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Malignant tumors have become a major social health problem that seriously threatens human health, among which pancreatic
cancer has a high degree of malignancy, difficult diagnosis and treatment, short survival time, and high mortality. More and
more attention has been paid to abnormal lipid metabolism as a momentous carcinogenesis mechanism. Here, we explored the
relationship between abnormal lipid metabolism, enolase, and pancreatic cancer by clinical data analysis. A high-fat mouse
model was constructed, and then, a subcutaneous tumorigenesis mouse model of carcinoma of pancreatic cells and a
metastatic neoplasm mouse pattern of pancreatic carcinoma cells injected through the tail vein were constructed to explore
whether abnormal lipid metabolism affects the progression of pancreatic cancer in mice. We constructed a high-lipid model of
pancreatic carcinoma cell lines and knockdown and overexpressed enolase in pancreatic carcinoma cell lines and investigated
whether high lipid regulates epithelial-mesenchymal transition (EMT) by upregulating enolase (ENO), thereby promoting the
cells of pancreatic carcinoma to invade and migrate. Triglycerides, total cholesterol, free cholesterin, high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and neuron-specific enolase (NSE) from pancreatic cancer
patients and nonpancreatic cancer patients were tested. The differences in blood lipids between patients with and without
pancreatic carcinoma were compared, and the correlation between blood lipids and neuron-specific enolase was analyzed. We
confirmed that the serum triglyceride level of pancreatic cancer patients at initial diagnosis is overtopping nonpancreatic
cancer patients, and the neuron-specific enolase level of patients with pancreatic carcinoma is better than nonpancreatic
carcinoma sufferers. Triglyceride level is positively correlated with neuron-specific enolase level, and serum triglyceride level
has predictive value for pancreatic cancer. Hyperlipidemia can promote tumor growth and increase the expression levels of
ENO1, ENO2, and ENO3 in subcutaneous tumor formation of pancreatic cancer in mice. Additional hyperlipidemia promoted
pancreatic carcinoma metastasis in the lung in mice injected through the tail vein, which confirmed that hyperlipidemia
accelerated the process of EMT by increasing the expression of ENO1, ENO2, and ENO3, therefore promoting the pancreatic
cancer cell metastasis.

1. Introduction

Malignancy has become a major public health issue that seri-
ously threatens human health, among which pancreatic can-
cer has a high degree of malignancy, difficult diagnosis and
treatment, short survival time, and high mortality [1]. Dys-

lipidemia more and more is considered a significant mecha-
nism of tumorigenesis. The basic test indexes of blood lipid
included total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), and triglyceride (TG) [2]. The metastatic ability
of carcinoma cells is strongly linked to lipid metabolic
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enzymes, In melanoma metastasis, mammary carcinoma,
and prostate cancer, the metastatic ability of carcinoma cells
is strongly linked to lipid metabolic enzymes [3]. HDL and
LDL major cholesterol carriers function through receptor-
mediated mechanisms in tumor cells. The effect of HDL
cholesterol on cancer is related to its antioxidant and anti-
inflammatory properties, and some prospective studies have
shown that prediagnosis HDL cholesterol levels are signifi-
cantly associated with the incidence of breast, prostate,
colon, lung, and liver cancers. Serum triglyceride level is sig-
nificantly increased in patients with colorectal cancer (CRC),
and hypertriglyceridemia is positively correlated with the
occurrence of colorectal adenoma [4]. Elevated triglyceride
can be a colorectal adenoma risk factor for the potential
occurrence and development. Enolase (ENO) is an ancient
enzyme with a highly conserved structure, including
ENO1, ENO2, and ENO3. The active ENO exists as a dimer
and consists of two relatively parallel subunits [5]. ENO1 is
widely distributed in various tissues, ENO2 is mainly found
in neurons, and ENO3 is mainly found in muscle tissues [6].
As a key enzyme in the glycolytic pathway, ENO is related to
the prognosis of many such as tumors and other diseases.
ENO1 expression is significantly upregulated in all kinds of
malignancies, ranging from glioma, nasal laryngeal carci-
noma, mammary cancer, and pancreatic cancer to uterine
cancer, etc. Studies have found that in pancreatic cancer,
the expression of ENO1 is positively correlated with clinical
stage and lymphatic metastasis and negatively correlated
with survival time [7]. The median survival of patients with
high ENO1 expression in pancreatic carcinoma is as short as
8 months, while the median survival time is more than 30
months with low ENO1 expression [8]. ENO1 and related
antibodies can reference as underlying biomarkers in the
diagnosis and prognosis of tumor. ENO2 is an important
tumor marker for the diagnosis, prognosis, and follow-up
of lung cancer [9]. The objective was to investigate what is
the effect of ENO in abnormal lipid metabolism and how it
impacts the progression of carcinoma of pancreas and its
mechanism. A basis for individualized diagnosis and thera-
peutic of pancreatic cancer patients in the future.

The incidence of pancreatic cancer increased in recent
years; obesity might be involved, The incidence of pancreatic
cancer increased in recent years [10]. Pancreatitis and pan-
creatic cancer are both pancreatic diseases with common
risk factors and pathological features, suggesting a strong
correlation between them, which may also be the key to can-
cer transformation [11]. Acinar-to-ductal metaplasia is
observed in chronic pancreatitis. ADM is considered to be
a precursor of pancreatic cancer [12]. Oxidative stress and
inflammatory response can promote the development of
pancreatitis and act together with genetic factors, such as
oncogenic KRAS mutation and tumor suppressor gene inac-
tivation, thus initiating and accelerating pancreatic intraepi-
thelial neoplasia [13]. PANIN ultimately leads to pancreatic
cancer [14]. Studies have also found that hyperglycemia can
increase the incidence rate and sprout of pancreatic cancer
in varied ways, and elevated fasting blood glucose can signif-
icantly affect the incidence of pancreatic cancer, suggesting
that hyperglycemia is closely related to pancreatic cancer

[15]. Hyperglycemia is associated with genomic instability
by increasing the level of O-GlcNacylation after translation,
leading to an imbalance in the nucleotide pool and ulti-
mately to the induction of KRAS mutations, thus becoming
an initiating event in pancreatic cancer [16].

Enolase (EC4.2.1.11) is a highly conservative glycosome
that catalyzes 2-phospho-D-glyceric acid (2-PGA) to convert
to phosphoenolpyruvate (PEP) during glycolysis [17]. Enolase
isoenzymes function as homodimers (αα, ββ, and γγ) or het-
erodimers (αβ or αγ), catalyzing 2-phosphoglycerate in glycol-
ysis to convert to phosphoenolpyruvate (PEP) [18]. The
expression of enolase in mammals is tissue-specific, α-enolase
(ENO1) is widely found in a variety of tissues, β-enolase
(ENO3) is mainly expressed in muscle tissues, and γ-enO2 is
very active in neuronal tissues, so it is also called neuron-
specific enolase (NSE) [19]. γ-Enolase (ENO2) is the encoding
gene located on human chromosome 12. It is composed of two
enolase isoenzymes, γγ and αγ [20]. It is an acid dimer protein
with 433 amino acids. By the way, γ-enolase also is major in
lung cancer diagnosis and prognosis and likely plays a part
in predicting chemotherapy response and recurrence in acute
leukemia [21]. γ-Enolase phosphorylates GSK-3β to enhance
the activity of Akt and induce cell proliferation, resulting in
the increased expression of multiple glycolytic-related genes
in acute leukemia cells. Elevated γ-enolase expression is also
associated with neuroblastoma, cervical cancer, melanoma,
renal cell carcinoma, and other diseases [22]. ENO2 serves as
a potential target for these tumors [23]. A positive correlation
was found by Chang et al. between serum triglyceride extent
and the NSE level of ischemic stroke patients [24]. However,
there are few studies on the effect of abnormal lipid metabo-
lism on ENO and its further effect on pancreatic carcinoma,
which is worthy of further investigation.

2. Materials and Methods

2.1. Preparation of Animals. This research was supported by
the Kunming University of Medical Sciences (Approval
number: kmmu2021426).

As laboratory animals, 6-8-week-old male C57 and
Panc-02 mice weight 20 g-30 g (n = 12, each group), and
Panc-02 mouse pancreatic cancer cells were provided by
Olubiol (Kunming, Yunnan, China). The mice were housed
in an animal facility and handled in accordance with the
Guide for the Care and Use of Laboratory Animals of Kun-
ming Medical University Hospital. All mice were housed
under ambient conditions (standard humidity and tempera-
ture) with a 12 h light/dark cycle. The 7-week-old mice were
used for experimentation after an adaptation period of 1
week. All mice were specifically pathogen-free and were
maintained under the same environmental conditions with-
out differences in food intake.

2.2. The Research Object. All 208 pancreatic carcinoma
patients admitted to the First Affiliated Hospital of Kunming
Medical University from January 2016 to June 2022 were
enrolled as the study group, including 117 males and 91
females. The inclusion criteria of the pancreatic cancer
group were as follows: malignant cells of pancreatic cancer
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were detected by pancreatic cancer surgery or biopsy, which
met the diagnostic criteria of pancreatic cancer. Exclusion
criteria for the pancreatic cancer group were as follows: age
< 18 years and without a pathological diagnosis of pancre-
atic cancer. The control group included 1350 randomly
selected people who underwent physical examination in
our hospital during the same period. The exclusion criteria
of the control group included those who were younger than
18 years old, had pancreatic occupation on ultrasound, or
had a history of pancreatic cancer. There were 662 males
and 688 females in the control group. There was no statisti-
cal significance in the sex ratio between the two groups
(P > 0 05).

2.3. The Indicators. The indicators used in this study include
gender, age, aspartate aminotransferase (AST) levels (IU/L),
alanine aminotransferase (ALT) levels (IU/L), serum creati-
nine (Cre) levels (μmol/L), serum uric acid (UA) levels
(μmol /L), fasting venous glucose levels (mmol/L), total cho-
lesterol (TC) levels (mmol/L), free cholesterol (F-CHOL)
levels (mmol/L), triglyceride (TG) levels (mmol/L), high-
density lipoprotein cholesterol (HDL-C)(mmol/L), low-
density lipoprotein cholesterol (LDL-C) (mmol/L), and
neuron-specific enolase (NSE) (ng/mL). All indicators were
collected from the Clinical Data Management Center of the
First Affiliated Hospital of Kunming Medical University.

2.4. Detection Method. Roche Cobas 8000 automatic bio-
chemical analyzer was used to measure blood biochemical-
related indexes (fasting blood in the morning): total protein
(biuret method), blood glucose (hexokinase method), total
cholesterol (cholesterol oxidase method), triglyceride
(GPO-PAP method), and low-density lipoprotein choles-
terol (surfactant clearance method). Tumor markers were
detected by the Cobas 6000 instrument. Within two hours,
the professional inspectors of the Central Laboratory of the
First Affiliated Hospital of Kunming Medical University
shall complete the inspection with original reagents accord-
ing to the standard procedures of the instrument usage
instructions and strictly control the quality. An abdominal
ultrasound examination was completed in the Imaging
Department of the First Affiliated Hospital of Kunming
Medical University.

2.5. Immunohistochemistry Was Used to Detect Clinical
Specimens. The surgical sections of patients with clinical
pancreatic cancer were collected for immunohistochemical
staining. The specific steps were as follows: (a) baking sheet:
put the tissue sheet into a 64°C incubator and bake for 1 h;
(b) dewaxing: put the glass slide into xylene I (10min) and
xylene II (10min); (c) hydration: 100% alcohol I and II
(5min), 100% alcohol (5min), 95% alcohol (5min), 80%
alcohol (3min), and 70% alcohol (2min); rinse with PBS 3
times, 5min each time; (d) antigen repair: pour citrate buffer
into the pressure cooker and boil it, then put the slide in,
cover the pot tightly, start the timer when a large number
of bubbles emerge from the exhaust valve, boil for 3 minutes,
turn off the heat, open the cover after exhaust, and cool to
room temperature; rinse with PBS 3 times, 5min each time;

(e) blocking: incubation with 3% H2O2 water for 20min at
room temperature to inactivate endogenous peroxidase
activity; rinse with PBS 3 times, 5min each time; (f) block:
5% bovine serum albumin V was incubated at 37°C for
30min; (g) incubation of primary antibody: according to
the antibody instructions, the appropriate dilution ratio
was selected to dilute the primary antibody with 2% bovine
serum albumin V, and the diluted primary antibody was
added to the glass slide by drop and placed in the refrigera-
tor at 4°C overnight. In the next day, the primary antibody
was placed in the temperature box at 37°C for rewarming
for 30min and then washed with PBS three times, 5min
each time; (h) incubation of secondary antibody: goat anti-
rabbit secondary antibody (diluted in PBS, 1 : 500) was
added to the tissue block and incubated at 37°C for 30min
and then washed with PBS 3 times, 5min each time; (i)
DAB color development: DAB staining droplets were added
to the tissue blocks for staining, and the slides were placed
under a microscope to observe the staining. After obvious
staining, the staining solution was washed with PBS, and
the staining solution was washed with PBS 3 times, 5min
each time; (j) hematoxylin counterstaining: the slide was
stained in hematoxylin for 5min, washed with distilled
water, put into alcohol hydrochloric acid solution for differ-
entiation, differentiation for 10-15 s, and put into tap water
to return blue for at least 15min; (k) dehydration: 70% alco-
hol (2min), 80% alcohol (3min), 95% alcohol (5min), 100%
alcohol I (5min), and 100% alcohol II (5min); (l) transpar-
ent: xylene I (10min) and xylene II (10min); (m) seal: seal
the film with neutral gum; (n) analysis: for microscopic
observation, 5 visual fields were selected to take films and
the positive rate was calculated.

2.6. Mouse Pancreatic Cancer Cell Panc-02 Cell Culture

2.6.1. Cell Recovery. According to the records, the frozen
cells were removed from liquid nitrogen and quickly shaken
in a 37°C water bath. After they were dissolved, the cells were
quickly brought to the ultraclean workbench. The cells were
transferred to a 15mL centrifuge tube containing 10mL
complete medium, mixed, and centrifuged at 1000 rpm for
5min at room temperature. The supernatant was poured
out and DMEM complete medium was added. After blow-
ing and mixing, the cell suspension was transferred into T-
25 culture flask and cultured in an incubator with 5% CO2
at 37°C.

2.6.2. Cell Passage. When the cell density reached 80%, care-
fully absorb and discard the culture medium in the cell cul-
ture dish with a pipette gun on the ultraclean workbench,
slowly add 3mL sterile PBS from the edge of the dish with
a pipette gun, absorb and discard PBS with a pipette gun,
and wash twice. When most of the cells became round and
separated from each other, an appropriate amount of com-
plete medium containing fetal bovine serum was added to
terminate the digestion. The single cell suspension was made
by gently blowing and was centrifuged at 1000 rpm for
5min, the medium was discarded, and the cells were resus-
pended by adding a complete medium containing fetal
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bovine serum. Then, it was divided into culture bottles for
further culture and subcultured according to 1 : 3.

2.6.3. Cell Cryopreservation. When the cell density reached
80%, the culture medium in the cell culture dish was care-
fully sucked and discarded with the pipette gun on the ultra-
clean workbench, 3mL sterile PBS was slowly added from
the edge of the dish with the pipette gun, the PBS was sucked
and discarded with the pipette gun, and the washing was
repeated twice. When most of the cells became round and
separated from each other, an appropriate amount of
DMEM complete medium containing fetal bovine serum
was added to terminate the digestion, and the single cell sus-
pension was made by gently blowing and centrifuged at
1000 rpm for 5min, and the medium was discarded. The
cells were resuspended by adding 1mL of frozen storage
solution and transferred to the frozen storage tube and
placed in the frozen storage box at -80°C overnight and then
transferred to liquid nitrogen for storage.

2.7. Blood Samples Were Taken from Mice to Detect Blood
Lipids. There are 24 C57 mice (male) aged 6-8 weeks, of
which 12 mice were fed with high fat and 12 mice were fed
with normal. After 6 weeks, blood samples were collected from
the eye socket of mice and placed in heparin anticoagulant
tubes for 2 hours. After that, the samples were separated at
3000 rpm/heart for 15min at 2-8°C. The thawed samples were
centrifuged again and then tested for triglyceride, total choles-
terol, HDL cholesterol, and LDL cholesterol levels.

2.8. Tumor Formation by Subcutaneous Injection. Six mice
were randomly selected from 12 mice with hyperlipidemia
after 6 weeks of high-fat feeding, 6 mice were randomly
selected from 12 mice with normal blood lipids, 6 mice were
also randomly selected from 12 mice with normal blood
lipids, and 6 mice were also randomly selected from 12 mice
with normal blood lipids at 8 weeks. 100μ of PANC-02
mouse pancreatic cancer cells (7 × 106 cells) was subcutane-
ously injected into C57 mice. We checked whether the cell
name corresponds to the group of animals one by one; check
whether the cell name corresponds to the group of animals
one by one. The air in the syringe should be discharged after
the syringe inhales the cells. Pinch the skin at the injection
site with your hand, stab the needle into the subcutaneous
area and groin observedly, draw back if no blood, and then,
advance the cells; hold for 7-10 s, pull out the needle, and
locally compress it with a cotton ball or swab for a while.
The long and short diameters of the implanted subcutane-
ous tumors were measured with vernier calipers every 2
days from 3 days after subcutaneous tumor modeling,
and the tumor volume was calculated according to the for-
mula V = A × B2 × 0 5 (V represents the tumor volume, A
is the long diameter, and B is the short diameter). On the
12th day after subcutaneous tumorization, the animals
were sacrificed by cervical dislocation, and the tumor
pieces were slowly removed with ophthalmic scissors and
ophthalmic tweezers and then weighed on an electronic
balance. The tumor mass was measured by analytical bal-
ance and recorded.

2.9. Tumor Formation by Tail Vein Injection. Twelve mice
were given a high-fat diet (high-fat group), while the other
twelve mice were given a normal diet (control group). Blood
lipids were measured after six weeks, and at the 8th week, six
mice from each group were randomly selected for tail vein
injection with pancreatic cancer cells. 100μL of PANC-02
mouse pancreatic cancer cells (5 × 106 PANC − 02 cells)
was injected into C57 mice through tail vein. Pancreatic can-
cer cells (PANC-02 cells) may metastasize to the spleen,
lung, pancreas, and brain, causing tissue lesions. Body
weight was monitored every 3-4 d after 3 days of surgery.
An electronic scale was used to record the weight changes
of mice. The steps are as follows: step 1: place the electronic
scale on a hard and flat surface; step 2: press the “on/off”
button, and the scale will be cleared within 3 seconds; and
step 3: please place the item to be weighed in the container,
and the weight will be displayed on the electronic screen.
After the body weight of C57 mice decreased abruptly,
metastatic foci may be formed. On the 42nd day after the tail
vein injection of pancreatic cancer cells into the model, C57
mice were anesthetized by intraperitoneal injection of
1.5 vol% isoflurane (1 L/min) through a 1mL syringe accord-
ing to their body weight. After that, the abdomen was disin-
fected and the skin was prepared. Lung tissue was removed
from mice.

2.10. QPCR Detection. Total RNA extraction: cells were
mixed with 700μL of RNA extract, thoroughly blown and
mixed, and then stood for 10min; 140μL of chloroform
was added and thoroughly mixed. Centrifugation at
12000 g for 15min at 4°C showed that the liquid was divided
into three layers, and RNA was retained in the colorless
upper aqueous phase. Gently draw the upper aqueous phase
into a new EP tube and record the volume of the superna-
tant. Then, the same volume of 100% isopropanol was added
and centrifuged at room temperature for 10min at 12000 g
for 10min at 4°C. It was observed that more white RNA pre-
cipitates were generated at the bottom of the tube. Carefully
tilt the tube mouth to discard the supernatant, blot the tube
mouth with absorbent paper, add 500μL 75% ethanol to the
precipitation (the amount of ethanol added is half of the
supernatant), centrifuge at 7500 g for 5 minutes at 4°C, and
make the precipitation adhere to the bottom of the tube. Dis-
card the supernatant, invert the centrifuge tube onto absor-
bent paper, and blot the remaining liquid with a pipette
gun. Blow in a ventilated kitchen for 5 minutes to remove
as much residual liquid as possible. Add 60μL of RNase
water to the dried RNA precipitate and leave for 15 minutes
to dissolve the RNA completely. Freeze in the refrigerator at
-80°C. Reverse transcription: SureScript First-Strand cDNA
Synthesis Kit (Xavir, Guangzhou, China) was used. After
brief centrifugation, the reaction was carried out in CFX96
real-time quantitative PCR instrument according to the fol-
lowing conditions: predenaturation at 95°C for 1min, dena-
turation at 95°C for 20 s, annealing at 55°C for 20 s, and
extension at 72°C for 30 s, 40 cycles; and the final extension
was made at 72°C for 5min 4°C. Fluorescence was collected
and recorded, amplification curve and dissolution curve
were made, and Ct values were read. The primer sequence
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is as follows: GAPDH F: CCTTCCGTGTTCCTACCCC;
GAPDH R: GCCCAAGATGCCCTTCAGT; E-cadherin F:
GGGACAAAGAAACAAAGGT; E-cadherin R: GACACG
GCATGAGAATAGA; N-cadherin F: CCCCCAAGTCC
AACATTTC; N-cadherin R: CCGCCGTTTCATCCAT
ACC; vimentin F: GCAGCCTCTATTCCTCATC; vimentin
R: TGCAGTTCTACCTTCTCGT; a-SMA F: TGCCGA
GCGTGAGATTGT; a-SMA R: CTTCATGGTGCTGGGT
GC; ENO1 F: GGCAACCCTGAAGTCATCCT; ENO1 R:
AATCCACCCTCATCACCCAC; ENO2 F: GGATGGGAC
TGAGAATAAA; ENO2 R: AGCAATGTGGCGATAG
AGG; ENO3 F: GGGGGATGAGGGTGGCTTT; and
ENO3 R: GGGGTTGGTTACCGTGAGG. Analysis of
experimental results: the dissolution curve was smooth with
only one large single peak, and the primer specificity was
good. The data were available. The Ct values were read,
and the relative gene expression was calculated using the
2−△△Ct method. Specifically, the first step was calculated as
△Ct = Ct target gene − Ct reference gene . △△CT =△CT
experimental group −△CT control group ; finally, the

2−△△CT value was calculated as the relative expression level
of mRNA.

2.11. Western Blotting Detection

2.11.1. Tissue/Cell Protein Extraction. Preparation of RIPA
lysate: 1mL RIPA lysate with 10μL of 100x protease inhibi-
tors (if phosphorylated antibodies need to be checked to add
the corresponding phosphatase inhibitors) on ice for use.
Discard the medium, wash the cells with precooled PBS for
3 times, add the corresponding amount of cell lysate, lysate
on ice for 10min, scrape the cells with cells, and transfer to
EP tube. Weigh 50-100mg of tissue and add 500-1000μL
RIPA lysate to the tissue homogenizer and homogenize on
ice. Centrifuge the above lysed sample at 16000 g for
15min at 4°C, take the supernatant, and divide it into
80μL each.

2.11.2. Determination of Protein Concentration and
Denaturation. Determination of protein concentration with
BCA protein quantification kit: add 0, 0.25, 0.05, 0.1, 0.2, 0.3,
0.4, and 0.5mg/mL of the standard volume of 20μL, after 50
times of sample dilution, add 20μL of the diluted sample to
make 3 rewells, and add 200μL of BCA working solution
(BCA reagent A and B 50 : 1 preparation). The absorbance
value was measured at 562nm after 30 minutes at 37°C. Pro-
tein denaturation reserve: take 80μL protein sample for quan-
tification 3.8-6μg/μL (concentration < 3 8 μg/μL ≥ 0 5 μg/μL
quantitative denaturation according to the lowest), mix with
appropriate 5× protein loading buffer and boil in boiling water
bath for 10min, cool to room temperature, and store at -80°C.

2.11.3. SDS-PAGE Electrophoresis. Separation glue: distilled
water, 30% acrylamide, 1M Tris-HCl (pH 8.8), 10% SDS,
10% ammonium persulfate, and TEMED preparation
according to the different target protein preparation of dif-
ferent concentrations of glue. Concentrated glue: concen-
trated glue (5mL) 3.4mL of distilled water, 30%
acrylamide 0.83mL, 1 Tris-HCl (pH 6.8) 0.63mL, 10%
SDS 0.05mL, 10% ammonium persulfate 0.05mL, and

TEMED preparation 0.01mL. After the glue is prepared,
add distilled water liquid seal, discard the distilled water
after 30min, and blot the water with paper. The concen-
trated glue can be used 10min after it is prepared. SDS-
PAGE electrophoresis: 10μL sample loading and 80V stable
pressure electrophoresis for about 30min; when the protein
sample is to the separation glue concentrated glue interface,
change to 120V stable pressure electrophoresis; when bro-
mophenol blue run to the bottom, about 90 minutes, take
out the gel.

2.11.4. Membrane Transfer. The PVDF membrane should be
soaked in methanol for 5 minutes and then balanced in the
membrane transfer buffer for 15 minutes. The membrane
was transferred to the electroconverter at 4°C and 300mA
for 1 h. Block: remove PVDF membrane and rinse with
TBST once, cut the excess membrane on the edge, and block
in 5% BSA at 37°C for 30min (or overnight at 4°C).

2.12. Statistical Analysis. SPSS20.0 software was used for
data processing. The normal distribution of measurement
data was expressed as mean ± standard deviation X ± S ,
and t-test was used for comparison between the two groups.
The receiver operating characteristic curve (ROC curve) was
used to evaluate the prognostic value. P < 0 05 was consid-
ered statistically significant.

3. Results

3.1. Expression and Correlation Analysis of Triglyceride and
NSE in Pancreatic Cancer Patients. The comparison of clin-
ical data between pancreatic cancer patients and the control
group showed that TG and NSE of pancreatic cancer
patients were higher than the control group, and there was
a significant positive correlation between triglyceride and
neuron-specific enolase (NSE) (P = 0 0004) (Figures 1(a)–
1(c)). ROC curve evaluation showed that triglyceride had a
certain predictive value in pancreatic cancer (AUC =
0 7678 > 0 7). AUC > 0 7 is considered to have predictive
value; AUC < 0 7 has no predictive value (Figure 1(d)). By
analyzing the clinical indicators of pancreatic cancer patients
and the control group and exploring the relationship
between abnormal lipid metabolism, enolase, and pancreatic
cancer, we drew the following conclusions: the triglyceride
level of pancreatic cancer patients at initial diagnosis was
higher than that of the control group. The level of NSE in
pancreatic cancer patients was higher than the control group
(Figure 1(e)). Triglyceride level was positively correlated
with NSE. Human growth hormone (HGH), ferritin (FER),
and pepsinogen 1 were correlated with triglyceride (pepsin-
ogen 1), total bile acid (TBA), gamma-glutamyl transpepti-
dase (GGT), cholinesterase (PChE), urea nitrogen (BUN),
blood uric acid UA, high-density lipoprotein cholesterol
(HDL-C), low-density lipoprotein cholesterol (LDL-C);
CEA, CA125, CA153, CA199, CK-19, ferritin (FER), pros-
tate specific antigen (PSA), aspartate aminotransferase
(AST), total bilirubin (TB), indirect bilirubin (IDBIL), and
alkaline phosphatase (ALP) were correlated with NSE
(Figure 1(f)).
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Figure 1: Clinical data analysis of pancreatic cancer patients and control group. (a–c) Expression and correlation analysis of triglyceride and
NSE in pancreatic cancer patients. (d) ROC curve was used to evaluate the predictive value of triglyceride in pancreatic cancer. (e)
Immunohistochemistry was used to detect the expression of ENO1, ENO2, and ENO3 in clinical tissues. (f) Analysis of neuron-specific
enolase (NSE) and tumor-related indicators.
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3.2. Identification of Mouse Hyperlipidemia Model. C57 mice
in the high-fat group were fed with a high-fat diet, while C57
mice in the normal group were fed with an ordinary diet.
After 6 weeks, four blood lipids were detected by a biochem-
ical analyzer. The results of oil Red O staining in liver tissue
showed that the hyperlipidemia mouse model was success-
fully established. Four blood lipids (triglyceride (TG), low-
density lipoprotein cholesterol (LDL), high-density lipopro-
tein cholesterol (HDL), and total cholesterol (CHO)) in mice
were detected (Figures 2(a)–2(d)). Compared with the mice
in the high-fat feeding group, triglyceride (TG) increased,
low-density lipoprotein cholesterol (LDL) increased, high-
density lipoprotein cholesterol (HDL) decreased, and total
cholesterol (CHO) increased, all with statistical significance.
The results of oil Red O staining of mouse liver tissue
showed that the fat content of liver tissue in the high-fat

feeding group was significantly higher than that in the ordi-
nary feeding group (Figure 2(e)).

3.3. The Construction of Pancreatic Cancer Subcutaneous
Tumor Animal Model. Mice in the high-fat group and con-
trol group were injected with PANC-02 cells subcutaneously
to establish the animal model of pancreatic cancer tumori-
genesis (Figure 3(a)). The curve of tumor volume change
in mice showed a gradual upward trend; the volume of the
control group increased after decreasing (Figure 3(b)). The
curve of weight change of mice after subcutaneous tumor
formation showed that the weight of the high-fat group
showed a trend of first increasing and then decreasing
(Figure 3(c)), while the weight of the control group gradually
decreased. The tumor growth curve (Figure 3(d)) showed
that compared with the control group, the tumors in the
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Figure 2: Establishment and identification of mouse hyperlipidemia model. (a) The expression of triglyceride TG in the four blood lipids of
mice. (b) The expression of low-density lipoprotein cholesterol and LDL in the four blood lipids of mice. (c) The expression of high-density
lipoprotein cholesterol HDL in the four blood lipids of mice. (d) The expression of total cholesterol CHO in the four items of blood lipid
detected by total cholesterol CHO in mice. (e) The results of oil Red O staining in liver tissue of mice. The results showed that the fat
content in the liver tissue of mice in the high-fat feeding group was significantly higher than that in the ordinary feeding group.
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high-fat group grew relatively faster, and the difference
between the two groups was statistically significant.

3.4. Expression of Enolase-Related Indexes and EMT-Related
Genes in Mouse Subcutaneous Tumorigenesis. QPCR test
declares that enolase-related indicators ENO1/ENO2/
ENO3 in the high-fat group were significantly higher than

those in the control group (Figure 3(e)).The expression of
EMT-related genes N-cadherin, vimentin, and α-SMA in
the high-fat group was significantly higher than that in the
control group, and the expression of E-cadherin in the
high-fat group was significantly lower than that in the
control group (Figure 3(f)). These results suggested that
the enolase ENO1/ENO2/ENO3 of subcutaneous tumor
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Figure 3: To construct a subcutaneous tumor animal model of pancreatic cancer. (a) Individual and tumor differences in mice; the tumors
in the high-fat group were relatively larger. (b) Differences in tumor volume in mice. (c) Body weight growth curves of mice inoculated with
tumor. (d) Tumor weight statistics after in vitro. (e) ENO1/ENO2/ENO3 indexes related to tumor enolase in mouse subcutaneous
tumorigenesis test. (f) Expression of EMT-related genes E-cadherin/N-cadherin/vimentin/α-SMA. ∗∗∗ represents P < 0 001, and ∗∗∗∗

represents P < 0 0001.
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Figure 4: Indexes related to tumor enolase in subcutaneous tumorigenesis of mice. (a–c) The expression of ENO1/ENO2/ENO3 and EMT-
related genes E-cadherin/N-cadherin/vimentin/α-SMA detected by western blotting in each group of mouse subcutaneous tumor-forming
experiment. (d) The expressions of ENO1/ENO2/ENO3 and EMT-related genes E-cadherin/N-cadherin/vimentin/α-SMA were detected by
immunohistochemistry. Ns represents no statistical significance, ∗ represents P < 0 05, and ∗∗ represents P < 0 01.
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Figure 5: Continued.
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in the high-fat group increased and promoted the process
of EMT (Figure 4).

3.5. The Animal Model of Pancreatic Cancer Tail Vein
Tumor. Pancreatic cancer cells were injected into the tail
vein of high-fat mice and control mice. It was confirmed that
hyperlipidemias accelerated the process of EMT and pro-
moted the metastasis of pancreatic cancer cells by stimulat-
ing enolase-related indicators ENO1/ENO2/ENO3. The
hyperlipidemia model was established in C57 mice. PANC-
02 pancreatic cancer cells were injected into the tail vein of
both the high-fat group and control group, and the experi-
ment was terminated 42 days later. Lung metastatic nodules
of pancreatic cancer cells were observed in mice. The lung
was removed and the metastatic nodules of lung tissue were
detected. The lung physiology figure showed that the num-
ber and volume of metastatic nodules in the high-fat group
were larger than those in the control group (Figure 5(a)).

The curve of weight change (Figure 5(b)) showed that
the weight of the high-fat group increased first and then
decreased, while the weight of the control group gradually
increased, and the weight of the high-fat group was signifi-
cantly lower than that of the control group after 21 days,
and the difference was obvious. HE staining showed that
the control group had normal lung tissue structure, intact
alveoli, no edema, inflammatory cell infiltration, and no
tumor cell metastasis. In the high-fat group, the alveolar
structure of lung tissue was incomplete, and a large number
of tumor cells could be seen metastasis. These results suggest
that hyperlipidemia may enhance the ability of pancreatic
cancer cells to metastasize to the lung (Figure 5(c)). We
detect the expression of enolase-related indicators ENO1/
ENO2/ENO3 and EMT markers in lung tumor tissues, and
further explore the effect of hyperlipidemia on enolase acti-
vation and metastasis in pancreatic cancer cells at the molec-
ular level. QRT-PCR results showed (Figure 5(d)) that
enolase-related indicators ENO1/ENO2/ENO3 in the high-
fat group were significantly higher than those in the control
group. The expression of EMT-related genes N-cadherin,
vimentin, and α-SMA in the high-fat group was significantly
higher than that in the control group, and the expression of
E-cadherin in the high-fat group was significantly lower than
that in the control group. These results suggested that hyper-

lipidemia increased enolase expression and accelerated the
process of EMT. Western blotting results showed
(Figure 5(f)) that enolase-related indicators ENO1/ENO2/
ENO3 in the high-fat group were significantly higher than
those in the control group. The expression of EMT-related
genes N-cadherin, vimentin, and α-SMA in the high-fat
group was significantly higher than that in the control
group, and the expression of E-cadherin in the high-fat
group was significantly lower than that in the control group
(Figures 5(g) and 5(h)). The results were consistent with
those of qPCR. These results suggest that hyperlipidemia
increases enolase and promotes EMT.

3.6. Upregulation of Enolase Can Accelerate the Process of
EMT and Aggravate the Malignant Behavior of Pancreatic
Cancer Cells. Human pancreatic cancer cell PANC-1 high-
fat cell model was established by oleic acid. It was confirmed
that high-fat upregulated enolase accelerated the process of
EMT and aggravated the malignant behavior of pancreatic
cancer cells at the cellular level. To establish a high-fat cell
model, PANC-1 cells were stimulated with oleic acid at con-
centrations of 10 nM, 50 nM, 80 nM, 100nM, and 150 nM,
respectively. After oil Red O staining, the number of oil
Red O stained cells in the microscopic field increased with
the increase of oleic acid concentration (Figure 6(a)). The
results showed that the number of adipogenic cells increased
with the increase of oleic acid concentration, and the per-
centage of adipogenic cells was higher when the concentra-
tion was 100nM.

In order to explore the effect of high fat and hyperlipide-
miaon on the migration and invasion of pancreatic cancer
cells, a high-fat cell model was established, and the migra-
tion and invasion levels of cells were detected by transwell
chamber assay. The results showed that the migration and
invasion levels of cells in the high-fat group were enhanced
compared with those in the control group (Figures 6(b)
and 6(c)). These results indicated that high fat could pro-
mote the migration and invasion of pancreatic cancer cells.
We detect the expression of enolase-related indicators
ENO1/ENO2/ENO3 and EMT markers in high-fat cells
and control cells, and further explore the effect of high fat
on enolase level and migration ability of pancreatic cancer
cells at the molecular level. Western blotting results showed
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Figure 5: (a) The pulmonary metastatic nodule picture of the lungs. (b) The body weight monitoring map. (c) The HE staining in each
group of the tail vein injection. (d, e) QPCR was used to detect the expression of enolase-related indicators ENO1/ENO2/ENO3 and
EMT-related genes E-cadherin/N-cadherin/vimentin/α-SMA in the lungs of each group after tail vein injection. (f–h) Western blotting
was used to detect the expression of enolase-related indicators ENO1/ENO2/ENO3 and EMT-related genes E-cadherin/N-cadherin/
vimentin/α-SMA in the lungs of mice injected through tail vein. ∗∗∗ represents P < 0 001 and ∗∗∗∗ represents P < 0 0001.
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Figure 6: Continued.
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that the enolase-related indicators ENO1/ENO2/ENO3 and
the expression of EMT-related indexes N-cadherin, vimen-
tin, and α-SMA of PANC-1 cells in the oleic acid interven-
tion group were significantly higher than those in the
control group (Figures 6(d)–6(f)). These results suggest that
high fat promotes the expression of enolase and accelerates
the process of EMT in pancreatic cancer cells.

In order to further clarify the effect of high fat on
enolase-related indicators ENO1/ENO2/ENO3 and EMT
markers of pancreatic cancer cells, immunofluorescence
detection was performed. The results showed (Figures 6(g)
and 6(h)) that the enolase-related indicators ENO1/ENO2/
ENO3 of PANC-1 cells treated with oleic acid were signifi-
cantly increased compared with the control group. The
expression of EMT-related index N-cadherin in PANC-1 cells
treated with oleic acid was higher than that in the control

group, and the expression of E-cadherin in PANC-1 cells
treated with oleic acid was lower than that in the control
group. These results further suggested that, at the protein level,
high fat increased enolase expression in pancreatic cancer cells
accelerated EMT progression.

4. Discussion

The incidence of adenocarcinoma varies widely across
regions, with lifestyle and environmental factors playing a
significant role. Smoking is the most commonly known risk
factor, and diabetes, high fat, chronic pancreatitis, and
genetic mutations all contribute to an increased risk of pan-
creatic cancer [25]. ENO2 (also known as γ-enolase, neuron-
specific enolase, and NSE) can catalyze the conversion of 2-
phosphoglycerate to phosphoenolpyruvate in glycolysis [26].
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Figure 6: The cellular level confirmed that high-lipid upregulated enolase, accelerated the process of EMT, and aggravated the malignant
behavior of pancreatic cancer cells. (a) PANC-1 cells were treated with different concentrations of oleic acid, and lipid formation was
examined by oil Red O staining. (b, c) PANC-1 cells were stimulated with 100 nM oleic acid to detect cell migration and invasion. (d–f)
WB was used to detect the expression of enolase-related indicators ENO1/ENO2/ENO3 and EMT-related indicators E-cadherin/N-
cadherin/vimentin/α-SMA. (g, h) The expression of enolase-related indicators ENO1/ENO2/ENO3 was detected by immunofluorescence.
Expression of EMT-related genes E-cadherin/N-cadherin.
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It has two isoenzymes and is a very important enzyme in
glycolysis. ENO2 is mainly found in neuronal cells and neu-
roendocrine cells [27]. Abnormal expression of ENO2 is
associated with a variety of neurological injuries, which can
be used as a marker to evaluate neuronal death in different
CNS injuries [28]. ENO2 is highly expressed in tumor
patients, especially in neurogenic and neuroendocrine
tumors, and is considered to be the most important tumor
marker of poorly differentiated neuroendocrine tumors. In
addition, exposure to ENO2 in carcinogenic pollutants cad-
mium and arsenic can also be used as a marker [29]. Remod-
eling of actin cytoskeleton leads to cell migration. It has been
found that ENO2 can bind actin and tubulin, thereby affect-
ing microtubule motility and cell migration [30]. ENO2
depends on gamma-1-syntrophin to colocalize actin. γ-Eno-
lase controls neuronal survival, differentiation, and neurite
regeneration through the activation of PI3K/Akt and
MAPK/ERK signaling pathways, thereby regulating cyto-
skeletal reorganization and cell remodeling [31]. RhoA
inhibits axon elongation, while ENO2 inactivates RhoA
through PI3K [32]. By analyzing the clinical-related indexes
of pancreatic cancer patients and the control group, this
study found that the triglyceride level of pancreatic cancer
patients was higher than that of the control group at the ini-
tial diagnosis [33]. The level of neuron-specific enolase
(NSE) in pancreatic cancer patients was higher than that in
the control group [3]. Triglyceride level was positively corre-
lated with NSE. It is suggested that triglyceride is a warning
indicator of pancreatic cancer [34]. Blood lipid analysis
combined with ENO2 analysis is helpful to evaluate the con-
dition of pancreatic cancer patients.

Triglycerides, an important component of blood lipids,
were found to be more likely to develop lung cancer in peo-
ple with hypertriglyceridemia in an Austrian study [35].
Other studies have confirmed that the lipid content of some
dendritic cells (DC) is increased, especially the triglyceride
content [36]. There should be a high level of lipids, especially
triglycerides, in tumor cells, which further stimulates and
promotes the expression of ENO1 [37]. A long-term high-
fat diet is an important contributor to obesity, which
increases the risk of pancreatic cancer. In this study, it was
found that the tumor volume of mice in the high-fat group
increased faster in the subcutaneous tumorigenesis test,
and the lung metastasis of mice in the high-fat group was
more frequent in the tail vein injection [38]. Triglyceride
storage in vitro, lipid droplet formation, and lipid accumula-
tion in vivo of mouse pancreatic cancer cells can positively
regulate tumor growth [39]. HE staining was used to observe
the lesion morphology. PCR, WB, and immunohistochemis-
try were used to detect ENO1, ENO2, ENO3, and EMT indi-
cators (E-cadherin, N-cadherin, and vimentin). It was found
that enolase increased significantly in the high-fat group,
and EMT indicators also showed a positive effect. These
results indicated that high fat could increase enolase, pro-
mote EMT, and accelerate the development of pancreatic
cancer in mice. Triglycerides exist in peripheral blood in
pancreatic cancer cells in large quantities, which leads to
the increase of triglyceride level in the circulating blood of
patients [40]. The high concentration of triglyceride in the

pancreas and peripancreas can hydrolyze pancreatic
enzymes and produce a large amount of free fatty acids
locally to induce acidosis, which can activate trypsinogen,
thus triggering a series of activation of trypsinogen and then
leading to severe self-digestion of the pancreas. High levels
of triglyceride can damage vascular endothelium and
increase blood viscosity. In severe pancreatitis, a large num-
ber of plasma components seep out and blood is concen-
trated under the action of various inflammatory factors. In
this study, oleic acid was used to construct a high-fat pancre-
atic cancer cell model (PANC-1 cell line) to detect the bio-
logical behavior of pancreatic cancer cells after an
intervention. It was found that the expressions of ENO1,
ENO2, and ENO3 of PANC-1 cells were increased under
high-fat conditions, and the migration and invasion ability
of cancer cells was enhanced. Immunofluorescence detection
of pancreatic cancer cells in the high-fat group and the con-
trol group showed that the trend of EMT-related indicators
was consistent with that of the animal model, suggesting that
high fat promoted the process of EMT. The trend is consis-
tent; in in vivo and in vitro experimental results, it is con-
cluded that high cholesterol and obesity caused by high-fat
diet, which degrades the pancreas, induces inflammation,
promotes the enolization enzyme expression, increases the
risk of pancreatic cancer, and accelerates the progress of
pancreatic cancer; low-fat diet helps pancreatic cancer pre-
vention but also for the future further research provides
the basis for pancreatic cancer.

5. Conclusion

In in vivo experiments, mouse models of subcutaneous
tumorigenesis and metastasis of pancreatic cancer cells
injected into the tail vein were constructed. In in vitro cell
experiments, PANC-1 cells were intervened with oleic acid
to construct a high-fat cell model. Enolase-related indicators
ENO1/ENO2/ENO3 and EMT-related indicators were
detected. The hyperlipidemia mouse model was established,
and the hyperlipidemia animal model was successfully estab-
lished by lipid four items and oil Red O staining. Subcutane-
ous tumorigenesis of pancreatic cancer cells in the
hyperlipidemia group and control group showed that hyper-
lipidemia promoted tumor growth. Enolase-related indica-
tors ENO1/ENO2/ENO3 and EMT-related indicators E-
cadherin/N-cadherin/vimentin/α-SMA were detected by
qPCR, western blotting, and immunohistochemistry. It was
found that hyperlipidemia could increase the expression of
enolase-related indicators ENO1/ENO2/ENO3 in subcuta-
neous tumorigenesis tissues and accelerate the process of
EMT. The results of tail vein injection of pancreatic cancer
cells in the hyperlipidemia group and control group showed
that hyperlipidemia increased the expression of enolase-
related indicators ENO1/ENO2/ENO3 in metastatic tumor
tissues, accelerated the process of EMT, and promoted the
metastasis of pancreatic cancer cells. PANC-1 cells were
treated with oleic acid to establish a high-lipid cell model.
With the increase of oleic acid concentration, cell adipogen-
esis was enhanced. After oleic acid intervention in PANC-1
cells to establish a high-lipid cell model, it was confirmed
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at the cell level that high lipid enhanced the migration and
invasion ability of pancreatic cancer cells by increasing the
expression of enolase-related indicators ENO1/ENO2/ENO3.

Abbreviations

ADM: Acinar-to-ductal metaplasia
CCK8: Cell Counting Kit-8
DAB: Diaminobenzidine
ECL: Electrochemiluminescence
EMT: Epithelial-mesenchymal transition
ENO: Alpha-enolase
FAK: Focal adhesion kinase
GAL-3: Galactase-3
HDL-C: High-density lipoprotein
HE: Hematoxylin-eosin
HTG: Hypertriglyceridemia
HTGP: HTG-induced pancreatitis
IS: Ischemic stroke
LDL-C: Low-density lipoprotein
NSE: Neuron-specific enolase
OD: Optical density
PANIN: Pancreatic intraepithelial neoplasia
PDAC: Pancreatic adenocarcinoma
PI: Propidium iodide
PTL: Pancreatic triglyceride lipase
ROC: Receiver operating characteristic
ROCK: Rho-associated kinase
SCR: Serum creatinine.

Data Availability

All data generated or analyzed during this study are included
in this article.

Conflicts of Interest

The authors have no conflicts of interest regarding the mate-
rial in this article.

Authors’ Contributions

Lin Qin, Kai Sun, and Li Shi have contributed equally to this
work.

Acknowledgments

This work was supported by the Yunnan Scholar of Yunling
(YNWR-YLXZ-2019-019), the Yunnan Province Clinical
Research Center for Metabolic Diseases (202102AA100056),
the Science and Technology Innovation Team of Diagnosis
and Treatment for Glucolipid Metabolic Diseases in Kunming
Medical University (CXTD202106), the National Natural Sci-
ence Foundation of China (82160164 and 81960109), the Sci-
entific and Technological Innovation Team of Kunming
Medical University (study on the obesity and its complica-
tions, CXTD202209), the Joint Research Found of Yunnan
Provincial Science and Technology Department of Kunming
Medical University (No. 202201AY070001-066), the Funding
of the Famous Doctors Project of the Support Plan for the

Talents of Xingdian (No. RLMY20220005), the Joint Project
for Basic Research of Local Undergraduate Universities in
Yunnan Province (202101BA070001-110), the Program Inno-
vative Research Team in Science and Technology in Yunnan
Province (202005AE160004), and the Joint Special Funds for
the Department of Science and Technology of Yunnan Prov-
ince of Kunming Medical University (202001AY070001-205).

References

[1] S. Hashmi, Y. Wang, D. S. Suman et al., “Human cancer: is it
linked to dysfunctional lipid metabolism?,” Biochimica et Bio-
physica Acta (BBA)-General Subjects, vol. 1850, no. 2, pp. 352–
364, 2015.

[2] R. Sánchez-Martínez, S. Cruz-Gil, M. G. de Cedrón et al., “A
link between lipid metabolism and epithelial-mesenchymal
transition provides a target for colon cancer therapy,” Onco-
target, vol. 6, no. 36, pp. 38719–38736, 2015.

[3] P. M. Cruz, H. Mo, W. J. McConathy, N. Sabnis, and A. G.
Lacko, “The role of cholesterol metabolism and cholesterol
transport in carcinogenesis: a review of scientific findings, rel-
evant to future cancer therapeutics,” Frontiers in Pharmacol-
ogy, vol. 4, p. 119, 2013.

[4] S. J. Chang, M. F. Hou, S. M. Tsai et al., “The association
between lipid profiles and breast cancer among Taiwanese
women,” Clinical Chemical Laboratory Medicine, vol. 45,
no. 9, pp. 1219–1223, 2007.

[5] T. J. Kim, J. E. Kim, Y. H. Choi et al., “Obesity-related param-
eters and colorectal adenoma development,” Journal of Gastro-
enterology, vol. 52, no. 12, pp. 1221–1229, 2017.

[6] L. Avilán, M. Gualdrón-López, W. Quiñones et al., “Enolase: A
Key Player in the Metabolism and a Probable Virulence Factor
of Trypanosomatid Parasites—Perspectives for Its Use as a
Therapeutic Target,” Enzyme Research, vol. 2011, Article ID
932549, 14 pages, 2011.

[7] J. C. López López, N. Fernández Alonso, J. Cuevas Álvarez,
T. García-Caballero, and J. C. Pastor Jimeno, “Immunohisto-
chemical assay for neuron-specific enolase, synaptophysin,
and RB-associated protein as a diagnostic aid in advanced ret-
inoblastomas,” Clinical Ophthalmology, vol. 12, pp. 1171–
1179, 2018.

[8] L. Wang, R. Bi, H. Yin, H. Liu, and L. Li, “ENO1 silencing
impaires hypoxia-induced gemcitabine chemoresistance asso-
ciated with redox modulation in pancreatic cancer cells,”
American Journal of Translational Research, vol. 11, no. 7,
pp. 4470–4480, 2019.

[9] P. Cancemi, M. Buttacavoli, E. Roz, and S. Feo, “Expression of
alpha-enolase (ENO1), Myc promoter-binding protein-1
(MBP-1) and matrix metalloproteinases (MMP-2 and MMP-
9) reflect the nature and aggressiveness of breast tumors,”
International Journal of Molecular Sciences, vol. 20, no. 16,
p. 3952, 2019.

[10] O. J. P. De La, L. L. Emerson, J. L. Goodman et al., “Notch and
Kras reprogram pancreatic acinar cells to ductal intraepithelial
neoplasia,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 105, no. 48, pp. 18907–
18912, 2008.

[11] W. Liu, B. Chakraborty, R. Safi, D. Kazmin, C. Y. Chang, and
D. P. McDonnell, “Dysregulated cholesterol homeostasis
results in resistance to ferroptosis increasing tumorigenicity

15Mediators of Inflammation



and metastasis in cancer,” Nature Communications, vol. 12,
no. 1, p. 5103, 2021.

[12] C. Hu, S. Tien, P. Hsieh et al., “High glucose triggers nucleotide
imbalance through O-GlcNAcylation of key enzymes and
induces KRAS mutation in pancreatic cells,” Cell Metabolism,
vol. 29, no. 6, pp. 1334–1349.e10, 2019.

[13] M. A. Isgro, P. Bottoni, and R. Scatena, “Neuron-specific eno-
lase as a biomarker: biochemical and clinical aspects,”
Advances in Experimental Medicine and Biology, vol. 867,
pp. 125–143, 2015.

[14] M. Piast, I. Kustrzeba-Wójcicka, M. Matusiewicz, and
T. Banaś, “Molecular evolution of enolase,” Acta Biochimica
Polonica, vol. 52, no. 2, pp. 507–513, 2005.

[15] S. Raimondi, P. Maisonneuve, and A. B. Lowenfels, “Epidemi-
ology of pancreatic cancer: an overview,” Nature reviews Gas-
troenterology & Hepatology, vol. 6, no. 12, pp. 699–708, 2009.

[16] M. A. Soh, S. H. Garrett, S. Somji et al., “Arsenic, cadmium and
neuron specific enolase (ENO2, γ-enolase) expression in
breast cancer,” Cancer Cell International, vol. 11, no. 1, p. 41,
2011.

[17] A. Hafner, N. Obermajer, and J. Kos, “γ-Enolase C-terminal
peptide promotes cell survival and neurite outgrowth by acti-
vation of the PI3K/Akt and MAPK/ERK signalling pathways,”
The Biochemical Journal, vol. 443, no. 2, pp. 439–450, 2012.

[18] H. Ulmer, W. Borena, K. Rapp et al., “Serum triglyceride con-
centrations and cancer risk in a large cohort study in Austria,”
British Journal of Cancer, vol. 101, no. 7, pp. 1202–1206, 2009.

[19] R. Arai, S. Soda, T. Okutomi et al., “Lipid accumulation in
peripheral blood dendritic cells and anticancer immunity in
patients with lung cancer,” Journal of Immunology Research,
vol. 2018, Article ID 5708239, 8 pages, 2018.

[20] J. Incio, H. Liu, P. Suboj et al., “Obesity-induced inflammation
and desmoplasia promote pancreatic cancer progression and
resistance to chemotherapy,” Cancer Discovery, vol. 6, no. 8,
pp. 852–869, 2016.

[21] S. T. Tsai, I. H. Chien, W. H. Shen et al., “ENO1 , a potential
prognostic head and neck cancer marker, promotes transfor-
mation partly via chemokine CCL20 induction,” European
Journal of Cancer, vol. 46, no. 9, pp. 1712–1723, 2010.

[22] H. Yin, L. Wang, and H. Liu, “ENO1 overexpression in pancre-
atic cancer patients and its clinical and diagnostic signifi-
cance,” Gastroenterology Research and Practice, vol. 2018,
Article ID 3842198, 7 pages, 2018.

[23] P. Zhan, S. Zhao, H. Yan et al., “α-Enolase promotes tumori-
genesis and metastasis via regulating AMPK/mTOR pathway
in colorectal cancer,” Molecular Carcinogenesis, vol. 56, no. 5,
pp. 1427–1437, 2017.

[24] G. Chang, K. Liu, C. Hsieh et al., “Identification of alpha-
enolase as an autoantigen in lung cancer: its overexpression
is associated with clinical outcomes,” Clinical cancer research
: an official journal of the American Association for Cancer
Research, vol. 12, no. 19, pp. 5746–5754, 2006.

[25] S. H. Jiang, F. Y. Dong, L. T. Da et al., “Ikarugamycin inhibits
pancreatic cancer cell glycolysis by targeting hexokinase 2,”
The FASEB Journal, vol. 34, no. 3, pp. 3943–3955, 2020.

[26] M. S. Yeo, V. V. Subhash, K. Suda et al., “FBXW5 promotes
tumorigenesis and metastasis in gastric cancer via activation
of the FAK-Src signaling pathway,” Cancers, vol. 11, no. 6,
p. 836, 2019.

[27] C. Huang, Y. Sun, L. Lv, and Y. Ping, “ENO1 and cancer,”
Molecular Therapy Oncolytics, vol. 24, pp. 288–298, 2022.

[28] J. Chen, S. Chiu, K. Chen, Y. Huang, Y. Liao, and C. Yu, “Eno-
lase 1 differentially contributes to cell transformation in lung
cancer but not in esophageal cancer,” Oncology Letters,
vol. 19, no. 4, pp. 3189–3196, 2020.

[29] B. Liu, S. Lu, Y. Hu, X. Liao, M. Ouyang, and Y. Wang, “RhoA
and membrane fluidity mediates the spatially polarized Src/
FAK activation in response to shear stress,” Scientific Reports,
vol. 4, no. 1, p. 7008, 2014.

[30] B. Deng, R. Liu, X. Tian, Z. Han, and J. Chen, “Simulated
microgravity inhibits the viability and migration of glioma
via FAK/RhoA/Rock and FAK/Nek2 signaling,” In Vitro Cel-
lular & Developmental Biology Animal, vol. 55, no. 4,
pp. 260–271, 2019.

[31] Y. Zhang, J. Yan, H. Xu et al., “Extremely low frequency elec-
tromagnetic fields promote mesenchymal stem cell migration
by increasing intracellular Ca2+ and activating the FAK/Rho
GTPases signaling pathways in vitro,” Stem Cell Research &
Therapy, vol. 9, no. 1, p. 143, 2018.

[32] A. M. M. González and J. Bosch, “γ-Enolase C-terminal pep-
tide promotes cell survival and neurite outgrowth by activation
of the PI3K/Akt and MAPK/ERK signalling pathways,” Bio-
chemical Journal, vol. 443, no. 2, pp. 439–450, 2012.

[33] T. Zeng, Y. Cao, T. Gu et al., “Alpha-enolase protects hepato-
cyte against heat stress through focal adhesion kinase-
mediated phosphatidylinositol 3-kinase/Akt pathway,” Fron-
tiers in Genetics, vol. 12, p. 693780, 2021.

[34] K. Jiang, C. Dong, Z. Yin et al., “Exosome-derived ENO1 reg-
ulates integrin α6β4 expression and promotes hepatocellular
carcinoma growth and metastasis,” Cell Death & Disease,
vol. 11, no. 11, p. 972, 2020.

[35] L. Sun, T. Lu, K. Tian et al., “Alpha-enolase promotes gastric
cancer cell proliferation andmetastasis via regulating AKT sig-
naling pathway,” European Journal of Pharmacology, vol. 845,
pp. 8–15, 2019.

[36] R. Gumus, O. Capik, B. Gundogdu et al., “Low vitamin D and
high cholesterol facilitate oral carcinogenesis in 4NQO-
induced rat models via regulating glycolysis,” Oral Diseases,
vol. 29, no. 3, pp. 978–989, 2023.

[37] T. Lofterød, E. S. Mortensen, H. Nalwoga et al., “Impact of pre-
diagnostic triglycerides and HDL-cholesterol on breast cancer
recurrence and survival by breast cancer subtypes,” BMC Can-
cer, vol. 18, no. 1, p. 654, 2018.

[38] S. Honeder, T. Tomin, L. Nebel et al., “Adipose triglyceride
lipase loss promotes a metabolic switch in A549 non-small cell
lung cancer cell spheroids,” Molecular & Cellular Proteomics :
MCP, vol. 20, p. 100095, 2021.

[39] X. X. Wang, G. Q. Yin, Z. H. Zhang et al., “TWIST1 transcrip-
tionally regulates glycolytic genes to promote the Warburg
metabolism in pancreatic cancer,” Experimental Cell Research,
vol. 386, no. 1, p. 111713, 2020.

[40] G. Generoso, C. C. P. S. Janovsky, and M. S. Bittencourt, “Tri-
glycerides and triglyceride-rich lipoproteins in the develop-
ment and progression of atherosclerosis,” Current Opinion in
Endocrinology, Diabetes, and Obesity, vol. 26, no. 2, pp. 109–
116, 2019.

16 Mediators of Inflammation



Research Article
LINC01088/miR-22/CDC6 Axis Regulates Prostate Cancer
Progression by Activating the PI3K/AKT Pathway
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Background. Prostate cancer (PCa) harms the male reproductive system, and lncRNA may play an important role in it. Here, we
report that the LINC01088/microRNA- (miRNA/miR-) 22/cell division cycle 6 (CDC6) axis regulated through the
phosphatidylinositide 3-kinases- (PI3K-) protein kinase B (AKT) signaling pathway controls the development of PCa. Methods.
lncRNA/miRNA/mRNA associated with PCa was downloaded and analyzed by Gene Expression Omnibus. The expression and
correlation of LINC01088/miR-22/CDC6 in PCa were analyzed and verified by RT-qPCR. Dual-luciferase was used to analyze
the binding between miR-22 and LINC01088 or CDC6. Cell Counting Kit-8 and Transwell were used to analyze the effects of
LINC01088/miR-22/CDC6 interactions on PCa cell viability or migration/invasion ability. Localization of LINC01088 in cells
was analyzed by nuclear cytoplasmic separation. The effect of LINC01088/miR-22/CDC6 interaction on downstream PI3K/
AKT signaling was analyzed by Western blot. Results. LINC01088 or CDC6 was upregulated in prostate tumor tissues or cells,
whereas miR-22 was downregulated, miR-22 directly targets both LINC01088 and CDC6. si-LINC01088 inhibits the PCa
process by suppressing the PI3K/AKT pathway. CDC6 reverses si-linc01088-mediated cell growth inhibition and reduction of
PI3K and AKT protein levels. Conclusion. Our results demonstrate that the LINC01088/miR-22/CDC6 axis functions in PCa
progression and provide a promising diagnostic and therapeutic target.

1. Introduction

Prostate cancer (PCa) is a cancer that affects men and is very
common worldwide. It accounts for 21% of all new cases of
cancer in men. Unfortunately, it causes significant illness
and death in those affected [1, 2]. Early systematic screening
has a very positive effect on the prevention and treatment of
prostate cancer, and the available set of PC biomarkers is
growing [3]; there is still a significant unmet need for new
and more effective treatments.

Long noncoding RNAs (lncRNAs), which are greater than
200 nucleotides and do not code for proteins, significantly
impact cancer tumorigenesis and metastasis when their

expression is altered [4]. lncRNAs primarily function through
the regulation of competing endogenous RNAs (ceRNAs),
which act as sponges for miRNAs that would otherwise target
specific genes. Several lncRNAs, including MEG3, FOXP4-
AS1, and H19, have been implicated in prostate cancer
[5–7]. However, the molecular mechanism by which
LINC01088, which is considered an oncogene in most cancers
[8, 9], operates in prostate cancer has not yet been elucidated.

miR-22 impedes the progression of different cancer
types, including bladder, colorectal, and gastric cancers
[10–12]. Similarly, miR-22, which is an androgen receptor
(AR) cistrome member, suppresses process of cancer cells
such as LNCaP or PC3 in PCa [13]. The ceRNA role of
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miRNA targeting lncRNAs or mRNA 3′untranslated region
(UTR) in PCa has been reported. For instance, miR-22 tar-
gets the HOTAIR and 3′UTR of HMGB1, affecting PCa
prognosis [14]. Additionally, miR-22 has been shown to reg-
ulate multiple signaling pathways in PCa cells. Specifically,
miR-22 activates Wnt/β-catenin signaling in carcinoma
[15]. Dhar et al. found that MTA1-activated miR-22 regu-
lates PCa invasiveness [16]. Moreover, miR-22 regulates
the PI3K/AKT pathway in various cancers, such as ovarian
cancer and osteosarcoma [17, 18]. Nevertheless, whether
miR-22 activates the PI3K/AKT pathway in PCa remains
unclear.

Cell division cycle 6 (CDC6) is a novel cancer target that
regulates the DNA replication process and is considered an
early indicator of malignancy [19]. CDC6 has been recog-
nized as a cancer diagnosis biomarker in various cancers
[20, 21]. For instance, Mahadevappa et al. found the prog-
nostic significance of CDC6 in breast cancer [22]. However,
only few studies have investigated the CDC6 expression in
PCa [23]; therefore, CDC6 requires further investigation.

The AR and frequent activation of PI3K signaling are
key factors in the progression of PCa [24]. The PI3K/AKT
signaling pathway, which is cross-regulated through several
reciprocal inhibitory loops with AR pathways, is the driver
of prostate tumor development [25, 26]. Recent research by
Tan et al. showed that PI3K/AKT axis inactivation sup-
presses prostate tumorigenesis [27]. Dai et al. confirm that
inhibition of the PI3K/AKT signaling pathway facilitates
PCa cell autophagy [28]. PI3K and AKT inhibitors will soon
be introduced as antitumor drugs and are currently in pre-
clinical and clinical development [29–31].

This study is aimed at understanding the interaction and
mechanism of the LINC01088/miR-22/CDC6 axis and
exploring its possibility as a biomarker for systematic screen-
ing of PCa.

2. Materials and Methods

2.1. Samples. Ten pairs of fresh frozen PCa and adjacent tis-
sues were obtained from the Longgang District People’s Hos-
pital of Shenzhen (Shenzhen, China), along with pathological
information. All patients were histologically confirmed to have
a prostate tumor. The experiments was approved by the insti-
tutional ethics committees of Longgang District People’s Hos-
pital of Shenzhen (Shenzhen, China; approval no. 2022071)
and conducted in accordance with the Declaration of Helsinki.

2.2. Microarray Raw Data Analyses. Datasets were from
Gene Expression Omnibus. The series (GSE104749) dataset
were utilized to analyze lncRNA/mRNA expression profiles
in PCa and categorized as follows: control (4 benign pros-
tatic hyperplasia (BPH) fine-needle aspiration biopsy tis-
sues), and PCa (4 PCa fine-needle aspiration biopsy
tissues). The GEO series (GSE45604) dataset was utilized
to analyze miRNA expression profiles in PCa and catego-
rized as follows: normal (10 normal prostate tissues) and
PCa (10 PCa tissues). Expression of dysregulated RNA was
identified to meet the jfold changej ≥ 1:5 criteria. GEPIA2
was used for The Cancer Genome Atlas (TCGA) survival

analysis. Candidate genes and cancer subtypes were chosen
as the inputs to generate survival curves for disease-free sur-
vival. Statistical significance was defined as P < 0:05.

2.3. Predicted Targets of LINC01088 and miR-22. The inter-
actions between LINC01088 and miR-22 were predicted
using LncBase v.3 (https://diana.e-ce.uth.gr/lncbasev3/
interactions). Putative targets of miR-22 were predicted
using TargetScan (http://www.targetscan.org/vert_72/) and
TarBase v.8 (https://dianalab.e-ce.uth.gr/html/diana/web/
index.php?r=tarbasev8%2Findex).

2.4. Cell Culture and Transfection. Human PCa cell lines
(LNCAP, PC3, C4-2, and 22RV1) and prostate epithelial
cells (RWPE-2) were purchased from American Type Cul-
ture Collection (ATCC; VA, USA). LNCAP, PC3, C4-2,
22RV1, and RWPE-2 cells were maintained in RPMI-1640
(HyClone, UT, USA) with 10% fetal bovine serum (FBS;
HyClone). Lipofectamine 3000 (Invitrogen; Thermo Fisher
Scientific, Inc.) were transfected into cells and used in subse-
quent experiments 48 h later.

2.5. Nucleocytoplasmic Separation and RT-qPCR Assay.
Cytoplasmic and Nuclear RNA Purification Kit (bioWORLD;
OH, USA) was isolated from cells according to the manufactur-
er’s instructions. Total RNA was extracted from tissues or cells
using a TRIzol reagent. After centrifugation at 12000×g (4°C,
10min), RNA was reverse-transcribed to cDNA and analysis
using One-Step SYBRGreen RT-qPCRKit (Biomarker, Beijing,
China) and performed at conditions: 95°C for 1min followed by
40 cycles of 95°C for 6 s and 60°C for 32 s. Sequences of the
primers were as follows: LINC01088 forward, 5′-TAGGGT
GCCTTCACCTGCTA-3′ and LINC01088 reverse, 5′-TACA
CCCGGTGGAAAACTCC-3′; CDC6 forward, 5′-GATCAA
CTGGACAGCAAAGG-3′ and CDC6 reverse, 5′-CTAGGT
AGAATTCTATCTGT-3′; miR-22 forward, 5′-ACACTCCAG
CTGGGAGTTCTTCAGTGGCAA-3′ and miR-22 reverse, 5′-
CTCAACTGGTGTCGTGGA-3′; 18sRNA forward, 5′-CCTG
GATACCGCAGCTAGGA-3′ and 18sRNA reverse, 5′-GCGG
CGCAATACGAATGCCCC-3′; and U6 forward, 5′-CTCG
CTTCGGCAGCACA-3′ and U6 reverse, 5′-AACGCTTCA
CGAATTTGCGT-3′. RNA levels were calculated using the
2−ΔΔCt method [32].

2.6. RNA Pull-Down Assay. Biotin-labeled LINC01088 and
miR-22 were transfected into PCa cells. After 24 h, cells were
lysed with RIPA lysis buffer and then incubated (12min)
with Dynabeads M-280 Streptavidin (Invitrogen), followed
by RT-qPCR analysis. Biotinylated RNA was obtained from
Sangon Biotech.

2.7. Transient LINC01088 Silencing. The siRNA sequences
were as follows: si-LINC01088-1, 5′-CCTTAAAGTAG
CAATCTTAdTdT-3′; si-LINC01088-2, 5′-GAGAAATTG
GACCAGACAAdTdT-3′; si-LINC01088-3, 5′-AGTCTG
CATTGAAGATGTAdTdT; and si-NC, 5′-TTCTCCGAA
CGTGTCACGdTdT-3′.
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2.8. Cell Viability Assay. To assess cell viability, PC3 and
LNCAP cells (4 × 103) were treated with 10μL of CCK-8
reagent (Solarbio) at 0, 24, 48, and 72 hours. After 60min
of incubation (in the dark) at 37°C, the absorbance of the
samples was determined at 450nm using an enzyme-
labeled instrument (Thermo Fisher Scientific).

2.9. Migration and Invasion Assays. Migration of PC3 and
LNCAP cells was verified using Transwell inserts (BD Bio-
sciences) with a porous polycarbonate membrane. Cells were
maintained in serum-free medium (upper chamber), and a
medium (10% FBS) was added to the lower chamber, for
24 h. The difference with migration is that the invasion assay
preincubates Matrigel (BD Biosciences) on Transwell
inserts. Then, it was fixed with absolute alcohol, stained with
crystal violet, and counted.

2.10. Dual-Luciferase Reporter Assay. Inserted LINC01088 or
CDC6 3′UTR into psi-CHECK2 and transfected into 293T
cells (ATCC) with miR-22 mimic using lipofectamine 3000
at 37°C for 4 h. Luciferase activity was measured using the
dual-luciferase reporter assay system (Promega) at 490 nm
after 48 h of culture. Firefly luciferase values were normal-
ized using the ratio of firefly to Renilla luciferase activity.

2.11. Western Blotting. Denatured proteins from PCa cells
were resolved by 10% SDS-PAGE (Beyotime). The separated
bands were subsequently transferred to PVDF membranes
and incubated (12 h; 4°C) with PI3K (1 : 1200, ab191606),
AKT (1 : 500, ab8805), p-PI3K (1 : 500, ab182651), p-AKT
(1 : 500, ab38449), CDC6 (1 : 1,000, ab109315), and

GAPDH (1 : 3000, ab8245) primary antibodies. They were
then incubated (2 h, 25°C) with goat anti-rabbit antibody
(1 : 12,000, ab205718). Antibodies were obtained from
Abcam (Cambridge, UK).

2.12. Statistical Analysis. Mean ± SD values were used to
present the data, and GraphPad Prism 9 was utilized for sta-
tistical analysis. Initially, one-way ANOVA was performed,
followed by a Bonferroni post hoc test to establish the pres-
ence of a statistically significant change overall. Subse-
quently, a Student’s t-test was employed to examine the
difference between any two groups. Statistical significance
was defined as P < 0:05.

3. Results

3.1. LINC01088 Is Upregulated in PCa. We conducted a
comprehensive inquiry into the potential role of a recently
discovered long noncoding RNA (lncRNA) in the advance-
ment of prostate cancer (PCa). Our investigation primarily
involved lncRNA chip data, which revealed that 45 differen-
tially expressed transcripts lncRNAs, were identified in PCa
specimens compared to the control group. Of these tran-
scripts, LINC01088 exhibited the most significant log-fold
change (logFC) value, thereby implying its potential as a tar-
get for further research (Figure 1(a)). Additionally, we vali-
dated the overexpression of LINC01088 in PCa tissues
(Figure 1(b)), which was linked with decreased disease-free
survival in PCa patients, and associated with diverse clinico-
pathological features of PCa (Figure 1(c)). The expression of
LINC01088 was notably heightened in PCa cells in
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Figure 1: LINC01088 is a new potential target that promotes PCa development. (a) Hierarchical clustering heat map shows differentially
expressed lncRNA including LINC01088 between the PCa and control groups. (b) Relative expression levels of LINC01088 between the
PCa tumor tissues and adjacent tissues. (c) The disease-free survival rate was calculated in the LINC01088-high or LINC01088-low
groups by TCGA survival analysis on the GEPIA2 database. (d) Relative expression of LINC01088 in RWPE-2 and four PCa cell lines
(C4-2, 22RV1, PC3, and LNCaP). (e) RT-qPCR analysis of the inhibition efficiency of 3 si-LINC01088 in PC3 and LNCAP cells. CCK8
analysis of the effect of si-LINC01088 on the viability rate of (f) PC3 and (g) LNCAP cells. Transwell analysis of the effects of si-
LINC01088 on migration and invasion of (h) PC3 and (i) LNCAP cells. (j) RT-qPCR analysis of LINC01088 localization in PC3 and
LNCAP cells. ∗P < 0:05.
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comparison to RWPE-2 cells (Figure 1(d)), particularly in
PC3 and LNCAP cells, highlighting the significant role of
LINC01088 in PCa progression. Subsequent findings illus-
trated that siRNA-LINC01088-1 was the most potent inhib-
itor of LINC01088 among the three siRNAs in PC3 and
LNCAP cells, and we used it as an antagonist for further
molecular mechanistic studies (Figure 1(e)). Our findings
indicate that the reduction of LINC01088 expression results
in a diminished cellular viability, as well as decreased migra-
tory and invasive capacity of both PC3 and LNCAP cell lines
(as depicted in Figures 1(f)–1(i)). Moreover, based on our
observations, LINC01088 is preferentially localized in the
cytoplasmic region of these cells (Figure 1(j)), implying that
its effect on prostate cancer pathophysiology may be medi-
ated by a competing endogenous RNA (ceRNA) mechanism.

3.2. LINC01088 Directly Targeted miR-22. Based on miRNA
chip data analysis results, 64 differentially expressed hsa-
miRNAs were identified with 5 upregulated and 59
downregulated hsa-miRNAs using 10 PCa and 10 normal
prostate samples (Figure 2(a)), the joint analysis of LncBase
v3 database and miRNA chip data showed that miR-22 was
the only intersection among the down-regulated miRNAs
(Figure 2(b)) and miR-22 was downregulated in both tissues
and cells of PCa (Figures 2(c) and 2(d)). Moreover, sup-
pressing the expression of LINC01088 increased the expres-
sion of miR-22 (Figure 2(e)). Subsequent experiments
confirmed that LINC01088 directly targets miR-22
(Figure 2(f)). Here, we confirmed that LINC01088 can
adsorb miR-22 to regulate PCa development.

3.3. CDC6 Directly Targeted miR-22. Given that miRNAs
possess the capacity to regulate transcription and translation
via the binding to the 3′UTR of mRNAs [33], we analyzed
PCa-related differentially expressed mRNAs in the GEO
dataset. The mRNA chip data analysis showed that 1,067
oncogenes were upregulated (Figure 3(a)). The combined
analysis of the TargetScan database and TarBase V.8 data-
base showed that 20 genes had overlapped, among which 2
genes had potential binding sites, namely, VASH1 and
CDC6 (Figure 3(b)). A previous investigation revealed that
VASH1 was downregulated in PCa [34], while the aug-
mented expression of CDC6 conspicuously truncated the
disease-free survival of PCa patients (Figure 3(c)). Therefore,
we designated the CDC6 gene as a plausible target for subse-
quent verification. Our finding substantiated that CDC6 was
highly expressed within PCa tissues and cells (Figures 3(d)
and 3(e)). In addition, our dual-luciferase assay validated
that CDC6 directly targeted miR-22 (Figure 3(f)). Following
the suppression of LINC01088, the expression of CDC6 was
downregulated within PC3 and LNCAP cells (Figure 3(g)).

3.4. LINC01088 Is Positively Correlated with CDC6. The
association between LINC01088 and CDC6 was verified by
constructing an overexpression plasmid for CDC6 (ov-
CDC6). Results indicated that CDC6 were upregulated in
ov-CDC6-transfected PC3 and LNCAP cells, confirming
the effectiveness of CDC6 overexpressed plasmid
(Figure 3(h)). In addition, after cotransfection of PC3 and
LNCAP cells with ov-CDC6 and si-LINC01088, excessive
CDC6 reversed the inhibition of LINC01088 expression by
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Figure 2: LINC01088 sponge adsorbs miR-22. (a) Hierarchical clustering heat map shows differentially expressed miRNA between the PCa
and control groups. (b) The miRNA chip and the lncRNA database were combined to analyze the potential miRNAs that bind to
LINC01088. (c) Relative expression of miR-22 between the PCa tumor tissues and adjacent tissues. (d) Relative expression of miR-22 in
RWPE-2 and four PCa cell lines (C4-2, 22RV1, PC3, and LNCaP). (e) RT-qPCR analysis of the effect of si-LINC01088 on the expression
of miR-22 in PC3 and LNCAP cells. (f) Dual-luciferase assay analysis of the binding of LINC0108 to miR-22. ∗P < 0:05.
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si-LINC01088. (Figure 3(i)). Thus, miR-22 directly targets
both LINC01088 and CDC6, and LINC01088 is positively
correlated with CDC6.

3.5. The LINC01088/miR-22/CDC6 Axis Affects PCa
Development through PI3K/AKT Signaling. Next, to identify
the key regulatory signaling pathway, we analyzed enriched
signaling pathways associated with the differentially expressed

genes using the DAVID database. Among the top 10 enriched
pathways, the PI3K/AKT pathway associated with 45 partici-
pating differential genes, which is the highest number of genes,
was selected (Figure 4(a)). Based on Western blotting, knock-
down of LINC01088 in PC3 and LNCAP cells resulted in
decreased CDC6, p-PI3K, and p-AKT protein levels
(Figure 4(b)). ov-CDC6 reversed the effects of LINC01088
(Figure 4(c)). Moreover, si-LINC01088 can inhibit the
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Figure 3: CDC6 targets miR-22 and reverses the effects of si-LINC01088 in PC3 and LNCAP cells. (a) Scatter plot shows differentially
expressed mRNAs between the PCa and control groups. (b) The dual-luciferase reporter assay shows the relative luciferase activity of the
CDC6-WT or CDC6-MUT plasmid between the miR-NC and miR-22 groups. (c) The disease-free survival rate was calculated in the
CDC6-high or CDC6-low groups by TCGA survival analysis on the GEPIA2 database. (d) Relative expression levels of LINC01088
between the PCa tumor tissues and adjacent tissues. (e) Relative expression of LINC01088 in RWPE-2 and four PCa cell lines (C4-2,
22RV1, PC3, and LNCaP). (f) Dual-luciferase assay analysis of the binding of CDC6 to miR-22. (g) RT-qPCR analysis of the effect of si-
LINC01088 on the expression of CDC6 in PC3 and LNCAP cells. (h) RT-qPCR verified the validity of overexpressing CDC6 plasmid. (i)
RT-qPCR analysis of the reversal of LINC01088 expression by overexpressing CDC6 on si-LINC01088. ∗P < 0:05.
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viability rate (Figures 4(d) and 4(e)) andmigration/invasion of
PC3 and LNCAP cells (Figure 4(f)). Taken together,
LINC01088 affects PI3K-AKT signaling through sponge
adsorption of miR-22 and regulates CDC6, thereby regulating
PCa development.

4. Discussion

Our aim was to identify a novel lncRNA with potential ther-
apeutic value in the treatment of PCa. Initially, we investi-
gated the oncogenic function of LINC01088 and CDC6
and the tumor-suppressing role of miR-22 in PCa.
LINC01088 and CDC6 expression were both upregulated
in PCa tissues and cells, unlike miR-22, promoting PCa cell
growth in vitro. We discovered that LINC01088 sponges
miR-22, CDC6 is the target of miR-22, and LINC01088 is
coordinately upregulated with CDC6 in PCa progression.
Furthermore, LINC01088 activates the PI3K/AKT pathway.

LINC01088 is an influential regulatory factor in various
cancers [8, 9]. For instance, Peng et al. discovered that
LINC01088 promotes glioma progression [35], and Liu
et al. observed that LINC01088 promotes proliferation and

migration of non-small-cell lung cancer [8]. In a similar
vein, our research showed that LINC01088 is upregulated
in PCa, and its overexpression significantly reduces the
disease-free survival of PCa patients. LINC01088 promotes
PCa cell viability rate and migration/invasion via the PI3K/
AKT signaling, indicating that LINC01088 has an oncogenic
role in promoting PCa development. When LINC01088 was
suppressed, the growth of PCa cells is restricted. Further-
more, LINC01088 plays a role as a ceRNA, a miRNA spong-
ing factor, in cancers. For instance, Zang et al. found that
LINC01088 inhibits the tumorigenesis of ovarian epithelial
cells by sponging miR-24-1-5p [36], and Li et al. found that
LINC01088 plays a ceRNA role by sponging miR-22 in the
progression of colorectal cancer [9]. In our study, we dem-
onstrated that LINC01088 sponges miR-22 and negatively
regulative miR-22 in PCa. Moreover, suppressing the
expression of LINC01088 promoted the expression of miR-
22 in PCa cells.

miR-22 regulates the target gene to affect posttran-
scription or translation in PCa progression [13, 14]. Bioin-
formatics predicted that miR-22 targets CDC6, and the
target mechanisms were proved by dual-luciferase reporter
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Figure 4: si-LINC01088 suppresses PCa cell growth via the PI3K/AKT pathway. (a) Top 10 KEGG pathway enrichment analysis. (b)
Western blot analysis of si-LINC01088-mediated protein levels of CDC6, PI3K, p-PI3K, AKT, and p-AKT. (c) Western blot analysis of
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ov-CDC6 coaction on migration and invasion of (f) PC3. ∗P < 0:05.
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assay. Furthermore, CDC6 expression was negatively cor-
related with miR-22 expression in PCa tissues and cells.
Notably, CDC6 promotes PCa progression [37, 38]. More-
over, LINC01088 is coordinately upregulated with miRNA
target genes in the ceRNA axis. In our study, LINC01088
was coordinately upregulated with CDC6, si-LINC01088
reduced CDC6 expression in PCa cells, and CDC6
reversed si-LINC01088-mediated PI3K and AKT protein
expression reduction in PCa cells. In addition, the slow
growth of PCa cells caused by the inhibition of
LINC01088 expression was significantly alleviated by the
overexpression of CDC6. These results suggest that
LINC01088 exerts oncogenic effects through the miR-22/
CDC6 axis.

The PI3K/AKT pathway directly controls PCa [39, 40].
Shorning et al. found the PI3K-AKT signaling and PCa at
the intersection of AR-MAPK-Wnt [41]. In the present
study, at the time of suppression of cell viability rate, promo-
tion of cell apoptosis, and suppression of migration/inva-
sion, PI3K/AKT phosphorylation levels were reduced.
LINC01088, miR-22, and CDC6 control the PI3K/AKT
pathways to regulate PCa progression. si-LINC01088 or
miR-22 suppressed PCa cell growth and decreased PI3K/
AKT phosphorylation levels. CDC6 promoted cancer cell
growth and enhanced PI3K/AKT signaling and reversed
the effect of si-LINC01088 on PCa cells.

Interlaboratory variability may also affect the develop-
ment of therapeutic strategies targeting the LINC01088/
miR-22/CDC6 axis. Despite the potential limitations, this
study provides a foundation for further research on the
LINC01088/miR-22/CDC6 axis as a potential therapeutic
target for PCa treatment. Future studies can build upon
these findings and investigate the molecular mechanisms
underlying the regulatory interactions among LINC01088,
miR-22, and CDC6 in PCa. Therefore, it is important to
conduct validation studies to confirm the therapeutic poten-
tial of this axis across multiple laboratories and patient pop-
ulations before initiating clinical trials.

In conclusion, this study confirms the LINC01088/miR-
22/CDC6 axis as a potential therapeutic target, providing
more directions and theoretical basis for the treatment of PCa.
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Due to the considerable heterogeneity of head and neck squamous cell carcinoma (HNSCC), individuals with comparable TNM
stages who receive the same treatment strategy have varying prognostic outcomes. In HNSCC, immunotherapy is developing
quickly and has shown effective. We want to develop an immune-related gene (IRG) prognostic model to forecast the prognosis
and response to immunotherapy of patients. In order to analyze differential expression in normal and malignant tissues, we first
identified IRGs that were differently expressed. Weighted gene coexpression network analysis (WGCNA) was used to identify
modules that were highly related, and univariate and multivariate Cox regression analyses were also used to create a predictive
model for IRGs that included nine IRGs. WGCNA identified the four most noteworthy related modules. Patients in the model’s
low-risk category had a better chance of survival. The IRGs prognostic model was also proved to be an independent prognostic
predictor, and the model was also substantially linked with a number of clinical characteristics. The low-risk group was associated
with immune-related pathways, a low incidence of gene mutation, a high level of M1 macrophage infiltration, regulatory T cells,
CD8 T cells, and B cells, active immunity, and larger benefits from immune checkpoint inhibitors (ICIs) therapy. The high-risk
group, on the other hand, had suppressive immunity, high levels of NK and CD4 T-cell infiltration, high gene mutation rates, and
decreased benefits from ICI therapy. As a result of our research, a predictive model for IRGs that can reliably predict a patient’s
prognosis and their response to both conventional and immunotherapy has been created.

1. Introduction

Head and neck cancer ranks as the 6th most prevalent malig-
nancy worldwide, with an annual incidence of 930,000 cases
and 470,000 deaths [1]. Head and neck squamous cell carci-
noma (HNSCC) is the majority of head and neck cancer, and
the major risk factors for the development of HNSCC include
tobacco, alcohol consumption, and human papillomavirus
infection [1]. The main reasons for death in advanced

HNSCC patients are local recurrence, remote metastasis,
and therapeutic failure owing to resistance to routine chemo-
therapy [2]. In the last years, immune checkpoint inhibitors
(ICIs) are regarded as revolutionary agents in medicinal ther-
apy for malignant tumors, especially for HNSCC [3].

Cancer immunotherapy operates on the basis that the
host’s immune system may get activated by the cancer cells,
which identifies and eliminates them [4]. While immune
checkpoints can prevent overwhelming inflammatory
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responses and the progression of autoimmunity, they can as
well be operated as amechanism of tumor immune evasion [5].
ICIs reactivate immune responses against cancer by blocking
immune checkpoint pathways, including antiprogrammed
death-1, antiprogrammed death-1 ligand, and anticytotoxic
T-lymphocyte-associated protein 4 antibodies [5]. Neverthe-
less, the main restriction of this treatment is the poor patient
response rate. Only a small percentage of HNSCC patients
respond to immunotherapy, and the responses seen are usually
durable and profound, butmany others showwidespread resis-
tance to immunotherapy [6]. Therefore, novel therapeuticmar-
kers demand to urgent study to identify the ideal subgroup of
HNSCC for immunotherapy.

In the research, we attempted to construct a prognostic
signature for HNSCC that can predict the efficacy of routine
therapy and immunotherapy. First, we assessed immune-
related genes (IRGs) of HNSCC and identified survival-
associated differentially expressed IRGs in significantly relevant
modules by weighted gene coexpression network analysis
(WGCNA) to develop an IRGs prognostic model. We then
estimated its predictive value among HNSCC patients, exam-
ined the immune profile of the prognostic model, and charac-
terized it with gene mutation, N6-methyladenosine (m6A)
mRNA stats, tumor immune dysfunction and exclusion
(TIDE) score, tumor inflammation signature (TIS) score, and
chemotherapeutic efficacy. Conclusively, the IRGs prognostic
model was a prospective prognostic signature for precise pre-
diction of patient prognosis and reaction to traditional treat-
ment and immunotherapy.

2. Materials and Methods

2.1. Preparation of Data. The RNA-seq data and clinicopatho-
logical features of HNSCC samples (The Cancer Genome Atlas
(TCGA)-HNSCC and GSE65858) were procured from the
TCGA (http://portal.gdc.cancer.gov) and gene expression
omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) [7]. The
gene transfer format files with gene names and the transcript
annotation of the genome available were obtained in the
Ensemble database (http://asia.ensembl.org) [8]. A dataset of
recognized IRGs was acquired in the InnateDB (http://www.
innatedb.com) databases and the ImmPort database (http://
www.immport.org) [9]. The somatic mutation data of HNSCC
patients were retrieved from the TCGA.

2.2. Identification of Significantly Relevant Modules with
WGCNA. Differential expression analysis (|log2FC|> 0.585,
false discovery rate (FDR) <0.05) was utilized to recognize
differentially expressed IRGs. The gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
ses were employed to analyze these differentially expressed
IRGs (P value<0.05) [10].

After that, significantly relevant modules were obtained
using WGCNA. First, a similarity matrix that calculates Pear-
son’s correlation coefficient between two genes was constructed
in light of expression data. Second, an adjacency matrix with a
network type of sign was acquired based on the similarity
matrix by selecting five as the soft threshold and further con-
verted to a topological matrix with the topological overlap

measure, which was used to depict the degree of association
between genes. Then, genes were grouped at a distance of
1-TOM, and genemodules were recognized using the dynamic
hybrid tree-cut algorithm. Lastly, nine modules were deter-
mined based on a minimal cluster size of 25, a correlation
coefficient greater than 0.9, and a merging threshold function
of 0.25. These modules (the green, pink, brown, and red mod-
ules) were recognized as significantly relevant modules.

Finally, to show as many protein interactions as possible
in the different modules, the protein–protein interaction net-
works (PPI) of these IRGs in significantly relevant modules
were retrieved, respectively, from STRING (http://string-db.
org) and were visualized separately by Cytoscape 3.8.2 soft-
ware (minimum required interaction score >0.2) [11]. And
these IRGs in significantly relevant modules were analyzed
individually by GO and KEGG (P-value<0.05).

2.3. Development and Evaluation of Prognostic Model.
Univariate Cox regression and Kaplan–Meier (KM) analysis
were carried out to identify the association of these IRGs in
significantly relevant modules with survival, and twenty IRGs
with P<0:05 were determined to be survival-associated IRGs.
These survival-related IRGs were utilized by multivariate Cox
regression analysis to construct an IRGs prognostic model
with nine IRGs. The specific risk score for each patient was
calculated, and the risk score formula was as follows:

∑
k

i¼1
1√iSi: ð1Þ

We used KM survival analysis to evaluate the prognostic
ability of themodel in the TCGA andGEO cohorts. Chi-squared
test was applied to investigate the association between the prog-
nostic model and clinical characteristics. Wilcoxon signed-rank
test was carried out to compute the risk score differences among
distinct groups of clinical features. Univariate and multivariate
Cox analyses were utilized to verify that the signature was an
independent predictor of clinical prognosis. Finally, decision
curve analysis (DCA) was employed to assess the net benefit
of five markers for clinical decision-making, and a nomogram
integrating prognostic signatures was built to predict the survival
rates of patients.

2.4. Exploration of Molecular and Immunological Characteristics
and ICIs Therapeutics. Gene set enrichment analysis (GSEA)
based on the KEGG and HALLMARK genes was applied to
identify the signaling pathways in different groups (P<0:05
and FDR <0.25). The gene mutation analysis was used to
identify the quantity and quality of gene mutations among the
signature subgroups. Wilcoxon signed-rank test was employed
to investigate differences in expression levels of m6A-related
genes in different groups.

To analyze the immune characteristics of this model, the
relative proportion of immune cells was computed using
CIBERSORT (http://cibersort.stanford.edu/) [12]. Single-sample
GSEA (ssGSEA) was applied to identify differences of immune
function between different groups. Survival status was compared
with the immune cell proportions and immune function

2 Mediators of Inflammation

http://portal.gdc.cancer.gov
http://portal.gdc.cancer.gov
http://portal.gdc.cancer.gov
http://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo/
http://asia.ensembl.org
http://www.innatedb.com
http://www.innatedb.com
http://www.immport.org
http://www.immport.org
http://string-db.org
http://string-db.org
http://string-db.org
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/


between different groups. And we carried out Wilcoxon signed-
rank test to explore the expression level of ICIs-relatedmolecules
among different groups.

TIDE score was obtained from TIDE (http://tide.dfci.ha
rvard.edu/), and TIS score was computed based on the expres-
sion of the 18 genes [13, 14]. Then, the time-dependent
receiver-operating characteristic (ROC) curve analyses were
performed to acquire the area under the curve (AUC) and
compare the prognostic value among the model, TIDE, and
TIS. To evaluate the sensitivity of chemotherapy in the IRGs
prognostic model, Wilcoxon signed-rank test was used to
compare the difference in the half inhibitory concentration
(IC50) among the prognostic model subgroups.

3. Results

3.1. Identification of Significantly Related Modules. By per-
forming differential expression analysis and intersecting
these genes with identified IRGs, 920 differentially expressed
IRGs were extracted, of which 726 were upregulated and 194
were downregulated (Supplementary 1). In total, 920 IRGs
were enriched in various GO and KEGG terms (details in
Supplementary 2), and the first 30 GO and KEGG terms are
presented in Supplementary 1 (Figures S1B and S1C). Nine
significantly related modules were recognized byWGCNA on
the basis of the scale-free network (Supplementary 3). PPI was
constructed separately, and GO and KEGG were conducted
respectively on the genes of the green, pink, brown, and red
modules (Supplementary 4).

3.2. Development of IRGs Prognostic Index. To construct an
IRGs prognostic model, 20 survival-associated IRGs were
extracted in accordance with these genes of significantly rel-
evant modules (the green, pink, brown, and red modules),
shown in Figure 1(a) and Supplementary 5. Among 20
survival-associated IRGs, nine IRGs were identified via mul-
tivariate Cox regression analysis, thereby establishing the
prognostic model (Figure 1(b)). Although some genes had
P-values greater than 0.05 in the multivariate Cox regression
analysis, these genes still had some prognostic value. On the
basis of the respective median risk score, 249 patients were
assigned to the high-risk group and 250 patients to the low-
risk group in TCGA, 143 patients to the high-risk group, and
127 patients to the low-risk group in GEO.

3.3. Estimation of the Risk Assessment Signature. KM analysis
demonstrated that survival rates were remarkably lower in
high-risk HNSCC patients (Figures 1(c) and 1(d)). Besides,
the risk score distribution for HNSCC patients is presented in
Figures 1(e) and 1(f), indicating that the clinical prognosis of
patients in the high-risk group was generally worse. Based on
a set of χ2 tests, the strip chart (Figure 2(a)) and consequent
scatter diagrams show that risk scores are strongly related to
clinico-pathological characteristics of HNSCC patients,
including pathological stage (Figure 2(b)), clinical stage
(Figure 2(c)), T stage (Figure 2(d)) and N stage (Figure 2(e)).
Univariate and multivariate Cox regression analysis validated
that the model was an independent prognostic risk factor
(Figures 2(f) and 2(g), details in Supplementary 6). The result

of DCA indicated that the prognostic model was more precise
than other conventional clinico-pathological characteristics
(Figure 3(a)). The nomogram combining the IRGs prognostic
model and clinico-pathological characteristics was dependable
and sensitive for survival prediction of HNSCC patients
(Figure 3(b)).

3.4. Investigation of Molecular Characteristics. Genes in the
low-risk group were largely enriched in cell adhesion mole-
cules, chemokines, and immune-related pathways, whereas
genes in the high-risk group were majorly enriched in focal
adhesion (Figures 4(a) and 4(b), details in Supplementary 7).
The results of gene mutation analysis displayed that more
genes were mutated in the high-risk group (Figures 4(c) and
4(d)). The commonest type of mutation was the missense
variant mutations, followed by nonsense mutation and mul-
tiple mutations of a gene. The top 10 genes having the greatest
mutation rate were TP53, TTN, FAT1, CDKN2A, MUC16,
CSMD3, PIK3CA, NOTCH1, SYNE1, and LRP1B. Mutations
in the TP53, TTN, CDKN2A, and NOTCH1 genes were more
frequent among the high-risk group, whereas mutations in the
NSD1 and FLG genes were more prevalent among the other
group. Comparing m6A-related mRNAs in different groups
revealed that the expression levels of YTHDC2, YTHDF1,
ALKBH5, IGFBP2, and FTO (P<0:001), RBM15B, VIRMA,
YTHDC1, and HNRNPC (P<0:01), and HNRNPA2B1
(P<0:05) were statistically different (Figure 4(e)).

3.5. Evaluation of Immunological Characteristics. Based on
CIBERSORT, we found that NK-cell resting, eosinophil, T-
cell CD4+ naive, mast cell resting, M0 macrophage were
more plentiful in the high-risk group, and T-cell follicular
helper, T-cell CD8+, mast cell activated, regulatory T-cell, B-
cell naive, B-cell plasma, B-cell memory, myeloid dendritic
cell resting, monocyte, M1 macrophage were more plentiful
in the low-risk group (Figures 5(a) and 5(b), details in
Supplementary 8). The vast majority of immune functions
were statistically different among distinct groups, except for
antigen-presenting cell coinhibition, macrophages, major
histocompatibility complex class I, response to type I
Interferon, and parainflammation (Figure 6(a)). The
relationship between immune cell proportions and immune
function and survival status was analyzed (Supplementary 9
and Supplementary 10). We also explored whether the model
was associated with ICIs and found statistically significant
differences in the expression of CTLA-4, PDCD1, LAG3,
TIGIT, BTLA, and others in different groups (Figure 6(b)).

3.6. Exploration of ICIs Therapeutics. To estimate the under-
lying clinical efficacy of immunotherapy of the prognostic
model, TIDE was used to evaluate this, and lower TIDE
prediction scores indicated a higher likelihood of patients
benefiting from treatment with ICIs, as represented by a
lower potential for immune evasion. In our results, no statis-
tical differences in TIDE scores were found between distinct
groups, but TIDE scores were low in both groups, indicating
that both groups were able to benefit better from treatment
with ICIs (Figure 7(a)). In addition, we found that the low-
risk group had a higher microsatellite instability (MSI) score
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SPINK5     0.003        0.886 (0.818–0.959)
FAM3B     0.040        0.872 (0.765–0.994)
PDGFA         <0.001        1.498 (1.212–1.853)
SLURP1          0.034        0.938 (0.884–0.995)
STC2             <0.001        1.365 (1.183–1.574)          
PSMA7           0.038        1.434 (1.020–2.014)
CTSG              0.005        0.737 (0.597–0.912) 
DES                  0.026        1.056 (1.006–1.109)
SEMA3G         0.025        0.696 (0.506–0.956)
AVPR2             0.001        0.257 (0.114–0.582)
DEFB1             0.005        0.897 (0.833–0.967)
LTF     0.036        0.925 (0.860–0.995)
DMBT1           0.019        0.841 (0.727–0.972)
CCL28             0.048        0.782 (0.613–0.998)
SCGB3A1       0.030        0.909 (0.834–0.991)
TNFRSF19      0.040         0.832 (0.698–0.991)          
PLAU            <0.001        1.267 (1.112–1.444) 

P value Hazard ratio

0.0 0.5 1.0

Hazard ratio

1.5 2.0

ðaÞ

P value Hazard ratio

PDGFA    0.043        1.281 (1.008–1.627)

STC2                0.002        1.280 (1.097–1.494)

CTSG               0.141        0.840 (0.665–1.060)

DES                <0.001        1.104 (1.046–1.165)

AVPR2            0.033        0.407 (0.178–0.929)

DEFB1             0.026        0.907 (0.832–0.988)

LTF                   0.059        1.114 (0.996–1.246)

DMBT1            0.038        0.793 (0.637–0.988)

TNFRSF19       0.001        0.716 (0.583–0.879) 

Hazard ratio
0.0 0.5 1.0 1.5

ðbÞ

0.00

0

0

248
25020313286 60 34 22 18 11 11 10 8 7 6 4 2 1 1 0 0 0

174 83 48 33 18 12 8 5 2 1 1 0 0 0 0 0 0 0 0 0

Ri
sk

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

Time (years)

Time (years)

Risk

Low risk

Low risk

High risk

High risk

P < 0.001

11 12 13 14 15 16 17 18 19 20

0.25

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.50

0.75

1.00

ðcÞ

143
127

120
114

89
85

33
34

12
13

7
9

0
3

0 1 2 3 4 5 6

Time (years)

Ri
sk

Low risk
High risk

P = 0.016

0 1 2 3 4 5 6

0.00

0.25

0.50

0.75

1.00
Su

rv
iv

al
 p

ro
ba

bi
lit

y

Time (years)

Risk

Low risk
High risk

ðdÞ

0

0
1
2
3
4
5
6

5

10

Dead
Alive

15

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

Ri
sk

 sc
or

e

0

0 100 200 300 400 500

100 200 300 400 500

Patients (increasing risk score)

Patients (increasing risk score)

High risk
Low risk

ðeÞ

0
1
2
3
4
5

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

0 50 100 150 200 250

0
0
1
2
3
4
5
6

50 100 150 200 250

Patients (increasing risk score)

Patients (increasing risk score)

Dead
Alive

High risk
Low risk

Ri
sk

 sc
or

e

ðfÞ
FIGURE 1: Prognostic analysis of distinct prognostic signature groups: (a) univariate Cox analysis of 20 IRGs; (b) multivariate Cox regression
analysis of nine IRGs; (c and d) Kaplan–Meier survival analysis; (e and f ) risk scores and survival outcome.
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Mediators of Inflammation 5



and T-cell dysfunction score, whereas the high-risk group
had a higher T-cell exclusion score. The AUC of the ROC
analysis for 3-year survival prediction showed that the model
was more accurate than TIDE and MSI. The AUC values for
the 1-, 2-, and 3-year ROC curves in the IRGs prognostic
model were all high, indicating that the model had superior
sensitivity and specificity for survival prediction (Figure 7(b)).
Beyond ICIs blocking therapy, we found that the IC50 of
docetaxel, gemcitabine, and methotrexate were statistically
different among different groups; while the difference in
IC50 for cisplatin and paclitaxel was minimal (Figure 7(c)).

3.7. Role of PDGFA in HNSC Progression. To clarify the role of
PDGFA in HNSC progression, we found by analyzing the
TCGA database that: PDGFA expression levels showed a
significant positive correlation with TGF-β by Figure 8(a).
Correspondingly, we found that PDGFA expression levels
were significantly higher in the tissues of HNSC patients with
higher epithelial-mesenchymal transition (EMT) viability
compared to those with lower EMT viability (Figure 8(b)).

The above data suggest that the aberrant expression of
PDGFA expression levels in HNSC may promote distal
metastasis of HNSC by promoting EMT and thereby.
Further, we performed a knockdown of PDGFA in HNSC
and verified the knockdown efficiency by the western blot
(WB) (Figure 8(c)). Based on this, we found by transwell
assay that: PDGFA knockdown could significantly inhibit the
metastatic potential of HNSC cells in vitro (Figure 8(d)). The
current first-line treatment regimen of HNSC is still dominated
by radiotherapy, and the activation of EMT is closely associated
with chemoresistance, according to which we speculate that the
abnormal expression of PDGFA may confer chemoresistant
properties to HNSC cells. To test our conjecture, we
performed 5-Fu treatment in control and PDGFA cells and
detected the apoptosis rate by flow assay, and found that:
PDGFA knockdown could significantly promote apoptosis
induced by 5-Fu treatment, i.e., PDGFA could enhance
HNSC for chemotherapy accordingly (Figure 8(e)).
In addition, we found that PDGFA expression levels were
significantly elevated in HNSC compared to normal tissues
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FIGURE 2: Assessment of clinical characteristics for the model: (a–e) the relationship between the model and traditional clinical characteristics;
(f and g) univariate and multivariate Cox analysis of the model and traditional clinical characteristics. ∗P<0:05, ∗∗P<0:01, ∗∗∗P<0:001.
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(Figure 8(f)). And the abnormally elevated level of its expression
predicted poor prognosis of patients (Figures 8(g)–8(i)).

4. Discussion

ICIs therapeutics have been demonstrated to be an accurate
and safe therapy for relapsed or refractory HNSCC patients
[15, 16]. As the general response rate to treatment with ICIs
remains low, it is crucial to ascertain those patients who
could profit most from those treatments [17, 18]. Over the
past few years, although there have been many evaluations of
various prognostic signatures for HNSCC, we remain with-
out identifying a validated biomarker for predicting immu-
notherapy and immune system response. We emphasize the
necessity of identifying the optimal treatment population
and prognostic genes for response to immunotherapy.

WGCNA is a virtual approach to finding modules of
strongly correlated genes, modules, and external sample charac-
teristics and can help recognize potential IRGs or therapeutic
targets [19, 20]. WGCNA was used to identify nine IRGs, and
the IRGs prognostic model was developed based on TCGA. The
model has been shown to be an effective IRGs for HNSCC, with
better survival in patients with the low-risk group.

Various studies have indicated that a variety of immune-
related biomarkers are related to the outcome of patients
with various malignancies, particularly HNSCC [21–23].
Wang et al. [24] set up a nine IRGs signature to analyze
the tumor microenvironment and indicate the prognosis
for HNSCC. She et al. [25] identified 27 IRGs and established
a signature that offers a thorough overview of the immune
microenvironment and prognosis of HNSCC. In this study,
some of the IRGs that have been recognized during modeling
play an important role in the malignant phenotype of different
cancer types, especially HNSCC.Humphries et al. reported that
CTSG was highly expressed in HNSCC tissues in contrast to
paraneoplastic tissues and affected cancer progression and
metastasis by activating and inhibiting a large network of pro-
tein hydrolytic interactions [25]. Yang et al. found that STC2
facilitates HNSCC proliferation and metastasis by modulating
the G1/S cell cycle transition [25]. Zhang et al. [26] demon-
strated that the re-expression of LTF could impair the malig-
nancy of HNSCC cells. In summary, the IRGs prognostic
model we developed in the study was a novel model that could
recognize new biomarkers to be further studied.

The results of GSEA showed that the low-risk group was
enriched in cell adhesionmolecules, chemokines, and immune-
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FIGURE 5: The landscape of the TME in the TCGA-HNSCC set: (a) the proportion of TME cells in the TCGA set; (b) the proportion of each
TME cell type in distinct groups. ∗P<0:05, ∗∗P<0:01, ∗∗∗P<0:001.
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FIGURE 6: Evaluation of immune-related functions and ICIs-related molecules: (a) immune-related function analyzed by the ssGSEA in
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related pathways, whereas the high-risk group was enriched in
focal adhesion, which implied that the low-risk group was
characterized by immune activation and suppression of tumor
progression. The gene mutations of the high- and low-risk
groups showed that the most prevalent type of mutation was
themissense variant mutation, next to nonsensemutations and

multiple mutations of a gene, as mentioned previously [26].
TP53 mutation was the most frequent mutation between dif-
ferent groups (73% vs. 52%). The majority of HNSCC patients
(about 70%) have the TP53 mutation, while the incidence of
this genetic change varies according to the head and neck area
[27]. Furthermore, TP53 mutation is related to more invasive
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disease and poorer patient prognosis inHNSCC [27]. Thus, the
low-risk group with low TP53 mutations had a better progno-
sis, in agreement with our results. DNA methylation is a form
of chemical modification of DNA that can alter genetic expres-
sion without altering the DNA sequence [28, 29]. Methylation-
related genes in HNSCC have been extensively studied in
recent years [30, 31]. In this study, some m6A-related genes
not only differed significantly different among different groups
but also correlated with the prognosis of various malignancies,
such as FTO, ALKBH5, YTHDF1, and YTHDC2, in agreement
with our results [32–35]. In addition, we found that abnormal
expression of PDGFA expression levels in HNSCmay promote
distal metastasis of HNSC by promoting EMT and thus HNSC.

A comprehensive understanding of the immunological
landscape can help find new ways to treat HNSCC. CD4+ T
cells and NK cells were more prevalent in the high-risk group,
whereas CD8+ T cells, M1 macrophages, regulatory T cells,
and B cells were more common in the low-risk group. A large
number of researches have indicated that CD4+ T cells are
related to poor prognosis [32–35]. Conversely, the high den-
sity of CD8+ T cells and M1 macrophages are indicative of a
good prognosis [36–39]. These research findings are in accor-
dance with ours. However, regulatory T cells and B cells were
negatively related to the prognosis of patients in some
researches, while others indicated the opposite [40–42].
Similarly, the results of the immune function analysis showed
that the low-risk group had more immune activities, which
predicted a better prognosis for the low-risk group. Further-
more, our results indicated that the low-risk group was posi-
tively associated with the expression of most ICIs, including
CTLA-4, PDCD1, LAG3, TIGIT, and BTLA, suggesting that
patients in the low-risk group might be able to benefit more
from ICI therapy.

TIDE has been developed based on two different mechan-
isms of tumor immune escape: T-cell dysfunction in cytotoxic
T lymphocytes (CTL)-high tumors and T-cell exclusion in
CTL-low tumors [43]. In our study, there was no significant
difference in TIDE scores between different risk groups, but
both their TIDE scores were low. The high-risk group had a
higher T-cell exclusion score and lower T-cell dysfunction
score, and higher MSI score, which indicated that these
patients had higher levels of T-cell exclusion. On the contrary,
the low-risk group had a higher T-cell dysfunction score, MSI
score, and lower T-cell exclusion score than the high-risk
group, which demonstrated that these patients had higher
levels of T-cell dysfunction and more MSI. Some researches
have demonstrated the prevalence of MSI in HNSCC, and the
highmutational burden caused byMSImakes the tumor immu-
nogenic and sensitive to anti-PD1 therapy [44, 45]. TIS, an 18
gene signature developed by NanoString Technologies, has
been verified in HNSCC clinical trials (KEYNOTE-012 and
KEYNOTE-055) using single-agent pembrolizumab treatment,
demonstrating a positive association with response and survival
[16, 46]. In the research, the predictive value of the prognostic
model was higher than that of TIDE and TIS, and the model
consisted of only nine genes and was, therefore, easier to detect
than TIDE and TIS. Our findings indicated that the IC50 of
docetaxel, gemcitabine, and methotrexate were statistically

different between different groups, whereas the difference in
IC50 for cisplatin and paclitaxel was little.

However, the current study has several shortcomings and
limitations. First, though external validation has been carried
out to verify the predictive power of the model, the exact
molecular mechanisms of the nine IRGs have not been
explored in the present study. Second, our total sample size is
relatively small, and the normal to tumor sample counts are
nonproportional. Third, the results may be biased as themajor-
ity of samples from TCGA are nonmetastatic. Therefore, in
order to further examine and validate our model, we want to
recollect more clinical samples, increase the size of our sample,
and carefully follow-up on our results.

5. Conclusion

In summary, this study demonstrated that a promising IRGs
prognosticmodelmight facilitate the differentiation of immune
and molecular features, forecast patient prognosis, and aid in
distinguishing those who could benefit from antitumor immu-
notherapy for HNSCC.
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Objective. To elucidate the mechanism by which LINC00174 promotes colon cancer progression by targeting the microRNA-
2467-3p (miR-2467-3p)/enolase 3 (ENO3) axis to regulate inflammation and glycolysis. Methods. The expression of
LINC00174 and ENO3 in colon cancer tissues, its relationship with survival rate, and correlation were analyzed using
bioinformatic analysis. The effects of LINC00174 overexpression and silencing on the biological behavior of and inflammation
in colon cancer cells were analyzed via transfection experiments. The target relationships between miR-2467-3p or LINC00174
and ENO3 were verified using sequence prediction and the dual-luciferase reporter assay, respectively. Furthermore,
LINC00174- and/or miR-2467-3p-overexpressing cells were prepared to determine the effects on ENO3 protein levels and
glycolysis. Finally, the effects of LINC00174 and/or miR-2467-3p overexpression on colon cancer, ENO3 protein levels, and
inflammation were analyzed using a tumor-bearing mice model. Results. LINC00174 and ENO3 were overexpressed and
associated with a lower survival rate. LINC00174 was positively correlated with ENO3 in colon cancer tissues. Furthermore,
the overexpression of LINC00174 in colon cancer cell lines promoted the proliferation, migration, and invasion of colon cancer
cells and inflammation but inhibited apoptosis. The overexpression of miR-2467-3p inhibited ENO3 protein levels, which was
attenuated via LINC00174 overexpression. Furthermore, it inhibited the biological behavior of and inflammation and glycolysis
in colon cancer cells and blocked their LINC00174-induced promotion. Moreover, using animal experiments, the regulatory
effects of LINC00174 on tumor growth, ENO3 protein levels, and inflammation via miR-2467-3p were confirmed. Conclusion.
LINC00174 promotes the glycolysis, inflammation, proliferation, migration, and invasion of colon cancer cells and inhibits
apoptosis. The cancer-promoting mechanism of LINC00174 is related to targeting miR-2467-3p to promote ENO3 protein levels.

1. Introduction

A global statistical report revealed 1,148,515 new cases of
colon cancer and 576,858 colon cancer-related deaths in
2020, accounting for 6.0% and 5.8% of all tumors, respec-
tively; this makes colon cancer the fifth most common can-
cer type [1]. Surgery or combination chemotherapy is the
main treatment strategy to decrease tumor burden and pro-
long patient survival [2, 3]. Nevertheless, patients with

colon cancer have a poor prognosis, with an overall 5-
year survival rate of approximately 60% [4, 5]. However,
the detection of this cancer type is difficult at an early
stage, and the survival rate of advanced colon cancer is
only 8%–30% [6, 7]. Colon cancer is also associated with
chronic inflammation, and diseases such as ulcerative coli-
tis may further progress to colon cancer [8, 9]. Further-
more, chronic inflammation is conducive to tumor cell
metastasis [10, 11]. Moreover, increased interleukin- (IL-)
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1β and IL-8 levels promote the migration and invasion of
colon cancer cells [12, 13]. Therefore, it is extremely crucial
to determine colon cancer pathogenesis.

Long noncoding RNAs (lncRNAs) can competitively
adsorb microRNAs (miRNAs) and inhibit their posttran-
scriptional gene expression [14]. Furthermore, they can pro-
mote colon cancer progression by inducing inflammation,
such as taurine upregulated 1 [15, 16]. LINC00174 has been
recently discovered as a cancer-promoting lncRNA; it plays
a role in promoting the progression of liver cancer [17],
breast cancer [18], and osteosarcoma [19]. A sequencing-
based study reported that LINC00174 is associated with
colon cancer prognosis and is involved in regulating glucose
metabolism [20]. However, the effect and mechanism of
LINC00174 on the biological behavior of colon cancer cells
remain unclear.

Tumor cells produce ATP mainly via glycolysis, even if
the oxygen supply is sufficient; this is known as the Warburg
effect [21, 22]. Tumor cells can rapidly obtain energy via gly-
colysis, which is conducive to tumor cell growth [23]. The
Warburg effect can increase the aggressiveness of colon can-
cer cells; therefore, reversing glycolysis can be a potential
approach to treat colon cancer [24, 25]. Enolase 3 (ENO3)
is a β-enolase that regulates striated muscle development
[26]. Genomic analysis revealed that ENO3 is associated
with the risk of colon cancer and that it is involved in the
regulation of glycolysis [27]. Elevated levels of glycolysis
result in the activation of inflammatory pathways [28],
which are also involved in tumor progression [29]. However,
this mechanism remains unvalidated at the cellular and ani-
mal levels, and the mechanism by which ENO3 expression is
regulated remains unclear.

The present study is aimed at determining the mecha-
nism by which LINC00174 regulates ENO3, glycolysis, and
inflammation and elucidates its effects on colon cancer.
Our goal is to provide a novel theoretical foundation for
colon cancer diagnosis and treatment.

2. Materials and Methods

2.1. Bioinformatic Analysis. Colon cancer cases in The Can-
cer Genome Atlas (TCGA) database were analyzed using the
starBase tool. For differential analysis, 471 tumor tissue sam-
ples and 41 normal tissue samples were included. For sur-
vival analysis, 447 samples were included. The survival rate
of the LINC00174 or ENO3 high- and low-expression
groups was analyzed and compared using the logrank test.
Further, the correlation between LINC00174 and ENO3 in
colon tissues was analyzed using the Pearson test.

2.2. Cell Culture. FHC, a human colon epithelial cell line
(CRL-1831); Caco-2, a colon cancer cell line (HTB-37);
SW480 (CCL-228); COLO201 (CCL-224); and HCT116
(CCL-247EMT) were acquired from American Type Culture
Collection (Manassas, VA, USA). All cell lines were main-
tained in Dulbecco’s modified Eagle medium (DMEM)
(Gibco, USA) supplemented with 10% fetal bovine serum
(FBS), 100mg/mL streptomycin, and 100 units/mL penicillin
(Sigma-Aldrich, USA). The cells were cultured in a 5% CO2

incubator at 37°C and 95% humidity. In some experiments,
the cells were treated with 5mM 2-deoxy-d-glucose (2-
DG) for 48 h to inhibit cellular glycolysis.

2.3. Cell Transfection. Transfection experiments to silence
LINC00174 were performed using Caco-2 cells with relatively
high LINC00174 expression. Transfection experiments to
overexpress LINC00174 were performed using COLO201
cells. Moreover, Caco-2 cells were used to cotransfect
LINC00174 and the miR-2467-3p mimic. siLINC00174,
siENO3, LINC00174, miR-2467-3p mimic, and correspond-
ing siNC/NC/mimic NC were obtained from GenePharma
Co., Ltd. (China). Briefly, 50pmol (0.67μg) plasmid was
diluted with 25μL of serum-free DMEM (reagent A). Then,
1μL of Entranster™-R4000 (Engreen) and 24μL of serum-
free DMEM were mixed for 25min (reagent B). The transfec-
tion complex was prepared by thoroughly mixing 25μL of
reagent A and 25μL of reagent B (aspirate 10 times using a
pipette) and standing for 15min. Cells in 0.45mL of complete
medium were transfected with 50μL of the transfection com-
plex. siNC/NC/mimic NC plasmids were used as controls.

2.4. RT-qPCR. For analysis, 400μL of TRIzol (Thermo
Fisher, USA) was added to the cells or tissues in a 1.5mL
sterile RNase-free EP tube. The cells or tissues were ground
to a homogenate, followed by the addition of 600μL of TRI-
zol and mixing for 5min. Then, the cells were centrifuged
for 5min (4°C, 12,000 × g), and the pellet was discarded.
TRIzol and chloroform were mixed at a ratio of 1 : 2 and
added to the supernatant of the previous step, followed by
shaking for 15 s. Thereafter, isopropanol was added to pre-
cipitate the RNA in the aqueous phase. The collected RNA
pellet was carefully washed with 75% ethanol to remove
impurities. RNA was redissolved in diethylpyrocarbonate-
treated water and stored at −80°C. RNA was reverse tran-
scribed into cDNA using the PrimeScript RT reagent kit
(RR047A, Takara) under the following conditions: 37°C/
15min and 98°C/5min. qPCR amplification was performed
using the SYBR Green reagent (Takara, Japan) under the fol-
lowing conditions: 94°C for 3min, followed by 40 cycles at
94°C for 15 s, 58°C for 20 s, and 72°C for 30 s. The expression
of LINC00174 and mRNAs was normalized to that of
GAPDH using the 2−ΔΔCt method. The expression of miR-
2467-3p, miR-3918, and miR-542-3p was normalized to that
of U6. The primers used were as follows: LINC00174 F: 5′-
AAGCCCCTGGGGAATGTTTC-3′, R: 5′-AAGCCCCTG
GGGAATGTTTC-3′; IL-1β F: 5′-TCCTTGCCCTTCCATG
AACC-3′, R: 5′-TTACTTGGCACCCTGTTTGC-3′; IL-8 F:
5′-GGCAGCCTTCCTGATTTCTG-3′, R: 5′-AATTTCTGT
GTTGGCGCAGTG-3′; IL-10 F: 5′-GAGATGCCTTCAGC
AGAGTGA-3′, R: 5′-ACTCATGGCTTTGTAGATGCCT-3′;
GAPDH F: 5′-TTTCTGACTCCGTGAACCGC-3′, R: 5′-
AGTCCTTCCACGATACCAAAGTT-3′; miR-2467-3p F: 5′-
CCTGAGGCTCTGTTAGCCTT-3′, R: 5′-ACAGACCCTGA
GCCTCTC-3′; miR-3918 F: 5′-GGTTAAGCCATGGGAC
AGGG-3′, R: 5′-CTACGAACCAGGTGCAGGG-3′; miR-
542-3p F: 5′-TCGGGGATCATCATGTCACG-3′, R: 5′-
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GAGTGGCTCCCAGACCTTTC-3′; and U6 F: 5′-CTCGCT
TCGGCAGCACA-3′, R: 5′-AACGCTTCACGAATTTGCG
T-3′.

2.5. Measurement of IL-1β, IL-8, and IL-10 Levels via Enzyme-
Linked Immunosorbent Assay (ELISA). In transfection experi-
ments, Caco-2 cells with relatively high LINC00174 expression
were used to silence LINC00174, whereas COLO201 cells
were used to overexpress LINC00174. The cells were collo-
cated and centrifuged at 1000 × g for 15min at 4°C. The
supernatant was collected and transferred into 96-well plates.
The levels of IL-1β, IL-8, and IL-10 were measured using
ELISA kits (Invitrogen, USA) following the manufacturer’s
instructions. Optical density (OD) was measured using a
microplate reader (Biotek, Winooski, VT, USA). The levels
of IL-1β, IL-8, and IL-10 were expressed as microgram per
milliliter.

2.6. Cell Counting Kit-8 (CCK-8) Assay. The cell suspension
(100μL) at a density of 5 × 104/mL was added into the wells
of a 96-well plate. After 24, 48, and 72h, 10μL of the CCK-8
solution was added. The plates were gently mixed on an
orbital shaker for 1min at 37°C to ensure uniform mixing.
The plates were then incubated for 2 h for the dehydrogena-
tion reaction. The OD was measured at a wavelength of
450nm using a microplate reader (Biotek).

2.7. Flow Cytometry. Cells were collected and trypsinized
without EDTA. After washing with PBS and centrifuging
the samples two times at 2000 rpm for 5min, 5 × 105 cells
were collected and resuspended in 500μL of binding buffer.
Then, 5μL of annexin V-fluorescein isothiocyanate and pro-
pidium iodide (Sanjiang Biological Technology Co., Ltd.,
China) was used to mark apoptotic cells (15min in the
dark). After 30min, flow cytometry (BD FACSCalibur,
USA) was performed for detection. Normal cells were used
for fluorescence compensation modulation to set the posi-
tion of the cross gates.

2.8. Scratch Healing Assay. Cells were grown to 90%–95%
confluency in 6-well plates to form a monolayer under the
abovementioned conditions. Then, a 200μL pipette tip was
used to make vertical scratches from top to bottom. This
was considered 0 h, and the scratch width was recorded.
After the streaked cells were washed away, the cells were cul-
tured in serum-free medium. Photographs were captured
after 24 h to assess scratch healing.

2.9. Transwell Assay. Matrigel (1 : 8 dilution; Corning, USA)
was added to the upper chamber, and the sample was incu-
bated at 37°C for 30min. Then, 600μL of complete medium
(20% FBS) was added to the lower chamber of the 24-well
Transwell device. The cells (5 × 104/mL) were cultured in
serum-free medium at 37°C for 24 h for starvation treat-
ment. After digestion, 100μL of cell solution (5 × 104/mL)
was added to the hydrated Transwell chamber. After 24h,
the uninvaded cells were washed away, and the infiltrated
cells in the lower chamber were fixed with 95% ethanol
and stained with 0.1% crystal violet for 20min at room tem-

perature (25°C). The number of cells was counted in five
random fields in a ×400-fold field of view.

2.10. Analysis of Glycolysis Levels. Glycolysis level was deter-
mined by detecting glucose intake and lactic acid secretion.
Briefly, 1 × 105 cells were seeded in a Petri dish and incu-
bated for 24h under the abovementioned conditions. Then,
the medium was removed, and 5mL of medium without
FBS and L-glutamine was added. After incubation for 8 h,
the supernatant was collected via centrifugation. Glucose
intake was detected using the Amplex Red Glucose/Glucose
Oxidase Assay Kit (Molecular Probes, CA, USA). Lactic acid
production was detected using a lactic acid detection kit
(BioVision, CA, USA).

2.11. Dual-Luciferase Reporter Assay. For the dual-luciferase
reporter assay, 1μg of wild-type (wt) LINC00174/ENO3-
pGL4 (Promega Corporation, USA) or mutant LINC00174/
ENO3-pGL4 (induced using the QuickMutation™ Kit, Beyo-
time, China), 50nmol miR-2467-3p mimic/mimic NC, and
150ng Renilla luciferase plasmid (Beyotime) were transfected
into 3 × 104 cells using Lipofectamine® 2000 at 37°C for 36h.
Luciferase activity was measured using the dual-luciferase
reporter gene detection kit (Promega Corporation). All data
were normalized to Renilla luciferase activity.

2.12. Western Blotting. The cells or tissues were collected and
incubated with RIPA lysis solution on ice for 30min. Then,
total protein was obtained via centrifugation at 12000 × g
for 20min at 4°C. Sodium dodecyl sulfate-polyacrylamide
gel electrophoresis was performed to separate the proteins.
The rabbit monoclonal primary antibody of ENO3
(1 : 1000) (ab157474, Abcam, USA) was added to the mem-
brane (4°C, overnight). Then, the membrane was washed
two times with Tris-buffered saline/0.1% Tween (TBST)
solution. The membrane was then incubated with secondary
antibodies (1 : 2000, ab6721) for 2 h at 37°C. The membrane
was washed three times with TBST. The protein blots were
visualized using an ECL kit (Solarbio) and detected using
IPP6.0 (Media Cybernetics, USA).

2.13. Construction of the Syngeneic Model. Four-week-old
male normal BALB/C mice (Charles River Co., Ltd., China)
were used to detect cell tumorigenesis. The animals were
housed in an environment of 24°C±1°C and 60% ± 5% rela-
tive humidity. In total, 24 mice were grouped using the ran-
dom number table method, with 6 mice in each group.
Briefly, 5 × 106 CT26-wt cells were resuspended in 200μL
of PBS and injected into the armpit area of the mice.
Twenty-eight days after transplantation, the mice were sacri-
ficed and tumors were collected for weighing. The animals
were euthanized when the diameter of the tumor was
>2 cm (not involved in this experiment). Protocols involving
animals were approved by the ethics committee of the Peo-
ple’s Hospital of Guangxi Zhuang Autonomous Region.

2.14. Statistical Analysis. All experiments were independently
performed in triplicate. Data were expressed as mean ± SD.
Statistical analysis was performed using one-way analysis of
variance and Tukey’s multiple comparison tests (GraphPad
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Prism version 7.0). The t-test was used to analyze the differ-
ences between the two groups. Survival analysis was per-
formed using the logrank test. A P value of < 0.05 was
considered statistically significant.

3. Results

3.1. LINC00174 Is Overexpressed in Colon Cancer and
Associated with a Poor Prognosis. To preliminarily analyze
LINC00174 expression in colon cancer, LINC00174 expres-
sion in colon cancer tissues in TCGA database was obtained
for analysis. LINC00174 expression was significantly
increased in colon cancer tissues (Figure 1(a)). Patients with
high LINC00174 expression had a significantly decreased
survival rate (P = 0:025) (Figure 1(b)). Compared with nor-
mal colon epithelial cells, LINC00174 expression was signif-
icantly upregulated in colon cancer cell lines (Figure 1(c)).
This suggests that LINC00174 plays a positive role in colon
cancer. Caco-2 cells with relatively high LINC00174 expres-
sion and COLO201 cells with relatively low LINC00174
expression were used in the subsequent experiments.

3.2. Silencing or Overexpression of LINC00174 Affects the
Growth, Migration, and Invasion of Caco-2 Cells. To deter-
mine the effects of LINC00174 on colon cancer cells, Caco-
2 was used as a model cell line for LINC00174 silencing.
Figure 2(a) illustrates the transfection results. Cell viability
was significantly decreased after LINC00174 silencing
(Figure 2(b)). After LINC00174 inhibition, the apoptosis
rate increased from approximately 5% to approximately
20% (Figure 2(c)). The level of scratch healing was signifi-
cantly decreased in the siLINC00174 group after 24 h
(Figure 2(d)). Furthermore, the number of cells that invaded
the lower chamber of the Transwell device was lower in the
siLINC00174 group than in the siNC group (Figure 2(e)).

COLO201 cells with relatively low LINC00174 expres-
sion were used to overexpress LINC00174 (Figure 2(f)).
When LINC00174 expression increased in the cells, the pro-
liferation ability significantly increased, whereas the apopto-
sis rate decreased (Figures 2(g) and 2(h)). Increasing
LINC00174 expression increased the scratch healing rate
from 60% to approximately 90% after 24 h (Figure 2(i)).
The number of cells that invaded the lower chamber of the
Transwell device was higher in the LINC00174 group than
in the NC group (Figure 2(j)).

3.3. Silencing or Overexpression of LINC00174 Affects
Inflammation in Caco-2 Cells. A decrease in LINC00174
expression decreased the expression of the proinflammatory
factors IL-1β and IL-8 (Figures 3(a) and 3(b)) but increased
the mRNA expression of the anti-inflammatory factor IL-10
(Figure 3(c)). These results suggest that LINC00174 silenc-
ing inhibits the malignant biological behavior of and inflam-
mation in colon cancer cells. ELISA revealed that IL-1β and
IL-8 levels were significantly decreased in the siLINC00174
group, whereas IL-10 levels were significantly increased in
the siLINC00174 group compared with the siNC group
(Figures 3(d)–3(f)). Moreover, LINC0017 overexpression
promoted the mRNA expression of the proinflammatory

factors IL-1β and IL-8 (Figures 3(g) and 3(h)) but decreased
that of the anti-inflammatory factor IL-10 (Figure 3(i)). This
further confirms the promoting effects of LINC00174 on
colon cancer. In contrast, when LINC00174-overexpressing
cells were treated with 2-DG, a glycolytic inhibitor, or
ablated with ENO3 (siENO3), the effects of LINC00174
overexpression on the inflammatory factors were signifi-
cantly abolished (Figures 3(g)–3(l)). Compared with the
LINC00174 group, IL-1β and IL-8 levels were significantly
decreased in the LINC00174+2-DG and LINC00174
+siENO3 groups (Figures 3(g), 3(h), 3(j), and 3(k)), whereas
IL-10 levels were significantly increased in these two groups
(Figures 3(i) and 3(l)).

3.4. Construction of the LINC00174/miR-2467-3p/ENO3
Axis. TCGA analysis revealed that ENO3 expression was
increased in colon cancer tissues (Figure 4(a)). Patients with
high ENO3 expression had a significantly decreased sur-
vival rate (P = 0:025) (Figure 4(b)). Using the colon cancer
samples in TCGA database, LINC00174 was found to be
positively correlated with ENO3 (r = 0:458, P < 0:001)
(Figure 4(c)). The respective target miRNAs of LINC00174
and ENO3 were predicted, and three common miRNAs
were identified: miR-2467-3p, miR-3918, and miR-542-3p
(Figure 4(d)). To determine the differences in these three
miRNAs, the effects of LINC00174 alterations on them
were examined. LINC00174 silencing increased miR-
2467-3p levels in Caco-2 cells; however, it had no significant
effects on miR-3918 and miR-542-3p levels (Figure 4(e)).
Similarly, LINC00174 overexpression suppressed miR-
2467-3p levels in COLO201 cells; however, the effects on
the other two miRNAs were not statistically significant
(Figure 4(f)). Taken together, these results suggest that
miR-2467-3p is a key miRNA in colon cancer regulation
via LINC00174.

3.5. LINC00174 Targets miR-2467-3p to Regulate ENO3. To
preliminarily verify the LINC00174/miR-2467-3p/ENO3 axis,
cell experiments were performed; the results demonstrated
that LINC00174 bound to miR-2467-3p and that miR-2467-
3p bound to the 3′-UTR of ENO3 (Figures 5(a)–5(d)).
Furthermore, miR-2467-3p-overexpressing COLO201 cells
were constructed (Figure 5(e)). Elevated miR-2467-3p levels
inhibited ENO3 protein levels (Figure 5(f)). This suggests that
LINC00174 targets miR-2467-3p to regulate ENO3.

3.6. LINC00174/miR-2467-3p Regulates ENO3 Expression
and Colon Cell Biological Behavior and Glycolysis. To deter-
mine the LINC00174/miR-2467-3p/ENO3 axis and its effect
on colon cells, COLO201 cells overexpressing LINC00174
and/or miR-2467-3p were constructed via transfection.
Elevated LINC00174 levels increased ENO3 protein levels,
whereas miR-2467-3p inhibited ENO3 protein levels
(Figures 6(a) and 6(b)). Furthermore, LINC00174 overex-
pression reversed ENO3 repression via miR-2467-3p. This
suggests that LINC00174 promotes ENO3 protein levels by
targeting miR-2467-3p.

Elevated miR-2467-3p levels decreased cell proliferation
ability, whereas LINC00174 overexpression not only
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promoted cell proliferation ability but also reversed the
inhibitory effects of miR-2467-3p on the cells (Figure 6(c)).
Furthermore, miR-2467-3p overexpression blocked the anti-
apoptotic effect of LINC00174 (Figures 6(d) and 6(e)). Com-
pared with the NC+mimic NC group, the migration and
invasive abilities of the LINC00174+mimic NC group were
increased. Furthermore, the migration and invasive abilities
of the LINC00174+mimic group were significantly lower
than those of the LINC00174+mimic NC group and signifi-
cantly higher than those of the NC+mimic group

(Figures 7(a)–7(d)). LINC00174 overexpression reversed
the inhibitory effects of miR-2467-3p on cell motility. Taken
together, the results suggest that the function of LINC00174
in regulating colon cancer is inseparable from that of miR-
2467-3p.

Tumor cells absorb large amounts of glucose via glycol-
ysis and produce lactate. Because ENO3 is involved in sugar
metabolism and glycolysis, we elucidated the effects of
LINC00174 and/or miR-2467-3p overexpression on glycoly-
sis levels. Elevation of miR-2467-3p decreased glucose

LINC00174 with 471 cancer and 41 normal samples in COAD
Data source: ENROCI project
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Figure 1: LINC00174 is overexpressed in colon cancer and associated with poor prognosis. (a) LINC00174 expression in colon cancer
tissues in The Cancer Genome Atlas database. (b) The relationship between different LINC00174 levels and the survival rate of patients
with colon cancer. (c) LINC0017 expression in human colonic epithelial cells and colon cancer cell lines. ∗∗∗P < 0:001 vs. FHC.
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Figure 2: Continued.
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Figure 2: Silencing or overexpression of LINC00174 affects the growth, migration, and invasion of Caco-2 cells. (a) Construction of
LINC00174-silenced Caco-2 cells. (b) Effects of LINC00174 silencing on proliferation ability. (c) Effects of LINC00174 silencing on the
apoptosis of Caco-2 cells. (d) Effects LINC00174 silencing on cell migration. (e) Effects of LINC00174 silencing on the invasion of Caco-
2 cells. ∗∗∗P < 0:001 vs. siNC. (f) Construction of LINC00174-overexpressing Caco-2 cells. (g) Effects of LINC00174 overexpression on
proliferation ability. (h) Effects of LINC00174 overexpression on the apoptosis of COLO201 cells. (i) Effects of LINC00174
overexpression on cell migration. (j) Effects of LINC00174 expression on the invasion of COLO201 cells. ∗∗∗P < 0:001 vs. NC.
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Figure 3: Continued.
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uptake and inhibited lactate production in COLO201 cells.
However, LINC00174 overexpression not only promoted
glucose uptake and increased lactate accumulation in colon
cancer cells but also blocked the inhibitory effects of miR-
2467-3p on glycolysis (Figures 7(e) and 7(f)). This suggests
that LINC00174/miR-2467-3p not only regulates ENO3
but also regulates glycolysis.

3.7. LINC00174 Regulates ENO3 Protein Levels, Tumor
Growth, and Inflammation by Targeting miR-2467-3p. To
further verify the effects and mechanism of LINC00174 on
colon cancer cells in vivo, COLO201 cells with LINC00174
and/or miR-2467-3p overexpression were used to construct
a tumor-bearing mice model. LINC00174 overexpression
increased tumor volume and mass by approximately 1.8-
fold, whereas miR-2467-3p overexpression inhibited tumor
growth to half of that observed in the NC+mimic NC group

(Figures 8(a) and 8(b)). The tumor volume and mass of the
mice in the LINC00174+mimic group were significantly
lower than those of the mice in the LINC00174+mimic NC
group and significantly higher than those of the mice in
the NC+mimic group (Figures 8(a) and 8(b)). This indicates
that miR-2467-3p overexpression blocks the in vivo promot-
ing effects of LINC00174 on colon cancer and confirms that
these effects are inseparable from those of miR-2467-3p. In
addition, LINC00174 and miR-2467-3p promoted and
inhibited ENO3 protein levels in vivo, respectively
(Figure 8(c)). Moreover, LINC00174 overexpression
reversed the inhibitory effects of ENO3 protein levels on
tumor tissues via miR-2467-3p (Figure 8(c)). These findings
further confirm that LINC00174 increases ENO3 protein
levels by targeting miR-2467-3p in vivo.

We also elucidated the inflammation levels in the tumor
tissues of each group and observed that the mRNA
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Figure 3: Silencing or overexpression of LINC00174 affects inflammation in colon cancer cells. (a–c) Effects of LINC00174 silencing on the
transcription of the proinflammatory genes IL-1β and IL-8 and the anti-inflammatory gene IL-10 in Caco-2 cells. ∗∗∗P < 0:001 vs. siNC. (d–f)
Effects of LINC00174 silencing on the expression of the proinflammatory genes IL-1β and IL-8 and the anti-inflammatory gene IL-10 in Caco-2
cells. ∗∗∗P < 0:001 vs. siNC. (g–i) Effects of LINC00174 overexpression or 2-deoxy-d-glucose (2-DG) (a glycolytic inhibitor) or ENO3 ablation
on the mRNA expression of the proinflammatory genes IL-1β and IL-8 and anti-inflammatory gene IL-10 in COLO201 cells. ∗∗∗P < 0:001 vs.
NC and ##P < 0:05 vs. LINC00174. (j–l) Effects of LINC00174 overexpression or 2-DG or ENO3 ablation on the levels of the proinflammatory
genes IL-1β and IL-8 and anti-inflammatory gene IL-10 in Caco-2 cells. ∗∗∗P < 0:001 vs. NC and ##P < 0:05 vs. LINC00174.
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ENO3 with 471 cancer and 41 normal samples in COAD
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expression of IL-1β and IL-8 was increased but that of IL-10
decreased after LINC00174 overexpression. miR-2467-3p
overexpression had opposite effects (Figures 8(d)–8(f)). In
addition, the mRNA expression of IL-1β and IL-8 was higher
in the LINC00174+mimic group than in the LINC00174+
mimic NC group and lower in the NC+mimic group; however,
the mRNA expression of IL-10 was lower in the LINC00174+
mimic NC group and higher in the NC+mimic group com-
pared to NC+mimic NC group (Figures 8(a)–8(f)). miR-

2467-3p overexpression blocked the promoting effects of
LINC00174 on inflammation, suggesting that the mechanism
by which LINC00174 promotes inflammation in colon cancer
is inseparable from miR-2467-3p at the in vivo level.

4. Discussion

The interaction between innate genetic risk factors and envi-
ronmental carcinogenic factors is an important aspect that

LINC00174 vs. ENO3, 471 COAD
Data source: ENROCI project
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Figure 4: Construction of the LINC00174/miR-2467-3p/ENO3 axis. (a) ENO3 expression in colon cancer tissues in The Cancer Genome
Atlas database. (b) The relationship between different ENO3 levels and the survival rate of patients with colon cancer. (c) Correlation
between LINC00174 and ENO3 in colon tissues. (d) The target miRNAs of LINC00174 and ENO3; three common miRNAs were
identified: miR-2467-3p, miR-3918, and miR-542-3p. (e) Effects of LINC00174 silencing on the expression of miR-2467-3p, miR-3918,
and miR-542-3p in Caco-2 cells. (f) Effects of LINC00174 overexpression on the expression of miR-2467-3p, miR-3918, and miR-542-3p
in COLO201 cells. ∗∗∗P < 0:001 vs. siNC or NC.
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leads to colon cancer [30, 31]. Inflammatory bowel disease
and other conditions may also lead to colon cancer, and
inflammation is a crucial factor involved in colon cancer
progression [32, 33]. In addition to surgery and chemother-
apy, new immunotherapies are constantly being used in clin-
ical settings; however, the prognosis of patients with colon
cancer remains poor [34, 35]. Furthermore, most patients
lose the best opportunity for surgery at the time of diagnosis
and exhibit infiltration and metastasis [36, 37]. Therefore, it
is important to analyze the mechanism underlying colon
cancer progression. Glycolysis and inflammation have a

close interrelationship in cancer cells. In these cells, glycoly-
sis is often upregulated so as to facilitate their rapid growth
and proliferation [38]. This phenomenon is commonly
called the Warburg effect. In addition, glycolysis can lead
to the production of reactive oxygen species, which can
cause cellular damage and trigger inflammatory responses
[39]. The chronic activation of the inflammatory pathways
in cancer cells can lead to the recruitment of immune cells
and release of cytokines and chemokines, thereby promoting
tumor growth and metastasis. Furthermore, inflammation in
the tumor microenvironment can induce glycolysis in
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Figure 5: LINC00174 targets miR-2467-3p to regulate ENO3. (a) Binding sites of LINC00174 and miR-2467-3p. (b) Dual-luciferase
reporter assay to verify the targeted binding between LINC00174 and miR-2467-3p. (c) Binding sites of ENO3 and miR-2467-3p. (d)
Dual-luciferase reporter assay to verify the targeted binding between ENO3 and miR-2467-3p. (e) Construction of miR-2467-3p-
overexpressing COLO201 cells. (f) Effects of miR-2467-3p overexpression on ENO3 protein levels in cells.
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neighboring cells, resulting in a positive feedback loop that
fuels cancer progression [40]. Therefore, glycolysis and
inflammation are mutually reinforcing processes driving

cancer development and progression [41]. Nevertheless,
the relationship between glycolysis and inflammation in
cancer cells is complex and multifaceted. While glycolysis
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Figure 6: LINC00174/miR-2467-3p regulates ENO3 expression and inhibits cell proliferation. (a, b) Effects of LINC00174 and/or miR-
2467-3p expression on ENO3 protein levels. (c) Effects of LINC00174 and/or miR-2467-3p overexpression on cell proliferation ability.
(d) Effects of LINC00174 and/or miR-2467-3p overexpression on the apoptosis of COLO201 cells. ∗∗∗P < 0:001 vs. NC+mimic NC,
##P < 0:01 and ###P < 0:001 vs. LINC00174+mimic NC, and ^^P < 0:01 vs. NC+mimic. (e) Representative images of flow cytometry results.
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Figure 7: LINC00174/miR-2467-3p regulates colon cancer cell migration, invasion, and glycolysis. (a, c) Effects of LINC00174 and/or miR-
2467-3p overexpression on cell migration. (b, d) Effects of LINC00174 and/or miR-2467-3p expression on the invasion of COLO201 cells.
(e) Effects of LINC00174 and/or miR-2467-3p overexpression on glucose uptake. (f) Effects of LINC00174 and/or miR-2467-3p
overexpression on lactate production in COLO201 cells. ∗∗∗P < 0:001 vs. NC+mimic NC, ##P < 0:01 vs. LINC00174+mimic NC, and
^^^P < 0:001 vs. NC+mimic.
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Figure 8: Continued.
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is important for cancer cell survival, it also induces inflam-
matory responses that contribute to tumor progression
[42]. Therefore, identifying strategies that target both glycol-
ysis and inflammation may be effective in improving cancer
therapy.

lncRNAs are recently discovered novel tumor diagnostic
and therapeutic targets. For example, DNAJC3-AS1 [43],
EGOT [44], and LINC00261 [45] are considered clinical
markers of colon cancer and are involved in regulating cell
proliferation and invasion. LINC00174 (ENSG00000179406)
is overexpressed in liver cancer [17], glioblastoma [46], and
thymic epithelial tumors [47] and exerts a cancer-promoting
function. Recent studies have reported that LINC00174 is
associated with the malignant pathological features of patients
with colorectal cancer and that it promotes tumor progression
and metastasis [48, 49]. However, the effect andmechanism of
LINC00174 on the biological behavior of and inflammation in
colon cancer cells remain unclear. To this end, preliminary
analysis of the colon cancer samples in TCGA database
revealed that LINC00174 is overexpressed and associated with
a lower survival rate. Furthermore, in vitro experiments using
colon cancer cell lines revealed that LINC00174 overexpres-
sion promotes colon cancer cell proliferation, migration, inva-
sion, and inflammation and inhibits apoptosis. These findings
suggest that LINC00174 plays tumor- and inflammation-
promoting roles in colon cancer and is a biomarker for colon
cancer.

Next, to analyze the mechanism by which LINC00174
promotes colon cancer, TCGA database was used to identify
ENO3, which is positively correlated with LINC00174 in
colon cancer tissues. Similar to LINC00174, ENO3 was also

overexpressed in colon cancer and related to a poor progno-
sis. Thereafter, the respective target miRNAs of LINC00174
and ENO3 were predicted, and three common miRNAs
were identified: miR-2467-3p, miR-3918, and miR-542-3p.
To distinguish these three miRNAs, we determined the
effects of LINC00174 alterations on them. LINC00174
silencing increased miR-2467-3p levels in Caco-2 cells,
whereas LINC00174 overexpression decreased miR-2467-
3p levels in COLO201 cells. However, the effects on the
other two miRNAs were not statistically significant. Using
molecular cell experiments, we confirmed that miR-2467-
3p binds to LINC00174 and ENO3 and that miR-2467-3p
inhibits ENO3 protein levels, which are, in turn, regulated
by LINC00174. A study reported that miR-2467-3p can
inhibit the metastasis of colorectal cancer cells [50]. This
suggests that miR-2467-3p is a key miRNA for LINC00174
in regulating colon cancer and ENO3 protein levels.

In the present study, we observed that LINC00174 can
bind to miR-2467-3p, thereby inhibiting its expression. In
turn, miR-2467-3p can target and downregulate ENO3
expression. Therefore, LINC00174 indirectly regulates
ENO3 expression by modulating miR-2467-3p levels. We
observed that LINC00174 expression was increased, leading
to a decrease in miR-2467-3p levels and an increase in
ENO3 expression. This was associated with altered glucose
metabolism and increased proliferation in cancer cells.
Therefore, LINC00174 may play a critical role in regulating
glucose metabolism and cancer cell proliferation by modu-
lating miR-2467-3p expression and ENO3 protein levels.
Nevertheless, additional studies are warranted to fully
understand the molecular mechanisms involved in this
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Figure 8: LINC00174 regulates ENO3 protein levels, tumor growth, and inflammation in tumor tissues by targeting miR-2467-3p. (a, b)
Effects of LINC00174 and/or miR-2467-3p overexpression on tumor volume and mass in a tumor-bearing mice model. (c) Effects of
LINC00174 and/or miR-2467-3p overexpression on ENO3 protein levels in tumor tissues. (d, e) Effects of LINC00174 and/or miR-2467-
3p overexpression on the transcription of the proinflammatory genes IL-1β and IL-8 in tumor tissues. (f) Effects of LINC00174 and/or
miR-2467-3p overexpression on the transcription of the anti-inflammatory gene IL-10. ∗∗∗P < 0:001 vs. NC+mimic NC, ##P < 0:01 and
###P < 0:001 vs. LINC00174+mimic NC, and ^^^P < 0:001 vs. NC+mimic.
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regulatory network and its potential as a therapeutic target
for cancer. ENO3 encodes β-enolase and is mainly expressed
in the skeletal muscle and liver. It plays an important role in
both glycogen and cholesterol metabolism [51, 52]. ENO3
deficiency can lead to metabolic myopathy [53]. Further-
more, ENO3 may have a unique function in promoting gly-
colysis in tumor cells. To date, several sequencing-based
studies have reported that ENO3 is involved in glycolysis
and colorectal or colon cancer and that elevated ENO3 pro-
motes ATP production or glycolysis under hypoxic condi-
tions [27, 54]. Furthermore, genome analysis using the
Gene Expression Omnibus database revealed that ENO3 is
involved in glycolysis regulation; LASSO Cox analysis
revealed that ENO is associated with prognosis [55]. Glycol-
ysis also regulates the biological behavior of colon cancer
cells [56, 57]. In the present study, we observed that miR-
2467-3p targets ENO3 expression, inhibits the malignant
biological behavior of and glycolysis in colon cancer cells,
and alleviates the cancer-promoting effects of LINC00174.
Moreover, LINC00174 promotes glycolysis and blocks the
inhibitory effects of miR-2467-3p on colon cancer cells and
glycolysis. In addition, the regulatory effects of LINC00174
on tumor growth and ENO3 protein levels via miR-2467-3p
were confirmed via animal experiments. In animal models,
elevated LINC00174 expression promoted the mRNA expres-
sion of IL-1β and IL-8 but inhibited IL-10 expression. Further-
more, miR-2467-3p overexpression blocked the promoting
effects of LINC00174 on inflammation. This further suggests
that in colon cancer, the increase in LINC00174 expression
promotes ENO3 protein levels at the posttranscriptional level
by targeting miR-2467-3p, which, in turn, promotes glycolysis
and inflammation, thereby promoting colon cancer progres-
sion. Because colon cancer cells require high glucose levels to
sustain their rapid growth, they adapt themselves by promot-
ing glycolysis via the Warburg effect. The complex regulation
among LINC00174, miR-2467-3p, and ENO3 can be critical
for cancer cell survival and proliferation, and interfering with
this regulatory network can be a promising approach to devel-
oping effective cancer therapies.

5. Conclusion

LINC00174 can promote colon cancer cell glycolysis,
inflammation, proliferation, migration, and invasion and
inhibit apoptosis. The cancer-promoting mechanism of
LINC00174 is related to targeting miR-2467-3p to promote
ENO3 protein levels. Nevertheless, the function and mecha-
nism of LINC00174 in colon cancer should be further con-
firmed at the clinical level. Furthermore, the mechanism by
which LINC00174 promotes glycolysis should be confirmed
in vivo.
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Objective. To observe the effects of chimeric antigen receptor T (CAR-T) cell immunotherapy on immune cells and related toxic
side effects in patients with refractory acute lymphoblastic leukemia (ALL). Methods. A retrospective study was conducted in 35
patients with refractory ALL. The patients were treated with CAR-T cell therapy in our hospital from January 2020 to January
2021. The efficacy was evaluated at one and three months post treatments. The venous blood of the patients was collected
before treatment, 1 month after treatment, and 3 months after treatment. The percentage of regulatory T cells (Treg cells),
natural killer (NK) cells, and T lymphocyte subsets (CD3+, CD4+, and CD8+ T cells) was detected by flow cytometry. The
ratio of CD4+/CD8+ was calculated. Patient’s toxic side effects such as fever, chills, gastrointestinal bleeding, nervous system
symptoms, digestive system symptoms, abnormal liver function, and blood coagulation dysfunction were monitored and
recorded. The incidence of toxic and side effects was calculated, and the incidence of infection was recorded. Results. After one
month of CAR-T cell therapy in 35 patients with ALL, the efficacy evaluation showed that complete response (CR) patients
accounted for 68.57%, CR with incomplete hematological recovery (CRi) patients accounted for 22.86%, and partial disease
(PD) patients accounted for 8.57%, and the total effective rate was 91.43%. In addition, compared with that before treatment,
the Treg cell level in CR+CRi patients treated for 1 month and 3 months decreased prominently, and the NK cell level
increased dramatically (P < 0:05). Compared with that before treatment, the levels of CD3+, CD4+, and CD4+/CD8+ in
patients with CR+CRi in the 1-month and 3-month groups were markedly higher, and the levels of CD4+/CD8+ in the
3-month group were memorably higher than those in the 1-month group (P < 0:05). During CAR-T cell therapy in 35
patients with ALL, fever accounted for 62.86%, chills for 20.00%, gastrointestinal bleeding for 8.57%, nervous system symptoms
for 14.29%, digestive system symptoms for 28.57%, abnormal liver function for 11.43%, and coagulation dysfunction for 8.57%.
These side effects were all relieved after symptomatic treatment. During the course of CAR-T therapy in 35 patients with ALL, 2
patients had biliary tract infection and 13 patients had lung infection. No correlations were found between the infection and age,
gender, CRS grade, usage of glucocorticoids or tocilizumab, and laboratory indicators such as WBC, ANC, PLT, and Hb
(P > 0:05). Conclusion. CAR-T cell therapy had a good effect on patients with refractory ALL by regulating the immune function
of the body via mediating the content of immune cells. CAR-T cell therapy may have therapeutic effect on refractory ALL
patients with mild side effects and high safety.

1. Introduction

Acute lymphoblastic leukemia (ALL) is a clinically common
hematological tumor, accounting for about 20% to 30% of
acute leukemia in adults. Clinical manifestations of ALL
include the inhibition of bone marrow hematopoietic func-
tion and the proliferation and infiltration of leukemia cells,

etc. ALL has a high recurrence rate and poor prognosis,
which seriously affects the life of patients [1, 2]. The inci-
dence rate of ALL is high, accounting for 15% of leukemia
and about 35% of acute leukemia. At present, the main clin-
ical treatment of ALL is chemotherapy and/or hematopoietic
stem cell inhibition therapy. However, the recurrence rate
and mortality rate of patients are still at a high level.
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Previous studies have concluded that chemotherapy has a
two-year disease-free survival rate of 39.0% and a two-year
overall survival rate of 58.4% for patients with ALL [3, 4].
How to improve the prognosis of refractory ALL patients
has become the focus of current medical research.

Chimeric antigen receptor T (CAR-T) cell is a T cell with
the ability to recognize and kill tumors, and key cytokines
such as IL-12 could be expressed on the basis of whose orga-
nizational structure. Intensifying the activation reaction of T
cells has a good effect in the treatment of ALL and can
improve the long-term survival rate of patients by enhancing
the immune response [5, 6]. In recent years, foreign scholars
believe that CAR-T cell therapy has shown good efficacy in
children with refractory ALL, with tolerable safety, high
response rate, and excellent persistence [7]. However, the
effects of CAR-T cells on immune cells in patients with
refractory ALL have been reported less.

In this study, 35 patients with refractory ALL admitted
in our hospital during January 2020 to January 2021 were
chosen as subjects, aiming to analyze the effects of CAR-T
immunotherapy on immune cells and related toxic side
effects in patients with refractory ALL.

2. Materials and Methods

2.1. General Materials. Thirty-five patients with refractory
ALL during January 2020 to January 2021 were chosen as
subjects. The clinical data of the patients were collected
and retrospectively analyzed. Inclusion criteria were as fol-
lows: (1) all patients were initially diagnosed patients who
failed to respond to two standard protocols or ALL patients
who recurred within 12 months after consolidation and
intensive treatment after CR or who recurred twice or more
[8]. (2) The patient’s age was between 18 and 65 years old.
(3) The patients and their family members were informed
and had good compliance and could cooperate with the
examination and treatment. All of them signed an informed
consent form. Exclusion criteria were as follows: (1) patients
with severe cardiovascular and cerebrovascular diseases, (2)
patients with nervous system diseases, (3) patients with
other malignant tumors, and (4) patient complicated with
infection. The subjects included 18 males and 17 females,
with an average age of 38:16 ± 6:85 years. The operation of
this experiment was approved by the hospital Ethics Associ-
ation. The experimental process is shown in Figure 1.

2.2. Methods. To prepare CAR-T cells, 40-60mL of periph-
eral blood was collected from experimental subjects, antico-
agulation with heparin: T lymphocytes were activated and
expanded after isolation and purification, and CAR-T cells
were amplified again after specific CAR transfection. CAR-
T cells were frozen after quality inspection. CAR-T cells
were infused intravenously for the treatment. All patients
received chemotherapy about 30 days before CAR-T cell
infusion. Appropriate chemotherapy programs were chosen
by physicians according to the patient’s condition and previ-
ous treatment to reduce the tumor load of patients, aiming
to prevent the occurrence of cytokine release syndrome
(CRS) or reduce the severity of CRS. Detect the recovery of

patient’s blood routine. About 3 days before cell infusion,
fludarabine (Flu)+cyclophosphamide (CY) pretreatment
scheme (FC) was given as follows: Flu 25mg/m2 and CY
300mg/m2/d, continuously injected intravenously for 3
days. According to the existing literature report in the
United States [7], in the CAR-T cell reinfusion therapy, the
amount of CAR-T cell reinfusion should be 106-107 cells/
kg body weight. According to the number of T cells collected
from the patient, the reinfusion plan was formulated as
appropriate, and the infusion volume was 106-107 cells/kg
body weight.

2.3. Outcome Measures

2.3.1. Efficacy Analysis. The efficacy evaluation included
complete response (CR), CR with incomplete clinical recov-
ery (CRi), and partial disease (PD). Among them, CR repre-
sented the recovery of bone marrow hematopoiesis, with
primitive cells < 5%, no primitive cells in peripheral blood,
absolute value of platelets > 100 × 109/L, absolute value of
neutrophil > 1 × 109/L, and no recurrence occurs in 4 weeks.
CRi referred to the recovery of bone marrow hematopoiesis,
with primitive cells < 5% and no primitive cells in peripheral
blood, but the absolute value of patient’s platelet ≤ 100 ×
109/L, absolute value of neutrophil ≤ 1 × 109/L, and no
recurrence in 4 weeks. PD represented 25% increase of prim-
itive cells found in bone marrow or peripheral blood, or
extramedullary infiltration occurs.

2.3.2. Detection of Serum Indicators. The venous blood of
patients was collected before treatment, 1 month after treat-
ment, and 3 months after treatment and stored in heparin
anticoagulant tubes. After centrifugated at 1500 r/min for

Tere were 35 patients
with refractory all

treated with car-t cells
in our hospital

Te regulatory T cells,
natural killer cells and T

lymphocyte subsets
were detected

Te incidence of
infection was recorded
afer car-t cell infusion

Te incidence of toxic
and side efects was
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To evaluate the efcacy
and safety of car-t cells

in the treatment of
refractory all

Figure 1: The experimental process.
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5min, the supernatant was carefully separated and stored
into the refrigerator at -80°C to avoid repeated freezing
and thawing. The percentage of regulatory T (Treg) cells,
natural killer (NK) cells, and T lymphocyte subsets CD3+,
CD4+, and CD8+ T cells was detected by TUNEL Flow
Cytometry Analysis Kit (purchased fromWuhan Purity Bio-
technology Co., Ltd., Hongshan District, Wuhan, Hubei
Province, China) and HLA-B27 Assay Kit (purchased from
Guangzhou Jincheng Biotechnology Co., Ltd., Tianhe Dis-
trict, Guangzhou, Guangdong Province, China). The ratio
of CD4+/CD8+ T cells was calculated.

2.3.3. Toxic and Side Effects. Closely observe the patient’s
condition changes and monitor and record the patient’s
toxic and side effects such as fever, chills, gastrointestinal
bleeding, nervous system symptoms (dizziness, headache,
irritability, aphasia, photophobia, etc.), digestive system
symptoms (vomiting, nausea, etc.), abnormal liver function,
and blood coagulation dysfunction. The incidence of side
effects was calculated.

2.3.4. Infection. After CAR-T cell infusion treatment, the
presence of infection was comprehensively judged according
to laboratory indicators, imaging, histopathology, and/or
microbiological examination. Infection within 30 days after
infusion requires intravenous antibiotics or hospitalization
when severe infection occurs. The age, gender, cytokine
release syndrome (CRS) grade (Table 1), whether there was
a usage of glucocorticoid and tocilizumab, and laboratory
indicators including white blood cell (WBC), neutrophil
(ANC), platelet count (PLT), and hemoglobin (Hb) were
collected.

2.4. Statistical Analysis. SPSS 20.0 software was used to ana-
lyze the experimental data. Measurement data such as Treg
cells, NK cells, CD3+, CD4+, and CD4+/CD8+ were repre-
sented as (�x ± s). Repeated measurement ANOVA was used
for comparison among groups, and these with statistical dif-
ferences were further compared with the Tukey test. The
SNK-q test was used for comparison of multiple sample
averages between groups. Enumeration data such as curative
effect and adverse reaction were expressed as %, and χ2 test
was used for comparison between groups. P < 0:05 indicated
that the statistical results were statistically significant.

3. Results

3.1. Analysis of Curative Effect after Treatment. After one
month of CAR-T cell therapy in 35 patients with ALL, the
efficacy evaluation showed that CR patients accounted for
68.57% (24 cases), CRi patients accounted for 22.86% (8
cases), and PD patients accounted for 8.57% (3 cases), and
the total effective rate was 91.43% (Figure 2).

3.2. Comparison of Treg Cell Level before and after
Treatment. The patients were grouped according to the time
after treatment, and the Treg cell level was detected. Com-
pared with that before treatment, the Treg cell level in CR
+CRi patients treated for 1 month and 3 months decreased
prominently, and the NK cell level increased dramatically
(P < 0:05, Table 2).

3.3. Comparison of T Lymphocyte Subsets before and after
Treatment. Compared with that before treatment, the levels
of CD3+, CD4+, and CD4+/CD8+ in patients with CR
+CRi in the 1-month and 3-month groups were markedly
higher, and the levels of CD4+/CD8+ in the 3-month group
were memorably higher than those in the 1-month group
(P < 0:05, Table 3).

3.4. Analysis of Side Effects after Treatment. During CAR-T
cell therapy in 35 patients with ALL, fever accounted for
62.86%, chills for 20.00%, gastrointestinal bleeding for
8.57%, nervous system symptoms for 14.29%, digestive
system symptoms for 28.57%, abnormal liver function
for 11.43%, and coagulation dysfunction for 8.57%. These

Table 1: CRS grade.

Indicators Grade 1 Grade 2 Grade 3 Grade 4

Fever
Body

temperature≥ 38°C
Body

temperature≥ 38°C Body temperature≥ 38°C Body temperature≥ 38°C

Hypotension No
No need to use

antihypertensive drugs
1 antihypertensive drug is required,

with or without vasopressin
Multiple antihypertensive drugs are
required (excluding vasopressin)

And/or

Hypoxemia No
Need low flow nasal
catheter oxygen

inhalation

Need high flow nasal catheter oxygen
inhalation and circulatory respirator

Need positive pressure ventilation

68.57

22.86

8.57
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Figure 2: Analysis of curative effect after treatment.
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side effects were all relieved after symptomatic treatment
(Figure 3).

3.5. Infection Analysis. During the course of CAR-T therapy
in 35 patients with ALL, 2 patients had biliary tract infection
and 13 patients had lung infection. No correlations were
found between the infection and age, gender, CRS grade,
usage of glucocorticoids or tocilizumab, and laboratory indi-
cators such as WBC, ANC, PLT, and Hb (P > 0:05, Table 4).

4. Discussion

ALL is a common malignant hematological disease, account-
ing for 80% of acute leukemia in children. At present, the
clinical treatment effect of ALL is good with the CR rate of
as high as 70%-90%, but some patients show refractory
ALL or easy to relapse. About 30% of ALL patients have
relapses after conventional induction remission, and the
cure rate of refractory or relapses is low, only about 5%
[9, 10]. Therefore, how to improve the cure rate and quality
of life of patients with refractory ALL has become the focus
of current research.

CAR-T cell therapy is to transform T cells into T cells
carrying a single-chain variable fragment (scFV) with spe-
cific extracellular recognition antigen by genetic engineering,
which has the function of targeting to kill tumor cells. After
in vitro expansion, CAR-T cells are transfused back to
patients to improve their immune function and kill abnor-
mal leukemia cells in the body, which can help improve
the life quality and prolong the lives of patients with ALL
[11, 12]. As a new immunotherapy, CAR-T cell therapy pro-
vides a treatment option for hematologic malignancies. At
the same time, some scholars are studying the application
value of CAR-T cell therapy in solid tumors. Berdeja et al.
[13] have concluded that the CAR-T cell assay shows a
high-quality response, and a single cilta-cell infusion at a tar-
get dose of 0:75 × 106 CAR-positive live T cells per kilogram
can produce an early, deep, and durable response in patients
with multiple myeloma who have undergone extensive
pretreatment, with a controllable safety profile. In this study,
after one month of CAR-T cell therapy, the efficacy

Table 2: Comparison of Treg cell level before and after treatment (�x ± s).

Groups Treg cells (%) NK cells (%)

Before treatment (n = 35) 8:16 ± 2:86 11:78 ± 0:62
CR+CRi patients treated for 1 month (n = 32) 7:05 ± 1:25a 13:25 ± 0:56a

CR+CRi patients treated for 3 months (n = 32) 6:15 ± 2:13ab 15:02 ± 0:32ab

PD patients treated for 1 month (n = 3) 10:85 ± 1:16bc 11:64 ± 0:89
F 7.500 17.770

P <0.001 <0.001
aP < 0:05 compared with before treatment; bP < 0:05 compared with CR+CRi patients treated for 1 month; cP < 0:05 compared with CR+CRi patients treated
for 3 months.

Table 3: Comparison of T lymphocyte subsets before and after treatment (�x ± s).

Groups CD3+ (%) CD4+ (%) CD8+ (%) CD4+/CD8+ (%)

Before treatment (n = 35) 66:52 ± 9:12 31:95 ± 9:82 31:56 ± 7:45 1:01 ± 0:45
CR+CRi patients treated for 1 month (n = 32) 72:45 ± 8:56a 38:45 ± 8:45a 30:79 ± 5:26 1:25 ± 0:26a

CR+CRi patients treated for 3 months (n = 32) 73:26 ± 8:66a 42:59 ± 8:75a 29:62 ± 5:12 1:44 ± 0:31ab

PD patients treated for 1 month (n = 3) 67:45 ± 12:05 32:15 ± 4:56 31:05 ± 12:45 1:04 ± 0:25
F 4.010 8.340 0.540 8.700

P 0.010 <0.001 0.657 <0.001
aP < 0:05 compared with before treatment; bP < 0:05 compared with CR+CRi patients treated for 1 month.
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Figure 3: Analysis of side effects after treatment.
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evaluation showed that CR patients accounted for 68.57%,
CRi patients accounted for 22.86%, and PD patients
accounted for 8.57%, with the total effective rate of 91.43%.
During the CAR-T cell therapy, fever accounted for
62.86%, chills for 20.00%, gastrointestinal bleeding for
8.57%, nervous system symptoms for 14.29%, digestive sys-
tem symptoms for 28.57%, abnormal liver function for
11.43%, and coagulation dysfunction for 8.57%. These side
effects were all relieved after symptomatic treatment. These
results suggested that CAR-T cells were effective in the treat-
ment of refractory ALL without serious side effects. After
symptomatic treatment, the side effects were relieved with
high safety, which was similar to the research results of Li
and Chen [14].

Studies have proved that the occurrence and develop-
ment of ALL are closely related to the changes of immune
function [15, 16]. The change of cellular immunity is more
closely related to ALL. Among them, Treg cells, NK cells,
and T lymphocyte subsets can mediate the change of cellular
immune function. Treg cells can regulate the body’s periph-
eral tolerance monitoring and autoimmune response, so leu-
kemia cells will be regarded as normal cells, and the effect of
immunotherapy will be weakened by inhibiting specific anti-
tumor T cells [17, 18]. Niu et al. [19] believed that the
increase of Treg cell level indicated the failure of ALL treat-
ment or recurrence. NK cells have cytotoxic function and
immune regulation function and are the first line of defense
against infection and tumor. After a period of effective treat-
ment for ALL, the NK cell level gradually recovers and the
immune function of the body is enhanced [20]. T lympho-
cyte subsets mainly include CD3+, CD4+, and CD8+.
Among them, the level of CD3+ reflects the number of T

lymphocytes in the body, CD4+ determines the change of
immune cell function in the body, and CD8+ is an immuno-
suppressive factor. Therefore, the ratio of CD4+/CD8+
reflects the changes of cellular immune function [21]. In this
study, compared with that before treatment, the Treg cell
level in CR+CRi patients treated for 1 month and 3 months
decreased prominently, and the NK cell level increased dra-
matically. Compared with that before treatment, the levels of
CD3+, CD4+, and CD4+/CD8+ in patients with CR+CRi in
the 1-month and 3-month groups were markedly higher,
and the levels of CD4+/CD8+ in the 3-month group were
memorably higher than those in the 1-month group. It was
suggested that CAR-T cell therapy improved the cellular
immune function of the body by mediating the changes of
Treg cells, NK cells, and T lymphocyte subsets, which was
helpful to control the patient’s condition. During the course
of CAR-T therapy in 35 patients with ALL, 2 patients had
biliary tract infection and 13 patients had lung infection. In
addition, no correlations were found between the infection
and the age, gender, CRS grade, usage of glucocorticoids or
tocilizumab, and laboratory indicators such as WBC, ANC,
PLT, and Hb. No related factors of infection were found in
the present study. However, some reports indicated that
[22, 23] the more severe CRS after CAR-T cell treatment
was, the greater the possibility of infection was. After infu-
sion of CAR-T cells, it is sometimes difficult to distinguish
infection and CRS reaction. Thus, the prevention, diagnosis,
and treatment of infection after CAR-T treatment need fur-
ther research. Studies have also found that early stage after
CAR-T infusion is affected by pretreatment by depigmenta-
tion, and later stage is related to cytokine-mediated cytope-
nias. Some patients may experience prolonged cytopenia

Table 4: Analysis of infection after CAR-T treatment.

Groups No infection occurs (n = 20) Infection occurs (n = 15) t / χ2 P

Age (year) 35:25 ± 15:48 31:26 ± 12:33 0.821 0.418

Gender

Male 8 (40.00) 10 (66.67) 2.440 0.118

Female 12 (60.00) 5 (33.33)

CRS grade

Grade 1 7 (35.00) 3 (20.00) 2.426 0.489

Grade 2 6 (30.00) 5 (33.33)

Grade 3 6 (30.00) 4 (26.67)

Grade 4 1 (5.00) 3 (20.00)

Usage of glucocorticoids

Yes 11 (55.00) 9 (60.00) 0.088 0.767

No 9 (45.00) 6 (40.00)

Usage of tocilizumab

Yes 15 (75.00) 11 (73.33) 0.013 0.911

No 5 (25.00) 4 (26.67)

Initial WBC (×109/L) 4:52 ± 1:85 4:43 ± 1:97 0.139 0.891

Initial ANC (×109/L) 2:53 ± 0:28 3:05 ± 1:26 1.796 0.082

Initial PLT (×109/L) 127:49 ± 10:23 131:25 ± 15:48 0.865 0.393

Initial Hb (×109/L) 102:25 ± 20:42 97:26 ± 18:48 0.745 0.462
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and require blood transfusion or growth factor support, dur-
ing which the patient’s immune function is significantly
reduced and the infection rate increases [24, 25]. The
absence of infectious factors that was identified in this study
may be due to the small number of cases included in this
study and the single-centre retrospective study, which might
have data bias.

In general, CAR-T cell therapy had a good effect on
patients with refractory ALL by regulating the immune func-
tion of the body via mediating the content of immune cells.
This therapy may have a therapeutic effect on refractory ALL
patients with mild side effects and high safety. However, due
to the limitation of research time and sample size in this
experiment, the long-term prognosis of patients was not
followed up and there was no control group. In the future,
the mechanism of Treg cells influencing the curative effect
of CAR-T cells will be further clarified through in vivo and
in vitro experiments. We need to verify whether the thera-
peutic effect of CAR-T cells can be improved and the recur-
rence can be reduced by intervening Treg cells. Therefore,
the sample size and research time will be expanded for in-
depth exploration in our following study.
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Background. Ovarian cancer is a fatal gynecological malignancy. The resistance to chemotherapy in ovarian cancer treatment has
been a thorny issue. This study is aimed at probing the molecular mechanism of cisplatin (DDP) resistance in ovarian cancer.
Methods. Bioinformatics analysis was conducted to examine the role of Nod-like receptor protein 3 (NLRP3) in ovarian cancer.
The NLRP3 level in DDP-resistant ovarian cancer tumors and cell lines (SKOV3/DDP and A2780/DDP) was evaluated by
applying immunohistochemical staining, western blot, and qRT-PCR. Cell transfection was conducted to regulate the NLRP3
level. Cell abilities to proliferate, migrate, invade, and apoptosis were measured employing colony formation, CCK-8, wound
healing, transwell, and TUNEL assays, respectively. Cell cycle analysis was completed via flow cytometry. Corresponding
protein expression was measured by western blot. Results. NLRP3 was overexpressed in ovarian cancer, correlated with poor
survival, and upregulated in DDP-resistant ovarian cancer tumors and cells. NLRP3 silencing exerted antiproliferative,
antimigrative, anti-invasive, and proapoptotic effects in A2780/DDP and SKOV3/DDP cells. Additionally, NLRP3 silencing
inactivated NLRPL3 inflammasome and blocked epithelial-mesenchymal transition via enhancing E-cadherin and lowering
vimentin, N-cadherin, and fibronectin. Conclusion. NLRP3 was overexpressed in DDP-resistant ovarian cancer. NLRP3
knockdown hindered the malignant process of DDP-resistant ovarian cancer cells, providing a potential target for DPP-based
ovarian cancer chemotherapy.

1. Introduction

Ovarian cancer, well-prevalent gynecological oncology, is
one of the main contributors to deaths associated with can-
cer in females worldwide [1, 2]. It is estimated that the new
ovarian cancer cases may rise to 371000, and the number of
deaths will be 254000 by 2035 [3]. Early ovarian cancer is
not easily diagnosed due to ineffective screening means, [4]
resulting in its development to an advanced stage when diag-
nosed. Surgical resection combined with cisplatin- (DDP-)
based chemotherapy is the mainstay of ovarian cancer treat-
ment. Nevertheless, 70%-90% of the patients relapse, and
most develop resistance to the DPP challenge, which takes

the main responsibility for the treatment failure and the
poor 5-year survival rate below 40% [5, 6]. Thus, clarifying
the potential mechanism of chemoresistance and developing
effective strategies for reducing DDP resistance in ovarian
cancer are quite essential.

Nod-like receptor protein 3 (NLRP3) inflammasome is a
complex consisting of NLRP3, the adaptor apoptosis-
associated speck-like protein (ASC), and the effector pro-
caspase1. NLRP3 inflammasome activation facilitates the
formation of active caspase-1 and contributes to the maturity
and production of interleukin (IL)-18 and IL-1β, eventually
leading to inflammation [7–9]. As a crucial constituent of the
innate immune system, the NLRP3 inflammasome frequently
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responds to cellular damage and microbial infection [10].
Recently, emerging evidence revealed that NLRP3 inflamma-
some was dysregulated during tumor development. For
example, NLRP3 was overexpressed in colon cancer cells
and linked to the poor survival of patients [11, 12]; NLRP3
inflammasome was activated in gastric cancer, which was
beneficial in promoting tumorigenesis [13]. On the contrary,
NLRP3 inflammasome was downregulated in human hepa-
tocellular carcinoma, and the absent NLRP3 was linked to
advanced stages [14]. Thus, attributed to the dual role in
different types of malignant tumor, NLRP3 inflammasome
was regarded as a double-edged sword in tumorigenesis
[15]. Of note, NLRP3 was reported to have an aberrantly
high expression in ovarian cancer, and NLRP3 inflamma-
some participated in the development of ovarian cancer
[16, 17]. However, a knowledge gap exists concerning the
impacts of NLRP3 inflammasome on ovarian cancer with
DPP resistance.

Here, we aimed to assess the expression level of
NLRP3 in ovarian cancer with DDP resistance, clarify its
potential regulatory role, and offer new therapeutic strate-
gies for the advancement of chemoresistance in ovarian
cancer. The graphical flow chart has been illustrated in
Scheme 1.

2. Methods and Materials

2.1. Bioinformatics Analysis. Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) database includes
experimental data for genomic DNA and proteins and data
from single- and dual-channel determination of mRNA
expression. Five expression profiling datasets (GSE26712,
GSE53963, GSE51088, GSE66957, and GSE135886) were
obtained from the GEO database. The expression data of
NLRP3 in ovarian cancer were analyzed using GEO2R online.
The figure construction was carried out, adopting R package
software 4.0.3. A total of 381 ovarian cancer cases and 71 nor-
mal cases were downloaded from The Cancer Genome Atlas
(TCGA) database (http://www.cancer.gov/tcga). The expres-
sion of NLRP3 in ovarian cancer tumor tissues and normal tis-
sues was analyzed according to the downloaded data. The
clinical profile of 381 ovarian cancer patients was obtained
from the TCGA database, and the survival analysis was con-
ducted using the Kaplan-Meier method. The patients with
missing clinical data about tumor stages were excluded from
this study. A total of 377 samples (23 at stage II, 296 at stage
III, and 58 at stage IV) were examined for NLRP3 level at
different tumor stages. Moreover, a single-variable Cox pro-
portional risk regression assay was conducted to explore the
risk factors that were remarkably correlated with overall sur-
vival in TCGA ovarian cancer dataset. In addition, Tumor
Immunization Estimation Resource (TIMER; http://timer
.cistrome.org), a comprehensive database to assess the rela-
tionship between immune infiltrating cells and overall sur-
vival of cancers, was applied to estimate the infiltration of
CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophage,
and myeloid dendritic cells related to NLRP3 level in ovarian
cancer patients.

2.2. Tissue Samples. A total of 36 ovarian cancer specimens
were collected from patients receiving oophorectomies from
2022.1 to 2022.10 at Foshan Women and Children Hospital.
Among these specimens, 18 were harvested from DDP-
resistant patients suffering from recurrent or persistent dis-
ease within 6 months following DDP-based chemotherapy.
The other was collected from DDP-sensitive (nonresistant)
patients without recurrence or with recurrence beyond 6
months. The patient’s clinical information is listed in
Table 1. The study was approved by the Ethics Committees
of Foshan Women and Children Hospital (Approval number:
FSFY-MEC-2021-145), and written consent was acquired
from all patients.

2.3. Immunohistochemical Staining. The tissue was fixed in
4% paraformaldehyde for 24 h, embedded in paraffin, and
sliced to a thickness of 5μm. Subsequently, the slices were
deparaffinized and rehydrated, followed by heating in
0.01M citric buffer for 15min. Before probing overnight at
4°C with anti-NLRP3 antibody (ab263899, Abcam), the
slices were impeded in 3% H2O2 for 20min and then with
5% normal serum for 30min. Thereafter, the slices were
probed with horseradish peroxidase- (HRP-) conjugated
secondary antibody (ab6721, Abcam) for 30min, diamino-
benzidine (DAB) stained (ZSGB-BIO, Beijing, China) for
5min followed by hematoxylin counterstaining for 30 s.
Eventually, the images were obtained utilizing a light micro-
scope (Olympus, Tokyo, Japan).

2.4. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). RNA content was exacted from the tumor tis-
sues adopting Trizol (Thermo Fisher Scientific, CA, USA).
The concentration and purity of the total RNA were checked
using NanoDrop 3000 (Thermo Fisher Scientific Inc., Wal-
tham, MA, USA). The RNA content was reversely tran-
scribed into complementary DNA (cDNA) adopting a
cDNA synthesis kit (Thermo Fisher Scientific Inc.), followed
by qRT-PCR analysis utilizing SYBR Green Master Mix
(Takara, Shiga, Japan). The primers of PCR are listed in
Table 2. 2−△△Ct method was utilized for calculating gene
expressions using β-actin as an internal reference.

2.5. Western Blot. RIPA lysis buffer (Bolingkewei, Beijing,
China) was applied to homogenize the tissues. The whole pro-
tein was extracted and quantified using a bicinchoninic acid
(BCA) protein assay kit (Pierce, Rockford, IL, USA). The pro-
tein (35μg/lane) was isolated through 12% SDS-PAGE gels,
followed by transferring onto polyvinylidene difluoride
(PVDF) membranes (Millipore, MA, USA). After 1h incuba-
tion with 5% defatted milk, membranes were probed at 4°C
overnight against the following antibodies: NLRP3 (ab263899,
Abcam), IL-18 (ab243091, Abcam), cleaved caspase-1
(orb126550, Biorbyt), IL-1β (ab216995, Abcam), N-cadherin
(ab76011, Abcam), E-cadherin (ab40772, Abcam), fibronectin
(ab2413, Abcam), vimentin (ab92547, Abcam), and β-actin
(ab8226, Abcam). On the following day, membranes were
exposed to goat anti-mouse (ab6789, Abcam) or goat anti-
rabbit (ab6721, Abcam) HRP-conjugated secondary antibodies
for 2h at room temperature. Eventually, the signals were
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developed with an enhanced chemiluminescence system
(Millipore, USA), followed by quantification with ImageJ
software (NIH, Bethesda, Maryland, USA).

2.6. Cell Culture and Treatment. A2780 and SKOV3, two
human ovarian cancer cell lines, were provided by BeNa
Culture Collection (Beijing, China). SKOV3 cells were culti-
vated in McCoy’s 5a medium. In contrast, A2780 cells were
cultivated in RPMI-1640 medium (Hyclone, Logan, UT,
USA) in a 5% CO2 environmental incubator at 37°C, supple-
mented with 10% fetal bovine serum (FBS; Gibco, USA) with
0.1mg/mL streptomycin and 100U/mL penicillin (Gibco,
USA). DDP-resistant SKOV3/DDP and A2780/DDP cells
were constructed as previously reported [18]. 0.5μg/L of
DDP was added for SKOV3/DDP and A2780/DDP cells to
retain the resistance to DDP.

2.7. Cell Transfection. Short hairpin RNA (shRNA) targeting
NLRP3 (sh-NLRP3) was designed and synthesized by Ribo-
Bio (Guangzhou, China). Cells transfection using sh-NLRP3
and sh-vector (negative control) was implemented utilizing a
Lipofectamine 3000 Transfection reagent (Invitrogen, CA,
USA) strictly in line with its guidelines. Subsequent experi-
ments were carried out 48h posttransfection.

2.8. Cell Counting Kit-8 (CCK-8) Assay. 5 × 103 cells were
cultivated into 96-well plates. CCK-8 reagent (DojindoMolec-
ular Technologies, Gaithersburg, MD) was added to the plates
at indicated times (20 l), and the plates were incubated for 2

hours. The absorbance was tested at 450nm with the help of
a microplate reader (Bio-Rad Laboratories, Hercules, CA).

2.9. Colony Formation Assay. 2 × 103 cells were plated in 6-
well plates and then cultivated for ten days. During this
period, the medium was replaced every three days. 4% para-
formaldehyde was employed to immobilize the colonies for
20min. Eventually, cells underwent staining with 0.1% crys-
tal violet for 30min, followed by observation and counting.

2.10. Wound-Healing Assay. 5 × 104 cells were cultivated
into 6-well plates in a 5% CO2 incubator at 37°C. Upon
achieving 100% confluence, a sterile pipette tip was adopted
to create liner scratches. PBS washed the plates carefully to
discard the floating cells. 24 h later, the healing of the
scratches was observed and photographed employing a light
microscope (Olympus, Tokyo, Japan).

2.11. Transwell Assay. A 24-well insert transwell chamber
(Millipore, MA, USA) was coated with 200mg/ml Matrigel
(BD Biosciences, NY, USA). 5 × 104 cells were resuspended
in serum-free medium and placed into the upper transwell
chamber, while 500μl medium with 10% FBS was put into
the lower chamber. 24 h later, after wiping out the nonin-
vasive cells, the cells got a fixation with 4% paraformalde-
hyde, followed by 0.5% crystal violet staining. Images of
invaded cells were photographed by a light microscope
(Olympus, Tokyo, Japan).

2.12. Terminal Deoxynucleotidyl Transferase-Mediated
dUTP Nick End Labeling (TUNEL) Staining. 4% paraformal-
dehyde was utilized to fix cells. 20min later, cells underwent
permeabilization using 0.1% Triton X-100 for 30 minutes
and inactivated endogenous peroxidase by 0.3% H2O2 for
20 minutes. Afterward, the TUNEL mixture solution (Beyo-
time and Biotechnology, Shanghai, China) was added, and
the cells were incubated for 1 h at 37°C in the darkness. 4′,
6-diamidino-2-phenylindole (DAPI) solution was added to
stain cells. The images were captured adopting an Olympus
IX70 inverted microscopy (Olympus, Tokyo, Japan).

2.13. Flow Cytometry Analysis. Cells were washed with pre-
cooled PBS at 4°C, followed by fixation in 70% ethanol over-
night at 4°C. After that, cells were stained with 50μg/mL
propidium iodide (PI) containing RNase (Beyotime and Bio-
technology, Shanghai, China) for 30min in the darkness. The
cell cycle was measured adopting flow cytometry (FACSCali-
bur, Becton-Dickinson) and analyzed using FlowJo software
(Leonard Herzenberg, Stanford University, USA).

2.14. Statistical Analysis. All data analyzed by GraphPad
Prism 8.0 (GraphPad, CA, USA) were presented as mean
± standard deviation. Group comparisons were evaluated
by adopting a one-way analysis of variance (ANOVA) with
Tukey’s post hoc test. p < 0:05 meant statistically significant.

3. Results

3.1. NLRP3 Is Overexpressed in Ovarian Cancer and Linked
to Poor Prognosis. Based on the indicated role of NLRP3 in

Table 1: Clinical characteristics of ovarian carcinoma patients.

Pathological parameters Nonresistant DDP-resistant

Age

<50 7 9

≥50 11 9

Stage

I+II 13 9

III+IV 5 9

Lymph node metastasis

Negative 17 17

Positive 1 1

Histologic subtype

Serous 7 14

Others 11 4

Table 2: Primer of the target gene for real-time PCR.

Genes Sequences (5′-3′)

NLRP3
Forward 5′-CTCTAGCTGTTCCTGAGGCTG-3′
Reverse 5′-TTAGGCTTCGGTCCACACAG-3′

β-Actin
Forward 5′-AGCGAGCATCCCCCAAAGTT-3′
Reverse 5′-GGGCACGAAGGCTCATCATT-3′
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malignant diseases, we analyzed the expression profile of
NLRP3 in ovarian cancer depending on GEO and TCGA
databases. As shown in Figure 1(a), the public data from
the GEO data portal revealed that NLRP3 expression was
upregulated in tumor tissues of ovarian cancer, compared
to the normal, which was concordant with the findings from
the TCGA database (Figure 1(b)). Meanwhile, the expres-
sion level of NLRP3 was increasing from stage II to stage
IV of ovarian cancer patients (Figure 1(c)), suggesting that
NLRP3 was positively linked to the deterioration of ovarian
cancer. The survival assay followed by Cox regression analysis
revealed that patients with a higher level of NLRP3 had a
poorer survival probability, and NLRP3 might act as an inde-
pendent prognostic gene in ovarian cancer (Figures 1(d) and
1(e)). Finally, immune infiltration analysis using TIMER2
found that NLRP3 expression levels were significantly posi-
tively linked to the proportions of T cells, neutrophils, macro-
phages, and myeloid dendritic cells in ovarian cancer tissues
(Figure 1(f)).

3.2. NLRP3 Is Upregulated in DPP-Resistant Ovarian Cancer.
To understand the role of NLRP3 in DDP-resistant ovarian
cancer, we first detected NLRP3 levels in patients with
DPP resistance. As shown in Figure 2(a), the NLRP3 level
in DDP-resistant tumor tissues was greatly higher than that
in nonresistant tissues. Subsequently, three unpaired tumor
tissues from DDP-resistant and non-resistant patients were
randomly measured, employing immunohistochemical
staining and western blot. It was observable that the NLRP3
level was remarkably upregulated in resistant tissues
(Figures 2(b) and 2(c)). Furthermore, we evaluated the
NLRP3 level in ovarian cancer cell lines (A2780 and
SKOV3) and their DDP-resistant forms and found that
NLRP3 was upregulated in A2780/DDP and SKOV3/DDP
cells (Figures 2(d) and 2(e)).

3.3. Silencing of NLRP3 Retard Cell Proliferation and Cell
Cycle Progression in DDP-Resistant Ovarian Cancer Cells.
Next, a series of cellular biological activities were measured
to assess the regulation of NLRP3 in DDP-resistant ovarian
cancer. A2780/DDP and SKOV3/DDP cells were transfected
with sh-NLRP3 to knock down NLRP3. Attributed to a rel-
atively high transfection efficacy, sh-NLRP3-1 was selected
in the following experiments (Figure 3(a)). The findings, as
shown in Figure 3(b), revealed that the cell viability in the
sh-NLRP3 group was significantly reduced in A2780/DDP
and SKOV3/DDP cells compared to the sh-vector group.
Meanwhile, the colonies were also lessened following NLRP3
knockdown (Figures 3(c) and 3(d)). In addition, flow cytom-
etry analysis exhibited an elevated cell cycle arrest in G0/G1
phase, accompanied by a reduced cell proportion in the S
phase after NLRP3 knockdown in both A2780/DDP and
SKOV3/DDP cells (Figures 3(e) and 3(f)), suggesting that
the cell cycle progression was blocked by NLRP3 knock-
down in DPP-resistant ovarian cancer cells.

3.4. Silencing of NLRP3 Represses Cell Invasion and
Migration While Promoting Apoptosis in DDP-Resistant
Ovarian Cancer Cells. Subsequently, a series of cellular

behaviors were examined to assess cell migration, invasive-
ness, and apoptosis changes after NLRP3 silencing. As pre-
sented in Figures 4(a) and 4(b), the healing of the scratch
was hindered in the sh-NLRP3 group compared to the sh-
vector group in both SKOV3/DPP cells and A2780/DDP
cells, suggesting that the migration ability of these DDP-
resistant cells was weakened upon following NLRP3 knock-
down. Meanwhile, the less invasive cells observed in the sh-
NLRP3 group in Figure 4(c) indicate that NLRP3 silencing
weakened the invasive ability of DDP-resistant ovarian can-
cer cells. Afterward, Figure 4(e) revealed that the silencing of
NLRP3 caused a remarkable elevation of TUNEL-positive
cells in SKOVE/DDP cells but not A2780/DDP cells.

3.5. Silencing of NLRP3 Inactivates NLRP3 Inflammasome in
DDP-Resistant Ovarian Cancer Cells. As NLRP3 is a crucial
component of the NLRP3 inflammasome, we examined the
impact of NLRP3 silencing on the NLRP3 inflammasome.
Figure 5 shows that the expression level of NLRP3, IL-18,
IL-1β, and cleaved caspase-1 was significantly reduced fol-
lowing NLRP3 knockdown in both SKOVE/DDP cells and
A2780/DDP cells, demonstrating that silencing of NLRP3
inactivated NLRP3 inflammasome in DDP-resistant ovarian
cancer cells.

3.6. Silencing of NLRP3 Suppresses Epithelial-Mesenchymal
Transition (EMT) in DDP-Resistant Ovarian Cancer Cells.
EMT is an early event of tumor invasion and metastasis
[19]; hence, we examined the impacts of NLRP3 knockdown
on EMT markers. As exhibited in Figure 6, the epithelial
marker E-cadherin was significantly upregulated following
NLRP3 silencing, but the expression level of N-cadherin,
fibronectin, and vimentin, the mesenchymal markers, were
markedly lowered following NLRP3 knockdown, indicating
that NLRP3 knockdown reversed EMT in DDP-resistant
ovarian cancer cells.

4. Discussion

Ovarian cancer is a fatally gynecological malignant tumor.
Attributed to drug resistance, it is hard to completely cure,
leading to recurrences, metastasis, and poor survival rate of
ovarian cancer [20]. Hence, it is essential to elucidate the
drug-resistance mechanism and to prevent drug resistance in
ovarian cancer. Here, it is the first time to be verified that
NLRP3 serves a vital role in DDP-based chemoresistance of
ovarian cancer. The findings revealed that NLRP3 was overex-
pressed in response to DDP-resistant ovarian cancer. NLRP3
knockdown could effectively block cell proliferation, invasion,
and EMT, while it promotes apoptosis in ovarian cancer cells
with DDP resistance. Collectively, the data revealed that
NLRP3 knockdown and the inactivation of NLRP3 inflamma-
some might weaken the malignant phenotype of ovarian can-
cer with DDP resistance and regulate the chemoresistance of
ovarian cancer cells to DDP-based therapy.

The involvement of NLRP3 inflammasome in tumor ini-
tiation and development of different types of cancer has been
widely addressed, especially its dual role in cancers as afore-
mentioned. As drug resistance strictly limits the therapeutic

4 Mediators of Inflammation



GSE26712

0.0

2.5

5.0

7.5

10.0

N
LR

P3
 ex

pr
es

sio
n

GSE53963 GSE51088 GSE66957 GSE135886
Group

Cancer

Normal

p = 1.6e–06 p = <2e–16 p = <2e–16 p = 0.019 p = 0.018

(a)

Lo
g 2 (T

PM
+1

)

Cancer (381)

0

1

2

3

4

5

Group
Normal (71)

Wilcoxon, p = 3.9e–05

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎

(b)

Lo
g 2 (T

PM
+1

)

0

1

2

3

4

II (23) III (296)
Stages

IV (58)

Kruskal-Wallis, p = 0.00084

(c)

Low expression
High expression

N
LR

P3

1.00

p = 0.006

0.75

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.25

0.00

Number at risk

0 2500 5000
Time (days)

7500 10000

0 2500 5000
Time (days)

7500 10000

190
191

33
54

0
12

0
1

0
0

Low expression
High expression

NLRP3

p = 0.006

(d)

Variables

NLRP3

Stage III

Stage IV

Race

2.03 (1.76, 2.48)

1.09 (1.01, 1.27)

1.53 (1.18, 1.92)

0.89 (0.68, 1.27)

4.23e–8

0.047

2.34e–3

0.246

0.71 1.0 1.41

HR (95% CI) P value

(e)

R = 0.62, p < 2.2e–16R = 0.45, p = 3.3e–15 R = 0.14, p = 0.018R = 0.061, p = 0.31 R = 0.58, p < 2.2e–16 R = 0.73 p < 2.2e–16

B cell T cell CD4+ T cell CD8+ Neutrophil Macrophage Myeloid dendritic cell

Lo
g 2 (T

PM
+1

)

0
0.0 0.2 0.4 0.0 0.20.1 0.3 0.0 0.20.1 0.3 0.0 0.20.1 0.3 0.4 0.80.6 1.00.4 0.05

Timer scores
0.10 0.200.15 0.25

1

2

R = 0.62,6= pp < 2.2e–16R = 0.45,0 p = 3.33 e–15 R = 0.14,4 p = 0.0181R = 0.061,. pp = 0.31 RR = 0.58,0 pp < 2.22e–166 R = 0.737 p < 2.22< e–166

(f)

Figure 1: NLRP3 is overexpressed in ovarian cancer and linked to poor prognosis. (a) The gene expression data for ovarian cancer patients
with NLRP3 expression information (GSE26712, GSE53963, GSE51088, GSE66957, and GSE135886) were obtained from the NCBI GEO
database. (b) The expression profile of NLRP3 in ovarian cancer from TCGA database. (c) NLRP3 level in different clinical stages of
patients with ovarian cancer. (d) The survival rate analysis of NLRP3 level and ovarian cancer patients. (e) Cox regression analysis of
NLRP3 in ovarian cancer. (f) TIMER database was adopted to assess the association between NLRP3 level and immune infiltrates’
abundances in ovarian cancer.
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efficacy of chemotherapy and seriously harms patients’
health and life, increasing attention has been paid to whether
NLRP3 can also regulate the malignant processes against
drug resistance in cancer. For instance, the activated NLRP3
inflammasome facilitated leukemia cell proliferation and
improved chemotherapy resistance, while the inactivation
of NLRP3 exerted the opposite effects, demonstrating the
promotive effects of NLRP3 on cancer development and
chemotherapy resistance in acute myeloid leukemia [21].
Meanwhile, NLRP3 was reported to enhance gemcitabine-
based resistance in triple-negative breast cancer cells [22].
In addition, it was proved that NLRP3 inflammasome could
promote resistance of 5-fluorouracil to oral squamous cell
carcinoma [23]. The existing evidence suggested that NLRP3

inflammasome might be an effective target for the adjuvant
chemotherapy of multiple types of cancer. Regarding ovar-
ian cancer, it was only reported by Alrashed et al. that
NLRP3 could improve the gemcitabine sensitivity in
gemcitabine-resistant ovarian cancer cell lines [20], but
whether NLRP3 inflammasome also exerted critical effects
on DDP resistance in ovarian cancer remained unclear.
Here, a high level of NLRP3 was found in DPP-resistant
ovarian tumors, whereas NLRP3 silencing can suppress cell
proliferation, invasion, and migration and promote apopto-
sis of SKOV3/DPP and A2780/DPP cells. The abovemen-
tioned findings suggest that downregulation of NLRP3
repressed the malignant processes of DPP-resistant ovarian
cancer cells, which might be beneficial to improve the
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Figure 2: NLRP3 is upregulated in DPP-resistant ovarian cancer. (a) The tumor tissues from ovarian cancer patients with DDP resistance or
not were collected, and the mRNA level of NLRP3 in tumor tissues was assessed by qRT-PCR. (b) The NLRP3 expression in tumor tissues
was assessed using a western blot. (c) The NLRP3 expression in tumor tissues was observed using immunohistochemical staining. (d) The
NLRP3 level in A2780 and SKOV3 and the DDP-resistant ovarian cancer cells was assessed, adopting qRT-PCR. (e) The NLRP3 expression
in A2780 and SKOV3 and the DDP-resistant ovarian cancer cells was assessed adopting a western blot. ∗∗p < 0:01, and ∗∗∗p < 0:001.
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antitumor effects of DDP against DDP-resistant patients
with ovarian cancer.

EMT, an early event of tumor invasion and metastasis
[19], is a fundamental developmental process wherein epi-
thelial cells lose their polarity and gain invasiveness, even-
tually leading to the transformation into mesenchymal
cells, which has been recognized as a major approach to

propagating tumor dissemination. Therefore, along with
this condition, the classical epithelial marker E-cadherin
was downregulated, while mesenchymal markers, including
fibronectin, vimentin, and N-cadherin, were upregulated
[24–26]. Currently, EMT is considered a crucial indicator
for not only cancer development but also drug resistance.
Resistance to DDP-based chemotherapy in ovarian cancer
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Figure 3: Silencing of NLRP3 suppressed cell proliferation and cell cycle progression in DDP-resistant ovarian cancer cells. (a) Both A2780/
DDP and SKOV3/DDP cells received transfection using sh-NLRP3-1 and sh-NLRP3 to knock down NLRP3, and the mRNA level of NLRP3
was detected using qRT-PCR. (b) The cell viability was assessed, adopting CCK-8 assay. (c, d) Colony formation assay was conducted to
examine cell proliferation. (e, f) Cell cycle was assessed using flow cytometry. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 4: Silencing of NLRP3 repressed cell invasion and migration while facilitated apoptosis in DDP-resistant ovarian cancer cells. (a, b)
Cell ability to migrate was assessed, adopting a wound-healing assay. (c, d) Cell ability to invade was assessed, adopting transwell assay. (e)
TUNEL assay was carried out to detect cell apoptosis and apoptosis. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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was linked to EMT [27]. Blocking PI3K/Akt/mTOR signal-
ing pathway attenuates ovarian cancer chemoresistance to
DDP through reversing EMT [28]. Consistently, we also
observed a restoration of EMT following NLRP3 silencing
in DDP-resistant ovarian cancer cells in this study, as
proved by the elevated level of E-cadherin and the reduced
level of N-cadherin, vimentin, and fibronectin, suggesting
that NLRP3 knockdown might alleviate resistance towards
ovarian cancer via reversing EMT.

However, some limitations still exist in the present study.
First, in vivo assay may be beneficial to validate the current
findings in vitro. Secondly, this study preliminarily explored
the molecular mechanism of NLRP3 in DDP-resistant ovar-
ian cancer, and the in-depth research focusing on its poten-
tial mechanism is deserved to be conducted in our future
work.

5. Conclusion

Taken together, the current research highlights the specific
role of NLRP3 in DDP-resistant ovarian cancer. Silencing
of NLRP3 can weaken drug resistance through repressing
cell proliferation, invasion, and EMT in DDP-resistant ovar-

ian cancer cells. NLRP3 is suggested to be a target for mon-
itoring DDP resistance in ovarian cancer and improving
therapeutic outcomes.
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ANOVA: One-way analysis of variance.
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Background. The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution
of heterogeneous T cell types remains unclear. Method. To study the different functions of T cells in LGG, we mapped the single-
cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples
were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and
EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709,
GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results. The Human Primary Cell Atlas was
used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were
defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we
selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest
were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the
model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of
the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found
that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three
immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better
clinical effects of immunotherapy. Conclusion. This single-cell RNA sequencing combined with bulk RNA sequencing may
elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.

1. Introduction

In the brain and other parts of the central nervous system,
gliomas are the most common primary malignant tumors
[1]. According to the World Health Organization, gliomas
were mainly classified into four levels and the higher grade
notified the poor prognosis [2]. According to routine histo-
pathology, low-grade gliomas are less malignant, usually in
WHO grade 2 and 3 patients [3]. The characteristics of
low-grade gliomas were their highly invasive nature, their

difficulty in surgical resection, their recurrence, and their
rapid progression to malignancy [4]. Several biomarkers
were widely used to define a subtype which was correlated
to a great prognosis like IDH1 and IDH2 [5]. LGG with both
mutation of IDH1 and IDH2 and deficiency of chromosome
of arms 1p and 19q have better therapeutic effect to radio-
chemotherapy than other LGG without these mutations
[6]. Although more and more LGG-like biomarkers have
been widely explored and applied in clinical practice, com-
mon biomarkers are still unable to effectively delineate the
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heterogeneity of tumor microenvironment [7]. Immuno-
therapy still has limited clinical benefits in LGG patients.
Therefore, it is important to find an effectively prognostic
biomarker or therapy target for the therapy of LGG patients.

TME were composed of numerous cell types including
cancer cells, bone marrow-derived inflammatory cells, lym-
phocytes, blood vessels, and the extracellular matrix which
were made up of collagen and proteoglycans [8]. The com-
ponents of TME play an important role in the progression
and invasion of tumors [9]. The alterations of TME not only
impact the development of tumor but also could become
biomarkers for prognosis and immunotherapy [10]. T cells,
a subtype of immune cells, play an important role in innate
immune and adaptive immune systems [11]. In the progres-
sion of cancer, the interactions between TME and T cells
have a great influence on the development of tumors [12].
Poor vascular differentiation and cancer cell metabolism in
the TME, which contribute to hypoxia, accumulation of
metabolic waste, and insufficient energy supply, lead to the
anergy of effector T cells to recognize and kill cancer cells
[13]. T cells are also one of the important targets for immu-
notherapy. Stromal cells of TME mediate the coexistence of
T cells and cancer cells which results in the immune escape
of cancer cells and reduces the effect of immunotherapy [14].
Therefore, the study for T cells in TME is of great signifi-
cance for the future search of tumor therapy.

Several immune cell populations in the TME can now be
revealed molecularly through single-cell RNA sequencing
(scRNA-seq) technology [15]. Previous studies have shown
that screening immune cell subsets for relevant molecular
signals based on RNA-seq data can help predict clinical out-
comes and implement personalized medicine [16]. The aim
of this study is to predict the T cell marker genes, construct
a prognostic model, and evaluate the immunotherapy effect
in patients with LGG.

2. Method

2.1. Data Collection. A total of 983 samples were enrolled in
our investigation. Ten LGG tissues with scRNA-seq data
were obtained from GSE138794 in GEO database, which
were used to identify the T cell markers of LGG. The Cancer
Genome Atlas (TCGA) transcriptome matrix (FPKM for-
mat) and clinical information of 481 LGG samples were
obtained from the TCGA-LGG cohort to construct prognos-
tic signatures. In addition, CGGA693 and CGGA325
cohorts were collected from the Chinese Glioma Genome
Atlas (CGGA) database. The cohorts contained 332 and
162 patients, respectively, which were used as external vali-
dation cohorts to verify the prognostic model. In addition,
GSE16011 was also included in this research to verify the
accuracy of the model. As in our previous study, the micro-
array data was processed [17]. To make comparisons
between samples easier, TCGA RNA sequencing data were
converted to transcripts per kilobasemillion (TPM) values.
To eliminate differences between batches, we used the
“sva” package in R software for normalization. To ensure
the availability and reliability of the data, strict inclusion
and exclusion criteria were established for this study. Inclu-

sion criteria were as follows: (1) the pathological results
showed glioma, (2) complete genomic expression level data
were included, and (3) clear reporting of pathological condi-
tions and follow-up. Exclusion criteria were as follows: (1)
other pathological types and (2) concurrent primary tumors
from other sites. In addition, three immunotherapy cohorts
(PRJEB23709, GSE78820, IMvigor210) were used to explore
the immune treatment effect.

2.2. Identification of T Cell Marker Genes by scRNA-seq
Analysis. scRNA-seq data were preprocessed, and three cells
were excluded with less than 200 genes and gene expression
only in individual cells. The different scRNA-seq datasets
were corrected by the Harmony algorithm. The FindNeigh-
bors function is used to distinguish cell subsets. The T-SNE
function is used to show the distribution of cell subsets, and
the single R package is used to annotate cell subsets. T cell
marker genes were determined by screening criteria of
adjusted p < 0:05 and jlog 2FCj > 1.

2.3. Construction of the Prognostic Model of T Cell Marker
Genes. The transcriptional profiles of T cell marker genes
were obtained based on single-cell data. LASSO algorithm
was used to reduce the correlation between T cell marker
genes and play a role in defitting. Subsequently, the multi-
variate Cox regression analysis algorithm was used to assign
the coefficient of each gene to construct the prognosis model
of T cell marker genes, in which the TCGA cohort was used
as the training group and the CGGA cohort was used as the
validation group. The risk values of key genes in the prog-
nostic model are presented by dendrogram.

2.4. Tumor Microenvironment Landscape. To observe the
overall landscape of immune cells in different T cell subsets,
we used a variety of machine learning algorithms, including
TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER,
XCELL, and EPIC. These algorithms can predict the content
of immune cells based on transcriptome expression levels
and find regularities through simulation of different algo-
rithms to explain that T cell-related genes’ change in the
proportion of immune cells in TME. Expression levels of
immune regulators and HLA family genes in different T cell
subsets were examined to calculate the correlation between
RNAss, DNAss, and risk scores.

2.5. Evaluation of Immunotherapy Effect. Risk scores were
assigned to each patient in the three immunotherapy cohorts
mentioned earlier based on the formula of the model
construction. Compare the risk scores of immunotherapy
responders and nonresponders to determine whether the risk
model can be used to evaluate the effect of immunotherapy. In
addition, the bar graph shows the AUC values used to predict
the expression of individual cell subsets or molecules.

2.6. Statistics. All data analysis was analyzed with R soft-
ware. GSEA algorithm was used to calculate the abundance
of immune cell infiltration. Student’s t-test was used to
compare the differences between the two groups, and all
statistical data were normally distributed. The PCA
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Figure 1: K-M survival analysis.
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algorithm was used to render individual distribution. p <
0:05 was considered significant.

3. Results

3.1. Identification of T Cell Marker Gene Expression Profiles.
We calculated the immune cell infiltration score according
to the ssGSEA algorithm and divided the patients into high
and low immune cell infiltration groups according to the
median immune cell infiltration score. The K-M results sug-
gested that the infiltration level of T cell subsets had a great
impact on the clinical outcome of patients (Figure 1). In
addition, we calculated the content of immune cell subsets
in different WHO grades and found that T cell subsets dif-
fered significantly in G2 and G3 grades. Cell distribution
profiles of scRNA-seq data from GSE138794 are shown in
Figure 2(a). To reduce the dimension, the top 1500 variable
genes were selected and PCA was performed. A total of 15
cell clusters were identified, and cells in cluster 12 were
defined as T cells by the Human Primary Cell Atlas
(Figures 2(b) and 2(c)). Figure 2(d) shows the expression
of specific markers in various T cell subsets. TXNIP was
mainly expressed in CD4+ T cells; CTSC and IL32 were
mainly expressed in Naïve T cells; and CLU and SEC61G
were mainly expressed in Treg T cells. In the CD4+ T cell
subtype, there were 3 genes associated with T cell, and the
remaining subsets were 28, 4, and 13, respectively, which
were defined as T cell marker genes for subsequent analysis.

3.2. Prognostic Model. PCA results showed that the three
cohorts had batch effects distributed in different regions.

As shown in Figure 3(a), after the batch effect was removed,
data of three cohorts were at a consistent level. After the
LASSO regression analysis, 10 genes were finally obtained.
A multivariate Cox regression analysis screened candidate
genes for model construction and calculated coefficient
(Figure 3(b)). According to the expression values of candi-
date genes and corresponding coefficient, the model formula
was constructed as follows:

Riskscore = 0:257 ∗MX1 + 0:127 ∗ SEC61G + 0:168 ∗HOPX
+ 0:199 ∗ CHI3L1 − 0:222 ∗ RTN1
− 0:590 ∗HERPUD1:

ð1Þ

The tree map shows the risk values of candidate genes, in
which RTN1 and HERPUD1 are protective factors and
MX1, SEC61G, HOPX, and CHI3L1 are risk factors
(Figure 3(c)). The heatmap shows the expression levels of
candidate genes between the high- and low-risk groups.
RTN1 is highly expressed in the low-risk group, but MX1,
SEC61G, HOPX, and CHI3L1 are highly expressed in the
high-risk group. The expression trend of candidate genes
in TCGA and CGGA cohorts is consistent in Figure 3(d).
The dot plot shows the distribution of risk scores and clinical
outcomes for each patient. With increase of the risk score,
the mortality rate increases.

The K-M survival curve shows that patients in the high-
risk group has a shorter survival time than those in the low-
risk group (Figures 3(e) and 3(f)). The ROC curve shows
that the prediction ability of the prognostic model at 1, 3,
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Figure 2: Identification of T cell marker gene. (a) The T-SNE showed the distribution of cell in ten patients. (b) 15 cell subsets were
presented by T-SNE algorithm. (c) According to the expression level of marker genes, T-SNE algorithm drew 5 cell subsets. (d) T cell-
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Figure 3: T cell-related model construction. (a) The PCA showed the distribution of patients in each cohort. (b) The LASSO algorithm for
screening candidate genes. (c) The tree diagram shows the genes used to construct the prognostic model and their hazard values. (d)
Heatmaps show the expression of prognostic genes in different risk groups. (e) Risk score and prognostic status of patients in the TCGA
cohort. (f) Risk score and prognostic status of patients in the CGGA cohort. (g) The ROC curve for this model in the TCGA cohort. (h)
The ROC curve for this model in the CGGA cohort.
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Figure 4: Continued.
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and 5 years in the TCGA cohort is 0.881, 0.817, and 0.749,
respectively, and the prediction ability at 1, 3, and 5 years
in the CGGA cohort is 0.749, 0.751, and 0.734, respectively
(Figures 3(g) and 3(h)). In addition, we selected GSE16011

to further verify our prognostic model, and the results
showed that it was consistent with the above, with the pre-
dictive power of up to 0.903, 0.818, and 0.776 at 1, 3, and
5 years, respectively (Figure S1).
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Figure 4: Nomogram model construction and verification. (a) The univariate regression analysis verified the predictive performance of the
prognostic model. (b) The multivariate regression analysis verified the predictive performance of the prognostic model. (c) Construction of
the nomogram model, including grade, age, and risk score. (d) The decision curve analysis was used to evaluate the predictive performance
of the nomogram model. (e) The ROC curve was used to evaluate the predictive ability of the nomogram model for 1-, 3-, and 5-year
survival prognosis.
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Univariate and multivariate Cox regression analysis
showed that the risk score model was an independent
prognostic factor (Figures 4(a) and 4(b)). Multiple factors
could be used to predict clinical outcomes. A nomogram
model was constructed with risk score, grade, and AGE
to predict clinical outcomes of patients (Figure 4(c)).
Figure 4(d) shows the relationship between the expected
results and the actual observed values. The angle close to
45% represents a high accuracy. The ROC curve shows
that the prediction ability of the prognostic model at 1,
3, and 5 years in the TCGA cohort is 0.829, 0.828, and
0.800, respectively, and the prediction ability at 1, 3, and
5 years in the CGGA cohort is 0.766, 0.794, and 0.774,
respectively. The prediction performance was significantly
improved (Figure 4(e)).

3.3. Correlation between Prognostic Models and TME. As
shown in Figure 5(a), the risk score is positively correlated
with effector cells such as B cell and T cell, as well as M2
macrophages, but it is difficult to judge whether risk score
exerted antitumor immunity or inhibited tumor immunity.
The heatmap shows higher levels of immune cell infiltration
in the high-risk group than those in the low-risk groups
(Figure 5(b)). The expression of immunomodulators such
as CD276, CTLA4, and HLA family molecules was higher
in the high-risk group than that in the low-risk group
(Figures 5(c) and 5(d)). The stemness index scores of RNAss
were obtained based on transcriptome expression data, while
those of DNAss were obtained based on methylation data.
The risk score was negatively correlated with RNAss and
positively correlated with DNAss (Figures 5(e) and 5(f)).
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Figure 5: Tumor microenvironment assessment. (a) Correlation between risk score and immune cell infiltration. Algorithms: TIMER,
QUANTISEQ, and CIBERSORT. (b) Heatmap shows the infiltration of immune cells in the high- and low-risk groups. Algorithms:
TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC. (c) The expression level of HLA gene family in the high- and
low-risk groups. (d) Expression level of immunomodulator in the high- and low-risk groups. (e, f) The correlation between risk score
and RNAss and DNAss scores.
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Figure 6: Continued.
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3.4. Immunotherapy Performance in Prognostic Models. In
the three immunotherapy cohorts of PRJEB23709,
GSE78820, and IMvigor210, it was found that high-risk
patients had better clinical effects on immunotherapy, and
the median risk value of patients who responded to immu-
notherapy was higher than that of patients who did not
respond to immunotherapy. Moreover, K-M curves
showed that the overall survival time of high-risk patients
was shorter than that of low-risk patients (Figures 6(a)–6(i)).
Figure 6(j) shows that the prediction performance of our
prognostic model for immunotherapy response was 0.67
(Custom Geneset), which was lower than that of the
immunodetection point (CD274) but higher than that of
other T cells.

4. Discussion

scRNA-seq can precisely and rapidly determine the gene
expression patterns of tens of thousands of individual cells
[18]. Traditional bulk RNA-seq technology can only reflect
the average expression level of genes in the population cells,
which is difficult to mask the expression heterogeneity
among different cells [19]. With scRNA-seq technology, all
genes in a genome can be examined at the single-cell level,
which is very helpful for studying cell expression heteroge-
neity [20]. In this study, scRNA-seq was used to process
and analyze the glioma data in the public database, and the
role of T cell marker gene in LGG was deeply explored.
Based on the selected T cell marker genes, we constructed
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Figure 6: Evaluation of immunotherapy effect. (a–c) In the PRJEB23709 cohort, the bar chart shows the proportion of patients in the high-
and low-risk groups who responded to immunotherapy. The box plot shows the risk score for different immunotherapy effects. The K-M
survival analysis shows the clinical outcome of the high- and low-risk groups. (d–i) In the GSE78820 and IMvigor-210 cohorts. The bar
chart shows the proportion of patients in the high- and low-risk groups who responded to immunotherapy. The box plot shows the risk
score for different immunotherapy effects. The K-M survival analysis shows the clinical outcome of the high- and low-risk groups. (j)
The bar chart shows the AUC values for each biomarker used to predict immunotherapy.
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a prognostic model to predict clinical outcome and immu-
notherapy effect, and its prediction performance in 1, 3,
and 5 years was 0.881, 0.817, and 0.749, respectively. In
general, for healthy tissues and organs, the higher the degree
of immune cell infiltration, the better the effect of antitumor
and targeted killing [21]. The brain has a blood-brain bar-
rier, which makes it difficult for immune cells to enter the
brain [22]. Therefore, only low-grade gliomas have the good
prognosis, but high-grade gliomas may destroy the blood-
brain barrier and infiltrate more immune cells, directly lead-
ing to the poor prognosis of high-grade gliomas. Meanwhile,
in low-grade gliomas, a high degree of immune cell infiltra-
tion is associated with poor clinical outcomes. This study
found that LGG patients with high-risk scores had a higher
degree of immune cell infiltration, and patients with high-
risk scores had poorer clinical outcomes. T cell marker genes
may serve as biomarkers to predict disease progression.

Another popular approach in immunotherapy is
immune checkpoint blockade (ICB), which makes unprece-
dented advance in cancer treatment [23]. Interactions
between ligands and receptors regulate ICBs in the immune
system [24, 25]. In addition to regulating the duration and
amplitude of physiological immune responses, it also main-
tains autoimmune tolerance. As a result, the immune system
will not damage and destroy normal tissue [26, 27]. With the
advent of immune checkpoint inhibitors (ICIs), mainly anti-
programmed cell death protein 1/programmed cell death
ligand 1 (PD-1/PD-L1) and anticytotoxic T-lymphocyte-
associated antigen-4 (CTLA-4) monoclonal antibodies have
made great progress in the field of research related to certain
types of cancer [28]. Both activated cytotoxic T lymphocytes
to enhance antitumor response [29]. There is increasing evi-
dence that molecule inhibitors that target carcinogenesis
play a role far beyond the biological behavior of tumors
[30, 31]. Our study found that the expression levels of
immune modulators (such as PD-1 and PD-L1) and HLA
family in the high-risk group were higher than those in the
low-risk group. Based on three immunotherapy cohorts,
the proportion of patients in the high-risk group who
responded to immunotherapy was higher than that in the
low-risk group. It is conceivable that a combination of T
cell-based marker gene inhibitors and immune checkpoint
inhibitors may benefit patients with LGG. In addition, bioin-
formatics methods were used to analyze the expression and
prognosis of T cell marker genes in glioma.

In our investigation, we first performed a comprehensive
study of scRNA-seq of patients with LGG to identify prog-
nostic signatures and immune environment status. We iden-
tified T cell marker gene signature (TCMGS) to establish a
survival model to evaluate the progression of LGG. Besides,
based on the expression of TCMGS, we validated our prog-
nostic model in an independent cohort which was down-
loaded from the Gene Expression Omnibus (GEO)
database. Our study identifies that TCMGS may become
the new target for the prognosis and treatment of LGG pro-
gression in the future.

There are some limitations in the study. First of all, our
research is based on the mining of existing public databases
with artificial bias. Secondly, possible pathogenic pathways

are only proposed in this study, which requires further
experimental verification. Finally, animal experiments are
needed to test the hypothesis of drug combination before
applying it to patients. Future studies of the relationship
between T cell marker genes and cancer development and
progression may focus on more discoveries of significant
prognostic and even therapeutic value.
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In women all over the world, cervical cancer (CC) ranks as the fourth most common form of cancer to be diagnosed. It was
previously reported that transmembrane protein 33(TMEM33) could report a poor prognosis in several cancers. The current
study is aimed at investigating the potential prognostic value of TMEM33 and its relevance to the tumor microenvironment in
CC in a comprehensive manner. In this study, CC specimens presented noticeably higher TMEM33 expression level in
comparison to nontumor specimens. In pan-cancer assays, it was found that TMEM33 was present at a high level in many
different kinds of tumors. We found that patients with CC patients who had a high TMEM33 expression presented worse
overall survival (OS) and disease-free survival (DFS) relative to patients who had a low TMEM33 expression. According to the
results of a multivariate analysis, a high level of TMEM33 expression can significantly and independently predict the prognosis
of CC. The levels of TMEM33 were found to have a negative correlation with resting dendritic cells, resting mast cells, plasma
cells, T cells CD8, T cells regulatory, and regulatory T cells. Finally, we confirmed that TMEM33 was overexpressed in CC
cells, and its knockdown distinctly suppressed the proliferation and invasion of CC cells. Overall, we provided evidences that
TMEM33 could be used as a potential biomarker to assess the prognosis and the level of immune infiltration in CC.

1. Introduction

Cervical cancer (CC) is a representative disease and the third
leading cause of death related to cancers among females [1].
In 2018, there were about 570,000 newly diagnosed CC cases
worldwide, leading to 311,000 death cases among females
[2]. It is well known that infection with the human papil-
loma virus (HPV) is a common cause of the carcinogenesis
of CC in populations with high risks [3, 4]. However,
approximately 90% of CC developed in low- and middle-
income countries lack screening and HPV vaccination [5].
Patients diagnosed with cervical cancer typically undergo
one of two treatment modalities, either surgery or a
chemotherapy-radiotherapy combination [6, 7]. The cancer,
on the other hand, is almost certainly incurable for the
patient. There is a high risk that cervical cancer will progress
from an early stage to a more advanced stage if it has not
been treated [8, 9]. As a result, diagnosis and treatment at

an early stage are extremely important. Future researches
are suggested to understand the processes leading to CC
development and to locate novel biomarkers capable of
aiding in the early diagnosis and treatment of the disease.

Growing evidences suggest that both the intrinsic char-
acteristics exhibited by the tumor cells and components in
the tumor microenvironment (TME) can determine the can-
cer malignancy degree [10]. These components include
endothelial cells, immune cells, inflammatory mediators,
mesenchymal cells, and extracellular matrix molecules [11].
There is an increasing body of evidence suggesting that the
characteristics exhibited by tumor-infiltrating immune cells
(TIICs) can impact cancer onset and development [12, 13].
TIIC type and density can predict patients’ survival and
impact the responses of tumors to treatment [14]. Hence,
TIICs can promisingly serve as clinical biomarkers targeting
cancers and other malignancy types. Tumor-associated neu-
trophils (TANs) are the most common type of immune cell.
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They eliminate pathogens and prevent the host from being
infected by microorganism. Additionally, TANs have been
shown to present a positive relevance to poorer prognosis
in gastric cancer and breast cancer. In addition, tumor-
associated macrophages (TAMs) are capable of inhibiting
antitumor immunity and promoting tumor progression, as
well as having a negative correlation with the prognosis of
patients with CC [15, 16]. Also, the TME could impact the
gene expression in tumor tissues and contribute to the clin-
ical outcome. All these elucidated the relationship of TME
with cancer progression, which opened the door to the pos-
sibility of improving the treatment of tumors.

Transmembrane protein 33 (TMEM33) has been con-
served throughout the course of evolution. Previous studies
found that TMEM33 was a downstream effector of PKM2
and that it regulated the activation of SREBP and lipid
metabolism [17]. The depletion of PKM2 resulted in
increased TMEM33 expression, which, in turn, promoted
SCAP degradation through its interactions with the ubiqui-
tin ligase RNF5. On the other hand, there was limited infor-
mation regarding the possible function of TMEM33 in
tumors. The study was the first one to hypothesize that
TMEM33 might be a novel prognostic biomarker involved
in TME in CC patients.

2. Materials and Methods

2.1. Raw Data. TMEM33 expression data together with clin-
ical information was gathered from the TCGA public data-
base (http://cancergenome.nih.gov). This data set included
3 normal tissues and 306 cancerous tissue samples. An
HTseq tool was used to compute the level 3 HTSeq-
fragments per kilobase per million (FPKM) samples, and
these results were then converted to transcripts per million
(TPM) units. In addition, we acquired publicly accessible
transcript data from the Genotype-Tissue Expression
(GTEx) database. This data was consistently maintained by
the Toil process from UCSC Xena (https://xenabrowser
.net/datapages/). In addition, 292 CC patients were included
for survival assays.

2.2. TMEM33 Expression Pattern in Human Pan-Cancer.
The data of normal tissues from the GTEx database were
combined with the data from TCGA in order to investigate
the TMEM33 dysregulation that occurs between different
cancer types and normal tissues. The TCGA database pro-
vided access to the RNA sequencing data and the clinical
follow-up information of patients who suffered from 33 dif-
ferent cancer types. All expression data were normalized via
log2 conversion.

2.3. Survival Analysis. Both the survminer and the survival
packages (version 0.4.6; http://cran.r-project.org/) by R soft-
ware were utilized in the survival analysis that was con-
ducted. We screened out 292 tumor samples out of 309 CC
cases considering the following conditions: (i) eliminate
samples with a predicted lifespan of less than one month;
(ii) eliminate normal samples; (iii) eliminate samples of
which the clinical information were incomplete. The

Kaplan-Meier method served for generating a survival curve.
The log-rank test assisted in determining the statistical sig-
nificance, and a p value cutoff of 0.05 served as the signifi-
cant threshold.

2.4. TICs Profile. CIBERSORT is an algorithm that has appli-
cations for discovering biological biomarkers and potential
therapeutic targets. It has the capability of discriminating
between 22 human immune cell morphologies in a manner
that is both extremely sensitive and specific. Chen et al.
revealed that by using the support regression vector-based
machine learning approach, they were able to show that
CIBERSORT efficiently resolves cell subtypes that have com-
parable gene expression patterns through the use of bench-
marking analysis [18]. CIBERSORT was used to estimate
the TIC abundance profile in each and every tumor sample
[19]. For the subsequent analyses, we only considered those
patients eligible whose CIBERSORT p values were less than
0.05. The total number of immune cell type fractions esti-
mated for each sample was added up to 1 after being
summed.

2.5. Cell Lines and Cell Cultures. The human normal epithe-
lial cell line HaCaT and the CC cell lines HeLa, SiHa, C-33A,
and CaSKi came from the cell bank of the Chinese Academy
of Sciences. These cell lines were used to study CC. These
cells were grown in a high-glucose DMEM medium with
10% fetal bovine serum(FBS) in an atmosphere that con-
tained 5% carbon dioxide and humidified at 37 degrees
Celsius.

2.6. Cell Transfection. Small interfering RNAs (siRNAs)
against TMEM33 were provided by Shanghai GenePharma,
as were control siRNAs (si-NC). The indicated siRNAs were
transfected into cells by using the Lipofectamine 2000
reagent(Invitrogen; Thermo Fisher Scientific, Inc.).

2.7. Quantitative RT-PCR. In order to conduct the experi-
ments, RNAse-free water was required. cDNA was synthe-
sized using an RT2 first-strand kit that was purchased from
Qiagen in China. After adding and mixing 1 microgram (μg)
of RNA and 2 microliters (μl) of genomic DNA elimination
mix, the mixture then underwent 5min of incubation at 42
degrees Celsius, after which it was rapidly transferred to ice-
cold water for one minute. Following the addition of the reverse
transcription mix, which included a 5 buffer and a reverse tran-
scriptase enzyme, the mixture underwent 15min of incubation
at a temperature of 42 degrees. When the incubation period
ended, the tube that contained the reaction mixture was heated
to 95 degrees Celsius for terminating the reaction. All of the
genes were identified by utilizing probes manufactured by
Qiagen. The GAPDH gene served as an internal control to help
standardize the results. Primers used for RT-RCR are presented
as follows: TMEM33-F: ATGGCAGATACGACCCCGAA,
TMEM33-R: GAAAGCCACATTGCCGTGTC. GAPDH-F: 5′
-CTGGGCTACACTGAGCACC-3′, GAPDH-R: 5′-AAGTGG
TCGTTGAGGGCAATG-3′.

2.8. Cell Proliferation Assays. To perform the CCK-8 assays,
each well of 96-well plates contained cultured CC cells that
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had been transfected by either a silencing or control
sequence of TMEM33. The total number of cells used was
N = 1 × 104. In order to determine the health of the cells, a
10% CCK-8 working solution (Dojindo, Japan) was formu-
lated, and then 100μl of it was injected into each well to
receive 2 h of incubation at 37 degrees Celsius. For determin-
ing the relative cell viability, the absorbance at 450nm was
utilized.

2.9. Cell Clone Formation Experiment. In order to get started
with the experiment, HeLa and SiHa cells were transfected
and then plated in a 6-well plate at a density of 1 × 103 cells
per well. Following a transfection process that lasted for 24
hours, the cells were put into a complete medium and given
the chance to develop for 14 days. After the allotted time for
incubation had passed, the cells were stained with 0.1% crys-
tal violet and then fixed in paraformaldehyde at a concentra-
tion of 4%. After that, a microscope was used to count the
colonies, each of which had to have at least 50 cells.

2.10. 5-Ethynyl-2′-deoxyuridine (EdU) Assay. After a trans-
fection that lasted for 48 hours, HeLa and SiHa cells were
seeded at a density of 1 × 104 cells per well in 96-well plates.
These cells were then tagged with the BeyoClickTM EdU cell
proliferation kit (Beyotime, Shanghai, China). The 4′,6-
diamidino-2-phenylindole (DAPI) staining solution was uti-
lized in order to see the nuclei of the cells. Using a fluores-
cent microscope(Olympus, Tokyo, Japan), it was possible
to see cells that had been positively tagged. In order to guar-
antee the accuracy of the findings, the experiment was
repeated three times with no overlap between the runs.

2.11. Transwell Assay. A transwell test was carried out in
order to measure the capacity of the cells to invade. In this
particular experiment, cells were seeded into the top cham-

bers of 24-well plates that had been precoated with Matrigel
(Millipore, MA, USA) and then cultured for 48 hours in
serum-free media. Following incubation, the invasive cells
were fixed with 4% paraformaldehyde and then stained for
20 minutes with a crystal violet solution containing 0.25%
crystal violet (Sigma-Aldrich Co., St. Louis, MO, USA). Fol-
lowing this step, stained cells were seen and counted using
an inverted microscope manufactured by Nikon in Japan.
Five distinct microscopic images were then chosen at ran-
dom for examination. With the use of this technology, we
were able to evaluate the capability of cells to infiltrate
through a barrier, which gives important insight into the
metastatic potential of the cells.

2.12. Western Blot Analysis. As the first stage in the process
of obtaining protein lysates, we utilized RIPA buffer. After
that, the total protein samples were separated using SDS-
PAGE at a 12.5% concentration and then deposited onto
PVDF membranes (Thermo Fisher, IL, USA). Before the
membranes were probed with primary antibodies against
the target proteins at 4°C for a whole night, they were first
treated with 5% nonfat milk for the purpose of preventing
any nonspecific binding. Secondary antibodies against
TMEM33 and GAPDH (Abcam) were added to the mem-
branes after they had been washed three times with PBS.
The membranes were then left to incubate in the dark at
room temperature for one hour. A chemiluminescence
device was utilized in order to carry out the protein concen-
tration measurement study.

2.13. Statistical Analysis. Using the R programming language
(R version: 3.6.1), each and every piece of data was analyzed.
A t-test with two independent hypotheses served for data
analysis. The Kaplan-Meier method served for the actuarial
calculations needed to determine overall survival rates. The
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Figure 1: TMEM33 expression in CC tissues and nontumor specimens from (a) TCGA datasets or (b) TCGA datasets and GTEx data.
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(a)

(b)

Figure 2: The differential expression of TMEM33 in 33 types of tumors and the nontumor tissues from (a) TCGA datasets or (b) TCGA
datasets and GTEx data.
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Cox proportional hazard regression model determined the
independent prognostic factors. In order to be considered
statistically significant, the two-tailed p value needed to be
lower than 0.05.

3. Results

3.1. TMEM33 Expression Was Overexpressed in CC and Its
Pan-Cancer Analysis. Firstly, we examined the expression
of TMEM33 in CC using data from TCGA datasets and
GTEx. When compared with nontumor specimens, CC sam-
ples presented noticeably higher TMEM33 expression level
relative to nontumor samples. This was illustrated in
Figures 1(a) and 1(b). After that, we conducted pan-cancer
assays and found that TMEM33 was present at a high level
in many different kinds of tumors, including ACC, LUAD,
and PRAD (Figure 2). Based on our findings, TMEM33
may function as an oncogene in a variety of tumors.

3.2. The Prognostic Value of TMEM33 in CC and Pan-
Cancer. In order to explore the prognostic value of TMEM33
expression in CC, we manually divided CC patients into two
groups (high group and low group) based on the mean
expression of TMEM33 in CC. The Kaplan-Meier survival
analysis was applied to evaluate the prognostic value of
TMEM33 expression in patients with CC. We discovered
that patients with CC patients with high TMEM33 expres-
sion presented a shorter OS (Figure 3(a)) and DFS
(Figure 3(b)) relative to CC patients with low TMEM33
expression. A univariate Cox analysis was carried out for
the purpose of determining the degree of prognostic signifi-
cance that clinicopathological factors have for survival rates.
Both clinical stage (p = 0:001) and TMEM33 expression
(p = 0:022) had a significant correlation with an individual
patient’s overall survival (Figure 4(a)). According to the
additional multivariate analysis, high TMEM33 expression
could significantly and independently predict CC patients’
poor OS (hazard ratio ½HR� = 1:964, confidence interval ½CI

� = 1:237 − 2:004) (Figure 4(b)). In addition, the findings of
pan-cancer survival assays suggested that TMEM33 expres-
sion was linked to the prognosis of patients who were diag-
nosed with KIRC, SKCM, and CC (Figure S1).

3.3. Correlation of TMEM33 with the Proportion of TICs. To
more deeply validate that TMEM33 expression was posi-
tively correlated with the immune microenvironment, the
CIBERSORT algorithm determined the percentage of
immune subsets that had infiltrated the tumor. 21 distinct
immune cell profiles were generated from CC tissue samples
(Figures 5(a) and 5(b)). According to the difference and cor-
relation analyses, 8 kinds of TICs showed a relevance to
TMEM33 expression (Figure 6). Thereinto, 3 kinds of TICs
presented a positive relevance to TMEM33 expression,
including macrophages M0, mast cells activated, and T cells
CD4 memory resting; 5 kinds of TICs presented a negative
relevance to TMEM33 expression, namely, dendritic cells
resting, mast cells resting, plasma cells, T cells CD8, and T
cells regulatory (Tregs). All these further proved the impact
of TMEM33 levels on TEM immune activity.

3.4. The Impact of TMEM33 Knockdown on CC Cell
Proliferation and Invasion. In order to investigate whether
or not TMEM33 was expressed in CC, we utilized RT-PCR
and western blot on a number of CC cells. In comparison
to the HaCaT cells, all four of the CC cells exhibited remark-
ably higher TMEM33 expression(Figure 7(a)). HeLa and
SiHa cells were transfected by small interfering RNAs
against TMEM33 (si-TMEM33) for examining the func-
tional roles that TMEM33 plays in CC. Then, RT-PCR and
western blot demonstrated that siRNAs had the ability to
effectively suppress TMEM33 expression in both HeLa and
SiHa cells (Figure 7(b)). According to the CCK-8 assays,
TMEM33 siRNA-transfected HeLa and SiHa cells presented
remarkably lower optical density (OD 450 nm) relative to
cells transfected with si-NC (Figures 7(c) and 7(d)). In addi-
tion, the results of EdU staining proved that repressing
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Figure 3: Kaplan-Meier curves of (a) OS and (b) DFS between the TMEM33-high and -low expression cohorts.
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TMEM33 levels markedly reduced the number of prolifera-
tive CC cells (Figure 7(e)). Moreover, clonogenic assays
revealed that the clone formation abilities were also attenu-
ated upon TMEM33 knockdown (Figure 7(f)). Finally, we
also found that the knockdown of TMEM33 distinctly sup-
pressed the invasion of CC cells (Figure 7(g)).

4. Discussion

CC is primarily brought on by an infection with high-risk
HPV (hrHPV), and it is the fourth most common cancer
type among females around the world [20, 21]. Squamous
cell carcinoma (SCC) and adenocarcinoma take up 80-85%
and 15-20%, respectively, of all pathological types of can-
cer that are classified as CC [22, 23]. Even though surgery,
chemotherapy, radiation therapy, etc. are available today,
recurrence rate and metastasis rate for patients suffering

late-stage CC are up to 40.3% and 31%, respectively [24,
25]. Patients who have metastatic CC continue to have a
poor prognosis, and the median survival time ranges from
8 to 13 months. As a result, it is of the utmost importance
to discover reliable prognostic biomarkers and molecular
mechanisms that can impact CC prognosis, which may
lead to the discovery of more effective predictive and ther-
apeutic targets.

During our investigation of pan-cancer, we discovered
that TMEM33 was overexpressed in two of the tumors.
After further investigation, it was found that a higher level
of TMEM33 expression reported poorer OS and DFS in
patients with CC. In addition, both univariate and multi-
variate Cox analyses suggested that TMEM33 was a factor
that could be considered independent when attempting to
forecast the prognosis of patients. All of these results,
which have been discussed previously, point to the
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Figure 4: (a) Univariate and (b) multivariate Cox regression analyses of OS in CC patients.
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Figure 5: TIC profile in tumor samples together with correlation analysis. (a) Barplot that illustrates the proportion of 21 kinds of TICs in
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possibility that TMEM33 is a promising prognostic bio-
marker for CC patients. In addition, we carried out RT-
PCR, which provided further evidence that the level of
TMEM33 expression was noticeably elevated in CC cells.
According to the results of functional assays, knockdown
of TMEM33 suppressed the proliferation and invasion of
CC cells. Although a previous study has reported the
prognostic value of TMEM33 in CC patients, we firstly
provided evidences that TMEM33 may be involved in
the progression of metastasis [26]. Our finding suggested
TMEM33 as an oncogene in CC progression.

Immunotherapy has only relatively recently been rec-
ognized as a potential new treatment option for cancer
patients suffering from CC [27, 28]. The tumor microenvi-
ronment (TME), which consists of tumor vasculature,

stroma cells, the ECM, and various cells of the immune
system, has been confirmed to stimulate the developments
of various tumors [29]. It is common knowledge that
immunosuppressive cells can cause the occurrence of
immune escape in TME, that in turn, can promote tumor
progression and metastasis [30]. There is evidence that the
number of regulatory T cells, or Tregs, a typical immuno-
suppressive cell type, is correlated with patients’ prognosis.
This suggests the Treg count as a useful marker for the
prognosis of CC. It has been hypothesized that the TME
remarkably impacts CC development. TIICs make up the
majority of the nontumor components that can effectively
assist in assessing CC prognosis. Therefore, it is of the
utmost importance to work toward increasing the efficacy
of immunotherapy in CC by methodically evaluating the
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Figure 6: Scatter plot that demonstrates the association between 8 kinds of TICs proportion and the TMEM33 expression.
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Figure 7: Continued.
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immune properties of the TME and determining the dis-
tribution and functions of TIIC. In this study, the
TMEM33 expression presented a positive relevance to
three different types of TICs, including macrophages M0,
activated mast cells, and resting T cells CD4 memory.
On the other hand, TMEM33 expression was negatively cor-
related with five different types of TICs, including resting den-
dritic cells, resting mast cells, resting plasma cells, resting T
cells CD8, and resting T cells regulatory, suggesting TMEM33
may inhibit the infiltration and activation of these immune
cells in the tumor microenvironment. This could potentially
contribute to tumor immune evasion and promote tumor
growth. On the other hand, inhibition of TMEM33 expression
could potentially enhance the infiltration and activation of
these immune cells, leading to improved antitumor immunity.
This suggests that TMEM33 may be a potential therapeutic
target for cancer immunotherapy. One potential clinical appli-
cation related to TMEM33 and immunotherapy is the devel-
opment of small molecule inhibitors or monoclonal
antibodies targeting TEM33. These could be used to enhance

the infiltration and activation of immune cells in the tumor
microenvironment, potentially improving the efficacy of exist-
ing immunotherapies.

The present study has some limitations. First, the clinical
information from the TCGA databases was scant and lacked
essential details. No in-depth analysis was performed on the
information pertaining to neuroimaging, the extent of the
resection, radiotherapy, or chemotherapy. Second, addi-
tional validation of the prognostic value of TMEM33 expres-
sion in patients with CC is required through multicenter,
large-scale clinical trials and prospective studies.

5. Conclusion

Our research demonstrated that TMEM33 was a candidate
biomarker that can predict the outcome of treatment and
the patient’s prognosis in patients with CC. To elucidate
the biological effects and underlying mechanisms of
TMEM33, further experimental validation is required.
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Figure 7: TMEM33 knockdown inhibited CC cell proliferation and invasion. (a) Relative expression of TMEM33 in CC cell lines (HeLa,
SiHa, C-33A, and CaSKi) and HaCaT cell line using RT-PCR and western blot. (b) RT-PCR and western blot detected the changes of
TMEM33 expressing levels in CC cells after transfection with TMEM33 siRNA. (c, d) CCK8 assays were employed to determine the
growth curves of CC cells at 24 h, 48 h, 72 h, and 96 h. (e) EdU immunofluorescence staining assays for HeLa and SiHa cells. (f) Clone
formation assays were used to detect cell proliferation in HeLa and SiHa cells. (g) The effect of TMEM33 knockdown1 on the invasion
of HeLa and SiHa was determined by transwell assays.
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Gastric cancer (GC) is one of the most common and lethal cancers worldwide. In view of the prominent roles of long noncoding
RNAs (lncRNAs) in cancers, we investigated the specific role and underlying mechanism of GATA binding protein 6 antisense
RNA 1 (GATA6-AS1) in GC. Quantitative real-time polymerase chain reaction (qRT-PCR) detected GATA6-AS1 expression
in GC cell lines. Functional assays were conducted to explore the role of GATA6-AS1 in GC. Furthermore, mechanism
investigations were implemented to uncover the interaction among GATA6-AS1, microRNA-543 (miR-543), and phosphatase
and tensin homolog (PTEN). In the present study, it was found that GATA6-AS1 expression is significantly downregulated in
GC cell lines. Functionally, GATA6-AS1 markedly suppresses GC cell growth and migration in vitro and in vivo tumorigenesis.
Besides tumor suppressor, GATA6-AS1 serves as a miR-543 sponge. Specifically speaking, GATA6-AS1 acts as a competing
endogenous RNA (ceRNA) of miR-543 to upregulate the expression of PTEN, thus inactivating AKT signaling pathway to
inhibit GC progression. In conclusion, this study has manifested that GATA6-AS1 inhibits GC cell proliferation and migration
as a sponge of miR-543 by regulating PTEN/AKT signaling axis, offering new perspective into developing novel GC therapies.

1. Introduction

Gastric cancer (GC) is the fifth most prevalent malignancy
globally with high morbidity and mortality [1]. The risk fac-
tors like atrophic gastritis and intestinal metaplasia contrib-
ute to the occurrence of GC. In the past few years, the
strategies of reducing the incidence of GC have been devel-
oped [2]. For instance, Helicobacter pylori (H. pylori) erad-
ication therapy is effective for GC prevention [3]. In
addition, apatinib is approved in the treatment of advanced
GC [4]. Furthermore, there are an increasing number of sci-
entific researches, reports, and findings about the molecular
mechanism of lncRNAs, contributing to the development of
targeted therapies for GC.

Long noncoding RNAs (lncRNAs) refer to transcripts
with over 200 nucleotides and without the capacity to code

proteins [5]. Multiple lncRNAs have been reported to be
involved with the pathogenesis and progression of various
cancers [6]. GC is no exception. Some lncRNAs exert
cancer-promoting functions in GC. For instance, HOTAIR
overexpression was manifested to enhance GC cell prolifera-
tion and metastasis and shortening overall survival of GC
patients [7]. ATB expedites tumor growth in GC [8]. At
the same time, some lncRNAs serve as tumor suppressors
in GC. For instance, MEG3 was found to target p53 signal-
ing pathway to attenuate the proliferation and metastasis
of GC cells [9].

lncRNA GATA binding protein 6 antisense RNA 1
(GATA6-AS1) acts as a tumor suppressor in several cancers
[10]. For example, GATA6-AS1 overexpression was con-
firmed to indicate poor prognosis of lung squamous cell car-
cinoma [11, 12]. More importantly, Li et al. have elucidated
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that overexpressed GATA6-AS1 could inhibit LNM and
EMT via FZD4 in GC cells by targeting the Wnt/β-catenin
pathway [13]. It was worth noting that in their report,
GATA6-AS1 was located in the nucleus and participated in
the regulation of GC at the transcriptional level. However,
it was unclear whether GATA6-AS1 regulates the progres-
sion of GC via acting as a competing endogenous RNA
(ceRNA) at the posttranscription level.

In recent years, ceRNA mechanism has been one of the
most popular regulation mechanisms concerning lncRNA,

and ceRNA is a new type of gene expression regulation
mode [14]. Previous reports have indicated that lncRNA
could sponge microRNA (miRNA) to regulate the expres-
sion of messenger RNA (mRNA) as a ceRNA, so as to take
part in the progression of cancers [15]. For example,
XLOC_006390 could promote cervical tumorigenesis by
serving as a ceRNA to target miR-331-3p and miR-338-3p
[16]. FAL1 was proved to accelerate the proliferative and
migratory capacities of hepatocellular carcinoma cells
in vitro through ceRNA mode with miR-1236 [17].
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Figure 1: GATA6-AS1 is lowly expressed in the GC tissues and cell lines. (a) UCSC database displayed the level of GATA6-AS1 in human
normal tissues. GATA6-AS1 expression level was significantly elevated in normal stomach tissues. (b) GEPIA analysis displayed the
GATA6-AS1 expression in tumor (T; n = 408) and normal (N; n = 211) tissues. (c) GATA6-AS1 expression in GES-1 and HGC-27,
MKN-7, MKN-45, and AGS cell lines was detected by qRT-PCR. One-way ANOVA and Dunnett’s test. ∗∗P < 0:01 and ∗P < 0:05.
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Figure 2: Continued.
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In this study, we intended to explore whether GATA6-
AS1 affects GC progression in terms of ceRNA regulatory
mode.

2. Materials and Methods

2.1. Cell Lines and Reagent. Human gastric mucosa cell line
(GES-1) used in this study was procured from BeNa Culture
Collection (Beijing, China). Human GC cell lines (HGC-27,
AGS) were bought from Cell Bank of the Chinese Academy
of Sciences (Shanghai, China); both MKN-7 and MKN-45
cell lines were obtained from Procell Life Science & Technol-
ogy Co., Ltd. (Wuhan, China). RPMI-1640 commercially
acquired from Thermo Fisher Scientific (Waltham, MA)
was used to culture GES-1, HGC-27, MKN-7, and MKN-
45 cells under 37°C and 5% CO2. AGS cells were cultivated
in F12K medium (Gibco). In addition, 10% fetal bovine
serum (FBS; Gibco) and 1% penicillin-streptomycin (Gibco)

both served as medium supplements. SF1670 (1μM), an
inhibitor of PTEN (phosphatase and tensin homolog), was
purchased from MedChemExpress (South Brunswick, NJ).

2.2. Total RNA Isolation and Quantitative Real-Time
Polymerase Chain Reaction (qRT-PCR). TRIzol reagent pur-
chased from Invitrogen (Carlsbad, CA) was used to isolate
total RNAs from the cultured cells. Reverse transcription of
RNA into cDNA was conducted via the implementation of
PrimeScript™ RT reagent kit (Takara, Shiga, Japan) as per
the instructions of manufacturer. Power SYBR® Green Mas-
ter Mix bought from Applied Biosystems (Carlsbad, CA)
was then employed for PCR on the StepOne™ Real-Time
PCR System from Applied Biosystems. Relative gene expres-
sion was calculated by 2-ΔΔCt method. GAPDH or U6 was
used as the internal reference. Each experiment was under-
taken in triplicate, with three technical replicates for each
biorepeat.
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Figure 2: GATA6-AS1 represses cell proliferation and migration in GC. (a) QRT-PCR was used to analyze the overexpression efficiency of
pcDNA3.1/GATA6-AS1 in transfected MKN-45 and AGS cells and interference efficiency of sh-GATA6-AS1#1/#2/#3 in transfected HGC-
27 cells. (b) CCK-8 assays were applied to access the cell viability when GATA6-AS1 was overexpressed or inhibited in GC cells. (c) Colony
formation assays were performed to assess cell proliferation when GATA6-AS1 was upregulated or silenced in GC cells. (d) The migration
ability of GC cells was assessed by wound healing assays in the indicated cells. (e) Transwell assays were further conducted to evaluate cell
migration after the overexpression or deficiency of GATA6-AS1 in GC cells. (f–h) Representative image, tumor growth curve, and tumor
weight at the end points of xenografted tumors formed by subcutaneous injection of MKN-45 cells stably transfected with pcDNA3.1 or
pcDNA3.1/GATA6-AS1 into nude mice. The number of nude mice used in each group is 3. Student’s t-test for overexpression studies
and one-way ANOVA and Dunnett’s test for knockdown studies. ∗∗P < 0:01.
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2.3. Plasmid Transfection. The pcDNA3.1/GATA6-AS1 and
negative control pcDNA3.1 were available from Gene-
Pharma (Shanghai, China) for 48 h transfection into GC cell
samples using Lipofectamine 3000 (Invitrogen). For the sake
of silencing GATA6-AS1 and PTEN, the short hairpin RNAs
(shRNAs) and negative controls of shRNAs (sh-NCs) were
also specifically designed by and purchased from Gene-
Pharma. In addition, microRNA-543 (miR-543) mimics
were transfected into GC cells to overexpress miR-543, while
miR-543 inhibitors for silencing miR-543. In this study,
miR-543 mimics, miR-543 inhibitors, and corresponding
negative controls (NC mimics/NC inhibitors) were pur-
chased from RiboBio (Guangzhou, China) for plasmid
transfection.

2.4. Cell Counting Kit-8 (CCK-8). Transfected GC cells were
harvested and seeded into 96-well plates. A total of 10μL
CCK-8 (Dojindo Laboratories, Kumamoto, Japan) was then
added into each well of the plates for 1 h under culture con-
dition. The absorbance at 450 nm was monitored with a
microplate reader. Independent experiment was done in
triplicate, with three technical replicates for each biorepeat.

2.5. Colony Formation. MKN-45, AGS, and HGC-27 cells
were collected at log phase of growth post transfection and
subsequently seeded into 6-well plates at a density of 500
cells each well. After 14-day incubation, cells were fixed with
4% paraformaldehyde and then dyed by 0.1% crystal violet.

Finally, the colonies in three separately conducted assays
were manually counted. Independent experiments were per-
formed in triplicate. Three technical replicates were per-
formed for each biorepeat.

2.6. Wound Healing. The processed cell samples were cul-
tured in 96-well plates with culture medium with no serum.
After reaching the required confluence, the samples were
scratched by pipette tips and photographed immediately
(0 h). With the rinse in phosphate-buffered saline (PBS),
the wounds were observed 24 h later and photographed by
microscopy (Olympus, Tokyo, Japan). Each experiment
was carried out in triplicate, with three technical replicates
for each biorepeat.

2.7. Transwell Migration Assay. Totally, 1 × 105 transfected
cell samples were inoculated into the upper part of transwell
chamber (Corning, NY). Serum-free medium was added to
cultivate the cells in the upper chamber. The complete
medium was added to the lower chamber. Prior to 24-hour
incubation at 37°C, the migrated cells to the lower chamber
were fixed and dyed by 0.5% crystal violet. Inverted micro-
scope (Olympus) was employed to count the stained cells
in 5 random fields. Separate experiment was undertaken in
triplicate, with three technical replicates for each biorepeat.

2.8. RNA Pull-Down Assay. For RNA pull-down assay, spe-
cific miR-543 probe was synthesized and biotinylated,
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Figure 3: GATA6-AS1 binds to miR-543 in GC cells. (a, b) Cytoplasmic/nuclear fractionation and FISH assays were performed to detect the
subcellular distribution of GATA6-AS1 in MKN-45 and AGS cells. U6 and GAPDH were used as control. Scale bar = 20μm. (c) LncBase
database was used to screen out 14 putative target miRNAs which possibly bind to GATA6-AS1 and are confidently annotated. (d) The
levels of 14 candidate miRNAs in GATA6-AS1-knockdown HGC-27 cells were detected by qRT-PCR. (e) miR-543 level in GATA6-AS1-
overexpression MKN-45 and AGS cells was detected via qRT-PCR. (f) The starBase predicted the potential binding site between
GATA6-AS1 and miR-543. The sequence of GATA6-AS1 was mutated based on the miR-543 binding site to obtain the GATA6-AS1-
Mut plasmid. (g) The enrichment of GATA6-AS1 and miR-543 in anti-Ago2 bound complex was detected by RIP assays. (h) RNA pull-
down assays followed by qRT-PCR analysis were carried out to detect the expression of GATA6-AS1 in the complexes pulled down by
wild-type biotinylated miR-543 (Bio-miR-543-WT) or mutant biotinylated miR-543 (Bio-miR-543-Mut). (i) Luciferase reporter assays
were conducted to further verify the interaction of GATA6-AS1 and miR-543. Luciferase activity of reporter vector containing wild-type
GATA6-AS1 (GATA6-AS1-WT) or mutant type (GATA6-AS1-Mut) was detected post cotransfection with miR-543 mimics or NC
mimics into HEK-293T cells. Student’s t-test was used in (d), (e), (g), and (i) and one-way ANOVA and Dunnett’s test for (h). ∗P < 0:05
and ∗∗P < 0:01.

8 Mediators of Inflammation



⁎⁎ ⁎⁎

0
HGC-27

2

4

6
Re

lat
iv

e l
ev

el
 o

f m
iR

-5
43 8

10

sh-NC
sh-GATA6-AS1#1
sh-GATA6-AS1#1
+NC inhibitors
sh-GATA6-AS1#1
+miR-543 inhibitors

(a)

0

⁎
⁎⁎

⁎

24 48
Time (h)

72 96
0.0

Ab
so

rb
an

ce
 (O

D
45

0)

0.5

1.0

1.5

2.0 HGC-27

sh-NC
sh-GATA6-AS1#1
sh-GATA6-AS1#1+NC inhibitors
sh-GATA6-AS1#1+miR-543 inhibitors

(b)

⁎⁎ ⁎⁎

0
HGC-27

HGC-27

N
um

be
r o

f c
ol

on
ie

s

150

100

50

sh-NC
sh-GATA6-AS1#1
sh-GATA6-AS1#1
+NC inhibitors
sh-GATA6-AS1#1
+miR-543 inhibitors

sh
-N

C

sh
-G

AT
A

6-
A

S1
#1

sh
-G

AT
A

6-
A

S1
#1

+N
C 

in
hi

bi
to

rs

sh
-G

AT
A

6-
A

S1
#1

+m
iR

-5
43

 in
hi

bi
to

rs

(c)

HGC-27

24 h0 h
0.0

⁎⁎ ⁎⁎

0.5

1.0

1.5

HGC-27

0 h

24 h

sh-NC
sh-GATA6-AS1#1
sh-GATA6-AS1#1+NC inhibitors
sh-GATA6-AS1#1+miR-543 inhibitors

sh
-N

C

sh
-G

AT
A

6-
A

S1
#1

sh
-G

AT
A

6-
A

S1
#1

+N
C 

in
hi

bi
to

rs

sh
-G

AT
A

6-
A

S1
#1

+m
iR

-5
43

 in
hi

bi
to

rs

Re
lat

iv
e d

ist
an

ce
 o

f
w

ou
nd

 h
ea

lin
g

(d)

Figure 4: Continued.
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forming wild-type and mutant Bio-miR-543 probes (Bio-
miR-543-WT/Mut). Bio-miR-543-WT/Mut probes were
then incubated with the protein extracts from GC cells along
with magnetic beads. Subsequent to RNA isolation, the puri-
fied RNA from the collected pull-down complex was assayed
using qRT-PCR to detect relative RNA enrichment. Each
experiment was undertaken in triplicate, with three technical
replicates for each biorepeat.

2.9. RNA-Binding Protein Immunoprecipitation (RIP). RNA
interaction was examined by RIP assay in GC cells using
Magna RIP™ RNA-Binding Protein Immunoprecipitation
Kit (Millipore, Billerica, MA) in line with the supplier’s sug-
gestions. Subsequent to the lysis in RIP lysis buffer, cell
lysates were treated with human Argonaute2 (Ago2) anti-
body (anti-Ago2, 1/1,000–1/2,000, ab186733; Abcam, Cam-
bridge, MA) or control immunoglobulin G antibody (anti-
IgG, 1/1,000–1/10,000, ab133470; Abcam). Followed by the
addition of magnetic beads, qRT-PCR was performed after
RNA purification and RNA extraction. Each experiment
was undertaken three times, with three technical replicates
for each biorepeat.

2.10. Western Blot. Cell protein samples extracted from cul-
tured cells were prepared for the electrophoresis separation
using 12% sodium dodecyl sulphate-polyacrylamide gel elec-
trophoresis (SDS-PAGE). Subsequently, the samples were
shifted onto polyvinylidene fluoride (PVDF) membranes.
The diluted primary antibodies against PTEN (1 : 10,000,
ab32199; Abcam) and loading control GAPDH (1 : 1,000,
ab8245; Abcam) were incubated with the blocked mem-
branes overnight at 4°C. After washing in tris-buffered
saline-tween (TBST), the membranes were subjected to
incubation with the secondary antibodies tagged with horse-
radish peroxidase (1 : 5,000, ab7090; Abcam). ECL luminous
liquid bought from Pierce (Rockford, IL) was applied for the
detection of proteins on western blots. Each experiment was

undertaken in triplicate, with three technical replicates for
each biorepeat.

2.11. Subcellular Fractionation Assay. The subcellular frac-
tionation assay was performed with the application of
PARIS™ kit acquired from Ambion (Austin, TX) following
the guidebook. AGS and MKN-45 cells (1 × 106 cells) were
harvested and placed on ice after PBS washing. The pre-
cooled cell fractionation buffer was added to cell samples
for 10min incubation. Following centrifugation for 5min,
cytoplasmic and nuclear fractions were separated. GATA6-
AS1 expression was detected by qRT-PCR analysis. Each
experiment was undertaken in triplicate, with three technical
replicates for each biorepeat.

2.12. Fluorescence In Situ Hybridization (FISH). The specific
probe for GATA6-AS1 was designed and synthesized by
RiboBio for FISH assay. GC cells were fixed for 20min,
followed by the treatment with protease K for 10min. After
being washed in PBS, the probe and hybridization buffer
were added to cell samples overnight at 42°C. The fluores-
cence detection was undertaken with Olympus fluorescence
microscope. Each experiment was undertaken in triplicate,
with three technical replicates for each biorepeat.

2.13. Luciferase Reporter Assay. The wild-type and mutant
GATA6-AS1 or PTEN-3′ untranslated region (3′-UTR)
fragments containing the potential sites for the binding of
miR-543 were acquired and inserted into luciferase vector
pmirGLO, establishing luciferase reporter vectors including
GATA6-AS1-WT/Mut and PTEN-3′-UTR-WT/Mut. The
acquired constructs were then cotransfected into HEK-
293T cells (ATCC, Manassas, VA) with indicated plasmids
for 48 h. At length, Luciferase Reporter Assay System (Pro-
mega, Madison, WI) was employed for examining the lucif-
erase intensity as instructed. Each experiment was
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Figure 4: GATA6-AS1 represses cell growth and migration by regulating miR-543 in GC. (a) QRT-PCR was applied to estimate miR-543
level in HGC-27 cells transfected with sh-GATA6-AS1#1 and miR-543 inhibitors. (b) GC cell proliferation was estimated by CCK-8 assays
when GATA6-AS1 and miR-543 were silenced. (c) Colony formation assays measured cell proliferation when GATA6-AS1 and miR-543
were knocked down. (d, e) The migratory capacity was assessed by wound healing and transwell assays when GATA6-AS1 and miR-543
were inhibited. One-way ANOVA and Dunnett’s test. ∗∗P < 0:01.

10 Mediators of Inflammation



PicTar

184

TarBaseTargetScan

5
11

8300

205

60

(a)

PTEN-3’-UTR-WT

miR-543
PTEN-3’-UTR-Mut

(b)

4

5

3

2

1

0Re
lat

iv
e l

ev
el

 o
f P

TE
N ⁎⁎

MKN-45

pcDNA3.1
pcDNA3.1/GATA6-AS1 sh-GATA6-AS1#1

sh-NC

4

5

3

2

1

0Re
lat

iv
e l

ev
el

 o
f P

TE
N

⁎⁎

⁎⁎

AGS

1.5

1.0

0.5

0.0Re
lat

iv
e l

ev
el

 o
f P

TE
N

HGC-27

(c)

MKN-45 AGS HGC-27

PTEN

GAPDH

pc
D

N
A

3.
1

pc
D

N
A

3.
1/

G
AT

A
6-

A
S1

pc
D

N
A

3.
1

pc
D

N
A

3.
1/

G
AT

A
6-

A
S1

sh
-N

C

sh
-G

AT
A

6-
A

S1
#1

(d)

G
AT

A
6-

A
S1

MKN-45
160

110

60
10

2

1

0

⁎⁎

⁎⁎

⁎⁎

Re
la

tiv
e e

nr
ic

hm
en

t

m
iR

-5
43

PT
EN

IgG
Ago2

⁎⁎

⁎⁎

⁎⁎

G
AT

A
6-

A
S1

m
iR

-5
43

PT
EN

AGS
200

150

100
50

5

1
2
3
4

0

Re
la

tiv
e e

nr
ic

hm
en

t

⁎⁎

⁎⁎

⁎⁎
G

AT
A

6-
A

S1

m
iR

-5
43

PT
EN

HGC-27
200

150

100

50
5

1
2
3
4

0

Re
la

tiv
e e

nr
ic

hm
en

t

(e)

Figure 5: Continued.

11Mediators of Inflammation



undertaken in triplicate, with three technical replicates for
each biorepeat.

2.14. In Vivo Experiments. A total of 15 BALB/c nude mice
(6 weeks old, male) purchased from Model Animal Research
Center of Nanjing University were prepared for the animal
experiments. Animal study was approved by the Institu-
tional Animal Care and Use Committee of Cancer Hospital
of China Medical University. GATA6-AS1-overexpressed
or GATA6-AS1-overexpressed+PTEN-silenced MKN-45
cells were used to treat nude mice with subcutaneous injec-
tion. The mice treated with pcDNA3.1-transfected cells were
used as negative controls. The volume of tumors was exam-
ined every 4 days. Four weeks post subcutaneous injection,
the nude mice were sacrificed, and the xenografted tumors
were resected for the measurement.

2.15. Statistical Analysis. Each assay in the study was biore-
peated in triplicate. The experimental data were expressed
as the mean ± standard deviation (S.D.) and processed by
Prism 6 (GraphPad, San Diego, CA). The P value below
0.05 was defined as significant difference for the statistical
analyses. Student’s t-test or analysis of variance (one-way/
two-way ANOVA) was used for comparing differences
between groups.

3. Results

3.1. GATA6-AS1 Is Lowly Expressed in GC Tissues and Cell
Lines. To detect the biological function of GATA6-AS1 in

GC, we analyzed GATA6-AS1 expression in normal tissues
and tumor tissues through UCSC and TCGA databases.
UCSC database (http://genome.ucsc.edu/) showed that
GATA6-AS1 expression was the highest in the normal stom-
ach tissues compared with the other normal tissues
(Figure 1(a)). In addition, TCGA database (http://gepia2
.cancer-pku.cn/#index) displayed that GATA6-AS1 was sig-
nificantly underexpressed in stomach adenocarcinoma
(STAD) tissues compared with that in normal tissues
(Figure 1(b)). Besides, qRT-PCR was applied to measure
the GATA6-AS1 expression in GC cell lines (HGC-27,
MKN-7, MKN-45, and AGS) relative to normal cell line.
The results elucidated that the GATA6-AS1 was expressed
at low level in GC cell lines versus that in GES-1
(Figure 1(c)). We also found that GATA6-AS1 expression
was relatively higher in HGC-27 cell line but relatively lower
in AGS and MKN-45 cell lines, so we chose these three cells
for subsequent experiments. Taken together, GATA6-AS1 is
underexpressed in GC tissues and cell lines.

3.2. GATA6-AS1 Represses Cell Proliferation and Migration
in GC and Suppresses In Vivo Tumorigenesis. Next, we
knocked down GATA6-AS1 in HGC-27 cells and overex-
pressed GATA6-AS1 in MKN-45 and AGS cells. After the
transfection of pcDNA3.1/GATA6-AS1 into or the transfec-
tion of sh-GATA6-AS1#1/#2/#3 into GC cells, qRT-PCR
analysis was applied to test the overexpression efficiency of
pcDNA3.1/GATA6-AS1 or silencing efficiency of sh-
GATA6-AS1#1/2/3. The results demonstrated that
GATA6-AS1 expression was efficiently increased by
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Figure 5: PTEN is the target gene of miR-543 in GC cells. (a) Venn diagram represented the overlap of miR-543 targets based on three
algorithms (PicTar, TargetScan, and TarBase). 11 predicted miR-543 targets are TWIST1, DYNC1LI2, PTEN, HERPUD1, FNDC3B,
FOXP1, ANKRD13C, BTBD3, CDH11, ZNF281, and COPS2. (b) The starBase was utilized to predict the potential binding site between
miR-543 and PTEN-3′-UTR. The sequence of PTEN-3′-UTR-WT containing miR-543-binding site was mutated to obtain PTEN-3′-
UTR-Mut plasmid. (c) The level of PTEN in the indicated GC cells after the upregulation or depletion of GATA6-AS1 was assessed via
qRT-PCR. (d) Western blot analysis was utilized to measure the protein level of PTEN in the transfected cells after the overexpression
and downregulation of GATA6-AS1. (e) RIP assays were conducted to analyze the association of GATA6-AS1, miR-543, and PTEN in
GC cells. (f) RNA pull-down assays verified the binding between miR-543 and PTEN. (g) Luciferase activity of PTEN-3′-UTR was
detected. Student’s t-test was used in (c)–(e) and one-way ANOVA followed by Dunnett’s test for (f) and (g). ∗∗P < 0:01. n.s.: no
significance.
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pcDNA3.1/GATA6-AS1 in comparison with control
(Figure 2(a), left panels). The level of GATA6-AS1 was obvi-
ously diminished by the transfection of sh-GATA6-AS1#1/
#2/#3 into HGC-27 cells (Figure 2(a), right panel). Particu-
larly, sh-GATA6-AS1#1 and sh-GATA6-AS1#2 presented a
relatively higher knockdown efficiency (Figure 2(a), right
panel). Subsequently, we chose pcDNA3.1/GATA6-AS1
and sh-GATA6-AS1#1/#2 for the following investigations.

For further study on the effects of GATA6-AS1 on the
malignant progression of GC, we designed functional assays
to assess the function of GATA6-AS1 in GC cells. With
CCK-8 and colony formation assays examining the prolifer-
ation of GC cells, we discovered that the absorbance at
450nm in GC cells was markedly declined after the transfec-
tion with pcDNA3.1/GATA6-AS1 in comparison with nega-
tive control (Figure 2(b), left panels), while that was
significantly increased in the HGC-27 cells transfected with
sh-GATA6-AS1#1 and sh-GATA6-AS1#2 compared with
the sh-NC group (Figure 2(b), right panel), indicating that
overexpressed GATA6-AS1 restrains cell viability while
GATA6-AS1 depletion promotes that in GC. Besides, colony
formation assay displayed that overexpression of GATA6-
AS1 reduced the number of colonies but knockdown of
GATA6-AS1 increased that, which indicated that upregula-
tion of GATA6-AS1 hampers GC cell proliferation
(Figure 2(c), upper panels) but downregulation of GATA6-
AS1 enhances that (Figure 2(c), lower panels). In addition,
wound healing and transwell assays were implemented to
assess the capacity of GC cells to migrate. The results of
wound healing assays presented that the relative distance
of wound healing at 24 h in the pcDNA3.1/GATA6-AS1

group was evidently narrower versus the control group
(Figure 2(d), upper panels), while that in the sh-GATA6-
AS1#1/#2 groups at 24 h was wider versus the control group
(Figure 2(d), lower panels), indicating that GATA6-AS1
overexpression inhibits cell migration while GATA6-AS1
knockdown propels that. The results of transwell assay also
verified this finding as overexpression of GATA6-AS1 effec-
tively decreased the number of migrated cells (Figure 2(e),
upper left panels and middle panels) while knockdown of
GATA6-AS1 increased the number of migrated cells
(Figure 2(e), lower left panels and right panel). Consistently,
the injection of pcDNA3.1/GATA6-AS1 transfected cells
resulted in a marked decrease in the growth of xenografted
tumors (Figures 2(f)–2(h)).

Overall, GATA6-AS1 represses the abilities of GC cells
to proliferate and migrate in vitro and suppresses in vivo
tumorigenesis.

3.3. GATA6-AS1 Binds to miR-543 in GC Cells. Next, we
investigated the regulatory mechanism of GATA6-AS1 in
GC. Previous studies have reported that lncRNAs participate
in the biological processes via regulating downstream target
genes [18] and some sponge miRNAs to regulate mRNA
expression by acting as a ceRNA [14]. ceRNA network is a
posttranscriptional regulatory mechanism concerning cyto-
plasmic lncRNA [19]. Thus, we firstly detected the subcellu-
lar localization of GATA6-AS1 in GC cells. Through
subcellular fractionation assays, we discovered that
GATA6-AS1 is localized in both cytoplasm and nucleus of
GC cells (Figure 3(a)). FISH assay also detected GATA6-
AS1 fluorescence (red) in both nucleus and cytoplasm
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Figure 6: GATA6-AS1 suppresses the progression of GC by regulating PTEN/AKT signaling axis. (a) QRT-PCR was implemented to detect
PTEN level in GC cells transfected with pcDNA3.1/GATA6-AS1 and sh-PTEN#1/#2/#3. (b) Western blot was applied to evaluate the
protein level of PTEN in GC cells after the transfection with pcDNA3.1/GATA6-AS1 and sh-PTEN#1/#2/#3 (left panels). Quantification
of western blot results was shown in the bar graphs (right panels). (c) Western blot was applied to detect the protein level of AKT and
phosphorylated AKT (p-AKT) in the transfected cells with overexpressed GATA6-AS1 and inhibited PTEN or added with SF1670 (left
panels). Quantification of western blot results was shown in the bar graphs (right panels). (d) Cell viability of GC cells in different
groups was assessed by CCK-8. (e) Cell proliferation in different groups was evaluated by colony formation assays. (f) Wound healing
assays were conducted to assess the migratory capacity of GC cells in different groups. (g) The evaluation of cell migration in different
groups through transwell assays was displayed. One-way ANOVA followed by Dunnett’s test. ∗∗P < 0:01.
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(Figure 3(b)). Given that, we hypothesized that GATA6-AS1
might regulate the development of GC at the transcriptional
and posttranscriptional levels. Considering that the tran-
scriptional regulation of GATA6-AS1 in GC has been
uncovered [13], we decided to explore its posttranscriptional
regulation mechanism in terms of ceRNA network. As
Figure 3(c) presented, ninety-nine downstream miRNAs of
GATA6-AS1 were screened out on the LncBase database
via DIANA (http://carolina.imis.athena-innovation.gr/
diana_tools/web/index.php?r=lncbasev2%2Findex-
predicted). Notably, fourteen miRNAs have been confidently
annotated and have been studied by other researchers
before. To further determine the most suitable target
miRNA of GATA6-AS1 in GC cells, qRT-PCR was applied
to test the levels of candidate miRNAs in the HGC-27 cells
transfected with sh-GATA6-AS1#1. The results revealed that
the level of miR-543 was the most upregulated among candi-
date miRNAs (Figure 3(d)). Thus, we selected miR-543 as a
potential target of GATA6-AS1 for the follow-up explora-
tion. To further determine the association between
GATA6-AS1 and miR-543, we detected miR-543 level in
GATA6-AS1-overexpression GC cells via qRT-PCR analysis.
It showcased that the level of miR-543 was downregulated in
GATA6-AS1-overexpression GC cells (Figure 3(e)), indicat-
ing that GATA6-AS1 negatively regulates miR-543 expres-
sion. Further, we performed mechanism investigation to
verify whether GATA6-AS1 binds to miR-543 in GC cells.
As Figure 3(f) presented, the starBase database (https://
starbase.gene.com/) predicted the potential binding sites
between GATA6-AS1 and miR-543. The results of RIP dis-
played that GATA6-AS1 and miR-543 were both overtly
enriched in the Anti-Ago2 groups versus that in Anti-IgG
controls in GC cells (Figure 3(g)), indicating the existence
of GATA6-AS1 and miR-543 in RNA-induced silencing
complex (RISC) as Ago2 is the main component of RISC.
Additionally, RNA pull-down assay further uncovered that
GATA6-AS1 was highly enriched in the Bio-miR-543-WT
groups while GATA6-AS1 had no marked abundance in
the Bio-miR-543-Mut groups relative to controls
(Figure 3(h)), indicating that GATA6-AS1 binds to miR-
543 in GC cells. Moreover, the luciferase reporter assays fur-
ther verified this finding as overexpression of miR-543 led to
a remarkable decline of luciferase activity in the GATA6-
AS1-WT groups compared to the NC mimics groups, while
no marked changes were found in the GATA6-AS1-Mut
groups (Figure 3(i)). All in all, GATA6-AS1 binds to miR-
543 in GC cells.

3.4. GATA6-AS1 Represses Cell Growth and Migration by
Regulating miR-543 in GC. To further study the effect of
GATA6-AS1-miR-543 interaction on GC cell behaviors, we
performed several relevant functional assays along with res-
cue experiments. Before that, we applied qRT-PCR to detect
the level of miR-543 in HGC-27 cells transfected with sh-
NC, sh-GATA6-AS1#1, sh-GATA6-AS1#1+NC inhibitors,
or sh-GATA6-AS1#1+miR-543 inhibitors. The results
showed that miR-543 level was conspicuously upregulated
in GATA6-AS1-knockdown HGC-27 cells and dramatically
decreased by the additional transfection of miR-543 inhibi-

tors (Figure 4(a)). CCK-8 assays revealed that the increase
in cell viability caused by GATA6-AS1 deficiency could be
fully reversed by cotransfection with miR-543 inhibitors
(Figure 4(b)), indicating that miR-543 reversed the increase
in cell viability induced by GATA6-AS1 knockdown and
miR-543 silencing represses cell viability in GC cells. Like-
wise, the number of colonies was increased by GATA6-
AS1 depletion but reduced by miR-543 silencing
(Figure 4(c)), which indicated that cell proliferation was
enhanced by inhibited GATA6-AS1 but reversed by silenced
miR-543. Furthermore, via wound healing assay, we discov-
ered that the relative distance of wound healing was
increased in the sh-GATA6-AS1#1 groups compared to con-
trol and then altered by the inhibition of miR-543
(Figure 4(d)), indicating that miR-543 inhibition reverses
the promoting effect of silenced GATA6-AS1 on the migra-
tory ability of GC cells. Besides, transwell assay also indi-
cated that downregulation of miR-543 could offset the
promoting function of inhibited GATA6-AS1 on cell migra-
tion (Figure 4(e)). On the whole, GATA6-AS1 represses the
capacities of GC cell to proliferate and migrate via modulat-
ing miR-543.

3.5. PTEN Is the Target Gene of miR-543 in GC Cells. To fur-
ther probe into the regulatory mechanism of GATA6-AS1 in
GC, we utilized bioinformatics to predict potential targets of
miR-543. The putative mRNAs of miR-543 were obtained
according to the combined prediction of PicTar, TargetScan,
and TarBase databases (Figure 5(a)). Among 11 putative
mRNAs, PTEN has been extensively reported to exert
tumor-suppressive function in multiple cancers [20–22].
Thereby, PTEN was chosen for the follow-up investigations.
Further, starBase was utilized to predict the potential bind-
ing sites, which suggested that miR-543 had the potential
to bind to PTEN-3′-UTR (Figure 5(b)). In addition, we
investigated the regulatory relationship between GATA6-
AS1 and PTEN via qRT-PCR analysis of PTEN levels in
GC cells after the overexpression or depletion of GATA6-
AS1. The results showed that PTEN level was apparently
enhanced by GATA6-AS1 overexpression in GC cells rela-
tive to controls (Figure 5(c), upper panel and left panel)
but markedly declined by GATA6-AS1 deficiency
(Figure 5(c), right panel), indicating that GATA6-AS1 posi-
tively regulates PTEN expression in GC cells. Western blot
analysis also verified this finding as PTEN protein level
was notably increased in GATA6-AS1-overexpression
MKN-45 and AGS cells but reduced in GATA6-AS1-
silence HGC-27 cells (Figure 5(d)). RIP assays were con-
ducted to analyze the interaction among GATA6-AS1,
miR-543, and PTEN in GC cells. It displayed that GATA6-
AS1, miR-543, and PTEN were all significantly abundant
in the Anti-Ago2 groups versus those in Anti-IgG controls
(Figure 5(e)), suggesting that GATA6-AS1, miR-543, and
PTEN coexist in Ago2-RISC. Then, RNA pull-down assays
were conducted to further prove the interaction between
miR-543 and PTEN. The results showed that PTEN was
obviously enriched in the Bio-miR-543-WT groups while
the Bio-miR-543-Mut groups had no significant abundance
of PTEN compared with controls (Figure 5(f)), suggesting
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that miR-543 could bind to PTEN in GC cells. Subsequently,
luciferase reporter assay was employed to detect the interac-
tion between GATA6-AS1, miR-543, and PTEN. The results
showed the decline on the luciferase activity of PTEN-3′-
UTR-WT by miR-543 mimics and then recovered by over-
expressed GATA6-AS1 (Figure 5(g)). However, the PTEN-
3′-UTR-Mut groups had no remarkable change
(Figure 5(g)). Taken together, PTEN serves as a direct target
of miR-543 in GC cells.

3.6. GATA6-AS1 Suppresses the Progression of GC by
Regulating PTEN/AKT Signaling Axis. Finally, we assessed
the effect of PTEN-GATA6-AS1 interaction in GC cells.
Based on qRT-PCR results, PTEN expression was increased
after the overexpression of GATA6-AS1 and downregulated
after the knockdown of PTEN in GC cells (Figure 6(a)).
Additionally, western blot also indicated that PTEN protein
levels were elevated when GATA6-AS1 was overexpressed
and declined after the additional transfection with sh-
PTEN#1/#2/#3 (Figure 6(b)). Afterwards, western blot anal-
yses were implemented to determine whether PTEN knock-
down activates AKT function. The phosphorylated AKT (p-
AKT) level was reduced after the overexpression of GATA6-
AS1 but upregulated by the silence of PTEN or addition of
SF1670 (Figure 6(c)). SF1670 was a specific PTEN inhibitor,
which could also accelerate the phosphorylation of AKT
indirectly. In this assay, we also discovered that the repressed
phosphorylation of AKT was activated by SF1670
(Figure 6(c)). According to CCK8 assays, it was found that
enhanced GATA6-AS1 suppressed cell viability, while
silencing PTEN or adding SF1670 could recover cell viability
in GC (Figure 6(d)). Then, colony formation assays showed
that colonies were reduced by upregulated GATA6-AS1, but
this was reversed by silenced PTEN or addition of SF1670,
which indicated that cell proliferation could be restrained
by GATA6-AS1 overexpression but reversed by the deple-
tion of PTEN or addition of SF1670 (Figure 6(e)). Moreover,
wound healing assays assessed cell migration in GC. The
outcomes suggested that the relative distance of wound heal-
ing was decreased by GATA6-AS1 overexpression but then
increased by PTEN depletion or addition of SF1670
(Figure 6(f)). Finally, transwell assays also verified that the
decreased number of migrated cells caused by GATA6-AS1
upregulation could be offset by the ablation of PTEN or
addition of SF1670 (Figure 6(g)). Taken together, GATA6-
AS1 could suppress cell proliferation and migration in GC
by regulating PTEN/AKT signaling axis.

3.7. GATA6-AS1 Represses In Vivo GC Tumorigenesis via
Regulating PTEN. Besides in vitro assays, in vivo experi-
ments were performed to verify this molecular mechanism.
Xenograft mouse model was established by subcutaneous
injection of GATA6-AS1-overexpressed or GATA6-AS1-
overexpressed+PTEN-inhibited MKN-45 cells into nude
mice, with those injected with pcDNA3.1 as controls. It
was found that the volume and weight of xenografts were
significantly reduced in the pcDNA3.1/GATA6-AS1 group
versus the control group but cotransfection of sh-PTEN#1
altered the suppressive effect of GATA6-AS1 overexpression

on tumor growth (Figure S1A-C). Further, it was found that
GATA6-AS1 positively regulates PTEN expression in vivo
(Figure S1D-E). To conclude, GATA6-AS1 represses
in vivo GC tumor growth via regulating PTEN.

4. Discussion

lncRNAs, associated with different types of cancers, regulate
gene expression via modulating transcription and chromatin
modification [23]. Besides the promoting effects, lncRNAs
have the suppressive effects on cancer progression [24]. Pre-
vious studies have reported that upregulated GATA6-AS1
predicts poor prognosis of lung squamous cell carcinoma
[11, 12]. GATA6-AS1 impedes the progression of non-
small-cell lung cancer [1]. Moreover, GATA6-AS1 has been
found to be lowly expressed in GC, and upregulated
GATA6-AS1 has been elucidated to suppress the progres-
sion of GC by downregulating FZD4 expression to inactivate
the Wnt/β-catenin signaling pathway [13]. With the induc-
tion of GATA6-AS1 depletion, miR-582 facilitated liver
and lung metastasis of GC via downregulating FOXO3
expression and promoting the activity of PI3K/AKT/Snail
pathway [25]. Apart from the regulation of cancer develop-
ment, GATA6-AS1 also exerts function in normal tissues.
For instance, GATA6-AS1 facilitates human endoderm dif-
ferentiation through upregulating GATA6 expression by
promoting SMAD2/3-mediated GATA6 transcriptional acti-
vation [26].

In the present study, we discovered that GATA6-AS1
expression was aberrantly underexpressed in GC cell lines.
After the validation of GATA6-AS1 expression in GC, we
silenced and overexpressed GATA6-AS1 in GC cells sepa-
rately to evaluate its loss-of-function and gain-of-function
effects on cell viability, proliferation, and migration in GC.
Through functional assays, we discovered that overexpressed
GATA6-AS1 restrained cell proliferation and migration. In
contrast, knockdown of GATA6-AS1 has the promoting
effects in the progression of GC. Thus, we confirmed that
GATA6-AS1 acts as a tumor suppressor in GC. In normal
tissues, this tumor suppressor gene might prevent GC by
slowing or stopping cell growth.

Interestingly, GATA6-AS1 was proved to be located in
the nucleus and exerted its regulatory function at the tran-
scriptional level in GC [13]. In our study, we discovered that
GATA6-AS1 was distributed in both nucleus and cytoplasm
through subcellular fractionation and FISH assays. Thus, we
speculated that GATA6-AS1 could regulate GC progression
through the ceRNA network. In recent years, emerging
researches have proven that ceRNA networks play critical
roles in the regulation of various cancers [15, 27]. Also,
lncRNAs have been confirmed to modulate cancers via act-
ing as a ceRNA of miRNA and regulate mRNA expression
at the posttranscriptional level [19].

As a kind of endogenous small noncoding RNA, miR-
NAs feature 19~26 nucleotides in length [28]. Increasing
studies have indicated that lncRNAs combine with miRNAs
to regulate cellular progression in cancers. Herein, our study,
for the first time, verified and confirmed miR-543 as the tar-
get of GATA6-AS1 in GC.
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As for miR-543, it has been extensively studied in a
number of different human cancers previously. For example,
miR-543 was proved to accelerate the proliferation and
metastasis of colorectal cancer by targeting KLF4 [29]. Addi-
tionally, miR-543 targets RKIP to accelerate cell prolifera-
tion and EMT in prostate cancer [30]. Besides, miR-543
can motivate the proliferative and invasive abilities of non-
small-cell lung cancer cells [31]. Remarkably, miR-543 has
also been validated to promote gastric tumorigenesis [32,
33]. In our research, rescue assays demonstrated that
GATA6-AS1 regulates GC cell proliferation and migration
via miR-543. Accordingly, this study verified that miR-543
serves as an oncogene in GC.

Moreover, PTEN has been elucidated as the down-
stream target of miR-543 in multiple cancers, such as
colorectal cancer [34, 35]. Herein, our study firstly identi-
fied PTEN as a target of miR-543 in GC. PTEN is a dual
phosphatase featuring both protein and lipid phosphatase
activities and is taken as a tumor suppressor [36]. PTEN
exhibits its inhibitory effect on both heritable and sporadic
cancers [22]. Besides, the mutation/depletion of PTEN was
considered as a negative regulator of the AKT signaling
pathway [37]. Also, it was reported that PTEN inhibits
PTK6 oncogenic signaling in prostate cancer [38]. In addi-
tion, mammary carcinogenesis was confirmed to be associ-
ated with PTEN loss of activity rather than loss of
expression [39]. Furthermore, some therapeutic strategies
targeting PTEN-deficient cancers are under development
[40]. In our study, the positive correlation between PTEN
and GATA6-AS1 in GC was identified. According to the
previous study, AKT signaling pathway is crucial in regu-
lating GC [41, 42]. In our research, western blot indicated
that phosphorylated AKT level was reduced by the overex-
pression of GATA6-AS1 but upregulated by the downreg-
ulation of PTEN or addition of SF1670 (PTEN inhibitor).
In addition, rescue assays demonstrated that GATA6-AS1
regulates GC progression through the regulation of
PTEN/AKT signaling pathway axis.

When it comes to the future research focus in the fur-
ther studies, the upstream mechanism of GATA6-AS1 in
GC will be investigated. For instance, the future investiga-
tion will be centered on potential mechanisms underlying
the interaction between GATA6-AS1 and its transcription
factors since the inactivation of GATA6-AS1 transcription
might result in the downregulation of GATA6-AS1 in GC
cells. For the downstream mechanism of GATA6-AS1 in
GC, other increased miRNAs upon knockdown of
GATA6-AS1 as shown in Figure 3(d), such as miR-525-
5p, miR-3121-3p, and miR-4424, deserve to be studied to
determine whether they are potential targets and how they
exert their functions.

Taken together, the current study proved that GATA6-
AS1 is lowly expressed in GC tissues and cell lines. More
importantly, GATA6-AS1 can repress cell viability, prolifer-
ation, and migration in GC by sponging miR-543 and regu-
lating the PTEN/AKT signaling axis. Thus, GATA6-AS1 can
act as a potential target for GC treatment, which might pro-
vide novel insight into developing effective treatment strate-
gies for patients with GC.
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Supplementary Materials

Figure S1: (A–C) representative image, tumor growth curve,
and tumor weight at the end points of xenografted tumors
formed by hypodermic injection of stably transfected GC
cells into the nude mice. The number of nude mice used in
each group is 3. (D) The expression of GATA6-AS1/miR-
543/PTEN in xenografted tumor was displayed. (E) The pro-
tein expression of PTEN in xenografted tumor was shown.
GAPDH was used as an internal reference. One-way
ANOVA followed by Dunnett’s test. ∗∗P < 0:01. n.s.: no sig-
nificance. (Supplementary Materials)
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Background. Amino acid metabolism (AAM) is related to tumor growth, prognosis, and therapeutic response. Tumor cells use
more amino acids with less synthetic energy than normal cells for rapid proliferation. However, the possible significance of
AAM-related genes in the tumor microenvironment (TME) is poorly understood. Methods. Gastric cancer (GC) patients were
classified into molecular subtypes by consensus clustering analysis using AAMs genes. AAM pattern, transcriptional patterns,
prognosis, and TME in distinct molecular subtypes were systematically investigated. AAM gene score was built by least
absolute shrinkage and selection operator (Lasso) regression. Results. The study revealed that copy number variation (CNV)
changes were prevalent in selected AAM-related genes, and most of these genes exhibited a high frequency of CNV deletion.
Three molecular subtypes (clusters A, B, and C) were developed based on 99 AAM genes, which cluster B had better prognosis
outcome. We developed a scoring system (AAM score) based on 4 AAM gene expressions to measure the AAM patterns of each
patient. Importantly, we constructed a survival probability prediction nomogram. The AAM score was substantially associated with
the index of cancer stem cells and sensitivity to chemotherapy intervention. Conclusion. Overall, we detected prognostic AAM
features in GC patients, which may help define TME characteristics and explore more effective treatment approaches.

1. Introduction

Globally, gastric cancer (GC) ranks among the deadliest
gastrointestinal disorders, accounting for 5.7% of all cancer
diagnoses and causing more than a million cases annually;
increases among people under 40 years of age [1, 2]. The cur-
rent treatment for GC is surgical resection followed by fluoro-
uracil and platinum-based chemotherapy. Unfortunately, GC
is characterized bymild initial symptoms, a high degree of het-
erogeneity, distinct molecular kinds, and a range of biological
characteristics. Most patients with GC are diagnosed late due
to clinical relapse, distant metastases, inadequate treatment,
and a poor prognosis. Chemotherapy-targeted drugs and
immunotherapy are frequently employed to increase the
survival rates of these patients. However, substantial systemic

toxicity and rapidly developing drug resistance significantly
reduce treatment efficacy [3]. Recently, the characterization
of novel tumor subtypes based on expression profiling has
contributed to a better understanding of molecular features
and tumor heterogeneity in GC, such as the four molecular
subtypes identified by a comprehensive molecular evaluation:
the Epstein-Barr virus-positive tumors, unsteady microsatel-
lite tumors, genomically secure lesions, and chromosomally
unstable growths [4]; the three subtypes to describe the molec-
ular and genetic characteristics of gastric adenocarcinoma [5];
the two molecular subtypes of metastatic gastric adenocarci-
noma [6]; and three subtypes based on the altered proteome
[7]. However, these molecular subtypes still face significant
challenges in distinguishing patient prognosis and guiding
personalized gastric adenocarcinoma treatment regimens.

Hindawi
Mediators of Inflammation
Volume 2023, Article ID 3276319, 23 pages
https://doi.org/10.1155/2023/3276319

https://orcid.org/0009-0005-5034-1983
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3276319


Tumor cell metabolism is a key pathway that drives can-
cer stem cell survival, tumor cell transformation, immune
evasion, drug resistance, and disease recurrence. Targeting
tumor cell metabolism can enhance treatment responses to
drug-resistant cancers and mitigate treatment-related toxic-
ity by reducing the need for genotoxic drugs. Therefore, tar-
geting tumor cell metabolism is a popular form of cancer
treatment, especially amino acid consumption therapy,
which has been the focus of recent research [8]. The catego-
ries of amino acid metabolism KEGG components include
proline and aromatic amino acid metabolism and branched
and branched-chain amino acid metabolism. A combination
of signaling pathways and transcription factors often
changes amino acid metabolic pathways in tumor cells [9,
10]. Cancer cells rely on foreign amino acid supply and meet
increasing demand by upregulating the expression of the
amino acid transporter. Interfering with amino acid avail-
ability is the Achilles heel unique to cancer [11]. Amino
acids are also critical elements for immunological cells. T
cells can upregulate amino acid transporter expression
during proliferation, differentiation, and immunological
response, increasing amino acid absorption and improving
immune function [12, 13].

Regarding drug resistance, amino acids support cancer
cells against therapy by maintaining biosynthetic processes,
maintaining redox homeostasis, regulating epigenetic modi-
fications, and providing metabolic intermediates for energy
production [14]. For example, leucine or branched-chain
amino acid therapy increases cisplatin sensitivity in cancer
cells by suppressing cisplatin- or bcat1-mediated autophagy
and promoting mTOR signaling [15].

In this study, our aim was to investigate the characteris-
tics of AAM-related genes in GC systematically and compre-
hensively. First, we used TCGA-STAD and GSE84337,
which were obtained from the Cancer Genome Atlas
(TCGA) database and GEO database, to analyze that the
genome associated with amino acid metabolism (AAM)
could divide GC into different subgroups. We then evaluated
molecular signatures and infiltrative immune cell strength to
identify AAM clusters. In addition, risk profiles based on
four genes were confirmed as independent prognostic fac-
tors for gastric cancer, suggesting an association between
amino acid metabolism-related genes and prognosis. Finally,
we determined an AAM score that significantly predicted
clinical outcomes and medication therapy effects in patients
with gastric cancer. These findings might open up new
avenues for GC study and customized therapy.

2. Materials and Methods

2.1. Data Collection and Collation. TCGA-STAD tool
(https://portal.gdc.cancer.gov) was used to retrieve informa-
tion on RNA expression, somatic mutations, copy number
variation (CNV) files, and related GC clinicopathology.,
Moreover, GSE84337 from the GEO archive (https://www
.ncbi.nlm.nih.gov/geo/) was used to obtain clinical parame-
ters and normalized gene expression data. Two datasets were
combined, and batch effects were eliminated by applying the
“Combat” algorithm [16]. A total of 101 AAM genes were

discovered in older research in addition to the amino acid
and derivative metabolic process gene list in the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb
.org/gsea/index.jsp) (Table S1). STRING analysis (https://
string-db.org/) was utilized to illustrate interactions between
AAM-correlating genes.

2.2. Differential Expression and Mutation Analysis of AAM
Genes. Differential expression AAM genes were identified
in TCGA-STAD dataset by the limma package in R software
[17]. The landscape of AAM gene mutations was illustrated
by the maltools package’s waterfall graph, while changes in
CNV placements of AAM genes on chromosomes were
mapped by the RCircos program [18].

2.3. Consensus Clustering. The different AAM correlation
modes were defined by the ConsensusClusterPlus package
[19] and the K-means method. These steps have been per-
formed 1000 times to guarantee the stability of the catego-
ries. Then, the clustering results were validated using
principal component analysis (PCA) [20]. The clinical sig-
nificance of the clusters was determined by evaluating
molecular patterns, clinical variables, and patient outcomes.
Additionally, GSVA enrichment analysis was performed in
the heatmaps using the GSVA program to evaluate if the
verified gene sets differed significantly across three clusters
[21]. Additionally, a single-sample gene set enrichment anal-
ysis (ssGSEA) was applied to examine the differences in
immune cell infiltration proportions between subgroups.

2.4. Differentially Expressed Genes (DEGs). Package “limma”
in R [17] was used to identify DEGs between different AAM
molecular subtypes, with the criterion of jlog 2FCj > 0:585
and false discovery rate ðFDRÞ < 0:05. Genes that intersect
or do not intersect between subgroups were visualized using
Venn diagrams.

2.5. Development of a Risk Signature Based on Clusters of
AAM. AAM score was constructed to quantify amino acid
metabolism in GC patients. Intersect genes were chosen based
on DEGs expression data in various clusters of AAM across
GC samples. The 65 intersect genes associated with prognosis
were screened and analyzed by univariate Cox regression.
Genes linked with AAM were scored using PCA through the
following technique: AAM score = ΣðExpi × coefiÞ. Then,
TCGA-STAD and GSE84437 cohorts were used for further
analysis. A nomogram was created from risk scores and clini-
cal data using the rms program [22] to predict the overall sur-
vival (OS) of patients with GC at one, three, and five years. The
stromal, immunological, and ESTIMATE scores were exam-
ined using the ESTIMATE algorithm [23] to determine the
relationship between the risk score and the tumor immune
microenvironment.

2.6. Chemotherapy Sensitivity Prediction. To explore
differences in chemotherapy sensitivity between groups,
we evaluated the highest half-maximal inhibitory concen-
tration of chemotherapy drugs (IC50) by R-package “pRRo-
phetic” [24].
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Figure 1: Genetic mutational landscape of AAMs in GC. (a) Expression distributions of DEGs between GC and normal tissues. (b) The PPI
network acquired from the STRING database among the DEGs. (c) Genetic alteration on a query of AAMs. (d) Frequencies of CNV gain,
loss, and non-CNV among AAMs. (e) Circus plots of chromosome distributions of AAMs. (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).
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2.7. Statistical Analysis.All statistical tests were performed using
R software, version 4.2.0, and the relevant feature packages. Dif-
ferences between different datasets were determined using the
Chi-square test. Two groups were compared using theWilcoxon
test. The log-rank test was applied to determine the Kaplan-
Meier (KM) survival analysis. P values below 0.05 were classified
as statistically significant (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).

3. Results

3.1. AAM Gene Expression Analysis and Mutation Analysis
in STAD. We examined 101 AAM gene expressions in
tumor and normal tissue samples using the TCGA-STAD
dataset. 79 AAM genes were either up or downregulated in

STAD (Figure 1(a)). At the protein level, the interactions
between the 101 AAM gene proteins were analyzed using
STRING and mapped the PPI network (Figure 1(b)) The
incidence of somatic mutations and CNVs of AAM-related
genes in GC patients was assessed. Only 163 of 433 samples
contained mutations in AAM-related genes, with a mutation
frequency of 37.41%, and the data implicated DCT as the gene
with the highest mutation frequency (4%) (Figure 1(c)). Mis-
sense mutations are the most common type of gene alteration.
We also discovered that at the CNV level, the focus was mostly
on CNV loss. FPGS and KYAT1 have a broad rate of CNV
gain (Figure 1(d)). Additionally, we discovered alterations in
95 AAM genes with chromosomal CNV characteristics
(Figure 1(e)).
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Figure 3: Different clusters’ TME characteristics. (a–c) GSVA of biological pathways among three distinct subgroups. (d) The abundance of
each TME infiltrating cell in three AAM clusters.
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3.2. AAM Patterns in GC. We combined TCGA-STAD and
GSE84337 transcriptome data and retrieved the mRNA
expression data for 101 AAM genes; Table S2 lists the OS
statistics and clinical details for these subjects. Table S2
provides information on these subjects. Ninety-one genes in
GC have prognostic scores determined using univariate Cox
regression analysis and KM analysis (Table S3). The
regulator network illustrated the entire landscape of 91 gene
connections, regulator relationships, and their prognosis for
GC patients (Figure 2(a)). The above data showed that AAM
might significantly characterize TME cell infiltration within
specific tumors. Patients were categorized using the
ConsensusClusterPlus R package based on the expression of
the 91 AAM genes. The unsupervised clustering technique
divided the data into three distinct groups: 234 cases of
model A, 291 cases of model B, and 282 cases of model C
(Figure 2(b)). PCA analysis also showed a good distribution
among groups (Figure 2(c)). The cluster B model provided
a significant health benefit (Figure 2(d)). Moreover,
Figure 2(e) shows that both cluster’s genomic expression
and clinic pathological factors were compared, revealing a
significant difference in AAM gene expression and clinical
characteristics.

3.3. Different Clusters’ TME Characteristics. GSVA enrich-
ment analysis revealed that cluster A was greatly elevated in
cardiovascular pathways, including vascular smooth muscle
contraction, dilated cardiomyopathy, and hypertrophic
cardiomyopathy (Figure 3(a)). Cluster C described the
enrichment mechanisms for metabolism. These included the
alanine, aspartate, glutamate, arachidonic acid metabolisms,
toxic substances metabolism by cytochrome P450, and nicoti-
nate and nicotinamide metabolisms (Figure 3(c)). Cluster B
was significantly associated with nucleic acid anabolism
(Figure 3(b)).

Furthermore, we analyzed the immune cell infiltration of
three clusters using the ssGSEA technique. Cluster A con-
tained a significantly high number of innate immune cells,
such as activated B cells, activated CD4 T cells, activated
CD8 T cells, activated dendritic cells (DC), eosinophils,
immature B cells, immature DC, MDSCs, macrophages,
mast cells, natural killer T (NKT) cells, natural killer (NK)
cells, plasmacytoid DC, regulatory T cells, and T helper cells
(Figure 3(d)).

3.4. Generation of AAM-Related Gene Signatures. We
discovered 65 overlapped genes in the three groups to
further investigate the possible biological properties of
AAM-related genes (Figure 4(a)). GO enrichment analysis
revealed that these cluster-related genes were primarily
enriched in biological processes associated with metastasis
(Figure 4(b)). Afterward, we performed a uniCox analysis
to determine the importance of these genes for survival. 51
genes were considered for the next analysis because they
met P < 0:05 criteria (Table S4). Individuals were separated
into 2 gene clusters (clusters A and B) based on prognostic
genes to investigate this regulatory regime (Figures 4(c)
and 4(d)). We identified that the OS time for cluster A
patients was the shortest, while the OS time for cluster
B patients was the best (Figure 4(e)). Figure 4(f) shows
a heatmap of the correlation between clusters and
clinicopathological symptoms. The AAM gene clusters
showed significant differences in the AAM gene expression,
as predicted by the AAM subgroups (Figure 4(g)).

3.5. Prognostic AAM Score Construction and Validation. The
AAM score was derived from DEGs connected with clusters.
The GC participants were randomly divided into two groups: a
training group (n = 402) and a test group (n = 402) with a ratio
of 1 : 1. LASSO Cox regression analysis built a prognostic gene
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Figure 4: Generation of AAMs signatures. (a) Venn diagram showing overlapping genes of three distinct subgroups. (b) Results of GO
enrichment. (c, d) Consensus matrix heatmap defining two gene clusters and their correlation area. (e) Kaplan–Meier curves showing the
overall survival of gene clusters. (f) Heatmap of the clinical relevance of three AAM clusters and two geneClusters. (g) Gene expression
levels of AAM-related genes in two geneClusters.
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model based on the 4 prognostic AAM genes (Figures 5(a) and
5(b)). This is the risk score: ð0:099 × expression APODÞ +
ð0:236 × expressionCGNL1Þ + ð0:213 × expression SGCEÞ
+ ð0:164 × expressionAGMATÞ. Figure 5(c) shows the distri-
bution of patients among the three subtypes of AAM, two gene
subtypes, and two AAM score groups. Moreover, each gene
cluster A (Figure 5(a)) and AAM cluster A (Figure 5(e)) had
a high AAM score, whereas both gene cluster A (Figure 4(e))
and AAM cluster A (Figure 2(d)) had a poor prognosis. In
the training sample, KM survival analysis revealed that OS rates
were considerably lower in the high-score group than in the
low-score group (log-rank test, P < 0:001) (Figure 5(f)). The
ROC findings show AUC scores of 0.616, 0.635, and 0.645
for one, three, and five years, respectively, revealing that the sig-
nature’s accuracy was adequate (Figure 5(g)). This finding also
confirmed the results of our analysis. The hazard plot of the
AAM value revealed that as the AAM score increased, OS time
decreased, and death rates increased (Figures 5(h) and 5(i)).
Figure 5(j) also shows a heatmap of the chosen genes. Then,
the nomogram plot showed that the AAM score might be a
good tool for predicting long-term survival (Figure 5(k)). Cali-
bration maps demonstrated that the nomogram technique was
remarkably accurate, indicating that it can predict a patient’s
prognosis (Figure 5(l)).

3.6. AAM Score Association with TME, TMB, MSI, and CSC
Score. We used the estimate package to determine the rela-
tionship between the AAM score and immune and stromal
results. High AAM scores were closely linked to elevated
immune scores, and high AAM scores were linked to
increased stromal results (Figure 6(a)). The association
between the four genes in the suggested model and the num-

ber of immune cells was also evaluated. Most immune cells
were strongly linked to these genes (Figure 6(b)).

The “maftools” R software showed the distinctions in
somatic mutation patterns between the higher and lower
AAM score groups (Figures 7(a) and 7(b)). We discovered
that TTN, TP53, and MUC16 mutation occurrences in GC
patients in two risk categories were higher than or equivalent
to 20%. Additionally, our results showed that the TMB was
greater in the low-risk groups compared to the high-risk
groups (Figure 7(c)), indicating that immunotherapy may
be more beneficial for low-risk patients. Spearman’s correla-
tion analysis also demonstrated a negative relation between
the AAM score and TMB (Figure 7(d)). We also performed
a survival study across several TMB subgroups to examine
the effect of TMB status on prognosis in GC patients. Indi-
viduals with elevated TMB had a better prognosis than those
with reduced TMB (Figure 7(e)).

Moreover, correlation analysis revealed a significant rela-
tionship between a lower AAM score and the MSI-H condi-
tion, while a higher AAM score was associated with the
microsatellite constant (MSS) condition (Figures 7(f) and
7(g)). We also integrated the AAM score and CSC index
values to analyze any potential link between the AAM score
and CSC in GC. Figure 7(h) presents the findings of the lin-
ear correlation between the AAM score and the CSC index.
We discovered that the AAM scoring was negatively related
to the CSC index (R = 0:49,P < 2:2e − 16), indicating that
GC cells with a lower AAM score exhibited stem cell features
and a lower degree of cell differentiation.

3.7. Drug Sensitivity Testing. The IC50 of 98 drugs was mea-
sured in TCGA-STAD patients to determine the significance
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Figure 5: Four gene-based prognostic models were constructed using Lasso-Cox regression analysis. (a, b) The distribution of partial
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of the AAM value as an indicator of therapy response in
GC patients. We found that individuals with high AAG
scores may respond well to bexarotene and several tar-

geted therapy agents, such as axitinib, sunitinib, dasatinib,
lapatinib, imatinib, and pazopanib (Figures 8(a)). In con-
trast, individuals with low AAM scores may react better
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Figure 6: Evaluation of the TME between the two groups. (a) Correlations between AAM score and both immune and stromal scores.
(b) Correlations between the abundance of immune cells and four genes in the proposed model.
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to metformin, vorinostat, methotrexate, and sorafenib
(Figures 8(b)).

4. Discussion

GC is a highly heterogeneous malignant tumor that develops
through the synergistic action of multiple mechanisms. Cur-
rently, the most common treatments for GC include surgery
combined with immunotherapy, radiotherapy, chemother-
apy, and targeted therapy [25]. However, survival outcomes
for this cancer are far from satisfactory because of high
recurrence and metastasis rates. Numerous studies have
shown the essential function of amino acid metabolism in
innate immunity and antitumor responses [26]. Addition-
ally, most research has concentrated on a particular gene
related to amino acid metabolism or a specific cell type in
the TME. Therefore, the overall effect mediated by the com-
bined action of multiple genes and the infiltration properties
of the TME remains unknown. Moreover, our study can
provide valuable information for the in-depth investigation.
The outcomes of this research demonstrate alterations in
transcription and AAM variations at the genetic level in GC.

Our study initially investigated the genetic alterations
and AAM-related gene expressions using data from the
TCGA-STAD and GSE84437 cohorts. While AAM gene
mutation rates were lower, most prognosis-related genes
were higher in GC patients. Then, we employed an unsuper-
vised clustering approach to classify GC patients into three
AAM subgroups. We found that clinical outcomes, immune
infiltration, and function differed significantly among the

three subgroups. Patients with subtype A exhibited a shorter
OS and greater levels of immune cell infiltration than
subtypes B and C. However, subtype A was considerably
elevated in metastasis-related pathways. AAM cluster A was
significantly enriched in innate immune cell infiltration,
including activated B cells, activated CD4 T cells, activated
CD8 T cells, activated DC, eosinophils, immature B cells,
immature DC, MDSCs, macrophages, mast cells, NKT cells,
NK cells, plasmacytoid DC cells, regulatory T cells, and T
helper cells. Similar to the AAM clustering results, two
genomic groupings with distinct clinical characteristics,
immunological activities, and functions were discovered based
on AAM-related genes. The AAM subgroups were quantified
using LASSO Cox regression and the AAM score. Cluster A
and gene cluster A, with the worst outcome measures, had
the highest AAM value out of the three AAM clusters and
two gene clusters. Amino acids can supply nitrogen and car-
bon for rapid tumor cell development and biosynthesis [27].

The AAM score was substantially related to the clinic
pathological characteristics of GC. After adjusting for vari-
ous factors, the results demonstrated that the AAM score
was an independent predictor of survival outcomes in GC
patients. ROC validated its predictive robustness over one,
three, and five years of OS. Recently, risk scores associated
with AAM have established clinical outcomes in GC
patients. Moreover, the AAM score may provide useful
prognostic information for patients. The aggregation of gene
mutations leads to tumor development related to metabolic
changes. According to our research, there are substantial
variations between genetic modifications of individuals with
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low and high AAM scores. Elevated TMB was correlated
with a better prognosis in GC patients, which is consistent
with our results [28]. Clinical outcomes were substantially
better in the low AAM score group compared to the low
TMB group, indicating that the AAM score was a reliable
predictor of immunotherapy performance. Immune check-
point inhibitor treatment markedly enhanced outcomes in
a comparatively higher percentage of MSI-H cancers than
MSI-L/MSS tumors, providing significant and long-lasting
reactions and survival advantages [29]. In this investigation,
more MSI-H patients were found in the groups with a low
AAM score and a better prognosis. AAM meets the cellular
demands for maintaining redox homeostasis, energy genera-
tion, and biomass production and has been recognised as a
key determinant of drug resistance in tumors [30, 31]. There
is growing evidence that drug resistance in cancer cells can
be overcome by suppressing or enhancing AAM and by
depleting or supplementing amino acid availability [11,
32]. Currently, GC is slowly developing chemotherapeutics
resistance. Finally, we explored the relationship between
AAM score and chemotherapeutic drugs, which identified
a novel insight for exploring tumor therapy treatment and
avoiding the resistance of GC. The study identified drugs

that may be effective for patients in various AAM score
groups. Combining these drugs with the targeted AAM score
may help reduce drug resistance and enhance clinical results.
Our work uncovered the potential for repurposing “stale”
chemotherapy drugs for new oncology indications.

We acknowledge that our research has several limita-
tions. The first one was that all studies relied only on data
obtained from public sources, and all samples were acquired
retroactively in this research. The second limitation was that
most datasets lacked data on crucial clinical characteristics
like surgery, neoadjuvant chemotherapy, and chemoradio-
therapy. The third was that more experimental studies
should be conducted to confirm our findings.

5. Conclusion

In this study, we researched and identified several AAM
genes that regulate TME, clinicopathological aspects, and
prognosis. We also developed an AAM score to anticipate
the prognosis and treatment sensitivity of GC patients,
which assisted the development of more effective therapy
regimens and paved the pathway for further research on
the relationship between AAM-related genes and GC.
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Background. Gefitinib resistance remains a major problem in the treatment of lung cancer. However, the underlying mechanisms
involved in gefitinib resistance are largely unclear. Methods. Open-accessed data of lung cancer patients were downloaded from
The Cancer Genome Atlas Program and Gene Expression Omnibus databases. CCK8, colony formation, and 5-ethynyl-2′-
deoxyuridine assays were utilized to evaluate the cell proliferation ability. Transwell and wound-healing assays were utilized to
evaluate the cell invasion and migration ability. Quantitative real-time PCR was utilized to detect the RNA level of specific
genes. Results. Here, we obtained the expression profile data of wild and gefitinib-resistant cells. Combined with the data from
the TCGA and GDSC databases, we identified six genes, RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1, that were
involved in gefitinib resistance in both cell and tissue levels. We found that most of these genes were expressed in the
fibroblast of the NSCLC microenvironment. Hence, we also comprehensively investigated the role of fibroblast in the NSCLC
microenvironment, including its biological effect and cell interaction. Ultimately, CDH2 was selected for further analysis for its
prognosis correlation. In vitro experiments presented the cancer-promoting role of CDH2 in NSCLC. Moreover, cell viability
detection showed that the inhibition of CDH2 could significantly decrease the IC50 of gefitinib in NSCLC cells. GSEA showed
that CDH2 could significantly affect the pathway activity of PI3K/AKT/mTOR signaling. Conclusions. This study is aimed at
investigating the underlying mechanism involved in gefitinib resistance to lung cancer. Our research has improved researchers’
understanding of gefitinib resistance. Meanwhile, we found that CDH2 could lead to gefitinib resistance through PI3K/AKT/
mTOR signaling.

1. Introduction

Lung cancer remains the most prevalent and dangerous
malignant tumor worldwide, resulting in over one million
related death cases per year [1]. Lung cancer is a multifacto-
rial disease, and its specific mechanism is still unclear, but
current research has found that the incidence of lung cancer
is often related to environmental factors, lifestyle, genomic
differences, and so on [2]. For now, patients at the early stage
of the disease can often obtain long-term treatment benefits
and a satisfactory prognosis from radical surgery [3]. Unfor-
tunately, many lung cancer patients have already reached the
late stages of the disease when they are diagnosed [4]. Lung

cancers that have advanced are mostly treated with chemo-
therapy. Nonetheless, the effectiveness of chemotherapy is
often limited, coupled with cytotoxicity and side effects,
which exacerbate the patients’ medical burden and quality
of life [5].

Gefitinib is suitable for the treatment of locally advanced
or metastatic non-small cell lung cancer (NSCLC) that has
received chemotherapy or is not appropriate for chemother-
apy [6]. Gefitinib can effectively improve the prognosis of
patients with advanced NSCLC, and it has also been
reported that when combined with chemotherapy, gefitinib
can improve the therapy effect on lung cancer patients [7].
In clinical application, gefitinib may have acquired drug
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resistance, thus reducing its therapeutic effect [8]. Research
has begun to focus on the biological mechanisms involved
in gefitinib resistance. Chen et al. noticed that the lncRNA
CASC9 could affect gefitinib resistance by epigenetically
suppressing DUSP1 [9]. Liu et al. found that METTL3, an
m6A methyltransferase, could regulate the gefitinib resis-
tance by inducing autophagy and affecting β-elemene [10].
Cheng and Tong revealed that in NSCLC, the interaction
between FLNA and ANXA2 could lead to the resistance of
gefitinib through activating Wnt signaling [11]. Hence,
exploring the factors influencing gefitinib resistance from
the internal biological mechanism of tumors can provide a
prospective reference for clinical application.

Here, we obtained the expression profile data of wild and
gefitinib-resistant cells. Combined with the data from the
TCGA and GDSC databases, we identified six genes,
RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1, that
were involved in gefitinib resistance in both cell and tissue
levels. We found that most of these genes were expressed
in the fibroblast of the NSCLC microenvironment. Hence,
we also comprehensively investigated the role of fibroblast
in the NSCLC microenvironment, including its biological
effect and cell interaction. Ultimately, CDH2 was selected
for further analysis for its prognosis correlation. In vitro
experiments presented the cancer-promoting role of CDH2
in NSCLC. Moreover, cell viability detection showed that the
inhibition of CDH2 could significantly decrease the IC50 of
gefitinib in NSCLC cells. We noticed that CDH2 could lead
to gefitinib resistance through PI3K/AKT/mTOR signaling.

2. Methods

2.1. Download and Collection of Public Data from The
Cancer Genome Atlas Program (TCGA). The TCGA data-
base provides the gene expression data and clinical informa-
tion of NSCLC patients, which was downloaded for the
analysis (524 samples from TCGA-LUAD and 503 samples
from TCGA-LUSC). The initial gene expression data of a
single sample was in STAR counts format and was summa-
rized in R language and converted to TPM. Clinical data are
organized by a Perl script written by the author. Before data
analysis, data preprocessing is used to improve data quality.
Its brief process includes annotation of the ENSG id, data
standardization, and log2 conversion. The IC50 data of gefi-
tinib was obtained from the Genomics of Drug Sensitivity in
Cancer (GDSC) database [12].

2.2. Public Data from Gene Expression Omnibus (GEO)
Database. The GSE123066 project was selected, and its data
was obtained from the GEO database. GSE123066 provides
the total RNA data sequenced from wild and gefitinib-
resistant NSCLC cell lines. Data were directly downloaded
from the “Series Matrix File(s)” link. Further patient infor-
mation including gender, age, stage, and survival data is pro-
vided in Supplemental Table 1.

2.3. Differentially Expression Gene (DEGs) Analysis.We used
the limma package for DEG analysis based on the detailed
threshold [13].

2.4. Investigation of the Biological Aspect. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) were conducted for biological investigation [14].
Gene set enrichment analysis (GSEA) was utilized to identify
the biological differences between the two groups based on
the hallmark pathway set [15].

2.5. Prognosis Evaluation. The evaluation of patient progno-
sis was completed using the Kaplan-Meier (KM) survival
curves.

2.6. Single-Cell Analysis. The expression pattern of specific
genes at the single-cell level and potential cell interactions
was evaluated using the TSICH [16].

2.7. Cell Culture. The cell lines used include BEAS-2B, H441,
H1299, and A549. All these cells were cultured in the
DMEM culture medium under standard conditions.

2.8. Quantitative Real-Time PCR (qRT-PCR). The whole
process of qRT-PCR was conducted following the standard
protocol [17]. The primers used were as follows: CDH2, for-
ward primer, 5′-TCAGGCGTCTGTAGAGGCTT-3′, reverse
primer, 5′-ATGCACATCCTTCGATAAGACTG-3′.

2.9. Cell Transfection. The whole process of cell transfection
was conducted following the standard protocol [17]. The sh-
CDH2 and control plasmids were obtained from Genechem,
Shanghai, China.

2.10. Cell Proliferation Assays. Cell proliferation ability was
evaluated using the CCK8, colony formation, and 5-ethynyl-
2′-deoxyuridine (EdU) assays. The whole process of qRT-
PCR was conducted following the standard protocol [18, 19].

2.11. Transwell Assay. The whole process of transwell assay
was conducted following the standard protocol [20].

2.12. Wound-Healing Assay. The whole process of the
wound-healing assay was conducted following the standard
protocol [20].

2.13. Detection of Cell Viability. The whole process of cell
viability detection was conducted following the standard
protocol [18].

2.14. Statistical Analysis. The statistical analysis was con-
ducted in R, GraphPad Prism 8, and SPSS software. The
0.05 was set as the statistical threshold. For the comparison
of two groups using Wilcoxon’s rank-sum tests and the
comparison between continuous variables using Wilcoxon’s
rank-sum tests, Wilcoxon’s test was used to examine statisti-
cal significance.

3. Results

3.1. Identification of the Genes Contributing to Gefitinib
Resistance and Their Biological Role. Through the limma
package, we identified the DEGs between the wild and
gefitinib-resistant NSCLC cell lines, which are shown in
Figure 1(a). Totally, 476 downregulated and 322 upregulated
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Figure 1: Collection of the molecules involved in gefitinib resistance. Notes: (a) Heatmap was used to present the expression pattern of
DEGs between the wild and gefitinib-resistant NSCLC cell lines. (b) 476 downregulated and 322 upregulated molecules were identified as
involved in the gefitinib resistance in the cell level. (c) GO analysis of these DEGs. (d) KEGG analysis of these DEGs.
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Figure 2: Continued.
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molecules were identified as involved in the gefitinib resis-
tance in the cell level (Figure 1(b)). GO analysis revealed that
these DEGs were mainly associated with GO:0005201,
GO:0030020, GO:0061134, GO:0003779, GO:0005178,
GO:0098631, GO:0030198, GO:0043062, GO:0045785,
GO:0031589, GO:0034329, GO:0010810, GO:0062023,
GO:0005911, GO:0016324, GO:0045177, GO:0016328, and
GO:0016323 (Figure 1(c)), and all the results of GO analysis
were provided in Supplemental Table 2. KEGG analysis
indicated that these DEGs were primarily enriched in the
MAPK signaling pathway, PI3K/AKT signaling pathway,
leukocyte transendothelial migration, cell adhesion
molecules, and tight junction (Figure 1(d)).

3.2. RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1
Were Correlated with Gefitinib Resistance in Both Cell and
Tissue Levels. We next obtained the IC50 data of gefitinib
in the GDSC database (lung cancer). Then, we performed a
DEG analysis between the top 50 patients with the highest
or lowest IC50. Finally, 1711 upregulated genes were identi-
fied in LUAD (Figure 2(a)) and 2302 upregulated genes were
identified in LUSC (Figure 2(b)). The intersection of
GSE123066, TCGA-LUAD, and TCGA-LUAD identified
six genes, RNF150, FAT3, ANKRD33, AFF3, CDH2, and
BEX1, indicating that these genes were involved in gefitinib
resistance in both cell and tissue levels (Figure 2(c)). Results
indicated that all these genes were overexpressed in the
gefitinib-resistant cells (Figure 2(d)). Single-cell analysis
revealed that AFF3 was primarily expressed in B and endothe-

lial cells (Figure 2(e)); ANKRD33 was primarily expressed in
mono/macrocells (Figure 2(f)); CDH2 was primarily
expressed in fibroblast cells (Figure 2(g)); BEX1 was primarily
expressed in mono/macrocells (Figure 2(h)); FAT3 was pri-
marily expressed in mono/macro and fibroblast cells
(Figure 2(i)); RNF150 was primarily expressed in fibroblast l
cells (Figure 2(j)).

3.3. Role of Fibroblast in NSCLC Microenvironment. Consid-
ering that most of these six genes were expressed in fibro-
blast, following this, we investigated the role of fibroblasts
in the NSCLC microenvironment. In the EMTAB-6149
cohort, we found that in KEGG analysis, fibroblast was cor-
related with upregulated focal adhesion, ECM receptor
interaction, dilated cardiomyopathy, and B cell receptor sig-
naling pathway while downregulating ribosome, cell adhe-
sion molecules (CAMs), leishmania infection, and some
immune-related pathway activities (Figures 3(a) and 3(b)).
As for the hallmark pathway, we noticed that fibroblast
was positively correlated with UV response DN, adipogene-
sis, epithelial_mesenchymal_transition (EMT), angiogenesis,
myogenesis, coagulation, and hypoxia (Figure 3(c)), while
negatively correlated with mTORC signaling, E2F targets,
allograft rejection, and the interferon alpha response
(Figure 3(d)). Cell interaction analysis showed that the fibro-
blast could interact with malignant and endothelial cells
(Figure 3(e)). In the LUAD-GSE146100 cohort, fibroblasts
were positively correlated with focal adhesion, ECM recep-
tor interaction, dilated cardiomyopathy, complement, and
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Figure 2: Identification of the hub genes. Notes: (a) DEG analysis between the top 50 patients with the highest or the lowest IC50 (LUAD).
(b) DEG analysis between the top 50 patients with the highest or the lowest IC50 (LUSC). (c) The intersection of GSE123066, TCGA-LUAD,
and TCGA-LUAD identified six genes. (d) The expression level of RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1 in wild and gefitinib
resistance cells. (e–j) The single-cell level of RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1.
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coagulation cascades while negatively correlated with many
immune-related pathways (Figures 3(f) and 3(g)). For
hallmark analysis, fibroblasts were positively correlated
with angiogenesis, apical junction, apoptosis, coagulation,

EMT, myogenesis, and UV response DN, yet negatively
correlated with allograft rejection, IL2/STAT5 signaling,
complement, mTORC1 signaling, and PI3K/AKT/mTOR
signaling (Figures 3(h) and 3(i)). Cell interaction analysis
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Figure 3: Role of CAFs in NSCLC microenvironment. Notes: (a) The upregulated KEGG terms regulated by CAFs (EMTAB-6149 cohort).
(b) The downregulated KEGG terms regulated by CAFs (EMTAB-6149 cohort). (c) The upregulated hallmark terms regulated by CAFs
(EMTAB-6149 cohort). (d) The downregulated KEGG terms regulated by CAFs (EMTAB-6149 cohort). (e) Cell interaction in EMTAB-
6149 cohort. (f) The upregulated KEGG terms regulated by CAFs (LUAD-GSE146100 cohort). (g) The downregulated KEGG terms
regulated by CAFs (LUAD-GSE146100 cohort). (h) The upregulated hallmark terms regulated by CAFs (LUAD-GSE146100 cohort). (i)
The downregulated KEGG terms regulated by CAFs (LUAD-GSE146100 cohort). (j) Cell interaction in EMTAB-6149 cohort.

19Mediators of Inflammation



1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Overall survival
HR = 0.81 (0.65–1.01)
P = 0.065

RNF 150
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Overall survival
HR = 0.85 (0.69–1.04)
P = 0.119

FAT3
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Overall survival
HR = 1.13 (0.93–1.36)
P = 0.209

ANKRD33
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Overall survival
HR = 0.84 (0.69–1.03)
P = 0.09

AFF3
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Overall survival
HR = 1.35 (1.11–1.66)
P = 0.003

CDH2
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Overall survival
HR = 0.93 (0.76–1.13)
P = 0.449

BEX1
Low
High

0.0

0 50 100

Time (months)

150 200 250

(a)

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Disease specifc survival
HR = 0.77 (0.58–1.02)
P = 0.066

RNF 150
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Disease specifc survival
HR = 0.82 (0.61–1.12)
P = 0.214

FAT3
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6
Su

rv
iv

al
 p

ro
ba

bi
lit

y
0.4

0.2
Disease specifc survival
HR = 0.83 (0.63–1.11)
P = 0.214

ANKRD33
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Disease specifc survival
HR = 0.83 (0.63–1.10)
P = 0.191

AFF3
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Disease specifc survival
HR = 1.51 (1.14–1.99)
P = 0.004

CDH2
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Disease specifc survival
HR = 1.19 (0.89–1.59)
P = 0.234

BEX1
Low
High

0.0

0 50 100

Time (months)

150 200 250

(b)

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Progress free interval
HR = 0.94 (0.76–1.16)
P = 0.565

RNF 150
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Progress free interval
HR = 1.11 (0.90–1.37)
P = 0.314

FAT3
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Progress free interval
HR = 0.92 (0.72–1.16)
P = 0.482

ANKRD33
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Progress free interval
HR = 1.19 (0.95–1.50)
P = 0.126

AFF3
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Progress free interval
HR = 1.35 (1.09–1.66)
P = 0.006

CDH2
Low
High

0.0

0 50 100

Time (months)

150 200 250

1.0

0.8

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.4

0.2
Progress free interval
HR = 0.89 (0.72–1.10)
P = 0.28

BEX1
Low
High

0.0

0 50 100

Time (months)

150 200 250

(c)

ns

T1 and T2
T stage

T
e e

xp
re

ss
io

n 
of

 C
D

H
2 

(L
og

2 (
TP

M
+1

)

0

T3 and T4

2

4

6

8

(d)

ns

N0
N stage

T
e e

xp
re

ss
io

n 
of

 C
D

H
2 

(L
og

2 (
TP

M
+1

)

0

N1 and N2 and N3

2

4

6

8

(e)

Figure 4: Continued.

20 Mediators of Inflammation



indicated that in the LUAD-GSE146100 cohort, fibroblasts
mainly interacted with epithelial and endothelial cells
(Figure 3(j)).

3.4. Prognosis Analysis of RNF150, FAT3, ANKRD33, AFF3,
CDH2, and BEX1. Then, we tried to explore the clinical
value of RNF150, FAT3, ANKRD33, AFF3, CDH2, and
BEX1. KM survival curves indicated that only CDH2 signif-
icantly affects patient survival (Figure 4(a), overall survival,
HR = 1:35; Figure 4(b), disease-free survival, HR = 1:51;
Figure 4(c), progression-free survival, HR = 1:35). However,
no significant difference was found in patients with better or
worse clinical features (Figures 4(d)–4(f)).

3.5. CDH2 Facilitates the Malignant Biological Behaviors of
NSCLC Cells. We next investigated the influence of CDH2
on NSCLC biological behaviors. Data of TCGA indicated
that CDH2 was overexpressed in NSCLC tissue
(Figure 5(a)). Also, in the cell level, the NSCLC cell lines
had a higher CDH2 expression compared to the normal cell
line (Figure 5(b)). The result of qRT-PCR demonstrated that
the knockdown efficiency of sh#2 might have the best per-
formance, therefore it was selected for further analysis
(Figure 5(c)). The CCK8 assay indicated that the suppres-
sion of CDH2 in NSCLC cells could inhibit the proliferation
ability (Figures 5(d) and 5(e)). The same result was also
observed through colony formation and EdU assay
(Figures 5(f) and 5(g)). A transwell assay was applied to
evaluate the invasion and migration abilities of NSCLC cells.
Results indicated that the inhibition of CDH2 could remark-
ably reduce the invasion and migration cells per filled com-
pared to the control group (Figure 6(a)). The wound-healing
assay showed that the inhibition of CDH2 could significantly
hamper the cell mobility of NSCLC cells (Figure 6(b)).

3.6. CDH2 Lead to Gefitinib Resistance through PI3K/AKT/
mTOR Signaling. We next added gefitinib to the CDH2-
inhibited and control cells. Cell viability detection showed
that the inhibition of CDH2 could significantly decrease
the IC50 of gefitinib in both A549 and H1299 cells
(Figure 7(a): A549, sh#ctl, IC50 = 18:46, sh#2, IC50 = 13:70;
Figure 7(b): H1299, sh#ctl, IC50 = 18:46, sh#2, IC50 = 13:70).
GSEA showed that CDH2 could significantly affect the path-
way activity of PI3K/AKT/mTOR signaling (Figure 7(c)).
The previous study indicated that the PI3K/AKT/mTOR
pathway could affect the gefitinib resistance. Therefore, we
tried to evaluate whether CDH2 could affect the pathway
activity of PI3K/AKT/mTOR signaling.

4. Discussion

Although the reform of medical technology has brought
high-quality medical services, lung cancer is still facing the
threat of a high incidence rate and mortality [21]. In clinical
practice, early detection often enables patients to undergo
radical surgery at the early stage of the disease and obtain
long-term treatment benefits [22]. However, since the early
symptoms are not obvious, many lung cancer patients have
already had disease progression at the time of initial diagno-
sis and lost the best opportunity for surgery [23]. Gefitinib
can improve the prognosis of advanced NSCLC patients,
but it is still limited by acquired drug resistance. For several
years now, a crucial role has been played in bioinformatics
analysis in cancer research [24–26]. The objective of this
study was to determine the underlying mechanism behind
lung cancer resistance to gefitinib through bioinformatics
analysis and corresponding experiment validation.

Here, we obtained the expression profile data of wild and
gefitinib-resistant cells. Combined with the data from the
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Figure 4: Prognosis analysis. Notes: (a) Performance of overall survival of RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1. (b)
Performance of disease free survival of RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1. (c) Performance of progression free
survival of RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1. (d–f) Expression level of CDH2 in patients with different clinical features.

21Mediators of Inflammation



⁎⁎⁎

Normal

T
e e

xp
re

ss
io

n 
of

 C
D

H
2 

(L
og

2 (
TP

M
+1

)

0

Tumor

2

4

6

8

(a)

⁎⁎⁎
⁎⁎⁎

⁎⁎

BEAS-2B

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n 
le

ve
l

of
 C

D
H

2

0.0

0.5

1.0

2.0

2.5

1.5

A549 H1299 H441

(b)

sh#1 sh#2 sh#3sh#ctl

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n 
le

ve
l o

f C
D

H
2

0.0

0.5

1.0

1.5

A549
H1299

⁎⁎

⁎⁎

⁎⁎⁎

sh#1 sh#2 sh#3sh#ctl

⁎⁎ ⁎⁎

⁎⁎⁎

(c)

Figure 5: Continued.

22 Mediators of Inflammation



A549

24 48 72 h0

O
D

 v
al

ue
s (

45
0 

nm
)

0.0

0.5

1.0

1.5

sh#ctl
sh#2

⁎⁎

(d)

H1299

24 48 72 h0

⁎⁎

O
D

 v
al

ue
s (

45
0 

nm
)

0.0

0.5

1.0

1.5

sh#ctl
sh#2

(e)

sh#ctl sh#2

H
12

99
A

54
9

sh#2

H1299

sh#ctl

⁎⁎⁎

Co
lo

ni
es

 n
um

be
r

0

50

100

150

200

sh#2

A549

sh#ctl

⁎⁎⁎

Co
lo

ni
es

 n
um

be
r

0

50

100

150

200

(f)

Figure 5: Continued.

23Mediators of Inflammation



M
er

ge
Ed

U
D

A
PI

sh#ctl
A549

sh#2 sh#ctl
H1299

sh#2

(g)
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TCGA and GDSC databases, we identified six genes,
RNF150, FAT3, ANKRD33, AFF3, CDH2, and BEX1, that
were involved in gefitinib resistance in both cell and tissue
levels. We found that most of these genes were expressed
in the fibroblast of the NSCLC microenvironment. Hence,
we also comprehensively investigated the role of fibroblast
in the NSCLC microenvironment, including its biological
effect and cell interaction. Ultimately, CDH2 was selected
for further analysis for its prognosis correlation. In vitro
experiments presented the cancer-promoting role of CDH2
in NSCLC. Moreover, cell viability detection showed that
the inhibition of CDH2 could significantly decrease the
IC50 of gefitinib.

We noticed that the DEGs were primarily enriched in
the MAPK signaling pathway, PI3K/AKT signaling pathway,
leukocyte transendothelial migration, cell adhesion mole-

cules, and tight junction. Some previous studies have begun
to explore the relationship between the above pathways and
gefitinib. AlAsmari et al. revealed that MAPK/NF-κB sig-
naling could significantly lighten the cardiotoxicity induced
by gefitinib [27]. Lu et al. found that in NSCLC, the trans-
3,5,4′-trimethoxystilbene could inhibit the MAPK/Akt/Bcl-
2 axis by upregulating miR-345 and miR-498, further
reducing gefitinib resistance [28]. Zheng et al. found that
polyphyllin II could regulate the gefitinib resistance by
affecting the PI3K/Akt/mTOR signaling [29]. These results
indicated that the activation of the above pathways may
promote the development of gefitinib resistance under the
influence of specific factors.

Our results also found that RNF150, FAT3, ANKRD33,
AFF3, CDH2, and BEX1 were involved in gefitinib resistance
in both cell and tissue levels. The role of these genes in
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Figure 7: CDH2 could lead to gefitinib resistance through PI3K/AKT/mTOR signaling. Notes: (a, b) Cell viability detection in sh-CDH2
and control cells. (c) GSEA showed that CDH2 significantly affect the pathway activity of PI3K/AKT/mTOR signaling.
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cancer has also been reported. Guo et al. found that FAT3
was correlated with the prognosis of esophageal cancer
patients [30]. In breast cancer, Shi et al. found that FAT3
was associated with resistance to tamoxifen [31]. Wang
et al. revealed that the BEX1 methylation regulated by
DNMT1 could contribute to liver cancer stemness and
tumorigenicity [32]. Lee et al. found that BEX1 could pro-
mote glioblastoma progression by activating the YAP/TAZ
signaling [33]. In NSCLC, cancer-associated fibroblasts
might exert an important role. Yi et al. noticed that the CAFs
could lead to EMT and the resistance of EGFR-TKI by medi-
ating the HGF/IGF-1/ANXA2 signaling axis [34].

The arrival of the big data era has produced massive
data. On this basis, the secondary analysis of open data or
research can facilitate researchers and draw valuable conclu-
sions. Based on high-quality data and analysis process, our
research has improved researchers’ understanding of gefi-
tinib resistance. Nevertheless, some limitations should be
noted. Firstly, most of the populations included in the study
are from Western countries. There are biological differences
between populations of different races, which may reduce
the reliability of our conclusions. Secondly, some patients
have incomplete clinical baseline data, which may lead to
sample bias to some extent.
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WD-repeat protein 72ðWDR72 ; OMIM∗613214Þ, a scaffolding protein lacking intrinsic enzymatic activity, produces numerous
β-propeller blade formations, serves as a binding platform to assemble protein complexes and is critical for cell growth,
differentiation, adhesion, and migration. Despite evidence supporting a basic role of WDR72 in the tumorigenesis of particular
cancers, the value of WDR72 in non-small-cell lung cancer (NSCLC), the tumor with the highest mortality rate globally, is
undocumented. We investigated the prognostic value of WDR72 in NSCLC and studied its potential immune function and its
correlation with ferroptosis. According to The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Genotype-Tissue
Expression, and Gene Set Cancer Analysis, we used multiple bioinformatic strategies to investigate the possible oncogenic role
of WDR72, analyze WDR72 and prognosis, and immune cell infiltration in different tumors correlation. WDR72 exhibited a
high expression in NSCLC and a positive association with prognosis. WDR72 expression was related to immune cell
infiltration and tumor immune microenvironment in NSCLC. Finally, we validated WDR72 in human NSCLC; it has a
predictive value in NSCLC related to its function in tumor progression and immunity. The significance of our study is that
WDR72 can be used as a potential indicator of lung cancer prognosis. Helping physicians more accurately predict patient
survival and risk of disease progression.

1. Introduction

Lung cancer is a deadly malignancy widespread worldwide,
and non-small-cell lung cancer (NSCLC) represents approx-
imately 85% of all lung cancers [1]. NSCLC onset is devious,
with invisible clinical manifestations in the early stages,

making early diagnosis hard. Furthermore, due to the highly
aggressive nature of NSCLC, many patients have distant
metastases at diagnosis [2]. Despite recent advances, early
detection and treatment of NSCLC remain inadequate [3].
Gene mutation and aberrant expression lead to malignant
alteration of airway epithelial cells, eventually leading to lung

Hindawi
Mediators of Inflammation
Volume 2023, Article ID 2763168, 22 pages
https://doi.org/10.1155/2023/2763168

https://orcid.org/0000-0001-5621-7450
https://orcid.org/0000-0002-4091-278X
https://orcid.org/0000-0002-5498-846X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2763168


cancer [4]. Discovering new markers and driver genes is
essential for the early detection, diagnosis, targeted treat-
ment, and prognosis assessment of NSCLC.

WD-repeat protein 72ðWDR72 ; OMIM∗613214Þ is a
scaffold lacking intrinsic enzymatic activity. It produces
several β-propeller blade formations, acting as binding
platforms to assemble protein complexes and form tooth
enamel, as well as causing autosomal recessive developmen-
tal defects [5]. Ibrahim-Verbaas et al. [6] identified a signif-
icant genome-wide association between a single nucleotide
polymorphism (SNP) in the WDR72 gene (chromosome
15) and a cognitive test comparable to the Stroop interfer-
ence test, demonstrating that at the level of executive func-
tion, WDR72 gene is also related to renal function. Howles
et al. [7] demonstrated that WDR72 could involve in
clathrin-mediated endocytosis, a critical process to persist
intracellular CaSR signaling. WDR72 has a significant role
in clear renal cell carcinoma [8], esophageal cancer [9],
and colorectal cancer [10] but undetected in NSCLC.
Accordingly, this paper intended to further analyze the spe-
cific mechanism of WDR72 and NSCLC.

Ferroptosis is a sort of controlled necrosis that performs
a part in neurodegenerative cancers. Lipid peroxidation
inhibitors, lipophilic antioxidants, and iron chelators can
prevent ferroptosis [11]. Initially, ferroptosis was only recog-
nized as erastin-induced death; however, additional studies
revealed its function in various pathophysiological processes
and diseases. Since certain oncogenically mutated tumor
cells are more susceptible to ferroptosis, ferroptosis can be
triggered, and ferroptosis-sensitive tumor cells may have
significant therapeutic potential [12–14]. Therefore, modu-
lation of ferroptosis may offer therapeutic potential for cer-
tain disorders associated with ferroptosis. Many key targets
are important mediators of ferroptosis induction; however,
the relationship between WDR72 and ferroptosis is still
unclear. Herein, we further study whether WDR72 is sensi-
tive to ferroptosis-induced cell death. Studies have shown
that excessive iron overload may suppress the function of
the immune system, thereby increasing the risk of infection
and tumor development [15]. Immune infiltration refers to
the presence of immune cells (T cells, B cells, macrophages,
natural killer cells, etc.) in tumor tissues [16]. The immune
infiltration of lung cancer patients is closely related to the
survival and prognosis of patients [17]. Immune cells can

slow the growth and spread of tumors by attacking tumor
cells [18]. However, studies have also shown that tumor cells
can evade the attack of immune cells through different
mechanisms, thereby suppressing the immune response
[19]. Overall, immune infiltration and ferroptosis are associ-
ated with the prognosis and survival of lung cancer patients,
but more studies are needed to confirm the direct relation-
ship between the two.

2. Materials and Methods

2.1. Gene Expression and Clinical Data Collection. First, we
downloaded gene expression and clinical transcriptome
profiling information for NSCLC patients from The Cancer
Genome Atlas (TCGA) website (http://portal.gdc.cancer.
gov/). The R tool “limma” was utilized to normalize raw gene
expression information. GSE19804 [20, 21], GSE118370 [22],
GSE19188 [23], GSE27262 [24, 25], and GSE33532 [26] were
obtained from the GEO database GPL570 platform ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array) through the “GEOquery” package for subsequent anal-
ysis (Table 1).

2.2. Identification DEGS. The selected datasets above were
compared and examined utilizing the NCBI (https://www
.ncbi.nlm.nih.gov/) toolGEO2R (http://www.ncbi.nlm.nih
.gov/geo/geo2r). We applied adjusted (adj.) p values and
thresholds to the Benjamini and Hochberg false discovery
rates (FDR) are utilized to develop a balance between the
statistical thresholds of finding significant genes and false
positives. Probe sets without matching gene symbols or
genes with several probe sets were excluded or averaged
accordingly. Log fold change ðFCÞ > 1:2 and adj < 0:01 indi-
cated statistical significance.

2.3. Analysis of Association between WDR72 and Prognosis of
Patients with Small-Cell Lung Cancer (SCLC). In the TCGA
database, a Kaplan-Meier (KM) analysis was conducted to
examine the overall survival (OS), disease-specific survival
(DSS), disease-free survival (DFS), and progression-free sur-
vival (PFI) of patients with NSCLC. To show the connection
between WDR72 expression and survival in NSCLC, a Cox
regression analysis was done utilizing the R tools “survival”
and “forest plot.”

Table 1: All data sources.

Data sources Website

1 TCGA http://portal.gdc.cancer.gov/

2 NCBI http://www.ncbi.nlm.nih.gov/

3 GEO2R http://www.ncbi.nlm.nih.gov/geo/geo2r

4 CIBERSORT https://cibersortx.stanford.edu/

5 GSE19804 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19804

6 GSE118370 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118370

7 GSE19188 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19188

8 GSE27262 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27262

9 GSE33532 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33532
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2.4. Association between WDR72 Expression and Immunity.
Employing the ESTIMATE algorithm, immune and stromal
scores of NSCLC samples were measured to investigate the
association between WDR72 expression and TME (tumor
microenvironment). The relationship between WDR72
expression and score was assessed utilizing the R tools “esti-
mate” and “limma” based on the degree of immune infiltra-
tion. We downloaded the TCGA immune cell infiltration
value from the CIBERSORT database (https://cibersortx
.stanford.edu/) and calculated the relative score of 24
immune cells in NSCLC utilizing the CIBERSORT algo-
rithm. Then, the Spearman rank correlation coefficient was
employed to assess the association between the level of
WDR72 and the infiltration level of each immune cell in
NSCLC. R tools “limma,” “reshape2,” and “RColorBrewer”
were utilized to present the visualizations.

2.5. Gene Set Enrichment Analysis. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
sets were downloaded from the Gene Set Enrichment Anal-
ysis (GSEA) website. The biological role of WDR72 in
NSCLC was investigated using the GSEA method. Both
analyses were performed using the R “Cluster Profiler” tool.

2.6. Clinical Samples. We should be confirmed non-small-
cell lung cancer at Nantong University from 2012 to 2020.
A total of 158 matched NSCLC and paracancerous tissues
were obtained through radical resection in the Affiliated
Hospital of Nantong University. All diagnoses were con-

firmed by histopathological examination. For further study,
the specimens were frozen in a -80°C freezer after surgery.
All 158 patients had signed written informed consent and
underwent a standardized ethnic review.

2.7. Reverse Transcription-Polymerase Chain Reaction
(RT-qPCR). Four matched lung adenocarcinoma and para-
cancerous tissues were randomly selected to extract total
RNA. RNA was reverse transcript into cDNA utilizing a
reverse transcription kit (transgene Biotech, China). Nano-
Drop 2000 (Thermo Fisher Scientific, Waltham, USA) was
utilized to detect its fluorescent expression. GAPDH (glyceral-
dehyde-3-phosphate dehydrogenase) served as an internal
control. WDR72 relative expression was computed employing
the 2-ΔΔCT approach.WDR72 F:GCAACTCAAACTCGGC
AAACTTCC, R:GGCTCACCTGGACTCTCAGACTC.

2.8. Immunohistochemistry Staining Analysis. Paraffin-
embedded NSCLC tissue sections were deparaffinized,
hydrated, antigen retrieved, and goat serum blocked. There-
fore, samples were incubated overnight at 4°C with an anti-
WDR72 antibody (thermofisher PA5-63780 1 : 200) and
species-specific secondary antibody for 30min at 37°C. The
immunosignal of the samples was observed utilizing a
DAB solution and double-stained with hematoxylin in turn.
A light microscope was used to obtain representative immu-
nohistochemical (IHC) staining images.

2.9. Western Blot Analysis. Protein specimens from NSCLC
and paracancerous tissue were isolated and transmitted to
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Figure 1: Five datasets of GPL570 platform in GEO database: GSE19804, GSE118370, GSE19188, GSE27262, and GSE33532. It can be seen
from the PC graph and UMAP graph that the samples of the two groups are separated (a, b). Using the ggplot2 package of classical
difference analysis-volcano plot to mark the location of WDR72 (c). (d) Visualizing the expression profile of the ComplexHeatmap
package, the high and low expressions of each top 20 gene is shown. Venn diagram of (e) plots the crossover genes of the 5 datasets,
showing that there are 94 crossover genes in the datasets.
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Figure 2: Continued.
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polyvinylidene fluoride (PVDF)membranes for the next steps.
Following blocking with 5% BSA, PVDF membranes were
incubated overnight at 4°C with primary antibodies to
WDR72 (Thermo Fisher PA5-637801 : 2000) and GAPDH
(1 : 1000) and then were incubated at room temperature
(15-25°C) with HRP-labeled secondary antibodies for 1h
(1 : 1000) 2000). ECL (enhanced chemiluminescence) is used
to capture images. GAPDHwas chosen as the internal control.

2.10. Statistical Analyses. All data were normalized on gene
expression using log2 transformation. Analyses of the
correlation between two variables were carried out utilizing
Spearman or Pearson test. p < 0:05 was judged statistically
significant. Differences between adjacent tissues and can-
cerous tissues were conducted employing the Wilcox test.

p < 0:05 was judged statistically significant. Kaplan-Meier
curves and Cox proportional hazards regressions were
employed for all survival analyses. R program (Ver.
4.1.2) was used to process the statistical significance of
bioinformatic results, and GraphPad Prism (Ver. 9) was
used to analyze the statistical importance of the in vitro
data.

3. Results

3.1. Differential Expression of WDR72 between NSCLC
Tumor and Normal Tissue Samples.We selected five datasets
of GPL570 platform in GEO database, GSE19804,
GSE118370, GSE19188, GSE27262, and GSE33532; “limma”
R package; and “umap” R package. By drawing the PC and
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Figure 2: Differential expression of WDR72 in pan-cancer tissues and corresponding adjacent tissues and between paired and unpaired
non-small-cell lung cancer tissues and corresponding adjacent tissues were analyzed using the package “ggplot2,” ns; p ≥ 0:05; ∗p ≤ 0:05;
∗∗p ≤ 0:01; ∗∗∗p ≤ 0:001 (a–d). Expression of WDR72 in pancreatic cancer tissues was analyzed using radar visualization in the “ggradar”
and “ggplot2” software packages. (e) The expression of WDR72 in normal tissues adjacent to pan-cancer tumors (f).
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Figure 3: Continued.
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UMAP graphs, the samples of the two groups were sepa-
rated, showing a significant variation between the two
groups. The subsequent difference analysis may have more
meaningful results (Figures 1(a) and 1(b)). Using the ggplot2
package of classical difference analysis-volcano plot, the
threshold was selected as jlogFCj ≥ 1:2, p value < 0.05. The
figure is highlighted in blue or red, and the location of
WDR72 is highlighted (Figure 1(c)). Figure 1(d) depicts
the visual expression profile of the ComplexHeatmap pack-
age and shows the expression of each top 20 genes with high
and low expressions. Concurrently, the Venn diagram of
Figure 1(e) plots the intersecting genes of the five datasets,
showing 94 intersecting genes. Then, we evaluated the
expression degrees of WDR72 in 33 cancers from TCGA
data. The “ggplot2” package was utilized to examine the dif-
ferential expression of WDR72 in pan-cancer tissues and
corresponding adjacent tissues and the expression in paired
and unpaired NSCLC tissues and corresponding adjacent
tissues, ns, p ≥ 0:05, ∗p ≤ 0:05; ∗∗p ≤ 0:01; ∗∗∗p ≤ 0:001
(Figures 2(a)–2(d)). Radar visualization using the “ggradar”
and “ggplot2” packages was utilized to identify WDR72
expression in pan-cancer tissues (Figure 2(e)) and adjacent
pan-cancer tissues (Figure 2(f)). WDR72 was differentially
expressed in 27 tumors except ACC, CESC, CHOL, DLBC,
KICH, and PCPG.

3.2. Correlation Analysis of WDR72 with Clinical Factors in
TCGA Database. RNAseq and clinical data in level 3
HTSeq-FPKM form in the TCGA (https://portal.gdc.cancer
.gov/), LUAD (lungadenocarcinoma) and LUSC (lung squa-
mous cell carcinoma) (lung cancer) experiments were
excluded from control/normal (unapplied in projects with-
out control/normal)+retained after clinical data availability.
R package “ggplot” (Ver. 3.6.3) was used to evaluate the clin-
ical correlations. Clinical analysis showed that the expres-
sion of WDR72 gene was related to whether smoking, age,
lesion location, and TNM stage. M grade correlation is pre-

sented in Figure 3(a). PFI event correlation is presented in
Figure 3(b). Smoking years correlation is presented in
Figure 3(c). Tumor distribution (central or peripheral) cor-
relation is presented in Figure 3(d). Tumor distribution (left
lung or right lung) correlation is presented in Figure 3(e). T
grade correlation is presented in Figure 3(f). N grade corre-
lation is presented in Figure 3(g). Smoking correlation is
presented in Figure 3(h). Age correlation is presented in
Figure 3(i). Gender correlation is presented in Figure 3(j).
Significance indicator: ns, p ≥ 0:05; ∗p ≤ 0:05; ∗∗p ≤ 0:01;
∗∗∗p ≤ 0:001; Figure 4(a) is the survival analysis of WDR72
in NSCLC on the Kaplan-Meier Plotter website (https://
kmplot.com/analysis). The 5-year survival rate was signifi-
cantly decreased for higher WDR72 expression patients
compared to those with lower WDR72 expression. Con-
trol/normal (unapplied in projects without control/normal)
was removed, and the clinical data was retained.
Figure 1(d) shows genes with higher expression differences
in the heat map employing the R (ver. 3.6.3) “glmnet” tool
(ver. 4.1-2) and survival tool (ver. 3.2-10) to draw the
LASSO analysis utilizing the RMS tool (Ver. 6.2-0) and the
survival package (Ver. 3.2-10) in R (ver. 3.6.3, Figure 4(b)).
The COX statistical method incorporated TMN and
WDR72 parameters to visualize the prognosis calibration
analysis (Figure 4(c)).

3.3. PPI Network Map, GO/KEGG, and GSEA Enrichment
Analysis of WDR72-Related Differential Genes. TCGA
(https://portal.gdc.cancer.gov/) was utilized to obtain
RNAseq information in level 3 HTSeq-Counts formed in
the LUAD-LUSC (lung cancer) experiment after eliminat-
ing controls/normals (unapplied in projects without con-
trol/normal) using R (3.6.3 ver.) and “DESeq2” (ver.
1.26.0, Love MI et al. 2014) packages to target the mole-
cule WDR72 [ENSG00000166415] in NSCLC by the
reduce expression group: 0–50% and the increased expres-
sion group: 50–100% with analysis of differential genes of
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Figure 3: Correlation analysis between WDR72 and clinic. M grade correlation (a). PFI event correlation (b). Smoking year correlation (c).
Tumor distribution (central or peripheral) correlation (d). Tumor distribution (left lung or right lung) correlation (e). T grade correlation
(f). N grade correlation (g). Smoking correlation (h). Age correlation (i). Gender correlation (j). significance indicator: ns; p ≥ 0:05; ∗p ≤ 0:05;
∗∗p ≤ 0:01; ∗∗∗p ≤ 0:001.

8 Mediators of Inflammation

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://kmplot.com/analysis
https://kmplot.com/analysis
https://portal.gdc.cancer.gov/


high correlation with WDR72. R (ver. 3.6.3) “ggplot2” tool
(Ver. 3.3.3) was employed for visualization, and “cluster-
Profiler” package (Ver. 3.14.3) was used for WDR72 differ-
ential genes data analysis. (Figures 5(a) and 5(b)) show
GO/KEGG enrichment analysis and protein interaction
network, respectively. Figure 5(c) depicts the GSEA moun-
tain map, while Figures 5(d)–5(f) depict the GSEA enrich-
ment analysis map. KEGG/GO and PPI analyses were
shown in adrenergic signaling in cardiomyocytes, cyto-
kine−cytokine receptor interaction, organelle fission, extra-
cellular structure organization, biomineral tissue
development, odontogenesis spindle, apical part of the cell,
collagen−containing extracellular matrix, glycosaminogly-

can binding, enzyme inhibitor activity, amide binding,
receptor-ligand activity, protein digestion, absorption, and
mitotic nuclear. GSEA enrichment analysis showed enrich-
ment in reactome mitotic metaphase, anaphase, reactome
RHO GTPase effectors, reactome RHO GTPases activate
formins, reactome cell cycle checkpoints, reactome mitotic
prometaphase, reactome mitotic spindle checkpoint, reac-
tome separation of sister chromatids, reactome M phase,
reactome signaling by RHO GTPases, reactome cell cycle
mitotic, reactome resolution of sister chromatid cohesion,
reactome cell cycle, reactome innate immune system, reac-
tome rna polymerase II transcription, and reactome extra-
cellular matrix organization.
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3.4. Coexpression of WDR72 and Ferroptosis-Related Genes
in NSCLC. TCGA (https://portal.gdc.cancer.gov/) was uti-
lized to acquire RNAseq data in level 3 HTSeq-FPKM form
in the LUADLUSC (lung cancer) experiment after removing
control/normal (unapplied in projects without control/nor-
mal) using R (ver. 3.6.3) in the “ggplot2” package to analyze
the target molecule: WDR72 (ENSG00000166415) coexpres-
sion heat map of ferroptosis-related genes in NSCLC, signif-
icance indicator: ns, p ≥ 0:05; ∗p ≤ 0:05; ∗∗p ≤ 0:01;
∗∗∗p ≤ 0:001 (Figures 6(a)–6(m)).

3.5. Association of WDR72 with 24 Types of Immune Cells in
NSCLC. It is well known that there are typical 24 types of
immune infiltrating cells, namely, aDC cells, B cells, CD8
cells, T cells, cytotoxic cells, DC cells, eosinophils cells,
iDC cells, macrophages cells, mast cells, neutrophils cells,
NK CD56 bright cells, NK CD56dim cells, NK cells,
pDC cells, T cells, T helper cells, Tcm cells, Tem cells,
TFH cells, Tgd cells, Th1 cells, Th17 cells, Th2 cells, and
TReg cells. TCGA (https://portal.gdc.cancer.gov/) was
employed to recover RNAseq information in level 3
HTSeq-FPKM form in LUAD-LUSC (lung cancer) experi-
ment after removing control/normal (unapplied in projects
without control/normal) using R software (GSVA package
ver. 3.6.3) to examine the immune infiltration method:
ssGSEA (the built-in method of the GSVA) grouped

WDR72 (ENSG00000166415) by the median and calcu-
lated the higher and lower expression of WDR72 and 24
forms of immunity cells, significant threshold: ns; p ≥
0:05; ∗p ≤ 0:05; ∗∗p ≤ 0:01; ∗∗∗p ≤ 0:001. Except for Tcm
and NK CD56, 24 immune cells had a nonsignificant cor-
relation, while the p values of the other 22 cells were sig-
nificant (Figures 7(a)–7(m)).

3.6. Clinical Correlation of WDR72 in NSCLC. WDR72 was
upregulated in NSCLC. To further validate the results of
the previous analysis, we found the RNA and protein expres-
sions of WDR72 in NSCLC. (Figures 8(a) and 8(b)) show a
significantly greater level of WDR72 expression in NSCLC
tissues compared to the matching normal tissues. Immuno-
histochemistry verified that WDR72 was strongly produced
in NSCLC tissue proteins (Figures 9(a) and 9(b)). The results
demonstrated that WDR72 expression level was greater in
NSCLC tissues than in surrounding normal tissues. We col-
lected clinical reports of 158 patients with NSCLC and dis-
covered that patients with higher WDR72 levels had a
poor prognosis (Figure 9(c)). Similarly, we found that
WDR72 expression and smoking, tumor size, TNM staging,
tumor grade, and metastasis were correlated (p < 0:05,
Table 2). Multivariate analysis revealed that tumor size,
TNM staging, tumor grade, and metastasis were associated
with the expression of WDR72 (p < 0:05, Table 3).
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Figure 5: Data analysis of WDR72 differential genes (a, b) are, respectively, the GO/KEGG enrichment analysis diagram and protein
interaction network diagram. (c) is the GSEA mountain map. (d–f) is the GSEA enrichment analysis map.
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4. Discussion

Lung cancer has two major histological forms: small-cell and
non-small-cell. Genomic alterations have been found in
LUSC and SCC. Lung cancer causes the greatest cancer-
related deaths among males and females and inflammation
and environmental risk factors such as smoking significantly
contribute to lung cancer progression [27]. We analyzed the
clinical significance of WDR72 in NSCLC data from the
TCGA database WDR72. We discovered a close correlation
with smoking, and the duration of smoking in years is also
positively related to WDR72 expression. Concurrently, we
used our clinical data to conduct univariate and multivariate
analysis and found consistent results with the bioinformatic
analysis; accordingly, WDR72 can be used as an NSCLC-
target gene.

Ferroptosis was first identified as erastin-induced death
and found to be involved in various pathophysiological pro-
cesses and diseases. Since certain oncogenically mutated
tumor cells have increased susceptibility to ferroptosis, fer-
roptosis can be triggered, and ferroptosis-sensitive tumor
cells may also have significant therapeutic potential. There-
fore, modulation of ferroptosis may have clinical potential
in disorders related to ferroptosis [28]. The high-iron con-
centration of cancer cells and their increased susceptibility
to developing ferroptosis are promising for cancer therapy
[29]. Herein, we analyzed the correlation between WDR72

and ferroptosis-related genes using the R language and
found that WDR72 was related to most ferroptosis-related
genes. It is speculated that WDR72 may affect non-small-
cells through the ferroptosis pathway of lung cancer
progression.

TME is critical in cancer development, and different
microenvironment signals have tumor-promoting and
tumor-suppressing effects [30]. In TME, injury-related sig-
nals can influence the phenotype and activation condition
of tumor cells and infiltrate immune cells [31]. The connec-
tion between the inflammatory microenvironment and
tumors is bidirectional and dynamic and has both tumor-
promoting and tumor-suppressing properties that it is not
only the basis for the onset and progression of tumors
[32]. Correlation analysis was performed in the NSCLC data,
except for NK CD56dim cells and Tcm. In contrast, the
other 22 cells were related, so we confirmed that WDR72
changes the TME through immune infiltration and impacts
the progression of NSCLC.

Finally, our enrichment analysis indicated that WDR72
might be enriched through the cell cycle, immune system,
RNA polymerase II transcription, and extracellular matrix
organization. This suggested that it may affect tumor growth
and metastasis through these pathways. Moreover, we con-
ducted a series of tests to examine WDR72 expression in
NSCLC tissues. WDR72 was elevated in NSCLC tissues rel-
ative to surrounding normal tissue.
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Figure 6: (a–m) TCGA (https://portal.gdc.cancer.gov/) removed target molecules in element LUADLUSC (lung cancer) and analyzed
control/normal (not all elements have control/normal). Then use R (version 3.6.; 3) with the ggplot2 package:
WDR72[ENSG00000166415] coexpression heat map of ferroptosis-related genes in non-small cell-lung cancer. Significance indicator: ns;
p ≥ 0:05; ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 7: Continued.
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Figure 7: (a–m) TCGA (https://portal.gdc.cancer.gov/) RNAseq data in level 3 HTSeq-FPKM format in LUADLUSC (lung cancer) project after
removing control/normal (not all projects have control/normal) using software: R (The GSVA package in version 3.6.3) has undergone the
immune infiltration algorithm: ssGSEA (the built-in algorithm of the GSVA package) grouped WDR72 [ENSG00000166415] by the median and
calculated the high and low expressions of WDR72 and 24 types of immune cells. Significant sign: ns; p ≥ 0:05; ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 8: Expression of WDR72 in non-small-cell lung cancer (NSCLC). (a) Western blot analysis was used to detect the expression level of
WDR72 in NSCLC tissues. (b) The expression level of WDR72 mRNA in NSCLC tissues was detected by qRT-PCR. ∗p < 0:05; ∗∗p < 0:01. N
stands for normal tissue; T stands for tumor.
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Figure 9: Expression of WDR72 in non-small-cell lung cancer (NSCLC). (a, b) Representative images of different IHC staining intensities of
WDR72 in NSCLC tissues and corresponding adjacent normal tissues. (Tumor staining intensity score: 5)(Normal staining intensity score:
2) Magnification: x100 and x400. (c) Prognostic and survival analysis of 158 clinical NSCLC patients.

Table 2: Relationship between WDR72 expression and clinicopathologic features of NSCLC patients.

Characteristics Number
Expression of WDR72 P valuea

Low (N = 73) High (N = 85)
Age 0.425

≤60 72 36 36

>60 86 37 49

Gender 0.202

Female 77 40 37

Male 81 33 48

Smoke 0.025∗

No 75 42 33

Yes 83 31 52

Tumor size 0.038∗

≤3 cm 72 40 32

>3 cm 86 33 53

TNM stage 0.032∗

I and II 114 59 55

III and IV 44 14 30

Histology stage 0.037∗

Well 122 62 60

Poorly 36 11 25

Metastasis 0.016∗

Negative 85 47 38

Positive 73 26 47
aChi-square test.∗p < 0:05.
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Our study has some limitations. First, in vitro cell exper-
iments are required to study WDR72 expression and func-
tion further. Second, our data suggest that WDR72 can act
as a prognostic factor in NSCLC, which needs additional val-
idation. Third, the presence of WDR72 on the TME and
immunotherapy requires in vitro and in vivo experimental
and clinical validation. Fourth, although we confirmed
WDR72 expression in human NSCLC tissues, its exact regu-
latory mechanism remains unclear. WDR72 can participate
in some biological processes in cells, including cell death, cell
division, protein synthesis, and membrane transport. Fer-
roptosis is also a kind of programmed death. According to
our research and analysis, WDR72 has a high correlation
with many molecules of the ferroptosis pathway. Is it possi-
ble that WDR72 affects NSCLC through the ferroptosis
pathway? In the next study, we will focus on the mechanism
research.

5. Conclusion

Herein, the analysis of WDR72 suggested that WDR72 may
be a prognostic factor in NSCLC, which was expressed at the
mRNA and protein levels among NSCLC tumors and nor-
mal tissues. We initially revealed the association between
WDR72 and ferroptosis and immune infiltration. Further-
more, WDR72 expression was linked to MSI, TMB, and
immune cell infiltration in NSCLC. These findings may elu-
cidate the aim of WDR72 in the incidence and growth of
NSCLC and provide a reference for future patients with
NSCLC to receive more accurate and personalized
immunotherapy.
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Metastasis

No vs. yes 0.192 0.124~0.298 <0.001∗∗ 0.240 0.149~0.387 <0.001∗∗

HR: hazard ratio; CI: confidence interval; ∗P < 0:05; ∗∗P < 0:001.
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Background. DNA methylation patterns have been found to be distinct between tumor and normal patients. However, the effect of
DNA demethylation enzymes, ten eleven translocation (TET) proteins, has not been comprehensively characterized in liver cancer.
In this research, we sought to unravel the linkage of TET proteins with prognosis, immune characteristics and biological pathways
in hepatocellular carcinoma (HCC).Materials and Methods. Four independent datasets with gene expression data and clinical data
of HCC samples were downloaded from public databases. CIBERSORT, single sample Gene Set Enrichment Analysis (ssGSEA),
MCP-counter, and TIMER were implemented to evaluate immune cell infiltration. limma was employed to screen differentially
expressed genes (DEGs) between two groups. The demethylation-related risk model was established by using univariate Cox
regression analysis, the least absolute shrinkage and selection operator (LASSO), and stepwise Akaike information criterion
(stepAIC). Results. TET1 was significantly higher expressed in tumor samples than that in normal samples. HCC patients with
advanced stages (III+IV) and grades (G3+G4) had higher TET1 expression compared to early stages (I+II) and grades (G1+G2).
HCC samples with high TET1 expression had worse prognosis than that with low expression. High and low TET1 expression
groups had distinct immune cell infiltration and response to immunotherapy and chemotherapy. We identified 90 DEGs related
to DNA demethylation in high vs. low TET1 expression groups. Furthermore, we established a risk model based on 90 DEGs
containing seven key prognostic genes (SERPINH1, CDC20, HACD2, SPHK1, UGT2B15, SLC1A5, and CYP2C9) with
effectiveness and robustness in predicting HCC prognosis. Conclusions. Our study suggested TET1 as a potential indicator in
HCC progression. TET1 was closely involved in immune infiltration and activation of oncogenic pathways. The DNA
demethylation-related risk model was potential to be applied for predicting HCC prognosis in clinics.

1. Introduction

Liver cancer contributes to a proportion of 4.7% new cancer
cases and 8.3% new cancer deaths worldwide according to
the global cancer statistics in 2020 [1]. Hepatocellular carci-
noma (HCC) is the most common histological type, com-
prising of approximately 75% of liver cancer patients [2].
The incidence of liver cancer in male populations are almost
two times of that in female populations, as shown in 2020

cancer data [1]. Strikingly, liver cancer contributes to the
second cancer death in male populations (10.5% of cancer
deaths) [1]. Metastatic liver cancer patients have a poor
overall survival, in spite of the treatment with molecular
drugs, which results from the unavoidable drug resistance
in most of the patients [3]. Also, due to the intratumor hetero-
geneity of liver cancer, the development of targeted therapies
becomes even challenging [4]. Therefore, understanding the
molecular mechanisms during liver cancer progression is of
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great importance for facilitating the exploration of novel ther-
apeutic targets.

It is knowledgeable that the variations of tumor suppres-
sor genes or protumor genes are the key inducers of cancer.
In addition to solid genetic mutations, the alterations of epi-
genetic modifications are also a crucial factor in the onset
process of cancer. Bulk of evidences have illustrated that
DNA methylation profiles are distinct between normal and
cancer genomes [5–7]. DNA methylation is under controlled
by two classes of enzymes, methylation enzymes (DNMT3a
and DNMT3b) [8] and demethylation enzymes (ten eleven
translocation (TET) family) [9]. TET enzymes, consisting
of consists of TET1, TET2, and TET3, are capable to reverse
DNA methylation by oxidizing 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),
and 5-carboxylcytosine (5caC) [10]. It has been shown that
the aberrant expression and mutations of TET proteins are
not rare in cancer patients [11, 12]. The expression levels
of TET proteins are associated with tumor progression and
metastasis, which offers a potential of TET proteins as
markers in cancer prognosis and diagnosis [13, 14].

In this study, we focused on the effect of TET1 in HCC
patients and sought to elucidate the potential crosstalk of
TET1 with immune microenvironment in HCC. In addition,
we identified key prognostic genes by extracting the TET1
and DNA methylation-related genes and established a risk
model for predicting HCC prognosis. We demonstrated
the potential of DNA methylation-related genes as prognos-
tic markers in HCC patients.

2. Materials and Methods

2.1. Data Acquisition. TCGA-LIHC dataset (abbreviated as
TCGA dataset) containing RNA sequencing (RNA-seq) data
and clinical information was downloaded from Genomic
Data Commons Data Portal (https://portal.gdc.cancer.gov/
projects/TCGA-LIHC) through TCGA GDC API [15].
ICGC-LIRI-JP dataset (abbreviated as ICGC dataset) was
downloaded from hepatocellular carcinoma database [16]
(HCCDB, http://lifeome.net/database/hccdb/home.html).
GSE14520 and GSE76427 datasets with microarray data
were obtained from Gene Expression Omnibus (GEO)
database [17] (https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE14520, https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE76427).

2.2. Data Preprocessing. For TCGA dataset, the HCC sam-
ples with survival time (over than 30 days and less than 10
years) and survival status were retained. Ensembl ID was
transferred to gene symbol. The median value of gene
expression was selected when the gene had multiple
Ensembl IDs. After preprocessing, 334 HCC samples and
50 paracancerous (normal) samples were included in TCGA
dataset. For two microarray datasets (GSE14520 and
GSE76427), the probes were matched to the gene symbols
according to the annotation file of microarray platform.
The probes matching to multiple gene symbols were
excluded, and the median expression level was used when
there were multiple probes of one gene. A total of 221 and

115 HCC samples were included in GSE14520 and
GSE76427 datasets, respectively. ICGC dataset included
212 HCC samples and 177 normal samples, and no prepro-
cessing was performed for the ICGC data.

2.3. Immune Analysis. CIBERSORT, single sample gene set
enrichment analysis (ssGSEA), Microenvironment Cell
Populations-counter (MCP-counter), and Tumor IMmune
Estimation Resource (TIMER) were employed to assess
immune cell infiltration. CIBERSORT [18] (http://cibersort
.stanford.edu/) is able to estimate the proportion of 22
immune cells from tumor mix based on a validated leukocyte
gene signature matrix (LM22). MCP-counter [19] allows to
detect the abundance of 10 cell populations including immune
cell and stromal cell populations from the transcriptome of
tumor tissues. SsGSEA [20] is a widely used methodology
for evaluating the absolute enrichment score of a gene set for
each sample. The gene sets of 28 immune cells were obtained
from a previous study [21], and the ssGSEA scores of the
immune cells were measured through GSVA R package [22].
TIMER [23] (http://timer.cistrome.org/) provides the inter-
pretation of six major immunemodules and visualizes the esti-
mated proportion of tumor-infiltrated immune cells. TIDE
[24] (http://tide.dfci.harvard.edu/) tool can predict the
response to immune checkpoint inhibitors (ICIs) through esti-
mating T cell status (exclusion and dysfunction) and infiltra-
tion of immunosuppressive cells including myeloid-derived
suppressor cells (MDSCs), cancer-associated fibroblasts
(CAFs), and M2 tumor-associated macrophages (TAMs).

2.4. Functional Enrichment Analysis of Biological Pathways.
Gene set enrichment analysis (GSEA) software [25] was
applied to identify enriched pathways with an ordered gene
set. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways “c2.cp.kegg.v7.5.1.symbols.gmt” and hallmark
pathways “h.all.v7.5.1.symbols.gmt” were downloaded from
Molecular Signature Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb/).

2.5. Differential Analysis. Differentially expressed genes
(DEGs) between two groups were identified by limma R pack-
age [26] based on their gene expression profiles. False discovery
rate ðFDRÞ < 0:05 and |log2 fold change ðFCÞj > 1 were set as
thresholds to screen significant DEGs. ClusterProfiler R pack-
age [27]was implemented to annotate the significantly enriched
Gene Ontology (GO) terms and KEGG pathways of DEGs.

2.6. Construction of a Risk Model for Predicting HCC
Prognosis. The gene sets of two DNA demethylation-related
biological processes (BPs) GOBP_DNA_METHYLATION_
OR_DEMETHYLATION and GOBP_POSITIVE_REGULA-
TION_OF_DNA_DEMETHYLATION were downloaded
from MSigDB. The enrichment score of the two BPs was cal-
culated by ssGSEA via GSVA R package. Pearson correlation
analysis was performed between DEGs and TET1 and DEGs
and the ssGSEA score of BPs by using Hmisc R package
(https://cran.r-project.org/web/packages/Hmisc/index.html).
The DEGs with significant correlations both with TET1 and
BPs were screened under jRj > 0:2 and P < 0:05. Next, the
DEGs were further screened by univariate Cox regression
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analysis, least absolute shrinkage and selection operator
(LASSO) [28], and stepwise Akaike information criterion (ste-
pAIC) [29]. Finally, the risk model was constructed with gene
expression and Lasso coefficients. Risk score = ΣðExp i ∗ beta
iÞ. Exp indicates the expression levels of genes (i), and beta
indicates the LASSO coefficients of corresponding genes. The
effectiveness and efficiency of the risk model were validated
by Kaplan-Meier survival analysis and receiver operating
characteristic (ROC) curve analysis.

2.7. Statistical Analysis. The statistical analysis used in this
study was performed in R software (v4.2.0). Wilcoxon test
was used to measure the difference between two groups.
ANOVA test was conducted to detect the difference among
four groups. P < 0:05 was determined as statistically signifi-
cant. The visualization of analyzed results was supported
by the Sangerbox platform [30] (http://sangerbox.com/).

3. Results

3.1. TET1 Expression Was Correlated with the Prognosis and
Clinical Characteristics in HCC. To evaluate the TET alter-
ation in HCC, we assessed the expression levels of TET1,
TET2, and TET3 in three independent datasets (TCGA,
GSE76427, and ICGC). As a result, only TET1 was differ-
ently expressed between tumor and normal samples in
TCGA, GSE76427, and ICGC datasets (P < 0:0001,
Figures 1(a)–1(c)). An upregulated expression level of
TET1 was observed in HCC samples compared with normal

samples. In addition, the samples with late grades or stages
showed higher TET1 expression (Figures 1(d) and 1(e)),
suggesting that high expression of TET1 may be a risk factor
of HCC progression. To examine the performance of TET1
as a prognostic biomarker in HCC, we divided HCC samples
into high TET1 expression (TET1-high) and low TET
expression (TET1-low) groups according to the median
value. Not surprisingly, samples in TET1-low group had
obviously longer overall survival than that in TET1-low
group (P = 4e − 04, Figure 1(f)). Moreover, the distribution
of clinical characteristics showed significant differences
between TET1-low and TET1-high groups (Figure 2). The
proportion of samples with early stages (T1, stage I, and
G1) was higher in TET1-low group than that in TET1-
high group. Conversely, TET1-high group had a higher pro-
portion of late stages than TET1-low group. In accordant
with the above observations, dead samples were more accu-
mulated in TET1-high group compared with TET1-low
group. The significant difference of clinical characteristics
and prognosis in two TET1 groups indicated that TET1
was importantly involved in HCC progression.

3.2. Immune Characteristics and Biological Analysis in Two
TET1 Groups. Evidence has shown that TET proteins play
a regulatory role in immune cell development and orches-
trate cell differentiation in tumorigenesis [31]. We compared
the immune cell infiltration in two TET1 groups through
multiple strategies including CIBERSORT, ssGSEA, MCP-
counter, and TIMER. The results presented that multiple
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Figure 1: TET1 expression was associated with HCC progression and survival. (a–c) The expression level of TET1 in normal and tumor
samples in three datasets. Wilcoxon test was performed. (d, e) The expression level of TET1 in different grades and stages in TCGA
dataset. ANOVA test was conducted. (f) Kaplan-Meier survival analysis of TET1-high and TET1-low groups in TCGA dataset. Log-rank
test was performed. ∗∗∗∗P < 0:0001.
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types of immune cells were differently enriched in TET1-
high and TET1-low groups, such as macrophages, CD8 T
cells, and natural killer (NK) cells (Figures 3(a)–3(d)). In
the response to immunotherapy, TET1-high group showed
higher TIDE score than TET1-low group, which suggested
higher immune evasion of TET1-high group possibly result-
ing from T cell exclusion and infiltration of MDSC
(Figure 3(e)). Furthermore, we assessed 10 oncogenic path-
ways in two TET1 groups and found that 9 oncogenic path-
ways had distinct enrichment scores between two groups
(P < 0:01, Figure 3(f)). TET1-high group had higher enrich-
ment score of most oncogenic pathways such as Hippo,
Notch, TGF-beta, cell cycle, TP53, and Wnt signaling path-
ways than TET1-low group. GSEA results showed that
metabolic pathways fatty acid metabolism and retinol
metabolism were more activated in TET1-low group com-
pared with TET-high group (Figure 3(g)).

To further explore the difference of activated biological
pathways in two TET1 groups, we performed differential
analysis and identified a total of 516 DEGs between two
groups. We identified 404 upregulated DEGs and 112 down-
regulated DEGs in TET1-high group (Figures 4(a) and 4(b)).

Functional analysis on the upregulated DEGs revealed that
cell cycle and DNA repair-related pathways were strikingly
enriched (Figure 4(c)). The above results suggested that
TET1 may serve as an important role in immune cell orches-
tration and tumorigenesis.

3.3. Construction and Verification of a Risk Model Related to
TET1 and Demethylation-Related Genes. TET1 proteins
serve an important role in DNA demethylation. Therefore,
we tried to obtain the DEGs associated with both TET1
and DNA demethylation. To reach this goal, we accessed
DNA demethylation-related BPs from MsigDB database
(GOBP_DNA_METHYLATION_OR_DEMETHYLATION
and GOBP_POSITIVE_REGULATION_OF_DNA_DEME
THYLATION). Correlation analysis was conducted between
DEGs and TET1 or the two demethylation-related BPs, and
a total of 90 DEGs were screened to be significantly corre-
lated with both TET1 and the ssGSEA score of two BPs
(jRj > 0:2; P < 0:05, Figure 5(a)). The 90 DEGs were used
as a basis for constructing a risk model. Subsequently, we
performed a series of methodologies to screen key DEGs
for reaching the optimal model. First of all, univariate Cox
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Figure 2: TET1-high and TET1-low groups had different distribution of clinical characteristics including age, gender, T stage, stages I-IV,
grade, and survival status in TCGA dataset.
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Figure 3: Continued.
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regression analysis identified the genes significantly associ-
ated with overall survival (defined as prognostic genes) in
TCGA dataset. Then, the number of prognostic genes were
compressed by LASSO and stepAIC. LASSO analysis identi-
fied 10 prognostic genes when the lambda and the model
reached the optimal (lambda = 0:0294) (Figure S1). Lastly,
stepAIC confirmed the 7 prognostic genes as the final
genes for constructing the risk model defined as follows
(Figure 5(b)):

Risk score = −0:351 ∗ SERPINH1 + 0:271 ∗ CDC20
+ 0:313 ∗HACD2 − 0:149 ∗ SPHK1
− 0:089 ∗UGT2B15 + 0:324 ∗ SLC1A5
− 0:084 ∗ CYP2C9:

ð1Þ

The risk model was verified in four independent
datasets. Each sample obtained a risk score and two groups
(high-risk and low-risk groups) were determined according
to the median value of risk score. Kaplan-Meier survival
analysis carried out significant differences on the overall

survival between two risk groups in four independent
datasets (P < 0:05, Figures 5(c), 5(e), 5(g), and 5(i)).
Moreover, ROC curve analysis verified that the risk score
was efficient to predict 1- to 5-year survival (Figures 5(d),
5(f), 5(h), and 5(j)), indicating the risk model was effective
and reliable in predicting prognosis for HCC patients.

3.4. The Linkage of Risk Score with Clinical Characteristics,
Immune Characteristics and Biological Pathways. In the rela-
tion between risk score and clinical characteristics, we
observed that there were evident differences on the risk score
between different genders, stages, and grades. Strikingly, the
risk score increased with the advancing stages and grades
(Figure 6(a)). We also analyzed the association of TET1 with
the risk score, and the result shown that TET1-high group
had markedly higher risk score than TET1-low group
(P < 0:0001, Figure 6(a)), implying that the 7 prognostic
genes in the risk model may be involved in the regulation
of TET1.

We investigated the immune microenvironment of two
risk groups by CIBERSORT, MCP-counter, ssGSEA, and
TIMER. Some immune cells were differently enriched
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Figure 3: Immune characteristics and biological pathways in TET1-high and TET-low groups in TCGA dataset. (a–d) The estimated
enrichment of immune cells analyzed by CIBERSORT, MCP-counter, ssGSEA, and TIMER. (e) TIDE analysis on TET1-high and TET-
low groups. (f) The ssGSEA score of 10 oncogenic pathways. (g) GSEA on TET1-high vs. TET1-low groups. Wilcoxon test was
conducted. ns: not significant. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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between two risk groups, such as macrophages, memory
CD4 T cells, and dendritic cells (Figure S2). Notably,
significant correlations were observed between risk score
and M0 macrophages, type 2 helper T cells, monocytic
lineage, and activated CD4 T cells (Figure 6(b)). TIDE
analysis predicted that high-risk group was easier to escape
from immunotherapy due to its high T cell exclusion and
high infiltration of MDSCs (Figure 6(c)). However, high-
risk group may benefit more from chemotherapeutic drugs

than low-risk groups, because the estimated IC50 of
cisplatin, sunitinib, MG-132, paclitaxel, and cyclopamine
were lower in high-risk group (Figure 6(d)).

To explore whether two risk groups had different biolog-
ical activities, we included all hallmark pathways downloaded
from MSigDB and calculated the ssGSEA score for each
pathway in TCGA dataset. By comparing the ssGSEA score
in two risk groups, we identified a total of 25 pathways mark-
edly differently activated between two groups (Figure 7(a)).
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Figure 4: Differential analysis between TET1-high and TET1-low groups in TCGA dataset. (a) Volcano plot of DEGs between TET1-high
and TET1-low groups. (B) Heat map of the expression of DEGs. (c) GO enrichment analysis showed the top five enriched biological
pathways (BP), cellular components (CC), and molecular function (MF). (D) KEGG pathway analysis showed the top 10 enriched
pathways. FDR: false discovery rate. BP: biological process. CC: cellular component. MF: molecular function.
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Clustering results of these pathways presented that two risk
groups had distinct patterns of activated pathways. Cell
cycle-related pathways such as E2F targets, MYC target V1,
MYC target V2, G2M checkpoint, and DNA repair were evi-

dently activated in high-risk group, while metabolism-related
pathways were significantly activated in low-risk group such
as adipogenesis, fatty acid metabolism, heme metabolism,
xenobiotic metabolism, and bile acid metabolism. In

p = 0.00930
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Figure 5: Construction and verification of TET1 and demethylation-related risk model. (a) Venn plot of TET1-related DEGs and
demethylation-related DEGs. (b) Hazard ratio of the 7 prognostic genes determined by stepAIC. Kaplan-Meier survival curves of high-
risk and low-risk groups in TCGA (c), GSE14520 (e), GSE76427 (g), and ICGC (i) datasets. ROC curves of the risk model in predicting
1- to 5-year survival in TCGA (d), GSE14520 (f), GSE76427 (h), and ICGC (j) datasets.
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addition, glycolysis, PI3K Akt mTOR signaling, and unfolded
protein response were also found to be more enriched in
high-risk group. In the relation of risk score with the above
pathways, consistent results were outputted that a positive
correlation was shown between cell cycle-related pathways
and risk score, while a negative correlation was shown
between metabolic pathways and risk score (Figure 7(b)).

3.5. Optimizing the Clinical Application of Risk Score. To
make the risk score more conveniently used in clinical situ-
ations, we introduced a nomogram system involving all
prognostic factors. Cox regression was applied to determine
the variables involved in the nomogram. As a result, only
stage and risk score were independent risk factors with haz-
ard ratio (HR) of 2.369 and 2.690, respectively, in multivar-
iate regression (Figures 8(a) and 8(b)). Therefore, stage and
risk score were used to construct the nomogram for predict-
ing the 1-year, 3-year, and 5-year survivals (Figure 8(c)). The
predicted 1-year, 3-year, and 5-year overall survivals by the
nomogram were almost overlapped with the actual ones
(Figure 8(d)), indicating that the nomogram was reliable.

Moreover, decision curve analysis (DCA) demonstrated that
the nomogram had the best net benefit that the patients
could obtain from (Figure 8(e)).

4. Discussion

Previous studies have discovered that the aberrant DNA
methylation patterns with global hypomethylation are asso-
ciated with cancer progression in HCC [32, 33]. In the
demethylation process, TET proteins are responsible for
the removal of methylation and the alteration of DNA meth-
ylation patterns. To further understand the role of TET pro-
teins and DNA demethylation-related genes in HCC, this
study characterized the linkage of demethylation with sur-
vival, clinical characteristics, tumor microenvironment
(TME), and biological pathways using various strategies of
bioinformatics analysis. We emphasized the importance of
TET proteins in HCC progression and the response to clin-
ical treatment.

First of all, we compared the expression levels of TET
proteins between tumor and normal samples and found that
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Figure 6: The relation of risk score with clinical characteristics, immune characteristics, and chemotherapeutic drugs. (a) The risk score in
different genders, ages, stages, grades, and TET1 groups. (b) Correlation analysis between risk score and immune cell infiltration. (c) TIDE
analysis of two risk groups. (d) The estimated IC50 of chemotherapeutic drugs in two risk groups. Wilcoxon test was performed between
two groups, and ANOVA was performed among four groups. ns: not significant. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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only TET1 had an elevated expression level in HCC samples
compared with the normal samples in three independent
datasets. The HCC samples with late grades (G2-G4) and
stages (II-IV) had higher TET1 expression than that with
the early grade (G1) and stage (I), suggesting a linkage

between TET1 expression and prognosis. To demonstrate
the speculation, we stratified HCC samples into two groups
by the median cut-off of TET1 expression. Not surprisingly,
TET1-high group showed evidently shorter overall survival
than TET1-low group. High expression level of TET1 may

FATTY_ACID_METABOLISM

BILE_ACID_METABOLISM

XENOBIOTIC_METABOLISM

OXIDATIVE_PHOSPHORYLATION

ADIPOGENESIS

PEROXISOME

COAGULATION

HEME_METABOLISM

KRAS_SIGNALING_DN

MYOGENESIS

ESTROGEN_RESPONSE_EARLY

ESTROGEN_RESPONSE_LATE

PROTEIN_SECRETION

UV_RESPONSE_UP

MYC_TARGETS_V2

GLYCOLYSIS

UNFOLDED_PROTEIN_RESPONSE

DNA_REPAIR

MTORC1_SIGNALING

PI3K_AKT_MTOR_SIGNALING

SPERMATOGENESIS

MYC_TARGETS_V1

MITOTIC_SPINDLE

E2F_TARGETS

G2M_CHECKPOINT

−0.5 0.0 0.5
Correlation coefcient

H
A

LL
M

A
RK

 p
at

hw
ay

Correlation coefcient > 0
Correlation coefcient < 0

(b)

Figure 7: Pathway analysis of two risk groups. (a) Heat map of differently enriched pathways in two risk groups. Wilcoxon test was
performed. Red and blue indicate relatively activated and suppressed, respectively. (b) Correlation analysis between risk score and
hallmark pathways. Red and green indicate negative and positive correlations, respectively.
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lead to high activity of demethylation process, which sup-
ported that the downregulated methylations were associated
with poor prognosis.

TME is a critical component affecting cancer invasion,
metastasis, and even the efficiency of immunotherapy and
chemotherapy [34]. To understand the potential effect of
TET1 in TME, we assessed the relation of two TET1 expres-
sion groups with immune infiltration through multiple
methodologies. As a result, some immune cells were found
to be differently enriched in two TET1 groups, indicated that
DNA methylation may function an effect in TME regulation.
Lines of studies have found that DNA methylation patterns
had an influence in immune characteristics in various cancer
types. For example, Mitra et al. identified three immune
methylation-based clusters showing different immune cell
infiltration and prognosis in metastatic melanoma [35].
Meng et al. delineated a landscape of DNA methylation reg-
ulators in gastric cancer and found the extensive dysregula-
tion of the regulators [36]. Moreover, the expression of
DNA methylation regulators was closely related to immune
cell infiltration, where TET1 expression was related to the
enrichment of activated dendritic cells, neutrophils, and type
17T helper cells [36]. In our results, TET1-high and TET1-
low groups showed different enrichment of multiple
immune cells such as macrophages, natural killer cells, and

neutrophils. It could be implied that TET1 was involved in
the crosstalk with immune microenvironment. Strikingly,
TET1-high group was easier to escape from immunotherapy
than TET1-low group, suggesting that TET1 had a potential
to serve as an indicator for guiding immunotherapy in HCC.

To reveal the interplay of TET1 with biological path-
ways, we assessed oncogenic pathway and KEGG pathway
in TET1-high and TET1-low groups. Of 10 oncogenic path-
ways, it was remarkable that 9 of them were differentially
enriched in two TET1 groups, supporting that TET1 expres-
sion was related to the activation of oncogenic pathways.
Specifically, TET1-high group had significantly higher
enrichment of most of oncogenic pathways such as cell cycle,
Hippo, Notch, TGF-β, TP53, and Wnt signaling pathways.
Evidence has shown that there is a substantial difference
on DNA methylation of oncogenic pathways such as Hippo
and Wnt between HCC and normal samples [37]. We spec-
ulated that the demethylation effect resulting from high
TET1 expression activated the expression of genes involved
in the oncogenic pathways. In addition, KEGG enrichment
analysis on the DEGs between two TET1 groups unveiled
that cell cycle-related and DNA repair-related pathways
were more activated in the upregulated DEGs of TET1-
high group. The results further sustained the important role
of TET1 in regulating oncogenic pathways.
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Figure 8: Construction of a nomogram based on risk score and clinical characteristics. (a) Univariate Cox regression analysis of risk score
and clinical characteristics. (b) Multivariate Cox regression analysis of risk score and clinical characteristics. (c) The nomogram based on
risk score and stage. (d) Calibration curve of the predicted OS and the observed OS. (e) DCA curve of risk score, nomogram, and stage.
OS: overall survival. ∗∗∗P < 0:001.
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Due to the close relation of TET1 with survival and
oncogenic pathways, we dug out a bulk of genes related to
TET1 and DNA demethylation process for constructing a
risk model. Based on TET1 and DNA demethylation-
related genes, we identified seven key prognostic genes
including SERPINH1, CDC20, HACD2, SPHK1, UGT2B15,
SLC1A5, and CYP2C9 for the model construction. The risk
model manifested superior prediction efficiency of HCC
prognosis in four independent datasets. Notably, TET1-
high group had extraordinarily higher risk score than
TET1-low group. The risk score increased with the advanc-
ing stages and grades, which was consistent with the obser-
vation regarding TET1 expression. Therefore, the seven
key prognostic genes may be closely involved in the TET1-
mediated demethylation. Increased expression of CDC20
was reported to be associated with HCC progression
through promoting cell proliferation and inhibiting apopto-
sis [38, 39]. SPHK1 was found to be upregulated in HCC and
could induce epithelial-mesenchymal transition (EMT) pro-
cess [40]. Few studies have reported the other five prognostic
genes on their molecular mechanisms in HCC.

However, our study only relied on the bioinformatics
analysis, the mechanism of TET1 in HCC development
and progression needed verification in molecular experi-
ments. We did not simultaneously compare the DNA meth-
ylation patterns relating TET1 expression. In addition, the
seven-gene risk model should be further validated in clinical
samples, and the potential mechanisms of the seven key
prognostic genes in TET1-mediated demethylation needed
to be clarified in future study.

5. Conclusions

In conclusion, our study confirmed the overexpression of
TET1 in HCC patients and unveiled the relation of TET1
expression with survival, clinical stages, immune cell infiltra-
tion, the response to immunotherapy and chemotherapy,
and oncogenic pathways. We identified seven key prognostic
genes related to TET1 and DNA demethylation and estab-
lished a nomogram for effectively predicting HCC prognosis.
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Objective. Recent studies have shown that serine/threonine-protein kinase 24 (STK24) plays an important role in cancer
development. However, the significance of STK24 in lung adenocarcinoma (LUAD) remains to be determined. This study is aimed
at investigating the significance of STK24 in LUAD. Methods. STK24 was silenced and overexpressed by siRNAs and lentivirus,
respectively. Cellular function was assessed by CCK8, colony formation, transwell, apoptosis, and cell cycle. mRNA and protein
abundance was checked by qRT-PCR and WB assay, respectively. Luciferase reporter activity was evaluated to examine the
regulation of KLF5 on STK24. Various public databases and tools were applied to investigate the immune function and clinical
significance of STK24 in LUAD. Results. We found that STK24 was overexpressed in lung adenocarcinoma (LUAD) tissues. High
expression of STK24 predicted poor survival of LUAD patients. In vitro, STK24 enhanced the proliferation and colony growth
ability of A549 and H1299 cells. STK24 knockdown induced apoptosis and cell cycle arrest at G0/G1 phase. Furthermore, Krüppel-
like factor 5 (KLF5) activated STK24 in lung cancer cells and tissues. Enhanced lung cancer cell growth and migration triggered by
KLF5 could be reversed by silencing of STK24. Finally, the bioinformatics results showed that STK24 may be involved in the
regulation of the immunoregulatory process of LUAD. Conclusion. KLF5 upregulation of STK24 contributes to cell proliferation
and migration in LUAD. Moreover, STK24 may participate in the immunomodulatory process of LUAD. Targeting KLF5/STK24
axis may be a potential therapeutic strategy for LUAD.

1. Introduction

Lung adenocarcinoma (LUAD) is one of the common
malignant tumors in China [1]. During the past decades, a
large amount of efforts, including whole genome sequencing,
RNA sequencing, and proteomics, have been made to dissect
the molecular drivers for this deadly malignancy. Genetic
alterations, such as EGFR-activating mutations, are identified
as the essential promoter of lung cancer development [2].
Lung cancer patients harboring EGFR activation benefit from
the targeted therapies of gefitinib, a specific EGFR inhibitor
[3]. However, there are still some of the patients exhibiting

no effectiveness when using gefitinib. Therefore, novel drug
targets triggering lung cancer are constantly in need.

In recent years, immunotherapy based on immune check-
point inhibitors (ICIs) has gradually become the focus of can-
cer treatment. To date, a variety of ICIs have been applied in
the treatment of LUAD patients [4]. However, only a minority
of patients benefit from immunotherapy [5]. Numerous evi-
dences indicate that the leukocyte infiltration status within
the tumor immune microenvironment is closely related to
the response to immunotherapy [6, 7]. Therefore, the explora-
tion and identification of novel LUAD immune-related genes
are crucial for the development of LUAD treatment strategies.
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STK24, which is also named as MST3, is one of the
members of the mammalian sterile twenty (MST) kinase
family of proteins [8]. The role of STK24 in cancers is a lim-
ited report. While STK24 plays an oncogenic role in gastric
cancer growth [9], it can serve as a tumor suppressor in colo-
rectal cancer [10]. STK24 also contributes to breast cancer
development by regulating VAV2/Rac1 signaling cascade
[11]. Nevertheless, the significance of STK24 in LUAD
growth and migration is poorly elucidated.

Herein, we explored the role of STK24 in LUAD by ana-
lyzing its clinical significance based on TCGA database, by
exploring its function on LUAD cell proliferation, cell cycle,
apoptosis, migration, and immunoregulatory.

2. Materials and Methods

2.1. Cell Lines and Regents. A549 and H1299 cells were obtained
from American Type Culture Collection (Manassas, USA). Dul-
becco’s modified eagle (DMEM), 1640 cell culture medium, and
antibiotics were from Corning. Fetal bovine serum (FBS) was
purchased from Gibco (California, USA). Antibodies against
KLF5, STK24, β-actin, and all of the secondary antibodies were
from Proteintech (Wuhan, China). siRNAs against negative con-
trol, STK24, andKLF5were obtained fromGenePharma (Shang-
hai, China). TRIzol reagent was from Invitrogen (Carlsbad,
USA). The RT-for-PCR kit was from Clontech. SYBR Green
qPCR mix was from Takara (Japan). Protease and phosphatase
inhibitors were purchased from Roche (Basel, Switzerland).

2.2. Bioinformatic Analyses. In this study, we used multiple
public databases and tools to investigate the biological func-
tion of STK24 in LUAD. A total of 515 cancer samples and
59 normal samples were downloaded from TCGA database.
The expression of STK24 and the correlation between
STK24 and PCNA, between STK24 and KLF5, and survival
data were analyzed from TCGA-LUAD cohort. For survival
analysis, LUAD patients were cut off by quartile.

Tumor Immune Estimation Resource 2.0 (TIMER2.0) is a
web service database that can be used to systematically analyze
immune cell infiltration in various cancers. This database pro-
vides a variety of analytical functions, including gene, survival,
SCNA, Diff Exp, correlation, and estimation to analyze tumor
immune function [12]. In the present study, we analyzed the
relationship between STK24 and immune cells by somatic
copy number variation (SCNV).

In this study, we applied the Cell type Identification by Esti-
mating Relative Subsets of RNA Transcripts (CIBERSORT)
algorithm to analyze the relationship between STK24 and
immune cells [13]. The method relies on a matrix file called
LM22 to analyze immune cells in tissues.

Tumor Immune Dysfunction and Exclusion (TIDE) is an
algorithm for evaluating tumor immune escape potential via
gene expression profiling in cancer samples [14]. We analyzed
the relationship of STK24 and T cell dysfunction and potential
regulators of tumor immune escape by this web tool.

2.3. Cell Culture. A549 and H1299 cells were cultured in
DMEM culture medium, which contained 10% FBS and 1%

antibiotics. All cells were cultured in a 37°C incubator with
the constant CO2.

2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR). Lung cancer cells were lased in TRIzol, and RNA was
extracted from the cells based on themanufacturer’s protocols.
mRNA was reversely transcribed into cDNA by using RT-for-
PCR kit. Detection of indicated cDNA level was performed by
using SYBR Green qPCR mix. The primer sequences were as
follows: STK24 forward, 5′-AGGCATTGACAATCGGACT
CA-3′, and reverse, 5′-CTGACTCAGCACTGTGATTTCT-
3′. β-actin forward, 5′-GAGCTGCGTGTGGCTCCC-3′, and
reverse, 5′-CCAGAGGCGTACAGGGATAGCA-3′.

2.5. Immunoblotting. Cells were lased in lysis buffer, and pro-
tein amount was detected by using BCA kit. After being boiled,
proteins with loading buffer were loaded onto SDS-PAGE gels.
After 1-2 hours of separation, the proteins on gels were trans-
ferred onto PVDFmembranes, which were activated by meth-
anol. After blocking with 5% skim milk and incubating with
primary and secondary antibodies, protein expression was
detected by using chemiluminescence reagent.

2.6. Cell Proliferation. CCK8 kit was used to investigate cell
proliferation. At indicated time after seeding lung cancer
cells in 96-well plates, 10% of CCK8 regent was added into
each well, and the plates were maintained at 37°C for 3-4
hours. OD450 was then checked, and cell proliferation was
normalized to day 1.

2.7. Colony Formation. A549 and H1299 were seeded at the
concentration of 1000 cells per well. 8-12 days later, colonies
were fixed by methanol and viewed by crystal violet.

2.8. Transwell Assay. Cell migration was examined by trans-
well assay. 30000 of A549 cells and 4000 of H1299 cells in
200 ul DMEM medium without FBS were plated onto the
upper surface of the transwell chamber. 24 hours later, cells
attached on the lower surface of the transwell chamber were
fixed by methanol and viewed by crystal violet.

2.9. Cell Cycle. Cell cycle was detected by staining the cells
with PI. Cells were washed with PBS and incubated with
70% iced alcohol overnight. Then, the cells were stained with
PI, and the cell cycle was analyzed on flow cytometry.

2.10. Apoptosis. Trypsin without EDTA was used to trypsi-
nize the cells when analyzing cell apoptosis. Then, the cells
were stained with PI and annexin V, and apoptosis was ana-
lyzed on flow cytometry.

2.11. Dual Luciferase Reporter Activity. The promoter sequence
of STK24 was inserted into pGL3.basic vectors. The CDS
sequence of KLF5 was cloned into pCDNA3.1 vectors. After
cotransfecting expressing vectors, luciferase pGL3.basic vec-
tors, and internal control pCMV-RL-TK vectors into A549
cells, the dual luciferase activity was assessed. Luciferase activity
was normalized to TK activity.

2.12. Statistical Analysis. Statistical data were analyzed using
GraphPad Prism software. Student’s t-test was applied to
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analyze the difference between the two groups. p < 0:05 was
considered statistically significant.

3. Results

3.1. STK24 Is Overexpressed in LUAD Patients.We initially ana-
lyzed the expression of STK24 in LUAD patients based on the
public TCGA database. STK24 was upregulated in LUAD sam-
ples compared with normal tissues (Figure 1(a)). Spearman
association analysis found that STK24 was positively correlated
with PCNA (Figure 1(b)). Then, we analyzed the survival of
LUAD patients who were divided into STK24 high-expression
and low-expression groups. Both overall and disease-free
survival of LUAD patients who had high expression of STK24
were shorter than that in STK24 lowly expressed patients

(Figures 1(c) and 1(d)). These results strongly suggested that
STK24 and LUAD are closely related to prognosis.

3.2. STK24 Plays a Pivotal Role in the Proliferation of LUAD.To
explore the function of STK24, we silenced STK24 in A549 and
H1299 cells. STK24 mRNA and protein expression were effi-
ciently reduced by siRNAs (Figure 2(a)). STK24 downregula-
tion led to reduced proliferation of A549 and H1299 cells
(Figure 2(a)). Furthermore, STK24 was upregulated after incu-
bating with Leti-STK24 for 48 hours (Figure 2(b)). Cell prolif-
eration ability was enhanced after STK24 ectopic expression in
A549 and H1299 cells (Figure 2(b)). Colony formation results
showed that STK24 downregulation suppressed the colony
growth in A549 and H1299 cells (Figure 2(c)). On the contrary,
STK24 overexpression potentiated the proliferation and
growth ability of both cells (Figure 2(d)). Thus, our findings
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Figure 1: STK24 overexpression confers poor prognosis of LUAD patients. (a) Analysis of STK24 transcript in LUAD (n = 515) and normal
tissues (n = 59). (b) Spearman correlation between STK24 and PCNA. (c, d) Overall and disease-free survival of LUAD patients who were
divided into STK24 high expression (n = 120) and low expression (n = 120) groups. p < 0:01.

3Mediators of Inflammation



suggest that STK24 has an oncogenic function for lung cancer
cell proliferation and growth.

3.3. Downregulation of STK24 Induces LUAD Apoptosis and
Cell Cycle Arrest.We next investigated whether STK24 regu-
lated cell apoptosis and cell cycle progression by staining the
cell with PI/annexin V and PI, respectively. We found that
STK24 downregulation resulted in a reduction of early apo-
ptosis but a dramatic enhancement of late apoptosis in the
A549 and H1299 cells. Total apoptosis, which included early
and late apoptosis, was increased after STK24 knockdown in
the cells (Figures 3(a) and 3(b)). Cell cycle analysis found

that STK24 downregulation increased the cells at G0/G1
phase but decreased the cells at S phase. Cells at G2/M phase
were slightly increased in A549 cells, while they were
decreased in H1299 cells (Figures 3(c) and 3(d)). These
results generally indicate that STK24 silencing promotes cell
apoptosis and cell cycle arrest at G0/G1 phase.

3.4. A Positive Regulation between KLF5 and STK24 Exists in
Lung Cancer Cells and Patients. KLF5 belongs to the Krüppel-
like factor family and has transcription activity. Dysregulation
of KLF5 is involved in cancer development. To assess the rela-
tionship between KLF5 and STK24, we overexpressed and
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Figure 2: STK24 accelerates LUAD cell proliferation. (a) siCtrl and siSTK24 A549 and H1299 cells were subjected to qRT-PCR detection of
STK24 mRNA level, immunoblotting detection of STK24 protein abundance, and CCK8 analysis of cell viability. (b) Leti-Ctrl and Leti-
STK24 A549 and H1299 cells were subjected to qRT-PCR detection of STK24 mRNA level, immunoblotting detection of STK24 protein
abundance, and CCK8 analysis of cell viability. (c, d) Colony growth was assessed. ∗p < 0:05. ∗∗p < 0:01.
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knocked down KLF5 in A549 cells and checked the expression
of STK24. qRT-PCR and immunoblotting results showed that
STK24 mRNA and protein expression were upregulated after
KLF5 overexpression and downregulated after KLF5 knock-
down in A549 cells (Figures 4(a) and 4(b)). Luciferase reporter
assay confirmed that KLF5 positively regulated the luciferase
activity of STK24 promoter (Figure 4(c)). Analyzing from
TCGA data, we found that there was a positive correlation
between KLF5 transcript and STK24 transcript in LUAD sam-
ples. KLF5 highly expressed patients exhibited shorter overall
survival than patients who had low expression of KLF5

(Figure 4(d)). Therefore, KLF5 upregulation of STK24 may
contribute to the progression of lung cancer in both cells and
patients.

3.5. KLF5 Upregulation of STK24 Promotes Lung Cancer Cell
Proliferation and Migration. Above results promoted us to
further illustrate the function of KLF5/STK24 axis in lung
cancer cell function. We then constructed negative control
(Ctrl), KLF5 overexpressed (KLF5), and KLF5 overexpressed
with silenced STK24 (KLF5+ siSTK24) A549 and H1299
cells. Immunoblotting results confirmed that we successfully
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Figure 4: KLF5 promotes the expression of STK24 at transcription level. (a) mRNA expression of STK24 was assessed in KLF5
overexpressed and knockdown A549 cells. (b) Immunoblotting detection of KLF5 and STK24 protein abundance was assessed in KLF5
overexpressed and knockdown A549 cells. (c) Luciferase reporter activity of STK24 promoter was determined in A549 cells after KLF5
overexpression and knockdown. (d) Spearman correlation between KLF5 and STK24 in LUAD samples. Overall survival analysis of
LUAD patients who were divided into KLF5 high expression (n = 120) and low expression (n = 120) groups. ∗p < 0:05.
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constructed the indicated cells (Figure 5(a)). As shown by
CCK8 results, we demonstrated that KLF5 overexpression
enhanced the proliferation ability of A549 and H1299 cells,
which could be reversed by STK24 downregulation
(Figure 5(b)). Transwell assay indicated that KLF5 promoted
the migration capacity of A549 and H1299 cells, which could
also be reduced by STK24 knockdown (Figure 5(c)). Collec-
tively, KLF5 promotes lung cancer cell proliferation and
migration and promotes STK24 expression. Inhibition of
STK24 expression decreased the ability of KLF5 to promote
tumor proliferation and metastasis. KLF5 promotes the pro-
liferation and metastasis of lung cancer cells by promoting
the expression of STK24.

3.6. STK24 Expression Mediates the Immunomodulatory
Function of LUAD. Dysregulation of tumor immune function
is a key step in tumorigenesis and development [15]. It has been
previously reported that STK24 promotes the expansion of
myeloid-derived suppressor cells in gastric cancer. Therefore,
in this study, we further explored the relationship between
STK24 and tumor immunity. As shown in Figures 6(a) and
6(b), through the analysis of the TIMER database, we found
that the deletion of the copy number of STK24 significantly
increased the number of CD8 cells, and conversely, the ampli-

fication of the copy number of STK24 decreased the number of
myeloid dendritic cells. Next, the CIBERSORT algorithm
showed that the expression of STK24 was negatively correlated
with monocytes, activated NK cells, and resting mast cells
(Figure 6(c)). In addition, we further analyzed the relationship
between STK24 expression and various immune checkpoints.
The results showed that STK24 was positively correlated with
PDCD1LG2 and CD276 but negatively correlated with
TNFRSF14, IDO2, and TNFRSF18 (Figure 6(d)). Finally, we
used the TIDE algorithm to analyze LUAD. The T cell dysfunc-
tion score was positive for STK24. Patients with high STK24
expression had poor prognosis and low cytotoxic T lymphocyte
infiltration, while patients with low STK24 expression had the
opposite prognosis and cytotoxic T lymphocyte infiltration
(Figure 6(e)).

4. Discussion

LUAD is the most common subtype of lung cancer [16]. In
this study, we found that STK24 was highly expressed in
LUAD samples based on TCGA data. High expression of
STK24 conferred poorer overall and disease-free survival of
LUAD patients. Loss-of-function and gain-of-function exper-
iments demonstrated that STK24 expression in lung cancer
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Figure 5: KLF5 promotes cell proliferation and migration through SKT24. (a) Immunoblotting analysis of STK24 in Ctrl, KLF5, KLF5
+ siSTK24 A549, and H1299 cells. (b) CCK8 assay was performed in Ctrl, KLF5, KLF5 + siSTK24 A549, and H1299 cells. (c) Cell
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cells A549 and H1299 was essential to sustain cell growth and
proliferation. Cell cycle arrest at G0/G1 and apoptosis were
also induced by STK24 knockdown. Thus, STK24 acts as a
proliferation inducer for lung cancer.

Protein kinases and phosphatases are important factors in
regulating mammals’ physiological and pathological functions.

Protein kinases promote or suppress the activity of down-
stream substrate by increasing the phosphorylation of the pro-
teins. The most well-known kinases are PI3K/AKT/mTOR
signaling family, the activation of which contributes to the
development of a wide variety of malignancies [17–19].
Recently, serine/threonine-protein kinase family attracts

Arm
-le

vel
 dele

tio
n

Diploid/norm
al

Arm
-le

vel
 ga

in

High
 am

plica
tio

n

1.0

0.5

0.0

T 
ce

ll 
CD

8+
_t

im
er Kruskal-Wallis, p=0.073

0.047
0.43

0.8

(a)

Arm
-le

vel
 dele

tio
n

Diploid/norm
al

Arm
-le

vel
 ga

in

High
 am

plica
tio

n

1.0

1.5 Kruskal-Wallis, p=0.44
0.13

0.37
0.47

0.5

0.0

M
ye

lo
id

 d
en

dr
iti

c c
el

l_
tim

er

(b)

0.00

0.05

0.10

0.15

0.20

1 2 3 4
STK24 expression

M
on

oc
yt

es

0.00

0.02

0.04

0.06

0.08

1 2 3 4
STK24 expression

N
K 

ce
lls

 ac
tiv

at
ed

0.00

0.05

0.10

0.15

0.20

1 2 3 4
STK24 expression

M
as

t c
el

ls 
re

sti
ng

R=–0.11, p=0.016 R=–0.14, p=0.0029 R=–0.16, p=0.00058

(c)

0

0.2

–0.2

–0.4

–0.6

–0.8

–1

0.4

0.6

0.8

1ST
K2

4

PD
CD

1L
G

2

TN
FR

SF
14

ID
O

2

CD
27

6

TN
FR

SF
18

STK24

PDCD1LG2

TNFRSF14

IDO2

CD276

TNFRSF18

(d)

Continuous z=2.87, p=0.00408
STK24 high

1.0

0.8

0.6

0.2Su
rv

iv
al

 fr
ac

tio
n

0.0

0.4

1.0

0.8

0.6

0.2Su
rv

iv
al

 fr
ac

tio
n

0.0
0 10 20 30

OS

CTL top (n=7)
CTL bottom (n=6)

CTL top (n=23)
CTL bottom (n=22)

40 50 0 10 20 30
OS

40 50 60 70

0.4

STK24 low

(e)

Figure 6: STK24 expression mediates the immunity of LUAD. (a) Relationship between sCNV of STK24 and CD8+ T cells. (b) Relationship
between sCNV of STK24 and myeloid dendritic cells. (c) The CIBERSORT algorithm analyzed the correlation of STK24 expression with
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oncologists’ attention because dysregulation of these proteins
participates in cancer development. By knowing that MST1/
STK4 mainly functions as a tumor suppressor, while MST2/
STK3 can act as an oncogene [20], the role of MST3/STK24
in carcinogenesis should be determined. Although STK24
has been identified as an oncogene in breast cancer [11], it
suppresses colon cancer growth [10]. One literature showed
that STK24 was highly expressed in LUAD tissues and might
be a potential biomarker for LUAD diagnosis [21], whereas
the function of STK24 remains to be investigated. Thus, our
evidences that STK24 overexpression promoted lung cancer
cell proliferation and its knockdown-suppressed cancer cell
growth revealed that STK24 acts as an oncogene in lung can-
cer.We also showed the important role of STK24 in regulating
cell cycle progression and apoptosis.

Krüppel-like factor 5 (KLF5) is an important transcription
factor. KLF5 overexpression enhances the malignancy of gas-
tric cancer via modulating cell cycle proteins p21 and CDK4
[22]. Overexpression of KLF5 is inversely correlated with the
prognosis of colon cancer patients [23]. In prostate cancer,
KLF5 interacts with androgen receptor (AR) and contributes
to cancer development stimulated by AR signaling [24]. These
studies highlight the important role of KLF5 in cancer devel-
opment. Nevertheless, the downstream effectors of KLF5 need
intensive studies. Here, we showed that KLF5 positively regu-
lated the expression of STK24 at transcription level. There was
also a positive relationship between KLF5 expression and
STK24 expression in LUAD samples. KLF5 overexpression
was also inversely correlated with patients’ survival. Interest-
ingly, when KLF5 overexpression promoted lung cancer cell
proliferation and migration, the knockdown of STK24 signifi-
cantly blocked the oncogenic role of KLF5.

Immune escape is a key link in tumor metastasis, and
changes in the immune microenvironment play a pivotal
role in this process [25]. The tumor immune microenviron-
ment is regulated by many factors, such as the tumor itself,
and various immune and stromal cells [26]. It has been
reported that tumor cells can suppress the immune microen-
vironment by secreting various cytokines [27]. In this study,
we preliminarily found that STK24 has an inhibitory effect
on the immune microenvironment by bioinformatics analy-
sis, but we failed to investigate its phenotype and mechanism
through in vitro and in vivo experiments. We intend to
investigate further in subsequent studies.

In conclusion, KLF5 upregulation of STK24 promotes
lung cancer growth and migration. Our findings not only
illustrated the important role of STK24 in LUAD but also
revealed a possible mechanism that STK24 was upregulated
by KLF5 in lung cancer patients. Notably, we also predicted
that STK24 might also be involved in the immunomodula-
tory function of LUAD. Based on these findings, we pro-
posed that targeting STK24 might be a potential therapy
for lung cancer patients with highly expressed KLF5.
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Objective. To analyze the influencing factors of tumor volume, body immunity, and poor prognosis after 125I particle therapy for
differentiated thyroid cancer. Methods. A total of 104 patients with differentiated TC who were treated with 125I particles during
January 2020 to January 2021 was picked. These subjects were graded as low-dose group (80Gy-110Gy) and high-dose group
(110Gy-140Gy) according to the minimum dose received by 90% of the target volume (D90) after surgery. The tumor volume
before and after treatment was compared, and fasting venous blood was collected before and after treatment. The content of
thyroglobulin (Tg) was detected by electrochemiluminescence immunoassay. The levels of absolute lymphocyte count (ALC),
lymphocytes, neutrophils, and monocytes were detected on automatic blood cell analyzer. The lymphocyte to monocyte ratio
(LMR), neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ration (PLR) were calculated. The changes in the
condition of patients were closely observed, and the occurrence of adverse reactions in the two groups were compared. The
risk factors influencing the efficacy of 125I particle therapy for differentiated TC were analyzed through multivariate logistic
regression analysis. Results. The total effective rate of patients in the low- and high-dose groups was 78.85% and 82.69%,
respectively (P > 0:05). Compared with the pretreatment period, the tumor volume and Tg level in both groups were much
lower (P < 0:05), and the differences in tumor volume and Tg level had no statistically significant difference between the two
groups before and after treatment (P > 0:05). At 1 week of the treatment, the total incidence of adverse reactions such as
nausea, radiation gastritis, radiation parotitis, and neck discomfort was obviously higher in the high-dose group than in the
low-dose group (P < 0:05). At 1 month of treatment, the incidence of adverse reactions such as nausea was markedly higher in
the high-dose group than in the low-dose group (P < 0:05). After treatment, serum NLR and PLR contents were memorably
elevated and LMR level was sharply decreased in both groups, and serum NLR and PLR contents were higher and LMR
content was lower in the high-dose group than in the low-dose group (P < 0:05). Multivariate logistic regression analysis
showed that the pathological type of follicular adenocarcinoma, tumor size ≥ 2 cm, clinical stage of III~IV, distant metastasis,
and high TSH level before 125I particle treatment were all risk factors related to the efficacy of 125I particle treatment of TC
(P < 0:05). Conclusion. The efficacy of low-dose and high-dose 125I particles in the treatment of differentiated thyroid cancer is
comparable, among which low-dose 125I particles have fewer adverse effects and have less impact on the immunity of the body,
which is well tolerated by patients and can be widely used in clinical practice. In addition, the pathological type of follicular
adenocarcinoma, tumor size ≥ 2 cm, clinical stage III~IV, distant metastasis, and high TSH level before 125I particle treatment
are all risk factors that affect the poor effect of 125I particles on thyroid cancer treatment, and early monitoring of the above
index changes can help evaluate the prognosis.
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1. Introduction

Thyroid cancer (TC) is one of the most common malignant
tumors in the endocrine system, accounting for more than
90% of all endocrine malignant tumors. In recent years,
the incidence rate of TC is increasing year by year, which
has a certain relationship with region, race, and gender [1].
Previous studies suggested that the incidence of TC was
closely related to excessive iodine diet, radiation, abnormal
secretion of sex hormones, and thyroid stimulating hor-
mones [2]. With the acceleration of life rhythm and the
increase of life pressure in recent years, the number of
patients with TC has increased year by year, and most of
them are differentiated TC, which accounts for more than
90% of TC. Differentiated TC includes papillary TC and fol-
licular TC, of which papillary TC accounts for about 75%,
with slow growth, low malignancy, and high 10-year survival
rate. Follicular TC is highly malignant and can metastasize
to bone and lung through blood with poor prognosis and
the 10-year survival rate of less than 40%. Therefore, effec-
tive therapy for differentiated TC is the focus of thyroid
related research [3, 4].

125I particle is a radioactive particle with wide clinical
application at present, which can continuously emit γ-ray
for a long time to suppress the reproduce ability of tumor
cells, thus inhibiting tumor progression. At present, 125I par-
ticle has a good effect in the treatment of prostate cancer,
lung cancer, pancreatic cancer, and other solid tumors [5,
6]. Some scholars found that 125I particle therapy could alle-
viate the clinical symptoms related to lymph node metastasis
in patients with refractory differentiated TC with effective
and safe local control effect in tumor for short term [7].
However, there are few studies on the effects of different
125I particle treatment dose parameters on the patients.

In this study, 104 patients with differentiated TC admit-
ted in our hospital during January 2020 to January 2021
were picked as the subjects to analyze the factors influencing
tumor volume, body immunity, and poor prognosis after
125I particle therapy for differentiated TC.

2. Materials and Methods

2.1. General Materials. A total of 104 patients with differen-
tiated TC admitted in our hospital during January 2020 to
January 2021 was picked. Inclusive criteria are as follows:
(1) all patients were diagnosed as differentiated TC by pre-
operative pathological examination [8] and underwent total
thyroidectomy or subtotal thyroidectomy. (2) All patients
received 125I particle therapy after operation. (3) The
patients and their family members signed the informed con-
sent form and could cooperate with the examination and
treatment with good compliance. Exclusion criteria are as
follows: (1) the patients with serious functional disorder of
important organs. (2) The patients with 125I contraindica-
tion. (3) The patients complicated with endocrine metabo-
lism and immune system diseases. (4) The patients with
predicted survival time of less than 6 months. (5) The
patients combined with other malignant tumors. (6) The
patient in lactating or pregnant period. These subjects were

graded as low-dose group (80Gy-110Gy) and high-dose
group (110Gy-140Gy) according to the minimum dose
received by 90% of the target volume (D90) after surgery.
52 patients (23 males and 29 females) were graded as the
low-dose group, with an average age of (44:85 ± 5:96) years,
an average BMI of (21:12 ± 1:45) kg/m2, and an average
course of disease of (4:52 ± 1:23) years. 52 patients (21 males
and 31 females) were graded as the high-dose group, with an
average age of (45:15 ± 6:10) years, an average BMI of
(20:85 ± 1:33) kg/m2, and an average course of disease of
(4:33 ± 1:28) years. There existed no significant difference in
age, gender, BMI, and other general data between the groups
(P > 0:05). This experiment was approved by the Ethics
Committee of our hospital.

2.2. Methods. All patients were treated with 125I particle
therapy after total or subtotal thyroidectom. (1) Preoperative
preparation: blood routine test, biochemical test, thyroid
function test, CT, ECG, and 131I whole body imaging were
performed before operation. Fasting and water deprivation
for 4 hours before operation and venous channels were
established. (2) Three-dimensional treatment planning sys-
tem (TPS) plan: this plan is currently an important tool for
radiation therapy for oncology, and the planning system
can meet the requirements of conventional radiation ther-
apy. The radioactive particle implantation treatment plan
through image pictures was designed, and the gross tumor
volume (GTV) and planning target volume (PTV) were
outlined. The 125I particles with an activity of 14.8-
25.9MBq was selected, and the prescription dose was set as
100-150Gy. The quantity, distribution, and puncture needle
layout of 125I particles were reasonably designed. 125I particle
was implanted under the guidance of CT, and the CT images
were observed after operation for verification. (3) Operation:
the patient was guided to take a comfortable position. The

167 patients with
diferentiated thyroid
cancer treated in our
hospital were selected

Te predicted
survival time of 18

patients was less than
6 months

Clinical data were
missing in 23 cases

22 cases with missing
follow-up data

104 patients with
diferentiated thyroid

cancer were fnally
included

Figure 1: The inclusion process of the general data of 104 patients.
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puncture point was marked and routine disinfection was
conducted. Sterile sheet was paved and local anesthesia was
performed using 2% lidocaine. The position of puncture
needle was confirmed through CT after puncture. Implanta-
tion was conducted with particle spacing of 0.5-1.0 cm and
row spacing of 1.0 cm. After CT reexamination and confir-
mation of correct position, pressure bandage was performed,
and antibiotics were routinely used after operation.

2.3. Outcome Measures

2.3.1. Efficacy. The efficacy was graded as complete response
(CR), partial response (PR), no change (NC), and progres-
sion (PD). The lesions disappeared completely, and only
strip shadow or no abnormality in imaging were CR. PR
referred to the reduction of lesion volume ≥ 50% compared
with that before treatment. NC referred to that the lesion
volume reduced by <50% or increased by <25% compared
with that before treatment. The volume of lesion increased
by ≥25% than that before treatment or new lesion appeared
was PD. Total effective = CR + PR + NC.

2.3.2. Tumor Volume. Cervical ultrasound was performed
before and 3 months after treatment to measure the longi-
tude of thyroid tissue before and after treatment, and the
thyroid volume was calculated by Brunn’s formula.

2.3.3. Serum Index. The fasting venous blood in the morning
before treatment and 3 months after the treatment was
collected and centrifuged at 3000 r/min for 10 minutes.
The serum was carefully collected and stored at -40°C to
avoid repeated freezing and thawing. The content of thyro-

globulin (Tg) was detected by electrochemiluminescence
immunoassay. The levels of absolute lymphocyte count
(ALC), lymphocytes, neutrophils, andmonocytes were detected
on automatic blood cell analyzer. The lymphocyte to monocyte
ratio (LMR), neutrophil to lymphocyte ratio (NLR), and platelet
to lymphocyte ration (PLR) were calculated.

2.3.4. Adverse Reactions. The changes in the condition of
patients were closely observed, and the occurrence of adverse
reactions such as nausea, radiation gastritis, radiation mumps,
and neck discomfort in two groups were compared.

2.3.5. Collection of Clinical Characteristics. The indicators
such as the patients’ age (<45 years old, ≥45 years old),
gender (male, female), pathological type (papillary adeno-
carcinoma, follicular adenocarcinoma), tumor size (<2 cm,
≥2 cm), number of lesions (single, multiple), invasion (no
invasion of capsule, membrane invasion, slight invasion out-
side the thyroid, and obvious invasion outside the thyroid),
clinical stage (I~II, III~IV), distant metastasis (yes, no),
and the level of thyroid stimulating hormone (TSH) before
125I particle therapy (<30 mIU/L, 30-59 mIU/L, 60-89
mIU/L, and ≥90 mIU/L) were collected.

2.4. Statistical Analysis. The experimental data were ana-
lyzed by SPSS20.0 software. NLR, PLR, LMR, and other
measurement data were expressed in ð�x ± sÞ and were
compared using t-test between groups; The enumeration
data of curative effect and adverse reaction were expressed
in (%) and were compared by χ2 text. The risk factors related
to the efficacy of 125I particle therapy for differentiated TC
were analyzed by multivariate logistic regression analysis.

Table 1: Comparison of curative effect (cases, %).

Groups CR PR NC PD Total effective rate

Low-dose group (n = 52) 29 (55.77) 6 (11.54) 6 (11.54) 11 (21.15) 41 (78.85)

High-dose group (n = 52) 31 (59.61) 7 (13.46) 5 (9.62) 9 (17.31) 43 (82.69)

χ2 0.248

P 0.619

21.15%

11.54%

11.54%

55.77%

CR
PR

NC
PD

(a)

9.62%

13.46%

17.31%

59.61%

CR
PR

NC
PD

(b)

Figure 2: Pie chart analysis of comparison of curative effect between two groups. (a) Low-dose group. (b) High-dose group. Note: CR:
complete response; PR: partial response; NC: no change; PD: progression.
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P < 0:05 indicated that the statistical results were statisti-
cally significant.

3. Results

3.1. General Data of 104 Patients. There were 167 cases of
differentiated TC included, and 104 patients were finally
included after screening according to the inclusion and
exclusion criteria. The specific process was shown in
Figure 1.

3.2. Comparison of Curative Effect. The proportions of CR
patients in low- and high-dose groups were 55.77% and
59.62%, PR patients of 11.54% and 13.46%, and NC patients
of 11.54%, 9.62%, respectively. The total effective rate of
patients in the low- and high-dose groups was 78.85% and
82.69%, respectively (P > 0:05; Table 1 and Figure 2).

3.3. Changes of Tumor Volume. Compared with the pretreat-
ment period, the tumor volume and Tg level in both groups
were much lower (P < 0:05), and the differences in tumor
volume and Tg level had no statistically significant difference
between the two groups before and after treatment (P > 0:05;
Table 2 and Figure 3).

3.4. Comparison of Adverse Reactions. At 1 week of treat-
ment, the total incidence of adverse reactions such as nausea,
radiation gastritis, radiation parotitis, and neck discomfort
was obviously higher in the high-dose group than in the
low-dose group (P < 0:05). At 1 month of treatment, the
incidence of adverse reactions such as nausea was markedly
higher in the high-dose group than in the low-dose group
(P < 0:05) but there existed no significant difference in the
probability of adverse reactions such as radiation gastritis,
radiation mumps, and neck discomfort (P > 0:05). At 3
months of treatment, there existed no significant difference
in the probability of adverse reactions such as nausea, radia-
tion gastritis, radiation mumps, and neck discomfort between
two groups (P > 0:05; Table 3 and Figure 4).

3.5. Comparison of Immune Function. There existed no sig-
nificant difference in serum ALC, NLR, LMR, and PLR levels
between the two groups before treatment (P > 0:05). After
treatment, serum NLR and PLR content was memorably
elevated and LMR level was sharply decreased in both

groups, and serum NLR and PLR contents were higher and
LMR content was lower in the high-dose group than in the
low-dose group (P < 0:05; Table 4).

3.6. Univariate Analysis of Factors Influencing the Efficacy of
125I Particle Therapy for Differentiated TC. As shown in
Table 5, the univariate analysis showed that there existed
statistically significant differences between the effective
group and the ineffective group in terms of pathological
type, tumor size, clinical stage, distant metastasis, and TSH
level before 125I particle therapy (P < 0:05; Table 5).

3.7. Risk Factors Related to the Efficacy of 125I Particle
Treatment Analyzed by Multivariate Logistic Regression
Analysis. The indicators with statistical significance in
Table 5 were included into the multivariate logistic regres-
sion analysis. The results showed that the pathological type
of follicular adenocarcinoma, tumor size ≥2 cm, clinical
stage of III~IV, distant metastasis, and high TSH level before
125I particle treatment were all risk factors related to the effi-
cacy of 125I particle treatment of TC (P < 0:05; Table 6).
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Figure 3: The tumor volume changed after different radiation
doses in the two groups. Note: AP < 0:05 compared with the same
group before treatment.

Table 2: Changes of tumor volume ð�x ± sÞ.
Time Groups Tumor volume (cm3) Tg (μg/L)

Before treatment
Low-dose group (n = 52) 7:15 ± 2:46 57:46 ± 14:29

High-dose group (n = 52) 7:08 ± 1:85 57:82 ± 13:96
t 0.164 0.130

P 0.870 0.897

After treatment
Low-dose group (n = 52) 1:96 ± 0:52a 38:59 ± 12:48a

High-dose group (n = 52) 1:86 ± 0:26a 36:59 ± 15:49a

t 1.240 0.725

P 0.218 0.470

Note: aP < 0:05 compared with the same group before treatment; Tg: thyroglobulin.
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4. Discussion

Differentiated TC is the TC with the highest incidence rate at
present, which has the characteristics of high differentiation,
low malignancy, and better surgical treatment. However, dif-
ferent clinical manifestations of patients, including tumor
size, extraglandular invasion, cervical lymph node metasta-
sis, and distant metastasis, will lead to different prognosis
of patients. In addition, due to the complex anatomical
structure of the thyroid region in the neck, the incidence of
early thyroid infiltration or invasion of surrounding tissues
is high, and there may be residual thyroid cancer tissue after
surgery [9]. Therefore, differentiated TC has a high rate of
recurrence, local or distant metastasis. Statistics show that
10%-30% of patients are accompanied by recurrence and
metastasis after surgery. If the lung metastasis of thyroid
cancer could be diagnosed early and treated effectively, the
10-year survival rate of lung metastasis could be as high as
90% [10]. Therefore, how to reduce the recurrence and

metastasis rate of differentiated TC after surgery has become
the research focus of medical scholars.

125I particle therapy is a new radiation therapy technol-
ogy in recent years, which effectively protects parathyroid
gland, recurrent laryngeal nerve, and other important organs
by implanting 125I particle into the focus by minimally inva-
sive method without surgical incision and suture. At the
same time, 125I particles have the characteristics of high local
dose and high dose of surrounding normal tissues in brachy-
therapy, which can effectively reduce the impact on normal
thyroid tissues while ensuring the efficacy [11, 12]. At
present, 125I particles have achieved good efficacy in the
treatment of TC, non-small-cell lung cancer and other
malignant tumors [13, 14], but there is no formal research
report on dosage application. There are few studies on the
effects of different doses on the efficacy, adverse reactions,
and immunity of differentiated TC. It was found that com-
pared with before treatment, the lymph node metastasis
was much smaller; the Tg level and postoperative dose

Table 3: Comparison of adverse reactions between the two groups (cases, %).

Time Groups Nausea Radiation gastritis Radiation parotitis Neck discomfort

1 week after treatment
Low-dose group (n = 52) 6 (11.54%) 2 (3.85%) 3 (5.77%) 8 (15.38%)

High-dose group (n = 52) 15 (28.85%) 9 (17.31%) 10 (19.23%) 17 (32.69%)

χ2 4.833 4.981 4.308 4.265

P 0.028 0.026 0.038 0.039

1month after treatment
Low-dose group (n = 52) 2 (3.85%) 1 (1.92%) 2 (3.85%) 5 (9.62%)

High-dose group (n = 52) 8 (15.38%) 2 (3.85%) 3 (5.77%) 8 (15.38%)

χ2 3.983 0.343 0.210 0.791

P 0.046 0.558 0.647 0.374

3months after treatment
Low-dose group (n = 52) 1 (1.92%) 1 (1.92%) 0 (0.00%) 2 (3.85%)

High-dose group (n = 52) 2 (3.85%) 3 (5.77%) 1 (1.92%) 3 (5.77%)

χ2 0.343 1.040 1.010 0.210

P 0.558 0.308 0.315 0.647
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Figure 4: Comparison of the incidence of adverse reactions after different radiotherapy in the two groups. (a) 1 week after treatment. (b) 1
month after treatment. (c) 3 months after treatment.
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Table 4: Comparison of immune function ð�x ± sÞ.
Time Groups ALC (109/L) NLR LMR PLR

Before treatment
Low-dose group (n = 52) 1:85 ± 1:26 2:43 ± 1:85 3:63 ± 2:15 152:63 ± 35:85

High-dose group (n = 52) 1:82 ± 1:38 2:40 ± 1:26 3:81 ± 2:45 148:67 ± 46:33
t 0.116 0.096 0.398 0.488

P 0.908 0.923 0.691 0.627

After treatment
Low-dose group (n = 52) 0:91 ± 0:46a 3:59 ± 2:15a 2:48 ± 1:26a 225:46 ± 102:53a

High-dose group (n = 52) 0:81 ± 0:37a 6:36 ± 5:12a 1:69 ± 1:05a 316:48 ± 142:03a

t 1.222 3.597 3.473 3.747

P 0.225 0.001 0.001 <0.001
Note: aP < 0:05 compared with the same group before treatment; ALC: absolute lymphocyte count; NLR: neutrophil to lymphocyte ratio; LMR: lymphocyte to
monocyte ratio; PLR: platelet to lymphocyte ration.

Table 5: Univariate analysis of factors influencing the efficacy of 125I particle therapy for differentiated TC.

Related factors Effective group (n = 85) Ineffective group (n = 19) χ2 P

Gender

Male 33 (38.82) 11 (57.89) 2.314 0.128

Female 52 (61.18) 8 (42.11)

Age

<45 years old 47 (55.29) 7 (36.84) 2.118 0.146

≥45 years old 38 (44.71) 12 (63.16)

Pathological type

Papillary adenocarcinoma 51 (60.00) 5 (26.32) 7.090 0.008

Follicular adenocarcinoma 34 (40.00) 14 (73.68)

Tumor size

<2 cm 63 (74.18) 7 (36.84) 9.806 0.002

≥2 cm 22 (25.88) 12 (63.16)

Number of lesions

Single 27 (31.76) 9 (47.38) 1.671 0.196

Multiple 58 (68.24) 10 (52.63)

Invasion

No invasion of capsule 30 (35.29) 5 (26.32) 0.974 0.808

Membrane invasion 27 (31.76) 8 (42.11)

Slight invasion outside the thyroid 16 (18.82) 3 (15.79)

Obvious invasion outside the thyroid 12 (14.12) 3 (15.79)

Clinical stage

I~II stage 60 (70.59) 8 (42.11) 5.566 0.018

III~IV stage 25 (29.41) 11 (57.89)

Distant metastasis

Yes 30 (35.29) 13 (68.42) 7.027 0.008

No 55 (64.71) 6 (31.58)

TSH level before 125I particle therapy (mIU/L)

<30 1 (1.18) 2 (10.53) 7.896 0.048

30~59 37 (43.53) 4 (21.05)

60~89 24 (28.24) 5 (26.32)

≥90 23 (27.06) 8 (42.11)

Note: TSH: thyroid-stimulating hormone.
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parameters were much lower after treatment when 125I
radioactive particles were implanted for refractory differenti-
ated TC treatment [15], suggesting that 125I radioactive
particle implantation could achieve the expected dose distri-
bution and effectively control tumor progression. In this
study, the total effective rate of patients in the low- and
high-dose groups was 78.85% and 82.69%, respectively.
Compared with the pretreatment period, the tumor volume
and Tg level in both groups were much lower. The results
of this study suggested that 125I particles with D90 in the
range of 80Gy-140Gy were effective in the treatment of
differentiated TC, which could effectively inhibit tumor pro-
gression. The effects of low dose and high dose after surgery
were similar.

Radiotherapy treats tumors using radiation, usually
accompanied by side effects such as nausea, vomiting, and
gastrointestinal dysfunction, which not only increases the
pain of patients but also has a certain impact on their lives.
Long term adverse reactions further reduce the patient’s tol-
erance [16, 17]. Therefore, how to reduce the side effects of
radiotherapy and increase the confidence of patients to over-
come the disease are also important options for selecting
treatment plans. Radiotherapy can not only inhibit the
proliferation of tumor cells but also inhibit the immune
function of the body. NLR and PLR are commonly used clin-
ical immune indicators, and the increased content of NLR
and PLR usually indicates that the body is in an immuno-
suppressive state [18]. LMR is a marker of inflammatory
immune response, and decreased level of LMR indicates
the malignant progress of tumor. In this experiment, the
high-dose group had much higher probability of nausea,
radiation gastritis, radiation mumps, and neck discomfort
than the low-dose group at 1 week after treatment. At the
first month after treatment, the probability of nausea in the
high-dose group was markedly higher than that in the low-
dose group. After treatment, serum NLR and PLR content
was higher and LMR content was lower in the high-dose
group than in the low-dose group. Hammad et al. [19]
showed that radiotherapy could reduce lymphocyte count,
and lymph nodes were the key to regulating tumor immune
response as peripheral immune organs. The results in the
study showed that the pathological type of follicular adeno-
carcinoma, tumor size ≥2 cm, clinical stage of III~IV, distant
metastasis, and high TSH level before 125I particle treatment
were all risk factors related to the efficacy of 125I particle
treatment of TC (P < 0:05). Therefore, our study suggested
that the increase of immunotoxicity related to the increase
of radiotherapy dose might be an important factor leading

to tumor progression. It is of great significance to limit the
radiation dose to minimize the damage of the immune sys-
tem for improving the survival of patients.

In general, the efficacy of low-dose and high-dose 125I
particles in the treatment of differentiated thyroid cancer is
comparable, among which low-dose 125I particles have fewer
adverse effects and have less impact on the immunity of the
body, which is well tolerated by patients and can be widely
used in clinical practice. In addition, the pathological type
of follicular adenocarcinoma, tumor size ≥ 2 cm, clinical
stage III~IV, distant metastasis, and high TSH level before
125I particle treatment are all risk factors that affect the poor
effect of 125I particles on thyroid cancer treatment, and early
monitoring of the above index changes can help evaluate the
prognosis. However, due to the limited time of this study,
and for patients undergoing radiotherapy and chemotherapy
at the same time, the peripheral blood immune indicators
may be affected by the radiotherapy. How to control the
metrological parameters after 125I particle therapy and how
to reduce the impact on the body immunity while ensuring
the efficacy will be further explored in the following study.
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Hepatocellular carcinoma (HCC) is a malignancy with one of the worst prognoses. Long noncoding RNAs (lncRNAs) may be
important in cancer development and may serve as new biomarkers for the diagnosis and treatment of various tumors,
according to mounting research. The purpose of this study was to investigate the expression of INKA2-AS1 and clinical
importance in HCC patients. The TCGA database was used to obtain the human tumor samples, while the TCGA and GTEx
databases were used to gather the human normal samples. We screened differentially expressed genes (DEGs) between HCC
and nontumor tissues. Investigations were made into the statistical significance and clinical significance of INKA2-AS1
expression. A single-sample gene set enrichment analysis (ssGSEA) was used to examine potential relationships between
immune cell infiltration and INKA2-AS1 expression. In this investigation, we found that HCC specimens had considerably
greater levels of INKA2-AS1 expression than nontumor specimens. When utilizing the TCGA datasets and the GTEx database,
high INKA2-AS1 expression showed an AUC value for HCC of 0.817 (95% confidence interval: 0.779 to 0.855). Pan-cancer
assays revealed that numerous tumor types had dysregulated levels of INKA2-AS1. Gender, histologic grade, and pathologic
stage were all substantially correlated with high INKA2-AS1 expression. A survival study indicated that HCC patients with
high INKA2-AS1 expression have shorter OS, DSS, and PFI than those with low INKA2-AS1 expression. Multivariate analysis
indicated that INKA2-AS1 expression was an independent prognostic factor for OS of patients with HCC. According to
immune analysis, the expression of INKA2-AS1 was favorably correlated with T helper cells, Th2 cells, macrophages, TFH, and
NK CD56bright cells and negatively correlated with Th17 cells, pDC, cytotoxic cells, DC, Treg, Tgd, and Tcm. The results of
this study collectively suggest that INKA2-AS1 has the potential to be a novel biomarker for predicting the prognosis of HCC
patients as well as a significant immune response regulator in HCC.

1. Introduction

Liver cancer ranks sixth in terms of incidence among malig-
nancies and is the fourth leading cause of tumor-related
death worldwide [1, 2]. Over 782,000 individuals lose their
lives to cancer annually, with over 841,000 new cases being
diagnosed [3]. Hepatocellular carcinoma (HCC), the most
prevalent kind of primary liver cancer, has been connected
to several recognized risk factors, including a history of

chronic HBV or HCV infection, excessive alcohol consump-
tion, nonalcoholic fatty liver disease, and exposure to food
toxins like aflatoxins [4, 5]. Even if a number of creative
management strategies have demonstrated considerable
effects on the diagnosis of HCC, the high rate of metastasis
leads to poor overall survival (OS) of patients with HCC
[6, 7]. The prognosis of patients is severely impacted by
the fact that over 70% of HCC patients who have surgical
resection or ablation will experience a tumor recurrence

Hindawi
Mediators of Inflammation
Volume 2023, Article ID 7057236, 12 pages
https://doi.org/10.1155/2023/7057236

https://orcid.org/0000-0002-2543-816X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7057236


within five years [8, 9]. Accurately predicting the prognosis
may help select an appropriate customized treatment and,
as a result, increase the survival time for patients with
HCC. The identification of novel biomarkers that can assess
the prognosis of HCC cases is, therefore, crucial.

The term “long non-coding RNA” (lncRNA) refers to
RNAs that are longer than 200 nucleotides yet cannot code
for proteins [10]. In the past, lncRNAs were considered to be
“transcriptional noise” since they did not take part in the pro-
cess of creating proteins [11, 12]. As a result, it was believed
that lncRNAs did not have any biological purpose. However,
recent research has shown that lncRNAs have a biological
function [13, 14]. The role of lncRNAs in several biological
processes, including the silencing of X chromosome genes,
chromatin modification, and transcription activity, has come
under greater scrutiny in recent years [15, 16]. Recent research

has identified a large number of lncRNAs as being improperly
expressed in a variety of malignancies, which either inhibits
the growth of these tumors or causes them to worsen [17,
18]. According to reports, several lncRNAs are crucial in the
development of HCC [19, 20]. For instance, Hu et al. reported
that in HCC, there was an increase in the level of expression of
the lncRNA GSTM3TV2. The downregulation of lncRNA
GSTM3TV2 via the miR-597/FOSL2 axis led to a considerable
inhibition of cell proliferation and invasion [21]. When
coupled with surrounding normal liver tissue samples and nor-
mal liver cell lines, Wang et al. found that the expression of the
lncRNA MIR210HG was considerably greater in HCC tissue
samples and cells [22]. Because of this, MIR210HG is a great
marker for separating HCC tissues from normal tissues. Signif-
icant tumor growth, vascular invasion, an advanced clinical
stage, and unfavorable histological differentiation have all been
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Figure 1: In HCC patients, INKA2-AS1 expression was noticeably elevated. (a) A volcano map displayed the DEGs between HCC and
nontumor specimens. (b–d) The expression pattern of INKA2-AS1 in HCC specimens and nontumor specimens from the TCGA
datasets or the TCGA datasets plus GTEx data.
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demonstrated to be related to high levels ofMIR210HG expres-
sion. The survival research results showed that patients with
high levels of MIR210HG expression had a considerably worse
prognosis than patients with low levels of MIR210HG expres-
sion, both in their cohort and the TCGA cohort. HCC cells’
ability to proliferate, migrate, and invade was decreased when
MIR210HG was expressed less. These results indicated that
novel diagnostic and prognostic lncRNAs for HCC patients

hold substantial promise. On the other hand, it has not been
investigated how many lncRNAs function. In this study, we
discovered a new lncRNA called INKA2-AS1 that is associated
with HCC and found that it is substantially expressed in HCC.
Then, in addition to examining its connection to immune cell
infiltration, we analyzed its diagnostic and prognostic relevance
in more details. The findings of our study suggested that
INKA2-AS1 may be a novel diagnostic and predictive
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Figure 2: ROC analyses for the INKA2-AS1 expression in HCC’s diagnostic value. (a, b) HCC specimens vs. normal specimens. (c) G1 and
G2 vs. G3 and G4. (d) stage I-II vs. III-IV. (e) T1 and T2 vs. T3 and T4.
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biomarker for HCC patients, as well as a possible immune-
related biomarker for HCC patients’ treatment.

2. Methods

2.1. Microarray Data and RNA Sequencing Data. By clicking
the URL (https://xenabrowser.net/datapages/), one can
access the original mRNA expressions for the TCGA HCC
data and GTEx from the UCSC XENA database. Human
tumor samples came from the TCGA database, while normal
human samples came from both the GTEx and TCGA data-
bases. 374 liver cancer tissues and 160 healthy liver tissues
collectively provided the data for the mRNA sequencing.
33 distinct cancers’ RNA-seq transcriptome data were found
by searching the TCGA database (https://portal.gdc.cancer
.gov/). Included were the following 33 cancer types: ACC,
BRCA, BLCA, COAD, ESCA, DLBC, HNSC, GBM, KICH,
KIRC, KIRP, LGG, LIHC, LUAD, LAML, LUSC, OV,
READ, PAAD, THCA, SKCM, UCEC, STAD, TGCT,
THYM, PRAD, and UCS. We applied the Limma R package

to screen the differentially expressed genes (DEGs) between
HCC specimens and nontumor specimens. The cut-off value
was determined to be log2FC greater than 2 and FDR less
than 0.05 (FC, fold change; FDR, false discovery rate). It
was not necessary for this study to get ethical approval or
informed consent because the data on the TCGA databases
are accessible to the general public.

2.2. General Enrichment Analysis. For the differential
INKA2-AS1 obtained between single INKA2-AS1 high-/
low-expression groups, additional GO enrichment analysis
was performed. In addition, a KEGG signaling pathway
analysis was carried out in order to determine which signal-
ing pathways were engaged in the regulatory process.
“ClusterProfiler” was used to carry out these two enrichment
studies [23]. A false discovery rate (FDR) of 0.25 was chosen
as the threshold for the statistical difference between the two
enrichment analyses. Alternatively, the Metascape screening
conditions were applied, and significant differences were
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Figure 3: The expressions of INKA2-AS1 in various cancer types by analyzing (a) TCGA and (b) GTEx data and TCGA datasets.
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defined by a P value of less than 0.05, a minimum count of 3,
and an enrichment factor larger than 1.

2.3. Study of Immune Infiltration Using a Single-Sample Gene
Set Enrichment Analysis (ssGSEA). Using the ssGSEA
method using the R package “sparcl,” 24 distinct kinds of
immune cells discovered in tumor samples were examined
for their immune infiltration of HCC [24]. The gene expres-
sion profile of each tumor sample was used to calculate the
relative enrichment scores of each immune cell based on
the marker genes of 24 distinct kinds of immune cells iden-
tified in the research literature. Both the correlation between
immune cell infiltration and the groups with high and low
levels of INKA2-AS1 expression and the correlation between
immune cell infiltration and the groups with high and low
levels of INKA2-AS1 expression were examined.

2.4. Statistical Analysis. Statistical analysis was performed
using R (v.3.5.1) (R Core Team, 2018). Comparison of the
expression of INKA2-AS1 between HCC specimens and
nontumor specimens was carried out by the use of Wilcoxon
rank sum tests. We separated patients into two groups: those
whose gene expression was more than the median value and
those whose gene expression was less than the median value.
The relationship between clinical pathologic features and
INKA2-AS1 was examined using the Kruskal-Wallis test or

the Wilcoxon rank sum test in addition to logistic regres-
sion. The clinicopathological variables associated with
10-year overall survival (OS), progression-free interval
(PFI), and disease-specific survival (DSS) in TCGA patients
were identified using the Kaplan-Meier methods and Cox
regression analysis. P values were two-sided, and a statisti-
cally significant difference was defined as one with a P value
less than 0.05.

3. Results

3.1. INKA2-AS1 Expression Status in HCC Patients. In this
work, information from 374 HCC and 50 nontumor speci-
mens from TCGA databases was retrospectively examined.
938 DEGs include 859 strongly upregulated and 79 signifi-
cantly downregulated genes (Figure 1(a)). Among the 938
DEGs, INKA2-AS1 caught our attention. We discovered
that INKA2-AS1 expression was noticeably higher in HCC
tissues compared to nontumor specimens, as illustrated in
Figures 1(b)–1(d).

3.2. The Diagnostic Value of INKA2-AS1 Expression for
HCC. The diagnostic utility of INKA2-AS1 for patients with
HCC was then investigated. Using the TCGA datasets, the
ROC assays determined that HCC had high INKA2-AS1
expression, with an AUC value of 0.810 (95% CI: 0.762 to
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Figure 4: Relationship between clinicopathological traits such as (a) age, (b) gender, (c) histological grade, and (d) pathological stage and
INKA2-AS1 expression.
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0.859) (Figure 2(a)). The AUC value for high INKA2-AS1
expression in HCC was 0.817 (95% CI: 0.779 to 0.855)
in the TCGA datasets and GTEx database (Figure 2(b)).
Then, we performed subgroup assays, and the result is
not ideal for histologic grade, pathologic stage, and T stage
(Figures 2(c)–2(e)).

3.3. INKA2-AS1 Expression Analysis in Pan-Cancer. Then,
we examined the expression of INKA2-AS1 in the TCGA
and GTEx databases. The findings indicated that high
INKA2-AS1 expression was found in 14 tumors, including
ACC, CHOL, GBM, HNSC, LAML, LGG, PAAD, PCPG,
SARC, and THYM (Figures 3(a) and 3(b)). In contrast, low

INKA2-AS1 expression was found in eleven tumors, includ-
ing BLCA, COAD, BRCA, DLBC, CESC, KICH, ESCA,
LUAD, LUSC, OV, and PRAD (Figures 3(a) and 3(b)).
Our research indicated that INKA2-AS1 was crucial for the
development of tumors.

3.4. Upregulation of INKA2-AS1 Associates with Advanced
Clinicopathological Features of HCC. We separated the 374
HCC patients into two groups based on the median
INKA2-AS1 expression level, a high-expression group
(n = 187) and a low-expression group (n = 187), to study fur-
ther the clinicopathological importance of INKA2-AS1
levels in HCC patients. We observed that INKA2-AS1

Table 1: Correlation of INKA2-AS1 expression with clinicopathological features of HCC.

Characteristic Low expression of INKA2-AS1 High expression of INKA2-AS1 P

n 187 187

Age (n, %) 0.874

≤60 90 (24.1%) 87 (23.3%)

>60 97 (26%) 99 (26.5%)

Gender (n, %) 0.015

Female 49 (13.1%) 72 (19.3%)

Male 138 (36.9%) 115 (30.7%)

Histologic grade (n, %) 0.036

G1 36 (9.8%) 19 (5.1%)

G2 91 (24.7%) 87 (23.6%)

G3 52 (14.1%) 72 (19.5%)

G4 6 (1.6%) 6 (1.6%)

Vascular invasion (n, %) 0.217

No 113 (35.5%) 95 (29.9%)

Yes 51 (16%) 59 (18.6%)

Residual tumor (n, %) 0.220

R0 168 (48.7%) 159 (46.1%)

R1 6 (1.7%) 11 (3.2%)

R2 1 (0.3%) 0 (0%)

Pathologic stage (n, %) 0.023

Stage I 100 (28.6%) 73 (20.9%)

Stage II 37 (10.6%) 50 (14.3%)

Stage III 35 (10%) 50 (14.3%)

Stage IV 2 (0.6%) 3 (0.9%)

T stage (n, %) 0.030

T1 105 (28.3%) 78 (21%)

T2 39 (10.5%) 56 (15.1%)

T3 35 (9.4%) 45 (12.1%)

T4 5 (1.3%) 8 (2.2%)

M stage (n, %) 1.000

M0 133 (48.9%) 135 (49.6%)

M1 2 (0.7%) 2 (0.7%)

N stage (n, %) 0.122

N0 129 (50%) 125 (48.4%)

N1 0 (0%) 4 (1.6%)

Age (median, IQR) 61 (52, 69) 62 (51, 68) 0.492
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expression was not related to age (Figure 4(a)) but was asso-
ciated with gender, histologic grade, and pathologic stage
(Figures 4(b)–4(d)). Additionally, the outcomes of the chi-
square test supported the conclusions mentioned above
(Table 1).

3.5. The Prognostic Value of INKA2-AS1 Expression in HCC
Patients. We also performed a Kaplan-Meier analysis and a
log-rank test to investigate the predictive significance of
INKA2-AS1 expression in HCC. The findings revealed that
HCC patients with high INKA2-AS1 expression had shorter
OS (Figure 5(a), P = 0:001), DSS (Figure 5(b), P = 0:036),

and PFI (Figure 5(c), P = 0:024) than those with low
INKA2-AS1 expression. Then, we performed a Cox propor-
tional hazard regression analysis. In patients with HCC,
INKA2-AS1 expression was shown to be a standalone
predictive factor for OS (Table 2, P = 0:005), according to
multivariate analysis. However, neither the DSS (Table 3,
P = 0:093) nor the PFI (Table 4, P = 0:075) of HCC patients
showed evidence of INKA2-AS1 expression as an indepen-
dent prognostic factor.

3.6. Functional Enrichment Analysis and DEG Profiles. Based
on the median value of INKA2-AS1 expression, we split the
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Figure 5: Kaplan-Meier survival curves contrasting HCC with high and low INKA2-AS1 expression. Survival curves of HCC patients with
high and low INKA2-AS1 levels for (a) OS, (b) DSS, and (c) PFI.
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HCC patient population from the TCGA database into low-
and high-expression groups to better understand the biolog-
ical processes connected to the DEGs. There were 430 DEGs
found in all. According to the findings of the GO tests, 430
DEGs were mostly linked to the growth of the epidermis,
the skin, digestion, synapses, transmembrane transporters,
channels, and hormone function (Figure 6(a)). According
to KEGG assays, the primary enrichment areas for 430
DEGs were nicotine addiction and neuroactive ligand-
receptor interaction (Figure 6(b)).

3.7. Immune Cell Invasion and INKA2-AS1 Expression Were
Related. To ascertain the extent of immune cell infiltration,

the transcriptomes of the TCGA HCC cohort were exam-
ined using the ssGSEA approach. The number of immune
cells present in a tumor’s microenvironment was quantified
in the research using 24 immune-related genes. We found
that the expression of INKA2-AS1 was favorably correlated
with T helper cells, Th2 cells, macrophages, TFH, and NK
CD56bright cells and negatively associated with Th17 cells,
pDC, cytotoxic cells, DC, Treg, Tgd, and Tcm (Figure 7).

4. Discussion

HCC continues to be one of the most aggressive forms of
solid malignancy found anywhere in the world [25]. The

Table 2: Univariate and multivariate Cox regression analyses for overall survival.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Gender 373

Female 121 Reference

Male 252 0.793 (0.557-1.130) 0.200

Age 373

≤60 177 Reference

>60 196 1.205 (0.850-1.708) 0.295

Histologic grade 368

G1 and G2 233 Reference

G3 and G4 135 1.091 (0.761-1.564) 0.636

Pathologic stage 349

Stage I and stage II 259 Reference

Stage III and stage IV 90 2.504 (1.727-3.631) <0.001 2.352 (1.618-3.419) <0.001
INKA2-AS1 373

Low 187 Reference

High 186 1.804 (1.268-2.568) 0.001 1.722 (1.180-2.514) 0.005

Table 3: Univariate and multivariate Cox regression analyses for disease-specific survival.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Gender 365

Female 118 Reference

Male 247 0.813 (0.516-1.281) 0.373

Age 365

≤60 174 Reference

>60 191 0.846 (0.543-1.317) 0.458

Histologic grade 360

G1 and G2 227 Reference

G3 and G4 133 1.086 (0.683-1.728) 0.726

Pathologic stage 341

Stage I and stage II 254 Reference

Stage III and stage IV 87 3.803 (2.342-6.176) <0.001 3.637 (2.233-5.924) <0.001
INKA2-AS1 365

Low 186 Reference

High 179 1.612 (1.032-2.520) 0.036 1.529 (0.932-2.507) 0.093
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discovery of prognostic factors in HCC is critical for
determining the most effective therapy options and predict-
ing patients’ survival rates [26]. To this point, a wide variety
of biological markers have been reported. Growing studies
have suggested that the abnormal expressions of antionco-
gene or tumor promotors played a vital role in the tumor
growth and invasion of HCC [27, 28]. lncRNAs are the
subject of increasing investigation as a possible new class
of biomarker. In addition, several studies have discussed
the potential of lncRNAs as predictive or diagnostic bio-
markers for cancer [29, 30].

Several researches published in recent years have shown
that lncRNAs have a role in the development of HCC and
may serve as new biomarkers for HCC patients. For
instance, Zhou et al. found that the expression of the
lncRNA ID2-AS1 reduced in metastatic HCC cell lines and
in HCC tissues. This lowered expression was associated with
a poorer overall survival rate in HCC patients. lncRNA ID2-
AS1 significantly reduced the motility, invasion, and metas-
tasis of HCC cells in vitro and in vivo in HCC patients via
activating the HDAC8/ID2 pathway [31]. Li et al. demon-
strated that HCC tissues and HCC cells expressed the
lncRNA DCST1-AS1 at a high levels. High expression of
the lncRNA DCST1-AS1 was significantly correlated with a
bad outcome. In addition, the absence of the lncRNA
DCST1-AS1 led to a reduction in cell proliferation and an
acceleration of apoptosis in HCC cells, as well as an
activation of cycle arrest, a reduction in cell migration, and
an increase in autophagy. These effects were mediated by
the AKT and mTOR signaling pathways [32]. We discovered
the HCC-related lncRNA INKA2-AS1 in this investigation.
The expression of INKA2-AS1 was noticeably elevated in
HCC patients, as we initially observed. In TCGA datasets,
the diagnostic utility of INKA2-AS1 was also established.
Furthermore, we discovered that poor prognosis and

advanced stage were linked to increased expression of
INKA2-AS1. It is significant to note that multivariate analy-
sis revealed that INKA2-AS1 expression was a standalone
predictive factor for OS in HCC patients. Our research
indicated that INKA2-AS1 could be a new diagnostic and
predictive biomarker for people with HCC.

Immunotherapy, which works by boosting patients’ nat-
ural defenses against disease, has been successful in treating
a variety of malignancies and converting them into illnesses
that can be healed [33, 34]. Immune-based treatment
methods have been shown to offer survival improvements
for patients with HCC in a significant amount of preclinical
and clinical researches [35, 36]. Additionally, it is envisaged
that shortly a combination of immunotherapy and other
therapeutic modalities may be a workable alternative for
treating HCC. Additionally, recent studies have shown that
tumor-infiltrating lymphocytes, including regulatory T cells
and tumor-associated macrophages, play a critical part in
the immune evasion that occurs during the progression of
HCC [37, 38]. Because of the depletion of follicular helper
T cells caused by intratumoral PDL1, poor B cell function
was produced, which aided in the advancement of advanced
HCC. In this work, we found that the expression of INKA2-
AS1 was favorably correlated with T helper cells, Th2 cells,
macrophages, TFH, and NK CD56bright cells and negatively
associated with Th17 cells, pDC, cytotoxic cells, DC, Treg,
Tgd, and Tcm. Our research revealed that INKA2-AS1
might be crucial for immune infiltrate cells to be recruited
and regulated in HCC.

However, there are several limitations in our study. First,
given the small sample size, thorough clinical testing will be
required. Second, even though the bioinformatics study gave
us some relevant insights of INKA2-AS1 in HCC, to validate
our results and increase their therapeutic significance, we
still need to perform biological research, either in vitro or

Table 4: Univariate and multivariate Cox regression analyses for progression-free interval.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Gender 373

Female 121 Reference

Male 252 0.982 (0.721-1.338) 0.909

Age 373

≤60 177 Reference

>60 196 0.960 (0.718-1.284) 0.783

Histologic grade 368

G1 and G2 233 Reference

G3 and G4 135 1.152 (0.853-1.557) 0.355

Pathologic stage 349

Stage I and stage II 259 Reference

Stage III and stage IV 90 2.201 (1.591-3.046) <0.001 2.123 (1.531-2.944) <0.001
INKA2-AS1 373

Low 187 Reference

High 186 1.398 (1.045-1.870) 0.024 1.321 (0.972-1.795) 0.075
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significantly enhanced GO terms. (b) Important KEGG pathway.
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in vivo. To further understand the function of INKA2-AS1
on both the molecular and cellular levels, additional research
into its mechanistic studies is required.

5. Conclusion

We firstly provided evidence that demonstrated a consider-
ably elevated expression level of INKA2-AS1 in HCC
patients. As a predictive biomarker for HCC, INKA2-AS1
may function as a tumor promoter and predict prognosis
as well as immune infiltration.
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Pancreatic cancer (PC) is a malignant tumor of the digestive system that has a bad prognosis. N6-methyladenosine (m6A) is
involved in a wide variety of biological activities due to the fact that it is the most common form of mRNA modification in
mammals. Numerous research has accumulated evidence suggesting that a malfunction in the regulation of m6A RNA
modification is associated with various illnesses, including cancers. However, its implications in PC remain poorly
characterized. The methylation data, level 3 RNA sequencing data, and clinical information of PC patients were all retrieved
from the TCGA datasets. Genes associated with m6A RNA methylation were compiled from the existing body of research and
made available for download from the m6Avar database. The LASSO Cox regression method was used to construct a 4-gene
methylation signature, which was then used to classify all PC patients included in the TCGA dataset into either a low- or high-risk
group. In this study, based on the set criteria of jcorj > 0:4 and p value < 0.05. A total of 3507 gene methylation were identified to
be regulated by m6A regulators. Based on the univariate Cox regression analysis and identified 3507 gene methylation, 858 gene
methylation was significantly associated with the patient’s prognosis. The multivariate Cox regression analysis identified four gene
methylation (PCSK6, HSP90AA1, TPM3, and TTLL6) to construct a prognosis model. Survival assays indicated that the patients
in the high-risk group tend to have a worse prognosis. ROC curves showed that our prognosis signature had a good prediction
ability on patient survival. Immune assays suggested a different immune infiltration pattern in patients with high- and low-risk
scores. Moreover, we found that two immune-related genes, CTLA4 and TIGIT, were downregulated in high-risk patients. We
generated a unique methylation signature that is related to m6A regulators and is capable of accurately predicting the prognosis for
patients with PC. The findings might prove useful for therapeutic customization and the process of making medical decisions.

1. Introduction

Pancreatic cancer (PC) is among the deadliest malignancies,
with a mortality rate that ranks among the top four world-
wide [1]. At the moment, less than 10% of patients with

PC are diagnosed in the early stage of the disease [2, 3].
Due to the fact that most patients are detected at a later
stage, they are unable to undergo surgical therapy because
this treatment option is not available [4, 5]. The high death
rate is mostly attributable to a number of factors, including,
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but not limited to, the medical history of the family, genetics,
the intake of cigarettes, and chronic pancreatitis [6]. PC has
continued to have a poor clinical prognosis due to its late
presentation with vague symptoms and its early metastatic
tendency, despite the breakthroughs in cancer treatments
that have occurred during the past few decades [7, 8]. When
compared to all other types of solid tumors, the probability
of surviving PC for five years is the lowest, at 8% [9, 10].
Therefore, in order to better the prognosis for patients with
PC, there is an urgent need to discover new biomarkers for
early diagnosis and prospective therapeutic strategies to
combat the progression of cancer.

Previous research has demonstrated that mutated genes
are the primary cause of cancerous growths. Epigenetic
modifications like DNA methylation, histone acetylation,
and RNA modification have all been proven to play a role
in the development and progression of tumors [11, 12].
These epigenetic modifications have been recognized as
new treatment and prognostic targets as a result of the
expansion of research into the subject. To this day, researchers
have discovered an increasing number of posttranscriptional
changes of RNA. It was not until the 1970s that researchers
discovered N6-methyladenosine, also known as m6A, which
is now thought to be the most common and prolific posttran-
scriptional modification found in eukaryotic mRNA [13, 14].
Although just 0.1-0.4% of all adenosine in mammals is meth-
ylated as a result of m6A RNA, this type of RNA is responsible
for around 50% of all methylation ribonucleotides. The alter-
ation of m6A is involved in virtually every stage of the RNA
metabolic process, from splicing to decay [15, 16]. There is a
growing body of research that acknowledges the significant
role that m6A alteration plays in the progression of a variety
of disorders, including hypertension, cardiovascular diseases,
and acute myeloid leukemia, among others [17, 18]. Emerging
research suggests that m6A regulators may be able to mediate
gene expression levels in a variety of biological processes, such
as the formation, progression, invasion, and metastasis of can-
cer, and may also be able to function as prognostic indicators
[19–22]. In addition, a study demonstrated that there are four
distinct types of RNAmodification writers, each of which may
play an important part in the tumor microenvironment
(TME), targeted therapy, and immunotherapy in PC [23,
24]. However, it is not yet known how important the m6A-
related genes are in PC from a functional standpoint.

Gene expression profiles have been utilized as a means of
locating prognostic genes as novel biomarkers for many
types of cancer since the emergence of genome sequencing
and screening tools [25, 26]. Several research over the past
several years have established a variety of predictive models
based on m6A-related genes, m6A-related lncRNAs, and
m6A-related eRNAs [27, 28]. RNA methylation is an impor-
tant epigenetic modification that is involved in the regula-
tion of gene expression in a variety of biological processes
[29, 30]. This regulation takes place without any alterations
to the fundamental nucleotide sequence. In carcinogenesis,
aberrant RNA methylation takes place, and numerous meth-
ylation biomarkers have been exploited to predict the prog-
nosis of patients with PC [31, 32]. RNA methylation profiles
can be used to provide an accurate prediction as well as

suggest potential treatments for cancers. Therefore, research
into the predictive significance of m6A-related epigenetic
characteristics such as DNA methylation in PC is required.

2. Methods

2.1. Data Preparation. The level 3 RNA sequencing data,
methylation data, and clinical information of pancreatic
cancer patients were downloaded from TCGA datasets
(TCGA-PAAD, https://portal.gdc.cancer.gov/). m6A RNA
methylation-related genes were collected from the known
literature and were downloaded from the m6Avar database
(http://m6avar.renlab.org/). The m6Avar database was a col-
lection of information pertaining to functional variants that
were involved in the m6A alteration process. For the pur-
pose of measuring the DNA methylation data, an Illumina
Human Methylation 450 Beadchip (450K array), was uti-
lized. Across the entirety of the genome, a total of 482,421
CpG sites are going to be analyzed. The association of mean
methylation and expression of specific genes in pancreatic
cancer was compared via MEXPRESS (https://mexpress.be/).

2.2. Identification of m6A Regulator-Related Methylation. To
identify methylation regulated by m6A regulators, Pearson’s
test was performed to examine the correlation between gene
methylation value and m6A regulator expression. Pearson’s
R > 0:3 was considered to be statistically significant.

2.3. Differentially Expressed Gene (DEG) Analysis. DEG
analysis was performed based on the limma package in R
software with the set standards.

2.4. Gene Set Enrichment Analysis (GSEA). We tested for the
overrepresentation of differentially methylated genes or
genes linked with differential methylation risk scores by
using gene sets from the Molecular Signatures Database ver-
sion 6.2 (MSigDB). The reference gene sets were Hallmark,
Gene Ontology (GO), and Kyoto Encyclopedia of Genes
and Genomes (KEGG). GSEA was carried out with the help
of the fgsea package (version 1.4.1), and 10,000 permutations
were used in order to locate enriched pathways that were
shared by the high-risk group and the low-risk group. jNESj
values greater than one and a false discovery rate of less than
0.05 percent were regarded as statistically significant.

2.5. Prognosis Model Construction. Firstly, for the input gene
methylation data, univariate assays were utilized to identify
the gene methylation tightly correlated with patient survival.
Then, LASSO Cox regression of overall survival (OS) was
carried out to identify survival-related gene methylation.
Multivariate assays were used for prognosis model con-
struction (Risk score =Methylation level of geneA × coef A
+Methylation level of geneB × coef B +⋯+Methylation
level of geneN × coef N), and the risk score of each sample
in all the datasets was calculated based on the signature.
For survival analysis, the samples were divided into a high-
risk group and a low-risk group based on the median cutoff
value of the risk score. Kaplan-Meier (KM) and receiver oper-
ating characteristic (ROC) curves were used to explore the
prognostic significance of the prognosis signature.
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2.6. Immune-Related Analysis. Comparisons were made
between the CIBERSORT, ESTIMATE, MCPcounter, EPIC,
Xcell, and TIMER algorithms in order to evaluate the differ-
ences in cellular components or cellular immune responses
between the high-risk group and the low-risk group based
on the prognostic signature [33–36]. A heatmap was used
to uncover the changes in the immune response that
occurred under the influence of several algorithms. In addi-
tion, the potential response of patients to immunotherapy
was inferred by the tumor immune dysfunction and exclu-
sion (TIDE) score. Generally, a lower TIDE score indicates
a better response to immunotherapy, in which the patients
with TIDE score < 0 were regarded as immunotherapy
responders, otherwise, nonresponders. For the purpose of
quantifying the differences in tumor-infiltrating immune cell
subgroups between the two groups, the single sample gene
set enrichment analysis (ssGSEA) algorithm was utilized.

2.7. Statistical Analysis. Data were analyzed using Biocon-
ductor packages in R software(version 4.0.2, R Core Team,
Massachusetts, USA). The differences between clinical tis-

sues were tested by Student’s t-test. Log-rank test and
Kaplan-Meier analysis were used to compare the OS between
groups. The Cox proportional hazards model was used to
examine the independent significance of relevant clinical fac-
tors. A p < 0:05 was considered statistically significant.

3. Results

3.1. Identification of m6A Regulators in PC. It has been con-
firmed that the dysregulation of m6A methylation was
involved in the progression of various tumors. Thus, our
group extracted the expressions of identified m6A regulator,
including METTL3, METTL14, WTAP, RBM15, ZC3H13,
ALKBH5, FTO, HNRNPC, YTHDF2, YTHDF1, YTHDC2,
and YTHDC1. The result indicated that all these m6A regu-
lators showed an aberrant expression pattern in pancreatic
cancer (Figure 1(a)). The expression distribution of all these
m6A regulators was shown in Figures 1(b)–1(d). Based on
the set criteria of jcorj > 0:4 and p value < 0.05. A total of
3507 gene methylation were identified to be regulated by
m6A regulators (Figure 1(e)).

METTL14

FTO

ALKBH5

RBM15

YTHDF1

YTHDF2 YTHDC1
ZC3H13

METTL3

HNRNPC

YTHDC2

WTAP

(e)

Figure 1: Identification of the gene methylation regulated by m6A regulators. (a) The expression level of the m6A regulator in pancreatic
cancer and normal tissue; (b–d) the expression level of m6A regulators in TCGA-PAAD; (e) the gene methylation regulated by the m6A
regulators. ∗∗∗p < 0:001, ∗∗p < 0:01, ∗p < 0:05.
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3.2. Prognosis Model Construction. Based on the univariate
assays and identified 3507 gene methylation, 858 gene methyl-
ation was distinctly related to the clinical outcome of PC
patients. Among which, the top 50 prognosis-related gene
methylations were selected for visualization and further anal-
ysis (Figure 2(a)). LASSO regression algorithm was used for
data dimension reduction (Figures 2(b) and 2(c)). Finally,

the multivariate assays identified four gene methylation to
construct a prognosis model with the formula of Risk score
=Methylation level of PCSK6 × 11:54 +Methylation level of
HSP90AA1 × −12:68 +Methylation level of TPM3 × −7:24 +
Methylation level of TTLL6 × −17:35 (Figure 2(d)). The over-
view of our prognosis signature was shown in Figure 3(a), in
which a higher percentage of dead cases was observed in the
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Figure 2: Screening of prognosis-related gene methylation. (a) The top 50 gene methylation tightly correlated with patients’ prognosis; (b, c)
LASSO regression analysis; (d) multivariate Cox regression analysis. ∗∗p < 0:01, ∗p < 0:05.
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high-risk group. Survival assays indicated that the patients in
the high-risk group tend to have a worse prognosis
(Figure 3(b), HR = 2:82, p < 0:001). ROC curves showed
that our prognosis signature had a good prediction ability
on patient survival (Figures 3(c)–3(e)) (1-year AUC = 0:68,
3-year AUC = 0:809, and 5-year AUC = 0:806).

3.3. Clinical Correlation Analysis. To better understand the
prognosis differences between high- and low-risk patients,
we then performed a clinical correlation analysis. Results
indicated that no significant differences were observed in
patients with different ages (Figure 3(f)); PCSK6 was upreg-
ulated in female patients (Figure 3(g)); PCSK6 was overex-
pressed in G1-2 patients (Figure 3(h)); no significant
differences were observed in patients with different clinical
stages (Figure 3(i)); the T3-4 patients tend to have a lower
HSP90AA1, while a higher risk score level compared to the
T1-2 patients (Figure 3(j)); no significant differences were
observed in patients with different N stages (Figure 3(k)).

Finally, we evaluated the roles of the novel model and other
clinicopathologic parameters on the prognosis of PC with
univariate and multivariate assays. As shown in Figures 4(a)
and 4(b), we confirmed that the novel prognostic model
was an independent prognostic factor for overall survival
in PC patients.

3.4. Biological Enrichment Analysis. Underlying biological
pathway difference can lead to different prognosis perfor-
mance. For the GSEA analysis based on GO, the terms pos-
itive regulation of chromosome segregation, cysteine-type
endopeptidase inhibitor activity, structural constituent of
chromatin, phosphatidylserine metabolic process, and posi-
tive regulation of chromosome separation were the top five
enriched terms (Figure 5(a)). For the GSEA analysis based
on KEGG analysis, the cell cycle, systemic lupus erythemato-
sus, base excision repair, DNA replication, and ether lipid
metabolism were the top five enriched terms (Figure 5(b)).
For the GSEA analysis based on the Hallmark gene set, the
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Figure 3: Prognosis signature. (a) The overview of the prognosis model; (b) KM survival curve of high- and low-risk patients; (c–e) the ROC
curve of 1-, 3-, and 5-year survival; (f–k) clinical correlation of model gene methylation and risk score.
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terms interferon alpha response, MYC targets, mTORC1 sig-
naling, oxidative phosphorylation, and Notch signaling were
the top five enriched terms (Figure 5(c)).

3.5. Immune-Related Analysis. The tumor immune microen-
vironment plays an important role in tumor progression.
We next quantified the tumor immune microenvironment
based on multiple algorithms, including CIBERSORT,
ESTIMATE,MCPcounter, EPIC, Xcell, and TIMER. The result
indicated a different immune infiltration pattern in patients
with high- and low-risk scores (Figure 6(a)). Moreover, we
found that two immune-related genes CTLA4 and TIGIT were
downregulated in high-risk patients (Figure 6(b)). Also, we
explored the underlying effect of risk score on TIDE, immune
dysfunction, and immune exclusion, while no significant differ-
ence was found (Figures 6(c)–6(e)).

4. Discussion

PC is one of the most dangerous types of malignant tumors
[37]. According to the latest statistics on cancer in 2019, the
incidence and mortality rates of pancreatic cancer are only
second to those of colorectal cancer among malignancies

that affect the digestive tract [38, 39]. Studies conducted in
clinical settings have indicated that resistance to chemother-
apy is the single most important factor that restricts treat-
ment options for pancreatic cancer. This factor also adds
to the disease’s low survival rate and bad prognosis [40,
41]. The TNM staging system is typically applied in practice
for the purposes of classifying cancer patients and choosing
appropriate treatments for them [42]. Yet, due to the wide
variety of cancers, even those at the same stage may respond
differently to therapy. High-throughput sequencing has
grown increasingly prevalent in cancer diagnosis and treat-
ment in recent years. In addition, there has been a significant
number of research conducted on the process by which RNA
is altered in cancer. The various m6A signatures have been
identified as predictive prognosis models in many cancers,
such as hepatocellular carcinoma, renal cell carcinoma, lung
adenocarcinoma, breast cancer, and glioma [43–45].

DNA methylation, as a major epigenetic alteration, has
been implicated in the regulation of gene expression by
DNA methyltransferase (DNMT) [46, 47]. In addition, the
importance of DNA methylation in the development and
progression of cancers has been established beyond a rea-
sonable doubt. The prognosis of patients with PC has been
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Figure 4: Prognostic factors for overall survival by univariate (a) and multivariate (b) analysis.
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predicted using a variety of methylation indicators. In PC,
the prognostic prediction model that was based on the
DNA methylation site demonstrated greater prediction
effectiveness. In a previous study, an unsupervised consistent
clustering approach was used to identify two PAAD methyl-
ation subtypes, which were dubbed Cluster1 and Cluster2.
Cluster2 was shown to be linked with a more favorable prog-
nosis than Cluster1, which was found to be more common.
Fourteen methylation genes that are exclusive to each PAAD
subtype were found, and these genes might be used as
molecular markers to describe the different methylation pat-
terns that are associated with the two PAAD subtypes [48].
However, the DNA methylation signature of m6A regulators
has not been investigated in the prognostic prediction of PC.
In this study, based on the set criteria of jcorj > 0:4 and p
value < 0.05. A total of 3507 gene methylation were identi-
fied to be regulated by m6A regulators. The LASSO regres-
sion algorithm was used for data dimension reduction.
Finally, the multivariate Cox regression analysis identified
four gene methylation(PCSK6, HSP90AA1, TPM3, and
TTLL6) to construct a prognosis model. Survival analysis
indicated that the patients in the high-risk group tend to
have a worse prognosis. ROC curves showed that our prog-
nosis signature had a good prediction ability on patients’
survival. Our findings highlighted the potential of the novel
model used as a novel prognostic biomarker for PC patients.

Immunotherapy has only very recently been recognized
as a potential new treatment for PC [49]. The extracellular
matrix (ECM), stromal cells, tumor vasculature, and numer-
ous immune system cells all contribute to the TME, which is
what encourages the development and progression of cancer
[50, 51]. It is common knowledge that immune-suppressing
cells might play a role in the development of immune eva-

sion in the TME, which in turn helps tumor spread and pro-
gression. Tregs are a well-known kind of immunosuppressive
cells, and it has been demonstrated that their number is con-
nected with the prognosis of patients [52, 53]. This suggested
that the number of Tregs may be an efficient marker for deter-
mining the clinical outcome of patients with PC. Immune sup-
pression is one of the most recognizable symptoms of PC,
which is caused by the oncogenic drivers. Because of the met-
abolic reprogramming of tumor cells, which allows them to
facilitate the aerobic glycolysis process in order to adapt to
their heterogeneous microenvironment, the majority of solid
tumors depend heavily on aerobic glycolysis as a source of
energy production [54]. TME consists of more than just the
tumor cells themselves; it also contains the immune cells,
fibroblasts, and fibroblasts that surround the tumor [55]. PC
cells are difficult to penetrate and exist in a low-perfusion envi-
ronment, both of which favor metabolic rearrangement in the
PC [56]. This is because the PC is composed of dense connec-
tive tissue and has a vascular milieu. Then, we found a differ-
ent immune infiltration pattern in patients with high- and
low-risk scores. In addition, we discovered that macrophage
M0 cells were significantly different between high-risk and
low-risk signatures. This suggests that macrophage M0 cells
might be directly associated to the signature; however, the
mechanism behind this relationship has to be researched in
more depth. Thus, we came to the conclusion that the tumor
immunosuppressive microenvironment might be to blame
for the dismal prognosis that high-risk PC patients experience.

In addition, the expression and control of immune
checkpoint molecules (such as PD-1, PD-L1, PD-L2, and
CTLA-4) also play a vital role in the regulation of the
immune response [57]. This is accomplished by inhibiting
the activation of protective immune cells and enhancing
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Figure 5: Biological enrichment analysis. (a) GSEA analysis based on the GO gene set; (b) GSEA analysis based on the KEGG gene set;
(c) GSEA analysis based on the Hallmark gene set.
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immune surveillance [58]. Thus, it is not difficult to compre-
hend why the expression of immune checkpoint molecules
was found to be higher in the high-risk group in our study.
Immune checkpoint drugs are typically more effective in
cases with higher expression of immune checkpoint mole-
cules (ICIs) [59, 60]. In this study, we found two immune-
related genes CTLA4 and TIGIT were downregulated in
high-risk patients. The results need to be further studied. I
suggested that the function of CTLA4 and TIGIT in
advanced PC may be different from patients with early stage.

Several limitations exist in this study. Firstly, the clinical
data that was obtained from the TCGA databases was scant
and lacked essential details. Secondly, this was a retrospec-
tive study, and therefore, it lacked novel clinical samples
and data.

5. Conclusion

We generated a unique methylation signature that is related
to m6A regulators and is capable of accurately predicting
patients’ prognoses when they have PC. This model can be
used to aid doctors in the selection of the therapy that is
most appropriate for different individuals, and it can, thus,
optimize the clinical outcome for patients’ PC.
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Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer and ranks sixth in the incidence rate worldwide. The
role of adenylate uridylate- (AU-) rich element genes (AREGs) in HCC remains unclear. HCC-related datasets were acquired
from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Differentially expressed
AREGs (DE-AREGs) between HCC samples and healthy controls were identified. The univariate Cox and LASSO analyses
were performed to determine the prognostic genes. Furthermore, a signature and corresponding nomogram were configured
for the clinical prediction of HCC. The potential signature-related biological significance was explored using functional and
pathway enrichment analysis. Additionally, immune infiltration analysis was also performed. Finally, the expression of
prognostic genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR). A total of 189 DE-AREGs
between normal and HCC samples were identified, wherein CENPA, TXNRD1, RABIF, UGT2B15, and SERPINE1 were
selected to generate an AREG-related signature. Moreover, the prognostic accuracy of the AREG-related signature was also
confirmed. Functional analysis indicated that the high-risk score was related to various functions and pathways. Inflammation
and immune-related analyses indicated that the difference of T cell and B cell receptor abundance, microvascular endothelial
cells (MVE), lymphatic endothelial cells (lye), pericytes, stromal cells, and the six immune checkpoints was statistically
significant between the different risk groups. Similarly, RT-qPCR outcomes of these signature genes were also significant. In
conclusion, an inflammation-associated signature based on five DE-AREGs was constructed, which could act as a prognostic
indicator of patients with HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon cancers and has the second-highest mortality rates
worldwide [1]. Currently, the standard treatment for HCC
includes resection, local therapies such as ablation and
radiotherapy, and liver transplantation. However, owing to
the high recurrence and mortality rates, the prognosis of
patients with HCC remains unsatisfactory [2, 3].

As an essential cis-acting short sequence in the 3′UTR,
adenylate uridylate- (AU-) rich element (ARE) has a signif-

icant effect on mRNA stability and translation and is closely
related to mRNA decay [4, 5]. Chen and Shyu reported three
classes (class I, class II, and class III) of ARE, which were
based on the presence of an AUUUA motif in the U-rich
region [6]. Specifically, among U- or AU-rich sequences
and repeated sequences of AUUUA or non-AUUU overlap-
ping pentamers determined as ARE sequences, the latter two
forms are considered to be the least functional ARE
sequences [4, 7]. Moreover, the AU-rich binding factor 1
(AUF1) is a well-known ARE-specific RNA-binding protein
(ARE-BPs). Zhang et al. reported a novel role of AUF1 in
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promoting the development and drug resistance of HCC [8]
Furthermore, if the degradation of ARE-mRNAs was
destroyed, chronic inflammation will be induced. For exam-
ple, IL-17, a mediator implicated in chronic and severe
inflammatory diseases, can enhance the production of pro-
inflammatory mediators by attenuating the decay of ARE-
mRNAs [9]. Similarly, the correlation of the biomarkers rel-
evant to inflammatory response disorder and HCC progno-
sis was explored by Xing et al., wherein an inflammation-
related gene (IRG) risk model comprising six IRGs that
could identify tumors with low immune levels and also indi-
cate the efficacy of immunotherapy was constructed [10].

HCC is a typical inflammation-driven carcinoma with
progressive chronic nonresolving inflammation [11]. In
addition, owing to the disruption of the degradation prog-
ress of ARE-mRNA, chronic inflammation and cancer are
considered potential outcomes [12]. For example, the ARE
gene uPA is upregulated in various cancers and stimulates
angiogenesis, providing tumor cells with abundant nutrition
and oxygen [13]. COX-2 in ARE genes contributes to angio-
genesis, metastasis, and other tumor-related mechanisms in
colon cancer [14]. Additionally, AUBPs contain typical
sequences that are rich in AU bases (AREs) and can rapidly
regulate 3′-UTR harbouring ARE-binding motifs of liver
disease-related cytokines and proinflammatory molecules.
AUBPs could also be considered effective factors in HCC
progression [15]. Therefore, ARE genes are speculated to
be closely related to tumors and have promising potential
prognostic value as a new target for tumor therapy.

This study is aimed at demonstrating the prognostic
value of the ARE genes for the first time in HCC using bio-
informatics analysis and exploring its potential therapeutic
agents. This study is also aimed at aiding in the theoretical
guidance for the treatment of HCC.

2. Materials and Methods

2.1. Data Source. The TCGA-LIHC datasets were down-
loaded from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/), including 374 samples with
HCC and 50 controls. A total of 421 non-formalin-soaked
tumor tissues and normal tissues (50 normal samples, 371
HCC samples) were selected for differential expression anal-
ysis. Moreover, 363 samples were retained for constructing a
prognostic model based on extracted complete survival status
and clinical information. The GSE14520 dataset was down-
loaded from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/gds/) for external validation,
wherein 221 case samples had complete survival information.
Furthermore, the GSE54236 dataset containing 81 HCC tis-
sue samples and 80 adjacent nontumor samples was utilized
for gene expression analysis. Additionally, 4884 AREGs were
downloaded from the Adenylate Uridylate-Rich Element
Database (ARED, https://brp.kfshrc.edu.sa/ared).

2.2. Differential Expression Analysis. Limma within R was
applied to select differentially expressed genes (DEGs)
(p < 0:05 and jLog2FCj > 1) between the HCC and healthy
groups in the TCGA-LIHC datasets [16]. Following this,

TBtools were used to intersect DEGs and ARE genes to
obtain differentially expressed AREGs (DE-AREGs) [17].

2.3. Functional and Pathway Enrichment Analysis of DE-
AREGs. The Gene Ontology (GO) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment scores of
DE-AREGs were further analysed using “clusterProfiler,” with
p.adj<0.05 and q value cutoff=0.2 determining statistical sig-
nificance [18].

2.4. Construction and Validation of the DE-AREG Signature.
A total of 363 HCC samples with complete survival and clin-
ical information were used as the training set to construct an
AREG-related signature. Moreover, prognostic DE-AREGs
were screened using univariate Cox and LASSO regression
methods, which were performed using the survival and
glmnet package, respectively [19, 20]. Subsequently, the
multivariate Cox regression was used to construct the DE-
AREG signature. The risk score was calculated as follows:
Risk score =h0(t)∗ exp (β1X1+β2X2+⋯+βnXn). Follow-
ing this, the training set was classified into high- and low-
risk groups based on the median value among risk scores
of patients of HCC. Kaplan-Meier (K-M) curves were plot-
ted using the survminer package [21]. The receiver operating
characteristic (ROC) curve and the area under the curve
(AUC) were drawn using the R package survival ROC [22].
Finally, the GSE14520 dataset was used to validate the prog-
nostic performance of the signature.

2.5. Independent Prognostic Analysis. The wilcox.test function
in Rwas used to evaluate the clinical relevance of the riskmodel
based on the clinical data of HCC samples. Using the univariate
andmultivariate Cox regressionmodels, the independent prog-
nostic factors and relevant clinical parameters (p-value<0.05)
were used to establish the prognostic nomogram.

2.6. Functional Enrichment Analysis. To further investigate
the functions related to the DE-AREG signature, gene set
enrichment analysis (GSEA) was conducted using the gene

Table 1: Primers for real-time quantitative polymerase chain
reaction (RT-qPCR).

Primer Sequence

UGT2B15 F ATTTCTGTTCCCTCCTTCC

UGT2B15 R AACTGGTCCCACTTCTTCA

SERPINE1 F ACCCACCGCCGCCTCTTC

SERPINE1 R CCACCGTGCCACTCTCGT

RABIF F GGACCGCTCTCTTCTCTC

RABIF R AACTTGATGTTGCCCACG

CENPA F TCGTGGTGTGGACTTCAAT

CENPA R GCTTCTGCTGCCTCTTGTA

TXNRD1 F ATAAATGAAAAGACTGGAAAAA

TXNRD1 R GCCAAAAGTAACTATGGTAAAC

Internal reference
H-GAPDH

F CCCATCACCATCTTCCAGG

Internal reference
H-GAPDH

R CATCACGCCACAGTTTCCC
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expression data extracted from the two risk groups.
c5.go.v7.4.symbols.gmt (GO) and c2.cp.kegg.v7.4.sym-
bols.gmt (KEGG) were selected as reference gene sets. The
pathways and GO terms with jNESj > 1, NOM p value <
0.05, and FDR qvalue < 0:25 were extracted for further
analysis.

2.7. Inflammatory and Immune-Related Analyses. The differ-
ences in inflammation-related factors, cytolytic score (CYT),
antigen presentation mechanism (APM), infiltration of vascu-
lar cells, and immune checkpoints were interpreted in the two
risk groups using xCell [23]. Additionally, the single sample
GSEA (ssGSEA) algorithm was used to estimate the relative
abundance of 28 immune cells for comparison between the
risk groups [19]. Correlation analysis was performed to iden-
tify the relationship between immune cells and risk score.
Next, overlapping immune cells with r > 0:3 were obtained
that could be associated with different risk groups.

2.8. Prediction of Potential Biomarker-Drug Interactions. The
potential drugs for the signature genes were predicted based
on the Binding DB database (https://www.bindingdb.org/

bind/index.jsp), STRING database (https://cn.string-db
.org), and ZINC15 database (https://zinc15.docking.org/).
In the Binding DB database, the drugs with affinity value <
50 were selected first, and then, these drugs were screened
in the STRING database with a confidence value = 0:85. In
the ZINC15 database, the potential drugs with the lowest
affinity according to the molecular docking score were
selected.

2.9. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR) Analysis and Validation of the Signature Genes in Cell
Lines. Total RNA was collected from the nontumorigenic
hepatocyte cell line (WRL68) and three HCC tumor cell
lines (Huh-7, HepG2, and Sk-Hep-1) using a TRIzol reagent
(Invitrogen, Eugene, OR, USA). The first-strand cDNA was
synthesized with superScript RT I First-Strand cDNA Syn-
thesis All-in-One™ First-Strand cDNA Synthesis Kit (Servi-
cebio, Wuhan, China). The 2x Universal Blue Sybr Green
qPCR Master Mix (Servicebio, Wuhan, China) was used
for RT-qPCR detection. The primers used in this study are
presented in Table 1. The 2-ΔΔCt method was used for the
expression detection of the signature genes [24].

TCGA-HCC queue ARED database

4884 ARE genesDiferentially expressed genes

Diferentially expressed ARE genes (DAREGs)

Construction and validation of prognostic models

Clinical correlation and independent prognostic analysis of prognostic models

Functional enrichment analysis of GSEA in high and low risk groups

Infammation and immune
score analysis in high and
low risk groups

Analysis of vessel and
stromal cell content in
high and low risk groups

Immune checkpoint
analysis in high and
low risk groups

Analysis of immune
infltration in high
and low risk groups

Potential drug prediction based on biomarkers

Validation of the expression levels of biomarkers in cell line

Figure 1: Workflow of the study on AREG prognostic signatures for HCC.
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3. Results

We conducted our study as presented in the workflow
(Figure 1). A total of 1512 genes were identified as differently
expressed at mRNA level in tumor tissues (n = 371) when
compared with that of normal tissues (n = 50) [25]. More-
over, the following software was used in this study: xCell
(v.1.1.0), limma (v.3.44.3), ggplot2 (v.3.3.2), TBtools
(v.1.098661), clusterProfiler (v.3.16.0), Survival (v.3.2 3),

pROC (v.1.16.2), psych (v.2.0.9), GSVA (v.1.38.2), rms
(v.5.4-1), and Vina (v.1.1.2).

3.1. Identification of DE-AREGs. We identified 1512 DEGs
between HCC and normal samples, including 1046 upregu-
lated and 366 downregulated DEGs (Figure 2(a)). Following
this, 189 overlapping genes were obtained between 1512
DEGs and 4884 AREGs, which were considered DE-
AREGs (Figure 2(b)). Furthermore, the hypergeometric
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Figure 2: A total of 180 DE-AREGs were selected. (a) Volcano plot of 1512 differentially expressed genes (DEGs). Red, upregulation; green,
downregulation. (b) Venn diagram of the 189 overlapping genes.
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Figure 3: Functional enrichment analysis. (a) GO annotation of DE-AREGs with the top 10 enrichment scores. (b) Top 10 KEGG pathways
of DE-AREGs.

4 Mediators of Inflammation



68

1.0

0.5

0.0

C
oe

f
ci

en
ts

–0.5

–1.0

–1.5

–8 –7 –6 –5
Log lambda

–4 –3 –2

66 63 49 24 13 2

(a)

13.5

14.0

13.0

12.5

12.0

11.5

Pa
rt

ia
l l

ik
el

ih
oo

d 
de

vi
an

ce

Lambda.min=0.047

Lambda.Ise
0.156

68 6668 67 66 62 58 47 30 22 1315 347 0

–8 –7 –6 –5
Log (𝜆)

–4 –3 –2

(b)

p value Hazard ratio

TXNRD1 <0.001 1.344 (1.145–1.577)

1.419 (1.142–1.764)

0.914 (0.841–0.993)

1.084 (0.978–1.201)

1.281 (0.912–1.801)

0.0 0.5 1.0
Hazard ratio

1.5

0.002

0.034

0.125

0.153

CENPA

UGT2B15

SERPINE1

RABIF

(c)

Figure 4: Five signature genes were generated based on the LASSO Cox regression. (a, b) Construction of the LASSO Cox regression model.
(c) Forest map of the multivariate Cox results.

Table 2: Top five differentially expressed adenylate uridylate-rich element genes (DE-AREGs) identified using the multivariate Cox
regression analysis.

ID Coef HR HR.95L HR.95H p value

TXNRD1 0.295306992 1.343538751 1.144714554 1.576896501 0.000301488

CENPA 0.35019523 1.41934462 1.142163909 1.763791637 0.00158281

UGT2B15 0.089964684 0.913963462 0.841185018 0.99303862 0.03358938

SERPINE1 0.080432278 1.08375545 0.977870418 1.201105845 0.125189516

RABIF 0.247936243 1.281378233 0.911795369 1.800766085 0.15326473
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Figure 5: The prognostic value of the five gene signatures in the training set. (a) Distribution of risk score, survival time, and heatmap of the
five gene signatures in the training set. (b) Kaplan-Meier curve of patients with HCC having different risk scores (p < 0:0001). (c) The
receiver operating characteristic (ROC) curve evaluating the validity of the risk model.

6 Mediators of Inflammation



Risk

Risk

TXNRD1

UGT2B15

SERPINE1

CENPA

RABIF

Low

GSE14520 set

High

3

2

1

0

–1

–2

–3

0

2

1

3

4

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

5

4.5

5.0

5.5

6.0

7.0

6.5

Ri
sk

 sc
or

e

7.5

Alive
Dead

GSE14520 set

200150100500

200150100500

Low_risk
High_risk

(a)

Risk=high
Risk=lowRi

sk

0

0.00

0.25

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00
Kaplan–Meier curve for survival

0.75

1 32 6
Time (years)

p=0.00047

5

0 1 32 6
Time (years)

5

Number at risk
111

110

89

98

55

81

65

88

48

76

18

24

0

0

Risk
Risk=high
Risk=low

(b)

0.0

0.0

0.2 0.4
False positive rate

0.6

1 year (AUC=0.605)
3 years (AUC=0.630)
5 years (AUC=0.641)

0.8 1.0

0.2

0.4

Tr
ue

 p
os

iti
ve

 ra
te

0.8

1.0

0.6

(c)

Figure 6: Risk model validation is in the GSE14520 dataset. (a) Risk score, survival time, and gene expression heatmaps were plotted in the
validation set (GSE14520 dataset). (b) Kaplan-Meier analysis in the validation set (GSE14520 dataset) (p < 0:001). (c) The receiver operating
characteristic (ROC) curve evaluating the validity of the risk model.
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distribution of the intersection data in the Venn graph was
analysed using the Phyper function of R language. A signif-
icant overlap between the non-DEGs and AREG sets was
observed (p=2.42e− 46), indicating that the AREGs tend
to be stable between tumor and normal samples.

3.2. Functional and Pathway Enrichment of Different Risk
Groups. From the perspective of the biological roles of the
189 DE-AREGs, a total of 59 GO terms were enriched,
including biological process (BP) of 52 terms, cell compo-
nent (CC) of six terms, and one molecular function (MF)
term. GO BP analysis suggested that 189 DE-AREGs were
relevant to mitotic nuclear division, regulation of lipid met-
abolic process, epithelial cell proliferation, etc. (Figure 3(a)).
For GO CC analysis, the top three enriched terms were con-
densed chromosome, centromeric region, and collagen-
containing extracellular matrix. For GO MF analysis, 189
DE-AREGs were related to growth factor binding. Further-
more, the KEGG pathway showed enrichment in the insulin
resistance pathway (Figure 3(b)).

Furthermore, enrichment analyses of the aforemen-
tioned DE-AREGs with different expression trends indicated
that the upregulated genes enriched 19 GO terms and down-
regulated genes enriched two GO terms; however, no KEGG
pathway enrichment was observed. Moreover, the downreg-
ulated genes annotated in GO terms included core promoter
sequence−specific DNA binding and neurotrophin receptor
binding of the MF category. The upregulated genes mainly

enriched in GO terms included epithelial cell proliferation,
regulation of lipid metabolic process, response to peptide
hormone, urogenital system development, and renal system
of BP (Figure S1).

3.3. Construction of an AREG-Related Signature. The univar-
iate Cox regression analysis was first performed with 189
DE-AREGs, and 72 DE-AREGs were screened (Table S1).
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Figure 7: Correlation analysis between AREG-related signature and clinicopathological features. (a) Correlation of risk score and
clinicopathological features. The abscissa represents clinical traits, and the ordinate represents risk score. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p <
0:001, and ∗∗∗∗p < 0:0001. ns: not significant. (b) Forest plots of independent prognostic-univariate Cox results. (c) Forest plots of
independent prognostic-multivariate Cox results.

Table 3: Results of independent prognostic-univariate analysis.

ID HR HR.95L HR.95H p value

Age 1.004326 0.986076 1.022914 0.644558

Gender 0.795005 0.493806 1.279922 0.345073

Grade 1.00493 0.735968 1.372186 0.975314

Stage 1.856679 1.448018 2.380673 0.00000107

T 1.796322 1.42663 2.261814 0.000000629

N 2.007582 0.49043 8.218068 0.332458

M 3.825294 1.199118 12.20303 0.023405

Risk score 1.44637 1.296357 1.613743 0.0000000000395

Table 4: Results of independent prognostic-multivariate analysis.

ID HR HR.95L HR.95H p value

T 1.670126 1.313847 2.123019 0.0000279

Risk score 1.392981 1.237027 1.568598 0.0000000447
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Subsequently, the LASSO Cox analysis on the 72 DE-AREGs
showed that 13 DE-AREGs were potential prognostic genes
at the lambda:min = 0:047 (Figures 4(a) and 4(b)).
Moreover, the adopted multivariate Cox analysis identified
five 5 signature genes (CENPA, TXNRD1, RABIF,
UGT2B15, and SERPINE1) (Table 2 and Figure 4(c)).
Furthermore, the five DE-AREG expressions were validated
in the GSE14520 and TCGA datasets. The expression levels
of CENPA, TXNRD1, and RABIF in the HCC groups were
significantly higher than that in the normal groups.

Contrarily, UGT2B15 and SERPINE1 were significantly
higher in the normal groups compared with the HCC
samples (Figure S2).

3.4. Evaluation and Validation of the AREG-Related
Signature. Risk score = 0.3501952×CEN-
PA+0.295307×TXNRD1+0.2479362×RABI-
F+ (−0.0899647)×UGT2B15+0.0804323× SERPINE1. The
samples of the training set were divided into the high- (182
HCC samples) and low-risk (181 HCC samples) groups
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Figure 8: Evaluation of the clinical benefit of the risk score. (a) The nomogram to predict the survival rate of patients with hepatocellular
carcinoma (HCC). (b) Calibration curves of the nomogram.
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Figure 9: Gene set enrichment analysis outcomes in different risk groups. (a) The Top2 GO significant enrichment in the high-risk group.
(b) The Top2 GO significant enrichment in the low-risk group. (c) The Top2 KEGG significant enrichment in the high-risk group. (d) The
Top2 KEGG significant enrichment in the low-risk group.
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Figure 10: Analysis of inflammation and immune response. Differences in inflammatory immune factors (a), APM score (b), vascular cell
infiltration (c), and stromal cell infiltration (d) in different risk groups were displayed. (e, f) Heatmap and box plots of immune checkpoint
expressions in different risk groups. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001. ns: not significant.
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(median risk score = 0:9064) (Figure 5(a)). Additionally, the
overall survival (OS) of HCC samples showed that a higher
risk score was accompanied by poorer OS (Figure 5(b)). Fur-
thermore, the ROC curve revealed that the AUC was greater
than 0.6 (Figure 5(c)).

Furthermore, the five DE-AREG prognostic signatures
were verified in the GSE14520 dataset. The GSE14520 data-
set was also divided into two risk groups (cutoff=5.581)

(Figure 6(a)). The performance of the K-M analysis and
AUC values were per the training set (Figures 6(b) and
6(c)), indicating that the five AREG-related signatures had
higher specificity and sensitivity for HCC.

3.5. Independent Prognostic Value of the DE-AREG
Prognostic Signature and Construction of a Predictive
Nomogram. To estimate the correlations between the
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Figure 11: Immunoinfiltration analysis. (a) Box plot of the 28 immune cell differences in the two risk groups. (b) Heatmap of immune cell
correlation with a risk score. (c) Venn diagram of 11 differentially expressed immune cell types and three immune cell types significantly
correlated with risk score (r > 0:3). ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001. ns: not significant.
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AREG-related signature and clinicopathological features, the
risk score and clinicopathological information were com-
bined. As shown in Figure 7(a), the grade, stage, and T stage
were significantly different. Univariate analysis suggested
that stage, T/M stage, and risk score were considered essen-
tial to the prognosis of HCC (p < 0:05) (Table 3 and
Figure 7(b)). Additionally, the T stage and risk score had
an independent prognostic value for HCC (p < 0:05)
(Table 4 and Figure 7(c)).

Furthermore, a nomogram was generated with T stage
and risk score as the variables (Figure 8(a)), and the C-
index of 1, 3, and 5 years indicated that the nomogram per-
formed well (Figure 8(b)).

3.6. GO and KEGG Pathways Enriched in the Two Risk
Groups. To explore the biological function of the DEGs
between different risk groups, functional and pathway

enrichment was performed. A total of 2242 GO annotations
were correlated with high-risk scores (Table S2 and
Figure 9(a)), such as nucleotide phosphorylation and
negative regulation of the cell cycle process. The low-risk
group was found to affect the monocarboxylic acid
catabolic process and blood coagulation intrinsic pathway
(Table S3 and Figure 9(b)). Moreover, 72 KEGG pathways
were enriched in the high-risk group, such as pyrimidine
metabolism, cell cycle, and lysosome (Table S4 and
Figure 9(c)). A total of 13 KEGG pathways were enriched
in the low-risk group, such as primary bile acid
biosynthesis, fatty acid metabolism, and retinol metabolism
(Table S5 and Figure 9(d)).

3.7. Difference Analyses of Inflammation, Immune, Vascular
Cells, and Stromal Cells with Different Risk Scores. Inflamma-
tion and immune infiltration were validated to be critical to
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Figure 12: Prediction for the potential drugs of biomarkers. (a) Potential drug targets for biomarkers. Red triangles represent biomarkers
and green diamonds represent drug targets. (b) Molecular docking complex and element legend.
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HCC development. Additionally, T cell and B cell receptor
abundance and APM levels were significantly upregulated
in the low-risk group (Figures 10(a) and 10(b)). Moreover,
in the low-risk group, higher cell infiltrations were observed
in microvascular endothelial cells (MVE), lymphatic endo-
thelial cells (lye), pericytes, and stromal cells (Figures 10(c)
and 10(d)). The immune checkpoints of PDCD1, CTLA4,
HAVCR2, and TIGIT had a significant difference in differ-
ent risk groups (Figures 10(e) and 10(f)).

Furthermore, the results of immune cell infiltration sug-
gested that 11 immune cells were significantly different such
as activated CD4 T cells and eosinophils (Figure 11(a)).
Moreover, five cell types, such as activated CD4 T cell and
type 2 T helper cell, were positively correlated with risk
scores (Figure 11(b)). However, there was a significantly
negative correlation between eosinophil and risk score
(Figure 11(b)). Finally, activated CD4 T cells, type 2 T helper
cells, and eosinophils were identified as key immune cells in
different risk groups (Figure 11(c)). Additionally, the hyper-
geometric distribution of the intersection data in the Venn
graph was validated using the Phyper function of R language
(p = 0:05).

3.8. Potential Drug Prediction. To investigate the potential
drugs that regulate signature genes, the predictions were per-
formed based on the Binding DB database and ZINC15
database. In the Binding DB database, 11 drug targets were
predicted for CENPA; four drug targets were predicted for

TXNRD1; two drug targets were predicted for RABIF; two
drug targets were predicted for UGT2B15; 10 drug targets
were predicted for SERPIN1 (Figure 12(a)). In the ZINC15
database, the target drugs of TXNRD1, CENPA, UGT2B15,
SERPINE1, and RABIF were ZINC00014768621,
ZINC000167289767, ZINC000003932831, and ZINC0000
52955754, respectively (Figure 12(b)).

3.9. Validation of Signature Genes in Cell Lines by Using RT-
qPCR. Differences in the expression of the five signature
genes between the nontumorigenic hepatocyte cell line
(WRL68) and three HCC tumor cell lines (Huh-7, HepG2,
and Sk-Hep-1) were compared using RT-qPCR
(Figure 13). UGT2B15 and SERPINE1 were significantly
higher in WRL68 than in HCC cells. However, the mRNA
levels of RABIF, CENPA, and TXNRD1 were lower in
WRL68 compared with HCC cells.

4. Discussion

Owing to the progressivity of HCC, it is necessary to estab-
lish reliable prognostic signatures for HCC diagnosis and
treatment. Computational models have recently become an
effective adjunct to explore possible carcinogenic factors
and biomarkers for HCC [26]. Additionally, several vital
proteins were identified that were coded by AU-rich
mRNAs, which play a similar role in inflammation and can-
cer development [4].
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Figure 13: Real-time quantitative polymerase chain reaction (RT-qPCR) validation of five signature genes in hepatocellular carcinoma cells
and controls.
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For the treatment of HCC, histological grades and gene
expression data were utilized to construct a novel signature
for the prediction of HCC prognosis [27]. Moreover,
immune-related genes and corresponding potential com-
pounds were investigated in HCC [24]. In this study, a five
DE-AREG-based prognostic signature was generated and
validated. Furthermore, several potential drugs were identi-
fied, providing a reference for HCC treatment. Additionally,
RT-qPCR results confirmed the expression of the prognostic
genes in HCC cell lines.

RNA-seq data in the TCGA-HCC datasets was con-
ducted to investigate biomarkers related to HCC prognosis,
wherein a prognostic model comprising CENPA, TXNRD1,
RABIF, UGT2B15, and SERPINE1 was constructed. Func-
tional and pathway enrichment analyses of these model
genes showed that they could play an important role in the
prognosis of patients with HCC using various pathways.
Specifically, CENPA (centromere protein A), an essential
factor in cell division, acts on centromeres and kinetochores.
A study on breast cancer indicated that the functional alter-
ation of the CENPA-related coexpression network can affect
and contribute to the development of various cancers by tar-
geting the process of cell cycle progression [28]. Addition-
ally, a study related to HCC prognosis revealed that high
expression levels of CENPA were correlated to poor progno-
sis in patients with HCC [29], which was consistent with this
study’s findings where CENPA was considered an unfavour-
able prognostic factor for HCC prognosis. Furthermore, in
the current study, the cell cycle-related KEGG pathway was
significantly enriched in the high-risk group. The expression
of CENPA was also observed to be lower in HCC samples
compared to normal samples, indicating that CENPA could
play an important role in the prognosis of HCC patients via
cell cycle-related pathways. The overexpression of TXNRD1
(thioredoxin reductase 1) had been reported as a promising
therapeutic factor in HCC [30]. Conversely, the lipid
peroxidation-related gene SLC27A5 was found to downregu-
late TXNRD1 expression and inhibit HCC progression [31].
Notably, the fatty acid metabolism pathway was activated in
the low-risk group, indicating that the imbalance between
TXNRD1 mRNA expression and fatty acid metabolism reg-
ulation could promote poor prognosis in patients with HCC.
Furthermore, RABIF (RAB interacting factor) was mutated
in GTPase Sec4 and was speculated to be involved in cancer
cell progression, invasion, and metastasis [32, 33]. The RT-
qPCR results also demonstrated the increased expression
of RABIF in HCC cell lines. Uridine diphosphate glucuronic
acid transferase (UGT) is a crucial phase II metabolism
enzyme in the human body, mainly found in liver micro-
somes. Moreover, studies have demonstrated that the homo-
zygous D85 UGT2B15 (UDP glucuronosyltransferase family
2 member B15) allele genotype could be associated with an
increased risk of prostate cancer [34]. In this study, the uni-
variate Cox analysis revealed that UGT2B15 was a favour-
able prognostic factor. The RT-qPCR analysis also revealed
that UGT2B15 mRNA was lower in the three HCC cell lines
than that in the control group, indicating the favourable
prognostic value of UGT2B15 in HCC. SERPINE1 (serpin
family E member 1) could promote the malignant transfor-

mation of chronic hepatitis to HCC by targeting miR-145
[35–37]. Hachim et al. indicated that SERPINE1 is also
closely associated with the cell cycle process [38]. Consis-
tently, multivariate Cox results suggested that SERPINE1
was an unfavourable prognostic factor for HCC. Notably,
the gene expression results showed that SERPINE1 was
expressed lower in HCC samples than in paracancerous tis-
sues, which was contradictory to the multivariate Cox
results. Thus, we hypothesised that this phenomenon could
be due to the complex mechanism of genes and disease;
however, further experimental verification is needed.

Next, we analysed inflammatory and immune-related
differences between the risk subgroups associated with the
five DE-AREG prognostic models. The results indicated an
inconsistent immune microenvironment and inflammatory
status between the two risk subgroups. Through ssGSEA
analysis of the three essential immune cells, it was revealed
that activated CD4 T cell, type 2 T helper cell, and eosinophil
have a great relationship with the five DE-AREG prognostic
models. First, activated CD4 T cells in HCC could induce the
generation of IgG-producing plasma cells with the assistance
of macrophages. IgG further inhibited the tumor immune
response by producing cytokines [39]. Second, the neddyla-
tion pathway was activated in HCC and changed with dis-
ease development. Herein, we revealed that an activated
neddylation pathway was accompanied by a higher infiltra-
tion of Th2 cells. Meanwhile, the immunosuppressive effects
of IL-4 and IL-10 secreted by Th2 cells could further regulate
tumor growth and metastasis [40, 41]. However, Th2-
released cytokines were also influenced by the Th1/Th2
imbalance in patients with HCC [42, 43]. Additionally, it
was reported that eosinophils, originally located in the pri-
mary cancer cells, could be stimulated by eosinophilic che-
mokines and transported into the liver to promote cancer
development [44, 45]. These findings provided more possi-
bilities by targeting immunotherapy for HCC treatment.

Cui et al. identified five prognosis-related metabolic
genes that were involved in the dysregulation of the meta-
bolic microenvironment in the survival prognosis model of
patients with HCC, which was constructed using TCGA-
LIHC. They also reported on the use of these genes in met-
abolic therapy [46]. Moreover, based on TCGA-LIHC and
GSE14520 datasets, the prognosis model of HCC, which
included a nine-gene amino acid metabolism-related risk
signature, represented only amino acid metabolisms that
cause liver cancer. Meanwhile, amino acid metabolism ther-
apy was also proposed [47]. Shen et al. constructed a ten-
immune-related gene risk model to predict the survival of
patients with HCC in terms of immune regulation, provid-
ing a novel target for the treatment of patients with HCC
[48]. In comparison, the five DE-AREG prognostic models
in this study present more carcinogenic factors. Addition-
ally, multiangle therapy could be used to guide clinical ther-
apy, such as using multiple types of anticancer drugs based
on the five signature gene targets. Moreover, this model
could improve the treatment options for patients with HCC.

Currently, the presence of cirrhosis causes a considerable
challenge to the surgical treatment of HCC [1, 24]. Liver
transplantation has many limitations, such as the lack of
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an appropriate liver source or graft rejection [24, 49]. In the
treatment of patients with advanced HCC, such as first-line
sorafenib and second-line regorafenib, only certain patients
exhibited good liver function [50, 51]. Therefore, bioinfor-
matics analysis based on next-generation sequencing is
becoming an important method to identify biomarkers and
explore therapeutic drugs and pathogenesis. Moreover,
ARE genes can reliably predict the OS of patients with
HCC, and the prognostic signature was relevant to the
inflammation-associated element. However, to provide
patients with a better prognosis and aid in personalised tar-
geted therapy, further prospective trials to test the clinical
efficacy of the signature should be conducted.

5. Conclusions

Using three cohort profile datasets and integrated bioinformat-
ics analysis, five DE-AREGs were identified and referred to as
biomarkers of the inflammation-associated prognostic model
in HCC. The novel DE-AREG-based risk scoring system was
established for the clinical assessment of patients with HCC.
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Colon adenocarcinoma (COAD) is one of the tumors with the highest mortality rates. It is of the utmost significance to make an
accurate prognostic assessment and to tailor one’s treatment to the specific needs of the patient. Multiple lines of evidence point to
the possibility that genetic variables and clinicopathological traits are connected to the onset and development of cancer. In the
past, a number of studies have revealed that gamma-aminobutyric acid type A receptor subunit delta (GABRD) plays a role in
the advancement of a number of different cancers. However, its function in COAD was rarely reported. In this study, we
analyzed TCGA datasets and identified 29 survival-related differentially expressed genes (DEGs) in COAD patients. In
particular, GABRD expression was noticeably elevated in COAD specimens. There was a correlation between high GABRD
expression and an advanced clinical stage. According to the results of the survival tests, patients whose GABRD expression was
high had a lower overall survival time and progression-free survival time than those whose GABRD expression was low.
GABRD expression was found to be an independent predictive predictor for overall survival, as determined by multivariate
COX regression analysis. Additionally, the predictive nomogram model can accurately predict the fate of individuals with
COAD. In addition, we observed that GABRD expressions were positively associated with the expression of T cells regulatory
(Tregs), macrophages M0, while negatively associated with the expression of T cells CD8, T cells follicular helper, macrophages
M1, dendritic cells activated, eosinophils, and T cells CD4 memory activated. The IC50 of BI-2536, bleomycin, embelin, FR-
180204, GW843682X, LY317615, NSC-207895, rTRAIL, and VX-11e was higher in the GABRD high-expression group. In
conclusion, we have shown evidence that GABRD is a novel biomarker that is connected with immune cell infiltration in
COAD and may be utilized to predict the prognosis of COAD patients.

1. Introduction

Colon adenocarcinoma (COAD) ranks third and fourth
place in the rankings of cancer incidence and mortality all
over the world, respectively [1]. It is well known that vari-
ables such as dietary choices, age, obesity, smoking, and a
lack of physical activity are risk factors for COAD [2, 3].
The prevalence of COAD varies greatly from nation to
nation. It is believed that a number of different causes are
responsible for this variation in occurrence [4, 5]. To be
more specific, among other things, socioeconomic status is
important, with a poor socioeconomic level being related

to an increased risk of developing COAD [6, 7]. The death
rate associated with COAD has declined by around 35%
from 1990 to 2007, and it is presently down approximately
50% from its highest mortality rate. This decline can be
attributed to effective screening techniques, early interven-
tions, and improved treatment choices. However, it is
important to highlight that the decrease in overall mortality
from COAD may have obscured the death rate for young
adult patients with COAD [8, 9]. Despite the fact that target
therapies, chemotherapy, and surgery have considerably
improved the overall survival of COAD patients, around half
of all COAD patients will eventually develop distant
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metastases, which is also the most common reason why
treatments do not work [10, 11]. If the tumor has metasta-
sized to other organs, the 5-year mortality rate declines dras-
tically to 8.1%. Biomarkers, such as the microsatellite
instability state, the BRAF mutation state, and the RAS
mutation state, have been utilized to assist in the identifica-
tion of patients who are at an increased risk of the progres-
sion or recurrence of their tumors [12, 13]. As a
consequence of this, one of the primary focuses of COAD
research has shifted to the identification of molecular abnor-
malities in COAD patients.

The process of tumorigenesis is intimately connected
to the properties of cancer cells in and of themselves,
and it is an essential component of the immune system
[14, 15]. Immune cells serve a vital function in immune
surveillance and are critical components of the tumor
microenvironment (TME) [16]. Tumor-infiltrating lympho-
cytes (TILs), myeloid-derived suppressor cells (MDSCs),
tumor-associated macrophages (TAMs), and regulatory T
cells (Tregs) are all components of the immunosuppressive
microenvironment that have recently been shown to predict
poorer outcomes in solid tumors like melanoma, breast, lung,
ovarian, bladder, prostate, and renal cancer [17, 18]. Immu-
notherapy is currently considered a typical component of
treatment for a variety of solid tumors. This is due to the fact
that the immune system shows a different status in tumor
patients and is inexorably related to the formation of tumors.
High levels of stromal cells and immune cell infiltration are
present in COAD at an early stage. Monoclonal antibodies,
checkpoint inhibitors, therapeutic vaccines, adoptive cell
therapy, adjuvant immunotherapy, and cytokines and onco-
lytic virus treatments are the six groups that make up anti-
cancer immunotherapeutic methods [19, 20]. However, the
inadequate immune response has been a problem for a long
time, particularly for checkpoint inhibitors targeting PD-1
and PD-L1s in COAD [21, 22]. This is especially true in
COAD. In particular, the use of ICIs, which have been shown
to have little to no therapeutic efficacy in the majority of
patients with metastatic COAD, in view of the fact that there
are presently no drugs that have been proven to be successful
and the fact that COAD is related to low rates of survival,
immunosuppressive mechanisms that occur inside the tumor
microenvironment may offer intriguing targets for future
immunotherapy [23, 24]. This is especially relevant when
considering the context of the current situation. Therefore,
defining the immunophenotype of tumor-immune interac-
tions and finding novel indicators and therapeutic options
for COAD are both essential.

Gamma-aminobutyric acid type A receptor subunit delta
(GABRD) is a ligand-gated ion channel-type receptor that
has been linked to a wide range of neurological and psychi-
atric disease-related symptoms as well as the progression of
cancer [25]. Recent research has shed light on the potential
functional functions that GABRD played in the development
of malignancies. For instance, Zhang et al. reported that
patients who have IDH WT low-grade glioma and have
GABRD expression on their tumors could benefit from its
use as a possible independent prognostic marker. During
this time, its expression was shown to have a negative corre-

lation with the degree of TIM, which may assist to explain
the beneficial conclusion of the survival analysis. It is possi-
ble that Cg13916816 is an important CpG site that influ-
ences GABRD expression in IDH wild-type low-grade
gliomas [26]. Sawaki et al. reported that having a high level
of GABRD mRNA expression in primary human gastric
cancer tissue was related to a poor prognosis. In comparison
to the expression of control siRNA, the expression of
siGABRD in gastric cancer cells resulted in a considerable
reduction of cellular proliferation and invasion, as well as
an increase in apoptosis. The growth of gastric cancer cells
was suppressed in vitro by anti-GABRD polyclonal anti-
bodies, which also led to a reduction in the size of peritoneal
tumor nodules in the mouse xenograft model. It has been
suggested that GABRD may be a viable therapeutic target
for gastric cancer since its expression is increased in gastric
cancer tissue and it is related to a poor prognosis [27]. In
colorectal cancer, GABRD has been hypothesized to have a
role similar to that of a tumor promoter in a previous study
[28]. On the other hand, the clinical relevance of GABRD
and its connection with TME were only infrequently
recorded.

2. Materials and Methods

2.1. Patient Samples. The TCGA website was accessed in
order to retrieve the mRNA expression data as well as the
pertinent clinical information for COAD patients. It is now
being gathered that there are 41 normal tissues and 480
COAD tissues. Patients from the TCGA who were included
in later research but lacked necessary clinical information
were excluded. The following clinicopathological features
of patients were recorded: age, gender, and stage.

2.2. Pan-Cancer Analysis. The ONCOMINE database is an
integrated online data-mining platform that offers a compre-
hensive examination of the expression of the genome across
various tumor samples as well as normal control samples. In
the course of our research, we compared the levels of
GABRD transcription found in COAD samples to those
found in normal neighboring tissues. The level of statistical
significance was determined to be attained when p was less
than 0.05, the fold change (FC) was fixed at 2, and the cutoff
for statistical significance was established at 10%.

2.3. Differential Expression Analysis. In order to examine the
gene expression matrix for differences between COAD sam-
ples and normal colon samples, the limma software was uti-
lized. jlog 2ðFCÞj > 2 and a false discovery rate (FDR) of less
than 0.05 were required in order to classify genes as differen-
tially expressed genes (DEGs).

2.4. Survival Assays according to GABRD Expressions in
COAD. After classifying TCGA-COAD patients into high-
expression and low-expression groups according to the
levels of each GABRD, the differences were analyzed using
the Kaplan-Meier methods, taking into consideration the
survival information revealed by the “Surv_cutpoint” func-
tion in the survminer R package [29]. An investigation into
whether or not there was a link exists between the OS
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features of COAD patients and the expressions of each
GABRD was carried out by employing the “survival” pack-
age to conduct univariate assays. In order to determine
whether or not these variables may be considered indepen-
dent predictors of OS, multivariate assays were carried out
with the “survival” package.

2.5. Functional Enrichment Analysis. Patients diagnosed
with COAD who participated in the TCGA were classified
into high and low GABRD expression groups, respectively,
based on the median expression of GABRD expression.
The DEG analysis between these two groups was carried
out with the help of the R software DESeq2, and the criterion
for DEGs was determined to be an adjusted p value of less
than 0.05 and a log2-fold-change (FC) of more than 1.
Spearman’s correlation analysis was utilized to examine the
degree of overlap that exists between the expression of the
top 10 DEGs and GABRD. The “GOplot R” program was
used to carry out functional enrichment studies on the
DEGs. These analyses included Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
ses. The GSEA was performed with the R package cluster-
Profiler, and statistically substantially enriched function or
pathway words were considered to have an adjusted p value
of less than 0.05 and a false discovery rate of less than 0.25
[30].

2.6. Nomogram Construction. Combining the findings of the
genetic risk score model with clinical characteristics led to
the development of a nomogram that was able to accurately
forecast the 3- and 5-year OS of COAD. The calibration plot
was used to evaluate the nomogram’s ability to make accu-
rate predictions. The area under the curve (AUC) was used
to analyze the time-dependent sensitivities and specificities
of the nomogram for both the 3-year and 5-year OS ROC
curves. R was the statistical program of choice for all of the
statistical studies that were conducted. The rms package
was used to create the nomogram and calibration plots,
and the timeROC package was used to conduct the analysis
of the time-dependent ROC curve. Both packages are part of
the R program. The Hmisc package of the R program was
used to conduct comparisons of the C-index between the
nomogram and the staging systems developed by the Amer-
ican Joint Committee on Cancer. If the p values were lower
than 0.05, then the null hypothesis that there was no differ-
ence was rejected.

2.7. Analysis of the Relative Proportions of Tumor-Infiltrating
Immune Cells (TIICs) in COAD Tissues. The CIBERSORT
deconvolution technique was utilized in order to evaluate
the TIICs present in COAD samples that were taken from
the TCGA cohort [31]. Using the CIBERSORT platform,
we were able to derive the gene expression signature matrix,
consisting of 22 TIICs. The matrix data of gene expression
levels were compared with those of the signature matrix of
22 TIICs from the CIBERSORT platform. This p value serves
as a measure of confidence in the data that was collected.
Inferred proportions of TIICs were evaluated by CIBER-
SORT, and when the criterion of p < 0:05 was met, the find-

ings of those evaluations were deemed to be accurate.
Because of this, the only samples that were considered
eligible for further analysis were those with a CIBERSORT
p value of less than 0.05. In addition to that, the default set-
ting for the signature matrix’s number of permutations was
set to 100.

2.8. Immunoassay. We analyzed the link between GABRD
expression and TILs by using the data from TIMER and
TCGA. This allowed us to evaluate whether or not there
was a connection between GABRD and TILs. In order to
further investigate the impact that GABRD has on TILs,
the interaction between GABRD and immunological check-
points in each of the three groups was investigated. The
tumor immune dysfunction and exclusion (TIDE) method
was used to provide a prediction on the potential ICI
response.

2.9. Drug Sensitivity Prediction. For the purpose of predict-
ing the IC50 of chemotherapeutic medications, the “pRRo-
phetic” R package was utilized. The IC50 is a figure that
reflects how efficient a substance is at blocking particular
biological or biochemical processes.

2.10. Statistical Analysis. Statistical analyses were performed
using R software v3.5.0 (R Foundation for Statistical Com-
puting, Vienna, Austria) and GraphPad Prism v7.00
(GraphPad Software Inc., USA). The data were put through
several statistical tests that are considered to be conven-
tional. The FDR approach was used to make adjustments
for the multiple testing. p values were two-sided, and a value
of less than 0.05 was regarded as statistically significant.

3. Results

3.1. Identification of the Survival-Related DEGs in COAD
Patients. Firstly, we compared the DEGs of COAD speci-
mens and nontumor specimens against one another. As
can be seen in Figure 1(a), we identified 2088 DEGs in
COAD specimens, comprising 1000 genes with a downregu-
lation and 1088 genes with an upregulation. After that, we
carried out survival tests and located 309 genes associated
with the process of survival. A Venn diagram was used to dis-
play the genes that overlapped one another (Figure 1(b)). The
heat map displayed the expression pattern of 29 genes that
overlapped one another (Figure 1(c)). To further explore the
potential function of the critical 29 genes, we performed GO
analysis, and the results indicated that 29 genes were mainly
enriched in muscle contraction, muscle system process, acto-
myosin structure organization, synaptic vesicle, sarcomere,
exocytic vesicle, receptor-ligand activity, signaling receptor
activator activity, and G protein-coupled receptor binding
(Figure 1(d)). KEGG assays suggested that 29 genes were
mainly associated with epithelial cell signaling in Helicobacter
pylori infection (Figure 1(e)). Moreover, we performed DO
assays and found that 29 genes were mainly associated with
obstructive lung disease, lung disease, preeclampsia, allergic
rhinitis, and nasal cavity disease (Figure 1(f)).
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3.2. GABRD Expression in COAD and Normal Tissues. Then,
we used those 29 genes to do a search in the database known
as “PubMed,” and we discovered that several of those genes
had been investigated in the context of a variety of malig-
nancies, including COAD. On the other hand, very little
information on the expression and function of GABRD in
COAD has been documented. As a result, we concentrated
on GABRD. To begin, we carried out pan-cancer tests and
discovered that GABRD displayed a dysregulated level in a
wide variety of cancers. This led us to hypothesize that it
may play a role in the growth of malignancies as a regulator
(Figure 2(a)). Importantly, we showed that GABRD expres-
sion was markedly elevated in COAD tissues compared with
nontumor specimens (Figures 2(b) and 2(c)). The purpose
of this study was to investigate the diagnostic utility of
GABRD expression in COAD patients. To do so, we carried
out an ROC curve analysis, which revealed that GABRD was
a potential indicator for distinguishing COAD specimens
from nontumor specimens, with an area under the curve
(AUC) of 0.969 (Figure 2(d)).

3.3. The Prognostic Value of GABRD Expression in COAD
Patients. To determine the relevance of GABRD expression
to clinical practice, we analyzed associations between
GABRD levels and other clinical factors in COAD patients.
We discovered that COAD patients above the age of 65
had significantly higher levels of GABRD expression than
COAD patients under the age of 65 (Figure 3(a)). On the
other hand, we did not find any discernible differences in
the GABRD expression of male patients compared to female
patients (Figure 3(b)). Importantly, we identified a correla-
tion between high GABRD expression and advanced clinical
stage in COAD patients (Figures 3(c)–3(f)). The use of a
heat map was utilized in order to demonstrate the relation-
ship between GABRD expression and several clinical vari-
ables (Figure 3(g)). The prognostic value of GABRD
expression in COAD patients was investigated further, and
the results of the Kaplan-Meier survival curves indicated
that patients with high GABRD expression showed poorer
overall survival (Figure 4(a) p = 0:002) and progression-free
survival (Figure 4(b) p = 0:002) than patients with low

Systemic mastocytosis

Aggressive systemic
mastocytosis

Asthma

Upper respiratory tract
disease

Rhinitis

Nose disease

Nasal cavity disease

Allergic rhinitis

Pre−eclampsia

Lung disease

Obstructive lung disease

0.15 0.20 0.25 0.30

GeneRatio

Count
2
3

4

5

0.044

0.042

0.040

q value

(f)

Figure 1: Identification of the survival-related DEGs in COAD patients. (a) Volcano plot of 2088 DEGs in COAD specimens, including
1000 downregulated genes and 1088 upregulated genes. (b) Venn diagram showed 29 survival-related DEGs in COAD. (c) The
expressing pattern of 29 survival-related DEGs in COAD shown in heat map. (d) Bubble graph for GO enrichments. (e) Barplot graph
for KEGG pathways. (f) Disease ontology enrichment analysis of the 29 survival-related DEGs in COAD.
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Figure 2: GABRD was highly expressed in COAD patients. (a) Pan-cancer assays of GABRD expression based on TCGA datasets. (b, c) A
high expression of GABRD was observed in COAD specimens compared with nontumor specimens. (d) The diagnostic values of GABRD
expression were confirmed in screening COAD specimens from normal specimens based on TCGA datasets. ∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 3: Continued.
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GABRD expression. According to the findings of TCGA, the
area under the curve (AUC) for GABRD expression was
0.658, which indicated that GABRD has a significant predic-
tive potential for the survival of COAD patients
(Figure 4(c)). According to the findings of a univariate Cox
regression analysis, the overall survival rate was significantly
affected by age (p = 0:005), stage (p < 0:001), and GABRD
expression (p < 0:001) (Figure 4(d)). Additionally, the mul-
tivariate COX regression analysis demonstrated that
GABRD expression was an independent predictive predictor
for overall survival (Figure 4(e)). A quantitative strategy for
predicting the chance of overall survival at 1, 3, and 5 years
for COAD patients is provided by the expression level of
GABRD, which is an independent prognostic risk factor
(Figures 5(a) and 5(b)). Our findings suggested GABRD as
a novel prognostic biomarker for COAD patients.

3.4. The Biological Functions of GABRD in COAD. A total of
236 DEGs were screened (Figure 6(a)). Functional annota-
tion was conducted. GO assays revealed that GABRD-
associated DEGs were mainly involved in the muscle system
process, skin development, muscle contraction, perikaryon,
dendrite membrane, cornified envelope, heparin binding,
glycosaminoglycan binding, and sulfur compound binding
(Figures 6(b) and 6(c)). Meanwhile, KEGG pathway analysis
showed that GABRD-associated DEGs were mainly involved
in the PPAR signaling pathway (Figure 6(d)). Since the level
of GABRD expression was shown to be connected with the
grade of the tumor and the prognosis of COAD patients,
we formed the hypothesis that an increased level of GABRD
expression accelerates the growth of tumors. Our group car-
ried out GSEA and found that hallmarks of tumors such as
ACUTE_MYELOID_LEUKEMIA, GLYCOSAMINOGLY-
CAN_BIOSYNTHESIS_CHONDROITIN_SULFAT, and
_MTOR_SIGNALING_PATHWAY, NOTCH_SIGNAL-
ING_PATHWAY were dynamically correlated with the high
GABRD expression, while OLFACTORY_TRANSDUC-
TION was significantly enriched in the low GABRD expres-
sion group (Figure 6(e)).

3.5. Distribution of Tumor-Infiltrating Immune Cells.
Through the application of the CIBERSORT approach, we
investigated the pattern of immune cells. Figures 7(a) and
7(b), respectively, showed the makeup of it on COAD sam-
ples as well as the relationships among immune cells. A
number of studies have demonstrated that immune cells
have the potential to act as independent markers of survival
rates and the efficacy of immunotherapy in COAD. The next
step was to determine definitively whether or not the actions
of GABRD were linked to immune cells. Importantly, we
observed that GABRD showed a dysregulated level in several
immune cells, including T cells regulatory (Tregs), T cells
follicular helper, T cells CD4 memory activated, T cells
CD8, macrophages M0, dendritic cells activated, mast cells
resting, and eosinophils (Figure 8(a)). In addition, our group
showed that GABRD expressions were positively related to
the expressions of T cells regulatory (Tregs) and macro-
phages M0, while negatively associated with the expression
of T cells CD8, T cells follicular helper, macrophages M1,
dendritic cells activated, eosinophils, and T cells CD4 mem-
ory activated (Figures 8(b) and 8(c)).

3.6. Relationship between GABRD Expression and Immune
Checkpoints in COAD. Immune checkpoint genes (ICGs)
are fundamental to the field of immunotherapy and have a
role in both the onset and development of COAD. ICGs were
shown to have a connection to both the beginning and the
development of cancer by researchers. Additionally, it has
been suggested that the ICGs have the potential to be thera-
peutic targets for ICB treatment. The examination of the
clinical information and expression data on the many combi-
nations of ICGs that are now accessible can be of assistance in
finding targets for individualized treatment and in improving
the efficacy of the present therapeutic approaches. Then, we
found that GABRD expression was positively associated with
CD40, TNFSF14, LAIR1, TNFRSF4, TNFRSF18, CD40LG,
TNFRSF25, TNFRSF8, NRP1, CD27, and CD276 while nega-
tively associated with HHLA2 and CD44 (Figures 9(a) and
9(b)). The tumor mutation burden (TMB) refers to the total
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Figure 3: Association between the expression of GABRD and clinical characteristics in COAD patients. (a) Age, (b) gender, (c) clinical
stage, (d) T stage, (e) M stage, (f) N stage. (g) The association between GABRD expression and different clinical factors was shown using
heat map. ∗p < 0:05.
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Figure 4: Correlation between GABRD expression and the long-term survival of COAD patients. (a, b) The Kaplan-Meier survival curves
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number of somatic gene variations found per million bases of
genomic DNA. These variants might be base substitutions,
insertions, or deletions. At the genetic level, tumor cells are
capable of producing a large number of specific mutations.
Every 150 nonsynonymous mutations have the potential to
produce one to two neoantigens. These neoantigens are able
to be recognized by the autoimmune system, which in turn

activates T cells and causes an immune response. We also
found that GABRD expression was negatively associated with
TMB (Figure 9(c)).

3.7. IC50 Score.When trying to assess how well patients may
react to targeted pharmacological therapy, the IC50 is an
important statistic that has to be employed. We were able
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to estimate probable alterations in the IC50 values of chemo-
therapeutic medications across the various GABRD expres-
sion groups by making use of the information that was
supplied by the GDSC. The IC50 of BI-2536, bleomycin,
embelin, FR-180204, GW843682X, LY317615, NSC-
207895, rTRAIL, and VX-11e was higher in the GABRD
high-expression group (Figure 10). As a consequence of this,
the results showed that there was a significant distinction
between the various GABRD expression groups in terms of
the distribution of IC50 values for drugs that are specifically
targeted.

3.8. Identification of GABRD Protein Expression in COAD
Specimens. In addition, in order to evaluate the expression
of GABRD in terms of the protein level, we requested immu-
nohistochemistry pictures from the HPA database. It is obvi-
ous that the protein expression of COAD was significantly
higher in tumor specimens than in normal specimens
(Figures 11(a) and 11(b)).

4. Discussion

In recent years, COAD has emerged as an increasingly seri-
ous hazard to human health all over the world and has
imposed a significant burden on society [32]. Even with
recent advancements in surgery, radiation, chemotherapy,
and immunotherapy, COAD still has a high propensity to
spread and a dismal overall survival rate [33, 34]. In addi-
tion, the traditional TNM classification method determines
a patient’s stage of cancer based not on the patient them-
selves but rather on the location and size of the tumor [35,
36]. It is challenging to individually identify the result of a
patient’s condition. Therefore, discovering molecular prog-
nostic indicators to estimate the risks and prognoses of indi-
viduals with COAD is vital for the purpose of directing
treatment.

The development of throughput sequencing technology
has helped shed light on illness-causing genes, expanded
our knowledge of disease etiology, led to the discovery of
new biomarkers, and fundamentally altered our perspective
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Figure 6: The function assays of GABRD-associated DEGs in COAD. (a) The representative DEGs associated with GABRD were shown in
heat map. (b, c) Bubble graph for GO enrichment. (d) Barplot graph for KEGG pathways. (e) Gene set enrichment analysis.
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Figure 7: TIC profiles in tumor samples and correlation analysis. (a) A barplot illustrating the percentage of 21 different TIC types found in
COAD tumor samples The names of the plot’s columns were sample IDs. (b) A heat map displaying the association between 22 different
types of TICs, with a number in each very small box representing the level of statistical significance of the link between the two types of cells.
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Figure 8: Continued.
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on the variety of human life [37, 38]. Researchers have iden-
tified a large number of genes connected to tumors that,
when combined with genomic information, provide an accu-
rate prediction of whether or not a patient’s prognosis risk is
high [39, 40]. By mining data on gene expression, a number
of researchers have examined and evaluated numerous bio-
markers connected to COAD [41, 42]. In this study, we per-
formed a comprehensive analysis and identified 29 survival-
related DEGs. Among them, our attention focused on
GABRD, which was highly expressed in many types of
tumors, including COAD. In addition, we also confirmed
its diagnostic value in screening COAD specimens from
nontumor specimens. Then, we analyzed its clinical signifi-
cance and found that high GABRD expression was associ-
ated with an advanced clinical stage and a poor prognosis.

More importantly, multivariate COX regression analysis
confirmed that GABRD expression was an independent
prognostic factor for overall survival. Our findings suggested
GABRD as a novel biomarker for COAD patients.

The TME is made up of cancer cells, stromal cells,
immune cells, and extracellular matrix, all of which have a
substantial impact on the progression of cancer [43]. The
TME contains cancer cells that can invade surrounding tis-
sues either directly or indirectly through blood and lym-
phatic vessels [44]. These infiltrated cells have the ability to
stimulate an immune response by cytokine receptors, releas-
ing cytokines and other elements that influence the progres-
sion of the tumor. In recent years, fresh research has
demonstrated that TME considerably alters the course of
tumors and has shown a possible prognostic value for cancer
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Figure 8: Correlation of TIC proportion with GABRD expression. (a) The ratio differentiation of 22 distinct types of immune cells was
shown using a violin plot, and it was compared to the median level of BTK expression. This was done using COAD tumor samples with
low or high GABRD expression levels. (b, c) Correlation between GABRD and infiltrating immune cells in COAD. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001.
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Figure 9: (a, b) The association between GABRD expression and immune checkpoints in COAD patients. (c) GABRD expression was
negatively associated with tumor mutation burden.
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Figure 10: A breakdown of the IC50 values for several targeted medicines across the various GABRD expression groups.
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prognosis, including COAD [45, 46]. These findings are now
available to the general public. The fast growth of precision
medicine has led to an increase in the number of studies in
which researchers use statistical algorithms to investigate
novel diagnostic and therapeutic targets. This homeostatic
system contributes to the progression and recurrence of can-
cer, and it has significant ramifications for chemoresistant
disease and immunotherapy. In addition to this, the thera-
peutic response is also affected by the nonimmune cellular
components of the TME [47, 48]. For instance, the tumor
treatment effect is proportional to the depth of stromal cell
invasion since TGF synthesis by fibroblasts can cause
immune cell efflux or resistance to chemotherapeutic medi-
cines. Therefore, gene expression patterns in tumor tissue
can be used to show the link between the tumor microenvi-
ronment and patient prognosis. TCGA delivered genomic
profiles as well as clinical data, which made it feasible to
study the association between genomic features and clinical
as well as prognostic aspects. In this study, we observed that
GABRD expression was positively associated with the
expression of T cells regulatory (Tregs), macrophages M0,
while negatively associated with the expression of T cells
CD8, T cells follicular helper, macrophages M1, dendritic
cells activated, eosinophils, and T cells CD4 memory acti-
vated. Based on our findings, it appeared as though GABRD
may play a significant part in the TME. In light of these find-
ings, we conducted additional research to investigate the
possible connections between GABRD and immunological
checkpoints, immunosuppressive genes, chemokines, and

chemokine receptors. We found that GABRD expression
was positively associated with CD40, TNFSF14, LAIR1,
TNFRSF4, TNFRSF18, CD40LG, TNFRSF25, TNFRSF8,
NRP1, CD27, and CD276, while negatively associated with
HHLA2 and CD44. Based on these findings, GABRD appears
to have a tight connection with the regulation of the immune
system. Patients with tumors that have high GABRD expres-
sion levels could develop an immunosuppressive condition.

We evaluated the connection between GABRD expres-
sion and IC50 values of anticancer therapies using data from
the GDSC database in order to investigate the possible role
that GABRD plays as an indicator in the process of selecting
anticancer medications. We found that the IC50 values of
BI-2536, bleomycin, embelin, FR-180204, GW843682X,
LY317615, NSC-207895, rTRAIL, and VX-11e increased in
the high-GABRD group. Based on these findings, it
appeared that individuals who had high levels of GABRD
expression may be unable to benefit from the therapies pro-
vided by the aforementioned medications.

In the end, we must clarify the limitations of this
research. Firstly, the sample size is not particularly huge;
therefore, it is important to conduct extensive clinical tests.
Secondly, we did not assess the expression profiles of
GABRD in the serum samples taken from COAD patients.
Investigating the serum biomarkers might be an effective
way to evaluate treatment responses in real-time. Thirdly,
there is a lack of information on the function of GABRD
in the control of COAD carcinogenesis on both the cellular
and molecular levels.

Normal Normal

(a)

Tumor Tumor

(b)

Figure 11: Images from the Human Protein Atlas, showing representative examples of immunohistochemistry staining for GABRD in
normal tissues as well as COAD tissues: (a) normal tissues; (b) malignant tissues.
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5. Conclusions

Overall, the findings of our research showed that the
GABRD expression level in COAD patient tissues was sig-
nificantly higher than that in normal tissues. In addition to
that, GABRD may be a novel prognostic biomarker for
COAD patients. The nomogram model can effectively pre-
dict patient survival in clinical practice. In addition to this,
one of the benefits of our research was that it was the first
study to investigate whether or not there is a connection
between GABRD expression and TME.
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Liver hepatocellular carcinoma (LIHC) is a highly lethal malignant tumor originating from the digestive system, which is a serious
threat to human health. In recent years, immunotherapy has shown significant therapeutic effects in the treatment of LIHC, but
only for a minority of patients. The basement membrane (BM) plays an important role in the occurrence and development of
tumors, including LIHC. Therefore, this study is aimed at establishing a risk score model based on basement membrane-
related genes (BMRGs) to predict patient prognosis and response to immunotherapy. First, we defined three patterns of BMRG
modification (C1, C2, and C3) by consensus clustering of BMRG sets and LIHC transcriptome data obtained from public
databases. Survival analysis showed that patients in the C2 group had a better prognosis, and Gene Set Variation Analysis
(GSVA) revealed that the statistically significant pathways were mainly enriched in the C2 group. Moreover, we performed
Weighted Correlation Network Analysis (WGCNA) on the above three subgroups and obtained 179 intersecting genes. We
further applied function enrichment analyses, and the results demonstrated that they were mainly enriched in metabolism-
related pathways. Furthermore, we conducted the LASSO regression analysis and obtained 4 BMRGs (MPV17, GNB1, DHX34,
and MAFG) that were significantly related to the prognosis of LIHC patients. We further constructed a prognostic risk score
model based on the above genes, which was verified to have good predictive performance for LIHC prognosis. In addition, we
analyzed the correlation between the risk score and the tumor immune microenvironment (TIM), and the results showed that
the high-risk scoring group tended to be in an immunosuppressed status. Finally, we investigated the relationship between the
risk score and LIHC immune function. The results demonstrated that the risk score was closely related to the expression levels
of multiple immune checkpoints. Patients in the low-risk group had significantly higher IPS scores, and patients in the high-
risk group had lower immune escape and TIDE score. In conclusion, we established a novel risk model based on BMRGs,
which may serve as a biomarker for prognosis and immunotherapy in LIHC.

1. Introduction

Liver cancer is a highly lethal malignant tumor that seriously
threatens human physical and mental health. Liver hepato-
cellular carcinoma (LIHC) is the most common pathological
type of liver cancer, accounting for more than 90% of all

cases [1]. Currently, the most common treatment options
for LIHC are surgery, ablation, microwave ablation, cryo-
therapy ablation, percutaneous ethanol injection, and
noncatheter-based therapies, but the 5-year survival rate is
less than 20% [2–4]. It is now widely recognized that the
poor prognosis of LIHC is due to the lack of appropriate
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prognostic biomarkers [5]. Therefore, it is crucial to develop
a model to identify high-risk patients and enable personal-
ized medicine for LIHC patients.

In recent years, with the deepening understanding of the
pathogenesis of the tumor, a variety of immune checkpoint
inhibitors (ICIs) based on immune checkpoints have gradu-
ally become the focus of LIHC treatment. At present, the
PD1/PD-L1 antibody is widely used in the immunotherapy
of LIHC and has achieved significant treatment effects [6].
It has been confirmed that the tumor immune environment
(TIM) is key to the immunotherapeutic effect of ICIs [7].
Therefore, it is particularly critical to clarify the specific reg-
ulation mechanism of regulating the TIM of LIHC.

The structure of the basement membrane (BM) plays a
key role in the occurrence and development of malignant
tumors [8–10]. Under normal physiological conditions, the
BM is a sheet-like structure under the epithelial cells, of
which laminin and type IV collagen are its main structural
components [11]. The BM not only resists mechanical stress
and maintains tissue shape but also regulates the adhesion
and migration of various cells, including immune cells [12].
However, under tumor conditions, the structure of the BM
is destroyed, resulting in the loss of its original shape and
function, which in turn causes abnormal migration of tumor
cells and various immune cells [8, 10, 13]. Epithelial-
mesenchymal transition (EMT) of the basement membrane
promotes the transfer of tumor cells through the lymphatic
vasculature in an intravasation and extravasation manner
[14]. The products of tumor metabolism can induce changes
in the structural components of the BM, thereby enhancing
the metastatic ability of tumors [15]. Other studies have con-
firmed that the migration ability of T cells in the dense colla-
gen matrix area around the tumor nest is significantly
reduced, and the reduction of the collagen matrix density in
the BM will enhance the infiltration of T cells in the tumor
[16]. Although this change has little effect on tumor growth,
it does improve response to anti-PD1 therapy [17, 18]. In
2022, Jayadev et al. applied bioinformatics and in vivo exper-
iments to define more than 200 genes related to BM, such as
LAMA5, MPZL2, and MATN2 [19]. Therefore, a better
understanding of the role of the basement membrane may
lead to new and promising treatments for LIHC.

In this study, we first obtained the transcriptome data
of LIHC from the TCGA database and then further ana-
lyzed and screened 4 basement membrane-related genes
(BMRGs) that were significantly associated with the prog-
nosis of LIHC. Furthermore, we constructed a prognostic
risk model by screening the BMRGs and confirmed that
the model has good predictive capacity for the prognosis
of LIHC patients. Finally, we further evaluated the differ-
ences in the risk score of this model for immune cell infil-
tration and immunotherapy response. Our study provides
a novel research direction for the monitoring of prognos-
isand evaluation of immunotherapy in LIHC.

2. Materials and Methods

2.1. Identification of BMRGs and Collection of LIHC
Transcriptome Data. First, we obtained 222 basement

membrane-related gene sets from previous studies. Next,
we used the public database TCGA to download the LIHC
transcriptome information. The survival information of the
LIHC samples was merged with the transcriptome data,
and finally, 342 LIHC samples with survival information
were obtained.

2.2. Construction of Risk Scoring Model. We obtained the
basement membrane-related gene sets associated with patient
prognosis by the LASSO Cox regression analysis. The risk
score for each LIHC patient was calculated according to an
established formula. Risk score = ðβi

∗ ExpiÞ, where Expi rep-
resents the expression level of each gene and βi represents
the coefficient of each gene [20]. ROC curves were used to
evaluate the accuracy of the predictive power of each dataset.

2.3. Consensus Clustering of 222 Basement Membrane-
Related Genes by NMF Algorithm. We applied the NMF
algorithm for consensus clustering to identify different clas-
sification patterns based on the expression of 222 BMRGs.
Then, the optimal number of clusters is selected according
to the cooccurrence coefficient, dispersion coefficient, and
silhouette coefficient [21].

2.4. Analysis of Immune Cell Infiltration in LUAD. We
applied CIBERSORT to assess the correlation between the
high- and low-risk scores and the proportion of immune cell
infiltration. CIBERSORT relies on a gene expression matrix
file (named LM22), which can specifically identify specific
genes in immune cells. The expression of this specific gene
can analyze immune cells in tissues and identify human
hematopoietic cell phenotypes [22].

2.5. IPS, ESTIMATE, and TIDE. The immunophenoscore
(IPS) is a predictor of response to anti-CTLA-4 and anti-
PD1 therapy by quantifying tumor immunogenicity, immu-
nomodulators, effector cells, and suppressor cells. This
method obtains the final IPS score by the weighted quantifica-
tion of the above components [23]. ESTIMATE (estimation of
stromal and immune cells in malignant tumor organizations
using expression data) is a novel algorithmic algorithm that
infers tumor cell structure and distinct infiltrating normal cells
from uniquely characterized genes in the transcriptional pro-
file of cancer tissues [24]. In this study, by using the ESTI-
MATE algorithm, we calculated the immune and stromal
scores to predict the correlation of risk scores with immune
and stromal levels. The tumor immune dysfunction and exclu-
sion (TIDE) is an algorithm used to predict response to
immune checkpoint inhibitors. Low TIDE scores represent
weaker immune evasion, and these patients may show a stron-
ger response to immunotherapy, while high TIDE scores rep-
resent strong immune evasion, and these patients are less
responsive to immunotherapy [25].

2.6. Statistics. In this study, gene expression data from TCGA
database were analyzed using Student’s t-test. Correlation
analysis of Spearman and Pearson was used to assess in the
TISdb database. The expression of ADAR1 was correlated
with the abundance scores of immune cells assessed using
Spearman’s correlation analysis. All analyses were performed
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with the R software (version 4.1.1, http://www.r-project.org)
loaded with the R packages (“ggplot2,” “ggpubr,” “limma,”
“survival,” “survminer,” “clusterProfiler,” “ESTIMATE,”
“enrichplot,” and “forestplot”), and the results were visualised.
p value < 0.05 was considered statistically significant.

3. Results

3.1. Consensus Clustering Analysis of BMRGs in LIHC by
NMF Algorithm. The structure of the BM regulates the

migration of tumor and immune cells in a variety of malig-
nancies [26, 27]. First, we applied the consensus clustering
analysis of the NMF algorithm to stratify 222 basement
membrane-related genes into 9 subtypes (Supplementary
Figure 1). As seen in the cophenetic, the curve decline was
most pronounced when all samples were separated into type
3, so we identified three distinct clusters of modification
modes. The three different patterns of cluster distribution
were cluster 1 (146 cases, named C1), cluster 2 (271 cases,
named C2), and cluster 3 (25 cases, named C3) (Figures 1(a)
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Figure 1: BMRG consensus cluster and relevant biological pathway. (a) Nonnegative matrix factorization (NMF) clustering was conducted,
and three subgroups were identified as the optimal value for consensus clustering. (b) Factorization rank for k = 2‐10. (c) The Kaplan-Meier
curves of overall survival (OS) for 342 LIHC patients in TCGA cohort with different BMRG clusters. The numbers of C1, C2, and C3
patients are 46, 271, and 25, respectively (log-rank test). (d) GSVA analysis heatmap for different clusters.
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and 1(b)). Next, we performed survival analysis, which
showed that C2 had a better survival prognosis, whereas C3
had the worst prognosis (Figure 1(c)). In addition, we

further conducted the GSVA on C2 and C3, and the results
showed that a variety of pathways were abnormally enriched
in the samples of C3 (Figure 1(d)).
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Figure 2: The WGCNA of the NMF phenotypes of BM. (a, b) Detailed results of the weighted gene coexpression network analysis. (c) The
relationship of module features with the consensus subgroups was assessed by ten gene modules obtained from WGCNA. (d) The results of
module-feature relationship analysis between the yellow module and the consensus subgroup C3. (e) The results of module-feature
relationship analysis between the green module and the consensus subgroup C1.
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3.2. WGCNA and Difference Analysis Based on Different
Typing of BMRGs in LIHC. Given the obtained 3 different
subtypes of LIHC based on BMRGs, we applied the weighted
gene coexpression network analysis (WGCNA) to analyze
the above subtypes. In this study, we chose 6 as the optimal
threshold (Figure 2(a)). Based on the WGCNA results, we
obtained 10 coexpressed gene modules (Figure 2(b)). The
yellow module was significantly correlated with the worst
prognosis C3, and the green module was closely correlated
with the worst prognosis C1 (Figure 2(c)). As shown in
Figures 2(d) and 2(e), there was a significant correlation
between the gene sets within these two modules and the sig-
natures in each type. In addition, we performed the differen-
tially expressed genes (DEGs) analysis on each of the three

subgroups C1, C2, and C3 and obtained a total of 745 genes
with statistical significance (Figure 3(a)). Furthermore, based
on the 3770 coexpressed genes obtained by the green and
yellow modules, we took the intersection with the above-
mentioned differential genes and finally obtained a total of
179 intersecting genes (Figure 3(b)). Finally, we applied
GO and KEGG enrichment analyses on these 179 genes,
and the results showed that they were mainly enriched in
related metabolic pathways, such as tyrosine metabolism,
fatty acid metabolism glycolysis, and adipokine signaling
pathway (Figures 3(c) and 3(d)).

3.3. Construction and Validation of BMRG Risk Scoring
Model. We first performed the LASSO regression analysis
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Figure 3: Identification and functional analysis of BMRGs. (a) Differential genes for the three molecular clusters of NMF. (b) Venn diagram
of WGCNA module genes with differential genes. (c) GO functional analysis of intersecting genes. (d) KEGG functional analysis of
intersecting genes.
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Figure 4: Continued.

10 Mediators of Inflammation



on the obtained 179 genes and screened 4 basement
membrane-related genes (Supplementary Figure 2). Next,
we randomly divided the LIHC samples in TCGA into two
cohorts, namely, the training cohort and the validation
cohort, at a ratio of 7 : 3, while using the ICGC-LIHC
cohort as the external validation cohort. Furthermore, we
constructed a LIHC risk prognostic model with basement
membrane characteristics using the four genes obtained
above. In the training, validation, and external validation

cohorts, high-risk patients had significantly worse
outcomes than low-risk patients (Figures 4(a)–4(c) and
Supplementary Figure 3). In addition, we used ROC curves
to evaluate the predictive power of the BMRG risk model,
and the results showed that the AUCs of each cohort at 1,
3, and 5 years were 0.759, 0.658, and 0.645 (training
cohort); 0.709, 0.686, and 0.504 (validation cohort); and
0.680, 0.680, 0.652, and 0.648 (external validation cohort)
(Figures 4(d)–4(f)), and these results show that the model
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Figure 4: Construction and verification of the BMRG risk model by LASSO Cox regression analysis. (a–c) The Kaplan-Meier curves for
patients with the high- and low-BMRG subgroups: (a) train cohort, (b) test cohort, and (c) ICGC cohort. (d–f) ROC curves showing the
predictive efficiency of the BMRG risk scores for 1-year, 3-year, and 5-year survival: (d) train set, (e) test set, and (f) ICGC validation
set. (g) Univariate analysis of risk scores of BMRGs and clinicopathological characteristics of LIHC. (h) Multivariate analysis of risk
scores of BMRGs and clinicopathological characteristics of LIHC.

11Mediators of Inflammation



⁎⁎

−2000

0

2000

4000

StromalScore ImmuneScore ESTIMATEScore
TM

E 
sc

or
e

Risk
Low
High

(a)

Re
la

tiv
e p

er
ce

nt
 (%

)

0

20

40

60

80

100

Low risk High risk

B cells naive
B cells memory

Plasma cells
T cells CD8
T cells CD4 naive
T cells CD4 memory resting

T cells CD4 memory activated

T cells follicular helper

T cells regulatory (Tregs)

T cells gamma delta

NK cells resting

NK cells activated
Monocytes

Macrophages M0
Macrophages M1
Macrophages M2

Dendritic cells resting

Dendritic cells activated

Mast cells resting

Mast cells activated

Eosinophils

Neutrophils

(b)

Figure 5: Continued.

12 Mediators of Inflammation



⁎ ⁎ ⁎
⁎⁎⁎

0.0

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r

T 
ce

lls
 re

gu
la

to
ry

 (t
re

gs
)

T 
ce

lls
 g

am
m

a d
el

ta

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tr
op

hi
ls

0.1

0.2

Fr
ac

tio
n

0.3

0.4

0.5

Risk

Low

High

(c)

Figure 5: Continued.

13Mediators of Inflammation



has good predictive performance. Finally, we applied the
univariate and multivariate Cox regression analyses on the
risk score combined with each clinical feature, and the
results revealed that the risk prognostic model based on
BMRG could be used as an independent prognostic factor
(Figures 4(g) and 4(h)).

3.4. Correlation Analysis between BMRG Risk Score and
LIHC Immune Microenvironment. The TIM is closely
related to tumor immune escape. To clarify their complex
relationship, we evaluated the TIM of LIHC by the ESTI-
MATE algorithm and observed that the low-risk cohort

had significantly higher stromal scores than the high-risk
cohort (Figure 5(a)). Next, we assessed the correlation
between the infiltration abundance of immune cells and
the risk score by the CIBERSORT algorithm and presented
them in the form of heatmaps and boxplots. The results
showed that the infiltrating abundance of CD8+ T cells and
plasma cells was higher in the low-risk cohort than in the
high-risk group (Figures 5(b) and 5(c)). As shown in
Figures 5(d)–5(g), we further analyzed the correlation
between the risk score and the degree of immune cell infil-
tration, and the results showed that memory B cells, M0
macrophages, and dendritic cells were positively associated
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Figure 5: The relationship between the BMRG risk score and the TIM in LIHC. (a) Correlation between the BMRG risk score and the TME score.
(b) The proportion of tumor-infiltrating immune cells in the BMRGhigh- and low-risk cohort via the CIBERSORT algorithm. (c) Comparison of
different immune cell infiltrations under high and low risk scores. (d–g) Linear relationship between BMRG risk score and immune cells.

14 Mediators of Inflammation



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
⁎ ⁎

⁎ ⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎⁎

⁎

Ri
sk

 sc
or

e

PD
CD

1
CD

27
4

CT
LA

4

H
A

V
CR

2

LA
G

3

TI
G

IT

V
SI

R

CD
22

6

KL
RD

1

CD
96

IA
PP

Risk score

PDCD1
CD274

CTLA4
HAVCR2

LAG3

TIGIT
VSIR

CD226
KLRD1

CD96

IAPP

(a)

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎

⁎⁎ ⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎ ⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎⁎

⁎ ⁎⁎⁎

⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎

⁎⁎⁎ ⁎ ⁎⁎

CD226

CD274

CD96

CTLA4

HAVCR2

IAPP

KLRD1

LAG3

PDCD1

TIGIT

VSIR

MPV17 GNB1 DHX34 MAFG

−0.1

0.0

0.1

0.2

0.3

⁎⁎⁎ p < 0.001
⁎⁎ p < 0.01
⁎ p < 0.05

Correlation

⁎⁎⁎

(b)

0.032

2.5

5.0

7.5

10.0

Low High
Risk

ip
s_

ct
la

4_
ne

g_
pd

1_
po

s

Risk

Low

High

(c)

0.031

4

6

8

10

Low High
Risk

ip
s_

ct
la

4_
po

s_
pd

1_
ne

g

Risk
Low
High

(d)

Figure 6: Continued.

15Mediators of Inflammation



with the risk score, while CD8+ was negatively associated
with the risk score. The above results strongly suggested that
the risk score of this model is closely related to the TIM of
LIHC patients.

3.5. The Role of the BMRG Risk Score in Predicting Response
to Immunotherapy. Immune checkpoints are important
receptors that regulate immune cell function and are impor-
tant predictors for evaluating immunotherapy response [28]
Therefore, we evaluated the association of 11 immune
checkpoints with risk scores of BMRGs, and the results
showed that risk scores were positively correlated with mul-
tiple immune checkpoints (Figure 6(a)). Next, we analyzed
the relationship between the 4 BMRGs in the model and
immune checkpoints, and the results demonstrated that
IAPP was negatively correlated with these genes, while other
immune checkpoints were positively correlated with 4 genes
(Figure 6(b)). Given the strong correlation between BMRG
scores and immune checkpoints, we further investigated
whether the risk scores of BMRGs could predict the
response of LIHC patients to ICIs. The IPS scoring system
is widely applied to assess response to immunotherapy at
present. In this study, we found that the IPS scores of
PD1-positive and CTLA4-positive patients were signifi-
cantly elevated in the low-risk group, and the IPS scores of
PD1-negative and CTLA4-positive patients were also signif-
icantly elevated in the low-risk group (Figures 6(c) and
6(d)). Finally, we demonstrated that high-risk patients had
stronger immune evasion and worse TIDE scores
(Figures 6(e) and 6(f)). These findings indirectly indicated
that risk scoring models based on BMRGs can be used to
assess response to immunotherapy.

3.6. GSEA of BMRG Risk Model. Our previous data sug-
gested that the BMRG risk score is closely related to the
TIM of LIHC. To further elucidate the underlying mecha-
nism, we performed GSEA by differentially expressed
genes between the high- and low-risk cohorts. The results
of the KEGG enrichment analysis showed that the high-
risk cohorts were mainly enriched in cytokine receptor
interaction, extracellular matrix receptor interaction, and
neuroligand-receptor interaction pathways (Figure 7(a)).
Meanwhile, the enrichment results of the immune gene
set showed that the high-risk cohort was mainly enriched
in B cells, CD8+ T cells, NK cells, and monocytes
(Figure 7(b)).

4. Discussion

Recurrence and metastasis are the main causes of treatment
failure in LICH. Different from traditional treatments,
immunotherapy is a promising treatment for LIHC. BM
structure plays an important role in immune cell migration
and is closely related to prognosis [29, 30]. In this study,
we first performed consensus clustering of BMRGs using
the NMF algorithm to classify all samples into three pat-
terns. In addition, through WGCNA and differential gene
analysis, the intersection between the two was further taken
to obtain a differential gene set. Moreover, LASSO regression
analysis was performed on the obtained differential gene set,
and a prognostic risk score model based on BMRGs was
constructed. Its predictive ability was further verified.
Finally, we found that a risk score model based on BMRGs
could have good predictive power for the immune microen-
vironment and immunotherapy.
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Figure 6: The BMRG risk score predicts immunotherapeutic benefits. (a) Association of BMRG risk scores with immune checkpoints. (b)
Association of four BMRGs with eleven immune checkpoints. (c, d) The proportion of patients with clinical response to anti-PD1 and anti-
CTLA4 immunotherapy in the low- or high-BMRG-risk group. (e) Differences in immune escape score between the high- and low-risk
groups. (f) Differences in TIDE scores between the high- and low-risk groups.
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In recent years, a variety of prognostic risk models based
on cell-related functional genes have been developed, which
provide favorable help for the prognosis assessment of vari-
ous malignant tumors. Luo et al. analyzed the expression of
ferroptosis-related genes in LIHC from public databases and
constructed a corresponding prognostic model. The AUC
areas for the model at 1, 3, and 5 years were 0.6838, 0.694,
and 0.559, respectively [31]. Yu et al. constructed a prognos-
tic model with good predictive ability by extracting the pyr-
optotic genes in LIHC. The AUC areas for 1, 3, and 5 years

were 0.748, 0.732, and 0.603, respectively [32]. In this study,
the AUC of our prognostic model was 0.759, 0.658, and
0.654 at 1, 3, and 5 years, respectively. Compared with pre-
vious related functional gene set models, the model estab-
lished in this study has higher predictive performance.

The BM plays an important role in both physiological
and pathological states, so the set of genes involved in
regulating the structure of the basement membrane is partic-
ularly important. In this study, we found that the risk model
based on BMRGs was closely related to the immune cell
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Figure 7: GSEA of BMRGs. (a) GSEA of KEGG gene set for the high- and low-risk cohorts of BMRGs. (b) GSEA of immune gene set for the
high- and low-risk cohorts of BMRGs.
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infiltration of LIHC. Meanwhile, we also found that the
high-risk score of this model suggested low responsiveness
to tumor immunotherapy. These evidences strongly indi-
cated that the BMRGs not only regulate the infiltration of
leukocytes but may also be related to the checkpoint func-
tion of multiple immune cells. For these surprising findings,
we intend to further develop in vitro and in vivo use in
follow-up studies to support the above inferences.

In this study, we revealed the important role of BMRGs in
LIHC, which also provides new directions for the treatment
of LIHC, but there are still many shortcomings. First, all
LIHC data in this study was derived from public databases
and lacked validation in vivo and in vitro. In addition, the
biological molecular mechanism of various genes in BMRGS
has not been explored, which greatly limits its accuracy.

In conclusion, our study revealed that BM is closely
related to LIHC progression. We provided a novel BMRG
risk model to predict LIHC patients’ survival. In addition,
our established model can provide guidance on the immune
microenvironmental status of LIHC and the efficacy of
immunotherapy. We firmly believe that the model based
on BMRGs has excellent application prospects after further
verification.
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Objective. To explore the clinicopathological features and risk factors of patients with multiple primary breast cancers and thyroid
disease. Method. An analytic approach of the reviewing method was adopted to analyze the clinical data of 80 breast cancer
patients who were admitted to our hospital from January 2020 to January 2022. They were divided into an observation group
(breast cancer with thyroid lesions) and a control group (simple breast cancer) according to whether the clinical data were
accompanied with thyroid lesions to compare the clinical characteristics, pathological types, staging characteristics, and
molecular biological characteristics of the two groups and to research the risk factors of the two groups. Result. (1) In the
comparison of clinical data, the number of people aged ≥60 in the observation group was higher than that in the control
group, and there was significant difference between the groups in the menopausal status data (P < 0:05). There was no
statistical difference between the observation group and the control group in the comparison of clinical data of the body mass
index, pregnancy frequency, labor frequency, and abortion history (P > 0:05). (2) In the comparison of pathological type and
staging data, there was no statistical difference in the comparison of data on the pathological type, histological grade, T staging,
N staging, and TNM staging between the observation group and the control group (P > 0:05). (3) In the comparison of data
on molecular biology characteristics, there was a statistical difference in the nuclear proliferation antigen data between the
observation group and the control group (P < 0:05). There was no statistical difference in the comparison of data on the
estrogen receptor, progesterone receptor, human epidermal growth factor receptor-2, and molecular typing between the
observation group and the control group (P > 0:05). (4) Logistic regression analysis showed that age, menopausal status, and
nuclear proliferation antigen index were the high-risk inflammatory factors for combined thyroid lesions (P < 0:05).
Conclusion. For patients with simple breast cancer, age, menopausal status, and nuclear proliferation antigen index are risk
factors for combined thyroid lesions. Therefore, clinical attention should be paid to the above factors in the process of clinical
treatment, and early-risk screening should be performed to achieve the purpose of improving the prognosis to the greatest extent.

1. Introduction

With the continuous development of social lifestyle, more
and more factors will affect people’s physical and mental
health [1, 2]. Among them, the most obvious factors are bio-
logical genetic factors, environment, and lifestyle, which
have also led to the increasing incidence and mortality of
cancer in recent years. However, the form of cancer preven-
tion and treatment all over the word is not very ideal.
According to some research reports [3, 4], the tumor burden

in China keeps increasing, and the number of deaths from
cancer exceeds 2.3 million throughout the year. Just from
the perspective of breast cancer, the number of new breast
cancer cases in China is 280,000 in recent years, and the
patients are mainly aged 45–55 years old. Compared with
other European and American countries, the onset time in
China is about ten years ahead of schedule. Therefore, breast
cancer has become one of the most common cancer types
among women in China, and it is also an important cause
of death for women in our country, and the incidence has

Hindawi
Mediators of Inflammation
Volume 2023, Article ID 3133554, 8 pages
https://doi.org/10.1155/2023/3133554

https://orcid.org/0009-0007-3511-3186
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3133554


been rising every year. However, there is no unified specific
cause of breast cancer, and most of the medical researchers
believe that it is related to heredity, age, body mass index,
and living habits [5, 6]. Nowadays, the levels of medical
diagnosis and treatment have been developed in China, but

breast cancer still seriously affects the physical and mental
health of female residents, so it is particularly important to
improve the diagnosis and treatment technology for breast
cancer and its related complications. Thyroid diseases mainly
include hyperthyroidism, hypothyroidism, thyroiditis, and

Table 1: Comparison of clinical characteristics between the two groups (%).

Index Observation group (n = 40) Control group (n = 40) χ2 P

Age

≤35 years old 3 (7.50) 10 (25.00)

6.372 0.04135–60 years 9 (22.50) 12 (30.00)

≥60 years old 28 (70.00) 18 (45.00)

Body mass index

<24.0 kg/m2 10 (25.00) 9 (22.50)

0.0926 0.95424.0 kg/m2–28.0 kg/m2 12 (30.00) 13 (32.50)

≥28.0 kg/m2 18 (45.00) 18 (45.00)

Pregnancy times
≤2 times 20 (50.00) 21 (52.50)

0.050 0.823>2 times 20 (50.00) 19 (47.50)

Production number
≤2 times 21 (52.50) 19 (47.50)

0.200 0.655>2 times 19 (47.50) 21 (52.50)

Abortion history
Without 21 (52.50) 20 (50.00)

0.050 0.823
Have 19 (47.50) 20 (50.00)

Menopausal status
No menopause 2 (5.00) 10 (25.00)

6.275 0.012
Menopause 38 (95.00) 30 (75.00)
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Figure 1: Comparison of clinical features between the two groups.

2 Mediators of Inflammation



thyroid tumor, which often occur in the female population.
Among them, the thyroid nodular lesion is a very common
hyperplastic disease clinically. Data [7] shows that the inci-
dence of thyroid disease is closely related to gender, age,
heredity, iodine intake, etc. Both the thyroid and breast belong
to hormone-responsive organs, and they are regulated by the
hypothalamic and pituitary systems, so it can be deduced that
the endocrine function changes of the body are closely related
to the occurrence and development of these two diseases.
Estrogen and thyroid hormones can lead to interaction and
influence on breast cancer and thyroid disease. For example,

estrogen can affect physiological and pathological changes of
the thyroid, thus leading to thyroid disease. The thyroid hor-
mone, in turn, can also increase the risk of breast cancer. Med-
ical studies on the relationship between breast cancer and the
thyroid gland are increasing in recent years, and the specific
conclusions obtained are inconsistent [8, 9]. Therefore, this
study intended to explore the clinicopathologic features and
risk factors of patients with multiple primary breast cancers
and thyroid disease, by mainly analyzing the clinical data of
80 breast cancer patients who were admitted to our hospital
from January 2020 to January 2022. The reports are as follows.

Table 2: Comparison of pathological types and stages between the two groups (%).

Index Observation group (n = 40) Control group (n = 40) χ2 P

Pathological type
Invasive ductal carcinoma 21 (52.50) 20 (50.00)

0.050 0.823
Other cancers 19 (47.50) 20 (50.00)

Histological grade

I–II 10 (25.00) 9 (22.50)

0.085 0.958III 15 (37.50) 16 (40.00)

Unknown 15 (37.50) 15 (37.50)

T staging
T0-2 20 (50.00) 21 (52.50)

0.050 0.823
T3-4 20 (50.00) 19 (47.50)

N staging
N0 21 (52.50) 19 (47.50)

0.200 0.655
N1-3 19 (47.50) 21 (52.50)

TNM staging
0+I+II 22 (55.00) 19 (47.50)

0.450 0.502
III+IV 18 (45.00) 21 (52.50)

Pathological invasive ductal carcinoma
Pathological types of other cancers
Histological grading I-II
Histological grade III
Histological classification is unknown.
T staging T0-2

T staging T3-4
N staging N0
N staging N1-3
TNM staging 0+I+II
TNM staging III+IV
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Figure 2: Comparison of pathological types and stages between the two groups.
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2. Data and Methods

2.1. General Data. An analytic approach of the reviewing
method was adopted to analyze the clinical data of 80 breast
cancer patients who were admitted to our hospital from Jan-
uary 2020 to January 2022. They were divided into an obser-
vation group (breast cancer with thyroid lesions) and a
control group (simple breast cancer) according to whether
the clinical data were accompanied with thyroid lesions.

2.1.1. Inclusion Criteria. The inclusion criteria are as follows:
(1) primary breast cancer is confirmed through clinical diag-
nosis and laboratory tests; (2) there is no treatment history
of chemotherapy, radiotherapy, endocrine therapy, and thy-
roid disease treatment; (3) thyroid diseases include nodular
goiter, thyroid adenoma, and thyroid cancer; and (4) com-
plete clinical and pathological data are available.

2.1.2. Exclusion Criteria. The exclusion criteria are as fol-
lows: (1) patients with nonprimary breast cancer; (2)
patients who lack some relevant imaging data such as B
ultrasound of the thyroid or CT; and (3) patients with
unclear consciousness and who could not cooperate with
the study.

2.1.3. Included Case Data. Strict investigation was conducted
on the inclusion and exclusion criteria in this study. A total
of 80 patients were involved in this study, and all of them
were female, aged from 24 to 79, with an average age of
47:11 ± 10:11 years. Among them, there were 40 cases of
breast cancer combined with a thyroid lesion, accounting
for 50.00%, aged from 25 to 79, with the average age of
50:99 ± 10:11 years; there were 40 patients (50.00%) with
simple breast cancer, aged from 24 to 78 years old, with an
average age of 46:33 ± 10:11 years.

Analyses of specific conditions of patients with breast
cancer combined with thyroid lesion are as follows: (1) at
the beginning of admission, 40 patients with breast cancer
coexisting with thyroid lesion were found, and 35 cases were

benign and 5 cases were malignant according to the results
of the B ultrasound and CT examination; (2) during the
follow-up period, there were 15 cases of thyroid lesions,
and 14 cases were benign and 1 case was malignant accord-
ing to the results of the B ultrasound and CT examination.

2.2. Relevant Definitions and Standards. Nodular lesion
changes of thyroid lesions are as follows: it is mainly about
the morphology description of the thyroid goiter, which
can be divided into two types according to the relevant diag-
nostic criteria—thyroid nodules with malignant signs and
benign thyroid nodules. The malignant risk of the malignant
signs of thyroid nodules involved this time is between 5%
and 90%: (1) Ultrasound examination shows that the edges
are irregular; i.e., there are infiltrations, lobulations, and
burrs; microcalcification; invasion of thyroid capsule; inter-
rupted marginal calcification; and aspect ratio > 1. (2) The
components in the solid nodules/cystic solid nodules are
manifested as hypoechoic or solid partial eccentricity.

Body weight index: it is also known as the body mass
index, which is an evaluation standard currently used inter-
nationally to judge the degree of obesity and the health of
adult groups. The body mass index could be divided into
four types: low body weight is when the body mass index
is less than 18.5 kg/m2, normal body weight is when the body
mass index is between 18.5 kg/m2 and 24.0 kg/m2, over-
weight is when the body mass index is between 24.0 kg/m2

and 28.0 kg/m2, and obesity is when the body mass index
is more than 28.0 kg/m2.

Pathological classification of breast cancer: it is mainly
divided according to the WHO pathological definition of
breast cancer and its related classification criteria.

The stages of breast cancer are divided according to the
specific tumor size, axillary lymph node metastasis, and
presence of distant metastasis.

Immunohistochemistry and molecular typing of breast
cancer: (1) When estrogen receptor and progesterone recep-
tor were positive, the tumor nucleus staining was greater

Table 3: Comparison of molecular biological characteristics between the two groups (%).

Index
Observation group

(n = 40)
Control group

(n = 40) χ2 P

Estrogen receptor
Negative 22 (55.00) 19 (47.50)

0.450 0.502
Positive 18 (45.00) 21 (52.50)

Progesterone receptor
Negative 19 (47.50) 18 (45.00)

0.050 0.823
Positive 21 (52.50) 22 (55.00)

Human epidermal growth factor receptor-2
Negative 22 (55.00) 19 (47.50)

0.450 0.502
Positive 18 (45.00) 21 (52.50)

Nuclear proliferation antigen
<14% 2 (5.00) 8 (20.00)

4.114 0.043
≥14% 38 (95.00) 32 (80.00)

Molecular typing

Breast cancer cell type A 10 (25.00) 9 (22.50)

0.100 0.992
Breast cancer cell type B 10 (25.00) 10 (25.00)

Human epidermal growth
factor receptor-2 overexpression

10 (25.00) 11 (27.50)

Three negative types 10 (25.00) 10 (25.00)
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than or equal to 1%; based on the positive internal reference
condition, the tumor nucleus staining less than 1% was con-
sidered to be negative; uncertainty is determined if normal
epithelial cells are stained but tumor nuclei are not stained
in the same specimen, or tumor nucleus staining did not
exist after multiple inspections in the same specimen. (2)
Nuclear proliferation antigen: the cells with brown granules
in the nucleus were considered to be positive, and a high
expression was when the nuclear proliferation antigen was
more than or equal to 14%, and the low expression was
when the nuclear proliferation antigen was less than 14%.
(3) Human epidermal growth factor receptor-2: it belongs
to the proto-oncogene located on the long arm of human
chromosome 17, which needs to be detected by fluorescence
in situ hybridization when the result is uncertain. (4) Molec-
ular typing was classified based on the comprehensive
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Molecular typing of three negative types

Figure 3: Comparison of molecular biological characteristics between the two groups.

Table 4: Variable assignment of influencing factors for multiple
primary breast cancers complicated with thyroid lesions.

Variable Assignment

Dependent variable

Breast cancer
Simple breast cancer = 0; combined

thyroid lesions = 1

Independent variable

Age
≤35 years old, ≥60 years old = 0;

35–60 years = 1

Menopausal status
No menopause = 0;
menopause = 1

Nuclear proliferation
antigen index

Positive = 0; negative = 1

5Mediators of Inflammation



expression of the estrogen receptor, progesterone receptor,
and nuclear proliferation antigen.

2.3. Statistical Process. SPSS 24.0 software was used for anal-
ysis. The measurement data was expressed in the form of �x
± s, and t was used for the test. The count data was
expressed in the form of %, and χ2 was used for the test.
Logistic regression analysis was used for the multifactor. P
< 0:05 indicated that the difference had statistical
significance.

3. Results

3.1. Comparison of Clinical Characteristics between the Two
Groups. The number of people aged older than or equal to
60 in the observation group was higher than that in the con-
trol group, and there was significant difference in the data of
menopausal status between the two groups (P < 0:05). There
was no statistical difference in the comparison of data, such
as body mass index, pregnancy frequency, labor frequency,
and abortion history, between the observation group and
the control group (P > 0:05), as shown in Table 1 and
Figure 1.

3.2. Comparison of Pathological Types and Stages between the
Two Groups. There was no statistical difference in the data
comparison of the pathological type, histological grade, T
staging, N staging, and TNM staging between the observa-
tion group and the control group (P > 0:05), as shown in
Table 2 and Figure 2.

3.3. Comparison of Molecular Biological Characteristics
between the Two Groups. There was statistical difference in
the data comparison of the nuclear proliferation antigen
between the observation group and the control group
(P < 0:05). There was no statistical difference in the data
comparison of the estrogen receptor, progesterone receptor,
human epidermal growth factor receptor-2, and molecular
typing between the observation group and the control group
(P > 0:05), as shown in Table 3 and Figure 3.

3.4. Multifactor Analysis. Logistic regression analysis showed
that age, menopausal status, and nuclear proliferation anti-
gen index were the high-risk factors for combined thyroid
lesions (P < 0:05), as shown in Tables 4 and 5.

4. Discussion

The concept and research of multiple primary malignant
tumors have attracted much attention in the medical field
in recent years. It was first proposed in 1989, and the data
showed [10] that after the diagnosis and treatment of the

patients’ first cancer, the chance of developing a second can-
cer would increase. At present, the specific etiology and
pathogenesis of this condition are not very clear, but it is
roughly related to many factors, including genetics, environ-
ment, and treatment. Breast cancer is a very common kind
of female malignant tumor, and it is also the main disease
type leading to the death of women, which poses a serious
threat to their physical and mental health. With the increas-
ing pace of social life and increasing physical and mental
pressure on women, a variety of internal and external factors
will affect the endocrine function of the body, and the inci-
dence of endocrine-related thyroid diseases also increases
[11]. Both the mammary gland and thyroid gland are closely
related to the body hormone levels, while the pituitary gland,
ovary, adrenal cortex, etc., which secrete hormones, play an
important role in the pathogenesis of breast cancer. Among
them, estrogen and progesterone are the most important
endocrine hormones that have been proven to influence
the pathogenesis of breast cancer based on current research
[12, 13]. The thyroid gland is also one of the organs affected
by endocrine glands, just like with breast cancer, which is
subject to the influence of the hypothalamus-pituitary-
gland axis of the human body and the proprioceptive secre-
tion control system, wherein the hypothalamus secretes a
thyroid-stimulating hormone-releasing hormone, the pitui-
tary gland secretes a thyroid-stimulating hormone, and the
thyroid gland itself secretes hormones to exert effects on
the normal morphology of the thyroid gland and its func-
tional maintenance. Thus, the occurrence of breast cancer
and thyroid disease may interact with each other, and it is
difficult to separate their associations. In the current clinical
research data, many researchers have begun to conduct in-
depth research on the relationship between breast cancer
and thyroid lesions to develop as much research data as pos-
sible in order to show the correlation between the two dis-
eases. However, more research is needed to confirm the
mechanism behind breast cancer and the thyroid [14, 15].

According to multiple data [16, 17], thyroid nodule
lesions occur in 30.7% of males and 39.9% of females, and
the incidence will be significantly increased in the female
patient population with breast cancer. Among thyroid
lesions, compared with the general population, breast cancer
patients are more likely to have thyroid lesions that are
malignant, generally about seven times that of the general
population, which shows that breast cancer patients have a
very high risk of thyroid lesions. In this study, there were a
total of 40 patients with breast cancer combined with thy-
roid lesions, including five patients with thyroid lesions of
malignant signs. The conclusion of the study was generally
consistent with the conclusion in the previous literature.
However, the prevalence rate of thyroid cancer in this study

Table 5: Multifactor analysis.

Correlative factor β Standard deviation Wald P OR 95% CI

Age 1.615 0.597 7.318 0.011 3.217 2.021–6.119

Menopausal status 1.446 0.611 5.601 0.012 3.187 2.077–4.177

Nuclear proliferation antigen index 1.721 0.356 23.370 0.003 2.995 1.336–4.369
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was low, which might be related to a small total number of
selections and many other factors. In addition, no puncture
biopsy was conducted for patients with malignant signs in
this study, so there might be a certain deviation.

According to the data [18, 19], the onset age of breast
cancer in Chinese women is mainly between 45 and 55 years
old, while, in Western countries, it is mainly around 65 years
old. The onset age of breast cancer in China has a tendency
to change towards results found in Western countries in
recent years. Studies have speculated that in 2030, there
may be about 27.0% patients over the age of 65 years old
diagnosed with breast cancer in China, which will be higher
than in previous years. For the postmenopausal elderly, their
ovarian function will decrease, together with the reduction
of estrogen and progesterone and the transformation of the
normal growth rate of mammary cells, leading to the atro-
phy of the acinus in the body. In addition, their immune
ability will be reduced due to age factors, so they are more
likely to develop cancer. Therefore, the elderly are also the
high-incidence group of thyroid disease. According to the
data [20], compared with the population aged 20–30, the
incidence of thyroid lesions in the elderly over 70 years old
is four times higher. Thus, breast cancer patients with men-
opause directly affect the prevalence of thyroid disease. In
this study, it was also shown that the differences in the age
and menopausal status between the two groups were signif-
icant (P < 0:05). Besides, multivariate analysis showed that
age and menopause were the high-risk factors for breast can-
cer patients complicated with thyroid lesions; that is, the
postmenopausal breast cancer patients aged ≥60 years old
have a greater chance of thyroid lesions. Between age and
menopausal status factors, the postmenopausal status is
more instructive than age because all patients above 60 years
old have reached menopausal status, while not all patients
who are already postmenopausal have reached 60 years
old. On the other hand, the cell proliferation antigen, which
is a regulatory factor affecting the cell proliferation and dif-
ferentiation of the body, is also a nuclear proliferation
marker with an extremely high-application value at present,
which can effectively reflect the proliferation capacity and
invasion of tumor cells, and plays a key role in maintaining
cell proliferation. Nowadays, when molecular typing is per-
formed to detect breast cancer, the cell proliferation antigen
is also one of the important judgment indicators, because
some research data have confirmed that the expression of
the cell proliferation antigen is closely related to the patho-
logical differentiation, staging, and axillary lymph metastasis
of breast cancer tissue, which can become an important indi-
cator for judging the severity and prognosis of breast cancer
patients. In addition, the cell proliferation antigen also has a
certain expression in the process of thyroid lesions, espe-
cially in thyroid papillary carcinoma, which is closely related
to the specific tumor size and thyroglobulin antibody. It is
generally believed that the higher the expression level of
the cell proliferation antigen is, the higher the recurrence
rate of the disease will be, which is an effective biological
marker for identifying benign and malignant thyroid lesions.
The patients with breast cancer and recurrent thyroid cancer
also have the phenomenon of high expression of the cell pro-

liferation antigen. This study also indicates that observation,
which shows that the nuclear proliferation antigen index
belongs to the risk factor for breast cancer combined with
thyroid lesions, which may be related to the degree of thy-
roid cell proliferation and differentiation affected by the high
expression of the nuclear proliferation antigen.

According to the data analysis of this study, among the
comparisons of clinical data, the number of people aged
≥60 in the observation group was higher than that in the
control group, and there was significant difference between
the groups in the menopausal status and nuclear prolifera-
tion antigen data (P < 0:05). There was no statistical differ-
ence in the body mass index, pregnancy frequency, labor
frequency, abortion history, pathological type, histological
grade, T staging, N staging, TNM staging, estrogen receptor,
progesterone receptor, human epidermal growth factor
receptor-2, molecular typing, and other data between the
observation group and the control group (P > 0:05). To
sum up, for patients with simple breast cancer, age, meno-
pausal status, and nuclear proliferation antigen index are
risk factors for developing combined thyroid lesions. There-
fore, clinical attention should be paid to the above factors,
and risk screening for the above factors should be conducted
in advance in the process of clinical treatment to achieve
the purpose of improving the prognosis to the greatest
extent. In this study, there are also certain research limita-
tions, such as having no thyroid function inspections for
breast cancer patients. Therefore, related inspections should
be improved in future research to identify the specific
mechanism of occurring thyroid lesions in breast cancer,
so as to provide a more accurate theoretical basis for the
relevant research on clinicopathologic characteristics and
risk factors of patients with multiple primary breast cancers
and thyroid disease.
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Background. Pulmonary tuberculosis (PTB) is a global epidemic of infectious disease; the purpose of our study was to explore new
potential biomarkers for the diagnosis of pulmonary tuberculosis and to use the biomarkers for further pan-cancer analysis.
Methods. Four microarray gene expression sets were downloaded from the GEO public databases and conducted for further
analysis. Healthy control (HC) samples and samples of pulmonary tuberculosis (PTB) were calculated with enrichment scores
in folate biosynthesis pathways. The scores acted as a new phenotype combined with clinical information (control or PTB) for
subsequent analysis. Weight gene coexpression network analysis (WGCNA) was used to seek the modules mostly related to
PTB and folate biosynthesis in training sets. Twenty-nine coexistence genes were screened by intersecting the genes in the
green-yellow module of GSE28623 and the brown module of GSE83456. We used the protein-protein interaction network
analysis to narrow the gene range to search for hub genes. Then, we downloaded the unified and standardized pan-cancer data
set from the UCSC database for correlations between biomarkers and prognosis and tumor stage differences. Results.
Eventually, RTP4 was selected as a biomarker. To verify the reliability of this biomarker, an area under the ROC (AUC) was
calculated in gene sets (GSE28623, GSE83456, and GSE34608). Lastly, to explore the difference in RTP4 expression before and
after antituberculosis treatment, the GSE31348 gene set was enrolled to compare the expressions in weeks 0 and 26. The results
showed significant differences between these two time points (p < 0:001). RTP4 was significantly upregulated in the pulmonary
tuberculosis group compared to the healthy control group in three gene sets and downregulated after antituberculosis therapy
in one gene set. These results suggest that RTP4 can be used as a potential biomarker in diagnosing tuberculosis. The results of
pan-cancer analysis showed that high expression of RTP4 in 4 tumor types was positively correlated with poor prognosis and
high expression of RTP4 in 6 tumor types was negatively correlated with poor prognosis. We found significant differences in
the expression of the RTP4 gene at different stages in 5 types of tumors. Conclusion. RTP4 might be a new potential biomarker
for diagnosing pulmonary tuberculosis.

1. Introduction

Mycobacterium tuberculosis (MTB) is one of the significant
causes of tuberculosis. According to the World Health Orga-
nization, about 5.8 million people worldwide were infected
with TB in 2020 [1]. Mycobacterium tuberculosis infection
has become a global public problem, especially in developing
countries [2].

MTB can escape immune surveillance and kill by
inhibiting oxidative stress, autophagy, and apoptosis of
cells. It also can affect antigen presentation of antigen-

presenting cells (APC) by inhibiting the synthesis of
histocompatibility complex molecules [3]. There are many
clinical trials used to test for diagnosing TB, such as
tuberculin skin test (TST), T-SPOT, smear microscope,
the culture of Mycobacterium tuberculosis, and chest X-
ray [4, 5]. But as a slow-growing intracellular parasitic
bacteria [6], the above clinical test methods have certain
false negative and hysteresis.

To search for sensitive indicators in Mycobacterium
tuberculosis infection, we use bioinformatics methods to
compare and analyze the spectrum of gene expression
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spectrum of pulmonary tuberculosis and healthy people,
hoping to find genes that play a significant role in the path-
ogenesis of PTB as potential biomarkers for diagnosing pul-
monary tuberculosis and further explore the relationship
between biomarkers and tumor prognosis and stage through
pan-cancer analysis.

2. Materials and Methods

2.1. Data Acquisition and Processing. We downloaded the
GSE28623 (GPL4133, Agilent-014850 Whole Human Genome
Microarray), GSE83456 (GPL10558, Illumina HumanHT-12
V4.0 expression beadchip), GSE34608 (GPL6480, Agilent-
014850 Whole Human Genome U133 Microarray), and
GSE31348 (GPL570, Affymetrix Human Genome U133 Plus)
from Gene Expression Omnibus (GEO, https://www.ncbi
.nlm.nih.gov/geo/) by “GEOquery” R-package and extracted
each expression profile information and Clinical phenotype
of these gene sets. There were 46 pulmonary tuberculosis
samples and 37 healthy control samples in GSE28623 and
45 pulmonary tuberculosis samples and 61 healthy control
samples in GSE83456. Finally, 189 blood samples were
enrolled as training sets. There were 8 pulmonary tuberculo-
sis samples and 16 healthy control samples in GSE34608 and
135 pulmonary tuberculosis samples in GSE31348. In the
end, 159 blood samples were enrolled as validation sets.
After that, we downloaded the unified and standardized
pan-cancer data set from the UCSC (https://xenabrowser
.net/) database, TCGA Pan-cancer (PANCAN, N = 10535,
G = 60499), extracted expression data of the RTP4 gene
(ENSG00000136514) in each sample, and carried out a
log2 (x + 0:001) transformation, and finally, we also elimi-
nated cancer types with fewer than 3 samples in a single
cancer type and finally obtained the expression data of 26
cancer types.

2.2. KEGG and Gene Set Variation Analysis. The KEGG was
a set of databases that included information about biologi-
cal mechanisms, cellular processes, chemical substances,
and diseases [7]. Gene set variation analysis (GSVA) was
applied to explore different activity variations of the KEGG
pathway (c2.cp.kegg v7.5.1, http://www.gsea-msigdb.org/)
in GSE28623 and GSE83456 by using “GSVA” R package
[8]. “limma” R package was used to determine the
significant differences in GSVA enrichment between the
healthy control (HC) group and pulmonary tuberculosis
(PTB) group. After setting the threshold value (PTB ver-
sus HC, log 2FC > 0:25, adjust p value < 0.05) and taking
the intersection of the training set (GSE28623 and
GSE83456), we selected the folate biosynthesis pathway
enrichment scores for further analysis with clinical
phenotype.

2.3. Identification of Significant Modules and Weight Gene
Coexpression Network Analysis. Data selected in training sets
were processed using the “WGCNA” R package [9]. After
obtaining the gene expression matrix of GSE28623 and
GSE83456 gene sets, we chose the genes that variance in
the top quartile and used the hierarchical agglomerative

clustering (average link) to distinguish the outliers of each
gene set. Then, we set each threshold to construct a scale-
free network. After setting an approximate scale-free topol-
ogy fit index above 0.85, we built an adjacency matrix and
constructed the topological overlap matrix for searching
the coexpression modules, which is a collection of genes with
high topological overlap similarity and containing at least 30
genes. Genes in the same module usually have a higher
degree of coexpression. The module eigengene (ME) repre-
sents the first principal component of modules and reflects
the expression pattern of modules in each sample. After
merging modules whose similarities were higher than 75%,
8 modules in GSE28623 and 13 modules in GSE83456 were
identified according to the average hierarchical clustering
and dynamic tree clipping algorithm. The green-yellow
module of GSE28623 and brown module of GSE83456 were
most relevant to the clinical phenotype and folate biosynthe-
sis pathway enrichment.

2.4. Hub Gene Identification and PPI Network. The coexist-
ing genes in both modules were considered essential and
uploaded to the Search Tool for the Retrieval of Interacting
Genes (STRING) online database (http://string-db.org; ver-
sion 11.5). A confidence score > 0:70 was set as significant.
After obtaining the protein-protein interaction (PPI) net-
work data, we used the Cytoscape (version 3.9.1) to visualize
the results. In order to verify the effectiveness of the hub
genes, “pROC” and “ggplot2” were used to calculate and plot
the area under curve (AUC) [10, 11].

2.5. Pan-Cancer Analysis. We used R software to calculate
the expression difference between normal samples and
tumor samples in each tumor to analyze the significance of
the difference. The “Coxph” function of “survival” R package
(version 3.4.0) was used to establish a Cox proportional haz-
ard regression model to analyze the relationship between
gene expression and prognosis in each tumor. After that,
we calculated the expression difference of genes in different
clinical stage samples in each tumor to explore the correla-
tions between them.

2.6. Statistical Analysis. This study’s statistical analyses
were carried out by R (version 4.1.0). Linear fitting and
empirical Bayes, implemented in the “limma” R package,
were used to test the difference between the HC and
PTB groups [12]. Weight gene coexpression network
analysis was used to allocate genes with similar expres-
sion patterns into different modules. The Pearson correla-
tion analysis was applied to find correlations between the
selected modules and clinical phenotype. The receiver
operating characteristic (ROC) curve was used to evaluate
the reliability of candidate biomarkers. It was considered
statistically significant if the area under curve (AUC)
was greater than 0.70. Student’s t-test was used to esti-
mate the different expressions of RTP4 before and after
antituberculosis therapy. All p < 0:05 (bilateral) was con-
sidered statistically significant. The logarithmic ranking
test was to obtain the tumor prognostic significance.
The unpaired Student’st-test was used for analyzing
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difference between each type of tumor groups. The
unpaired Wilcoxon rank sum and signed rank tests were
used to explore the significance of the difference between
normal and tumor samples in each tumor type.

3. Results

3.1. Folate Biosynthesis Pathway Gene Set Scores andWGCNA.
The gene expression of GSE28623 (19172 genes) and
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GSE83456 (20937 genes) was obtained after data preprocess-
ing. After excluding latent tuberculosis, extrapulmonary
tuberculosis, and sarcoid samples, we had 83 samples left
in GSE28263 and 106 samples in GSE83456. We used an
agglomerative hierarchical clustering algorithm to exclude 2
PTB samples of GSE28623 and 4 PTB samples of
GSE83456 because there were outliers. Subsequently, the
top quartile variance genes were selected (GSE28623, 4982
genes; GSE83456, 5234 genes). Through gene set variation
analysis, we found that the KEGG pathways activated in
GSE28623 (PTB group versus HC group) were mainly asso-
ciated with ascorbate and aldarate metabolism, NOD-like
receptor signaling, porphyrin and chlorophyll metabolism,
pentose and glucuronate interconversions, bladder cancer,
nonhomologous and joining, hedgehog signaling, folate
biosynthesis, phenylalanine metabolism, valine leucine, and
isoleucine biosynthesis. However, the main KEGG pathways

activated in GSE83456 (PTB group versus HC group) were
cytosolic DNA sensing, systemic lupus erythematosus, toll-
like receptor signaling, glycosaminoglycan degradation,
leishmania infection, dorso-ventral axis formation, NOD-like
receptor signaling, lysosome, pantothenate and CoA biosyn-
thesis, folate biosynthesis, and proteasome. We observed the
same activation trend both in GSE28623 (log 2FC = 0:286,
adj:p < 0:001) and GSE83456 (log 2FC = 0:325, adj:p < 0:001)
of folate biosynthesis pathway. The differential KEGG pathway
gene set enrichment results were depicted by a heat map
(Figure 1). We set the threshold power at 6 (GSE28623, R2 =
0:850) and 4 (GSE83456, R2 = 0:895) respectively based on
an approximate scale-free topology fit index of above 0.85
for each gene set. This network conforms to the power-
law distribution closer to the real biological network state
(Figures 2(a) and 2(b)). Gene dendrograms and module
colors of the training sets are shown in Figure 3. After
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obtaining the different modules, we screened out that the
most associated with pulmonary tuberculosis. After that,
we selected the most relevant folate biosynthesis pathway
of them. By carefully comparing, we found that the green-
yellow module in GSE28623 and the brown module in
GSE83456 were highly related to pulmonary tuberculosis
and the folate biosynthesis pathway. Finally, we selected
these two modules for further analysis (Figure 4).

3.2. PPI Network Analysis and Hub Gene Identification. In
the intersection of the two modules, we obtained 29 coexist-
ing genes, which were illustrated by the Veen map
(Figure 5). After using the STRING online database, eight
nodes and sixteen edges were observed. Six genes (OAS2,
SAMD9L, RSAD2, RTP4, CD151, and BATF) were filtered
in the PPI network complex based on the setting confidence
score (Figure 6).

We then screen one (RTP4) of them according to the
area under curve both in training sets (GSE28623, AUC =
0:719; GSE83456, AUC = 0:964, Figures 7(a) and 7(b)) and

the validation cohort (GSE34608, AUC = 0:903 Figure 7(c))
as the hub gene. To make the outcome persuasive, we chose
the gene set (GSE31384) to validate diversity expression
before and after antituberculosis therapy and compare the
differential expression of RTP4 between the HC and PTB
groups in GSE28623 and GSE83456. As shown in Figure 8,
the expression of RTP4 was significantly downregulated
after 26 weeks of antituberculosis treatment. We also found
that there were significantly upregulated in the PTB group
(Figures 9 and 10).

3.3. Pan-Cancer Analysis. In the expression difference
between normal samples and tumor samples in each tumor,
we found that RTP4 was significantly upregulated in 13
types of tumor tissues such as GBM (tumor: 2:22 ± 1:14,
normal: 0:3 ± 0:44, p = 5:4e − 4), GBMLGG (tumor: 1:70 ±
1:09, normal: 0:35 ± 0:44, p = 3:2e − 3), LGG (tumor: 1:54
± 1:02, normal: 0:35 ± 0:44, p = 5:5e − 3), ESCA (tumor:
2:78 ± 1:49, normal: 1:00 ± 1:39, p = 1:5e − 4), STES (tumor:
2:87 ± 1:24, normal: 1:63 ± 1:20, p = 1:7e − 10), KIRP
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Figure 3: Dendrogram of all differentially expressed genes clustered based on the measurement of dissimilarity (1-TOM). The color band
shows the results obtained from the automatic single-block analysis. Each color band of dynamic tree cut represents a cluster of a collection
of genes with high topological overlap similarity and has minimal genes of 30. Merged dynamic represents the merged modules of dynamic
tree cut, in which the dissimilarity degree is below 75%.
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(tumor: 2:78 ± 1:34, normal: 2:00 ± 0:76, p = 4:2e − 13),
KIPAN (tumor: 3:15 ± 1:27, normal: 2:00 ± 0:76, p = 7:1e
− 28), STAD (tumor: 2:91 ± 1:12, normal: 1:86 ± 1:06, p =
1:1e − 7), HNSC (tumor: 3:07 ± 1:50, normal: 1:34 ± 1:51,
p = 6:5e − 11), KIRC (tumor: 3:44 ± 1:10, normal: 2:00 ±
0:76, p = 6:7e − 37), LIHC (tumor: 2:29 ± 1:29, normal:
1:50 ± 1:19, p = 1:3e − 6), KICH (tumor: 2:47 ± 1:48, nor-
mal: 2:00 ± 0:76, p = 2:8e − 3), and CHOL (tumor: 3:66 ±
1:28, normal: 1:25 ± 0:56, p = 6:0e − 7) and significantly
downregulated in 4 types of tumor tissues such as LUAD
(tumor: 2:19 ± 1:22, normal: 2:71 ± 0:56, p = 1:9e − 6),
COAD (tumor: 2:08 ± 1:13, normal: 2:51 ± 0:57, p = 0:02),
COADREAD (tumor: 2:02 ± 1:10, normal: 2:50 ± 0:55, p =
2:1e − 3), and PRAD (tumor: 1:50 ± 1:27, normal: 2:22 ±
0:75, p = 1:7e − 6) (Figure 11) [13].

In the analysis process of the relationship between
expression level and tumor prognosis, we found that the
poor prognosis of 4 tumors was positively correlated with
the high expression of RTP4 (GBMLGG (N = 619, p = 1:5e
− 13, HR = 1:58 (1.40, 1.78)), LGG (N = 474, p = 2:5e − 5,
HR = 1:49 (1.24, 1.79)), LAML (N = 144, p = 1:2e − 3, HR
= 1:30 (1.11, 1.53)), and PAAD (N = 172, p = 8:8e − 4,
HR = 1:44 (1.16, 1.78))), and the poor prognosis of 6
tumors was positively correlated with the low expression
of RTP4 (SARC (N = 254, p = 9:7e − 8, HR = 0:72 (0.64,
0.81)), KIRC (N = 515, p = 3:2e − 3, HR = 0:82 (0.72, 0.94)),
THCA (N = 501, p = 0:01, HR = 0:43 (0.23, 0.83)), MESO
(N = 84, p = 6:1e − 6, HR = 0:68 (0.58, 0.81)), SKCM-M

(N = 347, p = 1:1e − 3, HR = 0:85 (0.78, 0.94)), and SKCM
(N = 444, p = 4:2e − 3, HR = 0:88 (0.80, 0.96))) (Figures 12
and 13).

After exploring the expression difference of the RTP4 gene
in different clinical stages in each type of tumor, we found sig-
nificant differences among the 5 types of tumors. (HNSC
(stage I = 27, II = 82, III = 93, IV = 316) (p = 0:03), LIHC
(stage I = 169, II = 86, III = 85, IV = 5) (p = 0:04), THCA
(stage I = 283, II = 52, III = 112, IV = 55) (p = 2:7e − 3),
PAAD (stage I = 21, II = 147, III = 3, IV = 4) (p = 0:02),
and BLCA (stage II = 130, III = 140, IV = 133) (p = 0:02))
(Figure 14).
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4. Discussion

MTB can infect many tissues and organs of the human body,
causing various tuberculosis-related diseases, such as pri-
mary and secondary tuberculosis, tuberculous enteritis,

osteoarticular tuberculosis, tuberculous pleurisy, tubercular
meningitis, and tuberculous lymphadenitis. Some diseases
can be fatal because of delays in diagnosis and treatment.

Tuberculosis is a common infectious disease in develop-
ing countries. There are some clinical tests in diagnosing this
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Figure 6: PPI network. (a) The interaction between 6 intersections coexisted; only 4 genes had the interaction. (b) The interaction between
hub genes.
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Figure 7: The different AUCs of RTP4 expression. AUC plot of RTP4 expression in GSE28623, GSE83456, and GSE34608, respectively.
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disease, but those ways have somehow false negatives
[14–16]. The histopathologic biopsy is an excellent method
to diagnose tuberculosis infection. Due to the difficulty of
sampling, some tissues in vivo and patients cannot tolerate
the discomfort during the sampling process, so this method
is not often used in clinical diagnosis. Sputum culture is con-
sidered the gold standard for diagnosing PTB infections.

However, as a slow-growing bacteria, clinical doctors may
be able to get results in 2-3 months. We conducted this study
to reduce the time of diagnosing and improve the diagnostic
accuracy of PTB.

Several previous researchers have reported some poten-
tial biomarkers for tuberculosis [17, 18]. Our study is aimed
at investigating new biomarkers for diagnosing pulmonary
tuberculosis related to folate synthesis, and RTP4 was finally
identified in training and validated in the validation set.
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Figure 8: Diversity expression of RTP4 before and after
antituberculosis therapy (five time points). RTP4 expression of
different time points (week 0, week 1, week 2, week 4, and week
26) in GSE31348.
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Folate acid is known as vitamin B9. It is necessary for
the body to yield amino acids, RNA, and DNA [19]. It has
previously been reported that lacking folic acid may lead
to neuropathy and neoplastic diseases [20–22]. Folic acid
is also an element for M. tuberculosis. It is believed that
folate can affect the synthesis of purines and thymidine
by regulating one-carbon transfer reactions as an essential
factor, which is vital for bacteria [23, 24]. In recent years,
there has been renewed interest in synthesizing antifolic
acid drugs due to the increase in clinical drug-resistant
tuberculosis cases [25, 26].

The RTP4 is known as a member of the receptor transport
protein (RTP), which participates in exporting odorant and
taste receptors to the cell surface [27, 28]. Previous studies have
suggested that RTP4 helps theGPCR oligomer properly assem-
ble in the endoplasmic reticulum, promotes the dimerization of
receptors in the Golgi apparatus, and decreases the ubiquitina-
tion of the heterodimers [29]. Other studies have shown that
the RTP4 was overexpressed in some connective tissue disor-
ders and parasitic infections [30, 31] and correlated with some
cancers [32, 33]. That RTP4 induced by IFN-I could explain
this phenomenon and is associated with immune responses.
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Figure 13: The relationship between RTP4 gene expression and prognosis in 39 types of tumors.
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In our research, we also found several other enriched
signaling pathways related to complications of PTB.
Previous studies have implicated the NOD-like signaling
pathway and Toll-like receptor signaling pathways in idio-
pathic pulmonary fibrosis [34]. The Hedgehog signaling
pathway was reported to be associated with lung cancer.
Abnormal activation of this pathway is thought to be
related to the development of lung cancer and promotes
malignant lung cancer progression with poor prognostic
outcomes [35, 36]. These may explain some PTB patients’
clinical progression of pulmonary fibrosis and lung cancer.
However, in this study, we only found that the folate bio-
synthesis singling pathways were most associated with the
PTB group in training gene sets.

Some previous articles have reported a correlation
between the RTP4 gene and certain characteristics of
tumors. For example, methylated RTP4 can be considered
as a new biomarker for precise diagnosis and treatment of
prostate cancer [37] and RTP4 can be considered as an
independent indicator to judge the prognosis of oral
cancer [38]. RTP4 has also been reported that it is
significantly associated with immune cell infiltration and
immune checkpoint encoding genes (PDCD1, TIM-3, and
LAG3) in melanoma [33].

We worked on seeking the different genes as biomarkers
of diagnosing PTB infection through four GEO databases
and used a method combing gene set variation analysis with
weight gene coexpression network analysis. There were
some limitations in this study. Firstly, the validated samples
were less than the training samples, and more gene chip
samples of patients with TB were validated from the experi-
mental verification. To further explore the relationship
between the expression of RTP4 and tumors, we performed
a pan-cancer analysis based on TCGA database. It was also
found that RTP4 expression was different between some
tumor and normal tissues, and it was correlated with the
overall survival time and stage of some tumors.

To conclude, our results suggest that RTP4 can be used
as a biomarker to identify tuberculosis infection, providing
a new perspective on TB diagnosis in clinical.
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Colorectal carcinoma (CRC) is a malignant tumor of the digestive system. Cancer-associated fibroblasts (CAFs) are important
cellular elements in the tumor microenvironment of CRC, which contribute to CRC progression and immune escape. To
predict the survival outcome and therapeutic responses of CRC patients, we identified genes connected with stromal CAF and
generated a risk model. In this study, we used multiple algorithms to reveal CAF-related genes in the Gene Expression
Omnibus and The Cancer Genome Atlas datasets and construct a risk model composed by prognostic CAF-associated genes.
Then, we evaluated whether the risk score could predict CAF infiltrations and immunotherapy in CRC and confirmed the
expression of the risk model in CAFs. Our results showed that CRC patients with high CAF infiltrations and stromal score had
worse prognosis than those with low-CAF infiltrations and stromal score. We obtained 88 stromal CAF-associated hub-genes
and generated a CAF risk model consisting of ZNF532 and COLEC12. Compared with low-risk group, the overall survival in
high-risk group was shorter. The relationship between risk score, ZNF532 and COLEC12, and stromal CAF infiltrations and
CAF markers was positive. In addition, the effect of immunotherapy in the high-risk group was not as good as that in the
low-risk group. Patients with the high-risk group were enriched in chemokine signaling pathway, cytokine-cytokine
receptor interaction, and focal adhesion. Finally, we confirmed that the expressions of ZNF532 and COLEC12 in risk
model were widely distributed in fibroblasts of CRC, and the expression levels were higher in fibroblasts than CRC cells.
In conclusion, the prognostic CAF signature of ZNF532 and COLEC12 can be applied not only to predict the prognosis of
CRC patients but also to evaluate the immunotherapy response in CRC patients, and these findings provide the possibility
for further development of individualized treatment for CRC.

1. Introduction

As a common malignant tumor, the risk of colorectal carci-
noma (CRC) is related to individual characteristics or habits
such as age, history of chronic diseases, and lifestyle [1].
Currently, there are various screening methods for CRC,
such as colonoscopy, fecal occult blood test, multitarget stool
DNA test, and fecal immunochemical test [2]. Although
early screening can improve the curability of CRC, it is nec-
essary to improve the screening methods and accuracy of
CRC because of its slow growth and easy to be confused with
other cancers [3, 4]. As a consequence, identification new

markers of tumor metastasis are important for improving
CRC diagnosis and prognosis.

Tumor microenvironment is the cellular environment in
which cancer cells exist, including fibroblasts, immune cells,
and extracellular matrix (ECM) [5]. The acquisition and
maintenance of tumor markers depend on the role of tumor
microenvironment to varying degrees. There are a large
number of tumor-associated fibroblasts in the tumor micro-
environment, which actively participate in cancer progres-
sion through complex interactions with other cell types [6].
Clinically, cancer-associated fibroblast (CAF) markers are
associated with poor prognosis in many types of cancer
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[7]. Researchers have identified the heterogeneity of CAFs in
breast cancer by single-cell RNA sequencing, and the identi-
fication of CAF-specific markers provides support for the
development of drugs targeting CAFs [8]. Nowadays, CAF-
derived key genes have diagnostic efficacy for gastric cancer
[9]. Factors secreted by CAFs can promote the progression
of CRC [10]. However, whether stromal CAF-related gene
expression signatures could predict clinical outcomes of
CRC remains unknown.

Herein, we collected stromal CAF-related factors datasets
from the Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) databases. Next, we performed
weighted gene coexpression network analysis (WGCNA)
for identifying the hub-genes of stromal CAFs and construct
a risk model composed ZNF532 and COLEC12 by univariate
and the least absolute shrinkage and selection operator
(LASSO) Cox regression to predict CRC prognosis and treat-
ment effects. Our results offer new markers and therapeutic
approaches for the diagnosis and prognosis of CRC.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The microarray and
clinical data were obtained from GEO database (GSE39582,
566 tumor samples). The RNA sequence and single-
nucleotide polymorphism (SNP) mutation data were obtained
from TCGA COAD database (TCGA-COAD, 476 tumor
samples). We picked GSE39582 as the training cohort, and
TCGA-COADwas chosen for validation cohort. Additionally,
the single-cell RNA sequencing data was obtained from
GSE132465 from the GEO database.

2.2. CAF and Stromal Score Calculation, Survival Analysis.
According to other reports [11–14], “EPIC,” “MCPcounter”
and “xCell” R packages, and “TIDE” algorithm (http://tide
.dfci.harvard.edu/) were applied to evaluate CAF abun-
dances in tumor samples. The “estimate” package was

utilized to evaluate the stromal score. Survival analysis of
tumor patients was using “survminer” R package based on
CAF and stromal scores.

2.3. WGCNA. According to previous report [9], the
weighted coexpression analysis was performed using the
“WGCNA” package to analyze the coexpression modules
associated with CAF and stroma. The hub-genes were
selected from the most relevant modules according to the
threshold criteria (modulemembership > 0:8 and gene
significance > 0:4) (Figure S1A and B).

2.4. Functional Enrichment Analysis of Hub-Genes. The
“clusterProfiler” package was utilized to analyze functional
enrichment information of hub-genes. The graphics were
drawn using “enrichplot” package.

2.5. Risk Model Construction and Validation. Univariate Cox
analysis was utilized to identify prognostic genes. Next, the
risk model was built by LASSO Cox regression analysis.
Then, the patient’s risk score was calculated. The “survmi-
ner” R package was utilized to analyze the survival outcomes
of different risk groups.

2.6. Association Analysis between Risk Score and CAF Score.
The Cor function was utilized to calculate the correlation
between risk score and CAF score, and the “GGally” package
was utilized to analyze the pairwise correlation map. The
“Pheatmap” package was utilized to analyze the cluster maps
of risk genes and CAF known marker genes. The Cor func-
tion was utilized to calculate the relationship between risk
genes, risk scores, and CAF marker genes.

2.7. Immunotherapy Prediction. The effect of each sample
tumor immunotherapy was predicted by the TIDE algorithm.
The pROC package was utilized to identify the accuracy of the
model’s predictions.

The microarray and clinical data from GSE39582

CAF infiltration & stromal score

WGCNA

MEturquoise module

88 CAF & stromal-related co-expression genes

RNA sequence and SNP mutation data from TCGA-COAD

GO & KEGG Two-gene CAF risk signature by 
univariate & LASSO Cox analyses

Prognostic value in GSE39582
& TCGA-COAD Predictive value for immunotherapy GSEA analysis 

TMB analysis

Correlations with CAFs infiltrations
Correlations with CAF markers
Validations in single-cell RNA sequencing analysis 
(GSE132465), CCLE database & q-PCR

Figure 1: The schematic diagram of the workflow.
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Figure 2: Continued.
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2.8. Gene Set Enrichment Analysis (GSEA). The GSEA was
utilized to analyze the pathways enriched in different risk
groups by the “clusterProfiler” package.

2.9. SNP Analysis. The “Maftools” package was applied to
analyze high- and low-risk mutant genes, mutation types,
and maps waterfalls and then compare whether there was a
difference in tumor mutation burden (TMB) between the
high- and low-risk groups.

2.10. Single-Cell RNA Sequencing Analysis. In this study, the
CRC single-cell sequencing dataset was obtained from the
GEO database (GSE132465, 10 normal samples and 23
tumor samples). The effect of cell cycle on subsequent results
was removed using the SCTransform function. A standard-
ized “SCT” method was used to integrate different samples
to eliminate batch effects. Cells were reduced in dimension
by principal component analysis (PCA), and then, cell clus-
tering was displayed by uniform manifold approximation
and projection (UMAP) method. Cells were then annotated
by BlueprintEncodeData dataset and known cell markers in
the singleR and celldex packages. The gene set variation
analysis (GSVA) R package was used to assess potential
changes in pathway activity in each CAF subcluster.

2.11. Validation of ZNF532 and COLEC12 Expression on
CAFs. The mRNA expressions of the Cancer Cell Line
Encyclopedia (CCLE) database were used to analyze the
expression of ZNF532 and COLEC12 in fibroblasts and
CRC cells. Human colorectal fibroblast CCD-18-co was
purchased from ATCC (Manassas, UAS), and SW480 cells
were provided by the Shanghai Academy of Biological
Sciences. Cells were cultured in DMEM medium with 10%
fetal bovine serum. Total RNA was extracted by TRIzol
reagent (Invitrogen, USA). Then, cDNA was prepared using
the PrimeScript RT kit (Takara, Nanjing, China). AceQ Uni-
versal SYBR qPCR Master Mix (Vazyme, Nanjing, China)

was used on an ABI StepOnePlus™ real-time quantitative
PCR (q-PCR) instrument (Applied Biosystems, CA, USA)
for q-PCR. Primer information was given in Table S1.
GAPDH was the internal parameters of q-PCR.

2.12. Statistical Analysis. The overall survival (OS) of high-
and low-risk groups was displayed by Kaplan–Meier curves.
GraphPad Prism 8.0 was performed for statistical analyses.
Student’s t-test was used for comparison between two groups.
Statistical significance was regarded as p values < 0.05.

3. Results

3.1. Higher CAF Infiltrations and Stromal Scores Had Poor
OS in Patients with CRC. Figure 1 displayed the work chart
of our study. We used the EPIC, MCP-counter, xCell, and
TIDE methods to evaluate the infiltration of CAFs in tumor
microenvironment, and the stromal score was a displayed
estimate algorithm. Subsequently, the prognostic values of
CAFs on CRC were predicted by Kaplan-Meier curves. As
depicted in Figure 2(a), high CAF infiltrations had a shorter
OS in patients with CRC in GSE39582 cohort compared
with low CAF infiltrations. Similar results were obtained in
TCGA-COAD (Figure 2(b)). Additionally, the prognosis of
CRC patients with high stromal score was bad both in
GSE39582 and TCGA-COAD cohorts (Figures 2(c) and
2(d)). Collectively, the above information highlighted the
importance of the relationship between CAF infiltration
and CRC prognosis.

3.2. WGCNA Analysis Performed for Identifying the Hub-
Genes of CAFs. To filtrate the key genes related to stromal
CAFs, we performed WGCNA analysis. We used the soft
threshold power of 5 in GSE39582 (Figure 3(a)) and 6 in
TCGA-COAD (Figure 3(b)) to construct a scale-free topol-
ogy network. For GSE39582, 17 coexpression models were
clustered by hierarchical clustering tree (Figure 3(c)), and
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Figure 2: High CAF and stromal scores in CRC had a bad prognosis. High CAF immune infiltration level was associated with poor
prognosis in GSE39582 (a) and TCGA-COAD (b) cohorts. High stromal score was associated with poor prognosis in GSE39582 (c) and
TCGA-COAD (d) cohorts.
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Figure 3: Continued.
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the MEturquoise module was significantly positively associ-
ated with the CAF proportion (Correlation = 0:89, p = 3e −
194) and stromal score (Correlation = 0:95, p = 5e − 280)
(Figure 3(e)). There were 16 coexpression models in
TCGA-COAD (Figure 3(d)), in which the MEturquoise
module was positively associated with the CAF propor-

tion (Correlation = 0:78, p = 2e − 93) and stromal score
(Correlation = 0:89, p = 2e − 156) (Figure 3(f)). Thus, a total
of 119 and 307 hub-genes, which have the highest correlation
with CAF and stromal scores, were screened out in the
MEturquoise module of GSE39582 and TCGA-COAD,
respectively.
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Figure 3: WGCNA was used to explore stromal CAF-related hub-genes and perform functional enrichment analysis. The soft-thresholding
power in GSE39582 (a) and TCGA-COAD (b) cohorts. Clustering dendrograms exhibiting hub-genes with alike expression profiles were
converged into coexpression modules in GSE39582 (c) and TCGA-COAD (d) cohorts. MEturquoise module was most closely connected
with the CAF proportion and stromal score in GSE39582 (e) and TCGA-COAD (f) cohorts. (g) Venn diagram showed the shared
hub-genes in GSE39582 and TCGA-COAD cohorts. (h) GO enrichment analysis of 88 shared hub-genes. (i) KEGG enrichment
analysis of 88 shared hub-genes.
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Figure 4: Continued.
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3.3. Functional Enrichment Analysis. Eighty-eight hub-genes
were acquired by taking the intersection of 2 hub-gene sets
from GSE39582 and TCGA-COAD (Figure 3(g)). Subse-
quently, we performed functional enrichment analysis of
these common hub-genes. Gene Ontology (GO) term analy-
sis demonstrated that “extracellular matrix organization,”
“collagen-containing extracellular matrix,” and “extracellu-
lar matrix structural constituent” were the noteworthy terms
in biological process (BP), cellular component (CC), and
molecular function (MF), respectively (Figure 3(h)). More-
over, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways exhibited that these common hub-genes were
mainly focused on “ECM-receptor interaction” and “PI3K-
Akt signaling pathway” (Figure 3(i)). Studies have shown
that the ECM acts as a physical barrier that contributes to
cancer cell invasion, inhibits the infiltration of antitumor
immune cells, and ultimately promotes tumor deterioration
and treatment resistance [5, 15]. In addition, the PI3K-Akt
signaling pathway promotes tumorigenesis by regulating
cell metabolic reprogramming and invasion and metastasis
[16]. Together, these results indicated that these hub-genes
have a correlation with tumor progression and immune
escape.

3.4. Generation of a Stromal CAF-Related Gene (CAFG)
Predictive Model. First, univariate Cox regression analysis
was performed to study the relationship between the 88
hub-genes and prognosis and obtained that 25 prognostic
hub-genes were finally selected in GSE39582 (Figure 4(a)).
Next, LASSO Cox analysis was utilized to generate a risk
model with 2 genes (ZNF532 and COLEC12) (Figure 4(b)).
Then, we figured the risk score as follows: risk score =
expression of ZNF532∗ 0:017205958 + expression of COLEC
12∗ 0:158665214. The CRC patients were separated into
high- and low-risk groups depending on the median risk

score. The OS of patients in the high-risk group was shorter
in the GSE39582 cohort than that of low-risk group
(p < 0:001; Figure 4(c)). This is equally true of TCGA-
COAD cohort (p = 0:027; Figure 4(d)). These results sug-
gested that the signature of stromal CAFGs was as prognos-
tic marker in CRC.

3.5. Stromal CAFGs Have a Strong Correlation with CAF
Infiltrations and CAF Markers. To further verify whether
our CAF model could predict CAF infiltration, we per-
formed Spearman’s correlation analyses. As depicted in
Figure 5(a), the risk score was significantly positively associ-
ated with the CAF infiltrations and stromal score in
GSE39582 cohort, which was similar to those in TCGA-
COAD cohort (Figure 5(b)). Meanwhile, the expressions of
CAF markers in high-risk group were increased comparing
to low-risk group both in GSE39582 (Figure 5(c)) and
TCGA-COAD (Figure 5(d)) cohorts. Furthermore, all
CAF markers were positively associated with the risk core,
ZNF532, and COLEC12 in GSE39582 (p < 0:001; Figure 5(e)),
as well as in TCGA-COAD cohort (p < 0:001; Figure 5(f)).
Overall, the predictive model composed of ZNF532 and
COLEC12 may predict the state of CAF infiltrations in tumor
microenvironment.

3.6. The Relationship between Risk Score and Immunotherapy.
Due to the complexity of tumor immune microenvironment,
the effect of immunotherapy in CRC patients is relatively poor
[17]. Therefore, we further evaluated whether the risk score
could be used as a predictor of immunotherapy in CRC
patients. For GSE84437, the high-risk group (28%) was less
sensitive to immunotherapy than low-risk group (69%)
(p < 0:001; Figure 6(a)); compared with low-risk group, the
CAF score was elevated in the high-risk group (Figure 6(b));
the area under curve (AUC) value of rick score was 0.770
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Figure 4: Construction of the prognostic model. (a) Univariate Cox analysis. (b) LASSO Cox regression analysis. (c) Survival analysis in
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Figure 5: Risk score was positively connected with CAF infiltrations and CAF markers. Risk score was positively associated with CAF
abundances in GSE39582 (a) and TCGA-COAD (b) cohorts. CAF markers, ZNF532 and COLEC12, were highly expressed in high-risk
group, both in GSE39582 (c) and TCGA-COAD (d) cohorts. CAF markers were positively connected with risk score, ZNF532, and
COLEC12 in GSE39582 (e) and TCGA-COAD (f) cohorts.
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(95% CI: 0.729–0.808) (Figure 6(c)). For TCGA-COAD, these
results were the same as for GEO (Figures 6(d)–6(f)). Briefly,
our prognostic model has predictive power for immunother-
apy of CRC.

3.7. GSEA Enrichment Analysis. As shown in Figure 7(a), the
high-risk group was mainly focused on cytokine-cytokine
receptor interaction, chemokine signaling pathway, and
focal adhesion. The low-risk group was mainly focused on
aminoacyl tRNA biosynthesis, DNA replication, and retinol
metabolism (Figure 7(b)).

3.8. Correlation between Risk Score and TMB. The waterfall
plots have displayed top 20 genes with the highest muta-
tional frequencies in the high- (Figure 8(a)) and low-risk
(Figure 8(b)) groups, respectively. Surprisingly, these contin-
ual mutational genes were shared in the two risk groups.
Besides, the risk score has a positive correlation with the
TMB value (correlation = 0:13, p = 0:0098, Figure 8(c)).
Meanwhile, the TMB values were upregulated in the high-
risk group compared with low-risk group (p = 0:0045;
Figure 8(d)). Thus, patients in the high-risk group may ben-
efit more from immune microenvironment with high TMB.
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Figure 6: Multidimensional validation for risk score. Comparison of the effect of immunotherapy between the high- and low-risk groups in
GSE39582 (a) and TCGA-COAD (d) cohorts. Comparison of the TIDE level between the high-and low-risk groups in GSE39582 (b) and
TCGA-COAD (e) cohorts. Receiver-operating characteristic curves of the risk score in forecasting treatment effects in GSE39582 (c) and
TCGA-COAD (f) cohorts.
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3.9. ZNF532 and COLEC12 Identified in Single-Cell Gene
Expression Patterns of Fibroblasts. To describe the expression
of ZNF532 and COLEC12 at fibroblasts, we collected single-
cell RNA sequencing data from patients with CRC. After pre-
liminary quality control confirmation, 62,716 cells can be
used for subsequent analysis. As shown in Figure 9(a),
there were 23 kinds of cell clusters in CRC patients, which
were mainly divided into B cells, CD4+/8+T cells, den-
dritic cells (DC), fibroblasts, mast cells, endothelial cells,

macrophages, epithelial cells, monocytes, and plasma cells
(Figure 9(b)), according to the expression level of marker
genes (Figure S2). Not surprisingly, ZNF532 and
COLEC12 were highly expressed in fibroblasts (Figure 9(c)).
In addition, ZNF532 was distributed in endothelial cells,
while COLEC12 also belonged to macrophage, speculating
CAF signature affecting tumor progression by regulating
tumor matrix formation and immune infiltration of CRC.
Next, we explored the expression of ZNF532 and COLEC12
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Figure 7: GSEA showing possible associations between high- (a) and low-risk (b) groups and disease phenotypes.
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Figure 8: Continued.
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in fibroblast subpopulations. There were 8 subpopulations of
fibroblasts (Figure 9(d)), including cluster 0 (high expressed
genes: CTHRC1 and COL1A1), cluster 1 (CCL13), cluster 2
(MGP), cluster 3 (NDUFA4L2), cluster 4 (PLP1), cluster 5
(FRZB), cluster 6 (TK1), and cluster 7 (ACTG2)
(Figure 9(e)). GSVA analysis showed that clusters 5 and 6
were mainly enriched in pathways regulating the tumor
microenvironment, such as oxidative phosphorylation, TNF-
α signaling via NF-Kβ, and endothelial-mesenchymal
transition (Figure 9(f)). Furthermore, ZNF532 was mainly
distributed in cluster 6, and COLEC12 was mainly
distributed in cluster 5 (Figure 9(g)), which that suggested
cluster 6 and cluster 5 in fibroblasts were mainly involved in
tumor progression and immunotherapy of CRC.

3.10. Validation of ZNF532 and COLEC12 in Fibroblasts and
CRC Cells. Both ZNF532 and COLEC12 were highly
expressed in fibroblasts compared to large intestine
(Figures 10(a) and 10(b)). To further validate this result,
we performed q-PCR validation. Consistently, the mRNA
expressions of ZNF532 and COLEC12 were highly expressed
in fibroblasts than those in CRC cell line (SW480)
(Figure 10(c)). These results indicated that ZNF532 and
COLEC12 might be CAF-specific markers.

4. Discussion

CRC, as the third cancer incidence rate in worldwide, has yet
to be successfully and completely treated with multiple ther-
apeutic options [18, 19]. In the tumor microenvironment,
CAFs were the most abundant stromal cells, which regulated
the malignant progression and immunotherapy resistance of
CRC by secreting cytokines to control cell proliferation and
ECM deposition and remodeling [15, 20]. However, limited
studies have investigated the function of stromal CAF-

related factors on CRC. Here, we found that high levels of
CAF and stromal score lead to poor prognosis in CRC. Sub-
sequently, we generated a prognostic CAF model including 2
genes (ZNF532 and COLEC12). Patients in the high-risk
group in this model had shorter OS, low sensitivity to immu-
notherapy, and high levels of TMB. Besides, the risk genes
were high expressed in fibroblasts.

CAFs are the major cellular component of desmoplastic
stroma characteristic that contribute to tumor progression
and immune escape [21]. Consistently, we confirmed that
higher CAF and stroma scores were interrelated with worse
prognosis in CRC. However, whether CAFGs could be as
novel treatment targets in CRC is still unknown. Studies have
reported that risk signature composed CAF-secreted cytokines
can predict the clinical prognosis of breast cancer patients
[22]. CAF-related genes had great and prognostic value for
hepatocellular carcinoma prognosis [23]. Consistently, we
constructed a CAFG prognostic model of CRC by applying
WGCNA and univariate and LASSO Cox regression methods.
Based the risk score of each patient, CRC patients with high-
risk scores had OS survival than CRC patients with low-risk
scores. The signature of high CAF score with poor OS can
be used to predict the prognosis of patients with gastric can-
cer [9]. In view of this, our CAF model had good value for
applying to predict CRC prognostic.

In addition to the interaction between CAF and cancer
cells, the intricate crosstalk between CAFs and tumor
immune microenvironment (TIME) is also the key to pro-
mote tumor progression [24]. Infiltrated CAFs interact with
other immune cells in TIME to promote the formation
of immunosuppressive tumor microenvironment, thereby
allowing cancer cells to evade the surveillance of the immune
system [25]. In the risk model, CAF abundances in tumor
microenvironment were positively connected with the risk
score and the levels of ZNF532 and COLEC12. Besides,
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risk groups. (d) Comparison of TMB value between the high- and low-risk groups.

13Mediators of Inflammation



3

11

5

6

13

10

16

12

15

9 8

14

7

20

0

17 2

1

4
22

21
18

19

−10

−5

0

5

10

15

−10 0 10
UMAP_1

U
M

A
P_

2

Seurat_clusters

0
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22

(a)

Epithelial cells

Fibroblasts

Endothelial cells

Monocytes Macrophages

DC

B cells

CD4+ T cells

CD8+ T cells

Plasma cells

Mast cells

−10

−5

0

5

10

15

−10 0 10
UMAP_1

U
M

A
P_

2

Cell type 2

B cells
CD4+T cells
CD8+T cells
DC
Endothelial cells
Epithelial cells

Fibroblasts
Macrophages
Mast cells
Monocytes
Plasma cells

(b)

Mast cells

Percent
expressed

Plasma cells
CD8+T cells
CD4+T cells

B cells
DC

0
5
10
15

2
Average expression

1

0

Id
en

tit
y

CO
LE

C1
2

Features

ZN
F5

32

Macrophages
Monocytes

Endothelial cells
Fibroblasts

Epithelial cells

(c)

1

0

5

3

6

7
4

2
−10

−5

0

5

10

15

−10 0 10
UMAP_1

U
M

A
P_

2

Seurat_clusters

0
1
2
3

4
5
6
7

(d)

CTHRC1
COL1A1
COL3A1
MMP11

MMP1
ADAMDEC1

CCL13
APOE
CCL8

FABP5
MFAP5

MGP
CFD
DPT

IGFBP6
RGS5

NDUFA4L2
MYH11
ADIRF

ACTA2
S100B

Identity

Expression

2

1

0

–1

PLP1
GPM6B

SPP1
CRYAB

HSD17B2
F3

FRZB
CXXL14
DMKN

KIAA0101
TK1

PTTG1
STMN1
H2AFZ

DES
ACTG2

CNN1
TAGLN

0
1
2
3

4
5
6
7

(e)

Figure 9: Continued.

14 Mediators of Inflammation



Hallmark_KRAS_signaling_DN
Hallmark_pancreas_beta_cells
Hallmark_spermatogenesis
Hallmark_E2F_targets
Hallmark_G2M_checkpoint
Hallmark_glycolysis
Hallmark_MYC_targets_V2
Hallmark_angiogenesis
Hallmark_notch_signaling
Hallmark_apical_junction
Hallmark_IL2_stats_signaling
Hallmark_xenobiotic_metabolism
Hallmark_coagulation
Hallmark_complement
Hallmark_mitotic_spindle
Hallmark_peroxisome
Hallmark_apical_surface
Hallmark_bile_acid_metabolism
Hallmark_hedgehog_signaling
Hallmark_WNT_beta_catenin_signaling
Hallmark_HEME_metabolism
Hallmark_myogenesis
Hallmark_IL6_JAK_STAT3_signaling
Hallmark_KRAS_signaling_UP
Hallmark_inflammatory_response
Hallmark_allograft_rejection
Hallmark_estrogen_response_early
Hallmark_estrogen_response_late
HallmarK_MYC_targets_VI
Hallmark_oxidative_phosphorylation
Hallmark_DNA_repair
Hallmark_MTORC1_signaling
Hallmark_adipogenesis
Hallmark_apoptosis
Hallmark_cholesterol_homeostasis
Hallmark_fatty_acid_metabolism
Hallmark_PI3K_AKT_MTOR_signaling
Hallmark_UV_response_UP
Hallmark_interferon_gamma_response
Hallmark_hypoxia
Hallmark_UN_response_DN
Hallmark_androgen_response
Hallmark_P53_pathway
Hallmark_epithelial_mesenchymal_transition
Hallmark_interferon_alpha_response
Hallmark_reactive_oxygen_species_pathway
Hallmark_TNFA_signaling_VIA_NFKB
Hallmark_TGF_BETA_signaling
Hallmark_protein_secretion
Hallmark_unfolded_protein_response

4 7 3 2 1 5 0 6

0.8

0.6

0.4

0.2

0

(f)

Percent expressed
10
20
30

2
Average expression

1

7

6

5

4

3

2

1

0

0

Id
en

tit
y

CO
LE

C1
2

Features

ZN
F5

32

–1

(g)

Figure 9: Single-cell RNA sequencing analysis of CRC. UMAP map of cell clusters (a) and types (b). (c) Distribution of ZNF532 and
COLEC12 in each cell type. (d) Fibroblasts were divided into 8 subpopulations. (e) The expression of top 5 genes in each fibroblast
subpopulation. (f) GSVA analysis of fibroblast subpopulations. (g) Distribution of ZNF532 and COLEC12 in each fibroblast subpopulation.
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patients with high-risk scores had lower sensitivity to immu-
notherapy than patients with low-risk scores. Referring to
other similar studies, this means that our CAF risk score
has an important predictive effect on immune infiltration of
CAF and may regulate the formation of immunosuppressive
tumor microenvironment [26]. Meanwhile, the levels of
ZNF532 and COLEC12 were increased in fibroblasts com-
pared to CRC cells. These results indicated that ZNF532
and COLEC12 can be CAF-specific markers for CRC, and
the CAF risk model can evaluate the level of CAF infiltration
in tumor microenvironment.

With respect to ZNF532 and COLEC12 in the model,
elevated expression of COLEC12 had a worse prognostic
outcome and increased inflammation in osteosarcoma
[27]. Moreover, COLEC12 as a cancer stemness-related
signature could predict colon adenocarcinoma prognosis
[28]. At an epithelial cellular level, activation of ZNF532
could promote the epithelial-to-mesenchymal transition
in laryngeal squamous cell carcinoma cells [29]. We
observed that COLEC12 and ZNF532 were highly
expressed in macrophages and endothelial cells, respec-
tively, which was consistent with the findings that

COLEC12 expression was correlated with immune-related
molecules [30], and ZNF532 altered the biological activity
of endothelial cells [31]. However, their function in CAFs
of CRC remains unclear, so further studies of the mecha-
nisms of these CAF markers are needed to explore the
progression, resistance, and immunosuppression of CRC.

5. Conclusion

In conclusion, higher infiltration of stromal CAFs in tumor
microenvironment was associated with poor prognosis in
CRC, and ZNF532 and COLEC12 could be as novel prog-
nostic CAF biomarkers by producing the prediction model.
Our CAF prediction model could forecast CRC prognosis,
CAF infiltrations, and treatment effects, which might offer
new targets and potential treatment strategies of CRC.

Data Availability

The datasets analyzed in this study could be found in
GSE39582, TCGA-COAD, and GSE132465.
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Background. As an innate immune system effector, natural killer cells (NK cells) play a significant role in tumor immunotherapy
response and clinical outcomes.Methods. In our investigation, we collected ovarian cancer samples from TCGA and GEO cohorts,
and a total of 1793 samples were included. In addition, four high-grade serous ovarian cancer scRNA-seq data were included for
screening NK cell marker genes. Weighted gene coexpression network analysis (WGCNA) identified core modules and central
genes associated with NK cells. The “TIMER,” “CIBERSORT,” “MCPcounter,” “xCell,” and “EPIC” algorithms were performed
to predict the infiltration characteristics of different immune cell types in each sample. The LASSO-COX algorithm was
employed to build risk models to predict prognosis. Finally, drug sensitivity screening was performed. Results. We first scored
the NK cell infiltration of each sample and found that the level of NK cell infiltration affected the clinical outcome of ovarian
cancer patients. Therefore, we analyzed four high-grade serous ovarian cancer scRNA-seq data, screening NK cell marker
genes at the single-cell level. The WGCNA algorithm screens NK cell marker genes based on bulk RNA transcriptome
patterns. Finally, a total of 42 NK cell marker genes were included in our investigation. Among which, 14 NK cell marker
genes were then used to develop a 14-gene prognostic model for the meta-GPL570 cohort, dividing patients into high-risk and
low-risk subgroups. The predictive performance of this model has been well-verified in different external cohorts. Tumor
immune microenvironment analysis showed that the high-risk score of the prognostic model was positively correlated with M2
macrophages, cancer-associated fibroblast, hematopoietic stem cell, stromal score, and negatively correlated with NK cell,
cytotoxicity score, B cell, and T cell CD4+Th1. In addition, we found that bleomycin, cisplatin, docetaxel, doxorubicin,
gemcitabine, and etoposide were more effective in the high-risk group, while paclitaxel had a better therapeutic effect on
patients in the low-risk group. Conclusion. By utilizing NK cell marker genes in our investigation, we developed a new feature
that is capable of predicting patients’ clinical outcomes and treatment strategies.

1. Introduction

In terms of incidence, ovarian cancer (OV) ranks second
only to cervical cancer and uterine cancer among female
reproductive system tumors [1]. OV has a very high recur-
rence rate and mortality, which seriously threatens women’s
health. Due to the lack of effective screening tools and early
diagnosis difficulties, 80% of OV patients are diagnosed at an
advanced stage, 50-70% of patients will relapse within 2
years after treatment, and a 5-year poor survival rate of
30% [2]. Despite recent improvements in treatment,

improvements in 5-year survival rates were minimal. A
new therapeutic target is needed to improve the clinical out-
comes of OV patients in light of the limitations of OV treat-
ment [3]. For this reason, the development of predictive
models and the identification of new biomarkers are crucial
for predicting clinical outcomes and the effects of therapeu-
tic interventions.

In response to tumor growth, a complex microenviron-
ment surrounds tumor cells, including stromal cells, extra-
cellular matrix molecules, and cytokines [4]. Accumulated
evidence suggested that tumor microenvironment (TME)
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components were thought to play a vital role in tumorigenesis
and progression. Moreover, abnormal changes in TME can
serve as biomarkers for immunotherapy in addition to affect-
ing patients’ prognoses [5]. Antitumor immunity has focused
mainly on adaptive T cell responses, without adequate atten-
tion being given to innate immune cells. Cancer cells are rap-
idly recognized and killed by innate immune cells, known as
NK cells [6]. As NK cells interact with target cells, their antitu-
mor effect depends entirely on the balance between their
inhibitory and activating receptors [7]. In the early stages of
tumor growth, NK cells can suppress tumor invasiveness by
directly destroying tumor cells and promoting adaptive T cell
responses to contribute to antitumor immunity [8]. Tumor
progression is controlled by both NK and T cells, which indi-
cates that these immunocytes play a vital role in shaping anti-
tumor immunity. NK cells in peripheral blood are reduced,
which increases the risk of malignant tumors [9, 10]. Further-
more, higher numbers of tumor microenvironment NK cells
component are significantly associated with better outcomes.
In view of the important role of NK cells in immune antitu-
mor, cumulative studies have explored the molecular charac-
teristics of NK cells in cancer [11], but little was known
about the comprehensive molecular mechanism of NK cells
in OV patients. With the advent of single-cell RNA sequenc-
ing (scRNA-seq) technology and related analytical methods,
the possibility of identifying the molecular profiles of different
immune cell subsets in TME has become a reality [12]. Previ-
ous investigations have demonstrated that investigating tran-
scriptome characteristics based on the molecular profile of
immunocytes extracted from scRNA-seq information may
be an effective weapon for predicting clinical outcomes and
immunotherapy response [13]. Here, we investigated the com-
prehensive molecular mechanisms of NK cells from OV
patients based on scRNA-seq data.

WGCNA is a technique for examining the variations in
gene expression among several samples. The association
between modules and clinical profiles can also be analyzed
by clustering genes according to similar transcriptome pro-
files in modules (such as the immune score of patients)
[14]. According to the WGCNA algorithm, this study
assumed that the gene expression network obeyed the
scale-free distribution and constructed the gene coexpres-
sion network. Therefore, we calculated dissimilarity coeffi-
cients between nodes in order to construct a hierarchical
clustering tree. The modules were further visualized by
assigning corresponding genes to different modules based
on gene similarity. In our study, we investigated the expres-
sion profiles of signature genes of NK cells based on single-
cell sequencing data to identify their biomarker genes and to
identify core module genes associated with NK cells by
WGCNA public expression analysis. Next, prediction
models were developed based on these factors to predict
the clinical outcome of OV by combining bulk RNA-seq
datasets. In addition, the performance of the prediction
model was validated with four independent cohorts, and
the relationship between the prediction model and the
response to chemotherapy in OV patients was investigated.
These results will help us to better understand the molecular
mechanisms of ovarian cancer progression.

2. Materials and Methods

2.1. Data Collection. An analysis of The Cancer Genome
Atlas (TCGA) database was conducted in order to obtain
RNA sequencing (RNA-seq) fragments per kilobase million
(FPKM) and complete follow-up information on 372 sam-
ples. Somatic mutation data came from TCGA database.
Using the “tmb” algorithm in the maftools package, each
sample’s tumor mutation burden (TMB) value was calcu-
lated. We performed log2 [(TPM)+1] conversion on the
above raw data. In addition, we included three GPL plat-
forms (GPL570: GSE19829, GSE18520, GSE9891,
GSE26193, GSE30161, and GSE63885; GPL96: GSE3149,
GSE23554, GSE26712, and GSE14764; and GPL7759:
GSE13876). A total of 11 GEO cohorts and 1793 samples
were included in our investigation.

Single-cell transcriptional profiling data and clinical
information from ovarian cancer patients were obtained
from the GEO website under accession number
GSE184880, and scRNA-seq data from a total of four high-
grade serous ovarian cancer samples were included.

2.2. Identification of NK Cell Marker Genes Based on the
scRNA-seq Database. For single-cell data, we filtered cells
with unique feature counts >5000 or <200 and cells with
mitochondrial counts >5%. Then, the feature-expression
measurements for each cell were normalized by the total
expression using the default parameters of the Seurat “Nor-
malizeData” function. Finally, all cell data were fed into a
combined Seurat object via the Harmony package. Then,
variable genes were scaled and the principal component
(PC) was analyzed. Via “RunUMAP” function min.
(Dist = 0:2 and neighbors = 20) and the “FindClusters” func-
tion (resolution = 0:5) using significant pc (top 15) for
UMAP analysis and clustering. For identifying cell types,
we employed automated annotation; SingleR is an auto-
mated annotation method for single-cell RNA sequencing
(scRNA-seq) data [15]. Given a sample reference dataset
(single cell or batch size) with known labels, it marks new
units in the test dataset based on similarity to the reference.
Thus, for reference datasets, the burden of manually inter-
preting clusters and defining marker genes only needs to
be done once, while this biological knowledge can spread
to new datasets in an automated manner. Differentially
expressed genes (DEGs) were calculated for each cell sub-
group using Wilcoxon-Mann–Whitney test in FindAllMar-
kers function. NK cells were calculated using three
methods: EPIC algorithm, xCell algorithm, and MCPcoun-
ter algorithm, which were performed based on the “IOBR”
package [16]. Adjusted p values < 0.01 and jlog 2 ðfold
changeÞj > 1 were identified as NK cell marker genes.

2.3. WGCNA Network Construction and Module
Identification. Subsequently, we made R “WGCNA” package
for coexpression network analysis of NK cell marker genes.
WGCNA can be used to find clusters (modules) of highly
correlated genes, summarize such clusters using module sig-
nature genes or hub genes within nodules, associate modules
with each other and external sample traits (using signature
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gene network methods), and calculate module member-
ship metrics [14]. Associated networks facilitate network-
based gene screening methods that can be used to identify
candidate biomarkers or therapeutic targets [14]. Our first
step was to cluster the samples in order to determine if
there were any outliers. Secondly, the coexpression net-
work was constructed by using the automatic network
construction function. The soft threshold power was cal-
culated with the R function “pickSoftThreshold” and the
coexpression similarity for adjacency calculations was
increased. Third, clustering and dynamic tree-cutting
functions were used to detect modules using hierarchical
clustering. As a fourth step, the significance of genes
and the membership of modules were calculated in order
to correlate them with immune features. To further ana-
lyze the module gene information, the corresponding
module gene information was extracted. Finally, we visual-
ize the feature gene network.

2.4. Construction and Verification of Prognostic Model Based
on NK Cell Marker Genes. Subsequently, we developed a
prognostic model based on the NK cell standard genes
selected by WGCNA. To minimize overfitting, prognostic
genes were evaluated by LASSO Cox proportional hazards
regression using the “glmnet” package [17]. LASSO is a pop-
ular high-dimensional predictive regression method widely
used for survival analysis of Cox proportional hazards
regression models [18]. In order to select the best model,

10-fold cross-validation was performed using the function
“cv.” Finally, we used multivariate Cox regression analysis
to calculate the prognostic value of specific genetic charac-
teristics based on genes provided by LASSO Cox regression
analysis. Risk models were constructed based on gene
mRNA expression and risk coefficients. Risk scores were cal-
culated using the following formula:

riskScore = Coef1 × gene expression1 + Coef2
× gene expression2+⋯Coefn
× gene expressionn:

ð1Þ

Coef represents the prognostic value of each gene in
multivariate Cox regression analysis. Gene expression values
represent the expression values of the corresponding model
genes. Patients were divided into low-risk and high-risk
groups according to the median cut-off of their risk score.
R “survival” software package is a tool for statistical analysis
and visualization of survival data and is widely used in scien-
tific research work [19]. The performance of the prognostic
model was validated using survival analysis on four datasets
using the R package “survminer.”

2.5. Pathway and Functional Enrichment Analysis. Accord-
ing to the whole genome annotation package (org.Hs.eg.db),
GO and KEGG enrichment analyses were employed to
explore the obtained NK cell marker genes. Through the

Single cell analysis

Obtaining Single Cell Sequencing
Data for Ovarian Cancer

Obtain OV bulk transcript data
(TCGA and GEO)

Build Prognostic Model

Immune infltrate
Immune gene

expression

Mutational landscape analysis

Mutation Pattern Analysis
for BRCA1 and BRCA2

Drug sensitivity analysis

WGCNA Analysis

Identify NK cell marker genes

Figure 1: Flowchart.
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Figure 2: The single-cell RNA sequencing analysis identifies NK cell marker genes. (a–f) K-M survival curves suggest a prognostic role for
NK cell-related scores assessed based on MCPcount, xCell, and EPIC algorithms. (g) The T-SNE algorithm demonstrated the distribution of
cell subsets in four high-grade serous ovarian cancers. (h) The cell types identified by marker genes. (i) T-SNE plot colored by various cell
clusters. (j) Histogram of GO analysis based on NK cell marker genes.
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Figure 3: Continued.
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latest online KEGG database, “ClusterProfiler” function
obtained pathway data and performs functional analysis
[20]. p < 0:05 was considered significant.

2.6. Enrichment Analysis of Immune Cell Infiltration. The
“TIMER,” “CIBERSORT,” “MCPcounter,” “xCell,” and
“EPIC” algorithms are all favorable tools for machine learn-
ing and are used to assess cell abundance and cell-type-
specific gene expression patterns from a large number of tis-
sue transcriptome profiles, quantify the tumor immune
background through the type and density of tumor-
infiltrating immune cells, and are widely used in scientific
research work [21–24]. In addition, the “ESTIMATE” algo-
rithm was used to calculate the proportion of stromal com-
ponents and immune components in each sample
microenvironment. The levels of immunomodulators in
each risk group were presented by box plot.

2.7. Statistical Analysis. In order to compare categorical var-
iables between different risk groups, Wilcoxon t-test was
used. The significance threshold was set at 0.05. For data
analysis and graphic generation, R tool (version 3.6.2) was
conducted.

3. Results

The flowchart for this article is shown in Figure 1.

3.1. Screening of NK Cell Marker Genes Profile. First, we used
MCPcounter, xCell, and EPIC algorithms to calculate the
NK cell index (NK score) of each sample. Based on the
median score, patients were classified into high-score and
low-score groups. In the meta-GPL570 cohort, NK cell infil-
tration contributed to the longer survival times of the high-
score group than the low-score group (Figures 2(a)–2(c)). In
the TCGA-OV queue, the trend is consistent with the meta-
GPL570 queue (Figures 2(d)–2(f)). Based on the GSE184880
scRNA-seq data, we included four high-grade serous ovarian

cancer scRNA-seq data for further investigation
(Figure 2(g)). We used the first 1,500 variable genes for
PCA to reduce dimensionality and then identified 17 cell
clusters (Figure 2(i)). Annotating each cluster using the
human primary cell map reference data set, cluster 0 was
identified as NK cells using the reference data set
(Figure 2(h)). There was also a difference in gene expression
profiles within the cluster, and the differentially expressed
genes (DEGs) for each cell subset were calculated using the
Wilcoxon-Mann–Whitney test in the FindAllMarkers func-
tion. Functional enrichment showed that NK cell marker
genes were mainly related to T cell immune characteristics,
such as T cell activation, T cell-mediated immunity, and T
cell receptor binding (Figure 2(j)).

3.2. Construction of Gene Coexpression Module. The
WGCNA network was built by first calculating the soft
threshold power and then improving the coexpression simi-
larity for the adjacency calculations. A topology analysis of
the network is undertaken using the pickSoftThreshold
function in the R package “WGCNA”. Based on the scale
independence reaching 0.9 and the average connectivity
being relatively high in both TCGA-OV and meta-GPL570
cohorts, the soft threshold power was set at 3 (Figures 3(a)
and 3(b)).

In the TCGA-OV and meta-GPL570 cohorts, we associ-
ate the modules with the immune infiltration algorithm and
search for the most important associations. The results of
this analysis showed that the module turquoise was signifi-
cantly associated with NK cell infiltration (Figures 3(c) and
3(d)). In addition, the NK cell EPIC score we constructed
was positively correlated with the turquoise module, which
was 0.93, 0.97 in TCGA-OV, and meta-GPL570 cohorts,
respectively (Figures 3(e) and 3(f)). Subsequently, we inter-
sected the NK cell marker genes obtained based on the
single-cell transcriptome data analysis with the NK cell
marker genes obtained based on the WGCNA algorithm to

688

WGCNA-TCGA

scRNA-OV

WGCNA-GPL570

439

42

45

19 7

1124

(g)

Figure 3: The WGNCA algorism identified NK cell marker genes (a, b) Scale-free exponent analysis and average connectivity analysis of soft
threshold powers. (c, d) The heat map displayed the correlation between module characteristic genes and NK cell marker genes. (e, f) The
correlation between module characteristic genes and NK cell EPIC. (g) The venn diagram showed overlapping genes for three screening
datasets. A total of 42 genes were identified as NK cell-related marker genes.
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Figure 4: Continued.
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obtain a total of 42 NK cell-related marker genes
(Figure 3(g)). We performed pathway enrichment analysis
on the 42 NK cell-related marker genes. GO analysis
revealed NK cell-associated genes associated with T cell acti-
vation, leukocyte-mediated immunity, and immunological
immunology (Figure 4(a)). KEGG analysis revealed these
genes’ enrichment in primary immunodeficiency, Th1 and
Th2 cell differentiations, and natural killer cell-mediated
cytotoxicity signal pathway (Figure 4(b)).

3.3. Establishment of Prognostic Model Based on 14 NK Cell
Marker Genes. In order to predict the survival for each
patient, we constructed a prognostic analysis based on 42
NK cell marker genes. We first used the meta-GPL570
cohort as a training set for LASSO regression analysis and
screened 16 genes for further analysis (Figure 4(c)). Finally,
we conducted the multivariate Cox regression analysis to
optimize prognostic features, including only 14 of the most
predictive genes (Figure 4(d)).

Risk score = 0:44 × ARHGDIB + 0:27 × CD8A + 0:14
× CLEC2B + 0:16 × CORO1A − 0:20
× CYTIP − 0:20 × GZMA − 0:14 × GZMB
+ 0:36 × GZMK − 0:25 × IL2RG + 0:16
× IL7R − 0:18 × KLRB1 − 0:16 × LCP1 − 0:29
× RAC2 + 0:15 × XCL1:

ð2Þ

By ranking risk scores from high to low, patients were
divided into low-risk and high-risk groups
(low risk : score < median, high risk : score > median).
Patients with a high-risk score had significantly shorter
OS than patients with a low-risk score, according to
Kaplan-Meier analysis (Figure 4(e)). Subsequently,
TCGA-OV, meta-GP96, and GPL7759 external cohorts
were used to verify the feasibility of the constructed pre-
dictive model (Figures 4(f)–4(h)).

3.4. Correlation between Risk Score and Tumor
Microenvironment. Since NK cells play an important role
in antitumor immunity, we explored the relationship
between the different risk based on the prognostic model
and immune cell infiltration in OV patients. We employed
TIMER, CIBERSORT, MCPcounter, xCell, and EPIC
immune infiltration assessment algorithms to predict the
proportion of immune cell infiltration in patients with high-
and low-risk groups. M2 macrophages, cancer-associated
fibroblast, hematopoietic stem cell, and stromal score were
highly infiltrated in the high-risk group. NK cell, cytotoxicity
score, B cell, and T cell CD4+Th1 were highly infiltrated in
low-risk patients (Figure 5(a)). By using the ESTIMATE
algorithm, we found that the risk score was positively corre-
lated with StromalScore and negatively correlated with
ImmuneScore (Figure 5(b)). Subsequently, we examined
the expression of immunoregulators in patients with high-
and low-risk groups. We found that immunoregulators and
HLA families were generally highly expressed in the low-
risk score group, while NRP1, TNFSF4, and CD276 were
the opposite (Figures 5(c) and 5(d)). Therefore, we speculate
that there were differences in immune cell infiltration and
tumor mutation load between the two groups. For this rea-
son, we divided patients into H-TMB and L-TMB according
to tumor mutation burden (TMB). Medium TMB was
1.736842. Result turned out that patients with H-TMB had
better survival outcomes than patients with L-TMB
(Figure 5(e)). Figures 4(f) and 4(g) show that the frequency
of mutation in patients with high-risk score (94.51%) was
higher than that in patients with low-risk score (88.76%).

3.5. Predictive Model for Drug Sensitivity in OV Patients. We
detected the mutation frequency of BRCA1 and BRCA2
between the high- and low-risk subgroups and found no dif-
ference between the two groups (Figures 6(a) and 6(b)). Sub-
sequently, we performed drug prediction for patients in the
high- and low-risk groups. We found that bleomycin, cis-
platin, docetaxel, doxorubicin, gemcitabine, and etoposide
were more effective in the high-risk group. Paclitaxel had a

(g) (h)

Figure 4: Construction of prognostic model based on the NK cell maker genes. (a, b) The GO and KEGG analyses of 42 NK cell marker
genes. (c) The LASSO regression was used to reduce gene dimension, and 16 genes were screened for further analysis. (d) The
multivariate COX regression analysis was used to obtain the coefficient of 14 genes in prognostic model. (e–h) K-M survival analysis of
the prognostic model in different cohorts.
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better therapeutic effect on patients in the low-risk group
(Figures 6(c)–6(i)). Overall, these findings promoted a prog-
nostic model as a biomarker for predicting individual drug
sensitivity.

4. Discussion

As scRNA-seq technology developed rapidly, researchers
began to focus more on the molecular characteristics of
immune cells that infiltrate tumors. Despite that, most of
the current research focuses on adaptive immune cells,
ignoring the role of innate immune cells, which may have
significant effects on clinical outcomes and immunotherapy
response. Tumor-infiltrating NK cells were closely related
to prognosis in patients with different solid tumors [25]. In
the recent study by Shimasaki et al., NK cell marker genes
were used to evaluate the infiltration of NK cells into TME,
and the increased NK score significantly stratified the prog-
nosis of patients with metastatic cutaneous melanoma [26].
Under the guidance of the above research, we employed
three algorithms to observe the role of the NK cell score
for predicting clinical outcomes of patients with ovarian
cancer in two data sets and found that the prediction perfor-
mance according to NK cell score was great. However, due
to the algorithm being based on bulK RNA sequencing data,
there was a certain deviation. Therefore, we obtained NK cell
marker genes by combining scRNA-seq data and bulk RNA-

seq data. Subsequently, we constructed a promising prog-
nostic model based on NK cell marker genes for predicting
clinical prognosis and immunotherapy efficacy and verified
it in four independent cohorts. The high-risk score of the
prognostic model was positively correlated with M2 macro-
phages, cancer-associated fibroblast, hematopoietic stem
cell, and stromal score and negatively correlated with NK
cell, cytotoxicity score, B cell, and T cell CD4+Th1. In addi-
tion, we found that bleomycin, cisplatin, docetaxel, doxoru-
bicin, gemcitabine, and etoposide were more effective in the
high-risk group, while paclitaxel had a better therapeutic
effect on patients in the low-risk group.

In our investigation, the predictive prognostic model
consisted of 14 NK cell marker genes (ARHGDIB, CD8A,
CLEC2B, CORO1A, CYTIP, GZMA, GZMB, GZMK,
IL2RG, IL7R, KLRB1, LCP1, RAC2, and XCL1), most of
which were associated with prognosis or NK cell activity in
OV patients. For example, Lado et al. identified two candi-
date genes belonging to the innate immune system: FCAR
and CLEC2B. The CLEC2B gene was associated with NK cell
and stimulated natural killer cells to play an immune defense
mechanism [27]. Mace and Orange demonstrated for the
first time that CORO1A promoted NK cells to exert cyto-
toxic functions and immune secretion by regulating F-actin
breakdown, thus exerting the function of lytic immune effec-
tors [28]. In addition, NK cells can kill gasdermin B-
(GSDMB-) -enriched positive cells in tumor tissues by
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Figure 5: Tumor microenvironment assessment in different risk groups based on prognostic model. (a) Heat map showing/depicting
immune cell infiltration landscape in high- and low-risk groups based on 5 algorithms. (b) Scatterplots showed the association of risk
scores with StromalScore and ImmuneScore. (c, d) The boxplots showed the expression levels of immune regulators in the high- and
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apoptosis mediated by granzyme A (GZMA), which is tran-
scribed by the GZMA gene [29].To elucidate the molecular
mechanisms of OV patients, laboratory experimental
designs should focus on genes identified in the prognostic
model.

This prognostic model has proven to be powerful predic-
tive tools in training and validation cohorts. The excellent
performance of the prognostic model has inspired us to
investigate potential mechanisms. We first performed GO
and KEGG analyses to explore the enrichment pathway of
NK cell marker genes. GO analysis revealed NK cell-
associated genes associated with T cell activation,
leukocyte-mediated immunity. KEGG analysis revealed
these gene enrichment in primary immunodeficiency, Th1
and Th2 cell differentiation, and natural killer cell-
mediated cytotoxicity signal pathway. Poor prognosis in
high-risk patients may be partly due to abnormal regulation
of antitumor immunity, which was closely related to tumor
proliferation and progression. Furthermore, tumor-
infiltrating immune cells in TME play a crucial role in tumor
development and have a significant impact on patient out-
come [30]. We then compared ESTIMATE and CIBER-
SORT algorithms to determine the abundance of immune
cell infiltration in high-risk and low-risk groups. The results
showed that the level of immune cell infiltration in high-risk
tumors was low, especially T cells and NK cells, suggesting
that high-risk samples were called “cold tumors” and their
antitumor activity was reduced [31]. The infiltration of
immune cells in low-risk tumors can promote tumor cells
to evade immune surveillance and promote tumor progres-
sion, which may partially explain the significantly reduced
survival rate of patients with a high-risk score.

Our study still has some limitations. First, the expression
and prognostic role of genes selected for prognostic models
at the protein level warrants further investigation. A second
limitation of our study is that the candidate genes we
observed are all NK cell markers, and there is a high degree
of spatial heterogeneity in the tumor immune microenviron-
ment. Thus, the prognostic ability of the signature is restric-
tive. Finally, all mechanistic analyses in our study are
descriptive. Future studies must explore potential mecha-
nisms between prognostic model-associated gene expression
and clinical outcome in OV patients. However, in the cur-
rent prognostic model, our model still has great advantages,
and NK cell signature genes also have their immune value.
In addition, we used a large number of validation sets, which
indicated the reliability and stability of our model.

5. Conclusion

In summary, we identified 14 genetic signatures based on
NK cell marker genes and validated their strong predictive
power for clinical outcome and response to chemotherapy
in patients with OV. It can be used as a prognostic bio-
marker for clinical decision-making on individualized pre-
diction and help to select suitable patients who can benefit
from clinical treatment.

Data Availability

All datasets generated for this study are included in the arti-
cle material, including TCGA database (https://portal.gdc
.cancer.gov/) and the GEO dataset (https://www.ncbi.nlm
.nih.gov/gds/).
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Figure 6: Drug sensitivity analysis. (a, b) The mutation patterns of BRCA1 and BRCA2 in high- and low-risk groups. (c–i) The IC50 of
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Background. Lymphatic metastasis is a common phenomenon of cervical cancer. Tumor necrosis factor-α (TNF-α) was found to
be closely associated with lymphatic cancer metastasis. However, the mechanism through which TNF-α regulates lymphatic
metastasis in cervical cancer remains unclear. Methods. In this study, cervical cancer cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) with or without TNF-α for 48 h, and then the corresponding conditional medium (CM-TNF-α or
CM) was collected. The level of vascular endothelial growth factor (VEGFC) in the corresponding CM was then detected using
an enzyme-linked immunosorbent assay (ELISA). Next, human lymphatic endothelial cells (HLECs) were cultured in CM-
TNF-α or CM for 48 h. Cell viability was measured using the cell counting kit-8 (CCK-8) assay, and angiogenesis was detected
using a tube formation assay. Subsequently, the expressions of AKT, p-AKT, ERK, and p-ERK in HLECs were detected using
western blotting. In addition, to further investigate the effect of TNF-α on the progression of cervical cancer, a C33A
subcutaneous xenograft model was established in vivo. Results. We found that TNF-α significantly stimulated cervical cancer
cells to secrete VEGFC. Additionally, the CM collected from the TNF-α-treated cervical cancer cells notably promoted the
proliferation, migration, and angiogenesis of HLECs; however, these changes were reversed by MAZ51, a VEGFR3 inhibitor.
Moreover, TNF-α obviously elevated D2-40 and VEGFC protein expressions in tumor tissues, promoting lymphangiogenesis
and lymphatic metastasis in vivo. Meanwhile, TNF-α markedly upregulated p-AKT and p-ERK expressions in tumor tissues,
whereas these changes were reversed by MAZ51. Conclusion. Collectively, TNF-α could promote tumorigenesis,
lymphangiogenesis, and lymphatic metastasis in vitro and in vivo in cervical cancer via activating VEGFC-mediated AKT and
ERK pathways. These results may provide new directions for the treatment of cervical cancer.

1. Introduction

Cervical cancer remains one of the main cancer in women,
particularly in developing countries [1–4]. At present, cervi-
cal cancer is the main cause of mortality in women [2, 5, 6].
Lymphatic metastasis has been identified as a risk factor for
cervical cancer recurrence [7]. The formation of lymphatic
microvessels is the earliest stage of lymphatic metastasis

[8]. At present, clinical treatments for cervical cancer include
surgical treatment, radiotherapy, and chemotherapy [9–11].
However, the prognosis of patients with advanced cervical
cancer remains relatively poor [12].

Tumor microenvironment (TME) refers to the environ-
ment around a tumor, including the surrounding blood ves-
sels, immune cells and son on [13]. A prominent feature of
the TME is the recruitment of a large number of inflammatory
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cells and the production of inflammatory factors [14]. Inflam-
matory factors are a double-edged sword for tumors [15–17].
On the one hand, they can directly kill tumor cells or induce
immune cells to recognize tumor antigens [18, 19]. On the
other hand, they can promote tumor cell invasion and metas-
tasis [20]. Thus, it is necessary to explore the relationships
among inflammatory factors, lymphatic microvessel forma-
tion, and tumorigenesis in cervical cancer.

The extensively studied pro-inflammatory cytokine,
tumor necrosis factor-α (TNF-α) [21], can be secreted by
various cells such as adipocytes, activated monocytes, mac-
rophages, B cells, and T cells [22, 23]. Reports have sug-
gested that TNF-α can promote tumor development and
metastasis [24] by inducing epithelial-mesenchymal transi-
tion (EMT) as demonstrated by Yoshimatsu et al. inoral
squamous cell carcinoma [25]. In addition, Fujiki et al.
reported that TNF-α was able to facilitate the occurrence
and development of gastric cancer [26]. Nevertheless, the
relationship among TNF-α, lymphatic microvessel forma-
tion, and tumorigenesis in cervical cancer remains unclear.
The aim of the present study was therefore to investigate
the mechanism through which TNF-α regulates lymphatic
microvessel formation in cervical cancer.

2. Materials and Methods

2.1. Cell Culture. HeLa and C33A human cervical cancer cell
lines were purchased from the American Type Culture Col-
lection and cultured in DMEM (Thermo Fisher Scientific,
Inc.) supplemented with 10% fetal bovine serum (FBS,
Thermo Fisher Scientific, Inc.) and 1% penicillin/streptomy-
cin (Thermo Fisher Scientific, Inc.) with 5% CO2 at 37°C.
HLECs were obtained from Procell and cultured in a
medium supplemented with 10% FBS, 1% penicillin/strepto-
mycin, and 1% endothelial cell growth supplement (ECGS,
CELL RESARCH) [27].

2.2. Conditional Medium (CM). HeLa and C33A cells were
stimulated with different concentrations of TNF-α (0, 5, and
10ng/ml) for 48h at 37°C, and the corresponding CM (CM-
TNF-α) was collected. Meanwhile, in the control group, cervi-
cal cancer cell lines were cultured in DMEM for 48h at 37°C,
and the corresponding CM was collected [28]. The CM was
supplemented with 1% ECGS. After that, HLECs were cul-
tured in CM with or without MAZ51 treatment.

2.3. ELISA Analysis. The level of VEGFC in the CM was
detected using a VEGFC assay kit (cat. no. H046; Nanjing
Jiancheng Bioengineering) [29]. The VEGFC inhibitor
MAZ51 was purchased from MedChemExpress (cat. no.
HY-116624).

2.4. CCK-8 Assay. Cell viability was measured using the
CCK-8 assay by culturing HLECs in either CM or CM-
TNF-α for 48 h, followed by incubation with 10μl CCK-8
reagent (cat. no. C0047; Beyotime) for 2 h, and then the
absorbance was measured at 450nm using a microplate
reader (Thermo Fisher Scientific) [30].

2.5. 5-Ethynyl-2′-Deoxyuridine (EdU) Staining. Cell prolifer-
ation was measured using an EdU staining assay. The EdU
detection kit was purchased from Guangzhou RiboBio (cat.
no. C10310-1). Firstly, HLECs were cultured in CM or
CM-TNF-α for 48 h. Next, HLECs were incubated with
100μl of 50μm EdU for 1 h, washed with PBS, and incu-
bated with 1mg/ml DAPI for 10min. Next, the EdU-
positive HLECs were measured using a fluorescence micro-
scope (IX51; Olympus) [31].

2.6. Tube Formation Assay. The number of tube node
formed in the HLECs was observed using a tube formation
assay. Matrigel-coated 24-well Transwell® (8μm pore size)
was purchased from Corning, Inc. HLECs were cultured in
CM or CM-TNF-α for 48 h. Next, HLECs (1 × 105 cells)
were placed in the Matrigel®-coated well at 37°C. Next, the
number of tube node of HLECs was observed using a micro-
scope (IX51; Olympus) [32].

2.7. Wound Healing Assay. Cell migration was determined
using the wound-healing assay by culturing HLECs
(5 × 105/cell) in a 6-well plate overnight, creating a wound
in the monolayer using a 200μl pipette tip, washing the cells
with PBS, and then observing the scratch widths using a
microscope (IX51; Olympus) after 0 and 24 h [31].

2.8. Transwell Migration Assay. Transwell assay was used by
adding HLECs to the upper chamber containing serum-free
DMEM andDMEM with 10% FBS t the lower chamber. The
cells that had migrated to the lower chamber after24 hours
of incubation were stained with crystal violet dye (cat. no.
AS1086; ASPEN) and observed using a microscope (IX51;
Olympus) [33].

2.9. Western Blotting. The total protein from cells and tumor
tissues was extracted, the protein concentration was quanti-
fied using a BCA Protein Assay Kit (cat. no. AS1086; Aspen
Biosciences) and 40μg per lane of protein was separated by
10% SDS-PAGE and transferred onto PVDF membranes
(EMD Millipore). The membranes were then incubated with
primary antibodies: anti-AKT (1 : 1,000; cat. no. AF0836),
anti-p-AKT (1 : 1,000; cat. no. 28731-1-AP), anti-ERK
(1 : 1,000; cat. no. 11257-1-AP), anti-p-ERK (1 : 1,000; cat.
no. 28733-1-AP), and anti-GAPDH (1 : 1,000; cat. no.
60004-1-Ig) overnight at 4°C. GAPDH was used as the inter-
nal reference. Next, the membranes were incubated with
corresponding HRP-conjugated secondary antibodies for
1 h at room temperature. Finally, an enhanced chemilumi-
nescent substrate kit (cat. no. AS1059; Aspen Biosciences)
was used to observe the protein bands [34]. Anti-AKT,
anti-p-AKT, anti-ERK, anti-p-AKT, and anti-GAPDH anti-
bodies were obtained from Proteintech Group, Inc. The anti-
AKT antibody was provided by Affinity Biosciences.

2.10. Animal Study. BALB/c nude mice (4-6 weeks old) were
provided by Charles River Laboratories, Inc. All animals
were maintained following the Guide for the Care and Use
of Laboratory Animals by the National Institutes of Health.
In addition, the experiments of animal study were approved
by the Ethics Committee of HY cell biotechnology (No.
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HY2021-33). C33A cells at the density of 1 × 107 cells were
subcutaneously injected into the left flank of nude mice.
Next, when the tumor volume reached ~200mm3, mice were
randomly divided into three groups: control, TNF-α, and
TNF-α+MAZ251 groups. TNF-α was intraperitoneally
injected into mice in TNF-α and TNF-α+MAZ251 groups
three times a week at 54μg/kg for 3 weeks. In addition,
MAZ51 was intraperitoneally injected into mice in the
TNF-α+MAZ251 group once a day at 8mg/kg for 15 days.
Meanwhile, normal saline was intraperitoneally injected into
mice in the control group. The tumor volume was measured
weekly according to the following formula: volume = length
× width2/2 [35]. In 3 weeks, all mice were sacrificed using
CO2 (40% volume/min). And the tumors were photo-
graphed and weighted. Meanwhile, plasma samples were
collected using anticoagulation tubes and then centrifuged
for 10min at 2,000 × g at 4°C.

2.11. Immunohistochemistry (IHC) Staining. A tumor tissue
section was dewaxed with xylene. Antigens from the tumor
tissue section were extracted with 0.01M heated citrate
buffers (pH 6.0). Next, 200μl blocking solution was dropped
onto the slices at room temperature for 1 h. The section was
then incubated with a primary anti-D2-40 or PDPN anti-
body overnight at 4°C. Next, the section was washed with

PBS for 3 times. Subsequently, the section was incubated
with secondary antibodies for 50min at room temperature.
DAB was then used for chromogenic reactions. In addition,
the slices were placed in a hematoxylin solution for redyeing.
Finally, the coverslip was placed over the section, and the
staining results were observed using a microscope (CX31;
Olympus Corporation) [36]. ImageJ software (with IHC
Profiler plugins) was used for IHC scoring.

2.12. Real-Time PCR (RT-PCR). The TRIpure Total RNA
Extraction Reagent (cat. no. EP013; ELK Biotechnology Co.,
Ltd.) was used to isolate the RNA from cells. Then, the
EnTurbo™ SYBR Green PCR SuperMix kit (cat. no. EQ001;
ELK Biotechnology Co., Ltd.) was used to perform RT-PCR.
The cycling conditions for qPCR were as follows: 95°C for
3min, followed by 95°C for 10 s, 58°C for 30 s, and 72°C for
30 s for 40 cycles. The information of primers: GAPDH for-
ward, 5′-CATCATCCCTGCCTCTACTGG-3′ and reverse,
5′-GTGGGTGTCGCTGTTGAAGTC-3′; VEGFC forward,
5′-ACGAGCTACCTCAGCAAGACG-3′ and reverse, 5′-
CTCCAGCATCCGAGGAAAAC-3′; D2-40 forward, 5′-
CTATAAGTCTGGCTTGACAACTCT-3′ and reverse, 5′-
CATCTTTCTCAACTGTTGTCTGTG-3′; VEGFR forward,
5′-GGGCATGTACTGACGATTATGG-3′ and reverse, 5′-
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Figure 1: TNF-α stimulates cervical cancer cells to secrete VEGFC and promotes HLEC viability. (a, b) Cervical cancer cells (HeLa and
C33A) were stimulated with different concentrations of TNF-α (0, 5, or 10 ng/ml) for 48 h, and corresponding CM was collected. Next,
the level of VEGFC in the corresponding CM was detected by ELISA. (c, d) HLECs were cultured in CM with or without MAZ51
treatment. HLEC viability was measured by CCK-8 assay. ∗∗P < 0:01 compared with CM group; ##P < 0:01 compared with CM-TNF-α
group, n = 3.
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Figure 2: Continued.
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GGAGGAATGGCATAGACCGTA-3′. The relative level of
VEGFC, D2-40, and VEGFR was calculated using the 2-ΔΔCt

method [27, 37].

2.13. Statistical Analysis. The statistical analysis was per-
formed using GraphPad Prism software version 7.0
(GraphPad Software, Inc.). Data are presented as the
mean ± standard deviation and analyzed using a one-way
analysis of variance and Tukey’s post hoc test. P < 0:05 indi-
cated a statistically significant difference [30, 38].

3. Results

3.1. TNF-α Promotes the Production of VEGFC in Cervical
Cancer Cells. It has been reported that VEGFC is the most
representative and important factor promoting the forma-
tion of tumor lymphangiogenesis [39, 40]. In addition,
TNF-α was found to stimulate cell secretion of VEGF [41].
Our results found that TNF-α obviously upregulated the
level of VEGFC in the CM of HeLa and C33A cells in a
dose-dependent manner (Figures 1(a) and 1(b)). These

results showed that TNF-α promoted the production of
VEGFC in cervical cancer cells.

3.2. CM-TNF-α Promotes HLEC Viability, Proliferation, and
Angiogenesis. With the aim of investigating the effect of
TNF-α on the formation of lymphangiogenesis in cervical
cancer, HLECs were cultured in CM-TNF-α. As indicated
in Figures 1(c) and 1(d) and 2(a) and 2(b), CM-TNF-α
markedly promoted the viability and proliferation of HLECs.
However, these phenomena were reversed in the presence of
VEGFR3 inhibitor MAZ51 (Figures 1(c) and 1(d) and
2(a)and 2(b)). Meanwhile, CM-TNF-α significantly increased
the number of tube node formed inHLECs, and that effect was
notably inhibited by MAZ51 (Figures 2(c) and 2(d)). All these
results indicated that CM-TNF-α could promoteHLEC prolif-
eration and angiogenesis by upregulating VEGFC.

3.3. CM-TNF-α Increases HLEC Migration. In order to study
the role of TNF-α on HLEC migration, wound healing, and
transwell assays were conducted. The results showed that
CM-TNF-α significantly promoted HLEC migration, but
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Figure 2: CM-TNF-α promotes the proliferation and angiogenesis of HLECs. Cervical cancer cells (HeLa and C33A) were stimulated with
10 ng/ml TNF-α for 48 h, and corresponding CM was collected. Next, HLECs were cultured in CM with or without MAZ51 treatment. (a, b)
The proliferation of HLECs was measured by EdU staining assay. (c, d) The number of tube node of HLECs was observed using a
microscope. ∗∗P < 0:01 compared with CM group; ##P < 0:01 compared with CM-TNF-α group, n = 3.
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MAZ51 clearly inhibited this promotion (Figures 3(a)–3(d)).
These results showed that CM-TNF-α could increase HLEC
migration by upregulating VEGFC.

3.4. CM-TNF-α Upregulates the Expressions of p-AKT and p-
ERK of HLECs. The AKT and ERK signaling pathways have
been reported to play an important role in cervical cancer
progression [42, 43]. In order to explore the mechanism by
which TNF-α regulates the lymphangiogenesis of HLECs,
the expressions of p-AKT and p-ERK were evaluated by
western blotting. The results indicated that CM-TNF-α
markedly increased the levels of p-AKT and p-ERK in
HLECs, and these increases were markedly suppressed by
MAZ51 (Figures 4(a)–4(c)). Collectively, CM-TNF-α could

promote the expressions of p-AKT and p-ERK in HLECs
by upregulating VEGFC.

3.5. TNF-α Promotes the Tumorigenesis, Lymphangiogenesis,
and Lymphatic Metastasis of Cervical Cancer In Vivo.
Finally, to confirm the effect of TNF-α on cervical cancer
tumorigenesis and lymph node metastasis, a C33A subcuta-
neous xenograft model was established in vivo. As shown in
Figures 5(a)–5(c), TNF-α remarkably promoted tumor vol-
ume and weight in C33A subcutaneous xenografts; however,
this promotion was clearly inhibited by MAZ51 treatment.
In addition, D2-40 has been reported as a specific marker
of lymphatic endothelial cells that can be used in the study
of lymph node metastasis [44, 45]. The IHC results sug-
gested that TNF-α visibly increased D2-40 and PDPN levels
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Figure 3: CM-TNF-α increases the migration of HLECs. Cervical cancer cells (HeLa and C33A) were stimulated with 10 ng/ml TNF-α for
48 h, and corresponding CM was collected. Next, HLECs were cultured in CM with or without MAZ51 treatment. (a, b) The migration of
HLECs was measured by wound healing assay. (c, d) The migration of HLECs was measured by transwell migration assay. ∗∗P < 0:01
compared with CM group; ##P < 0:01 compared with CM-TNF-α group, n = 3.
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in tumor tissues, and these increases were reversed by
MAZ51 (Figures 5(d)–5(g)).

Furthermore, ELISA results suggested that TNF-α sig-
nificantly increased VEGFC expression in the plasma
in vivo, which was reversed by MAZ51 (Figure 6(a)). Mean-
while, TNF-α visibly increased p-AKT and p-ERK expres-
sions in tumor tissues, but these increases were reversed
by MAZ51 (Figures 6(b)–6(d)). In addition, TNF-α upreg-

ulated the levels of VEGFC and D2-40 in tumor tissues
compared with the control group (Figures 6(e) and 6(f)).
Meanwhile, compared with the control group, TNF-α had
few effects on VEGFR gene expression in tumor tissues
(Figure 6(g)). In general, TNF-α could promote cervical
cancer tumorigenesis, lymphangiogenesis, and lymphatic
metastasis in vivo via activating VEGFC-mediated AKT
and ERK pathways.
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Figure 5: TNF-α promotes the tumorigenesis of cervical cancer in vivo. (a) The tumor volume was measured weekly. (b, c) The tumors were
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with control group; ##P < 0:01 compared with TNF-α treated group, n = 3.

8 Mediators of Inflammation



4. Discussion

TNF-α is an important regulator of the inflammatory
response [46, 47] that can activate neutrophils and lympho-

cytes, increase vascular endothelial cell permeability, and
regulate cellular and tissues metabolism [46, 48]. Therefore,
studying the mechanism of inflammatory factors to promote
tumor progression and metastasis has become a research
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Figure 6: TNF-α upregulates p-AKT and p-ERK expression in tumor tissues via mediating VEGFC signaling in vivo. (a) The level of
VEGFC in the plasma was measured by ELISA. (b–d) The levels of AKT, p-AKT, ERK, and p-ERK in tumor tissue were measured by
western blot. (e–g) The levels of VEGFC, D2-40, and VEGFR were detected with RT-qPCR. ∗∗P < 0:01 compared with control group;
##P < 0:01 compared with TNF-α treated group, n = 3.
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hotspot in recent years. For instance, TNF-α has been
reported to promote tumor development and metastasis
[24, 49]. Forkasiewicz et al. found that TNF-α could pro-
mote esophageal cancer cell migration [50]. In addition,
Liang et al. showed that TNF-α could enhance gastric cancer
cell migration and invasion via activating NF-κB signaling
[51]. Consistent with that study, the present data indicated
that CM-TNF-α could promote the growth of cervical can-
cer cells in vivo. Furthermore, this study showed that TNF-
α could stimulate cervical cancer cells to secrete VEGFC,
which in turn promoted the proliferation, migration, and
angiogenesis of HLECs. Therefore, this study was the first
to explore the effect of TNF-α on the progression of cervical
cancer from the perspective of the TME.

The interaction between cancer cells and lymphatic
endothelial cells is crucial in promoting tumor growth and
metastasis in the TME, as demonstrated by previous studies
[52, 53]. One of these studies showed that lymphatic endo-
thelial cells could enhance the proliferation and migration
of tumor cells [54], while cancer cells could also accelerate
endothelial cell tube formation via activating the PI3K/Akt
pathway [55]. Moreover, tumor-induced lymphangiogenesis
is known to play a vital role in the initial stages of cancer
metastasis [56], andthe link between VEGFC and tumor
lymphangiogenesis and metastasis has been extensively
investigated [57, 58]. Chen et al. found that cancer cell-
derived VEGFC could promote lymphangiogenesis in lymph
nodes, which in return promotes cancer metastasis [59].
Meanwhile, He et al. showed that VEGFC could promote
cervical cancer metastasis [60]. Besides, researchers have
found that TNF-α could upregulate VEGFC expression, pro-
moting lymphangiogenesis and lymphatic metastasis in gall-
bladder cancer [61]. In our study, we observed that the
expression of VEGFC was significantly increased in the
CM collected from the TNF-α-treated cervical cancer cells.
CM collected from these cells also promoted the prolifera-
tion, migration, and angiogenesis of HLECs; and these
changes were reversed by MAZ51, a VEGFR3 inhibitor. Fur-
thermore, TNF-αelevated D2-40 and VEGFC protein
expressions in tumor tissues, indicating that TNF-α could
promote lymphangiogenesis and lymphatic metastasis of
cervical cancer in vivo. Our findings suggest that TNF-α
could be apromising target for cervical cancer treatment, as
it promote lymphangiogenesis and lymphatic metastasis by
upregulating VEGFC.

TNF-α was found to induce colorectal cancer cell migra-
tion and EMT via activating AKT signaling [62]. In addition,
TNF-α could promote triple-negative breast cancer cell
metastasis through targeting TNFR2-ERK1/2-EZH2 signal-
ing [63]. These findings showed that TNF-α could promote
tumor development via modulating AKT and ERK signaling
pathways. Additionally, the literature suggested that the
AKT and ERK signaling pathways are extensively involved
in cervical cancer development [64–66]. For example, exoso-
mal miR-221-3p secreted by cervical squamous cell carci-
noma promoted the formation and metastasis of HLECs by
upregulating the AKT/ERK pathway [67]. In addition, pro-
tein tyrosine phosphatase receptor M can induce lymphan-
giogenesis and lymph node metastasis through the AKT

signaling pathway in a VEGFC-dependent manner [68].
In the present study, the CM collected from the TNF-α-
treated cervical cancer cells was found to increase p-AKT
and p-ERK expressions in HLECs. Moreover, TNF-α could
upregulate p-AKT and p-ERK expressions in tumor tis-
sues. However, inhibition of VEGFR3 obviously reversed
these changes. All these data suggested that the AKT and
ERK signaling pathways are involved in the lymphangio-
genesis in cervical cancer.

In this study, we only determined that TNF-α could
inhibit cervical cancer progression by targeting VEGFC-
mediated AKT and ERK pathways. Thus, further study is
needed to investigate whether TNF-α could affect the pro-
gression of cervical cancer via targeting other pathways, such
as AMPK/mTOR or the NF-κB signaling pathway [69, 70].

5. Conclusion

To sum up, our studyrevealed that TNF-αactivatesVEGFC-
mediated AKT and ERK pathways, leading to tumorigenesis,
lymphangiogenesis, and lymphatic metastasis in vitro and
in vivo in cervical cancer. Wehope that our research will pro-
vide new directions for the treatment of cervical cancer.
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Background. Hepatocellular carcinoma (HCC) remains a challenging medical problem. Cuproptosis is a novel form of cell death
that plays a crucial role in tumorigenesis, angiogenesis, and metastasis. However, it remains unclear whether cuproptosis-related
genes (CRGs) influence the outcomes and immune microenvironment of HCC patients.Method. From The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC) databases, we obtained the mRNA expression file and related
clinical information of HCC patients. We selected 19 CRGs as candidate genes for this study according to previous literature.
We performed a differential expression analysis of the 19 CRGs between malignant and precancerous tissue. Based on the 19
CRGs, we enrolled cluster analysis to identify cuproptosis-related subtypes of HCC patients. A prognostic risk signature was
created utilizing univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses.
We employed independent and stratification survival analyses to investigate the predictive value of this model. The functional
enrichment features, mutation signatures, immune profile, and response to immunotherapy of HCC patients were also
investigated according to the two molecular subtypes and the prognostic signature. Results. We found that 17 CRGs
significantly differed in HCC versus normal samples. Cluster analysis showed two distinct molecular subtypes of cuproptosis.
Cluster 1 is preferentially related to poor prognosis, high activity of immune response signaling, high mutant frequency of
TP53, and distinct immune cell infiltration versus cluster 2. Through univariate and LASSO Cox regression analyses, we
created a cuproptosis-related prognostic risk signature containing LIPT1, DLAT, MTF1, GLS, and CDKN2A. High-risk HCC
patients were shown to have a worse prognosis. The risk signature was proved to be an independent predictor of prognosis in
both the TCGA and ICGC datasets, according to multivariate analysis. The signature also performed well in different
stratification of clinical features. The immune cells, which included regulatory T cells (Treg), B cells, macrophages, mast cells,
NK cells, and aDCs, as well as immune functions containing cytolytic activity, MHC class I, and type II IFN response, were
remarkably distinct between the high-risk and low-risk groups. The tumor immune dysfunction and exclusion (TIDE) score
suggested that high-risk patients had a higher response rate to immune checkpoint inhibitors than low-risk patients.
Conclusion. This research discovered the potential prognostic and immunological significance of cuproptosis in HCC,
improved the understanding of cuproptosis, and may deliver new directions for developing more efficacious therapeutic
techniques for HCC patients.
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1. Introduction

Primary liver cancer remains a serious threat to global public
health in 2020, with over 906,000 new cases and 830,000
fatalities [1]. Most liver cancer cases involve hepatocellular
carcinoma (HCC), which accounts for about 90%. Chronic
hepatitis B or C virus infection, alcohol abuse, and metabolic
syndrome induced by obesity and diabetes are the key risk
elements for the occurrence of HCC [2]. Early-stage HCC
is remediable through surgery or ablation. Nevertheless,
there are very few medicinal choices available for advanced-
stage HCC patients due to strong and broad resistance to cyto-
toxic chemotherapy [3]. Sorafenib, a multityrosine kinase
inhibitor (mTKI) with antiangiogenic and antiproliferative
properties, has been the regular first-line treatment for
advanced HCC for more than a decade [4, 5]. Nevertheless,
it is estimated that only a small ratio of HCC patients responds
to sorafenib. Up to now, significant efforts have been dedicated
to enhancing the medicinal condition of advanced-stage HCC
patients in the past few years, with the approval of four agents:
lenvatinib [6] as front-line treatment, ramucirumab [7], cabo-
zantinib [8], and regorafenib [9] as second-line treatment. By
utilizing antiprogrammed death protein 1 (PD-1) antibodies,
immune checkpoint blockade (ICB) has been licensed to treat
HCC in second-line [10, 11]. Despite a marked increase in the
choice of systemic therapies, there has been amodest improve-
ment in patient outcomes. Therefore, there is a pressing
demand for new molecular biomarkers for HCC patients in
order to guide more personalized treatment decisions.

Copper is an essential nutrient for the human body.
Meanwhile, copper can cause cell death via cytotoxicity,
which is driven by improved mitochondrial-dependent
energy metabolism and increased reactive oxygen species
(ROS). The phenomenon of cell death because of copper is
termed “cuproptosis” [12]. Specifically, cuproptosis is caused
by copper in combination with lipidated components of the
tricarboxylic acid cycle (TCA). Eventually, proteotoxic pres-
sure and cell death occur as a lack of iron-sulfur cluster pro-
teins and a result of lipoylated protein aggregation.
Cuproptosis was classified as a new kind of regulated cell
death distinct from the recognized cell death pathway, such
as apoptosis, necrosis, autophagy, ferroptosis, and pyroptosis
[12]. The process of cell death is inextricably linked to tumor
development and the immune microenvironment [13]. The
potential role of cuproptosis in clinical outcomes, as well as
its immune characterization, warrants further study. As for
cancer treatment, ionophores for copper supplementation
are the primary current therapeutic approach based on
cuproptosis, including disulfiram (DSF) and elesclomol
[14–16]. In Wilson’s disease, due to ATP7B deletion, a pro-
gressive hepatic copper overload may happen in the hepato-
cytes and lead to liver failure [17]. The improved incidence
of HCC in patients with Wilson’s disease provides evidence
that aberrant copper homeostasis may contribute to HCC
development through an unknown mechanism [18]. In both
in vitro [19] and in vivo [20], copper excess caused cell death
in hepatocytes through the intrinsic pathway. Nevertheless,
cuproptosis’s contribution to the tumorigenesis and devel-
opment of HCC has not yet been fully understood.

In our study, we identified a substantial variance in the
expression level of cuproptosis-related genes (CRGs)
between malignant and precancerous tissue, which may
reveal the close relationship between CRGs and HCC devel-
opment. Next, we performed the consensus cluster analysis
and identified two cuproptosis-associated clusters, which
were significantly likened to patient survival and immune
characterization. We then explored the prognostic value of
CRGs for the outcomes of HCC patients and built a prog-
nostic risk model containing five CRGs to predict prognosis,
somatic mutation signature, immune microenvironment,
and response to immunotherapy in HCC. According to mul-
tiple datasets, including The Cancer Genome Atlas (TCGA)
and International Cancer Genome Consortium (ICGC), this
risk model performed high accuracy in evaluating HCC
prognoses. These findings can contribute to further insight
into the importance of CRGs in HCC development and sup-
port further clinical development of cuproptosis for HCC.

2. Materials and Methods

2.1. Data Resources and Preprocessing. The TCGA (https://
portal.gdc.cancer.gov/) provided the somatic mutation
information, mRNA expression profile, and matched clinical
data for liver hepatocellular carcinoma (LIHC) cases.
Through the ICGC (https://dcc.icgc.org/), the project (code:
LIRI_JP) on liver cancer was downloaded. R (version 4.2.0)
software was enrolled to collate and annotate the somatic
mutation and RNA-sequencing data. The TCGA database
contained 50 normal tissues and 374 tumor tissues, and
the ICGC database contained 202 normal tissues and 243
normal tissues. Then, the mRNA expression files were stan-
dardized with fragments per kilobase per million mapped
reads (FPKM). To scale data among different databases, we
adopted the “scale” function in the “limma” R package [21].

2.2. Exploration of the Differentially Expressed CRGs in HCC.
The cuproptosis-related differentially expressed genes
(DEGs) were detected between malignant and precancerous
tissue of HCC patients in the TCGA with the “limma” R
package. p values <0.05 were regarded as the cutoff values
for identifying DEGs. Through the “heatmap” R package
[22], we generated a heatmap of cuproptosis-related DEG
expression levels between HCC and normal tissue. To better
know the connections among CRGs, we examined the rela-
tionship between CRGs through Pearson’s correlation anal-
ysis. The online tool STRING [23] was taken advantage to
conduct protein-protein interactions (PPI) network, and
the Cytoscape tool was enrolled to picture the network [24].

2.3. Consensus Clustering Analysis. To further investigate the
biological features of CRGs in HCC, with the “Consensu-
sClusterPlus” R package [25], the patients in TCGA were
classified into two clusters according to the 19 CRGs.

2.4. Functional Enrichment Analysis. To discover the gene
functions and biological pathways of the CRGs, we operated
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of CRGs
utilizing the R packages “limma” and “clusterProfiler” [26].
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Next, we conducted Gene Set Enrichment Analysis (GSEA)
by employing the GSEA tool [27] against gene sets from
the MSigDB. To further assess the biological function differ-
ences between the groups, GSVA enrichment analysis was
performed based on the “GSVA” R package [28].

2.5. Somatic Mutational Hotspot Analysis. Through the GDC
data portal at TCGA, we got the somatic mutation data with
the Mutation Annotation Format (MAF) for HCC patients.
The “Maftools” R package [29] in R software was utilized
for summarization and visualization of the mutated genes.

2.6. Construction and Validation of a Novel Prognostic Model
Based on CRGs. According to univariate Cox analysis, we

screened out survival-associated genes, and with the least
absolute shrinkage and selection operator (LASSO) Cox
regression, we formed a risk signature through the “glmnet”
and “survival” R packages [30] in the TCGA. The risk score
was computed as follows:

risk score = 〠
n

j=1
Coef j ∗ xj: ð1Þ

xj on behalf of the expression levels of every prognostic
CRG and Coef on behalf of the coefficient. According to
the median score, HCC patients were categorized into low-
and high-risk groups. Kaplan-Meier survival curves were
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Figure 1: Identification of cuproptosis-related DEGs and exploration of the relationship between each CRG in HCC based on the TCGA
database. (a) Cuproptosis-related DEGs expression patterns between HCC and normal tissue. The color legend represents the log2
(FPKM) value. (b) Pearson’s correlation analysis of each CRG based on the HCC samples. (c) PPI network plot displayed the
relationship between each CRG. Red and green nodes indicate up and downregulated genes, respectively. (d) The number of adjacent
nodes between each CRG in the PPI network. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 2: Continued.
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utilized to compare the two groups’ overall survival (OS) and
progression-free survival (PFS). The “timeROC” R package
was utilized to calculate the time-dependent receiver operat-
ing characteristic (ROC) curve according to the signature’s
sensitivity and specificity [31]. We employed univariate
and multivariate Cox regression analysis to test the risk
score’s independent prognostic value. Chi-square examina-
tions were utilized to measure the association between risk
levels and clinical characteristics. Next, the ICGC database
was used to verify the risk score’s predictive ability. The
same formula used for TCGA patients was enrolled to esti-
mate the risk scores of ICGC patients.

2.7. Kaplan–Meier Survival Curve Analysis. Kaplan-Meier
survival curves were adopted for survival analysis with
Mantel-Wilcox tests. We conducted a survival analysis of
HCC cases in the TCGA database based on gene clusters,
risk groups, and clinical features stratification, while HCC
patients in the ICGC were analyzed according to risk groups.

2.8. Construction of Prognostic Nomograms. Through the R
package “rms” [32], we constructed a nomogram and corre-
sponding calibration map through the risk score and other
important clinical traits. The area under the ROC curve
(AUC) was utilized to measure the diagnostic power of the
nomogram. Univariate and multivariate Cox regressions
were employed to assess whether the nomogram was an
independent predictor.

2.9. Tumor-Infiltrating Immune Cells Analysis. To compre-
hensively assess the composition of tumor-infiltrating
immune cells, we employed several methods, including
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,

MCPcounter, XCELL, EPIC, and ssGSEA. Correlation anal-
ysis was used to examine the relationship between immune
cell infiltration and risk level. Furthermore, eight critical
genes involved in immune checkpoint blockade therapy
were extracted from each case and compared between differ-
ent groups, including TIGIT, PD-L2, PD-L1, PD-1, LAG3,
SIGLEC15, TIM-3, and CTLA-4.

2.10. Immunotherapy Response Predictions. Tumor immune
dysfunction and exclusion (TIDE) [33] was enrolled to fig-
ure out how probable it was that HCC patients’ responses
to ICB.

3. Results

3.1. Exploration of Differentially Expressed CRGs in HCC.
We carefully selected a gene set of 19 genes (ATP7B, ATP7A,
DLD, DLAT, DLST, SLC31A1, FDX1, LIPT1, LIAS, LIPT2,
PDHA1, NFE2L2, NLRP3, GLS, MTF1, CDKN2A, GCSH,
DBT, and PDHB) which function closely with cuproptosis.
The screening criteria of the 19 CRGs were based on the core
literature reported by Tsvetkov et al., who first defined the
cuproptosis [12]. In the TCGA, compared to normal tissues,
17 genes were differentially expressed in HCC, including
ATP7A, DLD, DLAT, DLST, SLC31A1, FDX1, LIPT1, LIAS,
LIPT2, PDHA1, NFE2L2, NLRP3, GLS, MTF1, CDKN2A,
DBT, and PDHB (Figure 1(a)). Based on the HCC samples,
the relationship between CRGs was then revealed using
Pearson’s correlation analysis (Figure 1(b)). Next, the PPI
network was formed by the web tool STRING and pictured
through the Cytoscape program to further reveal the poten-
tial connection between the related proteins (Figure 1(c)). In
the PPI network, we counted the number of adjacent nodes
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Figure 2: Consensus clustering of cuproptosis-associated subtypes and survival analysis in the TCGA. (a) Heatmap represented the
consensus clustering solution (k = 2) for 19 CRGs among 502 HCC samples. (b, c) The consensus clustering delta area showed the
cumulative distribution function area for k = 2 to 9. (d) Boxplots represented gene expression profiles for 19 genes in the two clusters. (e)
An expression heatmap showed 19 genes grouped into two clusters. The color legend represents the log2 (FPKM) value. Red highlighted
the high expression, and blue highlighted the low expression. (f) Kaplan–Meier curves of OS in different clusters. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001.
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Figure 3: Continued.
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(Figure 1(d)). We discovered a strong correlation between
each CRG in HCC tissues, suggesting that these CRGs may
act as a whole and perform a common function of cupropto-
sis together. These findings demonstrated that CRGs’
expression patterns between HCC and normal tissues are
remarkably different, indicating that CRGs may perform a

significant function in the tumorigenesis and development
of HCC.

3.2. Consensus Clustering Identified Two Cuproptosis-
Associated Subtypes and Survival Analysis. To reveal the
relationship between cuproptosis subtypes and HCC
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Figure 3: Results of functional enrichment analysis. (a) A list of the top 10 enriched GO terms. Topics contained biological processes (BP),
cellular components (CC), and molecular functions (MF). (b) The top 30 most significant enriched KEGG pathways. (c) The top 5 GSEA-
GO enrichment in cluster 1. (d) The top 5 GSEA-GO enrichment in cluster 2. (e) The top 5 GSEA-KEGG enrichment in cluster 1. (f) The
top 5 GSEA-KEGG enrichment in cluster 2.
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Figure 4: The somatic mutations landscape of two cuproptosis-related clusters. The top ten mutated genes in cluster 1 (a) and cluster 2 (b)
were visualized using a waterfall plot.
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patients’ clinical outcomes, we used 19 CRGs to cluster HCC
patients in the TCGA database. Through K-means cluster
analysis, HCC patients were clustered into two subgroups
according to the 19 CRGs with similar expression patterns
(Figures 2(a)–2(c)). The gene expression data of 19 CRGs
in two clusters showed that a high expression level of
ATP7A, CDK2A, GLS, LIPT1, LIPT2, MTF1, NLRP3, and
PDHA1 was found in cluster 1, while cluster 2 showed high
expression levels of ATP7B, DLST, and FDX1 (Figures 2(d),
2(e)). The Kaplan-Meier analysis of survival discovered that
the clusters linked with cuproptosis had distinct clinical out-
comes. Patients in cluster 1 had poorer clinical results,
whereas those in cluster 2 had a more favorable prognosis
(Figure 2(f)). These results revealed that there might be a
relationship between cuproptosis-associated subtypes and
HCC clinical outcomes.

3.3. Functional Enrichment Analysis Based on Clustering.
GO, KEGG, and GSEA analyses were conducted on the
DEGs between two clusters with cut-off criteria of p value
<0.05 and jlog 2FCj ≥ 1 in order to study the biological func-
tion variations of each cluster. We presented the top 10 GO
terms, 30 significant enriched KEGG pathways, and the top
5 normalized enrichment scores terms of GSEA. Among GO
terms, nuclear division, mitotic nuclear division, condensed
chromosomes, and single-stranded DNA helicase activity
were significantly enriched (Figure 3(a)). On the KEGG
pathway list, DNA replication, cell cycle, p53, and IL-17 sig-
naling pathways are significantly enriched (Figure 3(b)).
According to GESA, two clusters had differentially enriched
gene sets. Based on GSEA, GO terms in cluster 1 are pre-
dominantly associated with cell cycle, nuclear chromosome
segregation, organelle fission, and immunoglobulin complex
(Figure 3(c)). GO terms in cluster 2 were enriched in xeno-

biotic catabolic processes, high-density lipoprotein particles,
and microbody lumens (Figure 3(d)). The KEGG pathways
in cluster 1 were predominantly related to DNA replication,
cell cycle, and cytokine-cytokine receptor interaction
(Figure 3(e)). As for cluster 2, it was enriched in fatty acid
metabolism, bile acid production, and retinol production
(Figure 3(f)). According to these results, the two clusters dif-
fer in biological function, and the differences mainly focus
on cell cycle, cell death, and immune-related functions.

3.4. Somatic Mutations and Immune Landscape of
Cuproptosis-Related Clusters. In addition, we investigated
the mutation profile of cuproptosis-related clusters in HCC
patients. TP53, CDKN2A, TTN, MUC16, and FAT1 were
the most abundant mutant genes. The relative mutation fre-
quencies differ between the two clusters. A high frequency of
MUC16 and TP53 mutations was observed in cluster 1, with
46% and 22% of the total, respectively (Figure 4(a)). In cluster
2, CTNNB1 and TTNwere the most frequently mutated genes,
with 31% and 26% of the total, respectively (Figure 4(b)). The
tumor immunemicroenvironment in the two clusters needs to
be investigated further, then TIMER, CIBERSORT, CIBER-
SORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC
algorithms were used to visualize the immune cell infiltration
situation (Figure 5(a)). Immune infiltration of various
immune cells differed significantly between the two clusters
(Supplementary Table 1). We further investigated immune
checkpoint gene expression levels in the eight important
immune checkpoints across the two clusters. The expression
of CD274, TIGIT, PDCD1, HAVCR2, LAG3, and CTLA4 was
substantially different between the two clusters of HCC
patients (Figure 5(b)). Based on ssGSEA analysis, we
analyzed immune cell subpopulations and their related
functions. The results revealed that aDCs, B cells, mast cells,
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Figure 5: The immune landscape of two cuproptosis-related clusters in HCC. (a) The immune infiltration heatmap between the two clusters
using TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC algorithms. (b) The gene expression levels
of immune checkpoints for the two clusters. (c) The ssGSEA for examining subpopulation associations in immune cells. (d) The ssGSEA for
examining subpopulation associations in immune functions. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 6: Continued.
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neutrophils, Tfh, and type II IFN response significantly
differed between the two clusters (Figures 5(c) and 5(d)).
According to these findings, there were significant
differences between the two cuproptosis-related clusters of
HCC in terms of somatic mutations and immune landscape.

3.5. Construction of the Cuproptosis-Related Prediction
Model in HCC. To detect the key genes in cuproptosis and
explore the possibility of clinical application of cuproptosis-
related phenotype, we developed a prognostic model by differ-
entially expressed CRGs in the TCGA database. Through the
univariate Cox analysis, we found six CRGs were significantly
associated with OS (Figure 6(a)). Then, five genes were
selected in the prognostic model with LASSO Cox regression
(Figures 6(b) and 6(c)). The risk-score model is formed as the
following algorithm: risk score = ð0:6125Þ∗LIPT1 + ð0:3970Þ∗
DLAT + ð0:0013Þ∗MTF1 + ð0:0619Þ∗GLS + ð0:2198Þ∗CDK
N2A. Additionally, according to the distribution of risk scores
and survival time, we found higher risk levels were linked to
shorter survival times (Figures 6(d)–6(f)). Utilizing Kaplan-
Meier analysis, we further assessed the prognostic relevance
of this risk profile. A negative correlation was found between
risk scores with OS and PFS (Figures 6(g) and 6(h)). Using
the ROC curve, we assessed the predictive role of risk score
by computing AUC, which was 0.729, 0.637, and 0.615 for
the 1-, 3-, and 5-year survival (Figure 6(i)). In addition, we
explored the somatic mutation condition of the five model
genes. CDKN2A is mutated in 3 percent of HCC patients,
MTF1 is mutated in 1 percent of HCC patients, and fewer
mutations are found in GLS, LIPT1, and DLAT. The most
abundant mutation type is the missense mutation (Figure 6(j)).

3.6. Exploration of the Independent Prognostic Value and
Clinical Feature of the Risk Score in HCC. In the TCGA,
we conducted both univariate and multivariate Cox regres-

sion analyses to explore whether risk score and other clinical
traits were independent prognostic factors. With five param-
eters (age, gender, stage, grade, and risk score), the risk score
obtained by our formula served as an independent predictor
of survival for HCC patients (p < 0:01, Figures 7(a) and 7(b)).
Meanwhile, it was discovered that the risk score was substan-
tially associated with the tumor stage and grade (Supplemen-
tary Table 2). Besides, we compared the risk score across
different clinical traits. Interestingly, according to the risk
score, we found differences were significant between the T1
stage versus T2, T3, and T4 stage (p < 0:05, Figure 7(f)) and
tumor stage I versus stage II, and stage III (p < 0:01,
Figure 7(i)). The other clinical characteristics were also
compared separately (Figures 7(c)–7(i)). The high-risk
group patients had advanced T stage and tumor stage
compared with low-risk group patients. These results
indicated that the risk model built with these five genes is
capable of accurately predicting the prognosis of HCC.

3.7. Implication of Risk Score on the Prognosis of HCC
Patients in Different Clinical Parameters Stratification. We
carried out a stratified analysis for further data mining
(Figures 8(a)–8(h)). Following stratification by age, gender,
tumor stage, and tumor grade, the risk score based on five
CRGs signature performed as a significant prognostic indi-
cator for age ≤ 65 (Figure 8(b)), male patients with HCC
(Figure 8(d)), stages I-II (Figure 8(e)), grades 1-2
(Figure 8(g)), and grades 3-4 (Figure 8(h)).

3.8. Prognosis Model Validation in the ICGC Cohort. We
gathered comprehensive clinical information for 232 HCC
cases from the ICGC database to serve as an external valida-
tion set. The risk score for each patient in the ICGC was
computed according to the same formula created in the
TCGA. The relationship between risk scores and clinical
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Figure 6: Formation of the risk score signature utilizing five CRGs in the TCGA. (a) Univariate Cox regression analysis selected six CRGs.
(b, c) Detection of five prognostic CRGs using the LASSO Cox regression analysis. (d) Heatmaps of the five prognostic CRGs according to
the distribution of risk scores. The color legend represents the log2 (FPKM) value. (e) The distribution of risk scores. (f) Patients’ survival
status according to the distribution of risk scores. (g) Kaplan-Meier survival analysis compared the OS between the high-risk and low-risk
groups. (h) Kaplan-Meier survival analysis compared the PFS between the high-risk and low-risk groups. (i) The ROC curves for 1, 3, and 5
years of the risk model. (j) Mutation landscape of the five CRGs of the risk model.
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traits was examined (Supplementary Table 3). The TCGA
cohort’s median risk score was utilized to separate the
ICGC cohort into high-risk and low-risk groups. 101 cases
were located in the low-risk group, while the other 131
were in the high-risk group. The distribution diagram of
risk scores and survival times displayed that the survival
times of HCC patients in the ICGC decreased with rising
risk scores, and in the low-risk group, there were more
survivors than in the high-risk group (Figures 9(a)–9(c)).
According to the Kaplan-Meier survival analysis, the
survival time of high-risk patients was shorter than that of
low-risk patients (p = 0:002, Figure 9(d)). Our risk model
was also discovered to be an independent predictor of
mortality in the ICGC (Figures 9(e) and 9(f)).

3.9. Prognostic Nomograms of HCC. To further elevate the
predictive power of our risk model, the nomograms were
constructed by utilizing the five significant independent pre-
dictors (age, gender, grade, stage, and risk score) in the
TCGA (Figure 10(a)). Good consistency between the predic-
tion by nomogram and actual observation of 1-, 3-, and 5-
year survival rates (Figure 10(b)) was confirmed by the cali-
bration plot. The nomogram model also showed good pre-

diction accuracy for the 1-, 3-, and 5-year OS rates. The
relevant AUC values were 0.758, 0.710, and 0.696.
(Figures 10(c)–10(e)). These findings suggest the preferable
precision of the nomogram. In addition, the nomogram
model could represent an independent risk factor in the
TCGA (Figures 10(f) and 10(g)).

3.10. Function and Pathway Enrichment Analyses Based on
Cuproptosis-Related Risk Score. For the assessment of the
mechanisms underlying our risk model, we analyzed DEGs
following the criteria: FDR < 0:05 and jlog 2FCj ≥ 1. 781 sig-
nificant DEGs were identified, comprising 724 upregulated
genes and 57 downregulated genes in the high-risk group.
The GO terms were substantially enriched in chromosome
segregation, nuclear division, chromosomal region, spindle,
and DNA replication origin binding (Figure 11(a)). The
majority of enriched KEGG pathways were cellular senes-
cence, HIF-1 signaling pathway, TNF signaling pathway,
apoptosis, cell cycle, and IL-7 signaling pathway
(Figure 11(b)). As we could see, both GO terms and KEGG
analysis indicated that the functional enrichment of the risk
model highly correlated with cell cycle, cell death, and
immune response. The results of GSVA revealed that low-
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Figure 7: Exploration of the independent prognostic value and clinical feature of the risk score in HCC. (a, b) Through univariate and
multivariate Cox regression analysis, the risk score was found to be an independent prognostic element for HCC patients. (c–i) The
relationship between the risk score and different clinical parameters of HCC.

13Mediators of Inflammation



p = 0.077

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

High
Low

Patients with age > 65

67 34 17 13 8 6 5 2 2 1 0
71 57 34 23 15 8 4 2 2 1 0Low

High

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Ri
sk

(a)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

High
Low

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Low
High

Ri
sk

p < 0.001

Patients with age < = 65

118 70 29 19 12 7 5 0 0 0 0
114 93 46 34 28 19 11 4 2 1 1

(b)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

High
Low

0 1 2 3 4 5 6 7 8 9 10
Time (years)

p = 0.529

Patients with FEMALE

65 47 18 11 8 4 4 2 2 1 0
56 37 28 18 13 10 5 2 2 1 0Low

High

Ri
sk

(c)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Low
High

Ri
sk

p < 0.001

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with MALE

120 57 28 21 12 9 6 0 0 0 0
129 113 52 39 30 17 10 4 2 1 1

High
Low

(d)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

5

p = 0.016

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with stage I−II

116 70 30 25 16 11 8 1 1 1 0
140 117 61 45 34 21 13 5 3 1 0Low

High

Ri
sk

High
Low

(e)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

p = 0.075

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with stage III−IV

56 25 11 5 4 2 2 1 1 0 0
34 24 13 10 8 5 2 1 1 1 1Low

High

Ri
sk

High
Low

(f)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

p = 0.015

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with G1−2

98 47 26 16 10 9 7 2 2 1 0
134 105 55 41 32 20 11 4 2 1 1Low

High

Ri
sk

High
Low

(g)

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

5

p = 0.019

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Patients with G3−4

85 56 19 15 10 4 3 0 0 0 0
48 42 22 15 10 6 4 2 2 1 0Low

High

Ri
sk

High
Low

(h)

Figure 8: Kaplan-Meier analysis of the risk score in different stratifications according to clinicopathological characteristics. (a–h) HCC
patients with varying clinical features (age, gender, stage, and grade) were analyzed using the Kaplan-Meier method according to the risk
score.

14 Mediators of Inflammation



CDKN2A

DLAT

MTF1

LIPT1

GLS

Type

Type
High
Low

−4

−2

0

2

4

(a)

0

2.0

2.5

3.0

3.5

50 100 150 200

Ri
sk

 sc
or

e

High risk
Low risk

(b)

0 50 100 150 200
0
1
2
3
4
5
6

Patients (increasing risk score)

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

Dead
Alive

(c)

p = 0.002

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6
Time (years)

O
ve

ra
ll 

su
rv

iv
al

Risk

131 112 59 26 7 0 0
101 88 62 32 9 2 0Low risk

Low risk

High risk

High risk

0 1 2 3 4 5 6
Time (years)

Ri
sk

(d)

Age

Gander

Stage

riskScore

0.899

0.039

<0.001

0.005

p value

1.002 (0.972 − 1.033)

0.519 (0.278 − 0.966)

2.155 (1.493 − 3.110)

2.632 (1.339 − 5.175)

Hazard ratio

Hazard ratio
0 1 2 3 4 5

(e)

Age

Gander

Stage

riskScore

0.659

0.005

<0.001

0.024

p value

0.993 (0.961 − 1.026)

0.398 (0.209 − 0.756)

2.194 (1.519 − 3.169)

2.176 (1.106 − 4.284)

Hazard ratio

Hazard ratio
0 1 2 3 4

(f)

Figure 9: Verification of the five CRGs signature in the ICGC cohort. (a) Heatmaps of five prognostic CRGs in the ICGC database according
to the risk score distribution. The color legend represents the log2 (FPKM) value. (b) The risk scores distribution. (c) The survival status of
each patient is according to the risk score distribution. (d) Kaplan-Meier curves for the OS of HCC patients. (e, f) The independent survival
analysis of the risk scores and clinical traits through univariate and multivariate Cox regression analysis.
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Figure 10: Continued.
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risk group patients showed elevated expression levels of
multiple metabolism pathways, like arginine and proline,
phenylalanine, glycine, serine, and threonine, and high-risk
group patients harbored upregulated expression levels of
multiple cell cycle and tumorigeneses pathways, such as
bladder cancer, notch signaling pathway, p53 signaling path-
way, renal cell carcinoma, cell cycle, and DNA replication
(Figure 11(c)).

3.11. Immune Characteristics Based on Cuproptosis-Related
Risk Score. To further explore the immune landscape of the
cuproptosis-related risk model, we calculated the immune
responses score through TIMER, CIBERSORT, CIBER-
SORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC
algorithms. Then, the relationship between risk score and
tumor immune response score was analyzed by Pearson’s
correlation. We formed a forest plot to display the detailed
correlation coefficient between the immune cell infiltration
and risk score (Figure 12(a)). Then, after we performed the
ssGSEA method to explore the immune cell subpopulations
and related functions, we found that immune cell subpopu-
lations and related functions including aDCs, B cells, macro-
phages, mast cells, NK cells, Treg, cytolytic activity, MHC
class I, and type II IFN response differed between high-risk
and low-risk groups (Figures 12(b) and 12(c)). Besides, we
further investigated the relationship between the five
cuproptosis-related model genes and the ssGSEA result of
immune cell subpopulations and related functions in each
case (Figure 12(d)). We found some significantly positive
correlations, such as the correlation between MTF1 and
MHC class I (r = 0:49), and some significantly negative cor-
relations, such as the correlation between CDKN2A and
type II IFN response (r = −0:57). As a crucial negative regu-
lator of the tumor immune microenvironment, the immune
checkpoints act as an essential role in assisting tumor cells in
evading immune system attacks. Hence, we examined the
expression level of eight important immune checkpoint
genes. Between high-risk and low-risk groups, we discovered
a significant variance in the expression level of immune
checkpoints, including CD274, TIGIT, PDCD1, HAVCR2,
and CTLA4 (Figure 12(e)). Following that, a prediction of
the immune checkpoint therapy response was made using
the TIDE algorithm based on risk scores (Figure 12(f)).

Interestingly, patients in the high-risk group had a higher
likelihood of benefiting from immune checkpoint inhibitor
therapy, suggesting that the risk score has the potential to
predict whether HCC patients will benefit from immune
checkpoint therapy.

4. Discussion

Copper overload can cause cuproptosis, which is a novel
form of programmed cell death triggered by mitochondrial
TCA cycles [12]. The relationship between tumors and cop-
per has long been noted, and in fact, tumor tissue requires
higher levels of copper [34]. Copper homeostasis imbalances
can result in life-threatening conditions, such as Wilson’s
disease, in which most patients exhibit chronic liver disease
with cirrhosis [35]. Copper overload also can lead to cirrho-
sis, which is one of the well-known risk factors for HCC
[36]. Consequently, a better understanding of cuproptosis
in HCC could be meaningful for developing new therapeu-
tics. Here, through a series of analyses, we explored the rela-
tionship between cuproptosis and HCC. According to our
findings, HCC has a different expression model of CRGs
compared with normal liver tissue, and the different cupropto-
sis subtypes are strongly correlated with the clinical outcome
of HCC patients. In addition, a prognostic risk model was cre-
ated using different expressed CRGs. These findings may have
implications for possible new therapeutic approaches to treat-
ing HCC.

Based on our study, we found that most of the CRGs are
differentially expressed in HCC versus normal liver tissue.
This finding is consistent with previous reports. Bian et al.
found that most CRGs differ between clear cell renal cell
carcinoma and normal renal cell [37]. Another report also
indicated that most CRGs are differentially expressed in mel-
anoma [38]. These clues suggested that the CRGs may have
different expression patterns in tumors, including HCC,
compared with normal tissues. Consensus clustering identi-
fied two clusters with significantly different OS based on the
expressions of CRGs. We found the function, mutation, and
immune analyses were performed differently between the
two clusters, suggesting cuproptosis may be broadly related
to HCC progression. The higher mutant frequency of TP53
in cluster 1 and higher mutant frequency of CTNNB1 in
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Figure 10: Predicting survival rates for HCC patients after one year, three years, and five years using the nomogram. (a) The nomogram
model was formed to predict the survival rates of HCC patients in the TCGA cohorts. (b) Calibration curves of the nomogram. (c–e)
The ROC curve explored the prognostic performance of the nomogram model. (f, g) Univariate and multivariate Cox analysis of the
nomogram and clinical traits.
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cluster 2 could help to elucidate the underlying molecular
mechanism of the unique tumor microenvironment. HCC
patients with TP53 mutations have poorer outcomes [39],
and the mutation status of TP53 can be used to predict
immune response to immunotherapy in a variety of cancer
types [40, 41]. Thus, we showed that CRG expression might
be closely related to HCC prognosis and tumor
microenvironment.

We next constructed and validated an effective risk
model with 5 CRGs (MTF1, DLAT, GLS, CDKN2A, LIPT1)
for separating HCC patients into high-risk and low-risk
groups. The model displayed good predictive ability in both
the training and validation dataset. We also designed the
nomogram to combine the CRGs risk score model and clin-
ical features, and the nomogram showed excellent prediction
with good calibration. All these five genes exhibited
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Figure 12: Continued.
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upregulated expression in HCC patients. As a classic metal
sensing transcription factor, metal regulatory transcription
factor 1 (MTF1) stimulates the expression of genes involved
in metal homeostasis after exposure to heavy metals,
including copper [42]. MTF1 regulates hepatic MT1/2 gene
expression via a synergistic effect with SIRT6. By reducing
ROS, inflammation, and tissue injury, MT1/2 protects the
liver from alcoholic liver disease [43]. Dihydrolipoamide
S-acetyltransferase (DLAT) is one of the limited human
proteins which can be lipoylated. Tsvetkov et al. discovered
that lipoylated DLAT could bind copper and knocking out
DLAT could prevent copper toxicity for cells [12]. DLAT
encodes an essential subunit E2 of pyruvate dehydrogenase
complex (PDHC), which is the critical autoantigen in pri-
mary biliary cholangitis (PBC) [44]. Cirrhosis and liver fail-
ure are associated with PBC [45]. In a recent study, it was
found that posttranslational modifications of PDHC and
GLS are involved in liver cancer metabolism and biogenesis

[46]. There are two main types of GLS: kidney glutaminase
(GLS1) and liver glutaminase (GLS2) [47]. The overexpres-
sion of GLS2 in human liver cancer cells induced significant
growth, proliferation, ectopic expression, and a G2/M arrest
[48]. CDKN2A (also known as p16) is a tumor suppressor
gene and one of the most frequently deleted genes in cancer
genomes [49]. HCCs harboring deletions of CDKN2A consti-
tute approximately 8% of cases [50, 51]. CDKN2A induces
cell cycle arrest at G1 and G2 phases and inhibits the onco-
genic effects of CDK4/6 and MDM2 [52]. In the TCA cycle,
lipoyltransferase 1 (LIPT1) activates TCA cycle-associated
2-ketoacid dehydrogenases. The lack of LIPT1 can inhibit
the TCA cycle [53]. There is little evidence that LIPT1 is asso-
ciated with tumor occurrence and development. Taken
together, these five crucial genes, except LIPT1, contribute
to the progression and development of liver disease or HCC.

Our study found that the phenotype of high-risk patients
is more advanced, and the survival time is significantly
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Figure 12: The immune landscape of cuproptosis-related risk score in HCC. (a) The forest plot displayed the connection between risk score
and immune cell infiltration through TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPcounter, XCELL, and EPIC algorithms.
(b, c) The bar graphs showed the difference in immune cell subpopulations and related functions between high-risk and low-risk groups. (d)
The heatmap displayed the relationship of immune cell subpopulations and related functions with the five prognostic genes. (e) Differences
in immune checkpoint expression between high-risk and low-risk groups. (f) The violin plots presented the TIDE scores between high-risk
and low-risk groups. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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shorter (Figures 6(g) and 6(h)). We hypothesized that
cuproptosis resistance might be observed in high-risk
patients, and cuproptosis might contribute to the poor out-
comes of the patients in the high-risk group. MTF1, GLS,
and CDKN2A were expressed at higher levels in these
patients. Despite the two procuproptosis genes, LIPT1 and
DLAT were also upregulated in HCC patients. LIPT1 is a
key upstream regulator of protein lipoylation and a compo-
nent of the lipoic acid pathway. DLAT is one of the protein
targets of lipoylation [12]. Lipoylated DLAT could bind
copper and take part in the regulation of cuproptosis. Thus,
LIPT1 and DLAT could regulate cuproptosis through post-
translational modifications, not only through the gene
expression levels. Secondly, the high-risk patients were not
enriched in fatty acid metabolism pathways. The high-risk
group patients might therefore show resistance to cupropto-
sis due to suppressed related proteins of lipoylation.

Cuproptosis might inspire novel insights to treat tumors.
Keeping intracellular copper levels within a specific range
would be an effective treatment strategy for malignancies
[54]. Copper ionophores, such as DSF and elesclomol, are
emerging treatment options for cancers and exert their ther-
apeutic effects by inducing cuproptosis. Many studies have
demonstrated that, in combination with cupric ions, DSF
may be beneficial for treating a variety of cancers in humans
[14, 55, 56]. Elesclomol is particularly effective against
tumors relying on mitochondrial metabolism [57]. The com-
bination of elesclomol with paclitaxel has been well docu-
mented in clinical trials, particularly in advanced
melanoma [58–60]. Overall, these findings suggest that cop-
per ionophore-induced cuproptosis could be an effective
therapeutic strategy for certain tumors. There is hope that
HCC patients with low-risk scores might enjoy the antitu-
mor impact of the copper ionophores. Additionally, we
found significant differences in the expression levels of the
typical immune checkpoint and TIDE score between the
high-risk and low-risk groups, suggesting our risk model
may also show good predictability of response to ICB.

Our study has some weaknesses. First, the results may be
biased since the small number of patients. Second, although
this prognostic model demonstrated robust predictive ability
in both TCGA and ICGC databases, there is no clinical data
to further validate it, which is urgently warranted in future
research. Third, these critical genes of this model require
more experiments in vitro and in vivo to verify, which is
underway in our laboratory.

5. Conclusions

In conclusion, CRGs were significantly differentially
expressed between HCC and normal liver tissues, and the
prognosis of HCC patients is significantly influenced by
cuproptosis. A novel prognostic model containing five CRGs
has been conducted for HCC prognosis prediction. High-
risk HCC patients had a poor prognosis, advanced disease
stages, and an enhanced therapeutic response. These results
may shed light on new molecular pathways involved in HCC
carcinogenesis and enable the prediction of treatment out-

comes for HCC patients. Additional in vitro and in vivo
studies to validate these results would be beneficial.
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Background. Head and neck squamous cell carcinoma (HNSCC) is a growing concern worldwide, due to its poor prognosis, low
responsiveness to treatment, and drug resistance. Since immunotherapy effectively improves HNSCC patients’ survival status, it is
important to continuously explore new immune-related predictive factors to accurately predict the immune landscape and clinical
outcomes of individuals suffering from HNSCC. Methods. The HNSCC transcriptome profiling of RNA-sequencing data was
retrieved from TCGA database, and the microarray of GSE27020 was obtained from the GEO database for validation. The
differentially expressed genes (DEGs) between HNSCC and normal samples were identified by multiple test corrections in
TCGA database. The univariate and multivariate Cox analyses were performed to identify proper immune-related genes (IRGs)
to construct a risk model. The Cox regression coefficient was employed for calculation of the risk score (RS) of IRG signature.
The median value of RS was utilized as a basis to classify individuals with HNSCC into high- and low-risk groups. The
Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curves were employed for the identification
of the prognostic significance and precision of the IRG signature. The signature was also evaluated based on clinical variables,
predictive nomogram, mutation analysis, infiltrating immune cells, immune-related pathways, and chemotherapeutic efficacy.
The protein-protein interaction (PPI) network and functional enrichment pathway investigations were utilized to explore
possible potential molecular mechanisms. Finally, the hub gene’s differential mRNA expression levels were evaluated by means
of the Gene Expression Profiling Interactive Analysis (GEPIA), and the Human Protein Atlas (HPA) was utilized for the
validation of their translational levels. Results. Collectively, 1593 DEGs between HNSCC and normal samples were identified,
of which 136 IRGs were differentially expressed. Then, the 136 immune-related DEGs were mostly enriched in the cytokine-
related signaling pathways by GO and KEGG analyses. After that, a valuable signature based on seven genes (DKK1, GAST,
IGHM, IL12RB2, SLURP1, STC2, and TNFRSF4) was designed. The HNSCC patients into the low-risk group and the high-risk
group were divided by using the median RS; the HNSCC patients in the high-risk group had a worse survival than those in the
low-risk group. The risk signature was verified to be an independent predictive marker for HNSCC patients. Meanwhile, the
RS had the largest contribution to survival of these patients based on the predictive nomogram. In addition, the low-risk
HNSCC patients exhibited significantly enriched immune cells, along with an association with high chemosensitivity.
Conclusion. The constructed gene signature can independently function as a predictive indicator for the clinical features of
HNSCC patients. The low-risk HNSCC subjects might benefit from immunotherapy and chemotherapy.
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1. Introduction

As the sixth most prevalent type of malignancy, head and
neck squamous cell carcinoma (HNSCC) is the seventh
main cause of cancer-related mortalities globally [1]. A study
conducted in the United States predicted that by 2022,
approximately 66,470 new HNSCC cases would arise and
15,050 HNSCC-related deaths would occur [2]. Despite
steady advancements in relevant medical treatments, like
surgery, radiotherapy, and chemotherapy, the five-year sur-
vival of individuals with HNSCC has not significantly
improved [3]. Therefore, finding new and innovative novel
prognostic factors for HNSCC patients is an urgent need.

HNSCC is considered an immunodeficiency disease. The
main mechanisms underlying the disease include the induc-
tion of immune tolerance, local immune escape, and the
destruction of T-cell signals [4]. The immune microenviron-
ment of HNSCC has been widely studied [5, 6]. For instance,
the human leukocyte antigen (HLA) is responsible for the
vital function of transmitting signals between tumor antigen
peptides and killer T cells [7]. A previous study demon-
strated that more than 50% of HNSCC patients had low
HLA expression, with extensive lymph node metastasis and
poor prognosis [8]. HNSCC tumor cells could also release
chemical factors, to induce many immunosuppressive hema-
tological cells to enter the immune microenvironment, thus
suppressing the immune response [9].

Meanwhile, studying how HNSCC survival is linked to
infiltrating immune cell proliferation and function could
improve the survival of HNSCC patients [10–12]. Immu-
notherapy’s effect on the clinical outcomes of individuals
with HNSCC has also been intensively studied [13–15]. This
is why the exploration of immune-related biomarkers to
anticipate the clinical features of individuals with HNSCC
is imperative. Recent studies demonstrated that immune-
related biomarkers could affect the biological behavior of
HNSCC as well as the status of patients. For instance, Yao
et al.’s model consisted of four immune-related genes (IRGs),
including PVR, TNFRSF12A, IL21R, and SOCS1 [16]; Chen
et al. constructed predictive model based on three IRGs
(SFRP4, CPXM1, and COL5A1) [17]; and Zhang et al. estab-
lished a model based on six IRGs (PLAU, STC2, TNFRSF4,
PDGFA, DKK1, and CHGB) for the prognostic prediction
of HNSCC [18]. Although these studies have constructed a
proper model to predict the prognosis of patients with
HNSCC, the progression of HNSCC is complexity and
uncertainty. Therefore, to date, reliable and predictive bio-
markers for identifying HNSCC are still limited; it is essential
to continuously look for newly representative biomarkers.

During this research, a risk signature of seven immune-
related genes was developed for accurately predicting the
clinical outcomes of HNSCC subjects, which may provide
an effective treatment strategy for these patients.

2. Methods

2.1. Dataset. The transcriptome profiling of RNA-
sequencing (FPKM) was attained from The Cancer Genome
Atlas (TCGA) (https://cancergenome.nih.gov/) containing

502 cancerous and 44 healthy tissues samples, along with
the relevant clinical information for 528 HNSCC patients.
In total, 2483 IRGs were procured from The ImmPort data-
base (https://immport.niaid.nih.gov/) [19, 20]. Besides, the
microarray and clinical information of GSE27020 containing
109 HNSCC samples were provided by the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds/) for
authentication.

2.2. Development of the IRG-Based Signature. The differen-
tially expressed genes (DEGs) between cancerous and
healthy samples were identified with the help of TCGA
database after multiple test corrections by false discovery
rate ðFDRÞ < 0:05 and jlog fold change ðFCÞj > 2 [21]. Then,
screening the intersections of these DEGs with IRGs was car-
ried out. Univariate Cox proportional hazards regression
analysis was employed for the determination of the predictive
ability of IRGs for the overall survival (OS) of individuals
with HNSCC with the aid of the “survival” package in R
[22]. The genes with a threshold of P < 0:05 were subjected
to further evaluation using multivariate Cox regression anal-
ysis [23]. Then, the expression levels of the hub genes were
compared for further exploring their expression features in
normal and HNSCC tumor tissues. Subsequently, the calcu-
lation of the IRG-based signature-related risk score (RS)
was done using the Cox regression coefficient and gene
expression formula given below:

RS = 〠
N

i=1
Expi ∗ Co‐effð Þ ð1Þ

N , Expi, and Co-eff indicate signature gene number, gene
expression levels, and regression coefficient values, respec-
tively. Using the median value of RS as a criterion, the indi-
viduals with HNSCC were classified into the low- and high-
risk groups.

2.3. Prognosis Prediction by the IRG-Based Signature. For the
verification of the IRG-based signature’s prognostic perfor-
mance, the signature’s impact on OS in both risk groups
was subjected to comparison by Kaplan-Meier (K-M) sur-
vival analysis utilizing the “survival” package in R software,
followed by the area under the curve (AUC) of the receiver
operating characteristic (ROC) curves to assess IRG-based
signature’s accuracy through the “survival ROC” package
in R software [24]. Subsequently, the GEO database
(GSE27020) was used for external validation. It was also sub-
jected to K-M survival analysis and ROC curves to identify
the signature’s prognostic value and precision. The RS distri-
bution and survival status of individuals with HNSCC in
TCGA were constructed to further understand the prognos-
tic capability of the signature.

2.4. Correlation Analysis. The association of IRG-based
signature with clinical variables (age, pathological grade,
gender, and tumor and TNM stages) was analyzed. More-
over, the clinical factors and robustness of the signature in
predicting the OS were demonstrated by employing univar-
iate and multivariate Cox regression analyses.
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2.5. Construction of a Predictive Nomogram. Based on clini-
cal variables, a nomogram was used to establishment a prog-
nostic scoring system for predicting survival in HNSCC
patients both in TCGA and GSE27020 databases.

2.6. Somatic Mutation Analysis. We obtained the somatic
mutation profiles of all tumor samples from TCGA database
and explored the mutation analysis for 528 patients. The R
software “maftools” package was utilized to analyzed and
visualized for mutation data of the low-risk group and the
high-risk group.

2.7. Immune Microenvironment Analysis. Considering the
involvement of infiltrating immune cells in the tumor
microenvironment, the single-sample gene set enrichment
analysis (ssGSEA) algorithm was utilized to evaluate the
immune score of each HNSCC sample from TCGA and
GSE27020 databases [25]. The different proportions of the
infiltrating immune cells between the low- and high-risk
groups were assessed by the Wilcoxon test. Moreover, the
association between the RS and immune-related biological

functions was performed for further exploring the underlin-
ing mechanisms. The gene expression profiles correspond-
ing to samples of TCGA and GSE27020 databases were
selected to perform the gene set variation analysis (GSVA).

2.8. Prediction of Clinical Application. The calculation of the
half inhibitory concentration (IC50) of common chemother-
apeutic agents was done, and the differences in the IC50
across the two risk groups were also evaluated for predicting
the clinical application of the IRG-based signature both in
TCGA and GSE27020 databases.

2.9. Molecular Mechanism Analysis. The STRING biological
database (https://string-db.org/) was applied for extraction
of the protein-protein interaction (PPI) network [26] as a
mathematical representation of the physical contacts among
differentially expressed IRGs linked to HNSCC patient sur-
vival. Thereafter, Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrichment
analyses were employed in determining the potential func-
tion of the immune-related DEGs [27].

Expression and clinical data

Univariate cox regression

PPI network

Diferentially
expression

levels

Multivariate cox regression

ROC curves Chemosensitivity
analysis

Predictive
nomogram

Expression of
hub genes

Immune
microenvironment

analysis

Somatic
mutation
analysis

Correlation with
clinical variables

Kaplan-Meier
survival analysis

Seven-immune gene-
based signature

13 genes predicted the
survival of HNSCC

GO and KEGG pathway
enrichment analyses

136 diferentially expressed
immune-related genes

GSE27020 database
(109 HNSCC samples)

ImmPort database
(2483 immune-related genes)

TCGA database
(502 HNSCC samples and 44

normal samples)

Figure 1: The workflow of the present study. TCGA: The Cancer Genome Atlas; HNSCC: head and neck squamous cell carcinoma; PPI:
protein-protein interaction; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; ROC: receiver operating
characteristic.
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2.10. Investigating the Expression of Hub Genes. The Gene
Expression Profiling Interactive Analysis (GEPIA) (http://
gepia.cancer-pku.cn/) was utilized for the investigation of
the differential mRNA expression profiles of the hub genes
in the IRG-based signature. Moreover, the Human Protein
Atlas (HPA) (https://www.proteinatlas.org/) was employed
for the purpose of validating the translational levels of these
hub genes.

2.11. Statistical Analysis. R version 3.6.2 was utilized to
conduct statistical analysis procedures. DEGs were com-

pared with multiple test corrections with FDR < 0:05 and
jlogFCj > 2 were viewed as being dramatically dysregulated.
The survival curves were estimated by using the K-M survival
analysis and log-rank test between different groups. Clinico-
pathological features were compared by univariate and
multivariate Cox regression analyses. The ssGSEA algorithm
and Wilcoxon test were used to compare different propor-
tions of the infiltrating immune cells between different
groups. The t-test or Wilcoxon test for comparisons of two
variables, and a P < 0:05 (two-side) was taken as a statistically
significant value.
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Figure 2: Analysis of differentially expressed genes. (a) Volcano plot of differentially expressed genes in HNSCC. Red dots represent
upregulated genes, and green dots represent downregulated genes with statistical significance (FDR < 0:05, jlogFCj > 2), while black dots
represent the genes without differential significance. (b) Heatmap of differentially expressed genes in HNSCC tumor tissues. The colors
from green to red represent differentially expressed genes with low to high expression levels. (c) Volcano plot of differentially expressed
immune-related genes in HNSCC tumor tissues. (d) Heatmap of differentially expressed immune-related genes in HNSCC tumor tissues.
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3. Results

3.1. Differential Gene Expression Analysis. TCGA database
was employed to retrieve the HNSCC RNA-sequencing
data comprising 502 tumor samples and 44 healthy sam-
ples. Among these patients, 528 HNSCC subjects with gene

expression profiles and clinical follow-up data were included.
The workflow of this research is illustrated in Figure 1. In the
differential gene expression analysis, 1593 DEGs between
HNSCC and healthy samples were identified (Figures 2(a)
and 2(b)), of which 136 IRGs were differentially expressed
(Figures 2(c) and 2(d)). Among these genes, 13 genes were
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Figure 3: Immune-related differentially expressed genes analyzes. (a) PPI network of immune-related differentially expressed genes as
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identified to predict survival in the univariate Cox regression
analysis. To study their interactions, the STRING biological
database was utilized to construct the PPI network, contain-
ing 11 nodes and 22 edges. Based on the degree of genes,
IL1A, CTLA4, CCR8, IL12RB2, TNFRSF4, CXCL13, and
PLAU appeared to be the core genes among these IRGs
(Figure 3(a)). As for functional analysis in Figure 3(b), the
136 immune-related DEGs were mostly enriched in immune
response/cytokine mediation (BP), immunoglobulin com-
plex/external side of plasma membrane (CC), and cytokine
activity/signaling receptor activator activity/receptor ligand
activity (MF) by GO analysis. By KEGG pathway analysis,
the genes were mostly enriched in cytokine-cytokine receptor
interaction, viral protein interaction with cytokine and cyto-
kine receptor, and chemokine signaling pathway.

3.2. Development and Verification of the IRG-Based
Prognostic Signature. The detailed characteristics along with
population demographics are given in Table 1. To develop a

predictive IRG-based signature, seven IRGs were chosen after
univariate and multivariate Cox analyses (Table 2). Mean-
while, the expression levels of the seven IRGs were further
investigated. Compared with normal tissues, only SLURP1

Table 1: Comparison of characteristics between TCGA database and the GEO database (GSE27020).

Characteristic
TCGA GSE27020

P∗
Frequency Deaths (%) Frequency Deaths (%)

Total 528 170 (32.20) 109 34 (31.19)

Age (years) 0.063

≤65 345 99 (28.70) 61 19 (31.15)

>65 182 71 (39.01) 48 15 (31.25)

Unknown 1 0

Sex —

Male 386 114 (29.53) — —

Female 142 56 (39.44) — —

Grade 0.023

G1-G2 374 120 (32.09) 91 29 (31.87)

G3-G4 132 43 (32.58) 16 5 (31.25)

Unknown 22 7 (31.82) 2 0

Stage —

Stage I-stage II 120 40 (33.33) — —

Stage III-stage IV 394 130 (32.99) — —

Unknown 14 0

T —

T1-T2 189 53 (28.04) — —

T3-T4 323 117 (36.22) — —

Unknown 16 0

M —

M0 496 166 (33.47) — —

M1 6 3 (50.00) — —

Unknown 26 1 (3.85)

N —

N0 246 88 (35.77) — —

N1-N3 260 81 (31.15) — —

Unknown 22 1 (4.55)

TCGA: The Cancer Genome Atlas; GEO: Gene Expression Omnibus. ∗Chi-square test for the comparison of characteristics between TCGA database and the
GSE27020 database for each clinical variable.

Table 2: The detailed information of the immune-related gene
signature for the survival of HNSCC patients.

Gene name Coef HR (95% CI) P value

DKK1 0.006062 1.006 (0.998-1.014) 0.118

GAST 0.010886 1.011 (1.001-1.021) 0.024

IGHM -0.000928 0.999 (0.998-1.000) 0.108

IL12RB2 -0.051088 0.950 (0.894-1.010) 0.099

SLURP1 -0.001863 0.998 (0.997-1.000) 0.012

STC2 0.025190 1.026 (1.006-1.046) 0.011

TNFRSF4 -0.089341 0.915 (0.831-1.007) 0.069

HNSCC: head and neck squamous cell carcinoma; Coef: regression
coefficient value; HR: hazard ratio; CI: confidence interval.
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was downregulated in tumor tissues, while the expression
levels of DKK1, GAST, IGHM, IL12RB2, STC2, and TNFRSF4
were upregulated in tumor tissues (Figure 3(c)). Then, the
calculation of the RS of this IRG-based signature was done
as follows: RS = ð0:006062∗DKK1Þ + ð0:010886∗GASTÞ +
ð−0:000928∗IGHMÞ + ð−0:051088∗IL12RB2Þ + ð−0:001863∗
SLURP1Þ + ð0:025190∗STC2Þ + ð−0:089341∗TNFRSF4Þ.

Moreover, individuals with HNSCC were categorized
into the low-risk group (n = 249) and the high-risk group
(n = 249) as per the median RS. HNSCC patients at high risk
showed a worse survival in the K-M analysis, in comparison
to the patients at low risk (P < 0:001) (Figure 4(a)), with the
AUC of 0.685 for the 5-year ROC curve (Figure 4(b)), indi-
cating a certain predictive value of the signature in predict-
ing the survival of individuals with HNSCC. Meanwhile,
this IRG-based signature was validated in the GEO database
(GSE27020) of 109 HNSCC patients who were also grouped
into the low-risk group (n = 54) and the high-risk group
(n = 55). Consistent with TCGA database, the K-M analysis
of the GEO data exhibited that high-risk HNSCC individuals
presented a worse survival in comparison with the low-risk
group (P < 0:05) (Figure 4(c)), with the AUC of 0.637 for
5-year ROC curve (Figure 4(d)).

Additionally, there were more deaths in HNSCC patients
with the elevation in the value of RS (Figures 4(e) and 4(f)),
and the seven genes showed differences in mRNA expression
across the two groups in the heat map (Figure 4(g)).

3.3. Use of IRG-Based Signature as an Independent
Prognostic Marker for HNSCC. Univariate and multivariate
Cox regression analyses were conducted for assessing the
correlations between the IRG-based signature and clinical
variables (age, gender, grade, tumor stage, and TNM stage).
The findings indicated that OS of HNSCC patients was sig-
nificantly associated with age (HR = 1:022, 95%CI = 1:008
– 1:037, P = 0:003), M stage (HR = 3:595, 95%CI = 1:137 –
11:370, P = 0:029), and the RS calculated from the IRG-

based signature (HR = 1:650, 95%CI = 1:452 – 1:876, P <
0:001) (Figure 5(a)) in univariate Cox regression analysis
and also with age (HR = 1:020, 95%CI = 1:005 – 1:036, P =
0:010), M stage (HR = 4:643, 95%CI = 1:334 – 16:163, P =
0:016), and the RS (HR = 1:634, 95%CI = 1:432 – 1:864, P <
0:001) in multivariate Cox regression analysis (Figure 5(b)).

Furthermore, the associations between clinicopathologi-
cal parameters and the RS and associations between the
seven genes and clinical variables were also evaluated
(Table 3, Figure 5(c)). The results revealed that the male
gender, high tumor stage, and T stage were linked to a
greater value of RS. In addition, mRNA expression levels
of IGHM and SLURP1 appeared to be elevated in females
in comparison to males. The mRNA expression level of
STC2 appeared to be elevated in males when compared with
females, and a high pathological grade was correlated with
lower mRNA expression of GAST and SLURP1. The results
also suggested that higher mRNA expression of IGHM was
remarkably linked to a high grade. Greater mRNA expres-
sion of GAST was significantly linked to a more advanced
tumor stage. The elevated mRNA expression level of DKK1
and GAST was correlated with the advanced T stage. More-
over, lower mRNA expression of IGHM, as well as higher
mRNA expression of SLURP1 and STC2, was correlated with
the advanced M stage.

3.4. Construction of a Predictive Nomogram. The clinical var-
iables and RS were included in the nomogram. As indicated
in the nomogram, the RS had the largest contribution to sur-
vival of patients with HNSCC both in TCGA and GSE27020
databases (Figures 6(a) and 6(b)).

3.5. Somatic Mutation Analysis. We obtained somatic muta-
tion profiles of 528 patients in TCGA database. Around 241
(97.57%) and 229 (93.47%) samples possessed somatic
mutations in the high-risk and low-risk groups, respectively.
The top 30 mutated genes for high-risk and low-risk groups
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Figure 4: Development and validation of prognostic signature derived from immune-related genes. (a) K-M analysis of the effect of the
prognostic signature on OS of HNSCC patients in TCGA database. (b) ROC curves of the prognostic signature in TCGA database. (c)
K-M analysis of the effect of the prognostic signature on OS of HNSCC patients in the GEO database. (d) ROC curves of the prognostic
signature in the GEO database. (e) The RS distribution in HNSCC patients. (f) The survival status of HNSCC patients. (g) Heatmap of
the expression of nine immune-related genes in the low-risk and high-risk groups.
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are shown in Figures 7(a) and 7(b). The results indicated
that the TP53 mutated most frequently approximately
accounting for 78% and 62% in the high-risk and low-risk
groups, respectively.

3.6. Immune Microenvironment Analysis. The association
between 23 immune cells infiltration differences and differ-
ent risk groups was analyzed in TCGA and GSE27020 data-
bases. Patients in the low-risk group showed higher
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Figure 5: Correlations between the prognostic signature and clinical characteristics of HNSCC. (a) Forest plot of univariate Cox analysis. (b)
Forest plot of multivariate Cox analysis. (c) Correlations between the risk score of expression of the seven genes and clinical characteristics.
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Table 3: Correlations between the seven immune-related genes and clinical characteristics.

Gene name Age (P value) Sex (P value) Grade (P value) Stage (P value) T (P value) M (P value) N (P value)

DKK1 1.314 (0.190) -0.346 (0.730) -1.882 (0.062) -1.725 (0.086) -2.233 (0.026) -0.502 (0.649) -1.181 (0.238)

GAST -1.550 (0.123) -0.787 (0.432) 4.759 (<0.001) -2.389 (0.017) -3.773 (<0.001) 0.013 (0.990) -0.107 (0.915)

IGHM 0.207 (0.836) -2.370 (0.018) -2.271 (0.025) 0.009 (0.993) 1.094 (0.275) 5.116 (<0.001) -1.114 (0.266)

IL12RB2 -0.347 (0.729) 1.676 (0.095) -0.499 (0.618) 1.820 (0.071) 1.411 (0.160) 0.459 (0.677) 1.261 (0.208)

SLURP1 0.071 (0.943) 2.221 (0.028) 2.717 (0.007) 1.622 (0.107) 0.632 (0.528) 5.777 (<0.001) 1.517 (0.130)

STC2 -1.203 (0.230) -2.498 (0.013) -1.658 (0.100) -1.140 (0.256) -0.647 (0.518) 3.320 (0.015) 0.085 (0.932)

TNFRSF4 1.154 (0.250) -1.014 (0.311) -1.484 (0.140) -0.900 (0.368) 1.407 (0.161) 0.662 (0.535) -1.381 (0.169)
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Figure 6: Nomogram for the prediction of survival for patients with HNSCC. (a) Nomogram for the prediction of survival at 3 and 5 years
in TCGA database. (b) Nomogram for the prediction of survival at 3 and 5 years in the GSE27020 database.
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infiltration levels of these 23 immune cells in TCGA data-
base (Figure 8(a)), and patients in the low-risk group were
more correlated with the infiltration of activated CD8 T cell,
activated dendritic cell, CD56dim natural killer cell, eosino-
phil, immature B cell, mast cell, MDSC, monocyte, natural
killer cell, natural killer T cell, neutrophil, T follicular helper
cell, type 1 T helper cell, and type 17 T helper cell in the
GSE27020 database (Figure 8(b)).

In addition, the relationship between immune pathway
scores and RS were analyzed in order to better explore the
immune-related biological functions. Functions with a cor-
relation greater than 0.2 and P < 0:05 are shown in Supple-
mentary Figure 1. The results indicated that 14 immune-
related pathways were correlated negatively with the RS in
TCGA database (Supplementary Figure 1A). In the
GSE27020 database, 8 immune-related pathways were
correlated negatively with the RS, while 1 was correlated
positively (Supplementary Figure 1B). These immune-
related pathway scores vary with increasing levels of RS,
implying that an imbalance in these pathways is closely
related to tumor development.

3.7. Prediction of Clinical Application. The association of risk
with the therapeutic efficacy of common chemotherapeutic
agents in HNSCC was also studied. The findings exhibited
that the low-risk HNSCC patients presented increased sensi-
tivity to Elesclomol, GW843682X, Midostaurin, Pazopanib,
QS11, and Salubrinal in TCGA database (Figure 9(a)), and
the low-risk group was more likely with higher sensitivity
of Bexarotene, BI.2536, MG.132, QS11, Salubrinal, and
Thapsigargin in the GSE27020 database (Figure 9(b)). The
results indicated that HNSCC patients with low risk repre-
sented higher sensitivity to chemotherapy.

3.8. Investigation of the Expression of the Seven IRGs. The
expression of the seven IRGs in HNSCC was explored with
the help of the GEPIA database. The expression levels of

the seven IRGs varied remarkably across cancerous and
healthy tissues (Figure 10(a)). However, to validate these
findings, more experimental analyses were required. More-
over, the HPA database was employed to investigate the
expression of the seven IRGs at the translation level. Among
the seven IRGs, expressions of IGHM and SLURP1 were
lower in the HNSCC tissues. Moreover, STC2 showed higher
expression in HNSCC by immunohistochemistry. No
remarkable variations were observed in the expressions of
GAST, IL12RB2, and TNFRSF4 across normal and HNSCC
tissues, while DKK1 was not detected by immunohistochem-
istry in the HPA database (Figure 10(b)). However, to fur-
ther validate the translational relevance of the seven IRGs
on HNSCC, more clinical analyses on HNSCC samples are
needed.

4. Discussion

During this research, an IRG-based signature was estab-
lished, which was capable of anticipating the clinical land-
scapes of HNSCC patients and correlated with
clinicopathological characteristics of affected individuals,
the numbers of tumor-infiltrating immune cells, and the
efficacy of common chemotherapeutics. These findings
suggested that this signature may be valuable for predict-
ing HNSCC-related prognosis and provide good clinical
application in immunotherapy and chemotherapy.

The IRG-based signature consisted of seven genes (i.e.,
DKK1, GAST, IGHM, IL12RB2, SLURP1, STC2, and
TNFRSF4). Among them, DKK1 is a member of the DKK
family and regulates cell proliferation, migration, and apo-
ptosis in various tumor tissues through β-catenin-dependent
and β-catenin-independent mechanisms [28]. Moreover, as a
tumor suppressor gene, DKK1 causes apoptosis and
suppresses cell proliferation [29]. Gao et al. suggested that
elevated DKK1 expression levels can predict poor prognosis
in HNSCC patients [30]. STC2 regulates tumor cell
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Figure 7: Evaluation of somatic mutation. (a) The mutation profile of the top 30 mutation genes in high-risk patients. (b) The mutation
profile of the top 30 mutation genes in low-risk patients.
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Figure 9: Prediction of clinical application. Correlations between the risk score of the prognostic signature and the efficacy of common
chemotherapeutics in TCGA database (a) and GSE27020 database (b).
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Figure 10: The expression of the seven IRGs. (a) The mRNA expressions of the hub genes from the GEPIA database. (b) Validation of the
hub genes on a translational level using the HPA database.
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proliferation, apoptosis, and angiogenesis and is also vital for
the invasiveness and metastasis of HNSCC [31]. IL12RB2 is a
subunit of the IL-12 receptor, and an increased ratio of
IL12RB2-positive tumor-infiltrating lymphocytes is indica-
tive of a good prognosis in laryngeal cancer [32]. SLURP1
belongs to the Ly6/uPAR family that lacks a GPI-anchoring
signal sequence and is associated with a poor prognosis of
HNSCC [33]. Furthermore, one of the tumor necrosis factor
receptors, TNFRSF4, could be a useful target for immuno-
therapy of HNSCC [34]. Although there are no published
reports on GAST and IGHM for HNSCC, these genes may
be related to tumorigenesis and development [35, 36]. In gen-
eral, these previous findings emphasize the importance of
these seven genes in HNSCC prognosis prediction. Further-
more, the expression levels of GAST, IL12RB2, and TNFRSF4
in HNSCC samples appeared to be elevated in healthy tissues
from the GEPIA database, while no apparent variations were
observed between cancerous and healthy tissues from the
HPA data. Except for SLURP1 and STC2, IGHM expression
in HNSCC tissues was remarkably increased compared to
that in healthy samples from the GEPIA database, which
was inconsistent with the HPA database. This could be due
to abnormal methylation. However, further experimentation
is required to confirm this finding.

In the multivariate analysis for the associations between
clinicopathological factors and the risk IRG-based signature,
a high-immune RS was linked to a high tumor stage and T
stage. Also, the signature predicted the possible clinical fea-
tures of HNSCC subjects, likely by regulating the tumor
immune microenvironment. The tumor-infiltrating immune
cells are known to be correlated with the progression and OS
of HNSCC subjects [37], and a high level of infiltrating
immune cells is often a good predictor for the OS of patients
[38, 39]. Therefore, the risk IRG-based signature is expected
to correlate with infiltrating immune cells. As expected, low-
risk HNSCC patients had increased infiltration rates of 23
immune cells, indicating the effectiveness of immunotherapy
in the low-risk category compared with that in the high-risk
category. Owing to the importance of chemotherapy in
HNSCC, the IC50 values of various chemotherapeutic agents
were compared in the two groups. A lower RS was linked to
a higher IC50 of QS11 and Salubrinal in both TCGA and
GSE27020 databases. The QS11 is an inhibitor of ADP-
ribosylation factor GTPase-activating protein 1, which mod-
ulates Wnt/β-catenin signaling through an effect on protein
trafficking [40]; and the Salubrinal is a selective cell complex
inhibitor that inhibits endoplasmic reticulum stress-
mediated apoptosis. Despite these two drugs are not com-
monly used as chemotherapy drugs for HNSCC, the findings
of this study may be valuable for future research.

This study had some limitations. (i) Owing to limited
HNSCC samples in TCGA and GSE27020 databases, an
issue of the time period was evident in this study. (ii) The
analyses were performed using publicly available data from
retrospective studies, and the outcomes must be validated
in further research with larger samples and functional exper-
iments. (iii) There is a need for further exploration of other
possible predictive factors linked to clinical outcomes in
HNSCC. (iv) There is a need for further investigation of

the mechanisms underlying the functions of the IRG-based
signature in HNSCC. Bioinformatics analysis with a specific
reference value was used as a basis to conclude this study.
Further corresponding molecular experiments are required
to validate these findings.

To conclude, a risk signature based on seven IRGs (DKK1,
GAST, IGHM, IL12RB2, SLURP1, STC2, and TNFRSF4) was
developed. This signature serves as a potential biological
marker and treatment target for immunotherapy and chemo-
therapy of HNSCC. These findings may facilitate future stud-
ies on the molecular mechanisms of HNSCC.
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Immunotherapy based on immune checkpoint inhibitors (ICIs) is considered to be a promising treatment for stomach
adenocarcinoma (STAD), but only a minority of patients benefit from it. It is believed that the poor therapeutic efficacy is
attributed to the complex tumor immune microenvironment (TIM) of STAD. Therefore, elucidating the specific regulatory
mechanism of TIM in STAD is critical. Previous study suggests that GRP176 may be involved in regulating the pace of
circadian behavior, and its role in tumors has not been reported. In this study, we first found that GPR176 was highly
expressed in STAD and negatively correlated with patient prognosis. Next, we investigated the relationship between GPR176
and clinical characteristics, and the results showed that the stage is closely related to the level of GPR176. In addition, our
further analysis found that GRP176 expression level was significantly correlated with chemotherapeutic drug sensitivity and
ICI response. KEGG and GO analyses showed that GPR176 might be involved in stromal remodeling of STAD. Furthermore,
we analyzed the association between GPR176 expression and immune implication, and the results revealed that GPR176 was
negatively related to the infiltration of various immune cells. Interestingly, GPR176 induced the conversion of TIM while
reducing the tumor immune burden (TMB). The expression of GRP176 is closely related to the level of various
immunomodulators. Moreover, we performed univariate and multivariate regression analyses on the immunomodulators and
finally obtained 4 genes (CRCR4, TNSF18, PDCD1, and TGFB1). Then, we constructed a GRP176-related immunomodulator
prognostic model (GRIM) based on the above 4 genes, which was validated to have good predictive power. Finally, we
developed a nomogram based on the risk score of GRIM and verified its accuracy. These results suggested that GPR176 is
closely related to the prognosis and TIM of STAD. GPR176 may be a new potential target for immunotherapy in STAD.

1. Introduction

Stomach adenocarcinoma (STAD) is the most common
pathological type of gastric cancer (GC), accounting for
more than 95% of all GC [1]. Currently, STAD is the fifth
most common malignancy and the third leading cause of
cancer-related death globally [2]. To date, the classic treat-
ment strategies for STAD are surgery, chemotherapy, anti-
angiogenic therapy, and radiation therapy [3]. However,

these traditional treatments are increasingly difficult to
improve the prognosis of STAD, especially for patients with
advanced patients. Therefore, exploring new treatment
options is extremely important and urgent to improve the
prognosis of STAD.

Immunotherapy based on immune checkpoint inhibitors
(ICIs) has steadily developed into a research hotspot for
STAD treatment with the advent of a number of therapeutic
alternatives [4]. Patients with STAD are now being treated
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with a range of ICIs, and considerable therapeutic results
have been attained [5]. Unfortunately, due to heterogeneity
of tumors, only a majority of advanced STAD patients ben-
efit from ICIs [6]. Numerous studies have shown a strong
correlation between the efficacy to immunotherapy and the
percentage of immune cells in the TIM [7]. Therefore, it is
particularly important to elucidate the specific mechanisms
regulating TIM in STAD for guiding immunotherapy.

GPR176 is a member of the G protein-coupled receptor
family, as a membrane receptor protein, widely involved in
the response to hormones, growth factors, and neurotrans-
mitters [8]. Previous study showed that GPR176 is involved
in the pace of circadian behavior [8]. However, the function
and role of GPR176 in malignant tumors are unknown,
especially in TIM.

In this study, we first analyzed the expression of GRP176
in STAD and explored the correlation with patient prognosis
and various clinical features. The underlying mechanism of
GPR176 regulating STAD progression was preliminarily elu-
cidated. We discovered the effectiveness of GPR176 to pre-
dict STAD on chemotherapy drugs and ICIs. We revealed
the correlation between GPR176 and immune profile in
STAD. Critically, we constructed a GPR176-based prognos-
tic model and demonstrated its accuracy.

2. Materials and Methods

2.1. Acquisition of STAD Data from the Public Database.
TCGA database is an open platform for global users, which
contains many types of malignant tumor data. The STAD
transcription data was downloaded from TCGA database
(https://portal.gdc.cancer.gov/). We applied the correspond-
ing functions in the limma package of R software to process

the obtained data. In this study, a total of 371 STAD samples
were obtained after excluding samples with incomplete clin-
ical information.

2.2. Analysis of Immune Cell Infiltration in STAD. We
applied multiple databases to study the relationship between
GPR176 and immune cell infiltration, including TIMER,
TISIDB, and Cell-Type Identification by Estimating Relative
Subsets of RNA Transcripts (CIBERSORT). TISIDB is a web
server [9]. CIBERSORT is a novel calculation method that
can use the characteristic genes in the transcription group
data to mark the type of immune cells. CIBERSORT relied
on a matrix file called LM22 to analyze the immune cells
in the data to distinguish various immune cells [10].

2.3. Prediction of GPR176 Expression on the Effect of ICIs and
Chemotherapy Drugs. Immunophenoscore (IPS) is an indi-
cator for predicting reactions to ICIs (anti-CTLA-4 or anti-
PD-1) response [11]. This method is quantitatively
immune-related genes, including MHC-related molecules,
immune checking points, or effector cells and suppressor
cells. Finally, the final score is obtained by the average
weight. In this study, we analyze the expression level of
GPR176 through algorithms and then predict the sensitivity
of chemotherapy drugs. The principle of this algorithm is to
analyze the different expression genes between the GPR176
high and low expressions. Then, the results were submitted
to the CMap (Connectivity Map) database and then analyze
the corresponding chemical drugs.

2.4. Statistics. In this study, various function packages based
on R software are used for calculation and statistical analysis.
p < 0:05 were considered statistically significant.

p < 0.001
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Figure 1: Expression level of GPR176 and its correlation with prognosis in STAD. (a) mRNA expression level of GPR176 in pan-
cancer. (b) GRP176 mRNA expression levels in the STAD cohort. (c) Expression level of GRP176 mRNA in STAD and its paired
normal tissues. (d) Comparison of overall survival in patients with high and low expressions of GRP176 in STAD. (e) Protein
expression levels of GRP176 in STAD and normal gastric tissues.
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Figure 2: Correlation analysis between GRP176 and STAD clinical features. (a–f) Correlation of clinical features between high and low
expressions of GRP176 in STAD.
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3. Results

3.1. GRP176 Is Highly Expressed and Associated with Poor
Prognosis in STAD. Given that the role of GRP176 in tumors
is unclear, we first evaluated the GPR176 expression levels in
pan-cancer tissues. The result showed that the expression of
GRP176 was significantly upregulated in most tumors,

including STAD (Figures 1(a) and 1(b)). Consistently, fur-
ther analysis found that GPR176 was significantly higher in
STAD than in paired normal gastric tissue (Figure 1(c)). In
addition, we performed survival analysis on STAD patients
with high and low expressions of GPR176, and the result
demonstrated that patients with high expression of
GPR176 had a worse prognosis (Figure 1(d)). Moreover,
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Figure 3: Analysis of GPR176 expression level and drug sensitivity in LIHC. (a–l) Sensitivity comparison of high and low expressions of
GRP176 to various chemical drugs.
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we conducted public database (https://www.proteinatlas.org/
) to investigate the protein level of GPR176 in STAD, and
the results were consistent with the previous data
(Figure 1(e)). The above results indicated that the upregula-
tion of GPR176 in STAD is closely related to patient
prognosis.

3.2. The Expression Level of GPR176 Is Related to the Clinical
Characteristics in STAD. The previous results demonstrated
the close association of GPR176 with poor prognosis of
STAD.We intended to analyze the relationship between
GPR176 and clinical characteristics. As shown in
Figures 2(a) and 2(b), the distribution level of GPR176 does
not have significant correlation with gender and age. The
level of GPR176 in T2 patients was obviously higher than
that in T1 patients, but no further upregulation was
observed in T3+T4 (Figure 2(c)). Interestingly, GPR176
levels were not correlated with N and M in STAD patients
(Figures 2(d) and 2(e)). In addition, the level of GPR176 in

stage II patients was higher than that in stage I patients,
but no further upregulation was observed in III+IV
(Figure 2(f)).

3.3. Prediction of Sensitivity to Immunotherapy and
Chemotherapeutics by the Expression Level of GPR176 in
STAD. Our previous analysis implied that upregulation of
GPR176 is closely associated with the prognosis of STAD
and its pathological features. We further explored whether
GPR176 can instruct chemotherapy and immunotherapy
in STAD. As shown in Figures 3(a)–3(l), the STAD cohort
with high GPR176 expression had lower drug sensitivity to
5-fluoridine, CP724714, CL-1040, bosutinib, BL-2536,
AUY922, and AS605240. Conversely, the STAD cohort with
low GPR176 expression had lower drug sensitivity to cyclo-
pamine, CGP-60474, AP-24534, and A-770041. In addition,
when CTLA4 and PD-1 are negative, the cohort of low
GPR176 had a stronger immune response to immunother-
apy (Figure 4(a)). When CTLA4 and PD-1 are positive, the
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Figure 4: Expression levels of GPR176 and prediction of response to immunotherapy in LIHC. (a) In the case of both CTLA4 and PD-1
double negative, the low GPR176 cohort had higher IPS. (b) In the case of both CTLA4 and PD-1 double positive, the low GPR176
cohort had higher IPS. (c) In the case of CTLA4 negative but PD1 positive, the high GPR176 cohort had higher IPS. (d) In the case of
CTLA4 positive but PD1 negative, the high GPR176 cohort had higher IPS.

7Mediators of Inflammation

https://www.proteinatlas.org/


BP
CC

M
F

0 10 20 30 40

Ameboidal−type cell migration

Wound healing

Regulation of axonogenesis

Positive regulation of cell
projection organization

Axon development

Axonogenesis

External encapsulating
structure organization

Organization
extracellular structure

Regulation of neuron

Projection development
extracellular matrix

Axonal growth cone

Site of polarized growth

Growth cone

Basement membrane

Lamellipodium

Ruffle

Neuromuscular junction

Actin filament bundle

Cell leading edge

Collagen−containing
extracellular matrix

Aromatase activity

Tubulin binding

Magnesium ion binding

Arachidonic acid
monooxygenase activity

Microtubule binding

Extracellular matrix
Structural constituent

arachidonic acid epoxygenase
activity

Actin filament binding

Integrin binding

Actin binding

Count

0.00075

0.00050

0.00025

p value

(a)

Figure 5: Continued.

8 Mediators of Inflammation



BP
CC

M
F

0.02 0.04 0.06

Regulation of axonogenesis

Positive regulation of cell
projection organization

External encapsulating
structure organization

Extracellular structure
organization

Extracellular matrix
organization

Wound healing

Ameboidal−type cell migration

Axonogenesis

Axon development

Regulation of neuron
projection development

Axonal growth cone

Neuromuscular junction

Basement membrane

Actin filament bundle

Site of polarized growth

Growth cone

Ruffle

Lamellipodium

Cell leading edge

Collagen−containing
extracellular matrix

Aromatase activity

Arachidonic acid
monooxygenase activity

Arachidonic acid epoxygenase
activity

Extracellular matrix
structural constituent

Magnesium ion binding

Integrin binding

Microtubule binding

Actin filament binding

Tubulin binding

Actin binding

GeneRatio

0.00025

0.00050

0.00075

p value

Count

10
20

30
40

(b)

Figure 5: Continued.

9Mediators of Inflammation



Tissue migration

Xenobiotic catabolic process

Regulation of cellular
component size

Mesenchymal cell
differentiation

Epithelium migration

Synapse organization

Actin filament severing

Epithelial cell migration

Transmembrane receptor
PWrotein serine/threonine

Kinase signaling pathway
Glycosaminoglycan

biosynthetic process

Formation of primary germ
layer

Positive regulation of
protein kinase B signaling

Regulation of cell
morphogenesis

Neuron projection guidance

Axon guidance

Artery development

Cell−substrate adhesion

Glycoprotein biosynthetic
process

Positive regulation of
epithelial cell migration

Glycoprotein metabolic process

Ameboidal−type cell migration

Wound healing

Regulation of axonogenesis

Positive regulation of cell
projection organization

Axon development

Axonogenesis

External encapsulating
structure organization

Extracellular structure
organization

Extracellular matrix
organization

Regulation of neuron
projection development

0 10 20 30
Count

1.0e−04

7.5e−05

5.0e−05

2.5e−05

p value

(c)

Figure 5: Continued.

10 Mediators of Inflammation



cohort of low GPR176 showed a stronger immune response to
immunotherapy (Figure 4(b)). In the case of CTLA4 negative
but PD1 positive, the high GPR176 cohort showed a stronger
immune response to immunotherapy (Figure 4(c)). In the case
of CTLA4 positive but PD1 negative, the high GPR176 cohort
demonstrated a stronger immune response to immunotherapy
(Figure 4(d)).

3.4. Enrichment Analysis of GPR176 in STAD. To initially
investigate the potential mechanism of GPR176, we per-
formed KEGG and GO enrichment analyses by differentially
expressed genes of GPR176 in STAD. The enrichment anal-
ysis of the GO function set showed that GPR176 may partic-
ipate in cell migration, extracellular matrix ingredients, and

cell matrix reshaping (Figures 5(a) and 5(b)). The enrich-
ment analysis of the KEGG function set shows that
GPR176 may regulate cell migration, cell matrix, cell
adhesion, and migration of epithelial cells (Figures 5(c)
and 5(d)).

3.5. Correlation Analysis of GPR176 Expression Level and
Immune Cell Infiltration. It is well-known that tumor immu-
nological dysfunction plays a crucial role in tumorigenesis
and progression [12]. We analyzed the relationship between
GPR176 expression levels and immune profile in STAD. We
implemented CIBERSORT to evaluate the relationship
between GPR176 and various immune cells. The results
indicated that GPR176 is negatively related to the infiltration
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Figure 6: Correlation of GPR176 expression level with immune profile in STAD. (a–d) Correlation between GPR176 expression level and
immune cell infiltration in STAD. (e) Correlation between GPR176 expression level and TME score in STAD. (f) Correlation between
GPR176 expression level and TMB in STAD.
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level of CD8+ T cells, CD4 memory activation cells, M1 mac-
rophages, and activated NK cells (Figures 6(a)–6(d)). In
addition, we also found that patients with GPR176 have
higher TME scores (Figure 6(e)). Interestingly, the expres-
sion level of GPR176 was negatively related to the TMB of
STAD (Figure 6(f)). These data revealed that GPR176 plays
a vital role in regulating the immun cells infiltration of
STAD. Furthermore, we further explored whether the
GPR176 level alters the expression of each immune check-
point in STAD. As shown in Figure 7(a), GPR176 was posi-
tively related to the expression level of multiple
immunoinhibitors, including ADORA2A, CD274, and
BTLA (Figures 7(b)–7(d)). Meanwhile, GPR176 was negatively
related to the expression level of multiple immunostimulator,
including ULBP1, TNFRSF14, and HHLA2 (Figures 7(e)–
7(h)). The above results strongly implied that GPR176 plays a
vital role in regulating STAD immune profile.

3.6. Construction of Risk Score Model Based on GPR176-
Related Immunomodulators. The previous results revealed
that the GPR176 participate in regulating the immune func-
tion of STAD. We further intended to construct a prognostic
model based on GPR176-related immunomodulators. We
first conducted univariate and multivariate regression analy-
ses to the obtained GPR176-related immunomodulators,
and 4 GPR176-related genes were identified, including
CXCR4, TNFSF18, PDCD1, and TGFB1 (Figures 8(a) and
8(b)). Furthermore, we constructed a prognosis model
derived from the above 4 GPR176-related immunomodula-
tors (GRIM). We further verified the prediction capabilities
of the above model, and the results demonstrated that it
has good prediction capabilities (Figures 8(c)–8(f)).

3.7. Construction of a Nomogram Based on GRIM. We
intended to further explore the value of GRIM model in
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Figure 7: Correlation between GPR17 and immune checkpoints in STAD. (a) Heatmap of correlations between GPR17 expression levels
and immunoinhibitor in STAD. (b–d) Correlation between GPR17 expression level and immunoinhibitor. (e) Heatmap of correlations
between GPR17 expression levels and immunostimulator in STAD. (f–h) Correlation between GPR17 expression level and
immunostimulator.
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Figure 8: Continued.
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STAD. The risk score of GRIM model is identified as a prog-
nostic risk factor for STAD by univariate and multivariate
regression analyses (Figures 9(a) and 9(b)). As shown in
Figure 9(c), the area under the ROC curve of the risk score
reached 0.710. In addition, we developed a nomogram based
on clinical features and risk score of GRIM model to predict
the prognosis of STAD. The calibration curve indicated that
the nomogram of GRIM model has excellent prognosis pre-
diction capabilities for STAD patients in 1, 2, and 3 years
(Figures 9(e)–9(g)).

4. Discussion

Immunotherapy brings new hopes for patients with
advanced STAD. Therefore, it is particularly important to
clarify the specific regulation mechanism of TIM. In this
study, we first analyzed the expression of GRP176 in STAD
and explored the correlation between its expression level and
patient prognosis. We revealed that the level of GPR176 is
significantly related to multiple clinical features. In addition,
we found that GPR176 can be used to predict the efficacy of
STAD on chemotherapy drugs and immunotherapy.
KEGG and GO analyses were conducted to initially

explore the potential mechanisms by which GPR176 regu-
lates STAD progression. Moreover, we further analyzed
the correlation between GPR176 and immune profile of
STAD. Finally, we constructed a prognostic model based
on GPR176 and verified its accuracy and effectiveness
through multiple methods. In the present study, we first
revealed that GPR176 was closely related to the prognosis
of STAD. GRP176 may participate in the regulation the
TIM of patients with STAD.

At present, the TNM classification of malignant tumors
is widely used in staging STAD, and its effectiveness and
accuracy are confirmed [13]. In this study, we analyzed the
correlation between GPR176 and TNM. It was found that
the expression level of GPR176 at T2 was significantly
upregulated compared to T1, and there was no further
increase in T3 and T4. In N and M, there is no difference
in expression of GPR176. Interestingly, the expression
level of GPR176 at stage II was significantly upregulated
compared to stage I. Given the above-mentioned abnor-
mal results, this may be due to the fact that STAD is pri-
marily involved in the regulation of STAD proliferative
capacity, or to the insufficient number of samples adopted
in this study.
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Figure 8: Construction of risk scoremodel derived fromGPR176-associated immunomodulators. (a) Univariate regression analysis of GPR176-
related immunomodulators on STAD prognosis. (b) Multivariate regression analysis of GPR176-related immunomodulators on STAD
prognosis. (c) OS comparison between high- and low-risk cohorts. (d) Distribution plot of immune checkpoints in high- and low-risk
cohorts. (e) Distribution plot of survival status of patients according to risk score ranking. (f) Risk score ranking for high- and low-risk patients.
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Malignant tumors have extremely complex gene net-
works, including a series of oncogenes and tumor suppressor
genes, which regulate the occurrence and development of
tumors [14]. In recent years, prognostic models based on
various functional gene sets have emerged to evaluate the
prognosis of tumors. In breast cancer, Hong et al. constructed
a prognostic model based on the tumor microenvironment-
related gene set, and the area under the ROC curve of the
model risk score reached 0.67 [15]. Wang et al. analyzed the
miRNA data of central lymph node metastasis in papillary
thyroid carcinoma and then constructed a differential miRNA
prognostic model with an area under the ROC curve of 0.7
[16]. In this study, the area under the ROC curve of the
GRP176-based prognostic model we constructed was 0.71.
The single-gene model based on GPR176 in this study also
had excellent prognostic assessment compared with previ-
ous multigene prognostic models. This result indicated that
the prognostic model derived from a single gene has a good
application prospect.

The present study provided strong evidence to support
the important role of GPR176 in STAD, but there are signif-
icant shortcomings. All the data in this study were obtained
from public databases and lacked in vivo and in vitro valida-
tion, we will further confirm this in the follow-up study.

Collectively, our findings revealed a novel role of
GRP176 in STAD, and GRP176 may be a promising poten-
tial target for STAD immunotherapy.

Data Availability

The data and result in this study are available from the cor-
responding authors upon reasonable request.
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Figure 9: Construction of prognostic nomogram based on the risk scores of GRIM in STAD. (a) Univariate regression analysis of risk scores
of GRIM and various clinical characteristics for STAD prognosis. (b) Multivariate regression analysis of risk scores of GRIM and various
clinical characteristics for STAD prognosis. (c) ROC curves for risk score (GRIM) and clinical features. (d) Construction of GRIM
nomogram and various clinical features in STAD. (e–g) Verification of the accuracy of the nomogram.
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It is difficult for traditional therapies to further improve the prognosis of hepatocellular carcinoma (LIHC), and immunotherapy is
considered to be a promising approach to overcome this dilemma. However, only a minority of patients benefit from
immunotherapy, which greatly limits its application. Therefore, it is particularly urgent to elucidate the specific regulatory
mechanism of tumor immunity so as to provide a new direction for immunotherapy. NOP2/Sun RNA methyltransferase 3
(NSUN3) is a protein with RNA binding and methyltransferase activity, which has been shown to be involved in the
occurrence and development of a variety of tumors. At present, the relationship between NSUN3 and immune implication in
LIHC has not been reported. In this study, we first revealed that NSUN3 expression is upregulated in LIHC and that patients
with high NSUN3 expression have a poor prognosis through multiple databases. Pathway enrichment analysis demonstrated
that NSUN3 may be participated in cell adhesion and cell matrix remodeling. Next, we obtained a set of genes coexpressed
with NSUN3 (NCGs). Further LASSO regression was performed based on NCGs, and a risk score model was constructed,
which proved to have good predictive power. In addition, Cox regression analysis revealed that the risk score of NCGs model
was an independent risk factor for LIHC patients. Moreover, we established a nomogram based on the NCGs-related model,
which was verified to have a good predictive ability for the prognosis of LIHC. Furthermore, we investigated the relationship
between NCGs-related model and immune implication. The results implied that our model was closely related to immune
score, immune cell infiltration, immunotherapy response, and multiple immune checkpoints. Finally, the pathway enrichment
analysis of NCGs-related model showed that the model may be involved in the regulation of various immune pathways. In
conclusion, our study revealed a novel role of NSUN3 in LIHC. The NSUN3-based prognostic model may be a promising
biomarker for inspecting the prognosis and immunotherapy response of LIHC.

1. Introduction

Liver hepatocellular carcinoma (LIHC) is a highly lethal
malignancy originating from the digestive system and one
of the leading causes of cancer-related deaths worldwide
[1]. Global cancer epidemiological statistics in 2020 show
that there are about one million new cases of liver cancer,

most of which are LIHC [2]. Various risk factors are known
to predispose to the development of liver cancer, including
chronic hepatitis virus infection, aflatoxin B, and alcoholism
[3, 4]. Currently, surgical resection is still the preferred treat-
ment option for LIHC. Unfortunately, the overall recurrence
rate of LIHC remains high, with a 5-year survival rate of less
than 50% [5]. In addition to classic surgical resection, other
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can analyze immune cells by identifying and counting spe-
cific genes in them [15].

2.4. Evaluation of the Correlation between Risk Scores and
Immune Profiles. In this study, we applied IPS, TIDE, and
ESTIMATE to analyze the correlation of risk score and
immune profile. The immunophenoscore (IPS) is a method
for predicting response to immune checkpoints by quantify-
ing tumor immunogenicity. The method incorporates multi-
ple parameters, such as immunomodulators, effector cells,
and suppressor cells, by weighted quantification of these
components, resulting in a final IPS score [16]. ESTIMATE
(Estimation of Stromal and Immune cells in Malignant
Tumor Tissues using Expression Data) is a novel algorithm
to infer tumor tissue components from unique characteristic
genes in tumor tissue transcriptional data. In this study, we
conducted the ESTIMATE algorithm to analyze the correla-
tion of immune and stromal scores with risk scores [17].
Tumor immune dysfunction and rejection (TIDE) is a pre-
dictor of patient response to immune checkpoint inhibitors.
Patients with low TIDE scores may be more responsive to
immunotherapy, whereas patients with high TIDE scores
may respond less to immunotherapy [18].

2.5. Statistics. In this study, R software (4.2.2) was applied for
calculation and statistical analysis. p < 0:05 was considered
statistically significant.

3. Results

3.1. NSUN3 Is Highly Expressed and Associated with Poor
Prognosis in LIHC. We first analyzed the mRNA expression
levels of NSUN3 in pan-cancer via the TIMER database, and

the result showed that NSUN3 was significantly upregulated
in LIHC (Figure 1(a)). Next, we further explored the expres-
sion of NSUN3 in TCGA-LIHC and found that it was signif-
icantly elevated in tumor tissues (Figure 1(b)). In addition,
we performed survival analysis based on NSUN3 expression,
and the results demonstrated that NSUN3 was closely asso-
ciated with poor prognosis (Figures 1(c) and 1(d)). More-
over, we applied GO and KEGG enrichment analyses to
preliminarily explore the potential role and mechanism of
NSUN3 in LIHC. GO analysis showed that the function of
NSUN3 was mainly enriched in extracellular matrix remod-
eling (Figure 1(e)), and KEGG pathway analysis revealed
that NSUN3 was enriched in cell adhesion, extracellular
matrix remodeling, and focal adhesion junctions
(Figure 1(f)). These pathways obtained above suggested that
NSUN3 plays an important role in the regulation of LIHC
immune function.

3.2. Coexpression Gene Analysis of NSUN3. The previous
data strongly suggested a strong correlation between NSUN3
levels and prognosis, we intended to investigate the coex-
pressed genes of NSUN3 in LIHC. We analyzed the coex-
pressed gene network of NSUN3 by 3 LIHC datasets
(GSE76427, GSE109211, and TCGA), and the correlation
coefficient was set at 0.2 (p < 0:05). We presented the top
10 most correlated genes in these three datasets in
Figures 2(a)–2(c). Next, the upset plot was applied to inter-
sect the coexpressed genes of the three datasets, and 20 coex-
pressed genes were obtained finally (Figure 2(d)).

3.3. Construction of a Model Based on NSUN3 Expression
Levels in LIHC. We previously obtained a gene set with 20
genes coexpressed with NSUN3. Next, we performed LASSO
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Figure 2: Analysis of NSUN3 coexpressed genes (NCGs). (a–c) Coexpressed genes of NSUN3 in different transcriptome datasets
(GSE76427, GSE109211, and TCGA-LIHC cohorts). (d) Intersection of NSUN3 coexpressed genes obtained from different datasets.
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Figure 3: Continued.

6 Mediators of Inflammation



regression analysis to screen this gene set and obtained 6
coexpression genes with associated NSUN3 (NCGs). Fur-
thermore, based on the obtained 6 genes, we constructed a
risk prognostic model based on NSUN3 coexpressed genes
in LIHC and randomly divided the LIHC cohort in TCGA
into two cohorts at a ratio of 7 : 3, namely, training cohort
and validation cohort queues. As shown in Figures 3(a)
and 3(b), we risk scored and ranked these patients and found
consistent changes in mortality and risk scores among
patients. In addition, we further verified that there were sig-
nificant prognostic differences between high- and low-risk
patients in this model (Figures 3(c) and 3(d)). Finally, we
evaluated the predictive power of the training and validation
cohorts by ROC curves. The AUC of the training cohort at
years 1, 3, and 5 was 0.749, 0.662, and 0.603, respectively;
the AUC of the validation cohort at years 1, 3, and 5 was
0.720, 0.693, and 0.579, respectively (Figures 3(e) and 3(f)).
These data strongly indicated that the model has good pre-
dictive performance.

3.4. Construction and Verification of Nomogram Based on
Predictive Model. We first performed univariate and multi-
variate analyses on the risk model, and the results both
showed that the HR values of the risk score of the model
were 1.969 and 1.871, respectively (Figures 4(a) and 4(b)).
Next, we constructed a nomogram integrating the prognos-
tic model and its multiple clinical features, including gender,
age, histological grade, and pathological stage (Figure 4(c)).
Meanwhile, we verified the accuracy of the nomogram, and
the results showed that the nomogram had accurate predic-
tive capacity (Figure 4(d)). Interestingly, the accuracy of the
risk model that we further evaluated by the C index also

demonstrated good performance in the assessment of LIHC
prognosis (Figure 4(e)).

3.5. Correlation between NCG-Related Model Risk Scores and
Immune Microenvironment in LIHC. Immune cells in the
tumor immune microenvironment (TIM) induce immune
escape by interacting with tumor cells [13]. To clarify their
complex relationship, we applied the ESTIMATE algorithm
to analyze the TIM of LIHC and observed the differences
in matrix score, immune score, and comprehensive score
between the high-risk group and the low-risk group, respec-
tively. The results demonstrated that the TME score of the
low-risk group was significantly higher than in the high-
risk cohort (Figure 5(a)). Next, we investigated the infiltra-
tion abundance of 21 immune cells in high- and low-risk
patients by the CIBORESORT algorithm, and the results
showed that the infiltration abundance of M0 macrophage
cells in the low-risk group was higher than that in the
high-risk group (Figure 5(b)). In addition, we further
explored the correlation between 6 NCGs genes and 21 types
of immune cells, the results revealed that AGPS was posi-
tively correlated with M0 macrophages but negatively corre-
lated with gamma delta T cells and CD8 T cells; CCDC50
was negatively correlated with activated NK cells and γδT
cells; NSUN3 was negatively correlated with Treg cells and
γδT cells; SLC38A6 was negatively correlated with naive B
cells and memory resident CD4+ T cells; TFDP2 was nega-
tively correlated with M1 macrophages; ZNF691 was nega-
tively correlated with Treg cells (Figure 5(c)).

3.6. Risk Scores for NCGs-Related Models Predict
Immunotherapy Response. Immune checkpoints play a key
role in the regulation of immune cell function and are
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Figure 3: Construction and validation of a prognostic model based on NCGs. (a) Distribution of survival status (upper) and risk scores
(lower) for the training datasets. (b) Distribution of survival status (upper) and risk scores (lower) for the validation datasets. (c, d) The
Kaplan-Meier curves of overall survival for the high- and low-risk groups in the training and validation datasets. (e, f) Time-dependent
receiver operating characteristic curves for the risk score in the training and validation datasets.
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Figure 4: Construction and validation of nomogram based on NCGs-related model and clinical features. (a, b) Univariate and multivariate
regression analyses of NCGs model risk score and clinical characteristics. (c) Construction of risk score and nomogram of various clinical
characteristics based on NCGs-related model. (d) Validation of the predictive power of the nomogram at years 1, 3, and 5. (e) Analyze the
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Figure 5: Analysis of the TIM of LIHC via risk scores of NCGs-related model. (a) Correlation between high and low NCGs risk score and
TME score. (b) Correlation between high and low NCGs risk scores and 21 types of immune cell infiltration. (c) Correlation between
NSUN3 coexpressed genes and immune cell infiltration.
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Figure 6: Continued.
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important predictors for assessing immunotherapy
response. Therefore, in the present study, we first analyzed
the correlation between 11 immune checkpoints and risk
scores of NCGs-related models, and the results showed that
the risk scores of the NCGs-related models were strongly

associated with most immune checkpoints (Figure 6(a)),
except for KLRD1 and IAPP. As shown in Figure 6(b), we
further explored the differences of 8 immune checkpoints
in high- and low-risk cohorts, and the results revealed that
PD-L1 and TIM-3 were significantly higher in high-risk
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Figure 6: Risk scores from NCGs-related model predict LIHC response to immunotherapy. (a) Correlation of NCGs risk score with
multiple immune checkpoints. (b) Differences in expression of multiple immune checkpoints in the high- and low-risk groups. (c) In the
case of CTLA4 negative but PD1 positive, the high-risk group had lower IPS. (d) In the case of CTLA4 positive but PD1 negative, the
high-risk group had lower IPS. (e) In the case of CTLA4 and PD1 negative, the high-risk group had lower IPS. (f) Low-risk patients
have more pronounced immune dysfunction. (g) High-risk patients have a stronger tendency to immune exclusion. (h) Low-risk patients
have lower TIDE scores.
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Figure 7: Continued.
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cohorts than in low-risk cohorts. Furthermore, given the
strong correlation between the risk score of the NCG-
related model and immune checkpoints, we explored
whether the risk score of this model could predict the
response of LIHC patients to treatment with ICIs. In addi-
tion, IPS and TIDE have been widely used to assess tumor
response to immunotherapy in recent years. The results of
our analysis demonstrated that in the low-risk score group,
PD1-positive and CTLA4-negative patients had significantly
higher IPS; interestingly, high-risk patients had significantly
lower IPS scores in CTLA-positive and PD1-negative
patients (Figures 6(c)–6(e)). Finally, the results of the TIDE

algorithm implied that the low-risk group had higher
immune dysfunction than the high-risk group, while the
immune exclusion was lower than that of the high-risk
group (Figures 6(f) and 6(g)).

3.7. Enrichment Analysis of NCGs-Related Model. Our previ-
ous studies revealed that risk stratification of NCGs-related
models in LIHC is closely related to cell infiltration. To
explore the underlying mechanism, we performed pathway
enrichment analysis on high- and low-risk cohorts of the
NCGs-related risk scoring model by the KEGG and HALL-
MARK gene sets. The results of gene set enrichment analysis
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Figure 7: Enrichment analysis of NCG-related model. (a) KEGG pathway enrichment analysis based on the risk score of NCG-related
model. (b) HALLMARKER enrichment analysis based on the risk score of NCG-related model. (c) Correlation analysis between NCGs
and KEGG enrichment pathway. (d) Correlation analysis between NCGs and Hallmark enrichment pathway.
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showed that cell cycle-related pathways were significantly
enriched NCGs-related models (Figures 7(a) and 7(b)).
Next, we further analyzed the correlation of each NCGs with
the enrichment pathway. The results revealed that in the
KEGG gene set, multiple signaling pathways were positively
correlated with NCGs, such as WNT, VEGF, TGF-β, and
NOTCH signaling pathways. In the HALLMARK gene set,
multiple signaling pathways were positively correlated with
NCGs, such as unfolded protein pathway, KRAS, and angio-
genesis (Figures 7(c) and 7(d)).

4. Discussion

The occurrence and development of tumors is a multistep
process that is regulated by gene network [19]. Immune
response is a special situation of inflammatory reactions
[20]. The maintenance of normal immune function can
effectively eliminate tumors. However, tumors in progress
are often accompanied by immune evasion, which in turn
induces the distant metastasis of the tumor [21]. Therefore,
it is critical to clarify the specific mechanism of tumor
immune function to the treatment of malignant tumors. In
this study, we first discovered that NSUN3 upregulation
was related to poor prognosis in LIHC. Then, by multiple
database LIHC cohorts, we constructed a prognostic model
based on NSUN3 coexpression genes and confirmed its
accuracy and effectiveness. More importantly, we further
explored the value of the model. We found that the risk
score of NSUN3-related model is related to immune profile
and can instruct the choice of immunotherapy.

The prognostic model based on various functional genes
has become a hot spot in guiding the prognosis of tumor.
Ruan et al. analyzed the expression of ZEB1-AS1 in colorec-
tal cancer and found that its high expression was positively
associated with poor prognosis. Furthermore, a prognostic
model based on ZEB1-AS1 coexpression gene was con-
structed. The ROC curve areas of the model in the training
cohort were 0.650, 0.706, and 0.706, respectively, and in
the validation cohort were 0.705, 0.592, and 0.753, respec-
tively [22]. Li et al. revealed that AHCYL1 acts as an onco-
gene in colorectal cancer. A prognostic model based on
AhCYL1-related genes was constructed. To further explore
the effectiveness of the model, the results showed that the
areas of the ROC curves of the 1, 3, and 5 years in the train-
ing cohort were 0.665, 0.634, and 0.695, and the areas of the
ROC curves of the 1, 3, and 5 years in the validation cohort
were 0.691, 0.754, and 0.726, respectively [23]. In the present
study, we constructed the prognostic model of NUSN3-
related genes, and the areas under the ROC curve of 1, 3,
and 5 years in the training cohort were 0.749, 0.662, and
0.603, while the areas under the ROC curve of 1, 3, and 5
years in the validation cohort were 0.720, 0.693, and 0.597.
This result indicated that the predictive power of our con-
structed model is not weaker than that of other previous
studies.

The prediction of immunotherapy therapy has always
been difficult for immunotherapy [24]. The development of
models that accurately predict the response to immunother-
apy has been a goal we have pursued. In this study, we con-

structed a prognostic model based on NSUN3-related genes.
The level of risk scores of this model shows different
responses to immunotherapy. The results further revealed
that NSUN3 participated in regulating LIHC immune pro-
file. The data of this study mainly derived from the public
database and lacked corresponding clinical evidence sup-
port, which requires us to be validated in our follow-up
studies.

In conclusion, this study demonstrated a novel role for
NSUN3 in regulating the immune implication of LIHC.
The development of targeted NSUN3 drugs may be a prom-
ising research direction for the treatment of LIHC.
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Background. Solute carrier organic anion transporter family member 4A1 (SLCO4A1), a member of solute carrier organic anion
family, is a key gene regulating bile metabolism, organic anion transport, and ABC transport. However, the association of
SLCO4A1 with prognosis and tumor immune infiltration in colon adenocarcinoma (COAD) remains indistinct. Methods.
Firstly, we explored the expression level of SLCO4A1 in COAD via GEPIA, Oncomine, and UALCAN databases. Secondly, we
used the Kaplan-Meier plotter and PrognoScan databases to investigate the effect of SLCO4A1 on prognosis in COAD patients.
In addition, the correlation between SLCO4A1 and tumor immune infiltration was studied by using TIMER and TISIDB
databases. Results. Our results showed that SLCO4A1 was overexpressed in COAD tissues. At the same time, our study showed
that high expression of SLCO4A1 was associated with poor overall survival, disease-free survival, and disease-specific survival
in COAD patients. The expression level of SLCO4A1 was negatively linked to the infiltrating levels of B cells, CD8+ T cells,
and dendritic cells in COAD. Moreover, the expression of SLCO4A1 was significantly correlated with numerous immune
markers in COAD. Conclusions. These results indicated that SLCO4A1 could be associated with the prognosis of COAD
patients and the levels of tumor immune infiltration. Our study suggested that SLCO4A1 could be a valuable biomarker for
evaluating prognosis and tumor immune infiltration in COAD patients.

1. Introduction

In recent decades, colorectal cancer (CRC) has become one
of the most common malignancies in the world [1]. Morbid-
ity and mortality of CRC are increasing every year, particu-
larly in developing countries, where the morbidity and
mortality of CRC increase by about 20 percent per year
[2]. The disease has emerged as one of the major challenges
facing global health. Although there are significant advances
in cancer diagnosis and treatment, overall survival (OS) in
CRC patients remains unsatisfactory. When many CRC
patients are diagnosed, their tumors are already in the mid-
dle and advanced stage, and the patients often have regional
lymph node metastasis or distant organ metastasis. There-
fore, there is an urgent need to understand the pathogenesis

of CRC and to identify potential biomarkers to assess the
prognosis and treatment effect of CRC patients.

Immunotherapy is the most promising treatment for
colorectal cancer, especially for the microsatellite
instability-high (MSI-H) phenotype [3–5]. MSI-H colorectal
cancer has many mutations that produce many new anti-
gens, stimulating tumor immune infiltration and improving
immune checkpoint suppression [6, 7]. Programmed death
ligand-1 (PD-L1) is an important target of tumor immuno-
therapy in clinical trials and has a significant therapeutic
effect on liver hepatocellular carcinoma (LIHC) and non-
small-cell lung cancer (NSCLC) [8, 9]. Numerous studies
have confirmed that tumor-infiltrating immune cells
(TIICs), especially cytotoxic T lymphocyte (CD8+ T) cells,
significantly affect the prognosis of cancer patients and the
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effect of immunotherapy and chemotherapy [10–12]. For
example, CD8+ tumor-infiltrating lymphocyte was found
to be positively associated with PD-L1 status in colorectal
cancer patients [13]. However, clinical immunotherapy out-
comes show that many monoclonal antibodies have poor
clinical efficacy in advanced colorectal cancer, although
anti-PD-1 and anti-PD-L1 monoclonal antibodies have
obvious efficacy in the treatment of metastatic colorectal
cancer [14–17]. There is an urgent need to explore new bio-
markers to better assess the prognosis of CRC patients and
to identify novel immune-based therapeutic targets.

Solute carrier organic anion transporter family member
4A1 (SLCO4A1), also known as organic anion-transporting
polypeptide 4A1 (OATP4A1), is an important member of
solute carrier organic anion transporter (SLCO) family,
responsible for the Na+-independent transmembrane trans-
port of many substrates, such as many drugs, thyroid hor-
mone, some toxins [18]. The changes in the uptake of
these substrates may lead to variations in the concentration
of anticancer drugs in cancer cells, thus playing an impor-
tant role in the chemical sensitivity of cancer cells and
influencing tumor progression [19]. For example, cisplatin
activates SLCO4A1 and affects the progression and metasta-
sis of lung cancer NCIH417 cells [20]. In addition,
SLCO4A1 has been found to be overexpressed in pancreatic
cancer and is expected to be an important biomarker for tar-
geted therapy of pancreatic cancer [21]. At present, the bio-
logical role of SLCO4A1, its prognostic value, and the
relationship of SLCO4A1 with tumor immune infiltration
in COAD are still unclear.

In this study, the expression level and prognostic value of
SLCO4A1 in patients with COAD were analyzed using mul-
tiple bioinformatic databases, such as Oncomine, UALCAN,
PrognoScan, GEPIA, and Kaplan-Meier plotter. Using the
interactive online websites STRING and OmicShare tools,
the functional enrichment analysis was conducted to explore
the potential molecular mechanism of SLCO4A1 in the
progress of COAD. In addition, the relationship of
SLCO4A1 with tumor immune infiltration in COAD was
verified via TIMER and TISIDB databases. Our study exam-
ined whether SLCO4A1 could be used as an important bio-
marker to evaluate the prognosis and the efficacy of
immunotherapy in COAD patients.

2. Materials and Methods

2.1. Bioinformatic Analysis of SLCO4A1 Expression. Onco-
mine (http://www.oncomine.org/) is currently the world’s
largest oncogene chip database and integrated data mining
platform [22, 23]. We compared the mRNA expression of
SLCO4A1 in COAD tissues and matched normal tissues
using the Oncomine database. Firstly, we enter SLCO4A1
into the search box to get the expression profile of SLCO4A1
for various cancers. Secondly, tumor vs. normal analysis was
used, and the tumor type was selected as COAD. Then, we
set P < 0:05 and fold change > 1:5. Finally, the statistical
values were obtained from the analysis results of related
databases. UALCAN (http://ualcan.path.uab.edu/index
.html/) is a powerful online database for analyzing cancer-

related data, and we assessed the expression of SLCO4A1
in COAD via the UALCAN database [24]. Moreover, we
investigated the relationship of different clinical features
with the expression level of SLCO4A1, such as race, sex,
weight, age, lymph node metastasis, individual cancer stage,
histological subtype, and TP53 mutation. In addition, we
further explored the relationship between the mutation sta-
tus of seven important clinically detected proteins (MLH1,
PMS2, MSH2, MSH6, BRAF, KRAS, and NRAS) and the
expression of SLCO4A1 by TIMER (http://timer.cistrome
.org/) [25]. Immunohistochemical staining for the SLCO4A1
protein in COAD tissue was obtained from the Human Pro-
tein Atlas (https://www.proteinatlas.org/). The three-
dimensional structural model of the SLCO4A1 protein was
constructed by using the SWISS-MODEL (https://
swissmodel.expasy.org/) [26]. We followed the methods of
Huang et al. [27].

2.2. Prognostic Survival Analysis. The prognostic value of
SLCO4A1 in COAD patients was studied by using GEPIA,
PrognoScan, and Kaplan-Meier plotter. GEPIA (http://
gepia.cancer-pku.cn/) is a concise, easy-to-use platform for
analyzing the relationship between SLCO4A1 and survival
in COAD patients [28, 29]. PrognoScan (http://www
.prognoscan.org/) is a new online platform that can predict
the association of different genes with cancer patients’ prog-
nosis [30]. The Kaplan-Meier plotter (https://kmplot.com/
analysis/) is an online database to assess the effect of targeted
genes on the survival in 21 cancer types and is used to fur-
ther validate our survival analysis [31]. COAD patients were
divided into two groups based on their expression level of
the SLCO4A1 gene. Survival analysis was evaluated using
the hazard ratios (HRs) and P value, with P = 0:05 being
the cut-off value for significance. We followed the methods
of Huang et al. [27].

2.3. cBioPortal Database. Using the cBioPortal database
(https://www.cbioportal.org/), the genetic alterations of the
SLCO4A1 gene were explored [32]. Firstly, we selected three
study datasets “DFCI, Cell Reports 2016,” “TCGA, Firehose
Legacy,” and “TCGA PanCancer Atlas” and imported
SLCO4A1 into “Gene Symbols” box. Secondly, the structural
variation data, mutation data, and CNA data were analyzed
separately in the “Tumor Types Summary” module. Thirdly,
we also showed the SLCO4A1 gene mutation via a schematic
diagram. In addition, we selected “comparison/survival”
module to evaluate the effect of SLCO4A1 gene mutation
on the survival in COAD patients. We followed the methods
of Huang et al. [27].

2.4. SLCO4A1-Related Gene Enrichment Analysis. STRING
(http://string-db.org/) was used for exploring SLCO4A1
protein-protein interactions [33]. The minimum interaction
score required was 0.400, and the maximum number of
these interactions was 50. The top 50 interacting proteins
of SLCO4A1 were regarded as SLCO4A1-binding proteins.
Furthermore, we clicked SLCO4A1 on the “Query Search”
module to get the top 100 SLCO4A1-related genes via
GEPIA. OmicShare tools (http://omicsshare.com/tools) was
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an efficient online platform which was used for functional
enrichment analysis of SLCO4A1-related genes [34].

2.5. Analysis of Tumor Immune Infiltration. TIMER (https://
cistrome.shinyapps.io/timer/) is a comprehensive online
platform for immune infiltration analysis in various tumors
[35]. TIMER uses various deconvolutional statistical
methods to predict the abundance of infiltrating immune
cells in different tumors. In this study, we explored the rela-
tionship between the SLCO4A1 expression and tumor-
infiltrating immune cell abundance in COAD patients using
TIMER. Tumor-infiltrating immune cells (TIICs) are mainly
composed of CD8+ T cells, CD4+ T cells, B cells, neutro-
phils, natural killer cells, dendritic cells, monocytes, macro-
phages, and T-helper cells. Molecular markers of these
immune cells have been used in many previous studies
[36–38]. The “Correlations” module may produce scatter-
plots of Spearman correlation for an interesting pair of genes
in a specific cancer type. The expression level of specific
genes was represented with log2 RSEM.

TISIDB (http://cis.hku.hk/TISIDB/index.php/), an open
online platform to explore the interaction of tumors and
immune system, was used for analyzing the relationship
between SLCO4A1 expression levels and different immune
components [39].

3. Results

3.1. Overexpression of SLCO4A1 in COAD. The expression
level of SLCO4A1 in human tumors was analyzed via the
GEPIA database. The results showed that SLCO4A1 was
downregulated in BLCA, BRCA, CESC, SLCO4A1, CHOL,
ESCA, GBM, HNSC, KIRC, LUAD, LUSC, PCPG, and
SARC while SLCO4A1 was significantly upregulated in
COAD, READ, PAAD, and STAD (Figure 1(a)). An interac-
tive bodymap of SLCO4A1 is shown in Figure 1(b). In addi-
tion, the 3D structural model of the SLCO4A1 protein was
constructed by using the SWISS-MODEL (Figure 1(c)).
The abbreviation of each tumor is shown in Supplementary
Table 1.

Moreover, we also used Oncomine and UALCAN data-
bases to detect the mRNA expression level of SLCO4A1 in
COAD. SLCO4A1 was highly expressed in colorectal cancer
(including COAD and READ) compared with the corre-
sponding normal tissues (Figures 2(a) and 2(b)). In addition,
the expression level of the SLCO4A1 protein was elevated in
COAD tumor tissues obtained from the Human Protein
Atlas (Figure 2(c)).

3.2. The Relationship between the Expression Level of
SLCO4A1 and Clinical Characteristics in COAD. In this
study, the UALCAN database was used to explore the rela-
tionship between the expression level of SLCO4A1 and clin-
ical characteristics in COAD. Different race, gender, weights,
age, and nodal metastasis status were not linked to
SLCO4A1 mRNA expression in patients with COAD. How-
ever, in terms of individual cancer stages, stage 1 group had
a lower expression level than the stage 3 or 4 group. Mucin-
ous adenocarcinoma presented with higher SLCO4A1

expression than adenocarcinoma in patients with COAD.
Furthermore, SLCO4A1 had a higher expression level in
those COAD tissues carrying a TP53 mutation. The relation-
ships between the expression level of SLCO4A1 and clinical
characteristics in COAD are shown in Table 1. In addition,
the SLCO4A1 expression level was significantly related to
the mutation status of MSH2 (P = 0:01) and BRAF
(P = 0:036), but was not linked to the mutation status of
MSH6 (P = 0:098), PMS2 (P = 0:81), MLH1 (P = 0:9), KRAS
(P = 0:39), or NRAS (P = 0:67) (Supplementary Figure 1A–
1G).

3.3. Correlation between the Expression of SLCO4A1 and
Prognosis in COAD. The prognostic role of SLCO4A1 in
COAD patients was explored via several databases. Overex-
pression of SLCO4A1 was associated with shorter OS
(P = 135, HR = 2, P = 0:0045) using GEPIA (Figure 3(a)).
Moreover, there were significant differences in DFS
(n = 135, HR = 1:7, P = 0:038) (Figure 3(b)). Although
SLCO4A1 was not associated with prolonged OS (n = 165,
HR = 0:53, P = 0:099), it was significantly correlated with
DFS (n = 47, HR = 10:55, P = 0:008) via the Kaplan-Meier
plotter (Figures 3(c) and 3(d)).

The correlation between the expression of SLCO4A1 and
prognosis in COAD patients was further explored using the
PrognoScan database. The results showed that overexpres-
sion of SLCO4A1 was associated with shorter OS (n = 177,
HR = 0:0, cox-P = 0:019) and DSS (n = 177, HR = 0:24,
cox-P = 0:0202) in COAD patients (Figures 3(e)–3(g)) but
no significant difference in DFS (n = 145, HR = 0:46, cox-P
= 0:3276) (Figure 3(f)).

In short, based on these databases, this study explored
the correlation between the expression of SLCO4A1 and
prognosis in COAD patients and found that SLCO4A1 was
a valuable biomarker for evaluating prognosis in patients
with COAD.

3.4. Genetic Alterations of SLCO4A1 in COAD. Numerous
studies have shown that genetic variation plays a pivotal role
in the pathogenesis and development of various tumors. Our
study investigated the genetic alterations of SLCO4A1 via
the cBioPortal database. The results showed that somatic
mutation of SLCO4A1 was present in about 7.6% of COAD
samples (Figure 4(a)). In COAD, copy number variation
(CNV) was the main mutation type of SLCO4A1 genetic
alterations. The mutation types and the proportions of these
mutations are shown in Figure 4(b). Information such as
mutation site, mutation type, and number of cases was dis-
played on the mutation diagram and colored according to
the corresponding mutation type (Figure 4(c)). In addition,
we also explored the relationship between SLCO4A1 genetic
alterations and COAD patients’ survival. However, our
study showed that SLCO4A1 gene alterations were not asso-
ciated with OS (P = 0:664), PFS (P = 0:528), DFS (P = 0:882
), or DSS (P = 0:946) in COAD patients (Supplementary
Figure 2A–2D).

3.5. GO and KEGG Enrichment Analyses of SLCO4A1. In this
study, the binding proteins of SLCO4A1 and the genes

3Mediators of Inflammation

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://cis.hku.hk/TISIDB/index.php/


related to SLCO4A1 expression were identified using the
STRING and GEPIA databases. The top 50 binding proteins
of SLCO4A1 and the top 100 genes related to the expression
of SLCO4A1 are summarized in Supplementary Table 2, and
SLCO4A1-binding protein interacting network is shown in
Figure 5(a). Furthermore, we also used the SLCO4A1-
binding proteins to explore GO enrichment analysis and
KEGG pathway analysis. GO enrichment analysis showed
that these genes were obviously enriched in organic anion
transmembrane transporter activity, anion transmembrane
transporter activity, organic anion transport, anion
transport, bile acid and bile salt transport, carboxylic acid
transport, organic acid transport, active transmembrane
transporter activity, carboxylic acid transmembrane
transporter activity, organic acid transmembrane
transporter activity, ion transport, transmembrane
transport, monocarboxylic acid transport, transmembrane
transporter activity, monocarboxylic acid transmembrane
transport, transporter activity, plasma membrane region,
bile acid transmembrane transporter activity, secondary

active transmembrane transporter activity, and ion
transmembrane transporter activity (Figure 5(b)). In
addition, KEGG pathway analysis found that SLCO4A1-
interacting proteins were enriched in bile secretion, ABC
transporters, antifolate resistance, thyroid hormone
signaling pathway, primary bile acid biosynthesis, PPAR
signaling pathway, glutamatergic synapse, cholesterol
metabolism, hippo signaling pathway, and protein
digestion and absorption (Figure 5(c)).

3.6. Correlation between SLCO4A1 and Tumor Immune
Infiltration in COAD. The correlation of the expression level
of SLCO4A1 with tumor immune infiltration in COAD was
investigated using the TIMER database. Our study found that
the expression level of SLCO4A1 gene was closely related to
B lymphocytes (cor = −0:126, P = 1:10e − 02), CD8+ T lym-
phocytes (cor = −0:188, P = 1:41e − 04), and dendritic cells
(cor = −0:101, P = 4:29e − 2) (Figure 6(a)). However, the
expression of SLCO4A1 was not associated with tumor purity
(cor = 0:097, P = 5:06e − 2), CD4+ T cells (cor = −0:006, P =
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Figure 1: Expression levels of SLCO4A1 in a variety of cancers and its 3D protein model structure. (a) Expression levels of SLCO4A1 in
different cancer samples were investigated via the GEPIA database. (b) The interactive bodymap of SLCO4A1 was shown using the
GEPIA database. (c) The 3D structure of the SLCO4A1 protein was constructed via the SWISS-MODEL.
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9:10e − 1), macrophages (cor = −0:053, P = 2:92e − 1), and
neutrophils (cor = 0:038, P = 4:49e − 1) (Figure 6(a)). So we
speculated that these three immune cells (B lymphocytes,
CD8+ T lymphocytes, and dendritic cells) were more likely to

be responsible for the prognosis and survival difference
between patients with different expression of SLCO4A1.

Using the TIMER database, we deeply explored the rela-
tionship between SLCO4A1 and immune specific markers.
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Figure 2: SLCO4A1 expression levels in CRC samples. (a) SLCO4A1 expression levels in COAD and READ samples were explored via the
Oncomine database. (b) SLCO4A1 expression levels in COAD and READ were explored using the UALCAN database. (c)
Immunohistochemical images of SLCO4A1 protein in COAD and READ tissues from the Human Protein Atlas.

Table 1: SLCO4A1 expression based on different clinical indicators.

Clinical indicators Number of patients Comparison P value

Individual cancer
stages

45/110/80/39 (stage 1/stage 2/stage 3/stage 4)

Stage 1 vs. stage 2 2:921600E − 01
Stage 1 vs. stage 3 1:616230E − 02
Stage 1 vs. stage 4 2:207800E − 02
Stage 2 vs. stage 3 9:105500E − 02
Stage 2 vs. stage 4 1:213800E − 01

Patient’s race 193/55/11 (Caucasian/African-American/Asian)

Caucasian vs. African-American 7:265600E − 01
Caucasian vs. Asian 8:521000E − 01

African-American vs. Asian 9:166000E − 01

Patient’s gender 156/127 (male/female) Male vs. female 7:154000E − 01

Patient’s weight 70/74/56 (normal/extreme_weight/obese)

Normal_weight vs. extreme_weight 8:504800E − 01
Normal_weight vs. obese 8:111000E − 01
Extreme_weight vs. obese 6:531800E − 01

Patient’s age 12/90/149 (21-40 Yrs/41-60Yrs/61-80 Yrs)
Age (21-40 Yrs) vs. age (41-60 Yrs) 1:452190E − 01
Age (21-40 Yrs) vs. age (61-80 Yrs) 6:386100E − 02

Histological subtype
243/37 (adenocarcinoma/mucinous

adenocarcinoma)
Adenocarcinoma vs. mucinous

adenocarcinoma
6:228500E − 05

Nodal metastasis
status

166/70/47 (N0/N1/N2)

N0 vs. N1 1:299810E − 01
N0 vs. N2 6:704200E − 02
N1 vs. N2 2:874600E − 01

TP53 mutation status 160/122 (mutant/nonmutant) Mutant vs. nonmutant 1:982530E − 05
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Our study showed that SLCO4A1 was negatively correlated
with a large number of immune specific markers, such as
CD8A, CD8B, CD3D, CD3E, CD2, CD79A, CD86,
KIR3DL2, CD1C, STAT4, and STAT6, and was positively
correlated with CEACAM8 (Figure 6(b)). The more detailed

results from the database are shown in Table 2. It was sug-
gested that SLCO4A1 could play an important role in regu-
lating immune cell infiltration in COAD. In addition, we
further investigated the association of SLCO4A1 with other
four important immune markers CD274 (also known as
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Figure 3: The relationship between SLCO4A1 expression levels and COAD patients’ prognosis. (a) OS and (b) DFS of COAD patients based
on SLCO4A1 expression levels via GEPIA. (c) OS and (d) DFS of COAD patients based on SLCO4A1 expression levels via the Kaplan-Meier
plotter. (e) OS, (f) DFS, and (g) DDS of COAD patients based on SLCO4A1 expression levels via the PrognoScan database. OS: overall
survival; DFS: disease-free survival; DSS: disease-specific survival.
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PD-L1), CTLA4, TIGIT, and HAVCR2. There was signifi-
cant correlation between SLCO4A1 and two immune
markers (TIGIT and HAVCR2) but no significant correla-
tion between SLCO4A1 and two other immune markers
(CD274 and CTLA4) in COAD (Figure 6(c)).

In this study, the TISIDB database was used to investi-
gate the relationship between the expression of SLCO4A1
in COAD and three immune components (lymphocytes,
immunomodulators, and chemokines). Firstly, the relation-
ship between SLCO4A1 expression level and the abundance
of tumor infiltrating lymphocytes was explored to identify
which types of TIICs could be regulated by SLCO4A1 gene.
The results showed that SLCO4A1 expression level was neg-
atively correlated with Tem_CD8 cells (rho = −0:209, P =
6:36e − 06), Tfh cells (rho = −0:194, P = 2:88e − 05), Treg
cells (rho = −0:164, P = 0:00041), Th1 cells (rho = −0:19, P
= 4:49e − 05), Act_CD4 cells (rho = −0:217, P = 2:99e − 06

), and macrophages (rho = −0:266, P = 7:72e − 09) (Supple-
mentary Figure 3A). Secondly, we identified the correlation
between SLCO4A1 expression and immunomodulators
(Supplementary Figure 3B–3D). Finally, we investigated
the relationships of SLCO4A1 expression with chemokines
and receptors. The correlation between SLCO4A1 and
chemokines is shown in Supplementary Figure 3E, and the
correlation between SLCO4A1 and receptors is shown in
Supplementary Figure 3F. These results strongly suggested
that SLCO4A1 could regulate a variety of immune
components via multiple pathways and then influence
tumor immune infiltration in COAD.

4. Discussion

COAD is a common and important pathological type in
CRC. In the current clinical practice, radical surgery is the
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Figure 4: Genetic alterations of SLCO4A1 in COAD. (a) Alteration frequency of SLCO4A1 gene in three COAD studies. (b) Methylation
levels of SLCO4A1 based on 372 samples with data in both axes. (c) Mutation diagram showing mutation sites, mutation types, and the
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only possible cure treatment for most CRC patients. How-
ever, surgical operations are sometimes limited or even
unable to carry out due to tumor location, depth of tumor
invasion, or tumor metastasis. In recent years, new technol-
ogies, such as molecular targeted therapy and immunother-
apy, have become one of the important means of treating
cancer, and the therapeutic effect on some patients with
advanced cancer has been significantly improved [40]. As
an emerging treatment modality, immunotherapy has
become a promising treatment method [41]. However,
immunotherapy has only a good response to a small number
of CRCs showing microsatellite instability (MSI), but most
CRCs belong to the microsatellite stable type (MSS). Com-
pared with MSS tumors, immunostimulatory factors, such
as CD28, IL-15, CCL3, and CXCL16, have higher expression
in MSI tumors [42]. Activated tumor-infiltrating immune
cells could increase the expression level of HLA and
checkpoint-related proteins in MSI tumors and then effec-
tively inhibit the immune escape of tumor cells. Therefore,

in the future, how to activate immune cells in tumors is an
urgent problem to be solved [43, 44].

In recent years, a large number of studies have focused
on identifying key immune-related genes in many types of
cancers, screening out high-risk populations, and testing
the effectiveness of immune-targeted drugs [45–47]. In our
study, we found that SLCO4A1 played an important role
in the prognosis and tumor immune infiltration in COAD.

Firstly, we studied the expression level of SLCO4A1 in
COAD and the relationship of SLCO4A1 abnormal expres-
sion with clinical characteristics in patients with COAD.
SLCO4A1 was overexpressed in COAD and READ, com-
pared with normal tissues (Figures 1 and 2). Moreover, the
expression of SLCO4A1 was associated with individual can-
cer stages, histological subtype, and TP53 mutation status in
patients with COAD (Table 1). In addition, SLCO4A1 over-
expression was associated with a shorter OS or DFS
(Figure 3). Interestingly, our results are similar to those of
some studies, but the role of SLCO4A1 in the occurrence
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Figure 5: The protein-protein interaction network of SLCO4A1 and functional enrichment analysis. (a) The protein-protein interaction
network based on SLCO4A1-binding proteins using the STRING tool. (b) GO enrichment analysis (top 20 terms) by genes binding to
SLCO4A1. (c) KEGG enrichment analysis (top 10 terms) by genes binding to SLCO4A1.
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and development of COAD still needs to be further
researched [48, 49].

The results of our study showed that the expression level
of SLCO4A1 increased in COAD, which affected the prog-
nosis of COAD patients, indicating that SLCO4A1 could

play an important role in the pathogenesis of COAD.
SLCO4A1 was a valuable research topic not only in genetic
alterations (Figure 4) but also in the role of the occurrence
and development of COAD. Previous studies have shown
that abnormalities of the SLCO4A1 gene have multifaceted
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Figure 6: Correlation of the SLCO4A1 expression level with immune infiltration in COAD via the TIMER database. (a) Correlation of the
SLCO4A1 expression with different tumor-infiltrating immune cells. (b) Correlation between SLCO4A1 expression and immune cell-
specific markers. (c) Correlation between SLCO4A1 expression and four important immune markers (CD274, CTLA4, TIGIT, and
HAVCR2).
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effects for many tumors. Overexpression of the SLCO4A1
gene in prostate cancer and thyroid cancer indicated a poor
prognosis [48, 50]. Buxhofer-Ausch et al. have shown that
SLCO4A1 may affect the accumulation of anticancer drugs
in specific cancer cells [19].

Therefore, we hypothesized that SLCO4A1 could be an
oncogene in COAD. Then, GO enrichment analysis showed
that SLCO4A1-interacting genes were mainly enriched in
organic anion transmembrane transporter activity, anion
transmembrane transporter activity, bile acid and bile salt
transport, carboxylic acid transport, active transmembrane
transporter activity, ion transport, monocarboxylic acid
transport, plasma membrane region, and secondary active
transmembrane transporter activity (Figure 5(b)). The
KEGG pathway analysis showed that SLCO4A1 and its
coexpressed genes were mainly enriched in bile secretion,
ABC transporters, antifolate resistance, thyroid hormone
signaling pathway, primary bile acid biosynthesis, PPAR sig-
naling pathway, glutamatergic synapse, cholesterol metabo-
lism, hippo signaling pathway, and protein digestion and
absorption (Figure 5(c)). The organic anion transmembrane
transport mediates the uptake of many important drugs and
hormones, thus affecting the drug distribution and intracel-
lular drug concentration [51]. Because many anticancer
drugs are the substrates of SLCOs, the abnormal expression
of these transporters in cancer cells will affect the intracellu-
lar concentration of anticancer drugs and then affect the effi-
cacy of these drugs. In addition, these influx transporters,
which can act together with efflux transporters and drug
metabolic enzymes, may play a key role in chemoresistance.

Another major result of our study was that the expres-
sion of SLCO4A1 was associated with multiple tumor-
infiltrating immune cells and abundant immune molecules
(Figure 6). These results strongly suggested that SLCO4A1
could be involved in tumor immune infiltration in COAD.
An increased density of CD8+ T cell in tumor tissue has
been found to be associated with a reduced risk of tumor
recurrence [19]. Tumor-specific CD8+ T cells and CD4+ T
cells are required for the effective clearance of tumor cells.
We inferred that the suppression of CD8+ T cells could
downregulate some important signals on immune cells
and then reduce the aggregation of other immune cells,
such as CD4+ T cells and dendritic cells, which could
explain the simultaneous inhibition phenomenon of sev-
eral tumor-infiltrating immune cells in our study. Further-
more, the correlation analysis obtained from the TISIDB
database revealed the relationship between SLCO4A1
expression levels and lymphocyte, immunomodulators,
and chemokines in COAD (Supplementary Figure 3).
Our study clearly showed that SLCO4A1 was closely
linked to tumor immune infiltration in COAD and
might be a new molecular target, which was worth
further exploration.

Table 2: Correlation analysis between SLCO4A1 and related genes
and markers of immune cells in TIMER.

Description Gene markers cor P

CD8+ T cell
CD8A -0.144 1:97E − 03
CD8B -0.097 3:72E − 02

T cell

CD3D -0.197 2:17E − 05
CD3E -0.150 1:34E − 03
CD2 -0.176 1:62E − 04

B cell
CD19 -0.053 2:58E − 01
CD79A -0.094 4:49E − 02

Monocyte
CD86 -0.121 9:76E − 03
CSF1R -0.072 1:22E − 01

TAM

CCL2 -0.072 1:26E − 01
CD68 -0.028 5:46E − 01
IL10 -0.014 1:44E − 02

M1 macrophage

INOS (NOS2) -0.061 1:93E − 01
IRF5 0.115 1:38E − 02

COX2 (PTGS2) -0.038 4:15E − 01

M2 macrophage

CD163 -0.091 5:26E − 02
VSIG4 -0.089 5:83E − 02
MS4A4A -0.133 4:51E − 03

Neutrophils

CD66b (CEACAM8) 0.186 6:08E − 05
CD11b (ITGAM) -0.032 4:96E − 01

CCR7 -0.076 1:06E − 01

Natural killer cell

KIR2DL1 -0.046 3:21E − 01
KIR2DL3 0.000 9:95E − 01
KIR3DL1 -0.069 1:39E − 01
KIR3DL2 -0.106 2:34E − 02

Dendritic cell

HLA-DPB1 -0.075 1:11E − 01
HLA-DRA -0.130 5:52E − 03

BDCA-1 (CD1C) -0.127 6:31E − 03

Th1

STAT4 -0.161 5:47E − 04
STAT1 -0.040 3:39E − 01

TNF-α (TNF) -0.015 7:53E − 01

Th2

GATA3 -0.062 1:85E − 01
STAT6 0.126 6:94E − 03
IL13 -0.210 6:62E − 01

Tfh
BCL6 0.087 6:17E − 02
IL21 -0.050 2:87E − 01

Th17 cell
STAT3 -0.004 9:36E − 01
IL17A 0.098 3:52E − 02

Treg cell FOXP3 -0.100 3:20E − 02

Table 2: Continued.

Description Gene markers cor P

CCR8 -0.145 8:26E − 04
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5. Conclusions

In conclusion, our study showed that SLCO4A1 was overex-
pressed in COAD tissues, and we have identified the rela-
tionship between SLCO4A1 overexpression and poor
prognosis by using several authoritative databases. More-
over, our study also explored the correlation between the
expression of SLCO4A1 and tumor immune infiltration in
COAD. At the same time, we also studied the association
of SLCO4A1 expression with specific markers of diverse
immune cells. These results in our study showed that the
expression level of SLCO4A1 was significantly related to
the abundance of various lymphocytes, immunomodulators,
and chemokines in COAD. Therefore, we can better predict
the prognosis of COAD and evaluate the status of tumor
immune infiltration by testing the expression level of
SLCO4A1 in COAD.

There are still some shortcomings in the study. Although
the study was based on multiple publicly authoritative data-
bases, the same data in individual research aspects were still
limited. In addition, we need to further explore the role of
SLCO4A1 in regulating tumor immune infiltration in
COAD. However, our current study strongly suggests that
SLCO4A1 could be a novel prognostic biomarker and an
important immune-related factor for evaluating the immu-
notherapy in COAD patients.
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SLC04A1-binding proteins.

Supplementary 2. Supplementary Figure 1: relationship
between SLCO4A1 expression and clinical molecular indica-
tors in patients with COAD. Different SLCO4A1 expression
levels in COAD based on (A) PMS2, (B) MSH2, (C) MSH6,
(D) MLH1, (E) BRAF, (F) KRAS, and (G) NRAS, respec-
tively. Supplementary Figure 2: analysis of SLCO4A1 genetic

alterations via the cBioPortal database. Relationship of
SLCO4A1 with genetic alterations (A) OS, (B) PFS, (C)
DFS, and (D) DSS for patients with COAD. OATP: organic
anion-transporting polypeptide; OS: overall survival; PFS:
progression-free survival; DFS: disease-free survival; DSS:
disease-specific survival. Supplementary Figure 3: relation-
ship between SLCO4A1 expression and immune compo-
nents in patients with COAD, including lymphocytes,
immunomodulators, chemokines, and receptors. (A) Rela-
tionship between the SLCO4A1 expression level and lym-
phocytes. (B–D) Relationship between the SLCO4A1
expression level and immunomodulators. (E) Correlation
between SLCO4A1 expression level and chemokines. (F)
Correlation between SLCO4A1 expression level and
receptors.
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Background. Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy, and about 60% of the patients are diagnosed in
their elderly age (≥65 years old). However, little is known about the early mortality and risk factors related to elderly patients with
DLBCL. Methodology. From 2000 to 2019, elderly patients diagnosed with DLBCL in the Surveillance, Epidemiology, and End
Result (SEER) database were involved in this research and served as test cohort. Moreover, elderly DLBCL patients from
Peking University Third Hospital were used for external validation cohort. Risk factors were identified by univariate and
multivariate logistic regression analyses. Nomogram models were constructed based on significance risk factors to predict the
overall and cancer-specific early death. Besides that, the predictive value of the models was validated by receiver operating
characteristic (ROC) analysis. Calibration plots were used to evaluate the calibrating ability. Clinical benefits of nomogram
were evaluated by decision curve analysis (DCA). Results. 15242 elderly DLBCL patients obtained from the SEER database and
152 patients from Peking University Third Hospital were enrolled in this research. In the SEER database, 36.6% (5584/15242)
of the patients had early death and 30.7% (4680/15242) of them were cancer-specific early death. Marital status, Ann Arbor
stage, surgical treatment, radiotherapy, and chemotherapy were significant risk factors for overall and cancer-specific early
death of elderly DLBCL patients. Nomograms were constructed according to these risk factors. Then, ROC analysis showed
that the AUC of OS was 0.764 (0.756~0.772), and CSS was 0.742 (0.733~0.751). In the validation group, the AUC of OS was
0.767 (0.689~0.846) and CSS was 0.742 (0.743~0.83). Conclusion. The calibration plots and DCA analysis revealed that the
nomograms were good at early death prediction and clinical application. Predictive dynamic nomogram models for elderly
DLBCL patients were established and validated, which might play an essential role in helping physicians enact better treatment
strategies.

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is one of the most
common subtypes of non-Hodgkin lymphoma (NHL),
which accounts for approximately 30% to 40% of patients
with NHL [1, 2]. DLBCL is known as an aggressive carci-
noma, with the features including rapidly growing cancers
in the liver, bone marrow, lymph nodes, and other organs
[3]. As the wide application of radiotherapy, chemotherapy,
and immunotherapy combined with autologous stem cell
transplantation, the survival of DLBCL patients improves

dramatically and DLBCL is found to be a curable carcinoma
[4]. Such as it is, there are still about 30%~40% DLBCL
patients failing to achieve remission or relapsing, which con-
tributes to the morbidity and mortality of DLBCL patients
[5, 6]. Moreover, about 60% of the DLBCL patients are diag-
nosed at the age of ≥65 years old [7], and it is found that the
risk of death significantly increases with age [8, 9]. However,
there is little research focused on the early death of elderly
DLBCL patients.

DLBCL has a wide range of prognoses in the worldwide
population. The identification of risk factors and prognosis
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prediction is particularly vital for health care and making
treatment decisions. Early death is defined as survival time
less than 3 months, and the factors for early death of patients
with DLBCL are still unknown. Nomogram is a type of prog-
nostic model combined with risk factors to predict outcomes
of patients, which has obtained a lot of attention in the
oncology field [10–13]. Besides that, dynamic nomogram is
useful for explaining the heterogeneity in the outcomes of
elderly DLBCL patients with diverse clinical characteristics,
providing individual prediction for the probability of out-
come events. Therefore, the aim of this research was to
identify risk factors, meanwhile constructing dynamic
nomograms to predict the overall and cancer-specific early
death of elderly DLBCL patients.

2. Methods

2.1. Patients. In this research, data of elderly (≥65 years old)
patients with DLBCL from the dataset “incidence SEER
research plus data 17 registries, Nov 2021 Sub (2000-
2019)” was extracted from the Surveillance, Epidemiology,

and End Results (SEER) database, which is a public database
that contains about 27.8% of the US cancer patients [14].
Histology codes from the third edition of the International
Classification of Diseases for Oncology (ICD-O-3) including
9680/3, 9684/3, and 9688/3 were used to obtain the interest-
ing cohort. All patients included in this research were con-
firmed as positive histology, who had one primary tumor
only and completed clinical information. Therefore, a total
of 15242 DLBCL patients from the SEER database were
included in this research. Moreover, 152 elderly DLBCL
patients from Peking University Third Hospital were utilized
as external validation cohort. Early death was defined as sur-
vival time less than 3 months after diagnosis. This research
was approved by the ethics committee of Peking University
Third Hospital. The ethics committee approval number is
M2021034.

2.2. Statistical Analysis. Categorized data was described by
numbers and percentages (N and %). Univariate and multi-
variate logistic analyses were utilized to identify the risk fac-
tors associated with OS and CSS early death of elderly

Table 1: Clinicopathological characteristics of patients in the SEER database and external cohort.

Variable SEER External validation

n 15242 152

Sex (%)
Male 7485 (49.1) 77 (50.7)

Female 7757 (50.9) 75 (49.3)

Race (%)

White 13122 (86.1) NA

Black 658 (4.3) NA

AI/AN 75 (0.5) NA

API 1387 (9.1) NA

Marital status (%)
Married 8139 (53.4) 87 (57.2)

Unmarried 7103 (46.6) 65 (42.8)

Median household income (%)

<$40,000 540 (3.5) NA

$40,000–$54,999 2892 (19.0) NA

$55,000–$69,999 5950 (39.0) NA

>$70,000 5860 (38.4) NA

Tumor site (%)
Nodal 9784 (64.2) 96 (63.2)

Extranodal 5458 (35.8) 56 (36.8)

Ann Arbor stage (%)

I 3829 (25.1) 33 (21.7)

II 2710 (17.8) 26 (17.1)

III 2572 (16.9) 28 (18.4)

IV 5282 (34.7) 60 (39.5)

Unknown 849 (5.6) 5 (3.3)

Surgery (%)
No 11027 (72.3) 111 (73.0)

Yes 4215 (27.7) 41 (27.0)

Radiation (%)
No/unknown 12838 (84.2) 134 (88.2)

Yes 2404 (15.8) 18 (11.8)

Chemotherapy (%)
No/unknown 5466 (35.9) 37 (24.3)

Yes 9776 (64.1) 115 (75.7)
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DLBCL patients. Discrimination was judged by the receiver
operating characteristic (ROC) curve; the higher the area
under the curve (AUC) was, the better the accuracy of the
nomogram would be (13). Calibration plots were used to
evaluate calibrating ability. Moreover, the clinical benefits
of nomogram were evaluated by decision curve analysis
(DCA). All analyses were performed by R software (4.1.3).
P value < 0.05 (two-tail) was regarded as statistically
significant.

3. Results

3.1. Demographic and Clinical Characteristics of Elderly
Patients with DLBCL. The demographic and clinicopatholo-
gical characteristics of elderly patients with DLBCL from the
SEER database (n = 15242) and external validation cohort
(n = 152) are shown in Table 1. From the SEER database,
most of the patients were white (86.1%), while the black,
AI/AN patients, and API patients accounted for 4.3%,
0.5%, and 9.1%, respectively. The gender distributions were

not different. The most common Ann Arbor stage was IV
(34.7%), followed by stages I (25.1%), II (17.8%), and III
(16.9%). About two-thirds of the patients was nodal
(64.2%). Compared with chemotherapy (64.1%), few of the
patients receipted surgical treatment (27.7%) or radiation
(15.8%). There was no significant difference between the
SEER cohort and the external validation cohort.

3.2. Mortality of Early Death of Elderly Patients with DLBCL.
As shown in Table 2, 36.6% (5584/15242) of the patients suf-
fered from early death and 30.7% (4680/15242) of them were
cancer-specific early death. Unmarried patients had slightly
higher early mortality than married patients. White patients
had the highest early (86.0%) and cancer-specific (85.8%)
mortality, followed by API, black, and AI/AN patients. Mor-
tality rates increased with household income and peaked at
the median household income of $55,000–$69,999. Tumor
site at nodal caused a higher early mortality compared with
extranodal. The highest early mortality was shown in Ann
Arbor stage IV. Moreover, patients receipted surgical

Table 2: Rate of early death in older patients with DLBCL.

Variable Overall No early death Total early death Cancer-specific early death

n 15242 9658 5584 4680

Sex (%)
Male 7485 (49.1) 4724 (48.9) 2761 (49.4) 2263 (48.4)

Female 7757 (50.9) 4934 (51.1) 2823 (50.6) 2417 (51.6)

Race (%)

White 13122 (86.1) 8320 (86.1) 4802 (86.0) 4016 (85.8)

Black 658 (4.3) 406 (4.2) 252 (4.5) 217 (4.6)

AI/AN 75 (0.5) 54 (0.6) 21 (0.4) 19 (0.4)

API 1387 (9.1) 878 (9.1) 509 (9.1) 428 (9.1)

Marital status (%)
Married 8139 (53.4) 5423 (56.2) 2716 (48.6) 2266 (48.4)

Unmarried 7103 (46.6) 4235 (43.8) 2868 (51.4) 2414 (51.6)

Median household income (%)

<$40,000 540 (3.5) 329 (3.4) 211 (3.8) 174 (3.7)

$40,000–$54,999 2892 (19.0) 1800 (18.6) 1092 (19.6) 906 (19.4)

$55,000–$69,999 5950 (39.0) 3714 (38.5) 2236 (40.0) 1892 (40.4)

>$70,000 5860 (38.4) 3815 (39.5) 2045 (36.6) 1708 (36.5)

Tumor site (%)
Nodal 9784 (64.2) 6224 (64.4) 3560 (63.8) 3018 (64.5)

Extranodal 5458 (35.8) 3434 (35.6) 2024 (36.2) 1662 (35.5)

Ann Arbor stage (%)

I 3829 (25.1) 2663 (27.6) 1166 (20.9) 925 (19.8)

II 2710 (17.8) 1824 (18.9) 886 (15.9) 739 (15.8)

III 2572 (16.9) 1703 (17.6) 869 (15.6) 733 (15.7)

IV 5282 (34.7) 2951 (30.6) 2331 (41.7) 2018 (43.1)

Unknown 849 (5.6) 517 (5.4) 332 (5.9) 265 (5.7)

Surgery (%)
No 11027 (72.3) 6735 (69.7) 4292 (76.9) 3621 (77.4)

Yes 4215 (27.7) 2923 (30.3) 1292 (23.1) 1059 (22.6)

Radiation (%)
No/unknown 12838 (84.2) 7677 (79.5) 5161 (92.4) 4314 (92.2)

Yes 2404 (15.8) 1981 (20.5) 423 (7.6) 366 (7.8)

Chemotherapy (%)
No/unknown 5466 (35.9) 2013 (20.8) 3453 (61.8) 2868 (61.3)

Yes 9776 (64.1) 7645 (79.2) 2131 (38.2) 1812 (38.7)
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treatment, radiotherapy, or chemotherapy had lower early
mortality compared with those not performed. There were
no significant differences in the sex group.

3.3. Risk Factors Associated with Early Death of Elderly
DLBCL Patients. Risk factors of early death of elderly
DLBCL patients were identified by univariate and multivar-
iate logistic regressions. As displayed in Tables 3 and 4, var-
iables including marital status (OR: 1.1, 95% CI: 1.02-1.18),
Ann Arbor stage, surgical treatment (OR: 0.67, 95% CI:
0.61-0.73), radiotherapy (OR: 0.33, 95% CI: 0.29-0.37), and
chemotherapy (OR: 0.14, 95% CI: 0.13-0.15) were signifi-
cantly associated with the probability of overall early death
of elderly DLBCL patients. Moreover, multivariate logistic

regression analysis showed that unmarried status, advanced
Ann Arbor stage, no surgical treatment, no radiotherapy,
and no chemotherapy were significant risk factors for
cancer-specific early death of elderly DLBCL patients, all of
which were P < 0:05.

3.4. Dynamic Nomogram Construction. Risk prediction
nomogram of the SEER cohort was constructed according
to the multivariate logistic regression analysis results. The
odds of early death among elderly DLBCL patients could
be predicted by calculating the scores of each factor. As
shown in Figure 1, Ann Arbor stage, surgical treatment,
radiotherapy, and chemotherapy were great predictors for
elderly DLBCL patients’ overall and cancer-specific early

Table 3: Univariate and multivariate logistic analyses of variables associated with risk of OS for older DLBCL patients.

Variable
Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P

Sex

Male

Female 0.98 0.92-1.05 0.527

Race

White

Black 1.08 0.92-1.26 0.377

AI/AN 0.67 0.41-1.12 0.126

API 1 0.9-1.13 0.94

Marital status

Married

Unmarried 1.35 1.27-1.44 <0.001 1.1 1.02-1.18 0.017

Median household income

< $40,000
$40,000–$54,999 0.95 0.78-1.14 0.563

$55,000–$69,999 0.94 0.78-1.12 0.493

> $70,000 0.84 0.7-1 0.052

Tumor site

Nodal

Extranodal 1.03 0.96-1.1 0.392

Ann Arbor stage

I

II 1.11 1-1.23 0.054 1.26 1.12-1.42 <0.001
III 1.17 1.05-1.3 0.005 1.48 1.31-1.67 <0.001
IV 1.8 1.65-1.97 <0.001 2.17 1.96-2.4 <0.001
Unknown 1.47 1.26-1.71 <0.001 0.86 0.72-1.02 0.077

Surgery

No

Yes 0.69 0.64-0.75 <0.001 0.67 0.61-0.73 <0.001
Radiation

No/unknown

Yes 0.32 0.28-0.35 <0.001 0.33 0.29-0.37 <0.001
Chemotherapy

No/unknown

Yes 0.16 0.15-0.17 <0.001 0.14 0.13-0.15 <0.001
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death in the nomogram prediction models. To obtain the
dynamic nomogram for OS, visit https://zhanglingbao
.shinyapps.io/DynNomapp/, and dynamic nomogram for
CSS, visit https://zhanglingbao.shinyapps.io/DynNomapp_
CSS/.

3.5. Nomogram Validation. The ROC, DCA analysis, and
calibration plots were utilized to detect prediction efficiency
on the probability of early death, and the results showed that
nomograms had a good prediction efficiency. As shown in
Figure 2, the area under the curve (AUC) of overall survival
(OS) was 0.764 (0.756~0.772) and cancer-specific survival
(CSS) was 0.742 (0.733~0.751). In the validation group, the
AUC of OS was 0.767 (0.689~0.846) and CSS was 0.742

(0.656~0.83). The calibration plots (Figure 3) and DCA
analysis (Figure 4) revealed that the nomograms were good
at elderly DLBCL patients’ early death prediction and clini-
cal application.

4. Discussion

DLBCL is an aggressive carcinoma and mainly affects the
older population. Age is a negative prognostic factor for
patients with DLBCL, which has been involved in the
International Prognostic Index (IPI) [15, 16]. The progno-
sis of elderly DLBCL patients is worse than that of young
patients [17]. Research revealed that the 5-year survival
rate of young patients with DLBCL (≤55 years old) was

Table 4: Univariate and multivariate logistic analyses of variables associated with risk of CSS for older DLBCL patients.

Variable
Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P

Sex

Male

Female 1.04 0.97-1.12 0.216

Race

White

Black 1.12 0.94-1.32 0.198

AI/AN 0.77 0.46-1.3 0.324

API 1.01 0.9-1.14 0.846

Marital status

Married

Unmarried 1.33 1.25-1.43 <0.001 1.11 1.03-1.19 0.009

Median household income

< $40,000
$40,000–$54,999 0.96 0.79-1.17 0.681

$55,000–$69,999 0.98 0.81-1.18 0.84

> $70,000 0.87 0.72-1.05 0.134

Tumor size

Nodal

Extranodal 0.98 0.91-1.05 0.612

Ann Arbor stage

I

II 1.18 1.05-1.32 0.004 1.32 1.16-1.49 <0.001
III 1.25 1.12-1.4 <0.001 1.54 1.36-1.75 <0.001
IV 1.94 1.77-2.13 <0.001 2.24 2.02-2.49 <0.001
Unknown 1.42 1.21-1.68 <0.001 0.89 0.75-1.07 0.216

Surgery

No

Yes 0.69 0.63-0.74 <0.001 0.69 0.63-0.75 <0.001
Radiation

No/unknown

Yes 0.35 0.32-0.4 <0.001 0.39 0.35-0.45 <0.001
Chemotherapy

No/unknown

Yes 0.21 0.19-0.22 <0.001 0.18 0.17-0.2 <0.001
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78%, which was only 54% among patients over 65 years
old [18], illustrating the importance of predicting progno-
sis in elderly DLBCL patients. IPI contains five variables,
including age, Ann Arbor stage, the number of extranodal
sites, lactate dehydrogenase (LDH), and the Eastern Coop-
erative Oncology Group performance status [15]. At pres-
ent, IPI is used as a guide for patients’ survival and
prognosis. However, IPI fails to identify patients at
extreme risk [19, 20].

In this population-based research, we found that the
overall early mortality of elderly DLBCL patients was
36.6% and 30.7% of them were DLBCL-specific early death,
indicating the poor prognosis of elderly DLBCL patients,
which consisted with the previous studies [16, 21].

The prognosis of the elderly DLBCL patients has always
been a concern, and most studies are mainly focused on its
long-term survival. In recent years, early death of DLBCL
patients has attracted much attention. Cho et al. found that
the patients suffering DLBCL with a survival time of less
than 120 days accounted for 25%; meanwhile, old age, bone
marrow involvement, and high-risk IPI score were risk fac-
tors for early mortality caused by DLBCL [22]. In 2016, Ols-
zewski et al. quantified the risk factors for death and
hospitalization within the first 30 days of rituximab-based
immunochemotherapy [7]. We fully included clinical char-
acteristic variables in this research, finding that marital sta-
tus, Ann Arbor stage, surgical treatment, radiotherapy, and
chemotherapy were significantly associated with the
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Figure 1: The predictive nomogram for the overall early death (a) and specific early death (b) for DLBCL patients.
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probability of early OS and CSS of elderly DLBCL patients.
As a common clinical staging method for NHL, Ann Arbor
staging is reasonably used as a predictor for elderly DLBCL
patients.

The studies focused on early deaths have been applied
to many types of carcinomas, which have shown an impor-
tant clinical significance. Nomogram is a popular prognos-
tic tool, which plays an important role in the identification

of risk factors and personalized treatment [23, 24]. The
research of IPI-DLBCL model is mainly focused on the
medical indexes while ignoring the influence of families
[25]. In this research, marital status, Ann Arbor stage, sur-
gical treatment, radiotherapy, and chemotherapy were used
to construct the predictive nomogram models. Therefore,
this research may provide a new way to explore a better
prognostic model. Moreover, as a dynamic model,
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Figure 2: The ROC curves for the nomogram of overall early death (a) and specific early death (b) in the SEER database. The ROC curves
for the nomogram of overall early death (c) and specific early death nomogram (d) in the validation cohort.
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nomogram plays an important role in disease heterogeneity
and individualized therapy. In validation, we found that
there was a good agreement between predicted early deaths
and actual deaths. Besides that, DCA analysis revealed that
our nomogram models had a good clinical value and utility
in predicting survival.

The research has several strengths. Firstly, SEER data-
base contains information of DLBCL patients, which

involves about 27.8% of cancerous patients in the US;
thus, the information is reliable. Secondly, external data
is used for validation, which makes the predictive models
more realistic and credible. However, our study also exists
some limitations. For instance, SEER is a high-quality reg-
istry that collects clinically relevant features for risk pre-
diction and does not collect the frailty characteristics and
gene information of older individuals. Besides, the
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Figure 3: The calibration plots for the nomogram of overall early death (a) and specific early death (b) in the SEER database. The calibration
plots for the nomogram of overall early death (c) and specific early death nomogram (d) in the validation cohort.
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information of specific drugs of chemotherapy regimens is
incomplete, and molecular pathological indicators are not
involved in this research, which are also the limitation of
our study.

5. Conclusion

In conclusion, marital status, Ann Arbor stage, surgical
treatment, radiotherapy, and chemotherapy were risk factors

0.3

0.2

0.0

0.0

2:31:41:100
Cost: benefit ratio

3:2 100:14:1

0.40.2 0.6
High risk threshold

0.8 1.0

Nomogram
All
None

0.1

N
et

 b
en

efi
t

(a)

0.3

0.2

N
et

 b
en

efi
t

0.0

0.0

1:100 1:4 2:3
Cost: benefit ratio

3:2 100:14:1 

0.40.2 0.6
High risk threshold

0.8 1.0

Nomogram
All
None

0.1

(b)

0.3

0.2

N
et

 b
en

efi
t

0.0

0.0

1:100 1:4 2:3
Cost: benefit ratio

3:2 100:14:1 

0.40.2 0.6
High risk threshold

0.8 1.0

Nomogram
All
None

0.1

(c)

0.3

0.2

N
et

 b
en

efi
t

0.0

0.0

1:100 1:4 2:3
Cost: benefit ratio

3:2 100:14:1 

0.40.2 0.6
High risk threshold

0.8 1.0

Nomogram
All
None

0.1

(d)

Figure 4: The decision curve analysis (DCA) for the nomogram of overall early death (a) and specific early death (b) in the SEER database.
The decision curve analysis (DCA) for the nomogram of overall early death (c) and specific early death nomogram (d) in the validation
cohort.

9Mediators of Inflammation



for elderly DLBCL patients. Dynamic nomogram models
were constructed to predict the early OS and CSS of elderly
DLBCL patients, which might be beneficial to elderly
DLBCL patients’ early death prediction and clinical
application.

Data Availability

The datasets used and analyzed during the current study are
available from the corresponding author on reasonable request.
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Background. Colorectal cancer (CRC) has been the 3rd most commonly malignant tumor of the gastrointestinal tract in the world. 5-
Methylcytosine (m5C) and long noncoding RNAs (lncRNAs) have an essential role in predicting the prognosis and immune response
for CRC patients. Therefore, we built a m5C-related lncRNA (m5CRlncRNA) model to investigate the prognosis and treatment
methods for CRC patients. Methods. Firstly, we secured the transcriptome and clinical data for CRC from The Cancer Genome
Atlas (TCGA). Then, m5CRlncRNAs were recognized by coexpression analysis. Then, univariate Cox, least absolute shrinkage and
selection operator (LASSO), and multivariate Cox regression analyses were utilized to build m5C-related prognostic characteristics.
Besides, Kaplan-Meier analysis, ROC, PCA, C-index, enrichment analysis, and nomogram were performed to investigate the model.
Additionally, immunotherapy responses and antitumor medicines were explored for CRC patients. Results. A total of 8 m5C-related
lncRNAs (AC093157.1, LINC00513, AC025171.4, AC090948.2, ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516) were
adopted to construct a risk model to investigate survival and prognosis for CRC patients. CRC samples were separated into low-
and high-risk groups, with the latter having a worse prognosis. The m5C-related lncRNA model helps us to better distinguish
immunotherapy responses and IC50 of antitumor medicines in different groups of CRC patients. Conclusion. The research may
give new perspectives on tailored therapy approaches as well as novel theories for forecasting the prognosis of CRC patients.

1. Introduction

In terms of cancer-related deaths, colorectal cancer (CRC) is
the third most frequent malignant tumor worldwide [1].
The recent epidemiological surveys showed that CRC con-
tributes to 10% of all diagnosed cancers and 9.4% of
cancer-related deaths [2]. The high incidence and low sur-
vival rate of CRC imposed a heavy economic burden and
enormous public health pressure on the government. At
present, the main clinical treatment strategies for CRC
include surgery, chemotherapy, and radiotherapy, but with
poor prognosis, easy recurrence, and significant side effects
[3]. In order to better understand CRC, it is urgently needed
to select key CRC-related genes, elucidate the potential path-

ogenesis of CRC, and develop novel diagnostic and thera-
peutic strategies for CRC.

Numerous studies have found that RNA modifications
in epigenetic changes are intimately related to the progres-
sion of different types of tumors [4, 5]. At present, more
than 150 RNA modifications have been recognized, such as
N1-methyladenosine (m1A), 5-methylcytosine (m5C), N6-
methyladenosine (m6A), 7-methylguanosine (m7G), micro-
RNA, and long noncoding RNA (lncRNA) [6]. With the
in-depth study of RNA modification, m5C has received
increasing attention from scholars around the world. As a
widespread RNA modification of noncoding and coding
RNAs, m5C has a crucial function in the regulation of phys-
iological and pathological processes in the organism [7]. A
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study demonstrated that m5C regulators were linked to the
occurrence and progression of cancer [8]. In bladder cancer,
the m5C modification writer NSUN2 modulates HDGF
expression in a m5C-dependent manner in order to promote
cancer development [9].

lncRNA is the nonprotein-coding RNA fraction of over
200 nucleotides in length that cannot be translated into pro-
tein [10]. It has been shown that RNA methylation of
lncRNAs could impact cancer progression [11]. With the
advancement of sequencing technology, m5C was found to
be extensively distributed in lncRNAs. However, the utility
of m5C in lncRNAs is still uncertain. Therefore, identifying
m5C-related lncRNAs (m5CRlncRNAs) in CRC pathogene-
sis may help provide a rational basis for targeted therapy
and prognosis.

In this study, bioinformatics analysis was used to
examine the potential contribution of m5CRlncRNAs to
CRC. The Cancer Genome Atlas was used to obtain a
database of m5C genes and lncRNAs (TCGA). Then, using
Pearson’s correlation analysis, we were able to identify the
m5CRlncRNA. Additionally, a brand-new risk model for
the m5CRlncRNA was developed to forecast overall sur-
vival (OS) in CRC patients. We also created a nomogram
incorporating clinical data to predict the overall survival of
CRC patients. Finally, we looked for the connection between
immunotherapy responses.

2. Materials and Methods

2.1. Data Acquisition. TCGA database was utilized to
retrieve RNA transcriptome data, relevant clinical informa-
tion, and mutation data from CRC samples. We used the R
package to process the downloaded files. To reduce statistical
bias, we excluded CRC patients with absent OS values and
short OS values (<30 days).

2.2. Identification m5C Genes and m5CRlncRNAs. Based on
previous publications [12, 13], we extracted 17 m5C regula-
tors from TCGA-CRC, including expression data on 11
writers, 2 readers, and 4 erasers (Supplementary Table 1).
Then, we screened m5CRlncRNA by Pearson correlation
analysis, and we derived 2,028 m5CRlncRNA. jRj > 0:5 and
p < 0:001 were the threshold criteria.

2.3. Construction of a Risk Model. TCGA dataset was ran-
domly distributed into a training set and a testing set (ratio:
0.7 : 0.3; sample: 355 : 148). We used the entire set to con-
struct a m5CRlncRNA risk model, and the training set and
testing set were employed to verify the risk model. No signif-
icant differences were found in the clinical features of CRC
patients between the two sets (Table 1). We utilized univar-
iate Cox analysis of the filtered 14 m5CRlncRNA in combi-
nation with CRC survival information (p < 0:01). Besides,
we adopted the least absolute shrinkage and selection opera-
tor (LASSO) and Cox regression analyses to construct a risk
assessment model that consisted of 8 m5CRlncRNAs via the
R package “glmnet” [14]. According to median risk scores,
the CRC patients were assigned to low- and high-risk groups
[15]. And the risk score was calculated as follows: ∑k

i=1βiSi.

2.4. Validation of the Risk Signature. By using the “survmi-
ner” and “survive” packages in the R programming lan-
guage, Kaplan-Meier survival analysis was employed to
compare the clinical outcomes of the two groups. The
time-dependent receiver-operating characteristic curves
(ROC) and the area under the curve (AUC) were employed
to confirm the accuracy of the model. We also grouped
patients according to clinical characteristics to assess the
ability of the model to predict prognosis across clinical charac-
teristics. Principal component analysis (PCA) was employed
for effective dimension reduction, model recognition, and
exploratory visualization of high-dimensional data of the
whole gene expression profiles, m5C genes, m5CRlncRNAs,
and a risk model on the basis of the expression patterns of
the m5CRlncRNAs. A consistency index (C-index) was
applied to determine the accuracy of the model compared to
the traditional clinical features.

2.5. Construction of Predictive Nomogram. We developed a
nomogram to predict the clinical features for the 1-, 3-,
and 5-year OS of CRC patients via the R package of “rms.”.

2.6. Evaluation of Enrichment Analysis. A clusterProfiler R
package was used to perform GO enrichment analysis and
KEGG pathway analysis to explore possible biological func-
tions. p < 0:05 indicated that the functional pathways had
significant enrichment.

2.7. Assessment of the Prognostic Features in the Tumor
Immune Microenvironment. Studying how the model inter-
acts with the tumor microenvironment, we measured the
infiltration values for TCGA-CRC dataset samples on the
basis of these algorithms: XCELL [16], TIMER [17], QUAN-
TISEQ [18], MCPCOUNTER [19], EPIC [20], CIBERSORT-
ABS [21], and CIBERSORT [22]. Additionally, we adopted
single-sample GSEA (ssGSEA) for scoring CRC-infiltrating
immune cells to quantify the tumor-infiltrating immune
cells between different groups. Furthermore, we also evalu-
ated the immune checkpoint activation among different
groups.

2.8. Investigation of Immunotherapy Response. The mutation
data was assessed and summarized by the “maftools” of R
package. Based on tumor-specific mutated genes, we calcu-
lated the tumor mutational burden (TMB). In addition, the
tumor immune dysfunction and exclusion (TIDE) algorithm
was performed to estimate the probability of an immuno-
therapeutic response.

2.9. Exploration of Antitumor Agents. To predict therapeutic
response, the “pRRophetic” R package was employed to deter-
mine the half-maximal inhibitory concentration (IC50) of
commonly used antitumor drugs in different risk groups.

3. Results

3.1. Screen of m5CRlncRNAs in CRC Patients. A total of 17
m5C genes and 16,876 lncRNAs were selected from TCGA
datasets. We found 2,028 lncRNAs that were strongly linked
to one of the 17 m5C genes (jRj > 0:5 and p < 0:001)

2 Mediators of Inflammation



(Supplementary Table 2). As shown in Figure 1(a), the m5C-
lncRNA expression network was visualized via the Sankey
diagram. Figure 1(b) depicts the relationship between m5C
genes and m5CRlncRNAs in TCGA datasets.

3.2. Construction and Validation of a Risk Model. We
adopted univariate Cox regression analysis to select 14
prognostic m5CRlncRNAs (Supplementary Figure S1A).
The LASSO-Cox regression algorithm was performed to
construct the risk signature, including 8 m5CRlncRNAs
(AC093157.1, LINC00513, AC025171.4, AC090948.2,
ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516) in
CRC (Figures 2(a)–2(c)). In addition, Kaplan-Meier
analysis revealed a significant difference between distinct
groups (p < 0:05, Figure 2(d)). In Figure 2(e), the 1-, 3-,
and 5-year AUC values were 0.746, 0.717, and 0.792,

which demonstrated that CRC patients have a better
prognosis. Furthermore, the AUC value of the signature
was 0.792, which was notably higher than that of
clinicopathological characteristics, including age (0.646),
gender (0.481), and stage (0.737; Figure 2(f)). The Kaplan-
Meier analyses and ROC curves of training set and testing
set indicated that the prediction accuracy of the model is
satisfactory (Supplementary Figure S1B-E).

Next, we studied the differences in clinical outcomes
among distinct groups stratified by clinical characteristics.
Kaplan-Meier survival analysis demonstrated that our model
can be applied to a variety of clinical characteristics
(Figure 3(a)). The PCA analysis showed that the distribu-
tions of the two groups were relatively dispersed, which indi-
cated diverse groups had different distributions on the basis
of the signature (Figure 3(b)). And the C-index of the model

Table 1: The clinical characteristics of the different sets.

Covariates Type Total set Training set Testing set p value

Age
≤65 227 (45.13%) 161 (45.35%) 66 (44.59%) 0.9543

>65 276 (54.87%) 194 (54.65%) 82 (55.41%)

Gender
Female 225 (44.73%) 157 (44.23%) 68 (45.95%) 0.7985

Male 278 (55.27%) 198 (55.77%) 80 (54.05%)

Race

Asian 9 (1.79%) 6 (1.69%) 3 (2.03%) 0.9398

Black or African American 246 (48.91%) 175 (49.3%) 71 (47.97%)

White 248 (49.3%) 174 (49.01%) 74 (50%)

Radiation
No 466 (92.64%) 329 (92.68%) 137 (92.57%) 1

Yes 37 (7.36%) 26 (7.32%) 11 (7.43%)

Pharmaceutical therapy
No 301 (59.84%) 212 (59.72%) 89 (60.14%) 1

Yes 202 (40.16%) 143 (40.28%) 59 (39.86%)

Pathological stage

Stage I 91 (18.09%) 61 (17.18%) 30 (20.27%) 0.7053

Stage II 180 (35.79%) 129 (36.34%) 51 (34.46%)

Stage III 155 (30.82%) 113 (31.83%) 42 (28.38%)

Stage IV 77 (15.31%) 52 (14.65%) 25 (16.89%)

Stage T

T1 17 (3.38%) 12 (3.38%) 5 (3.38%) 0.0901

T2 92 (18.29%) 60 (16.9%) 32 (21.62%)

T3 343 (68.19%) 253 (71.27%) 90 (60.81%)

T4 50 (9.94%) 30 (8.45%) 20 (13.51%)

Tis 1 (0.2%) 0 (0%) 1 (0.68%)

Stage M

M0 377 (74.95%) 267 (75.21%) 110 (74.32%) 0.7588

M1 77 (15.31%) 52 (14.65%) 25 (16.89%)

Mx 49 (9.74%) 36 (10.14%) 13 (8.78%)

Stage N

N0 283 (56.26%) 200 (56.34%) 83 (56.08%) 0.7087

N1 126 (25.05%) 86 (24.23%) 40 (27.03%)

N2 92 (18.29%) 67 (18.87%) 25 (16.89%)

Nx 2 (0.4%) 2 (0.56%) 0 (0%)

Status
Alive 403 (80.12%) 284 (80%) 119 (80.41%) 1

Dead 100 (19.88%) 71 (20%) 29 (19.59%)

No: the patient have not receive the treatment; Tis: carcinoma in situ; Mx: unknown M stage; Nx: unknown N stage.
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was superior to the clinicopathological features, indicating
that this model could better predict the prognosis of CRC
patients (Figure 4(a)).

3.3. Construction of Nomogram and Calibration in CRC
Patients. As shown in Figure 4(b), the calibration curves of a
nomogram revealed good accordance between the predicted

m5C

lncRNA

m5C

ALKBH1

DNMT1

DNMT3A

DNMT3B

NSUN3

NSUN6

TET1

TET2

TET3

TRDMT1

NOP2

(a)

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎ ⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎

⁎⁎

⁎⁎ ⁎⁎

⁎⁎

⁎⁎

⁎

⁎

⁎

⁎

⁎

⁎

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎⁎⁎⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎

⁎ ⁎

⁎

NOP2

TRDMT1

DNMT1

DNMT3A

DNMT3B

NSUN2

NSUN3

NSUN4

NSUN5

NSUN6

NSUN7

ALYREF

YBX1

TET1

TET2

TET3

ALKBH1

AC
00

90
41

.3

AC
02

51
71

.4

AC
09

09
48

.2

AC
09

31
57

.1

AC
10

94
49

.1

LI
N

C0
05

13

LI
N

C0
25

16

ZE
B1

–A
S1

⁎⁎⁎p < 0.001
⁎⁎p < 0.01
⁎p < 0.05

Correlation
0.9

0.6

0.3

0.0

–0.3

(b)

Figure 1: Identification of m5CRlncRNAs. (a) A Sankey plot for the network of m5C genes and associated m5CRlncRNAs. (b) Heatmap for
correlation between 17 m5C genes and 8 m5CRlncRNAs.
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Figure 2: Construction of a risk signature for m5CRlncRNAs. (a, b) The LASSO regression algorithm to screen candidate m5CRlncRNAs.
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Figure 3: Validation of a risk signature. (a) Kaplan-Meier curves grouped by age, gender, clinical stage, T, N, or M. (b) PCA comparison on
the basis of entire gene profiles, m5C genes, lncRNAs, and m5CRlncRNAs in TCGA entire set.
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1-, 3-, and 5-year OS rates and actual observations. And
the nomogram was established to demonstrate the superior
predictive power of m5C compared to clinical features
(Figure 4(c)).

3.4. Functional Enrichment Analysis. The GO analysis
(Figure 5(a)) showed that the terms were mainly enriched
in the signaling receptor activator activity and receptor
ligand activity of biological processes (BP), the apical part
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Figure 4: Evaluation of the m5CRlncRNAs model and development of a nomogram. (a) C-index of clinical characteristics and the model.
(b) Calibration plot of a nomogram. (c) The nomogram predicts the ability of 1-, 3-, and 5-years OS rates of CRC patients.

7Mediators of Inflammation



of cell and presynapse of cellular component (CC), and the
epidermis development and skin development of molecular
function (MF) (Supplementary Table 3). The KEGG
analysis showed that the terms were mainly enriched in
hsa04978, hsa04972, hsa04020, hsa00040, hsa05226, and
hsa04390 (Figure 5(b)) (Supplementary Table 4).

3.5. Evaluation of Tumor Immune Microenvironment. To
further explore whether the m5CRlncRNA was related to
the TIME, we assessed the relationship between the
signature and tumor-infiltrating immune cells. Significant
correlations were noted between the abundance of these
tumor-infiltrating immune cells and increased CRC risk
(Figure 6(a)) (Supplementary Table 5). The ssGSEA results
showed that HLA, type I IFN response, and type II IFN
response of patients in the low-risk group were lower
compared to high-risk group (p < 0:05, Figure 6(b)). We
further investigated the immune checkpoints, and the results
revealed significant differences in the distribution of immune
checkpoint-related molecule expression among different
groups. We examined the expression levels of 46 immune
checkpoint genes, 14 of which differed in expression in the
high- and low-risk groups. The immune checkpoints of
TNFRSF15 and HHLA2 in the low-risk group were higher
(p < 0:05) (Figure 6(c)). The above findings might imply that
the low-risk group was more immunologically active and
might be more sensitive to immunotherapy.

3.6. Evaluation of Immunotherapy. On the basis of the
somatic mutational data from TCGA, we calculated the
mutation frequency among different groups. And the muta-
tion frequencies of the different groups were depicted by the

waterfall chart. It found that 223 of 232 (96.12%) CRC sam-
ples in the high-risk group and 219 of 234 (93.59%) CRC
samples in the low-risk group displayed genetic mutations,
and missense mutation was the most common variant clas-
sification. In addition, APC had high genetic alterations
(72%), which was only lower than that of TP53 (60%) in
the high-risk group (Figure 7(a)). APC had the highest
genetic alterations (79%) (Figure 7(b)). Then, we evaluated
the relationship between different groups and immunother-
apy biomarkers. As exhibited in Figures 7(c) and 7(d), we
observed that the high-risk group was more sensitive to
immunotherapy, suggesting that the m5C-based classifier
index may be a predictor of tumor mutation burden and
TIDE. Finally, we used Kaplan-Meier curve analysis of
patient OS based on TMB. As displayed in Figure 7(e), a sig-
nificant difference was observed between patients in the high
TMB and low TMB groups (p < 0:05). We further investi-
gated whether the m5CRlncRNA model could predict OS
outcomes greater than TMB alone. Compared with other
groups, the low-risk group with high TMB had the best
prognosis among those of the other three groups (p < 0:001)
(Figure 7(f)). In summary, the signature of m5CRlncRNA
has greater prognostic implications than that of TMB.

3.7. Selection Potential Antitumor Drugs by m5CRlncRNA
Model. To identify for potential drugs targeting the
m5CRlncRNA model for the treatment of CRC patients,
the pRRophetic algorithm was implemented to assess thera-
peutic efficacy according to the IC50 of each data. In addi-
tion, we noticed that the sensitivity of the two groups
differed significantly for 23 compounds by predicting the
potential therapeutic agents. As shown in Figure 8, we
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Figure 5: The enrichment analyses. (a) The GO analyses results. (b) The KEGG analysis results.
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detected that the low-risk group was closely connected with
chemotherapeutic agents with higher IC50, suggesting that
low-risk patients were more responsive to chemotherapeutic
drugs.

4. Discussion

Many experts and scholars have concentrated on exploring
the pathogenesis and treatment strategies of CRC in recent
years [23]. Despite the fact that surgery, chemotherapy,

radiotherapy, and targeted therapy were used for CRC
patients, treatment outcomes were poor, and 5-year survival
rates were low [24]. In recent years, research has demon-
strated that cancer patients with different clinical character-
istics and subgroups are likely to have a different prognosis
and response to treatment [25, 26]. Thus, it is vital to inves-
tigate effective and personalized treatment options for the
prognosis and management of CRC.

Firstly, we downloaded the lncRNA data of CRC patients
from TCGA database. According to univariate Cox, LASSO,
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Figure 6: Immune analysis based on m5CRlncRNAs signature. (a) The immune cell bubble. (b) Immune functions scores between different
groups. (c) Expression of immune checkpoint-related molecules.
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and multivariate Cox regression analysis, 8 m5CRlncRNAs
(AC093157.1, LINC00513, AC025171.4, AC090948.2,
ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516)
were determined to be significant prognostic factors to
explore the prognostic function in CRC. In recent years,
lncRNAs have been linked to cancer survival and develop-
ment in many studies [27, 28]. And ZEB1-AS1 was found
to be a tumor-related lncRNA prognostic factor in CRC

[29]. In addition, a study revealed that regulation of
LINC00513 lncRNA expression can affect disease suscepti-
bility in systemic lupus erythematosus [30]. Besides, other
lncRNAs were screened for the first time as prognostic
markers for CRC. Based on 8 m5CRlncRNAs, we built a risk
assessment model to further investigate the association
between m5CRlncRNA and CRC. Next, CRC patients were
divided into different risk groups based on median scores,
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Figure 8: Selection of antitumor drugs.
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and the high-risk group had a lower clinical survival rate.
There were similar results found in the analysis of subgroups
categorized by gender, age, and tumor stage. Additionally,
PCA analysis also supported the grouping ability of m5C.
As part of the present study, we developed a nomogram with
clinical characteristics and m5CRlncRNAs. These results
suggest that OS was shorter in the high-risk group, with bet-
ter concordance between 1-year, 3-year, and 5-year observa-
tion and predicted OS rates.

Furthermore, we investigated the associations between
risk groups and TMB and TIME. The TMB is regarded
as the total number of somatic cell-encoded mutations
that lead to neoantigens being generated that trigger anti-
tumor immunity [31]. A large number of studies have
proven that TMB is a powerful biomarker for predicting
the efficacy of checkpoint inhibitors in cancer [32, 33].
In the high-risk group, TMB appeared to be significantly
higher. Additionally, TIDE is a computational framework
for simulating tumor immune evasion and is usually
applied to forecast the effects of immune checkpoint inhi-
bition therapy [34]. Our results demonstrated that the
low-risk group was predicted to have a superior response
to immunotherapy. To probe the therapeutic potential of
the identified m5CRlncRNAs for CRC patients, we ana-
lyzed their sensitivity to different drugs. And we discov-
ered that the low-risk group was significantly related to
chemotherapeutic agents with higher IC50. Altogether,
the above results help us to further predict the prognosis
of CRC and elucidate the molecular biological mechanism
between m5CRlncRNAs and CRC.

However, there are several issues with the research.
First off, we lack external datasets to validate the predic-
tion accuracy of the risk model since there are not any
lncRNA-related CRC datasets in the Gene Expression
Omnibus (GEO) database. Second, because of the study’s
limited sample size, there could be some bias in the data
analysis. Thirdly, there is no experimental validation of
analytical findings in the research to demonstrate the use
of the risk model in clinical treatment. Therefore, we will
try to verify the validity of the signature utilizing animal
and cellular tests.

Overall, our study did provide not only new insights
into individualized treatment strategies for patients with
CRC but also new ideas for predicting the prognosis of
these patients. In addition, this study might contribute to
further exploring the biological functions of m5C-regulated
lncRNAs.
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Ovarian cancer (OC) is the seventh most prevalent type of cancer in women and the second most common cause of cancer-related
deaths in women worldwide. Because of the high rates of relapse, there is an immediate and pressing need for the discovery of
innovative sensitive biomarkers for OC patients. Using TCGA and GSE26712 datasets, we were able to identify 17 survival-
related DEGs in OC that had differential expression. CLDN4 was the gene that caught our attention the most out of the 17
important genes since its expression was much higher in OC samples than in nontumor samples. The findings of the ROC
assays then confirmed the diagnostic utility of the test in screening OC specimens to differentiate them from nontumor
specimens. Patients with high CLDN4 expression predicted a shorter overall survival (OS) and disease-specific survival (DSS)
than those with low CLDN4 expression, according to clinical research. Patients with low CLDN4 expression predicted longer
OS and DSS. Analysis using both univariate and multivariate techniques revealed that CLDN4 expression was an independent
factor associated with a poor prognosis for OS and DSS. Based on multivariate analysis, the C-indexes and calibration plots of
the nomogram suggested an effective predictive performance for OC patients. After that, we investigated whether or not there
was a link between the infiltration of immune cells and the expression of the CLDN4 gene. We found that the expression of
CLDN4 was positively associated with Th17 cells, NK CD56bright cells, while negatively associated with Th2 cells, pDC, and T
helper cells. In the end, we carried out RT-PCR on our cohort and confirmed that the level of CLDN4 expression was
noticeably elevated in OC specimens in comparison to nontumor tissues. The diagnostic usefulness of CLDN4 expression for
OC was also validated by the findings of ROC tests. Thus, our findings revealed that CLDN4 may serve as a predictive
biomarker in OC to assess both the clinical outcome of OC patients and the level of immune infiltration.

1. Introduction

Ovarian cancer (OC), which is one of the most prevalent but
lethal forms of gynecological cancer, places a significant bur-
den on the overall health of women all over the world [1].
Because of the lack of symptoms that are typically associated
with OC until its more advanced phases, it has been given
the nickname “the silent killer” [2, 3]. It is generally agreed
that OC is a heterogeneous disease that includes at least five
distinct subtypes, each of which possesses unique biological
and molecular characteristics [4, 5]. Most people with OC

were diagnosed at more advanced stages, which have a lower
five-year survival rate (44% worldwide) [6]. This is because
there are no evident symptoms in the early stages of the dis-
ease, despite the fact that many modern therapeutic
approaches, like as surgery, immunotherapy, and targeted
therapies, have been successful [7, 8]. The overall prognosis
of patients with OC is not encouraging, and the risk of
recurrence following treatment is high. As a result, they are
unable to take advantage of the most beneficial treatment
chances and do not utilize treatment strategies that are effi-
cient, which leads to an unfavorable prognosis. Thus, we
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Figure 1: Continued.
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need to find better prognostic markers to better stratify
patients and develop personalized therapeutic treatment
strategies.

As more research on cancer development and metastasis
has been carried out, there has been a corresponding surge
in interest in tumor junctions (TJs) [9]. Several studies have
indicated that the TJ plays a significant role in the advance-
ment of cancer. As a constituent of tight junctions (TJs), the
transmembrane protein CLDN, which has a size of around
20–27 kDa, is responsible for promoting cell-cell adhesion
[10]. The CLDN molecule traverses the cell membrane four
times on its way to the cytoplasm, where both its N- and C-
termini are found. Because of their function as regulators of
intercellular adhesion, CLDNs play significant roles in the
process of carcinogenesis and have the potential to influence
both the aggressive development and motility of tumors [11,
12]. In point of fact, there is mounting data suggesting that
CLDN dysregulation is a characteristic shared by a wide
variety of cancers, including gastric, lung, breast, ovarian,
and colorectal cancer. Claudin-4, also known as CLDN4, is
a key structural protein that is found in epithelial tight junc-
tions [13]. It has a role in epithelial development, the main-
tenance of polarity, and considerable transport. Multiple
research over the past few years have pointed to an essential
function for CLDN4 in the development of various distinct
types of cancer. On the other hand, very little information
regarding the expression and function of CLDN4 was found
in OC.

Tumor microenvironment (TME) was an intricate and
dynamic multicellular ecosystem that included a variety of
cell types, including immune cells, stromal cells, cancer cells,
and other constituents [14]. Immune cells in the TME have
long been recognized as a critical and core field of oncology
inquiry [15]. These cells play an important part in the prog-
nosis of cancer patients, as well as in immune evasion and
treatment resistance. In terms of the release of cytokines
and the recruitment of immune cells, the immunological
microenvironment has an influence on the survival, prolifer-
ation, and migration of tumor cells [16–18]. Within this

group, invading M2 macrophages plays a very significant
role in the process. M2 macrophages develop from macro-
phages in the extraordinarily complex microenvironment
of a tumor. These macrophages play a significant role in
the regulation of tumor growth as well as invasion and
metastasis. A deeper and more comprehensive understand-
ing of endogenous antitumor immunity can be obtained
through the examination of the density of immunocellular
infiltration in tumor regions. In this study, our objective
was to investigate the predictive usefulness of CLDN4 in
OC as well as its connection with immune infiltration in OC.

2. Materials and Methods

2.1. Patients and Clinical Samples. All tissue samples,
including those of the tumor as well as matched normal
ovarian surface tissue, were taken from twenty ovarian
cancer patients who had surgery at Chongqing Health
Center for Women and Children between July 2020 and
April 2022. None of the patients who were enrolled for
this study had previously been treated with chemotherapy
or radiation before their operations. Following the com-
pletion of the surgical excision, tumor specimens and
the normal renal tissues that were close to the tumor
were collected and frozen in liquid nitrogen until further
use. The Research Ethics Committee of Chongqing
Health Center for Women and Children gave their bless-
ing to the current study before it was conducted. Consent
to participate in the study was obtained from each indi-
vidual patient.

2.2. RNA Extraction and Quantitative Real-Time PCR (qRT-
PCR). Through the use of TRIzol reagent (Invitrogen, Carls-
bad, CA, USA), total RNA was isolated from frozen OC tis-
sues. Using a PrimeScript RT Master Mix and one
microgram of total RNA, high-quality cDNA was produced
by the process of reverse transcription (Vazyme Biotech,
Nanjing, China). Quantitative real-time PCR with a SYBR
Premix Ex TaqII Kit (TaKaRa, Japan) was used to analyze

1628 17 157

Survival-related genes Differentially expressed genes

(c)

Figure 1: Identification of the survival-related DEGs between OC specimens and nontumor specimens. DEGs between OC tissues and
nontumor specimens based on GSE26712 datasets were depicted in heat map and volcano plots, respectively (a, b). (c) The genes that
are shared by the DEG GSE26712 datasets and the genes that are connected to survival according to TCGA datasets.
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the samples in triplicate to determine the amounts of
mRNA. The primers used in this experiment were
designed in-house (Tsingke, China). Internal quality check
for the mRNA was performed with GAPDH. The 2′Ct
technique was utilized for the purpose of determining
the levels of CLDN4 expression. The PCR primer
sequences were as follows: CLDN4 sense, 5′-TGGGGC
TACAGGTAATGGG-3′ and reverse, 5′-GGTCTGCGA
GGTGACAATGTT-3′; GAPDH reverse, 5′-ACAACTTTG
GTATCGTGGAAGG-3′ and reverse, 5′-GCCATCACG
CCACAGTTTC-3′.

2.3. Data Collection. The RNA-seq data were evaluated, and
this included 427 individuals who had ovarian cancer that were
obtained from TCGA database, as well as 88 samples of nondi-
seased ovarian tissue that were retrieved from the GTEx (Geno-
type-Tissue Expression) database. In addition, the RNA-Seq
data of 185 OC patients were retrieved from the Gene Expres-
sion Omnibus (GEO) database. These data were based on the
GPL96 platform and were included in the GSE26712 dataset.

2.4. Identification of DEGs in GSE26712 Datasets. Back-
ground errors were fixed, arrays were normalized, and dif-
ferential expression analysis of 185 OC and 10 nontumor
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Figure 2: The expression of CLDN4 in OC and the clinical importance of its presence has been investigated. (a) When compared with
nontumor specimens, OC were found to have a significantly higher level of CLDN4 overexpression. (b) ROC assays were utilized in
order to provide evidence that CLDN4 expression have diagnostic value. (c) The expression of CLDN4 in OC as determined by the
GSE26712 datasets. (d) ROC assays based on the data found in GSE26712. (e–h) Association between CLDN4 expression and
clinicopathological parameters, such as age, FIGO stage, lymphatic invasion, and histologic grade.

Table 1: Association of CLDN4 expression levels with clinical factors in ovarian cancer patients.

Characteristic Low expression of CLDN4 High expression of CLDN4 P

n 189 190

Age, n (%) 1.000

≤60 104 (27.4%) 104 (27.4%)

>60 85 (22.4%) 86 (22.7%)

FIGO stage, n (%) 0.203

Stage I 0 (0%) 1 (0.3%)

Stage II 14 (3.7%) 9 (2.4%)

Stage III 150 (39.9%) 145 (38.6%)

Stage IV 23 (6.1%) 34 (9%)

Histologic grade, n (%) 0.269

G1 1 (0.3%) 0 (0%)

G2 19 (5.1%) 26 (7%)

G3 165 (44.7%) 157 (42.5%)

G4 0 (0%) 1 (0.3%)

Lymphatic invasion, n (%) 0.817

No 23 (15.4%) 25 (16.8%)

Yes 52 (34.9%) 49 (32.9%)

Age, median (IQR) 59 (50, 69) 58.5 (52, 67) 0.786
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Figure 3: Continued.

6 Mediators of Inflammation



samples was performed with the help of the limma package
of the R programming language. The threshold points for
differentially expressed genes (DEGs) were determined to
be samples that had an adjusted false discovery rate P that
was less than 0.05 and a |log fold change (FC)| that was more
than 2.

2.5. Survival Analysis. In order to study the relationship
between gene expression and the overall survival (OS),
disease-specific survival (DSS), and progress free interval
(PFI) of OC patients, Kaplan-Meier plots were generated.
A log-rank test was utilized in order to investigate the statis-
tical significance of the correlation.

2.6. Identification of Independent Prognostic Parameters of
OC. In order to validate the independent prognostic value
of the gene signature and to identify independent prognostic
parameters, univariate- and multivariate Cox regression
analyses were performed in TCGA dataset on the prognostic
gene signature and clinicopathological parameters. These
analyses focused on validating the independent prognostic
value of the gene signature. When P was less than 0.05, sta-
tistical significance was assumed. Only the parameters that
had a P value that was less than 0.05 based on the univariate
analysis were included in the subsequent multivariate Cox
regression analysis.

2.7. Predictive Nomogram Construction and Validation. The
independent prognostic indicators acquired from multivariate
analysis were utilized to build nomograms, which individual-
ized the expected survival probability for one, three, and five
years. These nomograms were established on the basis of
Cox regression models. It was decided to make use of the
RMS software in order to generate nomograms that contained
important clinical characteristics as well as calibration plots.
The calibration curves were graphically evaluated by mapping
the nomogram-predicted probability against the observed
occurrences; the 45° line represented the best predictive values
among all of the lines in the assessment. To evaluate the accu-

racy of the nomogram’s discrimination, a concordance index,
abbreviated as C-index, was utilized, and its value was deter-
mined using a bootstrap method with a total of 1,000 resam-
ples. The C-index was utilized to make a comparison
between the prediction accuracies of the nomogram and those
of the individual prognostic parameters. In this particular
research endeavor, all statistical tests were performed using
two different sets of data, and the level of statistical significance
was established at 0.05.

2.8. Function Enrichment Analysis of Differentially Expressed
Genes between Groups with High CLDN4 Expression and
Groups with CLDN4 Expression. In order to investigate the
biological and molecular functions that CLDN4 played in
OC, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were used. An investigation on the
BP, CC, and MF that are related with CLDN4 was carried
out using GO analysis. The Cluster Profiler program in R
was used throughout each step of the three separate studies.

2.9. Infiltration of Immune Cells. The data from TCGA gene
expression profile were used to quantify the infiltration of
immune cells in tumor tissues using a method called ssGSEA
(single-sample gene set enrichment analysis) [19]. The
results of this study showed that there was an infiltration
of 24 immune cells. SsGSEA calculates an enrichment score
showing the degree to which genes in a certain gene set are
coordinately up- or downregulated within a single sample.
This score is based on the results of a collection of genes that
have been studied. A gene’s enrichment score is calculated
by the ssGSEA by integrating the differences between the
empirical cumulative distribution functions of its ranked
genes. Genes are ranked according to the absolute expres-
sion they have in a given sample.

2.10. Statistical Analysis. All statistical analyses were per-
formed in R (v3.6.2). The Wilcoxon signed-rank test was uti-
lized for the analysis of paired samples, whilst the Wilcoxon
rank-sum test was utilized for the analysis of unpaired
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Figure 3: The survival study of CLDN4 expression in individuals diagnosed with OC. (a–c) Survival curves of overall survival, disease-
specific survival, and progression-free survival for patients with OC who had high or low levels of CLDN4. The ROC curve was used to
confirm that the expression of CLDN4 for (d) OS, (e) DSS, and (f) PFI is effective as a prediction tool.
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Figure 4: Continued.
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samples. The receiver-operating characteristic (ROC) curve
was used to analyze whether CLDN4 expression could be
the diagnostic marker. In order to investigate the connection
that exists between the expression of CLDN4 and the clini-
copathological features, either the chi-square test or the
Fisher exact test was carried out. A statistically significant
P value was set at 0.05.

3. Results

3.1. Identification of Survival-Related DEGs in OC. In this
study, a retrospective analysis of the data was performed
on a total of 175 OC samples and 10 nontumor samples
taken from the GSE26712 datasets. A total of 174 differen-

tially expressed genes (DEGs) were found, with 49 genes
showing significant upregulation and 125 genes showing sig-
nificant downregulation (Figures 1(a) and 1(b)). After that,
we carried out survival study by making use of TCGA data-
sets, and we discovered 1645 genes in OC patients that are
associated to survival. Figure 1(c) illustrates the findings of
a Venn diagram that confirmed 17 overlapping genes
between 174 differentially expressed genes and 1645 genes
related to survival (Figure 1(c)). CLDN4 was the primary
focus of our research among the 17 genes that overlapped.

3.2. The Expression of CLDN4 in OC and Its Association with
Clinical Factors. First, we looked at the levels of CLDN4
expression in OC and found that it was significantly higher
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Figure 4: The survival analysis of CLDN4 expression in different subgroup of OC patients. (a) Age, (b) lymphatic invasion, (c) FIGO stage,
and (d) histologic grade.

Table 2: Univariate and multivariate analysis of overall survival in patients with ovarian cancer.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 377

≤60 206 Reference

>60 171 1.355 (1.046-1.754) 0.021 1.410 (1.088-1.828) 0.009

FIGO stage 374

Stage I and stage II 24 Reference

Stage III and stage IV 350 2.115 (0.938-4.766) 0.071 2.122 (0.942-4.781) 0.070

Histologic grade 367

G1 and G2 46 Reference

G3 and G4 321 1.229 (0.830-1.818) 0.303

Lymphatic invasion 148

No 48 Reference

Yes 100 1.413 (0.833-2.396) 0.200

CLDN4 377

Low 187 Reference

High 190 1.647 (1.263-2.147) <0.001 1.693 (1.297-2.209) <0.001
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in OC samples than in nontumor samples. This data led us
to conclude that CLDN4 is strongly upregulated in OC
(Figure 2(a)). As a result, we conducted more research on
the diagnostic potential of CLDN4. The findings of ROC
testing revealed that CLDN4 efficiently distinguished OC
specimens from normal specimens with an area under the
ROC curves (AUC) of 0.993 (95% confidence interval [CI]:
0.983 to 1.000). These results are displayed in Figure 2(b).
In addition, based on the findings from the GSE26712 data-
sets, we discovered that CLDN4 was substantially expressed
in OC samples (Figure 2(c)). In addition, ROC testing
proved the diagnostic utility of this method (Figure 2(d)).
Using a pancancer investigation, we discovered that multiple

different types of tumors had a dysregulated level of CLDN4,
which suggests that this gene plays a significant role in the
progression of cancers (Figure S1A and S1B). Following
that, we investigated the potential relationships between
CLDN4 expression and clinical factors. Despite this, we
found that the expression of CLDN4 was not connected to
a number of clinical variables, including age, FIGO stage,
lymphatic invasion, and histologic grade (Figures 2(e)–2(h)
and Table 1).

3.3. Survival Analysis of CLDN4 Expression in OC Patients.
The next step consisted of conducting a survival study to
investigate the predictive value of CLDN4 in OC patients.

Table 3: Univariate and multivariate analysis of disease-specific survival in patients with ovarian cancer.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 352

≤60 196 Reference

>60 156 1.255 (0.950-1.658) 0.110

FIGO stage 350

Stage I and stage II 23 Reference

Stage III and stage IV 327 2.276 (0.935-5.541) 0.070 2.283 (0.938-5.555) 0.069

Histologic grade 342

G1 and G2 42 Reference

G3 and G4 300 1.394 (0.893-2.178) 0.144

Lymphatic invasion 144

No 48 Reference

Yes 96 1.397 (0.810-2.408) 0.229

CLDN4 352

Low 183 Reference

High 169 1.554 (1.171-2.063) 0.002 1.553 (1.170-2.061) 0.002

Table 4: Univariate and multivariate analysis of progress-free interval in patients with ovarian cancer.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 377

≤60 206 Reference

>60 171 1.076 (0.848-1.366) 0.547

FIGO stage 374

Stage I and stage II 24 Reference

Stage III and stage IV 350 1.573 (0.918-2.694) 0.099 1.573 (0.918-2.694) 0.099

Histologic grade 367

G1 and G2 46 Reference

G3 and G4 321 1.188 (0.835-1.688) 0.338

Lymphatic invasion 148

No 48 Reference

Yes 100 1.115 (0.729-1.704) 0.615

CLDN4 377

Low 187 Reference

High 190 1.183 (0.933-1.500) 0.165
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Patients who had high levels of CLDN4 expression pre-
dicted a shorter overall survival time and disease-free sur-
vival time than patients who had low levels of CLDN4
expression, as can be seen in Figures 3(a) and 3(b). On
the other hand, we found no correlation between the
expression of CLDN4 and the PFI of OC patients
(Figure 3(c)). ROC curves illustrated the degree to which
CLDN4 expression in TCGA cohort was able to accurately
predict outcomes (Figures 3(d)–3(f)). In addition, we car-
ried out subgroup analysis, which revealed that elevated
CLDN4 expression demonstrated a significant correlation
in both younger and older ovarian cancer patients
(Figure 4(a)). CLDN4 expression was not linked with OS
in patients with ovarian cancer who had nonlymphatic

invasion (Figure 4(b)), early clinical stage (Figure 4(c)),
and early histologic grade (Figure 4(d)). We performed
univariate and multivariate analyses to demonstrate the
predictive value of CLDN4 expression in OC patients.
Importantly, both univariate and multivariate analyses
showed that CLDN4 expression was an independent pre-
dictor associated with a poor prognosis for overall survival
(Table 2) and disease-specific survival (Table 3). On the
other hand, CLDN4 expression cannot be used to accu-
rately forecast the PFI (Table 4).

3.4. Construction and Validation of a Nomogram Based on
the CLDN4 Expression. In order to give a quantitative method
for predicting the outcome of patients with OC, a nomogram
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Figure 5: A quantitative method to forecast the probability of OC patients surviving one, three, or five years after their diagnosis. (a) A
nomogram that estimates the likelihood that OC patients will be alive at 1, 3, and 5 years after diagnosis. (b) The calibration plots of the
nomogram, which are used to forecast the likelihood of having OS at 1, 3, and 5 years.
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was constructed using CLDN4 in conjunction with indepen-
dent clinical risk indicators (Figure 5(a)). A point scale was
utilized in the construction of the nomogram that was based
on the multivariate Cox analysis. The variables were each
given a certain number of points depending on the scale.
The total number of points that were given to each variable
was recalculated to fall within the range of one to one hundred.
The sum of the points earned across all of the variables was
then used as the basis for the final score. Drawing a vertical
line immediately downward from the total point axis to the
outcome axis allowed for the calculation of the chance of sur-
vival in OC patients at 1, 3, and 5 years. We also performed an
analysis of the nomogram’s ability to make correct predic-
tions, and the findings showed that the C-index of the model
was 0.584 (CI: 0.562-0.606), which indicated that the nomo-
gram’s ability to make accurate predictions is approximately
accurate to a modest degree. The bias-corrected line in the cal-
ibration plot was employed to be close to the ideal curve,
which was the line at 45 degrees, which showed that the fore-
cast and the observation were in close agreement with one
another (Figure 5(b)).

3.5. Functional Enrichment Analysis. A total of 224 DEGs
were discovered. After that, we carried out GO analysis with
the help of 224 DEGs. As shown in Figure 6(a), we found
that 224 DEGs were mainly enriched in regulation of
ERK1 and ERK2 cascade, antimicrobial humoral response,
sensory organ morphogenesis, postsynaptic membrane, inte-
gral component of postsynaptic membrane, endopeptidase
inhibitor activity, peptidase inhibitor activity, and endopep-
tidase regulator activity. In addition, the results of KEGG
revealed that the 224 DEGs were associated with neuroactive

ligand-receptor interaction (Figure 6(b)). In order to learn
more about the function of DEGs, enrichment analysis of
DO pathways was carried out. According to the findings,
the majority of the disorders that were enriched by DEGs
were related to developmental disorder of mental health
(Figure 6(c)). Our findings suggested that CLDN4 may be
involved in the progression of several tumors.

3.6. The Association between CLDN4 Expression and
Immune Cell Infiltration. Then, we explored the correlation
between immune infiltration and CLDN4 expression. As
shown in Figures 7(a) and 7(b), we found that the expression
of CLDN4 was positively associated with Th17 cells and NK
CD56bright cells, while negatively associated with Th2 cells,
pDC, and T helper cells.

3.7. The Confirmation of CLDN4 Expression and Its
Diagnostic in Our Cohort. We used RT-PCR to investigate
the level of CLDN4 expression in our sample population
so that we could validate our previous findings. As can be
seen in Figure 8(a), we discovered that the level of CLDN4
expression was noticeably higher in OC specimens in com-
parison to nontumor tissues. Following that, an investigation
into the diagnostic utility of CLDN4 for OC patients was
carried out. The ROC assays revealed that increased CLDN4
expression had an AUC value of 0.735 for OC (Figure 8(b)).

4. Discussion

The mortality rate from ovarian cancer, which already has
the second highest rate among gynecological malignancies,
is on the rise in China, but the prevalence of the disease is
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Figure 6: Functional bioassay. (a) GO functional analysis. (b) KEGG functional analysis. (c) DO functional analysis.
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decreasing [20, 21]. It is difficult to detect in its early stages;
thus, the majority of individuals are diagnosed when the dis-
ease has already progressed significantly [22, 23]. Even
though there have been significant advancements in the
treatment of OC, including chemotherapy, radiation, sur-
gery, and targeted therapies, the 5-year overall survival rate
for individuals with advanced OC is only about 30% [24,
25]. Thus, it is necessary to investigate the potential bio-
markers related to the fundamental mechanisms of OC
progression.

In recent years, a number of studies have indicated that
an improper control of CLDN4 played a role in the evolu-
tion of a number of different cancers. For example, Hao
and colleagues found that the expression of CLDN4 was
abnormally increased in acute myeloid leukemia cells. In
acute myeloid leukemia cells, inhibiting the expression of
CLDN4 led to a significant reduction in cell proliferation
as well as an increase in the rate of apoptosis. In addition,
we discovered that inhibiting the expression of CLDN4
mRNA results in a suppression of the activation of AKT
and ERK1/2. This suppression was achieved by knocking
down CLDN4. Most notably, activating the AKT branch
with SC79 partially counteracted the effects of CLDN4
knockdown on the suppression of cell survival. We also dis-
covered that a higher expression of CLDN4 is associated
with poorer survival and is an independent indication of
shorter disease-free survival (DFS) in patients with acute
myeloid leukemia [26]. According to the findings of Luo
and colleagues, the expression of CLDN4 was much lower
in gastric cancer tissues and cell lines when compared to
nearby normal tissues or stomach epithelial cells. The silenc-
ing of CLDN4 led to a rise in the degree to which PI3K and
Akt were phosphorylated, as well as in the proliferation,
migration, invasion, and tumorigenesis of GC cells. Concur-
rently, apoptosis and the sensitivity of GC cells to chemo-
therapy were decreased. In conclusion, CLDN4 may play a
critical role in improving the sensitivity of GC cells to che-
motherapy and reducing the rate of GC cell proliferation
by inactivating the PI3K/Akt signaling pathway. This may
be achieved by inhibiting the activity of PI3K [27]. Jie et al.

demonstrated that ELFN1-AS1 speeds up cell proliferation,
invasion, and migration in ovarian cancer by modulating
the miR-497-3p/CLDN4 axis. This finding suggests that
CLDN4 acts as a tumor promotor in ovarian cancer. On
the other hand, very little is known about the clinical impor-
tance of CLDN4 in OC. In this particular investigation, we
discovered that OC specimens exhibited a markedly elevated
level of CLDN4 expression. It was determined through sur-
vival assays that a high level of CLDN4 expression was
related with a bad prognosis. Importantly, the results of
the multivariate analysis suggested that the expression of
CLDN4 was an independent factor associated with a poor
prognosis for OS and DSS. Based on our findings, CLDN4
may serve as an innovative diagnostic as well as prognostic
biomarker for patients with OC. In addition, our findings
suggested that CLDN4 was highly expressed and predicted
a poor prognosis. Thus, targeting CLDN4 may improve the
clinical prognosis of OC patients.

The interaction between the TME and cancer cells is
quite intricate, and the TME has strong ties to tumor cell
proliferation, apoptosis, and the spread of the cancer to
other organs [28, 29]. It has been hypothesized that the
immune cells that make up healthy tissue, neighboring tis-
sue, and malignant tissue are structurally distinct from one
another in basic ways. It has been proven that the intrinsic
mechanisms that contribute to immunotherapy resistance
include the expression of particular genes and pathways in
tumor cells. These genes and pathways have the ability to
block the invasion or activity of immune cells in the TME.
TME has been found to have a dual function in both the
development of tumors and their initial appearance, accord-
ing to a significant number of studies. Alterations to the
TME have the potential to not only encourage the normali-
zation of tumor cells but also to encourage tumor growth,
invasion, and metastasis. B cells have been shown in a vari-
ety of studies to perform an anticancer role, either by
directly interacting with tumor cells or by supporting in
the operation of other immune functions. Treg cells are gen-
erally responsible for suppressing antitumor immunity,
whereas CD8+ T cells are the primary antitumor effector
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Figure 8: The level of expression of CLDN4 in OC in our cohort and the diagnostic value of this gene. (a) RT-PCR to analyze the expression
of CLDN4 in OC and nontumor specimens. (b) The diagnostic usefulness of CLDN4 expression in screening OC specimens and
differentiating them from nontumor specimens was validated by ROC analysis.
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cells [30]. During the course of this investigation, we came to
the conclusion that the expression of CLDN4 was inversely
linked with Th2 cells, pDC, and T helper cells, while it was
positively associated with Th17 cells and NK CD56bright
cells. Our findings suggested that CLDN4 was intimately
connected to the invasion of immune cells and possesses sig-
nificant potential as a therapeutic target in the treatment of
cancer.

This study had certain shortcomings that need to be
addressed. First, the predictive and prognostic usefulness of
CLDN4 for the immune system needs to be verified in a
larger number of OC patients who come from multiple
real-world multicenters. Second, additional preclinical and
clinical research is required to determine whether or not
OC patients who have greater CLDN4 levels are more
responsive to immune checkpoint inhibitors. Third, addi-
tional research, both experimental and clinical, is required
to investigate potential techniques for enhancing immune
function while minimizing the effects of an inhibitive milieu
by focusing on CLDN4.

5. Conclusion

In the current investigation, we provide evidence that there
was a connection between CLDN4 and OC. The results of
this research showed that CLDN4 was an important gene
in OC that has the potential to act as a predictive biomarker.
Additionally, the researchers found that the expression of
CLDN4 might be utilized to analyze immune infiltration in
OC patients. To evaluate the accuracy of these predictors,
however, additional research and experiments are required
because the sample sizes were too small, and there was nei-
ther an internal nor an external validation of the data. In
addition, more research is required to investigate the pro-
cesses that underlie the pathogenic involvement of CLDN4
in OC.
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Lung adenocarcinoma (LUAD) is one of the most prevalent pathological kinds of lung cancer, which is a common form of cancer
that has a high death rate. Over the past several years, growing studies have indicated that GPD1L was involved in the
advancement of a number of different cancers. However, its clinical significance in LUAD has not been investigated. In this
study, following an examination of the TGCA datasets, we found that GPD1L displayed a dysregulated state in a wide variety
of cancers; this led us to believe that GPD1L is an essential regulator in the progression of malignancies. In addition, we found
that the expression of GPD1L was much lower in LUAD tissues when compared with nontumor specimens. According to the
findings of ROC tests, GPD1L was able to effectively identify LUAD specimens from nontumor samples with an AUC value of
0.828 (95% confidence interval: 0.793 to 0.863). On the basis of the clinical study, a low expression of GPD1L was clearly
related with both the N stage and the clinical stage. Moreover, based on the findings of a Kaplan-Meier survival study, elevated
GPD1L expression was a strong indicator of considerably improved overall survival (OS) and disease-specific survival (DSS).
GPD1L expression and clinical stages were found to be independent prognostic indicators for overall survival and disease-free
survival in LUAD patients, according to multivariate analyses. Based on multivariate analysis, the C-indexes and calibration
plots of the nomogram demonstrated an effective prediction performance for LUAD patients. Besides, the expression of
GPD1L was positively related to mast cells, eosinophils, Tcm, TFH, iDC, DC, and macrophages, while negatively associated
with Th2 cells, NK CD56dim cells, Tgd, Treg, and neutrophils. Finally, qRT-PCR was able to demonstrate that GPD1L had a
significant amount of expression in LUAD. Additionally, according to the results of functional tests, overexpression of GPD1L
had a significant inhibiting effect on the proliferation of LUAD cells. In general, the results of our study suggested that GPD1L
had the potential to serve as a diagnostic and prognostic marker for LUAD.

1. Introduction

Over twenty-seven percent of all cancer-related deaths
worldwide are attributable to lung cancer, with non-small
cell lung cancer (NSCLC) being responsible for eighty per-
cent of all lung cancer cases [1]. The histological subtype
of non-small cell lung cancer that occurs most frequently is
known as lung adenocarcinoma (LUAD) [2]. It has virtually

reached the position of being the primary contributor to
death among those living in urban regions of China [3].
Even with all of the advancements that have been made over
the years in cancer diagnosis and treatment, the death rate of
lung cancer is still rather high, which is particularly relevant
to smokers [4, 5]. As a direct consequence of this, numerous
patients who were diagnosed with early lung cancer did not
receive adjuvant therapy following their surgeries [6, 7].
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Consequently, the disease returned or spread to other parts
of the body in some of the patients due to a number of var-
iables, including that some people are diagnosed at an
advanced stage of lung cancer [8, 9]. That may be one of
the many reasons why this is the case. Besides, lung cancer
patients do not receive an accurate picture of their prognosis
through the use of the guided staging technique that is cur-
rently in place, which is another possible explanation [10,
11]. At this time, the histopathologic diagnosis and the neo-
plasm staging system are the only things that can accurately
predict a patient’s prognosis [12]. However, conventional
approaches do not provide a precise enough picture of a
patient’s outlook to be used. In order to further aid doctors
to treat LUAD, therefore, a trustworthy and precise marker
for prognosis prediction needs to be established.

The protein known as glycerol 3-phosphate dehydroge-
nase 1-like (GPD1L) is encoded by the gene GPD1L, which
is located on chromosome 3p22.3 [13]. This protein is
responsible for catalyzing the conversion of sn-glycerol 3-
phosphate to glycerone phosphate [14]. The GPD1L protein
was discovered in the cytoplasm, and it was connected to the
plasma membrane [15]. It was found in 2002 when the
Mammalian Gene Collection (MGC) program of the
National Institutes of Health attempted to find and sequence
a cDNA clone [16]. Studies done in the past have found evi-
dences that GPD1L was involved in more than one type of
tumor. For example, Liu et al. discovered that the mRNA

expression of GPD1L, which was found to be downregu-
lated, and HIF1, which was found to be upregulated, exhib-
ited a negative association (r = −:496, p = :001) in cT1-2N0
head and neck squamous cell carcinoma (HNSCC) [17]. In
addition to this, GPD1L has been shown to have a negative
association with HIF1 expression and to be a factor that pre-
dicts lymph node metastases in cases of oral and HPV-
related oropharyngeal cancer [18]. Zhao et al. showed that
the expression level of GPD1L was low in colorectal cancer,
and it had a strong correlation with the clinical stage, grade,
and TNM stage of colorectal cancer [19]. In addition,
GPD1L protein levels were also measured in HNSCC
patients and found to be associated with a dismal prognosis
for those patients with HNSCC [18]. However, on the other
hand, very little is known about the function of GPD1L in
LUAD.

Tumor microenvironment (TME) refers to the collection
of cancer cells, immune cells, stromal cells, and extracellular
matrix that together play a significant role in the progression
of cancer [20]. Cancer cells are present in the TME, and
these cells have the ability to infect neighboring tissues either
directly or indirectly by traveling through blood and lym-
phatic channels [21]. These infiltrating cells have the capa-
bility of provoking an immune response through the
release of cytokines and other substances that influence the
growth of the tumor [22]. Growing researches have indi-
cated that TME affected the procedures of tumor

0

2

4

6

8
ns ns

ACC
BLCA

BRCA
CESC

CHOL

COAD
DLBC

ESC
A

GBM
HNSC

KIC
H

KIR
C

KIR
P

LAML
LGG

LIH
C

LUAD
LUSC

MESO OV
PAAD

PCPG
PRAD

READ
SA

RC
SK

CM
ST

AD
TGCT

THCA
THYM

UCEC
UCS

UVM

Th
e e

xp
re

ss
io

n 
of

 G
PD

1L
lo

g 2 (T
PM

+1
)

⁎⁎⁎ ⁎⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎

(a)

0

2

4

6

8
ns ns

ACC
BLCA

BRCA
CESC

CHOL
COAD

DLBC
ESC

A
GBM

HNSC
KIC

H
KIR

C
KIR

P
LAML

LGG
LIH

C
LUAD

LUSC
MESO OV

PAAD
PCPG

PRAD
READ

SA
RC

SK
CM

ST
AD

TGCT
THCA

THYM
UCEC

UCS
UVM

Normal
Tumor

Th
e e

xp
re

ss
io

n 
of

 G
PD

1L
lo

g 2 (T
PM

+1
)

⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎

(b)

Figure 1: GPD1L levels that are either higher or lower in various malignancies when compared with normal tissues in (a) the TCGA
datasets and (b) the TCGA and GTEx database. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; ns: no significance.
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progression and have shown a possible predictive value for
the clinical outcome of patients, including LUAD [23, 24].

The rapid growth of precision medicine has led to an
increase in the number of studies in which researchers use
statistical algorithms to investigate new diagnostic and ther-
apeutic targets. The Cancer Genome Atlas (TCGA) deliv-
ered genomic profiles as well as clinical data, which made
it feasible to study the association between genomic features
and clinical as well as prognostic aspects. The purpose of this
research was to investigate the clinical relevance of GPD1L
in LUAD patients and to determine whether or not it was
associated with immune cell infiltration.

2. Materials and Methods

2.1. Cell Lines and Cell Transfection. LUAD cell lines, includ-
ing A549, H1299, HCC827, H226, and H23 cells, as well as
normal bronchial epithelial cells (BEAS-2B), were purchased
from the American Type Culture Collection (ATCC, Manas-
sas, VA, USA). Next, the LUAD cell lines were cultured in a
5% CO2 incubator at 37°C in RPMI-1640 medium
(Cat#11875119, Gibco, Shanghai, China) containing 10%

fetal bovine serum (FBS) (Cat#12664025, Gibco, Shanghai,
China). After mixing for 20 minutes at room temperature,
2μg of the overexpress plasmids targeting GPD1L in 100μl
of RMPI 1640 media were combined with μl of lipofecta-
mine 3000 (Cat#L3000001, Invitrogen, Shanghai, China)
that had been diluted in 100μl of RMPI 1640 media. Follow-
ing a transfection time of 48 hours, the cells were harvested
to carry out the following experiments.

2.2. Quantitative Real-Time PCR (qRT-PCR). Trizol reagents
(Cat#15596026, Invitrogen, MA, USA) were employed to
isolate the total RNAs from various tissues and cells, and
the concentration of total RNAs was examined by Nano-
Drop 2000 device (Cat#ND-2000-GL, Thermo, Waltham,
MA, USA). Subsequently, 2μg of total RNAs was subjected
to reverse reaction using EpiNext Hi-Fi cDNA Synthesis
kit (AmyJet, Wuhan, Hubei, China) to obtain the cDNAs.
Then, the qRT-PCR assays were carried out with the use of
PrimeScriptTM RT Master Mix kits, which were purchased
from Takara company (Dalian, Liaoning, China), and the
Bio-Rad CFX96 PCR System (Bio-Rad, CA, USA). The rela-
tive expression levels were determined using the 2−△△Ct
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Figure 2: The levels of GPD1L expression in LUAD, as well as the diagnostic usefulness of this protein. (a, b) The levels of GPD1L
expression found in LUAD specimens as compared to those found in nontumor tissues. (c) The ROC tests were utilized to evaluate the
diagnostic potential of GPD1L. (d) The levels of GPD1L expression found in LUAD specimens compared to those found in non-tumor
specimens, as determined by the TCGA or GTEx database. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; ns: no significance.
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method, with GAPDH serving as the control for the standard-
ization process. The primer sequence for GPD1L was listed as
follows: F-primer: 5′ATCAAGGGCATAGACGAGGG3′; R-
primer: 5′TCTGCATCATCAACCACGGTA3′. The primer
sequence for GAPDH was: F-primer: 5′TCAAGCTCATT
TCCTGGTATGAC3′; R-primer: 5′CTTGCTCAGTGTCC
TTGCTG3′.

2.3. Cell Viability Assay. The Cell Counting Kit-8 (CCK-8)
test kits (Cat#HY-K0301, MedChemExpress, Shanghai,
China) was utilized in order to determine the cellular prolif-
eration of H1299 and H226 cells with overexpressing
GPD1L. The cells were firstly inserted onto 96-well plates
(2500 cells per well, 100μl) after GPD1L-overexpressing
plasmids were transfected. Afterwards, the cells were applied
for CCK-8 assays at 24, 48, 72, and 96 hours. After adding
10μl of CCK-8 reagents from MedChemExpress company
(Cat#HY-K0301, Shanghai, China) and allowing the mixture
to incubate for one hour, the optical density was measured
using a microplate reader from BioTek (BioTek, Winooski,
VT, USA) at a wavelength of 450nm.

2.4. Data Collection and Processing. The TCGA Data Portal
(http://www.tcgaportal.org/) was mined for the high-
throughput gene expression data in order to collect it. This
data was obtained not just from LUAD tissues but also from
normal lung tissues in the TCGA Data Portal. Besides, these
RNA-seq data (HTSeq-count) were obtained through the
data portal of the Genomic Data Commons (GDC), which
is open to the general public (https://gdc.cancer.gov/). The
Illumina HiSeq RNA-seq platform was the source of these
data, which included 535 LUAD samples in addition to 59
noncancerous samples.

2.5. Identification of the Aberrantly Expressed Genes in
LUAD. In order to determine which genes were differentially
expressed, the expression patterns of LUAD tissues and nor-
mal tissues were compared using R software. The edgeR Bio-
conductor package was used to undertake an investigation
on the differential expression of particular genes. For the
purpose of differentially expressed genes (DEGs) identifica-
tion, the threshold values were determined to be jlog 2ðfold
change ½FC�Þj greater than 2, p value less than 0.01, and false
discovery rate (FDR) less than 0.01.
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Figure 3: GPD1L expression and the clinical characteristics of LUAD patients have been found to have a correlation with one another.
GPD1L expression was found to be associated with a number of clinicopathologic variables, such as (a) gender, (b) age, (c) T stage, (d)
M stage, (e) N stage, and (f) pathologic stage. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; ns: no significance.

4 Mediators of Inflammation

http://www.tcgaportal.org/
https://gdc.cancer.gov/


2.6. GPD1L Differential Expression in Pan-Cancer in the
TCGA Database. In order to calculate the differential expres-
sion of GPD1L, boxplots and scatter plots were produced
using the disease state as the variable. The illness condition
was either tumor or normal. Receiver operating characteris-
tic (ROC) curves were utilized to create an estimate of
GPD1L’s diagnostic performance. The statistical ranking
for GPD1L expression that was designated as GPD1L high
or GPD1L low, respectively, was determined by whether it
was above or below the median value.

2.7. Prognostic Analysis. In order to determine the overall
survival (OS) of patients who were part of the TCGA cohort,
a Kaplan-Meier analysis was carried out. Univariate Cox
regression analyses were carried out to determine the impor-
tance of GPD1L in evaluating overall survival (OS) and
disease-specific survival (DSS) in patients with LUAD.

2.8. Analysis of DEGs between GPD1L High and Low
Expression LUAD Groups. The unpaired Student t-test that
is included in the DESeq2 (3.8) package was used to find dif-
ferentially expressed genes (DEGs) comparing patients with
high and low levels of GPD1L in the TCGA datasets.

2.9. Functional Enrichment Analysis. Disease Ontology (DO)
enrichment analyses were carried out on DEGs with the help
of the “clusterProfiler” and DOSE packages in the R pro-
gramming language [25, 26]. The “clusterProfiler” R package
was used to carry out the analyses based on DEGs that were
conducted by GO and KEGG.

2.10. Nomogram Construction. Combining the findings of
the genetic risk score model with clinical characteristics led
to the development of a nomogram that was able to accu-
rately forecast 3- and 5-year LUAD overall survival (OS).
Calibration plots were used to evaluate the nomogram’s abil-
ity to make accurate predictions. The area under the curve
(AUC) was employed to analyze the time-dependent sensi-
tivities and specificities of the nomogram for both the 3-
year and 5-year OS ROC curves. R software was used as
the statistical program for all of the studies that were done
(version 3.4.1). The rms package of R software was used to
construct the nomogram and calibration plots, and the time-
ROC package was used to conduct the analysis of the time-
dependent ROC curve. The Hmisc package of the R program
was utilized in order to do comparisons of the C-index
between the nomogram and the staging systems developed
by the American Joint Committee on Cancer. If the p values
were lower than 0.05, then the null hypothesis, which states
that there was no difference, was rejected.

2.11. Statistical Analysis. R (version 3.6.3) was used to carry
out all statistical assays. The statistical analyses were per-
formed on one-way analysis of variance (ANOVA) or two-
tailed Student’s t-test, and the results with a p value of less
than 0.05 were determined as statistically significant.

3. Results

3.1. Pan-Cancer Analysis of GPD1L. First, we carried out a
pan-cancer study utilizing data from either TCGA or both
TCGA and GTEx. Our research revealed that GPD1L dem-
onstrated a dysregulated expression in a wide variety of
malignancies, as illustrated in Figures 1(a) and 1(b). Further-
more, the expression pattern of GPD1L was shown to be
variable in various types of cancers, which led researchers
to hypothesize that GPD1L might act as tumor promoters
or tumor suppressors.

3.2. The Expression of GPD1L in LUAD and Its Diagnostic
Value. After that, we performed an analysis on the expres-
sion of GPD1L in LUAD and discovered that the expression
of GPD1L was much lower in LUAD specimens when com-
pared to specimens of nontumorous tissues (Figures 2(a)
and 2(b)). Thereafter, the diagnostic utility of GPD1L was
investigated further by us. The findings of ROC assays
revealed that GPD1L was successful in differentiating LUAD
specimens from normal specimens with an area under the
ROC curves (AUC) of 0.828 (95% confidence interval:
0.793 to 0.863). These results are displayed in Figure 2(c).

Table 1: The association between GPD1L expression and
clinicopathological features.

Characteristic
Low expression

of GPD1L
High expression

of GPD1L
p

n 267 268

Gender, n (%) 0.280

Female 136 (25.4%) 150 (28%)

Male 131 (24.5%) 118 (22.1%)

Age, n (%) 1.000

<=65 128 (24.8%) 127 (24.6%)

>65 130 (25.2%) 131 (25.4%)

Pathologic stage, n (%) 0.004

Stage I 128 (24.3%) 166 (31.5%)

Stage II 72 (13.7%) 51 (9.7%)

Stage III 52 (9.9%) 32 (6.1%)

Stage IV 12 (2.3%) 14 (2.7%)

T stage, n (%) 0.692

T1 81 (15.2%) 94 (17.7%)

T2 150 (28.2%) 139 (26.1%)

T3 25 (4.7%) 24 (4.5%)

T4 10 (1.9%) 9 (1.7%)

N stage, n (%) 0.002

N0 159 (30.6%) 189 (36.4%)

N1 60 (11.6%) 35 (6.7%)

N2 44 (8.5%) 30 (5.8%)

N3 2 (0.4%) 0 (0%)

M stage, n (%) 0.893

M0 186 (48.2%) 175 (45.3%)

M1 12 (3.1%) 13 (3.4%)

Age, median (IQR) 66 (58, 72) 66 (60, 73) 0.372
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In addition, a discovery that is analogous to this one was dis-
covered based on the TCGA and GTEx data (Figure 2(d)).

3.3. The Associations between GPD1L Expressions and
Clinical Factors of LUAD Patients. For the purpose of eluci-
dating the function and importance of GPD1L expression,
the TCGA data on all LUAD samples containing GPD1L
expression data together with the characteristics of all
patients were studied. As observed in Figures 3(a)–3(f) and
Table 1, our investigation revealed that a low expression of
GPD1L was inextricably linked to both the N stage and the
clinical stage.

3.4. The Prognostic Values of GPD1L Expressions in LUAD.
Through the use of survival analysis, we were able to further
investigate whether or not GPD1L levels were connected
with LUAD prognosis. According to the results of a

Kaplan-Meier survival analysis, greater GPD1L expression
predicted significantly improved OS (p < 0:001,
Figure 4(a)) and DSS (p = 0:001, Figure 4(b)). GPD1L
expression had a good predictive potential for the OS
(AUC = 0:427, Figure 4(c)) and disease-specific survival
(AUC = 0:443, Figure 4(d)) of LUAD patients, according to
data from the TCGA. We performed univariate and multi-
variate analyses using Cox’s proportional hazard model to
further investigate the prognostic value of GPD1L expres-
sion in LUAD. Specifically, we demonstrated that the
expression of GPD1L and the clinical stages were both inde-
pendent prognostic indicators for overall survival (Table 2)
and disease-specific survival (Table 3) in LUAD patients.

3.5. Construction and Validation of a Nomogram Based on
the GPD1L Expression. In order to give a quantitative
method for predicting the prognosis of LUAD patients, a
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Figure 4: Analysis of the prognosis of GPD1L in patients with LUAD who were part of the TCGA cohort. Expression of GPD1L has been
shown to have a correlation with both (a) overall survival and (b) survival specific to the disease. (c, d) The predictive performance of
GPD1L expression in TCGA is evaluated using time-dependent receiver operating characteristic curves.
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nomogram was constructed using GPD1L and clinical stage
as its two primary variables (Figure 5(a)). A point scale was
utilized in the construction of the nomogram that was based
on the multivariate Cox analysis. The variables were each
given a certain number of points depending on the scale.
When calculating the likelihood of surviving for LUAD
patients at 1, 3, and 5 years, we drew a vertical line immedi-
ately downward from the total point axis to the outcome
axis. Next, we also performed an analysis on the nomogram’s
ability to make accurate predictions, and the findings showed
that the C-index of the model was 0.671 (CI: 0.650-0.691),
which indicated that the nomogram’s ability to make accurate
predictions is only to a moderate degree (Figure 5(b)). In addi-
tion, we discovered a result that was comparable based on the
DSS model (Figures 6(a) and 6(b)).

3.6. Functional Enrichment Analysis. We first discovered a
total of 454 DEGs. After that, we carried out a GO analysis
with the 454 DEGs. As shown in Figure 7(a), we found that
the 454 DEGs were mainly enriched in humoral immune
response, defense response to the bacterium, antimicrobial

humoral response, presynapse, neuronal cell body, dense core
granule, receptor ligand activity, signaling receptor activator
activity, and hormone activity. The results of KEGG revealed
that the 454 DEGs were associated with neuroactive ligand-
receptor interaction, complement and coagulation cascades,
and Staphylococcus aureus infection (Figure 7(b)). In order
to reveal more about the function of DEGs, an enrichment
analysis of DO pathways was carried out. According to the
findings, the majority of the disorders that were enriched by
DEGs were related to nutrition disease, coronary artery dis-
ease, a developmental disorder of mental health, myocardial
infarction, and overnutrition (Figure 7(c)).

3.7. The Expressions of GPD1L Were Associated with
Immune Cell Infiltration. In order to evaluate the extent of
immune cell infiltration that was present, the TCGA LUAD
cohort’s transcriptomes were analyzed using the ssGSEA
methodology. This was done so that the researchers could
determine the level of immune cell presence. In order to esti-
mate the amount of immune cells that are present in the
microenvironment of a tumor, the study included a total of

Table 2: Univariate and multivariate analysis of overall survival in LUAD patients.

Characteristics Total (n)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Gender 526

Female 280 Reference

Male 246 1.070 (0.803-1.426) 0.642

Age 516

<=65 255 Reference

>65 261 1.223 (0.916-1.635) 0.172

Pathologic stage 518

Stage I and stage II 411 Reference

Stage III and stage IV 107 2.664 (1.960-3.621) <0.001 2.490 (1.829-3.391) <0.001
GPD1L 526

Low 263 Reference

High 263 0.492 (0.365-0.662) <0.001 0.521 (0.386-0.705) <0.001

Table 3: Univariate and multivariate analysis of disease-specific survival in LUAD patients.

Characteristics Total (n)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Gender 491

Female 262 Reference

Male 229 0.989 (0.687-1.424) 0.954

Age 481

<=65 243 Reference

>65 238 1.013 (0.701-1.464) 0.944

Pathologic stage 483

Stage I and stage II 389 Reference

Stage III and stage IV 94 2.436 (1.645-3.605) <0.001 2.269 (1.530-3.367) <0.001
GPD1L 491

Low 241 Reference

High 250 0.517 (0.355-0.752) <0.001 0.545 (0.373-0.798) 0.002
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twenty-four different words that were connected to the
immune system. Our group observed that the expression of
GPD1L was positively related to mast cells, eosinophils,
Tcm, TFH, iDC, DC, and macrophages, while negatively
associated with Th2 cells, NK CD56dim cells, Tgd, Treg,
and neutrophils (Figures 8(a) and 8(b)).

3.8. Overexpression of GPD1L Suppressed the Proliferation of
LUAD Cells. In order to provide more evidences for the pres-
ence of GPD1L in LUAD, we next carried out qRT-PCR

examination and discovered that the expression of GPD1L
was much lower in A549, H1299, HCC827, H226, and H23
cells when compared with BEAS-2B cells. This difference
was rather noticeable (Figure 9(a)). In addition to this, it
was demonstrated that treatment with GPD1L overexpres-
sing plasmids (ov-GPD1L) resulted in a clear elevating
expression of GPD1L (Figure 9(b)). Furthermore, we con-
ducted CCK-8 tests, which enabled us to establish that the
overexpression of GPD1L markedly inhibited the prolifera-
tion of H1299 and H226 cells (Figures 9(c) and 9(d)).
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Figure 6: A quantitative method for estimating the likelihood that LUAD patients would develop the illness at 1, 3, and 5 years. (a) A
nomogram that estimates the chance of disease-specific survival for LUAD patients at 1, 3, and 5 years. (b) Calibration plots of the
nomogram used to assess the overall likelihood of survival at 1, 3, and 5 years.
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Figure 8: (a, b) Relationships between GPD1L and infiltrating immune cells in LUAD.
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4. Discussion

In spite of the significant progress that has been made over
the course of the past several years, LUAD continues to be
regarded as a malignant tumor that has a dismal outlook
when it is discovered at an advanced clinical stage [27, 28].
As a result, the investigation of the etiological factors and
molecular mechanisms underlying LUAD is of the utmost
significance for both treatment and prevention [29]. The
quantity of data pertaining to genes has significantly
expanded as a result of the ongoing development of gene
chip and sequencing technology of the second generation
[30, 31]. Therefore, one of the most pressing challenges fac-
ing researchers today is figuring out how to put these data to
use to assist humans in better understanding the connection
between genes and cancer.

The current study used data from the TCGA dataset to
gather gene expression information. We discovered a new
gene called GPD1L that was associated with cancer and
found that its expression was aberrant in a wide variety of
cancers. Previous researches had uncovered the roles that
GPD1L played in a number of different cancers. For exam-

ple, Tu et al. found that low levels of GPD1L expression in
hepatocellular carcinoma were predictive of shorter overall
survival times for patients with hepatocellular carcinoma
[32]. Importantly, we discovered that the level of GPD1L
expression was significantly lower in LUAD specimens com-
pared to nontumor specimens, which suggested that it might
play a role as a tumor suppressor gene in the evolution of
LUAD. In addition, ROC assays demonstrated their diag-
nostic utility in screening LUAD specimens to differentiate
them from nontumor specimens. The expression of GPD1L
was shown to be an independent predictive factor for both
overall survival and disease-free survival in the LUAD
patients who were studied. Based on our findings, GPD1L
may serve as a potential diagnostic and prognostic bio-
marker for patients suffering from LUAD.

After that, a total of 454 DEGs were discovered. Then,
we carried out GO and KEGG assays and found that the
454 DEGs were primarily enriched in the following catego-
ries: antimicrobial humoral response; humoral immune
response; defense response to bacterium; presynapse; neuro-
nal cell body; dense core granule; receptor ligand activity;
signaling receptor activator activity; hormone activity; and
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Figure 9: The overexpression of GPD1L in LUAD cells has been shown to limit cell growth. (a) The amount of GPD1L mRNA that is
expressed relatively in LUAD cells (A549, H1299, HCC827, H226, and H23 cells) compared to BEAS-2B cells. (b) After treatment, there
was an increase in the amount of GPD1L that was expressed in H1299 and H226. (c, d) The CCK-8 assay was utilized to determine
whether or not the cells were viable. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001; ns: no significance.
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defense response to the bacterium. Based on our findings,
GPD1L may be engaged in a number of different pathways
that are associated with tumors.

TME can influence the development and progression of
a tumor. In addition, it is made up of both cells that are part
of the tumor and cells that are not part of the tumor, such as
fibroblasts and immune cells [33, 34]. Immune cells that
infiltrate tumors are strongly linked to angiogenesis and
oncogenesis, as well as to the spread and proliferation of
tumor cells [35, 36]. This connection may modulate the
number of immune cells and how they differentiate.
Recent researches had shed light on how inconsistencies
between the advancement of a tumor and the immunolog-
ical response of its host could contribute to the growth of
the tumor [37]. TME was an essential component in both
the beginning and the development of the tumorigenic
process. Exploring the possible therapeutic targets that
contribute to the remodeling of TME and supporting the
transition of the TME from being tumor-friendly to being
tumor-suppressed is of tremendous benefit [38, 39]. The
significance of the immune microenvironment in the
development of tumors was demonstrated by a significant
number of research. Our findings from the study of the
transcriptome based on the LUAD data in the TCGA
database suggested that the immunological components
present in the TME contributed to the prognosis of
patients. Here, our group found that the expressions of
GPD1L were positively associated with mast cells, eosino-
phils, Tcm, TFH, iDC, DC, and macrophages, while nega-
tively associated with Th2 cells, NK CD56dim cells, Tgd,
Treg, and neutrophils. Due to the fact that there was a
correlation between the amounts of eosinophils, Th2 cells,
and GPD1L expression in LUAD patients, it was shown
that GPD1L might be responsible for the maintenance of
an immune-active status in the TME.

Nevertheless, our investigation had a few drawbacks.
First, we only used the data from the TCGA database for
internal validation; in order to evaluate the applicability of
the predictive signature, we require data from additional
databases for external validation. Besides, experiments need
to be conducted further in order to deeply uncover the
mechanism of GPD1L in LUAD.

5. Conclusion

According to the results of our research, GPD1L expression
is lower in patients with LUAD. Furthermore, the level of
GPD1L expression is connected to the clinical case charac-
teristics and prognosis of LUAD patients. The extent of
immune cell infiltration, which may increase the antitumor
impact, is directly tied to the level of expression of GPD1L.
GPD1L is a biomarker that can be utilized in the diagnosis,
treatment, and evaluation of the prognosis of LUAD.
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Esophageal carcinoma (ESCA) refers to the most common type of malignant tumor, which reveals that it occurs often all over the
world. ESCA is also correlated with an advanced stage and low survival rates. Thus, the development of new prognostic
biomarkers is an absolute necessity. In this study, the aim was to investigate the potential of COX7B as a brand-new predictive
biomarker for ESCA patients. COX7B expression in pancancer was examined using TIMER2. The statistical significance of the
predictive value of COX7B expression was explored. The relationship between COX7B expression and tumor-infiltrating
immune cells in ESCA was analyzed by using ssGSEA. In this study, the result indicated that several types of cancers had an
abnormally high amount of COX7B. COX7B expression in samples from patients with ESCA was considerably higher than in
nontumor tissues. A more advanced clinical stage may be anticipated from higher COX7B expression. According to the
findings of Kaplan-Meier survival curves, patients with low COX7B levels had a more favorable prognosis than those with high
COX7B levels. The result of multivariate analysis suggested that COX7B expression was a standalone prognostic factor for the
overall survival of ESCA patients. A prognostic nomogram including gender, clinical stage, and COX7B expression was
constructed, and TCGA-based calibration plots indicated its excellent predictive performance. An analysis of immune
infiltration revealed that COX7B expression has a negative correlation with TFH, Tcm, NK cells, and mast cells. COX7B may
serve as an immunotherapy target and as a biomarker for ESCA diagnosis and prognosis.

1. Introduction

Esophageal carcinoma (ESCA) is one of the most frequent
malignancies in the world and is the cause of a significant
number of deaths annually [1]. Men had a significantly
greater incidence of the condition than women did. It is also
one of the prevalent malignant tumors of the digestive
system in China, with squamous carcinoma and adenocarci-
noma being the primary histological forms [2, 3]. Consump-
tion of tobacco and alcohol is the primary environmental

risk factor correlated with ESCA. Although there has been
significant progress in recent years in the development of
early diagnostic and treatment techniques for ESCA, the
five-year survival rate of just 15-20% is unacceptable [4–6].
For patients diagnosed with ESCA, the development of a
reliable prognostic predictor takes on a critical significance
in providing exact customized therapy [7, 8]. The existing
indication is the node, tumor, and metastasis (TNM) staging
system that is employed for ESCA staging and prognostic
prediction with the greatest frequency [9]. Besides the
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TNM staging system, unique and accurate prognostic indi-
cators should be identified to create effective treatment
options for ESCA.

Mammalian Cox, often termed complex IV, refers to a
multiheteromeric enzyme with 13 subunits that catalyzes
the reduction of molecular oxygen to water and the oxida-
tion of cytochrome c at the final step of OXPHOS in the
mitochondrial electron transport chain [10, 11]. This occurs
at the end of the oxidative phosphorylation step of the elec-
tron transport chain (ETC). Within the complex, COX7B
refers to a small transmembrane protein of 80 amino acids,
and it is encoded by the nucleus [12]. It is linked to the four
catalytic redox centers of the enzyme that were found in the
mitochondrial subunits (Cox1, Cox2, and Cox3), which were
encoded by the above genes. The result indicated that the
structural protein cyclooxygenase 7b (COX7B), a part of
complex IV of the mitochondrial electron transport chain,
was a member of a protein family that may be bigger than
the one that was previously believed to account for the brain
tropism in mice caused by breast cancer [13, 14]. With the
help of this proof-of-concept research, it is now possible to
look for metabolic sensors that are responsible for cancer
organotropism and could be therapeutically addressed. This
is important for therapies that prevent metastasis. Currently,
there has been rare information about the role of COX7B in
malignancies.

There is mounting evidence to suggest that the process
of tumorigenesis is intimately connected to immunological
surveillance and defense mechanisms that are activated
throughout the progression of the disease [15, 16]. The
above functions play an important part in determining
how well a patient will respond to treatment. Immuno-
therapy, embodied by immune checkpoint inhibitors
(ICIs), has evolved into the norm of treatment for several
malignancies; yet, immunotherapy is only beneficial for a
limited number of patients [17, 18]. Thus, it is essential

for the treatment of cancer to conduct research into the
discovery of new biomarkers that may accurately predict
a patient’s response to immunotherapy and to create novel
therapeutic approaches that combine immunotherapy with
other forms of treatment. The tumor microenvironment
(TME) significantly affects the prognosis of the tumor,
the likelihood of survival, and the response to treatment
[19, 20]. Accordingly, acquiring a better knowledge of
the pathogenic impact and dynamics of various ESCA
immune cells is of great significance to the development
of an effective TIME-related prognostic biomarker.

Throughout the course of this study, TCGA database
was adopted to investigate the expression, prognosis, and
immune infiltration of COX7B in ESCA.

2. Materials and Methods

2.1. Data Collection. The Cancer Genome Atlas (TCGA), a
database for cancer genomics, can be accessed at https://
cancergenome.nih.gov/. This database contains genetic data
on matched normal samples and more than 2,000 primary
tumors. TCGA database was used to retrieve case data for
our study, including mRNA expression profiles and clinical
features. This database originated from the UCSC Xena plat-
form (https://xena.ucsc.edu/). The data from matched sam-
ples from 163 ESCA and 11 normal samples were collected
for additional analysis.

2.2. Gene Expression Analysis of COX7B in Cancers.
“COX7B” was used as the variable of interest in an investiga-
tion of the “Gene DE” component of the Tumor Immune
Estimation Resource 2.0 (TIMER2) (http://timer.cistrome
.org) web server’s tumor immune estimation resource. In
TCGA datasets, the researchers explored the ways in which
the COX7B gene’s expression varies between malignancies
and healthy tissues.
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Figure 1: Pancancer analysis of COX7B expression.
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2.3. Survival Evaluation. The Youden index [ðsensitivity +
specificityÞ 1] was adopted to determine the ideal COX7B
cut-off value. The ESCA samples were assigned to two
groups in accordance with COX7B expression levels (high
and low). The survival rates of the two groups were com-
pared using the log-rank test, and the differences in
survival rates were examined using the Kaplan-Meier (K-
M) method. p < 0:05 indicated a difference with statistical
significance.

2.4. Analysis Using GO, KEGG, GSEA, and GSVA. KEGG
pathway analysis and Gene Ontology enrichment analysis
were conducted for all the differentially expressed genes

(DEGs) for biological processes (BP), cellular components
(CC), and molecular functions (MF). We could look at the
cellular and molecular functions that COX7B performs in
ESCA tissues using GO analysis. GSEA and GSVA were also
used to assess the potential molecular pathways of COX7B
in the same tissues. The same organs underwent the above
examinations. All the analyses made use of the ClusterProfi-
ler R tool [21].

2.5. Immune Infiltration Analysis. We examined the infiltra-
tion of 24 immune cell types (ICTs) in tumor tissues using
the ssGSEA method, a component of the Gene Set Variation
Analysis (GSVA) package of the R software. According to
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Figure 2: Correlations between COX7B expression in ESCA and clinical variables. (a) The distinct upregulation of COX7B was observed in
ESCA specimens compared with nontumor specimens based on TCGA datasets. (b–g) Clinical features of ESCA and COX7B mRNA
expression.
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this study, tumor growth was substantially suppressed by
ICTs. The GSA assessed the absolute expression of genes
in each tumor sample, which was used to calculate an
enrichment score based on the marker genes of the 24 ICTs
revealed in the study. The Wilcoxon rank-sum and Spear-
man correlation tests were used to examine the relationship
between immune cells and COX7B.

3. Statistical Analysis

All statistical analyses were performed using R. To deter-
mine the nature of the connection that exists between clini-
copathologic features and COX7B expression, a logistic
regression analysis was conducted. Using the Kaplan-Meier

method and the Cox regression analysis, researchers
explored the relationship between clinicopathologic features
and overall survival in ESCA patients. To carry out both uni-
variate and multivariable studies of survival, the Cox regres-
sion model was utilized. A multivariate Cox analysis was
used to compare the impact of COX7B expression on sur-
vival to the impact of the other variables. A value of p <
0:05 was regarded as significantly different.

4. Results

4.1. Pancancer Analysis of COX7B and Its Association with
Clinical Factors in ESCA. To begin, we analyzed the COX7B
expression profiles in several cancer types using data from
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Figure 3: The survival analysis of COX7B in ESCA patients. (a) The OS and (b) survival distributions for PFS were plotted for patients with
high and low COX7B expression in ESCA. (c) Estimating the likelihood of survival at 1, 3, and 5 years in ESCA patients using a ROC curve
that changes over time.
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TCGA’s RNA sequencing project (including those cancers
without normal tissues for comparison). According to the
prediction of TIMER data, we observed that COX7B
expression was higher in BRCA, CESC, CHOL, ESCA,
HNSC, KICH, LIHC, LUAD, LUSC, and UCEC. Con-
versely, COX7B was expressed low in KIRC, KIRP, READ,
and THCA (Figure 1). The full names of all tumor types
are shown in Table S1.

The histogram revealed COX7B as an overexpressed gene
in ESCA samples against control samples (Figure 2(a)).
Then, we analyzed its association with clinical factors in
ESCA. Expression of COX7B was not correlated with
either sex, as we found (Figure 2(b)). Importantly, we
observed that COX7B expressed markedly higher at stage
IV than stage I in ESCA (Figure 2(c)). Furthermore, there
was no correlation between the T stage and M stage and
COX7B expression (Figures 2(d) and 2(e)). Importantly,
higher levels of COX7B were observed in the N1-N2
stage than the N0 stage (Figure 2(f)). The heatmap
showed the distribution of ESCA patients with different
clinical factors in the group with low or high COX7B
expression (Figure 2(g)).

4.2. Relationship between COX7B Expression and the Clinical
Outcome of ESC Patients. We analyzed the associations
between COX7B mRNA levels and OS and PFS in patients
with ESCA to investigate the potential prognostic signifi-
cance of COX7B in ESCA. Patients with high COX7B
mRNA expression had significantly poorer OS (p < 0:001,
Figure 3(a)) and PFS (p = 0:047, Figure 3(b)) compared
with the low expression group, as shown by Kaplan-
Meier analysis. Based on TCGA data, COX7B expression
has a high predictive capacity for the survival of ESCA
patients, as indicated by an area under the ROC curve
(AUC) of 0.788 (Figure 3(c)). Univariate and multivariate
analyses were conducted to verify whether COX7B was
an independent prognostic factor for ESCA. Clinical stage
and COX7B expression were separate prognostic variables
for ESCA patients (Figures 4(a) and 4(b)). A nomogram

was developed using COX7B and clinical risk indicators
to provide a quantitative way to predict the prognosis of
ESCA patients. Clinicians now have a quantifiable tool in
COX7B expression level to forecast their patients’ odds
of surviving 1, 3, and 5 years after initial diagnosis with
ESCA (Figures 5(a) and 5(b)).

4.3. Enrichment Analysis. To explore the potential function
of COX7B in ESCA progression, we screened the differ-
entially expressed genes (DEGs) among ESCA samples
ranging from high to low COX7B expression. Finally,
we screened 463 DEGs (Table S2 and Figure 6). The
results of GO analysis revealed that the 463 DEGs were
mainly correlated with extracellular structure organization,
extracellular matrix organization, axonogenesis, external
encapsulating structure organization, collagen-containing
extracellular matrix, neuron projection extension,
glutamatergic synapse, endoplasmic reticulum lumen,
microfibril, and metalloendopeptidase activity, extracellular
matrix structural constituent, and integrin binding
(Figures 7(a) and 7(b)). Moreover, we performed KEGG
analysis and found that the 463 DEGs were mainly
enriched in focal adhesion and ECM-receptor interaction
(Figure 7(c)). In addition, based on the results of the
Gene Set Enrichment Analysis (GSEA), GPX1 was found
to have a role in the following processes: cytokine-receptor
interaction, extracellular matrix receptor interaction, focal
adhesion, JAK/STAT signaling pathway, and neuroactive
ligand-receptor interaction (Figure 8).

4.4. COX7B Expression in ESCA and the Presence of Immune
Cell Infiltration. We performed the Spearman correlation
analysis to find a link between COX7B expression and
immune cell infiltration in the ESCA microenvironment.
It was revealed that COX7B expression was inversely
related to TFH, Tcm, NK cells, and mast cells (Figure 9).
The above results suggested that COX7B may be critical
in controlling immune cell infiltration in the tumor
microenvironment.

COX7B

Gender

Stage

<0.001 2.782 (1.709–4.530)

0.414 (0.149–1.151)

2.485 (1.710–3.612)

0.091

<0.001

p value Hazard ratio

Hazard ratio
0 1 2 3 4

(a)

2.136 (1.274–3.581)COX7B 0.004

0.798 (0.276–2.307)

2.120 (1.430–3.143)

0.677Gender

Stage <0.001

p value Hazard ratio

Hazard ratio
0.0 1.0 2.0 3.0

(b)

Figure 4: Univariate (a) and multivariate (b) analyses of prognostic factors in ESCA patients.
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5. Discussion

In 2018, there were around 572,000 patients who were given
a diagnosis of ESCA for the first time [22]. The recurrence of
ESCA and the poor prognosis correlated with it continue to
make it difficult to treat the condition [23, 24]. Due to the
advanced stage of the disease when it is diagnosed (usually
stage III or stage IV), the overall 5-year survival rate of ESCA
can be as low as 20% due to the disease’s high invasiveness
[25, 26]. Over the course of the last couple of decades,
genetic and epigenomic variables that contribute to the

development of precancerous squamous lesions in the
esophagus into ESCA have been the subject of an extensive
amount of research and investigation [27, 28]. It has been
revealed that besides cancer genetics, aberrant epigenetic
regulation, which can include aberrant DNA methylation,
aberrant histone modifications, and alterations of numerous
noncoding RNAs, plays a crucial role in what causes and
what keeps ESCA going.

Researchers have recently suggested that mutations in
the COX7B gene are linked to the development of malignan-
cies. Cox7b is a structural subunit of the mitochondrial
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electron transport chain (complex IV). Cox7b refers to the
part of a likely wider family of proteins important for
breast cancer brain tropism in mice [29]. They employed
human triple-negative MDA-MB-231 breast cancer cells
and two separate brain-seeking variants as models. Mice
were employed in this study. This preliminary research
confirmed the feasibility of a search for metabolic sensors
that drive cancer organotropism and could be targeted
therapeutically, which takes on a critical significance to
therapies aiming at preventing metastasis. Expression of it
and reports of its function were extremely infrequent in
other tumor types. In this study, we performed an investi-
gation of pancancer and revealed that COX7B displayed a
dysregulated level in various types of tumors. This finding
suggests that COX7B may play a role in the progression of
malignancies. Because the level of COX7B expression var-
ied in accordance with the variety of cancers, we specu-
lated that it may act either as a tumor promotor or a
tumor suppressor. We confirmed that COX7B expression
is significantly greater in ESCA samples than in control
samples. Patients with high COX7B expression were corre-
lated with lower overall survival and progression-free sur-
vival compared to those with low COX7B expression,

according to the results of the survival research. It is
important to note that multivariate analysis indicated that
COX7B expression served as an independent prognostic
factor for ESCA patients. Based on our findings, COX7B
may serve as an innovative predictive biomarker for
patients with ESCA.

Immunotherapy with immune checkpoint inhibitors has
achieved promising results in treating various cancers [30].
Significant advancements have also been made in treating
advanced ESCA thanks to the use of monoclonal antibodies
targeting PD-1 or PD-L1 in combination with angiogenesis
inhibitors or TKIs [31]. On the other hand, there are just a
few patients that have a satisfactory response to treatment.
Accordingly, clarifying the immunological heterogeneity of
ESCA will help doctors determine which patients are most
likely to benefit from immunotherapy, and it will make it
easier to screen synergistic therapeutic targets, thus increas-
ing the efficacy of treatment. The result indicated an inverse
relationship between COX7B expression and TFH, Tcm, NK
cells, and mast cells. Previous research indicated that
immune-inhibited cell types (e.g., reduced CD8+ T cells
and M2 macrophages) were present in high numbers in
ESCA [32, 33]. Undifferentiated M0 macrophages may
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develop into usually activated M1 macrophages, which have
a phenotype that is proinflammatory and antitumorous, as
revealed by the findings of a previous study [34, 35]. Besides,
it has the potential to differentiate into alternatively acti-
vated macrophages (M2) that have an immune-inhibited
and protumoral character. According to the results of this
study, a possible prognostic indicator for ESCA is COX7B
involved in immune cell infiltration. Individuals who have

a low expression of COX7B and are undergoing tumor
immunotherapy for ESCA may benefit more from this med-
ication than other patients.

This study has some important caveats and restrictions.
First, TCGA cohorts were mined for data used to build the
diagnostic and prognostic models; however, not all the clin-
ical parameter information may have been captured. The
above cohorts were adopted to collect the data that was
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employed. Because of this, the outcomes may have varied
from what was expected. Second, we did not give any
direct in vivo proof that the COX7B upregulation had
any consequences that promoted the development of can-
cer. As a result, an additional study should be conducted
using more advanced in vivo models (e.g., a knockout
mouse).

6. Conclusion

COX7B may be a unique prognostic biomarker and a possi-
ble therapeutic target for ESCA patients. This study under-
lined the clinical value of COX7B in ESCA and analyzed
the effect of COX7B on immune infiltration in the tumor
microenvironment.
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Osteosarcoma (OS) is a malignant tumor with an extremely poor prognosis, especially in progressive patients. Immunotherapy
based on immune checkpoint inhibitors (ICIs) is considered to be a promising treatment option for OS. Due to tumor
heterogeneity, only a minority of patients benefit from immunotherapy. Therefore, it is urgent to explore a model that can
accurately assess the response of OS to immunotherapy. In this study, we obtained the single-cell RNA sequencing datasets of
OS patients from public databases and defined 34 cell clusters by dimensional reduction and clustering analysis. PTPRC was
applied to identify immune cell clusters and nonimmune cell clusters. Next, we performed clustering analysis on the immune
cell clusters and obtained 25 immune cell subclusters. Immune cells were labeled with CD8A and CD8B to obtain CD8+ T cell
clusters. Meanwhile, we extracted the differentially expressed genes (DEGs) of CD8+ T cell clusters and other immune cell
clusters. Furthermore, we constructed a prognostic model (CD8-DEG model) based on the obtained DEGs of CD8+ T cells,
and verified the excellent predictive ability of this model for the prognosis of OS. Moreover, we further investigated the value
of the CD8-DEG model. The results indicated that the risk score of the CD8-DEG model was an independent risk factor for
OS patients. Finally, we revealed that the risk score of the CD8-DEG model correlates with the immune profile of OS and can
be used to evaluate the response of OS to immunotherapy. In conclusion, our study revealed the critical role of CD8 cells in
OS. The risk score model based on CD8-DEGs can provide guidance for prognosis and immunotherapy of OS.

1. Introduction

Osteosarcoma (OS) is a rare and highly lethal malignancy,
accounting for more than 50% of malignant primary bone
tumors [1]. OS originates from primitive mesenchymal cells
and occurs mostly in the metaphysis of long bones, includ-
ing the distal femur and proximal tibia [2]. OS is also the
second leading cause of tumor-related deaths in children
and adolescents after lymphoma and brain tumors [3]. It is

widely recognized that environmental factors and genetic
mutations are high-risk factors for OS [4]. Given that
tumors are regulated by complex gene networks, the patho-
genesis of OS has not been fully elucidated. Surgery, chemo-
therapy, and radiotherapy are still the classic treatment
options for OS currently [5]. For patients with local OS, tra-
ditional treatment regimens can achieve a 5-year survival
rate of more than 70% [6]. However, for OS patients with
recurrence and metastasis, the 5-year survival rate does not
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exceed 20% [7]. Therefore, it is extremely urgent to explore a
new treatment method that can fundamentally improve the
prognosis of OS.

An increasing number of studies have shown that the
tumor immune microenvironment (TIM) play a vital role
in the occurrence and development of tumors, including
OS [8]. Under normal conditions, the immune function is
in a state of dynamic equilibrium, and immune suppression
and immune activation restrict each other [9]. However, the
TIM of tumor tends to be immunosuppressive, thereby
prompting tumor cells to evade immune surveillance [10].
How to relieve the immunosuppressive state of tumors is
the focus and difficulty of tumor immunotherapy. The
immune process of tumors is regulated by a variety of
immune cells, and the killing of tumors by CD8+ T cells is
the core of the whole process [11]. Therefore, elucidating
the functional mechanism of CD8+ T cells is the key to the
success of immunotherapy.

In recent years, a variety of immunotherapy drugs, such
as PD-L1/PD-1 monoclonal antibody and CTLA4 monoclo-
nal antibody, have been used in the treatment of malignant
tumors and achieved satisfactory therapeutic effects, includ-
ing OS [12]. However, in the application of immunotherapy,
only a minority of patients benefit from immunotherapy
[13]. It is currently believed that the cause of this dilemma
is due to the abnormal immune microenvironment and
immune cell function [14]. Therefore, developing a model
that can accurately predict the efficacy of immunotherapy
is crucial for patients of OS.

In this study, we obtained CD8+ T cell clusters and dif-
ferentially expressed genes (DEGs). Next, we constructed a
prognostic model based on the DEGs of CD8+, which was
proved to have excellent predictive performance for the
prognosis of OS patients. Moreover, we further revealed that
the risk score of this model is closely related to the immune
microenvironment of OS and multiple immune checkpoints,
which can be used to predict immunotherapy response.

2. Materials and Methods

2.1. Acquisition of OS Single-Cell Sequencing Data and
Transcriptome Data. Single-cell osteosarcoma data, includ-
ing 11 OS patients, were obtained from the GEO dataset
(https://www.ncbi.nlm.nih.gov/geo/, GSE152048). The OS
transcriptome data TARGET-OS was downloaded from
XENA (http://xenabrowser.net), including 88 OS samples.

2.2. Single-Cell RNA-Seq Data Quality Control and Data
Processing. Single-cell samples of OS were processed by the
R package Seurat package. Three-dimensional controls were
applied to the original matrix of each cell: nFeature RNA
> 200 and percent:mt < 10 and nCount RNA > 3. 3000
highly variable genes were identified using the FindVariable-
Features function, and principal component analysis- (PCA-
) based dimensionality reduction was performed using
RunPCA. Batch effects were removed on a sample-by-
sample basis by the Harmony package. The distribution of
cell components is mapped with R package “UMAP” with
resolution = 0:5. Immune cells are distinguished from non-

immune cells based on the expression level of PRPDC
(CD45). The resolution of cluster analysis of immune cells
was 0.9. Findmarkers were used to screen signature genes,
log 2FC > 1 and p < 0:05.

2.3. Construction of Random Forest Prognostic Model. The
characteristic genes we screened were firstly subjected to
univariate prognostic analysis in TARGET-OS, and 6 genes
were screened for inclusion in the prognostic model. Next,
in this study, we randomly defined 70% of the TARGET-
OS cohort as the training cohort and 30% as the validation
cohort. The random forest prognostic model generates
1000 binary survival trees by default. When the number of
survival trees increases to a certain number, the error rate
curve tends to be stable.

2.4. Evaluation of the Predictive Power of the Model.We con-
ducted the timeROC package to draw ROC curves to evalu-
ate the predictive ability of the model. Next, patients were
divided into high- and low-risk cohorts according to the
model score best cutoff value, and the KM survival curve
was used to compare the prognostic differences between
the high-risk group and the low-risk group. Finally, univar-
iate prognostic analysis was performed with model scores
and clinical characteristics, and ROC curves were drawn.

2.5. GO and KEGG Enrichment Analysis. In this study, we
carried out the GO analysis and KEGG to explore the value
of our model risk score. The Database for Annotation, Visu-
alization, and Integrated Discovery was used to integrate
functional genomic annotations.

2.6. Evaluation to Immunotherapy Reactions. The Cluster-
Profiler package was used to perform GO and KEGG enrich-
ment analysis of high- and low-risk patients [15]. OS
immune cell infiltration analysis was performed by the
ESTIMATE and XCELL algorithms [16]. The TIDE algo-
rithm was used to evaluate the immune evasion ability of
OS patients and predict the sensitivity to immunother-
apy [17].

2.7. Statistics. In this study, R software (4.2.2) was used for
calculation and statistical analysis of all data. We applied
univariate and multivariate Cox regression analyses to assess
the association of each factor with overall survival. The Stu-
dent’s t-test was conducted to compare the mean of different
dataset. p < 0:05 were considered statistically significant.

3. Results

3.1. Identification of Immune Cells in OS Tissue. To reveal
the cellular heterogeneity of OS tissue, we collected single-
cell RNA-sequencing (RNA-seq) datasets from 11 OS
patients from the GEO database. We eliminated low-
quality cells and identified 34 cell clusters from OS tissue
by the dimensional reduction and clustering analysis
(Figure 1(a)). PRPDC (CD45) is widely used as a character-
istic marker of immune cells [18]. To clearly identify
immune cells and nonimmune cells in OS tissue, we applied
PRPDC to label immune cell clusters, and the results are
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Figure 1: Identification of cell types in OS scRNA-seq sample. (a) UMAP plot of OS scRNA-seq data with 34 clusters (resolution = 0:5). (b)
Expression of immune marker PTPRC (CD45) across all clusters, shown by UMAP plot. (c) Clustering of OS tissue via immune markers to
obtain immune and nonimmune cells. (d) Heatmap of marker gene expression levels in different clusters.
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Figure 2: Identification of CD8+ T cell clusters and extraction of differentially expressed genes (DEGs). (a) UMAP plot of leukocyte scRNA-
seq data with 25 clusters. (b) UMAP plots of single-cell expression levels of different marker genes. (c) Expression of different marker genes
in immune cell subsets. (d) Analysis of DEGs between the 1st subset of immune cells and other cells.
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shown in Figures 1(b) and 1(c). Finally, we further analyzed
the signature genes of immune cell clusters and nonimmune
cell clusters and found that immune cells highly expressed
immune signature genes, which suggested that immune cells
are well characterized by PTPRC (Figure 1(d)).

3.2. Definition of CD8+ T Cell Clusters and Extraction of
Differentially Expressed Genes (DEGs).We previously labeled
OS tissues with corresponding marker genes and obtained
immune cell clusters. We performed cluster analysis on the
previous immune cell clusters and finally obtained 25 cell
clusters (Figure 2(a)). Next, we applied CD8A and CD8B
to label CD8+ T cell clusters, CD4 to label CD4+ T cell clus-
ters, and CD3G, CD3D, and CD3E to label T cell clusters,
respectively. The results indicated that the cluster analysis
had good clustering performance (Figure 2(b)). In addition,
to further isolate CD8+ T cells, we analyzed the expression
levels of marker genes in different immune cell clusters.
The results suggested that cluster1 could represent the opti-
mal choice for CD8+ T cell clusters (Figure 2(c)). We per-

formed differentially expressed gene (DEG) analysis on the
obtained CD8+ cell clusters and the remaining cells
(Log2FC > 1, p < 0:05) and finally obtained 59 genes with
statistical significance (Figure 2(d) and Supplementary
Table 1).

3.3. Construction of Risk Score Model Based on DEGs in
CD8+ T Cells (CD8-DEGs). Given the DEG analysis by
CD8+ T cells, we finally obtained 59 genes. We performed
univariate analysis in the TARGET-OS dataset and finally
obtained 6 genes (RPS27, LTB, CD3E, GZMB, RPS29, and
IL2RG). The results showed that RPS27 and RPS29 were
high-risk factors, while LTB, CD3E, GZMB, and IL2RG were
low-risk factors in OS (Figure 3(a)). In addition, we divided
the TARGET-OS patients into training cohort and valida-
tion cohort by 70% and 30%. We adopted these 6 genes
and constructed a random survival forest model (CD8-
DEGs model) based on the DEGs of CD8+ T cells. As shown
in Figure 3(b), our model exhibited high accuracy, and
GZMB and IL2RG play a major role in this model. We
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Figure 3: Construction of risk models. (a) Univariate regression analysis of CD8-DEGs. (b) Plot of the out of bag (OOB) prediction error
rate for each tree constructed in the CD8-DEG model (left panel). Plot of variable importance in the CD8-DEG model (right panel). (c, d)
ROC curves showed the predictive efficiency of the CD8-DEG risk score for 1-, 3-, and 5-year survival in the training and validation cohorts.
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Figure 4: Evaluation of risk models for CD8-DEGs. (a) OS patients were divided into high- and low-risk groups according to the optimal cutoff
(2.97) value. (b, c) Comparison of OS between high- and low-risk scores in the training and validation cohorts. (d) Univariate analysis of CD8-
DEG risk scores and clinical characteristics. (e, f) Comparison of the predictive power of CD8-DEG risk models and their clinical characteristics.
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further evaluated the accuracy of our model by ROC curve,
and the results demonstrated that in the training cohort,
the ROC curve area reached 0.75, 0.879, and 0.918 at 1, 3,
and 5 years (Figure 3(c)). Likewise, in the validation cohort,
the ROC curve areas reached 0.778, 0.768, and 0.775 at 1, 3,
and 5 years (Figure 3(d)).

3.4. Evaluating the Performance of the CD8-DEG Model. To
further investigate the value of CD8-DEGs model, we
assessed the predictive power of this model by various mea-
sures. As shown in Figure 4(a), we took 2.97 as the cutoff
value to classify the TARGET-OS cohort patients into high-
and low-risk cohorts. The results demonstrated that high-
risk patients had worse prognosis in both the training and
validation cohorts (Figures 4(b) and 4(c)). In addition, we

further adopted the corresponding clinical characteristics
(gender and age) and their risk scores for univariate analysis.
We found that risk score was a high-risk factor for OS
patient prognosis (=1.362) (Figure 4(d)). Meanwhile, the
area under the ROC curve of the risk score reached 0.793
(Figure 4(e)). Finally, C-index analysis showed that risk
scores had higher AUC curve values compared to gender
and age (Figure 4(f)). These data strongly indicated that
the CD8-DEG model has good performance in predicting
the prognosis of OS patients.

3.5. Pathway Enrichment Analysis of Risk Scores for the CD8-
DEG Model. The CD8-DEG model showed excellent ability
in predicting the prognosis of OS patients. To initially
revealed the mechanism, we performed GO and KEGG

Leukocyte mediated immunity
Lymphocyte mediated immunity

Positive regulation of 
lymphocyte activation

Activation of immune response

Immunoglobulin complex
External side of plasma membrane

Immunoglobulin
complex, circulating

MHC class II protein complex

MHC protein complex

Antigen binding

Immunoglobulin receptor binding

Immune receptor activity

MHC class II receptor activity

BP CC MF

−10.0 −7.5 −5.0 −2.5 0.0 −10.0 −7.5 −5.0 −2.5 0.0 −10.0 −7.5 −5.0 −2.5 0.0

0

20

40

60

Z score

Collagen−containing
extracellular matrix

Blood microparticle

MHC protein complex binding
MHC class II protein

complex binding

−L
og

10
 (a

dj
_p

va
l)

(a)

Year

Staphylococcus aureus infection

Hematopoietic cell lineage

Th1 and Th2 cell differentiation
Inflammatory bowel disease

Th17 cell differentiation
Intestinal immune network for IgA production

Graft−versus−host diseaseLeishmaniasis
AsthmaCell adhesion molecules

Rheumatoid arthritis
Type I diabetes mellitus

Systemic lupus erythematosus

Autoimmune thyroid disease
Tuberculosis

Phagosome

Protein interaction with cytokine and cytokine receptor
Antigen processing and presentation

Influenza A

Toxoplasmosis

Cytokine−cytokine receptor interaction

NF−𝜅B signaling pathway
Primary immunodeficiency

B cell receptor signaling pathway
Chemokine signaling pathway

Human T−cell leukemia virus 1 infection

0

5

10

15

−4 −2 0
Z score

−L
og

10
 (a

dj
_p

va
l)

5

10

15

Count

10

20

Allograft rejection

Viral myocarditis

Epstein−Barr virus infection
Pertussis

Malaria

−Log10 (adj_pval)

(b)

Figure 5: Pathway enrichment analysis of high- and low-risk scores in CD8-DEG model. (a) GO analysis of CD8-DEGs model. (b) KEGG
analysis of CD8-DEG model.
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enrichment analysis. The results of GO analysis showed that
the risk score of the CD8-DEGs model was closely related to
multiple immune functions, such as leukocyte-mediated
immunity, activation of immune response, MHC complexes,
and antigen binding (Figure 5(a)). KEGG analysis revealed
that the risk score of the CD8-DEGmodel was associated with
multiple immune-related pathways, such as Th1 and Th2 cell

differentiation, intestinal immune network for IgA produc-
tion, cell adhesion molecules, cytokine-cytokine receptor
interactions and NF-kappa B pathway (Figure 5(b)).

3.6. Correlations between Risk Scores and OS Immune
Profiles. The previous results indicated that the risk score
of CD8-DEG model is closely related to multiple immune
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Figure 6: Correlation of risk scores with immune profiles of OS. (a) Comparison of the stromal score, immune score, and ESTIMATE score
between high-risk and low-risk groups. (b) Comparison of immune cell infiltration between high-risk and low-risk groups. (c) Comparison
of TIDE value between high-risk and low-risk groups. (d) Comparison of the response to immunotherapy in patients with OS in high-risk
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Figure 7: Correlation of risk scores with immune checkpoints and validation of risk genes. (a) Correlation analysis of immune checkpoints
and risk scores. (b) Expression of GZMB and IL2RG in UMAP plots of OS scRNA-seq data. (c) Expression of GZMB and IL2RG in UMAP
plots of leukocyte scRNA-seq data.
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pathways. We analyzed the association of risk scores and OS
immune profile. As shown in Figure 6(a), low-risk patients
had higher scores in stromal score, immune score, and ESTI-
MATE score. We applied CIBERSORT to assess the effect of
risk score on immune cell infiltration. It was found that
high-risk patients negatively regulate the infiltration of vari-
ous immune cells, such as CD8+ T cells, macrophages, and
M1-like macrophages (Figure 6(b)). In recent years, TIDE
has been widely used as an indicator for tumor immune eva-
sion ability. As presented in Figure 6(c), high-risk patients
had lower TIDE scores. Finally, we further assessed whether
risk scores could be used as a predictor of response to immu-
notherapy in OS. The results showed that OS patients with
high-risk scores tended to be insensitive to immunotherapy
(Figure 6(d)).

3.7. Correlation of Risk Scores with Immune Checkpoints and
Validation of Risk Genes. Due to the immune checkpoints
play an important role in regulating immune cell function,
we further analyzed the relationship between risk scores
and immune checkpoints. As shown in Figure 7(a), the risk
score was negatively correlated with the expression of multi-
ple immune checkpoints, including CTLA4, PDCD1, TIGIT,
CD80, CD86, KDR, HAVCR2, and CD274. Finally, we fur-
ther verified the expression of GZMB and IL2RG in OS
scRNA-seq and leukocyte scRNA-seq data. The results
revealed that GZMB and IL2RG similarly clustered in the
UMAP plot of OS scRNA-seq data (Figure 7(b)). Similarly,
GZMB and IL2RG were clustered in UMAP plots of leuko-
cyte scRNA-seq data (Figure 7(c)).

4. Discussion

The poor prognosis of OS has plagued and threatens the
physical and mental health of human beings. Immunother-
apy is considered a promising treatment for improving OS
prognosis [19]. Given the current dilemma of immunother-
apy for OS, it is urgent to develop an effective method to pre-
dict the response to immunotherapy. In this study, we first
downloaded and processed the single-cell sequencing data
of OS from the GEO database. Next, we clustered the above
data and further marked it by specific markers to obtain
immune cell clusters and nonimmune cells. In addition, we
performed cluster analysis on the obtained immune cell
clusters, while applying specific markers to extract CD8+ T
cell clusters, and obtained DEGs of CD8+ T cells by gene dif-
ferential analysis. Furthermore, we combined TCGA-OS
cohort data to perform univariate regression analysis on
DEGs to obtain prognostic-related genes. A random forest
model (CD8-DEG model) was constructed for the above-
mentioned prognosis-related genes, and further verification
found that it has good predictive performance. Moreover,
we revealed that the risk score of CD8-DEG model was sig-
nificantly associated with the immune profile and could also
be used as a predictor of OS immunotherapy response.
Finally, we demonstrated the correlation between risk score
and the expression of multiple immune checkpoints.

Prognostic models based on various functional gene sets
of tumors, such as ferroptosis, pyroptosis, and autophagy,

have gradually become a research hotspot in recent years.
Tang et al. constructed a ferroptosis-related lncRNA prog-
nostic model in head and neck squamous cell carcinoma,
and the area under the ROC curve of the model risk score
reached 0.782 [20]. Zhang et al. analyzed the expression
levels of pyroptosis-related genes in human endometrial
cancer and constructed a prognostic model based on
pyroptosis-related genes. The ROC value of the model was
0.613 [21]. Duan et al. analyzed the expression levels of
autophagy-related gene lncRNAs in colorectal cancer,
obtained 11 lncRNAs related to autophagy, and further con-
structed a prognostic model. The ROC area of this model
reached 0.808 [22]. In this study, constructed a prognostic
model based on the differentially expressed genes of CD8+

cells, the area under the ROC curve was 0.793. The prognos-
tic model of DEGs based on CD8+ T cells we established has
a predictive ability that is not inferior to other previous
prognostic models of functional gene sets, which provided
a valuable reference for evaluating the prognosis of OS.

Single-cell transcriptome sequencing is performed by ana-
lyzing the mRNA expression level of each cell in a sample. In
this study, we performed two cluster analyses. We first per-
formed cluster analysis on the single-cell data of OS, resulting
in 34 cell clusters. Then, we defined immune cell clusters by
PTPRC. Next, we again performed cluster analysis on the
immune cell clusters. In this study, we applied two clustering
analyses to more precisely define CD8+T cells. This is more
reliable than previous analysis of BULK sequencing data.

The model we established has a high application pros-
pect, but there are also some obvious shortcomings. First,
all data are derived from public data and lack in vivo and
in vitro validation. Second, the specific mechanisms by
which the model predicts immune signatures and immuno-
therapy have not been further explored. These are worthy of
further clarification in our follow-up research.

In conclusion, the CD8-DEG model can not only be used
to analyze the immune profile of OS but also can be used as a
marker to evaluate the efficacy of OS on immunotherapy.
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Immunotherapy for lung adenocarcinoma (LUAD) is considered to be a promising treatment option, but only a minority of
patients benefit from it. Therefore, it is essential to clarify the regulation mechanism of the tumor immune microenvironment
(TIM) of the LUAD. Receptor-type protein tyrosine phosphatase (PTPRO) has been shown to be a tumor suppressor in a
variety of tumor; however, its role in LUAD has never been reported. In this study, we first found that PTPRO was lowly
expressed in LUAD and positively correlated with patient prognosis. Next, we investigated the relationship between PTPRO
and clinical characteristics, and the results showed that gender, age, T, and stage were closely related to the expression level of
PTPRO. Moreover, we performed univariate and multivariate analyses, and the results revealed that PTPRO was a protective
factor for LUAD. By constructing a nomogram based on the expression level of PTPRO and various clinical characteristics, it
was proved that the nomogram has a good predictive capacity. Furthermore, we analyzed the coexpression network of PTPRO
through multiple databases and performed GO and KEGG enrichment analyses. The results demonstrated that PTPRO was
involved in the regulation of multiple immune pathways. In addition, we analyzed whether PTPRO expression of LUAD
regulate immune cell infiltration and the results demonstrated that PTPRO was closely related to the infiltration of various
immune cells. Finally, we predicted LUAD sensitivity to chemotherapeutics and response to immunotherapy by PTPRO
expression levels. The results showed that PTPRO expression level affect the sensitivity of various chemotherapeutic drugs and
may be involved in the efficacy of immunotherapy. These results we obtained suggested that PTPRO is closely related to the
prognosis and TIM of LUAD, which may be a potential immunotherapeutic target for LUAD.

1. Introduction

Lung cancer (LC) is the second most common malignancy
worldwide and one of the leading causes of cancer-related
death currently [1]. LC is a heterogeneous malignancy,
which is roughly divided into non-small-cell lung cancer
(NSCLC) and small-cell lung cancer, and lung adenocarci-

noma (LUAD) is the main pathological type of LC [2]. Cur-
rently, the traditional treatment options for LUAD mainly
include surgery, chemotherapy, and radiation therapy [3].
However, the prognosis of LUAD is unsatisfactory, espe-
cially for advanced patients [4]. In the past two decades, with
the further exploration of the mechanism of occurrence and
development of LUAD, more treatment methods have been
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applied, such as targeted drugs and immunotherapy, which
have significantly improved the prognosis of LUAD [5].

At present, a variety of immunotherapy methods have
been developed, including vaccine therapy, chimeric antigen
receptor (CAR) T cells, and immune checkpoint inhibitors
(ICIs), including against cytotoxic T-lymphocyte-related
antigen 4 (CTLA-4) antibodies, programming cell death 1
(PD-1), and programmatic cell death ligand 1 (PD-L1) [6].
The unique treatment effect of ICIs has gradually become a
research hotspot in tumor treatment. Unfortunately, only a
small percentage of patients benefit from immunotherapy
[6]. Several studies have shown that the proportion of leuko-
cytes infiltrating the tumor immune microenvironment
(TIM) is closely related to the response to immunotherapy
[7–10]. Therefore, elucidating the TIM regulation mecha-
nism of LUAD is crucial for developing therapeutic strate-
gies for LUAD.

Receptor-type protein tyrosine phosphatase (PTPRO) is
a member of the PTP family and plays an important role
in regulating human physiological and pathological pro-
cesses [11, 12]. Based on previous studies, PTPRO has been
shown to act as a tumor suppressor in the development of
various tumors. The initial study found that overexpression
of PTPRO inhibited the progression of lung cancer [13].
Another study revealed that PTPRO suppress tumor cell
proliferation and promotes apoptosis by dephosphorylating
signal transducer and activator of transcription 3 (STAT3)
in liver cancer [14]. Not only that, PTPRO has also been
found to be involved in regulating the TIM of various
tumors in recent years. Gan and Zhang found that the
expression level of PTPRO in human clear cell renal cell car-
cinoma is closely related to patient prognosis and immune
infiltration [15]. Paradoxically, the expression level of
PTPRO in pancreatic cancer is negatively correlated with
patient prognosis and has the function of worsening the
TIM [16]. However, there is no study of the relationship
between PTPRO and immune function in LUAD.

In this study, we first analyzed the relationship between
the PTPRO expression and prognosis in LUAD and further
explored the correlation between PTPRO and clinical char-
acteristics. Furthermore, the potential mechanism of PTPRO
regulation of LUAD progression was explored by KEGG and
GO analyses. In addition, we analyzed the correlation
between PTPRO and immune cell infiltration status by mul-
tiple public databases. Finally, we further predicted the level
of PTPRO and the sensitivity of LUAD to multiple chemo-
therapeutic agents and immunotherapy.

2. Methods and Materials

2.1. TIMER2.0. Tumor Immune Estimation Resource 2.0
(TIMER2.0) is a public database that can be used to analyze
immune cell infiltration in variety of cancers. The database
has a variety of analysis modules, such as gene, survival,
and copy number variation, to analyze tumor immune func-
tion [17].

2.2. Acquisition of LUAD Transcription Data from the TCGA
Database. The LUAD transcription data was obtained from

the TCGA database. The LUAD cohort contains LUAD
and normal tissues, and all LUAD tissues contain relevant
clinical information. We use corresponding functions in
the limma package of the R software to further process these
obtained data.

2.3. Analysis of Immune Cell Infiltration in LUAD. To inves-
tigate the relationship between PTPRO and cellular immune
infiltration using multiple databases, including TIMER2.0,
TISIDB, and cell type identification by estimating relative
subsets of RNA transcripts (CIBERSORT). TIMER and
TISIDB are web databases [17, 18]. CIBERSORT identifies
immune cell types based on the expression profiles of char-
acteristic genes in RNA-sequencing data. CIBERSORT relies
on a gene expression matrix file (named LM22) to parse
immune cells in tissues to distinguish human hematopoietic
cell phenotypes [19].

2.4. Prediction of PTPRO Expression on the Effect of
Immunotherapy. The immunophenotype score (IPS) is a
predictor of response to anti-CTLA-4 and anti-PD-1 therapy
that quantifies determinants of tumor immunogenicity [20].
The principle for this protocol is based on immune-related
genes including MHC-associated molecules, checkpoints or
immunomodulators, effector cells, and suppressor cells. This
method obtains the final IPS by quantifying the abovemen-
tioned genes and then weighting them equally.

2.5. Prediction of PTPRO Expression on the Efficacy of
Chemotherapy Drugs. The principle of this algorithm is
based on differentially expressed genes (DEGs) between
samples with high and low expressions of the target gene.
Then, the top 1000 DEGs will be submitted to the CMap
database to match the corresponding potential chemical
drugs.

2.6. KEGG and GO Enrichment Analyses. GO (http://
geneontology.org) and KEGG (https://www.genome.jp/
kegg) analyses were frequently used in functional enrich-
ment study and investigated the biological pathways that
involve differentially expressed mRNAs. ClusterProfiler
(v3.12.0) and Database for Annotation, Visualization and
Integrated Discovery tools were conducted to analyze the
functional enrichment conditions for dysregulated mRNAs.
The false discovery rate (FDR) was calculated to correct
the p value.

2.7. Statistics. In this study, R software was used for calcula-
tion and statistical analysis. Their responses to immunother-
apy were compared using the Wilcoxon rank-sum test.
Differences between high and low target gene classes were
determined using Kaplan-Meier curves and log-rank tests.
p < 0:05 were considered statistically significant.

3. Results

3.1. PTPRO Is Lowly Expressed in LUAD and Associated with
Prognosis. We first analyzed the expression levels of PTPRO
in pan-cancer tissues via the TIMER database. As shown in
Figure 1(a), the expression level of PTPRO in LUAD was
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Figure 1: Continued.
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significantly lower than that in normal tissues. Further sur-
vival prognostic analysis showed that LUAD with high
PTPRO expression had better prognosis (Figure 1(b)). Fur-
thermore, we analyzed the expression of PTPRO in LUAD
by the TCGA database. The results indicated that the expres-
sion of PTPRO was significantly higher in LUAD than in
normal tissues (Figure 1(c)). The expression levels of
PTPRO in LUAD and its paired normal tissues also showed
the same results as above (Figure 1(d)). Interestingly, the

further analysis revealed that the TCGA-LUAD cohort with
a high expression of PTPRO had a better prognosis
(Figure 1(e)). These above results indicated that the expres-
sion of PTPRO was significantly downregulated and corre-
lated with the prognosis of patients in LUAD.

3.2. The Correlation Analysis between the Clinical Features
and PTPRO Expression Level for LUAD Patients. The TNM
system is widely used in evaluating the classification of
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Figure 1: Expression level of PTPRO in LUAD and its correlation with prognosis. (a) Analysis of the expression level of PTPRO in pan-
cancer by GEPIA database. (b) Kaplan-Meier survival analysis for high vs. low expression level of PTPRO in LUAD (GEPIA database).
(c) Differences in mRNA expression levels of PTPRO in LUAD and normal tissues (TCGA database). (d) Differences in mRNA
expression levels of PTPRO in LUAD and paired normal tissues (TCGA database). (e) Kaplan-Meier survival analysis for high vs. low
expression level of PTPRO in LUAD (TCGA database).
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Figure 2: Continued.
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LUAD. [21]. Our previous findings suggested that the
expression level of PTPRO was closely related to the progno-
sis of LUAD patients. To further explore the role of PTPRO
in LUAD, we analyzed the relationship between PTPRO and
clinical characteristics. First, we created a heatmap to show the
distribution of clinicopathological feature subtypes in patients
with high and low PTPRO expressions (Figure 2(a)). More-
over, we found that PTPRO was expressed at higher levels
in female patients, while patients younger than 65 years old
had lower levels of PTPRO expression (Figures 2(b) and
2(c)). More interestingly, we found that PTPRO levels were
significantly lower in T2 and T3 patients compared to T1
patients (Figure 2(d)). The expression levels of PTPRO in
patients were not significantly different in N and M stages
(Figures 2(e) and 2(f)). Finally, the correlation between path-
ological stage and PTPRO level showed that stage II+III
patients had lower PTPRO levels than stage I patients
(Figure 2(g)).

3.3. Construction of a Nomogram Based on PTPRO
Expression Levels. The previous results of this study showed
that the expression level of PTPRO was positively correlated
with the prognosis of various solid tumor and was also
closely related to the clinical characteristics [12, 22]. There-
fore, we further explored whether PTPRO could be used to
assess the prognosis of LUAD. Univariate and multivariate
regression analyses indicated that PTPRO was a protective
factor for the prognosis of LUAD (Figures 3(a) and 3(b)).
Next, we established a nomogram based on PTPRO expres-
sion levels and clinicopathological features to predict the
prognosis of LUAD (Figure 3(c)). The calibration curve
implied that the nomogram has good predictive capacity
(Supplementary Figure 1).

3.4. Construction of PTPRO-Related Gene Network and
Enrichment Analysis of GO and KEGG. Based on the above
results, we constructed PTPRO-related gene networks by
multiple databases (TCGA, STRING, and GeneMANIA) to
investigate the potential role of PTPRO in LUAD
(Figures 4(a)–4(c)). Next, we extracted different expression
genes (DEGs) from patients with high and low PTPRO
expressions (Figure 5(a)). Furthermore, we performed GO
enrichment analysis to clarify the biological processes, cel-
lular components, and molecular function of PTPRO based
on the above DEGs. As shown in Figures 5(b) and 5(c), the
results showed that the foremost biological processes were
leukocyte cell-cell adhesion, T cell activation, and regula-
tion of leukocyte cell-cell adhesion; the top three cellular
components were T cell receptor complex, plasma mem-
brane signaling receptor complex, and external side of
plasma membrane; the top three molecular functions were
immune receptor activity, signaling receptor activator activ-
ity, and receptor ligand activity. KEGG enrichment analysis
showed that PTPRO was involved in multiple immune-
related pathways, including cytokine-cytokine receptor
interaction, cell adhesion molecules, chemokine signaling
pathway, Th1 and Th2 cell differentiation, and Th17 cell
differentiation. These results strongly suggested that
PTPRO may be involved in regulating the TIM of LUAD
(Figures 5(d) and 5(e)).

3.5. Correlation Analysis of PTPRO Expression Level and
Immune Cell Infiltration. It is well known that tumor
immune dysfunction is a critical step in tumorigenesis
and progression [23]. We further analyzed the correlation
between PTPRO expression levels and immune cell infil-
tration via multiple databases. We first analyzed the
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Figure 2: Correlation between the expression level of PTPRO and clinical features in LUAD. (a) Heatmap of the clinical relevance of
PTPRO expression level. (b–g) Differences in PTPRO expression level between different clinical subgroups (gender, age, TNM and stage).
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TCGA-LUAD cohort by the CIBERSORT algorithm, and
the results showed that PTPRO was positively associated
with a variety of immune cells, including CD8, M2 macro-
phages, and follicular helper T cells (Figure 6(a)). In addi-
tion, the results obtained from the TIMER and TISIDB
databases demonstrated that the PTPRO was positively cor-
related with CD8, CD4 and macrophages (Figures 6(b) and
6(c)). These results indicated that PTPRO may be involved
in regulating the infiltration of various immune cells in
LUAD.

3.6. Prediction of PTPRO Expression Levels within LUAD for
Sensitivity to Chemotherapy and Immunotherapy. We ana-
lyzed the association between the PTPRO expression level
and the chemosensitivity in the treatment of LUAD. As
shown in Figure 7, we found that patients with high
PTPRO expression showed higher sensitivity to various
chemotherapy drugs, such as BLX02189, BHG712,
BEZ235, AC220, sunitinib, ruxolitinib, rapamycin, phenfor-
min, masitinib, CH5424802, CGP-06474, and BX912. Given
that the function of immune cells is regulated by a variety

of immune checkpoints [24]. Therefore, we further ana-
lyzed the relationship between PTPRO and various
immune checkpoints, and the results demonstrated that
the expression level of PTPRO was closely related to vari-
ous immune checkpoints (Figure 8(a)). Moreover, we eval-
uated the TIM of LUAD by the ESTIMATE algorithm and
observed that LUAD patients with high PTPRO expression
had higher TIM scores (Figure 8(b)). Currently, the immu-
nophenoscore (IPS) is a widely used algorithm to predict
the immune response [25]. We divided all patients into 4
groups according to the expression of PD1 and CTLA4,
namely, PD1_negative_CTLA4_negative, PD1_positive_
CTLA4_positive, PD1_negative_CTLA4_positive, and
PD1_positive_CTLA4_negative. The results showed that
in the PD1_positive_CTLA4_positive and PD1_positive_
CTLA4_negative groups, patients with high PTPRO expres-
sion had higher IPS scores. In the PD1_negative_CTLA4_
negative group, patients with low expression of PTPRO
had higher IPS scores, while in the PD1_negative_
CTLA4_positive group, the expression level of PTPRO
had no effect on the IPS score (Figures 8(c)–8(f)).
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Figure 3: The value of PTPRO expression level in evaluating the prognosis of LUAD. (a, b) Univariate and multivariate regression analyses
of PTPRO expression levels and clinical parameters. (c) Construction of nomogram by the PTPRO expression level and clinical
characteristics for predicting the probability of 1-, 3-, and 5-year OS of LUAD patients.
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4. Discussions

LUAD is a highly lethal malignant tumor that seriously
threatens the health of human [26]. Conventional treat-
ments, such as surgery, chemotherapy, and radiotherapy,
have significantly improved patient outcomes, but further
improvements are more difficult [27]. In recent years,
immunotherapy for LUAD based on immune checkpoint
inhibitors has gradually attracted people’s attention [28].
However, only a minority of patients benefit from it, which
greatly limits the application of ICIs [5]. In the present
study, we found that PTPRO was significantly downregu-
lated in LUAD and positively correlated with patient prog-
nosis. Next, we found that age, gender, T, and stage of
patients affected PTPRO expression levels. In addition, we
further analyzed the results and showed that PTPRO was a
protective factor for LUAD; we further established a nomo-
gram based on PTPRO expression, which was shown to have
good predictive capacity for patient prognosis. Furthermore,
we preliminarily explored the mechanism of PTPRO in
LUAD by GO and KEGG analyses. Moreover, we also found

that the expression level of PTPRO was closely related to the
infiltration of various immune cells. Finally, we applied an
algorithm to predict the sensitivity of PTPRO to chemother-
apeutic drugs and immunotherapy response.

Tumor immunotherapy is an extremely complex pro-
cess, and the execution of leukocyte function is the key to
the whole step. The entire tumor immune process mainly
includes the following steps: recognition of tumor antigens,
presentation of tumor antigens, activation of T cell function,
overcoming immune suppression, and killing tumor cells
[29–31]. The above steps are not independent but intersect
each other. In this study, we confirmed the relationship
between PTPRO and the tumor immune microenvironment
for the first time, which provided more theoretical support
for guiding the immunotherapy of LUAD.

In recent years, a large number of studies have attempted
to establish prognostic models based on various gene expres-
sions, in order to provide help for the prognosis of malig-
nant tumors. Guo et al. constructed a prognostic model by
analyzing the expression levels of ferroptosis-related
lncRNAs from head and neck squamous carcinoma in

(c)

Figure 4: Coexpression network analysis of PTPRO-related genes. (a) Coexpressed genes of PTPRO were analyzed by TCGA-LUAD
cohorts. (b) Coexpressed genes of PTPRO were analyzed by GeneMANIA database. (c) Coexpressed genes of PTPRO were analyzed by
STRING database.
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Figure 5: GO and KEGG pathway enrichment analyses for PTPRO-related genes. (a) Heatmap of differential genes (DEGs) with high and
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public databases and confirmed that the model has a good
predictive ability for patient prognosis [32]. In the present
study, we found that PTPRO was a protective factor for
LUAD by univariate and multivariate analyses. Next, we
constructed a nomogram based on PTPRO expression levels
and multiple clinical characteristics, and the associated cali-
bration curve showed that the nomogram had a good pre-

dictive ability for 1-, 3-, and 5-year survival, which
indirectly confirmed PTPRO plays a vital role in LUAD.

In this study, we evaluated the relationship between the
expression level of PTPRO in LUAD and immune cell sub-
sets in the tumor through multiple databases, and the results
showed that the expression level of PTPRO significantly
affected the infiltration of various immune cells. It is well
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Figure 6: Correlation analysis of PTPRO expression level and immune cell infiltration. (a–c) TIMER, TISIDB, and CIBERSORT tools were
used to analyze the correlation between the expression level of PTPRO and the infiltration of LUAD immune cells, respectively.
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Figure 7: Prediction of sensitivity to chemotherapeutic drugs based on PTPRO expression levels. (a–l) Prediction of PTPRO expression
levels in LUAD for sensitivity to multiple chemotherapeutics.
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known that CD8+ cells and macrophages are key cell subsets
that perform leukocyte immune function against tumors
[31, 33]. A previous study demonstrated that PTPRO can
improve TIM in renal cancer, and given the findings we
obtained, PTPRO has a similar effect in LUAD [15]. It is
worth noting that the results obtained in this study are
derived from multiple databases and have high reliability.

Our study demonstrates the important role of PTPRO in
LUAD; however, there are still many shortcomings. First, all
data in this study were derived from public databases and
have not been verified by relevant experiments. In addition,
the specific mechanism by which PTPRO regulates the TIM
of LUAD has not been fully elucidated in this study.

In conclusion, our results suggested PTPRO expression
level is closely related to the prognosis and TIM of LUAD.

In LUAD, PTPRO is not only an independent prognostic
predictor but also a potential immunotherapy target.
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Figure 8: Prediction of sensitivity to immunotherapy based on PTPRO expression levels. (a) Correlation analysis of immune checkpoints
and PTPRO expression level. (b) Immune, stromal, and ESTIMATE scores for high and low PTPRO expressions in LUAD. (c–f) The IPS
scores between high and low expressions of the PTPRO groups when CTLA-4 or/and PD1 positive.
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