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High-impact weather and climate systems refer to those
events that have significant social, ecological, and economic
impacts (such as tropical cyclones, winter storms, floods,
droughts, etc.). Accurate forecasts of these systems more
rely on our understanding of the systems and better
representation of them in numerical models. Over the
last decade, significant progress has been made in data
assimilation, model development, and model diagnostics to
enhance the predictability of these high-impact weather and
climate systems. This special issue was motivated by rapid
development in these areas. Total 13 papers in this volume
address various issues in related topics.

Accurate initial conditions are one of key factors that
influence the predictability of high-impact weather and cli-
mate systems. Modern data assimilation techniques combine
observations and model information to form dynamically
and physically consistent initial conditions for numerical
models. A number of contributions addressed the new
development in data assimilation. So S. Lakshmivarahan
and J. M. Lewis presented a forward sensitivity approach to
dynamic data assimilation. Duality between the method and
the standard 4D-Var assimilation using adjoint equations
has been proved. Q. Xu et al. developed a 3.5-dimensional
variational method for Doppler radar data assimilation,
which could be potentially beneficial to the predictability of
severe weather systems.

Tropical cyclones are among the most destructive weath-
er-related natural phenomena. They are responsible for some
of the costliest and deadliest natural disasters in the world.
A number of contributes addressed the tropical cyclone

predictability problem from various angles. Y. Wang et al.
presented a mesoscale data assimilation method for trop-
ical cyclone initialization, which particularly improves the
representation of tropical cyclone vortex and environment
conditions in model initial conditions. H. R. Winterbottom
and Q. Xiao’s paper emphasized on an intercomparison of
observations from four Global Position System (GPS) Radio
Occultation (RO) and in situ observations within tropical
cyclones, making a suggestion for better utilize these data in
data assimilation. The paper by L. Zhang and Z. Pu assessed
the impact of wind profile measurements from the future
satellite based Doppler wind lidar mission with observing
system simulation experiments. A. Wada and N. Usui’s study
examined the impact of ocean pre-existing conditions on the
predictability of a typhoon case using a couple-atmosphere-
ocean model at high resolution. They found that ocean
preexisting conditions remarkably affect typhoon rainbands.

While many efforts have been made in improving
mesoscale regional model’s ability in tropical cyclone pre-
dictability, an effort has also been made in the use of
global model for tropical cyclone forecasts. M. E. Wehner
et al. presented a set of high-resolution global atmospheric
simulations with a general circulation model, focusing on
the model’s ability to represent tropical storms and their
statistics. They found that the model produces storms
of hurricane strength with realistic dynamic features and
reasonable statistics. Some issues arose from global model
simulations were also addressed.

Cold waves commonly occur in higher latitudes during
winter season. They could cause serious economical loss



and cold-related death. The contribution by D. H. Prasad
et al. presented numerical simulation results to a severe cold
wave event occurred during January 2006 over Europe. They
found that the model is able to simulate the occurrence of the
cold wave in 1 to 3 days range though the intensity is weaker
than observations.

The ultimate predictability of high-impact weather
systems relies on the improvement in computer models
themselves, since model errors are the key factors that cause
inaccurate forecasts. A number of contributions addressed
the improvement or evaluation of the physical parame-
terization in a numerical model, specifically, a popular
mesoscale community Weather Research and Forecasting
(WRF) model. H. H. Shin et al. described the implemen-
tation of the orographic gravity wave drag process induced
by subgrid-scale orography in the global version of the
WRF model. The sensitivity of this new implementation to
shortwave radiation was evaluated. S. Y. Hong et al. evaluated
the WRF double-moment 6-class microphysics scheme for
precipitating convection, making a step forward to improve
the quantitative precipitation forecasting. In paper by J.
Jin et al., four land surface schemes in the WRF model
were evaluated for their sensitivities to accurately simulate
temperature over the western United States. As a follow-up
study of the WRF land surface schemes, J. Jin et al. also
presented results to examine the impact of land change on
the local climate over the Tibetan Plateau.

Although there have been many efforts made in impro-
ving initial conditions and computer models, due to ina-
dequate observations, our limited understanding of the
physical processes of the atmosphere, and the chaotic na-
ture of atmospheric flow, uncertainties always exist in
modern numerical weather and climate prediction. Recent
developments in ensemble forecasting and ensemble-based
data assimilation have proved that there are promising
ways to beat the forecast uncertainties. A contribution by
H. Zhang and Z. Pu gave a comprehensive overview of
fundamental problems and recent progress associated with
ensemble forecasting and ensemble-based data assimilation.
The usefulness of these methods in improving high-impact
weather forecasting was also discussed.
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The least squares fit of observations with known error covariance to a strong-constraint dynamical model has been developed
through use of the time evolution of sensitivity functions—the derivatives of model output with respect to the elements of control
(initial conditions, boundary conditions, and physical/empirical parameters). Model error is assumed to stem from incorrect
specification of the control elements. The optimal corrections to control are found through solution to an inverse problem. Duality
between this method and the standard 4D-Var assimilation using adjoint equations has been proved. The paper ends with an
illustrative example based on a simplified version of turbulent heat transfer at the sea/air interface.

1. Introduction

Sensitivity function analysis has proved valuable as a mean to
both build models and to interpret their output in chemical
kinetics (Rabitz et al. [1], Seefeld and Stockwell [2]) and
air quality modeling (Russell et al. [3]). Yet, the ubiquitous
systematic errors that haunt dynamical prediction cannot
be fully understood with sensitivity functions alone. We
now include an optimization component that leads to an
improved fit of model to observations. The methodology is
termed forward sensitivity method (FSM)—a method based
on least squares fit of model to data, but where algorith-
mic structure and correction procedure are linked to the
sensitivity functions. In essence, corrections to control (the
initial conditions, the boundary conditions, and the physical
and empirical parameters) are found through solution to an
inverse problem.

In this paper we derive the governing equations for
corrections to control and show their equivalence to equa-
tions governing the so-called 4D-Var assimilation method
(four-dimensional variational method)—least squares fit
of model to observations under constraint (LeDimet and
Talagrand [4]). Beyond this equivalence, we demonstrate
the value of the FSM as a diagnostic tool that can be
used to understand the relationship between sensitivity and
correction to control.

We begin our investigation by laying down the dynamical
framework for the FSM: general form of the governing
dynamical model, the type and representation of model error
that can identified through the FSM, and the evolution of the
sensitivity functions that are central to execution of the FSM.
The dual relationship between 4D-Var/adjoint equations is
proved. The step-by-step process of assimilating data by FSM
is outlined, and we demonstrate its usefulness by application
to a simplified air-sea interaction model.

2. Foundation Dynamics for the FSM

We have included a list of mathematical symbols used in this
paper. These symbols and associated nomenclature are found
in Table 1.

2.1. Prediction Equations. Let x(t) € R" denote the state
and let « € RPdenote the parameters of a deterministic
dynamical system, where x(t) = (x1(¢), x2(¢),. .. ,xa ()T and
a=(ap,a,..., ocp)T are column vectors, n and p are positive
integers, ¢ > 0 denotes the time, and superscript T denotes
the transpose of the vector or matrix. Let f : R* X RF X R —
R" be a mapping, where f(x,a,t) = (fl,fz,...,fn)T with
fi = filx,a,t) for 1 < i < n. The vector spaces R" and R?
are called the model space and parameter space, respectively.
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TABLE 1: Symbolism and nomenclature.
Symbol Nomenclature
n Dimension of state vector
m Dimension of observation vector
p Dimension of parameter vector
qg=n+p Dimension of control vector
N Number of observation vectors
t Time
x(t) e R True model state vector

x(t) = (x1,%2,...%,)" € R
f:R"XR?P

x(0) € R"

o € RP
¢ = (x(0),a) € R" X RP
z(t) € R™

h(x(t)) : R" — R™

h(x(t)) € R™
v(t) € R™
R(t) € R
er

b(t)

Dx(f) = [Bﬁ/ax]] € R
Da(f) = [af,/a(xj] & R™<p

D, (x) = [0x;/0a;] € R™P
Dy(0)(x) = [9x;/9x;(0)] € R™”
D,(h) € R™"

Hy(f) = Dy(h)Dyo)(x) € R™"

H,(t) = Dy(h)Dy(x) € R™P

(a,b)

J(),Ji(c)
6J,0]1,0x(t), S
V],V

M(t,s)

L(t,s)

Model state vector
Vector field of the model

Initial condition for model state
vector

Parameter vector
Control vector
Observation vector

Forward operator relating model
state and observations

Model counterpart of the
observation

Observation error vector

Covariance of observation error
vector v(t)

Forecast error

Systematic component of
forecast error

Model Jacobian w. R. T. x
Model Jacobian w. R. T. A

Sensitivity matrix w. R. T.
Parameters

Sensitivity matrix w. R. T. Initial
condition

Jacobian of the forward operator
w.R.T. X

Sensitivity matrix accounting for
h(x(1))

Sensitivity matrix accounting for
h(x(1))

Inner product

Objective or cost functions

First variations

Gradients of cost functions
Model state transition matrix
(Appendix A)

Matrix that determines
particular solution (Appendix A)

Consider a dynamical system described by a system of

ordinary nonlinear differential equations of the form

dx
E = f(x) o, t))

(la)

Advances in Meteorology

or in component form

% = filx,a,1), (1b)
where dx/dt denotes the time derivative of the state x(¢), with
x(0) € R" the given initial condition. The control vector
for the model is given by ¢ = (x(0),a) € R" X RP, the
combination of initial condition and parameters referred to
as the control space. It is tacitly assumed that the map of f in
(1a) and (1b) is such that the solution x(t) = x(t,x(0), ) =
x(t,¢) exists and is unique. It is further assumed that x(¢)
has a smooth dependence on the control vector ¢ such that
the first k (= 1) partial derivatives of x(¢) with respect to
the components of ¢ also exist. The solution x(¢) of (1a) and
(1b) is known as the deterministic forecast of the state of the
system at time t > 0. If the map f(-) in (1a) and (1b) depends
explicitly on ¢, then this system is called a time varying or
nonautonomous system; if f(-) does not depend on ¢, then
the system is known as a time invariant or autonomous
system.

Let z(t) € R™ be the observation vector obtained from
the field measurements at time ¢ > 0. Let 4 : R* — R™ be the
mapping from the model space R” to the observation space
R™,

If x(¢) denotes the (unknown) true state, then we assume
that z(¢) is given by

z(t) = h(x(1)) + (1), (2)

where v(t) € R™ is the additive (unobservable and
unavoidable) noise. The mapping h(-) is known as the
forward operator or the observation operator. It is further
assumed that v(t) is a white Gaussian noise with mean zero
possessing a known covariance matrix R(t) € R™™. That is,
v(t) ~ N(0,R(2)).

2.2. A Classification of Forecast Errors. The forecast error
er(t) € R™ is defined as follows:

er(t) = z(t) — h(x(1)) = b(t) +v(1), (3)
the sum of a deterministic part
b(t) = h(x(1)) — h(x(1)), (4)

and the random part v(t) induced by the observation noise.
Our immediate goal is to analyze and isolate sources and
types of forecast errors.

First, if the model map f(-) and the forward operator
h(-) are without error, that is, exact, and if the control vector
c is also error free, then the deterministic forecast x(¢) must
be correct in the sense that x(t) = Xx(t), the true state.
Then from (3), the forecast error is purely random or white
Gaussian noise. That is,

er(t) = v(t). (5)

Second, if f(-) and h(-) are known perfectly but ¢ has
an error, then the forecast x(¢) will have a deterministic error
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induced by the incorrect control vector. In such a case, we
can, in principle, decompose the forecast error as a sum

er(t) = blc, 1) +v(1), (6)

where the deterministic part, b(c,t) = h(x(t)) — h(x(t)), is
purely a function of the control vector error.

Third, if f(-), h(-), and c are in error, then the forecast
error can be represented as

ep(t) = b(c, f,h,t) +v(1), (7)

where the deterministic part b(c, f, h, t) may have a complex
(additive and/or multiplicative) dependence on errors in c,
F(), and h(-).

The following assumption is key to our analysis that
follows. The model of choice is faithful to the phenomenon
under study. The system is predicted with fidelity—the
forecasted state is creditable and useful in understanding
the dynamical processes that underpin the phenomenon.
Certainly, the forecast will generally exhibit some error, but
the primary physical processes are included; that is, the
vector field fincludes the pertinent physical processes. In this
situation the forecast error stems from erroneously specified
elements of control. Thus, in our study the forecast error
assumes the form shown in (6). Dee’s work [5] contains a
very good discussion of the estimation of the bias b in (7)
arising from errors in the model and/or observations.

2.3. Dynamics of First-Order Sensitivity Function Evolution.
Since our approach is centered on sensitivity functions, we
develop the dynamics of evolution of the forward sensitivities
in this section.

Differentiating both sides of (1b) with respect to «;,
interchanging the order of differentiation on the left-hand
side, we obtain

ddx/dt) _ d (95 [(0f) (o), o
owj  dt\ow;) S| \ox)\oa;)  oa;
(8)

forl <i<mandl < j < p with dx;(0)/da; = 0 as the initial
condition.

These np equations can be succinctly written in matrix
form as

4 [Dy(0) =
with Dy(x(0)) = 0 as initial condition. This system of
linear time-varying ordinary nonhomogeneous differential
equations describe the evolution of the elements of Dy(x) =
[0xi/daj] € R™P, where the Jacobian matrices D,(f) € R™"
and D4(f) € R™P are given by

Di(f) = |:afij|’ (10)

ax]'

Du(f) = [af’}. (an

aOCj

Dy, (f)Dot(x) + Doc(f) 9)

Similarly, by differentiating both sides of (1b) with respect to
x;(0), we obtain

dx/dt) d( ox \ & (9f\[ o
ox,(0) dt(axj(o)) - k%(axk ax) (12
for 1 < i,j < n, with 9x;(0)/0x;(0) = &;j, where &; is

the standard Kronecker delta. These n? equations can be
succinctly represented as

%[Dx(m(x)] = Dy(f)Dx(o)(x) (13)

with Dy0)(x(0)) = I, the identity matrix. This system
of linear, time-varying homogeneous equations governs
the evolution of the elements of the matrix Dy)(x) =
[0xi/0x;(0)] € R™P. Notice that (9) and (13) are indepen-
dent of the observations and have the same system matrix
D,(f) on the right-hand sides; thus, the homogeneous
solutions to (9) and (13) have the same structure.

The evolution of the sensitivities (solution to (9) and
(13)) is dependent on the solution to the governing dynami-
cal equations ((1a) and (1b)). Generally, these equations are
solved numerically using the standard fourth-order Runge-
Kutta method. Rabitz et al. work [1] contains more details
relating to solutions of (9) and (13). In special cases such
as in air quality modeling, the sensitivity equations (9) and
(13) exhibit extreme stiffness. Special methods are needed
to handle the inherent stiffness of these equations. Seefeld
and Stockwell work [2] includes a discussion of these issues.
Gear’s work [6] is a good reference for a general discussion of
stiff equations.

3. Duality between the FSM and 4D-Var
Based on Adjoint Method

Let z(t1),2z(t2),...,z(ty) be a sequence of N observation
vectors at times ) = 0 < #; < f,- - - < ty. The goal is to
use these observations to improve the estimate of the control
vector c. This estimation problem is recast as a constrained
minimization of an objective function J : R" X R? — R given
by
1o T
J(e) =35 > [z(t) = h(x(t)] R () [2(8:) — h(x(:))],
i=1
(14)

where the model state x(t) evolves according to (la),
(1b), and R(t;) € R™™ js the known covariance of the
observational errors v(t;) at time t;,1 < i < N.

Fundamental to minimizing (14) is the computation of
the gradient of J(c), denoted by V.J(c). In the following we
describe two ways of characterizing

V)]
V) =| ---1, (15)
Vo]

where V)] € R" and V,J € RP.



3.1. The Adjoint Method. This method is based on the basic
principle that if §] is the first variation of J(¢) induced by the
perturbation §c in ¢, then

0] = (V.J,dc), (16)

where (a,b) denotes the standard inner product of two

vectors a and b of the same dimension. Once the first

variation §] is determined, the gradient can be found. In the

following we exploit two basic properties of inner product:
(1) linearity

{(a+b,x) = (a,x) + (b,x), (17)
(ii) adjoint property
(a,Gb) = (G"a,b), (18)

where GT is the transpose or the adjoint of the matrix G.

From first principles (Chapter 24 in Lewis et al. [7]), it
can be verified that the first variation 8] of ] in (14) is given
by

N
8] = = > (R (tp)ep(te), Dx(h)dx(te)), (19)
k=1

where the forecast error given by

er(ty) = z(tx) — h(x(t)),
oh; (20)

axj

Dy (h) = [ } e ™"

is the Jacobian of forward operator h(x) with respect to x.
By invoking the adjoint property in (17), (19) becomes

N
8 = — > (n(t), 0x(tr)), (1)
k=1
where
n(te) = DI (MR (t)er (). (22)

The first variation dx(#) in x(¢) at t = # resulting from the
perturbation Jc in ¢ is given by (A.4) in Appendix A. Using
(A.4) and the linearity of the inner product it follows that

N
8] = = > {n(t), M(t, 0)8x(0))

k=1

(23)
N

— 3 (1), M(t, O)L(t, 0)da),

k=1

where we will refer to the first term on the right-hand side

of (23) as “Term I” and the second as “Term II.” Using the
adjoint and linearity property in (17), we get

N
Term [ = — <Z MT(tk,O)ﬂ(tk):5x(0)> (24)

k=1
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from which we obtain

N
Vi) = = 2. MT(t, 0)n(te). (25)
k=1

Similarly, rewriting Term II as

N
Term II = — <Z LT(tk,O)MT(tk,O)ﬂ(tk),6a>, (26)
k=1

we get

N
Vol == > LT (t, )M (1, 0)5(te). (27)
k=1

Hence, we obtain the components of V.J which are used
in conjunction with the minimization algorithm to find the
optimal ¢* that minimizes J(c) in (14).

We conclude this discussion with an efficient recursive
method for evaluating the expressions in (25) and (27).
Define

An = n(ty), (28)
andfork=N-1,N-2,...,2,1,0,
Me = M (teor, t)di + 7(te). (29)

It can be verified that V)] = M7 (t1,0)A; in (25).
Details on the recursive computation of (27) are given in
Appendix C.

3.2. Sensitivity-Based Approach. Let us first consider the
special case when N = 1. Then (14) becomes

Jile) = %[z — h(x)] "R (1)[z - h(x)], (30)

where we recall that c € R"XRP and x = x(t, ¢) is the solution
of the model equations (1a) and (1b) at time ¢.

Setting g = (n+ p) and A = R™!(¢), the expression J;(c)
in (30) becomes identical to Q(c) in (B.16) (Appendix B).
Hence, by using (B.20) it follows that

VJi(c) = =DE(x)n(t), (31)

where #(t) is given by (22) and

€ Rpn, (32)

Now comparing (32) with (25)—(27), we obtain the duality
relation:

DX(O)(x) - M(t> 0)’
(33)
Dy(x) «— M(t,0)L(t,0).
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The sensitivity matrices on the left-hand side of (33)
are obtained by solving the forward sensitivity equations,
whereas the matrix products M(¢,0) and L(¢,0) are obtained
by integrating along the path as given by (A.3) and (A.5)
(Appendix A).

The primary advantage of the sensitivity-based approach
is that it provides a natural interpretation of the expression
for the gradient in (31). Recall from (22) that #(¢) € R" is
the weighted version of the forecast error R™!(¢)er(t) € R™
mapped onto the model space by the linear operator DI (h).
Also the ith column of D] (x) is the sensitivity of the ith com-
ponent x;(¢) of the state vector x(¢) € R" with respect to the
control vector ¢ € R? given by (9x;/dcy, 0xi/dcy, . . ., 0xi/dcy).
Thus, it follows from (31) that V.J; is a linear combination
of the columns of D! (x) which are the sensitivity vectors,
where the coefficients of the linear terms are the components
of n(t). Thus, columns of D! (x) with large norms that
are associated with large forecast errors will be dominant
in determination of the components of VJi(c). In other
words, we gain some insight into the interplay between
corrections to control and forecast errors—something that
can be seen through a careful examination of the sensitivity
vector at various times from initial state to forecast horizon.
(The illustrative example in Section 5 further explores this
diagnostic function.) Expression (31) also enables us to
isolate the effect of different components x; of x(¢) on the
performance index J; (¢).

For the general case of observations at multiple times,
(31) assumes the following form:

N
Vo) == > DI(x(t:)n(t). (34)

i=1

This gradient is the sum of linear combinations of the
columns of D!(x(#;)) at various time instances. With so
many directions (the directions associated with the columns
of D] (x(;)) contributing to the components of V ./, the con-
nection between sensitivity, and forecast error is obscured.

4. Data Assimilation Using Sensitivity

We seek to find the solution to the following problem using
the FSM. Given f(-) and h(-), the control vector ¢, the
observation z(t), and the error covariance of observations
R(t), find a correction dc¢ to the control vector such that the
new model forecast starting from (¢ + dc¢) will render the
forecast error ep(t) purely random; that is, the systematic
forecast error is removed and accordingly E(er(t)) = 0.

We start by quantifying the change Ax in the solution
x(t) = x(t,c) resulting from a change dc in c. Invoking the
standard Taylor series expansion, we obtain

Ax = x(t,c+ 0c) — x(t,¢c) = Z &x, (35)
j

where 8%x is the kth variation of x(¢), the fraction of the total
change that can be accounted by the kth partial derivatives of
x(t) with respect to ¢ and the perturbation dc. Since practical
considerations dictate that the total number of correction

terms on the right-hand side of (35) be finite, we often settle
for an approximation of only k terms (k generally < 2). This
is a tradeoff between improved accuracy resulting from a
large value of k and the complexity of the resulting inverse
problem. Although we have developed the methodology for
second-order analysis (k = 2, where Ax is approximated by
the sum 0x + 8%2x) (Lakshmivarahan and Lewis [8]), our
development will follow the first-order analysis (k = 1, where
Ax is given by the first variation dx). Second-order analysis
is justified when 8%x is a significant fraction of dx—this
occurs when f(x) and/or h(x) exhibit strong nonlinearity. It
is further shown in Section 5 that iterative application of the
first-order method often leads to improved results.

4.1. First-Order Analysis. From first principles and (35) we
obtain

Ax = §x = Dy(0)(x)0x(0) + Dy (x)da, (36)

where Dy (x) € R™" is the Jacobian of x(¢) with respect to
x(0), and D4(x) € R"™? is the Jacobian of x(t) with respect
to a.The matrices Dy(o)(x) and Dg(x), found as solutions
of (13) and (9), respectively, are known as the first-order
sensitivity of the solution x(t) with respect to x(0) and «,
respectively, and the elements of these matrices are called
sensitivity functions.

4.1.1. Observations at One Time Only. We first consider the
case where observation z(t) € R™ is available at one time
t. The first variation 6x in x(¢) induces a variation Ah in the
forward operator h(x(t)). Again, by approximating Ak by the
first variation, we get

Ah = §h = D,(h)éx, (37)

where D, (h) € R™" is the Jacobian of h(-) with respect to x
and is given by

Dx(h)=[gil’}, l<ism l<j<n  (38)
J

substituting (36) into (37), we obtain
dh = Hidx(0) + Hyda, (39)

where H;(t) = Dy(h)Dyo(x) € R™" and H,(t) =
Dy(h)D4(x) € R™P. Setting H(t) = [H\(t),H,(t)] €
R™Xmtp) and ¢ = (¢1,¢) € R™P, where ¢; = 8x(0) and
¢ = 0a, (39) becomes

dh = H(t)g. (40)

Given the operating point ¢, our goal is to find the
perturbation §c such that the observation is equal to the
model counterpart, that is,

z(t) = h(x(t,c+ 8¢)) = h(x(t)) + bh, (41)
or

er(t) = z(t) — h(x(t)) = 0h. (42)



From (43), it follows that the required perturbation ¢ € R"*?
is obtained by solving the linear inverse problem

H(t) = er(t), (43)

where H(t) € R™(n+P) and ep(t) € R™.

4.1.2. Observations at Multiple Times. The above analysis
can be readily extended to the case where observations are
available at N times. We denote these sets of observation
vectors by z(t1),z(t2),...,z(tn), where 0 < ) < f, < -+ <
tn. The forecast error ex(#;) is given by

er(t;) = z(t;) — h(x(t;)), 1<i<N. (44)
Define
H(t;) = Dxs;)(h)Dx(o) (x(t;)) € R™",
H(t;) = Dy (h)Dy(x(t;)) € R™P. 4
Then at time ¢; we have
H(t)e = ep(t), 1<i<N, (46)
where
H(t) = [Hi(t), Ha(t;)] € R™m+p), (47)

Now define a matrix H € RN™X(n+P) and a vector ep € RN™
as

H(t;) er(t)
H(t) er(t2)

H = . 5 er = . . (48)
H(ty) er(tn)

Then, the N relations in (46) can be succinctly denoted by
Hc¢ = ep. (49)

A number of special cases arise depending on (a) the
value of Nm relative to (n + p), namely, over (under)
determined cases when Nm > (<)(n + p) and (b) the rank
of the matrix H(t), namely, H(t) is of full rank or rank
deficient. In all these cases, the linear inverse problem (43)
is recast as a minimization problem using the standard least
squares framework (Lawson and Hanson [9]). The resulting
minimization problem can then be solved using one of
many standard methods, for example, the conjugate gradient
method (Lewis et al. [7]; Nash and Sofer [10]).

As an illustration, consider the case when Nm > (n +
p) and that the rank of H is (n + p), that is, full rank. The
solution ¢ is then obtained by minimizing the weighted least
squares criterion

N
In(g) = = > (er(t;) — H(t:)o) "R (t:) (e (t;) — H(t:)s)
i=1

| =

= %(ep — H¢)"R™'(er — Hy),
(50)
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where
R = Dlag[R(tl):R(tZ)))R(tN)] (51)

is an Nm x Nm diagonal matrix with R(t;) as its ith diagonal
block.

Although it is computationally efficient to minimize
(50) by using a method like conjugate gradient, there is an
advantage to analyze the properties of the optimal solution
via the classical approach, that is, by setting the gradient of
Jn(¢) to zero. It can be verified that the minimizing Jy is
found by solving the symmetric linear system

N N
[Z HT(n)R‘(ti)H(ti)]g = > (HT(t)R (t)er(t)) (52)
i=1

i=1

or succinctly as
-1
as=(H'R'H) H'R'ep, (53)

where H,ep, and R are defined in (48) and (51), and
subscript “LS” refers to the least squares solution.

From the discussion relating to the classification of
forecast errors, recall that the forecast error inherits its
randomness from the (unobservable) observation noise. The
vector er on the right hand side of (53) is random and hence
the solution ¢ of (53) is also random.

Since we are interested in forecast errors in response to
incorrect control, we have

er(t;) = b(e,t;)) +v(t;) forl<i<N. (54)
Now define
b(c, 1) v(t)
b(c,t2) v(t2)
b= ) ) V= e (55)
b(c, ty) v(tn)

Hence, the vector er in (48) can be expressed as
ec=b+v (56)

with E(ep) = b since E(v) = 0. Substituting (56) into (53)
and taking the expectation give

E(gs) = [(HTR‘1H>71HTR‘1]I7. (57)

Thus, the expected value of the correction to control is
indeed a linear function of the forecast error b itself. It can
be verified (Lewis et al. [7]) that the covariance of the least
squares estimate [(53)] is given by

cov(sis) = (H'R'H) " = [Vn(@] ', (58)

where V?2Jy(¢) is the Hessian of Jy(¢) in (50).
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5. A Practical Example: Air/Sea Interaction

We choose a simple but nontrivial differential equation
to demonstrate the applicability of the forward-sensitivity
method to identification of error in a dynamical model.
We break this discussion into three parts as follows: (1) the
model, (2) discussion of the diagnostic value of FSM, and (3)
numerical experiments with data assimilation using FSM.

5.1. The Model. Consider the case where cold continental air
moves out over an ocean of constant surface temperature.
We follow a column of air in a Lagrangian frame; that is,
the column of air moves with the prevailing low-level wind
speed. Turbulent transfer of heat from the ocean to air warms
the column. The governing equation is taken to be

0 Crv

7= g 00 (59)

where

0: temperature of the air column (°C),
0,: temperature of the sea surface (°C),

Cr: turbulent heat exchange coefficient (nondimen-
sional),

V: speed of air column (ms™!),
H: height of the column (mixed layer)(m),

7: time (h).Equation (59) is nondimensionalized by
the following scaling:

O=m-x (m=10°C),
Os = - x5, (60)
t=T-t (T=10h).

The governing equation then takes the form

dx(t)  CrVT
dt ~  H

(o5 — x(t)). (61)

Assuming H ~ 150m, V ~ 10ms™!, Cy ~ 1073, then

_CVT 1
k="~ (62)

Thus, we take our governing equation to be

B _ flx,0) = kx — x(0), (63)

where k = 0.25. The solution to (63) is

x(t,x(0), a) = [x(0) — xs]e ™ + x, (64)

with ¢ = (x(0),&) € R x R?, and & = (x,,k)” € R?, that is,
n = 1and p = 2. The solution depends linearly on x(0) and
xs but nonlinearly on k.

There are three elements of control: initial condition,
x(0), boundary condition, x;, and parameter, k.

5.2. Diagnostic Aspects of FSM. The Jacobians of f with
respect to x and « are given by

Dx(f) = _k € R,
(65)
Do(f) = lk, xs — x(t)] € RV,

and the Jacobians of the solution x(t) with respect to & and
x(0) are given by

ox(t) ox(t)
ox; ~ ok

0x(1)
0x(0)

Du(x(1) = | |er,

(66)

Do) = | 28 | e R

From (9) and (13) the evolution of the forward sensitivities
is given by

SO0 k(B o)
%(8);;:)) _ _k<69§§:)> + (- x(1), (68)
wGo) - *Go) @
where
0] o [52], [29],-

(70)

Either by solving (67)—(70) or by computing directly from
(64), it can be verified that the required sensitivities evolve
according to

Bx(t) .k ax(t) _1_ ,k
a0 "¢ am LT
(71)
e I

The plots of the solution and the three sensitivities are given
in Figure 1.
Let z(¢) be the direct observation of the state x(¢), namely,

z(t) = x(t) + v(¢1). (72)

In this case, h(t) is the forecast variable and therefore
D,(h) = 1. Then

er(t) = z(t) — x() (73)

is the forecast error.

Following the developments in Section 4 for the case of
a single observation described by (39)—(46), we obtain the
analog of (46) as

Hg = ep(1), (74)
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FiGURE 1: Evolution of the solution of x(t) and its sensitivities to ¢ = (x(0), x;, k) = (1.0,11.0,0.25).

where H = H(t) = [0x(t)/0x(0), 0x(t)/0xs, 0x(t)/0k] is the
forward sensitivity vector and ¢ = [dx(0), §x;, okT. Clearly,
(74) corresponds to an under-determined linear least squares
problem, whose optimal solution is given by [7, chapter 5]

HT er(t)
IHI I1HII”

cis = HT (HHT) " ex(t) = (75)

where H/||H|| is the unit forward sensitivity vector at time ¢
and eg(t)/||H|| is a scalar that is the forecast error normalized
by the norm of the forward sensitivity vector H. In other
words, the direction of the optimal corrections to the control
that annihilate the forecast error is a constant multiple of the
unit forward sensitivity vector.

If we assume the following control vector: ¢ = (1.0,
11.0,0.25), that is, [x(0) = 1°C, x; = 11°C, and k = 0.25
(nondimensional)], we get

ox(t)
o025 0x(0)
HT - 1= e—O‘ZSt ax(t) (76)
10te—025t 0
¢ ox(t)
ok

The time variations of elements of H are given in Table 2
(also refer to Figure 1). From this table, it is clear that the
direction of corrections to control varies as t increases. At
t = 0, the corrections lie in the direction (1,0,0)", where
x(t) is only sensitive to the initial condition x(0). For large
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TABLE 2: Sensitivities of model state to initial conditions and parameters for the sea/air turbulent transfer model.

Time (hours) t=0 t=1 t=5 t=10 t=15 t =20

0x(t)/0x(0) 1.0 0.7788 0.2865 0.0821 0.0235 0.0007

0x(t)/0x, 0.0 0.2212 0.7135 0.9179 0.9765 0.9993

0x(t)/dk 0.0 7.788 14.325 8.2100 3.525 0.1400

t, the corrections lie in the direction (0, 1, O)T, where x(t) is
only sensitive to the boundary condition x; (the sea-surface
temperature). For intermediate times, all the components
of control have nonzero sensitivities. dx(t)/dk reaches its
maximum at { = 4.0.

5.3. Numerical Experiments. We assume that the incorrect
control vector is ¢’ = (x'(0),x.,k") = (2.0,10.0,0.30); in
dimensional form, x"(0) = 2°C, x; = 10°C, and k" = 0.30
(non-dimensional). Thus, for an ideal correction to control,

éc = (—1.0,+1.0,—0.05). (77)

To mimic reality, the correction process uses sensitivity
functions that stem from the erroneous solution, that is,
where the incorrect control is used.

We have explored both the goodness and failure of recov-
ery of control under two different scenarios, where either 3
or 6 observations are used to recover the control vector. Since
there are 3 unknowns, the case for 6 observations is an over-
determined system.

We execute numerical experiments where the observa-
tions are spread over different segments of the temporal
range—generally divided into an “early stage” and a “sat-
urated stage.” By saturated stage we refer to that segment
where the solution becomes close to the asymptotic state,
that is, x — x;. The dividing time between these segments
is arbitrary; but generally, based on experimental results to
follow, we divide the segments at t = 24 where X(24) = 10.975,
0.025 less than X = 11.0 (see Figure 1).

The following general statement can be made. If more
than one of the observations falls in the saturated zone, the
matrix becomes illconditioned. As can be seen from (39) and
the plots of sensitivity functions in Figure 1, dx/dx; — 1
and 0x/0x(0) and dx/0k — 0 ast — co. Accordingly,
if two of the observations are made in the saturated zone,
this induces linear dependency between the associated rows
of the H matrix and in turn leads to ill-conditioning. This
illconditioning is exhibited by a large value of the condition
number, the ratio of the largest to the smallest eigenvalue of
the matrix HT H. The inversion of this matrix is central to the
optimal adjustments of control (see (55)).

Illconditioning can also occur as a function of the
observation spacing in certain temporal segments. This is
linked to lack of variability or lack of change of sensitivity
from one observation time to another. And, as can be seen
in Figure 1, the absolute value of the slope in sensitivity
function curves is generally large at the early stages of
evolution and small at later stages. As an example, we find
satisfactory recovery, dc = (—0.882, — 0.067, +0.922), when
the observations are located at 5.0, 5.1, and 5.2 (a uniform

spacing of At = 0.1). Yet, near the saturated state, at t = 20.0,
20.1, and 20.2, again a spacing of 0.1, the recovery is poor
with the result 6¢ = (+5.317, —0.142, +0.998). The associated
condition numbers for these two experiments are 1.0 X 10°
and 1.0x 10%, respectively. Similar results follow from the case
where 6 observations are taken. In all of these cases, the key
factor is the condition number of H' H. For our dynamical
constraint, a condition number less than ~10* portends a
good result.

For the case where we have 6 observations at t = 2, 7,
12, 17, 22, and 27, with a random error of 0.01 (standard
deviation), we have executed an ensemble experiment with
100 members to recover control. In this case, the condition
number is 2.4 X 103. Results are plotted three dimensionally
and in two-dimensional planes in the space of control, that
is, plots of correction in the x,/x(0), xs/k, and x(0)/k planes.
Results are shown in Figure 2.

Finally, we explore the iterative process of finding
corrections to control. Here, the results from the 1st iteration
are used to find the new control vector. This vector is then
used to make another forecast and find a new set of sensitivity
functions. The error of the forecast is obtained, and along
with the new sensitivity functions, a second correction to
control is found, and so forth. For the experiment with
6 observations that has been discussed in the previous
paragraph, we apply this iterative methodology. As can be
seen in Figure 3, the correct value of control is found in 3
iterations.

6. Concluding Remarks

The basic contributions of this paper may be stated as
follows.

(1) While the 4D-Var has been the primary method-
ology for operational data assimilation in meteorol-
ogy/oceanography (Lewis and Lakshmivarahan [11]), and
while forward sensitivity has been a primary tool for reaction
kinetics and chemistry (Rabitz et al. [1]) and air quality
modeling (Russell et al. [3], to our knowledge these two
methodologies have not been linked. We have now shown
that the method of computing the gradient of J(c) by these
two approaches exhibits a duality hitherto unknown.

(2) By treating the forward sensitivity problem as an
inverse problem in data assimilation, we are able to under-
stand the fine structure of the forecast error. This is not
possible with the standard 4D-Var formulation using adjoint
equations.

(3) While it is true that computation of the evolution
of the forward sensitivity involves computational demands
beyond those required for solving the adjoint equations in
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FIGURE 2: 3D cluster and its projections where corrections are computed using observations at the following times: ¢t = 2, 7, 12, 17, 22, and
27. An ensemble of 100 members is used where the standard deviation of the observation noise is 0.01.

the standard 4D-Var methodology, there is a richness or
augmentation to the information that comes with this added
computational demand. In essence, it allows us to make
judicious decisions on placement of observations through
understanding of the time dependence of correction to
control.

Appendices
A. Dynamics of Evolution of Perturbations

Let 8¢ = (8x7(0),0a”)” € R" x RP be the perturbation in
the control vector ¢ and dx(t) the resulting perturbation in
the state x(¢) induced by the dynamics (1a) and (1b). Our
goal is to derive the dynamics of evolution of dx(¢).

From first principles, the evolutionary dynamics of §x(t)
are given by the variational equation (Hirsch et al. [12]) or
the tangent linear model (Lewis et al. [7])

i&x(t) = A(t)0x(t) + B(t)da,

5 (A1)

where the Jacobians A(#) and B(t) are given by

dofi
A(t) = Di(f) = [a}{} € R,
] (A2)
dfi
B(t) = Du(f) = [B({} e R"™P.
j
Define the integrating factor
M(t,s) = exp [JtA(u)du] € R™", (A.3)

premultiplying both sides of (A.1) by M~!(¢,0) and integrat-
ing, we get the solution of the linear nonhomogeneous and

nonautonomous equation (A.1) as
Ox(t) = M(t,0)0x(0) + M(t,0)L(t,0)da, (A4)

where

L(t,s) = JtM’l(u,O)B(u)du cR™P.  (AS)



Advances in Meteorology

<1054

021

(a) Iterative correction

11 ¥

Xs

10 : : :
0.22 0.24 0.26 0.28 0.3

k

(c) Projection onto k-x; plane

11

0.3

0.28

0.24

0.22

1 1.2 1.4 1.6 1.8 2
x(0)

(b) Projection onto x(0)-k plane

11

10.8

10.6

Xs

10.4

10.2

10

1 1.2 1.4 1.6 1.8 2
x(0)

(d) Projection on to x(0)-x; plane

FIGURE 3: An illustration of the progression of first-order iterative corrections using six observations at t = 2, 7, 12, 17, 22, and 27.

From definitions (A.3)—(A.5), it can be verified that, for u <
s<t,

M(t,u) = M(t,s)M(s,u),
(A.6)
L(t,u) = L(t,s) + L(s, u).

We now consider two special cases.

Case A. Let da = 0, that is, the initial perturbations are
confined only to the initial condition, x(0). Then setting
B(t) = 0, from (A.5) we see that L(£,0) = 0. From (A.4)
we get

Ox(t) = M(t,0)6x(0). (A7)
Case B. Let §x(0) = 0, that is, the initial perturbations are
confined only to the parameter, a. Then setting A(t) = 0,
from (A.3), we see that M(t,s) = I, the identity matrix. Now
from (A.4) it follows that

0x(t) = L(t,0)da. (A.8)

B. Computation of Sensitivity Functions

Letc = (cl,cz,...,cq)T € R4, where x = x(t,c) = (x1(t,¢),

X2(t,0),..Xa(t,0))" € R and h(x) = (h(x),ha(x),...,
hm(x))T € R™. Leta = (al,az,...,am)T € R™ and consider

$1(c) = a’h(x) = > ahi(x).

i=1

(B.9)

By applying the standard chain rule it can be verified that the
gradient V¢, (c) with respect to ¢ is given by

V.pi(c) = DI (x)DI(h)a, (B.10)
where
Dy(h) = Ohi | & pmxn (B.11)
[ 0xj |
is the Jacobian of & and
D.(x) = % € R™1 (B.12)
[ 9¢; |
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DOj=Ntol
DOi=Ntoj
n(t) = MT(t,t;_1)n(t:)
END

END

u(1) = L(t;,0)

DOi=2toN

p(i) = u(i— 1)+ L(t, ti)

END

Grad =0

DOi=1toN

Grad = Grad + p(i)y(t;)

END

ALGORITHM 1

is the (Jacobian) sensitivity of the vector x with respect to ¢
at time £.
Now consider a quadratic form
¢2(c) = h' (x)Ah(x), (B.13)
where A € R"™*™ is a symmetric and positive definite matrix.
Then by the product rule
Veha(c) = V[ hTb] + V[aTh], (B.14)

where b = Ah = a. By applying (B.10) to each of the two
terms on the right side of (B.14), it follows that

V.$2(c) = 2DI (x)DI (h)Ah. (B.15)
Finally, if
Qo) = [z = h(x)]"Alz - h(x)], (B.16)
then expand
Q(c) = 2" Az — 22" Ah(x) + h™ (x)Ah(x) (B.17)

since z does not depend on ¢, by using (B.10) and (B.15), we
get

Q(c) = —2D! (x)D} (h)A[z — h(x)]. (B.18)
Define
& =DI(h)A[z - h(x)] € R", (B.19)
then
V.Q(c) = —2D! (x)¢. (B.20)

That is, the gradient of Q with respect to ¢ is the linear
combination of the sensitivity vectors, that is, the columns
of DT (x), where the coefficients in this linear combination
are the elements of the vector &.
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C. Computation of V,J in (27)

Given 75(t;)), MT(t;,ti-1), LT (ti,tioy) for 1 < i < N, the
expression on the right-hand side of (27) can be efficiently
computed as shown in Algorithm 1.

Then V,J = — Grad. It is to be noticed that there is only
matrix-vector multiplication involved in these operations
and not matrix-matrix multiplication.
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A 3.5-dimensional variational method is developed for Doppler radar data assimilation. In this method, incremental analyses are
performed in three steps to update the model state upon the background state provided by the model prediction. First, radar
radial-velocity observations from three consecutive volume scans are analyzed on the model grid. The analyzed radial-velocity
fields are then used in step 2 to produce incremental analyses for the vector velocity fields at two time levels between the three
volume scans. The analyzed vector velocity fields are used in step 3 to produce incremental analyses for the thermodynamic fields
at the central time level accompanied by the adjustments in water vapor and hydrometeor mixing ratios based on radar reflectivity
observations. The finite element B-spline representations and recursive filter are used to reduce the dimension of the analysis space
and enhance the computational efficiency. The method is applied to a squall line case observed by the phased-array radar with
rapid volume scans at the National Weather Radar Testbed and is shown to be effective in assimilating the phased-array radar

observations and improve the prediction of the subsequent evolution of the squall line.

1. Introduction

Because the radar network provides only single-Doppler
scanning over most areas in the U.S., research efforts
have been undertaken to develop various methods for
meteorological parameter retrievals from single-Doppler
observations (Sun et al. [1]; Kapitza [2]; Qiu and Xu [3];
Sun and Crook [4]; Xu et al. [5, 6]; Laroche and Zawadzki
[7]; Shapiro et al [8]; Zhang and Gal-Chen [9]; Liou [10];
Gao et al. [11]; Weygandt et al. [12]). These previous
efforts, however, were focused mainly on retrievals with zero
background information. By utilizing the background infor-
mation provided by model predictions, some of the previous
retrieval methods can be upgraded for radar data assim-
ilation (Sun and Crook [13]; Xuetal. [14]; Guetal. [15]

Gao et al. [16]; Hu et al. [17]). This paper presents a
3.5-dimensinal variational method for radar data assimila-
tion developed by upgrading and combining the previous
retrieval methods (Qiu and Xu [18]; Xu et al. [19]; Gal-Chen
[20]; Hane and Scott [21]). This method uses simplified
dynamical and thermodynamical equations of a numerical
weather prediction (NWP) model (in this study we use the
Coupled Ocean/Atmosphere Mesoscale Prediction System or
COAMPS (COAMPS is a registered trademark of the Naval
Research Laboratory.), Hodur [22]) as constraints while the
background information is provided by the model forecasts.
The concept and basic design of the method are described
in the next section in connection with the general variational
formulation derived from the estimation theory. The detailed
formulations are presented for the three steps of the method



in Sections 3—5. The method is applied to phased-array radar
observations for a squall line case in Section 6. Conclusions
follow in Section 7.

2. Estimate Theory and Variational Methods

Equations in an NWP model can be expressed symbolically
in the following vector form:

xc — f(xk-1) = q (1

where xy is the state vector representing the discrete fields of
the prognostic variables, f the forward model operator, qi the
model error, and the subscript k denotes the kth time level of
the model integration. A prior estimate of the state vector x
at the initial time (k = 0) is given by the model prediction
from the previous data assimilation cycle. The state vector xo
at the initial time (k = 0) can be expressed by

Xo = (Xo) +b, (2)

where (()) denotes the probabilistic mean (expectation) of
(), and b the random part of x¢. A prior estimate of (xg)
is given by the model prediction from the previous data
assimilation cycle. This background estimate is assumed to
be unbiased. The observations can be expressed by

Ym — h(Xm) = I'm, (3)

where y,, is the vector of observations, h the observation
operator, and r,, the observation error, and the subscript m
denotes the mth time level of the observations. In general,
we assume that the data assimilation period covers M
observation time levels (from m = 1 to M) and K model time
levels (from k = 1 to K), and the M observation time levels
are a subset of the K model time levels.

Assume that qx is a white Gaussian sequence and x
generated by (1) is Markov, which would be the case with
linear dynamics. Assume also that b and r,, are Gaussian
random, unbiased (with zero mean), not cross-correlated
and not correlated with qx. Then, according to Sherman
and Bayes theorems (see Jazwinski [23, Chapter 5]), given
observations y,, (m = 1,2,... M), the conditional maximum
likelihood estimate of xj is also the conditional mean of
xx (k = 0,1,...K), and is given by the minimizer of the
following cost function:

J = (%0 — (x0)) B! (%0 — (x0))
+ 2 byn - h(x)] Ry [y — h(x)]
+ %QEQEI% @
+ %AE[Xk — f(xi-1) — )
where B = (bbT), R,,= (r,,r]) and Q; = (qxq}) are the error

covariance matrices for the background, observations, and
model equations, respectively, >, denotes the summation
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over m (from 1 to M), > denotes the summation over k
(from 1 to K), ( )T denotes the transpose of ( ), and A is the
vector Lagrangian multiplier for the vector constraint given
by (1).

The cost function in (4) presents a general formulation
for four-dimensional variational (4dVar) data assimilation.
The related methods of solution (Jazwinski [23]; Bennett
[24]), however, are computationally too expensive for radar
data assimilation. By setting qx = 0 in (4), the above 4dVar
reduces to the perfect-model 4dVar (P4dVar), so the cost
function minimum can be searched effectively by the adjoint
method especially if B~' and R;,! are simply prescribed
(Lewis and Derber [25]; Le Dimet and Talagrand [26]). Note
that a volume scan from a single Doppler radar can contain
up to 10° observations. To assimilate high-resolution radar
observations over a mesoscale area, the model state vector
x; often needs to contain at least as many as 10° gridded
variables. In this case, the P4dVar is still too expensive and
unpractical for real-time radar data assimilation.

A further simplification can be made by setting not only
qr =0butalso M =1, K=0(2r=0)and A = 0 in
(4). In this case, the observations are assimilated at a single
time level without using any model equation constraint, so
the 4dVar reduces to a three-dimensional variational (3dVar)
formulation (Parrish and Derber [27]; Gao et al. [16]). Such
a 3dVar is computationally efficient for real-time operational
radar data assimilation, but it assimilates radar observed
reflectivity and radial velocity (along the radar beam) at
only a single time level. The tangential-velocity component
(perpendicular to the radar beam) is not observed by
the radar but often critical for model initialization and
prediction. The same is true for the thermodynamic variables
such as pressure and temperature which are not observed
by the radar. These unobserved variables can be partially
retrieved from four-dimensional radar observations (at two
or more consecutive time levels) by using a P4dVar (Sun and
Crook [4]) or a simple-model 4dVar (Xu et al. [14]). The
required computations, however, are not practical for real-
time applications unless the model size is sufficiently small
(such as the one used in Xu et al. [14] with a 20 X 20 x 14 grid
for a 8 x 8 x 2.8 km? domain). To solve the above problems,
the simple-model 4dVar (Xu et al. [14]) needs to be further
simplified to achieve the required computational efficiency
but not overly reduced to a 3dVar, so that four-dimensional
radar observations can still be used to extract information
for the unobserved variables. Such simplifications are made
in three steps based on the previous retrieval methods (Qiu
and Xu [18]; Gal-Chen [20]; Hane and Scott [21]), which
leads to the method presented in this paper.

As shown by the flowchart in Figure 1, the method
assimilates four-dimensional radar observations (from three
consecutive time levels of radar volume scans) in three steps.
In step 1, raw level II radial velocity data (from a single
or multiple radars) are quality-controlled and analyzed on
the model grids by using a 3dVar. The cost function of this
3dVar is a simplification of (4) by setting M = 1 and K =
0 (with Xy = 0 and A = 0) to retain only the background
and observation terms (see (6)—(10)). The above analysis
is performed for each of three consecutive volume scans at
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FiGure 1: Flowchart for the three steps of the method. Step 1
controls the quality of radial velocity observations v¢ and produces
radial velocity analyses v* (on model grid) by minimizing J; in (6)
at ty — 7, tp and fy + 7, respectively, for three consecutive radar
volume scans. Step 2 produces the vector velocity increments v' by
minimizing J, in (11) at t, — 7/2 and ) + 7/2, respectively. Step
3 produces the perturbation pressure increment 7' by minimizing
J» in (16) first, and then produces the perturbation potential
temperature increment §' by minimizing Jp in (18) at £, and finally
adjusts the water vapor mixing ratio g, and the rain (or snow)
mixing ratio ¢, (or snow mixing ratio gs;) below (or above) the
freezing level.

their respective central time levels: ty — 7, t, and f + 7 (see
Figure 1), where 7 is the duration of one volume scan (about
1.5 minutes for the phased-array radar data used in this
paper). The analyzed radial velocity fields are then used as
gridded observations in step 2. The cost function used in
step 2 is a simplification of (4) by setting M = K =1 and
A = 0. This cost function retains the mass continuity equation
and radial momentum equation (i.e., the radial component
of the vector momentum equation) in qx in addition to the
background and observation terms, but the two retained
equations are simplified into incremental forms (see (13)
and (15)). By fitting the radial momentum equation to the
analyzed radial velocity observations (from step 1) at the
time levels ty — 7 and t; (or ty and ty + 7) in four-dimensional
space, the vector velocity increment can be estimated at ¢, —
7/2 (or ty + 7/2). Once the vector velocity fields are updated
attp—1/2 and ty + 7/2 in step 2, they are used as input data in
step 3 to produce incremental analyses for the perturbation
pressure and potential temperature at ¢y. The cost function in
step 3 is a simplification of (4) by setting M = 0 (with >, =
0), K =1and A =0, but only the two horizontal momentum
equations are retained and simplified into incremental forms
for the perturbation pressure analysis (see (16)) and only
the vertical momentum equation is retained and simplified
into an incremental form for the perturbation potential
temperature analysis (see (17)). At the end of step 3, the

water vapor and hydrometeor mixing ratios are also adjusted
based on the radar observed reflectivity. In the above step
2 and step 3, the input data are fitted at two time levels in
four-dimensional space, but the output incremental analyses
are three-dimensional. In this sense, the method is called
a three-and-half-dimensional variational (3.5dVar) method.
The detailed formulations and computation procedures are
presented for each step in the following three sections.

3. Data Quality Control and Radial
Velocity Analysis

3.1. Data Quality Control. The quality control procedure
checks for and corrects two types of errors in raw level II
radial velocity data. First, it corrects the possible velocity alias
error (if any) caused by the finite range of radar velocity
measurements limited by the Nyquest velocity vn. Since
the model predicted velocity v =(uf, vf, wf) is used as the
reference field, the dealiasing technique used in this paper is
a simplified version of the three-step dealiasing of Gong et al.
[28]. The dealiasing procedure is described as follows:

(i) Interpolate vf from model grid to each observation
point with the radar beam height computed by using
the equivalent Earth model (see Doviak and Zrni¢
(29, Section 2.2.3.1]). Project the interpolated v onto
the radial direction (along the radar beam) to obtain
the background radial velocity v{ = r, - v, where r,
is the unit vector tangential to the radar beam at the
observation point and is computed by considering
the effects of the standard atmospheric refraction and
Earth curvature (see Doviak and Zrni¢ [29, (2.28)

and (9.9)]). Calculate the innovation vd4 = v —
vf at each observation point, where v© denotes the
observation.

(ii) Take the integer n nearest to v4/(2vx) (where vy is the
Nyquist velocity) and adjust the observational radial
velocity to v¢ — 2nvy so that the adjusted innovation
(i.e., the adjusted observation minus the background
value) is between +vy.

(iii) If the absolute value of the adjusted innovation is less
than 0.5vx;, then the adjusted observation is accepted
as a “good” one and used to replace the original
v?. Otherwise, perform the continuity check (buddy
check) which is similar to the third step described in
Gong et al. [28, Section 2d] but the threshold value
is set to 0.25vy for the acceptable absolute difference
between the adjusted observation and the averaged
value of “good” neighborhood observations.

For the second type of correction, the data quality control
removes the error caused by the precipitation terminal
velocity. The terminal velocity, wr, is estimated empirically
(Kessler [30]) by

wrp = —3.088 x 10099977, (5)

where Z is the observed reflectivity in dBZ. The projection
of the terminal velocity on the radial direction is wr sin«



where « is the local tilt angle of the radar beam. Thus, with
the above two types of correction, the originally observed
v? is replaced by v¢ — 2nvn — wrsina at each observation
point where n # 0 or wr # 0. For simplicity, the corrected
radial velocity observation will still be denoted by v? in the
remaining part of this paper.

3.2. Radial Velocity Analysis. The radial velocity analysis is
performed by minimizing the following cost function:

Ji = Jok + Jobs (6)

where Ju is the background term and Jo, the observation
term. This cost function is a 3dVar formulation derived from
(4) by setting M = 1 and K = 0, as explained in Section 2.
The control variable for J; is the analysis increment defined
by vi = (u,v,w) = v® — v* where v* and v denote
the analysis and background velocities, respectively. Since
the analyzed radial velocity fields obtained in step 1 will
be used as observed “tracer” fields to retrieve the vector
wind field in step 2 (see Figure 1), the analysis in step 1
should “interpolate” as accurate as possible the observed
radial velocity fields onto the model grid. Because of this,
the analysis is performed with zero background (v* =
0) but the background error covariance is nonzero in the
background term Jik, and the radio between the background
and observation error variance is set to o3/d%, = 10,
where 62 and ¢, denote the radial velocity background and
observatlon error variances, respectively.

To facilitate the formulation and computation of the
background term, v* or, equivalently, v! (since v® = 0 in step
1) is treated as an intermediate control variable with its two
horizontal components (u!, v') expressed in terms of stream
function and velocity potential by

i ‘// X y! X
oy Has V=l ol (7)

The grid field of (u!,v') can be computed from the grid
field of (v, x') by using the standard central finite difference
scheme (in the horizontal). Denote by (v, x',w') the state
vectors of the grid fields of (y/!,x!,w'). These three state
vectors can be related to three new intermediate vectors (v,

X> W) by
(wi’xi’wi) _ (B}/Zw, Bi/zx,Bé/zw), (8)
where B;, By, and Bj are the univariate error covariance

matrices for the background fields yf, yf, and w', respectively.
The background term is then given by

T = v |*+ |x]” + 1wl )

Here, it is assumed that the background errors are not cross-
correlated between yf, xf, and wf. With this assumption,
v, x', and w' are decoupled in the background term as
shown by (9), so the computation is simplified.

The background error covariances for (y®, y*, w®) are
modeled by horizontally isotropic Gaussian functions. The
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decorrelation length and depth are the parameters that
need to be predefined empirically. Since the analyzed radial
velocity fields obtained in this step will be used as observed
“tracer” fields to retrieve the vector wind field in step 2,
a relatively small horizontal decorrelation length should
be used in step 1 to prevent the analyzed “tracer” field
from becoming overly smoothed. On the other hand, the
decorrelation length should not be too small to filter spurious
2Ax waves. Based on these considerations, we set the
horizontal decorrelation length to L, = L, = 3./2Ax (which
is 1/2 of that used in step 2 as shown Section 4) and the
vertical decorrelation depth to Dy, = D, = Az/\/3 for (y®,x")
in step 1. This gives L, = L,/\/3 = \/6Ax and D,, = Az for
w according to (A.8) and (A.9), where Ax (=6km in this
study) is the horizontal grid spacing and Az is the vertical
grid spacing (from 0.02 to 0.25 km in the boundary layer, and
about 1km in the middle troposphere). The error variance
for (y°, x) and w" is then related to o, by o7, = 07 = 0.507,L}
and o2 = 4a§rD‘{,/L)2(, respectively, (see (A.19) and (A.20)).
The covariance matrices in (8) are too large to compute
explicitly, but their represented linear transformations in
(8) can be simulated efficiently by either recursive filters
(Purser et al. [31]) or differential operators (Xu [32]). Each
horizontal field of (y, x, w) is further expressed by an
expansion of quadratic B-spline basis functions on coarse
finite element meshes (Xu et al. [19]), so the final control
variables are the B-spline coefficients of (v, y, w).

The observation term has the following general form (for
step 1 and step 2)

i pd)?
Job = M (10)

where {{ % denotes the summation over all observatlon
points, v¢ = 9 — v is the innovation, v\ = r, - v! is the
1ncremental rad1a1 Veloc1ty at each observatlonal point, and
I, is the unit vector tangential to the radar beam at the
observation point (computed by considering the effects of
the standard atmospheric refraction and Earth curvature as
in Doviak and Zrni¢ [29, (2.28) and (9.9)]). As explained
earlier, since v> = 0, we have v* = r, - v> = 0 and thus
vd =v2andvi = v2 = r,-v*instep 1. In (10), the observation
errors are assumed to be not correlated between different
observation points, so Ry, (with m = M = 1) reduces to Io3,
in (4). This assumption should be a valid approximation
because radial velocity observation errors are correlated only
between neighboring observation points (Xu et al. [33]). By
setting 02, /0 B = 10 as explained earlier, there is no need to
estimate 0, and o, separately for the analysis in step 1.
Asin (9), v and vy in (10) are also converted to (v, x, w)
by using (7) and (8). Each horizontal field of (y, x, w) is then
further expressed by an expansion of quadratic B-spline basis
functions on coarse finite element meshes (Xu et al. [19]),
so the final control variables are the B-spline coefficients of
(v, x> w). The B-spline representation enhances the filtering
and reduces the dimension of the analysis space. By using
the standard conjugate gradient algorithm, the cost function
in (6) is minimized efficiently in the reduced space spanned
by the final control variables—the B-spline coefficients. As
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vl is linearly related to the B-spline coefficients, v' is readily
estimated once the cost function is minimized. Since only
one time level of radial velocity observations is used, the
estimated v' is not accurate, but its radial component vi =
I, - v (=1 in step 1) should be accurate and can be used as
gridded observations for the vector velocity analysis in step 2
in the next section.

4. Vector Velocity Analysis

The vector velocity analysis is performed by minimizing the
following cost function:

]2 :]bk+]0b +]rm +]ms- (11)

This cost function is derived from (4) by setting M = K = 1
and A = 0 to retain only the mass continuity equation and
the radial momentum equation in q, so the equation term in
(4) reduces to the sum of the mass continuity equation term
Jms and radial momentum equation term Jiy, in (11).

The background term in (11) has the same form as in
(9) except that the background velocity is no longer set to
zero (as in step 1) and is given by v® = vf, where v is
the model forecast. The error covariance functions for the
model background winds were estimated from a time series
of the radar innovations for the same case considered in the
paper. As shown in Xu et al. [34, Figure 3], the main part of
the error correlation function for the horizontal background
winds can be modeled approximately by a Gaussian function
over the range of 40 km, but the tail part oscillates around
zero and reaches a secondary peak (=0.1) at the separation
distance of 125 km. The decorrelation length estimated from
this error correlation function was L = 43km, but this
estimated value was affected by the second peak in the tail
part. For the main Gaussian part, the estimated decorrelation
length should be reduced at least to 36 km (= 6Ax). Thus,
the decorrelation lengths for (yf, xf) and wf can be estimated
by L, = L, = 6y2Ax and L, = L,/\/3 (see (A.15)-
(A.17)). The vertical decorrelation depth is set empirically
to Dy, = Az for wi, so Dy, = D, = Az//3for (wf,)(f) (see
(A.8) and (A.10)). The analysis time level for Jux in (11) is
at to — 1/2 (or ty + 1/2)—the middle time level between
to — 7 and ty (or ty and ty + 1), so the incremental field v
(= v* — vf) and background velocity field v are also all at
to — /2 (or ty + 1/2).

The observation term J,, for J, in (11) has the same form
as that in (10) for J;, but the background velocity is given by
vP = vf (instead of v’ = 0 as in step 1) and the observations
are binned from the two time levels at ty — 7 and #; (or t; and
to + 7) to the middle-time level at ty — 7/2 (or o+ 7/2). Since
the background and observation errors are uncorrelated
(Xu and Wei [35]), the sum of their error variances is
given by the innovation variance o2 + 0% = 0j, where 0]
denotes the radial velocity innovation variance, o2, and 02,
denote the radial velocity background and observation error
variances, respectively. Since zero background is used in step
1, the spatial variance of the innovation (v minus v/ in the
observation space) is used to estimate 7 in each assimilation
cycle. The background error variance is estimated by o2 =

0} — o2, with g, given by a pre-estimated value. For the
phased-array radar data used in this paper, gop = 2ms™!
is pre-estimated according to the statistical analysis of the
phased-array radar innovation data (Xu et al. [34]).

The third term in (11) is the mass continuity equation
term given by

[[Efs]]

, (12)
Tihs

]ms =

where [[ ]] denotes summation over all grid points, Eps is
the mass continuity equation constraint for v!, and o2 is
the equation error variance or, specifically, the variance of
the residual error of Ey,s. The equation errors are assumed to
be not correlated between different grid points and different
equations. In COAMPS, the mass continuity equation is
embedded in the pressure tendency equation (see Hodur
[22, (5) and (20)]). From the COAMPS pressure tendency
equation, the extracted mass continuity equation has the
following incremental form:

Ens = (0x + Gy0s) (P®vui)
(13)
+(3y + Gy20 ) (pOV) + G20, (p@ W),

where G, = ad,z,, Gy = adyz,,G; = 0,0,a = (s — H)/(H —
z5),0 = H(z — z,)/(H — z), H and z, are the heights of the
model top and bottom terrain boundaries, respectively, @,
the basic state virtual potential temperature, and p the basic
state density. Here, the equation errors are assumed to be
not spatially correlated, so Qi (with k = K = 1) reduces
to Io2 and the equation term in (4) reduces to Jis. The first
two terms on the right-hand side of (13) are the horizontal
divergence and the associated RMS error can be estimated
by odiv/Laiv = +20,/Ly (see (A.16) and (A.18)). The last
term in (13) is smaller than the first two terms, and its RMS
error should be relatively small. Based on this consideration,
Oms = 20y/L, is estimated.
The last term in (11) is given by

2
Irm = [[Egm]]) (14)
arm
where E,, is the radial momentum equation in an incremen-
tal form, and o2, is the variance of the residual error of E,.
The radial momentum equation is obtained by projecting the
model vector momentum equation (Hodur [22, (2)—(4)])
onto the radial direction along the radar beam, and then
converted into the following incremental form:

Em =0V +v* - Vvl +vi - Uyl

_ [vi- (vi+2vh) = (1) + (v])°] (15)

+r,- (kavi) —Dvi,

where v¢ = vf + vi, f is the Coriolis parameter, r is the
radial distance from the radar, V = (dx, dy, d;) is the gradient
operator in the o-coordinates, D is the diffusion operator



for subgrid-scale turbulent mixing as in COAMPS, and k
is the unit vector in the vertical direction. Note that the
thermodynamic variables are not updated yet, so they have
zero increment at this step, as assumed in (15).

The time derivative term d;v! in (15) is discretized by the
standard central finite difference scheme with v? given by the
gridded observations (obtained from step 1) at o — 7 and o
(or ty and o + 7). All the remaining terms in (11) are at the
middle time level t, — 7/2 (or ty + 7/2), so v?* is interpolated
to the middle time level in these terms. A further simplified
version of (15) was used by Qiu and Xu [18] as a weak
constraint with zero background velocity to retrieve low-
altitude winds from single-Doppler radar scans. The radial
momentum equation in (15) and cost function in (11) are
extensions and improvements relative to their counterparts
used in (1) and (2) of Qiu and Xu [18].

The radial momentum equation in (15) is formulated at
the middle time level and the equation errors are assumed to
be spatially uncorrelated, so the associated equation term in
(4) reduces to J;m and Qy reduces to Io?,, as shown in (14).
The second and third terms on the right-hand side of (14) are
the horizontal advection increment, and the associated RMS
error can be roughly estimated by 6y, 0rot/Lrot + 0vr0div/Ldiv =
2J20§r/LX (see (A.15)—(A.16) and (A.18)). The remaining
terms in (4) are relatively small and so are their RMS errors.
Based on this consideration, oym = 3\/203r/LX is estimated.

As in step 1, by using (7)-(8) and the B-spline represen-
tation, vi and v! in (15) are all expressed as linear functions
of the B-spline coefficients. With the use of the standard
conjugate gradient algorithm, the cost function J; in (11) is
minimized efficiently in the reduced space spanned by the B-
spline coefficients—the final control variables. The estimated
B-spline coefficients are then transformed back to (v, x, w)
and finally to v'. The total vector velocity analysis is given by
v* = v+ v! on the model grid.

5. Thermodynamic Analysis

5.1. Perturbation Pressure Analysis. The estimated fields of vi
at ty — /2 and ty + 7/2 from step 2 are used as input data to
estimate the thermodynamic fields at £, in step 3. Note that
the Exner function 7 = (p/ poo)R/ % is used in place of the
perturbation pressure p” in COAMPS, where py is a constant
reference pressure, R is the gas constant for dry air, and C,
is the specific heat at constant pressure for the atmosphere.
In this paper, we simply call # “perturbation pressure”.
The perturbation pressure increment 7' is estimated by
minimizing the following cost function:

7l | (1B +E2]]
@ a

Jn = (16)

Here, ||*/02 = #''C;'n/02 is the background term and
n(= C;Y2a') is the control variable. In this term, 7' is the
state vector of the grid field of 7', C; is the error correlation
matrix for the background perturbation pressure 7f, o2 is the
error variance for 7f, and thus 02C, is the error covariance
matrix for 7zf. The second term on the right-hand side of (16)
is the equation term. In this term, E, and E, are the two

Advances in Meteorology

horizontal momentum equations retained from COAMPS
(see Hodur [22, (2)-(3)]) in the following incremental forms:

Ey = 0l +v* - Vil + v - Vuf

- fvi — Dut + Cp@\,(axni + Gxagﬂi),
. o (17)
E, =0 +v* - Vvl +vi - Vyf

+ ful — Dvi + Cp@v(ayﬂi + Gyagﬂi),

and o2, is the equation error variance for E, and E,. Here,
o' and 9;v' are computed by the standard central finite
difference scheme from the grid fields of (u!,v') at t, — 7/2
and #, + 7/2 produced in step 2. All the remaining terms in
(17) are at the middle time level ¢,.

As explained in Section 2, the cost function in (16) is
derived from (4) by setting M = 0 (>, = 0) and K = 1
with A = 0, retaining only E, and E, in q, and reducing Q
to Io2,. The two error variances o2 and o2, in (16) are difficult
to estimate. Their ratio, however, can be tuned adaptively to
make the cost function J,; approximately equally partitioned
by the two terms on the right-hand side of (16) when J,
reaches the minimum. This approach is used in this paper.
In (16), the grid field of #(= C;Y?a') is further expressed
by a B-spline expansion on coarse finite element meshes
(Xu et al. [19]), so the final control variables are the B-
spline coefficients of 77 and J,; is minimized efficiently in the
reduced B-spline space. The estimated B-spline coefficients
are then transformed back to 7 and finally to 7’(= CY?m).
The transformation represented by CY? is simulated by
a recursive filter (Purser et al. [31]), in which the error
covariance for 7t is modeled by a horizontally isotropic
Gaussian function. In this filter, the horizontal decorrelation
length is set to Ly, as for (v, Xf) in (A.3) and (A.10), while the
vertical decorrelation depth is set to D, as for w' in (A.4).

5.2. Perturbation Temperature Analysis. After 7' is computed,
the perturbation potential temperature increment 6' is
estimated by minimizing the following cost function:

2 2
Jo = IGL . [[Ezw]]. (18)
0Op OFw

Here, |01*/0} = 6"'C;'60"/0} is the background term and (=
C,'%6') is the control variable. In this term, @' is the state
vector of the grid field of 0%, Cg is the error correlation matrix
for the background perturbation potential temperature 6,
05 is the error variance for 6f, and thus (TgCg is the error
covariance matrix for 6. The second term on the right-hand
side of (18) is the equation term. In this term, Ew is the
vertical momentum equation retained from COAMPS in the
following incremental form:

: R
E, = 9w + C,0,G.0,m — %

(19)
+ (vi +vf> Vw4 v Vil — Dwl
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and o}, is the equation error variance for Ey. In (19), ®
is the basic state potential temperature and g6'/@ is the
buoyancy increment caused by the perturbation potential
temperature increment. Note that the mixing ratios of water
vapor and hydrometeors are not updated vet, so they have
zero increment at this step and thus no contribution to the
buoyancy increment, as assumed in (16) (see Hodur [22,
(4)]). Here, 9;w' are computed by the standard central finite
difference scheme from the grid fields of w' at £, — 7/2 and
to + 7/2 produced in step 2. All the remaining terms in (19)
are at the middle time level #,.

The cost function in (18) is derived from (4) by setting
M =0(>, =0)and K = 1 with A = 0, retaining only E,, in
qx and reducing Qx to IoZ,. Again, as those in (16), the two
error variances o7 and o7, in (18) are hard to estimate, but
their ratio can be tuned adaptively to make the cost function
Jo approximately equally partitioned by the two terms on the
right-hand side of (18) when Jy reaches the minimum. In
(18), the grid field of 0 is further expressed by a B-spline
expansion on coarse finite element meshes similarly to that
for m in (16). The final control variables are the B-spline
coefficients of 6, so Jp can be minimized efficiently in the
reduced B-spline space. The estimated B-spline coefficients
are then transformed back to 6 and finally to 6'(= C(l,/ 20).
The transformation represented by Cj? is simulated by a
recursive filter with the decorrelation length and depth set
to be the same as those for (v, xf).

The analyzed total perturbation pressure and potential
temperature are given by nf + 7' and 6f + 61, respectively,
on model grid. The basic idea for the above thermodynamic
analysis is the same as Gal-Chen [20] and Hane and Scott
[21], but the formulation is derived by considering not only
the equation constraints but also the background constraint
in connection with the general variational formulation in (4).

5.3. Moisture and Hydrometeor Adjustments. After the per-
turbation pressure and potential temperature fields are
updated by the above incremental analyses, the relative
humidity is altered and thus needs to be recovered by
adjusting the water vapor mixing ratio gy. After this, g,
is further adjusted based on the radar observed reflectivity
through the following three substeps:

(i) Interpolate the radar observed reflectivity #° onto
the model grid by minimizing the following cost
function:

Hor = o)

2 >
O',IO

Iy = |’1|2+

where 1 = B, 2%, B, is the error covariance matrix
for zero reflectivity background, #® is the state vector
of the analyzed reflectivity 7%, and o,, (=1dBZ) is
the reflectivity observation error standard deviation.
Again, the grid field of # is further expressed by a B-
spline expansion on coarse finite element meshes. As
the final control variables are the B-spline coefficients
of , J can be minimized efficiently in the reduced
B-spline space. The estimated B-spline coefficients

are then transformed back to # and finally to
n* (= B)/*n). The transformation represented by
B}/ 2 is simulated by a recursive filter, in which the
decorrelation length and depth are set to be as small
as Ax and Az, respectively, and the error variance
for zero reflectivity background is estimated by the
spatial variance of the model predicted reflectivity
1. With the above parameter settings, the analyzed
reflectivity #* obtained by minimization J, in (20) is
an optimal interpolation of the observed reflectivity
1n° onto the model grid. After this interpolation, #* is
further extrapolated downward from the lower radar
beam height to the surface level (to fill the reflectivity
data void area below the lowest beam in the boundary
layer).

(ii) Check each grid point for the conditions of #* >
10dBZ and 5’ < 10 dBZ. If these two conditions are
both satisfied, then adjust g, to the saturated value
if the analyzed vertical velocity is nonnegative (w >
0) or to 80% of the saturated value if the analyzed
vertical velocity is negative (w < 0) and the relative
humidity is below 80% at this grid point.

(iii) Check each grid point for the conditions of 7* <
10dBZ and #f >10dBZ. If these two conditions are
both satisfied, then adjust gy to the value interpolated
in x- and y-directions from the nearest grid points
where the two conditions are not both satisfied. This
adjustment is designed to reduce gy and thus correct
the model’s tendency of overpredicting precipitation
locally in areas detected by the above two conditions.

In companion with the g, adjustment, the rain mixing
ratio g, (or snow mixing ratio ¢s) is adjusted below (or
above) the freezing level to make the computed reflectivity
match 7 at each grid point. The above moisture and
hydrometeor adjustments have not been extensively tested
and currently are used only as an option for case studies
(including the example presented in the next section). For
operational applications, the radar reflectivity observations
are used together with the GOES satellite observations to
adjust the moisture field together with the cloud field in
a sophisticated cloud analysis package (Wei et al. [36],
Zhao et al. [37, 38]).

6. Application to Phased Array Radar Data

The 3.5dVar is applied to the phased array radar radial
velocity and reflectivity observations collected during the
period of 2100-2200 UTC 2 June 2004 when a four-quadrant
electronic scan strategy was tested. During this period,
a squall line moved southeastward through the central
Oklahoma area in the radial range (140 km) of the phased
array radar scans (Figure2). The radar scanned roughly
every two minutes per volume. Total 26 volume scans were
collected. Among these 26 volume scans, there is one volume
scan that covers only a single quadrant and this volume is
not used. The remaining 25 volume scans cover all the four
quadrants and are used in this study. Each volume scan has



(b)

(c)

FIGURE 2: Phased-array radar observed reflectivity (a), radial
velocity (b) at 0.75°, and dealiased radial velocity (c) at 2107 UTC
on 2 June 2004. Aliased velocity areas are highlighted in (b).

7 tilts with elevation angles of 0.75, 2.27, 3.78, 5.28, 6.78,
8.28, and 9.28 degree. On each tilt, the spatial resolutions are
240 m in the radial direction and approximately 1.5° in the
azimuthal direction.

The COAMPS is used to produce the background fields.
The model is configured with three nested domains centered
over the state of Oklahoma with resolutions of 54, 18, and
6 km for the coarse, medium, and fine grids, respectively, and
30 levels in the vertical. The three nested domains are shown
in Figure 3. All other parameters are set to be the same as in
Zhao et al. [38]. For the control run, the model is initialized
(cold start) at 0000 UTC 2 June 2004. After the first 12-hr
model run, the conventional observations are assimilated,
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FiGure 3: COAMPS domains nested with 54, 18, and 6 km grids.

and then another 12-hr run is launched (warm start). The
predicted wind fields on the 6km grid are used as the
reference by the dealiasing technique described in Section 3.1
to detect and correct alias errors in the radar radial velocity
observations. The technique is found to be effective (as
shown Figure 2) and better than the operationally used tech-
nique. The radial velocity innovations produced from the
25 volume scans of dealiased radial velocities and COAMPS
predicted background fields were used in Xu et al. [34] to
estimate the background and observation error variances.
The estimated observation error variance is used in this
paper to estimate the background error variance adaptively
in each assimilation cycle, as explained in Section 3.2.

By using the 3.5dVar, three consecutive volume scans
of the dealiased radial velocity and reflectivity data are
assimilated through a single cycle around 2108 UTC, and
then a test run, called Test 1, is launched for 58-minute
forecast to 2200 UTC. Another test run, called Test 3, is also
performed by assimilating the first nine volume scans of the
dealiased radial velocity and reflectivity data in three cycles
from 2108 to 2118 UTC. The velocity and reflectivity fields
at z = 3.1 km produced by the prediction valid at 2108 UTC
in the control run and by the analysis at 2108 UTC in Test
1 are plotted against the observed reflectivity (analyzed onto
the grid) at 2108 UTC in Figures 4(a) and 4(b), respectively.
The predicted velocity and reflectivity fields in Figure 4(a)
are the background fields for the analysis at 2108 UTC
in Test 1. As shown in Figure 4(a), the background wind
field from the control run is dynamically self-consistent
and is consistent with the reflectivity field of its predicted
squall line, but the predicted reflectivity reveals a significant
location error for the predicted squall line in comparison
with the observed reflectivity field. In particular, the leading
edge of the predicted squall line is lagged by about 30 km
behind the observed. This location error is largely corrected
by the analysis in Test 1 as shown in Figure 4(b).

The 5-minute forecasts of velocity and reflectivity fields
valid at 2118 UTC from the second cycle (at 2113 UTC)
in Test 3 are given Figure 5(a) while the analyses from the
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FIGURE 4: Velocity (arrows for the horizontal wind and green contours for the vertical velocity) and reflectivity (color field) at z = 3.1 km
produced by (a) the prediction in the control run and (b) the analysis in Test 1 at 2108 UTC. The black contours are plotted every 10 dBZ for
the observed reflectivity (analyzed onto the grid). The vertical velocity contours are plotted in green for £0.5, £2, and =5 ms™!. The arrow
(=30m ') at the lower-left corner is the vector scale for the horizontal velocity.
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FIGURE 5: As in Figure 4 but for velocity and reflectivity produced by (a) the 5-minute prediction (from the second cycle at 2113 UTC) and

(b) analysis of the third cycle at 2118 UTC in Test 3.

third cycle at 2118 UTC are plotted in Figure 5(b). For
comparison, radar observations of reflectivity at 2118 UTC
are also shown (by solid contours) in Figures 5(a) and
5(b). It should be mentioned again that the analyzed fields
in Figure 5(b) use the predicted velocity and reflectivity

fields in Figure 5(a) as background fields. It is apparent that
the predicted background reflectivity in Figure 5(a) already
becomes quite close to the observations, and the minor miss-
matches are further corrected by the analysis as shown by the
analyzed reflectivity in Figure 5(b).
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FIGURE 6: As in Figure 4 but for the incremental horizontal velocity (arrows) and incremental potential temperature (contours every 1
degree, dashed for negative values) in the boundary layer (at z = 0.5 km) from (a) the 10-minute prediction (integrated from the analysis at
2108 UTC) in Test 1 and (b) the third analysis in Test 3 with respect to those produced by the control run valid at 2118 UTC.
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FIGURE 7: As in Figure 4 but for velocity and reflectivity produced by the predictions valid at 2200 UTC in (a) the control run and (b) Test 1.

Figure 6(a) plots the incremental horizontal velocity and
potential temperature (at z = 0.5km) produced by the 10-
minute prediction from the analysis in Test 1 with respect
to those produced by the control run valid at 2118 UTC.
As shown, the potential temperature increment is negative
and the horizontal wind increment is divergent over an
elongated region along the leading edge of the squall line
produced in Test 1. Note that this elongated region is to
the south immediately ahead of the background squall line

(produced by the control run valid at 2118 UTC), which
implies that the under-predicted southward movement of the
squall line in the control run is largely corrected at 2118 UTC
in Test 1. The above features become slightly more distinct in
the incremental fields produced at 2118 UTC by the three
assimilation cycles in Test 3 as shown in Figure 6(b), which
implies that the under-predicted southward movement of the
squall line in the control run is further corrected at 2118 UTC
after the second cycle and the third analysis in Test 3.
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It is necessary to mention that the incremental potential
temperature produced by the thermodynamic analysis is
relatively small (within £0.5°K in the boundary layer) and
nearly hydrostatically balanced with the perturbation pres-
sure increment, while the latter is related to the horizontal
wind increment through the horizontal momentum equa-
tions (see (17)). Thus, the potential temperature increment
in either Figure 6(a) or Figure 6(b) is caused mainly by
the moisture adjustment and subsequent model integration.
Due to the very limited coverage of radial velocities from
only one Doppler radar, the thermodynamic analysis is
not well constrained and thus does not have the desired
accuracy and significance to directly and adequately correct
the background thermodynamic field. Instead, the main
benefit of the thermodynamic analysis performed in this
paper is to improve the overall dynamic and thermodynamic
balance of the analyzed total field, and this explains why the
thermodynamic analysis improves the subsequent forecast
slightly in comparison with the forecast without thermody-
namic analysis (not shown in this paper).

The velocity and reflectivity forecasts from the control
run and Test 1 valid at 2200 UTC are plotted against the
observed reflectivity at z = 3.1 km in Figures 7(a) and 7(b),
respectively. As shown, the reflectivity field predicted by Test
1 is much closer to the observations than that from the
control run, but slightly less close to the observations than
that predicted by Test 3 (not shown). The spatial correlation
coefficients between the predicted and observed reflectivity
fields are plotted as functions of time for the control run
and the two test runs in Figure 8(a). As shown by the
plotted correlation coefficients, the predicted reflectivity and
precipitation are significantly improved in Test 1 and further
improved in Test 3.

To verify the three-dimensional winds, the model-
produced (analyzed and predicted) radial velocity fields
are interpolated (using the observational operator) back to
the phased-array radar observation points and compared
with their respective observed values. The RMS differences
between the predicted and observed radial velocities are
plotted as functions of time for the control run and the two
test runs in Figure 8(b). As one can see, the RMS difference is
reduced by the analysis in each assimilation cycle, although
the reductions by the analyses in the second and third
assimilation cycles are relatively small and last only for about
0.5 hour. Clearly, the predicted reflectivity (associated with
predicted precipitation) and velocity are both improved in
Test 1 and both further improved in Test 3.

7. Conclusions

This paper presents a variational approach for Doppler radar
data assimilation. This method analyzes four-dimensional
radar observations (three consecutive volume scans) but
updates the model state only in three-dimensional space at
the central time level in each assimilation cycle, and therefore
we call it three-and-half-dimensional variational (3.5dVar)
method. The method can be considered as an upgraded com-
bination of the previous retrieval methods (Qiu and Xu [18];
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Figure 8: (a) Correlation coefficient between the predicted and
observed reflectivity fields. (b) RMS differences between the
predicted and observed radial velocities. The red, blue, and green
curves are for the results obtained from the control run, Test 1 and
Test 3, respectively.

Gal-Chen [20]; Hane and Scott [21]) with the background
information from NWP model forecasts. The finite element
B-spline representations (Xu et al. [19]) and recursive filter
(Purser et al. [31]) are used to reduce the dimension of the
analysis space and enhance the computational efficiency. The
method is tested with real radar data collected by the phased-
array radar at Norman, Oklahoma for the squall line event on
June 2, 2004. The effectiveness of the 3.5dVar is demonstrated
by the improved short-term predictions of the squall line (see
Section 6).

The 3.5dVar method has also been tested and applied
to many other cases, either as a stand-alone package
(Gu et al. [15]; Xuetal. 34, 39]; Zhao et al. [40]) or in
combination with a cloud analysis package (Zhao et al.
[37, 38]). The 3.5dVar method is currently being further
refined in combination with a cloud analysis package for



12

the Navy’s nowcasting applications. According to recent real-
time tests, the current 3.5dVar algorithm code can be easily
setup and run on a PC workstation. It takes only about
5 minutes to assimilate 9 volume scans from three radars
(each radar provides three consecutive volume scans) on
a high-resolution (100 x 100 x 30) COAMPS grid that
covers a mesoscale area (600 X 600 km?). The 3.5dVar is thus
sufficiently efficient for real-time applications.

Because simplifications are made to the general varia-
tional formulation in each of the three steps in the method
to achieve the desired computational efficiency for real-time
applications, the resulting analyses are suboptimal (relative
to the desired maximum likelihood estimates). This implies
that the method can be improved by reducing the involved
simplifications and refining the error covariance estimation
and representation. Such an improvement is made in the
current 3.5dVar over the early version (Guetal. [15]) by
recovering the matrix forms of background error covari-
ances. Room still exists for further improvements. For
example, including the vorticity equation as an additional
constraint could substantially improve the thermodynamic
analysis (at least in areas covered by two or more Doppler
radars, as shown by Protat and Zawadzki [41]). The analysis
may also be improved by considering nonisotropic flow-
dependent forms of background error covariances, which
is under our current investigation in connection with the
ensemble Kalman filter.

Appendix

Background Error Variances and
Decorrelation Lengths for Derived Variables

The mass continuity equation in (13) can be applied
approximately to the background velocity vi. By neglecting
the effect of terrain slope, this equation can be written into
the following form:

Ath = —0pwh, (A.1)

where Ay, = 05 +0; is the Laplacian. Assume that the random

error fields of yf and wf are also constrained by (A.1), so their
covariance functions (see Xu and Wei [35, (2.3) and (A.1)])
satisfy the following relationship:

AﬁCxx(”ﬂ’l) = _a%wa(”a”l): (A.2)
where r and # are the horizontal and vertical distances,
respectively, between the two correlated points, and the two
covariance functions are assumed to be horizontally isotropic
and separable between the horizontal and vertical directions.

Assume that C,,(r,%) can be modeled by a Gaussian
function in the horizontal direction, so

Cylrn) = a)?G(ZX)RXX(r]), (A.3)

where O')?

variance and vertical error correlation for xf, G(-) =

and Ry, () denote, respectively, the error
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exp[—(-)z/Z] denotes the Gaussian function form, and L,
is the horizontal decorrelation length defined by L, =
[2C(0)]"*[=AnCyy(r)|,=0] ¥ as in Daley [42, (4.3.12)].
By assuming that Cyw(r,#) can be modeled by a Gaussian
function in the vertical, we get

Cow(r,) = ch%wa(r)G(Di), (A.4)

where ¢2 and Ryw(r) denote, respectively, the error
variance and vertical error correlation for wf, and
Dy, is the vertical decorrelation depth defined by
Dy = [Cone(0)]"*[=32Cu(1)l;—o] . Substituting (A.3)
and (A.4) into (A.2) and setting r = 0 with Ry,,(0) = 1, we
have

802L*Ryy (1) = 02 (D - ;72DV;4)G(D1W). (A.5)
Substituting (A.3) and (A.4) into (A.2) again and setting § =
0 with Ry, (0) = 1, we have another equation

_ _ _ r _
o2 (8L,* - 8r°L,° - r4LX8)G<LX> = 02D Ry(r). (A.6)
Setting # = 0in (A.5) or r = 0 in (A.6) gives the ratio of the
two variances

2 8D2
= (A7)
9% X

Note that R,,(#) and Ryw(r) are obtained explicitly in
(A.5) and (A.6), respectively. Substituting (A.5) into (A.3)
gives the explicit form of C(r,#), and substituting (A.6)
into (A.4) results in another explicit form for Gy (r,7).
Using these explicit forms, we can verify that the vertical
decorrelation depth for the random error field of x! is given
by

-12 D,
=Ty

while the horizontal decorrelation length for the random
error field of wf is given by

D)( = [RXX(H) |'7:0:|1/2[_af27RXX(’1) |,1:():| (A8)

L = (2R () o] [~ BnRon ) o] % = 2.
V3
Denote by vy the horizontal component of vt and
represent by vy, and vgiy the rotational and divergent parts of
vh, respectively. Then we have vior = k X Viyf, vaiy = Viyf,
and v, = Vit + Vaiv. Also assume that the error covariance
function for ¢! can be modeled by a Gaussian function in
the horizontal, so

(A9)

’

Cyy(r,n) = alf,G(L)RW(n), (A.10)
v

where oy, and Ry, (17) denote, respectively, the error variance

and vertical error correlation for y', and Ly, is the horizontal
decorrelation length. Cyo(7,#) and Cyiy(r,#) represent the
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traces of the error covariance tensors for v, and vgiy,
respectively. By using (2.14) of Xu and Wei [35] with (A.4)
and (A.10), one can get

Crot(rs1) = =ViCyy (r,1)

, ) - , (A.11)
0 (2L, - Ly )G<LW)RW(’7)’
CdiV(r)”l) = —VﬁCXX(ﬂﬂ)

_ _ r
= af(ZLXZ - rzLX4)G<LX)RXX(11).

(A.12)

The error variances for vy, and v4iy can be then obtained by
settingr = 0 and # = 0 in (A.11) and (A.12), that is,

Ot = 20 L%, (A.13)
gy = 20,L,%. (A.14)

Using (A.11) and (A.12), one can verify that the horizontal
decorrelation lengths for the random error fields of vt and
Vdiv are given, respectively, by

12 _ Ly
V2’
(A.15)

Liot = [2Crot(1,0) |r:0] 1/2[_v2Crot(r> 0) |r:0]

-2 Ly
V2
(A.16)

Laiv = [2Caiv(1,0)|,=0]"* [~ V2Caiv(r,0)|,~o]

For mesoscale flows, we may assume that v, and vgiy
have roughly the same error variances and decorrelation
lengths. In this case, we have

Ly =L, = \/3Ly, (A.17)

0%, = 03, = 0.50¢ = 02, (A.18)

where oﬁ is the error variance for vy, (the horizontal
component of vf), and o2 is the error variance for vf. Note
that vi;, = Vit + Vaiv, and therefore oﬁ = o, + ajiv. Also
note that vf is the radial component of vf and approximately
the radial component of v, so 62 = 0.50 is a reasonable
approximation (Xu and Gong [43]). These relationships are
used in the derivation of (A.18). Substituting (A.18) into
(A.13) and (A.7) gives

oy =0} = 0.505, L, (A.19)
402 D2
oy = 1 (A.20)
X
Acknowledgments

The authors are thankful to Carl Hane, Jidong Gao, and
the anonymous reviewer for their comments and sugges-
tions that improved the presentation of the paper and
to Douglas Forsyth, Kurt Hondl, Richard Adams, Pengfei

13

Zhang and Kang Nai for their help in obtaining and
processing the phased-array radar data. The research work
was supported by the NOAA HPCC program, the FAA
contract IA# DTFA03-01-X-9007 to NSSL, the ONR Grants
N000140410312 to the University of Oklahoma, and the
NOAA-University of Oklahoma Cooperative Agreement no.
NA17RJ1227.

References

[1] J. Sun, D. W. Flicker, and D. K. Lilly, “Recovery of three-
dimensional wind and temperature fields from simulated
single-Doppler radar data,” Journal of the Atmospheric Sciences,
vol. 48, no. 6, pp. 876890, 1991.

[2] H. Kapitza, “Numerical experiments with the adjoint of a
nonhydrostatic mesoscale model,” Monthly Weather Review,
vol. 119, no. 12, pp. 2993-3011, 1991.

[3] C.Qiuand Q. Xu, “A simple adjoint method of wind analysis
for single-Doppler data,” Journal of Atmospheric & Oceanic
Technology, vol. 9, no. 5, pp. 588-598, 1992.

[4] J. Sun and A. Crook, “Wind and thermodynamic retrieval
from single-Doppler measurements of a gust front observed
during Phoenix II,” Monthly Weather Review, vol. 122, no. 6,
pp. 1075-1091, 1994.

[5] Q. Xu, C. Qiu, and J. Yu, “Adjoint-method retrievals of low-
altitude wind fields from single-Doppler reflectivity measured
during Phoenix II,” Journal of Atmospheric & Oceanic Technol-
ogy, vol. 11, no. 2, pp. 275-288, 1994.

[6] Q. Xu, C. Qiu, and J. Yu, “Adjoint-method retrievals of low-
altitude wind fields from single-Doppler wind data,” Journal
of Atmospheric & Oceanic Technology, vol. 11, no. 2, pp. 579—
585, 1994.

[7] S. Laroche and I. Zawadzki, “A variational analysis method
for the retrieval of three-dimensional wind field from single-
Doppler radar data,” Journal of the Atmospheric Sciences, vol.
51, pp. 2664-2682, 1994.

[8] A. Shapiro, S. Ellis, and J. Shaw, “Single-Doppler velocity
retrievals with Phoenix II data: clear air and microburst wind
retrievals in the planetary boundary layer,” Journal of the
Atmospheric Sciences, vol. 52, no. 9, pp. 1265-1287, 1995.

[9] J. Zhang and T. Gal-Chen, “Single-Doppler wind retrieval in
the moving frame of reference,” Journal of the Atmospheric
Sciences, vol. 53, no. 18, pp. 2609-2623, 1996.

[10] Y.-C. Liou, “Single radar recovery of cross-beam wind compo-
nents using a modified moving frame of reference technique,”
Journal of Atmospheric and Oceanic Technology, vol. 16, no. 8,
pp. 1003-1016, 1999.

[11] J. Gao, M. Xue, A. Shapiro, Q. Xu, and K. K. Droegemeier,

“Three-dimensional simple adjoint velocity retrievals from

single-Doppler radar,” Journal of Atmospheric and Oceanic

Technology, vol. 18, no. 1, pp. 26-38, 2001.

S. S. Weygandt, A. Shapiro, and K. K. Droegemeier, “Retrieval

of model initial fields from single-Doppler observations of

a supercell thunderstorm. Part I: single-Doppler velocity

retrieval,” Monthly Weather Review, vol. 130, no. 3, pp. 433—

453,2002.

[13] J. Sun and N. A. Crook, “Real-time low-level wind and
temperature analysis using single WSR-88D data,” Weather
and Forecasting, vol. 16, no. 1, pp. 117-132, 2001.

[14] Q. Xu, H. Gu, and W. Gu, “A variational method for Doppler
radar data assimilation,” in Proceedings of the 5th Symposium
on Integrated Observing Systems, pp. 118-121, The American
Meteor Society, Albuquerque, New Mexico, 2001.

[12



14

(15]

(18]

[19]

(20]

(21]

(22]

(23]
(24]

[25]

W. Gu, H. Gu, and Q. Xu, “Impact of single-Doppler
radar observations on numerical prediction of 7 May 1995
Oklahoma squall line,” in Proceedings of the 5th Symposium
on Integrated Observing Systems, pp. 139-142, The American
Meteor Society, Albuquerque, New Mexico, 2001.

J. Gao, M. Xue, K. Brewster, and K. K. Droegemeier, “A three-
dimensional variational data analysis method with recursive
filter for Doppler radars,” Journal of Atmospheric and Oceanic
Technology, vol. 21, no. 3, pp. 457-469, 2004.

M. Hu, M. Xue, J. Gao, and K. Brewster, “3DVAR and cloud
analysis with WSR-88D level-II data for the prediction of the
Fort Worth, Texas, tornadic thunderstorms. Part II: impact of
radial velocity analysis via 3DVAR,” Monthly Weather Review,
vol. 134, no. 2, pp. 699-721, 2006.

C.-J. Qiu and Q. Xu, “Least squares retrieval of microburst
winds from single-Doppler radar data,” Monthly Weather
Review, vol. 124, no. 6, pp. 1132—1144, 1996.

Q. Xu, H. Gu, and S. Yang, “Simple adjoint method for
three-dimensional wind retrievals from single-Doppler radar,”
Quarterly Journal of the Royal Meteorological Society, vol. 127,
no. 573, pp. 1053-1067, 2001.

T. Gal-Chen, “A method for the initialization of the anelastic
equations: implications for matching models with observa-
tions,” Monthly Weather Review, vol. 106, pp. 587-606, 1978.
E. C. Hane and B. C. Scott, “Temperature and pressure per-
turbations within convective clouds derived from detailed air
motion information: preliminary testing,” Monthly Weather
Review, vol. 106, pp. 654661, 1978.

R. M. Hodur, “The naval research laboratory’s coupled
ocean/atmosphere mesoscale prediction system (COAMPS),”
Monthly Weather Review, vol. 125, no. 7, pp. 1414-1430, 1997.
A. H. Jazwinski, Stochastic Processes and Filtering Theory,
Academic Press, New York, NY, USA, 1970.

A. F Bennett, Inverse Method in Physical Oceanography,
Cambridge University Press, Cambridge, UK, 1992.

J.-M. Lewis and J. C. Derber, “The use of adjoint Equations
to solve a variational adjustment problem with advective
constraints,” Tellus, vol. 37A, pp. 309-322, 1985.

E-X. Le Dimet and O. Talagrand, “Variational algorithms
for analysis and assimilation of meteorological observations:
theoretical aspects,” Tellus, vol. 38, no. 2, pp. 97-110, 1986.

D. E Parrish and J. C. Derber, “The National Meteorological
Center’s spectral statistical- interpolation analysis system,”
Monthly Weather Review, vol. 120, no. 8, pp. 1747-1763, 1992.
J. Gong, L. Wang, and Q. Xu, “A three-step dealiasing
method for Doppler velocity data quality control,” Journal of
Atmospheric and Oceanic Technology, vol. 20, no. 12, pp. 1738—
1748, 2003.

R. J. Doviak and D. S. Zrni¢, Doppler Radar and Weather
Observations, Dover Publications, New York, NY, USA, 2nd
edition, 2006.

E. Kessler, “On the distribution and continuity of water
substance in atmospheric circulation. Meteor. Monogr,” The
American Meteor Society, vol. 10, no. 32, p. 84, 1969.

R. J. Purser, W.-S. Wu, D. F. Parrish, and N. M. Roberts,
“Numerical aspects of the application of recursive filters to
variational statistical analysis. Part I: spatially homogeneous
and isotropic Gaussian covariances,” Monthly Weather Review,
vol. 131, no. 8, pp. 1524-1535, 2003.

Q. Xu, “Representations of inverse covariances by differential
operators,” Advances in Atmospheric Sciences, vol. 22, no. 2, pp.
181-198, 2005.

(33]

(35]

(37]

(38]

Advances in Meteorology

Q. Xu, K. Nai, and L. Wei, “An innovation method for
estimating radar radial-velocity observation error and back-
ground wind error covariances,” Quarterly Journal of the Royal
Meteorological Society, vol. 133, no. 623, pp. 407-415, 2007.
Q. Xu, K. Nai, L. Wei, et al., “Progress in Doppler radar
data assimilation,” in Proceedings of the 32nd Conference on
Radar Meteorology, pp. 24-29, The American Meteor Society,
Albuquerque, New Mexico, 2005, CD-ROM, JP1]J7.

Q. Xu and L. Wei, “Estimation of three-dimensional error
covariances. Part II: analysis of wind innovation vectors,”
Monthly Weather Review, vol. 129, no. 12, pp. 2939-2954,
2001.

L. Wei, Q. Xu, and Q. Zhao, “Using GOES data to improve
COAMPS cloud analysis and forecast,” in Proceedings of the 5th
Symposium on Integrated Observing Systems, pp. 126—129, The
American Meteor Society, Albuquerque, New Mexico, 2001.
Q. Zhao, J. Cook, and L. Phegley, “Assimilation of radar
observations into a high-resolution numerical weather anal-
ysis and prediction system at NRL,” in Proceedings of the 31th
Conference on Radar Meteorology, pp. 169—172, The American
Meteor Society, Seattle, Wash, USA, 2001.

Q. Zhao, J. Cook, Q. Xu, and P. R. Harasti, “Improving short-
term storm predictions by assimilating both radar radial-wind
and reflectivity observations,” Weather and Forecasting, vol. 23,
pp. 373-391, 2008.

Q. Xu, L. Wang, P. Zhang, et al, “Progress in radar
data quality control and assimilation,” in Proceedings of the
6th International Symposium of Hydrological Applications of
Weather Radar, Bureau of Meteorology & Australian Meteor,
Melbourne, Australia, 2001, The Oceanography Society, Con-
ference CD.

Q. Zhao, J. Cook, Q. Xu, and P. R. Harasti, “Using radar
wind observations to improve mesoscale numerical weather
prediction,” Weather and Forecasting, vol. 21, no. 4, pp. 502—
522, 2006.

A. Protat and 1. Zawadzki, “Optimization of dynamic
retrievals from a multiple-Doppler radar network,” Journal of
Atmospheric and Oceanic Technology, vol. 17, no. 6, pp. 753—
760, 2000.

R. Daley, Atmospheric Data Analysis, Cambridge University
Press, Cambridge, UK, 1991.

Q. Xu and J. Gong, “Background error covariance functions
for Doppler radial-wind analysis,” Quarterly Journal of the
Royal Meteorological Society, vol. 129, no. 590, pp. 1703-1720,
2003.



Hindawi Publishing Corporation
Advances in Meteorology

Volume 2010, Article ID 346516, 11 pages
doi:10.1155/2010/346516

Research Article

Reconstruct the Mesoscale Information of Typhoon with
BDA Method Combined with AMSU-A Data Assimilation Method

Yunfeng Wang, "2 Haiyang Zhang,! Bin Wang,? Yueqi Han,' and Xiaoping Cheng'

! Laboratory of Military Meteorology, Institute of Meteorology, PLA University of Science and Technology, Nanjing, 211101, China
2LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Correspondence should be addressed to Yunfeng Wang, wangyf@mail.iap.ac.cn

Received 28 December 2009; Revised 24 March 2010; Accepted 20 April 2010

Academic Editor: Zhaoxia Pu

Copyright © 2010 Yunfeng Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper conducts the assimilating experiments and simulating experiments on typhoon “Aere” (No. 0418), by use of bogus
data assimilation (BDA) method combined with advanced microwave sounding unit-A (AMSU-A) data assimilation method in
the fifth-generation National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model Version-3 (MM5V3), the
Radiative Transfer for TIROS-N Operational Vertical Sounder Version-7 (RTTOV) model, and their adjoint models. The Bogus
data constructed with BDA technique are mainly located at sea level, while the peak energy contribution levels of the sounder
channels selected in AMSU-A data assimilation technique are mainly located at upper troposphere. The two types of data can
reconstruct the meso-scale information and improve the typhoon initial fields under the model dynamic forcing effect, respectively
from the low level and the upper level of atmosphere during the assimilating process. Numerical results show that with four-
dimensional variational data assimilation (4DVAR) technique the circulation of initial fields is improved, the “warm core” of
typhoon is enhanced, the “cloud water” phenomenon that occurs in the optimal initial fields and the numerical model is changed

into “warm start” from “cold start”.

1. Introduction

Typhoon is one of the most frequent disasters affecting
human beings. With the development of numerical forecast-
ing techniques, numerical forecasting of typhoon has entered
an operational stage. However, the prediction accuracy is
far from meeting the requirements of disaster prevention
and reduction. If the track and intensity of typhoon can
be accurately forecasted, necessary preparedness can be
performed beforehand and serious economic loss can be
much reduced. Due to severe deficiency of conventional
observation data over sea, the results of objective analysis can
not precisely describe the thermal structure and circulation
characteristics of initial typhoon, especially its mesoscale
structure, which is one of the main reasons for serious errors
in typhoon numerical forecasting. Therefore, how to provide
more rational initial values is an urgent task.

Since 1990s, an initializing method of artificial typhoon
mode is introduced into typhoon forecasting research [1-
3]. With this method, an ideal bogus typhoon mode with

3-dimensional circulation structure and thermal structure
is constructed according to the observation data, and then
it is implanted into the initial typhoon analysis fields to
construct new initial typhoon optimal fields. This method
is now widely applied in Typhoon Numerical Prediction
Operational System in many countries, which improves the
typhoon numerical forecast skill greatly. However, there are
still a lot of shortcomings in this method.

The concept of 4DVAR was initially put forward and then
developed by Lewis and Derber [4], Le Dimet and Talagrand
[5], and Courtier and Talagrand [6]. Later, with 4DVAR
technique, a new method to optimize the rough initial fields
of tropical cyclone was proposed [7, 8], which is named
bogus data assimilation (BDA) method, that is, with 4DVAR
technique, through assimilating the sea level pressure of ideal
vortex and gradually adjusting the model background field,
more actual vortex with dynamical and physical balance
is obtained. Numerical experiments on hurricane “Felix”
show that this method effectively improves the characteristics
of hurricane eye and forecasting of hurricane intensity.



Through numerical simulation of hurricane Georges and
Bonnie, Pu and Braun [9] thought that assimilating the
wind data of bogus vortex was also important to the
adjustment of initial field. A hybrid variational scheme
(HVAR) is developed by Weng et al. [10] and it was applied
in two hurricane cases, resulting in improved analyses of
three-dimensional structures of temperature and wind fields
as compared to operational model analysis fields. It is
found that HVAR reproduces detailed structures for the
hurricane warm core at the upper troposphere. Both lower-
level wind speed and upper-level divergence are enhanced,
with reasonable asymmetric structure. With the weather
research and forecasting three-dimensional variational data
assimilation system (WRF 3D-VAR), it is indicated that
hurricane initialization with the BDA technique can improve
the forecast skills of track and intensity in the Advanced
Research WRF (ARW) [11]. Besides, many other researchers
also have done much work on studying the BDA method
(12,13].

With the rapid development of satellite observing system,
the satellite remote sensing data gradually becomes one of
the major observation data sources due to its wide coverage
and high-spatial and -temporal resolution; the assimilation
of satellite data also turns to be an important instrument
to reconstruct the mesoscale structure of typhoon. The fast
radiative transfer modeling and its components, critical for
satellite data assimilation, are summarized and discussed
for their potential applications in operational global data
assimilation systems [14]. Since the microwave radiation can
pass through deep cloud layer and its brightness temperature
data can well indicate the vertical structure of atmosphere
under cloud, it is very useful to improve typhoon circulation
structure and determinate typhoon initial location.

Zou et al. [15] successfully assimilated Geostationary
Operational Environmental Satellite (GOES) brightness
temperature data into the initial field of typhoon by use
of the 4DVAR technique in their study of the hurricane
on the east coast of America. The results indicated that
the forecasting of typhoon intensity, track and precipitation
could be greatly improved. Le Marshall et al. [16] assimilated
all the available high-density data and satellite data into the
initial field of typhoon to reconstruct the inner structure
of typhoon, and the 48 hours track forecasting error was
reduced from 400 km in the control experiment to 150 km
in the assimilating experiment. Wang et al. [17] effectively
improved the intensity forecasting and track forecasting
of typhoon, by simultaneously assimilating the large-scale
background fields data, bogus data, cloud-derived wind
data, satellite inverse data, high-resolution infrared radiation
sounder data (HIRS), and so forth. into the numerical
forecasting model.

Zhang et al. [18] adopted 3-dimensional variational
assimilation (3DVAR) technique to assimilate AMSU bright-
ness temperature data into numerical model in the study of
the typhoon structure and its evolution in different stages
on Northwest Pacific. The numerical results showed that the
direct assimilation of AMSU brightness temperature data
could accurately describe the 3-dimensional structure and
evolution of typhoon on Northwest Pacific, which is difficult

Advances in Meteorology

to achieve with conventional observation data. The study
shows that the AMSU data provide improvement to track
forecasts of tropical cyclone [19].

Though BDA method and AMSU-A data assimilation
method have been used many times in numerical simulating
of hurricane, there is few research work combining the
two methods by 4DVAR technique in typhoon simulating.
Selecting typhoon “Aere” (No. 0418) as the case, this paper
combines BDA method with AMSU-A data assimilation
method to conduct assimilating experiments and numerical
simulating experiments to reconstruct mesoscale informa-
tion of typhoon, and also studies the intensity forecasting
and track forecasting. The numerical models, the observa-
tion data, and the objective function are briefly introduced
in Section 2. Experiment design of numerical scheme and
the corresponding numerical results are shown in Section 3.
Section 4 provides conclusions and discussion.

2. Numerical Models, Observation Data, and
Objective Function

2.1. Numerical Models. The MM5V3 model, the RTTOV-
7 model, and their adjoint models are adopted in this
paper. The MM5 model is a mesoscale numerical forecasting
model which is developed jointly by National Center for
Atmospheric Research (NCAR) and Pennsylvania University
(PSU). In this paper, the central point of the numerical
simulating domain is (124.5°E, 22.5°N). The assimilating
experiments are conducted on single-nest domain with
54 km horizontal resolution and the horizontal grid number
is 75 X 91. The simulating experiments are conducted on
double-nest domain. The horizontal resolutions are, respec-
tively, 54 km, 18 km, and horizontal grids are, respectively, 75
X 91, 121 x 130. The o-coordinate is used in the numerical
model and there are totally 23 levels in the vertical direction.
Parameterization schemes used in simulation are as the
followings: Grell cumulus parameterization scheme [20],
MREF PBL scheme [21], relaxation inflow/outflow boundary
condition, and so forth.

The RTTOV radiative transfer model is to compute very
rapid calculations of top of atmosphere radiances for a range
of space-borne infrared and microwave radiometers viewing
the Earth’s atmosphere and surface. The original basis for the
RTTOV fast computation of transmittances is described by
Eyre and Woolf [22]. The development of RTTOV-7 has been
carried out as part of collaboration between the Met Office
(UK), Météo France, and ECMWF in the framework of the
EUMETSAT-funded NWP Satellite Application Facility and
also other EUMETSAT sponsored activities. The RTTOV-
7 model describes the complicated nonlinear relationship
between the satellite radiation brightness temperature and
the model variables. Various physical fields such as tempera-
ture profile and water vapor profile required by the RTTOV-7
model are provided by the MM5V3 model. In the RTTOV-7
model, the atmosphere is divided into 43 layers from 0.1 hPa
to 1013hPa and the channel transmissivity is calculated
layer by layer according to the actual vertical structure of
atmosphere so that the radiant brightness temperature of
every channel can be finally synthesized. Different from
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the traditional radiant model, the optics thickness d in the
RTTOVS-7 model can be expressed as

K

dij=dij1+Y; Z a;j k Xk, j> (1)
k=1

where Y; and Xj; are factors related with the actual
atmospheric condition, a;;x is the forecast factor obtained
by the accurate transmissivity model, 7 is the serial number
of channels, j is the serial number of different levels, and k is
the serial number of forecast factors.

2.2. Observation Data. The National Centers for Environ-
mental Prediction (NCEP) Global Forecast System (GFS)
final (FNL) girded analysis datasets, with horizontal resolu-
tion of 1° X 1°, are used to produce the background fields of
model.

In BDA method, the bogus data, including the sea level
pressure and wind fields, are calculated based on observa-
tional typhoon information by the following formulas:

)12
Py(r) :PC+AP<|1— [1+;(;> } }

_(ror £\ rlf
p or 4 2’

2

where P, is the sea level pressure of typhoon center; AP is a
parameter related with the sea level pressure gradient and is
determined by the maximum wind speed of typhoon; R is the
radius of the maximum pressure gradient, usually that of the
maximum wind speed; r is the radius of vortex; p is the air
density. The bogus typhoon is regarded as quasi-stationary in
the first 32 minutes. The time window of assimilating bogus
data is set to 32 minutes, and the same “observed data” is read
every 4 minutes [8].

The NOAA-16 AMSU-A data provided by National
Aeronautics and Space Administration (NASA) are used in
this paper. There are totally 15 detective channels of AMSU-
A data, which has been interpolated to match the horizontal
resolution of HIRS data. Finally, the resolution of subsatellite
point is 17.4 km. In every scanning line there are 56 detective
pixels which are axisymmetric along the satellite orbit. In
this paper, the presence of precipitation cloud has already
been checked before the performance of 4DVAR process.
Despite that AMSU has the ability to penetrate the cloud
layer to detect atmospheric temperature and humidity, while
the water droplets and ice crystals in precipitation cloud
are larger than the radiance wavelength, so the resulting
scatter can weaken the signal below the cloud layer. Since
it influences the detection, the presence of precipitation
cloud must be checked. The test formula of the precipitation
probability P (unit: %) of the ATOVS is expressed as follows
[18]:

1
P=——
1+ef (3)

f =10.5+0.184TB; — 0.221TB;5,

where TB; and TB;s are the observation brightness temper-
ature in channel 1 and channel 15, respectively. When P =
70, the radiance brightness temperature must be rejected.
During the assimilation procedure of AMSU-A data, quality
control method and channel choosing method are both
taken into consideration. Two quality control techniques are
employed: extreme value check and a check for departures
between the simulated observation value and the actual
observation value. The channel is selected according to the
peak energy contribution level of the sounder channel and
the influence of the sounding objective on the retrieval
results of temperature and water vapor. In fact, the 4 channels
from 6 to 9 are adopted in this paper.

2.3. Objective Function. When the bogus data and AMSU-A
data are assimilated into model at the same time, the total
objective function J can be defined as

J=Lh+L+]s, (4)

where J; is the deviation between the model control variable
X and the background variable X, ], is that between the
model control variable and the bogus data, and J; is that
between the simulated AMSU-A brightness temperature and
the actual satellite observation data. Their general form can
be expressed as follows:

J= 33 X=X B (X - Xy),
Js = 3 3 S {1P0) = P WolP(r) — Po(r)]

+H[V(r) = Vo) Wy [V (r) = Vo(n)]},

N | —

> > Hyra(X) - BTA) Wgra[Hpra(X) — BTA],
(5)

where the superscript “T” denotes transpose, B is the error
covariance matrix of background fields, P(r) and V(r) are,
respectively, sea level pressure and sea level wind of model
atmosphere, Wp and Wy are the corresponding weighting
coefficients, “>.” denotes the sum, the subscript sign “t”
denotes different observing times, the subscript sign “i”
denotes different spatial observing positions at the same
time, Hpra denotes the observed operator of calculating the
simulated brightness temperature with model atmospheric
variables, BT A denotes the actual AMSU-A observation data,
and Wpra denotes the weighting coefficient of detective
channels. We take W, = 1.61/hPa’ and W, = 0.185S*/m? in
all experiments, just like Xiao et al. [8]. Wpr4 is taken accord-
ing to the following principle: the weighting coefficients of
different channels should have the same contribution to the
total cost function. In this paper, they are, respectively, 10.41,
9.24, 12.54, and 11.90.

3. Numerical Experiments

3.1. Scheme Designs. Typhoon “Aere” (no. 0418) was gen-
erated over the sea at about 1400 km away from the east
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TaBLE 1: The schemes of numerical simulation and assimilating experiment.

Scheme Initial fields of model

Control experiment (Scheme 1) Provided by NCEP data

Bogus data assimilation experiment (Scheme 2) Provided by BDA method

Total data assimilation experiment (Scheme 3)

Provided by BDA method combined with AMSU-A data assimilation method

of Luzon, Philippines on August 20, 2004, and then it
moved west-northward under the lead of the subtropical
high, with maximum wind speed of up to 43 m/s. “Aere”
swept the adjacent waters to northern Taiwan on dawn of
August 25 and in the same afternoon it landed on Fujian
province of China with wind speed of 35 m/s. After landing
it gradually downgraded to a tropical depression. This
paper focuses on typhoon intensity forecasting, typhoon
track changing, landing and vapor variation. Numerical
simulation is performed for 72 hours with the initial time
set at 12:00 on August 23. The satellite profiles at 17:45
on August 23 are assimilated within 345 minutes, with the
assimilating window set to 360 minutes.

The schemes of numerical simulation and assimilating
experiments are shown in Table 1, including a control
experiment (Scheme 1) and two assimilating experiments
(Schemes 2 and 3).

3.2. Numerical Results

3.2.1. The Initial Fields. The initial fields of three schemes
are shown in Figure 1, in which the left panels are sea level
pressure fields (units: hPa) and the right are temperature
fields at 500 hPa (units: °C).

Figure 1(a) shows that the isobars on sea level at initial
time provided by NCEP data are very sparse. The minimum
central sea level pressure is 988 hPa while the actual observed
value is 975hPa. Figure 1(c) indicates that the intensity
of initial typhoon is effectively enhanced, with central sea
level pressure of 975 hPa after the bogus data is assimilated,
which is in accordance with the observed value. Figure 1(e)
indicates that the intensity of initial typhoon in Scheme
3 is also 975hPa when BDA method and AMSU-A data
assimilation method are combined. In fact, when only the
AMSU-A data is assimilated, the intensity of initial typhoon
would not obviously be improved. This implies that BDA
method is more effective than AMSU-A data assimilation
method in improving the intensity of initial typhoon.

Figure 1(b) shows that the “warm core” structure of
initial temperature fields in NCEP data is not obvious and
the central temperature of initial typhoon is about 0°C.
Therefore, the weak “warm core” will greatly influence the
forecasting intensity and forecasting track. Figures 1(d) and
1(f) show that there are obvious “warm core” structures
both in Schemes 2 and 3, in which the maximum central
temperature is 3.5° and 3.3°, respectively. It denotes that
data assimilation is effective in improving temperature fields
of initial typhoon, especially in Scheme 3, when AMSU-
A data are assimilated, more mesoscale information are
added into initial temperature fields. In the two assimilating

schemes, although temperature data is not directly assimi-
lated, temperature fields can still be adjusted correspondingly
under the constraints of model dynamics whenever the other
observation data are assimilated; it is a significant advantage
of 4DVAR technique.

The vorticity fields of typhoon at initial time in the
three schemes are shown in Figure 2. The left panels denote
the horizontal vorticity patterns on 300 hPa at initial time
and the right ones denote the vertical vorticity patterns at
initial time (vertical sections are given cross the center of
typhoon along the zonal direction, where arrows denote the
synthetic effect of horizontal velocity v and vertical velocity
w*200). Comparing Figure 2(a) with Figure 2(c), it can be
found that the effect of the BDA method is not remarkable in
improving vorticity fields at upper troposphere. Figure 2(e)
indicates that when AMSU-A data is assimilated the vorticity
fields of typhoon at initial time change obviously and
many mesoscale structures are reconstructed. Comparison
between Figures 2(b) and 2(d) shows that although the
BDA method can enhance the inner vertical circulation of
the initial typhoon, it has little influence on the typhoon
circulation at upper troposphere. Figure 2(f) shows that
when BDA method is combined with AMSU-A data assim-
ilation method, a lot of meso- and microscale information
are introduced into the vertical vorticity fields, which
proves the positive effect of assimilating AMSU-A brightness
temperature data on typhoon numerical forecasting. Though
the BDA method is not very effective in improving the
initial typhoon circulation fields at high level, it is more
effective in decreasing sea level pressure of initial typhoon.
And the direct assimilation of AMSU-A data is not effective
in improving the intensity of initial typhoon, but it does well
in improving the circulation structure of initial typhoon at
upper troposphere. Therefore, in order to improve typhoon
numerical forecasting, combining BDA method and AMSU-
A data assimilation method would be beneficial to optimize
the initial fields separately from low level and high level. In
this way, not only the intensity of initial typhoon can be
improved, but also the mesoscale structure of initial typhoon
can be reconstructed.

It is well known that there is no cloud water in the initial
fields of numerical model, just like in Scheme 1. But the
cloud water of the optimal initial fields will increase during
the 4DVAR iterative process by assimilating observation data.
That is to say, the cloud water is formed by MM5 adjoint
model under the constraints of model dynamics. Figure 3
shows the cloud water content (units: kg/kg) of the optimal
initial fields on 400 hPa in Schemes 2 and 3. In Scheme 2,
the circular cloud water is formed in the optimal initial fields
due to assimilating the bogus data. While in Scheme 3, a
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reasonable cloud water pattern is formed due to assimilating
the AMSU-A data. The coverage of satellite scanning can
also be clearly shown in Figure 3(b), especially the location
of actual typhoon, which is denoted by blank section in the
center of figure.

3.2.2. Intensity of Simulated Typhoon during 72 Hours in
the Three Schemes. The varying curves of SLP (sea level
pressure) of simulated typhoon during 72 hours in the

three schemes are shown in Figure 4. Figure 4 shows that
the typhoon intensity in Scheme 1 varies gently during the
whole period, which is quite different from the trend of
observed data, with the bias of 13 hPa at the initial time, the
maximum bias of 27 hPa and the mean bias of 15hPa. In
Schemes 2 and 3, the advantage of BDA method is brought
into fullest play. In both schemes, the central intensity of
initial typhoon is improved greatly, and the central intensity
of initial typhoon is in complete accordance with observation
data (975hPa). Furthermore, the simulated SLP during 72
hours is also improved greatly and its general varying trend
is in accordance with OBS, with the mean bias of 6.3 hPa
in Scheme 2 and 5.6 hPa in Scheme 3. The best one is the
former 48 hours, during which the maintaining stage of
typhoon is well simulated, with the mean biases of less than
3 hPa. The intensity changes are closely related with landfall.
If the landfall time is not well predicted, it is difficult to
have a good intensity prediction of landfall typhoons. The
typhoons in Schemes 1 and 2 do not land at all, while it
is delayed for about 12 hours in Scheme 3. So for the last
24 hours, the observed typhoon is weakened rapidly after
landfall, while the simulated typhoon intensities in three
schemes are varying slowly. However, Scheme 3 is better
than Scheme 2 in the last 24 hours, and both Schemes 2
and 3 are far better than Scheme 1 when the whole period
is concerned. Besides, because the assimilating of AMSU-A
data is added into Scheme 3, the mesoscale information of
initial fields is further increased and the surrounding fields
of initial typhoon can be well simulated. Since the initial
fields are further adjusted with AMSU-A data assimilation
method, the simulating results of Scheme 3 are better than
those of Scheme 2.

3.2.3. Track of Simulated Typhoon during 72 Hours in the
Three Schemes. Comparison of typhoon track in the three
schemes with observed typhoon track during the simulated
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72 hours is shown in Figure 5. The figure shows that the
observed typhoon firstly moves to the west-north and then
sweeps over the adjacent waters to northern Taiwan, and
finally lands on Fujian province of China. Figure 5(a) shows
that the simulated track of typhoon in Scheme 1 is greatly
different from the observed track; the simulated typhoon
moves with irregular speed. Figure 5(b) shows that the
simulated track of typhoon in Scheme 2 is close to the
observed data, but the typhoon moves slowly and does not
land on Fujian province of China at last. Figure 5(c) shows
that the simulated track of typhoon in Scheme 3 is the best
one, in which the whole moving trend of typhoon is closest
to the observed data and the simulated typhoon finally
lands on Fujian province of China, with landing location
in accordance with the observed data, although its moving
speed is still smaller than that of the observed data.

The bias curves of simulated typhoon track in three
schemes from the observed track during 72 hours are shown
in Figure 6. From Figure 6 it can be found that the location
of typhoon at initial time in Scheme 3 is the closest to the
observed typhoon location, with 15 km distance away from
each other. In the following period, the biases of Scheme 3
are also smaller than those of other schemes, with 112 km in
Scheme 3 while 228 km in Scheme 1 and 256 km in Scheme 2
in 48 hours; 231 km in Scheme 3 while 278 km in Scheme
1 and 351 km in Scheme 2 in 72 hours. Therefore, it can
be concluded that although the BDA method is effective
in improving typhoon intensity in the simulation, it could
not much effectively improve typhoon track. The AMSU-
A data assimilation method has no significant effect on
improving typhoon intensity but it can greatly reconstruct
mesoscale information of initial fields and greatly improve
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FIGURE 6: Biases of simulated typhoon track during 72 hours in
the three schemes (Hollow square point line, Scheme 1; Hollow dot
point line, Scheme 2; Solid square point line, Scheme 3).

typhoon track simulation. Besides, the intensity changes are
closely related with landfall. If the landfall time is not well
predicted, it is difficult to have a good intensity prediction
of landfall typhoons. So for the last 24 hours, the simulated
typhoon intensity in Scheme 3 is closer to the observed one
than in Scheme 2. It further proves that typhoon intensity
simulation and typhoon track simulation can be improved
simultaneously by combining BDA method and AMSU-A
data assimilation method. The typhoons in Schemes 1 and
2 do not land at all, while in Scheme 3 it is delayed for about
12 hours.

By comparing Figure 1(d) (Scheme 2) with Figure 1(f)
(Scheme 3), and by comparing Figure 2(d) (Scheme 2)
with Figure 2(f) (Scheme 3), we can find that many
mesoscale/microscale systems are introduced into initial
vorticity fields at high level of atmosphere when AMSU-A
data is assimilated, and the AMSU-A data helps to improve
the circulation of typhoon at high level. In our cases, the
AMSU-A data assimilation is helpful to improve typhoon
track forecast. In order to reveal the reasons, we also study
the vertical structure of temperature fields and geopotential
height fields. It is shown that temperature difference and
geopotential height difference of optimal fields (Scheme 3
minus Scheme 2) are both located at high level, especially
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FiGure 7: The vertical sections of temperature difference ((a); °C)
and geopotential height difference cross the center of typhoon along
the zonal direction ((b); m) between Schemes 3 and 2 (Scheme 3
minus Scheme 2) in optimal initial fields.

at 300 hPa (shown as Figure 7). The results illustrate that
AMSU-A data assimilation can be helpful to improve the
high-level fields. In this paper, channels 6-9 of AMSU-A
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data are selected in assimilation experiments. Because their
peak energy contribution levels are mainly located at upper
troposphere, the observed information of AMSU-A data
mainly concentrates at upper troposphere and AMSU-A data
assimilation can have a positive effect on reconstructing the
mesoscale information at upper troposphere. This is the
reason that though the direct assimilation of AMSU-A data
is not effective in improving the intensity of initial typhoon,
it does well in improving the circulation structure of initial
typhoon at upper troposphere.

Some assimilating experiments and simulating experi-
ments on other typhoons are also performed by use of BDA
method combined with AMSU-A data assimilation method,
and the same numerical conclusions can also be achieved.
The results are shown in Table 2.

4. Conclusions

With BDA method combined with AMSU-A data assimila-
tion method, the assimilating experiments and simulating
experiments about some typhoons are carried out in this
paper by using the MM5V3 model, the RTTOV-7 model
and their adjoint models. The numerical results show the
following.

(1) If the initial fields are directly provided by NCEP
data, the isobars on sea level at initial time are
very sparse and the “warm core” structure of initial
temperature fields is not obvious. Compared with
the real observations, there are big biases both in
intensity simulation and track simulation.

(2) After being adjusted with the BDA method, the
initial fields can effectively describe the initial cir-
culation structure of typhoon. The BDA method
can enhance initial typhoon intensity and improve
initial typhoon thermal structure such as “warm
core” structure. Though this method is effective in
improving typhoon intensity simulating, it has no
significant effect on improving typhoon track.

(3) Combining BDA method and AMSU-A data assimi-
lation method can improve not only typhoon inten-
sity simulation but also typhoon track simulation.
By use of 4DVAR technique, the circulation structure
of analytical typhoon is greatly improved and the
“warm core” structure is also enhanced. “Cloud
water” arises in optimal initial fields of typhoon after
observed data are assimilated. The running status of
numerical model is changed into “warm start” from
“cold start”, which is more reasonable. So combining
BDA method and AMSU-A data assimilation method
effectively may be an important way to increase the
accuracy of typhoon numerical forecasting.

Though some interesting results have been obtained in
this paper, further more experiments on other typhoons
should be performed to confirm them. And AMSU-B data
and HIRS data will be assimilated in further research work to
improve the initial fields of typhoon.
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Observations from four Global Position System (GPS) Radio Occultation (RO) missions: Global Positioning System/Meteorology,
CHAallenging Minisatellite Payload, Satellite de Aplicaciones Cientificas-C, and Constellation Observing System for Meteorology,
Ionosphere and Climate and Taiwan’s FORMOsa SATellite Mission #3 (COSMIC/FORMOSAT-3) are collected within a 600 km
radius and +180 minute temporal window of all observed tropical cyclones (TCs) from 1995 to 2006 that were recorded in the
global hurricane best-track reanalysis data set (Jarvinen et al. (1984); Davis et al. (1984)). A composite analysis of tropical cyclone
radial mean temperature and water vapor profiles is carried out using the GPS RO retrievals which are colocated with global
analysis profiles and available in situ radiosonde observations. The differences between the respective observations and analysis
profiles are quantified and the preliminary results show that the observations collected within TCs correspond favorably with both
the analysis and radiosonde profiles which are colocated. It is concluded that GPS RO observations will contribute significantly to
the understanding and modeling of TC structures, especially those related to vertical variability of the atmospheric state within

TCs.

1. Introduction

A tropical cyclone (TC) spends most of its lifetime over the
global oceans and often in regions where regularly collected
in situ observations are scarce. As a result, the kinematic and
thermodynamic structures of TCs were largely unobserved
using the conventional observation network. During the
mid-1960s through the late 1970s, the advent of aircraft
reconnaissance missions provided scientists the ability to
create composite analyses of the energy budgets within these
events. Many case studies have been executed using the
collected data which include Riehl and Malkus [1], Miller
[2], LaSeur and Hawkins [3], Gray and Shea [4], Shea and
Gray [5], and Jorgensen [6].

More recent advancements, especially for those which
apply remote sensing technologies, have provided even more
detailed insight into the kinematic and thermodynamic
structure for TCs. Example applications include the use of
airborne Doppler radar [7-10], stereoscopic and infrared
satellite observations [11, 12], and field programs [13]. As a

result of these observations, further studies investigating the
inner-core structures, dynamics, and wind fields of TCs have
been performed, which have led to further understandings of
the characteristics for TCs.

In 1995, a proof-of-concept mission, GPS/MET ( Global
Positioning System/METeorology.) [14, 15] for the Global
Positioning System (GPS) Radio Occultation (RO) technique
was launched. The GPS RO technique was developed and has
been continuously refined by the Jet Propulsion Laboratory
(JPL) and Stanford University. Nearly five years after the
success of GPS/MET, a collaborative effort between Germany,
Argentina, and the United States resulted in the launch of 2
additional experiments—CHAMP ( CHAllenging Minisatel-
lite Payload. ) [16] and SAC-C ( Satellite de Aplicaciones
Cientificas-C. ) [17] . Finally, a collaborative effort between
Taiwan and the United States (COSMIC/FORMOSAT-3
(Constellation Observing System for Meteorology, Iono-
sphere and Climate/FORMOsa SATellite Mission #3.)—
henceforth COSMIC) resulted in the successful launch of 6
satellites, in addition to still functioning CHAMP.



For meteorological studies, some of the most appealing
characteristics of the GPS RO observations is the large
number of observations within the middle latitudes, the
high vertical resolution (nearly 100-meter), and the ability
of the radio signals to penetrate cloud cover while remaining
(largely) unaffected by precipitation. The focus and purpose
of this study is to evaluate GPS RO observations collected
within TCs and compare to available and colocated in
situ observations (radiosondes) and global model analysis
profiles. Composite analysis techniques, which are required
due to the low horizontal resolution of vertical profiles,
are utilized with the intent of providing a basis for which
TC GPS RO observations can be used in the initialization
Numerical Weather Prediction (NWP) using a variant of
data assimilation techniques. The error statistics calculated in
this study, between the observations and colocated analysis
profiles, provide useful information regarding how the
GPS retrieval can be weighted for use in advanced data
assimilation procedures.

The remainder of this manuscript is organized as follows:
the following section briefly describes the GPS RO technique
which is followed by a description of the data collection
and sampling methodology used to construct the composite
analysis profiles. Section 4 provides a intercomparison of the
resulting composite analyses while this manuscript concludes
with a discussion and summary of the current results.

2. The GPS RO Technique as
Applied to Meteorology

The GPS system was first implemented by the military for the
purpose of communicating position and time information to
different global battle fields. Presently, there are 24 satellites
in orbit, each inclined at 55° to the ecliptic plane. An RO
occurs as a GPS satellite—transmitting a radio signal either
rising or setting behind the Earth, comes within view of a
Low-Earth Orbiting (LEO) satellite with an on-board GPS
receiver. As an RO occurs, the transmitted radio signal is
Doppler shifted as a result of the atmospheres vertical density
gradients. This Doppler shift can be related to the bending
angle of the ray path which reflects the integrated effect of
refraction along the ray path [14, 16, 18].

The LEO maintains the position and velocity measure-
ments for each of the GPS satellites. Given the precision
of these measurements, the expected Doppler shift of the
radio signal can be calculated. Applying a double-difference
technique [19], the clock error shift (or excess Doppler shift)
is determined from the refracted radio signal. This excess
Doppler shift is the measurement obtained by subtracting the
observed shift from the clock error shift. The quantities of
bending angle («), impact parameter (a), and tangent point
describe this excess Doppler shift [18]. The refraction index
(n) is related to the above quantities via

Inn(@) =+ [~ o(x)

T J)a x2—a?

dx. (1)

If the refraction index is assumed constant within each
atmospheric layer while the assumption is made that no
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TaBLE 1: GPS RO missions providing RO measurements through
tropical cyclone regions defined via the respective years HBTRA.

Mission Mission ID Operation 1DVAR
GPS METeorology GPS/MET 1995-1997 ECMWEF
Sy}telh.te de Aplicaciones SAC-C  2001-2002 ECMWF
Cientificas-C

CHAllenging Minisatellite CHAMP 2001 ECMWE
Payload

Constellation Observing

System for Meteorology, COSMIC 2006  GFS/AVN

Ionosphere, and Climate

significant asymmetric horizontal variations in temperature
and moisture are present [20], the relation in (1) can be
solved via an Abel transform [21, 22]. The atmospheric
refractivity is then related to various tropospheric, strato-
spheric, and ionospheric quantities using the following
relation:

e
F-

Pressure (P) and temperature (1) compose the dry
refractivity term while water vapor pressure (e) and virtual
temperature constitute the wet refractivity term. Finally, the
electron density (n,) and the carrier frequency (f) contribute
the ionospheric refractivity component. For the purposes of
tropospheric studies, 7, = 0 and only the variables P, T, and
e contribute information along the refractivity profile which
reduces (2) to

p 5 € 6
N = 77.6T +3.73 x 10 T 40.3 x 10 (2)

P e
~ 77.6— +3. 10° —.
N 776T 3.73 x 10 T2 (3)

The calculation to find each of the atmospheric quantities
in (3) is inherently an underspecified problem. For the
dry atmosphere, the refractivity profile and the hydrostatic
equation define T and P. However, when water vapor (e) is
present, specifically below 10 km, a situation occurs involving
2 equations with 3 unknowns. Independent knowledge of
either T, P, or e is required to solve for the remaining two
variables [23]. Using a 1-dimensional variational (1IDVAR)
assimilation technique, global analysis fields which have
been interpolated to GPS RO positions, allow moisture
observation to be obtained from the dry-refractivity profiles
[24]. For the GPS/MET, SAC-C, and CHAMP missions, the
analyses obtained from the European Center for Medium-
Range Weather Forecasting (ECMWF) global model provide
the analysis profiles for the estimation of e while the National
Center for Environmental Prediction (NCEP) Global Fore-
casting System (formally the Aviation model—GFS/AVN)
provide the profiles for the COSMIC retrievals.

3. Observation Sampling

This study utilizes both GPS RO observations obtained
via the GPS missions listed in Table 1 and the hurricane
best-track reanalysis (see, [25, 26], Joint Typhoon Warning
Center) (HBTRA) data sets during the respective missions.
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Ficure 1: GPS RO profiles located within a 600 km radius and
+180 temporal windows of the HBTRA TC positions for each Saffir-
Simpson intensity classification. 741 observations are collected
during the 1995-2006 era within the North-Atlantic, Eastern
Pacific, Western Pacific, Southern Indian, and Southern Pacific
ocean basins while the respective GPS RO missions are active.

The GPS RO observations are retrieved from the COSMIC
online database which also provides colocated global analysis
and in situ observational profiles for the respective dry-
and moist-refractivity profiles. For this study, the moist-
refractivity profiles are investigated and compared to the
available colocated global analysis and available in situ
observation (radio- and dropsonde) profiles. The derivation
of the moist-refractivity profile follows the approach of
Kursinski et al. [24] discussed above.

The HBTRA contains latitude and longitude positions
(at 0.1° horizontal resolution), minimum central sea-level
pressure (hPa) and maximum one-minute surface wind
speed (kts). If a GPS RO observation is temporally colocated
within +180 minutes and spatial located within a radial
distance of 600-km (relative to the TC position in the
HBTRA) it is included in the composite analysis. Since TCs
are rarely homogenous in size and in order to account
for varying translational speeds, the radial distance value
of 600-km is chosen so as not to exclude profiles which
may have also occurred within the immediate environment
surrounding the respective TC. The 600-km radial distance
also corresponds to the standard proxy value which defines
a TC’s radial region of influence (NOAA/NHC/NWS, 1999).
This methodology is applied for each of the previously stated
missions (see Table 1) in the North Atlantic, Eastern Pacific,
Western Pacific, South Indian, and Southern Pacific ocean
basins. Figure 1 illustrates the positions of 741 observations
which were collected within TCs of the color-coded Saffir-
Simpson wind-speed intensity classification.

The distribution of observations, as functions of both
radial distance and elevation, are nonhomogenous as sug-
gested by Figures 2 and 3. As the relative distance from
the observation to the TC center decreases (increases),

120
110
100 -
90 -
80 A

70 A
60
50 A
40 A

GPS RO profile counts

30 A

20 A
10 A

0 50 100 150 200 250 300 350 400 450 500 550 600
Radial distance (km)

FIGUre 2: Histogram of GPS RO observations collected within
depression (purple), tropical storm (cyan), hurricane (red), and all
TC (black) environments as a function of radial distance. Radial
distance interval is 50 km.
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FiGure 3: Radial cross-section of GPS RO counts for all TCs
in different 50 km radial distance bands. Contour interval is 5
observations.

the number of observations also decreases (increases). The
number of observations also increases (decreases) as the
elevation increases (decreases). There exists a number of
plausible explanations for this phenomenon. Among the
possibilities is the impact of water vapor (and the associated
gradients) as profiles extend deeper through the troposphere.
As shown in Figure 1, a large number of observations
are collected between 20°S and 20°N. The tropospheric
component with the largest variation in the tropics is
water vapor [27]. Water vapor gradients can impact the
profiles by inducing instances of super-refractivity [Leroy,
S.—personal communication] and multipath propagation
[Lohmann, M.,—personal communication]. Another reason
for profile truncation may be the GPS-LEO geometry for the
RO occurrences. A dry-refractivity profile may be terminated
abruptly if the GPS sets behind the Earth’s limb before



reaching a certain depth (distance) into the troposphere.
However, determining the precise causes for the vertical
depth variances for the collected profiles is not addressed in
this study.

The primary assumption made when creating the com-
posite mean structures from the collected observations is of a
warm-cored thermodynamic structure. For the extratropical
transitioning events (cases typically 40 degrees north and
south of the equator), this assumption may not be valid
[28-30]. However, as illustrated in Figure 1, a majority
of the TCs within which observations are collected occur
within the tropics and only some weaker and/or decaying
systems persist into the mid-latitudes. It has been shown
that weaker TCs and those having undergone extratropical
transition may also contain vast asymmetries in their
respective thermodynamic fields. These asymmetries, when
used to calculate composite means, may result in the
creation of features which may appear nonrepresentative
of TC thermodynamics. Noting that there remains a large
number of observations collected from weaker systems at
lower latitudes, we believe the current sample size is large
enough to mitigate the profound effects for weak and largely
asymmetric systems. Based on Figures 2 and 3, the composite
means are calculated from observations collected at radial
distances between 200 and 600 km. Although there exists a
small sample of observations at radii less than 200 km (as
illustrated in Figures 2 and 3), the inner-core composite
appear dramatically different from the results of previous
studies [1-6] which may be caused by the aforementioned
impact of water vapor gradients which are known to occur
within the eye-wall and convective rain-bands of TCs.
The composite analyses constructed using the observations
collected within the 200- to 600-km range correspond more
readily with the results from previous studies.

4. Intercomparisons for Observation-Derived
Profiles and Colocated Ancillary Profiles

In order to provide a fair inter-comparison, only GPS
RO profiles having either a corresponding colocated global
analysis or (in situ) radiosonde profile, are considered for
the composite mean calculations. This results in 634 and
209 profiles for the global analysis and radiosonde-derived
profiles, respectively. The GPS RO observations are defined
along a fixed vertical grid, while the global analysis and in situ
(henceforth, ancillary) profiles are defined along irregular
vertical grids. Therefore the colocated ancillary profiles are
interpolated to the same fixed vertical levels of the GPS RO
observations. No extrapolation is performed above or below
the maximum and minimum elevations for the respective
ancillary profiles. The composite radial mean values are cal-
culated for the observations and ancillary profiles assuming
a 50-km radial interval. This interval is chosen in order
to minimize the number of missing datum values which
occur when using a more narrow distance interval while also
attempting to mitigate the impact of smoothing which occurs
when using more broad intervals. Only those radial mean
values calculated from more than 5 observations within
the respective interval are maintained in order to mitigate
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the effects of erroneous values. These intercomparisons
are conducted between the available observations and the
derived profiles from the respective colocated ancillary data.

Figure 4 illustrates radial mean comparisons for the
composite temperature profiles derived from the GPS RO
observations and the corresponding colocated profiles.
When comparing the GPS RO retrieved temperature (and
moisture) with the global analysis profiles, one expects
minimal variance between the respective data sets since
the GPS RO moisture profiles are derived using the GPS
RO dry-refractivity observations and a 1IDVAR assimilation
technique to estimate the impact of the characteristics within
the atmospheric column nearest to where the respective
observation was collected [24]. Inspecting Figures 4(a) and
4(b), we see that this is generally true for the composite tem-
peratures. Figure 4(c) presents the differences between the
composite temperatures and colocated global analysis radial
mean profiles. The largest values are on the order of 1.5°C
and generally concentrated within the lower elevations where
the GPS RO retrievals are known to be (negatively) impacted
by the lower-troposphere moisture gradients. Figures 4(d)
and 4(e) are similar to Figures 4(a) and 4(b), but for GPS
RO-derived temperature profiles which have corresponding
colocated (in situ) radiosonde temperature profiles. Similar
features as those seen in the previous comparison are noted.
The large differences near the surface (on the order of 3.5°C),
as seen in Figure 4(e), are due to erroneous measurements
from a colocated radiosonde.

Figure 5 is similar to Figure 4, except that it illustrates
radial mean composite computed from the vapor pressure
profiles. We consider only the lowest 10-km of the tropo-
sphere due to the lack of appreciable water vapor content at
higher elevations. Again, small variances between the GPS
RO observations and the colocated global analysis profiles
are shown. We note the large number of missing values near
the surface in Figure 5(a), due to the aforementioned caveats
of the GPS RO retrieval algorithm and subsequent data
processing. Figure 5(c) demonstrates that there is general
agreement between the observations and analysis, with the
greatest difference between the composite observations and
analyses is of about 1.6 hPa. This is a result of the contrasting
resolutions in the observations and the colocated global
analysis profiles used to derive the moisture within the
respective atmospheric column. It is noted, however, that
the majority of the (larger) differences exist near the surface
and within the regions impacted by the water vapor gradient
induced multipath propagation and/or super-refractivity.

The relationship between observations and colocated
comparison profiles is illustrated in Figure 6. All obser-
vation values collected from GPS RO moisture retrievals
reside along the x-axis while the respective comparison
profiles are along the y-axis. Figure 6(a) compares GPS
RO retrieved temperatures (°C) versus colocated global
analysis profile temperatures (°C) while Figure 6(b) does
the same but for colocated radiosonde temperature profiles.
Figures 6(c) and 6(d) are similar, except that they provide
an inter-comparison between water vapor pressure (hPa)
observations and colocated profiles. There exists a corre-
lation coefficient of 0.997 between the collected GPS RO
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FiGure 4: Radial mean temperature (*C) intercomparisons for observations colocated with both global analysis profiles and radiosondes.
The x-axis is radial distance (km) while the y-axis is vertical elevation (km). (a) Radial mean temperatures from GPS RO observations with
available colocated global analysis profiles. (b) Radial mean temperatures from colocated global analysis profiles. (c) Radial mean differences
between colocated observations and global analysis profiles. (d) Radial mean temperatures from GPS RO observations with available
colocated radiosonde observations. (e) Radial mean temperatures from colocated radiosonde observations. (f) Radial mean differences

between colocated observations and radiosonde observations. White regions in (a), (b), (d), and (e) represent where either the observations
or colocated profiles are missing data.
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FIGURE 5: Same as Figure 4 except for water vapor pressure (hPa). Elevations from the surface to 10-meters are only considered due the lack

of appreciable water vapor in the middle- to upper-troposphere.

observations and the colocated global analysis temperature
profiles (Figure 6(a)) while and the inter-comparison of
the observations and the radiosondes yields a correlation
coefficient of 0.994. The outliers are attributed to errors
in the radiosonde observations. Figures 6(c) and 6(d)
demonstrate more variability within the water vapor pressure
(hPa) fields than within the temperature fields. However,

high correlations still exist. The inter-comparison for the
collected observations and the colocated global analysis
profiles (Figure 6(c)) correlate to about 0.994 while the
inter-comparison between the observations and radiosondes
(Figure 6(d)) are correlated at approximately 0.892.

Finally, Figures 7(a) and 7(b), respectively, illustrate the
differences for the mean temperature profiles—for each
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FIGURE 6: Scatter-plot of observations (x-axis) versus colocated global analysis profiles and/or radiosonde observations (y-axis). Red line
represents best-fit line. (a) Radial mean temperature (°C) observations versus radial mean colocated global analysis temperature (°C)
profiles. (b) Radial mean temperature ("C) observations versus radial mean colocated radiosonde observation temperature (°C) profiles.
(c) Radial mean water vapor pressure (hPa) observations versus radial mean colocated global analysis water vapor pressure profiles, from
the surface to 10-km. (d) Radial mean water vapor pressure (hPa) observations versus radial mean colocated radiosonde observation water

vapor pressure profiles (hPa).

50-km radial interval, which compare observations to the
colocated global analysis profiles and radiosondes. The blue
shading indicates that the GPS RO retrieved radial mean
temperature along the profile is colder than the colocated
analysis (or radiosonde) profile, while the red shading indi-
cates that the observation is warmer. Within the lower 15-km
of the troposphere, for each radial interval in Figure 7(a), the
GPS RO observation temperature is warmer with exception
of the 400-km interval which fluctuates slightly by being

either warmer or cooler at irregular intervals along the
profile. The inversion in the respective profiles represents
the mean tropopause height within each interval. Above the
inversion (near the tropopause), we see that the observation
temperatures are generally cooler than the colocated profiles.
Above this layer and into the troposphere, the observations
suggest a warmer temperature in the stratosphere than do
the colocated profiles. The spread of the blue and red
shadings increases as a function of increasing elevation. This
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Figure 7: Radial-interval mean intercomparisons for GPS RO
observations and (a) colocated global analysis, and (b) colocated
radiosonde observation temperature (°C) profiles. Red shading
indicates where radial-interval mean temperature is less than the
colocated profiles while the blue shading indicates where the
observation temperature is greater than the colocated profiles. The
x-axis represents the radial distance (km) the mean profile while the
y-axis is vertical elevation (km).

is due to the lack of resolution for the colocated analysis
profile resolutions in the upper-troposphere and lower-
stratosphere.

Figure 7(b) is similar to Figure 7(a), but for GPS RO
observations and colocated radiosonde mean temperature
profiles. There are evident spikes which indicate warmer
temperatures via the observations (250-km and 550-km) and
colder temperatures via the observations (350-km, 400-km,
and 450-km). In previous discussions we have noted some
mean values from the radiosonde analysis profiles which
seemed unrealistic (and possibly in error) which may in-part
explain the largely colder observational profile at 350-km. It
is also noted that the radiosonde and observations are not
colocated exactly in space and time with the observation, but
act as verification for selected GPS RO observations. This
offset in time and space, can lead to differences which do not
necessarily indicate deficiencies for the temperature derived
from the GPS RO. This artifact of the colocation offset may
become even more pronounced within TCs. Above 5-km,
the differences toward a cold or warm bias are small (on the
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FIGURE 8: Same as Figure 7, but for Radial-interval mean inter-
comparisons for GPS RO observations and (a) colocated global
analysis, and (b) colocated radiosonde water vapor pressure (hPa).
Elevations from the surface to 10-km are only considered due
the lack of appreciable water vapor in the middle- to upper-
troposphere. Red shading indicates where radial-interval mean
vapor pressure is less than the colocated profiles while the green
shading indicates where the observation vapor pressure is greater
than the colocated profiles.

order of 1°C) such that we conclude that observations and
the colocated radiosonde derived mean temperature profiles
are in satisfactory agreement.

Figures 8(a) and 8(b) provide analyses similar to those
in Figures 7(a) and 7(b), except for mean water vapor
pressure profiles. The red shading indicates where the GPS
RO observations are less than the colocated analysis profiles
while the green shading indicates that there exists a larger
mean vapor pressure than the colocated profiles. For the
colocated GPS RO and analysis profiles (Figure 8(a) ), the
general trend is that the surface observations indicate a
greater water vapor pressure than do the colocated analysis
profiles. However, it is noted, once again that as the water
vapor gradients increase toward the surface, the information
obtained from the respective refractivity profile subject to the
impacts of multipath propagation and/or super-refractivity.
Thus, the accuracy of these profiles should be scrutinized.
The mean profiles within the inner 200- to 450-km indicate
that the column contains less water vapor than does the
colocated analysis profile by approximately 1- to 2-hPa.
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Beyond a radial distance of 450-km, the observations begin
to report slightly more water vapor in the column.

Figure 8(b) compares the water vapor pressure mean-
profiles from colocated GPS RO observations and radioson-
des. We note the large disagreements (larger water vapor
pressure content) at 250- and 350-km. The remaining
profiles show a general agreement between the observations
and analysis with no more than a 2-hPa bias relative to the
colocated analysis profile. The increased spread at 550-km
is likely attributed to the previously discussed spatial and
temporal offsets.

5. Summary and Conclusions

A methodology applied for the collection of 741 GPS RO
observations spatially and temporally colocated with TC
positions within the HBTRA—from 1995-2006, is employed
to assess the quality of GPS RO retrievals collected within
TCs. These events often occur in regions known to have large
lower-troposphere water vapor gradients and are regions
where the GPS RO retrieval algorithm is known to become
degraded via multipath propagation and super-refractivity
(amongst other effects). In order to understand the impact
that these caveats may have on the collected retrievals, avail-
able colocated global analysis and in situ radiosonde obser-
vation profiles are also collected. Both the global analysis
and radiosonde observations provide an inter-comparison,
used as a metric to validate the collected observations. It is
shown, via the respective intercomparisons, that there exist
high correlations between the observations (GPS RO) and
analyses (global and radiosonde observations).

Based on the high correlations, it is plausible to suggest
that the GPS RO observations—collected within regions,
which are often devoid of regular observations—provide a
realistic observation of the atmospheric temperature and
moisture within the rain-band regions (i.e., 200- to 600-
km) of TCs. The composite methodology cannot represent
the small scale variability which may be represented by
individual profiles collected within specific TC events. Due to
the nonuniform distribution (both temporally and spatially)
of the observations, collecting a sufficient number of profiles
for the purpose of a similar study using a single event
is difficult. However, the opportunity exists, pending the
continuation of the GPS missions, to collect more obser-
vations (in addition to those presented here), to create
an even larger composite data set. These unique profiles
provide an opportunity to further both the understanding
related to the observational and modeling aspects of TC
events. These high-resolution thermodynamic observations
within the middle- and upper-troposphere of the TC may
help to provide additional insights for the current NWP
TC initialization methodologies and as a result contribute
to the overall understanding related to the existing NWP
deficiencies plaguing TC track and intensity forecasts.
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The importance of wind observations has been recognized for many years. However, wind observations—especially three-
dimensional global wind measurements—are very limited. A satellite-based Doppler Wind Lidar (DWL) is proposed to measure
three-dimensional wind profiles using remote sensing techniques. Assimilating these observations into a mesoscale model is
expected to improve the performance of the numerical weather prediction (NWP) models. In order to examine the potential
impact of the DWL three-dimensional wind profile observations on the numerical simulation and prediction of tropical cyclones,
a set of observing simulation system experiments (OSSEs) is performed using the advanced research version of the Weather
Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system. Results indicate
that assimilating the DWL wind observations into the mesoscale numerical model has significant potential for improving tropical

cyclone track and intensity forecasts.

1. Introduction

Although numerical weather prediction (NWP) models have
been improved significantly over the past two decades, the
forecast accuracy of high-impact weather events, such as
tropical cyclones, is still a challenging problem in practical
applications. Since most tropical cyclones occur over tropical
oceans, where conventional observations are sparse, large
uncertainties are presented in the numerical simulations
and predictions due to inaccurate initial conditions. Remote
sensing techniques provide an opportunity to observe the
atmosphere, especially the atmospheric temperature, mois-
ture, and ozone over the oceans either directly or indirectly.
However, among all the variables used to represent the
state of the atmosphere, wind measurements are the most
limited, although the importance of wind observations for
meteorological analysis has been recognized for many years
[1-3]. Previous studies indicate that wind information plays
an important role in improving the tropical and extratrop-
ical cyclone forecasts [4-14]. However, the current global
observing system does not provide a uniform distribution of

tropospheric wind measurements, especially in the tropics,
southern hemisphere, and northern hemispheric oceans,
where conventional observations are very sparse. During the
past two decades there have been several satellites measuring
wind over the oceans, such as the Geosat altimeter, the
National Aeronautics and Space Administration (NASA)
Scatterometer (NSCAT), Quick Scatterometer (QuikSCAT),
the Special Sensor Microwave Imager (SSM/I), and Euro-
pean Space Agency Remote Sensing Satellites (ERS-1/2).
QuikSCAT, which was launched in 1999, can provide
ocean surface wind observations. Some previous studies
[15, 16] showed that assimilating QuikSCAT ocean surface
wind observations had a positive impact on improving the
numerical simulation and prediction of tropical cyclones.
Other studies also indicated that including SSM/I wind
information had the potential to improve low-level wind
simulation [15]. Since SSM/I only provides ocean surface
wind speed measurements, not wind directions, this makes
the viewing of SSM/I winds confusing. NSCAT wind also
showed a positive impact on tropical cyclone simulation
[10], but NSCAT only provides near-surface wind vectors



over the oceans. Therefore, although wind measurements
have been improved to some extent during the past years,
the direct three-dimensional global wind profile measure-
ment is still limited. None of the aforementioned satellite
instruments directly provides wind profile information in the
troposphere.

In recent years, it has been proposed to use Doppler
wind lidar (DWL) to measure the three-dimensional wind
profiles either globally, with a polar-orbiting satellite [17],
or regionally, if mounted on aircraft [18]. The DWL uses a
technique similar to that of Doppler radars except that a lidar
emits pulses of laser light instead of radio waves [18, 19].
It is able to measure the wind profile from surface to high
altitudes (e.g., 18 km) with very high vertical resolution. The
objective of this paper is to examine the potential impact of
DWL measurements from the polar-orbiting satellite on the
numerical simulation and prediction of tropical cyclones.

Generally, the best way to examine the impact of the
proposed observations on NWP is to conduct Observing
System Simulation Experiments (OSSEs) [20-22]. There
are several advantages of OSSEs: such as easy control of
the experiments, precise knowledge of the data properties
and errors, and knowledge of the truth, and so forth
[21]. In this study, the potential impact of the simulated
space-based DWL three-dimensional (3-D) wind profile
measurements on the numerical simulation and prediction
of tropical cyclone formation and intensification is examined
by conducting a set of OSSEs using the advanced research
version of the weather research and forecasting (WRF)
model and its three-dimensional variational (3DVAR) data
assimilation system.

The advanced research version of the mesoscale com-
munity WRF model and its 3DVAR system are briefly
described in Section 2. Details of OSSEs setup are presented
in Section 3. The potential impact of assimilating space-
based three-dimensional wind profiles on tropical cyclone
simulation and prediction based on OSSE results is examined
in Section 4. Conclusions and discussions about some
practical issues are addressed in Section 5.

2. Numerical Model and
Data Assimilation System

2.1. The WRF Model. The advanced research version
WRF model (ARW) was developed by the Mesoscale and
Microscale Meteorology (MMM) Division of the National
Center for Atmospheric Research (NCAR). The ARW is
designed to be a flexible, state-of-art atmospheric simu-
lation system. This system is suitable for use in a wide
range of applications across scales ranging from meters to
thousands of kilometers. It is useful for studies of physical
parameterizations, data assimilation, real-time NWP, and
so forth. The ARW model is a fully compressible and
non-hydrostatic model with a terrain-following vertical
coordinate. The horizontal grid system is the Arakawa C-
grid. The ARW solver uses the Runge-Kutta 2nd and 3rd
order time integration schemes and 2nd and 6th order
advection schemes in both horizontal and vertical directions.
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A small step time-split scheme is used for acoustic and
gravity wave modes. A complete description of the WRF
model can be found in the WRF users guide posted on
the website: http://www.mmm.ucar.edu/wrf/users/docs/. For
this study, the version 3.0.1 was used in all experiments.

2.2. The WRF 3DVAR System. The WRF 3DVAR assimi-
lation system is designed to provide optimal initial and
boundary conditions to the WRF model by using various
observational information sources both from conventional
and nonconventional measurements, such as satellite radi-
ance data, radar observations, GPS measurements, and so
forth. The WRF 3DVAR is a multivariable data assimilation
system. The control variables are the stream function,
the unbalanced part of potential velocity, the unbalanced
part of temperature, the unbalanced surface pressure, and
pseudo relative humidity. The background error correlation
is generated using a so-called NMC method [23], which is
a popular method for estimating climatological background
error covariances. In the NMC method, the background
errors are approximated by averaging the statistics of the
differences between two sets of the model forecasts (such
as 24 hr and 12 hr forecasts) valid at the same time. The
observation errors are assumed to be uncorrelated, so the
observation error covariance matrix is a diagonal matrix. A
detailed description of the 3DVAR system can be found in
Barker et al. [24, 25].

3. Experimental Designs

3.1. Case Description. In reality, we do not know the true
state of the atmosphere. In order to quantitatively assess the
potential impact of the proposed observing systems on the
NWP models in OSSEs, we need to simulate an atmosphere
status that has the same statistical behavior as that of the
real atmosphere. The simulated “true” atmosphere status
is the so-called nature run (NR). The accuracy of NR is
important to an OSSE because the OSSE results cannot show
the realistic observational impact on numerical weather
simulation and predictions unless the simulated “true”
atmosphere represents most of the characteristics of the real
atmosphere.

In order to support community needs in OSSEs, the
European Center for Medium-Range Weather Forecasts
(ECMWE) produced global nature runs using a spectral
prediction model in July 2006 [26]. There are two nature
runs with different resolutions: one is at T511 (about 40 km
horizontal resolution) spectral truncation with 91 vertical
levels and 3-hour frequency output from 1200 UTC May 1
2005 to 0000 UTC June 1 2006. The other one is the higher
resolution simulation at T799 (about 25km horizontal
resolution) spectral truncation with 91 vertical levels and
hourly output from September 27 2005 to November 1 2005.
For simplification, we refer these two global nature runs as
T511 NR and T799 NR, respectively. According to the early
evaluation by Reale et al. [27], the large-scale structure of
the T511 NR is very realistic. In some cases, smaller scale
structures in the T511 NR are more realistic than in the
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FiGgure 1: Simulated DWL observation locations at 0600 UTC ((a) and (c)) and 1800 UTC 01 October 2005 ((b) and (d)). (a), (b), (c), and
(d) are simulated observation sampling for data assimilation Experiment 1 and Experiment 2, respectively.

reanalysis, which is processed by a much lower resolution
model.

Since we intend to evaluate the data impact on tropical
cyclone forecasts with a mesoscale model, we choose to use
the T799 NR. From the T799 NR, a tropical storm, which
occurred over the Atlantic Ocean during the period from 27
September to 11 October 2005, was arbitrarily selected for
this study. The simulation period is from 0600 UTC 01 to
0600 UTC 03 October 2005.

3.2. Experimental Design. A two-way nested interactive
simulation was conducted for all experiments. The model
horizontal resolutions were 27 km for outer domain and
9km for inner domain, respectively. In total there were
31 vertical model levels from the surface up to 50 hPa.
Various model physics options were used in the different
experiments.
Four experiments were conducted:

(i) a regional nature run to generate the “truth” field;
(ii) a control run to generate a reference field;

(iii) two data assimilation experiments with different
observational sampling strategies to investigate the
potential impact of the simulated DWL wind profiles
on the storm track and intensity forecasts. Results
were compared against the regional nature run and
control run.

Differences in the model setups and configurations for all
above experiments are summarized in Table 1.

3.2.1. Regional Nature Run. In this paper, we mainly focus
on the regional numerical model prediction problems. Pu
et al. [28] has commented that the ECMWF nature runs
are sufficiently accurate in describing the tropical cyclone
track and intensity at an intermediate model resolution.
However, they are not good enough in representing the
tropical cyclone inner-core structures. Thus, it is necessary
to generate regional nature runs for regional verification
purposes. In this study, the WRF model was nested inside of
the ECMWF nature run to generate a set of regional nature
runs. The model was initialized using the T799 NR and
then integrated forward for 78 hours starting at 0000 UTC
30 September 2005. The domain sizes are 377 X 259 and
646 x 583 for the outer and inner domain, respectively. The
horizontal grid spacing is 27 km for the outer domain and
9 km for the inner domain, respectively, as mentioned above.
The model physics parameterizations include: the Lin micro-
physics scheme, Mellor-Yamada-Janjic planetary boundary
layer model (MY]), Betts-Miller-Janjic cumulus parameter-
ization scheme, RRTM longwave, and Dudhia shortwave
radiation model. Detailed descriptions of each physical

parameterization scheme can be found in Skamarock et al.
[29].
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FIGURE 2: Horizontal wind and divergence increments at 850 hPa for length scale factor of 0.1 (a), 0.5 (b), 1.0 (c), and 1.5 (d) at 0600 UTC

01 October 2005.

TaBLE 1: Summary of model set up for all experiments.

Regional nature run

Control run DA Expl DA Exp2

00Z 30 September 06Z 01 October 06Z 01 October 06Z 01 October
Time period 2005-00 Z 05 October 2005-06Z 03 October 2005-06Z 03 October 2005-06Z 03 October

2005 2005 2005 2005

Size of domain 377 X 259 307 x 217 307 x 217 307 x 217

646 X 583 406 x 349 406 x 349 406 x 349

Microphysics scheme Lin WSM-6 WSM-6 WSM-6

Physics scheme PBL scheme MY] YSU YSU YSU
Cumulus scheme Betts-Miller Grell Grell Grell

Iitialisation Imtmlégﬁ; guess T799 NR T511 NR T511 NR T511 NR

Boundary conditions T799 NR T799 NR T799 NR T799 NR

3.2.2. Control Run. The control run was a 48-hour free fore-
cast. Unlike the regional nature run, the model integration
started at 0600 UTC 01 October 2005, instead of at 0000 UTC
30 September in the regional nature run, and ended at
0600 UTC 03 October 2005. The initial conditions were
obtained by interpolating the ECMWEF coarser resolution
T511 NR into the WRF model domains. The boundary

conditions were provided by the T799 NR. The model
domains were set within the domains of the regional nature
run but were smaller in size. The domain sizes were 307 x 217
and 406 X 349 for the outer and inner domains, respectively.
In order to take into account the model errors in OSSEs,
model physics options that were deployed in the control
run were different from these used in the regional nature
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FiGuRre 3: Horizontal wind structure (wind speed contour and wind vector) at the storm center at 850 hPa from (a) regional nature run, (b)

control run, (c) data assimilation Experiment 1, and (d) data assimilation Experiment 2 at 0600 UTC 01 October 2005. The contour interval
of wind speed is 3 ms™!, the areas with wind speed exceeding 20 ms~! are shaded.

run. Thus, the physics options include: the WRE Single-
Moment 6-class microphysics scheme (WSM-6), the Yonsei
University planetary boundary layer model (YSU PBL),
and the Grell-Devenyi ensemble cumulus parameterization
scheme. Other parameters are same as in the regional nature
run.

3.2.3. Simulation of Observations. According to Marseille
et al. [12, 13], the DWL was assumed to be aboard on
a given polar-orbiting satellite. This means that the wind
measurements are available only twice daily over the same
region. An idealized distribution of observations is used

following an early suggestion from D. Emmitt (personal
communication). Considering the influence of clouds, two
configurations of the observations sampling are simulated.
Figures 1(a) and 1(b) show the distributions of the simulated
DWL observations in data assimilation Experiment 1 (DA
Expl) at 0600 UTC and 1800 UTC 01 October 2005, respec-
tively. In this observational configuration, cloud effect is not
taken into account. Wind observations are available from
near the surface up to 18 km. To simulate the DWL sampling
in cloudy atmospheres, we used the realistic atmospheric
conditions extracted from the regional nature run dataset.
Figures 1(c) and 1(d) represent the simulated observation
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FIGURE 4: The wind shear (units: ms™!) between 850 hPa and 200 hPa at 0600 UTC 01 October 2005 from (a) regional nature run, (b) control
run, (c) data assimilation Experiment 1, and (d) data assimilation Experiment 2.

configurations with consideration of the cloud effect and are
used in data assimilation Experiment 2 (DA Exp2). Since
the cloud effect is taken into account in this case, wind
profiles are not available in areas with cloud contamination.
In both DA Expl and DA Exp2, the observations used for
data assimilation experiments are generated by interpolating
the “truth” field (regional nature run) both horizontally and
vertically from the model grids onto the simulated observa-
tional locations and by superimposing random noises. The
vertical resolution of the measurements is 250 m below and
1km above the 2km level. Typical values for the standard
deviation of DWL wind errors are 2 ms~'below 2km and
3ms~! above the 2 km level [30]. No bias has been assumed
for the simulated DWL wind errors.

3.2.4. Data Assimilation Experiments. The WRF 3DVAR
system was used to assimilate DWL wind profiles. Cor-
responding to the two configurations of the simulated

observations mentioned in Section 3.2.3, two data assim-
ilation experiments are performed: the first is an ideal
experiment that does not consider cloud influence. The
observational samplings are shown in Figures 1(a) and 1(b)
for 0600 UTC and 1800 UTC, respectively. For simplification,
in this paper it is referred as DA Expl. The other one
is a more realistic experiment. As shown in Figures 1(c)
(for 0600 UTC) and 1(d) (for 1800 UTC), the observations
contaminated by clouds are eliminated. For simplification it
is referred as DA Exp2. Similar to the control run, the model
domain configuration and physics options for both of these
two experiments are the same as those used in the control
run. The first guess field was initialized at 0600 UTC 01
October 2005 from the T511 NR. A cycled data assimilation
was carried out to assimilate simulated DWL wind profiles
between 0600 UTC and 1800 UTC 01 October 2005. The data
assimilation was conducted between 0600 UTC 01 October
2005 and 1800 UTC 01 October 2005. After that, the model
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assimilation Experiment 2).

initial condition was replaced by the analysis from data
assimilation experiments and then a 36-hour forecast was
conducted from 1800 UTC 01 October to 0600 UTC 03
October 2005. All results presented in this paper use the
results from the 9 km grid domain.

4. Results and Discussion

4.1. Sensitivity of DWL Data Assimilation to Background Error
Correlations. The basic goal of the 3DVAR is to find an
optimal estimate of the model initial conditions at analysis
time through the minimization of a cost function J:

J =T e 1)
Jo= 3 - 0)"B (x - x), @
Jo= 3 (HE@ - 3o) 'O HK) - y0). ()

The cost function J is a combination of a background
term J, and an observation term J, (1). Here J, is the back-
ground term that measures the distance between analysis and
background (2), J, is the observation term that measures the
distance between observations and model-simulated obser-
vations (3). The superscripts —1 and T denote the inverse
and adjoint of a matrix or a linear operator, respectively. B is
the background error covariance matrix. In this study, the B
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FIGURE 6: Time series of the tropical cyclone (a) track and (b)
track error during 48-hour simulations for different experiments
(black line: regional nature run; blue line: control run; red line: data
assimilation Experiment 1; green line: data assimilation Experiment
2) from 0600 UTC 01 to 0600 UTC 03 October 2005.

matrix was generated using the NMC-method [23], which is
a popular method used for background error estimation. O is
the observation error covariance matrix. x is the first guess
field, usually it is a short-range forecast or from an analysis. H
is the observation operator that transforms model variables
from model physical space to the observation space. y, is the
observation at the analysis time.

The background error covariance matrix (B matrix) plays
an important role in a 3DVAR system. It influences the
analysis fit to observations and also define the influencing
distance of the analysis response from the observations. In
the horizontal direction, the background error correlations
are assumed to be a Gaussian probability density func-
tion (4). The observational information is spread using a
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at the storm center and (b) maximum surface wind speed from
different experiments (black line: regional nature run; blue line:
control run; red line: data assimilation Experiment 1; green line:
data assimilation Experiment 2) from 0600 UTC 01 to 0600 UTC 03
October 2005.

recursive filter, while the vertical relation is represented by
applying the empirical orthogonal decomposition technique:

-2
B(r) = B(0) exp(—s2>. (4)

In (4), r is the distance between the model grid point
and the observation location, s is the length scale of the
Gaussian function, and it determines how far the observation
information can be spread spatially. B(0) is the background
covariance at observation location and B(r) is the back-
ground error covariance at the model grid point away from
the observation location with distance r.

Since the B matrix is based on climatological statistics, in
order to specify it for the DWL data and grid resolution used
in this particular study, four experiments were conducted to
examine the impact of different length scales on the analysis
results of wind fields where the length scales were set to
0.1, 0.5 1.0, and 1.5 times of the original values (which uses
statistics from the NMC method). The data assimilated in
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all of these four experiments are the DWL wind profiles
from Figure 1(a). Figure 2 shows the horizontal wind vectors
and divergence increments (i.e., 3DVAR analysis minus first
guess) from these four experiments at 850 hPa at analysis
time 0600 UTC 01 October 2005. It shows that the horizontal
distributions of the analysis increments from assimilation
of DWL data were significantly different among these four
experiments. If a small length scale (such as 0.1 times of the
original values) was used, the observations only influenced
the areas surrounding its locations. This implies that, in
this situation, the observation information cannot be used
optimally and that areas far away from the observation
locations cannot benefit from the observations. If a large
length scale (such as 1.5 times of the original values) was
employed, although the observation information was spread
to the areas far away from the observation locations, the
relations were not always realistic for practical applica-
tions. Therefore, in practical applications, determining a
reasonable horizontal correlation length scale for various
kinds of observations, model resolutions, and observation
density is still a challengeable question for a 3DVAR method.
Comparing the analysis results from all four experiments, a
length scale of 1.0 seems to be optimal for the analysis of the
DWL data in this study. Therefore, a length scale factor of 1.0
was adapted for all experiments.

4.2. Data Impact on Initial Conditions

4.2.1. Horizontal Wind Structures. Figure 3 shows the hor-
izontal winds at 850 hPa from the regional nature run, the
control run, DA Exp1, and DA Exp2 at 0600 UTC 01 October
2005, respectively. In Figure 3, the shaded areas indicate
regions with wind speed exceeding 20 m s™!. Compared with
the regional nature run simulation, both the control run
and data assimilation experiments are able to reproduce
the basic structures of the storm wind field. However, the
simulated wind speed from the control run was weaker
than that from the data assimilation experiments. After data
assimilation, a more intensive wind structure was found near
the storm center. In DA Expl, the wind field in the southeast
of the storm center was strengthened and the location of
the regions with wind speed exceeding 20 ms™! agreed well
with the regional nature simulation. The maximum surface
wind speed near the storm center reached 26.3ms™!. This
indicates that assimilation of DWL wind profiles enhanced
the wind field around storm center. In DA Exp2, the wind
field around the storm center was not enhanced as in DA
Expl. This could be mainly attributed to the fact that there
are fewer observations available over the storm center in DA
Exp2.

4.2.2. Wind Shear. Wind shear, which is the change in
wind speed or direction with height in the atmosphere, is
one of the most critical factors controlling tropical cyclone
formation and destruction [31]. Figure 4 illustrate the wind
shear between 850 hPa and 200 hPa at 0600 UTC 01 October
2005 from the regional nature run, the control run, DA
Expl and DA Exp2, respectively. The wind shear structures
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were well reproduced after assimilating DWL wind profiles
as simulated structural features was much closer to that of
the regional nature run. In both the control run and data
assimilation experiments, the simulated maximum wind
shear appears in the north of the storm center. It is a little
farther to the west compared to the regional nature run.
But in the control run, in the south of the storm center
the wind shear from the control run was weaker than those
from DA Expl and DA Exp2. This indicates that assimilation
of 3D wind profiles has the potential to adjust the vertical
structures of the wind field to some extent. In addition, since
the observations over the storm center were available and
were assimilated in DA Exp1, the structure of the wind shear
around the storm center is much closer to that of the regional
nature run, compared with the DA Exp2 analysis results.

4.2.3. Divergence Fields. Figure 5 shows the area-averaged
divergence vertical profiles within a radius of 250 km around
the storm center for these four experiments at 0600 UTC
01 October 2005. Compared to the results from the data
assimilation experiments, in the control run, the divergence
variation with height showed a larger difference from
the regional nature run simulation. For data assimilation
experiments, in DA Expl, from the surface to 400 hPa,
the area-averaged divergence was very close to that of the
regional nature run; above 400 hPa, the divergence profile did
not keep close to the nature run simulations. But, it kept the
same tendency. DA Exp2 did not behave as good as DA Expl1,
but it still performed better than the control run. A possible
explanation for this is the fact that more observations over
the storm center were included in DA Expl.
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FiGURE 9: The surface latent heat flux (W m™!) from (a) regional nature run, (b) control run, (c) data assimilation Experiment 1, and (d)

data assimilation Experiment 2 at 1800 UTC 02 October 2005.

4.3. Impact on Forecasts

4.3.1. Track and Intensity. Figures 6 and 7 show the time
evolution of the simulated track and minimum central sea
level pressure (SLP) and maximum surface wind speed for
different experiments.

From Figure 6, the simulated storm track in the con-
trol run was farther to the west and the storm moved
slightly quicker compared to the regional nature run. After
assimilating the DWL 3D wind profiles, the storm track
forecast was improved and the predicted storm track error
was reduced compared to the control run. Compared with
the results from DA Exp2, the simulated storm track in
DA Exp 1 is much closer to the nature run simulations
(“truth”) in the first 24-h simulation. The track errors are
smaller than those from DA Exp2. The advantages from DA
Expl can be attributed to including the observations over
cloudy areas (most of them over the storm center). After 36

hours simulation, the DA Exp2 performed better in track
simulation.

In the regional nature run (“truth”), the minimum
central SLP was 991 hPa and steadily dropped to 983 hPa
within the first 36-hour simulation. It then deepened slowly
during the following 12 hours (Figure 7). Accordingly, the
maximum surface wind intensified gradually in the first 36
hours and then increased slowly in the following 12 hours.
The simulated minimum central SLP of the storm from the
control run showed the same tendency during the 48-hour
simulation but it was weaker than that from the regional
nature run. The maximum surface wind was also weaker
than that from the regional nature run. In DA Expl, both
the minimum SLP and the maximum surface wind were
improved significantly during the first 36 hours, and then
the improvements decreased slightly over the next 12 hours.
In DA Exp2, the storm intensity was also improved after
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FiGure 10: The simulated accumulated 3 hours rainfall (mm) from (a) regional nature run, (b) control run, (c) data assimilation Experiment
1, and (d) data assimilation Experiment 2 at 1800 UTC 02 October 2005.

data assimilation, but the improvements were a little weaker
compared to that of DA Expl.

In order to further examine the impact of DWL data on
the simulation and prediction of tropical cyclones, diagnoses
were also conducted for several other parameters as follows.

4.3.2. Horizontal Wind Structures. As discussed in Sec-
tion 4.2.1, assimilation of DWL wind profiles enhanced the
wind field at the initial time. It also made improvements in
the wind simulations during the following forecast period.
Figure 8 is the same as Figure 3 but for 1800 UTC 02 October
2005 (36 hours forecast). The shaded areas indicate the
regions with wind speed exceeding 26 ms~!. Although both
the control run and data assimilation experiments are able to
produce the basic structure of the horizontal wind field, the
simulated locations of the storm center are different. In the
control run, the simulated storm center was farther to the

west compared with the regional nature run simulation. In
the data assimilation experiments (DA Expl and DA Exp2),
the simulated storm centers are much closer to these from
the regional nature run. In addition, the simulated wind field
in the control run was much weaker than those from the
data assimilation experiments. Compared with the regional
nature run simulation, the horizontal wind intensity was
better represented after data assimilation.

4.3.3. Surface Latent Heat Fluxes. Surface latent heat flux is
the flux of heat from the Earth’s surface to the atmosphere
that is, associated with evaporation or transportation of
water from the surface and subsequent condensation of
water vapor in the troposphere. The heating at low-levels
from the surface can substantially modify the temperature
field thereby enhancing or destroying the baroclinic envi-
ronment. In addition, the latent heat release, derived from
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condensation throughout the troposphere can also be a
crucial factor determining the vertical extent of the intense
deepening of tropical cyclones. The influence of the latent
heat flux over oceanic cyclones has been studied in many
previous studies [32-36]. It was shown that the latent heat
flux plays an important role in hurricane formation and
intensification [15]. The study by Papasimakis et al. [37]
indicates that hurricane development is heavily related to
latent heat release. It was also pointed out that latent heat
release had positive impacts on hurricane development and
intensification. Figure 9 show the latent heat flux from these
four experiments at 1800 UTC 02 October 2005. In the
regional nature run (Figure 9(a)), the maximum latent heat
release occurred mainly in the northeast of the storm center,
while the simulated latent heat flux was too weak in the
control run (Figure 9(b)). The locations of maximum latent
heat flux in the data assimilation experiments are farther to
the west of these from the regional nature run simulation;
but the assimilations of the DWL wind profiles (Figures 9(c)
and 9(d)) produced a larger latent heat flux around the storm
center that was helpful for storm development. As a result,
the wind field was strengthened in the simulations with data
assimilation.

4.3.4. Rainfall Simulation. Figure 10 compare the accu-
mulated 3-hour precipitation around the storm center at
1800 UTC 02 October 2005. It shows that the precipitation
near the region of 22N and 43W (northeast of the storm
center) was well simulated in the experiments with data
assimilation (DA Exp 1 and 2), compared to the control
run results. Both the simulated quantity and location of
the maximum rainfall are similar to the regional nature
run. For the control run simulation, the simulated rainfall
surrounding the storm center is relatively weak compared to
the regional nature run.

To further examine the impact of the assimilation of
DWL wind profiles on precipitation forecasts, the area-
averaged, storm-induced rainfall rates from different exper-
iments were compared. Figure 11 illustrates the time series
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of the rainfall rate averaged in the region within a radius
of 250 km from the storm center in different experiments
compared with the results from the regional nature run
between 1200 UTC 01 and 0600 UTC 03 October 2005. As
shown in the figure, both the control run and the data
assimilation experiments underestimated the rainfall rate
as produced in the regional nature run. However, the data
assimilation experiments (DA Expl and DA Exp2) improved
the rainfall forecasts in the first 36 hours, although they did
not perform well in the last 12 hours of the simulations.

5. Summary and Discussions

The potential impact of simulated Doppler Wind Lidar
(DWL) wind profiles on the numerical simulation and
prediction of tropical cyclones has been investigated using
the WRF model and its 3DVAR data assimilation system
by means of Observing System Simulation Experiments
(OSSEs). Results indicated that, for this particular case, the
assimilation of DWL wind profiles had the potential to
improve both the horizontal and vertical wind structures
and hence we could simulate stronger wind circulation. The
simulated storm track and intensity were also improved
after assimilation of DWL wind profiles during the 48-
hour simulation. Results from the two data assimilation
experiments with different observation sampling strategies
have shown that assimilating the wind observations around
the storm center is useful for improving storm track and
intensity simulations.

Future studies will be performed to evaluate the DWL
wind observation impact with different sampling strategies,
such as different horizontal and vertical resolutions of the
measurements. A more comprehensive evaluation of the
impacts of the DWL data on operational tropical cyclone
forecasts will also be assessed using operational models and
integrating the DWL data with all other conventional and
satellite data available.
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We investigated the impact of variations in oceanic preexisting conditions on predictions of Typhoon Hai-Tang (2005) by using a
coupled atmosphere-ocean model with 6-km horizontal resolution and providing the oceanic initial conditions on 12 July from
1997 to 2005 to the model. Variations in oceanic preexisting conditions caused variation in predicted central pressure of nearly
18 hPa at 72 h, whereas sea-surface cooling (SSC) induced by Hai-Tang caused a predicted central pressure difference of about
40 hPa. Warm-core oceanic eddies up to a few hundred kilometers across and a deep mixed layer climatologically distributed in
the western North Pacific led to high mixed-layer heat potential, which increased latent heat flux, water vapor, and liquid water
contents around Hai-Tang’s center. These increases were closely associated with Hai-Tang’s intensification. SSC negatively affected
the eyewall, whereas variations in oceanic preexisting conditions remarkably affected spiral rainbands and the magnitude of SSC.

1. Introduction

Advances in ocean data assimilation systems have enabled
us to further understand tropical cyclone (TC) activity
and the ocean response at weather-forecasting as well as
seasonal to climate time scales. The relationships between
TC activity and variations in the global ocean are of growing
interest on seasonal to climate time scales. In contrast,
TC-induced sea-surface cooling (SSC), the decrease in sea-
surface temperature (SST) during and after the passage of a
TC in general, is a well-known ocean response to a TC on a
weather-forecasting scale. Previous studies reported that SSC
varied depending on oceanic preexisting conditions [1] as
well as on TC intensity and translation speed [2]. However,
the dynamic and thermodynamic processes associated with
SSC remain controversial [1, 3, 4] although vertical turbulent
mixing and upwelling are known to be important [2].
According to our current understanding of the relationship
between TC activity and ocean thermal forcing, not only
SST but also temperature and salinity profiles in the upper
ocean are important for determining TC intensity, whereas
SSC slightly affects TC track prediction [5].

TC heat potential (TCHP), a measure of the oceanic heat
content from the surface to the 26°C isotherm depth (226),
is highly correlated with TC intensity in the western North
Pacific (WNP) on seasonal to climate time scales [6, 7].
TCs tend to rapidly intensify in the WNP when they pass
over a region with a high TCHP and a deep Z26. Providing
accurate oceanic preexisting conditions as oceanic initial
conditions to a coupled atmosphere-ocean model used for
typhoon prediction is thus important if the model is to
predict TCs precisely, particularly their intensity, but how
oceanic preexisting conditions affect TC predictions is still
unclear.

On a weather-forecasting scale, idealized numerical
experiments have demonstrated that TC-induced SSC sub-
stantially affects TC intensity during its intensification phase
but not during its mature phase [8]. Rapid TC intensification
during its intensification phase is caused by mesovortices,
filamentation, and vortex Rossby waves enhanced by TC-
scale cyclonic circulation. SSC in Wada [8], defined as a
decrease in computed SST from the initial SST, plays a
role in weakening mesovortices, which suppresses lower-
tropospheric cooling by evaporation along spiral rainbands



and the associated local anticyclonic flow around the
mesovortices. The resulting relatively high central pressure
then weakens the TC-scale cyclonic circulation. This negative
feedback [9] reduces TC intensification.

The purpose of the present study was to quantitatively
evaluate the impact of oceanic preexisting conditions on
predictions of a TC during its intensification phase on
a weather-forecasting time scale. We performed several
numerical prediction experiments for Typhoon Hai-Tang
(2005) by providing nine different oceanic initial conditions
to a coupled atmosphere-ocean model. The initial conditions
were determined from daily oceanic reanalysis data for
1997 to 2005 calculated by the North Pacific version of the
Meteorological Research Institute (MRI) ocean variational
estimation (MOVE) system [10].

This paper consists of five sections. Section 2 describes
the model and the experiment design. Section 3 describes
the results of numerical prediction experiments. Section 4
discusses the role of variation in oceanic preexisting condi-
tions on predictions of TC intensity and the sensitivity of
predictions of Hai-Tang’s intensity to upper-ocean variations
on seasonal to climate time scales. Section 5 is the conclusion.

2. Model and Experiment Design

This section consists of four subsections. Section 2.1 explains
the best-track data used in this study. Section 2.2 presents
a summary of each component of the coupled atmosphere-
ocean model. Section 2.3 outlines the experiment design.
Section 2.4 defines mixed-layer heat potential.

2.1. Best-Track Data. To validate the results of the numerical
prediction experiments described below, the best-track data
of Hai-Tang’s positions and central pressures, archived by the
Regional Specialized Meteorological Center [6], were used.
Best-track data are defined as the sustained 10-min means.
We used predicted central pressure to represent Hai-Tang’s
predicted intensity.

2.2. Coupled Model. The nonhydrostatic atmosphere model
coupled with the ocean model (NCM) consists of a non-
hydrostatic atmosphere model (NHM) [11] and a mixed-
layer ocean model [2, 8]. An oceanic sublayer scheme for
calculating an increase in temperature in the upper-ocean
skin layer [12] is included in the mixed-layer ocean model
for calculating diurnally varying SST.

2.2.1. NHM. The NHM used in the present study is an older
version of the nonhydrostatic mesoscale model developed
for operational use at the Japan Meteorological Agency in
collaboration with the MRI. Physical schemes incorporated
into the NHM and NCM are an explicit three-ice bulk
microphysics scheme [13] in conjunction with the Kain-
Fritsch convective parameterization scheme [14], a resistance
law assumed for sensible and latent heat fluxes and wind
stress in the surface boundary layer; exchange coefficients for
sensible and latent heat fluxes and wind stress over the sea,
determined using Kondo’s [15] bulk formulas, a turbulent

Advances in Meteorology

closure model in the atmospheric-boundary layer [16, 17],
and an atmospheric radiation scheme [18].

2.2.2. Mixed-Layer Ocean Model. The mixed-layer ocean
model is a reduced gravity model developed at the MRI
[2, 8]. In the present study, the ocean model consists
of three layers and four levels. The uppermost layer is a
mixed layer with vertically uniform density. The middle
layer is a seasonal thermocline and shows the largest vertical
temperature gradient among the three layers. The bottom
layer is assumed to be undisturbed by entrainment. Four
levels consist of the surface, the base of the mixed layer/top
of the thermocline, the base of the thermocline/top of the
bottom layer, and the sea floor. Temperature and salinity are
calculated only at the surface and at the base of the mixed
layer, whereas layer thickness and oceanic flows are calculated
for all layers. The water depth is limited to 2000 m. The
mixed-layer depth is determined from oceanic reanalysis data
by assuming a difference in density from the surface of no
more than 0.25gm™> and it is limited to 200 m. The base of
the thermocline is limited to 600 m.

2.2.3. Oceanic Sublayer Scheme. The specifications of the
mixed-layer ocean model described in Section 2.2.2 are insuf-
ficient for realistic simulation of the amplitude of diurnal
SST variations because of the thickness (>1 m) of the mixed
layer. To improve the simulation of diurnally varying SST, we
incorporated into the mixed-layer ocean model an oceanic
sublayer scheme that we developed following Schiller and
Godfrey [19], but with short-wave absorption/penetration
calculated using the formulation of Ohlmann and Siegel
[20].

According to the algorithm of Schiller and Godfrey’s [19]
scheme, a skin layer forms in the uppermost layer when
short-wave radiation warms the sea surface. The thickness of
the skin layer is determined from the total amount of short-
wave radiation and the cumulative wind stress from sunrise
to sunrise. Short-wave radiation and wind stress are provided
by the NHM to the mixed-layer ocean model at every time
step, but short-wave radiation and wind stress accumulate
between sunrises only in the oceanic sublayer scheme. The
thinner the skin layer is, the larger the amplitude of diurnal
SST variation becomes. After sunset, the skin layer vanishes
and its depth is reset to the reference depth (5m in the
present study). The total amounts of short-wave radiation
and wind stress then remain constant within the oceanic
sublayer scheme until next sunrise.

Ohlmann and Siegel [20] derived the formulas asso-
ciated with short-wave absorption/penetration by multiple
regression analysis. Short-wave absorption/penetration is a
function of the chlorophyll-a concentration (mgm™?), the
cloud index under cloudy conditions, and the solar zenith
angle under clear-sky conditions. When the chlorophyll-
a concentration is high, the amplitude of diurnal SST
variations tends to be large [12].

2.3. Experiment Design. NHM and the mixed-layer ocean
model each contain 721 X 421 horizontal grids and the
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horizontal grid spacing is 6 km. NHM has 40 vertical levels,
and the interval between levels varies from 40 m near the
surface to 1180 m for the uppermost layer. The top height
is nearly 23 km. The time step of the NHM is 125, and that
of the mixed-layer ocean model is 72s. Atmospheric and
oceanic data are exchanged between the NHM and mixed-
layer ocean model every 72s as follows: the SST calculated
in the mixed-layer ocean model is provided to the NHM as
the surface boundary condition, and wind stress, short-wave
and long-wave radiation, sensible and latent heat fluxes, and
precipitation accumulated by the NHM during the time step
of the ocean model (72s) are provided to the mixed-layer
ocean model as atmospheric forcing data.

To set the initial and boundary atmospheric conditions
for the NHM and NCM, we first ran hydrostatic global
spectral model (GSM) version T213L40 for 72 h. The hori-
zontal resolution of GSM T213L40 is nearly 60 km. To avoid
gaps in the horizontal resolution of downscale calculations,
we next ran a hydrostatic regional spectral typhoon model
(TYM) with a horizontal grid spacing of nearly 20km at
Hai-Tang’s initial position for 72 h. The TYM provided initial
and boundary atmospheric conditions every 3 h based on the
output of the GSM [5] to both the NHM and NCM. It should
be noted that a bogus typhoon was incorporated only into
the numerical prediction by the TYM, and that the effect
of the bogus typhoon must be considered in the numerical
prediction experiments of the NHM and NCM, because the
initial atmospheric conditions for the NHM and NCM runs
were based on the output of the TYM. Lateral boundary
conditions created from the TYM output were also provided
to NHM and NCM every 3 h. The integration time of GSM,
TYM, NHM, and NCM was 72 h, starting from 1200 UTC 12
July 2005.

Oceanic initial conditions were obtained from daily
oceanic reanalysis data with a horizontal grid spacing of
0.5° from 1997 to 2005. Daily oceanic reanalysis data were
calculated by the MOVE system [10]. Table 1 lists the
numerical prediction experiments conducted in the present
study. We ran nine experiments with the NCM and another
nine experiments with the NHM, not being coupled with the
mixed-layer ocean model.

To investigate the impact of variations in oceanic preex-
isting conditions on predictions of Hai-Tang, nine separate
sets of oceanic initial conditions were created from the daily
oceanic reanalysis data of 12 July during 1997-2005 (Table 1).
The nine oceanic initial conditions include some remarkable
oceanic variations at seasonal to climate time scales: for
example, 12 July 1999 was during a mature La Nina event,
whereas 12 July 2002 was during a mature El Nino event; 12
July 2005 fell at the end of a central Pacific warming event
during the transition to La Nina.

Hai-Tang was a super-typhoon, defined as a typhoon
with maximum sustained 1-min-mean surface winds of
67 ms~! or greater. According to the best-track data, Hai-
Tang formed near 22.9°N, 149.2°E at 0000 UTC on 13
July 2005. Hai-Tang initially moved northwestward; then,
after it entered the tropical cyclogenesis phase, it turned
to move southwestward to westward while rapidly inten-
sifying. Hai-Tang attained a central pressure of 920 hPa

TaBLE 1: Designations of the numerical-prediction experiments, the
year used for the oceanic preexisting conditions, and the model,
NCM and NHM, used to conduct the experiments. El Nifio years
are followed by (E) and La Nina years by (L).

Experiment Year Model
NCM97 1997 (E) NCM
NCM98 1998 NCM
NCM99 1999 (L) NCM
NCMO00 2000 NCM
NCMO1 2001 NCM
NCM02 2002 (E) NCM
NCMO03 2003 NCM
NCMO04 2004 NCM
NCMO5 2005 NCM
NHM97 1997 (E) NHM
NHM98 1998 NHM
NHM99 1999 (L) NHM
NHMO00 2000 NHM
NHMO1 2001 NHM
NHMO02 2002 (E) NHM
NHMO03 2003 NHM
NHMO04 2004 NHM
NHMO5 2005 NHM

at 0600UTC on 16 July. This study investigated Hai-
Tang’s rapid-intensification phase, starting with the tropical
cyclogenesis phase. Therefore, we set the initial integration
time to 1200 UTC on 12 July 2005. We could not, however,
reproduce the tropical cyclogenesis phase realistically in the
present numerical prediction experiments because the bogus
typhoon included in the initial atmospheric conditions
negatively affected the prediction of Hai-Tang’s track, as
described in Section 3.1. Therefore, we focused on the
impact of variations in the oceanic preexisting conditions on
predictions of Hai-Tang’s rapid intensification.

Hai-Tang passed over two warm-core eddies, charac-
terized by a high sea-surface height (SSH) with a positive
SSH anomaly (SSHA), a high TCHP, and a deep Z26, in
the WNP as it rapidly intensified (Figure 1). Conversely, as
it passed over the cold wake, it ceased to intensify and its
best-track central pressure remained constant (Figure 1(a)).
The warm-core eddy at around 22° N, 148° E (Figure 1(b)),
where the SSH was high, was a few hundred kilometers
across. The MOVE system reproduced this warm-core eddy
(W1, Figure 1(c)) reasonably well, as well as the high SSH
associated with the other warm-core eddy (W2, Figures 1(a)
and 1(c)). Hai-Tang’s intensification was thus associated with
these warm-core eddies.

2.4. Mixed-Layer Heat Potential. Here, we defined the mixed-
layer heat potential (MLHP: k] cm~2) [8] as

Qumiup = pCy(Ty — 26)hy, (1)

where p is the density of sea water in the mixed layer
underneath a TC, which is assumed to be constant; C,is the
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FIGURE 1: (a) Time series of best-track central pressure, tropical-cyclone heat potential (TCHP), 26°C isotherm depth (Z26), and sea
surface height (SSH) from 1200 UTC 12 July to 1200 UTC 15 July 2005. (b) Horizontal distribution of the 7-day mean SSH (cm)
obtained from the Archiving and Validating Interpretation of Satellite Oceanographic (AVISO) data product (ftp:/ftp.aviso.oceanobs

.com/pub/oceano/AVISO/SSH/duacs/global/dt/ref/madt/merged/h/)

for 13 July 2005. (c) Horizontal distribution of daily SSH (cm)

calculated by the MOVE system and corrected to make the 7-day spatial mean of the daily MOVE SSH equal to that of the AVISO SSH.
W1 and W2 in part (a) and the green circles in part (c) indicate the warm-core eddies. The large circles along Hai-Tang’s track in parts (b)
and (c) indicate the start and end positions of the numerical integration.

specific heat at constant pressure; T is the SST underneath
a TC; hy is the mixed-layer depth (MLD) underneath a TC.
The variables p, T}, and h; were obtained from daily oceanic
reanalysis data.

2.5. Tropical-Cyclone Heat Potential. TCHP (kJcm™2) is
defined as

H

Qrcnp = Z prCp(Th — 26.)AZy,
z=0

(2)

where pj, is the density of the sea water at each layer, T is
the sea temperature (°C) at each layer, AZ), is the thickness
at each layer, H is the vertical level of depth corresponding
to Z26, and h is the variable number of vertical levels based
on the configuration of the ocean data reanalysis system
described in Section 3. When T}, is below 26°C, TCHP at the
layer is assumed to be zero.

3. Results

3.1. Track and Intensity Prediction. We first investigated the
impact of variations in oceanic preexisting conditions on
predictions of Hai-Tang’s track. Figure 2 depicts Hai-Tang’s
best-track positions and the mean positions predicted by
NHM and NCM (Table 1). Both predicted tracks show
a marked northwestward bias during the early integration
period, and they both subsequently turn southwestward.
Thus, the track predictions did not significantly differ
between NHM and NCM. At 72h, the predicted tracks
approach Hai-Tang’s best-track position. Table 2 lists the
mean predicted positions for every 24 h and their standard
deviations. The maximum standard deviation at 72h, 0.27°
of longitude, is comparable to the difference of center
position at 72h between NHM and NCM, nearly 0.3° of
latitude (Table 2). Thus, variations in oceanic preexisting
conditions had no significant impact on predictions of Hai-
Tang’s track as well as a difference in predicted SSTs between
NHM and NCM.
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TaBLE 2: Mean longitude and latitude and standard deviations of the predicted position every 24 h and best-track longitude and latitude.

Experiment lon(24 h) lat(24 h) lon(48h) lat(48 h) lon(72h) lat(72 h)
NHM MEAN (°) 145.21 22.51 139.49 19.83 133.42 18.72
STD (°) 0.05 0.08 0.14 0.09 0.26 0.12
NCM MEAN (°) 145.27 22.61 139.67 19.86 133.69 19.02
STD (°) 0.04 0.11 0.10 0.08 0.27 0.20
Best track ) 147.1 21.7 141.4 19.6 133.5 19.3
25° 3.2. Oceanic Responses. We defined SST as temperature at the
o) first level of the mixed-layer model plus skin temperature
230 £ '“'b calculated in the oceanic sublayer scheme and SSC as the
47 e decrease in predicted SST from the initial SST due to
R e Hai-Tang’s passage hereafter. It should be noted that the
2 e initial SST does not change during the integration in the
o L -] o ° experiments by NHM. Therefore, the magnitude of SSC at
197 — a certain integration time was equal to the difference in SST
at a certain integration time between NHM and NCM. We
17° investigated the evolution of mean SST and SSC underneath
Hai-Tang and their standard deviations to determine the
15° impact of the variations in oceanic preexisting conditions
130° 135° 140° 145° 150° 155° on SSC (Figure 4). Mean SST was calculated as the average
SST underneath Hai-Tang’s center position among the nine
-—- NHM predictions by NCM. Each SSC value was calculated as the
~—-= NCM difference in predicted SST underneath Hai-Tang’s center

® Best track

FiGure 2: Hai-Tang’s best-track positions from 1200 UTC 12 July
(23.3°N, 150.6° E) to 1200 UTC 15 July 2005 (19.3° N, 133.5° E)
and the mean predicted positions of the nine NHM and nine NCM
experiments. Longitude is shown on the horizontal axis and latitude
on the vertical axis.

The impact of SSC on predictions of TC central pressure
was remarkable, particularly during the later period of
numerical integration [5]. We investigated the evolution
of the central pressures predicted by NCM (Figure 3(a))
and NHM (Figure 3(b)) along with their mean difference
and standard deviations (Figure 3(c)). All of the central
pressures predicted by NCM were higher than the best-track
central pressure after 18 h (Figure 3(a)), whereas most central
pressures predicted by NHM were lower (Figure 3(b)).
The difference in predicted central pressure between NHM
and NCM became significant after 24h and small after
48h (Figure 3(c)). The twofold standard deviation of the
predicted central pressure difference was nearly 18 hPa at
72h (Figure 3(c)). This value represents the amplitude of
the variation in the predicted central pressure due to the
variation in oceanic preexisting conditions. The amplitude
of 18 hPa is less than the difference in predicted central
pressure between NHM and NCM, which increased to more
than 40 hPa at 72 h, suggesting that the impact of oceanic
preexisting conditions on predictions of Hai-Tang’s intensity
was smaller than the impact of the difference between
NHM and NCM in the SST decrease caused by Hai-Tang’s
passage.

position from the initial SST. Mean differences in both
SST and SSC were calculated as the averaged differences
between NHM and NCM in the predictions of the nine
experiments. The minimum mean SST and the maximum
mean decrease in SST became significant at around 18h,
when the difference in the predicted central pressures
between NHM and NCM also became apparent. The twofold
standard deviation associated with the variations in SST
underneath Hai-Tang was nearly 0.7°C, and the standard
deviation associated with the variations in SSC was nearly
0.5°C. The standard deviation was large from the initial time
to 18 h as predicted Hai-Tang rapidly intensified. After 18 h,
the rate of intensification decreased and SST underneath
Hai-Tang began to increase; however, it remained lower than
the initial SST underneath Hai-Tang even though it did not
decrease monotonically during the passage. The trend of
predicted SST underneath Hai-Tang obtained here differed
from the result of an idealized numerical experiment [8]
because SSC was sensitive to the variations in the oceanic
preexisting conditions such as the spatial and temporal
variations in the preexisting warm-core eddy.

To investigate the relationships between the preexisting
warm-core eddies and the climatologically deep mixed
layer and Hai-Tang’s intensification, we calculated MLHP
underneath Hai-Tang every hour using (1) and investigated
the evolution of mean central pressure and mean MLHP
averaged over the nine NCM predictions and their standard
deviations (Figure 5). Mean MLHP was calculated as the
average in a 1° grid box at Hai-Tang’s center. The trend
of mean central pressure was negatively correlated with the
trend of mean MLHP, implying that high MLHP underneath
Hai-Tang was associated with Hai-Tang’s intensification.
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F1GURE 4: Time series of the mean differences in SST ( °C; left axis)
and SSC (°C; right axis) between NCM and NHM values averaged
over the nine experiments and their standard deviations.

However, Hai-Tang’s predicted track bypassed the warm-
core eddy where MLHP was relatively high. In other words,
Hai-Tang passed over a relatively low MLHP area because
of the significant northwestward track-prediction error. This
track-prediction error led to an intensity-prediction error
caused by the predicted passage over an area with different
MLHP. This difference in MLHP caused the standard
deviation of predicted central pressure to increase (Figure 5)
as the integration time progressed.

We have already mentioned in Section 3.1 that the north-
westward track-prediction error during the early integration,
which was closely related to the bogus typhoon used in the
TYM calculation, caused the predicted Hai-Tang to travel
where MLHP was relatively low. In contrast, the best-track
data indicated that Hai-Tang passed over the warm-core
eddy between 12h to 36h (Figure 1). In fact, NCM and
NHM predicted that Hai-Tang would pass over the warm
area north of warm-core eddy W1 (Figure 1(c)) between
0h and 24 h (Figure 5). The amplitude of the variations in
MLHP (Figure 5) was relatively high compared with that of
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Ficure 6: Horizontal distributions of mean MLHP (kJcm™2)
averaged during 72 h among the nine NCM predictions (contours),
and of the standard deviation of MLHP (shading). MLHP values
instantaneously calculated every hour were used. Hai-tang’s best
track is also shown.

the analyzed TCHP variation, even though the high TCHP
at 1800 UTC on 14 July (Figure 1) was reproduced by NCM.
The overestimation of MLHP caused by the track-prediction
error led to prediction of an excessive reintensification of
Hai-Tang. This overestimation of MLHP affected Hai-Tang’s
predicted central pressure continuously, not temporarily
during the integration.

The horizontal distribution of mean MLHP averaged
over the nine NCM predictions during 72h and that of
the standard deviation are shown in Figure 6. MLHP was
significantly lower on the north side of Hai-Tang’s track,
where the standard deviation was relatively high, implying
that SSC was highly sensitive to variations in oceanic
preexisting conditions. The standard deviation was high
not only on the north side of Hai-Tang’s track but also
around 15°N, 138° E and 15° N, 150° E. The high standard
deviation in these areas away from Hai-Tang’s track can be
explained by seasonal to climate time scale variations of
oceanic conditions. Figure 6 also indicated that Hai-Tang
entered a high-MLHP area during the later integration, and,
in fact, the time series of best-track central pressure shows
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FIGURE 7: Scatter diagram of central pressure (hPa) versus accumu-
lated MLHP (AMLHP) during 72h (k] cm™2) from 1997 to 2005.
The numbers by each point indicate which year’s daily oceanic
reanalysis data on 12 July were used by NCM.

remarkable intensification during this later integration time
(Figures 3 and 5).

According to Wada and Usui [6], accumulated TCHP
(ATCHP) was highly correlated with the minimum central
pressure of TCs occurring from 1998 to 2004. ATCHP
is defined as the summation of TCHP within a 1.5°
square around the TC center from the genesis to the
phase first reaching the minimum central pressure every
six hours, corresponding to the interval of TC best track
data. Here, instead of ATCHP, we calculated accumulated
MLHP (AMLHP) from the initial time to 72h. We then
investigated the relationship between AMLHP and predicted
central pressure at 72h among the nine NCM predic-
tions (Figure 7). Interestingly, AMLHP underneath Hai-
Tang decreased monotonically from 1997 to 2005, how-
ever, predicted minimum central pressure did not increase
monotonically during the period. In particular, predicted
minimum central pressure markedly decreased during the
strong El Nifio Southern Oscillation (ENSO) event from
1997 to 1999. In addition, the predicted minimum central
pressure was relatively low in 2005 even though AMLHP
was also low. Therefore, a high linear correlation between
minimum central pressure and AMLHP cannot be assumed,
a result that is not consistent with the findings of Wada and
Usui [6]. Thus, whether AMLHP and predicted minimum
central pressure are correlated may depend on the oceanic
preexisting conditions (Figure 7).

3.3. Atmospheric Impact. The energy source for TC genesis
and intensification is moisture provided from the ocean
to the atmosphere through latent heat flux. Thus, latent
heat flux is an important metric for TC intensification. We
investigated the horizontal distribution of the mean latent
heat flux averaged over 72h among the NCM experiments
and that of its standard deviation (Figure 8). Note that
the NCM outputs latent heat flux every hour. Mean latent
heat flux was relatively small during the early integration
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FIGURE 9: Time series of mean central pressure (CP, left axis)
and mean latent heat flux (W m~2, right axis) and their standard
deviations.

owing to the relatively weak intensity of Hai-Tang, but
the standard deviation was relatively high at around 25° N,
148° E because of the uncertainty of Hai-Tang’s predicted
central position. The standard deviation became small as
integration progressed, whereas the mean latent heat flux
became high as Hai-Tang intensified. Figure 9 depicts time
series of mean central pressure and mean latent heat flux
and their standard deviations, with mean latent heat flux
calculated as the average in a 1° grid box at Hai-Tang’s
center. The two trends are negatively correlated, similar to the
trends of mean central pressure and mean MLHP (Figure 5),
implying that the variation in latent heat flux is closely
related to that in MLHP, although surface wind velocity
is another important metric for estimating latent heat flux
when Kondo’s [15] bulk formulas are used.

Next, we investigated the effect of variations in oceanic
preexisting conditions on the horizontal distribution of
mean latent heat flux at 72 h, averaged over the nine NCM
and NHM predictions. The NCM result shows a wave-1
asymmetric distribution pattern of mean latent heat flux
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(Figure 10(a)), whereas NHM produced an axisymmetric
distribution pattern (Figure 10(c)). The area of high mean
latent heat flux west of the mean center position of predicted
Hai-Tang corresponds to Hai-Tang’s mean direction of travel
as predicted by NCM (Figure 2). The standard deviation of
the latent heat flux predictions by NCM was high inside Hai-
Tang’s eyewall, where the horizontal gradient of surface wind
velocity was variable ahead of Hai-Tang’s direction of travel
(Figure 10(b)), whereas the standard deviation of the NHM
predictions was high behind Hai-Tang’s direction of travel
(Figure 10(d)). The difference in the horizontal distributions
of mean latent heat flux between NCM (Figure 10(a)) and
NHM (Figure 10(c)) resulted from SSC. In fact, mean latent
heat flux was remarkably reduced behind Hai-Tang in NCM
(Figure 10(a)) where atmospheric conditions had stabilized
(not shown). High latent heat flux can be attributed to
both the high-velocity surface winds associated with Hai-
Tang’s intensification (Figure 9) and high SST or mixed-
layer temperature associated with high MLHP (Figure 5).
This result suggests that not atmospheric thermostatics but
atmospheric dynamics and oceanic preexisting conditions
determined the distribution and amplitude of latent heat flux
around Hai-Tang.

We then examined the horizontal distributions of mean
hourly precipitation averaged over 72h among the nine
NCM experiments and of the standard deviation (Figure 11).
Heavy precipitation was concentrated along Hai-Tang’s
predicted track. High mean precipitation and larger standard
deviations tended to be on the south side of Hai-Tang’s track.
Thus, precipitation was high on the opposite side of Hai-
Tang’s track to high MLHP standard deviations (Figure 6).
Figure 12 depicts time series of mean central pressure and
mean precipitation and their standard deviations. Mean
precipitation was calculated as the average in a 1° grid box
at Hai-Tang’s center. Mean precipitation tended to increase
as Hai-Tang intensified. We can infer that high MLHP led to
increases in latent heat flux (Figures 5 and 9), which caused
the enhanced release of latent in the troposphere and heavy
precipitation (Figure 12). The impact of the variations in
oceanic preexisting conditions on MLHP predicted by NCM
can be widely seen not only around 15° N, 138° E and 15° N,
150° E but also around the area where MLHP decreased as
a result of the SSC induced by Hai-Tang (Figure 6), whereas
their impact on precipitation was mainly limited to the south
side of Hai-Tang.

The horizontal distribution of mean precipitation at 72 h
(Figure 13(a)) successfully captures its wave-1 asymmetric
pattern, which is similar to the precipitation pattern observed
by satellite (Figure 14). In contrast, the axisymmetric
pattern near Hai-Tang’s center (Figure 14) is similar to
the horizontal distribution of mean precipitation at 72h
predicted by NHM (Figure 13(c)). The heavy precipitation
near Hai-Tang’s center (Figure 14) is not reproduced well
(Figure 13(a)) owing to the weak intensity of Hai-Tang
predicted by NCM (Figure 3(a)), but it is reproduced to
some extent in the NHM prediction (Figure 13(c)). The
standard deviation of predicted mean precipitation was high
in both NCM (Figure 13(b)) and NHM (Figure 13(d)) where
mean precipitation was also high. The impact of variations in
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Figure 10: (a) Horizontal distribution of mean latent heat flux (W m~2) at 72 h averaged over the nine NCM predictions and (b) that of
the standard deviation at 72 h in NCM; (c) and (d) are the same as (a) and (b), respectively, except that they show the NHM results. Mean
horizontal wind field vectors at 72 h averaged over the nine NCM (in parts (a) and (b)) and NHM (in parts (c) and (d)) predictions are also

shown in each panel.

oceanic preexisting conditions on precipitation was signifi-
cant around the spiral rainband southeastward of Hai-Tang’s
center. In contrast, the axisymmetric pattern of precipitation
vanished as a result of SSC (Figure 13(a)), suggesting that the
variation in oceanic preexisting conditions directly affected
the intensity of precipitation over the spiral rainbands, and
then the variation over the spiral rainbands affected in
turn the intensity prediction. Although Wada [8] studied

intensification caused by mesovortices on spiral bands, this
study demonstrated for the first time that the intensification
process is influenced by variations in oceanic preexisting
conditions.

To investigate the impact of variations in oceanic pre-
existing conditions on precipitation and Hai-Tang’s inten-
sification, we focused on the variations in mean specific
humidity averaged from the surface to nearly 14 km height
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FiGure 11: Horizontal distributions of mean hourly precipitation
(mm) during 72h among the nine NCM predictions (contours)
and of the standard deviation (shading). Cumulative hourly
precipitation was used to calculate the mean value.
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deviations.

(Figure 15(a)), mean specific cloud plus specific rain aver-
aged from the surface to nearly 6.5 km height (Figure 15(b)),
and the mean hourly change in potential temperature caused
by radiation averaged from nearly 6.5km height to 14 km
height (Figure 15(c)). These mean values were also averaged
within a radius of 300 km from Hai-Tang’s predicted center
and also over the nine NCM predictions. Figure 15 also
depicts the variations in mean specific humidity, mean
specific cloud plus specific rain, and mean hourly change in
potential temperature caused by radiation in 1999, 2004, and
2005. Here, we consider specific humidity to represent the
water vapor content, and specific cloud plus rain to represent
the liquid water content.

Variations in oceanic preexisting conditions began to
cause significant variation in the water vapor content around
predicted Hai-Tang at 12 h. The standard deviation increased
during the early integration and reached a maximum at
around 30 h. After 36 h, the standard deviation of the liquid
water content around predicted Hai-Tang increased rapidly.
Both water vapor and liquid water contents increased around
predicted Hai-Tang as the predicted Hai-Tang intensified,
suggesting that they can be regarded as the energy source
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for TC intensification. The impact of variations in oceanic
preexisting conditions on the hourly change in potential
temperature caused by radiation became significant after
36 h (Figure 15(c)), corresponding in timing to Hai-Tang’s
intensification, as a result of variations in Hai-Tang’s atmo-
spheric warm-core temperature caused by latent heat release.
The difference in predicted central pressures among the
nine NCM predictions became large at 24 h (Figure 3(a))
when the difference in hourly change in potential tem-
perature caused by radiation began to appear significantly
(Figure 15(c)). Predicted central pressure tended to be lower
when the amplitude of diurnal variations in the hourly
change in potential temperature caused by radiation was
larger. The relationship was particularly marked when the
oceanic preexisting conditions in 1999 were used as the initial
oceanic conditions in NCM (NC99 in Table 1).

In contrast, water vapor content was markedly lower
when oceanic preexisting conditions in 2004 were used as
the initial oceanic conditions in NCM (NC04 in Table 1)
compared with when the preexisting conditions of other
years were used (Figure 15(a)). AMLHP predicted by NCM
was lower in 2004 than that in any other year except 2005
(Figure 7). Liquid water content was also low at around
30h and from 45 to 54h in NC04 (Figure 15(b)). Lower
water vapor and liquid water contents were associated with
less variation in the hourly change in potential temperature
caused by radiation. Thus, Hai-Tang’s central pressures
predicted by NHM and NCM were particularly high when
the oceanic preexisting conditions in 2004 were used as
the initial oceanic conditions in the models. Therefore, the
oceanic preexisting conditions associated with high MLHP
around Hai-Tang’s track were more favorable for Hai-Tang’s
intensification, because both MLHP and Hai-Tang’s surface
winds played a crucial role in enhancing water vapor and
liquid water contents around Hai-Tang as well as latent heat
release in the upper troposphere, which resulted in high value
of the hourly change in potential temperature caused by
radiation.

4. Discussion

4.1. The Effect of Cumulus Parameterization. We clarified the
uncertainty in TC intensity predictions caused by variations
in oceanic preexisting conditions for Typhoon Hai-Tang
(2005). We first demonstrated that Hai-Tang’s predicted
intensity was closely related to the variation in MLHP.
Warm-core eddies and the climatologically deep mixed layer
in the WNP played a crucial role in the intensification
of Hai-Tang. We next demonstrated that water vapor and
liquid water contents around Hai-Tang’s center increased
when predicted Hai-Tang intensified over high MLHP areas,
indicating a close relationship between MLHP and water
vapor and liquid water contents. However, the Kain-Fritsch
cumulus parameterization scheme [14] incorporated into
the NHM and NCM might have contributed to these results,
even though similar results were obtained by experiments
with NHM and NCM when the Kain-Fritsch’s cumulus
parameterization scheme was not used (not shown). Hai-
Tang’s central pressures predicted by the NHM and NCM
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FiGure 13: Horizontal distribution of mean hourly precipitation (mm per hour) at 72 h averaged over the nine NCM predictions and (b)
that of the standard deviation at 72 h; (c) and (d) are the same as (a) and (b), respectively, except that they show the NHM results. Mean
horizontal wind field vectors at 72 h averaged over the nine NCM (in parts (a) and (b)) and NHM (in parts (c) and (d)) predictions are also

shown in each panel.

without using the Kain-Fritsch’s cumulus parameterization
scheme were higher at the 6-km horizontal resolution than
those predicted with the use of the Kain-Fritsch scheme
(not shown) and far from the best-track central pressures.
Therefore, in the present study we concluded that cumulus
parameterization is required even at the 6-km resolution
to reproduce Hai-Tang’s intensity realistically. In fact, the
Kain-Fritsch’s cumulus parameterization scheme is closely

associated with the local Convective Available Potential
Energy (CAPE). CAPE is sensitive to the local thermostatic
profile in the atmospheric boundary layer, enthalpy flux,
and thus SST. Thus, cumulus convection as calculated by
Kain-Fritsch’s cumulus parameterization is sensitive to SST.
This implies that the Kain-Fritsch’s cumulus parameteriza-
tion possibly changes not only central pressure predictions
but also the distribution patterns of latent heat flux and
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FIGURE 14: Advanced Microwave Sounding Unit-B (AMSUB)-
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superimposed on the GOES-9 IR image obtained at 1155 UTC on
15 July 2005 (gray shading) (from http://www.nrlmry.navy.mil/tc_
pages/tc_home.html).

precipitation intensity at around Hai-Tang’s predicted center.
This study does not explore the sensitivity any further.

The impact in variations in oceanic preexisting condi-
tions on precipitation intensities on the spiral rainbands of
the typhoon (Figure 13) is qualitatively consistent with the
results of cloud-resolving numerical experiments [8] that
SSC suppresses mesovortices along the spiral bands. This
suggests that precipitation intensities on the spiral rainbands
around Hai-Tang are sensitive to variations in oceanic
preexisting conditions. However, the impact of oceanic pre-
existing conditions on precipitation intensities on the spiral
rainbands still requires quantitative evaluation because of the
uncertainties associated with the cumulus parameterization.
To explore the relationships among MLHP, water vapor
plus liquid water contents, and Hai-Tang’s intensity, another
numerical-prediction experiment with a grid spacing of 1
to 2 km, should be performed with a coupled atmosphere-
ocean model that does not include cumulus parameter-
ization. Although such experiments would improve TC
intensity prediction, many computational resources would
be needed to carry them out.

The evolution of SST, and SSC in particular, was asso-
ciated with the variations in oceanic preexisting conditions
[1] as well as with Hai-Tang’s intensity and translation [2].
The magnitude of SSC in this study tended to be larger
than that obtained in the previous study [1], partly because
of the northwestward track error. In addition, we must
pay attention to the possibility that the tuning parameter
associated with breaking surface waves in the mixed-layer
formulation [2, 8] may be too high. High tuning parameter
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values lead to excessive vertical turbulent mixing near the
surface because of breaking surface waves, which enhances
SSC [2]. We thus need to improve the tuning parameter
associated with breaking surface waves in the entrainment
formulation [2] using the result of a coupled atmosphere-
wave-ocean model.

The results of the numerical experiments of this study
include the impact of diurnally varying SST in the upper-
ocean skin layer on TC intensity prediction, but we could
not separate the impact of sea-surface skin temperature vari-
ations on TC intensity prediction from that of oceanic preex-
isting conditions. Another numerical-prediction experiment
without the upper-ocean skin-temperature scheme is needed
to determine the separate impact of diurnally varying SST in
the upper-ocean skin layer on TC intensity prediction. Previ-
ous study recently reported that sea-surface skin temperature
variations may affect maximum hourly precipitation over
the western Pacific in boreal summer and in the seasonal
climatology [21]. However, the impact of diurnally varying
SST on TC intensity prediction on a weather-forecasting
time scale is not well understood. Moreover, the sensitivity
of diurnally varying SST to oceanic preexisting conditions
and to cumulus parameterization should be considered.
Determination of whether oceanic preexisting conditions or
sea-surface skin temperature variations significantly affect
TC intensity prediction on a weather-forecasting time scale
is, however, beyond the scope of this study.

4.2. Upper-Ocean Variability on Seasonal to Climate Scales.
Here, we discuss the relationship between TC intensity
prediction on a weather-forecasting time scale and upper-
ocean variability on seasonal to climate time scales. Even
though the time scales are different, initial oceanic conditions
for predicting Hai-Tang can indeed be determined by
analysis of the oceanic field, including oceanic variations on
both weather-forecasting and seasonal to climate time scales.
Wada and Chan [7] investigate upper-ocean variability in
the North Pacific on seasonal to climate time scales in
the North Pacific by using monthly oceanic reanalysis data
sets calculated by MOVE. Table 3 lists the correlation
coefficients between the nine NHM and NCM predicted
central pressures at 72h and the normalized amplitudes
in July from 1997 to 2005. Wada and Chan [7] already
derived the normalized amplitudes by Empirical Orthogonal
Function analysis (EOF) of the 44-year monthly North
Pacific TCHP data set. The central pressures predicted by
the NCM at 72h were significantly correlated with the
normalized amplitudes of EOF first mode (EOF1) at a
90% significance level (Table 3), indicating a significant
relationship between predicted central pressures at 72h
around 19° N, 134° E, and ENSO events [7]. In contrast,
central pressures predicted by the NHM were significantly
correlated with the normalized amplitudes of EOF second
mode (EOF2) at the 80% significance level. In fact, the
region with remarkable SSC around Hai-Tang’s predicted
track corresponds to that where TCHP remained high. The
high TCHP is associated with ENSO Modoki event, when
all of the North Pacific except its eastern tropical part was
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FiGuRrE 15: (a) Time series of mean specific humidity (Q,, g - g™!) averaged over the nine NCM predictions within a radius of 300 km from
the predicted Hai-Tang’s center, along with time series of specific humidity in 1999, 2004, and 2005 predicted by NCM, also averaged within
a radius of 300 km from the predicted Hai-Tang’s center: (b) same as Figure 15(a) except for mean specific cloud (Q.) plus specific rain (Q,,
g - g !);and (c) same as Figure 15(a) except for mean hourly change in potential temperature caused by radiation (K per hour).

TaBLE 3: Correlation coefficients between predicted central pres-
sures and normalized EOF amplitudes (calculated by Wada and
Chan [7]).

Experiment EOF1(ENSO) EOF2(ENSO MODOKI) EOF3
NHM 0.27 —0.60** 0.39
NCM 0.61* 0.00 0.38

Significance levels: *a = 0.1, **a = 0.2.

relatively warm [7]. In contrast, the region with remarkable
SSC corresponds to that where TCHP decreased owing to
the passage of the TC during El Nino. Conversely, predicted
central pressure was lowest in 1999 during the transition to a
mature La Nina event, implying that a climatologically deep
mixed layer in the WNP during La Nifia events may cause
TCs to intensify.

Chia and Ropelewski [22] reported that the climatolog-
ical mean location of TC formation varies in relation to
ENSO. In that sense, certain oceanic preexisting conditions
matched the certain atmospheric conditions to produce

reasonable atmospheric and oceanic environmental fields,
which are necessary for tropical cyclogenesis and intensifica-
tion in the case of super-typhoon Hai-Tang. In other words,
the atmospheric thermodynamics conditions favorable to
tropical cyclogenesis and intensification are associated with
the oceanic preexisting conditions. Here we take as an
example a typhoon generated in July 2004 in the area
where Hai-Tang was generated and intensified in 2005. A
tropical storm was generated at around 19.1°N, 136.3°E
at 0600 UTC on 11 July 2004, and it became a tropical
cyclone, named Typhoon Kompasu, at 0000 UTC on 14 July
2004 in a location near Hai-Tang’s track. The minimum
central pressure of Kompasu was 992 hPa. Thus, Kompasu
did not show remarkable intensification in 2004 even though
in 2005 Hai-Tang was generated and intensified in the
same location. Oceanic preexisting conditions in 2004 led
to the weak intensity of Kompasu, consistent with the weak
intensity of predicted Hai-Tang under the initial oceanic
conditions of 12 July 2004 (Figures 3(a) and 3(b)). Thus,
certain large-scale atmospheric forcing must accompany the
certain oceanic preexisting conditions to cause the tropical
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cyclogenesis and intensification of a super-typhoon such as
Hai-Tang.

5. Conclusion

We qualitatively evaluated the impact of variations in oceanic
preexisting conditions on predictions of Typhoon Hai-Tang
in 2005 by a coupled atmosphere-ocean model to which we
provided nine initial oceanic conditions obtained from daily
oceanic reanalysis data for 12 July from 1997 to 2005. Our
conclusions are as follows.

(1) The amplitude of the impact of the variations in
oceanic preexisting conditions on predicted Hai-
Tang’s central pressure was nearly 18 hPa at 72h,
compared with a predicted central pressure difference
of about 40 hPa at 72h, predicted from the differ-
ence in sea-surface temperature (SST) between the
nonhydrostatic atmospheric model (NHM) and the
nonhydrostatic atmosphere model coupled with the
ocean model (NCM). The marked difference between
the predicted SST and the initial SST is the sea-
surface cooling (SSC) caused by the passage of Hai-
Tang. The impact of SSC was more remarkable than
that of variations in oceanic preexisting conditions on
Hai-Tang’s intensity prediction. However, to evaluate
the impact of the variation in oceanic preexisting
conditions on predicted Hai-Tang’s central pressure
quantitatively, the effect of cumulus parameterization
should be considered. Numerical-prediction experi-
ments with NCM at horizontal resolutions of 1-2 km
will be needed in the future because of the poor
intensity prediction by even the NHM at the 6-km
horizontal resolution.

(2) Warm-core oceanic eddies and a climatologically
deep mixed layer led to a high mixed-layer heat
potential, which increased the latent heat flux and
enhanced the water vapor and liquid water contents,
leading to increases in Hai-Tang’s atmospheric warm-
core temperature owing to latent heat release and
thus intensification of Hai-Tang. The difference in
the intensity predictions of Hai-Tang among the nine
NCM predictions accompanied that in the hourly
changes in potential temperature caused by radiation.
Variations in oceanic preexisting conditions were
sensitive to precipitation intensities along the spiral
rainbands and thus affected Hai-Tang’s intensity,
whereas SSC negatively affected the formation of an
axisymmetric precipitation pattern near Hai-Tang’s
center.

We discussed the requirement that certain large-scale
atmospheric forcing must accompany the certain oceanic
preexisting conditions to cause the tropical cyclogenesis
and intensification of a super-typhoon such as Hai-Tang.
Chan [23] also reported that locations of TC genesis varied
depending on the atmospheric dynamic forcing. However,
it is not well understood how the atmospheric thermody-
namic field and associated oceanic preexisting conditions
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affect TC intensity. In this study, we successfully evaluated
uncertainties in predictions of Hai-Tang’s intensity related
to variations in oceanic preexisting conditions. This is the
first step to understanding the impact of the atmospheric
thermodynamic field and its associated oceanic preexisting
conditions on TC intensity and to making TC intensity
prediction more precise. To explore this further, a more
sophisticated oceanic data assimilation system and coupled
atmosphere(-wave)-ocean model are needed. In addition,
the results of the coupled model suggest that we should
consider seasonal to climate variations in oceanic conditions
to improve the intensity predictions on a weather-forecasting
scale.

Acknowledgments

A. Wada is grateful to Dr. Y. Kawai for developing the oceanic
sublayer scheme. This work was supported by the Japan
Society for the Promotion of Science (JSPS), Grant-in-Aid
for Scientific Research (C) (19612005 and 22540454). The
authors thank Dr. T. Kato of the Meteorological Research
Institute, Japan Meteorological Agency, for the use of his
plotting tools. General Mapping Tools (GMT) were also used
to draw figures.

References

[1] Z.-W. Zheng, C.-R. Ho, and N.-J. Kuo, “Importance of pre-
existing oceanic conditions to upper ocean response induced
by Super Typhoon Hai-Tang,” Geophysical Research Letters,
vol. 35, no. 20, Article ID 120603, 2008.

[2] A. Wada, H. Niino, and H. Nakano, “Roles of vertical
turbulent mixing in the ocean response to Typhoon Rex
(1998),” Journal of Oceanography, vol. 65, no. 3, pp. 373396,
2009.

[3] A. Wada, K. Sato, N. Usui, and Y. Kawai, “Comment on
“Importance of pre-existing oceanic conditions to upper
ocean response induced by Super Typhoon Hai-Tang” by Z.-
W. Zheng, C.-R. Ho, and N.-J. Kuo,” Geophysical Research
Letters, vol. 36, no. 9, Article ID L09603, 2009.

[4] C.-R.Ho, Q. Zheng, Z.-W. Zheng, N.-J. Kuo, C.-K. Tai, and E.-
C. Su, “Reply to comment by A. Wada et al. on “Importance
of pre-existing oceanic conditions to upper ocean response
induced by Super Typhoon Hai-Tang?” Geophysical Research
Letters, vol. 36, no. 9, Article ID L09604, 2009.

[5] A. Wada, “Numerical problems associated with tropical
cyclone intensity prediction using a sophisticated coupled
typhoon-ocean model,” Papers in Meteorology and Geophysics,
vol. 58, pp. 103-126, 2007.

[6] A. Wada and N. Usui, “Importance of tropical cyclone heat
potential for tropical cyclone intensity and intensification in
the Western North Pacific,” Journal of Oceanography, vol. 63,
no. 3, pp. 427-447, 2007.

[7] A. Wada and J. C. L. Chan, “Relationship between typhoon
activity and upper ocean heat content,” Geophysical Research
Letters, vol. 35, no. 17, Article ID L17603, 2008.

[8] A. Wada, “Idealized numerical experiments associated with
the intensity and rapid intensification of stationary tropical-
cyclone-like vortex and its relation to initial sea-surface
temperature and vortex-induced sea-surface cooling,” Journal



Advances in Meteorology

(13]

(14]

(18]

(19]

(22]

(23]

of Geophysical Research, vol. 114, no. 18, Article ID D18111,
2009.

I. Ginis, “Ocean response to tropical cyclone,” in Global
Perspective on Tropical Cyclones, R. L. Elsberry, Ed., pp. 198—
260, WMO/TD-No. 693, Geneva, Switzerland, 1995.

N. Usui, S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda, and
M. Kamachi, “Meteorological Research Institute multivariate
ocean variational estimation (MOVE) system: some early
results,” Advances in Space Research, vol. 37, no. 4, pp. 806—
822, 2006.

K. Saito, T. Fujita, Y. Yamada et al., “The operational J]MA
nonhydrostatic mesoscale model,” Monthly Weather Review,
vol. 134, no. 4, pp. 1266-1298, 2006.

A. Wada and Y. Kawai, “The development of diurnally-
varying sea-surface temperature scheme. Part I. Preliminary
numerical experiments,” CAS/JSC WGNE, Research Activities
in Atmospheric and Ocean Modelling, vol. 39, no. 4, pp. 0907—
0908, 2009.

Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk parameteriza-
tion of the snow field in a cloud model,” Journal of Climate ¢
Applied Meteorology, vol. 22, no. 6, pp. 1065-1092, 1983.

J. S. Kain and J. M. Fritsch, “A one-dimensional entrain-
ing/detraining plume model and its application in convective
parameterization,” Journal of the Atmospheric Sciences, vol. 47,
no. 23, pp. 2784-2802, 1990.

J. Kondo, “Air-sea bulk transfer coefficients in diabatic condi-
tions,” Boundary-Layer Meteorology, vol. 9, no. 1, pp. 91-112,
1975.

J. B. Klemp and R. Wilhelmson, “The simulation of three-
dimensional convective storm dynamics,” Journal of the Atmo-
spheric Sciences, vol. 35, pp. 1070-1096, 1978.

J. W. Deardorff, “Stratocumulus-capped mixed layers derived
from a three-dimensional model,” Boundary-Layer Meteorol-
ogy, vol. 18, no. 4, pp. 495-527, 1980.

M. Sugi, K. Kuma, and K. Tada, “Description and performance
of the JMA operational global spectral model (JMA-GSM88),”
Geophysical Magazine, vol. 43, pp. 105-130, 1990.

A. Schiller and J. S. Godfrey, “A diagnostic model of the diurnal
cycle of sea surface temperature for use in coupled ocean-
atmosphere models,” Journal of Geophysical Research, vol. 110,
no. 11, Article ID C11014, 2005.

J. C. Ohlmann and D. A. Siegel, “Ocean radiant heating. Part
II: parameterizing solar radiation transmission through the
upper ocean,” Journal of Physical Oceanography, vol. 30, no.
8, pp. 1849-1865, 2000.

M. A. Brunke, X. Zeng, V. Misra, and A. Beljaars, “Integration
of a prognostic sea surface skin temperature scheme into
weather and climate models,” Journal of Geophysical Research,
vol. 113, no. 21, Article ID D21117, 2008.

H. H. Chia and C. F. Ropelewski, “The interannual variability
in the genesis location of tropical cyclones in the northwest
Pacific,” Journal of Climate, vol. 15, no. 20, pp. 2934-2944,
2002.

J. C. L. Chan, “Thermodynamic control on the climate of
intense tropical cyclones,” Proceedings of the Royal Society A,
vol. 465, no. 2110, pp. 3011-3021, 2009.

15



Hindawi Publishing Corporation
Advances in Meteorology

Volume 2010, Article ID 915303, 13 pages
doi:10.1155/2010/915303

Research Article

Towards Direct Simulation of Future Tropical Cyclone Statistics in
a High-Resolution Global Atmospheric Model

Michael F. Wehner,! G. Bala,? Phillip Duffy,® Arthur A. Mirin,* and Raquel Romano’®

I Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. MS50F, Berkeley, CA 94720, USA
2 Divecha Center for Climate Change, Center for Atmospheric and Oceanic Sciences, Indian Institute of Science,

Bangalore 560 012, India

3 Climate Central, Inc., 895 Emerson St., Palo Alto, CA 94301, USA
#Lawrence Livermore National Laboratory, Livermore, 94551-0808, USA
3 Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

Correspondence should be addressed to Michael F. Wehner, mfwehner@Ibl.gov

Received 31 December 2009; Revised 14 April 2010; Accepted 22 April 2010

Academic Editor: Song Y. Hong

Copyright © 2010 Michael F. Wehner et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model’s
ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic
dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when
compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature
(SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm
numbers and intensities in all ocean basins. While this paper supports previous high-resolution model and theoretical findings
that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-
resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that
this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as
a focus on the Northern hemisphere tropical storm seasons.

1. Introduction

Hurricanes and tropical cyclones are arguably the most
devastating meteorological events in both loss of human life
as well as financial costs. Following the most active Atlantic
hurricane season ever recorded in 2005, the debate as to the
influence a warmer climate might have on the statistics of
tropical cyclones has become more urgent. If the frequency
or intensity of such storms were to change, the impacts
could be severe. The number of tropical cyclones has been
remarkably stable since 1970 averaging about ninety storms
globally per year [1, 2]. No statistically significant trend in
this number of tropical cyclones has been observed in the
period 1970 to present [1]. However, there is evidence of
significant trends in tropical cyclone intensity and duration
over this period. Holland and Webster [3] found that the
number of Atlantic tropical cyclones has increased in a

statistically significant sense and Emanuel [4] has correlated
increases in a hurricane power index with increases in North
Atlantic sea surface temperatures. Elsner et al. [5] have found
a twenty-six year positive trend in the maximum wind speeds
of Atlantic storms in the 70th percentile and greater by an
analysis of satellite records.

A causal connection between warming in the main
cyclogenesis regions and human activities has been estab-
lished to a high degree of statistical certainty [6, 7]. Future
warming in these regions where most tropical cyclones
form is virtually certain. However, sea surface temperature
is only one of several factors determining tropical cyclone
formation and development. Vorticity, humidity, wind shear
and moist instability conditions must also be satisfied in
the cyclogenesis region [8, 9]. Additionally, a disturbance
such as an easterly wave must pass through the cyclogenesis
region at a moment when all these conditions are satisfied



for a tropical cyclone to form. Detection and attribution
of changes in cyclogenesis factors other than sea surface
temperatures have not been presently attained in a formal
statistical sense. Progress in this regard is limited not only by
climate model characteristics, including resolution, but also
by long high quality observational records. Our confidence in
climate models’ ability to model future changes in these other
factors is substantially lower than it is for temperatures [10].

The current generation of coupled global ocean atmo-
sphere models prepared for the Fourth Assessment Report
(AR4) of the Intergovermental Panel on Climate Change
(IPCC) are too coarsely resolved to directly simulate tropical
cyclones. Nonetheless, some models produce vortices resem-
bling tropical cyclones and have been interpreted in that
light [11-13]. The number of high-resolution simulations of
tropical cyclone statistics is limited. An innovative approach
to reduce the computational burden uses a limited area
north Atlantic basin hurricane prediction system forced with
the output from coarser global climate models [14-16].
However, computational capabilities have increased to the
point where it is feasible to run global models at resolutions
high enough to directly simulate some aspects of tropical
cyclones. Oouchi et al. [17] integrated an atmospheric
model at high-resolution (a spectral truncation of T959,
approximately 20 km at the equator) and found that the
model could simulate some aspects of tropical cyclone
behavior realistically and ran it long enough to generate
robust statistical information. Zhao et al. [18] integrated a
four member ensemble of a 50 km global atmospheric model
finding a strong correlation between north Atlantic sea sur-
face temperature (SST) and tropical cyclone count consistent
with observations. They also found that future north Atlantic
tropical cyclone frequency was more dependent on changes
in a relative SST index rather than on changes in SST itself. In
this paper, we present results from another high horizontal
resolution atmospheric general circulation model (AGCM)
that we find realistically simulates some aspects of individual
tropical cyclones.

The model used in this paper is the finite volume
dynamics form of the Community Atmospheric Model
version 2.2 (fvCAM2.2). The ability of the model to simulate
tropical cyclones is dependent on horizontal resolution. Most
of the results presented here are at a horizontal resolution of
0.5° X 0.625°, which is about 50 km at the equator. At this
resolution, we performed a simulation of the period 1979—
1996 to compare the model’s tropical cyclone statistics with
observations. We have also performed a short integration
at 0.25° x 0.375° and find that details of the individual
tropical cyclones produced are yet more realistic than they
are at the coarser resolution. A lower resolution simulation
of the period 1979-1994 at 1.0° X 1.25° was also performed
further demonstrating the effect of resolution on tropical
cyclones. At all three horizontal resolutions, the vertical
structure of the model is identical to the 26 layers as
in the standard NCAR release of 2.0° x 2.5° horizontal
resolution. Also, in all experiments described here no tuning
or other modifications to the physics parameterizations were
imposed.
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In Section 2, we present results from a model simulation
of the recent past and compare model tropical cyclone statis-
tics with observations. In Section 3, we present results from
the model forced under a future climate change scenario
to investigate the sensitivity of the model’s tropical cyclone
statistics to increases in sea surface temperature (SST). In the
future scenario experiments, we alter only SST and do not
alter the atmospheric greenhouse gas concentrations or other
radiative forcing agents. One study [19] has examined this
issue and found that both increases in SST and atmospheric
CO, concentration independently cause a reduction in total
tropical storm frequency in a different model. The direct
radiative forcing effect is not included in our experimental
design. In Section 4, we conclude with a discussion of these
results and comparison to other estimates of the changes in
possible future tropical cyclone activity.

2. fvCAM2.2: A Present Day Simulation

fvCAM2.2 is an intermediate release version of the Commu-
nity Atmospheric Model developed at the National Center
for Atmospheric Research (NCAR). This particular version
shares many similarities to the atmospheric component of
the Community Climate System Model (CCSM3.0). The
principal difference is that the solution of the dynamics
equations is performed using a finite volume approach [20-
23]. Significant differences in the parameterization of sub-
grid scale processes include cloud microphysics and radiation
processes (Collins, et al. 2006). We performed a simulation of
the recent past following the standard Atmospheric Model
Intercomparison Project (AMIP2) protocol [24] over the
period 1979 to 1996. The ocean and sea ice in the AMIP2
protocol is treated as a lower boundary condition with
specified time varying values and distributions. Monthly
varying sea surface temperatures and sea ice extent fields
were generated by the Program for Climate Model Diag-
nosis and Intercomparison (PCMDI) with their standard
algorithm for this study [25]. Simulations were integrated
at three different horizontal resolutions, 1.0° x 1.25°, 0.5° X
0.625° and 0.25° x 0.375°. The standard vertical resolution
of 26 vertical layers in the public release version of the model
was retained [26], as was the hydrostatic approximation.
The actual code was closely related to the publicly released
version of CAM2.2, with significant changes only to the
parallel computing domain decomposition strategies [27].
These changes were necessary to permit the usage of large
number of processors allowing the numerical integration to
proceed in a tolerable amount of time.

2.1. Ability of fvCAM2.2 to Capture the Dynamical Fea-
tures of Tropical Cyclones. At moderate to high horizontal
resolutions, the model produces many incidences of high
local vorticity. Many of these events are identified to have
characteristics of tropical depressions, tropical cyclones, and
even hurricanes. These events are self-initializing from the
numerical algorithm itself without any artificial stimulus or
external forcing and vary considerably in maximum wind
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FIGURE 1: Instantaneous mean sea level pressure (in color) and
surface wind (10 meter) vectors (as arrows) of the strongest Atlantic
tropical cyclone in the 0.5° X 0.625° horizontal resolution AMIP
simulation. Pressure in hPa, the wind vector scale in miles per hour
is to the left of the color bar.

speed, local pressure minima, vertical structure, and trajec-
tory. In a lengthy climate simulation, it is not appropriate
to attempt a comparison to any specific observed tropical
storm, as individual weather events are not predictable after
a few weeks due to the chaotic nature of the atmosphere
[28]. Nonetheless, analysis of individual simulated events can
reveal if the model produces some of the typical behaviors
associated with real storms.

In Figure 1, the strongest Atlantic storm simulated at
the 0.5° X 0.625° horizontal resolution is shown just before
it makes landfall. At the time shown, this storm is at its
greatest intensity. The maximum surface wind speed (at
10 meters) is 116 knots (133 miles per hour) and the surface
pressure at the vorticity center is 945hPa, which occurred
just prior to landfall. On the Saphir-Simpson scale, these
values would categorize this simulated storm as a category
4 hurricane. Over the course of the event, it maintained
category 1 hurricane status or greater for 5 days. The storm
quickly lost strength as it crossed into Texas and dissipated in
a few simulated days.

In addition to the high winds and low pressure centers,
other features of the simulated storms offer additional
realism. In Figure 2, the scalar surface (10m) wind speed
and surface pressure isobars of this same simulated storm
are shown 12 hours prior to that shown in Figure 1. Also,
the trajectory of the storm up until landfall is shown by
the thick dashed line. When this storm passed over the
Yucatan Peninsula, it weakened somewhat. Later as it passed
into the middle of the Gulf of Mexico, it reorganized and
became more symmetric in its surface pressure structure.
Real tropical cyclones and hurricanes often exhibit stronger
winds along the leading edge of the storm and weaker winds
along the trailing edge. This is also evident in this and
other simulated storms that are far from land. Note the
asymmetry of the colors representing scalar wind speed but
the symmetry of the isobars. Wind speed asymmetry of this
sort is a dynamical consequence as the storm’s rotational
velocity and its translational velocity add to produce the net
wind speed. It is reassuring that the model maintains this
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FiGure 2: Instantaneous surface (10 meter) wind speeds (in color)
and surface pressure (as isobars) for the same storm twelve hours
earlier than in Figure 1. The storm center trajectory is shown as a
thick dotted line. Units of wind speeds are m/s.

dynamical consistency. Note also that a hurricane eye (in
velocity) is simulated although only a single velocity point
on this Arakawa B-mesh [29] has near zero winds at this
resolution.

The ability of the model to simulate tropical cyclones
and hurricanes depends greatly on horizontal resolution.
In general, as grid spacing is reduced, the strength of the
most intense simulated storms increases. Hence, for a given
magnitude, the number of simulated storms increases as
horizontal resolution is increased. A twelve month simu-
lation at a 0.25° x 0.375° horizontal resolution was also
performed. Although it is difficult to quantify how many
more storms of a given intensity are simulated per year in
this simulation due to the short integration period, several
interesting storms of hurricane class are produced. Because
of the higher fidelity, additional realism along with greater
intensities is seen in these simulated storms. In Figure 3,
the instantaneous precipitation is shown for a category 4
storm in September off the coast of the Bahamas simulated
at the 0.25° % 0.375° horizontal resolution. At the moment
shown in Figure 3, the storm’s maximum winds are 100 knots
and the low pressure is 963 hPa. In this figure, the spiral
and banded nature of intense precipitation exhibit some
realism. Note especially the two intense precipitation bands
exceeding 90 mm/day on either side of the hurricane center.
Also note the long arms of precipitation extending towards
the southeast and southwest. These features trail and rotate
about the overall motion of the storm. However, even at
this resolution there is no suppression of precipitation in the
center of the eye of the storm. Although this storm is more
compact than the less finely resolved storm in Figure 1, other
storms at this resolution need not be so.

Strong tropical cyclones transport large amounts of
heat energy from the ocean surface to high altitudes. Such
an upper air temperature positive anomaly is one of the
signatures of these events. In Figure 4, a vertical cross section
of the air temperature of the storm in Figure 3 is shown at
a slightly later time. This east-west cross section is a slice
at 34.25°N across longitude lines intersecting the center of



FIGURE 3: Instantaneous precipitation rates during an intense
simulated North Atlantic hurricane at the 0.25° % 0.375° horizontal
resolution. Units are mm/day.
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FIGURE 4: Vertical cross section of the air temperature at 34.25°N
through the center of a simulated Atlantic tropical cyclone. Warm
air is advected upwards inside the region of high vorticity. Air
temperature units are Kelvin. Units of the vertical axis are hPa. The
horizontal axis spans 290-309°W.

the storm. The model exhibits realistic upwelling of heat
from the ocean surface to higher altitudes as seen by the
elevated temperatures near the storm center at 300°W. The
air temperature anomaly at 500 hPa is up to 10K. At this
point in time, the storm’s northwestwards motion slightly
tilts the tower of warm air to the east at the higher elevations.

2.2. Ability of fyCAM2.2 to Capture the Statistical Features
of Tropical Atlantic Cyclones. Simulated storms such as the
ones considered in the previous section occur spontaneously
in the course of the integration long after any memory
of the initial conditions is lost. Thus there is no direct
relationship between these simulated storms and actual
storms. However, data collected from the seventeen-year
0.5° x 0.625° fvCAM2.2 AMIP simulation do permit a
statistical comparison with actual storms. Identification of
simulated tropical cyclones in this dataset was made by
possible by running it through a tropical cyclone tracking
program [15]. Developed at the Geophysical Fluid Dynamics
Laboratory (GFDL), it produces storm tracks as well as
summary statistics describing storm intensity by first finding
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colocated vorticity centers and local pressure minima, then
identifying if the 300 mb to 500 mb average temperature is
anomalously high relative to the surroundings and if the
1000 mb to 200 mb thickness is anomalous in that region.
The tracking program was confined to ocean points to
between 40S and 40N. All other parameters used in the
tracking program were the same as described in Appendix
B of Knutson et al. [15].

In the AMIP simulation, the 0.5° X 0.625° fvCAM2.2
produced over the entire globe 165 + 8 tropical storms per
year of which 97 were of hurricane strength or greater and 23
were of intense hurricane strength. The model is overactive
in its simulation of tropical storms when compared to the
observational estimate of Frank and Young [2]. In that
study, they estimate 87 = 8 tropical storms of which 49 +
7 are of hurricane strength and 16 + 5 are of intense
hurricane strength. As is discussed in more detail below
the model actually produces too few storms in the Atlantic
basin. Hence, most of the tropical storms and nearly all
of the simulated intense hurricanes were produced in the
Pacific basin with these numbers significantly exceeding the
observations. This overprediction of the ratio of Pacific to
Atlantic tropical storms has been documented in a few other
models [18].

A fifteen-year (1979-1994) AMIP-type simulation of
fvCAM2.2 at 1.0° X 1.25° permits a statement about the
effect of horizontal resolution on tropical cyclone statistics.
At this coarser resolution, the model produced a global
average of only 52 tropical storms per year of which 25
were of hurricane strength. Although, the tropical storms are
weaker than at the finer resolutions in general, the strongest
storm in this simulation experienced maximum winds of 111
knots and a pressure minimum of 935 mb. However, only 11
tropical storms were produced in the north Atlantic basin
over the entire simulation period.

Tropical storms in the North Atlantic basin are generally
better observed than elsewhere with routine flights directly
into them. This permits a much more detailed comparison
in the North Atlantic of tropical cyclone statistics. The
North Atlantic storm tracks produced from 1979 through
1996 by the model in the 0.5° X 0.625° configuration are
shown in upper panel of Figure 5. The observed storm tracks
in this region over this period are shown for comparison
in lower panel of Figure5. The source of the observed
storm data is the UNISYS Best Track database (available at
http://weather.unisys.com/hurricane/). There are 173 actual
storms and 83 simulated storms of tropical storm strength
or greater identified by the tracking algorithm during this
period in the North Atlantic basin. Most of the simulated
storm tracks follow realistic paths despite biases in the mean
atmospheric state (see the discussion in Section 4). However,
we note that the model initiates too many tropical cyclones
in the Caribbean and too few in the Eastern Atlantic.

Professor Gray and his team at Colorado State University
have been statistically forecasting North Atlantic hurricane
activity for many years [30, 31]. The standards that the
group applies to their forecast to measure success are also
useful in assessing the ability of the model integration in this
study to simulate tropical cyclone statistics. Professor Gray’s
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FiGure 5: Simulated (a) and observed (b) tropical Atlantic cyclone
storm tracks. The period is 1979 to 1996 and the model resolution
is 0.5° x 0.625°.

group defines seven simple numbers describing the Atlantic
hurricane season shown in Table 1. The first four of them are
easily comparable between the model and observations.

At the 0.5° x0.625° resolution, the model produced about
half as many named tropical storms and a little less than
half as many hurricanes in the north Atlantic basin than the
observations as shown in Table 2. The total duration of the
simulated named storms were shorter than the actual storms
but the average simulated storm lasted about two days longer
than the average real storm. At hurricane intensity, the model
produced less total storm days with the average storm about
half as long as the real storms over the 1979—-1996 period.

As mentioned before, the ability to simulate high
vorticity and associated winds is quite dependent on the
model’s horizontal resolution. Only three intense hurricanes
(Category 3 or larger) in the north Atlantic basin were
simulated over the seventeen-year simulation period. It is
likely that a long simulation at higher horizontal resolution
would produce a greater number of storms of hurricane
intensity. Our simulation of fvCAM2.2 at the 0.25° x 0.375°
resolution could only be integrated for twelve months
due to constraints on computer time allocations. However,
two category 3 north Atlantic hurricanes were produced
at this higher resolution with minimum pressures of 946
and 966 mb with each storm exceeding 105 knots despite
the relatively short integration period. The 0.5° x 0.625°
configuration of the model produced multiple storms of
Category 3 and 4 in the Pacific basin in every simulated
year of the AMIP integration. It never produced a category
5 storm in any ocean basin.
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FIGURE 6: The average number of named Atlantic tropical storms
per month in 0.5° X 0.625° fvCAM?2.2 and observed.

Tropical storms in the Atlantic basin follow a distinct
seasonal cycle dictated both by sea surface temperature and
wind shear conditions. A comparison in Figure 6 of the
seasonality of Atlantic tropical storms in the 0.5° X 0.625°
version of fvCAM2.2 and in the real world reveals that model
is a bit late in its timing of the hurricane season. The period
shown here is 1979 to 1996. The model produces a few weak
storms in months when there are practically no observed
tropical cyclones (December through May). None of these
form into hurricane strength.

Tropical cyclones exhibit significant interannual variabil-
ity. Although the AMIP protocol specifies realistic monthly
averaged sea surface temperatures for each year of the
simulation, one should not expect the modeled tropical
cyclone activity to agree with observations on a yearly
basis because of the other factors important to cyclogenesis
that are not constrained. In fact, the model does exhibit
substantial interannual variability in the number of North
Atlantic tropical storms as shown in Figure 7. Although the
standard deviation of the observed and simulated annual
storm counts are similar, the two-time series are not
highly correlated (correlation factor ~0.4). Other models
have exhibited a stronger relationship between interannual
temperature variability and tropical storm count in the
North Atlantic [18, 32].

3. Future Changes in Simulated Tropical
Cyclone Activity

Historical changes in the intensity of tropical cyclones
and hurricanes are strongly correlated with sea surface
temperature (SST) changes in the cyclogenesis regions.
While factors such as wind shear, moisture availability, and
atmospheric stability also influence tropical cyclone genesis
and evolution, there is emerging evidence that SSTs may
play a dominant role in the late 20th century increase in
intense hurricanes [4, 33]. Attribution of recent increases in
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TaBLE 1: Professor Gray’s seven hurricane summary statistics.

NS Named Storms Number of storms with winds exceeding 35 knots

NSD Named Storm Days Number of storm days with winds exceeding 35 knots

H Hurricanes Number of storms with winds exceeding 64 knots

HD Hurricane Days Number of storm days with winds exceeding 64 knots

IH Intense Hurricanes Number of storms with winds exceeding 96 knots

IHD Intense Hurricane Days Number of storm days with winds exceeding 96 knots

NTC Net Tropical Cyclone Activity A relative measure of a given year’s tropical cyclone activity.

TasLE 2: North Atlantic values of the first four of Professor Gray’s
hurricane summary statistics for the model and observations for the
period 1979-1996.

NS NSD H HD
Observations 9.6 54.1 5.6 21.5
fvCAM2.2 0.5° x 0.625° 4.8 34.5 2.4 4.5
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FIGURE 7: The annual number of named Atlantic tropical storms
(NS) per year produced by 0.5° x 0.625° fvCAM?2.2 compared to
observations. The model and observed mean values are 4.6 and 9.6
and their standard deviations are 2.4 and 2.9, respectively.

cyclogenesis region SSTs to human-induced changes to the
atmospheric composition suggests that future increases are
highly likely [6, 7].

Three future scenarios defined in the IPCC “Special
Report on Emissions Scenarios” were widely simulated by the
global climate modeling community [34]. These scenarios
span the range from minimal (A2), to moderate (A1B) and
to aggressive efforts (B1) to reduce greenhouse gas emissions
and are well represented in the publically accessible CMIP3
database of climate model integration [35].

In Figure 8, the predicted annual mean sea-surface
temperature anomalies in the Atlantic Cyclogenesis Region
(ACR) over the 21st century are shown. The ACR is the
main development region for tropical cyclogenesis in the
North Atlantic and spans 6°~18°N by 300°-340°W. Results
from simulations of 20th century climate change experiment
(20c3m) are also given. All modeled SST changes are

the averages of multimodel ensembles. Observational SST
changes are shown from two independent sources: ERSST,
Extended Reconstructed SST data set [36] and HadISST, the
Hadley Centre Sea Ice and SST data set [37]. Anomalies were
calculated with respect to climatological annual means over
1900-1909, and spatially averaged over 6°N-18°N, 60°W—
20°W. Uncertainty in the model results is represented by
the shaded envelopes, which are the 10 confidence intervals
calculated across the ensemble of different models.

The prediction envelope encompasses a wide range of
possibilities. The upper boundary, with SST increases of
nearly 4.0°C by 2100, is set by models with high climate
sensitivities run with the A2 scenario. The lower boundary
of the envelope, which is dictated by low-sensitivity models
driven by the low emission rate Bl scenario, yields an SST
increase of about 1.5°C by the end of the 21Ist century.
To put this increase in historical perspective, note that
observed SST changes in the ACR range from 0.41 to
0.67°C over the 20th century. Thus, even the lower boundary
of the changes predicted to occur by 2100 represents an
approximate doubling of the 20th century warming. Such an
increase is well outside the range of model-based estimates
of natural climate variability [6]. Similar behavior is seen
in the main development region (5°N-15°N, 180°E-130°E
designated below as PCR) for north Pacific tropical cyclones
as well.

Note that the model-average SST changes in the A2,
A1B, and B2 scenarios are virtually identical until roughly
2030, and begin to diverge thereafter. The model-average
warming over the next 20-30 years is nearly as large as the
warming over the entire 20th century. By the end of the 21st
century, the uncertainties associated with future greenhouse-
gas emission rates are the largest contributor to the total
prediction uncertainty, and there are large and statistically
significant differences between the SST changes in the three
scenarios. The ensemble-mean SST changes in 2100 range
from 2.0 to 3.5 Kelvin. Such large increases would be truly
unprecedented if realized.

In view of the historical relationship between cyclo-
genesis region temperatures and hurricane intensity [38],
these projections of future cyclogenesis region SST changes
motivate an investigation of potential changes in future
tropical cyclone statistics by direct simulation. To investigate
the sensitivity of the tropical cyclone statistics to increases
in SST, we performed a second numerical experiment of
two ensembles. In this set of simulations, we integrated
an ensemble of fifteen simulations of the late 20th century
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FIGUre 8: Modeled and observed annually averaged SST changes
over the Atlantic cyclogenesis region. Model results are multi-model
averages for the 20th and 21st centuries. Observed changes are
for the 20th century only. All anomalies were defined relative to
climatological means over 1900-1909. The shaded envelopes are the
1o confidence intervals calculated across the ensemble of simulated
SST changes from different models. All data were smoothed
by application of a 13-point binomial filter. The amplitude of
simulated and observed SST variability over the 20th century is not
directly comparable because simulated changes are averaged over
realizations and models, thus damping climate noise. The CCSM3.0
result is shown for reference.

using the 1990-1999 climatological monthly SST values. The
annual cycle was retained in this averaged surface forcing. A
second ensemble of fifteen integrations was completed with
only the SSTs changed to represent a future climate state. The
SST change was constructed by adding the monthly average
SST change predicted over 2090-2098 from an ensemble
of eight realizations of CCSM3.0 forced under the AIB
future scenario to the 1990-1999 climatological monthly
SST. CCSM3.0 was chosen as the closest related model
to fvCAM2.2 and its 2090-2098 average change over the
Atlantic cyclogenesis region is 2.65 Kelvin. The solid black
curve in Figure 8 shows the ACR response of CCSM3.0
relative to the other CMIP3 models. The spatial structure of
the predicted SST change was retained in the construction of
the future temperature forcing. Each member of the ensem-
ble was initialized with slightly different initial conditions
leading to statistically identical but randomly distributed
realizations of the model climate. Also, as our original intent
was to focus on the Atlantic basin, the simulations spanned
a six-month period from July 1 to December 31, in order
to increase the number of Atlantic hurricanes produced.
However, the results found are interesting for other ocean
basins and we will discuss them here as well.

The initial conditions for both the future and past
ensembles were chosen from the AMIP simulation described
in the previous section. To remove the effect of these
initial conditions, we discarded the first simulated month
(July) from our analysis allowing the model to generate
statistically identical independent realizations [28]. We also
discarded the last month (December) of each simulation to
ensure a uniformity of the output data, as a few runs did
not complete the last few days due to computer hardware
issues. In the AMIP experiment, the model averaged 66.8
tropical storms across the globe with winds exceeding 33
knots during the August through November period. The
1990-1999 ensemble of this sensitivity experiment averaged
62.7 such storms during these months. This difference is
within both the interannual standard deviation of the AMIP
simulation and the interrealization standard deviation of the
1990-1999 ensemble of the sensitivity experiment. Hence, we
are comfortable that the choice of the time averaged surface
forcing in the sensitivity experiment produces representative
tropical cyclone statistics.

A comparison of the 1990-1999 ensemble with the
A1B 2090-2099 ensemble reveals a dramatic increase in the
number of tropical storms with winds in excess of 33 knots.
Figure 9 shows this increase globally, hemispherically and in
the ocean basins with tropical cyclone activity. Because the
analysis is confined to the August through November period,
most of the storms are located in the Northern Hemisphere.
Statistical confidence in these changes is high both in the
Northern Pacific and in the North Atlantic basins. Changes
in tropical storm count are also statistically significant in the
Southern Hemisphere, although the analysis period is out of
phase with most of the tropical storms over this part of the
ocean. A summary of the tropical storm counts represented
by Figure 9 is shown in Table 3. The null hypothesis that
there is no difference between the number of “named”
tropical storms in the two ensembles may be rejected with
a confidence level of 99.9% or higher in all basins based on
Student’s test statistic.

Not only does the number of “named” storms increase
when the model is forced with the higher A1B emissions
scenario SSTs, the strongest storms get stronger. The average
maximum wind speed of the strongest storm in each
realization increases from 113 knots to 119 knots while
the average minimum pressure in those storms decreases
from 938 mb to 931 mb. Figure 10 shows an increase in each
category of the Saffir-Simpson Hurricane Scale when the
SSTs are increased. The null hypothesis of no change in the
number of storms in each of these categories may be rejected
with high confidence except for that of Category 2 hurricane
intensity. Table 4 summarizes the changes in tropical storm
number as a function of intensity.

4. Discussion

4.1. The Relationship of Simulated Future Tropical Cyclone
Statistics to Large-Scale Climatological Features. We have
demonstrated that the simulated tropical cyclones statistics
produced by one particular model, fvCAM2.2, exhibit a



8 Advances in Meteorology

TaBLE 3: Average number of tropical storms with wind in excess of 33 knots during the August—-November period simulated in fvCAM2.2 as
shown in Figure 9. Percent change is shown in the 4th column relative to the 1990-1999 ensemble average. Student’s test statistic, calculated
with 14 degrees of freedom is shown in the 5th column. The last column shows the level of confidence for the rejection of the null hypothesis
of no change in the number of tropical storms.

Present no. of tropical ~ Future no. of tropical Statistical significance

Percent change Student’s test statistic

storms storms of change
Global 62.7 87.7 40% 115 >99.9%
Hljr‘;;t:}‘fhr:re 51.9 716 38% 115 >99.9%
Hse‘;r‘lllt:;e}f:re 10.7 16.1 51% 4.7 >99.9%
North Pacific 40.0 51.2 28% 7.5 >99.9%
Aﬁgﬁt}i‘c 5.1 8.6 70% 5.6 599.9%
South Pacific 0.7 2.6 250% 49 >99.9%
Indian Ocean 12.5 18.3 47% 5.0 >99.9%

TaBLE 4: The average number of tropical storms across the globe during the August—November period as characterized by the Saffir-Simpson
scale simulated by fvCAM2.2 as shown in Figure 10. Percent change is shown in the 4th column relative to the 1990-1999 ensemble average.
Student’s test statistic, calculated with 14 degrees of freedom is shown in the 5th column. The last column shows the level of confidence for
the rejection of the null hypothesis of no change in the number of tropical storms. The “present” ensemble is forced with 1990-1999 sea
surface conditions. The “future” ensemble is forced with sea surface conditions representative of the SRES A1B scenario at the end of the

21st century.

Present no. of tropical  Future no. of tropical

Percent change

s . . Statistical significance
Student’s test statistic &

storms storms of change
All named storms 62.7 87.7 40% 11.5 >99.9%
Tropical storm 25.8 40.9 59% 6.7 >99.9%
Category 1 20.1 24.3 21% 3.04 >99.5%
Category 2 8.3 9.5 15% 1.09 <90%
Category 3 7.9 10.3 29% 2.24 >97.5%
Category 4 0.5 2.6 387% 3.76 ~99.9%

pronounced sensitivity to changes in sea surface tempera-
ture. Forced by SSTs typical of a mid-range global warming
scenario (SRES A1B), the strongest storms produced in the
model became more intense (Figure 10). This is in agreement
with independent studies from three other groups that have
explored this issue using relatively high-resolution models
[13, 16, 17, 39] Bengtsson 2007. Such intensification is also
consistent with the theoretical notion of tropical cyclones
as giant heat engines [40] and the changes in the model’s
climatology. An examination of the changes in large-scale
features of the atmosphere relevant to tropical cyclones
is revealing. The monthly mean windshear in the ACR
and PCR (Figure 11) does not change significantly in the
ensemble of future scenario runs compared to the AMIP
simulation. Note that modeled wind shear is substantially
higher than ERA40 reanalysis in the Atlantic hurricane
season. Hence, the chances of the low wind shear conditions
in the cyclogenesis regions necessary for intense storms do
not change much in the future simulation. The total column
water vapor (Figure 12) increases in the warmer integration,
a consequence of the ability of warmer air to hold more
water [6]. This implies that more latent heat energy would

be available for tropical cyclones also supporting the notion
that stronger storms are possible in the future simulation.
Emanuel’s [40] thermodynamical description of tropical
cyclones as Carnot heat engines transporting energy from
the surface to higher altitudes can be expressed by a
maximum potential intensity (MPI) of surface winds and
is straightforwardly calculated assuming ideal wind shear
conditions. In Figure 13, the average July through November
change in the maximum potential intensity (MPI) of tropical
storm winds per degree warming is shown for the ensemble
of climate change experiments and is comparable to the
multi-model ensemble result calculated by Vecchi and Soden
[41]. Changes in MPI are principally driven by changes in
future SSTs which can vary a great deal between models.
fvCAM2.2 exhibits an increase in MPI across most of the
Northern Pacific similar in magnitude and pattern to the
Vecchi and Soden multi-model average. In the small area
of the northwestern Pacific where the multi-model average
shows little change, fvCAM?2.2 exhibits a decrease similar to
another model as detailed by Xie et al. [42] but smaller in
extent and magnitude. In the north Atlantic, a band of MPI
decrease extending from Gibraltar towards the southwest



Advances in Meteorology

100
90 A
80
70 1
60 1
50 A
40 A
30 A
20 1
10 1

0 -

G NH SH NP WA SP I

B Present
B Future

FIGURE 9: Average number of tropical storms with wind in excess
of 33 knots during the August-November period simulated in
fvCAM2.2. The “present” ensemble is forced with 1990-1999 sea
surface conditions. The “future” ensemble is forced with sea surface
conditions representative of the SRES A1B scenario at the end of the
21st century. The error bars represent the inter-realization standard
error for each ensemble. G: global, NH: Northern Hemisphere, SH:
Southern Hemisphere, NP: North Pacific basin, NA: North Atlantic
basin, SP: South Pacific basin, I: Indian Ocean.

divides two areas of MPI increase. This region of MPI
decrease is similar in its east-west extent to the multi-model
average but narrower in its north-south extent. In this regard,
the present result resembles that of Xie et al. [42]. Because of
these climatological changes in MPI, tropical storms forming
under near ideal conditions of low wind shear and high moist
instability would more likely undergo the rapid and explosive
intensification typical of major storms in fvCAM?2.2.

Unlike previous studies [13, 16, 17, 39] Bengtsson,
2007, tvCAM2.2 produced a larger total number of named
tropical storms rather than less in every ocean basin with
significant tropical cyclone activity when driven by warmer
SSTs (Figure 9). In the Table 4 of the present paper, percent
increases in the numbers of storms were greatest for the
most intense storms produced (category 4) followed by the
smallest storms tracked (tropical storm strength). Percent
increases in the numbers of category 2 storms were the small-
est and not as statistically significant. In the prior studies
just cited, the calculations with warmer surface temperatures
exhibited a reduction in the number of tropical storms.
However, Kusunoki et al. [43] and Sugi et al. [44] find that
despite a global decrease in the number of tropical cyclones,
the number of tropical cyclones increases in the North
Atlantic basin. Bengtsson et al. [13] suggests that a reduction
in tropical cyclone number might be due to a slowing
down of the large-scale tropical circulation and a resultant
decrease in the number of initial disturbances capable of
developing into full-scale tropical cyclones. Figure 14 shows
the potential temperature for the tropical region 30S-30N
averaged over August through November in the 0.5° X% 0.625°
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FIGURE 10: The average number of tropical storms across the globe
during the August-November period as characterized by the Saffir-
Simpson scale simulated by fvCAM2.2. The “present” ensemble
is forced with 1990-1999 climatological sea surface conditions.
The “future” ensemble is forced with sea surface conditions
representative of the SRES A1B scenario at the end of the 21st
century. The error bars represent the inter-realization standard
error for each ensemble.

configuration of fvCAM2.2. A less steep lapse rate in the
simulation of the warmer future atmosphere, evident from
the difference in the slopes of the two curves in Figure 14,
indicates a more statically stable atmosphere than in the
present day simulation. This figure is comparable to Figure
17 in Bengtsson et al. [13] and suggests that the change in
static stability in fvCAM2.2 is similar to that seen in the
ECHAMS5 model, especially above 500 mb.

Zhao et al. [18, 45] show that in a different 50 km
model that the difference between SSTs in the cyclogenesis
regions and across the entire tropics controls the interannual
variations in North Atlantic tropical storms. They also
suggest that relative warming defined by this difference could
be a factor in the number of future tropical storms. However,
for this experiment, the August-September-October average
“Atlantic relative SST, ®na” is 1.9K in the present day
configuration and 1.8 K in the end of 21st century config-
uration. This small negative change in relative warming does
not explain the North Atlantic tropical storm response of
tvCAM2.2.

4.2. Comments on Future Directions. Both the model and
the experimental design are flawed in a number of ways,
undermining the confidence in these projections of future
tropical cyclone activity. These flaws are not unique to this
study and a frank discussion of them can guide future
work in this important activity. The integration period for
the climate change experiment was chosen to double the
number of Atlantic hurricane seasons available for analysis.
In hindsight, it would be interesting to include the complete
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FiGure 11: The monthly average wind shear (m/s) in the Atlantic
(ACR) and Pacific (PCR) Cyclogenesis Regions. Wind shear is
defined as the difference between zonal wind speed at 200 mb and
850 mb. Black line: ERA40 reanalysis. Blue line: f{vCAM2.2 (0.5° X
0.625°) 1979-1983 average. Red line: fvCAM2.2 (0.5° X 0.625°)
2090-2099 July—November conditions (SRES A1B).

annual cycle so that southern hemisphere tropical cyclones
were included in the study. Also, we feel that time slices of
selected past and future periods would be more interesting
than climatologically averaged integrations in that changes
in interannual variability could be studied provided large
enough ensembles could be generated.

The AMIP-style integration of fixed SST is a more
significant limitation. Intense tropical storms can noticeably
reduce the upper ocean temperatures. The infinite heat
capacity ocean of the experiments discussed here cannot
replicate this effect. A mixed layer ocean model coupled
to the AGCM would be an improvement but a coupled
ocean-atmosphere general circulation model could capture
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FIGUre 12: The monthly average total column integrated water
vapor (kg/m?) in the Atlantic (ACR) and Pacific (PCR) Cyclogenesis
Regions. Black line: ERA40 reanalysis. Blue line: fvCAM2.2 (0.5° X
0.625°) 1979-1983 average. Red line: fvCAM2.2 (0.5 x 0.625°)
2090-2099 July—November conditions (SRES A1B).

the upper ocean layers even more realistically. Spin-up of
initial ocean conditions is made somewhat simpler than for
typical century-scale integrations as the deep ocean layers do
not play as large a role in decadal scale simulations.

The AMIP protocol defines transient forcing only at
the surface. However, human induced changes to trace
pollutants have a detectable in situ influence on the vertical
structure of the atmosphere [46]. Single forcing couple cli-
mate model runs indicate that stratospheric ozone depletion
tends to cool the stratosphere and heat the troposphere. This
human induced effect tends to raise the tropopause height,
effectively cooling the air temperature at this boundary. In
Emanuel’s idealized Carnot heat engine model of a perfect
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FiGure 13: The change in maximum potential intensity (MPI) of surface (10 meter) winds (knots/°C) calculated by Emanuel’s Carnot heat
engine theory in the fvCAM2.2 (0.5° X 0.625°) climate change experiment (SRES A1B). The results are averaged from July 1 to November

30 (JASON) to be comparable to Vecchi and Soden [41].
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FIGURE 14: Potential temperature in the 0.5° X 0.625° configuration
of fvCAM2.2 (0.5° x 0.625°) for the tropical region 30S-30N
averaged over August through November illustrating a change in
the static stability of the simulated atmosphere.

hurricane [40], such a reduction in top of storm temperature
raises the maximum potential wind intensity by making the
engine more thermodynamically efficient. Greenhouse gas
concentration changes have a similar effect on the vertical
temperature profile that is even larger. Conversely, sulfate
aerosols tend to increase the temperature of the stratosphere
and decrease the temperature in the troposphere, lowering
the tropopause height. Hence, increases in atmospheric
sulfate aerosols have the opposite effect of stratospheric
ozone depletion by lowering Emanuel’s maximum potential
intensity. The in situ change in the atmosphere’s vertical
structure due to trace pollutants also plays a role in the
atmosphere’s vertical static stability. The lack of changes in
these pollutants in our climate change experiment and the
associated change in radiative forcing may be a possible
explanation for the increase in the number of weaker

tropical cyclones compared to the decreases seen in other
studies. An attempt to investigate the role of this radiative
forcing by calculating the change in MPI in an ensemble
of SRES A1B and twentieth century CCSM3.0 simulations
was inconclusive. Despite more realistic radiative forcing, the
CCSM3.0 MPI change does not resemble similar calculations
from either the GFDL AM2.1 [42] or the multi-model
average [41]. In fact, the fvCAM2.2 MPI change in Figure 13
shares more in common with these two previously published
results than does the fully coupled model. However, MPI is
not a measure of cyclogenesis and this exercise does not rule
out the possibility that future changes in radiative forcing
suppress the number of tropical cyclones. A related study by
Yoshimura and Sugi [19] varied changes in greenhouse gas
forcing and SST independently and found that each reduced
the global number of tropical cyclones. Our results, which
are similar to the SST variation half of the Yoshimura and
Sugi [19] experiment, are at odds with their result. We did
not explore the radiative forcing changes directly in this
study.

The horizontal resolution necessary to capture the finest
details of intense hurricanes in a global climate model is well
beyond current computing capabilities. This study focused
on a model with a grid spacing of about 50 km at the equator.
Consistent with a conjecture by Bengtsson et al. [13], this
resolution captured enough of the coarser characteristics of
tropical cyclones to permit a reasonable description of storm
statistics. However, the strongest storms in the simulation do
not exceed Category 4 on the Saffir-Simpson intensity scale
and are definitely weaker than the strongest storms in the
real world. It is also likely that convergence of strong tropical
storm intensity with resolution increases has not completed
at 50 km. Fortunately, computing technology continues to
progress. We estimate that the fidelity of fvCAM could be
doubled to approximately 25 km at the equator yet model
integration time could be simulated 350 times faster than
real time on 2048 processors of a CRAY XT4 [47]. A fully
coupled version of CCSM with a 0.1° ocean and sea ice
model would require about twice as many processors and
run at half the rate. For comparison, execution speeds of
the numerous CCSM3.0 simulations prepared for the IPCC



12

AR4 report averaged around 1600 times faster than real
time. This would be a significant investment in computer
resources but is certainly possible on existing and future
machines.

There are large model dependencies in the literature
regarding tropical cyclone simulation, especially in the ability
to simulate intense storms [13, 16-18, 39, 45]. Comparing
these studies, it is clear that high horizontal resolution is
not the only factor controlling tropical cyclone genesis and
development in climate models [18]. A systematic investiga-
tion of parameterization differences would be another useful
investment in computer resources and could lead to better
simulation of tropical cyclone statistics.

5. Conclusions

We demonstrate that fvCAM?2.2, a finite volume version of
the Community Atmospheric Model, produces surprisingly
realistic tropical cyclone statistics with essentially no tuning.
Ina0.5° X 0.625° configuration (approximately 50 km at the
equator), the model has no difficulty producing Category 4
storms on the Saffir-Simpson intensity scale. The number
and distribution of tropical cyclones is sensitive to horizontal
resolution and has probably not converged at this grid size.
A climate change experiment, based on an IPCC SRES A1B
end of 21st century projection of sea surface temperatures,
reveals that the change in Emanuel’s Maximum Potential
Intensity index (MPI) is consistent with other studies [40,
41], Xie et al. 2010. As in similar high-resolution climate
change studies [13, 16, 17, 39], an increase in the number
of intense tropical cyclones is projected by fvCAM?2.2 with
the strongest storms becoming more intense. This is expected
based on thermodynamic considerations [4]. In contrast to
these similar high-resolution studies, fvCAM?2.2 produced
more overall tropical cyclones, not less as the climate warms.
The biggest percent increase occurred in the number of
category 4 storms followed by the number of weak named
tropical cyclones (wind speeds less than Category 1). The
mechanisms for this difference in model behavior are unclear
and further numerical experimentation is required. It is also
clear that in order to have confidence in projections of future
tropical cyclone activity, more high-resolution modeling
studies must be performed by independent groups.
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Cold waves commonly occur in higher latitudes under prevailing high pressure systems especially during winter season which
cause serious economical loss and cold related death. Accurate prediction of such severe weather events is important for decision
making by administrators and for mitigation planning. An Advanced high resolution Weather Research and Forecasting mesoscale
model is used to simulate a severe cold wave event occurred during January 2006 over Europe. The model is integrated for 31 days
starting from 00UTC of 1 January 2006 with 30 km horizontal resolution. Comparison of the model derived area averaged daily
mean temperatures at 2m height from different zones over the central Europe with observations indicates that the model is able
to simulate the occurrence of the cold wave with the observed time lag of 1 to 3days but with lesser intensity. The temperature,
winds, surface pressure and the geopential heights at 500 hPa reveal that the cold wave development associates with the southward
progression of a high pressure system and cold air advection. The results have good agreement with the analysis fields indicates

that the model has the ability to reproduce the time evolution of the cold wave event.

1. Introduction

Advance information of extreme weather phenomena such
as cold waves is very important to avert their adverse impact
on the life and economy of a given region. Prediction of
the cold weather events in advance of 15 to 30 days is a
challenging issue for the researchers and is useful for the
administrators to minimize the damage and for adopting
necessary mitigation measures. Cold waves belong to the
weather phenomenon which occurs when marked cooling of
the air persists for a period of at least few days [1, 2]. Cold
waves generally occur with an advection of cold air mass over
a large area associated with radiative cooling when a blocking
anticyclone develops and persists for at least few days.
Several studies have reported observed strong warming
in the end of the nineteen century, with an evident increase
in minimum and maximum temperatures in Central and
Eastern Europe [3, 4] and in the whole Baltic region [5]
indicating that mortality risk increases every winter in
Central and Eastern Europe [6]. Though the rise in mean

daily and mean minimum temperatures does not necessarily
affect the frequency of extreme cold weather [7]; however it
exerts a strong impact on the environment and society.
Numerical simulation of cold waves requires incorpo-
ration of the various atmospheric processes in the model
such as the interaction of the large-scale atmospheric flow
with the local-scale circulation, interaction of the surface
and planetary boundary layer (PBL) with the free atmo-
sphere and vice versa, and radiation transfer. In numeri-
cal models the subgrid scale processes are parameterized
to define their interaction with grid-resolvable prognostic
variables. The application of recently developed high res-
olution atmospheric models like the Advanced Research
Weather Forecasting Model (ARW) is expected to improve
the prediction of extreme weather events as the regional
models are based on more advanced dynamical and physical
processes. However, an important aspect of high resolution
models is their spin-up time. When operated in climate
mode they require simulation lengths exceeding the spin-
up time which is of the order of several days [10-16] for
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TABLE 1: Details of the ARW model.

Model Name NCEP/NCAR ARW

Model type Primitive equation, Non- hydrostatic

28 sigma levels 1.000, 0.990, 0.978, 0.964, 0.946, 0.922, 0.894, 0.860, 0.817, 0.766,

Vertical resolution

0.707, 0.644, 0.576, 0.507, 0.444, 0.380, 0.324, 0.273, 0.228, 0.188, 0.152, 0.121,

0.093, 0.069, 0.048, 0.029, 0.014, 0.000

Horizontal resolution 30 km

Time step 180 Seconds
Domain of integration
Short wave radiation scheme
Long wave radiation scheme
Surface scheme

Convection scheme

PBL scheme

Explicit moisture scheme

YSU scheme

Initial and boundary conditions

6.7624E - 37.2992E; 42.605N - 61.1074N

Dudhia scheme

Rapid Radiative Transfer Model for long wave radiation
5-layer thermal diffusion scheme

Kain- Fritsch (KF) [8, 9].

WSM 3-class Simple Ice

NCEP reanalysis data available at 2.5 degree and boundary conditions are updated
every 6-hour interval

North

East

FIGURE 1: Model chosen domain along with the topography. The
circles indicate the available station observation over the domain
during 1-31 January 2006. The boxes indicate different zones
chosen for analysis.

the atmospheric component, and even much longer for the
surface component. A typical threshold length for a climate
mode run using regional models is 1 month [11, 17].
Weather and climate forecasting is usually done fol-
lowing statistical, synoptic, and numerical techniques. The
statistical methods depend on the interrelationships between
observable atmospheric variables and their influence on
the climatic behavior. Though statistical methods provide
certain broad trends of weather and climate systems, they
find limited use as the climate system is highly nonlinear
and simple correlations between any two variables may
not always provide estimate of any variable especially over
long periods like seasons. The synoptic methods bank upon
systematic analysis of large-scale trends of the dynamical
systems based on a series of observation charts called the
synoptic charts. However this method is subject to the skill
of the interpreter and cannot be applied for time periods

beyond a few days due to the inherent variability of the
atmospheric system. Atmospheric dynamical models are
based on the physical and dynamical processes of the atmo-
sphere and hence provide the basis for objective predictions
of the ever-changing atmospheric conditions quantitatively;
however their success depends on the accuracy of the initial
and boundary conditions and the appropriateness of the
physics used in the model. Atmospheric General Circulation
models (AGCMs) are used to simulate the trends in climate
patterns over the global. The GCM simulations provide the
information on the movement of the large scale pressure
systems, air masses, and associated climate over various
parts of the globe. However, the GCMs have a limitation
of predicting the regional characteristics due to coarse
resolution. The GCMs find a limited application when it
comes to the disaster mitigation and decision making aspects
where much finer quantitative predictions along with precise
time of occurrence of a weather event is the necessary key
information required by the administrators. The availability
of regional models with horizontal resolutions of 30-50 km
permits simulating the fine scale seasonal weather patterns
to study the regional climatic characteristics more precisely.
The theoretical limit for the useful daily weather forecast is
about 10-14 days, but in practical application, the current
limit is about 5-7 days. For longer periods of about months
or seasons average temperature and precipitation can only
be assessed; however the skill of such forecasts is low.
The developments of numerical models provide the basis
for an improved understanding of monthly and seasonal
weather variation and for an enhanced ability to predict
them with reasonable skill. Even a small improvement in
the skill of extended range forecasting of extreme weather
events may be helpful to take necessary precautions and to
minimize weather-related losses or deaths and is important
for substantial economic benefit.

In this study the objective is to examine the WRF ARW
model capability for extended range seasonal prediction by
simulating the extreme cold weather event that occurred
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FIGURE 2: Geopotential height (shaded) at 500 hPa level (gpdm) and mean seal level pressure (contours) during the period 1-31 January
2006 from NCEP 2.5 degree reanalysis data.
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FIGURE 3: (a) The time series of the temperature at 2 m (C) at different grid points located over model domain. (b) The time series of the
temperatures at different grid points with the fall in temperatures less than —20°C during one-month period separated from Figure 3(a).
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over Central Europe during January 2006 with the WRF
model. The model-derived intensity and development of the
cold wave analyzed by comparing temperature at 2 m height,
surface pressure, low level wind flow, and geopotential height
at 500 hPa. The paper is organized as follows. A brief
description of the cold wave in Central Europe is given
is Section 2, the details of the model configuration and
initialization are presented in Section 3, the results of the
simulations are discussed in Section 5, and the summary
and conclusions are presented in Section 6. Finally, the
applicability of this study is discussed in Section 7.

2. Description of Cold Wave during
January 2006

Cold waves at higher latitudes belong to the class of extreme
weather conditions during winter. The observations show a
severe cold wave occurred in January 2006 in Central Europe.
This winter was extremely cold with snowy conditions
observed over a vast area of Central, Eastern, and Southern
Europe and relatively mild winter observed in Northern
Norway. The phenomenon started in the European part
of Russia, where a severe cold wave occurred between
January 17-18 with a temperature drop up to about —30°C
in Moscow, the coldest situation ever since the winter
of 1978-1979. On 20 January 2006 temperatures lower
than —40°C occurred in European Russia where the lowest
temperature on record was about —42.1°C in 1940. The
cold wave extended to Central European parts of Poland,
Slovakia, and Austria with the recorded low temperatures
below —30°C, and snow and cold weather penetrated to
the south in Eastern Europe with heavy snowtfalls over
Acropolis in Athens, Greece on the 25th of January. The
abnormal conditions gradually abated towards the end of
the month, when temperatures dropped to —38°C. There
were numerous cold-related deaths reported, primarily in
Russia (50 people), Ukraine (181), Romania (27), Poland
(25), Czech Republic (10), and Bulgaria (3) (Reuters). Heavy
snowfalls were attributed for an avalanche near Dushanbe in
Tajikistan. The cold weather in Southern Central and Eastern
Europe has spread from Italy to the Urals. As January 2006
is one of the reported extreme cold weather over European
region, this event is taken as a case study to simulate and also
to understand the probable causes for its occurrence.

The synoptic situation of the cold wave during 1-31
January 2006 is depicted in Figure 2 using NCEP reanalysis
data for surface pressure and geopotential at 500 hPa level.
The analysis shows that at 00UTC of 1 January 2006, a
low-pressure system is located over Central Europe. The
trough is elongated from the head of the Baltic Sea to
the south. The thickness of the atmospheric layer (i.e.,
geopotential difference) from surface to 500 hPa is seen to
increase from Northern Europe to Southern Europe. After
five days, that is, at 00UTC of 5 January, the whole region
is completely replaced with high pressure system, and the
low pressure is limited to a small region over east of Iceland.
Over that region thickness of the geopotential is high and
moved toward south of the region and with encircled lower

thickness of geopotential observed over Central Europe and
neighbor hood. The thickness of the geopotential increased
over entire region, and it last up to 14 January with minor
day-by day variations. The synoptic flow pattern was more
or less constant during this whole period. At 00UTC of 15
January the weather map show well-defined low pressure
systems observed over south of Iceland, north-eastern parts
of Green land, and north-eastern parts of Central Europe.
A well-defined high-pressure system with high geopotential
thickness is located over Central Europe. A well-defined
trough region is observed at west of Central Europe and
also over North eastern parts of the Central Europe. From
this day onwards the thickness of the height contours slowly
started decreasing over Central Europe, and after two days
the weather map showed that the axis of the trough is
extended from the East of the Iceland to Central Europe also
another trough region developed from north-eastern parts of
Central Europe. Well-defined low-and-high pressure systems
are observed, and the southward progress of the cold wave is
observed. This type of weather pattern is almost observed up
to 18 January. After this day onwards the low pressure system
moved towards Iceland, and high pressure system started
moving towards the Central Europe and was sustained up
to 26 January and then it started moves towards west and
then north. This narrow zone of high pressure system is
associated with low pressure systems in both east and west.
During this period another branch of cold wave also slowly
developed and started progressing from North east of the
Central Europe towards Europe and that was sustained up
to 26 January and then slowly disappeared.

3. Model Configuration and Initialization

A nonhydrostatic primitive equation ARW model developed
by the National Center for Atmospheric Research (NCAR)
was used in the present study. The ARW is a flexible state-
of-the-art mesoscale atmospheric simulation system that is
portable and efficient on a range of parallel computing
platforms [18, 19]. The model has higher-order numerics
and mass conservation characteristics [20]. For the present
study the model was designed with a single domain of 30 km
horizontal resolution. As the extratropical weather systems
are relatively slow moving systems and large in size, the
domain area was chosen to be about 3000 X 3000 sq-km
(6.7624E-37.2992F; 42.605N-61.1074N) which covers most
of Central European and adjacent regions (Figure 1). The
model physics used for the simulation included Kain-Firstch
scheme for convection, Rapid Radiative Transfer Model for
long wave radiation, Yonsei University scheme for planetary
boundary layer turbulence, and the WSM 3-class Simple Ice
scheme for explicit moisture processes (Table 1). The model
was integrated for 31 days starting from 00 UTC of 1 January,
2006 to study the movement of the cold wave front.

Our first objective was to test whether the 31-day model
simulations provide reasonable agreement with observations
on this timescale, so that a strategy for real-time forecasts
could be devised later using the larger-scale model forecasts
like GFS or other global models that provide seasonal
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FIGURE 4: Time series of the daily mean area averaged temperature (C) at 2 m height for different zones along with the averaged station daily

mean surface temperature for corresponding zone.

forecasts. Hence in the present study, the initial conditions
for the model were given from NCEP reanalysis data [21]
available at 2.5 X 2.5 degree resolution corresponding to
00 UTC 1 Jan 2006. The terrain, land cover, and soil types
data over the region of study are obtained from the USGS
topography data with a resolution of 10 minutes (roughly
18 km). The time-varying lateral boundary conditions are
provided at every 6 hours interval during the entire period
from NCEP reanalysis data.

4. Observational Data

The daily mean temperatures from 106 meteorological
stations collected from different parts of Europe for the
period 1-31 January 2006 were used for comparison. Out of
106 stations 85 records were taken from European Climate
Assessment and Dataset [22], and 21 Polish records were
taken from Institute of Meteorology and Water Management.

The intensity of the simulated cold wave was studied
on the basis of a comparison of the observed surface
temperatures with the model results. The movement of the
pressure systems which caused the cold wave during that
period was discussed from model fields for surface pressure
and 500 hPa geopotential height. The above fields from
WRF model were compared with the high-resolution NCEP

Final analysis (FNL) data available at 1 degree horizontal
resolution to assess the skill of the model in capturing the
time and intensity of the cold weather event.

5. Results and Discussions

Unlike global models, numerical simulations using limited
area models require specification of atmospheric variables at
the lateral boundaries at regular time intervals to represent
the time-varying large scale weather condition across the
boundaries of the domain and to permit the outside flow
in to the model domain. The specification of time varying
lateral boundary conditions will also influence the model
atmosphere evolution, which is due to the model dynamics.
The mesoscale model ARW described in the previous section
provides the option to use either a single domain or nested
multiple domains with one-way or two-way interaction.
The general practice is to use as much as possible higher
resolution which is constrained by computational resources.
For this study, the simulation was conducted to examine the
performance of the model on the prediction of the cold wave
passage over Central Europe region with a single domain
of 30km resolution and updating the lateral boundary
conditions once every 6 hours to represent the change in
the outer atmospheric condition at that interval. The model
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different times.

evolution of cold wave, in terms of intensity and movement,
was analyzed and discussed by a comparison with the
available observations. The model predicted intensification
of cold wave during the period 1 to 31 January 2006 was
analyzed in terms of the model-simulated daily averaged
air temperature at 2m height and the comparison with
corresponding observations.

As the first step, the variations of model-derived daily
mean temperatures at 2m above ground level (AGL) were
analysed over the entire domain, and a set of zones are
identified based on the differences in the topography.
Figure 3(a) shows the daily mean temperatures at 2m AGL
for different grid points during entire January. It shows a
fall of about —10°C (sometimes even below —20°C) in daily
mean temperatures for a period of 2 to 5 days at some grid
points. This trend is not found uniformly at all grid points

indicating that the simulated temperature fields drastically
varied at regional scale. The variation in the temperature
field is probably due to the variations in elevation, land use
category, and so forth in different parts of the modeling
domain. Figure 3(b) shows the time series of temperature
for those grid points at which temperature had fallen below
—10°C. From these two pictures, it is understandable that
the model is able to predict the cold wave scenario over
some area and not over the entire domain. This was analyzed
by observational comparison further. Based on results from
Figures 3(a) and 3(b) a few areas were identified and
categorized as zones. Accordingly zone 1 to zone 8 represent
areas with mean daily temperatures below —10°C for few
days (boxes in Figure 1) and zone 9, 10, and 11 correspond to
areas where the fall in temperature is not below —10°C. Out
of all these 11 zones, the zones from 1 to 8 have elevations less
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than 150 m, and the other three zones have relatively higher
elevation. Zone 5 has both ocean and land and represents
coastal region. Zone 10 is a coastal region and also has higher
elevation. The area averaged temperatures for the above
zones for each day in January 2006 were compared with
the observed daily mean surface temperature for the stations
(shown circles in Figure 1) located within and very close to
the selected zones. The model diagnostic statistics of area
averaged temperature were computed between ARW-derived
daily mean temperatures and the observations (correlation,
standard deviation, bias, RMSE) and presented in Table 2.
It is observed that in all zones the simulated temperature
correlated well with observations in the range of 0.765 to
0.953 with a negative bias for zones 3, 4, and 10 and with
positive bias for the remaining zones. The results indicate the
model showed positive and negative bias over different zones.
A strong positive bias (2.4651) is observed at zone 9 which
is a mountain region with correlation coefficient of 0.8835.
The next positive bias maxima of 1.79 are found for zone
6 located close to coast with correlation of 0.898 followed
by zone 5 (land and ocean) with a bias of 1.3872 and with
highest correlation of 0.95. This indicates that the simulated
air temperature has strong positive bias over mountain and
coastal regions. A strong negative bias (—1.621) and low
correlation (0.7659) are observed over zone 10 which is a
coastal and mountainous area. Thus the ARW has reasonably
simulated temperature at all zones except the mountainous
and coastal regions. Positive correlations above 0.76 at all
zones and at 95% significance indicate ARW model skill for
quantitative temperature simulations.

5.1. Model-Derived Temperatures at 2m Height. The time
series of the area averaged daily mean temperatures at 2
meter height from zones 1, 2, and 3 located in the eastern
parts of the domain are presented in Figure 4(a) along
with the station averaged daily mean surface temperatures.
Results clearly show that the model is able to pick up the
day-to-day variation of temperature over the eastern parts
of the domain but with a slight underestimation during
the intense cold wave period. The difference between the
model and observations is not much at the onset of the
cold wave conditions but very significant during the intense
cold wave period. The difference in model temperature and
observations is about 3-5°C in the onset phase and about
10°C during the peak cold wave period. The variation of
simulated temperature in January 2006 is well matched with
the observations is a correlation coefficient of 0.944 and with
positive bias of 0.81 in zone 1 where the cold wave appeared
around 17 January, intensified, and sustained for 2 to 3 days
by 19 January and gradually disappeared thereafter. A similar
situation was also observed over zone 2 with correlation
coefficient 0.940 (bias of 0.495) but with a lag of one day and
over zone 3 (with correlation coefficient 0.953 and a negative
bias of —0.204) and with a lag of 2 days. Similarly over zone
4 (the southeastern parts of the domain) the model values
matched well with the averaged station observations with a
correlation of 0.900 (Figure 4(b)), but model temperatures
were slightly underestimated with a negative bias of —0.236.

The decrease in temperature started from 19 of January,
attained minimum value by 21 January and the very cold
weather situation sustained up to the 24 of January. It is
evident that the model well simulated the passage of the
cold wave from zone 1 (from north east) to zone 4 (to the
south east) closely following the observations. The mean
daily temperature plots for zone 5 and 6 indicate that the
cold conditions are simulated by the model from 18 to 23
of January. The temperature in zone 5 was slightly higher
than that in zone 6, which is expected as part of zone 5
covers the ocean and land parts. The correlation coefficient
between the modeled and observed temperature for zones
5 and 6 was 0.950 and 0.899 with a positive bias of 1.3871
and 1.79, respectively. From Figures 4(a) and 4(b) it is noted
clearly that the time difference in the drop of temperature
is about 1 to 2 days. This delay in the temperature drop
at different zones is due to the slow movement of the cold
wave from the northeastern part (Zone 1, 2, and 3) of the
domain towards the central parts (Zone 6). The extreme cold
condition was sustained for three to four days causing very
cold temperatures in these areas.

The model-derived area averaged 2 m daily mean tem-
perature over zone 7 (central part of domain) is noted to
agree well with the observations up to 21 January there-
after the model indicated overestimation of temperature
(Figure 4(c)), with a correlation of 0.930 and bias of 1.16.
The model-predicted minimum temperature was evidently
higher than the observed one; however the trends were
reproduced reasonably well. The model simulated a fall in
temperature and persistence of cold conditions for 2-3 days
in the southern parts of the domain, that is, zone 8 with
correlation of 0.9 reasonably agreeing well with observations
but with an underestimation of low temperature by 7°C.

The zones 9 and 11 are located in mountainous area.
The time series of temperature from these zones shows
that the time of occurrence minimum temperature (drop)
is well simulated. However a strong positive bias of 2.465
is noted for zone 9, where the lowest temperatures were
evidently higher than the observed ones (Figure 4(d)). The
model temperature evolution in these zones may have been
influenced by the land surface processes as represented by
the model topography, land cover, and soil conditions which
need to be examined further. Also the physical parameter-
izations used for the treatment of the surface energy and
boundary layer turbulence need to be investigated for their
application over these mountainous regions. The correlation
between the simulated and observed temperatures is 0.884
and 0.783 for zones 9 and 11. The simulated temperature
over the northwestern parts (zone 10) showed relatively
higher daily mean temperatures than all other zones. This
area is situated close to the mountains and to the Atlantic
Ocean (Figure 4(d)). For this zone the model simulated
temperature evolution of the area averaged daily mean
temperature at 2 m height was in good agreement with the
averaged daily mean station observations with a correlation
of 0.766, which is slightly lower than the correlation of all the
other zones and with a strong negative bias of —1.621.

From the above analysis of mean daily temperature
evolution it is evident that the model is able to simulate the
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FIGURE 6: Daily mean geopotential height (gpm) at 500 hPa level (shaded) along with Surface pressure (hPa) (contours) for FNL (left panel)

and ARW model (right panel) at different times.

intensity of the cold wave with a time lag of 1 to 3 days and
its migration from north-eastern to the south-western parts
of the domain. The model derived area averaged daily mean
temperatures at 2 m height for different zones are found to
match well with the averaged station daily mean temperature
observations but with slight underestimation of about 5 to
10 degrees in temperature during the period of the intensive
cold wave. A few exceptions are found for zones comprising
ocean and adjoining land portions and for zones covering
mountainous regions. Duration of the cold wave period
is well agreeing with the observation but the model gets
warmer one to two days before than the observations. Thus
in general the ARW model seems to prove a useful modeling
tool to simulate the seasonal climate with reasonable skill
over extended range time scale and hence can be used to
obtain an indication or a signal of the forthcoming extreme
weather events such as cold wave conditions.

5.2. Model-Derived 2m Air Temperature and Wind Flow at
925hPa. A detailed comparative analysis is made between
FNL analysis data available at 1 degree resolution and model
simulated products of the 2m air temperature and winds
at 925hPa level to assess how well the spatial trends of
temperature and horizontal advective motion are simulated
by ARW. The daily mean values for extreme cold days are
computed for both temperature at 2 m and winds at 925 hPa
for both FNL and model outputs and presented in Figure 5.
The spatial distribution of the wind flow on 19 January
shows the presence of a strong cyclonic circulation over
south-eastern parts of the domain in both model and FNL
data and a strong easterly flow in the northern parts of
the domain. These circulation features are well simulated by
ARW model as seen from FNL data. The temperature pattern
is almost the same in both model and FNL data except
for the area under higher temperature contours relatively
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larger in the ARW simulation. This indicates that the model
has produced a slightly warmer atmosphere than the FNL
data. The FNL data indicated strong cold temperatures
in the northeastern part which was not simulated by the
model. The model showed a relatively warmer region in
the northwestern part of the domain than the FNL data.
On 20 January the cyclonic circulation has moved toward
east, and an anticyclonic circulation is observed over north
western parts of the domain in both model and FNL data.
The simulated temperature pattern agrees with the FNL data
but the area under higher temperature contours are relatively
larger thus indicating a warm bias in model temperature. In
the next 24 hours the cyclonic circulation has moved to west
of Poland in both model and FNL. On 21 January the model
temperatures are seen to be roughly 5 to 10°C lower over
western part of the domain than the values from the FNL
data. In all three days (19-21 Jan) westerly flow is noticed
over western parts of the domain especially in the central
and lower latitudes in both model and FNL data, and the
wind is gradually intensified from 19 to 21 January. The
simulated flow patterns are noted to agree well with the FNL
but with little higher intensity. Also the fine-scale features are
well resolved in the simulation which may be because of the
model higher resolution than FNL. On 22 January the flow
pattern was altered to easterly/northeasterly over much of the
domain except for a small region in the northwestern portion
where the flow had changed to southwesterly indicating the
onset of an anticyclone. In the next day, that is, on 23
Jan the anticyclonic circulation was fully established over
the whole Baltic Sea and neighborhood regions.These flow
features are well simulated by the model. The simulated
spatial temperature distribution also agreed well with FNL
data but with a warm bias (about 5 to 10°C) indicating less
intensity of the simulated cold wave.

From the above discussions it is clear that the model
could simulate most of the regional scale climate features
comparable with FNL. The model is able to simulate the
progression of the cyclonic and anti cyclonic circulations
and trough and ridge regions with little higher intensity
than those found in the FNL data. The model-derived
temperature pattern agreed well with the FNL temperature
distribution but with underestimation of cold conditions.
The model simulated relatively higher temperatures at the
colder region during extreme cold days and also relatively
higher temperature in the warmer regions indicating a warm
bias which needs to be examined further.

5.3. Model Derived Surface Pressure along with Geopotential at
500 hPa Level. To understand the role of the pressure systems
over the central Europe during the event of the extreme cold
wave, the daily mean sea level pressure (SLP) along with the
daily mean geopotential height at 500 hPa level (500GH) is
examined from the model and FNL data (Figure 6). The
temporal sea level pressure and geopotential height patterns
serve to describe the onset time and period of intensification
of the cold wave between 18 to 24 January 2006.

On 18 of January 2006, a low-pressure system was located
over the southwestern parts of Poland and the adjacent areas,
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and a high-pressure system (not shown) was located over
the northeastern parts of the domain observed in FNL. This
pattern was well simulated by the model, but with the low
pressure system located over the Czech Republic and high
pressure located over the northeastern parts of the domain.
The high pressure system which caused the low temperatures
over this area was evidently lower than the other parts of
the domain. On the 19th of January, 2006 the low pressure
system moved to the southeastern part of the domain in
both FNL data and the simulation. Also, at the same time
the high-pressure systems started moving towards the south-
west portion of the domain. The thickness of the geopotential
decreased over the entire region of the central Europe but was
relatively higher over a small region of south western parts.
These features would cause the air temperature over those
areas to consistently decrease towards the minimum as seen
from discussions in the previous sections. On 20 January,
the low and high pressure systems sustained with small tilt
towards the Southeast and Northwest, respectively, and a
new low pressure system appeared over the northwestern
part of the domain in both the model and the FNL. The
geopotential height pattern indicates that the contours of
higher geopotential height are concentrated over southwest
part of the domain and all the other remaining area is with
lower thickness. As the high-pressure system remained for
a long duration over the central parts of Europe and north
and northeastern parts of the domain, the air temperature in
those areas dropped significantly. The temperature reached
below —20°C which was the monthly minimum in most
of the central region. On the 21st of January 2008, the
low pressure system from the northwestern part moved
towards the South West and was located over the coastal
parts of Denmark and the central part of Poland. At the
same time, the high-pressure system was still dominating
over the northeastern part of the domain. The thickness
of the geopotential height further decreased over the entire
region except the southern part of the domain. These features
are well simulated by the model and agree well with FNL
data. However, the intensity of the simulated low pressure
system was slightly lower, and the location of the center
of low pressure system was simulated over southern part
of Poland and its adjacent parts. On 22 January, the low
pressure system disappeared from the domain, and the high-
pressure system occupied the entire domain. On this day
the geopotential pattern indicated higher thickness over
northwestern part of the domain and lower thickness over
remaining parts. Under this high pressure system the central
part of the domain recorded very low temperatures which
were simulated well by the model. On 23 January, a well-
established high pressure system was located over the central
part of the domain and remained over Poland for the next
48 hours. The geopotential pattern is almost similar to that
of the previous day but with slightly higher thickness and
a shift towards the east. Under this stable high pressure
system especially over Poland the temperatures reached their
monthly minimum values in those two days as low record.
This prolonged cold wave situation could be simulated by
the model. After 23 January the temperatures increased
gradually in the northeastern part of the domain, and the
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TaBLE 2: Number of the station observations considered for the average surrounded by the corresponding zones and the correlation
coefficient values between the areas averaged daily mean temperatures at 2 m height from model and station observations.

Number of stations

S. No Name of (observations) considered BIAS RMSE Star}dgrd Correlaition
the Zone for comparison deviation coefficient

1 Zone 1 7 0.8105 4.543 7.7829 0.9439

2 Zone 2 6 0.4971 3.733 6.7153 0.9398

3 Zone 3 8 —-0.204 3.5012 6.3889 0.9530

4 Zone 4 7 —-0.236 4.0652 5.6857 0.8996

5 Zone 5 6 1.3872 3.1706 5.8532 0.9504

6 Zone 6 7 1.7921 4.3078 6.4188 0.8987

7 Zone 7 10 1.166 3.1988 4.2399 0.9303

8 Zone 8 11 0.8273 3.8727 5.1576 0.9004

9 Zone 9 2.4651 3.7733 4.2653 0.8835

10 Zone 10 —-1.621 2.5082 2.9767 0.7659

11 Zone 11 14 0.6357 1.8848 2.5269 0.7824

12 TOTAL 89 0.6836 2.71 4.248 0.9447

high pressure system disappeared slowly. By 25 January, 2006
the temperature increased and reached its normal value over
entire Europe.

The model results suggest that it could simulate the
passage of high and low pressure systems comparing closely
with the trends from FNL data. The time series of simulated
air temperature is found to match with the observed
temperature time series in different zones. The model is able
to resolve the regional scale features of the pressure systems
which caused the spread of cold wave in the study domain.

6. Summary and Conclusions

A numerical modeling of extreme cold weather event over
Europe during January 2006 was performed using the high-
resolution ARW model to examine the performance of the
model for the seasonal climate simulation and to understand
the probable causes of the cold wave formation.

The simulated daily mean 2m air temperatures were
analyzed and compared with the observed station surface
temperatures. The model simulated winds at 925hPa, 2m
air temperatures, surface pressure, and geopotential height at
500 hPa are compared with FNL data. Eight zones were iden-
tified on the basis of drop in mean daily temperatures below
—10°C and three zones based on the lowest temperatures
above —10°C. The area averaged daily mean temperatures
were computed from the model 2 m air temperature which
were then compared with the averaged station surface
temperatures from the respective zones.

The model-derived products showed a fall of tempera-
tures starting from zone 1 located over northeastern parts
to zone 11 located over the south western parts of the
domain along with the passage of the high and low pressure
systems in agreement with the station observations. The
model is able to simulate the occurrence of the extreme
cold situation at different zones and its temporal passage

was reasonably well agreeing with observations but with
lesser intensity. The model temperatures indicated a good
correlation with observations above 0.76 at 95% significance.
The simulated flow patterns during the passage of the cold
wave are found to agree well with the FNL data which
indicates that the model is able to capture the advection of
cold temperatures associated with the high pressure systems.
The lower atmospheric temperature could be simulated well
by the model but with higher temperatures than observed.
The model results show warmer bias in extreme cold days.
The persistent cold condition spanning 3 to 5 days over
different zones could be captured by the model. This cold
condition is known from its impact on economy and the
death rate, especially in Russia, Ukraine, Poland, and some
parts of the adjacent regions.

The present study attempted to simulate one extreme
cold event due to the availability of limited computational
resources. In order to assess the skill of the model for
extended range seasonal climate forecasting it would be
desirable to examine the model performance for a series
of events over past few years. However, the results from
the present study provide an indication of skill of the
ARW model for its application for the extended range
weather forecasting for Central Europe region during the
winter season which may help to give an indication of
the extreme events like cold waves for use by the public
as well as the policy makers to take disaster mitigation
measures. In the present study the ARW model is run
with the initial and boundary conditions adopted from the
NNRP data. In order to use the ARW model for near-real
time applications of regional climate forecasting it would be
necessary to run the model with a global domain initialized
once with either GFS or other global analyses and thus
provides the time-varying lateral boundary conditions from
the global domain to a regional domain for region-specific
climate forecasting, which would be tested in the future
studies.
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7. Application of Dynamical Models in
Disaster Mitigation

The ARW model (as well as other dynamical mesoscale
models) has been routinely applied for weather forecasting
and as a part of a disaster mitigation tool in many countries.
In this present study, the ARW model was used to study
the regional climate feature over Central Europe with 30 km
resolution during the period from 1st to 31Ist January
2006. The real-time integrations require large scale lateral
boundary conditions and initial conditions that are now
available in a near-real time basis from global operational
forecast centers over different parts of the globe. The global
products are available at a coarse resolution of 150 to 300 km.
High-resolution mesoscale models are required to study and
understand the intensity and its passage or movement of the
extreme events like cold waves, heat waves, and flash floods
and so forth, which are orographically and convectively
driven. Mesoscale models with regional analysis and better
representation of the initial conditions and local forcing have
to be adopted when applying for specific regions.

The regional climate models are useful to give a better
forecast for planners in advance to implement disaster
mitigation measures over particular regions in such aspects
as agricultural operations, food storage, and energy storage,
to improve public transportation facilities and so forth,
which may be useful to save large economy and death rates,
especially during cold and heat wave conditions.
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This paper describes the implementation of the orographic gravity wave drag (GWDO) processes induced by subgrid-scale
orography in the global version of the Weather Research and Forecasting (WRF) model. The sensitivity of the model simulated
climatology to the representation of shortwave radiation and the addition of the GWDO processes is investigated using the Kim-
Arakawa GWDO parameterization and the Goddard, RRTMG (Rapid Radiative Transfer Model for GCMs), and Dudhia shortwave
radiation schemes. This sensitivity study is a part of efforts of selecting the physics package that can be useful in applying the
WRF model to global and seasonal configuration. The climatology is relatively well simulated by the global WRF; the zonal mean
zonal wind and temperature structures are reasonably represented with the Kim-Arakawa GWDO scheme using the Goddard
and RRTMG shortwave schemes. It is found that the impact of the shortwave radiation scheme on the modeled atmosphere
is pronounced in the upper atmospheric circulations above the tropopause mainly due to the ozone heating. The scheme that
excludes the ozone process suffers from a distinct cold bias in the stratosphere. Moreover, given the improper thermodynamic

environment conditions by the shortwave scheme, the role of the GWDO process is found to be limited.

1. Introduction

The Weather Research and Forecasting (WRF) model has
been evaluated in terms of regional modeling for both
research and operational applications since it was first
released in 2000. The capability of the regional WRF model
is established over a wide temporal range; from short-range
forecasts such as simulations of localized heavy rainfall and
snowfall within a couple of days over Korea (i.e., [1, 2]), 36-h
real time forecasts in the United States [3], and simulations of
typhoon and hurricane that affect synoptic fields for several
days (i.e., [4, 5]), to regional climate simulations of such
as U.S. warm-season precipitation and East-Asia summer
monsoon circulations (i.e., [6, 7]). These studies support
the satisfactory performance of the WRF model in various
regions over the globe.

With the verification of the regional WRF model perfor-
mance, National Center for Atmospheric Research (NCAR)
researchers tested the ability of the WRF model to cover
the global domain. It is noticed that a global version of
WRF was first developed to study atmospheres on Mars
and other planets by Mark Richardson and colleagues at
California Institute of Technology, and researchers in NCAR
Mesoscale and Microscale Meteorology (MMM) Division
extended that version of the WRF-ARW model to forecast
weather on Earth (NCAR articles on 9 November 2007, avail-
able in http://www.ncar.ucar.edu/index.php/ncar/articles/
weather_forecast_goes_global). The regional WRF model was
extended with a latitude-longitude grid system to cover
the global domain, based on the Advanced Research WRF
(ARW) version 3.0 that was released in April 2008. The global
WRE shares the same dynamic core with the regional WRF



except that a polar filter is applied in the global version
[8]. In addition, the physics options and behavior should be
examined separately from the regional configuration because
the intrinsic requirements for global circulation modeling,
such as higher model top, and coarser resolution require
further validation.

The advancement of human knowledge continues to-
gether with increasing computing resources; the cutting-edge
numerical weather prediction (NWP) and climate models,
however, cannot resolve all relevant scales of atmospheric
phenomena. Global numerical prediction models are typ-
ically run with horizontal resolutions that cannot capture
atmospheric processes smaller than about 10-100 km. Grav-
ity wave is an unresolved process in coarse resolution models,
playing an important role in transporting momentum from
source regions to regions where gravity waves are dissipated
or absorbed during their propagation, producing synoptic
scale body forces [9]. Palmer et al. [10] and McFarlane
[11] noted that unresolved mountain gravity wave drag was
one of the most critical causes of the systematic biases in
seasonal simulations—excessive surface westerlies and a too
cold pole—and suggested a GWDO parameterization for
large-scale models. Since then, this subgrid-scale process
of gravity waves has been an essential physical process
that should be parameterized in global models to represent
global circulations realistically. However, the global WRE,
which is a spatial extension of the original regional WRE,
currently does not include any orography-induced gravity
wave drag (GWDOQO) parameterization. It is noted that the
GWDO parameterization is not included in most regional
models including the WRF since horizontal resolutions
of regional models are considered to be sufficiently high
to resolve gravity waves. Moreover, global models include
much of stratosphere, whereas the model top is lower (i.e.,
typically lower than 50hPa) for regional models. Thus,
most regional models do not typically include the GWDO
parameterization.

The purpose of this study is to describe the imple-
mentation of the GWDQO parameterization based on Kim
and Arakawa [12] (hereafter, KA GWDO) into the global
WREF model and evaluate the performance of the model in
simulating general features of the boreal winter climate with
the KA GWDO. The KA GWDO includes the enhanced low-
tropospheric gravity wave drag in addition to the upper-
level wave breaking that is traditionally incorporated into
GWDO schemes. The KA GWDO was earlier implemented
into the National Centers for Environmental Prediction
(NCEP) Global Spectral Model (GSM) successfully and its
performance was later reported by Hong et al. [13]. The
KA GWDO scheme went into operation at the NCEP global
forecast system in 2000. Sensitivity of the simulated clima-
tology to shortwave radiation schemes is also investigated
in order to re-evaluate present physics options in the WRF
model in global and seasonal configuration, which have
been evaluated only in regional configuration. Section 2
describes the experimental setup and implementation of
the KA GWDO parameterization, and results are discussed
in Section 3. Concluding remarks are given in the final
section.
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2. Experimental Design

2.1. The Advanced Research WRF (ARW) Model. The
Advanced Research WRF (ARW; [14]) is a community model
designed for both research and forecasting, which is a fully
compressible nonhydrostatic model with the Arakawa-C grid
system. The model performs reasonably well for detailed
numerical weather prediction (NWP) cases with real-data
initial and boundary conditions. The WRF model became
available with the global coverage starting from WRF version
3.0, which was released in April 2008. The model used in this
study is a beta version of the ARW version 3.1 with the global
domain. The global WREF utilizes the latitude-longitude
grid system and then a polar filter is used to filter out
small-scale waves and avoid the singularity problem at the
poles.

2.2. Implementation of the KA GWDO Parameterization
Scheme. The KA GWDO scheme [12] includes the lower-
tropospheric enhancement of GWDO due to selective low-
level wave breaking mainly in downstream regions with
the aid of additional subgrid-scale orographic statistics:
the orographic asymmetry (OA) and orographic convexity
(OC). The OA measures the asymmetry and location of
subgrid-scale orography relative to the model grid box
and it distinguishes between the upstream and downstream
regions. The OC measures how convex or sharp the subgrid-
scale orography is by statistically relating the characteristics
of the mountain waves to the subgrid-scale orography.

The KA GWDO parameterization is implemented in
the WRF model following Hong et al. [13]; in Hong et al.
[13] the reference level is determined as the larger value
between the PBL height and 20, following Kim and Doyle
[15], where o0y, is the standard deviation of subgrid-scale
terrain heights. Kim and Hong [16] demonstrated that this
method in determining the reference level greatly improves
the climate simulations compared with the previous method
that employs the PBL height as the reference level height; we
note that the new method generally elevates the reference
level height. The mechanism behind the improvement is
explained in Kim and Hong [16].

For utilizing the KA GWDO in the WRF model, the
necessary input to the KA GWDO scheme (i.e., mean,
variance, asymmetry, and convexity) is derived from a 30-
arcsecond resolution topography dataset [17] for global
domains with 10 min., 20 min., 30 min., 1deg., and 2 deg.
resolutions. These orographic statistics are interpolated to
the model grid points using one of the five-resolution
datasets in the WRF Preprocessing System (WPS); prepared
statistics of a comparable resolution to model grid size are
used.

2.3. Experimental Setup. Seasonal simulations are conducted
for three boreal winters in December, January, and February
(DJF) of 1996/1997, 1997/1998, and 1999/2000. For each
winter, five ensemble runs are conducted with different
initialization times of 00UTC 1-5 November to average out
the unpredictable parts of the flow. Thus, one experiment
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TaBLE 1: A summary of the physics options used in the numerical experiments. “—” denotes the same option as that in the Gsw_.nGWD
experiment.
GWDO SW w PBL LSM CPS MPS

Gsw_nGWD None Goddard RRTMG YSUPBL NOAH Grell-Devenyi WSM3
Rsw_nGWD None RRTMG — — — — —
Dsw_.nGWD None Dudhia — — — — —
Gsw_GWD KA GWDO Goddard — — — — —
Rsw_.GWD KA GWDO RRTMG — — — — —
Dsw_GWD KA GWDO Dudhia — — — — —

consists of 15 runs. Initial conditions are forced by the NCEP-
Department of Energy (DOE) (NCEP-DOE) Reanalysis 11
(R2) data on the 2.5°x 2.5° global grid. The National
Oceanic and Atmospheric Administration (NOAA) Optimal
Interpolation Sea Surface Temperature (OISST) is used
as the surface boundary conditions every 24 hours. The
horizontal resolution of 1.875°x 1.875° is used, which is
comparable to the 200 km resolution along the equator. The
38-layer Eta level system is used with the model top at
10 hPa. Intervals between the adjoining vertical levels are
determined not to exceed 1km or to be comparable to
1 km.

The physics package includes the RRTMG scheme [18]
for longwave radiation, the Yonsei University Planetary
Boundary Layer (YSU PBL) [19] for vertical diffusion
process, the Noah land surface model [20], the Grell-Devenyi
ensemble scheme [21] for cumulus parameterization, and
the WSM3 (WRF Single-Moment 3-class) scheme [22]
for microphysics. In the YSU PBL, the vertical diffusion
coefficients in the stable boundary layer (SBL) conditions
are calculated as in the case of the unstable conditions;
the coefficients are parabolic functions of heights as in
the mixed layer, and the SBL top is determined by the
bulk Richardson number. Kim and Hong [16] demonstrated
that the interaction between the KA GWDO and YSU
PBL processes is improved with the SBL parameterization
mentioned above. For shortwave radiation, three different
shortwave schemes are used to observe the sensitivity of
the simulated climate associated with the GWDO to the
shortwave radiation processes in the modeled atmosphere:
the Goddard [23], RRTMG, and Dudhia [24] schemes. The
physics options used for the numerical experiments are
summarized in Table 1.

3. Results

In this study, the results are obtained from and discussed
based on the composite of 3-year simulations (i.e., ensemble
averages of the 15 simulations). The simulated zonal wind
and temperature structures are evaluated in comparison
with the reanalysis (R2) data. The shortwave process in R2
is based on Chou [25] and Chou and Lee [26], and the
GWDO scheme used in the R2 is described by Alpert et al.
[27]. In precipitation analysis, the daily Global Precipitation
Climatology Project (GPCP) data with a 1°x 1° spatial
resolution are used for the evaluation. Hereafter, to make a

clear distinction, the global WRF without the KA GWDO
implementation is designated the earlier version.

3.1. Wind and Temperature Structures. Figure 1 compares
the three-winter ensemble averages of the zonal-mean zonal
wind and temperature structures simulated with the God-
dard (Figures 1(a) and 1(d)), RRTMG (Figures 1(b) and
1(e)) and Dudhia (Figures 1(c) and 1(f)) shortwave param-
eterizations in the earlier version of the global WRF that
includes no effect of the GWDO (denoted by Gsw_.nGWD,
Rsw_nGWD, and Dsw_nGWD, resp.). The contours in each
figure represent the 3-year averaged fields from the 15
ensemble members, and the color shades denote their
deviations from the reanalysis fields. As can be expected
and as the results show, the earlier version of the global
WRE cannot reasonably represent the typical boreal winter
climatology. The model clearly shows the systematic errors
in the simulated climatology—too cold pole and excessively
strong westerlies over the northern hemisphere (cf. Figure 1),
which is typical when GWDO is not included in general
circulation models. There is no separation between the
tropospheric subtropical jet and stratospheric polar night jet
and also the polar night jet is overly strong due mainly to
the lack of GWDO. The thermodynamic structure shows too
strong meridional temperature gradient in balance with the
improper wind structure; the simulated temperature of the
Arctic polar stratosphere is almost about 40K colder than
that of the reanalysis. Thus, it is obvious that the earlier
version of the global WRF has a systematic problem due
to a missing critical process; that is, orographically induced
gravity wave drag. Note that the three nGWD experiments
are conducted in parallel with the three GWD experiments
(i.e., Gsw_GWD, Rsw_GWD, and Dsw_GWD) to validate the
implementation of the KA GWDO in the global WRF model,
and thus the sensitivity to shortwave process schemes is not
discussed for these nGWD experiments.

With the KA GWDO implemented, the global WREF is
able to reproduce the general mean structures of both the
zonal-mean zonal wind (Figures 2(a)-2(c)) and temperature
(Figures 2(d)-2(f)) in the troposphere. All three experiments
simulate the subtropical jet in the northern hemisphere with
realistic intensity, which is comparable to 45ms™! of the
reanalysis data, as well as the overall mean wind state of the
troposphere (Figures 2(a)-2(c)). This reasonable representa-
tion of the wind fields including the mid-latitude jet in the
northern troposphere is attributed to the implementation of
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FIGURE 1: Three-winter ensemble averages (contours) of the zonal-mean zonal wind (upper panels) and temperature (lower panels)
structures simulated from the (a), (d) Gsw.nGWD, (b), (e¢) Rsw.nGWD, and (c), (f) Dsw.nGWD experiments with the earlier version
of global WRF without the KA GWDO implementation. Differences from the NCEP reanalysis (R2) are color shaded.

the GWDO. Associated with these improvements in the wind
fields, the cold bias of the thermodynamic structures is also
reduced. In the troposphere, the simulated results are less
sensitive to the shortwave schemes than those in the upper
atmosphere. On the other hand, clear differences among
the shortwave radiation parameterizations exist in upper
levels. The subtropical jet and stratospheric polar night jet in
the northern hemisphere are reasonably separated with the
Goddard and RRTMG shortwave radiation processes while
the two jets are unrealistically bonded to each other with
the Dudhia scheme; the westerly continuously decreases as
the height increases such that the magnitude of the wind
is evidently underestimated at the location of the observed
polar-night jet, which is entirely missing in the simulation
(cf. Figure 2(c)). Moreover, in the southern hemisphere, the
tropospheric westerly jet is erroneously extended into the
stratosphere in the Dsw_GWD experiment.

This radical difference in simulating the wind structure
in the middle atmosphere among the three experiments
(Gsw_GWD, Rsw_GWD, and Dsw_GWD) is related to
the different thermodynamic structures that heavily rely
on the shortwave heating processes. The Goddard and
RRTMG shortwave schemes include ozone effects that are

responsible for the typical thermodynamic structure of
the stratosphere; an ozone-absorption coefficient profile is
specified in the Goddard scheme according to an observed
climatology, and the RRTMG scheme includes tropical/mid-
latitude/polar and summer/winter ozone profiles. The sim-
ulated temperature-profile inversion near the tropical and
southern-hemispheric polar tropopause is shown with these
two shortwave schemes due to the ozone heating effects
(Figures 2(d) and 2(e)). Because of this temperature inver-
sion, there exists meridional temperature gradient in the
middle stratosphere over high latitudes, which is responsible
for the presence of the northern polar night jet in the
two experiments (i.e., Gsw_GWD and Rsw_GWD). In the
Gsw.nGWD and Rsw.nGWD experiments, there is sig-
nificant cold bias related to the extremely overestimated
temperature gradient in the lower stratospheric regions
associated with the excessive westerlies caused by the missing
drag, as shown previously, this cold bias is alleviated by its
balance with the wind reduction due to the GWDO in the
two GWD experiments.

On the other hand, the Dudhia scheme does not consider
the ozone effects [28] and thus cannot simulate the temper-
ature inversion; the strong cold bias is induced throughout
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FIGURE 2: As in Figure 1, but with the new version of global WRF including the KA GWDO parameterization.

the stratosphere (Figure 2(f)) (note that the cold bias in the
Dsw_nGWD experiment is due to the absence of both the
ozone heating and GWDO). Moreover, given the highly-
unrealistic thermodynamic structure, the GWDO process
does not improve but continues to force the unrealistic
system. We note that similar results were previously reported
by Kim et al. [29]. They demonstrated that the underesti-
mated ozone mixing ratio inducing an underestimation of
shortwave heating can result in significant bias in zonal-
mean temperature and wind structures; the impact of the
low ozone mixing ratio is the largest in the lower polar
stratosphere, which leads to the overly strong polar night
jet in the northern hemisphere and unrealistically strong
extension of the tropospheric westerly jet into the strato-
sphere in the southern hemisphere. Consequently, when
the GWDO parameterization is given wrong information
from other physical process, including GWDO does not
improve the simulated results even though the GWDO
process itself is a critical component in climate models.
The Dudhia shortwave scheme shows good performance,
that is, without large systematic bias, in regional weather
prediction models since the model top is usually lower
than 50hPa in the regional model application, so that
the simulated results do not suffer from the absent ozone
effects.

In summary, shortwave radiation significantly impacts
the modeled atmosphere, especially on the upper atmo-
spheric circulations above the tropopause mainly due to
the ozone heating. The heating scheme without the ozone
process undergoes a distinct cold bias in the stratosphere,
which in turn results in improper wind fields balancing
with the cold bias. Under the unreasonable environmental
conditions, the GWDO process continuously forces the
system toward an unrealistic state.

3.2. Tropical Precipitation. In Figure 3, the simulated 3-year
mean daily precipitation is compared with the daily GPCP
data with a 1°x 1° spatial resolution. The pattern correlation
(PC), biases, and Root Mean Square Error (RMSE) between
each simulation and GPCP data are presented at the top
of each panel. The overall performance of the global
WREF model in simulating the precipitation is acceptable
in the three GWD experiments regardless of the shortwave
processes (e.g., Figures 3(e)—3(g)). As seen in Shimpo et al.
[30], the distribution of global precipitation from the global
WREF is comparable, even though the integration period
differs from one to another. The model produces tropical
rainfall distributions quite reasonably, compared with the
observations showing the double rainbelts along the double
intertropical convergence zone (ITCZ) and precipitation
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Figure 3: Comparison of 3-year averaged daily precipitation (mm day ') obtained from (a) observations, (b), (c), (d) the experiments
without the KA GWDO scheme and with three different shortwave radiation processes, and (e), (f), (g) the experiments including the KA
GWDO scheme and with three different shortwave radiation processes.

maximum regions over South America and South Africa.
However, the model generally tends to overestimate the local
rainfall maximum values over tropical regions (e.g., central
South America, the northwestern ocean of Madagascar, near
Sumatra, and western equatorial Pacific near the maritime
continent), while it underestimates the rainfall around
middle latitudes. Compared with the nGWD experiments,
the inclusion of the GWDO neither significantly changes the

distribution, nor improves the distribution of the precipita-
tion. With the Goddard and RRTMG shortwave processes
the statistics are slightly worse in the GWD experiments
while the GWD experiment shows slightly better statistics
with the Dudhia shortwave. The simulated hydroclimate
shows the best results—although not significant—with the
Goddard shortwave scheme in this study both with and
without GWDO.
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(mm day!) obtained from the three nGWD (dotted lines) and
three GWD (solid lines) experiments with the Goddard (green
lines), RRTMG (blue lines), and Dudhia (red lines) shortwave
radiation schemes, respectively.

Figure 4 shows the zonal mean of the 3-year mean daily
precipitation from 60°S to 60°N. The model is successful
in representing meridional distributions of the zonal-mean
precipitation, but tends to overestimate the precipitation
over the tropics, regardless of the shortwave scheme. Near
the equator, the simulated daily precipitation patterns from
the experiments with the shortwave schemes including ozone
effects (i.e., the Goddard and RRTMG) are similar to each
other while the experiment with the Dudhia scheme shows
somewhat different behaviors, both with and without the KA
GWDO. In other words, the experiments with the Goddard
and RRTMG schemes commonly produce less rainfall than
the experiment with the Dudhia scheme so that the amounts
are closer to observations than that with the Dudhia
scheme.

4. Concluding Remarks

The orographic gravity-wave drag (GWDO) process induced
by subgrid scale orography is implemented in the global
version of Weather Research and Forecasting (WRF) model.
The sensitivity of the simulated climatology to the represen-
tation of shortwave radiation with the GWDO process in the
modeled atmosphere is investigated using the Kim-Arakawa

GWDO (KA GWDO) parameterization and the Goddard,
RRTMG, and Dudhia shortwave radiation schemes.

With the KA GWDO parameterization implemented,
the climatology from the global WREF is relatively well
simulated in the troposphere; the zonal-mean zonal wind
and temperature structures are realistically represented. In
the stratosphere, however, the performance of the model
widely varies according to the representations of shortwave
processes mainly due to the ozone heating. The scheme
that excludes the ozone process induces a distinct cold
bias in the stratosphere, and modeled wind fields balance
with the unreasonable thermodynamic fields. The already
unrealistic system due to the deficiency in the heating scheme
is continuously impelled by the GWDO process. This result
supports the notion that the success of a particular physics
parameterization scheme in atmospheric models depends
not only on the accuracy of the particular scheme itself but
also on the success of other physical processes [16]. In view
of the precipitation, the global WREF also well represents the
overall patterns of the tropical precipitation but the model
tends to overestimate (underestimate) the precipitation at
the tropical (mid-latitude) regions. It is found that the simu-
lated meridional precipitation distributions differ according
to the shortwave schemes depending on the presence of
ozone effects.

The KA GWDO is implemented in the WRF model based
on this study and became available starting from the WRF
version 3.1, which was released in April 2009.
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This study demonstrates the characteristics of the Weather Research and Forecasting (WRF) Double-Moment 6-Class (WDMG6)
Microphysics scheme for representing precipitating moist convection in 3D platforms, relative to the WSM6 scheme that has been
widely used in the WRF community. For a case study of convective system over the Great Plains, the WDM6 scheme improves
the evolutionary features such as the bow-type echo in the leading edge of the squall line. We also found that the WRF with
WDMB6 scheme removes spurious oceanic rainfall that is a systematic defect resulting from the use of the WSM6 scheme alone.
The simulated summer monsoon rainfall in East Asia is improved by weakening (strengthening) light (heavy) precipitation activity.
These changes can be explained by the fact that the WDM6 scheme has a wider range in cloud and rain number concentrations

than does the WSM6 scheme.

1. Introduction

The Weather Research and Forecasting (WRF) model [1] is
a community numerical weather prediction (NWP) model
that is applicable to various scales of weather phenomena.
Application of the WRF model has recently been extended
to resolving regional details embedded within climate sig-
nals from the general circulation model [2]. As computer
resources become available, the use of high-resolution WRF
with a horizontal grid spacing of less than 5km will
improve forecasts for convective-scale phenomena, including
explicit information about the timing, intensity, and mode
of convection (e.g., [3, 4]). These previous reports demon-
strate a 4-km resolution in WRF forecasts, which explicitly
resolves convection yields for better guidance in precipitation
forecasts, in comparison to 12-km resolution. Microphysical
schemes are explicit, whereas convective parameterizations
are implicit. As grid spacings decrease, convective param-
eterizations become more inappropriate (and scientifically

questionable given the underlying assumptions), whereas
the explicit representation of microphysical processes can
be computed for increasingly small clouds, cloud particles,
water droplets, and so forth.

In the WRF model, there are multiple choices for each
physical component; for example, there are ten algorithms
for the cloud microphysics scheme, as of August 2009.
Among the microphysics packages for clouds and precipita-
tion, the series of the WRF single-moment (WSM) schemes
(WSM3, WSM5, and WSM6 [5, 6]) has been widely used.
As of June 2009, there are about 50 institutions across the
globe running the WRF model on a real-time basis, and
many of these institutions chose the WSM scheme for the
microphysics option. As an example, the WRF model with
the WSM6 microphysics has provided useful information on
high-resolution weather phenomena over the Great Plains in
the US [7, 8]. The Korean Meteorological Administration
(KMA) and Korean Air Force (KAF) have also chosen the
WSMG6 scheme for real-time forecasts over Fast Asia, as noted



by Ha et al. [9] and Byun et al. [10]. There are numerous
reports evaluating the performance of the WRF with WSM
microphysics on various weather phenomena, including over
the US [11], for a hurricane over the Atlantic [12], heavy
rainfall over East Asia [13] and polar weather [14]. Huang et
al. [15] used the WSM5 scheme to develop an advanced data
assimilation system. Otkin and Greenwald [16] evaluated the
WSM6 scheme using the MODIS-derived cloud data.

These studies demonstrated that the WSM schemes are
competitive options in WRF by reproducing precipitating
convection and associated meteorological phenomena. How-
ever, some systematic deficiencies have been reported, such
as too much light precipitation activity [17] and an excessive
amount of graupel, as compared to snow [18]. Spurious light
precipitation was a systematic problem in the KMA forecast
systems, as noted by Jo et al. [19]. A further revision to
the WSM6 scheme employing a combined sedimentation
velocity for graupel and snow [20] helped to alleviate the
problem of excessive graupel, but weak radar reflectivity
remained a systematic problem (personal communication
with J. Kain).

The WRF Double-Moment 6-class (WDM6) scheme
[21] was announced to the WRF community in April
2009. The WDM6 scheme enables the investigation of the
aerosol effects on cloud properties and precipitation pro-
cesses with the prognostic variables of cloud condensation
nuclei (CCN), cloud water and rain number concentrations.
The WDM6 scheme has been evaluated on an idealized
two-dimensional thunderstorm testbed [21], but its overall
characteristics relative to the WSM6 scheme for 3D real
cases has not been provided. For these reasons, it is crucial
to provide physical reasons for the differences in simulated
precipitation and clouds between the WDM6 and WSM6
schemes.

A squall-line case over the Great Plains in the US will
be simulated with both WSM6 and WDM6 microphysics
schemes. In Lim and Hong [21], the fundaments in the
WDM6 were described in detail, but the differences in
the simulated convection were demonstrated only for an
idealized 2D storm. The purpose of a specific squall-line
simulation is to evaluate the basic differences in convective
activities between the WSM6 and WDM6 schemes in a
real 3D model framework, prior to a robust evaluation of
the hydrometeors and investigation studies on associated
dynamics. Experimental evaluations of the WDM6 scheme
over the WSM6 scheme at a real-time forecast platform at
KMA have not shown distinct discrepancy in the predicted
precipitation, but at times there have been cases that
the WDM6 scheme is superior to the WSM6 scheme. A
reduction of spurious precipitation in the case of the WSM6
scheme was systematically alleviated by the WDM6 scheme.
We will demonstrate a mid-latitude cyclogenesis in East Asia
as an example. As another evaluation tool, a regional climate
modeling approach is adapted to examine the characteristics
of a summer monsoon precipitation in East Asia. We
focus on differences in the simulated precipitation with a
possible physical reasoning on the fundamental differences
in microphysics between the WSM6 and WDM6 schemes.
The causes for the different model performances in the
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underlying assumptions of WSM6 and WDM6 schemes will
be investigated. In addition, a statistical measure of skill in
precipitation forecasts over South Korea in summer 2008 will
be shown in the final section.

2. Model Setup

2.1. Overview of the WDM6 Scheme. Prognostic water
substance variables include water vapor, clouds, rain, ice,
snow, and graupel for both the WDM6 [21] and WSM6
[5] schemes. Additionally, the prognostic number con-
centrations of cloud and rain waters, together with the
CCN, are considered in the WDM6 scheme. The number
concentrations of ice species such as graupel, snow, and
ice are diagnosed following the ice-phase microphysics of
Hong et al. [6]. This simplicity is theoretically based on
the fact that the prediction of ice-phase number concentra-
tions has significantly less impact on the results than the
prediction of warm-phase concentrations in deep convective
cases [22]. The activated CCN number concentration is
predicted and formulated using the drop activation process
based on Twomey’s relationship between the number of
activated CCN and supersaturation [23, 24], which enables
a level of complexity to be added to the traditional bulk
microphysics schemes through the explicit CCN-cloud drop
concentration feedback. The complete evaporation of cloud
drops is assumed to return corresponding CCN particles to
the total CCN count. The CCN number concentration can
be regulated under the forced large-scale environment, even
for the seasonal climate cases. Any other CCN sink/source
terms, except for CCN activation and droplet evaporation,
are ignored in the WDM6 scheme. Further details on the
CCN activation process are described in appendix A of
Lim and Hong [21]. Accurate 3D CCN information is an
important aspect of model simulations. However, obtaining
real-time CCN information in both the horizontal and
vertical directions is difficult. Thus, we chose an initial value
of 100 cm~3for the CCN number concentration in this study,
as in Lim and Hong [21].

The formulation of warm-rain processes such as auto-
conversion and accretion in the WDM6 scheme is based
on the studies of Cohard and Pinty [25]. For other source
and sink terms in warm-rain processes, the formulas in the
WSM6 scheme were adopted. However, the microphysics
processes in the WDM6 scheme, even if the same formula
is applied, work differently from those in the WSM6
scheme due to the predicted number concentrations of cloud
water and rain, which in turn indirectly influence the ice
processes. Lim and Hong [21] demonstrated that, compared
to the simulation of an idealized 2D thunderstorm with
the WSM6 scheme, the higher drop concentrations in the
convective core versus lower drop concentrations in the
stratiform region are distinct in the WDM6. A marked
radar bright band near the freezing level was produced with
the WDM6 microphysics scheme. Meanwhile, the WSM6
scheme extended strong reflectivity to the ground level over
the stratiform region. The aerosol effects on the cloud/rain
properties and surface precipitation were also investigated by
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varying the initial CCN number concentration. Varying the
CCN number concentration had a nonmonotonic impact on
rainfall amount.

2.2. Experimental Setup. The model used in this study is
the Advanced Research WRF version 3.1 [1]. The physics
packages, other than the microphysics, included the Kain-
Fritsch cumulus parameterization scheme [26], the unified
Noah land-surface model [27], a simple cloud-interactive
shortwave radiation scheme [28], the Rapid Radiative Trans-
fer Model (RRTM) longwave radiation scheme [29], and the
Yonsei University planetary boundary layer (PBL) scheme,
for vertical diffusion [30]. The PBL scheme was replaced
with the Mellor-Yamada-Janjic (MY]) scheme [31, 32] for the
squall line case over US. The MYJ scheme has been widely
evaluated for convective systems over the Great Plains in the
US (e.g., [3, 4]).

The model configuration consisted of a nested domain
defined on a Lambert conformal projection for all the
selected cases. For a squall-line case over the US Great Plains,
we followed the same model configuration of Shi et al. [17].
They investigated the impact of microphysical schemes on
the THOP_2002 case. From the comparison between the
results from this study and those from Shi et al. [17], we
can easily examine the advantage of the WDM6 scheme. A
1-km model covering Oklahoma (Domain 3, 540 X 465)
was surrounded by a 3-km grid model (Domain 2, 480
X 351), which in turn was nested by a 9-km grid model
(Domain 1, 300 x 201) using a two-way interaction. Model
integration was conducted during a 36-hour period, from
0000 UTC June 12 to 1200 UTC June 13, 2002. The cumulus
parameterization was applied, except for the 1-km and 3-
km grid models for this case. A 30-km model covered the
East Asia region (199 x 189) for a mid-latitude cyclogenesis
case. This model configuration is identical to the model setup
for operational forecasts at KMA, as of summer 2008. The
experiments were performed for 36 hours, from 0000 UTC
February 23 to 1200 UTC February 24, 2008. For a summer
monsoon case in East Asia, a 50-km WRF was nested using
analyzed data from the month of July 2006. The domain
covers the East Asian monsoon regions (109 X 86) centered
over the Korean peninsula. This configuration is identical to
the model setup for several regional climate studies over East
Asia (e.g., [33]). Koo and Hong [33] demonstrated that the
WRF model is capable of reproducing the climatology and
precipitation embedded within the summer monsoon over
East Asia with the same model configuration of this study.
The whole grid systems had 27 vertical layers, and the model
top was located at 10 hPa for all the simulated cases. Initial
and boundary conditions were generated by the National
Centers for Environmental Prediction (NCEP)-Final Analy-
sis (FNL) data on 1°x1° global grids, every six hours.

The Tropical Rainfall Measuring Mission (TRMM)
TRMM Multisatellite Precipitation Analysis (TMPA; [34])
data on a 0.25° x 0.25° were used for an evaluation of the
simulated precipitation. In addition, simulated reflectivities
were verified against observed ones, which were obtained
from the WSI IHOP Sector Mosaic Reflectivity Imagery

(2-km) provided by the NCAR/EOL across the United States
[35, 36] for the squall-line case.

3. Results and Discussion

3.1. Squall Line Case over the US Great Plains. Thompson et
al. [37] and Weisman et al. [38] recognized that the WSM6
scheme tends to produce isolated intense convective cores
compared to other schemes, such as that of Thompson [39].
This defect in the WSM6 scheme often failed to produce
radar reflectivity and the associated mesoscale features of
squall lines. The International H, O project (IHOP_2002) was
conducted over southern Kansas, Oklahoma, and northern
Texas for six weeks during May and June of 2002 (13 May to
25 June 2002). A detailed summary of the physical processes
(i.e., mesoscale convergence lines and gust fronts) associated
with convective storm initiation and evolution for IHOP
cases can be found in Wilson and Roberts [40].

Figure 1 compares the radar reflectivity and numbered
gust fronts associated with a squall line that developed on
12 June in Kansas and moved southeastward. The WRF was
initialized at 00 UTC 12 June 2002, and the simulation results
at the 24-hr, 27-hr, and 30-hr forecast times are shown. Here,
we focus on the evolutionary feature of the squall line passed
Oklahoma between 0000 UTC 13 June and 0600 UTC 13
June, which can be evaluated though the comparisons with
the available observations.

The observed data at 00 UTC 13 (Figure 1(a)) exhibits
a line type convection core stretching from the Texas
panhandle northeastward to the border between Kansas and
Oklahoma. Wilson and Roberts [40] demonstrated that gust
fronts 3 and 4 initiate many more storms than gust fronts 1
or 2. With time gust fronts 3 and 4 merge and a continuous
squall line results in Figure 1(d). The storms associated with
gust front 2 soon die, as does the gust front. The storms
associated with gust front 1 live longer but never organize
into a significant squall line. They also discovered that the
most important factor for storm initiation and longevity is
the gust front differential wind velocity. Generally, upward
motion beginning in the boundary layer near the gust front
extends up through the convective region, and slops more
gently into the base of the trailing stratiform cloud. This
descending current passes through the melting level, and
finally enters the back of the convective region at low levels
where it reinforces convergence at the leading gust front.
Thus, the near-surface wind, normal to gust fronts, can
enhance the convergence and organize a strong squall line.

The WSM6 run shows ambiguous separation of the two
storms associated with gust fronts 3 and 4, showing larger
convective areas than the observed areas data at 00 UTC 13
(Figure 1(b)). These storms do not develop into a continuous
squall line after 3 hours. The storms associated with gust
fronts 3 and 4 are well organized in the WDM6 run. After
3 hours, these storms are combined and the squall line
traveled southeastward in central Oklahoma. However, the
strength of reflectivity from the WDMBG6 run is systematically
higher in a broad region compared to the WSM6 run and
observations. In addition, the WDM6 run shows narrowed
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FiGure 1: Radar reflectivity (in dBZ) and numbered gust fronts for a squall line case over the US. (a) The observed WSI IHOP Sector
Mosaic reflectivity (2-km) at 00UTC 13 June 2002 (URL: http://data.eol.ucar.edu/codiac/dss/id=77.091). Note that these images are a
vertical composite of reflectivity and depict the highest reflectivity measured over each point on the Earth’s surface. (b) and (c) are from the
WSM6 and WDM6 experiments, respectively. The reflectivities were calculated from model-simulated precipitation particles (rain, snow,
and graupel). The plotted results are from the second domain (i.e., 3-km resolution). Three figures in the second row are the same as (a),
(b), and (c), except they were observed at 03UTC 13 June 2002. Figures in the third row represent same fields at 06UTC 13 June 2002. Here,

the vectors denote the 850-hPa wind (ms™!).

areas of convection and the line-type band (Figure 1(c)). A UTC in the WDM6 run. However, not much improvement is
reduction in light precipitation is noted in the Oklahoma  seen in Texas with the WDM6 microphysics scheme. During
panhandle at 0300 UTC in the WDM6 compared to the  the weakening and dissipating stages (Figures 1(g), 1(h), and
WSMB6, as well as northeast Kansas and western Missouri at 1(i)), both experiments fail to simulate strong convection
0000 UTC. Convection in Missouri looks overdone at 0300  in the leading edge of a squall line, but with a better
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FIGURE 2: The 6 hours accumulated rainfall amount (mm) and averaged sea level pressure (SLP) from 0600 UTC to 1200 UTC 24 February
2008, obtained from the (a) TMPA observation for the rainfall and FNL data for the SLP, (b) WSM6, and (c) WDM6 experiments. Model
integrations were conducted during the 36-h from 0000 UTC 23 February 2008. The marks “A” and “B” in Figure 2(a) designate the

precipitating and nonprecipitating areas.

organized lined-up convection by the WDM6 experiment.
This precipitating storm soon dissipates in both simulations
at 1100 UTC, which is agreement with the observation (not
shown).

The relatively narrower area of stratiform rain in the
WDMS6 run results from a larger number of rain number
concentrations having smaller size, which causes rain to
fall slowly on the ground, compared with the WSM6 run.
Lim and Hong [21] noted that the WDM6 run shows
well organized downdrafts with a strengthened cold pool,
leading a slightly faster movement of the convective system,
as compared to the WSM6 run within an idealized 2D
thunderstorm testbed. Therefore, a possible reason for the
faster movement of the squall line in the WDM6 run than
in the WSM6 run in Figure1 can be deduced from a

strengthened cold pool. Further study on the impact of
microphysics on the evolutionary features of the convective
storms and associated cloud dynamics is needed. In addition,
it is no doubt that the more realistic squall-line evolution
might not be achieved with other cases under different
thermodynamic condition.

3.2. Oceanic Cyclogenesis. At KMA, the WRF model was
run with 10-km resolution centered over South Korea,
which is nested by a 30-km coarse mesh model from
May 2007. The WRF model outperformed the operational
regional model, which is based on the PSU/NCAR MMS5
[41], in terms of statistical skill score for forecasted rainfall.
However, it was often observed that the WRF with the
WSM6 scheme produced spurious precipitation over the
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FIGURE 3: Modeled number concentrations of (a) cloud droplets and (b) raindrops over the regions “A” (closed circles) and “B” (open
circles), as marked in Figure 2(a). The region “A” represents a relatively heavy rainfall region near the center of a cyclone, whereas a non-
precipitating cloud region is observed in region “B.” The values are obtained from the cloud area averaged values during the six hours from
0600 UTC to 1200 UTC 24 February 2008. Solid lines indicate the results from the WDM6 scheme and dotted lines are from the WSM6
scheme. The number concentration for raindrops can be calculated using the slope of rain size distribution and intercept parameter of rain
in the WSM6 microphysics scheme. A cloudy area is defined as either g¢c > 0.01 gkg™! or g > 0.01 gkg™!.

oceans (e.g., Figure 2). The modeled precipitation with the
WSM6 scheme exhibits banded precipitation activity over
the southern part of Japan, which is absent in the TMPA
observation (cf. Figures 2(a) and 2(b)). Precipitation over
the subtropics near the southern boundary of the model
domain and near the center of the cyclone is excessive. Such
an excessively light precipitation is greatly reduced when the
WDMS6 scheme is employed. The KAF real-time forecasts
verified that occasional spurious light precipitation over
South Korea in the case of a WSM6 run was also removed
by employing the WDM6 scheme, as shown by Byun et al.
[10].

Figure 3 shows the modeled cloud droplets and raindrop
concentrations averaged over the regions “A” (34°-37.5°N,
154.5°~160°E) and “B” (26°-32°N, 132°~140°E), as marked
in Figure 2(a). The region “A” represents a relatively heavy
rainfall region near the center of a cyclone, whereas a
non-precipitating cloud region is observed in region “B.
The number concentrations of cloud droplets from the
WDMB6 scheme vary according to the convective activity and
reveal larger values over region “A” than over region “B”. A
direct comparison of cloud droplet number concentrations
between the WDM6 and WSM6 schemes is less meaningful
since the CCN interacts explicitly with cloud droplets, and
the cloud droplet number concentrations, which is predicted
from the governing equation including the 3D advection and
the source/sink of the number concentration in the WDM6
scheme, can be modulated according to the environmental
features. Nevertheless, the comparison of cloud number

concentration in Figure 3 shows that the constant value
of 300 cm™ for the cloud water number concentration in
the WSM6 scheme is not an appropriate representation of
various types of clouds.

In terms of the number concentration of raindrops,
the WSM6 scheme produces a rather uniform distribution
in the vertical direction, and the differences in number
concentration of raindrops between the regions “A” and
“B” are not significant, with a constant intercept parameter
value of 8 X 10° m*for rain. Meanwhile, the WDM6 scheme
shows a large variation in rain number concentration in
both the horizontal and vertical directions with a flexible
size distribution of rain, which is modulated with different
microphysical processes according to the precipitation type
and the characteristics of convection. A relatively larger
number of rain drops over the region “B” implies the
existence of nonsedimenting small raindrops. As a result,
the WDM6 scheme effectively suppresses the spurious light
precipitation through the enhanced evaporation of small
droplets. A more realistic distribution of particle sizes for
clouds and raindrops and associated microphysics would
provide a physical feedback to the convective environment.

3.3. Monsoonal Rainfall in July 2006. The regional climate
simulation by analyzed large-scale forcing is an efficient way
to evaluate model performance [42]. The WRF model with
the WSM6 scheme is capable of reproducing two major rain
bands, one over the subtropics covering South China and the
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FIGURE 4: One-month accumulated rainfall (mm) from 0000 UTC 1 July to 0000 UTC 1 August 2006, obtained from the (a) TMPA
observation, (b) WSM6, and (c) WDM6 experiments. Differences in 7 one-month accumulated rainfall (mm) between the observation
and the (d) WSM6 (WSM6-TMPA) 8 and (e) WDM6 experiment (WDM6-TMPA).

TaBLE 1: The pattern correlation coefficients (PC), bias score, and root mean square error (RMSE) of the 24 hours accumulated precipitation

over South Korea with respect to surface observation, ending at 00 UTC 15 July 2001, for 5-km(45 km) resolution.

Over the lands Over the oceans
PC Bias score RMSE PC Bias score RMSE
WSM6 0.71 20.41 128.97 0.53 70.36 170.01
WDM6 0.74 20.61 135.69 0.60 56.59 163.30

southeastern China Sea and the other in the mid-latitudes,
where local maxima appears over Korea and Japan. These
major summer rainfall features are simulated, irrespective of
the microphysics scheme (Figure 4). One obvious deficiency
in the WSM6 run is excessive rainfall over the northwestern
Pacific Ocean, south of Japan. A large portion of the ocean
is covered by the one-month accumulated rainfall of over
100 mm, which is largely alleviated in the WDM run. Table 1
shows the statistical skill score for precipitation over the lands
and oceans. Even though the WDMS6 shows slightly larger
score in bias and root mean square error over lands, which
is mainly due to heavy precipitation over Korea, significant
improvement is shown over the oceans.

A close inspection reveals that a surplus rainfall in
Manchuria and a deficit in the upper Yangtse river basin
appear in the WSM run, which are improved in the WDM
run. It is hard to interpret the physical reasoning for the
different simulations within a 3D regional climate platform,
thus, we compare the PDF of the simulated precipitation
with those of the WSM6 and WDM6 schemes (Figure 5).
It is clear that compared to the single-moment approach,
the double-moment scheme suppresses the rainfall activity
in the light precipitation categories, whereas it enhances the
activities in the moderate and heavy categories. The above
comparison of the two schemes qualitatively complies with
the characteristics of the WDM microphysics over the WSM
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FIGURE 5: Probability Distribution Function (PDF) of three-hour
accumulated rainfall intensity from the TMPA observations, and
the corresponding results from the WDM6 and WSM6 experiments
over the whole domain during the one month from 0000 UTC 1
July to 0000 UTC 1 August 2006.

algorithm in the 2D squall line case study of Lim and Hong
[21], in that the WDM6 was responsible for the light (heavy)
precipitation suppression (enhancement).

4. Concluding Remarks

The WRF model sensitivity to microphysical parameteriza-
tion was analyzed from the WSM6 to the WDM6 scheme
for the selected 3D test platforms. The case study for a squall
line over the US Great Plains showed that the traveling speed
of the simulated squall line is faster with the higher radar
reflectivity when the double-moment scheme is used. It also
appears that the double-moment approach of the WDM6
scheme tends to resolve known systematic deficiencies in
the corresponding single-moment approach of the WSM6
scheme. The WDM6 run suppressed spurious light precip-
itation over the oceans. The simulated monsoonal summer
rainfall climate over East Asia was improved by suppressing
the light precipitation and enhancing the heavy precipitation.

A statistical evaluation of the precipitation forecast skill
over South Korea in summer 2008 was made (Figure 6).
The Korea Local Analysis and Prediction System (KLAPS)
was developed for the operational very short range forecast
with 5 km horizontal resolution [9]. A diabatic initialization
technique was applied to the KLAPS with the use of radar
reflectivity and satellite data. The scores confirmed that the
forecasted precipitation using the WDM6 scheme was better
than that with the WSM6 scheme for both the light and heavy
precipitation categories in terms of the equitable threat score
(ETS; [43]). In contrast to the previous evaluation cases, the
amount of light precipitation is also increased during the first
6 hours forecast period. This may be a negative impact of
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FIGURE 6: The time series of the equitable threat score (ETS; bars)
and bias score (Bias; lines) for 3 hours accumulated precipitation
over South Korea during the 12 hours forecast period, for (a) light
precipitation (1 mm/3 hours) and (b) heavy precipitaion (10 mm/3
hours) categories. The total number of samples is 976, which
consists of 8 times a day for June-July-August 2008. The number
of observation used is about 600, which is about 13 km apart over
South Korea. The horizontal grid spacing is 5km covering the
Korean peninsula, which is nested by the 15 km grid.

a diabatic initialization that carries the hydrometeors at the
initial time.

Further study is needed to clarify the physical reasons
for the different features in precipitation, but it is assumed
that a more realistic variability in cloud and rain number
concentrations in the WDM6 scheme provides a realistic
convective environment and feedback to cloud microphysics
associated with the rainfall embedded within various weather
phenomena, including a summer monsoon over East Asia
and a squall line in the US. A robust evaluation of microphys-
ical properties such as hydrometeors and associated cloud
dynamics should be followed as a future study.
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The Weather Research and Forecasting (WRF) model version 3.0 developed by the National Center for Atmospheric Research
(NCAR) includes three land surface schemes: the simple soil thermal diffusion (STD) scheme, the Noah scheme, and the Rapid
Update Cycle (RUC) scheme. We have recently coupled the sophisticated NCAR Community Land Model version 3 (CLM3) into
WREF to better characterize land surface processes. Among these four land surface schemes, the STD scheme is the simplest in both
structure and process physics. The Noah and RUC schemes are at the intermediate level of complexity. CLM3 includes the most
sophisticated snow, soil, and vegetation physics among these land surface schemes. WRF simulations with all four land surface
schemes over the western United States (WUS) were carried out for the 1 October 1995 through 30 September 1996. The results
show that land surface processes strongly affect temperature simulations over the (WUS). As compared to observations, WRE-
CLM3 with the highest complexity level significantly improves temperature simulations, except for the wintertime maximum
temperature. Precipitation is dramatically overestimated by WRF with all four land surface schemes over the (WUS) analyzed in

this study and does not show a close relationship with land surface processes.

1. Introduction

Fossil fuel emissions have caused a 0.6°C increase in global
temperature during the last 100 years (Hansen et al. [1]),
with an anticipated additional 2-5°C temperature increase
by the end of this century (The Intergovernmental Panel
on Climate Change Fourth Assessment Report (IPCC AR4)
2007). Climate change impacts (e.g., extreme heat, severe
storms, and air pollution inversion episodes) are especially
significant at regional scales, where society and ecosystems
are most sensitive (IPCC AR4 2007). Thus, accurate regional
climate model (RCM) simulations with reduced uncertain-
ties are needed to better assess the limits of climate change
impacts. RCM uncertainties include the spatiotemporal
distribution of precipitation, its type, amount, and intensity,
snow mass accumulation and melt rates, and daily minimum
and maximum temperature. Quantifying these uncertainties
and improving operational monthly to interannual regional
climate predictions are especially important for sustaining
the health of local human and ecosystems environments.

To improve the accuracy of RCM forecasts, we need to
understand physical mechanisms and processes that control
regional climate change. An important process that regulates
regional climate is the global increase in the concentration of
atmospheric greenhouse gases (GHGs). It is well recognized
that increasing GHG concentrations nonlinearly increases
the atmospheric water-holding capacity, resulting in large
variations in precipitation events. Theoretically, the Clasius-
Clapeyron relationship indicates that a 3°C temperature
increase over the 21st century will result in a 20% increase
in the atmospheric water-holding capacity [2], leading to
an increased likelihood of more severe flood and hydrologic
drought conditions (frequency, intensity, and duration).
Such an increase in temperature will also change the pres-
sure gradients over the mid-latitudes, shifting storm tracks
poleward [3] and strengthening the likelihood of droughts
in parts of the US. The El Nino-Southern Oscillation
(ENSO) also changes global climate circulation and alters
atmospheric moisture transport. The western United States
(WUS) is a particularly vulnerable dipole, where ENSO
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FIGURE 1: 26 Snotel Stations located in the California and Nevada
areas.

episodes produce anomalously wet (dry) winter precipitation
and snow mass amount and spatial distribution in the
southern (northern) WUS [4].

In addition to the role of global-scale climate change,
the regional climate system is often disturbed by land-
surface and land use changes due to human activities (e.g.,
agricultural expansion, urbanization) and natural processes
(e.g., drought-related vegetation mortality in the U.S. south-
west and global-warming-induced snow cover and glacier
retreat). Breshears et al. [5] indicate that a recent drought
in the southern WUS resulted in significant vegetation
mortality, with reduction in vegetation abundance that
further modified the surface flux exchanges between the land
surface and atmosphere and ultimately reduced cloudiness
and precipitation [6] and raised the temperature [7].

Regional climate forecasts have advanced at the European
Centre for Medium-Range Weather Forecasts [8], the Aus-
tralian Commonwealth Scientific and Research Organization
[9], and the National Centers for Environmental Predictions
(NCEP) [10]. These efforts are based on numerical com-
puter models at global or near-global scales. However, the
horizontal spatial resolution for current climate forecasts
ranges over hundreds of kilometers and is too coarse
to provide important details of sub-100km regional-scale
climate phenomena and processes. It is well acknowledged
that RCMs with spatial resolution at or coarser than 30 km
are unable to produce accurate precipitation forecasts for the
California mountainous areas [11], and that global climate
models at resolutions of 30 km or higher require comput-
ing and human resources that are currently not feasible,
especially if multiyear ensemble integrations are required.
At present, only a few operational institutions are capable
of this level of computation and data storage, while the
majority of global climate models usually have oversimplified
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FiGgure 2: Comparison of the WRF-simulations with CLM3, Noah,
RUC, and STD land surface schemes. Green dots are for SWE, red
dots are for precipitation, and blue dots are for temperature. The
standard deviations and correlation coefficients are derived from
the daily simulations and observations for 1 October 1995 through
30 September 1996.

physics and parameterized structures that are unable to
adequately describe regional-scale processes and phenomena
with sufficient accuracy. Therefore, RCMs driven by global
climate forecast products are more appropriate tools to
overcome these limitations for exploring regional climate
predictability.

In this study, the Weather Research, and Forecasting
(WRF) model version 3.0 developed by the National Center
for Atmospheric Research (NCAR) is used to perform
regional climate simulations over the WUS. The WRF model
is a limited-area, nonhydrostatic, terrain-following sigma-
coordinate model designed to simulate or predict regional
weather and climate. This model represents the recent
advances of RCMs that combine the expertise and experience
for mesoscale meteorology and land-surface and climate
science developed over the last several decades. The version
3.0 of the WRF model includes three land surface schemes,
which are the simple soil thermal diffusion (STD) scheme,
the Noah scheme (Ek and Mahrt [12]), and the Rapid
Update Cycle (RUC; [13, 14]) scheme. However, the snow
physics in these land surface schemes embedded in WREF is
oversimplified. The lack of a dynamic vegetation component
within these schemes makes WRF unable to simulate future
climate-forced vegetation shifts. Hence, we have recently
coupled the advanced NCAR Community Land Model
version 3 (CLM3) [15] into WRF to better characterize land
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FiGure 3: The geographic distribution of observed and WRF-simulated monthly winter precipitation (Unit: mm) averaged over November
1995 through March 1996. (a) Observations; (b) CLM3; (c) Noah; (d) RUG; (e) STD.
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FIGURE 4: The geographic distribution of observed and WREF-simulated winter (December, January, and February) daily maximum
temperature (Unit: °C). (a) Observations; (b) CLM3; (c) Noah; (d) RUG; (e) STD.
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Figure 5: The geographic distribution of observed and WRF-simulated winter (December, January, and February) daily minimum
temperature (Unit: °C). (a) Observations; (b) CLM3; (c) Noah; (d) RUG; (e) STD.
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TasLE 1: Comparison of the STD, Noah, RUC, and CLM3 land surface schemes in WRE.
Vegetation Soil Snow Lake River routing
5 layer temperatures,
STD N/A but no moisture and N/A N/A N/A
frozen soil
One vegetation type in one grid 4 layer temperatures Vlvi:}}lletrhintzw il(l)ﬁllz eir
Noah cell without dynamic vegetation and moistures and e top Y N/A N/A
. No liquid water fixed
and carbon budget frozen soil .
snow density
One vegetation type in one grid 6 layer temperatures 2 layer snow No
RUC cell without dynamic vegetation and moistures and liquid water Fixed N/A N/A
and carbon budget frozen soil snow density
Subgrids with up to 10 vegetation  10-layer temperatures 5 layer snow with 10 layer lake with A Digital Elevation
. . . . . L . : Model (DEM) to
CLM3 types in one grid cell with dynamic and moistures and liquid water Variable lake ice and snow
. . . . calculate water flow
vegetation and carbon budget frozen soil snow density included

directions

surface processes and their feedbacks to the atmosphere.
The application of the coupled WRF-CLM3 uniquely adds
a special strength to this study, as CLM3 reflects the most
recent development of land surface process modeling [15—
17]. The dynamic vegetation scheme in CLM3 now enables
WRE to predict future climate-related vegetation changes.
A simple comparison of the features within these four land
surface schemes in WREF is given in Table 1.

The objective of this study is to quantify the role of
land surface processes in the regional climate system by
performing a series of WRF runs using the four available
land surface scheme options (STD, Noah, RUC, and CLM3)
with their different complexity levels. Among these four
schemes (Table 1), the STD scheme is the simplest, where
only soil temperature is calculated. The representations of
snow, vegetation, and soil moisture processes are missed.
The Noah and RUC schemes are at the intermediate level
of complexity, but RUC has a relatively more complex snow
scheme when compared to Noah (Table 1). CLM3 includes
the most sophisticated snow, soil, and vegetation physics
among the four land surface schemes. Comparison of these
land surface schemes coupled with WRF can lead to a better
understanding of how land surface processes affect regional
climate and also give insight on how the level of the land
surface model complexity affects the accuracy of regional
climate simulations.

2. Methodology and Data

As mentioned above, CLM3 was recently coupled with the
WRF model. The initialization of CLM3 follows the same
setup as that of Noah and RUC and is performed in the WRF
initialization module. Atmospheric variables at the lowest
atmospheric level (about 50 meter height) are inputted into
the CLM3 module to force land surface processes. These
atmospheric variables include incoming solar radiation,
longwave radiation, temperature, specific humidity, wind
speed, precipitation, and surface pressure. The reflected solar
radiation, surface longwave emission, and latent and sensible

heat fluxes are outputted to the atmospheric modules in
WRE

Four WREF runs with the available land surface schemes
(STD, Noah, RUC, and CLM3) were performed with a 30 km
resolution for a domain that includes the WUS (31°N 125°W,
50°N 100°W). These WREF runs were for 1 September 1995
through 30 September 1996 representing a total integration
period of 13 months. The first month of model outputs is
discarded to alleviate the effects of the model initializations,
and the remaining one-year simulations are analyzed. This
period was chosen, because the Sea Surface Temperature
(SST) over the tropical Pacific region is under normal
conditions during 1995-1996 [18], and the climate pattern
shows a similarity to its climatology over our study area,
the WUS. By choosing a neutral ENSO year, we are able
to effectively identify the regional impact of land surface
processes that can often be mixed within anomalous weather
and climate conditions [19].

In WRE, all the model atmospheric settings are exactly
the same except for the land-surface schemes. The Kain-
Fritsch convection scheme is chosen to parameterize cumu-
lus clouds [20]. The Yonsei University (YSU) planetary
boundary layer (PBL) scheme [21] is applied to solve
boundary layer processes. The microphysics scheme selected
is the WRF Single-Moment 3-class (WSM3) scheme [22].
The Rapid Radiative Transfer Model (RRTM) based on
Mlawer et al. [23] is selected for describing longwave radi-
ation transfer within the atmosphere and to the surface, and
the shortwave scheme chosen is that developed by Dudhia
[24].

The National Centers for Environmental Prediction-
Department of Energy Atmospheric Model Intercomparison
Project II Reanalysis (NCEP-2) data were used for the WRF
initial conditions that include initial soil temperature and
moisture in the Noah, RUC, and CLM land surface schemes.
In STD, only soil temperatures were initialized, and no
soil moistures were calculated. The NCEP-2 data were also
used for the lateral boundary conditions and the SST in
WREF that were updated every six hours. The WRF outputs



were saved hourly. Here, we evaluate the model perfor-
mance with 26 observation sites from the Snow Telemetry
(Snotel; http://www.wcc.nrcs.usda.gov/snow/) station data
over the Sierra Nevada area that include daily snow water
equivalent (SWE), 2 m height temperature, and precipitation
(Figure 1). Gridded daily maximum and minimum tempera-
ture (0.5° X 0.5° resolution) and precipitation (0.25° X 0.25°
resolution) data were used to examine the spatial distribution
of simulated temperature and precipitation. Both temper-
ature and precipitation datasets were developed by the
National Oceanic and Atmospheric Administration Climate
Prediction Center.

3. Results

Precipitation, temperature, and snow water equivalent
(SWE) simulations from the four WRF runs at 30 km reso-
lution with different land surface schemes are compared in a
Taylor diagram (Figure 2). These simulations are the average
over the 26 Snotel stations that are located in the Sierra
Nevada region (Figure 1). All the simulated variables from
different land surface schemes have high correlations with
observations. The correlation coefficients for precipitation
are between 0.7 and 0.8 for all models and for temperature
are above 0.9. The correlation coefficient for the CLM3 SWE
is above 0.9, and it is slightly lower than 0.9 for the Noah
and RUC SWEs. These results show that the WRF code can
well simulate the phases of the variations in these variables.
However, the simulated standard deviations exhibit a large
range. The temperature standard deviation has the best range
of values among these variables, the standard deviation is
overestimated for precipitation and underestimated for SWE,
indicating the WRF model, regardless of the land surface
scheme, produces large errors in simulating the magnitude
of precipitation and SWE. SWE is best simulated in CLM3,
where the most sophisticated snow physics is included, when
compared to the Noah and RUC land surface schemes,
however, SWE is not predicted in STD. In addition, without
SWE and vegetation components in the STD model, WRF-
STD produces the lowest temperature standard deviation,
implying that the seasonal evolution of SWE and vegetation
amplifies the temperature variations.

Figure 3 shows the spatial distribution of monthly pre-
cipitation averaged over November 1995 through March
1996, a period when a significant amount of precipitation
generated. It is seen that the WRF model with the different
land surface schemes can reasonably simulate the spatial
pattern of the precipitation, but the domain-wide averaged
precipitation amounts are more than doubled by WRF
(Table 2), as compared to observations. The change of the
land surface scheme in WRF does not significantly change
the precipitation simulations, indicating that the overesti-
mated precipitation most possibly is related to atmospheric
processes and the reanalysis data used for initial and lateral
boundary conditions. The summer precipitation is not
shown here, because it is quite small in magnitude when
compared to the winter precipitation for the WUS. Figures
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TaBLE 2: Domain-wide averaged observations and simulations for
precipitation and surface air temperature as shown in Figure 2.
Summer is June, July, and August, and winter for temperature is
December, January, and February. Precipitation is for November
1995 through March 1996 only.

OBS CLM NOAH RUC STD
Tmax (°C)  29.1 28.1 25.6 28.7 26.1
Summer
Tmin (°C) 11.6 117 13.2 13.9 13.4
Tmax (°C) 5.5 2.9 42 25 8.7
Winter Tmin (°C) -74 -64 -34 —53 2.0
Precip
(cm/month) 4.8 10.7 10.7 10.4 10.9

4, 5, 6, and 7 show winter (December, January, and Febru-
ary) and summer (June, July, and August) maximum and
minimum temperature (hereafter Tmax and Tmin, resp.),
observations and simulations. The simulated temperature
spatial patterns are similar to the observations in these four
maps. WRF-CLM3 produces the best results for winter Tmin
and both summer Tmax and Tmin among the four land
surface schemes (Table 2). However, this most sophisticated
model of the four does not show any advantage in computing
winter Tmax, where a 2.6°C cold bias is seen, and WRE-
RUC gives a similar result. In the winter Tmax maps,
it is seen that both CLM3 and RUC underestimate the
temperature mostly over snow abundant mountainous areas
(e.g., western Montana and nearby areas) where stronger
precipitation occurs (Figure 3). Therefore, it is speculated
that the overestimated precipitation simulated in these areas
results in a larger snow cover area than observations, leading
to more solar radiation reflected during the daytime, and
in turn, lower surface air temperature. In WRF-CLM3 and
WRE-RUC with a multilayer snow scheme, the erroneous
precipitation has a more severe impact on snow simulations
than in WRF-Noah, where snow is lumped with the top
soil layer, with underestimated snow mass and snow cover
area often seen [11]. As such, Tmax is only 1.3°C lower in
WRF-Noah than the observations, and WRF-STD, which
does not have a snow scheme and produces a 3.2°C higher
Tmax. Similar cold biases are not seen in WRF-CLM3 and
WRE-RUC during the nighttime when solar radiation is not
present, which further verifies our speculation. Table 2 shows
that all land surface models in WRF overestimate the winter
surface air temperature during the nighttime, but CLM3
gives the closest result, indicating that detailed descriptions
of land surface processes in CLM3 play a role in such an
improvement.

Based on the above discussion, it is shown that the
most sophisticated model, WRF-CLM3, improves surface
air temperature simulations, except for winter Tmax, when
compared to WRF with the other three land surface schemes.
While the simplest model, WRF-STD, produces the worst
results for Tmax. Although an improvement in snow simula-
tion is seen in WRF-CLM3 over the Sierra Nevada region, the
overall performance for snow simulation is still unable to be
fully judged due to the erroneous precipitation simulations
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FiGure 7: The geographic distribution of observed and WRF-simulated summer (June, July, and August) daily minimum temperature (Unit:
°C). (a) Observations; (b) CLM3; (c) Noah; (d) RUC; (e) STD.
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that are found to be largely independent of the land surface
schemes.

4. Conclusions and Discussions

The objective of this study is to quantitatively understand the
role of land surface processes in the regional climate system
using the state-of-the-art WRF model coupled with four
land surface schemes each with different levels of complexity
(STD, Noah, RUC, and CLM3). The coupling of WREF-
CLM3 represents our most recent effort to improve land-
surface process simulations and predictions in the regional
climate system. The results from WRF with these land-
surface schemes show that land-surface processes strongly
affect temperature simulations. The coupling of WRF-CLM3
with the highest complexity level improves the temperature
simulations to a large extent (except for winter Tmax).
Precipitation over the WUS is significantly overestimated by
all four of the WRF land surface schemes analyzed here.
However, this overestimation does not show a close relation-
ship with land surface processes. As such, the resulting snow
simulations cannot be quantitatively evaluated, although an
improvement in snow simulation is found in WRF-CLM3
over the Sierra Nevada area.

To better estimate precipitation in WREF, more extensive
modeling experiments are being performed. These experi-
ments include the tests with several sets of combinations
of radiation schemes, different cumulus parameterizations,
PBL schemes, and microphysics schemes that have been
embedded in the WRF model. Additionally, spatial resolu-
tion and domain size need to factor into the accuracy of these
WUS precipitation simulations
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Observational data show that the remotely sensed leaf area index (LAI) has a significant downward trend over the east Tibetan
Plateau (TP), while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results
from the nighttime warming. The Single-Column Atmosphere Model (SCAM) version 3.1 developed by the National Center for
Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of
land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center
of the TP Sanjiang (three rivers) Nature Reserve where the downward LAI trend is largest. These simulations were forced with the
high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a
slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling
results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase.

1. Introduction

It has become apparent that climate change over high-
elevation regions is occurring at a faster rate than over low-
elevation regions [1]. This high-elevation rate of change
often generates stronger disturbances within the climate
system than low-elevation changes [2]. The Tibetan Plateau
(TP) is an immense upland area (3500 x 1500 km), with an
average elevation greater than 5,000 m. Over the TP, 46% of
the forest cover and 50% of the grassland have been con-
verted to farmland, urban areas, or desert during the last cen-
tury (X. Liu, personal communication). The TP is the source
of snowmelt runoff, supplying water resources to users in
China and surrounding areas. The mechanisms influencing
the observed rapid climate change and their impacts at this
high-elevation region are not well understood. In order to
reduce these types of uncertainties and provide society with
more reliable projections of future outcomes, detection and
analysis of these processes need to be determined.

Many researchers have shown that land use and land
cover change has remarkab interacts with climate systems

[3, 4]. A statistical analysis of the southern half of the
Central Valley was performed by Christy et al. [5] using high-
quality temperature observations for the San Joaquin Valley
in California, where land use has changed dramatically since
the presettlement (circa 1860s), due to extensive agricultural
expansion. Their study indicated that the daily maximum
near-surface air temperature exhibited a cooling trend over
the last century for this region. This finding is in opposition
to the observed warming trends that prevail over most other
regions (see [6, 7]; many others), suggesting that agricultural
activity and associated irrigation processes most likely play a
key role in producing this cooling trend. Modeling studies
have shown that land use change affects regional climate
by altering the components in the surface energy budget
[8]. Based on the results from a general circulation model
(GCM), Snyder et al. [9] indicate that removing all temperate
forest and replacing it with bare soil produce cooling in the
winter and spring over tropical and boreal areas due to an
increase in the surface albedo, but a warming during the
summer due to reduced evapotranspiration. If forced with
a moderate amount of carbon dioxide, GCMs could produce



similar results for the entire 21st century [10]. These GCM
predictions also indicate that the response of land use change
could be overridden by a strong atmospheric circulation
system such as the Asian Monsoon circulation.

However, due to the lack of detailed long-term and
densely distributed spatial observations, researchers have
not been able to determine how and to what extent
these land use changes affect the early and accelerated
warming observed on the TP [11]. A high-quality climate
model is an efficient tool to advance our understanding
of this problem, and observed climate change could be
quantitatively interpreted through the model details. The
modeling results would further yield new insight into future
field experimental design. Therefore, in this study, we use
the Single-Column Atmosphere Model (SCAM) version
3.1 coupled with the Community Land Model version
3 (http://www.ccsm.ucar.edu/models/atm-cam/docs/scam/)
to investigate the role of land use change in the TP local
climate system and isolate the contribution of land use
change to the warming of the TP from that of greenhouse
gas emissions. The SCAM was developed by the National
Center for Atmospheric Research (NCAR). In addition,
the mechanisms associated with land use change signals
are adequately quantified with the model output and our
existing quality-controlled observations.

2. Model, Data, and Methodology

The SCAM used in this study is a one-dimensional time-
dependent single-column atmospheric model. The SCAM is
embedded in the NCAR Community Atmospheric Model
version 3. Since the SCAM includes only one model grid
cell, it can be used to effectively study land atmosphere
interactions. This grid cell can include up to 10 land
use types, giving a benefit to characterize land surface
heterogeneity. In this study, the land use types are prescribed
in the SCAM to represent land surface features in the
TP. The SCAM is also configured with 26 vertical layers
ranging from approximately 3mb to the surface, and it
includes all the physical schemes existing in its global
counterpart, CAM3. The reanalyzed data by National Cen-
ters for Environmental Prediction (NCEP-R1) provide the
initial and lateral boundary conditions for SCAM. The latter
were updated every 6 hours. The initial conditions include
soil moisture and temperature and atmospheric pressure,
moisture, temperature, and winds. The 16 km resolution
Advanced Very High Resolution Radiometer (AVHRR) leaf
area indices (LAIs) were used to examine vegetation changes
over the TP and also were inputted into SCAM to more
realistically reflect vegetation variations. Station observations
were used to analyze climate change over the TP and compare
with modeling results.

3. Results

3.1. LAL, Temperature, and Precipitation Analysis. Land use
and land cover on the TP have been changed significantly.
Such change can be indentified with the AVHRR LAI
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FiGure 2: The trend of the annual maximum LAI at the Xinghai
station for the period of 1983-2000. The dashed line represents the
trend. The black dot is the maximum LAI for each year.

trends over the period of 1983-2000 for July, August,
and September, a season that the LAls usually reach their
maximum values (Figure 1). It is clearly seen that the LAIs
have negative trends (blue colors) in the northeast TP, and
the maximum trend can reach around —1.0/decade. These
trends are calculated through a linear regression method.
The region with the negative trends contains the headwaters
of the Yellow River (Huang He), the Yangtze River (Chang
Jiang), and the Mekong River (Lancang Jiang) that provide
a significant amount of water resources for China. This
area is also called Sanjiang (three rivers) Headwaters Nature
Reserve. In some locations of the southeast TP, LAIs also
show positive trends (red colors). Figure 2 shows the time
series of the annual maximum LAI at a station called Xinghai
that is located near the center of the Sanjiang area. This
figure shows that the annual maximum LAI has a downward
trend with a value of —0.67/decade over the period of 1983—
2000. According to the United States Geological Survey
data, Xinghai has a flat terrain and mostly is covered by
grassland during the summer. All the following simulations
were performed at this station to understand how vegetation
affects local climate.
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FIGURE 3: The time series of annual precipitation and temperature anomalies at the Xinghai station. (a) Precipitation (mm); (b) temperature
(°C); (c) temperature at 2 AM (°C); temperature at 2 PM. The dashed line in each figure represents the trend.

Figure 3(a) shows the time series of the annual precipita-
tion anomalies at the Xinghai station for the period of 1960—
2000. It is shown that the trend is 0.5 mm/decade that is quite
insignificant. However, the annual mean temperature trend
is 0.25°C/decade (Figure 3(b)). The temperature increase
is about 1°C at this station over the study period. When
temperatures at 2 AM and 2 PM are examined, it can be
seen that the nighttime temperature trend is 0.35°C/decade
(Figure 3(c)) while the daytime temperature trend is
only 0.04°C/decade (Figure 3(d)). Thus, the annual mean
temperature increase results from the nighttime warming.

Identifying physical factors and processes that contribute to
the nighttime warming is the major focus in the following
sections, and the SCAM is used for such purpose.

3.2. SCAM Evaluation. Before physical processes that affect
temperature change are studied, the SCAM needs to be
tully evaluated with observations to ensure that it can
reasonably describe climate processes in our study area.
SCAM simulations at the Xinghai station were performed
over the period of 1951-2000. The first 32-year (1951-
1982) simulations were discarded for spinning up the model,



and only the simulations over the period of 1983-2000
were analyzed. Figure 4(a) shows that although the SCAM
produces a weaker seasonal cycle of the temperature it still
generates reasonable temperature simulations at the Xinghai
station when compared to the observations. The correlation
coefficient between the observation and the simulation is
0.98, the RMSE is 2.2°C, and the bias is 0.29°C. The model
can also reproduce the observed precipitation, where the cor-
relation coefficient, RMSE, and bias are 0.74, 28 mm/month,
and 13 mm/month, respectively (Figure 4(b)). These results
show that the SCAM can simulate well for the seasonal cycles
of precipitation and temperature at the Xinghai station,
indicating that this model can be used to further explore
physical processes that affect temperature and precipitation
changes in this area.

3.3. Sensitivity Studies for Understanding the Temperature
Changes. To examine how vegetation affects the warming in
this area, two additional sets of simulations were performed
with high and low LAIs for 1983-2000, a period where the
remotely sensed LAls are available. Figure 5 shows seasonal
variations of high and low LAIs. The high LAIs are the
average over 1983-1985, while the low LAIs are the average
over 1998-2000. The largest difference between the high
and low LAIs is more than one. The first set of simulations
was forced with the high LAIs, where the LAI only varied
seasonally but did not have interannual variations. The
modeling settings for the second set of simulations were
exactly the same as those for the first set of simulations
but with the low LAls. Figure 6(a) shows the 2m height
temperature difference between the high LAI and the low
LAI cases averaged over the 18-year period (1983-2000). It is
seen that the major changes in temperature (low LAI minus
high LAI) occur in the warm season where the LAI difference
between the two cases is the largest. During the cold season
(from October through next May), there is almost no change
for the temperature. Precipitation has very minor changes
with a maximum difference of less than 1 mm/month (figure
not shown). Figure 6(a) indicates that the lower LAI in
this region generates a slight cooling during the summer at
noontime with a maximum temperature change of —0.2°C
in July (solid line). All the components in the energy balance
equation are examined. The results show that the sensible
heat flux has most significant changes that affect 2 m height
temperature (Figure 6(b)). It is seen that sensible heat flux
decreases by 10 W/m? at noontime during the summer (solid
line). Further analysis indicates that such a decrease results
from the lower roughness in the low LAI case. In SCAM, the
roughness length for vegetation in this area is 0.06 m, and for
bare soil, it is 0.024 m. The low LAI reduces the areal weight
of vegetation in the model grid cell, but increases the weight
of bare soil when compared to the settings in the high LAI
case. Thus, on average, the low LAIs generate a flatter surface
than the high LAIs, which decreases the upward sensible
heat flux during daytime and slightly lower the near-surface
temperature.

Figure 6(a) shows the nighttime temperature difference
between the low and high LAI cases (low-high), indicating
that the near-surface temperature increases by more than 1°C
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in July due to changing the LAI from high to low (dashed
line). During the evening, the sensible heat flux is downward
(negative). The reduced roughness length in the low LAI
case suppresses the energy exchanges between the surface
and near-surface air. Figure 6(b) shows that the increase in
sensible heat flux at midnight is up to 2 Wm? (dashed line)
that leads to more energy remaining in the near-surface air
(less downward sensible heat) and increases the temperature
there. Detailed calculation of sensible heat flux and how it is
related to the roughness length are described by Oleson et al.
in [12].

The above modeling results strongly suggest that the
warming results from nighttime temperature changes that
are consistent with the observations. The decreased veg-
etation LAI in this area significantly contributes to the
nighttime temperature increase. The LAI decrease may not
be a controlling factor that produces the observed warming
trend, but most likely it reinforces the existing warming trend
that is believed to be triggered by the carbon increase in the
atmosphere [4].

4. Conclusions and Discussions

In northeast Tibetan Plateau, the remotely sensed LAIs show
a significant downward trend, while a warming trend is
observed for temperature. Our modeling results indicate
that such a vegetation change is an important factor that
contributes to the warming in this region. Further analysis
indicates that this contribution largely comes from the
evening temperature increase. The evening temperature
increase results from the more stable near-surface boundary
layer that restricts the downward sensible heat flux and keeps
more energy in the near-surface air. The deterioration of veg-
etation leads to a flatter area, reduces the surface roughness,
and results in more stable near-surface boundary layer.

This study is not intended to indicate that vegetation
deterioration is a determining factor that leads to a warming
in this area that is most likely related to global climate change
triggered by the atmospheric carbon increase. Instead, the
analysis shown in this study describes a fact that the reduced
biomass in this area could strengthen the warming trend in
this region. This study is based on the modeling results that
need to be further verified with more observed evidence.
The large- and mesoscale atmospheric information in the
SCAM was introduced through the lateral boundary data.
Thus, the atmosphere in the model column does not produce
any feedback to that outside the column. This drawback
could be overcome by applying a regional or global climate
model to this region, which could be a future research topic.
However, these modeling results give strong insight into
future modeling and observational studies for climate change
in this high-elevation area.
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Accurate numerical weather forecasting is of great importance. Due to inadequate observations, our limited understanding of the
physical processes of the atmosphere, and the chaotic nature of atmospheric flow, uncertainties always exist in modern numerical
weather prediction (NWP). Recent developments in ensemble forecasting and ensemble-based data assimilation have proved that
there are promising ways to beat the forecast uncertainties in NWP. This paper gives a brief overview of fundamental problems
and recent progress associated with ensemble forecasting and ensemble-based data assimilation. The usefulness of these methods
in improving high-impact weather forecasting is also discussed.

1. Introduction

Numerical weather prediction (NWP) is an initial value
problem: it forecasts the atmospheric state by integrating a
numerical model with given initial conditions. Commonly,
two fundamental factors account for an accurate numerical
weather forecast: (1) the present state of the atmosphere
must be characterized as accurately as possible; (2) the
intrinsic laws, according to which the subsequent states
develop out of the preceding ones, must be known [1]. These
so-called laws are composed of a set of partial differential
equations, including the laws of momentum, mass, and
energy conservations.

Since the first successful NWP in early 1950s by Charney
et al. [2], much progress has been made in enhancing the
skill of NWP. These include efforts in improving initial
conditions through advances in observing systems and the
development of atmospheric data assimilation techniques.
Many studies also devoted to improve numerical modeling
with advanced numerical methods, better representation
of dynamics processes of the atmosphere, and improved
physical parameterization schemes [3-5]. Today, NWP has
become a major forecasting tool in many operational centers
around the world.

However, due to inadequate observations, our limited
understanding of the physical processes of the atmosphere,
and the chaotic nature of the atmospheric flow, uncertainties
always exist in both initial conditions and numerical models.
Thus, reducing forecast errors caused by theses uncertainties
remains a large area of research and operational implemen-
tation.

Recent developments have proved that ensemble fore-
casting and ensemble-based data assimilation are promis-
ing ways to beat the forecast uncertainties in NWP. The
objective of this paper is to give a brief overview of the
fundamental problems and recent progress associated with
ensemble forecasting and ensemble-based data assimilation.
The usefulness of these methods in improving high-impact
weather forecasting is also discussed.

The paper is organized as follow. Section 2 addresses
the fundamental concepts of atmospheric predictability;
Section 3 introduces stochastic theory and ensemble weather
forecasting; Section 4 describes the Bayes theorem and
ensemble Kalman filtering data assimilation; Section 5
addresses the implementation and practical issues associated
with the ensemble Kalman filter; Section 6 briefly sum-
marizes current applications of ensemble forecasting and
ensemble-based data assimilation methods on high-impact



weather prediction; and a summary and concluding remarks
are presented in Section 7.

2. Forecast Uncertainties and Predictability

2.1. Predictability. Predictability refers to the extent to which
the future state of the atmosphere or a specific weather
system may be predicted based on current ability of NWP.
Corresponding to the aforementioned two fundamental
factors that influence the numerical forecast, there are two
kinds of predictabilities as addressed by Lorenz in [6]: (1)
attainable predictability, which is limited by the inaccuracy of
measurement and (2) practical predictability that is limited
by our inability to express the precise equations of the
atmosphere motion and physical processes in the numerical
model. The errors in measurement include instrumental
errors and errors due to interpolation over regions where
there are no measurements at all. These errors can be
decreased by enlarging our network of observation stations
and improving the techniques of interpolation or data
assimilation. Errors in model equations rely much on the
computational methods used to solve the equations and our
current ability to understand the physical processes, as well
as the model resolution to resolve these physical processes in
the numerical models.

2.2. The Unpredictable Nature of the Atmosphere. While
attainable and practical predictabilities are associated with
uncertainties in the initial conditions and imperfect models,
what would the predictability be if the model (dynamical
and physical processes) is perfect and the initial conditions
are accurate? Lorenz [6, 7] asserted that the atmosphere, as
a kind of unstable dynamical system, has a finite limit of
predictability depending upon a particular flow. As is well
known, Lorenz [6] found that a slight departure in initial
conditions would evolve into totally different atmospheric
states in the numerical forecasts regardless of how small the
errors in the initial conditions were.

The chaotic nature of the atmosphere determines that
the predictability of the model depends upon not only the
realism of the model and the accuracy of initial conditions
but also the system itself. Atmospheric motion, as a nonlinear
dynamic system, is supposed to have finite limit predictabil-
ity. The stochastic characteristics account for the extent to
which the atmosphere could be predicted. The number of
days we can forecast accurately in advance is dependent upon
the evolution of the atmosphere.

Figure 1 shows the motion trajectories of stable and
unstable dynamic systems. In Figure 1(a), the trajectories
drift away from each other although the initial conditions
are very close; for Figure 1(b), the trajectories in a stable
system stay close to each other with time. This suggests that
the intrinsic predictability becomes completely impossible
for the unstable flow just as seen from Figure 1(a). Even two
very close initial conditions may result in markedly different
outcomes. Since we do not know the true atmospheric state,
we therefore have no idea about how to ascertain the true
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value from those totally different forecast states. This brings
us a great challenge in numerical weather forecasting.

Figure 2 illustrates a real scenario in the Lorenz 63 model
[6]. Given a cloud of close initial states, the trajectories depart
from each other after the model was integrated forward only
10 seconds. This suggests, in a nonlinear system, that it is
almost impossible to predict even in which lobe the states
would be.

The uncertain properties of the atmospheric system call
for more suitable methods to represent the initial conditions
and forecast the atmospheric states, instead of the traditional
way that describes the initial values with the single analysis
best state and integrate the single best guess forward. This
will be illustrated in Sections 3 and 4.

3. The Stochastic Prediction and
Ensemble Forecasting

In view of the uncertain properties of the atmospheric
system, a theory of stochastic dynamic prediction is proposed
by Epstein [9]. In a stochastic context, the initial and forecast
states of the atmosphere are represented as probability
distributions. That is, the probability density function (PDF)
of the present model state should be estimated first according
to all the prior information and available observations; then,
amethod for forecasting the evolution of this PDF forward in
time is needed. Based on the stochastic dynamic prediction,
it is possible to make the probabilistic forecasts in addition
to a deterministic forecast using a single model with single
initial conditions. Although early experiments by Epstein are
very different from the ensemble forecasting done today, the
theory of stochastic dynamic predictions offers a stepping
stone with which to develop ensemble forecasting.

The advance in parallel processing computers in
the early 1990s and improved operational forecasting
systems—improvements in both model physics and data
assimilation—has led to operational stochastic dynamic
prediction at the European Centre for Medium-Range
Weather Forecasts (ECMWEF), U. S. National Centers for
Environmental Prediction (NCEP), and the Meteorologi-
cal Service of Canada (MSC) in the early 1990s. These
operational stochastic prediction systems are referred to as
ensemble forecasting systems. Instead of using only one
model with a single set of initial conditions, a group of
forecasts with slightly different initial conditions are made in
an ensemble forecast. The approach to ensemble prediction
used at operational centers exhibits subtle differences when
compared with the standard Monte Carlo method that was
used in the stochastic dynamic prediction. In Monte Carlo, it
is assumed that the initial probability density function (PDF)
is known and that it is sampled randomly. In most of the
methods used in current ensemble forecasting, the PDF is
generally not sampled in a random way. There are different
ways to generate the initial perturbations in the different
operational ensemble systems, including the following.

(i) Breeding of Growing Modes (BGM): Developed by
Toth and Kalnay [10, 11], the BGM scheme is
a simple and inexpensive method to generate the
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FIGURE 1: The evolutions of slightly different initial states (a) unstable trajectories; (b) stable trajectories [courtesy of Lorenz (1963)].
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Ficure 2: The evolutions of slightly different initial states in the
Lorenz-63 model. Red stars represent initial states; blue circles
represent states after 10 seconds. (The figure follows that of Palmer
in [8].)

initial perturbation. It eliminates the difference in
the growth rate of errors (growing modes) due
to convection or baroclinic instability. The BGM
consists of the following steps: (a) Add a small
arbitrary perturbation to the atmospheric analysis;
(b) integrate the model for 6 hours from both
the unperturbed (control) and the perturbed initial
condition; (c) subtract the 6-hour control forecast
from the perturbed forecast; (d) scale down the
difference field so that it has the same size (in RMS)
as the initial perturbation; and (e) repeat the above
process in time. Thus, the perturbation evolves along
with the time-dependant analysis fields, ensuring that
after a few days of cycling the perturbation field
consist of a superposition of fast-growing modes
corresponding to the contemporaneous atmosphere,
akin to local Lyapunov vectors.

(ii) A Singular vector (SV) method: ECWMEF developed
and implemented the Singular Vector scheme [12,
13], which is based on the observation that perturba-
tions pointing along different axes of the phase space
of the system are characterized by different amplifica-
tion rates. Given an initial uncertainty, perturbations
along the directions of maximum growth amplify
more than those along other directions. For defining
the SVs in the ensemble prediction system, growth is
measured by a matrix based on the total energy norm.

The SVs are computed by solving an eigenvalue
problem, which is defined by an operator that is
a combination of the tangent forward and adjoint
model, integrated during a time period named the
optimization time interval. The advantage of using
singular vectors is that, if the forecast error evolves
linearly and the proper initial norm is used, the
resulting ensemble captures the largest amount of
forecast-error variance at optimization time [14].

(iii) A Perturbed-observation —approach: The MSC
perturbed-observation approach attempts to obtain
a representative ensemble of perturbations by
comprehensively simulating the behavior of errors
in the forecasting system. The system is based on
an ensemble of data assimilation systems using
perturbed observations. Because the analysis and
forecast process is repeated several times with
different random input, the perturbed-observation
method is a classic example of the Monte Carlo
approach. Arguments for the use of nonselective,
purely random ensemble perturbations are presented
by Houtekamer et al. [15] and Anderson [16].

(iv) Ensemble transform Kalman filter (ETKF): It was
first introduced as an adaptive sampling method
[17]. The formulation of ETKF is based on the
application of a Kalman filter, with the forecast
and analysis covariance matrices being represented
by ensembles of forecast and analysis perturbations.
Thus, it produces analysis perturbations (initial per-
turbation for ensemble) in ensemble representation
based on the ensemble forecast from previous cycle
and observations. One argued that the ETKF is able
to make perturbations more independent and flow
dependent [18].

All of the methods discussed above only include per-
turbations in the initial conditions, assuming that the error
growth due to model deficiencies is small compared to
that due to unstable growth of initial errors. However, in
reality, uncertainties in model physical parameterizations
cannot be ignored in many cases. Therefore, in addition to
the aforementioned initial perturbation methods, ensemble
forecast systems have also been designed to account for



model errors and model uncertainty. Current methods and
progress include the multimodel ensemble (see, e.g., [19,
20]), stochastic physical parameterizations (see, e.g., [21—
23]), nonlocal stochastic-dynamic parameterization schemes
[24], kinetic energy backscatter [25], performing ensemble
simulations with different time steps to study the impact
of model truncation error [26], and using different param-
eterizations within the ensemble prediction system [27].
Krishnamurti et al. [19] commented that the performance of
multimodel ensemble forecasts shows superior forecast skill
compared to all individual models used. Reynolds et al. [23]
illustrated that a stochastic convection scheme improves the
ensemble performance in the tropics.

Since ensemble forecasting takes account of the uncer-
tainties in NWP, it has major advantages over a single
deterministic forecast [28], like, for example, the following.

(1) It improves the forecasting skill by reducing the non-
linear error growth and averaging out unpredictable
components.

(ii) It predicts the skill, by relating it to the agreement
among ensemble forecast members. If the ensemble
forecasts are quite different from each other, it is clear
that at least some of them are wrong, whereas if there
is good agreement among the forecasts, there is more
reason to be confident about the forecast.

(iii) It provides an objective basis for forecasts in a
probabilistic form. In a chaotic system such as the
atmosphere, probabilistic information is recognized
as the optimum format for weather forecasts both
from a scientific and a user perspective.

In addition, ensemble forecasts also show the potential
value in a new area of research, such as targeted weather
observations (see, e.g., [29]) and data assimilation (see next
section)..

4. Bayes Theorem and Ensemble-based
Data Assimilation

As mentioned in the previous section, uncertainties of the
initial conditions are the major source of error in NWP. Thus,
improved data assimilation techniques will be useful to beat
the uncertainties in the initial conditions. We continue this
subject with the stochastic dynamic prediction.

4.1. Bayes Theorem of Data Assimilation. In a stochastic
context, the initial and forecast states of the atmosphere are
represented as probability distributions. Therefore, the prob-
ability density function of the present model state should
be estimated first according to all the prior information and
available observations and then a method for forecasting the
evolution of this PDF forward in time is needed. Usually,
getting the current PDF is referred to Bayes data assimilation
theory [30, 31].
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FIGURE 3: The observations (red curve), prior (green curve), and
posterior (blue curve) probability density function given Gaussian
error [32].

In the application of data assimilation, Bayes’ theorem
can be expressed as

P(Y: | X)P(X; | Yi-1)

PX;|Yy) =
X 1Yo denominator

(1)

where P(X; | Y;) denotes the probability density of the model
state at time t; X and Y are the state variables; P(Y, | X;)
denotes the probability density of the observations at time ;
and P(X; | Y;_1) is viewed as a kind of prior and represents
the probability density of the prior ensemble forecast at
time t. The denominator is a kind of normalization for
guaranteeing that the total probability of all possible states
is 1.

As shown above, (1) describes the way in which new
observations are incorporated to modify the prior condi-
tional probability density available from predictions based on
earlier observations.

Taking an example, for Gaussian probability density, the
prior is

P(X; | Yiy) = Normal(yp,ap), (2)

where p and ¢ are the mean and standard deviations,

«_ . »

respectively. The subscript “p” denotes the “prior” state.
The observation PDF is given as

P(Y; | X;) = Normal(y,, 0,), (3)

where the Gaussian probability density function given the
mean y and standard derivation error o is

e—(x—y)z/Zaz' (4)

1
P(u,0%) =
W0%) = ——
Divide the product (named P’ temporarily) of P(Y; | X;)
times P(X; | Y¢-1) by a normalization denominator gives the
posterior PDF as shown in Figure 3.
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FIGURE 4: Monte Carlo forecast with finite sample.

After the above processes, we get the posterior estimate:
P(X, | Y;) = Normal(u,,0?). (5)
Here

2 _ (-2 -2 _1’
2= (040, ) ©)
ta = 02| 0%y + 0, 20 .

4.2. Monte Carlo Method. Although we can solve for the
posterior PDF in the previous section, it is not easy to express
the PDF of the observations and the prior information
explicitly in real operational numerical implementation.
Therefore, it is difficult to obtain the posterior PDF of initial
conditions directly from Bayes theorem.

Fortunately, the implementation of the Monte Carlo
method provided us an effective approach to simulate the
desired PDF with a random sample and to some extent
solve the uncertainties of the initial conditions. However,
the Monte Carlo method was conditionally effective only
under an assumption that the number of sample members
is sufficiently large in order to represent the PDF suitably.
Consequently, the difficulty comes with the “large sample.”
For instance, for a common real model with 107 degree of
freedom, a 107 107 dimension calculation for estimating the
PDF will be involved. That is demanding considering even
the most recent computational advances.

Figure 4 shows schematically the forecast results under
conditions when there are too few sample members doing
the estimating. The mean forecast drifts away from the truth
with time.

4.3. Ensemble Kalman Filter. Considering the limitations of
traditional Bayes and Monte Carlo methods, a more practical
technique is needed. With the most recent developments,
ensemble Kalman filter data assimilation techniques, origi-
nated from the basic idea of the Monte Carlo theory and the
well-known Kalman filter method, are successfully applied in
many research and operational practices.

4.3.1. Basic Equations of Kalman Filter. As a sequential data
assimilation method, the implementation of the Kalman
filter [5, 33-35] includes two steps, which are named a
forecast step and an analysis step. The model is integrated
forward with time and used to update the model state
by assimilating new observations when observations are
available.

Kalman filter assumes that the prior conditional proba-
bility distribution is Gaussian and expresses it with its mean
and covariance.

The analysis equation is

X=X/ +P/H"(HP/H" +R)_l(d ~HX'), (7)

where X? is the analysis variables, X[ is the background
fields (prior estimate), and d denotes observations. H, called
the observational operator, connects the true state with
observations within particular measurement errors:

d=HX'+e. (8)

K is the so-called gain matrix:
-1
K =P/HT(HP'H" +R) . (9)

In an extended Kalman filter, one must integrate the
linear tangent model L;_; in each forecast step to evolve the
flow dependent forecast error covariance P/ (t;):

P/(t;) = Li P°LY (10)

where the analysis error covariance is given as
-1
P =P/ — p/HT(HP/HT +R) HP/, (11)

Equations (9) and (10) perform as forecast step and (11)
and (7) as the analysis step.

4.3.2. Ensemble Kalman Filter Theory. There are two main
drawbacks of the extended Kalman filter method [36, 37].
One is that the simplified closure scheme used for estimating
the error covariance results in an unbounded error growth
while neglecting the third- and higher-order terms in the
apparent closure scheme. Another is that Kalman filter poses
an expensive cost due to the computational requirement of
the error covariance matrix for the model forecast. From
the previous Section 4.3.1, it is known that extended Kalman
filter requires integrating the tangent linear model forward
to get the error covariance estimation and hence expensive
computational cost.

In theory, the error covariance of forecast estimation
(background) is defined as:

Pf = (x/ —xt)(x/ - xt)". (12)

However, we never know the true atmosphere state
(X*). This makes the estimation of the background error
covariance very difficult.



From Section 3, we have already learned that the ensem-
ble mean could be the best estimation of the true state. Using
this, the ensemble Kalman filter employs a group of ensemble
members to represent the covariance statistics of the analyzed
state. The ensemble is integrated in the nonlinear model to
get a sample of the prior distribution at the next time when
the observation is available as follows:

Pl = (x/ —Yf)(xf—if)T. (13)

Equation (13) indicates that a flow-dependent error
covariance of forecast estimation can be obtained by using
ensemble forecasting in practical implementation.

5. Implementation and Practical Issues on
Ensemble Kalman Filter

5.1. Implementation of Ensemble Kalman Filters. Since the
first attempt by Evensen [37], ensemble Kalman filter
methods have been developed rapidly and used widely in
data assimilation applications. There are two classes of
basic approaches, referred to as the method with perturbed
observations and the square root filter (without perturbed
observations), to implement the ensemble Kalman filter
as aforementioned. The perturbed observation algorithm
updates each ensemble member with a different set of obser-
vations perturbed with random noise. Because randomness
is introduced in every assimilation cycle, the update is
considered stochastic. The square root filter methods do
not add stochastic noise to the observations and are called
deterministic algorithms. Evensen [37], Evensen and Van
Leeuwen [38], as well as Houtekamer and Mitchell [39]
originally implemented the ensemble Kalman filter with
perturbed observations. Anderson [40], Bishop et al. [17],
Baek et al. [41], Corazza et al. [42], Hunt et al. [43], Miyoshi
and Yamane [44], Harlim and Hunt [45], as well as Yang
et al. [46] contributed various square root filter algorithms
including an ensemble adjustment Kalman filter [40], an
ensemble transform Kalman filter [17], a local ensemble
Kalman filter (for LEKF, see [41, 42]) and a local ensemble
transform Kalman filter (for LETKEF, see [43—46]). Whitaker
and Hamill [47] indicated that the perturbed observations
approach might introduce another kind of sampling errors;
thus the square root algorithms methods are more accurate
for a given ensemble size.

5.2. Comparison of the Ensemble Kalman Filter with 4DVar.
Since the ensemble Kalman filter is becoming part of the
operational choice, progress has been made to compare it
with advanced data assimilation methods that are currently
available. Specifically, a four-dimensional variational data
assimilation (4DVar) method has been widely adopted
in operational centers around the world. Owing to its
capability in assimilating asynchronous observations and
high-resolution observations such as satellite radiance and
radar reflectivity, 4DVar method is indeed helpful for
improving current numerical forecasting [48-50]. However,
the requirement of the tangent linear and adjoint models
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made the 4DVar method complicated in its implementation.
Compared to 4DVar, the major merit of the ensemble
Kalman filter is its simplicity of implementation. It does not
need to develop and maintain tangent linear and adjoint
model. It is model independent. One can easily switch to
other models using ensemble methods [51, 52]. In addition,
the ensemble Kalman filter represents and forwards forecast
covariance using the ensemble sample without much effort.
The main disadvantage of the ensemble Kalman filter comes
with the sampling problem. The low ensemble size brings up
sampling errors in the estimation of the background error
covariance. The inflation tuning is employed to adjust this
sample error in the practice.

Fertig et al. [53] studied the performance of 4DVar
and 4D-LETKF in assimilating the asynchronous obser-
vations using the Lorenz 96 model [54]. Both schemes
have comparable error when 4D-LETKEF is cycled frequently
and when 4DVar is performed over a sufficiently long
analysis time window. Yang et al. [55] explored the relative
advantages and disadvantages of the 4DVar and LEKF
using a quasigeostrophic model and asserted that LEKF
did better on both computational cost and accuracy when
assimilating the same rawinsonde observations. Buehner
et al. [56] evaluated the operational performance of both
methods in Environment Canada using the same model and
observations and obtained equivalent forecast scores. Kalnay
et al. [51] offered a comprehensive comparison between
4DVar and ensemble Kalman filter. Based on results obtained
using operational models and both simulated and real
observations, they concluded that currently the ensemble
Kalman filter is becoming competitive with 4DVar, and that
the experience acquired with each of these methods can be
used to improve the other.

In brief, due to its simple implementation and equivalent
ability compared to 4DVar, the ensemble Kalman filter is
becoming an attractive operational choice in more centers.
However, the current ability of the ensemble Kalman filter is
not equal to that of 4DVar in terms of assimilating satellite
and radar observations. In order to utilize advantages from
both methods, a hybrid approach, originally proposed by
Hamill and Snyder [57], has received significant attention.
Lorenc [52] asserted that hybrid approaches of variational
methods and ensemble methods would be better than either
single approach. Buehner et al. [56] showed that a hybrid
approach based on 4DVar but using forecast covariance
error estimation from the ensemble Kalman filter gave an
improvement in 5-day forecasts in the southern hemisphere.

From the results of current studies, the hybrid method
of the ensemble Kalman filter and 4DVar has a promising
future since it combines the advantages of both methods and
eliminates the existing disadvantages.

5.3. Nonlinear Issues in Ensemble Kalman Filter. Previous
studies have proven that ensemble Kalman filter is capable
of dealing with data assimilation in nonlinear system (e.g.
[58]). However, nonlinearity is still an important issue in the
implementation of ensemble Kalman filter. The equations
introduced in Section 4.3.2 are valid only when the error
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PDF are Gaussian. Unfortunately, in reality, even if the error
PDF were Gaussian at the initial time, it would be non-
Gaussian when the model is integrated forward due to the
strongly non-linear model. In the case, the PDFs of errors
cannot be represented by a Gaussian function. In addition,
it is operationally impossible to assume a non-Gaussian
error PDFs, although it looks feasible based on the current
ensemble.

There have been many studies devoted to dealing with
the nonlinear and non-Gaussian problem, mainly focusing
on the development and implementation of the ensemble
Kalman filter. For instance, Van Leeuwen [59] presented
a true variance minimizing filter method. Its performance
was tested by the Korteweg-DeVries equation and a quasi-
geostrophic model. He addressed that the method works
satisfactorily with a strongly nonlinear system. Hoteit et al.
[60] evaluated a new particle-type filter based on a Gaussian
mixture representation of the state PDFs using the Lorenz
96 model and discussed its application in real meteorological
and oceanographic models. Yang and kalnay [61] applied
the outer-loop in LETKF to handle the nonlinear problem
with the Lorenz 63 model. Results indicated that the LETKF
with outer-loop could use a longer assimilation window and
improve the analysis accuracy during highly nonlinear time
periods.

6. Applications of Ensemble Forecasting and
Ensemble Kalman Filters to High-Impact
Weather Prediction

Owing to their advantages in beating the uncertainties
and dealing with the nonlinearity, ensemble forecasting
and ensemble-based data assimilation have received a lot
of attention in the research and operational communities
during the last decade. Specifically, they have been applied
to high-impact weather forecasting. Many studies have
documented results from these applications. The ensemble
forecasting was used in short-range ensemble forecasting
(SREF) [62-67], tropical cyclone forecasts [68, 69], as well
as the flooding warning [70], and so forth. The ensemble-
based Kalman filtering techniques were also applied for the
studying and numerical simulation of hurricanes (see, e.g,.
[71]) and storm scale forecasts at high resolution (see, e.g.,
(72, 73]).

Du et al. [62] applied ensemble forecasting in quantita-
tive precipitation forecasting (QPF). They found a remark-
able reduction of root-mean-square error for QPF due to
the ensemble application and asserted that the improvements
from SREF techniques exceed the effect due to resolution
doubling. After a short-range ensemble forecasting system
was implemented in real-time operational at NCEP in 2001
[65], Du et al. [66] added another 6 members, which were
generated from a weather research and forecasting (WRF)
model, into the ensemble forecasting and obtained forecast
improvements with increased ensemble spreads. Yuan et al.
[67] studied the QPFs and probabilistic QPFs (PQPFs) over
the southwest United States, the area that is marked by highly
heterogeneous topography and diverse vegetation.

The hurricane track forecasting by Zhang and Krishna-
murti [68] showed that the ensemble forecasts are superior
to the results from single-model control experiments and
the track position errors are largely reduced by the ensem-
ble prediction. Mackey and Krishnamurti [70] combined
ensemble forecasts with a high-resolution regional spectral
model to postpredict the track, intensity, and flooding
precipitation arising from Typhoon Winnie in August, 1997.
They evaluated the effectiveness of the ensemble forecasting
and found that the ensemble mean track would be superior
only if the forecast uncertainty is properly sampled.

Zhang et al. [71] studied Hurricane Humberto (2007)
using the ensemble Kalman filter method for assimilating
Doppler radar radical velocity. Results indicated that the
ensemble Kalman filtering analysis improved the represen-
tation of the track and intensity of Humberto. Tong and
Xue [72] and Xue et al. [73] used the ensemble Kalman
filter method and radar reflectivity to correct errors in
fundamental microphysical parameters that are of great
importance to microphysics schemes. The results show that
the ensemble Kalman filter successfully corrected model
errors in microphysical parameters.

7. Concluding Remarks

NWP is an initial value problem: it forecasts the atmospheric
state by integrating a numerical model with given initial
conditions. Due to inadequate observations, our limited
understanding in physical processes of atmosphere, and the
chaotic nature of the atmospheric flow, uncertainties always
exist in modern NWP. Enhancing the predictability becomes
a key issue in improving the skill of NWP.

In this paper, the ensemble forecasting and ensemble-
based Kalman filter methods, both derived from concepts of
the stochastic prediction, are overviewed. It can be concluded
as follows.

(i) Atmospheric motion, as an unstable system, has a
finite predictability. NWP is strongly sensitive to the
initial conditions. Uncertainties in the model physical
parameterization also introduce errors into NWP.
Due to strong nonlinearity and chaotic nature of the
atmospheric flow, unpredictable components exist in
reality.

(ii) Ensemble forecasting takes uncertainties into account
in initial conditions and/or model physical parame-
terizations to help produce improved forecasts over
a single deterministic forecast in NWP and also
provide probabilistic forecasts.

(iii) The Ensemble Kalman filter refines the Monte
Carlo method and traditional Kalman filter. It uses
ensemble forecasts to express the flow-dependent
error covariance of the forecast estimation. Ensemble
Kalman filters present an effective way for data
assimilation to improve model initial conditions,
while at the same time also take uncertainties into
account.



Owing to their advantages in beating the uncertainties
and dealing with the nonlinearity in NWP, ensemble fore-
casting and ensemble-based data assimilation received a lot
of attention in the research and operational communities
during the last decade. Specifically, they have been applied
to improve high-impact weather forecasting.

However, there are issues outstanding. As the ensemble
forecasting requires large computational resources, many
operational ensemble systems were implemented in coarser
resolutions, compared with the high-resolution determinis-
tic weather prediction models. Meanwhile, the small size of
the ensemble could cause the underrepresentation problem
when generating the background covariance for ensemble-
based data assimilation. In addition, with perturbed initial
conditions and various physical parameterizations, ensemble
forecasts take into account both initial and model errors;
however, there has not yet been a consensus regarding which
one of these two methods is more efficient for accurate NWP
in general. Moreover, the ensemble Kalman filter has many
advantages over the current variational data assimilation
systems. However, so far, the use of the ensemble Kalman
filter in operational forecasts has been in a test phase. More
studies are needed to make it a more powerful tool for
assimilating real observations. In the meantime, a hybrid
variational and ensemble Kalman filter method could be a
promising technique in the near future.
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