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&e main concern of this paper is to discuss stability and bifurcation analysis for a class of discrete predator-prey interaction with
Holling type II functional response and harvesting effort. Firstly, we establish a discrete singular bioeconomic system, which is
based on the discretization of a system of differential algebraic equations. It is shown that the discretized system exhibits much
richer dynamical behaviors than its corresponding continuous counterpart. Our investigation reveals that, in the discretized
system, two types of bifurcations (i.e., period-doubling and Neimark–Sacker bifurcations) can be studied; however, the dynamics
of the continuous model includes only Hopf bifurcation. Moreover, the state delayed feedback control method is implemented for
controlling the chaotic behavior of the bioeconomic model. Numerical simulations are presented to illustrate the theoretical
analysis. &e maximal Lyapunov exponents (MLE) are computed numerically to ensure further dynamical behaviors and
complexity of the model.

1. Introduction

Bioeconomics is linked closely to the early development of
ideas in fisheries economics due to the pioneering work of
Canadian economists Gordon [1] and Anthony Scott (in
1955). &eir basic theories used recent developments in
modeling of biological fisheries, initially the contributions
made by Schaefer in 1954 and 1957 on introducing a sys-
tematic connection between fishing mechanism and growth
of biological type through the implementation of mathe-
matical modeling verified by experimental studies, and also
associated itself to resource protection, ecology, and the
environment [2]. &ese concepts were developed from the
multifishing science environment in Canada at that time.
Modeling and fishing science developed rapidly during an
innovative and productive period, especially among Cana-
dian fishing researchers of various disciplines. Fishing
mortality and population modeling were launched for

economists, and novel interdisciplinary methods of mod-
eling became obtainable for the economists, which made it
feasible to measure the economical and biological impacts of
various fisheries management decisions and fishing activi-
ties. Modern bioeconomics related to fisheries science can
furnish perception into developing methods to deal with the
overexploitation and complexities of overcapacity in marine
fisheries where most are affected by lack of solid governance,
changing coastal ecosystem dynamics, and natural fluctu-
ations [3].

Moreover, Gordon in [1] suggested economic theory
keeping in view the common property of resource, which
was based on the effect of the harvest effort on an ecosystem
by taking into account an economic perspective, assuming
that x(t) and e(t) denote the density of harvested population
and the harvest effort in an ecosystem, respectively; then the
total cost is equal to ce(t), and the total revenue is equal to
pe(t)x(t), where c denotes the cost of harvest effort, and p is
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used for the unit price of harvested population. &en, the
economic interest μ for the harvest effort by the harvested
population is given by

μ � e(t)(px(t) − c). (1)

Taking into account Gordon [1] theory, Zhang et al. [4]
studied a class of bioeconomic system with implementation
of theory for singular systems. &eir study was consisted of
bifurcation analysis and chaos control for the proposed
bioeconomic model. Later on, Liu et al. [5] reported stability,
bifurcation analysis, and state feedback control for a class of
predator-prey interaction with harvest effort on predator
and stage structure for prey. Chakraborty et al. [6] studied a
bioeconomic system with implementation of theory of
differential algebraic equations. &ey investigated stability,
Hopf bifurcation, and state feedback control for a class of
predator-prey interaction with time-delayed effect. Zhang
et al. [7] investigated a singular bioeconomic model for prey-
predator interaction with diffusion and time delay. Zhang
et al. [8] carried out comprehensive study related to theory,
applications, complexity, and control of singular bio-
economic systems. Zhang et al. [9] explored the Hopf bi-
furcation for a predator-prey type bioeconomic system with
two delays and predator harvesting. Meng and Zhang [10]
discussed the qualitative behavior of a delayed singular
bioeconomic predator-prey model without and with sto-
chastic fluctuation. Liu et al. [11] analyzed the local dy-
namics and Hopf bifurcation for a biological economic
model with Holling type II functional response and har-
vesting effort on prey. Liu et al. [12] proposed a singular
fishery model for a class of prey-predator interaction with
gestation delay for predator and maturation delay for prey.
Liu et al. [13] formulated and discussed a singular predator-
prey model by implementing commercial harvesting on
predator with gestation delay for predator and maturation
delay for prey. In [14], Li et al. studied a singular bio-
economic predator-prey system with Holling type II func-
tional response and nonlinear harvesting on prey. Meng and
Wu [15] discussed a singular prey-predator system with two
delays, nonlinear predator harvesting and Bedding-
ton–DeAngelis functional response. Babaei and Shafiee [16]
reported stability analysis, bifurcation, chaotic behavior, and
control for a singular bioeconomic model of prey-predator
interaction governed by an algebraic equation and 3-di-
mensional differential equations.

In case of mathematical modeling of predator-prey in-
teraction, the research concerning interspecific interactions
has been numerously based on continuous predator-prey
systems of two variables. On the other hand, particular
species, covering several classes of insects and seasonal
plants, have nonoverlapping generations successively, and
consequently, their population undergoes in discrete time
steps. Populations with nonoverlapping generations can be
modeled suitably with difference equations, otherwise
known as iterative maps or discrete dynamical systems.
Several authors have shown that nonoverlapping genera-
tions governed by iterative maps reveal complex and chaotic
behavior, and the dynamics in such cases may yield a much

richer set of patterns than those examined in continuous-
time systems (cf. [17–24]). Furthermore, discrete-time
models also have been used for rich dynamics of bio-
economic systems for some classes of predator-prey inter-
action. For example, in [25], the authors analyzed complex
dynamics of a discrete-time bioeconomic system for pred-
ator-prey interaction with the implementation of Euler
approximations. Wu and Chen [26] implemented the
Poincaré scheme for discretization of a singular bio-
economic model and they analyzed period-doubling bi-
furcation, Neimark–Sacker bifurcation, and stability
behavior. Liu et al. [27] studied the chaotic behavior of a
discrete singular system related to the bioeconomic model of
the prey-predator type.

Taking into account predator interaction with logistic
growth and Holling type II functional response for prey
population, we have the following system [28]:

dx

dt
� x d − kx −

y

a + x
􏼒 􏼓,

dy

dt
� y

bx

a + x
− r􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where x � x(t) and y � y(t) denote state variables for the
densities of prey and predator at time t, respectively.
Moreover, d is the intrinsic growth rate of prey, r represents
the natural death rate of the predator, a is used for half
capturing saturation constant, and b represents the maximal
growth rate of the predator. Furthermore, d/k denotes the
environmental carrying capacity for the prey population.

Keeping in view (1) and (2), we obtain the following
predator-prey biological economic model with Holling type
II functional response with harvest effort:

dx

dt
� x d − kx −

y

a + x
− e􏼒 􏼓,

dy

dt
� y

bx

a + x
− r􏼠 􏼡,

μ � e(px − c).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Applying the forward Euler scheme to system (3), we
obtain the discrete-time predator-prey biological economic
model with Holling type II functional response as follows:

xn+1 � xn + hxn d − kxn −
yn

a + xn

− en􏼠 􏼡,

yn+1 � yn + hyn

bxn

a + xn

− r􏼠 􏼡,

μ � en pxn − c( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where h is the integral step size for the Euler approximation.
In this paper, we discuss some dynamical aspects of the
discrete singular model (4). For this, the first existence of
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interior (positive) fixed point and local dynamics of system
(4) about biologically feasible equilibrium are carried out.
Secondly, it is proved that system (4) undergoes period-
doubling bifurcation and Neimark–Sacker bifurcation by
varying the economic profit μ as the bifurcation parameter.
&irdly, a state delayed feedback control strategy is applied
to avoid bifurcating and chaotic behavior of bioeconomic
model (4). At the end, numerical examples are presented for
verification and illustration of our theoretical discussion.

2. Fixed Points and Stability Analysis

In order to study the qualitative behavior of the solutions of
the nonlinear model (4), we study the existence of fixed
points and their stability properties. From system (4), we can
see that there exists a fixed point X0 ≔ (x0, y0, e0) in R+

3 if
and only if X0 is a solution of the following equations:

x � x + hx d − kx −
y

a + x
− e􏼒 􏼓,

y � y + hy − r +
bx

a + x
􏼠 􏼡,

μ � e(px − c).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

&rough a simple calculation, we obtain

X0 � x0, y0, e0( 􏼁 �
ar

(b − r)
, a + x0( 􏼁 d − kx0 − e0( 􏼁,

μ
px0 − c( 􏼁

􏼠 􏼡.

(6)

For biological considerations, we focus on the dynamics
of the positive fixed point of the system (4). &us,
throughout the paper, we assume the conditions for the
existence of a unique positive fixed point of system (4) as
follows:

b> r,

bc< r(ap + c),

bd − r(ak + d)

(b − r)
2 −

μ
r(ap + c) − bc

> 0.

(7)

In μk-plane, the existence of a unique positive fixed point
of system (4) is depicted in Figure 1.

&e generalized Jacobian matrix J(x0, y0, e0) of system
(4) about interior (positive) fixed point (x0, y0, e0) is
computed as follows:

J x0, y0, e0( 􏼁 �

1 − hkx0 +
hx0y0

a + x0( 􏼁
2 −

hx0

a + x0
− hx0

abhy0

a + x0( 􏼁
2 1 0

e0p 0 px0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)

&en, it is easy to see that the generalized characteristic
equation of the Jacobian matrix J(x0, y0, e0) can be written
as

det

1 − hkx0 +
hx0y0

a + x0( 􏼁
2 − λ −

hx0

a + x0
− hx0

abhy0

a + x0( 􏼁
2 1 − λ 0

e0p 0 px0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0,

(9)

which on simplification yields

λ2 + Pλ + Q � 0, (10)

where

P � hkx0 −
hx0y0

a + x0( 􏼁
2 −

he0px0

px0 − c
− 2

�
1

((arp/(b − r)) − c)
2 R1μ − S1 + 2( 􏼁

arp

b − r
− c􏼒 􏼓

2
􏼢 􏼣 � H − Q − 1,

Q � 1 − hkx0 +
hx0y0

a + x0( 􏼁
2 +

he0px0

px0 − c
+

abh
2
x0y0

a + x0( 􏼁
3

�
1

((arp/(b − r)) − c)
2 R2μ − S2 − 1( 􏼁

arp

b − r
− c􏼒 􏼓

2
􏼢 􏼣,

(11)

where

Coexistence region

0 5 10 15 20
0

5

10

15

20

μ

k

Figure 1: Coexistence region for system (4) with a � 6.76, b � 9.4,
c � 1.58, r � 0.74, p � 9.2, and d � 8.83.
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H �
abx0y0

a + x0( 􏼁
3 > 0,

R1 � −
hr

b
(ap + c),

S1 � −
hr

b
d −

ak(b + r)

b − r
􏼠 􏼡,

R2 �
hr

b
[(ap + c)(1 − hr) + hcb],

S2 �
hr

b
d −

ak(b + r)

b − r
+ h d(b − r) − hark􏼢 􏼣.

(12)

Let F(λ) � λ2 + Pλ + Q, then

F(1) � 1 + P + Q � H> 0,

F(− 1) � 1 − P + Q �
2

((arp/(b − r)) − c)
2

R3μ − S3 − 2( 􏼁
arp

b − r
− c􏼒 􏼓

2
􏼢 􏼣,

(13)

where

R3 �
hr

b
(ap + c) 1 −

hr

2
􏼠 􏼡 +

hcb

2
􏼢 􏼣,

S3 �
hr

b
d −

ak(b + r)

b − r
+

h d(b − r)

2
−

hark

2
􏼢 􏼣.

(14)

In order to discuss the stability of the fixed point of
(x0, y0, e0), we need the following lemma.

Lemma 1 (see [23]). Consider S(ζ) � ζ2 + Pζ + Q. More-
over, assuming that S(1)> 0 and ζ1 and ζ2 are two roots of
S(ζ) � 0, then the following hold true:

(i) |ζ1|< 1 and |ζ2|< 1 if and only if S(− 1)> 0, and
S(0) � Q< 1

(ii) |ζ1|< 1 and |ζ2|> 1 (or |ζ1|> 1 and |ζ2|< 1) if and
only if S(− 1)< 0

(iii) |ζ1|> 1 and |ζ2|> 1 if and only if S(− 1)> 0 and
S(0)> 1

(iv) ζ1 � − 1 and |ζ2|≠ 1 if and only if S(− 1) � 0 and
P≠ 0, 2

(v) ζ1 and ζ2 are complex and |ζ1| � 1 and |ζ2| � 1 if and
only if P2 − 4Q< 0 and Q � 1

Assume that ζ1 and ζ2 are roots for the characteristic
equation of the variational matrix J(x0, y0, e0) about interior
(positive) fixed point (x0, y0, e0) which are known as ei-
genvalues for the equilibrium point (x0, y0, e0). Taking into
account the topological types related to the fixed point
(x0, y0, e0) of system (4), we say that the fixed point
(x0, y0, e0) is a sink (asymptotically stable) if |ζ1|< 1 and
|ζ2|< 1; (x0, y0, e0) is called a source (repeller) if |ζ1|> 1 and

|ζ2|> 1; (x0, y0, e0) is called a saddle if |ζ1|> 1 and |ζ2|< 1 (or
|ζ1|< 1 and |ζ2|> 1; and (x0, y0, e0) is called nonhyperbolic if
either |ζ1| � 1 or |ζ2| � 1, on the other hand, if ζ1 � − 1 and
|ζ2|≠ 1 are necessary conditions for the emergence of pe-
riod-doubling bifurcation and − 2<P< 2 with Q � 1 are
necessary conditions for the occurrence of Neimark–Sacker
bifurcation. Moreover, if S(1) � 1 + P + Q> 0, then all cases
of Lemma 1 are depicted in Figure 2 in PQ-plane.

Keeping in view Lemma 1, the following theorem is
presented for local dynamics of system (4) about its positive
fixed point.

Theorem 1. Assume that b> r, bc< r(ap + c), and ((bd −

r(ak + d))/(b − r)2) − (μ/(r(ap + c) − bc))> 0; then, there
exists unique interior (positive) fixed point (x0, y0, e0) for
system (4) satisfying the following conditions:

(i) (x0, y0, e0) is a sink if and only if R2μ< S2
((arp/(b − r)) − c)2 and R3μ> (S3 − 2)((arp/(b −

r)) − c)2

(ii) (x0, y0, e0) is a source if and only R2μ> S2
((arp/(b − r)) − c)2 and R3μ> (S3 − 2)((arp/(b −

r)) − c)2

(iii) (x0, y0, e0) is a saddle if and only if R3μ<
(S3 − 2)((arp/(b − r)) − c)2

(iv) (x0, y0, e0) is nonhyperbolic if one of the following
conditions hold true:

(1) R3μ � (S3 − 2)((arp/(b − r)) − c)2, R1μ≠(S1+

2)((arp/(b − r)) − c)2,(S1 +4) ((arp/(b − r)) −

c)2

(2) R2μ � S2((arp/(b − r)) − c)2 and H(μ)< 4

Next, for a � 3.9, b � 14, c � 3.7, r � 3.4, p � 5.8,
d � 21.1, and h � 0.25, the dynamical classification of in-
terior equilibrium of system (4) is depicted in μk-plane (see
Figure 3).

Taking into account part (iv.1) of &eorem 1, it is easily
to observe that the eigenvalues about the equilibrium point
(x0, y0, e0) are given by λ1 � − 1 and λ2 � 1 − P with
|λ2|≠ − 1. On the other hand, if part (iv.2) of &eorem 1
holds true, then one can obtain that the eigenvalues for the
equilibrium point (x0, y0, e0) are conjugate complex num-
bers with modulus one.

Next, we consider the following set:

FB �

0< μ �
1

R3
S3 − 2( 􏼁

arp

b − r
− c􏼒 􏼓

2
< d −

kar

b − r
􏼠 􏼡

par

b − r
− c􏼒 􏼓

(a, b, c, d, k, p, r, μ, h):

R1μ≠ S1 + 2( 􏼁
arp

b − r
− c􏼒 􏼓

2
,

S1 + 4( 􏼁
arp

b − r
− c􏼒 􏼓

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)
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It is easy to see that the steady state (x0, y0, e0) undergoes
period-doubling (flip) bifurcation whenever parameters vary
in a small neighborhood of FB.

Next, we consider the following curve:

HB � (a, b, c, d, k, p, r, μ, h): 0< μ �
S2
R2

arp

b − r
− c􏼒 􏼓

2
< d −

kar

b − r
􏼠 􏼡

par

b − r
− c􏼒 􏼓, H(μ)< 4􏼨 􏼩. (16)

On the other hand, (x0, y0, e0) undergoes the Nei-
mark–Sacker (Hopf) bifurcation whenever parameters vary

in a small neighborhood of HB. In Section 3, we discuss the
occurrence of period-doubling bifurcation around the

SourceNSB
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Saddle

PDB
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Figure 2: Dynamical classification of planar system with S(1)> 0.
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Figure 3: Dynamical classification of interior equilibrium of system (4) in μk-plane.

Discrete Dynamics in Nature and Society 5



interior fixed point (x0, y0, e0) with the variation of pa-
rameters in a small neighborhood of FB, and the emergence
of the Neimark–Sacker bifurcation about (x0, y0, e0) with
varying the parameters in a small neighborhood of HB.

3. Bifurcation Analysis

Keeping in view the analysis of Section 3, we discuss the
period-doubling bifurcation and Neimark–Sacker bifurca-
tion about the positive fixed point (x0, y0, e0) in this section.
For this, choose parameter μ as bifurcation parameter for
investigating the period-doubling bifurcation and Nei-
mark–Sacker bifurcation about (x0, y0, e0) by implementing
the novel normal form theory of discrete singular systems,
the center manifold theorem, and the bifurcation theory of
discrete systems [29–35].

3.1. Period-Doubling Bifurcation. First, we start our inves-
tigation related to period-doubling bifurcation for system
(4) about its equilibrium (x0, y0, e0) with a variation of
parameters in a small neighborhood of FB. For this, we
choose parameters (a, b, c, d, k, p, r, μ1, h) arbitrarily from
FB, taking into account system (4) with
(a, b, c, d, k, p, r, μ1, h) ∈ FB. In this case, system (4) is de-
scribed by the following 2-dimensional map:

x⟶ x + hx d − kx −
y

a + x
− e􏼒 􏼓,

y⟶ y + hy − r +
bx

a + x
􏼠 􏼡,

μ1 � e(px − c).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

It is easy to see that system (17) has a unique positive
fixed point (x0, y0, e0) such that the eigenvalues are given by
λ1 � − 1 and λ2 � 1 − P with |λ2|≠ − 1. Assume that
(a, b, c, d, k, p, r, μ1, h) ∈ FB with μ1 � (1/R1)(S1 − 2)

((arp/(b − r)) − c)2. Next, we take μ∗ as a bifurcation pa-
rameter, considering a perturbation for system (17) as
follows:

x⟶ x + hx d − kx −
y

a + x
− e􏼒 􏼓,

y⟶ y + hy − r +
bx

a + x
􏼠 􏼡,

μ1 + μ∗ � e(px − c),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where μ∗ ≪ 1 is taken as a small perturbation parameter.
&en, system (17) can be described in the following way:

(x, y)
T⟶ f(x, y, e),

g(x, y, e) � 0,

⎧⎨

⎩ (19)

where

f(x, y, e) ≔ f1(x, y, e), f2(x, y, e)( 􏼁
T
,

f1(x, y, e) � x + hx d − kx −
y

a + x
− e􏼒 􏼓,

f2(x, y, e) � y + hy − r +
bx

a + x
􏼠 􏼡,

g(x, y, e) � e(px − c) − μ1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

&en, it is easy to see that Dg(x0, y0, e) � (e0p, 0, px0 −

c) such that the rank of Dg(x0, y0, e0) � 1. On the other
hand, a local parameterization ψ for the 2-dimensional
smooth manifold defined by Mg � (x, y, e) ∈ R3;􏼈

g(x, y, e) � 0, and rankDg(x, y, e) � 1} about (x, y, e) ∈
B(x0, y0, e0) ⊂Mg is given as follows: for any
(x, y, e) ∈ B(x0, y0, e0), there is Z ∈ A ⊂ R2 such that

X � ψ(Z) � X0 + U0Z + V0H(Z),

g(ψ(Z)) � 0,
(21)

where

U0 �

1 0

0 1

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

V0 �

0

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(22)

X � (x, y, e), X0 � (x0, y0, e0), Z � (z1, z2), and H: R2

⟶ R is a smooth mapping. For further details, the in-
terested reader is referred to [36]. Taking into account the
definition of ψ, we obtain the following:

Dψ(z) �
D(g(X))

UT
0

􏼠 􏼡

− 1 0 0

1 0

0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (23)

for arbitrarily chosen (x, y, e) ∈ B(x0, yo, e0). &en, system
(19) is written as follows:

Z⟶ f(Z), Z ∈ A ⊂ R
2
, (24)

where A � ψ− 1B(x0, yo, e0).
Taking into account (24), we have

z1⟶ a1z1 + a2z2 + a13z1μ
∗

+ a11z
2
1 + a12z1z2 + a113z

2
1μ
∗

+a111z
3
1 + a112z

2
1z2 + O z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + μ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓,

z2⟶ b1z1 + b2z2 + b13z1μ
∗

+ b11z
2
1 + b12z1z2 + b113z

2
1μ
∗

+b111z
3
1 + b112z

2
1z2 + O z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + μ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)
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In order to compute the coefficients related the normal
form, we need some further computation. From the
aforementioned computation, one can easily get

Df1(X) � 1 + h d − 2kx −
ay

(a + x)
2 − e􏼠 􏼡, −

hx

a + x
, − hx􏼠 􏼡

Df2(X) �
abhy

(a + x)
2, 1 + h − r +

bx

a + x
􏼠 􏼡, 0􏼠 􏼡

Dg(X) � (ep, 0, px − c)

Dψ(z) �

Dg(X)

UT
0

⎛⎝ ⎞⎠

− 1
0 0

1 0

0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

ep 0 px − c

1 0 0

0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1 0 0

1 0

0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 0

0 1

−
ep

px − c
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Dz1
ψ(z), Dz2

ψ(z)􏼐 􏼑,

(26)

and from this, it follows that

Dz1
ψ(z) � 1, 0, −

ep

px − c
􏼠 􏼡

T

,

Dz2
ψ(z) � (0, 1, 0)

T
.

(27)

Assume that fizi
(ψ(Z)) represents the derivative of

fi(ψ(Z)) with respect to zi and taking
fizi

(X) � fizi
(ψ(Z)). In a similar way, one can adopt no-

tations for fizizj
(ψ(Z)) and fizizjzk

(ψ(Z)). Next, it is easy to
see that

f1z1
(X) � Df1(X)Dz1

ψ(z) � 1 + h d − 2kx −
ay

(a + x)
2 − e +

epx

px − c
􏼠 􏼡,

f1z2
(X) � Df1(X)Dz2

ψ(z) � −
hx

a + x
,

f2z1
(X) � Df2(X)Dz1

ψ(z) �
abhy

(a + x)
2,

f2z2
(X) � Df2(X)Dz2

ψ(z) � 1 + h − r +
bx

a + x
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Putting X0 into (28), one has the following:

Discrete Dynamics in Nature and Society 7



f1z1
X0( 􏼁 � 1 + h − kx0 +

e0px0

px0 − c
+

x0 d − kx0 − e0( 􏼁

a + x0
􏼠 􏼡 � 1 +

hr

b
d +

ak(b + r)

b − r
􏼠 􏼡

+
hr

b

(b − r)
2
(ap + c)

(apr − cb + cr)
2 μ1 + μ∗( 􏼁,

f1z2
X0( 􏼁 � −

x0

a + x0
� −

hr

b
,

f2z1
X0( 􏼁 �

abhy0

a + x0( 􏼁
2 �

abh d − kx0 − e0( 􏼁

a + x0
� h(b − r) d −

kar

b − r
−

μ1 + μ∗( 􏼁(b − r)

apr − cb + cr
􏼠 􏼡,

f2z2
X0( 􏼁 � 1 + h − r +

bx0

a + x0
􏼠 􏼡 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

&en, from (28), it is easy to see that

Df1z1
(X) � h − 2k +

2ay

(a + x)
3 −

epc

(px − c)
2􏼠 􏼡, −

ah

(a + x)
2, h − 1 +

px

px − c
􏼠 􏼡􏼠 􏼡,

Df1z2
(X) � −

ah

(a + x)
2, 0, 0􏼠 􏼡,

Df2z1
(X) � −

2abhy

(a + x)
3,

abh

(a + x)
2, 0􏼠 􏼡,

Df2z2
(X) �

abh

(a + x)
2, 0, 0􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Consequently, one has the following:

f1z1z1
(X) � Df1z1

(X)Dz1
ψ(z) � h − 2k +

2ay

(a + x)
3 −

2epc

(px − c)
2􏼢 􏼣,

f1z1z2
(X) � Df1z1

(X)Dz2
ψ(z) � −

ah

(a + x)
2,

f2z1z1
(X) � Df2z1

(X)Dz1
ψ(z) � −

2abhy

(a + x)
3,

f2z1z2
(X) � Df2z1

(X)Dz2
ψ(z) �

abh

(a + x)
2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)
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Putting the value of X0 in (31), one has the following:

f1z1z1
X0( 􏼁 � h − 2k +

2a d − kx0 − e0( 􏼁

a + x0( 􏼁
2 −

2e0pc

px0 − c( 􏼁
2

⎡⎣ ⎤⎦ � h − 2k +
2d(b − r)

2

ab
2 −

2kr(b − r)

b
2􏼢 􏼣

−
2(b − r)

3

apr − cb + cr

1
ab

2 +
pc

(apr − cb + cr)
2􏼠 􏼡 μ1 + μ∗( 􏼁􏼣,

f1z1z2
X0( 􏼁 � −

ah

a + x0( 􏼁
2 � −

h(b − r)
2

ab
2 ,

f2z1z1
X0( 􏼁 � −

2abh d − kx0 − e0( 􏼁

a + x0( 􏼁
2 �

2h(b − r)
2

ab

akr

b − r
− d􏼠 􏼡 +

2h(b − r)
3

ab(apr − cb + cr)
μ1 + μ∗( 􏼁,

f2z1z2
X0( 􏼁 �

abh

a + x0( 􏼁
2 �

h(b − r)
2

ab
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

&en, from (31), it follows that

Df1z1z1
(X) � −

6ahy

(a + x)
4 +

4hep
2
c

(px − c)
3,

2ah

(a + x)
3, −

2hpc

(px − c)
2􏼠 􏼡,

Df1z1z2
(X) �

2ah

(a + x)
3, 0, 0􏼠 􏼡,

Df2z1z1
(X) �

6abhy

(a + x)
4, −

2abh

(a + x)
3, 0􏼠 􏼡,

Df2z1z2
(X) � −

2abh

(a + x)
3, 0, 0􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)
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&en, we get

f1z1z1z1
(X) � Df1z1z1

(X)Dz1
ψ(z) � −

6ahy

(a + x)
4 +

6hep
2
c

(px − c)
3,

f1z1z1z2
(X) � Df1z1z1

(X)Dz2
ψ(z) �

2ah

(a + x)
3,

f2z1z1z1
(X) � Df2z1z1

(X)Dz1
ψ(z) �

6abhy

(a + x)
4,

f2z1z1z2
(X) � Df2z1z1

(X)Dz2
ψ(z) � −

2abh

(a + x)
3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Putting the value of X0 into (34), we obtain that

f1z1z1z1
X0( 􏼁 � −

6ah d − kx0 − e0( 􏼁

a + x0( 􏼁
3 +

6he0p
2
c

px0 − c( 􏼁
3 �

6hkr(b − r)
2

ab
3 −

6h d(b − r)
3

a
2
b
3

+
6h(b − r)

4

apr − cb + cr

1
a
2
b
3 +

p
2
c

(apr − cb + cr)
3􏼢 􏼣 μ1 + μ∗( 􏼁,

f1z1z1z2
X0( 􏼁 �

2ah

a + x0( 􏼁
3 �

2h(b − r)
3

a
2
b
3 ,

f2z1z1z1
X0( 􏼁 �

6abh d − kx0 − e0( 􏼁

a + x0( 􏼁
3 �

6h(b − r)
3

a
2
b
2 d −

akr

b − r
􏼠 􏼡 −

6h(b − r)
4

a
2
b
2
(apr − cb + cr)

μ1 + μ∗( 􏼁,

f2z1z1z2
X0( 􏼁 � −

2abh

a + x0( 􏼁
3 � −

2h(b − r)
3

a
2
b
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

10 Discrete Dynamics in Nature and Society



Consequently, it follows from (29), (32), and (35) that

a1 � 1 +
hr

b
d +

ak(b + r)

b − r
􏼠 􏼡 +

hr

b

(b − r)
2
(ap + c)

(apr − cb + cr)
2μ1,

a2 � −
hr

b
,

a13 �
hr

b

(b − r)
2
(ap + c)

(apr − cb + cr)
2,

a11 � h − 2k +
2 d(b − r)

2

ab
2 −

2kr(b − r)

b
2 −

2(b − r)
3

apr − cb + cr

1
ab

2 +
pc

(apr − cb + cr)
2􏼠 􏼡μ1􏼢 􏼣,

a12 � −
h(b − r)

2

ab
2 ,

a113 � −
2h(b − r)

3

apr − cb + cr

1
ab

2 +
pc

(apr − cb + cr)
2􏼢 􏼣

a111 �
6hkr(b − r)

2

ab
3 −

6h d(b − r)
3

a
2
b
3 +

6h(b − r)
4

apr − cb + cr

1
a
2
b
3 +

p
2
c

(apr − cb + cr)
3􏼢 􏼣μ1,

a112 �
2h(b − r)

3

a
2
b
3 ,

b1 � h(b − r) d −
b − r

apr − cb + cr
μ1􏼠 􏼡 − akr,

b2 � 1,

b13 � −
h(b − r)

2

apr − cb + cr
,

b11 �
2h(b − r)

2

ab

akr

b − r
− d􏼠 􏼡 +

2h(b − r)
3

ab(apr − cb + cr)
μ1,

b12 �
h(b − r)

2

ab
,

b113 �
2h(b − r)

3

ab(apr − cb + cr)
,

b111 �
6h(b − r)

3

a
2
b
2 d −

akr

b − r
􏼠 􏼡 −

6h(b − r)
4

a
2
b
2
(apr − cb + cr)

μ1,

b112 � −
2h(b − r)

3

a
2
b
2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)
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Next, we consider the following nonsingular matrix:

T �
a2 a2

− 1 − a1 λ2 − a1
􏼠 􏼡, (37)

implementing the following translation:

z1

z2
􏼠 􏼡 � T

u

v
􏼠 􏼡. (38)

&en, it is easy to see that system (24) can be written as
follows:

u

v
􏼠 􏼡⟶

− 1 0

0 λ2
􏼠 􏼡

u

v
􏼠 􏼡 +

f1 u, v, μ∗( 􏼁

f2 u, v, μ∗( 􏼁
􏼠 􏼡, (39)

where

f1 u, v, μ∗( 􏼁 �
a11 λ2 − a1( 􏼁 − a2b11

a2 1 + λ2( 􏼁
z
2
1 +

a12 λ2 − a1( 􏼁 − a2b12

a2 1 + λ2( 􏼁
z1z2 +

a13 λ2 − a1( 􏼁 − a2b13

a2 1 + λ2( 􏼁
z1μ
∗

+
a113 λ2 − a1( 􏼁 − a2b113

a2 1 + λ2( 􏼁
z
2
1μ
∗

+
a111 λ2 − a1( 􏼁 − a2b111

a2 1 + λ2( 􏼁
z
3
1

+
a112 λ2 − a1( 􏼁 − a2b112

a2 1 + λ2( 􏼁
z
2
1z2 + O z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + μ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓

f2 u, v, μ∗( 􏼁 �
a11 1 + a1( 􏼁 + a2b11

a2 1 + λ2( 􏼁
z
2
1 +

a12 1 + a1( 􏼁 + a2b12

a2 1 + λ2( 􏼁
z1z2 +

a13 1 + a1( 􏼁 + a2b13

a2 1 + λ2( 􏼁
z1μ
∗

+
a113 1 + a1( 􏼁 + a2b113

a2 1 + λ2( 􏼁
z
2
1μ
∗

+
a111 1 + a1( 􏼁 + a2b111

a2 1 + λ2( 􏼁
z
3
1

+
a112 1 + a1( 􏼁 + a2b112

a2 1 + λ2( 􏼁
z
2
1z2 + O z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + μ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓

z1 � a2(u + v), z2 � − 1 + a1( 􏼁u + λ2 − a1( 􏼁v,

z1z2 � a2 − 1 + a1( 􏼁u
2

+ λ2 − 2a1 − 1( 􏼁uv + a2 λ2 − a1( 􏼁v
2

􏽨 􏽩,

z
2
1 � a

2
2 u

2
+ uv + v

2
􏽨 􏽩,

z
3
1 � a

3
2 u

3
+ 3u

2
v + 3uv

2
+ v

3
􏽨 􏽩,

z
2
1z2 � a

2
2 − 1 + a1( 􏼁u

3
+ λ2 − 3a1 − 2( 􏼁u

2
v + 2λ2 − 3a1 − 1( 􏼁uv

2
+ λ2 − 1( 􏼁v

3
􏽨 􏽩.

(40)

In order to determine the center manifold Wc(0, 0, 0) of
(39) about the equilibrium point (0, 0) in a small neigh-
borhood of μ∗, we implement an application of the center

manifold theorem [29], and it is easy to see that there exists a
center manifold of the following form:

Wc(0, 0, 0) � u, v, μ∗( 􏼁 ∈ R
3
, v � h u, μ∗( 􏼁, h(0, 0) � 0, Dh(0, 0) � 0􏽮 􏽯, (41)

for u and μ∗ sufficiently small. Furthermore, we assume
that

h u, μ∗( 􏼁 � c0u
2

+ c1uμ
∗

+ c2μ
∗2

+ O |u| + μ∗
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
3

􏼒 􏼓. (42)

&en, it is easy to see that the center manifold satisfies the
following:

h − u + f1 u, h u, μ∗( 􏼁, μ∗( 􏼁, μ∗( 􏼁 � λ2h u, μ∗( 􏼁 + f2 u, h u, μ∗( 􏼁, μ∗( 􏼁.

(43)
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Taking into account (42) and (43) and then comparing
coefficients for (43), one can easily obtain that

c0 �
1

1 − λ22􏼐 􏼑
1 + a1( 􏼁 a2a11 − a12 1 + a1( 􏼁 − a2b12( 􏼁 + a

2
2b11􏽨 􏽩,

c1 �
a13 1 + a1( 􏼁 + a2b13

1 + λ2( 􏼁
2 ,

c2 � 0.

(44)

Furthermore, taking into account (39), it is restricted to
the center manifold Wc(0, 0, 0) as follows:

F: u⟶ − u + d11u
2

+ d12uμ
∗

+ d112u
2μ∗ + d122uμ

∗2
+ d111u

3
+ O |u| + μ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓, (45)

where

d11 �
1

λ2 + 1
λ2 − a1( 􏼁 a11a2 − a12 1 + a1( 􏼁 + a113a2( 􏼁 − b11a

2
2 + 1 + a1( 􏼁b12a2 − b113a

2
2􏽨 􏽩,

d12 �
1

λ2 + 1
a13 λ2 − 1( 􏼁 − b13a2􏼂 􏼃,

d112 �
1

λ2 + 1
λ2 − a1( 􏼁 a11a2c1 + a12c1 λ2 − 2a1 − 1( 􏼁 + a13c0( 􏼁 − b11a

2
2c1􏽨 􏽩

− b12a2c1 λ2 − 2a1 − 1( 􏼁 − b13a2c0􏼃,

d122 �
1

λ2 + 1
a13c1 λ2 − 1( 􏼁 − b13a2c1􏼂 􏼃,

d111 �
1

λ2 + 1
λ2 − a1( 􏼁 a11a2c0 + a111a

2
2 + a12c0 λ2 − 2a1 − 1( 􏼁 − a112a2 1 + a1( 􏼁􏼐 􏼑 − b11a

2
2c0􏽨 􏽩

− b12a2c0 λ2 − 2a1 − 1( 􏼁 − b111a
3
2 + b112a

2
2 1 + a1( 􏼁􏽩.

(46)

In order for system (45) to undergo a flip bifurcation, we
require that two discriminatory quantities α1and α2 are not
zero, where

α1 � 2
z2F

zμ∗zu
+

zF

zμ∗
zF

zu
􏼠 􏼡

(0,0)

� 2d12,

α2 �
1
2

z2F

zu2􏼠 􏼡

2

+
1
3

z3F

zu3􏼠 􏼡⎛⎝ ⎞⎠

(0,0)

� 2 d111 + d
2
11􏼐 􏼑.

(47)

Keeping in view the aforementioned computation and
bifurcation theory given in [36, 37], we have the following
theorem.

Theorem 2. Assume that (a, b, c, d, k, p, r, μ1) ∈ FB. If
α2 ≠ 0, then system (17) undergoes a flip bifurcation at the
fixed point (x0, y0, e0) when the parameter μ varies in a small
neighborhood of μ1. Moreover, if α2 > 0 (resp., α2 < 0), then the
period-2 orbits that bifurcate from (x0, y0, e0) are stable
(resp., unstable).
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In the last Section 5 related to numerical simulation,
we choose some parametric values for system (4) such that
it undergoes period-doubling bifurcation about positive
equilibrium as μ varies in the suitable interval (see
Figure 4).

3.2. Neimark–Sacker Bifurcation. Finally, we discuss the
Neimark–Sacker bifurcation about equilibrium (x0, y0, e0)

with variation of parameters (a, b, c, d, k, p, r, μ2, h) in a
small neighborhood of HB. For this, we choose parameters
(a, b, c, d, k, p, r, μ2, h) arbitrarily from HB, taking into ac-
count system (4) with (a, b, c, d, k, p, r, μ2, h) ∈ HB. In this
case, system (4) is described by the following 2-dimensional
map:

x⟶ x + x d − kx −
y

a + x
− e􏼒 􏼓,

y⟶ y + y − r +
bx

a + x
􏼠 􏼡,

μ2 � e(px − c).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

&en, it is easy to observe that map (48) has a unique
positive fixed point (x0, y0, e0). Next, we take μ∗ as a bi-
furcation parameter and consider a perturbation corre-
sponding to map (48) given as follows:

x⟶ x + x d − kx −
y

a + x
− e􏼒 􏼓,

y⟶ y + y − r +
bx

a + x
􏼠 􏼡,

μ2 + μ∗ � e(px − c),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

where μ∗ ≪ 1 is taken as a small perturbation parameter.
Furthermore, from (24), we have

z1⟶ a1z1 + a2z2 + a11z
2
1 + a12z1z2 + a111z

3
1 + a112z

2
1z2 + O z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓,

z2⟶ b1z1 + b2z2 + b11z
2
1 + b12z1z2 + b111z

3
1 + b112z

2
1z2 + O z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

where coefficients a1, a2, a11, a12, a111, a112 and
b1, b2, b11, b12, b111, b112 given in (24) are similar to the co-
efficients in (36) by replacing μ1 with μ2 + μ∗. Moreover, it
must be noted that the characteristic equation corre-
sponding to the linearization of (50) about (z1, z2) � (0, 0)

is given as follows:

λ2 + p μ∗( 􏼁λ + q μ∗( 􏼁 � 0, (51)

where

p μ∗( 􏼁 � h μ∗( 􏼁 − q μ∗( 􏼁 − 1,

q μ∗( 􏼁 �
1

((arp/(b − r)) − c)
2 R2μ − S2 − 1( 􏼁

arp

b − r
− c􏼒 􏼓

2
􏼢 􏼣,

h μ∗( 􏼁 �
abx0y0

a + x0( 􏼁
3 > 0.

(52)

Suppose that (a, b, c, d, k, p, r, μ2, h) ∈ HB; then eigen-
values about (0, 0) are conjugate complex numbers denoted
by λ and λ with modulus 1 such that

λ, λ � −
p μ∗( 􏼁

2
±

i

2

��������������

4q μ∗( 􏼁 − p
2 μ∗( 􏼁

􏽱

, (53)

and, consequently, one has

|λ|μ∗�0 �

����

q(0)

􏽱

� 1,

l �
d|λ|

dμ∗
|μ∗�0 �

R2

2 r1 − c( 􏼁
2 ≠ 0.

(54)

On the other hand, it is necessary that, at μ∗ � 0, one
must have λm, λ

m ≠ 1, (m � 1, 2, 3, 4), or equivalently one has
p(0)≠ − 2, 0, 1, 2. Next, it must be noted that p(0) � h(0) −

q(0) − 1 � H(μ2) − 2 and H(μ2)< 4 because (a, b, c, d, k,

p, r, μ2, h) ∈ HB. As a result, one has p(0)≠ − 2, 2. Conse-
quently, it is required that p(0)≠ 0, 1, which is equivalently
written as follows:

H μ2( 􏼁≠ 2, 3. (55)

Consequently, the eigenvalues of system (50) which are
given by λ, λ about fixed point (0, 0) do not lie in the in-
tersection of the unit circle with the coordinate axes at μ∗ � 0
whenever conditions (55) hold true. Moreover, in order to
discuss the normal form for system (50) about μ∗ � 0, we
choose μ∗ � 0, σ � 1 − (H(μ2)/2), ω � (1/2)����������������

H(μ2)(4 − H(μ2))
􏽰

,

T �
a2 0

σ − a1 − ω
􏼠 􏼡, (56)

taking into account the following translation:
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z1

z2
􏼠 􏼡 � T

u

v
􏼠 􏼡. (57)

&en, it is easy to see that system (50) takes the following
form:

u

v
􏼠 􏼡⟶

σ − ω

ω σ
􏼠 􏼡

u

v
􏼠 􏼡 +

f1(u, v)

f2(u, v)

⎛⎝ ⎞⎠, (58)

where

f1(u, v) �
a11

a2
z
2
1 +

a12

a2
z1z2 +

a111

a2
z
3
1 +

a112

a2
z
2
1z2 + O z1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + z2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

4
􏼒 􏼓

f2(u, v) �
σ − a1( 􏼁a11 − a2b11

a2ω
z
2
1 +

σ − a1( 􏼁a12 − a2b12

a2ω
z1z2

+
σ − a1( 􏼁a111 − a2b111

a2ω
z
3
1 +
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Figure 4: Bifurcation diagrams and LLE for system (3) with a � 5.8, b � 8.8, c � 2.1, d � 3.6, k � 2.5, r � 1.6, p � 2.2, h � 0.98,
μ ∈ [0.19, 0.22], and (x0, y0, e0) � (1.28, 0.6428, 0.287). (a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn. (c) Bifurcation
diagram for en. (d) Largest Lyapunov exponents.
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z1z2 � a2 σ − a1( 􏼁u
2

+ a2ωuv,

z
2
1 � a

2
2u

2
,

z
3
1 � a

3
2u

3
,

z
2
1z2 � a

2
2 σ − a1( 􏼁u

3
− ωu

2
v.

(59)

&erefore, at point (0, 0), we have

f1uu � 2a11 + 2a12 σ − a1( 􏼁,

f1uv � a12ω,

f1uuu � 6a111a
2
2,

f1uuv � −
a112

a2
ω,

f1vv � f1uvv � f1vvv � 0,

f2uu �
2
ω

σ − a1( 􏼁 a11a2 + a12 σ − a1( 􏼁 − a2b12( 􏼁 − a
2
2b11􏽨 􏽩,

f2uv � σ − a1( 􏼁a12 − a2b12,

f2uuu �
6a2

ω
σ − a1( 􏼁 a2a111 + σ − a1( 􏼁a112 − a2b112( 􏼁 − a2b111􏼂 􏼃,

f2uuv �
2
a2

a2b112 − σ − a1( 􏼁a112􏼂 􏼃,

f2vv � f2uvv � f2vvv � 0.

(60)

&en, system (58) undergoes a Neimark–Sacker bifur-
cation, if we have the following nonzero discriminatory
quantity [30, 32]:

θ � − Re
(1 − 2λ)λ

2

1 − λ
⎛⎝ ⎞⎠L11L12 −

1
2

L11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

− L21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ Re λL22􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

μ∗�0

,

(61)

where

L11 �
1
4

f1uu + f1vv􏼐 􏼑 + i f2uu + f2vv􏼐 􏼑􏼐 􏼑,

L12 �
1
8

f1uu − f1vv + 2f2uv􏼐 􏼑 + i f2uu − f2vv − 2f1uv􏼐 􏼑􏼐 􏼑,

L21 �
1
8

f1uu − f1vv − 2f2uv􏼐 􏼑 + i f2uu − f2vv + 2f1uv􏼐 􏼑􏼐 􏼑,

L22 �
1
16

f1uuu + f1uvv + f2uuv + f2vvv􏼐 􏼑 + i f2uuu + f2uvv − f2uuv − f2vvv􏼐 􏼑􏼐 􏼑,

(62)

Keeping in mind the aforementioned computation, one
has the following result.

Theorem 3. Assume that condition (55) is satisfied and θ≠ 0,
then the Neimark–Sacker bifurcation exists at the fixed point
(x0, y0, e0) in a small neighborhood of μ2. Further, if θ< 0 (resp.,
θ> 0 ), then an attracting (resp., repelling) closed invariant curve
bifurcates from the fixed point for μ> μ2 (resp., μ< μ2 ).

4. Chaos Control

Bifurcating behavior, chaos, and unstable fluctuations have
always been considered as adverse criteria in biology;
therefore, these are damaging for the reproduction of the
biological population. Certainly, we require to take action to
stabilize the biological population. For further details and
applications of chaos control methods, we refer to [37–50]
and the references therein.
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In this section, we propose the following state delayed
feedback control method for system (4):

xn+1 � xn + hxn d − kxn −
yn

a + xn

− en􏼠 􏼡 + δ xn − xn− 1( 􏼁,

yn+1 � yn + hyn

bxn

a + xn

− r􏼠 􏼡,

μ � en pxn − c( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

where δ is the feedback gain for the controlled system (63). Next, introducing un ≔ xn − xn− 1, we obtain the fol-
lowing controlled system equivalent to system (63):

xn+1 � xn + hxn d − kxn −
yn

a + xn

− en􏼠 􏼡 + δun,

yn+1 � yn + hyn

bxn

a + xn

− r􏼠 􏼡,

un+1 � hxn d − kxn −
yn

a + xn

− en􏼠 􏼡 + δun,

μ � en pxn − c( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

&e generalized variational matrix J(x0, y0, u0, e0) of the
controlled system (64) about its fixed point (x0, y0, u0, e0) �

((ar/(b − r)), (a + x0)(d − kx0 − e0), 0, (μ/(px0 − c))) is
given as follows:

J x0, y0, u0, e0( 􏼁 �

m11 −
hx0

a + x0
δ − hx0

abhy0

a + x0( 􏼁
2 1 0 0

1 − m11 −
hx0

a + x0
δ − hx0

pe0 0 0 px0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(65)

where

m11 ≔ 1 +
hx0y0

a + x0( 􏼁
2 − hkx0. (66)

&en, generalized characteristic polynomial for J(x0, y0,

u0, e0) is defined as follows:

F(λ) � det

m11 − λ −
hx0

a + x0
δ − hx0

abhy0

a + x0( 􏼁
2 1 − λ 0 0

1 − m11 −
hx0

a + x0
δ − λ − hx0

pe0 0 0 px0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0,

(67)

which, on simplification, yields

F(λ) � λ3 + Aλ2 + Bλ + C, (68)

where
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A ≔
px0 δ + e0h + m11 + 1( 􏼁 − c δ + m11 + 1( 􏼁

c − px0
,

B ≔
c abh

2
x0y0􏼐 􏼑/ a + x0( 􏼁

3
􏼐 􏼑􏼐 􏼑 + 2δm11 + m11􏼐 􏼑 + px0 − abh

2
x0y0􏼐 􏼑/ a + x0( 􏼁

3
􏼐 􏼑􏼐 􏼑 − e0h − 2δm11 − m11􏼐 􏼑

c − px0
,

C ≔ δ − 2δm11.

(69)

Keeping in view the controllability for system (63), we
have the following lemma.

Lemma 2. Assume that b> r, bc< r(ap+ c), ((b d − r(ak +

d))/((b − r)2)) − (μ/(r(ap + c) − bc))> 0; then the fixed
point (x0, y0, u0, e0) � ((ar/(b − r)), (a + x0)(d − kx0 −

e0), 0, (μ/(px0 − c))) of system (63) is a sink if the following
conditions are satisfied:

|A + C|< 1 + B,

|A − 3C|< 3 − B,

C
2

+ B − AC< 1.

(70)

5. Numerical Simulation and Discussion

In this section, our main purpose is to validate theoretical
findings with numerical simulation. For this, first of all, the
existence of the period-doubling bifurcation is illustrated
through particular choice of biologically feasible parametric
values. Choose a � 5.8, b � 8.8, c � 2.1, d � 3.6, k � 2.5,
r � 1.6, p � 2.2, and h � 0.98 with the variation of bifur-
cation parameter μ in [0.19, 0.22]. &en, around
μ ≈ 0.211175, system (3) undergoes period-doubling bi-
furcation. On the other hand, at a � 5.8, b � 8.8, c � 2.1,
d � 3.6, k � 2.5, r � 1.6, p � 2.2, h � 0.98, and
μ ≡ μ1 � 0.211175, system (3) has a unique positive fixed
point (1.28889, 0.642835, 0.287096), and the characteristic
polynomial for the Jacobian matrix of singular system (3) is
given as follows:

P(λ) � λ2 + 0.057005λ − 0.942995. (71)

Moreover, the roots of P(λ) are − 1 and 0.942995.
Consequently, (a, b, c, d, k, p, r, μ1, h) ∈ FB, and it follows
the correctness of&eorem 2. On the other hand, bifurcation
diagrams for singular system (3) and corresponding largest
Lyapunov exponents (LLE) are depicted in Figure 4.

Secondly, choose a � 41.5, b � 85, c � 2.7, d � 3.4,
k � 1.4, r � 3.5, p � 2.3, and h � 0.75 with a variation of
bifurcation parameter μ in [0.4, 1.1] for validity of Nei-
mark–Sacker bifurcation. &en, around μ ≈ 0.678396, sys-
tem (3) undergoes a Neimark–Sacker bifurcation. On the
other hand, at a � 41.5, b � 85, c � 2.7, d � 3.4, k � 1.4,
r � 3.5, p � 2.3, h � 0.75, and μ ≡ μ2 � 0.678396, system (3)
has a unique positive fixed point
(1.78221, 18.1794, 0.484887), and the characteristic poly-
nomial for the Jacobianmatrix of singular system (3) is given
as follows:

P(λ) � λ2 − 1.20713λ + 1. (72)

Moreover, the roots of P(λ) are 0.603567 − 0.797313i

and 0.603567 + 0.797313i with |0.603567 ± 0.797313i| � 1.
Consequently, (a, b, c, d, k, p, r, μ2, h) ∈ HB, and it follows
the correctness of &eorem 3. On the other hand, the bi-
furcation diagrams for singular system (3) and corre-
sponding largest Lyapunov exponents (LLE) are depicted in
Figure 5. Moreover, in the chaotic region, that is, for
μ ∈ [0.678396, 1.1], some phase portraits of system (4) are
depicted in Figure 6.

Finally, in order to see the efficaciousness of delayed
feedback control strategy for system (4), we choose a � 41.5,
b � 85, c � 2.7, d � 3.4, k � 1.4, r � 3.5, p � 2.3, h � 0.75,
and μ � 0.95 in the chaotic region. At these parametric
values, system (4) has unique positive fixed point
(x0, y0, e0) � (1.78221, 9.77703, 0.679018), and the complex
conjugate roots of the characteristic equation for the Jaco-
bian matrix are 0.813859 ± 0.625908i with
|0.813859 ± 0.625908i| � 1.02671> 1. &erefore, (1.78221,

9.77703, 0.679018) is a source for system (4). Furthermore,
for these parametric values, system (64) can be written as
follows:

xn+1 � xn + 0.75xn 3.4 − 1.4xn −
yn

41.5 + xn

− en􏼠 􏼡 + δun,

yn+1 � yn + 0.75yn

85xn

41.5 + xn

− 3.5􏼠 􏼡,

un+1 � 0.75xn 3.4 − 1.4xn −
yn

41.5 + xn

− en􏼠 􏼡 + δun,

0.95 � en 2.3xn − 2.7( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(73)

On the other hand, the characteristic polynomial of the
Jacobian matrix of system (73) is given as follows:

P(λ) � λ3 − (δ + 1.62772)λ2 +(2δ + 1.05413)λ − δ. (74)

Taking into account the conditions of Lemma 2, we
have that the positive fixed point of system (73) is a sink
if − 0.920461< δ < − 0.14539. Consequently, system (73)
is controllable in δ ∈ ] − 0.920461, − 0.14539[. More
generally, if we take a � 41.5, b � 85, c � 2.7, d � 3.4,
k � 1.4, r � 3.5, p � 2.3, h � 0.75, and μ ∈ [0.678396, 1.1],
then the controllable region for system (64) is depicted in
Figure 7.
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Figure 5: Bifurcation diagrams and LLE for system (3) with a � 41.5, b � 85, c � 2.7, d � 3.4, k � 1.4, r � 3.5, p � 2.3, h � 0.75,
μ ∈ [0.4, 1.1], and (x0, y0, e0) � (1.5, 5.58, 0.775). (a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn. (c) Bifurcation diagram for
en. (d) Largest Lyapunov exponents.
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Figure 6: Continued.
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6. Conclusion

We discuss the dynamical behavior of a discrete-time sin-
gular bioeconomic model. Moreover, Euler’s approximation
is implemented to a bioeconomic model governed by the
differential-algebraic system proposed in [11]. &e Nei-
mark–Sacker bifurcation and period-doubling bifurcation
are studied for the discrete bioeconomic model with the
implementation of normal form theory, bifurcation theory,
and the center manifold theorem. On the other hand, we
select μ (the economic profit parameter) as a bifurcation
parameter. Our investigations show richer dynamical be-
haviors for the discrete-time bioeconomic model compared
with its continuous counterpart studied in [11]. Numerical
computation for maximum Lyapunov exponents ensures
further dynamical behavior and complexity of the model.

Such type of complex phenomena might result from eco-
nomic profit [25]. With the variation of the bifurcation
parameter μ, the biologically feasible fixed point resembles
the stability of economic profit, and later on, the system may
sacrifice its stability by undergoing period-doubling or
Neimark–Sacker bifurcation, and consequently trajectories
tend to a period-doubling cascade or an invariant circle. Our
theoretical discussion reveals that if the economic revenue μ
increases beyond a certain threshold value μ1 (respectively,
μ2), a phenomenon of period-doubling bifurcation (re-
spectively, Neimark–Sacker bifurcation) occurs. From
&eorem 2 (respectively, &eorem 3), if the economic rev-
enue μ is equal to or larger than the bifurcation value μ1
(respectively, μ2), the predator population, the prey pop-
ulation, and the harvesting effort will not stay at steady
states, which will result in serious biological economic

en
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Figure 6: Phase portraits of system (4) for a � 41.5, b � 85, c � 2.7, d � 3.4, k � 1.4, r � 3.5, p � 2.3, and h � 0.75 and with different values
of μ ∈ [0.678396, 1.1]. (a) Phase portrait for μ� 0 : 678396. (b) Phase portrait for μ� 0 : 7. (c) Phase portrait for μ� 0 : 75. (d) Phase portrait
for μ� 0 : 8. (e) Phase portrait for μ� 0 : 85. (f ) Phase portrait for μ� 0 : 95. (g) Phase portrait for μ� 1. (h) Phase portrait for μ� 1 : 08.
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environmental imbalance. &us, it is sensible for fishermen
to keep the economic revenue within a certain range for the
purpose of maintaining the sustainable development of
biological resources. On the other hand, the suggested state
feedback control method of the delayed type vanishes such
fluctuating phenomena and derives the bifurcating behavior
of singular discrete-time economic prey-predator system
towards a stable situation. Computation reveals that this
delayed-type control strategy can be applied only by
modifying the effort of harvesting for the prey population
density by taking into account the present prey population
density and the previous one. Consequently, economists can
formulate some strategies to restrain or encourage the
harvesting attempts in practical applications, for example,
adjusting market price and revenue, abating pollution,
making an allowance to fishermen, so that the biological
populations can remain at their stable states.

Data Availability

No data were used to support this study.

Conflicts of Interest

&e authors declare that they have no conflicts of interest.

References

[1] H. S. Gordon, “&e economic theory of a common-property
resource: the fishery,” Journal of Political Economy, vol. 62,
no. 2, pp. 124–142, 1954.

[2] M. B. Schaefer, “Some considerations of population dynamics
and economics in relation to the management of the com-
mercial marine fisheries,” Journal of the Fisheries Research
Board of Canada, vol. 14, no. 5, pp. 669–681, 1957.

[3] L. G. Anderson and J. C. Seijo, Bioeconomics of Fisheries
Management, John Wiley & Sons, Hoboken, NJ, USA, 2010.

[4] Y. Zhang, Q. L. Zhang, and L. C. Zhao, “Bifurcations and
control in singular biological economical model with stage
structure,” Journal of Systems Engineering, vol. 22, no. 3,
pp. 232–238, 2007.

[5] C. Liu, Q. Zhang, and X. Duan, “Dynamical behavior in a
harvested differential-algebraic prey-predator model with
discrete time delay and stage structure,” Journal of the
Franklin Institute, vol. 346, no. 10, pp. 1038–1059, 2009.

[6] K. Chakraborty, M. Chakraborty, and T. K. Kar, “Bifurcation
and control of a bioeconomicmodel of a prey-predator system
with a time delay,” Nonlinear Analysis: Hybrid Systems, vol. 5,
no. 4, pp. 613–625, 2011.

[7] Q. Zhang, X. Zhang, and C. Liu, “A singular bioeconomic
model with diffusion and time delay,” Journal of Systems
Science and Complexity, vol. 24, no. 2, pp. 277–290, 2011.

[8] Q. Zhang, C. Liu, and X. Zhang, Complexity, Analysis and Control
of Singular Biological Systems, Springer, London, UK, 2012.

[9] G. Zhang, Y. Shen, and B. Chen, “Hopf bifurcation of a
predator-prey system with predator harvesting and two de-
lays,”Nonlinear Dynamics, vol. 73, no. 4, pp. 2119–2131, 2013.

[10] X. Meng and Q. Zhang, “Complex dynamics in a singular
delayed bioeconomic model with and without stochastic
fluctuation,” Discrete Dynamics in Nature and Society,
vol. 2015, Article ID 302494, 15 pages, 2015.

[11] W. Liu, C. Fu, and B. Chen, “Stability and hopf bifurcation of a
predator-prey biological economic system with nonlinear
harvesting rate,” International Journal of Nonlinear Sciences
and Numerical Simulation, vol. 16, no. 6, pp. 249–258, 2015.

[12] C. Liu, L. Yu, and Q. Zhang, “Optimal harvest control in a
singular prey-predator fishery model with maturation delay
and gestation delay,”Discrete Dynamics in Nature and Society,
vol. 2016, Article ID 4398527, 9 pages, 2016.

[13] C. Liu, N. Lu, Q. Zhang, J. Li, and P. Liu, “Modeling and
analysis in a prey-predator system with commercial har-
vesting and double time delays,” Applied Mathematics and
Computation, vol. 281, pp. 77–101, 2016.

[14] M. Li, B. Chen, and H. Ye, “A bioeconomic differential al-
gebraic predator-prey model with nonlinear prey harvesting,”
Applied Mathematical Modelling, vol. 42, pp. 17–28, 2017.

[15] X.-Y. Meng and Y.–Q. Wu, “Bifurcation analysis in a singular
Beddington-DeAngelis predator-prey model with two delays
and nonlinear predator harvesting,”Mathematical Biosciences
and Engineering, vol. 16, no. 4, pp. 2668–2696, 2019.

[16] B. Babaei and M. Shafiee, “Analysis and behavior control of a
modified singular prey-predator model,” European Journal of
Control, vol. 49, pp. 107–115, 2019.

[17] M. Danca, S. Codreanu, and B. Bakó, “Detailed analysis of a
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)e concept of H-bases, introduced long ago byMacauly, has become an important ingredient for the treatment of various problems
in computational algebra. )e concept of H-bases is for ideals in polynomial rings, which allows an investigation of multivariate
polynomial spaces degree by degree. Similarly, we have the analogue of H-bases for subalgebras, termed as SH-bases. In this paper, we
present an analogue of H-bases for finitely generated ideals in a given subalgebra of a polynomial ring, and we call them “HSG-bases.”
We present their connection to the SAGBI-Gröbner basis concept, characterize HSG-basis, and show how to construct them.

1. Introduction

)e concept of H-bases, introduced long ago by Macaulay
[1], is based solely on homogeneous terms of a polynomial.
In [2], an extension of Buchberger’s algorithm is presented
to construct H-bases algorithmically. Some applications of
H-bases are given in [3]; in addition, many of the problems
in applications which can be solved by the Gröbner tech-
nique can also be treated successfully with H-bases. )e
concept of H-basis for ideals of a polynomial ring over a field
K can be adopted in a natural way to K-subalgebras of a
polynomial ring. In [4], SH-basis (Subalgebra Analogue to
H-basis for Ideals) for the K-subalgebra of K[x1, . . . , xn] is
defined. )e properties of SH-bases are typically similar to
H-basis results [3]. Like H-bases, the concept of SH-basis is
also tied to homogeneous polynomials. In this paper, we will
present an analogue to H-bases for ideals in a given sub-
algebra of a polynomial ring, and we call them “HSG-bases.”

)e paper is organized as follows. In Section 2, we briefly
describe the underlying concept of grading which leads to
SAGBI-Gröbner bases and HSG-basis. )en, we give the
notion of si-reduction, which is one of the key ingredients
for the characterization and construction of HSG-basis.

After setting up the necessary notation, we present the
si-reduction algorithm (see Algorithm 1). Also, here we
present some properties characterizing HSG-basis ()eorem
1). In Section 3, we present a criterion through which we can
check that the given system of polynomials is an HSG-basis
of the subalgebra it generates ()eorem 2), and further on
the basis of this theorem, we present an algorithm for the
construction of HSG-basis (Algorithm 2).

2. HSG-Bases and SAGBI-Gröbner Bases

Here and in the following sections we consider polynomials
in n variables x1, . . . , xn with coefficients from a field K. For
short, we write

P ≔ K x1, . . . , xn􏼂 􏼃. (1)

If G is a subset of subalgebraA inK[x1, . . . , xn], then the
set

I ≔ 􏽘
g∈G

hgg|hg ∈ A and only finitely many hg ≠ 0
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(2)
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is the ideal of A in P generated by G and we write it shortly as
〈G〉A. In this section, we want to introduce HSG-bases and
discuss some of their properties. )is concept is very similar to
the concept of SAGBI-Gröbner bases.)erefore, we will briefly
explain the underlying common structure. Let Γ denote an
ordered monoid, i.e., an abelian semigroup under an operation
+, equippedwith a total ordering > such that, for all α, β, c ∈ Γ,

α> β⇒α + c> β + c. (3)

A direct sum,

P � ⊕
c∈Γ

P(Γ)
c , (4)

is called grading (induced by Γ) or briefly a Γ-grading if for
all α, β ∈ Γ,

f ∈ P(Γ)
α , g ∈ P(Γ)

β ⇒f · g ∈ P(Γ)
α+β. (5)

Since the decomposition above is a direct sum, each
polynomial f≠ 0 has a unique representation.

f � 􏽘
s

i�1
fci

, 0≠fci
∈ P(Γ)

ci
. (6)

Assuming that c1 > c2 > · · · > cs, the Γ-homogeneous
term fc1

is called the maximal part of f, denoted by
M(Γ)(f): � fc1

, and f − M(Γ)(f) is called the d-reductum
of f. For G ⊂ A, M(Γ)(G): � M(Γ)(g)|g ∈ G􏼈 􏼉.

)ere are two major examples of gradings. )e first one
is grading by degrees:

P(Γ)
d � p ∈ P|p is homogeneous of degreed􏼈 􏼉, ∀d ∈ N.

(7)

Here, Γ � N with the natural total ordering.)is grading is
called the H-grading because of the homogeneous polyno-
mials.)erefore, we also writeH in place of this Γ.)e space of
all polynomials of degree at most d can now be written as

Pd ≔ ⊕
d
k�0P

(H)
k . (8)

)e maximal part of a polynomial f≠ 0 is its homo-
geneous form of highest degree, M(H)(f). For simplicity, let
M(H)(0): � 0.

Definition 1. A subset G � g1, . . . , gs􏼈 􏼉 ⊂ A (subalgebra) is
called HSG-basis for the ideal IA ⊂ A, if for all 0≠f ∈ IA,

∃h1, . . . , hs ∈ A: f � 􏽘
s

i�1
higi, deg(f) � maxs

i�1 deg higi( 􏼁􏼈 􏼉 Note that this condition is not obvious, − x
3
y
3

+ x
4

􏼐

� x
2

􏼐 􏼑 x
3
y + x

2
􏼐 􏼑 +(− xy) x

4
+ x

2
y
2

􏼐 􏼑 see inK x
2
, xy􏽨 􏽩). (9)

)e representation for f in (9) is also called its HSG
representation with respect to G.

Note that HSG-basis for ideal in a subalgebra is also a
generating set of it. To obtain more insights into HSG-bases,

we will give some equivalent definitions. First, we need a
more technical notion.

Definition 2. For given f, f1, . . . , fm, we say that
f si− reduces to 􏽥f with respect to F � f1, . . . , fm􏼈 􏼉 in A if

Input: a subalgebra A, a finite subset G ⊂ A, and a polynomial f ∈ A.
Output: a polynomial h such that f⟶ GA,∗h.

(1) h: � f.
(2) While (h≠ 0 andGh � 􏽐iaigi|M

(H)(􏽐iaigi) � M(H)(h)􏼈 􏼉≠∅); where ai ∈ A and gi ∈ G.

(3) Choose 􏽐iaigi ∈ Gh.
(4) h: � h − 􏽐iaigi and continue at 2.

ALGORITHM 1: Algorithm to compute si-reduction

Input: a subalgebra A and a finite subset G ⊂ A.
Output: HSG-basis H for 〈G〉A.

(1) H: � G, Old(H): � ∅.
(2) H � h1, . . . , hs􏼈 􏼉.
(3)While (H≠ Old(H)) do
(4) Compute Q, an M(H)− generating set for syz(M(H)(H)).
(5) Compute P: � 􏽐

s
i�1qihi|(qi)

s
i�1 ∈ Q􏼈 􏼉.

(6) Compute red(P): � final si− reduction viaH of every element of P􏼈 􏼉 − 0{ }.
(7) Old(H): � H∪ red(P).

ALGORITHM 2: Algorithm for the construction of HSG basis.
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􏽥f � f − 􏽘
m

i�1
aifi, deg(􏽥f)< deg(f) (10)

holds with polynomials ai ∈ A satisfying deg(aifi)≤
deg(f). We write it as f⟶ FA

􏽥f. By ⟶ FA ,∗ we denote
the transitive closure of the binary relation ⟶ FA

1.

)e concept of si− reduction plays an important role in the
characterization and construction ofHSG-basis. Forf ∈ A and
G ⊂ A, the following algorithm computes h such that f

⟶ GA ,∗h (i.e., f reduces to h completely).
We note that such an element ai in the subalgebraA can

easily be determined as in the case of reduction in poly-
nomial ring. We also note that deg(h − 􏽐iaigi) is strictly
smaller than the deg(h) (by the choice of 􏽐iaigi ).)is shows
that Algorithm 1 always terminates.

Theorem 1. Let G � g1, . . . , gs􏼈 􏼉 ⊂ A (subset of subalgebra
A) and IA be an ideal ofA. 9en, the following conditions are
equivalent:

(1) G is an HSG-basis for the ideal IA.
(2) 〈M(H)(g1) , . . . , M(H)(gs) 〉K[M(H)] � 〈M(H)(f)|

f ∈ IA〉K[M(H)].
(3) For all f ∈ I, f⟶ GA ,∗0.

Proof. (1)⇒(2). Let M(H)(p) ∈ 〈M(H)(f)|f ∈ IA〉 for
some p ∈ IA. Since G is an HSG-basis, by (9),
there are some h1, . . . , hs ∈ A so that

p � 􏽐
s
i�1 higi and M(H)(p) � M(H)(􏽐

s
i�1 higi) �

􏽐i∈JM(H)(hi)M
(H)(gi) ∈ 〈M(H)(g1, . . . , M(H)

(gs))〉, where J � i|deg(higi) �􏼈 deg(p)}.
(2)⇒(3). Let 0≠f ∈ IA. By using Algorithm 1, we get
f⟶ FA

h1⟶ FA
h2 . . .⟶ FA

h, where h is
si− reduced any further with respect to F.
M(H)(f) ∈ 〈M(H)(g1), . . . , M(H)(gs)〉 implies
M(H)(f) � 􏽐i∈JM(H)(hi)M

(H)(gi); then,
f⟶ GA

􏽥f � f − 􏽐 higi ∈ IA. If we follow the above
process inductively, then f⟶ GA ,∗0.
(3)⇒(1). Let

f0⟶ GA
f1⟶ GA

. . .⟶ GA
fd � 0, (11)

where M(H)(fi− 1) � 􏽐
s
j�1 M(H)(hij)M

(H)(gj) , i � 1, 2, . . . ,

d, deg(fi− 1)> deg(fi). )en,

f � 􏽘
s

j�1
􏽘

d

i�1
M

(H)
hij􏼐 􏼑M

(H)
gj􏼐 􏼑. (12)

Note that

deg(f) � deg f∘( 􏼁 � deg 􏽘
s

j�1
M

(H)
h1j􏼐 􏼑M

(H)
gj􏼐 􏼑⎛⎝ ⎞⎠,

(13)

and

deg 􏽘
s

j�1
M

(H)
hij􏼐 􏼑M

(H)
gj􏼐 􏼑⎛⎝ ⎞⎠> deg 􏽘

s

j�1
M

(H)
hi+1,j􏼐 􏼑M

(H)
gj􏼐 􏼑⎛⎝ ⎞⎠, i � 1, 2, . . . , d. (14)

Hence,

deg(f) � maxi deg 􏽘
s

j�1
M

(H)
hij􏼐 􏼑M

(H)
gj􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (15)

(11) and (15) give the HSG representation. □

)e second major example of gradings leads to the
SAGBI-Gröbner basis concept. Here, Γ � Nn with compo-
nent-wise addition equipped with a total ordering satisfying
(11). In addition, c≥ 0, ∀c ∈ Γ. For arbitrary c �

(c1, . . . , cn) ∈ Γ, the space P(Γ)
c is a vector space of dimension

1, namely,

P(Γ)
c � c · x

c1 . . . x
cn |c ∈ K􏼈 􏼉. (16)

)emaximal part M(Γ)(f) of a polynomial f is a product
of a leading coefficient LC(f) and a leading monomial
LM(f), that is M(Γ)(f) � LC(f) · LM(f),

where LC(f) ∈ K. )e si-reduction f⟶ GA

􏽥f is defined if
there exists a polynomial g ∈ G and a ∈ A such that
LM(f) � LM(g)LM(a) and then we set

􏽥f: � (f − (M(Γ)(f))/(M(Γ)(g)M(Γ)(a))ag). )e relation
⟶ GA ,∗ is constructed as above.

A SAGBI-Gröbner basis G (with respect to a given
monomial ordering and a given ideal IA in a subalgebra A)
is a set of polynomials generating IA and satisfying one of
the following equivalent conditions:

(i) Every f ∈ IA has a representation:

f � 􏽘
s

i�1
higi,

LM(f) � maxs
i�1 LM hi( 􏼁LM gi( 􏼁􏼈 􏼉,

(17)

where hi ∈ A and gi ∈ G.
(ii) 〈M(Γ)(g)|g ∈ G〉 � 〈M(Γ)(f)|f ∈ IA〉.
(iii) Every f ∈ IA si-reduces to 0 with respect to G.

)e proof of this equivalence and many other equivalent
conditions can be found in [5]. If a monomial ordering is
compatible with the semiordering by degrees,

deg x
c

( 􏼁> deg x
β

􏼐 􏼑⇒c> β, c, β ∈ Nn
, (18)

Discrete Dynamics in Nature and Society 3



then any SAGBI-Gröbner representation as given in (i) is an
HSG representation; in other words, a SAGBI-Gröbner basis
with respect to a degree compatible ordering is an HSG-basis
as well.)e converse is false, as the following example shows.

Example 1. Let f1 � x4 + 2x2y2 + y4 − 1, f2 � x2y2 +

y4 − 2, f3 � 2x2 + y2. )ese polynomials belong to the sub-
algebra A � Q[x2, y2]. )en, we can see that f1, f2, and f3
already constitute an HSG-basis for ideal IA � 〈f1, f2, f3〉 in
A. If we order the monomials by degree lexicographical or-
dering, then 〈M(H)(f)|f ∈ IA〉Q[M(H)(A)] � 〈x4, x2y2,

x2〉Q[M(H)(A)]. Every SAGBI-Gröbner basis G with respect to
this ordering contains at least four elements, for instance, G �

g1, g2, g2, g4􏼈 􏼉 with g1 � x4 + 2x2y2 + y4 − 1 � f1, g2 �

x2y2 + y4 − 2 � f2, g3 � 2x2 + y2 � f3, and g4 � y4 − 4.
Obviously, this SAGBI-Gröbner basis is an HSG-basis as well.

3. Construction of HSG-Bases

In this section, we present an HSG-basis criterion, through
which we can construct HSG-basis. For this purpose, we fix
some notations which are necessary for this construction.
Let A be a K− subalgebra of K[x1, . . . , xn].

(i) We denote A⊕ . . .⊕A(s − times) by ⊕
S
A.

(ii) For a subset G⊆A, we denote M(H)(gi)|gi ∈ G􏼈 􏼉 by
M(H)(G).

Definition 3. For K− subalgebra A of K[x1, . . . , xn] and a
subset G � g1, . . . , gs􏼈 􏼉⊆A,

(1) syzA(G) � a
→

� (ai)
s
i�1 ∈ ⊕SA| 􏽐

s
i�1 aigi � 0􏼈 􏼉. We

call an element of syzA(G) an A− syzygy of G.
(2) For a

→
� (ai)

s
i�1 ∈ ⊕SA, let M(H)( a

→
) represent the

vector (M(H)(ai)
s
i�1).

Definition 4. We call a subset Q � q1
→

, q2
→

, . . . , qm
�→

􏼈 􏼉 a
M(H)-generating set for syz(M(H)(G)) if
M(H)(qi

→
)|1≤ i≤m􏼈 􏼉 generates the K[M(H)(A)]-module

syz[M(H)(G)], i.e., for a
→ ∈ syz[M(H)(G)], there are some

h1, h2, . . . hm ∈MH(A) such that

M
(H)

ai( 􏼁
s

i�1 � 􏽘
m

j�1
M

(H)
hj􏼐 􏼑M

(H)
qij􏼐 􏼑

s

i�1. (19)

In the case of SAGBI-Gröbner bases, there is an algo-
rithm for computing SAGBI-Gröbner bases by means of
syzygies (see [6]) where syzygies and their connection to
SAGBI-Gröbner bases are studied in detail. )e analogue for
constructing HSG-bases by means of syzygies is connected
to the following result [7].

Theorem 2 (HSG-basis criterion). Let G � g1, . . . , gs􏼈 􏼉 be
the subset of a subalgebra A. Let Q be M(H)− generating set
for the syz(M(H)(G)). 9en, G is an HSG-basis for 〈G〉A if
and only if for every qj

→
� (qj,1, . . . , qj,s) ∈ Q, we have

􏽐
s
i�1 qj,igi⟶ GA,∗

0.

Proof. ⇒: )e statement is a direct result of )eorem 1.
⇐: Take f ∈ 〈G〉A. We need to show that
M(H)(f) ∈ 〈M(H)(G)〉K[M(H)(A)]. For this, we write
f � 􏽐

m
i�1 aigi such that p0 � max[M(H)(aigi)] (degree

wise) is minimal among all such representations of f.
We have M(H)(f)≤p0. Suppose that M(H)(f)<p0.
Assume that a1g1, . . . , am0

gm0
are contributing to p0,

i.e., M(H)(aigi) � p0 for all 1≤ i≤m0. If we set
a
→

� (a1, . . . , am0
, 0, . . . , 0), we can see that

M(H)( a
→

) ∈ syz(M(H)(G)). )is implies that there are
b1, . . . , bn ∈ A and Q1

�→
, . . . , Qn

�→
∈ Q

→
such that

M(H)( a
→

) � 􏽐
n
j�1 M(H)(bj)M

(H)(Qj

�→
). We may as-

sume that M(H)(bj)M
(H)(qj,i)M

(H)(gi) � p0 for each
j by homogeneity of the syzygies. Now,

f � 􏽘
m

i�1
aigi − 􏽘

m

i�1
􏽘

n

j�1
bjqj,i

⎛⎝ ⎞⎠gi + 􏽘
n

j�1
bj 􏽘

m

i�1
qj,igi

⎛⎝ ⎞⎠

� 􏽘
m

i�1
ai − 􏽘

n

j�1
bjqj,i

⎛⎝ ⎞⎠gi + 􏽘
n

j�1
bj 􏽘

m

i�1
pj,igi

⎛⎝ ⎞⎠,

(20)

where 􏽐
m
i�1 pj,igi is an HSG representation for 􏽐

m
i�1 qj,igi

since 􏽐
m
i�1 qj,igi⟶ G0. If we define Hj � max (M(H)(pj,i

gi)), then

Hj � M
(H)

􏽘 qj,igi􏼐 􏼑<max M
(H)

qj,igi􏼐 􏼑􏼐 􏼑, for all j,

(21)

because M(H)(Qj

�→
) ∈ syz(M(H)(G)).

Consider the first sum of equation (20). For i≤m0, we
have M(H)(ai) � M(H)(􏽐

n
j�1 bjqj,i), so by the cancellation of

highest terms,

M
(H)

ai − 􏽘
n

j�1
bjqj,i

⎛⎝ ⎞⎠gi
⎡⎢⎢⎣ ⎤⎥⎥⎦<M

(H)
aigi( 􏼁 � p0. (22)

For i>m0, M(H)(aigi)<p0 and
􏽐

n
j�1 M(H)(bj)M

(H)(qj,i) � 0 implies that

M
(H)

􏽘

n

j�1
bjqj,igi

⎛⎝ ⎞⎠<maxj M
(H)

bjqj,igi􏼐 􏼑􏼐 􏼑 � p0. (23)

Since

M
(H)

ai − 􏽘
n

j�1
bjqj,i

⎛⎝ ⎞⎠gi
⎡⎢⎢⎣ ⎤⎥⎥⎦≤max M

(H)
aigi( 􏼁, M

(H)
􏽘

n

j�1
biqj,igi

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
<p0(∀i). (24)
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So, first sum of equation (20) is less than p0. For the
second sum of equation (20), we have

M
(H)

􏽘

n

j�1
bj 􏽘

m

i�1
pj,igi

⎛⎝ ⎞⎠≤maxi,jM
(H)

bjpj,igi􏼐 􏼑

≤maxj M
(H)

bj􏼐 􏼑Hj􏽨 􏽩

<maxi,j M
(H)

bjqj,igi􏼐 􏼑􏼐 􏼑 � p0.

(25)

Hence, equation (20) does provide a new representation
for f such that max(M(H)(aigi))<p0, a contradiction.
)erefore, M(H)(f) � p0 and M(H)(f) �

􏽐
m0
i�1 M(H)(aigi) ∈ 〈M(H)(G)〉. □

On the basis of )eorem 2, now we present an algorithm
which computes HSG-basis from a given set of generators.
)is algorithm is not necessarily terminating but does ter-
minate, if and only if, the considered ideal in the subalgebra
has a finite HSG-basis.

Now we present some examples which show the com-
putation of HSG-basis through Algorithm 2.

Example 2. Let the subalgebra A � Q[x2, xy] and
G � x3y + x2, xy + 2􏼈 􏼉⊆A. Consider H � G; then,
M(H)(H) � x3y, xy􏼈 􏼉.

First pass through the while loop:

(i) M(H)(q1)(x3y) + M(H)(q2)(xy) � 0 implies
Q � (− 1, x2)􏼈 􏼉. )en, (− 1)(x3y + x2) + (x2)(xy +

2) � − x3y − x2 + x3y + 2x2 � x2 gives P � x2􏼈 􏼉.
(ii) As x2 is si-reduced with respect to H,

red(P) � x2􏼈 􏼉.
(iii) Define: Old(H) � H∪ x2􏼈 􏼉.

As H≠ Old(H), we repeat the whole process. Now
we have M(H)(H) � x3y, xy, x2􏼈 􏼉.

Second pass through the while loop:

(i) M(H)(q1)(x3y) + M(H)(q2)(xy) + M(H)(q3) (x2)

� 0 implies (− 1)(x3y) + (0)(xy) +(xy)(x2) � 0.
)erefore, Q � (− 1, x2, 0),􏼈 (− 1, 0, xy)}. )en,
(− 1)(x3y + x2)+ (0)(xy + 2) + (xy) (x2) � − x3

y − x2 + 0 +x3 y � − x2 gives P � x2, − x2􏼈 􏼉.
(ii) Now, red(P) � ∅.

Since Old(H) � H, we stop here. )e HSG-basis for
〈G〉A is x3y + x2, xy + 2, x2􏼈 􏼉.

Example 3. Let A � Q[x2, xy] and G � x3y + x2y2 + x2,􏼈

xy + 2}⊆A. Consider H � G; then, M(H)(H) � x3y +􏼈

x2y2, xy}.

First pass through the while loop:

(i) M(H)(q1)(x3y + x2y2) + M(H)(q2)(xy) � 0 gives
Q � (− 1, x2 + xy)􏼈 􏼉. )en, from (− 1)(x

3
y +

x
2
y
2

+ x
2
) + (x

2
+ xy)(xy + 2) � − x

3
y −

x
2
y
2

− x
2

+ x
3

y + x
2

y
2

+ 2x
2

+ 2xy � x
2

+ 2xy,
(ii) red(P) � x2 − 4􏼈 􏼉.
(iii) Define: Old(H) � H∪ x2 − 4􏼈 􏼉.

As H≠ Old(H), we repeat the whole process. Now we
have M(H)(H) � x3y + x2y2, xy, x2􏼈 􏼉.

Second pass through the while loop:

(i) From the equation M(H)(q1) (x3y + x2y2) + M(H)

(q2)(xy) + M(H)(q3)(x2) � 0, we have Q � (− 1,{

xy, xy), (− 1, x2 + xy, 0)}. We can compute P

from (− 1)(x
3
y+x

2
y
2
+x

2
)+(xy)(xy+2)+(xy)

(x
2
− 4) � − x

3
y − x

2
y
2
− x

2
+x

2
y
2
+2xy+x

3
y− 4xy

� − x
2
− 2xy.

(ii) Now, red(P) � ∅.

Since Old(H) � H, we stop here. )e HSG-basis for
〈G〉A is x3y + x2y2 + x2, xy + 2, x2 − 4􏼈 􏼉.

4. Conclusion

In this paper, we presented the theory of HSG-bases, which
are a good basis of an ideal in a subalgebra of a polynomial
ring. We can further develop this theory for an arbitrary
grading for which HSG-bases would be a special case for
degree-based grading.
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In this article, symmetry technique is utilized to obtain new exact solutions of the Cattaneo equation. +e infinitesimal sym-
metries, linear combinations of these symmetries, and corresponding similarity variables are determined, which lead to many
exact solutions of the considered equation. By applying similarity transformations, the mentioned partial differential equation is
reduced to some ordinary differential equations of second order. Solutions of these ordinary differential equations have yielded
many exact solutions of the Cattaneo equation.

1. Introduction

In the diffusion phenomenon, considered by the traditional
Fick law and Fourier law, the moment a point passes by that
is disturbed at a great distance, and the propagation speed of
the disturbance appears infinite. However, this property is
nonphysical. To handle this problem, Cattaneo proposed a
model [1], in which he modified the constitutive equation by
presenting a relaxation parameter which plays the role of
relaxation time, where this relaxation parameter is small and
depends on the thermodynamic properties of the material.
From the mathematical aspect, Cattaneo model transforms
the traditional diffusion equation into a hyperbolic equation,
the speed of propagation is finite, and it improves the
property of infinite propagation speed. On the contrary,
because of the hyperbolic nature of the Cattaneo model, it
can possess oscillatory solutions and negative values.

From the physical aspect, the Cattaneomodel describes a
physical phenomenon of heat waves. Although this phe-
nomenon can only be observed under special states [2],
circumstances, or materials, it is still gradually accepted by

the community. It can be used to describe not only heat pulse
propagation in some pure nonmetallic crystals [3] but also
ultrasonic wave propagation in certain diluted gases.
Straughan [4] considered thermal convection with the
Cattaneo–Christov model in horizontal layers of an in-
compressible Newtonian fluid. Haddad [5] applied the
theory of Cattaneo–Christov to study Brinkman’s porous
media. Cattaneo model is mostly used in crystalline solids
[6–8], extended irreversible thermodynamics, and cosmo-
logical models.

Because of many advantages of the fractional differential
equations, many scholars have introduced numerous ana-
lytical and numerical methods to study various fractional
models. As Cattaneo model has wide applications in physics
and theoretical analysis, so many researchers devoted
themselves for the solution and generalization of the Cat-
taneo model. Compte and Metzler [9] generalized the
Cattaneo model from three aspects which are continuous-
time randomwalks, delayed flux-force relation, and nonlocal
transport theory. Ferrillo et al. [10] compared the Cattaneo
model and fractional Cattaneo model and investigated the
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asymptotic behavior of solutions to the Cattaneo equations.
Su et al. [11] compared the solution of a phase-lagging heat
transport equation with the solution of the classical Cattaneo
equation.

+ere exist many well-known techniques for obtaining
exact solutions of the partial differential equations [12–15],
but one of them is a powerful Lie groupmethod. By using Lie
group analysis, one can also find the similarity solutions of
the partial differential equations. +ese similarity solutions
lead to the exact solutions of partial differential equations.
Many researchers have used this method to find solutions of
partial differential equations, e.g., see in [16–20]. In the
current article, exact solutions of the Cattaneo equation via
the similarity transformations are obtained.

+is paper is arranged into four sections as follows: in
Section 2, Lie symmetry generators of the Cattaneo
equation are presented. In Section 3, the considered
equation is converted into some ODEs by considering the
similarity variables which are obtained by taking different
linear combinations of the symmetry generators, while in
Section 4, the graphical representations of solutions which
are obtained in Section 3 are presented. Finally, in Section
5, the summary of the present work is discussed.

2. Lie Symmetries of the Cattaneo Equation

+e main goal of this paper is to investigate the exact so-
lutions of the following Cattaneo model [21],

C
2
wtt + wt − D wxx + wyy􏼐 􏼑 � 0, (1)

by using its symmetry analysis. In the above model, C is a
relaxation parameter, and D is a diffusion coefficient.

+e method to obtain the Lie symmetries of the partial
differential equations has been discussed inmany books, e.g.,
see in [22–25]. Let

X � ϕ1(x, y, t, w)zx + ϕ2(x, y, t, w)zy + ϕ3(x, y, t, w)zt

+ η(x, y, t, w)zw

(2)

be the vector field that generates the symmetry group of
equation (1). By applying the second-order prolongation of
X to equation (1), the following determining equations are
obtained:

ηt,t �
Dηy,y + Dηx,x − ηt

C
2 ,

ηt,w � 0,

ηw,w � 0,

ηw,x � −
1
2

ϕ1( 􏼁t

D
,

ϕ1( 􏼁w � 0,

ϕ1( 􏼁x � 0,

ϕ1( 􏼁t,t � 0,

ϕ1( 􏼁t,y � 0,

ϕ1( 􏼁y,y � 0,

ϕ2( 􏼁w � 0,

ϕ2( 􏼁x � − ϕ1( 􏼁y,

ϕ2( 􏼁y � 0,

ϕ2( 􏼁t,t � 0,

ϕ3( 􏼁t � 0,

ϕ3( 􏼁w � 0,

ϕ3( 􏼁x �
ϕ1( 􏼁tC

2

D
,

ϕ3( 􏼁y �
ϕ2( 􏼁tC

2

D
.

(3)

+e infinitesimals obtained by solving the above system
are

η � C4w −
1
2
C6

wx

D
−
1
2
C7

wy

D
,

ϕ1 � C5y + C6t + C1,

ϕ2 � − C5x + C7t + C2,

ϕ3 � C6
C
2
x

D
+ C7

C
2
y

D
+ C3.

(4)

+us, Cattaneo equation (1), is spanned by the following
vector fields:

2 Discrete Dynamics in Nature and Society



X1 � zx,

X2 � zy,

X3 � zt,

X4 � wzw,

X5 � yzx − xzy,

X6 � tzx +
C
2
x

D
zt −

1
2

wx

D
zw,

X7 � tzy +
C
2
y

D
zt −

1
2

wy

D
zw,

(5)

which form a seven-dimensional Lie algebra.

3. Exact Solutions of the Cattaneo Model
Obtained by considering
Similarity Transformations

In this section, some group-invariant solutions of Cattaneo
equation (1) by considering different linear combinations of
the Lie symmetry generators which have been obtained in
Section 2 are presented.

(1) +e similarity variables corresponding to

X1 + X2 + X3 + X4 � zx + zy + zt + wzw, (6)

are

] � y − x,

c � t − x,

μ(], c) �
w

exp(x)
.

(7)

+e dependent variable μ given in (7) indicates that
the solution of (1) is in the form

w � μ exp(x). (8)

Now, we consider the independent variables given in
(7) one by one to seek the solution of (1).
First, if we consider the following similarity
variables,

] � y − x,

μ(]) �
w

exp(x)
,

(9)

then equation (1) is reduced into the following linear
ODE:

2μ]] − 2μ] + μ � 0, (10)

with the solution

μ(]) � C1 exp
1
2
]􏼒 􏼓sin

1
2
]􏼒 􏼓 + C2 exp

1
2
]􏼒 􏼓cos

1
2
]􏼒 􏼓.

(11)

Now, by considering the similarity variables

c � t − x,

μ(c) �
w

exp(x)
,

(12)

equation (1) is converted into the following ODE:

C
2μcc + μc − D μ − 2μc + μcc􏼐 􏼑 � 0, (13)

with the solution

μ(c) � C3 exp
− (1/2) − 1 − 2 D −

��������������
1 + 4 D + 4 DC

2
􏽰

􏼒 􏼓c

C
2

− D

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ + C4 exp

− (1/2) − 1 − 2 D +
��������������
1 + 4 D + 4 DC

2
􏽰

􏼒 􏼓c

C
2

− D

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(14)

Since both solutions of (1) given in (11) and (14) are
linearly independent,

w(x, y, t) � exp(x)(μ(]) + μ(c)), (15)

i.e.,
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w(x, y, t) � exp(x)

C1 exp
1
2
]􏼒 􏼓sin

1
2
]􏼒 􏼓 + C2 exp

1
2
]􏼒 􏼓cos

1
2
]􏼒 􏼓 + C3 exp

− (1/2) − 1 − 2 D −
��������������
1 + 4 D + 4 DC

2
􏽰

􏼒 􏼓c

C
2

− D

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠+

C4 exp
− (1/2) − 1 − 2 D +

��������������
1 + 4 D + 4 DC

2
􏽰

􏼒 􏼓c

C
2

− D

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

Putting values of v and c in the above equation, we
obtain that

w(x, y, t) � exp(x)

C1 exp
1
2

(y − x)􏼒 􏼓sin
1
2

(y − x)􏼒 􏼓 + C2 exp
1
2

(y − x)􏼒 􏼓cos
1
2

(y − x)􏼒 􏼓

+C3 exp
− (1/2) − 1 − 2 D −

��������������
1 + 4 D + 4 DC

2
􏽰

􏼒 􏼓(t − x)

C
2

− D

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠+

C4 exp
− (1/2) − 1 − 2 D +

��������������
1 + 4 D + 4 DC

2
􏽰

􏼒 􏼓(t − x)

C
2

− D

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (17)

is a solution of (1).
(2) +e similarity variables corresponding to

X5 � yzx − xzy, (18)

are
] � t,

c � x
2

+ y
2
,

μ(], c) � w.

(19)

+e dependent variable μ given in (19) indicates that
the solution of (1) is in the form

w � μ. (20)

Again, we consider the independent variables one by
one given in (19) to seek solutions of (1). +us, by
using v � t and μ(v) � w, equation (1) is transformed
into an ODE

μ] + C
2μ]] � 0, (21)

with the solution

μ(]) � C1 exp
− ]
C
2􏼠 􏼡 + C2. (22)

And by considering

c � x
2

+ y
2
,

μ(c) � w,
(23)

equation (1) is transformed into the following ODE:

μc + cμcc � 0, (24)

with the solution

μ(c) � C3 ln(c) + C4. (25)

By combining solutions given in (22) and (25), we get
that

w(x, y, t) � C1 exp
− ]
C
2􏼠 􏼡 + C3 ln(c) + C2 + C4, (26)

i.e.,

w(x, y, t) � C1 exp
− t

C
2􏼠 􏼡 + C3 ln x

2
+ y

2
􏼐 􏼑 + C5,

(27)

is a solution of (1).
(3) +e similarity variables corresponding to

X4 + X5 � yzx − xzy + zw, (28)

are
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] � x
2

+ y
2
,

c � t,

μ(], c) �
w

exp(arctan(x/y))
.

(29)

+e dependent variable μ given in (29) indicates that
the solution of (1) is in the form

w � μ exp arctan
x

y
􏼠 􏼡􏼠 􏼡. (30)

By considering

] � x
2

+ y
2
,

μ(]) �
w

exp(arctan(x/y))
,

(31)

equation (1) is transformed into the following ODE:

]2μ]] + ]μ] +
1
4
μ � 0, (32)

with the solution

μ(]) � C1 sin
1
2
ln(])􏼒 􏼓 + C2 cos

1
2
ln(])􏼒 􏼓. (33)

+us,

w(x, y, t) � exp arctan
x

y
􏼠 􏼡􏼠 􏼡μ(]) orw(x, y, t) � exp arctan

x

y
􏼠 􏼡􏼠 􏼡 C1 sin

1
2
ln(])􏼒 􏼓 + C2 cos

1
2
ln(])􏼒 􏼓􏼒 􏼓, (34)

i.e.,

w(x, y, t) � exp arctan
x

y
􏼠 􏼡􏼠 􏼡 C1 sin

1
2
ln x

2
+ y

2
􏼐 􏼑􏼒 􏼓 + C2 cos

1
2
ln x

2
+ y

2
􏼐 􏼑􏼒 􏼓􏼒 􏼓, (35)

is a solution of (1).
Here, we neglect the similarity variables
c � t and μ(c) � (w/exp(arctan(x/y))) because
corresponding to these variables, equation (1) is not
transformed into an ODE.

(4) +e similarity variables corresponding to

X6 � tzx +
C
2
x

t
zt −

1
2

wx

D
zw

(36)

are

] � y,

c �
− C

2
x
2

+ t
2
D

D
,

μ(], c) �
w

exp − (1/2) t/C2
􏼐 􏼑􏼐 􏼑

.

(37)

By considering v � y and
μ(]) � (w/exp(− (1/2)(t/C2))), equation (1) is
transformed into an ODE

Dμ]] +
1

4C
2 μ � 0, (38)

with the solution

μ(]) � C1 sin
1
2

]
C

��
D

√􏼠 􏼡 + C2 cos
1
2

]
C

��
D

√􏼠 􏼡. (39)

Now, by considering

c �
− C

2
x
2

+ t
2
D

D
,

μ(c) �
w

exp − (1/2) t/C2
􏼐 􏼑􏼐 􏼑

,

(40)

equation (1) is transformed into the following ODE:

16C
4
cμcc + 16C

4μc − μ � 0, (41)

with the solution

μ(c) � C3I
1
2

�
c

√

C
2􏼠 􏼡 + C4K

1
2

�
c

√

C
2􏼠 􏼡, (42)

where I((1/2)(
�
c

√ /C2)) and K((1/2)(
�
c

√ /C2)) are
the modified Bessel functions of the first and second
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Figure 1: Graph of w given by (17) for C� 0.1, D� 1, and C1 �C2 �C3 �C4 �1.
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Figure 2: Graph of w given by (27) for C� 0.5, C1 �C3 �1, and C5 � 0.
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Figure 3: Graph of w given by (35) for C1 �C2 �1.
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kinds, respectively. By combining (39) and (42), we
have

w(x, y, t) � exp −
1
2

t

C
2􏼠 􏼡(μ(]) + μ(c)),

w(x, y, t) � exp −
1
2

t

C
2􏼠 􏼡 C1 sin

1
2

]
C

��
D

√􏼠 􏼡 + C2 cos
1
2

]
C

��
D

√􏼠 􏼡 + C3I
1
2

�
c

√

C
2􏼠 􏼡 + C4K

1
2

�
c

√

C
2􏼠 􏼡􏼠 􏼡,

(43)

i.e.,

w(x, y, t) � exp −
1
2

t

C
2􏼠 􏼡 C1 sin

1
2

y

C
��
D

√􏼠 􏼡 + C2 cos
1
2

y

C
��
D

√􏼠 􏼡 + C3I
1
2

���������������
− C

2
x
2

+ t
2
D/D􏼐 􏼑

􏽱

C
2

⎛⎜⎜⎝ ⎞⎟⎟⎠ + C4K
1
2

���������������
− C

2
x
2

+ t
2
D/D􏼐 􏼑

􏽱

C
2

⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠,

(44)

is a solution of (1).

4. Surface Graphs of the Obtained Solutions

In this section, the surface graphs of the exact solutions of
the Cattaneo model which are calculated in the previous
section are presented. Figures 1–4 show the surface graphs of
the exact solutions of the considered model given in
equations (17), (27), (35), and (44), respectively.

5. Summary and Conclusions

In this paper, the authors have applied the Lie symmetry
method to the Cattaneo equation for obtaining its exact
solutions. On achieving the similarity variables, equation (1)
is reduced to some ODEs of second order. Finally, the
authors have obtained some solutions of undergone ODEs
including Bessel functions, which lead to many exact

solutions of the considered equation. +e surface graphs of
solutions are presented to show different behaviors of the
considered model. +is paper has an interesting application
of the Lie group method in a manner that a PDE with three
independent variables is directly converted into an ODE by
considering its different Lie symmetry generators.

Abbreviations

μ: A similarity dependent variable which is a
function of two independent variables

v: A similarity independent variable
c: A similarity independent variable
C1, C2, C3, C4,
C5:

Constants of integration

I and K: I and K presented in equations (42) and (44)
are the modified Bessel functions of the first
and second kinds, respectively.
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+e purpose of this research is to introduce a Jungck–S iterative method with (m, h1, h2)–convexity and hence unify different
comparable iterative schemes existing in the literature. A Jungck–S orbit is constructed, and escape radius is derived with our
scheme. A new escape radius is also obtained for generating the fractals. Julia and Mandelbrot set are visualized with the help of
proposed algorithms based on our iterative scheme. Moreover, we present some complex graphs of Julia and Mandelbrot sets
using the derived orbit and discuss their nature in detail.

1. Introduction

+e word fractal originating from Latin language means to
divide or break.+is is tantamount to self-similar patterns in
the complex graphics. +e fractal theory has many appli-
cations in mathematics and different related disciplines. In
biological sciences, this theory is being applied successfully
to understand certain biologic phenomena, for example,
growth culture for the microorganism, like bacteria or
amoeba, and to study and analyze the fibre pattern of nerve
and so forth. In physical sciences, fractals are used to de-
termine and understand the turbulent flows in fluid me-
chanics. In telecommunication, fractals are used to
manufacture antennae. Moreover, computer networking,
radar system, and architectural models also fall into the
domain of applications of fractals theory.

In 1975, Mandelbrot generated a sequence of iterates for
a complex polynomial z2 + c [1] under some restrictions. He
observed a chain of self-similar patterns on a graph and
hence named it fractal. He claimed that the obtained image
was the sequence of connected Julia sets. After his valuable
work, the researcher generalized the fractals in many dif-
ferent ways. It is worth mentioning that complex graphical
shapes, fractals, were discovered as the fixed points of certain

set maps. So, the fixed point theory plays a vital role in the
investigation of fractals. Different iterative schemes, mainly
used to approximate the fixed points of certain mappings,
can be employed to sketch some beautiful natural scenes of
sunset, lighting, rainbow, galaxies, deserts, mountains, and
so forth. +ese aesthetic patterns depend on the iterative
algorithms and hence provide a good source of motivation to
apply mathematical models in art and designs. +e gener-
alized form of the Mandelbrot set was given in [2].

Some logarithmic, rational, exponential, and trigono-
metric functions were investigated in [3]. +e bicomplex,
tricomplex, and quaternions functions were utilized in [4–6]
to create some generalized versions of fractals. +e study of
fractals using fixed point theory attracted the attention of
several researchers after the work of Rani et al. in [7, 8].
Some types of fractals via different explicit iterations were
analyzed in [9–13].

In this paper, we define the orbit of generalized Jungck-S
iterative scheme with (m, h1, h2)–convexity for fractals. We
derive a new escape radius for complex polynomials and
develop the algorithms for fractals visualization and draw
some complex graphs of Julia and Mandelbrot sets using
computer software. +e paper is organized as follows: in
Section 2, some known concepts and iterative schemes are
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given. Section 3 contains the Jungck–S orbit with
(m, h1, h2)–convexity (JSOmhh) and the derivation of es-
cape radius for Jungck–S iterative scheme with
(m, h1, h2)–convexity for general complex polynomial. In
Section 4, we visualize some quadratic and cubic complex
graphs of Julia and Mandelbrot sets. Characteristics of Julia
and Mandelbrot sets are also discussed in this section. In
Section 5, the summary of our present work and the plan of
our future work are presented.

2. Preliminaries

Consistent with [14, 15], the following definitions will be
needed in the sequel.

Definition 1 (see [14]). Let f: C⟶ C be a complex
polynomial of degree ≥2 with complex coefficients and
fp(x) the pth iterate of x. +e behavior of the iterate fp(x)

for large p determines the Julia set. +e set Ff, called filled
Julia set, is the set of all those points ofC for which the orbits
|fp(z)|}∞p�0↛∞ are as p⟶∞; that is,

Ff � z ∈ C: f
p
(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯
∞
p�0 is bounded􏼚 􏼛. (1)

+e boundary of the filled Julia set is called simply Julia
set.

Mandelbrot [15] extended the concept of a Julia set and
presented the notion of fractals. He investigated the
graphical behavior of connected Julia sets and plotted them
for complex function, fc(x) � x2 + c, where x ∈ C is a
variable and c ∈ C is the input.

Definition 2 (see [15]). +e set which consists of all those
points (parameters) of C for which the Julia sets are con-
nected is called Mandelbrot set M; that is,

M � c ∈ C: Ff is connected􏽮 􏽯. (2)

Equivalently, the Mandelbrot set can be defined as
follows [16]:

M � c ∈ C: f
p
(0)􏼈 􏼉 does not tend to∞ asp⟶∞􏼈 􏼉.

(3)

Different algorithms have been employed to generate
Julia sets. Some popular algorithms to visualize the Julia sets
are distance estimator [17], escape time [18], and potential
function algorithms [19]. +e escape time algorithms have
been used in this paper.

We established escape time algorithms, namely, Algo-
rithms 1 and 2 with derived escape radius to generate the
fractals.

Let us refer to some iterative algorithms: the Jungck
iteration was studied in [20], the Jungck–Mann iteration
with s-convexity was studied in [21], the Jungck–Ishikawa
iteration with s-convexity was studied in [21], the following
Jungck-S iteration was studied in [20] and Kwun et al.[22]
used a convex combination to define the Jungck-S iterative

scheme with s-convexity. We define the Jungck-S iterative
scheme with (m, h1, h2)-convexity (JSOmhh) in the fol-
lowing manner:

Definition 3 (JSOmhh). Suppose that P, Q: C⟶ C, where
P is one to one. Let z0 ∈ C be an initial point. +e Jungck–S
iterative scheme with (m, h1, h2)–convexity is defined as
follows:

P zk+1( 􏼁 � mh1(α)Q zk( 􏼁 + h2(α)Q yk( 􏼁,

P yk( 􏼁 � mh1(β)P zk( 􏼁 + h2(β)Q zk( 􏼁,
􏼨 (4)

where h1(t) � (1 − t)− s and h2(t) � t− s, also
α, β, s, m ∈ (0, 1], and k � 0, 1, 2, . . ..

It is important to mention here that our scheme gen-
eralizes many of the above-mentioned schemes.

3. Main Results

In this section, we first introduce the Jungck–S iterative
scheme with (m, h1, h2)–convexity (JSOmhh) and then
prove escape criteria to determine the escape radius induced
by (JSOmhh).

In the following theorem, we use (JSOmhh) to establish
the escape criteria for f(z) � 􏽐

p
i�0 aiz

i, where p≥ 2, ai ∈ C,
for i � 0, 1, 2, . . . , p and |ap|>􏽐

p− 1
i�2 |ai| with choices Q(z) �

􏽐
p
i�2 aiz

i + a0 and P(z) � a1z to generate fractals.

Theorem 1. Suppose that |z|≥ |a0|> (2(1 + m|a1|)/
sα(ϕ − φ))1/(p− 1) and |z|≥ |a0|> (2(1 + m|a1|)/sβ
(ϕ − φ))1/(p− 1) where ϕ � |ap|,φ � 􏽐

p− 1
2 |ai|, where

α, β, s ∈ (0, 1], and zk􏼈 􏼉k∈N is defined as

P zk+1( 􏼁 � mh1(α)P zk( 􏼁 + h2(α)Q yk( 􏼁,

P yk( 􏼁 � mh1(β)P zk( 􏼁 + h1(β)Q zk( 􏼁,
􏼨 (5)

where s, t, m ∈ (0, 1], h1(t) � (1 − t)− s, h2(t) � t− s and
k � 0, 1, 2, . . .. %en, |zk|⟶∞ as k⟶∞.

Proof. Since f(z) � 􏽐
p
i�0 aiz

i, where ai ∈ C for
i � 0, 1, 2, . . . , p, z0 � z, and y0 � y. Handling f as f � Q −

P with choice Q(z) � 􏽐
p

i�2 aiz
i + a0 and P(z) � a1z, then

P y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(β)P(z) + h2(β)Q(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − β)
− s

a1z + β− s
􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
a1y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(6)

Because (1 − β)− s � 1 + βs + · · · > 1 and β− s � 1 + s(1 −

β) + · · · > βs for all s, m, β ∈ (0, 1], therefore

a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− sβ a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (7)

Since |z|≥ |a0| and sβ< 1, we have
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a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− |z| − m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|z|

� |z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠ y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(8)

Since (1 + m|a1|)> |a1|, then

y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
sβ 􏽐

p
i�2 aiz

i− 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎝ ⎞⎠

≥ |z|
sβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽐
p− 1
i�2 ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

� |z|
sβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡 y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ|z|.

(9)

Because |z|≥ |a0|> (2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1)

where ϕ � |ap|,φ � 􏽐
p− 1
2 |ai|, this produced the situation

|z|((|z|p− 1(sβ(ϕ − φ))/(1 + m|a1|)) − 1)> |z|≥ sβ|z|. For the
last step, we have

P z1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(α)Q z0( 􏼁 + h2(α)Q y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − α)
− s

z
p

+ d2( 􏼁 + α− s
y

p
+ d2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ m 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠ + sα 􏽘

p

i�2
aiy

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(10)

Since m> 0, then we get

a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sα 􏽘

p

i�2
aiy

i
+ a0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥ sα 􏽘

p

i�2
aiy

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ |z| s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘

p− 1

i�2
ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠ − 1

⎧⎨

⎩

⎫⎬

⎭.

(11)

Input: f(z) � 􏽐
p

i�0 aiz
i where p≥ 2, ai ∈ C for i � 0, 1, 2, . . . , p–polynomial of complex variable, ϕ,φ, α, β, s, m – involved

parameters, A � [xmin, xmax] × [ymin, ymax] –occupied area, K – fixed number of iterates, colourfunction [0..n − 1] – colour
function with n colours.
Output: a Julia set.

(1) for a0 ∈ C do
(2) R � Max[|a0|, (2(1 + m|d1|)/sα(ϕ − φ))1/(p− 1), (2(1 + m|d1|)/sβ(ϕ − φ))1/(p− 1)] the escape radius
(3) k � 0
(4) z0 � a0–initial guess for f

(5) while k≤K do
(6) zk+1 � fc(zk)

(7) if |zk+1| >R then
(8) break
(9) k � k + 1
(10) c � ⌊(n − 1)(k/K)⌋

(11) colour z0 with colourfunction [c].

ALGORITHM 1: Complex graph of Julia set.

Input: f(z) � 􏽐
p
i�0 aiz

i where p≥ 2, ai ∈ C for i � 0, 1, 2, . . . , p– polynomial of complex variable, ϕ,φ, α, β, s, m – involved
parameters, A � [xmin, xmax] × [ymin, ymax] –occupied area, K – fixed number of iterates, colourfunction [0..n − 1] – colour
function with n colours.
Output: a Mandelbrot set.

(1) for a0 ∈ C do
(2) R � Max[|a0|, (2(1 + m|d1|)/sα(ϕ − φ))1/(p− 1), (2(1 + m|d1|)/sβ(ϕ − φ))1/(p− 1)]–the escape radius
(3) k � 0
(4) z0 � 0–initial guess for f

(5) while k≤K do
(6) zk+1 � f(zk)

(7) if |zk+1|>R then
(8) break
(9) k � k + 1
(10) c � ⌊(n − 1)(k/K)⌋

(11) colour a0 with colourfunction [c].

ALGORITHM 2: Complex graph of Mandelbrot.
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Hence,

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡. (12)

Since |z|> (2(1 + m|a1|)/sα(ϕ − φ))1/(p− 1) and |z|>
(2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1), so |z|p− 1 > 2(1 + m|d1|)

/s2αβ and this implies ((s2αβ(ϕ − φ)|z|p− 1)/(1 + m

|d1|)) − 1> 1. +erefore, there exists δ > 0 such that
(s2αβ(ϕ − φ)|z|p− 1/(1 + m|d1|)) − 1> 1 + δ. Consequently,
|z1|> (1 + δ)|z|. In particular, |z1|> |z|. So, we may iterate to
find |zi|> (1 + δ)i|z|. Hence, the orbit of z tends to infinity
and this completes the proof. □

Theorem 2. Suppose that zi􏼈 􏼉i∈N is a sequence of points in
JSOmhh for complex polynomial f(z) � 􏽐

p

i�0 aiz
i, where

p≥ 2, ai ∈ C, for i � 0, 1, 2, . . . , p, ϕ � |ap|, and φ � 􏽐
p− 1
i�2 |ai|

with ϕ>φ such that |zi|⟶∞ as i⟶∞; then
|z|≥ |a0|> (2(1 + m|d1|)/sα(ϕ − φ))1/(p− 1) and |z|≥ |a0|>
(2(1 + m|d1|)/sβ(ϕ − φ))1/(p− 1) where α, β, s ∈ (0, 1].

Proof. Since zi􏼈 􏼉i∈N is the sequence of points in JSOmhh for
complex polynomial f(z) � 􏽐

p
i�0 aiz

i where p≥ 2, ai ∈ C for
i � 0, 1, 2, . . . , p, ϕ � |ap| and φ � 􏽐

p− 1
i�2 |ai| with ϕ>φ such

that |zi|⟶∞ as i⟶∞, therefore there exists δ > 0 such
that

zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>(1 + δ)

i
|z|. (13)

For i � 1, we get

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ (1 + δ)|z|. (14)

Since f(z) � 􏽐
p
i�0 aiz

i, where ai ∈ C for i � 0, 1, 2, . . . , p,
z0 � z and y0 � y. Handling f as f � Q − P with choice
Q(z) � 􏽐

p

i�2 aiz
i + a0 and P(z) � a1z, then

P y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(β)P(z) + h2(β)Q(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − β)
− s

a1z + β− s
􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
a1y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(15)

Because (1 − β)− s � 1 + βs + · · · > 1 and β− s � 1 + s(1 −

β) + · · · > βs for all s, m, β ∈ (0, 1], therefore

a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− sβ a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (16)

Since for fractal generation it must be true |z|≥ |a0|. Also,
sβ< 1, and we obtain

a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− |z| − m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|z|

� |z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠ y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(17)

Since (1 + m|a1|)> |a1|, then

y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
sβ 􏽐

p

i�2 aiz
i− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎝ ⎞⎠≥ |z|

sβ z
p− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽐
p− 1
i�2 ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

� |z|
sβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡 y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ|z|.

(18)

Since fractals are bounded, therefore
((sb|zp− 1|/(1 + |d1|)) − 1)≥ 1. For the last step, we have

P z1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(α)Q z0( 􏼁 + h2(α)Q y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − α)
− s

z
p

+ d2( 􏼁 + α− s
y

p
+ d2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ m 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠ + sa 􏽘

p

i�2
aiy

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(19)

Since m> 0, then we get

a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sα 􏽘

p

i�2
aiy

i
+ a0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥ sα 􏽘

p

i�2
aiy

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ |z| s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘

p− 1

i�2
ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠ − 1

⎧⎨

⎩

⎫⎬

⎭.

(20)

Hence,
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z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡. (21)

Comparing (14) and (21), we have

s
2αβ(ϕ − φ) z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1 � 1 + δ

s
2αβ(ϕ − φ) z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1

> 1,

(22)

because δ > 0. +is implies

|z|>
2 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

s2αβ(ϕ − φ)
⎛⎝ ⎞⎠

1/(p− 1)

. (23)

As a result, we obtain |z|> (2(1 + m|a1|)

/sα(ϕ − φ))1/(p− 1) and |z|> (2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1)

where p≥ 2 and α, β, m, s ∈ (0, 1]. To visualize complex
fractal, |z|≥ |a0| must exist because, for any given point
|z|< |a0|, we have to compute the JSOmhh of z. If, for some i,
|zi| lies outside the circle of radius max |a0|, (2(1 + m|a1|)/􏼈

sα(ϕ − φ))1/(p− 1), (2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1)}, we ob-
served that JSOmhh escapes. Hence, z is neither in Julia sets
nor in Mandelbrot sets, but |zi| is bounded to obey |z|≥ |a0|;
then |zi| lies in JSOmhh. Hence, it is the desired result. □

4. Application of Fractals

In this section, we use our developed algorithms and derived
escape radius for JSOmhh to draw some attractive and
inspiring Julia and Mandelbrot sets using the framework of
Mathematica. +roughout this section, we use K � 100 (for
maximum iterates).

4.1. Julia Sets. Figures 1–6 are quadratic Julia sets at dif-
ferent involved parameters. We obverse that each graph of
quadratic Julia set is different from the other. We use the
same complex polynomial and involved parameters except
for a0 for Figures 1 and 2 and analyze that due to a very
small change in a0, the nature of graphs changes drasti-
cally. Also, for Figures 3–6, we have the same arguments.
We also observe that the correspondence between the
points of quadratic Julia sets creates the artful patterns and
self-similarity in points of quadratic Julia sets show that
the drawn graphs are the fractals. +e involved parameters
for complex graphs of quadratic Julia sets 1–6 were as
follows:

Figure 1: p � 2, a0 � 0.0248 + 0.0084i, a1 � 1/2, a2 � 2,
a, b, s, m � 0.1, A � [− 0.27, 0.27] × [− 0.37, 0.37].
Figure 2: p � 2, a0 � − 0.084, a1 � 1/2, a2 � 2, a, b, s,

m � 0.1, A � [− 0.37, 0.37] × [− 0.2, 0.2].
Figure 3: p � 2, a0 � 0.0015 + 0.00007i, a1 � 1/2, a2 �

100, a, b, s, m � 0.5, A � [− 0.007, 0.005] × [− 0.0025,

0.0025].

Figure 4: p � 2, a0 � 0.0015 + 0.00001i, a1 � 1/2, a2 �

100, a, b, s, m � 0.5, A � [− 0.007, 0.005] × [− 0.0025,

0.0025].
Figure 5: p � 2, a0 � 0.0071 + 0.0014i, a1 � 2, a2 � 1,
a, b, s, m � 0.9, A � [− 0.053, 0.053] × [− 0.035, 0.035].
Figure 6: p � 2, a0 � 0.006i, a1 � 2, a2 � 1, a, b, s, m �

0.9, A � [− 0.053, 0.053] × [− 0.037, 0.037].

In Figures 7–12, cubic Julia sets are presented. Again,
we use the same complex cubic polynomial and involved
parameters except for a0 for Figures 7 and 8. We observe
that, due to a very small change in a0, the nature of cubic
Julia graphs also changes drastically. We have made the
same augments for Figures 9–12, respectively. Further-
more, we observe that the correspondence between the
points of cubic Julia sets creates the aesthetic patterns and
self-similarity in points of cubic Julia sets show that the
drawn graphs of cubic Julia sets are also fractals. +e in-
volved parameters for complex graphs of cubic Julia sets
7–12 were as follows:

Figure 7: p � 3, a0 � 0.00122, a1 � 1 + i, a2 � 1, a3 �

50, a, b, s, m � 0.9, A � [− 0.01, 0.01] × [− 0.01, 0.01].
Figure 8: p � 3, a0 � 0.001019, a1 � 1 + i, a2 � 1, a3 �

50, a, b, s, m � 0.9, A � [− 0.012, 0.01] × [− 0.012, 0.01].
Figure 9: p � 3, a0 � 0.000085i, a1 � 1 + i, a2 � 45, a3 �

50, a, b, s, m � 0.9, A � [− 0.00007, 0.00007]×

[− 0.00007, 0.00007].
Figure 10: p � 3,, a1 � 1 + i, a2 � 45, a3 � 50, a, b, s, m

� 0.9, A � [− 0.00009, 0.00009] × [− 0.00004, 0.00004].
Figure 11: p � 3, a0 � 0.09956 + 0.27i, a1 � 2, a2 � 1,

a3 � 3, a � 0.1, b � 0.9, s, m � 0.5, A � [− 0.8, 0.6]×

[− 0.6, 0.7].
Figure 12: p � 3, a0 � 0.0489 + 0.366i, a1 � 2, a2 � 1,

a3 � 3, a � 0.1, b � 0.9, s, m � 0.5, A � [− 0.8, 0.6]×

[− 0.6, 0.7].

4.2. Mandelbrot Sets. Figures 13–24 execute the quadratic
complex polynomial for different involved parameters in
JSOmhh. Figures 13–16 represent the quadratic Mandel-
brot sets. Each quadratic Mandelbrot set has a main car-
dioid type body, one large bulb, and two small bulbs are
seen on cardioid type body. +e bulbs are self-similar and
contain a large number of more small bulbs. Due to a small
change in the involved parameters, the size of bulbs and
main cardioid changes. Figures 17 and 18 are Mandelbrot
sets for quadratic polynomial, but both figures are not like
the usual quadratic Mandelbrot set. Some parts of both
images are like the quadratic, cubic, and quadric Man-
delbrot sets. It is observed that the values of ai’s are in the
inverse proportion to the area A; that is, the larger the
values of ai’s, the smaller the area A. +e involved pa-
rameters for quadratic Mandelbrot sets were taken as
follows:

Figure 13: p � 2, a1 � 1/2, a2 � 2, a, b, s, m � 0.1,
A � [− 0.17, 0.05] × [− 0.1, 0.1].
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Figure 14: p � 2, a1 � 3, a2 � 10, a, m � 0.5,

b � 0.9, s � 0.8, A � [− 0.17, 0.05] × [− 0.07, 0.07].
Figure 15: p � 2, a1 � 2, a2 � 100, a � 0.5, b � 0.9,

s � 0.8, m � 0.9, A � [− 0.0081, 0.0005] × [− 0.001,

0.001].
Figure 16: p � 2, a1 � 100, a2 � 1, a, b � 0.5, s � 0.9,

m � 0.7, A � [− 4200, 501] × [− 1201, 1201].
Figure 17: p � 2, a1 � 1, a2 � (a0 − 1), a, b � 0.5,

s � 0.9, m � 0.7, A � [− 0.15, 0.7] × [− 0.4, 0.4].
Figure 18: p � 2, a1 � 2/3, a2 � 1, a, b, s, m � 0.9,
A � [− 0.001, 0.002] × [− 0.001, 0.001].

Some Mandelbrot sets for cubic complex polynomial are
presented here. In Figures 19–24, the graphs for cubic
Mandelbrot sets are analyzed in JSOmhh. Figures 21 and 24
demonstrate the usual cubic while Figure 23 reflects the
quadratic Mandelbrot sets for cubic complex polynomial.

Figure 1: Quadratic Julia set in JSOmhh.

Figure 2: Quadratic Julia set in JSOmhh.

Figure 3: Quadratic Julia set in JSOmhh.

Figure 4: Quadratic Julia set in JSOmhh.

Figure 5: Quadratic Julia set in JSOmhh.
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Figure 6: Quadratic Julia set in JSOmhh.

Figure 7: Cubic Julia set in JSOmhh.

Figure 8: Cubic Julia set in JSOmhh.
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Figure 9: Cubic Julia set in JSOmhh.

Figure 10: Cubic Julia set in JSOmhh.

Figure 11: Cubic Julia set in JSOmhh.
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Figure 12: Cubic Julia set in JSOmhh.

Figure 13: Quadratic Mandelbrot set in JSOmhh.

Figure 14: Quadratic Mandelbrot set in JSOmhh.

Figure 15: Quadratic Mandelbrot set in JSOmhh.

Figure 16: Quadratic Mandelbrot set in JSOmhh.

Figure 17: Quadratic Mandelbrot set in JSOmhh.
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Figure 18: Quadratic Mandelbrot set in JSOmhh.

Figure 19: Cubic Mandelbrot set in JSOmhh.

Figure 20: Cubic Mandelbrot set in JSOmhh.

Figure 21: Cubic Mandelbrot set in JSOmhh.

Figure 22: Cubic Mandelbrot set in JSOmhh.

Figure 23: Quadratic Biomorph generated in Jungck-S orbit with
s-convexity.
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Figure 19 is multishaped, Figure 20 is like semiquadratic
semicubic, and Figure 23 is like Hexic Mandelbrot sets,
respectively. +e involved parameters were as follows:

Figure 19: p � 3, a1 � 2/3, a2 � 1, a3 � 3, a, b, s,

m � 0.9, A � [− 0.001, 0.0045] × [− 0.0015, 0.0015].
Figure 20: p � 3, a1 � 2, a2 � 1, a3 � 3(a0 − 1), a, b,

m, s � 0.5, A � [− 0.9, 1.05] × [− 0.9, 0.9].
Figure 21: p � 3, a1 � 1, a2 � 1, a3 � 30, a, b � 0.9,

m, s � 0.5, A � [− 0.03, 0.025] × [− 0.045, 0.045].
Figure 22: p � 3, a1 � 1/2, a2 � 3a2

0, a3 � 3a3
0, a, b,

m � 0.9, s � 0.5, A � [− 0.2, 0.2] × [− 0.2, 0.2].
Figure 23: p � 3, a1 � 1 + i, a2 � 45, a3 � 50, a, b, s,

m � 0.9, A � [− 0.0001, 0.0001] × [− 0.0002, 0.0001].
Figure 24: p � 3, a1 � 1 + i, a2 � 1, a3 � 50, a, b, s,

m � 0.9, A � [− 0.0022, 0.0017] × [− 0.0015, 0.0015].

5. Conclusions

Fractals can be used to capture images of these complex
structures. In addition, fractals are used to predict or analyze
various biological processes or phenomena such as the
growth pattern of bacteria and the pattern of situations such
as nerve dendrites. We established the Jungck–S orbit with
(m, h1, h2)–convexity and derived the new escape criteria for
the execution of fractals. We introduced two algorithms in
this paper for Julia and Mandelbrot sets. Some examples of
quadratic and cubic fractals (i.e., Julia and Mandelbrot sets)
were presented in detail. We observed the following char-
acteristics of fractals in JSOmhh:

A very small change in the involved parameters caused
the drastic change in fractals.
For large values of ai’s, area of the image will be small.
Self-similarity is observed in each image of Julia and
Mandelbrot sets. Hence, the visualized complex graphs
were the fractals.

In our future research work, we intend to obtain the
escape radius for other Jungck-type iterative schemes with

(m, h1, h2)–convexity. We believe this paper will attract
researchers who work on the investigations of different types
of fractals [23, 24].
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In this paper, we study the competition between two firms whose outputs are quantities. &e first firm considers maximization of
its profit while the second firm considers maximization of its social welfare. Adopting a gradient-basedmechanism, we introduce a
nonlinear discrete dynamic map which is used to describe the dynamics of this game. For this map, the fixed points are calculated
and their stability conditions are analyzed. &is includes investigating some attracting set and chaotic behaviors for the complex
dynamics of the map. We have also investigated the types of the preimages that characterize the phase plane of the map and
conclude that the game’s map is noninvertible of type Z4 − Z2.

1. Introduction

Because of the appearance of the wealth theory in [1, 2],
many studies on Cournot and Bertrand games have been
raised. For instance, Singh and Vives introduced a quadratic
utility function that has been used to model and study a
Cournot duopoly game in [3]. &is utility function has been
also adopted in different games by many authors such as
Askar [4–7], Elsadany [8], Naimzada and Tramontana [9],
andMa and Pu [10]. Modelling such games in a discrete time
periods requires some mechanisms such as bounded ra-
tionality, Puu’s approach, naive expectation, and other
adaptive methods.

Several studies have been adopted both bounded ra-
tionality and Puu’s incomplete information. &ey are two
different mechanisms. For the bounded rationality, the
game’s players (or firms) are updating their output pro-
duction depending on discrete time steps and by using a
local estimate of their marginal profits. Furthermore, the
players do not have to possess a complete knowledge of both
demand and cost functions. However, they instead want to
discover whether the market responses to small changes in

production using an estimation of their marginal profits. For
more applications on this mechanism which is sometimes
called a myopic mechanism, one can see [11, 12]. &e so-
called Puu’s mechanism has been introduced in [13]. It is
characterized by its realistic feature that is the firms do not
have to know the profit function in order to get estimation of
the commodity produced at the next period of time. &e
firms only require the commodity and profit at the past two
periods of time. &ere are some other updating mechanisms
that have been reported in the literature. For instance, Long
and Huang [14], Agiza and Elsadany [15], Kopel [16],
Elabbasy et al. [17, 18], Askar and Abouhawwash [19],
Hommes [20], Tremblay et al. [21], Ahmed et al. [22],
Baiardi and Naimzada [23], Fanti et al. [24], Elsadany and
Awad [25], Tremblay and Tremblay [26], Askar and Al-
Khedhairi [27], and Gao and Du [28].

&e majority of the literature has been analyzed for
models of mixed oligopoly on the basis that the game has
been in a static case. Liu et al. [29] investigated the static
game of endogenous horizontal product differentiation in a
mixed duopoly. &e relationship between privatization and
corporate tax policies has been studied in [30]. Nie [31] has
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analyzed the effects of capacity constraints on the mixed
duopoly game.&e strategy for cost-reduction innovation in
the mixed economy has been explored in [32]. All of earlier
papers have not discussed the case of a dynamic mixed
oligopoly model.

&e current paper introduces a dynamic game of
Cournot duopoly on which two firms are competing but
they are different in optimization process. &e first firm
focuses on maximizing its profit that depends on a qua-
dratic production cost. &e second firm is different and
wants to maximize its social welfare using the same qua-
dratic cost form. &e main contribution considers intro-
ducing such optimization problem and dynamic
characteristics emanated from the game’s map. Further-
more, the monopolistic case is studied and is shown that
each firm behaves monopolistically such as the standard
logistic process. In the duopolistic case, the equilibrium
points are calculated and their stability conditions are
analyzed. Indeed, this includes local and global analysis of
the routes by which these equilibrium points can be
destabilized. &e numerical simulation shows that some
attracting sets are born due to both period-doubling and
Neimark–Sacker bifurcations. In addition, the nonlinearity
and noninvertibility of the game’s map give rise to such
complex behaviors.

&e outline of current paper is divided into the following
sections. After the introduction, we give in Section 2 the
description of the game represented by a two-dimensional
discrete dynamic map. In Section 3, we calculate the game’s
fixed points and study their stability. Furthermore, we give
in this section a detailed discussion on themonopolistic case.
In addition, we study by numerical simulation the attracting
sets and chaotic behaviors arise due to the dynamics of the
duopoly case. Moreover, we investigate the critical curves of
the map and categorize the phase plane regions. Finally, we
give our conclusion on the obtained results within this
paper.

2. Cournot Duopoly Game

&e game is constructed based on two competing firms with
quantity-based strategies and differentiated products. &e
quantities produced by the two firms are denoted by q1 and
q2. &eir demand functions are obtained by recalling the
following utility function:

U q1, q2( 􏼁 � a q1 + q2( 􏼁 −
1
2

q
2
1 + 2dqq2 + q

2
2􏼐 􏼑. (1)

More information on this utility is given in [3]. Both a

and d are constants. Supposing the budget constraint
p1q1 + p2q2 � M, we get the following maximization
problem:

MaxU q1, q2( 􏼁,

s.t. p1q1 + p2q2 � M.
(2)

Solving (2) gives

p1 � a − q1 − dq2,

p2 � a − q2 − dq1,
􏼨 (3)

where p1 and p2 denote the retail prices of the two firms’
products, respectively. &e constants a> 0 represent the
maximum price while d ∈ [− 0.5, 1] represents the product
differentiation. d � 1 indicates homogeneous products while
d � 0 means we have two monopolistic firms. Consider the
following cost function:

Ci qi( 􏼁 �
c

2
q
2
i , i � 1, 2, (4)

where c> 0. Now, the profits of the two firms are given by

π1 � p1q1 −
c

2
q
2
1 � 1 − q1 − dq2( 􏼁q1 −

c

2
q
2
1,

π2 � 1 − q2 − dq1( 􏼁q2 −
c

2
q
2
2.

(5)

&e consumer surplus is assumed to be CS � (1/2)(q21 +

q22 + 2dq1q2). &e social welfare is defined as the sum of
consumer surplus and profits as follows: W � CS + π1 + π2.
Now, both firms want to maximize the following payoffs:

π1 � a − q1 − dq2( 􏼁q1 −
c

2
q
2
1,

Π2 � ωπ2 +(1 − ω)W,

(6)

where ω ∈ [0, 1]. We should highlight that lack of market
demand and consumer information bring difficulty for
producers. &erefore, producers estimate the market
demand by adopting the gradient mechanism defined
below:

q1(t + 1) � q1(t) + v1q1
zπ1

zq1
,

q2(t + 1) � q2(t) + v2q2
zΠ2
zq2

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

where vi represents the adjustment speed for the ith firm.
Using (6) in (7), we get the map’s game:

T q1, q2( 􏼁:
q1(t + 1) � q1(t) + ]1q1 a − (2 + c)q1 − dq2􏼂 􏼃,

q2(t + 1) � q2(t) + ]2q2 a − (1 + ω + c)q2 − dq1􏼂 􏼃.
􏼨

(8)

&is map is a quadratic discrete dynamic map, and it is
converted into Fanti’s map [24] at ω � 1.

3. Equilibrium Points and Their Stability

Setting qi(t + 1) � qi(t) � qi, i � 1, 2 in (8), one obtains

q1 a − (2 + c)q1 − dq2􏼂 􏼃 � 0,

q2 a − (1 + ω + c)q2 − dq1􏼂 􏼃 � 0.
􏼨 (9)

Solving algebraically system (9), we get four fixed points
as follows:
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E0 � (0, 0),

E1 �
a

c + 2
, 0􏼒 􏼓,

E2 � 0,
a

c + ω + 1
􏼒 􏼓,

E∗ � q
∗
1 , q
∗
2( 􏼁

�
a + aω + ac − a d

3c + 2ω + cω + c
2

− d
2

+ 2
,

2a + ac − a d

3c + 2ω + cω + c
2

− d
2

+ 2
􏼠 􏼡,

(10)

where E0, E1, E2 are called boundary fixed points while E∗ is
called a Nash equilibrium point. It should be noted that the
equilibrium points E∗ become the same as of Fanti’s
equilibrium point when ω � 1. Studying the stability of these
points requires to calculate the Jacobian matrix of the map:

J �
1 + ]1 a − 2(2 + c)q1 − dq2􏼂 􏼃 − ]1dq1

− ]2dq2 1 + ]2 a − 2(1 + ω + c)q2 − dq1􏼂 􏼃
􏼢 􏼣.

(11)

It has the following characteristic polynomial:

f(λ) � λ2 − tr(J(E))λ + det(J(E)), (12)

where tr(J) and det(J) represent trace and determinant of
(11). &ey are used in Jury conditions [4]. &ese conditions
are given by

f(1) � 1 − tr(J(E)) + det(J(E))> 0,

f(− 1) � 1 + tr(J(E)) + det(J(E))> 0,

det(J)< 1.

(13)

&e above conditions characterize different types of
bifurcations by which the equilibrium points may be un-
stable. &ese types are summarized in the following:

(1 )Period-doubling bifurcation is raised when
f(− 1) � 0

(2) Transcritical or fold bifurcation is raised when
f(1) � 0

(3) Neimark–Sacker bifurcation is raised when det
(J)< 1

Now, we study the stability of the fixed points.

Theorem 1. -e fixed point E0 is unstable point.

Proof. &e Jacobian matrix given in (11) at this point
becomes

J E0( 􏼁 �
1 + ]1a 0

0 1 + ]2a
􏼢 􏼣. (14)

It is clear that (15) is a diagonal matrix and hence its
eigenvalues become λ1 � 1 + ]1a and λ2 � 1 + ]2a. Because
of the positivity of the parameters a, v1, and v2, we have
|λ1,2|> 1 and so E0 is unstable repelling node. □

Theorem 2. -e fixed point E1 is saddle point.

Proof. &e Jacobian matrix given in (11) at this point
becomes

J E1( 􏼁 �

1 − ]1a
]1d

c + 2

0 1 + ]2
2a

c + 2
􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

It is clear that (15) is a triangular matrix and hence its
eigenvalues become λ1 � 1 − ]1a and λ2 � 1+ ]2(2a/(c + 2)).
It is simple to see |λ1|< 1 and |λ2|> 1. &erefore, the fixed
point E1 is saddle point. □

Theorem 3. -e fixed point E2 is saddle point.

Proof. &e Jacobian matrix given in (11) at this point
becomes

J E2( 􏼁 �

1 + ]1
a(c + ω + 1 − d)

c + ω + 1
􏼠 􏼡 0

− ]2a d

c + ω + 1
1 − a]2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

It is clear that (16) is a triangular matrix and hence its
eigenvalues become
λ1 � 1 + ]1((a(c + ω + 1 − d))/(c + ω + 1)) and
λ2 � 1 − a]2. Because of the positivity of the parameters
a, v1, v2, and d< 1, we have |λ1|> 1 and |λ2|< 1. &erefore,
the point E2 is saddle point.

For Nash equilibrium point, the Jacobian becomes

J E∗( 􏼁 �

1 −
a(2 + c)(1 + ω + c − d)

2 + 2ω + 3c − d
2

+ cω + c
2]1 −

a d(1 + ω + c − d)

2 + 2ω + 3c − d
2

+ cω + c
2]1

−
a d(2 + c − d)

2 + 2ω + 3c − d
2

+ cω + c
2]2 1 −

a(2 + c − d)(1 + ω + c)

2 + 2ω + 3c − d
2

+ cω + c
2]2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

whose trace and determinant are given by
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tr J E∗( 􏼁( 􏼁 � 2 −
a(2 + c)(1 + ω + c − d)]1 + a(1 + ω + c)(2 + c − d)]2

2 + 2ω + 3c − d
2

+ cω + c
2 ,

Det J E∗( 􏼁( 􏼁 � 1 +
a
2
(2 + c − d)(1 + ω + c − d)]1]2 − a(1 + ω + c)(2 + c − d)]2 − 2a(2 + c)(1 + ω + c − d)]1

2 + 2ω + 3c − d
2

+ cω + c
2 .

(18)

&e eigenvalues of J(E∗) have a long analytical form, and
instead we discuss the stability of the Nash equilibrium point
by using Jury conditions:

1 − tr J E∗( 􏼁( 􏼁 + Det J E∗( 􏼁( 􏼁> 0,

1 + tr J E∗( 􏼁( 􏼁 + Det J E∗( 􏼁( 􏼁> 0,

1 − Det J E∗( 􏼁( 􏼁> 0,

⎧⎪⎪⎨

⎪⎪⎩
(19)

which can be rewritten in the form

a
2
(2 + c − d)(1 + ω + c − d)]1]2
2 + 2ω + 3c − d

2
+ cω + c

2 > 0,

4 − Φ> 0,

Φ> 0,

Φ �
a(1 + ω + c)(2 + c − d)]2 + 2a(2 + c)(1 + ω + c − d)]1 − a

2
(2 + c − d)(1 + ω + c − d)]1]2

2 + 2ω + 3c − d
2

+ cω + c
2 .

(20)

It is easy to see that the first condition of (20) is always
fulfilled. If the other two conditions are fulfilled, then E∗ is
locally asymptotically stable provided that 0<Φ< 4. On the
other hand, if Φ≥ 4, this means E∗ gets unstable due to the
coexistence of period-doubling bifurcation. In addition, it
becomes unstable due to Neimark–Sacker bifurcation pro-
vided that Φ≤ 0. &e next section gives some insights about
the above analytical analysis. □

3.1. Discussion and Numerical Simulation. Let us now dis-
cuss the monopoly case of map (8). It is easy to see that this
map is trapped to the point (0, 0) which means at q1(t) � 0
or q2(t) � 0, it gives q1(t + 1) � 0 or q2(t + 1) � 0. Setting
q1(t) � 0 or q2(t) � 0 in (8), one gets the following:

q1(t + 1) � q1(t) + ]1q1(t) a − (2 + c)q1(t)􏼂 􏼃,

q2(t + 1) � q2(t) + ]2q2(t) a − (1 + ω + c)q2(t)􏼂 􏼃,
(21)

which can be simplified to

q1(t + 1) � 1 + a]1( 􏼁q1(t) 1 −
]1(2 + c)

1 + a]1
q1(t)􏼠 􏼡,

q2(t + 1) � 1 + a]2( 􏼁q2(t) 1 −
]2(1 + ω + c)

1 + a]2
q2(t)􏼠 􏼡.

(22)

Separately, each part of (22) conjugates the standard
logistic map, yj(t + 1) � μjyj(t)(1 − yj(t)), j � 1, 2. &en,
we have the following linear transformations for (22):
\openup4

q1(t) �
1 + a]1
]1(2 + c)

y1(t),

q2(t) �
1 + a]2

]2(1 + ω + c)
y2(t),

μj � 1 + a]j; j � 1, 2.

(23)

&is implies that the dynamics of (22) are the same as the
logistic map. Each part in (22) is separately a unimodel map.
Both have unique critical points C− 1

q1
and C− 1

q2
with coordi-

nates given by

q
⌣

1 �
1 + a]1

2]1(2 + c)
,

q
⌣

2 �
1 + a]2

2]2(1 + ω + c)
.

(24)

&ese coordinates conjugate the critical points
y1 � (1/2) and y2 � (1/2). In addition, system (22) has the
following fixed points:
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q
O
1 � 0,

q
O1
1 �

a

2 + c
,

q
O
2 � 0,

q
O2
2 �

a

1 + ω + c
,

(25)

which conjugate y1 � 0, y1 � 1 − (1/μ1), y2 � 0, and y2 �

1 − (1/μ2) of the logistic map. It is easy to see that
|(dqi(t + 1))/(dqi(t))|qO

i
�0 � 1 + a]i > 1, i � 1, 2 and then

qO
i , i � 1, 2 is an unstable repelling point. In addition, we can
see that both q

O1
1 and q

O2
2 are stable attracting points under

the condition 0< a]i < 2, i � 1, 2. At a]i > 2, i � 1, 2, the
dynamics of each part in (22) may be a period cycle or a
cyclic chaotic attractor. &ese behaviors are characterized by
basins of attraction that are bounded by the repelling points
qO
1 or qO

2 and their preimages. &ese preimages are obtained
by setting qi(t + 1) � 0, i � 1, 2 in (22) as follows:

q
O− 1
1 �

1 + a]1
]1(2 + c)

,

q
O− 1
2 �

1 + a]2
]2(1 + ω + c)

,

(26)

which conjugate y1 � 1 and y2 � 1 in the logistic map.
&erefore, for the first part of (22), any trajectories starting
out of the interval [0, q

O− 1
1 ] will be divergent to − ∞. &e

same observation is for the second part of (22). In order to
validate the obtained results in the monopoly case, we use
numerical simulation by assuming the following parameters’
values: a � 0.5, c � 0.2. Figure 1(a) shows that q

O1
1 is stable

for all the values of ]1 until the parameter reaches the value
]1 � (2/a) on where the period-2 cycle arises. At ]1 � 3.88,
Figure 1(b) presents the basins of attraction of the stable
point q

O1
1 . It is also obvious that the basins are bounded by

the box defined by [0, q
O− 1
1 ] × [0, q

O− 1
1 ]. At k � 5.9, we give a

situation of unstable q
O1
1 due to a chaotic attractor behavior.

As shown in Figure 1(c), the basins of this chaotic attractor
lie within the box [0, q

O− 1
1 ] × [0, q

O− 1
1 ]. For the second part of

(22), we have the same discussions. Figure 1(d) shows that
q

O2
2 is stable for the values of ]2 until the parameter reaches

(2/a). Reaching this value gives rise to periodic cycle and
chaotic attractor. For instance, at the parameters set
a � 0.5,ω � 0.9, c � 0.2, and ]2 � 3.88, the basins of at-
traction of the stable point q

O2
2 are given in Figure 1(e). As ]2

increases to 5.9, the point q
O2
2 gets unstable and chaotic

attractor appears. &e basins for this chaotic attractor are
given in Figure 1(f ). We can conclude that as ]2 increases
further, any dynamic behavior will be bounded by the box
[0, q

O− 1
2 ] × [0, q

O− 1
2 ].

Now, we carry out some numerical simulations in order
to investigate and analyze the influences of the parameters ]1
and ]2 on the map given in (8). All numerical simulations in
this section are performed at the initial datum (q1(0),

q2(0)) � (0.11, 0.12). Assuming the parameters set, a �

0.5, c � 0.2, d � 0.35, and ω � 0.45. &is gives

E∗ � (0.1853171775, 0.2637205988). Assuming ]1 � 3.5 and
]2 � 4.2, then (18) becomes

J E∗( 􏼁 ≈
− 0.42694 − 0.22701

− 0.38767 − 0.82758
􏼠 􏼡, (27)

which has two real eigenvalues, λ1 ≈ − 0.26930 and
λ2 ≈ − 0.98522. One can see that |λ1,2|< 1 and hence E∗ is a
local stable point. Keeping the parameter set including ]2
fixed and increasing ]1 to 3.65, the Jacobian J(E∗) gets

J E∗( 􏼁 ≈
− 0.48810 − 0.23674

− 0.38767 − 0.82758
􏼠 􏼡, (28)

and then the real eigenvalues become λ1 ≈ − 0.31058 and
λ2 ≈ − 1.0051. &is means that E∗ is changed into an un-
stable saddle point. Now, we perform some numerical
simulation experiments in order to get more insights on the
dynamic of map (8) around the equilibrium point E∗. We
start our analysis by investigating the effects of the adjust-
ment parameters ]1 and ]2 on the map. In Figures 2(a) and
2(b), we present the bifurcation diagram for the influences of
the parameters ]1 and ]2 on the quantities q1 and q2 at the
parameters values, a � 0.5, c � 0.2, d � 0.35, and ω � 0.45.
&ey show that the equilibrium point may be destabilized
due to period-doubling bifurcation. Figure 2(c) confirms the
chaotic behavior of the map by presenting the largest
Lyapunov exponent. In Figures 2(d)–2(h), we give some
different dynamic situations of the map due to varying the
parameter ]1 and keeping the parameter ]2 � 4.2. &ey
present the attractive basins of periodic cycles 2, 4, and 8.
Besides that, we show in Figures 2(g) and 2(h) two different
chaotic attractors for the map around the equilibrium point.
We have two disconnected attractors around the equilib-
rium point given in Figure 2(g) which gather together to
form a one chaotic attractor as given in Figure 2(h).

Now, we study another situation when the parameter ]2
is varied and ]1 becomes constant at the value 5. Figure 3(a)
shows the 1D bifurcation diagram taking ]1 as the bifur-
cation parameter and the other parameters are selected to be
a � 0.5, c � 0.2, d � 0.35,ω � 0.45, and ]2 � 5 while
Figure 3(b)) depicts the bifurcation diagram with respect to
the parameter ]2 and the other parameters’ values are
a � 0.5, c � 0.2, d � 0.35,ω � 0.45, and ]1 � 3. It is clear that
the equilibrium point becomes locally asymptotically stable
till it reaches the point on where it can be destabilized due to
period-doubling bifurcation. Due to a series of period-
doubling bifurcated points, the map becomes chaotic and
enters the chaos region and this is confirmed in Figure 3(c)
which shows the Lyapunov exponent with respect to the
variables ]1 and ]2. Now, we use some numerical experi-
ments to investigate more the dynamics of the map. Setting
the parameters’ values to
a � 0.5, c � 0.2, d � 0.35,ω � 0.45, ]1 � 5, and ]2 � 5, we get
in Figure 3(d)) four closed invariant sets around the equi-
librium point. Further increase in ]2 to 5.2 makes these four
sets convert into four disconnected chaotic attractors as
shown in Figure 3(e) which turn into two chaotic attractors
as ]2 increases to 5.3 as given in Figure 3(f ). At ]2 � 5.4, a
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Figure 1: (a) Bifurcation diagram in (]1, q1) − plane. (b) &e basins of attraction of the stable point q
O1
1 at k � 3.88. (c) &e basins of

attraction of the stable point q
O1
1 at k � 5.9. (d) Bifurcation diagram in (]2, q2) − plane. (e) &e basins of attraction of the stable point q

O2
2 at

k � 3.88. (f ) &e basins of attraction of the stable point q
O2
2 at k � 5.9. &e other values of the parameters are a � 0.5, c � 0.2, andω � 0.9.
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Figure 2: (a),(b) Bifurcation diagram with respect to q1 and q2 on varying ]1 and ]2. (c) Largest Lyapunov exponents with respect to ]1 and
]2. Basins of attraction for (d) period-2 cycle at ]1 � 4 and ]2 � 4.2. (e) Period-4 cycle at ]1 � 5.16 and ]2 � 4.2. (f ) Period-8 cycle at
]1 � 5.398 and ]2 � 4.2. (g) Two unconnected chaotic attractors at ]1 � 5.592 and ]2 � 4.2. (h) One chaotic attractor at ]1 � 6 and ]2 � 4.2.
Other parameters are a � 0.5, c � 0.2, d � 0.35, and ω � 0.45.
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Figure 3: (a),(b) Bifurcation diagram with respect to q1 and q2 on varying ]1 and ]2. (c) Largest Lyapunov exponents with respect to ]1 and
]2. Phase plane for (d) four closed invariant sets at ]1 � 5 and ]2 � 5. (e) Four chaotic areas at ]1 � 5 and ]2 � 5.2. (f ) Two chaotic areas at
]1 � 5 and ]2 � 5.3. (g) Basins of attraction of period-6 cycle at ]1 � 5 and ]2 � 5.4. (h) Phase plane for one chaotic attractor at ]1 � 5 and
]2 � 5.55. Other parameters are a � 0.5, c � 0.2, d � 0.35, and ω � 0.45.
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period-6 cycle is emerged and plotted in Figure 3(g) with its
attractive basins. Increasing ]2 to 5.55, the dynamics of the
map become chaotic as depicted in Figure 3(h).

3.2. Noninvertible Map. We have previously discussed that
the map T is being trapped in the point (0, 0). &is means
that at q1(t) � 0 or q2(t) � 0, we get q1(t + 1) � 0 or
q2(t + 1) � 0, respectively. So, the point (0, 0) is used to
calculate basins’ boundaries for any attracting set of the map.
Doing that requires setting q1(t + 1) � q

�

1 and q2(t + 1) � q
�

2
in (8) as follows:

T:
q
�

1 � q1(t) + ]1q1 a − (2 + c)q1 − dq2􏼂 􏼃,

q
�

2 � q2(t) + ]2q2 a − (1 + ω + c)q2 − dq1􏼂 􏼃,

⎧⎪⎨

⎪⎩
(29)

where ′ indicates evolution of time. For map (29), if
T− 1: (q

�

1, q
�

2)⟶ (q1, q2) gets unique value for each point in
the range, then we call T an invertible map and then the
point (q

�

1, q
�

2) ∈ R2 is a rank-1 image while (q1, q2) is a rank-
1 preimage. If there exist at least two rank-1 preimages for an
image (q

�

1, q
�

2), then the map T is called a noninvertible map.
Now, we calculate the real rank-1 preimages for the point
(0, 0).

Proposition 4. -e point O � (0, 0) possesses four real rank-
1 preimages,

Proof. Setting q
�

1 � 0 and q
�

2 � 0 in (29) and solving alge-
braically, we get

O
(0)
− 1 � (0, 0),

O
(1)
− 1 �

1 + a]1
]1(2 + c)

, 0􏼠 􏼡,

O
(2)
− 1 � 0,

1 + a]2
]2(1 + c + ω)

􏼠 􏼡,

O
(3)
− 1 �

a]1]2(1 + c + ω − d) +(1 + c + ω)]2 − d]1
]1]2 2 + 2ω + 3c + cω + c

2
− d

2
􏼐 􏼑

,
a]1]2(2 + c − d) +(2 + c)]1 − d]2
]1]2 2 + 2ω + 3c + cω + c

2
− d

2
􏼐 􏼑

⎛⎝ ⎞⎠.

(30)

&is completes the proof. □

&e above proposition indicates that any attracting
set for map (27) has an attractive basin that is bounded by
a quadrilateral shape whose boundaries are defined by
the line segments ξ1 � OO(1)

− 1 , ξ2 � OO(2)
− 1 and their pre-

images ξ− 1
1 and ξ− 1

2 , respectively. &ese preimages are
given by

ξ− 1
1 : q2 �

1 + a]2 − d]2q1
]2(1 + c + ω)

,

ξ− 1
2 : q2 �

1 + a]1 − ]1(2 + c)q1

d]1
.

(31)

Figure 4 displays those line segments and their pre-
images at the parameters’ values: a � 0.5, c � 0.2, d �

0.35,ω � 0.45, ]1 � 5, and ]2 � 5.55.
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a = 0.5, c = 0.2, d = 0.35, ω = 0.45, v1 = 5, v2 = 5.55

Figure 4: &e boundaries of the chaotic attractor given in Figure 3(h).
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In Figure 5, we plot the critical curves LC and LC− 1 at the
parameters set, a � 0.5, c � 0.2, d � 0.35,ω � 0.45, ]1 � 5, and
]2 � 5.55. It is clear that LC divides the phase plane into the two
regionsZ4 andZ2 as shown in Figures 5(a) and 5(b).&erefore,
the map is noninvertible. In addition, the points (0, 0) and the
equilibrium point O are belonging to the region Z4.

4. Conclusion

&e current paper has studied a two-dimensional map that
has described the competition between two Cournot firms
one of which has considered the maximization of social
welfare instead of profit. Based on a gradient-based mech-
anism, the map has been modelled in discrete time steps. It
has been analyzed that when the two firms have become
monopolistic, their dynamics have turned into just like the
standard coupled logistic map.While in the duopolistic case,
the map’s fixed points have been calculated and their sta-
bility conditions have been investigated showing that the
Nash equilibrium point may be unstable due to two types of
bifurcations. &rough some numerical analysis, we have
shown some attracting sets with their basins of attraction
and other chaotic behaviors of the map around the equi-
librium point have been detected. &e critical curves of the
game’s map have been calculated, and the corresponding
preimages regions have been identified. We have shown that
the map is noninvertible and has belonged to Z4 − Z2 type.
For future studies, we plan to investigate more such
adoption of maximization of social welfare on heteroge-
neous players (or firms). We have shown that the model
parameters, in particular the speed of adjustment and the
degree of privatization of the second firm, have an effect on
the long-term dynamic response of the game, which is
important for understanding the functioning of the mixed
duopoly game. &is result allows players to gain a specific
understanding of the mixed oligopoly market and to rec-
ognize that the choice of decision criteria would have a
certain effect on the system’s actions.
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In this paper, the complex dynamical behaviors in a discrete neural network loop with self-feedback are studied. Specifically, an
invariant closed set of the system of neural network loops is built and the subsystem restricted on this invariant closed set is
topologically conjugate to a two-sided symbolic dynamical system which has two symbols. In the end, some illustrative numerical
examples are given to demonstrate our theoretical results.

1. Introduction

In recent years, researchers have found various chaotic
phenomena in the nervous system and that chaotic neural
networks play an important role in neural activities. Chaos
in neural networks systems have been applied to all kinds of
practical problems such as combinatorial optimizations,
associative recognition memory, deep learning, and bio-
technology (see [1–5]). In fact, some nervous systems consist
of large-scale and complex nonlinear dynamics. At present,
neuroscience has provided abundant evidence to prove that
the central nervous system has complex nonlinear dynamic
behavior at all levels [6]. So how to analyze the dynamical
behavior of neural networks plays an important role in
practical applications. In order to obtain a deep and clear
understanding of complex neural networks, there are

increasing studies on bifurcations and chaotic behaviors of
neural network systems [7].

Recently, Huang and Zou in [8] showed the discrete
network system consisting of two identical neurons with a
uniform delay demonstrates snapback repeller chaotic be-
haviors near an equilibrium point. For the Hopfield net-
works with two different neurons [9–11], the conditions that
the systems exhibit chaos are obtained. In [12], Wu et al.
analyzed the chaotic behaviors of the parameterized discrete
dynamics of recurrent m-neuron networks evoked by ex-
ternal inputs and obtained some conditions which the
subsystem is topologically conjugate to symbolic dynamical
system. In this paper, we will devote to analysis of the chaotic
behaviors of the following discrete neural network loops
with multiple delays and self-feedback:

x1(n + 1) � β1x1(n) + α11f1 x1 n − k11( 􏼁( 􏼁 + α1mfm xm n − k1m( 􏼁( 􏼁,

x2(n + 1) � β2x2(n) + α21f1 x1 n − k21( 􏼁( 􏼁 + α22f2 x2 n − k22( 􏼁( 􏼁,

⋮

xm(n + 1) � βmxm(n) + αmm− 1fm− 1 xm n − kmm− 1( 􏼁( 􏼁 + αmmfm xm n − kmm( 􏼁( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n ∈ Z, kij ≥ 1, (1)
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where n ∈ Z, for i � 1, 2, . . . , m, βi ∈ (0, 1) is the internal
decay rate of the neurons, αij is the self-feedback strength or
the connection strength of the ith neuron to the next neuron,
and the transmission delay kij ≥ 1 is a positive integer.

For the case of the neural network with m-identical
neurons, Cheng constructed a snapback repeller in [13] and
then justified chaos in neural networks. When the discrete
neural network with m-different neurons has multiple time
delays and self-feedback, it is challenging to rigorously
analyze the dynamical behaviors. In this paper, we consider
the chaotic behaviors of model (1). To this end, we first
rewrite the model (1) as a system of difference equations
without delay by a novel way. Especially, this transformation
requires a little skill. +en, we find an invariant set for the
transformed system by projection and show that the system
restricted on this set is topologically conjugate to the full
shift map on the symbolic dynamical system. +is implies
that the system has chaotic behaviors. +e obtained results
extend the related ones in [10, 11, 13]. Also, we provide some
numerical simulations to verify the theoretical results.

2. Invariant Subsystem of Model (1)

Let l∞ denote the Banach space of bounded sequences of real
numbers with the supremum norm defined on it. +e norm
is denoted by ‖ · ‖. Let σ: l∞⟶ l∞ be shift map defined by
(σξ)n � (ξ)n+1, n ∈ Z, for ξ � (. . . , ξ− n, . . . , ξ− 1,

􏽥ξ0, ξ1, . . . ,

ξn, . . .) ∈ l∞. +at is,

σ . . . , ξ− n, . . . , ξ− 1,
􏽥ξ0, ξ1, . . . , ξn, . . .􏼐 􏼑

� . . . , ξ− n+1, . . . , ξ0, 􏽥ξ1, ξ2, . . . , ξn+1, . . .􏼐 􏼑.
(2)

Clearly, the shift map σ on l∞ is continuously invertible,
and its inverse σ− 1 is being defined by (σ − 1ξ)n � ξn− 1, n ∈ Z.

+e ith iterate of σ, σ°σ · °σ
􏽺√√􏽽􏽼√√􏽻i times

, is denoted as σi. Let
Σk � (. . . i− 1i0i1 . . .)|in ∈ 1, 2, . . . , k{ }, n ∈ Z􏼈 􏼉 denote a
symbolic space with k symbols. Endowing it with the metric

d(s, t) � max 2− |n|
|tn ≠ sn, n ∈ Z􏽮 􏽯, t � . . . t− 1t0t1 . . .( 􏼁,

s � . . . s− 1s0s1 . . .( 􏼁 ∈ Σk,

(3)

Σk becomes a compact and totally disconnected metric
space. +e shift map σ: Σk⟶Σk is defined by (σt)n � tn+1.
+en, (Σk, σ) is a two-sided symbolic system. To proceed, let
m, l≥ 2, i, j be positive integers.

Lemma 1. Let q≤m be a positive integer. aq1
, aq2

, . . . , aql
are

l different real numbers with l≥ 2 and ai is a real number with

1≤ i≠ q≤m. Λ � (ξn) ∈ l∞|ξmn+i � ai, ξmn+q � aqj
􏼚 􏼛 be a

subset of l∞. +en, (Λ, σm) is topological conjugate to (Σl, σ).

Proof. Define g: Λ⟶ Σl by g(ξ) � (. . . , ξ− mn+q, . . . ,

ξ− m+q, ξq, . . . , ξmn+q, . . .), for ξ � (ξn) ∈ Λ. In fact, g(ξ) is
defined by deleting the elements whose indexes are con-
gruent i modulo m in W, where 1≤ i≠ q≤m. It is not
difficult to see that g is a homeomorphism. By definition of
g, we have g ∘ σm � σ ∘g. So (Λ, σm) and (Σl, σ) are topo-
logical conjugacy. □

Lemma 2 (see [14]). Let X and Y be Banach spaces, L is an
invertible linear map from X to Y, and S is a bounded linear
map from X to Y. If ‖S‖< ‖L− 1‖− 1, then L + S is an invertible
linear map from X to Y.

Lemma 3 (see [15]). Let (Λ, d) be ametric space,Y and X be
Banach spaces, and U ⊂ Λ × Y be open. Suppose that
F: U⟶ X is a continuous map and that there exists a point
(λ0, y0) ∈ U with the following conditions:

(i) F(λ0, y0) � 0.
(ii) DFy(λ, y) is continuous at (λ0, y0), where

DFy(λ, y) is Fre
�
chet partial derivative of F(λ, y)

with respect to y.
(iii) DFy(λ0, y0): Y⟶ X is an invertible linear map.

+en, there exist open balls Bδ0(y0) � y: ‖y − y0‖< δ0􏼈 􏼉

and Br0
(λ0) � λ: d(λ, λ0)< r0􏼈 􏼉, where δ0 > 0, r0 > 0 such

that, for any λ ∈ Br0
(λ0), the equation F(λ, y) � 0 has a

unique continuous solution y � h(λ) ∈ Bδ0(y0) with
h(λ0) � y0.

For convenience, we set i − 1 � m when i − 1 � 0. Let
α � α11, Cij � (αij/α)(i ∈ 1, 2, . . . , m{ }, j � i − 1 or i). With-
out losing generality, we may suppose that
kmm ≥ k1m ≥ km− 1m− 1 ≥ kmm− 1 · · · ≥ k22 ≥ k32 ≥ k11 ≥ k21. In the
other cases, we can discuss it in a similar way. +e activation
functions fi(i � 1, . . . , m) have the following conditions
(G1):

(G1) For every i ∈ 1, 2, . . . , m{ }, fi is a continuously
differentiable function fromR toR. f1 has two distinct
zero points 􏽢xq1, 􏽢xq2, satisfying f1(􏽢xq1) �

f1(􏽢xq2) � 0, f1′(􏽢xq1)≠ 0, andf1′(􏽢xq2)≠ 0, and
fi(i ∈ 2, . . . , m{ }) has a zero point xi,satisfying
fi(xi) � 0 andfi

′(xi)≠ 0.

Let p1 � mk11, pl � mk11 + 􏽐
l
i�2(m − i + 1)(kii− ki− 1i− 1),

2≤ l≤m, p � pm + m and define
η(n) � (η1(n), . . . , ηp(n)), where
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ηmj+i(n) � xi n − kii + j( 􏼁, 0≤ j≤ k11, 1≤ i≤m,

ηp1+j(m− 1)+i(n) � xi n − kii + k11 + j( 􏼁, 1≤ j≤ k22 − k11, 2≤ i≤m,

ηp2+j(m− 2)+i(n) � xi n − kii + k22 + j( 􏼁, 1≤ j≤ k33 − k22, 3≤ i≤m,

⋮

ηpm− 1+m+j(n) � xi n − kii + km− 1m− 1 + j( 􏼁, 1≤ j≤ kmm − km− 1m− 1, i � m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀n ∈ Z. (4)

For any 1≤ i≤m, there exists 1≤ li ≤m − 1 such that
klili
< ki− 1i− 1 − kii− 1 ≤ kli+1li+1. +en, we transform system (1)

into the discrete dynamical system without delays on Rp:

η(n + 1) � Fα(η(n)), n ∈ Z, (5)

where Fα: Rp⟶ Rp is defined as

Fα

η1(n)

η2(n)

⋮

ηp1+1(n)

ηp1+2(n)

⋮

ηpi+i(n)

ηpi+i+1(n)

⋮

ηp− 1(n)

ηp(n)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

ηm+1(n)

ηm+2(n)

⋮

β1ηp1+1(n) + C11αf11 η1(n)( 􏼁 + C1mαf1m η
pl1+ kmm− k1m − kl1 l1􏼐 􏼑 m− l1( )+m

(n)􏼠 􏼡

ηp1+m+1(n)

⋮

βiηpi+i(n) + Cii− 1αfii− 1 η􏽥pli

(n)􏼒 􏼓 + Ciiαfii ηi(n)( 􏼁

ηpi+m+1(n)

⋮

ηp(n)

βmηp(n) + Cmm− 1αfmm− 1 η􏽥plm

(n)􏼒 􏼓 + Cmmαfmm ηm( 􏼁(n)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where 􏽥pli
� pli

+ (ki− 1i− 1 − kii− 1 − klili
)(m− li) + i − 1, 2≤ i≤

m.
To investigate chaos in System (1), we only consider the

chaotic behavior of the system (Rp, Fα). Next, by the
projection approach, we are going to find the invariant set

Λα of Fα such that the subsystem (Fα,Λα) has chaotic be-
havior for α being sufficiently large.

We consider a family of maps Φ(λ, ·): l∞⟶ l∞
depending on a parameter λ ∈ R, and the class of maps is
defined by

Φ(λ, ξ)m(n+1)+1 � λ − ξm(n+1)+1 + β1ξmn+1􏼐 􏼑 + C11f1 ξ m n− k11( )( )+1􏼒 􏼓 + C1mfm ξ m n− k1m( )( )+m􏼒 􏼓,

⋮

Φ(λ, ξ)m(n+1)+i � λ − ξm(n+1)+i + βiξmn+i􏼐 􏼑 + Cii− 1fi− 1 ξm n− kii− 1( )+i− 1􏼒 􏼓 + Ciifi ξm n− kii( )+i􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀ξ � ξn( 􏼁 ∈ l∞, 2≤ i≤m.

(7)

It is easy to see that if ξ � ξn􏼈 􏼉n∈Z ∈ l∞ satisfies
Φ(1/α, ξ) � 0, then the sequence x1(n), x2(n),􏼈

. . . , xm(n)}n∈Z with xi(n) � ξmn+i satisfies (1). On the

contrary, if the sequence x1(n), x2(n), . . . , xm(n)􏼈 􏼉n∈Z sat-
isfies (1), then ξ � ξn􏼈 􏼉n∈Z ∈ l∞ with ξmn+i � xi(n) satisfies
Φ(1/α, ξ) � 0.
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Let

Γ � ξ � ξn( 􏼁 ∈ l∞|ξmn+i � x
i
, ξmn+1 � 􏽢x

q1 or 􏽢x
q2

, 2≤ i≤m, n ∈ Z􏽮 􏽯,

b11 � |C11 max f1′ 􏽢x
q1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, f1′ 􏽢x
q1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

b21 � C21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌min f1′ 􏽢x
q1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, f1′ 􏽢x
q2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛,

bii � Ciifi
′ x

i
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (i ∈ 2, . . . , m{ }),

bii− 1 � Cii− 1fi− 1′ x
i

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (i ∈ 1, 3, 4, . . . , m{ }),

b≜
1

max b
− 1
11 , b

− 1
ii + b

− 1
ii bii− 1b

− 1
i− 1i− 1 + · · · + b

− 1
ii bii− 1b

− 1
i− 1i− 1 . . . b21b

− 1
11 , ∀2≤ i≤m􏽮 􏽯

.

(8)

Lemma 4. Under the assumption (G1), if b11 > b1m and
bii > b1m + bii− 1(2≤ i≤m), then we have the following:

(i) +ere exist positive real numbers r0 and δ0 such that,
for any ξ ∈ Γ and − r0 ≤ λ≤ r0, there exists a unique
point ξ(λ) ∈ Bδ0(ξ), satisfying Φ(λ, ξ(λ)) � 0.

(ii) For every 0< δ < δ0, there exists 0< r< r0 such that,
for any − r≤ λ≤ r and ξ ∈ Γ, there is a unique point
ξ(λ), satisfying ‖ξ(λ) − ξ‖≤ δ and Φ(λ, ξ(λ)) � 0.

Bδ0(ξ) is the open ball in l∞ centered at ξ with radius δ0.

Proof. For a given sequence ξ ∈ Γ, we have Φ(0, ξ) � 0. By
the assumption (G1) and the definition of Φ(λ, ξ), this can
ensure the continuous differentiability of Φ(λ, ξ). +e
Fréchet derivative of Φ(0, ξ) with respect to ξ at the point
(0, ξ) be denoted as DΦξ(0, ξ) which is represented as

DΦξ(0, ξ)ξ􏼐 􏼑
m(n+1)+1 � C11f1′ ξm n− k11( )+1􏼒 􏼓ξm n− k11( )+1 + C1mfm

′ ξm n− k1m( )+m􏼒 􏼓ξm n− k1m( )+m,

DΦξ(0, ξ)ξ􏼐 􏼑
m(n+1)+i

� Cii− 1fi− 1′ ξm n− kii− 1( )+i− 1􏼒 􏼓ξm n− kii− 1( )+i− 1 + Ciifi
′ ξm n− kii( )+i􏼒 􏼓ξm n− kii( )+i,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

n ∈ Z, 2≤ i≤m. (9)

Firstly, we have to show the invertibility of DΦξ(0, ξ).
We denote that DΦξ(0, ξ) � L1(ξ) + L2(ξ), where

L1(ξ)ξ􏼐 􏼑
m(n+1)+1 � C11f1′ ξm n− k11( )+1􏼒 􏼓ξm n− k11( )+1,

L1(ξ)ξ􏼐 􏼑
m(n+1)+i

� Cii− 1fi− 1′ ξm n− kii− 1( )+i− 1􏼒 􏼓ξm n− kii− 1( )+i− 1 + Ciifi
′ ξm n− kii( )+i􏼒 􏼓ξm n− kii( )+i,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

n ∈ Z, 2≤ i≤m,

L2(ξ)ξ􏼐 􏼑
m(n+1)+1 � C1mfm

′ ξm n− k1m( )+m􏼒 􏼓ξm n− k1m( )+m,

L2(ξ)ξ􏼐 􏼑
m(n+1)+i

� 0,

⎧⎪⎪⎨

⎪⎪⎩
n ∈ Z.

(10)

Let

a
l
ii− 1 � Ci− l+1i− lfi− l

′ ξm n+kii− kii− 1+···+ki− l+1i− l+1− ki− li− l− 1+i− l− 1( )􏼒 􏼓(0≤ l≤ i − 1),

a
l
ii � Ci− li− lfi− l

′ ξm n+kii− kii− 1+ki− 1i− 1− ···+ki− li− l+i− l( )􏼒 􏼓(0≤ l≤ i − 1).

(11)
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It follows from (G1) that the linear operator L1(ξ) is
invertible. By directing calculation, the inverse operator
L1(ξ)− 1 is

L1(ξ)
− 1ξ􏼐 􏼑

m(n− 1)+1 �
1

a
0
11
ξm n+k11( )+1,

L1(ξ)
− 1ξ􏼐 􏼑

m(n− 1)+i
�

1
a
0
ii

ξm n+kii( )+i −
1
a
0
ii

a
0
ii− 1

1
a
1
ii

ξm n+kii − kii− 1+ki− 1i− 1( )+i− 1+,

· · · +(− 1)
i− 1 1

a
0
ii

a
0
ii− 1

1
a
1
ii

, . . . , a
i− 2
ii− 1

1
a

i− 1
ii

ξm n+kii − kii− 1+···− k21+k11( )+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n ∈ Z, 2≤ i≤m. (12)

Since ξ ∈ Γ, ξmn+1 � 􏽢xq1 or 􏽢xq2, ξmn+i � xi, 2≤ i≤m. +is
implies that

L1(ξ)
− 1����

����≤
1
b
,

L2(ξ)
����

���� � b1m,

(13)

so

L1(ξ)
− 1����

����
− 1
> L2(ξ)

����
����, (14)

by the fact that b11 > b1m and bii > b1m + bii− 1(2≤ i≤m). +is
shows the invertibility of DΦξ(0, ξ) by Lemma 2.

+erefore, according the implicit function theorem,
there exist positive constants rξ , δξ such that, for every
− rξ ≤ λ≤ rξ , there is a unique point ξ � ξ(λ) ∈ Bδ

ξ
(ξ) with

Φ(λ, ξ(λ)) � 0.
To complete the proof of (i), it only needs to prove that

there exist two positive constants r0, δ0 which are inde-
pendent of ξ ∈ Γ such that the conclusion is satisfied in (i).
From the proof of the implicit function theorem, for the
given ξ ∈ Γ, the constants rξ and δξ above are chosen such
that, for − rξ ≤ λ≤ rξ and ξ ∈ Bδ

ξ
(ξ), we have

DΦξ(λ, ξ)􏼐 􏼑 − DΦξ(0, ξ)􏼐 􏼑
�����

�����≤
1

2Mξ
,

‖Φ(λ, ξ)‖≤
δξ
2Mξ

.

(15)

Here, Mξ is the constant such that
‖(DΦξ(0, ξ))− 1‖≤Mξ .

We now give the above estimates which are independent
of ξ ∈ Γ. Firstly, we have, for any ξ ∈ Γ,

DΦξ(0, ξ)􏼐 􏼑
− 1�����

�����≤
1

L1(ξ)
− 1����

����
− 1

− L2(ξ)
����

����
≤

1
b − b1m

≜M,

(16)

where b is given by (8). Secondly, by assumption (G1), there
exists δ1 such that

max C11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, C21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯 f1′(x) − f1′ 􏽢x
q1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1
8M

, (17)

for x ∈ Bδ1(􏽢xq1),

max C11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, C21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯 f1′(x) − f1′ 􏽢x
q2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1
8M

, (18)

for x ∈ Bδ1(􏽢xq2), and

max cii− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ci− 1i− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯 fi− 1′ (x) − fi− 1′ x
i− 1

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1
4M

, (19)

for x ∈ Bδ1(xi− 1), 1≤ i≠ 2≤m. Note that

DΦξ(λ, ξ) − DΦξ(0, ξ)ξ􏼐 􏼑
m(n+1)+1

� λ − ξm(n+1)+1 + β1ξm(n+1)+1􏼐 􏼑

+ C11 f1′ ξm n− k11( )+1􏼒 􏼓 − f1′ ξm n− k11( )+1􏼒 􏼓ξm n− k11( )+1􏼒 􏼓

+ C1m fm
′ ξm n− k1m( )+m􏼒 􏼓 − fm

′ ξm n− k1m( )+m􏼒 􏼓ξm n− k1m( )+m􏼒 􏼓,

DΦξ(λ, ξ) − DΦξ(0, ξ)ξ􏼐 􏼑
m(n+1)+i

� λ − ξm(n+1)+i + βiξm(n+1)+i􏼐 􏼑

+ Cii− 1 fi− 1′ ξm (n− kii− 1( )+i− 1􏼒 􏼓 − f1′ ξm (n)− kii− 1( )+i− 1􏼒 􏼓􏼒

ξm (n− kii− 1( )+i− 1􏼓

+ Cii fi
′ ξm n− kii( )+i􏼒 􏼓 − fi

′ ξm n− kii( )+i􏼒 􏼓􏼒 􏼓ξm n− kii( )+i, 2≤ i≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Taking δ0 � δ1, r1 � (1/4M(1 + a)), where
a≜ max βi|i � 1, 2, . . . , m􏼈 􏼉, we have that, for ξ ∈ Γ, ξ ∈ l∞
with ‖ξ − ξ‖≤ δ0 and |λ|≤ r1:

DΦξ(λ, ξ) − DΦξ(0, ξ)
����

����≤ |λ|(1 + a) +
1
4M
≤

1
2M

. (21)

On the contrary, let r2 � (δ0/2M(1 + a)), and it follows
from the definition of Φ(λ, ·) that

‖Φ(λ, ξ)‖≤ |λ|(1 + b)≤
δ0
2M

, (22)

when |λ|≤ r2.
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Finally, take r0 � min r1, r2􏼈 􏼉 and then the constants r0
and δ0 satisfy (i).

For every 0< δ < δ0, (ii) follows by taking
r � min (1/4M(1 + a)), (δ/2M(1 + a)){ }(< r0) and the
proof of (i). □

3. Chaos in System (1)

In this section, we shall show that the system (1) exists
chaotic behaviors. By Lemma 4, for sufficiently large α> 0,
we define the map Tα from Γ to l∞ by

Tα(ξ) � ξ
1
α

􏼒 􏼓, (23)

where ξ(1/α) is the unique solution of Φ((1/α), ξ) � 0,
satisfying ‖ξ(1/α) − ξ‖≤ δ. +en, we have the following
proposition.

Proposition 1. For sufficiently large α> 0, let Γα � Tα(Γ),
then the map Tα and the shift map σm are commutative, i.e.,

σm ∘Tα � Tα ∘ σ
m

. (24)

Moreover, σm(Γα) � Γα.

Proof. Note that if ξ is a solution of Φ((1/α), ξ) � 0 so is
σm(ξ). +us, for any ξ ∈ Γ, σm°Tα(ξ) � σm(ξ(1/α)) is a so-
lution of Φ((1/α), ξ) � 0. On the contrary, ‖ξ(1/α) − ξ‖≤ δ
by Lemma 4, which leads to ‖σm(Tα
(ξ) − σm(ξ))‖ � ‖σm(ξ(1/α)) − σm(ξ)‖ � ‖ξ(1/α) − ξ‖≤ δ.
Hence, by the uniqueness of ξ(λ) in Lemma 4, we have
σm(Tα(ξ)) � Tα(σm(ξ)). Note that σm(Γ) � Γ, it follows that
σm(Γα) � Γα.

For every k ∈ Z, we define the projectionΠk: l∞⟶ Rp

by

Πk(ξ) � η(k), ∀ξ ∈ l∞, (25)

where for ξ � (ξn) ∈ l∞, η(k) � (η1(k), . . . , ηp(k)) ∈ Rp is
given by

ηmj+i(k) � ξm k− kii+j( )+i, 0≤ j≤ k11, 1≤ i≤m,

ηp1+j(m− 1)+i(k) � ξm k− kii+k11+j( )+i, 1≤ j≤ k22 − k11, 2≤ i≤m,

ηp2+j(m− 2)+i(k) � ξm k− kii+k22+j( )+i, 1≤ j≤ k33 − k22, 3≤ i≤m,

⋮

ηpm− 1+m+j(k) � ξm k− kmm+km− 1m− 1+j( )+m, 1≤ j≤ kmm − km− 1m− 1.

(26)
□

Proposition 2. LetΛα � Π0(Γα), thenΛα is invariant for Fα.

Proof. For each η(0) ∈ Λα, then there exists ξ ∈ Γα such that
Π0(ξ) � η(0). +erefore,

Fα(η(0)) � η(1) � Π0 σm
(ξ)( 􏼁 ∈ Π0 σm Γα( 􏼁( 􏼁 � Π0 Γα( 􏼁 � Λα.

(27)

+is proves Fα(Λα) ⊂ Λα.

On the contrary, by Proposition 1, we have σm(Γα) � Γα.
+us, there exists ξ′ ∈ Γα such that ξ � σm(ξ′). +us,

η(0) � Π0(ξ) � Π0 σm ξ′( 􏼁( 􏼁 � η′(1) � Fα η′(0)( 􏼁

� Fα Π0 ξ′( 􏼁( 􏼁 ∈ Fα Λα( 􏼁,
(28)

which shows that Λα ⊂ Fα(Λα). +erefore,
Fα(Λα) � Λα. □

Theorem 1. Under the assumption of (G1), if b11 > b1m and
bii > b1m + bii− 1(2≤ i≤m), then there exists α0 > 0 such that,
for any α> α0, (Λα, Fα) is topologically conjugate to the full
shift map (Σ2, σ), and therefore, the system is chaotic in the
sense of Devaney.

Proof. Note that(Γ, σm) is an invariant subsystem. By
Lemma 1 and Proposition 1, we only need to prove that there
is α0 > 0 such that, for any α> α0, (Λα, Fα) is topological
conjugate to (Γ, σm).

Let Ω � Π0(Γ), then Ω is a set in Rp consisting of 2k11+1

elements, denoted by

Ω � b1, b2, . . . , b2k11+1􏼈 􏼉. (29)

Let δ0 and r0 be given as in Lemma 4, and let δ ∈ (0, δ0)
be small enough such that the family of closed balls
Ai � B(bi, δ)􏼈 􏼉

2k11+1

i�1 in Rp is piecewise disjoint.
For the given δ and any ξ � (ξn) ∈ Γ, by (ii) in Lemma 4,

there exists an α0 � (1/r)> 0 such that, for every α> α0, there
exists a unique Tα(ξ) � ξ(1/α) satisfying ‖ξ(1/α) − ξ‖≤ δ
and Φ((1/α), ξ(1/α)) � 0. By the definition of the projec-
tions Πk and Γ, we have Πk(Γ) � Π0(Γ) � Ω. So we let

S � s � . . . , s− 1, s0, s1, . . .( 􏼁|si ∈ 1, 2, . . . , 2k11+1
􏽮 􏽯,􏽮

ξsi
� Πi(ξ), for some ξ ∈ Γ􏽯.

(30)

+e set S is a subset of Σ2k11+1. For every
s � (. . . , s− 1, s0, s1, . . .) ∈ S, for all i, j> 0, we set

Vs− i...s0...sj
� F

− j
α Asj

􏼒 􏼓∩ · · · ∩As0
∩ · · · ∩F

i
α Asi
􏼐 􏼑,

Vs � ∩
i>0,j>0

Vs− i...s0...sj
.

(31)

We claim the following:

(1) For every s ∈ S, Vs contains a unique point.
(2) ∪ s∈SVs � Λα.

In fact, for each s ∈ S, we note that

Vs− i...s0...sj
� η ∈ Rp

|F
− i
α (η) ∈ Asi

, . . . , F
j
α(η) ∈ Asj

􏼚 􏼛.

(32)

+erefore, there exists a unique ξ ∈ Γ such that, for all
i ∈ Z, Πi(ξ) � ξsi

∈ Ω. +en, by the definition of Tα and
Lemma 4, there exists a unique Tα(ξ) � ξ(1/α), satisfying
‖ξ(1/α) − ξ‖≤ δ and Φ((1/α), ξ(1/α)) � 0. So
Πn(ξ(1/α)) � η(n)􏼈 􏼉n∈Z is a bounded orbit of Fα, that is,
η(n) � Fn

α(η(0)) ∈ Asn
, ∀n ∈ Z. +erefore, η(0) ∈ Vs, which

implies Vs is nonempty.
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On the contrary, for any η′ ∈ Vs, for all n ∈ Z, there are
Fn
α(η′) ∈ Asn

. +us, Fn
α(η′)􏼈 􏼉n∈Z is a bounded orbit of Fα.

+en, there exists ξ ∈ l∞ such that Πn(ξ) � Fn
α(η′). So

‖ξ − ξ‖≤ δ, andΦ((1/α), ξ) � 0. Again by Lemma 4 (ii), there
is ξ � Tα(ξ), and hence, η′ � η(0). Claim (1) holds.

For Claim (2), let η ∈ Λα. +en, there exists a ξ ∈ Γ such
that η � Π0(Tα(ξ)) Let s � (. . . s− 1, s0, s1 . . .) ∈ S be the
corresponding sequence of ξ. Similar to the above argument,
we have η ∈ Vs. +erefore,

Λα ⊂ ∪
s∈S

Vs. (33)

From Claim (1), each Vs contains a unique point which
belongs to Λα, so the converse inclusion holds. +is proves
Claim (2).

For every α> α0, define a map h: Γ⟶ Λα by
h � Π0 ∘Tα. We claim that h is a conjugacy from σm to Fα. To
prove this, we need to show that both h and h− 1 are con-
tinuous and

h ∘ σm
� Fα ∘ h, on Γ. (34)

By Claim (2) and the definition of h, it is easy see that h is
surjective. From Claim (1) and Lemma 4, it follows that h is
injective. +erefore, h is bijective. Since h is a map from a
compact metric space Γ to a Hausdorff space Λα, to prove
that h is homeomorphic, we just need to show the continuity
of h. Let the corresponding subindex sequence of ξ ∈ Γ be
s � (. . . s− 1, s0, s1 . . .) ∈ S. It follows from Claim (1) that

lim
i,j⟶+∞

diam Vs− i...s0...sj
􏼒 􏼓 � 0, (35)

where diam(Vs− i...s0...sj
) denotes the diameter of the set

Vs− i...s0...sj
. +us, for any ε> 0, there exists a positive integer n

such that diam(Vs− n...s0...sn
)< ε. Take δ1 � (1/2m(n+kmm+1)).

+en, for any 􏽥ξ ∈ Γ with d(􏽥ξ, ξ)< δ1, it follows that 􏽥ξ agrees
with ξ in those terms with lower indices from i � − m(n +

kmm + 1) to i � m(n + kmm + 1). Let 􏽢s, s ∈ S be the symbolic
sequences corresponding to 􏽢ξ and ξ, respectively. We have 􏽢s

agrees with s in those terms with subscripts from i � − n to
i � n + kmm + 1. +us, h(􏽢ξ), h(ξ) ∈ Vs− n...s0...sn

and
‖h(􏽢ξ) − h(ξ)‖< ε. +is shows the continuity of h. Hence, we
conclude that h is a homeomorphism.

Finally, for any ξ ∈ Γ, we have

h(ξ) � Π0 ∘Tα(ξ) � η(0) � η1(0), . . . , ηq(0)􏼐 􏼑
T
. (36)

+us,

Fα(h(ξ)) � η1(1), η2(1), . . . , ηq(1)􏼐 􏼑
T

� Π0 ∘ σ
m ∘Tα(ξ) by(1)

� Π0 ∘Tα ∘ σ
m

(ξ), by Proposition 1

� h ∘ σm
(ξ).

(37)

+e +eorem 1 holds. □

4. Some Simulations

In this section, we will give some numerical simulation
results to verify our theoretical results. We choose β1 � β3 �

(1/4), β2 � β4 � (3/4)3/4, f1(t) � sin (t),f2(t) � tanh(t),

f3(t) � cos(t), f4(t) � tanh(t), α11 � 0.5α, α14 � α, α21 �

− 0.4α, α22 � 2α,k11 � 1, k21 � 2, k14 � 3, k22 � 4, k32 � 3,

k33 � 1, k43 � 2, and k44 � 4. In this case, system (1) becomes

x1(n + 1) �
1
4
x1(n) + 1.5α sin x1(n − 1)( 􏼁 + α tanh x4(n − 3)( 􏼁,

x2(n + 1) �
3
4
x2(n) − 0.4α sin x1(n − 2)( 􏼁 + 2α tanh x2(n − 4)( 􏼁,

x3(n + 1) �
1
4
x3(n) + α tanh x2(n − 3)( 􏼁 + 1.5α cos x3(n − 1)( 􏼁,

x4(n + 1) �
3
4
x4(n) − 0.4α cos x3(n − 2)( 􏼁 + 2α tanh x4(n − 4)( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀n≥ 5. (38)

In Figure 1, for every α value, the initial values were reset
to x1(1) � − 0.1, x1(2) � 0.1, x1(3) � 0.12, x1(4) � − 0.2,

x1(5) � 0.9, x2(1) � 0.11, x2(2) � − 0.2, x2(3) � − 0.1,

x2(4) � 0.2, x2(5) � 0.1, x3(1) � 0.12, x3(2) � 0.15, x3(3) �

− 0.2, x3(4) � 0.22, x3(5) � 1.1, and x4(1) � − 0.1, x4(2) �

− 0.23, x4(3) � − 0.1, x4(4) � 0.2, x4 (5) � 0.11. After 104
time steps being iterated, we plot the data consisting of 500
points for per α value. +e plotting is for x1, x3 vs the pa-
rameter α. +e bifurcation figures illustrate that the fixed

point of x1 loses stability and period bifurcation occurs when
α ≈ 0.95, and the fixed point of x3 loses stability and period
bifurcation occurs when α ≈ 1.1. Making the bifurcation
figures of the x2 vs α and the x4 vs α similar, they are omitted.

In Figure 2, we show the largest Lyapunov exponent
diagram for α ∈ [0, 6]. For every α value, the initial values
were the same as Figure 1. From the simulation results in
Figure 2, we can find that the largest Lyapunov exponent is
negative when α ∈ (0, 1) and is positive when α> 2.8. +us,
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the figures illustrate that the system (38) has chaotic be-
haviors when α is large enough.

In Figure 3, we show the chaotic figures. For each α
value, after 6 × 105 time steps being iterated, plot the 6000
data points. +e figure illustrates that there are no chaos for
small α (e.g., α � 0.72, 2.1) and chaotic behavior occurs
when α is larger (e.g., α � 1.68, 3.0, 6.7, 100). +ose nu-
merical simulations support the theoretical results in
Section 2.

5. Conclusion

In this paper, the chaos of a discrete neural network loops
with self-feedback is studied. +e discrete neural network
loops with multiple delays and self-feedback can demon-
strate chaotic behavior when the interconnection strengths
are large enough. Numerical simulations support the the-
oretical results. +e theoretical results are to provide some
new methods for the design of chaotic neural networks.
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Investigating dynamic properties of discrete chaotic systems with fractional order has been receivingmuch attention recently.-is
paper provides a contribution to the topic by presenting a novel version of the fractional Grassi–Miller map, along with improved
schemes for controlling and synchronizing its dynamics. By exploiting the Caputo h-difference operator, at first, the chaotic
dynamics of the map are analyzed via bifurcation diagrams and phase plots. -en, a novel theorem is proved in order to stabilize
the dynamics of the map at the origin by linear control laws. Additionally, two chaotic fractional Grassi–Miller maps are
synchronized via linear controllers by utilizing a novel theorem based on a suitable Lyapunov function. Finally, simulation results
are reported to show the effectiveness of the approach developed herein.

1. Introduction

Nonlinear dynamics, chaos control, and chaos synchroni-
zation represent important research topics [1–27]. In par-
ticular, referring to synchronization and control, new
advances have been recently reported, for both integer-order
systems and fractional-order systems [28, 29]. In particular,
referring to continuous-time systems described by fractional
derivative, some interesting techniques involving adaptive
synchronization have been recently illustrated in [28, 29].
However, there is a remarkable difference in fractional
calculus regarding continuous-time and discrete-time sys-
tems. Namely, while fractional derivatives made their first
appearance in a letter that Gottfried Wilhelm Leibniz wrote
to Guillaume de l’Hopital in 1695, discrete fractional

calculus has been introduced by Diaz and Olser only in 1974
[6]. Indeed, the authors of [6] presented the first definition of
a discrete fractional operator, obtained by discretizing a
continuous-time fractional operator. Over the years, several
types of difference operators have been introduced in the
field of discrete fractional calculus [3, 7, 8]. In particular, a
number of fractional h-difference operators, which represent
generalizations of the fractional difference operators, have
been investigated in [7].

Based on fractional difference equations, in recent years
some chaotic discrete-time systems have been studied
[10, 25–27]. -ese systems are fractional-order maps, which
show complex unpredictable behaviors due to the nonlin-
earities included in their difference equations [7]. With the
introduction of fractional chaotic maps, attention has been

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 8825694, 10 pages
https://doi.org/10.1155/2020/8825694

mailto:kamina_aicha@yahoo.fr
https://orcid.org/0000-0002-7109-197X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8825694


also focused on the issues related to the synchronization and
control of these systems [12]. For example, in [26] the
fractional logistic map and its chaotic behaviors have been
illustrated, whereas in [27] the presence of chaos in frac-
tional sine and standard maps has been discussed. In [10],
discrete chaos in the fractional Hénon map is reported,
whereas in [25] the chaotic dynamics of the fractional
delayed logistic map are analyzed in detail. In [12], three
different discrete-time systems, namely, the fractional Lozi
map, the fractional Lorenz map, and the fractional flowmap,
have been studied, along with the control laws for stabilizing
and synchronizing these three maps. In [23], the fractional
generalized hyperchaotic Hénon map has been introduced,
whereas in [20], the dynamics of the Ikeda map have been
investigated via phase plots and bifurcation diagrams. In
[13], three fractional chaotic maps, namely, the Stefanski
map, the Rossler map, and theWangmap have been studied,
along with the synchronization properties of these systems.
In [16], dynamics and control of the fractional version of the
discrete double-scroll hyperchaotic map are investigated in
detail. In [18], bifurcations, entropy, and control of a
quadratic fractional map without equilibrium points are
analyzed, whereas in [9] the dynamics of fractional maps
with fixed points located on closed curves are studied.

A challenging topic in discrete fractional calculus is to
study dynamics, synchronization, and control of very
complex systems, such as the chaotic three-dimensional
(3D) maps [8]. Namely, by computing the approximate
entropy, it can be shown that 3D maps highlight a higher
degree of complexity with respect to one-dimensional (1D)
or two-dimensional (2D) fractional maps [5,21]. Since the
increased complexity can enhance the applicability of 3D
maps in pseudo-random number generators and image
encryption techniques [22], it is important to analyze their
dynamics as well as conceive improved synchronization and
control schemes for these maps. In this regard, some in-
teresting results have been recently published [11, 17, 19]. In
[11], synchronization and control schemes for a new 3D
generalized Hénonmap have been proposed, whereas in [19]
control and synchronization properties of a 3D fractional
map without equilibria have been analyzed in detail. In [17],
the fractional form of the Grassi–Miller map has been in-
troduced using the ]-Caputo delta difference. In particular,
phase portraits and bifurcation diagrams have been illus-
trated in [17], with the aim of deriving the fractional-order
range for which the system is chaotic. In addition, two
nonlinear control laws have been proposed in [17], one for
stabilizing the system dynamics and the other for syn-
chronizing a master-slave pair of maps. Although the
methods developed in [11, 17, 19] are interesting, a drawback
is represented by the fact that very complex control laws
have been exploited for controlling and synchronizing the
corresponding 3D fractional maps. For example, in [11],
synchronization and control in the 3D generalized Hénon
maps have been achieved using nonlinear control laws.
Moreover, in [19], the 3D fractional maps with hidden
attractors have been synchronized and controlled via
nonlinear control laws that include several nonlinear terms.
We would observe that it might be difficult to implement

very complex control laws in practical applications of
fractional maps. -is drawback also regards the Grass-
i–Miller map in [17], since its introduction via the Caputo
delta difference has led to complex nonlinear control laws to
achieve synchronization and control of its chaotic dynamics.

Inspired by the mentioned above considerations, this
paper provides a further contribution to the topic of dy-
namics, control, and synchronization of fractional 3D maps
by presenting a novel version of the Grassi–Miller map,
along with improved schemes for controlling and syn-
chronizing its dynamics. -e structure of the article is as
follows. In Section 2, definition of the fractional Caputo h-
difference operator [7] and a novel fractional Grassi–Miller
map is proposed, along with its chaotic dynamic behavior. In
Section 3 linear control laws are proposed to stabilize the
dynamics of the map at the origin. In particular, a novel
theorem is proved, which assures the stability condition via a
suitable Lyapunov function. In Section 4, a master-slave
system based on two chaotic Grassi–Miller maps is syn-
chronized using linear controllers. -e objective is achieved
by exploiting a novel theorem involving a Lyapunov-based
approach. Note that this paper makes an attempt to over-
come the weakness and the difficulties encountered in
[11, 17, 19]. Namely, on one hand, this paper focuses on a
novel 3D map, with the aim of exploiting the potentials
deriving from the higher degree of complexity of 3D maps
with respect to simpler 1D and 2Dmaps. On the other hand,
the paper proposes simple linear control laws (with
respected to the complex control laws developed
[11, 17, 19]), with the aim of making feasible their imple-
mentation for potential applications of 3D maps in pseudo-
random number generators and image encryption tech-
niques. In addition to these improvements, note that, by
virtue of the linearity of the control laws developed herein,
the proposed control and synchronization schemes require
less control effort with respect to the nonlinear approaches
illustrated in [17]. Finally, simulation results are reported to
show the effectiveness of the control and synchronization
methods developed herein. All the results developed thor-
ough the manuscript clearly highlight the novelty of the
conceived approach, consisting in the following: (i) the
introduction of a new 3D fractional map characterized by
complex dynamics; (ii) the proof of a novel theorem for
stabilizing the map via a linear control law; (iii) the proof of a
novel theorem for synchronizing the map via linear control
law; (iv) comparisons for illustrating the better perfor-
mances of our method if compared to recent published
articles where complex nonlinear control laws have been
used.

2. Fractional Grassi–Miller Map Based on the
Caputo h-Difference Operator

In this section, a novel version of the fractional Grassi–Miller
map is presented. To this purpose, some concepts related to the
Caputo h-difference operator are briefly summarized.

-roughout the rest of the paper, we assume that
(hN)a � a, a + h, a + 2h, . . .{ }, where h is a positive real and
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a ∈ R. -e forward h-difference operator of a function X

defined on (hN)a is defined as

ΔhX(t) �
X(t + h) − X(t)

h
. (1)

Definition 1 (see [2]). Let X: (hN)a⟶ R. -e fractional
h-sum of positive fractional order ] is defined by

hΔ
− ]
a X(t) �

h

Γ(])
􏽘

(t/h)− ]

s�(a/h)

(t − σ(sh))
(]− 1)
h X(sh), (2)

where σ(sh) � (s + 1)h, a ∈ R, and t ∈ (hN)a+]h. t
(])
h is the

h-falling fractional function with two real numbers t, h that
can be written in the form

t
(])
h �

h
]Γ((t/h) + 1)

Γ((t/h) + 1 − ])
. (3)

Definition 2 (see [1]). For X(t) defined on (hN)a and a real
order 0< ]≤ 1, the Caputo fractional h-difference operator is
given by

C
hΔ

v

aX(t) � Δ− (n− ])
a Δ

n
X(t), t ∈ (hN)a+(n− ])h, (4)

in which n � ⌈]⌉ + 1.
Now, a theorem reported in [4] is briefly illustrated, with

the aim to identify the stability conditions of the zero

equilibrium point for the fractional nonlinear difference
system written in the form

C
hΔ

v

a � F(t + ]h, X(t + ]h)). (5)

Theorem 1. .e fractional nonlinear discrete system (5) is
asymptotically stable if there exists a positive definite and
decreasing scalar function V(t, X(t)) for the equilibrium
point x � 0, such that V(t, X(t))≤ 0.

Lemma 1. For every t ∈ (hN)a+(n− ])h, the following in-
equality holds:

C
hΔ

v

aX
2
(t)≤ 2X(t + ]h)

C
hΔ

v

aX(t), 0< ]≤ 1. (6)

All the details regarding the proof of Lemma 1 can be
found in [4].

Referring to the fractional Grassi–Miller map, it was in-
troduced in [17] using the ]-Caputo delta difference operator.
-e fractional map, which proved to be chaotic for proper
values of the system parameters (α, β) and of the fractional
order ] ∈ (0, 1], possesses only a nonlinear term [17].

Herein, the fractional Caputo h-difference operator is
considered, in order to derive a different mathematical
model of the 3D Grassi–Miller map. Namely, the following
equations are proposed:

C
hΔ

v

a
x(t) � α − y

2
(t + ]h) − βz(t + ]h) − x(t + ]h),

C
hΔ

v

ay(t) � x(t + ]h) − y(t + ]h),
C
hΔ

v

az(t) � y(t + ]h) − z(t + ]h),􏽮

(7)

where C
hΔ

v

a denotes the fractional h-difference operator,
t ∈ (hN)a+(n− ])h, a is the starting point, and (α, β) are system
parameters. .e fractional map (7) can be considered a
generalized model of the map introduced in [17].

.e solution of the fractional Grassi–Miller map (7) is
obtained by introducing the fractional h-sum operator.
According to [15], the equivalent implicit discrete formula can
be written in the form

x(n + 1) � x(0) +
h
]

Γ(])
􏽘

n

j�0

Γ(n − j + ])

Γ(n − j + 1)
α − y

2
(j + 1) − βz(j + 1) − x(j + 1)􏼐 􏼑,

y(n + 1) � y(0) +
h
]

Γ(])
􏽘

n

j�0

Γ(n − j + ])

Γ(n − j + 1)
(x(j + 1) − y(j + 1)),

z(n + 1) � z(0) +
h
]

Γ(])
􏽘

n

j�0

Γ(n − j + ])

Γ(n − j + 1)
(y(j + 1) − z(j + 1)),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where x(0), y(0), and z(0) are the initial state values. Based
on predictor-corrector method [14], the implicit equation
(8) is transformed into its explicit form, which can be used
for investigating the dynamic behavior of the Grassi–Miller
map (7). By taking the initial state values x(0) � 1,

y(0) � 0.1, and z(0) � 0, with the fractional order value ] �

0.999 and the system parameters α � 1, β � 0.5, it can be
shown that map (7) displays the attractor reported in Fig-
ure 1.-e computation of the bifurcation diagram and of the
largest Lyapunov exponent, both reported in Figure 2 as a
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function of the system parameter β, clearly highlights the
chaotic behavior of the fractional Grassi–Miller map (7) for
α � 1, β � 0.5, and ] � 0.999. Regarding the bifurcation
diagram reported in Figure 2, it can be noted that the map
oscillates when β assumes values around 0.05. When β
approaches the value of 0.1, more complex dynamic regimes
appear, until β approaches the value of 0.45, when chaotic
behaviours are reached. Note that the presence of chaos for
0.45< β< 0.5 is also confirmed by the positive values

assumed by the maximum Lyapunov exponents (see Fig-
ure 2). Note that the evolution of states of the fractional map
(7), which involves the adoption of the Caputo h-difference
operator, is different from those of the map reported in [17],
the latter being based on the ]-Caputo delta difference
operator.-is can be clearly seen by comparing the shapes of
the chaotic attractors reported in Figure 1 with those of the
attractors reported in [17]. Namely, the adoption of two
different fractional operators has led to different shapes in
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Figure 1: Chaotic attractor of the fractional order Grassi–Miller map for α � 1, β � 0.5, and order ] � 0.999.
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the chaotic attractors as well as different parameter values for
generating chaos (see [17]), indicating that the proposed
Grassi–Miller map (7) provides a contribution to the topic of
3D discrete-time fractional systems.

Referring to potential applications of the proposed
model (7), it should first be noted that 3D maps highlight a
higher degree of complexity with respect to 1D and 2Dmaps
[5, 21]. -us, the applicability of the conceived 3D map (7)
would mainly be in pseudo-random number generators and
image encryption techniques. -is makes perceive the im-
portance of developing simple and feasible control methods,
given that master-slave synchronization schemes based on
model (7), in combination with encryption algorithms,

might be used for experimentally generating and recovering
the secret keys.

3. Chaos Control of the New Version of the
Grassi–Miller Map

Here, a controller is presented in order to stabilize at zero the
chaotic trajectories of the state-variables in the Grassi–Miller
map (7) with fractional order. -e objective is achieved by
adding two linear terms into both first and second equations
of the map. Namely, the controlled fractional Grassi–Miller
chaotic map is described by

C
hΔ

v

a
x(t) � α − y

2
(t + ]h) − βz(t + ]h) − x(t + ]h) + C1(t + ]h),

C
hΔ

v

ay(t) � x(t + ]h) − y(t + ]h) + C2(t + ]h),
C
hΔ

v

az(t)􏽮

� y(t + ]h) − z(t + ]h),

(9)

where C1 and C2 are suitable controllers to be determined.
To this purpose, a theorem is now given for rigorously
assuring that the dynamics of (9) can be stabilized at zero.

Theorem 2. .e three-dimensional fractional Grassi–Miller
map (9) is controlled at the origin under the following control
laws:

C1(t) � − α + βz(t) − y(t),

C2(t) � − b1y(t) − z(t),
􏼨 (10)

where |x(t)|≤ b1, ∀t ∈ (hN)a+(n− ])h.

Proof of .eorem 2. By subtracting (10) into system (9), we
get the following fractional difference equations:

C
hΔ

v

a
x(t) � − y

2
(t + ]h) − x(t + ]h) − y(t + ]h),

C
hΔ

v

ay(t) � x(t + ]h) − 1 + b1( 􏼁y(t + ]h) − z(t + ]h),
C
hΔ

v

az(t)􏽮

� y(t + ]h) − z(t + ]h).
(11)

By taking a Lyapunov function in the form
V � (1/2)(x2(t) + y2(t) + z2(t)), the adoption of the
Caputo h-difference operator implies that

C
hΔ

v

axV �
1
2

C
hΔ

v

axx
2
(t) +

1
2

C
hΔ

v

axy
2
(t) +

1
2

C
hΔ

v

axz
2
(t). (12)

By using Lemma 1, it follows that

C
hΔ

v

aV≤ x(t + ]h)
C
hΔ

v

ax(t) + y(t + ]h)
C
hΔ

v

ay(t) + z(t + ]h)
C
hΔ

v

az(t)

� − x(t + ]h)y
2
(t + ]h) − x

2
(t + ]h) − x(t + ]h)y(t + ]h) + y(t + ]h)x(t + ]h)

− 1 + b1( 􏼁y
2
(t + ]h) − y(t + ]h)z(t + ]h) + z(t + ]h)y(t + ]h) − z

2
(t + ]h)

≤ |x(t + ]h)|y
2
(t + ]h) − x

2
(t + ]h) − 1 + b1( 􏼁y

2
(t + ]h) − z

2
(t + ]h)

≤ b1y
2
(t + ]h) − x

2
(t + ]h) − 1 + b1( 􏼁y

2
(t + ]h) − z

2
(t + ]h)

� − x
2
(t + ]h) − y

2
(t + ]h) − z

2
(t + ]h)< 0.

(13)

From -eorem 1, it can be concluded that the zero
equilibrium of (9) is asymptotically stable. As a consequence,
it is proved that the dynamics of the proposed 3D

Grassi–Miller map (7) are stabilized at the origin by the
linear control laws (10). □
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Remark 1. Since all the chaotic states of map (9) are
bounded, it can be deduced that it is easy to find a parameter
b1 larger than the absolute value of the state variable x(t), as
requested by the proof of -eorem 2. Namely, the existence
of b1 is intrinsically justified by the property of boundedness
of the state x(t). -us, the value of b1 can be easily found by
looking at the plots reported in Figure 1, from which it is
clear that − 1.6<x(t)< 1.6 for any t. -rough the paper, the
value of b1 has been selected as b1 � 1.7. Note that the value
of b1 does not significantly affect the time for stabilizing the
map dynamics.

Now, we give the numerical simulation to prove the
above theory. We select α � 1 and β � 0.5, and we give the
evolution of the states and the phase-space plots as shown in
Figure 3 for ] � 0.999. -ese plots clearly show that the new
fractional map (7) is driven to the origin by linear control
laws in the form (10).

Now comparisons are carried out with recent results re-
garding 3D fractional maps, with the aim to confirm the
effectiveness of the conceived approach when comparing
control strategies formaps of similar degree of complexity. For
example, the results in [11] show that the 3D fractional map

proposed therein is stabilized after more than 20 steps,
whereas the map illustrated herein is stabilized in at most 3
steps. On the other hand, the results in [19] highlight that the
3D fractional map proposed therein is stabilized in the same
number of steps taken by our method. However, the control
law adopted in [19] is complex, since it involves some non-
linear terms, whereas the proposed control strategies is simple
and involves only linear terms. Finally, the results in [4] show
that the 3D fractional Grassi–Miller map proposed therein,
based on the-Caputo delta difference, is stabilized after more
than 20 steps, whereas the map illustrated herein, based on the
Caputo h-difference operator, is stabilized in at most 3 steps.
-ese comparisons make us perceive the effectiveness of the
proposed control strategy with respect to 3D fractional maps
of similar complexity published in recent literature.

3.1. Synchronization of the Fractional Grassi–Miller Map.
In this paragraph, a master-slave system, based on two
identical chaotic fractional Grassi–Miller maps, is syn-
chronized using linear controllers. -e dynamics of the
master system can be written as follows:

C
hΔ

v

a
xm(t) � α − y

2
m(t + ]h) − βzm(t + ]h) − xm(t + ]h),

C
hΔ

v

aym(t) � xm(t + ]h) − ym(t + ]h),
C
hΔ

v

azm(t)􏽮

� ym(t + ]h) − zm(t + ]h),
(14)

where xm(t), ym(t), and zm(t) are the system states. -e
equations of the slave system are given by

C
hΔ

v

a
xs(t) � α − y

2
s (t + ]h) − βzs(t + ]h) − xs(t + ]h) + L1(t + ]h),

C
hΔ

v

ays(t) � xs(t + ]h) − ys(t + ]h),
C
hΔ

v

azs(t)􏽮

� ys(t + ]h) − zs(t + ]h) + L2(t + ]h),
(15)

where xs(t), ys(t), and zs(t) are the system states, whereas
L1 and L2 are suitable linear controllers to be determined.

We subtract master system (14) from the slave system (15) to
get the error system as

e1(t), e2(t), e3(t)( 􏼁
T

� xs(t), ys(t), zs(t)( 􏼁
T

− xm(t), ym(t), zm(t)( 􏼁
T
. (16)

Now a theorem involving a Lyapunov-based approach is
proved, with the aim of synchronizing the master-slave (14)
and (15) via linear controllers L1 and L2.

Theorem 3. .emaster system (14) and the slave system (15)
achieve synchronized dynamics, provided that the linear
control laws L1 and L2 are selected as

L1(t) � 1 − b2 +
1
2

􏼒 􏼓
2

􏼠 􏼡e1(t),

L2(t) � βe1(t) − e2(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

where |ym(t)| � |ys(t)|≤ b2, t ∈ (hN)a+(n− ])h.
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Proof of .eorem 3. By taking into account (16), the dy-
namics of the error system can be written as

C
hΔ

v

a
e1(t) � y

2
m(t + ]h) − y

2
s (t + ]h) − βe3(t + ]h) − e1(t + ]h) + L1(t + ]h),

C
hΔ

v

ae2(t)􏽮

� e1(t + ]h) − e2(t + ]h),
C
hΔ

v

ae3(t) � e2(t + ]h) − e3(t + ]h) + L2(t + ]h).
(18)

By substituting the control law (17) into error system
(18), we get

C
hΔ

v

a
e1(t) � − ym(t + ]h) + ys(t + ]h)( 􏼁e2(t + ]h) − βe3(t + ]h) − b2 +

1
2

􏼒 􏼓
2
e1(t + ]h),

C
hΔ

v

a
e2(t)􏼨

� e1(t + ]h) − e2(t + ]h),
C
hΔ

v

ae3(t) � βe1(t + ]h) − e3(t + ]h).

(19)
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Figure 3: Stabilized states of the controlled fractional Grassi–Miller map (9) via linear control laws (10) with α � 1, β � 0.5, and fractional
order ] � 0.999.
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Now, by taking a Lyapunov function in the form V �

(1/2)(e21(t) + e22(t) + e23(t)) and by exploiting Lemma 1, it
follows that

C
hΔ

v

aV≤ e1(t + ]h)
C
hΔ

v

ae1(t) + e2(t + ]h)
C
hΔ

v

ae2(t) + e3(t + ]h)
C
hΔ

v

ae3(t)

� − b2 +
1
2

􏼒 􏼓
2
e
2
1(t + ]h) − ym(t + ]h) + ys(t + ]h)( 􏼁e1(t + ]h)e2(t + ]h)

− βe1(t + ]h)e3(t + ]h) + e2(t + ]h)e1(t + ]h) − e
2
2(t + ]h) + βe1(t + ]h)e3(t + ]h) − e

2
3(t + ]h)

≤ − b2 +
1
2

􏼒 􏼓
2
e
2
1(t + ]h) + 1 + ym(t + ]h) + ys(t + ]h)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

e1(t + ]h) e2(t + ]h)
����

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − e

2
2(t + ]h) − e

2
3(t + ]h)

≤ − b2 +
1
2

􏼒 􏼓
2
e
2
1(t + ]h) + 1 + 2b2( 􏼁 e1(t + ]h) e2(t + ]h)

����
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − e
2
2(t + ]h) − e

2
3(t + ]h)

� − b2 +
1
2

􏼒 􏼓
2
e1(t + ]h) − e2(t + ]h)􏼠 􏼡

2

− e3(t + ]h)≤ 0.

(20)

From -eorem 1, it can be concluded that the dynamics
of the error system (18) are stabilized at the origin. As a
consequence, it is proved that the master system (14) and the
slave system (15) achieve synchronized dynamics via linear
control laws in the form (17). □

Remark 2. It is easy to find a parameter b2 larger than the
absolute value of the variables ym(t) � ys(t), as requested by
the proof of -eorem 3. Namely, the existence of b2 is in-
trinsically justified by the property of boundedness of the
chaotic states of map (9). -us, the value of b2 can be easily
found by looking at the plots reported in Figure 1, fromwhich
it is clear that − 1.6<y(t)< 1.6 for any t. Herein, in order to
achieve synchronization, the value of b2 has been selected as
b2 � 2. Note that the value of b2 does not significantly affect
the time for synchronizing the master-slave pair.

In order to show the effectiveness of the proposed
approach, Figure 4 displays the chaotic dynamics of the
master system states (blue color) and of the slave system
states (red color) when α � 1, β � 0.5, and ] � 0.999. -ese
plots clearly show that two identical Grassi–Miller maps
achieve chaos synchronization via linear controllers. Note
that, through the manuscript, all the simulation results and
the related figures have been obtained using the software
MATLAB.

Now, we would discuss the issue regarding the com-
plexity of the proposed method. We would observe that the
approach proposed herein is simpler than similar methods
reported in literature. For example, the techniques devel-
oped in [11, 17, 19] present the drawback that very complex
control laws have been exploited for controlling and syn-
chronizing the corresponding 3D fractional maps. For ex-
ample, in [11, 19] synchronization and control have been

achieved using nonlinear control laws that include several
nonlinear terms. -is drawback also regards the Grass-
i–Miller map in [17], since complex nonlinear control laws
have been used to achieve synchronization and control of its
chaotic dynamics. Since it might be difficult to implement
very complex control laws in practical applications of
fractional maps, this paper has provided a contribution to
the topic by developing simple linear control laws for sta-
bilizing and synchronizing 3D fractional maps.

Referring to synchronization issues, now comparisons
are carried out with recent results regarding 3D fractional
maps. -e objective is to highlight the effectiveness of the
conceived approach when synchronization involves 3D
maps with similar degree of complexity. For example, the
results in [11] show that synchronization for the 3D frac-
tional map proposed therein is achieved after more than 10
steps, whereas the map illustrated herein can be synchro-
nized in at most 3 steps. On the other hand, the results in
[19] show that synchronization for the 3D fractional map
proposed therein is achieved in the same number of steps
taken by our method. However, [19] exploits a complex
control law that involves some nonlinear terms, whereas the
proposed synchronization technique is simple and involves
only linear terms. Finally, the results in [17] show that
synchronization for 3D fractional Grassi–Miller map pro-
posed therein, based on the ]-Caputo delta difference, is
achieved after more than 20 steps, whereas the map illus-
trated herein, based on the Caputo h-difference operator,
achieves synchronized dynamics in at most 3 steps. -ese
comparisons make us perceive the effectiveness of the
proposed synchronization strategy with respect to 3D
fractional maps of similar complexity published in recent
literature.
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Finally, we would briefly discuss the potential appli-
cations of the conceived approach in real world. As any 3D
map, the Grassi–Miller map highlights a higher degree of
complexity with respect to 1D or 2D fractional maps. -is
increased complexity can be very useful for pseudo-ran-
dom number generators in chaos-based communications
systems. Moreover, since the production of images is
increasing day by day in real life, confidentiality and
privacy are becoming key issues when transmitting digital
images using portable devices. -us, referring to secure
image transmission, the proposed discrete-time syn-
chronization scheme could be utilized for retrieving the
secrets keys at the receiver side in chaos-based image
encryption systems.

4. Conclusions and Future Work

By including Grassi as a coauthor, this paper has presented a
novel version of the chaotic fractional Grassi–Miller map, based
on the Caputo h-difference operator. Two novel theorems have
been proved, with the aim of deriving improved schemes (with
respect to those presented in [17]) for controlling and syn-
chronizing the dynamics of the map. Namely, while synchro-
nization and control in [17] are achieved via more complex
nonlinear control laws, herein, simple linear controllers have
been conceived. Finally, simulation results have been carried out
to highlight the effectiveness of the proposedmethod. Referring
to future improvements of the conceived approach, our plan is
to make an attempt to further simplify the control laws de-
veloped herein. Specifically, the objective is to reduce the control
law (10) to just one term C(t), instead of having two terms
C1(t) and C2(t). Furthermore, regarding synchronization, we

will try to reduce the control law (17) to just one term L(t),
instead of having two terms L1(t) and L2(t).

By exploiting the results achieved herein, our future work
will focus on two main steps. At first, we will implement the
proposedGrassi–Millermap using anArduino board, with the
aim of experimentally showing the high degree of complexity
generated by fractional 3D maps. -en, the second step will
consist in applying the conceived linear controllers to image
encryption. Namely, our plan is to implement in hardware the
proposed master-slave synchronization scheme, which will be
used in combination with an encryption algorithm to ex-
perimentally generate and recover the secret keys.
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