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Objectives. Te most common subtype of renal cell carcinoma, clear cell renal cell carcinoma (ccRCC), has a high heterogeneity
and aggressive nature. Te basement membrane (BM) is known to play a vital role in tumor metastasis. BM-related genes remain
untested in ccRCC, however, in terms of their prognostic signifcance. Methods. BM-related genes were gleaned from the most
recent cutting-edge research. Te RNA-seq and clinical data of the ccRCC were obtained from TCGA and GEO databases,
respectively. Te multigene signature was constructed using the univariate Cox regression and the LASSO regression algorithm.
Ten, clinical features and prognostic signatures were combined to form a nomogram to predict individual survival probabilities.
Using functional enrichment analysis and immune-correlation analysis, we investigated potential enrichment pathways and
immunological characteristics associated with BM-related-gene signature. Results. In this study, we built a model of 20 BM-related
genes and classifed them as high-risk or low-risk, with each having its anticipated risk profle. Patients in the high-risk group
showed signifcantly reduced OS compared with patients in the low-risk group in the TCGA cohort, as was confrmed by the
testing dataset. Functional analysis showed that the BM-based model was linked to cell-substrate adhesion and tumor-related
signaling pathways. Comparative analysis of immune cell infltration degrees and immune checkpoints reveals a central role for
BM-related genes in controlling the interplay between the immune interaction and the tumor microenvironment of ccRCC.
Conclusions. We combined clinical characteristics known to predict the prognosis of ccRCC patients to create a gene signature
associated with BM. Our fndings may also be useful for forecasting how well immunotherapies would work against ccRCC.
Targeting BM may be a therapeutic alternative for ccRCC, but the underlying mechanism still needs further exploration.

1. Introduction

Approximately 2%–3% of all adult urinary malignancies are
renal cell carcinomas (RCC), which are cancers of the
kidneys [1]. By 2022, It is estimated that 79,000 additional
cases of RCC will be detected in the United States [2]. Clear
cell RCC (ccRCC), which accounts for approximately 70%, is
the most frequent subtype. Despite advancements in urology
technology, the prognosis of advanced RCC remains

unfavorable [3]. Terefore, exploring new biomarkers for
prognosis prediction and immunotherapy for ccRCC is
crucial.

Te tumor microenvironment (TME), which consists of
an extracellular matrix (ECM), is strongly associated with
cancer development [4]. Basement membrane (BM),
a widely distributed ECM, plays an important role in bi-
ological systems, such as resisting mechanical stress, dic-
tating tissue shape, and creating difusion barriers [5]. Te
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main structural backbone of BM is laminin, collagen IV,
nidogens, proteoglycans, and growth factors. As reported in
existing studies, abnormalities in the chemical and me-
chanical properties of the BMs are associated with various
diseases including malignant tumors [6–9]. Te efect of
ECM components on various RCC cell lines is heteroge-
neous [10], in which BM integrity can serve as a good
prognostic marker in RCC [11]. Jayadev R et al. defned and
created an extensive network of 224 BM-related genes and
further identifed their growing association with human
disease [12]. Although many studies have investigated
prognostic risk signatures of ccRCC previously, none have
attempted to develop a prognostic risk signature with BMs in
ccRCC, and it is still unclear if these BM-related genes afect
patient prognosis.

In this investigation, this bioinformatics analysis was
carried out in this work by creating a separate prognostic
BM-related gene signature in ccRCC utilizing Te Cancer
Genome Atlas (TCGA) database and confrming it in the
Gene Expression Omnibus (GEO) database. Ten, by
combining clinical data and prognostic signatures, a novel
nomogram was created to predict individual survival rates.
Using functional enrichment analysis and immune-
correlation analysis, we investigated potential enrichment
pathways and immunological characteristics linked with
BM-related-gene signature.

2. Methods

2.1. Data Collection. RNA-Seq data profles and corre-
sponding clinical information for kidney renal clear cell
carcinoma (KIRC) were downloaded from the TCGA
dataset (https://portal.gdc.cancer.gov/) [13]. We also
downloaded GSE29609 consisting of 39 KIRC tissues from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/) for
validation.Te RCC dataset contained 541 cancerous and 72
normal tissues, accompanied by clinical information. After
that, genes associated with BM were culled from the existing
literature [12] and listed in Supplementary Table S1.

2.2. Construction of a Prognostic BM-Related Gene Signature.
To identify BM-related DEGs in the TCGA cohort in tumor
and paracancer tissues, we used the limma package. To identify
potentially predictive genes associated with BM, we performed
a univariate Cox analysis of overall survival (OS) and displayed
the results with forest plots. By performing automatic feature
selection, LASSO Cox regression analysis, a method for
screening signatures with generally efective prognostication
performance, reduces estimated variance and avoids over-
ftting while providing an interpretable fnal model [14].Te R
package glmnet was utilized for the analysis, while LASSO
regression was utilized for feature selection. Using gene ex-
pression and the appropriate Cox regression coefcient,
a patient’s risk score was determined. Score� esum(expression of

each gene× corresponding coefcient) was the formula developed. Te
patients were then classifed into high- and low-risk categories
based on the median risk score. To further examine the dif-
ference in OS between high- and low-risk groups,

a Kaplan–Meier (KM) curve was constructed. To evaluate the
predictive power of the gene signature and risk score, the time
ROC (v0.4) analysis was performed.

2.3. Nomogram Establishment and Subgroup Analysis.
Te nomogram was built and calibrated using the survival
and rms packages in R version 4.1.0 using the multivar-
iable model coefcients. Harrell’s concordance index (C-
index) was used to evaluate the nomogram’s discrimi-
natory performance. To compile the clinical data, each
participant’s age, gender, race, pathological grade, T stage,
N stage, M stage, and survival information were docu-
mented. We performed dichotomies based on clinical
information for subgroup analysis. For continuous vari-
ables, the ROC curve is utilized to pick the appropriate
cut-of value. For categorical variables, we classifed them
based on the AJCC stage [15], WHO/ISUP classifcation
[16], and current research.

2.4. Protein-Protein Interaction (PPI) and Functional En-
richment Analyses. To learn more about the protein-protein
interactions among the shared prognostic DEGs, we con-
sulted the STRING database (http://www.string-db.org/).
Moreover, gene ontology (GO) and kyoto encyclopedia of
genes and genomes (KEGG) enrichment analyses were
performed on the DEGs using the cluster profler program.

2.5.CorrelationAnalysiswith Immune Infltration. Using the
TIMER, CIBERSORT, XCELL, and EPIC algorithms, we
explored the correlation between BM-related genes and the
degree of immune infltration. We also utilized violin plots
to assess the association between the expression of high- and
low-risk groups and immune checkpoints (PDCD1, CD274,
CTLA-4, TIGIT, LAG3, and CD28).

3. Results

3.1. Identifcation of Prognostic BM-Related Genes in the
TCGA Cohort. As part of the TCGA-KIRC cohort, 541
people with ccRCC were enrolled. We collected 224 BM-
related genes. 106 BM-related genes were identifed as DEGs
between ccRCC samples and paracancer samples (FDR< 0.05;
Figure 1(a)). Te univariate Cox regression analysis showed
that 30 BM-related DEGs were correlated with OS
(Figure 1(b)). Interactions of BM-related genes were visual-
ized with the PPI networks of the diferentially expressed BMs
comprising 30 nodes and 82 edges (Figure 1(c)).

3.2. Construction of a Prognostic Model for BM-Related Risk
Score. With the expression profles of the 30 genes men-
tioned above, we identifed a 20-gene prognostic model by
LASSO Cox regression analysis (Supplementary Figure S1
A-B). According to the median of the risk score (Risk
score � (0.0143) ∗ADAMTS2 + (0.0070) ∗ADAMTS4 +
(0.0135) ∗ADAMTS8 + (−0.0027) ∗COL15A1 + (−0.03)
35 ∗COL4A4 + (0.1376) ∗COL4A6 + (0.0038) ∗DCN + (0
.1922) ∗GPC2 + (−0.1173) ∗HMCN1 + (0.0026) ∗ ITGA5
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Figure 1: Identifcation of the candidate BM-related genes in the TCGA cohort. (a) Diferentially expressed genes associated with BM are
shown using a heatmap. (b) BM-related genes having signifcant predictive value based on OS are visualized in a forest plot. (c) Candidate
gene interactions are mapped out by the PPI network retrieved from the STRING database.
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Figure 2: Distribution and prognostic analyses of the 20-gene signature in the TCGA cohort and GSE29609 cohort. (a, b) Te distributions
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+ (0.0101) ∗ ITGAX + (0.0137) ∗MEGF6 + (0.2590)
∗MMP21 + (0.0003) ∗MMP7 + (0.0244) ∗NELL1 + (−0.0
181) ∗NPNT + (0.0109) ∗PXDN + (0.0022) ∗ SEMA3B +
(0.0013) ∗VCAN+ (−0.0048) ∗VWA1), patients were
stratifed into high-risk group (n � 263) and low-risk
groups (n � 264) (Figure 2(a)). As shown in
Figures 2(b)–2(c), prognosis and risk score were negatively
correlated (p< 0.001). Te defned 20-gene signature was
found to be highly efective at predicting the OS for ccRCC
patients, as shown by the AUC (AUC � 0.741, 0.715, and
0.720; at 1, 3, and 5 years, respectively, Figure 2(d)).
Te BM-related genes signature’s predictive signifcance
was further verifed in the GSE29609 dataset (Figures 2(e)–
2(h)). Te survival curve confrmed that patients at high
risk had a poor prognosis (p � 0.019; Figure 2(g)). Te
AUCs were 0.594, 0.683, and 0.766 at 1, 3, and 5 years,
according to the time-dependent ROC curve (Figure 2(g)).
Particularly, in the high-risk group, the expression of the
14 risk genes rose, whereas the expression of the six
protective genes increased in the low-risk group (Sup-
plementary Figure S2).

3.3. Independent Prognostic Value of the 20-Gene Signature
and Subgroup Analysis. Te independent predictive signif-
cance of the 20-gene signature for OS in the risk model was
evaluated using multivariate and univariate Cox regression
analysis. Univariate cox analysis revealed that risk score, age,
grade, and TNM stage are the prognosis-associated factors
(p< 0.001; Figure 3(a)). In the multivariable competing-risks
regression model predicting OS, the risk score is still an in-
dependent predictor for OS (Figure 3(b)). Moreover, we stared
into whether the prognostic signature was linked to the onset
and progression of KIRC. Grade, T stage, N stage, and M stage
were all signifcantly diferent between high- and low-risk
groups (all p< 0.001). However, age and gender were not
signifcantly diferent (p> 0.05) (Figures 3(c)–3(d)).Moreover,
their prognostic signifcance in subgroups was also examined
by a stratifcation study. Our research demonstrated that the
BM-based signature performed exceptionally well at predicting
outcomes in age≥ 60, age <60, male, female, white, Grade I-II,
Grade III-IV, T1-T2, stage T3-T4 stage, N0-NX stage,M0 stage,
and M1 stage (all p< 0.05). However, BM-related genes have
a poor predictive track record in the N1 and not-white
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Figure 4: Stratifed by age, gender, race, grade, T stage, N stage, or M stage, KM curves demonstrate OS disparities between high- and
low-risk groups.
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populations (p> 0.05; Figure 4). All independent predictors of
OS in the training cohort were integrated to create the no-
mogram.Te inclusion criteria in the nomogram included risk
score, age, gender, race, grade, Tstage, N stage, and M stage, as
shown in Figure 5(a). Te C-indexes for the nomogram pre-
dictions were 0.776 (95% CI: 0.742–0.810) for the OS. As
indicated by the OS calibration plots, the nomogram might
accurately estimate the mortality (Figure 5(b)).

3.4. Functional Enrichment Analysis. 20 genes between the
high- and low-risk groups were used for GO and KEGG
analysis, which shed light on the relationship between risk
scores and biological pathways and functions. GO enrich-
ment analysis of the biological process (BP) and molecular
functions (MF) showed that DEGs were involved in the

tumor cell migration, including cell-substrate adhesion,
extracellular matrix structural constituent, and metal-
lopeptidase activity (p< 0.05; Figure 6(a)). Additionally,
KEGG enrichment analysis revealed that elements related to
tumor invasiveness and metastasis, such as ECM-receptor
interaction, focal adhesion, and PI3K-Akt signaling path-
way, were signifcantly enriched (p< 0.05; Figure 6(b)).

3.5. Association between BM-Related Genes and Immune
Cells. We used TIMER, CIBERSORT, XCELL, and EPIC to
investigate the correlation between 20 genes and immune
cell infltration (Figure 7(a)). By CIBERSORT, CD4+ Tcells,
CD8+ T cells, NK T cells, regulatory T cells (Tregs), B cells,
monocytes, macrophages, and dendritic cells had higher
immunocyte infltration degrees in the high-risk group,
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whereas endothelial cells, mast cells, and hematopoietic stem
cells had lower immunocyte infltration degrees in the low-
risk groups. Blocking immune checkpoint pathways is
currently thought to be a promising approach to achieving
antitumor immunity. We discovered that the expression of
PDCD1, CD274, TIGIT, CTLA-4, LAG3, and CD28 was
signifcantly diferent between the two groups of ccRCC
patients (Figure 7(b)). Te fndings suggest that BM-related
genes are actively involved in controlling how the immune
system interacts with ccRCC and how their TME develops.

4. Discussion

Tere were 224 BM-related genes examined, and of those, 30
DEGs were shown to be connected with ccRCC prognosis.
We used LASSO Cox regression to examine data from the
TCGA dataset to identify a 20-gene signature (ADAMTS2,
ADAMTS4, ADAMTS8, COL15A1, COL4A4, COL4A6,
DCN, GPC2, HMCN1, ITGA5, ITGAX, MEGF6, MMP21,
MMP7, NELL1, NPNT, PXDN, SEMA3B, VCAN, and
VWA1) in ccRCC patients. In the meanwhile, we used the
GSE29609 dataset to validate our risk score and showed that

it was efective for predicting ccRCC patients’ outcomes.Te
most important takeaway from our research is the devel-
opment of a novel BM-based predictive risk profle for
ccRCC.Tis provides a more precise estimation method and
a more personalized treatment strategy for the prognosis of
ccRCC patients. Te risk score is closely related to some
clinical features, such as pathological grade and TNM stage.
In diferent subgroups, the vast majority of high-risk groups
had worse survival prognoses than lower-risk groups, which
refects the representativeness of BM-related risk scores and
has important guiding signifcance in clinical practice.

In our model, all 20 genes are involved in human cancer
occurrence and development, half of which are closely re-
lated to RCC (ADAMTS2 [17], COL15A1 [18], COL4A4
[19], DCN [19], ITGA5 [20], ITGAX [21], MMP7 [22],
NELL1 [23], SEMA3B [24], and VCAN [25]).Te remaining
10 genes still have some papers on their roles in other types
of tumors. Cancer development and progression are linked
to ADAMTS (a disintegrin and metalloproteinase with
thrombospondin motifs) family genes, among which
ADAMTS2, 4, and 8 have been shown to have antitumor
angiogenesis efects [26–28]. MMP-7 also afects progression
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by regulating angiogenesis, making it a potential target for
RCC [22]. Moreover, the depletion of VCAN also markedly
reduced the invasion and migration of cells, which was
correlated with MMP7 reduction [25]. It has been reported
that deletion of COL15A1 modulates the tumor ECM and
leads to increased tumor growth in the mouse mammary
carcinoma model [29]. Te transcript levels of COL4A4 and
6 could act as potential indicators for early disease pro-
gression in ccRCC [30]. Yongcan et al. defned that DCN
defciency promotes RCC growth and metastasis through
the downregulation of P21 and E-cadherin [19]. Guoming
et al. verifed that GPC2, associated with most immune-
infltrating cells, is highly expressed in pan-cancer [31].
ITGA5 and ITGAX are members of the integrin family,
commonly used as receptors for the ECM and can be used as
a predictor of the prognosis of the RCC in other models. In
vitro and in vivo experiments have revealed ccRCC in-
hibition of SEMA3B associated with methylation through
promoter and intronic CpG islands [24]. It is yet unknown
how 20-gene signatures play a role in ccRCC.

GO enrichment analysis uncovered that BM-related
genes were mainly related to tumor cell migration, such
as cell-substrate adhesion, extracellular matrix structural
constituent, and metallopeptidase activity. Te result of
KEGG enrichment analysis indicated that BM-related
genes were mostly implicated in focal adhesion, PI3K-
Akt signaling pathway, and ECM-receptor interaction.
Te epithelial-to-mesenchymal transition (EMT), tumor
angiogenesis, and changes in the TME are only a few of the
multiple mechanisms that contribute to the evolution of
mRCC, which is crucially characterized by tumor cell in-
fltration and metastasis. Cellular signaling pathways, such
as PI3K-Akt-mTOR, play a prominent role in pathological
conditions of ccRCC. Te PI3K-Akt-mTOR pathway could
regulate cell proliferation, growth, cell size, metabolism,
and motility [32]. EMT is a self-regulated biological process
essential for tissue healing in which cells shed their epi-
thelial cell identity and acquire properties of mesenchymal
cells. Not only is EMT essential for development and
wound healing but it also plays a key role in tumor for-
mation and metastasis.

Although the efects of tumors on the ECM, especially
the BM, have been the focus of research over the recent
decades, it remains unclear whether tumor immunity is
modulated by BM-related genes. We discovered that CD4+
T cells, CD8+ T cells, Tregs, and macrophages were highly
enriched in both groups using risk group-based immu-
nological annotation analysis, which may indicate a po-
tential fundamental regulation between tumor immunity
and BM. T cells are major players in immune-mediated
cancer control and response to immunotherapy. Endo-
thelial BM on the blood and lymphatic vessels is a limiting
step for T cell entry into the TME. Besides its well-
documented functions in promoting tumor neoangio-
genesis, BMs have also been proposed to regulate the
function of T cells. BM not only regulates T cell adhesion
and migration but also directly regulates T cell activation,
function, proliferation, and survival. Evidence suggests
that Tregs have antitumor immunity, and an increased

density of macrophages is related to poor clinical prog-
nosis in ccRCC. M2-like macrophages can degrade the
tumor ECM, destroy the BM, and recruit immunosup-
pressor cells, all of which further promote tumor pro-
gression and distal metastasis. Currently, a variety of
innovative immunotherapies based on targeting immune
checkpoint inhibitors (ICIs) are in clinical development
and are used to treat mRCC patients, which was consistent
with our results that the expression of PD-1, PD-L1,
CTLA-4, TIGIT, LAG3, and CD28 have a prominent
diference between the two groups. Despite multiple lines
of evidence elucidating the functions of diverse immune
cells and ICIs in cancer, the underlying mechanisms re-
main poorly characterized in ccRCC and are lacking in the
feld of BMs.

In the present study, we shed light on the involvement of
BMs in ccRCC and developed a promising risk-prognostic
signature. In both the derivation and validation cohorts, this
model was found to be independently linked with OS.
Research in the molecular underpinnings of tumor im-
munity in ccRCC has been hampered by a lack of knowledge
about the relationship between tumor-associated BM genes
and the immune system.
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Background. Cell division cycle associated 3 (CDCA3) mediates the ubiquitination WEE1 kinase at G2/M phase. However, its
contribution to cancer immunity remains uncertain. Methods. We first evaluated the effect of CDCA3 on the prognosis of
patients with renal cell carcinoma (RCC). The results of bioinformatics analysis were verified by the tissue microarray,
immunofluorescence (IF) staining, CCK-8 assay, colony formation, cell cycle, and Western blot. Results. Bioinformatics
analysis predicated CDCA3 was an independent predictor of poor prognosis in RCC and was associated with poor TNM stage
and grade. CDCA3 was related to the infiltration of CD8+ T cells and Tregs. Tissue microarray demonstrated that CDCA3 was
strongly associated with poor prognosis and positively relevant to CD8+ T infiltration. In vitro experiments showed that
exgenomic interference of CDCA3 could attenuate cellular proliferation, arrest cell cycle, and blockade accumulation of CDK4,
Bub3, and Cdc20 in mitosis process. Conclusion. CDCA3 presents as a good biomarker candidate to predict the prognosis of
RCC patients and potentiates the immune tumor microenvironment (TME) of RCC.

1. Introduction

Renal cell carcinoma (RCC) is a malignancy from the kidney
epithelium and the mobility has steadily increased globally
in recent years [1]. The first-line antiangiogenic therapies
such as tyrosine kinase inhibitors (TKI) have presented the
certain effect for RCC patients, however, the response is dis-
continued in short time for the majorities [2]. Immune
checkpoint inhibitors (ICIs) usher a new time of cancer ther-
apeutic strategies via sparking anticancer immunity [3].
CD8+ T cells serve as an essential effector and partially rele-
vant to the effect of ICI [4]. Traditionally, RCC is considered
as an immunogenic cancer, and immunotherapy has shown
a certain effect of RCC [5, 6]. In clinical practices, we observe
the effect of ICIs is diversified, however, scholars fail to find
a good candidate to predicate the response and adverse
effects (AEs) of ICI in RCC treatment. The biomarkers will
also help identify subgroups that respond to immunotherapy
and avoid severe AEs.

Cell division malfunctions trigger tumor development
and antitumor immune response [7]. CDCA3 has been
shown to be a poor prognostic factor for renal papillary cell
carcinoma, nonsmall cell lung cancer, etc. [8–10]. Scholars
reveal that CDCA3 was upregulated in RCC and promote
tumor progression and sunitinib resistance [11] via activat-
ing the NF-κB/cyclin D1 signaling axis [12]. There are data
indicating that CDCA3 can serve as an important biomarker
to evaluate the therapeutic sensitivity of TKI and therefore it
would be appropriate to underline this aspect also in light of
the possible associations of immunological therapies and
TKI in various types of malignant tumors [13]. Moreover
it should be very interesting to test the role of CDCA3 as a
predictive biomarker of toxicity related to a prolonged use
of these novel agents in combination therapy of RCC [14].
However, the immune impact of CDCA3 has also not been
well reported.

In this paper, we try to evaluate the predicable perfor-
mance of CDCA3 in RCC and figure out the attribution of
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CDCA3 to TME of RCC. Finally, we endorse that targeting
CDCA3 would be a potential therapeutic way to flight RCC.

2. Methods and Materials

2.1. Data Collection and Preprocessing. The RNA-seq data,
clinical information, somatic mutation data, and microsatel-
lite instability (MSI) status of 881 RCC were all from The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer
.gov/) portal. Patients were divided into high expression

group and low expression group based on the median of
gene expression. We first drew Kaplan-Meier (KM) survival
curve, receiver operating characteristic (ROC) curve, and
risk curve to study the prognosis of patients in terms of over-
all survival (OS). Next, we analyzed the differences in clinical
data including gender, clinical stage, TNM stage, and grade
among different expression groups of CDCA3. In addition,
we used univariate and multivariate COX regression to ana-
lyze the prognostic significance of CDCA3 expression and
clinical data. At the same time, we drew a nomogram
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Figure 1: CDCA3 may be an independent prognostic factor for RCC. Survival curves, ROC curves (a), and mortality risk curves (b) of
patients with different CDCA3 expression levels. (c–h) Comparison of distribution of gender, T, N, M stage, clinical stage, and grade
among patients with different CDCA3 expression. CDCA3-related nomogram (i) and calibration curve (j) predict OS of the RCC
patients. (k) Survival curve of patients with different CDCA3 expression in tissue microarray.(∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001).

Table 1: Univariate and multivariate COX regression analysis.

Uni-COX p value Hazard ratio (95% CI) Multi-COX p value Hazard ratio (95% CI)

CDCA3 < 0.0001 2.34698 (2.0353, 2.70639) CDCA3 < 0.0001 1.71293 (1.41056, 2.08011)

Age < 0.0001 1.028 (1.01694, 1.03918) Age < 0.0001 1.03039 (1.01629, 1.04468)

Gender 0.4682 0.9037 (0.68738, 1.1881)

Race 0.5979 1.10877 (0.75541, 1.62743)

Clinical stage < 0.0001 2.01609 (1.79567, 2.26356) Clinical stage < 0.0001 1.52842 (1.31228, 1.78016)

Grade < 0.0001 2.29073 (1.86981, 2.80639) Grade 0.0029 1.41708 (1.12665, 1.78237)
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diagram and calibration curve to better interpret the prog-
nostic significance of CDCA3. Moreover, fold change = 2
was used to compare the differences of gene expression
among different expression groups of CDCA3, and a heat
map of differentially expressed genes was drawn to show
the expression trend in different groups. Finally, considering
that CDCA3 can be used as an oncogene to affect the pro-
gression of tumor, we performed Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis on the upregulated genes of CDCA3 in differ-
ent expression groups to identify CDCA3 functional
pathway localization in tumors.

2.2. Correlation between Tumor Immune Cell Infiltration
and CDCA3 Gene Expression. Cell type Identification By
Estimating Relative Subsets Of RNA Transcripts (CIBER-
SORT) algorithm was used to estimate the infiltration pro-
portion of 22 kinds of immune cells in normal kidney and
RCC samples to describe the profile of immune cell infiltra-
tion in RCC. The abundance of immune cells infiltration and
the expression of 8 important immune checkpoints (CD274,
CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and
SIGLEC15) among different CDCA3 expression groups were
compared. Finally, we also analyzed the correlation between
CDCA3 expression with tumor mutation burden (TMB) and
MSI. Tumor Immune Single-cell Hub (TISCH, http://tisch
.comp-genomics.org/) is a scRNA-seq database focusing on
TME. We obtained the relationship between CDCA3 and
RCC TME at single-cell level in TISCH.

2.3. Cell Culture and Transfection of Lentivirus. Caki-1 and
786-O were purchased from the Type Culture Collection
(Chinese Academy of Sciences, Shanghai, China). Cells were
cultured in RPMI-1640 medium (HyClone, USA) with 10%
fetal bovine serum (Gibco, Grand Island, NY, USA). The

culture was maintained in a humidified incubator with
37°C, 5% CO2. CDCA3 knockdown lentivirus was designed
by Obio Technology Corp (Shanghai, China). Then, Caki-1
and 786-O were transfected with the lentivirus, according
to the manufacturer’s instructions. Two days later, puromy-
cin was added for screening. Knockdown efficiencies of
CDCA8 were assessed by Western blot.

2.4. Western Blotting. Cultured cell lysates were prepared
using a Column Tissue & Cell Protein Extraction Kit (Epi-
zyme, Shanghai, China; # PC201PLUS). Then total proteins
were then separated on 10% SDS polyacrylamide gels. After
overnight incubation with various primary antibodies,
including anti-CDCA3 (Proteintech, 15594-1-AP), CDK4
(Proteintech, 11026-1-AP), Cdc20 (Proteintech, 10252-1-
AP), Bub3 (Proteintech, 27073-1-AP), and anti-GADPH
(CST, #5174) at 4°C, membranes were washed thrice for
5min each time, using TBST (in 0.1% Tween20). Then, they
were incubated in the presence of a secondary rabbit anti-
body (1 : 1000, LF102, Epizyme) for 1 h and washed thrice
using TBST for 5min each time. Signals were detected using
the chemiluminescence system.

2.5. Cell Proliferation Assay. The cells were seeded in 96-well
plates (1,000 cells/well) and cultured for 1, 2, and 3 days.
After adding 10μl CCK-8 (Dojindo, Japan) to each well
and incubating at 37°C for 2 h, the absorbance at 450nm
was measured by the Rayto-6000 system (Rayto, China).

2.6. Colony Formation Assay. For cell proliferation, we
seeded 200 cells to each well of 6-well plates for 14 days, then
fixed with 4% paraformaldehyde (PFA) and stained with
crystal violet. The cells were photographed, and the numbers
of colonies were counted.

2.7. Flow Cytometry. Cell cycle analysis was performed using
a Cell Cycle Staining Kit (MultiSciences, Hangzhou, China),
as instructed by the manufacturer. Cells were washed using
PBS, after which 1ml of DNA staining solution and 10μl
of permeate were added to the cell suspension and vortexed
to mix. Finally, cells were stained in the dark at 4°C for
30min and analyzed by flow cytometry. The stained cells
were assessed by flow cytometry (BD FACSCanto [TM] II,
USA), and analysed by FlowJo vX.0.7 software.

2.8. Tissue Microarray. The RCC tissue microarray was pur-
chased from Outdo (Shanghai, China) and contains 150
RCC tissues and 30 paired paracancer tissues along with
their survival, clinical information, etc. Samples were col-
lected from the National Human Genetic Resources Sharing
Service platform (2005DKA21300). All points on the chip
were detected by Immunofluorescence (IF). The expression
of CDCA3, CD8, CD4, CD68, FOXP3, and PD-1 was
detected by intensity and positive number of IF. We divided
150 RCC patients into two groups based on the optimal
CDCA3 cut-off value and plotted survival curves to identify
their prognostic significance. Finally, we analyzed the corre-
lation between CDCA3 and CD8, CD4, FOXP3, CD68, and
PD-1.

Table 2: CDCA3 expression and demographic and
clinicopathological characteristics.

CDCA3
N p value

Low High

Age

≥57 58 16 74
0.666<57 65 11 76

Gender

Female 33 10 43
0.408

Male 90 17 107

Size(cm3)

≤175 62 13 75
1.000>175 61 14 75

T

T1-2 116 23 139 0.215

T3 7 4 11

N

N0 121 26 147
1.000

N1-2 2 1 3

4 Journal of Oncology

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/


100

Type
B cell memory
B cell naive
B cell plasma
Eosinophil
Macrphage M0
Macrphage M1
Macrphage M2
Mast cell activated
Mast cell resting
Monocyte
Myeloid dendritic cell activated

Myeloid dendritic cell resting
Neutrophil
NK cell activated
NK cell resting
T cell CD4+ memory activated
T cell CD4+ memory resting
T cell CD4+ native
T cell CD8
T cell follicular helper
T cell gaamma delta
T cell regulatory (Tregs)

50

Pe
rc

en
t (

%
)

Type
B cell memory
B cell naive
B cell plasma
Eosinophil
Macrphage M0
Macrphage M1
Macrphage M2
Mast cell activated
Mast cell resting
Monocytyy e
MyM eloid dendritic cell activateddd

0

(a)

Groups
Macrophage M1 3.23e-01

7.48e-09
1.16e-04
9.88e-01
1.88e-01
2.18e-02
4.08e-03
2.72e-04
1.34e-02
1.77e-01
7.33e-03
7.33e-03
4.89e-01
7.02e-01
2.16e-01
1.95e-15
3.75e-02
1.85e-06
6.28e-05
3.76e-07
1.08e-02
4.85e-01
1.62e-01

T cell follicular helper***
T cell CD8+***
T cell gamma delta
B cell plasma
Mast cell resting*
Macrophage M0**
B cell memory***
Myeloid dendritic cell activated*
Neutrophil
Myeloid dendritic cell resting**
T cell CD4+ memory activated
T cell CD4+ naive
Eosinophil
T cell regulatory (Tregs)
NK cell activated*
Macrophage M2***
Monocyte***
B cell naive***
NK cell resting*
T cell CD4+ memory resting
Mast cell activated

2

Groups
High
Low

1

0

–1

–2

(b)

TM
B 

sc
or

e

1 2
Log2 (CDCA3 expression)

3 4 5

4

3

2

1

0

loge(S)=17.56, p=9e–10, 𝜌Spearman=0.23, CI95% [0.16, 0.30], npairs=690

(c)

M
SI

 sc
or

e

0.4

0.5

0.6

0.7

Log2 (CDCA3 expression)
1 2 3 4 50

loge(S)=17.56, p=90.046, 𝜌Spearman=–0.08, CI95% [–0.15, 0.00], npairs=685

(d)

9

6

3Im
m

un
e c

he
ck

po
in

t

0

CD
27

4

CT
LA

4

H
AV

CR
2

LA
G

3

PD
CD

1

PD
CD

IL
G

2

TI
G

IT

SI
G

LE
C1

5
⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎

Group
High
Low

(e)

KIRC_GSE139555

Celltype (minor-lineage)
B
CD4Teff
CD4Tn
CD8Teff
CD8Tex
Endothelial
M1
M2

Mast
Moncyte
NK
Plasma
Th1
Tprolif
cDC1
pDC

(f)

Figure 2: Continued.

5Journal of Oncology



2.9. Immunofluorescence Staining. Tissue microarray were
deparaffinized by graded alcohol and then washed three
times with phosphate-buffered saline (PBS), permeabilized
with 0.4% Triton X-100 for 30min, and blocked with goat
serum working liquid (Wuhan Boster Biological Technol-
ogy, Wuhan, China) for 2 hours after antigen retrieval. The
sections were then incubated overnight with mixed primary
antibodies at 4°C, washed in PBS to remove unbound pri-
mary antibodies, and incubated with secondary antibodies
in the dark at room temperature (RT) for 1 hour. The sec-
tions were counterstained with 4′, 6 diamidino-2-
phenylindole (Sigma-Aldrich) for 5 minutes and washed
with PBS. The primary antibodies included CDCA3 (Pro-
teintech, 15594-1-AP). The fluorophore-conjugated second-
ary antibodies used were goat anti-rabbit Alexa Fluor 488 (1:
500; Abbkine, Wuhan, China) and goat anti-mouse Alexa
Fluor 549 (1: 500; Abbkine, Wuhan, China). Images were
captured by confocal laser scanning microscopy (Nikon
A1+R, Japan). The fluorescence intensity was analyzed by
using the ImageJ software.

2.10. Statistical Analysis. In this study, R (version 4.0.2),
GraphPad Prism 8, and SPSS 20.0 software were used to
analyze the data. Survival, survminer, timeROC, rms,
Limma, ggplot2, pheatmap, and ClusterProfiler R package
were used in this study. The significance of differences
between groups was assessed by the student T test. Chi-
square test was used for categorical variables, and Wilcoxon
test was used for continuous data. Survival differences were
calculated using Kaplan-Meier and logarithmic rank tests.

3. Results

3.1. Prognostic Significance of CDCA3 in RCC. First, KM sur-
vival analysis of TCGA-RCC revealed a shorter survival time
in the high-CDCA3 expression group versus the low-
CDCA3 expression group (p < 0:001, n = 881). ROC curves
suggested a good accuracy of CDCA3 expression in predict-
ing RCC prognosis (AUC = 0:729, Figure 1(a)). The risk

curve showed higher mortality in high-CDCA3 patients
than low-CDCA3 patients (Figure 1(b)). Among the patients
with different CDCA3 expression groups, gender, TNM
stage, clinical stage, and grade showed differences in distri-
bution (Figures 1(c)–1(h)). Univariate and multivariate
COX analysis showed that CDCA3, age, TNM stage, and
grade could be used as prognostic factors of RCC, and
CDCA3 could independently predict the prognosis of RCC
(Table 1). We also constructed the prognostic nomogram
and calibration curve of RCC, and the 5-year overall survival
rate could be estimated according to the total score
(C − index = 0:754, Figures 1(i) and 1(j)). Demographic
characteristics and pathological baseline of tissue microarray
were listed in Table 2, showing that high CDCA3 expression
levels predicted shorter survival (p = 0:003, Figure 1(k)),
which proves the bioinformatics analysis. In summary,
CDCA3 can be an independent prognostic factor and reflect
the rate of tumor progression tumor progression in RCC.

3.2. CDCA3 Is Related to Immune Infiltration. Figure 2(a)
showed the infiltration of immune cells in RCC. On this
basis, we further analyzed the different abundance of
immune cell infiltration among different CDCA3 expression
groups (Figure 2(b)). The infiltration of CD8+ T cell
(p < 0:001), Tregs (p < 0:001), memory B cell (p < 0:001),
follicular helper T cell (p < 0:001), activated NK cell
(p < 0:05), and M0 macrophage (p < 0:01) was upregulated
in the patients with high expression of CDCA3, while naive
B cell (p < 0:001), resting NK cell (p < 0:05), Monocyte
(p < 0:001), and M2 macrophage (p < 0:001) was downregu-
lated. TMB and MSI levels reflect tumor surface neoantigen
abundance and can stimulate antitumor immune response.
CDCA3 was also positively correlated with TMB (p < 0:001
, r = 0:23, Figure 2(c)) and negatively correlated with MSI
(p = 0:046, r = −0:08, Figure 2(d)). CD274 (PD-L1, p <
0:001), PDCD1LG2 (PD-L2, p < 0:01), and SIGLEC15
(p < 0:05) were downregulated in patients with high expres-
sion of CDCA3, while CTLA4 (p < 0:001), LAG3 (p < 0:001),
PDCD1 (PD-1, p < 0:001), and TIGIT (p < 0:01) were
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Figure 2: CDCA3 affects immune infiltration in RCC. (a) The distribution of immune cells infiltration in RCC. (b) Comparison of immune
cells infiltration between different CDCA3 expression groups. (c) Correlation analysis between CDCA3 and TMB. (d) Correlation analysis
between CDCA3 expression and MSI. (e) Comparison of 8 immune checkpoints in different expression groups of CDCA3. (f) Single-cell
level distribution of immune cells in RCC. (g) Expression of CDCA3 in immune cells. (h) The relationship between CDCA3 and the G2/
M checkpoint in immune cells. (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001).
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upregulated (Figure 2(e)). The distribution of immune cells
in KIRC is shown in Figure 2(f). Figure 2(g) shows immune
cells hardly express CDCA3. CDCA3 can regulate G2/M
phase, so we analyzed the relationship between CDCA3
and immune cells G2/M checkpoint. Our results show a
broad association of CDCA3 with immune cell G2/M check-
points (Figure 2(h)).

Further, we conducted tissue microarray to try to prove
the above results. Figure 3(a) shows that we performed IF
staining in RCC tissue microarray. There was a significant
positive correlation between CDCA3 and CD8

(Figure 3(b)). However, our study did not observe the corre-
lation between CDCA3 and CD4, FOXP3, CD68, and PD-1
(Figures 3(c)–3(f)). In conclusion, CDCA3 was closely
related to tumor immune cells infiltration and antitumor
immunity. And CDCA3 may be important for RCC risk
stratification and immunotherapy guidance.

3.3. Identification of Molecular Mechanism of CDCA3. The
distribution of different genes among patients with different
CDCA3 expression groups was shown in the volcano map
(Figure 4(a)). The heat map showed the expression trend
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of 50 upregulated genes and 50 downregulated genes with
the greatest difference (Figure 4(b)). KEGG enrichment
analysis showed that the related pathways were mainly con-
centrated in p53 signal pathway, TGF-β signal pathway, NF-
κB signal pathway, and JAK-STAT signal pathway.
(Figure 4(c)). GO enrichment analysis showed that its bio-
logical function was mainly enriched in spindle organiza-
tion, regulation of sister chromatid segregation, and
nuclear division (Figure 4(d)). These results suggest that
CDCA3 mainly affects cell cycle in RCC and may regulate
antitumor immune response through NF-κB axis and other
important immune-related pathways.

3.4. CDCA3 Knockdown Attenuated RCC Cell Proliferation
and Arrested Cell Cycle. To further understand the effect of
CDCA3 on the biological behavior of RCC, we constructed
CDCA3-knockdown cell lines for functional experiments.
Lentiviruses carrying CDCA3 shRNA were used to obtain
CDCA3-knockdown Caki-1 and 786-O. The Western blot
results showed that the expression of CDCA3 was signifi-
cantly decreased in the RNAi group, indicating that the
CDCA3-knockdown cell lines were successfully constructed
(Figure 5(a)). Meanwhile, the expression of CDK4, BUB3,
and Cdc20 was decreased (Figure 5(a)), which indicating cell
cycle arrest. The CCK-8 assay showed that CDCA3 knock-
down remarkably attenuated the cell proliferation
(Figures 5(b) and 5(c)). The ability of colony formation
was notably impaired after knockdown of CDCA3 gene
(Figure 5(d)). The flow cytometric indicated that CDCA3
knockdown cause G1, S, and G2/M phase arrest
(Figure 5(e)). In general, CDCA3 expression affects cell cycle
operation and cell proliferation.

4. Discussion

Our study suggested that CDCA3 can independently predict
prognosis and affect tumor progression in RCC. CDCA3
may also be involved in the regulation of immune-related
pathways, and stimulated the infiltration of immune cells,
such as CD8+ T cells and Tregs. Importantly, we verified
our results in vitro.

Scholars revealed that CDCA3 influence many tumor
progression and treatment through a variety of pathways
and is associated with poorer prognosis [8, 15]. Our results
also showed consistency. Patients with high CDCA3 expres-
sion had significantly worse survival and clinical stage,
which was confirmed by our results and public databases.
One important reason is that dysregulation of cell cycle is
the basis of abnormal proliferation of tumor cells. We also
confirmed that downregulation of CDCA3 blocked the G2/
M phase of cells and reduced cell proliferation ability. This
directly proved that the functional localization of CDCA3
was a key regulatory protein in the cell cycle, and its abnor-
mal expression can affect tumor progression and prognosis.

Infiltrating immune cells directly affect the occurrence,
development, and treatment of tumors. It has been reported
that CDCA3 is closely related to immune infiltration in
hepatocellular carcinoma [16]. Our results showed that
CDCA3 affected tumor infiltration of various immune cells,
including CD8+ T cells in endogenous and exogenous data.
Previous studies have shown that CD8+ T cells can recognize
tumor-specific antigens and played a role in tumor control
[17]. The high density of tumor infiltrating CD8+ T cells
has been proved to be associated with a good prognosis of
most cancers [18], but the infiltration of CD8+ T cells in
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Figure 5: The function of CDCA3 was confirmed by in vitro experiments. (a) Western blot was used to detect the expression of CDCA3,
CDK4, Bub3, and Cdc20 in different groups of cells. CCK-8 array to detect (b) 786-O and (c) Caki-1 proliferation. (d) Representative images
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RCC was associated with a poor prognosis [19], this is con-
sistent with our survival outcomes. Since immune cells
hardly express CDCA3, antitumor therapy targeting CDCA3
may not cause damage to immune cells, which is a potential
treatment. Our study was firstly proved that CDCA3 may be
involved in the regulation of immune cell infiltration and
tumorigenesis in RCC. But more importantly, the specific
pathway through which CDCA3 affects immune infiltration
needs further study.

As we know, immune checkpoint is a key molecule in
tumor immune escape pathway. There were a lot of evi-
dences showed that immune checkpoints were related to
the benefit degree of ICIs treatment, which can be used as
biomarkers for ICIs treatment [20–22]. Our results showed
that patients with high expression of CDCA3 also expressed
high levels of CTLA4 and PD-1. This initially showed that
there was a close relationship between CDCA3 and immune
checkpoints and further suggested that CDCA3 may partic-
ipate in the immune pathway of RCC by regulating immune
regulatory factors, which may be a potential target for
immunotherapy. Moreover, findings suggested that TMB
may predict clinical response to ICIs [23]. The neoantigen
produced by TMB may be an important reason for stimulat-
ing antitumor response. In our study, we found that there
was a positive correlation between CDCA3 and TMB, also
suggesting that CDCA3 may predict the benefits of
immunotherapy.

In summary, reactive TME is the key to immunotherapy,
and CDCA3 helps to evaluate this phenomenon. Further-
more, enrichment analysis was performed to evaluate the
actual molecular mechanism of CDCA3 in RCC. CDCA3
has been suggested to influence the NF-κB pathway to medi-
ate tumor progression [12]. Our results supported this point.
CDCA3 is also involved in P53 and TGF pathways. NF-κB is
involved in the regulation of inflammation and innate
immunity in tumor development. P53 also plays an impor-
tant role in immune system. P53 mutation in cancer triggers
B cell antibody response and CD8+ killing T cell response
[24]. TGF-β can inhibit the proliferation, activation, and
effector function of T cells. In addition, TGF-β further
enhances immunosuppression in TME by promoting Tregs
differentiation and destroying T cell immunity [25]. These
evidences suggest that CDCA3 has a reasonable influence
on TME, but more specific studies are needed to uncover
the regulatory mechanisms.

TME is recognized as a complex dynamic ecosystem,
which is composed of malignant tumor cells, various infiltra-
tion immune cells, fibroblasts, and a variety of cytokines. In
this ecosystem, immune response plays an important role in
tumorigenesis and development. RCC has always been
regarded as an immunogenic malignant tumor [26–28],
and it is usually insensitive to chemotherapy and radiother-
apy. Immunotherapy is regarded as another therapeutic tar-
get in addition to chemotherapy and radiotherapy [29].
Clinicians are focusing on immunotherapy to create a new
era of RCC treatment, trying to break through the traditional
barrier [30]. The first thing to use immunotherapy is to eval-
uate the immune status, which is the premise of personalized
treatment. Therefore, find a biomarker that can better indi-

cate the immune status and curative effect of patients, which
provides an important reference for immunotherapy of
RCC. When we focus on CDCA3, the problem seems to
become transparent. CDCA3 has the potential to evaluate
prognosis and TME and helps to hierarchically label patients
at high risk. Then apply medical intervention in advance,
select appropriate treatment strategies, and improve the
prognosis. However, our study has its limitations. First, the
specific mechanism of CDCA3 on CD8+T cells and its influ-
ence on immunotherapy of renal cell carcinoma need to be
further explored; second, we have proved that CDCA3 can
block the cell cycle, but there is no further study on the bio-
logical mechanism.

5. Conclusion

CDCA3 can be used as an oncogene to affect the prognosis
of RCC patients. Downregulation of CDCA3 causes cell
stagnation in G2/M phase, promotes cell apoptosis, and
reduces proliferation ability. More importantly, the immu-
nological implications of CDCA3 have also been preliminar-
ily evaluated. CDCA3 may participate in the regulation of
immune infiltration in tumor microenvironment by affect-
ing the expression of many immune regulatory factors and
TMB, which is expected to provide valuable reference for
clinical ICIs treatment. Overall, CDCA3 can be used as a
biomarker to evaluate prognosis and CD8+ T cell infiltration
in RCC. Targeted therapy against CDCA3 is a promising
new therapeutic modality, and focusing on it may help to
improve the management of therapeutic resistance in the
combination of ICI and TKI, but this needs further research
to confirm.
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Immunotherapy has become a promising form of treatment for cancers. There is a need to predict response to immunotherapy
accurately. In the UCSC Xena, pan-cancer analysis revealed a positive relationship between APOBEC3B (A3B) and tumor
mutational burden (R = 0:28, P < 0:001) and microsatellite instability (R = 0:12, P < 0:05). Naturally, the A3B high expression
group had higher tumor mutational burden and microsatellite instability than the low expression group. The bladder cancer
(BLCA) cohort in The Cancer Genome Atlas (TCGA) revealed tumor mutational signatures of A3B high and low expression
groups. Compared to the low expression group, the high expression group had a higher number of SNPs and mutations.
Subsequently, A3B was profiled for immune cell infiltration and immune checkpoints in bladder cancer. The results showed
that A3B was positively correlated with most immune cells. Compared with the A3B low expression group, the A3B
high expression group had higher expression of immune checkpoints. A3B was positively correlated with CD274
(R = 0:12, P = 0:016). This indicated that the high expression of A3B may have a better response to immunotherapy.
Furthermore, data from the IMvigor210 immunotherapy clinical trial was used to confirm the findings of this study. The
combined survival analysis of A3B and CD274 showed that the group of patients with high expression of CD274 and A3B was
found to have a significantly higher survival rate than the rest of the patient group (P < 0:047). The results demonstrated that
A3B has a significant role in immunotherapy. Moreover, the combined biomarkers of A3B and CD274 were more effective in
predicting response to immunotherapy in bladder urothelial carcinoma. The findings of this study provide valuable insights for
precision medicine.

1. Introduction

Bladder cancer is the 11th most common cause of cancer-
related deaths worldwide [1]. In recent years, immunother-
apy has emerged as a promising cancer treatment modality.

It is essential to have a thorough understanding of the
heterogeneity of the tumor microenviroment [2]. Tumor
mutational burden (TMB), microsatellite instability (MSI),
and programmed death-ligand 1 (PD-L1) could be used as
predictive markers to identify patients likely to benefit from
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Figure 1: Differential expression of A3B in pan-cancer. (a) Boxplots showing the differential expression of A3B in normal and tumor tissues
in pan-cancer. (b) Boxplots showing the differential expression of A3B in the early and late stages of pan-cancer. ∗P < 0:05, ∗∗P < 0:01,
∗∗∗P < 0:001.
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Figure 2: Continued.
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immunotherapy [3–6]. Immunotherapy targeting single bio-
markers have been demonstrated to be less effective than
that targeting composite biomarkers. Therefore, there is a
need to explore combined biomarkers that could be targeted
to improve the effectiveness of immunotherapy.

Human apolipoprotein B mRNA editing catalytic
polypeptide-like 3B (APOBEC3B), one of the seven members
of the cytidine deaminase family, is upregulated in multiple
cancer types [7, 8]. Furthermore, the APOBEC3B (A3B)
mutational signature is enriched in various cancer types,
including the bladder, breast, cervical, and thyroid cancers
[9, 10]. A high tumor mutation burden is used as a predictive
biomarker to identify patients who may benefit from
immune checkpoint inhibitors (ICIs). According to a previ-
ous study, A3B was positively correlated with PD-L1 expres-
sion and T-cell infiltration [11]. Therefore, we hypothesized
that A3B could be a potential biomarker for predicting
response to immunotherapy.

Using bioinformatics tools, we explored the correlation
between A3B and response to immunotherapy. Further, we
explored the significance of combined biomarkers of A3B
and PD-L1 (CD274) against CD274 alone in predicting
response to immunotherapy.

2. Materials and Methods

2.1. Data Collection. Pan-cancer RNA sequencing and
clinical data from 33 types of cancers were downloaded from
the UCSC Xena database (http://xena. ucsc.edu/). In addi-
tion, mutation data were obtained from the GDC website
(https://portal.gdc.cancer.gov/). Data from the IMvigor210
clinical trial were downloaded through the “IMvigor210-
CoreBiology” R package (http://research-pub.gene.com/
IMvigor210CoreBiologies/).

2.2. Differential Expression of A3B. Differential expression of
APOBEC3B genes between tumor and paracancerous tissues
was conducted using the “ggpubr” R package. The results
were presented in boxplots. The tumors were staged as stage
0, stage I, stage II, stage III, and stage IV. Stages 0, I, and II
were defined as early stages, while stages III and IV were
defined as late stages. Boxplots were used to show differences
between the early and late stages of tumors.

2.3. Tumor Mutation Signature of A3B. The association
between A3B and MSI or TMB in pan-cancer was drawn
using the “fmsb” R package. The results were presented in
radar charts. Data in the TCGA-BLCA dataset were divided
into high and low expression groups based on the median
A3B expression value. The expression of MSI and TMB
between the A3B high- and low-expression groups were
compared using the “limma” R package [12]. The “maftools”
R package [13] was used to visualize and draw waterfall plots
showing mutational signatures between the high and low
expression groups of A3B.

2.4. Immune Correlation Analysis. Immunophenotyping
data were downloaded from the UCSC Xena website
(Supplementary Table 1). C1 means wound healing, C2
means IFN-gamma dominant, C3 means inflammatory, C4
means lymphocyte depleted, C5 means immunologically
quiet, and C6 means TGF-beta dominant. After that,
boxplots showing the different immunophenotypes were
drawn. Data on immune cell infiltration were obtained
from the TIMER2.0 online website (http://timer.comp-
genomics.org/) [14–16]. The correlation between A3B and
immune cells was visualized using the “tidyverse” R
package. Further, differences in immune checkpoints
between the high and low expression groups were
compared by the Wilcoxon test.
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Figure 2: Correlation between A3B, TMB, and MSI. (a) Correlation between A3B and MSI in pan-cancer. (b) Differences in the expression
of MSI between the high and low A3B expression groups in the TCGA-BLCA dataset. (c) Correlation between A3B and TMB in pan-cancer.
(d) Differences in the expression of TMB between the high and low A3B expression groups in the TCGA-BLCA dataset. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001.

4 Journal of Oncology

http://xena
https://portal.gdc.cancer.gov/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://timer.comp-genomics.org/
http://timer.comp-genomics.org/


20000

APOBEC3B

Low
High

15000

10000

5000

0

C>A C>G C>T T>A T>C T>G

SNV class

Co
un

t

(a)

APOBEC3B

Low
High

30000

20000

10000

40000

0

DEL INS ONP SNP TNP

Variant type

Co
un

t

(b)

Figure 3: Continued.

5Journal of Oncology



30000

20000

10000

Variant classification Tr
an

sla
tio

n_
St

ar
t_

Si
te

N
on

sto
p_

M
ut

at
io

n

N
on

se
ns

e_
M

ut
at

io
n

M
iss

en
se

_M
ut

at
io

n

In
_F

ra
m

e_
In

s

In
_F

ra
m

e_
D

el

Fr
am

e_
Sh

ift
_I

ns

Fr
am

e_
Sh

ift
_D

el

40000

0

Co
un

t

APOBEC3B

Low
High

(c)

High-APOBEC3B group

1272

TP53
TTN

ARID1A
MUC16
PIK3CA
KMT2D
KDM6A
MACF1

SYNE1
HMCN1

EP300
FAT4

KMT2C
OBSCN
DNAH5

FLG
RYR2

CSMD3
XIRP2

RB1

0

TM
B

Altered in 194 (97.98%) of 198 samples

0

56%
52%
33%
30%
24%
24%
22%
20%

19%
19%

19%
18%
17%
17%

16%
16%
16%

15%
15%

15%

110No. of samples

Multi_Hit
In_Frame_Ins
In_Frame_DelNonsense_Mutation

Missense_Mutation

Frame_Shift_Ins
Frame_Shift_Del

(d)

Figure 3: Continued.

6 Journal of Oncology



2.5. Immunotherapy Response. Data from the IMvigor210
immunotherapy cohort, including 195 patients with bladder
urothelial carcinoma with complete information on survival,
were analyzed. Spearman’s correlation was used to show the
correlation between A3B and CD274. Further, patients were
stratified into four groups based on the expression of A3B
and CD274, including A3B high CD274 high expression
group, A3B high CD274 low expression group, A3B low
CD274 low expression group, and A3B low CD274 high
expression group. Survival analysis was done using the
“survival” R package.

2.6. Statistical Analysis. All statistical analyses were per-
formed using R statistical software (version 4.0.3). The
Kruskal-Wallis test was used to analyze differences in the
distribution of the immune cell types. Spearman’s correla-
tion was used for the correlation between A3B and CD274.
Kaplan-Meier survival analysis was used to analyze survival
between groups. The P values <0.05 (∗), 0.01 (∗∗), and
0.001 (∗∗∗) were considered statistically significant.

3. Results

3.1. Differential Expression of A3B in Pan-Cancer. The differ-
ential expression analysis of A3B among the 33 types of can-
cers showed significant differences in the expression of A3B
in bladder cancer (BLCA), breast cancer (BRCA), cervical
squamous cell carcinoma and endocervical adenocarcinoma

(CESC), colon adenocarcinoma (COAD), esophageal cancer
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), prostate cancer (PRAD),
rectal adenocarcinoma (READ), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA), and uterine corpus
endometrial carcinoma (UCEC) (Figure 1(a)). Similarly,
the differential expression analysis of A3B in the different
pathological stages (early stages: stages 0, I, and II; and
advanced stages: stages III and IV) revealed significant dif-
ferences in adrenal cortex carcinoma (ACC), bladder cancer
(BLCA), cholangiocarcinoma (CHOL), kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), and thyroid carcinoma (THCA) (Figure 1(b)).

3.2. MSI and Tumor Mutational Signatures of A3B. TMB
and MSI are predictive markers for immunotherapy
response. The correlation between MSI and pan-cancer
was shown on a radar chart. A3B and MSI were shown to
be correlated in several cancer types, including BLCA
(R = 0:12, P < 0:05), CESC (R = −0:13, P < 0:05), MESO
(R = 0:24, P < 0:05), and UCEC (R = 0:13, P < 0:01)
(Figure 2(a)). In addition, as shown in Figure 2(b), A3B
was significantly correlated with TMB in ACC (R = 0:44,
P < 0:001), BLCA (R = 0:28, P < 0:001), BRCA (R = 0:28,
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P < 0:001), LGG (R = 0:32, P < 0:001), LUAD (R = 0:16,
P < 0:001), MESO (R = 0:25, P < 0:05), OV (R = 0:14, P <
0:05), PRAD (R = 0:29, P < 0:001), SARC (R = 0:29, P <
0:001), SKCM (R = 0:19, P < 0:001), STAD (R = 0:13,
P < 0:05), THYM (R = 0:29, P < 0:01), and UCEC (R = 0:10,
P < 0:05). A3B was associated with TMB and MSI in BLCA,
MESO, and UCEC. The only in-depth analysis we performed
was on bladder cancer to facilitate the study of immunother-
apy. Therefore, we analyzed the differential expression of
MSI between the high and low A3B expression groups in
the TCGA-BLCA dataset. As shown in Figure 2(a), A3B
was positively correlated with MSI. Furthermore, the A3B
high expression group had a higher expression of MSI
(Figure 2(c)). Similarly, the A3B high expression group had
a higher expression of TMB (Figure 2(d)). Data were divided
into A3B high and low expression groups based on the
median cutoff value. The single nucleotide polymorphism
and C>T were the most prevalent type in the TCGA-
BLCA dataset (Figures 3(a) and 3(b)). Furthermore, missense
mutations were shown to be the primary mutations in the
A3B high expression group (Figure 3(c)). However, the above
indicators of the A3B low expression group were lower than
those of the A3B high expression group (Figures 3(a)–3(c)).
The waterfall plot revealed that mutations are more prevalent
in the high-expression A3B group compared to the low-
expression A3B group (Figures 3(d) and 3(e)).

3.3. Immune Correlation Analysis of Pan-Cancer and Bladder
Cancer. In recent years, immunotherapy has become a prom-
ising treatment modality for cancer patients. The expression
of A3B in each immunophenotype was analyzed based on
pan-cancer immunophenotypic data (Figure 4(a)). Notably,
A3B was significantly higher in C1 (wound healing) and C2
(IFN-gamma dominant) than the other immunotypes. How-
ever, the expression of A3B was significantly low in C5
(immunologically quiet). Similarly, analysis of A3B expres-
sion among the different immune cell types in the TCGA-
BLCA dataset revealed a significantly high expression of
A3B in C1 and C2 cell types and a significantly low expres-
sion of A3B in C5 (Figure 4(b)). These results revealed an
association between A3B and cellular immunity. There was
no data available on C5 typing in the TCGA-BLCA dataset.

Further, we explored the relationship between A3B and
immune cell infiltration, immune checkpoints, and CD274.
The relationship between immune cells and A3B was shown
on a bubble chart. The majority of immune cells were
positively correlated with A3B, including CD8+ T cells, B
cells, macrophages, and NK cells, while a few were negatively
correlated. Overall, the A3B high expression group usually
had a large amount of immune cell infiltration. Immuno-
therapy is undoubtedly more effective in an environment
with high immune cell infiltration (Figure 5(a)). In addition,
several immune checkpoints, including CD274, HAVCR2,
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Figure 4: Immunophenotyping in pan-cancer and the TCGA-BLCA. (a) Immunophenotyping of A3B in pan-cancer. (b) Immunophenotyping
of A3B in bladder cancer. C1: wound healing; C2: IFN-gamma dominant; C3: inflammatory; C4: lymphocyte depleted; C5: immunologically
quiet; C6: TGF-beta dominant. ∗∗P < 0:01, ∗∗∗P < 0:001.
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and TIGIT were highly expressed in the A3B high expres-
sion group (Figure 5(b); Supplementary Table 2). Finally,
there was a significant correlation between A3B and
CD274 (Figure 5(c)) (R = 0:12, P = 0:016). These results
reveal that A3B plays an essential role in immunotherapy.
Since A3B is closely related to immunotherapy response
markers such as MSI, TMB, and CD274, we hypothesized
that A3B could be exploited as marker for immunotherapy
response.

3.4. Validation of A3B in an Immunotherapy Cohort. Next,
we analyzed the publicly available data from the IMvigor210
immunotherapy cohort, which included 195 patients with
bladder urothelial carcinoma. The results revealed that
A3B was associated with CD274 in the immunotherapy
cohort (R = 0:22, P = 0:038) (Figure 6(a)). In addition, the
survival analysis revealed that the patient group with a high
expression of CD274 and A3B had significantly higher sur-
vival rate than the patient group with low expression of
CD274 and A3B (Figure 6(b)). In addition, the patient group
with a high expression of CD274 and A3B had better sur-
vival rate than the patient group with a high expression of
CD274 and a low expression of A3B. These results suggested
that immunotherapy targeting both CD274 and A3B could
be more effective than immunotherapy targeted against a
single biomarker. Moreover, the overall survival analysis
revealed that the CD274 and A3B low expression group
had significantly lower survival than the CD274 low expres-
sion and A3B high expression group. Furthermore, the over-
all survival of the CD274 high expression and A3B high
expression group was significantly higher than that of the
CD274 low expression group and A3B high expression

group. Taken together, these results revealed that immuno-
therapeutic agents targeting A3B and CD274 would be more
effective than those targeting only one biomarker.

4. Discussion

Accumulating evidence has shown that A3B plays significant
role in immunity, including tumor mutational signatures,
immune cell infiltration, immune checkpoints, and immu-
notherapy. Therefore, to determine the role of A3B as a
predictive biomarker for immunotherapy response in indi-
vidual cancers, we conducted a preliminary exploration of
A3B in pan-cancer. Notably, A3B was shown to be a predic-
tive biomarker for immunotherapy response in bladder
cancer. Furthermore, immunotherapy targeting composite
biomarkers is more effective than targeting a single biomarker.

According to a previous study, APOBEC-mediated
mutagenesis had a significant correlation with APOBEC
mRNA levels, particularly A3B [9]. This study revealed that
the single nucleotide polymorphism, C→T transitions in
cervical, bladder, lung, head and neck, and breast cancers
was positively correlated with A3B overexpression, consis-
tent with other previous studies [9, 10, 17]. Moreover, we
demonstrated a positive correlation between A3B and MSI.
A3B has been shown to induce mutations. Furthermore,
microsatellite instability is due to mutations in some
mismatch repair genes, such as hMLH1, hPMS2, hMSH2,
and hMSH6 [18].

Previous studies have shown that APOBEC enzymes
play a role in the innate immune response, mainly in host
defense against exogenous viruses and endogenous retrofac-
tors [19, 20]. Surprisingly, APOBEC enzymes have been
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Figure 5: Immune correlation analysis of A3B in the TCGA-BLCA cohort. (a) Scatter plot showing the correlation between A3B
and immune cells. (b) Boxplots showing differences in immune checkpoints between the high and low A3B expression groups.
(c) Correlation between A3B and CD274. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.

10 Journal of Oncology



discovered in immune responses. According to Xia et al.,
APOBEC3B is a potential biomarker for predicting response
to immunotherapy and survival in gastric cancer patients. In
particular, APOBEC3B high CD8+ T cell high gastric cancer
patients were more likely to benefit from adjuvant chemo-
therapy (ACT) and PD-1 blockade [21]. Hot tumors tend
to have a higher immune cell infiltration and immune
checkpoint expression [22]. Hot tumors show a reliable
response to immunotherapy. Conversely, treatment of cold
tumors with immunotherapy remains challenging. Accord-
ing to the present study, the A3B high expression group
had a large amount of immune cell infiltration, including
CD8+ T cells, B cells, macrophages, and NK cells. Further-
more, immune cells showed a high expression of immune
checkpoints such as CD274, HAVCR2, and TIGIT. These
results demonstrate a significant association between A3B
and immunotherapy.

Several studies have investigated composite biomarkers.
According to Yan et al., the composite biomarkers, NKG2A
and PD-L1 in muscle-invasive bladder cancer were effective
in predicting response to PD-L1 inhibitors and cisplatin-
based ACT chemotherapy regimen [23]. Furthermore, the
IMvigor210 immunotherapy clinical trial revealed that tar-
geted therapy against the combined biomarkers of A3B

and CD274 was more effective than that targeting CD274
alone.

This study did not validate the findings of the IMvi-
gor210 immunotherapy clinical trial. Therefore, further
studies should be conducted to validate the findings of this
study. In our view, APOBEC3B is a promising target for
cancer therapy, just like Zou et al.’s study [24].

5. Conclusion

This study demonstrated that the combined biomarker of
APOBEC3B and CD274 was more effective in predicting
the response to PD-1/PD-L1 inhibitors than a single bio-
marker of CD274 in bladder urothelial carcinoma. In
addition, the study revealed that APOBEC3B was positively
correlated with TMB and MSI.

Data Availability

The original contributions presented in the study are
included in the article/supplementary materials. Further
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�e morbidity of prostate cancer (PCa) is rising year by year, and it has become the primary cause of tumor-related mortality in
males. It is widely accepted that macrophages account for 50% of the tumor mass in solid tumors and have emerged as a crucial
participator in multiple stages of PCa, with the huge potential for further treatment. Oftentimes, tumor-associated macrophages
(TAMs) in the tumor microenvironment (TME) behave like M2-like phenotypes that modulate malignant hallmarks of tumor
lesions, ranging from tumorigenesis to metastasis. Several clinical studies indicated that mean TAM density was higher in human
PCa cores versus benign prostatic hyperplasia (BPH), and increased biopsy TAM density potentially predicts worse clinico-
pathological characteristics as well. �erefore, TAM represents a promising target for therapeutic intervention either alone or in
combination with other strategies to halt the “vicious cycle,” thus improving oncological outcomes. Herein, we mainly focus on
the fundamental aspects of TAMs in prostate adenocarcinoma, while reviewing the mechanisms responsible for macrophage
recruitment and polarization, which has clinical translational implications for the exploitation of potentially e�ective therapies
against TAMs.

1. Introduction

Statistics demonstrated that the morbidity rates of prostate
cancer (PCa) have shown a remarkable increase worldwide,
which seriously threatens public health and survival [1, 2].
Surgery and radiation are the standard primary treatment
against early patients with localized prostate malignancies,
followed by androgen deprivation therapy (ADT), like
surgical or chemical castration if this disease recurs. Cur-
rently, sipuleucel-T, enzalutamide, abiraterone, and radium-
223 have been approved by the Food and Drug Adminis-
tration (FDA) for clinical application. Unfortunately, the
response is only transient in initial treatments due to the
intrinsic or acquired resistance, and thus has di�erent e�ects
on earlier endpoints and overall survival (OS) [3]. In ad-
dition, most patients will stop responding to ADT over
a while and progress towards a lethal outcome known as
castration-resistant prostate cancer (CRPC), which has not
been adequately addressed [4]. �us, prostate carcinoma
remains a refractory malignancy, which wistfully calls for an
original therapeutic strategy to lower the cost burden. �ere

is also an unmet clinical need to further explore pathological
mechanisms underlying carcinogenesis and progression.

It has been proved that tumorigenesis is a complicated
and gradual process in which multiple mutations and
progressive stages accumulate. Oncogenic mutation, like
PTEN loss, is implicated in an early stage of prostate tumor
development. Beyond tumor-intrinsic alteration, recent
evidence points to the critical role of the tumor microen-
vironment (TME) in tumor progression and therapeutic
response. TME, as a host of a sophisticated signal network,
provides a fertile ground conducive to tumor survival [5].
Except for the subject of neoplastic cells, TME contains
multiple nonmalignant stromal cells, like macrophages,
endothelial cells, and ¤broblasts [6, 7]. Among these cells,
tumor-associated macrophages (TAMs) act as the central
regulators of the interplay between tumor and surroundings
[8]. In general, TAMs are divided into two dichotomous
subsets: classically activated (M1) and alternatively activated
(M2) macrophages [9], and their status depends spatially
and temporally on integrated cues provided by TME [10].
�us, this classi¤cation paradigm is an acknowledged

Hindawi
Journal of Oncology
Volume 2022, Article ID 8580043, 20 pages
https://doi.org/10.1155/2022/8580043

https://orcid.org/0000-0002-3055-8721
https://orcid.org/0000-0002-3206-1495
https://orcid.org/0000-0001-9711-2428
https://orcid.org/0000-0002-1194-8791
mailto:jhliu@tjh.tjmu.edu.cn
mailto:xmliu77@hust.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8580043


oversimplification and could not accurately recapitulate
native PCa-associated macrophages, since multiple macro-
phage subpopulations have been observed in vivo [10, 11].

Several researchers believe that aberrance in macrophage
fate brings about a reverse clinical outcome, as in autoim-
mune disease and cancer. In metastatic-CRPC (mCRPC)
samples, abiraterone or enzalutamide-sensitive patients
exhibited increased pro-inflammatory mediators, including
interferon-c (IFN-c), interleukin-5 (IL-5), and tumor ne-
crosis factor-α (TNF-α), which were generally identified as
M1 markers [12]. Macrophages have intrinsic tumoricidal
properties, yet most TAMs predominantly displayed func-
tional characteristics of M2-like macrophages in tumor sites
[13]. Recently, we have come to appreciate that the M2-
TAMs increased stepwise from normal prostate to mCRPC.
A higher density of TAMs increases the risk of tumor re-
currence after transurethral resection of the prostate [14].
)e Gleason score (GS), a predictive index for disease
progression, derives from a pathologist’s evaluation of
prostate cancer tissue microarrays. Basically, five different
prognostic groups were classified according to the final
score, when ≤6 points usually mean better prognostic results
[15].)e abundance of M2-like macrophages is also strongly
associated with a higher GS and indicates worse specific
survival and recurrence-free survival after hormone therapy
[16, 17]. In a large PCa cohort, patients with higher M2-
TAM influx exhibited enhanced resistance to immuno-
therapy and had a nearly twofold increase in mortality [18].

)e direct or indirect contact detail is the hotspot re-
garding cell-cell interaction. In this review, we first discussed
the intrinsic mechanism responsible for TAM reprogram-
ming and the effects of TAMs on PCa development in
multiple aspects. Cancer immunotherapy strategies target-
ing TAMs are then presented.

2. Macrophage Origin

In addition to mediating the first line of defense against
pathogenic insult, macrophages, as a crucial part of innate
immunity, can repair damaged tissue to support tissue
homeostasis [19].)e heterogeneity is a significant character
of macrophages. Given that macrophages assume supportive
functions specialized to their resident tissue compartments,
they are endowed with different names, such as Kupffer cells
(liver), Langerhans cells (skin), and osteoclasts (bone) [20].
Bone marrow–derived monocytes enter the bloodstream
and reach the majority of the tissues in vivo, where they are
further differentiated into tissue-resident macrophages.
However, the histological macrophages also arise from an
embryonic precursor (yolk sac and/or fetal liver). )ese
macrophages appear to have stem cell–like abilities and
persist throughout life by local self-renewal [19, 21].
)erefore, as in other tissues, macrophages in the prostate
consist of both blood-derived and embryonic-derived
populations, where it is still unclear whether macrophage
lineages with distinct origins exert diverse functions.

Macrophages constitute the dominant population within
the TME and can be identified and quantified by using CD68
staining as a marker [22].)e emerging evidence indicated it

is a dual origin that TAMs derive from. In prostate tumors,
the TME is preferentially enriched with myeloid cells in both
human and murine models. Firstly, a variety of chemokines,
like colony stimulating factor-1 (CSF-1), granulocyte colony
stimulating factor (G-CSF), and C-C motif chemokine li-
gand 2 (CCL-2), whether secreted from tumor cells, or
stromal host cells, are associated with the recruitment and
formation of tumor-related immune cells. On the other
hand, TAMs could originate from myeloid progenitors that
exist in the yolk, as in glioma and pancreatic cancer [23, 24].

TAMs can be continuously replenished in vivo. A hu-
man PCa specimen reveals that a milieu containing abun-
dant factors and vesicles derived from tumor cells drives
TAMs to aggregate on the surface [25]. PTEN deficiency
correlated with the CXCL8 upregulation and subsequent
macrophage infiltration. RNA-sequencing showed that
overproduction of chemokines is induced in macrophages,
which may contribute to higher levels of myeloid cells in
advanced prostate tumors. CCL2-CCR2 axis has been shown
to modulate macrophage number and phenotype for TME
remodeling, which is consistent with increased tumor vol-
umes observed here. )ere is no difference in the pro-
liferation of PC-3lucCCL2 and PC-3lucMock in vitro.
Nevertheless, the PC-3lucCCL2 tumor growth was signifi-
cantly faster than the control in vivo.)ese data showed that
CCL2 mediated the recruitment and retention of vast
monocytic precursors in neoplastic tissues to enhance tumor
burden, yet neutralizing antibodies targeting CCL-2 reduced
macrophage mobilization [26, 27]. Also, spondin-2
(SPON2) overexpression has been observed in the serum
or tissue samples of patients diagnosed as PCa [28].
Functionally, SPON2 activates PYK2 and increases its
downstream RhoA and cortactin expression through
interacting with α4β1 integrin, thereby promoting cyto-
skeletal remodeling of monocytes for transendothelial mi-
gration [29]. Colony-stimulating factor-1 receptor (CSF-
1R), a primary regulator of macrophage development,
correlates with normal prostate growth and prostate cancer
progression. Human prostatectomy samples showed intense
staining of CSF-1R in areas of carcinoma and TAMs.

A large number of myeloid cells infiltrated into irradi-
ated tumor sites in a murine PCamodel. Mechanistic studies
have suggested that local irradiation induces ABL1-
dependent CSF-1 production, followed by activation of
CSF1/CSF1R signaling for systemic macrophage re-
cruitment [30]. Strikingly, recent studies point to the in-
tricate interaction of TAMs with stromal cells. CAVIN1 is
abundantly expressed in the normal prostate stroma, while
its level is downregulated in the PCa stroma.)is decrease in
stromal CAVIN1 contributes to the upregulation of in-
flammatory signatures, like increased matrix
metalloproteinase-3 (MMP3), dickkopf-1 (DKK1), and CSF-
1 secretion, thus attracting macrophages for a tumor-
supportive microenvironment [31]. )e urokinase-type
plasminogen activator/urokinase-type plasminogen activa-
tor receptor (uPA/uPAR) axis may play a central role in the
aggressive prostate disease through direct and indirect in-
teractions with integrins, growth factors, and endocytosis
receptors. To our knowledge, a study that demonstrated
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a direct link between activation of the uPA/uPAR axis and
macrophage infiltration in PCa development has also been
reported, in which stromal-derived uPA was regarded as
a possibly predominant source within the TME [32, 33].

3. Macrophage Polarization

Except for their heterogeneity, macrophages are known to
exhibit remarkable plasticity. )e differentiated macro-
phages adopt appropriate phenotypes to regulate the diverse
biological process. )e functional evolution of macrophages
is a highly dynamic process that is finely determined by
signal transduction and metabolism [34]. )e dichotomous
classification of macrophages is currently generalized as the
classically activated M1 and alternatively activated M2
phenotypes, which are described as extremes of functional
states [35]. M1 and M2 macrophages represent distinct
functions and transcriptional profiles in vivo, such as an-
tigen expression, secreted factors, and metabolic pathways.
)e bi-directional activated potency of macrophages highly
requires a key “switch” to respond to distinct peripheral
stimuli. Macrophage destiny is not fixed, and two polarized
states can be reversibly converted via reprogramming under
a particular microenvironment. Indeed, macrophages exist
across a dynamic spectrum, and even share mixed M1 and
M2 characters.

In brief, M1 macrophages with phagocytosis property
drive)1 response and participate in the early inflammatory
process. Lipopolysaccharide (LPS), an essential bacterial
component, engages directly the Toll-like receptor 4 (TLR-4)
on the membrane surface, thus enabling monocyte differ-
entiation into an M1-like subtype that is characterized by
higher levels of reactive oxygen species (ROS), inducible
nitric oxide synthase 2 (iNOS), and MHC II molecules
[36, 37]. Classical M1 macrophages execute pathogen
clearance by secreting various pro-inflammatory factors, like
IL-1β, IL-12, and TNF-α. Conversely, alternatively activated
M2 macrophages mediate wound healing and fibrosis, thus
leading to the resolution of inflammation. In the context of
cancer, monocytes are quickly differentiated towards M2-
like TAMs characterized by higher arginase-1 (Arg1) activity
and the surface marker F4/80high CD163+CD206+, sug-
gesting a transition from L-arginine catabolism into de-
pletion [38]. Supporting this notion, TAMs also highly
express autocrine factors, like transforming growth factor-β
(TGF-β) and IL-10, to promote their own maturation [39].

Generally, the most specific antibody recognizing CD163
could distinguish M2 from M1 macrophages. In the xe-
nograft section of nude mice with seven common human
PCa cell lines, more than 94% of all TAMs display an M2-
like phenotype, and few M1-polarized macrophages are
distributed in the periphery [17]. Recently, a study reports
that prostate stereotactic body radiotherapy (SBRT), a neo-
adjuvant method to radical prostatectomy, amazedly alters
the immune microenvironment within PCa. Multiplex
immune-fluorescence (mIF) determines the increase of
CD163+ macrophage subsets in densities and reaches a 5.61-
fold change 2 weeks after SBRT [40]. M1-type polarization is
experimentally induced in vitro using exogenous toll-like

receptor agonist, IFN-c or combined with LPS, whereas the
most potent M2-type is attained upon)2 cytokine (like IL-
4 and IL-13) stimuli [41]. THP-1 monocyte from human
peripheral blood is frequently used to study the impact of
TAMs in carcinogenesis due to its reproducible nature.
More importantly, molecular profiles of M1-/M2-subtype
derived from THP-1 in vitro are similar to that in intra-
corporal macrophages that have undergone
polarization [42].

In view of the intricate signaling network in TME, the
regulators of macrophage differentiation are not wholly
revealed; thus, an enhanced understanding of their activa-
tion is helpful to identify effective molecular targets for
pharmacological intervention. In this section, we emphati-
cally illustrated the mechanism of macrophage polarization
(Figure 1).

3.1. Microenvironment-Regulated Macrophage State. A va-
riety of cytokines in the TME dictate the macrophage state.
Macrophage colony-stimulating factor (M-CSF) appears
competent to increase the number of TAMs through
modulating GTPase Rac2, but M-CSFR blockers attenuate
the polarization of Ly6Chi monocytes to M2-like MHC-IIlo
TAM [43]. Meanwhile, the extent of IL-6 expression in the
stromal TME was positively associated with the abundance
of F4/80+ TAMs in PCa specimens [44–46]. One study
provides experimental evidence that IL-6 acts through the
IL-6R/Janus kinase 2 (JAK2)/signal transducer and activator
of transcription-3 (STAT3) pathway to skew THP-1
monocyte toward an M2-like phenotype, without affecting
its migration [47]. In addition, IL-6 enhances IL-4-de-
pendent M2 polarization by boosting IL-4Rα expression
under chronic inflammatory conditions [48]. An earlier
study reported that the cross communication between
cancer-associated fibroblasts (CAFs) and TAMs may further
fuel PCa progression [49]. CAFs could induce inflammation
and angiogenesis by stimulating macrophage infiltration via
secretion of various cytokines, like monocyte chemotactic
protein-1 (MCP-1), stromal-derived growth factor-1 (SDF-
1), and CXCL14 [50]. In another study, CCR-2 dependent
recruitment of macrophages by resident CAFs was reported
to support tumor growth [51]. Recent data show that
adenosine generated by CAFs can mediate the expansion
and/or differentiation of M2-like macrophages [52]. Raised
levels of G protein-coupled receptor 30 (GPR30) in prostate
CAFs contribute to recruitment of monocytes and M2
differentiation of macrophage-like cells, which is partially
associated with CXCL12 expression [53]. However, the
staining of estrogen receptor alpha (ERα) in CAFs is rela-
tively weak compared with the adjacent nonmalignant tis-
sue, leading to a short time to hormonal relapse [54, 55].
Compelling evidence suggests that CAF.ERα (+) has a lower
capability to attract macrophages into tumor sites and
suppresses M2-type macrophages in the PCa microenvi-
ronment. After co-culture with the CAF.ERα (+), macro-
phages expressed less M2 macrophage-related markers,
including IL-10, YM1 and Fuzz1, but not Arg-1. Further
mechanism dissection indicated that CCL5 and IL-6 derived

Journal of Oncology 3



from CAF.ERα (−) may be implicated in macrophage re-
cruitment and TAM generation [56]. Also, higher IL-4 and
IL-13 levels in CAF.ERα (−) cells further support this
conclusion.

Hypoxia-responsive macrophages favor fast tumor
growth [57]. Hypoxia is a prominent characteristic of the
TME, and an increase in M2-TAM infiltration is observed in
prostate tumor tissues due to their tropism to hypoxia. Both
5-LOX and hypoxia inducible factor-1(HIF-1) in hypoxic
areas boost macrophage mobility, partially by inducing
MMP-7 expression [39]. Moreover, infiltrated macrophages
tend to adopt M2-like features in the aged, oxidative, or
mionectic milieu. One hallmark of the aging prostate is more
significant infiltration of inflammatory cells, with a large
release of growth factors. Compared with young mice, RM-9
prostate tumor cells orthotopically transplanted into the
prostate grew at a faster rate in old mice. Further in-
vestigation showed that increased intra-tumoral leukocytes
in the aged prostatic environment, especially F4/80+mac-
rophage, could possibly be attributed to upregulation of
unique cytokines profiles, including IL-6 and IL-9 [58].
Furthermore, hypoxia-mediated lower expression of intra-
tumoral pigment epithelium-derived factor (PEDF) facili-
tates the transformation of monocytes into prostatic TAMs.
Serving as an immune-modulatory factor, PEDF raises the
levels of M1-specific markers, such as iNOS, IL-12, and
TNF-α, whereas restraining IL-10 and Arg-1 expression in
macrophages [59].

One critical metabolic nature of malignant cells is the
enhanced activity of glycolysis, even in aerobic conditions,
which is known as the “Warburg Effect” [60]. Lactate,
metabolic by-products of glycolysis, forms a heterogeneous
acidification niche that could direct the functional roles of

macrophages. Lactic acids generated by glycolytic tumor
cells were reported earlier to drive the pro-tumoral polar-
ization of macrophages via the ERK/STAT3 signaling ac-
tivation [61]. In line with these findings, recent studies show
that lactate either mediates HIF-1 expression or increases
Nrf2/heme oxygenase-1(HO-1) activation by elevating the
intracellular ROS to elicit M2-like functional polarization
[62]. Particularly in the late stage of PCa, elevated MCT4
expression is beneficial for preserving intracellular pH via
assisting lactate outflow across the plasma membrane [63].
Current research proposes a scenario in which acidity, in-
dependent of lactate, can alter the activation state of TAMs.
)e zwitterionic buffer-based medium was used to simulate
extracellular acidosis. Acidic condition (pH 6.8) did not
affect the viability of activated macrophages, yet increased
the expression of Arg1 and CD206 in IL-4-polarized mac-
rophages. In addition, M2-like macrophage aggregation was
usually accompanied by intra-tumoral lipid deposition. )e
fatty acid-enriched TME induces mitochondrial respiration
of infiltrating monocytes via modulating the mTOR path-
way, thus regulating their pro-tumoral phenotype [64].

3.2. Signaling Pathway-Associated with Macrophage
Education. Like the cyclic AMP (cAMP)-protein kinase A
(PKA) pathway, intracellular signaling cascades are re-
sponsible for M1/M2 polarization. Early research observed
that both total PKA and phosphorylated PKA were de-
creased in the M1 subpopulation, whereas were upregulated
in M2 subtypes. Mechanically, PKA regulatory IIα subunit
(PRKAR2A) can occupy the transmembrane domain of the
IFN-c receptor to inhibit the downstream Jak2-STAT1
pathway. On the other side, PKA provokes the activation of

Figure 1: Representative images of the regulation of macrophage recruitment and polarization.
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cAMP response element-binding protein (CREB) for IL-10,
Arg-1, and VEGFa generation, and amplifies the regulation
of IL-4 on M2-type polarization [65]. Significantly, pros-
taglandin E2 (PGE2) promoted the activity of the EP4 re-
ceptor, thereby increasing anti-inflammatory signatures via
a cAMP/PKA/CREB-dependent pathway [66]. Paradoxi-
cally, though increasing PKA levels through interacting with
EP4 receptor, PGE3 inhibits CD206 expression in THP-1
cells and reduces the proportion of CD68+ and CD206+ cells
in tumor tissue. According to a recent study, there is only
a slight but stable increase of PKA in the M2-like phenotype,
yet PKA inhibitor H-89 can suppress a shift towards the M2
state. It is plausible to speculate that M2-TAM polarization
depends on PKA activation that is reversely insufficient for
M2 skewing, which warrants further investigation into the
significance of PKA in macrophage differentiation [67].

LAMP2a (lysosome-associated membrane protein type
2A), located in the lysosomal membrane, acts as a novel
intracellular switch to re-educate macrophages towards M2
phenotype through selectively targeting and degrading
substrates of CRTC1 and PRDX1. At tumor sites of LAMP2a
KO mice, an increase in pro-inflammatory M1-like subtype
was observed. LAMP2a is manifested to be activated by
various external stressors in TME, such as hypoxia and
androgen deprivation [68]. )e RON receptor (MST1R),
a Met tyrosine kinase receptor family member, exists
preferentially in prostate epithelial cells and macrophages
[69, 70]. Prior work demonstrated macrophage-intrinsic
RON as a negative regulator of macrophage activation.
Specific loss of RON signaling in macrophages increased
intra-tumoral iNOS staining in the transgenic adenocarci-
noma of mouse prostate (TRAMP) model. Notably, prostate
epithelial RON heightens MST1R activity of macrophages in
a paracrine manner and promotes IL-6 and IL-33 genera-
tion, which indirectly accelerates prostate tumor growth
through driving M2-like macrophage polarization [71].
However, macrophage scavenger receptor (MSR) is only
expressed in macrophages, and MSR-positive inflammatory
cells are broadly considered as M2-subtype in several types
of malignancies, like glioma and ovarian epithelial tumors.
In contrast, a sequence deficiency of MSR was initially found
in one metastatic PCa sample, and the decreased expression
of MSR was a predictor of poor prognosis [72, 73]. Im-
munohistochemistry analysis suggests that MSR labels most
M2-macrophages in the PCa biopsy. IL-6/TGF-β restricts
the MSR-transcriptional levels of THP-1 cells, thus modi-
fying the gene expression of M2 markers. It probably as-
cribes to the comprehensive outcome of multi-factors
in vivo, like distinct lineages, surrounding stromal cells,
and the local environment, and the role of MSR in mac-
rophage polarization remains to be further elaborated [74].

TGF-β, as a pleiotropic cytokine, exerts dual functions in
cancer. Flow-cytometric analysis shows that recombinant
TGF-β upregulates the expression of M2 markers in THP-1
cells, which points to the involvement of the TGF-β-me-
diated pathway in the regulation of macrophage phenotypes
[75]. TGF-β induces M2-like polarization through Snail
mediation, where downstream SMAD2/3 and PI3K/AKT
signaling activation is indispensable [76]. TGF-β also

synergizes with IL-10 to enhance the activation of M2
macrophages [77]. One novel finding that the activated Akt/
FoxO1 pathway induced by TGF-β is responsible for the
transformation of LPS-stimulated macrophages toward M2-
subtypes improves our understanding of the roles of TGF-β
in M2 polarization [78]. )e bone morphogenetic protein
(BMP) is a pivotal member of the TGF-β super-family, and
specific deficiency of myeloid BMPR1 leads to an increase in
the number of TNFα+ M1 macrophages, thus impairing
mouse prostate cancer growth [79]. Various BMP ligands,
like BMP4, BMP6, and BMP7, can support M2 macro-
phages, whereas the BMP inhibitor DMH1 impedes M2-like
polarization of macrophages isolated from tumors, with
lower IL-10 and Cox2 levels. )ese findings supported our
hypothesis that BMP signaling is noteworthily required for
M2 macrophage activation [80].

3.3. Noncoding RNAs (ncRNAs)-Mediated Epigenetic
Regulations. Noncoding RNAs are a unique subclass of
regulatory RNAs that cannot be translated into proteins.
MicroRNA (miRNA) and long noncoding RNAs (lncRNA),
as master epigenetic molecules, could regulate about 90% of
human genes, which has attracted more attention. Among
them, lncRNAs with a length greater than 200 nucleotides
can be either cis or trans acting element to regulate gene
expression in all respects: epigenetic, transcriptional, and
posttranscriptional. lncRNAs, as molecular signals, decoy,
guide, or scaffold, interact with DNAs, mRNA, other
ncRNAs, or protein to exert their functions [81]. miRNAs
are characterized by a length of about 22 nucleotides and
control cellular biological processes by pairing to specific
sequences of diverse mRNAs 3′untranslated region (3′UTR)
at the same time [82]. Several ncRNAs and proteins have
long been believed to play pivotal roles in determining the
direction of macrophage polarization [83]. Lnc-M2 binds to
PKA protein to activate its downstream CREB, thereby
facilitating the process of M2 macrophage polarization [84].
Previously, a study indicated that M1 macrophages had
higher levels of lncRNA-CCAT1 than that in M0 and M2
macrophages. Knock-down of CCAT1 increased the M2-
phenotypic transformation and subsequent pro-tumorigenic
functions by regulating miR-148a/PKCζ [85]. However,
LINC00467 favors the higher expression of M2-
characteristic genes via the miR-494-3p/STAT3 axis in
prostate cancer [86]. Similarly, lncRNA-SNHG1 promotes
M2-like macrophage polarization via increased STAT6
phosphorylation [87]. In macrophages, lncRNA-EPS is
defined as a transcriptional brake that inhibits pro-
inflammatory gene expression. Mechanistic studies in-
dicate that lncRNA-EPS interacts with heterogeneous nu-
clear ribonucleoprotein L (hnRNPL) via a CANACA motif
located in its 3′ end to change nucleosome position and
repress transcription of immune response genes (IRGs) [88].
LncRNA CDKN2B-AS1 is principally expressed in the
nucleus of THP-1 macrophages and restrains M2 polari-
zation by forming RNA-DNA triplex with CDKN2B pro-
moter [89]. miR-101-3p drives a pro-inflammatory
phenotype in unpolarized monocyte-derived macrophages
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(MDMs), at least in part by targeting TRIB1. qRT-PCR
results demonstrated that miR-101-3p dramatically ele-
vated the mRNA levels of TNF-α, IL-8, and CD80, whereas
having no effects on the expression of M2-associated genes
[90]. As an inhibitory regulator of JAK/STAT signaling,
suppressor of cytokine signaling (SOCS) negatively regulates
the state of macrophages and dendritic cells [91]. miRNA let-
7b-5p overexpression domesticates macrophages towards
M2-subtypes through regulating the SOCS1/STATpathway,
followed by prostate cancer progression [92].

Circular RNAs (circRNAs) are single-stranded RNAs
characterized by having covalently closed loops and specific
tertiary structure. Current studies support that circRNAs
function as miRNAs sponges, alternative splicing mediators,
and protein templates [93]. A high throughput circRNA
microarray assay was conducted to evaluate circRNA sig-
nature of M1 and M2 macrophages. Compared with M2
macrophages, the expression of circRNA-010056, circRNA-
003780, and circRNA-010231 is upregulated in M1-type
macrophages, whereas the levels of circRNA-013630,
circRNA-003424, circRNA-018127, and circRNA-001489
are downregulated [94]. circPPM1F is involved in LPS-
induced M1-like activation through forming
circPPM1F–HUr–PPM1F–NF-κB axis [95]. circCdy can
also mediate M1 polarization by curbing the
transportation of IRF4 into the nucleus [96]. However,
circSAFB2, as a sponge for miR-620, promotes the polari-
zation of M2 macrophages through modulating JAK1/
STAT3 axis [97].

3.4. Transcription Factors. Directed by extracellular signals,
several transcription factors, including interferon regulatory
factors (IRFs), NF-κB, c-Myc, STAT3/6, Klf4, and C/EBPβ,
participate in cellular transformation. TLR-4-mediated ac-
tivation of downstream IRFs andNF-κB regulators facilitates
iNOS expression and NO generation, yet deletion of c-Myc
or C/EBPβ in macrophages impairs M2-like programs [98].
c-Myc is not implicated in macrophage proliferation and
survival, but it is pivotal in alternative macrophage activa-
tion. c-Myc controls 45% of M2-related genes by either
directly interacting with their promoters (e.g., MRC1 and
ALOX15) or indirectly influencing other transcription
factors (e.g., STAT6 and PPARc) [99]. In c-Myc-KO mice,
isolated TAMs exhibit attenuated abilities of tissue
remodeling [100]. Furthermore, myeloid cells undergo M2-
phenotypic alteration under FBXW7 knockout conditions.
Mechanistically, FBXW7 deficiency attenuates the K48-
linked polyubiquitination and resultant degradation of c-
Myc, followed by higher levels of Arg1, Ym1, and Fizz1
[101].

STAT3 positively affects the phenotypic transition from
M1 into M2 mediated by prostate tumor cell-culture su-
pernatant. JAK2/STAT3 signaling activation is implicated in
IL-6-mediated M2-like polarization. In addition, p-STAT3
encourages M2 activation through inhibiting negative reg-
ulators, such as NF-κB and p-STAT1 [102]. Cooperation
between STAT6 and PPARc is responsible for IL-4-

orientated M2-polarization, whereas STAT6 acetylation is
a negative regulatory mechanism underlying M2 polariza-
tion. )e E3 ligase Trim24 catalyzes CREB-binding protein
(CREBBP) ubiquitination and subsequent STAT6 acetyla-
tion to restrict M2 macrophage activation [103]. Notch
signaling, a highly conserved pathway, is recognized as the
determinant in the orientation of macrophage polarization.
When the Notch transduction is blocked, macrophages
exhibit functional characteristics of an M2-like phenotype.
However, in the absence of myeloid Klf4, bone mar-
row–derived macrophages (BMDMs) express fewer M2-like
indicators, like Arg-1, mannose receptor (MR), and display
a pro-inflammatory gene expression signature supporting
M1 differentiation [104].

Androgen receptor (AR), as a member of the nuclear
receptor super-family, is involved in regulating cellular
events. A study illustrates that activation of AR signaling is
not exclusively limited to prostate epithelial cells but lies in
TAMs. AR translocates into the nuclei and binds DNA at
enhancer regions via the AP-1 complex in macrophages,
which is incompatible with epithelial tumor cells where AR
acts on the DNA by transcription motifs. ChiP-seq analysis
indicated AR-binding proximal to M2-symbolic genes of
tissue-resident macrophages, including IL-10, CD163, and
CD206. Androgens have broad immune-regulatory effects,
and androgen/AR may exert an unexpected role in mac-
rophage polarization.)ese genes were elevated upon R1881
stimulation, whereas RD162, an AR signaling blocker,
partially restored the initial expression.)e reconstitution of
androgen (DHT, dihydrotestosterone) also significantly
increased the relative percentage of CD163+CD206+ double-
positive in MDMs. )e M2-promoting effect of DHT was
just specific for macrophages via AR-binding sites that were
most prominently found in intronic and distal intergenic
regions. Interestingly, bicalutamide and flutamide reduced
CD163+ macrophage infiltration, while promoting the ex-
pression of pro-inflammatory cytokines (IFN-c, TNF-⍺) in
PCa samples; however, later studies reported contradicting
results [105, 106].

Furthermore, a trend towards fewer TAM markers was
observed in alveolar macrophages lacking AR compared to
AR-proficient macrophages [107]. Some investigators found
that IL-4 initiates AR signaling for M2 differentiation,
supporting AR as an enhancer of TAM differentiation [108].
Indeed, AR expression in macrophages from endogenous
sources is deficient, less than 100 times than in PCa cell lines.
Given that ADT is a systemic treatment, the simple in-
hibition of AR signaling by ADT may be insufficient for
transformation from M2 toward M1 phenotype. Generally,
ADT domesticates the M2-like polarization in a paracrine
pattern by modulating other host cells, including tumor
cells, which are not only limited by blocking the androgen/
AR axis in macrophage-like cells.

3.5.TumorCells. A study indicates that humanmacrophages
undergo certain alterations in the presence of PCa cells,
which is not easily surmounted. Prostate TAMs could be
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reprogrammed through direct contact with PCa cells. Till
date, multiple lines of evidence consistently indicate that
there is a paracrine effect between cancer-derived factors and
recipient macrophages. Yet, these immunomodulatory
mediators certainly warrant investigation into their specific
contributions to macrophage activation.

)e supernatant of PC-3 cells effectively leads to
a change in macrophage profile from M1 into M2 in vitro,
and that shift is mainly associated with IL-10-mediated
STAT3 phosphorylation. Similarly, milk fat globule-EGF
factor 8 (MFG-E8) contained in exosomes from PCa cells
drives an M2-like state by activating the STAT3/SOCS3
pathway [109]. A basic research yields interesting discoveries
that PCa-derived CRAMP firstly chemoattracts immature
myeloid progenitors (IMPs) into the TME and then mod-
ulates their differentiation into the M2-like macrophages.
Molecular mechanisms indicate that CRAMP upregulated
formyl peptide receptor 2 (FPR2) in an autocrine pattern,
thereby inducing STAT3-dependent M-CSF and MCP-1
generation for M2 skewing in CRAMP-enriched TME
[110]. Protein kinase C zeta (PKCζ), a tumor suppressor,
negatively correlates with the abundance of CD206+ mac-
rophages. A co-culture model is used to simulate the
physiological interaction between PCa cells and macro-
phages herein. Silencing of PKCζ in PC-3 and DU145 cell
lines indirectly initiates M2 polarization by mediating the
secretion of critical cytokines, including IL-4 and IL-13
[111]. In addition, the generation of TNF-α/β and M2
macrophages was attenuated in the PC3-shKPNA4 primary
tumor tissues. Comprehensive analysis suggested that TNF
activated by KPNA4 increases TAM gene markers in pri-
mary mouse monocytes, altering the microenvironment for
immune escape [112]. However, another study demon-
strated the positive correlation of TRIB1 with the frequent
presence of CD163+ macrophages in clinical PCa specimens
[113]. Mechanistic dissection revealed that TRIB1 contrib-
uted to the secretion of CXCL2 and IL-8 via IKB-zeta
mediation in tumor cells, followed by an increase in the
M2-like population. Furthermore, enhanced AIRE regulated
by transcription factor Elk-1 in androgen-independent PCa
cells is equipped to polarize peripheral monocytes towards
an M2-like phenotype by modulating IL-6 and PGE se-
cretion [114].

Tumor cells also control the macrophage-activated state
by indirectly influencing/activating peripheral stroma cells
within TME. Macrophage inhibitory cytokine-1 (MIC-1)
production is augmented in prostate cancer cells by
adipocytes-mediated lipolysis and fatty acid release, which
enforces the secretion of IL-6 and IL-8 from periprostatic
CAFs for M2-polarization [115]. Macrophages can undergo
phenotypic transformation via metabolic reprogramming.
Alternatively activated macrophages have been shown to
prefer fatty acid oxidation [116]. Notably, KRASG12D is
generated in tumor cells via autophagy-dependent ferrop-
tosis in the oxidative microenvironment and is subsequently
packaged into exosomes for release. Extracellular KRASG12D
is taken in by macrophages via AGER/RAGE, followed by
M2 activation via STAT3-dependent fatty acid oxidation
[117].

4. The Roles of Macrophages in Tumorigenesis

)e transition from premalignant lesions to adenocarci-
noma is a multistep process. It is commonly accepted that
TAMs, as highly active immune effectors, exhibit either
antitumor or protumor activity, which hinges on tissue-
specific regulation and tumor-developed stage. Chronic
inflammation is an epidemiologic factor for prostate cancer.
In nascent tumors, circulating precursors are recruited to
gather around the inflammatory milieu, and are sub-
sequently differentiated into M1-like macrophages. )ey
secrete stimulatory cytokines activating T effector cells to
eradicate mutant neoplastic cells. Conditional medium
(CM) of M1-polarized macrophages promotes apoptosis of
PC-3 cells and suppresses tumor parameters, including
metastasis and angiogenesis [118]. Nevertheless, a large
number of M1 macrophages can also aggravate in-
flammatory damage in various pathological processes.
Massive M1 activation causes severe cytokine storms and
corresponding mutation accumulation in prostate epithelial
cells via repeated injury, ultimately initiating the carcino-
genic process. Complex and dynamic communication oc-
curs between cancer cells and immune cells. As tumors grow
and spread, the macrophage statue is subverted towards an
antiphlogistic phenotype, representing alternation of the
immune compartments. Advances in cancer research co-
incidentally suggest that M2-macrophages make up the
majority of TAMs, especially in advanced stages of PCa,
which usually correlates with an increased lethal risk
[10, 119, 120]. )e biological roles of TAMs in tumor for-
mation and progression are multifactorial, which will be
reviewed below (Figure 2).

4.1. 3erapeutic Resistance. Endocrine therapy is the pri-
mary treatment for patients with advanced PCa. Nearly all
patients still inevitably progress to advanced CRPC after
about two years, which remains a major clinical challenge,
despite primary symptomatic relief. Our initial efforts fo-
cused on exploring cell-autonomous alteration in CRPC
populations. lncRNA HOXD-AS1 regulates chemo-
resistance of CRPC via WDR5 recruitment [121]. Activation
of MAPK signaling by CXCR7 contributes to enzalutamide
resistance [122].

Multiple studies emphasized that TAMs influence the
clinical response to hormone therapy in vivo. Patients with
TAMs <22/high power field (HPF) assume a better response
to ADT than those with higher numbers of TAMs
(P< 0.001). Currently, we notice that a decrease of M2-like
macrophages mediated initially by androgen deprivation is
transient and appears to reverse with long-term ADT em-
ployment [123]. Castrating tumor-bearing mice triggers an
influx of leukocytes into prostate tumors. )e increased
stained intensity of CD68 and CD163 has been described in
castrated TRAMP mice and radical prostatectomy samples
from ADT-treated patients. SEMA3A was co-expressed with
TAMs and correlated with the progression of CRPC. In-
terestingly, the SEMA3A transcription levels are upregulated
after ADT, which elicits recruitment and M2-like
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polarization of monocytes via NRP1 receptor and promotes
ADT resistance [124].

Critically, results from in vivo and in vitro models
confirm that the emergence of CRPC partially depends on
the production of compensatory growth factors by TAMs.
Macrophages were also demonstrated to stimulate AR
translocation into the nucleus in PCa cells in co-cultures. IL-
1β, primarily generated in the M2-subtype, either mediates
MEKK1 activation or causes TAB2-dependent nuclear re-
ceptor corepressors (N-CoR) dismissal from AR, which
contributes to therapeutic resistance via conversion of AR
antagonists to agonists [125]. Persistent AR activation re-
mains a critical driver in castration resistance. Despite
castrated levels of serum androgens, there is a higher degree
of intra-tumoral androgens in CRPC, nearly the same as
those of eugenic men [126]. Prostate cancer cells express
most steroidogenic enzymes and are therefore capable of
converting cholesterol to androgens. Single-cell RNA se-
quencing analysis shows that this subset of TAMs is char-
acterized by an accumulation of lipids. Clear evidence points
to an appreciable increase in the transcriptional levels of
steroid and bile acid in M2-like TAMs.

BMDMs can express various genes associated with
cholesterol influx/efflux more than the PCa cell lines, in-
cluding Abcg1, CD36, and Scarb1 [127]. )ey could absorb
cholesterol in the form of low-density lipoprotein (LDL) and
transfer particles containing rich cholesterol into neigh-
boring prostate tumor cells, where it acts as a precursor to
enhance androgen biosynthesis for nuclear translocation of
AR [128]. )e BMP-6 secreted by PCa cells induced IL-6
generation in recipient macrophages, and reciprocally, the

AR-transcriptional activity was elicited to avail castration
resistance in CaP cells [129].

Alternatively, PCa progression may arise in the de-
ficiency of a functional AR. As the strategies targeting AR
have become widespread, the incidence of neuroendocrine
prostate cancer (NEPC) has risen substantially, which
manifests with lower AR signaling activity and grows in-
dependently of the androgen. Neuroendocrine differentia-
tion (NED) is an emerging mechanism of resistance to
cancer therapies [130]. NEPC cells themselves acquire the
characteristics of stem cells, while conducing to resistance
acquisition by surrounding tumor cells [19]. IL-6, a pleio-
tropic cytokine, activates the TGF-β/SMAD2 axis and its
downstream p38MAPK to drive NED of PCa cells under
androgen depletion conditions [131]. IL-6 derived from
TAMs also appears competent to upregulate the expression
of parathyroid hormone-related peptide (PTHrP) that is an
indicator of NED, which forms a positive loop and leads to
enhanced NEPC tumorigenesis in vivo [132]. Noteworthily,
sterol regulatory element-binding protein−2 (SREBP-2)
increased tumor-synthetic cholesterol, which can be as-
similated by TAMs via scavenger receptor (SR)-mediated
endocytosis for IL-8 generation [133]. Increasing evidence
suggests that IL-8 can promote the NED of prostate cancer
through activating MAPK/ERK signaling. It is also verified
to attenuate TRAIL-induced apoptosis of PCa cells by
regulating c-FLIP transcription [134].

SPP1 has great significance to M2 polarization and
phenotype maintenance [102]. Single-cell data identifies
SPP1 as a luxuriant TAM-secretary factor under the hypoxic
microenvironment. SPP1 either expands the glycolysis

Figure 2: Tumor-associated macrophages mediate therapeutic resistance, proliferation, metastasis and immune suppression in prostate
cancer. TAMs, tumor-associated macrophages; cat (S) cathepsin; CAML, cancer-associated macrophage-like cell; CTC, circulating tumor
cell; tregs, regulatory T cells; NK, nature killer; MSCs, mesenchymal stem cells.
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program or increases the expression of p-glycoprotein for
multidrug resistance in PCa cells [135]. Since the reciprocal
crosstalk formed by TAMs with tumors, the second-line
treatment like docetaxel combined with prednisonemay also
fail to restrict the aggressiveness of advanced CRPC. With
exposure to docetaxel, the levels of several cytokines secreted
by PCa cells were increased, like CSF-1 and IL-10, thus
counteracting its anti-cancer efficacy [136]. Especially, CSF-
1 stimulates polarization of neighboring macrophages to-
wards an M2-like phenotype that reciprocally releases
CXCL12 to sustain tumor survival via CXCR4 [137].
Meanwhile, TAM-derived CCL5 activates β-catenin/STAT3
signaling and upregulates the transcription factor Nanog,
thus resulting in increased chemoresistance of PCa
[138, 139].

4.2. Proliferation. TAMs can modulate early prostate tu-
morigenesis by promoting genetic instability, independently
of any other carcinogenesis [140]. AR activator CCL-4
generated by M2-polarized macrophages mediates down-
regulation of P53/PTEN in RWPE-1 cells and augments the
production of EMT markers. All prostate disorders are
initially attributed to excessive proliferation of normal
prostate epithelial cells. A 3-D co-culture model reveals that
an elevated proliferative rate of normal prostate PZ-HPV-7
epithelial cells is achieved via activation of ERK and AKT
induced by TAMs-secreted cytokines, like CCL-3, IL-1ra,
and GDNF [25]. In another experiment, immortalized
RWPE-1 cells alone formed well-organized spheroids after
24 days, whereas aggregated into a disorganized structure
when cultured with macrophage-CM. Prostate intra-
epithelial neoplasia (PIN), a precursor lesion, is always the
first step for prostate tumor construction [141]. TAMs are
capable of increasing the percentage of nuclear cyclin D1-
positive PIN cells. Later tests demonstrated that CXCL1,
C5a, and CCL-2 derived by TAMs mainly potentiate PIN-
cell proliferation through activating ERK without impacting
cell apoptosis [142]. High-fat diet (HFD)-accelerated tumor
growth was correlated with the increased M2/M1 ratio and
IL-6 expression in the model mice. In human prostate
cancer, IL-6 secretion was restricted to the prostatic stromal
component, whereas IL-6 was derived mainly by local
macrophages upon HFD stimulation. Higher IL-6 levels
result in prostate cancer progression via STAT3 phos-
phorylation in tumor cells [143]. TAM-released IL-8 was
demonstrated to sufficiently drive prostate tumor formation
by modulating the STAT3/MALAT1 axis [144].

Given that tumor growth requires nutrition, the pro-
angiogenic properties of TAMs are considered as the culprits
of malignant transformation. To support this, a histopath-
ologic study shows that the number of CD163+ macrophages
is positively associated with the micro-vessel density (MVD)
and proliferative Ki67-stained intensity [145]. TIE-2+ TAMs
exhibit a unique angiopoietin receptor with neovascular
capacity. Furthermore, M2-like TAMs secreted epidermal
growth factor (EGF) to actuate neovascularization and
carcinogenesis. )e Smad1-induced IL-1α production of
macrophages is an important mechanism whereby BMP-6

accelerates prostate tumor growth in vivo [146]. IL-1α,
known as pro-angiogenic chemokines, enhances PCa-
associated angiogenesis via IL-1R/CXCL8 [147]. Similarly,
CCN3-mediated M2 phenotype increased VEGF expression
and subsequently triggered endothelial tube formation. A
pre-clinical study observed the elevation of ERα in prostate
tumor mass and cells. It simultaneously demonstrated that
ERα activation initiates downstream oncogenic signaling by
interacting with HIF-1α in the hypoxic milieu [148]. Cho-
lesterol from TAMs also acts as an endogenous ERα agonist
to favor adaptive growth of prostate cancer. Recently, TAM
is also identified as a crucial cellular link in paracrine tumor-
tumor interplay. Consistent with animal experimental re-
sults, high-grade tumors encouraged the rapid growth of
adjacent less-malignant tumors in patients with multifocal
prostate cancer [149]. However, high-metastatic MLL did
not affect low-metastatic AT1 viability in a co-culture sys-
tem, suggesting that direct interactions between tumor cells
were minor. Further analysis shows that soluble factors
derived from an aggressive prostate tumor circulate into the
milieu of distant indolent tumors, where neovascularization
for blood supply markedly increases due to the massive
accumulation of M2-like TAMs.

4.3. Metastasis. In prostate cancer, an increased proportion
of iNOS+ macrophages is observed in organ-confined foci.
In contrast, higher infiltration of CD163+ macrophages is
conducive to extracapsular extension, suggesting M2-type
macrophages can increase PCa-metastatic potential
[50, 119]. IL-4 is responsible for the generation of
macrophage-supplied cathepsin S (Cat S) protease that
heightens the risk of pelvic metastasis in TRAMP mice and
patients with prostate malignancy [150, 151]. Perivascular
Cat S pro-form is activated in an acidic condition, allowing
further E-cadherin degradation during metastatic coloni-
zation of distant organs. Secreted SPP1 remodel extracellular
matrix for prostate cancer invasion [28]. )e interaction of
SPP1-CD44, a cell-surface receptor, is an important para-
crine pattern to regulate tumor metastasis. Single-cell
analysis also suggests that EMT is the biological process
in tumor cells most relevant to SPP1+TAMs [152]. It was
previously established that AR activation directly controlled
the transcription of Triggering Receptor Expressed on
Myeloid cells-1 (TREM-1) and upregulated its downstream
chemokines, such as CCL-3, CCL-4, and CCL-13, which
nonspecifically bind to chemokine receptors to promote the
exfoliation of PCa cells. Immunohistochemical staining
showed that CCR2, CCR3, and CCR4 staining were observed
in primary and metastatic PCa cells on tissue microarrays,
while CCR3 and CCR4 were absent in normal prostate cells
[105]. Also, the elevation of CCL-4 is associated with Snail
upregulation in high-grade PIN and prostate carcinoma
[140].

Paradoxically, ADT increases the probability of distant
metastasis in some PCa patients, although accompanied by
tumor decrease and reduced PSA levels [104]. A clinical trial
shows that 52% of PCa patients develop new bone lesions
after abiraterone treatment for four months, whichmay be at
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least partially explained by increased TAM-secretory cyto-
kines. Inquiringly, targeting AR with siRNA in macrophages
promoted the migration of LNCaP cells in a co-culture
system. Further analysis found that AR silencing induced
CCL-2 elevation and resultant EMTprocess of PCa cells via
CCL2/CCR2/STAT3 signaling [153]. Bone metastasis
commonly occurs in men with recurrent CRPC, leading to
a 5-year survival rate of 25%. M2-like TAMs constitute one-
sixth of the total cells in PCa-resident bone lesions. Flow
cytometry demonstrated that a vast majority of CD163-
positive cells exist in mCRPC tissue obtained from the
first right rib. Double-staining showed that HO-1 is broadly
produced in CD163+ cells, and its expression is higher in
aggressive prostate tumors. HO-1 is found to facilitate iron
delivery and Fe3+ accumulation in tumor cells, whereas
inhibition of HO-1 significantly retards bone-metastases in
other PCa experimental models [154]. Ca2+/calmodulin
(CaM)-dependent protein kinase kinase 2 (CaMKK2) is
selectively expressed in macrophages. It regulates metabolic
responses and manipulates the niche of bone microenvi-
ronment to benefit PCa cells by releasing inflammatory
cytokines [155]. Both CCL-2 and IL-6 secreted from TAMs
are also demonstrated to add a risk of bone metastasis, thus
determining the advanced stage of metastatic prostate tu-
mors [26, 107]. Instead, cancer cell death could lead to tumor
growth and bone destruction, which partially ascribes to
macrophage-efferocytotic capacity. During tumor progres-
sion, chronic inflammation inevitably causes tissue damage
and cell death. Apoptotic/necrotic tumor cells are cleared
and phagocytosed by macrophages, known as efferocytosis.
Efferocytosis is crucial to preserve tissue integrity but may
also have deleterious effects. Compared to M1-like macro-
phages, M2-like macrophages were displayed to be ∼4-fold
more capable of efferocytosis. A study reported that effer-
ocytosis of TAMs induces CXCL5 secretion by activating
NF-κB and STAT3 signaling in vitro, thus accelerating
colonization of disseminated PCa cells and osseous pro-
gression [156]. In the context of cancer, the efferocytotic
function of TAMs could be further enhanced by chemo-
therapies or other targeted therapies. )is amplificatory
effect triggers the secretion of extensive pro-inflammatory
cytokines, like TGF-β and CCL-2, which perpetuates M2
polarization and forms feed-forward loops to exacerbate
skeletal metastasis [56].

)e metastatic process of prostate tumors is accompa-
nied by prominent alteration in the basement membrane
and extracellular matrix (ECM). Much evidence depicts that
intense MMP-9 and IL-1β staining were observed inM2-like
macrophages and tumor cells at the invasive prostate zone.
MMP-9, as a cancer biomarker, participates in ECM deg-
radation and facilitates tumor aggressiveness. Emerging
roles of IL-1β in PCa development have been revealed. IL-1β
activates AR function for enhanced tumor mobility [157].
Besides, a raised level of MIC-1 mediated by IL-1β in serum
contributes to actin reorganization of tumor cells through
activating FAK-RhoA signaling, thus reducing adhesion at
an early stage [158]. PCa cell-derived IL-1β promoted
Marco-dependent lipid accumulation, and reciprocally, the
migratory capacity of tumors was enhanced by CCL6

released by lipid-loaded TAMs [159]. Nowadays, several
studies emphasize that TAM-derived uPA mediates uPAR-
dependent cleavage of the α6β1 integrin (α6pβ1), which
means pericellular laminin proteolysis [33].

Aggressive tumor cells intravasate into the blood vessel,
thus becoming circulating tumor cells (CTCs). Homing to
target organs is only possible when PCa cells survive in the
circulation. Recently, a study reported that TAMs leave
primary sites and attach CTCs in the peripheral blood of PCa
patients, which is called circulating cancer-associated
macrophage-like cells (CAMLs) [160]. Further in-
vestigation shows that contacts with CAMLs induced
epithelial-mesenchymal plasticity and endow CTCs with an
aggressive nanomechanical phenotype that can resist the
shear stress of the bloodstream and advance seed-distant
metastases [161].

4.4. Immune Suppression. )e M1/M2 imbalance skews the
immune response to opposite directions, which weakens
immunological monitoring and helps tumor cells avoid the
lethal attack. Macrophages of M2-like subtype themselves
have poor antigen-presenting nature and allow de-
sensitization of PCa cells to cytotoxicity mediated by nature
killer (NK) cells. Several indirect and direct actions of TAMs
on autologous T lymphocyte number and activation have
been suggested. )e depletion of L-arginine, an essential
nutrient for T cells, is a vital contributor to the immuno-
suppressive TME in patients with cancer. Increased Arg1
expression in M2 macrophages could induce metabolic
starvation of effector T-cell by clearing L-arginine, which
favors the lower frequencies of circulating cytotoxic T cells.
mCRPC lesions, known as “cold” tumors, exhibit poor T-cell
infiltration and functionally inactive T cells. A recent study
illustrated that TAMs either exclude CD8+ T cells from
tumor mass via granulin-induced fibrosis or impair T-cell
activities by inhibiting its-receptor CD3ζchain, thus ag-
gravating the immune evasion to support unchecked neo-
plastic growth [10, 162]. PD-L1 expressed on TAMs also
binds to PD-1 of T cells, and subsequently transmits in-
hibitory signaling into T cells [163]. More significantly,
TAMs phagocytose T cell-superficial anti-PD-1 antibodies
and lower therefore the benefit from immunotherapy [164].
Regulatory T cells (Tregs) control cellular responses to
death-associated stimuli by affecting both innate and
adaptive immunity in the context of cancer. )ey can inhibit
the activation of CD4+, CD8+ T cells, and NK cells via
cytokine generation (IL-10 and TGF-β) or direct cell-cell
contact, thus operating immunosuppressive functions. High
Treg numbers have been described in the peripheral blood
and tumor mass of PCa patients, which is why the vaccine
has a weak antitumor effect [165]. Bioinformatics analysis
points to a positive association of TAMs and Tregs in
number in high-risk score PCa patients [119]. TAMs may
induce Tregs production and cooperate with them to form
a unique niche that elicits tumor progression. Elevated
expression of Axl, MerTK, and Tyro3 receptor kinases ac-
quired in M2 macrophages stimulate the influx of lym-
phocytes and its succedent differentiation into Tregs
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[12, 166]. Strikingly, TAMs assist mesenchymal stem cells
(MSCs) in displaying enhanced immunosuppressive activity
in PCa. IL-1α derived from TAMs induces excessive ex-
pression of TGF-β in MSCs [167]. Likewise, TAMs-released
VEGF restrains the maturation of dendritic cells and in-
creases the proportion of MSCs, thereby influencing the
overall organization of the immune response [168].

5. Promising Strategies for PCa Treatment via
Targeting TAMs

Given the dual roles of TAMs in orchestrating PCa pro-
gression, significant attention has been drawn to tumor
immunotherapy targeting TAMs to disrupt immune toler-
ance. Broadly, current TAM therapeutic strategies pertain to
the following three groups: (1) depleting total TAM count;
(2) reprogrammingM2-like macrophages to the tumoricidal
M1-like phenotype; (3) inhibiting the crosstalk between
TAMs and tumor cells (Figure 3).

5.1.DepletingTotalTAMCount. Lower macrophage count is
considered a better prognostic indicator in PCa biopsy
specimens. A study reported that the incidence of lymph
node and bone metastasis in mice containing PC-3MM2
cells declined after macrophage abrogation induced by
clodronate liposome. Consistent with these findings, mac-
rophage depletion extended survival during ADT [127].
However, this attempt may be unsuccessful in clinical trials,
largely because of severe, off-target side effects. Since its
distinct marks or peripheral atmosphere, selective growth
suppression of M2-subsets aids in prostate tumor regression
and reduces metastatic potential in pre-clinical models.

As mentioned above, AR activation is responsible for
M2-like differentiation. Compared with PTEN+/− mice,
prostate size remarkably decreased in genetic background
mice with macrophage AR knockout (MARKO) and
PTEN+/−, suggesting that AR-deficient macrophages can
attenuate PTEN deficiency–induced prostate carcinogenesis.
A study demonstrates that a selective AR degradation en-
hancer, ASC-J9® negates the pro-survival activity of TAMs
and re-models TME towards an antitumoral immunity,
providing a potential drug target for restraining early PIN
development. Once a neoplasm has started, several ap-
proaches to androgen deprivation, like surgical castration,
reversely modulate the accumulation of M2-polarized
TAMs, which can be undermined by metformin through
inducing COX2/PGE2 downregulation. Against this back-
drop, a rational combination of metformin with ADT was
proposed to augment the durable response in cancer
patients.

Due to the tumor-homing ability of TAMs, chemokine-
chemokine receptor blockers may display potential for
therapeutics in the future. As described previously, RON
overexpression in PCa cells enhances CCL2 production for
macrophage recruitment and RON-overexpressing tumors
alter macrophage state to drive growth under androgen-
deprived conditions. It is therefore plausible that combining
RON inhibition with macrophage depletion promotes

CRPC sensitization to ADT [169]. Coincidentally, anti
CCR2 antagonist could reduce the side effects induced by
ADT, although single antibody targeting CCL2 failed in
a phase II clinical trial [170]. Preclinical evidence suggests
that blocking the CSF1/CSF1R axis effectively prevents the
influx of TAMs and weakens their pro-tumorigenic influ-
ence. Despite having negligible effects on prostate tumor
growth in vitro, the selective CSF1-R inhibitor, PLX3397,
can alone cause a significant reduction of myeloid-derived
suppressor cells (MDSCs) and F4/80+ macrophages in
primary tumor sites. With this concern in mind, PLX3397
may helpfully improve prognosis when combined with other
regimens like docetaxel and irradiation [171]. At the mo-
lecular level, CSF1-R blockade impedes radiotherapy-
induced Arg1, CSF-1, and MMP expression, thus prevent-
ing the acquired resistance mediated by M2-polarized
macrophages [30].

Knock-down of TR4 nuclear receptors suppresses the
macrophage infiltration and consequent malignant invasion
and metastasis by altering the TIMP-1/MMP2/MMP9 sig-
nals, which indicates that developing small molecule in-
hibitors targeting TR4 represents a feasible strategy against
PCa. Notably, the difference between M1 and M2 macro-
phages may be utilized to achieve differentiated strike. Due
to higher expression of CD115 in M2 phenotype than M1
population, trabectedin preferentially reduces the amount of
M2-like macrophages by targeting CD115+ cells to re-
habilitate the bone microenvironment, eventually leading to
lessened tumor burden in the skeleton [172]. Intra-tumoral
invariant natural killer T (iNKT) cells also remodel the
antitumor microenvironment. After iNKT cells are trans-
ferred into PCa-bearing mice, selective killing of M2 mac-
rophages and M1-subtype survival would happen via
cooperative CD1d, CD40, and Fas engagement [173]. Acidic
TME is expected to be exploited for tumor-specific imaging
and therapy. )e increased intra-tumoral pH had no sig-
nificant difference in myeloid cell infiltration, but it cut off
M2-like TAM activation caused by prostate tumors. More
prominently, pH-responsive peptides or pH-sensitive nano-
systems can target-specific acidic milieu rich inmacrophages
to improve the total efficacy. Delivery of STAT6 inhibitor
decorated into a nanocarrier with a pH-sensitive PEG outer
layer that only sheds in the acidic TME diminishes the
number of TAMs in tumor tissues, whereas avoiding reg-
ulation of M2-subpopulation in healthy organs with neutral
pH [174].

5.2. ReprogrammingM2-LikeMacrophages to theTumoricidal
M1-Like Phenotype. Recently, the potential of reprog-
rammed macrophage subsets has been explored. Injection of
M1-derived exosome-mimetic nanovesicles that skews M2
towards an immunocompetent profile resulted in smaller
tumor size in vivo, and potentiated antitumor efficacy of
immune checkpoint inhibitor, like anti-PD-L1 antibody
[175]. Macrophage polarization is not fixed, and domesti-
cating TAMs to reverse their pro-tumoral properties pro-
vides a therapeutic window. Hyperbaric oxygen therapy is
greatly anticipated. It either modifies the hypoxic
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microenvironment via an increased supply of oxygen or
induces ROS over-production, which reduces the number
and activity of M2macrophages [176].)e administration of
zoledronic acid (ZA) boosts the production of )-1 cyto-
kines (IL-12 and poly: C) that re-educated TAMs towards
M1-type to suppress primary tumor growth and sponta-
neous lung metastasis, which has been applied for treating
symptomatic skeletal lesion [177]. TLR agonists, like CpG
ODNs, enhance cellular phagocytosis by repolarizing M2-
M1 macrophages [66]. Likewise, paclitaxel alters the sig-
nature of TAMs into an M1-like profile in a TLR4-
dependent manner, thus disrupting tumor promotion
[178]. Exosomes have recently emerged as attractive natural
nano-sized vesicles for drug delivery, due to their excellent
biocompatibility and potential capacity to express targeting
ligands [179]. )e IFN-c fusion protein was anchored in the
PCa cell–derived exosome to prepare the IFN-c-exosomal
vaccine. Notably, it increases the quantity of M1 macro-
phages and enhances their ability to engulf RM-1 cell-
derived exosomes, thereby clearing the regulatory effects
of the latter. Pharmacological inhibition of cholesterol
metabolism is also beneficial to M2 reprogramming. In the
cellular study, Simvastatin adjusts the M2-M1 phenotypic
transition of murine BMDMs via inhibition of LXR/ABCA1
responsible for cholesterol homeostasis, with TNF-α in-
crease and TGF-β decrease, ultimately overcoming EMT-
induced chemoresistance [180].

However, several successful immunotherapies for PCa
are highly dependent on the preexistence of macrophages in
tumor sites. )e principal effect of an adenoviral vector-
encoding murine IFN-β on PC-3MM2 growth inhibition is
indirectly influencing other host cells of the microenvi-
ronment. At present, repolarization of M2-like TAMs is

regarded as a requirement for carcinostatic activities of IFN-
β. It could induce a detectable increase in iNOS-positive cells
and reduce levels of M2-associated molecules responsible for
angiogenesis and tumor invasion [181]. Virulizin also had
a favorable toxicity profile in various human tumor xeno-
graft models including PCa, whereas whole-body loss of
macrophages compromised its anti-cancer effects. Further
analysis suggested that Virulizin formed a niche in the TME
that attenuated tumor progression by reversing TAMs into
a pro-inflammatory subtype with higher TNF-α levels. More
significantly, Virulizin increases IL-12β production in M1-
like macrophages, thus enhancing NK cells–mediated cy-
totoxicity against PCa [182].

Furthermore, researchers observed that when PCa cells
were present, M1 phenotype could not be fully restored even
with M1-like cytokine stimulation, usually accompanied by
diminished cytotoxicity. )is finding implies that attempts
to repolarize prostate TAMs will be sufficiently effective with
concomitantly destroying adjacent tumor cells [183].

5.3. Inhibiting the Crosstalk between TAMs and Tumor Cells.
Malignant cells readily cooperate with TAMs to aggravate
tumor evolvement by forming a vicious cycle. )e protective
effects of dihydroisotanshinone I (DT) against PCa are just
achieved by targeting their crosstalk via inhibition of the
CCL2/STAT3 axis [184]. )e majority of TAMs infiltrating
PTEN-null PCa usually expressed the CXCR2 receptor;
therefore, pharmacological blockade of the CXCR2 re-
educated TAMs toward a TNFα-releasing pro-
inflammatory phenotype to induce senescence and tumor
inhibition. Meanwhile, it should be noted that the em-
ployment of CXCR2 antagonist needs to take into account

Figure 3: Promising strategies targeting TAMs for prostate cancer therapy. DT, dihydroisotanshinone I; ZA, zoledronic acid; smsDX,
somatostatin derivate; RVD2, resolvin D2.
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the level of PTEN in the tumors, as these tumor cells with
Pten deletion upregulate TNFR1 [185]. TAMs secrete IL-6,
whereas the inhibition of the IL-6/STAT3 axis re-sensitizes
PCa cells to paclitaxel. NF-κB signaling also plays a crucial
role in the action of this paracrine loop. Within the TME,
cytokines derived from TAMs increase the activity of NF-κB
in the neoplastic population, which in turn stimulates
macrophage infiltration via increased CSF-1 to promote
prostate tumorigenesis. However, somatostatin derivate
(smsDX) dramatically counteracts these effects by inhibiting
the NF-κB pathway. In addition, smsDX could dampen PCa-
metastatic potential provoked by M2-like macrophages by
binding with its somatostatin receptor 1/2 (SSRT1/2) [186].
Enjoyably enough, the polarization of THP-1 cells co-
cultured with PC-3 cells is skewed to M1-like macro-
phages upon etoposide treatment, followed by an increase in
etoposide-induced apoptosis of tumor cells [187]. Resolvin
D2 (RVD2) alone has no effects on the proliferation of PCa
cells, whereas attenuating their growth rate in a Transwell
model. Further analysis shows that it diminished excretive
growth factors (VEGFa and EGF) in THP-1 cells, suggesting
that RVD2 exerts cytotoxic functions through intervening by
cell-to-cell wireless communication [67]. S-
nitrosoglutathione (GSNO), an NO donor, impedes
CRPC growth in the murine model. Studies report that the
inhibitive action of GSNO on CRPC is targeting the TME
but is not cell-autonomous. Compared to PBS-treated mice,
GSNO suppressed the generation of various cytokines, es-
pecially M-CSF and BMP-6. As a result, the M1/M2 ratio
was increased. On the other hand, p-ERK-mediated VEGF
in macrophages was inhibited following therapy with
GSNO, indicating a disruptive effect of NO on TAM activity
[188].

)e subcellular mechanism underlying the cholesterol
exchange between tumor cells andmacrophages has yet to be
identified. However, the potent agonist of liver X receptor β
(LXRβ), RGX-104 limits their communication by preventing
cholesterol metabolism.)erefore its application is expected
to extend survival after ADT. A recent report shows statins,
known to decrease systemic cholesterol levels, significantly
improve the benefits of ADT in patients [189]. )ese agents
reduced the availability of circulating cholesterol for in-
gestion by TAMs and its transfer towards neighboring tu-
mor cells during ADT, possibly delaying the onset of CRPC.
Similarly, treatment with PBP10, an inhibitor of lipid
molecule lipoxin A4 (LXA4), abolished the role of PCa cell-
derived LXA4 in M2 phenotype transformation by inhib-
iting METTL3/STAT6 [190].

6. Conclusions and Future Perspectives

In response to certain surrounding stimuli, macrophages are
recruited into the TME and convert into TAMs. It is in-
creasingly clear that such TME preferentially drives mac-
rophages to undergo M2-like polarization, and the altered
macrophages play a vital role in influencing the process of
prostate tumor growth, metastasis, and therapeutic re-
sistance. Since TAMs occupy the large number of intra-
tumorally infiltrating immune cells, more attention would

be paid to develop novel immunotherapies directly targeting
TAMs or their functional mediators for improved treatment
efficacy.

To expedite clinical translation, we need to clarify several
questions in future directions. Which histological types of
patients are suitable for TAM-directed therapy? More evi-
dence indicated that relative contributions of TAM-subtypes
in these populations need to be considered for precision
medicine. Could the patients achieve benefits from long-
term M2-M1 repolarization treatment? More importantly,
which transcription factors are involved in phenotypic re-
versibility? How do epigenetic factors modulate gene profiles
of TAMs, and are they firmly inherited? Unfortunately, the
detailed connection between TAMs and tumor cells has not
been fully determined, which remains informative to pursue.
Furthermore, enhancing our knowledge on the origin and
functions of TAM subsets in the tumor milieu will con-
tribute to tapping TAMs-targeted therapeutic potential to
the full as adjuvant antitumor strategies.
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Background. Reprogramming of lipid metabolism is closely associated with tumor development, serving as a common and critical
metabolic feature that emerges during tumor evolution. Meanwhile, immune cells in the tumor microenvironment also undergo
aberrant lipid metabolism, and altered lipid metabolism also has an impact on the function and status of immune cells, further
promoting malignant biological behavior. Consequently, we focused on lipid metabolism-related genes for constructing a novel
prognostic marker and evaluating immune status in prostate cancer. Methods. Information about prostate cancer patients was
obtained from TCGA and GEO databases. �e NMF algorithm was conducted to identify the molecular subtypes. �e least
absolute shrinkage and selection operator (Lasso) regression analysis was applied to establish a prognostic risk signature.
CIBERSORT algorithm was used to calculate immune cell in�ltration levels in prostate cancer. External clinical validation data
were used to validate the results. Results. Prostate cancer samples were divided into two subtypes according to the NMF algorithm.
A six-gene risk signature (PTGS2, SGPP2, ALB, PLA2G2A, SRD5A2, and SLC2A4) was independent of prognosis and showed
good stability. �ere were signi�cant di�erences between risk groups of patients with respect to the in�ltration of immune cells
and clinical variables. Response to immunotherapy also di�ered between di�erent risk groups. Furthermore, the mRNA ex-
pression levels of the signature genes were veri�ed in tissue samples by qRT-PCR.Conclusion. We constructed a six-gene signature
with lipid metabolism in prostate cancer to e�ectively predict prognosis and re¡ect immune microenvironment status.

1. Introduction

Prostate cancer (PCa) has become the second most common
malignant tumor in men worldwide in terms of incidence
and mortality, which seriously endangers men’s health [1].
PCa is the most diagnosed cancer in men in more than half
of the countries in the world, especially in developed
countries and regions [2]. A large number of epidemio-
logical studies have been conducted to con�rm that age, race,
and family genetic history are recognized risk factors [3]. In
particular, along with the change in people’s lifestyle and diet
habits, obesity and the consequent disorder of blood lipid
levels have been noticed. High-calorie food and saturated

animal fat intake are associated with increased PCa in-
cidence [4, 5].

Lipids, as important active molecules in cellular life
activities, play an important role in adaptive changes in
cancer cell metabolism [6]. Altered lipid metabolism is one
of the most signi�cant metabolic changes in tumorigenesis.
Enhanced lipid synthesis or uptake contributes to the rapid
growth of cancer cells and tumor formation [7, 8]. Lipids are
a highly complex class of biomolecules that not only form
the structural basis of biological membranes but also act as
signaling molecules and energy sources. Although most
somatic cells derive their lipids from food sources or hepatic
synthesis, various cancers reactivate fatty acids (FA)
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synthesis from scratch, making them more independent of
externally supplied lipids [9]. Consequently, blocking lipid
supply might have a significant impact on bioenergetics,
membrane biosynthesis, and intracellular signaling pro-
cesses in cancer cells. In addition, altered lipid effectiveness
would also affect cancer cell migration, induction of angio-
genesis, metabolic symbiosis, evasion of immune surveillance,
and cancer drug resistance [10, 11]. However, targeting this
aspect of cancer cell metabolism remains challenging given the
complexity of cellular lipid species and the dynamic nature of
their synthesis, remodeling, and catabolism.

Currently, immune cells in the tumor microenviron-
ment (TME) also undergo lipid reprogramming, which has
a significant impact on T cell function [12, 13]. 1rough
continuous exploration and in-depth analysis, there are
many new advances in the understanding of the complexity
of lipid metabolism in different tumor immune cells, and the
molecular mechanisms of lipid metabolism on cell function
[14]. Targeting genes and enzymes related to tumor and
immune lipid metabolism may have different effects on
cancer prevention and treatment [15]. 1erefore, abnormal
lipid metabolism and tumor immunity are gaining wide-
spread attention and enthusiasm from researchers.

In this study, the expression of lipid metabolism-related
genes in PCa was examined in order to recognize hub genes
that are predictive of patient outcome and immune mi-
croenvironment status. We constructed and validated a six-
gene signature that accurately predicts PCa patient prog-
nosis, along with immune infiltration cell patterns. Clinical
application of this prognostic signature may be possible and
reflects the immune status of PCa patients.

2. Materials and Methods

2.1. Data Collection. Human lipid metabolism pathways
were downloaded from the Molecular Signature Database
(MSigDB) [16], and 776 genes (Supplementary Table S1) were
obtained from six lipidmetabolism pathways (Supplementary
Table S2). PCa samples and corresponding clinicopatholog-
ical information were obtained from TCGA database and
GEO database (GSE116918). 1e sample information in
TCGA dataset was shown in Supplementary Table S3.

2.2. Molecular Subtype Identification. A total of 776 genes
from TCGA dataset were extracted and genes with sig-
nificant differential expression were selected. PCa samples
were clustered using nonnegative matrix factorization
(NMF) clustering algorithm [17]. We set the number of
clusters k from 2 to 10, and determined the average contour
width of the common member matrix using the R package
“NMF.”

2.3. Gene Set Variation Analysis (GSVA). 1e GSVA en-
richment score of the signaling pathway in each PCa sample
was calculated using the “GSVA” R package. 1e correlation
between the different risk subgroups and clinical variables
was analyzed by the chi-square test. Kaplan–Meier survival

analysis was applied to analyze the difference in progression-
free survival (PFS) between the two subgroups.

2.4. A Comprehensive Analysis of Immune Characteristics.
PCa samples were examined for their immune profiles by
importing their expression data into CIBERSORT and it-
erating 1000 times to estimate the relative proportions of
immune cells. Our results were displayed as a landscape map
showing the proportion of immune cells and clinicopath-
ological factors. An immunophenoscore (IPS) was used to
represent tumor immunogenicity on a scale from 0 to 10.
Higher IPS scores represent increased immunogenicity. 1e
IPS of TCGA patients was obtained from the Cancer
Immunome Atlas (TCIA) (https://tcia.at/home).

2.5. Clinical Patients and Prostate Specimens. Sixty paired
normal and tumor tissues were collected from PCa patients
who underwent surgery at the Second Affiliated Hospital of
Anhui Medical University (Hefei, China). 1ey had di-
agnostic criteria according to the WHO classification and
received no preoperative treatment. Informed consent was
obtained from each patient before inclusion in the study, and
ethical approval was obtained from the Ethics Committee of
the Second Affiliated Hospital of Anhui Medical University.

2.6. RNA Extraction and qRT-PCR. TRIzol (Invitrogen,
USA) was used to extract the total RNA. qRT-PCR was
conducted based on the manufacturer’s instruction.
GAPDH was an internal control. Fold-changes were cal-
culated by the 2−ΔΔCt method. Primer information is shown
in Supplementary Table S4.

2.7. Statistical Analysis. Bioinformatic analyses were con-
ducted using R version 4.1.1. For comparing continuous
data, Student’s t or Wilcoxon test were used. 1e chi-square
test and Fisher test were used for comparing clinical and
pathological parameters. Spearman correlation analysis was
used to analyze the correction between the risk signature and
immune cells. All statistical p-values were two-sided and
p< 0.05 was considered statistically significant.

3. Results

3.1. Different Subtypes Were Classified Based on Lipid
Metabolism-Related Genes. Six lipid metabolism-related
gene sets were selected from MSigDB. 1e gene expres-
sion of PCa was investigated using RNA-seq data from
TCGA prostate cancer cohort (TCGA-PRAD). To identify
genes with differential expression, the “limma” R package
was used. 1e differential expression of 56 lipid metabolism-
related genes were found on PCa (p< 0.05, Figure 1(a),
Supplementary Table S5). After that, PCa samples were
clustered by the NMF method. Cophenetic, dispersion, and
silhouette all indicate that k� 2 is an optimal number of
clusters (Figures 1(b) and 1(c)). PFS prognostic relationships
between Cluster 1 (C1) and Cluster 2 (C2) show that
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subgroup C1 has a better prognosis than subgroup C2
(Figure 1(d), log-rank p< 0.001).

3.2. Establishment of the Prognostic RiskModel. To screen for
significant genes associated with prognosis in TCGA-PRAD
cohort, we performed a Cox proportional hazard analysis.

On the basis of a p-value of less than 0.05, 11 genes showed
significant prognostic differences (Supplementary Table S6).
In order to develop a highly accurate prognostic model and
to narrow the list of genes, Lasso regression analysis was
used to identify hub genes (Figures 2(a) and 2(b)). Com-
bining the analysis, six target genes were selected. 1e six-
gene signature formula was as follows: Risk
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score� expression level of PTGS2× (−0.033) + expression
level of SGPP2× (0.188) + expression level of ALB×

(0.149) + expression level of PLA2G2A× (−0.045) + ex-
pression level of SRD5A2× (−0.229) + expression level of
SLC2A4× (−0.035). PCA plot analysis demonstrated that
samples in two risk groups were distributed in two directions
with the six genes in our risk model compared with lipid
metabolism-related gens (Figures 2(c) and 2(d)). 1e K-M
curves for the two subgroups of the risk score were shown in

Figure 2(e), and there was a significant difference between
them (p< 0.001). We then used the same coefficients in
GSE116918 as an independent validation cohort and sig-
nificantly different results were observed (Figure 2(f),
p � 0.029). 1e area under the curve (AUC) values for 1, 3,
and 5 years, respectively, were 0.588, 0.737, and 0.764
(Figure 2(g)). Furthermore, we compared the 5-year ROC
curve with some clinicopathological variables. We found
that the risk model exhibited satisfactory prognostic
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accuracy with regards to age, biochemical recurrence,
clinical T stage, Gleason score, pathological N stage, and
pathological Tstage (Figure 2(h)). Gene Expression Profiling
Interactive Analysis (GEPIA) database was applied to an-
alyze the associations between the six signature genes and
PFS in PCa [18]. Low expressions level of PLA2G2A,
SRD5A2, and SLC2A4 as well as high expression level of
ALB were closely correlated with poorer survival outcomes
of PCa patients (Figure 3).

3.3. Independent Prognostic Analysis and Construction of the
Nomogram. Univariate Cox regression analysis indicated
that biochemical recurrence, clinical T stage, Gleason score,
pathological N stage, pathological T stage. and risk were
closely related to PFS (Figure 4(a)). According to multi-
variate analysis, only biochemical recurrence (HR� 5.059,
95% CI� [2.831–9.041], p< 0.001), clinical T stage
(HR� 1.546, 95% CI� [1.051–2.275], p � 0.027), and risk
score (HR� 2.475, 95% CI� [1.540–3.977], p< 0.001) were
significantly related to PFS (Figure 4(b)). 1ese results
demonstrated that this six-gene signature was an in-
dependent factor predicting prognosis. 1e clinicopatho-
logical features and risk were combined to construct
a nomogram to assess the clinical utility of the prognostic
model (Figure 4(c)). Moreover, the nomogram displayed the

highest accuracy in predicting survival (AUC� 0.843)
compared with other independent factors (Figure 4(d)).

3.4. Association between the Risk Model with Clinical
Characteristics. Correlation analysis of the risk score and
clinical variables such as biochemical recurrence, clinical T
stage, Gleason score, pathological N stage, and pathological
T stage indicated a statistically significant association (Fig-
ures 5(a)–5(f)). Based on the risk score, PCa patients can
also be distinguished by age, clinical T stage, pathologic T
stage, and N stage (Supplementary Figure S1). In addition,
GSVA further confirmed that a high-risk subgroup was
significantly enriched in porphyrin and chlorophyll meta-
bolism and pyrimidine metabolism (Figure 5(g)).

3.5. Correlation between the RiskModel and Immunity. A 33
diverse cancer immune subtype classification has described
the immune landscape of PCa according to the immune
expression characteristics of four representative signatures:
C1 (wound healing), C2 (IFN-c dominant), C3 (in-
flammatory), and C4 (lymphocyte depleted) [19]. We found
that a higher proportion of C1, C2, and C4 was distributed in
the high-risk subgroup, while a higher proportion of C3 in
the low-risk subgroup (p � 0.001, chi-square test;
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Figure 3: GEPIA survival analysis of PTGS2, SGPP2, ALB, PLA2G2A, SRD5A2, and SLC2A4.
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Figure 6(a)). CIBERSORT was applied to evaluate the rel-
ative proportions of 22 kinds of immune cells in the TME to
examine the indicative roles of this risk model [20]. A
significant correlation was found between high-risk sub-
groups and CD4 memory-activated T cells, regulatory
T cells (Tregs), M0 macrophages, and M1 macrophages,
while the low-risk subgroup was significantly associated
with monocytes and mast resting cells (Figure 6(b)).
Figure 6(c) illustrated the relationship between clinical and
immunological characteristics of different subgroups
at risk.

As well, we investigated the potential of the risk model
for predicting the response to immune checkpoint inhibitors
(ICIs). 1e expression of PD-1, PD-L1, LAG3, and CD40
was markedly higher in the low-risk subgroup, indicating
a negative correlation with risk (Figures 7(b)–7(h)). A
quantification of enrichment scores of immune-related
pathways was also performed. Antigen presentation func-
tions, such as APC co-inhibition, CCR, and HLA, tended to
favor the low-risk group (Figure 7(a)).

3.6. Role of the Risk Signature in Immunotherapeutic
Responses. Next, the ESTIMATE algorithm was used to
investigate the correlation between the two groups in immune
scores and stromal scores [21]. We found that the low-risk
subgroup showed higher immune scores, stromal scores, and
estimate scores than the high-risk subgroup (Figure 8(a)).
1ese results further demonstrate that the risk model can
affect the immune activity of the TME in PCa. For in-
vestigating the capacity of risk predicting response to im-
munotherapeutic, immunophenogram analysis was
undertaken to investigate the association between immu-
nophenoscore (IPS) and different risk subgroups [22].
Findings showed that the low-risk subgroup exhibited higher
IPS compared with the high-risk subgroup, which implied
that low-risk score patients exhibited a higher positive re-
sponse to immunotherapy (Figures 8(b)–8(e)). Chemother-
apy is an effective strategy for cancer treatment. We further
analyzed the correlation between risk score and chemo-
therapeutic efficacy.We found that the low-risk subgroup was
positively associated with a lower IC50 of Docetaxel,
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Bleomycin, and Trametinb, while a higher IC50 of 5-
Fluorouracil and Mitomycin C, indicating a different dis-
tribution of targeted IC50 agents in low- and high-risk
subgroups (Figures 8(f)–8(j)).

3.7. Clinical Validation of this Risk Model. In addition to the
above results, 60 cases of tissue specimens of PCa were ana-
lyzed. We verified the mRNA expression of three signature
genes in cancer and normal tissues by qRT-PCR. 1e findings
also showed that themRNA expression of SGPP2was higher in
tumor tissues, whereas the mRNA expression of SRD5A2 was
higher in normal tissues (Figure 9).1ese results confirmed the
significant role of these genes in PCa. 1e workflow of the
present study was shown in Supplementary Figure S2.

4. Discussion

PCa is becoming a growing problem among men
worldwide. Its treatment is mainly divided into endocrine
therapy and surgery [23]. For patients with advanced PCa,

androgen resistance usually occurs, resulting in
castration-resistant prostate cancer (CRPC), which se-
verely affects the life expectancy and quality of patients
[24]. Additionally, its tendency to invade surrounding
tissues and cause local adhesion greatly increases the
difficulty of surgery [25]. Hence, studies are continuously
conducted to address the progression and aggressiveness
of PCa in order to explain the pathogenesis and explore
new therapeutic targets.

In terms of metabolic studies, PCa has remarkable
heterogeneity. On the one hand, its metabolic pattern is
different from other tumors, and on the other hand, its own
metabolic form has significant phenotypic changes as the
disease progresses [26, 27]. It has been clearly suggested that
in prostate malignancy cells, β-oxidation of FA becomes one
of the most important forms of energy supply [28]. Lipid
accumulation and disorders of lipid metabolism in PCa cells
increase the pathological process, CRPC, and aggressiveness
[29]. Further understanding of the energy metabolism of
PCa will enable us to design and find better drugs to prevent
the development of CRPC.
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Alterations in lipid metabolism affect a variety of cellular
functions, which in turn affect downstream signaling
pathways, associated with cell proliferation, adhesion, and
motility.1ese alterations in the tumor can be closely related
to enhanced oncogene signaling pathways and alterations in
related metabolic enzymes. Moreover, the interaction be-
tween parenchyma and mesenchyme in the malignant de-
velopment of tumor continuously remodels TME, and
a unique tumor-associated lipid microenvironment gradu-
ally forms around it, which can have complex interactions
with tumor cells through bioactive molecules such as hor-
mones and adipokines [30, 31].

Lipidmetabolism reprogramming can significantly affect
immune cell fate and function. Under normal conditions,
FA synthesis and uptake are key features of effector T cells.
To survive in a hostile environment, immune cells undergo
metabolic reprogramming, using FA as a secondary resupply
station for energy [32]. FA catabolism also improves CD8+
T cell function through alternative pathways [33]. 1e
normal function of immune cells is dependent on cholesterol
and membrane cholesterol levels control the number of
T cell receptor nanoclusters and affect their immune rec-
ognition function. Hossain et al. found that increased FA
uptake and oxidation in tumor-infiltrated MDSC were

0.00017
2

0

−2

−4

0

−2

−4

M
ito

m
yc

in
 C

 se
ns

tiv
ity

 (I
C5

0)
M

ito
m

yc
in

 C
 se

ns
tiv

ity
 (I

C5
0)

−10 −0.5 0.0

Risk score

0.5

low high

Risk

low

high

Risk

R = −0.16, p = 0.00026

(i)

0.0001
5

0

−5

0

−5

Tr
am

et
in

ib
 se

ns
tiv

ity
 (I

C5
0)

Tr
am

et
in

ib
 se

ns
tiv

ity
 (I

C5
0)

−10 −0.5 0.0

Risk score

0.5

low high

Risk

low

high

Risk

R = 0.21, p = 6.7e−06

(j)

Figure 8: Role of the risk signature in immunotherapeutic responses. (a) ESTIMATE algorithm was used to investigate the correlation
between the two groups in immune scores and stromal scores. (b)–(e) 1e correlation between immunophenoscore and different risk
groups. Low-risk subgroup was positively correlated with a lower IC50 of Docetaxel (f ), Bleomycin (g), and Trametinb (j), while a higher
IC50 of 5-Fluorouracil (h) and Mitomycin C (i). ∗∗p< 0.01, ∗∗∗p< 0.001, ns p> 0.05.
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Figure 9: Clinical validation of this risk model. qRT-PCR analysis of SGPP2, SRD5A2, and PTGS2 mRNA levels in tissue samples (a)–(c).
∗p< 0.05, ∗∗p< 0.01, ns p> 0.05.
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accompanied by increased oxygen consumption rates and
mitochondrial mass [34]. 1ere is a potential impact of
altered lipid metabolism in tumor immunity on natural
killer T cell (NKT) nondependent and dependent immune
function [35]. Both the M1 and M2 phenotypes of mac-
rophages are dependent on specific lipid mediators [36].

1e present study identified two subtypes of PCa based
on genes that were associated with lipid metabolism using
the NMF algorithm. Next, Lasso regression analysis was
performed to construct a six-gene prognostic risk model.
According to our study, this model performed well in
predicting survival in PCa patients and correlated with both
clinical features and immune microenvironment. 1e risk
model was established with PTGS2, SGPP2, ALB, PLA2G2A,
SRD5A2, and SLC2A4. Based on the corresponding co-
efficients, a risk score was calculated. Samples were grouped
according to their risk levels. Discrepancies between the
survival analyses for different risk subgroups were signifi-
cant. Additionally, we found that the risk score was an
independent factor for survival. CIBERSORTconfirmed that
patients in the high-risk subgroup had higher proportions of
CD4 memory-activated T cells, regulatory T cells, M0
macrophages, and M1 macrophages, while monocytes and
mast resting cells were upregulated in the low-risk group,
suggesting different patterns of infiltration among the
subgroups. We also demonstrated that the low-risk sub-
group was correlated with immune checkpoints such as PD-
1, PD-L1, CD40, and LAG3, indicating that patients with
different risks respond differently to immunotherapy and
low-risk patients may have a better response to immuno-
therapy. Next, we further validated the expression of the risk
signature genes in PCa tissue specimens. 1e qRT-PCR
results suggested that the expression of SGPP2 was signif-
icantly elevated in tumor tissue specimens, while the ex-
pression of SRD5A2 was significantly increased in normal
tissue. Comparison with other relevant published studies, we
comprehensive analysis and explanation of the association
between the lipid metabolism-related genes with the im-
mune microenvironment and the prognosis of PCa. We
revealed the role of lipid metabolism-related genes in PCa
and validated the target genes in clinical samples. Never-
theless, the specific biological functions of these genes in PCa
need to be further explored.

Reprogramming of lipid metabolism is a prevalent and
crucial metabolic feature that emerges during tumor evo-
lution, allowing them to survive and further evolve in
a hostile environment [37]. 1rough extensive exploration
of aberrant lipid metabolism and tumor immunity, new
breakthroughs have beenmade in the discovery of molecular
mechanisms and metabolic adaptations, generating signif-
icant changes in antitumor therapeutic strategies [38].
Consequently, we sought to fill the gap between lipid
metabolism gene status and PCa prognosis prediction. We
believe these genes were involved in lipid metabolism
processes, and this model may serve as a prognostic bio-
marker for PCa and immune microenvironment evaluation.

In conclusion, we constructed a six-gene signature as-
sociated with lipid metabolism, which was an independent
prognostic factor in PCa. 1is six-gene signature could be

recognized as a prognostic marker to reflect the lipid
metabolism and immunity status of PCa.
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