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Research in operational modal analysis (OMA) and its
applications in structural health monitoring (SHM) have
experienced significant efforts in the last decade.  e de-
velopment of methods able to provide, eventually in a fully
automated way, accurate estimates of the modal parameters
from structural response only measurements opened new
applicative perspectives in the field of structural condition
assessment. In fact, while visual inspections, typically in
combination with destructive and nondestructive in-
vestigations on selected portions of the structure, and
scheduled maintenance are the conventional approaches to
damage detection and management, the local nature of tests,
the subjectivity of the expert judgment, and the costs and
very limited frequency of inspections have solicited strong
research efforts to change the paradigm, leading to the
development of innovative structural health monitoring
strategies relying on the analysis of the global, continuously
measured, response of the structure. Among the developed
approaches, modal-based damage detection is probably one
of the most popular for SHM of civil structures.  e recent
developments in the field of OMA, including in particular
several robust automated OMA algorithms, make modal-
based SHM an attractive and fairly mature technology.
However, in spite of the significant advantages and proved
effectiveness of the technique, limitations to its extensive
application still come from the accuracy and reliability of the
(automated) OMA results, which can affect the damage-
detection performance. Moreover, extending the potenti-
alities of the technique to deal with time-varying structures
or to support the setting and refinement of numerical
models is also a significant research challenge.

 is special issue collects five original research contri-
butions that present recent advances in OMA as well as
important applications in the context of SHM. In particular,
the papers address the following relevant research issues:
improving the quality of estimates, dealing with non-
stationarities and/or time-varying systems, on-line identi-
fication of modal parameters from strong motion records,
enhancing FE models by reducing epistemic uncertainties.
 e collection of papers focused on different aspects and
applications of OMA clearly remarks that, even if the
technology is mature for applications, several aspects can
still be improved, and they are worthy of additional research
efforts. It is the hope of the editors that this special issue will
contribute to the development of the discipline and the
enhancement of its already promising applicative perspec-
tives in SHM.

 e paper by B. Zhou et al., entitled “ e tunnel
structural mode frequency characteristics identification and
analysis based on a modified Stochastic Subspace Identifi-
cation method,” deals with a challenging modal-identifi-
cation problem, that is the modal identification of
underground tunnels based on processing of ambient re-
sponses as well as of hammer test records.  e challenging
nature of the investigated problem is related to the coupling
between structural and soil vibrations and to the need of
selecting the appropriate eigenproperties for condition
monitoring.  e topic is highly relevant in view of con-
tinuous SHM applications of underground tunnels to detect
faults, damages, and the effects of nearby soil excavations. To
effectively identify the fundamental natural frequencies of
underground tunnels, a combined method based on the
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natural excitation technique (NExT) and the stochastic
subspace identification (SSI) method is proposed. After the
introduction, the paper presents the mathematical formu-
lation of the new proposed identification method. After-
wards, the efficacy of the method is demonstrated in
application to real data acquired on a concrete power tunnel
having a 3.2m external diameter and on a subway tunnel
where each ring is made of six different concrete segments
resulting in an external diameter of 6.2m.  e proposed
NExT-SSI method results in quite clear stabilization dia-
grams, whereby the same stabilization diagrams based on
covariance-driven SSI (SSI-COV) are quite poor and fail to
provide evidence of eigenfrequency stability with increasing
model order.  e paper ends with an elegant model-based
validation using dispersion analysis based on the so-called
pipe-in-pipe analytical model, where dispersion analysis is
the analysis of the relationship between wave number and
frequencies of propagating waves.  e results demonstrate
that the first natural frequency of the underground tunnels
can be effectively identified by the proposed method, al-
though daytime traffic may lead to wrong estimates.
Hammer test also allows higher-order modal identification
with good consistency against dispersion analysis, and its use
is therefore recommended for providing additional in-
formation for condition assessment.

 e paper by F. Liu et al., entitled “An introduction of a
robust OMA method: CoS-SSI and its performance evalu-
ation through the simulation and a case study,” addresses the
challenge of nonstationarity. Most of the OMA techniques
have been developed under the assumption of linear and
stationary system. However, the monitoring data are often
nonstationary, as shown in the paper for the cases of
platforms under wave excitations, and bridges under time-
varying traffic loading. As a result of nonstationarity, the
identified modal parameters might be unreliable, or part of
the modes could be missed. An improved OMA method
based on SSI is therefore proposed to analyze the dynamic
response of nonstationary systems.  e proposed method is
denoted as correlation signal subset-based SSI (CoS-SSI) as it
divides correlation signals from the system responses into
several subsets based on their magnitudes; then, the average
correlation signals with respect to each subset are used as the
inputs of the SSI method.  e performance of CoS-SSI has
been evaluated first against simulated data, considering also
different levels of noise, and it has been validated afterwards
through an experimental study. Both simulation analysis
and the experimental results remark the promising per-
formance of CoS-SSI method in dealing with nonstationary
systems and noisy signals, thus overcoming some inherent
limitations of the traditional SSI-COV as well as of the
average correlation signal based SSI (ACS-SSI) method,
which is another variant of the SSI method specifically
developed to deal with nonstationary data.  e CoS-SSI
method seems to be able to provide more accurate and
reliable modal identification results with respect to the latter
reference methods, thus resulting in a promising solution for
reliable SHM.

 e paper by H. Jin et al., entitled “Modal Parameters
Identification Method Based on Symplectic Geometry Model

Decomposition,” proposes a novel method for operational
modal analysis with the ability to identify the modal pa-
rameters of time-invariant structures and also track the
evolution of the dominant frequencies of time-variant sys-
tems.  is is achieved with the use of symplectic geometric
model decomposition (SGMD).  e authors advocate that
compared with other decomposition methods, SGMD does
not need user-defined parameters, has better robustness and
suppresses modal aliasing.  e methodology is validated with
both simulated and measured data. Simulation studies are
performed on a time-variant multi-DOFs shear-type struc-
ture, considering periodical and smooth variations on the
springs that connect the vibrating masses, to explore the
effectiveness of the proposed method for time-variant system
identification.  e validation with measured data encom-
passes a laboratory experiment with a dissected vehicle under-
frame crossbeam of high-speed train tested under time-in-
variant conditions and a time-variant wheel-rail coupling
system. In the latter the moving vehicle vibrations were
monitored during a field braking test and the instantaneous
frequencies of the system were tracked during 9 seconds.  e
authors concluded that experiments using simulated and real
data show that the proposedmethod canmake good use of the
limited bandwidth of each model for signal decomposition,
and it can also accurately extract the instantaneous frequency
of the time-variant system.

 e paper by L. Cheng et al., entitled “Online Modal
Identification of Concrete Dams using the Subspace
Tracking based Method,” proposes an online modal iden-
tification procedure based on strong-motion records to
investigate the time-varying dynamic characteristics of
concrete dams under the excitation of earthquakes.  e
online modal identification is expressed as a subspace
tracking problem, and a newly developed recursive sto-
chastic subspace identification (RSSI) method based on the
“Generalized Yet Another Subspace Tracker” (GYAST) al-
gorithm, which exploits both the accuracy of the subspace
identification and fast computational capability, is used to
extract the time-varying modal parameters of concrete dams
during earthquakes. Firstly, the method is validated with
numerically simulated vibration response records to verify
its accuracy, robustness, and efficiency. en, several strong-
motion records collected at the Pacoima arch dam are
analysed using the proposed modal-identification pro-
cedure, and the time-varying characteristics of the concrete
arch dam during three different earthquakes are analysed.
 e authors conclude that the GYAST is a good tool to track
different modes, since it shows good identification accuracy,
robustness, and computation efficiency.  ey also report
that the identification accuracy of the frequencies and modal
shape vectors is sufficient, while for the damping ratios, the
performance of the proposed online modal identification
method still needs to be improved.

 e paper by M. Juul et al., entitled “One-step updating
using local correspondence and mode shape orthogonality,”
deals with the topic of FE model updating based on results of
OMA aimed at improving an FE model in order to enhance
its agreement with test results and reduce modeling errors
(epistemic uncertainties). Particularly, the paper proposes a
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one step updating technique where mass and stiffness
matrices are corrected using experimentally identified mode
shapes.  ese last are appropriately smoothed and are ini-
tially mass normalized to the first guess mass matrix through
a fixed-point iteration procedure that is also illustrated in the
paper.  e one-step principle is based on expressing the
inverse of the mass matrix as a sum of the contributions of
lower order modes (those that are actually identified by
OMA) and of higher-order modes (those that are not
identified), with the same being done also for stiffness
matrix. After the introduction, the paper illustrates the
mathematical formulation of the proposed one step
updating procedure, which exploits the circumstance that
the mode shape matrix of a perturbed system can always be
expressed as a linear transformation of the mode-shape
matrix of the unperturbed system.  e second part of the
paper contains a validation of the proposed method con-
sidering both simulated and real test data on a T steel frame
structure arranged in the lab and a section presenting the
discussion of the obtained results.  e discussion covers two
main aspects. First of all, it comments on the fact that the
proposed one step method assumes small distributed per-
turbations.  is implies that when perturbations are local-
ized and significant, the method may fail in handling
epistemic uncertainties. Furthermore, the discussion con-
tains very useful computational hints when dealing with
applications of the proposed method to systems having a
large number of degrees of freedom, where the inversion of
very large dimensional matrices is required. e results show
that, after mass scaling with respect to the updated mass
matrix, the eigenvalue analysis using the updated FE model
provides the “correct” (identified) undamped modal fre-
quencies. A notable result of the paper is that in the case of
perturbations distributed along the structure, the updating
procedure is effective even when experimental information
is limited to lower-order modes, while keeping higher-order
modes unchanged.

In conclusion, it is clear that the above papers address
relevant research issues in the field of OMA and its appli-
cation to SHM, contributing to the development of the
discipline and the enhancement of its already promising
applicative perspectives.  ese editors, therefore, are con-
fident that this special issue will be useful for researchers and
practitioners working in the field.
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0is paper proposes a novel method of structural system modal identification, where the iterative method is introduced in
symplectic geometric model decomposition (SGMD). 0e proposed method can decompose the measured response into finite
symplectic geometric components and identify the modal parameters of time-invariant structures and the instantaneous fre-
quency of time-variant system through each symplectic geometric component. To obtain the shape information of the structural
model, the SGCs of the same frequency at different measuring points are subjected to singular value decomposition (SVD). Both
simulated data verification and measured data verification were used to verify if the method proposed in this article is effective for
time-invariant system and time-variant system identification. For the simulated data, we study on a structural system which is set
up with time-variant stiffness and time-invariant system. 0e measured vibration data of beam structure and time-variant wheel-
rail coupling system were also tested and varied. Compared with the results of empirical model decomposition, the proposed
method is capable of identifying instantaneous frequencies with better accuracy.

1. Introduction

0e dynamic parameters are determined by the measured
input and output of the vibration to establish a mathematical
model for vibration systems. 0is method can be referred as
the inverse problem of dynamics. Meanwhile, the experi-
mental modal analysis was developed to solve this inverse
problem. Also, structural damage can be identified and
evaluated by its modal parameters. Hence, the accurate
modal parameters identification of structure has great sig-
nificance [1]. For integral structures, like gearboxes and
equipped vehicles, it is difficult to apply artificial excitation
duringmodal testing.0erefore, modal parameters would be
identified by using the output signals directly under envi-
ronmental excitation. Compared with the traditional modal
test of input and output, the direct identification of modal
parameters using output signals has the advantages of simple
measurement, neighbour sensitivity, repetition frequencies,
and much closer to the real dynamic characteristics [2].

Since structures are usually influenced by the environ-
mental excitations, operational modal recognition methods,
for example, the time-domain decomposition method [3],

frequency domain decomposition method [4], and the
stochastic subspace recognition method [5], were utilized in
mechanical engineering structures by means of only output
responses. For the problem of modal identification of
structure which has a free vibration response, eigensystem
realization algorithm (ERA) [6] was proposed. 0e appli-
cability of the algorithm described above has been increased
for using modal parameters identification under environ-
mental excitation. Additionally, two methods, i.e., the
random decrement method [7] and natural excitation
method [8], were developed. It was shown that the random
decrement function and correlation function have similar
properties as the free decay vibration responses. 0is
property can be employed in the identification of modal
information. Dohler et al. [9] quantified the uncertainty
effect in the modal identification by improving the tradi-
tional stochastic subspace identification method. Bayesian
methods [10–13] were also proposed for identification of
operational modals, which consider the noise effect as well as
the uncertainty emerged in the real data. 0e above-
mentioned methods were successfully employed to identify
the vibration property for real structure [14–16].
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However, it is known that the abovementioned
methods mainly dealt with the problem of modal identifi-
cation of time-invariant linear systems. When the tests are
applied to the first structure prototype, nonlinearity is
usually encountered [17]. Nonlinearity can obtain compli-
cated dynamic phenomena, e.g., modal interactions, qua-
siperiodicity, and chaos subharmonic and superharmonic
resonances, besides distorted resonances as well as the jumps
between low- and high-amplitude responses. 0erefore,
essentially linear models are difficult in predicting the
structural response [18]. For example, changes in the lo-
cations of the moving vehicle can lead to variations in the
frequencies of a bridge-vehicle system [19]. Meanwhile,
track irregularity would also be the cause of nonlinearity
[20]. In this condition, proper understanding and identifi-
cation of the vibration characteristics are significant. For
example, time-variant frequency is essential to identify
possible damage in the structure and to monitor the
structural operational conditions.

0e instantaneous frequency (IF) and instantaneous
amplitude (IA) of system responses depend on damping and
stiffness of the systems [21]. For this reason, Mihalec et al.
[22] studied the synchrosqueezing wavelet transform (SWT)
to apply free-response signal to recognize the damping ratio
in the vibrating system.

It was shown that SWTwith a proportional criterion gave
relatively improved localization and estimation of damping
ratios for close model, to minimize frequency-shift errors in
original SWT. Montejo and Vidot-Vega [23] tested SWT by
means of the estimated damping values of the structure from
its noise-contaminated response, and it was concluded that
SWT outperformance was greater than CWT and Hilbert–
Huang transform when estimating the modal damping ratio.
Li et al. [24] monitored the variations in structural responses
by means of the EMD and wavelet analysis. Shi and Law [25]
employed HHT to obtain the structural parameters in time-
variant structure which have complete measurement re-
sponses. 0is technique is more accurate than traditional
methods in identifying the damage occurrence and severity.
Also, Ni et al. [26] employed variationalmodel decomposition
(VMD) to produce a few intrinsic model functions by
decomposing the real responses and then utilized the Hilbert
transform of each intrinsic model function to identify the
instantaneous frequencies of time-variant systems. In the
experiments, we analyze the real vibration data in the labo-
ratory from a time-variant bridge-vehicle and a steel frame
structure system. Unfortunately, the existing methods have at
least one of the following defects:

(1) 0is method inevitably decomposes it to inaccurate
components in the case of a complex (nonsinusoidal)
waveform

(2) 0is method does not have noise robustness as it
cannot effectively decompose signals with noises

(3) 0is method is very sensitive to the parameters,
which are required to be defined by users

0e analysis method proposed in this paper, which is
based on symplectic geometry, has a protective effect on

geometry structure of phase space, which represents system
state variables. Also, the symplectic geometric de-
composition method is primarily utilized to solve eigenvalue
problem 2n × 2n. Hamiltonian matrix has been commonly
used in dynamics and control systems, and rapidly employed
to describe partial and singular differential equations, as well
as other systems. In the method of symplectic geometric
analysis, symplectic geometry spectrum analysis (SGSA) can
preserve the essential characteristics of measurement and
keep the main time series same as before; therefore, it is
suitable for analyzing nonlinear systems [27, 28]. SGMD
uses symplectic geometry spectrum analysis (SGSA) to solve
the eigenvalues of the Hamiltonian matrixes and re-
constructs individual symplectic geometric component
signals (SGCs) with the corresponding eigenvectors.
According to the authors’ knowledge, there are no studies
which use relatively new techniques to modal parameters
identification. 0is paper applies the newly proposed SGMD
technique to perform the signal decomposition of real re-
sponses from the structure systems and then their modal
parameters identification.

0is paper firstly introduced the theoretical analysis as
well as the detailed algorithm process of symplectic geo-
metric modal analysis. It is also proposed an improved it-
erative termination conditions for SGMD. We considered
the modal responses on a structure, which is found in all
sensor locations, to acquire the model shape corresponding
to a particular model. 0e same frequency at different lo-
cations has been processed to singular value decomposition
(SVD) in SGCs for obtaining modal models. Secondly, we
analyzed the simulation study of structural response under
impact force and verified the effectiveness of this method in
identifying time-invariant modal parameters and time-
variant instantaneous frequencies. Finally, the experimental
research is implemented on beam structure and time-variant
vehicle body vibration data. Compared with the existing
technique, the proposed method is much better.

2. Theoretical Background

2.1.Motion Equation of Time-Variant Structure. 0emotion
equation of a time-variant structure with n degrees of
freedom (DOFs) is described by

M €x(t) + C _x(t) + K(t)x(t) � BF(t), (1)

where K(t), C, and M mean stiffness matrices, damping, and
n × n time-variant mass, respectively; €x(t), _x(t), and x(t)

mean displacement response vectors, velocity, and accelera-
tion of structure, respectively; and F(t) is the applied exci-
tation force on the structure with mapping matrix B and
relates the applied excitation force to the corresponding
DOFs. In this paper, the mass and damping matrices are time
invariant, the variations of which are generally much smaller
and insignificant compared to that of structural stiffness.

0e frequency (variation) of each model will be narrow
band if the coefficient has a minor time variation. According
to the modal superposition method with n vibrational modal
responses, we can obtain the structural displacement and
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acceleration responses based on the principle of modal
superposition. 0e signal is expressed with

x(t) � 􏽘
n

i�1
Φi(t)qi(t),

€x(t) � 􏽘
n

i�1
Φi(t)€q(t),

(2)

whereΦi means i-th model shape and qi(t) is corresponding
modal response. Based on the orthogonal property of model
shape, equation (1) can be decoupled into equations of n
models after substituting equation (2) in equation (1):

€qi(t) + 2ξiωi(t) _qi(t) + ω2
i qi(t) �

ΦT
i (t)F(t)

mi

, (3)

where mi, ξi, and ωi are circular modal frequency, modal
damping ratio, and the i-th modal mass, respectively. After
an impulse force is employed to the z-th DOF, the the i-th
generalized modal coordinate will have an acceleration re-
sponse described as

€qi(t) �
F0ϕzi,t�0ωi(t)

mj

�����

1 − ξ2i
􏽱 exp − ξiωi(t)( 􏼁cos ωdi(t)t + vi( 􏼁,

(4)
where ϕzi,t�0 denotes the z-th item of the i-th modal vector

Φi(t) at time t � 0,ωdi � ωi

�����

1 − ξ2i
􏽱

, and vi is the phase angle.
0e acceleration response €xp(t) of the structure at the

p-th DOF is as follows:

€xp(t) � 􏽘
n

i�1
ϕpi(t)€qi(t). (5)

We can further write equation (5) as the superposition of
amplitude-modulated-frequency-modulated signals:

€xp(t) � 􏽘
n

i�1
Si(t) � 􏽘

n

i�1
Ai(t)cos ωdi(t)t + vi( 􏼁,

Ai(t) �
ϕpi(t)F0ϕzi,t�0ωi(t)

mi

�����

1 − ξ2i
􏽱 exp − ξiωi(t)( 􏼁.

(6)

2.2. SGMD for Signal Decomposition. A trajectory matrix
has been built by the SGMDmethod in the original time series
during embedding. Firstly, the power spectral density (PSD)
method is employed for obtaining the embedding dimension
and the trajectory matrix. 0en, the symplectic matrix is
constructed, and the eigenvalues of Hamiltonian matrix are
solved by symplectic geometric similarity transformation.
Traditional SGMD obtains all SGC by similarity comparison.
In this paper, SGC is extracted by merging all similar vectors
of the maximum eigenvalue from the original signal and re-
symplectic geometric model decomposition of residual
components, which is an iterative process. To estimate the
original time series in this study, we apply a diagonal aver-
aging method to every symplectic principal component
matrix. Figure 1 shows the diagram of SGMD technique.

Before analyzing SGMD method, some definitions and
theorems are introduced as follows.

Definition 1. S is a symplectic matrix if there is JSJ− 1 � S− T.

Definition 2. H is a Hamiltonian matrix if there is
JHJ− 1 � − H− T.

Theorem 1. For any symplectic matrix An×n, construct a

new matrix M �
A 0
0 − AT􏼢 􏼣; M is also a Hamilton matrix.

Theorem 2. Suppose the Householder matrix is supposed as

H � H(k, w) �
P 0

0 P

⎡⎣ ⎤⎦,

P � In −
2wwT

wTw
,

(7)

where w � (0, . . . , 0; wk, . . . , wn)T ≠ 0 and H is a symplectic
unitary matrix.

Theorem 3. Suppose an m × n(m> n) dimension real tra-
jectory matrix X and A � XTX is a real symmetry matrix.
<en, the Hamilton matrix M can be constructed from the

symmetric matrix A, namely, M �
A 0
0 − AT􏼢 􏼣.

<ere is a Householder matrix H; then, an upper Hes-
senberg matrix B is constructed via HMHT, namely,

Time series
x = (x1, x2, ..., xn)

Obtain symplectic 
geometry 

components 

Yes

Trajectory matrix
Xm×d

Calculate the
NMAE

Autocorrelation matrix
Ad×d 

Residual amount
Gh+1 = x – ∑s

h=1SGCh

Hamiltonian matrix
M2d×2d

Construct initial single
component matrix

SGCs

Symplecctic QR decomposition Diagonal averaging

Symplectic geometry
spectra

σ = (σ1, σ2, ..., σd)

Trajectory matrix 
Zm×d 

No
Refactoring G

Figure 1: Block diagram of SGMD.
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HMH
T

�
P 0
0 P

􏼠 􏼡
A 0

0 − AT
􏼠 􏼡

P 0
0 P

􏼠 􏼡

T

�
PAPT 0

0 − PATPT
􏼠 􏼡

�
B 0

0 − BT
􏼠 􏼡,

λ(A) � λ(B),

σ � λ2(X) � λ(A).

(8)

0e upper Hessenberg matrix B is an n-dimension space
matrix. 0erefore, the primary 2n-dimension space Ham-
ilton matrix M can be resolved via transforming it into n-
dimension space.

0e key of symplectic geometry model decomposition is
to utilize symplectic geometry spectrum analysis (SGSA) for
solving the eigenvalues of Hamiltonian matrix and recon-
structing the single component signals via its corresponding
eigenvectors. 0erefore, the power spectral density (PSD)
method is applied to adaptively obtain embedding di-
mension of the studied time series. 0en, symplectic ge-
ometry is constructed, and SGSA is used to deal with the
eigenvalues of Hamiltonian matrix. Finally, the diagonal
averaging and adaptive reconstruction are employed to
obtain symplectic geometry components. 0erefore, the
SGMD may fit for nonlinear signal analysis.

0e symplectic geometry model decomposition method
usually can be divided into four parts: adaptive determining
embedding dimension of the time series, solving the ei-
genvalues of Hamiltonian matrix via symplectic geometry
similarity transformation, diagonal averaging, and adaptive
reconstruction of components.

Briefly, any original signal time series are expressed as
x � x1, x2, . . . , xn, (n means data length). Based on
Takens’ theorem, a time-series delay topology
equivalent method is used to reconstruct the multidi-
mensional signals via one dimensional signal. 0at is to
say the original time series can be projected to the tra-
jectory matrix X which has all the dynamic information
of time series x:

X �

x1 x1+τ · · · x1+(d− 1)τ

x2 x2+τ · · · x2+(d− 1)τ

⋮ ⋮ ⋮ ⋮

xm xm+τ · · · xm+(d− 1)τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where d is the embedding dimension, τ is the delay time,
m � n − (d − 1)τ, and the appropriate embedding di-
mension d and the delay time τ are chosen to get the
corresponding reconstruction matrix. 0e idea of de-
termining embedding dimension in the existing studies [29]
is employed to calculate the PSD of the initial time series x.
Subsequently, fmax, frequency of the maximum peak, is
estimated from PSD. d is set to n/3 where n is the length of
data if the normalized frequency is less than the given
threshold 10− 3. Otherwise, it is set to d � 1.2 ×(Fs/fmax).

To obtain Hamiltonian matrix, autocorrelation analysis
is implemented on the trajectory matrix to get the covariance
symmetric matrix A:

A � X
T
X. (10)

0en, the Hamilton matrix M will be obtained based on
the symmetric matrix A:

M �
A 0

0 − AT
􏼢 􏼣. (11)

After constructing Hamilton matrix, the square of M is
N, i.e., N � M2, and the matrices M and N are Hamilton
matrices by the definition of Hamilton matrix. 0erefore, a
symplectic orthogonal matrix Q can be obtained from the
following equation:

Q
T

NQ �
B R

0 BT
􏼢 􏼣, (12)

where Q means an orthogonal symplectic matrix with the
property of its prototype, to protect the structure of Hamilton
matrix when it is transformed. Here, Bmeans upper triangular
matrix, i.e., bij � 0(i> j + 1). It can be transformed via uti-
lizing the Schmidt orthogonalization to matrix N, and the
eigenvalue of the upper triangular matrix B can be calculated as
λ1, λ2, . . . , λd. Indeed, the eigenvalues of A will equal those
of B ifA is real symmetric. Based on the properties of Hamilton
matrix, the eigenvalues of the matrix A are obtained:

σi �

��

λi

􏽱

, i � 1, 2, . . . , d. (13)

0e symplectic geometry of X is made by eigenvalues of
A in descending order, i.e.,

σ1 > σ2 > · · · > σd. (14)

0e distribution of σi is the symplectic geometry spectra
of A, with its smaller values to be usually treated as noise
components. Qi(i � 1, 2, . . . , d) means eigenvectors which
correspond to eigenvalue of matrix A.

Matrix Q is constructed as Householder matrix H from
equation (14), where the theory of symplectic geometry can be
employed to solve the embedding dimension time series.
0erefore, the Householder matrix H, rather than the sym-
plectic orthogonal matrix Q, has been selected. H is easy to be
verified as the unitary matrix, andH can be obtained from real
matrix. 0is is helpful for researching the time series. More-
over, let S � QTX, Z � QS, and Z be the reconstructed tra-
jectory matrix. Each component matrix is reconstructed as per
the following steps.

Firstly, based on the unitary matrix eigenvectors and
trajectory matrix, the transformation coefficient matrix S is
obtained as follows:

Si � Q
T
i X

T
. (15)

0en, to obtain reconstruction matrix Z, the trans-
formation coefficient matrix is transformed:

Zi � QiSi, (16)

where Zi (i � 1, 2, . . . , d) is the initial single component.
Similarly, trajectory matrix Z is
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Z � Z1 + Z2 + · · · + Zd. (17)

0e obtained initial single component matrix Z is m × d

matrix. 0erefore, the initial single component should be
reordered, and the reconstructed matrix Z should be
transformed by the diagonal averaging into a new set of time
series of length n. Meanwhile, that of new time series d can
be achieved as well, where the sum of new time series d is the
original time series.

Additionally, we define the elements of matrix as zij for
any initial single component matrix Zi, where 1≤ i≤ d,
1≤ j≤m, and d∗ � min(m, d), m∗ � max(m, d), and
n � m + (d − 1)τ. Let z∗ij � zij if m< d; otherwise, z∗ij � zji.
0us, the diagonal averaging transfer matrix is

yk �

1
k

􏽘

p�1

k

z
∗
p,k− p+1, 1≤ k< d∗,

1
d∗

􏽘

p�1

d∗

z
∗
p,k− p+1, d∗ ≤ k≤m∗,

1
n − k + 1

􏽘

p�k− m∗+1

n− m∗+1
z
∗
p,k− p+1, m∗ < k≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

0e matrix Zi is transformed to a series of
Yi(y1, y2, . . . , yn) based on equation (20). 0us, by diagonal
averaging, we can transform the reconstruction matrix Z
into a new series of matrix Y with the length d × n. Addi-
tionally, it can decompose the original time series into d
independent superimposed components with various trends
and frequency bands.

d single component signals are acquired via diagonal
averaging:

Y � Y1 + Y2 + · · · + Yd. (19)

After construction of the trajectory matrix and imple-
mentation of diagonal averaging, d single components are
obtained, whereas the components are not totally independent
as they may have same characteristics, periods, and frequency
components, which means that the initial single components
with same characteristics need reconstructing. 0e compo-
nent correlation and frequency similarity are employed to
rebuild the components. Also, the components divided from a
component will be rebuilt via calculating their frequency and
correlation. Additionally, the signal usually includes numer-
ous noise components irregularly, such as frequency and
correlation as the interference of environmental factors.
0erefore, it is urgent to set the iterative stopping conditions.

Firstly, the correlation was calculated with Y1 and other
reconstructed signals Yk≠l, and the highly similar Yk is
composed of the first SGC component. 0en the SGCl is
removed from the source signal x, and the residual signal is
recorded as gh+1:

gh+1 � x − 􏽘

h

l�1
SGCl, (20)

where hmeans number of iterations. Finally, the calculation
would bemade for normalizedmean absolute error (NMAE)
of the participating signals:

NMAEh �
1
t

􏽘

n

t�1

gh+1(t)

x(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (21)

0e whole decomposition process will continue until
the normalized mean absolute error is smaller than the
predetermined threshold NMAEh � 1%. Otherwise, the
reconstructed residual signal gh is the trajectory matrix X
and the above NMAEh � 1% iterative process is repeated
until the iteration termination condition is satisfied. And,
the final decomposition result is obtained as follows:

x(t) � 􏽘

N

h�1
SGCh(t) + gN+1(t), (22)

where N means number of identified component series.
Different from the traditional SGMD method, the newly
proposed SGMD removes the reconstructed signal Y1 with
the largest feature and its similar signal from the source
signal. It also needs to take the judgement which reiled on
the NMAE of residual signal for completing the decom-
posion, still, the method by continuing to search for the
new SGC is replaced as the new trajectory matrix reca-
lucation. 0is can be more accuary compared with
combing the reconstructed signal Y in the conventional
SGMD method for obtaining SGC. Hence, the iterative
process has been added to improve the traditional SGMD.

2.3. Hilbert Transform. It is widely accepted that time-
frequency analysis methods have advantages over the
traditional methods. By using fast Fourier transformation
(FFT), energy distribution in the time and frequency
scales can be visualized with an adjustable resolution.
Additionally, the signal in the frequency scale can be
investigated with multiresolution analysis from time-
frequency analysis via the time scale information. In areas
of damage identification, modal identification, and signal
processing, the time-frequency analysis methods are
widely utilized. Performing the signal decomposition with
SGMD, several SGCs are obtained and employed for
obtaining Hilbert spectrum. Both nonlinear and non-
stationary signals can be analyzed by Hilbert transform.
To perform Hilbert transform using the extracted the
SGCs from a vibration response signal, it is required to
obtain frequency and time-domain information with the
instantaneous frequencies and amplitudes. 0e following
equation can be used to define Hilbert transform of a
specific SGC:

􏽧SGCk(t) � H SGCk(t)􏼂 􏼃 �
1
π

P 􏽚
+∞

− ∞

SGCk(τ)

t − τ
dτ, (23)

where 􏽧SGCk(t) is the Hilbert transform of symplectic ge-
ometry components SGCk(t) and P is the Cauchy principle
value. 0e analytical signal is

Shock and Vibration 5



zk(t) � SGCk(t) + 􏽧SGCk(t) � Ak(t)e
jθk(t)

,

A(t) � SGCk(t)
2

+ 􏽧SGCk(t)
2

􏽨 􏽩
1/2

,

θk(t) � arctan
􏽧SGCk(t)

SGCk(t)
􏼠 􏼡.

(24)

Finally, the identified instantaneous frequency ωk
id(t) of

k-th component is expressed by

ωk
id(t) �

zθk(t)

zt
. (25)

2.4.ModalData IdentificationAlgorithm. Figure 2 shows the
diagram for identifying modal characteristics by means of
SGMD method for system identification. 0e diagram
contains the following five main steps:

(1) 0e SGMD has been processed on n point sensor
data (x1, x2 . . . , xn) for test structure, each mea-
surement point retains k SGC scale components, and
data length is N:

SGCn �

SGCn a1, t1( 􏼁 SGCn a1, t2( 􏼁 · · · SGCn a1, tN( 􏼁

SGCn a2, t1( 􏼁 SGCn a2, t2( 􏼁 · · · SGCn a2, tN( 􏼁

⋮ ⋮ ⋮ ⋮

SGCn ak, t1( 􏼁 SGCn ak, t2( 􏼁 · · · SGCn ak, tN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k×N

.

(26)

(2) Since the symplectic geometric decomposition will
disturb the order of scales, it is necessary to compare
the correlation coefficients of the SGC components
of all sensors and select one SGC component with
the largest correlation coefficient from different
measuring points n to form N new matrices Ak:

Ak �

W1 ak, t1( 􏼁 W1 ak, t2( 􏼁 · · · W1 ak, tN( 􏼁

W2 ak, t1( 􏼁 W2 ak, t2( 􏼁 · · · W2 ak, tN( 􏼁

⋮ ⋮ ⋮ ⋮

Wn ak, t1( 􏼁 Wn ak, t2( 􏼁 · · · Wn ak, tN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×N

.

(27)

0us, Ak can form a singular value decomposition
matrix which can ensure to contain the same in-
stantaneous frequency.

(3) Singular value decomposition for each combined
matrix is carried out:

Ak � UkSkV
T
k , (28)

where Uk � u1k, u2k, . . . , unk􏼈 􏼉; Sk � (􏽐λkO), 􏽐λk �

diag(σ1k, σ2k, . . . , σnk); Vk � v1k, v2k, . . . , vnk􏼈 􏼉.
(4) 0e judgement matrix is reconstructed by using the

first singular value σ1k:
B σ11, σ12, . . . , σ1k􏼂 􏼃1×k. (29)

In this formula, B represents the obtained first
singular value of different scales decomposition.

(5) 0e first singular value vectors u1k and v1k are
reconstructed to obtain the reconstructed matrix:

D1 � u11, u12, . . . , v1k􏼂 􏼃n×k,

D2 � v11, v12, . . . , v1k􏼂 􏼃k×N.
(30)

When the scale point position of local maximum in B
corresponds to al, D1 contains structural point vi-
bration model information and D2 contains the
natural frequency of structural modal point and its
damping ratio:

Φi􏼈 􏼉 � D1l,

ωi �

�������������������������
d

dt
∠D2l􏼠 􏼡

2

+
d

dt
ln D2l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼠 􏼡

2
􏽳

,

ξi �
− (d/dt) ln D2l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

ωi

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(31)

l is the scale corresponding to the column al.
D1l � u1l, D2l � v1l, and ∠ represents the phase angle.

3. Simulation Studies

Simulation studies are performed on a time-variant multi-
DOF shear-type structure to explore the effectiveness of the
proposed method for time-variant system identification. To
verify the proposed method, a simulation model of 5-DOF
mass-spring-damper is fabricated first, which is shown in
Figure 3.

Also, based on equation (1) and the mass matrix M,

M �

4.9895 0 0 0 0

0 4.9895 0 0 0

0 0 4.9895 0 0

0 0 0 4.9895 0

0 0 0 0 4.9895

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

and the stiffness matrix K of the model is

K �

k1 + k12 − k12

− k12 k12 + k23 − k23

− k23 k23 + k34 − k34

− k34 k34 + k45 − k45

− k45 k5 + k45

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(33)

where k12 � 17,110N/s, k23 � 8005N/s, k45 � 5632N/s,
k5 � 13,300N/s, and k1 and k34 are the time-variant stiffness
parameters. 0ree cases with periodical and smooth varia-
tions are researched, respectively. 0e variant stiffnesses in
Case 1 are set as k1 � 2000N/m and k34 � 48,000N/m,
which is a time-invariant system, and defined as k1 � (5 −

0.08t) × 103 N/s and k34 � (4.8 − 0.12∗ t) × 104 N/s in
Case 2. 0e corresponding values in Case 3 are k1 � (2 +

0.6 sin(2πt)) × 103 N/m and k34 � 48,000N/m.
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Proportional damping C � 0.08M. 0e following im-
pulse force is applied at the fourth layer:

BF(t) �

0

0

0

f(t)

0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

f(t) �
500N, t � 0,

0, t≠ 0.
􏼨

(34)

Newmark beta method, a time-stepped integration
method, is used to solve the analytical responses of time-
variant system. 200Hz is set as the sampling frequency. 0e
acceleration signal from the top level is chosen to decompose
signals and identify the following instantaneous frequencies.
Moreover, the signal-to-noise ratio of vibration signals in
both three cases is 30 dB, which is considered the noise effect
in measurement.

3.1. Linear Structure Modal Identification. According to the
structural parameters of Case 1, the modal shape can be
obtained as

Φ �

1.0000 1.5690 − 0.4609 4.4280 0.3353

1.0352 1.0000 0.0231 − 5.3460 − 1.6530

0.9295 − 1.2411 1.0000 0.3206 15.4604

0.8848 − 1.4027 0.7469 1.0000 − 15.0077

0.2842 − 0.7365 − 4.0584 − 0.2703 1.0000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

0e natural frequencies can be obtained as
f1 � 2.66438Hz, f2 � 6.4540Hz, f3 � 10.0685Hz, f4 �

14.2087Hz, and f5 � 22.9175 Hz. 0e damping ratios for
each order are obtained as ξ1 � 0.1066, ξ2 � 0.2582,
ξ3 � 0.4027, ξ4 � 0.5683, and ξ5 � 0.9167. Still, the modal
assurance criterion (MAC) is utilized for the evaluation of
the errors of identified model shape:

MACi �
ϕT

i
􏽢ϕi􏼐 􏼑

2

ϕT
i ϕi

􏽢ϕT

i
􏽢ϕi

, (36)

where ϕi is the estimated model vector and 􏽢ϕi is the
theoretical one. Figure 4 shows the Fourier transform
spectrum and time history of the response signal from
Case 1. 0e Fourier spectrum clearly indicates five
frequencies.

m1

x1

k1
m2

x2

k12
m3

x3

k23
m4

x4

k34
m5

x5

k45 k5

Figure 3: 0e 5-DOF simulation model.
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�e matrix Ak singular
value decomposition

(Ak = Uk Sk Vk
T)

Reconfiguration
matrix Vk

T
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T

Loop: processing
other sensors, get
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Natural frequencies

Damping ratios

Mode shapes

Identified modal data

Figure 2: Workflow of the proposed modal data identification method.
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Unlike the SGMD method introduced in reference [28],
in order to suppress overdecomposition, equation (23)
described in this paper is used as the iteration termination
condition, and the simulation signal is decomposed into five
SGCs. 0e symplectic geometric decomposition of the vi-
bration signal on the fifth degree of freedom is shown in
Figure 5. After the decomposition, the order of each layer for
SGC is not arranged in the sequence of frequency but fol-
lowed the energy distribution; the order of sequences has
been rearranged in order to natural frequency identification.
0e SGMD can decompose each order of vibration into
independent components. Meanwhile, modal shapes cannot
be obtained after decomposing a single signal. 0is paper
proposes to combine SGMD with SVD and identify the
modal parameters of the reconstructed matrix D2 as shown
in Figure 6. Also, each individual component is close to the
vibration of a single degree of freedom. At the same time,
according to D1, the model shape can be obtained.

0e modal parameters of linear simulation signal are
identified by the methods of SVD, SGMD, and SGMD-SVD,
respectively. 0e results are shown in Table 1. 0e SVD can
effectively identify the model shape, but the natural fre-
quency and damping ratio recognition effect are very un-
satisfactory. After SGMD classifies a single simulation signal,
the identified natural frequency and damping are more
accurate and the fifth-order natural frequency identification
result has a larger deviation, owing to fact that the simulation
signal has a shorter step size and the affected recognition
frequency is lower.0e combination of SGMD and the SVM,
not only effectively identify models but also can be effective
for identifying the natural frequency and damping for
simulation modal identification signals. 0erefore, the
SGMD can decompose the measured signals into each ef-
fective frequency single signal, which is convenient for the
identification of modal parameters. Still, the vibration
models were extracted by SVD, and MAC values were all
greater than 0.898. As a result, the proposed method is
suitable and applicable to the identification of linear modal
parameters.

3.2. Nonlinear Structure Instantaneous Frequency
Identification. Figure 7 shows the Fourier transform spec-
trum and the time history of the response signal in Case 2.
0e Fourier spectrum has five frequencies, as shown in
Figure 7. 0us, signal decomposition is implemented via

SGMD. 0e decomposed SGCs as well as their corre-
sponding frequency spectra are shown in Figure 8. Four
independent frequency components are decomposed in the
Fourier spectra, which are well separated. 0e true and
identified instantaneous frequencies of time-variant struc-
ture are shown in Figure 9. Note that the “freezing method”
is used to obtain the theoretical instantaneous frequency
[30]. Assume that, in each time interval, the structural
physical parameters are unchanged, and the theoretical
instantaneous frequency is solved from the solution of ei-
genvalue analysis problem. 0e finite duration of measured
signals will have an end effect, which may bring certain
errors, especially when the response signals begin and stop,
which is shown in Figure 9. In general, with the associated
FFT analysis, the end and leakage effects are significant. In
addition, employing FFT with band-pass filters cannot
identify the instantaneous frequency of time-variant sys-
tems. Meanwhile, the proposed approach can successfully
identify the smooth decreasing time-variant frequencies.

From the Fourier transform of SGCs in Figure 8(c), the
decomposed signals still have a modal aliasing problem.
Observing the time-domain map is not difficult to find,
which is caused by modal aliasing caused by the endpoint
effect.

Figures 10–12 show the identified instantaneous fre-
quencies, decomposed SGC via SGMD, and the response
signal in time and frequency domains for Case 3, re-
spectively. As shown in Figure 11, the Fourier spectra of the
decomposed SGCs indicate that the five models are clearly
decomposed. Similar to Figure 8(c), the end effect mode
results still lead to the certain aliasing in Figure 11(c) and
11(d).

Moreover, Figure 12 shows the identified instantaneous
frequencies where the lower frequency component has larger
variation compared to its higher counterpart. Nevertheless,
the identified first models are the best among all the models.
0e high model offsets the central frequencies caused by
noise, while the identified low model frequency fluctuates
around the central frequency.

Empirical model decomposition (EMD), a typical
method for signal decomposition, is also employed in this
study for the vibration response of Case 3 (Figure 13 shows
the obtained IMFs). 0e results of the first two de-
composition in EMD are similar to those in the proposed
method in this paper. 0e instantaneous frequency of IMF1
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and IMF2 has been overlapped, which is approximated as
the component of theoretical instantaneous frequency 5. In
the results of EMD decomposition, there is no component
that coincides with the theoretical instantaneous frequencies
3 and 4. 0erefore, it is difficult to decompose signals from
time-variant systems. Figure 10 demonstrates that the
Fourier spectrum has several peaks within a scope of the
most significant frequency components, which means that it
is relatively difficult for the traditional methods to realize the
signal decomposition. As shown in Figures 13 and 14,
significant fluctuations are observed as the noise in mea-
surements influences the performance of EMD in signal
decomposition.

As shown in Figures 12 and 14, comparing the results of
SGMD and EMD, SGMD has much better performance for
instantaneous frequency identification and the signal
decomposition.

3.3. Effect of Measurement Noise. Noise was added to the
response simulation of Case 3 to carry out the further study
on robustness of method for modal identification using
SGMD, and the signal-to-noise ratio was 10 dB and 20 dB,
respectively. To decrease the high frequency noise, the noisy
responses are processed by a band-pass filter with a fre-
quency range of 1∼30Hz due to the fact that the first five are
observed within 30Hz. For SGMD employed for signal
decomposition, the same procedure is followed, and the
obtained instantaneous frequencies are recognized and
shown in Figure 15. As shown in Figure 15, all the five

frequency models are in a complete separation state and the
true values are close with the identified instantaneous fre-
quencies. As a result, the results on the first model show the
best agreement.0erefore, it can be seen from the above that
the first model dominates the vibration. Moreover, the re-
sults of models 2 and 5 under such high noise effects are also
satisfactory.

It can be seen that the SGMD method is applicable to
both modal parameter identification of linear systems and
instantaneous frequency of nonlinear systems. Compared
with the traditional EMD and SVD identification methods,
SGMD has better robustness and adaptability.

4. Experimental Verifications

SGMD can be used to decompose linear and nonlinear
signals. 0e existing methods, due to end effects or time-
variant systems with nonstationary signals, still have some
limitations when it comes to processing signals from time-
invariant systems. In order to explore the performance of
instantaneous frequency identification in the mechanical
structure using the proposed method in this case, experi-
mental studies on both time-variant and time-invariant
systems were performed in the laboratory. 0e proposed
method is used to extract the instantaneous frequency of the
structure, and the real vibration data are used for signal
decomposition. An experimental study of the first invariant
structure was employed to prove the accuracy of proposed
method, with particular attention on how to use the
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Figure 7: Time-domain response signal and its fast Fourier transform spectrum in the simulation study (Case 2).
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Figure 8: Decomposed symplectic geometric components (SGCs) of the response signal with symplectic geometric model decomposition in
the simulation study (Case 2).
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Figure 11: Decomposed symplectic geometric components (SGCs) of the response signal with symplectic geometric model decomposition
in the simulation study (Case 3).

2.5

2

3

3.5

Fr
eq

ue
nc

y 
(H

z)

4

0 5 10 15
Time (s)

Identified instantaneous frequency 1
Theoretical instantaneous frequency 1

(a)

5

6

7

Fr
eq

ue
nc

y 
(H

z)

8

0 5 10 15
Time (s)

Identified instantaneous frequency 2
Theoretical instantaneous frequency 2

(b)

5

0

10

15

Fr
eq

ue
nc

y 
(H

z)

0 5 10 15
Time (s)

(c)

30

20

10

40

0

Fr
eq

ue
nc

y 
(H

z)

0 5 10 15
Time (s)

Identified instantaneous frequency 4
Theoretical instantaneous frequency 4

(d)

20

21

24

23

22

Fr
eq

ue
nc

y 
(H

z)

0 5 10 15
Time (s)

Identified instantaneous frequency 5
Theoretical instantaneous frequency 5

(e)

Figure 12: 0e results in the simulation study (Case 3): identified instantaneous frequencies by the symplectic geometric model decomposition.
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proposed method to implement a better result. 0e second
example is a time-variant structure, a wheel and rail
vehicle system. Moreover, the signals measured from a
moving vehicle are nonstationary. 0ose experiments can
be implemented to prove the applicability and efficiency of
instantaneous frequency identification and signal de-
composition via SGMD.

4.1. Modal Identification of a Time-Invariant Structure.
0e applicability of the method proposed in this paper is
demonstrated by the first example given in this section. A
dissected vehicle under-frame crossbeam of high-speed train
has been selected as the test object; usually the CRH3 high-
speed train car body with 20 toes in crossbeams can improve
the stiffness of car body and inhibit the chassis vertical
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Figure 15: Identified instantaneous frequencies under different noise levels with symplectic geometric model decomposition in the
simulation study (Case 3). (a) Identified instantaneous frequency of Mode 1. (b) Identified instantaneous frequency of Mode 2. (c) Identified
instantaneous frequency of Mode 3. (d) Identified instantaneous frequency of Mode 4. (e) Identified instantaneous frequency of Mode 5.

Shock and Vibration 19



deformation. By adjusting the chassis beam, the natural
frequency resonance of bodywork and bogie can be effec-
tively avoided. To verify the accuracy of recognition results
of experimental modal parameters, the finite element soft-
ware Hypermesh and Nastran were used to complete the
model grid division and modal calculation of the bottom
crossbeams in this section. 0e material property was as
follows: elastic modulus E � 70GPa, density of rho �

2710 kg/m3, and Poisson’s ratio μ � 0.33.
0is paper mainly analyzes the modal parameters of the

crossbeam below 500Hz, and the simulation results are
shown in Figure 16. Considering the actual testing samples
had two constraints, the vertical constraints are applied at
the same position on geometry modal. 0e results of finite
element analysis indicate that the first three models of vi-
bration are larger in each sequence at the upper corner of the
crossbeam, and the transverse response is larger than the
vertical response because of the applied constraints.
0erefore, as shown in Figure 17, an acceleration sensor is
placed above the crossbeam to obtain vertical and horizontal
vibration signals during the experiment. 0e testing material
was made of aluminum alloy, but the sensor mass was closed
to 1% of the beammass.0erefore, to decrease the mass effect
from the sensor inmeasurement, only one acceleration sensor
was placed.0e crossbeamwas divided into 68 tapping points,
and five times excitation induced by a hammer were applied
on each tapping point. 0is hammer was connected to the
24 bit NI USB-6255DAQ board via a charge amplifier. 0e
accelerometer is directly connected to the NI USB-6255 for
signal acquisition. 0e acquisition duration is 5 s per test, and
the sampling frequency is 10 kHz.

Before applying the method of this paper, the test results
firstly need to be carried into preprocess for better identi-
fication of modal parameters. 0e acoustic and vibration
output signals are as shown in Figure 18(a), and the Fourier
transform is performed on the input hammer signal and the
output signal; also, the ratio of self power spectrum to the
cross power spectrum is obtained to get the estimated fre-
quency response function of H1. 0ese results are shown in
Figure 18(b). 0en, the means of 5 times H1 for each
measurement point have been calculated and then inverse
fast Fourier transform was performed; the time-domain
response curve obtained by the preprocessing is subjected to
modal parameter identification according to the symplectic
geometric model decomposition method described above,
and it is shown in Figure 18(c).

0e method proposed in the Section 2.4 is used to
identify the time-domain response signal of bottom cross-
beam. 0e modal parameters of right singular value matrix
after decomposition are shown in Table 2. Since the labo-
ratory test is conducted by means of SISO multiple mea-
surements, the cumulative error of the vibration model of
the measuring point is large, and the result of vibration
model is not ideal. 0erefore, it would not be shown here.
0ere is a large difference between the experimental and
simulation results, and this error is caused by the damping
here, which is not added in the simulation model.

0e vibration of structure causes a change in the sound
pressure of the surrounding medium. For a vibrating plate

structure in the sound field, the plate can be divided into a
limited number of small units. 0ose small units which are
closely positioned on the surface of the plate can be assumed
as point sources in the sound pressure measurement.
0erefore, where the distances are relatively close, the sound
pressure of the measuring point is proportional to the vi-
bration acceleration of the reference point. Prezelj et al. [31]
have also verified the relationship between the near-field
sound pressure generated by the vibrational radiation of flat
structure and dynamic response of the structure.

In addition, Table 3 shows that the first- and third-order
modal recognition results are closer to the simulation results
than those of the vibration recognition. However, the sec-
ond-order errors are larger. According to those results, the
method is applicable to the identification of structural modal
parameters of near-field sound pressure signals. It should be
noted that when applying the sound pressure signal to
identify the structural modal parameters, the distance be-
tween the microphone and the structure should be as small
as possible so that effectiveness of the air damping can be
ignored during the sound wave propagation process.

Both simulation and experimental results confirm that the
method proposed in this paper can be used to achieve the
accuracy and consistency of modal parameters. However, in
the data processing, since each layer of SGC is extracted, it is
necessary to repeat the construction matrix. 0erefore, a large
number of repeated calculations are required. Actually, this
method is a time-domain decomposition method and it is
very sensitive to the data length, as shown in the time-domain
diagram in Figures 19 and 20, when the time-domain re-
sponse signal is decomposed. However, the test of output
signal length is 5 s. If the data length of the decomposed SGC
signal is greater than 1 s, the vibration signal has been at-
tenuated to a very small value, and the modal identification
will contribute to increase the identify accuracy under the
appropriate adjustment of data length after decomposition.
However, in this paper, there are much more points in the
experimental model, and all response time is unified to 2.5 s.

4.2. Instantaneous Frequency Identification of a Time-
Variant System. 0e second example is shown in Figure 21,
which is a time-variant wheel-rail coupling system. A field
braking test was carried out here on the tangent ballast track.
0e test line’s length was close to 1500m. 0e test train
comprised three HX-type heavy haul locomotives which are
widely employed in 10,000 t freight trains connected by 100-
type coupler and draft gear systems. It was reported that a
bogie frame had a natural frequency similar to the excitation
frequencies which were included in the time-variant loads and
that this similarity resulted in fatigue damage in the bogie
frame [32]. If the track clearance on the track is large, the
natural frequency of the bogie will be frequently excited, and
thus detecting the excitation frequency of bogie frame and
time-variant load has vital engineering values. According to
the literature [33], any interaction between external excita-
tions and natural vibration models is primarily located at
relatively low-frequency regime below 200Hz. Four accel-
eration sensors are placed above the bogie frame to record the
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Figure 16: 0e first three models of simulation. (a) Mode Frequency＝65.0Hz. (b)Mode Frequency＝214.1Hz. (c) Mode Frequency＝447.1Hz.
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Figure 17: Experimental setup.
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dynamic response of the moving vehicle. When the vehicle
speed reached 80 km/h, resistance braking was performed and
response data of about 9 seconds were recorded. 0e band-
pass range is set to 0–100Hz, with a sampling frequency of

5000Hz. 0e time history of the acceleration response on the
bogie during braking of the vehicle and its Fourier spectrum
are shown in Figure 22. Moreover, we can see that the energy
is primarily within a scope of 2–80Hz. Approximately 63Hz
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Figure 19: 0e first three models of vibration signal identification results.
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Figure 20: 0e first three models of acoustic signals identification results.

Table 2: 0e modal identification of vibration signals.

Natural frequency Error (%) Damping ratio
Model 1 62.92 3.2 0.00213
Model 2 215.82 0.80 0.00073
Model 3 397.11 11.18 0.00029

Table 3: 0e results of acoustic identification.

Natural frequency Error (%) Damping ratio
Model 1 69.0 6.15 0.0012
Model 2 246.3 15.04 0.0010
Model 3 425.3 4.88 0.0005
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corresponds to the maximum energy, and the frequency
range from 30 to 70Hz corresponds to the significant vi-
brations. It is obvious from the time history that there is a
significant time-variant load excitation when the vehicle
passes near the rail joint gap. If the moving vehicle loca-
tions are changed, the vibration characteristics of the
system are also changed. During the running process of the
vehicle, there are significant fluctuations and noise in the
response signal.

Hence, the method proposed and the conventional EMD
method, as well as the measured acceleration response, were
used for the identification of the instantaneous frequency of
time-variant systems. Figures 23 and 24 show the identified
results from these two methods, respectively. 0e EMD
method has a large number of ripple phenomena and
overlaps at the instantaneous frequency, and there is no
significant continuous frequency near the main frequency of
63Hz in the Fourier spectrum. Meanwhile, the SGMD
method described in this paper can effectively suppress the
ripple phenomenon and overlap. Based on the results of past
studies [33–35], the response reason for each SGC is de-
termined. Also, the SGMD decomposes the acceleration
response signal into 10 SGCs components. As shown in
Figure 24, SGC2 is the second-order natural frequency of the
frame and external excitation (80Hz–100Hz); SGC3 causes
the bounce of the bogie frame (6–8Hz); SGC4 and SGC7 are
the wheel noncircular excitation (13.67Hz, 27.73Hz); SGC5
and SGC6 correspond to 0.39Hz and 1.56Hz, which are

related to the low-frequency body and bogie rigid motion;
SGC8 is the rail surface excitation (3.12Hz); SGC9 450 is the
first-order natural frequency of bogie frame (63.28Hz).
Among them, the first-order natural frequency of the bogie
frame has obvious endpoint problems. SGC1 and SGC10 in-
stantaneous frequency distribution is in the entire analysis
frequency band, so it is considered as noise and is not shown.
Obvious fluctuations are observed within the identified in-
stantaneous frequencies, which are caused by the uncertainties
of wheel-rail coupling and measurement noise. 0erefore, the
efficiency and effectiveness of this method have been verified
on identifying the instantaneous frequency of time-variant
systems which have measurement noise as well as significant
uncertainties.

5. Conclusions

0e iterative method is introduced in the decomposition
process of the symplectic geometry model decomposition,
replacing the traditional similarity direct combination.
Compared with other decomposition methods, SGMD does
not need user-defined parameters and has better robustness
and suppresses modal aliasing. 0e results show that better
decomposition performance and robustness can be obtained
by the proposed SGMD method, without setting user-de-
fined parameters.

Moreover, a newmodal parameter identificationmethod
is proposed for modal parameter identification using
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Figure 21: Test device for wheel and rail system in field test. 1: signal acquisition device; 2: acceleration sensor; 3: displacement sensor;
4: bogie.
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symplectic geometry model decomposition. 0e core of this
method is to solve the eigenvalues of Hamiltonian matrix by
using symplectic geometric similarity transformation, and
at the same time, the essential characteristics of the
original signal can still be unchanged. It is proposed to
calculate the normalized mean absolute errors which are
between residual signals and original signals as the ter-
mination condition of decomposition. For the time-in-
variant structural model parameters, SVD is applied to
decouple the modal, realize the identification of modal
shape, and improve the recognition accuracy of the
natural frequency and damping ratio directly via SGMD.
Also, it is suitable to identify instantaneous frequencies of
time-variant structures. 0e real response signal is
decomposed into several SGCs, after which the Hilbert
transform is utilized to recognize instantaneous fre-
quency. Considering the three models of stiffness varia-
tion, simulation studies are carried out on time-invariant
systems and time-variant systems to study the ability of
the proposed method. Test and verification have been
applied on the time-variant vehicle-rail beam and test line
wheel-rail coupling system in the laboratory; also, the
proposed method should been confirmed for applying the
analysis of time-frequency and the instantaneous fre-
quency identification of time-variant systems with non-
stationary variable signal.

0e experiments using simulated and real data show
that the proposed method can make good use of the
limited bandwidth of each model for signal de-
composition, and it can also accurately extract the in-
stantaneous frequency of the time-variant system. 0is
method can be applied to signal decomposition as well as
the modal identification of structures under environment
excitation, whereas, it is not the key problem in this ar-
ticle. Further research will be performed to study the
applicability of modal identification time-invariant and
variant structures under environment excitation. In ad-
dition, compared with the same signal-based adaptive
method (such as EMD), the SGMD-based system identi-
fication method has better robustness to noise and sampling
frequency. 0ere are still many problems in modal parameter
identification for symplectic geometry decomposition, such as
how to further improve theMAC of the mode, speeding up the
calculation of SGMD, and solving reconstruction constraints
and their end effects. Hence, in future research, the authors will
pay more attention to these issues.

Data Availability

0e data used to support the findings of this study have been
deposited in the FIGSHARE repository (https://doi.org/10.
6084/m9.figshare.7610429.v1).
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To investigate the time-varying dynamic characteristics of concrete dams under the excitation of large earthquakes for online
structural health monitoring and damage evaluation, an online modal identification procedure based on strong-motion records is
proposed. ,e online modal identification of concrete dams is expressed as a subspace tracking problem, and a newly developed
recursive stochastic subspace identification (RSSI) method based on the generalized yet another subspace tracker (GYAST)
algorithm, which exploits both the accuracy of the subspace identification and fast computational capability, is used to extract the
time-varying modal parameters of concrete dams during earthquakes. With the simulated vibration response records, a numerical
example is used to verify the accuracy, robustness, and efficiency of the proposed GYAST-based, time-varying modal identi-
fication method. ,en, the realistic strong-motion records of the Pacoima arch dam are analysed using the proposed modal
identification procedure, and the time-varying characteristics of the concrete arch dam during three different earthquakes
are analysed.

1. Introduction

,e modal parameters of concrete dams, including the
natural frequencies, damping ratios, and modal shape
vectors, extracted from earthquake response records can be
used for structural antiearthquake capacity analysis, health
monitoring, and postearthquake structural damage evalu-
ation.,ese parameters have obvious physical meanings and
represent the practical dynamic characteristics of structures.
Some researchers have made efforts to address the modal
identification problem of concrete dams based on earth-
quake response records [1–6]. However, the modal identi-
fication methods adopted in the past studies are restricted to
linear systems and stationary processes, and using such
methods would require the assumption that the dam-
reservoir-foundation system is linear and time invariant
for the duration of a vibration measurement. ,e dam-
reservoir-foundation system under the excitation of large
earthquakes may present some time-varying characteristics,
resulting from the time-varying character of the material

parameters, boundary conditions, dam-reservoir-
foundation interactions, and structural damage [7]. Using
the offline modal identification procedure to extract the
constant modal parameters cannot track the time-varying
dynamic properties of a structure during a large earthquake,
which may be important information for online structural
health monitoring. ,erefore, the online modal identifica-
tion method of concrete dams is an important research
topic.

,e structural online modal identification problem is a
research topic with many challenges that still attract sig-
nificant attention for its significance in aerospace engi-
neering [8], mechanical engineering [9], and civil
engineering [10], among other fields. For time-varying
structures, the assumption of the classic modal identifica-
tion methods that the structure is a time-invariant system is
no longer applicable. ,us, Liu [11] proposed the concept of
“pseudomodal parameters,” which use the time-freezing
concept. ,ree types of methods have been developed for
time-varying modal identification, i.e., the time series model
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method and the recursive stochastic subspace identification
(RSSI) method in the time domain and the time-frequency
decomposition method in the time-frequency domain
[12, 13]. For the time series model method, Gong [14] used
adaptive forgetting through multiple models (AFMM) to
track the time-varying modal parameters of tall buildings
during a large earthquake and evaluated the structural health
according to the modal identification results. Poulimenos
and Fassois [15] performed an important literature review of
different time-varying modal identification methods using
different nonstationary time series models and point out
their pros and cons. Klepka and Uhl [16] used the time-
frequency domain decomposition technique to analyse the
structural vibration response and identified the modal pa-
rameters. Goethals et al. [17] and Nezam Sarmadi and
Venkatasubramanian [18] used the projection approxima-
tion subspace tracking (PAST) algorithm-based RSSI
(PAST-RSSI), and Loh et al. [19, 20] used the extended
instrumental variable version of the PAST algorithm-based
RSSI (EIV-PAST-RSSI) to carry out the online modal
identification of a power system, an in-flight flutter, a tall
building, and a television tower. Among these methods, the
RSSImethod has attracted themost attention.,e advantage
of the RSSI method is mainly reflected in its strong nu-
merical stability and strong robustness to noise interference.
,erefore, it is suitable for the online modal identification of
structures under random vibration excitation such as
earthquakes. Although the online modal identification
problem has been studied in many other fields, very few
research works have been reported that use the online modal
identification for concrete dams [21]. ,e dam-reservoir-
foundation system is characterized by its large size, large
number of degrees of freedom, and closely spaced modes,
and the vibration measurement of concrete dams is usually
performed with a low signal-to-noise-ratio (SNR) as a result
of external disturbances. ,is brings great difficulties to the
online modal identification of concrete dams.

In this work, the RSSI method is used to extract the
modal parameters of concrete dams based on the strong-
motion records of the structure. ,e online version eigen-
value decomposition (EVD) is solved as a subspace tracking
problem using the generalized yet another subspace tracker
(GYAST) algorithm [22]. GYAST is a newly proposed ad-
vanced algorithm which makes several robust modifications
of the original subspace tracking algorithm. ,e YAST al-
gorithm relies on an interesting idea of optimally extracting
the updated subspace weighting matrix in each step. In the
GYAST algorithm, computation reduction of optimal sub-
space extraction is achieved by an approximation. It caused
the GYAST has the advantages of a low computational
complexity, high computational efficiency, and strong ro-
bustness. Combining GYAST with RSSI is expected to
improve the accuracy and efficiency of the online modal
identification. ,e online time-varying modal identification
procedure based on the GYAST-RSSI is verified using a
numerical example to evaluate the algorithm identification
accuracy, robustness, and computation efficiency. Finally,
the time-varying modal identification of the Pacoima arch
dam is carried out using the proposed time-varying modal

identification procedure and the strong-motion records of
three different earthquakes to track the time-varying char-
acteristics of the arch dam during earthquakes.

2. Linear Time-Varying Modal Identification
Using the GYAST-Based RSSI

2.1. Time-Varying State Space Expression of the Dam-
Reservoir-Foundation System. In the design stage of a
concrete dam, the structure is generally assumed to be
linear, and the observed vibration response of the structure
is stationary. However, for some reasons, the dam-
reservoir-foundation system may be time-varying. As
shown in Figure 1, the dynamic constitutive model of the
concrete and the base rock may be nonlinear. Additionally,
the joints on the dam body may close or open with vari-
ations in the amplitude of the earthquake excitation, which
will change the stiffness of the connections between dif-
ferent dam monoliths. ,e effects of the structure-
foundation interaction may also introduce some time-
varying factors into the dynamic features of concrete
dams [23]. Moreover, a damage structure normally exhibits
nonlinear dynamic behaviours and a time-dependent
stiffness, and the damping variations over time lead to
the time-varying modal parameters of the system. In this
study, the dam-reservoir-foundation system is assumed to
be a linear time-varying system. ,e “frozen-time” as-
sumption that consists of modelling a linear time-varying
system as a piecewise linear time-invariant system is
adopted. ,e parameters will be assumed to vary in a
stepwise way; i.e., they will change abruptly at instants
separated by small time intervals and will remain constant
during these time intervals. If the time intervals are suf-
ficiently small, this model can be considered an approxi-
mation of the continuously varying case [24]. ,e
expression of this system will be discussed in this section.

It should be noted that the material characteristics, the
boundary conditions, the damping, etc. may be affected by
some environmental variables, such as the water level,
temperature, and humidity. ,e impact of these variables
will not be taken into account in this study since the ob-
servation time of an earthquake response record is not very
long.

,e equation of motion for an n degrees-of-freedom
time-varying linear system S with time-varying structural
parameters can be expressed as

S: M[t]€x[t] + C[t] _x[t] + K[t]x[t] � f[t], (1)

where M[t], C[t], and K[t] are the time relevant mass
matrix, damping matrix, and stiffness matrix, respectively.
M[t], C[t], and K[t] are assumed to slowly change with
time. For the dam-reservoir-foundation system, the change
of mass is usually not taken into account, and thus, the mass
matrix M[t] � M is constant. X[t] is the displacement re-
sponse of the structure, and f[t] is the external excitation
force.

Equation (1) is a system of differential equations with
time-varying coefficients. ,e response can be found by
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solving the di�erential equations using initial conditions, but
in general, there is no closed-form solution set to these
equations.�us, an approximation is introduced to solve the
vibration problem. In other words, the instantaneous modal
parameters are obtained at each time instant under the slow-
varying assumption of the structural system. According to
this assumption, the continuous “frozen” time-varying
structure is made up of the mass, damping, and sti�ness
of every instantaneous moment τ ∈ [0, tend], which can be
expressed as follows:

S′ � S′(τ): M[τ]€x[t] + C[τ] _x[t] + K[τ]x[t] � f[t]{ },
τ � tk, k � 1, 2, . . . , N,

t ∈ 0, tend[ ],




(2)

where tend is the end time of the time series of the vibration
response signal, S′(τ) represents the time-invariant struc-
ture of t � τ, and S′ is a set of the time-freezing descriptions
of the linear time-varying structure. Analytically, during the
time interval [tk, tk+1), the parameter matrices of equation
(2) have entries with constant values. When t � tk+1, the
matrices may suddenly change fromM[tk], C[tk], and K[tk]
to M[tk+1], C[tk+1], and K[tk+1] since the system during the
time interval [tk, tk+1) is time invariant. �e state space
expression for the time-varying system at discrete time
intervals is as follows [26]:

zk+1 � Akzk + uk,

yk � Gkzk + vk,
{ (3)

where Ak and Gk are the discrete state space matrix and
observation matrix of the time interval [tk, tk+1), re-
spectively. zk is a vector of state variables, and the obser-
vation vector yk is a vector of l channels and can be any or
some of the three types of structural vibration responses,

i.e., the displacement, velocity, and acceleration. uk is the
stochastic excitation, and vk is the observational noise.

�e expression of the structural vibration response for a
time-varying system during a time instant t ∈ [tk, tk+1) is
discussed �rst. Since the system during the interval
[tk, tk+1) is assumed to be time invariant, a basic expression
for the linear vibration system is applicable during the time
interval.

To identify the complex modal shape vector, the double-
sized mixing model is adopted [27]. It is well known that the
shift of the phase angle between the displacement and ve-
locity and the velocity and acceleration is 90°. �e accel-
eration response is generally measured for the structural
strong-motion response observation system. Since the
physical parameters vary slowly with time, component y0[t]
is an asymptotic signal. To track the time-varying charac-
teristics of a structure with n degrees-of-freedom, the Hilbert
transformation is performed to obtain the pseudoresponse
of the structure with a 90° transferred phase angle y90[t].
�en, in the discrete time domain, the augmented response
vector ỹ(k) ∈ R2l×1 can be obtained as follows:

ỹ(k) �
yR(k)
yI(k)

[ ] �
y0(k)
y90(k)
[ ]. (4)

Equation (4) is equivalent to the representation of the
original signal in the analytical form y′[t] as follows:

y′[t] � y0[t] + jH y0[t]{ } � yR[t] + jyI[t], (5)

where yR[t] � y0[t] � y[t] and yI(t) � H y0[t]{ } are the real
and imaginary parts of the analytical signal, respectively, and
j �

���
−1

√
is the imaginary unit; H ·{ } is the mathematical

operator of the Hilbert transformation.
Based on the derivation by McNeill [28] and Masuda

et al. [29], the free acceleration vibration of a structure can be
expressed as
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€x[t] � 2Re Φ(k)€q′[k, t]􏼈 􏼉, t ∈ tk, tk+1􏼂 􏼁, (6)

where k represents the kth time interval, i.e., Φ(k) � Φ[tk].
,e complex modal acceleration response matrix is defined
as €q′[k, t] � €qR[k, t] + j€qI[k, t] and is composed of the
modal acceleration responses of all the activated modes. ,e
terms €qR[k, t] and €qI[k, t] are the real and imaginary parts of
the modal acceleration response, respectively. Re ·{ } is the
real part of a number.

If the acceleration response is measured and the output
selection matrix is Ca, the analytical expression of the ac-
celeration response signal is

y′[t] � Ca €xR[t] + j€xI[t]􏽮 􏽯

� CaΦ(k)€q′[k, t], t ∈ tk, tk+1􏼂 􏼁.
(7)

Based on the coordinate transformation shown in
equation (6), the augmented response vector 􏽥y(t) shown in
equation (4) is expressed as

􏽥y[t] �
yR[t]

yI[t]
􏼨 􏼩 � L(k)􏽥€q[k, t] + v[t], t ∈ tk, tk+1􏼂 􏼁, (8)

where L(k) �
CaΦ(k)R −CaΦ(k)I

CaΦ(k)I CaΦ(k)R
􏼢 􏼣 ∈ R2l×2n and

􏽥€q[k, t] �
€qR[k, t]

€qI[k, t]
􏼢 􏼣 ∈ R2n×1.

Assume the observational noise components are in-
dependently identically distributed with a variance σ2n. ,en,
the covariance matrix of 􏽥y[t] can be expressed as

R􏽥y􏽥y(k, 0) � E 􏽥y[t]􏽥y[t]
H

􏽮 􏽯 � L(k)R€q􏽥􏽥€q (k, 0)L(k)
H

+ σ2nI2pl,

t ∈ tk, tk+1􏼂 􏼁,

(9)

where the superscript H, denotes the conjugate transpose of a
matrix and R€q􏽥􏽥€q (k, 0) is the covariance matrix of the modal
acceleration responses. For a structure system with weak
damping,

R€q􏽥􏽥€q (k, 0)≈
R €qR €qR(k) 0n0×n0

0n0×n0
R €qI €qI(k)

⎡⎣ ⎤⎦. (10)

After the discrete sampling of the physical acceleration of
the l channels at N identical time intervals, a time-delayed
vector Y(k) ∈ R2pl×1, which is composed of 􏽥y(k) and its
time-delayed data, can be written as follows:

Y(k) � 􏽥y(k)T 􏽥y(k)T · · · 􏽥y(k + p− 1)T􏼐 􏼑
T
,

k � 1, 2, . . . , N,
(11)

in which the number of time delays should satisfy 2pl> n.
,en, the Hankel matrixH0(k) ∈ R2pl×2pl can be defined

as follows:

H0(k) � E Y(k)Y(k)
T

􏽨 􏽩,

�

R􏽥y􏽥y(k, 0) R􏽥y􏽥y(k, 1) · · · R􏽥y􏽥y(k, p− 1)

R􏽥y􏽥y(k, 1) R􏽥y􏽥y(k, 2) · · · R􏽥y􏽥y(k, p)

⋮ ⋮ · · · ⋮

R􏽥y􏽥y(k, p− 1) R􏽥y􏽥y(k, p) · · · R􏽥y􏽥y(k, 2p− 2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

Based on the derivation of the free acceleration response
shown in equation (9), the Hankel matrix H0(k) can be
decomposed into the following form:

H0(k) �

L(k)

L(k)􏽐(k)

⋮

L(k)􏽐(k)p−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R€q􏽥􏽥€q (k) L(k)H 􏽐(k)L(k)H · · · 􏽐(k)p−1L(k)H􏽨 􏽩 + σ2nI2pl,

� 􏽥L(k)R€q􏽥􏽥€q (k)􏽥L(k)
H

+ σ2nI2pl,

(13)

where Σ(k) � exp Λtk􏼈 􏼉 ∈ Rn×n. Λ � diag(λ1, . . . , λn0), λ1,
. . . , λn0 are the eigenvalues of the continuous system matrix.

For the free vibration response of a structure system
without damping, the modal acceleration responses of the
different modes are independent of each other. However, the
damping effect and the disturbance of the noise result in the
matrixR€q􏽥􏽥€q (k) being approximately a diagonal matrix. Since
the damping of concrete structures is usually weak, the error
caused by the approximation is acceptable.

At the time instant tk, new observational data y(k) are
available, and the Hankel matrix H0(k) should be updated
online. One way to update the Hankel matrix is called the

exponential forgetting method. Using this matrix, the
Hankel matrix H0(k) at the time t � tk is expressed as

H0(k) � βH0(k− 1) + Y(k)Y(k)
T
, (14)

in which β is the forgetting factor, with a suggested value
between 0.995 and 0.999 [30].

2.2. Modal Subspace Tracking Using GYAST. For each time
step, the EVD of H0(k) (where H0(k) is a square matrix)
should be performed at each time instant as follows:
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H0(k) � Q1(k) Q2(k)􏼂 􏼃
Δ1(k) 0

0 Δ2(k)
􏼢 􏼣

Q1(k)T

Q2(k)T
⎡⎣ ⎤⎦,

� Q1(k)Δ1(k)Q1(k)
T

+ Q2(k)Δ2(k)Q2(k)
T
.

(15)
If Q1(k) contains the first n dominant eigenvectors of

H0(k), it can be taken as the dominant signal subspace,
which represents the contributions of different modes.Δ1(k)

is a diagonal matrix that is composed of the first n dominant
eigenvalues of H0(k). Q2(k) and Δ2(k) correspond to the
remaining eigenvectors and eigenvalues. However, the total
computation time will then be very large and is not suitable
for online applications. ,us, the online version of the EVD
algorithm should be adopted. Since only the left part of the
EVD is needed to retrieve an estimate of the observability
matrix, an economical (so-called thin) EVD, which com-
putes only that left part, can be used. Using the subspace
tracking procedure, the GYAST, in each time step, a suffi-
cient approximation of the dominant subspace, namely,

􏽙 (k)􏽙 (k)
H ≈ Q1(k)Q1(k)

H
, (16)

can be obtained. It has been proven that, in a stationary
situation, the desired steady-state weights Π(k) � Q1(k)H

can be obtained by maximizing the mean square value of the
output of the combiners, given by

J􏼒􏽙 (k)􏼓 � E trace 􏽥€q(k)
H􏽥€q(k)􏼐 􏼑􏽨 􏽩,

� E􏼔trace􏼒􏽙 (k)
HY(k)Y(k)

H
􏽙 (k)􏼓􏼕,

� trace􏼒􏽙 (k)
HY(k)Y(k)

H
􏽙 (k)􏼓,

(17)

in which the operator trace (·) stands for the trace of a
matrix.

To ensure the orthogonality of Π(k), a maximization
optimization problemwith constraints is expressed as follows:

max
Π(t)

: J􏼒􏽑(k)􏼓 � trace 􏽑(k)HH0(k)􏽑(k)􏼒 􏼓,

subject to : 􏽑(k)H􏽑(k) � In.

(18)
To reduce the computational cost of updating Π(k)

online, the ideal subspace projection- (SP-) type algorithm
limits the search space to the range space of Π(k− 1) plus
one additional search direction, i.e., Y(k). ,en, the n-di-
mensional range space of Π(k) is found as a subspace of the
(n + 1)-dimensional space spanned by V(k) ∈ R2pl×(n+1):

V(k) � 􏼔􏽙 (k− 1),Y(k)􏼕. (19)

If Π(k) is an orthonormal basis of the (n + 1)-di-
mensional range space V(k), then Π(k) can be expressed as

􏽙 (k) � 􏽙(k)U(k), (20)

in which U(k) ∈ R(n+1)×n.

,en, replacing equation (20) with the optimization
problem shown in equation (18), the following new opti-
mization problem is obtained:

max
U(t)

: J(U(k)) � trace U(k)HR€q􏽥􏽥€q (k)U(k)􏼐 􏼑,

subject to : U(k)HU(k) � In.

(21)

in which the matrix R€q􏽥􏽥€q (k) � Π (k)HH0(k)Π(k).
For the GYAST algorithm, an approximation is in-

troduced that calculates the modal acceleration responses
􏽥€q(k) � 􏽥€q[k, tk] as

􏽥€q(k) � 􏽙 (k− 1)
HY(k). (22)

,en, the orthonormal basis Π(k) of the augmented
(n + 1)-dimensional range space span(V(k)) is given by

􏽙 (k) � 􏼔􏽙 (k− 1), u(k)􏼕, (23)

where u(k) is the unit-norm variant of Y⊥(k), Y⊥(k) �

Y(k)−Π(k− 1)􏽥€q(k) � σ(k)u(k) is the complement of the
orthonormal projection of Y(k), and σ(k) �

‖Y⊥(k)‖2 �

��������������������

Y(k)HY(k)− 􏽥€q(k)H􏽥€q(k)

􏽱

is the L2-norm of
Y⊥(k).

Define the matrix R€q􏽥􏽥€q (k) � Π (k)HH0(k)Π(k). Based
on equation (14) and equations (22) and (23), R€q􏽥􏽥€q (k) can be
deduced as

R€q􏽥􏽥€q (k) � 􏽙 (k)
HH0(k) 􏽙(k) �

R􏽥€q􏽥€q′ (k) r(k)

r(k)H c(k)

⎡⎢⎣ ⎤⎥⎦,

(24)

in which r(k) � σ(k)􏽥€q(k), c(k) � βσn(k)2 + σ(k)2, and
R􏽥€q􏽥€q′ (k) � βR€q􏽥􏽥€q (k−1) + 􏽥€q(k)􏽥€q(k)H.

For the subspace tracking algorithm, GYAST, to track
the signal subspace of H0(k), four basic steps must be
performed, which are (i) calculating the orthonormal basis
Π(k) of the range space V(t), (ii) constructing the matrix
R€q􏽥􏽥€q (k), (iii) conducting the online updating of Π(k), and
(iv) conducting the online updating of R€q􏽥􏽥€q (k). Using
equations (14) and (22)–(24) and the following equations
(25a)–(25k), these calculations can be realized online in a
recursive way, andΠ(k) can be updated online for each time
instant [23, 31]:

qn(k) � minor eigenvector of R€q􏽥􏽥€q (k)

�
q

rn(k)

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(25a)

b(k) �
1

1 + rn(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (25b)

s(k) �
rn(k)

rn(k)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌σ(k)
, (25c)
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e′(k) �∏ (k− 1)(b(k)q− s(k) €̃q(k))
+ s(k)Y(k),

(25d)

∏ (k) �∏ (k− 1)− e′(k)qH, (25e)

q′(k) � R €̃q €̃q′ (k)q, (25f)

C2(k) �
rn(k)
rn(k)
∣∣∣∣

∣∣∣∣
R(k) + b(k)q′(k)( )qH, (25g)

c(k) � b(k)2qHq′(k) + c(k)

+ 2
b(k)
rn(k)
∣∣∣∣

∣∣∣∣
Re rn(k)q

Hr(k){ },
(25h)

R €̃q €̃q
(k) � R €̃q €̃q

′ (k) + c(k)qqH −C2(k)−C2(k)
H,

(25i)

λm(k) � trace R€q̃ €̃q (k){ }− trace R €̃q €̃q(k){ }, (25j)

σn(k + 1)2 � min λm(k), σn(k)
2{ }. (25k)

2.3. Flowchart of the Online Modal Identi�cation Method
Using the GYAST-RSSI. �e proposed online modal iden-
ti�cation procedure based on the GYAST-RSSI is shown in
Figure 2. Some basic steps of this procedure are summarized
as follows:

(1) Initialize some parameters of the procedure, such as
the number of time delays p, the system order n, the
forgetting factor β, and the initial data lengthN1.�e
system order n can be determined using the SVD
spectrummethod.�e number of time delays should
satisfy 2pl> n.�e forgetting factor β is set within the
range of [0.995–0.999]. �rough some numerical
experiments, the choice of N1 will have an e�ect on
the calculation result of the initial Hankel matrix, but
considering that GYAST is an iterative algorithm, the
result of H(N1) only a�ects the results of the previous
steps. Here, for convenience, setN1 � 100 and k�N1
and use the initial strong-motion records of l
channels with data length N1 to calculate the initial
Hankel matrix H0(k) as H0(k) � (1/p̃)∑

N1
k�1Y(k)

Y(k)T.
(2) GYAST is a recursive subspace tracking algorithm,

and it should �rst be initialized. Perform EVD on the
Hankel matrix H0(k) and initialize the orthonormal
matrix Π(t) as follows:

∏ (k) � Q1(k), (26a)

R €̃q €̃q(k) � Q1(k)
TH0(k)Q1(k), (26b)

σn(k)
2 � smallest eigenvalue of H0(k). (26c)

(3) Set k� k+ 1 and update Π(k) using the GYAST al-
gorithm to calculate the orthonormal basis Π(k),
H(k), R €̃q €̃q(k), etc., using equation (14) and equa-
tions (22)–(24).

(4) Since Π(k) ∼ Οi,k, the two matrices have the same
eigenvalues and eigenvectors, and so we set
Οi,k � Π(k). From the above recursive procedures,
the orthonormal matrix Π(k) can be updated. �en,
at the kth time interval, the discrete state space
matrix Ak and the observation matrixGk are realized
using the following expressions:

Gk � Οi,k(1 : 2l, :),

Ak � Οi,k( )
+
Οi,k,

(27)

where Οi,k � Oi,k(1 : 2l(p− 1), :) and Οi,k � Oi,k
(2l + 1 : 2lp, :).

(5) After we obtain the modal identi�cation results at
time instant tk, some meaningless mathematical
poles should �rst be discarded. If the identi�ed
natural frequencies fi,k and damping ratios ξi,k at
time instant tk satisfy the following criteria, then
mode i is deemed to be a real structural mode:

Initialize some parameters, such as number of
delays p, system order n, forgetting factor β,

initial data with length N1

Set k = N1 and form the initial Hankel matrix
H0(N1) using the initial data with length N1

Perform EVD on the Hankel matrix H0 (N1) and
initialize Π(k)

Set k = k + 1

Update Π(k)

Obtain the estimation of matrices A and G

Calculate natural frequencies, damping ratios,
and modal shape vecotors

k < N?

Stop

Model
ideantification

Initialization

GYAST

No

Yes

Update H0 (k), Rqq (k)Rqq (k), Π (k), and

Figure 2: Flowchart of the proposed online modal identi�cation
using the GYAST-RSSI method and strong-motion records.
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fmin <fi,k <fmax,

ξmin < ξi,k < ξmax,
􏼨 (28)

in which fmin and fmax are the minimum and max-
imum natural frequencies of the active modes of the
structure and ξmin and ξmax are the minimum and
maximum damping ratios.

(6) Continue with step 3∼step 5 of the above calculation
procedure until reaching the end of the strong-
motion records.

3. Examples

3.1. Numerical Example. Using the mass-spring-damper
system with 4 degrees-of-freedom shown in Figure 3, the
time-varying modal identification method proposed in this
work is validated for its identification accuracy, robustness,
and computation efficiency. Some parameters of the system
are set as follows: m1 �m2 �m3 �1.0 kg, m4 � 0.9 kg,
k3 � 7000N/m, k2 � k4 � 8000N/m, c1 � c2 � 0.6N·s2/m, and
c3 � c4 � 0.55N·s2/m. ,e time-varying stiffness coefficients
k1 are simulated as follows.,e time intervals are in seconds.

Case 1: abrupt change of k1:

k1 �

8000, 0≤ t< 4,

6000, 4≤ t< 8,

9000, 8≤ t< 12,

7000, 12≤ t≤ 16,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(unit: N/m). (29)

Case 2: continuous linear change of k1:

k1 � 6000 + 125t, (unit: N/m). (30)

,e initial state of the system is zero, and the support
excitation ag(t) is simulated using a white noise signal. ,e
structural vibration response is obtained by adding some
white noise to the calculated responses using a Runge–Kutta
algorithm (using MATLAB code ODE45). ,e sampling
frequency of the simulated structural vibration response is
1000Hz. Figures 4 and 5 show the support excitation and the
acceleration response of m1 for two simulation cases of k1.

Setting β� 0.995, p � 50, and N1 � 100 and using the
simulated structural vibration responses (SNR� 40 dB) of
case 1 and case 2, the time-varying modal identification
results for the frequencies and damping ratios are shown in
Figures 6 and 7. ,e identification accuracy of the fre-
quencies is sufficient, but the identification accuracy of the
damping ratios needs to be further improved.

,e forgetting factor is an important parameter in the
GYAST-RSSI method proposed in this paper. To verify its
influence on the recognition result, different values of β are
selected for a parameter sensitivity analysis. Under simu-
lation case 1, the analysis results are shown in Figure 8. It can
be seen from Figure 8 that when β is in the interval of [0.995

0.999], the result does not change much. In this example, the
result of β� 0.995 is better.

Based on the simulated vibration response
(SNR � 40 dB), the identification results for frequencies f1
and f2 of mode 1 and mode 2 using the EIV-PAST-
RSSI and GYAST-RSSI methods are plotted in Figures 9
and 10 to make a comparison. Figures 9 and 10 show
that the difference between the identification results of the
EIV-PAST-RSSI and GYAST-RSSI methods is small, but
the identification results of GYAST-RSSI are more stable.

To verify the robustness of the proposed time-varying
modal identification method, simulated vibration response
signals with different SNRs are used to perform the time-
varying modal identification. ,e modal identification re-
sults of the first two frequency orders f1 and f2 for simulation
cases 1 and 2 are shown in Figures 11 and 12, respectively.
Figures 11 and 12 show that, with the increase in the noise
level (decrease in the SNR), the identification accuracy of the
frequencies is still very high.

,e modal assurance criterion (MAC) indexes between
the identified modal shape vectors and the theoretical
modal shape vectors are calculated and shown in Figure 13.
In addition to some sudden changes in the MAC value at
4 s, 8 s, and 12 s, which is caused by the instability of the
algorithm, the identification results of the modal shape
vectors indicate the sufficient accuracy of the GYAST-RSSI
method of tracking the time-varying structural modal
shape vectors.

To evaluate the identification accuracy of the proposed
time-varying modal identification method, the average
relative error (ARE) of the frequencies is calculated and is
shown in Table 1. ,e ARE of the certain order frequency is
defined as

ARE �
1
N

􏽘

N

m�1
100% ×

ft
m −fc

m

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

ft
m

, (31)

in which ft
m and fc

m are the identification results and the
theoretical value of the certain order frequency at time
instant m, respectively.

From Table 1, it can be seen that the identification ac-
curacy is good for the two time-varying modal identification
methods since the maximum ARE is 2.11%. With the de-
crease in the SNR, the identification accuracy for the fre-
quencies has become low. Moreover, the GYAST-RSSI has
better identification than the EIV-PAST-RSSI method in
most cases.

3.2. Time-Varying Modal Identification of the Pacoima Arch
Dam. ,e Pacoima dam is a 113m high arch dam located
near Los Angeles, California. Since the Pacoima arch dam is
near the famous San Fernando earthquake-prone area, it has
experienced several earthquakes of different magnitudes.
,e dam experienced two severe earthquakes: the San
Fernando earthquake (1971) and the Northridge earthquake
(1994). Due to the damage caused by the San Fernando
earthquake and the opening of the joints near the thrust
block at the left abutment, rehabilitation operations were
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Figure 3: Concentrated mass system with 4 degrees-of-freedom.
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Figure 4: Support excitation and vibration response of m1 (SNR� 40 dB) for simulation case 1: (a) support excitation ag(t); (b) acceleration
response of m1.

4

2

0

–2

A
cc

el
er

at
io

n 
(m

/s
2 )

–4
0 2 4 6 8

Time (s)
10 12 14 16

(a)

0 2 4 6 8
Time (s)

10 12 14 16

2

0

–2

A
cc

el
er

at
io

n 
(m

/s
2 )

–4

4

(b)
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performed afterward, and an array of 17 accelerometers were
installed on the dam in 1977 [32]. �e arrangement of the 10
acceleration sensors with 17 measurement channels is
shown in Figure 14. Among the 17 measurement channels,
channels 1∼8 are located on the dam body and channels
9∼17 are located on the base rock. �e measurement di-
rections of channels 1, 2, 5, 6, 7, 8, 9, 12, and 15 are in the
radial direction; channels 4, 11, 14, and 17 are in the tan-
gential direction; and channels 3, 10, 13, and 16 are in the
vertical direction. After the Northridge earthquake, the
strong-motion observation system was updated, and the
strong-motion responses of the three di�erent earthquakes

were recorded. �e information of the three earthquakes is
shown in Table 2.

�e strong-motion records of the Pacoima arch dam for
channels 1, 2, 5, 6, 7, and 8 in the radial direction during the
Newhall earthquake are shown in Figure 15. �e sampling
frequency of the strong-motion monitoring data is 200Hz.
�us, the cuto� frequency of the data is 50Hz.

Time-invariant modal identi�cation results of the
Pacoima dam using di�erent methods are shown in
Table 3. �ese identi�cation results are used to make a
comparison with the following time-varying modal identi�-
cation results.
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Figure 6: Frequency (f1∼f4) and damping ratio (ξ1∼ξ4) identi�cation results of simulation case 1 (SNR� 40 dB): identi�cation results for (a)
natural frequencies using GYAST-RSSI and (b) damping ratios using GYAST-RSSI.
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Channels 9∼17 are located on the base rock. �e strong-
motion records of channel 9 in the radial direction during the
three major California earthquakes and the corresponding
power spectrums are shown in Figure 15. As seen from

Figure 15, for the San Fernando earthquake and the Chino
Hills earthquake, the dominant frequencies of the earthquake
excitations are less than 3.32Hz. It can be seen from Table 3
that the dominant frequencies of the earthquake excitation are
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Figure 8: Frequency (f1, f2) identi�cation results of simulation case 1 under di�erent forgetting factors (SNR� 40 dB): (a) mode 1; (b) mode 2.
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less than the �rst-order modal frequency of the dam. How-
ever, for the Newhall earthquake, the range of the dominant
frequencies of earthquake excitation is much wider than those
of the other two earthquakes. �erefore, for the Newhall
earthquake, the �nal modal identi�cation results of the dam
should not include these dominant frequencies of excitation
shown in Figure 16(f).

By setting β� 0.995, p � 100, andN1� 200, the structural
frequencies and damping ratios are identi�ed using the

proposed time-varying modal identi�cation method based
on GYAST-RSSI, and the identi�cation results are shown in
Figures 17–19.�e vibration response of channel 1 is plotted
to show the variation of the modal parameters with the
acceleration amplitude. From Figures 17–19, the time-
varying characteristics of the arch dam during earth-
quakes are clearly observed, especially when the amplitude
of the acceleration response is relatively large. According to
Figures 17–19, the frequency after the earthquake tends to be
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Figure 10: Frequency identi�cation results of the �rst two modes using di�erent methods for simulation case 2 (SNR� 40 dB): (a) mode 1;
(b) mode 2.
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stable, indicating that none of the three earthquakes may
cause any damage to the dam.

For the three earthquakes, the frequencies of the dam
show a decreasing trend after the earthquake, which may be
caused by the solid-water interaction and the reduction of the
structural sti�ness. As was shown in some previous works, the

solid-water interaction can be simulated by the simple
adding-mass method.�e additional mass that is added to the
structural system will reduce the frequencies of the dam-
reservoir-foundation system. However, the decrease in the
frequencies can also be caused by the reduction of the
structural sti�ness during earthquakes, which needs to be
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Figure 14: �e arrangement of the accelerographs on the Pacoima arch dam.

Table 1: A comparison of the ARE of time-varying modal identi�cation results for frequencies using the EIV-PAST-RSSI and GYAST-RSSI
methods.

Case Mode Method No noise (%) SNR� 50 dB (%) SNR� 40 dB (%) SNR� 30 dB (%)

I

1 EIV-PAST-RSSI 0.25 0.41 0.63 0.88
GYAST-RSSI 0.23 0.44 0.51 0.75

2 EIV-PAST-RSSI 0.32 0.64 1.58 2.05
GYAST-RSSI 0.29 0.60 1.47 2.11

3 EIV-PAST-RSSI 0.30 0.83 1.02 1.37
GYAST-RSSI 0.36 0.80 0.97 1.22

4 EIV-PAST-RSSI 0.42 0.77 1.29 1.58
GYAST-RSSI 0.58 0.69 1.36 1.77

II

1 EIV-PAST-RSSI 0.11 0.20 0.59 0.92
GYAST-RSSI 0.21 0.34 0.48 0.85

2 EIV-PAST-RSSI 0.32 0.41 0.68 1.09
GYAST-RSSI 0.47 0.59 0.50 1.32

3 EIV-PAST-RSSI 0.79 0.86 1.25 1.73
GYAST-RSSI 0.79 0.86 1.25 1.73

4 EIV-PAST-RSSI 0.54 0.99 1.43 1.92
GYAST-RSSI 0.48 0.87 1.51 1.77

Table 2: Information about three major California earthquakes.

Earthquake name Date Earthquake magnitude Location of earthquake source Depth of the earthquake source (km)
San Fernando 2001-01-13 4.3 — —
Chino Hills 2008-07-29 5.5 3.5 km northwest of Los Angeles 13.6
Newhall 2011-09-01 4.2 12 km away from Los Angeles —

Shock and Vibration 13



studied in the future. When the amplitude of the acceleration
is very low, the modal identi�cation results tend to be time
variant. �ese time-varying modal identi�cation results
demonstrate that the dynamic characteristics of concrete
dams during large earthquakes are time-varying indeed.

For four typical time instants, t� 20 s, 25 s, 30 s, and 35 s,
the identi�cation results of the modal shape vectors using the
strong-motion records of the Newhall earthquake are shown

in Figure 20. Figure 20 shows the time-varying characteristics
of the arch dam’s modal shape vectors during the earthquake.

4. Conclusions

�e online modal identi�cation method of concrete dams
proposed in this work has been veri�ed using a numerical
example and an engineering example. �e GYAST is a good
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Figure 15: Strong motion of Pacoima arch dam of channels in the radial direction during the Newhall earthquake: (a) channel 1; (b) channel
2; (c) channel 5; (d) channel 6; (e) channel 7; (f ) channel 8.

Table 3: Some time-invariant modal identi�cation results of the Pacoima dam.

Earthquake Identi�cation method
Frequency (Hz) Damping ratio

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
San Fernando Optimization method [8] — 4.73 5.06 — 6.2% 6.6%
San Fernando 4 spectra [32] 3.6–3.7 4.8–5.0 5.1–5.3 2.74% 2.48% 2.41%
Chino Hills ARX model [22] — 5.40 5.75
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Figure 16: �e strong-motion records of channel 9 and the corresponding power spectrums during three major California earthquakes: (a)
the strong-motion record of channel 9 during the San Fernando earthquake; (b) the power spectrum of the strong-motion record of channel
9 during the San Fernando earthquake; (c) the strong-motion record of channel 9 during the Chino hill earthquake; (d) the power spectrum
of the strong-motion record of channel 9 during the Chino hill earthquake; (e) the strong-motion record of channel 9 during the Newhall
earthquake; (f ) the power spectrum of the strong-motion record of channel 9 during the Newhall earthquake.
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tool to track the signal subspaces of different modes to
reduce the disturbance of the observation noise and sto-
chastic excitation since it shows good identification

accuracy, robustness, and computation efficiency. ,e
identification accuracy of the frequencies and modal shape
vectors is sufficient, while for the damping ratios, the
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Figure 17: Time-varying modal identification results of the Pacoima dam using the San Fernando earthquake data: (a) vibration response of
channel 1; (b) identification results for frequencies.
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Figure 18: Time-varying modal identification results of the Pacoima dam using the Chino Hills earthquake data: (a) vibration response of
channel 1; (b) identification results for frequencies.
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Figure 19: Time-varying modal identification results of the Pacoima dam using the Newhall earthquake data: (a) vibration response of
channel 1; (b) identification results for frequencies.
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performance of the proposed online modal identification
method still needs to be improved. Some possible ways to
obtain a better identification result of the damping include
improving the robustness of the subspace tracking algo-
rithms, signal denoising, and adopting input-output modal
identification methods. ,e time-varying modal parameters
identified using the strong-motion records of concrete dams
can be used as important features to study the real dynamic
characteristics of structures during large earthquakes, which
is our research direction in the future.
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Operational modal analysis (OMA) is a powerful vibration analysis tool and widely used for structural health monitoring (SHM) of
various system systems such as vehicles and civil structures. Most of the current OMA methods such as pick-picking, frequency
domain decomposition, natural excitation technique, stochastic subspace identification (SSI), and so on are under the assumption of
white noise excitation and system linearity. However, this assumption can be desecrated by inherent systemnonlinearities and variable
operating conditions, which often degrades the performance of these OMAmethods in that themodal identification results show high
fluctuations. To overcome this deficiency, an improved OMAmethod based on SSI has been proposed in this paper tomake it suitable
for systems with strong nonstationary vibration responses and nonlinearity.*is novel method is denoted as correlation signal subset-
based SSI (CoS-SSI) as it divides correlation signals from the system responses into several subsets based on theirmagnitudes; then, the
average correlation signals with respective to each subset are taken into as the inputs of the SSI method. *e performance of CoS-SSI
was evaluated by a simulation case andwas validated through an experimental study in a further step.*e results indicate that CoS-SSI
method is effective in handling nonstationary signals with low signal to noise ratio (SNR) to accurately identifymodal parameters from
a fairly complex system, which demonstrates the potential of this method to be employed for SHM.

1. Introduction

Operational modal analysis (OMA) is, in fact, not really a
new discipline. *e beginning of OMA could be going back
to the sixties and early seventies, which was developed along
with the experimental modal analysis (EMA) [1]. However,
OMA has been developed rapidly since the last two decades.
One main reason for this is the availability of a large quantity
of new powerful system identification techniques, which are
the basis of OMA approaches available as a complementary
tool [2–7]. Another reason is the rapid development of
computer technology, which can compute the mass mea-
sured data in less time. Compared to EMA, the OMA has
attracted a more considerable attention in mechanical en-
gineering, aerospace engineering, and civil engineering since
1990s due to its many aspects. *e main advantages of OMA
are highlighted as follows [5, 8–10]:

(1) OMA is cheaper and faster to conduct since it only
measures the responses

(2) *e dynamic characteristics of the whole structural
system can be obtained instead of its small parts

(3) A linear model of structural systems under opera-
tional conditions can be obtained since the random
excitations are of broadband in nature

(4) OMA is suitable for complex and complicated
structures due to the fact that the close modes can be
identified through multi-input/multioutput (MIMO)
modal identification algorithm

Because of these advantages, there are numerous OMA
methods that have been developed in last decades. Generally,
they can be classified into two categories: frequency domain
(FD) and time domain (TD). *e earliest FD technique is
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based on the power spectrum density (PSD) peak-picking
algorithm. *e natural frequencies are directly obtained
from the choice of peaks in the PSD graph.*e peak-picking
technique has proved its effectiveness in the modal identi-
fication method when system’s modes are well separated
[4, 5]. *is technique is simple to use. However, it has less
accuracy because of the limitation of the frequency reso-
lution in the PSD spectrum [4]. *erefore, peak-picking
technique is unsuitable for the modal identification of the
system with close modes [5]. However, the realistic complex
structures are always encountered with close modes. Con-
sequently, a new FD technique, named frequency domain
decomposition (FDD), was developed to meet the challenge
of the identification of the close modes [11]. In FDD, the
response is derived into a set of single-degree-of-freedom
systems by introducing a decomposition of the spectral
density function matrix. *e major drawback of the FDD is
that it can only estimate the modal frequencies and the mode
shapes but not the damping ratios. In order to extract the
damping ratio, an enhanced FDD (EFDD) was then pro-
posed [12]. *e EFDD method extracts the damping of a
particular mode by computing the autocorrelation and
cross-correlation functions. However, all of the referred
methods are under assumptions that the input signals are
stationary Gaussian white noise and the structure is very
lightly damped.

Besides the FD techniques, the TD techniques were also
developed very quickly in the last decades. For instance, the
natural excitation technique (NExT) is a popular and
powerful TD method, which was proposed in 1990s [13]. It
is based on the principal that the correlation functions can
be expressed as the sum of exponentially decayed sinusoids
assuming the ambient excitation as a white noise. *e
correlation functions perform the similar role like the
impulse response functions in EMA, which consists of the
information of the modal parameters [5, 14]. On the basis
of this principle, some other traditional EMA techniques
such as polyreference complex exponential (PRCE), Ibra-
him time domain (EITD), and eigen realization algorithm
(ERA) were also successfully extended and applied for the
OMA.

Furthermore, stochastic subspace identification (SSI)
method is another widely employed TD technique for
OMA. It was proposed as an extension of the subspace
state-space system identification method [5]. A systematic
description of SSI and its applications can be found in
[15–17]. However, the SSI method follows the same as-
sumption like other OMA techniques; the excitations have
to be stationary. Yet this is not always true for the field test
of OMA. For example, the vehicle responses are always
nonstationary resulted by frequently acceleration and
deceleration. In addition, road humps and nonlinearity
will also lead nonstationarity of the vehicle responses. In
order to meet the challenge of nonstationarity, some
improved SSI methods were proposed by the combining
traditional SSI method with other methods, or pre-
processing the measured responses before applying them
in the SSI. For instance, empirical mode decomposi-
tion (EMD) was combined with SSI to extract modal

parameters of civil structure from nonstationary signals
[18]. What is more, a preprocess step was conducted in
[19–21] by averaging the obtained correlation signals,
which is denoted as average correlation signal-based SSI
(ACS-SSI). *e effectiveness of ACS-SSI has been proved
by the experimental study of the extraction of the modal
parameters of a chassis frame of a heavy-duty dump ve-
hicle under normal operational condition.

Because of the effectiveness of the ACS-SSI method, it
was employed to identify the modal parameters related to
the vehicle suspension system. However, it was found that
the ACS-SSI method was unable to accurately extract the
target modal parameters due to the severer excitation
condition. Consequently, a new method is needed to extract
the modal parameters linked to the suspension parameters.
In this study, the main objective of this paper is to present a
novel method based on the ACS-SSI method [19, 20],
denoted as the correlation subset-based SSI (CoS-SSI), for
OMA of system under high noise scenery and with extreme
nonstationary responses.

*e rest of this paper has been divided into four sections.
Section 2 outlines the enhanced method, CoS-SSI. Section 3
verifies the performance of this method through a vibration
simulation of a typical 3-DOF system and Section 4 presents
an experimental investigation of CoS-SSI to validate the
simulation results. Finally, the conclusions are given in
Section 5.

2. CoS-SSI Method

As referred previously, most of the OMA techniques were
developed under the assumption that the measured re-
sponses are stationary. However, the field-monitored data
are usually nonstationary such as the platform under the
wave impacts and the bridge with the time-varying traffic
loading [22]. *e nonstationary responses will result in the
variation of identified modal parameters from time to time,
which may cause the monitoring process to be unreliable in
many cases. Moreover, the nonstationary signals may lead to
time-varying frequency contents characterized by modal
components participating at different times and hence, part
of the modes could be missed [19, 22].

*e nonstationary problem has been addressed in
[23, 24] by introducing the correlation technique, which
demonstrates that the nonstationary procedure can be
transferred into the stationary problem if the correlation
functions are evaluated at a fixed time instant. A theoretical
justification can be found in [13, 25]. Based on this theory, a
method employing the correlation signals and combined
with the framework of covariance driven SSI (Cov-SSI),
denoted as ACS-SSI, was proposed in [19, 20]. *e main
steps of ACS-SSI are listed as follows [19–21, 26]:

(1) Obtain K numbers of data segments from the
measurements of l channels.

(2) Calculate the correlation functions of each segment
for different channels. *e correlation functions
can be calculated as follows when the reference is
p channel:
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where i � 1, 2, . . . , l is the channel number; N is the
length of each segment; n is the time sequence; and m

is the delayed time. *e FFT fast Fourier transform
(FFT) algorithm can be used to calculate the cor-
relation signals to improve the calculation efficiency.

(3) Conduct average step to all of the obtained corre-
lation functions to calculate the corresponding av-
erage correlation functions of each channel. It can be
expressed as the following equation:
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where K is the number of segments.

*e averaged correlation functions are employed as the
measured responses to construct the Hankel matrix in the
SSI method. *e reason for the correlation signals obtained
from different data sets can be averaged is based on the fact
that the phase information between different records is
preserved by the reference-based correlation signals. *e
average step will thus enhance the contents with regular or
periodic components by suppressing the irregular random
contents in different data records; the regular and periodic
components contain the information of modal parameters
[19, 20]. *e effectiveness of this method has been proved in
[19–21, 26]. However, the amplitudes of the correlation
signals can be spread in an extremely wide dynamic range
due to the strong nonstationary characteristics of the re-
sponses, whereas the ACS-SSI method helps in averaging all
correlation signals at one time and therefore, takes less
account to the signals with low amplitudes.

However, the low-amplitude correlation signals are often
related with the vibration modes with higher damping co-
efficients; in other words, they are less frequently excited. It
indicates that such an averaging technique over a full set of
data may lead to an inadequate identification result for these
modes with high damping properties. As a result, less-
excited modes cannot be identified reliably. Moreover, the
variation of the amplitude of the correlation signals may
result from the inevitable effects of the system nonlinearity.

Based on the above analysis, the deficiency of the ACS-SSI
method is evident.*erefore, the performance of ACS-SSI has
to be enhanced to make it suitable for extreme nonstationary
and quasi-nonlinear scenarios. In this paper, a novel method
“correlation subset-based SSI” (CoS-SSI) was proposed which
is based on the algorithm of ACS-SSI. Although ACS-SSI has
deficiency, it has been proved that the average step conducted
to the correlation signals calculated from the short segments
of signal are effective in suppressing nonstationary effect, and
that is why the same step is applied in the CoS-SSI method.
However, the correlation signals are divided into several
subsets according to their amplitudes, and each subset of
correlations signals are averaged rather than considering all
correlation signals as a full set. Finally, the system modal
parameters can be obtained by merging the similar modal

parameters identified by ACS-SSI with respective to each
subset. Moreover, the merging step is performed according to
the discrepancy of the identified frequencies and modal as-
surance criterion (MAC).

Furthermore, unlike ACS-SSI, the main contribution of
the CoS-SSI is dividing the correlation signals into different
subsets according to their magnitudes. *is key step is
fulfilled by calculating the root mean square (RMS) value of
each correlation signal segment and later identifying the
correlation signal segments that belong to the respective
subsets based on those corresponding RMS values. Partic-
ularly, if l channels of vibration signals have been collected
and they have been segregated into K segments, yet K × l2 of
correlation signal segments can be obtained. Each segment
has an RMS value, consequently, an RMS value matrix is
obtained and its size is K × l2. *e next step is obtaining the
minimum RMS value from each segment, and this will yield
a vector with K elements. *e follow-up step is to obtain the
minimum and maximum values from the vector and then
calculating the difference of the obtained values. After that,
using the calculated difference value, divide the number of
subsets by it to calculate the interval of correlation segments.
Finally, all of correlation signal segments are categorized
into different subsets according to the obtained interval. *e
value of subset number is always set at 3 or 4 considering the
accuracy of identification and the calculation efficiency.

For clarity, the CoS-SSI method is further summarized
with a flow chart, shown in Figure 1.*e improvement of the
steps made in this study is highlighted with red boxes. In this
study, a simulation study has been carried out to verify the
performance of this newly proposed method by comparing
with classical Cov-SSI and ACS-SSI methods. Furthermore,
an experimental study has also been conducted to validate
the simulation model and to evaluate the effectiveness of this
novel method.

In plenty of OMA progress, stabilization diagram (SD) is
a popular and efficient tool to filter out the false modes. *e
SD is performed to check the consistency of the modal
properties by setting threshold values for the frequency,
damping ratio, and the modal assurance criterion (MAC)
between two adjacent orders; only the mode which satisfies
all of the three thresholds will be allowed to plot a point on
the SD. Moreover, the system’s true modes will produce
stable points but the spurious modes will not. *e tolerance
can be calculated based on the following equations:

fi −fi−1
fi

× 100%< εf ,

ξi − ξi−1
ξi

× 100%< εξ ,

1−MAC(i : i− 1)< εMAC,

MAC(i : i− 1) �
Ψi( 􏼁

TΨi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

Ψi( 􏼁
T Ψi( 􏼁 Ψi−1( 􏼁

TΨi−1
,

(3)

where fi, ξi,Ψi are the frequencies, damping ratios, and
mode shapes obtained when the Hankel matrix has i rows
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(orders) and εf , εξ , εMAC are the threshold (tolerance) values
for the true modes. In this study, εf, εξ , εMAC were set at the
values of 0.1, 0.2, and 0.5, respectively. Finally, the system’s
real modes can be identi�ed based on adequate stable points
in the SD. ­e percentage of the stable points over the
calculated number of orders is performed as the second
threshold to indicate the corresponding mode with adequate
stable points to be chosen as true or false one.

3. Numerical Simulation

3.1. 3-DOF Model Description. In this section, a classical 3-
DOF vibration system, shown in Figure 2, was employed to
generate simulation signals with a di�erent level of noise to
evaluate the performance of the proposed scheme by com-
paring with traditional Cov-SSI and ACS-SSI methods. ­e
parameters for the 3-DOF system are of m1 � m2 � m3 �
200 kg, k1 � k2 � k3 � 1.96 × 106 N/m, and c1 � c2 � c3 �
1.0 × 103 N.s/m; the theoretical modal parameters such as
natural frequencies and damping ratios of this system can be
calculated by using the parameters tabulated in Table 1.

In the simulation case, the 3-DOF system has been
excited by three independent random inputs from a

band-pass stationary white noise and a number of multiple
random impulsive impacts. ­e impulsive excitations at-
tempt to mimic the occasionally pulse inputs in real ap-
plications, such as the bump on the road.­e responses y(k)
of this 3-DOF vibration system can be obtained through the
“lsim” function in MATLAB. Moreover, the responses y(k)
of this system add more random signals to mimic the
measurement noise, shown the following equation:

yn(k) � y(k) + δσ(k), (4)

where σ(k) is a band-pass white noise with σ(0, 1) and the
amplitude factor of measurement noise is de�ned in
equation (5). It allows the performance of CoS-SSI to be
evaluated under various scenarios that the output signals
with di�erent signal to noise ratios (SNRs).

δ �

���������
∑Nk�1y(k)

2
√

SNR∑Nk�1σ(k)
2.

(5)

According to the theoretical resonance frequency of the
third mode, the sampling frequency for the numerically
solving system model was set at 500Hz and sampling time
was 60 s for each occasion. An example of the acceleration

Calculate the RMS values of correlation
signals; a matrix RRK×l2 can be obtained,

where K and l is the number of segments and
channels, respectively

Choose the minimum RMS value from each
segment (a vector RmK×1 can be obtained)

Organise correlation signals into J subsets
according to the following structure: 

for k = 1:K
if 0<min (RR′(:, k )) <1 × H

elseif 1 × H <min (RR′(:, k )) <2 × H

put RR′(:, k ) into 2nd subset

put RR′(:, k ) into 1st subset

put RR′(:, k ) into Jth subset

else (J – 1) × H<min (RR′(:, k )) < J × H 

end
end

Obtain the minimum and maximum value of
vector RmK×1 by “min” and “max” function

Raw signals

Segregate signals into K short segments

Calculate correlation signals by
FFT-based algorithm

Organise correlation signals into J subsets
according to their magnitude distribution

Average correlation for jth subset

Apply covariance-driven
SSI to jth subset

Integrate system modes from modes of all subsets
based on frequency differences and MAC

jth subset = J?

Calculate the interval value of H to divide the
correlation signals into J subsets:

H =
J

max (Rm ) – min (Rm)

Figure 1: Flow chart of CoS-SSI.
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responses of the 3-DOF system with measurement noise is
shown in Figure 3. *e mean values of every 2 seconds (1000
points) of the responses were calculated when the SNR was
10. It can be seen from Figure 3 that the mean values are
changed over the time, which indicates the nonstationarity
characteristic of the response signals.

*e corresponding power spectrum density (PSD) of
each block has been presented under the time-domain
signals. It shows that only the first and second modes at
the frequencies of 7.06Hz and 19.65Hz are clear, whereas
the third mode is not that much prominent due to the
damping ratio is higher (shown in Table 1). Moreover, it can
be seen from the PSD of SNR� 0.5 that the noise has its effect
on the energy distribution. Although the main peak values
have not been affected, the second and third modes of m2
have been submerged. Based on this result, it is reasonable to
suppose that the noise may cause the modal parameters hard
to be identified.

3.2. Identification Results and Analysis. In this section, to
illustrate the superiority of CoS-SSI, the other two methods,
Cov-SSI and ACS-SSI methods, are also employed in this
simulation case. For the Cov-SSI, the dataset used to identify
the modal parameters is of 60 seconds time duration for the
3-DOF system with measurement noise; the sampling fre-
quency is 500Hz. Apart from that, twenty more Monte
Carlo simulations were carried out to generate the sufficient
signals for modal parameters identification by the ACS-SSI
and the CoS-SSI methods. Moreover, the correlation signals
were calculated in each Monte Carlo simulation and
therefore, twenty correlation signal segments were obtained.
For the ACS-SSI, the twenty segments were averaged in
single time, and then the averaged signals were employed to
identify the modal parameters. However, as referred pre-
viously, the ensemble average might loss some significant
signatures of the correlation signals with small amplitudes.
*erefore, the twenty segments of correlation signals were
divided into three subsets according to their magnitudes in
the CoS-SSI, and the modal parameters were identified with
respective to each subset of correlation signals. *e SD
identified by the three methods for the 3-DOF system under

two SNR scenarios, SNR� 10 and 0.5, are presented in
Figures 4–6, respectively.

It can be seen from Figures 4(a) and 5(a) that Cov-SSI
and ACS-SSI have the ability to identify three relative stable
modes when the SNR is 10. However, the SDs identified by
CoS-SSI are messier than the previous two, which can be
seen from Figure 6 (ai,i�1,2,3). *ese results might be caused
by the classification of correlation signals before the aver-
aging step which improved the SNR in a further step; the
signals quality has been improved greatly. *erefore, the
threshold should be stricter (with smaller value). It implies
that CoS-SSI has no superiority when the signal quality is
good. However, the advantage of CoS-SSI can be illustrated
with poor quality signals (SNR� 0.5). *e SDs identified by
the three methods when the SNR is 0.5 are presented in
Figures 4(b) and 5(b) and Figure 6 (bi,i�1,2,3). It can be seen
from Figure 4(b) that Cov-SSI is unable to identify any stable
modes. From Figure 5(b), it can be seen that ACS-SSI has the
ability to identify first two stable modes, whereas the third
mode is unstable. In contrast, CoS-SSI has identified three
relative stable modes in the three subsets.

As referred earlier, a second threshold is set up to filter out
the spurious modes. In this simulation case, 60 orders (rows)
of the Hankel matrix are calculated, which can be seen from
the left-y axle. *e stable modes are chosen as the percentage
of stable points over 50% of the SDs for Cov-SSI and ACS-SSI;
this threshold for CoS-SSI is stricker which is set at 70%. An
example of the second threshold result identified by Cov-SSI
of the signal with SNR� 10 is shown in Figure 7.

Based on these two thresholds, the natural frequency and
damping ratio identified by Cov-SSI, ACS-SSI, and CoS-SSI
methods are listed in Tables 2–4, respectively. Moreover, the
identification errors compared with the theoretical values
are also listed in the tables. *ere are three noticeable things
that can be found in the three tables. *e first one is that the
Cov-SSI cannot identify any mode when the SNR is 0.5; the
second one is that the ACS-SSI can only identify first two
modes but not the third mode under the same noise con-
dition; and the third thing is that CoS-SSI has the ability to
identify all the three modes with the acceptable errors.

In order to better illustrate the identification results,
the identification errors of frequency and damping are
presented in bar figures, which are shown in Figures 8 and 9,
respectively. It can be seen from Figure 8(a) that the
frequency identification errors are extremely small. Partic-
ularly, when the SNR is 10, most of the frequency identi-
fication errors are below 1%. Although the frequency
identification errors from CoS-SSI are bigger than those of

k1

c1

m1 m2 m3

w1 w2 w3

k2 k3

c2 c3

Figure 2: 3-DOF vibration system.

Table 1: *eoretical modal parameters of a 3-DOF system.

Mode 1 Mode 2 Mode 3
Frequency 7.01Hz 19.65Hz 28.39Hz
Damping ratio 1.12% 3.15% 4.55%
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ACS-SSI, the errors are still quite small, which are around
1.5%. ­e main reason for the bigger error of frequency
identi�cation from CoS-SSI is the average step accounted
with less signals due to the signals are divided into three

groups according to their amplitudes. Moreover, it can be
seen from Figure 8(b) that the frequency identi�cation
accuracy of ACS-SSI and CoS-SSI methods has not been
a�ected regardless of the measurement noise added.
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Figure 4: Stabilization diagram of Cov-SSI. (a) SD of Cov-SSI (SNR� 10). (b) SD of Cov-SSI (SNR� 0.5).
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Figure 5: Stabilization diagram of ACS-SSI. (a) SD of ACS-SSI (SNR� 10). (b) SD of Cov-ACS (SNR� 0.5).
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Figure 3: Example of the time-domain responses and corresponding PSD.

6 Shock and Vibration



0 5 10 15

(a1)

(a2)

(a3)

20 25 30 35
Frequency (Hz)

15

30

45

60

Ro
w

 n
um

be
r

0
0.05
0.1
0.15
0.2

0 5 10 15 20 25 30 35
Frequency (Hz)

15

30

45

60

Ro
w

 n
um

be
r

0
0.05
0.1
0.15
0.2

0 5 10 15 20 25 30 35
Frequency (Hz)

15

30

45

60

Ro
w

 n
um

be
r

0
0.05
0.1
0.15
0.2

PS
D

 ((
m

/s
2 ).2 /H

z)
PS

D
 ((

m
/s

2 ).2 /H
z)

PS
D

 ((
m

/s
2 ).2 /H

z)

0 5 10 15 20 25 30 35
Frequency (Hz)

15

30

45

60

Ro
w

 n
um

be
r

0
0.05
0.1
0.15
0.2

0 5 10 15 20 25 30 35
Frequency (Hz)

15

30

45

60

Ro
w

 n
um

be
r

0
0.05
0.1
0.15
0.2

0 5 10 15 20 25 30 35
Frequency (Hz)

15

30

45

60

Ro
w

 n
um

be
r

0
0.05
0.1
0.15
0.2

(b1)

(b2)

(b3)

PS
D

 ((
m

/s
2 ).2 /H

z)
PS

D
 ((

m
/s

2 ).2 /H
z)

PS
D

 ((
m

/s
2 ).2 /H

z)

Figure 6: Stabilization diagram of CoS-SSI. (a1) CoS-SSI (SNR� 10, J� 1/1st subset). (a2) CoS-SSI (SNR� 10, J� 2/2nd subset). (a3) CoS-
SSI (SNR� 10, J� 3/3rd subset). (b1) CoS-SSI (SNR� 0.5, J� 1/1st subset). (b2) CoS-SSI (SNR� 0.5, J� 2/2nd subset). (b3) CoS-SSI
(SNR� 0.5, J� 3/3rd subset).
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Table 2: Cov-SSI results.

Mode 1 Mode 2 Mode 3
f1 (Hz) Error (f) ξ1 Error (ξ) f2 (Hz) Error (f) ξ2 Error (ξ) f3 (Hz) Error (f) ξ3 Error (ξ)

­eoretical value 7.0129 Null 1.12% Null 19.6468 Null 3.15% Null 28.3904 Null 4.55% Null
SNR� 10 7.0380 0.37% 1.25% 11.61% 19.6663 0.09% 3.11% 1.27% 28.4377 0.17% 4.3% 5.49%
SNR� 0.5 Null Null Null Null Null Null Null Null Null Null Null Null

Table 3: ACS-SSI results.

Mode 1 Mode 2 Mode 3
f1 (Hz) Error (f) ξ1 Error (ξ) f2 (Hz) Error (f) ξ2 Error (ξ) f3 (Hz) Error (f) ξ3 Error (ξ)

­eoretical value 7.0119 Null 1.12% Null 19.6468 Null 3.15% Null 28.3904 Null 4.55% Null
SNR� 10 7.0090 0.04% 1.08% 3.57% 19.6889 0.21% 3.29% 4.44% 28.3172 0.26% 4.81% 5.71%
SNR� 0.5 7.0093 0.04% 1.19% 6.25% 19.6797 0.17% 3.41% 8.25% Null Null Null Null
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However, the damping ratios are identi�ed with huge errors
in spite of the signal quality, which can be seen in Figure 9.
­is is reasonable because the damping estimation is a
common challenge for all the system identi�cation methods.
In addition, it is evident from the theoretical results that the
value of damping ratios are much smaller than the frequency;
this could also lead the error of damping ratios becoming

much more evident, especially for the �rst mode. ­erefore,
the damping ratio will not be chosen as a vital reference for
structural health monitoring (SHM).

However, the mode shape is the most signi�cant
index for SHM whenever we adopt any modal parameters
identi�cation methods. It is well-known that MAC values
are widely employed to compare two mode shapes to see

Table 4: CoS-SSI results.

Mode 1 Mode 2 Mode 3
f1(Hz) Error (f) ξ1 Error (ξ) f2 (Hz) Error (f) ξ2 Error (ξ) f3 (Hz) Error (f) ξ3 Error (ξ)

­eoretical value 7.0119 Null 1.12% Null 19.6468 Null 3.15% Null 28.3904 Null 4.55% Null

SNR� 10
S1 7.0275 0.22% 2.17% 93.75% 19.3324 1.60% 4.45% 41.27% 28.5183 0.45% 6.53% 43.52%
S2 7.0118 0 1.97% 75.89% 19.3377 1.57% 5.91% 87.62% 28.5781 0.66% 6.71% 47.47%
S3 7.0405 0.41% 5.17% 361.61% 19.3322 1.6% 3.92% 24.44% 28.5076 0.41% 5.83% 28.13%

SNR� 0.5
S1 7.0170 0.07% 3.47% 209.82% 19.5947 0.27% 5.14% 63.17% 28.4288 0.14% 6.53% 43.52%
S2 7.0234 0.16% 2.58% 130.36% 19.5935 0.27% 3.74% 18.73% 28.5125 0.43% 3.50% 23.08%
S3 7.0220 0.14% 4.45% 297.32% 19.5887 0.30% 3.51% 11.43% 28.4736 0.29% 5.53% 21.54%
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Figure 8: Identi�ed frequency errors. (a) Identi�ed frequency errors (SNR� 10). (b) Identi�ed frequency errors (SNR� 0.5).
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Figure 9: Identi�ed damping errors. (a) Identi�ed damping errors (SNR� 10). (b) Identi�ed damping errors (SNR� 0.5).
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whether they are close or not. In this simulation study, all of
the identified mode shapes are illustrated by the MAC values
by comparing with the theoretical mode shapes, shown in
Figures 10–12. From these figures, it can be seen that all of the
MAC values for the identified modes are close to 1. Fur-
thermore, the result of ACS-SSI can only identify two modes
when the SNR is 0.5 and has been illustrated in Figure 11.
Based on these results, it could recognise the powerful ability
of the MAC value to indicate the mode shapes.

All of the three methods have been evaluated by using a
3-DOF vibration system. It seems highly probable that CoS-
SSI is superior to other two methods, especially treating high
noise signals; however, signals collected under operational
conditions always contained with high noise.

4. Experiment Study

4.1. Experiment Setup. *e experiments carried out in this
paper are to identify the vehicle suspension-related modal
parameters by collecting the vibration signal from a car body
at four corners. *e experimental car is a commercial car,
and its model is Vauxhall Zafira. *e signals were collected
during car running on a traditional UK rustic road.
Moreover, four accelerometers were employed to collect the
vibration signals from the vehicle body which caused by the
road excitation. *e four transducers are piezoelectric ac-
celerometers which are produced by SINOCERA and the
model is CA-YD-185. *is is a widely used kind of trans-
ducer because of its wide frequency measurement range,
which is from 0.5Hz to 5000Hz. A four-channel data ac-
quisition system and a laptop were adopted to collect and
store the signals, respectively. *e data acquisition system
model is YE6231 and is also manufactured by SINOCERA
with maximum sampling frequency of 96,000Hz.

In this experiment, the accelerometers were mounted at
the four corners of the car, and they were kept much close to
the connection point of suspension. *is is to obtain better
quality vibration signals from the suspension systemwhich are
related to the road excitation.*e tested car and a schematic of
data acquisition system are presented in Figure 13.

4.2. Signal Characteristics. *e purpose of the method
proposed in this paper is to identify the modal parameters of
vehicle under running condition. *erefore, the data were
collected when the vehicle was driven on the typical UK
suburb roads with speed limits from 20 to 40miles/hr. In
order to confirm no loss of information in the modal
identification process, the sampling frequency was set much
higher than the requirement of Nyquist sampling theory; the
sampling frequency was 4000Hz, and each test sample was
recorded with the time duration of 240 s. Moreover, the test
was repeated 4 times by driving on the same road section.
Although the sensors were installed close to the suspension,
the collected signals still contained high noise because this is
a field test and there are thousands of reasons that can
introduce unwanted measurement noise. Furthermore, the
vehicle was running on the real road, not on a test platform;
therefore, the speed was not always constant. *e changing

speed will cause nonstationary vibration. In addition, the
random big excitations such as the hump on the road will
also result in nonstationary responses of the vehicle.

An example of the collected signals is presented in
Figure 14, and the corresponding power spectrum densities
(PSD) were presented below. From the time-domain
waveform analysis, it can be seen that the car body vibra-
tion is highly nonstationary. In addition, it can be seen from
the PSD that the main power of the signal is around the
frequency of 2Hz, and a small peak appears around the
frequency of 12Hz, which are related to the car body and the
wheel bounce, respectively. Moreover, it is noticeable from
the PSD that the vibration amplitudes from the front part of
the vehicle are smaller than its rear part. *e main reason is
the engine located in the front part of the vehicle. As a result,
the pitch mode of the vehicle is easier to be excited.

4.3. Identification Results. In this section, only ACS-SSI and
CoS-SSI methods are applied to identify the modal pa-
rameters of the car when it was in normal operation. As
referred previously, the vehicle test was repeated four times
with the sampled time duration of 240 s and sample rate of
4000Hz. Firstly, the data of each test were segregated into six
segments (40 s for each segment). *erefore, there are 24 (4
times × 6 segments� 24) data segments in total. Secondly,
the correlation signals of each data segment were calculated.
*en, for the ACS-SSI method, the correlation signals were
averaged in a single time; for the CoS-SSI, the correlation
signals were categorised into three subsets according to their
amplitudes, and each subset was averaged. During the
identification process of these two methods, the same
threshold (εf , εξ , εMAC) was set when developing the SDs;
εf , εξ , εMAC were set at 0.1, 0.2, and 0.5, respectively.
Moreover, the orders (rows) of Hankel matrix were 100 to
develop the SDs.

*e SD identified by ACS-SSI is presented in
Figure 15(a). It is apparent that two relative stable modes
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Figure 10: MAC of Cov-SSI results. (a) CoV-SSI (SNR� 10).
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around 2Hz were identi�ed. Figure 15(b) shows the rate of
identi�ed stable points over the calculated orders. It can be
observed from Figure 15(b) that the stable points for the �rst
two modes are at 60% and 40%, respectively. ­is indicated
that the second mode cannot be identi�ed when we set the
second threshold at 50% which is the same as the simulation
case. In order to present the mode shapes of the two relative
stable modes, the second threshold was set at 40% and the
ACS-SSI identi�ed modal parameters are given in Figure 16.
­ese two modes seem like pitch. However, the �rst mode

should bounce according to the theoretical modal param-
eters [27]. ­e reason for it looks like pitch mode could be
because of the front part of the vehicle is heavier and
therefore it has smaller amplitude vibration. Moreover, the
nonstationary responses and high measurement noise will
also have e�ect on the identi�ed mode shapes.

In the second place, the SDs identi�ed by CoS-SSI are
presented in Figures 17(a1), 17(b1), and 17(c1). It can be
seen that the SDs identi�ed from the �rst two subsets are bit
messier than the third one. Furthermore, the rate of the
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Figure 11: MAC of ACS-SSI results. (a) ACS-SSI (SNR� 10). (b) ACS-SSI (SNR� 0.5).
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stable modes over calculated orders is presented in
Figures 17(a2), 17(b2), and 17(c2). It can be seen that the
rates of the stable modes are much higher than the rates of
modes identi�ed by ACS-SSI. ­erefore, a higher second
threshold can be selected to obtain the target modes, which
means the identi�ed results are more reliable than the results
identi�ed by the ACS-SSI method. At the end, the second
threshold value was found at 80%. It can be seen from

Figures 17(a2), 17(b2), and 17(c2) that a mode around the
frequency of 1.58Hz was selected in the �rst subset, and two
modes around 2.34Hz and 9.02Hz were identi�ed in the
second subset. Furthermore, the modes around 1.58Hz and
2.06Hz were identi�ed in the third subset. ­e corre-
sponding mode shapes identi�ed from each subset are
shown in Figure 18. It can be observed that the mode
identi�ed from the �rst subset is similar to the bounce mode

RL sensor FL sensor

FR sensor

Suspension

Wheel

RR sensor

Car body

Laptop

Data acquisition

(a) (b)

(c)

(d)

Figure 13: (a) Test car; (b) data acquisition equipment; (c) accelerometer; (d) schematic of test system.

0 5 10 15 20 25 30 35 40
Time (s)

–10

–5

0

5

10

Ac
c. 

(m
/s

2 )

0 5 10 15 20 25 30 35 40
Frequency (Hz)

0

0.3

0.6

0.9

1.2

A
m

pl
itu

de

(a)

Time (s)
0 5 10 15 20 25 30 35 40

–10

–5

0

5

10

Ac
c. 

(m
/s

2 )

0 5 10 15 20 25 30 35 40
Frequency (Hz)

0

0.3

0.6

0.9

1.2

A
m

pl
itu

de

(b)

0 5 10 15 20 25 30 35 40
Time (s)

–10

–5

0

5

10

Ac
c. 

(m
/s

2 )

0 5 10 15 20 25 30 35 40
Frequency (Hz)

0

0.3

0.6

0.9

1.2

A
m

pl
itu

de

(c)

0 5 10 15 20 25 30 35 40
Time (s)

–10

–5

0

5

10

Ac
c. 

(m
/s

2 )

0 5 10 15 20 25 30 35 40
Frequency (Hz)

0

0.3

0.6

0.9

1.2

A
m

pl
itu

de
(d)

Figure 14: Time-domain signal and corresponding PSD. (a) Ch� FL. (b) Ch� FR. (c) Ch�RL. (d) Ch�RR.
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Figure 15: Stabilization diagram identi�ed by ACS-SSI. (a) SD of ACS-SSI. (b) Selecting modes by the rate of the frequency over orders for
on road vehicle modal identi�cation.
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identified from third subset; the first mode identified from
the second subset is similar to the pitchmode identified from
the last subset. Furthermore, it can be seen that a mode
around 9Hz was identified in the second subset which can be
linked to the wheel bounce according to theoretical dynamic
analysis in [27].

What is more, roll is a significant mode in the theoretical
vertical vehicle dynamic analysis. However, it is noticeable
that the roll mode has not appeared in the identification
results. In view of the vehicle and road design requirements,
the roll mode has to be avoided for the safety. *e results
demonstrating no roll mode has illustrated the robustness of
the proposed method in a further step. Consequently, the
CoS-SSI method has identified all of the vehicle suspension
system-related modes under a high second threshold (80%),
which indicates the reliability of the identified results.

5. Conclusions

An improved OMA method, denoted as CoS-SSI, was
proposed in this paper to accurately identify the modal
parameters when the system responses are highly non-
stationary and contained high noise. As the inherent non-
linearity of engineering systems often results in
nonstationary vibration responses due to changes in modal
properties under different operating conditions, the method
then categories such responses into a number of subsets
based on energy levels and implement SSI subsequently on
the ensample averaged data for accurate and consistent
identification. *e performance of CoS-SSI was evaluated by
a 3-DOF typical vibration system under various SNR con-
dition. *en, an experimental study of vehicle running on
the practical suburb roads was carried out to verify the
performance of CoS-SSI in a further step. Both simulation
analysis and the experimental results provide compelling
evidence that the CoS-SSI method is superior to the tra-
ditional Cov-SSI and ACS-SSI methods. In other words, the
CoS-SSI method can provide a more accurate and reliable
modal identification results when the structure is under
severe situations; the accurate results ensure the reliability of
the SHM.
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In this paper, it is described how the matrix mixing model updating technique can be combined with the local correspondence
(LC) mode shape expansion algorithm, to give a new finite element (FE) model updating method. -e matrix mixing method
uses that the inverse mass and stiffness matrices can be expressed as a linear combination of outer products of FE mode shape
vectors, where the low-frequency part of these sums are substituted with expanded test modes. -e approach is meant to
update FE models in one-step and is exact, except for the following two approximations: the mode shape smoothing and the
mass scaling of the expanded experimental mode shapes. A simulation study illustrates the errors from the two approxi-
mations and shows the ability of the technique to improve the modal assurance criterion (MAC) values so that they get very
close to unity. Finally, the performance of the proposed updating method is assessed by means of an application example in
which the FE model is updated based on the test modes of a real structure.

1. Introduction

Finite element models are numerical idealizations of real
structures used in structural design or to predict the
structural response under operational conditions. -e ac-
curacy of these models is highly dependent on how precise
the localized and distributed imperfections are accounted for
in the model. For example, joints and boundary conditions
tend to be inaccurately modelled by standard components
embedded in the FE software that may be different from the
ones in the actual structure. Many other examples of in-
accurate modelling can be found, and, in general, we accept
that the discrepancies between the model and the modelled
structure are not significant.

We do expect, however, that the model can simulate the
structural behaviour of the modelled structure in every
respect that matters. When the structure is built, we can

improve the model by adjusting the model parameters to
match a subset of measured responses of the structure. -is
can be done by using the dynamic response of the structure
[1]. A review of the existing updating techniques prior to
1993 is found in [2]. Nowadays, a commonly used updating
technique is a sensitivity-based method explained in [3], in
which the FE model spatial matrices are both parametrically
and iteratively updated to match the experimental modal
parameters estimated from vibration tests.

In this paper, a novel approach is proposed to update the
FE model based on the test modal properties coming from an
operational modal analysis (OMA) test [4]. Contrary to
sensitivity-based updating techniques, the main advantage of
this approach relies on the fact that the spatial matrices of the FE
model are updated in one step, hence the name “one-step
approach” was framed. -e idea behind this approach is ba-
sically to replace the modal properties estimated with the FE

Hindawi
Shock and Vibration
Volume 2019, Article ID 1362954, 12 pages
https://doi.org/10.1155/2019/1362954

mailto:sdio@byg.dtu.dk
http://orcid.org/0000-0003-1201-1519
http://orcid.org/0000-0003-3045-2916
http://orcid.org/0000-0002-2737-8244
http://orcid.org/0000-0002-7538-2758
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1362954


model by their experimental counterparts so that a good cor-
relation between the updated FE and the test modal parameters
is obtained.

In this proposed approach, the method of matrix mixing
[5, 6] is used in combination with the local correspondence
(LC) expansion technique [7]. -e idea is to expand experi-
mental mode shapes in a limited number of degrees of freedom
(DOFs) to an entire structure using modes shapes from a FE
model. Since the expansion procedure is a crucial task carried
out by the one-step approach, it is also herein extensively and
detailed described. In order to update the FEmodel in one step,
the technique takes advantage of the matrix mixing method in
which the inverse mass and stiffness matrices are written as a
sum of outer products of mode shapes. -is updating pro-
cedure is also discussed in [8, 9]. By making use of such
method, the FE model modes in these sums can be replaced by
the corresponding expanded test modes, yielding the updated
inverse mass and stiffness matrices.

Since the inverse stiffness matrix is of interest in its own
right in structural health monitoring (SHM) as shown in
[10, 11], the accurate updating ofK−1 will also be of interest in
SHM. -e one-step algorithm presented in this paper is a
perturbation technique since it relies on the LC principle [7].
-e LC principle is a first-order perturbation technique based
on the sensitivity equations created by Fox and Kapoor [12].
-is means that one-step requires normal model updating to
be done before the algorithm can be applied. -e idea is that,
after the application of the one-step updating approach, the
updated FEmodel completely recreates all natural frequencies
and mode shapes found from test measurements. Since no
explicit mass scaling is done in the technique, errors in the
modal mass are not adjusted by the technique.

-us, the one-step technique ensures that the modal
properties of the updated FE model match the ones esti-
mated from measurements. -e technique is meant to be
applied only after classical FE model updating takes place,
i.e., after the FE model is updated by making use of the
analyst’s engineering knowledge and/or of a classic
sensitivity-based FE updating technique. -is is to assure
that the FEmodel being updated by the one-step approach is
physically equivalent to the tested structured and that the
discrepancies between model and real structure are caused
by perturbations distributed over the FE model. Once these
assumptions are fulfilled, the one-step approach can be
applied to remove the existing discrepancies and bring the
FE model closer to the experimental results.

It is worth also highlighting that, similarly to any
sensitive-based FE model updating technique, the one-step
FE updating approach herein proposed is suitable for cases
where the structural system being updated can be modelled
by a linear FE model with orthogonal mode shape vectors.
-is implies that the one-step technique cannot be used to
update FE models of nonlinear structural systems with
nonorthogonal mode shape vectors. -is is the case of a
fairly amount of constructed systems whose structural dy-
namic behaviour is dominated by nonlinearities.

-e paper can be basically divided into three different parts.
In the first part, the derivation and description of the one-step
approach is presented. In order to illustrate the efficiency and

accuracy of the technique from a practical point of view, four
application examples are presented in the second part. Finally,
some remarks regarding the results obtained from the appli-
cation examples are presented in the last part of the paper.

2. The One-Step Updating Approach

In the one-step updating approach, it is considered that the
discrepancies between the modelled and the real structure
are small. If this condition is satisfied, the LC will enable the
mixing technique to directly update the mass and stiffness
matrices of the FE model. -is can be done by using the
expanded test modal vectors, without introducing errors in
the matrices. An iterative scaling technique ensures that the
test mode shapes are correctly mass scaled relative to the new
updated mass matrix. Once the test modal vectors are ex-
panded and mass scaled, they are used to replace the modal
properties estimated with the FE in order to improve the
correlation between the FE and the test modal parameters.
-e derivation and the detailed description of the one-step
approach are presented in the following subsections.

2.1. Basic Equations. An undamped multiple degree of
freedom (MDOF) system in structural dynamics is described
by the equation of motion:

M€y + Ky � 0, (1)

where M and K are the N × N mass and stiffness matrices,
respectively. y is an N-dimensional column vector con-
taining the deformations in all DOFs of the system. y is a
function of time t, so we have y � y(t) for every instance in
time. -e solution of this linear system of equations is
thoroughly explained in [4].

-e solution y is a linear combination of N mode shapes
multiplied by harmonics at the corresponding eigen-
frequencies.We order the mode shapes as the columns of the
N × N mode shape matrix B, and the squares of the angular
frequencies as the nonzero elements of the diagonal matrix
[ω2

n], where n ∈ 1, 2, . . . , N. -e ordering of the frequencies
on the diagonal corresponds to the ordering of the columns
in the mode shape matrix. With this solution, we obtain the
following orthogonality relations:

BTMB � I, (2)

BTKB � ω2
n􏽨 􏽩, (3)

when the mode shapes are mass normalized [4].

2.2. One-Step Updating Equations. Pre- and postmultiplying
equations (2) and (3), respectively, by B−T and B−1,
and inverting the resulting equations yields

M−1 � BBT
, (4)

K−1 � B ω−2n􏽨 􏽩BT
. (5)

Equation (4) can be written as a sum of outer products:
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M−1 � 􏽘
N

i�1
bib

T
i , (6)

where bi is the i-th column in the mode shape matrixB. If we
split this sum into a sum containing contributions from the
first m mode shapes, and a sum containing the remaining
contributions, we have

M−1 � 􏽘

m

i�1
bib

T
i + 􏽘

N

i�m+1
bib

T
i , (7)

where the second sum has N−m elements.
Letting B1 be the N × m matrix with the first m mode

shapes as columns and B2 be the N × (N−m) matrix with
the remainingN−m mode shapes, we can write equation (7)
as

M−1 � B1B
T
1 + B2B

T
2 . (8)

Using the same techniques, the stiffness equation (5) can
be rewritten as

K−1 � B1 ω−2m1
􏽨 􏽩BT

1 + B2 ω−2m2
􏽨 􏽩BT

2 , (9)

where [ω−2m1
] is an m × m diagonal matrix containing the first

m inverses of the squared angular frequencies and [ω−2m2
] is

an (N−m) × (N−m) diagonal matrix containing the
remaining N−m inverses of the squared angular frequen-
cies. Equations (8) and (9) are central in the one-step
updating approach.

2.3. Mode Shape Expansion. Using the notation from [4],
we know from structural modification theory [13] that if
we have a system with mode shape matrix B, any per-
turbed system with mode shape matrix A can be written
as

A � BT, (10)

where T contains the weights when writing the modes of A
as a linear combination of modes inB.-is is always possible
for any modification.

Provided that A has only a few columns and that the
modes in A are well described by the first m modes of B, we
can let B be an N × m matrix and use a smaller T matrix of
size m × N.

If we measure the responses of the structure at a set of
DOFs, we can represent the mode shape matrix B as

B �
Ba

Bd
􏼢 􏼣, (11)

with Ba and Bd containing the modal coordinates of the FE
mode shapes at the measured and unmeasured DOFs, re-
spectively. We, hereinafter, designate them as active and
deleted DOFs and denote them with subscripts a and d,
respectively.

We can write an experimentally identified mode shape
column vector a as

a ≈ Bat, (12)

where the column vector t is the linear combination of
modes from Ba that gives the identified mode. -is is known
from the system equivalent reduction-expansion process
(SEREP) [14]. Having identified the mode shape a, we solve
equation (12) to get

t̂ � B†
aa, (13)

whereB† is theMoore–Penrose pseudoinverse [15] ofmatrix
B.

Inserting 􏽢t into (12) gives the least squares smoothed
identified mode shape:

􏽢a � Ba􏽢t � BaB
†
aa. (14)

Extending equation (14) to all identified modes Aa gives
􏽢Aa � Ba

􏽢T, (15)

where 􏽢T � B†
aAa. Equation (15) that assumes that A can

be written as a linear combination of the first m modes of
the full mode shape matrix is a reduced version of
equation (10).

Equation (15) can now be used for expanding the
measured mode shapes in Aa. -is is accomplished by
appending the unmeasured or deleted DOFs to the linear
combinations and holding 􏽢T constant. -is gives

􏽢A �
􏽢Aa

􏽢Ad

⎧⎨

⎩

⎫⎬

⎭ �
Ba

Bd
􏼨 􏼩􏽢T � B􏽢T. (16)

Inserting 􏽢T into (16) gives
􏽢A � BB†

aAa, (17)

where BB†
a is the global mapping transformation matrix

obtained by means of SEREP expansion [14]. -e matrix 􏽢A
consists of the expanded test modes. -e assumption in
equation (16) is that the estimate of 􏽢T based on the active
subset is close to T for the full set of DOFs. Solving equation
(12) requires Ba to have fewer mode shapes than DOFs to
make this an overdetermined system. In case of few active
DOFs, only a small set of modes can be used. A better way to
solve equation (12) is to use the LC approach [7], which gives
an alternative way to compute 􏽢t.

2.4. LC Expansion. Based on the sensitivity equations [12],
the LC principle [7] expands an experimental mode shape by
selecting an optimal subset of the FE mode shapes in Ba as
expansion basis. Only FE mode shapes with frequencies
close to those of the test mode shapes are considered to make
sure that the number of modes is lower than the number of
active DOFs. -e idea behind this strategy is to obtain an
overdetermined set of equations in (12) by selecting a small
subset of FE modes that locally correspond to an experi-
mentally estimated mode shape.

-e best subset, or cluster, is chosen based on a
resampling technique known as leave-one-out cross vali-
dation (LOOCV) [16].-e LOOCV technique leaves out one
of the mode shape parameters, selects a subspace Ba,s, of Ba,
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and measures how well the expansion predicts the missing
parameter. In this way, the LC principle chooses the optimal
cluster based on optimality of predicting unknown re-
sponses. Each of the measured responses takes on the role of
being unknown test data, one at a time. Using the LOOCV
technique enables LC to do a high-level mode shape
smoothing since the noise in the subspace of the optimal
cluster is completely removed. -is has been shown to be a
significant advantage over SEREP.

It is possible to use the LC expansion in a simpler way, by
only selecting a subspace of Ba whose frequencies are located
around that of the test mode a. -is subspace, containing a
fixed number of modes, should then be used to compute the
least squares fit and remove the elements of t associated with
the smallest contributions to a. -is is a kind of “noise floor”
alternative to the traditional LC principle. -e LOOCV
technique will give its own optimality, and this is the
principle used here.

In the simulation and test cases in this paper, there is no
significant change, in terms of results, by choosing a fixed
subspace of 5 modes locally around all test modes and solving
equation (12) in a least-squares sense using the LC LOOCV
technique. An illustration of using a 5-mode subspace in the
LC expansion is shown in Figure 1. -e subspace of modes
used in the LC expansion of each experimental mode consists
of a FE modal vector with the same natural frequency of the
test modal vector being expanded, of one FE modal vector
above this, and by three FEmodal vectors below, giving a total
of five modes. Once the subspace is defined, the LOOCV
technique is then used to identify the modes that actually
contribute to the expansion of the test mode shape.-e empty
circles indicate the modal vectors that do not contribute to
expansion and, therefore, are not included in the (actual)
subspaces used to expand the test mode shapes. -e filled
circles, on the contrary, show the modes used in the actual
expansion. For test modes 1–3 fewer than 5 modes are shown
since this gives a better visual illustration of the narrow-band
nature of LC. -e modes that are not shown are effectively
unused in the expansion.

2.5. One-Step Principle. Referring to equation (8), the idea
of one-step updating is to let the mode shapes corre-
sponding to the lower m eigenfrequencies of a dynamical
system be contained in B1 and the remaining N−m mode
shapes stored in B2. By modal testing, experimental modes
shapes can be found. Using equation (16) or LC, the test
modes can be expanded to the full set of FE DOFs. Since the
modal properties of the physical structure are estimated
from responses measured in a vibration test, the test mode
shapes can be considered as the exact mode shapes con-
taminated with disturbances from, amongst other sources,
measurement noise, identification errors, and errors in the
expansion process. Despite these disturbances, the test
mode shapes are expected to be more accurate than the FE
model mode shapes contained in B1, whose accuracy is
fairly affected by the modelling errors. -us, we can use 􏽢A
as a substitute for B1 and get an M−1 that better corre-
sponds to the physical structure for the lower frequencies.

-e same substitution can be made in equation (9), where
the experimentally identified frequencies are also used.

-e substitution is done by firstly using (8) to find B2BT
2 :

B2B
T
2 � M−1 −B1B

T
1 , (18)

and then determining an updated mass matrix, Mupd, by
inserting 􏽢A and equation (18) into (8)

M−1upd � 􏽢A􏽢AT
+ B2B

T
2 . (19)

Finally, the updated mass matrix is found by computing
the inverse in equation (19). An analogous procedure is
followed to determine the updated stiffness matrix, Kupd,
yielding

Mupd � 􏽢A􏽢AT −B1B
T
1 + M−1􏼒 􏼓

−1
, (20)

Kupd � 􏽢A ω−2exp􏽨 􏽩􏽢AT −B1 ω−2m2
􏽨 􏽩BT

1 + K−1􏼒 􏼓
−1

, (21)

where the diagonal matrix [ω−2exp] contains the experimen-
tally determined angular frequencies of the first m modes.

After updating, the mode shapes 􏽢A are not mass scaled.
-is is done using the updated mass matrix Mupd. When 􏽢A
has been mass scaled using the updated mass matrix from
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Figure 1: Plot of the structure of the 12 × 10 matrix T from
equation (15). Only a limited number of FE mode shapes around
the frequency of the test mode shape are used in LC. -is means
that the T matrix will have nonzero entries in a narrow band only,
illustrated by black circles. If the mode actually contributes to the
expansion in this experiment, the circle is filled. -us in this ex-
periment, we use a 5-dimensional subspace for expansion and use
anywhere from one to all five modes in the expansion, corre-
sponding to columns of T.

4 Shock and Vibration



equation (20), the scaled 􏽢A can be used in equation (19)
instead. Iterating this way will give correctly scaled test mode
shapes inMupd. Only one loop is required in this fixed point
iteration [17]. When correct mass scaling has been done, the
frequency content of the newmodel, at the lower modes, can
be found using the orthogonality relation in (3).

-e one-step updating principle works best when the
discrepancies between FE model and physical structural
system are small. -e reason for this is that the LC principle
relies on locality coming from the sensitivity equations [12].
For small changes, only local modes contribute to the ex-
pansion of FE mode shape changes onto all the FE model
mode shapes.

3. Application Examples

In the following sections, we explain the one-step principle
by simulation and by experiment. Firstly, we show the
simplest possible simulation based on a FE model. -en, we
show a second simulation case in which a FE model is
updated from the noise-contaminated FE mode shapes
expanded with the LC expansion technique. Finally, we il-
lustrate the technique by means of a complete experimental
test case on a small specimen, where we update the FEmodel
based on experimental modal parameters estimated from
vibration measurements.

3.1. FE Model. For doing simulations, we have built an FE
model of a T structure using FEMtools [18]. Figure 2 shows
an image of the FEmodel from FEMtools.-emodel has 126
normal beam3d construction steel elements, and a spring
element connecting the structure to the base. -e spring has
3 rotational and 3 translational DOFs and connects the T
structure to the base at the origin: (x, y, z) � (0, 0, 0). -ese
127 elements are defined by 127 nodes on the structure and 1
boundary node. Each of the beam3d elements in the model
has a total of 6 DOFs, i.e., three translational and three
rotational DOFs. -is gives a total of 6 × 127 � 762 DOFs.
-us, the mass and stiffness matrices are of size 762 × 762.
Half of the DOFs are rotational and half are translational.

-e FEMtools model was imported into MATLAB [19]
using SDTools [20], and the corresponding eigenvalue
problem is solved to get the frequencies [ω2

n] the and mode
shapes B. A perturbed version of the model was obtained by
increasing themass of some of the elements of themodel and
solving it again to get the new frequencies [ω2

n, exp] and the
mode shapes A. As in [4], we also use A to indicate ex-
perimental mode shapes and B to indicate model mode
shapes. FE model updating using the one-step principle is
done using equations (20) and (21), and the updated mass
matrixMupd is adopted to mass scale the mode shape vectors
in A.

3.2. Simulation without Noise. An idealized noise-free
simulation to illustrate updating using the one-step prin-
ciple can be performed by using any FE model as the ref-
erence model and a perturbed version of the model as the
“real” physical object. -is setup is the same as having a FE

model which is always slightly different from the modelled
structural system. In the terminology of equation (8), we
start out by considering a model mass matrixM constructed
using outer products of all mode shapes in B1 and B2
combined. -e mass matrix is perturbed to give Mpert, and
the stiffness matrix is unchanged.

Figure 3 shows the change in the mass matrix, ΔM, for a
perturbation of the FE model corresponding to doubling the
mass of one branch of the Tstructure. Tomake an intelligible
plot of all 762 × 762 entries in the mass matrix, the matrix
was divided into submatrices of size 15 × 15. -is division
provides 51 × 51 submatrices. -en, the maximum absolute
value was chosen to describe each submatrix.-us, the 762 ×

762 mass matrix is represented by the 51 × 51 matrix shown
in Figure 3. Note that the perturbation added to the mass
mass matrix cannot be considered small and, therefore, the
FE model does not correspond very well to the structure.

Figure 4 shows the MAC [21] value of B1 andA, whereA
contains mode shapes of the perturbed system.

-e one-step operation consists of substituting the mode
shapes B1 in M by the mode shapes A from the perturbed
model. To do this, the perturbed model is solved and the first
modes are extracted. -is operation is synthesized by

z
y

x

Figure 2: FE model of the T structure. To illustrate element size,
every fifth node is marked with a red dot. -e model contains 127
nodes and 1 boundary node, 126 beam elements, and one spring
element. -e spring has 3 rotational and 3 translational DOFs and
connects the Tstructure to the base at the origin: (x, y, z) � (0, 0, 0).
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equation (20). -e MAC values between the first modes of
the updated and perturbed models are shown in Figure 5.

-is procedure previously described constitutes one of
the main ideas of the one-step approach, i.e., updating the
mass and stiffness matrices so that the MAC values between
the mode shapes of the updated and tested systems get close
to 1. -e example illustrates that, in the idealized case, this
can be done perfectly. Note that since no update is done to
high-frequency mode shapes, this part of the system will not
be improved after updating.
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Figure 6: Measurement locations and directions indicated by red
arrows on the T structure. Sensor groups are separated by 0.5m.
-e green-red-blue arrows at the bottom of the figure denote the
reference coordinate system of the T structure.
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3.3. Simulation with Noise and LC. In this example, we
extend the previous example to a complete one-step update
of a structure. -e example is also based on the FE model
used in the previous example.

-e test mode shapes in A are generated as in the
previous example by adding mass to one arm of the T
structure and solving the eigenvalue problem to obtain the
mode shapes and eigenfrequencies for the model with ad-
ditional mass. In order to mimic modal parameter estimates
obtained from measurements, white Gaussian noise was
added to the mode shape coordinates with a standard de-
viation of 1%.

Since the perturbed model is known only in a relatively
small subset of the 762 DOFs, in this particular case, we
have used the 10 DOFs of the FE model that correspond
best to the locations and directions shown in Figure 6. -e
10 chosen DOFs have directions that coincide with the
coordinate axes in the FE model. -e chosen subset of the
mode shapes A are the active DOFs. -is gives the test
mode shapes Aa. -e MAC values between the test mode
shapes Aa from the perturbed system and the active DOFs
of the model mode shapes Ba from the unperturbed
system are shown in Figure 7. -e simulated data con-
sisting of mass and stiffness matrices, eigenfrequencies,
model mode shapes, and mode shapes from the 10
measured DOFs of the perturbed system constitute a
complete setup required for one-step updating.

-e FE model updating with the one-step approach is
carried out in two phases. Firstly, the mode shape vectors in
Aa are expanded to the same size as the FE mode shape
vectors of 762 × 1. -is is done using LC, essentially by
following the procedure synthesized by equation (17). -is
gives the smoothed and expanded test modes 􏽢A. -e MAC
value between the expanded mode shapes and the original
unperturbed model is shown in Figure 8.

Finally, the expanded mode shapes are inserted into
equations (20) and (21) to update the mass and stiffness
matrices of the unperturbed FE model. -e MAC value
between the mode shapes of the updated system and the
perturbed system is shown in Figure 9.

-is illustrates that the LC expansion has been able to
express almost all perturbation of the system in terms of
components of the local model modes. -us, when
updating the model with the LC expanded modes, model
and test modes are very well correlated. -e small drop in
the MAC value visible for the 8-th mode is due to a per-
turbation in this mode that cannot be explained by
expanding into the local modes, and therefore, LC misses a
little of the perturbation. For perturbations that are sig-
nificantly smaller than those related to doubling the mass of
the arm of the T structure, the update can be expected to be
much better. -is is explained by the fact that the LC
expansion technique relies on the sensitivity equations [12]
that are a first-order approximation of the mode shape
change under small perturbations.

-e procedure previously described can be summarized
in the following steps:

(1) Extract M, K, B, and ω from the FE model

(2) Chose the subset B1 and calculate M−1 and K−1

(3) Determine Aa and ωexp based on test data
(4) Find LC subspace size and do LC expansion
(5) Update M and K using equations (20) and (21)
(6) Mass scale test mode shapes A using the updated

mass matrix in equation (20) and redo the one-step
update using equations (20) and (21)

-e number of modes used for LC expansion is chosen as
described in [7]. For a dataset with 10 active DOFs, 4–6
modes are usually a good choice.

3.4. Updating Test Case T Structure. For illustrating the one-
step technique for a real test case, we have used the Tstructure
in Figure 10. It is a welded tubular steel structure constituted
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of 2mm thick square pipes, with small additional masses
welded on at the areas where the sensors are placed. Figures 11
and 12 show how the masses are welded on. -e structure

closely resembles the FE model used in the previous simu-
lation cases, except for the small additional masses that are not
included in the model. Sensor placement and directions are
shown in Figure 6. -ey are identical to the positions and
directions chosen in the FE simulation case. For clamping, a
10mm thick steel plate is welded to the bottom of the vertical
pipe. -e lower 8 modes are used to update the FE model of
the T structure in this experiment.

Compared to the ideal FE model, the perturbation
considered in Section 3.3 consisted of an increase of mass on
one branch of the FEmodel of the Tstructure. In this section,
however, the perturbation of the structure, with regard to the
ideal FE model, is the small imperfections on the real T
structure that are not captured by the FE model.

An output-only vibration test was conducted to estimate
the experimental vibration modes of the structure. -e vi-
bration responses of the T structure were collected using
three National Instruments (NI) 9234 DAQ modules with
four channels each, placed in a NI cDAQ-9178 8 module
carrier, with a total of 10 channels. Each channel consisted of a
Brüel and Kjær 4508 Piezoelectric CCLD 100mV/g acceler-
ometer mounted in Brüel and Kjær UA-1407 mounting clips.
-e NI-DAQmx driver from NI was used. -e sampling
frequency was set to 1652Hz. -e structure was excited by air
pressure coming from three different directions, to excite the
structure along x, y, and z directions. As expected, it was
verified that the output data followed a Gaussian distribution.
-e modal identification was carried out using operational
modal analysis (OMA) as described in [4]. A LabView [22]
program was developed to automate the complete cycle of
data collection, system identification, and saving to disk. -e
identification algorithms were written in MATLAB [19], and
the LabView interface to MATLAB was used to make use of
the algorithms.

Figure 11: Close-up of the right arm of the T structure from
Figure 10.

Figure 12: Close-up of the center of the Tstructure from Figure 10.
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Figure 9: MAC values between the mode shapes from the updated
FE model and the mode shapes from the perturbed FE model. -e
updating was done using 10 LC expanded modes. -e LC ex-
pansion used 12 model modes from the unperturbed system.

Figure 10: T structure used in the test experiment. -e structure is
a welded tubular steel structure of 2mm thick square pipes. Small
masses are welded on in the areas where the sensors are placed.
Sensor placement is shown in Figure 6. Close-ups of the additional
masses at the sensor positions are shown in Figures 11 and 12.
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System identi�cation based on the Time Domain Poly
Reference (TDPR) [4] algorithm was carried out to extract
the natural frequencies and modal vectors from the test data.
Bands containing approximately three natural frequencies
were selected by �ltering, and the TDPR algorithm with 10
poles was run on this block of �ltered data. �e physical
natural frequencies of the T structure were selected, and the
corresponding identi�ed parameters were saved to the disk.
For each block of data, 9 modes were saved, each consisting
of a natural frequency, a damping ratio, and a 10 DOF mode
shape vector. One of the 9 mode shapes was disregarded after
identi�cation as it was considered nonphysical by inspecting
the mode shape animation, by comparing to the FE model
modal vectors and by assessing the noise level of the identi�ed
parameters of the mode. �e 8 identi�ed physical modes
physical are shown in Figure 13 as vertical dashed red lines.

�e blocks of vibration data used for identi�cation were
2 minutes long, where the length of each block was chosen
according to the formula found in [4]:

Trecording >
10

ζfmin
≈

10
0.01fmin

≈
1000
8

s ≈ 2 min , (22)

where fmin is the lowest natural frequency of the structure
and ζ its corresponding damping ratio. �e �nal identi�ed
modes were obtained as an average of 192 identi�cations.
Typical standard deviations on the �nal parameters of the
mode shapes were below 1/10000 for parameters of unit-
scaled mode shapes.

One-step updating works best for FE models that are
already in good correspondence with themodelled structure.
�erefore, the FE model of the T structure was manual and
iteratively updated using FEMtools [18] prior to the ap-
plication of the one-step approach. �is manual updating
was done by placing a spring at the bottom of the model of
the T structure, and optimizing sti�ness in x- and y-axis
directions. �e Young’s modulus of the steel beams was also
used in the parametric optimization with FEMtools. �e
spring sti�ness parameters and Young’s modulus of the
beams were updated based on the natural frequencies and
mode shape vectors experimentally identi�ed from the test
data.
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Figure 13: Plot of the singular values of the spectral matrix estimated from the vibration responses of the T structure. �e natural
frequencies of the identi�ed modes are shown as the vertical dashed red lines.
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-e MAC values between the first 8 mode shapes es-
timated from test data and the corresponding modes from
FE model updated with FEMtools are shown in Figure 14.
-ese values were computed between modal vectors con-
taining 10 modal components that correspond to the active
DOFs. Doing LC expansion removes noise on the off-
diagonal terms of the mass and stiffness matrices. -e
resulting MAC values between the model and the expanded
test modes are shown in Figure 15. -e MAC values

between the mode shapes computed from the FE model
updated with the one-step approach and the test mode
shapes are shown in Figure 16. To clearly see the result of
this procedure, a plot of the diagonal MAC values of
Figures 14–16 are shown in Figure 17. Analysing the latter,
we see that if the LC technique successfully expands the
mode, the updated system is in complete accordance with
its perturbed counterpart.

-e results obtained, in terms of natural frequencies,
after one-step updating are presented in Table 1. -e
natural frequencies in the third column illustrates that, for
the unscaled test mode shapes in A, the frequencies
AT

unsc.K0,uAunsc. � [ω2
u,n] should not be used. -e frequen-

cies in the updated model, however, are in perfect accor-
dance with their experimental counterparts, as verified in
column 1. It is worth highlighting that the frequencies
below the second horizontal line in Table 1, i.e., from mode
9 onwards, have not been subjected to model updating and,
thus, remained the same after updating.

4. Discussion

-e one-step technique uses a limited number of modes and
is therefore better suited to update FE models with dis-
tributed rather than with localized modelling errors. -is
implies that, in order to remove or minimize the localized
imperfections, many experimental modes will be required.
-e reason for this is that higher frequency mode shapes
carry more localized information than lower modes.

We have seen in Section 3.3 that when the perturbation
is very large, the one-step technique will not handle all the
imperfections in the FE model. -is is illustrated by mode 8
in Figure 9 that has an MAC below one. -e reason for this
is that the LC expansion assumes small distributed

21 43 65 87
Mode shape number

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

M
A

C 
va

lu
e

MAC (Aa, Ba)
MAC (Aexp, B)
MAC (Aexp, Bupd)
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test and FE mode shapes (at the active DOFs only) before updating
with one-step approach (blue line), MAC values between the LC
expanded test mode shapes and the FE mode shapes before
updating with the one-step approach (red line), and MAC values
between the LC expanded test mode shapes and the FE mode
shapes after updating with the one-step approach (yellow line).

Table 1: Results obtained, in terms of natural frequencies, after
one-step updating.

Mode fexp (Hz) fmodel (Hz) fupd (Hz)
1 7.38 7.22 7.38
2 8.91 8.91 8.91
3 22.79 19.03 22.79
4 44.38 46.15 44.38
5 80.50 80.14 80.50
6 111.52 113.88 111.52
7 141.96 153.68 141.96
8 209.98 212.94 209.98
9 — 274.01 274.01
10 — 274.06 274.06
11 — 515.52 515.52
12 — 526.40 526.40
13 — 560.75 560.75
14 — 589.77 589.77
15 — 705.80 705.80
First column has experimentally determined frequencies. Second column
contains frequencies from the original linear systemM€x + Kx � 0.-e third
column contains frequencies from the updated linear system
Mupd €x + Kupdx � 0. After updating, the frequencies in the upper part of
column three coincide with the frequencies in the first experimental
column.
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perturbations. When this assumption is not fulfilled, the
one-step updating based on LC expansion can fail.

When updating a FE model using the one-step tech-
nique, the modes used for updating are mass scaled with
respect to the original mass matrix. To scale the mode shapes
using the updated mass matrix, the fixed point iteration
explained in Section 2.5 is used. Since this procedure in-
troduces only small changes in the mass matrix, the scaling
of the mode shapes is only changed by a tiny amount, so
almost no physical information in the system is lost by the
fixed-point iteration.

-e updating equations (20) and (21) require inversion
of potentially very large matrices. Effective algorithms to do
this inversion can be implemented by exploring the fact that
the matrices M and K are sparse, symmetrical, and positive
semidefinite. Alternatively, one could consider the following
strategy: (1) reduce the FE spatial matrices using SEREP; (2)
update the reduced compliance matrices with the test modal
parameters; (3) invert the updated compliance matrices; and
(4) finally, expand the resulting matrices with SEREP to
obtain the full updated matrices. -is strategy provides
much better updating performance, both in terms of
computational time and memory requirements.

Structural-change localization using the one-step tech-
nique could be developed by using a FE model to simulate
the expected changes in the mass and stiffness matrices and
by comparing with the changes suggested by the one-step
updating procedure.

5. Conclusion

We have presented a method for updating finite element
mass and stiffness matrices directly from experimentally
identified mode shapes using FE models with local corre-
spondence principle. -e method uses the smoothed and
expanded mode shapes to improve the correlation between
FE model and test results. It is shown that, after mass scaling
using the new updated mass matrix, the correct frequencies
are found from the stiffness matrix. -e method proved to
work both with simulations and real vibration tests. One-
step requires a fix-point mass scaling iteration and works
well for non-localized changes that can be considered small
distributed perturbations. It is also observed that, thanks to
the LC approach, the one-step procedure introduces no
errors in the higher frequency band of the model. Moreover,
it is verified that, if the perturbations are small and globally
distributed along the structure, the one-step technique is
able to completely update the vibration modes with lower
natural frequencies while keeping the modes with higher
frequencies unaltered.
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With the rapid development of underground engineering in China, the heavy structural maintenance work followed is expected to
be a great challenge in the future. (e development also provides a promising application prospect for the newly developed
vibration-based health assessment and monitoring methods. However, the fact that tunnels are embedded in soil makes collecting
and identifying the vibration characteristics more difficult, especially for the online monitoring. In this paper, a new identification
method that combines the natural excitation technique (NExT) and stochastic subspace identification (SSI) method is developed.
(e newmethod is compared with the traditional SSI method, and mode frequency analysis is made based on a series of field tests
carried out at the subway and power tunnel. It is found that both stability and efficiency of the mode frequency identification have
been greatly improved, and it more suitable for online monitoring. Meanwhile, a mathematical model is used to analyze the
original mode characteristics and the influence of soil coupling. (e results are also compared with the field tests results by using
the NExT-SSI method, and some recommendations are also made for how to choose the vibration modals for vibration-based
monitoring in the tunnel.

1. Introduction

At present, the underground engineering is gradually
moving from the large-scale construction stage into the
following heavy maintenance stage in China. (e safe op-
eration of underground facilities is threatened by the in-
creasing servicing time and the increasing number of the
surrounding construction activities, such as the large ex-
cavation. (erefore, the health monitoring system is greatly
needed to determine the service state of underground fa-
cilities in real time.(e static level gauge and crack meter are
frequently used to monitor tunnel settlement and joint
opening [1, 2], which can effectively prevent large de-
formation and leakage accidents caused by improper con-
struction behavior such as deep excavation around subway
tunnels. However, the related static health monitoring
method can only characterize the structural behavior near

the monitoring points, and the dense layout is thus needed
and difficult to obtain the structural elastic modulus and
other indicators directly. It can be used instead of some
nondestructive testing methods, but the detection efficien-
cies of these methods are difficult to meet the real-time
requirements for large-scale applications. (erefore, there is
a strong need of developing health monitoring methods
based on vibration or wave propagation characteristics
which have sensing capability of the overall underground
structure and the surrounding soil.

(e present wave or vibration-based methods can utilize
characteristics of wave propagation within the structures or
the normal vibration modes to identify structural perfor-
mance. Examples of current structural healthy monitoring
(SHM) techniques include using fiber optics, ultrasonics,
piezoelectrics and acoustic emissions, thermography, and
embedded thin film [4–6]. For these methods, the effective
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identification and extraction of vibration characteristics
become very important. For applications in bridges and
high-rise buildings, the vibration modes and related
methods are more commonly used, e.g., the natural fre-
quency and frequency response function (FRF) spectrum-
based methods [7], the mode shape-based methods [8], the
model and related matrix-based methods [9], and the data
driven methods [10]. Some signal processing techniques
have also been proposed for vibration characteristics ex-
traction [11].

It is well known that the soil-structure interaction will
change the wave propagation characteristics [12, 13], since
the underground structures are strongly coupled with the
surrounding soil, and the constraining and damping effects
and the dynamic behaviors of surrounding soil will cause
major challenges for the identification of vibration char-
acteristics [14]. In previous studies, the difference between
frequency and dispersion characteristics of the subway
tunnel with or without surrounding soil is studied by nu-
merical calculation [15–17]. It is found that the mode fre-
quency is more difficult to identify from the frequency
spectrum under the condition of soil coupling. Health
monitoring of underground pipelines is mostly based on
wave propagation characteristics and related methods
[18–20]. Leinov et al. [21], Vogt et al. [22], and Eybpoosh
et al. [23] found that the propagation modes and their
dispersion characteristics of the propagating ultrasonic-
guided waves changed from the pipeline to the surround-
ing medium. Meanwhile, a series of signal processing and
modal parameter identification methods have been pro-
posed, such as the peak-picking method, the random dec-
rement technique (RAMA) [24], the natural excitation
technique (NExT) [25], and the stochastic subspace iden-
tification (SSI) method [26]. (e NExT is a method of mode
testing that allows structures to be tested in their ambient
environments, where the auto- or cross-correlation function
is used for mode identification. (e SSI method is originally
presented by van Overschee and de Moor [27], and an
extension of the original SSI method that does not require
output covariance was proposed by Peeters and de Roeck
[28, 29] as the reference-based SSI. (e stochastic realization
algorithm mainly focused on the data-driven method (SSI-
DATA) that considers the problem of identifying a sto-
chastic state-space model from output-only data. As op-
posed to SSI-DATA, the covariance-driven stochastic
subspace identification (SSI-COV) algorithm is also de-
veloped to avoid the computation of orthogonal projection.
Furthermore, to reduce the effect of noise on the results of
identification, some filtering techniques need to be used to
enhance the early emergence of a stable diagram for the
identifiable modes. For instance, SSI is combined with
multivariate singular spectrum analysis (MSSA) for vibra-
tion monitoring of the rotating turbine system [30]. (ese
methods are widely used in bridges and high-rise buildings,
but their applicability in the underground engineering re-
mains to be explored.

An equally important consideration in developing the
monitoring system is minimizing the amount of data pro-
cessing and improving the stability and robust of the

monitoring network. Automatic processing technology is
also used to reduce the amount of data transmission from
the terminal nodes to the server.(erefore, the following key
problems need to be considered in the application of the
vibration-based monitoring method to tunnels and other
underground structures:

(1) Understanding of the tunnel-soil coupling effect on
the tunnel dynamic characteristics, and selection of
the appropriate vibration characteristics for de-
termining the current structural state

(2) Proper signal processing and vibration characteris-
tics identification methods with high stability and
accuracy

(3) Development of the self-processing and automatic
identification capability of terminal nodes to meet
the low energy cost and robust needs of the wireless
network transmission

In this paper, to explore the vibration characteristics of
the tunnel and its identification method, a series of field tests
are carried out at the subway and power tunnels with dif-
ferent diameters of 6.4m and 3.2m.(e SSI-COVmethod is
used, and the NExT is also combined as the filtering tech-
niques to identify tunnel mode natural frequency, and some
comparisons on the difference between using SSI-COV and
NExT-SSI-COV method on the result of identification are
carried out through the stability diagram. At last, a theo-
retical pipe-in-pipe (PiP) model [31] is employed to study
the distribution of the vibration modes, and some scientific
suggestions for the tunnel mode parameters identification
are provided at last.

2. The NExT-SSI-COV Method

(e SSI-COV method is a well-known multivariate iden-
tification technique. However, the uncertainty of parameter
selection, such as the Toeplitz matrix row number [32] and
the long input data will result in the sharp drop of the
computational efficiency and stability. In this study, the
NExTmethod is employed and combined with the SSI-COV
method to reduce the singularity of covariance matrix and
improve the calculation efficiency and stability. (e details
and process of this method are shown in Figure 1.

Step 1. Form the input matrix N by the NExT method.

(e autocorrelation function amm of every measure-
ment points and cross-correlation function amn for any
two measurement points were calculated by the NExT
method [33], and the formedmatrix is denoted asN ∈ Rl×n,
where l is the number of autocorrelation and cross-
correlation functions and n is the sampling number of
the NExTmethod. (e n value is always less than 2048 for
identifying the low-frequency modes. (erefore, compared
with the conventional SSI-COV method, the size and
singularity of the input matrix will be greatly reduced and
the computational efficiency and stability can be obviously
improved.
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Step 2. Form the output Hankel matrix Ys from input
matrix N.

Firstly, as Equation (1) shows, a series of block matrix yi
are obtained with a time lag i from the input matrix N, and
every block matrix yi has l lines same as YN. And the data
Hankel data matrix is established by the future measure-
ments matrix Yf and past measurements Yp as Equation (1)
shows:

Ys �
1�
j
√

y0 y1 · · · yj−1

y1 y2 · · · yj

⋮ ⋮ ⋱ ⋮

yi−1 yi · · · yi+j−2
yi yi+1 · · · yi+j−1

yi+1 yi+2 · · · yi+j

⋮ ⋮ ⋱ ⋮

y2i−1 y2i · · · y2i+j−2
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�
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Yf
( )

“past”
“future”

. (1)

Step 3. Obtain covariance-driven Hankel matrix P by the
conventional matrix and then form the block Toeplitz matrix
by a multiplication between future measurements matrix Yf

and transpose of past measurements Yp based on Equation
(2):

P �

Ri Ri−1 · · · R1

Ri+1 Ri · · · R2

⋮ ⋮ ⋱ ⋮

R2i−1 R2i−2 · · · Ri
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T
k[ ] � lim

j⟶∞

1
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∑
j−1

k�0
yk+iy

T
k .

(2)

Step 4. Perform singular value decomposition (SVD) on the
Hankel covariance matrix P and obtain eigenmatrix S
[28, 29]. �en, separate the matrix S into two submatrices S1
and S2 by reducing the eigenvalues. �e smallest singular
values in the matrix S are grouped as S2 and will be neglected
in the following steps by parameters Csvd. �e Csvd can be
calculated by the following equations:

P � USVT � U1 U2( )
S1 0

0 S2

 
VT1

VT2

 

� U1S1V
T
1 ,

(3)

Csvd �
∑VSn
∑VS

, (4)

where∑VSn is the cumulative value of the �rst n eigenvalues
for the S matrix and ∑VS is the cumulative value of all
eigenvalues.

Steps 5∼7. Based on the conventional SSI-COV method, the
extended observability matrix ΓL is �rstly calculated
according to Equation (5), and then the system parameter
matrices A and C and mode frequency ωn and damping
coe�cient ξn. are obtained separately by Equations (6) and
(7) [34, 35]:

ΓL � S
1/2
1 VT1 , (5)

A � ΓL′ΓL,
C � the first L rows of ΓL,

(6)

where Γ
�L

and �ΓL denote ΓL without the last L rows and the
�rst L rows, respectively:

Calculate the correlation function matrix N by NExT method
N = [a11 ... aij] ∈ Rn×l, aij is the correlation function of
every two measurement points

(i)

Calculate the covariance matrix P(P = YpYf
T)(iii)

Calculate SVD of P and determine the order n by neglecting
the smaller singular values in S2

(iv)

0
0
S1 V1

T
P = USVT = (U1 U2) V2

TS2

(ii) Form the output Hankel matrix Ys from matrix N

Ys = ∈ R2nL×k, k = l – L + 1 is the user-defined index
Yp
Yf

Calculate the extended observability matrix ΓL = U1 S1
½(v)

Calculate the system parameter matrices A and C
A = Γ′LΓL, ΓL denotes ΓL without the last l rows while ΓL without
the first l rows; C = the first l rows of ΓL

(vi)

Determine the model frequency ωn and damping coefficient ξn(vii)

, where an = , bn = ln(λn)
2π∆t

bnan

a2
n + b2

n

Im(λn)
Re(λn)

ωn = ; ωn = arctan

Figure 1: �e �owchart of the NExT-SSI-COV method.
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ωn �
an

2πΔt
,

ωn �
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

������

a2
n + b2n

􏽱 ,

where an � arctan
Im λn( 􏼁

Re λn( 􏼁
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

bn � ln λn( 􏼁.

(7)

3. Field Test and Mode Frequency
Identification of a Power Tunnel

3.1.Measurement Site andArrangement. As Figure 2 shows,
the measured power tunnel is a pipe jacking tunnel, which
consists of concrete pipes with a length of 2.5m. (e outer
diameter is 3.2m, and inner diameter is 2.7m. Nine ac-
celerometers (LANCE 130 series) are installed at the wall
and the bottom of the tunnel. (ree of them are equipped at
each measured point to collect the response from the
radical, longitudinal, and tangential directions, and the
letter R means the sensor is installed in the radial direction;
L means the longitudinal direction, while T is the tangential
direction.

3.2. Ambient Vibration Test. To compare the response
characteristics of the tunnel in daytime and nighttime, the
ambient vibration test is continued for seven days. Accel-
eration response records of 30 minutes in the nighttime and
daytime, respectively, at the measurement point B-1 are
shown in Figure 3. For the measured power tunnel close to a
subway, the vibration from the operational trains makes the
vibration amplitude at daytime about 4 times than that at
night. Based on the above data, the tunnel mode frequency
characteristics are studied, and a comparison on the dif-
ference between using SSI-COV and NExT-SSI-COV on the
result of identification is carried out through the con-
struction of a stability diagram. (e stability diagram has
been proved very helpful to identify the dominant fre-
quencies of the vibration mode while using the SSI-COV
method [32].

3.2.1. 2e Tunnel Response Characteristics at Night. To
analyze the tunnel response characteristics at night, with the
30-minute records collected from nine accelerometers, the
input matrix dimension will be 3600000 × 9 using the
traditional SSI method. (e stability diagram can be ob-
tained and is shown in Figure 4 after running for three hours
on a microcomputer with an Intel i5 processor. While the
NExTmethod is employed, based on the procedures of Step
1 and Step 2 introduced in Section 2, the auto- and cross-
correlation functions of every degree of freedom were cal-
culated with a sampling window of 2048 points and the input
matrix N is formed with the matrix dimension of 2048 × 28.

(e operation time of the stability diagram on the same
microcomputer then can be reduced to less than 2 minutes.
(e calculation results are shown in Figure 5.

By comparing the stability diagrams of Figures 4 and 5, it
was observed that several modes between 10 and 15Hz can
be found in Figure 4 by using the SSI-COV method directly,
but the data fluctuation along the number of rows makes it
difficult to identify the natural frequency automatically and
accurately. It thus will limit its application of SHM at the
underground structure. However, as the NExT method is
combined, there is only one mode left with the frequency of
10.5Hz. In addition, in the implementation of SSI-COV, the
selecting Csvd in Step 4 at Section 2 can lead to a change in
the number of the vibration modes and their identification
accuracy. From Figure 5, it is observed that there is almost
no change on the identified model frequencies as the Csvd
value changes from 0.815 to 0.915 by using the NExT-SSI-
COV method. (erefore, the NExTmethod can develop the
mode frequency identification stability and accurately and
make it much suitable for application in the underground
structure.

3.2.2. 2e Tunnel Response Characteristics at Daytime.
(e tunnel response characteristics are analyzed during the
daytime, especially for considering those vibration modes
excited by the train-induced vibration from the nearby
subway. By employing the method both of traditional SSI-
COV method and NExT-SSI-COV method, a 30-minute
record is used and the stability diagrams are shown in
Figure 6. By comparing Figures 6(a) and 6(b), the mode
frequency identification accuracy and stability are im-
proved by using the NExT-SSI-COV method. Meanwhile,
it also can be observed that besides 10.5Hz, there are much
more recognition results that can be found from Figure 6,
and several modes of which are around 48Hz of which is
close to the subway track-rail resonant frequency.

From the ambient test at the power tunnel both at
daytime and nighttime and by comparing the stability di-
agrams of using the traditional SSI method and modified
method, it is found that the NExT-SSI-COV method has
better mode natural frequency recognition accuracy and
stability, and several mode frequencies can be clearly
identified around 10.5Hz, 48Hz, and 71Hz from the am-
bient test. Especially for the frequency of 10.5, stability can
be recognized both at daytime and nighttime.

3.3. Hammering Test. (e mode hammering test is a
commonly used method to study the mode characteristics
and has a wider test frequency band than the ambient test.
(us, it was also carried out at the power tunnel along the
radial, longitudinal, and tangential directions. (e impulse
load is applied at the connecting steel ring of the tunnel
segment (Figure 7(a)), the time history of the pulse load is
shown in Figure 7(b), and the frequency test band is around
300Hz as shown in Figure 7(c).

(e NExT-SSI-COV method is also used here to analyze
the acceleration response, and the stability diagrams are
shown in Figure 8. From Figure 8(a), the modes at 53Hz,
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203Hz, and 223Hz can be identi�ed from the radical re-
sponses as hammered along the radial direction of the
tunnel. And much more modes can be found from the
longitudinal direction response as hammered along the
longitudinal direction, and there are stable recognition re-
sults at 10.5Hz, 15Hz, 108Hz, 123Hz, 203Hz, and 223Hz.
When the excitation is applied along the tangential direction
along the top pipe, from the stability diagram of longitudinal
directional response, four modes at 10.5Hz, 123Hz, 203Hz,
and 223Hz can be clearly identi�ed.

By comparing with the results of the ambient test, be-
sides the �rst mode of 10.5Hz, there are much more modes
at 53Hz, 123Hz, 203Hz, and 223Hz that can be found by
hammering excitation. Among them, the stability de-
termination of the mode at 53Hz means that the modes
around 48Hz that are found from the ambient test in

Figure 6 are false modes, and it is generated by the train
vibration of the nearby subway.

4. Field Test and Mode Frequency
Identification of a Subway Tunnel

For analysis of the tunnel mode characteristics with di�erent
sizes, a mode hammer test is also applied in the nearby
subway tunnel. As shown in Figure 9(b), the internal di-
ameter of the tunnel is 5.5m, and the outer diameter is 6.2m.
�e structure of each ring is assembled from six segments,
and the thickness of the segment is 35 cm. �ere is one
bidirectional (1-3) and three radial acceleration sensors (1-1,
1-2, and 2-1) placed on the tunnel structure to collect the
response from di�erent directions as shown in Figure 9. �e
hammer pulse’s frequency spectrum is shown in Figure 10.
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Figure 2: Arrangement map for the site measurement at the Xizang Road power tunnel.
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Figure 3: �e time history of the acceleration for the measurement points B-1: (a) at nighttime; (b) at daytime.
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(e SSI-NExT method is employed to the acceleration
response collected in the tunnel, and the stability diagrams
are shown in Figure 11. From Figure 11(a), two modes can
be found from the radial response at 142.5Hz and 233Hz.
And relatively stable recognition results can be obtained at

23.5 Hz and 128.5Hz in the longitudinal response
(Figure 11(b)) and 119Hz and 128.5Hz in the tangential
direction (Figure 11(c)). In addition, it is also observed that
there are two peaks at 10.75Hz and 176Hz which appear at
the spectrum function from Figure 11 and 10.75Hz of
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which is close to one of the power tunnel’s natural fre-
quency at 10.5Hz.

From the tests and analysis introduced at above, it can
be seen that the modes of the tunnel can be stably identi�ed
from the hammer test by using the NExT-SSI-COV
method.

5. Numerical Verification and Analysis

As the SSI method may generate false mode, the dispersion
analysis is thus carried out in this section to explore the
vibration modes distribution both of the tunnel mentioned
above based on the pipe-in-pipe (PiP) model [31]. By
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comparing the calculated cut-off frequencies with the results
from the field test, the structural and soil-body coupling
vibration characteristics will be analyzed.

5.1. 2e PiP Model and Dispersion Analysis. (e shield or
pipe-jacking tunnel is an assembled structure composed
of segments. As Figure 12(a) shows, when only the low
frequency response is concerned, it can be approximately
analogous to an infinite continuous concrete hollow
cylinder due to the wavelength greater than the tunnel
segment size. (erefore, the PiP model is introduced here,
and the details are given in [17] based on dispersion and
wave propagation theories. In this model, as shown in
Figure 12(a), the tunnel structure is analogous to an
infinite continuous concrete hollow cylinder, and the
homogeneous surrounding soil is considered by coupling
a concentric 3D thick-walled cylinder outside the tunnel
in the PiP model, with its inner diameter set equal to
the diameter of the tunnel and outer diameter set to
infinity.

(e PiP model is established based on the 2.5D periodic
approach [31]. By assuming constant material and geometric
properties along the infinite extended direction x, and from
Figures 12(b) and 12(c), the loads supplied in the tunnel
invert can be treated as a sum of sequence of unit harmonic
loads along the direction of x and θ. (e function can be
expressed as shown in Equation (8) in the frequency-
wavenumber domain:

􏽥F(r, θ, x, t) � 􏽘
∞

n�0

􏽥Qrn cos nθ
􏽥Qθn sin nθ
􏽥Qxn cos nθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e

i(kx+ωt)
, (8)

where 􏽥Qxn, 􏽥Qθn, and 􏽥Qrn are the force components, whose
elements are given in [31].

And for a steady response system, it is known that the
displacement response can be expressed as the same style
with the applied load. Finally, for a given wavenumber n,
when applying an impulse load at the tunnel invert along
different directions, the displacement components of 􏽥Un,
􏽥Vn, and 􏽥Wn for the tunnel structure only is shown in
Equation (9), and for the tunnel-soil coupled system, the
displacement components of 􏽥Urn, 􏽥Uθn, and 􏽥Uzn can be
calculated by Equation (10) in the frequency-wavenumber
domain:

[A]

􏽥Un

􏽥Vn

􏽥Wn

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�
−r 1− υ2( 􏼁

Eh

􏽥Qrn

􏽥Qθn

􏽥Qxn

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (9)

wherematrixA is the coefficients matrix, whose elements are
given in [31].
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⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(10)

where matrix T∞ and U∞ are the 3 × 3 complex matrix,
whose elements are given in [31].

It is known that the dispersion curves are useful in
investigating the mechanism of wave propagation in a
medium, which are plotted as the wavenumber k of prop-
agating modes versus the frequency ω. And the mode fre-
quency can be obtained by searching for the cut-on
frequency of each propagation mode. (ere are different
methods to calculate the dispersion curves [36]. (e most
commonly used method is to solve the determinant of the
coefficient matrix of the equilibrium equation. As Equation
(11) shows, the dispersion relation of the tunnel structure
can be obtained by defining the coefficient matrix A of
Equation (9) to zero:

det(A) � 0, (11)

where A is a 3 × 3 matrix with the parameters of wave-
number k, tunnel density (ρ), Poisson ratio (]), segment
thickness (h), and tunnel radius which is equal to the average
of the inner and outer radii. (e detailed description of the
matrix A can be found in [31].

5.2. 2e Power Tunnel Dispersion Characteristics and Com-
parison with the Field Test. Based on the PiP model, the
dispersion characteristics of the power tunnel will be ob-
tained. According to Equation (4), the parameters are
Young’s modulus Et � 2.25 × 104MPa, Poisson’s ratio υ �

0.2, density ρ � 2500 kg/m3, the outer diameter � 3.2m, and
inner diameter � 2.7m. (e tunnel dispersion curves within
the range of 0–300Hz are obtained and plotted in Figure 13.
By dispersion analysis theory, every curve in Figure 13
corresponds to one vibration mode, and the starting fre-
quency at the x-axis is the cut-on frequency of the corre-
sponding vibration mode. (e vibration modes arise when
the excited frequency is higher than the corresponding cut-
on frequency. (e cut-on frequencies of the 2nd–4th
propagation modes and the comparison with the field test
results are listed in Table 1.
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From Table 1, it is found that most mode frequency
plotted in the �eld test can be found by dispersion analysis.
However, 10.5Hz has not matched, which can be clearly
identi�ed in the ambient vibration test. �is may be caused
by the coupling e�ect of the tunnel and surrounding soil, and
the discussion will be continued in the following section.

5.3. �e Subway Tunnel Dispersion Characteristics and
Comparison with Field Test. Similarly, the dispersion of the
subway tunnel is studied and plotted in Figure 14. Here,
Young’s modulus Et � 4.35 × 104MPa, Poisson’s ratio υ �
0.2, density ρ � 2500 kg/m3, the outer diameter � 6.2m, and
inner diameter � 5.5m. �e dispersion curves within the
range of 0–250Hz are obtained and plotted in Figure 14.
And the cut-on frequencies of the propagation modes are
compared with the �eld test results in Table 2.

From Table 2, the most cut-on frequencies from dis-
persion analysis can well match with the �eld test results.
Similarly, the �rst mode frequency 10.75Hz cannot be
obtained by dispersion analysis which is close 10.5Hz found
in the �eld test of the power tunnel. It is further con�rmed
that the �rst mode comes from the surrounding soil or the
coupled mode of the tunnel and surrounding soil.

From the analysis above, it can be found that, except the
�rst mode, most of the modes natural frequency identi�ed
by the SSI-COV and NExTmethod are well consistent with
the dispersion analysis results. It is proved that the method
proposed in this paper has a good accuracy in mode fre-
quency identi�cation. And these modes can be used to track
structural changes in tunnels by combing some inversion
algorithms.
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Figure 12: Decomposition of a radial line load and the resulting tunnel response: (a) the �rst four Fourier components in cross section; (b)
schematic map of the steady response system of the tunnel structure; (c) spatial distribution along the x direction [31].
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Table 1: �e dispersion analysis of the power tunnel mode fre-
quency distribution and comparison with the �eld test results.

Number 1 2 3 4 5
Dispersion analysis — 48 121 203 231
Field test 10.5 53 123 203 223
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Figure 14: Dispersion curves of the subway tunnel modeled as a
hollow cylinder shell by the PiP model.

Table 2: �e dispersion analysis of the subway tunnel mode fre-
quency distribution and comparison with the �eld test results.

Number 1 2 3 4 5 6 7 8 9
Dispersion
analysis — 21 58 115 — 142 183 222 225

Field test 10.75 23.5 — 119 128.5 142 176 203 233
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And the mismatch of the first mode at 10.5Hz of the
power tunnel and 10.75Hz of the subway tunnel means that
it may come from the surrounding soil or generate from the
coupling of the tunnel and surrounding soil, and further
analysis on the mechanism needs to be discussed in future
and is not include here. What is more meaningful is that the
first mode can be stability recognized, and it is the only one
mode from the ambient test at night, and therefore, it very
suitable for monitoring the natural frequency changes
caused by soil excavation around the tunnel.

6. Conclusions

In this paper, in order to explore the mode frequency dis-
tribution of the tunnel and its automatic recognition
method, the SSI and NExT methods are combined and
applied to analyze the recorded response from ambient and
hammer tests and have been proved very suitable for the
mode frequency identification in the underground structure.
(e recognition results are also verified by dispersion
analysis based on the PiP model, and some conclusions and
suggestion for vibration-based monitoring are obtained as
follows:

(1) (e first-order mode frequencies can be clearly and
stably identified by the ambient test, which has great
application potential for monitoring the natural
frequency changes caused by soil excavation around
the tunnel

(2) Traffic environment excitation in the daytime will
interfere with the recognition of structural mode
characteristics and result in some false modes

(3) Most of the higher-order vibration modes can be
found by the hammer test and are well consistent
with the dispersion analysis results. It provides
conditions for the analysis of the structural service
condition more accurately by some inversion
algorithms
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