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For space robots, it is difficult to track continuous time-varying manifolds on SE(3) by using traditional closed-loop control
strategies, which are designed to track the position and the attitude separately. Therefore, the dynamics model should be
rebuilt, and the corresponding control strategy should be redesigned. Firstly, the dynamics equations for a space robot in the
joint space and workspace are established separately in the framework of Lie group SE(3) and screw theory based on the
Lagrange principle. Secondly, based on the proposed feedback form, a PD (proportional derivative) control law of output force
on the end-effector is designed, and a closed-loop continuous tracking control strategy is proposed using the force Jacobian
matrix and the kinematic model. The simulation results show that the control scheme has good performance when the system
state changes gently. Furthermore, a robust sliding mode tracking control scheme is designed. The simulation results show that
the proposed robust control law has better accuracy than the PD control law because the system state changes wildly. Finally, a
robust fuzzy sliding mode tracking control scheme is designed to deal with the chattering phenomenon. The simulation results
show that the proposed robust fuzzy control law can eliminate the chattering well and decrease the joint control torque

significantly. The robustness of the proposed robust fuzzy control law is also verified by numerical simulation.

1. Introduction

The emergence of on-orbit assembly stems from the growing
need to build large space structures [1]. Related technology
has been greatly promoted through the development of on-
orbit service technology, especially the on-orbit demonstra-
tion of space robot technology. However, the process of
assembling large space structures is so elaborate that it
requires an accurate and reliable operation ability for space
robots. Accordingly, a proper motion planning method
and corresponding tracking control strategy should be intro-
duced. Due to the advantages beyond traditional theory, Lie
group SE(3) and screw theory have been applied to research
in space robotics, such as kinematic modelling [2] and tra-
jectory planning. However, compatible dynamics and track-
ing control strategy are not considered in detail.

The dynamics of space robots belong to the category of
multibody system dynamics. Thus, the modelling is mainly
based on the Newton-Euler method and the Lagrange

method. The former analyzes the forces of each rigid body
based on classical Newtonian mechanics and then obtains
dynamic equations in iterative form according to the rela-
tionship of internal forces [3]. The advantages of such a
method are the clear physical meaning and the relatively
small calculation [4]. However, the equations will become
more complicated as the number of rigid bodies increases
[5]. The Lagrange method is based on the Hamiltonian prin-
ciple, and the dynamic relationship between the system state
variables and the generalized forces is built based on the
conservation of energy [6]. The advantages of such a method
are that modelling process is relatively easy, and the dynamic
equation is in the analytic form [7], but the physical mean-
ing is not clear, and the partial differential calculation is
more complex. A detailed comparison of these two methods
is presented in [8].

In addition, the Kane method is also introduced in
robotic dynamics research [9]. This method subtly uses the
partial velocity as the generalized coordinate, which is
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combined with the concept of generalized force to establish
the dynamic equations according to the Darenbel-Lagrange
principle [10]. The Kane method combines the advantages
of the Newton-Euler and Lagrange methods, which have
high calculation efficiency and concise form. Some improve-
ment methods are proposed [11, 12], which further enhance
the performance of the Kane method. Xu and Huang [13]
compare classical methods with the Kane method and
deduce the dynamic equations of a five-DOF robot using
both methods. Yin and Ge [14] derive the dynamic equa-
tions of a dual-arm space robot using the Kane-Huston
method and verify the feasibility with simple simulation.

Traditional dynamics modelling, which is based on geo-
metric relationships, makes the derivation process relatively
complicated. It brings a lot of convenience by introducing
the Lie group and Lie algebra, which have a concise and uni-
fied form and decreases the difficulty of theoretical deriva-
tion. The theory of the Lie group has been applied to the
dynamics of fixed-base robots [15, 16]. Besides, Liu et al.
[17] combine the screw theory and the Kane method and
propose a new concept of space robot dynamics.

Trajectory tracking control is crucial to accomplishing the
task for the space robots, and the performance of the tracking
controller determines the accuracy and reliability of the task.
Many trajectory-tracking control strategies are designed based
on the dynamic model. And some control theories for fixed-
base ground robots can be introduced to tracking control of
space robots, such as decomposition rate control [18], calcu-
lating torque control [19], robustness control [20], and rein-
forcement learning control [21]. Traditional dynamics
modelling, which is based on geometric relationships, makes
the derivation process relatively complicated.

Trajectory tracking of space robots can be performed
either in joint space or in cartesian space. According to
tracking targets, it can be further classified into point-to-
point and continuous trajectory tracking. The latter means
that the end-effector is required to move along the desired
continuous trajectory, such as peg-in-hole insertion [22],
which makes tracking control relatively difficult. Li and
Liang [23] establish the kinematic equation of the space
robot system by using the D-H (Denavit-Hartenberg)
method and design the continuous trajectory control algo-
rithm according to the momentum conservation law. Such
an algorithm could be extended to a space robot with an
arbitrary tree structure. Galicki [24] defines a nonsingular
terminal sliding model in the workspace and proposes a
robustness controller based on the Jacobian transfer, which
can effectively eliminate the uncertainty of dynamics. Su
et al. [25] define an approximately fixed-time convergence
terminal sliding model and design a nonsingular sliding
model tracking control strategy, but it is carried out in the
joint space. In addition, most existing trajectory tracking
control laws use position or linear velocity as feedback vari-
ables. There are also attempts that use quaternion [26] or
dual quaternion [27] as feedback variables, but they are all
difficult to apply to the tracking of the continuous time-
varying manifold on SE(3).

Above all, this paper will focus on the dynamics model-
ling under the framework on Lie group SE(3) and the con-
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trol problem of tracking the continuous time-varying
trajectory of the end-effector on SE(3). Highlights of this
paper are addressed below.

(1) The dynamic model of a multiarm space robot is
established by combining the Lie group SE(3) with
the Lagrange method. The model has a concise and
unified form, which can decrease the difficulty of
theoretical derivation and calculation

(2) A novel form is proposed to describe the feedback
error in the tracking control problem of the space
robot. Lie group SE(3) and screw theory are used to
build the form, which can assemble the position
and attitude, with their derivative, of the end-
effector in a unified variable. It can significantly
reduce the calculation in the process of closed-loop
control

(3) A robust fuzzy sliding mode tracking control strat-
egy is proposed to track the continuous and time-
varying trajectory, including position and attitude
together, of the end-effector. The tracking control
strategy has good control accuracy, good robustness,
and no chatter

2. Dynamic Modelling

2.1. Dynamic Equations of the Space Robot System. For a
dual-arm space robot, as provided in Figure 1, the kinetic
energy of the link of the arm in the barycentre-fixed inertial
coordinate system is

1 N\ T
e 3 @) el ot (15) 8] (=01 sk=1,2),

2
(1)

where w®, I, mF, and ! p¥ are the body angular velocity, the
inertia, the mass, and the velocity, respectively. i = 0 refers to
the base.

According to the definition of body velocity in screw the-
ory, formula (1) can be transformed into the following form:

1, g AR
k B B k(1 k 1 k
TS = 3 (a)ki) Iclka)ki +m; << Ri) p,-) ( Ri) Pi]

r B T B
1 D I 0 Oy
T2 1 e\ ok k 1 o\ .k
_( z) i 0 miE ( 1) i
= 0
1 TG
= (IckVB) Ic’fVB>
' 0 mE|"

where ICf.‘ V" is the body velocity, and 'R} represents the atti-

tude rotation matrix in the inertial coordinate system.
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\p

End effector </

e Arm1

Base

FIGURE 1: The model of a dual-arm space robot, which has two
arms, and each arm has n* joints.

According to the relationship between body velocity and
spatial velocity, formula (2) is transformed into

I. 0
1 N\T |G s
k _ I I
Ti=3 (Ad(gik) LV > { ]Ad(gik)cfv

Ie 0
1/ o\T TG I oS
:g(ch) (A%,k)) { }Adw,k)cf"
0 m

k
£ 3)
1
I pk 1 pk kI =kp =k kI =k
1 IVS T RzICf‘( Rl) - m Px Px m; Pl IVS
=3 (V) g
-mi! | miE
L o\ okt S
=_ (V) KL,V
2(Cf ) it

where ! ot V¥ is the spatial velocity, Ad, , is the adjoint trans-

format1on - represents the antlsymmetrlc matrix of the cor-
responding vector, and Kf? means generalized inertia matrix.
Therefore, the total kinetic energy of the dual-arm space

robot is,

1)< kI /S 1o\ T 149
T-3 ZZ((}V) KLV +(BV) A

T T
({;VS +Ad§5§‘kvs> Kk (gvs + Ady ggfvs)) + (gvs) K5V

S S
(Ad,wv) K (3v°+ Ad & V°) |,

(4)

where D represents the total momentum of the dual-arm
space robot.

As is known, D=0 is workable in the case of a free-
floating base. Substituting GJM into formula (4) yields

1 2k o T k . o I.T .
35 (o) 0 19)] - o
(5)

where J¥ are the GJM of the link and the base, respectively. 0
is the angular velocity vector of all joints. H represents the
generalized inertia tensor of the dual-arm space robot, the
specific expression is as follows:

=
~

iy

k=11

(Ad, k) K" (]B + Adéglf) = TR Ty + ThK T

(6)

X
—

where
- 1 -
Kl
|k
K= € RO,
2
Kl
LK |
1 )
‘K _
Kl
I~<dia _ nt € RE"¥6ma
2
Ky
L K2, |

If the gravity is ignored and the joint elasticity is not con-
sidered, this system satisfies the Lagrange equation in the
following form:

doT oT (8)
digp 90 ©

Substituting formula (5) into the above formula, then

2
HO+HO - ae( 9H9> (9)



4
It can be rewritten as
HO+CO=r1, (10)
where
CO=HO- — (-0 HO ), 11
5 (50m0) i

which represents the centrifugal force and Coriolis force.
For a single-arm space robot, the above derivation pro-
cess is also applicable.

2.2. Static Force Jacobian Matrix. Static force Jacobian matrix
is also a fundamental concept in the dynamics of space robots.
Similar to the speed Jacobian matrix, it describes the mapping
relationship between the output force on the end effector and
the joint torque. This derivation is based on the equivalence
principle of work and energy. Taking a single-arm space robot
as an example, and assuming that the output force on the end
effector is F%, then the work is

2 .
WT:J 0" xdt, (12)

t1

where éVS is the spatial velocity of the end effector. Simulta-
neously, the work done by the joint torquer is

2 .
WT:J 0" xdt. (13)

t1

If joint friction is not considered, then W and W should
be equal and time-independent. Thus,

LV 'F=0'r. (14)

As is known, VS=7] Eé, where Jgis the speed GJM of the
end-effector for the joints. So

v=(Jp)'F, (15)

where (J;;)" is the static force Jacobian matrix.

2.3. Dynamic Equations in the Workspace. When performing
trajectory tracking control of the end effector, it is also nec-
essary to establish dynamic equations in the workspace.
Firstly, according to the GJM of the end-effector, there are

0=V, LV = 1,0+ ],0. (16)
Accordingly,

b=J5' (V' -Juli'1V). (17)
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Substituting formula (17) into formula (10),

“1(1xS 57 -1y 1145 _
HI; (AV - J v +clivi=2. (18)

It can be rewritten as
1S 13N g1l <,S
HJ'LV' + (C-HJ'Jp)J'tV = (19)
Then, substituting formula (15) into the above formula,
HV +C LV =F (20)
gE ge® T+ >

where H,=(J;) 'HJ7' and C,=(J;)" (C-HJ;'Jp)
Ji'. It can be proved that the above dynamic equation
satisfies,

(1) H, is a symmetric positive definite matrix
2) H P 2C 4 1s an antisymmetric matrix

2.4. Feedback Calculation Model Based on SE(3). As the
desired trajectory is expressed on SE(3), compatible feedback
should be designed first. Supposing thatg, and g are the
actual and desired pose of the end effector, respectively, then
the pose error can be written as

ge:gz_iilgi’ (21)

where g, € SE(3).
The tracking error in exponential coordinate is pre-
sented as

&, =log, (941 9:) (22)

where log, () represents the logarithmic mapping from Lie
group SE(3) to its Lie algebra se(3).

The above equation can be written in the form of screw
coordinates as

&~ (1og, (9:19.)) - (23)

It is used as feedback at the position level. It should be
noted that &” is with respect to the body-fixed coordinate
system of the end effector.

The feedback at the velocity level can be expressed as

vEvE v, (20
where VE = (g:'g,)" is the actual body velocity, and V% =

(g;9,)" is the desired body velocity.
In fact, the following relationship exists:

E=G(g) V" (25)
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Error —% PD controller H Multiplier‘

FIGURE 2: PD control block diagram based on the Jacobi matrix.

The expression of G(&) in the above formula is presented
in [28] and omitted here.

Accordingly, the feedback of pose expressed on SE(3)
can be expressed as

n=[g V] (26)
Transforming it into inertial coordinate system yields
77 = AdginB = [ée Ve] ° (27)

3. Continuous Trajectory Tracking
Control Strategy

3.1. PD Controller Based on Jacobian Matrix. According to
the feedback 7 obtained in the previous section, the follow-
ing PD control law is designed:

F; = _Kpge - Kv Ve’ (28)

where F; is the output force on the end effector with respect
to the inertial coordinate system, and K, and K, are the

position and velocity gains, respectively.
Then, the joint control torque can be computed as

v, = ()", (29)

Accordingly, detailed steps of a closed-loop tracking
control strategy are given as follows (as shown in Figure 2):

Step 1. Set the initial joint angle 8, of the arm and the
attitude ¥, of the base. Set the desired pose g(¢)

Step 2. Calculate the current pose of the end effector
according to the kinematics equation, and then obtain the
force Jacobian matrix

Step 3. Calculate the current state feedback n according
to formula (27)

Step 4. Calculate the joint control torque at the current
moment according to formula (29)

Step 5. Calculate the joint angled; and joint angle rated,
at the next moment according to the dynamic equation,
and then calculate the base attitude angleW; at the next
moment

Step 6. Repeat steps 2-5 till to the end time.

The controllers proposed in this research include the PD
controller, the robust sliding mode controller (RSMC), and
the robust fuzzy sliding mode controller (RESMC). RSMC
or RFSMC can replace the PD controller module in
Figure 2, and then the corresponding control block diagram
is generated.

3.2. Robust Sliding Mode Tracking Controller. The PD con-
trol has a simple form and can meet general needs. However,
the control accuracy will be significantly reduced when the
state changes fast. Considering the advantages of sliding
mode control, such as the high control accuracy and strong
robustness against external disturbances, a controller based
on robust sliding mode control theory with the feedback cal-
culation model above is proposed in this section.

3.2.1. Linear Reaching Law-Based Sliding Mode Control Law.
According to the tracking feedback at the velocity level, the
sliding mode surface is designed as follows:

s=V,+AE,=V -V, +AE, (30)

where A is a positive definite diagonal matrix. A control law
can be given

Fg =Hg(Vd - A‘Se) + Cg(Vd - Afs) _Kvs’ (31)

where K, is a positive definite diagonal matrix.
Theorem 1. For the dynamics of a space robot system, apply-
ing sliding mode surface (30) and control law (31), the system

will gradually converge to the equilibrium point.

Proof. Define the Lyapunov function as follows:

1
L= 5sTHgs. (32)

According to the sliding mode surface (30),

V=s+V,— AL (33)
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Calculating the derivation of L and substituting (28) into
it yields

. 1. .. ) 1 ..
Ty - T T T
L= Hgs+zs Hs=s Hg<Vd—Ve+A§e)+EsHs

g

( g(vd Ak )+H V) EsTHs

= ( g(Vd ) CV+F9)

= ( g(Vd A) C,(Va—AL,) -
—Cy(Vy-AE) + )

1 .
+ 3 THys:sT (—Hg <Vd - Afe)

+lsT( -2C )s——sTKs< AL,
2

Hgs

Cgs+F;)

where A=A, (K,)/Apax (Hy): Apin(K,) is the smallest
eigenvalue of K, and A, (H,) is the largest eigenvalue of
H . It can be seen that the sliding mode surface s converges
to zero driven by the control law (31). If s=0, there is V,
=-A¢,, then &,,V, progressively converge to the equilib-
rium point. Proof completed. O

3.2.2. Robust Sliding Mode Control Law. When the dynamic
model can be accurately established, the sliding mode con-
trol law (31) can be substituted into the PD control strategy
to replace the PD control law. However, as the dynamic
model of the space robot is very complicated, if control law
(31) is directly adopted not only will the modelling be com-
plex but also the amount of calculation will be huge. Let

f:_Hg(Vd_Ai]e)_Cg(vd_A"e)' (35>
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Regard this term as a disturbance and assume that the
term is bounded and satisfies the following inequality:

~H (V- A#,) - C,(V,— An,) < D. (36)

In order to overcome the disturbance term, the following
sliding mode control law is designed:

ES = —[K,s+ psgn (s)), (37)

where pis the robust coefficient andp < D and p sgn () is the
robust term to overcome the disturbance.

Theorem 2. For the dynamics of a space robot system, apply-
ing sliding mode surface (30) and control law (37), the system
will gradually converge to the equilibrium point.

Proof. Define the Lyapunov function as follows:

1
L= ZsTHgs. (38)

Similar to Theorem (1),

L=s" (—Hg (Vd - A.f,‘e) ~C, (V- A&,)+ F;)
=s' (—Hg(Vd - Aée) —C, (V- AE,) ~ [K,s+p sgn (s)})
<—s"K,s+ (D - p)|s|| < -AL.
(39)

It can be proven like Theorem (1).
Proof completed. O

3.3. Robust Fuzzy Sliding Mode Tracking Controller
considering Uncertainty. The robust sliding mode tracking
controller has better control accuracy; however, when there
are uncertainties with the parameters of the system model,
the controller must choose a more significant robust coeffi-
cient or amplify the gain to ensure robust performance and
control accuracy which may lead to the obvious chattering
of the control torque. In order to solve this problem, fuzzy
ideas are introduced into to sliding mode control law to
approximate the dynamic model with uncertain parameters,
which can realize robust and stable control of the space
robot.

3.3.1. Fuzzy Approximation Method. Taking into account the
unavoidable external interference, introduce the interference
force Fyto the dynamic model as follow.

H,V+C,V=F, +F, (40)
The following fuzzy sliding mode control law is designed

F,=—f—K,s, (41)

where £is the estimated value of the fuzzy system. Substitut-
ing the control law into equation (40) to obtain

Hyjs=-Cs—f—K,s+f+F;=—(C+K,)s—f+F;=—(C+K,)s+{,
(42)

where f=f—fand ¢, =—f +F,.
The fuzzy approximation can be used to estimate the
function f in equation (35),

fz_Hg(Vd_Aﬁe)_Cg(Vd_Ane)=W*ﬂ+e’ (43)

where W*is the optimal weight matrix of the fuzzy approx-
imation system, eis the approximation error of the system,
and p is the basis function.

Let Wbe the estimation of W* and let the sliding mode
surface s as the input variable of the basis function, and then
the dynamic compensation part of the space robot control
law is estimated to be

f=WB+e. (44)

3.3.2. Robust Fuzzy Sliding Mode Tracking Control Law.
Firstly, assuming that

(1) The output of the fuzzy approximation system is
bounded, and the total external disturbance of the
estimated system is bounded, which is expressed as

1A <fu (45)

(2) The estimation error of the fuzzy approximation sys-
tem is bounded, which is expressed as

el <ea (46)
where €, is a positive constant.

(3) The estimated weight of the fuzzy approximation
system is bounded, which is expressed as

tr(W7Tw)  <w,, (47)

where W, is a positive constant.
The input variable of the fuzzy system is designed as

x=[s1,87". (48)
Then, the control law can be reshaped as

F,= -WB(x)K,s—v, (49)



where v is a robust term used to overcome approximation

errors and interference. Let W = W — W* be the estimation
error of the optimal weight matrix.
According to the above control law, there is

Hyi=—(C+K,)s—Wph—e+f+F;—v

=—(C+K,)s—-WB-€+F;—-v=—(C+K,)s+{,,
(50)

where £, =-Wp—e+F,—v, and ||€|| < €y, | Fyl| < Fapr-
The robust term v is designed as

v=(ey + Epy)sgn(s). (51)

The adaptive updating law of the optimal weight matrix
is taken as

W =osp", (52)
where o is a positive constant.
Theorem 3. For the dynamics of a space robot system consid-
ering interference, the fuzzy approximation method is used to
estimate the uncertainty of the system, and the weight matrix
updating law is set as formula (52), then the system under the
action of the control law (49) will gradually converge to the

equilibrium point.
Proof. Define the Lyapunov function as follows:
Ly, = %STHgS+ %tr(WTW). (53)
Derivation of the above formula is
. S R 1 /-T2
Ly,=s Hys+ 3 Hs+ gtr(W W) (54)
Substituting equation (50) into the above equation,
. oo 1 1 /-T2
Ly, =—s"K,+ 35" (H, - 2C,)s+ Etr(W W)

1 ~ T %
+s'(~e+F;—v)=-s'K,§+ —tr(WTW)
o

(55)
+s' (-WpB) +s' (—e+F;—v)=—s'K,$
+ étr(WT(W—asﬁT» +s'(—e+E;—v).

Substituting the updating law (52) into the above equa-
tion,

qu =—s'K,s+s"(e+F,—v), (56)
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due to

s'(~e+F,;—v)=s"(-e+F,))—s"v

= sT(—e +F,) - sT(eM + F ) sgn (s)
=s'(~e+Fy) = ||s]|(eyr + Fan) <O
(57)

Then, there is
Ly, <-s"K$<0. (58)

If qu =0, then s = 0. According to the LaSalle invariance
principle, the closed-loop system has the property of gradual
stability as t — 00, s — 0. Thus, the error of the pose in
exponential form and the velocity will gradually converge
to zero as 1 — 0, V, — 0; so the pose and velocity of the
end-effector will gradually converge to desired values as
99,V —Va

Proof completed. |

4. Simulation Example

Considering a planar, three-DOF space robot as a simulation
case and verifying the effectiveness and control performance
of the proposed control strategies. The initial pose and the
final pose are given as follows:

r 5.797
E,, 0.6105
9o= >
0
L o 1
(59)
[ 5.296
R,(30°) 1.9615
9, =
0
L O 1

The desired trajectory g,(t) is planned based on the
drive transformation method and screw theory.

4.1. Simulation Results of PD Controller. Simulations of the
PD controller are performed in MATLAB/Simulink, and
the results are obtained as follows. The state error varying
with time is shown in Figure 3(a), as is seen in which the
maximum error is about 8 x 107, and the steady state error
is less than 2 x 1072. Figures 3(b)-3(d) show the comparison
between the actual and desired pose components. It can be
seen that the tracking process is ideal.

The output force on the end effector and the joint con-
trol torque obtained by the PD control law is shown in
Figures 4 and 5 separately. The joint control torque is rela-
tively small, and no saturation occurs. The space robot’s
joint motions are shown in Figures 6 and 7. It can be seen
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FIGURE 5: Joint control torque.

that the joint motions are continuous and smooth without
sudden change. To sum up, the designed PD controller per-
forms well under the gentle motion state.

4.2. Simulation Results of the Robust Sliding Mode Controller.
The simulation object remains the same as in the previous
section, and the initial and final poses remain unchanged.
The desired trajectory is replanned to move faster. The
parameters of the sliding mode controller are set as K, =
diag ([0, 0, 667, 667, 667, 0]), A = diag ([0, 0, 4.20, 4.20, 4.20,
0]), and p=3.3.

The PD control strategy and the robust sliding mode
tracking control strategy are simulated, respectively, and
simulation results are obtained as follows. From compari-
sons of Figures 8(a) and 3(a), it can be seen that accuracy
of PD control has been significantly reduced, the maximum
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FIGURE 6: Joint angles.
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FIGURE 7: Angular velocity.

error has reached 0.013, and the steady-state error also
increases. In the same situation, the accuracy of the robust
sliding mode control is higher, the maximum error is about
9% 1073, and the steady-state error remains within 2 x 1073
as in Figure 8(b). Figures 9(a) and 9(b) show the joint con-
trol torque of the two control algorithms. In contrast, the
control torque of sliding mode control has a specific chatter-
ing phenomenon.

4.3. Simulation Results of the Robust Fuzzy Sliding Mode
Controller. The simulation object remains the same as in
the previous section, and the initial and final poses
remain unchanged. Set the parameters of the robust slid-
ing mode controller as K, = diag ([0, 0, 1067, 967,967, 0])
LA =diag ([0, 0, 4.20,4.20,4.20,0]),and p=5. Seven fuzzy
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subjection functions of the fuzzy sliding mode controller
are as follows:

3 1
‘uA;l{ (x) - 1 + e5(x+(m/4)) >
() =€ O
Upe (x) = 6_0‘5(?3;)2,
k
-0.5(%)"

Has(x) =€ ’

s () = 05
k

Pas (x)= ¢ 05 >

T E— (60)

" - 1 + e5(x-m/4) :

The robust sliding mode tracking control strategy and the
robust fuzzy sliding mode tracking control strategy are simu-
lated, respectively, and simulation results are obtained as fol-
lows. It can be seen in Figures 10(a) and 10(b) and
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Ficure 11: Comparison of joint control torque of the two control algorithms.

Figures 11(a) and 11(b) that, after increasing the gain and
robust coefficient of the robust sliding mode control, the con-
trol accuracy is improved. However, the joint control torque
has serious chattering. In contrast, fuzzy sliding mode control
can effectively eliminate chattering while ensuring similar
accuracy, and the peak value of joint control torque is also sig-
nificantly better. Figure 12 shows the output force of the end
effector and the corresponding estimated value obtained dur-
ing the fuzzy sliding-mode control algorithm process.

4.4. Simulation Results of Robust Fuzzy Sliding Mode
Controller with Interference Force. In order to verify the

robust performance of the fuzzy sliding mode controller,
the interference force is set as follows:

(61)
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F1Gure 13: Simulation results of robust fuzzy sliding mode controller with interference force.

The simulation is performed under the same conditions as
Section 4.3, and the following results are obtained. After the
interference force is added, the state feedback error and joint
control torque are shown in Figures 13(a) and 13(b). Compar-
ing with Figures 10(b) and 11(b), respectively, it can be seen
that the interference force only has an impact on the system
within the first 1s, which makes the error and joint torque
amplify compared with when there is no disturbance, but keep
it unanimous afterward. It demonstrates that the fuzzy sliding
mode tracking controller has good robustness.

Furthermore, another simulation is performed with a
pulse interference force set as follows:

- 0
0
) A
~240.6sin <2t + 5)

T
~240.5sin (3t + Z)

T
~240.5sin (3t + Z)

L 0
F,,

, 3<t<5,
<t< (62)

other.
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FIGURE 14: Simulation results of robust fuzzy sliding mode controller with pulse interference force.

Following results are obtained. It can be seen in
Figure 14(a) that the error keeps very similar, while the joint
control torque fluctuates slightly in the third and fifth sec-
onds in Figure 14(b); however, the system can still keep sta-
ble after the pulse, which demonstrates the robustness of the
fuzzy sliding mode tracking controller again.

5. Conclusion

Firstly, based on the Lagrange principle and the generalized
Jacobian matrix, the dynamic equations in the joint space
and workspace are established separately. Then, a feedback
calculation model is proposed based on the screw theory.
Furthermore, the PD and robust fuzzy sliding mode control
laws are designed separately. Finally, the closed-loop control
strategies are constructed by integrating control laws, the
GJM, a dynamic model, and a kinematic model. The effec-
tiveness of each control law is verified by simulations, and
the control accuracy and performance are compared and
analyzed. It can be summarized that the proposed dynamic
modelling method is feasible and efficient. The PD controller
is proven to have relatively high control accuracy. Neverthe-
less, the accuracy reduces when the system state changes
more dramatically. The robust sliding mode controller is
able to overcome such disadvantages, and the fuzzy sliding
mode controller could solve the chattering problem.
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A large number of demands for space on-orbit services to ensure the on-orbit system completes its specified tasks are foreseeable,
and the efficiency and the security are the most significant factors when we carry out an on-orbit mission. And it can improve
human-computer interaction efficiency in operations with proper gesture recognition solutions. In actual situations, the
operations are complex and changeable, so the gestures used in interaction are also difficult to predict in advance due to the
compounding of multiple consecutive gestures. To recognize such gestures based on computer vision (CV) requires complex
models trained by a large amount of datasets, it is often unable to obtain enough gesture samples for training a complex model
in real tasks, and the cost of labeling the collected gesture samples is quite expensive. Aiming at the problems mentioned
above, we propose a few-shot continuous gesture recognition scheme based on RGB video. The scheme uses Mediapipe to
detect the key points of each frame in the video stream, decomposes the basic components of gesture features based on certain
human palm structure, and then extracts and combines the above basic gesture features by a lightweight autoencoder network.
Our scheme can achieve 89.73% recognition accuracy on the 5-way 1-shot gesture recognition task which randomly selected

142 gesture instances of 5 categories from the RWTH German fingerspelling dataset.

1. Introduction

Space on-orbit systems are play a crucial role in aerospace.
In relative independent working environments, problems
and instrument malfunctions are not always foreseeable. In
order to make the on-orbit system completes the target
tasks, it is necessary to maintain the services and eliminate
the malfunctions. Space on-orbit servicing (OOS) can be
regarded as a suitable mode to maintain the on-orbit system
and prolong its service life. In the process of space on-orbit
service, frequent human-machine interaction operations
are required, especially in the tasks such as orbit cleaning,
service maintenance, or the cargo resupply [1]. The gesture
is kind of complex rigid body which carries abundant
human posture information, and the challenge of its state
detection coexists with its practice ability in such interaction
scene. The gesture recognition mainly has two parts applica-

tions in those on-orbit service tasks. One is to use specific
gestures as a medium for signal transmission to manipulate
machines such as multidegree of freedom robotic arm [2]
by different gestures, which can improve the working effi-
ciency and safety, and the other is to encode gestures for
mapping different operations. Relevant research in gesture
recognition field started earlier and achieved fruitful
achievements. One direction to recognize gestures is by the
helping of external sensor equipment [3] to gather joints’
relative depth assisted with vision information, using
methods such as scale invariant feature transform (SIFT)
[4] to manually extract gesture features and combine them
with feature classifier for recognition, and the other direction
is to regression from the RGB images directly. However, to
detect RGB images directly based on visual schemes often
requires the construction of complex models and large
amounts of datasets for training. With the development of
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machine learning and computing hardware, the deep learn-
ing models with strong capacity of image feature representa-
tion such as convolutional neural networks (CNNs) [5] or
transformer [6] achieved more than 95% recognition accu-
racy on 2D or 3D gesture recognition tasks. Compared with
gesture image recognition, continuous gesture recognition
requires the model with stronger ability of feature extraction
to recognize from gesture sequences due to the blur by the
motions. Thus, we usually extract instances’ features by
modeling the whole gesture sequence, such as using repre-
sentative long short-term memory (LSTM) or dynamic time
warping (DTW) methods in the task with the help of exter-
nal sensors.

When the above models are dealing with the single ges-
ture or continuous gesture recognition tasks, it often needs
to input a plenty of gesture datasets that contain various
backgrounds and gesture shapes to obtain better perfor-
mance and generalization ability. Especially when the prob-
lem is extended to the recognition of continuous gestures,
the scale of the hypothetical space increases rapidly, the cost
of labeling datasets is hard to accept, and it is difficult to col-
lect enough instances fit for task in some cases. But some
studies have shown that [7] even if the sample in the task
is insufficient, the model can also achieve excellent generali-
zation performance and competent the classification or
regression task by conduct proper few-shot learning method.

There are many ways to realize few-shot learning
schemes. In the early stage, the classification and recognition
task of few-shot learning is based on the models with rela-
tively simple structure, such as nearest neighbor or linear
support vector machine (SVM). Later, with the development
of deep learning fields, transfer learning can also be used to
synchronize the model parameters learned from large num-
ber of samples to other similar tasks and then fine tune the
model parameters based on a small number of samples [8],
which are an effective way for few-shot learning, but still
need a considerable dataset for previous learning.

Aiming at the above problems of continuous gesture rec-
ognition, we propose a gesture recognition scheme based on
small samples. Our scheme fine tunes the parameters of the
self-attention (SA) module according to the support set pro-
vided by the task, using Mediapipe framework to detect the
gesture landmarks from the input images, then split and
extract those points’ feature information of continuous ges-
tures with the help of a lightweight autoencoder network,
and output the class of the most similar instance in the sup-
port set as the result. Section 3 introduces the Mediapipe, the
architecture of autoencoder network, and how we decon-
struct the gesture key point information. Section 4 lists the
experiments related to the parameter evaluation and the per-
formance of the model.

2. Question Definition and Related Work

2.1. Question Definition. The continuous gesture recognition
scheme conducted in this paper mainly aims at the few-shot
learning tasks of recognize gesture sequences, and this kind
of task only provides the support set and the query set.
The support set contains few instances in each class for
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model training, and the query set contains many instances
for prediction. The prediction of gesture essentially is a pro-
cess of calculating the feature states of the input query set D,
and support set D,, respectively, by the gesture feature
extractor f (D), then output the class ¥ of the instance with
the maximum cosine similarity in the support set as the pre-
diction results of query instance (1).

y=max {cos (f5(Ds;) far(Dy)) } Dsi € Dy (1)

In practical problems, there will be considerable differ-
ences between gesture actions of different instances even
they belong to the same class, which is mainly because the
gesture actions in the switching process between key ges-
tures in an instance are not constrained. It will cause large
prediction deviation if we treat all those frames as the feature
frames of continuous gestures. Therefore, we need to elimi-
nate these frames that carry few gesture features to reduce
the deviation in the prediction task.

2.2. Related Work

2.2.1. Hand Landmark Detect. Mediapipe [9, 10] is an open-
source vision based real-time on-device hand tracking solu-
tion and has made many improvements for the real-time
recognition on the premise of ensuring the recognition accu-
racy. Mediapipe divides gesture key point landmark detect
task into two parts: palm detection and key points landmark
detection. The palm detector reduces the image size by cut
out the gesture part from the origin image to improve the
efficiency of key point detection. This paper uses this frame-
work to realize the task of gesture key point detection.
Details of the gesture key point landmark detection are
introduced in Section 3.4, and the mapping coordinates of
gesture key points are shown in Figure 1.

With the help of recognition targets’ inherent structure
information, references [6] extract the gesture feature infor-
mation directly without further data augmentation, which
enlightened the gesture recognition scheme conducted in this
paper. They proposed a nonautoregressive coding mechanism
by making full use of the internal structure information of 3D
gestures such as the interdependence between joints, which
provides complete gesture information for the decoder while
maintains the parallel structure. By taking the average distance
error of joint points as the performance evaluation index, the
nonautoregressive transformer model obtained 6.47, 7.55,
and 9.80 distance errors on Imperial College Vision Lab
(ICVL), Microsoft Research Asia (MSRA), and New York
University (NYU) datasets achieved state-of-the-art perfor-
mance on the 3D gesture recognition tasks.

2.2.2. Continuous Gesture Recognition. The continuous ges-
ture recognition tasks with the external sensors’ data, Zhang
[11] expressed the gesture feature information with vectors
consist of hand coordinates, interfinger distance, fingertip
angle, and hand moving speed with the help of leap motion
sensor [12] and achieved 98.50% recognition accuracy on
the dataset containing 16 dynamic gestures.
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FIGURE 1: Gesture landmark mapping [9].

In reference [13], a small sample learning scheme for
constructing convolutional neural network to analyze ges-
ture sequence data returned by radar is proposed. Four basic
gesture sequences were captured using frequency modulated
continuous wave (FMCW) 60 GHz radar, and more than
94% recognition accuracy was achieved in the 5-way 1-shot
task.

2.2.3. Image Superresolution. Due to the influence of recog-
nition rate and motions, the resolution of the gesture part
in the frame could reduce. For these changes in image reso-
lution, we can recover information from those low-
resolution images by some superresolution method before
recognition. Deep convolutional neural networks (CNNs)
have been adopted in superresolution widely. However,
CNNs depend on its deep network structure to achieve bet-
ter performance and often result any inconvenience in train-
ing such as instability or hard to converge. Coarse-to-fine
super-resolution CNN (CFSRCNN) [14] are gathering com-
plementary contextual information to overcome this issue
and proposed a novel feature fusion scheme based on het-
erogeneous convolutions that achieved high efficiency of sin-
gle image superresolution (SISR) without decrease the
quality of reconstructed images.

Recent generative adversarial networks (GANs) also can
help with those low-resolution image problems with small
samples [15]. Enhanced superresolution group CNN
(ESRGCNN) [16] is kind of flexible and efficient way in
SISR. It balanced SISR performance and complexity by using
group convolutional and residual learning techniques in
group enhanced convolutional blocks and also used an adap-
tive up-sampling mechanism to make superresolution model
more flexible in real tasks.

2.2.4. Transfer Learning. Transfer learning is mainly sub-
sumed model transfer or data transfer, both of which have cer-
tain application value in small sample learning tasks. About
model transfer scheme, a visual few-shot gesture recognition
scheme is proposed in reference [8], which completes the rec-

ognition task by transferring the model parameters trained
from a large number of datasets to another sampler but similar
model. Specifically, train a GoogLeNet on Kungliga Tekniska
Hogskolan (KTH) dataset to extract gesture features, and use
the probability network as the classifier to achieve 99.47% rec-
ognition accuracy on Keck gesture dataset. The few-shot con-
tinuous gesture recognition scheme in this paper uses similar
strategies but uses a more lightweight feature extraction model
pretrained on a small dataset. The few-shot recognition
scheme in this paper also applies model transfer thoughts, pre-
trains the gesture feature extraction model from a self-made
dataset, and then applies it to the new task support set and
query set to extract the gesture feature information to realize
the transfer of the model.

2.2.5. Fine Tuning. Reference [7] pointed out that using fine
tuning strategy to build a small softmax network based on
support set can improve the recognition accuracy of few-
shot learning tasks by 2% to 7%. This paper also applies
the fine tune strategy on the support set to improve the rec-
ognition accuracy of the model on specific task. The details
of our fine tune method are described in Section 3.5.

3. Continuous Gesture Recognition

Our scheme mainly consists of two models to fulfill the work,
the gesture key point landmark detector and the gesture feature
extractor. To obtain the gesture key points’ landmarks and rel-
ative depth information, we use Mediapipe gesture landmark
detector to process the RGB-image sequences, and each frame
outputs 63-dimensional vectors V,,. Then decomposes the fea-
ture of vector V,, into palm rotation feature and finger bend-
ing feature according to Section 3.1 and produces six 3-
dimensional vectors V.., the feature extraction model f
extracts the gesture feature data and outputs a 6-dimensional
vector Vg, as the gesture feature of the current frame. The
model architecture is shown in Section 3.2. The vector is used
to update the states of various gesture features in time
sequence, and the mean value of each state feature is added
to obtain a 6-dimensional vector V,, as the feature of this con-
tinuous gesture sequence instances. The detail of implementa-
tion process is described in Section 3.4, then output the
instance’s class with the highest cosine similarity in the support
set as the result of prediction. The structure of the scheme is
shown in Figure 2.

3.1. Gesture Information Decomposition. The gestures con-
tain sufficient internal structure information such as joint
attachment; thus, we decompose the gesture information
before the recognition, so that the model can learn enough
information even with few samples. The decomposition of
gesture information is based on the 21 gesture key points’
landmarks and relative depth information predicted by the
gesture key point detection model. For any motions and pos-
tures of the palm, decompose them as follows:

(1) The curvature of five fingers is measured by the root
of the same finger and the root of the palm at the dis-
tal, middle, and proximal phalanges of each finger
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FIGURE 2: Structure of continuous gesture recognition scheme.

(2) The degree of palm turnover is measured by the dis-
tance between the keys at the base of the index and
ring fingers

(3) The palm yaw degree is measured by the normalized
vector from the palm root key to the middle finger
root key

(4) The palm pitch degree is measured by the relative
depth of the root of the middle finger to the palm
root

The data in the gesture landmark vector V,,, are the
fixed relative position; thus, there is no need to rescale the
coordinates due to the different distance between the palm
and the camera. The continuous gesture recognition method
conducted in this paper divides the gesture feature into the
above four basic parts.

3.1.1. Five Finger Joint Curvature Measurement. Due to the
limitations of the palm joint, the fingers can only curl up
and stretch in space. We use the five fingers bending degree
information at any time, and the relative Euclidean distance
between joint points is used to eliminate the influence of the
palm rotation angle in space on the measurement of finger
bending degree.

For any normal palm at any time, the included angle
between the distal phalanx and the middle phalanx of the lit-
tle thumb, ring finger, middle finger, and index finger is

about 90-180 degrees; the included angle between the middle
phalanx and the proximal phalanx is about 70-180 degrees;
and the included angle between the proximal phalanx and
the metacarpal bone is about 80-110 degrees. Although No.
I metacarpal bone is more flexible than other four metacar-
pal bones, we assume that the angle between its proximal
phalanx and metacarpal bone is roughly 90-180 degrees.

The gesture landmarks in this scheme are coordinates in
three-dimensional space predicted by Mediapipe gesture
landmark detector. Therefore, for the thumb, the Fuclidean
distance between the landmarks of the fingertip, middle seg-
ment, and No. I metacarpal bone and the landmarks at the
root of the wrist is selected as the measurement of the bend-
ing degree (4). The other four fingers’ bending degree consist
of three parts’ European distance, the top of distal phalanx
and the top of proximal phalanx, the top of middle phalanx
and the bottom of proximal phalanx, and the top of proxi-
mal phalanx and the wrist root. Using the embedded vector
V. of five finger landmark data in space output by Media-
pipe, calculate the five fingers’ feature vector of the bending
degree by (2).

3.1.2. Palm Turnover Measurement. In this scheme, the
Euclidean distance between the II and IV metacarpal bones
after rescaling is selected as the measurement of the degree
of palm rotation. The landmarks of the gestures’ key points
corresponding to the II and IV metacarpal bones are 5 and
13, and the subscripts in the feature dataset are 13 and 37.
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The Euclidean distance between them is calculated to get the
result of the palm turnover’s degree (2).

15 39)\ 2 16 40)\ 2
Vial15)= 1/ (V2 —VE) "+ (VIO —vi@Y:. @)

The formula that measures palm turnover’s degree is
continuous, monotonic, and differentiable in a rotation
cycle; the degree range is between -0.06 and 0.06. The mea-
surement value obtained by the counterclockwise rotation of
the palm at the top angle increases from -0.06 to 0.06, and
the measurement value obtained by the clockwise rotation
decreases from 0.06 to -0.06, stripping the influence of the
yaw and pitch angle on the measurement turnover.

3.1.3. Palm Pitch Measurement. The pitch degree of the palm
in space is measured by the relative distance between the
root of the middle finger and the root of the palm. The sub-
scripts of those two points in the landmark map are 9 and 0.
The measurement result of the pitch degree is shown in the
following equation.

38 3
Vinput[lq = (Vl(m )_Vl(m))' (3)

3.1.4. Palm Yaw Measurement. The palm yaw degree is mea-
sured by the two-dimensional normalized vector of the palm
root point to the middle finger root in space. This measure-
ment method can eliminate the influence of the other two
spatial angles on the measurement of palm yaw angle. Palm
yaw angle is measured by the following equations.

P= \/Vinput[17]2 + Vinput[ls]z’ (4)
(Vl(27+i)_Vl(i))
Vipu[17 +1] = ~— ") i€ {0,1}. (5)

After the decomposition of gesture feature information,
we get six vectors to preliminary describe the gesture in each
frame. Then embedded them into a 17-dimensional vector
Vinput according to the subsequence of bending degree of
thumb, index finger, middle finger, ring finger, little finger,
and the palm pose vectors, the embedding map is shown
in Figure 3. The embedded vector V., cannot represent
the gesture feature directly, so we need to further extract fea-
tures from it.

3.2. Architecture. The model used to extract the decomposed
gesture features in the few-shot learning task is a pretraining
model combined multiple autoencoders with a self-attention
module [17]. The goal of pretraining is to use an adequate
training set including different actions and postures palm
to get a lightweight model with strong generalization ability,
so that we can fine tune the parameters by different tasks to
improve model’s performance a step further. Therefore, we
added a self-attention mechanism in front of the encoder
to extract content information in specific tasks [18]. Initially,
we only train the autoencoder module to extract single ges-

ture feature form the training set that independent of query
set, when it is applied to the real tasks, then train the self-
attention module’s parameters by the support set to focus
on the context information of continuous gestures, which
is an effective way to improve the recognition accuracy of
the model for the current task.

During prediction, the model is used to calculate the fea-
tures of various samples in the support set, extract the fea-
ture information of instances in the query set, and then
extract the feature state and eliminate the impact of gesture
action change frames on the overall recognition task. Finally,
calculate the cos similarity and output the class of the high-
est similarity instance in support set as the prediction result.

3.2.1. Autoencoder. The distribution of various gesture feature
data obtained from the above decomposition in the original
space is linear inseparable. It will loss a large amount of infor-
mation if we use linear feature extraction method. Therefore,
our model relies on the autoencoder to compress the vector
dimension to extract gesture features. Section 4 shows relevant
experiments. The input of the model is the decomposed 17-
dimensional vector V. Since the coordinate value range
of gesture key points recognized by Mediapipe is stored as a
percentage value of the input image boundary according to
the distance, it is easy to cause gradient disappearance if we
use Vi, for model training without any process. We use
(6) to process the datasets with layer normalization firstly,

where y is the offset value and E is the mean value of V.

\%4

input [l] - —* ( !

inputm input) ieN. (6)
Var(Vinput) +y

Vv

The standardized data is divided into six 3-dimensional
vectors V;; according to the embedding method mentioned
above, which is, respectively, transmitted to different autoen-
coders. Each encoder is composed of two hidden layers and
independent of each other, and they have different parameters
and connected to a decoder, respectively. The decoder is used
to restore the output value of the encoder back to the input
vector value. Calculate the loss function according to the
decoders’ results, and iteratively train the parameters of each
batch. The strategy of training is introduced in Section 3.6.
The bending degree feature of the thumb is extracted from
the encoder subscript from 0 to 4, and the palm posture fea-
ture is extracted from the encoder subscript 5. When extract-
ing features, the model only calculates the values of each
encoder and embeds them into 6-dimensional vector as out-
put. The feature extractor model structure is shown in
Figure 4.

The 6-dimensional vector V., indicates the gesture fea-
ture of the current frame. There are six elements in the embed-
ded vector. The top five are the feature values of each finger’s
bending degree, and the last is the posture feature of the palm.
The extracted gesture feature vectors of the whole frames are
input into the state extraction module to eliminate the impact
of gesture frames that did not carry adequate feature informa-
tion on the gesture recognition task.
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3.3. State Extraction of Sequences. For different video
instances that belong to the same gesture sequence, the ges-
ture states between instances may be misaligned due to the
different duration time of a gesture state or the speed of
the gesture transformation, and Figure 5 shows the results
of using the pretraining model to extract two instances in
the support set and the test set that belong to the same class.
The test set instance lags behind the support set instance by
about 20 frames. And there will be a large gap if we calculate
the similarity between the two instances’” feature sequences
directly. Therefore, we propose a scheme of detecting and
matching instances by extract the gesture feature state.

The feature states in this paper refer to the values of the
vector V., sequence that are maintained within a given
threshold and stable for a certain frame length Frame,,.
The method of state extraction receives the V., vector
and maintains the mean value avg of six current states.
Whenever a new V., is input, check whether the differ-
ence between the data in the vector and the mean value
avg of their respective states is greater than the given thresh-
old, and it is considered to be the end of a state when the avg
is greater than the threshold value. Then check whether the
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FIGURE 5: Example of gesture feature dislocation.

frame length Frame,, reaches the minimum state frame
length. Only when it is reached, record the mean value avg
of the current state and reset the frame length. Otherwise,
update the status mean value by the following equation.

avg. * Frame,. + V.
& ln Wt i€ £0,1,2,3,4,5}. (7)

aveg; =
Frame, + 1
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Using above method to process feature vector of each
instance, add the state feature of each dimension record of
the instance to obtain a 6-dimensional vector. The matching
between different instances is to calculate the similarity
between vectors. In this paper, the cosine similarity between
the two vectors is selected as the degree of similarity. For
instances in the query set, the class of the instance with the
greatest cosine similarity is in the support set as the predic-
tion result.

3.4. Gesture Key Landmark Detect. In order to solve the
large-scale problem of continuous gesture recognition, we
first need to detect the key landmark of gestures in the
image. In this paper, Mediapipe is used to detect the 21-
key landmark of gestures in RGB images. The model inputs
real-time RGB image data and returns the relative coordi-
nates and depth of 21 hand key points in the image. The
Mediapipe can achieve more than 30 frame rates in real-
time processing tasks when the computing power is suffi-
cient. The core framework of Mediapipe is implemented by
C++. The model is mainly divided into two parts. First, the
palm detector, which replaces the hand detector, uses a hand
positioning frame with direction information to locate the
position of the palm in the image. The second is the hand
coordinate model, which obtains the coordinate data by
detecting the gesture key landmark in the positioning frame
processed by the palm detector.

3.4.1. Palm Detector. It is built by a relatively lightweight
convolutional neural network with encoding and decoding
structure. The palm part or the fist is a rigid object that is
easy to recognize, thus to detect the palm or fist part from
the input images instead of the whole hand. The palm detec-
tor receives the complete image as the input, cut out the
palm part from the image when the palm is detected, and
then input the result into landmark detector for regression,
which greatly reduces the irrelevant contents from the origin
image. The cut palm boundary box is square; compared with
other shapes, it can reduce the proportion of useless

256 x 256 RGB inputs Feature extractor

Real-world 2D coordinates
images regression 21-key points
landmarks
Synthetic Relative depth outputs
images regression

FIGURE 7: Structure of gesture landmark detector [9].

TaBLE 1: Model performance on RWTH dataset.

Nodd Sy T S Lot S o
Full MSE N 77.40% 78.39%
Full Cosine N 86.67% 88.20%
Full MSE Y 79.45% 80.72%
Full Cosine Y 89.73% 90.16%
TaBLE 2: Comparison with other models.

Model 5-way 1-shot accuracy
Nearest neighbor 75.81%
Nearest neighbor (SE) 77.45%
Matching network [20] 85.62%
CNN(64),, [18] 80.95%
Autoencoder (ours) 89.73%

TaBLE 3: Model performance on Sebastien Marcel dynamic dataset.

Similarity ~ Fine

Model . 4-way 1-shotacc 4-way 3-shot acc
measure  tuning

Full MSE N 89.62% 90.41%
Cosine N 91.77% 91.73%

Full MSE Y 91.14% 91.11%
Cosine Y 92.17% 93.23%
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TaBLE 4: Influence of linear and nonlinear dimensionality reduction methods on model recognition accuracy.
Dataset Similarity measure PCA PCA Autoencoder Autoencoder
Y 4-way 1-shot 4-way 3-shot 4-way 1-shot 4-way 3-shot
MSE 73.48% 74.82% 79.45% 80.72%
RWTH ,
Cosine 68.67% 70.16% 89.73% 90.16%
SMD MSE 74.62% 74.47% 91.14% 91.11%
Cosine 71.53% 74.13% 92.17% 93.23%
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FiGurek 8: Effects of different dimensionality reduction methods on feature extraction.

information by 3 to 5 times and improve the efficiency of
gesture key coordinate detection.

The encode-decode structure in the palm detector can
extract the nonlinear features of sample instances through
iterative training. The important thing is that the feature
receptive field in large-scale images is relatively small, while
the feature receptive field in small-scale images is relatively
large. Such a structure can enable the model to perceive
the feature information in images of different sizes. The focal
loss [19] function is used in the model training. The ablation
experiment designed in the paper found that the cross
entropy loss function with encoder has a better accuracy
on the dataset than that without encoder. The average accu-
racy of the cross entropy loss function without encoder is
86.22%, and that with encoder is 94.07%. The palm detector
model structure is shown in Figure 6.

3.4.2. Gesture Landmark Detector. The input data in this part
is a smaller image cut by the palm detector, which allows the
model to focus on the 21-key point coordinate regression
task. The dataset used in the model training includes not
only the palm image data in different backgrounds from
the real world but also the synthetic gesture data. On the
one hand, the synthetic data provides the accurate position
information of gesture key points in space, and landmark
detector can learn additional relative depth information

under the supervision of such data, hence, to improve the
performance on the key points’ coordinate regression task.
On the other hand, in the actual gesture image, due to the
high degree of freedom of the gesture itself and various
occlusion problems, the accurate position information car-
ried by such data can well enable the model to learn the ges-
ture information of the occluded part. Reference [9] shows
that model trained by datasets combined real-world and
synthetic gestures performed better than only trained by
real-world or synthetic gestures and achieved 13.4% mean-
square error (MSE). The main structure of gesture key point
detector is shown in Figure 7.

The 2.5D fidelity data obtained by the landmark detector
include that the horizontal and vertical coordinates of the
key landmark in the RGB images and the relative depth data
between each key landmark at the root of the palm. Each
time the model receives an image frame as input, cut it into
a small-scale image that containing the complete hand by
the palm detector and then input it into the key point coor-
dinates detector to detect the three values of 21 key land-
mark points. Each frame of gesture image outputs 63 data
as V,,, vector.

3.5. Fine Tuning. The fine-tuning strategy in few-shot learn-
ing often means to fine tune the model parameters according
to the prediction results of few sample instances in the actual
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FiGure 9: Effects of different threshold and Frame;,, on model recognition accuracy.

task after the pretraining. This strategy is often used to
optimize the model of the transfer learning network. Exper-
iments show that using this strategy to optimize the few-
shot learning model can improve the prediction accuracy
by 2-7% [7).

Because the number of instances in the support set is
small, it is not suitable for training new classifiers, also the
overall structure of the pretraining model is very light.
Therefore, our fine-tuning strategy of the model is only to
fine tune the parameters of the self-attention module based
on the support set instances and introduce different atten-
tion scores for different feature vectors. In order to prevent
the model from over fitting, a smaller iteration number
and a larger iteration step are selected to fine tune the model.
Experiments show that this fine-tuning strategy can improve
the recognition accuracy of the model by 2-4%.

3.6. Training. The model is mainly training two parts: the
autoencoder and the self-attention module. The dataset used
for training autoencoders that extract bending degree con-
tains the gesture key landmark information extracted from
11 RGB videos collected by 2 people who make palm grasp-
ing and opening movements under different backgrounds, a
total of 1186 instances of training set, 20 pieces of which are
randomly selected and divided into a batch. The dataset of
the training palm pose feature extraction autoencoder con-
tains the gesture key points extracted from 12 RGB videos
collected by 2 people that make various gesture under differ-
ent backgrounds.

The pretraining model uses empirical risk minimization
strategy for training, in which six autoencoders are indepen-
dent of each other, each learns feature information from the
Vipput set and select the cosine similarity between the
decoder results and the instances as the loss function. We
use Adam optimization algorithm and initial learning rate
to 0.01. Each encoder iterates 20 batches of training sets.

This paper uses the one-head attention module of dot
product attention mechanism. In specific tasks, the model uses
the support set to train the W, Wy, and W, linear transfor-
mation layers in the self-attention module as the fine-tuning
strategy. Out of the residual structure in the self-attention
module, the weights of the above linear are initialed to zero,
which avoid to affect the training of the autoencoders. The sto-
chastic gradient descent (SGD) optimizer is used to train the
module parameters, the initial learning rate is set to 0.01,
and the momentum is set to 0.9. The cosine similarity between
the current frame and other frame features is used as the loss
function for training. Each training set contains various ran-
domly selected support set instances, and a total of 5 batches
of data are iterated in the training process.

4. Experiment

This part shows some problems encountered in the process
of model conduction, the selection of the recognition
scheme, and the optimization of details and also includes
the experiments to support the solutions we choice. Sections
A and B mainly include the experiments about the perfor-
mance of our method on different datasets, the selection of
feature extraction methods for the deconstructed gesture
information, different few-shot models’ performance on
the gesture recognition task, and the comparison of several
linear and nonlinear feature extraction schemes. Section C
introduces the experiment of feature state extraction of con-
tinuous gestures and specifically compared the recognition
accuracy of different thresholds and continuous steps on
the recognition task. Section D introduces the contribution
of different autoencoders and the self-attention module to
the accuracy of model recognition. We validated the result
by an ablation experiment. The experiments above are
mainly conducted on the RWTH German fingerspelling
and the Sebastien Marcel dynamic public datasets.
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TaBLE 5: Ablation study of the gesture feature extractor model.
RWTH RWTH SMD SMD
Model Similarity measure 5-way 5-way 4-way 4-way
1-shot acc 3-shot acc 1-shot acc 3-shot acc
Full MSE 79.45% 80.72% 91.14% 91.11%
u
Cosine 89.73% 90.16% 92.17% 93.23%
None AE MSE 79.41% 80.47% 90.36% 91.34%
> Cosine 85.62% 85.95% 91.69% 92.10%
None AE MSE 75.71% 75.64% 89.97% 89.84%
‘ Cosine 82.88% 84.13% 90.38% 90.75%
None AE MSE 75.34% 77.35% 86.79% 88.19%
’ Cosine 84.25% 85.13% 90.20% 91.73%
None AE MSE 79.42% 78.68% 77.69% 77.42%
? Cosine 88.36% 89.25% 81.99% 83.22%
None AE MSE 72.60% 74.26% 76.40% 77.46%
! Cosine 85.62% 85.45% 80.40% 82.31%
None AE MSE 74.66% 74.24% 81.18% 82.54%
0 Cosine 86.30% 87.83% 86.27% 87.22%
None MSE 76.36% 77.69% 88.18% 88.78%
SA module Cosine 88.54% 88.83% 90.97% 91.02%
4.1. Results proposed in this paper obtains extra information by dividing

(1) RWTH German fingerspelling dataset

The RWTH German fingerspelling dataset contains 35
different continuous gestures. Each gesture contains 88 video
instances of stand 2 and stand 1, hereinafter, referred to as
the RWTH dataset. Five continuous gestures are randomly
selected in this experiment. Each gesture contains 22 video
instances of stand 1 as the support set and query set. The
model state threshold and continuous frame length are set to
0.4 and 14, and the average prediction accuracy of the model
is obtained by repeatedly selecting 5 prediction categories.
The prediction results are shown in Table 1. The table shows
that the strategy of using the fine tune attention module in
1-shot or 3-shot recognition tasks can improve the recognition
accuracy by 1.96% to 3.06% and achieve better performance
by using cosine similarity measure the distance between fea-
ture vectors instead of mean square error (MSE).

Table 2 shows the results of various gesture feature
extraction methods performing 5-way 1-shot tasks on the
RWTH dataset. The nearest neighbor model selects a sup-
port instance nearest to the instance as the classification
result and uses five gestures randomly selected in the dataset,
one instance of each gesture as the support set for training.
At the same time, the SE method is used to process the data
to improve the model recognition accuracy by 1.64%. Match-
ing network [20] is a model combining shallow CNN and bidi-
rectional LSTM network. CNN(64),, in the table is a shallow
network composed of 4 convolution layers with 64 channels,
which is trained by LSTM meta-learner method [21, 22].
According to the prediction results of this task, the method

gesture feature, thus achieves higher recognition accuracy than
other small sample learning methods.

(2) Sebastien Marcel dynamic (SMD) dataset

The dataset contains four consecutive gestures: clip,
rotate, stop grasp OK and No, each gesture records the
action of 10 people as samples. Table 3 shows the influence
of different factors on the recognition accuracy such as sim-
ilarity measurement, fine-tuning strategy, and the number of
instances in each class. Without using fine-tuning strategy to
training self-attention module, the accuracy of the model
achieves 1% to 3% higher when we use cosine similarity as
the similarity measurement than using MSE. The recogni-
tion accuracy increases after fine-tuned self-attention mod-
ule’s parameters, and the 1-shot prediction task using
cosine similarity measurement method increased 2.54%,
which improved most obviously. The recognition accuracy
of model using cosine similarity was improved 2.33% by
fine-tuning strategy in the 3-shot task, which was more sig-
nificant than that using MSE as similarity measurement.

4.2. Gesture Feature Extraction. The extraction of gesture fea-
tures is to reduce the dimension of the basic gesture feature
vector V., decomposed by the method above. The experi-
ments in this section show the impact of linear and nonlinear
dimensionality reduction methods on the performance of the
model and calculate the recognition accuracy of the feature
extractor under the principal component analysis (PCA) and
autoencoder extraction methods on RWTH and Sebastien

Marcel datasets. Table 4 shows that the recognition accuracy
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obtained by using the autoencoder method is 10-20% higher
than that obtained by PCA on the two datasets.

Figures 8(a)-8(e), respectively, show the feature extraction
results of different dimensionality reduction methods on the
original data. The first row in the figure shows the distribution
of the original data in the three-dimensional space, and the
second and the third rows are the distribution maps reduced
to 1-dimensional using autoencoder and PCA. Although it is
shown in the figure that the within class distance of each
eigenvalue obtained by the two dimensionality reduction
methods is also small, the distribution of the original data is
nonlinear separable, so the line dimensionality reduction
method loses more information in the process of dimensional-
ity reduction, which get the inferior accuracy of the prediction.

4.3. State Extraction of Sequences. This section mainly shows
the impact of different thresholds and Frame,,, parameters
used in the state extraction method on the accuracy of model
recognition. The threshold values of 0.3, 0.4, and 0.5 were
selected, respectively, to test the model recognition accuracy
of the minimum state frame length Frame,,,, from 1 to 25 on
the RWTH dataset and the SMD dataset. Figure 9(a) shows
the experimental results on the RWTH dataset. When the
threshold is 0.4 and the Frame,, is 16, the model achieves
the highest recognition accuracy of 91.33%. Figure 9(b)
shows the experimental results on the SMD dataset. When
the threshold is 0.4 and the frame length is 11, the model
achieves the highest recognition accuracy of 92.13%.

4.4. Continuous Gesture Recognition. In order to show the
influence of each component in the model on the overall rec-
ognition results, we constructed an ablation experiment to
show the contribution of each autoencoders and the self-
attention module to the model recognition accuracy. The
experimental results are shown in Table 5.

Table 5 shows the recognition accuracy of the model on
RWTH and SMD datasets with the removal of each autoen-
coder module or the self-attention module. The influence of
each module on the test set’s recognition accuracy sampled
from RWTH dataset ranges from 1% to 7%, among which
the ring finger bending encoder AE; contributing 6.85%
accuracy of recognition. On the SMD dataset, the influence
of each module on the overall recognition accuracy of the
model ranges from 1% to 12%. Among them, AE, improved
11.77% accuracy in the recognition task, which has the
greatest contribution.

5. Summary

This paper conducts a few-shot gesture recognition scheme
combined a gesture landmark detector with a lightweight
gesture feature extractor. The scheme uses Mediapipe ges-
ture key landmark detection model to recognize gesture
key landmark points on RGB image sequences. The recogni-
tion results are processed into a 6-dimensional feature vector
by the gesture feature extractor. Various feature states in the
sequence are extracted and added and then output instances’
class with the highest cosine similarity in the support set as
the result. In the 5-way 1-shot tasks on RWTH and Sebas-

11

tien Marcel datasets, the recognition accuracy was achieved
89.73% and 92.17%, respectively.

Also, the gesture feature state extraction scheme in this
paper is mainly applicable to the recognition task of a single
palm in gesture sequences. We can use the multihead atten-
tion structure to extract different association features accord-
ing to the different context associations in the gesture
sequences, to improve the recognition performance of the
model in those continuous gesture recognition tasks with
strong context correlation, such as sign language recognition.
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Building a simulated weightless test system on the ground while making comprehensive comparisons of design controllers for a
large and heavy multijointed space station robot is not an easy task. To save cost and improve the efficiency of the test, this paper
develops a plan in which controllers undergo preliminary testing in a 6-DOF industrial robot. The key idea is gravity
compensation included within the dynamic control algorithm of the robot to replace the function of the microgravity
environment. It is generally difficult to build an accurate dynamic model for a serial-joint robot in a practical manner.
Therefore, to guarantee the stability of the 6-DOF industrial robot in which the dynamic model is built inaccurately, we
propose one of the simplest variable structure (VS) controllers, and the stability of the system is analyzed through the
Lyapunov method. Last, experiments are carried out to provide preliminary comparisons among three potential algorithms for

the space robot in a low-cost and efficient approach.

1. Introduction

Space robots have been playing an important role in orbital
servicing missions, such as assisting the assembly of space
stations, capturing or repairing faulty satellites, and cleaning
orbital debris [1-5]. The primary characteristics of applied
space equipment controllers are typically simple but reliable
and effective. At present, there is a lack of confidence in
launching equipment controlled by complex advanced con-
trol algorithms into space considering the risk and price of
failure. Space-bound robots are used to serve the corre-
sponding space station routines and tasks, after their perfor-
mance and reliability in various types of working conditions
are verified by trial and error, and under the simulated
weightlessness or microgravity environment on the ground.
Furthermore, without the weightlessness simulation system,
the space robot designed for the space station may not even
carry its own weight on the ground. To date, a variety of
strategies have been published to compensate for the gravity
of space robots for experimental tests on the ground. [6]

emulates the zero-gravity environment for the space manip-
ulator using an air-bearing platform, while the platform is
mainly suitable for the planar mechanism whose motion is
parallel to the air-bearing table [7]; A microgravity environ-
ment can also be created in a plane while in a free fall or a
free-falling capsule at the microgravity center; however, the
test time is too short, and available space for the robot is lim-
ited [8-10]; A microgravity test can be performed in the pool
using neutral buoyancy. Nevertheless, the influence of fluid
damping on test results cannot be negligible [11]; [12-15]
emulate the process of capturing the space target by the
free-floating robot mounted on satellites, using two indus-
trial robots. However, the purpose is not to create the micro-
gravity environment for the space robot but to generate the
trajectory of the satellite; [16-19] design the suspension sys-
tem to provide the zero gravity of the space robot for main-
taining tension. However, it is difficult to remove the
influences of the test results caused by the coupled vibration
of the serial multijoint space robot and suspension system.
Unfortunately, building a simulated weightless test system
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for a large and heavy serial multijoint space station robot
while choosing the most practical control algorithm from
potential candidates is not a simple task and consumes a
large amount of time, manpower, auxiliary facilities, and
material resources [6-21].

The central difference between the controller designed
for a space robot and that for an industrial robot on the
ground is determined by considering gravity compensation
or not. The gravity compensation included in the dynamic
control algorithm of industrial robots can be regarded as a
replacement for simulated weightless system functions. As
a result, preliminary comparisons between various potential
dynamic control algorithms on a 6-DOF industrial robot can
be made to save cost and improve the efficiency of the test.
This allows contrasting effects to be obvious and easily
acquired, which provides prior knowledge and makes pre-
liminary judgment regarding controllers designed for the
space robot.

To achieve high precision and efliciency of robot track-
ing performance, it is necessary to introduce the robotic
dynamics into the controller to reduce the effect of robotic
nonlinear dynamic characteristics. The dynamics of serial-
link robots have been well covered by almost all standard
robotic textbooks [22-27]. Two main approaches are feed-
forward control and computed torque control [28], and both
are based on robotic dynamics combined with one diagonal
PD controller. Compared with computed torque control, the
feedforward control is computationally less expensive at
operating time and more easily realizes a high servo rate.
This is all possible because the model-based dynamic com-
pensation is “outside” the servo loop, and then, a fast inner
servo loop is achieved. Furthermore, PD plus dynamic feed-
forward compensation in [22] is one of the simplest and
most appealing dynamic controllers for robots [29]. It con-
sists of one linear PD feedback and a nominal robot dynamic
model computed as a function along the desired path only.
Therefore, the advantage of the simple and efficient structure
of this type of algorithm provides a reference to the control-
ler design of the space robot.

Generally, the motion control of robots is not an easy
task due to nonlinearity, strong coupling, uncertain model-
ing structure, or parameters. These factors may cause inac-
curate joint motion and lead to poor robot performance.
To solve these problems, various dynamic feedforward
compensation plus PID-like or plus other single-loop feed-
back control algorithms and computed torque control-
based methods have been proposed, including sliding-
mode control (SMC) [30-36] or some other variable struc-
ture controllers [37-40], neural networks [41-46], fuzzy
control [47, 48], and adaptive control [49, 50]. However,
many of them are only tested in simulations or double-
jointed robotic systems and may have more difficulties
achieving the expected performance in the multijoint serial
robotic system. One reason is that the current advanced
control algorithms, such as neural networks, fuzzy control,
and adaptive control, are characterized by complex struc-
tures and are time-consuming, and their computational
time is possibly several times larger than the commercial
robot servo period which is generally less than 10 ms. This

International Journal of Aerospace Engineering

may lead to poor real-time performance, let alone the cur-
rent situation that most of those advanced control algo-
rithms are mainly based on the computed torque control
structure. Furthermore, reliable and practical controllers
are always those simple ones in experience. At present,
there is a lack of confidence to launch space robots con-
trolled by those complex advanced control algorithms into
space on account of the risk and price of failure. By com-
parison, a kind of variable structure controller is proposed
in this paper to enhance the tracking performance of the
robot under modeling uncertainty. It shows higher effi-
ciency and a better control performance than [22] in the
experiment because it combines the PD plus dynamic
feedforward compensation and the Bang-Bang control to
achieve compensation for the tracking error caused by
the modeling uncertainty. One noticeable merit of the pro-
posed method lies in the easier design and application in
real robot systems than the controllers designed in
[30-48] because of its simplicity in structure.

The main contributions of this paper are summarized as
follows: (i) Since testing the different controllers and com-
paring them in a serial multijoint space station robot on
the ground are difficult, this paper initially develops a strat-
egy for controllers to be preliminarily tested in an industrial
robot. The key idea is the gravity compensation included in
the dynamic control algorithm of the robot to act in the
function of a microgravity environment. It will be more effi-
cient to obtain the superior controller from others; (ii) [22]
points out that the dynamic model is always known to be
inaccurate, and one reason is that it is severely challenging
to acquire the structure of the friction model, let alone the
corresponding parameters. To improve the control perfor-
mance of the system, we propose the simplest variable struc-
ture control through the combination of the PD plus
dynamic feedforward compensation and the Bang-Bang
control together to compensate for tracking error caused
by the modeling uncertainty, and the stability of the system
is analyzed by Lyapunov theory. Then, we experiment to
provide preliminary comparisons among several potential
algorithms for the space robot in a low-cost and highly effi-
cient way.

The rest of the paper is organized as follows. In Section
2, the dynamic parameters of the robot are identified by
the least square method. In Section 3, to guarantee the stabil-
ity of the system under the modeling uncertainty, a variable
structure controller is designed based on the Lyapunov
direct method. Then, we design the PD plus and the cas-
caded PD plus dynamic feedforward compensation to make
an experimental comparison in Section 4. As a result, the
cascaded PD plus dynamic feedforward compensation con-
trol more easily achieves the high-precision tracking perfor-
mance than the proposed VS control or the PD plus, under
the roughly built robotic dynamics. Finally, we present the
conclusions in Section 5.

2. Identification of Dynamic Parameters

A typical 6-DOF serial industrial robot is shown in Figure 1.



International Journal of Aerospace Engineering

FiGURE 1: 6-DOF serial robot.

The dynamic equation of the 6-link robot is written as
T=M(q)q+C(qq)q+G(q) +fsign (@) +f,4 (1)

where g € R®! is the vector of joint displacements, T € R®! is
the vector of applied torque, M(q) € R®® is the mass matrix
of the manipulator, C(q, g) € R™® is the centrifugal/Coriolis
force matrix, G(gq) € R®! is the vector of gravity terms, and
f, €R% and f,_ € R are diagonal matrices that consist of
the viscous and Coulomb friction parameters, respectively.

Then, in accordance with [51], (1) can be rewritten into
the following linear form with #n x N =6 x 13 identifiable
base parameters:

T=Y(4,4 q)ps (2)
where

Prga = [Pl"">P6]T
pi= [mymx, my,mzy L Lo Lo Lo Ly L 1

>

T
ai> *xxi> *xyi> T xzi> T yyi> L yzid zzi’fci’fvi] '

(3)

Obviously, 6 x 13 unknown parameters constitute the
dynamic parameters (3) of the robot. We generally reformu-
late (2) on account that not all parameters in p are indepen-
dent. In this paper, the independent parameters are collected
through QR decomposition.

We perform the robot under a random trajectory to
obtain the multiple matrices Y(-) which form the matrix

(Wlenxrs = : : (4)

Y(q(ty)> 4(ta)> 4(tar))

The number of matrices Y(-) or the sample number is
M =10000. The sample period is 0.1 s. We apply QR decom-

position (5) to find the independent base dynamic parame-
ters, with the orthonormal matrix Q € RM™"N¢ and upper
triangular matrix R:

W = QR. (5)

Supposing that the main diagonal elements r;; in the Ith
column of R are zero, the corresponding columns of R are
collected in R,, while the rest constitute R;:

R=[R, R,]. (6)

Similarly, the corresponding columns of W are collected
consistent with R. According to (2), we have

(1)

T
Wr = [[Wl]estz [Wz]sszs] [r: ] =T= : ,

with independent 71, and dependent 7z, which are collected
from p in the same way as W.
According to (6) and (7), we have

T=Wn" 2 W, (m +kmn,), (8)

where k=R,R;".
Then, the unknown dynamic parameters are estimated
by

T -1 T
)53 = (W1 Wy) W' T. 9)
The excitation reference trajectories for every joint are
applied with the finite sum of 5 harmonic sine and cosine
functions. The joint position, velocity, and acceleration of
the ith joint are

(10)

where the fundamental frequency is w; = 0.05 and g, is the
offset of the joint position of the trajectory. The parameters
a; and b; are determined by trial and error or the following
optimization process. The excitation trajectory g*(t) is
determined by the optimization issue of (11) which is
directly equivalent to optimizing the condition number for
less estimation error while having less complexity and
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Ficure 2: Control scheme of the robot.

4
g ————» M (42) 44+ C(qa 429a
4a >+ G (40) + fda
94 |+ fsign (4,)
TasBLE 1: Controller parameters of each joint.
Joint Ky Kp r;
1 962260; 80000 1000
2 886260; 209500 100
3 2095005 69000 100
4 1852500; 42000 1000
5 489500; 26700 1000
6 87000; 7500 7000
calculation time:
q"(t) =arg min (W) (11)
subject to
b
Qs i < 9 Z— sin (wflt) - _l cos (wflt) =
wyl wr
(12)
~Vinax i < q;(t Z aj cos (wylt) + by sin (welt) < vy s
=1
(13)
Ao 1 < §(t) =Wy Z ajl cos (wylt) + byl sin (wylt) < @y i
(14)
- b
q9;(to) = q;(0) = Z_l +q;0=0, (15)

4i(to) =:(0) = Y@ =0, (16)

q;(to) = 4;(0) = walbl =0, (17)

where g = [qo 1 Gmax o) = [153» 24, 40, 153,90, 180] "
118077, Voy = [Viwax 1 >Viax 6] = [296, 240, 310, 355, 267,
500]7/1807, and 4, = [@yuy 1o oG o) = [1800, 1500,

1800, 1800, 1300, 3000]" /1807 are the constraint vectors for
position, velocity, and acceleration, respectively.

It is possible to use any optimization method to solve the
above optimization problem. In this paper, the parameters g;
and b, are solved by the interior-point method. The maxi-
mum number of iterations is 20000. The initial values of g;
and b, are chosen as random numbers within [-0.5, 0.5].

The dynamic model is often not known accurately. For
example, the structure of the friction model is generally dif-
ficult to know, let alone the parameter values. Furthermore,
it is unrealistic to have precise parameter values in the model
at all times through applying the least square method [51,
52] in one time since the dynamic parameters always change
as the robot moves. Therefore, the following controller is
inevitably designed in accordance with the inaccurate
dynamic parameters.

3. Controller Design

The robotic dynamic model has the following properties [23,
271]:

(P1)The matrix M(q) is positive definite symmetric and
satisfies M ||x||* <x"M(q)x < M||x|* for positive constants
M, M >0

(P2)M(q) - 2C(g, g) is skew-symmetric

(P3)The matrix C(q, q) satisfies ||C(g, q)|| < p, for posi-
tive constant p_>0

(P4) The vector G(q) satisfies ||G(q)l|
constant 4, >0 ) .

From (9), we can obtain M(q), C(q, 9),
which represent the estimation of M(q), C(q,q), G(q) f.
and f,, respectively. Define M(q) = M(q,) - M(q), C(q,q)
= C(4 q2) = C(9: 9), G(q) = G(q4) ~ G(q), and the nonneg-
ative definite diagonal gain matrices K, K, and Y = diag
(ri>ore)s 4a=lai>
for the robot joints.

< u, for positive

G(g), f and 7,

“qe ]T represents the desired trajectory
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TaBLE 2: Estimated dynamic parameters of the robot.
Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
m, (kg) 10 10 10 10 10 10
mx; (kg:m) 0.000000 1467.621893 120.973665 0.877570 -5.497015 -3.474394
my, (kg-m) 0.000000 -485.168899 512.922191 -4.105343 49.201786 9.947225
mz; (kg:m) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
L. (kgm ) 0.000000 -3105.984543 -429.633816 139.535980 -35.190459 -5.898670
xy, (kgm ) 0.000000 -2279.068182 175.632270 -37.783294 -5.612843 4.712513
I, (kg-mz) 0.000000 -168.579890 137.144088 1.357674 -25.300536 -3.631684
Iyyi (kg-mz) 0.000000 -2153.914022 -14.634628 -0.000770 -0.030217 -0.012071
Iyzi (kg-mz) 0.000000 -467.555176 158.191065 -34.563860 -15.506560 -19.074189
I, (kg~m2) 1355.845148 -4625.319065 315.581754 123.918230 39.386756 -10.111644
I, (kg-mz) 0.000000 0.000000 -1198.010476 81.708986 -14.478101 -27.911115
f (Nm-s/rad) 5469.258178 4450.476442 8730.326694 2888.554652 1857.202169 -2029.910574
f,i (Nm-s/rad) 7102.364470 31212.701099 16441.785926 3909.460084 1322.947888 1322.947888
1.5
1_
)
&
Iy
g 0.5
<
a A ]
it
: J W N |
w07 o \
(=]
"\NA
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H
-0.51
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_ %* & e (k)
F1GuRre 3: Tracking performance of each robotic joint controlled by variable structure control.
Define e = q; — q. We choose the Lyapunov function (19) by differentiating (18) as follows:
Ly oo 1g V=e'M( )é+1éTM( )e+e'Kpe
V:Ee M(q)e+ 3¢ Kpe, (18) a 1 P
T
=é (M(q)é+ C(g,q)é+Kpe) (19)

which is continuous and nonnegative. According to the
properties of the robotic dynamic model, we can obtain

(M(
=& (M(q)d, + C(q, 9)q, + Kpe
+G(q) +f.sign (q) +f,9- 7).
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TaBLE 3: Controller parameters of each joint. where
Joint Kp;Kp K3 K, L . N
o=M +C(q,9)q,+ G(q) + Fy,
1 800; 0.1 800; 70 (9)4 + C(4:9)4a + G(q) + Fy (24)
2 650; 0.1 6000; 15 Fy=f.sign (q,)—f.sign (q) +f,9,—f,q-
3 1000; 0.1 2500; 60
4 650; 0.1 250; 40 Herein, we choose
5 800; 0 600; 15
6 650, 01 600, 15 ri > ||6Hmax) (25)
. h
Then, we design the controller to have
V<0. (26)

T= Tdynamic + Tpp» (20)

For the case n = 6, the iterative Newton-Euler scheme is

_ . L - approximately 100 times more efficient than the Lagrangian

Taynamic = M(44)da + (4> 94)94 + G(d4) (21) approach. Consequently, we normally realize (21) by the
+J7£ sign (g,) +qu b iterative Newton-Euler dynamics shown as follows.

(a) Outward Iterations i : 0 — 5
=Kpe+Kpe+ Y sign (e 22
Trp = Rpe ¥ Bpf sign (¢) (22) The joint i + 1 rotational velocity is

to have i A
Wiy =R"w; + g, 2 (27)

V=-¢"(Kpe+0+ Y sign (¢)) - o }
(23)  where Z,,, represents the axis pointing along the i+ 1th

__.T '_'T*_'T . . . K ) K . .
=-e Kpe—e 0—¢ Y sign (e), joint axis and R:-“ is the rotation matrix.
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The angular acceleration from one link to the next is
described by

. _ pitl . i+1 7 ek Ty
Wi =R W+ R w; X 4 Ziy + Gy Zisy (28)

Noticeably, (27) and (28) are different from the itera-
tions in the textbook [22], since the velocity in (27) and
acceleration in (28) of each joint are the desired velocity
and acceleration, respectively.

Then, we obtain the linear acceleration of each link-
frame origin through

Viey = R (w0 x P+ w; x (w; x PIPY) +9) (29)

and obtain the linear acceleration of the center of mass
of each link

i+l e i+1 i+1 .
Ve, T Wi X Pe, +wi, X (wi+1 X PCM> + Vi (30)

where {C,} represents a frame attached to each link and has
its origin located at the center of mass of the link with the
same orientation as the link frame {i}; Pig:l locates the posi-
tion of {C,,,} relative to the i + 1th joint.

Then, we can obtain the inertial force and torque acting
at the center of the mass of each link (31) and (32) through
Newton-Euler equations as follows:

— 'Ci 1
Fi=mi vy (31)

— CHI y C[+l
Nigy =137 Wiy +wiyy X [ wy, (32)

c . N .
where I;};' determines the mass moments of inertia relative

to the center of mass in the i + 1th link.

(b) Inward Iterations i : 6 —> 1

The force exerted on link i by link i —1 is
fi=Rinfi +Fy. (33)
12The torque exerted on link i by link i — 1 is
n; =N+ Riy g + P X Fi+ Pl X Ry f (34)
Finally, we obtain the required joint torques
T,=nlZ, (35)

which constitute T, mic = [z,,-7¢]" in (21).

Controller (20) guarantees the stability of the system in
theory. Furthermore, if we let r;,=0,i=1, ---, 6, the control-
ler is the feedforward nonlinear control shown in Figure
10.6 in [22]. Furthermore, if we correct 7, (22) into the fol-
lowing cascaded PD controller

) . d o
TPD:KP[(KPeJFKDe)_‘ﬂ+KDE[(KP6+KD6)_‘1]’ (36)

which uses PD in both the outer loop and inner loop, and
then, the cascaded PD plus dynamic feedforward control is
shown in Figure 2.

The position control loop (outer loop) is to maintain the
positional trajectory tracking. The error in the position con-
trol loop provides the desired velocity for the velocity loop
(inner loop). We apply a PD controller (Kpe + Kpé) on the
basis of the error between the desired and actual positions
to generate the desired speed of the motor so that the actual
position tracks the desired position closely. The velocity loop
uses the PD controller plus dynamic feedforward compensa-
tion to generate the desired torque for the robot joint
(motor) so that the actual velocity tracks the desired velocity
closely. We normally adjust the gains of the joint controller:
Kp, K, Kj, and Kj, to change the behaviors of the robot
subject to variation in the dynamic model caused by various
poses and payloads, variation in friction with temperature
and time, and some disturbance torques owing to compli-
cated velocity and acceleration coupling.

By removing the gravity compensation item of the con-
troller (20), we can obtain the practical controller for the
on-orbit space robot:

T= M(Qd)éd + 6(%) 94)94 +?c sign (g4) +?qu + Tpp-
(37)

4. Experiment

The proposed variable structure method is applied to the
robot, and the controller parameters of each joint are listed
in Table 1. The estimated dynamic parameters of the robot
are shown in Table 2. The tracking performance of each
robotic joint is shown in Figure 3.

When we let r,=0(i=0,--,6), the proposed variable
structure controller degenerates into the PD plus. The track-
ing performance of each robotic joint controlled by PD plus
is shown in Figure 4. The tracking error comparison
between VS control and PD plus is shown in Figure 5.

Figures 3 and 4 show that both outputs of the robot con-
trolled by the proposed VS control and PD plus are able to
track the desired trajectories. Figure 5 shows that the track-
ing error curves of the robot controlled by the proposed VS
method and PD plus are close. Hence, the drawing of partial
enlargement of the output of the 3rd joint and the output of
the 6th joint of the robot controlled by variable structure
control and PD plus are shown in Figure 6 to make a further
comparison.

Figure 6 shows that the tracking performance of the 3rd
joint of the robot controlled by the proposed VS control is
better than that controlled by PD plus for less tracking error
from 27200 ms to 27800 ms and from 24500 ms to 25500 ms,
while there is no obvious difference between the two
methods acting at the 6th joint. These findings are possibly
because the proposed VS control combines the PD plus
dynamic feedforward compensation and the Bang-Bang
control together, and the Bang-Bang control item Y sign (é
) can be used to suppress all matching uncertainties and
unpredictable system dynamics. In this experiment, the
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Bang-Bang control item can provide timely compensation
for more tracking errors caused by the modeling uncertainty
and consequently improves both the tracking accuracy and
tracking speed of the robot.

Then, we apply cascaded PD plus dynamic feedforward
compensation control to the robotic manipulator for com-
parison with the aforementioned two methods. The cas-
caded PD controller parameters of each joint are listed in
Table 3.

The tracking performance of each robotic joint is shown
in Figure 7. The tracking error of each joint controlled by
cascaded PD plus is shown in Figure 8.

With less effort spent on the adjustment of controller
parameters in the experiment, the cascaded PD plus easily
guarantees the tracking error of each joint of the robot
within +8 x 107® rad which is shown in Figure 8. The reason
is summarized as follows: As demanded by the outer loop,
the inner loop is adopted to generate the desired torque for
the robot joint so that the actual velocity tracks the desired
velocity closely. The outer loop is used to determine the
velocity of the joint that minimizes position error. By com-
parison, we have tested the proposed VS control and PD
plus by trial and error in our experiment to guarantee the
tracking error of each joint of the robot within +2 x 1072
rad which is shown in Figure 5. By comparing Figures 8
and 5, we find that the cascaded PD plus dynamic feedfor-
ward compensation control more easily guarantees the
high-precision tracking performance than the proposed VS
control or the PD plus in the experiment, under the roughly
built robotic dynamics. Actually, the PD plus typically repre-
sents a class of single-loop feedback control. Furthermore,
this also implies that many SMC or other variable structure
controls based on a single-loop feedback strategy may not
more easily achieve better performance than the cascaded
PD method. Based on this, we recommend the cascaded
PID plus feedforward dynamic model for the calculation of
the desired torque in the 6-DOF serial robot rather than
the single-loop feedback strategy. The controller structure
may be more important than the adjustment of the control-
ler parameters in the robotic system.

The controller design or the choice of the controller
from different candidates for the space robot remains pru-
dent work. One purpose of the above analyses and experi-
mental results is to provide a source of prior knowledge
and practice experience for the controller design and the test
of the space robot. Furthermore, by removing gravity com-
pensation, we can design the controller of the space station
robot in the same way as the above controllers of the indus-
trial robot.

5. Conclusions

To suggest simple yet effective controllers for the large and
heavy serial multijoint space station robot, we made com-
parisons among our proposed variable structure method,
PD plus and the cascaded PD plus on the industrial robot
in this paper. First, the dynamic parameters of the robot
are identified by the least square method. Second, to guaran-
tee the stability of the system under modeling uncertainty in

International Journal of Aerospace Engineering

theory, a variable structure controller is designed based on
the Lyapunov direct method. It can be separated into two
parts: the PD plus and the sign function. Third, experiments
show that the cascaded PD plus dynamic feedforward com-
pensation control more easily guarantees the high-precision
tracking performance than the proposed variable structure
control or the PD plus, under the roughly built robotic
dynamics.
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Aiming at the problem that the vibration of space robot will reduce the dynamic accuracy of robot, a method of vibration
suppression of space robot through trajectory planning is proposed. First, the joint was simplified to a linear torsion spring,
and the flexible rod was modelled using the finite element method, resulting in a flexible motion model of the robot. Then, a
rigid-soft coupled dynamic model that combined the flexible motion model with the Lagrange method was established. Using
the dynamic model, the factors influencing the vibration behaviour of space robots were analysed. Finally, the space robot was
subjected to vibration suppression through trajectory planning. As verified by experimental analysis, different trajectories and
loads affect the excitation force and inherent characteristics of the robot. In the design process, it is necessary to consider the
relationship between the excitation force and natural frequency. The trajectory planning method has apparent effects on
vibration suppression. The vibration amplitude was significantly reduced, which can improve the positioning accuracy and

work efficiency of the robot.

1. Introduction

Space robots can be used to realise space control automation
and intelligence, which can replace or assist astronauts in
completing on-orbit assembly, on-orbit maintenance, fuel
refuelling, orbit cleaning, spacecraft inspection, and other tasks,
improve the efficiency of space exploration activities, and have
broad application prospects. Space operation tasks, represented
by on-orbit services, are becoming increasingly complex. Study-
ing the precise and dexterous control technology of space
robotic arms will be the key to human space exploration [1-5].

As an essential category of space robots, humanoid space
robotic arms are mainly used to complete complex assembly,
maintenance, and high-precision tasks. Compared with con-
ventional robotic arms, space flexible robotic arms have the fol-
lowing characteristics: (1) the space robotic arm is made of
lightweight materials, and the structure is a slender member,
which is lightweight and fast in response; (2) the space manip-
ulator develops in the direction of joint lightweight and integra-

tion, and adopts harmonic transmission, making the entire
system a complex rigid-soft coupling nonlinear system [6].
Therefore, it is challenging to model the dynamics of spatially
flexible robotic arms. Hu et al. presented an optimal configura-
tion selection method for calibration of robots which is
researched by the influencing factor separation method [7, 8].
When performing the grasping task, the space robot arm will
inevitably generate vibrations owing to its flexibility, which will
affect the accuracy of the operation. If the vibration is consider-
able, the entire system may fail. Therefore, to ensure that the
space flexible robotic arm better serve space, an analysis of
the vibration characteristics of the adjustable arm rod and the
suppression of its vibration are necessary [9, 10].

There are three main methods for suppressing the low-
frequency vibrations of flexible robots: passive control, active
control, and trajectory planning. The effect of passive manage-
ment is relatively simple; however, in practical applications, it
can only be used for single linkages and components with rel-
atively simple structures [11, 12]. The active control method
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uses a controller design to monitor vibration and suppress
vibration in real time [13]. Systematic dynamical equations
were established using the conservation of linear momentum,
conservation of angular momentum, theoretical modal
methods, and Lagrange equations. For the fast subsystem, the
speed difference feedback control and the linear secondary opti-
mal control are designed to suppress the vibration of the flexible
joint and flexible connecting rod, respectively [14]. The vibra-
tion suppression problem of flexible robots has been studied
using optimal control methods. In these methods, the robot is
suppressed by the dynamic model of the robot and state feed-
back equation [15].

The kinetic equations of the flexible robotic arm are
decoupled using the singular perturbation method. Vibration
is effectively suppressed by designing an observer to detect
the vibration status of the system in real time, quickly predict
the beat of the system, and control the robot system in real
time through a feedback control system [16]. When the Kal-
man filter was used as the state trajectory quantity, the flex
arm vibrated. A dynamic model of flexible manipulators con-
sidering hydrodynamic force was established by combining
the Lagrange equation and Morison formula [17]. An adaptive
fuzzy sliding mode control scheme to compensate for uncer-
tain factors was designed to track the joint trajectory and sup-
press vibration. The rigid-soft coupling dynamics of a space
robot system with flexible attachments were established. A
vibration suppression method for autonomously capturing a
target in the precollision stage of the base was proposed using
a model prediction algorithm [18]. The finite-element method
was used to establish a dynamic model of the system [19]. On
this basis, vibration suppression experiments of six different
cable-driven parallel robots were conducted using fuzzy PID
control and active control methods. Active control methods
place high demands on the accuracy of the dynamic models.
Compared with operational management, trajectory planning
has the advantages of low-accuracy requirements for dynamic
models and relatively simple control. The method of trajectory
planning is divided into two types: planning only at the kine-
matic level, such as planning the trajectory of the robot, taking
the integral of the square of the acceleration as the optimiza-
tion goal, reducing the impact, and reducing the vibration by
smoothing the trajectory of the robot [20].

Using a five-time polynomial and the acceleration limit of
each joint, a method of vibration suppression of a spatial flexible
robotic arm based on trajectory planning that effectively sup-
presses the vibration of the robotic arm was proposed [21].
Planning at the kinematic level poorly affects the dampening
vibrations and the other types of trajectory planning at the
kinetic level. By establishing a flexible dynamic model of the
robot, trajectory planning can be carried out based on spline
curves and polynomial curves with the excitation force as the
optimization goal; however, such a model is appropriate for sin-
gle-degree-of-freedom or planar robots [22-25]. A vision-based
noncontact vibration suppression method was proposed based
on the vibration amplitude error prediction model, and an error
estimation controller was designed so that the vibration could
be controlled in real time [26]. However, this study only focused
on vibration suppression, and the factors influencing the vibra-
tion behaviour were not revealed.
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By analysing the influence of the motion law of triangles
and trapezoids on the vibration of the system, it has been
revealed that the residual vibration of the system is sup-
pressed well when the deceleration time of the system is
equal to the first-order vibration cycle of the system [27].
Zhao [28] responded to the dynamic response of a flexible
robotic arm with a moving end effector in different motion
states and analysed the effect of actuator movement on the
robot vibration. Yu et al. [29, 30] proposed the design idea
of robot path planning and the path parameter selection
method from the perspective of the spectrum. These
approaches effectively reduce the flexible vibration of rota-
tional motion.

In this study, the factors influencing the vibration
behaviour of space robots were analysed, and the vibration
of space robots was suppressed using the analysis results.
First, the mechanical structure of the space robot was diag-
nosed, the integrated joint was assumed to be equivalent to
a linear torsion spring, the flexible connecting rod was
modelled by the finite element method, and the rigid-soft
coupling dynamic model of the robot was established by
combining the Lagrange method. The vibration model of
the robot was obtained based on the dynamic model, and
the vibration model was used to analyse the influence of
the vibration force and frequency generated by the trajec-
tory on the vibration, as well as the influence of different
trajectories and loads on the natural frequency. Finally,
vibration suppression was carried out using the trajectory
planning method.

2. Rigid-Flexible Coupling Dynamic Model of
Space Robots

2.1. Basic Composition. To improve the flexibility of the space
robot, it had seven DOFs. The main characteristics of the
robot are that it is lightweight and has a large load-weight
ratio. The robot is equipped with a flexible integrated joint
and lightweight connecting rod to satisfy the aforementioned
characteristics. Figure 1 shows the configuration of the space
robot SHIR5. The system mainly includes a mechanical sys-
tem, control system framework, and operating system. The
robot body is composed of an integrated joint, lightweight
connecting rod, control box, and an external instructor, as
shown in Figure 2.

An integrated joint is an essential part of a robot that
integrates servomotors, reducers, torque sensors, encoders,
and actuators. The composition of the integrated joints is
illustrated in Figure 3. A high-performance permanent-
magnet torque motor and harmonic reducer with a high
transmission ratio were adopted to achieve lightness and
a large load-weight ratio. A position encoder was installed
at the motor and output shaft ends to improve the posi-
tioning accuracy. A torque sensor was installed at the out-
put shaft of the joint module to realise compliant motion
control of the manipulator and safety of the human fusion
operation. Other components include brakes and drive
control boards.

Owing to the immense flexibility of the harmonic reducer
and torque sensor in the lightweight connecting rod and



International Journal of Aerospace Engineering

Ficure 1: Configuration of space robot SHIRS5.
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FiGure 2: Composition of the robot system.
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FiGure 3: Composition of the integrative joints of robot.

integrated joint, the rigidity of the robot system is poor, which
causes the robot to vibrate during operation and reduces its
dynamic accuracy and stability. Hence, it was necessary to per-
form flexible coupling dynamic modelling and dynamic char-
acteristic analysis of the robot.

2.2. Rigid-Flexible Coupling Dynamic Modelling. Figure 4(a)
shows that the connecting rod of the robot was irregular in
shape. First, the connecting rod was simplified and divided
into circular, noncircular, and thin-walled parts. The noncir-
cular thin-walled part was simplified through an elliptical sec-
tion, which was conducive to establishing the solution model.
A schematic of the thin circular and elliptical walls is shown in
Figure 4(b). The diameter of the circular section was defined as
D, and the major and minor axes of the elliptical section were
defined as D and B, respectively. The minor axis of the ellipse
was along the x-direction, and the thickness of the connecting
rod was d.

The space robot is equipped with an integrated joint
that uses a harmonic reducer and a torque sensor to
increase joint flexibility. The tilting stiffness of the joint is
significantly greater than its torsional stiffness. Therefore,
this study simplified the joint using a linear torsional
spring, as shown in Figure 5. 0 is the rotation angle of
the motor rotor obtained after conversion of the reduction
ratio of the harmonic reducer. The motor rotor rotates the
flexible rod using a harmonic reducer and torque sensor. k
represents the stiffness of the joint and & represents the
elastic deformation of the joint.

An overall simplified model that considers the flexibil-
ity of the connecting rod and joint was obtained using
the above simplification of the connecting rod and joint,
and the robot was assembled. As shown in Figure 6, the
connecting rod was simplified into two elements: a circular
section and an elliptical section. The serial number of ele-
ment j on connecting rod L, was denoted by ij, and the
length and mass per unit length of the element were
denoted by [; and m;;, respectively. The mass of joint J;

and the torsional stiffness were denoted by m, and k;
respectively. Connecting rods L, and joint J, had little
effect on the system. To simplify the model, L,, J,, and P
were considered equivalent to a rigid connecting rod, a
concentrated mass, and the load, respectively.

A spatial beam element was used to model the flexible
link of the robot. The transverse bending deformation of
the link was expressed by the cubic Hermite function. The
axial tensile deformation and bending deformation around
the axis were expressed by a linear function. The deforma-

tion displacement and deformation angle of the element
were denoted as u and v, where u=[u,,u,
v,]", respectively. The flexible joint was simplified as

u)" and v=

[V, Vys
a linear spring, and the flexible motion relationship of the
robot was obtained.

A right-handed coordinate system was established for
the robot. The base frame of the robot was O — x,y,z,, and
the local frame O — x;y,z; was fixed to the flexible link. The
z-axis of the local frame always coincided with the axis of

the iy, link, as shown in Figure 7. 6 is the angle of the joint



(a) Three-dimensional model and simplified model of the connecting rod
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FIGURE 4: Simplified model of the connecting rod.
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FiGUre 6: Simplified model of the joints.
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FiGure 7: Flexible motion relationship of robot.

and 9§ is the flexible deformation of the joint. In a locally
coordinated system, two units exist on the iy, link. In this
study, the deflection and angle of unit deformation were rep-
resented by u;(z,t) and v;(z, t), respectively, where i(i=1
,2, -+, 6) is the number of links, and j(j = 1, 2) is the number
of units, z is a point on the link unit.

It is assumed that ;" is the position of a point on the i,
link. When a point is located in the first unit of link, that is,
V= [y (1, 1), u(2,1),and z + 1, (3, 1)] (D).
When point is located in the second unit of link (j =2), r,’
=[uy(1,1),u,(2,1),and [, + z+u,(3,1)] (1). Thus, r,’
can be described as

when j=1, r

where [; is the length of the first unit, i=1,2,--+,6, and j
=1,2.

The transformation matrix of the flexible link can be
obtained by multiplying the transformation matrix of the
former link by that of the former joint. It is assumed that
Ty =£,(0), Ty, =£,(8), and T3 =f;(u,v) are the transfor-
mation matrices of the joint revolution, flexible deformation
of the joint, and the link, respectively.

When i is odd,

cos;, -—sin0; 00
sin@;  cos 0, 0 0

oo 0 1 0l
0 0 0o 1 2)
1 =5, 0 0
S 1 0 0
Ti2_
0 0 0
0 0 0 1
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FiGURE 8: Excitation forces when task was completed in 5s and 2.
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The position of any point on link i with respect to the
base frame can be expressed as

!
ri=Ty3 % Ty x Ty sTig s Ty % Ty * 1y (4)

The velocity at any point on link can be obtained by cal-
culating the derivative of r; with respect to time. Then, the
equations of the rigid-flexible coupled dynamics of the robot
can be constructed based on the Lagrange formulation. In
this study, the effects of the elastic deformation ¢ on the
mass, damping, stiffness, and gravity matrices were ignored
to simplify the dynamic model of the robot. Moreover, the
H matrix was omitted because the centripetal and Coriolis
forces have little influence on the dynamics. Thus, the
dynamics of the robot can be expressed as

Mg (9) Mﬂrp(e) 9 C@G(e) C@(p(e) 0
+
MBT(P(Q) M(p(p(e) (P CG‘P<6> CG”‘P(e) ¢
0 0 0

+ +

"L

where M, C, K, and G are the mass matrix, centripetal force,
Coriolis force, stiffness matrix, and gravity of the system,
respectively, and ¢ =[5, u,v|, T is the torque required for
the joint.

There are many ways to express the dynamic character-
istics of robots. Natural frequency, as an essential indicator,
can reflect the dynamic characteristics of a robot and its
overall flexibility. The joint stiffness of the robot, structural
parameters of the connecting rod, and load significantly
influence the natural frequency of the robot, thereby affect-
ing its dynamic characteristics. The natural frequency equa-
tion of the robot can be obtained using its dynamic model.

0 K@)lle

det (w[I] - M'K) =0. (6)

3. Vibration Characteristics Analysis

Equation (5) can be rewritten as

M, (6)§ + C,, (0)¢ + K (0)p = —ng,(e)é - cgw(e)é.
(7)

Equation (6) can be regarded as the vibration equation for
the flexible deformation of a robot. The right side of the equa-
tion represents the excitation force. Thus, the equation of
motion is obtained as follows:
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FIGURE 9: Frequency analysis of the excitation forces for tasks with different durations.

M(P(P (Q)QD + C(P(p(e)q) + K(p(p(P = F(e) 9, 6) > (8)

where M o9 CW, K e 0, ¢, and F are the mass matrix, damp-
ing matrix, stiffness matrix, desired trajectory of the joint, flex-
ible deformation of the link and joint, and excitation force,
respectively, which are determined by the robot’s desired
motion.

The vibration response of a system can be classified as a
transient or steady-state response. An effective method for
suppressing the vibration of the robot is reducing the excita-
tion force, because the steady response depends on the exci-
tation force, which suppresses the vibration of the robot.

There are two types of vibrations in a robot: vibration
during movement and residual vibration after movement.
The steady-state response is the vibration generated by an
external excitation force in the robot. The amplitude of the
vibration was related to the magnitude and frequency of
the excitation force. Resonance occurs when the frequency
of the excitation force approaches the natural frequency.

Using a Fourier transform, the excitation force was
decomposed into a series of simple harmonic excitation forces

of different frequencies, and then a response superposition
was performed. The steady-state response can be expressed
as follows:

x(t) = B sin (wt — @),

5 F, _ Ey/k
\/(k - mw?)? + w? \/(1 —-v2) + (2Ev)? ) (9)
cw o 28y

:t71 = S
$=19 k — mw? tg 1-—v2

where v = w/w,, is the frequency ratio and & = ¢/2w,m is the
damping ratio.

Therefore, when analysing the motion characteristics of
a robot, the magnitude of the excitation force cannot be ana-
lysed, and the frequency must be analysed. The vibration
equation of the robot shows that its elastic deformation var-
ies with the rigid joint motion 6. This section discusses the
dynamic characteristics of robots covering the same trajecto-
ries with durations of 2 and 5s.
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FiGure 11: Effect of a load on the first-order natural frequency of the robot.

3.1. Influence of the Excitation Force on the Dynamic
Characteristics of the Robot. When tasks with the same tra-
jectory and different durations were completed, the excita-
tion force F, which causes robot vibration, was found to
differ with the duration of the trajectory. As shown in
Figure 8, the excitation force F for the task completed in
5s was smaller than that for the task completed in 2's. There-
fore, at the start and stop stages, the vibration of the robot
when the task was completed in 2s was more evident
because of the larger excitation force F.

3.2. Influence of the Frequency on the Dynamic Characteristics
of the Robot. The vibration amplitude of the robot is related to
the magnitude of the excitation force, F, and its frequency.
When the frequency of the excitation force was closer to the
natural frequency of the system, the vibration became more
intense. Therefore, it was necessary to analyse the frequencies
of the excitation forces F5 and F, for tasks having durations of
5and 2 s. The results of the analysis are shown in Figure 9. The
excitation frequency generated by the excitation force Fs in
the 5s process is mainly distributed in the range of 0-10Hz,
and the excitation frequency generated by the excitation force
F, in the 2 s process is primarily distributed in the range of 0-
6Hz. The excitation frequency generated by the excitation

force F, in the process of 2 s is relatively concentrated. There-
fore, the frequency of excitation force generated by different
trajectories is different, thus affecting the excitation effect of
the system.

As shown in Figure 10, the first-order natural frequency
was between 5.7 and 6.4 Hz. Spectrum analysis of the excitation
force (Figure 9) revealed that the amplitude of the frequency
components in F. was higher than that in F,. Therefore, dur-
ing the subsequent relatively stable motion, the vibration gen-
erated when the task was completed in 5s was more evident
than that generated by the task with a 2s duration when the
excitation force was not significantly different.

3.3. Effect of a Load on the Dynamic Characteristics of the
Robot. Figure 11 shows the change in the first-order natural
frequency when the robot moved with and without a load. It
can be observed that a load has a significant influence on the
natural frequency. After adding the load, the natural fre-
quency of the robot reduced, and the amplitude of the fre-
quency components with similar excitation and natural
frequencies increased; hence, the vibration intensified signif-
icantly. Therefore, the load cannot exceed a specific value to
ensure dynamic accuracy and prevent severe vibration.
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TaBLE 1: Initial value of arm angle corresponding to the angle of each joint.
o 0° 45° 90’
Joint [-0.1484, 0.2176, 0, 1.7526, -0.3814, [-1.1881, 0.6817, 1.4924, 1.7526, 0.3604,  [-1.0822, 1.2726, 1.9487, 1.7526, 0.6073,
angles -0.4852, -0.1630] -0.4772, -1.5397] -0.7833, -2.4546]

3.4. Influence of the Initial Pose on Vibration. During the opti-
mization process, the initial value of the arm angle « had a sig-
nificant influence on the optimization results. For the same
end position, different « values led to different initial joint
angles and vibration effects. In this section, the effect of the
initial arm angles on the end vibrations under the same trajec-
tory is reported. The considered arm angles were 0°, 45°, and
90°. As shown in Figure 12, when the initial arm angle o was
0°, the torque of the joint was the largest, whereas the corre-
sponding vibration was the smallest. When « = 45°, the initial
torque of the joint was the smallest; however, the correspond-
ing vibration was significant. The angles of each joint of the
robot corresponding to the initial arm angle « are listed in
Table 1. In this study, when the initial conditions were rela-
tively poor (ie., a=45), the initial vibration of the joint
was significant.

4. Vibration Suppression

To ensure end accuracy, the arm angle of the robot was opti-
mised in zero space using the analytical solution method,
and a trajectory with a vibration suppression effect was
obtained under the premise of satisfactory joint angle, angu-
lar velocity, and angular acceleration of the robot. The ana-
Iytical solution method for the inverse solution of 7-DOF
redundant robots is based on the method introduced [31],
and its principle is illustrated in Figure 13. The shoulder

Reference

Current plane

plane

Shoulder
joint

—

Wirist
joint

FIGURE 13: Principle diagram of the inverse kinematics solution for
7-DOF redundant robot.

and wrist joints are equivalent joints, and « is the arm angle,
i.e, the angle between the current plane formed by the
manipulator and the specified reference plane. Each joint
angle value as a function of pose x and arm angle « is
expressed as follows:

0=f"(x"q), (10)

where f denotes the kinematic function of the robot.
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(a) Position and posture of P,

FIGURE 14: Initial posture and end posture of the robot.

The inverse kinematics solution method revealed that
the robot’s inverse kinematics were greatly affected by the
angle o, which needs to be optimised in the solution process.
The angular velocity of the joint and the angular velocity of
the robot can be obtained by differentiating the joint angle of
the robot as follows:

0111 = (01 = 0,)/At, (1)
. . . 11
6t+1 = (6t+1 - Gt) /At,

where At is one control cycle of the robot.

Using the above equations, the planning problem of the
positioning layer was transformed into a problem of opti-
mising the arm angle « for the minimum excitation force
under the premise of a satisfactory joint angle, angular veloc-
ity, and angular acceleration.

min ¢ = (M},6+CL,6) ! (M3,0+CL,0),
st. 0

V. <0<V

min =

<0<0 (12)

min = Y = Ymax>’

max’

A, <0<A

- max*

5. Experimental Study

An experimental study was conducted to validate the pro-
posed vibration suppression method based on trajectory gen-
eration. Figure 14 shows a self-developed collaborative robot
with seven DOFs and anthropomorphic configuration. The
trajectory of the robot end was generated to study the impact
of joint angle 0 on the vibration of the robot. The robot end
moved in a straight line from point P, to point P, and its atti-
tude remained unchanged. The trajectory generation method
is based on S-curve. The results for position, speed, maxi-
mum acceleration, and acceleration are shown in Figure 15.
The details of the model parameters are listed in Table 2.
The initial and target attitudes of the robot are shown in

9
(b) Position and posture of P,
e Y
L
. L twﬂ
. S
Y /r/ Viax \
Vs \—WVe t
“ A
g
J4 Ji ||
.
PR = Sl Ta o o T
—p > T; L» > Ts »lp
3 T T3 T4 s Te T7

FIGURE 15: S-curve planning.

Figure 14. Planning parameters of the robot end are listed
in Table 3.

A torque sensor was mounted on the joint to measure
the vibration of the robot. A low-pass filter was used to
remove unwanted noise from the output of the torque sen-
sor, and the amplitude of the signal was regarded as the
amplitude of the vibration. The torque at the joint was calcu-
lated by substituting the actual angular velocity of the joint
into the theoretical model.

Vmax 18 the maximum speed of the robot end, T is the
running time for each stage where k=1,2, ---, 7, L is the dis-
placement of the robot throughout the operation, A, is the
maximum acceleration in the acceleration stage, and J is the
acceleration of each stage.

5.1. Effects of Different Trajectories and Loads on Vibration.
Torque sensors were used on the joints to observe the vibra-
tions of the robot. Figure 16 shows the vibration behaviour
of the robot that covers the same trajectory in 2 and 5s. Ini-
tially, the vibration corresponding to the 2 s motion was sig-
nificantly more intense than that corresponding to the 5s
motion. For subsequent motions, the vibration for the 5s
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TaBLE 2: Initial posture and joint angle of the robot.

Points

Py

P,

Position/mm (x, y, z)
Attitude/”

Joint angle/rad

[506.102, -75.6716, 264.402]
[1.5096, 86.8577, -29.4258]
[-0.1484, 0.2176, 0, 1.7526, -0.3814, -0.4852, -0.1630]

[661.72, 370.513, 138.943]
[1.5096, 86.8577, -29.4258]
[0.5087, 0.8476, 0.0033, 1.0840, 0.8939, -0.6359, -1.3373]

TaBLE 3: Planning parameters of the robot end.

Parameters 2s 5s
T/s [0.08, 0, 0.08, 1.84, 0.08, 0, 0.08] [0.18, 0, 0.18, 4.84, 0.18, 0, 0.18]
J/(mm/s>) [12260, 80460, -9930] [1000, 2870, -920]
A/(mm/s?) [980, 6440, -800] [180, 1150, -324]
v/(mm/s) [78.5, 225.5, -64] [31.5, 90.5, -25.5]
L/mm [158, 454, -128] [158, 454, -128]
110 110
100 - 100 4
90 4 90 4
\ZE/ 80 - iZE/ 80
S S
70 4 70
60 - 60
50 T T T T T 50 T T T T
0 1 2 3 4 5 6 0 0.1 1 1.5 2 2.5

— 5s

(a) Joint torque for the 5s motion

t(s)
— 25

(b) Joint torque for the 2 s motion

FiGurek 16: Influence of different trajectories on robot vibration.

motion was more intense than that for the 2s motion. The
excitation force F, was larger than F;, indicating that the
size of the excitation force alone did not determine the vibra-
tion of the robot.

It can be observed from the analysis results in Figure 17
that the load has a significant influence on the vibration of
the robot. Its influence on the 2s motion was smaller than
that on the 5s motion. With a load, the vibration for the
5s motion was more pronounced; however, without a load,
the vibration for the 5s motion was significantly reduced.
This reduction was more evident than that for the 2s
motion.

It can be observed from the vibration equation and
vibration phenomenon of the robot that the trajectory of
the robot joint has a significant influence on the excitation
force. Therefore, the excitation force can be optimised by
optimising the robot joint trajectory. The smaller the excita-
tion force, the better the vibration reduction of the robot.
For a task with a required end trajectory, the trajectory of

the joint cannot be represented by the existing trajectory
equation. Under the premise of a limited end trajectory,
the redundant characteristics of the robot were used to opti-
mise the joint trajectory through self-motion. Finally, vibra-
tion suppression of the robot was realised.

5.2. Verification of the Vibration Suppression Algorithm. For
the results presented in this section, the initial arm angle a of
the robot was set to 457, the planning period of the robot was
0.01s, and the robot load was 5kg. The trajectory of the
robot was optimised by the method described in this article.
Then, the optimised robot joint trajectory was substituted
into the dynamic model of the robot, and the torque of the
second joint of the robot was obtained using the Newmark
method.

Figure 18 shows the joint torque obtained by the position
layer trajectory planning compared with that obtained
before planning. Before vibration suppression, the robot
experiences a slight vibration owing to the influence of
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FiGure 18: Comparison of joint torques before and after
optimization.

acceleration during the initial movement, and the joint tor-
que vibration amplitude is approximately 5Nm. Subse-
quently, the vibration gradually becomes intense during

smooth operation (0.5s-1.5s). The initial motion generates
a shock force through the optimised trajectory owing to
acceleration, resulting in a slight vibration, which is signifi-
cantly weakened during smooth operation. Through com-
parison, the vibration of the joint torque after planning
was considerably lower than that before planning, which
illustrates the effectiveness of the trajectory planning method
for vibration suppression of the robot.

Figure 19 compares the joint angles before and after the
optimization of robot trajectory planning. It can be seen
from the figure that the trajectory of optimised anterior
and posterior joints 4 does not change. The trajectory of
the other joints changes owing to the self-motion character-
istics of the redundant robot.

Figure 20 shows the x-direction trajectory of the opti-
mised front and rear ends. It can be seen from the figure that
the trajectories of the front and back ends of the optimiza-
tion are the same, indicating that the position layer trajec-
tory planning can effectively suppress vibrations to ensure
the end trajectory.
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6. Conclusions

In this study, the factors influencing the vibration behaviour
of a robot were analysed by establishing a rigid-flexible cou-
pling dynamic model of a flexible space robot. The following
conclusions can be drawn: (1) the same path and different
motion times lead to different vibration behaviours of the
robot. In the trajectory planning process, the size and fre-
quency of the excitation force should be considered compre-
hensively. The excitation force must be reduced and
monitored to avoid the natural frequency of the system.
(2) The loads affected the dynamic parameters of the robot
and changed its natural frequency. Thus, the load capacity

International Journal of Aerospace Engineering

should be effectively limited during robot design. The above
conclusions reveal the factors influencing robot vibration
behaviour and provide support for the design and develop-
ment of robots.

Subsequently, through the above analysis, the trajectory
planning method was used to suppress the vibration of the
robot, and the joint torque before and after the vibration
suppression was compared experimentally. The vibration
of the joint torque after planning was significantly lower
than that before planning. The vibration amplitude reduced
by 80%, which can improve the positioning accuracy and
work efficiency of the robot, and illustrates the effectiveness
of the trajectory planning method for the vibration suppres-
sion of a robot.
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Facial expression recognition based on residual networks is important for technologies related to space human-robot interaction
and collaboration but suffers from low accuracy and slow computation in complex network structures. To solve these problems,
this paper proposes a multiscale feature fusion attention lightweight wide residual network. The network first uses an improved
random erasing method to preprocess facial expression images, which improves the generalizability of the model. The use of a
modified depthwise separable convolution in the feature extraction network reduces the computational effort associated with
the network parameters and enhances the characterization of the extracted features through a channel shuffle operation. Then,
an improved bottleneck block is used to reduce the dimensionality of the upper layer network feature map to further reduce
the number of network parameters while enhancing the network feature extraction capability. Finally, an optimized multiscale
feature lightweight attention mechanism module is embedded to further improve the feature extractability of the network for
human facial expressions. The experimental results show that the accuracy of the model is 73.21%, 98.72%, and 95.21% on
FER2013, CK+ and JAFFE, respectively, with a covariance of 10.14 M. Compared with other networks, the model proposed in

this paper has faster computing speed and better accuracy at the same time.

1. Introduction

In recent years, with the rapid development of space tech-
nology, human-robot interaction in on-orbit service (OOS)
space robots has become an important research area in space
technology [1-3]. Although the intelligence of space robots
is limited, space human-computer interaction plays an
important role in space mission applications. Space robots
can replace or assist astronauts in various on-board/off-
board activities, and it is particularly important for space
robots to recognise astronaut commands [4]. Facial expres-
sion recognition by astronauts is a widely used method of
human-robot interaction in space that does not rely on the
highly intelligent capabilities of space robots, and it can
effectively combine the decision-making capabilities of
humans with the precise operational capabilities of space
robots to improve their operational capabilities [5-7].
The accuracy of the astronaut’s facial expression recogni-
tion and the size of the expression recognition model are

important indications of the increased efficiency of space
robots.

Early on in the research process, the features of facial
expressions were basically extracted manually, but the recog-
nition accuracy was not high because the facial expressions
in the natural environment were easily affected by many fac-
tors, such as occlusion, background, and pose [8]. In recent
years, deep learning has achieved major breakthrough
results in image recognition. Sun et al. [9] designed a facial
expression recognition system combining shallow and deep
features with an attention mechanism and proposed an
attention mechanism model based on the relative positions
of facial feature points and textural features of local regions
of faces for better extraction of shallow features. Wenmeng
and Hua [10] proposed a new end-to-end coattentive
multitasking convolutional neural network that consists
of a channel coattentive module and a spatial coattentive
module. Their approach demonstrates better performance
relative to single tasking and multitasking. Shi et al. [11]
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proposed a facial expression recognition method based on a
multibranch cross-connected convolutional neural network,
which was built based on residual connections, network-in-
network, and tree structure combined; it also added fast
cross-connections for the summation of the convolutional
output layer, which makes the data flow between networks
smoother and improves the feature extractability of each
sensory domain. Kong et al. [12] proposed a lightweight
facial expression recognition method based on an attention
mechanism and key region fusion, and to reduce the compu-
tational complexity, a lightweight convolutional neural
network was used as the basic recognition model for expres-
sion classification, which reduces the computational effort of
the network to some extent. Zhou et al. [13] designed a light-
weight convolutional neural network that uses a multitask
cascaded convolutional network to accomplish face detection
and combines a residual module and a depthwise separable
convolutional module to reduce a large number of parame-
ters of the network and make the model more portable.

Although most of the above studies were able to extract
features and lighten the model to some extent, there are still
shortcomings. For example, the face acquisition process is
susceptible to factors, such as lighting, background, and
pose, resulting in a reduced learning ability of the model
when training the face sample set and insufficient feature
extractability. The number of network layers of the deep
learning model also affects the accuracy of classification rec-
ognition to a certain extent, i.e., as the number of network
layers increases, the phenomenon of gradient disappearance
occurs, causing a decrease in recognition accuracy. To solve
the above problems, this paper proposes a multiscale feature
fusion attention lightweight network, making the following
main contributions.

First, during the image preprocessing stage, a random
erasing method based on data labels is used to mask the
facial expression images to expand the training set samples
and improve the robustness of the model.

Second, to further extract the deep features of facial
expressions, an improved convolutional block attention
module (CBAM) is embedded in the model, which rerepre-
sents the features of facial expressions in both channel and
spatial dimensions.

Third, to solve the problem of model redundancy caused
by too many convolutional layers, the improved bottleneck
layer is used to reduce the dimensionality of the network,
which saves the computation of the network and increases
the nonlinear expression capability of the model.

Fourth, to lighten the model, an improved depthwise
separable convolution module is added to reduce the num-
ber of parameters computed by the network while speeding
up the network operations.

Finally, through comparison with different network
models, it can be verified that the model proposed in this
paper has higher accuracy and lightness.

2. Related Work

2.1. Spatial/ Channel Attention Mechanism [14, 15]. CBAM is
a lightweight module that combines channel attention and
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FiGure 1: Structure of the bottleneck.

spatial attention to dramatically improve model perfor-
mance while requiring a small amount of computation and
a small number of parameters. The channel attention mech-
anism [16-18] focuses on which channel features are mean-
ingful using global average pooling and global maximum
pooling to obtain two feature maps and then feeds them
sequentially into a weight-sharing multilayer perceptron
with a 1 x 1 convolution to better fuse channel information.
The spatial attention mechanism [19, 20] focuses on spatial
features, mainly on the part of the input image that is richer
in effective information. One of the pooling operations is
performed along the channel axis, i.e., each pooling com-
pares values between different channels rather than values
in different regions of the same channel.

2.2. BottleNeck Layer. The bottleneck layer [21] is the core
structure of the residual network [22], which mainly con-
tains three convolutional layers, as shown in Figure 1. The
size of the convolution kernel in the first layer is 1 x 1, which
is mainly aimed at reducing the dimensionality of the feature
map and thus the number of network parameters. The size
of the convolution kernel in the second layer is 3 x 3, and
the main purpose is to extract deeper semantic information
without enhancing the number of network parameters. The
convolutional kernel size of the third layer is 1 x 1, and the
main purpose is to updimension the feature map to obtain
the desired dimension size.

The formula for calculating the number of parameters
during the conventional convolution operation is shown in

Params = C,, X k x kX C_, (1)

where Params represents the number of parameters in the
convolution process, C,, and C_, represent the number of
channels of the input and the output feature map, respec-
tively, and k represents the size of the convolutional kernel.

Assuming that the size of the intermediate feature map
channels is C, 4, the number of parameters during the
bottleneck operation is shown in

PBottleNeck = Cin X1x1x Cmid + Cmid X3 x3x Cmid +C

mid

X 1IX1XCyy-

(2)

From the calculation of the input and the output fea-
ture map sizes in Figure 1, the number of parameters
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generated by the regular convolution operation process
can be obtained:

Py = 96 X 3 % 3 % 96. (3)

The number of parameters generated by the bottleneck
layer is:

PooiieNeck = 96 X 48 + 48 x 9 x 48 + 48 x 96. (4)

By comparing the two, the number of parameters gen-
erated during the bottleneck operation is greatly reduced.

2.3. Depthwise Separable Convolution. Depthwise separable
convolution [23] is the core structure of the lightweight net-
work MobileNet [24, 25], which is a combination of two
parts: depthwise convolution and pointwise convolution.
The specific structure is shown in Figure 2. Depthwise sepa-
rable convolution contains a lower number of parameters
and lower computational cost than the conventional convo-
lution operation process. The number of convolution kernels
in depthwise convolution is the same as the number of
channels in the previous layer, and one convolution kernel
is responsible for one channel. The number of channels in
the feature map generated by this process is the same as
the number of input channels, which cannot extend the
dimensionality of the feature map, and the convolution
operation for each channel independently cannot effectively
use the feature information of different channels at the same
spatial location. Pointwise convolution [26] mainly uses a
1 x 1 convolution to combine the feature maps obtained
in the previous step in a weighted manner in the depth
direction.

We assume that the input feature map size is W; x H; x
C; W,, H;, and C represent the width, height, and the num-

ber of channels of the input feature map, respectively. The
standard convolution size is W_xH, x CxH, which
denotes the width, height, the number of channels, and the
number of convolution kernels of the conventional convolu-
tion, respectively, and the size of the output feature map
after the conventional convolution operation is W, x H, x
N. Then, the computation of the regular convolution is:

Feonw =W, xH, x Nx W_xH, xC. (5)

The depthwise separable convolution first uses a convo-
lution size of W_x H,xCx 1 convolution for depthwise
convolution and then uses 1 x 1 x Cx N of the convolution
for pointwise convolution. The depthwise separable convo-
lution is computed as:

Fpsc=W,xH, x1xW . xH.xC+ W, xH,xN (6)
x1x1xC.

The ratio of the two is:

FDSC = i + #
FConv N WCXHC

(7)

If the size of the input feature map is 48 x 48 x 96 and
the size of the convolution kernel is 3 x 3 x 96, then the ratio
of the parameter computation is (1/96) + (1/9). Therefore, if
the depthwise separable convolution is used instead of the
regular convolution, the computation is reduced by a factor
of nearly 9.

2.4. Wide Residual Neural Network Model. To resolve the
problem of gradient disappearance caused by increasing
depth in deep neural networks, a residual learning unit is



introduced to more easily optimize deep networks by adjust-
ing the relationship between the input and output through
constant mapping. In the ResNet residual learning unit, the
neural network input is x, while the best mapping is H(x),
F(x) denotes ResNet Function, after the nonlinear convolu-
tion layer to achieve F(x) = H(x) — x, the constant mapping
of itself is expressed as H(x) = F(x) + x. This constant map-
ping can then reduce the complexity and the computation of
the model and, to a certain extent, mitigate problems such as
gradient disappearance caused by stacking with the number
of layers. However, the deep residual network pursues net-
work depth too much, and the performance of the model
does not improve considerably as the number of modules
increases. The Wide ResNet residual learning module [27]
adds a factor k to the original residual module to widen
the number of convolution kernels [28], which reduces the
number of layers, where k denotes the number of multiples
of filters in the convolution layer. However, it does not
reduce the model parameters, and it speeds up the computa-
tion, making it easier for the stacking layer to learn new fea-
tures from the input image features.

The residual learning unit is shown in Figure 3, where
dropout regularization prevents overfitting of the model
and ReLU denotes the activation function; a is the ResNet
residual learning module, and b is the Wide ResNet residual
learning module.

3. Methods

3.1. Overall Architecture. Since too few layers of a fully con-
nected neural network will lead to insufficient feature repre-
sentation of facial expressions in the model, too many layers
will increase the computation of the network and cause the
problem of network redundancy. This paper combines the
above problems and designs a multiscale feature fusion
attention lightweight facial expression recognition network.
In the image preprocessing stage, noise is added to the train-
ing set by an improved random erasing method, which
enhances the robustness of the model while enriching the
entire dataset.

Then, the preprocessed facial expression images are
passed into the network. First, the number of parameters
of the model is reduced by the depthwise separable shuffle
module to speed up the computing speed of the network.
The SCAM is embedded in the middle, and then, the net-
work is characterized by the grouping bottleneck module
to reduce the dimensionality of the network, which saves
the computation of the network and increases the nonlinear
expression capability of the model. Then, it passes through
the depthwise separable shuffle module and finally enters
the Softmax layer to classify the output results. The overall
architecture of the model is shown in Figure 4.

The input object image size of this network is 48 x 48,
and the number of channels is 3. Each convolutional layer
is followed by a BN layer and a ReLU activation function
layer. The BN layer accelerates the training and convergence
of the network and prevents the gradient from disappearing
to a certain extent. To improve the feature representability of
the network, a SCAM is provided behind each packet bottle-
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FIGURE 3: Learning module.

neck module and depthwise separable shuftle module. After
entering the grouping bottleneck module, the dimensionality
of the output is halved, the number of channels is doubled,
the risk of overfitting is reduced, and the parameters of the
computation are reduced by the Global-Ave-Pooling layer.
Finally, the pictures are classified by the Softmax layer, and
the categories contain a total of 7 categories: angry, dis-
gusted, scared, happy, sad, surprised, and neutral. The model
parameters are shown in Table 1.

3.2. Image Preprocessing. Data enhancement is a common
method in the image preprocessing stage, which mitigates
the overfitting of the model and improves its generalizability
to a certain extent. This paper expands the training set sam-
ples and enhances the robustness of the model by adding a
small amount of noise to the images through an improved
random erasing method [29].

First, in the preprocessing stage, the probability of ran-
dom erasing of the object image is set as p, the area of the
original image is set as S, the minimum and the maximum
thresholds of the random erasing image are set as S; and
Sj» respectively, the aspect ratio of the occlusion matrix
is set as r,, the area of random erasing is set as S,, the
height of the area of the random erasing matrix is set as
H,, and the width of the area of the random erasing
matrix is set as W,. An example of the random erasing
formula is as follows:

S, =S x Random(S}, ), (8)
H,=./S,xr, (9)
W, = [, (10)

r

e

Among them, the specific parameters of random erasing
are set, as shown in Table 2.

A randomly selected point P, = (x,, y,) on the image, x,
and y,, is bounded by the following example, where W
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indicates the width of the image and H indicates the height
of the image.

(11)

x.=random(0,W)
y.=random(0,H) [ *

Since the background noise of the facial expression pic-
tures affects the accuracy of recognition and the random
erasing processing does not necessarily cover the facial
expression region, causing redundancy in the original data-
set, the random erasing method is improved to ensure that
the random erasing region must be at the face location,

and the coordinate values of x, and y, are requalified, for
example, as follows:

x.=random(R,R,;)
y,=random (R},,Ryl) ’

where R, R, Ry, and R, denote the true coordinate values
of the upper left vertex and the upper right vertex of the face
image range, respectively. By limiting the selection range of
the random point P, points so that each random erasing
can cover the facial expression range, the random erasing

(12)
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TaBLE 1: Model parameters.
Light-NTWRN

Type Filters ~ Size Output Repetition
Input — — 48 x48x 3 —
Conv 3x3 16 48x48x16 —
BN+ReLU — —  48x48x16 —
DS-1 3x3 96  48x48x96
BN+ReLU 48 x 48 X 96
DS-2 3x3 96 48 x 48 x 96
BN-+ReLU+dropout 48 x 48 x 96 >
DS-3 3x3 96 48 x 48 X 96
BN+ReLU+SCAM 48 x 48 x 96
Conv-1 1x1 192 24x24x192
BN+ReLU 24x24%x192
GConv-1 3x3 192 24x24x192
BN+ReLU+dropout 24 x24x192 8
Conv-2 Ix1 192 24x24x192
BN+ReLU+SCAM 24 x24x192
DS-4 3x3 384 12x12x384
BN+ReLU 12x12x 384
DS-5 3x3 384 12x12x384
BN+ReLU+dropout 12 x 12 x 384 >
DS-6 3x3 384 12x12x384
BN+ReLU+SCAM 12x 12 x 384
GlobalAvg pooling — — 1x1x384 —
Softmax — — Ix1x7 —

TaBLE 2: Random erasing parameters.
Parameter Value
p 0.5
S 0.05
S, 03
Te 0.3

method and the improved method are compared, as shown
in Figure 5.

As seen from Figure 5, the improved method can ensure
that each random erasing is within the range of facial expres-
sions, artificially extends the dataset of training samples,
improves the robustness of the model, and effectively
reduces the risk of model overfitting.

3.3. Spatial Channel Attention Module (SCAM). To further
extract the deep features of different facial expressions and
improve the accuracy of facial expression recognition, this
paper improves the lightweight attention module (convolu-
tional block attention module) proposed by Woo et al.
[30]. This is a simple and effective attention module for con-
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volutional neural networks. Given an intermediate feature
map, our module sequentially generates attention maps
along two separate dimensions, channel and space, and then
multiplies the attention map into the input feature map for
adaptive feature refinement. Because SCAM is a lightweight,
general-purpose module, it can be seamlessly integrated into
any CNN architecture with negligible computational cost.
Since convolutional operations extract information features
by mixing cross-channel and spatial information, we use
our modules to emphasise features that are meaningful in
these two main dimensions: the channel and the spatial axis.
To achieve this, we apply the channel and spatial attention
modules in turn, so that each branch can learn what and
where to pay attention to on the channel and spatial axes,
respectively. Our modules thus effectively aid the flow of
information in the network by learning which information
needs to be emphasised or suppressed. The features of the
object image are represented in two dimensions, spatial
and channel, first by the spatial attention module and then
by the channel attention module, and finally, the generated
features are obtained. The structure of the SCAM proposed
in this paper is shown in Figure 6.

The proposed SCAM contains two independent submo-
dules, the spatial attention module and the channel attention
module, which perform feature extraction on space and
channels. The input feature map F is passed through the
two attention modules first, and then, the final features are
output F'', M (F) indicates that the feature map F has
passed the spatial attention mechanism, ® is multiplied by
the corresponding element, and F' indicates the output
feature map after passing the spatial attention mechanism;
M_(F") indicates that the feature map F has passed the
channel attention mechanism, and F'’ indicates the output
feature map after passing the SCAM attention mechanism,
as shown in the following example:

F'=M/(F)®F, (13)

F":MC<F') ®F'. (14)

(1) Spatial attention module

In the process of facial expression recognition, different
expressions are associated with specific regions. Moreover,
an overall facial expression consists of several regions, and
more attention needs to be paid to the local features with
the highest expression relevance. The SCAM is shown in
Figure 7.

First, the input feature map will perform global max
pooling and global average pooling, followed by a CONCAT
operation based on the channel and a 7 x 7 convolutional
dimensionality reduction, and finally, it will generate the
spatial attention feature by sigmoid normalization, where
MaxPool(F) denotes the global max pooling, AvgPool(F)
denotes the global average pooling, f”*” denotes the convo-
lution kernel for 7 x 7 size, o is the sigmoid function, and
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M,(F) is the output feature map after passing the spatial
attention mechanism. The example is as follows:

M,(F) =o(f”([AvgPool(F); MaxPool(F)])).  (15)

(2) Channel attention module

To represent the feature information of facial expres-
sions in multiple dimensions, the feature maps output by
the spatial attention module are used as the input of this
module, based on global max pooling and global average
pooling of width and height, respectively, and the two
obtained features are fed into a neural network composed
of hidden layers and a multilayer perceptron (MLP). Then,
the final features are merged and output using element-by-
element summation, as follows:

M (F)=o(MLP(AvgPool(F)) + MLP(MaxPool(F))).
(16)

3.4. Grouping Bottleneck Method. In this paper, the grouping
bottleneck is improved based on the group convolution
method, and its specific structure is shown in Figure 8,
which consists of 1 x 1 and 3 x 3 convolutions, where the
number of convolution kernels in the first layer of 1x 1 is
half of the number of input feature map channels, and the

reduction in the number of convolution kernels can reduce
the number of network parameters. The size of the input
feature map of the bottleneck block is 48 x 48 x 96, and the
size of the feature map is 24 x 24 x 192 after the 1x 1 x
192 convolution. A 1x 1 convolution reduces the number
of parameters of the network by half while deepening the
network to extract deep semantic information, which sub-
stantially reduces the subsequent convolution computation.
The second layer of the bottleneck block is a 3 x 3 convo-
lution as a group convolution layer, the number of convo-
lution kernels of group convolution is the number of
channels of the input feature map, the feature map of 24 x
24 x 192 is divided into 192 feature maps of 24 x 24 x 1 by
channel, the features are extracted using 192 convolution
kernels of 3 x 3, the corresponding element positions of the
input and output feature maps are summed in pairs to obtain
the final feature map, and the method of summing corre-
sponding elements can solve the network degradation prob-
lem to some extent. Since the second layer of the original
structure is a 3 x 3 convolutional structure changed to a
3 x3 grouped convolutional structure, it can reduce the
number of parameters of the network, reduce the com-
plexity of the model, and improve the computational
speed of the network, because when the ordinary convolu-
tional operation is performed, the input feature map size is
Cx HxW and there are N convolutional kernels, then
the output feature map, and the number of convolutional
kernels. The size of each convolutional kernel is C x K x K,
and the total number of parameters of N convolutional
kernels is N x Cx K x K.

Grouped convolution groups the input feature maps and
then convolves each group separately, if the input feature
map size is Cx H x W and the number of output feature
maps is Nj; if we set to divide into G groups, the number of
input feature maps of each group is C/G, then the number
of output feature maps of each group map is N/G, the size
of each convolutional kernel is (C/G)x K x K, the total
number of convolutional kernels is still N, the number of
convolutional kernels in each group is N/G, the convolu-
tional kernels only convolve with the input map of the same
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group with them, and the total number of convolutional ker-
nels is N x (C/G) x K x K, so the total number of parameters
is the original 1/G.

The number of parameters of the bottleneck and the
grouping bottleneck is shown in Table 3, and it was found
that the grouping bottleneck block has a substantial decrease
in the number of parameters compared with the original
bottleneck block, with a ratio of nearly 1/10. The nonlinear
expression capability of the model is increased.

3.5. Depthwise Separable Shuffle Method. In this paper,
channel shuffling is used to improve the depthwise separable
convolution [31, 32], and its structure is shown in Figure 9.
The depthwise separable convolution first uses depthwise
convolution to process the input feature map, and different
channels use different convolution operations and then use
the CONCAT method for channel stitching. Thus, the final
output features are derived from only part of the input chan-
nel features, and there is no information exchange between
the different channels, which leads to the limited character-
izability of the extracted features. Although the depthwise
separable convolution uses pointwise convolution to further

TaBLE 3: Comparison of the number of participants before and
after bottleneck improvement.

Module Number of participants (pcs) Ratio
3 x 3Conv 580327 1.78
Bottleneck 324873 1

Grouping bottleneck 33257 0.10

increase the dimensionality of features, which can enhance
the communication of spatial feature information to a cer-
tain extent, the increase in dimensionality leads to an
increase in the number of network parameters. Deep separa-
ble convolution is divided into deep convolution operation
and point-by-point convolution operation. In the deep con-
volution operation, if the input feature dimension is Dy x
Dpx M, M is the number of channels, and the parameter
of the convolution kernel is D, x D, x 1 X M, the output fea-
ture dimension after deep convolution is Dy x Dy x M. Each
channel only corresponds to one convolution kernel when
convolving, so the FLOPs are M X Dy x Dy x Dy X D;. In
the point-by-point convolution operation, the input is the
feature after deep convolution, the dimension is Dy x Dp x
M, the parameter of convolution kernel is 1 x 1 x M x N,
the output dimension is Dy x Dy x M, the convolution pro-
cess does 1 x 1 standard convolution for each feature, and
the FLOPs are N x D x D x M. In this paper, the point-
by-point convolution operation is replaced by the channel
shuffle method, which reduces the number of parameters
of the point-by-point convolution operation. The channel
shuffle method has the same function as the point-by-point
convolution method; however, the number of parameters
of the whole network does not increase because its dimen-
sionality does not change, while the characterizability of
the features is enhanced, which reduces the complexity of
the network to some extent improves the training speed of
the model, which can improve the whole network’s face
recognition accuracy.
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4. Experiment and Analysis

4.1. Experiment Preparation. To verify the accuracy and the
effectiveness of the Light-NTWRN network model proposed
in this paper, the light-NTWRN network model is subjected
to comparative ablation experiments on the FER2013, CK+
dataset, and JAFFE dataset. The experiment is based on the
TensorFlow deep learning framework for training, and test-
ing is conducted on Pycharm with the following hardware
environment configuration: Winl0 operating system, Intel
Core i7-10700F with 2.9GHz CPU and 16G RAM and
NVIDIA GeForce RTX 3070 (8 GB) graphics card. During
the experiments, 70% of the facial expression images are
randomly selected as the training set, and 30% of the facial
expression images are randomly selected as the test set.
Additionally, the experimental parameters are set as shown
in Table 4.

4.2. Facial Expression Dataset. The FER2013 facial expres-
sion dataset consists of 35,886 facial expressions, and the
dataset is expanded to 80,000 by an improved random eras-
ing method where the training set contains 56,000 and the
test set contains 24,000, and each image is composed of a
grayscale image with a fixed size of 48 x 48, which contains
a total of 7 expressions, namely, angry, disgusted, fear,
happy, sad, surprised, and neutral. The facial expression
images of FER2013 are more difficult to recognize because
of the interference of occlusion, pose, low contrast, and
background.

CK+ is expanded from the Cohn-Kanda dataset, which
contains a total of 123 participants, 593 image sequences,
and a total of 7 expressions. The CK+ dataset acquisitions
are all collected under the same lighting background, the
acquisition environment is better, and the dataset is
expanded to 1500 images through an improved random
erasing method, with 70% of the training set and 30% of
the test set.

The JAFFE dataset was selected from 10 Japanese female
students who each made 7 different expressions, consisting

TaBLE 4: Experimental parameter settings.

Parameter FER2013 CK+ JAFFE
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Batch size 30 20 40
Learning rate 0.01 0.01 0.01
ﬁg;mg rate 0.5/50 0.5/50 0.5/50

Loss function Cross entropy Cross entropy Cross entropy

Epochs 300 300 300

of a total of 213 photos, which were expanded to 3408
photos by rotation, flip, contrast enhancement, panning,
cropping, scaling, and improved random erasing methods.

4.3. Ablation Experiment. To verify the effectiveness of the
Light-NTWRN network model proposed in this paper,
ablation experiments are conducted for each module, and
the experimental results are shown in Table 5. WRN denotes
the improved wide residual network, RE denotes the
improved random erasing method, SCAM denotes the
improved attention mechanism module, GBN denotes the
grouping bottleneck method, and DS denotes the depthwise
separable shuffle method, where WRN+RE+SCAM+GBN+
DS denotes the Light-NTWRN network proposed in this
paper.

First, the facial expression images are input into the
model after the improved random erasing operation, and
for the model to acquire more local features of facial expres-
sions, the improved SCAM is embedded into the network to
reassign the feature weights of facial expressions from both
the channel and space dimensions. The grouping bottleneck
method is improved to solve the problem of model redun-
dancy caused by too many convolutional layers. To reduce
the number of parameters computed by the network and
speed up the network operation, an improved depthwise
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TaBLE 5: Light-NTWRN network ablation experiments.
Model FER2013 (%) CK+ (%) JAFFE (%) Parameter (M)
WRN 69.60% 95.38% 91.42% 18.35
WRN+RE 71.05% 97.54% 93.88% 18.35
WRN+RE+SCAM 72.27% 98.35% 94.28% 23.21
WRN+RE+SCAM+GBN 72.58% 98.60% 94.87% 15.72
Light-NTWRN (ours) 73.21% 98.72% 95.21% 10.14

separable shuffle method is added. To verify the effectiveness
of each improved module, the Light-NTWRN network abla-
tion experiments are shown in Table 5.

The ablation experiments are shown in Figure 10, where
part a represents the FER2013 ablation experiment, part b
represents the CK+ ablation experiment, and part ¢ repre-
sents the JAFFE ablation experiment. According to the abla-
tion experiments of the FER2013 dataset in part a, we can
see that Light-NTWRN has the fastest convergence rate,
and the model recognition accuracy grows slowly when
trained to 100 epochs and gradually levels off when trained
to 210 epochs. The accuracy gradually levels off, and the
highest accuracy reaches 73.21%.

From the ablation experiments of the CK+ dataset in
part b of Figure 10, it can be seen that the accuracy of the
model increases rapidly at the beginning of training, and
the accuracy of the model recognition oscillates up and
down from the 50th epoch to the 100th epoch. When the
training reaches 150 epochs, the accuracy tends to be stable,
and the highest accuracy can reach 98.72%. From the abla-
tion experiments of the JAFFE dataset in part ¢, we can see
that the accuracy of the model also grows faster at the begin-
ning of training, and when, the training reaches 180 epochs,
the accuracy tends to be stable, and the highest accuracy can
reach 95.21%. From the dataset, it was found that the accu-
racy of the model is improved after adding SCAM, but there
is a slight loss of its network operation speed. GBN and DS
can effectively reduce the number of network parameters
and improve the accuracy of the model. Furthermore, the
accuracy of the model proposed in this paper on the three
datasets FER2013, CK+, and JAFFE is improved by 3.61%,
3.34%, and 3.79%, respectively, compared with that of the
original model, and the number of parameters is reduced
by 44.74% compared to that for the original network, which
proves that the proposed model has better effectiveness and
faster computing speed.

To further verify the effectiveness and the robustness of
the proposed model in this paper, the confusion matrix
experiments are shown in Figure 11, where part a represents
the confusion matrix on the FER2013 dataset, part b repre-
sents the confusion matrix on the CK+ dataset, and part ¢
represents the confusion matrix on the JAFFE dataset.

From the confusion matrix on the FER2013 dataset in
part a, we can see that the recognition accuracy of the three
categories of anger, fear, and sadness is low because the
activities of these three categories of facial expressions are
less obvious, and the feature points are difficult to extract.
The recognition performance of each category on the CK+

dataset is better, and the accuracy is higher. On the JAFFE
dataset, the recognition accuracy of the anger and disgust
categories is lower because the misidentified samples all
belong to the negative category of emotions, which are more
similar, facial features are difficult to extract, so recognition
is more challenging.

4.4. Mainstream Algorithm Comparison Experiment. To
verify the effectiveness of the Light-NTWRN algorithm pro-
posed in this paper for facial expression recognition, com-
parison experiments are conducted with five mainstream
algorithms, mainly AlexNet, VGG16, VGGI19, ResNetl18,
and ResNet50, to compare the size of the number of param-
eters and the specific recognition accuracy on the three data-
sets, and the specific results are shown in Table 6.

The Light-NTWRN algorithm proposed in this paper
has the highest accuracy for facial expression recognition
on the FER2013 dataset, with an improvement of nearly
2% compared to the ResNet50 model in the mainstream
algorithm. From the experimental results on the CK+ data-
set, the recognition accuracy of the VGG16 model is the
highest among the mainstream networks, while the recogni-
tion accuracy of the model proposed in this paper is
improved by 3.26% compared to the VGG16. The recogni-
tion accuracy on the JAFFE dataset is as high as 95.21%.

This can further verify the effectiveness of the three
improved methods proposed in this paper, which can
improve the recognition accuracy. Compared with the other
five mainstream algorithms, the Light-NTWRN algorithm
proposed in this paper has the highest accuracy and the best
algorithm performance in terms of facial expression recogni-
tion and has strong generalization.

In terms of the number of model parameters, the num-
ber of model parameters of the network proposed in this
paper is 10.14 M, which is the lowest compared with the
other five mainstream algorithms and can maintain high
recognition accuracy, which verifies the advanced and excel-
lent model. It also further verifies the effectiveness of the
three improvement methods proposed in this paper for
model lightweighting.

We compare the proposed method in this paper with
other existing methods. The existing more advanced
methods are MANet [33], a model that obtains key region
features by adaptively learning weights; Minaee [34], a model
that assigns residual blocks to spatial mask information;
WMDCNN [35], a model that mixes two-channel weighting
of static images; and APRNETS50 [36], a model that uses mul-
tiscale feature extraction blocks instead of residual units. The
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Figure 11: Continued.
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TaBLE 6: Comparison experiments of mainstream algorithms.

Model FER2013 (%) CK+ (%) JAFFE (%) Parameter (M)
AlexNet 67.51 87.59 89.83 60.92
VGGl16 68.89 95.46 91.04 14.75
VGGI19 68.53 92.18 90.37 20.06
ResNet18 70.09 89.39 92,55 11.69
ResNet50 71.26 92.46 93.08 25.56
Light-NTWRN (ours) 73.21 98.72 95.21 10.14

TaBLE 7: Recognition rates of various algorithms on the facial
expression dataset.

Model FER2013 (%) CK+ (%) JAFFE (%)
MANet [33] 69.46 96.28 —
Minaee [34] 70.20 98.00 92.80
WMDCNN (35] — 98.50 92.30
APRNETS50 [36] 73.00 94.95 94.80
Light-NTWRN (ours) 73.21 98.72 95.21

comparison is performed on the FER2013, CK+, and JAFFE
datasets. It can be seen in Table 7 that the model proposed
in this paper has the highest accuracy, and the effectiveness
of the model proposed in this paper can be proven by the
above experiments.

5. Conclusion

This paper proposes a multiscale feature fusion attention
lightweight facial expression recognition method that effec-
tively suppresses the influence of irrelevant feature informa-
tion on the model while slowing the gradient disappearance
caused by too many layers of the neural network, thus reduc-
ing the number of parameters computed by the network and
improving the computational speed of the model. The
improved SCAM module focuses more on feature informa-
tion to speed up the convergence of the model and improve
its performance. The improved random erasing method
expands the training set while enhancing the robustness of
the model to noise. The grouping bottleneck method reduces
the dimensionality of the target image while increasing the
nonlinear expression capability of the model. In addition,
the depthwise separable shuffle method reduces the number
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of parameters computed by the network while speeding up
the computational speed of the network. The accuracy of
the proposed model (Light-NTWRN) is 73.21% on the
FER2013 dataset, 98.72% on the CK+ dataset, and 95.21%
on the JAFFE dataset, while having a lower number of
parameters, and the experimental results are better than
many current mainstream algorithms, showing better effec-
tiveness and robustness. However, the recognition accuracy
is still not high enough in the case of obscured facial expres-
sions, and more attention should be given to the recognition
performance of these datasets in the future.
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Space assistant robots can help astronauts or their assistants perform certain tasks. A ground microgravity simulation
environment is built for the space assistant robot AAR-2. The hardware requirements of the ground simulation by the 3-DOF
microgravity air flotation platform. An algorithm is designed for this simulation system. By using momentum and RMSprop
methods to improve the PID neural network, the challenging problem of strong coupling between system nonlinearity and
variables is solved. Firstly, the paper introduces the hardware system and deduces the dynamic model of the system. Then, the
algorithm is calculated and simulated. Through simulation, the effectiveness and feasibility of the algorithm are compared and
proved. Finally, the control system is simulated by MATLAB/Simulink and compared with other advanced algorithms. The
simulation results show that the designed neural network controller can quickly and accurately control the 3-DOF of freedom

motion of AAR-2.

1. Introduction

With the continuous development of aerospace, many coun-
tries have carried out the research and development of space
robots to replace astronauts to perform some specific tasks,
for example, space rendezvous and docking, space debris
avoidance [1], fuel supply, on orbit maintenance [2], on orbit
component reconstruction, etc. In the past, most of these tasks
were completed by astronauts, mainly due to the complexity of
the space environment and the arduousness of the tasks. The
characteristics of space greatly limit the astronauts’ activities
inside and outside the capsule, and the complex and cumber-
some operations greatly increase the astronauts’ work and psy-
chological pressure. Therefore, in recent years, more and more
space operation tasks gradually turn to space robots.

For the design, manufacture, and operation of space
robots, simulation experiments are required in the ground
microgravity environment for overall performance evalua-
tion, component testing, key parameter determination, and
various system verifications [3]. Therefore, it directly pro-
motes the research on building a space microgravity envi-
ronment. If you want to conduct a space robot simulation
experiment, you need to build a microgravity experiment
environment on the ground [4].

The methods of constructing space microgravity envi-
ronment mainly include tower dropping method [5, 6],
water floating method, and air floating method [7, 8]. The
falling tower method is a method to generate microgravity
experimental environment by performing free falling motion
in microgravity tower (well). It is usually carried out by
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building high towers or digging deep wells on the ground.
Because of the special experimental environment and the
limited weightlessness time, this method has great limita-
tions, so it is not commonly used as a method to build a
microgravity environment in the laboratory. The water float-
ing method refers to a state in which when the density of the
object is the same as that of the liquid. The object can be sus-
pended at any point in the liquid. However, this method
does not have real-time operability in the experimental pro-
cess and needs to constantly adjust the counterweight to
ensure balance and stability. On the other hand, it also
requires that the experimental equipment can work nor-
mally under the liquid without affecting the accuracy. There-
fore, this method will bring higher cost and experimental
operation requirements to the test. However, the air flotation
platform has the advantages of low cost, low operation diffi-
culty, and sustainable real-time operation, so most experi-
ments use the air flotation platform to simulate the
microgravity environment [9, 10]. The core component of
air flotation platform is gas bearing, which can be divided
into plane gas bearing and spherical gas bearing. The com-
pressed air flows out through the small hole or slit of the
gas bearing and forms an air film between the workbench
and the gas bearing, so as to achieve the purpose of friction-
less movement. The air flotation platform has no contact
with the worktable and produces a suspended effect, so it
overcomes the influence of gravity to a great extent. There-
fore, this paper selects the air flotation platform as the
ground microgravity simulation platform of the space assis-
tant robot and simulates the motion of the space assistant
robot through the 3-DOF of air flotation platform.

Many scholars have different views and studies on the
position and attitude control of spacecraft in microgravity
environment. Terui et al. proposed a sliding mode control
and state-dependent Riccati equation method to achieve 6-
DOF position and attitude maneuverability without uncer-
tainty and disturbance [11, 12]. In the follow-up, high-pass
filter and output feedback control law are used to solve the
problem of translational and attitude coupling, but the sta-
bility and convergence time are unconstrained [13]. In order
to solve the problem of model uncertainty and environmen-
tal disturbance, Wu et al. proposed a finite time controller
based on nonsingular terminal sliding mode control tech-
nology, which can control the translation and attitude
change of spacecraft [14]. Liu et al. realized the 3-DOF free
attitude control of AAR-1. In order to meet the characteris-
tics of multivariable, strong coupling, and nonlinear systems,
the traditional PIDnn controller is used to quickly achieve
stability and control effect [15]. Gao et al. upgraded the
functions of AAR-1, designed AAR-2, and realized high-
precision control of AAR-2 by combining synovial control
and fuzzy control [16]. Malladi et al. adopted the nonlinear
model predictive control (NMPC) method to solve the
highly coupled and nonlinear problem of position and atti-
tude [17]. Aiming at the fast attitude dynamics and slow
position dynamics caused by time scale separation, a nonlin-
ear hierarchical control law was proposed [18].

The attitude and translational motion of spacecraft are
coupled and highly nonlinear, so the model parameters of
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spacecraft cannot be accurately obtained, and the spacecraft
is always affected by environmental disturbances. All these
problems make it difficult for the spacecraft control system
to achieve the desired control performance. Due to the high
coupling and nonlinearity of the dynamic model, this paper
uses the double closed-loop structure to solve the influence
of strong coupling on the system and uses the improved
PID neural network to solve the problem of nonlinear sys-
tem. Because the uncertain environmental disturbance
always exists in the spacecraft movement, the neural net-
work in machine learning can better cater to the uncertainty
to a certain extent and match the changing environment
through continuous learning.

The main innovations and contributions of this paper
are as follows: (a) we use a double closed-loop system to
solve the problem of the strong coupling and environmental
disturbance in the model. This control structure can better
overcome the impact of uncertainty on the system by match-
ing with the neural network. (b) We optimized the PID neu-
ral network algorithm to solve the variable coupling problem
and nonlinear problem when the spacecraft position and
attitude change, so that the microgravity air flotation system
can converge faster and reach the equilibrium position, bet-
ter simulate the spacecraft motion and meet the experimen-
tal needs. (c) A complete control system and algorithm are
built on the microgravity air flotation platform, which makes
the flight simulation experiment of ground simulation
spacecraft more efficient and convenient, and promote the
development of ground microgravity environment simula-
tion equipment.

The rest of this paper is organized as follows: in Section
2, the control system of the actual microgravity air flotation
platform is designed and the motion principle is analyzed. In
Section 3, the dynamic model of the microgravity air flota-
tion platform is built and its motion characteristics are ana-
lyzed. In addition, the model is optimized to a certain extent
according to the ideal environment of the actual space sta-
tion. In Section 4, the control algorithm of the microgravity
air flotation platform is improved on the basis of PIDnn.
Meanwhile, the stability of the system is proved and the fea-
sibility of the algorithm is simulated. In Section 5, the whole
improved microgravity air flotation system is simulated. The
feasibility of the scheme is verified by comparing other
advanced algorithms and combining the theoretical simula-
tion with the actual platform.

2. Design of the Control System Based on Air
Flotation Platform

2.1. Control System Hardware Design. The microgravity sim-
ulation air flotation platform involved in this paper is shown
in Figure 1(a). It can realize two-dimensional microgravity
simulation motion on the marble plane through three air flo-
tation pads, gas cylinders, and air pressure transmission sys-
tem. Four ducted fans are mounted on it to control the
movement of the air flotation platform. The installation
position is shown in Figure 1(b). Four ducted fans at 45°
angles to the side of the air flotation platform are installed
at the four corners of the platform. Microspacecraft, such
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(a) Air flotation platform model

FIGURE 1: Structural model of air flotation platform.

as astronaut assistance robots AAR-1, AAR-2 [19, 20], etc.,
can be installed on the air flotation platform, as shown in
Figure 2(a). By controlling the changes of the thrust of the
four ducted fans, the two-dimensional plane motion of the
spacecraft can be simulated in a microgravity environment.

In this paper, the actual platform is shown in Figure 2(b).
The STM series chip STM32f1 is selected as the main chip,
equipped with two ultrasonic ranging modules HC-SR04,
a six-axis gyroscope sensor MPU6050 (built-in DMP atti-
tude calculation), and four ducted fans (brush less motor
HL3508).

Figure 3 shows the top view of the air flotation platform,
O0-X,Y,Z, is the inertial coordinate system, O — X, Y, Z, is
the geometric coordinate system, the arrow direction is the
wind direction output by the culvert fan, and the four culvert
fans are combined in pairs to control the forward and rota-
tional degrees of freedom of the air flotation platform. The
system forms a closed-loop structure through sensors, so as
to achieve more efficient control effect.

2.2. Principles of Movement. To correctly describe the
motion of the microgravity simulated air flotation platform,
the two coordinate systems involved in the system are ana-
lyzed and processed. The motion pose of the air flotation
platform is determined by the angle between the base point
o and the axes X, and X, (the initial state is that the x-axis
and the y-axis are parallel to each other), the coordinate of
the base point is (X, y,), the rigid body gestures are deter-
mined by x;, y,, and 6. The basic motion unit is composed
of translation and rotation in the directions of X, and Y,
(3-DOF), and the rotation is the rotation around the center
of mass. F,, F,, F5, and F, are the thrust (wind force) of
the four ducted fans.

S

Fy, =mX, = 5 (Fy+Fy=F, ~ Fy), (1)

[,

Fy =mY,= 2"(F, +F,~ F, - F,), (2)

3
P
(b) Top view of model
W)
m’=]0= 5 (F+ Ey=F, = Fy)(r+,). (3)

It is known that the aerial view of the actual air flotation
platform is a square, r is the side length, and r, is the radius
of the ducted fan. Let clockwise to be the positive direction,
and m? is the torque rotating around Z, with the center of
mass of the air flotation platform.

3. System Dynamics Model

3.1. Coordinate and Attitude Transformation. The pose of
the air flotation platform is expressed as

Pion
Mow=1| |- (4)
" [ gnb ]

The instantaneous speed is expressed as

Vo

[
wh,n

Then, we can get

n pZ»” RZ <6nb) 03*3 VZ,n
rlb,n = / = n > (6)
an 03*3 T@ (6nb) Wy

n

where 7, represents the attitude of b relative to the iner-
tial system # under the inertial system n, R} (0,,) represents

the rotation matrix, and 6,,=[¢ 6 ]  is the geometric
position b Euler angles to inertial position .

R}(8,,) and Ty(0,,,) are the results of the transformation
from the inertial coordinate system to the geometric coordi-
nate system, and there are many ways to obtain them, which
are explained in the order of Z-Y-X [21].
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Ground simulation platform

(b)

FIGURE 2: (a) Schematic diagram of space station and ground simulation platform. The AAR-2 is a free flying robot used in the space station
cabin to assist astronauts in some space missions. This robot can use the microgravity simulation air flotation platform to simulate the 3-
DOF plane motion on the marble table. (b) Actual experimental platform.
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FIGURE 3: Top view of air flotation platform.
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The above sine, cosine, and tangent functions are
replaced by s, ¢, and t. When the motion mode of the air
flotation platform is fixed as translation and rotation, then

Vi = [Xp ¥4 0] g ©)
enb = [0 0 W]T’ (10)
cay 0 —sy
"0u)=0 1 0 |, (11)
sy 0 cy
1 0 0
0 0 1

3.2. Dynamics Model. To further accurately analyze the
motion state of the microgravity simulated air flotation
platform, the dynamic model of the air flotation platform
is deduced and simulated in this paper. The dynamic model
of the air flotation platform can be deduced as follows
[22-24]:

m(izz’n + wz)n X V;,n) =F9+f9, (13)
Iwz)n + wz)n X (Ivz’n> = M9 +mI. (14)

Among them, g represents the center of gravity and

T .
F9=[F{,FJ,F]]" is used to represent gravity, buoyancy,
and other external forces acting on an air flotation platform.
=151 11 T is used to represent the thrust generated by

the rotation of the ducted fan. M7 = [MZ, M7, M?] s used to
represent all external moments acting on the air flotation

platform except the moment generated by the ducted fan.

T . .. . .
m9 = [m], mj, m?]" indicates the moment acting on the air

flotation platform generated by the rotation of the ducted
fan.

Since the air flotation platform is a rigid body and the
additional mass is the same in all directions, the total inertia
matrix about the center of gravity is

I, 0 0
I={0 I, 0 (15)
0 0 I

z

Since the air flotation platform needs to move freely on
the marble tabletop, its motion mode is 3-DOF motion,
and the yaw motion can be freely performed while translat-
ing on the two-dimensional marble tabletop:

T
v =[Vfi v ,0} , (16)

wh, = [o, 0, wﬁw} g (17)

When the air flotation platform rotates and flies forward
at the same time, a lateral force is generated, which is repre-
sented by wg’n X VZ,n- This term is offset by the air resistance
created when the microgravity simulated air flotation plat-
form moves. This force can also be ignored under the
assumption that the spin speed is almost zero in forward
flight and almost zero in spinning motion.

In the inertia matrix, we can get I, =1, if the roll and
pitch velocities are zero, no rotational moment will be gener-
ated. When the rolling and pitching moments are not zero,

x (I vz,n) has little effect on the roll and pitch moments,
so they are easily offset by the resistance of gravity, so they
are also ignored.

The model can thus be simplified to

miy =fl+ F=f]-ki, (18)
gn

b .
MYy =+ E =1~k (19)

W =9 9 — 19 g g _
Izwzw =md + MJ =m] +MZcor +Mzd kw,(r+r).

(20)

Among them, M7  refers to the Coriolis torque in the
direction of rotation around the z-axis, MY , refers to the
average disturbance torque on the z-axis, and k, represents
the average torque coeflicient in the air resistance on the
Z-axis.

It is easy to design the controller with negligible Coriolis
torque, disturbance torque, and air resistance. In the motion
state, we are only interested in the dynamic equations of
Euler angles in the geometric coordinate system in motion.
Therefore, the dynamic model of the air flotation platform
is further simplified as follows:

mX, = cyfy, (21)
mYb =fb, (22)
Ljr=mb. (23)

4. Algorithmic Controller Design

4.1. PIDnn Controller Design. PIDnn is a kind of PID-type
controller that relies on the self-adaptation and learning
ability of the neural network algorithm [25]. There are
various neural network structures that can be designed.
This paper adopts a single-layer forward propagation net-
work, in which the input layer, hidden layer, and output
layer contain two, three, and one neurons (perceptrons),
respectively [26].

The input of the PID neural network system has two
parts, which are the expected input and the real-time output
of the system. After each iteration, the neural network out-
puts new values of P, I, and D as three parameters of the
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FIGURE 4: PIDnn control algorithm structure.

PID neural network controller [27, 28]. After processing by
the dynamic model, as the new input of the system continues
to iterate, the system tends to stabilize after the number of
sampling N approaches a larger value [29]. The structure
of the PIDnn control algorithm is shown in Figure 4.

4.1.1. Forward Algorithm. When iterating to the nth time,
the input and output of neurons in each layer are expressed
as follows:

Input layer:

vi() =z(n), (24)
vy(1n) =y(n), (25)
x;(n) =NET[v;(n)],i=1,2, (26)

where NET(n) is an activation function. To reduce the
actual hardware system code calculation amount, it can be
set as an identity activation function here, namely,

NET[vi(n)] = v(n). (27)
Hidden layer:
vy (n) = Zwihxi(n),h= 1,2,3. (28)

The activation function of the hidden layer is special.
Considering that the neural network serves the PID system,
the three neurons here perform their proportional, integral,
and differential functions, respectively. After discretizing
the continuous system, we get the following:

Proportion:
X, (n) = vy (n). (29)
Integral:
x;(n) =x£(n -1+ vé(n). (30)
Derivative:

!

x5(n) = vy(n) = vy(n - 1). (31)

Output layer:
3
v'(m)= Y Wyxi(m),0=1, (32)
h=1
%,/ (n) = v, (n). (33)

4.1.2. Back-Propagation Algorithm. The back-propagation
algorithm can achieve the effect of learning and memory
by modifying the weight value (w;, and W) of the neural
network. First, calculate the systematic error (the ideal value
minus the actual value) and then update the weight of each
layer of the neural network according to the conventional
gradient descent method. When taking the (n+ 1)th sam-
pling, the error E =z(n) — y(n). Let learning step size be 7,
after the nth learning, the weight value between the hidden
layer and the output layer is changed to

dE

Wio(n+1) =W, (n) —WM’

(34)

dE  dE dy, dx;’ dv'

__  =___“7° . 35
dWho dya d-x;, dV{/ dWho ( )

The weight value between the input layer and the hidden
layer is changed to

dE
wy(n+1) = Wy (n) —n da, (36)
dE _ dE dy, dx;' dv)' dx,’ dv,' (37)

dwy,  dy,dx)' dv)' dx,' dv,' dwy,”

The weights between hidden layer neurons and output
layer neurons are real-time P, I, and D coefficients.

4.2. Momentum and RMSprop Jointly Improve the
Algorithm. The iterative principle of the standard gradient
descent method is

W(n)=W(n-1)-yAW(n), (38)
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The momentum method changes the weight update law
in the standard gradient descent method and introduces an
intermediate quantity:

V(n)=pV(n-1)+(1-B)AW(n). (40)
And replacing the original AW (n) with V(n) can get

W(n)=W(n-1)-nV(n)

(41)
=W(n-1)-y[BV(n—-1)+ (1 - B)AW(n)],

+ BPAW (n = 2)+--+f" AW (1)].

The value of f around 0.9 can make the algorithm
achieve better results. Doing so is equivalent to a weighted
sum of historically processed data. From the nth iteration,
the farther historical data has a relatively small impact on
the weight update, but the weight updated in the nearby iter-
ations has a greater impact.

The method of adaptive adjustment of Adagrad learning

rate is to convert # (learning rate) in Equation (43) into #/

V/S(n) +e.
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W(n)=W(n—-1)-nAW(n). (43) Then, we can get

W(n)=W(n-1)- 1 AW (n).
\/[AW(l)]2+---+[AW(n)]2 te

To prevent the denominator from being zero, set € to a
particularly small number.

(45)

S(n)=S(n—1) + AW (n) - AW (n). (44) If the weights are modified too much, the learning rate
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will decrease more. Then, in the process of gradient descent
training, after a rapid change period, and then a platform
area, the change of the learning rate in the platform area will
be very slow. When it enters the fast period again after the
plateau period, the decline is still very slow and cannot be
modified, and all the historical data of the weights will be
taken into account, and then, there is a problem.

So, the RMSprop method introduces Momentum on the
learning rate, so that the formula becomes

S(n)=aS(n—1)+ (1-a)AW(n)-AW(n).  (46)

It is derived from Equation (46) that the gradient descent
method in the PID neural network is finally optimized as

n(1=B) [ AW 1)+ +B AW (n)] ,
V@ (@ AW ()P + AW (n)} +2
(47)

W(n)=W(n-1)-

where o and 8 have the same effect, so we let o = 3=10.9.

4.3. Proof of System Stability. The system control input of the
PID neural network controller is

un)y=um-1)+n(n Z x, (n) W, (n (48)
h=1
B(n) = 3 (r(n) = Y()? (49)

dE(n) _ dE(n) de(n) dY (n) dz(n)
() AV () ) a0y
dy(n)
- ( )dZ(}’l) ha(n)n(n)'

To analyze the stability of the system, a Lyapurov func-
tion V(n) = (1/2)e(n)’ is constructed, where e(n) = z(n) - y

(n).

AV(n)=V(n+1)-V(n) = = (e(n+1)*—e(n)®). (51)

NS

According to the differential theorem,
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Because of (sgn (dy(n)/du(n)))* =1,

Be(m) ==Y, (1(m)* (Wyu(m)e(m),  (55)
=1
e(n+1)=e(n)+Ae(n), (56)

AV (n) = Ae(n)(Ae(n) + 2e(n))

N —

(e(n+ 1)* - e(n)z) =

=e(n)Ae(n) + %Ae(n)z.

N =

(57)

So we can come to a conclusion. The closed loop system
is stable at AV(n) <0.

e(n)Ae(n) < —;Ae(n)z, (58)

2 <Z (Who(n))2> > (n(m))*. (60)

Because the Lyapunov function has a lower bound and
AV(n) <0, the function monotonically decreases, then when
n—o00, V(n+1)=V(n)=0,AV(n)=0. Therefore, the
neural network learning rate is set to a small value to make
the system stable. Since the learning rate will affect the opti-
mization speed of the gradient descent method, we have

improved the neural network by momentum and RMSprop.
By constantly changing the learning rate, the system can be
stable and quickly reduced to the best.

5. Control System and Simulation Experiment

5.1. Control System. According to the actual experimental
requirements of fixed-point and fixed-speed, the desired air
flotation platform position (x,y), angle (y), and speed-

error curve [V(E,), V(E,), W(E, )] are designed. For three

control variables [x(n), y(n), y(n)] are designed three cas-
cade double-loop control models. The curve is sent to the
algorithm controller for processing and then sent to the
algorithm controller through the dynamic model for
repeated iterations. The experiment combined the sensor
to form a closed loop and combined with the cascade
double-loop control to realize the stable control of the air
flotation platform to move freely. The air flotation platform
control system and cascade control structure are illustrated
in Figures 5 and 6.

Considering that the actual trajectory may have sharp
turns or circular motion, the following two motion models
are designed. The first is a right-angled square and the sec-
ond is a circular motion. In the first one, the motion curve
of the air flotation platform starts from point (0,5) and
returns to the origin (0,5) after moving counterclockwise
for a week, and the overall consumption time is 10 seconds.
And the initial direction of the air flotation platform is -90°,
and the angle calculation is based on the angle between the
direction of the air flotation platform and the x-axis. In the
second one, the starting point, ending point, and elapsed
time conditions of the movement curve of the air flotation
platform remains unchanged. The motion curve presents a
circular structure with a center of (5,5) and a radius of 5.
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5.2. Simulation. To verify the effectiveness of the control
algorithm designed for the 3-DOF air flotation platform,
MATLAB/Simulink is used for simulation in this paper,
and the overall effect is shown in Figure 7. The predicted
position curve of the trajectory was input into the system,
and then, the algorithm was controlled by the cascade dou-
ble closed-loop PIDnn system. The obtained control results
are introduced into the dynamics model and then returned
to the controller for further calculation.

Considering the various movement and work of space
robot, there will be a variety of movement curves such as
straight line, curve, or sharp angle. So, we designed two
kinds of curves, one is the motion curve of the square, and
the other is the motion curve of the circle.

As shown in Figures 8 and 9, for each curve, we give the
system’s 3-DOF input.

After effective control by the controller, the system sim-
ulation curve is obtained as shown in Figure 10.

In the simulation experiment, as shown in Figures 11
and 12, we get the error tracking of the three degrees of free-
dom curve.

We can see from the error curve that the error effect of
moving distance can reach the level of 10 on average in
the simulation experiment. In yaw, the maximum error in
motion is only 0.17°. It can be observed that using the
improved PIDnn based on momentum and RMSprop, the
position and attitude control of the air flotation platform
has a good control effect. It can quickly and accurately track
the input signal.

5.3. Comparison of Advanced Algorithms. In order to analyze
the optimality of space robot control system, we compared
other advanced control algorithms according to the above
two trajectory models. We can see the error comparison
curve in Figures 13 and 14. We compare it with three other
advanced control algorithms in recent years. The blue line
represents the fuzzy slider mode control algorithm [16],
the red line represents the nonlinear model predictive con-
trol algorithm (NMPC) [17], and the green line represents
the robot integral terminal sliding mode control law
(RITSMC) [30].

The improvement and variation of the control effect can
be obtained from the error curve. The average control error
of position control can reach 7.59 x 10~ unit distance, and
the error control accuracy of yaw can reach 8.36 x 107%".
The improved PID neural network using momentum and
RMSprop can be proved by simulation results. It can effec-
tively control the high-precision movement of the space
robot, so that the space robot can have smaller error with
the preset curve and achieve accurate control.

6. Conclusion and Future Work

In this paper, according to the needs of the ground preexper-
iment, the control system is designed and constructed in
combination with the 3-DOF air flotation platform. The
design allows it to move freely on the marble table. The
design of the overall dynamic model and control algorithm
is introduced, and the model is simplified and deduced
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according to the actual experimental environment. The con-
trol algorithm adopts the PID neural network to realize the
3-DOF motion of the air flotation platform. And the
double-loop cascade control method is adopted to achieve
better control effect. Finally, the designed control system is
simulated by MATLAB/Simulink. The overall control effect
is simulated, and it is known from the simulation effect that
the system can control the air flotation platform quickly and
effectively. In the era of rapid development of science and
technology, the development of space operation technology
and robot-assisted technology is gradually improving the hard
power of human space exploration. As a ground-assisted
experimental configuration, the air flotation platform plays
an important role, and the improvement and research of
experimental equipment will be further improved and further
advance the development and progress of automation.

In the future work, we mainly improve the following
contents: (a) optimize the overall control structure and spe-
cific hardware equipment of the microgravity air flotation
platform and (b) optimize the computing power and sensor
accuracy of the single-chip microcomputer, so that it can
perform more complex control algorithms and obtain data
with higher precision.
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Capturing and stabilizing tumbling targets using dual-arm space robots are very crucial to on-orbit servicing task. However, it is
still very challenging due to the complex dynamics coupling and closed-chain constraints between the manipulators, the base, and
the target. In this paper, a kinodynamic trajectory optimization method is proposed to generate the motion of a dual-arm space
robot for stabilizing the captured tumbling target, which is formulated and solved as a nonlinear programming problem using
direct collocation. Instead of optimizing the trajectory of each joint with the dynamics model of space robot, this method
optimizes the trajectory of the tumbling target while considering the kinematics and dynamics constraints between the two
arms and the target simultaneously. The objective function of the optimization is defined as weighted detumbling time, base
disturbance, and manipulability, in order to avoid singularity and save the energy of space robot for further manipulation.

Several physical simulations are carried out to validate the proposed method.

1. Introduction

With growing scientific research and commercial applica-
tions in space, more and more malfunctioning satellites
and space debris are occupying precious orbital resources
which will bring a great threat to the safety of on-orbit
spacecrafts [1, 2]. In order to utilize or remove them, space
robots have been studied and developed for many years
[3]. For capturing a space target, the space robotic system
mainly adopts the following two capturing methods, i.e.,
stiff-connection capturing and flexible-connection capturing
[4]. The flexible-connection capturing method using teth-
ered flying net [5] or flying gripper [6] can deal with a vari-
ety of targets even without any requirement on rendezvous
and docking. This method also allows a long capture dis-
tance between the target and the servicing spacecraft and a
broad range of size and shape of the target object. However,
it has limitations on dexterous manipulation of the captured
target, such as on-orbit maintenance and space assembly.
Therefore, the stiff-connection capturing method using

robotic arms [7] will still be a promising method for on-
orbit servicing of noncooperative space target.

Moosavian and Papadopoulos summarize the modeling,
planning, and control methods for free-floating space robots
[8]. In order to solve the dynamics coupling between the
base and the manipulator, the generalized Jacobian matrix
is proposed for single-arm space robots [9]. Zhang et al.
design an efficient decoupling controller based on the time-
delay estimation (TDE) and the supertwisting control
(STC), which can linearize the nonlinear dynamics of space
robot and drive the state variables to converge to the equilib-
rium point robustly [10]. Compared with single-arm space
robot, multiarm robotic system can perform more dexter-
ous, flexible, and complex tasks [11, 12]. Yoshida et al.
designs a resolved motion-rate coordinated control method
for dual-arm space robot in which one of the manipulators
tracks the desired trajectory while the other maintains the
orientation of the satellite base. However, these methods
can not be used for multiarm coordinated planning of space
robots. Similar to relative Jacobian matrix [13] for terrestrial
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dual-arm robots, a generalized relative Jacobian matrix is pro-
posed for multiarm space robots which can easily plan and con-
trol the relative motion between the arms while considering the
dynamics coupling between the arms and the base [14]. For
multiarm space robots, the base can be kept to be inertially sta-
ble during multiarm coordinated manipulation by reactionless
motion planning [15]. However, most of these methods with
Jacobian projection can be only used for nonconstrained quasi-
static planning and control problem.

One of the most challenging on-orbit servicing tasks for
space robots is to capture a space target with nonzero
momentum. During the capture phase, several components
need to be considered, including path planning to capture
the tumbling target, hybrid control of the motion and the
contact force for the end-effectors, coordinated control of
the base attitude, and parameter identification of the tum-
bling target [16]. Considering the grasping force limitation,
parameter uncertainty of the target and arbitrary detumbling
motion, a time-optimal control method [17] is proposed for
free-floating space robots stabilizing a tumbling target. How-
ever, the limitation of this method is the parameterized end-
effector velocity. For capturing and stabilizing a tumbling
space target with uncertain dynamics, Aghili [18] proposes
an optimal motion planning scheme which will generate
the end-effector trajectories for both pre- and postcapture
phases. Further, a two-layer optimization is proposed to
yield both end-effector forces and contact locations for
cooperative manipulation of an on-orbit passive objects
[19]. For the postcontact phase of capturing a tumbling tar-
get in space, Zhang et al. [20] present a control scheme and
parameter identification technique for postcapture stabiliza-
tion of unknown tumbling target, in which the manipula-
tor’s motion is used to compensate torque limitation. A
detumbling strategy is also proposed to minimize the
detumbling time and control torques, in which the target’s
trajectory is represented by quartic Bézier curves and the
optimal solution is found by adaptive particle swarm optimi-
zation algorithm [21]. Joint-velocity limits are further con-
sidered in the detumbling and stabilization manipulation
[22]. In order to limit the target attitude motion as well as
interaction torque at the grasping point, a time-optimal con-
trol problem (OCP) is formulated and solved using the cal-
culus of variations method with a highly accurate solution
[23]. Taking advantage of the coupling between dynamics
of translational and rotational systems, Aghili proposes an
optimal controller which can damp out both translational
and rotational motions collaboratively and simulta-
neously [24].

During postcapture manipulation, the optimal detum-
bling motion of space robot should be generated to reduce
the momentum of the tumbling target with minimal base
disturbance, while satisfying equality and inequality con-
straints simultaneously. A purely kinematic trajectory opti-
mization method is proposed to manipulate the in-grasp
object with relaxed-rigidity constraints [25]. However, it
can not be used for heavy object manipulation with nonne-
gligible dynamics. Recently, a nonlinear trajectory optimiza-
tion method is proposed to generate the trajectory for
approaching the tumbling target during precontact phase
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[26] and solved by direct collocation method [27]. Similarly,
neither the object dynamics nor interaction between the
object and the space robot is considered for this precon-
tact trajectory optimization. However, the closed-chain
constraints and coupling dynamics between the object
and space robot make the postcapture manipulation much
more challenging. In this paper, we will formulate the
postcapture manipulation as a trajectory optimization
problem in which the base disturbance will be minimized.
Betts et al. [28] reviewed the numerical methods for trajec-
tory optimization and discussed the direct and indirect
methods. In this paper, we will adopt the direct collocation
method to solve the trajectory optimization problem of
postcapture manipulation.

Kinodynamic motion planning [29] is first proposed to
solve motion planning problem subject to simultaneous
kinematics and dynamics constraints. In this paper, a kino-
dynamic trajectory optimization framework is proposed for
generating dual-arm detumbling motion while satisfying
the closed-chain kinodynamic constraints between the
object and dual-arm space robot. The main contributions
of this paper are as follows: (1) a kinodynamic trajectory
optimization framework is proposed to minimize the base
disturbance of dual-arm space robot for postcapture manip-
ulation of tumbling target; (2) the base disturbance of dual-
arm space robot during detumbling manipulation is derived
as a function of the position vector of the tumbling target
and the total detumbling force exerted on the tumbling tar-
get, without calculating dual-arm operational forces, respec-
tively; (3) instead of optimizing the trajectory for each single
joint of space robot, the optimal detumbling motion of dual-
arm space robot is generated from the optimal trajectory of
the tumbling target according to closed-chain kinodynamic
constraints.

The remainder of this paper is organized as follows. In
Section 2, the dynamics modelling of dual-arm space robot
and the tumbling target is presented. In Section 3, the
kinodynamic trajectory optimization framework for post-
capture manipulation is introduced, and the detailed for-
mulation is presented. In Section 4, the proposed method
is verified and compared through physical simulations
with different objective functions and initial conditions.
Finally, the conclusion and future work are presented in
Section 5.

2. Modelling of Dual-Arm Space Robots and
Tumbling Target

2.1. Modelling of Dual-Arm Space Robots. As shown in
Figure 1(a), the dual-arm space robotic system consists of a
satellite base and two central-symmetrically mounted
manipulators. The initial and final states of dual-arm space
robot and tumbling target during detumbling manipulation
are shown in Figure 1(b). The degrees of freedom (DOF)
of manipulator Arm-k is denoted by n,. In this paper, each
arm is an S-R-S (spherical-revolute-spherical) 7 DOF redun-
dant manipulator. Moreover, any two adjacent joints are
perpendicular without offset. All the variables in Figure 1
are defined in Table 1. The reference coordinate system of
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FIGURE 1: Schematic diagram of dual-arm space robot and the detumbling manipulation.

TaBLE 1: Nomenclature.

Variable Description
I The i joints of Arm-k (i=1,---,mz k=1, 1)
ng) The joint angle of the i joint of Arm-k
kfk) The unit vector representing the rotation direction of J 5k>
Cgk) The CoM of rigid body ng)
Ek), bgk) The position vectors from J Ek) to Clm and Cgk) to ] ff)l, respectively
b(()k) The position vector from the CoM of B, to joint | (lk)
rl(k), Iy, I, The position vector of Cgk), base’s CoM, and space robot’s CoM, respectively
pgk), p The position vector of J ,(-k) and the end-effector of Arm-k, respectively
ok The joint angle vector of Arm-k; @) = [9(1]()99) H;k)] T
Vi, The linear and angular velocities of B,
vgk), w,(k) The linear and angular velocities of B,(k)
v, @b The linear and angular velocities of the end-effector of Arm-k
v, @, The linear and angular velocities of the target
my, m,(k). M The masses of B, Bfk), and the whole system, respectively
Iy, ng) The inertia matrices of B, and B,@ in terms of the body CoM frame
E,O, The #n x n identity and zero matrices

Arm-k is the same as the coordinate system of the base of  each variable and its corresponding derivative is denoted
Arm-k. The center of mass (CoM) coordinate system of each by the left superscript in the rest of this paper. Unless spec-

k . . . .
body B{*) has the same orientation with the coordinate sys- ified, all the variables are expressed in the inertial coordinate
tem of each joint | fk). The reference coordinate system of  system “) I” which is omitted for simplification.



As shown in Figure 1, the end-effector velocity of each
manipulator can be derived as follows:

(k)
Vv vV, .

wl¥ )
where ]I(ak) and IS,’f) are the Jacobian matrices related to the

base and the manipulator, respectively, which can be calcu-
lated by the following equations:

x (k
® [ Es _POe( )
Ib - >
03 E3

k k
i (o -pi”) K (bl -0l
= ’
k k
e K

where p(()lz) is the vector from the CoM of the base to the end-

effector of Arm-k, p(()lz) = pgk) —1,; r* is the skew symmetric

matrix of r, i.e,

r 0 -r r

X z Y
ifr=|r, [,thenr*=|r, 0 -1 | (3)
r, -r, 1. 0

The linear and angular momentums of dual-arm space
robots can be expressed as follows:

Vo

P= {ME3 Mrgﬂ [ 15,0 + 77,0,

)

Vo 1 Al Ay
+I¢® +I¢®,

(4)

PN Ly
L=1,0,+Mriv, + 1,0 + 1,0 = {Mr; Iw] [

W,

where

1= > (m),

i=1
1 = [0 (19 =) -k (- ), 0.0]

Ig? = [kgk)) "')kgk)> 0, -, O:| >

L=I+) {i {Ig’ﬂ +mPp® (rgi<k>> T} }

k=Lr | i=1

B & /() (k 0 (k)3 (K
0= 3O ),
P

oy =f, Ko

For the free-floating space robots, the linear and angular
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momentums are conserved as the environmental force
caused by solar pressure, air drag, and microgravity is negli-
gible. The whole system satisfies the following holonomic
and nonholonomic constraints:

T
P ME3 Mrgg Vo ]lTw . ] ]g"w .y
= - 0 + Q)
r
L Mr; 1 , I I

w

V,

-] .
=Hp +H! O +H,, 0"

(6)

From (6), the following relationship between the base’s
motion and arms’ motion can be obtained:

l 1

\A) . ] ;AT " @ @
[ ] = ]IhmG + ]bm® = |:]lbm ]bmi| .y = ]bm |2
W, Q) Q)
(7)
where
(k)
_r>< I-lI(k) — ]ﬂ
]g,l:y)[ — 0g~s ~O M ,
_I-ll(k)
s TO (8)
I - (Mr;rgg + Iw),

k k k
1o = (1) ).

Substituting (7) into (1) yields the end-effector velocity
of each manipulator:

. Vo I -1 . . ] .

XL=IZ[ +1,0' = (10}, +7,,)0 +117;,0 = 1,6 +1,6',
W,

. r Vo r AT rel Al ryr AT . ] .y

X, =T +1,0 =1, 0 + () +75,)0 =70 +],0 .
Wy

©)

Therefore, the generalized Jacobian matrix of dual-arm
space robots can be derived as

[5{ ] ~ []zz Jir
X ]rl ]rr
where J; =T33+ T T = 1T 1= TiJiomo T = D0 +

J;,» and ]g;i is the coupling Jacobian matrix between the base

and the manipulator. The derivation details can be found
in [14].

(;)l

=10, (10)
c]

o

2.2. Motion Equation of Tumbling Target. Assuming that the
target is tumbling with an initial velocity, its inertia param-
eters m, and °I, are known or can be estimated during the
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precontact phase and contact phase [30, 31]. Therefore, the
motion equation of the target which is captured by the two
arms of space robot can be expressed in the base frame as

Ong Oz, 0 0
M,’x, +°C,="F, (11)

0 00 0~ 0 0 0
Ft= Gl Fl+ Gr Fr+ Gext Fext’ (12)

where °M, is the inertia matrix, °C, is the Coriolis and cen-
trifugal force, and °F, is the total force exerted on the target;
it also refers to the detumbling force of the target in this

T
paper; °F, = [Off 01-” is the operational force of Arm-

ki °F,,°G,,, are the external force exerted on the target
and the corresponding grasp matrix, respectively. The exter-
nal force °F, , caused by solar pressure, air drag, and micro-
gravity is order of magnitude less than the operational forces
exerted by the manipulator’s end-effector, and hence, is neg-
ligible. The inertia matrix and the Coriolis and centrifugal
force can be obtained as follows:

0C, = O (13)
C Owtx(oltowt) .

On the other hand, when the end-effectors of dual-arm
space robot and the grasping points of the target are con-
nected, the dual-arm space robot and the target form a
closed-chain constraint. Considering the postcapture
manipulation, the end-effectors of the two arms will be fixed
with the grasping points. Therefore, we can have the follow-
ing position-level constraint:

mE; O
o, ‘1

0
M, =

t

OTt _ OTEI) IT(Z)eTEZ) — OT(") IT(V)eTE”)) (14)

e 1 e

where °T, represents the homogeneous transformation

matrix (HTM) of the target with respect to the base, OT(lk)
represents the HTM of the reference coordinate system of

Arm-k with respect to the base, lTik) represents the HTM

of the end-effector with respect to the reference coordinate

system of Arm-k, and eT§k> represents the HTM of the target

with respect to the grasp coordinate system of Arm-k.
Therefore, given the desired velocity of the target °x,

with respect to the base frame of dual-arm space robot, the

corresponding velocity of the end-effector of Arm-k O)'(ik)

can be obtained as
X, = G X, (15)

where Orik is the position vector from the CoM of target to
the grasping point; °G, (k=1,r) is the grasp matrix [32] of
Arm-k.

Furthermore, by differentiating (15), the acceleration
constraint can be obtained as

%M =0G % +°G, *%,. (16)

The kinematics of each manipulator of dual-arm space
robot can be written as

. (k k)o. (k - (k)
1 i)leé)Oxi):]gf)@d ,

(17)
..(k k)o..(k - (k (k) ~(k
1x£ ) = 1R(() >0x£ ) = I(k)G){(j) + ]( )G){(j),

where 1R(()k) is the rotation matrix from the base frame to the
reference (base) frame of Arm-k, which is a constant matrix
as the base of Arm-k is fixed with the satellite base.

Given the desired velocity and acceleration of the end-
effector, the desired joint velocity and acceleration can be
obtained directly by the inverse kinematics of the manipula-
tor:

(18)

where (]Sff))T is the Moore-Penrose pseudoinverse of J; for
each 7 DOF redundant manipulator of dual-arm space
robot, the Moore-Penrose pseudoinverse is used to obtain
the least-square solution of differential kinematics with min-
imum norm.

2.3. Base Disturbance Caused by Detumbling Manipulation.
During the detumbling manipulation of dual-arm space
robot, the base disturbance resulted from the operational
forces of two arms to detumble the tumbling target is ana-
lyzed in this section. The dynamic constraints between the
two arms and the target are shown in (12), where 0Fext is
equal to zero. Therefore, given the desired motion of the
target, the operational forces of the two arms can be
obtained. However, there is no unique solution for (12).
Many existed algorithms can be used to solve this prob-
lem, for example, the master-slave or shared force control
proposed in [33] and the optimal distribution method
which minimized the squared operational forces proposed
in [32].

As the main purpose in this paper is to minimize the
detumbling time and base disturbance caused by the detum-
bling maneuver during the postcapture phase, we only con-
sider the total disturbance force exerted on the base.
Therefore, the total disturbance force exerted on the base
which is caused by the operational forces of two arms is cal-
culated as follows:
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(19)

where %r,, is the position vector from the CoM of base to the
end-effector of Arm-k and °r, is the position vector from the
CoM of base to the CoM of target.

Combining equations (12) and (19) and the external
force °F, on the target is equal to zero, then we can have:

E (0] E (0}
0 3 3100 0 0 3 3o
ngsz_[orx ( Gl Fl+ Gr Fr)z_[orx E Ft'
t 3 t 3
(20)

It can be seen from (20) that the disturbance force Ongs
exerted on the base is related to both the position vector
%r, and the detumbling force °F, of the target. The distur-
bance force should be minimized in order to decrease the
base disturbance. Therefore, in the kinodynamic trajectory
optimization method presented in the Section 3, the base

disturbance force OngS will be minimized as an objective
function.

3. Kinodynamic Trajectory Optimization for
Detumbling Manipulation

Generally speaking, the process of capturing a tumbling tar-
get in space can be decomposed into three phases: the pre-
contact, contact, and postcontact phases. However, the
precontact and contact phases are not in the scope of this
paper. In order to study the kinodynamic trajectory optimi-
zation problem for the postcontact phase, the following
assumptions are presented:

(1) In the precontact phase, the two arms can reach the
grasping point by generalized relative Jacobian [14]
or reactionless motion planning method [11]

(2) In the contact phase, the two arms and the target can
form a stable connection for further manipulation
[30, 34]

(3) For a tumbling target, the initial velocity and inertia
parameters can be estimated during the precontact
phase [30] and the postcontact phase [31]

In this section, the kinodynamic trajectory optimization
problem for stabilizing a tumbling target in the postcapture
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phase will be formulated, in which only the trajectory of
the target is optimized while the detumbling motion of two
arms is generated from the optimal trajectory of the target
by considering the kinematic and dynamic constraints
between the target and the two arms. This trajectory optimi-
zation problem is transformed into a nonlinear program-
ming problem (NLP) by the direct collocation method
[27]. Then, the solution of NLP can be found by the NLP
solver fmincon in the Optimization Toolbox of MATLAB.
The kinodynamic trajectory optimization algorithm is devel-
oped based on open-source trajectory optimization library
OptimTraj [35]. The detailed formulation of the kinody-
namic trajectory optimization method is shown in the fol-
lowing sections.

3.1. Kinodynamic Trajectory Optimization Framework. For
postcontact/capture phase, the space robot servicer and tar-
get will form a closed-chain constraint. In order to stabilize
the tumbling target in the postcapture phase, the kinody-
namic trajectory optimization framework is proposed for
generating detumbling motion of dual-arm space robot.
Given the initial conditions of the target and the dual-arm
space robot, the deceleration trajectory of the tumbling tar-
get should be optimized to minimize the detumbling time
and base disturbance and avoid singularity of dual-arm
space robot, while the detumbling motions of dual-arm
space robot can be generated according to the closed-chain
kinodynamic constraints between the two arms and the tar-
get. The framework of kinodynamic trajectory optimization
is shown in Figure 2.

3.2. System Dynamics and Decision Variables. To solve the
trajectory optimization problem of the tumbling target, we
use direct collocation to discrete the continuous trajectory.
For each collocation point, we define the following state var-
iable s and control variable F as follows:

§= [OXZ Oi?}) (21)

where %x,, °%,, and X, are the pose, velocity, and accelera-
tion of the target object; the states of two adjacent colloca-
tion points are constrained by the following dynamics
equation of the object:

mE, O;]1[% o
tH3 ) 3 t] i [0 03 . :OGZOFI+OGr0Fr’
0, I, %t w, X ( I, wt)
(22)
0 0..T o,T T T 0
where ‘x, = [ p, v, ] =[popppraBy] and "% =
T

{OVtT O\ptT] . The attitude %y, in °x, is represented by the
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FIGURE 2: Kinodynamic trajectory optimization framework for detumbling a tumbling target with dual-arm space robot.

z-y-x Euler angles; the angular velocity in the dynamic equa-

T
tion is represented by ‘w, = [owm ‘w, ‘w,

In order to deal with the nonholonomic property of the
angular velocity, the transformation between the Euler angle
rate and the angular velocity is derived as follows:

0 —so cucp| |

Bl =Nou(apoy)¥,  (23)
1 0 _Sﬁ ))

0 —
o,=10 ¢ s,

w
where Nzyx

%, to the angular velocity *w,; s,, ¢, sg, ¢4 are the abbrevia-
tions of sin(w), cos(a), sin(fB), and cos(f).
Therefore, we can obtain the following equation:

is the matrix which projects the Euler angle rate

O\i’t = N‘z‘;v;l ((X, :8’ Y)Owt' (24)

Furthermore, we can have the following equation by dif-

7
Iteration number
Y is maximum

Constraints and limits

(state, control, boundary)
|
ferentiating (23):

0, _ \w 0gr g% 0.

wt - Nzyx(‘x’ /3’ Y) ‘I”t + Nzyx(‘x’ ﬁ’ Y) \"'t’ ( )

25

", = NG (o B { P~ NG )W -

3.3. Constraints of the Trajectory Optimization. For deaccele-
rate the tumbling target, we can specify the initial and final
states of the tumbling target as follows:

X, (fy) = Xypp>
0 0
X, (tr) = "X
. K (26)
Xt(tO) - Xmi’
Oxt(tf) = 0"‘ﬁn’

O 0 . 0 0 . . .o .
where °x, .,"X, . and °xg ,"X; are the initial and final

(desired) states of the target, respectively.



Additionally, in order to ensure that the target is within
the workspace of the dual-arm space robot, we use box
bounds to approximate them in this paper. The state limits
of the target object in the trajectory optimization are intro-
duced as follows:

Xmin < 0Xt<t) < Xmax’ (27)

OX in S 05( (t) < 0j(max’

min — t
i X, are the minimum and maximum poses of
the target and °x , ,°% __ are the minimum and maximum
velocities of the target.
During the detumbling manipulation, the force magni-
tude of each manipulator applied to the target is constrained
as follows:

where %x

-%F, <°F(t)<°F

k,max — k,max’

(28)

0
where | T

equation (28), the optimal trajectory generation of the target
is decoupled from the dynamics of space robot [21]. Addi-
tionally, as the proposed kinodynamic trajectory optimiza-
tion method can not handle the time-variant constraints,
the corresponding joint torque can be guaranteed to be
below its limit by setting strict end-effector force/torque
limit. Therefore, the prescribed maximum end-effector force
(28) of each manipulator is designed to guarantee joint tor-
que limits of space robot during manipulation.

In addition to the above explicit constraints, the implicit
constraints are also included in the kinodynamic trajectory
optimization. As shown in Section 2.3, the base disturbance
is calculated according to the kinematic and dynamic closed-
chain constraints between two arms and the target.

is the maximum force of Arm-k. Through

3.4. Objective Function of the Trajectory Optimization. For
space robot, the attitude of the base is generally required to
keep fixed with respect to the sun and the earth for commu-
nication and observation purposes. However, the fuel of
thrusters for attitude control is very limited and mainly
reserved for orbital maneuvers. Therefore, the trajectory
optimization problem of postcapture phase is formulated
to minimize the detumbling time and base disturbance force,
i.e, minimize the energy consumption during the whole
detumbling manipulation. For the dual-arm space robot,
the base disturbance mainly comes from the operational
forces of two arms for detumbling the tumbling target as
shown in Section 2.3.

Furthermore, the inverse kinematic equation of dual-
arm space robot can be obtained from (10):

0=J!%,. (29)

The singularity of dual-arm space robot occurs if the
generalized Jacobian matrix J g is not full ranked. In order
to avoid the singularity, we added another weighted function
into the objective function of trajectory optimization. This
function is the negative manipulability of dual-arm space
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Target

7 DOF Chaser satellite

manipulator

7 DOF
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F1GURE 3: The initial configuration of dual arm space robot and the
target.

robot based on the generalized Jacobian matrix, which is
defined as follows:

M, =/ det (ngg). (30)

By minimizing M 7, (maximizing the manipulability),
dual-arm space robot can keep away from the singular con-
figuration. Therefore, the objective function of this trajectory
optimization for stabilizing the tumbling target can be writ-
ten as the following (equality constraints (22) and (26) and
inequality constraints (27) and (28)):

ty t

min  w,T+w 0F".TOFf. dt+w,| M, dt
1 2 dis *dis 3 ]
s(t),E(t) o to g

(31)

s.t. equality constriants

inequality constriants,

where T =t — £, is the detumbling time and Ongs is the distur-

bance force of the base during the detumbling manipulation.
Among the three items in the objective function, the base dis-
turbance force and manipulability are much more important
than the detumbling time; w;, w,, and w; are the weights to
trade off the detumbling time, base disturbance, and manipula-
bility. Unless specified, w,, w,, and w; are set to 1 in this paper.

4. Simulation Study

In order to verify the kinodynamic trajectory optimization
method proposed in this paper, simulation studies with differ-
ent objective functions and initial conditions are carried out.
In Section 4.1, the proposed kinodynamic trajectory optimiza-
tion framework is used to minimize the detumbling time and
the base disturbance of dual-arm space robot during detum-
bling manipulation. In Section 4.2, the proposed method is
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TABLE 2: Mass properties of space robotic system and target.
Redundant manipulator (as shown in Figure 3)
Base B, B, B, B, B, B, B, Target
Mass (kg) 500 4 2 6 2 6 2 2 100
ilxx 50 0.012 0.003 0.052 0.003 0.052 0.003 0.003 20
il},}, 50 0.012 0.003 0.052 0.003 0.052 0.003 0.003 20
) , iIZZ 50 0.002 0.0008 0.006 0.0008 0.006 0.0008 0.0008 20
'T; (kg.m") ;
I, 0 0 0 0 0 0 0 0 0
T, 0 0 0 0 0 0 0 0 0
T, 0 0 0 0 0 0 0 0 0
TaBLE 3: The constraints for trajectory optimization.
Description Variables Values
8ini (M, rad) {0, 0, 0.4, 0, 0, 0; 0.1, 0.05, 0, 0, 0, 0}
Bound constraint
Sgn (M, rad) {0, 0, 0.3, 0, 0, 0; 0, 0, 0, 0, 0, 0}
Spmin (1, Tad) {-0.6, -0.6, 0.2, -7, -71, -113 -00, -00, -00, -00, -00, -00}
State limit
Simax (11, rad) {-0.6, 0.6, 0.6, 7, 71, 7T; 00, 00, CO, 00, 00, CO}
Foin (N, N*m) {-30, -30, -30, -10, -10, -10, -30, -30, -30, -10, -10, -10}
Control limit .
Epax (N> N*m) {30, 30, 30, 10, 10, 10, 30, 30, 30, 10, 10, 10}

used to deal with a general case of stabilizing the tumbling tar-
get while considering the singularity avoidance.

For detumbling manipulation in postcapture phase, the
two arms have formed a stable connection with the target.
Without loss of generality, the initial configuration of the
dual-arm space robot and the target in the simulation study
are shown in Figure 3. The initial state of Arm-/ and Arm-r
are  set  to [0,45,0,90,0,45,0]" * 77/180 and
[0,—45,0,-90, 0,—45,0]"  71/180, respectively. The mass
and inertia parameters of the base, each manipulator, and
the tumbling target are shown in Table 2. Unless specified,
the length and angle units are m and rad, respectively. In
order to evaluate the results generated from trajectory opti-
mization, the base disturbance metric is defined as follows:

My =w,\/0p; +6p; +6p2 + w,, /603 + 80} + 802, (32)

where §p and So are the position and orientation disturbance
of the base and w, and w, are the corresponding weights for

position disturbance and orientation disturbance.

4.1. Minimal Detumbling Time and Base Disturbance. In this
section, the objective function of the trajectory optimization
is set to minimize the detumbling time and the base distur-
bance caused by the detumbling force of two arms. The
kinodynamic trajectory optimization is carried out with the
dynamic equation of the tumbling target while the corre-
sponding motions and forces of the two arms are generated
by the kinematic and dynamic constraints between the two

arms and the target. The constraints for the trajectory opti-
mization are listed in Table 3. The initial guesses for control
variable are set to zero.

For space robots, the attitude stabilization is much more
important than position as the specific attitude is required to
guarantee communication and solar energy utilization.
Without loss of generality, the weight coefficients for base
disturbance force and base disturbance torque in the objec-
tive function are set to 0 and 1 correspondingly. The gener-
ated trajectory for stabilizing a moving target is performed in
the gravity-free simulation environment as shown in
Figure 4.

The position and linear velocity trajectories of the tar-
get are shown in Figure 5. The corresponding position and
attitude disturbances of the base of dual-arm space robot
during the manipulation are shown in Figure 6. This result
is compared with the optimization result of minimizing
the detumbling time and the detumbling force at the
end-effector of each manipulator [21]. As shown in
Figure 6, the attitude disturbances of the base resulted
from these two different objective functions are [-0.09,
-0.34, -0.79] and [-0.12, -0.38, -0.85], respectively. It
should be noted that minimizing detumbling force is not
equivalent to minimizing the base disturbance. The trajec-
tories of the tumbling target and corresponding distur-
bance metrics in the above-mentioned two different cases
are shown in Figure 7. It can be seen that the trajectory
which minimizes the base disturbance is different from
the one minimizing detumbling force and consequently
has smaller base disturbance.
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FIGURE 4: Simulation result with trajectory optimization. Four sequentially selected snapshots.

Velocity trajectory

\

z (m/s)
~

-0.05
0.05

0 0

-0.05 0.05

x (m/s) y (m/s)

Position trajectory

\

N
NS
/\

0 0.2
0.2 0.1

04 0

x (m) y (m)

FIGURE 5: The velocity and position trajectories of the target during the detumbling manipulation.
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FiGure 6: The position disturbance and attitude disturbance of the base of dual-arm space robot. The solid lines represent the result
minimizing detumbling force; the dashed lines represent the result minimizing base disturbance.

In order to show the capability and robustness of the
proposed kinodynamic trajectory optimization method, we
carry out several simulations in which the mass and inertia
ratio between the target and the base of dual-arm space
robot is set to 1 while the uncertainties in mass and inertia
parameters of the target are also considered as shown in
Table 4. The optimal trajectories corresponding to different

mass and inertia of the target are shown in Figure 8, which
can be generated from the proposed kinodynamic trajectory
optimization. However, in order to show the robustness of
this method, dual-arm space robot only adopted the optimal
trajectory (solid line in Figure 8) where the mass and inertia
of the target and base are both set to 100kg and [20, 20,
20] kg.mz. Considering 0 (solid line), 10% (dashed line),
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TABLE 4: Parameter uncertainties of target’s model.

Mass and inertia of base (kg, kg.m?)

Mass and inertia of target (kg, kg.m?)

Parameter uncertainty

Mass: 100; inertia: [20, 20, 20]
Mass: 100; inertia: [20, 20, 20]
Mass: 100; inertia: [20, 20, 20]

Mass: 100; inertia: [20, 20, 20] 0
Mass: 110; inertia: [22, 22, 22]
Mass: 120; inertia: [24, 24, 24]

10% (mass and inertia)
20% (mass and inertia)

and 20% (dash-dotted line) mass and inertia uncertainties of
the target, the corresponding base disturbance force is
shown in Figure 9. It can be seen that for the same optimal
trajectory of the tumbling target, the smaller mass and iner-
tia parameters will result in a smaller base disturbance.
Therefore, considering the detumbling manipulation of
space target with initial mass and inertia uncertainty, we
can choose the maximum value for mass and inertia in the
optimization to get a conservative detumbling solution and
increase the robustness of the optimal solution.

Furthermore, we consider different initial velocities in
the trajectory optimization where the mass and inertia of
the target and base are both set to 100kg and [20, 20,
20] kg.m?. For different initial linear velocities [0.20, 0.10.
0.0], [0.22, 0.11, 0.0], and [0.24, 0.12, 0.0], the optimal trajec-
tories generated from the trajectory optimization are shown
in Figure 10(a). The corresponding base disturbance metric
is shown in Figure 10(b). It can be seen that for the same
tumbling target, the larger initial velocity will result in a
larger base disturbance.

4.2. A General Case for Singularity Avoidance. For stabilizing
the tumbling target, a general case is considered in which the
objective function is the same as Section 4.1 and the con-
straints condition is shown in Table 3. However, in order
to verify the singularity avoidance capacity of the trajectory
optimization framework, the initial velocity of the target is
set to [0.15 0.10 0 0.05 0.04 0.03], which may cause the sin-
gularity of dual-arm space robot because of the initial linear
velocity and angular velocity.

—— Mass = 100 kg
- - - Mass=110kg
Mass = 120 kg

Ficure 8: Optimal trajectories corresponding to different masses
and inertias of the target.

The simulation results of trajectory optimization without
singularity avoidance (i.e., w; = 0) are shown in Figure 11. It
can be seen that the singularity happens around 8s. The
joint angular velocities under singularity and manipulability
of dual-arm space robot are shown in Figure 12, from which
it can be seen that the singularity happens twice at 5.6 s and
8.4, respectively. On the other hand, the simulation results
of trajectory optimization with singularity avoidance are
shown in Figure 13. The optimal trajectories for the velocity
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FIGURE 10: Optimal trajectories and disturbance metrics corresponding to different initial velocities of the target.

3s

Singular
configuration
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of the target are shown in Figure 14. The corresponding base
linear and angular velocity are shown in Figure 15. It can be
seen that the dual-arm space will move with the tumbling
target during the detumbling manipulation as the base is
not actively controlled. The corresponding joint angular
velocities and manipulability of dual-arm space robot are
shown in Figure 16. The simulation results show that dual-
arm space robot can keep away from the singular configura-
tion by maximizing the manipulability. Therefore, the singu-
larity avoidance problem of dual-arm space robot can also
be solved in the kinodynamic trajectory optimization
framework.

5. Conclusion

In order to stabilize the tumbling target to a desired pose for
further maintenance and manipulation, the kinodynamic
trajectory optimization method is proposed for postcapture
phase in this paper. Instead of minimizing the detumbling
time and detumbling force, the objective function is formu-
lated to minimize the detumbling time and base disturbance
caused by the dual-arm detumbling force of dual-arm space
robot. To verify the proposed method, several physical sim-
ulations with different initial conditions and objective func-
tions are carried out. The results show that the trajectory
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generated from the proposed kinodynamic trajectory opti-
mization method which minimizes the base disturbance
force can result in smaller base disturbance than other objec-
tive functions and avoid singularities of dual-arm space
robot. Therefore, the energy of dual-arm space robot can
be saved for further manipulation. The proposed kinody-
namic trajectory optimization method can be used to plan
the trajectory of space robots for on-orbit manipulation.
For implementing the proposed method on real space robot
system, warm start is needed to decrease the computation
time. The multiple capturing phases, including precontact,
contact, and postcontact phases, will be also considered into
the whole trajectory optimization in future work.
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Space robot teleoperation is an important technology in the space human-robot interaction and collaboration. Hand-based visual
teleoperation can make the operation more natural and convenient. The fast and accuracy hand detection is one of the most
difficult and important problem in the hand-based space robot teleoperation. In this work, we propose a fast and accurate
hand detection method by using a spatial-channel attention single shot multibox detector (SCA-SSD). The SSD framework is
used and improved in our method by introducing spatial-channel attentions with feature fusion. To increase the restricted
receptive field in shallow layers, two shallow layers are fused with deep layers by using feature fusion modules. And spatial
attention and channel-wise attention are also used to extract more efficient features. This method can not only ease the
computational burden but also bring more contextual information. To evaluate the effectiveness of the proposed method,
experiments on some public datasets and a custom astronaut hand detection dataset (AHD) are conducted. The results show
that our method can improve the hand detection accuracy by 2.7% compared with the original SSD with only 15 fps speed
drops. In addition, the space robot teleoperation experiment proves that our hand detection method can be well utilized in the
space robot teleoperation system.

1. Introduction devices [6], such as data gloves [7-9] and surface electromyo-
graphy (SEMG) wristbands [10-12], have good convenience
performance. However, because they are wearable devices, the

performance on different people is very different. So, complex

Due to the limited intelligence of space robots, space human-
robot interaction plays an important role in the application of

space tasks [1]. Teleoperation is one of a widely used space
human-robot interaction method [2]. Teleoperation does not
depend on the high intelligence capabilities of space robots. It
can effectively combine the human decision-making ability
with the space robot precise operation ability to improve the
operation ability of space robots. There are some devices for
space teleoperation. Some traditional devices, such as haptic
feedback controllers [3-5], have stable and robust performance
but lack of convenience. Some hand-based teleoperation

calibration work is required before using them. Hand-based
visual teleoperation [6] is an emerging teleoperation method.
It has the advantages of noncontact, natural, and convenience.

Hand detection is an important and difficult issue in the
hand-based visual teleoperation. Because (1) space robot tele-
operation needs real-time and robust operation. So, the hand
detection should balance fast and accurate performances. (2)
Complex backgrounds and changing illumination inside and
outside the space station cabin make the astronaut hands
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difficult to detect and locate. (3) Hand is a small object. Detec-
tion for small objects has always been a difficult problem in
computer vision.

To deal with the above problems, a fast and accurate hand
detection method is proposed in this paper. SSD framework
[13] is used to design the hand detector since its good balance
of speed and precision and ease of structural improvement.
However, the SSD is not good at detecting small objects.
Because it uses shallow layers to detect small objects, and shal-
low layers have enough contextual information but lack of
semantic information. To address the lack of semantic informa-
tion in the shallow layers, a multiattention module with feature
fusion (MA-FF) is proposed to combine shallow layers with
deep layers. The multiattention module extract channel atten-
tion features from deep and low-resolution feature maps and
extract spatial attention features from high resolution layers,
respectively. Then, the feature fusion module fuses these fea-
tures to obtain new shallow layer feature maps with enough
contextual and semantic information.

The main contributions and innovations are shown as fol-
lows. (1) A spatial-channel attention SSD (SCA-SSD) is pro-
posed to deal with fast and accurate hand detection. The
layers for object detection in the SSD structure are visualized
to find out which layers play the most important role for small
object detection. And these layers are improved and fused with
deep layers. A multiattention module with feature fusion (MA-
FF) is proposed. It includes a channel attention branch, a spa-
tial attention branch, and a feature fusion branch. (2) A custom
astronaut hand detection dataset (AHD) is designed. This data-
set collects a large number of astronaut hand images and is
used for hand detection verification for space robot teleopera-
tion. (3) The experiments on hand detection datasets proves
that the proposed SCA-SSD has fast and accurate hand detec-
tion performance, which is superior to some state-of-the-art
method. And the experiments on the space robot teleoperation
platform prove that the designed hand detector can be well
used in the hand-based space robot teleoperation.

The rest of this paper is structured as follows. Section 2
reviews the prior work of hand-based robot teleoperation and
hand detection methods. In Section 3, we first describe and
visualize the original SSD and then elaborate the structure
details of the proposed hand detection method. In Section 4,
we provide the results of ablation experiments and comparative
experiments on public datasets and a custom AHD dataset.
And we also provide the application experiment on hand-
based space robot teleoperation platform. Finally, we draw
the conclusions and future work in Section 5.

2. Related Work

2.1. Hand-Based Robot Teleoperation. The hand-based robot
teleoperation methods include contact and noncontact
methods. The mainly contact methods include haptic feed-
back-based, sSEMG-based, and data glove-based methods.
Haptic feedback-based teleoperation [3-5] is a traditional tele-
operation method. It transmits the 6-Dof position and orien-
tation of human hand to the robot through the haptic
feedback controller. For example, the da Vinci surgical telema-
nipulator [3] can transmit the dual-hand motion information
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of the chief surgeon through two main joysticks to control the
instruments and a 3D high-definition endoscope. The principle
of the sSEMG-based teleoperation [10-12] is that when hand
moves, the arm will generate corresponding motor neuron
information, which can be obtained by decoding the SEMG sig-
nal. For example, Raspopovic et al. [10] used SEMG equipment
to collect SEMG signal of hand gestures and used these gestures
to control a dexterous hand. Data glove-based teleoperation
[7-9] uses curvature sensors to collect the bending degrees of
the fingers and the posture change of the entire human hand,
to decode the movement of the hand. Fang et al. [7] designed
a novel data glove to control a robotic hand-arm teleoperation
system. The above contact teleoperation methods are lack of
robustness for different people. The visual teleoperation is
robust to different people due to its noncontact advantage
[14-16]. For example, Li et al. [14] designed a mobile robot
hand-arm teleoperation system by using vision and IMU.
Handa et al. [15] designed a vision-based teleoperation method
for a dexterous robotic hand-arm system. Table 1 shows the
comparison and summary of the above hand-based robot
teleoperation methods.

2.2. Hand Detection Methods. Traditional visual hand detection
methods [17] mainly include skin color-based hand detection,
motion flow information-based hand detection, and shape
model-based hand detection. These methods only extract the
shallow information of hands, which are subject to many condi-
tions. Nowadays, deep learning-based hand detection methods
can achieve better detection performance in complex environ-
ment [18-20]. Hand detection can be regarded as a kind of
object detection. There are some typical deep learning-based
object detectors, such as RCNN series [21, 22], YOLO series
[23-25], and SSD series [13, 26, 27]. Among them, the SSD is
a light weight one-stage network, which considers speed and
accuracy trade-off and is easy to modify. For example, Gao
et al. [18] designed a feature-map-fused SSD for robust real-
time hand detection and localization. He also used SSD and
body pose estimation for dual-hand detection [19]. Yu et al.
designed a deep temporal model-based identity-aware hand
detector by using the SSD framework for space human-robot
interaction [20]. However, the SSD is stuck with the speed
and accuracy dilemma for small object detection. Some useful
methods and tricks are proposed to resolve this dilemma. DSSD
[26] attempts to recover higher resolution features and adds
with the primary features through shortcut connection. FSSD
[28], DF-SSD [29], RSSD [30], and ESSD [31] provided many
feature fusion methods to add more contextual information
into shallow feature maps. Table 2 shows the comparison and
summary of the above hand detection methods.

3. Spatial-Channel Attention SSD

In this section, first, the original SSD is introduced and visual-
ized. Then, the proposed SCA-SSD is introduced, which
includes the multi-attention module and feature fusion module.

3.1. SSD Introduction and Visualization. In this subsection,
the SSD architecture is introduced first. And then, the
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TaBLE 1: Comparison and summary of the hand-based robot teleoperation methods.

Method Highlights Limitations

Haptic feedback- This method transmits the 6-Dof position and orientation of ~ High accuracy and Contact method and only
based method [3-5] human hand to the robot through the haptic feedback controller. mature technology. be used for 6-DOF control.

Brief methodology

When hand moves, the arm will generate corresponding motor
neuron information, which can be obtained by decoding the SEMG
signal.

sEMG-based
method [10-12]

Contact method and lack

High accuracy. of robustness.

This method uses curvature sensors to collect the bending degrees
of the fingers and the posture change of the entire human hand, to
decode the movement of the hand.

Data glove-based
method [7-9]

High accuracy and Contact method and lack
mature technology. of robustness.

This method uses camera to capture the movements of human Strong noise and Noncontact method,

Vision-based

hands and maps the human hand movement information to the immature strong robustness, and
method [14-16]
robot. technology. naturalness.
TaBLE 2: Comparison and summary of the hand detection methods.
Method Brief methodology Highlights Limitations

Traditional visual
hand detection
methods [17]

They mainly include skin color-based hand
detection, motion flow information-based hand
detection, and shape model-based hand detection.

Small amount of These methods only extract the shallow
calculation, mature information of hands, which are subject
technology. to many conditions.

Deep learning-based
hand detection
methods [18-20]

They autonomously extract deep features of hand
images through deep neural networks.

They are stuck with the speed and
accuracy dilemma for small object
detection.

High detection
performance.

detection visualization in SSD is shown to find out which
layers are suitable for improving.

3.1.1. SSD Architecture. The SSD [13] is one of the outstanding
one-stage detectors with high speed and accuracy. The
architecture is shown in Figure 1. The VGG-16 is used as its
backbone, and several extra convolution layers on the top of
the network are used for prediction and classification by filters
directly. Unlike other detectors, SSD uses pyramidal multire-
solution feature maps as convolutional detector input, which
means it handles different scales in different resolution feature
maps. The SSD brings significant improvement on speed
because of its one-stage architecture. However, it cannot get
a high detection accuracy on small object. Because the shallow
layers for detection have much contextual information but less
semantic information. While the deep layers for detection are
reverse. Small object detection needs enough semantic and
contextual information for its low resolution. So, feature maps
with enough semantic and contextual information should be
designed for hand detection.

3.1.2. Detection Visualization in SSD. To find out which layers
are suitable for improving for small object detection, the
results of feature maps for object detection in SSD are visual-
ized. We select one convolution layer as the input of the detec-
tor and block other convolution layers which means we only
use one specific convolution layer to detect objects. The results
are shown in Figure 2, which shows that the small objects are
easier detected in shallow layers (conv4_3 and conv7 layers),
and large objects are easier detected in deep layers (conv8_2,
conv9_2, and conv10_2 layers). Because the contextual infor-

mation is vital to small object detection and shallow layers
have enough contextual information. However, due to the lack
of semantic information, there are some missing detection
results of small objects in conv4_3 and conv7 layers. Once it
misses the object in shallow layers, it has no chance to be
detected in the subsequent deep layers. To increase the accu-
racy of small object detection, we propose the SCA-SSD. A
multiattention module is employed on conv4_3 and conv7
layers and then fuses them with conv8_2 and convl1_2, sepa-
rately. The details are presented below.

3.2. SCA-SSD Architecture. In this subsection, the overview of
the SCA-SSD is introduced first. Then, the multiattention
module and feature fusion module are introduced, respectively.

3.2.1. Overview of SCA-SSD. The architecture of our pro-
posed SCA-SSD is introduced and shown in Figure 3. From
the figure, we can see that the SCA-SSD reuses the multiscale
and one-stage architecture of the original SSD. Two multiat-
tention branch with feature fusion (MA-FF) modules are
employed on the shallow layers conv4_3 and conv7, respec-
tively. They use the multiattention modules to extract chan-
nel and spatial features and use feature fusion modules to
fuse the two shallow layers (conv4_3 and conv7) with the
deep layers (conv8_2 and convll_2). Finally, the two new
feature maps output from the MA-FF modules are mainly
used for small object detection.

3.2.2. Multiattention Module. To address the lack of informa-
tion in shallow layers, we propose a multiattention module
with feature fusion, and the improved structure of conv4_3
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is shown in Figure 4 as an example. The design of the attention
module is inspired by bottleneck attention module (BAM)
[32]. To be specific, first, the spatial attention branch Atts is
employed after conv4_3 and conv7, respectively. After that,
channel attention branch Att, is employed after the convl1_
2 whose resolution is 1 x 1 so that we can skip the global pool-
ing operation in the squeeze stage coincidentally. Then, the
Atts and Att, are combined by element wise add operation
to generate the cross resolution spatial-channel attention
which terms Att,.. Finally, the sigmoid is applied for Att . to
obtain the weighted Att, and then multiply with feature maps
from the corresponding feature map. For instance, as shown
in Figure 4, weighted Att_ is obtained from conv4_3 so that
it multiplies and adds with conv4_3.

The spatial branch structure is shown in Figure 5(1).
This branch follows encoder-decoder structure, but we do
not down the resolution of the feature map to preserve more
information. Each branch consists of a 1 x 1 convolution

layer to reduce the dimensions of channels, and two 3 x 3
dilated convolution layers are employed for obtaining long-
range information with a widely receptive field. Then, it will
restore the number of channels as input by another 1 x1
convolution layer. In practice, each convolution layer and
dilated convolution layer are followed by a batch normaliza-
tion and a ReLU activation function except for the last 1 x 1
convolution layer. Set the input feature map is F, the output
Att, can be expressed as

Att(F)=o(f""([AvgPool(F) ; MaxPool(F)])), (1)

where o denotes the sigmoid function, f”*/ denotes a
conclusion operation with the filter size of 7 x 7.

The structure of the channel branch is shown in
Figure 5(2). In Att., in order not to affect the value of
convll_2 feature map, one 1 x 1 convolution layer following
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ReLU after the convll 2 is employed. In excitation, two
fully connected layers are used to blend different values in
different channels. Then, they are expanded to match the
sizes of conv4_3 and conv?7. Set the input feature map is F,
the output Att. can be expressed as

Att (F) = o(MLP(AvgPool(F)) + MLP(MaxPool(F))),
(2)

where o denotes the sigmoid function.

3.2.3. Feature Fusion Module. Even though the multiatten-
tion module brings extra contextual information to shallow
layers, the spatial attention branch still has a drawback.
The context is encoded as an attention mask so that the
value is limited between zero and one. By multiplying with
input feature map, it can enhance the useful information
for detection. However, context and long-range information
are encoded as attention mask Att, which only provides
weighted value. So, to capture more context, a feature fusion
module which can be embedded within the multiattention
module is proposed, and it is shown in Figure 4.

In the feature fusion module, two deconvolution layers
are employed to restore the size of feature map from 10 x
10 to 19 x 19 and 38 x 38, so that it can match the size of
conv7 and conv4_3. Our feature fusion module is inspired
by DSSD [26], and two deconvolution layers are only used
to avoid increasing much computational burden. In each
Deconv-n block, it includes a deconvolution layer and a

batch normalization (BN). After deconvolution, fusion opera-
tion is employed to merge a reweighted feature map M with
the output of deconvolution D. Follow the feature-fusion
SSD [27], element-wise add is used as the fuse operation. It
can be proved that element-wise add outperforms the concat-
enate operation in the feature-fusion SSD [27]. At the end of
this module, the ReLU activation function is employed.

4. Experiments and Analysis

In this section, to compare performance with the state-of-
the-art object detection methods, experiments are conducted
on Pascal VOC dataset [33] first. Then, experiments are con-
ducted on the Oxford hands dataset [34] to demonstrate the
effectiveness of our proposed method on public hand detec-
tion datasets. After that, the AHD dataset will be introduced,
and experiments will be conducted on this dataset to prove
the performance of astronaut hand detection. The mean
average precision (mAP) is adopted as evaluation metric to
evaluate our model prediction performance.

We implement the MA-SSD based on PyTorch [35]. The
data augmentation method is followed with SSD [13], and
the VGG-16 is used as the pretrained backbone. All experi-
ments are performed on 4 NVIDIA RTX 2080 Ti GPU.

4.1. Experiments on the Pascal VOC Dataset

4.1.1. Training. In training stage, the batch size is set to 32, and
the learning rate is set to 1 x 10 — 3 with a warm-up phase at
the first 500 times iteration. However, the experiment resulted
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the default learning rate is too small. Instead, the learning rate is
set to 4 x 10 — 3 with a warm-up phase at first 2800 iterations.
Learning rate should be increased from 1 x 10 — 6 with warm-
up factor as 0.03333 gradually. The training step is set to 140k
iterations totally, and the learning rate is divided by 10 at 84k
and 112k iterations which is different from original SSD [13]
but similar to RFB-Net [36]. Following the trick in RFB-Net,
the number of prior boxes in conv4_3 is increased to 6.

4.1.2. Introduction of the Pascal VOC Dataset. The objects in
the Pascal VOC 2007 dataset include 4 categories and 20
subcategories, which are vehicle (car, bus, bicycle, motor-
bike, airplane, boat, and train), household (chair, sofa, din-
ing table, TV, bottle, and potted plant), animal (cat, dog,
cow, horse, sheep, and bird), and person. These images are
collected from flickr and Microsoft Research Cambridge
(MSRC) dataset. The dataset includes 9,963 images contain-
ing 24,640 annotated objects.

4.1.3. Comparative Experiments. To demonstrate the perfor-
mance of the proposed SCA-SSD, some other state-of-the-
art methods are compared. The results are shown in Table 3.
For a fair comparison, the updated SSD [37] is used as our
baseline, which can get a 77.7% mAP on the VOC test dataset.
It is slightly higher than that of the original SSD [13], which
mAP is 77.2%. By employing multiattention and fusion mod-
ules on the SSD, it achieves a 79.9% mAP, which is 2.7% higher

than that of the original SSD [13] and 2.2% higher than that of
the baseline [37]. The SCA-SSD brings significant improve-
ment into SSD with the least impact on speed. It is only 15
FPS slower than the original SSD. And the mAP of the SCA-
SSD is even higher than that of the SSD512, which has a higher
input resolution (512 x512) than that of the SCA-SSD
(300 x 300). We also compare the results of the proposed
SCA-SSD with some state-of-the-art object detection methods
like faster-RCNN [21], YOLO v4 [25], R-FCN [38], and Stair-
Net [39]. From Table 1, we can see that the performance of the
SCA-SSD is higher than most of the state-of-the-art methods
both on accuracy and seed. In addition, we also show the results
of some SSD-series methods like DSSD [26] and FSSD [28]. To
the best of our knowledge, our SCA-SSD achieves the best per-
formance within SSD-series methods. It proves that the pro-
posed SCA-SSD can achieve a great performance for object
detection both on speed and accuracy.

4.2. Experiments on Oxford Hands Dataset

4.2.1. Introduction of the Oxford Hands Dataset. The hand
detection is different with normal object detection. It has small
size and changeable shape. To better prove the performance of
the SCA-SSD for hand detection, the experiments on hand
detection dataset are also conducted. The Oxford hands data-
set [34] which is a public hand detection dataset is used for
training and testing. In the dataset, a total of 13050 hand
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TaBLE 3: Comparison of object detection methods on VOC 2007 and VOC 2012 test dataset. In this table, the SCA-SSD is compared with
some state-of-the-art methods and other SSD-based methods to illustrate the promising performance on object detection.

Method Backbone Input size mAP Device FPS
Fast RCNN [21] ResNet-101 600 x 1000 76.4 K40 24
YOLO v4 [25] DarkNet-19 352 x 352 78.2 Titan X 81
R-FCN [38] ResNet-101 600 x 1000 79.5 K40 5.8
StairNet [39] VGG-16 300 x 300 78.8 Titan X 30
SSD300 [13] VGG-16 300 x 300 77.2 2080Ti 119
Baseline [37] VGG-16 300 x 300 77.7 2080Ti 119
DSSD321 [26] ResNet-101 321 x 321 78.6 Titan X 95
FSSD300 [28] VGG-16 300 x 300 78.8 1080Ti 65.8
FA-SSD300 [40] ResNet-101 300 x 300 78.3 — 347
FF-SSD300 [27] VGG-16 300 x 300 78.9 — 43
Shift SSD300 [41] VGG-16 300 x 300 783 Titan X 77
ESSD++300 [24] VGG-16 300 x 300 79.2 — 52
DEF-SSD300 [29] Dense-32-S-1 300 x 300 78.9 Titan X 11.6
RSSD300 [30] VGG-16 300 x 300 785 — 35
SCA-SSD300 VGG-16 300 x 300 79.9 2080Ti 104

instances are annotated. Hand instances larger than a fixed area
of bounding box (1500 sq. pixels) are considered “big” enough
for detections and are used for evaluation. This gives around
4170 high-quality hand instances. In each image, all the hands
that can be perceived clearly by humans are annotated.

4.2.2. Ablation Experiment. To understanding SCA-SSD struc-
ture deeper and better, several ablation experiments are con-
ducted to show the effectiveness of each module of the
network on hand detection. The results are summarized in
Table 4. In this experiment, first, we add channel attention
and spatial attention models on the baseline structure, respec-
tively. The mAP can increase 1.6% and 1.3% compared with
the baseline method. And the speeds only drop by 3FPS. It
proves that the proposed channel attention and spatial atten-
tion models are effective in hand detection. Second, we take
the feature fusion module away from the SCA-SSD, which
terms as SCA-SSD w/o fusion. The result decreases from
44.6% to 43.8% compared with the SCA-SSD w/fusion, which
indicates the feature fusion module is effective in hand detec-
tion. The feature fusion module can improve 0.8% of mAP but
it has little impact on the speed of inference, the speed still
keeps on over 100 FPS (104FPS). So, the ablation experiment
results show that the proposed channel attention, spatial
attention, and feature fusion modules are effective to improve
the performance of hand detection.

4.3. Experiments on AHD Dataset

4.3.1. AHD Dataset. To further verify the effectiveness of the
designed SCA-SSD hand detector in hand-based space robot
teleoperation, the experiment on the space environment
images should be conducted. Since there is no such hand
detection dataset, we customize a set of astronaut hand images

TaBLE 4: Ablation experiment results on the Oxford hand dataset.

Model mAP FPS
Baseline [37] 40.2 119
w/ channel 41.8 116
w/ spatial 41.5 116
SCA-SSD w/o fusion 43.8 114
SCA-SSD w/fusion 44.6 104

TaBLE 5: The verification results of the SCA-SSD hand detector on
the AHD dataset.

TIoU Area mAP
0.50:0.95 All 0.69
0.50 All 0.88
0.75 All 0.82
0.50:0.95 Small 0.56
0.50:0.95 Medium 0.62
0.50:0.95 Large 0.81

in various intra/extravehicular activities from some sci-fi
movies and YouTube resource. We named it AHD dataset.
The dataset includes a total of 2000 images and more than
4000 instances. All hands in the images are labelled as “hand.”

4.3.2. Verification Experiment and Visualization. The AHD
dataset is just used for verification. The hand detector
trained on the Oxford hands dataset is verification on the
AHD dataset, and the results are shown in Table 3. From
Table 5, we can see that when the IoU is 0.50:0.95, the hand
detect accuracy is 0.69. And when the IoU is 0.50, the hand
detection accuracy is 0.88. It is proved that the SCA-SSD
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F1GURE 6: Some hand detection results on the AHD dataset.
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FIGURE 7: Space robot teleoperation platform. (a) The platform includes a hand teleoperation space and a hand-arm robot motion space. (b)
The hand-arm robot includes a UR5 manipulator, a five-finger dexterous hand, and a RealSense.

hand detector can achieve good performance on the AHD
dataset. And when the hand areas are small, medium, and
large, the hand detection accuracies are 0.56, 0.62, and 0.81,
respectively. It is proved that the SCA-SSD hand detector
can achieve good performance on hands with various areas.
To better show the results of the hand detection for
astronaut’s hand, some of the result images are visualized
as follows. From Figure 6, we can see that the proposed

SCA-SSD hand detector can detect astronaut’s hands in var-
ious scenes.

4.4. Experiments on Space Robot Teleoperation Platform. The
SCA-SSD hand detector is utilized in a designed space robot
teleoperation platform, which is shown in Figure 7. The teleo-
peration platform includes a hand teleoperation space and a
hand-arm robot motion space. A RealSense camera can



International Journal of Aerospace Engineering

— Hand
-——URS5
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capture the astronaut’s hands in real time. After that, the SCA-
SSD hand detector can detect hands on the RGB images, and
then, the 2D hand positions can be mapped to the correspond-
ing depth images to obtain the 3D hand positions. Then, the
real-time hand positions in the hand teleoperation space can
be transferred to the hand-arm robot motion space by using
the following mapping relationship equation.

xf=x + A =],
ytl+A[1 yzHl]’ (3)

z; —z11+/\[z zl],

where the (xf, yR ZR) is the position of the end effector of the
robot, and the (x*, y*, z/) is the hand position in the camera
coordinate system (xR, yR zR) is the hand position in i-th
frame, and (xX |, yR |, 2% ) is the hand position in (i —1)-th
frame. A is a scale factor, and we set A = 1 in the teleoperation
experiment.

By collecting the motion trajectories of hand in the cam-
era coordinate system and robot end effector in the robot
coordinate system, the trajectories are shown in Figure 8.

From Figure 8, we can see that the end effector of the
robot can track the movement trajectory of the hand very
well. And the maximum error is only 9.3 mm.

5. Conclusion and Future Work

In this work, a fast and accurate hand detection method was
proposed by using a spatial-channel attention single shot
multibox detector (SCA-SSD). And the proposed hand
detector was utilized in a hand-based space robot teleopera-
tion system. Specifically, two shallow layers were fused with
deep layers by using feature fusion modules to increase the
restricted receptive field in shallow layers. And spatial atten-
tion and channel-wise attention were also used to extract
more efficient features. This method can not only ease the

computational burden but also bring more contextual infor-
mation. The comparative experiment, ablation experiment,
and verification experiment have proved the good perfor-
mance of the proposed SCA-SSD hand detector. Finally, the
experiment on space robot teleoperation platform has demon-
strated that the proposed SCA-SSD hand detector can be
applied well in the space robot teleoperation. There are some
limitations of the proposed hand detection and teleoperation
method. First, the proposed method is only trained on public
datasets, and due to the small sizes of the public datasets, the
generalization ability of hand detection is not strong. Second,
only the detection and localization of hands cannot control
the space robots well, and the subsequent recognition of hand
gestures and poses is also required.

In the future, hand gesture recognition methods need
further research to realize space robot teleoperation for com-
plex tasks. In addition, skeleton-based hand detection and
pose estimation also require further research to achieve
more precise teleoperation.
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