈q∗, _ut〉 �〈q∗, A(0)ut + R(0)ut〉 �〈q∗, A(0)ut〉 +〈q∗, R(0)ut〉

�〈A∗(0)q
∗
, ut〉 + q

∗
(0)F 0, ut( 􏼁

� iω∗τ40z + g(z, z),

(53)

where g(z, z) � q∗(0)F(0, ut) � g20(θ)z2/2 + g11(θ)zz +

g02(θ)z2/2 + g21(θ)z2z/2 · · ·.
Let

W(t, θ) � ut(θ) − z(t)q(θ) − z(t)q(θ)

� ut(θ) − 2Re z(t)q(θ)􏼈 􏼉.
(54)

Ten, on the center manifold C0, we can have

W(t, θ) � W(z(t), z(t), θ), (55)

where

W(z, z, θ) � W20(θ)
z
2

2
+ W11(θ)zz + W02(θ)

z
2

2

+ W30(θ)
z
3

6
+ · · · ,

(56)

where z and z are local coordinates for the center manifold
C0 in the directions of q∗ and q∗. Noting that W is real if ut is
real. We consider only real solution. From (54), we can see
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ut(θ) � W(t, θ) + 2Re z(t)q(θ)􏼈 􏼉 � W(t, θ) + z(t)q(θ) + z(t)q(θ)

� (1, α)
T
e

iω∗τ40θz +(1, α)
T
e

− iω∗τ40θz + W20(θ)
z
2

2
+ W11(θ)zz

+ W02(θ)
z
2

2
+ W30(θ)

z
3

6
+ · · · .

(57)

Terefore, u1t(0), u2t(0), u1t(− 1), u2t(− 1), u1t(− τ∗1 /τ40),
and u2t(− τ∗1 /τ40) can be obtained.

u1t(0) � z + z + W
(1)
20 (0)

z
2

2
+ W

(1)
11 (0)zz + W

(1)
02 (0)

z
2

2
+ · · · ,

u2t(0) � zα + zα + W
(2)
20 (0)

z
2

2
+ W

(2)
11 (0)zz + W

(2)
02 (0)

z
2

2
+ · · · ,

u1t(− 1) � ze
− iω∗τ40 + ze

iω∗τ40 + W
(1)
20 (− 1)

z
2

2
+ W

(1)
11 (− 1)zz + W

(1)
02 (− 1)

z
2

2
+ · · · ,

u2t(− 1) � zαe
− iω∗τ40 + zαe

iω∗τ40 + W
(2)
20 (− 1)

z
2

2
+ W

(2)
11 (− 1)zz + W

(2)
02 (− 1)

z
2

2
+ · · · ,

u1t −
τ∗1
τ40

􏼠 􏼡 � ze
− iω∗τ∗1 + ze

iω∗τ∗1 + W
(1)
20 −

τ∗1
τ40

􏼠 􏼡
z
2

2
+ W

(1)
11 −

τ∗1
τ40

􏼠 􏼡zz + W
(1)
02 −

τ∗1
τ40

􏼠 􏼡
z
2

2
+ · · · ,

u2t −
τ∗1
τ40

􏼠 􏼡 � zαe
− iω∗τ∗1 + zαe

iω∗τ∗1 + W
(2)
20 −

τ∗1
τ40

􏼠 􏼡
z
2

2
+ W

(2)
11 −

τ∗1
τ40

􏼠 􏼡zz + W
(2)
02 −

τ∗1
τ40

􏼠 􏼡
z
2

2
+ · · · .

(58)

Furthermore, we can get g(z, z), g20, g11, g02, and g21 as
follows:
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g(z, z) � q
∗
(0)F 0, ut( 􏼁 � M 1, α∗( 􏼁F 0, ut( 􏼁

� M 1, α∗( 􏼁τ40

1
2
f

(1)
20 u

2
1t(0) +

1
2
f

(1)
02 u

2
2t(0) + f

(1)
11 u1t(0)u2t(0)

1
2
f

(2)
200u

2
1t(− 1) +

1
2
f

(2)
020u

2
2t −

τ∗1
τ40

􏼠 􏼡 +
1
2
f

(2)
002u

2
2t(0) + f

(2)
110u1t(− 1)

u2t −
τ∗1
τ40

􏼠 􏼡 + f
(2)
101u1t(− 1)u2t(0) + f

(2)
011u2t(0)u2t −

τ∗1
τ40

􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g20 � 2Mτ40
1
2
f

(1)
20 +

1
2
f

(1)
02 α

2
+ f

(1)
11 α + α∗

1
2

􏼒 f
(2)
200e

− 2iω∗τ40 +
1
2
f

(2)
020α

2
e

− 2iω∗τ∗1 +
1
2
f

(2)
002α

2
􏼔

+f
(2)
110αe

− iω∗τ40e
− iω∗τ∗1 + f

(2)
101αe

− iω∗τ40 + f
(2)
011α

2
e

− iω∗τ∗1 􏼓􏼕;

g11 � Mτ40 f
(1)
20 + f

(1)
02 αα + f

(1)
11 (α + α) + α∗ f

(2)
200 + f

(2)
020αα + f

(2)
002αα + f

(2)
110􏼒αe

− iω∗τ40e
iω∗τ∗1 + αe

iω∗τ40e
− iω∗τ∗1􏼒 􏼓􏼔

+ f
(2)
101 αe

− iω∗τ40 + αe
iω∗τ40􏼐 􏼑 + f

(2)
011 ααe

− iω∗τ∗1 + ααe
iω∗τ∗1􏼐 􏼑􏼓􏼕;

g02 � 2Mτ40
1
2
f

(1)
20 +

1
2
f

(1)
02 α

2
+ f

(1)
11 α + α∗

1
2
f

(2)
200e

2iω∗τ40 +
1
2
f

(2)
020α

2
e
2iω∗τ∗1􏼒􏼔

+
1
2
f

(2)
002α

2
+ f

(2)
110αe

iω∗τ40e
iω∗τ∗1 + f

(2)
101αe

iω∗τ40 + f
(2)
011α

2
e

iω∗τ∗1 􏼓􏼕

g21 � 2Mτ40 f
(1)
20

1
2
W

(1)
20 (0) + W

(1)
11 (0)􏼒 􏼓 + f

(1)
02

1
2
αW

(2)
20 (0) + αW

(2)
11 (0)􏼒 􏼓 + f

(1)
11

1
2

􏼒 W
(1)
20 (0)􏼔

α +
1
2
W

(2)
20 (0) + W

(1)
11 (0)α + W

(2)
11(0)􏼓 + α∗ f

(2)
200􏼐

1
2
W

(1)
20 (− 1)e

iω∗τ40 + W
(1)
11 (− 1)e

− iω∗τ40􏼒 􏼓

+ f
(2)
020

1
2
W

(2)
20 −

τ∗1
τ40

􏼠 􏼡αe
iω∗τ∗1 + W

(2)
11 −

τ∗1
τ40

􏼠 􏼡αe
− iω∗τ∗1􏼠 􏼡 + f

(2)
002

1
2
αW

(2)
20 (0) + αW

(2)
11 (0)􏼒 􏼓

+ f
(2)
110

1
2
W

(2)
20 −

τ∗1
τ40

􏼠 􏼡e
iω∗τ40 + W

(2)
11 −

τ∗1
τ40

􏼠 􏼡e
− iω∗τ40 +

1
2
W

(1)
20 (− 1)αe

iω∗τ∗1 + αW
(1)
11 (− 1)􏼠

· e
− iω∗τ∗1 􏼓 + f

(2)
101 W

(2)
11 (0)e

− iω∗τ40 +
1
2
W

(2)
20 (0)e

iω∗τ40 +
1
2
αW

(1)
20 (− 1) + αW

(1)
11 (− 1)􏼒 􏼓 + f

(2)
011

· αW
(2)
11 (0)e

− iω∗τ∗1 +
1
2
αW

(2)
20 (0)e

iω∗τ∗1 +
1
2
αW

(2)
20 −

τ∗1
τ40

􏼠 􏼡 + αW
(2)
11 −

τ∗1
τ40

􏼠 􏼡􏼡􏼡􏼠 􏼣.

(59)
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Next, we compute W20(θ) and W11(θ) in g21 by using
the method in [8, 9, 32]. From (38) and (53), we have

_W � _ut − _zq − _zq �
AW − 2Re q

∗
(0)F 0, ut( 􏼁q(θ)􏼈 􏼉, θ ∈ [− 1, 0)

AW − 2Re q
∗
(0)F 0, ut( 􏼁q(0)􏼈 􏼉 + F 0, ut( 􏼁, θ � 0

⎧⎨

⎩ ≜AW + H(z, z, θ), (60)

where

H(z, z, θ) � H20(θ)
z
2

2
+ H11(θ)zz + H02(θ)

z
2

2
+ · · · .

(61)

Tus, we have

AW(t, θ) − _W � − H(z, z, θ) � − H20(θ)
z
2

2

− H11(θ)zz − H02(θ)
z
2

2
− · · · .

(62)

From (56), we can get

AW(t, θ) � AW20(θ)
z
2

2
+ AW11(θ)zz + AW02(θ)

z
2

2

+ AW30(θ)
z
3

6
+ · · · ,

(63)

and

_W � Wz _z + Wz
_z � W20(θ)z _z + W11(θ)( _zz + z _z) + · · · � 2iω∗τ40W20(θ)

z
2

2
+ · · · . (64)

Terefore, we can get

A − 2iω∗τ40( 􏼁W20(θ) � − H20(θ), AW11(θ) � − H11(θ).

(65)

For θ ∈ [− 1, 0), we have

H(z, z, θ) � − q
∗
(0)F 0, ut( 􏼁q(θ) − q

∗
(0)F 0, ut( 􏼁q(θ)

� − g(z, z)q(θ) − g(z, z)q(θ).

(66)

Comparing coefcients of (66) with (61), we can obtain

H20(θ) � − g20q(θ) + g02q(θ)( 􏼁, (67)

H11(θ) � − g11q(θ) + g11q(θ)( 􏼁. (68)

From (66) and (68), and the defnition of A, we can get
_W20(θ) � 2iω∗τ40W20(θ) + g20q(θ) + g02q(θ). (69)

Noticing that q(θ) � q(0)eiω∗τ40θ � (1, α)Teiω∗τ40θ.
By computing (69), we can get

W20(θ) �
ig20

ω∗τ40
q(0)e

iω∗τ40θ +
ig02

3ω∗τ40
q(0)e

− iω∗τ40θ

+ E1e
2iω∗τ40θ,

(70)

where E1 � (E
(1)
1 , E

(2)
1 ) ∈ R2 is a constant vector.

Similarly, from (66) and (68) and the defnition of A, we
can get

_W11(θ) � g11q(θ) + g11q(θ), (71)

W11(θ) � −
ig11

ω∗τ40
q(0)e

iω∗τ40θ

+
ig11

ω∗τ40
q(0)e

− iω∗τ40θ + E2,

(72)

where E2 � (E
(1)
2 , E

(2)
2 ) ∈ R2 is a constant vector.

In what follows, we shall seek appropriate E1, E2 in (70)
and (72), respectively. From the defnition of A and (65), we
can have

􏽚
0

− 1
dη(θ)W20(θ) � 2iω∗τ40W20(0) − H20(0), (73)

􏽚
0

− 1
dη(θ)W11(θ) � − H11(0). (74)

Tus,

H20(0) � − g20q(0) − g02q(0) + 2τ40 P1, P2( 􏼁
T
, (75)

H11(0) � − g11q(0) − g11q(0) + τ40 Q1, Q2( 􏼁
T
, (76)

where P1 � 1/2f
(1)
20 + 1/2f

(1)
02 α2 + f

(1)
11 α and
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P2 �
1
2
f

(2)
200e

− 2iω∗τ40 +
1
2
f

(2)
020α

2
e

− 2iω∗τ∗1 +
1
2
f

(2)
002α

2
+ f

(2)
110αe

− iω∗τ40e
− iω∗τ∗1

+ f
(2)
101αe

− iω∗τ40 + f
(2)
011α

2
e

− iω∗τ∗1 ,

Q1 � f
(1)
20 + f

(1)
02 αα + f

(1)
11 (α + α),

Q2 � f
(2)
200 + f

(2)
020αα + f

(2)
002αα + f

(2)
110 αe

− iω∗τ40e
iω∗τ∗1 + αe

iω∗τ40e
− iω∗τ∗1􏼐 􏼑

+ f
(2)
101 αe

− iω∗τ40 + αe
iω∗τ40􏼐 􏼑 + f

(2)
011 ααe

− iω∗τ∗1 + ααe
iω∗τ∗1􏼐 􏼑.

(77)

Noting that,

iω∗τ40I − 􏽚
0

− 1
e

iω∗τ40θdη(θ)􏼠 􏼡q(0) � 0, − iω∗τ40I − 􏽚
0

− 1
e

− iω∗τ40θdη(θ)􏼠 􏼡q(0) � 0. (78)

Substituting (71) and (75) into (73), we can have

2iω∗τ40I − 􏽚
0

− 1
e
2iω∗τ40θdη(θ)􏼠 􏼡E1 � 2τ40 P1, P2( 􏼁

T
,

(79)

i.e., 2iω∗ − α1 − α2
− c1e

− 2iω∗τ∗1 2iω∗ − c2e
− 2iω∗τ40􏼠 􏼡E1 � 2 P1

P2
􏼠 􏼡.

It follows that,

E
(1)
1 �

∆11
∆1

, E
(2)
1 �

∆12
∆1

, (80)

where ∆1 � det m1 m2
m3 m4

􏼠 􏼡, ∆11 � 2 det P1 m2
P2 m4

􏼠 􏼡,

∆12 � 2 det m1 P1
m3 P2

􏼠 􏼡, m1 � 2iω∗ − α1, m2 � − α2,

m3 � − c1e
− 2iω∗τ∗1 , and m4 � 2iω∗ − c2e

− 2iω∗τ40 .
Similarly, substituting (72) and (74) into (76), we can

have

􏽚
0

− 1
dη(θ)E2 � − τ40 Q1, Q2( 􏼁

T
, (81)

i.e., α1 α2
c1 c2

􏼠 􏼡E2 �
Q1
Q2

􏼠 􏼡.

It follows that,

E
(1)
2 �

∆21
∆2

, E
(2)
2 �

∆22
∆2

, (82)

where ∆2 � det α1 α2
c1 c2

􏼠 􏼡, ∆21 � 2 det Q1 α2
Q2 c2

􏼠 􏼡, and

∆22 � 2 det α1 Q1
c1 Q2

􏼠 􏼡.

From (70), (72), (75), and (83), we can calculate g21 and
derive the following values:

c1(0) �
i

2ω∗τ40
g20g11 − 2 g11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

−
1
3

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 +
1
2
g21,

μ2 � −
Re c1(0)􏼈 􏼉

Re λ′ τ40( 􏼁􏼚 􏼛

,

β2 � 2Re c1(0)􏼈 􏼉,

T2 � −
1

ω∗τ40
Im c1(0)􏼈 􏼉 + μ2Im λ′ τ40( 􏼁􏼚 􏼛􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(83)

Now, the main result in this section is given.

Theorem 7. For system (3), suppose that (A1) or (A2) holds,
and conditions (H1), (H3), (H8), and (H9) hold. Te periodic
solution is supercritical (resp. subcritical) if μ2 > 0 (resp.
μ2 < 0).Te bifurcating periodic solutions are orbitally as-
ymptotically stable with an asymptotical phase (resp. un-
stable) if β2 < 0 (resp. β2 > 0).Te period of the bifurcating
periodic solutions increases (resp. decreases) if T2 > 0 (resp.
T2 < 0).

4. Numerical Simulations

In this section, we shall present some examples and cor-
responding numerical simulations to verify above men-
tioned theoretical results.
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Example 1. We consider system (3) under Case (2). First, we
choose a � 1, b � 4, r1 � d2 � 1, d1 � β1 � 0.1, and α12 � 3,
and then the system (3) is

dN1

dt
� N1 +

3N1N2

1 + N1 + 4N2
− 0.1N1N2 − 0.1N1

2
,

dN2

dt
�

α21N1 t − τ1( 􏼁N2

1 + N1 t − τ1( 􏼁 + 4N2 t − τ2( 􏼁
− N2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(84)
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Figure 1: Behavior and phase portrait of the system (84) with τ2 � 0, τ1 � 10 (α21 � 6).
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Figure 2: Behavior and phase portrait of the system (84) with τ2 � 0, τ1 � 100 (α21 � 6).
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where the initial value is (1, 1). Let α21 � 6, and by com-
putations, we can obtain the unique positive equilibrium
E∗ � (7.2568, 8.8210) of system (84). When τ1 > 0, τ2 � 0,
(A1) or (A2) and (H2) hold, i.e. the conditions of Teorem 1
are satisfed, the positive equilibrium E∗ of (84) is asymp-
totically stable for all τ1 > 0. In particular, we set τ1 � 10 and
τ1 � 100, and the corresponding numerical simulation re-
sults are given in Figures 1 and 2.

Ten, we consider system (84) with α21 � 7 and keep
other parameters unchanged when τ1 > 0, τ2 � 0, (A1) or
(A2), and (H3) hold, i.e. the conditions of theTeorem 2 are
satisfed. By computations, we can get the unique positive
equilibrium E∗ � (6.6066, 9.6598), ω10 � 0.3351, and
τ10 � 6.9828. If τ1 ∈ [0, τ10), then the positive equilibrium
E∗ of (84) is locally asymptotic stable under τ2 � 0, while it
becomes unstable when τ1 is gradually greater than this
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Figure 3: Behavior and phase portrait of the system (84) with τ2 � 0, τ1 � 6.5 (α21 � 7).
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critical value through Hopf bifurcation. Te corresponding
numerical simulation results are given in Figures 3 and 4.

Example 2. We consider system (3) under Case (3) and Case
(4). First, we choose a � b � 2, r1 � 1, d1 � β1 � 0.005,
d2 � 0.5, and α12 � 5, and then the system (3) is

dN1

dt
� N1 +

5N1N2

1 + 2N1 + 2N2
− 0.005N1N2 − 0.005N1

2
,

dN2

dt
�

α21N1 t − τ1( 􏼁N2

1 + 2N1 t − τ1( 􏼁 + 2N2 t − τ2( 􏼁
− 0.5N2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(85)
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Figure 5: Behavior and phase portrait of the system (85) with τ1 � 0, τ2 � 10 (α21 � 3.8).
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Figure 6: Behavior and phase portrait of the system (85) with τ1 � 0, τ2 � 100 (α21 � 3.8).
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where the initial value is (120, 490). Let α21 � 3.8, and by
computations, we can obtain the unique positive equilib-
rium E∗ � (149.6003, 418.3809) of system (85). When
τ1 � 0, τ2 > 0, (A1) or (A2), and (H4) hold, i.e. the conditions
of theTeorem 3 are satisfed, the positive equilibrium E∗ of
(85) is asymptotically stable for all τ2 > 0. In particular, we set
τ2 � 10 and τ2 � 100, and the corresponding numerical
simulation results are given in Figures 5 and 6.

Ten, we consider system (85) with α21 � 2, whose initial
value is (400, 400) and keep other parameters unchanged.
When τ1 � 0, τ2 > 0, (A1) or (A2), and (H5) hold, the
conditions of the Teorem 4 are satisfed. By computations,
we can get the unique positive equilibrium
E∗ � (224.9722, 224.4722), ω20 � 0.2495, and τ20 � 7.4321.
If τ2 ∈ [0, τ20), then the positive equilibrium E∗ of (85) is
locally asymptotic stable, while it becomes unstable when τ2
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Figure 7: Behavior and phase portrait of the system (85) with τ1 � 0, τ2 � 7 (α21 � 2).
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is gradually greater than this critical value through Hopf
Bifurcation.Te corresponding numerical simulation results
are given in Figures 7 and 8.

Furthermore, we consider Case (4) of system (85) with
α21 � 2.We fx τ2 � 7< τ20, and take τ1 as a parameter. By
computations, these parameters satisfed conditions (A1) or
(A2), (H5), (H6), and (H7) of theTeorem 5, and we can get
τ30 � 0.6768. If τ1 ∈ [0, τ30), then the positive equilibrium

E∗ of (85) is locally asymptotic stable, while it becomes
unstable when τ1 is gradually greater than this critical value
through Hopf bifurcation. Te corresponding numerical
simulation results are given in Figures 9 and 10.

Example 3. We consider system (3) under Case (5). Based
on system (84) with α21 � 7 in example 1, we further fx
τ1 � 6.5< τ10, and take τ2 as a parameter. By computations,
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Figure 9: Behavior and phase portrait of the system (85) with τ1 � 0.5< τ30, τ2 � 7 (α21 � 2).
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these parameters satisfed conditions of Teorem 6, and we
can get τ40 � 0.1740. If τ2 ∈ [0, τ40), then the positive
equilibrium E∗ of (84) is locally asymptotic stable, while it
becomes unstable when τ2 is gradually greater than this
critical value τ40 through Hopf bifurcation (see Figures 11
and 12). In addition, we can get c1(0) � − 0.0431 − 1.9649i,
μ2 � 12.9315> 0, and β2 � − 0.0862< 0. Hence, when τ1 > 0
and τ2 ∈ (0, τ40), the Hopf bifurcation of system (84) is

supercritical and the corresponding bifurcation periodic
solutions are asymptotically stable.

Remark 1. In this paper, the dynamic properties of a plant-
pollinator model with multiple delays are discussed by re-
garding diferent delays as bifurcating parameters; partic-
ularly, the theory of stability for its equilibrium point is
analyzed in detail. Te results of these aspects are
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Figure 11: Behavior and phase portrait of the system (84) with τ1 � 6.5, τ2 � 0.16< τ40 (α21 � 7).
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comprehensive and satisfactory. We admit that only one
case is implemented in the analysis of Hopf bifurcation for
the reason that the remaining cases are similar to the one we
discussed.

Remark 2. Te main novel contributions are refected as
follows:

(1) Te existing problems of bifurcations mainly focus
on diferential systems with unique delay or multiple
identical delays owing to the fact that the stable
regions with multiple diferent delays are difcult to
determine. What merits further study in this work is
that the dynamic properties of diferential systems
with multiple opposite delays are discussed in detail,
which will stimulate us to further explore the bi-
furcating problems of the systems with multiple
diferent delays.

(2) Te bifurcating theories about the same delay in [32]
are extended to multiple versions of diferent delays.
Te results are more accurate and less conservative.

(3) Te exact bifurcating conditions caused by two
diferent delays are derived by breaking through the
difculty of analyzing the characteristic equation.

Meanwhile, the challenges that accompany us in the
future are how to design an appropriate controller to im-
prove the stability for systems with multiple delays and how
to extend the available system with integral order to the
fractional order and continue to consider its dynamic
properties, especially regarding the order as a bifurcating
parameter, what may be a very meaningful topic.

5. Conclusions

In this paper, we considered the stability and Hopf bi-
furcation of a kind of a plant-pollination model with two
delays. Taking the diferent combinations of the two delays
τ1 and τ2 as the bifurcation parameters, we obtained the
sufcient conditions for the local asymptotic stability and
Hopf bifurcation of the positive equilibrium point E∗ of the
system model by using the Hopf bifurcation theorem. When
τ2 � 0 and the parameters satisfy (H2) or τ1 � 0 and the
parameters satisfy (H4), the positive equilibrium E∗ of the
model is asymptotically stable for any delay τ1 > 0 or τ2 > 0.
It is found that when τ2 � 0 and the parameters satisfy (H3),
there exists a critical value τ10 so that the positive equilib-
rium of the system is stable for τ1 ∈ [0, τ10), and it would be
unstable for τ1 ∈ (τ10, +∞) and Hopf bifurcation at occurs
E∗ for τ1 � τ10. Similarly, when τ1 � 0 and the parameters
satisfy (H5), there exists a critical value τ20 so that the
positive equilibrium of the system is stable for τ2 ∈ [0, τ20),
and it would be unstable for τ2 ∈ (τ20, +∞) and Hopf bi-
furcation occurs at E∗ for τ2 � τ20. Furthermore, when
τ2 ∈ [0, τ20) is fxed and τ1 is taken as the bifurcation pa-
rameter, we obtain that there exists a critical value τ30 such
that the positive equilibrium E∗ of the system is stable for

τ1 ∈ [0, τ30), and it would be unstable for τ1 ∈ (τ30, +∞) and
undergoes Hopf bifurcation at E∗ for τ1 � τ30. Analogously,
when τ1 ∈ [0, τ10) is fxed and τ2 is taken as the bifurcation
parameter, we gain that there exists a critical value τ40 such
that the positive equilibrium E∗ of the system is stable for
τ2 ∈ [0, τ40), and it would be unstable for τ2 ∈ (τ40, +∞) and
undergoes Hopf bifurcation at E∗ for τ2 � τ40. In a word,
when τ crosses through a series of critical values including
the above, the system can bifurcate a series of nontrivial
periodic solutions from the positive equilibrium point. In
addition, according to the normal form theory and the
central manifold theorem of delay diferential equations,
some explicit formulas for determining Hopf bifurcation
direction and stability of bifurcation periodic solutions are
achieved. At last, some numerical simulations are conducted
to demonstrate corresponding theoretical results. Our future
work will focus on the following meaningful and promising
aspects of researches:

(1) Extending the integral-order model to the fractional-
order model. Fractional calculus has more advan-
tages in describing some materials and processes
with memory and genetic properties and can de-
scribe complex systems more concisely and clearly
which hasmore potential to achieve some results that
cannot be achieved by integral calculus.

(2) Further studying the dynamic properties of the
fractional-order system with delays, which is a col-
orful project. As a bifurcation parameter, the bi-
furcating behavior caused by delay is worthy of our
study, which is also a hot issue in recent years. So
what results will be produced when order is used as
a bifurcation parameter to study the bifurcation
problem of the fractional-order model with delay?
Tis is a topic worthy of our further discussion, and
of course, it is also a challenging frontier issue.
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In real Hilbert spaces, let the CFPP indicate a common fxed-point problem of asymptotically nonexpansive operator and
countably many nonexpansive operators, and suppose that the HVI and VIP represent a hierarchical variational inequality and
a variational inequality problem, respectively. We put forward Mann hybrid deepest-descent extragradient approach for solving
the HVI with the CFPP and VIP constraints. Te proposed algorithms are on the basis of Mann’s iterative technique, viscosity
approximation method, subgradient extragradient rule with linear-search process, and hybrid deepest-descent rule. Under
suitable restrictions, it is shown that the sequences constructed by the algorithms converge strongly to a solution of the HVI with
the CFPP and VIP constraints.

1. Introduction

Suppose that PC is the nearest point projection from H onto
C, where H is a real Hilbert space with the inner product
〈·, ·〉 and induced norm ‖ · ‖, and C is a convex closed set
with ∅≠C ⊂ H. Let Fix(T) be the fxed-point set of an
operator T: C⟶H and R be the real-number set. We use
the notations⇀ and⟶to denote the weak convergence and
strong one in H, respectively. A self-mapping T on C is said
to be of asymptotical nonexpansivity if ∃ θk􏼈 􏼉 ⊂ [0, +∞] s.t.
limk⟶∞θk � 0 and

1 + θk( 􏼁‖u − v‖≥ T
k
u − T

k
v

�����

�����,∀u, v ∈ C, k≥ 1. (1)

In case θk � 0 for each k, T is said to be of non-
expansivity. Given an operator A: H⟶H. We consider
problem of seeking x∗ ∈ C such that
〈Ax∗, y − x∗〉≥ 0,∀y ∈ C, which is called the classical
variational inequality one (VIP). We denote by VI(C, A) the
solution set of the VIP. In particular, if the VIP is defned

over C which is the solution set of another problem, then the
VIP is called the hierarchical variational inequality (for
short, HVI) over the solution set C. It is well known that the
extragradient approach is one of the most efective methods
for settling the VIP, which is proposed in Korpelevich [1],
that is, for any starting p0 ∈ C, pk􏼈 􏼉 is fabricated below:

qk � PC pk − μApk( 􏼁,

pk+1 � PC pk − μAqk( 􏼁,∀k≥ 0,
􏼨 (2)

where μ ∈ (0, 1/L) and L is the Lipschitzian coefcient of A.
In case VI (C, A) is nonempty, pk􏼈 􏼉 converges weakly to an
element in VI(C, A). At present, the vast literature on
Korpelevich’s extragradient technique reveals that numer-
ous scholars have given wide attention to it and improved it
in diferent manners (refer to [1–28]).

In 2018, Tong and Van Hieu [20] frst invented the
inertial-type subgradient extragradient rule, i.e., for any
starting p0, p1 ∈ H, pk􏼈 􏼉 is fabricated below:
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wk � pk + αk pk − pk− 1( 􏼁,

vk � PC wk − μAwk( 􏼁,

Ck � v ∈ H: 〈wk − μAwk − vk, vk − v〉 ≥ 0􏼈 􏼉,

pk+1 � PCk
wk − μAvk( 􏼁,∀k≥ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where μ ∈ (0, 1/L) and L is the Lipschitzian coefcient of A.
Via mild assumptions, they showed that pk􏼈 􏼉 converges
weakly to a point in VI(C, A). Besides, due to the importance
and applicability of inertial technique, some new inertial
iterative algorithms were recently introduced and analyzed
(see [29–32] for more details). Recently, the hybrid inertial-
type subgradient extragradient rule with linear-search
process in [23] was proposed for settling the VIP with the
operator A satisfying both pseudomonotonicity and Lip-
schitz continuity and the common fxed-point problem
(CFPP) of fnite nonexpansive operators Tl􏼈 􏼉

N

l�1 and as-
ymptotically nonexpansive operator T in H. Let f: H⟶H

be a contractive map with coefcient δ ∈ [0, 1], and
F: H⟶H be an operator satisfying both η-strong
monotonicity and κ-Lipschitz continuity, such that δ < τ: �

1 −
�������������
1 − ρ(2η − ρκ2)

􏽰
for 0< ρ< 2η/κ2. Suppose that

αk􏼈 􏼉 ⊂ [0, 1] and βk􏼈 􏼉, ck􏼈 􏼉 ⊂ (0, 1) s.t. βk + ck < 1,∀k. Be-
sides, one writes Tk: � Tk mod N for each k≥ 1 with the
mod function taking values in 1, 2, . . . , N􏼈 􏼉, i.e., in case k �

jN + q for some j≥ 0 and 0≤ q<N, one has that Tk � TN

for q � 0 and Tk � Tq for 0< q<N.
Under suitable assumptions, they proved the strong

convergence of the sequence xk􏼈 􏼉 to a point in
Ω � VI(C, A)∩ (∩N

l�0Fix(Tl)) where T0: � T. On the other
hand, Reich et al. [25] put forth the modifed projection-type
rule for handling the VIP with the operator A satisfying both
pseudomonotonicity and uniform continuity. Let
αk􏼈 􏼉 ⊂ (0, 1) and suppose that f: C⟶C is a contractive
map with coefcient δ ∈ [0, 1].

Under mild assumptions, they proved strong conver-
gence of the sequence xk􏼈 􏼉 to an element of VI(C, A).

In real Hilbert spaces, let the CFPP stand for a common
fxed-point problem of asymptotically nonexpansive oper-
ator and countably many nonexpansive operators. Let the
HVI indicate a hierarchical variational inequality. We put
forward Mann hybrid deepest-descent extragradient ap-
proach for solving the HVI with the CFPP and VIP con-
straints. Te proposed algorithms are on the basis of Mann’s
iterative technique, viscosity approximation method, sub-
gradient extragradient rule with linear-search process, and
hybrid deepest-descent rule. Under suitable restrictions, it is
shown that the sequences constructed by the algorithms
converge strongly to a solution of the HVI with the CFPP
and VIP constraints.

Te structure of the article is arranged as follows. Basic
notions and tools are given in Section 2. Te convergence
analysis of the suggested algorithms is discussed in Section 3.
Section 4 provides an illustrated instance to demonstrate the
applicability and implementability of our suggested algo-
rithms. It is worth pointing out that the theorems in this
article enhance and develop those associated results with
[21, 23, 25] because our algorithms involve solving the VIP

with the operator satisfying both pseudomonotonicity and
uniform continuity and the CFPP of asymptotically non-
expansive operator and countably many nonexpansive
operators.

2. Basic Concepts and Tools

Assume ∅≠C ⊂ H, where C is convex and closed in a real
Hilbert space H. For given sequence un􏼈 􏼉 ⊂ H, the notations
un⇀u and un⟶u indicate the weak convergence and
strong convergence of un􏼈 􏼉 to u, respectively. For each
y, z ∈ C, a mapping T: C⟶H is said to be

(1) κ-Lipschitzian (or of κ-Lipschitz continuity) if
∃κ> 0 s.t. ‖Ty − Tz‖≤ κ‖y − z‖

(2) Of monotonicity if 〈Ty − Tz, y − z〉≥ 0
(3) Of pseudomonotonicity if 〈Ty, z − y〉≥ 0⇒

〈Tz, z − y〉≥ 0
(4) Of η-strong monotonicity if ∃η> 0 s.t.

〈Ty − Tz, y − z〉≥ α‖y − z‖2

(5) Of sequentially weak continuity if for each yn􏼈 􏼉 in C,
one has that yn⇀y⇒Tyn⇀Ty

Note that the class of pseudomonotone operators
properly includes the class of monotone operators. Given
any y in H, we know that ∃| (nearest point) z ∈ C, written as
z � PCy, s.t. ‖y − z‖≤ ‖y − x‖ for each x in C. PC is called
a nearest point (or metric) projection from H onto C.
According to [33], for each y, z ∈ H, the statements below
are valid:

(1) 〈y − z, PCy − PCz〉≥ ‖PCy − PCz‖2

(2) 〈y − PCy, x − PCy〉≤ 0,∀x ∈ C

(3) ‖y − x‖2 ≥ ‖y − PCy‖2 + ‖x − PCy‖2,∀x ∈ C

(4) ‖y − z‖2 � ‖y‖2 − ‖z‖2 − 2〈y − z, z〉

(5) ‖λy + (1 − λ)z‖2 � λ‖y‖2 + (1 − λ)‖z‖2 −

λ(1 − λ)‖y − z‖2,∀λ ∈ [0, 1]

Defnition 1 (see [34]). Let ξn􏼈 􏼉
∞
n�1 ⊂ [0, 1] and suppose that

Tn􏼈 􏼉
∞
n�1 is a sequence of nonexpansive operators of C into

itself. For each n, the operator Wn: C⟶C is constructed
below:

Un,n+1 � I,

Un,n � ξnTnUn,n+1 + 1 − ξn( 􏼁I,

Un,n− 1 � ξn− 1Tn− 1Un,n + 1 − ξn− 1( 􏼁I,

· · ·

Un,i � ξiTiUn,i+1 + 1 − ξi( 􏼁I,

· · ·

Un,2 � ξ2T2Un,3 + 1 − ξ2( 􏼁I,

Wn � Un,1 � ξ1T1Un,2 + 1 − ξ1( 􏼁I.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Such an operator Wn is nonexpansive and is known as
the W-mapping constructed by T1, . . . , Tn and ξ1, . . . , ξn− 1.
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Proposition 1 (see [34]). Let [ ξn􏼈 􏼉
∞
n�1 ⊂ 0, 1] and suppose

that Tn􏼈 􏼉
∞
n�1 is a sequence of nonexpansive operators of C into

itself such that ∩∞n�1Fix(Tn)≠∅. Ten,

(a) Wn is of nonexpansivity and Fix(Wn) � ∩∞n�1
Fix(Ti),∀n

(b) limn⟶∞Un,iu exists for all u ∈ C and i≥ 1
(c) Te mapping W defned by Wu: � limn⟶∞Wnu �

limn⟶∞Un,1u,∀u ∈ C is nonexpansive operator such
that Fix(W) � ∩∞n�1Fix(Tn), and W is known as the
W-operator constructed by T1, T2, . . . and ξ1, ξ2, . . .

Proposition 2 (see [35]). Let ξn􏼈 􏼉
∞
n�1 ⊂ (0, ς) for certain

ς ∈ (0, 1) and suppose Tn􏼈 􏼉
∞
n�1 is a sequence of nonexpansive

operators of C into itself such that ∩∞n�1Fix(Tn)≠∅. Ten,
limn⟶∞supu∈D‖Wnu − Wu‖ � 0,∀ (bounded) D ⊂ C.

In what follows, one always assumes that ξn􏼈 􏼉
∞
n�1 ⊂ (0, ς)

for certain ς ∈ (0, 1). Using the subdiferential inequality of
‖ · ‖2/2, we have the relation below:

y + z‖
2 ≤

����
����y‖

2
+ 2〈z, y + z〉,∀y, z ∈ H. (5)

Later, we will exploit the lemmas below to derive our
main theorems.

Lemma 1 (see [26]). Let H1 and H2 be two real Hilbert
spaces. Suppose that A: H1⟶H2 is uniformly continuous
on bounded subsets of H1 and M is a bounded subset of H1.
Ten, A(M) is bounded.

Lemma 2 (see [36]). Let h be a real-valued function on H

and defne K: � x ∈ C: h(x)≤ 0{ }. If K is nonempty and h is
Lipschitz continuous on C with modulus θ> 0, then
dist(x, K)≥ θ− 1 max h(x), 0{ },∀x ∈ C, where dist(x, K) de-
notes the distance of x to K.

Lemma 3. Suppose that A: C⟶H is of both pseudomo-
notonicity and continuity. Given a point z∗ ∈ C. Ten,
〈Az∗, y − z∗〉≥ 0∀y ∈ C⇔〈Ay, y − z∗〉≥ 0∀y ∈ C.

Proof. It is easy to check that the conclusion is valid. □

Lemma 4 (see [8]). Suppose that an􏼈 􏼉 ⊂ [0,∞] such that
an+1 ≤ (1 − ζn)an + ζnbn,∀n≥ 1, with ζn􏼈 􏼉 and bn􏽮 􏽯 both
being real sequences satisfying the conditions: (i) ζn􏼈 􏼉 ⊂ [0, 1]

and 􏽐
∞
n�1ζn �∞, and (ii) lim supn⟶∞bn ≤ 0 or

􏽐
∞
n�1|ζnbn|<∞. Ten, limn⟶∞an � 0.

Lemma 5 (see [37]). Suppose that ∅≠C ⊂ X where C is
convex and closed in a Banach space X admitting a weakly
continuous duality mapping. Let the operator T: C⟶C be of
asymptotical nonexpansivity such that Fix(T)≠∅. Ten, I − T

is of demiclosedness at zero, that is, for each un􏼈 􏼉 ⊂ C with
un⇀u ∈ C, the relation holds: (I − T)un⟶0⇒(I − T)u � 0,
with I being the identity mapping of X.

Lemma 6 (see [38]). Suppose that Γm􏼈 􏼉 is a real sequence
which does not decrease at infnity in the sense that

∃ Γmj
􏼚 􏼛 ⊂ Γm􏼈 􏼉 s.t. Γmj

< Γmj+1,∀j≥ 1. Let η(m)􏼈 􏼉m≥m0
be

formulated by η(m) � max j≤m: Γj < Γj+1􏽮 􏽯, with m0 ≥ 1
s.t. m≤m0: Γm < Γm+1􏼈 􏼉≠∅. Ten, the statements below are
valid:

(i) η(m0)≤ η(m0 + 1)≤ · · · and η(m)⟶∞
(ii) Γη(m) ≤ Γη(m)+1 and Γm ≤ Γη(m)+1,∀m≥m0

Lemma 7 (see [7, Lemma 8]). Suppose that λ lies in (0, 1], T

is a nonexpansive self-mapping on C, and Tλ: C⟶H is the
mapping formulated by Tλx: � (I − λρF)Tx, ∀x ∈ C, with
F: C⟶H being of both κ-Lipschitz continuity and η-strong

Initialization: Given any starting x1, x0 ∈ H. Let μ ∈ (0, 1),l ∈ (0, 1), c> 0.
Iterations: Compute xk+1 below:
Step 1. Put wk � Tkxk + αk(Tkxk − Tkxk− 1) and calculate vk � PC(wk − τkAwk), with τk being picked to be the largest
τ ∈ c, cl, cl2, . . .􏼈 􏼉 s.t. τ‖Awk − Avk‖≤ μ‖wk − vk‖.
Step 2. Calculate zk � PCk

(wk − τkAvk) with Ck: � v ∈ H: 〈wk − τkAwk − vk, vk − v〉≥ 0􏼈 􏼉.
Step 3. Calculate xk+1 � βkf(xk) + ckxk + ((1 − ck)I − βkρF)Tkzk.
Again set k: � k + 1 and go to Step 1.

ALGORITHM 1: Hybrid inertial subgradient extragradient rule (see [23]).

Initialization: Given any starting x1 ∈ C. Let λ ∈ (0, 1/μ),l ∈ (0, 1), μ> 0.
Iterations: Compute xk+1 below:
Step 1. Calculate vk � PC(xk − λAxk) and rλ(xk): � xk − vk. In case rλ(xk) � 0, one stops; xk lies in VI(C, A). In case rλ(xk)≠ 0, one
goes to Step 2.
Step 2. Calculate wk � xk − τkrλ(xk), with τk: � ljk and jk is the smallest nonnegative integer j satisfying
〈Axk − A(xk − ljrλ(xk)), rλ(xk)〉≤ μ/2‖rλ(xk)‖2.
Step 3. Calculate xk+1 � αkf(xk) + (1 − αk)PCk

(xk), with Ck: � v ∈ C: ℏk(v)≤ 0􏼈 􏼉 and ℏk(v) � 〈Awk, v − xk〉 + τk/2λ‖rλ(xk)‖2.
Again set k: � k + 1 and go to Step 1.

ALGORITHM 2: Modifed projection-type rule (see [25]).
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monotonicity. Ten, Tλ is a contractive map for
ρ ∈ (0, 2η/κ2), i.e., ‖Tλy − Tλz‖≤ (1 − λτ)‖y − z‖,∀y, z ∈ C,
with τ � 1 −

�������������
1 − ρ(2η − ρκ2)

􏽰
∈ (0, 1).

3. Algorithms and Convergence Analysis

Let ∅≠C ⊂ H, with the feasible set C being convex and
closed in a real Hilbert space H.

Condition 1. Te following conditions are valid.

(C1) Tn􏼈 􏼉
∞
n�1 is a sequence of nonexpansive oper-

ators of C into itself and T: C⟶C is asymptotical
nonexpansivity operator with θn􏼈 􏼉.
(C2) Wn is the W-mapping constructed by
T1, . . . , Tn and ξ1, . . . , ξn, with ξn􏼈 􏼉

∞
n�1 ⊂ [0, ς] for

certain ς ∈ (0, 1).
(C3) A: H⟶H is of both pseudomonotonicity
and uniform continuity on C, s.t.
‖Az‖≤ lim infn⟶∞‖Aun‖ for each un􏼈 􏼉 ⊂ C with
un⇀z.
(C4) f: C⟶H is a contractive map with co-
efcient δ ∈ [0, 1], and F: C⟶H is of both
η-strong monotonicity and κ-Lipschitz continuity
s.t. τ: � 1 −

�������������
1 − ρ(2η − ρκ2)

􏽰
> δ with

0< ρ< 2η/κ2.
(C5) Ω � VI(C, A)∩ (∩∞n�1Fix(Tn))≠∅ where
T0: � T.
(C6) cn􏼈 􏼉, βn􏼈 􏼉 ⊂ (0, 1) and σn􏼈 􏼉 ⊂ [0, 1] s.t.

(i) 1> cn + βn and 􏽐
∞
n�1βn �∞.

(ii) βn⟶0 and θn/βn⟶0 as n⟶∞.
(iii) 1> lim supn⟶∞σn ≥ lim infn⟶∞σn > 0.
(iv) 1> lim supn⟶∞cn ≥ lim infn⟶∞cn > 0.

Lemma 8. Te Armijo-type search process (Algorithm 1) is
formulated well, and the relation is valid:
‖rλ(wn)‖2 ≤ λ〈Awn, rλ(wn)〉.

Proof. Using the uniformly continuity of A on C, from
l ∈ (0, 1), one has limj⟶∞〈Awn − A(wn − ljrλ(wn)), rλ
(wn)〉 � 0. In case rλ(wn) � 0, it is clear that jn � 0. In case

rλ(wn)≠ 0, there exists jn ≥ 0 meeting (Algorithm 1). Since
PC is frmly nonexpansive, we obtain that
〈u − PCv, u − v〉≥ ‖u − PCv‖2,∀u ∈ C, v ∈ H. Setting u � wn

and v � wn − λAwn, one gets λ〈Awn, wn − PC

(wn − λAwn)〉≥ ‖wn − PC(wn − λAwn)‖2, which attains the
desired result. □

Lemma 9. Let p ∈ Ω and hn be formulated as in (Algo-
rithm 1). Ten, hn(p)≤ 0 and hn(wn) � τn/2λ‖rλ(wn)‖2.
Particularly, in case rλ(wn)≠ 0, one has hn(wn)> 0.

Proof. It is clear that hn(wn) � τn/2λ‖rλ(wn)‖2. In what
follows, we claim hn(p)≤ 0. Indeed, in terms of Lemma 3,
one gets 〈Atn, tn − p〉≥ 0. Hence, one has hn(p) � 〈Atn, tn −

wn〉 + 〈Atn, p − tn〉 + τn/2λ ‖rλ(wn)‖2 ≤ − τn〈Atn, rλ
(wn)〉 + τn/2λ‖rλ(wn)‖2. Using (Algorithm 1) and Lemma 8,
one gets 〈Atn, rλ(wn)〉≥ 〈Awn, rλ(wn)〉 − μ/2‖rλ(wn)‖2 ≥
(1/λ − μ/2)‖rλ(wn)‖2, which hence arrives at
hn(p)≤ − τn/2(1/λ − μ)‖rλ(wn)‖2. Terefore, the claim is
valid. □

Lemma 10. Suppose that the sequences zn􏼈 􏼉,

yn􏼈 􏼉, xn􏼈 􏼉, wn􏼈 􏼉 fabricated in Algorithm 3, are of bound-
edness. Assume that xn+1 − xn⟶0, xn − wn⟶0,

yn − wn⟶0, zn − wn⟶ 0 and Tn+1xn − Tnxn⟶0.
Ten, ωw( xn􏼈 􏼉) ⊂ Ω, with
ωw( xn􏼈 􏼉) � z ∈ H: xnk

⇀z for certain􏽮 xnk
􏽮 􏽯 ⊂ xn􏼈 􏼉}.

Proof. Take a fxed z ∈ ωw( xn􏼈 􏼉) arbitrarily. Ten,
∃ xnk

􏽮 􏽯 ⊂ xn􏼈 􏼉 s.t. xnk
⇀z ∈ H. Owing to xn − wn⟶0, one

knows that ∃ wnk
􏽮 􏽯 ⊂ wn􏼈 􏼉 s.t. wnk

⇀z ∈ H. In what follows,
we claim z ∈ Ω. In fact, observe that
xn − wn � σn(xn − Wnxn),∀n. Tus, ‖xn − wn‖ � σn

‖xn − Wnxn‖. Using the assumptions lim infn⟶∞σn > 0 and
xn − wn⟶0, we have

lim
n⟶∞

xn − Wnxn

����
���� � 0. (6)

Putting vn: � βnf(xn) + cnxn + ((I − cn)I − βnρF)Tn

zn, by Algorithm 3 we obtain that xn+1 � PCvn and
vn − Tnzn � βnf(xn) + cn(xn − Tnzn) − βnρFTnzn, which
immediately yields

xn − T
n
zn

����
����≤ xn − xn+1

����
���� + xn+1 − T

n
zn

����
����≤ xn − xn+1

����
���� + vn − T

n
zn

����
����

–≤ xn − xn+1
����

���� + βn f xn( 􏼁
����

���� + cn xn − Tnzn
����

���� + βn ρFTnzn
����

����.
(7)

Hence, one gets ‖xn+1 − xn‖ + βn(‖f(xn)‖+ ‖ρFTnzn‖)≥
(1 − cn)‖Tnzn − xn‖. Since xn+1 − xn⟶0, βn ⟶0,

lim infn⟶∞ (1 − cn)> 0 and xn􏼈 􏼉, zn􏼈 􏼉 are of boundedness,

one gets limn⟶∞‖Tnzn − xn‖ � 0. We claim that
limn⟶∞‖xn − Txn‖ � 0. Indeed, since T is of asymptotical
nonexpansivity, we obtain
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xn − Txn

����
����≤ xn − T

n
zn

����
���� + T

n
zn − T

n
xn

����
���� + T

n
xn − T

n+1
xn

����
���� + T

n+1
xn − T

n+1
zn

����
����

+ T
n+1

zn − Txn

����
����

≤ 2 + θ1( 􏼁 xn − T
n
zn

����
���� + 2 + θn + θn+1( 􏼁 zn − xn

����
���� + T

n
xn − T

n+1
xn

����
����

≤ 2 + θ1( 􏼁 xn − T
n
zn

����
���� + 2 + θn + θn+1( 􏼁 zn − wn

����
���� + wn − xn

����
����􏼐 􏼑 + T

n
xn − T

n+1
xn

����
����.

(8)

Noticing xn − wn⟶0, zn − wn⟶0, and
xn − Tnzn⟶0, we obtain

lim
n⟶∞

xn − Txn

����
���� � 0. (9)

Also, we claim limn⟶∞‖Wxn − xn‖ � 0. In fact, it is
clear that ‖xn − wn‖ � σn‖xn − Wnxn‖. Since
lim infn⟶∞σn > 0 and xn − wn⟶0, one has
limn⟶∞‖Wnxn − xn‖ � 0. Note that ‖Wxn − xn‖≤ ‖Wxn −

Wnxn‖ + ‖Wnxn − xn‖≤ supu∈D‖Wu − Wnu‖ +‖Wnxn− xn‖,
where D � xn: n≥ 1􏼈 􏼉. Using Proposition 2, we obtain

lim
n⟶∞

Wxn − xn

����
���� � 0. (10)

Now, we claim z ∈ VI(C, A). Indeed, because C is of
both convexity and closedness, using wn􏼈 􏼉 ⊂ C and wnk

⇀z,
one has that z lies in C. In case Az � 0, it is easily known that
z ∈ VI(C, A) due to 〈Az, x − z〉≥ 0,∀x ∈ C. In case Az≠ 0,
combining wn − yn⟶0 and wnk

⇀z yields ynk
⇀z as

k⟶∞. By the condition imposed on A, one gets
0< ‖Az‖≤ lim infk⟶∞‖Aynk

‖. So, we may presume
‖Aynk

‖≠ 0,∀k. In addition, using yn � PC(wn − λAwn), one
has 〈wn − λAwn − yn, x − yn〉≤ 0,∀x ∈ C, and hence

〈Awn, x − wn〉 ≥ 〈Awn, yn − wn〉

+
1
λ
〈wn − yn, x − yn〉,∀x ∈ C.

(11)

Since A is uniformly continuous on C, Awn􏼈 􏼉 is of
boundedness (owing to Lemma 1). Note that yn􏼈 􏼉 is
bounded as well. Tus, using (11), one gets
lim inf

k⟶∞
〈Awnk

, x − wnk
〉≥ 0,∀x ∈ C. It is clear that 〈Ayn, x −

yn〉 � 〈Ayn − Awn, x − wn〉 + 〈Awn, x − wn〉+ 〈Ayn, wn−

yn〉. Tus, using yn − wn⟶0, one gets Awn − Ayn⟶0
and hence attains lim infk⟶∞〈Aynk

, x − ynk
〉≥ 0,∀x ∈ C.

In what follows, one picks ςk􏼈 􏼉 ⊂ (0, 1) s.t.
ςj↓0 (j⟶∞). For any j≥ 1, one writes by mj the smallest
natural number s.t.

〈Aynk
, x − ynk

〉 + ςj ≥ 0,∀k≥mj. (12)

Noticing the fact that ςj􏽮 􏽯 is decreasing, we can readily
see that mj􏽮 􏽯 is increasing. From Aymj

≠ 0,∀j (owing to

Aymj
􏼚 􏼛 ⊂ Aynj

􏼚 􏼛), one puts ]mj
� Aymj

/‖Aymj
‖2, and one

has 〈Aymj
, ]mj

〉 � 1,∀j. Tus, using (12), one gets
〈Aymj

, x + ςj]mj
− ymj

〉≥ 0,∀j. Also, since A is pseudo-
monotone, one has 〈A(x + ςj]mj

), x + ςj]mj
− ymj

〉≥ 0,∀j,
which hence yields

〈Ax, x − ymj
〉 ≥ 〈Ax − A x + ςj]mj

􏼒 􏼓, x + ςj]mj
− ymj
〉

− ςj〈Ax, ]mj
〉.

(13)

Let us show limj⟶∞ςj]mj
� 0. In fact, using wnj

⇀z ∈ C

and yn − wn⟶0, one obtains ynj
⇀z. Noticing

ymj
􏼚 􏼛 ⊂ ynj

􏼚 􏼛 and ςj↓0, one deduces that
0≤ lim supj⟶∞‖ςj]mj

‖ � lim supςj/‖Aymj
‖

j⟶∞

≤

lim supj⟶∞ςj/lim inf j⟶∞‖Aynj
‖ � 0. Hence, we get

ςj]mj
⟶0 as j⟶∞. So, it follows that the right-hand side

of (13) tends to zero by the uniform continuity of A and the

boundedness of ymj
􏼚 􏼛, ]mj

􏼚 􏼛, and limj⟶∞ςj]mj
� 0.

Terefore,
〈Ax, x − z〉 � lim infj⟶∞〈Ax, x − ymj

〉≥ 0,∀x ∈ C. Using
Lemma 3, one has z ∈ VI(C, A). Last, we claim z ∈ Ω. In
fact, using xn − wn⟶0 and wnj

⇀z, one gets xnj
⇀z. Note

that (9) guarantees xnj
− Txnj
⟶0. By Lemma 5, one knows

that I − T is of demiclosedness at zero. Tus, using xnj
⇀z,

one gets (I − T)z � 0, that is, z ∈ Fix(T). Besides, we claim
z ∈ Fix(W) � ∩∞n�1Fix(Tn). Actually, noticing xnj

⇀z and
xnj

− Wxnj
⟶0 (due to (10)), from Proposition 1 and

Initial Step: Given any starting x1 ∈ C. Let μ> 0, λ ∈ (0, 1/μ), l ∈ (0, 1).
Iterations: Given the current iterate xn, calculate xn+1 below:
Step 1. Compute wn � (1 − σn)xn + σnWnxn, yn � PC(wn − λAwn) and rλ(wn): � wn − yn.
Step 2. Compute tn � wn − τnrλ(wn), where τn: � ljn and the integer jn is the smallest nonnegative one j

s.t μ/2‖rλ(wn)‖2 ≥ 〈A(wn − ljrλ(wn)) − Awn, yn − wn〉

Step 3. Calculate
xn+1 � PC[βnf(xn) + cnxn + ((1 − cn)I − βnρF)Tnzn]

with zn � PCn
(wn), Cn: � u ∈ C: hn(u)≤ 0􏼈 􏼉 and hn(u) � 〈Atn, u − wn〉 + τn/2λ‖rλ(wn)‖2.

Set n: � n + 1 and go to Step 1.

ALGORITHM 3: Te 1st Mann hybrid deepest-descent extragradient rule.
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Lemma 5, we obtain that I − W is demiclosed at zero. Tis
hence yields z ∈ Fix(W) � ∩∞n�1Fix(Ti). Consequently,
z ∈ VI(C, A)∩ (∩∞n�1Fix(Ti)) � Ω. □

Lemma 11. Let wn􏼈 􏼉 be the sequence fabricated in Algo-
rithm 3. Ten,

τn rλ wn( 􏼁
����

����
2⟶0⇒yn − wn⟶0. (14)

Proof. Assume lim supn⟶∞‖yn − wn‖ � α> 0. Picking
nk􏼈 􏼉 ⊂ n{ }, one has limk⟶∞‖wnk

− ynk
‖ � α> 0. Note that

limk⟶∞τnk
‖rλ(wnk

)‖2 � 0. Consider two cases. If
lim in fk⟶∞τnk

> 0, one may presume that ∃d> 0 s.t.
τnk
≥d> 0,∀k. So, one knows that ‖wnk

− ynk
‖2 � 1/τnk

τnk

‖wnk
− ynk

‖2 ≤ 1/d · τnk
‖wnk

− ynk
‖2 � 1/d · τnk

‖rλ(wnk
)‖2,

which immediately leads to 0< a2 � limk⟶∞
‖wnk

− ynk
‖2 ≤ limk⟶∞ 1/d · τnk

􏽮 ‖rλ(wnk
)‖2} � 0. Tis rea-

ches a contradiction.
If lim infk⟶∞τnk

� 0, there exists a subsequence of τnk
􏽮 􏽯,

still denoted by τnk
􏽮 􏽯, s.t. limk⟶∞τnk

� 0. We now put
qnk

: � 1/lτnk
ynk

+ (1 − 1/lτnk
)wnk

� wnk
− 1/lτnk

(wnk
− ynk

).
Ten, from limk⟶∞τnk

‖rλ(wnk
)‖2 � 0, we deduce that

limk⟶∞ ‖qnk
− wnk

‖2 � limk⟶∞1/l2τnk
· τnk

‖ynk
− wnk

‖2 � 0.
Using (6), one obtains
〈Awnk

− Aqnk
, wnk

− ynk
〉> μ/2‖wnk

− ynk
‖2. Since A is uni-

formly continuous on bounded subsets of C, this ensures
that limk⟶∞‖Awnk

− Aqnk
‖ � 0, which hence yields

limk⟶∞‖ynk
− wnk

‖ � 0. Tis reaches a contradiction.
Terefore, yn − wn⟶0 as n⟶∞. □

Theorem 1. Let xn􏼈 􏼉 be the sequence fabricated in Algo-
rithm 3. Assume Tn+1xn − Tnxn⟶0. Ten, xn􏼈 􏼉 converges
strongly to x∗ ∈ Ω, which is only a solution to the VIP:
〈(f − ρF)x∗, x − x∗〉≤ 0,∀x ∈ Ω.

Proof. Tanks to 1> lim supn⟶∞σn ≥ lim in fn⟶∞σn > 0 and
θn/βn⟶0, one may presume that (0, 1) ⊃ [a, b] ⊃ σn􏼈 􏼉 and
βn(τ − δ)/2≥ θn,∀n. It is easy to check that
PΩ(I − ρF + f): C⟶C is a contractive map. Tus,
∃|x∗ ∈ C s.t. x∗ � PΩ(I − ρF + f)x∗. Hence, ∃|x∗ ∈ Ω sat-
isfying the VIP:

〈(f − ρF)x
∗
, x − x

∗〉 ≤ 0,∀x ∈ Ω. (15)

Next in the rest of the proof, we divide it into
a few steps. □

Step 1. One claims that xn􏼈 􏼉 is of boundedness. Indeed,
choose any p ∈ Ω � VI(C, A)∩ (∩∞n�1Fix(Ti)). Ten, Tp �

p and Wnp � p,∀n. Let us show the relation below:

− dist2 wn, Cn( 􏼁 + wn − p
����

����
2 ≥ zn − p

����
����
2
,∀p ∈ Ω. (16)

In fact, one has
‖zn − p‖2 � ‖PCn

wn − p‖2‖≤wn − p‖2 − dist2(wn, Cn),
which hence yields

zn − p
����

����≤ wn − p
����

����,∀n≥ 1. (17)

Using the formulation of wn, one gets
‖wn − p‖≤ (1 − σn)‖xn − p‖ + σn‖Wnxn − p‖≤ ‖xn − p‖,
which together with (17) yields

zn − p
����

����≤ wn − p
����

����≤ xn − p
����

����,∀n≥ 1. (18)

Noticing 1> cn + βn, from (18) and Lemma 7, we obtain

xn+1 − p
����

����≤ βnf xn( 􏼁 + cnxn + 1 − cn( 􏼁I − βnρF( 􏼁T
n
zn − p

����
����

� βn f xn( 􏼁 − f(p)( 􏼁 + cn xn − p( 􏼁 + 1 − cn( 􏼁
����

× I − βn/1 − cnρF( 􏼁T
n
zn − I − βn/1 − cnρF( 􏼁p􏼂 􏼃 + βn(f − ρF)p

����

≤ βnδ xn − p
����

���� + cn xn − p
����

���� + 1 − cn( 􏼁

× 1 − βn/1 − cnτ( 􏼁 1 + θn( 􏼁 zn − p
����

���� + βn‖(f − ρF)p‖

≤ βnδ + cn + 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 xn − p
����

���� + βn‖(f − ρF)p‖

≤max xn − p
����

����, 2‖(f − ρF)p‖/τ − δ􏽮 􏽯.

(19)

Using the induction, we get ‖xn − p‖≤max ‖x1 − p‖,􏼈

2‖(f − ρF)p‖/τ − δ},∀n≥ 1. Hence, xn􏼈 􏼉 is of boundedness.
Terefore, the sequences wn􏼈 􏼉, yn􏼈 􏼉, zn􏼈 􏼉, f(xn)􏼈 􏼉, Atn􏼈 􏼉,

Wnxn􏼈 􏼉, Tnzn􏼈 􏼉 are of boundedness as well.

Step 2. One claims that ‖vn − xn+1‖
2 ≤ − ‖xn+1 − p‖2+

‖xn − p‖2 + βnM1 for certain M1 > 0. In fact, using
Lemma 7 and the convexity of g(s) � s2,∀s ∈ R, we obtain
that
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xn+1 − p
����

����
2 ≤ vn − p

����
����
2

− vn − xn+1
����

����
2

� ‖βn f xn( 􏼁 − f(p)( 􏼁 + cn xn − p( 􏼁 + 1 − cn( 􏼁

× I −
βn

1 − cn

ρF􏼠 􏼡T
n
zn − I −

βn

1 − cn

ρF􏼠 􏼡p􏼢 􏼣 + βn(f − ρF)p‖
2

− vn − xn+1
����

����
2

≤ βn􏼈 f xn( 􏼁 − f(p)
����

���� + cn xn − p
����

���� + 1 − cn( 􏼁

× I −
βn

1 − cn

ρF􏼠 􏼡T
n
zn − I −

βn

1 − cn

ρF􏼠 􏼡p

��������

��������
􏼩

2

+ 2βn〈(f − ρF)p, vn − p〉 − vn − xn+1
����

����
2

≤ xn − p
����

����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 zn − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉 − vn − xn+1
����

����
2
,

(20)

where vn: � βnf(xn) + cnxn + ((1 − cn)I − βnρF)Tnzn and
xn+1 � PC(vn). Furthermore, according to Algorithm 3, we
obtain

zn − p
����

����
2

wn − p
����

����
2

− wn − zn

����
����
2

� 1 − σn( 􏼁 xn − p
����

����
2

+ σ2 Wnxn − p
����

����
2

− σn 1 − σn( 􏼁 Wnxn − xn

����
����
2

− wn − zn

����
����
2
.

(21)

Substituting (21) into (20), one gets

xn+1 − p
����

����
2 ≤ βnδ xn − p

����
����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 xn − p
����

����
2

􏼚 􏼕

− σn 1 − σn( 􏼁 Wnxn − xn

����
����
2

− wn − zn

����
����
2
􏼛 + 2βn〈(f − ρF)p, vn − p〉 − vn − xn+1

����
����
2

≤ 1 − βn(τ − δ)/2􏼂 􏼃 xn − p
����

����
2

− 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 σn 1 − σn( 􏼁 Wnxn − xn

����
����
2

􏼚

+ wn − zn

����
����
2
􏼛 + 2βn〈(f − ρF)p, vn − p〉 − vn − xn+1

����
����
2

≤ xn − p
����

����
2

− 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 σn􏼈 1 − σn( 􏼁 Wnxn − xn

����
����
2

+ wn − zn

����
����
2
􏼛 + βnM1 − vn − xn+1

����
����
2
.

(22)

where supn≥1 2‖(f − ρF)p‖‖vn − p‖≤M1 for some M1 > 0.
Tis immediately attains the claim.

Step 3. One claims that [(1 − cn − βnτ) + θn][τn/
2λL‖rλ(wn)‖2]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM1. In fact,
let us show that ∃L> 0 s.t.

zn − p
����

����
2 ≤ wn − p

����
����
2

−
τn

2λL
rλ wn( 􏼁

����
����
2

􏼔 􏼕
2
. (23)

Since the sequence Atn􏼈 􏼉 is bounded, there exists L> 0
such that ‖Atn‖≤ L,∀n≥ 1. Tis ensures that
|hn(u) − hn(v)| � |〈Atn, u − v〉|≤L‖u − v‖∀u, v ∈ Cn, which
hence implies that hn(·) is L-Lipschitz continuous on Cn. By
Lemmas 2 and 9, we obtain
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dist wn, Cn( 􏼁≥
1
L

hn wn( 􏼁 �
τn

2λL
rλ wn( 􏼁

����
����
2
. (24)

Combining (16) and (24), we get
‖zn − p‖2 ≤ ‖wn − p‖2 − [τn/2λL‖rλ(wn)‖2]2.

From (18), (20), and (23), it follows that

xn+1 − p
����

����
2 ≤ βn δxn − p

����
����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 zn − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉

≤ βnδ xn − p
����

����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 wn − p
����

����
2

−
τn

2λL
rλ wn( 􏼁

����
����
2

􏼔 􏼕
2

􏼨 􏼩

+ 2βn〈(f − ρF)p, vn − p〉

≤ xn − p
����

����
2

− 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃
τn

2λL
rλ wn( 􏼁

����
����
2

􏼔 􏼕
2

+ βnM1.

(25)

Tis immediately yields the claim. Step 4. We show that

xn+1 − p
����

����
2 ≤ 1 − βn(τ − δ)􏼂 􏼃 xn − p

����
����
2

+ βn(τ − δ)
2〈(f − ρF)p, vn − p〉

τ − δ
+
θn

βn

·
M

τ − δ
􏼢 􏼣, (26)

for some M> 0. In fact, from (20), one obtains

xn+1 − p
����

����
2 ≤ vn − p

����
����
2 ≤ βnδ xn − p

����
����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ + θn( 􏼁

× zn − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉

≤ 1 − βn(τ − δ)􏼂 􏼃 xn − p
����

����
2

+ βn(τ − δ) 2
〈(f − ρF)p, vn − p〉

τ − δ
+
θn

βn

·
M

τ − δ
􏼢 􏼣,

(27)

where supn≥1 ‖zn − p‖2 ≤M for some M> 0. Step 5. One claims that xn⟶x∗ ∈ Ω, which is only a so-
lution of the VIP (15).

In fact, setting p � x∗ in (26), one obtains

βn(τ − δ)
2〈(f − ρF)x

∗
, vn − x

∗〉
τ − δ

+
θn

βn

·
M

τ − δ
􏼢 􏼣 + 1 − βn(τ − δ)( 􏼁 xn − x

∗����
����
2 ≥ xn+1 − x

∗����
����
2
. (28)

Setting Γn � ‖xn − x∗‖2, we demonstrate the conver-
gence of Γn􏼈 􏼉 to zero via the two cases below.

Case 1. Presume that ∃n0 ≥ 1 s.t. Γn􏼈 􏼉 is nonincreasing.
Ten, limn⟶∞Γn � 􏽢h< +∞ and Γn − Γn+1⟶0(n⟶∞).
Setting p � x∗, from Step 2 and σn􏼈 􏼉 ⊂ [a, b] ⊂ (0, 1), we
obtain

1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 (1 − b)a xn − Wnxn

����
����
2

+ zn − wn

����
����
2

􏼚 􏼛 + vn − xn+1
����

����
2

≤ xn − x
∗����
����
2

− xn+1 − x
∗����
����
2

+ βnM1 � Γn − Γn+1 + βnM1.

(29)

Because lim infn⟶∞(1 − cn)> 0, θn⟶0, βn⟶0, and
Γn+1 − Γn⟶0, one has
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lim
n⟶∞

xn − Wnxn

����
���� � lim

n⟶∞
zn − wn

����
���� � lim

n⟶∞
vn − xn+1

����
���� � 0. (30)

Also, noticing βn(f(xn) − ρFTnzn) + (1 − cn) (Tnzn −

x∗)+ cn(xn − x∗) � vn − x∗, one gets

xn+1 − x
∗����
����
2

� xn+1 − vn + vn − x
∗����
����
2

� cn xn − x
∗

( 􏼁 + 1 − cn( 􏼁 T
n
zn − x

∗
( 􏼁 + βn f xn( 􏼁 − ρFT

n
zn( 􏼁 + xn+1 − vn

����
����
2

xn − x
∗����
����
2

+ 1 − cn( 􏼁 1 + 2 + θn( 􏼁θn􏼂 􏼃 xn − x
∗����
����
2

− 1 − cn( 􏼁cn T
n
zn − xn

����
����
2

+ 2 βn f xn( 􏼁
����

���� + ρFT
n
zn

����
����􏼐 􏼑 + xn+1 − vn

����
����􏽮 􏽯 xn+1 − x

∗����
����

xn − x
∗����
����
2

+ 2 + θn( 􏼁θn xn − x
∗����
����
2

− 1 − cn( 􏼁cn T
n
zn − xn

����
����
2

+ 2 βn f xn( 􏼁
����

���� + ρFT
n
zn

����
����􏼐 􏼑 + xn+1 − vn

����
����􏽮 􏽯 xn+1 − x

∗����
����,

(31)

which immediately arrives at

cn 1 − cn( 􏼁 xn − T
n
zn

����
����
2

≤ Γn − Γn+1 + θn 2 + θn( 􏼁Γn + 2 βn f xn( 􏼁
����

���� + ρFT
n
zn

����
����􏼐 􏼑 + xn+1 − vn

����
����􏽮 􏽯Γ1/2n+1.

(32)

Because 1> lim infn⟶∞cn ≥ lim infn⟶∞cn > 0,
θn⟶0, βn⟶0, Γn+1 − Γn⟶0, and vn − xn+1⟶0, from
the boundedness of Tnzn􏼈 􏼉, f(xn)􏼈 􏼉, one obtains
limn⟶∞‖Tnzn − xn‖ � 0. So, we know from Algorithm 3

and (30) that
‖xn − wn‖ � σn‖xn − Wnxn‖≤ ‖xn − Wnxn‖⟶0
(n⟶∞), and

xn+1 − xn

����
����≤ xn+1 − vn

����
���� + vn − xn

����
����

� xn+1 − vn

����
���� + βnf xn( 􏼁 + 1 − cn( 􏼁 T

n
zn − xn( 􏼁 − βnρFT

n
zn

����
����

≤ xn+1 − vn

����
���� + T

n
zn − xn

����
���� + βn f xn( 􏼁

����
���� + ρFT

n
zn

����
����􏼐 􏼑⟶0 (n⟶∞).

(33)

Initial Step: Given any starting x1 ∈ C. Let μ> 0, λ ∈ (0, 1/μ), l ∈ (0, 1).
Iterations: Given the current iterate xn, calculate xn+1 below:
Step 1. Compute wn � (1 − σn)xn + σnWnxn, yn � PC(wn − λAwn) and rλ(wn): � wn − yn.
Step 2. Compute
tn � wn − τnrλ(wn), with τn: � ljn and integer jn being the smallest nonnegative j

s.t. μ/2‖rλ(wn)‖2 ≥ 〈A(wn − ljrλ(wn)) − Awn, yn − wn〉

Step 3. Calculate
xn+1 � PC[βnf(xn) + cnwn + ((1 − cn)I − βnρF)Tnzn]

with zn � PCn
(wn), Cn: � u ∈ C: hn(u)≤ 0􏼈 􏼉 and hn(u) � 〈Atn, u − wn〉 + τn/2λ‖rλ(wn)‖2.

Put n: � n + 1 and return to Step 1.
It is worthy to mention that Lemmas 8–11 remain true for Algorithm 4.

ALGORITHM 4: Te 2nd Mann hybrid deepest-descent extragradient rule.
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Setting p � x∗, in terms of Step 3, one has [(1 − cn −

βnτ) + θn][τn/2λL‖rλ(wn)‖2]2 ≤ Γn − Γn+1 + βnM1. Since
0< lim infn⟶∞(1 − cn), θn⟶0, βn⟶0, and
Γn+1 − Γn⟶0, one gets limn⟶∞[τn/2λL‖rλ(wn)‖2]2 � 0.
Hence, by Lemma 11, we deduce that

lim
n⟶∞

yn − wn

����
���� � 0. (34)

Since xn􏼈 􏼉 is bounded, we deduce that ∃ xnk
􏽮 􏽯 ⊂ xn􏼈 􏼉 s.t.

lim sup
n⟶∞
〈(f − ρF)x

∗
, xn − x

∗〉 � limk⟶∞〈(f − ρF)x
∗
, xnk

− x
∗〉. (35)

According to the refexivity of H and boundedness of
xn􏼈 􏼉, one may presume that xnk

⇀􏽥x. Hence, by (35), one gets

lim sup
n⟶∞
〈(f − ρF)x

∗
, xn − x

∗〉 �〈(f − ρF)x
∗
, 􏽥x − x

∗〉.

(36)

So, we know from xnk
⇀􏽥x and xn − wn⟶0 that wnk

⇀􏽥x.
Because xn+1 − xn⟶0, xn − wn⟶0, yn− wn⟶

0, zn − wn⟶0, and Tn+1xn − Tnxn⟶0, from Lemma 10,
we infer that 􏽥x lies in Ω. Consequently, using (15) and (36),
we obtain

lim sup
n⟶∞
〈(f − ρF)x

∗
, xn − x

∗〉 �〈(f − ρF)x
∗
, 􏽥x − x

∗〉 ≤ 0.

(37)

Tis along with (30)–(33) arrives at

lim sup
n⟶∞
〈(f − ρF)x

∗
, vn − x

∗〉

� lim sup
n⟶∞
〈(f − ρF)x

∗
, vn − xn+1 + xn+1 − xn〉 +〈(f − ρF)x

∗
, xn − x

∗〉􏼂 􏼃≤ 0.
(38)

Note that βn(τ − δ) ∈ [0, 1]∀n, 􏽐
∞
n�1βn(τ − δ) �∞, and

lim supn⟶∞ [2〈(f − ρF)x∗, vn − x∗〉/τ − δ +θn/βn · M/τ
− δ] ≤ 0. So, using Lemma 4 to (28), we have
limn⟶∞‖xn − x∗‖2 � 0.

Case 2. Suppose that ∃ Γnk
􏽮 􏽯 ⊂ Γn􏼈 􏼉 s.t. Γnk

< Γnk+1,∀k ∈N,
withN being the set of all natural numbers. Let η: N⟶N

be defned as η(n): � max j≤ n: Γj <Γj+1􏽮 􏽯. Using Lemma
6, one obtains that Γn ≤ Γη(n)+1 and Γη(n) ≤ Γη(n)+1. Putting
p � x∗, from Step 2, we have

1 − cη(n) − βη(n)τ􏼐 􏼑 + θη(n)􏽨 􏽩 (1 − b)a xη(n) − Wη(n)xη(n)

�����

�����
2

􏼚

+ zη(n) − wη(n)

�����

�����
2
􏼛 + vη(n) − xη(n)+1

�����

�����
2

≤ xη(n) − x
∗

�����

�����
2

− xη(n)+1 − x
∗

�����

�����
2

+ βη(n)M1 ≤Γη(n) − Γη(n)+1 + βη(n)M1.

(39)

Tis hence leads to limn⟶∞‖xη(n) − Wη(n)xη(n)‖ �

limn⟶∞‖zη(n) − wη(n)‖ � limn⟶∞‖vη(n) − xη(n)+1‖ � 0.
Setting p � x∗, in terms of Step 3, one gets

1 − cη(n) − βη(n)τ􏼐 􏼑 + θη(n)􏽨 􏽩
τη(n)

2λL
rλ wη(n)􏼐 􏼑

�����

�����
2

􏼔 􏼕
2
≤ Γη(n) − Γη(n)+1 + βη(n)M1, (40)

which hence leads to limn⟶∞[τη(n)/2λL‖rλ(wη(n))‖
2]2 � 0.

Using the same inferences as in the proof of Case 1, one
obtains that limn⟶∞‖yη(n) − wη(n)‖ � limn⟶∞
‖xη(n) − wη(n)‖ � limn⟶∞ ‖xη(n) − xη(n)+1‖ � 0, and

0≥ lim sup
n⟶∞
〈(f − ρF)x

∗
, vη(n) − x

∗〉. (41)

Furthermore, using (28), one has
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βη(n)(τ − δ)Γη(n) ≤ Γη(n) − Γη(n)+1 + βη(n)(τ − δ)
2〈(f − ρF)x

∗
, vη(n) − x

∗〉
τ − δ

+
θη(n)

βη(n)

·
M

τ − δ
⎡⎣ ⎤⎦

–≤ βη(n)(τ − δ)
2〈(f − ρF)x∗, vη(n) − x∗〉

τ − δ
+
θη(n)

βη(n)

·
M

τ − δ
⎡⎣ ⎤⎦,

(42)

which hence arrives at

lim sup
n⟶∞
Γη(n) ≤ lim sup

n⟶∞

2〈(f − ρF)x
∗
, vη(n) − x

∗〉
τ − δ

+
θη(n)

βη(n)

·
M

τ − δ
⎡⎣ ⎤⎦≤ 0. (43)

Tus, limn⟶∞Γη(n) � 0. Also, observe that

xη(n)+1 − x
∗

�����

�����
2

� xη(n)+1 − xη(n)

�����

�����
2

+ 2〈xη(n)+1 − xη(n), xη(n) − x
∗〉 + xη(n) − x

∗
�����

�����
2

≤ xη(n)+1 − xη(n)

�����

�����
2

+ 2 xη(n)+1 − xη(n)

�����

����� + xη(n) − x
∗

�����

����� + xη(n) − x
∗

�����

�����
2
.

(44)

Owing to Γn ≤Γη(n)+1, we get

xn − x
∗����
����
2 ≤ xη(n)+1 − x

∗
�����

�����
2

≤ xη(n)+1 − xη(n)

�����

�����
2

+ 2 xη(n)+1 − xη(n)

�����

����� xη(n) − x
∗

�����

����� + xη(n) − x
∗

�����

�����
2
⟶0 (n⟶∞).

(45)

Consequently, limn⟶∞‖xn − x∗‖2 � 0. Theorem 2. Suppose that T is a nonexpansive self-mapping
on C and xn􏼈 􏼉 is fabricated by the modifcation of Algo-
rithm 3, i.e., for any starting x1 ∈ C,

wn � 1 − σn( 􏼁xn + σnWnxn,

yn � PC wn − λAwn( 􏼁,

tn � 1 − τn( 􏼁wn + τnyn,

xn+1 � PC βnf xn( 􏼁 + cnxn + 1 − cn( 􏼁I − βnρF( 􏼁TPCn
wn( 􏼁􏽨 􏽩,∀n≥ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

where for any n, Cn and τn are picked as in Algorithm 3.Ten,
xn􏼈 􏼉 converges strongly to x∗ ∈ Ω, which is only a solution to
the VIP: 〈(f − ρF)x∗, x − x∗〉≤ 0,∀x ∈ Ω.

Proof. We write zn: � PCn
(wn), and divide the proof into

a few steps.
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Step 1. One claims that xn􏼈 􏼉 is of boundedness. In fact,
via the similar inferences to those in Step 1 of the proof
of Teorem 1, one attains the claim.

Step 2. One claims that

1 − cn − βnτ( 􏼁 1 − σn( 􏼁σn xn − Wnxn

����
����
2

+ zn − wn

����
����
2

􏼚 􏼛 + vn − xn+1
����

����
2
,

≤ xn − p
����

����
2

− xn+1 − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉,
(47)

where vn � βnf(xn) + cnxn + ((1 − cn)I − βnρF)Tzn.
In fact, via the similar inferences to those in Step 2 of
the proof of Teorem 1, one attains the claim.

Step 3. One claims that

1 − cn − βnτ( 􏼁
τn

2λL
rλ wn( 􏼁

����
����
2

􏼔 􏼕
2
≤ xn − p

����
����
2

− xn+1 − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉, (48)

In fact, via the similar inferences to those in Step 3 of
the proof of Teorem 1, one attains the claim.

Step 4. One claims that

xn+1 − p
����

����
2 ≤ 1 − βn(τ − δ)􏼂 􏼃 xn − p

����
����
2

+ βn(τ − δ) ·
2〈(f − ρF)p, vn − p〉

τ − δ
. (49)

In fact, via the similar inferences to those in Step 4 of
the proof of Teorem 1, one attains the claim.
Step 5. One claims that xn⟶x∗ ∈ Ω, which is only
a solution of the VIP (15). In fact, via the similar in-
ferences to those in Step 3 of the proof of Teorem 1,
one attains the claim.
Next, we introduce modifed hybrid deepest-descent
extragradient approach. □

Theorem 3. Let xn􏼈 􏼉 be the sequence fabricated in Algo-
rithm 4. Assume Tn+1xn − Tnxn⟶0. Ten, xn􏼈 􏼉 converges
strongly to x∗ ∈ Ω, which is only a solution to the VIP:
〈(f − ρF)x∗, x − x∗〉≤ 0,∀x ∈ Ω.

Proof. Because 1> lim sup
n⟶∞

σn ≥ lim inf
n⟶∞

σn > 0 and
θn/βn⟶0, one may presume that (0, 1) ⊃ [a, b] ⊃ σn􏼈 􏼉 and
βn(τ − δ)/2≥ θn,∀n. It is easy to verify that
PΩ(I − ρF + f): C⟶C is a contractive map. Hence,
∃ ∣ x∗ ∈ C s.t. x∗ � PΩ(I − ρF + f)x∗. Tus, ∃|x∗ ∈ Ω sat-
isfying the VIP (15).

In what follows, in the rest of the proof, we divide it into
some steps.

Step 1. One claims that xn􏼈 􏼉 is of boundedness. In fact,
using the similar inferences to those in Step 1 of the
proof of Teorem 1, we obtain that relations (16)–(30)
hold. Tus, using (30) and 1> cn + βn, one deduces that

xn+1 − p‖≤ ‖βn f xn( 􏼁 − f(p)( 􏼁 + cn wn − p( 􏼁 + 1 − cn( 􏼁
����

× I − βn/1 − cnρF( 􏼁T
n
zn − I − βn/1 − cnρF( 􏼁p􏼂 􏼃 + βn(f − ρF)p

����

≤ βnδ + cn + 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 xn − p
����

���� + βn‖(f − ρF)p‖

≤max xn − p
����

����,
2‖(f − ρF)p‖

τ − δ
􏼨 􏼩.

(50)

Using the induction, one obtains
‖xn − p‖≤max ‖x1 − p‖, 2‖(f − ρF)p‖/τ − δ􏼈 􏼉,∀n.

Hence, xn􏼈 􏼉 is bounded, and so are the sequences
wn􏼈 􏼉, yn􏼈 􏼉, zn􏼈 􏼉, f(xn)􏼈 􏼉, Atn􏼈 􏼉, Wnxn􏼈 􏼉, Tnzn􏼈 􏼉.
Step 2. One claims that
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1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 1 − σn( 􏼁σn xn − Wnxn‖
2
+

����
����zn − wn‖

2
􏽮 􏽯 + vn − xn+1

����
����
2

–≤ − xn+1 − p
����

����
2

+ xn − p
����

����
2

+ βnM1.
(51)

for certain M1 > 0, where vn � βnf(xn) + cnwn + ((1 −

cn)I − βnρF)Tnzn and xn+1 � PCvn. To prove this, we
frst note that

xn+1 − p
����

����
2 ≤ βn f xn( 􏼁 − f(p)( 􏼁 + cn wn − p( 􏼁 + 1 − cn( 􏼁

× I − βn/1 − cnρF( 􏼁T
n
zn − I − βn/1 − cnρF( 􏼁p􏼂 􏼃 +βn(f − ρF)p

����
2

− vn − xn+1
����

����
2

≤ βnδ xn − p
����

����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 zn − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉 − vn − xn+1
����

����
2
.

(52)

Furthermore, via the similar reasoning to that in (21),
we get

zn − p
����

����
2 ≤ xn − p

����
����
2

− 1 − σn( 􏼁σn xn − Wnxn

����
����
2

− zn − wn

����
����
2
. (53)

Substituting (38) into (37), one gets

xn+1 − p
����

����
2 ≤ βnδ xn − p

����
����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 xn − p
����

����
2

􏼚

− 1 − σn( 􏼁σn xn − Wnxn

����
����
2

− zn − wn

����
����
2
􏼛 + 2βn〈(f − ρF)p, vn − p〉 − vn − xn+1

����
����
2

≤ xn − p
����

����
2

− 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 1 − σn( 􏼁σn xn − Wnxn

����
����
2

+ zn − wn

����
����
2

􏼚 􏼛 + βnM1

− vn − xn+1
����

����
2
.

(54)

with supn≥1 2‖(ρF − f)p‖‖vn − p‖≤M1 for certain
M1 > 0. Tis immediately arrives at the claim.

Step 3. One claims that

1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 τn/2λL rλ wn( 􏼁
����

����
2

􏼔 􏼕
2
≤ xn − p

����
����
2

− xn+1 − p
����

����
2

+ βnM1. (55)

In fact, via the similar inferences to those in (27), one
obtains that for certain L> 0,

zn − p
����

����
2 ≤ wn − p

����
����
2

− τn/2λL rλ wn( 􏼁
����

����
2

􏼔 􏼕
2
. (56)

From (39), (30), and (43) we know that
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xn+1 − p
����

����
2 ≤ βnδ xn − p

����
����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 zn − p
����

����
2

+ βnM1

≤ βnδ xn − p
����

����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 wn − p
����

����
2

􏼚

− τn/2λL rλ wn( 􏼁
����

����
2

􏼔 􏼕
2
􏼩 + βnM1

≤ xn − p
����

����
2

− 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 τn/2λL rλ wn( 􏼁
����

����
2

􏼔 􏼕
2

+ βnM1.

(57)

which hence yields the claim.
Step 4. One claims that
‖xn+1 − p‖2 ≤ [1 − βn(τ − δ)]‖xn − p‖2 +

βn(τ − δ)[2〈(f − ρF)p, vn − p〉/τ − δ + θn/βn · M/τ−

δ] for some M> 0. In fact, using Lemma 7 and (30), one
has

xn+1 − p
����

����
2 ≤ vn − p

����
����
2

� βn f xn( 􏼁 − f(p)( 􏼁 + cn wn − p( 􏼁 + 1 − cn( 􏼁

–× I − βn/1 − cn ρF( 􏼁Tnzn − I − βn/1 − cn ρF( 􏼁p􏼂 􏼃 + βn(f − ρF)p2

–≤ βnδ xn − p
����

����
2

+ cn xn − p
����

����
2

+ 1 − cn − βnτ + θn( 􏼁

– × zn − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉

–≤ 1 − βn(τ − δ)􏼂 􏼃 xn − p
����

����
2

+ βn(τ − δ) 2〈(f − ρF)p, vn − p〉/τ − δ + θn/βn · M/τ − δ􏼂 􏼃,

(58)

where supn≥1 ‖xn − p‖2 ≤M for certain M> 0. Step 5. One claims that xn⟶x∗ ∈ Ω which is only
a solution of the VIP (15). In fact, setting p � x∗, in
terms of Step 4, one deduces that

xn+1 − x
∗
‖
2 ≤ 1 − βn(τ − δ)􏼂 􏼃

����
����xn − x

∗
‖
2

+ βn(τ − δ) 2〈(f − ρF)x
∗
, vn − x

∗〉/τ − δ + θn/βn · M/τ − δ􏼂 􏼃. (59)

Setting Γn � ‖xn − x∗‖2, one demonstrates the con-
vergence of Γn􏼈 􏼉 to zero via the two cases below. □

Case 3. Presume that ∃n0 ≥ 1 s.t. Γn􏼈 􏼉 is nonincreasing.
Ten, lim

n⟶∞
Γn � 􏽢h< +∞ and Γn − Γn+1⟶0 (n⟶∞).

Setting p � x∗, from Step 2 and σn􏼈 􏼉 ⊂ [a, b] ⊂ (0, 1), we
obtain

1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 (1 − b)a xn − Wnxn

����
����
2

+ zn − wn

����
����
2

􏼚 􏼛 + vn − xn+1
����

����
2

–≤ 1 − cn − βnτ( 􏼁 + θn􏼂 􏼃 1 − σn( 􏼁σn xn − Wnxn
����

����
2

+ zn − wn
����

����
2

􏼚 􏼛 + vn − xn+1
����

����
2

–≤ Γn − Γn+1 + βnM1,

(60)

which hence yields

lim
n⟶∞

xn − Wnxn

����
���� � lim

n⟶∞
zn − wn

����
���� � lim

n⟶∞
vn − xn+1

����
���� � 0. (61)
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Putting p � x∗, from Step 3, we obtain [(1 − cn − βnτ) +

θn][τn/2λL ‖rλ(wn)‖2]2 ≤Γn − Γn+1 + βnM1, which imme-
diately leads to limn⟶∞[τn/2λL‖rλ(wn)‖2]2 � 0. Using the
similar reasoning to that in Case 1 of the proof ofTeorem 1,
one deduces that limn⟶∞‖wn − yn‖ � limn⟶∞
‖wn − xn‖ � limn⟶∞‖xn+1 − xn‖ � 0, and
lim supn⟶∞〈(f − ρF)x∗, vn − x∗〉 ≤ 0. Accordingly, using
Lemma 4 to (59), we attain limn⟶∞‖xn − x∗‖2 � 0.

Case 4. Presume that ∃ Γnj
􏼚 􏼛 ⊂ Γn􏼈 􏼉 s.t. Γnj

<Γnj+1,∀j ∈N,
withN being the set of all natural numbers. Let η: N⟶N

be defned as η(n): � max j≤ n: Γj <Γj+1􏽮 􏽯. Using Lemma

6, one gets Γη(n) ≤ Γη(n)+1 and Γn ≤Γη(n)+1. In the rest of the

proof, applying the similar reasoning to that in Case 2 of the
proof of Teorem 1, one obtains the claim.

Theorem 4. Suppose that T is a nonexpansive self-mapping
on C and xn􏼈 􏼉 is fabricated by the modifcation of Algo-
rithm 4, i.e., for each starting x1 ∈ C,

wn � 1 − σn( 􏼁xn + σnWnxn,

yn � PC wn − λAwn( 􏼁,

tn � 1 − τn( 􏼁wn + τnyn,

xn+1 � PC βnf xn( 􏼁 + cnwn + 1 − cn( 􏼁I − βnρF( 􏼁TPCn
wn( 􏼁􏽨 􏽩,∀n≥ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(62)

where for any n, Cn and τn are picked as in Algorithm 4.Ten,
xn􏼈 􏼉 converges strongly to x∗ ∈ Ω, which is only a solution to
the VIP: 〈(f − ρF)x∗, x − x∗〉≤ 0,∀x ∈ Ω.

Proof. One writes zn: � PCn
(wn) and divides the proof of

the theorem into a few steps.

Step 1. One claims that xn􏼈 􏼉 is of boundedness. In fact,
via the similar inferences to those in Step 1 of the proof
of Teorem 3, one obtains the claim.
Step 2. One claims that

1 − cn − βnτ( 􏼁 1 − σn( 􏼁σn xn − Wnxn

����
����
2

+ zn − wn

����
����
2

􏼚 􏼛 + vn − xn+1
����

����
2

≤ xn − p
����

����
2

− xn+1 − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉,
(63)

with vn � βnf(xn) + cnwn + ((1 − cn)I − βnρF)Tzn. In
fact, via the similar inferences to those in Step 2 of the
proof of Teorem 3, one obtains the claim.

Step 3. One claims that

1 − cn − βnτ( 􏼁 τn/2λL rλ wn( 􏼁
����

����
2

􏼔 􏼕
2
≤ xn − p

����
����
2

− xn+1 − p
����

����
2

+ 2βn〈(f − ρF)p, vn − p〉. (64)

In fact, via the similar inferences to those in Step 3 of
the proof of Teorem 3, one obtains the claim.
Step 4. One claims that ‖xn+1 − p‖2 ≤ [1 − βn

(τ − δ)]‖xn − p‖2+ βn(τ − δ) · 2〈(f − ρF)p, vn − p〉/
τ − δ. Indeed, via the similar inferences to those in Step
4 of the proof of Teorem 3, one obtains the claim.
Step 5. One claims that xn⟶x∗ ∈ Ω which is only
a solution of the VIP (15). In fact, via the similar

inferences to those in Step 5 of the proof of Teorem 3,
one obtains the claim. □

4. Applicability and Implementability

In this section, we provide an illustrated instance to dem-
onstrate the applicability and implementability of our
proposed algorithms. Put ρ � 2, λ � l � μ �

1/2, σn � 1/3, βn � 1/3(n + 1), and cn � 1/3(n + 1).
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We frst provide an example of Lipschitz continuous and
pseudomonotone mapping A, asymptotically nonexpansive
mapping T, and countably many nonexpansive mappings
Tn􏼈 􏼉
∞
n�1 with Ω � VI(C, A)∩ (∩∞n�1Fix(Ti))≠∅ where

T0: � T. Put C � [− 3, 3] and H � R with the inner product
〈a, b〉 � ab and induced norm ‖ · ‖ � | · |. Te starting point
x1 is arbitrarily selected in C. Put
f(x) � F(x) � 1/2x,∀x ∈ C s.t.

δ � 1/2< τ � 1 −

�������������

1 − ρ 2η − ρκ2􏼐 􏼑

􏽱

� 1. (65)

Assume that A: H⟶H and T, Tn: C⟶C are for-
mulated as Av: � 1/1 + |sin v| − 1/1 + |v|, Tv: � 3/5 sin v,
and Tnv � Sv � sin v,∀v ∈ C, n≥ 1. We now claim that A is
of both pseudomonotonicity and Lipschitz continuity. In-
deed, for each v, u ∈ H, one has

‖Av − Au‖≤
‖v‖ − ‖u‖

(1 +‖u‖)(1 +‖v‖)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

‖sin v‖ − ‖sin u‖

(1 +‖sin u‖)(1 +‖sin v‖)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

–≤
‖v − u‖

(1 +‖u‖)(1 +‖v‖)
+

‖sin v − sin u‖

(1 +‖sin u‖)(1 +‖sin v‖)
≤ 2‖v − u‖.

(66)

Accordingly, A is of Lipschitz continuity. In what fol-
lows, one claims that A is of pseudomonotonicity. For any
v, u ∈ H, it is clear that 〈Av, u − v〉 � (1/1 + |sin v| − 1/1+

|u|)(u − v)≥ 0⇒〈Au, u − v〉 � (1/1 + |sin u| − 1/1 + |u|) (u

− v)≥ 0. Moreover, it is easy to check that T is of asymptotical

nonexpansivity with θn � (3/5)n,∀n, s.t.
‖Tnxn − Tn+1xn‖⟶0 as n⟶∞. In fact, one observes that
‖Tnv − Tnu‖≤ 3/5‖Tn− 1v − Tn− 1u‖≤ · · · ≤ (3/5)n ‖v − u‖≤
(1 + θn)‖v − u‖, and

T
n+1

xn − T
n
xn

����
����≤ (3/5)

n− 1
T
2
xn − Txn

����
���� � (3/5)

n− 1 3
5
sin Txn( 􏼁 − 3/5 sinxn

�������

�������
≤ 2

3
5

􏼒 􏼓
n

⟶0. (67)

It is clear that Fix(T) � 0{ } and
limn⟶∞θn/βn � lim(3/5)n/1/3(n + 1)n⟶∞ � 0. Addition-
ally, it is readily known that Tn � S is of nonexpansivity and
Fix(S) � 0{ }. Tus, Ω � VI(C, A)∩ Fix(S)∩ Fix(T) �

0{ }≠∅. So, from Wn � S and (1 − cn)I − βnρF �

(1 − n/3(n + 1))I − 1/ 3(n + 1)2 · 1/2I � 2/3I, we reduce
Algorithm 3 to the following:

wn �
2
3
xn +

1
3

Sxn,

yn � PC wn −
1
2

Awn􏼒 􏼓,

tn � 1 − τn( 􏼁wn + τnyn,

xn+1 �
1

3(n + 1)
·
1
2
xn +

n

3(n + 1)
xn +

2
3
T

n
PCn

wn( 􏼁,∀n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)

where for any n, Cn and τn are picked as in Algorithm 3.
Ten, by Teorem 1, one deduces that xn􏼈 􏼉 converges to
0 ∈ Ω � VI(C, A)∩ Fix(S)∩ Fix(T).

Particularly, noticing the fact that Tu: � 3/5 sin u is of
nonexpansivity, we also present the modifcation of Algo-
rithm 3, i.e.,

wn �
2
3
xn +

1
3

Sxn,

yn � PC wn −
1
2

Awn􏼒 􏼓,

tn � 1 − τn( 􏼁wn + τnyn,

xn+1 �
1

3(n + 1)
·
1
2
xn +

n

3(n + 1)
xn +

2
3

TPCn
wn( 􏼁,∀n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

where for any n, Cn and τn are picked as above. Ten, by
Teorem 2, one infers that xn􏼈 􏼉 converges to
0 ∈ Ω � VI(C, A)∩ Fix(S)∩ Fix(T).

5. Concluding Remarks

Compared with the associated theorems of Kraikaew and
Saejung [21], Ceng and Shang [23], and Reich et al. [25], our
theorems enhance, extend, and develop them in the fol-
lowing ways.
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(i) Te issue of seeking a point of VI(C, A) in [21] is
developed into our issue of seeking a point of
VI(C, A)∩ (∩∞i�1Fix(Ti)) with Tn being of non-
expansivity for any n and T0 � T being of
asymptotical nonexpansivity. Te Halpern sub-
gradient extragradient rule for settling the VIP in
[21] is developed into our Mann hybrid deepest-
descent extragradient approach for handling
a HVI with the CFPP and VIP constraints, which
is on the basis of Mann’s iterative technique,
viscosity approximation method, subgradient
extragradient rule with linear-search process, and
hybrid deepest-descent rule.

(ii) Te issue of seeking a point of VI(C, A) in [25] is
developed into our issue of seeking a point of
VI(C, A)∩ (∩∞i�1Fix(Ti)) with Tn being of non-
expansivity for any n and T0 � T being of asymp-
totical nonexpansivity. Te modifed projection-
type rule with linear-search process for settling
the VIP in [25] is developed into Mann hybrid
deepest-descent extragradient approach for settling
a HVI with the CFPP and VIP constraints, which is
on the basis of Mann’s iterative technique, viscosity
approximation method, subgradient extragradient
rule with linear-search process, and hybrid deepest-
descent rule.

(iii) Te issue of seeking a point of
VI(C, A)∩ (∩∞i�1Fix(Ti)) with Lipschitz continuity
and sequentially weak continuity mapping A in [23]
is developed into our issue of seeking a point of
VI(C, A)∩ (∩∞i�1Fix(Ti)) with A being uniform
continuity mapping satisfying ‖Az‖≤ lim inf

n⟶∞
‖Axn‖

for any xn􏼈 􏼉 ⊂ C with xn⇀z ∈ C. Te hybrid
inertial-type subgradient extragradient rule with
linear-search process in [23] is developed intoMann
hybrid deepest-descent extragradient approach, e.g.,
the original inertial-type iteration
″wn � Tnxn + αn(Tnxn − Tnxn− 1)

″ is replaced by
Mann-type iteration ″wn � (1 − σn)xn + σnWnxn

″,
and the original viscosity iteration
″xn+1 � βnf(xn) + cnxn + ((1 − cn)I − βnρF)Tnzn

″

is replaced by our hybrid viscosity iteration
“xn+1 � PC[βnf(xn) + cnxn + ((1 − cn)I − βnρ
F)Tnzn].” It is worthy to point out that the def-
nition of zn in the former formula of xn+1 is quite
diferent from the defnition of zn in the latter
formula of xn+1.
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Te damped parametric driven nonlinear pendulum equation/oscillator (NPE), also known as the damped disturbed NPE, is
examined, along with some associated oscillators for arbitrary angles with the vertical pivot. For analyzing and solving the current
pendulum equation, we reduce this equation to the damped Dufng equation (DDE) with variable coefcients. After that, the
DDEwith variable coefcients is divided into two cases. In the frst case, two analytical approximations to the damped undisturbed
NPE are obtained. Te frst approximation is determined using the ansatz method while the second one is derived using He’s
frequency formulation. In the second case, i.e., the damped disturbed NPE, three analytical approximations in terms of the
trigonometric and Jacobi elliptic functions are derived and discussed using the ansatz method. Te semianalytical solutions of the
twomentioned cases are graphically compared with the 4th-order Runge–Kutta (RK4) approximations. In addition, the maximum
error for all the derived approximations is estimated as compared with the RK4 approximation. Te proposed approaches as well
as the obtained solutions may greatly help in understanding the mysteries of various nonlinear phenomena that arise in diferent
scientifc felds such as fuid mechanics, plasma physics, engineering, and electronic chips.

1. Introduction

Te complex pendulum is a paradigm for investigating
oscillations and numerous other physical problems and
nonlinear dynamical phenomena [1, 2]. Several models for
the nonlinear pendulum oscillators (NPOs) have been uti-
lized for investigating numerous physical and engineering
problems, e.g., the oscillations in chips and electrical circuits,
Bose–Einstein condensates, image processing, the move-
ment of satellites, oscillations in diferent plasma models,
and many other problems in several felds [3–5]. Moreover,
many evolution equations to the pendulum oscillators have
been utilized as a physical model to study several natural
problems related to diferent oscillations, bifurcations, and

chaos [6–8]. For instance, He et al. [9] modifed the structure
of the pendulum oscillations on a dynamical system by using
a device with electromagnetic harvesting to control the
kinematics of a spring-pendulum system. Based on
Lagrange’s equations, the authors derived the governing
kinematics equations of the NPOs and solved them ana-
lytically using the multiple-scale method (MSM). In that
investigation, the authors explained various behaviors,
which control the mentioned model, such as the stability of
fxed points, amplitudes, phases, and the (in)stability re-
gions. Besides that, they motioned that this model is utilized
to control sensors in building transportation and industrial
sectors. Te auto-parametric system of three degrees of
freedom consisting of a damped spring pendulum was
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demonstrated in the study of [10]. Te analytical solution to
the motion equations up to the third approximation was
obtained using the MSM. Furthermore, the stability and
instability zones were analyzed and investigated. In the study
of [11], the authors investigated the periodic property of
a rotating pendulum model. Te governing equation for
this model was solved analytically using He’s homotopy
perturbation method (He’s HPM). Te accuracy of the
obtained results was verifed by comparing the obtained
solution with the numerical one based on the 4th-order
Runge–Kutta (RK4) method and with He’s frequency
formulation (He’s FF). HPM and its family succeeded more
than other methods in analyzing pendulum equations
without both linear and negative-linear terms [12] and
many other NPOs [13–15]. He’s FF has developed rapidly
since its inception; where many researchers have developed
this method to give good results for many complicated
nonlinear problems without any restrictions [16–21]. Te
hybrid forced Rayleigh–Van der Pol–Dufng oscillator
with higher-order nonlinearity has been solved using the
Poincaré–Lindstedt approach. Te researchers discovered
that the approximate solution and the RK4 numerical
solution are in good agreement. Te authors found that
there is a high agreement between the analytical and nu-
merical approximations [22]. Also, the homotopy analysis
method (HAM) has been employed for analyzing the
damped Dufng oscillator (DDO) [23]. Te Laplace
transform, modifed diferential transform method
(MDTM), and Padé approximants have been applied for
analyzing and investigating the approximations to many
NPOs such as the forced DDO and forced damped van der
Pol oscillator [24]. Both damped and undamped Helm-
holtz–Dufng (H-D) oscillators have been studied and
analyzed using the ansatz method with the moving
boundary technique to obtain high-accurate approxima-
tions [25]. Te authors [25] made a comparison between
both approximate analytic and numeric solutions to prove
the accuracy of the analytic approximations, and it was
found that the obtained results were in agreement with
each other to a large extent. Moreover, the (un)damped
quadratic nonlinear Helmholtz oscillator (HO) have been
investigated using ansatz method and the exact solution for
the undamped oscillator as well as the approximate solu-
tion to the damped oscillator have been derived in terms of
the Weiersrtrass elliptic functions [26]. Tere have been
few attempts to solve and analyze damped NPOs while
taking friction forces into account [27]. Te analytical
approximations to some damped NPOs have been derived
in terms of the Jacobi elliptic functions [27]. Tere are
many other physical forces, such as periodic and perturbed
forces in addition to friction force, that can afect the
behavior of pendulum oscillators. For instance, the damped
parametric nonlinear pendulum equation/oscillator (NPE/
NPO) or known as the damped disturbed NPE/NPO has
been discussed and solved numerically using implicit
discrete mappings [28, 29]. Also, the parametric NPE with
both frictional and excited forces has been solved analyt-
ically using the ansatz method and He’s FF as well as solved
numerically via the Galerkin method [30]. Te comparison

with the RK4 approximation revealed that the derived
analytical and numerical solutions were extremely accu-
rate. Also, utilizing a variety of analytical and numerical
techniques, the parametric NPE as well as certain related
oscillators have been solved [31]. Te authors used the
ansatz method for deriving high-accurate approximations
to the unforced damped parametric NPE in terms of an-
gular Mathieu functions. Also, the authors applied the
ansatz method to fnd some approximations to the damped
(un)forced parametric NPE in terms of trigonometric
functions. Moreover, He’s FF was applied to obtain some
approximations for both undamped and damped para-
metric NPE. Furthermore, HPM was carried out for ana-
lyzing both forced undamped and forced damped
parametric NPE. Also, the authors applied the Kry-
lov–Bogoliúbov Mitropolsky method (KBMM) for ana-
lyzing forced damped parametric NPE. Finally, the authors
made a comparison between all obtained approximations
with numerical approximations using both RK4 method
and the hybrid Padé-fnite diference method. In current
work, the parametric (un)disturbed NPE and many other
related oscillators will be investigated in detail and some
innovative approximations using several efective tech-
niques will be derived using the ansatz method.Te present
study is divided into two main parts: in the frst part, some
semianalytical solutions (analytical approximations) to the
damped undisturbed NPE will be derived using the ansatz
method and He’s FF [17, 18, 32]. For the second part, the
damped disturbed NPE will be solved analytically via
diferent approaches based on the ansatz method. Fur-
thermore, the comparison between all obtained analytical
approximations for the two studied cases and the RK4
numerical approximation will be investigated graphically
and numerically.

Te rest of the present work is organized as follows. In
Section 2, a glimpse about the equation of motion of the
parametric pendulum equation and its solution is recovered.
In Section 3, two-diferent analytical approximations
(sometimes are called semianalytical solutions) to the
damped undisturbed NPO are obtained using a suitable
ansatz method and He’s FF. In Section 4, some semi-
analytical solutions to the damped parametric driven NPO
are discussed in detail. In this section, three-diferent for-
mulas for the semianalytical solutions are derived. Te re-
sults and discussion are introduced in Section 5. We
summarized and introduced the most important results in
Section 6.

2. The Damped Disturbed NPE and Its Solution

In this section, we construct the diferential equation that
describes the behavior of the parametric driven NPE on the
pivot vertical. A simple mathematical parametric pendulum
system is modeled by a point mass m in kg unit, hanging at
the end of a massless wire with length l in m unit and fxed to
a supporting point “O,” swinging to and from in a vertical
plane. It is assumed that the end of the massless wire is
moving harmonically with a small harmonic disturbance
[28]: y(t) � ± ε cos(ct) (the motion of the vibrating base),
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where ε is a dimensionless small parameter and c represents
the frequency of harmonic motion. By analyzing the pen-
dulum motion, we obtain the following equation:

x(t) � l sinφ,

y(t) � − l cosφ + ε cos(ct),
􏼨 (1)

where φ denotes the angular displacement about downward
vertical.

Accordingly, the velocities in (x, y)-directions read

_x(t) � φ
.
l cosφ,

_y(t) � ± φ
.
l sinφ − εc sin(ct).

⎧⎨

⎩ (2)

Using the Lagrangian method, the equation of motion
could be obtained taking damping force of the medium into
account [28]:

R1 ≡ φ
..

+ 2βφ
.

+ ϕ(t) sinφ � 0, (3)

where ϕ(t) � ω2
0 ± Q0 cos(ct), ω0 �

���
g/l

􏽰
denotes the

eigenfrequency of the system, β � μ/(2ml) indicates the
coefcient of the damping term, Q0 � εω2 is the excitation
amplitude, and ω2 � c2/l. Here, g represents the gravita-
tional acceleration in unit m/s2, g � 9.8m/s2. More details
about the deriving (3) can be found in the studies of [28, 29].

As a particular case, in the absence of the dissipative
(friction) forces, i.e., for β � 0, the parametric pendulum
equation reduces to the undamped disturbed nonlinear
pendulum equation:

φ
..

+ ϕ(t) sinφ � 0. (4)

For ε � 0 and undamping β � 0, the parametric pen-
dulum equation reduces to the simple pendulum equation:

φ
..

+ ω2
0 sinφ � 0. (5)

In the following sections, we proceed to solve and an-
alyze all the mentioned cases in detail.

3. Analytical Approximations to the Damped
Undisturbed NPE

It is supposed that ε � 0, then (3) reduces into the damped
simple pendulum equation:

R2 ≡ φ
..

+ 2βφ
.

+ ω2
0 sinφ � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0.

⎧⎨

⎩ (6)

For the Chebyshev approximation
sinφ ≈ (332/333)φ − (13/85)φ3, the initial value problem
(i.v.p.) (6) can be rewritten in the following damped Dufng
i.v.p. [33]:

k ≡ φ
..

+ 2βφ
.

+ pφ + qφ3
� 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0.

⎧⎨

⎩ (7)

where p � (332/333)ω2
0 and q � − (13/85)ω2

0.

3.1. First Formula: Trigonometric Solution. Now, we seek
a solution in the following ansatz:

φ � exp(− βt)[A sin(f(t)) + B cos(f(t)], (8)

where the coefcients A and B are undetermined coefcients
which can be obtained the initial conditions (ICs) φ(0) � φ0
and φ′(0) � φ

.

0 and f ≡ f(t), f(0) � 0 is a function to be
determined later. Applying the mentioned ICs, the values of
A and B are obtained as

A � ±

���������������������������������������������������

±
4β2 +

�������������������������������

− 4β2 + 4p + 3qφ2
0􏼐 􏼑

2
+ 48q βφ0 + φ

.

0( 􏼁
2

􏽲

− 4p − 3qφ2
0

6q
,

􏽶
􏽴

B � φ0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

Te substitution of (8) into (7) gives us
k � S1 sin(f) + S2 sin(3f) + S3 cos(f) + S4 cos(3f),

(10)
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with

S1 � −
e

− 3βt

4

− 3A
3
q − 3AB

2
q + 4A( _f)

2
e
2βt

− 4Ape
2βt

+ 4Aβ2e2βt
+ 4B €f

e
2βt⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

S2 � −
e

− 3βt

4
A

3
q − 3AB

2
q􏼐 􏼑,

S3 � −
e

− 3βt

4 − 3A
2
Bq − 4A €f e

2βt
− 3B

3
q + 4B( _f)

2
e
2βt

− 4Bpe
2βt

+ 4β2Be
2βt

􏼐 􏼑,

S4 � −
e

− 3βt

4
3A

2
Bq − B

3
q􏼐 􏼑.

(11)

Te ODE for the function f could be obtained by
eliminating €f from the system

S1 � 0&S3 � 0. (12)

Te ODE to be solved is

_f �

������������������������

(3/4)q A
2

+ B
2

􏼐 􏼑e
− 2βt

− β2 + p

􏽱

,

f(0) � 0.

⎧⎪⎨

⎪⎩
(13)

Te solution to the ODE (13) reads

f �
1
2β

��
Γ

√
−

�����

Γe− 2tβ
􏽱

+ 2
������

p − β2
􏽱

sinh− 1
(Θ) − sinh− 1

(Θ)􏼐 􏼑􏼢 􏼣,

(14)

with

Θ � 2

����������

p − β2

3 A
2

+ B
2

􏼐 􏼑q

􏽶
􏽴

e
tβ and Γ � 4p − 4β2 + 3 A

2
+ B

2
􏼐 􏼑q.

(15)

For β⟶ 0, the function f reduces to

f �

����������������

p +(3/4) A
2

+ B
2

􏼐 􏼑

􏽱

t. (16)

Example 1. Let (β,ω0) � (0.1, 1), then we obtain the fol-
lowing equation:

φ
··

+ 0.2φ
.

+ sinφ � 0,

φ(0) � 0 andφ
.
(0) � 0.25.

⎧⎨

⎩ (17)

According to the above analysis, the approximate ana-
lytical solution reads

φApprox � − 0.252583e
− 0.1t sin

5.
���������������������
3.94799 − 0.0292721e

− 0.2t
􏽰

+(− 9.93477i)sin− 1 11.6134e
0.1t

􏼐 􏼑

+(21.3316 + 15.6055i)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (18)

Te comparison between the approximation (18) and the
RK4 numerical approximation is carried out as shown in
Figure 1. Also, the maximum distance error (MDE) L∞ to
the approximation (18) as compared to the RK4 approxi-
mation is estimated:

L∞ � max0≤t≤30 φApprox − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00134826. (19)

It is clear from the value of the MDE L∞ that the an-
alytical approximation (8) is characterized by the high-
accuracy as compared to the RK4 numerical approxima-
tion, which enhances the efectiveness of this solution.

3.2. Second Approach: He’s Frequency Formulation (He’s FF).
In order to apply He’s FF, the following i.v.p.
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R2 ≡ φ
..

+ 2βφ
.

+ ω2
0 sinφ � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0,

⎧⎨

⎩ (20)

replaces by the i.v.p.

φ
..

+ 2βφ
.

+ f(φ) � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0,

⎧⎨

⎩ (21)

where the function f(φ) ≡ f(x) can be obtained from the
Chebyshev approximation as

f(x) � ω2
0 sinx ≈ ω2

0 x −
2
13

x
3

􏼒 􏼓. (22)

According to He’s FF, we state

φ � Ae
− ρt cos w(t) + arccos

φ0
A

􏼒 􏼓􏼒 􏼓, (23)

with

_w(t) � μ
��������

(f(x)/x)

􏽱

 and x �

��
a

√

2
Ae

− ρt
, (24)

which leads to

_w(t) � μ
������������������

1 − (3/26)A
2
e

− 2ρt
􏼐 􏼑ω2

0

􏽱

. (25)

Solving the ODE (25) using the initial condition (IC)
w(0) � 0, we have

w(t) � μ􏽚
t

0

���������������

1 −
3
26

A
2
e

− 2ρt
􏼒 􏼓ω2

0

􏽲

dτ,

� μ

�������

Y(0)ω2
0

􏽱

−

������

Y(t)ω2
0

􏽱

��
26

√
ρ

−

������
− Y(0)

􏽰
ω2
0csc

− 1
(

������
(3/26)

􏽰
A)

ρ
�������
Y(0)ω$

􏽰 2
0

⎛⎜⎜⎝

−
Ae

ρt

����������

3A
2

− 26e
2ρt

􏽱 ������

Y(t)ω2
0

􏽱

csc− 1 ������
(3/26)

􏽰
Ae− ρt

􏼐 􏼑

ρ 3A2
− 26e2ρt􏼐 􏼑

⎞⎟⎟⎟⎟⎟⎠,

(26)

with

Y(t) � 26 − 3A
2
e

− 2ρt
􏼐 􏼑. (27)

Te value of the coefcient A can be obtained by using
the value of w(t) (given in (26)) and applying the IC
φ
.
(0) � φ

.

0

Γ ≡ − 3A
2φ2

0 + 3A
4

− 26A
2

+ 26B
2

􏼐 􏼑μ2ω2
0 + 26φ2

0ρ
2

+ 52φ0ρφ
.

0 + 26φ
. 2
0 � 0. (28)

Using command Solve [Γ �� 0, A] inMATHEMATICA,
we fnally get the value of A as follows:

A � ±

����������������������������������������������������������������������

±
���������������������������������������������������

9φ4
0μ

2ω2
0 − 156φ2

0μω
2
0 − 312φ2

0ρ
2

− 624φ0ρφ
.

0 + 676μ2ω2
0 − 312φ

. 2
0

􏽱

/μω0􏼒 􏼓 + 3φ2
0 + 26

􏽲

�
6

√ .
(29)

RK4
Approx

–0.1

0.0

0.1

0.2

φ

5 10 15 20 25 300
t

(β,ω0,φ0,φ̇0)=(0.1,1,0,0.25)

Figure 1: A comparison between the approximation (18) and the
RK numerical approximation to the i.v.p. (17).
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Here, ρ and μ are free parameters that are chosen in
order to optimize the approximate solution, i.e., minimize
the residual error.

Example 2. We can apply He’s FF (23) on Example 1, which
is given in equation (20). Te approximation (23) and the
RK4 numerical approximation are compared with each
other as shown in Figure 2 and the error L∞ is estimated at
the best values of (ρ, μ) � (0.104, 0.99) as

L∞ � max0≤t≤30 φApprox − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00136089.

L∞ � max0≤t≤30 φHe′s− FF(t) − φRK(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0.00531151.

⎧⎪⎨

⎪⎩

(30)

It is clear from the errors of both trigonometric solution
(8) and He’s FF (23) for the same values of parameters that
the Trigonometric solution (8) is better than the solution of
He’s FF (23). However, for higher-order Chebyshev ap-
proximation to the function f(x):

f(x) � ω2
0 sinx ≈ ω2

0 x −
1
6
x
3

−
1
127

x
5

􏼒 􏼓. (31)

We cannot get more accuracy but in this case the third-
order Chebyshev approximation is better than the ffth-
order Chebyshev approximation.

4. Some Analytical Approximations to the
Damped Disturbed NPE

Some diferent formulas to the analytical approximations to
the following i.v.p. will be discussed in detail:

R1 ≡ φ
..

+ 2βφ
.

+ ϕ(t) sinφ � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0.

⎧⎨

⎩ (32)

In the next section, three diferent formulas with high
accuracy are investigated.

4.1. First Formula: Jacobi Elliptic Form. Taking the ap-
proximation (13) into account and with the help of the
approximation sinφ ≈ (λ0φ − λ1φ3), the i.v.p. (32) reduces
to the following variable coefcients damped Dufng i.v.p.:

R ≡ φ
..

+ 2βφ
.

+ ϕ(t) λ0φ − λ1φ
3

􏼐 􏼑 � 0,

φ(0) � φ0 andφ
.
(0) � φ

.

0,

⎧⎨

⎩ (33)

where λ0 � (332/333) and λ1 � (13/85). Note that the values
of sinφ ≈ (λ0φ − λ1φ3) are obtained from the Chebyshev
approximation.

Now, we seek approximate analytic solution to the i.v.p.
(33) in the following ansatz form:

φ|Approx(1) � exp(− βt)θ(f(t)), (34)

where θ ≡ θ(t) is a solution to the following i.v.p.:

θ
..

+ κ λ0θ − λ1θ
3

􏼐 􏼑 � 0,

θ(0) � θ0  and θ
.

(0) � θ
.

0,

⎧⎪⎨

⎪⎩
(35)

where κ � (ω2
0 − εω2).

Te solution of the i.v.p. (35) can be expressed in the
following form:

θ(t) �
θ0cn(

��
w

√
t|m) + θ

.

0/
��
w

√
􏼒 􏼓dn(

��
w

√
t|m)sn(

��
w

√
t|m)

1 + p + qφ2
0 − w/2w􏼐 􏼑sn(

��
w

√
t|m)

2 ,

(36)

with

p � λ0κ, q � − λ1κ, w �
p

1 − 2m
, and m �

1
2

1 −
p

����������������

p + qθ20􏼐 􏼑
2

+ 2qθ
.

0
2

􏽲
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (37)

Te function f ≡ f(t) is to be determined later, sn
(

��
w

√
t|m) is the elliptic sine, cn (

��
w

√
t|m) is elliptic cosine,

dn (
��
w

√
t|m) is the delta amplitude, and 0≤m≤ 1.

Inserting solution (8) into the i.v.p. (33), we have the
following equation:

(β,ω0,φ0,φ̇0)=(0.1,1,0,0.25)

–0.1

0.0

0.1

0.2

φ

5 10 15 20 25 300
t

RK4
He's–FF

Figure 2: A comparison between the He’s FF approximation (23)
and the RK numerical approximation to the i.v.p. (6).
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β2 + λ0κ( _f)
2

+ λ0εω2 cos(ct) − λ0ω
2
0 � 0. (38)

Te solution of (38) gives the value of f(t):

f � ±
���
333

√

c
���
83κ

√

�������

λ0κ − β2
􏽱

E
c

2
t,

2λ0εω2

β2 − λ0κ
􏼠 􏼡. (39)

We can choose the solution with plus sign, then f(0) � 0

and _f(0) �

������������

− (β2/λ0κ) + 1
􏽱

.
Now, we must determine the values of θ0 and θ

.

0 using
the conditions φ(0) � φ0 and φ

.
(0) � φ

.

0. Te required values
are given by the following equation:

θ
.

0 �
βφ0 + φ

.

0����������
1 − β2/λ0κ􏼐 􏼑

􏽱 , θ0 � φ0. (40)

Inserting f(t) given in (39) into solutions (34) and (36),
we get the solution of the i.v.p. (33):

φ|Approx(1) � exp(− βt)θ(f(t)), (41)

with

θ(f(t)) �
θ0cn(

��
w

√
f(t)|m) + θ

.

0/
��
w

√
􏼒 􏼓dn(

��
w

√
f(t)|m)sn(

��
w

√
f(t)|m)

1 + p + qφ2
0 − w/2w􏼐 􏼑sn(

��
w

√
f(t)|m)

2 . (42)

4.2. Te Second Formula: Jacobi Elliptic Solution. Here, we
can use another approximation to sinφ ≈ (φ − 2/13φ3), then
the i.v.p. (32) reduces to the damped Dufng i.v.p. with
variable coefcients:

Q ≡ φ
..

+ 2βφ
.

+ ϕ(t) φ −
2
13
φ3

􏼒 􏼓 � 0,

φ(0) � φ0  and φ
.
(0) � φ

.

0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(43)

Let us consider the solution of the i.v.p. (43) is defned by
the following ansatz:

φ(t)|Approx(2) � φ0e
− tβcn(ω(t) + C, m). (44)

Inserting the ansatz (44) in the i.v.p (43), we fnally
obtain the following equation:

13m _ω(t)
2

+ φ2
0e

− 2tβϕ(t) � 0,

(2m − 1) _ω(t)
2

− β2 + ϕ(t) � 0.

⎧⎨

⎩ (45)

Eliminating m from system (45), we obtain the following
equation:

_ω(t) �

��������������������������

ϕ(t) 13 − 2φ2
0e

− 2tβ
􏼐 􏼑 − 13β2/13􏼐 􏼑

􏽱

,

ω(0) � 0.

⎧⎪⎨

⎪⎩
(46)

Equation (46) is not integrable, thus it solved numeri-
cally in order to get the value of ω(t).

Furthermore, the solution (44) could be written as

φ|Approx(2) � φ0e
− tβ

cn(ω(t) + C, m)

� φ0e
− tβcn + b1sndn

1 + b2sn
2 ,

(47)

with

sn ≡ sn(ω(t)|m) �
������
1 − cn

2
􏽰

,

cn ≡ cn(ω(t)|m),

dn ≡ dn(ω(t)|m) �
������������
1 − m 1 − cn

2
􏼐 􏼑

􏽱

􏼔 􏼕.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(48)

By inserting (46) and (47) into the i.v.p. (43) and after
straightforward and simply calculations, fnally, the values of
b1 and b2 could be obtained as follows:

b1 �

��
13

√
βφ0 + φ

.

0( 􏼁
����������

− 13β2 − κS1

􏽱 , (49)

and for φ0 ≠ 0

b2 � −
κ

2φ0 13β2 + κS1􏼐 􏼑
2

φ0

− 169S2 − 26βφ
.

0φ0

+4κφ4
0 − 52κφ2

0

⎛⎜⎝ ⎞⎟⎠

+13 sin φ0( 􏼁 13β2 + κS1􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(50)

while φ0 � 0, we obtain b2 � 0, where S1 � (2φ2
0 − 13) and

S2 � (β2 − κ).
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By substituting equations (49)–(53) into the i.v.p. (43)
and solving the obtained solution, we fnally obtain the value
of “m” for φ0 ≠ 0 as follows:

m �

− 26κφ0φ
.

0 cos φ0( 􏼁 13S2 + 2κφ2
0􏼐 􏼑

2

+ 26κ sin φ0( 􏼁 26φ0βS2 + 3φ
.

0 13S2 + 2κφ2
0􏼐 􏼑 − 2βκφ3

0􏼐 􏼑 13S2 + 2κφ2
0􏼐 􏼑

+φ0

− 156βκφ0φ
. 2
0 13S2 + 2κφ2

0􏼐 􏼑

+βφ0

− 13c
2εω2S1 13S2 + 2κφ2

0􏼐 􏼑+

8κ2φ2
0 78φ2

0S2 − 507S2 + 4κφ4
0􏼐 􏼑 − 8788κS

2
2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

− φ
.

0

8κφ2
0 507 β4 − κ2􏼐 􏼑 + 2κ2 39 − 2φ2

0􏼐 􏼑φ2
0􏼐 􏼑+

13c
2εω2S1 13S2 + 2κφ2

0􏼐 􏼑+

8788κS
2
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8φ0 βφ0 + φ
.

0( 􏼁 13S2 + 2κφ2
0􏼐 􏼑

3 .

(51)

For φ0 � 0, the value of the modulus “m” given in (51)
reduces to

m �
c
2εω2

8 β2 − κ􏼐 􏼑
2 . (52)

4.3. Tird Formula: Trigonometric Approach. Another ap-
proximation in terms of trigonometric function to the i.v.p.
(43) can be determined by inserting the following ansatz:

φ|Approx(3) � A exp(− ρt) cos f + arccos
φ0
A

􏼒 􏼓􏼒 􏼓, (53)

into the i.v.p. (46) which leads to

Q ≡ φ
..

+ 2βφ
.

+ ϕ(t) φ −
2
13
φ3

􏼒 􏼓

� −
2
13

A
3 cos3(θ)e

− 3ρtϕ(t) + Ae
− ρt cos(θ)

· ρ2 − 2βρ + ϕ(t) − ( _f)
2

􏼐 􏼑

+ Ae
− ρt sin(θ)(2(β − ρ) _f+ €f),

(54)

where f ≡ f(t), f(0) � 0, and ρ is an optimal parameter.
For vanishing the coefcient of cos(θ), we obtain the

following equation:

ρ2 − 2βρ + ϕ(t) − ( _f)
2

􏼐 􏼑 � 0, and f(0) � 0. (55)

Solving (55) with f(0) � 0 yields

f � 􏽚
t

0

�������������

ρ2 − 2βρ + ϕ(t)

􏽱

dτ �
2

���
Π0

􏽰

c
E

c

2
t, −

2Q0

Π0
􏼠 􏼡, (56)

with Π0 � (ρ2 − 2βρ + ω2
0 − Q0) and E((c/2)t, − (2Q0/Π0))

represents the elliptic integral of the second kind.
Applying the ICs φ(0) � φ0 and φ

.
(0) � φ

.

0, we obtain the
following equation:

A � ±

������������������������

2ρφ0 . φ0 + φ2
0 Π0 + ρ2􏼐 􏼑 + φ0

. 2
􏽱

���
Π0

􏽰 . (57)

Te number ρ is a free arbitrary parameter that we
choose in order to get as small residual error as possible.

5. Results and Discussion

In this section, we proceed to analyze all obtained ap-
proximations. Te discussion can be divided into several
cases as follows.

Case 1. For the following numerical example
(β,ω0,ω2, ε, c,φ(0),φ

.
(0)) � (0.1, 1, 0.5, 0.2, 0.2, 0, 0.1)

R ≡ φ
..

+ 0.2φ
.

+ ϕ(t) λ1φ − λ2φ
3

􏼐 􏼑 � 0,

ϕ(t) � ω2
0 − εω2 cos(ct) � 1 − 0.1 cos(0.2t),

φ(0) � 0 and φ. (0) � 0.1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(58)

Te analytical approximations to the damped disturbed
NPO (58) according to the frst formula (44), second for-
mula (50), and third formula (56) are compared with the
RK4 numerical solution and the He’s HPM approximation
as illustrated in Figure 3. Also, the MDE L∞ for the men-
tioned approximations is estimated:
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L∞
􏼌􏼌􏼌􏼌Approx(1)

� max0≤t≤30 φ|Approx(1) − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00114366,

L∞
􏼌􏼌􏼌􏼌Approx(2)

� max0≤t≤30 φ|Approx(2) − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.00139714,

L∞
􏼌􏼌􏼌􏼌Approx(3)

� max0≤t≤30 φ|Approx(3) − φRK

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000432514,

L∞
􏼌􏼌􏼌􏼌He′sHPM � max0≤t≤30 φ|He′s− HPM − φRK

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.0246647.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(59)

It is observed that the exact congruence between the
analytical approximations (41), (47), (53), and the RK4
numerical solution. Also, it is clear that the derived

approximations show high accuracy as compared to the He’s
HPM approximation. Henceforth, for He’s HPM approxi-
mation, we used λ1 � 1 and λ2 � 1/6.

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
Approx (1)

5 10 15 20 25 300
t

–0.05

0.00

0.05

φ

(a)

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
Approx (2)

5 10 15 20 25 300
t

–0.05

0.00

0.05

φ

(b)

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
Approx (3)

–0.05

0.00

0.05

φ

5 10 15 20 25 300
t

(c)

(β,ω0,ω2,ε,γ,φ0,φ̇0)=(0.1,1,0.5,0.2,0.2,0,0.1)

RK4
He's–HPM

5 10 15 20 25 300
t

–0.05

0.00

0.05

φ

(d)

Figure 3: A comparison between the RK numerical approximation and the diferent types of the analytical approximations to the i.v.p. (33):
(a) the Jacobi elliptic solution (44), (b) the Jacobi elliptic solution (50), (c) the trigonometric solution (56), and (d) the He’s HPM ap-
proximation. Here, (ω2,φ0) � (1, 0).
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Case 2. Te approximations (41), (47), and (53) can recover
the solutions to the damped undisturbed NPO (32) for
ω2 � 0, i.e., the i.v.p. (7). Now, by considering the values
(β,ω0,ω2,φ(0), φ

.
(0)) � (0.1, 1, 0, 0, 0.1), the i.v.p. (7)

φ
..

+ 0.2φ
.

+ pφ + qφ3
� 0,

φ(0) � 0  and φ. (0) � 0.1.

⎧⎨

⎩ (60)

Te analytical approximations (8), (41), (47), (53), and
the RK4 approximation and theHe’s HPM approximation to
the i.v.p. (60) are graphically introduced in Figure 4. Also,
the MDE L∞ is computed for all mentioned approximations

L∞
􏼌􏼌􏼌􏼌Sol. (8)

� max0≤t≤30 φ(t)|Sol.(8) − φRK(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0.000555229,

L∞
􏼌􏼌􏼌􏼌Approx(1)

� max0≤t≤30 φ(t)|Approx(1) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000714541,

L∞
􏼌􏼌􏼌􏼌Approx(2)

� max0≤t≤30 φ(t)|Approx(2) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000121574,

L∞
􏼌􏼌􏼌􏼌Approx(3)

� max0≤t≤30 φ(t)|Approx(3) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.000120303,

L∞
􏼌􏼌􏼌􏼌He′sHPM � max0≤t≤30 φ|He′s− HPM − φRK

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.00189472.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)
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Figure 4: A comparison between the RK numerical approximation and the diferent types of the analytical approximations to the i.v.p. (33):
(a) the Jacobi elliptic solution (44), (b) the Jacobi elliptic solution (50), (c) the trigonometric solution (56), and (d) the He’s HPM ap-
proximation. Here, (ω2,φ0) � (0, 0).
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Case 3. For (β,ω0,ω2,φ(0),φ
.
(0)) � (0.1, 1, 0, π/4, 0.2), the

numerical form to the i.v.p. (7) reads

φ
..

+ 0.2φ
.

+ pφ + qφ3
� 0,

φ(0) �
π
4
 and φ. (0) � 0.2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(62)

Te trigonometric solution (8) as well as the Jacobi el-
liptic solutions (41) and (47) in addition to the RK4 nu-
merical solution and the He’s HPM approximation to the
i.v.p. (62) are graphically plotted as shown in Figure 5 and
their MDE L∞ is estimated as follows:
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Figure 5: A comparison between the RK numerical approximation and the diferent types of the analytical approximations to the i.v.p. (62):
(a) the Jacobi elliptic solution (44), (b) the Jacobi elliptic solution (50), (c) the trigonometric solution (56), and (d) the He’s HPM ap-
proximation. Here, (ω2,φ0) � (0, π/4).
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L∞
􏼌􏼌􏼌􏼌Sol.(8)

� max0≤t≤30 φ(t)|Sol.(8) − φRK(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0.0116904,

L∞
􏼌􏼌􏼌􏼌Approx(1)

� max0≤t≤30 φ(t)|Approx(1) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.0806987,

L∞
􏼌􏼌􏼌􏼌Approx(2)

� max0≤t≤30 φ(t)|Approx(2) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.0422837,

L∞
􏼌􏼌􏼌􏼌Approx(3)

� max0≤t≤30 φ(t)|Approx(3) − φRK(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0.0807087,

L∞
􏼌􏼌􏼌􏼌He′sHPM � max0≤t≤30 φ|He′s− HPM − φRK

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0.0528277.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

It is observed that the trigonometric approximation (8) is
better than all other approximations for arbitrary angles with
the pivot vertical. Despite this, all the obtained approxi-
mations give satisfactory results and have good accuracy.

Furthermore, all analytical approximations (41), (47),
and (53) can be recovered the undamped disturbed non-
linear pendulum oscillation (β � 0\&ω2 ≠ 0) and the un-
damped undisturbed nonlinear pendulum oscillation
(β � ω2 � 0) for arbitrary angles with the vertical pivot. In
addition, the obtained solutions can be used for investigation
the nonlinear oscillations in diferent plasma models which
most evolutions equations that governed the dynamics of
plasma waves and oscillations can be reduced to a pendulum
equations (25) and (26).

6. Conclusions

In the current work, the parametric pendulum oscillatory
equation and some related oscillatory equations have been
solved using diferent analytical and numerical techniques.
In this investigation, two-cases called the damped un-
disturbed nonlinear pendulum equation/oscillator (NPE/
NPO) and the damped disturbed NPE have been discussed.
Te following list provides a concise summary of the most
signifcant fndings:

(i) For the frst oscillator, i.e., damped undisturbed
NPO, this oscillator has been reduced to the constant
coefcients damped Dufng equation, and its ana-
lytical approximations have been derived in terms of
the trigonometric functions

(a) Both ansatz method and He’s frequency for-
mulation were employed to fnd some approx-
imations for the damped undisturbed NPE

(b) Te outcomes of comparing the obtained ap-
proximations and the numerical solutions
revealed the great correctness of the obtained
solutions

(ii) In the second oscillator, i.e., damped disturbed NPO,
this oscillator has been reduced to the variable co-
efcients damped Dufng oscillator in order to fa-
cilitate the solution process

(a) Tree diferent formulas for the analytical ap-
proximations to the damped Dufng equation
with variable coefcients in terms of Jacobi el-
liptic and trigonometric functions have been
derived in detail.

(b) In the frst-formula, the modulus of Jacobi el-
liptic solution has been taken as zero while in the
second formula, the modulus of Jacobi elliptic
solution was taken as arbitrary value.

(c) In the third formula, a new ansatz in terms of the
trigonometric function was employed to fnd
a high-accurate approximation in terms of
trigonometric function.

(d) It was found that the three-formulas to the
analytical approximations to the damped dis-
turbed NPO can be recovered diferent cases for
the pendulum oscillators. Consequently, we
discussed several cases for the nonlinear pen-
dulum oscillators for small and arbitrary angles
with the vertical pivot, e.g., the damped dis-
turbed NPE (β≠ 0&ω2 ≠ 0) and the damped
undisturbed nonlinear pendulum oscillation
(β≠ 0&ω2 � 0). Also, the obtained approxima-
tions can be recovered the undamped disturbed
nonlinear pendulum oscillation (β � 0&ω2 ≠ 0)

and the undamped undisturbed nonlinear
pendulum oscillation (β � ω2 � 0) for arbitrary
angles with the vertical pivot.

Finally, the obtained results were compared with the
RK4 numerical approximation and the He’s HPM ap-
proximation. It was found that the derived anlaytical ap-
proximations are distinguished by their great precision and
more stable across the whole time domain, especially the
third formula. Many equations of motions that govern the
various pendulum oscillations can be solved using all pro-
posed techniques. In addition, the obtained solutions aid in
the investigation of nonlinear oscillations in diferent plasma
physics.
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Additional Points

Future Work. Te study of stability analysis to the present
pendulum oscillator is one of the most important topics, but
it is out of the scope of the present study and it will be
addressed in the next work. Also, the diferential transform
method (DTM) with the Padé approximation in addition
can be used for analyzing the present oscillator [34].
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Te split feasibility problem (SFP) in Hilbert spaces is addressed in this study using an efcient iterative approach. Under mild
conditions, we prove convergence theorems for the algorithm for fnding a solution to the SFP. We also present numerical
examples to illustrate that the acceleration of our algorithm is efective. Our results are applied to solve image deblurring and
signal recovery problems. Furthermore, we show the use of the proposed method to generate polynomiographs.

1. Introduction

Let C and Q be nonempty closed convex subsets of real
Hilbert spaces H1 and H2, respectively. Te split feasibility
problem (SFP for short) can be formulated as fnding a point
u∗ in C with the property

Au
∗ ∈ Q, (1)

where A: H1⟶H2 is a bounded linear operator.
For modeling inverse problems, Censor and Elfving [1]

proposed the SFP in fnite-dimensional Hilbert spaces. Later
on, the SFP can also be applied to medical image re-
construction and signal processing; see, e.g., [2–10].

Te SFP (1) can be written as a fxed point problem by
using

PC I − cA
∗
I − PQ( 􏼁A􏼂 􏼃u

∗
� u
∗
, (2)

where PC and PQ are the (orthogonal) projections onto C

and Q, respectively, c> 0 is any positive constant, and A∗

denotes the adjoint ofA. Tat is, u∗ solves the SFP (1) if and
only if u∗ solves the fxed point equation (2) (see [11]). For

more efective, the readers can see [8, 12–22]. In [7], Byrne
proposed the CQ algorithm by

uk+1 � PC I − cA
∗
I − PQ( 􏼁A􏼂 􏼃uk, k≥ 0, (3)

where 0< c< 2/‖A‖2, A∗: H∗2⟶H∗1 is the adjoint of A,
and PC and PQ are the projections onto C and Q, re-
spectively. Te CQ–algorithm (3) has been a useful in-
strument for solving the SFP due to its own virtues-simple
computation, and many variants of the CQ–algorithm have
been employed in several literature, such as [8, 9], and so on.

Te three-step procedures were frst introduced by Noor
[23].Tis method is applied to many problems. For example,
see [24–26].

Recently, the following three step iteration method used
to solve the SFP was defned by Dang and Gao [27]:

wn � 1 − cn( 􏼁un + cnPC 1 − λn( 􏼁U􏼂 􏼃un,

ςn � 1 − βn( 􏼁un + βnPC 1 − λn( 􏼁U􏼂 􏼃wn,

un+1 � 1 − αn( 􏼁un + αnPC 1 − λn( 􏼁U􏼂 􏼃ςn,

(4)
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where U � I − cA∗(I − PQ)A and αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉, λn􏼈 􏼉

are real sequences in (0, 1). Strong convergence theorems are
studied for (4) under some parametric controlling condi-
tions. In addition,Takur et al. [28] proposed the new three-
step iterative method for solving fxed points of non-
expansive mapping.

Motivated by Dang et al., we propose an efcient iter-
ative method which generates a sequence un􏼈 􏼉 by

wn � 1 − cn( 􏼁un + cnTun,

ςn � 1 − βn( 􏼁wn + βnTwn,

un+1 � 1 − αn( 􏼁Tun + αnTςn,

(5)

where T � PC[I − cA∗(I − PQ)A] and αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉

are real sequences in (0, 1).

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and
induce norm ‖.‖. I denotes the identity operator in H. We
will denote the set of fxed points of: H⟶H by
F(T) � u ∈H: Tu � u{ }. For the sequence un􏼈 􏼉 to u inH,
the strong convergence and the weak convergence are
denoted by un⟶ u and un⇀u, respectively. An operatorT
on H is nonexpansive if, for each u, v ∈H,

‖Tu − Tv‖≤ ‖u − v‖, (6)

T is said to be λ-Lipschitz continuous, if each u, v ∈H,
we have

‖Tu − Tv‖≤ λ‖u − v‖, (7)

for a constant λ> 0. Assume φ> 0. Ten, T is called
φ-inverse strongly monotone (φ-ism), if each u, v ∈H, we
have

〈u − v,Tu − Tv〉≥φ‖Tu − Tv‖
2
. (8)

Recall that 1-ismT is also know as being frmly non-
expensive, that is, for each u, v ∈H,

〈u − v,Tu − Tv〉≥ ‖Tu − Tv‖
2
. (9)

Let the solution set Ω � u ∈ C: Au ∈ Q{ } � C∩A− 1Q

of the SFP (1) be a closed, convex, and nonempty set. LetPC

denote the projection from H onto a nonempty closed
convex subset C of H that is, PC(u) ≔ argminv∈C‖u − v‖.
Suppose that d(u,C) ≔ inf ‖u − v‖: v ∈ C{ }. We have the
following important lemma due to Feng et al. [29]:

Lemma 1. If T � PC[I − cA∗(I − PQ)A], where
0< c< 2/‖A‖2, then T is a nonexpansive map.

Lemma 2 (see [30]). Let un􏼈 􏼉 be a sequence of Hilbert space
H. If un􏼈 􏼉 converges weakly to u, then for any v ∈H and
v≠ u, we have limn⟶∞ inf‖un − u‖< limn⟶∞ inf‖un − v‖.

Lemma 3 (see [30]). Let C be a closed, convex, and non-
empty subset of real Hilbert space H, and T: C⟶ C be

a nonexpansive mapping. Ten,I − T is demiclosed at zero,
i.e., if un⇀u ∈ C and un − Tun⟶ 0, then u � Tu.

Lemma 4 (see [31]). Let X be a uniformly convex Banach
space and 0<p≤ tn ≤ q< 1 for all n ∈ N. Let un􏼈 􏼉 and vn􏼈 􏼉 be
two sequences of X such that limsupn⟶∞‖un‖≤ r,
limsupn⟶∞‖vn‖≤ r and limsupn⟶∞‖tnun + (1 − tn)vn‖ � r

hold for some r≥ 0. Ten, limsupn⟶∞‖un − vn‖ � 0.

3. Convergence Results

Lemma 5. Let un􏼈 􏼉 be generated by (5) and
T � PC[I − cA∗(I − PQ)A]. Ten, limn⟶∞‖un − u∗‖

exists for any u∗ ∈ F(T).

Proof. Given u∗ ∈ F(T). By nonexpansiveness of T and
using (5), we have

wn − u
∗����
���� � 1 − cn( 􏼁un + cnTun − u

∗����
����

≤ 1 − cn( 􏼁 un − u
∗����
���� + cn Tun − u

∗����
����

≤ 1 − cn( 􏼁 un − u
∗����
���� + cn un − u

∗����
����

� un − u
∗����
����,

(10)

and so

ςn − u
∗����
���� � 1 − βn( 􏼁wn + βnTwn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn Twn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn wn − u

∗����
����

� wn − u
∗����
����

≤ un − u
∗����
����.

(11)

Using (10) and (11), we have

un+1 − u
∗����
���� � 1 − αn( 􏼁Tun + αnTςn − u

∗����
����

≤ 1 − αn( 􏼁 Tun − u
∗����
���� + αn Tςn − u

∗����
����

≤ 1 − αn( 􏼁 un − u
∗����
���� + αn ςn − u

∗����
����

≤ 1 − αn( 􏼁 un − u
∗����
���� + αn un − u

∗����
����

� un − u
∗����
����.

(12)

Since u∗ is chosen arbitrarily in F(T), one deduces that
‖un − u∗‖􏼈 􏼉n is decreasing. It follows that limn⟶∞‖un − u∗‖

exists for any u∗ ∈ F(T). Tis completes the proof. □

Lemma 6. Let un􏼈 􏼉 be generated by (5). and T � PC

[I − cA∗(I − PQ)A]. Ten, limn⟶∞‖un − Tun‖ � 0.

Proof. By Lemma 5, we see that limn⟶∞‖un − u∗‖ exists for
any u∗ ∈ F(T). Assume that

lim
n⟶∞

un − u
∗����
���� � c. (13)

We take the lim sup of (10) and (11), and we get
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limsup
n⟶∞

wn − u
∗����
����≤ c, (14)

and

limsup
n⟶∞

ςn − u
∗����
����≤ c. (15)

In addition, by nonexpensiveness of T, we have

Tun − u
∗����
����≤ un − u

∗����
����, Twn − u

∗����
����

≤ wn − u
∗����
����, Tςn − u

∗����
����≤ ςn − u

∗����
����.

(16)

Again, by taking the lim sup on both sides, we get

limsup
n⟶∞

Tun − u
∗����
����≤ c, (17)

limsup
n⟶∞

Twn − u
∗����
����≤ c, (18)

and

limsup
n⟶∞

Tςn − u
∗����
����≤ c. (19)

In addition,

c � lim
n⟶∞

un+1 − u
∗����
����

� lim
n⟶∞

1 − αn( 􏼁 Tun − u
∗

( 􏼁 − αn Tςn − u
∗

( 􏼁
����

����.
(20)

Using (17)–(19) and Lemma 4, we have

lim
n⟶∞

Tun − Tςn

����
���� � 0. (21)

In addition,

un+1 − u
∗����
���� � 1 − αn( 􏼁 Tun − u

∗
( 􏼁 + αn Tςn − u

∗
( 􏼁

����
����

≤ 1 − αn( 􏼁 Tun − u
∗����
���� + αn Tςn − u

∗����
����

≤ 1 − αn( 􏼁 Tun − u
∗����
���� + αn Tun − Tςn

����
����

+ αn Tun − u
∗����
����

� Tun − u
∗����
���� + αn Tςn − Tun

����
����,

(22)

and taking the lim inf on both sides in this inequality, we
have

c≤ liminf
n⟶∞

Tun − u
∗����
����. (23)

Using (17) and (23), we have

lim
n⟶∞

Tun − u
∗����
���� � c. (24)

Since,

Tun − u
∗����
����≤ Tun − Tςn

����
���� + Tςn − u

∗����
����

≤ Tun − Tςn

����
���� + ςn − u

∗����
����.

(25)

Using (21) and (24) and take the lim inf of (25), and we
get

c≤ lim
n⟶∞

inf ςn − u
∗����
����. (26)

From (15) and (26), we get

lim
n⟶∞

ςn − u
∗����
���� � c. (27)

In addition,

c � lim
n⟶∞

ςn − u
∗����
����

� lim
n⟶∞

1 − βn( 􏼁 wn − u
∗

( 􏼁 + βn Twn − u
∗

( 􏼁
����

����.
(28)

By (14), (18), and (28) and Lemma 4, we have

lim
n⟶∞

Twn − wn

����
���� � 0. (29)

In addition,

ςn − u
∗����
���� � 1 − βn( 􏼁wn + βnTwn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn Twn − u

∗����
����

≤ 1 − βn( 􏼁 wn − u
∗����
���� + βn Twn − wn

����
����

+ βn wn − u
∗����
����

� wn − u
∗����
���� + βn Twn − wn

����
����.

(30)

Using (27) and (29) and take the lim inf of (30), and we
get

c≤ liminf
n⟶∞

wn − u
∗����
����. (31)

From (14) and (31), we get

lim
n⟶∞

wn − u
∗����
���� � c. (32)

By using (32), we have

c � lim
n⟶∞

wn − u
∗����
����

� lim
n⟶∞

1 − cn( 􏼁 un − u
∗

( 􏼁 + cn Tun − u
∗

( 􏼁
����

����.
(33)

It follows from (13), (17), and (33) and Lemma 4 that

lim
n⟶∞

Tun − un

����
���� � 0. (34)

Additionally, the solution set, denoted by Ω, is the same
as the fxed point set, denoted by T, i.e,
Ω � F(T) � C∩A− 1Q≠∅ (see [11, 12]) for more
details. □

Theorem 1. Let un􏼈 􏼉 be generated (5) and
T � PC[I − cA∗(I − PQ)A]. Ten, un􏼈 􏼉 converges
weakly to a point in Ω.

Proof. SinceΩ� F(T)≠∅.Ten, we only need to show that
the sequence un􏼈 􏼉 converges weakly to a point in F(T).
Taking u∗ ∈ F(T), using Lemma 5, limn⟶∞‖un − u∗‖ ex-
ists. We show that the subsequences of un􏼈 􏼉 only have a weak

limit in F(T). Suppose that subsequences uni
􏽮 􏽯 and unj

􏼚 􏼛 of

un􏼈 􏼉 converge weakly to ξ and ς, respectively. From Lemma
6, we have
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lim
n⟶∞

uni
− Tuni

�����

����� � 0 � lim
n⟶∞

unj
− Tunj

�����

�����. (35)

It follows from Lemma 3 that ξ, ς ∈ F(T). Next, we show
that the weak limit is unique. Since T � PC[I−

cA∗(I − PQ)A] is nonexpansive mapping. Using Lemma
5, we have limn⟶∞‖un − u∗‖ exists. Suppose that ξ ≠ ς.
Using Lemma 2, we have

lim
n⟶∞

un − ξ
����

���� � lim
ni⟶∞

uni
− ξ

�����

�����< lim
ni⟶∞

uni
− ς

�����

�����

� lim
n⟶∞

un − ς
����

���� � lim
nj⟶∞

unj
− ς

�����

�����

< lim
nj⟶∞

unj
− ξ

�����

����� � lim
n⟶∞

un − ξ
����

����.

(36)

Tis is clearly contradictory, hence, ξ � ς.Terefore, un􏼈 􏼉

converges weakly to a point in F(T). Tus the sequence
un􏼈 􏼉, converges weakly to a point in Ω.

Mapping T in H is called averaged if there exist
α ∈ (0, 1) and a nonexpansive operator S such that
T � (1 − α)I + αS. Set

q(u) ≔
1
2

I − PQ( 􏼁T( 􏼁u
����

����, u ∈ C. (37)

We consider

find min
u∈C

q(u). (38)

By [32], the gradient of q is ∇q � T∗(I − PQ)T, where
T∗ is the adjoint of T. Since I − PQ is nonexpansive, it
follows that ∇q is L-Lipschitzian with L � ‖T‖2. Terefore,
∇q is 1/L − ism and for any 0< μ< 2/L,I − μ∇q is averaged.
Terefore, the composition PC(I − μ∇q) is also averaged.
Set T ≔ PC(I − μ∇q). Note that the solution set of SFP is
F(T). Te following new three-step can be used to fnd
solutions of SFP: □

Theorem 2. Assume that SFP is consistent. Suppose {αn},
{βn} and {cn} are sequences in [δ, 1 − δ] for all n ∈ N and for
some δ in (0, 1). Let un􏼈 􏼉 be a sequence in C generated by

wn � 1 − cn( 􏼁un + cnPC(I − μ▽q)un,

ςn � 1 − βn( 􏼁wn + βnPC(I − μ▽q)wn,

un+1 � 1 − αn( 􏼁PC(I − μ▽q)un + αnPC(I − μ▽q)ςn, n ∈ N,

(39)

where 0< μ< 2/‖T‖2. Ten, un􏼈 􏼉 converges weakly to a so-
lution of SFP.

Proof. Since T ≔ PC(I − μ∇q) is nonexpansive, from
Teorem 1.

Next, we prove the strong convergence results. □

Theorem 3. Let un􏼈 􏼉 be generated by (5) and
T � PC[I − cA∗(I − PQ)A]. Ten, un􏼈 􏼉 converges
strongly to a point in Ω if and only if
liminfn⟶∞d(un,Ω) � 0.

Proof. If the sequence un􏼈 􏼉 has a strong convergence to
a point inΩ, then it follows that liminfn⟶∞d(un,Ω) � 0. To
get to the converse, suppose that liminfn⟶∞d(un,Ω) � 0.
Since F(T) � Ω≠∅. It follows that liminfn⟶∞d

(un, F(T)) � 0. Let u∗ ∈ F(T). Using Lemma 5, we have
limn⟶∞‖un − u∗‖ exists. Tus, limn⟶∞ d(un, F(T)) exists
and limn⟶∞ d(un, F(T)) � 0.

Next, we show that un􏼈 􏼉 is a Cauchy sequence inC. Since
limn⟶∞ d(un, F(T)) � 0, given ε> 0, there exists a natural
number n0 such that for all n≥ n0, d(un, F(T))< ε/2.
Meanwhile,

inf un0
− u
∗

�����

�����: u
∗ ∈ F(T)􏼚 􏼛<

ε
2

. (40)

So, we can fnd v∗ ∈ F(T) such that ‖un0
− v∗‖< ε/2. For

n≥ n0 and m≥ 1, we have

un+m − un

����
����≤ un+m − v

∗����
���� + un − v

∗����
����

≤ un0
− v
∗

�����

����� + un0
− v
∗

�����

�����

<
ε
2

+
ε
2

� ε.

(41)

Tis shows that un􏼈 􏼉 is a Cauchy sequence inC. FromC

is a closed subset in H. Ten, there exists ξ ∈ C such that
limn⟶∞un � ξ. Now limn⟶∞ d(un, F(T)) � 0 gives that
d(ξ, F(T)) � 0. Note that F(T) is closed. Terefore,
ξ ∈ F(T). Again, using F(T) � Ω, we have ξ ∈ Ω. Tus,
un􏼈 􏼉 converges to a point in Ω. Tis completes the proof.

A mapping T satisfy Condition A (see [33]) if there
exists a nondecreasing function f: [0, +∞)⟶ [0, +∞)

with f(0) � 0 and f(r)> 0 for all r ∈ (0, +∞) such that

‖u − Tu‖≥f\\((d(u, F(T)), (42)

for all u ∈ C.
Next, we can prove strong convergence of (5) under

Condition A, which is weaker than the compactness of the
mappings’ domain. □

Theorem 4. If T satisfes Condition A, then the sequence
un􏼈 􏼉 defned by (5) converges strongly to a point in Ω.

Proof. Using Lemma 6, we also get

lim
n⟶∞

un − Tun

����
���� � 0. (43)

Since T is a given, it follows that

lim
n⟶∞

f d( un, F(T)( 􏼁≤ lim
n⟶∞

un − Tun

����
���� � 0. (44)

Now f: [0, +∞)⟶ [0, +∞) with f(0) � 0 and
f(r)> 0 for all r ∈ (0, +∞), gives that

lim
n⟶∞

d un, F(T)( 􏼁 � 0, (45)

and it follows that

lim
n⟶∞

d un,Ω( 􏼁 � 0. (46)
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From Teorem 3, we have un􏼈 􏼉 converges strongly to
a point in Ω. Tis completes the proof. □

4. Numerical Examples

In this part, we study and compare numerical results of the
proposed algorithm (5) with the Dang algorithm (4) to
declare that the proposed algorithm is more efective.

Example 1. Suppose that H1 � H2 � R3, C � u ∈ R3:􏼈

‖u‖≤ 1}, Q � u ∈ R3: ‖u‖≤ 2􏼈 􏼉, and Tu � Mu.

M �

−3 1 2

−1 0 1

1 2 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (47)

and take an initial point u0 � 0.6, 0.5, 1.1{ }.

Example 2. Suppose that H1 � H2 � R3, C � u ∈ R3:􏼈

‖u‖≤ 1}, Q � u ∈ R3: ‖u‖≤ 2􏼈 􏼉, and Tu � Mu.

M �

2 −1 0

−1 2 −1

0 −1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (48)

and take an initial point u0 � 1.2, 0.6, 0.4{ }.
Te projectionsPC andPQ of u onto setsC andQ are as

follows:

PC(u) �

u, ‖u‖≤ 1,

u

‖u‖
, ‖u‖≥ 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

PQ(u) �

u, ‖u‖≤ 2,

u

‖u‖
, ‖u‖≥ 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(49)

Meanwhile, choose

αn � βn

� cn

�
n

n + 1

� 0.99 and

λn �
1

A‖‖
2
2

����
,

(50)

for Dang and proposed methods. We take
‖un+1 − un‖< 10− 15 as the standard of stopping in the process
of calculation. All codes were written in MATLAB 2019b. By
computing, we obtain the iteration steps and CPU time of
these three comparing algorithms in converging to the
solution of Examples 1 and 2 as shown in Table 1.

Tables 2 and 3 show the convergence of comparing
sequences of Examples 1 and 2 generated by Dang and
proposed methods. It can be found from the computing
results of Tables 1–3 that, under the same conditions, the
results of the proposed method are highly efective com-
pared with Dang method.

 . Applications

Tis section is devoted to some applications by using the
proposed algorithm (5).

5.1. Image Restoration Problems. Assume that B is a matrix
with 􏽥m rows and 􏽥n columns that represents the degraded
representation of the true image X. Te restoration model
can be obtained by stacking the columns of B and X into two
long vectors, b and u, both of which have lengths of n � 􏽥m􏽥n.
Te following linear equation system may be used to de-
scribe the restoration model as a one-dimensional vector:

b � Mu, (51)

where the true image is represented by u ∈ Rn, the observed
image is represented by b ∈ Rn, and the blurring matrix is
represented by M ∈ Rn×n.

Issue (52) is a least squares (LS) problem that needs to be
resolved in order to resemble the true image on the resto-
ration model (51).

min
u

1
2
b − Mu‖‖

2
2. (52)

Wewill use our key fndings for resolving the restoration
model (51) by setting the following by using q(u) as above
equation. And the following methods are used to resolve the
image restoration problem.:

zn � 1 − cn( 􏼁un + cn un − μM
T

Mun − b( 􏼁􏼐 􏼑,

yn � 1 − βn( 􏼁zn + βn zn − μM
T

Mzn − b( 􏼁􏼐 􏼑,

un+1 � 1 − αn( 􏼁 un − μM
T

Mun − b( 􏼁􏼐 􏼑

+ αn yn − μM
T

Myn − b( 􏼁􏼐 􏼑.

(53)

Te problem (51) is solved using (53), using the pa-
rameter (50) and μ � 1/‖MTM‖2.

To illustrate the viability of the suggested algorithm, the
true RGB (color image) is presented in Figure 1. Peak signal-
to-noise ratio (PSNR) is a quantitative metric that is used to
assess how well the contrasting algorithms at un work during
the image deblurring process. Moreover, we employ the
following formula:

un − u
����

����∞
‖u‖∞

, (54)

to measure the fgure error, which is called the relative
fgure norm.

We then show how to restore photos that have been
damaged by the matrices MG (Gaussian blur of flter size
9 × 9 with standard deviation sigma � 4), MO (out focus
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blur with radius r � 6), and MM (motion blur specifying
with 21 pixels of motion length) (see Figure 2). Te
reconstructed RGB image shown in Figures 3–5 employs
three blurring matrices MG, MO, and MM for 50th, 1,000th,
and 20,000th iterations to address the restoration problem.
Tese fgures show that the quality of restored images uti-
lizing (53) for solving (51) improve for the three types of
degraded images.

Additionally, employing the suggested algorithms with
100,000th iterations, the behavior of the relative fgure error
and the PSNR quality of the deteriorated RGB image are
exhibited.

It is interesting to note that the relative errors plot of the
suggested technique decreases with the number of iterations.
As the number of iterations increases, their graphs also grow,
according to the PSNR plots in Figure 6. It can be said that
the suggested approach improves the quality of the three
distinct types of real RGB images.

5.2. Signal Recovering Problems. Compressed sensing can be
defned in signal processing given by

y � Au + ], (55)

where u ∈ Rn is the original signal, ] is the noise, y ∈ Rm is
the observed signal with noisy, and A ∈ Rm×n is a degraded
matrix. Solving the LASSO problem, (56) can be thought of
as fnding solutions to previously determined linear equa-
tion systems.

min
u∈RN

1
2

y − Au‖‖
2
2 subject to

����
����u1 ≤ t, (56)

where t> 0 is a given constant. We can use our strategy to
solve the issue (56) by putting T � PC(I − μ∇q), where
q(u) � y − Au‖‖22/2 and ∇q(u) � AT(Au − y). We demon-
strate how to use our approach in signal recovery issues (55).
Let un􏼈 􏼉 generated by C � u ∈ Rn: ‖u‖1 ≤ t􏼈 􏼉, we acquire
techniques for solving

wn � 1 − cn( 􏼁un + cnTun,

zn � 1 − βn( 􏼁wn + βnTwn,

un+1 � 1 − αn( 􏼁Tun + αnTzn,

(57)

where μ ∈ (0, 2/‖AtA‖2) and αn, βn, cn ∈ (0, 1), ∀n ∈ N.
Following that, various experiments are shown to

demonstrate the convergence and usefulness of algorithm
(50). yi � Aiu + ]i, i � 1, 2, 3 with m � 512 is generated by u
with n � 1024 formed by the uniform distribution in the
range [−2, 2] with 70 nonzero items. Te original signal is
shown in Figure 7.

Te procedure begins when the begin data u0 with n �

1024 is chosen at random and t is the number of nonzero
elements (see Figure 8).

Te observation signal yi is shown in Figure 9.
Ai formed by the normal distribution with mean of zero

and variance of one and white Gaussian noise ]i, i � 1, 2, 3
(see Figure 10).

Te convergence features of algorithm (57) with the
permutation of the blurring matrices A1, A2, and A3 are
illustrated and analyzed.Te relative inaccuracy is calculated
by using ‖un − u2/‖u2. Te signal-to-noise ratio (SNR) is
used to quantify the performance of the recovered signal at
the nth iteration (SNR). In addition, the comparative

Table 3: Comparative sequences of the Dang method (4) and
proposed method (5) for the numerical experiment of Example 2
with three decimal places.

Iteration number
Example 2

Dang (4) Proposed (5)
1 (1.200, 0.600, 0.400) (1.200, 0.600, 0.400)
2 (1.117, 0.557, 0.979) (0.857, 0.428, 0.285)
3 (1.054, 0.527, 0.943)
4 (1.010, 0.505, 0.915)
5 (0.977, 0.488, 0.815)
⋮ ⋮
28 (0.857, 0.428, 0.285)
⋮ ⋮
112 (0.857, 0.428, 0.285)

Figure 1: True images (243 × 349 × 3).

Table 1: Iteration steps and CPU time of the Dang method (4) and
proposed method (5) for the numerical experiment of Examples 1
and 2.

Algorithm
Iterations number CPU time (sec)

Example 1 Example 2 Example 1 Example 2
Dang (4) 111 112 7.973e− 04 9.648e− 04
Proposed (5) 2 2 3.985e− 04 4.091e− 04

Table 2: Comparative sequences of the Dang method (4) and
proposed method (5) for the numerical experiment of Example 1
with three decimal places.

Iteration number
Example 1

Dang (4) Proposed (5)
1 (0.600, 0.500, 1.100) (0.600, 0.500, 1.100)
2 (0.561, 0.467, 1.028) (0.444, 0.370, 0.815)
3 (0.534, 0.445, 0.979)
4 (0.514, 0.428, 0.943)
5 (0.499, 0.416, 0.915)
⋮ ⋮
29 (0.444, 0.370, 0.815)
⋮ ⋮
111 (0.444, 0.370, 0.815)
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algorithms’ parameters αn, βn, and cn are set to the default
parameter (50).

Figure 11 depicts the behavior of relative signal error and
SNR quality of the proposed approach with the blurring
matrices A1, A2, and A3.

Te relative signal error plot reduces until it converges to
some fxed value, which is impressive. Te SNR quality plot
of the provided approach shows that the SNR value grows
until it also converges to a constant number.

Figures 12–14 demonstrate the recovered signal using
the proposed techniques with the group of operator and
noise Ai and ]i, i � 1, 2, 3. Te improvement of SNR quality
for the recovering signals based on 5,000th, 10,000th, and
20,000th number of iterations are also shown on these fg-
ures. As illustrated in Figures 12–14, the proposed algo-
rithms (57) to solve the signal recovery problem have been
shown to improve the quality of recovered signals for three
diferent types of degraded signals.

Figure 2: True images are blurred by matrices MG, MO, and MM respectively.

Figure 3: Rebuilt images degraded by blurred matrices MG being 50th, 1,000th, and 20,000th used iterations.

Figure 4: Rebuilt images degraded by blurred matrices MO being 50th, 1,000th, and 20,000th used iterations.

Figure 5: Rebuilt images degraded by blurred matrices MM being 50th, 1,000th, and 20,000th used iterations.
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5.3. Polynomiography. In 2005, polynomiography is defned
by Kalantari (see, e.g. [34–40]). Te formula for Newton’s
method of calculating the roots of a complex polynomial P is
as follows:

zn+1 � zn −
p zn( 􏼁

p′ zn( 􏼁
, n � 0, 1, 2, . . . , (58)

where z0 ∈ C is an initial point. Here, we have (59) by using
(58). Consider a Hilbert space H � C, vo � (xo, y0), and
αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉 ⊂ (0, 1). Te following formula generates
polynomiographs:

wn � 1 − cn( 􏼁vn + cn vn −
p vn( 􏼁

p′ vn( 􏼁
􏼠 􏼡,

zn � 1 − βn( 􏼁wn + βn wn −
p wn( 􏼁

p′ wn( 􏼁
􏼠 􏼡,

vn+1 � 1 − αn( 􏼁 vn −
p vn( 􏼁

p′ vn( 􏼁
􏼠 􏼡 + αn zn −

p zn( 􏼁

p′ zn( 􏼁
􏼠 􏼡,

(59)

where αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉 are real sequences in (0, 1).
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Figure 6: Te relative fgures norm and PSNR plots of the proposed method for all degraded RGB images.
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Figure 7: Te original signal contains 70 nonzero components.
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Figure 8: Initial signals u0.
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Tis subsection shows some examples of the poly-
nomiographs obtained by using (59) with real and complex-
valued parameters using diferent color maps.

5.3.1. Polynomiographs with Real-Valued Parameters of
Iterations. Polynomiographs for complex polynomial
equation p1(z) � z3 − 3z2 + 1 and p2(z) � z4 + z2 − 1 are

-30
-20
-10

0
10
20
30
40

-30
-20
-10

0
10
20
30

-30
-20
-10

0
10
20
30

50 300150 400250100 350 5000 200 450

50 300150 400250100 350 5000 200 450

50 300150 400250100 350 5000 200 450

Figure 9: Degraded signals y1, y2, and y3.
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Figure 10: Noise signals ]1, ]2, and ]3.
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presented in Figures 15 and 16, respectively. Polynomio-
graphs were generated by resolution 500 × 500 pixels,
number of iterations n � 15, accuracy ϵ � 0.001, and
A � [2, 2]2. Te following parameters were fxed in the it-
erations: αn � 0.35, βn � 0.65, and c � 0.55.

5.3.2. Polynomiographs with Complex-Valued Parameters of
Iterations. Polynomiographs for complex polynomial

equations, p1(z) � z3 − 3z2 + 1 and p2(z) � z4 + z2 − 1, are
presented in Figures 17 and 18, respectively. Polynomio-
graphs were generated by resolution 500 × 500 pixels,
number of iterations n � 15, accuracy ϵ � 0.001, and
A � [2, 2]2. Te following parameters were fxed in the it-
erations: αn � 0.35 + 0.3i, βn � 0.65 + 0.4i, and
c � 0.55 + 0.75i.

Figures 15 and 16 show how real parameter components
afect symmetry, whereas Figures 17 and 18 show how
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Figure 11: Te relative signal error and SNR plots of the proposed algorithm with the blurring matrices A1, A2, and A3 in recovering the
observed signal with 200,000th iterations.
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Figure 13: Recovering signals based on the SNR quality for the degraded signal with operator A2 and noise ]2.
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Figure 15: Examples of polynomiographs of diferent color maps for p1 with real-valued parameters of (59).
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Figure 17: Examples of polynomiographs of diferent color maps for p1 with complex-valued parameters of (59).
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Figure 18: Examples of polynomiographs of diferent color maps for p2 with complex-valued parameters of (59).
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imaginary parameter components produce asymmetric
twisting of the polynomiographs and afect the statics or
dynamics of the pictures.
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Te assumption of Hall current and ion slip is extremely crucial in several industrial and manufacturing processes, such as MHD
(magneto hydrodynamics) accelerators, preservation coils, transmission lines, electric converters, and heating elements. Keeping
this in view, the main aim of this article is to present a computational analysis of MHD ion Hall current with nonlinear thermal
radiation on the sloping fow of shear thinning fuid through a porous medium on a stretching sheet that allows fuid suction and
injection. Te major mathematical modelling of governed problems is converted into a system of nonlinear ODEs (ordinary
diferential equations) by means of appropriate similarity relations. Te infuence of all relative physical parameters on velocity
and temperature is studied through graphs and discussed in a detailed physical manner. Some benefcial mathematical quantities
from the practical engineering and industrial point of view, such as skin friction factor and heat transfer rate at the porous surface,
are calculated numerically and presented through graphs. It has been observed that fow may become unstable when M is small
and the existence of a magnetic feld and a porous ground contributes to a highly rough fow over the stretching surface. Suction is
actually a resistive force which results in higher skin friction that is benefcial in controlling fow separation. Temperature of the
fuid rises with stronger magnetic feld and higher thermal radiation efects. Te local heat fux decreases as the magnetic feld
strength and permeability parameter increase.

1. Introduction

Engineers, scientists, and mathematicians face an enormous
challenge while dealing with nonlinear rheology of working
fuids.Tere are number of means through which such types
of nonlinearity can be confronted. One of the simplest ways
in which viscoelastic fuids have been classifed is the
methodology given by Rivlin and Ericksen [1]. Noll and
Truesdell [2] presented stress tensor as a symmetric tensor
with velocity gradient and its derivatives in constitutive
equations. In this modern era, researchers like [3] have made
a lot of contribution in the feld of non-Newtonian fuid
fows, due their high-tech implication in industries. It is also
noteworthy that these types of fuids exhibit very stimulating

mathematical features in their governed fow equations.
Oblique stagnation point non-Newtonian fuid fow studies
become a more exciting challenge for researchers and in-
vestigators due to its wide applications in industries. Te
fuid fow over a stretched surface is highly signifcant in so
many manufacturing practices. Lok et al. [4] studied time-
independent viscid incompressible fuid fow impinging at
some arbitrary angles of incidence on a stretching panel.
Labropulu et al. [5] developed the study of oblique
stagnation-point fow of non-Newtonian fuid towards
a stretching surface. Mahapatra et al. [6] analysed a time
independent 2D radiative oblique stagnation-point fow
with heat transfer characteristics on a shrinking sheet. Sadiq
et al. [7] described MHD features of oscillatory oblique
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stagnation point fow of micropolar nanofuid. Some more
studies developing diferent physical efects on non-
orthogonal stagnation point fows dealing with several non-
Newtonian models may be found in [8–10].

Te nonlinear radiative electrically conducting fuid fow
in manifestation of magnetic feld is widely benefcial into
electrical control generators, cosmological fows, stellar and
lunar power control machinery, planetary automobile re-
entry, fssionable production plants, and many other engi-
neering areas. At great operational temperatures, nonlinear
thermal radiation becomes more vital and obvious, partic-
ularly under nonisothermal conditions. Nonlinear thermal
radiation is highly signifcant when polymer extrusion
procedure is monitored by thermally controlled environ-
ment. Te infuence of linear as well as nonlinear thermal
radiation on Newtonian as well as non-Newtonian fuid
fows in the presence as well as absence of magnetic feld has
already been discussed by numerous researchers and sci-
entists [11, 12].

Hall and ion currents in infuence with magnetic feld is
the most noteworthy phenomena in modern research due to
its intensive, keen-sighted, and immense implications in
abundant engineering felds such as power control origi-
nators, MHD generators, preservation coils, broadcast
ranks, electrical converters, and boiler essentials. By ap-
plying Ohm’s law directly, mostly the required results are
unattainable due to weak magnetic strength but it can be
enhanced by adding Hall and ion slip efects in this law.
When applied magnetic feld is in the direction of magneto
hydrodynamics force in combination with Hall ion slip
currents, then it becomes tremendously noteworthy in
modern research because Hall and ion currents have strong
infuence on size and track of existing density and sub-
sequently on the magnetic meter.

Ibrahim and Anbessa [13] scrutinized the 3D nanofuid
fow of Casson fuid in the presence of applied magnetic feld
with ion Hall currents and mixed convection over an ex-
ponentially stretching surface. Krishna et al. [14] in-
vestigated combined efects of Hall and ion slips on MHD
spinning stream of ciliary momentum of miniscule bacte-
rium over absorbent intermediate. Rajakumar et al. [15]
deliberated the fow of Casson fuid in their research, and
they explored the infuences of free convection with efects of
radiation and viscid indulgence in existence with magnetic
felds and Hall ion efects. Kumar and Vishwanath [16]
established a scientifc arrangement of non-Newtonian fuid
fow over a permeable surface with a uniform distribution of
magnetic feld with Hall current and ion slip efects. Shah
et al. [17] defned the fow of micropolar nanofuid in
presence of thermally radiative rotating disks for in-
vestigation of mass fux and heat fux. Few more related
studies on the said topic can be found from the references
[18–22].

For continuity of fuid fow, suction/injection is highly
recommended, particularly in boundary layer fows. Mainly
these types of fows have applications in feld of aero-
dynamics and planetary felds where the use of minimum
drag forces is ensured. Suction is used for improvement in
efciency of difusers. Shojaefard et al. [23] investigated the

control fow of fuid on the surface of a subsonic aircraft by
using suction/injection. Braslow [24] showed that fuel
ingesting and pollution caused by subsonic aircraft as well as
price of commercial aircrafts can be reduced to a good extent
only with the help of suction/injection.

Stagnation point fows under infuence of suction in-
jection have become one of the great interests for modern
researchers. Zeeshan and Majeed [25] inspected the char-
acteristics of Jefery fuid past a stretched plate under in-
fuence of attractive dipole with suction/injection. Similarly,
El-Arabawy [26] studied the impact of radiative heat transfer
with suction and injection on a constant rotating sheet for
a micropolar fuid. Chamkha et al. [27] examined the
properties of chemical species and heat and mass trans-
mission on a stretched surface in a permeable medium.
Pandey and Kumar [28] categorized the viscid dissipation
with the presence of suction/injection on MHD fow of
a nanofuid in a porous medium. Rundora andMakinde [29]
discussed third-grade fuid with assumptions of time- and
temperature-dependent variable viscosity fndings in pres-
ence of suction/injection in a porous station. Similar type of
studies may be seen in [30–36].

Te all cited works of numerous researchers and sci-
entists depicted that inclined fow of non-Newtonian fuid in
existence with a strong magnetic feld with ion and Hall
currents and nonlinear thermal radiation in porous medium
with suction injection infuence is highly suitable in many
engineering problems and found to be new in this combi-
nation, although many researchers in this modern era of
research have explored these types of problem but not yet
this one. Te novelty of governed fuid problem is stated as
follows:

(i) A picture of the inclined Casson fuid stagnation
point fow on a stretched horizontal plate is
captured

(ii) Suction injection phenomenon is taken into con-
sideration, and the horizontal stretched plate is
supposed to be permeable.

(iii) Te body force on this bioconvective nanofuid fow
is the magneto hydrodynamic force with ion slip
and Hall currents

(iv) Nonlinear thermal radiation is supposed to be
added with convective boundary conditions

Te current fndings and implications are presented by
including graphs of fuid distributions that reveal all new
impacts of various parameters. Morevoer, validation of
current results with previously existing literature for New-
tonian case is provided.

2. Mathematical Scheme

Te mathematical model is constructed by using assump-
tions of two-dimensional, steady oblique fow of MHD
Casson fuid along with Hall and ion slip conditions with
suction injection and nonlinear thermal radiation. To keep
surface stretched, two equal balanced forces are applied in
opposite directions along the x− axis, and the origin is
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maintained fxed as shown in Figure 1. Te basic funda-
mental laws in component forms as per stated assumptions
are [37–39]
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Te consistent boundary conditions are [39]
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where u∗ and v∗ are the velocity components in x and y

directions, and ], p∗, ρ, T∗, qr, cp, T∞, k∗, c, a, b, and β �

μB(
���
2πc

􏽰
/py) are the kinematic viscosity, pressure, density,

temperature, nonlinear radiative heat fux, specifc heat,
ambient fuid temperature, thermal coefcient, the con-
stants, and Casson fuid parameter, respectively. J × B is
defned as generalised Ohm’s law, where J, σ, and E are the
current density, electrical conductivity, and electric feld
intensity, respectively. Equations (1)–(8) are transformed
into nondimensional form [37–39]:
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Figure 1: Geometrical description of the governed fuid model.
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where βe, βi, Pr, sw, θw, Bi, MΩ, (a/b), and (b/c) represent
the Hall parameter, ion parameter, Prandtl number, suction
(sw > 0)/injection (sw < 0) parameter, temperature ratio
parameter, Biot number, magnetic feld parameter, per-
meability parameter, stretching ratio parameter, and
obliqueness of the fow, respectively.

By stream-function transformation as defned [38] in
equations (9)–(14) with pxy � pyx,
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Over consuming stream-function transformation as
defned in [38] into equations (15)–(18) and after integration
once,
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where B1 and B2 can be obtained from B.Cs (23) as
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3. Physical Quantities of Interest

Skin friction coefcients at surface and the local heat fux [37]
are the physical quantities of interest that have extensive use in
numerous engineering and manufacturing productions.
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4. Numerical Scheme

Te mathematical form of governed problems (26)–(30) is
the system of coupled highly nonlinear set of ordinary

diferential equations. To solve such system of equations by
shooting technique, frst of all, make them into set of frst-
order initial value problem by using following
transformation.
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where αi, i � 1 . . . 4, are the shooting factors with assump-
tion of three decimal places tolerance level.

5. Results and Physical Discussion

Comprehensive computational calculations have been
conducted and demonstrated by graphs herein segment. Te
numerical investigation of oblique stagnation point fow of
MHD ion Hall current with suction injection of non-
Newtonian fuid along with nonlinear thermal radiation
in porous medium is presented in this segment. Figures 2–10
are settled to attain the norms and standards of this theo-
retical research.

Figure 2 is constructed to note the infuence of per-
meability constraint Ω on fuid’s normal and tangential
velocity f′(y), h′(y), and temperature θ(y) of fuid with
suction/injection. Figure 2(a) presents normal velocity f′(y)

shrinkages for rising values of permeability parameter
Ω � 0.1, 3.0, 5.0, 7.0, and it is quite evident that the existence
of permeable surface becomes the reason of strong re-
striction to fowing of fuid, so the velocity becomes de-
celerate. Also, it is worth mentioning here that the
magnitude of suction (sw > 0) is greater than the magnitude
of injection (sw < 0) for this case, higher suction becomes
more efective in porous surface as it delays the boundary
layer separation and fow becomes more and more stable.
Figure 2(b) indicates other component of velocity h′(y)

upswings nearby surface since a high permeability allows
fuids to pass through more freely, and after infection point,
it reverses its behaviour and comes to decline far of from
sheet because of higher inspiration of porousness parameter
Ω � 0.1, 3.0, 5.0, 7.0 and behaves extremely resistive. It is
noted in this graph that close to wall injection (sw < 0) is
higher than suction but away from the wall efect of suction/
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injection reversed. Figure 2(c) describes the efect of per-
meability parameterΩ � 0.1, 3.0, 7.0, 10.0 on temperature of
fuid, when permeability parameter Ω rises so that the
temperature distribution with thermal boundary layer in-
creases.Tis happens because permeable surface slows down
the motion of fuid fow, and this restriction in fowing of
fuid becomes responsible to enhance the temperature of
governed fuid. Figure 2(c) also depicts the stronger infu-
ence of suction (sw > 0).

Figure 3 describes the impact of ion slip constraint βi on
fuid’s velocities f′(y) and h′(y) as well as on temperature
θ(y) of fuid with suction/injection. Conductivity of fuid
increases when values of ion slip constraint
βi � 0.1, 3.0, 6.0, 10.0 escalates and as a reaction, restraining
energy comes down and fuid’s molecules freely moves and
fuid’s velocity raises as noted in Figure 3(a). Figure 3(b) is
plotted to show similar kind of increasing behaviour for βi �

0.1, 2.0, 4.0, 6.0 away from the surface but at surface velocity

reverses its behaviour and declines at wall because at wall
fuids have resistance which opposes the fow. Figure 3(c)
displays that temperature θ(y) of fuid declines; also, the
thermal boundary layer becomes thinner for ion slip pa-
rameter βi � 0.1, 2.0, 5.0, 8.0, due to dropping of damping
energy in the direction of fow. It is worth mentioning here
that velocity profle for suction (sw > 0) is greater than in-
jection (sw < 0). Strong infuence of suction is highly useful
to reduce the drag in boundary layer fow.

Figure 4 is planned to recognize the enactment of both
velocities f′(y), h′(y), and temperature θ(y) of fuid for
Hall parameter βe. Since the resistance is produced by
magnetic feld when Lorentz force is strong enough, but due
to the presence of Hall parameter βe, the resistive force
becomes weak due to decline in conductivity, so fuid’s
normal velocity f′(y) proliferates with the rise in Hall
parameter βe � 0.1, 0.3, 0.6, 1.0. as mentioned in 4(a), and
for suction (sw > 0), velocity is greater, but for injection

Solid Lines: Suction (sw>0)
Dashed Lines: Injection (sw<0)

Ω=0.1, 1.0, 3.0, 5.0.

a/c=0.1, β=0.5, M=1.0, βi=0.5, βe=0.2,
θw=0.1, Bi=0.1, Rd=1.5, Pr=3.2.

0.2

0.4

0.6

0.8

1
f′ 

(y
)

2 4 6 80
y

(a)

Solid Lines: Suction (sw>0)
Dashed Lines: Injection (sw<0)

a/c=0.1, β=0.5, M=0.2, βi=0.2, βe=0.2,
θw=0.1, Bi=0.1, Rd=1.5, Pr=3.2.
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Solid Lines: Suction (sw>0)
Dashed Lines: Injection (sw<0)

a/c=0.1, β=0.5, M=0.5, βi=0.5, βe=0.2,
θw=0.2, Bi=0.1, Rd=1.5, Pr=3.2.
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Figure 2: (a) Velocity distribution f′(y), (b) velocity distribution h′(y), and (c) temperature distribution θ(y) for permeability parameter
Ω.

Journal of Mathematics 7



(sw < 0), velocity of fuid is smaller. Figure 4(b) expresses the
signifcance of Hall constraint βe � 0.1, 0.3, 0.6, 1.0, and it
governs when fuid is far away from surface and fuid’s
tangent component of velocity, h′(y) intensifcates away
from wall, but near to surface, it takes difering conduct and
contracts. Given that the Hall parameter is calculated as the
sum of the frequency and the time of electron collisions. An
increase in this parameter indicates an increase in the fre-
quency of electrons, the duration of electron collisions, or
both. Figure 4(c) shows that temperature θ(y) drops down
when Hall parameter βe � 0.1, 1.0, 2.0, 5.0 increases; because
of weak resistive force, there is decline in thermal con-
ductivity and as a result the temperature profle declined.
Te efect of suction (sw > 0) is stronger in these graphs, and
it is more applicable in practical world problems/models and
useful for situation where to increase output of difusers of
governed fuid through reducing separation drag. Boundary
layer suction particular in porous media close to trailing

edge is useful to maximize the lift and minimize the drag
force of automobiles, aerofoils, and jet planes.

Figure 5 is intended to show the efect of magnetic feld
on fuid’s velocity and fuid’s temperature, every time. Te
existence of magnetic feld means that there is birth of
Lorentz strength. Lorentz force is defned as a resistive drag
force, so normal velocity f′(y) of fuid descents for M �

0.1, 1.0, 3.0, 6.0 as seen in Figure 5(a). But for tangential
velocity, h′(y) case is opposite and grows up close to surface
but reverses its behaviour when it moves away from the
surface for M � 0.1, 1.0, 3.0, 6.0, see Figure 5(b). Tis hap-
pens due to the presence of magnetic feld. Figure 5(c)
contrives to implement the connection of temperature
withmagnetic feld. It shows that temperature θ(y) increases
for higher values of magnetic feld M � 0.1, 3.0, 7.0, 10.0
because of frictional stress which arise because of Lorentz
force, so there occurs increment in thermal conductivity, so
in temperature of fuid.

Solid Lines: Suction (sw>0)
Dashed Lines: Injection (sw<0)

βi=0.1, 3.0, 6.0, 10.0.

a/c=0.1, β=0.5, Ω=0.3, βe=0.5, M=8.0,
θw=0.5, Bi=0.1, Rd=1.5, Pr=3.2.
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Figure 3: (a) Velocity distribution f′(y), (b) velocity distribution h′(y), and (c) temperature distribution θ(y) for ion slip parameter βi.
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Figure 6 is plotted for inspecting the performance of
radiation parameter Rd, Biot number Bi, and Prandtl
number Pr on temperature distribution. Fluid’s tem-
perature θ(y) enlarged for rising numbers of radiation
parameter Rd � 0.1, 0.5, 1.0, 1.5 because larger radiation
parameter implies more heat is provided to the fuid, so
thermal boundary layer becomes thick and temperature
of fuid rises as illustrated in Figure 6(a). In addition to
being utilised to produce power, radiation is also used in
academia, industry, and medical. Radiation is also useful
in many other felds, including mining, law enforcement,
space exploration, agriculture, archaeology (carbon
dating), and many others. Figure 6(b) shows that tem-
perature of fuid becomes higher with growth in Biot
number Bi � 1.0, 1.5, 2.0, 3.0. Because when convective
heat conversation at the surface rises (Bi≥ 1.0), then there
is enhancement in thermal boundary layer thickness as
with a higher heat transfer coefcient, and more heat is
transferred from the surface to the fuid. Te rate of heat

transmission increases with greater estimates of Bi. Bi
can, therefore, be used as a cooling operator in complex
operations. Figure 6(c) shows the thermal boundary layer
thicknesses shrinkage extremely when there is rise in
Prandtl number Pr � 1.0, 1.5, 2.0, 3.0; so, there is escala-
tion in the wall temperature gradient. Tis phenomenon
occurs because of higher values Prandtl number, and then,
fuid has moderately little thermal conductivity that lessens
the occurrence of conduction and reduces the thickness of
thermal boundary layer; hence, temperature of fuid de-
clines. Small Prandtl values are a suitable choice for heat-
transmitting liquids since they are free-fowing liquids with
strong thermal conductivity. Prandtl number (Pr < 1.0)

specifes fuids with huge thermal conductivity which crops
denser thermal boundary layer as compared to the thermal
boundary layer for higher Prandtl number (Pr > 1.0).
Suction is more prominent than injection in all these plots,
and it is an efcient source for laminar boundary layer fow,
it reduces the contact losses at surface and suction becomes

βe=0.1, 0.3, 0.6, 1.0.

Solid Lines: Suction (sw>0)
Dashed Lines: Injection (sw<0)

a/c=0.1, β=0.2, Ω=0.1, βi=2.5, M=8.0,
θw=0.5, Bi=0.1, Rd=1.5, Pr=3.2.
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Figure 4: (a) Velocity distribution f′(y), (b) velocity distribution h′(y), and (c) temperature distribution θ(y) for Hall parameter βe.
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more stable in laminar boundary layer, and it becomes thin
and remains laminar throughout. Tese physical quantities
are of great worth due to its large and high scales appli-
cations in many industrial and engineering arenas, specif-
ically areas of aerodynamics and astronomical, and highly
benefcial in controlling fow separation.

Figure 7(a) launches that skin friction coefcient at surface
h′(0) increases when permeability parameter Ω � 0.1, 0.3, 0.7
rises with suction (sw > 0) and injection (sw < 0), and also, it
upsurges when the values of magnetic feld M raised for both
cases. It is worth noting in this plot that suction is smaller than
injection. Figure 7(b) develops the decreasing infuence of local
heat transfer rate − θ′(0) rises for permeability parameter Ω �

0.1, 0.3, 0.7 and for magnetic feld parameter M for both cases
of suction (sw > 0) as well as for injection (sw < 0). Also,
suction (sw > 0) is smaller than injection (sw < 0).

Figure 8(a) indicates skin friction coefcient at wall h′(0)

shrinkages when both Hall parameter βe � 0.1, 0.5, 1.0 and

ion slip parameter βi increase. Figure 8(b) displays that local
heat fux − θ′(0) grows up for increasing values of Hall
parameter βe � 0.1, 0.5, 1.0; on the other hand, it remained
fxed for ion slip parameter βi on local heat fux for both
cases of suction as well as for injection but infuence of
suction is smaller than injection in these two plots.

In Figure 9, it is found that efect of radiation parameter
Rd � 0.1, 0.3, 0.7 is downward for heat transfer rate at
surface -θ′(0) but have opposite behaviour for Biot number
Bi. Also, this fgure exhibits that injection is stronger and
enhancing than suction. Te fuid fow in the channel is
controlled by suction or injection phenomenon. Figure 10
shows fow pattern through stream lines for suction (sw > 0)

and injection (sw < 0) in the presence and absence of per-
meability parameter Ω. Figure 10(a) reveals the fow pattern
with and without permeability for injection (sw < 0) and for
suction (sw > 0) in Figure 10(b). Figure 10(c) simultaneously
shows the stream lines pattern for both suction (sw > 0) as

M=0.1, 1.0, 3.0, 6.0.

Solid Lines: Suction (sw>0)
Dashed Lines: Injection (sw<0)

a/c=0.1, β=0.5, Ω=0.3, βi=0.5, βe=0.2,
θw=0.1, Bi=0.1, Rd=1.5, Pr=3.2.
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Dashed Lines: Injection (sw<0)

a/c=0.1, β=0.5, Ω=5.0, βi=0.5, βe=0.2,
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Figure 5: (a) Velocity distribution f′(y), (b) velocity distribution h′(y), and (c) temperature distribution θ(y) for magnetic feld parameter
M.
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Ω=0.1, 0.3, 0.7.

Solid Lines: Suction (sw>0)
Dashed Lines: Injection (sw<0)

a/c=0.1, β=0.5, βe=0.5,βi=0.5, 
θw=2.0, Bi=0.2, Rd=2.0, Pr=5.2.
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Figure 7: (a) Tangential skin friction at surface − h′(0) and (b) heat fux − θ′(0) for permeability parameterΩ against magnetic feld parameter M.
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Figure 6: (a) Temperature distribution θ(y) for radiation parameter Rd, (b) temperature distribution θ(y) for Biot number Bi, and (c)
temperature distribution θ(y) for Prandtl number Pr.
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a/c=0.1, β=0.5, M=3, βi=0.5, βe=0.5,
θw=2.0, Ω=2.0, Pr=3.2.
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Figure 9: Heat fux − θ′(0) for radiation parameter Rd against number Bi.
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Figure 8: (a) Tangential skin friction at surface − h′(0) and (b) heat fux − θ′(0) for Hall parameter βe against ion slip parameter βi.

5

4

3

2

1

0

y

–10 –5 0 5 10
x

M=4.0, Rd=2.0, β=0.5, a/c=0.1,
βi = 0.1, βe = 0.1, Pr = 5.2, Bi = 0.2, θw = 1.0

Ω = 0
Ω = 18

(a)

M=4.0, β=0.5, a/c=0.1,
βe = 0.5, βi = 0.5, Rd = 2.0, Bi = 0.2, Pr = 5.2, θw = 1.0.

5

4

3

2

1

0

y

-60 -40 -20 20 40 60
x
0

Ω = 0
Ω = 15

(b)
Figure 10: Continued.
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well as injection (sw < 0). Te stream contour ψ touches the
partition y � 0, at stagnation point x, and zero skin friction.

Table 1 provides the comparison of numerical values of
local heat fux with previously published results in literature,
so that to authenticate the current computational results. For
this purpose, the fndings of Makinde and Aziz [40], Khan
and Pop [41], and Wang [42] are compared with present
values of heat transfer rate in Table 1. Here, the as-
sumptions that are made for comparison are fxed tem-
perature with very large Biot number (Bi⟶∞) in BCs
also with negligence of permeability parameter and
suction/injection efects. Tese values depicted in the
table that the current results of heat fux at surface − θ′(0)

against several numerical fgures of Prandtl number Pr
took upto 3 decimal places with those values of heat fux
presented in [40–42].

6. Concluding Remarks

Te major presentation of this type of existing research is
particularly in the feld of aerodynamics and astral, plan-
etary, cosmological, and astrophysical disciplines so that
drag may minimize to reduce the loss of energy. So, in this
respect, the prevailing article inspects the blend suction

injection in permeable surface for non-Newtonian fuid
with MHD Hall and ion slip efects over a nonlinear
thermally radiative stretched surface. Te nonlinear radi-
ative electrically conducting fuid fow in manifestation of
magnetic feld is widely bump into electrical control
generators, cosmological fows, stellar and lunar power
control machinery, planetary automobile re-entry, fs-
sionable production plants, and many other engineering
areas.

(i) Permeability Ω developed the cause to decline in
both velocities but enhances temperature of fuid
as this happens in fuids due to high permeability
so it allows fuids to pass through more freely. Tis
can be helpful in materials such as aquifers, pe-
troleum reservoirs, cements, and ceramics.

(ii) Ion and Hall slip parameters βi and βe are the
causes for rise in velocities. Several engineering
issues including those involving power generators,
magneto hydrodynamic accelerators, refrigeration
coils, transmission lines, electric transformers, and
heating used these types of currents.

(iii) Velocities for magnetic feld parameter M falls down
for M> 1. But for temperature distribution, it rises.
Also, both velocities formagnetic feld parameterwith
suction (sw > 0) is recognized more superior than
occurrence of injection (sw < 0). Te discovery that
the interaction of a plasmawith amagnetic feld could
take place at far greater temperatures than were
feasible in a spinningmechanical turbine served as the
initial catalyst for interest in MHD power generation.

(iv) Infuence of radiation parameter Rd and Biot
number Bi on temperature of fuid is more
dominant, but for Prandtl number Pr, it became
subservient. Several diferent applications, such as

M=8.0, β=0.5, a/c=0.1, Rd=2.0,
βe = 0.5, βi = 0.5, Pr = 7.2, Bi = 0.2, Ω = 5.0, θw = 1.0.
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Figure 10: Stream lines (a) for permeability parameter with injection, (b) for permeability parameter with suction, and (c) for suction and
injection.

Table 1: Consequences of local heat fux − θ′(0) for restrictive case
when Bi⟶∞.

Pr Existing values Makinde
and Aziz [40]

Khan and
Pop [41] Wang [42]

0.2 0.1696 0.1691 0.1691 0.1691
0.7 0.4541 0.4539 0.4539 0.4539
2.0 0.9113 0.9114 0.9113 0.9113
7.0 1.8950 1.8954 1.8954 1.8954
20.0 3.3533 3.3539 3.3539 3.3539
70.0 6.4620 6.4622 6.4621 6.4621
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thermal management, spectroscopy, optoelec-
tronics, and energy-conversion devices, depend on
the capacity to control heat radiation.

(v) Local heat fux is enormous for ion and Hall slip
parameter βi and βe with injection as compared to
suction

(vi) Heat transfer rate at surface drops down in the
presence of radiation parameter Rd, while it
fourishes against diferent values of Biot number
Bi, injection in this case is more prominent than
suction. Suction/injection is a mechanical phe-
nomenon that is used to control the fuid fow in
the channel and reduce surface drag in order to
reduce energy losses in the boundary layer
region.

(vii) A solid confrmation is obtained in tabular format of
numerical fgures with present existing literature. An
outstanding agreement is attained for restrictive case.

(viii) A strong convective boundary condition indicated
that for numerous fgures of Prandtl number, local
heat fux at surface upturns

Nomenclature

u: x–components of velocity
]: Viscosity
ρ: Density
Ω: Permeability parameter
T∞: Free stream temperature
cp: Specifc heat of fuid
qr: Nonlinear radiative heat fux
Rd: Radiation parameter
βe: Hall parameter, ion parameter
βi: Hall parameter, ion parameter
Pr � (v/a): Prandtl number
BCs: Boundary conditions
(b/c): Obliqueness of fuid fow
ODEs: Ordinary diferential equations
v: y–components of velocity
p: Pressure
T: Temperature
hs: Heat transfer coefcient
a, b.c: Constants
k: Termal conductivity
β � μB(

���
2πc

􏽰
/py): Casson fuid parameter

θw � Tf/T∞: Temperature ratio parameter
M � (σ/cρ)B0

2: Magnetic feld constraint
sw: Suction (sw > 0)/injection (sw < 0)

parameter
(a/c): Stretching ratio constraint
Bi � − (h/k)

���
(v)

􏽰
: Biot number

A: Boundary layer displacement constant
PDEs: Partial diferential equations.
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In the context of ψ-weighted Caputo− Fabrizio fractional derivatives, we develop and extend the existence and Ulam− Hyers
stability results for nonlocal implicit diferential equations. Te fxed-point theorems due to Banach and Krasnoselskii are the
foundation for the proof of existence and uniqueness results. Additionally, the Ulam− Hyers stability demonstrates the assurance
of the existence of solutions via Gronwal inequality. Also, we ofer an example as an application to explain and validate the
acquired results. Finally, in terms of our outcome, we designate a more general problem for the [ψ, w]-Caputo− Fabrizio fractional
system that includes analogous problems to the problem at hand.

1. Introduction

It is noteworthy that fractional calculus (FC) has received
considerable attention from researchers due to its wide
variety of applications in several scientifc domains. Te
signifcant concepts and defnitions of FC have been in-
troduced by Osler [1] and Kilbas et al. [2]. Samko et al. [3]
and Diethelm and Ford [4] provided some basic history of
FC and its applications in engineering and various felds of
science.

Many classes of fractional diferential equations (FDEs)
have been extensively investigated and analyzed in the past
decades; for instance, theories involving the existence of
unique solutions have been notarized in [5–7] and references
therein. Numerical and analytical methods are developed
with the aim of solving such equations then tracked as useful
in modeling some real-world problems, as shown in [8–10].

Te qualitative properties of solutions address an in-
dispensable piece of the theory of FDEs. Te beforehand
previously mentioned district has been investigated well for
classical DEs. Regardless, for FDEs, there are various aspects
and viewpoints that require further investigation and

analysis. Te existence and uniqueness have been intensively
studied by using Riemann− Liouville (R-L), Caputo, Hilfer,
and other FDs, as shown in [11–16] and references therein.

Generalized FDs and integrals and their applications
were discussed by several authors. For example, Kilbas et al.
[2] introduced some nice properties of ψ-Reiman− Liouville
FD. Te ψ-Caputo FD has been defned by Almedia [17].
Ten, Sousa and Oliveira proposed another generalization in
the Hilfer sense [18].

In the previously mentioned derivatives, there exists a
singular kernel. In this manner, as of late, some authors
presented some new kinds of FDs in which they have
supplanted a singular kernel with a nonsingular kernel, as
shown in [19–21]. Te nonlocal FDs with nonsingular
kernels have been demonstrated as a decent tool to model
real-world problems in various areas of engineering and
science, as shown in [22–25].

On the other hand, Jarad et al. [26] introduced the
concept of weighted FDs. Some recent papers dealt with the
theory of existence and Ulam− Hyers (UH) (and Generalized
Ulam− Hyers (GUH)) stability of diferent types of FDEs due
to their importance in many areas of exploration; for
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instance, Shaikh et al. [27] established the existence and
uniqueness results of the following CF-type Cauchy
problem:

CFD
ϑ
0+ υ(ϰ) � f(ϰ, υ(ϰ)), ϰ ∈ [0, 1], 0< ϑ< 1, υ(0) � υ0.􏽮 (1)

Te existence and UH stability results in the following
CF fractional implicit equation:
CF
D

ϑ
0+υ(ϰ) � f ϰ, υ(ϰ), CF

D
ϑ
0+υ(ϰ)􏼐 􏼑, ϰ ∈ [0, T], 0< ϑ< 1. (2)

υ(0) � υ0 and aυ(0) + aυ(T) � c were investigated by Abbas
et al. [28] in b-metric spaces and by Salim et al. [29] in
Banach spaces, respectively. Te equation (2) with 0< ϑ≤ 2
was considered by Gul et al. [30].

On the other hand, Abdo et al. [31], considered the
following weighted Caputo problem:

CD
ϑ;ψ,w

0+ ρ(ϰ) � φ(ϰ, ρ(ϰ)), 0< ϑ≤ 1, ρ(0) � ρ0.􏽮 (3)

In this regard, Al-Refai and Jarrah [32], introduced the
concept of the [ψ, w]-Caputo− Fabrizio FD, where ψ(ϰ) is a
monotone function and w(ϰ) is a weight function. Tey also
obtained the uniqueness result of the Cauchy problem.
Motivated by studies [31, 32], we consider the following
weighted implicit nonlocal FDE:

CFD
μ
a;w ρ(ϰ) � φ ϰ, ρ(ϰ), CF

D
μ
a;wρ(ϰ)􏼐 􏼑, ρ(a) � c + g(ρ),􏽮 (4)

and the following [ψ, w] type implicit nonlocal FDE:
CFD

μ;ψ
a;w ρ(ϰ) � φ ϰ, ρ(ϰ), CF

D
μ;ψ
a;wρ(ϰ)􏼐 􏼑, ρ(a) � c + g(ρ),􏽮 (5)

where 0< μ< 1, ϰ ∈ [: � [a, b], c ∈ R, g ∈ C([), φ: [ ×

R × R⟶ R is a given function, and CFDμ;ψ
a;w is a [ψ, w]-

Caputo− Fabrizio FD, and w,ψ ∈ C1([) with w, w′,ψ > 0 on
[.

We pay attention to the topic of the novel weighted
operators with another function. As far as we are aware, no
studies using the [ψ, w]-Caputo− Fabrizio FDs have been
published that address the qualitative aspects of the afore-
mentioned problems. Consequently, to enhance and enrich
the literature on this new trend, which is extremely restricted
right now, we develop and extend the existence, and
Ulam–Hyers stability results for problems (4) and (5) based
on Banach’s fxed point theorem, Krasnoselskii’s fxed point
theorem, and Gronwal inequality. Besides, we also give a
more general problem as a system, that covers the problems
at hand.

Remark 1

(i) If ψ(ϰ) � ϰ, then problem (5) reduces to problem
(4)

(ii) If ψ(ϰ) � ϰ, w � 1, and g ≡ 0, then problem (5)
reduces to the implicit problem (2), as shown in
[28, 29]

(iii) If ψ(ϰ) � ϰ, w � 1, and g ≡ 0, then problem (5)
reduces to the Cauchy problem (1) without implicit
term, as shown in [27]

(iv) Our current results for the problem (5) stay avail-
able on problem (4)

(v) With diferent values of ψ, our current problems
cover many problems associated with less general
operators; for instance, the operator presented by
Caputo and Fabrizio [19]

Te accessories of this paper are arranged as follows:
Section 2 gives some fundamental results about advanced
FC. Our key fndings for the problems (4) and (5) are ob-
tained in Section 3. A comprehensive example that verifes
the validity of the theories is provided in Section 4. Section 5
includes the conclusions of the work.

2. Primitive Results

In this section, we begin by giving some notations and basic
nomenclature. Let [: � [a, b], a< b<∞, andR be the set of
real numbers. C[a, b] and AC[a, b] denote the set of con-
tinuous and absolutely continuous functions, respectively,
on [, endowed with the usual supremum norm. Let ψ(ϰ)
and w(ϰ) be the monotone and weight function, respec-
tively, with w,ψ ∈ C1([) and w, w′,ψ′ > 0 on [.

Defnition 1 (see [32]). Let 0< ϑ< 1, and ρ ∈ AC[[,R]. Te
left [ψ, w]-Caputo− Fabrizio FD is defned as

CF
D

μ;ψ
a;wρ(ϰ) �

ℵ(μ)

1 − μ
1

w(ϰ)
􏽚
ϰ

a
e

− λμ(ψ(ϰ)− ψ(ζ)) d
dζ

(wρ)(ζ)dζ , (6)

where λμ � μ/1 − μ, and ℵ(μ) is a normalization function
satisfying ℵ(0) � ℵ(1) � 1.

Te previous operator can be written as

CF
D

μ;ψ
a;wρ(ϰ) �

ℵ(μ)

1 − μ
e

− λμψ(ϰ)

w(ϰ)
􏽚
ϰ

a
e
λμψ(ζ) d

dζ
(wρ)(ζ)dζ. (7)

Defnition 2 (see [32]). Let 0< ϑ< 1, and ρ ∈ AC[[,R]. Te
left [ψ, w]-Caputo− Fabrizio FI is defned as

CF
I
μ;ψ
a;wρ(ϰ) �

1 − μ
ℵ(μ)

ρ(ϰ) +
μ
ℵ(μ)

1
w(ϰ)

􏽚
ϰ

a
ψ′(ζ)w(ζ)ρ(ζ)dζ. (8)

Lemma 1 (see [32]). Let ρ ∈ AC[[,R]. Ten,
CF
D

μ;ψ
a;w

CF
I
μ;ψ
a;wρ(ϰ) � ρ(ϰ),

CF
D

μ;ψ
a;w

CF
I
μ;ψ
a;wρ(ϰ) � ρ(ϰ) −

w(a)ρ(a)

w(ϰ)
.

(9)

In particular, if ρ(a) � 0, we have CFDμ;ψ
a;w

CFIμ;ψ
a;wρ(ϰ) �

ρ(ϰ).

Lemma 2 (see [32]). Let 0< ϑ< 1, and ρ ∈ AC[[,R] with
f(a) � 0. Ten, the following FDE:

CF
D

μ;ψ
a;w

CF
I
μ;ψ
a;wρ(ϰ) � f(ϰ),

ρ(a) � c,
(10)
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has the unique solution

ρ(ϰ) �
w(a)

w(ϰ)
c +

1 − μ
ℵ(μ)

f(ϰ) +
μ
ℵ(μ)

1
w(ϰ)

􏽚
ϰ

a
ψ′(ζ)w(ζ)f(ζ)dζ, ϰ ∈ [. (11)

For our forthcoming analysis, we need Banach’s con-
traction map [33] and Krasnoselskii’s fxed point theorem
[34].

Lemma 3 (Gronwall’s Lemma [35]). Let a, b> 0, and d≥ 0.
Let’s assume that functions z, y: [⟶ R+ are continuous if

z(ϰ)≤ d + 􏽚
ϰ

a
y(ζ)z(ζ)dζ ,∀ϰ ∈ [. (12)

Ten,

z(ϰ)≤ d exp 􏽚
ϰ

a
y(ζ)dζ􏼒 􏼓,∀ϰ ∈ [. (13)

3. Main Results

In this section, we give some qualitative analyses of [ψ, w]

-Caputo− Fabrizio type problems (4) and (5).

Lemma 4. Let 0< ϑ< 1, ρ ∈ AC[[,R] and g ∈ C[[,R] be
continuous with f(a) � 0. Ten, the following ψ-weighted
FDE:

CFD
μ;ψ
a;w ρ(ϰ) � f(ϰ), ϰ ∈ [, ρ(a) � c + g(ρ),􏽮 (14)

has the unique solution

ρ(ϰ) �
w(a)

w(ϰ)
[c + g(ρ)] + aμf(ϰ)

+
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)f(ζ)dζ, ϰ ∈ [,

(15)

where aμ � 1 − μ/ℵ(μ), and bμ � μ/ℵ(μ).

Proof. Let’s assume that ρ satisfes the frst equation of (14).
From Corollary 2.1 in [32], the equationCFDμ;ψ

a;wρ(ϰ) � f(ϰ)
implies that

ρ(ϰ) �
w(a)ρ(a)

w(ϰ)
+ aμf(ϰ) +

bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)f(ζ)dζ. (16)

So, by the nonlocal condition ρ(a) � c + g(ρ), we obtain

ρ(ϰ) �
w(a)

w(a)
[c + g(ρ)] + aμf(ϰ)

+
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)f(ζ)dζ,

(17)

which is (15).
Conversely, if ρ satisfes (15), then by Lemma 1, we have

CF
D

μ;ψ
a;wρ(ϰ) �

CF
D

μ;ψ
a;w

w(a)

w(ϰ)
[c + g(ρ)]􏼠 􏼡 +

CF
D

μ;ψ
a;w aμf(ϰ) +

bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)f(ζ)dζ􏼠 􏼡

�
CF
I
μ;ψ
a;w

CF
D

μ;ψ
a;wf(ϰ)

� f(ϰ),

(18)

where CFDμ;ψ
a;w(w(a)/w(ϰ)[c + g(ρ)])(ϰ) � 0. Moreover,

ρ(a) � c + g(ρ). □

Hence, we can deduce the next corollary:

Corollary 1. Let 0< ϑ< 1, φ ∈ AC[[,R] and g ∈ C[[,R]

with φρ(0) � 0. Ten, the problem (5) is equivalent to

ρ(ϰ) �
w(a)

w(ϰ)
[c + g(ρ)] + aμφρ(ϰ)

+
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ, ϰ ∈ [,

(19)

where φρ ∈ C[[,R] with φρ(ϰ): � φ(ϰ, ρ(ϰ),φρ(ϰ)).

We defne the operator K: AC[[,R]⟶ AC[[,R] by

(Kρ)(ϰ) �
w(a)

w(ϰ)
[c + g(ρ)] + aμφρ(ϰ)

+
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ , ϰ ∈ [.

(20)

Ten, the fxed point of operator K is equivalent to the
solution of the [ψ, w]-type problem (5).

Te frst result is based on Banach FPT [33].

Theorem 1. assume that:

(Hy1): Tere exists Lφ, Mφ > 0 such that

|φ(ϰ, υ,ω) − φ(ϰ, υ,ω)|≤ Lφ|υ − υ| + Mφ|ω − ω|, (21)

for each ϰ ∈ [, υ,ω, υ,ω∈ R.
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(Hy2): Tere exists Lg > 0 such that 0<Lg < 1 and
|g(υ) − g(ω)|≤Lg|υ − ω|, for υ,ω ∈ C[[,R].
If

Lg + aμ + bμ
w(b)

w(a)
[ψ(b) − ψ(a)]􏼢 􏼣

Lφ

1 − Mφ
< 1. (22)

Ten, the [ψ, w]-type problem (5) has a unique solution
on AC[[,R].

Proof. Let φρ(ϰ) � φ(ϰ, ρ(ϰ),φρ(ϰ)) and φρ(ϰ) � φ(ϰ,
ρ(ϰ),φρ(ϰ)). Ten, by (Hy1), we have

φρ(ϰ) − φρ(ϰ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � φ ϰ, ρ(ϰ),φρ(ϰ)􏼐 􏼑 − φ ϰ, ρ(ϰ),φρ(ϰ)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤Lφ|ρ(ϰ) − ρ(ϰ)| + Mφ φρ(ϰ) − φρ(ϰ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(23)

which implies

φρ(ϰ) − φρ(ϰ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
Lφ

1 − Mφ
|ρ(ϰ) − ρ(ϰ)|. (24)

Since ψ′, w> 0, and applying the mean value theorem for
integrals, we obtain

􏽚
ϰ

a
ψ′(ζ)w(ζ)dζ � w(κ) 􏽚

ϰ

a
ψ′(ζ)dζ � w(κ)[ψ(ϰ) − ψ(a)],

(25)

for some a< κ< b, then

􏽚
ϰ

a
ψ′(ζ)w(ζ)dζ ≤w(b)[ψ(b) − ψ(a)]. (26)

We suppose ρ(ϰ), ρ(ϰ) ∈ AC[[,R], we have from
(Hy2), (24), and (26) that

|(Kρ)(ϰ) − (Kρ)(ϰ)|≤ sup
ϰ∈[

w(a)

w(ϰ)
|g(ρ) − g(ρ)| + aμ φρ(ϰ) − φρ(ϰ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ) φρ(ζ) − φρ(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ􏼨 􏼩

≤Lg‖ρ − ρ‖ + aμ
Lφ

1 − Mφ
‖ρ − ρ‖ +

Lφ

1 − Mφ
‖ρ − ρ‖

w(b)

w(a)
bμ[ψ(b) − ψ(a)]

� Lg + aμ +
w(b)

w(a)
bμ[ψ(b) − ψ(a)]􏼠 􏼡

Lφ

1 − Mφ
􏼢 􏼣‖ρ − ρ‖.

(27)

As the condition (22), K is a contraction and by the
Banach’s fxed point theorem, K has a unique fxed point
which is unique solution of (5). □

Next, we give existence results based on the Krasnoselskii
fxed point theorem [34].

Theorem 2. Let φ: [ × R × R⟶ R, and
g: C[[,R]⟶ R be continuous satisfying (Hy1) and (Hy2).
In addition, we assume that

(Hy3): Tere exist constants nφ, mφ, sφ > 0 with
0< sφ < 1 such that

φ ϰ, ρ1, ρ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ nφ + mφ ρ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + sφ ρ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (28)

for each ϰ ∈ [, ρ1, ρ2 ∈ R.
(Hy4): |g(ρ)|≤ μg|ρ|, for ρ ∈ C[[,R], and μg > 0.
Ten, the [ψ, w]-type problem (5) has a least one so-
lution if

μg + aμ +
w(b)

w(a)
bμ[ψ(b) − ψ(a)]􏼢 􏼣

mφ

1 − sφ
< 1. (29)

Proof. From (20), we defne the operators
K1,K2: AC[[,R]⟶ AC[[,R] by

K1ρ( 􏼁(ϰ) �
w(a)

w(ϰ)
[c + g(ρ)] + aμφρ(ϰ), ϰ ∈ [, (30)

and

K2ρ( 􏼁(ϰ) �
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ, ϰ ∈ [, (31)

where (K1ρ + K2ρ)(ϰ) � (Kρ)(ϰ). Let us defne
Fr � ρ ∈ AC[[,R]: ‖ρ‖≤ r􏼈 􏼉. We choose

r≥
|c| + aμ + w(b)/w(a)bμ[ψ(b) − ψ(a)]􏼐 􏼑nφ/1 − sφ

1 − μg + aμ + w(b)/w(a)bμ[ψ(b) − ψ(a)]􏽨 􏽩mφ/1 − sφ
. (32)

For φρ(ζ) � φ(ζ , ρ(ζ),φρ(ζ)), we use assumption (Hy3)
to get

φρ(ζ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � φ ζ, ρ(ζ),φρ(ζ)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ nφ + mφ|ρ(ζ)| + sφ φρ(ζ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(33)

which implies
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φρ(ζ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
nφ + mφ|ρ(ζ)|

1 − sφ
. (34)

For any ρ, ρ⋆ ∈Fr, we have

K1ρ + K2ρ
⋆

( 􏼁(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ K1ρ( 􏼁(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + K2ρ
⋆

( 􏼁(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ sup
ϰ∈[

w(a)

w(ϰ)
[c +|g(ρ)|] + aμ φρ(ϰ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼨 􏼩

+ sup
ϰ∈[

bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ) φρ⋆(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ􏼨 􏼩

≤ |c| + μg‖ρ‖ + aμ
nφ + mφ‖ρ‖

1 − sφ
+

nφ + mφ ρ⋆
����

����

1 − sφ

w(b)

w(a)
bμ[ψ(b) − ψ(a)]

≤ μg + aμ +
w(b)

w(a)
bμ[ψ(b) − ψ(a)]􏼢 􏼣

mφ

1 − sφ
􏼠 􏼡r +|c| + aμ +

w(b)

w(a)
bμ[ψ(b) − ψ(a)]􏼠 􏼡

nφ

1 − sφ
≤ r.

(35)

Due to (29), we deduce that ‖K1ρ + K2ρ⋆‖≤ r.
Since φ and g are continuous, we show that K1 is a

contraction operator. For each ρ(ϰ), σ(ϰ) ∈ AC[[,R], and
for any ϰ ∈ [, we have
K1ρ(ϰ) − K1σ(ϰ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ sup
ϰ∈[

w(a)

w(ϰ)
[|g(ρ) − g(σ)|] + aμ φρ(ϰ) − φσ(ϰ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼨 􏼩

≤Lg‖ρ − σ‖ +
aμLφ

1 − Mφ
‖ρ − σ‖.

(36)

Hence,

K1ρ − K1σ
����

����≤ Lg +
aμLφ

1 − Mφ
􏼠 􏼡‖ρ − σ‖. (37)

From (22), Lg + aμLφ/1 − Mφ < 1. So, K1 is a
contraction.

Next, to prove that K2 is a compact and continuous
operator, we provide the following steps:

Step 1:K2 is continuous. Let ρn􏼈 􏼉n≥ 1 be inBr such that
ρn⟶ ρ in Br. Ten, |K2ρn(ϰ) − K2ρ(ϰ)|⟶ 0, as
n⟶∞, due to continuity of φ,ψ and w.

Step 2: K2 is uniformly bounded. By (31) we have

K2ρ(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ sup
ϰ∈[

K2ρ( 􏼁(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ sup
ϰ∈[

bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ) φρ(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ􏼨 􏼩.

(38)

From (26) and (34), and for any ρ ∈Fr, (38) becomes

K2ρ(ϰ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ sup
ϰ∈[

bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)

nφ + mφ|ρ(ζ)|

1 − sφ
dζ􏼨 􏼩

≤
nφ + mφ‖ρ‖

1 − sφ
bμ

w(b)

w(a)
[ψ(b) − ψ(a)]

≤
nφ + mφr􏼐 􏼑bμ

1 − sφ

w(b)

w(a)
[ψ(b) − ψ(a)]≤ r

⋆
.

(39)

Tus, K2 is uniformly bounded on Fr.
Step 3: K2 is compact. Let ρ ∈Fr, and ϰ ∈ [ with
ϰϵ < ϰδ ∈ [. Ten,
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K2ρ( 􏼁 ϰδ( 􏼁 − K2ρ( 􏼁 ϰϵ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
bμ

w ϰδ( 􏼁
􏽚
ϰδ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ −

bμ

w ϰϵ( 􏼁
􏽚
ϰϵ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
bμ

w ϰδ( 􏼁
−

bμ

w ϰϵ( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽚
ϰδ

a
ψ′(ζ)w(ζ) φρ(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ

+
bμ

w ϰϵ( 􏼁
􏽚
ϰδ

ϰϵ
ψ′(ζ)w(ζ) φρ(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ

≤ bμ w ϰδ( 􏼁 − w ϰϵ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
ϰδ

a
ψ′(ζ)w(ζ) φρ(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ

+
bμ

w ϰϵ( 􏼁
􏽚
ϰδ

ϰϵ
ψ′(ζ)w(ζ) φρ(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ

≤ w ϰδ( 􏼁 − w ϰϵ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
nφ + mφr􏼐 􏼑bμ

1 − sφ
w ϰϵ( 􏼁 ψ ϰϵ( 􏼁 − ψ(a)􏼂 􏼃

+
nφ + mφr􏼐 􏼑bμ

1 − sφ

w ϰδ( 􏼁

w ϰϵ( 􏼁
ψ ϰδ( 􏼁 − ψ ϰϵ( 􏼁􏼂 􏼃.

(40)

Since

􏽚
ϰδ

ϰϵ
ψ′(ζ)w(ζ)dζ ≤w ϰδ( 􏼁 ψ ϰδ( 􏼁 − ψ ϰϵ( 􏼁􏼂 􏼃,

􏽚
ϰϵ

a
ψ′(ζ)w(ζ)dζ ≤w ϰϵ( 􏼁 ψ ϰϵ( 􏼁 − ψ(a)􏼂 􏼃,

(41)

due to mean value theorem for integrals. Consequently, (40)
gives

K2ρ( 􏼁 ϰδ( 􏼁 − K2ρ( 􏼁 ϰϵ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0, asϰδ − ϰϵ ⟶ 0. (42)

Tus, K2 is equicontinuous on Fr. As per preceding
steps, K2 is relatively compact on Fr , and by the Arze-
la− Ascoli theorem,K2 has at least one fxed point. By virtue
of Krasnoselskii’s theorem [34], the ψ -weighted problem (5)
has a least one solution. □

3.1. UH Stability Analysis. In this section, we give the UH
stability and generalized UH stability results for the ψ
-weighted problem (5).

Defnition 3. (5) is UH stable if there exists a χφ > 0 such that
for each ε> 0 and each solution σ ∈ AC[[,R] of the
inequality

CF
D

μ;ψ
a;wσ(ϰ) − φ ϰ, σ(ϰ), CF

D
μ;ψ
a;wσ(ϰ)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε, ϰ ∈ [, (43)

there exists a solution ρ ∈ AC[[,R] of (5), satisfying

|σ(ϰ) − ρ(ϰ)|≤ χφε. (44)

Remark 2. σ ∈ AC[[,R] satisfes (44) if and only if there
exists ϖ ∈ AC[[,R] with

(i) |ϖ(ϰ)|≤ ε, ϰ ∈ [,
(ii) For all ϰ ∈ [,

CF
D

μ;ψ
a;wσ(ϰ) � φ ϰ, σ(ϰ), CF

D
μ;ψ
a;wσ(ϰ)􏼐 􏼑 + ϖ(ϰ). (45)

Lemma  . Let 0< μ< 1, and σ ∈ AC[[,R] be a solution of
(43). Ten, σ satisfes

σ(ϰ) − Aσ(ϰ) −
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φσ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ εbμ

w(b)

w(a)
[ψ(b) − ψ(a)], ϰ ∈ [, (46)

where

Aσ(ϰ) ≔ �
w(a)

w(ϰ)
[c + g(σ)] + aμφσ(ϰ), (47)

and φσ(ϰ) � φ(t,ω(t),φσ(ϰ)).

Proof. Let σ be a solution of (43). It follows from (ii) of
Remark 2 that
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CFD
μ;ψ
a;w σ(ϰ) � φ ϰ, σ(ϰ), CF

D
μ;ψ
a;wσ(ϰ)􏼐 􏼑 + ϖ(ϰ)σ(0) � c + g(σ).􏽮 (48)

Ten, the solution of problem (48) is

σ(ϰ) � Aσ(ϰ) +
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ) φσ(ζ) + ϖ(ζ)􏼂 􏼃dζ, ϰ ∈ [. (49)

Once more by (i) of Remark 2, we get

σ(ϰ) − Aσ(ϰ) −
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φσ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)|ϖ(ζ)|dζ

≤
bμ

w(ϰ)
ε􏽚
ϰ

a
ψ′(ζ)w(ζ)dζ

≤ ε
w(b)

w(a)
bμ[ψ(b) − ψ(a)].

(50)

□

Theorem 3. Assume that the conditions of Teorem 1 are
fulflled. Ten, the solution of the ψ-weighted problem (5) is
UH and generalized UH stable.

Proof. Let σ ∈ AC[[,R] be a solution of (43), and
ρ ∈ AC[[,R] be a unique solution of ψ-weighted problem
(5)

CFD
μ;ψ
a;w ρ(ϰ) � φ ϰ, ρ(ϰ), CF

D
μ;ψ
a;wρ(ϰ)􏼐 􏼑ρ(a) � σ(a).􏽮 (51)

From Corollary 1, we get

ρ(ϰ) � Aρ(ϰ) +
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ , ϰ ∈ [, (52)

where Aρ(ϰ): � w(a)/w(ϰ)[c + g(ρ)] + aμφρ(ϰ). Clearly,
if ρ(a) � σ(a), then g(ρ) � g(σ). Also, by (Hy1) and (Hy2)
along with (24), we have

Aρ(ϰ) − Aσ(ϰ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
w(a)

w(ϰ)
|g(ρ) − g(σ)| + aμ φρ(ϰ) − φσ(ϰ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ aμ
Lφ

1 − Mφ
‖ρ − σ‖.

(53)

From (22), we getAρ(ϰ) � Aσ(ϰ). Hence, (52) becomes

ρ(ϰ) � Aσ(ϰ) +
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ, ϰ ∈ [. (54)

Using Lemma 5, (Hy1), and (Hy2), we have

|σ(ϰ) − ρ(ϰ)| � σ(ϰ) − Aσ(ϰ) −
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φρ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ σ(ϰ) − Aσ(ϰ) −
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)φσ(ζ)dζ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
bμ

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ) φσ(ζ) − φρ(ζ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dζ

≤ ε
w(b)

w(a)
bμ[ψ(b) − ψ(a)]

+ aμ
Lφ

1 − Mφ
􏽚
ϰ

a
ψ′(ζ)w(ζ)|σ(ζ) − ρ(ζ)|dζ.

(55)

Using Gronwall’s Lemma [35], we obtain

|σ(ϰ) − ρ(ϰ)|≤ ε
w(b)

w(a)
bμ[ψ(b) − ψ(a)]exp aμ

Lφ

1 − Mφ
􏽚
ϰ

a
ψ′(ζ)w(ζ)dζ􏼠 􏼡

≤ ε
w(b)

w(a)
bμ[ψ(b) − ψ(a)]exp aμ

Lφ

1 − Mφ

w(b)

w(a)
bμ[ψ(b) − ψ(a)]􏼠 􏼡

� εχφ,

(56)

where

χφ �
w(b)

w(a)
bμ[ψ(b) − ψ(a)]exp aμ

Lφ

1 − Mφ

w(b)

w(a)
bμ[ψ(b) − ψ(a)]􏼠 􏼡. (57)
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Hence, (5) is UH stable. Moreover, if there exists a
nondecreasing function ϕ: R+⟶ R+ such that ϕ(ε) � ε.
Ten, from (56), we have

|σ(ϰ) − ρ(ϰ)|≤ χφϕ(ϵ), ϰ ∈ [, (58)

with ϕ(0) � 0, which proves (5) is GUH stable. □

4. Example

Here, we provide an example to illustrate the obtained
results.

Example 1. consider the following [ψ, w]-Caputo− Fabrizio
type problem:

CFD
1/4,ϰ/2
0+ ,ϰ/3 ρ(ϰ) �

(ϰ − 1)
3

10
sin|ρ(ϰ)| + sin CFD

1/4,ϰ/2
0+ ,ϰ/3 ρ(ϰ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

5 + ϰ
+

(ϰ − 1)
3

20
, ϰ ∈ [1, 2], υ(1) �

1
3

+ 􏽘

n

i�1
diρ ϰi( 􏼁.

⎧⎪⎨

⎪⎩
(59)

Clearly, μ � 1/4,ψ(ϰ) � ϰ/2, w(ϰ) � ϰ/3, a � 1, b � 2,
c � 1/3, 1<ϰ1 � 1.5< · · · <ϰn < 2 � b, and di are positive
constants with 􏽐

n
i�1 di < 2/5. Set

φ(ϰ, ρ, σ) �
(ϰ − 1)

3

10
sin|ρ| + sin|σ|

5 + ϰ
+
1
2

􏼠 􏼡, (60)

for ϰ ∈ [1, 2], ρ, σ ∈ [0,∞), and

g(ρ) � 􏽘
n

i�1
diρ ϰi( 􏼁, ρ ∈ [0,∞). (61)

(I) Application of Teorem 1: Note that
φ(1, ρ(1), σ(1)) � 0. Now, let ϰ ∈ [1, 2], and
ρ, σ, ρ⋆, σ⋆ ∈ [0,∞). Ten,

φ(ϰ, ρ, σ) − φ ϰ, ρ⋆, σ⋆( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
(ϰ − 1)

3

10
sin|ρ| + sin|σ|

5 + ϰ
−
sin ρ⋆

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + sin σ⋆

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

5 + ϰ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
(ϰ − 1)

3

10
sin|ρ| − sin ρ⋆

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

5 + ϰ
+
sin|σ| − sin σ⋆

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

5 + ϰ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1
70

ρ − ρ⋆
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + σ − σ⋆
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

|g(ρ) − g(σ)| � 􏽘
n

i�1
diρ ϰi( 􏼁 − 􏽘

n

i�1
diσ ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽘

n

i�1
di|ρ − σ|≤

2
5

|ρ − σ|.

(62)

Tus, (Hy1) and (Hy2) hold with Lφ � Mφ � 1/70,
and Lg � 2/5. In addition, the condition (22) holds.
Indeed, we have ℵ(μ) � 1, aμ � 3/4, bμ � 1/4 and

Lg + aμ + bμ
w(b)

w(a)
[ψ(b) − ψ(a)]􏼢 􏼣

Lφ

1 − Mφ
�
143
345
< 1. (63)

Tus, Teorem 1 shows that (59) has a unique
solution on [1, 2].

(II) Application of Teorem 3: For ε> 0 with
χφ � 1/8

�
e736

√
> 0. It follows from Teorem 3 that

(59) is HU and GUH stable.
(III) Application of Teorem 2: For ϰ ∈ [1, 2], and

ρ, σ ∈ [0,∞), we have

|φ(ϰ, ρ, σ)| �
(ϰ − 1)

3

10
sin|ρ|

5 + ϰ
+

(ϰ − 1)
3

10
sin|σ|

5 + ϰ
+

(ϰ − 1)
3

20

≤
(ϰ − 1)

3

20
+

(ϰ − 1)
3

10(5 + ϰ)
|ρ| +

(ϰ − 1)
3

10(5 + ϰ)
|σ|

≤
1
20

+
1
70

|ρ| +
1
70

|σ|,

|g(υ)| � 􏽘
n

i�1
diρ ϰi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽘

n

i�1
di|ρ|≤

2
5

|υ|.

(64)

Consequently, (Hy3) and ((Hy4) hold with
nφ � 1/20, mφ � sφ � 1/70 and μg � 2/5. Also, we have
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μg + aμ +
w(b)

w(a)
bμ[ψ(b) − ψ(a)]􏼢 􏼣

mφ

1 − sφ
�
143
345
< 1. (65)

Tus, all the assumptions of Teorem 2 are satisfed.
Hence, (59) has a solution on [1, 2].

Remark 3. consider a more general problem as a system that
contains a number of problems similar to our current
problem (5) as follows:

CFD
μi;ψ
a;w ρi(ϰ) � φi ϰ, ρi(ϰ),

CF
D

μi;ψ
a;w ρi(ϰ)􏼐 􏼑, ϰ ∈ [ρi(a) � ci + g ρi( 􏼁, i � 1, . . . , n ∈ N,􏽮 (66)

where 0< μi < 1, CFDμi;ψ
a;w is the generalized Caputo− Fabrizio

FD of order μi.
Te system (66) can be written as

CFD
Y;ψ
a;w P(ϰ) � Φ ϰ,P(ϰ), CF

D
μi;ψ
a;w P(ϰ)􏼐 􏼑, ϰ ∈ [,P(a) � C + g(P),􏽮 (67)

where

P(ϰ) �

ρ1(ϰ)

ρ2(ϰ)

⋮

ρn(ϰ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Φ ϰ,P(ϰ), CF
D

μi;ψ
a;w P(ϰ)􏼐 􏼑 �

φ1 ϰ, ρ1(ϰ),
CF
D

μi;ψ
a;w ρ1(ϰ)􏼐 􏼑

φ2 ϰ, ρ1(ϰ),
CF
D

μi;ψ
a;w ρ1(ϰ)􏼐 􏼑

⋮

φn ϰ, ρ1(ϰ),
CF
D

μi;ψ
a;w ρ1(ϰ)􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P(a) �

ρ1(a)

ρ2(a)

⋮

ρn(a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C �

c1

c2

⋮

cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y �

μ1
μ2
⋮

μn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(68)

By using Corollary 1, the system (67) has the following
solution:

P(ϰ) �
w(a)

w(ϰ)
[C + g(P)] + aYΦP(ϰ)

+
bY

w(ϰ)
􏽚
ϰ

a
ψ′(ζ)w(ζ)ΦP(ζ)dζ, ϰ ∈ [,

(69)

where ΦP(ϰ) � Φ(ϰ,P(ϰ),ΦP(ϰ)), aY � 1 − Y/ℵ(Y), and
bY � Y/ℵ(Y).

Remark 4. Following the methodology of proof used in the
preceding parts, we can obtain the same results (Teorems
1–3) for the nonlinear system (67) in view of the formula
(69).

5. Conclusions

In this regard, Al-Refai and Jarrah [32] defned the weighted
Caputo− Fabrizio FD of the Caputo sense. As an extra
contribution to this topic, we developed and extended the
existence, uniqueness, and UH stability results for nonlocal
implicit equations involving [ψ, w] -Caputo− Fabrizio FDs.

Our approach has been based on Banach’s and Krasno-
selskii’s fxed point theorem. As an application, we have
given a convenient example that validates the theoretical
results. Finally, in light of our present results, a more general
problem for the nonlocal implicit system has been presented
that contains similar problems to the problem considered.

In the future direction, it will be interesting to study the
current systems under [ψ, w]-Atangana− Baleanu of the
Caputo sense, introduced recently in [21, 36].
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Te residual power series method is efective for obtaining solutions to fractional-order diferential equations. However, the
procedure needs the (n − 1)ϖ derivative of the residual function. We are all aware of the difculty of computing the fractional
derivative of a function. In this article, we considered the simple and efcient method known as the Laplace residual power series
method (LRPSM) to fnd the analytical approximate and exact solutions of the time-fractional Black–Scholes option pricing
equations (BSOPE) in the sense of the Caputo derivative. Tis approach combines the Laplace transform and the residual power
series method. Te suggested method just needs the idea of an infnite limit, so the computations required to determine the
coefcients are minimal.Te obtained results are compared in the sense of absolute errors against those of other approaches, such
as the homotopy perturbation method, the Aboodh transform decomposition method, and the projected diferential transform
method. Te results obtained using the provided method show strong agreement with diferent series solution methods,
demonstrating that the suggested method is a suitable alternative tool to the methods based on He’s or Adomian polynomials.

1. Introduction

Fractional calculus (FC) deals with fractional derivatives and
integrations. Te pioneers of FC were two mathematicians,
Leibniz and L’Hospital, and the date September 30, 1695, is
regarded as its exact birthday. Many scientists and re-
searchers have been drawn to FC in recent decades because it
is commonly used in scientifc contexts such as engineering,
image processing, physics, biochemistry, biology, fuid
mechanics, and entropy theory [1–5]. Although fractional
derivatives can be defned in a variety of ways, not all of them
are generally used. Te Atangana–Baleanu, Rie-
mann–Liouville (R-L), Caputo–Fabrizio, Caputo, and con-
formable operators are the most frequently used [6–12]. In
some cases, fractional derivatives are preferable to integer-
order derivatives for modeling because they can simulate
and analyze complicated systems having complicated

nonlinear processes and higher-order behaviors. Tere are
two main causes of this. First, we can select any order for the
derivative operator, rather than being restricted to an integer
order. Second, depending on both the past and current
circumstances, noninteger order derivatives are advanta-
geous when the system has long-term memory. Te primary
components of FC, which is the generalized version of
classical calculus and has piqued the interest of numerous
academics and scientists due to its wide range of applica-
tions, are fractional order diferential equations (FODEs).
Te FODEs are frequently used for their logical support in
the mathematical framework of physical problems, in-
cluding technology, healthcare, monetary markets, and
decision theory. As a result, the solutions provided by the
FODEs are signifcant and useful. Applications regularly face
FODEs that are too complex for close-form solutions. Under
the specifed initial and boundary conditions, numerical
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methods present a potent alternative tool for solving FODEs.
Several numerical techniques, including the Shehu de-
composition approach [13], the diferential transform
method [14], the variational iteration method [15], the
operational matrix approach [16], the homotopy analysis
technique [17], the Aboodh transform decomposition
method [18], the fnite diference method [19], the fractional
power series method [20], the Chebyshev polynomials
method [21], the residual power series method [22], and the
natural transform homotopy perturbation method [23],
have been developed in recent years for solving FODEs.

It is efcient to obtain approximate analytical solutions
to FODEs using the residual power series method (RPSM).
However, the algorithm requires the (n − 1)ϖ derivative of
the residual function. We are all aware of how difcult it is to
calculate a function’s fractional derivative. As a result, the
use of conventional RPSM is somewhat constrained. To
overcome the limitations of the RPSM, Eriqat et al. in-
troduced a new technique called LRPSM [24]. Several
FODEs have been solved through the recommended method
[24–29]. Te provided equation is transformed into the
Laplace transform (LT) space in accordance with the set of
rules for this novel approach; the solution to the new form of
the problem is established; the solution to the original
equation is then achieved by applying the inverse LT.

Te pricing of fnancial derivatives is a topic that has
generated a great deal of interest and literature. A fnancial
derivative is an asset whose price is based on the value of
another asset. Frequently, a stock or bond serves as the

underlying asset. Financial derivatives are not a completely
novel concept. It is generally agreed that Charles Castelly’s
work, which was published in 1877, was the frst attempt at
contemporary derivative pricing, despite some historical
controversy regarding the exact year of the birth of fnancial
derivatives [30]. Although it lacked mathematical rigor,
Castell’s book served as a general introduction to ideas such
as hedging and speculative trading.

Te frst widely used mathematical method to calculate
the theoretical value of an option contract using prevailing
equity markets’ predicted dividends, the option’s strike
price, projected interest rates, time till the cessation, and
expected unpredictability was the Black–Scholes (BS) model,
developed in 1997 by Fischer Black, Robert Merton, and
Myron Scholes. Te Pricing of Options and Corporate Li-
abilities by Black and Scholes, published in the Journal of
Political Economy in 1973, provided the initial formulation
of the equation. Robert C. Merton contributed to the editing
of that document. Later that year, he wrote his own work,
“Teory of Rational Option Pricing,” expanding the model’s
mathematical capabilities and applications while also
coining the term “BS theory of options pricing” [31]. One of
the most signifcant mathematical representations of a f-
nancial market is the BS equation. Te value of fnancial
derivatives is controlled by a second-order parabolic partial
diferential equation. Many diferent commodities and
payout structures have been used in the BS model for pricing
stock options. Te following equation describes the BS
model for the value of an option [32]:

z
ϖ

w(ϰ, ζ)

zζϖ
+
σ2ϰ2

2
z
2
w(ϰ, ζ)

zϰ2
+ I(ζ)ϰ

zw(ϰ, ζ)

zϰ
− I(ζ)w(ϰ, ζ) � 0, (1)

where ϖ is the order of the Caputo derivative (CD), w(ϰ, ζ)

is the European ofer’s value at the fundamental market cap
of ϰ and time ζ, the fuctuation component of the company’s
shares, often referred to as σ, quantifes the variance of the
stock’s return, Y is the expiration date, and I(ζ) is the risk-
free interest rate. wc(ϰ, ζ) and wp(ϰ, ζ), correspondingly,
stand for the call and put values on European options. Ten,
the payof functions are given by wc(ϰ, ζ) � max(ϰ − U, 0)

and wp(ϰ, ζ) � max(U − ϰ, 0), where U indicates the ter-
mination price for the option and the function max(ϰ, 0)

gives the larger value between ϰ and 0. Te important f-
nancial view of the BS equation is that it minimizes risk by
allowing for the prudent selection of purchasing and selling
the stock under scrutiny. It is a sign that, according to the BS
fnancial model, there is only one correct price for the
option. Te important fnancial view of the BS equation is
that it minimizes risk by allowing for the prudent selection of
purchasing and selling the stock under scrutiny. It is a sign
that, according to the BS fnancial model, there is only one
correct price for the option. In this article, a fractional model
that may be used to model the pricing of various fnancial
derivatives is presented.

Numerous techniques have been used to examine the
time-fractional BSOPE [33–40]. Each of these techniques
has specifc restrictions and faws. Tese techniques involve
a lot of computing work and a long running time. In this
article, we considered LRPSM, which is a simple and efcient
technique to solve BSOPE. Te advantage of the recom-
mended method over the homotopy perturbation method
(HPM) and the Adomian decomposition method (ADM) is
its strength in handling problems without the use of He’s and
Adomian polynomials. Te advantage of this approach is
that the problem does not involve any physical parameter
assumptions, no matter how big or small. For a series such as
the RPSM, the coefcients must be determined each time
using the fractional derivative. Since LRPSM just needs the
idea of an infnite limit, the computations required to de-
termine the coefcients are minimal. Te LRPSM results are
also compared to those of other approaches, including the
projected diferential transform method (PDTM) [34], the
Aboodh transform decomposition method (ATMD) [35],
and the homotopy perturbation method (HPM) [36]. Te
results obtained using the suggested method show strong
agreement with numerous methodologies, proving that the
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LRPSM is a useful substitute for approaches using He’s or
Adomian polynomials. Additionally, error functions are
used to compare the exact and approximative solutions
graphically and numerically. Te higher degrees of accuracy
and convergence rates were confrmed by the error analysis,
demonstrating the suggested method’s efcacy and re-
liability. Te process is rapid, exact, and simple to use, and it
produces excellent results.

Te article’s structure is as follows: In Section 2, we use
a number of important defnitions and conclusions from the
theory of FC. Te main concept of LRPSM is examined in
Section 3 in order to establish and determine the solution of
the time-fractional BSOPE. Section 4 investigates the po-
tential, capability, and simplicity of the suggested approach
using three numerical models. In Section 5, graphics and
tables are used to investigate the numerical outcomes and
discussion. Section 6, towards the end, has the conclusion.

2. Preliminaries

In this section, we examine several common defnitions,
properties, and some useful consequences that we used in
this article.

Defnition 1 (see [24]). We assume that the function w(ϰ, ζ)

is of exponential order δ and piecewise continuous. Ten,
the LT of w(ϰ, ζ) for ζ ≥ 0 is formulated as

L[w(ϰ, ζ)] � W(ϰ, s) � 􏽚
∞

0
w(ϰ, ζ)e

− sζ
dζ, s> δ, (2)

and the inverse LT is defned by

L
− 1

[W(ϰ, s)] � w(ϰ, ζ) � 􏽚
h+ι∞

h− ι∞
e

sζ
W(ϰ, s)ds, h

� Re(s)> h0,

(3)

where h0 lies in the right half plane of the absolute con-
vergence of the Laplace integral.

Lemma 1 (see [24–29]). Let w1(ϰ, ζ) and w2(ϰ, ζ) be
piecewise continuous on [0,∞ and be of exponential order.
We assume that L[w1(ϰ, ζ)] � W1(ϰ, s), L[w2(ϰ, ζ)] �

W2(ϰ, s), and c1, c2 are constants. Ten, the properties
mentioned as follows are valid:

(i) L[c1w1(ϰ, ζ) + c2w2(ϰ, ζ)] � c1W1(ϰ, s) + c2W2
(ϰ, s)

(ii) L− 1[c1W1(ϰ, s) + c2W2(ϰ, s)] � c1w1(ϰ, ζ) + c2w2
(ϰ, ζ)

(iii) ϕ0(ϰ) � lim
s⟶∞

sW(ϰ, s) � w(ϰ, 0)

(iv) L[Dϖζ w(ϰ, ζ)] � sϖW(ϰ, s) − 􏽐
n− 1
j�0w(j)(ϰ, 0)/

sj− ϖ+1, n − 1<ϖ≤ n, n ∈ N
(v) L[Dnϖ

ζ w(ϰ, ζ)] � snϖW(ϰ, s) − 􏽐
n− 1
j�0sϖ(n− j)− 1

D
jϖ
ζ w(ϰ, 0), 0<ϖ≤ 1

Defnition 2 (see [41]). Te fractional derivative of w(ϰ, ζ) I
order ϖ in the CD sense is defned as follows:

D
ϖ
ζ w(ϰ, ζ) � J

n− ϖ
ζ w

(n)
(ϰ, ζ), ζ ≥ 0, n − 1<ϖ≤ n, (4)

where Jn− ϖ
ζ is the R-L integral of w(ϰ, ζ).

Theorem 1 (see [24]). We assume that the multiple frac-
tional power series (MFPS) representation for the function
L[w(ϰ, ζ)] � W(ϰ, s) is given by

W(ϰ, s) � 􏽘
∞

n�0

ϕn(ϰ)
s

nϖ+1 , s> 0, (5)

then we have

ϕn(ϰ) � D
nϖ
ζ w(ϰ, 0), (6)

where Dnϖ
ζ � Dϖζ .Dϖζ . . . Dϖζ (n − times).

Te conditions for the convergence of the MFPS are
determined in the following theorem.

Theorem  (see [24]). Let L[w(ϰ, ζ)] � W(ϰ, s) can be
denoted as the new form of MFPS explained in Teorem 1. If
|sL[D

(j+1)ϖ
ζ w(ϰ, ζ)]|≤Z, on 0< s≤ v with 0<ϖ≤ 1, then

the remainder Rj(ϰ, s) of the new form of MFPS satisfes the
following inequality:

Rj(ϰ, s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
Z

s
(j+1)ϖ+1, 0< s≤ v. (7)

3. Methodology for the LRPSM for the Time-
Fractional BSOPE

Tis section examines the steps for using the suggested
method to fnd solutions to BSOPEs. Running the LTon the
BSOPE and then considering MFPS as the BSOPE’s new
space solution constitute the main idea of LRPSM. Te way
in which the coefcients of this series utilize the limit idea is
the main diference between the LRPSM and the RPSM.Te
generated consequents are then transformed into real space
using the inverse LT. Te guidelines for using the LRPSM to
fnd solutions are as follows:

Step 1: Equation (1) should be changed as follows:

D
ϖ
ζ w(ϰ, ζ) − f w(ϰ, ζ),

σ2ϰ2z2w(ϰ, ζ)

2zϰ2
,I(ζ)ϰ

zw(ϰ, ζ)

zϰ
,I(ζ)w(ϰ, ζ)􏼠 􏼡 � 0. (8)

Step 2: by considering LTon both sides of equation (8),
we obtain the following:

W(ϰ, s) −
w(ϰ, 0)

s
−

1
s
ϖ F(ϰ, s) � 0, (9)
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where

W(ϰ, s) � L[w(ϰ, ζ)], (10)

and

F(ϰ, s) � L f
σ2ϰ2z2w(ϰ, ζ)

2zϰ2
,I(ζ)w(ϰ, ζ), w(ϰ, ζ),I(ζ)ϰ

zw(ϰ, ζ)

zϰ
􏼠 􏼡􏼢 􏼣. (11)

Step 3: we assume that the solution of equation (9) is the
following series:

W(ϰ, s) � 􏽘
∞

n�0

ϕn(ϰ)
s

nϰ+1 , s> 0. (12)

Step 4: we obtained the following as a result of using
Lemma 1(iii):

ϕ0(ϰ) � lim
s⟶∞

sW(ϰ, s) � w(ϰ, 0) � 0. (13)

Step 5: we defne the kth-truncated expansion of
W(ϰ, s) as

Wk(ϰ, s) �
ϕ0(ϰ)

s
+ 􏽘

k

n�1

ϕn(ϰ)
s

nϖ+1 . (14)

Step 6: we introduce Laplace residual function (LRF) of
equation (9) and the kth-LRF, respectively, as follows:

L[Res(ϰ, s)] � W(ϰ, s) −
ϕ0(ϰ)

s
−

1
s
ϖ F(s), (15)

L Resk(ϰ, s)􏼂 􏼃 � Wk(ϰ, s) −
ϕ0(ϰ)

s
−

1
s
ϖFk(s). (16)

Step 7: we use the expansion form of Wk(ϰ, s) into
L[Resk(ϰ, s)].
Step 8: we multiply both sides of L[Resk(ϰ, s)] with
skϖ+1.
Step 9: by utilizing the fact in equation (16), we solve the
following sequence of algebraic equations for ϕn(ϰ),
where n � 1, 2, 3, . . . , k, step by step:

lim
s⟶∞

s
ϖ+1

L Resk(ϰ, s)􏼂 􏼃􏼐 􏼑 � 0, k � 1, 2, 3, . . . (17)

Step 10: we use the attained values of ϕn(ϰ) into the kth

-truncated expansion of W(ϰ, s) for each
n � 1, 2, 3, . . . , k to attain the kth-approximate solu-
tion of the algebraic equation in equation (9).
Step 11: we apply the inverse LT on the fnal form of
Wk(ϰ, s) to attain kth-approximate solution, wk(ϰ, ζ)

of the suggested problem.

4. Some Illustrated Problems

In this section, three time-fractional BSOPE in the CD sense
are solved in order to assess the efectiveness and suitability
of the suggested approach.

Problem 1. consider the time-fractional BSOPE that follows
[34]:

z
ϖ

w(ϰ, ζ)

zζϖ
+ ϰ2

z
2
w(ϰ, ζ)

zϰ2
+ 0.5ϰ

zw(ϰ, ζ)

zϰ
− w(ϰ, ζ)

� 0, 0<ϖ≤ 1,

(18)

under the following initial conditions:

w(ϰ, 0) � max ϰ3, 0􏼐 􏼑 �
ϰ3 forϰ> 0,

0 forϰ≤ 0.

⎧⎨

⎩ (19)

We will examine the case when ϰ> 0. Applying LT on
both sides of equation (18), we have

L
z
ϖ

w(ϰ, ζ)

zζϖ
+ ϰ2

z
2
w(ϰ, ζ)

zϰ2
+ 0.5ϰ

zw(ϰ, ζ)

zϰ
− w(ϰ, ζ)􏼢 􏼣 � 0. (20)

Making use of the process outlined in Section 3, we get
the fndings from equation (20) as follows:

W(ϰ, s) �
ϰ3

s
−

1
s
ϖϰ

2
DϰϰL[w(ϰ, ζ)] −

1
s
ϖ 0.5ϰDϰL[w(ϰ, ζ)] +

1
s
ϖL[w(ϰ, ζ)]. (21)

We suppose that the expansion of W(ϰ, s) is as follows:
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W(ϰ, s) � 􏽘
∞

n�0

ϕn(ϰ)
s

nϖ+1 . (22)

Te kth-truncated expansion is given as follows:

Wk(ϰ, s) � 􏽘

k

n�0

ϕn(ϰ)
s

nϖ+1 . (23)

We obtained the following as a result of using Lemma
1(iii):

ϕ0(ϰ) � lim
s⟶∞

sW(s) � w(ϰ, 0) � ϰ3. (24)

As a result, the kth-truncate expansion of equation (21)
is as follows:

Wk(ϰ, s) �
ϰ3

s
+ 􏽘

k

n�1

ϕn(ϰ)
s

nϖ+1 . (25)

Te LRF of equation (21) is as follows:

L[Res(ϰ, s)] � W(ϰ, s) −
ϰ3

s
+

1
s
ϖϰ

2
DϰϰW(ϰ, s) +

1
s
ϖ (0.5)ϰDϰW(ϰ, s) −

1
s
ϖW(ϰ, s). (26)

Te kth-LRF of equation (21) is as follows:

L Resk(ϰ, s)􏼂 􏼃 � Wk(ϰ, s) −
ϰ3

s
+

1
s
ϖϰ

2
DϰϰWk(ϰ, s) +

1
s
ϖ (0.5)ϰDϰWk(ϰ, s) −

1
s
ϖWk(ϰ, s). (27)

We expand the characteristics of the RPSM to highlight
the following details [42, 43]:

(i) L[Res(ϰ, s)] � 0 and lim
k⟶∞

L[Resk(ϰ, s)]

(ii) lim
s⟶∞

sL[Res(ϰ, s)] � 0 ⇒ lim
s⟶∞

sL[Resk(ϰ, s)]

� 0

(iii) lim
s⟶∞

skϖ+1L[Res(ϰ, s)] � lim
s⟶∞

skϖ+1L[Resk(ϰ, s)]

� 0, where k � 1, 2, 3, . . .. To determine the frst
unknown co-efcientϕ1(ϰ) in (25), we have to use
the 1st truncated series W1(ϰ, s) � ϰ3/s+ ϕ1(ϰ)/sϖ+1
into the 1st-LRF, L[Res1(ϰ, s)], to obtain

L Res1(ϰ, s)􏼂 􏼃 �
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1􏼢 􏼣 −

ϰ3

s
+

1
s
ϖϰ

2
Dϰϰ
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1􏼢 􏼣 +

1
s
ϖ (0.5)ϰDϰ

ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1􏼢 􏼣

1
s
ϖ
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1􏼢 􏼣. (28)

sϖ+1 is used on both sides of equation (28):

s
ϖ+1

L Res1(ϰ, s)􏼂 􏼃 � ϕ1(ϰ) + ϰ2Dϰϰ ϰ
3

+
ϕ1(ϰ)

s
ϖ􏼢 􏼣 +(0.5)ϰDϰ ϰ

3
+
ϕ1(ϰ)

s
ϖ􏼢 􏼣 − ϰ3 +

ϕ1(ϰ)
s
ϖ􏼢 􏼣. (29)

We use the fact that

lim
s⟶∞

s
kϖ+1

L Resk(ϰ, s)􏼂 􏼃 � 0, for k � 1. (30)

As a result, we obtained as follows:

ϕ1(ϰ) � − 6.5ϰ3. (31)

Similarly, to fnd out values of the second undefned
coefcient ϕ2(ϰ), we have to use the 2nd-truncates series
W2(ϰ, s) � ϰ3/s + ϕ1(ϰ)/sϖ+1 + ϕ2(ϰ)/s2ϖ+1 into the 2nd
-LRF to obtain

L Res2(ϰ, s)􏼂 􏼃 �
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1 +

ϕ2(ϰ)
s
2ϖ+1􏼢 􏼣 −

ϰ3

s
+

1
s
ϖϰ

2
Dϰϰ
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1 +

ϕ2(ϰ)
s
2ϖ+1􏼢 􏼣

+
1
s
ϖ (0.5)ϰDϰ

ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1 +

ϕ2(ϰ)
s
2ϖ+1􏼢 􏼣 −

1
s
ϖ
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1 +

ϕ2(ϰ)
s
2ϖ+1􏼢 􏼣.

(32)
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Using s2ϖ+1 on both sides of equation (32), we get the
following equation:

s
2ϖ+1

L Res2(ϰ, s)􏼂 􏼃 � s
ϖϕ1(ϰ) + ϕ2(ϰ) + s

ϖ+1ϰ2Dϰϰ
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1 +

ϕ2(ϰ)
s
2ϖ+1􏼢 􏼣

+s
ϖ+1

(0.5)Dϰ
ϰ3

s
+
ϕ1(ϰ)
s
ϖ+1 +

ϕ2(ϰ)
s
2ϖ+1􏼢 􏼣 − s

ϖ+1 ϰ
3

s
+
ϕ1(ϰ)
s
ϖ+1 +

ϕ2(ϰ)
s
2ϖ+1􏼢 􏼣.

(33)

Again, we use the fact that

lim
s⟶∞

s
kϖ+1

L Resk(ϰ, s)􏼂 􏼃 � 0, for k � 2. (34)

As a result, we obtained the 2nd coefcient ϕ1(ϰ) in the
following form:

ϕ2(ϰ) � (6.5)
2ϰ3. (35)

Terefore, the 2nd-approximate LRPS solution of
equation (21) is

W2(ϰ, s) �
1
s
ϰ3 −

6.5
s
ϖ+1ϰ

3
+

(6.5)
2

s
2ϖ+1 ϰ

3
. (36)

Typically, to fnd the coefcients ϕk(ϰ), frst we use the
kth-truncated series in equation (25), then we utilize it in the
kth-LRF, equation (27), we multiplyL[Resk(ϰ, s)] by skϖ+1,
and then we solve the algebraic equation as follows:

lim
s⟶∞

s
kϖ+1

L Resk(ϰ, s)􏼂 􏼃 � 0, forϕk(ϰ). (37)

We get the following results by utilizing the previous
procedure:

ϕ3(ϰ) � − (6.5)
3ϰ3,

ϕ4(ϰ) � (6.5)
4ϰ3,

ϕ5(ϰ) � − (6.5)
5ϰ3.

(38)

Te approximate solution of equation (21) is obtained by
fve iterations as follows:

W5(ϰ, s) �
ϰ3

s
−
6.5ϰ3

s
ϖ+1 +

(6.5)
2ϰ3

s
2ϖ+1 −

(6.5)
3ϰ3

s
3ϖ+1 +

(6.5)
4ϰ3

s
4ϖ+1

−
(6.5)

5ϰ3

s
5ϖ+1 .

(39)

By applying the inverse LT to equation (39), we are able
to approximate the ffth step solution in the original feature
space:

w5(ϰ, ζ) � ϰ3 −
6.5ϰ3ζϖ

Γ(ϖ + 1)
+

(6.5)
2ϰ3ζ2ϖ

Γ(2ϖ + 1)
−

(6.5)
3ϰ3ζ3ϖ

Γ(3ϖ + 1)
+

(6.5)
4ϰ3ζ4ϖ

Γ(4ϖ + 1)
−

(6.5)
5ϰ3ζ5ϖ

Γ(5ϖ + 1)
. (40)

When we use ϖ � 1 in equation (40), we get the fol-
lowing form:

w5(ϰ, ζ) � ϰ3 1 +
(− 6.5ζ)

1!
+

(− 6.5ζ)
2

2!
+

(− 6.5ζ)
3

3!
+

(− 6.5ζ)
4

4!
+

(− 6.5ζ)
5

5!
􏼢 􏼣, (41)

which are the frst six terms of the expansion ϰ3e− 6.5ζ and,
thus, is the exact solution of equations (18) and (19) at ϖ � 1.

Problem 2. consider the following time-fractional BSOPE
[35]:

z
ϖ

w(ϰ, ζ)

zζϖ
+ 0.08(2 + sin ϰ)2ϰ2

z
2
w(ϰ, ζ)

zϰ2
+ 0.06ϰ

zw(ϰ, ζ)

zϰ
� 0.06w(ϰ, ζ), 0<ϖ≤ 1, (42)
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subject to the following initial conditions:

w(ϰ, 0) � max ϰ − 25e
− 0.06

, 0􏼐 􏼑. (43)

First, we perform LT on both sides of equation (42), we
use the initial condition from equation (43), and then we
format the resulting equation as follows:

W(ϰ, s) �
1
s
max ϰ − 25e

− 0.06
, 0􏼐 􏼑 −

1
s
ϖ 0.08(2 + sin ϰ)2ϰ2DϰϰW(ϰ, s) −

0.06ϰ
s
ϖ DϰW(ϰ, s) +

0.06
s
ϖ W(ϰ, s). (44)

We describe the expansion solution of the algebraic
equation (44). So, we suppose that the series of W(ϰ, s) is as
follows:

W(ϰ, s) � 􏽘
∞

n�0

ϕn(ϰ)
s

nϖ+1 . (45)

Te kth-truncated series of the expansion of W(ϰ, s) is as
follows:

Wk(ϰ, s) � 􏽘
k

n�0

ϕn(ϰ)
s

nϖ+1 . (46)

We obtained the following as a result of using Lemma
1(iii):

ϕ0(ϰ) � lim
s⟶∞

sW(ϰ, s) � w(ϰ, 0) � max ϰ − 25e
− 0.06

, 0􏼐 􏼑.

(47)

So, the kth-truncated expansion becomes as follows:

Wk(ϰ, s) �
1
s
max ϰ − 25e

− 0.06
, 0􏼐 􏼑 + 􏽘

k

n�1

ϕn(ϰ)
s

nϖ+1 . (48)

Te LRF of (44) is as follows:

L[Res(ϰ, s)] � W(ϰ, s) −
1
s
max ϰ − 25e

− 0.06
, 0􏼐 􏼑 +

1
s
ϖ 0.08(2 + sin ϰ)2ϰ2DϰϰW(ϰ, s) +

0.06ϰ
s
ϖ DϰW(ϰ, s) −

0.06
s
ϖ W(ϰ, s).

(49)

Te kth-LRF of equation (44) is designed as follows:

L Resk(ϰ, s)􏼂 􏼃 � Wk(ϰ, s) −
1
s
max ϰ − 25e

− 0.06
, 0􏼐 􏼑 +

1
s
ϖ 0.08(2 + sin ϰ)2ϰ2DϰϰWk(ϰ, s)

+
0.06ϰ

s
ϖ DϰWk(ϰ, s) −

0.06
s
ϖ Wk(ϰ, s).

(50)

To determine the frst unknown coefcient ϕ1(ϰ) in
equation (46), we have to use 1st-truncated expansion
W1(ϰ, s) � 1/smax(ϰ − 25e− 0.06, 0) + ϕ1(ϰ)/sϖ+1 into the 1st
-LRFL[Res1(ϰ, s)], then we multiply by sϖ+1 on both sides,
and then we use the following fact lim

s⟶∞
sϖ+1L[Res1(ϰ, s)] �

0 to obtain

ϕ1(ϰ) � − 0.06 ϰ − max ϰ − 25e
− 0.06

, 0􏼐 􏼑􏽨 􏽩. (51)

Similarly, to establish the value of the second undefned
coefcient ϕ2(ϰ), we have to utilize the 2nd truncated ex-
pansion W2(ϰ, s) � 1/smax(ϰ − 25e− 0.06, 0) + ϕ1(ϰ)/sϖ+1+
ϕ2(ϰ)/s2ϖ+1 into the 2nd-LRF and use the following fact
lim

s⟶∞
s2ϖ+1L[Res2(ϰ, s)] � 0, we have

ϕ2(ϰ) � − (0.06)
2ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑. (52)

Terefore, the approximate solution derived from the
2nd iteration of equation (44) is as follows:

W2(ϰ, s) �
1
s

max ϰ − 25e
− 0.06

, 0􏼐 􏼑􏼐 􏼑 −
0.06
s
ϖ+1 ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑􏼐 􏼑

−
(0.06)

2

s
2ϖ+1 ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑􏼐 􏼑.

(53)
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To determine the 3rd, 4th, and 5th unknown coefcients,
we repeat the same process. We get as follows:

ϕ3(ϰ) � − (0.06)
3 ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑􏼐 􏼑,

ϕ4(ϰ) � − (0.06)
4 ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑􏼐 􏼑,

ϕ5(ϰ) � − (0.06)
5 ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑􏼐 􏼑.

(54)

Terefore, the approximate solution derived from the
5th iteration of equation (44) is as follows:

W5(ϰ, s) �
1
s

max ϰ − 25e
− 0.06

, 0􏼐 􏼑􏼐 􏼑 −
0.06
s
ϖ+1 +

(0.06)
2

s
2ϖ+1 +

(0.06)
3

s
3ϖ+1 +

(0.06)
4

s
4ϖ+1 +

(0.06)
5

s
5ϖ+1􏼢 􏼣 ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑􏼐 􏼑. (55)

By utilizing the inverse LTon both sides of equation (55),
the approximate solution derived from the 5th iteration by
LRPSM of equations (42) and (43) is as follows:

w5(ϰ, ζ) � max ϰ − 25e
− 0.06

, 0􏼐 􏼑 −
0.06ζϖ􏼐 􏼑

Γ(ϖ + 1)
+

0.06ζϖ􏼐 􏼑
2

Γ(2ϖ + 1)
+

0.06ζϖ􏼐 􏼑
3

Γ(3ϖ + 1)
+

0.06ζϖ􏼐 􏼑
4

Γ(4ϖ + 1)
+

0.06ζϖ􏼐 􏼑
5

Γ(5ϖ + 1)
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ϰ − max ϰ − 25e

− 0.06
, 0􏼐 􏼑􏼐 􏼑.

(56)

When ϖ � 1 is used in equation (56), we get as follows:

w5(ϰ, ζ) � max ϰ − 25e
− 0.06

, 0􏼐 􏼑 − 0.06ζ +
(0.06ζ)

2

2!
+

(0.06ζ)
3

3!
+

(0.06ζ)
4

4!
+

(0.06ζ)
5

5!
􏼢 􏼣

ϰ − max ϰ − 25e
− 0.06

, 0􏼐 􏼑􏼐 􏼑.

(57)

As a result, the following is the exact solution of
equations (42) and (43) for ϖ � 1:

w(ϰ, ζ) � max ϰ − 25e
− 0.06

, 0􏼐 􏼑 + 1 − e
0.06ζ

􏼐 􏼑

ϰ − max ϰ − 25e
− 0.06

, 0􏼐 􏼑􏼐 􏼑.
(58)

Problem 3. consider the following time-fractional BSOPE
[36]:

z
ϖ

w(ϰ, ζ)

zζϖ
�

z
2
w(ϰ, ζ)

zϰ2
+(λ − 1)

zw(ϰ, ζ)

zϰ

− λw(ϰ, ζ), 0<ϖ≤ 1,

(59)

subject to the initial condition:

w(ϰ, 0) � max e
ϰ

− 1, 0( 􏼁. (60)

First, we perform LT on both sides of equation (59),
using the initial condition from equation (60), and then
format the resulting equation as follows:

W(ϰ, s) �
1
s
max e

ϰ
− 1, 0( 􏼁 +

1
s
ϖDϰϰW(ϰ, s) +

(λ − 1)

s
ϖ DϰW(ϰ, s) −

λ
s
ϖW(ϰ, s). (61)
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We describe the expansion solution of the algebraic
equation (61). Terefore, we assume that the expansion of
W(ϰ, s) is as follows:

W(ϰ, s) � 􏽘
∞

n�0

ϕn(ϰ)
s

nϖ+1 . (62)

Te kth-truncated expansion of equation (61) is as
follows:

Wk(ϰ, s) �
1
s
max e

ϰ
− 1, 0( 􏼁 + 􏽘

k

n�1

ϕn(ϰ)
s

nϖ+1 . (63)

Te LRF of equation (61) takes the following form:

L[Res(ϰ, s)] � W(ϰ, s) −
1
s
max e

ϰ
− 1, 0( 􏼁 −

1
s
ϖDϰϰW(ϰ, s) −

(λ − 1)

s
ϖ DϰW(ϰ, s) +

λ
s
ϖW(ϰ, s). (64)

Accordingly, the kth-LRF takes the following form:

L Resk(ϰ, s)􏼂 􏼃 � Wk(ϰ, s) −
1
s
max e

ϰ
− 1, 0( 􏼁 −

1
s
ϖDϰϰWk(ϰ, s) −

(λ − 1)

s
ϖ DϰWk(ϰ, s) +

λ
s
ϖWk(ϰ, s). (65)

We substitute the kth-truncated series equations (63)
into (64), multiply the resulting equation by skϖ+1, and then

solve the equation lim
s⟶∞

skϖ+1L[Resk(ϰ, s)] � 0, where k �

1, 2, 3, 4, 5, for ϕk(ϰ) gives

ϕ0(ϰ, s) � max e
ϰ

− 1, 0( 􏼁,

ϕ1(ϰ, s) � λ max e
ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃,

ϕ2(ϰ, s) � − λ2 max e
ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃,

ϕ3(ϰ, s) � λ3 max e
ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃,

ϕ4(ϰ, s) � − λ4 max e
ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃,

ϕ5(ϰ, s) � λ5 max e
ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃.

(66)

Terefore, the approximate solution derived from the
5th iteration of equation (61) is as follows:

W5(ϰ, s) �
1
s
max e

ϰ
− 1, 0( 􏼁 +

λ
s
ϖ+1 max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃 −

λ2

s
2ϖ+1 max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃

+
λ3

s
3ϖ+1 max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃 −

λ4

s
4ϖ+1 max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃 +

λ5

s
5ϖ+1 max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃.

(67)

By utilizing the inverse LTon both sides of equation (67),
the approximate solution derived from the 5th iteration by
LRPSM of equations (59) and (60) is as follows:
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w5(ϰ, ζ) � max e
ϰ

− 1, 0( 􏼁 +
λζϖ

Γ(ϖ + 1)
max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃

−
λ2ζ2ϖ

Γ(2ϖ + 1)
max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃 +

λ3ζ3ϖ

Γ(3ϖ + 1)
max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃

−
λ4ζ4ϖ

Γ(4ϖ + 1)
max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃 +

λ5ζ5ϖ

Γ(5ϖ + 1)
max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃.

(68)

When ϖ � 1 is used in equation (68), we get as follows:

w5(ϰ, ζ) � max e
ϰ

− 1, 0( 􏼁 +
λζ
1!

−
λ2ζ2

2!
+
λ3ζ3

3!
−
λ4ζ4

4!
+
λ5ζ5

5!
􏼢 􏼣 max e

ϰ
, 0( 􏼁 − max e

ϰ
− 1, 0( 􏼁􏼂 􏼃. (69)

As a result, the following is the exact solution of
equations (59) and (60) for ϖ � 1:

w(ϰ, ζ) � max e
ϰ

− 1, 0( 􏼁e
− λζ

+ max e
ϰ
, 0( 􏼁 1 − e

− λζ
􏼐 􏼑.

(70)

5. Numerical Simulation and Discussion

Te fndings of the results of the models presented in
Problems 1–3 are evaluated graphically and numerically in
this section. Error functions can be used to evaluate the
numerical method’s correctness and competency. It is im-
portant to provide the errors of the approximation analytical
solution that the LRPSM ofers in terms of an infnite
fractional power series. We used the absolute and recurrence
error functions to demonstrate the accuracy and strength of
LRPSM.

Te 2D graphs of the comparative analysis of the exact
and approximative solutions derived by the suggested
method in Problems 1–3 are shown in Figures 1(a)–1(c).
Tese fgures display the 2D plots of the precise solution and
the approximate solution attained from the ffth iteration
attained by LRPSM for Examples 1–3 when
ϖ � 0.6, 0.7, 0.8, 0.9, and 1.0 in the range of ζ ∈ [0, 0.5].
Tese graphs indicate that when ϖ⟶ 1.0 is applied, the
approximative solution converges to the precise solution.
Te precise result and the approximation overlap at ϖ � 1.0,
demonstrating the efcacy and accuracy of the recom-
mended method.

Figures 2(a)–2(c) display the 2D curve of calculating the
similarity with the help of absolute error of the approxi-
mation formed in the ffth step and the precise solution
found by the suggested technique for Examples 1–3, re-
spectively, for ϖ � 1.0 in the range of ζ ∈ [0, 0.5]. Te article
has shown that the ffth-step approximation solution of the
recommended approach is very close to the exact solution.
By showing the absolute error of the precise and approxi-
mate outputs on a graph, LRPSM’s precision is proven.

Te comparison article using the 3D curve is shown in
Figures 3(a)–3(c) in the sense of the absolute error of the

approximate fnding from the ffth iteration and the exact
fnding found using the suggested method to Examples 1–3,
respectively, at ϖ � 1.0 in the ranges of ζ ∈ [0, 0.2] and
ϖ ∈ [0, 0.2]. Te article has revealed that the ffth-step ap-
proximation of the recommended approach is very similar
to the precise result. Te absolute error of the precise and
approximation fndings on 3D graphs serves as a demon-
stration of the precision of LRPSM.

In Tables 1–6, the numerical convergence of the ap-
proximation to the precise solution has been demonstrated
by |w4(ϰ, ζ) − w3(ϰ, ζ)| and |w5(ϰ, ζ) − w4(ϰ, ζ)| in the
range ζ ∈ [0, 0.1]. Tables 1–6 shows that w4(ϰ, ζ) and
w5(ϰ, ζ) obtained by the suggested method quickly ap-
proaches the w(ϰ, ζ) when ϖ⟶ 1.0. We can see from
Tables 1, 3, and 5 that all of the test problems for the fourth
stage have very low recurrence errors. Te recurrence error
will further decrease if we take into account the ffth-step
approximation shown in Tables 2, 4, and 6. Te approxi-
mation is rapidly approaching the exact solution as a result
of the accuracy of our suggested strategy being demonstrated
by the recurring error process. We arrived at the conclusion
that the suggested approach is a feasible and efcient
technique for solving particular classes of FODEs with fewer
calculations and iteration steps.

For appropriately selected points, |w(ϰ, ζ) − w6(ϰ, ζ)

and |w(ϰ, ζ) − w7(ϰ, ζ) in the range ζ ∈ [0, 0.1] obtained by
LRPSM at ϖ � 1.0 in Examples 1–3 are displayed in
Tables 7–12 for comparison article in the sense of the ab-
solute error of the approximate and the exact fnding. We
can see from Tables 7, 9, and 11 that approximate solutions
derived from the 6th iteration for all of the test problems
have very low errors. Te absolute error will further decrease
if we take into account the 7th-step approximation shown in
Tables 8, 10, and 12. By quantitatively comparing the ab-
solute inaccuracy of the precise and approximative fndings,
LRPSM’s precision is shown.

Tables 13–15 also compares the absolute error of the
approximations from the ffth iteration obtained by the
LRPSM of Examples 1–3 at plausible short-listed grid points
in the range ζ ∈ [0, 0.1] with the absolute error of the ffth-
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Figure 1: Te approximate result of fve iterations, as well as the exact result of w(ϰ, ζ) for various values of ϖ in the range ζ ∈ [0, 0.5] for
(a) Problem 1, when ϰ � 0.002, (b) Problem 2, when ϰ � 1.0, and (c) Problem 3, when ϰ � 1.0 and λ � 2.0.
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Figure 2: In Figure 2, the 2D curve of |w(ϰ, ζ) − w5(ϰ, ζ)| in the range ζ ∈ [0, 0.5], when ϖ � 1.0 for (a) Problem 1, when ϰ � 0.002,
(b) Problem 2, when ϰ � 1.0, and (c) Problem 3, when ϰ � 1.0 and λ � 2.0.
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Figure 3: In Figure 3, the 3D curve of |w(ϰ, ζ) − w5(ϰ, ζ)| in the ranges ζ ∈ [0, 0.2] and ϖ ∈ [0, 0.2], when ϖ � 1.0 for (a) Problem 1,
(b) Problem 2, and (c) Problem 3, when λ � 2.0.

Table 1: |w4(ϰ, ζ) − w3(ϰ, ζ)| of Problem 1 at diferent values of ϖ at ϰ � 0.002 determined by LRPSM at plausible locations in the range
ζ ∈ [0, 0.1].

ζ ϖ � 0.7 ϖ � 0.8 ϖ � 0.9 ϖ � 1.0
0.01 7.64160 × 10− 12 7.32938 × 10− 13 6.73357 × 10− 14 5.95021 × 10− 15

0.02 5.32192 × 10− 11 6.73539 × 10− 12 8.16495 × 10− 13 9.52033 × 10− 14

0.03 1.65624 × 10− 10 2.46522 × 10− 11 3.51465 × 10− 12 4.81967 × 10− 13

0.04 3.70640 × 10− 10 6.18955 × 10− 11 9.90060 × 10− 12 1.52325 × 10− 12

0.05 6.92309 × 10− 10 1.26407 × 10− 10 2.21074 × 10− 11 3.71888 × 10− 12

0.06 1.15347 × 10− 9 2.26543 × 10− 10 4.26177 × 10− 11 7.71147 × 10− 12

0.07 1.77606 × 10− 9 3.71006 × 10− 10 7.42333 × 10− 11 1.42865 × 10− 11

0.08 2.58129 × 10− 9 5.68794 × 10− 10 1.20052 × 10− 10 2.43721 × 10− 11

0.09 3.58974 × 10− 9 8.29169 × 10− 10 1.83450 × 10− 10 3.90393 × 10− 11

0.1 4.82152 × 10− 9 1.84106 × 10− 10 3.37478 × 10− 11 5.95021 × 10− 12

Table 2: |w5(ϰ, ζ) − w4(ϰ, ζ)| of Problem 1 at diferent values of ϖ at ϰ � 0.002 determined by LRPSM at plausible locations in the range
ζ ∈ [0, 0.1].

ζ ϖ � 0.7 ϖ � 0.8 ϖ � 0.9 ϖ � 1.0
0.01 7.98018 × 10− 13 3.86764 × 10− 14 1.77337 × 10− 15 7.73527 × 10− 17

0.02 9.02854 × 10− 12 6.18822 × 10− 13 4.01268 × 10− 14 2.47529 × 10− 15

0.03 3.73196 × 10− 11 3.13278 × 10− 12 2.48797 × 10− 13 1.87967 × 10− 14

0.04 1.02146 × 10− 10 9.90115 × 10− 12 9.07967 × 10− 13 7.92092 × 10− 14

0.05 2.23053 × 10− 10 2.41727 × 10− 11 2.47836 × 10− 12 2.41727 × 10− 13

0.06 4.22223 × 10− 10 5.01246 × 10− 11 5.62964 × 10− 12 6.01495 × 10− 13

0.07 7.24195 × 10− 10 9.28619 × 10− 11 1.12653 × 10− 11 1.30007 × 10− 12

0.08 1.15565 × 10− 9 1.58418 × 10− 10 2.05449 × 10− 11 2.53469 × 10− 12

0.09 1.74526 × 10− 9 2.53756 × 10− 10 3.49053 × 10− 11 4.56760 × 10− 12

0.1 2.52355 × 10− 9 3.86764 × 10− 10 5.60790 × 10− 11 7.73527 × 10− 12
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Table 3: |w4(ϰ, ζ) − w3(ϰ, ζ)| of Problem 2 at diferent values of ϖ at ϰ � 1.0 determined by LRPSM at plausible locations in the range
ζ ∈ [0, 0.1].

ζ ϖ � 0.7 ϖ � 0.8 ϖ � 0.9 ϖ � 1.0
0.01 6.93499 × 10− 12 6.65164 × 10− 13 6.11093 × 10− 14 5.40000 × 10− 15

0.02 4.82981 × 10− 11 6.11258 × 10− 12 7.40995 × 10− 13 8.64000 × 10− 14

0.03 1.50309 × 10− 10 2.23726 × 10− 11 3.18965 × 10− 12 4.37400 × 10− 13

0.04 3.36367 × 10− 10 5.61721 × 10− 11 8.98510 × 10− 12 1.38240 × 10− 12

0.05 6.28292 × 10− 10 1.14718 × 10− 10 2.00632 × 10− 11 3.37500 × 10− 12

0.06 1.04681 × 10− 9 2.05595 × 10− 10 3.86769 × 10− 11 6.99840 × 10− 12

0.07 1.61183 × 10− 9 3.36699 × 10− 10 6.73690 × 10− 11 1.29654 × 10− 11

0.08 2.34260 × 10− 9 5.16198 × 10− 10 1.08951 × 10− 10 2.21184 × 10− 11

0.09 3.25780 × 10− 9 7.52497 × 10− 10 2.50264 × 10− 9 3.54294 × 10− 11

0.1 4.37568 × 10− 9 1.05421 × 10− 9 2.43280 × 10− 10 5.40000 × 10− 11

Table 4: |w5(ϰ, ζ) − w4(ϰ, ζ)| of Problem 2 at diferent values of ϖ at ϰ � 1.0 determined by LRPSM at plausible locations in the range
ζ ∈ [0, 0.1].

ζ ϖ � 0.7 ϖ � 0.8 ϖ � 0.9 ϖ � 1.0
0.01 6.68516 × 10− 15 3.24000 × 10− 16 1.48559 × 10− 17 6.48000 × 10− 19

0.02 7.56340 × 10− 14 5.18400 × 10− 15 3.36151 × 10− 16 2.07360 × 10− 17

0.03 3.12634 × 10− 13 2.62440 × 10− 14 2.08423 × 10− 15 1.57464 × 10− 16

0.04 8.55701 × 10− 13 8.29440 × 10− 14 7.60623 × 10− 15 6.63552 × 10− 16

0.05 1.86856 × 10− 12 2.02500 × 10− 13 2.07618 × 10− 14 2.02500 × 10− 15

0.06 3.53705 × 10− 12 4.19904 × 10− 13 4.71607 × 10− 14 5.03885 × 10− 15

0.07 6.06674 × 10− 12 7.77924 × 10− 13 9.43715 × 10− 14 1.08909 × 10− 14

0.08 9.68115 × 10− 12 1.32710 × 10− 12 1.72109 × 10− 13 2.12337 × 10− 14

0.09 1.46205 × 10− 11 2.12576 × 10− 12 2.92409 × 10− 13 3.82638 × 10− 14

0.1 2.11403 × 10− 11 3.24000 × 10− 12 4.69785 × 10− 13 6.48000 × 10− 14

Table 5: |w4(ϰ, ζ) − w3(ϰ, ζ)| of Problem 3 at diferent values of ϖ at ϰ � 0.002 when λ � 2.0 determined by LRPSM at plausible locations in
the range ζ ∈ [0, 0.1].

ζ ϖ � 0.7 ϖ � 0.8 ϖ � 0.9 ϖ � 1.0
0.01 1.71234 × 10− 5 1.64238 × 10− 6 1.50887 × 10− 7 1.33333 × 10− 8

0.02 1.19254 × 10− 4 1.5092810×− 5 1.82962 × 10− 6 2.13333 × 10− 7

0.03 3.71134 × 10− 4 5.52410 × 10− 5 7.87569 × 10− 6 1.08000 × 10− 6

0.04 8.30537 × 10− 4 1.38697 × 10− 4 2.21854 × 10− 5 3.41333 × 10− 6

0.05 1.55134 × 10− 3 2.83255 × 10− 4 4.95386 × 10− 5 8.33333 × 10− 6

0.06 2.58472 × 10− 3 5.07642 × 10− 4 9.54985 × 10− 5 1.72800 × 10− 5

0.07 3.97984 × 10− 3 8.31357 × 10− 4 1.66343 × 10− 4 3.20133 × 10− 5

0.08 5.78419 × 10− 3 1.27456 × 10− 3 2.69015 × 10− 4 5.46133 × 10− 5

0.09 8.04396 × 10− 3 1.85802 × 10− 3 4.11079 × 10− 4 8.74800 × 10− 5

0.1 1.08042 × 10− 2 2.60300 × 10− 3 6.00692 × 10− 4 1.33333 × 10− 4

Table 6: |w5(ϰ, ζ) − w4(ϰ, ζ)| of Problem 3 at diferent values of ϖ at ϰ � 0.002 when λ � 2.0 determined by LRPSM at plausible locations in
the range ζ ∈ [0, 0.1].

ζ ϖ � 0.7 ϖ � 0.8 ϖ � 0.9 ϖ � 1.0
0.01 2.75110 × 10− 7 1.33333 × 10− 8 6.11355 × 10− 10 2.66667 × 10− 11

0.02 3.11251 × 10− 6 2.13333 × 10− 7 1.38334 × 10− 8 8.53333 × 10− 10

0.03 1.28656 × 10− 5 1.08000 × 10− 6 8.57707 × 10− 8 6.48000 × 10− 9

0.04 3.52140 × 10− 5 3.41333 × 10− 6 3.13014 × 10− 7 2.73067 × 10− 8

0.05 7.68955 × 10− 5 8.33333 × 10− 6 8.54394 × 10− 7 8.33333 × 10− 8

0.06 1.45558 × 10− 4 1.72800 × 10− 5 1.94077 × 10− 6 2.07360 × 10− 7

0.07 2.49660 × 10− 4 3.20133 × 10− 5 3.88360 × 10− 6 4.48187 × 10− 7

0.08 3.98401 × 10− 4 5.46133 × 10− 5 7.08269 × 10− 6 8.73813 × 10− 7

0.09 6.01665 × 10− 4 8.74800 × 10− 5 1.20333 × 10− 5 1.57464 × 10− 6

0.1 8.69973 × 10− 4 1.33333 × 10− 4 1.93327 × 10− 5 2.66667 × 10− 6
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Table 7: |w(ϰ, ζ) − w6(ϰ, ζ)| of Problem 1 at ϰ � 0.003 when ϖ � 1.0 determined by LRPSM at plausible locations in the range ζ ∈ [0, 0.1].

ζ w (ϰ, ζ) w6(ϰ, ζ) |w6(ϰ, ζ) − w(ϰ, ζ)|

0.01 2.53008 × 10− 8 2.53008 × 10− 8 2.60496 × 10− 20

0.02 2.37086 × 10− 8 2.37086 × 10− 8 3.30768 × 10− 18

0.03 2.22165 × 10− 8 2.22165 × 10− 8 5.60646 × 10− 17

0.04 2.08184 × 10− 8 2.08184 × 10− 8 4.16685 × 10− 16

0.05 1.95082 × 10− 8 1.95082 × 10− 8 1.97128 × 10− 15

0.06 1.82805 × 10− 8 1.82805 × 10− 8 7.00821 × 10− 15

0.07 1.71301 × 10− 8 1.71301 × 10− 8 2.04572 × 10− 14

0.08 1.60521 × 10− 8 1.60521 × 10− 8 5.16919 × 10− 14

0.09 1.50419 × 10− 8 1.50420 × 10− 8 1.16989 × 10− 13

0.1 1.40952 × 10− 8 1.40955 × 10− 8 2.42728 × 10− 13

Table 8: |w(ϰ, ζ) − w7(ϰ, ζ)| of Problem 1 at ϰ � 0.003 when ϖ � 1.0 determined by LRPSM at plausible locations in the range ζ ∈ [0, 0.1].

ζ w (ϰ, ζ) w7(ϰ, ζ) |w (ϰ, ζ) − w7(ϰ, ζ)|

0.01 2.53008 × 10− 8 2.53008 × 10− 8 2.11758 × 10− 22

0.02 2.37086 × 10− 8 2.37086 × 10− 8 5.38461 × 10− 20

0.03 2.22165 × 10− 8 2.22165 × 10− 8 1.37022 × 10− 18

0.04 2.08184 × 10− 8 2.08184 × 10− 8 1.35902 × 10− 17

0.05 1.95082 × 10− 8 1.95082 × 10− 8 8.0436 × 10− 17

0.06 1.82805 × 10− 8 1.82805 × 10− 8 3.43448 × 10− 16

0.07 1.71301 × 10− 8 1.71301 × 10− 8 1.17061 × 10− 15

0.08 1.60521 × 10− 8 1.60521 × 10− 8 3.38332 × 10− 15

0.09 1.50419 × 10− 8 1.50418 × 10− 8 8.62135 × 10− 15

0.1 1.40952 × 10− 8 1.40952 × 10− 8 1.98913 × 10− 14

Table 9: |w(ϰ, ζ) − w6(ϰ, ζ)| of Problem 2 at ϰ � 1.0 when ϖ � 1.0 determined by LRPSM at plausible locations in the range ζ ∈ [0, 0.1].

ζ w(ϰ, ζ) w6(ϰ, ζ) |w (ϰ, ζ) − w6(ϰ, ζ)|

0.01 − 0.00060018 − 0.00060018 2.95987 × 10− 17

0.02 − 0.00120072 − 0.00120072 4.42354 × 10− 17

0.03 − 0.00180162 − 0.00180162 7.69784 × 10− 17

0.04 − 0.00240288 − 0.00240288 7.19910 × 10− 17

0.05 − 0.00300450 − 0.00300450 5.46438 × 10− 17

0.06 − 0.00360649 − 0.00360649 1.00614 × 10− 16

0.07 − 0.00420883 − 0.00420883 5.72459 × 10− 17

0.08 − 0.00481154 − 0.00481154 3.12250 × 10− 17

0.09 − 0.00541461 − 0.00541461 7.28584 × 10− 17

0.1 − 0.00601804 − 0.00601804 5.89806 × 10− 17

Table 10: |w(ϰ, ζ) − w7(ϰ, ζ)| of Problem 2 at ϰ � 1.0 when ϖ � 1.0 determined by LRPSM at plausible locations in the range ζ ∈ [0, 0.1].

ζ w(ϰ, ζ) w7(ϰ, ζ) |w (ϰ, ζ) − w7(ϰ, ζ)|

0.01 − 0.00060018 − 0.00060018 2.94903 × 10− 17

0.02 − 0.00120072 − 0.00120072 4.40186 × 10− 17

0.03 − 0.00180162 − 0.00180162 7.67615 × 10− 17

0.04 − 0.00240288 − 0.00240288 7.15573 × 10− 17

0.05 − 0.00300450 − 0.00300450 5.50775 × 10− 17

0.06 − 0.00360649 − 0.00360649 1.00614 × 10− 16

0.07 − 0.00420883 − 0.00420883 5.63785 × 10− 17

0.08 − 0.00481154 − 0.00481154 3.12250 × 10− 17

0.09 − 0.00541461 − 0.00541461 7.28584 × 10− 17

0.1 − 0.00601804 − 0.00601804 5.89806 × 10− 17
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Table 11: |w(ϰ, ζ) − w6(ϰ, ζ)| of Problem 3 at ϰ � 1.0 and λ � 2.0 when ϖ � 1.0 determined by LRPSM at plausible locations in the range
ζ ∈ [0, 0.1].

ζ w (ϰ, ζ) w6(ϰ, ζ) |w (ϰ, ζ) − w6(ϰ, ζ)|

0.01 1.73808 1.73808 2.22045 × 10− 16

0.02 1.75749 1.75749 3.24185 × 10− 14

0.03 1.77652 1.77652 5.51115 × 10− 13

0.04 1.79517 1.79517 4.11982 × 10− 12

0.05 1.81344 1.81344 1.95961 × 10− 11

0.06 1.83136 1.83136 7.00426 × 10− 11

0.07 1.84892 1.84892 2.05550 × 10− 10

0.08 1.86614 1.86614 5.22144 × 10− 10

0.09 1.88301 1.88301 1.18793 × 10− 9

0.1 1.73808 1.89955 2.47757 × 10− 9

Table 12: |w(ϰ, ζ) − w7(ϰ, ζ)| of Problem 3 at ϰ � 1.0 and λ � 2.0 when ϖ � 1.0 determined by LRPSM at plausible locations in the range
ζ ∈ [0, 0.1].

ζ w (ϰ, ζ) w7(ϰ, ζ) |w (ϰ, ζ) − w7(ϰ, ζ)|

0.01 1.73808 1.73808 0.0
0.02 1.75749 1.75749 0.0
0.03 1.77652 1.77652 4.21885 × 10− 15

0.04 1.79517 1.79517 4.10783 × 10− 14

0.05 1.81344 1.81344 2.45359 × 10− 13

0.06 1.83136 1.83136 1.05249 × 10− 12

0.07 1.84892 1.84892 3.60423 × 10− 12

0.08 1.86614 1.86614 1.04659 × 10− 11

0.09 1.88301 1.88301 2.67941 × 10− 11

0.1 1.73808 1.89955 6.21085 × 10− 11

Table 13: |w(ϰ, ζ) − w5(ϰ, ζ)| in diferent approaches for Problem 1 at ϰ � 0.002 whenϖ � 1.0 at plausible locations in the range ζ ∈ [0, 0.1].

ζ Abs.error Abs.error
[LRPSM] [PDTM] [34]

0.01 8.30269 × 10− 19 8.30269 × 10− 19

0.02 5.26512 × 10− 17 5.26512 × 10− 17

0.03 5.94281 × 10− 16 5.94281 × 10− 16

0.04 3.30894 × 10− 15 3.30894 × 10− 15

0.05 1.25095 × 10− 14 1.25095 × 10− 14

0.06 3.70206 × 10− 14 3.70206 × 10− 14

0.07 9.25270 × 10− 14 9.25270 × 10− 14

0.08 2.04357 × 10− 13 2.04357 × 10− 13

0.09 4.10678 × 10− 13 4.10678 × 10− 13

0.1 7.66068 × 10− 13 7.66068 × 10− 13

Table 14: |w(ϰ, ζ) − w5(ϰ, ζ)| in diferent approaches for Problem 2 at ϰ � 1.0 when ϖ � 1.0 at plausible locations in the range ζ ∈ [0, 0.1].

ζ Abs.error Abs.error
[LRPSM] [ATDM] [35]

0.01 2.94903 × 10− 17 2.94903 × 10− 17

0.02 4.40186 × 10− 17 4.40186 × 10− 17

0.03 7.67615 × 10− 17 7.67615 × 10− 17

0.04 7.11237 × 10− 17 7.11237 × 10− 17

0.05 5.63785 × 10− 17 5.63785 × 10− 17

0.06 1.03216 × 10− 16 1.03216 × 10− 16

0.07 6.41848 × 10− 17 6.41848 × 10− 17

0.08 1.47451 × 10− 17 1.47451 × 10− 17

0.09 1.07553 × 10− 16 1.07553 × 10− 16

0.1 1.23165 × 10− 16 1.23165 × 10− 16
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step approximations obtained by various methods, including
the PDTM [34], ATDM [35], and HPM [36]. Strong
agreement between the results produced using the suggested
method and various series solution techniques shows that
the LRPSM is a useful substitute for approaches based on
He’s or Adomian polynomials.

6. Conclusion

In this article, we used the LRPSM to solve time-fractional
BSOPE in the sense of CD. Te efectiveness of the LRPSM
has been demonstrated by results in both graphs and nu-
merically.Te approximate solutions achieved using LRPSM
are in perfect agreement with the corresponding exact so-
lutions, as can be seen from the graphs and tables. Te
numerical evidence for the convergence of the approxi-
mative solution to the exact solution is presented in
Tables 1–6. Te comparison article is established in
Tables 7–12 in terms of the absolute error of the approximate
and exact solutions. Te results of these numerical ap-
proaches are also compared with the PDTM, ATDM, and
HPM in terms of absolute errors in Tables 13–15.

Te results obtained using the suggested approach,
which demonstrates excellent agreement with PDTM,
ATDM, and HPM, show that LRPSM is a suitable re-
placement tool for He’s or Adomian polynomial-based
methods used to solve FODEs. When determining the co-
efcients for a series such as the RPSM, the fractional de-
rivative needs to be determined each time. However, LRPSM
just needs the idea of an infnite limit. As a result, the
computations required to determine the coefcients are
minimal. Te results led us to the conclusion that our
technique is easy to use, accurate, fexible, and efective.
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The representation of mathematical models via piecewise differential and integral operators for dynamic systems has this potential
to capture cross-over behaviors such as a passage from deterministic to randomness which can be exhibited by different systems.
A 3D mathematical model, similar to the prey-predator system, of tumor-immune interaction with piecewise differential and
integral operators is developed and analyzed. Three different scenarios, namely, cross-overs from deterministic to randomness,
the Mittag-Leffler law to randomness, and a cross-over behavior from fading memory to the power-law and a random process,
are considered. The existence, uniqueness, positivity, and boundedness of the solutions of the systems are proved via the linear
growth and Lipschitz conditions. The numerical approximations by Toufik, Atangana, and Araz are used for approximation of
solutions and simulation of the piecewise models in different scenarios. From the nondimensionalized version of the 3D model
representation, it is shown that the parameter values have an impact on the growth of tumor cells, and activating the
proliferation of the resting cells has negatively affected the development of tumor cells. Moreover, the dynamics of tumor-
immune interaction exhibited a cross-over behavior, and this behavior is exposed by the piecewise modeling approach used for
the representations.

1. Introduction

The classical differential equations (ordinary and partial dif-
ferential equations) were developed based on the concept of
rate of changes, and it has been used and investigated for sev-
eral decades. They have been used in developing several math-
ematical models representing real-world problems and are
effectively used to make their analysis. Nevertheless, some
drawbacks with the classical differential equations were
observed. The classical differential equations are not efficient
in replicating observed realities. For instance, some cases
require randomness and cannot be captured by the classical

differential equations, and as a result, the stochastic differential
equations came into being and have been used successfully.

In the same way, there are some problems in real world
that cannot be captured by stochastic differential equations,
and this led to the development of different concepts of frac-
tional derivatives and integrals. Different concepts of frac-
tional operators have been used to capture trends including
nonlocalities, power-law processes, memory effects, fractal
processes, and some other real-world problems. Though
there are different endeavors made by mathematicians to
capture different real-world problems using mathematical
models, the issue of capturing dynamic systems that display
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multiple behaviors is not fully addressed (see [1] and the ref-
erences therein). With this understanding and to solve the
problem of capturing dynamics of real-world problems with
cross-over behaviors, Atangana and Araz [1, 2] developed a
novel concept named piecewise modeling that involves dif-
ferential and integral operators.

In this study, the notion of piecewise modeling is consid-
ered to develop different piecewise mathematical models for
tumor-immune interaction using the classical, stochastic,
and fractional derivative concepts.

There are several studies conducted on tumor-immune
interaction by using different mathematical models based
on classical and fractional derivative concepts. A few of them
are reviewed as follows: Kaur and Ahmad [3] developed a
mathematical model of tumor-immune interaction by
including the Michaelis-Menten function in the model.
The authors used the classical derivative and showed that
the inclusion of the Michaelis-Menten function helped in
achieving stability of the dynamical system and increased
the rate of growth of resting cells. A seven-dimensional
dynamical model of the tumor-immune system equipped
with the Reimann-Liouville fractal-fractional operator with
the Mittag-Leffler-type kernel was considered by Farman
et al. [4]. The results showed that the IL-12 cytokine and
anti-PD-L1 inhibitor increased the immune system and
decreased the cancer cells. Ahmed et al. [5] applied ABC
fractal-fractional operators to develop a mathematical model
and visualize the tumor-immune relationship. Various
mathematical models addressing different cancer treatments
such as cytotoxic chemotherapy, immunotherapy, and their
combination are investigated by Depillis et al. [6].

Wilkie [7] discussed different mathematical models with
the classical derivatives of tumor growth in the presence of
an immune response, and the findings suggest that feedback
from the tumor to the immune response induces the exis-
tence of dormant cancer cells. A mathematical model incor-
porating three types of immunotherapy and focusing on the
inhibitory role of Tregs in the tumor-immune system is
developed and analyzed by Zhongtao et al. [8]. A mathemat-
ical model describing how cancer cell progresses and sur-
vives an encounter with the immune cell population is
developed and discussed in [9]. The chaotic dynamics of a
tumor-immune interaction model with delay are considered
in [10]. Kuznetsov et al. [11] developed a tumor-immune
interaction mathematical model and described the response
of effector cells to the growth of an immunogenic tumor.
There are many other studies made on the tumor-immune
interaction (see for instance [12–16]).

As the concept of piecewise differential and integral
operators is relatively new, hence, little literature is avail-
able. The concept of the piecewise derivative and integral
operator is used with different fractional derivatives to
investigate an SIR mathematical model of COVID-19 in
[17]. Zeb et al. [18] investigated a five-dimensional com-
partmental model of COVID-19 with the concept of piece-
wise derivative and integral operators combining the
Caputo-Fabrizio, classical, and stochastic differential equa-
tions. A mathematical model representing an interaction
in a food web is considered, and the concept of piecewise

differential and integral operator is imposed for investiga-
tion in [19]. A mathematical model of the third wave of
COVID-19 is developed and considered with the concept
of piecewise differential and integral operators [2]. The
concept of piecewise differentiation and integral operator
is applied to a CAR-T cells-SARS-2 virus model [20]. Of
course, different concepts of fractional derivatives have
been used by several authors for investigation of different
dynamical systems and different applications (see for
instance [21–28] and the references therein).

To the best of the researchers’ knowledge, there is no
single study conducted on a Tumor-immune interaction
mathematical model in the sense of piecewise differential
and integral operators. The concept of piecewise deriva-
tives and integrals in capturing real-world problems with
multiple behaviors is a novel result as it empowers
researchers in the area to use different concepts of deriva-
tive and integral operators at the same time to study mul-
tiple behaviors of a given dynamic system which may not
otherwise be possible.

This study, therefore, focuses on discovering different
cross-over behaviors in a mathematical model of tumor-
immune interaction in the sense of the piecewise differential
and integral operators developed by Atangana and Seda. The
classical differential equations, stochastic differential equa-
tions, and different concepts of fractional operators are
included in the formation of the piecewise differential and
integral operators. Accordingly, three different scenarios of
the mathematical models were developed: a cross-over from
deterministic to randomness, a cross-over from Mittag-
Leffler law to randomness, and a cross-over from exponen-
tial decay to power-law and random process.

The remaining part of this paper is organized as follows:
The formulation and description of the model, the parame-
ters and their description, and the formulation of three
piecewise models representing the system are considered in
Section 2. Section 3 is devoted to the existence, uniqueness,
positivity, and boundedness of the piecewise models.
Numerical approximations of the piecewise models are con-
sidered in Section 4 followed by simulations in Section 5.
The conclusion is provided in Section 6 followed by the list
of references in the last section.

2. Formulation of Models

In this section, the tumor-immune mathematical model
used in this study is described. The system comprises three
nonlinear differential equations that modify to different con-
cepts of fractional operators and stochastic differential equa-
tions. The model involves the concentration of tumor cells at
time t, represented by XðtÞ, the concentration of hunting
predator cells at time t, represented by YðtÞ, and the
concentration of resting predator cells at time t, represented
by ZðtÞ. The hunting and resting predator cells are normal
tissue cells. The model is similar to the prey-predator system
and originally developed by Kaur and Ahmad [3] describing
the growth, death, and interaction among this population
and is given as shown in:
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_X =Λ + r1X 1 − X
k1

� �
− α1XY ,

_Y = βYZ − d1Y − α2YX,

_Z = r2Z 1 − Z
k2

� �
− βYZ − d2Z + ρXZ

X + η
,

ð1Þ

where all the parameters in (1) are nonnegative and the ini-
tial conditions are

X 0ð Þ > 0, Y 0ð Þ > 0, Z 0ð Þ > 0, and k1 > k2: ð2Þ

The first equation of (1) describes the rate of growth of
concentration of tumor cells. It is assumed that tumor cells
follow the logistic growth in the absence of any immune
intervention (hunting and resting predator CTL cells). The
extinction of hunting cells and tumor cells is proportional
to the densities of both the cells, in line with the law of mass
action. The proliferation of the resting cells is also assumed
to follow the logistic growth function in the absence of
tumor cells. The multiplying of the resting cells is enhanced
by the tumor cells characterized by the term ρXZ/ðX + ηÞ
called the Michael-Menten function which indicates the sat-
uration effect of the resting predator cells, with a rate of pro-
liferation ρ and a half-saturation constant η. The resting cells
are converted to hunting cells by direct contact with them or
by fast diffusing substance (cytokines) produced by hunting
cells at the rate β. It is worth mentioning that inactivated
hunting cells will not get back to the resting stage once over.
The parameters of the model and their description used in
this study are summarized in Table 1.

Following the work in [1], let us use the following
dimensionless variables in the system:

t∗ =Λt/k1, X∗ = X/k1, Y∗ = αk1Y/Λ, Z∗ = Z/k2: ð3Þ

After applying the dimensionless variables in (2) to the
systems (1), we obtain

_X = 1 + c1X 1 − Xð Þ − XY ,
_Y = c2YZ − c3Y − c4YX,

_Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>><
>>>:

ð4Þ

where

c1 =
r1k1
Λ

, c2 =
βk2k1
Λ

, c3 =
d1k1
Λ

, c4 =
α2k

2
1

Λ

c5 =
r2k1
Λ

, c6 =
β

α1
, c7 =

d2k1
Λ

, c8 =
ρk1
Λ

, K = η

k1
:

ð5Þ

In this study, the nondimensionalized mathematical model
(4) is considered in the sense of piecewise differential and inte-
gral operators using classical, stochastic differential equations
and different concepts of fractional and integral operators.

2.1. Preliminaries. The basic definitions of different frac-
tional derivatives and integral operators used in the study
are recalled as follows.

Definition 1 (see [30–32]). Let μ ∈ ð0, 1�, and f ∈ C1ð0, tÞ.
The fractional ABC (with Mittag-Leffler kernel), Caputo
(with the power-law kernel), and Caputo-Fabrizio (with
exponential decay kernel) derivatives are, respectively,
defined as follows:

ABC
0 D

μ

t f tð Þ = G μð Þ
1 − μ

ðt
0

d
dτ

f τð ÞEμ −
μ

1 − μ
t − τð Þμ

� �
dτ,

c

0D
μ
t f tð Þ = 1

Γ 1 − μð Þ
ðt
0

d
dτ

f τð Þ t − τð Þ−μdτ,

CF
0 D

μ

t f tð Þ = G μð Þ
1 − μ

ðt
0

d
dτ

f τð Þ exp −
μ

1 − μ
t − τð Þ

� �
dτ,

ð6Þ

where GðμÞ = 1 − μ + μ/ΓðμÞ is the normal operator, Eμð:Þ is
the Mittag-Leffler function, and Γð:Þ is the Euler Gamma
function.

The fractional integrals of the Caputo, Caputo-Fabrizio,
and ABC types are, respectively, given by

C
0 I

μ
t f tð Þ = 1

Γ μð Þ
ðt
0
t − ρð Þμ−1 f ρð Þdρ,

CF
0 I

μ
t f tð Þ = 1 − μ

G μð Þ f tð Þ + μ

G μð Þ
ðt
0
f ρð Þdρ,

ABC
0 Iμt f tð Þf g = 1 − μ

G μð Þ f tð Þ + μ

G μð ÞΓ μð Þ
ðt
0
f ρð Þ t − ρð Þμ−1dρ:

ð7Þ

2.2. Equilibrium Points. Four equilibrium points of the sys-
tem (4) are given below:

E1 =
1
2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4

c1

s !
, 0, 0

 !
,

E2 = X2, 0, Z2ð Þ,

whereX2 =
1
2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1

c1

s !
, Z2 =

1
c5

c5 − c7 +
c8X2
X2 + K

� �
,

E3 = X3, Y3, 0ð Þ, where X3 = −
c3
c4

< 0,

ð8Þ
E4 = X4, Y4, Z4ð Þ is the interior equilibriumpoint, ð9Þ

where

C3X3
4 + C2X2

4 + C1X4 + C0 = 0, ð10Þ
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and C1 = c5K − ðc7K + ðc5c3K/c2Þ + c6ðc1K + 1ÞÞ,

C2 = c5 − c7 + c8 −
c5
c2

c3 + c4Kð Þ − c1c6 1 − Kð Þ, ð11Þ

C3 = c1c6 −
c4c5
c2

, C0 = −c6K < 0: ð12Þ

2.3. Formulation of Piecewise Model. In this subsection, we
formulate three different scenarios of piecewise differential
operator representations for the tumor-immune interaction
model given in (4).

Scenario 1. In this case, we consider a piecewise model that
involves a passage from the deterministic to a random process:

For 0 ≤ t ≤ t1, Xð0Þ = X11, Yð0Þ = Y12, Zð0Þ = Z13,

_X = 1 + c1X 1 − Xð Þ − XY ,
_Y = c2YZ − c3Y − c4YX,

_Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>><
>>>:

ð13Þ

for t1 ≤ t ≤ T , Xðt1Þ = X21, Yðt1Þ = Y22, Zðt1Þ = Z23,

dX = 1 + c1X 1 − Xð Þ − XYð Þdt + σ1 Xð ÞdB1 tð Þ,
dY = c2YZ − c3Y − c4YXð Þdt + σ2 Yð ÞdB2 tð Þ,

dZ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

� �
dt + σ3 Zð ÞdB3 tð Þ:

8>>>><
>>>>:

ð14Þ

The mathematical model (10) has a deterministic char-
acter, and it is extended to the stochastic model described
in (11) by adding a white noise-type perturbation to the sys-
tem. The parameters σ1, σ2, σ3 are positive constants and are
the intensities of the random disturbances. Bt = ðB1ðtÞ, B2ðt
Þ, B3ðtÞÞ is the white noise process.

Scenario 2. In this case, we have considered a piecewise
model involving a passage from the Mittag-Leffler law to a
random process:

For 0 ≤ t ≤ t1, Xð0Þ = X11, Yð0Þ = Y12, Zð0Þ = Z13,

ABC
0 D

α
t X = 1 + c1X 1 − Xð Þ − XY ,

ABC
0 D

α

t Y = c2YZ − c3Y − c4YX,

ABC
0 D

α

t Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>>><
>>>>:

ð15Þ

for t1 ≤ t ≤ t2, Xðt1Þ = X21, Yðt1Þ = Y22, Zðt1Þ = Z23,

dX = 1 + c1X 1 − Xð Þ − XYð Þdt + σ1 X − X4ð ÞdB1 tð Þ,
dY = c2YZ − c3Y − c4YXð Þdt + σ2 Y − Y4ð ÞdB2 tð Þ,

dZ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

� �
dt + σ3 Z − Z4ð ÞdB3 tð Þ:

8>>>><
>>>>:

ð16Þ

Scenario 3. In this case, we consider a piecewise model from
fadingmemory to the power-law and then to a random process:

For 0 ≤ t ≤ t1, Xð0Þ = X11, Yð0Þ = Y12, Zð0Þ = Z13

CF
0 D

α

t X = 1 + c1X 1 − Xð Þ − XY ,
CF
0 D

α
t Y = c2YZ − c3Y − c4YX,

CF
0 D

α

t Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>>><
>>>>:

ð17Þ

for t1 ≤ t ≤ t2, Xðt1Þ = X21, Yðt1Þ = Y22, Zðt1Þ = Z23,

C
0D

α

t X = 1 + c1X 1 − Xð Þ − XY ,
C
0D

α

t Y = c2YZ − c3Y − c4YX,

C
0D

α
t Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ

X + K
,

8>>>><
>>>>:

ð18Þ

Table 1: Parameters of the model and their descriptions.

Parameter Description Dimensional values Source

Λ The rate of conversion of normal tissue cells to malignant (cancerous) cells (fixed input) 1000000/cell/day Assumed

r1 The growth rate of the tumor cellsX. 0.18/day [14]

r2 The growth rate of the resting cells Z 0.1045/day [29]

β The rate of conversion of resting cell Z to hunting cell Y 4.32×10−8/cell/day

[14]

k1 Carrying capacity of tumor cells X 5 × 106/cell
k2 Carrying capacity of resting cells Z 3 × 106 cell
ρ The proliferation rate of resting cell Z 0.49545/day

η The value at which the growth rate of resting immune cells Z gets half of its maximum value. 1000000

d1 Apoptotic or natural death rate of the hunting cells Y . 0.0412/day

[29]

d2 Apoptotic or natural death rate of the resting cellsZ . 0.0412/day

α1 The rate of inactivation of tumor cell T by hunter cells Y .
1:101 × 10−7/cell/

day

α2 The rate of inactivation of hunting cell Y by tumor cell X 2:2 × 10−8 /cell/day

4 Journal of Mathematics



for t2 ≤ t ≤ T , Xðt2Þ = X31, Yðt2Þ = Y32, Zðt2Þ = Z33,

dX = 1 + c1X 1 − Xð Þ − XYð Þdt + σ1 Xð ÞdB1 tð Þ,
dY = c2YZ − c3Y − c4YXð Þdt + σ2 Yð ÞdB2 tð Þ,

dZ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

� �
dt + σ3 Zð ÞdB3 tð Þ:

8>>>><
>>>>:

ð19Þ

3. Existence, Uniqueness, Positivity, and
Boundedness of the Solutions

This section proves the existence and uniqueness of a solu-
tion to the system in Scenario 3.

Theorem 2. Let Ω = fðX, Y , ZÞ ∈ℝ3 : max fjXj, jY j, jZjg ≤
Lg: For each initial condition U0 = ðX11, Y12, Z13Þ ∈Ω, there
exists a unique solution of (17) for all t ≥ 0:

Proof. Let 0 < t1 <∞: We want to find a sufficient condition
for the existence and uniqueness of the solution of (17) in
the domain Ω × ð0, t1�:

Suppose that G is a mapping such that GðWÞ =
ðH1ðWÞ,H2ðWÞ,H3ðWÞÞ, where W = ðX, Y , ZÞT ,W ′ =
ðX / , Y / , Z / ÞT , and

 H1 X, Y , Zð Þ = 1 + c1X 1 − Xð Þ − XY ,

H2 X, Y , Zð Þ = c2YZ − c3Y − c4YX,

H3 X, Y , Zð Þ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

:

ð20Þ

Now for any W,W ′ ∈Ω, we have

G Wð Þ −G W ′
� �


 


 ≤ XY − X ′Y ′

�� �� + c2 YZ − Y ′Z ′
� ����

+ c3 Y ′ − Y
� �

+ c4 Y ′X ′ − YX
� �

j
+ c6 Y ′Z ′ − YZ

�� �� + c7 Z ′ − Z
�� �� + c8 Z − Z ′

�� ���� ��
+ c8XZ

X + K
−
c8X ′Z ′
X ′ + K

�����
����� ≤ X ′Y ′ − XY
�� ��

+ c2 YZ − Y ′Z ′
�� �� + c3 Y ′ − Y

�� �� + c4 Y ′X ′
��

− YXj + c6 Y ′Z ′ − YZ
�� �� + c7 Z ′ − Z

�� ����
+ c8 Z − Z ′
�� ��j + c8X

X + K
Z − Z ′
� �����

+ Kc8Z ′
X ′ + K
� �

X + Kð Þ
X − X ′
� �

j

≤ L + KLc8ð Þ X ′ − X
�� �� + c2L + c3 + c4Lð Þ Yj

− Y ′j + c6L + c7 + 2c8ð Þ Z − Z ′
�� ��

≤ Y W −W ′�� ��, ≤ Y W −W ′�� ��,
ð21Þ

where Y =max fL + KLc8, c2L + c3 + c4L, c6L + c7 + 2c8g:

Thus, the mapping G satisfies the Lipschitz condition
with respect to W. This proves that the system (17) has a
unique solution.

Theorem 3. The solution of (17) is invariant in the set ℝ3
+

= fW ∈ℝ3 : W ≥ 0 andWðtÞ = ðX, Y , ZÞT:g.

Proof. By referring to the system (17), we can observe that
CF
0 Dα

t XðtÞjX=0 ≥ 0, CF0 Dα
t YðtÞjY=0 ≥ 0,CF0 Dα

t ZðtÞjZ=0 ≥ 0, and
then the mentioned system is nonreducing which proves
the invariance of the system in ℝ3

+ and the feasible region
is Ω = fðX, Y , ZÞ ∈ℝ3 : max fjXj, jY j, jZjg ≤ L > 0g.

Thus, in Theorems 2 and 3, we find that the system (17)
has a unique solution for each initial condition in the feasi-
ble set Ω. The existence and uniqueness of the solution of
the system (18) can be shown similarly for the domain Ω
× ½t1, t2�:

We shall now show the existence and uniqueness of the
solution for the stochastic differential equation given in
(19) based on Theorem 3. Let us first write the system (19)
in a Volterra type of integrals for all t in ½t2, T�:

For simplicity, let us write (19) in the form

dX =H1 X, Y , Zð Þdt +G1 t, Xð ÞdB1 tð Þ,
dY =H2 X, Y , Zð Þdt +G2 t, Yð ÞdB2 tð Þ,
dZ =H3 X, Y , Zð Þdt +G3 t, Zð ÞdB3 tð Þ,

8>><
>>:

ð22Þ

where t2 ≤ t ≤ T , and the initial condition is given by Xðt2Þ
= X31, Yðt2Þ = Y32, Zðt2Þ = Z33, Hi, i = 1, 2, 3 are defined in
(20) and G3ðt, ZÞ = σ1ðZÞ,G2ðt, YÞ = σ2ðYÞ,G1ðt, XÞ = σ1ðX
Þ, and E4 = ðX4, Y4, Z4Þ is the interior equilibrium point of
(4).

We shall now show the existence and uniqueness of the
solution for all t such that t ∈ ðt2, TÞ. Indeed, by referring
to (19), we want to show the following items:

(I) Lipschitz condition: for all W,W/ ∈ℝ3
+ and t ∈ ½t2, T�

max Hi W, tð Þ −Hi W ′, t
� ���� ���2, Gi W, tð Þ − Gi W ′, t

� ���� ���2
� �

�k W −W ′�� ��2, i = 1, 2, 3
�

ð23Þ

for some positive constant �k

(II) Linear growth condition: for all ðW, tÞ ∈ℝ3
+ × ½t2, T�

max Hi W, tð Þj j2, Gi W, tð Þj j2È É
≤ k 1 + Wj j2À Á

, i = 1, 2, 3
É
,

ð24Þ
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for some positive constant k,where W = ðX, Y , ZÞT ,W/ =
ðX/, Y /, Z/ÞT :

Proof. From the inequalities

G1 Wð Þ − G1 W ′
� ���� ���2 = X − X/�� ��2 ≤ σ21 X − X ′

�� ��2,

G2 Wð Þ −G2 W ′
� ���� ���2 = Y − Y /�� ��2 ≤ σ22 Y − Y ′

�� ��2,
G3 Wð Þ −G3 W ′

� ���� ���2 = Z − Z/�� ��2 ≤ σ23 Z − Z ′
�� ��2:

ð25Þ

We have

where kΦk2∞ = sup
t∈½t2,T�

jΦj2.
Thus, we have

H1 Xð Þ −H1 X ′
� ���� ���2 ≤ �k1 X − X ′

�� ��2, ð27Þ

where

�k1 = c21 + 2c1 Yk k2∞ + c1 Xk k∞ + c1 X/

 


∞ + XYk k∞

�

+ YX/

 


∞Þ + c21 Xk k2∞ + X/2

 

2

∞ + 2 XX/

 

2
∞

� �
:

ð28Þ

Similarly

�k2 = c21 + 2c2c4 + 2c2c3
À Á

Zk k2∞ + 2c3c4 Xk k∞,
�k3 = c5 + c7 + c8ð Þ 1 + c26 Yk k2∞ + 2c6 Yk k∞

À Á
+ c25 Zk k2∞ + Z/

 

2

∞

� �
+ 2 Zk k∞ Z/

 



∞

+ 2c5 c5 + c7 + c8ð Þ + 2c5c6 Yk k∞
À Á

Zk k∞ + Z/

 


∞

� �
:

ð29Þ

Now, by choosing �k =max fσ2i , �ki, i = 1, 2, 3g, we can see
that the Lipschitz condition ðIÞ is satisfied. Similarly, we
obtain

G1 Wð Þj j2 = σ21 X − X4j j2 ≤ σ21X
2
4 1 + 1

X2
4
Xj j2

� �

≤ σ21X
2
4 1 + Xj j2À Á

,
ð30Þ

with the condition of 1/X2
4 ≤ 1

G2 Wð Þj j2 = σ2
2 Y − Y4j j2 ≤ σ22y

2
4 1 + 1

Y2
4
Yj j2

� �

≤ σ2
2Y

2
4 1 + Yj j2À Á

,
ð31Þ

with the condition of 1/Y2
4 ≤ 1, and

G3 Wð Þj j2 = σ2
3Z

2
4 Z − Z4j j2 ≤ σ23 1 + 1

Z2
4
Zj j2

� �
≤ σ2

3Z
2
4 1 + Zj j2À Á

,

ð32Þ

with the condition of Z2
4 ≤ 1:

Moreover, ≤kð1 + c1XÞ2k∞ + kðc1X + YÞ2k∞jXj2 ≤
kð1 + c1XÞ2k∞ + kðc1X + YÞ2k∞jXj2≤≤ ≤ ≤

H1 X, Y , Zð Þj j2 = 1 + c1X 1 − Xð Þ − XYj j2,
≤1 + 2c1X + c21X

2 + c21X
4 + 2c1X3Y + XYð Þ2

≤ 1 + c1Xð Þ2

 


∞ + c1X + Yð Þ2

 



∞ Xj j2

≤ k1 1 +
c1X + Yð Þ2

 



∞

1 + c1Xð Þ2

 


∞

Xj j2
 !

≤ k1 1 + Xj j2À Á
,

ð33Þ

where k1 = kð1 + c1XÞ2k∞ with the condition
kðc1X + YÞ2k∞/k1 < 1: Also

H2 X, Y , Zð Þj j2 = c2YZ − c3Y − c4YXj j2 ≤ c22 Zk k∞
À ÁÀ

+ 2c3c4 Xk k∞ + c4 X2

 


∞

� �
+ c23Þ Y2�� ��

≤ k2 1 + Y2�� ��À Á
,

ð34Þ

H1 Xð Þ −H1 X ′
� ���� ���2 = c1X 1 − Xð Þ − XYð Þ − c1X ′ 1 − X ′

� �
− X/Y

� ���� ���2 = c1 + Y + c1 X ′ + X
� ���� ���2 X − X ′

�� ��2

≤
c21 + 2c1 Yk k2∞ + c1 Xk k∞ + c1 X ′



 


∞ + XYk k∞ + YX ′



 


∞

� �

+c21 Xk k2∞ + X/2

 

2
∞ + 2 XX ′



 

2
∞

� �
0
BB@

1
CCA X − X/�� ��2, ð26Þ

6 Journal of Mathematics



where k2 = ððc22kZk∞Þ + 2c3c4kXk∞ + ðc4kX2k∞Þ + c23Þ, and

H3 X, Y , Zð Þj j2 = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

����
����
2

≤
c5 + c8 − c7ð Þ2 + c25 Zk k2∞

+ c26 + 2c5c6 + c28 + 2c2
À Á

Zk k∞ + 2c6c8 Yk k∞

0
@

1
A Zj j2

≤ k3 1 + Zj j2À Á
,

ð35Þ

where k3 = ðc5 + c8 − c7Þ2 + c25kZk2∞ + ðc26 + 2c5c6 + c28 + 2c2Þ
kZk∞ + 2c6c8kYk∞:

Now, by choosing k =max fσ21X2
4, σ22Y2

4, σ2
3Z

2
4, k1, k2, k3

g, we can see that the linearity condition ðIIÞ is satisfied.
Thus, the system (19) has a unique solution with the initial
conditions Xðt2Þ = X31, Yðt2Þ = Y32, Zðt2Þ = Z33: We can
then conclude that the piecewise differential equation con-
sidered in Scenario 3 has a unique solution for all t ∈ ½0, T�:

By following the same method, the existence and
uniqueness of solutions for the mathematical models
described in Scenarios 1 and 2 are proved.

4. Numerical Approximations

Based on the work studied in [33], we can show that the
numerical approximation of the system in Scenario 1 is
given as follows:

For all t ∈ ½0, t1�

Wi n + 1ð Þ =WI nð Þ + 23h
12 Hi W nð Þð Þ + 5h

12Hi W n − 2ð Þð Þ

−
4h
3 Hi W n − 1ð Þð Þ½ �,

ð36Þ

where

W = X, Y , Zð Þ, h = Δt,W1 = X,W2 = Y ,W3 = Z, i = 1, 2, 3,
ð37Þ

andH1,H2,H3 are defined in (20).
For all t ∈ ½t1,T�, we have

X n + 1ð Þ = X nð Þ + 23h
12 H1 X nð Þ, Y nð Þ, Z nð Þð Þ

+ 5h
12H1 X n − 2ð Þ, Y n − 2ð Þ, Z n − 2ð Þð Þ

−
4h
3 H1 X n − 1ð Þ, Y n − 1ð Þ, Z n − 1ð Þð Þ½ �

+ 5
12 B1 t n − 1ð Þð − B1 t n − 2ð Þðð Þσ1 X n − 2ð Þð

− X4Þ −
4
3 B1 t nð Þð − B1 t n − 1ð Þðð Þσ1 X n − 1ð Þð

− X4Þ +
23
12 B1 t n + 1ð Þð − B1 t nð Þðð Þσ1 X nð Þ − X4ð Þ,
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Figure 1: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0, c6 = 0:39, c7 = 0
:21, c8 = 2:48,K = 0:2:
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Figure 2: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7
= 0:21, c8 = 2:48, K = 0:2:
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Figure 3: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:62, c6 = 0:39, c7
= 0:21, c8 = 2:48, K = 0:2:
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Figure 4: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:92, c6 = 0:39, c7
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Figure 5: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7
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Y n + 1ð Þ = Y nð Þ + 23h
12 H2 X nð Þ, Y nð Þ, Z nð Þð Þ

+ 5h
12H2 X n − 2ð Þ, Y n − 2ð Þ, Z n − 2ð Þð Þ

−
4h
3 H2 X n − 1ð Þ, Y n − 1ð Þ, Z n − 1ð Þð Þ½ �

+ 5
12 B2 t n − 1ð Þð − B2 t n − 2ð Þðð Þσ2 Y n − 2ð Þð

− Y4Þ −
4
3 B2 t nð Þð − B2 t n − 1ð Þðð Þσ2 Y n − 1ð Þð

− Y4Þ +
23
12 B2 t n + 1ð Þð − B2 t nð Þðð Þσ2 Y nð Þ − Y4ð Þ,

Z n + 1ð Þ = Z nð Þ + 23h
12 H3 X nð Þ, Y nð Þ, Z nð Þð Þ

+ 5h
12H3 X n − 2ð Þ, Y n − 2ð Þ, Z n − 2ð Þð Þ

−
4h
3 H3 X n − 1ð Þ, Y n − 1ð Þ, Z n − 1ð Þð Þ½ �

+ 5
12 B3 t n − 1ð Þð − B3 t n − 2ð Þðð Þσ3 Z n − 2ð Þ − Z4ð Þ

−
4
3 B3 t nð Þð − B3 t n − 1ð Þðð Þσ3 Z n − 1ð Þ − Z4ð Þ

+ 23
12 B3 t n + 1ð Þð − B3 t nð Þðð Þσ3 Z nð Þ − Z4ð Þ:

ð38Þ
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Figure 6: Time series trajectories of piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7 =
0:21, c8 = 1:6,K = 0:2:
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Figure 7: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7
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By referring to Scenario 2 and applying the numerical
method developed in [34], the approximate solution of the
ABC fractional derivative part for all t ∈ ½0, t1� is given by

Wi tn+1ð Þ =Wi 0ð Þ + 1 − μ

F μð ÞHi W tnð Þð Þ + μ

F μð ÞΓ μð Þ〠
n

k=1

Á

Hi W tkð Þð Þ
Γ μ + 2ð Þ

� �

× hμ n + 1 − kð Þμ n − k + 2 + μð Þ − n − kð Þμ n − k + 2 + 2μð Þ½ �

−
Hi W tk−1ð Þð Þ
Γ μ + 2ð Þ

� �

× hμ n + 1 − kð Þμ+1 − n − kð Þμ n − j + 1 + μð ÞÂ Ã

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

ð39Þ

where

W = X, Y , Zð Þ, h = Δt,W1 = X,W2 = Y ,W3 = Z, i = 1, 2, 3,
ð40Þ

andH1,H2,H3 are defined in (20).
By referring to Scenario 3 and based on the work studied

in [29], we can show that the numerical approximation of

the system for the Caputo-Fabrizio fractional differential
equation for t ∈ ½0, t1� is given as follows:

Wi n + 1ð Þ =Wi nð Þ + 1 − μ

Γ μð Þ Hi W nð Þð −W n − 1ð Þð Þ

+ μh
Γ αð Þ

5
12Hi W n − 2ð Þð Þ − 4

3Hi W n − 1ð Þð Þ
�

+ 23
12Hi W nð Þð Þ

�
,

ð41Þ

where

W = X, Y , Zð Þ, h = Δt,W1 = X,W2 = Y ,W3 = Z, i = 1, 2, 3,
ð42Þ

andH1,H2,H3 are defined in (20).
By referring to Scenario 3 and based on the work studied

in [29], we can show that the numerical approximation of
the system for the Caputo fractional differential equation
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for t ∈ ½t1, t2� is given as follows:

Wi n + 1ð Þ =Wi t1ð Þ + hμ

Γ μ + 1ð Þ〠
n

j=2
Hi t j − 2ð Þ,W j − 2ð Þð Þ n − j + 1ð Þμ½

− n − jð Þμ� + hμ

Γ μ + 2ð Þ〠
n

j=2
Hi t j − 1ð Þ,W j − 1ð Þð Þ

−Hi t j − 2ð Þ,W j − 2ð Þð Þ × n − j + 1ð Þμ n − j + 3 + 2μð Þ½

− n − jð Þμ n − j + 3 + 3μð Þ� + hμ

2Γ μ + 3ð Þ〠
n

j=2
Hi t jð Þ,W jð Þð Þ

− 2Hi t j − 1ð Þ,W j − 1ð Þð Þ +Hi t j − 2ð Þ,W j − 2ð Þð Þ

×
n 2 n − jð Þ2 + 3μ + 10ð Þ n − jð Þ + 2μ2 + 9μ+12
Â ÃÀ

− n 2 n − jð Þ2 + 5μ + 10ð Þ n − jð Þ + 6μ2 + 18μ + 12
Â ÃÀ

2
4

3
5,

ð43Þ

where
W = ðX, Y , ZÞ, h = Δt,W1 = X,W2 = Y ,W3 = Z,

i = 1, 2, 3,andH1,H2,H3 are defined in (20).

5. Numerical Simulations and Discussion

In this section, some of the numerical simulations of three
different scenarios are depicted. Based on the dimensional
parameter values given in Table 1 and the relationship
between parameters given in (5), the following nondimen-
sional parameter values of the system (4) are used for the

numerical simulations: c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55
, c5 = 0:52, c6 = 0:39, c7 = 0:21, c8 = 2:48, K = 0:2:

By using the above parameter values, the interior equi-
librium point given by expression (9) is calculated to be E4
= ðX4, Y4, Z4Þ = ð0:308, 3:87, 0:580Þ with the corresponding
eigenvalues of the system given by f−3:78,−0:22 + 0:88i,−
0:22 − 0:88ig: Thus, the equilibrium point E4 is stable.

Let us consider the simulation of Scenario 1 for different
values of the parameters c5 = r2k1/Λ = 0:52, 0:62, 0:92 and
c8 = ρk1/Λ = 0,1:6,2:

It can be observed from Figures 1–4 that when the
values of c5 increase from 0, the hunting cells get activated
and seem to increase and continue to oscillate with con-
vergence for the deterministic part and cross-overs to ran-
domness. The hunting cells can increase as indicated in
the figures when the value of c5 is different from zero
and gets larger and larger. In Figures 1–4, the tumor cells
remain mitigated.

It can be inferred from Figures 5–7 that by increasing the
parameter values of c8 from zero, the number of tumor cells
reduces significantly as shown in both deterministic and sto-
chastic parts of the figures. It means that the proliferation of
the resting cells enhanced by the tumor cells characterized
by the term c8XZ/X + K (see Equation (4)) has a positive
effect on the mitigation of the tumor cells. It can be inferred
from this result that proliferation of the hunting cells has a
positive effect on mitigating the tumor cells which seems
good news for treating the disease.
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Figure 15: Phase portrait of the piecewise systems (15) and (16) projected onto the XZ plane for the parameter values of c1 = 0:9, c2 =
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Some of the phase portraits for Scenario 2 which is the
case for a cross-over from ABC fractional derivatives to the
random process of systems in (15) and (16) are depicted in
Figures 8–12. In these figures, the effect of different parame-
ter values of c5 (Figure 8) and the effect of different values of
the fractional orders μ (Figures 9–11) are shown.

It can be observed from Figure 8 that by increasing the
parameter values of c5, the memory effect of the ABC frac-
tional derivative increases. This effect led to a slow increment
of the resting cells ZðtÞ, when the number of hunting cells Y
ðtÞ is less than one unit, and later on, as the number of hunting
cells increased, the number of resting cells decreases until both
of them begin decreasing at the same time as shown in
Figure 8. This process repeats, and the trajectories spiral
inwards and cross-over to randomness.

Some of the simulation results of Scenario 3 are
described by piecewise systems (17)–(19); a cross-over from
fading memory (Caputo-Fabrizio fractional derivative) to
the power-law (Caputo fractional derivative) and then to
the random process is depicted in Figures 13–15. These fig-
ures show the impact of different fractional orders (Figure 13
and zooming in shown in Figure 14 and different values of
the parameter c5 (Figure 15 and zooming in shown in
Figure 16) on the dynamics of the piecewise system
described in Scenario 3.

6. Conclusions

The piecewise mathematical model representation of cancer-
immune interaction used in this study has exposed a property

that has never been considered or observed in earlier studies
using mathematical models based on the classical or different
fractional derivatives. The cancer-immune interaction, for
instance, showed a cross-over behavior from deterministic to
stochastic as shown in the Scenario 1 of this study. We argue
that the approach of piecewise mathematical model represen-
tation of different real-world dynamic systems is an eye-
opener for researchers as the approach has the potential of
uncovering hidden properties in the dynamics of a system.
In this study, it would have been better to compare the model
results with the actual data; it is what the researchers are sup-
posed to consider in future work. It can be contested that the
piecewise mathematical model approach is better closer to
reality as compared to using only one classical or fractional
derivative representation of a dynamic system. This is because
of this fact that different dynamical systems have the property
that cross-over behaviors cannot be cached without a piece-
wise mathematical model representation of the system. It is
observed from the result of this study that (Scenario 1) the
proliferation of the resting cells enhanced by the tumor cells
characterized by the term c8XZ/X + K is a good target for
treatment of the diseases as is shown in Figures 1–5.
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Figure 16: Zooming in on the inner part of Figure 15.
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