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Objective. Te value of multiphase contrast-enhanced CT in diferentiating gastrointestinal stromal tumors (GISTs) and gastric
leiomyomas (GLMs) which were ≤3 cm was evaluated using machine learning. Methods. A retrospective analysis was conducted
on 45 cases of small gastric wall submucosal tumors (including 22 GISTs and 23 GLMs) with pathologically confrmed diameter
≤3 cm and completed multiphase CT-enhanced scan images. Te CT features including tumor location, maximum diameter,
shape, margins, growth pattern, plain/enhanced CT value, cystic degeneration, calcifcation, ulcer, progressive reinforcement,
perilesional lymph nodes, and the CT value ratio of the tumor to the aorta at the same level in the enhanced phase III scan of the
two groups were evaluated. Tumor location and maximum diameter were automatically evaluated by machine learning. Results.
Te GISTs and GLMs with a diameter ≤3 cm showed clear margins, uniform density on plain scan CT, and progressive ho-
mogeneous enhancement.Te age of the GISTs is greater than that of the GLMs group.Te plain scan CTvalue of the GISTs group
was lower than that in the GLMs group. In the GISTs group, the lesions were mostly located in the fundus (68.18%), showing
a mixed growth pattern (54.55%), and in the GLMs group, most lesions were located in the cardia (47.82%), showing an
intraluminal growth pattern (95.65%). Te abovementioned diferences were statistically signifcant. Conclusions. Contrast-
enhanced CT has limited value in diferentiating small GISTs from GLMs, which are ≤3 cm. Older age (>49.0 years), a low plain
CT value (<42.5Hu), mixed growth inside and outside the cavity, and noncardiac location tended to be the criteria for the
diagnosis of small GISTs of the gastric wall.

1. Introduction

Gastrointestinal stromal tumors (GISTs) and gastric
leiomyomas (GLMs) are two common tumors derived
from gastrointestinal mesenchymal tissue. GISTs are Cajal
cells originating from the muscularis propria of the
gastrointestinal wall and have malignant potential [1],
while GLMs are benign tumors originating from the
smooth muscle tissue of the gastrointestinal wall [2]. GIST
lesions vary in size, and their imaging manifestations are
diverse, with round, quasi-round, or irregular shapes.
Necrotic cystic degeneration, hemorrhage, and calcifca-
tion may occur in the lesions. Enhanced scanning shows
uniform or uneven enhancement, most of which are

obvious, and vascular-like enhancement can be seen in
some arterial phases, while necrosis and cystic de-
generation are not signifcantly enhanced. GLMs mostly
occur in the stomach. In addition to direct invasion and
distant metastasis suggesting malignancy, irregular or
lobulated tumors, uneven enhancement, central necrosis,
ulceration, and uneven thickening of the adjacent in-
testinal wall suggest a high possibility of LMs. Submucosal
tumors of the stomach wall with diameter ≤3 cm in the
GISTs are GISTs with a decreasing diameter, and the value
of multiphase CT enhancement in the identifcation of
gastric wall GISTs and GLMs is limited. Among them,
only older age, a lower plain CT value, mixed growth
inside and outside the cavity, and occurrence in the gastric
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fundus are more inclined to the diagnosis of small GISTs
in the gastric wall.

Previous studies on the diferential diagnosis of the two
tumors in imaging are not lacking. With the increasing
widespread clinical application of digestive endoscopy, more
and more small gastric wall submucosal tumors have been
discovered and attracted attention [3]. As the tumor di-
ameter decreases, its imaging features are incharacteristic,
which makes diferential diagnosis more difcult, and
preoperative diferentiation between small GISTs and GLMs
is important for treatment selection. In this study, multi-
phase enhanced CT images of gastric wall submucosal tu-
mors with a diameter of ≤3 cm were retrospectively analyzed
to explore their imaging manifestations and the basis for
diferential diagnosis.

2. Materials and Methods

2.1. Research Object. A total of 78 cases of pathologically
diagnosed gastric wall submucosal tumors were treated by
endoscopic ultrasonic-guidedfne-needle puncture or en-
doscopic/surgical resection from June 2018 to June 2021.
Among them, there were 35 cases of GISTs, 31 cases of
GLMs, 5 cases of gastric schwannoma, 4 cases of ectopic
pancreas, 1 case of gastric polyp, 1 case of gastric cancer, and
1 case of glomus tumor. GISTs and GLMs with a diameter of
≤3 cm were included in this study, and cases without pre-
operative CT enhancement or poor image quality were
excluded. Finally, 45 cases were included, including 22 cases
of GISTs and 23 cases of GLMs.

2.2. Inspection Method. All examinations were performed
with a 256-slice multislice CT scanner (Revolution CT, GE,
USA). Before the CT examination, the patient fasted for
4–6 hours, and 500–1000mL of water was taken orally
10minutes before the scan (to fully dilate the stomach and
duodenum). Scanning parameters were as follows: tube
voltage 120 kV, Smart mA technology, speed 0.5 s, pitch
1.375, layer thickness 5mm. Te reconstruction layer
thickness is 1.25mm. Te patient underwent breathing
training. After the plain scan, a high-pressure syringe was
used to inject a nonionic iodinated contrast agent (iohexol,
300mgI/mL, 1.2ml/kg) through the antecubital vein at
a fow rate of 2.5–3.5ml/s, and the scan was triggered by the
smart tracking technology. Te abdominal aorta layer was
monitored; the trigger threshold was 120Hu. Te breathing
command was deep inhalation and then breath-holding, and
multiphase CT-enhanced scanning was performed in the
arterial phase (5.9 s), the portal venous phase (20 s), and the
delayed phase (120 s) by automatically triggering the en-
hanced scanning. Te tube was fushed with 30ml of normal
saline after the injection.

2.3. Research Method. Te blind method is used. Te CT
images were retrospectively analyzed by two imaging di-
agnosticians (with working years of 15 and 7 years, re-
spectively), and the diferences were resolved through
consultation. Te contents of analysis include tumor

location, maximum diameter, shape, margins, growth pat-
tern (intraluminal or mixed type, this group of cases is small,
and there is no single extraluminal growth case), plain scan
and enhanced CTvalues at each stage (select the largest level
of the lesion, the area of uniform density, the area of interest
2∼4mm2, the average CT value), the presence or absence of
cystic calcifcation, enhancement mode (the diference be-
tween the CTvalue of the most obvious part of the lesion and
the weakest part of the enhancement is less than 10Hu
defned as uniform enhancement, greater than or equal to
10Hu for heterogeneous enhancement), lymph nodes
around the lesion (shorter diameter greater than 5mm), and
the ratio of the three-phase enhancement of the lesion to the
CT value of the aorta at the same level (R-A, R-V, R-D).
When measuring aortic CT values, the ROI was enlarged as
much as possible, and the average value was taken. Tumor
location and maximum diameters were automatically
evaluated using machine learning by GE software (GE
Milwaukee, USA).

2.4. Statistical Analysis. SPSS 26.0 statistical software was
used. Measurement data (age, maximum diameter of tumor,
plain/enhanced CT value, and R-A/V/D) between two
groups were compared by a t-test or Mann–Whitney U test.
Data were expressed as mean± standard deviation (x ± s) or
median (upper and lower interquartile range: M (P25, P75)).
A chi-square test or adjusted chi-square test was used to
compare count data (sex, tumor location, morphological
margin, growth pattern, presence or absence of cystic cal-
cifcation, and enhancement pattern) between the two
groups. Te receiver operating characteristic (ROC) curve
was used to determine the best cutof value (the sum of
specifcity and sensitivity was the highest) to distinguish
GISTs from GLMs, Youden value = sensitivity−(1−

specifcity). P< 0.05 was statistically signifcant.

3. Results

3.1. Comparison of General Clinical Data and CT Features.
A total of 45 patients were included in this study, including
20 males and 25 females, aged from 27 to 68 years old, with
an average age of (51.00± 11.10) years, and lesion sizes
ranging from 0.8 to 3.0 cm. Among them, there were 22 cases
of the small GISTs in the gastric wall (pathology showed
extremely low risk in 15 cases, low risk in 6 cases, and
medium risk in 1 case) and 23 cases of the small GLMs in the
gastric wall. Te average age, maximum size of the tumor,
plain CT value, multistage enhanced CT value, the ratio of
the three-phase enhancement of the lesion to the CTvalue of
the aorta at the same level, tumor location, morphology,
tumor margin, growth mode, cystic change, calcifcation,
enhancement mode, and adjacent enlarged lymph nodes of
the two groups are shown in Table 1. Te median age of the
GISTs is greater than the median age of the GLMs group
(P< 0.05). Te plain CT value of GISTs was lower than that
of the GLMs group (P< 0.05). 15/22 (68.18%) of the small
GISTs in the gastric wall are located in the fundus of the
stomach (Figure 1), and the 11/23 (47.83%) of small GLMs
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in the stomach wall are located in the cardia (Figure 2). Te
small GISTs in the stomach wall with mixed growth in the
intraluminal/extraluminal are about 12/22 (54.55%) (Fig-
ure 1), whereas the GLMs are mainly with intraluminal
growth (Figure 2) and are about 22/23 (95.65%) (P< 0.05).

3.2. Receiver Operating Characteristic (ROC) Curve. Te
ROC curve showed that when patients were older than
49.50 years old, the area under the curve, sensitivity, and
specifcity for diagnosing GISTs were 0.836, 86.4%, and
73.9%, respectively (Figure 3). When the unenhanced CT
value was greater than 42.5Hu, the area under the curve,
sensitivity, and specifcity for diagnosing GLMs were 0.777,
69.6%, and 77.3%, respectively (Figure 4).

4. Discussion

With the wide application of digestive endoscopy, the
detection of gastric subepithelial lesions has greatly in-
creased, especially the small GISTs in the gastric wall with
a diameter of ≤3 cm. Due to its inert biological charac-
teristics, some scholars suggest that it should be classifed
as a special type or even a benign tumor to be distin-
guished. So what is the imaging performance and iden-
tifcation basis of such small GISTs and small GLMs? Is
there any change compared with conventional lesions
reported in the literature?

Tis study showed that the average age of the small
GISTs group was greater than that of the GLMs group, which

Table 1: Comparison of general clinical data and CT features between small gastric GISTs and GLMs (n (%)).

GISTs group (22 cases) GLMs group (23 cases) Statistical P value
Gender 1.779① 0.182
Male 12 (54.54) 8 (34.78)
Female 10 (45.46) 15 (65.22)

Average age (years) 60.50 (51.00, 64.25) 47.00 (37.00, 54.00) −3.863④ <0.001∗
Tumor location 13.276① 0.001∗

Cardia 2 (9.09) 11 (47.83)
Fundus of stomach 15 (68.18) 4 (17.39)
Gastric body 5 (22.73) 8 (34.78)

Tumor shape 0.987② 1.000
Smooth 22 (100) 22 (95.65)
Lobular 0 (0) 1 (4.35)

Tumor margin 2.222② 0.243
Clear 20 (90.91) 17 (73.91)
Verge 2 (9.09) 6 (26.09)

Growth mode 13.792① <0.001∗
Intraluminal 10 (45.45) 22 (95.65)
Mixed 12 (54.55) 1 (4.35)

Cystic change 0.301② 0.489
Yes 1 (4.76) 0 (0)
No 21 (95.24) 23 (100)

Calcifcation 0.001② 1.000
Yes 1 (4.76) 1 (4.35)
No 21 (95.24) 22 (95.65)

Enhancement mode 0.178② 1.000
Homogeneous 20 (90.91) 20 (86.96)
Inhomogeneous 2 (9.09) 3 (13.04)

Progressive enhancement 0.650① 0.420
Yes 15 (68.18) 13 (56.52)
No 7 (31.82) 10 (43.48)

Adjacent enlarged lymph nodes 2.001② 0.489
Yes 0 (0) 2 (8.70)
No 22 (100) 21 (91.30)
Tumor maximum diameter (cm) 1.80 (1.40, 2.33) 1.30 (1.10, 1.90) −1.707④ 0.088
Plain CT value (Hu) 37.32± 7.82 46.48± 8.63 −3.727③ 0.001∗

CT value of phase A (Hu) 57.50± 12.31 59.65± 8.93 −0.674③ 0.504
R-A 0.19 (0.15, 0.21) 0.18 (0.17, 0.21) −0.352④ 0.725
CT value of phase V (Hu) 69.86± 11.74 67.43± 9.63 0.760③ 0.451
R–V 0.49 (0.45, 0.55) 0.44 (0.42, 0.52) −1.953④ 0.051
CT value of phase D (Hu) 73.23± 11.95 73.43± 10.05 −0.063③ 0.950
R-D 0.71± 0.10 0.68± 0.09 1.140③ 0.261

Note. ① represents the chi-square test, ② represents the correction chi-square test, ③ represents the T test, ④ represents the Mann−Whitney U test;
∗indicates a statistical diference.
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was consistent with the results of previous studies [4]. Te
ROC curve showed that when the patient was older than
49.50 years old, the area under the curve, sensitivity, and
specifcity of GISTs were 0.836, 86.4%, and 73.9%, re-
spectively, indicating that older age at onset can also be used
as the basis for the identifcation of gastric small GISTs and
small GLMs.

Choi et al. studied that the gastric corpus is the pre-
disposing site of GISTs in the gastric wall [5], and the risk of
GISTs increases as the GISTs move down in the gastric cavity
compared with the gastric cardia [6]. In this study, the small
GISTs were mostly located in the gastric fundus, and 95.45%
were in the low-risk or very low-risk group. Cardia or in-
volvement of the gastroesophageal junction is a signifcant
feature of GLMs [5, 7]. In this study, about 47.82% of small
GLMs occurred in the cardia. Terefore, the occurrence of
lesions in the gastric fundus or the cardia becomes one of the
important basis for the identifcation of gastric wall small
GISTs and small GLMs.

Te plain CT value of the GISTs group was lower than
that of the GLMs group. Te ROC curve showed that when
the unenhanced CT value was greater than 42.5Hu, the area
under the curve, sensitivity, and specifcity for diagnosing
GLMs were 0.777, 69.6%, and 77.3%, respectively. In the
past, the imaging characteristics of GISTs have rarely paid
attention to the CT value of a plain scan, and more attention

has been paid to whether the density of the lesion is uniform
and whether there is cystic necrosis and hemorrhage. Tese
signs suggest an increased risk of malignancy and become
the main basis for distinguishing GISTs from other benign
tumors of the gastric wall. In our study, the small lesions had
clear margins and uniform enhancement on both plain and
enhanced scans, indicating the characteristics of low or very
low malignancy. Te lower CT value of a plain scan has
become one of the bases for diagnosing small GISTs.

In terms of tumor growth patterns, the lesions in the
GISTs group showed mixed growth, and the lesions in the
GLMs group grew into the cavity, which may be due to the
diferent histological sites of the two tumors. Endoscopic
ultrasonography shows that gastric wall GISTs mostly occur
in the fourth layer of the gastric wall, namely, the muscularis
propria, so they can grow both inside and outside the cavity
[6]. GLMs mostly originate from the third layer, the mus-
cularis mucosae, so they grow toward the mucosal surface
with less growth resistance and protrude into the lumen,
which is consistent with the results of previous studies [7–9],
indicating that the histological location and growth pattern
of small GISTs are similar to conventional lesions.

In previous studies, in GISTs tumors with a diameter of
2–5 cm or larger, the cystic degeneration, lobulation, in-
homogeneous enhancement, and surface ulcers suggested
a higher risk of GISTs and became the main basis for

Figure 1: A 63-year-old man with small GISTs in the stomach wall.① Plain CTscan revealing an oval mixed growth of soft tissue mass in
the fundus of the stomach, smooth with clear margin and amaximum diameter of 2.1 cm.Te CTvalue of plain CTscan was 32Hu, showing
mixed growth in the intraluminal/extraluminal. ②–④ Enhancement scanning of the arterial phase, venous phase, and delayed phase,
resulting in uniform progressive enhancement of the mass.
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Figure 3: ROC curves of age-diagnosed GISTs.
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Figure 4: ROC curve for the diagnosis of GLMs by plain CTvalues.

Figure 2: A 37-year-old man with small GLMs in the gastric wall.① Plain CTscan showing a soft tissue mass growing in an oval cavity from
the cardia, smooth with clear edge and a maximum diameter of 2.7 cm. Te CT value was 38Hu and the mass grew inside the cavity.②–④
Enhancement scanning of the arterial phase, venous phase, and delayed phase, respectively, resulting in homogeneous enhancement of
the mass.
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diferentiating them from GLMs [5, 10]. However, the
abovementioned signs in this study of small lesions did not
have any distinguishing value. Both lesions showed pro-
gressive enhancement with a clear margin and uniformity,
showing the imaging manifestations of benign spindle cell-
derived tumors. Te disadvantage of this study is that the
sample size is small, and we look forward to expanding the
sample size in the future and further exploring its diagnostic
and diferential diagnosis characteristics through radiomics
methods.
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Skin cancer remains one of the deadliest kinds of cancer, with a survival rate of about 18–20%. Early diagnosis and segmentation of
the most lethal kind of cancer, melanoma, is a challenging and critical task. To diagnose medicinal conditions of melanoma
lesions, diferent researchers proposed automatic and traditional approaches to accurately segment the lesions. However, visual
similarity among lesions and intraclass diferences are very high, which leads to low-performance accuracy. Furthermore,
traditional segmentation algorithms often require human inputs and cannot be utilized in automated systems. To address all of
these issues, we provide an improved segmentation model based on depthwise separable convolutions that act on each spatial
dimension of the image to segment the lesions. Te fundamental idea behind these convolutions is to divide the feature learning
steps into two simpler parts that are spatial learning of features and a step for channel combination. Besides this, we employ
parallel multidilated flters to encode multiple parallel features and broaden the view of flters with dilations. Moreover, for
performance evaluation, the proposed approach is evaluated on three diferent datasets including DermIS, DermQuest, and
ISIC2016. Te fnding indicates that the suggested segmentation model has achieved the Dice score of 97% for DermIS and
DermQuest and 94.7% for the ISBI2016 dataset, respectively.

1. Introduction

Melanoma is a severe kind of skin cancer with a very high
mortality rate. Although there are only 2% of all the skin
cancer types, melanoma is responsible for 75% of deaths
occurred due to skin cancer [1]. In USA only, about 87,110
new cases are reported every year out of which 9,730 patients
lose their lives due to this lethal skin cancer [2]. Similarly, in
2016 a total of 6,800 fatalities due to melanoma were re-
ported in Canada [3]. Usually, the exposed regions of skin to

sunlight are highly afected by melanoma e.g., face, legs, and
arms.Te borders and colors of melanomamoles are uneven
and evolving which represent the severity level of the disease
[4]. Many advanced techniques for the treatment of skin
cancer are available including radiation therapy and im-
munotherapy. In clinical practice [5], these techniques are
combined with surgery but still the survival rate of advanced
stages of melanoma is quite low and is around 15%. On the
other hand, the survival rate for the early stages of melanoma
is around 95% [6]. In order to diagnose the medical
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problems of melanoma lesions, dermatologists directly ex-
amine the damaged skin’s uniformity, inconsistencies in the
borders, and color changes [4]. Moreover, dermoscopy,
a nontrauma skin imaging technique, is also very popular to
assist dermatologists to examine the afected skin. Te ac-
curacy for identifcation of melanoma lesions through
dermoscopy is higher than the traditional method of ABCD
rule criteria [7].Tis ABCD rule is designed by the American
Society for skin lesions [8]. Nevertheless, the biopsy test is
the only thing on which the performance is solely de-
pendent. In the initial stages, the identifcation of melanoma
greatly matters since in the initial stages the possibility of
recovery is much higher than in the later stages. However,
the manual identifcation of melanoma needs an expert
dermatologist followed by a stage in which the decision is
made to assess a subjective variation.

Numerous researchers have proposed to automate the
analysis process and extend the knowledge that can identify
lesions accurately and helps diferent healthcare systems
which are based on the Internet of Tings (IoT) [9–11].
Tere exist traditional techniques, e.g., Otsu and Stochastic,
that can perform melanoma segmentation, but these
thresholding techniques are not the end-to-end solution,
and owing to artifacts, this might lead to under or over
segmentation problems. Terefore, there is a need for au-
tomated systems to automatically diagnose skin lesions for
the treatment of skin cancer patients.Te lighting conditions
and diferent orientations also make it a challenging task for
automated systems to analyze them [12]. Some researchers
highlighted these issues recently and observed that there is
very low diagnostic accuracy due to the presence of these
issues in clinical images [13].

Recently, deep-learning approaches are also utilized for
the task of automated skin lesion segmentation to over-
come the challenges with traditional methods. Te per-
formance of these deep-learning-based methods is
exceptional in segmenting skin lesions as compared to the
traditional dermatologists [1]. A lot of deep-learning-based
segmentations are proposed in the existing research studies
for skin lesions, but there is still space to enhance the
algorithms in terms of both parameters and performance
[14–17].

From this line of research, we proposed an efcient deep-
learning model for end-to-end segmentation of melanoma
lesions to overcome all the challenges which include
intraclass variations and lighting conditions as well as other
related issues. Te proposed framework uses the UNet ar-
chitecture as the base architecture for end-to-end segmen-
tation of melanoma lesions, as it has a very strong capability
in biomedical image segmentation [18]. More explicitly, it
consists of a downsampling path, a bottleneck layer, and an
upsampling path. Te downsampling path consists of
multidilated convolution blocks (MDC) and depthwise
separable convolutions blocks (DSC) that empower the
process of feature learning across the channels on the image.
Te parameters of convolution are dramatically reduced
with these depthwise separable convolutions without
compromising the performance. Te generalization ability
of the model is improved by these convolutions while

avoiding overftting. Spatial and cross-channel correlations
are also separated with the help of these convolutions.
Moreover, there is the use of swish activations in the MDC
block. Te nonmonoatomic property of swish is very ad-
vantageous in deep-learning algorithms. All these charac-
teristics make the proposed framework more reliable in
segmentingmelanoma lesions.Te following points describe
our contribution:

(i) Te proposed approach is capable of localizing
melanoma lesions and multiple types of cancer in
a single image by designing DSC blocks with
multidilated features

(ii) Te proposed segmentation model accurately seg-
ments the lesions by overcoming the challenges
presented in the ISBI2016 dataset

(iii) We used skin refnement as a preprocessing step to
eliminate artifacts from dermoscopic images.

Te rest of the paper is organized in the following way:
Section 2 thoroughly explains the review of current ap-
proaches. Section 3 explains our proposed methodology in
detail. Section 4 explains the experimental details, results,
and discussion. Lastly, Section 5 provides the conclusion of
the paper.

2. Literature Review

Te segmentation of melanoma lesions is a fundamental
technique in designing the automated detection model of
skin cancers. Since the segmentation of lesions plays an
important role in the classifcation task of skin cancer
[19–21]. Automated segmentation techniques are further
split into traditional and deep-learning techniques, along
with some advanced hybrid deep learning models. Te
following is a critical literature assessment of each kind of
method in the segmentation of melanoma lesions.

Te conventional techniques of melanoma lesions seg-
mentation mostly involve iterative selection [22, 23], adaptive
threshold [24], iteration merging of regions [25], and Otsu
threshold [26]. Nevertheless, as a result of the existence of
artifacts in dermoscopic images the efectiveness of
thresholding-based techniques will be diminished [22, 26]. In
[26], the accuracy of the proposed algorithm is acceptable but
the images that were segmented have uneven borders as well
as reduces the resolution of the images. In [27], the authors
suggested a method to address the challenges that arise in
[26]. Another collection of studies [25, 28] suggested a region
merging technique to perform segmentation. In this method,
the identical regions of the images are clustered together. To
overcome the challenges of color, low contrast, and illus-
tration, the region merging technique performs well. In [25],
lesion segmentation is carried out by these identical regions
having identical attributes. Overall, these approaches need
a lot of manual parameter tuning, such as threshold values in
thresholding-based segmentation, making them unsuitable
for automated CAD systems.

Another research group [29–32] suggested deep-
learning techniques for segmentation and achieved con-
siderable outcomes as compared to the standard methods.
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In [31], an FCRN, i.e., fully convolutional-residual-
network was suggested to address the challenges of model
overftting in the task of melanoma segmentation. In [32],
localization of lesions is accomplished by utilizing the
region-based CNN followed by the machine learning
fuzzy-clustering technique. In [29], a 19-layer CNN is
designed to improve and enhance the results of melanoma
segmentation. More specifcally, in this study, Jaccard
distance is utilized as a loss function. With the assistance of
this loss function, the segmentation performance improves
and also the problem of overftting arises between normal
and melanoma images. In [30], FRCN, i.e., full CNN was
designed for segmentation of melanoma lesions. In order
to segment, the lesion areas of diferent scales a segmen-
tation model based on multiscale convolution is proposed
in [33] which efciently extracts the areas of lesions. A
multistage segmentation model was proposed in [34] to
perform the end-to-end segmentation of skin lesions. Tey
also combined and integrates the context information with
their model. Te boundary of lesion segmentation is
further improved in [35]. Tey combined the mixed fea-
ture inputs and proposed a multibranch fusion network
and performed an immense set of experiments to evaluate
their model. In [36], a new method for automatic seg-
mentation of skin lesions is designed which was capable of
learning more powerful and distinguishable features. Tis
model used cross-net-based aggregation. In [37], to seg-
ment lesions and lessen the impact of artifacts, a hybrid
technique was suggested by integrating the convolutional
and recurrent neural networks. Nevertheless, a two-stage
object detection model such as RCNN produces about 2
thousand patches per image for lesion identifcation. Due
to this reason, melanoma localization becomes compu-
tationally expensive in these approaches. Furthermore,
while all of these deep-learning algorithms for lesion
segmentation produce outstanding results, there is still
a gap for improvement in terms of model performance.

In addition, to acquire more information features
from dermoscopy images, some hybrid models are also
designed such as in [38] for bilinear merging, they used
ResNet and VGG to extract high-level features and trained
their algorithm using SVM classifers. Tey achieved the
best accuracy results on several test sets. In order to cope
with the intraclass inconsistency of lesions, a multi-
convolution neural network is proposed in [39]. Tis
model was combined with an adaptive sample strategy of
learning. Tis technique also deals with related noise
interference. In [40], encoded output features are con-
verted into Fisher Vectors by using the weights of the
pretrained model which is a deep residual network. Tey
also used trained SVM to achieve the recognition task and
have achieved a signifcant performance on a test set of
classifcation challenges of ISBI2016. However, their ap-
proach was not an end-to-end solution and the overall
architecture of the model was very complex. Te ad-
vantages of hybrid approaches include improved per-
formance and broader feature acquisition; nevertheless,
the computational complexity of hybrid deep-learning
models is high, making them slow.

3. Methodology

Te detail of our proposed framework is presented in Fig-
ure 1. In this research, we have utilized three diferent
datasets. Te instances in the dataset undergo some pre-
processing stages for improved quality images to remove
artifacts like hair, bubbles, and other patches. Tis is fol-
lowed by steps to localize the melanoma lesions.

3.1. Preprocessing. Before giving the input images to the
deep-learning model, all the images are preprocessed to
remove noises from them. Tis step is necessary for very
precise segmentation. Most commonly used image pre-
processing techniques involve image smoothing, resizing,
identifcation of ROIs, and denoising of images. For the
elimination of artifacts from dermoscopic images, Gaussian
smoothing is the most efective technique. In the suggested
method, we have performed the dilation followed by erosion
also referred to as morphological closing. Later on, in the
next stage, we performed the sharpening operations over the
images to further enhance the quality of the images. Some
sample images before and after preprocessing are depicted in
Figure 2.

3.2. Data Augmentation. Usually, the publicly accessible
training images for all categories are not dispersed evenly,
resulting in the class imbalance issue [41]. In the suggested
method, we increase the total number of samples in the train
set by employing diferent types of augmentation such as
fipping, cropping, and rotating. Table 1 lists the diferent
types of augmentation and their values used to augment the
samples. More specifcally, 15 additional images are sampled
from a particular dermoscopic image by using the aug-
mentation types given in Table 1. Te main rationale to use
this phase in our strategy is to reduce overftting problems
and improve the model’s predictive performance.

3.3. Proposed Architecture. Our proposed framework con-
sists of three major parts which include the downsampling
path to down sample an image by extracting the features
which represent what is present in an image followed by the
bottleneck and upsampling path to upsample an image to get
the localization of the required lesion in an image as shown
in Figure 3(a). Te complete architecture of each part is
described below:

3.3.1. Downsampling Path. Te downsampling path of the
model consists of a multidilated convolution (MDC) block
and depthwise separable [30] convolution block (DSC) to
encode features of melanoma lesions followed by max-pool
operations of size 2 × 2 to reduce the spatial dimensions of
the images as shown in Figure 3(a). Te architecture of the
MDC and DSC block are given in Figure 3(b). Te feature
extraction part starts from the regular convolution of size
1 × 1 and 3 × 3 max-pool on an input image of size 256 ×

256 × 3 followed by ReLu [33] activation functions. Besides
this, input is also given to the DSC block as shown in
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Figure 3(b). In the DSC block, the depthwise separable
convolution of sizes 1 × 1 and 3 × 3 is performed on every
channel of an input image independently. Afterwards,
a 1 × 1 window is utilized as pointwise convolution to
project to a new channel space after a channel is computed

by depthwise convolution as shown in Figure 4. Te
depthwise separable convolutions are not like spatial sep-
arable convolutions which are also referred as “separable
convolutions” in the community of image processing [42].
Te mathematical formulation is given below:

Original Image

Augmentation

Output

Segmented ImagesDecoderEncoder

Bottleneck

Segmentation model

Ground Truth

Images
Preprocessing

Figure 1: A schematic overview of the proposed methodology.

Figure 2: Image enhancement on ISBI2016 dataset; row 1 depicts the original dataset images, row 2 depicts the images after closing
morphological operation, and row 3 depicts results after sharpening.

Table 1: Data augmentation types and their parameters.

Sl. no. Augmentation types Parameters
1 Rotate 90°, 180°, 270°
2 Crop from right 45°, 60°, 90°
3 Crop from left 45°, 60°, 90°
4 Crop from top 45°, 60°, 90°
5 Crop from bottom 45°, 60°, 90°
6 Flipping Left right
7 Shifting Shifted by (25, 25) pixels
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Figure 3: Architecture of proposed segmentation model.

Depthwise Convolution

n*n

Pointwise Convolution

1*1

Figure 4: Depthwise separable convolutions.
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In the above equations, ⊙ shows the elementwise
product. Te beneft of depthwise separable convolutions
over traditional convolutions is the total number of pa-
rameters [43]. For this, consider a standard convolution with
a feature map F and suppose that value of stride and padding
is one. Tis can be computed as the following equation:

Fk,l,m � 􏽘
i,j,m

Ki,j,m,n ∙ Ik+i−1,l+j−1,m. (2)

For these standard convolutions, the total number of
parameters and computational cost can be calculated as
follows:

k × k × M × N and k × k × M × N × H × W, (3)

where the input image or input feature maps are represented
by I, while k denotes the kernel of convolution with size
k × k. Te M and N denote the number of input and output
channels while the height and width of input feature maps or
input images are denoted by H and W, respectively. Fur-
thermore, for depthwise separable convolutions which is
a combination of depthwise and pointwise convolutions, the
output feature maps are calculated as follows:

F,
k,l,n � 􏽘

i,j
K,

i,j,m ∙ Ik+i−1,l+j−1,m. (4)

Similarly, for these depthwise separable convolutions,
the total number of parameters and computational cost is
calculated as follows:

k × k × M + M × N and k × k × M × H × W + M × N × H × W.

(5)

Now, in order to compare the parameters of both types
of convolutions, we obtained the following equation:

k × k × M + M × N
k × k × M × N

�
1
N

+
1
k2

. (6)

It can be shown and seen that the number of parameters
is about 8 to 9 times less in depthwise separable convolutions
than in standard convolutions. Hence, it is observed that we
improved the network without an extensive increase in the
number of parameters of the network and also empowered
the network to learn deep dilated features which in turn gives
more contextual information. Moreover, the output of
regular convolutions and max-pool are concatenated and
given as input to the frst dilated convolution in the MDC
block as shown in Figure 3(b). Similarly, the input of second
and third dilated convolutions in the MDC block is the
output of regular convolutions, max-pool, and the result of

previously dilated convolution. Furthermore, in the MDC
block, three convolution operations utilizing the dilated
flters of size 1 × 1, 2 × 2, and 3 × 3, respectively, are used.
Te convolutions which use the dilated flters are also called
dilated or atrous convolutions. For these, a dilated flter w
also called kernel is convolved over the input signal, and for
each location, i is the output, and y is computed by equation
(7), ([44])

y[i] � 􏽘
k
x[i + r ∙ k]w[k]. (7)

In equation (7) the r is representing the value of the
stride by which the input signal is sampled which is a similar
operation to convolve over any input signal x with the help
of flters w that are upsampled by inserting r − 1 zero along
each spatial dimension that are consecutive. Tese are very
helpful as a large receptive feld of view is enhanced by
dilated convolutions of the given input image. After each
dilated convolution in the MDC block, there is the use of
batch normalization [31] and swish activations [32] as
shown in Figure 3(b). Te use of batch normalization [31]
fastens the training process and prevents the model from
overftting. A dropout layer of rate 0.05 is also added after
every max-pool operation. Furthermore, the swish activa-
tions are defned as [45]

f(x) � x ∙ σ(x). (8)

In equation (8), the σ(x) � (1 + exp (−x))− 1 represents
the sigmoid function. Tis activation function is bounded
below and unbounded above. Te properties of swish ac-
tivation include that it is smooth and the property of non-
monotonicity which distinguishes it from other activation
functions. Te derivative of the swish is given below in
equation (9) [45]

f(x)
,
� σ(x) + x ∙ σ(x)(1 − σ(x)

� σ(x) + x ∙ σ(x) − x ∙ σ(x)
2

� x ∙ σ(x) + σ(x)(1 − x ∙ σ(x))

� f(x) + σ(x)(1 − f(x).

(9)

Moreover, the output of MDC blocks is concatenated to
depthwise convolution blocks, and the result of regular
convolutions and max-pool is shown in Figure 3(b). Te
number of flters set for each of our convolution blocks is 16,
32, 64, and 128, respectively. Moreover, the starting weights
for regular convolution and convolutions inMDC blocks are
initialized with “He normal” weight initialization which is
defned as [46, 47]

W ∼ G 0,

��
2
n

􏽲

􏼠

Or W[i] � RandomUniform(low � −limit, high � limit, size � Fin, Fout( 􏼁.

(10)
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In the above equation (10), G is just a random number
with Gaussian probability distribution while the total
number of inputs coming towards a particular neuron is
represented by n. Furthermore,

���
2/n

√
is used to calculate the

standard deviation while the 0 represents the mean. In
addition, Fin and Fout are the number of inputs and outputs
to the layer, respectively. Similarly, the weights of depthwise
separable convolutions are initialized with the Glorot weight
initialization method which is also called Xavier initializa-
tion. Te main objective of the downsampling path is to
extract features that describe the semantics of the image with
loss of spatial and localization information.

3.3.2. Bottleneck Path. Te bottleneck path of the proposed
framework consists of 1 × 1 and 3 × 3 convolution followed
by depthwise separable convolution block (DSC) and MDA
blocks as shown in Figure 3(a).Te resulting feature maps of
the last max-pool operation on an input image in the
downsampling path are given as inputs to the bottleneck
path which yields output feature maps of dimension 16 ×

16 × 2323. Tese resulting feature maps are then given as
input to the very the frst layer of the upsampling path to
localize the melanoma lesion.

3.3.3. Upsampling Path. Te upsampling path of the model
consists of transposed convolution with kernel sizes of 3 × 3
with a stride of 2 × 2 followed by the operation of concate-
nation to corresponding convolution blocks of downsampling
path as shown in Figure 3(a) to combine the context and
localization information to segment out the melanoma le-
sions. Transposed convolutions are the reverse processes of
convolution, and it is more robust than simple upsampling as
it flls up the details with proper learning.Tese are also called
fractionally stride convolutions. Moreover, the concatenation
operations between upsampling and downsampling path at
the appropriate position help to restore the localization in-
formation that is lost during downsampling an image. So
more specifcally, the input from the bottleneck layer is frst
given as an input to the frst transposed convolution layer.
Ten, by means of skip connections, the output generated
from this layer is concatenated to the last MDC and DSC
blocks downsampling path.Moreover, this process is repeated
three more times. In the end, the output of the last MDC and
DSC blocks in upsampling path is passed through 1 × 1
convolution followed by sigmoid activation to get the re-
quired segmented image of the lesion.

4. Experiments, Results, and Discussion

In this section, we discuss the datasets used for experi-
mentation purposes and evaluation metrics used to evaluate
the model as well as results of the model. In addition, the
proposed model is designed in the Keras framework
available in Python, and simulations are run on Google
Colab with 12GB RAM and NVIDIA Tesla K80 GPU. Te
hyperparameters of the model include the weight initiali-
zation, weight optimizer, learning rate, and epochs which are
set to Xavier, Adam, 0.001, and 150, respectively.

4.1. Datasets. To assess the universality of our proposed
model, we evaluated it on three distinct datasets, i.e., Der-
mIS, DermQuest, and ISBI2016. All the datasets contain skin
lesion images in RGB format. More explicitly, the Derm-
Quest contains 152 melanoma images while 122 images
belong to the nevus class. Similarly, in DermIS, the total
number of melanoma class images is 43 while the nevus class
has a total of 26 images. Te DermQuest and DermIS
datasets contain a limited number of images, so augmen-
tation is applied to the training set. Moreover, the dataset
ISBI2016 comprised 900 melanoma images in the train set
and 379 images in the test set. Te train and test division of
images are already provided by the dataset publisher. For
a fair comparison, we utilize the same train and test sets.

4.2. Performance Evaluation Metrics. To examine the per-
formance of the model, we utilized diferent evaluation
metrics [48–51] including dice score, specifcity, sensitivity,
and Jaccard score. Te following equations (11)–(15) are
used to compute these metrics

Accuracy �
TP + TN

TP + TN + FP + FN
, (11)

Dice  score �
2 × TP

2 × TP + FP + FN
, (12)

Specif icity �
TP

TP + FP
, (13)

Sensitivity �
TP

TP + FN
, (14)

Jaccard  score �
TP

TP + FP + FN
, (15)

where TP denotes the true positives, FP denotes the false
positives, TN denotes the true negatives, and FN denotes the
false negatives.

4.3. Results of DermIS Dataset. In the frst step, we evaluate
the proposed model on the DermIS datasets containing
melanoma and nevus class images along with their mask
images. As previously stated, artifacts like hair, air bubbles,
and other noises can be seen in the images of the DermIS
dataset.Te existence of these types of artifacts will infuence
performance accuracy. To address this problem, we have
performed the preprocessing on images that are discussed in
Section 3.1. In addition, we have also performed the data
augmentation described in Section 3.2 to increase the
number of training samples since DermIS has a very limited
number of images. Tis is done to expand the number of
instances since a minimal amount of training data leads to
overftting issues. In Figure 5, the results of augmentation
are depicted. Te proposed model takes the dermoscopic
images along with their ground truth images as input and
outputs the segmented images. Te results of melanoma
segmentation are depicted in Figure 6 along with their actual
ground truth images and contour images.
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Column (A) in Figure 6 shows the original images that
were preprocessed. Column (B) shows the actual ground
truth images. Following on, column (C) shows the contour
images of actual ground truth images. Te contour is shown
by the red borders in column (C). Column (D) depicts the
output of the segmentation model in form of segmented
images while column (E) shows the output images with
contours. Te efectiveness of the proposed method on this
database was assessed utilizing previously defned metrics.
As shown in Table 2, the Dice score achieved for this dataset
is 97% which shows the robustness of our model perfor-
mance in localizing skin lesions. Te accuracy and Jaccard
indexes are 97% and 94% while sensitivity and specifcity are
93%.

4.4. Result of DermQuest Dataset. In the second step, we
evaluated the performance of the proposed model on the
DermQuest dataset. All of the trials on this data, like the
DermIS dataset, make use of melanoma images and asso-
ciated ground truth images. More specifcally, we frst
perform the preprocessing step over the images to eliminate
the noises in the form of artifacts. Te number of images in
this dataset is also less in number; hence, we also perform the
data augmentation on this dataset. Te results of melanoma
segmentation for the DermQuest dataset are depicted in
Figure 7 along with their actual ground truth images and
contour images. Column (A) in Figure 6 shows the original
images, column (B) shows the actual ground truth image,
and column (C) shows the contour images of actual ground

Figure 5: Results of augmentation on DermQuest dataset.

(a) (b) (c) (d) (e)

Figure 6: Results of melanoma segmentation on DermIS dataset.
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truth images. Moreover, column (D) depicts the output of
the segmentation model in form of segmented images while
column (E) shows the output images with contours. For this
dataset, we have achieved the highest Dice score, accuracy,
and Jaccard score in comparison with the DermIS dataset.
Te proposed model achieved the Dice score of 97% and the
Jaccard score of 96% in localizing the melanoma lesions.
Moreover, the accuracy, sensitivity, and specifcity attained
for this dataset are 98%, 90%, and 95%, respectively.

4.5. Results of ISBI2016 Dataset. Te suggested framework’s
efcacy was also examined using benchmark datasets namely
ISBI 2016 by “International Symposium on biomedical
images (ISBI) in the challenge of skin lesion analysis towards
melanoma detection” [52]. For the challenge of segmenta-
tion, this database comprises a total of 1,279 images out of

which 900 images belong to the train set while the remaining
379 images belong to the test set. All dermoscopic images in
this dataset, like those in DermIS and DermQuest, go
through the preprocessing stage. Te total number of
training images in this dataset is sufcient for training
purposes; hence, there is no data augmentation is applied to
this dataset. Figure 8 shows the segmentation results of the
proposed algorithm on the ISBI2016 dataset. In Figure 8,
column (A) shows the original test images with their ground
masks shown in column (B). Te test images with contour
around the boundary are shown in column (C). Te pre-
dicted mask and output with contour are shown in columns
(D) and (E) of Figure 8, respectively. In the test set of this
dataset, there are more challenging images. As shown in row
1 of Figure 8, the lesion area of the frst image has very
similar to normal skin but still, it can be accurately seg-
mented by a model as shown in row 1 column (D) of

Table 2: Results of skin lesion segmentation in ISBI2016 challenge.

Technique Accuracy Dice score Jaccard score Sensitivity Specifcity
ExB 0.95 0.91 0.84 0.91 0.965
CUMED 0.94 0.897 0.829 0.911 0.957
Mahmudur 0.952 0.895 0.822 0.88 0.969
SFU-mial 0.944 0.885 0.811 0.915 0.955
TMU team 0.946 0.888 0.81 0.832 0.987
UiT seg 0.939 0.881 0.806 0.863 0.974
IHPC-CS 0.938 0.879 0.799 0.91 0.941
UNIST 0.94 0.867 0.797 0.876 0.954
JoseLuis 0.934 0.869 0.791 0.87 0.978
Marco Romelli 0.936 0.864 0.786 0.883 0.962

Proposed
0.95% 0.90% (None) 0.82% (None) 0.92% 0.90%
0.95% 0.947% (mi) 0.90% (mi) 0.92% 0.90%
0.95% 0.92% (ma) 0.86% (ma) 0.92% 0.90%

(a) (b) (c) (d) (e)

Figure 7: Results of melanoma segmentation DermQuest dataset.
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Figure 8. Te boundaries of lesions are still more distilled
and smooth.Te evaluation scores achieved by our proposed
model on this dataset include a Dice score which is 94.7%,
a Jaccard score of 90%, and an accuracy of 95%, respectively.
Moreover, the sensitivity and specifcity achieved for this
dataset are 92% and 90%, respectively.

We also compared our results with challenge winners of
ISBI2016. In this challenge, almost 28 groups provide their
results, as listed in Table 2. Tis ISBI ranked the competition
participants based on their best average Jaccard score. Due to
the precise segmentation of deep-learning models, it is
observed from Table 2 that most of the participants in the
competition employ deep-learning techniques. For instance,
AlexNet, VGG16, and ResNet-based pretrained models are
utilized to approximate the edges and boundaries of lesions.

It is evident from Table 2 that the proposed algorithm
attained the highest results among challenge winners. Te
comparison with all challenge winners and the proposed
framework is given in Table 2 and is graphically presented in
Figure 9. In terms of the Jaccard score, the proposed model
has a very remarkable performance over the top two par-
ticipants. Te Dice score of the proposed model is also
improved among all challenge winners. Moreover, the scores
of each test set image in the ISBI2016 dataset are shown in
Figure 10. It is observed from Figure 9, that most of the test
samples achieved greater than 80% Dice, Jaccard, and ac-
curacy scores. Tere are only a few samples in which the
Jaccard score falls below 50%. Moreover, to consider the
efect of class unbalancing, we calculate the Dice and Jaccard
score in three diferent ways. First, we consider no averaging
method and calculate the scores; in the second way we
consider the average method of “micro” (mi) which globally
calculates the FP, FN, and TP without favoring any class.
Similarly, in the third way, we use the average method of
“macro” (ma) in which we calculate the scores separately for

both background and foreground classes. It is observed from
the results that our proposed framework signifcantly ad-
dresses the challenges of segmentation in skin lesions which
includes intraclass diferences and visual similarity of lesion
features with normal skin.

Furthermore, the training graphs of accuracy and loss of
the model for all three datasets are also shown in Figure 11.
In general, the accuracy of the model is used to determine
the total number of correct predictions. Te higher value of
accuracy shows the better capability and performance of the
model. Te graphical representation of accuracy is shown in
Figure 11, and it is observed that during training the model

(a) (b) (c) (d) (e)

Figure 8: Sample melanoma segmentation results of ISIC2016 dataset from the skin with the respective masks and contour images.
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achieves an accuracy greater than 90%. Similarly, model loss
values during training of all three datasets are also plotted.
Te predictions of the model are more accurate if the loss of
the model is near to zero. It is observed that the loss values of
the proposed model on all three datasets are near zero. Te
x-axis of Figure 11 shows the total number of epochs while
the y-axis shows the accuracy and loss values epoch by epoch
of the proposed model. Moreover, during the training of the
deep-learning model, when an input image passes through
successive layers of architecture; then, each layer gives
output in the form of feature maps of diferent dimensions.
Tese feature maps indicate how your model encodes and
learns the features of images layer by layer. Usually, in the
starting layers, the model extracts low-level features while
subsequently more high-level features are extracted. Te
activation maps of some intermediate layers of the proposed
algorithm are also shown in Figure 12.

Figure 12 illustrates that lesion areas aremore focused on
the proposed model. Tis indicates that the model learns
more efective and discriminative features of lesion areas in
the given image.

4.6. Comparative Analysis with State-of-the-Art Approaches.
We have compared the performance accuracy of our pro-
posed framework with other state-of-the-art approaches. It
is noticeable from Table 3 that recent approaches use many
deep-learning approaches to automatically segment mela-
noma lesions. Bozorgtabar et al. [53] proposed an un-
supervised method for skin lesion segmentation. In this
work, the information about the context of the image is
exploited at the superpixel level. Tey achieved Dice and
Jaccard scores of 0.86% and 0.66%, respectively. Similarly,
Yaun et al. [29] proposed a19-layer deep convolutional
network for automatic segmentation of skin lesions. In their
work, the proposed model is trained with a loss function of
Jaccard distance and achieved Dice and Jaccard scores of
91% and 84%, respectively, which is very much better.

Furthermore, Li et al. [43] proposed a dense convolutional
neural network based on residual learning for skin lesion
segmentation. Tey achieved a Dice score of 93% with an
87% Jaccard score. Rashid et al. [40] proposed a two-stage
method and utilized the approach of object detection al-
gorithms named single shot detector (SSD) for localization
of melanoma lesion followed by a second stage in which level
set algorithm is used to segment the melanoma lesion. Te
Jaccard and Dice scores achieved by their approach are 90%
and 82%, respectively. Moreover, Tang et al. [34] proposed
a new novel multistage UNet-based model combined with
context information fusion structure (CIFS) for melanoma
segmentation and achieved an appropriate improvement in
the Jaccard score. In comparison with all the previous ap-
proaches, our model outperforms especially in terms of
Jaccard analysis. Wei et al. [45] proposed an ensemble
lightweight neural network for melanoma segmentation and
achieved a signifcant and excellent performance in Dice and
Jaccard scores which are 96% and 92%, respectively. Te
main reason for having efcient performance results is the
end-to-end automatic segmentation of melanoma lesions by
employing the use of (DSC) blocks with multidilated flters
which enlarges the receptive feld and view of flters.
Moreover, the nonmonoatomic property of swish activation
makes the training smooth. Furthermore, in our approach,
we applied a preprocessing technique on images that
removes the artifacts in data that hinder the accurate seg-
mentation of melanoma.

Table 3 represents the comparison between the existing
techniques and the proposed framework. From Table 3, it is
observed that there is signifcant improvement found in
terms of Jaccard and Dice scores, especially in ISBI2016,
which contains 379 challenging test images.

4.7.Discussion. Melanoma lesion segmentation remains one
of the most difcult tasks in dermoscopy image analysis.
Traditional segmentation methods such as Ostu and
thresholding perform well but fails when artifacts and noises
are observed in the images. In addition, they also require
manual tuning of parameters such as threshold values.Tese
manual settings limit their use in automated CAD systems.
More explicitly, in CAD systems end-to-end solutions are
preferable. Hence, in this research study, we proposed
a deep-learning-based segmentation model to automatically
segment the lesion from given dermoscopic images. Te
proposed model frst encodes the dermoscopic images to
extract the features of melanoma lesions using a DSC block
in which depthwise separable convolutions are applied
channelwise and has a smaller number of weights in
comparison with the conventional convolutions. Following
the activation function, swish is applied to achieve the
nonlinearity on the resulting feature maps. In subsequent
steps, the bottleneck layers are inserted followed by an
upsampling path called a decoder to generate the segmented
image containing the lesions. Te proposed model performs
well since it avoids the problems of overftting by using
convolution layers with fewer parameters using DSC blocks
as well as by disentangling spatial and cross-channel
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Figure 10: Segmentation performance of each test image in the
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correlations. Te results presented in Table 2 provide ac-
curacy, Dice score, Jaccard score, sensitivity, and specifcity
of the proposed model in comparison with challenge win-
ners of the ISBI2016 dataset. Similarly, Table 3 provides
a comparison with diferent research studies. Te proposed
method’s strength is that it accurately segments out lesions
from dermoscopic images of not only melanomic type
cancer but also nevus type cancer whose images are available
in DermQuest and DermIS datasets. Tis indicates the
generalizability of the proposed method in terms of seg-
menting diferent types of lesions. In addition, the proposed

method is less complex in comparison with the hybrid
models that are large in terms of parameters. Tis is due to
the adoption of DCS blocks in which depthwise separable
convolutions are used to extract features with fewer number
weights. However, one potential limitation of the method is
that the model training is done from scratch, which takes
long time for optimal convergence; thus, what if the encoder
is set to pretrained weights? Tis would be an excellent
future direction for this work. Furthermore, more chal-
lenging ISBI datasets on skin cancer should be utilized to
investigate the performance.

Figure 12: Results of channel activation of intermediate layers of the model.

Table 3: Comparison with state-of-the-art approaches.

Techniques Accuracy Dice score Jaccard score Specifcity Sensitivity
Rashid et al. [40] 0.90 0.901 0.82 0.98 0.83
Yaun et al. [29] 0.955 0.912 0.847 0.966 0.918
Li et al. [43] 0.959 0.931 0.870 0.96 0.95
Wei et al. [44] 0.962 0.923 0.867 0.974 0.934
Tang et al. [34] 0.95 0.91 0.85 0.96 0.92
Bozorgtabar et al. [53] — 0.86 0.67 — —
DermQuest 0.98 0.97 0.96 0.95 0.90
DermIS 0.972 0.97 0.94 0.93 0.93
ISBI2016 0.95 0.947 0.90 0.90 0.92
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Figure 11: Loss and accuracy graphs of each dataset during training.
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5. Conclusion

Melanoma lesion segmentation is a very challenging task in
the medical imaging domain since the normal and afected
regions have the same appearance, and usually, the presence
of artifacts and other noises in data decreases the seg-
mentation performance. To address this challenge, diferent
traditional segmentation methods are suggested by various
researchers; however, these methods are not suitable for
automated CAD systems due to many manual parametric
steps. Terefore, we proposed a deep-learning-based seg-
mentation model for automated segmentation of melanoma
lesions from dermoscopic images. Te suggested model
employs the depthwise separable convolution blocks (DSC)
which can learn the features from each space of an image.
Moreover, multidilated flters broaden the view of kernels or
flters and capture the information with large receptive
felds.Te use of swish activation proved to be very benefcial
due to its nonmonoatomic behavior. Te experimentation
has been done on three diferent datasets including DermIS,
DermQuest, and ISBI2016 datasets. Te Dice and Jaccard
scores for DermIS are 97% and 94%, for DermQuest are 97%
and 96%, and for ISIC2016 are 94.7% and 90%, respectively.
Future work will entail in improving the segmenting model
by adding the attention modules such as CBAM and
expanding the number of samples in training data in terms
of challenging images.
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Lung cancer is the leading cause of cancer-related death in many countries, and an accurate histopathological diagnosis is of great
importance in subsequent treatment. Te aim of this study was to establish the random forest (RF) model based on radiomic
features to automatically classify and predict lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC), and small cell
lung cancer (SCLC) on unenhanced computed tomography (CT) images. Eight hundred and ffty-two patients (mean age: 61.4,
range: 29–87, male/female: 536/316) with preoperative unenhanced CTand postoperative histopathologically confrmed primary
lung cancers, including 525 patients with ADC, 161 patients with SCC, and 166 patients with SCLC, were included in this
retrospective study. Radiomic features were extracted, selected, and then used to establish the RF classifcation model to analyse
and classify primary lung cancers into three subtypes, including ADC, SCC, and SCLC according to histopathological results. Te
training (446 ADC, 137 SCC, and 141 SCLC) and testing cohorts (79 ADC, 24 SCC, and 25 SCLC) accounted for 85% and 15% of
the whole datasets, respectively. Te prediction performance of the RF classifcation model was evaluated by F1 scores and the
receiver operating characteristic (ROC) curve. On the testing cohort, the areas under the ROC curve (AUC) of the RF model in
classifying ADC, SCC, and SCLC were 0.74, 0.77, and 0.88, respectively. Te F1 scores achieved 0.80, 0.40, and 0.73 in ADC, SCC,
and SCLC, respectively, and the weighted average F1 score was 0.71. In addition, for the RF classifcation model, the precisions
were 0.72, 0.64, and 0.70; the recalls were 0.86, 0.29, and 0.76; and the specifcities were 0.55, 0.96, and 0.92 in ADC, SCC, and
SCLC.Te primary lung cancers were feasibly and efectively classifed into ADC, SCC, and SCLC based on the combination of RF
classifcation model and radiomic features, which has the potential for noninvasive predicting histological subtypes of primary
lung cancers.

1. Introduction

Random forest (RF) algorithm, proposed by Leo Breiman
[1], is an ensemble learning algorithm based on classifcation
and regression trees (CART). Te RF algorithm contains
several CARTs, and each one is independent. Terefore, the
RF algorithm performs insensitively to the overftting
problem of the training cohort and has superior noise
immunity, which is not sensitive to default values [2].Te RF

algorithm is widely applied in various felds, such as life
sciences because RF classifcation models are versatile, have
high prediction accuracy, and provide additional in-
formation such as variable importance [3]. According to
literature reports, RF algorithms have excellent performance
in evaluating the progression, prognosis, and gene mutation
expression of various diseases [4–10].

Lung cancer is the leading cause of cancer-related death
in many countries, and the accurate histopathological
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diagnosis is of great importance in subsequent treatment
[11, 12]. In previous studies, the RF model was mostly
applied to detecting lung cancer, the classifcation of benign
and malignant pulmonary nodules, and the analysis of lung
cancer prognosis [13–16]. However, for therapeutic pur-
poses, primary lung cancers fall into three major subtypes:
lung adenocarcinoma (ADC), lung squamous cell carcinoma
(SCC), and small cell lung cancer (SCLC), and dis-
tinguishing among subtypes is still particularly challenging.
In this study, our aim is to establish a classifcation model
combining the RF algorithm and radiomic features of
unenhanced CT images to classify the primary lung cancers
into ADC, SCC, and SCLC and to evaluate the prediction
performance.

2. Materials and Methods

2.1. Study Population. Nine hundred and twenty patients
with histopathologically confrmed primary lung cancer
from January 2013 to August 2018 at Zhongshan Hospital,
Fudan University, were retrospectively studied. Te in-
clusion criteria were: (1) diagnosis of ADC, SCC, or SCLC
confrmed by puncture or surgical specimen; (2) pre-
operative CT examination within 2 weeks before surgery.
Te exclusion criteria were: (1) patients receiving other
treatments such as chemotherapy and radiotherapy before
surgery; (2) patients with lesion boundaries that were
difcult to identify on CT images; (3) patients with in-
adequate quality images on CT; (4) patients with two or
more histopathological subtypes of primary lung cancer;
and (5) patients with the lesion less than 1 cm in diameter,
avoiding partial volume efects. Eight hundred and ffty-
two patients with primary lung cancer (525 ADC, 161 SCC,
and 148 SCLC) were ultimately included in this study. All
study procedures were approved by the Ethics Committee
of Zhongshan Hospital, Fudan University.

2.2. Protocol of Unenhanced Computed Tomography and
Segmentation. All patients had preoperative CT examina-
tions performed within 2weeks before the puncture or
surgery under breath-hold conditions at the end of in-
spiration, from the thoracic inlet to the diaphragm, by ex-
perienced radiologists. Te parameters of μCT 760
(Shanghai United Imaging Healthcare) were: tube volta-
ge� 120 kV, tube current� 130mA, slice thickness� 1mm,
and the parameters of LightSpeed 16 (GE Healthcare) were:
tube voltage� 120∼140 kV, tube current� 140mA, and slice
thickness� 1mm. All image data were stored in DICOM
format.

ITK-Snap software (version 3.6.0) was used to segment
each layer of the tumor lesions on the CT images in all cases
to obtain a three-dimensional region of interest (ROI) [17],
which was output in mha format for analysis (see Figure 1).
Te histopathological results (ADC, SCC, or SCLC) of each
case were matched to the segmentation results. All pro-
cedures of ROI segmentation were performed by two ex-
perienced radiologists and fnally confrmed by a senior
radiologist.

3. Establishment of Random Forest
Classification Model

3.1. Extraction of Radiomic Features. PyRadiomics package
implemented in Python was used to extract radiomic fea-
tures [18] (see Figure 2). Te radiomic features of both the
original and wavelet denoised (db2 was set as the wavelet
basis) images were extracted, such as shape-based features,
frstorder statistics, the gray level co-occurrence matrix
(GLCM), the gray level run length matrix (GLRLM), the
neighboring gray tone diference matrix (NGTDM), the gray
level dependence matrix (GLDM), and the gray level size
zone matrix (GLSZM) (see Figure 2).

Te features were frst normalized to the range 0– 1, and
then the support vectormachine (SVM) was used to flter the
features (see Figure 2). Te variance infation factor (VIF)
was used to detect the collinearity of features whichmade the
area under the receiver operating characteristic (ROC) curve
(AUC) of SVM classifcation greater than 0.5, and features
with VIF less than or equal to 5 were selected (see Figures 2
and 3). Te formula of VIF is given as follows:

VIF �
1

1 − R
2 . (1)

Te spatially uniform relevant features (ReliefF) algo-
rithm was used to further flter the features (see Figure 2),
and the fnal retained radiomic features were summarized in
Table 1 (see Table 1). Te importance score of each feature
for predicting the histopathological subtypes of primary
lung cancer are shown in Figure 4 (see Figure 4).

3.2. Random Forest Algorithm. Selected radiomic features
were used to establish and RF classifcation model with the
following parameters: “n_estimators” = 100;
“max_depth” = 11; “min_samples_split” = 2; and “min_-
samples_leaf” = 4. In this study, 85% of the whole data (724
in all, 446 ADC, 137 SCC, and 141 SCLC, respectively) were
randomly divided into the training cohort which was used
for feature selection as well as model ftting, and 5-fold cross-
validation was used to validate in the training cohort, while
the remaining 15% (128 in all, 79 ADC, 24 SCC, and 25
SCLC, respectively) were divided into the testing cohort for
validation (see Table 2 and Figure 5).

3.3. Statistical Analysis. Statistical analysis was performed
using SPSS software (Version 22.0) and Python 3.8.0
(NumPy packages). Categorical variables were presented as
quantities (percentages) and compared using the chi-square
test or Fisher’s exact test, while continuous variables were
presented as the mean± SD if normally distributed, and
compared using the Kruskal–Wallis H test because of the
heterogeneity of variance. AUC, sensitivity, specifcity, and
accuracy were used to evaluate the predictive performance of
the classifcation model. In addition, the F1 score was also
used to evaluate the efciency of the classifcation models. A
two-tailed p value<0.05 was considered statistically
signifcant.
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4. Results

4.1. Patients’ Clinical Characteristics. Patients’ clinical
baselines and characteristics were summarized in Table 3
(see Table 3). Eight hundred and ffty-two patients with
primary lung cancer (mean age: 61.4, range: 29–87, male/
female: 536/316) were ultimately included in this study,

including 525 patients with ADC (61.6%, mean age: 60.4,
range 29–87, male/female: 247/278), 161 patients with SCC
(18.9%, mean age: 64.0, range 34–82, male/female: 148/13),
and 166 patients with SCLC (19.5%, mean age: 62.1, range
38–82, male/female: 141/25), respectively, and randomly
divided into the training cohort (724 patients) and testing
cohort (128 patients) in the ratio of 85% to 15% (see Table 2).

Adenocarcinoma

(a)

Squamous Cell Carcinoma

(b)

Small Cell Lung Cancer

(c)

Figure 1: Segmentation of lesions on CT images and 3D ROI for (a) adenocarcinoma, (b) squamous cell carcinoma, and (c) small cell lung
cancer.
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Machine Analysis 

Variance Inflation
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Spatially Uniform Relevant
Features Algorithm Analysis 

Selected Radiomic
Features

Texture Tumour IntensityWaveletShape

Figure 2: Te fowchart for extraction and selection radiomic feature.
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Notably, the diferences in age, gender, and TMN stage of
patients among the three subtypes were statistically
signifcant.

4.2. Predictive Performance of Random Forest Classifcation
Model. Twenty radiomic features were ultimately selected
after features were extracted and fltered from the

unenhanced CT to establish the RF classifcation model,
including 7 frstorder features, 3 GLSZM features, 2 GLRLM
features, 4 GLDM features, and 4 NGTDM features.

For the RF classifcation model, ROC-AUC was 0.74,
0.77, and 0.88 for the ADC, SCC, and SCLC, respectively, on
the testing cohort.Te average AUC for the three subtypes of
classifcation was 0.80 (95% CI� 0.769–0.813) (see Figure 6).
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Figure 3: Correlation between radiomic features. 0 represents no correlation.

Table 1: Selected radiomic features.

No Radiomics features
0 wavelet2-LLL_frstorder_RootMeanSquared
1 wavelet-HHH_ngtdm_Contrast
2 original_frstorder_InterquartileRange
3 wavelet2-HHH_glszm_SmallAreaLowGrayLevelEmphasis
4 wavelet2-HLH_frstorder_Mean
5 wavelet2-LHL_frstorder_Kurtosis
6 original_gldm_LargeDependenceHighGrayLevelEmphasis
7 wavelet2-LHH_glszm_SmallAreaLowGrayLevelEmphasis
8 wavelet-LHL_ngtdm_Complexity
9 original_glszm_GrayLevelNonUniformity
10 wavelet-LLH_frstorder_Kurtosis
11 original_ngtdm_Strength
12 wavelet-HLH_gldm_LargeDependenceHighGrayLevelEmphasis
13 wavelet2-HHH_glrlm_GrayLevelVariance
14 original_glrlm_RunVariance
15 wavelet2-LLH_gldm_LargeDependenceHighGrayLevelEmphasis
16 original_gldm_LowGrayLevelEmphasis
17 wavelet2-LLH_ngtdm_Strength
18 wavelet-LHH_frstorder_Kurtosis
19 original_frstorder_Kurtosis
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In addition, the F1 scores achieved 0.80, 0.40, and 0.73 in
ADC, SCC, and SCLC, respectively, and the weighted av-
erage F1 score was 0.71. Notably, the precisions were 0.72,
0.64, and 0.70, the recalls were 0.86, 0.29, and 0.76 and the
specifcities were 0.55, 0.96, and 0.92 in ADC, SCC, and
SCLC (see Table 4).

5. Discussion

Te histopathological diagnosis and classifcation of primary
lung cancers are of great importance and crucial clinical
value for the decision of optimal and individualized treat-
ment schedules and the evaluation of prognosis [19]. In this
study, RF algorithms combined with radiomic features on
unenhanced CT images were used for noninvasive and
preoperative prediction of subtype’s classifcation of primary
lung cancer. Radiomic features were extracted and fltered
from enhanced CT images, and the ultimately 20 selected
features were used to establish the RF classifcation model,
which was trained and validated using the training cohort
and the testing cohort. To be noted, 5-fold cross-validation
was used for more accurate precision. Finally, the prediction
performance of the model in classifying the three major
subtypes (ADC, SCC, and SCLC) of primary lung cancers
was evaluated.

Te results showed that the RF classifcation model was
able to accurately classify the three subtypes on the testing

cohort (AUC� 0.80). Particularly, the model performed
better in predicting SCLC (AUC� 0.88) than ADC
(AUC� 0.74) and SCC (AUC� 0.77). However, this model
tended to misclassify SCC as ADC, thus the recalls of the RF
model in ADC (0.86) and SCLC (0.76) were excellent, while
inferior in SCC (0.29). It was probably because (1) the
sample of SCC (161) was limited andmuch fewer than that of
ADC (525) and (2) most of the SCC included in this study
were central-type lung cancer, which was difcult to dis-
tinguish on the CT images, leading to inaccurate segmen-
tation of ROI. Certainly, the reason for the misclassifcation
deserved further investigation and verifcation. In this study,
the selected 20 radiomic features were not the same as the
features in previous studies (com_radNet model), but they
improved the predictive classifcation of SCLC [20].

Previously, a large number of studies have proven the
excellent performance of the RF algorithm in classifying
benign and malignant pulmonary nodules on CT and PET/
CT [21–24]. Zhu et al. classifed ADC and SCC in 129
patients with non-SCLC (NSCLC) based on 5 radiomic
features with an AUC, specifcity, and sensitivity of 0.89,
0.90, and 0.83, respectively, on the validation cohort [25].
Liu et al. classifed 349 patients with NSCLC, including not
only ADC and SCC but also large cell carcinoma and not
otherwise specifed based on radiomic features combined
with SVM, and the classifcation accuracy was 0.86 on the
testing set [26]. In this study, we expanded the samples and
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Figure 4: Te importance score of each feature for predicting the histopathological subtypes of primary lung cancer.

Table 2: Cases in the training and testing cohort.

Training (n� 724, 85%) Testing (n� 128, 15%)
ADC 446 79
SCC 137 24
SCLC 141 25
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Table 3: Demographics and characteristics.

ADC (n� 525) SCC (n� 161) SCLC (n� 166) p values
Gender <0.05
Male 247 (47.0%) 148 (91.9%) 141 (84.9%)
Female 278 (53.0%) 13 (8.1%) 25 (15.1%)

Age <0.05
Mean± SD 60.4± 10.5 64.0± 8.1 62.1± 9.5
Range 18–87 23–82 41–86

TNM <0.05
I 139 (26.5%) 56 (34.8%) 12 (7.2%)
II 70 (13.3%) 41 (25.5%) 19 (11.4%)
III 91 (13.3%) 47 (29.2%) 57 (34.3%)
IV 225 (42.9%) 17 (10.6%) 78 (47.0%)
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also investigated the classifcation between SCLC and
NSCLC, with the considerably improved predictive per-
formance of the RF classifcation model. To our knowledge,
the only radiomics-based study on the classifcation of SCLC
and NSCL identifed ADC, SCC, and SCLC in a two-by-two
comparison. Te results showed good classifcation per-
formance between ADC and SCLC (AUC� 0.86) and be-
tween ADC and SCC (AUC� 0.80) on unenhanced CT
images and better performance on enhanced CT, but neither
could efectively classify SCC and SCLC (AUC� 0.62 and
0.66). To note, the RF classifcationmodel was able to classify
SCLC with great performance in our study.

Te study has some limitations. First, the sample of ADC
was much larger than that of SCC and SCLC, mainly due to the
diferent morbidities, which may afect the diagnostic perfor-
mance of the model [27]. Furthermore, although we have
excluded cases with blurred tumor borders, the possibility of
missegmentation of nontumor tissues existed. Finally, large
multicenter, prospective studies are essential for model ex-
pansion and optimization.

6. Conclusions

In conclusion, the noninvasive histopathological subtype clas-
sifcation of primary lung cancers has great clinical signifcance
and value. In our study, the primary lung cancers were feasibly
and efectively classifed into ADC, SCC, and SCLC based on
the combination of the RF classifcation model and radiomic
features. Large studies are needed to optimize and validate the
performance of the model. Te RF classifcation model

combined with radiomic features on unenhanced CT images is
able to provide additional information about patients and has
the potential for clinical applications.
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