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With the development of modern science and technology, information technology has brought great changes to many fields.
Smart justice has become one of the increasing areas that people are paying more attention to. For example, large and small cases
occur every day, and the legal library is continuously updated. *erefore, a large number of documents and evidence collection
archives will bring tremendous pressure on the judiciary. *e text generation technology can automatically present the results
extracted from these redundant legal data and express the results of the analysis in natural language. It facilitates the business for
huge amounts of legal data effectively, which relieves the work pressure of the judicial department. However, the text generation
algorithms have not been promoted in justice. *erefore, this paper focuses on what benefits text generation can produce in law
and how to apply text generation technology in legal field. *e survey provides a comprehensive overview on text generation
firstly, through summarizing the existingmethods, that is, text to text, data to text, and visual to text.*en, we examine the process
of the practical application of text generation in law. Furthermore, this paper puts forward the challenges and possible solutions to
the judicial text generation, which provides pointers on future work.

1. Introduction

For a country, law maintains social stability. For each in-
dividual, law is a powerful weapon to defend people’s rights
and interests. As a result, the work of the legal sector is often
arduous and onerous. According to statistics, the legal da-
tabase has collected nearly one million pieces of provisions.
It is conceivable that judges cannot memorize all laws and
regulations, thus affecting the fairness and efficiency of
judgments. In addition, in recent years, Chinese citizens
have visited, consulted, and handled affairs on the website of
the Ministry of Justice hundreds of millions of times, which
indicates that the legal department needs to devote a lot of
time, manpower, and material resources to solve people’s
problems. Text data processing is particularly important in
many judicial services. Automatic generation of legal texts
can alleviate the shortage of legal professionals. *rough the
automatic generation of legal texts, the paperwork of legal
service personnel can be reduced, thus improving the

efficiency of generating legal documents and avoiding the
waste of judicial resources. With the gradual improvement
of the society ruled by law, the requirements of judicial
activities in China are getting higher and higher, so the
generation of legal texts is of great significance to the judicial
field.

Automatic text generation is a technique in which a
computer generates natural language from some form of
data content. Natural language generation technology rose
since the 70s [1]. *e template generation (template-based
generation) is the first use of text automatic generation
technology. After that, the schema generation technology
(schema-based generation) and phrases planning technol-
ogy (phrase/plan expansion) which are based on the theory
of RST (Rhetorical Structure) and many other technologies
gradually appeared.

*ere are quite a few frontier research works on legal text
generation in NLP (natural language processing) and arti-
ficial intelligence fields. In recent years, there have been

Hindawi
Scientific Programming
Volume 2021, Article ID 3225933, 14 pages
https://doi.org/10.1155/2021/3225933

mailto:arielzhang2018@alumni.ubc.ca
https://orcid.org/0000-0002-5085-0949
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3225933


some achievements and applications with international
influence in this field. Text automatic generation is the main
research direction in the field of natural language processing,
and deep learning algorithms play an important role in the
field of natural language processing. In recent years, more
and more researchers have combined the technology with
artificial intelligence, such as Microsoft’s chatbot “Xiaob-
ing,” Headline’s news robot “Zhang Xiaoming,” and Ten-
cent’s “dream writer.” At present, automatic text generation
technology has been successively applied in entertainment,
meteorology, medicine, news, and other fields [2–4].

However, the technology is not yet fully available in the
judicial system, but the importance of text generation in law
should not be underestimated. At present, judicial artificial
intelligence can simply realize legal retrieval, document
search, and so on. Besides, some intelligent legal software has
been put into commercial use, in which text generation
technology has made many contributions. For example, in
the Competition on Legal Information Extraction in 2018,
Tran et al. [5] used text generation technology to represent
documents with abstracts and achieved the best perfor-
mance. *en, they used the 2018 model as a pretrained
phrase scoring model and lexical matching technology in the
2019 competition. *e model combining text generation
techniques performed well again in the legal case retrieval
task. In commercial software products, Kira can be used to
extract the terms of the contract; RAVN systems can effi-
ciently summarize your legal documents; Lex Machina
analyzes the historical data of the lawsuit for lawyers and
generates a report; Lisa and Automio robots can generate
agreements and legal documents based on questions and
answers from users. *ese beneficial features are inseparable
from text generation technology.

In addition, automatic text generation still has rosy
prospect in the judicial system. If the automatic text gen-
eration technology is widely used in the law system, it will
greatly improve the efficiency of the workflow of law, which
is a promising opportunity. Examples include the following:
(1) When people need legal advice or case inquiry, due to
limited human and material resources, the human window
may not be able to provide timely services. In the process of
inquiry, there may be some questions that are too embar-
rassing to mention, which may lead to the ineffective and
inaccurate progress of the case. In the process of solving
problems, the staff may not be able to find the appropriate
provisions in hundreds of thousands of legal provisions in a
short time [6]. Intelligent dialog system based on text
generation algorithms can solve the above problems. (2) At
present, the public security department has presented “data
police,” which can make prediction and give warning
according to police data [7]. Regular work reports are in-
dispensable. *erefore, some content selection can be made
on these data, and relevant reports can be generated auto-
matically by text generation algorithm. (3) To meet the
requirements of modern information management, text
generation algorithm can convert traditional files in the form
of picture and video into document format for storage. (4) In
traditional sentencing, judges need to read a lot of docu-
ments, which requires a lot of time and energy. If the text

generation technology is applied to extract and summarize
the contents of files and indictments, it can not only save
time but also realize transparent and fair handling of cases.
*e possible application of automatic text generation in law
is not limited to this, but it can be seen that legal text
generation is very promising.

*is article aims to explore the necessity and possibility
of automatic text generation in the judicial system. First, this
article will classify and summarize the existing classic text
generation algorithms from three different forms of input
content: text input, data input, and visual input in Section 2.
*en, we explain in detail how to apply these text generation
algorithms to justice with the existing works and provide 6
authoritative and available legal datasets that can be used for
text generation or other artificial intelligence tasks in Section
3. Section 4 analyzes the possible problems and feasible
countermeasures in the application of text generation al-
gorithm to justice, which gives new research directions for
both text generation and intelligent law. At last, Section 5
concludes the paper.

2. Automatic Text Generation

According to different input, automatic text generation can be
divided into three categories: text-to-text generation, data-to-
text generation, and image-to-text generation [8]. Each
technology here is extremely challenging, but with the rapid
development of natural language generation technology and
artificial intelligence, each technology has more detailed
classification and cutting-edge application methods. Text-to-
text generation is divided into text summarization and dialog
system. Text summarization is divided into extraction and
abstraction forms to express the central idea of the article.
Dialog system is intended to generate the natural language of
response and generates models in three modes: template-
based, knowledge-based, and network-based. Data-to-text
generation is mainly divided into two solutions: content
selection and surface realization, and rule-based and data-
based methods are adopted. For visual-to-text generation,
image and video input are integrated into visual form input. It
can be realized by template-based and network-based
methods. In this section, we will discuss text generation
techniques: text-to-text generation, data-to-text generation,
and visual-to-text generation. Figure 1 gives an overview of
the automatic text generation methods.

2.1. Text to Text. Text-to-text generation is a technology to
convert the given text content into a new text. *e process of
this technology mainly includes text summarization, sentence
compression, sentence fusion, and text retelling, which can be
applied in the fields of information summarization, news
writing, system dialog, and machine translation. *is section
mainly introduces text summary technology and intelligent
dialog technology which can be employed to smart justice.

2.1.1. Text Summarization. Automatic text summarization
utilizes computers to extract simple coherent text content
from the original text, which can fully and accurately express
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the central idea of the whole text. Summarization can be
divided into extractive form and abstractive form: extractive
form is composed of important sentences in the original text,
while abstractive form is composed of new sentences. Tra-
ditional automatic text summarization is in extractive form.

In the original text summary methods, sentences were
rated, sorted, and selected by word frequency, sentence
position (first and last sentence), and keywords. Luhn
proposed [9] to rate sentences according to the word fre-
quency. *e sentences with more frequent words have
higher scores, and the sentences with higher final scores
constitute the abstract of the text. *is seemingly simple
method sometimes has better effects than some complex
methods [10]. In [11], Edmundson calculated the score of
each sentence by integrating factors such as clue words, title,
sentences at the beginning and end of paragraphs, and
keyword frequency and selected sentences with high scores
to form the abstract.

At the end of the twentieth century, machine learning
emerged in text automatic summarization, making the
process of summarization more intelligent. Inspired by
Edmundson’s idea, Kupiec added naive Bayesian classifi-
cation model [12] to determine whether the extracted
sentences meet the requirements of abstract. In 1999, Lin
et al. applied the decision tree to the process of grading
sentences and extracted the sentences with the highest scores
to form an abstract. After that, Osborne [13] proposed an
automatic text summarization method with a better ex-
traction effect than the naive Bayesian model, which was
based on the log-linear model and considered the rela-
tionship between different features.

In the twenty-first century, the emergence of neural
networks made a breakthrough in text summarization
technology. Kageback et al. [14] proved that the network-
based text summarization method was significantly superior

to other traditional methods. *e automatic text summa-
rization based on neural networks could generate the
summarization of extractive form mentioned above or ab-
stractive form [15]. *e models can be divided into ex-
traction model and abstraction model [16]. Among them,
CNNs (convolutional neural networks) and RNNs (circular
neural networks) were commonly used for neural-based
abstracts, which were the basic models of many new
technologies.

*e extraction models focus on how to express sentences
and how to choose the most suitable sentences. For example,
CNNLM [17] employed convolutional neural network to
represent sentences. *rough training with noise contrast
estimation, it can distinguish the real next word from the
noisy word and select sentences based on the principle of
optimizing submodule targets. *is model can well process
redundant information in candidate words. In [18], the
method NN-SE utilized CNN and RNN to represent a
sentence, which was input into the LSTM encoder. *us, the
LSTM decoder with sigmoid was used in grading, sorting,
and choice of a sentence. Regarding the encoder and de-
coder, the stochastic gradient descent method was employed
to minimize the negative logarithm likelihood. *e con-
tribution of this model is that the generation of abstracts no
longer requires the manual language annotation process.

In [19], the SummaRuNNer was proposed to use a two-
layer bidirectional RNN to represent sentences and docu-
ments, each of which was a bidirectional GRU. *e model
SummaRuNNer is shown in Figure 2. *e blue part is the
word-level representation, and the red part is the sentence-
level representation. For each sentence representation, there
is a 0, 1 label output indicating whether or not each sentence
belongs to the summary. *e second layer merges the
sentence representation of the first layer into a document
representation, in which the sentences are sorted using the

Text
Generation

Text to Text

Data to Text

Visual to
Text

Text
Summarization

Dialogue 
System

Rule-based

Data-driven

Image

Video

Traditional methods

Network-based methods

Template-based methods

Knowledge-based methods

Network-based methods

Content selection

Machine learning

Network-based methods

Template-based methods

Network-based methods
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Figure 1: Text generation methods.
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sigmoid function. *e training of this model is similar to the
NN-SE model. Its advantage lies in the visualization of
prediction, which makes the model intuitive and easy to
understand. Moreover, its performance is comparable to
that of some advanced depth models.

In the abstract summary model, the main consideration
is how to represent the whole document in the encoder and
how to generate sequence words through the decoder. For
example, RAS-LSTM and RAS-Elman [20] used the encoder
based on CNN and attention mechanism and used Elman
RNN or LSTMmodel for decoding.*e novel convolutional
attention encoder of this model can ensure that the gen-
eration process of the decoder always focuses on the ap-
propriate word input. Nallapati et al. [21] proposed a
feature-rich hierarchical attention encoder based on two-
way GRU to represent documents, in which one-way GRU,
decoder based on LVT (the large vocabulary trick), and
pointer switch mechanism were utilized. *e innovation of
this model is to model basic structures such as keywords,
rare words, and word-to-sentence hierarchy, which will help
improve the performance of the model. In [22], Pointer-
Generator Networks adopted single-layer bidirectional
LSTM as encoder and single-layer unidirectional LSTM as
basic decoder and added pointer switch mechanism. On this
basis, an overlay mechanism to punish repeated attention
was also proposed. *is model effectively solves the problem
that the traditional sequence-to-sequence neural network
model is prone to duplicate inaccurate content [23–25].

2.1.2. Intelligent Dialog. Automatic text generation in the
dialog system refers to the natural language of the organi-
zation to generate responses based on the user’s statement.
Intelligent dialog system currently has three modes [26]:
template-based, knowledge-based, and deep learning-based
sequence-to-sequence generation model.

(1) Template-Based Models. *is technique designs dialog
templates for specific scenarios, and the text generation
process is a template filling process [27]. *e template-based
model can accurately answer the questions in a certain field,

but it has poor portability. It is suitable for the scenario of
human assistant.

Apple’s Siri uses template-based natural language genera-
tion. Siri employs the system’s vocabulary to map surface words
to related concepts, relationships, and properties, creating a
dialog template that allows it to interact easily with users.

(2) Knowledge-Based Models. Based on an indexed dialog
database, the user’s statements are first analyzed using
natural language processing (NLP) technology, and then
fuzzy matching is performed in the statement database to
select the response statements with the highest matching
degree. *is model is often used in entertainment chat and
question-and-answer systems, and its knowledge base is easy
to expand. However, when the amount of data is too large,
the context is often not connected.

IBM’s computerized question answering system, Wat-
son, uses knowledge-based retrieval technology during the
text generation stage [28]. After collecting large-scale evi-
dence, Watson further analyzes and evaluates the answers.
*e system uses Deep QA architecture, which follows: (1)
including more than one principle of assertion for the an-
swers of fact, (2) searching for different resources for dif-
ferent understandings of the problem [29], and (3) achieving
more than one candidate answer. After evaluation, scoring
of each answer, the best answer is finally selected. Moreover,
the complementarity of unstructured information and
structured information is employed to improve the cor-
rectness of evidence analysis [30].

*e architecture of DeepQA is extensible, in which Q&A
tasks can be improved through the expansion of the
knowledge base. However, the knowledge base is growing
too fast to be updated in real time.

(3) Deep Learning-Based Models. Dialog generation based on
deep learning does not rely on any template or knowledge
base. *is model is based on the end-to-end technology of
deep learning, which acquires the ability of organization by
learning natural language directly through a large amount of
corpus. *e resulting text is more flexible and intelligent.

Google [31] proposed a sequence-to-sequence frame-
work to train their conversation engines. *e model used
end-to-end training patterns and backpropagation learning.
*e output of the conversation was based on the predicted
sentences or sentences in the conversation. *e completely
data-driven approach can save a lot of manual overhead, but
the model is capable of only simple conversations and lacks
consistency before and after conversations.

Sordoni et al. [32] added context relation on the basis of
the previous model and replaced the RNN model with
multilayer forward neural network, so that the model could
input context information and dialog information into
encoder and maintain the dynamic consistency of input and
output information. *is context-aware approach also
presents problems, such as adding distant content unnec-
essarily to the current generation process.

Kumar et al. [33] proposed a model of dynamic memory
network, which used an episodic memory module to store
context information and corpus based on HNN. Dialog is a

1 0

Doc
Rep

1 Classification
layer

layer

Word layer

Input layer

Sentence 3Sentence 2Sentence 1

Sentence

Figure 2: SummaRuNNer model.
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process of iterative attention; thus, the final text generation
will be a hierarchical recursive reorder, resulting in a high-
quality dialog generation.

It can be seen that neural network performs well in both
text summarization and conversational system technology.
However, when generating real sentences, there is a high
probability of failure for two main reasons: (1) When using
autoencoders to map sentences to their hidden represen-
tations, the representations of these sentences often occupy a
small area of the hidden space. *erefore, most areas in the
hidden space are not necessarily mapped to real sentences
[34]. (2) Because of the nature of RNN itself, the error rate of
sentence generation may increase greatly with the length of
the sentence itself, which makes the quality of long sentences
difficult to be guaranteed. In order to solve the above
problems, in recent years, researchers pay more attention to
how to generate more realistic sentences; they usually adopt
the following methods: (1) using GANs (Generative
Adversarial Networks) [35] frame to make the text more like
human writing; (2) using reinforcement learning; (3)
combining semantic or grammatical information to make
the resulting sentences more correct [36].

*e application of adversarial training can effectively
improve the above problems by alternately updating dis-
criminator and generator. Zhang et al. [34] proposed a
method of adversarial training texts, which utilized LSTM as
a generator and CNN as a discriminator. *e generator
constantly generates near-real sentences, and the discrimi-
nator aims to accurately distinguish the sentences generated
by the generator from the real sentences. After adversarial
training, the sentence was guaranteed to maintain high
quality from a holistic perspective. In addition, Li et al. [37]
have applied adversarial training to the neural dialog system,
making the dialog generated by the intelligent dialog system
almost indistinguishable from human language.

In 2019, Gao et al. [38] applied a GANmodel to add text-
related comment information. *ey chose the Seq2Seq
model based on the attention mechanism and pointer
mechanism as the generator and CNN as the discriminator.
*ey used the content of the comments to get the main ideas
and redundant information in the text.

Zhang et al. [39] used a more powerful generator,
Transformer. Transformer is a completely attention-based
model proposed by Google in 2017. It has achieved excellent
performance in machine translation. Similarly, they chose
CNN as the discriminator. *e efficient parallelization of the
Transformer framework has made their work a good result.

*e GAN model is often combined with reinforcement
learning.*e GANmodel alone cannot be applied to natural
language generation, because the generated data of text is
discrete, and the improvement of generator is effective for
continuous data such as image based on discriminator in-
formation. However, for text data, the improved results are
likely to correspond to invalid text information. Rein-
forcement learning has an inherent advantage in discrete
data. It can use customized reward or punishment mech-
anisms to drive the final result more flexibly. *erefore,
GAN-based text generation models usually use the policy
gradient method in reinforcement learning during the

training of the generator and discriminator. *e above
models of Gao et al. [38] and Zhang et al. [39] were designed
as such. Of course, reinforcement learning itself makes a
great contribution to natural language generation. Chen and
Bansal [40] first used a deep learning model to extract
important sentences and then used reinforcement learning
to abstract the extracted text. *eir model uses the idea of
parallel decoding, which makes the decoding process very
efficient.

In the dialog system, the process of dialog is like a decision-
making process, so it can be fitted by the strategy learning
process of reinforcement learning. Li et al. [41] used adversarial
inverse reinforcement learning technology and provided a
unique reward mechanism for the discriminator of the
adversarial model, so the generator can obtain more accurate
reward signals from it. Experiments have shown that their
dialog system can produce high-performance responses.

In addition to the above two advanced methods, it is also
an effective and feasible way to return to the semantic and
grammatical structure of the text. Kouris et al. [42] proposed
a new model combining deep learning and semantic data
transformation in 2019. *e principle of conversion is as
follows: generalize the low-frequency words in the text into
high-frequency words in the learning process, and then
materialize the words in postprocessing. Based on this
principle, the prediction of the model becomes more
accurate.

Song et al. [43] expressed text as Abstract Meaning
Representation (AMR) [44], which describes the gram-
matical structure of a sentence. *ey used a novel graph-to-
text encoder. *e traditional graph-to-text method is to
traverse the nodes in the graph in a depth-first search or a
breadth-first search. *is method has disadvantages, which
will cause the words that are close to each other to be far
apart after traversal. *erefore, they use RNN to directly
encode the graph into text, which solves the above problem
well, and this parallel encoding method saves a lot of time.

*e accuracy of text-to-text generation model still needs
to be improved.*e training of a text model usually requires
a large corpus, and the training time of themodel is very long
(it may take several days). *erefore, an efficient text gen-
eration model is needed. Recently, many scholars have tried
joint training on multiple documents. Fabbri et al. [45]
applied a single-documentmodel to multidocument text and
found that combining methods such as Maximum Marginal
Relevance (MMR) [46] is feasible. However, they just simply
connect multiple documents, and the relationship between
different documents is not considered. Effective multi-
document-based text generation is also an important re-
search direction in the future.

2.2. Data to Text. *e generation of data to text is based on
various data and tables, from which the internal structure
and correlation are analyzed to form a smooth text. Ehud
Reiter of the University of Aberdeen put forward the general
framework of the data-to-text generation system [47], as
shown in Figure 3. Firstly, the numerical data is input from
the signal analysis module, and the basic patterns in the data
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are detected by various data analysis methods, which are
output as discrete data patterns. *e input of the data in-
terpretation module is the basic events. By analyzing the
basic patterns and input events, more complex and abstract
messages are inferred, and their relationship is inferred.
Finally, the high-level messages and the relationship between
messages are output. *en, enter messages and relationships
in the Document Planning module, analyze and decide
which messages and relationships need to be mentioned in
the text, at the same time determine the structure of the text,
and finally output the messages and document structures
that need to be mentioned. *e last step is to input the
selected message and structure in the Microplanning and
Realization module and output the final text through natural
language generation.

At present, this technology is mainly used in the fields of
meteorological report, finance, sports, and medicine. *ere
are two main problems that need to be solved in data-to-text
generation: (1) how to choose effective data subset from the
data obtained, which can be called content selection; (2) how
to describe these data subsets in human language, which can
be called surface implementation. *e actual methods of
data-to-text generation can be divided into rule-based
methods and data-driven methods [48]. *e relevant de-
velopment context and research methods are introduced as
follows.

2.2.1. Rule-Based Methods. Rule-based data text generation
methods make the content selection and natural language
representation of data according to expert knowledge in a
certain field, which is suitable for specific fields, such as
medicine and meteorology [49].

In the medical field, Hallett et al. [50] proposed a medical
research method based on medical history information in
2006. *e innovation of this method is to encode the in-
formation of clinical history into data and use the medical
history data to generate text reports to support further
clinical research. *e approach also incorporates visual
navigation tools to address the shortcomings of text gen-
eration. It aims to study cancer-related problems, but the
method could be applied to other areas of medicine as well.
In 2009, Gatt et al. proposed [51] “BabyTalk” system to
generate the natural language summary of neonatal intensive
care data. *is system adopted the algorithm proposed in
[50] to combine data with visualization and other

technologies, to make the decision-making results more
accurate.

Banaee et al. [52] developed a text generation method
based on physiological sensor data in 2013. *is method
extracts information from the original data, performs data
denoising and other processing, and uses expert knowledge
to delete the value of the workpiece, to ensure that the system
can generate text according to reliable signal input. In the
natural language generation stage, the system uses corre-
lation functions to order the importance of sentences and
finally outputs robust text.

In the field of meteorology, Ramos et al. [53] proposed a
meteorological service system “GALiWeather” in 2014,
which took the weather data as the initial input and ab-
stracted the data values into time-related language labels,
namely, an intermediate code, through a computational
method. Finally, the intermediate code was used as sec-
ondary input to generate natural language descriptions using
an NLG system containing expert rules. *ey designed two
NLG systems: One dealt with simple variables (cloud cover,
wind, and temperature), in which language templates were
defined. *e other dealt with precipitation variables to
prevent repetition, redundancy in the generated sentences.
*is method can guarantee high performance in content and
form of text generation and can generate text description
close to expert generation. However, the system is currently
only applicable to the field of meteorology, with poor
universality.

In 2016, Gkatzia et al. [54] developed two natural lan-
guage generation systems, one based on “WMO (world
meteorological organization)” and the other based on
“NATURAL.” Both systems provided text descriptions of
precipitation and temperature, improving the accuracy of
prediction. WMO is a rules-based system that can make
predictions such as a 30 percent probability of rain, taking
into account an interval of sunny days. *e system can then
generate the following text description: “it may be sunny, it
may be rainy–less likely than impossible.” *e NATURAL
system can imitate the tone and description of a weather
forecaster. *e rules used in this system come from the way
in which observations (such as the BBC weather reporter)
make predictions. For the same example above, the system
obtains the following text description: “mainly dry and
sunny.”

*e above methods can demonstrate that the rule-
based data text generation needs the power of experts, and
it can perform well in professional fields, but the appli-
cability of the model is not wide. Moreover, rule-based
methods often require a language template, which makes
the generated text form too monotonous. Fortunately, the
data-driven approach can improve both of these
problems.

2.2.2. Data-Driven Methods. Data-driven text generation
refers to the direct use of data for training, without the
intervention of expert knowledge [49]. At present, data-
driven methods have dominated natural language
generation.
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Figure 3: Data-to-text generation system.
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Liang et al. proposed a probabilistic generation model in
2009 [55], which can uniformly deal with the correspon-
dence from segmentation text to description, fact identifi-
cation, and data-to-text matching and solve the increasing
ambiguity and noise in data. Inspired by this, Angeli et al.
designed a new log-linear classifier in 2010 [56]. *e whole
text generation process is decomposed into several local
decisions, which proved to have high performance in dif-
ferent fields such as sports and weather.

In 2014, Sowdaboina et al. proposed to utilize machine
learning (ML) technologies to solve the problem of data
content selection for the first time [57]. *e model uses a
mixture of natural language generation techniques and
template-based methods to help the NLG system select text
suitable for the application of templates, thus combining
their respective strengths to produce high-quality text. *e
use of machine learning makes the rules of text generation
closer to the human mind.

In the same year, Gkatzia et al. [58] introduced the
feedback mechanism based on the content selection model
in [57]. *ey compared and discussed the methods of
multilabel classification and reinforcement learning (RL).
*e results showed that ML technologies can make the
prediction results more accurate, while reinforcement
learning is more exploratory.

In recent years, deep learning has achieved remarkable
results in text summarization technology, and it also per-
forms well in data-driven text generation. Mei et al. [59]
proposed an end-to-end neural network model in 2016,
which does not require the intervention of experts or rules.
*e model uses an encoder-allocator-decoder architecture
and employs LSTM network unit as nonlinear encoder and
decoder. In the model, the bidirectional LSTM-RNN en-
coder takes input from a set of event records and obtains the
representation after modeling the dependencies that exist
between the records in the database.*e aligner of themodel
performs content selection using an extension of the
alignment mechanism. *is model can achieve satisfactory
results even in fields where data is scarce.

In 2016, Lebret et al. [60] introduced a feedforward
neural language model based on conditional neural language
models, which can regulate text generation by tabular
conditional language model and generate the sentences of
people’s biographies according to the fact tables in the
dataset of people’s biographies in Wikipedia. It copies and
transfers words from fixed vocabularies and sample tables
into output statements, which is a way to process large
vocabulary data. *e model has a good grasp of the tenses of
the text, but some words need to be correctly predicted
under a global condition. Overall, the model is able to
generate fluent one-sentence descriptions of each character.
However, generating longer descriptions is the problem that
they have to tackle.

In 2019, Liu et al. [61] layered reinforcement learning
frameworks to accommodate multimodal tasks. *e model
consists of multilevel strategy mechanism and multilevel
reward mechanism. *e first part aims to improve the ac-
curacy of word level and sentence level, since the multilevel
policy network can adaptively integrate word-level and

sentence-level policies to generate each word. *e second
part guides the reward mechanism by combining image and
language information. In order to better connect policies
and rewards, they also designed novel optimization guidance
items [61], as shown in Figure 4.

*e difficulties of data-driven methods are mainly as
follows: (1) *ere are high requirements for reliability and
accuracy of data sources, which will directly affect the ac-
curacy of the generated text. When dealing with large-scale
data, the performance of the model decreases dramatically.
(2) Efficiency is low when facing large-scale data. Wiseman
et al. [48] employed a series of advanced neural methods and
a simple template generation system to tackle document
generation tasks. Experiments have shown that recent neural
network models perform well in generating short textual
descriptions of small amounts of data, but when faced with
large-scale data, even with the ability to generate smooth
text, text descriptions and human-generated documents still
have a large difference. Puduppully et al. [62] found that if
the content planning of data is carried out in advance, it can
make a good combination of a large amount of data and deep
learning model. *ey identified two questions before
modeling to specify what to say and in what order. Ex-
periments proved that they made a correct attempt, and the
generated text had better conciseness and grammar. How-
ever, this method only improves the overall quality of the
text, and more research is needed to accurately express the
details. At present, there are not many generation models for
large-scale data, so how to overcome the challenge brought
by massive data is still a serious problem. To further advance
data-driven text generation, both the bottlenecks must be
addressed.

2.3. Visual to Text. With the popularization of all kinds of
electronic products and the development of multimedia
technology, a large quantity of pictures and video infor-
mation is generated every day. If the multimedia informa-
tion is accurately converted into descriptive text, the
efficiency of classification and management can be greatly
improved. *e text generation work of image and video is
rough as follows.

2.3.1. Image to Text. Image-to-text generation is a natural
language description process after analyzing the visual
content of image. *ere are two main ways to generate text
from images: (1) *e text can be generated through pre-
defined generic language templates, during which the key
attributes of images and other effective information are
added. (2) Deep learning researchers generate descriptive
sentences by using sequential generation models. *ese two
generation methods are described below.

(1) Template-Based Generation.*e template-basedmethods
first use computer vision technology to identify the objects in
the image, preset the template to be filled, and populate
object relations and attribute labels into the template to
generate the descriptive language of the image.
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Farhadi et al. [63] first proposed the idea of cross-modal
transformation from picture to text and studied the method
based on language template. *e model assumes that there
are three spaces: image space, sentence space, and meaning
space between them. *e model uses triples (object, action,
scene) for meaning representation. For sentence space, they
use Curran & Clark parser [64] to generate the dependencies
of each sentence and extract the subject-verb-object and
other structures of the sentence, and then add them to the
template of the sentence. By learning the mapping of image
space and sentence space to the meaning space, measuring
the similarity between them, and establishing the connection
with the meaning space, the two-way conversion of image
and text can be realized [65].

Kuznetsova et al. [66] proposed a new tree-based tem-
plate method, which generated tree-structured phrase
fragments by learning existing training sets, and then se-
lectively combined these fragments to generate text de-
scriptions. *is model has a stronger generalization and
generation ability than previous methods.

Yang et al. [67] utilized the hidden Markov model in the
template-based method to fill in the template of sentence
generation with the most likely predicted subject-object,
verb, preposition, and other contents and finally output the
natural language description of the image after decoding.
*e sentences generated by this model are more readable
and relevant, but sometimes they are less predictive of nouns
and verbs.

Language template-based methods tend to produce
monotonous sentence patterns and content. In order to solve
this limitation, deep learning-based coding-decoding
methods are a better choice.

(2) Deep Learning-Based Generation. *e implementation
process of deep learning-based coding-decoding methods is
naturally divided into two parts: *e coding process is
designed to extract visual features, generally using deep
neural network, CNN. In the decoding process, extracted
features are used as input, and natural text describing image
is generated by using RNN or LSTM model. Coding-
decoding methods are the applications of deep learning in
image text generation, which often combine some different

fusion methods, attention mechanism, or reinforcement
learning [67] to generate more diverse sentences.

Mao et al. [68] first proposed an image text generation
model m-RNN based on neural network. In addition to the
CNN-based visual feature extraction part and language
modeling part, this model also has a multimodal part, which
connects the language model and CNN through a layer
representation in m-RNN. m-RNN model can not only
complete the image-to-text generation, but also solve the
problem of sentence and image retrieval.

Fang et al. [69] proposed a new image generation text
model, which consisted of three main parts: (1) visual de-
tector, used to identify high-frequency words in image titles;
(2) language model, adopting the CNN structure, which is
used for the statistics of the related information of words and
the generation of natural language; (3) a multimodal sim-
ilarity model, which is for reordering words. *e model is
directly studied in the title text of the image, which combines
the image content to obtain words of various parts of speech,
ensuring that the generated text contains these words. Its
global semantic result is the best in the official benchmark
test.

Xu et al. [70] added attentionmechanism to themodel. It
used convolutional neural network as an encoder to extract
feature vectors of images and used long and short time
memory networks in the decoder. *e generated position of
each word was determined according to the context vector,
past hidden state, and position of previously generated
words. *e mechanism of the attention model allows the
algorithm to selectively focus on certain areas of the image,
thus visually selecting important parts.

Zhou et al. [71] proposed a special attention-based ap-
proach, which focused on words in the text, as opposed to
the traditional approach focusing on part of the image. *e
model uses td-gLSTM (time-dependent gLSTM) method to
generate attention guidance signal, which guides LSTM to
generate descriptive natural language.

In recent years, reinforcement learning has become a hot
topic in machine learning. In 2017, Zhang et al. [72] applied
reinforcement learning to the process of image text gen-
eration. *e model uses actor-critic method to train, thus it
can improve the matching between training results and
prediction results through the mechanism of reward and
punishment. In the same year, Ren et al. [73] developed a
new decision-making framework, which used the “strategy
network” and “value network” in reinforcement learning to
generate texts collaboratively.

However, using only the reward and punishment
mechanism in reinforcement learning and the strategy
network to generate text images is still unsatisfactory.
Multitask learning vision and language pose a challenge to
generation. In 2019, Liu et al. [61] layered reinforcement
learning frameworks to accommodate multimodal tasks.*e
model consists of a multilevel strategy mechanism and a
multilevel reward mechanism.*e first part aims to improve
the accuracy of both the word level and the sentence level,
and the second part guides the reward mechanism by
combining images and language information. In order to
better bridge strategies and rewards, they also designed a
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Figure 4: Multilevel policy and reward.
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novel optimization guidance item. Aiming at solving the
problem of multimodal learning, Nguyen et al. [74] also
added detailed natural language descriptions of objects
based on title information and combined the mixed end-to-
end CNN-LSTMmodel to effectively solve the two problems
of natural language generation and object retrieval of object
titles.

Although image-to-text generation methods are con-
stantly being innovated, there are still many problems to be
improved, such as the immature image feature extraction
technology, the semantic gap between image and text, and
the cross-language description of images [75].

2.3.2. Video to Text. Early video-to-text generation works
depended on the manual operation of the video feature
extraction and modeling tasks [76, 77]. After that, more and
more research was proposed. In 2015, Xu et al. [78] designed
a new discriminative CNN to learn video representation for
event detection. However, this model ignores the time
structure of video. In order to solve the problem, Ballas et al.
[79] proposed GRU-RCN algorithm, which considered
video time and space feature information. It can obtain more
refined video motion information in order to reduce the bad
influence brought by high-dimensional video reproduction.

Pan et al. [80] also proposed a hierarchical recursive
neural encoder (HRNE) to generate text for video, aiming at
the integration of time information in video. *e hierar-
chical structure enables video information to be better
expressed, and the higher part of the model canmake full use
of the time structure and can be transformed at different
granularity of time. In addition, the HRNE model has
promising flexibility and nonlinearity, but the generalization
ability of the model needs to be improved.

*e above models are only used to generate a few
sentences of short video. Yu et al. [81] first attempted to use
deep learning method to generate multiple sets of statements
or paragraphs for long video in 2016. *ey proposed a
framework based on RNN structure to generate video
paragraph text. *e framework consists of a sentence gen-
erator and a paragraph generator. *e paragraph generator
models the relationships of simple sentences generated by
the sentence generator. *is algorithm has achieved fa-
vorable results in two large datasets, YouTubeClips and
TACoS-MultiLevel, but the model is unable to process very
small objects in video. Besides, the error superposition may
occur due to the unilateral nature of the sentences generated
by the model. All these problems need to be solved.

For video’s multimodal features, many current models
simply connect the features of video with different modes.
Xu et al. [82] focused on the characteristics of video’s
multimodal features and proposed a multimodal attention
span memory neural network (MA-LSTM) model. LSTM
encoders and decoders are used in the model. Because video
has multimodal characteristics, three LSTMmodels are built
to encode video frames, video motion, and audio, and then
they are fused to form multimodal flows, which are then
output from the decoder. A multilevel attention mechanism
is added to enhance the flexibility and effectiveness of modal

integration. Compared with the advanced video-to-text
generation algorithms GUR-RCN andHRNE, this algorithm
has more obvious advantages and is a more successful
network model.

3. Application of Text Generation in
Smart Justice

*is section will discuss the practical application of text
generation in justice with existing generation models. Prior
to this, we will introduce 6 authoritative legal datasets that
can be used for text generation, such as judgment prediction
and clerical generation. Of course, they can also be used for
other intelligent judicial tasks.

3.1. Legal Case Reports Dataset. (https://archive.ics.uci.edu/ml/
datasets/Legal+Case+Reports)*e dataset was provided by the
Federal Court of Australia (FCA). It includes all the legal cases
of the Federal Court from 2006 to 2009. For each document,
the dataset contains its catchphrases, citations sentences, ci-
tation catchphrases, and citation classes.*ese data can be used
for automatic text summarization and citation analysis.

3.2. Department of Justice Open Data. (https://www.justice.
gov/open/open-data) US Department of Justice published a
list of legal data publicly online on November 30, 2013, so
this dataset is a high-quality open dataset. It includes specific
databases such as violent crime cases, FBI crime reports, and
statistical reports.

3.3. �e Supreme Court Database. (http://scdb.wustl.edu/)
*e database comes from the US Supreme Court and has
absolute authority. *e data records cases of court judg-
ments from 1791 to 2018. Each case contains the legal
provisions referenced by the case and many details at the
time of the decision.

3.4. Caselaw Access Project (CAP). (https://case.law/) *e
database contains 360 years of various judgment cases in the
United States, which have been digitally obtained from the
collections of the Harvard Law Library. *e cases have been
organized into a unified form. A total of 1,693,904 different
cases have been collected.

3.5. Bureau of Justice. (https://www.bjs.gov/index.cfm?
ty=dca) *e data source is provided by the Bureau of Jus-
tice Statistics and contains data on someUS law enforcement
agencies, prisons, parole, and probation. *is data is es-
sential to improve the efficiency of legal offices and effec-
tively help fight crime.

3.6. CAIL2018. (https://github.com/thunlp/CAIL2018)
CAIL2018 [83], the first large-scale legal dataset for judg-
ment prediction in China, is derived from the website of
adjudication documents. *e dataset includes 2676,075 legal
cases, all published by the Supreme People’s Court. Each
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case includes a description of the facts of the case and the
outcome of the judgment, which is embodied in the relevant
legal provisions, the predicted charges, and the sentence.
*is dataset is very large and very well annotated.

It can be found that most of these legal datasets are
composed of text, so text-to-text generation technology
plays a vital role in the generation of legal texts, which is also
the current research content of most researchers. However,
the potential contribution of data-to-text and visual-to-text
technologies to legal work cannot be ignored.

3.7. Application of Text-to-Text Generation. Automatic text-
to-text generation technology can be applied to intelligent
extraction and intelligent dialog in smart justice. *e ap-
plication of text summary technology to the reading and
summary of case documents can relieve the pressure of
judges and reduce the errors caused by human operations.
For example, in order to better solve the issue of appealing
for disability benefits for veterans, Zhong et al. [84] hope to
extract important sentences from cases as summarization.
*e abstracts can help the Board of Veterans’ Appeals (BVA)
to make more accurate decisions on cases. *ey used a
corpus of about 35,000 BVA cases on disability compen-
sation for posttraumatic stress disorder (PTSD).*e authors
used the idea of train-attribute-mask pipeline, sentence type
classifier, and MMR technology successively to select
summary sentences with a priority prediction function and
finally embedded the generated sentences into a template.
*e selection of an advanced abstract neural network model
is the key step for intelligent extraction. During the gen-
eration of abstract, additional modeling or attention can be
paid to such important information as time and place.

*e retrieval model based on judicial knowledge base can
be used in the intelligent dialog system of judicial domain.
Firstly, a complete judicial law knowledge database is built,
which can be expanded or deleted according to the modi-
fication of laws and regulations, and the appropriate algo-
rithms are selected to evaluate the matching statements.
Finally, the response statements are generated. Governatori
et al. [85] extended an existing dialog framework into the
legal field. *ey used the framework to model the process of
dialog in legislative deliberations. For more flexible ques-
tions, deep learning-based dialog system can be used to
answer.

3.8. Application of Data-to-Text Generation. Data-to-text
automatic generation technology can be applied to intelli-
gent report generation in smart justice. Usually, the legal
system creates files for each criminal, records the occurrence
of some cases, etc. *us, we can establish a database of this
content and make corresponding structural selection. For
example, using one kind of criminal event or a certain period
of time of the case records, the natural language description
can be generated automatically based on data-driven text
generation algorithms.

GAN is improved by Kang et al. [86]. *e encoder-
decoder model based on LSTMs is used as the generator, and
the binary classification module based on CNN is used as the

discriminator. *rough the real legal documents of divorce
cases and through the data-driven method, a total of 25,000
case report datasets were preprocessed by word segmenta-
tion. Finally, through comparison, it is concluded that the
text index of case description generated by this model has a
good effect.

3.9. Application of Visual-to-Text Generation. Automatic
visual-to-text generation technology can be applied to in-
telligent storage in smart justice. With the gradual infor-
matization of legal systems, document storage format is no
longer the traditional JPG, PNG, MPEG, MP4, and other
forms of pictures and video; they need to be expressed into
text. Image files can use the infrastructure of encoder and
decoder in deep learning to generate natural language de-
scriptions. Kang et al. [86] constructed a deep learning
network model, ED-GAN, which is suitable for automatic
generation of legal texts and applied the model to the
generation of legal case description. At the same time, the
discriminator model based on CNN can improve the ac-
curacy of the generated text and form a competitive con-
frontation with the real text. *e method can generate the
case description text for a long time through the network-
based method. *e experimental results show that ED-GAN
model has a good effect in generating case description text. If
necessary, other technologies should be combined to en-
hance the learning ability of images. In judicial work, a
video, which is monitored for a long time and has a lot of
redundant information, is generally processed. *erefore, in
addition to video-to-text generation model with good
multimodal characteristics, attention mechanism is often
needed.

4. Challenges of Text Generation in
Smart Justice

In this section, we further discuss the text generation
techniques according to the characteristics of judicial text
and judicial work and locate the problems and challenges in
their applications in judicial work.

(1) *e text generation algorithms cannot yet be used to
solve complex problems in smart justice. For ex-
ample, in the existing intelligent consulting service,
the intelligent dialog systems are realized by text-to-
text generation. However, the existing dialog systems
are not perfect enough. When dealing with complex
problems, manual services are still needed. *is
indicates that the current natural language genera-
tion models are not fully capable of thinking like a
human brain. We look forward to the day when
computers can be answered like humans, which is
not just simple and mechanical. However, this re-
quires further development of artificial intelligence
in text generation for smart justice.

(2) *e performances of the existing techniques have not
met the standards required by law. From the char-
acteristics of judicial text, it is different from other
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texts. In essence, the law is the highest standard of
conduct used to regulate and constrain the whole
society, which is formulated or recognized by the
state and guaranteed by the state’s coercive force. It
has supreme authority and prescriptiveness. Con-
creteness, accuracy, simplicity, preciseness, and
specification are the standards of wording in legal
texts [87]. In the previous section, some neural
network-based text generation algorithms were
summarized. However, due to the inherent nature of
the model, the high quality of sentences cannot be
guaranteed when generating long sentences. Even if
adversarial training was used, it can only improve the
overall quality of the sentence.
To tackle this, the corpus should be accurately
classified or extracted for keywords before sentence
training, and the idea of keyword coverage should be
used for modeling. *us, promising results may be
achieved. However, judicial text generation should
improve its efficiency as much as possible in the links
of input, training, and output.*erefore, the study of
high-quality text generation technique is another
promising area in smart justice.

(3) *e generation of judicial text needs to standardize
the wording and format. Specifically, legal terms
have a single meaning [61], and each term represents
a specific legal concept, which cannot be arbitrarily
replaced when used. For example, “alimony” refers
to “alimony for divorce,” which cannot be replaced
with “payment,” even though in reality the terms are
similar. Besides, legal terms also have opposite
meanings [87]; namely, many terms come in pairs
with contradictory meanings, such as plaintiff and
defendant, actor and victim.*erefore, it is necessary
to accurately grasp the subject and object in the text,
and there must be no situation where the host and
the guest are upside down [88].
In the generation of judicial texts, their character-
istics should be fully considered, and the terms in
corpus should be used accurately. A semantic-driven
approach can be used to study judicial documents.
*is model should consider the complex structure
and semantic knowledge of judicial texts to enhance
the application effect in law. Besides, before using the
text generation model, a domain knowledge model
of judicial documents should be constructed. *e
more accurate the knowledge model is built, the
more effective the results will be. *erefore, the
construction of the domain knowledge model is
pretty important in smart justice.

(4) *e size of the data generated by judicial texts is
huge.*ere are nearly hundreds of thousands of laws
and regulations that need to be entered into the
system. At present, tens of millions of judicial
documents have been published. Different from
meteorological and news fields, the storage of judicial
data needs to be more complete and lasting, which
proposes certain requirements for its storage

technology. Moreover, the current text generation
techniques are not good at large-scale data, especially
in data-driven text generation.
*erefore, the text generation models should be
combined with some advanced caching technologies
to solve the storage problem of a large amount of text
data. For example, the extension mechanism based
on replication and reconstruction can effectively
improve the neural network system of a large
amount of data, but the overall efficiency is still
limited. *us, more research is needed to make a
significant breakthrough.

(5) Models need interpretability. Many models of arti-
ficial intelligence are like black boxes, which may
produce correct but abstract results. If the results of a
model are not well explained, they may not be
convincing, especially in the serious and infallible
field of law. Keppens et al. [89] used Bayesian net-
works in legal decision making. Encouragingly, their
model can well explain the production results,
coupled with the probabilistic rationality of the
Bayesian network. *is will be an acceptable one in
the legal field model.

*us, if the text generation technology is combined with
knowledge such as mathematical statistics or given a rea-
sonable explanation for each process in machine learning,
advanced models will be better promoted in law.

Text generation technology needs to integrate the
research results of natural language processing, machine
learning, cognitive science, and other fields, and it has
very high research value and prospects. However, smart
justice has great challenges in text generation because of
its complex problems, strict wording standards, and
huge data specifications. *erefore, in this case, this
paper proposes a cross-modal legal text generation di-
rection as a future research opportunity. Combined with
text, data, and visual analysis, more accurate text can be
generated to meet the filing requirements of judicial
documents.

5. Conclusion

In this paper, we put forward the importance of text gen-
eration technology in the intellectualization of judicial
system and then summarize the current text generation
techniques according to text input, data input, and visual
information input. After that, we propose how to apply these
techniques to the actual judicial text generation. Particularly,
the intelligent dialog system and text summary technology
can be employed to intelligent consultation and intelligent
extraction in smart justice. Moreover, data-driven text
generation can be used to automatically generate judicial
reports. *e generation of image, video, and text can meet
the requirements of judicial document filing. Finally, we
discuss the text generation techniques according to the
characteristics of judicial text and judicial work and locate
the problems and challenges in their application to judicial
work.
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Salient object detection has a wide range of applications in computer vision tasks. Although tremendous progress has beenmade in recent
decades, theweak light image still poses formidable challenges to current saliencymodels due to its low illumination and low signal-to-noise
ratio properties. Traditional hand-crafted features inevitably encounter great difficulties in handling images with weak light backgrounds,
while most of the high-level features are unfavorable to highlight visually salient objects in weak light images. In allusion to these problems,
an optimal feature selection-guided saliency seed propagationmodel is proposed for salient object detection in weak light images.(emain
idea of this paper is to hierarchically refine the saliency map by learning the optimal saliency seeds in weak light images recursively.
Particularly, multiscale superpixel segmentation and entropy-based optimal feature selection are first introduced to suppress the back-
ground interference.(e initial saliency map is then obtained by the calculation of global contrast and spatial relationship. Moreover, local
fitness and global fitness are used to optimize the prediction saliency map. Extensive experiments on six datasets show that our saliency
model outperforms 20 state-of-the-art models in terms of popular evaluation criteria.

1. Introduction

Aiming to mimic human visual system (HVS), which has the
ability to effortlessly sort out the most attractive things from
the scene in front of eyes, the goal of salient object detection
is to calculate the most important objects in an image. For
the moment, salient object detection can substantially fa-
cilitate a series of applications, such as image segmentation
[1, 2], object recognition [3], image retrieval [4], image
compression [5], and photo cropping [6].

By computing pixel or region uniqueness in either low-
level cue or high-level cue, existing salient object detection
models can be broadly divided into two types. (1) Bottom-up
models are usually unsupervised and based on local contrast
or global contrast. (ese methods tend to suffer from false
detections in the context of cluttered background and less
effective visual features. (2) Top-down models mainly le-
verage supervised learning to guide object detection.
However, the complexity of the algorithm and the diversity
of objectives limit the generality of these methods.

Although a large number of bottom-up and top-down
salient object detection models have been proposed, most of

them are only designed for normal light scenes. (ese sa-
liency models are confronted with significant challenges in
weak light images due to low signal-to-noise ratio and lack of
well-defined features to capture saliency information in low
lighting scenarios. (e most likely reasons may attribute to
two aspects: (1) current hand-crafted visual features can
hardly evaluate the objectness in weak light images; (2) most
of the high-level features normally present enormous
challenges in detecting accurate object boundary informa-
tion, which can be easily blurred due to multiple levels of
convolution layers and pooling layers in common con-
volutional neural network models.

To address these challenges, this paper proposes an
optimal feature selection-based saliency seed propagation
model for salient object detection in weak light images (the
code of this paper can be downloaded from https://drive.
google.com/open?id�1w0qBapNVygh8TOOp7AijFWOxsY
xdRcWa). Several hand-crafted visual features are selected to
hierarchically refine the saliency map obtained from the
high-level cues recursively. (e flowchart of our model is
presented in Figure 1.(e optimal low-level features are first
selected to give a robust expression for weak light images,
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which aims to capture more objectness information and
contributes to the prediction of salient objects under weak
light conditions. Next, two cost functions are introduced to
iteratively optimize the foreground seeds and background
seeds of the initial saliency map, which can continuously
compensate for salient information and remove nonsalient
information to generate more precise object details. To
estimate the overall performance, the proposed model is
compared with 20 state-of-the-art salient object detection
models on six datasets.

(e paper is an extended version of our previously
accepted conference paper [7], which provides a more de-
tailed explanation and richer experimental demonstration.
To sum up, this research has four main contributions: (1) a
bottom-up visual saliency model, which requires no train-
ing, is explored toward weak light images, (2) an effective
feature selection strategy is put forward to provide a robust
representation of saliency information, (3) two cost func-
tions are built to refine the initial saliency seeds recursively,
and (4) a nighttime image (NI) dataset (the nighttime image
(NI) dataset can be downloaded from https://drive.google.
com/open?id�0BwVQK2zsuAQwX2hXbnc3ZVMzejQ) is
constructed to verify the performance of our model.

(e rest of this paper is organized as follows. Section 2
reviews the related works of saliency detection. Section 3
introduces the proposed saliency model. Section 4 presents
the experimental results of the state-of-the-art models and
the proposed model on six datasets. (e conclusion of this
paper is given in Section 5.

2. Related Works

Numerous salient object detection models have been pro-
posed recently (see [8] for review); the main task of them is
to highlight the most important visual regions for further
processing. Depending on whether the task-independent or
task-dependent is considered, they can be categorized as the
bottom-up models and the top-down models, respectively.

Bottom-up saliency models are stimuli-driven and rely on
low-level features. One typical model was presented by Itti et al.
[9], which is mainly based on the center-surround difference of
multiple features. Following this pioneering work, various
bottom-up saliency models were proposed. Goferman et al. [10]

computed the saliency value of image patches by implementing
the local and global contrasts. Cheng et al. [11] executed the
saliency computation by calculating the histogram and region
contrasts. Xu et al. [12] introduced the contrast and spatial
distribution strategies to evaluate the image saliency. Kim et al.
[13] estimated the local saliency and global saliency based on
regression and high-dimensional color transform. Hu et al. [14]
performed salient object detection by utilizing the compactness
hypothesis of color feature and texture feature. Huang and
Zhang [15] presented a minimum directional contrast based
salient object detection method. Wang et al. [16] exploited the
pyramid attention and salient edges to guide the salient object
detection. Sun et al. [17] detected the salient objects by
employing a cascaded bottom-up feature aggregationmodule to
capture the detailed information of low-level features. Jiang et al.
[18] proposed a task-independent saliency model based on the
bidirectional absorbing Markov chains. Molin et al. [19]
exploited a neuromorphic dynamic bottom-up saliency detec-
tion method, which is feed-forward and requires no training.
Typically, these bottom-up saliency models tend to face many
difficult problems in handling images of a busy background and
struggle to predict the true salient objects, which are in a low-
contrast weak light environment.

Top-down saliency models are task-driven and rely on
high-level perceptual learning. Xu et al. [20] used the support
vector machine (SVM)model to produce the superpixel-level
saliency map. Qu et al. [21] proposed a deep learning-based
salient object detection model by combining the superpixel-
based Laplacian propagation and the trained convolutional
neural network (CNN) model. Mu et al. [22] designed a
region covariance-based CNN method to learn the saliency
value of image patches. Wang et al. [23] employed the top-
down process for coarse-to-fine saliency estimation. Mu
et al. [24] explored global convolutional and boundary re-
finement in a top-down manner to guide the learning of
salient objects. Qiu et al. [25] introduced an automatic top-
down fusion (ATDF) saliency model, which utilizes the
global information to guide the learning of underlying
knowledge. Zhang et al. [26] developed a top-down mul-
tilevel fusion method for RGB-D salient object detection.
Wang et al. [27] progressively optimized the salient objects
by exploiting the fixation map in a top-down mode. Xu et al.
[28] utilized a progressive architecture with a knowledge
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Figure 1: Overview of the proposed salient object detection model in the weak light image.
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review network (PA-KRN) for salient object detection, which
compensates for the important information in a top-down
way. Dong et al. [29] presented a bidirectional collaboration
network (BCNet) for salient object detection, which inte-
grates feature fusion and feature aggregation in an edge-
guided top-down progressive pathway. (ese top-down
saliency models generally have high computational com-
plexity and are relatively ineffective in determining accurate
boundary and localization of salient objects under weak light
conditions.

Since saliency detection in a weak light environment is a
challenging problem, there were few studies on the salient
object detection of weak light images [30, 31]. Mu et al. [30]
proposed an ant colony optimization (ACO) based saliency
model for predicting the salient objects on weak light images.
Xu et al. [31] explored an image enhancement method for
salient object detection in weak light images. (ese saliency
models, however, are not robust enough to capture the
salient objects in real-time. Different from these previous
methods, the proposed model creates a totally unsupervised
algorithm by integrating the bottom-up measures and the
single-objective optimization cues. Specifically, (1) the
proposed saliency model explores low-level features to
represent the object properties and selects the most effective
ones based on the entropy information; (2) the superpixel-
level saliency is directly estimated by the feature dissimilarity
and spatial similarity; (3) the prior saliency map, which
contains the foreground seeds and the background seeds, is
generated by implementing the bottom-up measures; (4) the
single-objective optimization cues are formulated by de-
signing the fitness-based cost functions to iteratively opti-
mize the salient and nonsalient seeds; and (5) experimental
results indicate that the proposedmodel can generate a high-
performance saliency map in real time.

3. The Proposed Saliency Model

(e proposed optimal feature selection-guided saliency seed
propagation model is presented in detail in this section. (e
input image is first segmented into superpixels at three
scales. (en, 12 features are extracted from the pre-
processing image, and only nine optimal ones are chosen for
the next calculation. Next, the initial saliency map is
computed by combining the global contrast and center
prior. And then, the new saliencymap can be obtained by the
foreground and background seeds from the previous one.
Two cost functions which are based on global fitness and
local fitness are defined to control the end of the iteration. At
last, the optimal saliency map is obtained, and the results of
three scales are integrated to get the final saliency map.

3.1. Multiscale Superpixel Segmentation. To make full use of
the midlevel information and preserve the object structure
context of the input image, the simple linear iterative clus-
tering (SLIC) algorithm [32] is used to divide the input image
into N superpixels (denoted as si􏼈 􏼉, i � 1, . . . , N). (is
operation can boost the efficiency of the method by re-
garding the superpixel as a processing unit. For saliency

detection, the background region is more likely to have
semblable superpixels at different scales, while the salient
regions may have similar superpixels at some scales. (at is,
the fusion of the acquired salient superpixels at different
scales can more accurately represent the real salient regions.
However, as the number of superpixels increases, the time
required for superpixel segmentation also increases. For
accuracy and efficiency, our model generates the superpixels
at three different scales, where the superpixel number N is
set to 100, 200, and 300, respectively. (e final saliency map
is the integration of the obtained multiscale saliency maps.

3.2. Effective Feature Extraction. Given an input image, 12
low-level visual features are extracted, containing nine color
features in three color spaces, the texture feature based on
local entropy information, the orientation feature fused by
the information in four directions, the gradient feature
obtained from the horizontal and vertical vectors. Since the
effectiveness of these various features varies according to the
contrasts of different input images, nine optimal ones are
selected from the 12 features, and the adaptive selection
strategy is mainly based on the global information entropy of
these features. (e feature extraction process is introduced
in detail as follows.

3.2.1. Color Features. (e input image is first normalized to
eliminate the interference of shadow and light (see pre-
processing in Figure 1). (is preprocessing is a general
procedure in our model, including processing both normal
light images and weak light images. (en, the input image is
transformed from RGB color space to LAB, HSV, and
YCbCr color spaces to capture nine color features. (e L, A,
and B components of LAB color space can describe all colors
visible to the human eye, which are closer to human visual
perception in weak light images. (e H, S, and V compo-
nents of HSV color space can be very intuitive to represent
the hue, depth, and bright degree, which have good ro-
bustness in low lightness and weak light images. (e Y, Cb,
and Cr components of YCbCr color space can better per-
ceive the intensity changes and the chromatic differences,
which are more conducive to highlight the salient object
information in weak light images.

3.2.2. Texture Feature. (e 2-dimensional entropy of the
original image is mainly used to represent the texture fea-
ture. Let I, (0≤ I≤ 255) denote the gray value of an image
pixel, and let J, (0≤ J≤ 255) denote the average gray value of
its neighborhood pixels; the spatial synthesis characteristic
of gray distribution can be expressed as follows:

pIJ �
f(I, J)

R
2 , (1)

where f(I, J) is the frequency of the characteristic tuple (I, J)

and R2 is the size of the neighborhood region. (e discrete 2-
dimensional entropy of the input image is defined as follows:
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E � 􏽘
255

I�0
pIJlogpIJ. (2)

Since the entropy information has strong resistance
against noise interference and geometric deformation, the
texture feature changes of salient objects in the weak light
image can be well estimated by the variations in entropy.

3.2.3. Orientation Feature. (e orientation feature is com-
puted by executing the Gabor filter of different directions
(denoted as gθ(x, y)) on the grayscale image (denoted as
gray(x, y)) via

O � 􏽘
θ∈ 0∘ ,45∘,90∘,135∘{ }

gray(x, y)∗gθ(x, y). (3)

(e rotational invariance and the global property of the
orientation feature make it have less impact from weak light
scenes.

3.2.4. Gradient Feature. (e gradient feature is calculated by
averaging the vertical gradient and horizontal gradient via

G � |gray(x + 1, y) − gray(x, y)|

+|gray(x, y + 1) − gray(x, y)|.
(4)

(us, the magnitude information of local grayscale
changes can be represented by the gradient feature, which
can overcome the interference of a low signal-to-noise ratio
in the weak light image.

3.2.5. Optimal Feature Selection. Feature selection plays an
important role in predicting the real salient objects in weak light
images. Gopalakrishnan et al. [33] proposed an unsupervised
feature selection method, which removes the irrelevant features
by maximizing the mixing rate of Markov processes of different
features. However, naive inclusion of irrelevant features for a
particular image can easily lead to performance degradation.
Liang et al. [34] explored feature selectionmethods in supervised
saliency learning, the features utilized in the model are highly
redundant. Naqvi et al. [35] selected useful features by mea-
suring the feature quality. However, they use a large number of
features trying to explain all possible saliency-related factors,
which increases the time cost and ignores some truly effective
features. Since the goal of our model is to identify a small set of
optimal features, with which the salient object detection in the
weak light image can be both efficient and effective, traditional
adaptive feature selection techniques are not suitable for us. (e
proposed model mainly extracts 12 features to participate in the
salient object calculation. Due to the fact that the effectiveness of
each feature is different when the image contrast changes, which
can be seen in Figure 2, nine optimal features (denoted as Fk􏼈 􏼉,
k � 1, . . . , 9) that can better describe the attributes of the
corresponding weak light image are then selected from the
extracted 12 different visual features L, A, B, H, S, V, Y,{

Cb, Cr, E, O, G} by calculating the 1-dimensional entropy in-
formation of these feature maps as follows:

entropy � 􏽘
255

I�0
pIlogpI, (5)

where pI denotes the proportion of image pixels and I

denotes the grayscale values of these pixels.
As a statistical feature form, the mean information

content contained in the aggregation properties of image
grayscale distribution can be well represented by image
entropy information. (e greater the entropy of the feature
map Fk􏼈 􏼉 is, the more efficient this feature will be. (us, the
selected nine optimal features could better account for the
visual saliency of the corresponding weak light image.

3.3. Initial Saliency Map Generation. (e global contrast
measure and the spatial relationship strategy of the feature
map are calculated to estimate the saliency value of each
superpixel as follows:

Sal si( 􏼁 � 􏽘

N

j�1,j≠ i

���������������

Fk si( 􏼁 − Fk si( 􏼁( 􏼁
2

􏽱

1 + pos si, sj􏼐 􏼑

⎛⎜⎜⎝ ⎞⎟⎟⎠ × c si( 􏼁,

c si( 􏼁 � exp −
xi − x′( 􏼁

2

2v
2
x

−
yi − y′( 􏼁

2

2v
2
y

⎛⎝ ⎞⎠,

(6)

where pos(si, sj) is the Euclidean distance between super-
pixels si and sj. c(si) denotes the spatial distance between the
coordinate (xi, yi) and image center (x′, y′).vx and vy are
variables, which are decided by the vertical and horizontal
information of the input image.

3.4. SaliencyMapOptimization. To achieve clean and uniform
salient objects, optimization strategies are considered to improve
detection accuracy. Zhu et al. [36] presented a principled op-
timization structure to fuse multiple low-level saliency cues, the
whole framework mainly relies on the background cues, and it
does not work well in weak light images, of which the back-
ground information is cluttered. Lu et al. [37] devoted to
learning optimal saliency seeds set by utilizing a large margin
formulation of discriminant saliency criterion. However, the
gradient descent they used is not robust inweak light images and
is not efficient for high accuracy salient object detection. In the
proposed model, we built two cost functions to refine the
generated saliency seeds recursively, which is an effective and
straightforward manner to obtain more accurate salient objects
in weak light images. (e initial saliency map (denoted as
Smapk, k � 0) is first segmented into the salient region and
nonsalient region by utilizing Otsu’s thresholding [38]. (e
salient region and nonsalient region can be seen as the fore-
ground seeds (denoted as FS) and the background seeds
(denoted as BS) of the input image, respectively. (e larger the
difference between the superpixel and the foreground region is,
the lower the saliency value of this superpixel is. Conversely, the
greater the difference between the superpixel and the back-
ground region is, the higher the saliency value of this superpixel
will be. (us, the saliency value of si can be updated based on
foreground seeds FS and background seeds BS as follows:
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SalFS si( 􏼁 � 􏽘
sj∈FS,j≠ i

1
���������������

Fk si( 􏼁 − Fk sj􏼐 􏼑􏼐 􏼑
2

􏽱

+ pos si, sj􏼐 􏼑􏼒 􏼓

,

(7)

SalBS si( 􏼁 � 􏽘
sj∈BS,j≠ i

���������������

Fk si( 􏼁 − Fk sj􏼐 􏼑􏼐 􏼑
2

􏽱

1 + pos si, sj􏼐 􏼑􏼐 􏼑
, (8)

Sal si( 􏼁 � 1 − exp −
SalFS si( 􏼁 + SalBS si( 􏼁

2
􏼠 􏼡􏼠 􏼡 × c si( 􏼁. (9)

(en, a new saliency map (denoted as Smapk, k � 1) of
the first iteration optimization is obtained. (e Otsu’s
method is reused to generate new FS and BS; the saliency
map of the next generation (denoted as Smapk+1) can be
computed according to (7-9). Finally, two cost functions are
implemented to decide whether the iteration procedures
meet the end condition or not:

minimize

f1(k) � Smapk − Smapk− 1( 􏼁
2

f2(k) � 􏽘
N

i�1
􏽘

N

j�1

Sal si( 􏼁 − Sal sj􏼐 􏼑􏼐 􏼑
2

1 + pos si, sj􏼐 􏼑

, where k≥ 1, si, sj ∈ Smapk, 1≤ i, j≤N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

(e function f1(k) mainly represents the global fitness,
which denotes that the smaller the change between the
saliency map of the new generation Smapk and the previous
generation Smapk−1 is, the more optimization of the ob-
jective can be. (e function f2(k) mainly represents the
local fitness, which denotes that the smaller the difference
between the superpixel Sal(si) and its neighboring super-
pixels Sal(sj) is, the better the saliency information of each
decision variable can be. By minimizing the two functions
f1(k) and f2(k), the optimal superpixel-level saliency map
can be obtained.

4. Experiment Results

Comprehensive experiments are carried out on six datasets
to estimate the performance of our model against 20 state-
of-the-art salient object detection models.

4.1. Experimental Setup

4.1.1. Testing Datasets. (e six test datasets contain five
public datasets and the proposed weak light image
dataset as follows: (1) the MSRA dataset [39] includes
10000 images which have relatively high contrast and
only simple background; (2) the SOD dataset [40] in-
cludes various images of multiple objects and complex
background; (3) the CSSD dataset [41] includes complex
natural scenes; (4) the DUT-OMRON dataset [42] in-
cludes complex and challenging images; (5) the PAS-
CAL-S dataset [43] includes images of cluttered
background; and (6) our NI dataset includes 200 weak
light images, which are captured at night with a stand
camera. (e resolution of these images is 640 × 480,
and the human-annotated ground-truths (GTs) are also
given.

8

6

4

2

0

8

6

4

2

0

4

3

2

1

0

4

3

2

1

0
L A B H S V Y Cb Cr E O G L A B H S V Y Cb Cr E O G L A B H S V Y Cb Cr E O G L A B H S V Y Cb Cr E O G

Figure 2: (e top row contains the test images with different contrasts. (e bottom row is the corresponding entropy bar graphs of 12
different features.
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4.1.2. Comparison Models. (e first 15 state-of-the-art sa-
liency models include: Itti’s (IT) model [9], spectral residual
(SR) model [44], frequency-tuned (FT) model [45], non-
parametric (NP)model [46], context-aware (CA)model [10],
image signature (IS) model [47], low rank matrix recovery
(LR)model [48], patch distinct (PD)model [49], graph-based
manifold ranking (MR) model [42], saliency optimization
(SO) model [36], bootstrap learning (BL) model [50], generic
promotion (GP) model [51], spatiochromatic context (SC)
model [52], structured matrix decomposition (SMD) model
[53], and multiple-instance learning (MIL) model [54]. All
these experiments are performed by MATLAB software on
an Intel i5-5250 CPU (1.6GHz) PC with 8GB RAM.

4.1.3. Evaluation Criteria. To estimate the overall perfor-
mance of various saliency models, seven criteria are used,
including the true positive rates and false positive rates
(TPRs-FPRs) curve, the precision-recall (PR) curve, the area
under the curve (AUC) score, themean absolute error (MAE)
score, the weighted F-measure (WF) score, the overlapping
ratio (OR) score, and the average execution time per image
(in seconds).

(e TPR is defined as the ratio of salient pixels that are
correctly detected to all the true salient pixels, and FPR
corresponds to the ratio of falsely detected salient pixels to all
the true nonsalient pixels. (e precision is computed as the
ratio of correctly detected salient pixels to all the detected
salient pixels, and the recall is the same as TPR, which
measures the comprehensiveness of the detected salient
pixels. By varying the threshold over the obtained saliency
map, different TPRs, FPRs, precisions, and recalls can be
calculated by comparing the generated different binary
images with GT via

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

(11)
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Figure 3: (e TPRs-FPRs curves performance comparisons of different saliency models on the six datasets. (a) MSRA dataset. (b) SOD
dataset. (c) CSSD dataset. (d) DUT-OMRON dataset. (e) PASCAL-S dataset. (f ) NI dataset.
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where the true positive (TP) is the collection of pixels that
correctly identify the salient object; the false positive (FP) is
the collection of pixels that falsely identify the salient object;
the true negative (TN) is the collection of pixels that correctly
identify the nonsalient pixels; and the false negative (FN) is
the collection of pixels which falsely identify the nonsalient
pixels.

(e TPRs-FPRs curve and the PR curve can be generated
by plotting the corresponding ratios. (e AUC score is
calculated by measuring the proportion of the area under the
TPRs-FPRs curve, which can give an intuitive indication of
how well the obtained saliency map represents the real
salient objects. (e MAE score is calculated as the average
absolute difference between the generated saliency map
(denoted as Salmap) and the ground-truth (denoted as GT)
via

MAE � mean(|Salmap(x, y) − GT(x, y)|). (12)

(e smaller the MAE value is, the higher the similarity
between Salmap and GTis.(e F-measure score is computed
as the weighted harmonic mean of the precision and the
recall via

Fβ �
1 + β2􏼐 􏼑precision · recall

β2 · precision + recall
, (13)

where β2 � 0.3 is the parameter to weigh the precision and
recall. (e WF score is calculated by adding a weighting
function to the detection errors [55].

(e OR score is measured by computing the overlapping
ratio of salient pixels between the binary saliency map
(denoted as Bmap) and GT via

OR �
|Bmap(x, y)∩GT(x, y)|

|Salmap(x, y)∪GT(x, y)|
. (14)

4.2. Experimental Results. (e quantitative performances of
our salient object detection method against the other 15
saliency models on the six datasets are presented in Figure 3
and 4 and Tables 1–6. (e best three experimental results of
Table 1–6 are highlighted in the red, blue, and green fonts,
respectively. In particular, the up-arrow ↑ denotes the larger
the value is, the better the performance of the saliency model
is. At the same time, the down-arrow ↓ indicates the opposite
meaning. As shown in the quantitative results, our salient
object detection model performs the first or second per-
formance on the five public datasets in most cases and
obtains the best performance on the NI dataset in a relatively
low time-consuming.

OnMSRA, DUT-OMRON, and PASCAL-S datasets ((a),
(d) and (e) of Figures 3 and 4 and Tables 1–3), our model
achieves the best performance on the TPRs-FPRs curve, PR
curve, and AUC score, while the saliency model SO obtains
the best MAE score and WF score, and the saliency model
MIL obtains the best OR score. (e main reason is that the
SO model used boundary connectivity and global optimi-
zation to increase its robustness, and the MIL model in-
troduced a multiple-instance learning approaches to
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increase precision. (ese two saliency models take full ad-
vantage of the background measures, which can be of some
effect in detecting the salient object under complex back-
ground conditions. Although the MAE score, WF score, and
OR score of the proposed saliency model are slightly lower
than the two models SO and MIL, our detection results are
more competitive than the other models. (e average time
consumption of theMILmodel is more than 100 seconds per
image, which is not efficient in generating the saliency map.

On the SOD dataset (Figures 3(b) and 4(b), and Table 4),
our saliency model has the best performance on the TPRs-
FPRs curve, PR curve, AUC score, WF score, and OR score.
In terms of theMAE criterion, the proposed model performs
the second-best performance, which only has a small gap
(0.0025) with the best MAE score of the SO model.

On the CSSD dataset (Figures 3(c) and 4(c), and Ta-
ble 5), our saliency model performs the best performance
on the TPRs-FPRs curve, PR curve, and AUC score. (e
MAE, WF, and OR scores of the proposed model are
slighter than the best results achieved by the SMD model.
(e SMD model is based on the structured matrix de-
composition with two regularizations, which has a strong
potential in detecting the image of complex environments.
(e main reason for the poor performance of the proposed
model on these metrics is that the selected optimal features
contain less useful information that can effectively dis-
tinguish the salient objects.

On the NI dataset (Figures 3(f) and 4(f ), and Table 6),
our saliency model is superior, as it achieves the best per-
formance on these criteria with a relatively short time-
consuming.

(e qualitative comparisons of saliency maps generated
by the various salient object detection models on the six
datasets are shown in Figure 5, indicating that our saliency
model can detect the real salient object accurately in complex
and/or weak light images (more detected saliency maps can
be downloaded from https://drive.google.com/open?
id�0BwVQK2zsuAQwQjZHeUJ1dlBsQms).

Since the standard real-world images and the weak
light images have different properties, the proposed
framework employs a feature selection strategy over the
candidate feature set to pick out the most relevant features
that apply to different types of images, which ensures that
our model can be adapted to both standard saliency
datasets and the weak light image dataset. In addition, we
further optimize the saliency results through iteration to
ensure robustness.

To further verify the effectiveness of our model, we have
added some experiments with other five state-of-the-art
deep learning-based saliency models (NLDF [56], LPS [57],
BAS [58], F3Net [59], and LDF [60]) to better illustrate the
advantages of the proposed flowchart. (e subjective per-
formance comparisons of the proposed model with the latest
deep saliency models are shown in Figure 6.

MSRA SOD CSSD DUT-OMRON PASCAL-S NI Dataset

Input

GT

IT

SR

FT

NP
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IS
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Figure 5: Visual comparisons of saliency maps construction using different approaches on the six datasets.
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As can be seen in Figure 6, the saliency maps of the
NLDF and F3Net models cannot capture the effective salient
objects in weak light images. (e saliency results of the LPS
model are seriously interfered with by the background noise.
(e saliency maps generated by the BASmodel can highlight
the salient objects with less noise, but the detected salient
objects are incomplete. (e LDF model has difficulty in
detecting the whole objects and is prone to failure. Relatively
speaking, the proposed model can accurately detect the real
salient objects from the background on weak light images.

5. Conclusion

In this paper, we propose an optimal feature selection-based
saliency seed propagation model to detect the salient object
in weak light images. (e main idea of the proposed saliency
model is to execute saliency calculation by learning the
optimal hand-crafted visual features and refining the fore-
ground seeds and background seeds recursively. Guided by
the optimized saliency seeds, the final saliency map can be
achieved by fusing the multiple superpixel-level saliency
maps at three different scales. Comprehensive experiments
demonstrate that our saliency model performs satisfactory
results against 20 state-of-the-art saliency models on five
public datasets and a weak light image dataset.

Serving as a preprocessing step, salient object detection
can efficiently focus on the most interesting area associated
with the current visual task and it facilitates various com-
puter vision applications such as image classification, object
segmentation, visual tracking, etc. (e proposed salient
object detection model can be used to optimize correlational
vision applications under weak light conditions, and it is of
great application value to the monitoring system. In the
future, we will further improve the time performance of the
proposed saliency model and explore more potential
applications.
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It is a crucial task to design an integrated method to discover cancer subtypes and understand the heterogeneity of cancer based on
multiple genomic data. In recent years, some clustering algorithms have been proposed and applied to cancer subtype prediction.
Among them, similarity network fusion (SNF) can integrate multiple types of genomic data to identify cancer subtypes, which
improves the understanding of tumorigenesis. SNF uses a dense similarity matrix to obtain the global information of the data, and
the interconnection of samples between different categories will cause noise interference. +erefore, how to construct a more
robust dense similarity matrix is an important research content to improve the performance of cancer subtype identification. In
this paper, we proposed similarity network fusion based on random walk and relative entropy (R2SNF) for cancer subtype
prediction. Firstly, the random walk algorithm was used to capture the complex relationship between samples in each genomic
data. And the transition probability distribution of samples in the network was obtained. If two samples belong to the same class,
the transition probability between the two samples is great. On the contrary, if the two samples do not belong to the same class, the
transition probability between the two samples is small. In this way, the degree of correlation between samples can be well
obtained, thereby reducing the noise interference caused by the interconnection of samples between different categories. Secondly,
relative entropy was used to calculate the difference in the transition probability distribution between samples to construct a better
dense similarity matrix which contains structural similarity information between samples. +irdly, we iteratively fused the
obtained dense similarity matrix with the KNN similarity matrix to construct the fused similarity matrix of all genomic data.
Finally, by using spectral clustering, the fused similarity matrix was grouped into multiple clusters, which indicates the cancer
subtypes. Experiments on seven cancer omics datasets show that the R2SNF algorithm performs well in identifying
cancer subtypes.

1. Introduction

With the rapid development of high-throughput technology,
a large amount of genomic data has been generated, in-
cluding gene expression data, DNA methylation data, and
DNA copy number variation data. In particular, +e Cancer
Genome Atlas (TCGA) [1] database researches different
genome, transcriptome, and epigenome information of
more than 1,100 patients from more than 34 cancer types.
+ese data have brought unprecedented opportunities to
cancer research, such as driven gene selection [2] and cancer

subtype prediction, so that cancer can be controlled more
thoroughly and comprehensively.

Various types of genomic data are closely related to the
occurrence and development of cancer. In general, cell
growth and differentiation are regulated by the gene ex-
pression level, and the changes in the gene expression level
will lead to transformation from normal cells to cancer cells
[3]. DNA single-nucleotide polymorphisms and copy
number variations in the genome affect gene instability and
cancer gene activation through gene amplification or cancer
suppression [4]. DNA methylation in epigenetic variation is
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also common in cancer genomes. Genome-wide hypo-
methylation can lead to genome instability. +e hypo-
methylation of CpG islands is also related to the inactivation
of cancer suppressor genes [5]. At present, many studies
have attempted to use these genomic data to predict cancer
subtypes. However, the cancer genome is regulated by a
variety of molecular mechanisms, the complexity and in-
dependence of which make it difficult to discover the re-
lationship between the cancer genome and the cancer
phenotype. +erefore, integrating different genomic data to
capture the complexity of phenotypes and the heterogeneity
of biological processes [6, 7] is the current trend in pre-
dicting cancer subtypes.

In the past few decades, many genomic data integration
algorithms have been extensively developed. For example,
Shen et al. [8] proposed a joint latent variable model named
as iCluster, which combines the correlation between dif-
ferent types of genomic data and the variance-covariance
structure within the data type to mine potential cancer
subtypes. Akavia et al. [9] proposed an algorithm based on
the Bayesian network to integrate the matching chromo-
some copy number and gene expression data of tumor
samples to identify driving mutations and their influence
processes. Liang et al. [10] proposed a multimodal deep
belief network algorithm, which encodes the relationship
between features of each genomic data as a multilayer
network of hidden variables and then fuses common features
to cluster cancer into different subtypes. Speicher and Pfeifer
[11] added regularization constraints in the optimization
process of multikernel learning to avoid overfitting and used
one kernel for each genome data type to solve the problem of
kernel function and parameter selection. Wang et al. [12]
proposed a multiplexed network, which integrates hetero-
geneous genomic data by using the links between each node
in a network slice and its corresponding nodes in each other
network slice. Van et al. [13] used sequencing matrix de-
composition to represent genomic data and identify cancer
subtypes based on mutations and gene expression charac-
teristics. Zhang and Ma [14] proposed a regularized mul-
tiview subspace clustering method to integrate gene
expression data with the protein interaction network of
dynamic modules. Network-based stratification (NBS)
[15, 16] method combines genome-scale somatic mutation
profiles with a gene interaction network to produce a robust
subdivision of patients into subtypes. And the gene inter-
action network is constructed by protein-protein interac-
tions (PPI). Simultaneous rank matrix factorization (SRF)
[13] method approaches the subtyping problem by
decomposing patient-mutation and patient-expression data
into ranked factors.

Among these integrated algorithms, Wang et al. [6]
proposed a very effective cancer subtype identification
algorithm—similarity network fusion (SNF). SNF consists of
three stages: network construction, network fusion, and
clustering. In the network construction stage, the Euclidean
distance of each omics data is used to construct a patient
similarity network. In the network fusion stage, the infor-
mation dissemination theory is used to perform nonlinear
iterative fusion of the constructed network. Finally, the

spectral clustering algorithm is used for clustering. SNF
integrates mRNA expression data, DNA methylation data,
andmiRNA expression data and establishes a cancer subtype
prediction model on five cancer datasets.

At present, many studies have improved and expanded
SNF. Xu et al. [17] proposed a weighted similarity network
fusion algorithm, which uses a complex miRNA-TF-mRNA
regulatory network to identify cancer subtypes. In order to
solve the problem that SNF is only applicable to data types
containing continuous values, Yang et al. [18] used the
random walk method to smooth the discrete somatic mu-
tation data and incorporated the smoothed data into the SNF
algorithm so that SNF can fuse discrete data. Yang et al. [19]
proposed a deep subspace fusion clustering algorithm, which
used the methods of self-encoding and data self-expression
to guide the deep subspace model, which can effectively
express the discriminant similarity between samples, thereby
realizing the difference transfer between clustering clusters
and the enhancement of compactness within clustering
clusters. In view of the superior performance of SNF, it has
become one of the most popular algorithms for cancer
subtype identification. +erefore, this paper improves SNF
from the perspective of similarity matrix construction,
aiming to further improve the recognition effect of SNF on
cancer subtypes.

After SNF completes network fusion, it needs to be
clustered through spectral clustering [20]. +e essence of
spectral clustering is to map the Laplacian matrix so that the
samples in the original space that are not easy to handle can
be easily processed in the mapped space. +e Laplacian
matrix is calculated by the similarity matrix, so the con-
struction of the similarity matrix is the key to SNF. SNF
constructs two similarity matrices for each genomic data,
dense similarity matrix and sparse similarity matrix, which
are used to capture global and local information of genomic
data, respectively. In SNF, K-nearest neighbor (KNN) al-
gorithm is used to construct the sparse similarity matrix.
KNN algorithm is the most commonly used and effective
sparse similarity matrix construction method. All samples in
the dense similarity matrix have connecting edges. In
spectral clustering, the interconnection of samples of dif-
ferent categories in the dense similarity matrix will cause
noise interference and affect the segmentation effect of
spectral clustering. +erefore, how to optimize the dense
similarity matrix has become a major problem faced by SNF.

In this paper, we proposed similarity network fusion
based on random walk [17] and relative entropy (R2SNF) for
cancer subtype prediction. Random walk and relative en-
tropy are used to measure the similarity between samples to
construct a more robust dense similarity matrix on each
genomic data. +e similarity matrix construction method
based on randomwalk measures the transition probability of
a sample walking along a randomly selected adjacent edge to
reach other samples, thereby forming a transition proba-
bility distribution of this sample. In order to better measure
the similarity between samples, the relative entropy is used
to calculate the difference of the transition probability
distribution of them, and the similarity between them is
obtained: the greater the difference between two probability
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distributions is, the less similar the corresponding samples
are, and vice versa. +e dense similarity matrix construction
method is to establish a random walk point on the basis of
the conventional dense similarity matrix. It uses the dif-
ference in the transition probability distribution between
samples to measure the similarity of two samples so that
similar samples have a larger similarity value, and samples
that are not of the same class have a smaller similarity value.
+us, a more robust dense similarity matrix is obtained. In
our R2SNF, we use the dense similarity matrix obtained
above and the sparse similarity matrix obtained by the KNN
algorithm to perform similarity network fusion for different
genomic data. Finally, we use spectral clustering to cluster
the fusion similarity matrix. Experimental results on mul-
tiple genomic data show that R2SNF can identify biologically
significant cancer subtypes.

2. Methods

In this section, we will introduce our algorithm similarity
network fusion based on random walk and relative entropy
(R2SNF) in detail. Firstly, the probability distribution of random
walk from one sample in each genomic data to other samples in
the network is calculated. Secondly, relative entropy is used to
calculate the difference of the probability distribution of the two
samples, and the robust dense similarity matrix is constructed.
+irdly, similarity network fusion between the constructed
robust dense similarity matrix and the KNN similarity matrix is
performed to obtain the fused similaritymatrix. Finally, spectral
clustering is used for clustering the fused similarity matrix.

2.1. Construction of the RandomWalk Model. Random walk
[21] is a random process model that can simulate the in-
teraction between samples in the network. +e random walk
on the graph can be regarded as a Markov chain of randomly
selected nodes. After years of development, a variety of
random walk algorithms have been produced. Here, we use
the random walk with restart (RWR) algorithm proposed by
Tong et al. [22].

Given a set of cancer genomic data
X � X1,X2, . . . ,Xv, . . . ,XV􏼈 􏼉, Xv ∈ Rn×mv

, where V repre-
sents the number of genomic data,Xv is the vth genomic data in
X,mv represents that the vth genomic data havem features, and
n represents the number of samples. For each genomic dataXv,
starting from the ith sample xv

i , each step of the RWR faces two
choices: choose the adjacent sample with the probability of α or
return to the starting sample with the probability of 1 − α; then,
the sample xv

i will transfer to any sample and reach a stable state
at the time t + 1. According to theMarkov decision process, the
current state of the system is only related to the state at the
previous moment. +erefore, the stable state vector rv

t+1(x
v
i ) at

the time t + 1 can be defined as

rv
t+1 xv

i( 􏼁 � αrv
t xv

i( 􏼁Av
+(1 − α)rv

0 xv
i( 􏼁, (1)

where rv
t (xv

i ) represents the state vector at the time t, rv
0(x

v
i )

is the initialization vector with the ith element being 1 and
the remaining elements being 0, and Av ∈ Rn×n represents
the transition probability matrix of each genomic data.

Under normal circumstances, the probability transition
matrix of the random walk on the graph can be represented
by the adjacency matrix after data normalization. We adopt
the following ideas to construct the transition probability
matrix Av.

Firstly, we construct the similarity matrixWv ∈ Rn×n for
each genomic data by

Wv
(i, j) � exp −

ρ2 xv
i , xv

j􏼐 􏼑

μεi,j

⎛⎝ ⎞⎠, (2)

where Wv(i, j) represents the similarity between sample xv
i

and sample xv
j, μ is an empirical hyperparameter, and

ρ2(xv
i , xv

j) is the Euclidean distance between samples xv
i and

xv
j. εi,j can be defined as

εi,j �
1
3

mean ρ xv
i ,Nv

i( 􏼁( 􏼁 + mean ρ xv
j,Nv

j􏼐 􏼑􏼐 􏼑 + ρ xv
i , xv

j􏼐 􏼑􏼐 􏼑,

(3)

where mean(ρ(xv
i ,Nv

i )) denotes the average of the distances
between the sample xv

i and its neighbors.
In the process of random walk, Av is a probability

transition matrix, which needs to meet the condition
􏽐jAv(i, j) � 1. We can get Av by normalizing Wv:

Av
� Dv

( 􏼁
−1Wv

, (4)

where Dv is the degree matrix, and its diagonal elements
satisfy Dv(i, j) � 􏽐jWv(i, j).

2.2. Construction of the Similarity Matrix Based on Relative
Entropy. After calculating the stable state transition prob-
ability distribution rv from the RWR in Section 2.1, the
similarity Sv(xv

i , xv
j) between the sample xv

i and sample xv
j is

usually defined as [23]

Sv xv
i , xv

j􏼐 􏼑 � rv
xv

i
,xv

j
+ rv

xv
j
,xv

i
, (5)

where rv
xv

i
,xv

j
is the probability of starting from xv

i and arriving
at xv

j via random walk. However, this method only considers
the probability value of the random walk between the two
samples and ignores the structural similarity between them.

In order to better measure the similarity between samples,
the difference in the transition probability distribution of two
nodes is used to define the structural similarity. We use the
relative entropy to construct the dense similarity matrix [24].
Relative entropy, also known as Kullback–Leibler (KL) diver-
gence [25], is a method to describe the difference between two
probability distributions. Here, relative entropy is used to
calculate the difference of the transfer probability distribution of
different samples.

For sample xv
i , the transition probability distribution

rv(xv
i ) of reaching any other sample to reach a stable state

after random walk can be written as

rv xv
i( 􏼁 � rv xv

i , xv
1( 􏼁, rv xv

i , xv
2( 􏼁, . . . , rv xv

i , xv
n( 􏼁􏼂 􏼃, (6)

where n is the number of samples and rv(xv
i , xv

j) is the new
probability of starting from xv

i and arriving at xv
j via random

walk. rv(xv
i , xv

j) can be defined as
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rv xv
i , xv

j􏼐 􏼑 �
rv
xv

i
,xv

j

􏽐
n
k�1 r

v
xv

i
,xv

k

. (7)

For the transition probability distribution rv(xv
i ) and

rv(xv
j) of any two samples xv

i and x
v
j, respectively, the relative

entropy can be defined as

DKL rv xv
i( 􏼁 rv xv

j􏼐 􏼑
�����􏼒 􏼓 � 􏽘

n

k

rv xv
i , xv

k( 􏼁log2
rv xv

i , xv
k( 􏼁

rv xv
j, xv

k􏼐 􏼑
. (8)

When a � 0 or b � 0, we define log2(a/b) � 0.
Relative entropy is an asymmetric measure; that is,

DKL(rv(xv
i )

�����rv(xv
j))≠DKL(rv(xv

j)
����rv(xv

i )). +erefore, the
probability distribution difference matrix is defined as Cv;
then, the difference between any two probability distribu-
tions is Cv(i, j):

Cv
(i, j) �

1
2

DKL rv xv
i( 􏼁 rv xv

j􏼐 􏼑
�����􏼒 􏼓 + DKL rv xv

j􏼐 􏼑 rv xv
i( 􏼁

����􏼐 􏼑􏼒 􏼓.

(9)

Finally, Cv is transformed into a similarity matrix Sv,
where the elements are defined as Sv(i, j):

Sv
(i, j) � 1 −

Cv
(i, j)

Cv
max

, (10)

where Cv
max is the maximum in Cv. From equation (8), we

can get the following: when the transition probability dis-
tribution between samples xv

i and xv
j differs greatly, that is,

the value of Cv(i, j) is very large, a smaller value of Sv(i, j) is
assigned. On the contrary, when the difference of the
transition probability distribution between samples xv

i and
xv

j is small, that is, the value of Cv(i, j) is small, a great value
of Sv(i, j) is assigned.+us, the construction of the similarity
matrix based on relative entropy is realized.

2.3. Similarity Network Fusion Based on Random Walk and
Relative Entropy (R2SNF). +rough the above two steps, the
similarity matrix Sv is obtained. In the similarity network
fusion stage, we use Sv as a dense similarity matrix to obtain
the global structure between samples and use the KNN
similarity matrix to capture the local structure.

For any samples xv
i , KNN defines the similarity matrixKv

between xv
i and its k most similar samples. +e element

Kv(i, j) in Kv is defined as

Kv
(i, j) �

Wv
(i, j)

􏽐k∈Nv
i
Wv

(i, k)
, j ∈ Nv

i ,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

where Nv
i is the neighbors of xv

i .
Assume that there is a total of V genomic data to be

integrated. In the same way as SNF, we performed nonlinear
iterative fusion for dense similarity matrix Sv and sparse
similarity matrix Kv of each dataset. +e fusion process can
be described as

􏽥Sv
� Kv

×
􏽐k≠vS

k

V − 1
􏼠 􏼡 × Kv

( 􏼁
T
, v � 1, 2, . . . , V. (12)

According to equation (12), we can obtain the similarity
matrix 􏽥Sv of the cross-diffusion of the vth genomic data with
other data. +en, the final fused similarity matrix S can be
obtained by averaging all 􏽥Sv:

S �
1
V

􏽘

V

v�1

􏽥Sv
. (13)

2.4. Spectral Clustering on the Fused Similarity Matrix.
Suppose we want to identify c cancer subtypes frommultiple
genomic data, so we need to use spectral clustering to cluster
cancer samples into c clusters. For the ith sample, we defined
a cluster indicator vector yi ∈ 0, 1{ }. When the ith sample
belongs to the jth cluster, yi(j) � 1; otherwise, yi(j) � 0.+e
cluster indicator matrix can be written as
Y � (yT

1 , yT
2 , . . . , yT

n ).
With the fused similarity matrix S, spectral clustering

can be performed by solving the following optimization
problem:

min
U

tr UTLU􏼐 􏼑

s.t. UTU � I,
(14)

where U � Y(YTY)−1/2, U ∈ Rn×c, is the scaled partition
matrix. According to the fused similarity matrix S, L as the
normalized Laplacian matrix can be defined as
L � I − D−1/2SD−1/2, where D is the degree matrix, which
satisfies D � diag(d1, d2, . . . , dn), di � 􏽐

n
j�1 S(i, j). In this

way, we can capture the global structure of the fused sim-
ilarity matrix through spectral clustering.

3. Results and Discussion

3.1. Datasets and Survival Analysis. In this paper, we tested
the proposed algorithm on three types of genomic data, that
is, mRNA expression data, miRNA expression data, and
DNA methylation data. +e cancer types we tested include
glioblastoma multiforme (GBM), breast invasive carcinoma
(BIC), kidney renal clear cell carcinoma (KRCCC), lung
squamous cell carcinoma (LSCC), and colon adenocarci-
noma (COAD).+e above data can be downloaded from the
TCGA website [5]. In addition, we also conducted experi-
ments on the BREAST cancer and LUNG cancer datasets in
[26]. +e detailed information of the cancer multigenomic
datasets is shown in Table 1.

+is paper conducts survival analysis based on the cancer
subtypes obtained by clustering to verify the survival dif-
ferences among samples of different cancer subtypes found
by the proposed algorithm. In statistics, hypothesis testing is
usually used to quantify whether there are differences be-
tween different survival curves. Here, the Cox log-rank test
[27] is used to calculate the p value. Cox log-rank test is a
nonparametric hypothesis test, which is often used to assess
the importance of differences in survival between subtypes.

4 Scientific Programming



+e p value indicates that the observed difference in survival
is the likelihood of an incident occurring by chance.
+erefore, the smaller the p value is, the better the exper-
imental effect is. In addition, the Kaplan–Meier estimation
method [28] is usually used to estimate the survival function
and further obtain the Kaplan–Meier survival curve. +e x-
axis of the survival curve is the time from the beginning of
observation to the last observation time point. +e y-axis is
the survival rate of the survival sample. +e curve represents
the development of the event.

3.2. Experimental Results. We compared the proposed al-
gorithm R2SNF with several cancer subtype prediction
methods, e.g., SNF [6], LRAcluster [29], iClusterPlus [30],
pattern fusion analysis (PFA) [31], affinity network fusion
(ANF) [32], and multiview clustering based on Stiefel
manifold (MCSM) [33], to verify its effectiveness. In order to
verify whether the relative entropy in the R2SNF algorithm
can improve the prediction results of cancer subtypes, we
remove the relative entropy from R2SNF and use equation
(5) to construct the similarity matrix. We name the above
algorithm as similarity network fusion based on random
walk (RSNF). A brief introduction to these methods is as
follows:

(i) SNF first uses the exponential similarity kernel
method to define the similarity between the sample
points of each genomic data. It uses the KNN
method to define a dense similarity matrix and a
sparse similarity matrix. +en, the information
transfer model is proposed to fuse the above two
similarity matrices, and the fused similarity matrix
can be obtained by updating iteratively. Finally,
spectral clustering is used to cluster the fused
similarity matrix.

(ii) LRAcluster is a dimensional reduction and clus-
tering method for multigenomic data based on low-
rank approximation. It can deal with a variety of
distributed data classes and guarantee the orthog-
onality of the low-dimensional space. It is suitable
for clustering analysis of large-scale multigenomic
data and has been widely concerned and applied.

(iii) iClusterPlus considers that different variable types
should follow different linear probability relation-
ships. +en, it builds a joint sparse model to

complete the task of sample clustering and feature
selection.

(iv) PFA uses the local information extraction method
to project each genomic data in a low-dimensional
space and builds a dynamic collimation method
based on the idea of manifold learning. +en, it
integrates the low-dimensional spatial information
into a feature space containing information from
different genomic data. Finally, the K-means
method is used to cluster the samples.

(v) ANF first constructs a patient affinity network from
each omics data and then fuses all individual
networks to obtain a more robust one. In order to
make the patient affinity network robust to noise,
ANF mainly employs two nonlinear k-nearest-
neighbor- (kNN-) based transformations: kNN
Gaussian kernel and kNN graph.

(vi) MCSF establishes a binary optimization model for
the simultaneous clustering problem. +en, the
optimization problem is solved by the linear search
algorithm based on the Stiefel manifold. Finally, it
integrated the clustering results obtained from
multiomics data by using the k-nearest neighbor
method.

(vii) RSNF obtains the probability of each sample
starting from one sample and arriving at another
via random walk, calculates the similarity matrix
according to the random walk probability between
the two samples, and finally performs similarity
network fusion according to SNF.

Since R2SNF is an improved version of SNF, in order to
make a more intuitive comparison and analysis, we used the
number of clusters suggested in SNF, that is, GBM is
clustered into 3 categories, BIC is clustered into 5 categories,
KRCCC is clustered into 3 categories, LSCC is clustered into
4 categories, and COAD is clustered into 3 categories. For
the BREAST and LUNG datasets, we also used the cancer
subtype determination method in SNF to determine the
number of their cancer subtypes as 3 and 2, respectively.

+e specific experimental results of R2SNF and other
methods on the seven cancer multigenomic datasets are
shown in Table 2. Compared with RSNF, R2SNF had better
results on the other six datasets except for KRCCC data.+is
shows that using relative entropy to calculate the probability
distribution difference between samples is beneficial to the
construction of the similarity matrix. Compared with SNF,
R2SNF has smaller p values on all datasets except for COAD.
+e results of RSNF on GBM, BIC, KRCCC, and LSCC are
better than SNF, especially on KRCCC and LSCC data, but
slightly worse than SNF on other data, which indicates that
only using the probability obtained by randomwalk between
samples to construct the similarity matrix also has a certain
effect on cancer subtypes. Compared with other algorithms,
R2SNF has the best results on the whole. Only on BIC data,
MCSM algorithm is better than R2SNF.

Figure 1 shows the Kaplan–Meier survival curve of
cancer subtypes identified by R2SNF on seven cancer

Table 1: Detailed information on seven types of cancer multi-
genomic datasets.

Cancer type
Number of genes

Number of samples
mRNA Methylation miRNA

GBM 12042 1305 534 215
BIC 17814 23094 354 105
KRCCC 17899 24960 329 122
LSCC 12042 23074 352 106
COAD 17814 23088 312 92
BREAST 20531 5000 1046 622
LUNG 20531 5000 1046 337
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genomic datasets. It can be seen that, on GBM, KRCCC,
LSCC, COAD, BREAST, and LUNG, there is a big difference
between the cancer subtypes recognized by R2SNF, indi-
cating that R2SNF is an effective method for identifying
cancer subtypes. On BIC data, SNF suggested to divide it
into 5 cancer subtypes. As shown in Figure 1(b), R2SNF is
not very effective when divided into 5 subtypes, but it can
clearly divide it into 3 subtypes. Moreover, the p value of
SNF on the BIC data is lower than the p value of SNF.
+erefore, we recommend that BIC should be divided into 3
subtypes. +e number of clusters given in the BREAST
dataset in [26] is 3, which can be found in Figure 1(f ). +is
further verifies our conclusion.

3.3. Analysis on the GBMDataset. Glioblastoma multiforme
(GBM) is the most common and lethal malignant primary
brain tumor in adults and is one of a group of tumors known
as gliomas. Many studies have carried out research on GBM
at the molecular level. And clinically, some studies have
given definite cancer subtypes and corresponding treatment
plans. For example, based on mRNA expression data,
Verhaak et al. [34] divided GBM into four cancer subtypes:
mesenchymal, classical, neural, and proneural. In [35],
according to the difference of the CpG island methylator
phenotype (CLMP), GBM was divided into two cancer
subtypes: G-CLMP and non-G-CLMP.

On GBM data, we counted the distribution of clustering
results obtained by R2SNF on the cancer subtypes deter-
mined in the above two studies and summarized the results
in Table 3. Table 3 shows that the patients in subtype 1 are
more than in subtype 3. Most patients in subtype 1 are
grouped into non-G-CLMP (accounted for 99.3%); also,
they are distributed on four subtypes in [34]. Subtypes 2 and
1 have similar distributions. It is worth noting that most of
the 19 patients with subtype 3 are of the G-CLMP subtype
(accounted for 73.7%), and all of them are of the proneural
subtype.

To further analyze the obtained cancer subtypes by
R2SNF, the clinical data for all patients of GBM were
downloaded from the cBio Cancer Genomics Portal data-
base. We drew a boxplot of the age distribution of patients in
the three cancer subtypes (Figure 2). Figure 2 proves that the
cancer subtypes identified by R2SNF have a clear age dis-
tribution difference. Combining Figures 1 and 2, we can find
that the age of patients in subtype 3 with the best survival

advantage in Figure 1 is also lower than that of patients in
subtypes 1 and 2.

Furthermore, we drew Kaplan–Meier survival curves of
GBM patients’ response to the drug temozolomide (TMZ)
in Figure 3. +e patients within the three cancer subtypes
were divided into two parts: patients treated with drug
TMZ and those not treated with drug TMZ. TMZ is a drug
that is commonly used to treat GBM, but only responds
well to a subset of patients. +e p values of survival analysis
in the Cox log-rank model of the three cancer subtypes are
5.42 ×10−6, 3.78 ×10−4, and 0.36, respectively, which in-
dicate that TMZ has no effect on the patients in cancer
subtype 3.

In summary, subtype 3 of GBM identified by R2SNF has
the following characteristics. First, most of the patients with
subtype 3 are of the G-CLMP subtype, and all of them are of
the proneural subtype. Second, the age of patients in subtype
3 with the best survival advantage is also lower than that of
patients in subtypes 1 and 2.+ird, TMZ has no effect on the
patients in cancer subtype 3. +erefore, we believe that
subtype 3 identified by R2SNF is a biologically significant
cancer subtype. In addition, it can be inferred that we get a
potential cancer subtype, which contains patients belonging
to both G-CLAMP and Proneural. +is verified the study
reported by Brennan et al. that the proneural subtype
granted by the G-CIMP phenotype has unique properties
[36].

3.4. Analysis on the BREASTDataset. Breast cancer refers to
a malignant tumor in which cancer cells have penetrated the
basement membrane of breast ducts or lobular alveoli and
invaded the interstitium. Many scholars have carried out a
series of studies and analyses on the gene level and have
given specific subtypes and treatment programs. Based on
the microarray predictive analysis model, Parker et al.
proposed a 50-gene classifier (known as PAM50) to classify
BIC into five subtypes: basal-like, luminal A, luminal B,
HER2-enriched, and normal-like [37]. On BREASTdata, we
counted the distribution of clustering results obtained by
R2SNF on the cancer subtypes basal-like, luminal A, luminal
B, and HER2-enriched in Table 4. It can be seen from Table 4
that subtype 1 is mainly distributed in luminal A and luminal
B (accounted for 80.6%), subtype 2 is mainly distributed in
basal-like (accounted for 74.6%), and subtype 3 is mainly
distributed in luminal A and luminal B (accounted for

Table 2: Comparison of p values between R2SNF and other algorithms on seven cancer multigenomic datasets.

Cancer type
Methods

R2SNF SNF LRAcluster iClusterPlus PFA ANF MCSM RSNF
GBM 2.4E− 05 2.0E− 04 3.5E− 04 3.0E− 03 8.0E− 05 5.8E− 04 1.1E− 03 1.2E− 04
BIC 1.1E− 04 1.1E− 03 4.3E− 02 3.5E− 02 9.3E− 03 3.6E− 04 3.1E− 05 1.2E− 04
KRCCC 7.0E− 03 2.9E− 02 3.2E− 02 1.1E− 01 7.5E− 03 2.9E− 02 8.0E− 02 2.1E− 04
LSCC 1.5E− 05 2.0E− 02 5.7E− 02 5.2E− 02 4.0E− 03 8.9E− 03 1.6E− 02 2.0E− 04
COAD 1.8E− 03 1.3E− 03 9.9E− 03 5.0E− 02 6.7E− 02 9.0E− 03 3.6E− 01 6.0E− 03
BREAST 4.5E− 09 1.0E− 08 3.0E− 01 1.5E− 01 3.6E− 07 1.9E− 08 7.4E− 07 2.3E− 08
LUNG 5.6E− 03 1.1E− 02 4.6E− 01 6.9E− 01 2.0E− 01 1.0E− 02 8.0E− 02 8.2E− 02
+e best results have been highlighted in bold.
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Figure 1: Continued.
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70.8%). In addition, we can also find that HER2-enriched is
mainly distributed in subtypes 1 and 2 (accounted for
89.1%), and normal-like is mainly distributed in subtype 1
(accounted for 78.3%).

We also chose two clinical labels for which we tested
enrichment: Pathologic M and Pathologic N. Pathologic M
and Pathologic N are regional lymph nodes’ distant me-
tastasis stage (M) and clinical stage (N) of breast cancer,
respectively. Pathologic M includes three stages: M0, M1,
and MX. Pathologic N roughly includes five stages: N0, N1,
N2, N3, and NX. Generally, the numbers or letters after N
and M provide more details about these factors, and the
higher the number, the more severe the cancer.

We used the chi-square test to verify whether there was a
significant difference in our analysis among these clinical
labels. +e p values on Pathologic M and Pathologic N are

6×10−3 and 9×10−3, respectively. +e detailed distributions
of subtypes obtained by R2SNF on Pathologic M and
Pathologic N are shown in Tables 5 and 6, respectively. In
Table 5, subtype 1, subtype 2, and subtype 3 have the similar
distribution: mainly distributed in M0. We calculated the
proportion of samples belonging to the M0 stage in the three
subtypes as 74.9%. In Table 6, subtype 1, subtype 2, and
subtype 3 have the similar distribution: mainly distributed in
N0 and N1. +e proportion of samples belonging to the N0
stage and N1 stage in the three subtypes is 46.3% and 33.8%,
respectively.

From the above analysis, we can draw the following
conclusion. First, subtypes 1 and 3 are mainly distributed in
luminal A and luminal B, which are the breast cancer
subtypes with the best prognosis. Second, subtype 2 is
mainly distributed in basal-like, in which clinical prognosis
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Figure 1: Kaplan–Meier survival curves of different subtypes on cancer multigenomic datasets: (a) GBM, (b) BIC, (c) KRCCC, (d) LSCC,
(e) COAD, (f) BREAST, and (g) LUNG.

Table 3: +e distribution of subtypes obtained by R2SNF on the subtypes determined in [34, 35].

R2SNF subtypes
Subtypes in [34] Subtypes in [35]

Mesenchymal Classical Neural Proneural G-CLMP Non-G-CLMP
Subtype 1 46 51 26 30 1 152
Subtype 2 20 6 8 9 4 39
Subtype 3 0 0 0 19 14 5
+e values in this table represent the number of patients counted.

Cluster 1 Cluster 3Cluster 2

20

40

60

80

Figure 2: Boxplot of the age distribution of patients in the three cancer subtypes. +e black bar represents the median of each subtype.
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Figure 3: +e Kaplan–Meier survival curves of the identified cancer subtypes by R2SNF: (a) subtype 1, (b) subtype 2, and (c) subtype 3 of
TMZ response. “Untreated” represents the patients who did not receive TMZ treatment, and “Treated” represents the patients who received
TMZ treatment.

Table 4: +e distribution of subtypes obtained by R2SNF on the subtypes determined by PAM50.

R2SNF subtypes
Subtypes determined by PAM50

Basal-like HER2-enriched Luminal A Luminal B Normal-like
Subtype 1 8 28 242 102 47
Subtype 2 97 21 2 4 6
Subtype 3 6 6 27 19 7

Table 5: +e distribution of subtypes obtained by R2SNF on Pathologic M.

R2SNF subtypes
Pathologic M

M0 M1 MX
Subtype 1 305 4 118
Subtype 2 101 2 27
Subtype 3 60 1 4

Table 6: +e distribution of subtypes obtained by R2SNF on Pathologic N.

R2SNF subtypes
Pathologic N

N0 N1 N2 N3 NX
Subtype 1 185 149 45 42 6
Subtype 2 79 34 13 4 0
Subtype 3 24 27 9 2 3
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is poor.+ird, the patients in BREASTdata are mainly in the
early stages of breast cancer and have high survival rate. All
these conclusions can also be verified in Figure 1(f).

4. Conclusions

How to construct a robust dense similarity matrix is a key
issue in SNF. In this paper, we analyzed the problems
existing in the construction of the dense similarity matrix
in SNF and proposed the similarity network fusion based
on random walk and relative entropy (R2SNF) method for
cancer subtypes’ prediction. We proposed to use the
random walk with restart algorithm to characterize the
complex relationship between genomic data samples and
obtained the stable state transition probability distribu-
tion of each sample. We further used relative entropy to
calculate the difference in the transition probability
distribution between samples to construct a better dense
similarity matrix which contains structural similarity
information between samples. +en, the constructed
dense similarity matrix and the KNN similarity matrix
were nonlinearly iteratively fused. Finally, spectral
clustering was used to cluster the fused similarity matrix.
On seven cancer genomic datasets (GBM, BIC, KRCCC,
LSCC, COAD, BREAST, and LUNG) containing three
data types (mRNA expression data, miRNA expression
data, and DNA methylation data), R2SNF was compared
with a variety of classical cancer subtype prediction al-
gorithms. Experimental results show that R2SNF has
better performance in identifying cancer subtypes than
the comparison algorithms. And through the analysis of
the results of GBM and BREAST experiments, it can be
proved that R2SNF can discover cancer subtypes with
biological significance. In addition to relative entropy,
there are other methods to measure the difference be-
tween two probability distributions, such as Jensen–
Shannon divergence, Wasserstein distance, and cross-
entropy. In future work, we will devote ourselves to
finding a more suitable method to calculate the difference
between probability distributions and then to obtain a
similarity matrix that is conducive to cancer subtype
prediction.
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Tourist image retrieval has attracted increasing attention from researchers. Mainly, supervised deep hash methods have sig-
nificantly boosted the retrieval performance, which takes hand-crafted features as inputs and maps the high-dimensional binary
feature vector to reduce feature-searching complexity. However, their performance depends on the supervised labels, but few
labeled temporal and discriminative information is available in tourist images. /is paper proposes an improved deep hash to
learn enhanced hash codes for tourist image retrieval. It jointly determines image representations and hash functions with deep
neural networks and simultaneously enhances the discriminative capability of tourist image hash codes with refined semantics of
the accompanying relationship. Furthermore, we have tuned the CNN to implement end-to-end training hash mapping, cal-
culating the semantic distance between two samples of the obtained binary codes. Experiments on various datasets demonstrate
the superiority of the proposed approach compared to state-of-the-art shallow and deep hashing techniques.

1. Introduction

With the rise of cheap sensors, mobile terminals, and social
networks, research on tourist images is making good
progress, which results in an explosive growth of image
retrieval in social networks. /is trend imposes great
challenges on developing scalable indexing approaches,
supporting retrieving relevant images of suchmassive tourist
images. However, current tourist image retrieval mainly
relies on manual tags in sensor types, tourist sights, and
geographical locations. For example, SIFT [1] uses local
descriptors to encode image regions of interest, for example,
HOG [2] and BOW [3]. Consequently, it is highly dependent
on the availability and quality of tags.

Due to the fast query speed and low storage cost,
learning-based hash has been attracting research interests
and was applied to applications such as large-scale object
retrieval [4], image classification [5], and detection [3].
Recently, deep learning using hash methods has shown
promising performance [6, 7]. Due to the high efficiency of
binary hash code in the computation of Hamming distance

and the advantage of storage space, it is very efficient in
large-scale image retrieval. Convolutional neural network
hashing (CNNH) [8] incorporates deep neural networks into
hash coding to learn the image representations and hash
codes. Network in network hashing (NINH) [9] presents a
triplet ranking loss to capture the relative similarities of
images. /e image representation learning and hash coding
can benefit each other within a staged framework. Deep
semantic hashing [10] ultimate hash codes produced by the
learned hash functions maintain sentiment-level similarity.
Other hashing methods have also been proposed [11–13].

Although hashing methods have achieved remarkable
performance, they still suffer from the two following
problems:

(1) Existing methods learn binary hash codes with hand-
crafted feature representations, which cannot accu-
rately capture the inherent semantic similarities of
images

(2) In most existing hashing methods for images, the
semantic similarities are defined at the image level,
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and each picture is represented by one piece of hash
code

/is paper considers large-scale retrieval for multilabel
tourist image data, which includes semantic hashing and
category-aware hashing. We propose an architecture of deep
convolution networks designed for hash learning, which has
substantially superior performance on large-scale tourist
images by end-to-end learning discriminative short binary
code. As a whole, the main contributions of this paper are as
follows:

(1) For binary hash optimization, we propose a discrete
hash optimization strategy based on the inner re-
lationship for learning hash codes without relaxing
the quantization information loss.

(2) We provide an improved divide-code layer,
substituting for fully connected layers to learn binary
hash code to reduce high redundancy and param-
eters in the retrieval task. Besides, we use an im-
proved triplet loss function to guarantee the feature
similarity to the binary code features to improve the
algorithmic efficiency while training.

(3) In terms of applications, the deep hash method is
employed for large-scale tourist image retrieval.
Consequently, this paper illustrates ways to design
and train a deep network of large-scale tourist image
retrieval.

2. Related Works

/is section briefly reviews two topics: (1) tourist image
retrieval models and (2) hashing retrieval models.

2.1. Tourist Image Retrieval Model. Numerous tourist image
retrieval methods based on landmark datasets have been
proposed. /ey often use visual descriptors to describe
images. /e key is how to improve the expressive ability of
visual descriptors. For example, Hao et al. [14] and Xiao et al.
[15] used multidimensional models to sort in space property
and utilized the three-dimensional visual phrase to describe
the landmark images. However, these methods have the
disadvantages of long-time modeling and high retrieval cost.
Recently, to reduce the cost of retrieval, many researchers
began to devote themselves to the research of binary images
that compose the landmark features of high-dimensional
visual words. Ji et al. [16] proposed a Location Discrimi-
native Vocabulary Coding (LDVC) scheme, which achieves
deficient bit rate query transmission, discriminative land-
mark description, and scalable descriptor delivery in a
unified framework. Duan et al. [17] combined multiple
information, such as image, GPS, and crowd-sourced hot-
spotWi-Fi, to extract location discriminative compact image
descriptors. Zhou et al. [18] used the scalable cascaded
hashing (SCH) method to implement the landmark hashing
retrieval. Zhu et al. [19] used a discrete multimodal hash
scheme (Cv-Dmh) based on a canonical view to learn binary
code through a new three-stage learning process. Jing et al.
[20] investigated the spatiotemporal dynamic patterns of

inbound tourism. Cui et al. [21] proposed a Scalable deep
hashing (SCADH) to learn enhanced hash codes for social
image retrieval.

Furthermore, complex network theory has been used to
mine tourism flow patterns [22]. /ese methods are based
on the feature extraction of the image, and then the hashing
algorithm is used for iterative computation. However, no
method of them is an end-to-end method to learn the hash
function. Furthermore, most methods still use hand-craft
features to extract image features, which have a weak
generalization and migration ability.

Recent examples in which deep learning has made
significant advances in tourist image retrieval include po-
sitioning the city [23] and tourist photo classification [24]. In
addition, many studies have been conducted to analyze the
tourist’s urban image by modifying the classifier part of the
CNN model [25] or considering local characteristics [26].
However, these studies are limited in reflecting the unique
landscape or regional characteristics in the area.

2.2. Hashing Retrieval Model. Learning-based hashing re-
trieval methods can be divided into unsupervised methods
and supervised methods. Unsupervised learning has a cat-
alytic effect in reviving interest in hashing retrieval but has
been overshadowed by the successes of purely supervised
learning. /e researchers introduced unsupervised learning
procedures that only use the information on image samples
without requiring supervision information for hashing.
Notable examples in this category include local sensitive
hashing (LSH) [27], iterative quantization (ITQ) [28], direct
graph hashing (DGH) [29], scalable graph hashing (SGH)
[30], and spectral hashing (SH) [31]. Unsupervised training
of hashing retrieval is regarded as a “pretraining” phase
whose role is to discover good features that model the
structure in the input domain. Besides, supervised methods
learn hash coding using both feature information and label,
including minimum loss hashing [32], kernel-based su-
pervised hashing (KSH) [33], ranking-based supervised
hashing (RSH) [34], and column generation hashing (CGH)
[35].

New advances in machine learning using deep neural
networks enable automated learning of hashing functions.
Xia et al. [36] applied deep hashing using a similarity matrix
and minimized loss function to discover an approximate
hash code. Although it has dramatically improved the re-
trieval performance, it is still not an accurate end-to-end
method. Zhao et al. [37] proposed a deep hashing algorithm
for sorting tags. Since image retrieval aims to return an
image based on the correlation among the pictures, this
approach is optimized for the final evaluation index. Lin
et al. [38] proposed a straightforward method to obtain hash
values. /ey added a fixed-length hidden layer to the CNN
network that is limited by the activation function. After fine-
tuning the CNN network, the hidden layer value is extracted
directly. /e number of nodes in the hidden layer is the
length of the hash code. Although the eigenvalues obtained
by this method contain the high-level semantics of the
image, the process does not consider the correlation of the

2 Scientific Programming



Hamming space features. /erefore, it cannot guarantee the
retrieval effect of the elements in the Hamming space.

Later, Lai et al. [9] proposed a training method based on
the triplet. Training the objective function is to distance
similar images in the Hamming space closer than dissimilar
images. Recently, some semisupervised deep hashing models
are proposed to utilize unlabeled data to improve retrieval
accuracy. Yan et al. [39] proposed the BGDH method to
learn embeddings and features simultaneously, as well as
hash codes. Zhang and Peng [40] developed a deep hashing
method SSDH, which maintains the underlying data
structures and the semantic similarity simultaneously to
learn hash functions. Both ways use a graph to model un-
labeled training samples, which are computationally ex-
pensive and memory hog, especially with a large-scale
dataset. Shi et al. [41] used the GAN and a discriminative
model to learn from both the unlabeled data and labeled data
to augment the training dataset, which may not be adapted
to semantic representation. Tu et al. developed RDUH [42],
which focuses on reducing noisy points by investigating the
various input data structures.

Recently, cross-modal hashing methods have provided
insight into capturing the intrinsic relationships between
various modalities [43] and quantization-based cross-
modal similarity [44]. Furthermore, Deng et al. [45]
showed that semantic similarity of the training data could
perform binary hash codes in an unsupervised manner.
However, natural images can have significant intraclass and
minor interclass variations. /us, learning hash codes with
class-specific representation centers is required [46]. To
further bridge the inherent modality gap, a multitask
consistency-preserving adversarial hashing (CPAH) [47]
was proposed to fully explore the semantic consistency and
correlation between different modalities for efficient cross-
modal retrieval.

3. The Proposed Method

In this section, we present the details of our proposed
method. We first define the notations used in this paper.
/en, we introduce our deep feature learning process, deep
hash model training process, and hash codes learning
process. Finally, we present a hash optimization solution for
solving hash codes and functions and analyzing their con-
vergence and complexity.

3.1. Notations and Problem Definitions. For a tourist image
dataset consisting of n images xi􏼈 􏼉

n
i�1 with l user-provided

semantic tags, each image is represented by xi ∈ Rd and the
relationships between the image and tags can be represented
as l-dimensional binary-valued vector fi. /e image matrix
is denoted as Θ ∈ Rd×n, and F � [f1, . . . , fn] ∈ Rl×n repre-
sents the observed image-tag relation matrix.

We aim to learn a set of hash codes B � b1, b2, . . . , bn􏼈 􏼉

with bi � H(xi), bi ∈ 0, 1{ }c, where c is the length of binary
code and h(·) is the hash function. /e binary code should
guarantee the similarity of the original data space. Generally,
the hash function H(x) satisfies the following:

(1) bi and bj are closer in the Hamming space when
sij � 1

(2) bi and bj are far away in the Hamming space when
sij � 0

From the view of geographical position semantics,
tourist images and the accompanying tags are highly cor-
related. /ese tags contain explicit semantics that is com-
plementary to the latent image semantics. Hence, it is
promising to exploit the refined auxiliary social tags for the
semantic enrichment of image hash codes. To this end, we
introduce a semantic correlation matrix W that directly
correlates hash codes with refined social tags. /e dynamic
semantics can be directly transferred to hash codes. We aim
to minimize the difference between the binary hash codes
and the mapped semantic vectors from the refined tags.

We propose an architecture of deep convolution net-
works designed for hash learning, as shown in Figure 1. In
detail, we build an end-to-end learning framework that
utilizes hash mapping for tourist attraction image retrieval.
/e method is divided into three parts. /e first is a sub-
network with multiple convolutions and pooling layers for
learning discriminative image features, pretrained on the
Place-2 dataset [48]. /e second is the hash layer, which
consists of a block coding layer and an activation function.
/e third is the improved triplet loss function that we use as
the objective function to optimize the network. /e training
process is divided into many minibatches for iterative
learning. Each small batch uses multiple images which
belong to different categories as input.

3.2. Feature Learning and Deep Convolution Subnetwork
Module. Most existing hashing methods adopt hand-crafted
features for hash function learning. However, these methods
may achieve limited performance because the hand-crafted
features might not be optimally compatible with the hash
function learning procedure. We propose our deep con-
volution subnetwork module, which can perform simulta-
neous feature learning and hash learning in the same
framework. /e subnetwork is used to learn the image
features that can describe the image accurately. After
training, the input image is processed through the network
to obtain rich semantic descriptors with excellent expres-
siveness and robustness.

/e tags from tourist images are subject to two prop-
erties: low rank and error sparsity. In such cases, we use
VGG-16 as the subnetwork and transfer the model pa-
rameters trained on the Place-365 dataset to the network as
the initial parameters. Since the scene recognition task has
some similarities with the tourist attraction recognition task,
transferring the setting from the network trained on Place-
365 to the subnetwork can significantly improve the model’s
performance./e concrete structure of the network is shown
in Table 1, which contains five large convolutional layers, five
pooling layers, and two fully connected layers. Each large
convolutional layer is followed by a 2× 2 maximum pooling
of 2 steps, and the detailed network configuration is shown
in Table 1.
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3.3. Hash Code Learning. Most existing studies use metric
learning to train the positive and negative sample pairs to
ensure the binary code similarity relationship [49–52].
However, it is challenging to represent geographic charac-
teristics as a single binary code without losing a significant
amount of helpful information. Hence, there is no need to
conduct such an evaluation globally, but only among seg-
ments with users’ geographic information needs. For ex-
ample, a single tourist image can be represented into multiple
binary vectors by treating each block as an image feature.

Tourist images and the accompanying tags are positively
correlated with each other. Moreover, these tags contain

explicit semantics, which is complementary to the latent
image semantics. Hence, it is promising to exploit the refined
auxiliary social tags for the semantic enrichment of image
hash codes. To this end, we aim to minimize the difference
between the binary hash codes and the mapped semantic
vectors from the refined social tags.

/is paper uncovered the intrinsic low-rank matrix by
decomposing the image-tag relation matrix into its low-rank
and sparse components. /e low-rank matrix is then taken
into Semantic Enhancement as a semantic source to enhance
the discriminative capability of the learned hash codes.
/erefore, we use a block-coded structure instead of a fully
connected layer to implement a hash layer consisting of a
block-coded layer, an active layer for each subblock, and a
concat layer.

Consider a tourist image dataset consisting of n images
xi􏼈 􏼉

n

i�1; we divide the features of fully connected layer v(xi)

into q blocks. q denotes the length of the binary hash code for
constructing the block-coded structure. /e subfeatures
v(xi)j are obtained from the j-th slice layer as the input to
fully connected layers, j � 1, 2, . . . , q, and the output of each
fully connected layer is 1-dimensional, which is expressed as
follows:

g v xi( 􏼁j􏼐 􏼑 � Wjv xi( 􏼁j, (1)

where Wj is the weight matrix of the j-th subblock, the
output of each subblock is the input of the active layer, and
the sigmoid function is chosen as the activation function,
which is denoted as follows:

fj(x) � Sigmoid u
(j)

􏼐 􏼑 �
1

1 + e
u(j)

, (2)

where u(j) � g(v(xi)j). After the eigenvalues are converted
into the eigenvector, the relaxation of the binary vector is

Step1: pretrain on p1ace365

c

Step2: training hash code

P1ace365

Convolutional
Pooling

Convolutional
Pooling

Parameter transferring

Softmax

P class image

Input Subnetwork Hash layer

Divide-encode Concat layer

Triplet loss

Anchor

Anchor

Negative

Negative
Positive

Positive

Figure 1: /e proposed deep hash retrieval framework consists of the subnetwork hash layer and the improved triplet loss function.
subnetwork is a multilayer convolution neural network. /is hash layer comprises the divide-encode layer and the concat layer, and the
length of the concat layer c represents the hash code length./e parameter transferring process transfers the pretrained parameters on Place-
2 to the subnetwork as the initial parameter to train the hash mapping function.

Table 1: /e subnetwork structure.

Type Filter size/stride Output size
Conv1-1 3× 3/1 224× 224× 64
Conv1-2 3× 3/1 224× 224× 64
Max pool1 2× 2/2 112×112× 64
Conv2-1 3× 3/1 112×112×128
Conv2-1 3× 3/1 112×112×128
Max pool2 2× 2/2 56× 56×128
Conv3-1 3× 3/1 56× 56× 256
Conv3-2 3× 3/1 56× 56× 256
Conv3-3 3× 3/1 56× 56× 256
Max pool3 2× 2/2 28× 28× 256
Conv4-1 3× 3/1 28× 28× 512
Conv4-2 3× 3/1 28× 28× 512
Conv4-3 3× 3/1 28× 28× 512
Max pool4 2× 2/2 14×14× 512
Conv5-1 3× 3/1 14×14× 512
Conv5-2 3× 3/1 14×14× 512
Conv5-3 3× 3/1 14×14× 512
Max pool5 2× 2/2 7× 7× 512
Fc6 — 4096
Fc7 — 4096
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obtained. To improve the performance, we do not directly
map the image into binary values of 0, 1{ }. Instead, we use
the activation function to limit the eigenvalues among [0, 1]

and then use the thresholding to quantize the relaxation
binary into binary code.

3.4. Triplet Loss andOptimization. We propose an improved
triplet loss function to optimize the network to effectively
preserve semantic similarities of images into the binary hash
codes.

Let x be an image, the input to the proposed deep ar-
chitecture is triplets of sample images, that is, {xa, xp, xn}.
sap � 1 and san � 0, where S denotes the similar identity of
the images; the optimization of this triplet loss function is to
narrow the distance between samples xa and xp and to push
away the distance between samples xa and xn. We use
‖f(xa) − f(xp)‖2 and ‖f(xa) − f(xn)‖2 to represent the
Euclidean distance between them and for the relaxed binary
code obtained from the samples. As Euclidean distance can
approximately represent their Hamming distance, the op-
timization goal is ‖f(xa) − f(xp)‖2 + σ < ‖f(xa) − f(xn)‖2.
In this way, the objective function can be defined as

L � 􏽘
Sap�1
San�0

max σ + f xa( 􏼁 − f xp􏼐 􏼑
�����

�����2
− f xa( 􏼁 − f xn( 􏼁

����
����2􏼒 􏼓, 0􏼚 􏼛.

(3)

Because the Euclidean distance is more stable in the
training process and the meaning of the function is more
consistent with the actual definition [42], we use Euclidean
distance ‖·‖2 to measure the distance in Hamming space
rather than the square of Euclidean distance ‖·‖22, which is
used in the classical triplet loss function. /e optimization
aims to distinguish between similar samples and the dif-
ferent samples at least margin, which can map semantically
equivalent pictures to adjacent locations in the Hamming
space. /us, the semantic features of the images extracted
from CNN can be preserved in the hash code.

/e basic rule of designing the loss function is to pre-
serve the similarity order, that is, minimize the gap between
the approximate nearest neighbor search result computed
from the hash codes and the ideal search result obtained
from the input space. A widely used solution is to select
sample pairs in which the distance between Xa and Xp is
greater than the distance between Xa and Xn, in a minibatch.
In this work, we choose the hardest positive and negative
sample pairs to compute the loss. /e function is defined as
follows:

L � 􏽘

P

i�1
􏽘

K

a�1
max σ + max

p�1...K
f x

i
a􏼐 􏼑 − f x

i
p􏼐 􏼑

�����

�����2
􏼒 􏼓 − min

j�1,...,P
n�1,...,K

j!�i

f x
i
a􏼐 􏼑 − f x

j
n􏼐 􏼑

�����

�����2
􏼒 􏼓, 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (4)

where P stands for the categories in the batch, K stands for
the number of images in the category, xi

a means the ath
picture in the ith class, and σ is the margin parameter.

For fast convergence, it is sensitive to the selection of
triplets. Here, we use large mini-batches and only compute
the hardest positive and negative samples within a minibatch
instead of selecting the hardest triplets in all training data.
Furthermore, these functions are differentiable almost ev-
erywhere, which means they can be used in models trained
by stochastic gradient descent. On the other hand, imple-
mentation details make batches of 20–30 exemplars more
efficient.

Moreover, by minimizing equation (4), the manual
margin parameter σ is designed to enforce a margin be-
tween the hard positive and hard negative pairs. /erefore,
we optimize the parameter through the training process
with the initial value of 0.2, and implementation details
make margin parameters of 0.1 to 0.8 of exemplars more
efficient. How to automatically determine the margin and
incorporate class-specific or sample-specific margins re-
mains challenging.

3.5. Generate Hash Code. When the network training is
completed, the given image will get a K-bit hash code. We
define sgn(x) as a symbolic function for each component.

sgn(x) �
1, x≥ 0.5,

0, x< 0.5.
􏼨 (5)

If the eigenvector of image xi extracted from the network
merging layer is xi, then the hash code of this image xi can be
described as Bi � sgn(xi). We can compute all images in the
database to build a binary index library. We can use the hash
code to do the nearest-neighbor retrieval in the Hamming
space during the retrieval process, which is very efficient
because the Hamming distance can be calculated using XOR.

/e main steps of the proposed method are summarized
in Algorithm 1.

4. Experiments

In this section, we conduct extensive experiments on two
tourist image datasets to evaluate the efficiency and
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effectiveness of the proposed method. /e details of the
experiments and the results are described in the following
sections.

4.1. Datasets and Experimental Settings

4.1.1. Datasets

(1) China-60 Dataset. Most public landmarks such as
Oxford5K and Paris6K present unrelated images suitable for
classification frameworks. However, images representing
views of the same scene are needed. /us, we developed a
dataset called China-60, randomly selected from Flickr and
Baidu Images based on the keywords of 60 popular tourist
attractions in China. Variability of images comes from
different viewing scales, angles, lighting conditions, and
image clutter. /erefore, we provide 3–5 tags to describe the
image contents, such as name and places. Our research’s
primary purpose is tourism image retrieval, so we have
developed a Chinese image dataset with attraction to verify
the method’s performance on the image retrieval task.

For each tourist attraction, we crawl 500 to 600 images
and remove irrelevant or low-quality photos. /e final
dataset contains 25,890 images of 60 tourist attractions,
including buildings, rivers, forests, mountains, and other
types of interests, all photographed under different light,
seasons, and angles. We divide the dataset into the training
set, test set, and validation set in a ratio of 8 :1 :1. In
evaluation, the images belonging to the same tourist at-
traction are considered similar. On the contrary, they are
deemed dissimilar. Typical images are shown in Figure 2.

(2) Public Datasets. For a clear comparison and analysis, we
also experiment on the different datasets Cifar-10 and
Flickr30k. Cifar-10 contains 60,000 images, which are di-
vided into ten categories, each containing 1,000 images. All
photos have a 32× 32 resolution. We also divide them into
the training set, validation set, and test set according to the
proportion of 8 :1 :1. Flickr30k contains 31,783 images

focusing mainly on people and animals. We select 1000
outdoor images randomly for the testing set and 30783 other
for the training set.

4.1.2. Baseline and Evaluating Indicators

(1) Baseline. To illustrate the benefits of the proposed
method, we compare it with various approaches, including
existing traditional hash approaches LSH [27], SH [31],
PCAH [53], PCA-ITQ, PCA-RR [28], CBR-rand, CBR-opt
[54], and DSH [55]. We also compare it with deep hashing
approaches, such as DLBHC [38] and DNNH [9]. Finally,
after fine-tuning, the features are extracted from the pre-
trained VGG network as the mapping function input instead
of handcraft features.

(2) Evaluating Indicators. Four evaluation indicators were
used to assess the performance of the different methods as
follows: (1) precision atN sample curve, where precision is the
proportion of the correct samples in the returned images, (2)
recall atN samples curve, where recall is the proportion of the
accurate results in the query results to all correct results, (3)
precision-recall (P-R) curve which is the curve of precision
changing with recall, and (4) mean average precision (MAP),
which is the area surrounded by the P-R curve.

4.2.Results andDiscussiononChina-60. We first evaluate the
effectiveness by comparing each method’s performance
under different lengths of hash code, which can get a
convincing result. Firstly, we assess the performance in
terms of MAP, calculated for all returned samples by sorting
with the Hamming distance. /e MAP value is shown in
Table 2, where DNNH, DLBHC, and the proposed method
are deep hashing methods, while the other ways are tradi-
tional hashing methods. As shown in Table 2, the proposed
method’s results perform better than other methods, and the
MAP values of most practices have a positive correlation
with the length of the hash code. /e experiments show that

Input: Θ ∈ Rd×n, the training image matrix
q, the hash code length
j, number of sub-layers
W, the weight matrix

Output: deep hash functions h(x)
(1) Initialize the deep models by the pre-trained VGG-16 Sub-Network
(2) Update W in training process according to loss function;
(3) For x ∈ Θ do
(4) For iter� 1 to j do
(5) Compute g(v(xi)iter);
(6) Compute fj(x);
(7) Quantize the relaxation binary into binary code with fj(x);
(8) Return h(xi) � sgn(xi)

(9) End for
(10) End for

ALGORITHM 1: Key steps of the approach.
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traditional hashing methods and the size of the binary
feature are often highly correlated.

Figure 3 shows the precision-recall (P-R) curves for
different methods on the Cifar-10 dataset. We plotted P-R
curves on the hash code of four diverse lengths. It can be
seen from the diagram that our approach can always
maintain the highest precision rate and smaller curve slope
under all-length hash code when the recall rate is low. /is
means that our policy has better retrieval performance. We
can also find the gap between the deep hashing algorithm
and the traditional algorithm in the graph. Most traditional
hashing algorithms have a concave curve on the short hash
code, signifying that they have terrible performance on the
short hash code. However, with the increase of the length of
hash code, part of the P-R curves of traditional hashing
algorithms become convex curves, which signify that an
extended hash code is often required to ensure the retrieval

of conventional hashing effect algorithms. /is is consistent
with what we said before. On the other hand, the deep
hashing algorithms have a slight variation in curve radian
under different lengths of hash code, showing the stability
and superiority of the deep hashing algorithms.

/e TOP-K accuracy rate reflects the proportion of the
first K returned results from the correct results of the query,
which the user can intuitively perceive in the retrieval re-
sults. /erefore, the TOP-K precision rate is an important
index to evaluate the retrieval algorithm’s practical appli-
cation performance. Figure 4 shows the precision of TOP-K
retrieval results in the nearest neighbor retrieval. Similarly,
the plot shows the precision curves of 32 bits (a), 64 bits (b),
128 bits (c), and 256 bits (d) lengths of hash code, re-
spectively. /e horizontal coordinate of the curve is the
number of returned samples, and the vertical coordinate is
the precision rate. It can be seen from the diagram that the
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�e Water Cube

Lugou Bridge

Xi’an Tower Huangguoshu
Waterfalls

Hukou
Waterfalls

Confucian
Temple

Mausoleum of the
First Qin Emperor
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Tower

Hongya Cave Hulunbuir Pasture
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Tian An Men �e Great
Wall

Hongcun Spouting Spring Mount Tai Longsheng
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�e Imperial
Palace

Bird’s Nest Stadium Ruins of St Paul Great Wild Goose
Pagoda

Figure 2: Sample images of China-60.

Table 2: /e value of MAP for different methods on the China-60 dataset.

Method
China-60

32 bits 64 bits 128 bits 256 bits
CBE-rand 0.329 0.473 0.618 0.681
CBE-opt 0.338 0.496 0.628 0.694
ITQ 0.681 0.794 0.804 0.813
LSH 0.314 0.483 0.597 0.691
PCAH 0.515 0.614 0.415 0.278
SH 0.102 0.234 0.302 0.293
PCA-RR 0.517 0.652 0.694 0.728
DSH 0.238 0.283 0.397 0.465
DLBHC 0.814 0.841 0.856 0.849
DNNH 0.839 0.864 0.860 0.862
Ours 0.895 0.907 0.912 0.903
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Figure 3: /e precision versus recall curves. /e length of hash code is 32 bits (a), 64 bits (b), 128 bits (c), and 256 bits (d).
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Figure 4: /e precision versus the variable number of sample curves. /e length of hash code is 32 bits (a), 64 bits (b), 128 bits (c), and 256
bits (d).
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Figure 5: Recall versus variable number of sample curves. /e hash code is 32 bits (a), 64 bits (b), 128 bits (c), and 256 bits (d).
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retrieval precision of our approach is always the best of all
cases, and when fewer samples are returned, the retrieval
precision can reach the highest value. /is reflects that the
correct samples can be usually returned preferentially, which
makes our method sufficiently meet the requirements of image
recognition and retrieval for unknown scenic spot images.

Figure 5 shows the TOP-K relation curve between the
recall rate and returned sample. /e horizontal coordinate is
the number in returned samples, and the ordinate is the
recall rate of the sample. /e correct sample in the returned
sample accounts for all of the correct samples in the data-
base. /is is an essential criterion of evaluation that de-
velopers and administrators of the retrieval system concern
about. In addition, it reflects the retrieval success degree of
the algorithm in the database. As shown in the figure, our
method achieves the best TOP-K recall for all coding lengths.
Figure 6 exhibits some query examples on the China-60
dataset. For each query, each method returns the top 6 query
results by using the 128-bit hash code, and red represents the
incorrect returned results.

4.3. Generalization to Other Image Data Sources.
Although the primary purpose of this article is to explore the
effect of retrieval methods on image retrieval tasks in tourist
attractions, for demonstrating the universality of the pro-
cess, we also conducted experiments in public image
datasets. Considering that the size of the Cifar-10 dataset
image is 32× 32, we shorted the generated hash code length
to 12 bits, 24 bits, 32 bits, and 48 bits. /us, the hash code
length is also consistent with the Flickr30 dataset.

Table 3 shows the results of MAP values on the two
datasets, where CNNH, DNNH, DLBHC, and the proposed
method are deep hashing methods, and the others are the

no-deep methods. It can be seen from the results that our
approach has a significant advantage over the no-deep
hashing algorithm. /e MAP value of most no-deep
methods dramatically increases with the length of the hash
code. In the best case, compared with the best no-deep
hashing method, the deep hashing algorithm still has a
significant superiority. For the deep hashing approach, the
accuracy of our process has a 4% to 8% enhancement, which
shows that the hash code generation strategy proposed in
this paper can efficiently improve the retrieval effect.

4.4. Generalization to Cross-Datasets. To verify our method
in general, we conduct experiments over the cross-datasets.
/e aim is to utilize two or more datasets labeled with
different classes to train and evaluate a single model. For
example, we train the proposed model by various datasets:
the Flickr30 dataset and the Cifar-10 dataset, respectively.
/e performance of the trained model is tested by taking a
different dataset, China-60.

/e experimental results are shown in Table 4, which
shows that the overall precision scores are relatively low,
indicating that cross-datasets evaluation is more challenging
for the retrieval task. However, it also demonstrates that the
proposed method achieves the competitive performance on
the cross-datasets tourist images retrieval task, demon-
strating the effectiveness of our proposed method.

4.5. Time-Cost Analysis. Besides the effectiveness analysis,
we also compare the proposed approach with othermethods,
deep and no-deep, in terms of the computation time cost. All
the experiments are carried out on the same platform with
Intel i7 8700K CPU, NVIDIA GTX 2080, and 64G RAM.
Table 5 shows the average computation times of different

Query Our method ITQ LSH DLBHC

Figure 6: On the China-60 dataset, the top 6 results of 4 query images are returned by different hashing methods’ retrieval. /e pictures of
the first column are queries, and we use 128-bit hash codes for retrieval. /e image in the red line is considered not similar to the query
image.
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methods. /e proposed approach is comparable with other
methods.

5. Conclusion

In this paper, we proposed a deep hashing method with
scalable interblock for large-scale tourist attractions. After
end-to-end training of the constructed deep hash network,
the network utilizes the triplet loss function to guarantee the
hash code’s characteristic similarity. To enhance the per-
formance and efficiency of function optimization and the
descriptive ability of hash code, we improve the network and
triplet loss function. Based on the results, we report the
quantitative evaluation of the proposed method to scale hash
length. Experimental results on social image datasets vali-
date the superiority of the proposed method. However, the
relaxed binary code obtained from the network may cause
feature loss in the threshold process. In future work, we will
improve the activation function to dispose of these
problems.
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Pulmonary infection is a common clinical respiratory tract infectious disease with a high incidence rate and a severe mortality rate
as high as 30%–50%, which seriously threatens human life and health. Accurate and timely anti-infective treatment is the key to
improving the cure rate. NGS technology provides a new, fast, and accurate method for pathogenic diagnosis, which can provide
effective clues to the clinic, but determining the true pathogenic bacteria is a problem that needs to be solved urgently, and a
comprehensive judgment must be made by the clinician combining the laboratory results, clinical information, and epidemiology.
'is paper intends to effectively collect and process the missing values of NGS data, clinical manifestations, laboratory test results,
imaging test results, and other multimodal data of patients with infectious respiratory diseases. It also studies the deep feature
fusion algorithm of multimodal data, couples the private and shared features of different modal data of infectious respiratory
diseases, and digs into the hidden information of different modalities to obtain efficient and robust shared features that are
conducive to auxiliary diagnosis. 'e establishment of an auxiliary diagnosis model for the infectious respiratory diseases can
intelligentize and automate the diagnosis process of infectious respiratory, which has important significance and application value
when applied to clinical practice.

1. Introduction

With the advent of the big data era, data has flooded all
aspects of society. For modern medicine, the human body
has become a big database, and various medical data make
modern medicine show obvious data characteristics. Data,
especially medical data, need to be reviewed dialectically.
With the combination of big data analysis technology and
biomedicine, various computational modeling methods
(pattern recognition, data mining, machine learning, deep
learning, etc.) have been applied to the field of medicine.
Based on this, we design and establish research based on
high-throughput pathogen detection system of the artificial
intelligence high-performance computing platform of the
sequencing platform which establishes a high-order tensor
database for infectious respiratory diseases and a multi-
modal database that combines imaging, laboratory exami-
nation results and clinical manifestations, based on artificial
intelligence for disease exploring and unifying the

treatments of patients and establishing a treatment query
system. 'is paper aims to study the combination of NGS
data with clinical data and epidemiological data with the
help of in-depth calculation models, in the diagnosis and
treatment of infectious respiratory diseases’ application.

Pulmonary infection is a common respiratory infectious
disease in clinical practice with a high incidence. It ranks the
first cause of death in countryside and the third in urban
areas of China, especially severe pneumonia. It has an in-
creasing trend in recent years, although the treatment
methods have great progress than before, its fatality rate is
still as high as 30% to 50%, which seriously threatens human
life and health. 'e rapid and accurate diagnosis of path-
ogenic bacteria of respiratory tract infection is the key to
treatment, which can help clinicians to optimize the use of
antibacterial drugs in a timely manner, thereby speeding up
recovery, increasing cure rate and improving prognosis. At
present, the commonly used methods of microbial detection
such as smear, culture, and polymerase chain reaction
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cannot effectively meet the clinical needs. Genome analysis
second-generation sequencing technology (mNGS, also
known as high-throughput sequencing technology) provides
a new, rapid, and accurate method for pathogen diagnosis.
Compared with traditional pathogenic microorganism de-
tection, mNGS has high sensitivity and large amount of
information. It can detect pathogens early, guide the precise
selection of antibacterial drugs, reduce the use of antibac-
terial drugs, reduce the mortality of patients, and can
identify new/known pathogens infection and mixed
infection.

2. Current Research Status

At present, the cause of 60% infectious diseases is still
unclear [1]. Clinical metagenomics is a detection technology
that uses high-throughput sequencing technology to clarify
the classification and function of all microorganisms in a
sample without relying on traditional microbial culture
[2, 3]. 'is technology can simultaneously detect bacteria,
fungi, viruses, and parasites in the same sample without any
bias and does not require specific amplification. It is suitable
for the investigation of infectious disease outbreaks of un-
known pathogens and infection with negative results from
traditional tests, immunodeficiency patients, and critically ill
infected patients [4]. For special populations such as infants
and young children, patients with advanced age or patients
with underlying diseases, immunodeficiency populations,
repeated hospitalizations, patients with repeated negative
tests of traditional microbial detection techniques and poor
treatment effects, patients with suspected infections of
special pathogens, patients with unexplained infectious
diseases, and patients with critical illness, it is necessary to
identify pathogenic bacteria as soon as possible. On the one
hand, due to the complexity of pathogenic microorganisms,
traditional opportunistic pathogens may become the main
pathogenic microorganisms; on the other hand, pathogenic
microorganisms carry multiple antibiotic resistance genes
[5]; in this case, clinical metagenomics is the best diagnostic
option [4, 6–8].

3. Application of NGS in Detection of
Pulmonary Pathogen Infection

'e narrow clinical metagenomics technology mainly refers
to the shotgun next generation sequencing technology. 'e
main sequencing process is to break all the DNA in the
sample into small fragments first and then build a library and
sequence it on the computer.'e informatics method splices
the sequencing results and finally compares the database to
clarify the detected species [9]. 'e broad clinical meta-
genomics technology also includes second-generation se-
quencing technology, which mainly includes sequencing
technology of detection bacterial 16S ribosomal RNA and
amplification subsequencing technology of detection of
fungal internal transcribed spacer (ITS). 'e main se-
quencing process is to obtain all the DNA in the sample first,
then use primers for specific bacteria or fungi to perform
PCR amplification, build a database and sequence on the

computer, use bioinformatics methods to obtain qualified
sequencing data, and finally compare the database to clearly
detect the species [10]. It is worth mentioning that clinical
metagenomics can simultaneously identify bacteria, fungi,
viruses, and protozoa in sample, can be accurate to the
species level, and can also identify the antibiotic resistance of
microorganisms and other functions, while amplicon se-
quencing technology can only identify bacteria or fungi in
the sample that is accurate to the genus level, and the mi-
crobial related functions can only be inferred from the
database [11].

Clinical metagenomics is considered to be the most
powerful weapon to identify pathogens of infectious diseases
[12], but there is no unified clinical application path yet. We
combined the work characteristics of clinicians, laboratory
technicians, and bioinformatics analysts in the clinical ap-
plication of clinical metagenomics and summarized the
application mode of clinical metagenomics in the precision
diagnosis and treatment of respiratory infectious diseases.
'is model requires communication among clinicians,
laboratory technicians, and bioinformatics analysts in order
to obtain the most effective data and give precise medication.

'e samples of patients with respiratory tract infection
mainly include sputum, airway aspirate, and alveolar lavage
fluid. Moran Losada et al. [13] used clinical metagenomics to
detect induced sputum samples from patients with cystic
pulmonary fibrosis at different ages and confirmed that 99%
of respiratory tract microorganisms are hundreds of bac-
teria, mainly Pseudomonas aeruginosa and Staphylococcus
aureus is predominant, while 10 types of fungi and viruses
account for only about 1% of the respiratory tract micro-
organisms. 'e fungi are mainly Candida and Aspergillus,
and the viruses are mainly adenovirus and herpes virus. 'e
study also clarified that, in each respiratory sample, there is
abundance of microorganism; in addition, the study con-
firmed the relevant antibiotic resistance genes of Pseudo-
monas aeruginosa and Staphylococcus aureus, which provide
a basis for the precise selection of antibiotics. Langelier et al.
[14] enrolled 22 bone marrow transplant patients admitted
to hospital for lower respiratory tract infection and used
clinical metagenomics to detect 250 µl of alveolar lavage fluid
samples from each patient, and the results confirmed the
existence of lungs in bone marrow transplant patients with
acute respiratory infections HCOV229E, HRV-A, HHV-6,
CMV, HSV, EBV, human papilloma virus, torque Tenuo
virus, and other viruses, and there are also rare pathogenic
bacteria: Streptococcus mitis (Streptococcus mitis) and co-
rynebacterium (Corynebacterium propinquum), and the
clinical symptoms of patients with coexistence of bacteria
and viruses are significantlymore severe. In addition, clinical
metagenomics has also been used to clarify the character-
istics of lung microbes in lung transplant patients secondary
to lung infection [15].

4. Preprocessing ofMultimodal Clinical Data of
Infectious Respiratory Diseases

In view of the fact that there is no unified standard for the
scope of data retrieval and database establishment of existing
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infectious respiratory disease cases, through the retrospec-
tive data sorting and historical data follow-up, a large
number of new infectious cases and the result are collected
and tested. Derive complete high-throughput genomics data
and clinical association data of pathogenic microorganisms,
formulate data retrieval range, and summarize case data.
Aiming at the problems of data missing and inaccurate data
in aggregated multimodal data, the incomplete data-filling
algorithm based on distributed subtraction clustering is
studied. 'e incomplete data are clustered by an improved
subtractive clustering algorithm, and then, the incomplete
data is filled with the clustering result and weighted distance.
'ereby, the data with missing attribute values can be filled
in quickly and accurately, so as to prepare for subsequent
tasks such as data mining and analysis:

(1) Collection and collation of case data of pulmonary
infectious diseases formulate the definition, inclu-
sion, and exclusion criteria of cases of infectious
lung diseases. According to research needs, in ac-
cordance with the research plan approved by the
unit’s ethical approval and with the patient’s in-
formed consent, collect the case data of pathogenic
microorganism genetic testing in our hospital’s
“National Gene Testing Application Demonstration
Center” since 2018 and trace their outpatient or
hospitalization information and relevant clinical
data. Retrieve data through the hospital’s HIS
system, LIS system, and PACS system and formu-
late the scope of data retrieval including the name of
the medical institution, unique ID number, date of
onset or medical consultation, basic personal in-
formation (gender/date of birth/occupation, etc.),
medical treatment department, main symptoms
and signs, past history, chief complaint, main di-
agnosis, imaging examination, and laboratory ex-
amination (blood routine, CRP, pct, d-dimer,
interleukin-6, G/GM test, Aspergillus antibody,
new type Coccus capsular antibody, tuberculosis
antibody, etc.). Download the diagnosis and
treatment information according to the established
information catalog to form the original csv data-
base. 'e case data information of the target case is
screened according to the researched infectious case
definition and inclusion and exclusion criteria, and
the infectious case data statistical table is formed.
Finally, the formed data statistical table is
summarized.

(2) Data filling of cases of lung infectious diseases.

Firstly, it studies the optimization of subtractive clus-
tering algorithm by using the similarity measurement
method of incomplete data and the idea of matrix multi-
plication and realizes the direct clustering of incomplete
datasets based on the distributed subtractive clustering al-
gorithm of multilevel MapReduce. 'e main time to execute
the algorithm is spent on dividing the dataset S, calculating
the Euclidean distance between sample points and calcu-
lating the density index of sample points. In order to reduce
the time cost of the algorithm and improve the efficiency of

the algorithm, for these three steps, a multilevel MapReduce
process is used for distributed parallel computing. In order
to make the division of the dataset S suitable for the
MapReduce calculation model, the data to be processed is
first stored in the form of rows so that it can be sliced by
rows, and the data between slices has no correlation. In the
process of subtractive clustering, the calculation of the
neighborhood radius and the density of sample points need
to use the distance between samples, so it is particularly
important to generate the distance matrix between sample
points. In order to make the data subset C suitable for
MapReduce calculation model processing and then generate
the distance matrix, this project uses two copies of the data
subset C as the calculation matrix to perform the MapRe-
duce implementation of matrix multiplication. In the pro-
cess of using subtractive clustering to cluster the complete
data subset C, it is necessary to calculate and modify the
density index. It can be known from the density index
formula that all the values in the ith row of the distance
matrix G correspond exactly to the elements of the density
index of the data object i. 'is feature ensures that the
correction calculation of the density index is suitable for
MapReduce parallel design.

After clustering incomplete data, the method of filling
the missing data by studying the distance weighting coef-
ficient between the data objects and data points in the same
class is used to avoid the interference of other objects on the
filling value. 'e key of this method is to determine the
weighting coefficient of each data object. In order to de-
termine the weighting coefficient objectively and accurately,
this article uses the following formula to calculate the dis-
tance between the data objects to provide the weighting
coefficient:

Dis si, sj􏼐 􏼑
m

m′

������������

􏽘

m

k�1
sik − sjk􏼐 􏼑

2

􏽶
􏽴

, sik ≠ ∗ and sjk ≠ ∗ ,

(1)

where Dis (Si, Sj) represents the distance between the data
object Si and Sj, m is the number of attributes of the data
object, andm′ is the number of the same attributes of the two
data objects that is not missing. Finally, fill incomplete data
based on clustering and weighted distance.

5. Deep Feature Fusion Learning Model
Based on Multimodal Data of Infectious
Respiratory Diseases

'is paper studies the deep nonnegative correlation feature
fusion algorithm of multimodal data. 'rough the co-
learning of unsupervised related and unrelated features, the
influence of modal private features is removed from mul-
timodal shared features, and the shared space is more ef-
fective and robust and the shared space is more effective and
robust of the multimodal data-related fusion features. Re-
search the deep migration feature fusion algorithm of un-
balancedmultimodal data, coupling themodal deep network
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and the modal semantic correlation model, and design a
unified deep network architecture based on multilayer se-
mantic matching.

(1) Unsupervised multimodal data deep nonnegative
correlation feature fusion algorithm
Given amultimodal datasetX � X(V)􏼈 􏼉

V

v−1, it contains
n data instances under V modes, XV ∈ Rdv×n which
represents the featurematrix of n data instances under
the vth mode, and each data instance is represented as
a dv-dimensional feature vector. First, the structured
sparse projection matrices U

(v)
I and U

(v)
C are used to

convert the feature matrix X(V) of each mode into a
mode private feature matrix V

(v)
I and a mode shared

feature matrix VC. 'en, based on the regularization
of the invariant graph and the sparse projection limit,
the multimodal reconstruction error function is
constructed, and the function variables are jointly
optimized to minimize the reconstruction error
through the shared feature coupling. Finally, the
cluster analysis of the data is completed on the ob-
tained multimodal-shared feature VC.

(2) Deep migration feature fusion algorithm for
unbalanced multimodal data Based on typical
correlation analysis (CCA), this project intends to
construct multilayer semantic correlation model
of cross-modal data. Typical correlation analysis
model can project different data domains to re-
lated feature representation subspace through
effective matrix conversion. 'e correlation be-
tween data domains is the greatest. To implement
the model, first, [XS, XT] is encoded using source
and target domain depth networks, respectively,
to learn the hidden layer data feature represen-
tation corresponding to the source and target
domain HS(l) � f(XS(l− 1)) and HS(l) � f(XS(l− 1)),
where f is the nonlinear activation function of the
deep learning network. 'en, typical correlation
analysis is carried out on the obtained domain
hidden layer features HS(l) and HT(l). 'e maxi-
mum correlation coefficient matrix correspond-
ing to the learning source and target domain US(l)

and UT(l):

Γ U
S(l)

, U
T(l)

􏼐 􏽩 �
U

S(l)T

, 􏽐STU
T(l)

������������

U
S(l)T

􏽐SSU
S(l)

􏽱 �����������

U
T(l)T􏽐TTUT(l)

􏽱 . (2)

Match the features of the first layer to a more similar
modal semantic space through the correlation coefficient
matrix and then carry out the semantic correlation of the
next layer. 'e coupled modal deep network is related to
each layer of modal semantics, and a deep multimodal
multilayer semantic matching model can be obtained, which
is defined as minimizing the reconstruction error of the
source and target deep learning network, while maximizing
the correlation of the cross-domain deep network. 'e
specific objective function is as follows:

min J RS,T􏼐 􏼑 �
Js θs

( 􏼁 + JT θT
􏼐 􏼑

Γ U
S
, U

T
􏼐 􏼑

. (3)

Js(θ
s) and JT(θT) are the reconstruction errors of the

source and target depth networks, including cost functions
and parameter regularization terms, respectively.

6. Establish a Whole-Process Auxiliary
Diagnosis and Reasoning Model for
Infectious Respiratory Diseases

'is paper takes expert experience as the core, uses existing
medical dictionaries, electronic medical records, various
medical guidelines, expert consensus, and other basic data to
construct a domain knowledge map, and realizes it through
knowledge extraction and knowledge fusion technology.
Combine the in-depth feature fusion learning results of the
multimodal data of infectious respiratory diseases, based on
the knowledge map, and refer to the overall diagnosis
process of infectious respiratory diseases in the hospital at
this stage, establishing the whole process assistance for the
infectious respiratory diseases’ diagnostic reasoning model.

6.1. Construction of Knowledge Map of Infectious Respiratory
Diseases. 'e data sources used to construct the knowledge
graph can be divided into the following types.

Structured data: structured data extraction is done
through the data integrator. 'e data integrator is divided
into three parts: data integration design tools, data inte-
gration conversion tools, and data read-write plug-ins. Data
integration design tools are used to provide users with
graphical design data integration logic functions, data in-
tegration conversion tools are used to convert user designs
into data integration application codes, and data read-write
plug-ins are used to provide data read-write functions for
data integration applications.

Semistructured data: semistructured data is character-
ized by a certain implicit structure, but its structure changes
greatly and lacks standardization. Two types of semi-
structured data, encyclopedia websites and industry vertical
websites, can usually be used to construct knowledge graphs
in vertical domains. 'ese data are all HTML-based Web
data, and the web page elements to be extracted can be
located through their label symbols. 'e web page mainly
consists of the entry card at the top, the free-form text in the
middle part, and the entry label at the bottom. 'e label
structure of the entry card and entry label is relatively fixed.
It can extract the required entity name, entity description,
entity attribute, and relationship with other entities from the
entry card part.'e type of entity can be obtained directly or
indirectly from the entry label. 'e free-form text part in the
middle needs to extract the required knowledge through a
long- and short-term memory network (LSTM).

Unstructured data: unstructured text is processed,
through the named entity recognition method, in which the
entity and the category of the entity have been identified.
'en, the semantic relationship between entities is extracted
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from the text through the relationship extraction module.
For this task, first, train a relationship classifier, through
which it determines whether there is a certain predefined
relationship between two entities in a piece of text. 'is is
essentially a classification problem of sequence data, which is
solved by using a relationship extraction method based on
remote supervision.

6.2. Auxiliary Diagnosis and Reasoning Model for Infectious
Respiratory Diseases. 'e auxiliary diagnosis and reasoning
model of infectious respiratory diseases is based on the
domain knowledge map. After the entities and relationships
of the examples are embedded, the encoding part and the
decoding part are designed, and finally, the infectious re-
spiratory diseases are classified and predicted. 'e coding
part first constructs a convolutional layer to process mul-
timodal data, inserts an attention module to extract features
of instance data, and then combines the deep feature fusion
model studied in this project to explore the deep information
of different modal data. 'e decoding part finally predicts
the type of disease in the case to achieve the purpose of
auxiliary diagnosis.

7. Discussion

In the era of big data, with the rapid development of
multimedia technology and the richness of data description
methods, multisource, heterogeneous, and other multi-
modal data are widely available [16, 17]. Multimodal data
refers to data obtained through different fields or perspec-
tives for the same description object. By using the com-
plementation of information between modalities, more
accurate data characteristics can be learned, and subsequent
data prediction and decision-making tasks can be effectively
supported [18–20]. Feature learning of multimodal data
requires effective data fusion methods. However, in practical
applications, multimodal data usually has low-quality
characteristics such as inaccuracy, incompleteness, and
imbalance: inaccuracy refers to the possibility in multimodal
data. It will contain nonrelated information such as noise or
irrelevant items; incompleteness means that part of the
modal information or part of the attribute information of
some data instances in the multimodal data is missing;
imbalance means that there are more instances of some
modal data. And, other modal data instances are relatively
small, so it is necessary to use modalities containing more
instances to assist modalities containing fewer instances for
analysis and learning. 'e abovementioned characteristics
pose great challenges for the design of multimodal data
fusion methods.

Deep neural networks can effectively filter data noise and
deep abstract features of learning data through multilayer
nonlinear conversion and promote similar semantic fusion
[21]. 'erefore, this project extends the deep neural network
to inaccurate, incomplete, and unbalanced multimodal data
and studies the corresponding in-depth fusion algorithm of
low-quality multimodal data. 'rough the multilayer cor-
relation and matching of modal data, a cross-modal

integration deep feature fusion model of coupled modal
network and shared features is obtained.
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Aim. -is study aims to compare the postoperative analgesia between preoperative and postoperative ultrasound-guided
transversus abdominis plane (TAP) blocks for different durations of laparoscopic gynecological surgery. Methods. A total of 120
patients, ASA I-III, 18–65 years of age, were divided randomly into 2 groups: preoperative TAP group (pre-TAP group) and
postoperative TAP group (post-TAP group). Patients in the pre-TAP group (n� 60) and post-TAP group (n� 60) received
bilateral TAP blocks of 0.375% ropivacaine, 40mL, preoperatively and postoperatively, respectively. Duration of surgery,
postoperative pain score, consumption of analgesics, and postoperative nausea and vomiting (PONV) during the first 24 h
postoperatively were recorded. Results. For all the patients in the two groups, similar analgesia was obtained with no statistical
difference.-e same results were found in duration of surgery <180min. Meanwhile, patients undergoing surgery >180min in the
post-TAP group obtained lower postoperative pain score, lower analgesics consumption, and higher satisfaction score than those
in the pre-TAP group. Conclusion. Postoperative TAP block could offer better postoperative analgesia than preoperative TAP
block for patients undergoing surgery >180min. No difference was found in analgesia effect between preoperative TAP block and
postoperative TAP block for patients undergoing surgery <180min.

1. Introduction

-ere are several methods to offer postoperative analgesia
for abdominal surgery, oral analgesics, patient-controlled
intravenous analgesia (PCIA), patient-controlled epidural
analgesia (PCEA), and regional nerve block [1–3].

PCEA plays a direct role in the near operative region and
possesses a more immediate analgesic mechanism; thus, it
could offer fast, clear, and accurate analgesic effect and
reduce the use of opioids. PCEA seems to be an ideal method
for postoperative pain control; it could be demonstrated to
have a good postoperative analgesic effect in many common
operations such as abdominal and gynecological surgeries
[3, 4]. PCIA acts on the whole body through intravenous
analgesics with relatively longer and more rapid analgesic
effect with the PCA device. It has the advantages of simple
operation and a wide range of drug uses, including the

narcotic analgesics and nonsteroidal anti-inflammatory
drugs. PCIA is applicable to pain, postoperative pain, wound
pain, after-burn pain, and inflammatory pain [5, 6].

However, the side effects of PCEA and PCIA are also
notable [4, 7]. PCEA might cause low blood pressure,
pruritus, paresthesia, nausea, and vomiting, and PCIA could
cause itching and respiratory depression due to the inevi-
table use of opioids [4, 7, 8]. At the same time, with the
development of laparoscopic minimally invasive surgery, the
surgical incision is reduced, and the postoperative pain is not
as strong as open surgery [2, 9–11].

In view of the shortcomings of PCEA and PCIA, nerve
block has the advantages of less trauma, less impact on
systemic circulation, no inhibition of the respiratory center,
and relief of nausea and vomiting [2, 9, 12, 13]. Transversus
abdominis plane (TAP) block is a regional technique for
analgesia of the anterolateral abdominal wall [14] and may
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offer good analgesia on abdominal surgery, especially gy-
necologic surgery [15–18]. TAP block seems to be an in-
teresting alternative in patients with, for example, severe
obesity, where epidural or spinal anesthesia/analgesia is
technically difficult and/or poses a risk [19–21].

Previous studies showed that it was inconsistent to
determine the optimal time on TAP for patients undergoing
surgeries. Some investigators recommended that TAP be
performed before surgery [17, 20, 22], some preferred
postoperative performance [15, 16, 23, 24], and others found
that there was no difference between the two time points.

Till now, there have been no report to show the analgesic
effect of TAP on patients undergoing surgeries of different
duration. We aimed to compare analgesia between preop-
erative and postoperative TAP blocks for different duration
of laparoscopic gynecological surgery.

2. Materials and Methods

-is prospective, randomized, single-blind clinical trial was
approved by the ethics committee of the Second Hospital of
Dalian Medical University and clinical trials registration
number is ChiCTR1900027881.

2.1. Patient Population. We assumed that the difference in
consumption of postoperative analgesics between groups
was 20%; thus, at least 58 patients should be recruited in each
group. For convenience, we planned to recruit 60 patients in
each group.

-e inclusion criteria were planned as follows:

(1) ASA I-III
(2) 18–65 years of age
(3) Patients scheduled for laparoscopic gynecological

surgery under general anesthesia in the Second
Hospital of Dalian Medical University

-e exclusion criteria were planned as follows:

(1) Patients with history of chronic pain therapy during
the past half year

(2) Addiction (including opioids and benzodiazepines)
(3) Allergy to prescription medications
(4) Psychological disorders
(5) Pregnancy
(6) Any contraindication to TAP block
(7) Refusal of consent

2.2. Procedure. After signing the written consent, all the
patients were allocated into 2 groups randomly, pre-TAP
group and post-TAP group. Heart rate (HR), blood pressure
(BP), saturation of oxygen (SpO2), and bispectral index (BIS)
were monitored and data collected every 5 minutes. All the
patients received standard general anesthesia. Induction of
general anesthesia was induced using 0.03mg/kgMidazolam
(Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, China),
0.3 μg/kg Sufentanil (Yichang Humanwell Pharmaceutical

Co., Ltd., Yichang, China), 0.3mg/kg Etomidate (Jiangsu
Nhwa Pharmaceutical Co., Ltd., Xuzhou, China), and
0.3mg/kg Cisatracurium (Jiangsu Hengrui Medicine Co.,
Ltd., Jiangsu, China). Following intubation, maintenance of
general anesthesia was total intravenous anesthesia in-
cluding propofol (4–12mg/kg/h), remifentanil, and dex-
medetomidine. -e dosage was determined by the
anesthesiologist according to keeping BIS at the scope 50± 5,
systolic blood pressure (SBP) was controlled within 20% of
the base value, and the mean arterial blood pressure (MBP)
was not lower than 65mmHg. Cisatracurium was added at
0.05mg/kg according to the requirements of surgeons.
Crystals and colloidal liquid solutions are used for volume
displacement, and all aspects of anesthesia management are
performed by the anesthesiologist in accordance with cur-
rent clinical practice. -e tidal volume was set at 6–8ml/kg,
respiratory rate was set at 12 breaths/min, and end-expi-
ratory partial pressure of carbon dioxide (CO2) was main-
tained at 35–45mmHg. Dizocine (10mg) and Ramosetron
0.3mg were given intravenously 30 minutes before the end
of surgery. If HR was lower than 45 bpm or higher than
120 bpm, we intravenously injected atropine 0.5–1mg and
esmolol 0.5mg/kg, respectively; if BP was lower than 80% of
basic value or SBP was higher than 160mmHg, we ad-
ministered norepinephrine 8–12 ug/min and nicardipine
2–10 ug/kg/min, respectively.

After induction of anesthesia, patients in the pre-TAP
group received USG bilateral TAP block with 0.375%
ropivacaine (Beijing Taide Pharmaceutical Co., Ltd., Beijing,
China), 20mL each side, before incision and patients in the
post-TAP group were given same medications after the end
of surgery and before extubation. After extubation, patients
were transferred to postanesthesia care unit (PACU). When
patients reached the criteria of leaving PACU, they could be
transferred to ward. At ward, patients would be asked for the
pain score, which was visual analogue scale (VAS) at 0, 2, 6,
12, and 24 h postoperatively. Flurbiprofen axetil (Jiangsu
Hengrui Medicine Co., Ltd., Jiangsu, China), 50mg intra-
venously, used as postoperative analgesic should be given if
VAS was more than or equal 4.

2.3. Outcome Measures. Vital signs including HR, RR, BP,
SpO2, and BIS value were recorded every five minutes from
entrance to operating room to leaving the PACU. Con-
sumption of opioids during surgery, consumption of
postoperative analgesics, times of rescue, which means times
of postoperative analgesics demanding, duration of surgery,
pain score at 0, 2, 6, 12, and 24 h postoperatively, mean
duration of first analgesic demanding after surgery, post-
operative nausea and vomiting (PONV), and satisfaction
scores of patients and surgeons were also recorded.

VAS of 0 indicated no pain. VAS of 10 meant an ultimate
pain.-e VAS of patients was measured by a researcher who
did not know this study. Degree of PONV was measured
with a categorical scoring system (none� 0; mild� 1;
moderate� 2; severe� 3). Satisfaction score ranges from 0 to
10, and 0means totally unsatisfactory, while 10means totally
satisfactory. Duration of surgery was regrouped to three
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subgroups: subgroup S, in which duration of surgery was
<90mins; subgroup M, in which duration of surgery was
90–180mins; and subgroup L, in which duration of surgery
was >180mins. Only the patients were blinded to the group
assignment.

2.4. Statistical Analysis. GraphPad Prism version 5
(GraphPad Software, Inc.) was used for data analysis. De-
mographic data was analyzed by chi-square test and t-test.
Haemodynamic data, pain score and consumption of an-
algesics and opioids, were analyzed by repeated-measures
analysis of variance and post hoc pairwise comparison for
different stages of anesthesia. P< 0.05 was considered to
have a statistically significant difference.

3. Results

3.1. Subject Characteristics. We totally recruited 132 pa-
tients. 3 patients were deleted because they refused to co-
operate postoperatively, 7 patients were excluded because
they were changed from laparoscopic surgeries to open ones
during the surgeries, and 2 patients were deleted because of
being diagnosed as retroperitoneal tumor during surgeries
and they received abdominal surgery instead of gyneco-
logical surgery. -us, finally we recruited 60 patients in each
group.

-ere was no significant difference in gender, height,
weight, ASA status, and duration of surgery between the two
groups (Table 1). -ere was also no significant difference in
cases, height, weight, and ASA status among the three
subgroups (Table 2).

3.2. Clinical Results. No difference was found in vital signs
between pre-TAP group and post-TAP group; and no severe
accident happened.

-ere was no significant difference in postoperative pain
score between pre-TAP group and post-TAP group
(Figure 1).

In subgroup L, VAS in the pre-TAP group was higher
than that in the post-TAP group at 0, 2, and 6 hours
postoperatively (2.0± 1.3 versus 0.5± 0.7, 2.5± 1.3 versus
1.0± 0.8, and 3.1± 1.5 versus 1.6± 1.3, respectively) with
significant difference, P< 0.01 (Figure 2). No statistical
difference in postoperative pain score was found in subgroup
S and subgroup M between the pre-TAP group and post-
TAP group.

Data in Table 3 show that, for all the patients recruited,
there was no difference in duration of first rescue, times of
rescue, and satisfaction scores of patients and surgeons
between the pre-TAP group and post-TAP group. Con-
sumption of opioids (remifentanil) in the pre-TAP group
was significantly lower than that in the post-TAP group
(269.7± 86.4 versus 324.6± 136.4, P � 0.03). Degree of
PONV in the pre-TAP group was lower than that in the
post-TAP group (0.5± 0.8 versus 0.8± 0.9, P � 0.03).

In the three subgroups, consumption of opioids and
degree of PONV in the pre-TAP group were lower than
those in the post-TAP group with statistical difference. For

subgroup S and subgroup M, no statistical difference was
found in duration of first rescue, times of rescue, and sat-
isfaction scores of patients and surgeons between pre-TAP
and post-TAP groups. Meanwhile, in subgroup L, duration
of first rescue in the pre-TAP group was lower than that in
the post-TAP group (3.4± 2.8 h versus 11.0± 1.8 h,
P � 0.01). Times of rescue in the pre-TAP group was
1.0± 0.5, which was significantly lower than that in the
post-TAP group (0.5± 0.5) with P � 0.03. Patients in the
pre-TAP group gave higher satisfaction score compared to
their counterparts in the post-TAP group (7.4± 0.9 versus
8.8± 1.0), and the difference was significant (P � 0.04) (see
Table 4).

4. Discussion

-is was the first study to compare postoperative analgesia
effect between pre-TAP and post-TAP blocks for different
duration of surgeries.

Previous studies showed that it was inconsistent to
determine the optimal time on TAP for patients undergoing
surgeries. Some investigators recommended that TAP be
performed before surgery [17, 20, 22]. Mansouri et al. found
that bilateral intrapleural block performed before cardiac
surgery could get better analgesia than postoperative ma-
nipulation due to preemptive analgesia [25]. Niraj et al.
obtained same results in patients undergoing open appen-
dicectomy [26]. Some researchers concluded that the an-
algesic effect of TAP block performed postoperatively was
prior to emergence from anesthesia [15, 16, 23, 24].
Mcdonnell et al. found that the sensory block produced by
lidocaine 0.5% receded over 4 to 6 hours, which was sup-
ported by magnetic resonance imaging studies that showed a
gradual reduction in contrast in the transversus abdominis
plane over time. French et al. reported that general anes-
thesia with postoperative supplementary bilateral ultra-
sound-guided TAP blocks was chosen to reduce the
requirements for postoperative opioids and the risk of
postoperative respiratory depression [27, 28]. Meanwhile
other clinicians like Fibla et al. found that blocking time did
not seem to affect postoperative pain scores [29].

In our study, for all the patients in pre-TAP and post-
TAP groups, no difference was found in postoperative pain
score, which was similar to the results of previous studies
[29, 30]. In subgroups, no difference was found in subgroup
S and subgroup M between pre-TAP and post-TAP group.
Meanwhile, in subgroup L, postoperative scores in pre-TAP
groups were significantly lower than those in post-TAP
group at 0, 2, and 6 hours postoperatively, and the duration

Table 1: Demographic data.

Pre-TAP (n� 60) Post-TAP (n� 60) P

Age (Y) 44.6± 11.3 46.4± 10.4 0.93
ASA I 51 52 0.98
ASA II 9 8 0.98
BMI (kg/m2) 24.5± 3.6 24.5± 3.6 0.87
Duration (min) 133.4± 68.2 132.5± 71.6 0.74
ASA: American Society of Anesthesiologists.
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of first rescue was 4.4 hours postoperatively in pre-TAP
group and 8.0 hours postoperatively in post-TAP group.-e
above results indicate that the analgesic effect of bilateral

TAP of 0.375% ropivacaine began to fade at about 4 hours
after manipulation and began to disappear at about 8 hours
after manipulation. -is block duration in our study also

Table 2: Demographic data of subgroups.

Group S: <90min Group M: 90–180min Group L: >180min
Pre-TAP Post-TAP P Pre-TAP Post-TAP P Pre-TAP Post-TAP P

Case 22 21 1 19 20 1 19 19 1
Age (Y) 45.9± 11.4 45.6± 10.7 0.92 39.8± 11.5 49.6± 9.3 0.33 47.2± 10.2 44.2± 10.4 0.88
ASA I 18 18 1 16 17 0.95 17 17 1
ASA II 4 3 0.95 3 3 1 2 2 1
BMI (kg/m2) 25.0± 3.8 23.6± 2.6 0.19 24.5± 3.9 25.4± 4.7 0.38 24.0± 3.1 24.6± 3.0 0.78
Duration (min) 54± 19 56± 18 0.55 126± 23 122± 25 0.66 221± 31 226± 40 0.13

Post 0 Post 2 Post 6 Post 12 Post 24
0

1
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5
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Pre-TAP
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Figure 1: Postoperative pain scores of the pre-TAP group and post-TAP group. No significant difference was found.
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Figure 2: Postoperative pain score in subgroups. In group L, VAS in the pre-TAP group was higher than that in the post-TAP group at 0, 2,
and 6 hours postoperatively. ∗∗P< 0.01.
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explains why no difference was found in subgroup S and
subgroup M between pre-TAP and post-TAP groups. -e
durations of surgery in subgroup S and subgroup M were <2
hours, which indicates that the analgesic effect of bilateral
TAP of 0.375% ropivacaine had not begun to fade yet. But
this block duration was shorter than that in Stoving et al.’s
study, approximately 10 hours with large variation [31].
Although the concentration was the same in these two
studies, difference of block duration might be due to the
different pharmaceutical factory. From the above results, we
might conclude that it was necessary to decide the time of
TAP block according to the duration of surgery.

In our study, the consumption of opioids and dosage of
remifentanil in pre-TAP group were significantly lower than
those in post-TAP group (269.7± 86.4 versus 324.6± 136.4
ug/kg.min, P � 0.03). -e same results happened in all the
subgroups. In subgroup S, subgroup M, and subgroup L,
patients in pre-TAP group consumed less remifentanil
compared to their counterparts in post-TAP group with
statistical difference. -is result showed that pre-TAP block
could offer better analgesia than postoperative manipulation
due to preemptive analgesia, which leads to the lower
intraoperative consumption of opioids. -is result was also
consistent with studies from Mansouri [25] and Niraj et al.
[26]. However, in subgroup L, patients in pre-TAP group
consumed less postoperative analgesics compared to their
counterparts in post-TAP group. -is difference might be
due to the fact that the block duration of bilateral TAP of
0.375% ropivacaine was 4–8 hours after manipulation. -e
lower pain score and lower consumption of rescue could be
the reason why in subgroup L patients in post-TAP group
got higher satisfaction score compared to their counterparts
in post-TAP group.

-e degree of PONV in pre-TAP group was lower than
that in post-TAP group, and the same results happened in all
the subgroups. -is might be due to the lower consumption

of opioids in pre-TAP group. -is result was consistent with
Shin et al.’s study [30].

5. Conclusion

It was necessary to decide the time of TAP block according
to the duration of surgery. For patients undergoing lapa-
roscopic gynecological surgery, preoperative TAP block was
recommended for duration of surgery <180min for lower
consumption of intraoperative opioids, while postoperative
TAP block was better than preoperative manipulation for
duration of surgery >180min, which might obtain lower
postoperative pain score, less postoperative analgesics, and
higher satisfaction score. Further research is warranted to
investigate whether the TAP block technique can be im-
proved by optimizing dose and technique-related factors.
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Table 3: Clinical data of all the patients.

Pre-TAP Post-TAP P

Duration of first rescue (h) 5.1± 5.5 7.2± 4.8 0.56
Times of rescue 0.5± 0.6 0.5± 0.6 0.90
Degree of PONV 0.5± 0.8 0.8± 0.9 0.03∗

Remifentanil (ug/kg·min) 269.7± 86.4 324.6± 136.4 0.03∗

Satisfaction score of patients 8.5± 1 7.8± 0.8 0.78
Satisfaction score of surgeons 9.1± 0.8 8.9± 0.9 0.88
∗P< 0.05.

Table 4: Clinical data of subgroups.

Subgroup S: <90min Subgroup M: 90–180min Subgroup L: >180min
Pre-TAP Post-TAP P Pre-TAP Post-TAP P Pre-TAP Post-TAP P

Duration of first rescue (h) 6.5± 7.6 5.3± 5.3 0.23 5.2± 4.7 5.8± 4.2 0.57 4.4± 2.8 8.0± 1.8 0.01∗
Times of rescue 0.4± 0.5 0.3± 0.5 0.33 0.5± 0.5 0.7± 0.7 0.32 1.0± 0.5 0.5± 0.5 0.03∗
Degree of PONV 0.4± 0.8 0.6± 0.9 0.04∗ 0.5± 0.9 0.7± 0.7 0.04∗ 0.6± 0.8 1.3± 1.0 0.02∗
Remifentanil (ug/kg·min) 189.0± 28.8 239.0± 36.9 0.04∗ 279± 66.5 313.8± 163.2 0.04∗ 338.9± 95.5 404.3± 116.8 0.02∗
Satisfaction score of patients 9.1± 0.8 9.0± 0.9 0.87 8.9± 1.2 8.8± 1.0 0.78 7.4± 0.9 8.8± 1.0 0.04∗
Satisfaction score of surgeons 8.8± 1.0 8.8± 0.9 0.76 8.9± 0.8 8.9± 0.9 0.82 8.6± 1.0 8.8± 0.9 0.23
∗P< 0.05.
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Text-to-image synthesis is an important and challenging application of computer vision.Many interesting andmeaningful text-to-image
synthesis models have been put forward. However,most of the works pay attention to the quality of synthesis images, but rarely consider
the size of these models. Large models contain many parameters and high delay, which makes it difficult to be deployed on mobile
applications. To solve this problem, we propose an efficient architecture CPGAN for text-to-image generative adversarial networks
(GAN) based on canonical polyadic decomposition (CPD). It is a general method to design the lightweight architecture of text-to-image
GAN. To improve the stability of CPGAN, we introduce conditioning augmentation and the idea of autoencoder during the training
process. Experimental results prove that our architecture CPGAN canmaintain the quality of generated images and reduce at least 20%
parameters and flops.

1. Introduction

Text-to-image synthesis is a challenging cross modal gen-
eration which generates images according to given texts. It
extracts the commonmodal data from texts and transfers the
semantic data into images. Text-to-image synthesis plays a
more and more important role in computer vision. Images
were edited by images in the past. With the development of
text-to-image synthesis, images can also be edited by text,
which greatly expands the application of computer vision.
Text-to-image synthesis can be widely applied in human-
computer interaction, such as cross modal retrieval [1] and
artistic creation [2, 3].

Traditional text-to-image synthesis used variational
autoencoder (VAE), attention mechanism, and recurrent
neural network (RNN) to generate images step by step [4, 5].
Limited by generative ability of VAE, generated images are
not as clear as real images. A new generativemodel GANwas
proposed by Goodfellow et al. in 2014 [6]. GAN becomes a
popular model in image generation task due to its strong

generating ability. Reed et al. [7] proved that GAN could be
used to generate clear images from text description and
proposed GAN-int-cls. It uses DCGAN as the backbone, text
embedding, and random noises as inputs of the generator.
'e generated images, text embedding, and real images are
inputs of the discriminator. Subsequently, many sophisti-
cated models were proposed. 'ese models can generate
images according to general text, scene graph, or dialog. 'e
quality of generated images has been improved a lot.

However, these models introducedmany constraints and
modules to generate realistic images. 'ese will greatly in-
crease parameters and floating-point operations per second
(flops) of models. It will require more and more hardware
resources (CPU, GPU, memory, and bandwidth) to deploy
these models. High complexity also leads to high latency.
'is greatly limits application of text-to-image GAN in
mobile terminal. It is necessary to compress text-to-image
GAN. Canonical polyadic decomposition (CPD) is an easy
and efficient way to compress and accelerate model in tensor
decomposition. Many implementations of convolutional
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neural networks (CNN) compression based on CPD [7–9]
have already been proposed.

In this paper, we propose a general compressed archi-
tecture CPGAN for designing text-to-image GAN to reduce
parameters and flops. CPGAN redesigns each layer of the
original neural network by using CPD. 'e original con-
volution layer is decomposed into three convolution layers
with different ranks and small size. A layer with a smaller
rank has few parameters. According to the needs of the
application, we can design architectures with different
compression ratios by setting different ranks. During the
training process of models with different ranks, it is time-
consuming to select the appropriate learning rate. To this
end, we use cyclical learning rate (CLR) [11] method to select
the optimal learning rate for the redesigned architecture. In
addition, GAN has the problem of unstable training.
CPGAN is a deeper architecture than the classical GAN and
is difficult to train from scratch. To solve this problem, we
add conditioning augmentation module and introduce the
idea of autoencoder method.

Our contributions can be summarized as follows:

(i) We propose CPGAN to reduce parameters and
maintain the generative ability of text-to-image
GAN. It is a general method to design the light-
weight architecture of GAN.

(ii) To reduce high resource consumption caused by
decomposition operation, we train CPGAN from
scratch and do not need to pretrain the model. To
the best of our knowledge, it is the first time to use
CPD to design text-to-image GAN without using
pretrained model.

(iii) To stable the end-to-end training, we introduce the
idea of autoencoder. 'e added decoder modules
can be removed after training.

Experimental results on two representative cross modal
datasets (Oxford-102 and CUB) prove that our architecture
CPGAN can maintain the quality of generated images and
reduce parameters and flops of original model effectively at
the same time. In Oxford-102 and CUB, CPGAN performs
better in inception score (IS) and Fréchet inception distance
(FID) than original model. It reduces 8.8 × 109 flops and
1.31 × 106 parameters in Oxford-102. 'ese show that our
architecture can efficiently redesign text-to-image GAN
without loss of image quality.

'e rest of the paper is organized as follows. 'e work
related to our paper is introduced in Section 2. In Section 3,
we propose the efficient architecture CPGAN of text-to-image
generative adversarial networks (GAN) based on canonical
polyadic decomposition (CPD). Section 4 describes experi-
mental settings and experimental results. Finally, we conclude
this paper in Section 5.

2. Related Work

2.1. Canonical Polyadic Decomposition. 'e essence of
neural network is the matrix transformation process of input
data matrix using weight parameters. Each layer of neural

network is a large tensor, which can be decomposed into
several small tensors. Canonical polyadic decomposition
(CPD) is a standard tensor decomposition method. It was
proposed by Hitchcock in 1927 [12]. It can decompose a
tensor into a sum of rank-one tensors. CPD has been applied
in psychometrics [13], signal processing [14], computer
vision [15], data mining [16], and elsewhere. It also performs
well in model compression.

Denton et al. [8] used CPD to approximate the original
convolution kernel and presented two methods of im-
proving approximation criterion. 'ey performed fine-
tuning on the decomposed kernels by fixing other layers.
Jaderberg et al. [9] applied CPD to decompose a 4D kernel
into two small kernels and use two methods to reconstruct
the original filters. Lebedev et al. [10] used CPD to de-
compose the 4D convolution kernel tensor into four small
kernels with nonlinear least squares and then replace
original layer.'en, they fine-tuned the entire network using
backpropagation. Lebedev et al.’s [10] method accelerated
the second convolutional layer of AlexNet by 6.6 times at the
cost of 1% accuracy loss. 'is exceeded the other two works,
where Denton et al. [8] got 2 times speed-up and Jaderberg
et al. [9] got 4.5 times speed-up at the cost of 1% accuracy
loss.

Astrid et al. [17] proposed a CNN compression method
based on CPD : CP-TPM. It achieved 6.98 times parameter
reduction and 3.53 times speeding-up in AlexNet. It is better
than the Tucker-based method [18] in the same network.
Zhang et al. [19] and Tai et al. [20] also applied CPD to
compress CNN. Original layers are pretrained to minimize
the difference between the decomposed layer and the
original tensor in the models of Astrid et al. [17], Zhang et al.
[19], and Tai et al. [20]. Because CP decomposition operation
consumes extensive resources, we do not decompose the
pretrained weight tensor, but directly use CP decomposition
to design an efficient architecture in text-to-image GAN.

2.2. Text-to-Image Synthesis. Text-to-image synthesis is a
branch of computer vision which generates images
according to given texts. It can be used for image editing,
cross modal retrieval, and artistic creation. GAN has
strong generating ability. It can generate realistic images
and has been widely used for image generation. Since Reed
et al. [7] first successfully used GAN for text image
generation, GAN has also become a popular model in text-
to-image synthesis.

Reed et al. [7] proposed GAN-int-cls by revising
DCGAN and successfully generated plausible 64× 64 images
of birds and flowers from texts. In order to produce high
resolution images, multiple stages generating was intro-
duced into text-to-image synthesis, such as StackGAN [21],
StackGAN++ [22], HDGAN [23], and LAPGAN [24].
StackGAN [21] stacked two conditional GANs to generate
high resolution and plain images in two stages. Multiple
generators were used to generate images of different scales
using tree structure in StackGAN++ [22]. HDGAN [23]
adopted hierarchically-nested discriminators to help the
single-stream generator generate high resolution images.
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LAPGAN [24] put forward a Laplacian pyramid framework
through integrating a set of generators.

Xu et al. [25] and Qiao et al. [26] added attention
mechanisms to synthesize image with fine-grained details.
Besides, Reed et al. [27] adapted bounding box and key part
information to improve quality of generated images.
ACGAN [28] and TAC-GAN [29] used auxiliary class in-
formation to generate diversity images. Because these
models show excellent cross modal generative ability, text-
to-image GAN has been used for image editing [30, 31],
cross modal retrieval [1], story visualization [2], and painting
[3]. However, these models are too complicated to be
deployed on the mobile end. To this end, we propose an end-
to-end compression framework based on CPD. Compared
to Shu et al. [32] and Li et al. [33], we do not need to pretrain
GAN model. We design and train the compression model
from scratch.

3. Canonical Polyadic Generative Adversarial
Networks (CPGAN)

In this section, we introduce the designing of the efficient
architecture (CPGAN) and the training process. Section 3.1
describes how to replace 4-dimensional convolutional
weight tensors with three small kernels. Section 3.2 describes
techniques for stabling training process of the redesigned
architecture.

3.1. Canonical Polyadic Decomposition. GAN consists of a
generator and a discriminator in general, both of which are
convolutional neural networks. 'e weight tensor for
convolution is a 4-dimensional tensor W ∈ RK×K×S×T,
which maps input X ∈ RI×J×Sinto another representation
Y ∈ RX×Y×T. It can be written as

Y(x, y, t) � 􏽘
K

i�1
􏽐
K

j�1
􏽘

S

s�1
W(k, k, s, t)X(i, j, s), (1)

where the first two dimensions of W(k, k, s, t) are the
spatial dimension (K is typically 3 or 5), the third dimension
is the input channel, and the fourth dimension is the output
channel.

CPD is an approximation method which decomposes a
tensor into a sum of rank-one tensors. In CPD, tensor
W∈RK×K×S×T can be represented as

W(i, j, s, t) � 􏽘
R

r�1
W

(1)
i, r W

(2)
j, rW

(3)
s, rW

(4)
t, r , (2)

where R is the tensor rank and it is the sum of rank-one
tensors, W(1)

i, r ,W(2)
j, r , and W(3)

s, r ,W(4)
t, r are tensors of size

K × R, K × R, S × R, T × R, respectively. Rank-one tensor is
the vector outer product. Rank selection decides the com-
pression ratio and it is a NP-hard problem in rank
decomposition.

In convolutional layer, spatial dimension K does not
have to be decomposed because the benefits of spatial de-
composition are quite small. By using the variant of CP
decomposition, tensor can be decomposed as

W(i, j, s, t) � 􏽘
R

r�1
W

(1)
s,r W

(2)
i,j,rW

(3)
t, r , (3)

where W(2)
i,j,r is a tensor of size K × K × R. Substituting

equation (3) into equation (2), we obtain the following
approximate representation of the convolution:

Y(x, y, t) � 􏽘
R

r�1
W

(3)
t, r 􏽘

D

j�1
􏽘

D

i�1
W

(2)
r,j,i 􏽘

R

r�1
W

(1)
r, sX(i, j, s)⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(4)

Performing rearranging and combining, we can get the
following three consecutive expressions:

Y
(1)

(i, j, r) � 􏽘
S

s�1
W

(1)
r, sX(i, j, s), (5)

Y
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Y(x, y, t) � 􏽙
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W

(3)
t, rY

(2)
(x, y, r), (7)

where Y(1) and Y(2) are the intermediate tensors of
sizes I × J × R and I’ × J’ × R, respectively. 'e original big
layer can be decomposed into three small layers, as shown in
Figure 1. For example, the third convolution layer of GAN-
int-cls has 128 input channels, 512 output channels, and
3× 3 filters (128 × 512 × 3 × 3); we can decompose it into
three convolution layers with the following parameters:
128 × R × 1 × 1, R × R × 3 × 3, andR × 512 × 1 × 1. R is the
rank which can be set as different values according to the
need of tasks.

3.2. Overall Framework. We take the classical model GAN-
int-cls as the original model to compress. 'is model has the
most compact structure and parameters. 'e main convo-
lution layers of the generator in other text-to-image GAN
models are similar to GAN-int-cls.We redesign GAN-int-cls
to show the effectiveness and generality of our compression
architecture. As shown in Figure 2, the proposed CPGAN
contains two novel components which can stabilize the
training of decomposed GAN : conditioning augmentation
and autoencoder module.

Conditioning augmentation (CA) is proposed by Zhang
et al. [21] which alleviates the difficulty of GAN training
caused by text embedding sparsity. CA is to randomly
sample the hidden variables as the input of the generator
from the independent Gaussian distribution
N(μ(φt),Σ(φt)). φt is the text embedding which is gener-
ated by encoding text description. μ(φt) and Σ(φt) are the
mean and diagonal covariance matrix functions of the text
embedding φt, respectively. We use pretrained
char–CNN–RNN [34] to get the text embedding φt. 'en,
we feed φt into CA and obtain μ(φt) and Σ(φt). Similar to
StackGAN [21], we also add the Kullback–Leibler (KL)
divergence into our training objectives, which is the KL
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divergence between the standard Gaussian distribution
N(0, I) and the conditioning Gaussian distribution
N(μ(φt),Σ(φt)), as shown in the following equation:

DKL N μ φt( 􏼁,Σ φt( 􏼁( 􏼁‖N(0, I)( 􏼁. (8)

Autoencoder (AE) is used for representation learning by
reconstructing input.'e decomposed architecture is deeper
than the original model, which increases the instability of
training. So, we use AE to stabilize the training process. AE is
composed of an encoder and a decoder in general.We regard
each convolution layer as an encoder and add a decoder
corresponding to each convolution layer. 'e training ob-
jective of AE is the reconstruction loss. We use mean square
error (MSE) ‖x1 − h(x1)‖

2
2 as the AE loss, where x1 is the

input of layer and h(·) is the function of AE.'e decoder will
be removed after training.

'e generator objective of original GAN-int-cls contains
matching-aware loss and interpolation loss, as shown in

Gori � G1(z, t) + G2 z, βt1 +(1 − β)t2( 􏼁, (9)

where z is the random noise, t1 and t2 are text embeddings,
and β is a decimal between 0 and 1 and used to interpolate
between text embeddings t1 and t2.

In the generator objective of our model, we add KL
divergence and MSE reconstruction loss into the original
model objective, as shown in the following equation:

G � Gori + DKL N μ φt( 􏼁,Σ φt( 􏼁( 􏼁‖N(0, I)( 􏼁 + x1 − h x1( 􏼁
����

����
2
2.

(10)

'e discriminator objective of the original model and
our model is both matching-aware loss:
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Figure 1: Original convolution layer and decomposed three convolution layers based on CPD. 'e top figure is the original filter of size
D × D × S × T. 'e bottom figure is the three decomposed filters of sizes of 1 × 1 × S × R, K × K × R × R, and 1 × 1 × R × T. 'e three
decomposed filters can approximate the original filter.
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Figure 2: 'e architecture of CPGAN. 'e three encoding layers in the blue dotted box are the three decomposed filters obtained by
decomposing the original convolution layer.
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D � D1(x, t) + D2(x,􏽢t) + D3(G(z), t). (11)

We use the above scheme to train an efficient archi-
tecture from scratch. 'e training algorithm is shown in
Algorithm 1. Firstly, original convolutions are decomposed
into three layers through equations (5)–(7). Secondly, each
layer is regarded as an encoder and a decoder is added
corresponding to each layer. 'irdly, we encode matching
text t and mismatching text 􏽢t and get text embeddings.'en,
we use CA to process text embeddings and get independent
Gaussian distribution. From the independent Gaussian
distribution, we sample variables and concatenate it with
random noise. 'e following training process is the same as
GAN-int-cls with different training objectives of generator.
'e objective function of our model adds the loss of CA and
autoencoder on the basis of the original model’s objective
function. Until the training is finished, we remove added
decoder layers and obtain the model of CPGAN.

4. Experiments

We conduct extensive experiments to evaluate the proposed
CPGAN. In Section 4.1, we introduce the experimental
dataset and evaluation index. Section 4.2 describes the
setting of learning rate and the other experimental hyper-
parameters. In Section 4.3, we compare our CPGAN with
previous GAN-int-cls models for text-to-image synthesis.

4.1. Overall Framework. To show the generality of our
method, we choose the classic model GAN-int-cls as our
original model. Same as GAN-int-cls, our method is eval-
uated on CUB [35] and Oxford-102 [36]. 'e CUB dataset
covers 200 kinds of birds, including 5,994 training images
and 5,794 test images. In addition to category labels, each
image contains bounding box, bird key part of bird infor-
mation, and bird attributes. Oxford-102 flowers dataset is a
flower dataset which contains 8,189 images. It is divided into
102 categories and each category contains 40 to 258 images.
Each image has large scale, pose and light variations. 'e
dataset is divided into a training set, a validation set, and a
test set. Both datasets are benchmark image datasets and
each image corresponds to 10 single sentence descriptions.

In order to evaluate our model, we use inception score
(IS) and Fréchet inception distance (FID) to evaluate the
quality of the generated images. IS uses pretrained Incep-
tionNet-V3 to judge whether the generated image is clear
and diverse. High IS score means that images are clear and
diverse. FID calculates feature distance between the real
image and the fake image as a supplement of IS evaluation
index. 'ese two indicators are widely used to evaluate the
quality of generated images.

4.2. Implementation Details. Learning rate is a very im-
portant hyperparameter in deep learning. Reasonable
learning rate can make the model converge to the minimum
point instead of the local optimal point or saddle point. In
this paper, we use the method CLR [11] and MultistepLR to
set learning rate and learning rate attenuation.

CLR was proposed by Smith. It changes learning rate
periodically in the iterative process, rather than a fixed value.
It is used to find the optimal learning rate automatically
instead of manual experiments.We use CLR to get a learning
rate setting. CLR method needs to set three parameters,
minimum learning rate (min_lr), maximum learning rate
(max_lr), and iteration. min_lr and max_lr are the smallest
value and the biggest value of learning rate, respectively.
Iteration is the number of test iterations at each learning
rate. We increase the learning rate from 0.00001 to 0.001 and
get the loss curve under different learning rates (see
Figure 3).

We choose the appropriate learning rate according to
maximum absolute slope criterion. According to Figure 3,
we select 0.0002 and 0.00015 as the learning rates of the
Oxford-102 dataset and 0.0001 and 0.00008 as the learning
rates of the CUB dataset.

MultistepLR is a learning rate attenuation method in
PyTorch. It has three hyperparameters: initial learning rate
(ini_lr), epoch to update learning rate (epo), and multi-
plication factor(mfc). ini_lr is the initial learning rate during
the training. epo is the epoch when we change the learning
rate. mfc is the attenuation coefficient of learning rate. In the
experiment using MultistepLR, the initial learning rate is
ini lr. When the experiment runs epo epochs, the learning
rate is changed to ini lr∗ mfc.

In this paper, we set the MultistepLR hyperparameters
ini_lr, epo, and mfc as 0.0001, 600, and 0.8 in CUB and
0.0002, 600, and 0.75 in Oxford-102. 'e batch size in our
experiment is 64. 'e optimizer of CPGAN is Adam [37]
with momentum of 0.5.

4.3. Comparison with OriginalModel. In CP decomposition,
rank represents compression ratio and it is hard to select.
Due to the need of text-to-image synthesis task, we design
the lightweight model on the premise of ensuring the quality
of generated images. We do extensive experiments to bal-
ance the performance and the compression ratio.

As shown in Table 1, we do a large number of experi-
ments to find the balance.'e ratio is rank ratio, where 1.0 is
full rank decomposition and 0.9 means about 0.9 times of
original layer’s number of input channels. A layer with a
smaller rank has few parameters. Table 1 shows that with
increasing of rank, flops and parameters grow. When the
decomposition rank is close to 0.7, the parameters begin to
exceed the original model’s parameters (5.76 × 106). With
the increase of rank, the quality of images generated by the
model has not been greatly improved. 'e value of FID
decreases first and then changes slightly with the increase of
model parameters, while IS is not stable. It may be that the
calculation of IS needs to use the edge distribution of data,
but generated samples in Oxford-102 are not enough to get
accurate edge distribution.

As shown in Table 1, FID gets the best value when rank
ratio is 0.5.'emodel is compressed by about 23% parameters
and 29% flops. 'e generated images are better than the
originalmodel on FID and IS. It can prove that ourmethod can
generate better images with less parameters than the original
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model. It is effective to use CP decomposition to reconstruct
the model and design compact text-to-image GAN without
loss of image quality. Although 8.8 × 109 flops and 1.31 × 106
parameters are reduced, the images generated by CPGAN get a

little improvement on IS and FID. 'is shows that the image
generated by the model with more parameters may not be
better. So around the rank of 0.5, we look for a better model
ensuring the quality of generated images.

Table 2 shows the comparison between our best generative
model and the original model on IS, FID, parameters, and flops.
FID and IS of the original model are 79.55 and 2.66±0.03 in
Oxford-102, while those of our best model are 74.40 and
3.68±0.08, respectively. In CUB, the images generated by our
bestmodel get 65.94 on FID and 5.03±0.07 on IS, while those of
original model are 68.79 and 2.88±0.04, respectively. 'e
comparison of representative images on Oxford-102 and CUB
dataset can be seen in Figures 4 and 5, respectively. 'e better
generated images of CPGAN indicate that our proposedmethod
can generate more realistic images from text descriptions. 'ese
results also prove that there are redundant parameters in existing
text-to-image GAN. A more concise and efficient text-to-image
GAN model can be designed based on CPD.
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Figure 3: Selection for appropriate learning rate for CPGAN. (a) Loss of different learning rates on Oxford-102. (b) Loss of different
learning rates on CUB.

Table 1: Experimental results of different rank ratios for the
CPGAN in Oxford-102.
Ratio FID IS Flops #Parameters
0.1 158.74 3.26± 0.05 1.20 × 1010 2.91 × 106
0.2 98.06 3.43± 0.06 1.35 × 1010 3.13 × 106
0.3 85.08 2.98± 0.05 1.54 × 1010 3.46 × 106
0.4 81.17 2.96± 0.04 1.80 × 1010 3.90 × 106
0.5 74.69 3.04 ± 0.05 2.14 × 1010 4.45 × 106
0.6 77.59 3.54± 0.06 2.53 × 1010 5.10 × 106
0.7 76.50 2.80± 0.06 3.00 × 1010 5.87 × 106
0.8 79.04 3.56± 0.05 3.53 × 1010 6.74 × 106
0.9 76.97 3.17± 0.05 4.14 × 1010 7.72 × 106
1.0 77.07 3.23± 0.05 4.83 × 1010 8.82 × 106

Input: mini-batch images x, text description t, and number of training batch steps S.
Output: CPGAN model.

(1) Use equations (5)–(7) to decompose the original convolutional layer in generator;
(2) Add CA module for text embedding and add decoders layers;
(3) Select an appropriate learning rate for the decomposed model;
(4) For N � 1 to S do
(5) Encode text description into embedding t;
(6) Feed t into CA and obtain N(μ(φt),Σ(φt));
(7) Sample 􏽢c from N(μ(φt),Σ(φt)) and random noise z;
(8) Concatenate z and 􏽢c and feed it into the generator;
(9) Update discriminator D by equation (11);
(10) Update generator G by equation (10);
(11) End for
(12) Discard all decoders and get a trained CPGAN.

ALGORITHM 1: Overall scheme of CPGAN algorithm.
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5. Conclusions

In this paper, we propose a simple and efficient architecture
CPGAN based on CPD. CPGAN can reduce extensive pa-
rameters and flops of the original model. It also improves the
quality of generated images at the same time. In the process
of designing CPGAN model, we replace the convolution
layer with three CP decomposed small layers to achieve a
certain compression. In order to stabilize the training
process, we introduce conditioning augmentation to reduce
the instability caused by text embedding sparsity. To further
improve the end-to-end training of our model, the idea of
autoencoder is integrated into the model. Each decomposed
layer can be regarded as an encoder layer and is paired with
an added decoder layer. 'e decoder layers can be removed
after training. Experiments demonstrate that CPGAN re-
duces about 23% parameters and 29% flops with a little
improvement of generated image quality in Oxford-102.

Extensive experimental results demonstrate that our pro-
posed CPGAN can design an efficient text-to-image GAN.
We have also decomposed similar convolution layers in
other GAN models and these experiment results were
similar to the experiment results of GAN-int-cls. 'e main
convolution layers of the generator in other text-to-image
GAN models are similar to GAN-int-cls. It is applicable for
other cross modal GANs to use CPD. In the existing
methods, the rank is set manually, which is time-consuming.
'erefore, the automatic selection of rank may be a research
direction in the future.

Data Availability

'e datasets used in this paper are public datasets which can
be accessed via the following websites: http://www.vision.
caltech.edu/visipedia/CUB-200-2011.html and https://www.
robots.ox.ac.uk/∼vgg/data/flowers/102/
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Figure 4: Generated images by our proposed model and the original model on Oxford-102.
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Figure 5: Generated images by our proposed model and the original model on CUB.

Table 2: Comparison between our model and the original model.

Model
Oxford-102 CUB

Flops #Parameters
FID IS FID IS

Original 79.55 2.66± 0.03 68.79 2.88± 0.04 3.02 × 1010 5.76 × 106
Redesigned 74.40 3.68± 0.08 65.94 5.03± 0.07 2.33 × 1010 5.07 × 106
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Nowadays, urban multimodal big data are freely available to the public due to the growing number of cities, which plays a critical
role in many fields such as transportation, education, medical treatment, and land resource management. *e successful
completion of poverty-relief work can greatly improve the quality of people’s life and ensure the sustainable development of the
society. Poverty is a severe challenge for human society. It is of great significance to apply machine learning to mine different
categories of poverty-stricken households and further provide decision support for poverty alleviation. Traditional poverty
alleviation methods need to consume a lot of manpower, material resources, and financial resources. Based on the density-based
spatial clustering of applications with noise (DBSCAN), this paper designs the hierarchical DBSCAN clustering algorithm to
identify and analyze the categories of poverty-stricken households in China. First, the proposed method adjusts the neighborhood
radius dynamically for dividing the data space into several initial clusters with different densities. *en, neighbor clusters are
identified by the border and inner distances constantly and aggregated recursively to form new clusters. Based on the idea of
division and aggregation, the proposedmethod can recognize clusters of different forms and deal with noises effectively in the data
space with imbalanced density distribution. *e experiments indicate that the method has the ideal performance of clustering,
which identifies the commonness and difference in characteristics of poverty-stricken households reasonably. In terms of the
specific indicator “Accuracy,” the accuracy increases by 2.3% compared with other methods.

1. Introduction

With the development of Information and Communication
Technology, the era of multimodal big data has arrived
comprehensively. Cities are the important places which are
of prime importance for big data distribution, such as
population, economy, transportation, and landscape [1–3].
*e urban multimodal big data obtained by traditional data

collection methods such as field survey and questionnaire
interview cannot objectively and accurately reflect the status
quo of urban development and the law of residents’ activities
in a wide range of time and space. Also, the obtained urban
operation information has a large lag. Multimodal big data
can make up for the above defects and deeply depict the
urban physical space and social environment. *is not only
provides the possibility to objectively understand the urban
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system and summarize its development rules but also
provides important support for urban planning and related
research studies such as poverty-relief work and urban
education.

It must be admitted that urban planning based on urban
multimodal big data is a very challenging task for poverty-
relief work. It can improve urban environments, quality of
life, and smart city systems [4, 5]. Due to the short time,
heavy task of targeted poverty alleviation in the early stage,
the basic information of each impoverished object and the
causes of poverty are not comprehensive and accurate
enough, which needs to be further enriched and improved.
Poor object management mechanism is not perfect. Due to
the large number of poor people in the poor villages and the
complicated family situation, the number of people coming
out of the basin and returning to poverty is in constant
change [6]. In addition, the managementmechanism of poor
objects at the village level is not sound enough, so there is a
lack of changes in the poor population in the poor villages.

In this paper, we focus on the tasks of identifying and
analyzing categories of poverty-stricken households in
China. Eradication of poverty is the historical task facing the
international community. With the development of artificial
intelligence (AI) technologies such as machine learning and
deep learning, a growing number of researchers are making
great efforts to develop and unleash the huge potential of
these AI technologies in alleviating poverty [7]. China, as the
largest developing country worldwide, has made a signifi-
cant contribution to global poverty alleviation. In the year of
2013, the Chinese government raised the concept of targeted
poverty alleviation, which aims to take targeted measures to
assist each truly poverty-stricken household and eliminate
various factors leading to poverty fundamentally, thus
achieving the goal of sustainable poverty alleviation [8]. On
the basis of the policy, this paper adopts the clustering al-
gorithm [9] to divide the data of poverty-stricken house-
holds in China reasonably and thus identify different
categories of poverty-stricken households for supporting the
formulation and implementation of antipoverty measures.

Poverty-oriented scientific research depends on the
analysis of poverty data. *e Chinese poverty data generally
come from population censuses carried out by the country,
society, and universities [10]. Due to the wide coverage of
population and the individual differences in educational
level and psychology, respondents may not answer ques-
tionnaires according to actual conditions, which results in
the subjectivity of questionnaire data. Additionally, faults in
processes such as data entry and storage can easily lead to
outliers and missing values in datasets. Since the quality of
poverty datasets obtained by population censuses is hard to
guarantee, it brings certain difficulties for the design and
application of clustering algorithms.

*e design of clustering algorithms for poverty datasets
should make reasonable consideration of noises caused by
missing values and outliers. Nowadays, common clustering
methods mainly include partitional clustering, hierarchical
clustering, and density-based clustering [11]. *e K-means
clustering algorithm achieves clustering through the parti-
tion, which assigns each sample to the closest cluster

according to distances between samples and prototypes and
updates prototypes by the average of samples within clusters,
then repeats the above steps until the iteration ends [12].
Although the method is easy and practicable, the number of
clusters and the initial prototypes need to be predefined. *e
agglomerative hierarchical clustering (AHC) regards each
sample as a separate cluster and then merges the two closest
clusters into a new cluster constantly [13]. *e AHC algo-
rithm requires no predefined prototypes and can get the
hierarchical structure of clusters, but it is sensitive to noises
within data. *e density-based spatial clustering of appli-
cations with noise (DBSCAN) algorithm is a representative of
density-based clustering methods, which defines the cluster
as the maximal set of density-connected samples and takes
the sample regions with high densities as clusters, thus
discovering clusters of arbitrary shapes [14] whereas the
hyperparameters eps and minpts in the DBSCAN algorithm,
i.e., the neighborhood radius and the minimum number of
samples required to form a dense region, have a great in-
fluence on the result of clustering, and the method is not
applicable to datasets with different density distribution.
Many researchers improve DBSCAN in view of the existing
problems in the algorithm and propose improved algorithms
such as K-nearest neighbor DBSCAN (KNNDBSCAN),
DVBSCAN, and varied density-based spatial clustering of
applications with noise (VDBSCAN) [15–18]. For instance,
Gaonkar and Sawant [19] drew a k-dist graph based on the
distance between each sample and its k-th nearest neighbor
so as to identify multiple values of the neighborhood radius,
then finds the clusters with different densities under each
value of the neighborhood radius. Fahim et al. proposed an
enhanced DBSCAN (EDBSCAN) algorithm, which defined
the density variation for core points and specified that a core
point allowed for expansion only when its density variation
was less than or equal to a threshold value and its neigh-
borhood satisfies the homogeneity index [20]. In terms of the
clustering methods, some other researchers proposed many
advanced approaches such as robust FCM clustering [21],
improved quantum clustering algorithm [22], and swarm
clustering algorithm [23]. Chen et al. [24] proposed a fast
clustering for large-scale data. Chel et al. [25] presented the
HDBSCAN clustering algorithm to find a clustering pattern
present in calcium spiking obtained by confocal imaging of
single cells. Znidi et al. [26] introduced a new methodology
for discovering the degree of coherency among buses using
the correlation index of the voltage angle between each pair
of buses and used the hierarchical density-based spatial
clustering of applications with noise to partition the network
into islands. Parmar et al. [27] proposed a residual error-
based density peak clustering algorithm named REDPC to
better handle datasets comprising various data distribution
patterns. Specifically, REDPC adopted the residual error
computation to measure the local density within a neigh-
borhood region. Parmar et al. [28, 29] proposed the feasible
residual error-based density peak clustering algorithm with
the fragment merging strategy, where the local density within
the neighborhood region was measured through the residual
error computation and the resulting residual errors were then
used to generate residual fragments for cluster formation.
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Overall, the above methods have the limits of low clustering
efficiency and time-consuming with high-dimensional data.

Considering that clusters in real-world datasets may
have different sizes, shapes, and densities, accompanied
by certain noises and outliers, this paper takes the idea of
initial division and hierarchical aggregation to design a
clustering algorithm named hierarchical DBSCAN
(HDBSCAN).*e proposed method comprises two stages
of division and aggregation. Our contributions are as
follows:

(1) First, it makes an initial division of the dataset based
on sample densities; that is, the proposed method
takes the neighbor information of samples to cal-
culate local density values and then searches the set
of density-connected samples for each unlabeled
core point sequentially according to the density
values in descending order, thus forming the initial
clusters.

(2) *en, the method adopts the idea of hierarchical
clustering to perform the aggregation of neighbor
clusters. Based on the inner and border distances
between clusters, the most similar clusters are
regarded as neighbor clusters and merged to form a
new cluster, and the process is repeated until the
iteration ends.

(3) Based on the way of division and aggregation, the
method can identify clusters with different forms in
the dataset. Moreover, noise data cannot be inte-
grated into high-density clusters as its density is
relatively sparse, by which the proposed method can
handle noise data reasonably.

*e rest of this paper is organized as follows. Section 2
introduces two typical clustering algorithms, i.e., the
DBSCAN clustering and the hierarchical clustering. Section
3 describes the proposed hierarchical DBSCAN algorithm in
detail. Section 4 discusses the clustering performance of the
proposed method, then applies it to the Chinese poverty
dataset, and further analyzes the result of clustering. Finally,
conclusions are presented in Section 5.

2. Theoretical Foundation

2.1. 8e DBSCAN Clustering. *e DBSCAN algorithm
regards regions with high densities as clusters and those with
sparse densities as noises. It requires two hyperparameters,
i.e., the neighborhood radius eps and the minimum number
of samples required to form a dense region minpts.

Let D � x1, . . . , xn􏼈 􏼉 represent the dataset composed of n

samples and d attributes, where xi � [xi1, . . . , xi d]T denotes
the i-th sample in the dataset. *e eps-neighborhood of xi is

Neps xi( 􏼁 � xj ∈ D|dist xi, xj􏼐 􏼑≤ eps􏽮 􏽯, (1)

where dist(xi, xj) denotes the distance between samples xi

and xj, calculated by

dist xi, xj􏼐 􏼑 �

�����������

􏽘

d

k�1
xi − xj􏼐 􏼑

2

􏽶
􏽴

. (2)

If xi satisfies equation (3), it is called the core point:

Neps xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥minpts. (3)

*ere are several definitions in the DBSCAN algorithm,
listed as follows:

(1) A sample xj is directly reachable from xi with respect
to eps and minpts if xi is a core sample and
xj ∈ Neps(xi)

(2) A sample xj is reachable from xi with respect to eps
and minpts if there exists a chain of samples
xm1

, . . . , xmk
, (1≤ k, mk ≤ n) with xm1

� xi and
xmk

� xi, where each xml+1
(0< l< k) is directly

reachable from xml
with respect to eps and minpts

(3) A sample xj is reachable from xi with respect to eps
and minpts if there exists a chain of samples
xm1

, . . . , xmk
, (1≤ k, mk ≤ n) with xm1

� xi and
xmk

� xi, where each xml+1
(0< l< k) is directly

reachable from xml
with respect to eps and minpts

In the process of clustering, the algorithm randomly
selects a core point as the initial point and takes all the core
points in its eps-neighborhood for continuous expansion.*e
expansion ends until the maximal set of density-connected
samples is found and labeled as one cluster. After that, the
algorithm randomly chooses other unlabeled core points for
generating new clusters. *e process of clustering completes
when all the core points are labeled.

2.2. Hierarchical Clustering. *e hierarchical clustering can
be divided into the agglomerative hierarchical clustering and
the divisive hierarchical clustering. *e agglomerative hi-
erarchical clustering first takes each sample as a separate
cluster, then finds the two closest clusters by measuring the
distance between the clusters, and then merges them into a
new cluster. Subsequently, the algorithm recalculates the
distance between clusters and continues the aggregation
process.*e realization of the divisive hierarchical clustering
is the exact opposite of the above, which regards the whole
dataset as one cluster and then performs the division
iteratively.

In the hierarchical clustering, the distance between Cp

and Cq can be calculated by (4), i.e., the average of sample
distances between two clusters. Besides, the minimum
distance of samples between clusters shown in (5), or the
maximum distance of samples between clusters, can also be
taken to measure the distance of two clusters:

S1 Cp, Cq􏼐 􏼑 �
1

Cp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · Cp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

xi∈Cp

􏽘
xj∈Cq

dist xi, xj􏼐 􏼑, (4)

S2 Cp, Cq􏼐 􏼑 � min dist xi, xj􏼐 􏼑 | xi ∈ Cp, xj ∈ Cq􏽮 􏽯. (5)
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2.3. 8e Hierarchical DBSCAN Algorithm. As the global
hyperparameters for the DBSCAN algorithm, the numerical
values of minpts and eps have a direct impact on the ex-
pansion of all the clusters. Figure 1 illustrates the expansion
of clusters under different numerical values ofeps, where the
red points denote the initial core points in each iteration of
expansion. According to Figure 1(a), the clusters C1 and C2
can be identified while the other samples are regarded as
noises and cannot be partitioned properly if the DBSCAN
algorithm takes eps1 as the neighborhood radius. It can be
seen from Figure 1(b) that all the samples are divided into
one cluster C1 through four iterations of expansion if the
algorithm takes eps2 as the neighborhood radius.

In view of the above problem, this paper takes the way of
division and aggregation to design the HDBSCAN clustering
algorithm. First, the proposed method makes an initial
division of the dataset according to sample densities. During
the expansion of each cluster, the method adaptively adjusts
the neighborhood radius based on the neighbor information
of samples within the cluster. *en, the idea of hierarchical
clustering is adopted to perform the recursive aggregation;
that is, the method takes the cluster pair with the minimum
distance as the neighbor clusters and then merges them into
a new cluster. Based on division and aggregation, the
method can perceive the clusters with different forms in the
data space.

2.4. Initial Division. During the process of initial division,
the parameter k is used to calculate the local density. Let
SNk(xi) represent the set composed of k samples closest to
xi, and the average distance between xi and all samples in the
set is

dist xi( 􏼁 �
1

SNk xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽘

xj∈SNk xi( )

dist xi, xj􏼐 􏼑. (6)

*edistance dist(xi) can capture the density distribution
around the sample xi. *e smaller the value, the greater the
density. *erefore, the local density of xi can be defined as

den xi( 􏼁 � dist xi( 􏼁
−1

. (7)

*e neighborhood radius of xi, namely, eps(xi), is the
distance between xi and the maxpts-th nearest sample. *e
process of the initial division includes the following steps.

Step 1. Calculate the local density for each sample and then
sort the samples based on the local density values so as to
form the sequence:

O � xm1
, . . . , xmn

|den xmj
􏼒 􏼓> den xmj+1

􏼒 􏼓, 1􏼚

≤ j≤ n − 1, 1≤mj ≤ n􏼛.

(8)

*e cluster label is initialed as q � 1.

Step 2. Select an unlabeled sample xi from the sequence O in
order and set the iteration numbert � 1.

Step 3. Let C(t)
q and Q(t)

q represent the set of samples and the
sequence of core points for the q-th cluster in the t-th it-
eration and C(1)

q � xi􏼈 􏼉, Q(1)
q � xi􏼈 􏼉.

Step 4. Calculate the adaptive neighborhood radius for the
expansion of the current cluster by all samples in the cluster:

eps C
(t)
q􏼐 􏼑 �

1
C

(t)
q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

xk∈C
(t)
q

eps xk( 􏼁. (9)

Step 5. Select a core point xj from the sequence Q(t)
q in order

and continue the expansion based on eps(C(t)
q ).

Step 6. Calculate the set of neighbor samples to be expanded
according to

C
⌢(t)

q � xk|dist xj, xk􏼐 􏼑􏽮

≤ eps C
(t)
q􏼐 􏼑 andxk ∉ Cp, p � 1, . . . , q − 1􏽯.

(10)

Step 7. Update C(t+1)
q and Q(t+1)

q by

C
(t+1)
q � C

(t)
q ∪C

⌢(t)

q , (11)

Q
(t+1)
q � Q

(t)
q ∪ xk|xk ∈ C

⌢(t)

q􏼚 Neps C
(t)
q( ) xk( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

≥minpts􏼉 − xj􏽮 􏽯.

(12)

Step 8. *e expansion of the q-th cluster Cq is completed
if Q(t+1)

q � ∅, then it returns to Step 9. Otherwise, it sets
t � t + 1 and returns to Step 4.

Step 9. *e initial division ends if all the samples are labeled.
Otherwise, it sets the cluster label as q � q + 1 and returns to
Step 2.

2.5. Aggregation of Neighbor Clusters. In this paper, the
similarity between clusters is measured by border distance
and inner distance. Figure 2 takes the clusters Cp

′ and Cq
′

during the aggregation as an example to describe two kinds
of distances. In Figure 2, the red points denote the core
points and the grey ones denote the border points distrib-
uted around the clusters.

Suppose that the dataset can be represented by
D � C1, . . . , CK􏼈 􏼉 after the initial division, where K denotes
the number of clusters and Ci(i � 1, . . . , K). While the
neighbor clusters are merged to form new clusters contin-
uously during the aggregation, Cp

′ is described by

Cp
′ � Cm1

, . . . , CmKp
􏼚 􏼛, 1≤Kp, mKp

≤K. *e set of border
points in Cp

′ is

B Cp
′􏼐 􏼑 � xi|xi ∈ Cp

′ and Neps(t) xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<minpts􏼚 􏼛, (13)

where eps(t) denotes the neighborhood radius at the com-
pletion of division for xi. *e value changes dynamically due
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to the adaptive adjustment of neighbor radius. According to
Figure 2(a), the border distance between clusters Cp

′ and Cq
′

is the minimum distance between the border points of two
clusters, namely,

O Cp
′, Cq
′􏼐 􏼑 � min dist xi, xj􏼐 􏼑|xi ∈ B Cp

′􏼐 􏼑, xj ∈ B Cq
′􏼐 􏼑􏽮 􏽯.

(14)

As can be seen from Figure 2(b), the cluster Cp
′ consists

of four initial clusters, and thus the inner distance of the
cluster is defined as

I Cp
′􏼐 􏼑 �

2
Kp Kp − 1􏼐 􏼑

􏽘

Cmi
∈Cp
′

􏽘

Cmj
∈Cp
′,Cmj
≠Cmi

O Cmi
, Cmj

􏼒 􏼓.

(15)

During the aggregation, the two clusters with the mini-
mum border distance are considered as the neighbor clusters
for further merging if their difference of inner distances and
that of densities below certain limitations. Algorithm 1 is a
simple implementation of aggregation for neighbor clusters.
In the actual implementation of the algorithm, values such as
border distances and inner distances will be restored to avoid

repeated calculation. According to the 14th line of Algo-
rithm 1, two clusters will be involved in calculating neighbor
clusters only when their density difference, border distances,
and inner distances satisfy certain conditions.

*e proposed HDBSCAN clustering algorithm can
capture clusters with different forms in the data space. *e
aggregation of neighbor clusters weakens the sensitivity of
the algorithm to hyperparameters in the initial division.
Besides, the result of the division in the DBSCAN algorithm
depends on the selection sequence of initial core points. *e
proposed method can weaken the fluctuation caused by the
selection sequence to some extent. *e Algorithm 2 sum-
marizes the whole process.

3. Experimental Results and Analysis

3.1. Experimental Design

3.1.1. Datasets. *ree public artificial datasets and four real-
world datasets are chosen to verify the effectiveness of the
proposed clustering algorithm. *e description of artificial
datasets is listed in Table 1. *e visualization of artificial
datasets is shown in Figure 3.

C1 C3

C2

eps1 eps1

eps 1

(a)

C1

eps2

3rd

2nd

4th

1st

(b)

Figure 1: *e expansion of clusters under different numerical values of eps: (a) expansion with eps1; (b) expansion with eps1.

C′p

C′q

(a)

C′p

Cm2

Cm3

Cm4

Cm1

(b)

Figure 2: *e border distance and the inner distance: (a) border distance; (b) inner distance.
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*e description of real-world datasets is listed in Table 2,
where Banknote, Parkinson, Codon usage, HCV, and
Planning relax are taken from UCI machine learning re-
pository, and CFPS2016 is the dataset of poverty-stricken
households in China. *e CFPS2016 dataset comes from the

China Family Panel Studies (CFPSs) released by the Institute
of Social Science Survey of Peking University, China, in
2016. In the experiment, the CFPS2016 dataset consists of
14019 samples and 320 attributes, which covers the family
economy as well as the states of adults and children in health,

(1) Input: clusters after initial division D � C1, . . . , CK􏼈 􏼉; the threshold ε; den(xi)|i � 1, . . . , n􏼈 􏼉

(2) Output: final clusters after aggregation D � C1′, . . . , CK′′􏼈 􏼉

(3) min O⟵ +∞, combine⟵
(4) While True
(5) Calculateaverage den diff by the averaged of density differences between clusters
(6) For each cluster Cp

′ in D

(7) For each cluster Cq
′ in D − Cp

′

(8) Calculate O(Cp
′, Cq
′), I(Cp
′), I(Cq
′)

(9) Calculate den(Cp
′), den(Cq

′) by the averaged densities for samples in the clusters
(10) den_diff⟵ |den(Cp

′) − den(Cq
′)|/max(den(Cp

′), den(Cq
′))

(11) tmp � max(O(Cp
′, Cq
′)), I(Cp

′), I(Cq
′)

(12) dist_diff⟵((O(Cp
′, Cq
′) − max(I(Cp

′), I(Cq
′)))/tmp)

(13) O⟵O(Cp
′, Cq
′)

(14) If den_diff < average_den_diff anddist_diff < ε and O<min O

(15) min O⟵O, combine⟵ Cp
′, Cq
′􏽮 􏽯

(16) End For
(17) End For
(18) If combine≠∅
(19) D⟵D − combine[0] − combine[1] + combine[0]∪ combine[1]{ }

(20) Else
(21) Break
(22) End While

ALGORITHM 1: *e aggregation of neighbor clusters.

(1) Input: parameter k , clusters after initial division D � C1, . . . , CK􏼈 􏼉; the threshold ε; den(xi)|i � 1, . . . , n􏼈 􏼉

(2) Output: final clusters
(3) min O⟵ +∞, combine⟵
(4) While True
(5) Calculate the local density

O � xm1
, . . . , xmn

|den(xmj
)> den(xmj+1

), 1≤ j≤ n − 1, 1≤mj ≤ n􏼚 􏼛

(6) Select an unlabeled sample xi from the sequence O

(7) For C(1)
q � xi􏼈 􏼉, Q(1)

q � xi􏼈 􏼉.
(8) Calculate the adaptive neighborhood radius
(9) Select a core point xj from the sequence Q(t)

q

(10) Calculate the set of neighbor samples
(11) For Q(t+1)

q � ∅
(12) *e expansion of the q-th cluster Cq is completed
(13) End For
(17) End For
(18) Calculateaverage_den_diff by the averaged of density differences between clusters
(19) If den_diff < average_den_diff anddist_diff < ε and O<min O

(20) min O⟵O, combine⟵ Cp
′, Cq
′􏽮 􏽯

(21) End For
(22) End For
(23) If combine≠∅
(24) D⟵D − combine[0] − combine[1] + combine[0]∪ combine[1]{ }

(25) Else
(26) Break
(27) End While

ALGORITHM 2: *e proposed cluster method.
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education, and psychology. Hence, the CFPS2016 dataset
can reflect the status of each Chinese household objectively.
During the data preprocessing, we fill in missing values with
the K-nearest neighbor imputation method [30], and then
1778 poverty-stricken households are measured from 14019
Chinese households based on the Alkire–Foster method, the
main measurement method of multidimensional poverty
[31]. *e parameters in this experiment are set the same as
DBSCAN under the same experimental platform.

3.1.2. Evaluation Metrics. We take the silhouette coefficient
(SC) [32], Davies–Bouldin index (DBI) [33], adjusted Rand
index (ARI), and normalized mutual information (NMI)
[34] to measure the performance of clustering. *e sil-
houette coefficient is defined by

SC �
1
n

􏽘

n

i�1

b(i) − a(i)

max a(i), b(i){ }
, (16)

where n denotes the total number of samples; a(i) denotes
the average distance between the sample xi and all other
samples in its cluster, which reflects the cohesiveness of
clustering; and b(i) denotes the minimum value of average
distances between the sample xi and all samples in any other
cluster, which reflects the dispersity of clustering. *e larger
SC represents the higher performance of clustering. Besides,
the definition of the Davies–Bouldin index is

DBI �
1

K′
􏽘

K′

i,j�1
max

i≠j

Si − Sj

wi − wj

�����

�����2

⎛⎝ ⎞⎠, (17)

Table 1: *e description of artificial datasets.

Data sets Size Dimension Cluster number
cluto-t5-8k 8000 2 6
cluto-t8-8k 8000 2 8
triangle2 8000 2 10
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Figure 3: *e visualization of three artificial datasets: (a) cluto-t5-8k, (b) cluto-t8-8k, and (c) triangle2.

Table 2: *e description of real-world datasets.

Data sets Records Attributes
Banknote 1372 5
Parkinson 1040 26
Planning relax 182 13
Codon usage 13028 69
HCV 615 14
CFPS2016 1778 320
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where K′ denotes the number of clusters; Si and Sj denote
the average distance between all the samples within the
cluster and the centroid of the cluster; ‖wi − wj‖2 denotes the
distance between cluster centroids. *e smaller DBI denotes
the higher performance of clustering.

With respect to performance, adjusted Rand index (ARI)
and normalized mutual information (NMI) are also used for
evaluation. ARI represents the similarity measure between
two clusterings that is adjusted for chance and is related to
accuracy, while NMI quantifies the amount of information
obtained about one clustering, through the other clustering
(i.e., the mutual dependence between the two). In the case of
observations being identified as noise, each noise observa-
tion is treated as a distinct singleton cluster for both ARI and
NMI.

3.1.3. Compared Methods. *is paper compares the pro-
posed method with three existing clustering algorithms
which are described as follows:

(1) AHC: as described in Section 2.2, the method regards
every sample as a separate cluster and then merges
the two closest clusters continuously until the iter-
ation ends.

(2) DBSCAN: as described in Section 2.1, the method
performs the continuous expansion for each cluster
based on core points and thus takes regions with high
densities as clusters and those with low-densities as
noises.

(3) EDBSCAN: the method calculates the density vari-
ation for each core points and specified that a core
point is allowed to expand only when its density
variation is below a specified threshold and its
neighborhood satisfies the homogeneity index [35].

(4) NS-DBSCAN: the NS-DBSCAN algorithm used a
strategy similar to the DBSCAN algorithm. Fur-
thermore, it provided a new technique for visualizing
the density distribution and indicating the intrinsic
clustering structure [36].

(5) ADBSCAN: unlike many other algorithms that es-
timate the density of each samples using different
kinds of density estimators and then choose core
samples based on a threshold, ADBSCAN utilized
the inherent properties of the nearest neighbor graph
[37].

4. Results and Analysis

4.1. Artificial Datasets and Real-World Datasets from UCI.
First, we conduct the effect experiments of ε on the local
sensitivity as shown in Figure 4. *en, the selected ε is used
for the following experiments to provide the equitable
comparison. From Figure 4, we can know that when ε is 0.5,
the local sensitivity is small.*e effect of proposed method is
better. *erefore, we select ε� 0.5 in this paper.

*e clustering results of three artificial datasets based on
the proposed method are shown in Figure 5, where regions

with different colors can be regarded as one cluster.
According to Figures 5(a), 5(c), and 5(e), the datasets are cut
into several regions with different densities after the initial
division. As can be seen from Figures 5(b), 5(d), and 5(f ), the
adjacent regions with similar densities aggregate continu-
ously during the aggregation of neighbor clusters, which
contributes to the ideal results of clustering. In Figure 5(f),
some discrete points are distributed around four large
clusters. *e proposed method identifies these points as
noises since there exist certain differences between the
densities of discrete points and those of clusters around
them.

*emetric values for three UCI datasets obtained by four
comparison methods are shown in Table 3, in which the
optimal results have been bolded and the suboptimal results
have been italicized.

According to Table 2, all the SC values obtained by the
proposed method HDBSCAN are better than those obtained
by other methods, and the method also has ideal DBI values.
For instance, in respect of the Parkinson dataset, the SC
value of HDBSCAN is 8.91% higher than that of the sub-
optimal method AHC. Although the DBI value of
HDBSCAN is suboptimal, it is only 2.63% worse than that of
EDBSCAN. *e above results indicate that the proposed
method HDBSCAN has the ideal performance of clustering.
Table 2 shows the ARI performance with the different
methods on the artificial datasets. From these results,
HDBSCAN is shown to rank first in these datasets. More
importantly, in each case HDBSCAN is able to identify the
underlying classes of each dataset, whereas each of the other
approaches fails at this task in at least one case.

4.2. 8e Dataset of Poverty-Stricken Households in China.
We perform clustering on 1778 poverty-stricken households
of CFPS2016 so as to identify different categories of poverty-
stricken households. Table 4 shows the metric values for
CFPS2016 obtained by four compared methods, where the
optimal results have been bolded and the suboptimal results
have been italicized. Table 4 also shows NMI performance
results on the same set of artificial datasets and clustering
approaches. Here, HDBSCAN ranking performance is
identical to those discussed with respect to ARI.

We also make accuracy comparison with the other three
methods.*e results are the average values shown in Table 5.

It can be seen from Table 5 that the values of SC and DBI
obtained by HDBSCAN are better than those obtained by
other compared methods. *erefore, the proposed method
has the ideal performance of clustering on the CFPS2016
dataset.*e clustering result based on HDBSCAN is listed in
Table 6.

According to Table 6, the proposed method divides
CFPS2016 into 10 clusters and identifies 70 noises. Addi-
tionally, the numbers of households within different clusters
are distributed unevenly. For instance, the number of
households in Cluster 1 is 382 while those in Cluster 9 and
Cluster 10 are 61 and 34, respectively. To evaluate the ra-
tionality of the clustering result, we adopt the random forest
algorithm to calculate the importances of attributes in ten
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clusters and thus analyze the characteristics of each cluster.
Specifically, based on the labels generated by HDBSCAN
clustering, we take each cluster as the positive class and the
other clusters as the negative class to construct multiple
binary classification models, thereby mining the important
attributes within each cluster.

Based on the important attributes within clusters, the
characteristics of Cluster 1 are listed below. (1) *e
household has no children under the age of 16. (2) *e
annual net income of the household is higher than the
average level. (3) Medical expenses are more prominent in
the expenditure of the household. *e characteristics of
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Figure 4: *e relation between local sensitivity and threshold ε.
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Figure 5: Clustering results on artificial datasets based on HDBSCAN. (a) Initial division for cluto-t5-8k. (b) Aggregation for cluto-t5-8k.
(c) Initial division for cluto-t8-8k. (d) Aggregation for cluto-t8-8k. (e) Initial division for triangle2. (f ) Aggregation for triangle2.
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Cluster 9 are as follows: (1) the average age of adults in the
household is 76. (2) Almost every household member has no
pension insurance. Besides, the characteristics of Cluster 10
are as follows: (1) the annual per capita income of the
household is 35, 914 yuan, 1.43 times higher than the average
level. (2) More than half of the members use computers. *e
living standard of households in Cluster 10 is relatively high
compared with other clusters, and Cluster 10 accounts for a
small proportion of poverty-stricken households. According
to the above analysis, the causes of poverty and character-
istics for most households are similar so that the numbers of
households in some clusters are large whereas the charac-
teristics of a few poverty-stricken households are clearly
different from others, which leads to small numbers of
households in clusters such as Cluster 9 and Cluster 10.

Figure 6 shows the distribution of attribute importances
in each cluster, where the abscissa values indicate the
numbers of 320 attributes and the ordinate values indicate
the attribute importances; the ten curves represent the
distribution of attribute importances in ten clusters.

As can be seen from Figure 6, the distributions of at-
tribute importances represented by ten curves nearly differ
from each other. For instance, the attribute with the highest
importance in Cluster 7 is the 165th-dimensional attribute
which denotes the stage of schooling for household
members at the last survey. And that in Cluster 8 is the
218th-dimensional attribute which denotes the total
post-tax annual income from work. *e phenomenon
shows that poverty-stricken households within different
categories differ in the characteristics and the causes of

Table 3: *e metric values on four UCI datasets.

Dataset Metric AHC DBSCAN EDBSCAN NS-DBSCAN ADBSCAN HDBSCAN

Banknote

SC 0.308 0.321 0.481 0.483 0.484 0.485
DBI 1.239 1.492 1.226 1.197 1.875 1.155
ARI 0.796 0.753 0.865 0.912 0.987 0.991
NMI 0.758 0.865 0.897 0.953 0.992 0.996

Planning relax

SC 0.178 0.136 0.171 0.215 0.231 0.271
DBI 2.355 11.834 1.733 2.322 2.095 2.368
ARI 0.612 0.537 0.712 0.739 0.865 0.898
NMI 0.821 0.854 0.882 0.913 0.924 0.928

Parkinson

SC 0.258 0.201 0.212 0.255 0.276 0.281
DBI 1.731 1.785 1.598 1.679 1.717 1.640
ARI 0.635 0.689 0.728 0.825 0.877 0.969
NMI 0.589 0.721 0.737 0.862 0.883 0.928

Codon usage

SC 0.265 0.238 0.275 0.281 0.283 0.296
DBI 3.856 8.954 2.917 2.805 2.655 2.192
ARI 0.712 0.884 0.865 0.928 0.944 0.939
NMI 0.822 0.851 0.874 0.912 0.953 0.967

HCV

SC 0.328 0.337 0.416 0.397 0.419 0.511
DBI 2.754 2.663 2.841 2.425 2.538 2.331
ARI 0.714 0.821 0.885 0.836 0.918 0.986
NMI 0.689 0.774 0.796 0.825 0.884 0.917

Table 4: *e metric values on the CFPS2016 datasets.

Metric AHC DBSCAN EDBSCAN NS-DBSCAN ADBSCAN HDBSCAN
SC 0.099 0.109 0.138 0.158 0.177 0.237
DBI 2.656 2.019 1.977 1.765 1.528 1.003
ARI 0.713 0.852 0.872 0.893 0.948 0.995
NMI 0.788 0.854 0.861 0.875 0.942 0.993

Table 5: *e accuracy values on the CFPS2016 datasets.

Metric AHC DBSCAN EDBSCAN NS-DBSCAN ADBSCAN HDBSCAN
Accuracy 79.6% 82.7% 85.3% 85.8% 87.1% 89.6%

Table 6: *e result of clustering based on HDBSCAN.

Label 1 2 3 4 5 6
Number 382 369 282 148 127 126
Label 7 8 9 10 Noise
Number 90 89 61 34 70
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poverty. *erefore, the proposed method can identify the
commonalities and differences in poverty effectively. Fi-
nally, for all the datasets, we conduct computational
complexity experiments with the different methods. *e
results are shown in Table 7. Because the proposed method
is the hierarchical DBSCAN algorithm based on the initial
division and aggregation of neighbor clusters, the time is
higher than traditional DBSCAN. However, the time is
lower than other new methods.

5. Conclusions

*is paper designs the hierarchical DBSCAN algorithm
based on the initial division and aggregation of neighbor
clusters. First, the proposed method HDBSCAN adopts the
adaptive neighborhood radius to perceive regions with
different densities and thus makes the initial division of the
dataset. *en, iterative aggregation is performed on
neighbor clusters according to the border and inner dis-
tances. Experiments on artificial datasets and UCI real-
world datasets indicate that HDBSCAN has the ideal
performance of clustering. Additionally, HDBSCAN di-
vides the dataset of Chinese poverty-stricken household,
namely, CFPS2016, into 10 clusters, and experimental
results verify the rationality of the clustering result. *e
main reasons for the ideal performance of HDBSCAN lie in

the following two aspects. First, the adaptive neighborhood
radius helps to identify regions of different densities in the
data space with imbalanced density distribution. Second,
the aggregation further merges neighbor clusters with
similar densities, which weakens the impact of the accuracy
of initial partition on the clustering performance effec-
tively. However, if the dimension of the datasets is very
higher, the cluster effect is not better. In the future, more
research studies will be conducted on the clustering result
of the CFPS2016 dataset. To be specific, we will study the
characteristics of poverty-stricken households in each
category so as to support the formulation and imple-
mentation of antipoverty measures. *e advanced clus-
tering technology will be applied in targeted poverty
alleviation of the poverty counties in China.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 6: *e attribute importances based on the clustering result by HDBSCAN.

Table 7: *e metric values on four UCI datasets.

Dataset AHC DBSCAN EDBSCAN NS-DBSCAN ADBSCAN HDBSCAN
Banknote 2.7 2.6 2.8 2.9 2.8 3.1
Planning relax 2.3 2.1 2.5 2.6 2.6 2.3
Parkinson 2.5 2.4 2.7 2.6 2.7 2.5
Codon usage 2.9 2.7 2.9 2.8 2.9 2.8
HCV 2.6 2.4 2.7 2.8 2.6 2.5
CFPS2016 2.8 2.4 2.6 2.7 2.7 2.5
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Aiming at solving network delay caused by large chunks of data in industrial Internet of 0ings, a data compression algorithm
based on edge computing is creatively put forward in this paper. 0e data collected by sensors need to be handled in advance and
are then processed by different single packet quantity K and error threshold e for multiple groups of comparative experiments,
which greatly reduces the amount of data transmission under the premise of ensuring the instantaneity and effectiveness of data.
On the basis of compression processing, an outlier detection algorithm based on isolated forest is proposed, which can accurately
identify the anomaly caused by gradual change and sudden change and control and adjust the action of equipment, in order to
meet the control requirement. As is shown by experimental simulation, the isolated forest algorithm based on partition out-
performs box graph and K-means clustering algorithm based on distance in anomaly detection, which verifies the feasibility and
advantages of the former in data compression and detection accuracy.

1. Introduction

With the rapid development and integration of the Internet
of 0ings (IoT) and cloud computing technology, we have
gradually entered the era of “Internet of 0ings, compre-
hensive perception” [1]. At the same time, a large number of
sensor devices are widely used in various fields including
biomedicine, petrochemical, public transportation, envi-
ronmental protection, electric power, and industrial
manufacturing. In spite of the excitement, IoT sensor-based
technology still faces great challenges and uncertainties in its
authenticity, timeliness, reliability, and security. With the
extensive use of sensor devices, people’s lifestyle changes a
lot; meanwhile, massive time series data are generated
during the process of application. According to the Internet
Data Center (IDC) [2], by 2020, the global .data are expected
to exceed 40 zb. Boeing 787 generates more than 5GB of data
per second, and the bandwidth between the aircraft and the
satellite is not enough to support real-time transmission [3].

In order to capture road information in real time, sensors
and cameras mounted on unmanned vehicles will generate
about 1GB of data per second. According to IHS, by 2035,
there will be 54 million driverless vehicles in the world [4].

Usually, sensors collect data at a certain frequency and
send the data to the cloud. 0e cloud then receives the
observed data in strict-time sequence. 0ese data known as
“time series data” accurately record the real-time changes of
certain parameters at some point, such as speed, power, and
temperature. 0ey can reflect the regulation of data changes
under certain parameters, which is the premise of subse-
quent data analysis and mining. In practical scenarios, there
are always some abnormal data that deviate from the normal
perception in the process of data acquisition and trans-
mission; thus, it is very difficult to obtain high-quality data
through sensors. Furthermore, the occurrence of faults is
always unpredictable. Nowadays, most of the anomaly de-
tection algorithms are based on statistics, clustering, simi-
larity measurement, constraint rules, and neural network
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[5–9]. Statistical methods usually know the distribution of
the sequence. By maintaining the sliding window and cal-
culating the statistical characteristic indexes, abnormal parts
can be detected accurately. 0is method is suitable for
detecting discrete and abrupt value anomalies in the se-
quence, but it is difficult to effectively identify the contin-
uous abnormal sequence interval. 0e clustering method
quantifies the distance between outlier and normal cluster to
judge outliers. Computational complexities of different
clustering models vary tremendously, and the detection
results depend on the quality of clustering. 0e method
based on similarity measure can judge whether there is
abnormal data by calculating the similarity between the
standardized sequences. However, this method can take a
long time. In the rule-based method, researchers have
proposed sequence dependence and speed constraint, which
can effectively use the characteristics in time series to repair
highly abnormal data. However, this method can hardly
meet the needs of sequence anomaly detection with variable
patterns [10]. Yu et al. [11] proposed the framework of IoT
monitoring system based on edge computing, and an
anomaly detection approach using self-encoding neural
network. According to the particularity of time series data
and the difference of data composition, literature [12]
proposes that, in the field of time series data, most anomaly
detection methods are based on pattern recognition and
clustering. In [13], a new anomaly detection algorithm for
time series data is put forward, constructing a distributed
recursive computing strategy and k-nearest neighbor fast
selection strategy. Qi et al. [14] proposed a real-time
anomaly detection algorithm for sensing data based on edge
computing. By analyzing the continuity and correlation
between sensing data in the form of time series, the algo-
rithm establishes a distributed anomaly detection model of
sensing data based on edge computing so as to effectively
detect anomalies in real-time sensing data. At present, most
of the existing time series anomaly detection methods focus
on the abnormal recognition of single dimension periodic or
simple pattern time series. A lot of misjudgments and
omissions may occur in the process, which leads to the
performance degradation of anomaly detection methods.
Although various anomaly detection methods have been
proposed in the literature, it is still difficult to accurately
detect the abnormal data and patterns for the one-dimen-
sional time series with variable patterns.

In addition, nowadays the IoT data is processed in the
cloud, and cloud computing can provide an efficient com-
puting platform for big data processing. However, with the
growth rate of network bandwidth lagging well behind that
of data, data transmission delay and energy consumption of
cloud data center have increased significantly, which lead to
the bottleneck of cloud computing. As a new computing
mode, the core of edge computing is to migrate the
decomposed computing tasks to the edge nodes for pro-
cessing, so as to realize the preprocessing of data before
entering the cloud server, and to reduce the computational
load of cloud computing data center. It has been applied in

many fields, such as online shopping, smart home, smart
city, intelligent transportation, security monitoring, etc.
[1, 15]. In order to provide a better computing platform for
the Internet of0ings, a cloud computing center with strong
computing power and mass storage, this paper proposes an
edge collaborative cloud architecture with the help of edge
devices processing massive data and private data in edge
computing. On this basis, an algorithm of data compression
and anomaly detection based on edge computing comes into
being. 0e data collected by sensors are preprocessed to
reduce the amount of data transmission, so as to greatly
reduce the cloud computing load. Analyzing from the
perspective of time series data, anomalies in the sensor data
can be effectively identified, and the normal data fluctuation
in the sensor data is entirely retained.

0e main content of this paper is as follows: Section 2
outlines the application of edge computing in the IoTand the
advanced algorithms in sensor outlier detection. Sections 3
and 4 describe the basic principle and structure of isolated
forest algorithm. In Section 5, the evaluation indicators of
compression algorithm and anomaly detection algorithm
are discussed, and the performance of the algorithm is
evaluated experimentally using actual data. In Section 6, the
whole research idea is summarized.

2. Related Work

2.1. Internet of#ings. 0e Internet of 0ings, also known as
the “Internet connecting goods,” is an outstanding practical
result of information network development during the third
revolution of science and technology. IoT has now pene-
trated into various fields, including transportation, public
safety, environmental protection, electric power, smart
home, and medical health, and has received widespread
attention from all walks of life. 0e Internet of 0ings refers
to the connection of any object with the network through the
information sensing equipment according to the agreed
protocol. 0e objects exchange information through the
media, so as to realize intelligent identification, positioning,
tracking, supervision, and other functions. 0e Internet of
0ings, as the name suggests, is developed on the basis of the
Internet. Put simply, it is an extension of the Internet. 0e
information exchange and sharing of client extend the
communication between things.. 0e Internet of 0ings is
formed when everything is connected at any time, in any
place, and between anyone.

Compared with the Internet, the Internet of 0ings
covers a wider range. It does not necessarily require direct
participation of people. Problems of objects are analyzed and
managed by artificial intelligence. It contains a large number
of sensor applications. Sensor is the source of massive data in
the Internet of 0ings, which is more abundant in data types
and processing diversification. It mainly uses wireless
technology to connect. It can carry out real-time informa-
tion interaction and data transmission, as well as infor-
mation processing. It can integrate the storage, processing
and analysis capabilities of things at one end of things, real-
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time data processing, and feedback to improve user response
efficiency and user experience [16].

With the development of information and communi-
cation technology, many items and devices can be connected
to the network, for example, articles carrying radio fre-
quency identification code, and most devices in industrial
control, environmental control, and traffic control. 0ere-
fore, the IoT technology can make things more intelligent.
0e application of Internet of 0ings has covered the whole
Internet field. 0e IoT architecture can be divided into
perception layer, network layer, and application layer. 0e
perception layer is the source of data and the source of
identifying objects and collecting information in the Internet
on 0ings. Mainly composed of a large number of sensors,
RFID tags, cameras, and other sensing sensors, it is the basic
layer supporting the whole IoT system. 0e network layer is
the center of the Internet of 0ings, which is responsible for
data transmission. It connects the application layer and the
perception layer and realizes the relationship between things
by wireless communication through the exchange equip-
ment and transmission equipment. In this way, the user
terminals distributed in different locations are connected to
form a complete information transmission path. 0e ap-
plication layer is a direct user-oriented interface, through
which users interact with objects [17].

With the rapid development of IoT technology, a series
of national strategies, including Made in China 2025, Ad-
vanced Manufacturing Partner program of the United
States, and German Industry 4.0, are put forward and
implemented. 0e Industrial Internet of 0ings (IIoT)
emerges as the times require and has become an important
driver of the intelligent transformation of global industrial
system (originated from China Institute of Electronic
Technology Standardization). IIoT, a cutting-edge industry
of huge commercial value, is widely used in design, pro-
duction, management, and service [16]. IIoT realizes flexible
allocation of raw materials, execution of manufacturing
process on demand, reasonable optimization of production
process through network interconnection and rapid adap-
tation to the manufacturing environment, and data ex-
change and system interoperability of industrial resources to
achieve efficient utilization of resources, in order to build a
new service-driven industrial ecosystem [18, 19]. 0e In-
ternet of 0ings (IoT) is equivalent to information about
physical objects (sensors, machines, cars, buildings, and
other objects), which makes possible the interaction and
cooperation between these objects to achieve common goals.
It helps realize remote monitoring and intelligent mainte-
nance application scenarios of industrial equipment, and
remote monitoring, preventive maintenance, and perfor-
mance optimization analysis of equipment [20]. 0e so-
called IIoT is an advanced production mode that uses cloud
platform to upgrade traditional industry to intelligent
industry.

2.2. Edge Calculation. As a key technology to realize the
Internet of 0ings, edge computing is widely used in many
fields, such as smart city, intelligent manufacturing, intelligent

transportation, smart home, privacy protection [21], disaster
relief [22–25], etc. In the aspect of smart city, edge computing
can meet three requirements of large data volume, low latency,
and real-time location identification in the construction of
smart city. It can efficiently process the massive data in various
fields including public safety, health data, public facilities, and
transportation information. It can reduce the time for data
transmission and process the private data of users and relevant
institutions more safely. In the aspect of intelligent
manufacturing, edge computing can effectively realize the
interaction and cooperation of information in each part of the
intelligent manufacturing system and ensure the real-time data
processing in the intelligent process. It can upload the pro-
cessing results to the cloud for compensation calculation and
then download them to the controller for operation, so as to
reduce the communication cost and improve the processing
efficiency. In the aspect of intelligent transportation, the system
analyzes the data collected by cameras and sensors in real time
through edge calculation and makes corresponding decisions,
which can solve bandwidth waste and delay, improve security
of intelligent transportation, extend the applicability of it, and
provide a better user experience. In the aspect of smart home,
the edge computing system runs on the edge gateway inside the
home, integrating smart home devices into the system. And the
data generated by the devices can be processed and desensitized
locally, which can effectively reduce the data transmission delay
and better protect the privacy of users. In the aspect of disaster
rescue, the key of intelligent fire protection is to process, an-
alyze, and predict the data obtained frommultiple data sources,
and effectively transmit the results to rescuers, which require
high computing power and timely response. 0rough edge
computing, the data can be transmitted to the base station
through the edge equipment and then to the cloud without
infrastructure. In transmission, the edge computing and
storage resources will be used nearby to realize the partial
processing, analysis, and prediction of the data, reduce the
number of data transmissions, and shorten the bandwidth and
response time.

Cloud computing and edge computing are key tech-
nologies to realize the Internet of 0ings. As a computing
model, cloud computing accesses computing resources,
network resources, and storage resources of the data center
through the network and provides scalable distributed
computing capability for applications [26]. With the char-
acteristics of large-scale servers, high reliability, strong ex-
tensibility, and virtualization, ITcloud computing is used by
more andmore enterprises and organizations to deploy their
applications. But in cloud computing mode, computing
tasks are handled by the cloud center. 0e service provider
provides the data to be uploaded to the cloud center, and the
client of the terminal sends the request to the cloud center.
0e cloud center responds to the relevant request and sends
the relevant data to the terminal customer. 0e terminal
customer always plays the role of consumer. Edge com-
puting is a new computing mode to perform computing at
the edge of the network, which places the data that should be
processed in the cloud center near the data source. 0e
comparison between edge computing and cloud computing
is shown in Table 1.
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As can be seen from Table 1, compared with cloud
computing, edge computing has the following obvious ad-
vantages: first, it can improve the security of data center;
third, it can enhance the security of data. But edge com-
puting cannot replace cloud computing. It is the extension of
cloud computing, providing a better computing platform for
the Internet of 0ings. Edge computing model requires the
strong computing ability and mass storage support of cloud
computing center. Cloud computing also needs the pro-
cessing of massive data and private data by edge devices in
edge computing to meet the real-time requirement and
satisfy the needs of privacy protection. 0erefore, the device
edge cloud architecture model can provide a better con-
figuration scheme.

3. Data Compression Preprocessing Based on
Edge Computing

Aiming at the problem of cloud computing transmission and
feedback delay caused by massive IoT data, an effective
method is designed to better process a large amount of
sensor time series data. Generally, increasing data redun-
dancy can improve the stability of the system. In a sense, low
data redundancy and high data reliability are contradictory,
whichmeans it is very difficult to find the optimal solution of
minimum data redundancy and maximum data reliability.
0e shorter the processing time is, the better the com-
pression processing is carried out on the premise that
original data characteristics of the sensor and the true re-
flection of the data are not changed.

0e method used in this paper needs to set the number
k and error threshold e of each group of data packets in
advance. When the time sequence data t is uploaded to the
edge end, all the first k temperature data are uploaded.
When the average value of the time sequence data T[i + k]
and its first k time series data is less than the error
threshold e, the output will not be carried out, so as to
cycle when T[i + 2k − 1] and T [i + 2k − 1] still meet the
above conditions. We take the average value of T
[i + 2k − 1] and the first k − 1 data as the uploaded data and
store them in out2.txt, and I + k in out1.txt. If the time
series data T[i + k] appears and the average value of the
first k time series data in the group is no less than the error
threshold e, then T[i + k] is directly uploaded and stored
in out2.txt, and I + k is stored in out1.txt to reduce the
amount of data transmission and subsequent data

processing. Among them, T[i] is the ith time series data
collected, and out1.txt and out2.txt are edge storage files.
0e implementation of sensing data compression algo-
rithm is shown in Algorithm 1.

4. Anomaly Detection Based on Isolated
Forest Algorithm

Isolation forest algorithm is an unsupervised anomaly de-
tection method based on random binary tree and suitable for
continuous data [28]. In isolated forests, anomalies are
defined as “outliers that are easily isolated,” that is, points
with sparse distribution and far away from high-density
population. In the feature space, the sparsely distributed
region indicates that the probability of events occurring in
the region is very low, so it is judged that the data distributed
in the sparse area is abnormal. It is suitable for anomaly
detection of time series data.

0e forest isolation algorithm is described in detail:

(i) Define 1 so that t is a binary tree and N is the node of
T. if N is a leaf node, it is called an external node; if N
is a node with two children, it is called an internal
node.
Definition 2 in an iTree; the data of the edge from the
root node to the outer node is called the path length,
which is denoted as H (s).

0e construction process of a single iTree is as follows:
select a point randomly from the data set S � {S1, S2, S3, · ·,
Sn} to generate the cut point P randomly. 0e cutting point
P is generated between the maximum value and the
minimum value of the specified dimension in the current
node data, and then each data is divided. 0e selection of
the cutting point generates a hyperplane, which places the
points smaller than P in the left branch of the current node
and points greater than or equal to P in the right branch of
the current node. 0e left and right branches are con-
structed recursively until only one data set or tree on the
leaf node has grown to the set height. Traverse each iTree to
find the final path length of S. Since the cutting process is
completely random, we need to use the method of ensemble
to make the result converge; that is, repeatedly start cutting
from the beginning, and then calculate the average value of
each segmentation result, namely, H (s). 0e schematic
diagram of data traversal iTree is shown in Figure 1.

Table 1: Comparison of edge computing and cloud computing.

Content Edge computing Cloud computing
Target application Internet of 0ings or mobile application General Internet
Service node location Edge network Data center
Communication network WLAN 4 g/5 g Wan
Number of devices available for service Billions Millions
Types of services provided Local information n global information
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Input: data.txt sensor data T number of packets processed in a single group K, error threshold E.
Output: out1.txt, out2.txt.
(1) for i� 1 to N
(2) read the data from “test.txt”, and write them to “data.txt”
(3) if e of the “test.txt”
(4) break
(5) end if
(6) for i� 1 to N
(7) read the data from “data.txt” to T[i+ 1]
(8) aver� sum(T)/i+ 1;
(9) end
(10) if (aver< 0)
(11) for i� 1 to k
(12) aver< aver +T[i]
(13) aver< aver/k
(14) end
(15) else
(16) for i� 2 to n
(17) temp< aver
(18) for j� 0 to k− 1
(19) if i+ j≥� n
(20) temp<−1
(21) aver< aver +T[i+ j]
(22) end if
(23) end
(24) end if
(25) end
(26) end if
(27) aver< aver/k
(28) if |aver-temp|>� e
(29) put i+ j−1 to “out1.txt”
(30) put T[i+ j−1] to “out2.txt”
(31) end if
(32) return “out1.txt”,“out2.txt”

ALGORITHM 1: Sensor data compression algorithm.

Normal
sample

Normal rate
sample

Outlier
sample

Abnormal score

. . .

Figure 1: Orest anomaly detection process.
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H(k) � ln(k) + ξ,

c(A) �

2H(A − 1) −
2(A − 1)

n
, A> 2,

1, A � 2,

0, A< 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(h(S))⟶ 0, s⟶ 1; E(h(S))⟶ A − 1, s⟶ 0; E(h(S))⟶ c(A), s⟶ 0.5.

(1)

H (s) is the node depth of S in iTree. E [.] is the average of
t iTrees. c (A) is the average length of a point bisection search
tree. H(k) � ln(k) + ξ, ξ is Euler’s constant.0e closer S(S) is
to 1, the more likely it is to be abnormal data; and the closer
it is to 0, the more likely it is to be a normal point. When the
S(S) of most data is 0.5, there is no abnormal value in the
data.

Isolated forest algorithm is different from clustering, box
graph, and other algorithms; it does not need to calculate the
distance, density, and other indicators; it can greatly im-
prove the calculation speed and reduce the system overhead.
In the process of training, each iTree is randomly selected
and generated independently. It accelerates the operation of
the deployment of large-scale distributed systems. Based on
the ensemble method, the more iTrees, the more stable the
algorithm.

5. Experimental Simulation

0e temperature data used in this paper is collected from the
environmental data set uploaded from the experimental
cloud platform of the Internet of 0ings. 0e time is
intercepted from 8 : 00 on May 1, 2019, to 7 :15, May 17,
2019. 0e data upload interval is 30 s, with a total of 45989
temperature sensing data, and the data accuracy is 0.1°C.
Figure 2 shows a scatter diagram of time series variation

trend of temperature data set, including 10 times of
anomalies caused by gradual change or sudden change.

Hardware environment: all experiments are carried out
with Windows 7 operating system, CPU is Intel Core i5
4200u, the graphics card is AMD Radeon HD 8670m,
memory is 4GB, and python platform is used for simulation.

0e isolated forest algorithm is used to detect the original
temperature data set and four groups of compressed data
sets to evaluate the performance of outlier detection. 0e
parameters are as follows: the number of iTree t� 100; the
number of test samples a� 256; the path lengthH (s)� 15. As
shown in Figure 3, the test results of iForest algorithm in the
original data set show that there are 10 abnormal data
detected, all of which are detected without misjudgment.
Figures 4–7, respectively, show the anomaly detection results
of four groups of data based on iForest algorithm. In the first
group, 10 abnormal data were detected, but one normal data
was misjudged as abnormal data, and one abnormal data was
not detected; nine abnormal data were detected in the
second group without misjudgment, and one abnormal data
was not detected; the third group detected 10 abnormal data,
but there were 2 misjudgments, and 2 abnormal data were
not detected; 10 abnormal data were detected in the fourth
group, without misjudgment.

In order to verify the comparison and analysis of
anomaly detection accuracy of the three algorithms, and to
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Figure 2: Scatter plot of time series variation trend of temperature data set.
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assure the reliability and justness of results, the anomaly
detection results of different algorithms for the original data
and compressed data are listed in Table 2 (note: the original
data is before the processing, and the data is after the
processing).

In, Table 2 the accuracy is calculated by the ratio of the
number of correctly classified samples to the total number of
samples, the accuracy is the ratio of the correct prediction to
the positive proportion of all the predicted samples, and the
recall rate is the ratio of the correct prediction to the positive
proportion of all the positive samples, which can be un-
derstood as the ratio between the number found and the
total number to be found.

It is not difficult to find from Table 2 that the accuracy
and recall rate of iForest algorithm are generally higher than
those of the other two algorithms in the anomaly detection
of the original data set and the compressed data set. In the
comparison of different data sets of the same algorithm, due
to the large amount of original data, the abnormal detection
accuracy, accuracy, and recall rate of the original data are
obviously higher than those of the compressed data, while
the other compressed data does not deviate from changing
the tracking of the original data. When the data is flat, the
compressed data can replace the original data with fewer
values; when the data becomes different, the original data
can be replaced by the compressed data in normal time, and
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Figure 3: Anomaly detection results of iForest algorithm in the
original data set.
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Figure 4: iForest algorithm anomaly detection results of the first
group of compressed data.
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Figure 5: Anomaly detection results of iForest algorithm for the
second group of compressed data.
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Figure 6: Anomaly detection results of iForest algorithm for the
third group of compressed data.
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compressed data can keep the abnormal data for outlier
detection, which can effectively prevent the abnormal data
from beingmissed. In terms of algorithm execution time, the
execution time of K-means clustering algorithm is always the
shortest, but it is only 0.19 s shorter than iForest algorithm,
which has no impact in practical application. 0erefore,
iForest algorithm based on partition outperforms box graph
and K-means clustering algorithm based on distance in
anomaly detection performance. From the aspect of the
execution time of anomaly detection before and after
compression processing, the box graph algorithm is short-
ened by 11.35 s, K-means clustering algorithm by 8.02 s, and
iForest algorithm by 11.07 s. Data compression can signif-
icantly shorten the time of anomaly detection. Based on the
time required for data compression, the time consumed in
the whole data processing is still reduced to a certain extent.
0erefore, the superiority of edge computing is finally
verified.

6. Conclusions

In this paper, in order to solve the problem of cloud
computing, transmission and feedback delay caused by the
current massive IoT data, this paper proposes a cold chain
monitoring management method based on edge computing
through the research and analysis of the cold chain IoT
monitoring system. 0e real-time sensing data is

compressed to ensure that the original characteristics and
true reflection of the sensing data remain unchanged, and
the amount of data calculated in the cloud center can be
reduced, as well as the transmission delay and response
delay. Based on the data compression processing, the ab-
normal detection of the filtered data is carried out with high
detection precision, which can timely detect anomalies and
remind users of them.

In future work, we will take the lead in adjusting the
compression conditions in data compression to achieve
selective data compression. Secondly, in order to minimize
the loss in the process of anomaly repair in the future, we try
to add one or more prediction mechanisms in the follow-up
work to reasonably optimize the anomaly detection method.
Based on the consideration of the correlation between data
files and the time interval of similar files being accessed, the
cache replacement strategy will be improved.
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Deep embedding clustering (DEC) attracts much attention due to its outperforming performance attributed to the end-to-end
clustering. However, DEC cannot make use of small amount of a priori knowledge contained in data of increasing volume. To
tackle this challenge, a semisupervised deep embedded clustering algorithm with adaptive labels is proposed to cluster those data
in a semisupervised end-to-end manner on the basis of a little priori knowledge. Specifically, a deep semisupervised clustering
network is designed based on the autoencoder paradigm and deep clustering, which well mine the clustering representation and
clustering assignment by preventing the shift of labels in DEC. ,en, to train parameters of the deep semisupervised clustering
network, a back-propagation-based algorithm with adaptive labels is introduced based on the pretrain and fine-tune strategies.
Finally, extensive experiments on representative datasets are conducted to evaluate the performance of the proposed method in
terms of clustering accuracy and normalized mutual information. Results show the proposed method outperforms the state-of-
the-art methods of DEC.

1. Introduction

Clustering, as one of the most important basic research
methods in data mining and machine learning, plays an
important role in pattern recognition, image retrieval,
computer vision, social network analysis, natural language
processing, and knowledge discovery [1]. It divides data
samples into different categories in the pattern space by
exploring potential distribution structures of data. In the
past decades, many classical clustering algorithms have been
proposed, such as K-means, DBSCAN, Gaussian mixture
model, spectral clustering, nonnegative matrix factorization-
based clustering, and graph-based clustering [2–5]. Recently,
deep clustering has attracted much attention with the in-
creasing collection of high-dimensional data. It can well
alleviate the degradation of traditional clustering in the face
of high-dimensional input data by learning low-dimensional
representations of data. For example, Lv et al. [6] proposed a
deep feature-based clustering by using a stacked autoen-
coder to extract deep text features. To further improve
clustering performance on high-dimensional data, some
deep end-to-end clustering methods were proposed, which
merged deep neural networks into clustering. For instance,

Xie et al. [7] proposed deep embedded clustering (DEC),
which learns clustering features of data and divides data in a
self-learning manner. Hong et al. [8] proposed mini-GCN,
which can combine CNN and GCN to extract more dis-
tinctive features and overcome the high computational cost
of GCN. Zhao et al. [9] separated view-specific irrelevant
information from common features, eliminating the influ-
ence of useless information in the view.

,ose above methods can well mine data patterns in an
unsupervised manner, neglecting some prior knowledge in
real data, which is represented by a small number of labelled
data or pairwise constraints given by experts. Lately, a
number of semisupervised clustering methods were pro-
posed [10–13], utilizing both enough unlabelled data and
some prior knowledge to improve clustering performance.
For example, Hong et al. [14] proposed a semisupervised
deep learning framework that can learn more discriminative
information from a small-scale hyperspectral image and
transfer it to the classification task of large-scale data.
However, most of the current semisupervised clustering
cannot use a priori knowledge in a strong-supervision
manner because they do not use label information to directly
guide the learning of cluster centres. Also, they cannot
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cluster samples in a data-driven way of learning clustering
centroids and clustering-specific representations.

To address those challenges, a new semisupervised joint
learning framework is proposed, which jointly learns the
feature embedding space and cluster assignment by inte-
grating a small amount of label information in a joint op-
timization function.

In addition, the previous semisupervised clustering
strategies cannot directly use the strong-supervised
knowledge of data labels in the deep embedded clustering
due to the label shift problem that clustering results are
inconsistent with the actual labels of samples. In other
words, those labelled samples of the same class are often
scattered to the incorrect classes, and this incorrect super-
vised information destroys pattern structures of data,
causing the degradation of deep embedded clustering.

To solve this challenge, a label adaptive strategy is in-
troduced in this paper based on a voting mechanism.
,rough the label adaptive strategy, the shifted labels gen-
erated in the clustering process are projected as the winner
label, ensuring that the labelled samples of the same cluster
are always in one cluster in the clustering process. So, the
proposed strategy can directly use the label loss to guide the
clustering process via adjusting the cluster centres and
learning clustering-specific representations. ,e method in
this paper is improved on the basis of DEC and expanded to
a semisupervised deep clustering method. ,e contributions
of this paper are summarized as follows:

(i) A new semisupervised joint learning framework is
proposed, which integrates a small amount label
information to jointly learn the feature embedding
space and the cluster assignment with the help of a
joint optimization function.

(ii) A label adaptive strategy is introduced to correct the
label shift of the clustering process. It can not only
improve the utilization of label information, but
also effectively avoid the potential degradation that
the centroid of traditional deep clustering algorithm
is dominated by the code network.

(iii) Extensive experiments on two image datasets and
one text dataset are conducted, where the results
prove that the proposed method greatly outper-
forms the state-of-the-art clustering methods.

,e rest of this paper is organized as follows: we briefly
review the related work in Section 2. Section 3 introduces the
details of the proposed method. Section 4 introduces the
back-propagation-based algorithm with adaptive labels
based on the pretraining and fine-tuning strategies. Section 5
introduces the experimental details of this paper. Finally, the
conclusions are presented.

2. Related Work

2.1. Unsupervised Clustering. Clustering has attracted a lot of
attention and has been greatly developed for a long time. Many
excellent clustering algorithms were proposed [15, 16]. For
example, K-means is a classical unsupervised clustering

algorithm aiming to minimize the sum of the distance between
data points and centroids [2]. Fuzzy expectation maximization
combines clustering, cluster number detection, and feature
selection into an estimation problem to perform the clustering
process [17]. Feature clustering hashing (FCH) is a hashing
method based on feature clustering, which can generate lower
dimensional data with balanced variance on the premise of
maintaining similarity in the Euclidean space [18]. ,e above
methods can be regarded as the clustering algorithm based on
features. Distancemetric learningwith side information learns a
distance measure that incorporates the given similarity pairs.
Learning a Mahalanobis distance metric designs a new distance
measurement function that can learn the Mahalanobis distance
metric by forcibly adjusting the distance of a given instance and
applying it to new data [19]. Bayesian discriminative fuzzy
clustering (BDFC) designs a probabilistic method for unsu-
pervised distance metric learning which can maximize the
separability between different clusters in the projection space
[20]. ,e above methods can be regarded as the clustering
algorithm based on the distance metric learning. Constrained
Laplacian rank (CLR) learns graph with k connected compo-
nents (where k is the number of clusters) and adjusts the data
graph as part of the clustering process [21]. Structure doubly
stochastic (SDS) learns structured double random matrices by
applying low-rank constraints on Laplace matrices of graphs
[22]. Multiview spectral clustering is a novel multiview Markov
chain clustering method which can utilize complementary
information embedded in different views [23]. ,e above
methods can be regarded as the clustering algorithm based on a
graph. With the rise of deep learning, the introduction of deep
neural network in clustering has received much attention. Deep
clustering network (DCN) finds K-means-friendly clustering
space through synchronous deep learning and clustering pro-
cess [24]. Deep embedded clustering (DEC) uses an automatic
encoder to complete the transformation of feature space [7].
Ingeniously, it can perform feature extraction and cluster as-
signment tasks simultaneously. ,is algorithm achieves good
results and becomes a reference for the performance of new
deep clustering algorithm. Improved deep embedded clustering
(IDEC) improves clustering performance by preserving the
local structure of data [25]. Colearning nonnegative correlated
and uncorrelated features (CoUFC) [26] recognizes view-spe-
cific features and eliminates the influence of irrelevant infor-
mation to obtain useful interview feature correlation.

,ere exists some prior information in many actual data,
but the above unsupervised methods do not consider the
information. In order to make full use of the label infor-
mation, this paper proposes a new semisupervised joint
learning framework, which integrates label information into
deep clustering to jointly learn the data representations and
the clustering assignment.

2.2. Semisupervised Clustering. Semisupervised clustering is
one of the important research directions in the field of data
mining. It can guide the clustering process and improve the
quality of clustering by using prior knowledge such as paired
constraints or a small amount of labelled data. Recently, the
semisupervised clustering method has achieved fruitful

2 Scientific Programming



results. For instance, semisupervised kernel mean shift
clustering (SKMS) maps data points to a high-dimensional
kernel space in which constraints are imposed by linear
transformation of the mapped points [27]. Semisupervised
linear discriminant clustering (SLDC) combines k-means
and linear discriminant analysis (LDA) to consider both the
clustering and dimensionality reduction and finds the ap-
propriate feature space by using soft LDA with unlabelled
examples [28]. Semisupervised nonnegative matrix factor-
ization (CPSNMF) propagates limited constraint informa-
tion to the entire data set to obtain more supervisory
information and utilizes this supervisory information to
maintain the geometry of the data space [29]. Semi-
supervised graph-based clustering (SSGC) uses a graph of
k-nearest neighbours and the local density measure of the
similarity between vertexes to integrate the seed into the
process of building the cluster, improving the quality of the
cluster [30]. ,e above methods can be regarded as an
extension of the traditional clustering algorithms by using
label information or pairwise constraints. Relevant com-
ponent analysis (RCA) is an efficient algorithm for learning
Mahalanobis metrics by using a version of the constrained
Fisher’s linear discriminant [31]. Discriminative component
analysis (DCA) learns the linear data transformation of the
best Mahalanobis distance measurement with context in-
formation [32]. Information theoretic metric learning
(ITML) uses a relationship between multivariate Gaussian
distribution and Mahalanobis distance set to learn a new
Mahalanobis distance function [33]. Bregman distance
function learning (BKM) presents a newmethod for learning
nonlinear distance functions with edge information, which
is to use a nonparametric method similar to support vector
machines to learn Bregman distance functions [34]. ,e
above methods can be considered as exploring a new dis-
tance metric function by using constraint information. Still
some research work is used to explore an integrated
framework for semisupervised clustering. For example, the
double affinity propagation-based cluster ensemble (AP2C)
integrates affinity propagation (AP) algorithm and nor-
malized cut (Ncut) algorithm into cluster integration
framework [35]. It can capture the relationship between
attributes, find a group of representative attributes, and
eliminate noise attributes. Semisupervised clustering with
sequential constraints (SCSC) proposes an efficient dynamic
semisupervised clustering framework [36]. It transforms the
dynamic clustering process into a search problem on a
feasible clustering space, which is defined as a convex shell
generated by partitioning multiple sets. Hybrid semi-
supervised clustering ensemble (HSCE) proposes a semi-
supervised clustering ensemble framework that uses
pairwise constraints or labelled data to generate different
basic partitions by using constraint-based semisupervised
clustering algorithm and metric-based semisupervised
clustering algorithm, respectively, and then integrates these
basic partitions into integration functions to obtain target
clustering [37].

Traditional semisupervised clustering algorithms are
mostly executed in the original space and have poor per-
formance in the face of high-dimensional data. ,erefore, it

is necessary to enhance its expressiveness by using deep
neural network. MDL-RS designs a general multimodal deep
learning framework, which can well embed multiple fusion
modules and break the performance bottleneck under single
modality [38]. Deep transductive semisupervised maximum
margin clustering uses labelled and unlabelled data under a
given pair of constraints to learn the nonlinear mapping
under the maximum margin framework for clustering
analysis [39]. ,is work proves that the deep representation
of the original does contribute to the improvement of
clustering results. Semisupervised deep embedded clustering
(SDEC) incorporates pairwise constraints in the process of
feature learning, forcing data samples in the same cluster to
be close to each other, and data samples of different clusters
are far apart from each other [40].

However, due to the label shift problem, these semi-
supervised methods cannot directly use label information to
guide the learning of cluster centres. ,erefore, this paper
designs a label adaptive strategy based on the voting
mechanism to correct the transfer of labels in the clustering
process, directly using the label loss to guide the clustering
process and improve the clustering performance.

3. Semisupervised Deep Clustering with
Adaptive Labels

In this section, a semisupervised deep embedded clustering
algorithm with adaptive labels (Semi-DEC) is introduced to
make full use of prior knowledge of a small number of labels.
Semi-DEC is composed of a deep code network and a
semisupervised embedding network, as shown in Figure 1.
,e former uses the encoder-decoder paradigm, transferring
high-dimensional data into low-dimensional features. It can
well address the curse of dimensionality in data. ,e latter
mines knowledge patterns by dividing data into several
groups. It can better consider prior knowledge by solving the
shift of labels in clustering.,e details of those two networks
are introduced as follows.

3.1. $e Deep Code Network. ,e deep code network aims
to learn latent features of data in a low-dimensional space
on the basis of the encoder-decoder network [41]. ,at is,
it computes the hidden representations of data samples,
reconstructs data samples from those hidden represen-
tations, and minimizes the loss between raw data and
reconstructed data. Specifically, given a dataset of n
points X � xi ∈ Rd1􏼈 􏼉

n

i�1, where d1 is the dimension of
data, the deep code network learns hidden representa-
tions of data in the following form:

x � Dropout(x), (1)

h � ge Wex + be( 􏼁, (2)

where Dropout is the random mapping function that sets
some elements of each input to be 0 based on a given
probability. x is the result of the random mapping of the
input x. We and be are the weight and bias vectors, re-
spectively, which represent the parameters of the encoder
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network. h is the hidden representation with ge representing
the encoder function.

After obtaining hidden representations of data samples,
the deep code network decodes hidden representations by
the reconstructing function as follows:

h � Dropout(h), (3)

t � gd Wdh + bd􏼐 􏼑, (4)

where h is the result of the random mapping of the hidden
representation h. Wd and bd are the weight and bias vectors
of the decoder function. t is the reconstructed data, and gd

represents the decoder function.
Finally, the deep code network uses the mean squared

error function to measure the loss between raw data and
reconstructed data as follows:

loss � ‖x − t‖
2
2, (5)

where 2
2 represents the mean squared error function. In

Semi-DEC, the loss of the deep code network is used to
pretrain parameters.

3.2. $e Semisupervised Embedding Network. ,e semi-
supervised embedding network aims to divide data into
several groups where the distances between samples of the
same group are closer than those of different groups. ,e
semisupervised embedding network consists of the unsu-
pervised part that mines intrinsic patterns and the super-
vised part that uses the small amount of prior knowledge.

3.2.1. $e Unsupervised Part. ,e unsupervised part of the
semisupervised embedding network is measured by the KL
divergence as follows:

L1 � KL(P‖Q) � 􏽘
n

i�1
􏽐
k

j�1
pijlog

pij

qij

, (6)

where Q is the cluster assignment of the semisupervised
embedding network and P is the target distribution.
Given the hidden representations of n data samples Z �

zi ∈ Rd2􏼈 􏼉
n

i�1 (d2 is the dimension of data in the embedding
space) and k cluster centroids μj|j � 1, . . . , k, the cluster
assignment of the semisupervised embedding network is
expressed as

qij �
1 + zi − μj

�����

�����
2

􏼒 􏼓
− 1

􏽐
k
j′�1 1 + zi − μj′

�������

�������

2
􏼠 􏼡

−1. (7)

,e target distribution is defined as follows:

pij �
q
2
ij/􏽐

n
i�1 qij􏼐 􏼑

􏽐
k
j′�1 q

2
ij′/􏽐

n
i�1 qij′

􏼒 􏼓

, (8)

where Q is measured by the student distribution and P is the
square of Q, which strengthens the membership each
sample.

3.2.2.$e Supervised Part. ,e supervised part is introduced
to address the shift of labels in the unsupervised part based
on the small group of priori knowledge. It is measured by the
soft-max loss function as follows:

L2 � −λ􏽘
n

i�1
aiyi
′log qi � −λ􏽘

n

i�1
􏽘

k

j�1
aiyij
′log qij, (9)

KL loss

Encoder Decoder

Semi–DEC

Encoder

Clustering
result

Dynamic label
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Label
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Figure 1: ,e architecture of the semisupervised deep embedding clustering algorithm with adaptive labels.
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where yi
′ represents the temporary correction label obtained

through the label adaptive strategy, λ is a trade-off parameter
to balance the influence of the label loss, qi represents the
label obtained by cluster assignment, and ai is the sign that
indicates whether there is a label of a certain sample and is
expressed via

ai �
1, yi exists,

0, else,
􏼨 (10)

where yi represents the true label of the sample.
Finally, the computation of the semisupervised em-

bedding network is expressed as follows:

L � L1 + L2 � 􏽘
n

i�1
􏽐
k

j�1
pijlog

pij

qij

− λ􏽘
n

i�1
􏽘

k

j�1
aiyij
′log qij, (11)

which can effectively merge the knowledge of a small
number of labels into the unsupervised learning.

3.3. Optimization. We use the stochastic gradient descent
(SGD) and back-propagation to optimize the loss function
equation (11). It is worth noting that the parameters to be
optimized have two parts: feature space embedded of each
data point zi and the cluster centres μj. ,e gradients of L
with respect to embedded point zi can be computed as

zL

zzi

� 2􏽘
k

j�1
1 + zi − μj

�����

�����
2

􏼒 􏼓
− 1

× pij − qij􏼐 􏼑 zi − μj􏼐 􏼑 − 2λai 􏽘

k

j�1
yij
′ 1 + zi − μj

�����

�����
2

􏼒 􏼓
− 1

× 1 −
qij

pij

􏼠 􏼡 zi − μj􏼐 􏼑. (12)

,e gradients of L with respect to the cluster centre μj

can be computed as

zL

zμj

� −2􏽘
n

i�1
1 + zi − μj

�����

�����
2

􏼒 􏼓
− 1

× pij − qij􏼐 􏼑 zi − μj􏼐 􏼑 + 2λai 􏽘

n

i�1
yij
′ 1 + zi − μj

�����

�����
2

􏼒 􏼓
− 1

× 1 −
qij

pij

􏼠 􏼡 zi − μj􏼐 􏼑. (13)

In the process of back propagation, the parameters
We, be􏼈 􏼉 in the deep code network are updated by passing
down the gradient (zL/zzi). ,e cluster centre μj is updated
by gradient (zL/zμj). ,e clustering process will be ter-
minated when the cluster assignment between two con-
secutive iterations is less than tol % or the maximum number
of training times is reached.

4. The Back-Propagation Algorithm of Semi-
DEC

In this section, the back-propagation algorithm is intro-
duced to train parameters of Semi-DEC. It is composed of
two steps, i.e., the unsupervised pretraining step and the
semisupervised fine-tuning step. ,e details of the back-
propagation algorithm of Semi-DEC are introduced as
follows.

4.1. $e Unsupervised Pretraining Step. ,e unsupervised
pretraining step uses the encoder-decoder paradigm to learn
generalized features of data and adopts the K-means clus-
tering to explore the centroids hidden in data.

Specifically, given a dataset of n pointsX and a deep encoder
network of m layers, the unsupervised pretraining step models
each layer of the deep encoder network as an autoencoder based
on equations (1) to (4) to obtain the pretraining parameters of
the deep code network. For example, each raw sample xi in the
dataset is input into the autoencoder of the 1st hidden layer,
obtaining the hidden representation hi which is input into the

autoencoder of the 2nd hidden layer. After each hidden layer is
initialized in the sameway, thewhole network is trained again in
an end-to-end manner by minimizing the reconstruction loss.

,en, the raw data X are mapped into the latent feature
space by the deep code network, getting the hidden rep-
resentations Z. ,e K-means clustering is conducted on the
hidden representations to get initial centroids.

4.2. $e Semisupervised Fine-Tuning Step. After obtaining
the pretrained deep code network and the initial centroids,
Semi-DEC is trained in the semisupervised manner based on
the loss function equation (11) to solve the shift of label in
unsupervised learning. Specifically, given the raw data X,
Semi-DEC constructs the label sign list of samples as defined
in equation (10). ,en, suppose the number of labelled
samples is v, it gathers statistics of the distribution of data
which have labels in each epoch as follows:

R � q1, q2, . . . , qv􏼂 􏼃,

qi � argmax
j

qij, j � 1, 2, . . . , k,

⎧⎪⎨

⎪⎩
(14)

where q1, q2, . . ., qv represent the assigned labels of those
labelled data and their values range from 1 to k. Finally, the
temporal labels q1, q2, . . ., qv are rectified to the label whose
number is maximum.

Figure 2 is an example of the label adaptive strategy. For
the subset of labelled data with category o, we assume that
after cluster assignment, most of the samples are assigned to
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category j and a few samples are assigned to other categories
such as s and u. Here, o, j, s, and u, respectively, represent
different categories. ,rough the voting mechanism, we
believe that the category jwith the largest number of samples
is the correct result of this subset in cluster assignment.
,en, we can rectify the samples that are clustered incor-
rectly in this round of calculation, that is, make them move
closer to category j. ,e adaptive label algorithm is intro-
duced as follows:

Step 1: Semi-DEC gathers the label distribution of each
cluster ci|i � 1, . . . , k􏼈 􏼉 based on the output of the sem-
isupervised embedding network R � [q1, q2, . . . , qv] in
each epoch. At the same time, the label with themaximum
number is dynamically treated as the correct label.
Step 2: Semi-DEC rectifies those wrong labels
according to the statistics of the label distribution.
Step 3: Semi-DEC computes the loss of those samples
that are wrongly labelled according to equation (9) to
rectify the parameters of network.
Step 4: Semi-DEC fine-tunes the parameters of the deep
code network and the semisupervised clustering net-
work to find the final assignment strategy.

With the help of the proposed label adaptive strategy,
the labelled data that were wrongly divided in the clus-
tering process are corrected via the voting mechanism,
which can effectively solve the label shift problem in a
strong-supervision manner by forcing the data that have
the same label to be in the same cluster. In other words,
this label adaptive strategy preserves the data structure in
clustering assignment and cluster-specific feature
learning. ,e overall steps of the back-propagation al-
gorithm of Semi-DEC are shown in Algorithm 1.

5. Experiments

In this section, extensive experiments are conducted on
several representative datasets to evaluate the performance
of Semi-DEC. ,e datasets used in our experiment are first
introduced. ,en, several state-of-the-art clustering algo-
rithms and evaluation metrics are presented. Finally, the
implementation and experimental results are illustrated in
detail. ,e detailed information of the datasets is shown in
Table 1.

5.1. Datasets

5.1.1. MNIST. ,e MNIST dataset is composed of 70000
handwritten digits of 28∗ 28 pixel size. In the experiment,
each image is reshaped to a 784-dimensional vector.

5.1.2. USPS. ,e USPS dataset is composed of 9298
handwritten digits of 16∗ 16 pixel size. ,e images are
divided into 10 categories, with a training set size of 7291 and
a test set size of 2007.

5.1.3. REUTERS-10K. In the original Reuters data set, there
are around 810000 English news stories labelled with a
category. Four root categories are as follows: corporate/
industrial, government/social, markets, and economics as
labels are used, and all documents with multiple labels are
further excluded.We computed TF-IDF features on the 2000
most frequent words to represent all documents. A subset of
10000 samples is randomly sampled, referred as REUTERS-
10K.

5.2. Compared Methods. To verify the effectiveness of the
proposed method, several state-of-the-art algorithms are
used as the compared methods. ,e following is a summary
of these algorithms.

5.2.1. K-Means. K-means is a traditional unsupervised
clustering algorithm [2]. It guides the division of data sets
into K classes based on the principle of minimizing the sum
of the distances from the data points to the centroids.

5.2.2. DEC. ,e deep embedding clustering (DEC) is a deep
unsupervised clustering algorithm [7]. It uses an automatic
encoder to transform feature of the original data and then
performs the clustering process in the feature space.

5.2.3. DCN. ,e deep clustering network (DCN) is a deep
unsupervised clustering algorithm [24]. It combines
autoencoder with the K-means and proposes an algorithm
that jointly optimizes reconstruction loss and K-means loss.

5.2.4. IDEC. ,e improved deep embedding clustering
(IDEC) is also a deep unsupervised clustering algorithm
[25]. It is an improvement to DEC by adding the local
structure preservation.

5.2.5. SMKL. ,e self-weighted multiple kernel learning
(SMKL) is a traditional semisupervised clustering algorithm
[13]. It constructs the best kernel and assigns an optimal
weight for each kernel automatically.

5.2.6. SDEC. ,e semisupervised deep embedded clustering
(SDEC) is a deep semisupervised clustering algorithm [40].
It incorporates pairwise constraints in the process of the
feature learning.

5.3. Evaluation Metric. ,e clustering accuracy (ACC) and
normalized mutual information (NMI) are used to evaluate
the performance of the proposed method and other com-
pared algorithms, which are widely used in clustering tasks.
,e values of both ACC and NMI range from 0 to 1. ,e
larger values of both metrics indicate the better clustering
results.

ACC is defined as follows:

6 Scientific Programming



ACC �
1
N

max
k

􏽘

n

i�1
1 li � k ci( 􏼁􏼈 􏼉, (15)

whereN is the number of samples, li is the true label, ci is the
cluster assignment label produced by the algorithm, and k

ranges over all possible one-to-one mappings between
clusters and labels.

NMI is defined as follows:

NMI(A, B) �
MI(A, B)
����������
H(A)H(B)

􏽰 , (16)
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…

Clustering result
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Figure 2: An example of the label adaptive strategy.

Input: the training dataset xi ∈ X􏼈 􏼉
n

i�1, the number of clusters k, the iteration maximum maxiter, and the training threshold.
Output: the cluster assignment Q, the cluster centroids μj􏽮 􏽯

k

j�1, and the nonlinear mapping fθ.
Begin
Pretraining computing:
To construct the deep code network.
To initialize network parameters based on the normal distribution.
To train each layer of the deep code network based on the denoising autoencoder strategy.
To connect each pretrained layer and fine-tune network parameters in an end-to-end manner.
To use pretrained deep code network to map raw data into the latent space for obtaining feature zi.
To use K-means to initialize centroids μj􏽮 􏽯

k

j�1 based on feature zi.
Clustering computing with adaptive labels:
To use equations (7) and (8) to compute cluster assignment Q and target assignment P.
To compute (􏽐

n
i�1 qoldi
≠ qi)< tol %.

To use equation (10) for constructing the label list.
To dynamically rectify labels based on the adaptive label algorithm.
To compute the loss based on equation (11).
To update network parameters and centroids.
End

ALGORITHM 1: Deep semiclustering with adaptive labels.
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where A is the true cluster set and B is the predicted cluster
set. MI(A, B) is the mutual information between A and B. H
(A) and H (B) denote the entropies of A and B.

5.4. Parameters Setting. ,e encoder layer structure of deep
code network is set to d-500-500-2000-10 for all data sets,
where d is the dimension of the input data. All layers are fully
connected, and all internal layers (except the input layer,
embedding layer and output layer) are activated by the ReLU
nonlinear function. During the pretraining and fine-tuning
of the autoencoder network, we use the same parameter
settings as in DEC to ensure that the improvement of the
experimental results is the contribution of the method
proposed in this paper.

For each dataset, the monitor information list A is dy-
namically generated based on the presence or absence of
label information in the dataset. ,e length of the list is
consistent with the size of the data batch taken each time,
and its corresponding element value is 1 if the data point has
a real label, or 0 if there is no label. ,e learning rate of SGD
is 0.01. ,e convergence threshold to l % is set to 0.1%. After
experimental testing, the trade-off parameter λ of label loss is
set to 0.2 (this is determined by a grid search in {0.01, 0.02,
0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}). For all algorithms, we set the
cluster number k as the number of ground truth categories.
We independently run each algorithm 10 times and report
average results.

5.5. Experiment Results. ,is section demonstrates the re-
sults of the compared methods on the three representative
datasets. In detail, Tables 2 and 3 report the results in terms
of ACC and NMI, respectively. ,e percentage of labelled
data is 30%. In the two tables, the best-performance results
are highlighted in bold. It can be seen the proposed method
is superior to the state-of-the art methods.

Specifically, compared with the traditional K-means and
SMKL methods, the proposed method can learn features of
more representational capabilities by the deep code network.
Also, the K-means is an unsupervised method, which cannot
utilize label information in the clustering process, further
leading to the degradation of the performance. Although
DEC, DCN, and IDEC also take advantage of deep features
of data, they ignore the information hidden in the small
amount of label data, resulting that those deep methods
produced lower performance than the proposed method.
SDEC uses pairwise constraints to guide the process of
clustering, which belongs to a weak utilization of supervisory
information. ,rough the label adaptive strategy, we can
directly use the label loss, which is a strong use of label
information. ,is is also the key to our proposed approach.

To further illustrate the superiority of the proposed
method, we also visualize the clustering results in the
training process in Figure 3. We randomly select 1000
samples in each dataset and map the latent representations z
into the 2D space. From the change trend of the clustering
results, it can be seen that the samples in different clusters
become easier to distinguish as the number of trainings
increases, and the samples in the same cluster also become

closer. ,is indicates that the learned feature space becomes
more suitable for clustering tasks, and it is also a proof that
the label adaptive strategy can effectively guide the learning
of the feature space and cluster assignment.

Also, to evaluate the influence of the prior knowledge on
the performance of Semi-DEC, the radio of labelled training
samples is increased from 1% to 50%. Each experiment is
carried out 10 times, and the average results are shown in
Table 4. And Table 5 shows the classification accuracy results
produced by the same network architecture with Semi-DEC.

As shown in Tables 4 and 5 and Figure 4, there are two
observations. First, the ACC and NMI results become larger
in all three datasets as the number of labelled samples in-
creases. Especially, the ACC and NMI can reach 97.5% and
95.2%, respectively, on the MNISTdataset with 50% labelled
training images. Second, the clustering ACC of Semi-DEC
on datasets with 50% labelled data is approximately equal to
the classification ACC on the three datasets. ,ose obser-
vations indicate the outperformance of Semi-DEC.

In order to further test the method in this paper, we
conducted experiments in many aspects, including the
impact of different proportions of labelled data on perfor-
mance, the change process of loss function and accuracy,
and the effect of trade-off parameter λ on clustering per-
formance and running time analysis.

Specifically, about the impact of different proportions of
labelled data on performance, Figure 4 shows the trend of
the accuracy of the clustering results on the MNIST, USPS,
and REUSTER-10K datasets. ,e dotted line represents the
classification accuracy results obtained through multiple
experiments under the same network architecture with
Semi-DEC. It can be more intuitively shown that with the
gradual increase of the proportion of labelled data, the effect
of Semi-DEC can be close to the classification effect in the
MNIST and REUSTER-10K datasets. Although the clus-
tering effect on the USPS dataset still has a certain gap with
the classification effect, it is not far away.

,e change process of the loss function and accuracy
with the increase of training times is recorded in Figure 5. It
can be seen that after reaching a certain number of iterations,

Table 1: Datasets statistics.

Datasets Samples Dimension Classes
MNIST 70000 784 10
USPS 9298 256 10
REUTERS-10K 10000 2000 4

Table 2: Clustering results measured by ACC.

Methods MNIST USPS REUTERS-10K
K-means 0.5298 0.6567 0.5162
DEC 0.843 0.7408 0.7369
DCN 0.811 0.73 0.7505
IDEC 0.8806 0.7605 0.7564
SMKL 0.783 0.6819 0.7203
SDEC 0.8611 0.7639 0.6937
Semi-DEC 0.9648 0.8609 0.9176
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the loss value and accuracy will tend to be stable, which is
also a proof of the robustness of the method in this paper.

To see how the trade-off parameter λ of label loss affects
the performance of the method in this paper, we conduct
experiment on three datasets by sampling in range [0.01,
5.0]. Figure 6 gives the results. As shown in this figure, our
method performs stably in a wide range of λ. ,e main

reason is that the semisupervised loss dominates in this
case. When λ is 0.2, the performance is asymptotically
optimal.

About the running time, Figure 7 records the running
time comparison between our method and DEC. Since the
method in this paper is a further study on the basis of DEC, it
only compares the running time with DEC. It can be seen

Epoch 0 (71.0%) Epoch 5 (77.5%) Epoch 10 (84.42%) Epoch 30 (93.39%)

Epoch 0 (67.6%) Epoch 5 (76.43%) Epoch 10 (79.77%) Epoch 30 (84.65%)

Epoch 0 (77.9%) Epoch 5 (84.0%) Epoch 10 (87.6%) Epoch 30 (90.45%)
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Figure 3: ,e visualization of clustering results during training on subset of MNIST, USPS, and REUTERS-10K from top to bottom.
Different colours mark different clusters. ,e clustering accuracy of the corresponding epoch is given in parentheses. It can be seen that the
data of the same class become more compact while the data of different classes are further away from each other as the number of epochs
increases. ,is also shows that the learned feature embedding space is more and more suitable for clustering tasks.

Table 3: Clustering results measured by NMI.

Methods MNIST USPS REUTERS-10K
K-means 0.4974 0.62 0.4932
DEC 0.8372 0.7529 0.4976
DCN 0.757 0.719 0.4106
IDEC 0.8672 0.7846 0.4981
SMKL 0.6842 0.7105 0.4076
SDEC 0.8289 0.7768 0.4762
Semi-DEC 0.9457 0.8654 0.7642

Table 4: Clustering results on datasets of various ratios of labelled data.

Datasets
1% 2% 5% 10% 20% 30% 40% 50%

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
MNIST 0.809 0.774 0.815 0.783 0.843 0.828 0.886 0.881 0.920 0.916 0.965 0.946 0.965 0.949 0.975 0.952
USPS 0.748 0.755 0.758 0.776 0.776 0.784 0.787 0.807 0.805 0.847 0.861 0.884 0.884 0.881 0.885 0.878
REUTERS-10K 0.751 0.506 0.758 0.519 0.769 0.554 0.795 0.586 0.863 0.68 0.918 0.764 0.954 0.829 0.956 0.831
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Figure 4: Accuracy of labelled data at different proportions on (a) MNIST, (b) USPS, and (c) REUTERS-10K.

100

80

60

40

20

0

Tr
ai

ni
ng

 lo
ss

0 100 200 300
Iteration

400

Loss
Accuracy

Tr
ai

ni
ng

 ac
cu

ra
cy

1.0

0.9

0.8

0.7

(a)

100

80

60

40

20

0

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 ac
cu

ra
cy

0.85

0.80

0.75

0.70

0 50 100 150

Iteration

200

Loss
Accuracy

(b)

60

40

20

0

Tr
ai

ni
ng

 lo
ss

Tr
ai

ni
ng

 ac
cu

ra
cy

0.9

0.8

0.7

0.6

0 50 100 150

Iteration

200 250

Loss
Accuracy

(c)

Figure 5: Trend of accuracy and loss with the number of iterations on (a) MNIST, (b) USPS, and (c) REUTERS-10K.
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Figure 6: ,e effect of trade-off parameter λ on clustering performance on (a) MNIST, (b) USPS, and (c) REUTERS-10K.

Table 5: Classification accuracy on the three datasets.

Datasets MNIST USPS REUSTERS-10K
Average ACC 0.972 0.931 0.949
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that the method in this paper consumes more time in the
training process than DEC.,is is because the label adaptive
strategy is added and the label loss needs to be calculated.
But we think the limited time for training is worth it because
we have got a big improvement in performance.

6. Conclusions

In this paper, a novel semisupervised deep embedded
clustering method with adaptive labels is proposed to
jointly learn cluster representation and assignment of
data with the help of a priori knowledge. A deep semi-
supervised clustering network is proposed, as well as a
label adaptive strategy that can directly guide the clus-
tering process by using the existing label information.
Also, a joint optimization of the KL divergence loss and
label loss in semisupervised deep clustering framework is
designed to learn more powerful deep representation and
more accurate cluster centres. Experimental results on
MNIST, USPS, and REUSTER-10K show the method
proposed in this paper has achieved significant perfor-
mance improvement in both ACC and NMI, proving the
effectiveness of the method. In the future, more efficient
ways to use label information in the deep embedded
clustering will be explored.

Data Availability

We perform experiment on two image datasets and one text
dataset. ,e datasets used are commonly used public
datasets, which are linked as follows: MNIST: http://yann.
lecun.com/exdb/mnist/. USPS: https://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets/multiclass.html. Reuters: http://
www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/
lyrl2004_rcv1v2_README.htm.
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In recent years, the success rate of solving major criminal cases through big data has been greatly improved. 0e analysis of
multimodal big data plays a key role in the detection of suspects. However, the traditional multiexposure image fusion methods
have low efficiency and are largely time-consuming due to the artifact effect in the image edge and other sensitive factors.
0erefore, this paper focuses on the suspect multiexposure image fusion. 0e self-coding neural network based on deep learning
has become a hotspot in the research of data dimension reduction, which can effectively eliminate the irrelevant and redundant
learning data. In the case of limited field depth, due to the limited focusing depth of the camera, the focusing plane cannot obtain
the global clear image of the target in the depth scene, which is prone to defocusing and blurring phenomena.0erefore, this paper
proposes a multifocus image fusion based on a sparse denoising autoencoder neural network. To realize an unsupervised end-to-
end fusion network, the sparse denoising autoencoder neural network is adopted to extract features and learn fusion rules and
reconstruction rules simultaneously. 0e initial decision graph of the multifocus image is taken as a prior input to learn the rich
detailed information of the image. 0e local strategy is added to the loss function to ensure that the image is restored accurately.
0e results show that this method is superior to the state-of-the-art fusion methods.

1. Introduction

Image fusion refers to the comprehensive processing of two
or more complementary source images obtained from dif-
ferent sensors to obtain a new fused image, which enables
the fused image to have higher credibility [1–4], clarity, and
better understandability. In the case of limited field depth,
due to the limited focusing depth of the camera, the focusing
plane cannot obtain the global clear image of the target in the
depth scene, which is prone to defocusing and blurring
phenomena. Multifocus image fusion technology is to fuse
multiple images with different focus positions in the same
scene into a fully focused image with more information [5].
At present, multifocus image fusion algorithms can be di-
vided into transform domain-based fusion method, space
domain-based fusion method, and deep learning-based
fusion method according to the fusion strategy.

0e fusion method based on the transform domain
generally uses a variety of decomposition tools to decompose
the source image into multilevel coefficients and then de-
signs different fusion rules according to the characteristics of
each level coefficient [6, 7]. Finally, it performs the inverse
multiscale transformation on the fused coefficients of each
level to obtain the fused image.0e design of transformation
tools and the design of fusion rules play an important role in
the fusion performance of transformation domain-based
fusion methods.

Common transformation tools include curvelet trans-
form (CVT) [8], nonsubsampled contourlet transform
(NSCT) [9], Laplacian pyramid (LP) [10], low-pass pyramid,
and gradient pyramid (GP) [11]. 0e fusion rules include
maximization, weighted average, saliency, and active con-
tour. 0e sparse representation (SR), higher-order singular
value decomposition (HOSVD) [12], and other sparse
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principal component analysis- (RPCA-) based multifocus
image fusion methods [13] have attracted more attentions.

0e fusion method based on the spatial domain can be
divided into three types according to the different focus
measurement objects: pixel-based, block-based, and region-
based. 0e pixel-based multifocus image fusion method can
extract the feature information from the source image and
retain the original information to the greatest extent. It has
the characteristics of high accuracy and strong robustness,
which includes dense scale-invariant feature transform
(DSIFT), guided filtering (GF), and image matting (IM).0e
multifocus image fusion method based on blocks and re-
gions adopts some segmentation strategies to divide the
source image into different blocks or regions and then selects
more focus blocks or regions as part of the fused image by
focus measurement [14]. 0e common focus measurement
methods include image gradient and spatial frequency. 0e
block size and segmentation algorithm can directly affect the
visual effect of the fused image, which is prone to “block
effect.” Both transform domain-based fusion methods and
spatial domain-based fusion methods require to manually
design the fusion rules. However, complex image scenes
limit the expressive ability of features and the robustness of
fusion rules.

In order to improve the feature expression ability and the
robustness of fusion rules, deep learning technology has
been introduced into multifocus image fusion research
[15–17]. Karim et al. [18] proposed a drone plane for
monitoring and targeting street crime criminals based on
real time image processing techniques. Liu et al. [19] used the
multiscale Gaussian filter with different standard deviations
to fuzzy process the random region on the gray image to
simulate the multifocus image. By using supervised learning,
the image was classified into focusing pixels and defocusing
pixels, and the focus map with the same size as the input
image was obtained. 0en, the focus decision graph was
generated by verifying the size and consistency of the focus
map. Finally, based on the judging criteria, the weighted
average strategy was used to obtain the fused images in the
spatial domain. Tang et al. [20] proposed a multifocus image
fusion method based on a pixel-wise convolutional neural
network (P-CNN). 0is model used Cifar10 as the training
set, and three kinds of pixels could be learned from adjacent
pixel information: focusing pixel, defocusing pixel, and
unknown pixel. After the source image was scored by
PCNN, a scored matrix representing the focusing level of the
pixel was formed. 0en, by comparing the scores matrix of
the two source images, then it obtained the decision graph.
Finally, the weighted average value of the two input images
was obtained according to the final decision graph filtered by
a threshold. 0e model had excellent performance in real-
time performance and fusion effect, but the limitation of
supervised learning was that accurate label data could not be
obtained for image fusion.

To further distinguish the private and public features in
multifocus images, Luo et al. [21] proposed a joint convo-
lution self-encoding network, which obtained the focus map
based on the image features learned by the private branch
and used the pixel-level weighted average rule to obtain the

fully focused fused image. 0is method adopted unsuper-
vised learning and did not need manually designed label and
achieved ideal results on subjective evaluations and multiple
objective evaluation. However, these methods only take
advantage of CNN feature extraction and classification ca-
pability and still use the manually designed fusion rules,
which makes the model unable to adjust the fusion strategy
according to the application scenarios.

To further realize the self-learning of fusion rules and
make full use of the feature extraction of CNN, combined
with the prior knowledge of manual features, in this paper, a
multifocus image fusion network with self-learning fusion
rules is designed. 0e multifocus image and its initial de-
cision graph are taken as the input of the network, so that the
network can learn more accurate detailed information. 0e
structural similarity index measure (SSIM) and local mean
squared error (MSE) are used as loss functions to drive
fusion rules.

0e rest of this paper is organized as follows. Section 2
designs the proposed approach and, after that, Section 3
describes experimental results. Finally, Section 4 concludes
the paper.

2. Proposed Multifocus Image Fusion

0is paper first introduces the network structure of multi-
focus image fusion, then discusses the network fusion in
detail, and finally discusses the loss function design.

2.1. Feature Extraction Network Based on Sparse Denoising
Autoencoder Neural Network. Figure 1 shows the sparse
denoising autoencoder neural network (SDNA-ENN).

0e whole network is divided into the input layer, coding
layer, fusion layer, decoding layer, and output layer. 0e
input layer includes the initial decision graph of multifocus
image A, multifocus image B, and multifocus image A. 0e
coding layer includes 9 trainable convolutional layers with a
convolution kernel size of 3× 3, and each convolutional layer
is followed by a ReLU layer. 0e coding layer can be divided
into the private branch PriA, public branch ComA of
multifocus image A, and the private branch PriB, and public
branch ComB of multifocus image B, where PriA and PriB
are used to extract the private features of the input images,
respectively. ComA and ComB share weights to extract the
common features from multiple input images. 0e fusion
layer cascades the feature map output by PriA and PriB along
the channel and then connects the cascaded feature map to
the next trainable convolution layer with a convolution
kernel size of 1× 1. 0e output feature map of ComA and
ComB is treated in the same way as PriA and PriB. 0e
decoding layer consists of four trainable convolution layers
with a convolution kernel size of 3× 3, and the last con-
volutional layer is used to reconstruct the fully focused
image. In this paper, a short connection is added to the public
branch to solve the problem of gradient disappearance
during the training process. Compared with the previous
networks, this new network adds fusion units and uses short
connections to improve the robustness of feature learning.
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2.2. Fusion Layer Design. In the study of multifocus image
fusion based on deep learning, the network fusion layer
usually contains two methods that can be used to fuse the
convolution features of multiple inputs:

(1) Cascade the convolution features of multiple inputs
along the channel, and then fuse them with the next
convolutional layer

(2) 0e multiple input convolution features are fused by
the pixel-level fusion rule

0e cascade fusion method stacks multiple inputs, so
that the network can learn sufficient feature information.

0e pixel-level fusion rule includes summation, taking
large and mean value [22]. 0e fusion strategy can be se-
lected according to the features of the data set. In multifocus
images, because the pixel value of the image represents the
information saliency, the proposed method in this paper
introduces the mean rule on the basis of cascading fusion to
ensure the diversity and accuracy of feature learning. 0e
concrete realization of the fusion layer design includes
weight initialization and weight constraint.

2.2.1. Weight Initialization. 0e weight initialization is to
simulate the weighted average fusion rule, and the features
extracted from the coding layer can be accurately fused by
the reasonable weight assignment in the fusion layer. 0e
output feature graphs of PriA, PriB, ComA, and ComB
coding layers are splicing along the channel, followed by a
trainable convolutional layer of 1× 1. 0e first and 1 + p
weight value of the k-th channel in the 1× 1 convolutional
layer is initialized to 0.5; that is,

W
l
k � W

I+p

k � 0.5, I � 1, . . . , 127; k � 1, 2 . . . , 127, (1)

where k is the channel number after the convolution op-
eration. I is the filter number of the k-th channel. P� 128,
which can be adjusted according to actual requirements. Wl

k

is the I-th weight value of the k-th channel.

2.2.2. Weight Constraint. Because the weight value may
appear numerical over-bounds phenomenon in the process
of network iteration, the constraints are added to each
weight value to realize the weight value fluctuation in the
effective range. According to the mean value rule in the
image fusion method, the sum of fusion coefficients of the
two images is 1. However, the activation function of the
training network adopts ReLU, for the k-th channel,
􏽐

p−1
I�0 WI

k + 􏽐
2p−1
I�p W

I+p

k > 1. 0erefore, we make two im-
provements in this process. One is to improve the activation
cost function, the second is to apply the minimum/maxi-
mum norm weight constraint to the 2p weights of the k-th
channel in the fusion layer.

In order to make the activation units with fewer hidden
layers represent the most effective features, through the
traditional autoencoder neural network research, this paper
proposes to add sparse restriction to the hidden neurons in
the denoising autoencoder neural network (DAE), which
can suppress most of the output neurons and use fewer
activation units to represent features.

0e sparse denoising autoencoder network structure
consists of a sparse denoising autoencoder and a softmax
classifier as shown in Figure 2. X represents the original data
layer, 􏽥X represents the data layer with disturbing noise, and
􏽥H represents the hidden layer.

Specifically, assuming that the number of input samples
is m. x represents the input. y represents the output. l

represents the layer number of the neural network. sl rep-
resents the neuron number in hidden layer l. 0en the

Source A

Source B

PriA

Initial decision
graph

PriB

ComA

ComB

Shared

C

C

Loss

Input layer
3 × 120 × 120

Encoder layer
64 × 120 × 120, 64 × 120 × 120, 128 × 120 × 120

Fusion layer
128 × 120 × 120

Decoder layer
128 × 120 × 120, 64 × 120 × 120, 64 × 120 × 120, 3 × 120 × 120

Output layer
3 × 120 × 120

C: channel cascade 

Figure 1: Structure of SDNA-ENN.
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activation cost function of the sparse denoising autoencoder
neural network is defined as follows:

JSDAE(w, b) �
1
m

􏽘

m

i�1

1
2

hw,b(􏽥x)
(i)

− y
(i)

�����

�����
2

􏼒 􏼓 + β􏽐
sl

j�1
KL ρ‖‖􏽢ρj􏼐 􏼑.

(2)

0e residual of each neuron in the hidden layer is

δl
i � − yi − ai( 􏼁f′ zi( 􏼁, when l is output layer,

δl
i � 􏽘

s2

j�1
wjiδ

l+1
i

⎛⎝ ⎞⎠ + β −
ρ
􏽢ρj

+
1 − ρ
1 − 􏽢ρj

􏼠 􏼡⎡⎢⎢⎣ ⎤⎥⎥⎦f′ zi( 􏼁, when l is hidden layer.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

0en, the partial derivatives of weight and bias items are
calculated as follows:

∇Wl J(W, b) �
z

zW
l
i

JSDAE(w, b) � a
l
jδ

l+1
i ,

∇bl J(W, b) �
z

zb
l
i

JSDAE(w, b) � δl+1
i .

(4)

0en, we calculate the L2-norm of 2p weights in the k-th
channel.

Sk �

���������������������

􏽘

p−1

I�0
W

I
k􏼐 􏼑

2
+ 􏽘

2p−1

I�p

W
I+p

k􏼐 􏼑
2

􏽶
􏽴

. (5)

Sk is truncated in the range (Smin, Smax); that is,

St �

Smin, Sk < Smin,

Sk, Smin < Sk < Smax,

Smax, Sk > Smax,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where Smin is the minimum L2-norm of input weight value.
Smax is the maximum L2-norm of input weight value.

Finally, each weight value of the k-th channel is
readjusted.

W
m
k � W

m
k × Zk, m � 0, 1, 2, . . . , 2p − 1,

Zk �
α × St +(1 − α) × Sk

c + Sk

,

(7)

where Wm
k is the m-th weight value of the k-th channel and

Zk is the constraint range of the weight value. α is the
proportion of constraint; when α� 1, the constraint is
strictly enforced, and when α< 1, the weight must be ad-
justed for each step. In order to avoid gradient explosion,
c � e− 3. After weight initialization and constraint, the rules
of the fusion layer are finally converted to

􏽢fk(x, y) � W
I
kfI(x, y) + W

I+p

k fI+p(x, y). (8)

2.3. 2e Design of Loss Function. In order to ensure that the
network can learn the features of the input image accurately
and effectively, the local strategy is added into the loss
function, including local structure similarity and local mean
square error.

2.3.1. Local Structure Similarity. Human visual system is
more sensitive to structural loss and deformation.0erefore,
the structural similarity index measure (SSIM) [23] can be
used to intuitively compare the structural information of
distorted images and original images. SSIM is mainly
composed of three parts: relevancy, brightness, and contrast
as shown in the following:

SSIM(X, F) � 􏽘
x,f

2μxμf + C1􏼐 􏼑 2μxμf + C1􏼐 􏼑 2μxμf + C1􏼐 􏼑

μ2x + μ2f + C1􏼐 􏼑 σ2x + σ2f + C2􏼐 􏼑 σxσf + C3􏼐 􏼑
,

(9)

qp fθ
• • • • • •

So�maxX ~
X

~H

Figure 2: Structure of sparse denoising autoencoder neural network.
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where SSIM(X, F) represents the structural similarity of
source image X and fused image F. x and f represent the
image blocks in the source image and the fused image,
respectively. μx and σx represent the mean and standard
deviation of the image X, respectively. μf and σf represent
the mean and standard deviation of fused image F respec-
tively. σxf represents the covariance of the source image and
the fused image. C1, C2, and C3 are the parameters used to
stabilize the algorithm.

On the basis of SSIM, the corresponded region of image
X is extracted by combining the initial decision graph Xm of
the input image X.

X � min Xm, X( 􏼁. (10)

0e initial decision graph corresponding to the input
images A and B are XA and XB, respectively. According to
(10), corresponding regions A, B, and F of images A and B
and fused image F can be obtained, respectively. According
to (9), SSIM(A, tF) and SSIM(B, tF) can be calculated.

2.3.2. Local Mean Square Error. Mean square error is used
to measure the difference degree between the source image
and the fused image. 0e mean square error is inversely
proportional to the quality of the fused image. 0e smaller
value denotes higher fusion quality. Its calculation formula is

MSE(X, F) �
1

MN
􏽘

M−1

i�0
􏽘

N−1

j�0
(X(i, j) − F(i, j))

2
, (11)

whereMSE(X, F) represents the difference between the input
image X and the fused image F.

According to (11), MSE(A, tF) and MSE(B, tF) can be
obtained.

0e final loss function of the proposed network is

L � λ1(SSIM(A, F) + SSIM(B, F)) + λ2(MSE(A, F) + MSE(B, F)),

(12)

where λ1 and λ2 represent the weights of local structure
similarity and local mean square error, respectively. In this
paper, λ1 is used to adjust the similarity between the fused
image and the source image.0e larger λ1 denotes the higher
similarity between the fused image and the source image. λ2
is used to enhance the focus area of the source image in the
fused image. 0e larger λ2 denotes the significant focus area
of the source image. Based on the extensive experiments, this
paper sets λ1 � 5, λ2 � 5, respectively.

3. Experiment and Analysis

In order to verify the performance of the proposed fusion
method, we conduct comparison experiments with seven
state-of-the-art fusion methods, namely, DE [24], NFBD
[25], GDMC [26], LRRW [27], NNSR [28], CFM [29], and
FRL-PCNN [30]. 0e experiment environment is MAT-
LAB7a, Windows10, GPU TX1060, Memory 16G, and
Intel(R) Core(TM) i7-67001. 0e Keras framework of
Tensorflow is used for network training in this paper. All

the comparison methods use the same parameters [31, 32].
0en, the detailed subjective and objective comparison
and analysis are carried out on multiple multifocus
images.

Because suspects are classified as the country secret data,
this paper tests suspects and open datasets in the laboratory.
0e results are only from the public datasets. 0is paper
conducts experiments on 60 pairs of multifocus images. 20
pairs are from the open-source dataset Lytro [33], the other
20 pairs have been widely used in the study of multifocus
image fusion, and another 20 pairs are from actual suspect
images. 0e sliding window method is adopted to take
blocks with a stride length of 14. Each image in the dataset is
divided intoM image blocks with 224× 224pixel. 0e initial
decision graph acquisition in this paper consists of three
parts: segmentation, mapping, and reprocessing. First, each
image in the dataset is segmented into blocks with 4× 4
pixel, and the spatial frequency is calculated. 0en, the
spatial frequency matrix is mapped to the original size of the
source image, and the overlap part is processed with the
mean value to obtain the spatial frequency map. 0e binary
map is obtained by comparing the size. Finally, the initial
decision graph of the network is obtained through consis-
tency verification and guided filtering. 0e fusion results
with different methods are shown in Figures 3–8.

To compare the fusionmethodsmore intuitively, this paper
selects a smaller region at a certain contour in each fused image,
marks it with rectangular box, and gives an enlarged region.
We give an analysis for image “disk.” It can be seen from
Figure 7 that the above methods can obtain fully focused
images with good subjective vision. DE andNFBDpresent false
information such as “artifact” in the edge of alarm clock. 0e
fusion effect of IM is good, but there is a certain “Gibbs”
phenomenon in the disk area, and some details are lost. GDMC
shows fuzzy distortion in the local amplification region due to
the emphasis on looking for boundaries and the focus metric is
performed within a single block. 0e fusion results from
LRRW, NNSR, CFM, and FRL-PCNN are good, but there is a
slight “sag” on the left edge of the alarm clock.

Comparatively, the visual effect of the proposed method
in this paper is similar to the subjective visual effect of other
methods. It can be seen from the enlarged area in Figure 7
that the proposed method in this paper handles the details
well, especially the edge area of the alarm clock is smooth
and natural. A better fusion result is obtained. Since the
initial decision graph of the focused image and the local
strategy of the loss function are added into the network, the
obtained fused image by the proposed method in this paper
performs well in the retention of key information and is
suitable for human visual perception. Figures 3–6 and 8
show the fusion results of the other 5 pairs of multifocus
images in various fusion methods. As can be seen from the
figures, all the methods can better fuse the multifocus image
to some extent. Compared with other methods, the proposed
method achieves better fusion results.

To objectively evaluate the results of each fusion method,
this paper uses the evaluation index: entropy (EN), QW

proposed by Piella and Heijmans, correlation-coefficient
(CC), and Visual Information Fidelity (VIFF) to verify the
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effectiveness of the proposed method. Entropy is an index
based on information theory, which is used to reflect the
amount of information in an image. If the entropy value is
relatively large, it indicates that the fused image contains
relatively more information. QW is a variant of the universal
image quality index, which explores the position and size of
distorted pixels by assigning high weights to visual saliency
areas. 0e greater QW denotes the better fusion effect. 0e
correlation coefficient measures the correlation between the

source image and the fused image. 0e correlation value is
positively correlated with the fusion effect. 0e VIFF is an
index that simulates the subjective vision of human eyes to
measure the fidelity of fused image. It includes four steps:
partitioning, evaluation, calculating the fidelity of subband,
and calculating the total fidelity. 0e higher VIFF presents
the lower the distortion between the fused image and the
source image. In order to ensure the fairness of objective
evaluation, all indexes use the same parameters.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 3: 0e “girl” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 4: 0e “tree” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

(a) (b)

(c) (d)

(e) (f )

Figure 5: Continued.
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(g) (h)

(i) (j)

Figure 5: 0e “sea” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 6: Continued.
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(i) (j)

Figure 6: 0e “golf” source images and result images with different algorithms. (a , b) source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 7: 0e “disk” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 8: 0e “temple” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE,
NFBD, GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

Table 2: 0e objective metrics of different fusion approaches for
image “tree”.

Method EN QW CC VIFF

DE 7.4493 0.8894 0.9721 0.8625
NFBD 7.4512 0.8942 0.9738 0.8756
GDMC 7.4528 0.8953 0.9742 0.8747
LRRW 7.4538 0.8974 0.9758 0.8827
NNSR 7.4688 0.8995 0.9763 0.8875
CFM 7.4848 0.9027 0.9778 0.8957
FRL-PCNN 7.5128 0.9037 0.9781 0.8998
Proposed 7.6456 0.9122 0.9829 0.9025

Table 1: 0e objective metrics of different fusion approaches for
image “girl”.

Method EN QW CC VIFF

DE 7.8668 0.8654 0.9811 0.7298
NFBD 7.8651 0.8552 0.9824 0.7398
GDMC 7.8662 0.8741 0.9825 0.7399
LRRW 7.8674 0.8742 0.9822 0.7435
NNSR 7.8662 0.8746 0.9827 0.7471
CFM 7.8673 0.8755 0.9836 0.7488
FRL-PCNN 7.8695 0.8768 0.9839 0.7527
Proposed 7.8698 0.8879 0.9857 0.7879
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Tables 1–6 display the fusion objective evaluation results
on 6 pairs of multifocus images with the eight fusion
methods. As can be seen from the tables, the proposed fusion
method has obvious advantages over other fusion methods
in terms of the fusion indexes. In general, the proposed
method achieves the best results in terms of QW, CC, EN,
VIFF, and average accuracy index, indicating that this new
algorithm is an effective fusion method.

4. Conclusions

In this paper, an end-to-end unsupervised multifocus image
fusion algorithm based on sparse denoising autoencoder
neural network is proposed. Combined with the prior
knowledge of multifocus image, the network can learn ac-
curate image details. Reasonable weight initialization and
weight constraint are designed in the fusion layer. Local
structure similarity and local mean square error strategies
are used in the loss function to drive the fusion unit to learn
the fusion rules effectively. Experimental results show that
the proposed method not only can realize the fusion rules in
the fusion process of self-learning. In addition, good results
can be obtained in subjective vision and objective evaluation.
It is of great significance to further understand the multi-
focus image fusion mechanism based on deep learning and
to study the general multi-modal image fusion framework.
In the future, more newest deep learning methods will be
utilized to analyze the multifocus image fusion.
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Background. /ere is an increasing concern of awareness and recall during general anesthesia for both the patient and the
anesthetist. /e bispectral index (BIS) is used to assess the level of sedation and depth of anesthesia and detect consciousness in
different anesthetic drugs. Middle-latency auditory evoked potentials (AEPs) also quantify action of anesthetic drugs and detect
the transition from consciousness to unconsciousness. We aim to compare the sensitivity and specificity between BIS and AEP in
predicting unconsciousness in inhalational sevoflurane anesthesia and intravenous propofol anesthesia. Methods. Totally, 40
patients were randomly allocated into two groups: propofol or sevoflurane group. In the propofol group, anesthesia was induced
with target-controlled infusion propofol. In the sevoflurane group, anesthesia was induced by increasing concentrations of
sevoflurane. /ere were 3 end points during induction: sedation, unconsciousness, and anesthesia. Target and effect-site
concentrations of propofol, end-tidal concentration of sevoflurane, and BIS and AEP were recorded at each stage. Results. We
obtained good EC50 with both monitors, at which there is a 50% chance that the patient has reached the end point, but the index
variation was affected by the anesthetic technique. Propofol had higher correlations with stage of anesthesia, BIS, and AEP than
sevoflurane. BIS had higher correlations with depth of anesthesia than AEP, but we did not find an anesthetic depth monitor that
had high sensitivity and specificity and is not affected by the anesthetic technique. Conclusions. /e prediction powers of BIS and
AEP do not seem as good as some papers mentioned.

1. Introduction

Awareness and recall during general anesthesia, which are
unintended accidental, represent failure of successful an-
esthesia and cause a serious complication of general anes-
thesia that is feared by patients and anesthetists alike [1–3]. It
is difficult to describe and identify return to consciousness,
so the reported incidence rates vary widely. Evidence sug-
gests that the overall risk of awareness during anesthesia is
between 0.1 and 0.5% [2, 4–6], and awareness has been
considered as a potentially important factor for the occur-
rence of some diseases in patients, such as severe emotional
distress and posttraumatic stress disorder [4, 6–8]. It also has
important professional, personal, and financial conse-
quences for the anesthetists [8–11].

/e bispectral index (BIS), derived from electroen-
cephalogram, is the most commonly used and accepted
monitor for assessing the level of sedation and depth of
anesthesia [10, 12–15]. BIS predicts movement in response
to surgery and detects consciousness under different anes-
thetic drugs [15–18]. It is also a tool that may reduce the
incidence of unexpected recall [10, 12, 13, 18].

Middle-latency auditory evoked potentials (AEPs) also
quantify the action of anesthetic drugs and detect the
transition from consciousness to unconsciousness [19–23].
/e AEP index (AEP) is a dimensionless number scaled
from 100 (awake) to 0 and a mathematically derived variable
measuring the amplitude and latency of the cortical mid-
latency auditory evoked potential that occurs in response to
sound (a “click”) [21, 23, 24].
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Sevoflurane inhalational and propofol intravenous an-
esthesia are two widely used anesthetic techniques. However,
there are no reports about the comparison of ability of
predicting the awareness by BIS or AEP during these two
anesthesia techniques. Herein, this study is designed to
compare the sensitivity and the specificity between BIS and
AEP in predicting unconsciousness with sevoflurane inha-
lational and propofol intravenous anesthesia.

2. Materials and Methods

/e study was approved by the institutional review board.
Unpremedicated patients who had given informed consent
were recruited into the study. Demographic data and ASA
classification were recorded. Routine monitoring plus
monitoring for BIS and AEPi was established before the
induction of anesthesia. Awake values for BIS and AEPi were
recorded before the induction of anesthesia. Patients
breathed oxygen through a standard anesthetic breathing
circuit during induction. Patients were randomised into
propofol or sevoflurane groups. /ere were 3 end points
during induction:

(1) Sedation: patent was asleep and responded to gentle
shaking or loud auditory stimulus (stage 4 of Ramsay
scale).

(2) Loss of consciousness: patient showed no response to
verbal command and loss of eyelash reflex.

(3) Anesthesia: patient gave no purposeful movement on
tetanic stimulation to the ulnar nerve (50Hz, 80mA,
0.25ms pulses) at the wrist using a constant current
peripheral nerve stimulator.

/e BIS and AEPi were recorded at each stage. In the
propofol group, anesthesia was induced with target-controlled
infusion (TCI) propofol. /e TCI was initially set at 1µg·l−1

and increased by 0.5µg·l−1 every 2 minutes until anesthesia.
Target and effect-site concentrations of propofol were recorded
at each end point. In the sevoflurane group, anesthesia was
induced by increasing concentrations of sevoflurane. End-tidal
concentration of sevoflurane was recorded at each end point.

2.1. Anesthesia Induction. Routine monitoring plus moni-
toring for BIS and AEP was established before the induction
of anesthesia. Awake values for BIS and AEP were recorded
before the induction of anesthesia. Patients breathed oxygen
through a standard anesthetic breathing circuit during in-
duction. Patients were randomised into propofol or sevo-
flurane groups. /ere were 3 end points during induction:
(1) sedation: patient was asleep and responded to gentle
shaking or loud auditory stimulus (stage 4 of Ramsay scale);
(2) unconsciousness: patient showed no response to verbal
command and loss of eyelash reflex; (3) anesthesia: patient
gave no purposeful movement on tetanic stimulation to the
ulnar nerve (50Hz, 80mA, 0.25ms pulses) at the wrist using
a constant current peripheral nerve stimulator. /e BIS and
AEP were recorded at each stage. In the propofol group,
anesthesia was induced with target-controlled infusion
(TCI) of propofol. /e TCI was initially set at 1 µg·l−1 and

increased by 0.5 µg·l−1 every 2 minutes until anesthesia.
Target and effect-site concentrations of propofol were
recorded at each end point. In the sevoflurane group, an-
esthesia was induced by increasing concentrations of sev-
oflurane. End-tidal concentration of sevoflurane was
recorded at each end point.

2.2. Statistical Analysis. GraphPad Prism version 5
(GraphPad Software, Inc) was used for data analysis.
Demographic data were analyzed by the chi-square test
and t-test. Haemodynamic data were analyzed by repeated
measures analysis of variance and post hoc pair-wise
comparison for difference stages of anesthesia. Spearman
correlation analysis, logistic regression analysis, receiver
operating characteristic (ROC) analysis, sensitivity and
specificity, and prediction probability (PK) were used for
analyzing the depth of anesthesia, drug concentration,
BIS, and AEP. P< 0.05 was considered to have statistically
significant difference.

3. Results

3.1. Patient Characteristics. Forty-two patients were as-
sessable for intraoperative BIS and AEP data, including 22
patients with sevoflurane anesthesia and 20 patients with
propofol anesthesia. Two patients of the sevoflurane group
were censored because of the unreasonable high BIS and
AEP in the anesthesia stage. One patient of the sevoflurane
group swapped the effect-site concentrations on sedation
and unconsciousness because of the unreasonable high
concentrations (4 and 4.6mcg/ml) in the sedation stage. No
significant difference in gender, height, weight, smoking
history, alcohol intake, pain in sedation stage, or American
society of Anesthesiologists status was found between two
groups (Table 1).

3.2. Haemodynamic Data. Systolic blood pressure (SBP),
heart rate (HR), and respiratory data (RR) in two groups
were analyzed in four stages: base, sedation, unconscious-
ness, and anesthesia (Tables 2 and 3 and Figure 1).For SBP,
time effect was significantly different at the 0.05 level of
significance. Time and group interaction effect was signif-
icantly different at the 0.01 level of significance. On the
propofol group, the SBP on all the other stages was sig-
nificantly different from the baseline (P � 0.0003, <0.0001,
and <0.0001 in sedation, unconsciousness, and anesthesia
stages, respectively). /e SBP on the sedation stage was also
significantly different from the SBP on the unconsciousness
and anesthesia stages. On the sevoflurane group, the SBP on
all the other stages was significantly different from the
baseline (P � 0.0354, 0.0053, and 0.0031 in sedation, un-
consciousness, and anesthesia stages, respectively). /e SBP
on the sedation stage was significantly different from the SBP
on unconsciousness and anesthesia stages.

On HR, both time effect and group interaction effects
were significantly different at the 0.05 level of significance.
On the propofol group, the heart rates on all the other stages
were significantly different from the baseline heart rate
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(P � 0.0266, 0.0034, and 0.0188 in sedation, unconscious-
ness, and anesthesia stages, respectively). /e heart rate on
the sedation stage was also significantly different from the
heart rate on the unconsciousness stage (P � 0.0133). On the

sevoflurane group, there were not significantly different in
all different stages.

3.3. Drug Concentrations, BIS, and AEP

3.3.1. Descriptive Statistics of Drug Concentrations, BIS, and
AEP at Different Stages of Induction. redicted blood and
effect-site propofol concentrations and inspired and end-
tidal sevoflurane concentrations during different stages of
induction are shown in Table 4. Both BIS and AEP showed a
trend of diminishing level of consciousness with both an-
esthetic techniques.

3.3.2. Correlation Analysis. On correlation analysis of BIS
and AEP vs. propofol and sevoflurane concentration, only 6
correlation coefficients in the propofol group were signifi-
cant at the 0.05 level of significance. r� −0.50, −0.49, and
−0.45 when BIS is in the unconsciousness stage vs. predicted
blood concentration of propofol in sedation, anesthesia
stages, and effect-site concentration of propofol in the an-
esthesia stage, respectively. r� 0.56 when AEP is in the
anesthesia stage vs. predicted blood concentration and ef-
fect-site concentration of propofol in the unconsciousness
stages, and r� −0.53 when AEP of baseline vs. effect-site
concentration of propofol is in the sedation stage. /ey were
around 0.5, just fair correlated. All the others are not sig-
nificantly correlated (Tables 5 and 6). On correlation analysis

Table 1: Patient characteristics.

Mean (SD) [range]/counts
Propofol group Sevoflurane group P value

Patient no. 20 20 N.A.
Age (years old) 27 (8.6) [17–46] 28 (11.3) [18–49] 0.7422
Weight (Kg) 60 (13.7) [41–85] 56 (7.1) [46–69] 0.3466
Sex ratio (male :female) 10 :10 12 : 8 0.5250
ASA grading (I: II) 18 : 2 18 : 2 1.0000
Smoker 2 2 1.0000
Alcohol (no: occasional) 19 :1 19 :1 1.0000
Pain in sedation stage (none: mild: moderate) 11 : 8 :1 No data N.A.
ASA, American society of Anesthesiologists; N.A., not applicable.

Table 2: Haemodynamic data.

Stage
Mean± SD

P values
Propofol Sevoflurane

Systolic blood pressure (SBP) in HHmg

Base 117.6± 12.7 117.1± 15.3 Group: 0.4542
Time: <0.0001∗∗
Interact: 0.0542

Sed 112.2± 11.8 112.5± 11.1
Uncon 105.8± 8.8 109.4± 10.4
Anes 102.0± 7.4 108.4± 11.2

Heart rate (HR) in beatmin−1

Base 80.5± 10.7 79.6± 10.4 Group: 0.0784
Time: 0.0596

Interact: 0.0118∗∗
Sed 76.7± 8.6 81.0± 11.4

Uncon 72.2± 10.1 79.2± 13.1
Anes 72.9± 11.7 84.4± 14.9

Respiratory rate (RR) in breathsmin−1

Base 18.3± 3.2 17.0± 3.1 Group: 0.0964
Time: 0.4993

Interact: 0.9212

Sed 17.9± 2.6 16.6± 2.6
Uncon 18.2± 2.4 16.7± 2.7
Anes 18.2± 2.7 17.1± 2.7

∗∗Significant at 0.05. Notes: repeated measures analysis of variance was applied. Interact� group∗time interaction effect.

Table 3: P values for post hoc pair-wise comparisons.

P values
Baseline Sedation Unconsciousness

SBP
Time effect in propofol group
Sedation 0.0003∗∗ — —
Unconsciousness <.0001∗∗ <.0001∗∗ —
Anesthesia <.0001∗∗ 0.0001∗∗ 0.0167
Time effect in sevoflurane group
Sedation 0.0354 — —
Unconsciousness 0.0053∗∗ 0.0493 —
Anesthesia 0.0031∗∗ 0.0355 0.4102
HR
Time effect in propofol group
Sedation 0.0266 — —
Unconsciousness 0.0034∗∗ 0.0133 —
Anesthesia 0.0188 0.0610 0.6775
Time effect in sevoflurane group
Sedation 0.5275 — —
Unconsciousness 0.8083 0.1995 —
Anesthesia 0.2306 0.1517 0.0122∗∗

Adjusted α′ � 0.0125 (�0.05/4) for post hoc comparisons ∗∗P< 0.01.
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of BIS vs. AEP, only two correlation coefficients in the
sevoflurane group were significant at the 0.05 level of sig-
nificance. R� 0.66 when BIS in baseline vs. AEP in the
baseline stage, and r� 0.52 when BIS in the unconsciousness
stage vs. AEP in the anesthesia stage. All the others are not
significantly correlated (Tables 7 and 8).

Both monitors showed a trend of diminishing level of
consciousness with both anesthetic techniques. /e index
showed good correlation with stage of induction (Table 9),
except with AEP when used with sevoflurane which gave a
low correlation coefficient of −0.61 and a 95% CI crossing
−0.5. Results showed that propofol had higher correlations
between stage of anesthesia and BIS and AEP than sevo-
flurane. BIS had higher correlations with depth of anesthesia
than AEP (given the prior probabilities for the sedation/
unconsciousness/anesthesia to be 0.5).

Effective concentrations EC5, EC50, and EC95 referred to
drug concentration at which 5%, 50%, and 95% of the patients,
respectively, reached the predefined end point. EC5, EC50, and
EC95 of predicted blood and effect-site propofol and inspired
and end-tidal sevoflurane as well as BIS and AEP values at
sedation, unconsciousness, and anesthesia and their sensitivity,
specificity, and PK values are shown in Tables 10–12, re-
spectively. Effect-site propofol concentration had a smaller 95%
CI of EC50 than that of blood at all stages from sedation to
anesthesia. /is difference is not noticed between inspired and
end-tidal sevoflurane. BIS gave similar 95% CI of EC50 with
propofol and sevoflurane at sedation and unconsciousness, but
a range of smaller values with sevoflurane at anesthesia. For
AEP, propofol always showed a range of smaller values from
sedation to anesthesia.

PK is the probability that the indicator values of the data
points predict correctly which of the data points are the
lighter (or deeper). A value of PK � 0.5 means that the in-
dicator correctly predicts the anesthetic depths only 50% of
the time, i.e., no better than a 50:50 chance. A value of PK � 1
means that the indicator predicts the anesthetic depths
correctly 100% of the time.

3.3.3. Predicting Power. Table 13 shows the PK for depth of
anesthesia measured by the two monitors, BIS and AEP with
different anesthetic techniques, propofol and sevoflurane.
BIS had good PK values with both propofol and sevoflurane
with both above 0.8, and the PK with propofol was better
than that with sevoflurane. On the contrary, AEP did not
have good PK values, especially with sevoflurane. /e PK

values with BIS are significantly better than those with
sevoflurane. /e prediction powers of BIS and AEP do not
seem as good as some papers mentioned (PK > 0.9).

4. Discussion

In this study, we investigated the usefulness and consistency
of two anesthetic depth monitors, BIS and AEP with dif-
ferent anesthetic techniques, propofol intravenous anes-
thesia and sevoflurane inhalational anesthesia. BIS and AEP
are two popular anesthetic depth monitors. It is important
for them to perform consistently with different anesthetic
techniques.

EC50 is analogous to the concept of minimum alveolar
concentration for volatile anesthetics and is defined as the
concentration of an i.v. anesthetic agent at which 50% of the
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Figure 1: Systolic blood pressure (SBP), heart rate (HR), and respiratory data (RR) of two groups in four stages: base, sedation, un-
consciousness, and anesthesia. On SBP, time effect was significantly different at the 0.05 level of significance; time and group interaction
effect was significantly different at the 0.01 level of significance. On HR, both time effect and group interaction effects were significantly
different at the 0.05 level of significance. On RR, no difference was found in both time effect and interaction effect. ‡ indicates significant
difference from baseline. § indicates significant difference from sedation. † indicates significant difference from unconsciousness. On RR, no
difference was found in both time effect and interaction effect.

4 Scientific Programming



Table 4: Descriptive statistics of drug concentrations, BIS, and AEP at different stages of induction.

Mean± SD,
median (range)

Predicted blood
concentration μg·ml−1

Effect-site concentration
μg·ml−1 BIS AEP

Stage Propofol Sevoflurane Propofol Sevoflurane Propofol Sevoflurane Propofol Sevoflurane

Baseline — — — — 96.5± 3.19
97.5 [84–98]

96.6± 2.01 97
[90–98]

83.0± 10.6 82
[58–99]

79.4± 12.64
78.5 [48–99]

Sedation 2.0± 0.44 2
[1.5–3.0]

2.7± 0.72 2.6
[1.2–3.8]

1.2± 0.29
1.2

[0.7–1.7]

1.6± 0.53
1.55

[0.6–2.45]

81.2± 6.36 82
[64–93]

83.8± 14.63
86.5 [41–98]

58.1± 23.10
60 [20–95]

63.1± 19.45
65.5 [25–99]

Unconsciousness
3.5± 0.83

3.5
[2.0–5.5]

3.4± 0.62 3.4
[2.4–4.6]

2.4± 0.62
2.4

[1.2–3.7]

2.3± 0.68
2.25

[1.3–3.95]

58.0± 10.33
56.5 [40–74]

59.2± 19.18 60
[19–86]

34.1± 14.45
30 [10–55]

51.7± 20.02
46 [22–89]

Anesthesia 4.2± 0.98 4
[2.5–6.0]

4.1± 0.87
3.95

[2.6–5.95]

3.2± 0.81
3.25

[1.7–4.9]

3.0± 0.79 3.1
[1.7–4.25]

47.8± 8.67
46.5 [36–66]

41.05± 16.05
40 [14–72]

17.78± 5.97
17.5 [8–29]

38.7± 22.97
30.5 [12–83]

Table 5: BIS and AEP vs. propofol.

Propofol
Correlation coefficient, r

BIS AEPi
Base Sedation Unconc Anes Base Sedation Unconc Anes

Pred
Sedat 0.21 −0.06 −0.50∗∗ −0.02 −0.22 0.08 0.24 0.34

Unconc 0.40 0.27 −0.34 −0.12 −0.17 0.19 0.29 0.56∗∗
Anesthesia 0.44 0.30 −0.49∗∗ −0.35 −0.14 0.15 0.33 0.43

Eff
Sedat 0.22 0.09 −0.30 −0.31 −0.53∗∗ 0.08 0.10 0.35

Unconc 0.42 0.27 −0.26 −0.16 −0.23 0.09 0.22 0.56∗∗
Anesthesia 0.43 0.33 −0.45∗∗ −0.35 −0.25 0.05 0.20 0.39

∗∗Significantly different from r� 0 at the 0.05 level. r� 1 or −1 means perfect correlation. r� 0 means no correlation.

Table 6: BIS and AEP vs. sevoflurane.

Sevoflurane
Correlation coefficient, r

BIS AEPi
Base Sedation Unconc Anes Base Sedation Unconc Anes

Pred
Sedat −0.11 −0.19 −0.14 −0.17 0.01 −0.02 0.24 0.26

Unconc 0.04 0.15 −0.003 −0.07 −0.03 −0.10 0.05 0.04
Anes 0.07 0.05 −0.10 −0.25 −0.12 −0.11 −0.01 −0.03

Eff
Sedat −0.21 −0.25 −0.16 −0.33 −0.24 −0.23 0.10 0.08

Unconc −0.19 −0.03 −0.13 −0.09 −0.22 −0.22 −0.05 −0.10
Anes −0.05 0.04 −0.01 −0.18 −0.09 −0.01 0.09 −0.00

Table 7: Correlation analysis of BIS vs. AEPi in the propofol group.

Propofol
Correlation coefficient, r

BIS
Base Sedation Unconc Anes

AEPi

Base −0.10 0.04 −0.10 −0.001
Sedation 0.22 0.40 0.32 −0.01
Unconc 0.23 0.25 0.37 0.27

Anesthesia 0.17 0.14 0.30 0.29
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patients will not move or respond to skin incision. /is
clinically useful concept allows prediction of propofol
concentration in the blood and at the effect site [25, 26].

We defined the anesthesia stage as when the patient
showed no gross purposeful movement to tetanic stimula-
tion of the ulnar nerve, which was easy to perform and had
the advantage over skin incision as a repeatable stimulus. A
study showed no significant difference between the effective
concentration of propofol which prevented half of the pa-
tients to move (EC50) at tetanic stimulation and that at skin
incision in somatic response, but significant differences in
haemodynamic response [25, 26]. Tetanic stimulation was
useful in this study as a reproducible and repeatable stimulus
at different propofol and sevoflurane concentrations. Similar
to the results from Milne’s group, the range of effect-site
concentrations to include 90% of patients (EC5–EC95) was
smaller than the predicted blood concentration range and
hence a more useful figure to guide propofol administration
[27]. Similarly, in the sevoflurane group, the range of end-
tidal concentrations was smaller than the inspired, but to a
lesser extent. Both monitors had distinctly different EC50s
with small 95% CI. BIS had similar EC50s with both pro-
pofol and sevoflurane, but AEP showed different values
between the two anesthetic techniques.

In this study, 90% of the patients were sedated at a BIS
value between 90 and 71 with propofol or between 100 and
60 with sevoflurane. /is indicates that BIS is therefore
better at predicting sedation with propofol. AEP showed
very wide range of values in order to induce 90% of the
patients at sedation with both propofol (AEP value range
100-11) and sevoflurane (AEP value range 96-27), and
therefore, AEP did not seem to be useful in guiding se-
dation. At unconsciousness, BIS showed a smaller range
with propofol (BIS value range 77-37) than with sevo-
flurane (BIS value range 93-23), which might again indicate
that BIS performs better with propofol. AEP showed a wide

range with both propofol (AEP value range 61-4) and
sevoflurane (AEP value range 85-12) at unconsciousness.
At anesthesia, BIS again had a smaller range with propofol
(BIS value range 61-31) than with sevoflurane (BIS value
range 67-11). AEP showed a narrow range with propofol
(AEP value range 28-6) but a wide one with sevoflurane
(AEP value range 75-0). BIS appeared to be a good indi-
cator of depth of anesthesia with propofol, which was
reflected by the high PK value of 0.91. Anesthetic seemed to
have an effect on performance of the monitors, particularly
with AEP monitor. BIS overall performed well with both
anesthetic techniques, i.v. propofol and inhalational sev-
oflurane, but with a higher PK with propofol. AEP showed
poorer performance than BIS in our study. With a PK of
0.56 with sevoflurane, AEP became doubtful as an anes-
thetic depth monitor which means the prediction powers of
BIS and AEP do not seem as good as some papers men-
tioned [21, 22, 28, 29]. Considering the difference results
between this study and previous ones, different protocols of
studies might be the reason [22, 28–30]. We use detected
more drug concentrations at more time points with more
accurate statistical methods, but we still think we need
more studies to verify the results. And this result might
remind the clinicians that both BIS and AEP are not as
reliable as they thought.

In summary, we obtained good EC50 with both
monitors, but the index variation was affected by the
anesthetic technique. /e performance of the anesthetic
depth monitors was better when propofol was used. Very
wide variation was found in the combination of AEP and
sevoflurane [22, 25, 31–33]. It seems the monitors are at
best at giving the EC50, at which there is a 50% chance
that the patient has reached the end point, and we have
not yet found an anesthetic depth monitor that has high
sensitivity and specificity and not affected by the anes-
thetic technique.

Table 8: Correlation analysis of BIS vs. AEPi in the sevoflurane group.

Sevoflurane
Correlation coefficient, r

BIS
Base Sedation Unconc Anes

AEPi

Base 0.66∗∗ 0.27 0.18 0.14
Sedation 0.29 0.23 0.17 0.18
Unconc 0.33 0.26 0.38 0.17

Anesthesia 0.16 0.12 0.52∗∗ 0.21
∗∗Significant different from r� 0 at the 0.05 level. r� 1 or −1 means perfect correlation. r� 0 means no correlation.

Table 9: Correlation of depth of anesthesia (4 stages, including baseline) vs. BIS and AEP.

Spearman correlation coefficient, r [95% CI]
P value (H0: ssevo � sprop)Propofol Sevoflurane

BIS −0.92∗∗ [−0.87, −0.95] −0.86∗∗ [−0.79, −0.91] <0.05∗∗
AEP −0.80∗∗ [−0.71, −0.87] −0.61∗∗ [−0.45, −0.73] <0.05∗∗
P value (H0: sBIS � sAEP) <0.05∗∗ <0.05∗∗

Standard errors (SE) for the above s are 0.11. ∗∗Significantly different from s� 0 at 0.05.
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[16] T. Lahtinen, J. Seppälä, T. Viren, and K. Johansson, “Ex-
perimental and analytical comparisons of tissue dielectric
constant (TDC) and bioimpedance spectroscopy (BIS) in
assessment of early arm lymphedema in breast cancer patients
after axillary surgery and radiotherapy,” Lymphatic Research
and Biology, vol. 13, no. 3, pp. 176–185, 2015.

[17] I. Karaca, F. Eren Akcil, O. Korkmaz Dilmen, G. Meyanci
Koksal, and Y. Tunalı, “/e effect of BIS usage on anaesthetic
agent consumption, haemodynamics and recovery time in
supratentorial mass surgery,” Turkish Journal of Anesthesia
and Reanimation, vol. 42, no. 3, pp. 117–122, 2014.

[18] J. Shepherd, J. Jones, G. Frampton, J. Bryant, L. Baxter, and
K. Cooper, “Clinical effectiveness and cost-effectiveness of
depth of anaesthesia monitoring (E-entropy, bispectral index
and narcotrend): a systematic review and economic evalua-
tion,”Health Technology Assessment, vol. 17, no. 34, pp. 1–264,
2013.

[19] M. Cornella, A. Bendixen, S. Grimm et al., “Spatial auditory
regularity encoding and prediction: human middle-latency
and long-latency auditory evoked potentials,” Brain Research,
vol. 1626, pp. 162621–162630, 2015.

[20] L. Li and Q. Gong, “/e early component of middle latency
auditory-evoked potentials in the process of deviance de-
tection,” Neuroreport, vol. 27, no. 10, pp. 769–773, 2016.

[21] Y. Punjasawadwong, W. Chau-In, M. Laopaiboon,
S. Punjasawadwong, and P. Pin-On, “Processed electroen-
cephalogram and evoked potential techniques for ameliora-
tion of postoperative delirium and cognitive dysfunction

Table 13: Prediction probability PK for the depth of anesthesia
(considering 4 stages including baseline).

PK (SE) [P values for testing
PK � 0.5] P value [H0:

PKBIS � PKAEP]BIS AEP

Propofol 0.9117 (0.0147)
[P< 0.0001∗∗]

0.7504 (0.0238)
[P< 0.0001∗∗] <0.0001∗∗

Sevoflurane 0.8233 (0.0182)
[P< 0.0001∗∗]

0.5629 (0.0391)
[P< 0.0001∗∗] <0.0001∗∗

∗∗Significantly different from s� 0 at 0.05.

10 Scientific Programming



following non-cardiac and non-neurosurgical procedures in
adults,”Cochrane Database of Systematics Review, vol. 5, no. 5,
Article ID 5CD011283, 2018.

[22] K. Szostakiewicz, Z. Rybicki, and D. Tomaszewski, “Non-
instrumental clinical monitoring does not guarantee an ad-
equate course of general anesthesia. a prospective clinical
study,” Biomedical Papers, vol. 162, no. 3, pp. 198–205, 2018.

[23] M. Tacke, E. F. Kochs, M. Mueller et al., “Machine learning for
a combined electroencephalographic anesthesia index to
detect awareness under anesthesia,” PLoS One, vol. 15, no. 8,
Article ID e0238249, 2020.

[24] B. Huang, F. Liang, L. Zhong et al., “Latency of auditory
evoked potential monitoring the effects of general anesthetics
on nerve fibers and synapses,” Scientific Reports, vol. 5, no. 1,
Article ID 12730, 2015.

[25] S. Li, F. Yu, H. Zhu, Y. Yang, L. Yang, and J. Lian, “/emedian
effective concentration (EC50) of propofol with different
doses of fentanyl during colonoscopy in elderly patients,”
BMC Anesthesiology, vol. 16, p. 24, 2016.

[26] Y.-C. Shang and B.-Z. Chen, “Propofol EC50: an effect of
luteal phase core temperature differences?,” British Journal of
Anaesthesia, vol. 114, no. 3, p. 526, 2015.

[27] S. E. Milne, A. Troy, M. G. Irwin, and G. N. C. Kenny,
“Relationship between bispectral index, auditory evoked
potential index and effect-site EC50 for propofol at two
clinical end-points †,” British Journal of Anaesthesia, vol. 90,
no. 2, pp. 127–131, 2003.

[28] B. Horn, S. Pilge, E. F. Kochs, G. Stockmanns, A. Hock, and
G. Schneider, “A combination of electroencephalogram and
auditory evoked potentials separates different levels of an-
esthesia in volunteers,”Anesthesia & Analgesia, vol. 108, no. 5,
pp. 1512–1521, 2009.

[29] C. Luo and W. Zou, “Cerebral monitoring of anaesthesia on
reducing cognitive dysfunction and postoperative delirium: a
systematic review,” Journal of International Medical Research,
vol. 46, no. 10, pp. 4100–4110, 2018.

[30] C. Jeleazcov, G. Schneider, M. Daunderer, B. Scheller,
J. r. Sch??ttler, and H. Schwilden, “/e discriminant power of
simultaneous monitoring of spontaneous electroencephalo-
gram and evoked potentials as a predictor of different clinical
states of general anesthesia,” Anesthesia & Analgesia, vol. 103,
no. 4, pp. 894–901, 2006.

[31] M. Zaballos, E. Bastida, S. Agusti, M. Portas, C. Jiménez, and
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