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In the article titled “$e Bridge between Screening and
Assessment: Establishment and Application of Online
Screening Platform for Food Risk Substances” [1], the
Authors’ Contributions statement was omitted. $e Au-
thors’ Contributions statement is given below.

Authors’ Contributions

Ding Hong, Cao Jin, Hu Kang, and Jin Shaoming jointly
studied and formulated research ideas, technical solutions,
and verification implementation. Kang Hu and Shaoming
Jin contributed equally. Shaoming Jin was responsible for
the collection, provision, and verification of experimental
data. Kang Hu generated the Online Screening Platform and
realized the function of computer software. Hong Ding was
responsible for the overall work of the subject research. Jin
Cao was responsible for the technical audit related to the
laboratory. Kang Hu and Shaoming Jin wrote and prepared
the original draft. Hong Ding and Jin Cao completed the
review of the paper for publication.

References

[1] K. Hu, S. Jin, H. Ding, and J. Cao, “$e Bridge between
Screening and Assessment: Establishment and Application of
Online screening Platform for Food Risk Substances,” Journal
of Food Quality, vol. 2021, Article ID 2275471, 9 pages, 2021.

Hindawi
Journal of Food Quality
Volume 2022, Article ID 9849353, 1 page
https://doi.org/10.1155/2022/9849353

mailto:dinghong@nifdc.org.cn
mailto:caojin@nifdc.org.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9849353


Research Article
Accurate Determination, Matrix Effect Estimation, and
Uncertainty Evaluation of Three Sulfonamides in Milk by Isotope
Dilution Liquid Chromatography-Tandem Mass Spectrometry

Chaonan Han ,1,2 Xiuqin Li ,1 Hui Jiao ,1 Yan Gao ,1 and Qinghe Zhang 1

1Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
2Heilongjiang Green Food Science Research Institute, Harbin 150000, China

Correspondence should be addressed to Yan Gao; gaoyan@nim.ac.cn and Qinghe Zhang; zhangqh@nim.ac.cn

Received 11 June 2021; Revised 15 August 2021; Accepted 9 September 2021; Published 29 September 2021

Academic Editor: Wei Chen

Copyright © 2021 ChaonanHan et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the most commonly used method for sulfonamide deter-
mination. Its accuracy, however, can be affected by many factors. In this study, sulfadiazine (SDZ), sulfadimidine (SMZ), and
sulfadimethoxine (SDM) in milk were selected to investigate an accurate determination method and the potential influencing
factors in the use of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Milk samples
were extracted by 25mL perchloric acid solution (pH� 2) and cleaned up using HLB solid-phase extraction (SPE) cartridges. Four
kinds of filters, including PTFE, GHP, nylon, and glass fiber, were compared, and PTFE was selected since it had the best
recoveries of target sulfonamides (SAs). ,ree quantitative methods, including external standard (ES), matrix matching (MM),
and isotope dilution mass spectrometry (IDMS), were compared, among which IDMS exhibited the best accuracy. ,e matrix
effect under different mobile phase compositions and of different sample matrices were evaluated and discussed. Ion suppression
effects were observed during the determination of all SAs, which got stronger with the increase of the methanol composition
percent in the mobile phase. After correction by IDMS, the matrix effect could be neglected. Matrix spiked recoveries at three
spiked levels (1 μg/kg, 10 μg/kg, and 20 μg/kg) ranged from 96.8% to 103.8% by IDMS.,e expanded relative uncertainties were in
the range of 2.02% to 5.75%. ,e method exhibited wide application range, high accuracy, good stability, and high sensitivity.

1. Introduction

Sulfonamides (SAs) are a kind of generic, highly effective,
low-toxicity, and low-cost antibacterial agents [1].,e use of
SAs as antibacterial synergist can expand the scope and
enhance the activity of antibacterial. ,erefore, SAs are
widely used in milk production for the prevention and
treatment of bacterial diseases. However, due to the potential
toxicity, excessive intake of SAs may lead to human diseases,
such as urinary system damage, digestive disorders, vom-
iting diarrhea, hemolytic anemia, drug-resistant strains,
human immunity reduction, and tumor tendency [2, 3].

,erefore, many countries and regions have issued regu-
lations on maximum residue limits (MRL) for SAs in food and
feed. It is stipulated in the International Codex Alimentarius

Commission (CAC) that the total amount of SAs in food and
feed shall not exceed 100μg/kg [4]. ,e United Nations Food
and Agriculture Organization (FAO) stipulates a residue limit
for SAs in animal food at 100ng/mL [5]. According to the
European Union (EU) regulation, single SAs concentration in
milk and meat should not exceed 25μg/kg, and the total
amount should not exceed 100μg/kg [6]; China’s Ministry of
Agriculture and Rural Affairs stipulates that the total con-
centration of SAs in milk should be lower than 100ng/mL, and
the MRL of sulfamethazine is 25μg/L [7].

At present, the detectionmethods of SAs residues mainly
include microbial detection [8], fluorescence spectropho-
tometry [9], immunoassay [10], and high-performance
liquid chromatography coupled mass spectrometry (HPLC-
MS). However, the sensitivity and selectivity were limited.
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Liquid chromatography coupled to tandem mass spec-
trometry (LC-MS/MS) [11, 12] is a highly sensitive, specific,
and reliable tool for contaminants detection in food and has
become the most universal approach for multianalyte
analysis. It is applied in an expanding field of food analysis,
particularly in multiresidue detection [13, 14]. However, the
complex food matrix (such as carbohydrates, proteins, or
fats) can induce ion suppression or enhancement of the
target analytes, which may hamper the accuracy of mass
spectrometric quantification [15–18]. Matrix effect (ME)
cannot be neglected in LC-MS/MS analysis, which makes the
extraction and clean-up processes challenging [19–22].
Strategies have been developed to minimize or eliminate the
MEs, such as improving chromatographic selectivity to
avoid coelution, mobile phase modifiers, dilution, and ef-
ficient clean-up [23–25]. Although these approaches were
claimed to be effective for chosen mode analytes, there are
inherent drawbacks for further extension [26, 27]. With
identical chemical and chromatographic properties com-
pared with the target compound, isotope labeled internal
standards can compensate for matrix effects. ,erefore, the
isotope dilution mass spectrometry (IDMS) method exhibits
high accuracy and repeatability for the quantitative analysis
of organic compounds in complex matrices, which could
overcome the difficulty in the correction of recovery and the
influence of inject volume, mobile phase, and instrument
fluctuation during the sample detection [28–34].

,e accuracy and reliability of the method are crucial in
veterinary drugs analysis. In this study, three kinds of SAs
with different polarities, SDZ (pKow� 0.34), SMZ
(pKow� −0.76), and SDM (pKow� −1.17) (pKow obtained
from KowWin software), were selected. ,e experimental
conditions were optimized and discussed thoroughly. ,e
extraction and clean-up methods were optimized. Four
kinds of filters were compared. ,ree quantitative methods,
external standard (ES), matrix matching (MM), and isotope
dilution mass spectrometry (IDMS), were compared. Matrix
effects were evaluated, and the potential influencing factors
were discussed. Moreover, the uncertainty of the method
was estimated. ,e developed method was validated for
accuracy and precision through the matrix spiked experi-
ment, intra-/interday variation, limits of detection (LOD),
limits of quantification (LOQ), linearity, and uncertainties.

2. Materials and Methods

2.1.Materials andReagents. ,e certified reference materials
(CRMs) of sulfadiazine (SDZ; GBW (E) 081146), sulfadi-
midine (SMZ; GBW (E) 081145), and sulfadimethoxine
(SDM; GBW (E) 061416) were obtained from the National
Institute of Metrology, China (Beijing, China). ,e isotope
standards (13C6-sulfadiazine, 13C6-sulfadimidine, and 13C6-
sulfadimethoxine) were purchased from TRC (Toronto,
Canada). Formic acid, methanol, and water (HPLC-MS
grade) were purchased from ,ermo Fisher Scientific
(Waltham, MA, USA). Perchloric acid (analytical grade) was
purchased from XiYa chemical reagents company (Shanxi,
China). Oasis® HLB SPE cartridges (6 cc, 150mg) were
purchased from Waters (Milford, MA, USA).

Stock solutions were made for individual sulfonamides
at the concentration of 1000 μg/kg in methanol and stored
away from light at 4°C. For linearity studies, the samples
were freshly prepared using appropriate dilution of the stock
solution with initial LC mobile phase (methanol-water; 15 :
85; v : v, containing 0.2% formic acid). Standard solutions of
three sulfonamides mixture were prepared in the range of 0.1
to 50 μg/kg with isotopic internal standards at 10 μg/kg.
Spiked milk samples were prepared at three concentrations
of 1, 10, and 20 μg/kg, respectively. All standard solutions
were stored in amber glass bottles at 4°C.

2.2. Milk Samples. Skim and whole-fat milk samples of Yili
(China), Arla (Germany), and LVLINB (Austria) were
purchased from supermarket. ,e nutrient contents of milk
are shown in Table S1.

2.3. Sample Preparation. A previously homogenized milk
sample (1.00 g) was weighed into a 50mL centrifuge tube.
10 ng internal standard (100 ng/g working solutions) was
added. ,en, 25mL perchloric acid solution (pH� 2) was
added to each tube, and the mixture of each tube was vortex-
mixed for 1min and then extracted by ultrasonic for 10min.

HLB solid-phase extraction cartridge (6 cc, 150mg) was
preconditioned with 5mL methanol and 5mL perchloric
acid solution (pH� 2) sequentially at a flow rate of 1mL/
min. ,e extraction solution was gradually loaded to the
HLB cartridge. ,en, the centrifuge tube was washed with
5mL perchloric acid solution and the wash solution was also
loaded to the cartridge. ,e cartridge was washed with 5mL
water and then dried under vacuum for 1min, and the SAs
were eluted with 3mL methanol at a flow rate of 1mL/min.
,e elution liquid was evaporated under a gentle nitrogen
stream at 40°C until the remaining amount was around
200 μL. ,e residual liquid was reconstituted with 1mL
methanol-water (15 : 85; v : v, containing 0.2% formic acid),
vortex-mixed for 1min, and filtered through a 0.22 μmPTFE
filter into a glass LC vial for LC-MS/MS analysis.

2.4. UHPLC-MS/MS Conditions. UHPLC-/MS/MS system,
which consisted of a LC30AD liquid chromatography
(Shimadzu Corp., Japan) and QTRAP 5500 mass spec-
trometry (SCIEX Corp., CA, America), was used for SAs
analysis. ,e separation of SAs was achieved on an Acquity
UPLC CSH™ C18 column (100× 3.0mm, 1.7 μm particle
size; Waters, USA). A gradient LC elution method was
employed by 0.2% formic acid aqueous solution as mobile
phase A and acetonitrile (containing 0.2% formic acid) as
mobile phase B. ,e gradient elution was carried out as
follows: 15% B maintained for 3min; increased to 35% B
linearly in 2min and then increased to 100% B in 4min and
maintained for 1min; changed to 15% B and maintained for
2min.,e injection volume was 5 μL.,e flow rate was set at
0.25mL/min, and the column temperature was set at 38°C.

,e QTRAP 5500 mass spectrometer equipped with an
electrospray ionization (ESI) source was performed in
positive ionization multiple-reaction monitoring (MRM)
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mode. ,e ion source temperature (TEM) was set at 600°C,
and ion spray voltage (IS) was set at 5.5 kV. Ion source gas 1
(GS1) and ion source gas 2 (GS2) were used as the drying
and nebulizer gases at a back pressure of 60 psi and 65 psi,
respectively. Curtain gas (CUR) was 25 psi. N2 was used for
all the gases. Parameters such as declustering potential (DP)
and collision energy (CE) for the analyte are shown in
Table S2.

2.5. Matrix Effect Estimation. ,e ME factors were inves-
tigated by comparing the signal intensity and spiked quality
of matrix-matched standard solution with that of the
standard solution at the same concentrations. If the peak
areas and mass obtained in neat solution standards were set
as A and m and the corresponding peak areas for standards
spiked after extraction into milk extracts as A′ and m′, the
ME factors can be calculated as follows [35]:

ME �
A′/m′
A/m

. (1)

ME factor <1 indicated ion suppression effect and ME
factor >1 indicated ion enhancement effect.

2.6. Validation of the Method. ,e LOD and LOQ were
defined as 3× signal-to-noise ratio (S/N) and 10× S/N, re-
spectively. To determine the linearity of the method, stan-
dard solutions of three sulfonamides mixture were prepared
at the concentration of 0.1, 0.5, 1, 10, 20, and 50 μg/kg with
isotopic internal standards at the concentration of 10 μg/kg.

To evaluate the recovery and precision, blank milk
samples were spiked with three sulfonamides mixture
standard solution at three concentrations of 1, 10, and 20 μg/
kg, respectively. ,e precision was evaluated as intraday and
interday by measuring the corresponding relative standard
deviations (RSDs) at two spiked concentrations (1 μg/kg and
20 μg/kg) on six sequential runs by analyzing six replicates.
Intraday precision (the so-called repeatability) was mea-
sured on a single day, whereas interday precision was
evaluated on six consequent days.

3. Results and Discussion

3.1. Optimization of UHPLC-MS/MS Conditions. Acquity
UPLC CSH™ C18 column (100× 3.0mm, 1.7 μm) and
XTerra MS C18 (100× 2.1mm, 3.5 μm) column were com-
pared under the same experimental condition. ,e results
showed that all compounds can be separated on both col-
umns, and the target compounds had shorter retention time
on XTerra MS C18 column. All the compounds had higher
signal-to-noise ratio values in the Acquity UPLC C18 CSH™
column. Finally, the Acquity UPLC CSH™ C18 column was
selected for the experiment.

Methanol and acetonitrile with different concentrations
of formic acid (0.1% and 0.2%) were compared, respectively.
For methanol and acetonitrile with the same formic acid
concentration (0.1% formic acid), the responses of SDZ and
SDM were about 20% and 5% higher by using methanol,
while the responses of SMZ were similar. ,e response of

SMZ was about 20% higher on using methanol with 0.2%
formic acid than that on using methanol with 0.1% formic
acid. Methanol containing 0.2% formic acid was selected for
the following experiments, as this condition provided the
highest response. ,e chromatography of 3 SAs is illustrated
in Figure S1.

,e optimization of parameters can directly affect the
sensitivity and accuracy of mass spectrometry. To obtain
maximum sensitivity for the identification and detection of the
three sulfonamides, compound-dependent parameters such as
cone voltage and collision energy were optimized by direct
infusion of different standard solutions at 100μg/kg and at a
flow rate of 7μL/min using the built-in syringe pump directly
connected to the interface. Precursor ions and product ions
were determined, and the transition with the best sensitivity
was selected for quantification, whereas an additional transition
was acquired for confirmation (Table S2).

3.2. Optimization of Pretreatment Method. Based on the
national standard method (GB/T 22966-2008), the pre-
treatment method was improved and optimized. During the
experiment, it was found that the filter membrane had a
certain effect on the recovery rates of the analytes, so the
selection of filter membrane was mainly optimized. ,is has
rarely been discussed in previous studies.

Four kinds of filter membranes, including PTFE
(0.45 μm, 25mm), GHP (0.2 μm, 13mm), nylon (0.2 μm,
15mm), and glass fiber (1.0 μm, 15mm) filters, were chosen
to study the adsorption behavior by comparing the absolute
recoveries of standard solution. ,e recovery is shown in
Figure 1.

,e adsorption of target compounds through PTFE filter
was very low, and the recoveries ranged from 98.4% to
100.5%. It was obviously observed that the recovery of SMZ
was only 65.7% after filtering through GHP filter; the re-
coveries of SDZ and SDM were 94.9% and 97.2%, respec-
tively. Nylon filter had apparent adsorption for three SAs,
with the recoveries ranging from 72.1% to 89.6%, and glass
fiber filter recoveries were between 98.0% and 99.2%.
,erefore, the PTFE filter was selected in this study because
it has the lowest adsorption for the target compounds.

3.3. Comparison of Quantitation Methods. ,e choice of
quantitation method had a significant impact on the ac-
curacy of the results. For the three compounds, the quan-
titation methods were compared using the skimmed milk of
Yili under gradient elution conditions as shown in Figure 2.
,e recoveries by external standard method ranged from
17.8% to 61.2%, which were the lowest of all modes, and the
difference between target compounds was large.,e external
standard method was greatly affected by the matrix, having a
serious effect on the accuracy and reliability of the results.
Blank sample matrix was applied to compensate for matrix
effect by using a matrix matching method. Although the
recoveries of matrix matching method ranged from 80.9% to
95.2%, which were better than those of external standard
method, the recovery of individual target compound was still
unsatisfactory. Besides, the ME factors of different milk
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samples might be different, and it was very time-consuming
and difficult to obtain the same blank matrix samples. ,e
recoveries of IDMS method ranged from 99.7% to 100.7%.
Due to similar physical and chemical properties between the
isotope labeled internal standard and the target compound,
their behaviors in the process of pretreatment and instru-
mental analysis were basically consistent, which greatly
reduces the interference of the matrix effect. Moreover, the
quantitative analysis by IDMS method had the lowest de-
viation and the best stability among the three methods.

Recoveries of IDMS method were the best under the two
isocratic conditions and the gradient elution condition (as
shown in Figure S2). Besides, the results of IDMS were
similar under the three elution conditions while the re-
coveries varied by MM and ES, especially ES. ,e results
indicated that IDMS method had a higher accuracy and
better stability than MM and ES, leading to an extensive
range of application. It was one of the most commonly used
methods to detect trace components in complex matrix.

,e quantitation methods for six different milk samples
of skim and whole-fat milk purchased from local market
were also compared. ,e recoveries of six matrix samples
were analyzed by ES, MM, and IDMS, respectively. ,e
results are shown in Table S3. External standard and matrix
matching method were used to calculate the recovery, which
was very unstable and can be greatly affected by the matrix.
,e recovery rates of IDMS method ranged from 96.6% to
102.2%, which can effectively reduce the matrix effect,
exhibiting a high stability and wide applicability. ,e results
indicated that the IDMS method can provide a stable and
reliable method for the detection and analysis of SAs in milk.

3.4. Estimation of Matrix Effects. Although some interfering
components can be eliminated during the extraction, clean-up,
and chromatographic separation process, analytical errors and
inaccurate results still existed due to the interfering substances
in complex matrix. ,e consequences of matrix effect were the
over- or underestimation of the actual concentration of ana-
lytes present in samples, affecting both trueness and precision
of the analytical method. ,e methods used to evaluate the
matrix effects in LC-MS/MS analysis included postcolumn

injection and postextraction addition [16–18, 36]. ,e method
of postextraction addition can quantify the matrix effect, and it
was widely used in the verification procedure.

First, the matrix effects of analytes in different milk
matrix samples were compared (Table 1). ,e results
showed that all compounds showed ion suppression effect
in different milk samples. ,e ME factors for SDZ, SMZ,
and SDM were in the following ranges: from 0.63 to 0.87;
from 0.64 to 0.73; and from 0.18 to 0.30, respectively. ,ere
was a little difference in the matrix effect of different brands
of skim-fat milk or whole-fat milk. However, the ME
factors of skim-fat milk samples were lower than those of
whole-fat milk, which indicated that the ion suppression
effects of skim-fat milk were greater. ,e reason was un-
clear, and it may be related to the composition content in
milk samples.

,e ME factors (Yili skim-fat milk) of the target analytes
at four liquid chromatography elution conditions were
calculated, respectively. As shown in Figure 3, theME factors
of three compounds were lower than 1 under different phase
compositions, which indicated ion suppression effect of
target compounds in all mobile phase conditions. ,e ion
suppression effects of SDZ and SMZ were lower under
gradient condition than isocratic, and the ME factors in
isocratic condition of 50% methanol were minimum. With
the increase of the methanol composition percent in the
mobile phase, the inhibitory effect got stronger, inferring
that coeluting components in thematrix (interferents) under
high methanol composition may get better atomization
effect and higher ionization efficiency. ,e enhancement of
the competitive ion lead to stronger ion suppression effect
on the target compounds. Moreover, there may be more
coeluting matrix with higher methanol composition.

After the correction by isotope labeled internal stan-
dards, the MEs for SDZ, SMZ and SDM were in the fol-
lowing ranges: from 0.937 to 1.001; from 0.973 to 0.999; from
1.006 to 1.021, respectively, indicating that IDMS could
compensate for matrix effect to a large content.

3.5. Uncertainty Evaluation. ,e uncertainty of the ID-
UHPLC-MS/MS analysis was evaluated by the combination
of individual uncertainty including purity of SAs CRMs
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Figure 2: ,e recoveries of compounds in different quantitative
modes with gradient elution.
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Figure 1: Absolute recoveries of filter after filtration of standard
solution (n� 3).
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(urel,p), balance weighing (urel,w; including weighing of
standards and standard solutions, isotope labeled standards
and standard solutions, and milk samples), and the method
precision (urel,rep; s/

�
n

√
).

,e uncertainty from balance weighing referred to
weights of CRMs of pure SAs and isotope labeled SAs,
solvents, standard solutions, milk samples, and isotope la-
beled SAs solutions. ,e uncertainty of balance was eval-
uated as rectangular distribution. ,e standard uncertainty
of balance weighting (ub) is the combination of repeatability
and weighting tolerance.,e sample weighing is obtained by
two times weighing operation, and each weight is an in-
dependent observation.

When a different candidate is weighed for the analysis (wi),
the relative uncertainty is determined by formula (2). ,e
uncertainty from balance weighing urel,w is calculated by
combining all uncertainties from weighing using formula (3):

urel,i �
ub

wi

, (2)

urel,i �

������

􏽐 u
2
rel,i

􏽱

. (3)

,e uncertainty of method precision was in the range of
0.25%–2.46%. ,e combined relative standard uncertainty
(u) was calculated by formula (4). ,e expanded relative
uncertainties (U) with a coverage factor of 2 (k� 2) was
calculated by formula (5):

u �

�����������������

u
2
rel,p + u

2
rel,w + u

2
rel,rep

􏽱

, (4)

U � 2 × u. (5)

,e individual uncertainty, relative uncertainties, and
expanded relative uncertainties of three spiked levels are
listed in Table 2. ,e relative uncertainties of three SAs were

in the range of 1.01% to 2.87%; the expanded relative un-
certainties were in the range of 2.02% to 5.75%.

3.6. Method Validation. Table S4 summarizes the calibration
equations, linearity, correlation coefficient, LOD, and LOQ
with the developed UHPLC-MS/MS method. All studied SAs
presented good linearity in a wide range of concentrations
from 0.1 μg/kg to 50 μg/kg. Correlation coefficients (R2) were
higher than 0.999, suggesting a good linearity of the method.
LOD and LOQ were estimated as 3× S/N and 10× S/N, re-
spectively. LOD ranged from 0.018 μg/kg to 0.075 μg/kg, while
LOQ ranged from 0.029 μg/kg to 0.166 μg/kg. ,e low LOQ
obtained by this method allowed the quantification at con-
centrations lower than the MRL stipulated in current legis-
lation. Recovery was evaluated at three spiked levels (1 μg/kg,
10 μg/kg, and 20 μg/kg), as shown in Table 3. Six replicates of

Table 1: ,e matrix effect factors of the target analytes in six milk samples (n� 3).

Yili Arla LVLINB
Skim Whole Skim Whole Skim Whole

SDZ 0.63 0.81 0.86 0.87 0.83 0.87
SMZ 0.64 0.73 0.67 0.66 0.68 0.70
SDM 0.20 0.24 0.18 0.25 0.18 0.30

Table 2: Estimated individual uncertainty, relative uncertainty (u),
and expanded relative uncertainty (U, k� 2) of three spiked levels
(%).

Spiked levels Uncertainty SDZ SMZ SDM

1 μg/kg (n� 6)

urel,p 2.01 1.00 1.01
urel,w 1.80 1.80 1.80
urel,rep 0.99 0.28 1.00

u 2.87 2.08 2.30
U 5.75 4.16 4.59

10 μg/kg (n� 6)

urel,p 2.01 1.00 1.01
urel,w 0.18 0.18 0.18
urel,rep 0.58 0.26 0.17

u 2.10 1.05 1.04
U 4.20 2.10 2.08

20 μg/kg (n� 6)

urel,p 2.01 1.00 1.01
urel,w 0.09 0.09 0.09
urel,rep 0.42 0.10 0.38

u 2.06 1.01 1.08
U 4.11 2.02 2.16
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Figure 3: ,e matrix effect factors of the target analytes with four kinds of mobile phase elution conditions (n� 3).
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spiked samples at the three concentration levels were pre-
pared. For all compounds, satisfactory recoveries (96.8%–
103.8%) were achieved. Intraday and interday precisions were
evaluated at 1μg/kg and 10 μg/kg spiked levels. For all ana-
lytes, the repeatability RSDs for intraday precision were
within the range of 0.25–2.69% and those of interday pre-
cision were less than 1.40%, indicating that the method was
accurate and precise.,e sensitivity and precision of the three
SAs in this method were better than the Ministry of Agri-
culture Announcement No.781-12-2006 standard [37].

4. Conclusions

An ID-UHPLC-MS/MS method has been developed and
validated for the accurate determination of sulfonamides in
milk. After solid-phase extraction and filtration, the sample
was analyzed by UHPLC-MS/MS system. ,e matrix effects
were evaluated and discussed. ,e results showed that there
were obvious differences in matrix effect with different
mobile phases and different milk matrices. IDMS was used
for the quantitation since it could effectively reduce the
influence of matrix and other factors. ,e optimized method
was fully validated through estimation of recovery, linearity,
LOD/LOQ, and intra-/interday reproducibility, exhibiting
good sensitivity, accuracy, and precision. ,e uncertainty
estimation indicated that the developed method has proper
metrological quality as reference method in not only daily
SAs determination but also value assignment of related
CRMs.
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velopment of matrix effect-free MISPE-UHPLC-MS/MS
method for determination of lovastatin in Pu-erh tea, oyster
mushroom, and red yeast rice,” Journal of Pharmaceutical and
Biomedical Analysis, vol. 140, pp. 367–376, 2017.

[22] P. Yang, J. S. Chang, J. W. Wong et al., “Effect of sample
dilution on matrix effects in pesticide analysis of several
matrices by liquid chromatography-high-resolution mass
spectrometry,” Journal of Agricultural and Food Chemistry,
vol. 63, pp. 5169–5177, 2015.

[23] W. X. Zhu, J. Z. Yang, W. Wei, Y.-f. Liu, and S.-s. Zhang,
“Simultaneous determination of 13 aminoglycoside residues
in foods of animal origin by liquid chromatography-elec-
trospray ionization tandem mass spectrometry with two
consecutive solid-phase extraction steps,” Journal of Chro-
matography A, vol. 1207, pp. 29–37, 2008.

[24] R. Pascoe, J. P. Foley, and A. I. Gusev, “Reduction in matrix-
related signal suppression effects in electrospray ionization

mass spectrometry using on-line two-dimensional liquid
chromatography,” Analytical Chemistry, vol. 73, no. 24,
pp. 6014–6023, 2001.

[25] C. Ferrer, A. Lozano, A. Agüera, A. J. Girón, and
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[27] O. González, M. Van Vliet, C. W. N. Damen,
F. M. van der Kloet, R. J. Vreeken, and T. Hankemeier,
“Matrix effect compensation in small-molecule profiling for
an LC-TOF platform using multicomponent postcolumn
infusion,”Analytical Chemistry, vol. 87, no. 12, pp. 5921–5929,
2015.

[28] E. Pagliano, Z. Mester, and J. Meija, “Calibration graphs in
isotope dilution mass spectrometry,” Analytica Chimica Acta,
vol. 896, pp. 63–67, 2015.

[29] K. Habler, M. Gotthardt, J. Schüler, and M. Rychlik, “Multi-
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“Evaluation of matrix effect in determination of some bio-
flavonoids in al food samples by LC-MS/MS method,”
Talanta, vol. 99, pp. 780–790, 2012.

[37] Ministry of Agriculture and Rural Affairs of the People’s
Republic of China, Ministry of Agriculture Announcement
No.781-12-2006 Standard.

Journal of Food Quality 7



Research Article
TheBridge betweenScreening andAssessment: Establishment and
Application of Online Screening Platform for Food
Risk Substances

Kang Hu , Shaoming Jin , Hong Ding , and Jin Cao

National Institutes for Food and Drug Control, Beijing 100050, China

Correspondence should be addressed to Hong Ding; dinghong@nifdc.org.cn and Jin Cao; caojin@nifdc.org.cn

Received 1 June 2021; Revised 11 August 2021; Accepted 30 August 2021; Published 24 September 2021

Academic Editor: Wei Chen

Copyright © 2021 Kang Hu et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to improve the risk identification ability of the technical support system of food safety supervision, an online screening
platform for food risk substances (hereafter referred to as “platform”) was established.(e platform aims at the qualitative analysis
of unknown compounds and consists of three parts: a standard spectrum library, screening model, and online comparison
module. (e standard library contains the standard spectra of 527 food risk substances by high-performance liquid chroma-
tography/high-resolution mass spectrometry. (e screening comparison algorithm, the core of the screening model, is obtained
through the improvement of the existing spectral library search algorithm. (e inspector uploads the original spectrum file
through the online comparison module; the online comparison module calls the corresponding script to convert the original
spectrum file into a standard spectrum file and then uses the screening and comparison algorithm to achieve online real-time
comparison. (e comparison results are used to determine whether the sample to be tested contains the food risk substances
contained in the standard library, so as to realize the preliminary screening of potential food risk substances. (e platform
supports the spectrogram data format of mainstream instrument manufacturers. (e standard spectrogram database can be
coconstructed and shared by cooperative laboratories to effectively enrich the types of food risk substances. (rough laboratory
comparison, data calibration, and model optimization, the screening accuracy of the platform can reach more than 97%. (e
platform adopts the Internet online screening method, which greatly facilitates the risk investigation and control of national food
safety inspection and testing institutions. At the same time, the construction of the screening platform for food risk substances
based on high-performance liquid chromatography/high-resolution mass spectrometry, the Internet, big data, and other
technologies will provide a new technical means for food safety risk management and control. Hence, it can build a bridge between
the screening of risk substances and illegally added substances, as well as risk assessment, risk management, and control.

1. Introduction

With the development of the market economy and the
improvement of the country’s overall strength, China, the
largest food producer and consumer since 2010 has a
gradually increasing food quality. But because of the large
amount of food consumption and the long food industrial
chain, China has witnessed numerous food safety incidents,
which have aroused widespread concern in society. (e
Chinese government has increased the monitoring of food
risks through a series of policies and measures and has
established a food safety risk management and control

mechanism based on source control, process control, and
end-product monitoring. In the mechanism, a sampling
inspection and risk-screening system have been established
at the technical level.(is greatly improves the ability of food
safety management and control and significantly improves
food safety issues [1].

As the basic and supporting technology of food testing,
instrumental analysis technology has developed rapidly in
recent years. Liquid chromatography (LC) and gas chro-
matography (GC) have excellent performance in the sepa-
ration of compounds. In view of the high selectivity and high
sensitivity of mass spectrometry (MS) in the qualitative and
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quantitative analysis of trace substances, many countries rely
on GC–MS and LC–MS [2–4] and other analytical tech-
niques in the detection and screening of food risk sub-
stances. LC–MS technology has a wide range of analysis, and
it can detect almost all compounds, thus solving the problem
that GC cannot analyze thermally unstable compounds. It
has a strong ability to separate substances, even if the an-
alyzed mixture is not completely separated. It can also
perform qualitative and quantitative analysis through
characteristic ion mass chromatograms to obtain the
structural information and molecular weight of each com-
ponent. (e detection sensitivity is high, and sample de-
tection at the microgram level is possible. (e analysis time
is short, and the detection time of a single sample is generally
less than 15 minutes, which can significantly shorten the
analysis time [5–9]. When using the LC–MS technology to
detect and screen food risk substances, in addition to rel-
evant equipment for detection, it also needs to rely on
professional screening software that includes compound
standard MS databases of compounds and comparison al-
gorithms [10–12]. At present, most of the inspectors in
various countries are limited to professional screening
software provided by various instrument and equipment
manufacturers when carrying out the screening and com-
parison of food risk substances. (e standard MS database
contained in this screening software is not only expensive
but also unable to cover all of them. Screening procedures
for risk substances are cumbersome, and there are various
problems such as the high cost of manpower and material
resources [13, 14]. In the context of the wide variety of
substances at risk for food safety and the lack of professional
network sharing databases, the establishment of a universal
cross-instrument brand high-performance liquid chroma-
tography/high-resolution mass spectrometry sharing
screening software used for quickly screening for risk
substances in food has become amajor subject of research by
food safety regulatory technical support institutions [15–17].

In view of the technical bottlenecks encountered by food
inspection agencies in the screening of food risk substances,
the relevant team of the National Institutes for Food and
Drug Control conducted extensive investigation and re-
search and used integrated technologies such as high-per-
formance liquid chromatography/high-resolution mass
spectrometry, the Internet, and big data [18, 19]. It finally
established a food risk substance screening platform for food
inspectors across the country, which has been officially
launched. (e platform refers to the European Union’s
analytical method guidelines [20], which aim to qualitatively
analyze unknown compounds in mass spectrometry files
from different instrument manufacturers. When carrying
out the screening of food risk substances, the inspectors
preprocess the relevant food samples according to the
screening preprocessing technical standards researched and
formulated by the National Institutes for Food and Drug
Control. High-performance liquid chromatography/high-
resolution mass spectrometry is then used to perform the
detection. After testing, the generated data files are uploaded
to the online comparison module of the screening platform
through the Internet. (e online comparison module calls

the screening model for real-time analysis and comparison
and then sends back the screening results to the inspectors.
(e inspectors refer to the screening results and combine
other information to make comprehensive judgments to
complete the preliminary screening of risky substances.

(e platform can automatically identify the original mass
spectrometry files of instruments from various brand man-
ufacturers and perform a unified data format conversion;
hence, there is no restriction on the brand and version of the
instrument.(e standard library of the platform can be jointly
built and shared by cooperating laboratories, which can ef-
fectively enrich the types of food risk substances in the da-
tabase and has good scalability. (e screening model of the
platform is based on the SS combination algorithm, and the
algorithm has been optimized and improved through a large
number of screening comparison experiments, which effec-
tively guarantee the accuracy and scientific nature of the
screening results given by the platform. (e platform adopts
the Internet online screening method, which is more efficient
than the traditional risk-screening work mode and can greatly
facilitate the risk investigation and control work of food safety
inspection agencies.

2. Materials and Methods

(e platform consists of three parts: a standard spectrum
library, screening model, and online result comparison
module. (e standard spectrum library serves as the un-
derlying basic database for risk screening. (e screening
model is used for screening and comparing the risk sub-
stances.(e online result comparisonmodule allows users to
upload spectrometry files and obtain screening results in real
time. Java language is used in the page development of the
platform, and the mainstream technologies such as
SpringBoot (https://spring.io/projects/spring-boot) and
jQuery (https://jquery.com/) are applied. (e underlying
model is developed through Python, mainly using third-
party libraries such as pymzML and Pandas [21].

2.1. Standard Spectrum Library. (e platform builds a
standard spectrum library based on high-resolution MS data
for 527 banned and restricted compounds found in food
matrixes [22, 23]. At present, the spectrum library mainly
integrates the standard spectral data of Agilent brand in-
struments, which mainly covers the mass-to-charge ratio of
the parent ion and the mass-to-charge ratio of the first 15
second-order fragment ions, as well as the corresponding
relative peak intensity, retention time, and some basic in-
formation of the compounds. (e content of the high-res-
olution spectrum library with methomyl used as an example
is shown in Table 1.

2.2. ScreeningModel. (e screening model is the core of the
whole platform, and the screening comparison algorithm is
the core of the screening model, which is obtained by im-
proving the existing spectral library search algorithm, spe-
cifically, SS combination algorithm. (e SS combination
algorithm, proposed by Stein and Scott, includes the cosine

2 Journal of Food Quality

https://spring.io/projects/spring-boot
https://jquery.com/


similarity algorithm [24] (also called the weighted dot-
product algorithm), represented here as SC (Uw, Vw), and
the peak ratio algorithm, represented here as SD (Uw, Vw)
[25, 26]. (e calculation formula of the cosine similarity
algorithm is expressed as follows:

SCU
ω

, V
ω

�
U

ω
· V

ω

U
ω����
���� · V

ω����
����
, (1)

where V represents the compound in the library, U repre-
sents the unknown compound, ω is the mass-to-charge ratio
and peak intensity information, and U and V are the matrix
form of ω. ω is obtained by multiplying the mass-to-charge
ratio and relative peak intensity of the compound by taking
the exponent of a weighting factor. (e calculation formula
of ω is expressed as follows:

ωn
q � αn

( 􏼁
x βn
( 􏼁

y
, n � 1, 2, . . . , q, (2)

where x� 1.3 and y� 0.53 are weighting factors. α and β refer
to the mass-to-charge ratio and relative peak intensity, re-
spectively. (e calculation formula of the peak ratio algo-
rithm is expressed as follows:
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where ui and vi are nonzero peaks with the same mass-to-
charge ratio. When the peak value of the former is smaller
than the latter, n� 1; otherwise, n� −1. Finally, the SC and
SD are, respectively, multiplied by the corresponding
weights and then combined to calculate the final similarity.
(e calculation formula is as follows:
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Compared with the SS combination algorithm proposed
by Stein and Scott, the improved combination algorithm has

a larger difference in the strength of the samemass-to-charge
ratio of the different spectra when the similarity of the mass
spectra is low. In this case, the peak ratio calculation is
preferred. When the degree of similarity is high, the number
of the same mass-to-charge ratio increases, and the gap
between the corresponding intensities of the same mass-to-
charge ratio decreases. In this case, the cosine similarity
calculation is preferred to further improve the similarity
between the mass spectra. (e premise of similarity calcu-
lation is to determine whether the parent ion is the same as
the parent ion of the compounds in the standard spectral
library. If the error of the parent ion is within 2mDa, then it
is considered the same. It is necessary to further compare the
fragment ions and calculate the similarity and then combine
with the relative retention time difference to select the best
matching result with higher similarity and lower relative
retention time difference. If considered as different, the mass
spectrum is ruled out directly and no subsequent calculation
would be performed.

2.3. Online Result Comparison Module. (e online result
comparison module is developed and constructed using web
technology. (e front end uses the components including
jQuery, Echarts, ayUI, and JSmol, and the back end uses
frameworks [27, 28] including SpringBoot, SpringMVC,
SpringSecurity, and Mybatis (http://blog.mybatis.org/). (e
module includes the pages such as file uploading (shown in
Figure 1), a summary of screening results (Figures 2 and 3), a
detailed comparison of screening results (shown in
Figures 4–6), and a basic information display of compounds
(Figure 7). Its main function is to upload the mass spec-
trometry file to be screened, call the background screening
model for comparison, and return the screening comparison
results through the web page in real time. After the in-
spectors upload the file, the platform will call the data
standardization software to convert the uploaded MS file

Table 1: Content of a high-resolution spectrum library (example).

Name of compound in Chinese Mieduowei Retention time (° min) 4.52
Name of compound in English Methomyl Mass-to-charge ratio of parent ion 163.05357
Chemical formula C5H10N2O2S Adduct type [M+H]+
Mass 162.04635 Collisional energy(°V) 40
CAS no. 16752-77-5 Polarity Positive
Mass-to-charge ratio 1 of fragment ions 72.99807 Relative peak intensity 1 100
Mass-to-charge ratio 2 of fragment ions 46.99500 Relative peak intensity 2 49.03175
Mass-to-charge ratio 3 of fragment ions 58.02874 Relative peak intensity 3 47.68800
Mass-to-charge ratio 4 of fragment ions 44.97935 Relative peak intensity 4 35.73670
Mass-to-charge ratio 5 of fragment ions 71.99025 Relative peak intensity 5 33.51392
Mass-to-charge ratio 6 of fragment ions 42.03383 Relative peak intensity 6 24.29776
Mass-to-charge ratio 7 of fragment ions 56.04948 Relative peak intensity 7 16.21830
Mass-to-charge ratio 8 of fragment ions 88.02155 Relative peak intensity 8 6.12826
Mass-to-charge ratio 9 of fragment ions 31.01784 Relative peak intensity 9 3.93581
Mass-to-charge ratio 10 of fragment ions 61.01065 Relative peak intensity 10 3.00822
Mass-to-charge ratio 11 of fragment ions 58.99500 Relative peak intensity 11 2.85382
Mass-to-charge ratio 12 of fragment ions 45.98717 Relative peak intensity 12 2.27873
Mass-to-charge ratio 13 of fragment ions 73.07603 Relative peak intensity 13 1.48801
Mass-to-charge ratio 14 of fragment ions 49.01065 Relative peak intensity 14 1.24759
Mass-to-charge ratio 15 of fragment ions 65.00556 Relative peak intensity 15 1.11706
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into a standard format file in mzML format. (e data
standardization software ProteoWizard [29] supports data
standardization for mass spectrometry files generated by
mainstream mass spectrometer manufacturers [14]. (us,
the construction and application of the platform are not
limited by specific brand instruments. After the spectrom-
etry file conversion is completed, the system calls Python’s
pymzML library to parse the mzML format file and reads the
information of the parent ions and their corresponding
fragment ions, such as peak intensity, retention time, and
high-resolution accurate mass-to-charge ratio. It then calls
the screening model to compare the unknown spectrum

with the standard spectrum library. It should be noted that
when preparing the data, the inspectors should preprocess
the sample according to the specific standard procedures and
confirm that the high-resolution LC/MS instrument used
has been calibrated with good performance. (ey should
also follow the recommended instrument method to collect
data.

(e online result comparison module realizes the in-
teraction between the user and the server through the file
stream and the data stream. (e user uploads the test files
through the file stream. Since most of the test files uploaded
are large, the platform adopts Conris Ultra-High-Speed

Library name: Pesticide and Veterinary Drug Residue Database
Tips:
(1). In order to make the matching results more scientific and have a higher accuracy rate, you can
perform experiments under the same conditions according to the experimental conditions of the data
acquisition in the library, and then upload the acquired data for analysis.
(2). If the experimental conditions of the data you upload are inconsistent with the given, it will have a
certain impact on the accuracy of the results.

select folder select document Upload

Figure 1: File upload page. (e file upload page contains the library name and tips.

unknown compound Precursor Ion Retention Time (min) of 
the unknown

name of matched 
compound CAS NO.

unknown:1

unknown:2

unknown:2

unknown:3

unknown:3

unknown:4

331.226230

427.149780

427.149780

521.230000

521.230000

311.200240
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3.381
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10.152

10.152

8.243

17α-Hydroxyprogesterone

4-Epianhydrotetracycline 
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Anhydrotetracycline 
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Beclomethasone 
dipropionate

Altrenogest

68-96-2

4465-65-0

13803-65-1

66734-13-2

5534-09-8

850-52-2

Figure 2: Screening results summary page (part 1). (e page contains part of the information of the compound matched by the unknown
object according to the algorithm.
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0.91830
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0.96668

Retention Time (min) of
the matched

7.65

3.27

3.91

10.11

11.22

8.13

Retention Time difference

0.087

0.111

0.529

0.042

1.068

0.113

remark

None

None

None

None

None

None

Figure 3: Screening results summary page (part 2).
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Transfer Protocol [30] instead of the traditional FTP transfer
protocol in order to improve the upload speed and greatly
improves the speed of file upload. After a series of operations
such as file conversion, data analysis, result sorting, and
result display, the screening platform renders the screening
results via various graphics in the form of data flow on the
basic information display page for users to read. On the basis
of the screening results, the user can determine whether the
test files contain risk substances and accordingly make the
preliminary determination whether the tested food is
qualified.

Each piece of information displayed on the screening
results summary page includes the precursor ion, molecular
formula, CAS number, and retention time of the unknown
compound and the matched compound in the standard
library. In the screening results, there may be a situation in
which an unknown compound matches multiple com-
pounds in the standard library. (e inspector can

preliminarily judge the most likely compound based on the
matching score and the retention time difference between
the unknown and the matched compounds. (e detailed
comparison page of the screening results displays the 2D bar
chart of comparison and 3D bar chart of comparison of the
unknown and the matched compounds. (e inspector can
visually observe the similarities and differences between the
two. (rough viewing diagrams of 2D and 3D molecular
geometry and basic compound information (including the
relevant physical and chemical properties of the matched
compound and various information such as inspection
standards and methods) of the matched compound, the
inspector can have an intuitive and detailed understanding
of the matched compound. According to the information
displayed on the platform, the inspector can preliminarily
judge whether the tested sample contains risky substances,
which can guide subsequent experiments to obtain scientific
judgment results more quickly.

Unknown substance spectrum
Matching substance spectrum
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l A
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nd
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ce

100

80

60

40
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0

m/z

Figure 4: Detailed comparison page of screening results (3D histogram). In the 3D histogram, the x-axis represents m/z, the y-axis
represents the matched substance and the unknown substance, and the z-axis represents the relative peak intensity.
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Figure 5: Detailed comparison page of the screening results (2D bar chart). In the 2D bar graph, the abscissa, ordinate, and upper half and
lower halves of the graph, respectively, represent the m/z ratio, relative peak intensity, unknown substances, and matched substances.
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3. Results and Discussion

3.1. Model Validation. (e platform uses a series of com-
parison methods to evaluate the screening model and then
optimizes and adjusts the model based on the evaluation

results. (e comparison method screens the test files to be
screened via the platform and the professional screening
software of the corresponding manufacturer, compares the
screening results, and then calculates the accuracy of the
screening model. (e calculation formula is as follows:

Retention Time (min)
of the unknown 

name of matched
compound score

Retention time(min)
of the matched 

Retention Time
difference remark

10.079 Amcinonide 0.98491 10.04 -0.039

(a) (b)

Figure 6: Detailed comparison page of screening results (molecular structure diagram). (a) 3D conformer. (b) 2D structure.

Chinese
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common name
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English
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Chinese
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Molecular
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Molecular
weight

Character
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LD50/LC50

toxicity

category

Ansinaide

Amcinonide

51022-69-6

(11β, 16α)-21-(Acetyloxy)-16,17-[cyclopentylidenebis(oxy)]-9-fluoro-11-hydroxypregna-1,4-diene-3,20-dione

Data collection

C28H35FO7

502.5744

White to light yellow powder

Data collection

Skin corrosion/irritation category 2; serious eye damage/eye irritation category 2; specific target organ
toxicity single exposure category 3; reproductive toxicity category 2

Hormones (glucocorticoids)

Ansinaide

Basic Information Testing standard Domestic standards Overseas standards Spectrogram Comparison of national limits

Figure 7: Compound basic information display page.
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accuracy of screeningmodel �
number of compounds screened ∈ the platform
number of compounds screened ∈ professional

screening software of manufacturer

.
(5)

After the first model was constructed, eight test files
with high resolution were uploaded to the platform for
comparison. (e screening results revealed the follow-
ing: first, there were false-negative results in the
screening results, namely, the compounds contained in
the test files were not included in the screening results
and, second, the isomers were not completely
distinguished.

3.2. Model Optimization. To solve these problems, the re-
search team optimized the model according to three tech-
nical directions: first, the number of selected spectra was
reduced. Because each test file contained thousands of
spectra, the more the spectra were selected initially, the more
the screening results were obtained later, and the more
difficult it was to select the best-matched results. (e effi-
ciency of the screening model would be greatly reduced if all
the spectra were analyzed.(erefore, measures were taken to
reduce the number of spectra corresponding to each parent
ion selected from the test files for optimization. Specifically,
the total energy of the spectra was sorted, and the spectrum
with higher energy was selected for analysis. Before the
model optimization, 30 spectra at most could be selected for
one parent ion, but now 20 spectra at most are selected for
one parent ion. Second, we took into consideration the
similarity and retention time difference (the difference be-
tween the retention time of the mass spectrum and that of
the compared compound in the standard spectrum library)
to optimize the model to avoid the deviation of a single
factor. (ird, we increased the matching number of sec-
ondary fragment ions. According to the EU analytical
method guidelines, if two compounds have the same pre-
cursor ion and have at least one same secondary fragment
ion, then it can be determined that the two compounds are
most likely to be the same compound. However, the limited
number of the same fragment ions can affect the accuracy of
model screening, and some isomers can produce the same
fragment ions [31, 32]. (e isomers can be distinguished
effectively by taking the method that at least two secondary

fragment ions are the same under the premise of the same
parent ion.

3.3. Model Revalidation. After the team optimized the
model, they verified the screening model again. (ey
uploaded the previous eight high-resolution test files for
screening comparison. Screening results show that the
proportion of compounds successfully identified by the
model increased to 97.29%. (e comparison of the two
screening results is shown in Table 2.

4. Conclusion

(e platform established in this paper has become stabilized
after several times of model optimizing and testing. Cur-
rently, the first phase of the platform construction has been
basically completed, and the platform has entered into small-
scale trials. (e present trials show that, by using this da-
tabase, more than 300 banned and restricted compounds
have been discovered in the actual food samples of daily
monitoring and inspection. (e platform has shown higher
screening and identification for unknown compounds. It
will continue to increase the standard spectrum library data
of compounds; further expand the scope of screening; and
continue to promote coconstruction, sharing, and verifi-
cation through cooperative laboratories.

(e construction of a food risk substance screening
platform based on high-performance liquid chromatogra-
phy/high-resolution mass spectrometry, the Internet, big
data, and other technologies provides a new technical means
for food safety risk management and control. It also builds a
bridge between screening and risk assessment of risk sub-
stances and illegally added substances. It facilitates the full-
chain online risk screening of food production and circu-
lation, and it provides solid technical support for the in-
telligent supervision and inspection of food safety. It is
reasonable to expect that this technology platform has a
wider application prospect.

Table 2: High-resolution screening results.

Test
file no.

Number of compounds correctly
screened by Agilent professional

screening software

Number of compounds
screened before platform

adjustment

Number of items correctly
screened after platform

adjustment

Accuracy of final
screening results (%)

1 16 13 14

97.29

2 36 32 34
3 40 38 38
4 50 47 48
5 62 62 62
6 64 63 63
7 65 65 65
8 73 70 71
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It is a new exploration to combine computer technology
and spectrogram technology to create an online spectrogram
real-time screening and comparison platform that is not
subject to the limit of the instrument brand. It can be carried
out not only in the food industry but also in various in-
dustries such as cosmetics, chemical industry, and envi-
ronment industry to establish online spectrogram screening
and comparison systems for all related industries to serve the
industry risk management and control.
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In this experiment, inductively coupled plasma tandemmass spectrometry (ICP-MS/MS) was used to determine the content of 30
elements in rice from six places of production and to explore the relationship between the multielement content in rice and the
producing area. .e contents of Ca, P, S, Zn, Cu, Fe, Mn, K, Mg, Na, Ge, Sb, Ba, Ti, V, Se, As, Sr, Mo, Ni, Co, Cr, Al, Li, Cs, Pb, Cd,
B, In, and Sn in rice were determined by ICP-MS/MS in the SQ and MS/MS mode. By passing H2, O2, He, and NH3/He reaction
gas into the ICP-MS/MS, respectively, the interference was eliminated by means of in situ mass spectrometry and mass transfer.
.e detection limit of each element was 0.0000662–0.144mg/kg, and the limit of quantification was in the range of
0.000221–0.479mg/kg, the linear correlation coefficient was greater or equal to 0.9987 (R2≥ 0.9987), and the detection results had
low detection limit and great linear regression. Recovery of the method was in the range of 80.6% to 110.5% with spike levels of
0.10–100.00mg/kg, and relative standard deviations were lower than 10%. For the multielement content of rice from different
producing areas, the principal component factor analysis can get six principal component factors, 87.878% cumulative con-
tribution rate, and the distribution of the principal component scores of each element and different producing areas. Based on the
multielement content and cluster analysis, the samples were accurately divided into two major categories and six subcategories
according to the places of production, which proved that there was a significant correlation between the multielement content in
rice and the place of production, so that the place of rice origin can be traced.

1. Introduction

Rice is the main staple food of our country, which contains
sugar, protein, fat and dietary fiber, and other main nutrition
elements and also contains a lot of necessary trace elements,
such as Ca, Fe, Zn, Se, and other mineral elements [1]. Heavy
and toxic metals, especially As and Cd, present due to en-
vironmental pollution are taken up by the rice plant [2–5]. In
China, rice varieties are rich and diverse, with large planting
area span and large quality difference. China is a vast country
with diverse climatic and geographical conditions, and the
crops have different biological characteristics and physical
and chemical indexes..erefore, it is valuable to analyze and
compare the differences of multielement contents in rice
from south to north China and to provide theoretical basis
and technical support for distinguishing rice from different
places of origin.

At present, the origin traceability indexes in food mainly
include stable isotope [6–11], multielement composition
[12, 13], characteristic content of organic component
[14, 15], DNA fingerprint [16], and near-infrared spectrum
[17–21]. .ere are some common problems in multielement
analysis, such as few element types, high detection limit of
low content elements, and unquantifiable trace elements.
.e determination methods of poly element contents in rice
include an electrochemical method, atomic absorption
spectroscopy (AAS) [22], atomic fluorescence spectrometry
(AFS) [23], inductively coupled plasma optical emission
spectrometer (ICP-OES) [24], and inductively coupled
plasma mass spectrometry (ICP-MS) [25, 26]. However,
there are some common problems in these methods, which
hamper the rapid determination of trace elements in rice,
thus causing the reduction of the accuracy of traceability of
multielement composition in rice..e advantage of the ICP-
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MS/MS method is to reduce elemental interference [27].
Alexander Simpson et al. [28]. found that by using ICP-MS/
MS and NH3 reagent gas, isotope interference can be re-
duced and the sensitivity of 176Lu and 176Yb can be im-
proved. In terms of multielement determination, ICP-MS/
MS has higher accuracy and greater diversity of elements
than ICP-MS [29]. Among them, when measuring P, S, Sr,
and other specific elements, O2 and other reaction gases were
used to accurately determine the element content by mass
transfer [30, 31]. .e advantage of the ICP-MS/MS method
lies in the determination of ultratrace elements [32]. It can
reduce the detection limit, which cannot be achieved by
general ICP-MS and other detection methods.

In this paper, ICP-MS/MS was first used to determine
the 30 elements’ contents in rice from six rice-production
areas in Anhui, Guangxi, Guangdong, Jilin, Heilongjiang,
and Inner Mongolia. Under SQ and MS/MS models [33],
He, NH3/He [34], O2 [35], and H2 [36] were selected as
reactive gases for different elements to eliminate mass
spectrum interference and reduce detection limit, and the
relationship between the element content and the origin was
studied by principal component analysis and cluster anal-
ysis, which provides technical support for quality control
and origin traceability of rice.

2. Materials and Methods

2.1. Reagents and Solutions. Li, Na, Mg, Al, B, P, S, K, Ca, Ti,
V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Se, Sr, Mo, Cd, In, Sn,
Sb, Cs, Ba, Pb, Sc, Bi, Rh, and Y element standard solution
(1000 μg/mL, Guobiao Testing & Certification Co., Ltd.,
Beijing, China), GBW0043, GBW10044, and GBW10045
Rice reference materials (Institute of Geophysical and
Geochemical Exploration IGGE, Langfang, China), 65% BV-
III grade of HNO3 (Beijing Institute of Chemical Reagents,
Beijing, China), 30% H2O2 (Sinopharm Chemical Reagent
Co., Ltd., Beijing, China), and deionized water (18.2MΩ/
cm), prepared by using the Milli-Q system (Millipore,
Bedford, MA), were used.

2.2. Sample Collection and Preparation. .e samples were
collected from six rice-producing areas in Anhui Province,
Guangxi Province, Guangdong Province, Jilin Province,
Heilongjiang Province, and Inner Mongolia. We purchased
common local rice samples with large planting areas in each
rice market, a total of 18 batches. .ree independent
packages were purchased for each batch, and mixed samples
were taken to ensure uniformity. .e rice samples of each
batch were hulled, ground, crushed, and stored in a sealed,
low-temperature, and dark place.

In a PTFE digestion tank, each rice sample which
weighs 0.3–0.5 g (accurate to 0.001 g) was added to 4mL
HNO3 and 1mL 30% H2O2 and soaked for 3–4 h or
overnight, the upper cap was screwed, and it was digested
with the microwave digestion instrument (CEM MARS6,
CEM, Matthews, USA). .e conditions of the microwave
digestion instrument are shown in Table 1. .en, they
were placed on the temperature-controlled electric

heating plate (BHW-09C, Shanghai Botong Chemical
Technology Co., Ltd., Shanghai, China) and heated at
100°C for 20–30min for degassing. After cooling, the
samples were diluted to 50mL with deionized water and
shook well for later use. For each group of samples, blanks
(deionized water and reagents) and reference materials
were included throughout the entire sample preparation
and analytical process.

2.3. Inductively Coupled Plasma Tandem Mass Spectrometry
Analysis. .is experiment was carried out by tandem mass
spectrometry. .e concentration of 30 isotopes (7Li, 23Na,
24Mg, 27Al, 11B, 31P, 32S, 39K, 44Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe,
59Co, 60Ni, 63Cu, 66Zn, 72Ge, 75As, 78Se, 88Sr, 95Mo, 111Cd,
115In, 118Sn, 121Sb, 133Cs, 137Ba, and 208Pb) in rice was de-
termined by inductively coupled plasma tandem mass
spectrometry (Agilent 8900 Series, Agilent, USA). 1 μg/mL
mixed solution of Li, Y, Co, Tl, Ce, and Mg was used as the
tuning solution, and 0.10 rps speed of the peristaltic pump
was used to continuously feed the solution. .rough the
tuning program, the conditions of no gas, H2, O2, He, and
NH3/He multimode analysis methods were optimized. In
the no-gas mode, the monitored ions were 7, 89, and 205. In
the Hemode, themonitored ions were 59, 89, and 205. In the
H2 mode, the monitored ions wereQ1 �Q2 � 59, 89, and 205.
In the O2 mode, the monitored ions were Q1 �Q2 � 59,
Q1 � 89/Q2 �105, and Q1 �Q2 � 205. In the NH3/He mode,
the monitored ions were Q1 �Q2 � 59, Q1 � 89/Q2 �191, and
Q1 �Q2 � 205. Under different modes, RF power was
1550W, auxiliary gas was 0.90 L/min, plasma gas was 15.0 L/
min, sampling depth was 8.0mm, and extraction lens was
−7.6V. .e instrument’s other conditions of ICP-MS/MS
are shown in Table 2.

For the selection of element determination mode and
reagent gas, this method involves two modes: the SQ (single
quadrupole) standard mode and MS/MS tandem mode.
.ere are He and no-gas reagent gas modes in the SQ mode
and He, NH3/He, H2, O2, and no-gas reagent gas modes in
the MS/MS mode. .e elements are measured in all modes,
and the mode with the lowest detection limit of each element
is determined as the best measurement mode.

.rough the measured experimental conditions and
methods, the elements Sc, Y, Rh, and Bi were used as the
internal standard elements. Analyzing the experimental data
can get a linear fitting standard curve with the X-axis as the
concentration point and the Y-axis as the response value.
.rough this standard curve, the detection limit and
background equivalent concentration of the analysis ele-
ment can be obtained by calculating the element standard
deviation. .e linear correlation coefficient and range, in-
ternal standard elements, limit of detection (LOD), and limit
of quantification (LOQ) are shown in Table 3.

At the same time, the content of each element in rice
reference materials (GBW10043, GBW10044, and
GBW10045) was determined, the standard value was
compared, and the recovery rate was calculated to prove the
accuracy and reliability of the method, and the recovery
experiment was conducted.
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2.4. Statistical Analysis. All analyses were conducted in
triplicate. .e results reported were the average of these
three replicates. Each sample was considered as an assembly
of 30 variables represented by the data of chemical infor-
mation. .e analysis data and the fitted linear regression
curve were analyzed by Agilent Mass Hunter software
(Agilent Inc., USA). A normal distribution test of multiel-
ements, principal component analysis, and clustering
analysis were performed with SPSS 25.0 software (SPSS, IBM
Corp., USA).

3. Results and Discussion

3.1. Mass Spectrometry Mode Selection and Interference
Elimination. In this experiment, the SQ (single quadrupole)
standard mode and MS/MS tandem mode were used to
simultaneously determine the concentration of multiele-
ment. .e elements were measured in different modes and
different reaction gas modes, and the element detection limit
was used as the criterion to determine the best measurement
mode for each element. .e results are shown in Table 4.

Table 2: Instrument parameters of ICP-MS/MS.

Instrument conditions No-gas mode H2 mode He mode O2 mode NH3/He mode
Q1 deflection voltage(V) −3.0 1.0 −3.0 1.0 1.0
Q2 deflection voltage(V) −3.0 −18.0 −15.0 −10.0 −12.0
Collision pool gas — H2 He O2 NH3/He
Gas flow rate of collision pool (L·min−1) — 7.0 5.0 4.5 4.5/1.0
Deflection voltage of eight-stage pole (V) −8.0 −18.0 −18.0 −3.0 −5.0

Table 1: .e condition of microwave digestion.

Step Climbing time (min) Hold time (min) Temperature (°C) Power (W)
1 06 : 00 03 : 00 120 1500
2 08 : 00 06 : 00 155 1500
3 08 : 00 15 : 00 180 1500

Table 3: Linear range and detection limit of isotopes.

Calibration (μg/L) R2 Internal standard LOD (mg/kg) LOQ (mg/kg)
7Li 0∼100 0.9998 Sc 0.000659 0.0220
23Na 0∼1000 0.9999 Sc 0.144 0.479
24Mg 0∼1000 0.9999 Sc 0.00372 0.0124
27Al 0∼100 0.9987 Sc 0.0907 0.302
11B 0∼100 0.9995 Sc 0.0375 0.125
31P 0∼1000 0.9994 Sc 0.0204 0.0679
32S 0∼1000 0.9997 ScO 0.0614 0.205
39K 0∼1000 1.0000 Sc 0.0291 0.0970
44Ca 0∼1000 1.0000 Sc 0.105 0.351
47Ti 0∼100 0.9999 ScO 0.00219 0.00731
51V 0∼100 0.9999 ScO 0.000946 0.00315
52Cr 0∼100 0.9997 ScO 0.00521 0.0174
55Mn 0∼1000 1.0000 Sc 0.00148 0.00495
56Fe 0∼1000 1.0000 Sc(NH3)2 0.0170 0.0567
59Co 0∼100 1.0000 Sc(NH3)2 0.000510 0.00170
60Ni 0∼100 1.0000 Sc(NH3)2 0.00133 0.00444
63Cu 0∼1000 1.0000 Sc 0.00474 0.0158
66Zn 0∼1000 1.0000 Sc 0.0115 0.0383
72Ge 0∼100 1.0000 Y 0.000206 0.000686
75As 0∼100 1.0000 YO 0.00250 0.00832
78Se 0∼100 1.0000 Y 0.00152 0.00507
88Sr 0∼100 1.0000 Y 0.000929 0.00310
95Mo 0∼100 0.9999 YNH3 0.000605 0.00202
111Cd 0∼100 1.0000 Rh 0.0000662 0.000221
115In 0∼100 0.9998 Rh 0.00123 0.00410
118Sn 0∼100 1.0000 Rh 0.00176 0.000588
121Sb 0∼100 1.0000 Rh 0.000196 0.000653
133Cs 0∼100 1.0000 Rh 0.000227 0.000756
137Ba 0∼100 1.0000 Rh 0.00158 0.00525
208Pb 0∼100 1.0000 Bi 0.000949 0.00317
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.e interference was eliminated by making full use of the
collision mode between the element and the reaction gas. In
the SQ mode, the mass ions of 63Cu, 111Cd, 118Sn, 121Sb, and
208Pb had the characteristics of high abundance value and
less interference. .e corresponding Q2 mass number was
the only one that needs to be set during the determination.

In the MS/MS mode, the NH3/He mixture gas collided
with 7Li, 24Mg, 44Ca, 60Ni, 95Mo, and 137Ba ions in the re-
action cell, H2 collided with 23Na, 27Al, 55Mn, 66Zn, 72Ge,
78Se, 88Sr, and 115In ions, and O2 collided with 39K and 133Cs
ions, respectively. .e interference was eliminated by in situ

mass spectrometry, which means the elements only collide
with the reaction gas and do not combine with each other.
.erefore, the mass number of the front and after tetrodes to
be set remains unchanged (Q1 �Q2). However, the system
will still have the same amount of heterotopic number signal
superposition interference and double charge ion interfer-
ence; for example, ions Ni++, SiH, CO, and NOmay interfere
with 31P; ions Zn++, NO, and OOmay interfere with 32S; ions
CAr and ArO interfere with 52Cr; ions ArCl, CaCl, and CoO
interfere with 75As; ions ArO and MnH interfere with 56Fe;
and ions Sn++, NiH, and MgCl interfere with 59Co.

Table 4: Isotope mass spectrometry.

Mode Reaction gas Mass number Eliminate interference
7Li MS/MS NH3/He Q1 �Q2 � 7 In situ mass spectrometry
23Na MS/MS H2 Q1 �Q2 � 23 In situ mass spectrometry
24Mg MS/MS NH3/He Q1 �Q2 � 24 In situ mass spectrometry
27Al MS/MS H2 Q1 �Q2 � 27 In situ mass spectrometry
11B MS/MS NH3/He Q1 � 11, Q2 � 60 Mass transfer
31P MS/MS O2 Q1 � 31, Q2 � 47 Mass transfer
32S MS/MS O2 Q1 � 32, Q2 � 48 Mass transfer
39K MS/MS O2 Q1 �Q2 � 39 In situ mass spectrometry
44Ca MS/MS NH3/He Q1 �Q2 � 44 In situ mass spectrometry
47Ti MS/MS O2 Q1 � 47, Q2 � 63 Mass transfer
51V MS/MS O2 Q1 � 51, Q2 � 67 Mass transfer
52Cr MS/MS O2 Q1 � 52, Q2 � 68 Mass transfer
55Mn MS/MS H2 Q1 �Q2 � 55 In situ mass spectrometry
56Fe MS/MS NH3/He Q1 � 56, Q2 � 90 Mass transfer
59Co MS/MS NH3/He Q1 � 59, Q2 � 93 Mass transfer
60Ni MS/MS NH3/He Q1 �Q2 � 60 In situ mass spectrometry
63Cu SQ He Q2 � 63 —
66Zn MS/MS H2 Q1 �Q2 � 66 In situ mass spectrometry
72Ge MS/MS H2 Q1 �Q2 � 72 In situ mass spectrometry
75As MS/MS O2 Q1 � 75, Q2 � 91 Mass transfer
78Se MS/MS H2 Q1 �Q2 � 78 In situ mass spectrometry
88Sr MS/MS H2 Q1 �Q2 � 88 In situ mass spectrometry
95Mo MS/MS NH3/He Q1 �Q2 � 95 In situ mass spectrometry
111Cd SQ No gas Q2 �111 —
115In MS/MS H2 Q1 �Q2 �115 In situ mass spectrometry
118Sn SQ He Q2 �118 —
121Sb SQ No gas Q2 �121 —
133Cs MS/MS O2 Q1 �Q2 �133 In situ mass spectrometry
137Ba MS/MS NH3/He Q1 �Q2 �137 In situ mass spectrometry
208Pb SQ No gas Q2 � 208 —

Q1

H2

He

NH3/He

Q2

O2

ORC

Figure 1: Interference cancellation model of the MS/MS mode. .e ions collided with gas in the ORC.
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.erefore, in the determination of some specific elements, if
the reactant gas and the element collide with each other to
generate ions with a new mass number, the abovementioned
interferences can be better avoided. In addition, when the
gas collided with the analysis element, new mass ions were
formed in the reaction, that is, mass transfer (Figure 1). In
the experiment, NH3/Hemixture gas can react with 11B+ and
56Fe+ to form 11B49NH(NH3)2+ and 56Fe(14NH3)2+ cluster
ions. Also, the O2 mode was more widely used, which can
undergo mass transfer with 31P+, 32S+, 47Ti+, 51V+, 52Cr+,
75As+, and generated 31P16O+, 32S16O+, 47Ti16O+, 51V16O+,
52Cr16O+, and 75As16O+ cluster ions, respectively.

3.2. Standard Material Determination and Precision.
Multielement determination was performed on the standard
materials GBW10043, GBW10044, and GBW10045, and the

Table 6: .e spike recovery and reproducibility of the spiked
sample (n� 6).

Element Background (mg/
kg)

Added (mg/
kg)

Recovery
(%)

RSD
(%)

As 0.127
10 105.3 3.5
1 108.1 3.2
0.1 104.6 1.1

B 0.506
10 98.6 0.6
1 86.1 2.8
0.1 105.8 1.6

Ba 0.351
10 94.3 2.8
1 95.2 2.6
0.1 82.8 8.9

Ca 41.6
100 93.6 0.9
50 95.4 2.2
10 102.5 1.6

Cd 0.0272
10 107.6 5.8
1 92.5 0.9
0.1 108.6 3.5

Co 0.00675
10 91.6 4.5
1 95.3 4.1
0.1 106.8 0.9

Cr 0.0138
10 84.3 5.0
1 93.5 1.5
0.1 89.6 1.1

Cs 0.00152
10 110.5 0.6
1 92.3 2.8
0.1 94.2 2.3

Cu 2.06
10 95.1 0.5
1 96.7 4.1
0.1 97.6 4.8

Fe 2.45
10 105.6 2.3
1 103.9 6.8
0.1 107.5 0.5

Ge 0.00261
10 85.3 2.4
1 96.4 2.9
0.1 95.8 6.3

K 510
100 84.3 2.5
50 82.2 2.7
10 93.6 4.1

Li 0.00365
10 109.5 0.9
1 106.4 2.2
0.1 93.6 5.4

Mg 105
100 104.3 3.6
50 106.4 1.1
10 83.2 1.8

Mn 7.46
10 92.6 2.0
1 91.1 1.5
0.1 93.7 2.9

Mo 0.496
10 94.5 0.4
1 105.6 7.1
0.1 93.2 3.8

Na 1.97
10 108.9 4.5
1 103.7 4.8
0.1 82.6 1.5

Ni 0.168
10 91.6 0.5
1 106.3 0.8
0.1 87.5 1.6

Table 6: Continued.

Element Background (mg/
kg)

Added (mg/
kg)

Recovery
(%)

RSD
(%)

P 448
100 101.2 1.3
50 104.5 2.9
10 93.4 3.5

Pb 0.00152
10 89.9 6.6
1 104.2 1.7
0.1 106.6 0.9

S 552
100 80.6 1.1
50 85.9 0.7
10 93.8 2.5

Sb 0.000154
10 106.4 3.9
1 95.3 3.3
0.1 92.8 0.6

Se 0.0274
10 94.7 2.5
1 95.9 2.1
0.1 84.6 0.8

Sr 0.163
10 106.4 0.7
1 108.5 0.9
0.1 84.9 5.3

Sn ND
10 104.3 1.4
1 96.1 5.6
0.1 95.6 2.0

Ti 0.0865
10 85.3 1.7
1 91.8 0.8
0.1 85.9 7.6

V 0.00594
10 92.7 1.6
1 108.5 1.5
0.1 106.9 0.8

Al ND
10 94.5 2.6
1 93.7 2.1
0.1 105.2 1.0

Zn 10.9
100 92.3 6.8
50 82.8 4.6
10 94.6 3.7

In ND
10 91.5 2.5
1 85.4 8.9
0.1 96.3 1.9

∗ND means not detected.
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Figure 2: .e degree of dispersion.

Table 8: Results of principal component analysis.

Component
Initial eigenvalue Rotate the sum of squares loading

Total Variance (%) Accumulate (%) Total Variance (%) Accumulate (%)
1 10.41 38.56 38.56 7.547 27.95 27.95
2 4.800 17.78 56.34 4.870 18.04 45.99
3 3.142 11.64 67.97 3.225 11.94 57.94
4 2.243 8.306 76.28 3.223 11.94 69.87
5 1.850 6.852 83.13 2.809 10.41 80.28
6 1.282 4.749 87.88 2.052 7.599 87.88

Table 9: Contribution value of the element’s principal component.

Element
Component

1 2 3 4 5 6
Li −0.697 0.551 −0.164 0.167 0.154 −0.115
B −0.367 0.753 0.162 0.324 0.003 −0.068
Na −0.927 −0.009 −0.038 0.184 −0.016 −0.114
Mg −0.318 0.846 −0.124 −0.167 −0.185 0.045
K 0.324 0.644 −0.263 0.291 0.289 0.282
Ca −0.684 0.515 0.360 0.011 −0.278 −0.083
P 0.236 0.617 −0.559 −0.079 0.253 0.182
S 0.855 0.381 −0.277 0.102 0.108 0.094
Ti 0.772 0.070 0.141 0.016 −0.375 −0.333
V −0.512 0.660 0.405 0.087 −0.092 0.132
Cr −0.693 −0.380 −0.096 −0.508 0.140 0.175
Mn −0.091 −0.002 0.794 0.261 −0.281 0.353
Ni 0.847 0.248 0.297 −0.177 −0.010 0.113
Cu 0.809 0.346 −0.112 0.180 −0.213 0.212
Fe −0.476 0.361 −0.587 −0.277 −0.133 −0.014
Co 0.984 0.033 −0.093 −0.020 −0.007 0.000
Zn 0.472 0.092 0.364 −0.633 −0.052 0.401
Ge 0.818 0.301 −0.192 −0.039 −0.363 −0.216
Se 0.432 −0.003 0.368 0.081 0.778 −0.154
Sr −0.221 −0.212 −0.822 0.384 −0.008 0.107
As 0.244 0.383 0.273 −0.316 0.480 −0.448
Mo 0.822 0.277 −0.040 −0.395 0.056 −0.117
Cd 0.715 −0.172 0.034 0.380 −0.209 0.165
Sb −0.368 0.308 0.329 0.438 0.062 −0.237
Cs 0.547 −0.332 0.152 0.521 0.399 0.247
Ba 0.860 0.097 −0.044 0.198 −0.203 −0.350
Pb −0.087 0.706 0.132 −0.114 0.148 0.236
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results are shown in Table 5. .e average recoveries of el-
ement content of reference materials were in the range
between 82.9% and 115%.

.e recoveries of analytes were evaluated by adding the
standard solutions with three different concentration levels to
the known amounts of samples. .e data of recovery and
precision are given in Table 6, and the average recoveries of
element content in rice were in the range between 80.6% and
110.5%. .e RSDs were in the range of 0.4%–8.9%. .e
measurement results show that this method has high accuracy
and meets the requirements of analysis and measurement.

3.3. Multielement Analysis of Samples. .ere are obvious
differences in the content of Ba, Ge, Co, Cu, Cr, Ti, S, Ca, Mg,
Na, Li, and other elements in rice from different producing
areas in north and south China. In southern China, there are
differences in the content of Na, Mg, K, Ca, V, Ge, Cs, Ba,
and other elements in rice produced in Anhui Province,
Guangxi Province, and Guangdong Province. However, in
northern China, there are obvious differences in the content

of B, Na, Ca, P, Cr, Mn, Ni, Co, Zn, Sr, Mo, Cs, and other
elements in batches of rice in Jilin Province, Heilongjiang
Province, and Inner Mongolia (Table 7). .e contents of Al,
In, and Sn were not detected.

We conducted further statistical analysis on the
abovementioned experimental data, by calculating the
standard deviation of each element and judging the dif-
ference of each element in different regions according to the
degree of dispersion of the value of each element. As shown
in Figure 2, the standard deviations of S, P, K, Cd, Mg, and
other elements were large, and the degree of dispersion was
relatively higher than that of other elements, which can be
initially used as indicative elements for traceability.

3.4. Multielement Normal Distribution Test. .e Kolmo-
gorov–Smirnov test was conducted on the content of 30
elements in rice from different origins. .e asymptotic
significance (bilateral) value was calculated..e content data
of 24 elements obeyed normal distribution.
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Figure 3: Score distribution of principal component analysis.
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3.5. Principal Component Analysis. Principal component
analysis (PCA) is a multivariate statistical analysis method
that analyses a few variables which can reveal the internal
structure sufficiently by studying the relationship between
multiple original variables.

According to the rule that the characteristic value is
greater than 1 and the cumulative variance contribution rate
is greater than 80%, six principal component factors were
obtained through rotation and extraction factors, and the
total contribution rate was 87.878%, indicating that the
experimental data can fully reflect the original information
(Table 8).

.e first principal component is mainly composed of S,
Ti, Ni, Cu, Co, Ge, Mo, Cd, Cs, Ba, Zn, and Se elements. .e
second principal component is mainly composed of Li, B,
Mg, K, Ca, P, V, Pb, Fe, and As elements. .e third principal
component is mainly composed of Mn and Sb elements
(Table 9). .e first principal component, the second prin-
cipal component, and the third principal component were
used to analyze the contribution of the principal compo-
nents of samples from different origins (Figure 3). .e
contribution scores of the principal components of samples
from the same origin were concentrated, while the distri-
bution of different origins is scattered. On the whole, rice
samples from the north and south of China have a large
difference in the contribution scores of the principal com-
ponents which can be clearly distinguished. .is result has
certain guiding significance for the distinction of rice from
different production places.

3.6. Cluster Analysis. .e contents of multielements in rice
from different areas were analyzed by cluster analysis. .e
samples were successfully divided into two categories (the
north and south of China) and six subcategories (six rice-
producing areas) by the method of intergroup connection
(Figure 4). .e results show that there were obvious dif-
ferences in the contents of multielements in rice from dif-
ferent producing areas, and they had certain regional
characteristics. .erefore, by measuring the multielement
content of rice, it is possible to accurately classify the samples
according to the place of origin and finally realize the
traceability of the production place of the rice.

4. Conclusions

In this experiment, the ICP-MS/MS method was developed
to determine the content of 30 elements in rice from dif-
ferent production areas. .e determination mode and re-
action gas conditions were optimized, and the optimal
determination conditions were selected for each element in
five determination modes of no gas, H2, O2, He, and NH3/
He. In addition, in situ mass spectrometry and mass transfer
technology were used to eliminate the interference and
reduce the detection limit. To achieve the determination of
ultratrace elements, we established a complete detection
method, which provided a method basis for rice origin
traceability. .rough the principal component analysis of
the multielement content of 18 batches of samples from

different origins, the distribution of the six principal com-
ponents of the samples and the characteristic elements of
each principal component were determined..rough cluster
analysis, the samples were accurately classified according to
the place of production based on the multielement content,
which proved that there was a significant correlation be-
tween the content of multielement in rice and the place of
production, providing technical support and research di-
rection for the traceability of the origin of rice.
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Polymerase chain reaction (PCR) detection is a commonly used method for species identification of meat products. However, this
method is not suitable for the analysis of meat products containing multiple mixtures. -is study aimed to test whether next-
generation sequencing (NGS) technology could be used as a method for the certification of mixedmeat products. In this study, five
kinds of common meat (pigs, cattle, sheep, chickens, and ducks) were mixed as samples with different proportions. -e primers
designed from mitochondrial 16S rRNA and nuclear genome gene (growth hormone receptor, GHR), respectively, were used to
detect these meats. -e sequencing results of NGS were analyzed using a self-designed bioinformatics program. -e fragments
with similar sequences were classified and compared with the database to determine their species. -e results showed that all five
kinds of meat components could be correctly identified using these two primers.-emeat composition could be detected as low as
0.5% in the mixed samples using the NGS technology targeting GHR gene fragments, which was superior to those targeting
mitochondrial 16S rRNA. However, the quantitative detection of species in the mixture was not likely to be quite accurate due to
the amplification bias of PCR amplification. -ese results showed that the NGS technology could be applied to identify meat
species in mixtures.

1. Introduction

Low-cost meat is often used in the consumer market as
high-quality meat or high value-added meat [1], which
damages the economic interests of consumers and leads to
social problems such as food safety and religious ethics [2].
DNA in meat contains species-specific genetic information;
it is stable in terms of chemical properties and is not easily
destroyed in food processing. It is especially suitable for
identifying different species in meat [3, 4]. In the last two
decades, many DNA-based methods have been developed
to identify meat species. Most of them rely on PCR to
amplify specific DNA fragments and analyze them by
different methods [5]. Previously, indirect methods, such as
restriction fragment length polymorphism or single-strand
conformation polymorphism, were mainly used to

distinguish the specific DNA sequences of different species
[6]. Nowadays, the most commonly used technology is to
amplify the complete specific gene sequence by PCR and
then use the conventional Sanger sequencing method for
sequencing analysis. -e target genes usually detected are
mitochondrial cytochrome b (cytb) or cytochrome oxidase
I (cox1) genes [7]. However, these methods usually detect
only one species at a time; also, the species in the sample
needs to be known in advance so as to identify them using
specific analysis steps. To overcome these limitations, the
dot blot and gene chip methods have been developed in
recent years, which can detect mixed meat samples [8] and
analyze more than one species simultaneously. However,
these methods rely on the species-specific gene probes
prepared in advance, which makes it impossible to detect
unknown species in mixed meat.
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-e emergence of next-generation sequencing (NGS)
technology has greatly improved the speed and accuracy of
DNA sequencing [9], overcoming the limitation that the
conventional Sanger sequencing method can sequence only
a single DNA fragment [10]; NGS can sequence different
DNA fragments in parallel. It has become a standard DNA
sequencing analysis method for whole-genome sequencing,
metagenomics research, transcriptomics research, envi-
ronmental microbial polymorphism research, and other
applications requiring sequence data [11, 12]. NGS tech-
nology can be used to analyze meat products containing
different species mixtures by parallel sequencing of different
template molecules from a sample.

Recently, the application of high-throughput sequencing
technology in food species identification is still in its infancy.
In the species identification of tuna, two short cytochrome b
gene (cytb) fragments were sequenced on Illumina MiSeq
platform, which could identify the species whose content
was less than 1% but not marked on the biological com-
modity label [6]. Besides, according to the genes of expanded
12S and 16S rRNA mitochondrial DNA, the library was
constructed for NGS sequencing. -e mixture of 13 kinds of
common meat, such as pigs, cattle, and sheep, was detected,
which proved that NGS sequencing could be applied to
identifying meat species in the mixture [13].

-e aforementioned studies were based on the se-
quencing analysis of mitochondrial DNA genes in meat, but
the content of mitochondrial DNA in different species was
very different. -erefore, the sequencing analysis could only
be used for qualitative detection and not for the quantitative
analysis of species in mixed meat. In this study, we used the
single-copy gene GHR in the nuclear genome as the target
gene site, designed primers to construct the library, com-
pared the results of NGS sequencing with GHR gene and 16S
rRNA gene as the target site, and verified the potential of
high-throughput sequencing technology in the quantitative
detection of different species in mixed meat.

2. Materials and Methods

2.1. Primers and Conventional Sanger Sequencing. -e GHR
gene was used as the target gene because of the great dif-
ference in the mitochondrial DNA content in muscles of
different species. GHR genes of pigs, cattle, sheep, chickens,
and ducks were downloaded from the GeneBank database,
and primers were designed according to the common
conservative region; the mitochondrial DNA primer 16S_ki
was used as control (Table 1) [14]. PCR reactions were
performed in volumes of 20 μL containing about 20 ng
extracted DNA, 10 pmol of forward and reverse primers, and
10 μL of PCR super mix (Bio-Rad, CA, USA). Temperature
profiles were as follows: 10min at 95°C followed by 30 cycles
of 30 s at 94°C, 30 s at 60°C, and 30 s at 72°C. Reactions were
completed with a final extension step of 7min at 72°C. -e
DNA of pigs, cattle, sheep, chickens, and ducks were used as
templates. -e fragments were amplified using the primers
GHR_1 and 16S_ki.-e size of the fragments was verified by
electrophoresis, followed by confirmation using conven-
tional Sanger sequencing.

2.2. Sample Preparation. Five samples containing muscle
tissues were prepared. -e samples were frozen at −70°C
for 24 h and then lyophilized with a lyophilizer to remove
moisture from the samples. -e freeze-dried samples were
ground into minced meat with a tissue grinder and then
mixed according to different mass ratios to obtain arti-
ficially mixed samples, 10 g for each sample. Sample S1
was an equal mixture of pigs, cattle, sheep, chickens, and
ducks. -e pork content in sample S2a–S2h was 80%, 50%,
20%, 10%, 5%, 1%, 0.5%, and 0.1%, respectively; the
remaining was equally mixed with four other kinds of
muscle tissues. Samples S3a–S3h, S4a–S4h, S5a–S5h, and
S6a–S6h contained tissues from cattle, sheep, chickens,
and ducks with different mass ratios, respectively; the
preparation method was the same as that for pork samples
(S2A–S2h).

2.3. DNA Isolation and NGS on the Illumina MiSeq Platform.
DNA of samples was extracted using a Qiagen’s meat DNA
extraction kit (Qiagen, Germany). A microspectropho-
tometer was used to determine DNA concentration to en-
sure that the A260/A280 value was between 1.8 and 2.0.
Fragments were amplified in separate PCRs with the primers
GHR_1 and 16S_ki. -e primers featured additional Illu-
mina adapter sequences at the 5’-end, including binding sites
for the hybridization of PCR products, binding sites for
sequencing primers, and poly(N)-regions for unique sample
identification. -e quality of PCR amplicons was analyzed
with agarose gel electrophoresis and/or spectrophotometric
analysis (NanoDrop spectrophotometer, -ermo Scientific,
MA, USA). Amplicons were applied in equimolar ratios to
bridge amplification and sequencing by synthesis on the
Illumina MiSeq platform (Illumina, CA, USA). -e samples
were submitted to two independent NGS runs to assess the
reaction’s repeatability.

2.4. Data Analysis. -e reads were obtained by NGS se-
quencing. -en, the same reads were given the same order
number and collected in a FastA document. A basic local
alignment search tool (BLAST) was used in the mentioned
FastA document to remove the primer sequences in the
reads. -e reads were collected later in another FastA
document, which were then taken to BLAST in the docu-
ment containing the sequences from tissues of pigs, cattle,
sheep, chickens, and ducks. -e reads matching the different
kinds of meats were counted.

3. Results

3.1. Mixed Samples and Sequence Variability. All the se-
quences could be amplified by the primers GHR_1 and
16S_ki.-e two primers amplified fragments of the expected
size for pigs, cattle, sheep, chickens, and ducks under the
same PCR conditions. No nonspecific products were de-
tected by agarose gel electrophoresis. -e amplified frag-
ments were confirmed by Sanger sequencing. -e results
showed that all the sequences were correct as expected.
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3.2. Analysis of NGS Sequencing Results of Mixed Samples.
Sample S1 was a mixture of pigs, cattle, sheep, chickens, and
ducks, and each meat accounted for 20% of the total mass.
Sample S1 was sequenced using the primer 16S_ki, and
14,977 reads were obtained. -e results of BLAST showed
60,008 reads (40.21%) in sheep, 59,762 reads (40.05%) in
pigs, 27,217 reads (18.24%) in cattle, 1735 reads (1.16%) in
ducks, and 478 reads (0.32%) in chickens. Using the primer
GHR_1, the results of NGS sequencing showed 105,942
reads in total. -ese included 59,639 reads (56.65%) in
ducks, 17,839 reads (16.94%) in sheep, 15,434 reads (14.66%)
in cattle, 7525 reads (7.94%) in pigs, and 4804 reads (4.65%)
in chickens (Figure 1). A small number of reads for geese and
horses were also identified, which might be due to the
contamination of the sample or the mismatch in the
sequencing.

-e results showed a significant difference between the
number ratio and the mass ratio of reads obtained by
sequencing with these two primers, which could not be
directly used for quantitative analysis. -e reason might be
the difference in DNA content or PCR amplification effi-
ciency in different kinds of meat. -e amplification effi-
ciency of the 16S_Ki primer was lower than that of the
GHR_1 primer in birds such as chickens and ducks, but had
high amplification efficiency in mammals (pigs, cattle, and
sheep). -e amplification efficiency of the GHR_1 primer
was the highest in ducks, but not different in mammals, and
the lowest in chickens.

3.3. NGS Sequencing Results of Mixed Samples with Different
Proportions. NGS sequencing was carried out on five
common meat samples with different mass ratios (80%–
0.1%), and the results of the sequencing of two primers were
compared (Tables 2 and 3). -e results showed that the
number of reads obtained by NGS sequencing changed with
the change in the content in the mixed samples of five kinds
of common meat with different proportions. -e change
trend was consistent, but the absolute number was not
proportional; therefore, it could not be used for quantitative
detection. -e amplification efficiency of the 16S_Ki primer
was higher in mammals (pigs, cattle, and sheep), and the
number of reads was significantly more than that of the
GHR_1 primer (more than 100 reads could be detected with
0.1% content). However, the amplification efficiency of birds
(chickens and ducks) was low in the 16S_Ki primer. When
the content of chickens and ducks was less than 10%, only a
small number of reads could be obtained, which was easily
confused with foreign pollutants and could not be detected
effectively. -e GHR_1 primer could get higher reads in
mammals and birds. When the content was more than 0.5%,
more than 1000 reads could be obtained, which could be
used for the qualitative detection of these 5 kinds of common

meat. To distinguish false positives such as sample con-
tamination or mismatching during sequencing, we regarded
the results with >100 reads as positive and those with <100
reads as false positive. -e 16S_Ki primer could detect
mammalian components as low as 0.1%, but could only
detect more than 10% of poultry components. -e GHR_1
primer could detect 0.1% of the four components except
chickens, and the detection rate of chicken components was
0.5%. -e results indicated that GHR_1 primer was more
suitable for the detection in these five kinds of common
meat.

4. Discussion

NGS sequencing has great application potential in species
identification. -e mitochondrial gene 16S rRNA was used
as the target gene, and the NGS method was used to identify
mammalian samples in mixed samples, with a detection
limit of less than 1% [15]. Illumina sequencing was used to
detect species DNA from mammals (pigs, cattle, horses, and
sheep) and birds (chickens and turkeys) in sausages, which
could distinguish species at the 1% level [16].

In this study, we tested the possibility of using Illumina
second-generation sequencing technology to identify com-
mon meats (pigs, cattle, sheep, chickens, and ducks) in meat
products. Adulteration identification of meat products is a
hot topic in society. -e low value meat, such as chickens,
ducks, and pigs, is often impersonated as high value meat
such as cattle and sheep, leading to a high concern world-
wide [17]. Besides, many kinds of meat may produce dif-
ferent kinds of harmful substances in the process of deep
processing [18]. At the same time, the sales scale of artificial
plant meat products is growing rapidly in the global food
market, and the taste and color are more and more close to
the traditional meat products [1, 19]. All these put forward
new demands for species identification of meat products.
-e advantage of NGS in species identification is that it can
identify multiple species simultaneously from mixed sam-
ples without any prior information [20]. Species information
can be obtained by matching the sequencing results with the
existing sequence data in the database using bioinformatics
methods. In this study, we did not consider the sequence
differences among individuals because the sequence dif-
ferences within species were less than that among species.
Using the program algorithm, we can combine the se-
quences with individual differences into one class for
analysis. According to the literature review [13], the target
genes used in the existing NGS identification methods are
mostly concentrated in mitochondrial DNA. Its main ad-
vantage is that mtDNA is rich in animal cells, is easy to
extract, and contains multiple DNA sequences with both
highly variable regions (differences between species) and
conserved regions (highly similar between species), which

Table 1: Primer pairs used for DNA amplification.

Name Primers (5’ to 3’): forward and reverse Amplified fragment (bp)
16S_ki GCCTGTTTACCAAAAACATCACCTCCATAGGGTCTTCTCGTCTT 243
GHR_1 CACCACAGAAAGCCTTACCACTACTGTGCTCACATAGCCAC 191
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are suitable for species identification, such as 16S RNA gene.
However, the mtDNA content in mammals is higher than
that in birds due to the significant difference in the mtDNA
content in different species, which makes the detection ef-
ficiency of the original detection method for birds low. False
negatives may be detected for a low content of bird com-
ponents in mixed samples. -e content of nuclear genome
monoclonal genes is the same in different species of cells,
and their number can directly reflect the number of cells. In
recent years, it has been widely used in droplet digital PCR
(DDPCR) quantitative detection of species [21–23] and has
strong application potential in NGS.

We designed the primer GHR_1 based on the auxin
receptor gene GHR; the mitochondrial DNA primer 16S_Ki
was also used in NGS.-e results showed that it was feasible
to use the Illumina MiSeq NGSmethod to identify two short
fragments of mitochondrial 16S RNA gene and nuclear
genome GHR gene. -e 16S_Ki primer can help detect as
low as 0.1% of mammalian components (pigs, cattle, and
sheep) in the samples, but the detection effect on poultry was
not good. However, GHR_1 primer could detect as low as

0.5% of the components in all the samples. -e limit of
detection depends largely on species composition. Due to
the amplification bias of PCR amplification, it is unlikely that
the quantification of species in the mixture will have con-
siderable accuracy. -e target site of the primer GHR_1 is
the nuclear genome monoclonal gene, which has a certain
quantitative detection potential. However, the present study
found that the number of reads detected by different species
had a certain correlation with the species content, but it was
not linear. -erefore, an accurate quantitative analysis could
not be carried out, and hence further research is needed.

A small number of other species are detected, probably
due to experimental pollution. -erefore, it is necessary to
distinguish the positive results from possible pollution. -e
16S_Ki primer had poor detection effect on poultry samples,
and the number of reads obtained was very low, which might
be confused with the background pollution. -e GHR_1
primer was better, and thousands of reads could be obtained
for 0.5% species, which was significantly different from the
background pollution. For NGS technology, DNA residues
detected in the sequencer may pollute the next detection;
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Figure 1: NGS sequencing results of mixed samples with an equal mass ratio.

Table 2: NGS sequencing results by 16S_Ki primer.

Number of reads for each species
Content (%) Pigs Cattle Sheep Chickens Ducks
80 127913 104762 189945 5143 17271
50 100808 40736 102967 2013 8933
20 59762 27217 60008 213 1735
10 31030 22441 30514 128 459
5 8925 4931 12858 4 21
1 1918 2587 4366 4 8
0.5 440 1443 3832 7 6
0.1 279 396 1957 1 4

Table 3: NGS sequencing results by GHR_1 primer.

Number of reads for each species
Content (%) Pigs Cattle Sheep Chickens Ducks
80 82930 96455 113943 80336 135320
50 30518 50870 76538 53362 81978
20 7551 15537 17831 4819 59849
10 5425 8989 13558 4217 37926
5 3387 5386 8555 1397 19547
1 2041 2485 3876 1863 2141
0.5 1740 1073 1399 1012 5841
0.1 162 1287 854 8 1253
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therefore, appropriate monitoring methods should be used.
In addition, DNA extraction, PCR, and NGS sequencing
should be carried out in different rooms to avoid accidental
contamination between samples.

In conclusion, NGS sequencing is a promising tool for
detecting possible species mixing in meat products. With the
decreasing cost of NGS detection equipment and services,
the advantages of NGS sequencing, such as high throughput
and nontargeting, have become more prominent. It may
become a routine method for species identification in food.
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A new determination method of 1-deoxynojirimycin (1-DNJ) in mulberry leaves based on ultraperformance liquid chroma-
tography-tandem mass spectrometry (UPLC-MS/MS) has been developed. Dried and crushed mulberry leaves’ sample was
extracted by MeCN-water solvent, purified by graphitized carbon black (GCB) and primary secondary amine (PSA) to remove
organic acids and pigments, and then analyzed after attenuation and filtration. /e calibration curve showed linearity in the
concentration range of 10–500 ng/mL, with the correlation coefficient of 0.998. Recoveries of spiked 1-DNJ at three fortification
levels ranged from 94.6% to 96.4%, with relative standard derivation below 1.2%. Additionally, the matrix effect was assessed as
negligible. Compared with methods by gas chromatography (GC) and liquid chromatography (LC) via real sample detection, the
proposed method acquired better stability and detection efficiency./ese results proved that this method has advantages of simple
operation, complete purification, small pretreatment loss, good precision and accuracy, and high determination specificity, which
is suitable for massive monitoring and precise quantitation of 1-DNJ in mulberry leaves.

1. Introduction

Mulberry branch (Ramulus mori) is a traditional Chinese
medicinal herb, and its leaves are the main food of silkworm.
It has been demonstrated that the intake of mulberry leaves
or their extracts could treat diabetes, and the main active
component is 1-deoxynojirimycin (1-DNJ) [1, 2], which is a
kind of alkaloid compound with nitrogen atoms. It was
found to be a potential α-glucosidase inhibitor by effectively
suppressing the transformation of carbohydrate in the hu-
man body, reducing the sugar content in blood, and
inhibiting the rapid rise of blood glucose and insulin se-
cretion after eating [3].

At present, the detection methods of 1-DNJ are mainly
based on gas chromatography (GC) and high-performance
liquid chromatography (HPLC) [4–6]. It is reported that 1-
DNJ concentrations in mature leaves varied from 0.1341 to

1.472mg/g of dry leaves among 132 mulberry varieties [7].
However, due to the characteristics of high water solubility
and weak absorbance, the methods based on GC and HPLC
need suitable derivatization processes [4–9], as well as the
method employed gas chromatography-tandem mass
spectrometry (GC-MS) [10]. /erefore, the complex pre-
treatment operation will lead to a long preprocessing time
and poor stability.

In recent years, ultraperformance liquid chromatogra-
phy-tandem mass spectrometry (UPLC-MS/MS) has been
widely used in the determination of trace amounts, such as
pesticides, veterinary drugs, and mycotoxins [11, 12]. It has
also been employed for the determination of 1-DNJ in
mulberry leaves, which can overcome the problem of de-
rivatization in the methods based on GC or HPLC and could
acquire lower detection limits [13–15]. However, consid-
ering the accuracy and repeatability of the method, how to
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effectively remove pigments such as chlorophyll, organic
acids, and other interfering substances which lead to the
matrix effect and instrument pollution is an important
problem for the detection of pesticide residues in vegetables
with dark green color [16], which is also applied to the
pretreatment process of mulberry leaves. Some materials for
purification were synthesized and found to be effective in
removing these matrix interferences. Organic acids could be
removed by silica microspheres bonded with amidogen,
which was upgraded and replaced by primary secondary
amine (PSA), while graphitized carbon black (GCB) has
better adsorbing capacity on chlorophyll [16]. Some solid-
phase extraction (SPE) methods based on these materials
have been widely used in the analysis of pesticide residues
and pollutants in vegetables and herbal plants [17–19], es-
pecially the quick, easy, cheap, efficient, rugged, and safe
(QuEChERS) method which was the most popular in this
field in recent years [20–22].

In this study, a massive monitoring and precise quan-
titation method of 1-DNJ in mulberry leaves based on LC-
MS/MS was established, including (1) determining a suitable
column and mobile phase proportion and acquiring optimal
instrument parameters for the LC-MS system; (2) deter-
mining the optimal extraction, purification, and other
pretreatment processes; (3) carrying out the methodology
validation and comparing with the existing GC and HPLC
methods. It is the first development for the determination of
1-DNJ in mulberry leaves with both LC-MS/MS system and
matrix interference purification.

2. Materials and Methods

2.1. Chemicals and Solvents. Mulberry leaves were collected
from Tai’an (Shandong Province, China). /e leaves were
harvested, cleaned, air-dried at 80°C for 12 hours, ground
into powder, and then passed through a 100-mesh sieve and
stored in a drying dish until used.

/e reference material of 1-deoxynojirimycin (1-DNJ)
was purchased from DASF Biological Co., Ltd. (Nanjing,
China) with the purity of 98%. Acetonitrile (MeCN) and
methanol (HPLC grade) were obtained from Merck
(Darmstadt, Germany), while graphitized carbon black
(GCB) and primary secondary amine (PSA) purification
powder were purchased from Agela Technologies (Tianjin,
China).

2.2. Standard and Sample Pretreatment. Stock standard
solutions (100 μg/mL): 10mg of 1-deoxynojirimycin stan-
dard was accurately weighted (accurate to 0.1mg) into a
100mL brown volumetric flask and diluted to volume with
methanol. /e working solution was prepared in the initial
mobile phase (MeCN: water� 1 :1) and diluted to prepare
the calibration curves at six concentration points of 500, 200,
100, 50, 20, and 10 ng/mL./e stock solution was kept at 4°C
before being used.

200 milligrams of the dried mulberry leaf powder was
weighed and put into a 50mL centrifuge tube. After 50mL of
30% MeCN/water solution was added, the sample was

sonicated in an ultrasonic bath for 5min, following cen-
trifugation at 7000 r/min for 5min at 4°C. Subsequently,
5mL of the supernatant was collected into a centrifuge tube
with 45mg PSA and 30mg GCB added and then centrifuged
at 10,000 r/min for 5min after being vortexed for 1min.
Finally, 1.0mL of purified supernatant was transferred to a
50mL volumetric flask and then diluted to volume with the
initial mobile phase solvent./e solution was filtered using a
nylon syringe filter (0.2 μm) before being injected into the
LC-MS system.

It should be mentioned that because negative samples
with no 1-DNJ were unavailable, in the tests for pretreat-
ment discussion, samples detected by the published method
[6] were employed as quality control (QC) samples;
therefore, the parameter “accuracy” was selected to exhibit
the relative detection accuracy in the comparing groups. We
thought it was a reasonable solution for this test.

2.3. LC-MS/MS Instrumentation. Samples were analyzed by
a set of liquid chromatography-tandem mass spectrometry,
equipped with the electrospray ionization source (ESI) and
triple quadrupole mass analyzer (ExionLC-Triple Quad
3500, USA). /e chromatographic separation was per-
formed with the SunShell C18 (4.6×100mm, 2.6 μm)
(ChromaNik, Japan) column using a flow rate of 0.35mL/
min at 40°C. Mobile phases A and B of HPLCwere deionized
water and MeCN, respectively, and a 5min gradient pro-
gram was employed: proportion of B was kept at 50% for
2min, then increased to 90% within 0.8min and kept for
1.1min, then suddenly decreased to 50% within 0.01min,
and kept to the end. /e injection volume was 2 μl. ESI was
performed in the positive ion mode with the 550°C interface
temperature. /e gas of curtain and ion sources 1 and 2 was
set at 10, 50, and 50 psi, respectively. /e capillary voltage
was set at 5,500V and the declustering potential of the
parent ion (m/z� 164) as 40 eV. Four ions with m/z as 146.0,
109.9, 128.0, and 69.0 were adopted as product ions, in
which the first one was employed as a quantitative ion, and
their collision voltages were 19, 22, 19, and 26 eV, respec-
tively, while the dwell time of each ion was set as 200ms.

3. Results and Discussion

3.1. Optimization for Instrument Analysis

3.1.1. Comparison of the Separation Column. /eoretically,
1-DNJ would be better separated by a column bonded with
amidogen because it was employed for the separation of
monosaccharides such as glucose and fructose with similar
structures in the HPLC system [23, 24], while it was used for
1-DNJ analysis and showed a good result in the previous
study [13]. In this study, some types of column were
employed and tested, including SunShell C18 (4.6×100mm,
2.6 μm), ZORBAX Eclipse Plus C18 (2.1× 50mm, 1.8 μm),
ACQUITY UPLC® BEH HILIC (2.1× 50mm, 1.7 μm), and
Pinnacle II Amino (4.6×150mm, 3 μm). As shown in
Figure 1, it was found that the SunShell C18 column can lead
to the retention time near 2min, earlier than the Pinnacle II
Amino column but later than other columns, while it could
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acquire a satisfactory peak shape and separation. /us,
SunShell C18 was chosen for the HPLC system in this study.

3.1.2. Mobile Phase and Solvents. Good separation perfor-
mance and perfect distribution status of target compounds
between the stationary and mobile phase would be achieved
by appropriate mobile phase and solvents, as well as in-
fluence on peak width [25, 26]. Due to the strong water
solubility of 1-DNJ, water would help eluting, while the
organic solvent would lead to 1-DNJ retaining on the sta-
tionary phase, which differ from distribution characters of
other substances. /erefore, the mobile phase proportion
and gradient elution procedures must be considered. For the
organic solvent, methanol and MeCN were chosen for the
test, and we found that using MeCN would acquire a better
peak shape, smaller column pressure, and better stability of
injection. /us, MeCN was selected.

Furthermore, the proportion of the initial mobile phase
and gradient elution procedure were optimized. It was found
that a higher proportion of water at initial would lead to
retention time earlier than 1min and tend to bring matrix
effect, which was unsatisfactory. However, higher ratio of the
organic solvent would make matrix interferences be eluted
more earlier. /us, we set up several combinations of them
to test the same samples, employing retention time, peak
area, and full width at half maximum (FWHM) as pa-
rameters. It is shown in Table S1 that, with the increase of the
proportion of the organic phase, the retention time de-
creased, and the peak area value of the target increased, while
the FWHM that is closely related to column efficiency
showed a gradual decrease. Considering these factors, the

mobile phase of water and MeCN with equal proportion was
selected for this method. Moreover, the imino group in the
1-DNJ structure would lead to the cationic characteristic, so
it is necessary to provide hydrogen ions for the ionization
process by adding formic acid. We also verified the per-
formance while adding 0.1% formic acid, finding that the
response (peak area) increased by 22.6%, and the stability
difference was also obvious. Finally, optimal initial of the
mobile phase, elution gradient, and solvent for determina-
tion were confirmed.

3.1.3. Optimization of Instrument Parameters. Standard
solution of 1-DNJ was injected directly into mass spec-
trometry by using the syringe pump and detected by the ESI
source, acquiring a higher response in the positive mode
than the negativemode. Strong response of the precursor ion
appeared with m/z of 164.0, while product ions of m/z 146.0,
109.9, 128.0, and 69.0 showed relatively higher response.
/us, in the multiple reaction mode (MRM), based on the
difference of response, m/z 146.0 was reasonable to be
applied as the quantitation ion, while the other 3 ions were
employed as qualification ions. From the overlaid ion
chromatogram shown in Figure 2, we can see that the
monitoring parameters can achieve an ideal absolute re-
sponse value and relative response ratio.

3.2.Optimization on the Pretreatment Process andParameters

3.2.1. Extraction Efficiency of Different Solvents. Mixed
MeCN-water was employed as the extraction solvent in this
study. We compared the extraction effect of different
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Figure 1: Real sample test chromatograms for the quantitation ion of 1-DNJ with the four types of column (c � 500 ng/mL). Column
1: Agilent ZORBAX Eclipse Plus C18, 2.1 × 50mm 1.8 μm, column 2: Waters ACQUITY UPLC® BEH HILIC, 2.1 × 50mm 1.7 μm,
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proportions of MeCN in the extraction solvent (0%, 10%,
30%, 50%, 80%, and 100%), as shown in Figure 3./e highest
extraction efficiency was achieved, while the MeCN content
was 30%. Because of the strong water solubility of 1-DNJ, a
higher proportion of water in the extraction solvent was
needed, but it still needs some organic solvent to assist
extraction.

3.2.2. Research on Purification. /ere are many coextracts in
plant foods, including organic acids and chlorophyll [16].
/ese substances brought into the LC-MS system will not
only cause the contamination of the HPLC system, ion
source, and quadrupole mass analyzer but also lead to matrix
effect and matrix interference, which will affect the accuracy
of determination [27, 28]. /us, purification for the ex-
traction solvent was set as a key point of this study. Some
processes applied in pesticide residue determination were

referred [29, 30], including disperse solid-phase extraction
(d-SPE) based on GCB and PSA, as well as solid-phase
extraction (SPE) based on cation exchange, and comparison
was also taken among different cleanup procedures about
the performance and efficiency. From Figure 4, we can see
that average accuracies by d-SPE, SPE, and no cleanup
process were 89.6%, 62.4%, and 106.3%, respectively. Al-
though the accuracy of the no cleanup group seems higher,
there was an interference peak that did not completely
separate with the target peak, which seriously affected
quantitation. For the group of SPE, strong water solubility of
1-DNJ leads to considerable loss in the eluting process, and
the repeatability was not satisfactory.

Furthermore, dosages of GCB and PSA were discussed.
We set the adding amount of both as 10mg, 20mg, 40mg,
and 80mg in the orthogonal test to compare the parameters
of accuracy, stability, and visual purification effect. It was
found that accuracy of 1-DNJ improved with increasing
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adding amount of PSA, yet it showed little decrease when the
adding amount of PSA was more than 40mg. /is may be
because PSA could effectively adsorb interfering organic
acids rather than alkaline compounds such as 1-DNJ, thus
reducing matrix interference in mass spectrometry analysis.
For GCB, similar regularity was found, but the accuracy
significantly decreased while adding more than 40mg. Due
to the cyclic planar structure in 1-DNJ molecules, the target
would be more or less adsorbed by GCB though there is no
conjugated double bond. In terms of visible color, it is shown
in Figure 5 that adding more than 20mg GCB had little
effect, indicating that 20–30mg GCB added could adsorb
most chlorophyll in the matrix extraction solvent.

Combining with the accuracy reference of the orthogonal
test data in Table S2 and Figure 6, the amount of 45mg PSA
and 30mg GCB was determined.

Purification for the extraction solvent will lead to results,
the obvious one of which is the change of the acquired ion
chromatogram. /e extraction ion chromatograms are
shown in Figure 7, including purified sample extraction
solvent and unpurified one for two samples. It can be seen
that the signal of interferences following the peak of 1-DNJ is
markedly improved, which would help for the accuracy of
quantitation. /is is the important reason for employing the
purification process.

3.2.3. Dilution Ratio. /e contents of 1-DNJ in mulberry
leaves were at the level of thousandth (w/w) [13, 31]. For LC-
MS analysis, the optimal linear range was 10–500 ng/mL in
this study. /us, the dilution ratio of the extraction process
was set at about 100 times, which means 0.5 g mulberry
leaves were extracted with 50mL extraction solvent and
diluted by 50 times during purification and dilution.

3.3. Method Validation. Although the content of 1-DNJ in
mulberry leaves was relatively high, the validation for limits
of detection and quantitation (LOD and LOQ) was carried
out completely in this study. Based on 3 times and 10 times
of signal-to-noise ratio, they were acquired as 4 ng/mL and
10 ng/mL, respectively, and the corresponding method de-
tection limit (MDL) and method quantitation limit (MQL)
were 20mg/kg and 50mg/kg, respectively. For standard
solvents with concentration higher than 500 ng/mL,
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considerable response attenuation was found, which may be
because of competitive soft ionization of 1-DNJ in the ESI
source, so the linear range of 10–500 ng/mL was determined.
Six concentration points of 10, 20, 50, 100, 200, and
500 ng/mL were chosen for the calibration curve, and the
linear equation was calculated as Y� 1.3342e5X, with cor-
relation coefficient as 0.998. Precision and accuracy were
also investigated by spiking in the positive QC sample, the 1-
DNJ concentration of which was detected by this method as
0.78mg/g. Spiked concentrations of 1-DNJ were 0.1, 0.5, and
2mg/g, respectively, with six parallel samples for each
concentration. Recoveries for the three levels were 96.4%,
95.7%, and 94.6%, respectively, while the relative standard

derivations (RSDs) were 0.9%, 1.2%, and 0.9%, respectively.
/e above validation data were satisfactory, indicating good
method applicability.

Considering that negative samples of the mulberry leaf
were hard to acquire, much less to prepare matrix standard
solution, we investigated the matrix effect. 100 and 500 ng/
mL levels of 1-DNJ were spiked into the test solution of
positive samples that had already acquired response peak
area to prepare matrix standard solution. /e difference
value of peak area before spiking and after spiking was
employed as the peak area of spiked matrix standard so-
lution. /e matrix effect (ME) value was calculated by the
equation ME�AMatrix/As, where AMatrix is the peak area of

GCB 80mg

GCB 40mg

GCB 20mg

GCB 10mg

PSA
10mg

PSA
20mg

PSA
40mg

PSA
80mg

Figure 5: Visual color comparison of the orthogonal test for the adding amount of GCB and PSA.
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spiked matrix standard solution and As is the peak area of
pure solvent standard solution [19].

/e ME was 0.91 and 0.93, respectively, at the con-
centration level of 100 and 500 ng/g, which shows little
difference. /e matrix effect value was considered to be
negligible effect at the range of 0.9–1.1 in the previous study
[32]. So, preparing standard solution by initial mobile phase
solvent is suitable for this method.

3.4. Investigation of Method Applicability. In this study,
thirteen mulberry leaf samples were collected from eight
areas of China, and the information is shown in Table S3. All
the samples were detected by this method and other two
methods based on GC and HPLC, respectively [4, 5]. Every
sample was set three parallel tests. /e results are also listed
in Table S3./ere are some different analysis results between
the three detection methods. Data of the GC group seem
generally lower, and data of the HPLC group seem partially
higher and with bad repeatability./e analysis results by this
method showed best repeatability and most of them dis-
tributed fall in between the other two groups. /is is mainly
because both methods based on GC and HPLC required
derivatization of 1-DNJ; thus, the uncertain efficiency and
stability of derivatization lead to the test performance worse
than the present study method. For this method, the RSDs of
13 samples ranged from 0.5% to 1.5%, indicating that this
method is relatively mature and stable.

4. Conclusion

In this study, a new analysis method for the determination of
1-DNJ in mulberry leaves based on LC-MS was developed.
Optimal parameters were determined by testing the

instrument analysis condition, while matrix interference was
effectively reduced and satisfactory cleanup performance
was acquired by studying the procedure process, especially
disperse purification based on GCB and PSA. MDL and
MQL were verified at 20 and 50mg/kg, respectively, and this
method exhibited good accuracy and precision based on
different levels of spiked recovery test, while the matrix effect
was found to be negligible. Comparing with the published
methods detected by GC or HPLC, this developed method
has solved the problems such as poor repeatability and
quantitative inaccuracy brought by derivatization and im-
proved the detection efficiency obviously. Furthermore, the
developed approach can be used for massive monitoring and
precise quantitation of 1-DNJ in mulberry leaves, and it has
important application value and innovation significance.
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Objective. To investigate and assess the risk of sulfonamide residues in livestock and poultry products in Shijiazhuang and
determine the risk level of the dietary intake of sulfonamides, in order to provide the basis for the safety production, consumption,
and safety supervision of livestock products.Methods. Totally, 1200 samples of livestock products were collected, and the samples
were detected by high-performance liquid chromatography-tandem mass spectrometry. Combined with the data of Chinese
residents’ dietary survey in 2015, a nonparametric probability assessment model was constructed to assess the risk of sulfonamides
in the livestock and poultry products of Shijiazhuang residents by using the professional risk assessment software @Risk. Risk
assessment of the consumption of sulfonamide veterinary drugs in livestock and poultry products of Shijiazhuang residents was
conducted. Results. Of the 1200 main livestock products tested, 8 were found to have sulfonamide residues, which were mainly
sulfadiazine residue, sulfadiazine, and sulfadimethoxy, with the detection rates of 0.17%, 0.25%, and 0.25%, respectively. *e
average residual concentrations were 0.66, 0.50, and 0.50 g/kg, respectively, which were lower than the national residue limit of
China (100 μg/kg). *e food safety index was 2.95×10−4, which was far less than 1. Conclusion. *e risk of residual exposure to
sulfonamides in livestock and poultry meat in Shijiazhuang is very low and is at a very safe level. However, it is still necessary to
strengthen the supervision of animal products in order to reduce the residues of veterinary drugs in the human body.

1. Introduction

In recent years, livestock and poultry products, such as meat,
eggs, and milk, are taking an increasing proportion in the diet
of Chinese consumers, and food quality has received extensive
concern throughout the society. Among others, sulfonamide
residue is a critical influencing factor of livestock and poultry
product quality. Sulfonamides are a type of synthetic drugs
mainly used in livestock production and veterinarian clinical
practices and are very effective to cure and prevent bacterial
diseases and parasitic diseases [1]. Sulfonamides have made
remarkable contribution to the development of stock farming
industries ever since their extensive application, are especially
featured by affordable cost, easy application, wide antimi-
crobial spectrum, and stable properties, and provide im-
proved antimicrobial activity and bactericidal effect when

used together with synergists [2]. Sulfonamides have a pe-
culiar p-aminobenzenesulfonamide structure and compete
with para-aminobenzoic acid for dihydrofolate synthetase in
the body metabolism, preventing the synthesis of folic acid in
the bacteria [3]. However, sulfonamides have a slow meta-
bolism and long stay in the body, which result in excess
residues in the livestock and poultry. Long-term intake of the
animal products with excess sulfonamide residues may cause
the building up of sulfonamide residues in the human body
and cause a variety of toxic effects, such as hemopoietic
system disorder, allergy, and cancer [4]. In the US and EU,
laws and standards require that the maximum residue limit of
sulfonamides in animal source foods is 100 μg/kg [4, 5], and in
China, the maximum residue limit of sulfonamides in the
animal muscle and liver is also 100 μg/kg (MOA An-
nouncement No. 235) [6].
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Currently, many research studies are focused on the risk
assessment of pesticide residues in vegetables and fruits [7, 8],
but the research on animal-based livestock and poultry
products is mainly focused on the detection methods. *ere
are also many research studies on the livestock and poultry
product quality assurance and tracing systems as well as the
detection methods [9, 10]; however, only a small number of
the research studies are aimed to report and study the risk
assessment of sulfonamide residues in livestock and poultry
products. *is research studies the sulfonamide residues and
risk levels in livestock and poultry products available and
marketed in Shijiazhuang, by taking 1,200 random samples of
pork, beef, mutton, and chicken in Shijiazhuang, on the basis
of livestock and poultry product quality monitoring findings
in Shijiazhuang between 2015 and 2017 and by taking the 2015
Report on Chinese Resident’s Chronic Disease and Nutrition
and dietary guidelines into overall consideration and aims to
provide data reference and scientific basis for resident’s
consumption and scientific supervision.

2. Materials and Methods

2.1. Sampling. Totally, 1,200 samples, in 600 g each, of pork,
beef, mutton, and chicken products were collected from the
markets of Shijiazhuang. *e samples collected are products
available in various markets: supermarkets, open fair, and
slaughter companies, throughout the 18 counties and 6
districts in Shijiazhuang. After samples were collected, they
are homogenized and stored in a refrigerator at −20°C. All
samples were collected in accordance with Sampling Cri-
terion for the Monitoring of Veterinary Drug Residues in
Animals and Animal Products (NY/T 1897–2010) [11].

2.2. Reagents and Instruments

2.2.1. Reagents and Consumables. Methyl alcohol and ace-
tonitrile (chromatographically pure, Fisher Scientific);
n-hexane and n-propyl alcohol (analytically pure, Tianjin
No.1 Chemical Reagent Factory), methanoic acid, acetic acid,
ethyl acetate, sodium dihydrogen phosphate, and anhydrous
sodium sulfate (analytically pure, Shenyang No. 1 Reagent
Factory); solid-phase column extractor (Alumina-B SPE ex-
tractor, Waters); etc. were used. Experiment water is the
ultrapure water produced by the Milli ultrapure water system.

2.2.2. Reference Material. *e reference materials in this
research are sulfonamides, which mainly and specifically
include sulfadiazine (SD), sulfamerazine (SM1), sulfame-
thazine (SM2), sulfamonomethoxine (SMM), sulfadime-
thoxine (SDM), sulfamoxol, sulfamethoxazole (SMZ),
sulfisoxazole (SIZ), sulfaquinoxaline (SQX), and sulfa-
chloropyridazine (SCP) (purity ≥99.0%, China Institute of
Veterinary Drug Control).

2.2.3. Instruments. A 5982–9110 solid-phase extraction de-
vice, 1290–6410B high-performance liquid chromatography-
tandem mass spectrum analyzer (Agilent); 3K30 high-speed
freezing centrifuge (SIGMA); RE-52AA rotary evaporator

(Shanghai Yarong), N-EVAP112 Termovap sample concen-
trator (Organomation); ultrapure water system (Millipore);
SK-1 vortex mixer (Jiangsu Jintan); and BSA2202S electronic
balance (Sartorius) were used.

2.3. Testing Method. Samples are tested in accordance with
Determination of Sulfonamide Residues in Edible Tissues of
Animal, Liquid Chromatography-Tandem Mass Spectrome-
try [12] (MOA Announcement No. 1025-23-2008) and
reference resources of Rapid analysis of fifteen sulfonamide
residues in pork and fish samples by automated online solid
phase extraction coupled to liquid chromatography-tandem
mass spectrometry [13] for the sulfonamide levels, and the
results obtained from the tests are evaluated in accordance
with the methods provided in the standard.

For all results reported as nondetectable, the data are
processed in accordance with the principles provided in
Session 2 of GEMS/FOOD regarding “reliable evaluation of
contamination in food”: data of the nondetectable samples
should be substituted by the Limit of Detection (LOD) when
more than 60% data are “not detected” or substituted by 1/
2LOD when 60% and less data are “not detected” [14–16].

2.4. Average Intake of Livestock and Poultry Products by
Consumer Groups in Shijiazhuang. As for the intake of
animal source food, the Joint FAO/WHO Expert Committee
on Food Additives (JECFA) is currently using a very con-
servative artificial estimation method against reference food,
which assumes that a person of 60 kg body weight consumes
300 g animal/poultry muscle, equivalent to the upper limit of
daily intake of animal tissue and products [17]. However, in
this research, as shown in Table 1, the mean intake of animal
products by consumers in Shijiazhuang is based on the 2015
Report on Chinese Resident’s Chronic Disease and Nutrition
[18], according to which the mean daily intake of animal/
poultry food by each Chinese resident is 89.7 g, including
64.3 g pork, 8.2 g other animal products, 2.5 g internal or-
gans, and 14.7 g poultry food.

2.5. Mean Body Weight of Populations in Shijiazhuang.
*e mean body weight of populations in Shijiazhuang is
based on the 2015 Report on Chinese Resident’s Chronic
Disease and Nutrition, and this research only studies and
evaluates the sulfonamide residues in animal/poultry food of
adult consumers aged 18 or above and groups the research
objects by age, place (urban or rural), and gender, on the
basis of the reference intake of Chinese residents and food
consumption models [19]. *e body weight data of these
target consumers are shown in Table 2.

2.6. Risk Assessment Methods. In accordance with the defi-
nition and procedures provided by the Codex Alimentarius
Commission (CAC) for risk assessment of contaminants in
foods, this research assesses the safety of animal/poultry
products using the mean value of Index of Food Safety (IFS)
[20]. *e research is conducted on the basis of the Acceptable
Daily Intake (ADI, in μg/(kg·bw·d)) provided by the Ministry
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of Agriculture and Rural Affairs for sulfonamides, adopts the
internationally adopted probability assessment methods, i.e.,
a Monte Carlo simulation-based @Risk7.5 risk assessment
software system in random simulations, by which the daily
sulfonamide intake is obtained as the product of the daily
intake of animal/poultry products multiplied by the sulfon-
amide residues, and estimates the exposure of main pop-
ulation groups in Shijiazhuang, both urban and rural, to the
veterinary antibiotics through diet [21].

*e evaluation and calculation formula is [22]

EDIc � 􏽘 Ri × Fi( 􏼁,

IFSc � 􏽘
Ri × Fi × f

SIc × bw
,

(1)

where IFSC is the food safety index of sulfonamide C; EDIC is
the estimated daily intake of sulfonamide C; i is the type of
livestock and poultry product; Ri is the residue level of sul-
fonamide C in product i, expressed as μg/kg; Fi is the per-
capita daily intake of livestock and poultry product i,
expressed as kg/person·day; bw is the body weight, expressed
as kg; and f is a correction factor. f� 1, if the ADI, RFD, and
PTDI are adopted as the safe intake data. SIC is the safe intake
and obtained from the ADI, PTWI, or RFD data depending
on the chemicals concerned. In this research, the evaluation is
based on the Acceptable Daily Intake (ADI, in μg/(kg·bw·d))
provided by the Ministry of Agriculture and Rural Affairs for
veterinary drugs [6, 23]. According to related standards, the
ADI for sulfonamides is, respectively, 10, 20, and 50 μg/(kg·d),
among which the ADI for sulfadimidine is 50 μg/(kg·d). Some
internationally adopted ADI values are also taken into con-
sideration; specifically, the ADI for sulfadimethoxine is set as
6 μg/(kg·d) by referring to the internationally adopted 6μg/
(kg·d) ADI of sulfamonomethoxine.

*e IFS value, if smaller than 1, means that the sul-
fonamides detected may cause insignificant harm to human
health and the risks are acceptable, and if the IFS value is
larger than 1, it means that the harm of sulfonamides de-
tected to human health is unacceptable and the risk control
procedures should be activated [24].

3. Analysis and Results

3.1. Sulfonamide Residues in Livestock and Poultry Products.
As shown in the Table 3, sulfonamide residues were detected
in 8 out of 1,200 livestock and poultry meat samples col-
lected from markets in Shijiazhuang, and the residues
mainly include sulfamethazine, sulfamonomethoxine, and
sulfadimethoxine, with detection rate being 0.17%, 0.25%,
and 0.25%, and on the other hand, sulfadiazine, sulfamer-
azine, sulfamoxol, sulfamethoxazole, sulfisoxazole, sulfa-
quinoxaline, and sulfachloropyridazine were not detected.
*e mean residue concentration of sulfadimidine, sulfa-
monomethoxine, and sulfadimethoxine detected in the
animal/poultry products is 0.66, 0.50, and 0.50 μg/kg, re-
spectively, which are much lower than the maximum residue
limit of 100 μg/kg as stipulated by national standards.

3.2. RiskAssessment on Sulfonamide Residues in Livestock and
Poultry Products. *e risks of exposure to sulfonamides by
residents in Shijiazhuang are assessed in accordance with the
data of mean body weight and intake of main food by Chinese
residents in 2012 as provided in the 2015 Report on Chinese
Resident’s Chronic Disease and Nutrition. As shown in the
Table 4, it is found through calculation that based on the
intake of main food by Chinese residents, the per-capita daily
exposure of Shijiazhuang residents to sulfonamide residues in
food is 0.4459 μg, specifically 0.4897 μg for urban residents
and 0.4037 μg for rural residents; and on the other hand, if
calculated on the basis of per-capita daily consumption of
300 g animal/poultry muscle as provided by JECFA, the per-
capita daily exposure of Shijiazhuang residents to sulfonamide
residues in animal/poultry products is 1.4915 μg. *e results
obtained by both methods are far below the maximum ac-
ceptable daily intake of 30 μg. According to the second cal-
culation method, the IFS is 2.95×10−4 and 1.02×10−3,
respectively, which are much lower than 1. *e results show
that the sulfonamide residues in animal/poultry products
available in Shijiazhuang market are at very low level and are
fairly safe. *e index of food safety of sulfonamides in animal
products of Shijiazhuang is shown in Table 5.

Table 2: Average weight of Chinese residents (kg).

Group (age)
Nationwide City Countryside

Male + female Male Female Male + female Male Female Male + female Male Female
18∼44 62.00 67.00 56.70 63.10 68.70 57.20 61.00 65.30 56.30
45∼59 63.10 66.60 59.50 64.50 68.50 60.40 61.50 64.40 58.40
≥60 58.90 62.40 55.60 61.00 61.00 57.40 56.70 60.00 53.60
Sum 61.80 66.20 57.30 63.20 68.00 58.20 60.40 64.30 56.30

Table 1: Main food intake of Chinese residents in 2012 (g/d•person).

Group Nationwide City Countryside
Pork 64.3 68.8 59.9
Cattle/sheep 8.2 10.5 6.0
Gut 2.5 2.9 2.2
Chicken 14.7 16.3 13.1
Sum 89.7 98.5 81.2
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4. Discussion

It is found in the research that the toxic reaction of chemical
contaminants is highly related to the absolute amount into
the human body [25], and therefore, the actual intake of
certain chemical contaminants into the body and its com-
parison with the safe intake amount is used to assess whether
the food is safe or not, the Index of Food Safety (IFS) is used
to describe whether the chemical contaminants taken into
human body from food can cause harm to the human body,
and the calculated results are used to assess the safety in-
fluence after consuming the food, so that the results are used
to guide the risk control practice and actions are taken
accordingly to lower the risks [26]. IFS takes the food
consumption into overall consideration and reflects the level
of food contamination and the harm to consumers by the
contaminated food. *rough the residue monitoring and
dietary exposure assessment, we can effectively assess the
level of harm to human health by certain contaminants in
the food.

In this research, the IFS is used to compare the EDI of
sulfonamide residues in animal/poultry products with the
ADI values provided by the Chinese Ministry of Agriculture
and Rural Affairs for sulfonamides [27], in order to assess the

potential risk level and food safety. In this research, there are
some uncertainties in the calculation of exposure levels of
sulfonamides; for example, a small amount of plucks are also
included as animal/poultry meat in the diet of Chinese
residents, besides the detection is mainly targeted at the
sulfonamides as required by the testing method, while no
detection and analysis are made for other sulfonamide-type
veterinary drugs available in themarket.*e researchmainly
studies and assesses the exposure and risks of adults aged 18
and above; however, infants, children, and teenagers are not
considered in the research. Given that the Chinese regula-
tions on ADI of sulfamonomethoxine and sulfadimethoxine
are not yet available, the evaluation is based on the inter-
nationally adopted ADI [23] of 6 μg/(kg·d), in order to
ensure the stringency of the risk assessment.

Guan et al. [2] reported that, in the risk assessment on
sulfonamide residues in pork in Heilongjiang, sulfametha-
zine residue is detected in only 1 of the 100 samples, with a
detection rate of 1%, but the result is still below the max-
imum residue limit allowed by related national standards.
Zhang et al. [3] reported that, in the studies on cumulative
exposure to sulfonamides in chicken products by 10 typical
populations in a Guangdong city, residues of sulfaqui-
noxaline, sulfamethazine, sulfamonomethoxine, and

Table 3: Monitoring result of sulfonamide residues in animal products.

Sulfonamides Sample
numbers

Detectable
numbers

Detectable
rate/%

Excessive
numbers

Excessive
rate/%

Min/
(μg/kg)

Max/
(μg/kg)

Average/
(μg/kg)

SD/
(μg/kg)

Sulfamethazine 1200 2 0.17 0 0 ND 26.30 0.66 0.40
Sulfamonomethoxine 1200 3 0.25 0 0 ND 4.65 0.50 0.12
Sulfadimethoxine 1200 3 0.25 0 0 ND 3.93 0.50 0.10

Table 4: *e exposure of sulfonamides in animal products (μg/d▪person).

Group Nationwide City Countryside
Min 0.0897 0.0985 0.0812
Middle 0.4459 0.4897 0.4037
Max 7.2146 7.9224 6.5309
JECFA 1.4915

Table 5: *e index of food safety of sulfonamides in animal products of Shijiazhuang.

Group Age
Nationwide City Countryside

Male + female Male Female Male + female Male Female Male + female Male Female

Min

18∼44 1.35×10−4 1.26×10−4 1.46×10−4 1.45×10−4 1.35×10−4 1.58×10−4 1.25×10−4 1.18×10−4 1.35×10−4

45∼59 1.35×10−4 1.25×10−4 1.48×10−4 1.46×10−4 1.34×10−4 1.61× 10−4 1.24×10−4 1.16×10−4 1.35×10−4

≥60 1.33×10−4 1.26×10−4 1.41× 10−4 1.43×10−4 1.34×10−4 1.52×10−4 1.23×10−4 1.18×10−4 1.30×10−4

Sum 1.42×10−4 1.34×10−4 1.51× 10−4 1.51× 10−4 1.42×10−4 1.60×10−4 1.34×10−4 1.26×10−4 1.41× 10−4

JECFA 1.40×10−4

Middle

18∼44 2.94×10−4 2.72×10−4 3.21× 10−4 3.17×10−4 2.91× 10−4 3.50×10−4 2.70×10−4 2.53×10−4 2.93×10−4

45∼59 2.89×10−4 2.74×10−4 3.06×10−4 3.10×10−4 2.92×10−4 3.31× 10−4 2.68×10−4 2.56×10−4 2.83×10−4

≥60 3.09×10−4 2.92×10−4 3.28×10−4 3.28×10−4 3.28×10−4 3.49×10−4 2.91× 10−4 2.75×10−4 30.8×10−4

Sum 2.95×10−4 2.75×10−4 3.18×10−4 3.17×10−4 2.94×10−4 3.44×10−4 2.73×10−4 2.57×10−4 2.93×10−4

JECFA 1.02×10−3

Max

18∼44 3.31× 10−3 3.07×10−3 3.62×10−3 3.58×10−3 3.28×10−3 3.94×10−3 3.05×10−3 2.85×10−3 3.30×10−3

45∼59 3.26×10−3 3.09×10−3 3.45×10−3 3.50×10−3 3.29×10−3 3.74×10−3 3.02×10−3 2.89×10−3 3.18×10−3

≥60 3.49×10−3 3.29×10−3 3.70×10−3 3.70×10−3 3.49×10−3 3.93×10−3 3.28×10−3 3.10×10−3 3.47×10−3

Sum 3.32×10−3 3.10×10−3 3.59×10−3 3.57×10−3 3.32×10−3 3.88×10−3 3.08×10−3 2.89×10−3 3.30×10−3

JECFA 3.42×10−3
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sulfadiazine were detected in 9 out of 100 chicken samples;
however, none of the residues detected are above the
maximum allowed limit and that the IFS is far lower than 1.
*e abovementioned research shows that sulfonamide
veterinary drugs are still widely used in the Chinese livestock
and poultry farming industry and the use of sulfonamide
veterinary drugs varies from region to region. *is research
finds that no animal/poultry products were detected with
sulfonamide residues higher than the national maximum
limit in recent years, besides the IFS obtained, respectively,
on the basis of either the main food intake data and body
weight data of Chinese residents and on the basis of the
JECFA standard food consumption data is much smaller
than 1, which indicates that the sulfonamide residues in
animal/poultry products in Shijiazhuang will not cause harm
to human health and are acceptable. However, it is found in
the research that sulfamethazine, sulfamonomethoxine, and
sulfadimethoxine residues were detected in the animal/
poultry products, despite that the residue concentration
remain much lower than the national maximum limit and
will not cause any harm to human health, and these residues
remain potential risks that may influence the food products
from pork. As such, the governmental authorities should pay
sufficient attention to such potential risks and strengthen the
food safety supervision, to ensure the quality and safety of
the animal/poultry products.
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Flammulina velutipes is the fourth largest edible fungus in China with high nutritional value. In this paper, ultrahigh-performance
liquid chromatography tandem hybrid quadrupole-Orbitrap mass spectrometry (UPLC-Q-Exactive-Orbitrap MS) was used to
identify the secondary metabolites of F. velutipes. )e metabolites were identified by comparing the retention time, accurate
molecular weight, andMS2 data with standard databases of mzVault and mzCloud (compound: 17,000+) and BGI high-resolution
accurate mass plant metabolome database (plant metabolite: 2500+). Finally, 26 secondary metabolites were preliminarily
identified, including flavonoids, phenylpropanoids, organic acids, and steroids.

1. Introduction

Flammulina velutipes is also known as golden needle
mushroom and winter mushroom with high nutritional
value and medicinal value. According to “Analysis of the
National Statistical Survey Results of Edible Fungi in 2019,”
F. velutipes is the fourth largest edible fungus in China with
an output of 2.589,600 tons in 2019. F. velutipes contains a
variety of nutrients, including proteins, carbohydrates,
mineral elements, vitamins, and crude fibers [1]. F. velutipes
contains eighteen amino acids, including eight essential
amino acids, of which lysine content is 1.09%. It has been
proved that lysine and its derivatives can promote children’s
growth and development and enhance memory. )erefore,
F. velutipes is also known as “Zengzhi mushroom” [2, 3]. It
can not only be used as functional food but also has great
potential in the development of medical and health products
[4]. F. velutipes contains many active components, including
polysaccharides, proteins, terpenoids, phenolic acids, and
flavonoids [4–10]. Ishikawa et al. isolated and identified

sesquiterpenoids enokipodins A-D with the cyathane skel-
eton from F. velutipes [7, 8]. Five flavonoids were isolated
and identified from F. velutipes by Hu et al. [10], named
epicatechin, phillyrin, apigenin, kaempferol, and for-
mononetin. F. velutipes has many pharmacological effects,
such as antitumor [4], regulating immunity [4, 11], im-
proving memory [5], antibacterial [8], antioxidation [12, 13],
protecting the kidney [12], protecting the liver [14], neu-
roprotection [15], regulating intestinal flora [16], and im-
proving constipation [17].

Ultrahigh-performance liquid chromatography tan-
dem hybrid quadrupole-Orbitrap mass spectrometry
(UPLC-Q-Exactive-Orbitrap MS) is a new type of liquid
chromatography-mass spectrometry developed in recent
years; it is also one of the techniques commonly used in
metabolomics with the characteristics of high resolution,
good quality and precision, and strong qualitative and
quantitative abilities. It is used for the qualitative analysis
of Chinese medicinal materials and can realize the rapid
identification of various components [18]. At present,
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there are few systematic studies on the secondary me-
tabolites of F. velutipes. )erefore, in this paper, the
secondary metabolites of F. velutipes were investigated to
provide a reference for research on the chemical com-
position of F. velutipes.

2. Materials and Methods

2.1. Materials. Fruiting bodies of F. velutipes were obtained
from Henan Longfeng Industrial Co., Ltd. )e specimens
(no. 2020-09-09) were saved at the National Research and
Development Center of Edible Fungi Processing Technol-
ogy, Henan University.

2.2. Reagent. d3-Leucine, 13C9-phenylalanine, d5-trypto-
phan, and 13C3-progesterone were used as the internal
standard. Both methanol (A454-4) and acetonitrile (A996-4)
were of mass spectral grade, which were purchased from
)ermo Fisher Scientific, USA. Ammonium formate (17843-
250G) was obtained from Honeywell Fluka, USA. Formic
acid (50144-50mL) was obtained from DIMKA, USA.

2.3. Preparation of the Sample. Dried fruiting bodies of
F. velutipes were crushed by using the grinding machine. 200 g
of F. velutipes powder was immersed with 50% ethanol
(2000mL) for 2 times at room temperature, each time for 3
days. )e filtrate was lyophilized to obtain 87.2 g extract. )e
yield was 43.6%. 50mg extract of F. velutipes was weighed, and
then the sample was managed according to Yang et al. [19].

2.4. Chromatographic Conditions. )e type of column was
C18 Hypersil GOLD aQ (100mm ∗ 2.1mm, 1.9 μm). )e
mobile phases were 0.1% formic acid-water (liquid A) and
0.1% formic acid-acetonitrile (liquid B) with the elution
gradient of 0–2min 5% B; 2–22min 5%–95% B; 22–27min
95% B; 27.1–30min 5% B. 0.3mL/min, 40°C, and 5 μL were
used as the flow rate, column temperature, and injection
volume, respectively.

2.5.Mass Spectrometry Conditions. Ultraperformance liquid
chromatography (Waters 2D UPLC, USA) tandem
Q-Exactive high-resolution mass spectrometer ()ermo
Fisher Scientific, USA) was used to separate and detect the
metabolites. )e mass spectrometry parameters were set
according to Yang et al. [19]. In brief, 150–1500 and 70,000
were used as the mass range andMS resolution, respectively.
35,000 was used as MS2 resolution. )e fragmentation en-
ergy was 20, 40, and 60 eV. Sheath gas flow rate and aux gas
flow rate were 40 and 10, respectively. Spray voltage (|KV|)
of the positive ionmode and negative ionmode was 3.80 and
3.20, respectively. Ion capillary temperature and aux gas
heater temperature were 320°C and 350°C, respectively.

2.6. Data Analysis. BGI high-resolution accurate mass plant
metabolome database (plant metabolite: 2500+), mzCloud
database (compound: 17000+), and mzVault database were
used to identify the metabolites.

3. Results

3.1. Total Ion Chromatogram. )e total ion current chro-
matogram of F. velutipes is shown in Figure 1.

3.2. Results of Metabolites’ Identification. )e metabolites of
F. velutipeswere analyzed by UPLC-Q-Exactive-OrbitrapMS,
the structural identification of compounds in F. velutipes was
based on the retention time,MS data, andMS2 data compared
with the BGI high-resolution accurate mass plant metab-
olome database (plant metabolite: 2500+), mzCloud database
(compound: 17000+), and mzVault database. )e identified
metabolites were classified into three grades (level 1, level 2,
and level 3) according to the comparison results. )e cred-
ibility sequence is as follows: level 1> level 2> level 3. )e
detailed results are shown in Table 1. 26 compounds were
preliminarily identified in F. velutipes, including 3 phenyl-
propanoids, 7 flavonoids, 1 steroid, and 15 organic acids.

3.2.1. Structural Analysis of Flavonoids. Flavonoids are
easily deprotonated in the negative ion mode to produce ion
[M−H]−. Some flavonoids are protonated in the positive ion
mode to produce ion [M+H]+. Methylated flavonoids are
prone to losing methyl to obtain ion [M−H-CH3]− or
[M+H–CH3]+. Flavone O-glycoside mainly lost the sugar
group by glycosidic bond fracturing. )e parent nucleus of
flavonoids is prone to RDA cracking and lost the CO group
[20, 21].

Compound 1 had a weak quasi-molecular ion in the
positive ionmode, the ion of [M+H]+ wasm/z 593, and then
it continuously lost rhamnosyl and glucosyl groups to obtain
two fragment ions m/z 447 [M+H-rhamnosyl]+ and m/z
285 [M+H-rhamnosyl-glucosyl]+. )e ion [M+H-rham-
nosyl-glucosyl]+ further lost methyl to obtain m/z 270 and
then further lost the CO group to produce m/z 242 [M+H-
rhamnosyl-glucosyl-CH3-CO]+. It was speculated that
compound 1 was linarin. Possible MS fragmentation
pathway of linarin is shown in Figure 2.)e cracking process
of compound 3 is similar to that of compound 1 with
fragment ions of m/z 447 [M+H]+, m/z 285 [M+H-glu-
cosyl]+, m/z 270 [M+H-glucosyl-CH3]+, and m/z 242
[M+H-glucosyl-CH3-CO]+. It was speculated that com-
pound 3 may be glycitin.

Compound 2 was deprotonated in the negative ionmode
to produce ion m/z 285 [M−H]− and then underwent RDA
cracking to obtain two fragment ions m/z 133 [M−H-
C7H4O4]− and m/z 151 [M−H-C8H6O2]−. It was speculated
that compound 2 may be luteolin. Possible MS fragmen-
tation pathway of luteolin is shown in Figure 3. )e cracking
process of compound 4 is similar to that of compound 2 with
fragment ions of m/z 269 [M−H]−, m/z 117 [M−H-
C7H4O4]−, and m/z 151 [M−H-C8H6O]−. It was speculated
that compound 4 may be apigenin.

Compound 5 was protonated in the positive ion mode to
produce the ionm/z 301 [M+H]+, then lost methyl to obtain
m/z 286, and further lost the CO group to obtain m/z 258
[M+H–CH3–CO]+. It was speculated that compound 5 may
be diosmetin.
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Both compounds 6 and 7 contain a methoxy group, the
quasi-molecular ion was m/z 299 [M−H]− and m/z 283
[M−H]−, respectively, and then they lost the methyl unit to
produce the ion [M−H-CH3]− of m/z 284 and m/z 268,
respectively. It was speculated that compounds 6 and 7 were
hispidulin and acacetin, respectively.

3.2.2. Structural Analysis of Phenylpropanoids.
Compound 8 was protonated in the positive ion mode to
produce ion m/z 193 [M+H]+ and then produced two
fragment ions m/z 165 and m/z 137; they may be
[M+H–CO]+ and [M+H–2CO]+; the cracking process of
compound 8 is consistent with that of coumarins [22]. It was
speculated that compound 8 may be 5,7-dihydroxy-4-
methylcoumarin.

Compounds 9 and 10 had the same quasi-molecular ion
m/z 515 [M−H]−, and both had characteristic fragment ions
m/z 191 [quininic acid-H]− and m/z 173 [quininic acid-H-
H2O]−. It was speculated that they were chlorogenic acids.
)e replacement position of caffeic acid can be determined
according to the strength of the fragment ions [18]. Com-
bined with the retention time, it was speculated that com-
pounds 9 and 10 may be isochlorogenic acid B and
isochlorogenic acid C, respectively. MS2 spectrum of
compounds 9 and 10 is shown in Figures 4 and 5,
respectively.

3.2.3. Structural Analysis of Steroids. Compound 11 was
protonated in the positive ion mode to obtain the ion m/z
387 [M+H]+ and then continuously lost the H2O group to
obtain fragment ions m/z 369 [M+H–H2O]+ and 351
[M+H–2H2O]+ [23]; combined with the retention time and
accurate molecular weight, it was speculated that compound
11 may be bufalin.

3.2.4. Structural Analysis of Organic Acids. Organic acids
generally respond in the negative ion mode to produce ion
[M−H]−. )e organic acids in F. velutipes were mostly fatty
acids. )ey were prone to break apart and lose groups such
as (CH2)n and COOH [24]. In this paper, organic acids in
F. velutipes mainly produce fragments that lose H2O and
CO2. )e structural analysis of some organic acid com-
pounds is as follows.

Compound 12 responded in the negative ion mode to
produce ion m/z 133 [M−H]−, then lost the group H2O to
produce ion m/z 115 [M−H-H2O]−, and further lost the
group CO2 to produce ion m/z 71[M−H-H2O-CO2]−.
Combined with the retention time, accurate molecular
weight, and the data of [25], it was speculated that com-
pound 12 may be DL-malic acid. )e structural analysis of
other organic acids is similar to that of compound 12.

4. Discussion and Conclusion

Most of the compounds in F. velutipes have good biological
activities. Hu et al. [15] investigated neuroprotective effects
of six compounds from F. velutipes on H2O2-induced oxi-
dative damage in PC12 cells, including arbutin, epicatechin,
phillyrin, apigenin, kaempferol, and formononetin, and the
results revealed that all components except apigenin mediate
the apoptosis of PC12 cells via the endogenous pathway. In
this paper, 7 flavonoids were identified by UPLC-Q-Exac-
tive-Orbitrap MS, including linarin, luteolin, glycitin, api-
genin, diosmetin, hispidulin, and acacetin. )ese flavonoids
have many pharmacological effects such as antitumor, anti-
inflammatory, and antioxidation. Luteolin has been showing
numerous therapeutic activities such as anticancer, anti-
inflammatory, antioxidation, and antimicrobial [26]. Api-
genin has the cytostatic and cytotoxic effects on various
cancer cells, prevents atherogenesis, hypertension, cardiac
hypertrophy, ischemia/reperfusion-induced heart injury,
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and autoimmune myocarditis, protects the chemical- and
ischemia/reperfusion-induced liver injury, inhibits asthma,
bleomycin-induced pulmonary fibrosis, abnormal behavior,
and oxygen and glucose deprivation/reperfusion-induced
neural cell apoptosis, and improves pancreatitis, type 2

diabetes and its complications, osteoporosis, and collagen-
induced arthritis [27]. Acacetin has neuroprotective, car-
dioprotective, anticancer, anti-inflammatory, antidiabetic,
and antimicrobial activities [28]. Hispidulin has diverse
pharmacological effects such as anticancer, anti-
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inflammatory, antifungal, antiplatelet, anticonvulsant, and
antiosteoporotic [29]. Linarin could suppress glioma
through inhibition of NF-κB/p65 and upregulating p53
expression in vitro and in vivo [30]. Glycitin has effects of
alleviating lipopolysaccharide-induced acute lung injury via
inhibiting NF-κB and MAPK pathway activation in mice
[31]. Diosmetin has anti-inflammatory effects on IL-4- and
LPS-induced macrophage activation and the atopic der-
matitis model [32]. )erefore, it is beneficial to develop
flavonoids in F. velutipes.

One steroid (bufalin) was identified in F. velutipes in this
paper. Bufalin is one of the main pharmacological and tox-
icological components of Venenum Bufonis and many tra-
ditional Chinese medicine preparations [33]. Currently, there
is no report of bufalin in F. velutipes. Whether F. velutipes
contains bufalin needs more research to determine.

Chen et al. [25] investigated chemical compositions in the
stipe and pileus of F. filiformis by UPLC-Q/TOF-MS, 130
compounds were identified, including 33 amino acids and
derivatives, 34 nucleotides and derivatives, 37 organic acids and
lipids, 9 carbohydrate alcohols, 8 alkaloids, and 9 other
compounds, and most of them were primary metabolites. Han
et al. [34] investigated chemical compositions of F. velutipes, 11
compounds were isolated and identified, including arabinitol,
ergosterol, cis-9-tricosene, uracil, nicotinamide, xanthine,
glycerol, adenosine, trehalose, mannitol, and tyrosine, and
most of them were primary metabolites. In this paper, 26
secondary metabolites were preliminarily identified by UPLC-
Q-Exactive-Orbitrap MS in F. velutipes from Henan province,
including 3 phenylpropanoids, 7 flavonoids, 1 steroid, and 15
organic acids. It provides a reference for the future separation
of chemical components of F. velutipes.
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Artemisia argyi Lévi. et Vant is a traditional Chinese medicine with a long history, and its buds and seedlings can be used as
vegetables. However, the investigations on the chemical constituents of A. argyi are not sufficient. In this paper, ultra-high
performance liquid chromatography tandem hybrid quadrupole-orbitrap mass spectrometry (UPLC-Q-Exactive-MS/MS) was
used to identify the chemical constituents of A. argyi. ,e Q Exactive mass spectrometer was used to collect MS and MS2 data.
Finally, 125 compounds were preliminarily identified in A. argyi by comparing the retention time and accurate molecular weight
with standard databases such as MZVault, MZCloud, and BGI Library (self-built standard Library by BGI Co., Ltd), including
flavonoids, phenylpropanoids, terpenoids, and organic acids.

1. Introduction

Artemisia argyi Lévi. et Vant belongs to Asteraceae family,
widely distributed in China. A. argyi is a traditional Chinese
medicine with a long history, and its buds and seedlings can
be used as vegetables. According to flora of China,A. argyi has
functions of warming menstrual cycle, removing dampness,
dispersing cold, hemostasis, anti-inflammation, relieving
asthma, relieving cough, calming fetus and anti-allergy with
whole grass as medicine [1, 2]. According to Chinese Phar-
macopoeia (2020), Artemisiae argyi folium (A. argyi leaves)
has minor poison, its nature and flavour are warm, pungent,
and bitter, and its channel tropism is in liver, spleen, and
kidney. A. argyi leaves have warm meridian to stop bleeding,
disperse cold, and relieve pain and external clearing damp
antipruritic effect [3].

At present, research about chemical constituents of
A. argyiwas focused onA. argyi leaves. Research showed that
the chemical constituents of A. argyi leaves include volatile

oil, flavonoids, terpenoids, phenylpropanoids, organic acids,
and steroids. Among them, more than 200 volatile oils from
A. argyi leaves have been identified, and 182 nonvolatile
components have been isolated and identified [2, 4].
Pharmacological studies have shown that A. argyi leaves
have many pharmacological effects, such as antibacterial,
antiviral, hemostatic, anti-tumor, protecting liver and gall-
bladder, and anti-oxidation, relieving cough and asthma,
analgesia, anti-inflammatory, and immune regulation.
Moxibustion has the effect of warming and dispersing cold
and treating all diseases [2, 4–6]. With the development of
the health industry, more and more attention has been paid
to the study of A. argyi leaves and moxa [6]. In recent years,
systematic studies on the chemical constituents of A. argyi
leaves or A. argyi have gradually increased [7, 8]. With the
mature application of LC-MS/MS technology in the rapid
identification of plant and food stuff ingredients [9–11],
research studies on the rapid analysis of nonvolatile com-
ponents ofA. argyi leaves orA. argyi are gradually increasing
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[12–15], but there are few identified compounds. Ultra-high
performance liquid chromatography tandem hybrid quadru-
pole-orbitrap mass spectrometry (UPLC-Q-Exactive-MS/MS)
is a new type of liquid chromatography-mass spectrometry
developed in recent years, which has the characteristics of high
resolution, good quality and precision, and strong qualitative
and quantitative ability [16, 17]. Samples can be separated
quickly by ultra-high performance liquid chromatography, and
accurate molecular weight can be determined by high-reso-
lution mass spectrometry to obtain molecular formula of
compounds. Zhumadian region is abundant with A. argyi;
however, research about chemical components ofA. argyi from
Zhumadian region was less. ,erefore, in this study, UPLC-Q-
Exactive-MS/MS combined with standard substance database
was used to rapidly identify the nonvolatile chemical com-
ponents of A. argyi from Zhumadian region.

2. Materials and Methods

2.1. Instrument. Rotary evaporator (N-1300) was purchased
from EYELA. Ultra-performance liquid chromatograph
(Waters 2DUPLC) was purchased fromWaters, USA. High-
resolution mass spectrometer (Q Exactive) was purchased
from ,ermo Fisher Scientific, USA. Hypersil GOLD aQ
column (100mm× 2.1mm, 1.9μm) was purchased from
,ermo Fisher Scientific, USA. Low temperature high speed
centrifuge (Centrifuge 5430) was purchased from Eppendorf.
Vortex finder (QL-901) was purchased from Qilinbeier In-
strument Manufacturing Co., Ltd. Pure water meter (Milli-Q)
was purchased from Integral Millipore Corporation, USA.

2.2. Reagent. d3-Leucine, 13C9-Phenylalanine, d5-Trypto-
phan, and 13C3-Progesterone were used as internal standard.
Methanol (A454-4) and acetonitrile (A996-4) were both in
mass grade, which were purchased from ,ermo Fisher
Scientific, USA. Ammonium formate (17843–250G) was ob-
tained from Honeywell Fluka, USA. Formic acid
(50144–50mL) was obtained fromDIMKA, USA. 95% ethanol
(20190320) was obtained from Tianjin Fuyu Fine Chemicals
Co., Ltd. Water was supplied by a pure water meter.

2.3. Plants. A. argyi was collected in July 2020 in Wanhei
Village, Shangcai County, Zhumadian City, and identified as
the aerial part of A. argyi by professor Li Changqin of Henan
University. ,e specimens (No. 2020-08-10) were saved in
National Research and Development Center of Edible Fungi
Processing Technology, Henan University.

2.4. Preparation of Sample. 10 g of A. argyi powder was
accurately weighed and impregnated with 25 times 70%
ethanol for 2 times at room temperature, each time for 2
days. ,e extraction was filtered, and filtrate was combined
and concentrated. ,e extract was added with 70% ethanol
to 1 g/mL of the original materials and then reserved. 200 μL
was sent to BGI Co., Ltd., for chemical composition
identification.

2.5. Chromatographic Conditions. Hypersil GOLD aQ col-
umn (100mm× 2.1mm, 1.9μm) was used to do LC-MS ex-
periment.,emobile phase was 0.1% formic acid-water (liquid
A) and 0.1% formic acid-acetonitrile (liquid B). ,e following
gradients were used for elution: 0–2min 5% B; 2–22min 5%–
95% B; 22–27min 95% B; 27.1–30min 5% B.,e flow rate was
0.3mL/min, the column temperature was 40°C, and the in-
jection volume was 5μL.

2.6. Mass Spectrometry Conditions. ,e mass range was
150–1500, the MS resolution was 70000, the AGC was 1e6,
and the maximum injection time was 100ms. According to
the strength of the MS ions, TOP3 was selected for frag-
mentation. ,e MS2 resolution was 35000, AGC is 2e5, the
maximum injection time was 50ms, and the fragmentation
energy were set as 20, 40, and 60 eV. Ion source (ESI) pa-
rameter settings: sheath gas flow rate was 40, aux gas flow rate
was 10, spray voltage (|KV|) of positive ion mode was 3.80,
spray voltage (|KV|) of negative ion mode was 3.20, ion
capillary temp was 320°C, and aux gas heater temp was 350°C.

2.7. Data Analysis. UPLC-MS/MS technology was used to
systematically analyze the chemical constituents of
A. argyi. High-resolution mass spectrometer Q Exactive
(,ermo Fisher Scientific, USA) was used to collect data
in positive and negative ion modes, respectively, to im-
prove the chemical constituent coverage. Raw mass spectrum
data collected by UPLC-MS/MS were imported into Com-
pound Discoverer 3.1 (,ermo Fisher Scientific, USA) for
data processing. It mainly includes peak extraction, retention
time correction within and between groups, additive ion
merging, missing value filling, background peak labeling, and
metabolite identification. Finally, the molecular weight, re-
tention time, peak area, and identification results of the
compound were derived. ,e compounds were identified by
comparing the retention time, accurate molecular weight, and
MS2 data with standard databases such as MZVault,
MZCloud, and BGI Library (self-built standard Library by
BGI Co., Ltd).

3. Results

3.1. Total Ion Chromatogram. Total ion chromatogram of
A. argyi is shown in Figures 1 and 2.

3.2. Identification Results of Chemical Composition. In this
study, UPLC-Q-Exactive-MS/MS technology was used to
rapidly identify the chemical constituents in A. argyi. ,e
identification of compounds was based on the retention
time, MS data, and MS2 data compared with the standard
database (MZVault, MZCloud and BGI Library (self-built
standard Library by BGI Co., Ltd)). Most flavonoids, phe-
nylpropanoids, and organic acids were easily deprotonated
and responded in negative ion mode. Most steroids and
terpenoids were easily protonated and responded in pos-
itive ion mode. ,e identification results are shown in Ta-
ble 1. A total of 125 chemical constituents were identified in
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A. argyi, including 49 flavonoids, 30 organic acids, 13
phenylpropanoids, 9 terpenoids, 5 amino acids, 2 steroids, 1
phenolic acid, 1 alkaloid, and 15 other compounds.

4. Discussion

Eupatilin and jaceosidin as flavonoids and chlorogenic acid
as phenylpropanoids were the main components of
A. argyi, which were often used as the index components
for content determination and quality evaluation [18–22],
and the content of total flavonoids in A. argyi leaves was as
high as 4.48%–11.46% [18]. Flavonoids and phenyl-
propanoids of A. argyi were also the active ingredients.
,e flavonoids in A. argyi leaves had anti-tumor, anti-
oxidation, anti-platelet aggregation, gastrointestinal smooth
muscle protection, and other pharmacological effects. And the
phenylpropanoids in A. argyi leaves had pharmacological
effects such as antibacterial, anti-inflammatory, antiviral, free
radical scavenging, liver protection and gallbladder protec-
tion, and lowering blood pressure and blood lipid [12].

Previous studies showed that the chemical components
isolated from the A. argyi leaves include flavonoids, terpe-
noids, phenylpropanoids, organic acids, steroids, etc. [2],
and the above chemical components were all contained in
A. argyi from Zhumadian, indicating that the chemical
components in A. argyi from Zhumadian were relatively
diverse with good quality. In this study, in addition to
the reported flavonoids, eupafolin, eupatilin, jaceosidin,
apigenin, kaempferol, luteolin, hispidulin, isoschaftoside,
eriodictyol, naringenin, acacetin, and artemetin isolated
from A. argyi leaves, A. argyi from Zhumadian contained 37
other flavonoids such as schaftoside, rutin, isovitexin, and

taxifolin. ,ese results revealed that there were abundant
flavonoids in A. argyi from Zhumadian. A. argyi from
Zhumadian contained most of the reported phenyl-
propanoids identified from A. argyi [2], such as neo-
chlorogenic acid, cryptochlorogenic acid, chlorogenic acid,
isochlorogenic acid B, isochlorogenic acid C, scopoletin, and
isofraxidin; besides, A. argyi from Zhumadian also contained
other phenylpropanoid compounds, such as 2-hydroxycin-
namic acid, esculetin, fraxetin, and 3-coumaric acid. In ad-
dition, A. argyi from Zhumadian was rich in terpenoids and
organic acids. ,ere were many kinds of active ingredients in
A. argyi from Zhumadian, and it was worthy to study sys-
tematically to find more natural active ingredients.

Ultra-high performance liquid chromatography (UPLC)
has the advantages of high analytical speed, high sensitivity,
and solvent saving compared with high-performance liquid
chromatography (HPLC) [23]. UPLC is often combined with
mass spectrometry for rapid detection of chemical constit-
uents of traditional Chinese medicine. Ultra-high perfor-
mance liquid chromatography tandem quadruple-time of
flight mass spectrometry (UPLC-Q-TOF-MS/MS) and
UPLC-Q-Exactive-MS/MS are currently commonly used.
Compared to traditional LC-MS/MS, UPLC-Q-Exactive-MS/
MS has higher resolution, which can eliminate the interfer-
ence of sample matrix [17]. Wang et al. [12] investigated
the chemical constituents of A. argyi produced in Nanyang
by UPLC-Q-TOF-MS/MS technology, and 23 chemical
constituents were identified, including 12 flavonoids and
flavonoid glycosides, 9 phenylpropionic acids, and 1 cou-
marin. Li et al. [14] used RRLC-TOFMS technology to
rapidly identify the chemical components inA. argyi leaves and
identified 31 chemical components. In this study, 125 chemical
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Figure 1: Total ion chromatogram of A. argyi in positive ion mode.
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Figure 2: Total ion chromatogram of A. argyi in negative ion mode.
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constituents of A. argyi from Zhumadian were preliminarily
identified by UPLC-MS/MS. All of them contain iso-
chlorogenic acid C and eupatilin. ,e chemical constituents
identified in this study were relatively comprehensive, which
provides a certain reference for the subsequent studies of
A. argyi.

5. Conclusion

In this study, a total of 125 chemical constituents of A. argyi
were identified by UPLC-Q-Exactive-MS/MS technology.
,e UPLC-Q-Exactive-MS/MS technology could be used to
quickly and preliminarily identify the chemical constituents
of A. argyi, providing a basis for further study on the
pharmacological substance basis and resource utilization of
A. argyi.
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Hericium erinaceus is a precious edible and medicinal fungus with high nutritional value. It has many functions, such as enhancing
immunity, antitumor antioxidation, antihyperglycemic, antihyperlipidemic, and protecting gastric mucosa. However, there are few
researches about theH. erinaceus compounds. In this paper, ultraperformance liquid chromatography tandem high-resolution mass
spectrometry (UPLC-Q-exactive-MS/MS) was used to isolate and identify the compounds in H. erinaceus. 102 compounds were
identified in H. erinaceus by comparing with standard databases such as MZVault, MZCloud, and BGI Library (self-built standard
Library by BGI Co., Ltd), including flavonoids, terpenoids, phenolic acids, phenylpropanoids, steroids, organic acids, and
amino acids.

1. Introduction

Hericium erinaceus is a precious edible and medicinal
fungus, and it is listed as one of the “Four Famous Cuisines”
of China, together with bear’s paws, trepang, and shark’s fin
[1]; it has been used for a long time in traditional Chinese
medicine [2]. Researches showed that the chemical con-
stituents of H. erinaceus include terpenoids, phenolics,
steroids, pyranones, fatty acids, and alkaloids; about 80
small molecular compounds were isolated and identified
from H. erinaceus [3]. Terpenoids in H. erinaceus were
mainly diterpenoids with cyathane skeleton. Terpenoids in
H. erinaceus were first isolated and identified by Kawagishi
et al. from mycelia of H. erinaceus, named Erinacines A-C
[4]. Subsequently, Kawagishi et al. isolated and identified
Erinacines D-G, Erinacines J, and Erinacines K from
mycelia of H. erinaceus [5–7]; Lee et al. isolated and
identified Erinacines H and Erinacines I from mycelia of
H. erinaceus [8]; Kenmoku et al. isolated and identified
Erinacine P and Erinacine Q from mycelia of H. erinaceus

[9, 10]. Most of these diterpenoids compounds were
stimulators of nerve growth factor-synthesis. Phenolics
were also main constituents in H. erinaceus. 8 phenolics
were isolated and identified from fruiting bodies of
H. erinaceus by the Kawagishi team between 1990 and 1993,
named Hericenone A-H [11–13]. After that, three phe-
nolics were isolated and identified by Arnone et al. [14]
with 5′- carbonyl group replaced by 5′- methylene, named
Hericenes A-C. Subsequently, two new phenolics were
isolated from fruiting bodies of H. erinaceus by Ma et al.
[15], named Hericenone I and Hericenone D; they have the
same fatty acid chain. A new skeleton phenolic compound
was isolated from fruiting bodies of H. erinaceus by Li et al.
[16], named Erinacene D. In addition to terpenoids and
phenolics compounds,H. erinaceus was rich in steroids, six
new (erinarols A-F), and five known ergostane-type sterol
fatty acid esters were isolated from the fruiting bodies of
H. erinaceus; erinarols A and B significantly activated the
transcriptional activity of PPARs, PPARα, and PPARc [17].
Previous pharmacological studies showed that H. erinaceus
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had many pharmacological activities, such as regulating
immunity [18, 19], neuroprotection [20, 21], antidepressant
[22, 23], antioxidant [24], antitumor [25], anti-
hyperglycemic [26], and antihyperlipidemic properties
[27], and protecting gastric mucosa [28, 29].

High-performance liquid chromatography tandem mass
spectrometry (LC-MS/MS) technology has the advantage of
rapid identification of compounds. With the maturity of LC-
MS/MS technology, it ismore andmore widely used in the field
of food and medicine [30–35]. In this study, ultraperformance
liquid chromatography tandem high-resolution mass spec-
trometry (UPLC-Q-Exactive-MS/MS) combinedwith standard
substance database was used to rapidly identify the chemical
components of H. erinaceus.

2. Materials and Methods

2.1. Instrument. *e LC-MS experiment was carried out by
ultraperformance liquid chromatography (Waters 2D UPLC,
USA) and high-resolution mass spectrometry (Q Exactive,
*ermo, USA). *e Hypersil GOLD aQ column
(100mm∗2.1mm, 1.9μm) was purchased from*ermo Fisher
Scientific, USA. Low-temperature high-speed centrifuge
(Centrifuge 5430) was purchased from Eppendorf. *e vortex
finder (QL-901) was purchased from Qilinbeier Instrument
Manufacturing Co., Ltd. *e pure water meter (Milli-Q) was
purchased from Integral Millipore Corporation, USA.

2.2. Reagent. d3-leucine, 13C9-phenylalanine, d5-tryptophan,
and 13C3-progesterone were used as internal standards.
Methanol (A454-4) and acetonitrile (A996-4) were both in
mass spectral grade, which were purchased from *ermo
Fisher Scientific, USA. Ammonium formate (17843–250G)
was obtained from Honeywell Fluka, USA. Formic acid
(50144–50mL) was obtained from DIMKA, USA.

2.3.Materials. Fruiting bodies ofH. erinaceuswere obtained
from Henan Longfeng Industrial Co., Ltd. *e specimens
(No. 2020-09-09) were saved in National Research and
Development Center of Edible Fungi Processing Technol-
ogy, Henan University.

2.4. Preparation of Sample. According to the methods com-
monly used by our team, dry fruiting bodies of H. erinaceus
were crushed by the grinding machine. 100 g of H. erinaceus
powder was immersed with 50% ethanol (1000mL) for 2 times
at room temperature, each time for 3 days. *e filtrate was
concentrated to obtain 48.6 g extract. 50mg extract of
H. erinaceus was weighed, and then 800μL of solution with
70% methanol: internal standard (V/V� 85 :1) was added to
the sample. Two small steel beads were added to the sample and
ground in a tissue grinder (50Hz, 5min), ultrasound for
10min at 4°C water, and the sample was placed for 1h at
−20°C. After that, the sample was centrifuged for 15min at 4°C,
25000 rpm, 500μL of supernatant was filtered through 96-well
filter plate, and the filtrate was used to detect.

2.5. Chromatographic Conditions. *e LC-MS experiment
was carried out on Hypersil GOLD a Q column
(100mm∗2.1mm, 1.9μm). *e mobile phase was 0.1% formic
acid-water (liquid A) and 0.1% formic acid-acetonitrile (liquid
B). *e elution gradient was as follows: 0–2min 5% B;
2–22min 5%–95% B; 22–27min 95% B; 27.1–30min 5%
B. *e flow rate was 0.3mL/min, the column temperature was
40°C, and the injection volume was 5μL.

2.6. Mass Spectrometry Conditions. *e MS and MS2 data
were collected by the Q Exactive mass spectrometer. *e range
of m/z was 150–1500 with the MS resolution 70000, and the
AGC was 1 e6, and the maximum injection time was 100ms.
According to the strength of the MS ions, top3 was selected for
determining MS2 fragmentation. *e MS2 resolution was
35000, AGC was 2 e5, the maximum injection time was 50ms,
and the fragmentation energy was set as 20, 40, and 60 eV. Ion
source (ESI) parameters are as follows: sheath gas flow rate was
40, aux gas flow rate was 10, spray voltage (|KV|) of positive ion
mode was 3.80, spray voltage (|KV|) of negative ion mode was
3.20, capillary temp was 320°C, and aux gas heater temp was
350°C.

2.7. Data Analysis. High-resolution mass spectrometer (Q
Exactive, *ermo Fisher Scientific, USA) was used to collect
data in positive and negative ion modes, respectively, to
improve the chemical constituent coverage. Raw mass
spectrum data collected by LC-MS/MS were imported into
Compound Discoverer 3.1 (*ermo Fisher Scientific, USA)
for data processing. It mainly includes peak extraction,
retention time correction within and between groups, ad-
ditive ion merging, missing value filling, background peak
labeling, and metabolite identification. Finally, the molec-
ular weight, retention time, peak area, and identification
results of the compound were derived.

3. Results

3.1. Total Ion Chromatogram. *e total ion chromatogram
of H. erinaceus is shown in Figure 1.

3.2. Results of Compound Identification. *e compounds of
H. erinaceus were analyzed by LC-MS/MS; the identification
of structure was based on the retention time, MS data, and
MS2 data compared with the standard database. *e iden-
tified compounds were classified into three grades (Level 1,
Level 2, and Level 3) according to the comparison results,
there into, Level 2 was confirmed on the basis of MS data,
MS2 data, and properties of compounds, and Level 3 was
identified on the basis of MS data and MS2 data. *e
credibility sequence is as follows: Level 1> Level 2> Level 3.
Detailed results are shown in Table 1. 102 compounds were
preliminarily identified in H. erinaceus with grade of
identification as Level 1 and Level 2, including 31 organic
acids, 10 nucleotides and analogues, 8 amino acids, 6 car-
bohydrates and derivatives, 5 flavonoids, 3 unsaturated fatty
acids, 3 terpenoids, 3 phenolic acids, 1 phenylpropanoid, 1

2 Journal of Food Quality



steroid, and 32 other compounds. Most flavonoids and
organic acids were easily deprotonated and responded in the
negative ion mode. Most nucleoside compounds were easily
protonated and responded in the positive ion mode. *e
identification process of some compounds was as follows.

Compound 49, C15H10O6, was easily deprotonated in the
negative ion mode to produce ion m/z 285 [M−H]− and then
RDA cracking to get 2 fragment ions m/z 133 [C8H6O2–H]−
and m/z 151 [C7H4O4–H]−. Compound 49 was identified as
luteolin compared to the database and references [36].*eMS2

spectrum is shown in Figure 2.
Compound 60 produced ion m/z 283 [M−H]−, then lost

the methyl group, and got ion 268 [M−H−CH3]−, combined
with retention time, MS data, andMS2 data, compound 60 was
identified as acacetin by comparin with the database and
references [37]. *e MS2 spectrum is shown in Figure 3.

Compound 62 was easily protonated in the positive ion
mode to produce ionm/z 249 [M+H]+, then lost the hydroxyl
group, and got ion m/z 231 [M+H–H2O]+, Compound 62
was identified as atractylenolide III by comparing with the
database and references [38]. *e MS2 spectrum is shown in
Figure 4.

4. Discussion and Conclusion

In this study, 102 compounds were preliminarily identified
in H. erinaceus, including organic acids, nucleotides and
analogues, amino acids, carbohydrates and derivatives,
flavonoids, unsaturated fatty acids, terpenoids, phenolic
acids, phenylpropanoid, and steroid. It revealed that the
compounds in H. erinaceus were diverse. Previous studies
showed that the chemical constituents of H. erinaceus in-
clude terpenoids, phenolics, steroids, pyranones, fatty acids,
and alkaloids; thereinto, reports about terpenoids and
phenolics in H. erinaceus were more [3–16]. Terpenoids and
phenolics were less in this study; the reasonsmay be different
material parts, different origins, different varieties, different
extraction methods, and so on. In addition, nucleotides were
also the main constituents in H. erinaceus. Yan et al. [39]
studied the content of five nucleosides in H. erinaceus from
different habitats by high-performance liquid

chromatography; the results showed that different origins of
H. erinaceus had the same nucleoside components, such as
cytosine, inosine, and adenosine, and the content of inosine
and adenosine in H. erinaceus was higher. In this study, 10
nucleotides and analogues were identified, including
adenosine, adenine, guanosine, guanine, and uridine.

Most of the compounds in H. erinaceus had a good bio-
logical activity; researches about polysaccharide were more,
which had a wide variety of pharmacological functions such as
antimicrobial, antidiabetic, and antihypertension ones [1]. Small
molecular compounds isolated fromH. erinaceus also hadmany
biological activities. Diterpenoids inH. erinaceus could promote
the synthesis of nerve growth factors, such as Erinacines A,
Erinacines B, Erinacines C, Erinacines D, Erinacines E, Eri-
nacines F, Erinacines G, Erinacines H, and Erinacines I [4–6].
Phenolics compounds in H. erinaceus could also promote the
synthesis of nerve growth factors, such as Hericenone C,
Hericenone D, Hericenone E, and Hericenone H [12, 13].
Hericenones A and B showed cytotoxicity against HeLa cells
[11]. In addition, Hericenone B was found to be a potential
antiplatelet aggregation agent [40]. Steroids in H. erinaceus
could activate the transcriptional activity of PPARs, PPARα,
and PPARc, such as erinarols A and erinarols B. In addition,
nucleosides and flavonoids may be the main active components
of H. erinaceus. Nucleoside components have many biological
activities, such as antitumor, antivirus, and gene therapy.
Studies have shown that adenosine, inosine, and guanosine have
many pharmacological effects such as regulating immunity,
neuroprotection, and treatment of cardiovascular diseases [41].
Flavonoids also have many pharmacological effects, such as
neuroprotection, antimyocardial ischemia, hypotension, im-
proved learning and memory, antigastric ulcer, protection of
reproductive tissue, anti-inflammatory, and antitumor [42].

In a word, H. erinaceus has high nutritional value and
medicinal value. At present, it has been developed into a
variety of functional foods, including health wine, health
drinks, healthy yogurt, tea, cans, and health vinegar [2],
which was of great significance to study the chemical
composition of H. erinaceus. In this study, 102 compounds
were preliminarily identified to provide reference for the
follow-up study of H. erinaceus.
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Figure 1: Total ion chromatogram of H. erinaceus in the positive ion mode (pos) and negative ion mode (neg).
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