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Te infectious coronavirus disease (COVID-19) has become a great threat to global human health. Timely and rapid detection of
COVID-19 cases is very crucial to control its spreading through isolation measures as well as for proper treatment. Tough the
real-time reverse transcription-polymerase chain reaction (RT-PCR) test is a widely used technique for COVID-19 infection,
recent researches suggest chest computed tomography (CT)-based screening as an efective substitute in cases of time and
availability limitations of RT-PCR. In consequence, deep learning-based COVID-19 detection from chest CT images is gaining
momentum. Furthermore, visual analysis of data has enhanced the opportunities of maximizing the prediction performance in
this big data and deep learning realm. In this article, we have proposed two separate deformable deep networks converting from
the conventional convolutional neural network (CNN) and the state-of-the-art ResNet-50, to detect COVID-19 cases from chest
CT images. Te impact of the deformable concept has been observed through performance comparative analysis among the
designed deformable and normal models, and it is found that the deformable models show better prediction results than their
normal form. Furthermore, the proposed deformable ResNet-50 model shows better performance than the proposed deformable
CNN model. Te gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted
regions’ localization efort at the fnal convolutional layer and has been found excellent. Total 2481 chest CT images have been used
to evaluate the performance of the proposed models with a train-valid-test data splitting ratio of 80 :10 :10 in random fashion.Te
proposed deformable ResNet-50 model achieved training accuracy of 99.5% and test accuracy of 97.6% with specifcity of 98.5%
and sensitivity of 96.5% which are satisfactory compared with related works.Te comprehensive discussion demonstrates that the
proposed deformable ResNet-50 model-based COVID-19 detection technique can be useful for clinical applications.

1. Introduction

A massive outbreak of novel coronavirus disease (COVID-
19) occurred in Wuhan, China, in December 2019, and it is
causing a pandemic situation worldwide. According to the
World Health Organization (WHO), around 476 million
confrmed cases of COVID-19 including 6.1 million deaths
were reported worldwide as of March 25, 2022 [1, 2]. Te
death rate is slightly less than 2%, but themain concern is the
highly infectious nature of COVID-19 disease.Te diagnosis

of COVID-19 and isolation of patients are the most critical
parts to control this pandemic situation. Te mainstream
diagnosis system is the real-time reverse transcription-
polymerase chain reaction (RT-PCR) technique which is
limitedly accessible to all hospitals and clinics. It also takes
a long time to get the test results. Te nucleic acid ampli-
fcation testing (NAAT) is another technique for COVID-19
diagnosis which is also time consuming and exhibits low
preciseness as reported in [3]. Te chest imaging-based
modalities such as X-ray (CXR) [4, 5], computed
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tomography (CT) [6–21], and ultrasound imaging [22, 23]
are becoming popular alternatives to the pathological tests
for not only accurate screening of COVID-19 cases but also
for predicting the severity of the disease. Furthermore, re-
cent studies show the promises of the medical image-based
IoT healthcare framework for COVID-19 detection and
social isolation suggestions through digital surveillance to
deaccelerate the COVID spread [24–27]. Since a large
amount of private information of patients is gathered in the
IoT healthcare system for data fusion in COVID detection,
a secured and protected system should be established for
virtual medical facilities [28–31]. It is inevitable that the
computer diagnosis is becoming an obvious and demanding
support to the medical experts for proper diagnosis, prog-
nosis, and treatment since the manual assessment of phy-
sicians is subjective in nature. Recent rapid advances of
machine learning tools, especially deep learning, increase the
power of computer-aided diagnosis signifcantly [32].
Terefore, the researchers are moving to diagnostic systems
with medical imaging using machine learning technology
because of its promises on testing results and severity
analysis. Contextually, healthcare data visualization is of
great importance for proper analysis, interpretation, and
accurate prediction by highlighting the patterns, charac-
teristics, and correlations. Terefore, in this big data and
deep learning realm, the healthcare researchers and in-
dustries are emphasizing visual analysis of data in order to
maximize the efciencies of data-driven decisions and
services.

In this study, chest CTscan images are used for COVID-19
detection due to its higher sensitivity than RT-PCR testing as
demonstrated in [33]. Te explicit form of the lungs and the
presence of high rates of ground glass opacity (GGO) in
COVID-19-infected lungs can be easily seen by CTscan images.
Considering the proven extraordinary performance of recent
deep learning techniques in computer-aided detection, we have
employed a deep learning technique in CT images for detection
of COVID-19 cases. Deep learning (DL) is just a class of
machine learning (ML) in which multiple hidden layers are
incorporated into the model to extract more complex features
from input raw data. Nowadays, DL techniques have been
successfully implemented in various felds such as image
processing, image recognition and verifcation, network secu-
rity, medical imaging, and healthcare.

Tere are lots of well-established deep convolutional neural
network (CNN) architectures such as VGG16, ResNet-50,
InceptionV3, and EfcientNet for object detection and classi-
fcation tasks using images as input data. Last two years during
the pandemic, various research works were conducted based on
the DLmethod for COVID-19 classifcation, but to the best our
knowledge the deformable CNN have not been used yet in this
area. In this study, we have proposed two separate deformable
deep convolutional networks considering the conventional
CNN and the state-of-the-art ResNet-50 for COVID-19 de-
tection from chest CTwith a strategic emphasis on fnding the
impact of the deformable concept through a comparative
performance analysis among the normal and deformable forms.
Te gradient class activation mapping (Grad-CAM) technique
has been used to visualize and check the targeted regions’

localizing efort at the fnal convolutional layer of the models.
Te main contributions of this work are as follows:

(i) Designing deformable convolutional neural net-
work models in order to detect COVID-19 cases
from chest CT images based on the conventional
CNN and ResNet-50 architectures.

(ii) Tuning the model to achieve superior performance
and consequently training and validating it with
a balanced dataset of COVID-19 chest CT images.

(iii) Visual inspection of the localization capability of the
convolution layers through Grad-CAM.

(iv) Performance evaluation and inspection of the im-
pact of deformable layers of the proposed models as
well as comparative analysis with the related state-
of-the-art techniques.

Te rest of this article is organized as follows: A literature
review of recent work is given in the related works section.
Te methodology section explains the proposed method-
ology as well as the model evaluation process. Te next
subsection presents the dataset used in this work, and the
experimental result analysis has been explained in the ex-
perimental results and discussions section. Finally, the
conclusion section concludes the whole research work.

2. Related Works

Numerous research works have been performed to diagnose
COVID-19 from chest CT scan and X-ray images using ML
and DL techniques. Tis section presents some recent
studies related to COVID-19 detection from CT images
applying DL techniques. A nine-layer tailored deep CNN
model is proposed in [4] for COVID-19 screening using
both CTand CXR images.Tey found the overall accuracy of
96.28% using a small dataset. Yasar and Ceylan [6] also
proposed a deep CNN model with 23 layers, and it achieved
the highest accuracy of 95.99%. Loey et al. [7] examined
diferent well-known deep CNN architectures such as
AlexNet, VGGNet16, and ResNet-50, utilizing the transfer
learning technique for COVID-19 diagnosis using CT im-
ages. Tis work showed ResNet-50 can predict better than
others with a test accuracy of 82.91%. Some work has been
performed for segmentation as well as detection of
COVID-19 using CT images in [8, 9], and they achieved
accuracy of 94% and 94.67%, respectively. Ni et al. [8]
proposed a combination of 3D U-Net and MVP-Net based
architectures, whereas Amyar et al. [9] presented a method
of the multitask learning architecture with an encoder and
decoder system.

Singh et al. [10] designed a multiobjective diferential
mode-based CNN method for classifcation of COVID-19
cases, and their accuracy level is less than 93.5%. A machine-
driven design exploration strategy-based deep CNNmodel is
proposed for COVID-19 diagnosis in [11]. Wang et al. [12]
designed a model by coupling two 3D U-Net architectures
together for COVID-19 screening in CT images, and their
classifcation accuracy reached 93.3%. A weakly supervised
network is designed using the architecture ResNext+ along
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with the bidirectional LSTM blocks for prediction of
COVID-19 cases from volume and slice-level CT images
in [13].

Ensemble learning is now becoming a popular technique
because of its higher precision and accuracy instead of using
a single model. Several studies implemented an ensemble of
transfer learning using diferent pretrained deep neural network
architectures such as VGG, Xception, and ResNet for screening
COVID-19 cases. Aversano et al. [14] exploit the transfer
learning technique by using pretrained models such as VGG,
Xception, and ResNet individually and then combining to have
an ensemble model. Teir experiment shows the value of F1-
score ranges from 0.94 to 0.95. Gifani et al. [15] used 15 pre-
trained standard CNN models to build an ensemble architec-
ture with the majority voting rule with experimental results
showing the overall detection accuracy of 85.4%. Biswas et al.
[16] also proposed an ensemble of deep transfer learning using
VGG16, ResNet-50, and Xception models for CT image clas-
sifcation with good accuracy. In our previous study, we have
developed an ensemble model for COVID-19 screening from
CTimages, exploiting three deepCNNarchitectures in [17].Te
experimental results achieved the accuracy of 96% and a sen-
sitivity of 97% for CT scan image prediction.

After reviewing the above research works, it is concluded
that the deep learning method can be employed for COVID-19
screening purposes though there were some limitations such as
imbalanced datasets and high rates of false prediction. So there
is still a scope to improve the prediction accuracy more as well
as the robustness of the methods that can minimize the false
positive and false negative rates. In this work, we proposed
a deep learning approach for COVID-19 detection using CT
images. A deformable technique is implemented in the standard
ResNet-50 architecture to make the model more robust by
replacing a few layers of ResNet-50 with its deformable parts to
achieve the good prediction performance.

3. Methodology

Tis section covers mainly three parts of the methodology
for COVID-19 detection: (a) describing the idea of the
deformable CNN, (b) explaining the proposed framework
using the deformable concept, and (c) mentioning diferent
evaluation criteria to validate the proposed framework.
Description of the CT scan dataset used in this researh is
provided at the end of this section.

3.1. Deformable CNN. Te standard CNNs are limited in their
ability tomodel complex geometric transformations due to their
fxed geometric composition of modules. Te convolution
kernel selects the samples at fxed spatial location, and the
pooling layer reduces the spatial resolution at a constant ratio in
regular CNN modules. As a consequence, it reduces the ef-
fectiveness of models for complex transformation. So the
adaptive determination of sampling locations or deformed
kernels based on the objects is required for exact visual rec-
ognition. In this regard, Dai et al. [34] introduced a new ap-
proach of deformable convolutional neural networks which was
done at Microsoft Research Asia in 2017. Tey introduced two
new modules to enhance the capability of transformation

modeling: deformable convolution and deformable ROI
pooling. Deformable convolution adds a 2D ofset to sampling
locations of regular convolution grids to deform the kernel in an
adaptive manner based on the required objects.

Let a convolutional kernel of S sampling locations, wi

and li denote the weight and ofset for the i-th location of the
kernel, respectively. Ten, y(l) denoting the output features
from the input feature x(l) at location l is calculated as
follows:

y(l) � 􏽘
S

i�1
wi∙x l + li( 􏼁. (1)

For deformable convolution, equation (1) will be

y(l) � 􏽘
S

i�1
wi∙x l + li + ∆li( 􏼁, (2)

where the standard grid of S sampling locations is aug-
mented with ofsets ∆li which is a learnable ofset. As
l+ li+∆li is now fractional, bilinear interpolation is used to
calculate x(l + li+∆li) in equation (2) [34]. Te kernel
geometric structure of the deformable convolution system is
illustrated in Figure 1.

Te ofsets for kernel deformation are obtained by standard
back-propagation of the gradients with the bilinear in-
terpolation operations during training of the model. An ad-
ditional convolution layer is used to learn the ofset values
shown in Figure 2. As a consequence, a small amount of pa-
rameters is added to the model for ofset learning. In another
study [35], it is proved that the performance can be enhanced by
stacking more deformable layers in standard CNN architec-
tures. So taking these benefts of deformable CNNs, we
employed this idea for COVID-19 detection.

3.2. Proposed Model. A deformable convolution concept is
utilized in this work for the detection of COVID-19 cases from
chest CT images. We have designed two separate deformable
deep convolutional networks considering the conventional
CNN and the state-of-the-art ResNet-50 for the detection task.
Te strategic emphasis is to observe the infuence of the de-
formable concept through a comparative performance analysis
between the normal and deformable forms. Initially, a ffteen-
layered deep CNNmodel is developed, and then its deformable
form is created. Deformable form of this normal CNNmodel is
made by replacing two convolution layers with deformable
convolution layers. Te detailed layers and parameter in-
formation of both normal and deformable CNN models are
shown in Table 1. Before selecting this ffteen-layeredmodel, we
have experimented with various architectures by tuning dif-
ferent parameters of the models and also the position of de-
formable layers to fnd the best performance. Ten, this ffteen-
layered structure is chosen for COVID-19 detection in CT
images on the basis of themaximumperformance. It is seen that
the total number of parameters of the deformable model is
greater than the normal CNN model as some extra parameters
are needed for ofsets learning in the deformable convolution.
Every convolution layer uses the ReLU activation function
except the fnal dense layer that uses softmax activation for
binary classifcation.
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Te overftting and underftting problems are the common
problems inducing in the deep learning model. Tese problems
are also addressed carefully in our experiments. Te dropout
layer with a drop rate of 0.4 is used in each model to diminish
the overftting problems. A large dataset is used to train the
models to overcome the underftting problems. Also, the
number of layers in the models and training epochs is increased
after tuning the models to solve the underftting problems. Te
performances of these models are presented in the results
section.

Tomake the COVID-19 classifcation task more robust and
efective, we proposed a state-of-the-art CNN architecture,
ResNet-50, with its deformable format which is shown in
Figure 3. It contains fve convolutional stages followed by a fnal
fully connected dense layer for classifcation. Stages 2 to 5 have
uniform convolutional (ConvBlock) and identity blocks
(ID_Block) in the regular ResNet-50. Each convolutional and
identity block contains a skip connection which is frst in-
troduced in the ResNet model and is the main strength of the

ResNet architecture. Two of the standard Conv2D layers in the
second stage convolutional block of ResNet-50 are replaced by
the corresponding deformable convolution layers (Deform_-
Conv2D) to form a deformable convolutional block
(Deform_ConvBlock). Te detailed architectures of each block
are also presented in Figure 3. Ten, it is formed as the de-
formable CNN or deformable ResNet-50.

Te ResNet-50 architecture is selected in the CT image
classifcation task due to its notable performance that is proved
by the diferent state-of-the-art medical imaging research [7].
Due to its skip connection, it is easy to train the deep network,
and the deeper the network, the more suitable it is for medical
image classifcation. Te ResNet architectures have the capa-
bility to solve the vanishing gradient problems due to their
identity mapping systems. So, this robust ResNet-50 model can
be efectively used for COVID-19 screening. In this work, this
ResNet-50 model is created from the scratch as its defned
architecture; no pretrained weights are used for classifcation.

(a) (b)

Figure 1: Kernel geometric structure of the deformable convolution process: (a) standard 3× 3 convolution grid points, and (b) sampling
locations (red dots) after deformable convolution.

Conv Conv

Input Feature Map

Output Feature Map
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Figure 2: Illustration of deformable convolution with 3× 3 kernel.

Table 1: Summary of the proposed deformable deep CNN and its
base normal CNN.

Deformable CNN Normal CNN

Layers Output shape Layers Output
shape

Input layer [150, 150, 3] Input layer [150, 150, 3]
Conv 2D [148, 148, 16] Conv2D [148, 148, 16]
Batch
normalization [148, 148, 16] Batch

normalization [148, 148, 16]

Max pooling 2D [74, 74, 16] Max pooling 2D [74, 74, 16]
Deform conv 2D [74, 74, 16] Conv 2D [74, 74, 16]
Conv 2D [72, 72, 32] Conv2D [72, 72, 32]
Max pooling 2D [36, 36, 32] Max pooling 2D [36, 36, 32]
Deform conv 2D [36, 36, 32] Conv 2D [36, 36, 32]
Conv 2D [34, 34, 64] Conv2D [34, 34, 64]
Max pooling 2D [17, 17, 64] Max pooling 2D [17, 17, 64]
Dropout [17, 17, 64] Dropout [17, 17, 64]
Flatten [18496] Flatten [18496]
Dense [256] Dense [256]
Dropout [256] Dropout [256]
Dense [2] Dense [2]

Total parameters 4,764,098 Total parameters 4,761,154
Te bold terms are the main focus of our proposed deformable CNN
architecture.
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Te positions of the deform layers are fxed after extensive
tuning of themodel for best performance.Te ReLU function is
used as activation in each layer except the fnal layer which uses
softmax activation for binary prediction.

As stated, additional parameters are needed in the de-
formable CNN model to learn the ofsets of the kernel’s de-
formed position. So the proposed deformable ResNet-50 model
requires more parameters than the regular ResNet-50 model.
Te total number of parameters in the proposed model is
23,771,906, whereas the regular ResNet-50 model contains
23,591,810 parameters. Te extra 180,096 parameters actually
used for deformation learning tasks in the proposed model
make it more robust and stronger. Hence, the proposedmethod
presented in Figure 3 can be one of the most efcient ways of
COVID-19 screening using lung CT images.

3.3. Evaluation Criteria. Te commonly used assessment
metrics for DL classifcation models are utilized to assess the
proposedmethodology.Temetrics are accuracy, specifcity,
sensitivity, f1-score, and precision measured in terms of true
and false prediction values. As only accuracy metrics cannot
show the efectiveness of deep learning models for classi-
fcation, various ways of assessment are used in this study.

Besides these metrics measurement, the accuracy and loss
curves with the number of epochs have also been analyzed
for performance evaluation. Equations (3)–(7) represent the
defnitions of accuracy (Acc), specifcity (Sp), sensitivity (Sn),
f1-score (Fs), and precision (Pr), respectively.

Acc �
tp + tn

tp + tn + fp + fn
, (3)

Sp �
tn

tn + fp
, (4)

Sn �
tp

tp + fn
, (5)

Fs �
2 × tp

2 × tp + fp + fn
, (6)

Pr �
tp

tp + fp
, (7)

where the true positive (tp) and true negative (tn) denote the
value of correct predictions of actual COVID positive pa-
tients and non-COVID patients, respectively. False positive
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(fp) and false negative (fn) denote the value of incorrect
predictions of COVID positive and negative patients, re-
spectively. Te confusion matrix is also utilized to show the
value of true and false predictions in a comfortable way of
visualization which is shown in Figure 4.

3.4. DatasetDescription. CTscan images have a detailed and
clear view of the lungs as compared to CXR images. So it is
a very convenient way to diagnose the COVID-19 disease
using CT images. A chest CT scan dataset is collected from
the kaggle dataset repository for this experiment of
COVID-19 diagnosis. Te CT images of this dataset have
been collected from diferent real patients in hospitals from
Sao Paulo, Brazil [36]. It contains a total of 2481 CT images,
including 1252 images for COVID-positive patients and
1229 images for non-COVID cases with other lung diseases.
Te main symptom of COVID-19 in CT is the two-sided
existence of irregular ground glass opacities (GGOs) that
may merge into dense and consolidative lesions beneath the
pleura and along the bronchovascular networks. Te
number and area of the lesions increase with the disease’s
progression. Furthermore, beside the GGOs patterns such as
interstitial widening, crazy-paving pattern, halo and re-
versed halo patterns, airway and vascular modifcations are
also found in CT for COVID-19 cases [37]. Few sample
COVID and non-COVID CT slices from this dataset are
shown in Figure 5.

Te collected CT dataset is almost a balanced dataset
which is an important factor of the model learning phase in
the deep CNN. An imbalanced dataset may mislead the
output prediction in deep learning classifcation tasks. In this
experiment, no preprocessing techniques are applied due to
irregular opacifcation present in CT images of pulmonary
diseases. So raw CT scans are used for COVID-19 detection
purposes because preprocessing can cause the loss of actual
sensitive information about the texture of the infected
region.

4. Experimental Results and Discussions

All the experiments were performed on the Google cola-
boratory platform using the Keras and Tensor Flow libraries.
Te programs were run on GPU with 12.69GB RAM and
107.72GB Disk provided by Python-3 Google compute
engine backend. In total, four experiments were performed
in this study, consisting of a ffteen-layered CNN with its
normal as well as deformable form and a ResNet-50 model
with its normal as well as deformable form for COVID-19
screening.

Both the normal and deformable ffteen-layered CNN
models are trained and validated using the collected
COVID-19 CT dataset with input shapes of 150 × 150 × 3.
Te dropout rate of 0.4 is used in the dropout layer of both
confgurations. Te Adam optimizer with the learning rate
of 0.001 and the categorical cross-entropy loss function are
employed to compile the models. Te number of epochs and
other hyperparameters are tuned for the best learning
process. Finally, the number of epochs is selected as 60. Te

train-valid-test splitting ratio is used as 80 :10 :10, and
Figure 6 shows the learning curves of both the normal and
deformable CNN.

Te erratic nature is seen from the model accuracy curve
due to the raw CT images of random passing to the models
shown in Figure 6. In the training phase, callback is utilized
for saving the best model with the highest accuracy. Te
training accuracy reached 91.8% and 90.3% in the normal
and deformable CNN, respectively. Ten, the models are
saved with validation accuracies of 90.7% and 91.9% for the
normal and deformable CNN, respectively. Finally, the
models are tested independently with a test dataset which is
10% of the main dataset splitted initially.Te test accuracy of
92.4% and 93.2% have been found in the normal and de-
formable CNN, respectively. Te confusion matrixes are
exhibited in Figure 7 for the analysis of true and false
predictions. It is expected that the deformable model can
minimize the overall false prediction. So, from Figure 7 the
overall false prediction value is reduced in the deformable
CNN model. Tis experiment shows the deformable CNN
can outperform the regular CNN.

Ten, the state-of-the-art CNN model, ResNet-50, has
been selected for this experiment of COVID-19 screening.
Primarily, the whole model has been developed from
scratch, according to its original architecture. Ten, its
deformable form is created as mentioned in the proposed
model subsection. All the parameters of both models
(normal ResNet-50 and proposed deformable ResNet-50)
are trained through the collected CT dataset; no transfer
learning technique is employed here. Te training dataset
has been selected for learning the model with input shapes of
64 × 64 × 3.Te hyperparameters are selected to the standard
value after various tuning processes addressing overftting
and underftting problems. Te Adam optimizer and cate-
gorical cross entropy loss function are used to compile the
normal ResNet-50 and deformable ResNet-50 models. Te
learning curves for both normal and deformable ResNet-50
models are shown in Figure 8. Tough a sudden abrupt
shifting is seen in the learning phase of models as in
Figure 8(b), the callback function is used in these experi-
ments to get the best model with higher accuracy. Te
training accuracy in the proposed deformable ResNet-50
model reached 99.5%. Te ratio between validation and test
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Figure 5: Sample CT slices from the dataset (a) for COVID cases and (b) for non-COVID cases.
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Figure 6: Training accuracy curves for (a) the normal CNN and (b) the deformable CNN.
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Figure 7: Confusion matrixes for the prediction of (a) the normal CNN and (b) the deformable CNN.
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datasets was the same as in the previous experiments. Both
the normal and deformable parts of the ResNet-50 model are
saved with the validation accuracy of 95.2% and 95.6%,
respectively. Finally, the normal and proposed deformable
ResNet-50 models have been tested with the test dataset. Te
test accuracies have been reached at 96.8% and 97.6% for
normal ResNet-50 and proposed deformable ResNet-50,
respectively. It shows the best performance of the proposed
deformable ResNet-50 model.

Te confusion matrixes for both regular ResNet-50
and proposed deformable ResNet-50 models are shown in
Figure 9. Te total number of false predictions is reduced
from 8 to 6 in deformable ResNet-50. From this confusion
matrix, it is clear that the proposed deformable ResNet-50
model is more robust and strengthened than its regular
form. Table 2 represents the overall test results of four ex-
periments in this study. According to Table 2, the accuracy of
deformable experiments has superior results as compared to
their base counterparts. Each of the four models has been
tested with a single CT image by loading the model with
trained weights. All the experiments can give the appropriate
prediction result within a few milliseconds by inputting
a single CT scan image.

Computation time is an important factor for model per-
formance analysis and for any diagnosis system. In this regard,
we have calculated the CPU times required for a single CT
image prediction in all our experiments. CPU times depend on
the input image shape. For the frst two experiments (the
normal and deformable ffteen-layered CNN), input image
shapes were 150 × 150 × 3 and then the regular and proposed
deformable ResNet-50 took input shapes of 64 × 64 × 3. Te
normal and deformable ffteen-layered CNN take CPU times of
46.7ms and 71.6ms, respectively, for the prediction of a single
CT image. Tis time includes image loading and resizing
according to themodel’s input shape and then prediction.Ten,
the normal ResNet-50 model and the proposed deformable
ResNet-50 model take CPU times of 55.2ms and 68.1ms, re-
spectively, for a single image. Hence, the deformable part takes

little more time than its original form due to the extra pa-
rameters contains in deformable parts.

Te receiver operating characteristics (ROC) curve is
a widely used graphical representation of classifer perfor-
mance. Figure 10 illustrates the ROC curve for all experi-
ments, including our proposed method. It shows the area
under curve (AUC) values of all models. Te AUC is found
to be 0.998 from the ROC curve for the proposed deformable
ResNet-50 model, and it indicates the efectiveness of our
proposed method for COVID-19 detection.

Te Grad-CAM visualization is a useful tool for dif-
ferentiating the model learning capability in positive and
negative cases using the heatmap view in the images [38]. It
uses gradients of the fnal convolutional layer to distinguish
the region of interest for a specifc class. Figure 11 shows the
Grad-CAM view of (a) COVID images (Class 1) and (b) non-
COVID images (Class 0) produced by the proposed method.
In Figure 11(a), ground glass opacity and consolidation of the
COVID-infected lungs are accurately highlighted by the green
color that indicates the good sensitivity of the model. In
Figure 11(b), no specifc opacity or consolidation is detected
in CT images due to the negative cases, and it shows the
dispersed green colors in the images. Terefore, viewing the
Grad-CAM, it can be mentioned that the convolutions layer
framework-based feature extractor of the proposed deform-
able ResNet-50 model is well supported as the classifer input.

In this study, we have also discussed comparative analysis
with the related deep learning-based state-of-the-art works.
Most of the time, the performance metrics of deep learning
models depend on the size of the dataset used for training. So
the articles that used the same dataset or one that was close to
our employed dataset size as well as related deep CNN models
were selected for appropriate comparison of performances.
Table 3 presents the comparative analysis of the detection results
with the recent works. As it is seen from Table 3, results of the
proposed deformable ResNet-50 model outperform the related
methods. It also shows very low false predictions as it has the
model geometric deformation capability. So, it can be a reliable

4020 600 5010 30
Epochs

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

Model Training accuracy

(a)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

10 30 504020 600
Epochs

Model Training accuracy

(b)
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Table 2: Performance results of all experiments.

Models Accuracy (Acc) Specifcity (Sp) Sensitivity (Sn) F1-score (Fs)
Precision

(Pr)
15-layered normal CNN 0.924 0.919 0.929 0.917 0.905
15-layered deformable CNN 0.932 0.882 0.991 0.929 0.875
Normal ResNet-50 0.968 0.971 0.965 0.965 0.965
Deformable ResNet-50 (Proposed) 0.976 0.985 0.965 0.973 0.982
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Figure 9: Confusion matrixes for the prediction of (a) normal ResNet-50 and (b) proposed deformable ResNet-50.
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and useful technique for the clinical application of COVID-19
screening.

 . Conclusions

Te deployment of DL techniques in the various medical
diagnosis systems is now growing worldwide, and it
speeds up the early diagnosis system in healthcare en-
vironments. In this article, we have proposed
a COVID-19 disease detection technique from chest CT
using the deformable deep CNN. Diferent experiments
were performed for better model selection. Te impact of
the deformable concept has been examined through
performance comparative analysis among the designed
deformable and normal models, and it is found that the
deformable models show better prediction results than
their normal form. Extensive analysis shows that the
proposed deformable ResNet-50 model performs satis-
factorily with an accuracy of 97.6% compared with the
state-of-the-art techniques. Te Grad-CAM visualization
evidences of the targeted regions’ localizing tendency at

the fnal convolutional layer is also found noteworthy. In
the future, more diverse and critical CT datasets will be
utilized for training to boost the robustness of the model.
Finally, this study showed that the proposed method can
be useful for efective COVID-19 detection as a substitute
for RT-PCR with time and availability limitations.

Data Availability
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repository [36].Te dataset is publicly available at https://www.
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