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In the literature, the fading factor was constructed to overcome the shortage of model uncertainties in the Kalman filter. However,
the a priori covariance matrix might be inflated abnormally by the fading factor once the measurement is unreliable. Thus, the
fading factor may become invalid, and this problem is rarely discussed and tested. In this paper, squares of the Mahalanobis
distance are introduced as the judging index, and the fading factor or the covariance inflation factor is adopted conditionally
according to the hypothesis testing result. Therefore, an adaptive filtering scheme based on the Mahalanobis distance is put
forward for the systems with model uncertainties. The proposed algorithm is implemented with the actual data collected by the
integration of the global navigation satellite system (GNSS) and the inertial navigation system and INS (inertial navigation
system) integrated systems (INS). For the systems with model uncertainties, experimental results demonstrate that the
influences of both the outlying measurements and model errors are controlled effectively with the proposed scheme.

1. Introduction

As the linear estimator of the mean and covariance, the Kal-
man filter has become the classic fusion algorithm in many
fields [1, 2], and it is implemented as the basic fusion
method in the data processing with multiple sensors [3, 4].
It has been proved that the Kalman filter is optimal only
when the assumptions of Gaussian-distributed process or
measurement noise hold [5]. Unfortunately, the Kalman fil-
ter is susceptible to outlying measurements, and it performs
inadequately with the model errors and uncertain statistical
information. Aiming at the outlying measurements, many
robust Kalman filtering algorithms were proposed. Outlier
detection for all measurements is the most straightforward
strategy, and the measurements with relatively large resid-
uals will be rejected [6]. Nevertheless, all measurements
should be tested, and this strategy may be inefficient and
complex. The filters based on the median may be highly
robust; however, many measurements are ignored, and the
low efficiency limits its practical applications [7]. The H∞
filter was put forward aiming at the uncertain noises of mea-

surement with the minimized estimation error for all possi-
ble disturbances [5]. However, the performance would be
degraded significantly by the outliers [8]. As the generalized
Kalman filter, the Bayesian estimator was derived robustly
based on the M-estimation [9]. DIA (detection, identifica-
tion, and adaptation) methods were developed to resist the
influences of outliers, but the identification is valid only
when the measurement is reliable [10]. Influences of the
model errors can be weakened with many types of adaptive
filters [11–13]. In terms of adaptive filter, the MMAE
(multiple-model-based adaptive estimation) and IAE (inno-
vation-based adaptive estimation) [14] are two basic strate-
gies. For the data fusion of GNSS/INS integrated systems,
the IAE strategy performs better than the MMAE strategy
[11]. Besides, another type of adaptive-robust filter where
both the adaptation and robustness were considered simul-
taneously was developed using the adaptive factors and the
M-estimation, including four adaptive factors and four
detective statistics [15]. Based on this adaptive-robust filter,
the influences on the adaptive factor from the outlying mea-
surements were discussed [16], and an alternative strategy
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was constructed to control the influences of both model
uncertainties and outliers. However, the covariance of the
measurement noises remains constant at the normal epochs,
and the relatively smaller outliers are more likely to be
neglected which should be improved further.

In theory, the fading filter is another kind of adaptive fil-
ter, and it can control the influences of the dynamic model
errors[17]. The most important problem for the fading filter
is to construct a suitable factor Sk. Then, the fading matrix
was proposed to adjust the covariance matrix Pk/k‐1 in differ-
ent data channels [18, 19], and the fading matrix has been
adopted in the data processing of GNSS/INS integrated sys-
tems [20]. The main superiority to the conventional Kalman
filter lies on inflating the covariance matrix of the a priori
state, namely, Pk/k‐1, and this indicates that the state estima-
tion X̂k/k relies more on the current observation information.
However, both the single factor and the fading matrix are
constructed based on the residual vector. Therefore, the fad-
ing filter performs well only when the measurement is reli-
able, and the filter divergence may happen in the presence
of outlying measurements, but this problem is seldom dis-
cussed. Consequently, aiming at the influences of outlying
measurements, the robustness of the conventional fading fil-
ter should be improved further.

In this paper, a modified adaptive filtering scheme using
the fading factors is proposed for the system with model
uncertainty, and the Mahalanobis distance from the mea-
surement to its prediction is applied to construct the judging
index for the hypothesis test. Whether the fading filter or the
robust estimation method is performed at each epoch
depends on the result of hypothesis test. The proposed algo-
rithm is tested using the actual data obtained through the
self-developed GNSS/INS integrated systems in actual envi-
ronment. Both the conventional fading filter and the pro-
posed algorithm are implemented in the testing section of
this paper. Results demonstrate that the proposed scheme
is superior among all the other tested algorithms of this
paper with or without the outlying measurements, and the
filter divergence is restrained with the proposed algorithm.

Remaining of this paper is arranged as follows. The
related theory of the fading filter is introduced in Section
2. In Section 3, a modified adaptive data fusion scheme is
constructed based on the hypothesis test and the conven-
tional fading filter. In Section 4, the dynamic model and
measurement model for the GNSS/INS integrated systems
are provided; then, a flowchart of the proposed algorithm
is demonstrated. In Section 5, experiments with actual data
are implemented, and performance the comparative algo-
rithms together with the proposed scheme is tested. Section
6 provides the conclusions of this paper.

2. The Fading Filter

2.1. Basic Models of the Fading Filter. Kalman filter performs
well when the assumptions of Gaussian distribution hold.
However, the filter divergence may happen, resulting from
big model errors. Aiming at this problem, the fading filter
was proposed to limit the “memory length” of the Kalman
filter [21]. Assume that xk and xk−1 are the state vector at

epoch k and k − 1, respectively, Φk/k−1 denotes the state tran-
sition matrix, and wk is the state noise matrix; then, the
dynamic equation is obtained

xk =Φk/k−1xk−1 +wk, ð1Þ

and the a priori state is given by

xk/k−1 =Φk/k−1xk−1: ð2Þ

Assume that Hk and zk are the measurement matrix and
measurement vector, respectively, vk is the measurement
noise, and Sk is the fading factor (in general, Sk ≥ 1). Then,
the optimality criterion is defined by [21]:

VT
k R

−1
k Vk +

1
Sk

xk/k − xk/k−1ð ÞTP−1
k/k−1 xk/k − xk/k−1ð Þ

+ xk/k − xk/k−1ð ÞTQ−1
k xk/k − xk/k−1ð Þ =min:

ð3Þ

Then, the iterative solution is listed below:

xk/k = xk/k−1 + �Kk zk −Hkxk/k−1ð Þ, ð4Þ

�Kk = �Pk/k−1H
T
k Hk

�Pk/k−1H
T
k + Rk

� �−1, ð5Þ

�Pk/k−1 = SkΦk/k−1Pk−1Φ
T
k/k−1 +Qk, ð6Þ

where �Kk denotes the equivalent gain matrix, �Pk/k−1
denotes the equivalent covariance matrix of xk/k−1, Pk−1
denotes the covariance matrix of xk‐1/k−1, and Rk and Qk
are the covariance matrices of measurement and state
noises, respectively.

In the fading filter, the covariance matrix of xk/k−1 is
inflated for Sk times when compared with that of the con-
ventional Kalman filter, and this indicates that the current
measurement information is treated with bigger weight
[21]. Consequently, the model errors brought from the pre-
vious state are weakened with the fading factor.

2.2. Construction of the Fading Factor or Matrix. In the fad-
ing filter, the main work concentrates on the construction of
the reasonable factor. In theory, the factor Sk should be
inflated if errors of x̂k‐1 is abnormal. A fading filter with
the optimal fading factor was developed, and the simplified
and applicable fading factor is given by [22]

Sk =max 1,
tr Nkð Þ
tr Mkð Þ

� �
, ð7Þ

and Nk = PVk
−HkQkH

T
k − Rk, Mk =HkΦk/k−1Pk−1Φ

T
k/k−1H

T
k ,

PVk
= EðVkV

T
k Þ, and Vk =Hkxk/k−1 − zk, where trð⋅Þ means

the trace of a matrix, Vk is the residual vector, PVk
is the

covariance matrix of Vk, and P̂Vk
= ð1/kÞ∑k

i=1ViV
T
i .

Apart from the fading filter with a single factor, the fad-
ing matrix for the fading filter was developed [18]. Different
from the single factor, the fading filter with the fading matrix
is adjusted in multiple data channels according to the

2 Journal of Sensors



observabilities of the state vector elements. The fading
matrix Sk ′ is derived by

Sk ′ = diag s1, s2,⋯, si ⋯ , st , 1,⋯, 1,⋯, 1ð Þ, ð8Þ

si =max 1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi kð Þ½ �2

λ2i jii kð Þεi
−
bii kð Þ
jii kð Þ

s !
, i = 1, 2,⋯, tð Þ, ð9Þ

where t is the dimension of measurement equation, vi is the i
th element of Vk, λi is the ith observable element of Hk, jii is
the ith diagonal element of Jk and Jk =ΦkPk−1Φ

T
k , bii is the i

th diagonal element of Bk, Bk =HkQk−1H
T
k + Rk, and εi is the

threshold determined by the Chi-square distribution under
the predetermined significance level. In Equation (9), s1, s2,
⋯, st are estimated adaptively, and the other elements in
Sk ′ should be 1.

3. Modified Adaptive Data Fusion Scheme

As depicted in Section 2, the current measurement informa-
tion is treated with bigger weight in the fading filter, and the
current measurement information must be reliable to
achieve an ideal filtering performance. In the fading filter
however, the circumstance, when the current measurement
information is unreliable, is rarely discussed and tested with
actual data. In fact, both a single fading factor and the fading
matrix in the fading filter are constructed by the predicted
residual vector obtained from the measurements. Therefore,
the performance of the fading factor would be affected easily
by unreliable measurements, and a mistaken adjustment
towards the a priori covariance matrix may result in inferior
performance or even the filter divergence. Thus, the fading
factor or matrix should be implemented in a timely and
more reasonable way, and the strategy on processing the
unreliable measurements should be discussed further.

With the Gaussian distribution process and measure-
ment noise, the discrete linear stochastic state space model
is given by [5]

xk =Φk/k−1xk−1 +wk,

zk =Hkxk + vk:

(
ð10Þ

An optimal solution is obtained if the assumptions of
Gaussian distribution process and measurement noise hold
with the mean �zk and covariance P�zk . Probability density
function ρðzkÞ of the m‐dimensional measurement is [1]

ρ zkð Þ =N zk ; �zk, P�zk
� �

=
exp − 1/2ð Þ zk − �zkð ÞT P�zk

� �−1 zk − �zkð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þm P�zk

		 		q :
ð11Þ

Nevertheless, ρðzkÞ would no longer hold once the outly-
ing measurements exist or the measurement noises disobey
the Gaussian distribution. Therefore, if ρðzkÞ does not hold,
and this in turn indicates that an outlier exists at some epoch

or the Gaussian distribution of measurement noise is con-
taminated. Accordingly, the hypothesis test is performed
with the null hypothesis that the measurement corresponds
to the assumptions. In fact, the square of the Mahalanobis
distance M2

k from the measurement zk to its mean �zk,
namely,M2

k = ðzk − �zkÞTðP�zkÞ
−1ðzk − �zkÞ, is applied as the test

statistic [23], and this test statistic has been adopted as to
construct the robust Kalman filter [1]. According to the iner-
tial assumptions, the test statistic should obey the Chi-
square distinction with the degree of freedom m. Then, the
α-quantile χα is obtained with the provided significance level
α. Obviously, the null hypothesis should be accepted ifM2

k is
less than χα; under this circumstance, no outliers exist, and
the key problem is to weaken the influences of the model
errors. Otherwise, the null hypothesis should be rejected,
and the outliers should be processed carefully.

In order to weaken the influences of unreliable measure-
ments, Rk is estimated and updated in an adaptive way. In
general, components in the vector of the a priori state are
correlated; the covariance matrix of the measurement noise
is updated with the covariance inflation factor λij, namely,

λij =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λii ⋅ λjj

q
, ð12Þ

λii =

1 �V�xki

			 			 ≤ c

�V�xki

			 			
c

�V�xki

			 			 > c

8>>><
>>>:

, ð13Þ

where j�V�xki
j denotes the standardized predicted residual and

c is fixed within 1.0~ 1.5. Consequently, Rk is rewritten as

�Rk = λijRk: ð14Þ

In practice, the complex observation environment deter-
mines that Rk is usually not a constant matrix, and the filter
may perform better with adaptively updated Rk. Therefore,
at the epochs with normal measurements, Rkis updated
adaptively in a sequential way based on the Sage-Husa filter
[24]; in this paper and the influences of the outlying mea-
surements will be weakened further, namely,

Rk = 1 − dk−1ð ÞRk−1 + dk−1 VkV
T
k +HkPk/k−1H

T
k

� �
, ð15Þ

where dk = ð1 − bÞ/ð1 − bkÞ and b is the forgetting factor.
With the hypothesis test based on the Mahalanobis dis-

tance, the outlying measurement is identified. Meanwhile,
the covariances of the outlying measurement noises and
the normal measurements noises will be updated through
the Equations (14) and (15), respectively. Both the judging
index M2

k and Rk are computed using the current measure-
ments, and this indicates a strong sensitivity towards the
abnormal measurements and a relatively light computa-
tional burden. Accordingly, a modified adaptive data fusion
scheme is constructed. In this proposed scheme, the hypoth-
esis test based on the Mahalanobis distance is implemented
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at every epoch. For each epoch, if the null hypothesis is
accepted, both the fading filter and the sequential updating
of Rk are implemented. Otherwise, only the equivalent
covariance matrix �Rk is performed, and this strategy is con-
ducted adaptively. Therefore, a modified scheme is devel-
oped concerning the circumstance when the current
measurement information is unreliable.

4. Models for GNSS/INS Integrated Systems

The GNSS/INS integrated systems have become a well
applied technique in the field of dynamic navigation and
positioning [25, 26]. GNSS and INS are integrated mainly
in three types, and the loosely coupled type is applied in this
paper. For the GNSS/INS and various other integrated sys-
tems, the nonlinear filter should be implemented aiming at
the nonlinear problem. The cubature Kalman filter (CKF)
was proposed to address the high-dimensional state estima-
tion [27]. With a fifteen-dimension state vector X̂, including
the position error ΔRe, the velocity error ΔVe, the attitude
error φe of the carrier and the bias of the gyroscope ∇b,
and the accelerometer εb, the CKF is adopted in this paper,
where e means the earth frame and b means the body frame.
Elements of X̂ are listed below.

X̂ = ΔRe ΔVe φe ∇b εb
h iT

, ð16Þ

For the nonlinear discrete system

xk = f xk−1ð Þ +wk−1,

zk = h xkð Þ + vk,

(
ð17Þ

where f ð⋅Þ and hð⋅Þ are the nonlinear functions. In the CKF,
the time updating process is derived by [27, 28]:

Xi/k−1 = sk−1/k−1ξ + xk−1/k−1, ð18Þ

Pk−1/k−1 = sk−1/k−1s
T
k−1/k−1, ð19Þ

X∗
i,k−1 = f Xi,k−1,wkð Þ, ð20Þ

xk/k−1 =
1
m
〠
m

i=1
wiX

∗
i,k/k−1, ð21Þ

Pk/k−1 =
1
m
〠
m

i=1
wiX

∗
i,k/k−1X

∗T
i,k/k−1 − xk/k−1x

T
k/k−1 +Qk: ð22Þ

And the measurement updating process is derived by

xk/k = xk/k−1 + Kk zk − zk/k−1ð Þ, ð23Þ

Kk = Pxz,k/k−1P
−1
zz,k/k−1, ð24Þ

Pk/k = Pk/k−1 − KkPzz,k/k−1K
T
k , ð25Þ

Xk/k−1 = sk/k−1ξ + xk/k−1,

Pk/k−1 = sk/k−1s
T
k/k−1,

Zi,k/k−1 = h Xi,k/k−1ð Þ,

zk/k−1 =
1
m
〠
m

i=1
wiZi,k/k−1,

Pxz,k/k−1 =
1
m
〠
m

i=1
wiXi,k/k−1Z

T
i,k/k−1 − xk/k−1z

T
k/k−1,

Pzz,k/k−1 =
1
m
〠
m

i=1
wiZi,k/k−1Z

T
i,k/k−1 − zk/k−1z

T
k/k−1 + Rk,

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð26Þ
where X denotes the m cubature points generated from
states and m = 2n, n denotes dimension of the state vector,
sk/k−1 denotes the square root of Pk/k−1, ξ =

ffiffiffiffiffiffiffiffiffiffiffiffiðm/2Þp ½1�i, and
X∗
k/k−1 and Zk/k−1 denote the propagated cubature points

from states and measurements, respectively. Differences of
the carrier position and velocity between GNSS and INS,
namely, Δr = rINS‐rGNSS and Δv = vINS‐vGNSS, are adopted
in the process of measurement update. Therefore, the vector
of the measurement zk is constructed below.

zk =
Δr

Δv

" #
, ð27Þ

Actually, the measurement equation is linear, and the
measurement updating process should be modified as fol-
lows.

xk/k = xk/k−1 + Kk zk −Hkxk/k−1ð Þ, ð28Þ

Kk = Pk/k−1H
T
k HkPk/k−1H

T
k + Rk

� �−1, ð29Þ

Pk/k = Pk/k−1 − KkHkPk/k−1: ð30Þ
Obviously, the precision of the estimates relies largely on

the quality of the measurements, and unreliable measure-
ments may result in inestimable influences. In practice, how-
ever, unreliable measurements are inevitable. Therefore, the
abnormal measurements must be deliberately processed. Both
the fading factor or matrix and the covariance inflation factor
have been adopted in the data processing of the GNSS/INS
integrated systems. Aiming at the influences on the fading fac-
tor, the judging index constructed based on the Mahalanobis
distance and the covariance inflation factor is implemented
to improve the performance of the filtering process.

5. Performance Evaluation and Analysis

Data processing experiments using different filtering algo-
rithms were designed and implemented. Equipped with the
GNSS receiver (Trimble R8) and the inertial measurement
unit (IMU, SPAN-CPT), the land vehicle was used as the
testing carrier, and a three-axis open-loop gyroscope and
three-axis MEMS accelerometers are included in the IMU.
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The average speed of the land vehicle was about 3.5m/s.
Meanwhile, another GNSS receiver called the base station
was set on top of the building. Motion trajectory of the land
vehicle (in the North and East directions) is demonstrated in
Figure 1. The main technical parameters provided by the sup-
pliers were listed in Table 1. Then, the data was collected with
the land vehicle under real conditions. Position and velocity
from GNSS were computed using double-difference pseudo-
range measurement, and the position and velocity deviations
were 0.25m2 and (0.05m/s)2, respectively. In the testing sys-
tems, the cut-off angle was set by 10°, and the sampling fre-
quency was 1Hz for GNSS and 100Hz for INS. In this
paper, the tightly coupled results provided by the commercial
software IE using double-difference carrier phase measure-
ments were regarded as the references.

As to data fusion of the GNSS/INS integrated systems of
the paper, the CKF was adopted as the basic filter, and time
interval of the data fusion was one second. In the experi-
ments, both the initial data and the data with artificially
added outliers were adopted to test the performances of dif-
ferent algorithms more clearly. Consequently, two cases
were designed and performed. Each case consists of four
algorithms, and the differences between the references and
the results of each algorithm are thought to be errors. Com-
paring the fading filters with a fading factor and fading
matrix, the fading matrix performs better by adjusting the
covariance matrix in multiple data channels simultaneously,
and the ability to resist the model mismatch is enhanced.
Therefore, the fading matrix was adopted in this paper. For
all algorithms of this paper, the initial value of the covari-

ance are fixed by experience. Thus, the statistical deviations
of the models exist, and it is suitable to test the proposed
estimation algorithm. Four different algorithms of each case
are designed below.

Algorithm 1. The conventional CKF.

Algorithm 2. The fading filter with fading matrix (MF-CKF).

Algorithm 3. The fading filter with fading matrix is imple-
mented at the epochs when the null hypothesis is accepted
(Partial-MF-CKF).

Algorithm 4. The fading filter with fading matrix is imple-
mented while the null hypothesis is accepted; otherwise,
the covariance inflation factor is adopted for outlying mea-
surements and sequential updating for normal measure-
ments (RMF-CKF).

Case 5. In this case, the initial data collected through the self-
developed GNSS/INS integrated navigation systems is proc-
essed with the above four algorithms, respectively. Position-
ing errors of the land vehicle of each algorithm are
demonstrated in Figures 2–5.

As mentioned above, each algorithm was implemented
based on the initial measurements collected under ideal
observation conditions, and little outliers exist in the mea-
surements. Accordingly, positioning errors were mainly
brought by the model errors. Comparing Figures 2–5, appar-
ently, error amplitudes in X, Y , and Z directions of the CKF
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Figure 1: Motion trajectory of the land vehicle.

Table 1: Main technical parameters from the suppliers.

Sensors Constant bias Bias instability Bias repeatability Random walk Scale factor instability

Gyroscope 20°/h 1°/h (1σ) 3°/h 0.0667°/h1/2 1500 ppm

Accelerometer 50mg 0.25mg (1σ) 0.75mg 50μg/h1/2 4000 ppm
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algorithm are much bigger than the other algorithms, and
this indicates that the performance of the conventional
CKF algorithm is improved significantly. Moreover, stability
of the filter was improved, and the filter divergence resulted
from the model uncertainties was restrained effectively with
the last three algorithms. In theory, main differences
between the Algorithms 2 and 3 lie on the circumstance
when the fading matrix is adopted. With the initial measure-
ments, the null hypothesis was accepted at most epochs;
thus, the results of the Algorithms 2 and 3 are similar. In

the MF-CKF algorithm, the fading matrix was implemented
at all epochs, and the model errors were well-considered.
Except for the epochs when the null hypothesis was
accepted, the covariance inflation factor in the RMF algo-
rithm was adopted at other epochs, and the influences of
abnormal measurements were weakened. Consequently,
error amplitudes of the processed algorithm displayed in
Figure 4 are smaller than those of other three algorithms.

The root mean square error (RMSE) of these positioning
errors was computed to examine the performances of each
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Figure 2: Position errors of the CKF algorithm.
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Figure 3: Position errors of the MF algorithm.
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algorithm quantificationally. Figure 6 displays RMSEs in X
, Y , and Z directions of each algorithm. Meanwhile, the
detailed RMSEs (position ðPX , PYÞ, velocity ðVX , VYÞ, and
attitude (Yaw) are taken as examples) of these four algo-
rithms are listed in Table 2.

In terms of RMSE values in Figure 6 and Table 2, CKF is
much bigger than other three algorithms, and this indicates
that the robustness and stability of the conventional CKF
should be enhanced further. Comparing the RMSE values

of MF-CKF and Partial-MF-CKF algorithms, the former
performed better since the influences of model errors were
more significant than those of abnormal measurements.
Based on the Partial-MF-CKF, the covariance inflation fac-
tor was implemented at the epochs when the null hypothesis
was rejected. Thus, superiorities of the Mahalanobis dis-
tance, the fading filter, and the robust estimation are com-
bined in the proposed algorithm. Meanwhile, RMSE values
of the other schemes are all bigger than those of the RMF-
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Figure 4: Position errors of the Partial-MF-CKF algorithm.
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Figure 5: Position errors of the RMF-CKF algorithm.
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CKF algorithm, and this indicates that better performance is
achieved with the processed algorithm. In Table 2, obvi-
ously, RMSEs of all the fading filtering algorithms are
smaller than the CKF algorithm since effects of the model
errors are weakened, and the RMF-CKF algorithm outper-
forms the other algorithms in terms of accuracy. Compared
with the conventional MF algorithm, the accuracy of posi-
tioning is improved for 17.7% and 13.0% in X and Y direc-
tions, respectively, using the RMF-CKF algorithm.

Case 6. In this case, the continuously changing and the sep-
arated positioning outliers were introduced artificially into
the measurements to test the robustness and stability of each
algorithm. Thus, the perturbation data based on the initial
data was constructed. All the above four algorithms were
implemented based on the perturbation data, and position-
ing errors of each algorithm are illustrated in Figures 7–10.

Since positioning outliers were introduced into the mea-
surements, the outliers, instead of the model errors, became
the principal factor in affecting the filtering performance. It
is demonstrated in Figures 7–10 that amplitudes of all algo-
rithms were much bigger than those of Case 1, and this
denotes that all algorithms were affected significantly by
the outlying measurements. Meanwhile, as to error ampli-
tudes, all the algorithms with fading matrix are better than
the CKF algorithm. Since the outlying measurements were
not addressed effectively in the CKF and Partial-MF-CKF

algorithms, Figures 7 and 9 illustrate that effects of the out-
lying measurements are more apparent. As shown in
Figures 7 and 9, the fading matrix was implemented when
the null hypothesis was accepted and the model errors were
well controlled; thus, the Partial-MF-CKF algorithm per-
formed superior than the CKF. In the MF-CKF algorithm,
the fading matrix is implemented at all epochs; the fading
matrix performs better when the null hypothesis is accepted.
However, the fading filter becomes instable when the null
hypothesis is rejected. Therefore, once the fading matrix is
applied mistakenly, the MF-CKF algorithm may become
inferior to the CKF algorithm. Comparing Figures 7 and 8,
it is illustrated that amplitudes at some epochs of the MF-
CKF algorithm are even bigger than those of the CKF algo-
rithm, and this is the influences brought from the outlying
measurements. In other words, implementing the fading
matrix mistakenly may affect the filtering performance at
the current together with the future epochs. In the RMF-
CKF algorithm, both the model errors and the outlying mea-
surements were considered. Meanwhile, the fading matrix
was implemented at the relatively reasonable epochs. In
Figure 10, amplitudes in three directions are much smaller
than the other algorithms, and a better performance is
achieved with the RMF-CKF algorithm. However, as to the
constantly changing outliers, the values may small enough
to go through the hypothesis test, and the fading matrix will
be implemented mistakenly. Therefore, at some epochs in
Figure 10, performance of the RMF-CKF algorithm was still
apparently affected by the constantly changing outliers.

Figure 11 depicts RMSEs of each algorithm, and the
detailed RMSEs of these four algorithms are provided in
Table 3.

Comparing the RMSEs in Figures 6 and 11, it is con-
cluded that all algorithms were affected by the outlying mea-
surements. Under the effects of outlying measurements, the
model errors were weakened effectively; thus, the MF-CKF
algorithm performed better than the CKF algorithm.
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Figure 6: Positioning error RMSEs of different algorithms (m). In X, Y , and Z directions, RMSEs of the Algorithms 1, 2, 3, and 4 are
depicted in order from the left to the right, respectively.

Table 2: Error RMSEs of different algorithms.

Algorithm PX (m) PY (m) VX (m/s) VY (m/s) Yaw (°)

CKF 0.147 0.270 0.186 0.160 6.242

MF-CKF 0.079 0.100 0.099 0.096 4.169

Partial-MF-CKF 0.093 0.117 0.104 0.098 4.318

RMF-CKF 0.065 0.087 0.056 0.061 3.620
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Although both the MF and Partial-MF algorithms were
affected significantly by the outlying measurements, the fad-
ing matrix was implemented only when the null hypothesis
was accepted, and the negative effects from mistakenly used
fading matrix were avoided in the Partial-MF-CKF algo-
rithm. Therefore, the Partial-MF-CKF algorithm performed
better than the MF-CKF algorithm. Corresponding to the
qualitative conclusions, RMSEs of the RMF-CKF algorithm
are much smaller than the other algorithms; apparently, bet-
ter performance is achieved with the proposed algorithm.

Comparing Tables 2 and 3, it is demonstrated that the per-
formances of all algorithms were degraded by the outlying
measurements, and the filters with fading matrix are more
stable and robust than CKF algorithm. By integrating the
superiorities of the multiple fading filter and the robust esti-
mation method, the smaller RMSE values and a relatively
stable performance were obtained with the proposed algo-
rithm. In this circumstance, the accuracy of positioning are
improved for 60.1% and 58.5% in X and Y directions,
respectively, using the RMF-CKF algorithm, and this in turn
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Figure 7: Position errors of the CKF algorithm.
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Figure 8: Position errors of the MF-CKF algorithm.
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demonstrates that the MF algorithm is affected by the outly-
ing measurements seriously.

6. Conclusions

In this paper, a rarely discussed problem about how to apply
the fading factor or matrix with unreliable measurements
adaptively is researched, and a modified adaptive filter and
an alternative scheme are developed. In the proposed
scheme, the hypothesis test was performed using the statis-
tics derived from the Mahalanobis distance, and the actual

measurements were collected with self-developed GNSS/
INS integrated systems; then, the contrastive experiments
and analysis were implemented to test the performance of
the proposed algorithm. Detailed conclusions of this paper
are summarized below:

(1) Compared with the conventional CKF, the adaptive
filter with the fading matrix can control the negative
effects of model uncertainties; however, the perfor-
mance may be degraded significantly when there
exist outlying measurements
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Figure 9: Position errors of the Partial-MF-CKF algorithm.
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Figure 10: Position errors of the RMF-CKF algorithm.
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(2) In the fading filter, unreliable measurements will
construct unreliable fading matrix, and performance
of the filter may be even inferior to the conventional
Kalman filter if the fading matrix is applied mistak-
enly. Therefore, it is suggested that the fading matrix
be applied in a timely and more reasonable way

(3) Statistics derived from the Mahalanobis distance can
be adopted to test the quality of measurements, and
stability of the fading filter is improved with the
hypothesis test. By integrating the advantages of the
fading matrix and the covariance inflation factor,
effects of both the model errors and the outlying mea-
surements are controlled using the proposed scheme
for the systems with model uncertainties. Also, the
proposed adaptive fusion scheme is more suitable
when there exist outliers in the measurements
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The calibration of the light detection and ranging (LiDAR) system is critical to ensure the accuracy of point data. In this paper, the
lever-arm measurement of airborne LiDAR system (ALS) was realized by photogrammetry. An automatic iterative boresight
calibration method based on approximate corresponding points (CPs) matching was proposed to correct the boresight
misalignment. It was based on iterative closest point (ICP) registration algorithm with a normal space sampling strategy, and
approximate CPs were obtained by establishing filter rules. The experimental results showed that the absolute accuracy of the
calibrated ALS reached 7.13 cm when the flight altitude was 100m, meeting the accuracy requirements.

1. Introduction

ALS is widely used in topographic mapping, digital city, power
line inspection, and other fields. A laser scanner, a global posi-
tion system (GPS), and an inertial navigation system (INS) were
integrated into ALS. It calculates the distance between the
scanner and the target by the time interval from transmitting
laser pulse to receiving echo signal. Then, the 3D spatial coordi-
nates of the target are calculated by combining the position and
attitude of the laser scanner observed by the GPS and the iner-
tial measurement unit (IMU) [1]. As a multisensor integrated
system, the accuracy of laser point cloud data acquired by
ALS is affected by various factors such as GPS positioning error,
IMU angle measurement error, system integration error, and
laser ranging error [2]. Although the manufacturer calibrates
ALS equipment before leaving the factory, the transportation,
disassembly, and installation processes will inevitably impact
the different components of the airborne LiDAR system. Bore-
sight (angular misalignment between the mounting axes of the
laser scanner and IMU) and lever-arm (physical offset from the

laser scanner to GNSS antenna) can occur in the system [3].
Boresight misalignment and lever-arm offsets are the primary
error sources that bias the LiDAR point cloud positioning [4].
Their presence causes noncoincidence and misalignment
between LiDAR point cloud strips, which seriously affects
the overall accuracy and precision of the data [5, 6]. Given
the above, high-precision geospatial applications of UAVs
especially require calibration of the boresight misalignment
and lever-arm offsets [7].

In the local coordinate system of IMU, the lever-arm offset
is constant, usually measured by a straightedge or obtained
from the design drawings. The boresight angles cannot be
measured directly, so they should be calibrated by manual cal-
ibration (MC) or least-squares adjustment with the collected
point cloud [8]. Manual calibration is performed by laying
out suitable routes to obtain laser point clouds of characteristic
features such as flat roads and gable-roofed buildings and then
gradually computing the three error angles according to the
empirical formula. The boresight angles are computed itera-
tively until the point clouds obtained from different strips
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overlap well [9]. Due to the limited number of point clouds
selected for each profile, this method is susceptible to factors
such as flight quality and characteristic ground conditions.
Therefore, MC is time-consuming and challenging to ensure
calibration accuracy.

The least-squares adjustment-based calibration methods
can be divided into data-driven methods and strict model-
driven methods, depending on whether the boresight angles
are directly represented by the geometric reference equation
(8). The methods described in Mass (2000) [10] and Ayman
et al. (2010) [11] are data-driven approaches that use only
the position information of georeferenced LiDAR points to
reduce the interstrip variance. This approach does not require
raw data, such as GNSS/INS measurements, which are not
always available to the user. However, these methods are con-
sidered less rigorous because arbitrary transformations cannot
compensate for all the biases associated with point cloud geo-
alignment. The rigorous model-driven approach expresses the
apparent axis angle explicitly in the georeferenced equations.
The boresight angles are estimated by constraining the set of
feature points (such as connection points/control points and
plane points) obtained from multiple overlapped strips or
other reference data to fit the corresponding geometric model
and minimizing the weighted sum of squares of residuals [12].
To quantify the discrepancies between strips, conjugate tie
points, planar patches, and/or modelled surfaces is typically
matched in overlapping point clouds from the strips. These
differences are then used to determine unaligned criteria that
are typically defined as distances [13]. Compared with the
image data obtained from aerial photogrammetry, ALS point
cloud data do not have real CPs due to the irregularity and
dispersion of spatial distribution, making it challenging to
adjust directly by the “connection point” constraint [9]. The
parity model based on conjugate plane matching is the most
used in boresight correction. Filin and Sagi (2003) [14] first
recovered the boresight in an ALS system using natural and
artificial surfaces. They used the least-squares adjustment
(LAS) to estimate the boresight angles from surfaces with
known parameters in different directions. Skloude and Lichti
(2007) [4] improved the boresight calibration based on plane
features by estimating the plane parameters and the boresight
angles simultaneously instead of using fixed, known plane
parameters. The improved method significantly enhanced
the calibration performance. Identifying and selecting conju-
gate surfaces require rigorous preprocessing steps (e.g., region
growing, principal component analysis, or RANSAC) and
suitable sites, such as urban environments [15]. Point-to-
patch matching methods [16, 17] advantageously present
direct and automated communication. Once the correspon-
dence is established, the boresight angles are represented as a
parameter of the optimized target. LSA was then performed
to estimate the correction parameters. Glira et al. (2016) [17]
proposed a LiDAR strip adjustment method. Their method
was able to correct for deviations in the LiDAR-GNSS/INS
calibration parameters and other system errors such as laser
ranging deviations or scale factors and biases in GNSS/INS
observations. Their approach minimized the discrepancy
between robustly selected point-to-plane correspondences from
overlapping LiDAR strips by LSA. Recently, Keyetieu and Seube

(2019) [18] discussed the optimal selection of strip-adjusted
LiDAR observations. The authors relied on model measure-
ment uncertainty of georeferenced LiDAR points to achieve
the smallest LSA problem size.

Generally speaking, the current calibration method using
line/plane features has specific requirements for the normal
direction and distribution of line/plane features. In order to
achieve higher calibration accuracy, the plane should be per-
pendicular to three coordinate axes as much as possible, and
the distribution of corresponding features should be uniform
as much as possible [19]. These conditions are only applicable
to areas with rich geometric features in urban areas. It is tough
to automatically extract precise lines and planes in complex
environments, limiting these algorithms’ applicability.

Compared with the extraction and matching of line/plane
features, point features are more readily available in natural
scenes and easier to realize automation. The adjustment
method based on point features has potential advantages. It
will help improve the practicality and automation of the cali-
bration method if the CPs can be utilized for correction
parameters calculation. However, due to the nature of LiDAR
data, automatic identification of CPs is unreliable, restricting
the development of a strict adjustment model with CPs. The
ICP algorithm [20, 21] provides a way to accurately align the
source point cloud and target point cloud due to the small
boresight angles in ALS.

In view of the above, a strict adjustment model for bore-
sight based on ICP and approximate CPs was presented to
solve the challenge of automatic selection and matching CPs
between LiDAR strips. The proposed method eliminates the
dependence on prelaid calibration markers or targets. It can
operate automatically even in natural scenes without impor-
tant geometric features, such as planes in multiple directions.
Further, benefitting from the rigorous screening process for
CPs, the proposal method can effectively reduce the probabil-
ity of incorrect convergence.

2. Materials and Methods

2.1. Data Acquisition. We carried out three flight experi-
ments at the China University of Mining and Technology
(Figure 1). In the three experiments, the flight heights were
150m, 100m, and 80m, respectively, and the flight speeds
were 8m/s, 6m/s, and 6m/s, respectively. Two of the four
flight belts were parallel, and the other two were perpendic-
ular to them. Ten ground control points were set up in the
two experimental areas before the flight, and a GPS receiver
was used to measure them. GNSS/IMU data was processed
by PosPac (v8.5) software to obtain attitude and position
of the aircraft and time matched with the ranging data of
the laser scanner. After rotation and translation, the final
multistrip initial LiDAR point cloud was obtained.

2.2. Sensor Payload. All sensors were integrated into a mature
industrial-grade UAV, a WIND 4 (DJI Technology Co., Ltd.,
Shenzhen, China). The integrated sensors include a RoboSense
RS-LiDAR-32, a coupled GNSS/IMU sensor with a multifre-
quency, multiconstellation GNSS receiver (Applanix APX-15),
and an onboard computer. We fixed the GNSS/IMU sensor
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and the on-board computer in a protective shield and attached
the laser scanner to the protection by screws. The antenna was
fixed on the side of the UAV and was 10 cm above the propeller
to ensure the uninterrupted reception of satellite signals
(Figure 2). Our installation ensured that the three axes of the
UAV coordinate system, the IMU coordinate system, and the
laser scanner coordinate system were nearly parallel, reducing
the difficulty and error of postprocessing.

2.3. Antenna to Laser Scanner Lever-Arm Offsets. Measuring
the lever-arm offsets from GNSS antenna to laser scanner is
a necessary step for ALS self-calibration. Kersting et al.
(2012) [16] claimed that the vertical lever-arm component
could not be estimated by looking at the strip-to-strip corre-
spondence alone since errors in the vertical lever-arm
parameters have the same effect regardless of the flight direc-
tion or flight altitude. The vertical lever-arm offset can only

be computed when at least one vertical ground control point
(GCP) is employed. This limitation was again emphasized
by Ravi et al. (2018) [22]. An accurate measurement of the
offset vector from the GNSS antenna to the laser scanner
center is required to eliminate lever-arm errors. However,
it is not easy to ensure the exact alignment of the measure-
ment direction with the coordinate system using manual
measurements. Therefore, we took 293 highly overlapping
photos of the UAV from different angles and heights using
a cell phone. The ALS was finely modelled with the help of
the structure-from-motion (SfM) method. It can be rotated
randomly in space to correct misalignment to achieve accu-
rate measurements of the lever-arm offsets [3]. Due to the
smooth and reflective nature of the UAV and sensor hous-
ing, the texture was not sufficiently clear at specific angles.
To ensure 3D reconstruction accuracy, we set up a total of
23 high-contrast marker points on the UAV and ground.

(a)

Check points
Strips

(b)

(c)

0 25 50 100 150 200
m

0 25 50 100 150 200
m

0 25 50 100 150 200
m

N N

N

Figure 1: Experimental data acquisition scenarios: (a) experiment 1; (b) experiment 2; (b) experiment 3.
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Ten of them were measured with steel ruler at different heights
as control points to assist aerial triangulation. The overlapping
images were then processed using Agisoft’s Photoscan (v1.2.6)
(http://www.agisoft.com/) to obtain a dense ALS 3D point
cloud (Figure 3). High-quality and gentle filtering patterns were
set to create dense point clouds. The dense point cloud was
scaled with the measured GCPs to produce an absolute size
ALS model. This scaled point cloud was then imported into
Cloudcompare (v2.11.3) (http://www.cloudcompare.org/) to
measure the lever-arm offsets.

2.4. Boresight Self-Calibration.We proposed a strict boresight
calibration method based on approximate CPs matching. This
method consists of two parts: approximate CPs matching and
estimation of boresight angles using LSA. Taking the point
clouds scanned by two strips as an example, the calculation
process of boresight angles is shown in Figure 4.

2.4.1. General Formulation. The calibration of the ALS
parameters is based on the laser point positioning equation.
First, the target coordinates in the laser scanner coordinate
system are converted into IMU coordinate system by using
the lever-arm offsets and boresight angles between the laser
scanner and GNSS/IMU. Then, the IMU coordinate system
coordinates are converted to a local horizontal coordinate
system using the traverse roll, pitch, and heading angle pro-
vided by GNSS/IMU. Finally, the local coordinates are con-
verted to WGS84-ECEF using the latitude, longitude, and
ellipsoidal altitude supplied by GNSS/IMU. The georefer-
enced equation describing the conversion of the scan point

from the laser scan frame to the WGS84 ECEF frame is
given.

XW = Rw
n B, Lð ÞRn

i r, p, hð Þ Ri
l α, β, γð Þxl + P

� �
+ gw B, L,Hð Þ�,

ð1Þ

where XW is the positioning vector of the point in the
WGS84 ECEF frame; xl is the positioning vector of the point
in the laser scanner frame; Ri

l is the rotation matrix from the
laser scanner frame to the IMU frame; P is the position of the
laser scanner in the IMU frame; α, β, γ are the boresight angles

Laser
scanner 

Antenna

GCPs

GNSS
/IMU

Figure 2: Airborne LiDAR systems.

Figure 3: Scaled point cloud of ALS.
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between the laser scanner and the GNSS/MU system; P is the
lever-arm offsets vector between the laser scanner and the
GNSS/IMU system; Rn

i is the rotation matrix between the
IMU frame and the navigation coordinate system; Rw

n is the
rotation matrix between the navigation coordinate system and
the WGS84 ECEF frame; gWðB, L,HÞ is the position of the
UAV in the WGS84 ECEF frame; B, L,H are the latitude, lon-
gitude, and ellipsoidal height provided by the GNSS/IMU; r, p
, h are the roll, pitch, and heading provided by the GNSS/IMU.

The lever-arm offsets can be measured directly from the
scaled model with sufficient accuracy so that the error caused
by the lever arm offset error is negligible. Under good GNSS
conditions, the positioning error and IMU attitude error have
little effect on the positioning accuracy, while the boresight
angles mainly determine the total error of the point cloud. Δ
α, Δβ, and Δγ are the boresight angles in the roll, pitch, and
heading directions, respectively. Since the boresight angles
are small, generally in the range of -3° to 3°, the geolocation
equation can be described as follows.

XW = Rw
n B, Lð ÞRn

i r, p, hð Þ ΔRi
l Δα, Δβ, Δγð ÞRi

l α, β, γð Þxl + P
� �

+ gW B, L,Hð Þ�,
ð2Þ

where

Ri
l α, β, γð Þ =

cos γ −sin γ 0
sin γ cos γ 0
0 0 1

2
664

3
775

cos β 0 sin β

0 1 0
−sin β 0 cos β

2
664

3
775

1 0 0
0 cos α −sin α

0 sin α cos α

2
664

3
775,

ð3Þ

ΔRi
l Δα,Δβ,Δγð Þ =

1 −Δγ Δβ

Δγ 1 −Δα

−Δβ Δα 1

2
664

3
775: ð4Þ

If the point Xm
w is scanned from the m-th strip and its

corresponding point in the n-th strip is Xn
w, the deviation

between the points Xm
w and Xn

w can be calculated by the error
equation (5).

Vmn
w = Xm

w − Xn
w: ð5Þ

Suppose N corresponding points are found from different
scan directions or different strips. In that case, the boresight
correction parameters can be derived by minimizing the total
deviation of the N corresponding points as follows.

sum = 〠
N

i=1
VT

i V : ð6Þ

2.4.2. Approximate CP Strategy.Unlike grayscale images, there
are no true CPs in the point clouds of different strips due to the
randomness and discreteness of LiDAR points. This property
of LiDAR points is the most critical reason limiting strip
adjustment models based on CPs matching. Of course, some
scholars have proposed the intersection of the feature line with
the surface as the feature point at this stage. However, such
methods require filtering and fitting the points, which is chal-
lenging to implement in complex LiDAR points.

ICP algorithm is the mainstream algorithm in the fine
alignment stage of point clouds. For two sets of point clouds
with good initial positions, the ICP algorithm can achieve
the ideal alignment effect. Since the boresight angels of ALS
is generally minor, the different strip point clouds collected
in a short time can be obtained by rigid transformation when
the UAV flight altitude is low. Therefore, in this paper, the fol-
lowing matching strategies for different strip approximation
CPs are proposed based on the ICP algorithm.

(1) Removal of points in the point cloud that are too far
from the overall point cloud using distance filtering,
which is a prerequisite for fine alignment using ICP

Adjacent strip
point cloud 

Point cloud
data without

outliers

Multiple groups
of corresponding
small data sets

Adjacent strip
point cloud after

registration

[Δ𝛼, Δ𝛽, Δ𝛾 ]
< threshold? [Δ𝛼, Δ𝛽, Δ𝛾] groups of

Distance ICP with normal
vector space

sampling strategy 

Least
square

method

Average

Final point
cloud 

Corrected
point cloud 

N
Y

Point cloud
segmentation 

Ф

[Δ𝛼, Δ𝛽, Δ𝛾]
groups ofФ

[Δ𝛼, Δ𝛽, Δ𝛾]

groups of
CPs

Ф

Figure 4: Algorithm flowchart.
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(2) The point cloud on each strip is split into small pieces
using timestamps at 5 s intervals. The time interval is
chosen according to the flight speed and should not
be too large so that the large-scale point clouds can
be better processed and the corresponding point
clouds can be better aligned accurately by ICP

(3) After partitioning the point cloud of each strip into
small sections, the 3D bounding boxes of all sections
are calculated. Then, they are used to detect the over-
lapping regions to construct the overlapping rela-
tionship between the parts of the point cloud. The
alignment is performed between the sections that
overlap each other

(4) A large amount of data in a dense point cloud makes
effective alignment of overlapping regions difficult.
The normal vector is an essential geometric feature
of the surface, and the angle of the normal vector
can be used to determine the surface change at that
place. To improve the matching efficiency, we adopt
the normal vector space sampling strategy [23] in the
ICP variant algorithm for point cloud refinement
(Figure 5) and then use the ICP algorithm to align
the overlapping sections

(5) After alignment, 5000 points (Ω) are sampled uni-
formly from the source strip, and the three points (Φ)
with the closest Euclidean distance to each sampled
point are selected from the other strips (Φ = 3 ∗Ω)

(6) If the maximum height difference of the three points
in Φ is greater than 30 cm, they are removed from Ω
and Φ to obtain the Ω− and Φ−

Two north-south flight strips in each experiment were
taken as an example. First, the initial point cloud of each strip
was filtered by distance to eliminate the outliers. Then, the
point cloud was divided into small pieces to calculate the over-
lapping area of the strip point cloud (Figure 6). The normal
vector space of the point cloud was computed, and the stream-
lined point cloud was obtained by uniform sampling in the
normal vector space. The ICP alignment was performed on
the streamlined point cloud to get the aligned point clouds
of the two strips. Five thousand points were randomly selected
from the overlapping area of the source point cloud (Figures 5
(a), 5(c), and 5(e)). The sampling points selected in experi-
ments 1-3 were filtered according to the strategy proposed in

Section 2.4.2 to obtain Ω−
1 , Ω

−
2 , and Ω−

3 , where Ω−
1 = 2345,

Ω−
2 = 3294, and Ω−

3 = 3622 (Figures 5(b), 5(d), and 5(e)). The
three points closest to each point in Ω were extracted from
the target strip to formΦ. Therefore,Φ−

1 ,Φ
−
2 , andΦ

−
3 in exper-

iments 1-3 are 7035, 9882, and 10866, respectively.
It is worth noting that the convergence of ICP alignment

is crucial to obtain reliable alignment results. We adopted
three steps to improve the accuracy of ICP alignment: first,
after removing the outliers, the point cloud was divided into
small blocks to ensure the consistency between the source
point cloud and the target point cloud through a rigid trans-
formation; second, the feature points were selected by uni-
form sampling in normal vector space. This sampling
strategy can preserve the local features of the point cloud
surface while extracting the thin point cloud, which is more
favorable for accurate matching; third, all boresight angles
were prealigned. The prealignment makes the initial value
of the placement angle error close to zero, allowing the algo-
rithm to converge efficiently.

In addition, several parameters in the approximate CPs fil-
tering process need to be set reasonably according to the actual
scenario. For example, we sampled 5000 points uniformly
from the source point cloud, and each point took the three
points with the closest Euclidean distance in the target point
cloud to constitute a set of approximate CPs. To get more
CPs, the readers can increase “5000” or “3” appropriately.
However, we recommend selecting at least three nearest points
because the positioning accuracy of the points is greatly
affected by the random error generated by the scanning angle
and measuring distance of the laser scanner. The selection of
only one nearest neighbor point will introduce many mistakes
to the settlement of the boresight error. As for the elevation
difference threshold, it needs to be adjusted according to the
point cloud density. We suggest that when the point cloud
density is lower than 150/m2, the elevation difference thresh-
old should be increased appropriately.

2.4.3. Boresight Angle Correction Parameter Estimation. Because
of the boresight error, the CPs in the overlapping strips are not
coincident. Therefore, the calibration procedure uses the CPs
position consistency as a constraint to recover the Boresight
angles correction parameters. When the systematic error is
eliminated, all point clouds are restored to their true positions.

Assuming that the CPs of the two strips are X1
w and X2

w,
respectively, the observation equation can be expressed as

X1
w = X2

w+Δ: ð7Þ

(a) (b)

Figure 5: Corresponding point pairs selected by the (a) “random sampling” and (b) “normal-space sampling” strategies for an incised mesh.
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According to equation (2), the laser point coordinates
are expressed as a function of the system parameters to be
solved. After linearizing the equation, the error equation
(8) can be listed by setting the coordinate residuals as V
and solved according to the least-squares principle.

V = BX + L, ð8Þ

where B is the coefficient matrix of the unknown, B =

∂X/∂Δα ∂X/∂Δβ ∂X/∂Δγ
∂Y/∂Δα ∂Y/∂Δβ ∂Y/∂Δγ
∂Z/∂Δα ∂Z/∂Δβ ∂Z/∂Δγ

2
664

3
775; X is the matrix of bore-

sight angles, X = ½Δα,Δβ,Δγ�T ; L is a constant matrix, L =
ðRw

n R
n
i PÞ1 + g1

w − ðRw
n R

n
i PÞ2 + g2w.

When the value of the expression VTPV is the most
minor, the correction parameters of the boresight angles
can be obtained according to equation (9).

X = − BTPB
� �−1

BTPL: ð9Þ

Table 1: The lever-arm offset measured from a scaled point cloud
of the ALS.

Lever-arm Offset (cm)

GNSS antenna to IMU [3.36, 10.34, -51.44]

IMU to laser scanner [7.58, -3.8, -0.5]

(a) (b)

(c) (d)

(e) (f)

Figure 6: Distribution of sampling points in the source point cloud. (a) and (c) are the sampling points before the first filtering of
experiments 1 and 2, respectively; (b) and (d) are the sampling points after the first filtering of experiments 1 and 2, respectively. The
red areas are the strip overlap areas, and the yellow points are the sampling points of the source point cloud.
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In order to solve the boresight angles correction param-
eter, it is only necessary to determine the corresponding
laser points on different strips to estimate the system param-

eters according to the least-squares principle. The number of
unknowns to be solved in Eq. (9) is three, and three equa-
tions can be listed for each pair of CPs, so at least one pair
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Figure 8: Variation of the boresight angles with the number of iterations. (a) Experiment 1; (b) experiment 2; (b) experiment 3.
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Table 2: Result of boresight calibration (°).

Experiment 1 Experiment 2 Experiment 3
Δα Δβ Δγ Δα Δβ Δγ Δα Δβ Δγ

Our method [-1.001, 2.224, 0.533] [-0.997, 2.234, 0.521] [-1.003, 2.238, 0.528]

VTPM [-0.999, 2.231, 0.534] [-0.998, 2.236, 0.514] [-1.001, 2.232, 0.531]

MC [-1.003, 2.217, 0.543] [-1.009, 2.248, 0.509] [-1.003, 2.235, 0.518]

1

3

2

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 9: Multiple point clouds before and after boresight calibration in experiment 1. (a) Original point cloud; ((b), (d), and (f)) point
clouds of cross-section 1, cross-section 2, and cross-section 3 before boresight calibration; ((c), (e), and (g)) point cloud of cross-section
1, cross-section 2, and cross-section 3 after boresight calibration. Points derived from different strips have different colors.
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of CPs is needed for the solution. Multiple sets of boresight
angle correction parameters can be derived by applying the
above LSA model using the approximate CPs filtered by Sec-
tion 2.4.2. However, because some points are located at the
edge of the scanned area, vegetation area, or are too much
affected by random errors, the accuracy of the obtained cor-
rection parameters is not enough or even completely wrong.

Therefore, we counted the frequency of the calculated Δα
, Δβ, and Δγ according to the gradient of 0.1°, respectively,
and recorded the most frequent group of each as αm, βm,
and γm. All CPs, whose corresponding ½Δα,Δβ,Δγ� in ½αm,
βm, γm�, were selected from Φ− to form set Φ−−. The bore-
sight angles in Φ−− were averaged to obtain the final correc-
tion parameters. The calibration parameter solution is not
performed only once but repeated iteratively until the result-
ing boresight error is below the set accuracy threshold.

2.5. ALS Alignment Evaluation. We laid some checkpoints
on the ground in the experimental area. Taking each check-
point as the center, the corrected point cloud in the sphere
with a radius of 20 cm was intercepted. The point cloud
intercepted at each checkpoint is plane-fitted, and Di is
defined as the orthogonal distance from the i-th checkpoint
to the corresponding fit plane. If the ALS error correction
accuracy is high enough, then Di should be close to zero.
Two metrics DL and σL are introduced to evaluate the ALS

error correction accuracy [24]. DL is defined as the average
of all Di calculated for each checkpoint. σL is the average
of all σ j, where σj is the standard deviation of the distribu-
tion of the set of points around the plane fitted to the point
cloud intercepted by each checkpoint. DL evaluates the abso-
lute accuracy of the alignment, but σL evaluates its relative
accuracy.

3. Results and Discussion

3.1. Lever-Arm Correction. The lever-arm offsets between
sensors were measured in a scaled LAS point cloud, as
shown in Table 1. The accuracy of the lever-arm offsets esti-
mation depends on the accuracy of the GCPs measurement,
the inherent error of the SfM modelling, and the estimation
accuracy of the sensor reference points within the point
cloud. The GCPs were measured with a rigid ruler and a lead
hammer. The uncertainty of the rigid ruler measurement
was within ±0.1 cm, while the accuracy of the lead hammer
measurement was somewhat worse, around ±0.2 cm. There-
fore, the maximum uncertainty of the GCP measurement
was considered to be ±0.3 cm. The uncertainty of GPCs
combined with the uncertainty in the intrinsic modelling
of the SfM was translated into uncertainty in the 3D model.
Since the images were taken at a very short distance of less
than 1.5m, the SfM inherent uncertainty was considered

1

2

(a) (b)

(c) (d)

(e)

Figure 10: Multiple point clouds before and after boresight calibration in experiment 2. (a) Original point cloud; ((b) and (d)) point clouds
of cross-section 1 and cross-section 2 before boresight calibration; ((c) and (e)) point cloud of cross-section 1 and cross-section 2 after
boresight calibration. Points derived from different strips have different colors.
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within the measurement accuracy of the GCPs. Thus, the
uncertainty in the ALS 3D model was considered to be
within ±0.5 cm. When the uncertainty of the selected points
on the ALS model point cloud was added, the final calcu-
lated total uncertainty associated with the lever-arm offsets
estimate was ±0.6 cm. Manual measurement is difficult to
ensure that the measurement direction of the straightedge
is in the same direction as the axis of the IMU coordinate
system, so the SfM-based lever arm measurement method
is more accurate than the manual measurement method.

3.2. Boresight Angle Correction Parameter Estimation. The
least-squares adjustment model was applied to the first filtering
results of experiment 1-3 to obtain 7035, 9882, and 10866 bore-
sight angle correction parameter matrices, respectively. Taking
experiment 2 as an example, Δα, Δβ, and Δγ were counted as
frequencies according to a gradient of 0.1° (Figure 7). The sam-
pling points corresponding to [Δα, Δβ,Δγ] in [αm, βm, γm]
were picked in Φ−

2 to get Φ−−
2 (= 1326). Similarly, we got Φ−−

1
= 987 and Φ−−

3 = 1541. The boresight angle correction param-
eters for the first iteration of experiments 1-3 were derived by
averaging Δα, Δβ, and Δγ obtained from the approximately
CPs in Φ−−

1 ,Φ−−
2 , and Φ−−

3 , respectively.
The above process was iterated until the boresight angles

obtained are less than the set threshold value (Figure 8). All

three groups of experiments reached a steady state after 6-7
iterations. The convergence speed of experiment 3 was the
fastest among the three groups. This is due to the fact that
experiment 3 has more approximate CPs involved in the cal-
culation. It is also related to the low flight altitude and small
deformation between strip point clouds in experiment 3. The
final cumulative boresight angle errors were shown in Table 2.

We corrected the point cloud using the final boresight
angles (Figures 9–11). The points scanned from different strips
had different colors, and there were obvious deviations
between the original point clouds of different strips before cal-
ibration. To more intuitively and qualitatively evaluate the
correction effect, seven point cloud profiles before and after
boresight calibration were visualized (Figures 9–11). As seen
from the figure, the point clouds of different strips after cali-
bration by our method had achieved complete overlap, and
the accuracy of the point clouds had been greatly improved.

Finally, we quantified and evaluated the corrected point
clouds using the ground checkpoints arranged in advance
and conducted comparison tests with the virtual tie point
model-based method (VTPM) proposed by Jing et al.
(2013) [25] and the MC. The results were listed in Tables 2
and 3. Table 2 showed that the final boresight angles of three
experiments calculated by the three methods were close.
Table 3 showed that the point cloud corrected by the two

1

2

(a) (b)

(c) (d)

(e)

Figure 11: Multiple point clouds before and after boresight calibration in experiment 3. (a) Original point cloud; ((b) and (d)) point clouds
of cross-section 1 and cross-section 2 before boresight calibration; ((c) and (e)) point cloud of cross-section 1 and cross-section 2 after
boresight calibration. Points derived from different strips have different colors.
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automatic methods was more accurate than MC. Considering
the random errors of the laser rangefinder range, GPS posi-
tioning, and attitude, we therefore believed that the boresight
angle calculation results met the expectation of error correc-
tion. Among the three sets of experiments, the worst point
cloud accuracy in experiment 1 was mainly due to the high
flight altitude. The higher flight amplified the attitude and
ranging random errors, resulting in a more discrete point
cloud. It was also illustrated by the fact that σL is larger than
DL. In experiment 1, the point cloud accuracy obtained by
the VTPM method was better than our method. This was
due to the fact that a large percentage of the 5000 sampling
points uniformly generated by our method in experiment 1
were located in the plant areas and the edge areas of buildings.
Few CPs remained after sampling point filtering (<1000). For
this scene, the number of sampling points can be increased
appropriately to improve the accuracy of our method. In
experiments 2 and 3, the accuracy of our proposed method
was much less time consuming and better than that of VTPM,
mainly because our CP filtering process removed most of the
pseudocorresponding points that were incorrectly matched
due to random errors, speeding up the iterative process and
avoiding incorrect convergence.

4. Conclusions

The calibration of ALS is a critical step before performing
data postprocessing and directly affects the quality of the
point cloud. We used a cell phone to finely model the ALS
using the SfM method to measure the lever-arm. In addition,
we proposed an automated, fast iterative boresight correc-
tion algorithm based on approximate corresponding point
matching. It overcomes the difficulty of accurately extracting
corresponding points from LiDAR point cloud. It enables
the potential point matching adjustment model to be suc-
cessfully applied to the boresight angles correction. Our
research results showed that the accuracy of the proposed
algorithm was ideal, and we believed it could be better pro-
moted in the future.
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Real-time and robust state estimation for pedestrians is a challenging problem under the satellite denial environment. The zero-
velocity-aided foot-mounted inertial navigation system, with the shortcomings of unobservable heading, error accumulation, and
poorly adaptable parameters, is a conventional method to estimate the pose relative to a known origin. Visual and inertial fusion is
a popular technology for state estimation over the past decades, but it cannot make full use of the movement characteristics of
pedestrians. In this paper, we propose a novel visual-aided inertial navigation algorithm for pedestrians, which improves the
robustness in the dynamic environment and for multi-motion pedestrians. The algorithm proposed combines the zero-
velocity-aided INS with visual odometry to obtain more accurate pose estimation in various environments. And then, the
parameters of INS have adjusted adaptively via taking errors between fusion estimation and INS outputs as observers in the
factor graphs. We evaluate the performance of our system with real-world experiments. Results are compared with other
algorithms to show that the absolute trajectory accuracy in the algorithm proposed has been greatly improved, especially in the
dynamic scene and multi-motions trials.

1. Introduction

Pedestrian navigation has been extensively investigated over
the last decades, because independent positioning is neces-
sary and challenging under satellite denial environments,
such as indoor navigation, mine rescue, and individual com-
bat. Due to the autonomy and continuity of both cameras
and inertial measurement units (IMU), visual odometry
and inertial navigation system (INS) are the main methods
to estimate the pose relative to a known starting point for
pedestrians [1]. Besides, visual-inertial odometry (VIO) has
become popular in recent years because of the comple-
mentary properties of cameras and IMU [2, 3]. Some
advanced pedestrian navigation algorithms have already
attained satisfactory performance, such as the solution
algorithm of the strap-down inertial navigation system
(SINS) [1, 4], visual-based methods [5–7], and visual-
inertial algorithms [2, 3, 8]. However, several drawbacks,
especially poor robustness in the dynamic environment
and for multi-motion pedestrians, are limiting the usage
of these algorithms in practice.

The error of INS accumulates with time, and it is hard to
meet the long-term navigation precision of MIMU for
pedestrians. On the one hand, the heading error of pedes-
trian inertial navigation is not observable, which cannot
effectively restrain the heading drift, then the heading error
will accumulate over time [4]. On the other hand, the
parameters are poor adaptability for different pedestrians
under various motion conditions, so that the performance
of pedestrian inertial navigation is related to the movement
characteristics of pedestrians [9]. Thus, it is the key to adjust
parameters adaptively for a robust pedestrian navigation
system.

The robustness of the visual navigation in dynamic envi-
ronments is also challenge for pedestrians. Complex scenes
bring unpredictable abnormal observations to the system,
which would probably corrupt the quality of the state esti-
mation and even lead to system failure [10]. In addition,
the motion characteristics of pedestrians also affects the per-
formance of the system.

The conventional visual-inertial navigation algorithms
do not make full use of the human motion characteristics.
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Lupton and Sukkah first proposed the theory of inertial inte-
gral increment without initial value to solve the problem of
inertial vision integrated navigation under high dynamic
conditions [11]. The fusion algorithm based on the pre-
integration theory only gives scale information through iner-
tial data [3, 8]. We can apply the gait characteristics heading
of pedestrians for errors correction.

In this paper, we proposed a robust visual-inertial navi-
gation algorithm to improve the robustness under the condi-
tion of limited vision and pedestrian movement, which fuses
the cameras with foot-mounted MIMU and adjust parame-
ters of INS adaptively. The conceptual diagram of the algo-
rithm is shown in Figure 1. In the system, the pedestrian
state, coming from VO and SINS, is optimized in a batch
to obtain a more accurate and robust pose correction. Addi-
tionally, we establish the model between zero-velocity inter-
val offset and navigation result error in one step. And taking
the optimized result as observation, we estimate the param-
eters of zero-velocity interval detection to obtain a more
accurate pose estimation. In short, our main contributions
are as follows:

(i) A novel pose graph optimization algorithm to
fusion foot-mounted IMU with visual odometry

(ii) An algorithm to adaptively adjust parameters of the
zero-velocity detector, which is driven by the navi-
gation result error

(iii) The general framework to fuse foot-mounted IMU
with various sensors, which combines optimization
framework and filtering framework to achieves
robust localization

(iv) We demonstrate the performance and robustness of
our method with extensive experiments. Challenges
included dynamic scenarios and multi-motions
pedestrians

The remainder of the article is structured as follows. In
Sect. II, we discuss relevant literature about ZUPT-aided
inertial navigation and the visual-inertial navigation. We
give an overview of the algorithm proposed in Sect. III. A
pose fusion algorithm between foot-mounted IMU and cam-
era is presented in Sect. IV. Sect. V discusses the result-
driven method for adaptive parameter adjustment. The
experimental results and their discussion are shown in Sect.
VI. Finial, Sect. VII concludes the article.

2. Related Work

2.1. ZUPT-Aided Inertial Navigation. Traditional inertial
navigation system integrates IMU measurements to estimate
the pedestrian pose relative to a known origin. Typically,
pedestrian navigation applies filter approaches [2] or opti-
mized approaches [12–15] to fuse measurements other avail-
able sensors with the IMU. Combined with the topic of this
paper, we summarize the related research on ZUPT-aided
INS, multi-sensors navigation based on optimization frame-
work for pedestrians.

The zero-velocity-aided INS, based on facts that the
velocity is zero while the foot touches the ground for pedes-
trians, fuses the pseudo-measurement of the velocity state
with Extended Kalman Filter (EKF) to reduce the accumu-
lated error originating from the integration of noisy IMU
measurement. The performance of the navigation system
highly relies on the accuracy of the zero-velocity interval
detection. Skog et al. presented a typical detector named
the stance hypothesis optimal detection (SHOE), which
achieve good performance for specific pedestrian and move-
ment [16]. However, the parameters of ZUPT are quite dif-
ferent either under various motion states or from person to
person. Thus, it is the key to adjust parameters adaptively
for a robust pedestrian navigation system [4, 9]. Research
work for solving the issue can be classified into two aspects.
One is to improve the adaptability of the model-based algo-
rithm by optimizing the parameters in real-time [1, 9, 15,
17–19]. The other is to replace the model-based architecture
with a learned algorithm [4]. The adaptive algorithm, driven
by the measurement of IMU, analyses the characteristics of
parameters. The first is a threshold adjustment method
based on speed or movement pattern classification [9, 16,
20]. For example, Brandon et al. train two separate support
vector machine (SVM) classifiers for adaptive thresholds
[4]. One to classify a user’s motion type, and another to
identify stationary periods given the current motion type.
In addition, the model is constructed for zero-velocity detec-
tion based on the data characteristics [9]. Seong et al. pro-
pose a zero-velocity detection algorithm that does not
require thresholds, by processing the gyro and accelerometer
outputs based on an appropriate algorithm [19]. Different
from the above, we present a result-derived algorithm to
adjust the zero-velocity detection interval self-adaptively.

Unlike recursive estimation in filter-based frameworks,
factor graph optimization estimates the states in a batch to
achieve higher accuracy. The theory of inertial pre-
integration makes it possible to provide scale information
for other pose estimations for the IMU readings.

However, the pre-integration theory cannot be extended
to pedestrians. At present, the pedestrian navigation frame-
work based on optimization is based on the PDR algorithm
to fuse other information sources. In terms of the use of
information sources, posterity has done a lot of research.
Researchers fusion GNSS [12, 21], WIFI-fingerprint [22],
UWB [20], and other sensor [14, 20] information to opti-
mize the pose of PDR. Compared with the SINS, the
multi-sensors navigation based on PDR has drawbacks in
accuracy and robustness. We analyse the error characteris-
tics and propose a parameter adaptive adjustment method,
which not only is useful for parameter adjustment but also
provides support to combine optimization framework and
filtering framework in theory.

2.2. Visual-Inertial Navigation. Due to the complementary
nature of the IMU and vision, Motion estimation fusing
cameras with IMUs has been an extensive research topic
for many years. Noticeable approaches include MSCKF [2],
VINS-Mono [3], SVO [6], DSO [7], and ORB-SLAM [5].
In this section, we will give a summary of visual-inertial
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odometry methods. We also focus the discussion on the
application of visual inertia in pedestrians.

MSCKF [2], a tightly-coupled VIO algorithm based on
EKF, uses visual measurements of the same feature across
multiple camera views to form a multi-constraint update,
in which there is not necessary to include the spatial position
of feature points in the observation model. But the problem
of inconsistent filter estimation also produces. Different
from filtering-based algorithms, the energy minimization-
based approaches overall optimize the posture. Lupton pre-
sented the theory of pre-integration to realize inertial vision
integrated navigation in high dynamic conditions, with
which the algorithm based on optimization can be realized.
VINS-Mono [3] is a very accurate and robust monocular
inertial odometry system, with loop-closing using DBoW2
and 4-DoF pose-graph optimization, and map-merging.
Feature tracking is performed with Lucas-Kanade tracker,
being slightly more robust than descriptor matching. ORB-
SLAM [5] can close loops and reuse the map, which takes
advantage of Bag-of-World. A 7-DOF pose graph optimiza-
tion is followed by loop detection.

As mentioned earlier, visual-inertial fusion is an effective
method to improve the accuracy of the navigation system for
pedestrians. However, the installation position of the foot-
mounted IMU limits the widespread research on visual-
inertial fusion for pedestrians. Considering the pedestrian
movement patterns and characteristics of sensors, we study
a new method to fusion foot-mounted IMU and cam-
eras [23].

2.3. Algorithm Framework. The block diagram of the pro-
posed algorithm for pedestrian navigation is shown in
Figure 2. The proposed approach mainly includes four main
modules: zero-velocity-aided INS, odometry tracking, pose
graph optimization, parameter adaptive adjustment. The
first two, the basis of navigation system, provide initial pose
estimation, respectively. The latter two are the core of the
algorithm proposed. One is for pose fusion odometry with
foot-mounted MIMU, and the other is for optimizing zero-
velocity intervals derived by navigation results.

The algorithm starts with pose estimation. In the zero-
velocity-aided INS module, IMU measurement is integrated
to estimate the 6D pose in SINS. And zero-velocity measure-
ments are fused with SINS in EKF to reduce error growth
over time. Odometry tracking, based on VINS-Mono, esti-
mates the pedestrian’s pose incrementally evolves from the
starting point. Unlike a fixed coordinate transformation
relation between sensors, the module of pose graph optimi-
zation continuously optimizes the coordinate transforma-
tion matrix based on both VO/VIO pose estimate and
SINS position output. And then parameters are adjusted
adaptively according to the fuse position estimates in the
parameter optimization module. Specifically, we quantify
the influence of inertial navigation parameters on inertial
navigation results with the analysis of errors in EFK, which
lays a foundation for finding the most accurate zero-
velocity intervals.

3. Pose Graph Optimization

3.1. Measurement Pre-Processing. For sensors fusion
between cameras and foot-mounted IMU, we assume that
there are similar position increments among sensors
mounted on pedestrians at the same time. Considering the
characteristics of movement for pedestrians, we update the
pose according to the frequency of gaits with the moving
average filtering of acceleration. As is shown in as in
Figure 3, each negative peak is the starting point of each step,
and the interval between the two negative peaks is a step.

The input data consist of camera images and IMU mea-
surements. Both are not assumed to be synchronized. The
pedestrian is a flexible body but has a similar position esti-
mation in diverse parts of the body. Thus, sensors, different
from sensor rigid connection, are attached to the pedestrian
and have similar position and yaw at the same time. As is
shown in Figure 4, we correct the synchronization by align-
ing visual keyframes with IMU measurements and the cam-
era keyframes in accordance with the distance. And we think
the keyframe has the same pose with the to the closest IMU
measurement.

ZUPT-aided INS

Foot-mounted
inertial data

Camera frames

Visual odometry

Pose graph optimization

EKF

Parameter adaptive adjustment

State
{position, yaw,

Acc bais,
Gyro bais}

ZUPT parameter
{threshold,

sigma_a, sigma_g, 
covariance} 

Zero speed interval test 

Inertial navigation
solution 

ZUPT-aide

Foot-mounted
inertial data

Visual odo

Inertial navigation
solution 

Figure 1: The conceptual diagram of the algorithm illustrating the full pipelines. MIMU and cameras are attached on the pedestrian. Pose
graph optimization updates the 4-DOF pose and biases of IMU and parameter adaptive adjustment optimizes the parameters of zero-
velocity detection with factor graphs.
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3.2. Pose Graph Structure. Assuming that kg ∈ℝ is the gait
indices up to time tg and there are a number of keyframes
C j between the adjacent foot tribal time tiand ti−1 (i is the
gait index, and i ≤ kg), where j ∈mi, mi on behalf of the
number of keyframes. We then define the objective of the
estimation problem as the history of pedestrian states xi
and keyframes detected up tg.

χf ≜
[kg
i=0

xif g,
[
∀j∈mi

C j

� �" #
ð1Þ

The factor graph framework aims to find the most likely
posterior state χf when given the history of measurements zi
. As is shown in Figure 5, the nature of positioning problem
is a Maximum A Posteriori (MAP) problem.

χ∗
f = arg max

χ f

Ykg
t=0

Y
τ∈F

P zτt ∣ χð Þ

F= imu, vio, prior state, landmarksf g
ð2Þ

F is the set of measurements, which includes VO/VIO
measurements, MIMU measurements, prior state and land-
marks, τ is the measurement’s type. If the measurements
are conditionally independent and corrupted by zero-mean
Gaussian noise, the MAP estimate corresponds to the mini-
mum of the negative log-posterior, and (2) is equivalent to a
least squares problem of the form.

χ∗
f = arg max

χ f

〠
kg

i=0
〠
τ∈F

rτi
〠
2

τi

ð3Þ

Odometry tracking

MIMU
Gyroscope

Accelerometer

Visual sensor

Camera

IMU

ZUPT-aided INS

EKF

Zero-velocity interval test

Inertial navigation
solution Zero-

velocity
state

Visual-inertial odometry

Pose graph optimization

Parameter adaptive adjustment

Parameters optimization
of ZUPT-detectors 

Adaptive optimization
of thresholds 

CovarianceInertial
data 

Camera
frames 

6-DOF
pose

4-DOF
pose

Zero-velocity interval & parameter

6-DOF pose

6-DOF
pose

Adaptive parameter of ZUPT 

Looping information

Optimized pose

Analysis of error in
EKF 

Measurement
pre-processing

Gaits segment

Time alignment

Pose graph
structure 

Maximum-a-
posteriori

estimation 

Pose graph
optimition 

States & measurements 

Cost function

Residuals definition 

Dynamic judgments 

Adaptive adjustment

State error analysis 

Variance error
analysis 

Sensitivity analysis 

Ceres-solver

Factors definition

6-DOF pose

Figure 2: Algorithm framework illustrating the full pipelines. Odometry tracking outputs the odometry navigation results and looping
information. In ZUPT-aided INS, zero-velocity measurements are fused with SINS in an Extended Kalman Filter to reduce error growth.
Pose graph optimization continuously optimizes the pose graph based on both VO/VIO pose estimate and SINS position output.
Parameter adaptive adjustment module first analyses the error between truth values and navigation results and construct optimization
problem to solve accurate zero-velocity detection thresholds.
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vector of IMU during various motions. Each negative peak is the
starting of each step, and the interval between the two negative peaks
is a step.
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Figure 4: Time alignment. We consider camera/IMU time
alignment to solve the problems of time mismatch.
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where rτi is the residual of the error between the predicted
and measured value of at step index i, the quadratic cost of
each residual is weighted by the corresponding covariance
∑τi

.
The following equation minimizes the energy of the sys-

tem as a whole:

χ∗
f = arg min

χ f

r02Σ0
+ 〠

l0,jð Þ∈C
rC j,0

2
ΣC j,0

+ 〠
kg

i=0
rIi

2
〠τi

+ 〠
l, jð Þ∈C

rc j
2

〠
C j

l

#

8>>>><
>>>>:

9>>>>=
>>>>;
ð4Þ

Where l is the landmark, l0 is the prior landmark, and the

residuals Σ0, ΣC j,0
, ∑τi, ∑

C j

l

#
are from: state prior, land-

mark prior, IMU factors, odometry factors.

3.3. Factors Definition

(1) State Prior Factors: In the proposed system, prior
factors are used to anchor the pose to a fixed refer-
ence frame. The residual is defined as the error
between the estimated state x0and the prior zp0

r0 x0, zpo
� �

=

p0 − pp0
y0 − yp0

bw0 − bwp0
ba0 − bap0

2
666664

3
777775 ð5Þ

where pi and yi (with i ∈ f0, ; ;p, 0g) are position and yaw. bwi
and bai express the bias of gyro and accelerometer, respec-
tively, at i. The prior state of the system is determined by
IMU initialization.

(2) Landmark Prior Factors: The landmark prior resid-
ual rC j,0

is the error between the prior on the land-

mark location C j,o and the estimated landmark
location C j

rC j,0
xC j,0

, zC j

� �
= pC j,o

− pC j
ð6Þ

The landmark prior is generated online through an ini-
tial triangulation procedure in visual inertia odometer. The
covarianceΣC j,0

is determined by the triangulation accuracy.

(3) VIO Factors: Since focusing on the relative incre-
ment between step gt−1 and step gt , we defifine the
residual of VO/VIO factor rC j

as:

rC j
= zct − hct χð Þ = zct − hct xt−1, xtð Þ =

pct − pwt
yct − ywt

" #
ð7Þ

where pri and yri (with r ∈ fc,wg) is position at time i (with i
as t, t − 1) in the odometer or the global pose estimator. The
covariance for VO/VIO measurements, is determined by the
estimation accuracy, which is influenced by environmental
conditions, pedestrian dynamics, etc. In our case, we adjust
if according to the experimental conditions.

(4) SINS Factors: Raw measurements of SINS are position
increment and quaternion in the Inertial Coordinate
System. In order to fusion the pose with the VIO, we
set the positions and yaw as the optimized state, and
considering the roll and pitch as the global posture.
Generally, knowing the longitude and latitude at the
origin point, we can convert them into the Earth Coor-
dinate System. The IMU measurement is obtained
according to the SINS. The IMU factor is derived as:

rIi = zIi − hIi χð Þ = zIi − hIi xi−1, xið Þ =

pIi − pwi
yIi − ywi

bai − bai−1
bwi − bwi−1

2
666664

3
777775 ð8Þ

where the couple ðqIi , yIi Þ is position and orientation at time i
in the SINS based on ZUPT. And the couple ðqwi , ywi Þ repre-
sent the pose of the system. The covariance is determined by
performance of IMU devices and accuracy of zero speed
detection.

x1 x2 x3 xi xi+1 xi+2…

x

Prior Factor

SINS Factor
VIO/VO Pose Estimation Factor

State

VO/VIO Looping Factor

Figure 5: An illustration of the pose fusion graph structure. Every node represents the pedestrian’s state in the world frame, which contains
position yaw and IMU measurement bias. The edges between two consecutive nodes are constrained by both VO/VIO estimation and the
INS pose increment. Others is looping constraint.
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4. Adaptive Parameter Adjustment in INS

ZUPT-aided INS contains two parts: one obtains increment
of the pose with inertial integral, the other correct navigation
error and measurement bias based on the zero-velocity
interval detection and EKF. If correctly identified, zero-
velocity updates can significantly improve localization esti-
mates. However, either false-positive or false-negative detec-
tions bring observation error to EKF, thus lead to rapid and
unbounded error growth. In fact, the error.

between truth values and navigation results is available
to analyse the performance of EKF. In practice, we assume
navigation errors attribute to inaccurate observations and
estimate the length offset of the zero-velocity interval with
the navigation error. In addition, variance error analysis is
a very important method to measure the estimation of state
error. Although there is indeed a consistency deviation
between the estimated variance error and the true error.
However, we can continuously enhance the consistency
because the inconsistency of variance error will be fed back
to the state error, and the algorithm is driven by state error.
in other words, the difference the estimated variance error
and the true error can be measured indirectly and gradually
decreases with the correction of the state error.

As is identified following Figure 6, this section presents
an optimization algorithm based on error analysis to update
parameters of INS. We derive the recurrence formula of state
error between two adjacent steps. Then the offset of interval
length is translated to the change of observation. Addition-
ally, observations, lengths of the zero-velocity interval, are
optimized with a factors graph. Finally, the threshold is
updated adaptively in a sliding window.

4.1. Error Analysis in EKF. Under the case of knowing the
truth system, the covariance matrix can be propagated based
on the system state error in EKF-aid INS, whether the model
parameters or the mean square error are inaccurate. For
pedestrian navigation, we assume that navigation offset is
caused by inexact observation, that is, the zero-velocity
interval error ΔHk at the k − th gate.

Knowing the truth value Xr
k and the system output X̂k,

the state error X̂e
k is defined as follows:

~Xe
k =

Δ Xr
k − X̂k ð9Þ

As is our concerned, the offsets of the zero-velocity inter-
val are the only source of a navigation error. Therefore, X̂e

k
can be abbreviated as,

X̂e
k = I −KkHkð Þ~Xp

k∣k−1 −KkΔHkXr
k −KkVr

k

~X
p
k∣k−1 =Φk,k−1 ~X

p
k−1 + Γrk−1Wr

k−1X̂k−1

ð10Þ

where ~Xp
k∣k−1 is the prediction mean square error, KkHk is

behalf of filter gain and measurements. Wr
k−1represents the

noise sequence. Besides,Φg∣g−1and Γg∣g−1 are the state transi-
tion matrix in EKF at time tg. According to the definition of

variance, the variance error is formulated as,

PP
k = I −KkHkð ÞPP

k∣k−1 I −KkHkð ÞT +KkΔHkAkΔHT
kK

T
k

+KkRr
kK

T
k − I −KkHkð ÞCT

k,k−1ΔH
T
kK

T
k

−KkΔHkCk∣k−1 I −KkHkð ÞT

PP
k∣k−1 =Φk,k−1PP

k−1ΦT
k,k−1 + Γrk−1Qr

k−1Γrk−1
ð11Þ

Where Rg is the state matrix in EKF and

Ak = E Xr
kX

r
k
T

h i
Ck = E Xk′~X Pk

Th i
Ck∣k−1 = E Xr

k
~X Pk∣k−1

Th i ð12Þ

In our system, we take the last state as the Initial-values.
And initial values of the mean square error are as followed.

PP
0 = E Xr

k−1 − X̂k−1
� �

Xr
k−1 −X∧k−1ð ÞT

h i
A0 = E Xr

k−1X
r
k−1

T
h i

C0 = E Xr
k−1 Xr

k−1 −X∧k−1ð ÞT
h i ð13Þ

We assume that the pedestrian is equipped with a set of
multi-rate sensors, with IMU sensors typically producing
measurements at high rate and sensors such as monocular
or stereo cameras generating measurements at lower rates.
Some sensors may become inactive from time to time (e.g.
GPS), while others may be active only for short periods of
time (e.g. signal of opportunity).

4.2. Parameters Optimization of Zero-Velocity Detectors via
Factor Graphs. In ZUPT-aided INS, navigation error is sup-
pressed with both state covariance matrix and the zero-
velocity observation. We assume that the truth value is
known form another available information sources and set
the state quantity of the previous time as the initial value
of each step approximately. Our goal is to calculate the best
INS parameter by fusing all the navigation error.

(1) State Definition: The state the state of the ZUPT-
aided system at gate tg as:

xeg = Pe
g, ; ;H

e
g

h i
Pe
g = Pe

g,x, P
e
g,y, P

e
g,z , P

e
g,h

h i
He

g = Δveg,x, Δv
e
g,y , Δv

e
g,z

h i ð14Þ

where the couple ½Pe
g, ; ;He

g� represents covariance error and
measurement offset at the g-th step (with time tg), respectively.
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Pe
g,i is the state i (i ∈ fx, ; ;y, ; ;z, ; ;h, e, a, d, i, n, gg) variance at

the g-th step. Let Δveg,j be the error of velocity measurement in
orientation j.

With the help of we transform the disturbance of zero
velocity interval into the change of the observable measure-
ment in one step.

He
g = ΔlgrgTv

g ð15Þ

Where Tv
g is the Observation transformationmatrix and Δlg is

the disturbance of zero-velocity interval length in gait g-th, we
then define the objective of our estimation problem Xk as the
history of robot states and landmarks detected up to tg:

Xk ≜
[tg
t=0

Xe
g ð16Þ

(2) Measurements: The input measurements consist of the
pose error Xe

k and covariance prediction Pe
k, both of

which are from truth values of system. k is the time
index

Xe
k =Xe

k − X̂e

Pe
k = Pe

k − P̂e

ð17Þ

The pose input is the error between navigation results
and truth values, and covariance prediction comes from
propagation of the pose error in EKF.

(3) Maximum-A-Posteriori Estimation: We assume the
uncertainty of measurements is Gaussian distribution
with mean and covariance. As is shown in Figure 7,
the following equation minimizes the sum of prior
and the Mahalanobis norm of all measurement resid-
uals to obtain a maximum posterior estimation in a
whole

χ∗
p = arg max

χp

YKg

t=0

Y
k∈S

P zkt ∣ χ
� �

= arg min
χp

〠
τ

〠
i∈Kg

rτi2〠τi

= arg min
χ

rp −Hpχ
2 + 〠

k∈P
rP ẑbkbk+1 , χ

� �2

Pbk
bk+1

+ 〠
k∈B

rB ẑbkbk+1 , χ
� �2

Pbk
bk+1

( )

ð18Þ

Where rp, rB represent the residual of pose estimation and

Section.VI-B

Section.VI-A

Section.VI-C

Sliding window detection

State error analysis

Discard
old data?

Sensitivity analysis

Variance error analysis

ZUPT measurement
transformation 

Constructe loss function

Parameter graph
optimization 

Pose error factor Variance error factor 

Pose error, 

INS parameter

ZUPT threshold,
state transition matrix 

No

Yes

Figure 6: The program flow chart of parameter adaptive optimization.
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state variance, respectively. Detailed definition of the resid-
ual terms will be presented later in VI-D. Once the graph
is built, optimizing it equals to finding the configuration of
nodes that match all edges as much as possible.

We used Ceres Solver to carry out the nonlinear optimi-
zation. We run pose graph optimization at the frequency of
gait update for a pedestrian. After every optimization, we
obtain more accurate estimations fusing the SINS pose with
VO/VIO.

(4) State Variance Residual: In contrast to the stepwise
recursion of the state covariance matrix, we define
the state variance residual with a state covariance
error, which is constrained only by two adjacent
observations

Consider the EKF state within two consecutive time tg
and tg, according to analysis of variance error in Sect. V-A,
the residual for can be defined as:

rV ẑtgtg+1 , χp

� �
= Pe

g ð19Þ

(5) Pose Error Residual: We establish a model to
describe the influence of zero velocity interval distur-
bance on pose estimation in a gait. Based on the
model, the relative pose constraint is produced

rV ẑtgtg+1 , χp

� �
=

δx
pg
pg+1

δy
pg
pg+1

δz
pg
Pg+1

δω
pg
pg+1

2
666666664

3
777777775
= zPg − hPg χp

� �

hPg χp

� �
= ~Xe

k

ð20Þ

where hPg ðχpÞ extracts the pose offset at the state χp.

4.3. Adaptive Optimization of Zero-Velocity Thresholds. We
keep a sliding window for graph optimization to get drift-
free pose estimation and avoid wrong adjustments when
the movement pattern changes. The size of the window is
adjusted in real-time with the computation complexity.
Additionally, old poses and measurements will be thrown
when the motion pattern changed.

We judge whether the movement pattern changes
according to positive peaks Within two adjacent steps. The
movement pattern is considered to have changed if the ratio
of peak values above is beyond the threshold adaptive
adjustment rang.

5. Experiment Results

We perform real-world experiments to evaluate the pro-
posed VA-INS system from two aspects in accuracy and
robustness. In the indoor environment, which has a dynamic
and small viewing field, we test the performance of the algo-
rithm in dynamic environment. We then carry out an out-
door experiment with multi-motions pattern to test the
performance of the real-time optimized INS. Additionally,
A large-scale experiment is carried out to illustrate the
long-time practicability of our system.

The performance of sensors is described in detail in
Table 1. The sensor suite contains a foot-mounted MIMU
(with gyroscope and accelerometer) operating at 400Hz, a
stereo camera (Intel Realsense D455) with 30Hz, and the
u-blox GNSS modules. As is shown in Figure 8, sensors are
connected to the pedestrian but do not have a fixed coordi-
nate relationship.

We get the ground truth with different methods between
indoor and outdoor experimental conditions. In indoor
experiments, ground truth mark points, either obvious turn-
ing points or the end of each step, are used to evaluate the
experimental effect. Specifically, the subject pressed a hand-
held trigger that recorded a timestamp to facilitate temporal
alignment with ground truth when he arrived at the mark
points. In outdoor experiments, the ground truth, which is
calculated by the Differential GPS on the u-blox-NEO-
M8N. The position accuracy of Differential GPS is about
0.1m. Also, google maps are used for error judgment in
large-scale experiments. The performance is evaluated by
the horizontal position error (HPE) of trajectories. Sensors
are connected to the pedestrian but do not have a fixed coor-
dinate relationship.

We get the ground truth with different methods between
indoor and outdoor experimental conditions. In indoor
experiments, ground truth mark points, either obvious turn-
ing points or the end of each step, are used to evaluate the
experimental effect. Specifically, the subject pressed a hand-
held trigger that recorded a timestamp to facilitate temporal
alignment with ground truth when he arrived at the mark
points. In outdoor experiments, the ground truth, which is
calculated by the Differential GPS on the u-blox-NEO-
M8N. The position accuracy of Differential GPS is about
0.1m. Also, google maps are used for error judgment in
large-scale experiments. The performance is evaluated by
the horizontal position error (HPE) of trajectories.

P1 P2 P3 …

H

State prior factor
Pose error factorState prediction factor

Observation state

Covariance error factor

H1 H2 H3

P Covariance state

P0

…

Figure 7: An illustration of the parameter graph structure. Every
node represents one gait’s parameter of pose filtering in ZUPT-
aided INS. The node contains the length of zero-velocity interval
and states covariances.
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In these experiments, we compare the algorithm pro-
posed with both VINS-Mono and ZUPT-aided INS. VINS-
Mono is a robust and versatile monocular visual-inertial
state estimator. ZUPT-aided INS uses the SHOE detector
to discover the zero-velocity interval and takes zero velocity
as the virtual observation of the filtering algorithm to modify
the INS results with the Extended Kalman Filter.

6. The Hallway Experiment Indoor

In the hallway experiment indoor, we choose our laboratory
environment as the experiment area. The test subject suits
sensors and walks at a normal pace in the hallway of the lab-

oratory. During the trial, the subject went along hallways
and rooms with the same stride, and returned to the origin
along the same path.

From Figure 9, we can see that heading error of INS
accumulates over time and the visual odometer has less
pose drift than zero-velocity INS in the environment of
unrestricted vision. Most notably, VA-INS proposed con-
tinuously improves the accuracy of navigation. Table 2
shows the RMSE (Root Mean Square Errors) and MEAN
(Mean Errors) of HPE. In the indoor environment with
good visual conditions, the performance of a visual-
inertial odometer is better than that of pure inertia. Espe-
cially, VINS-Mono with loop detection suppresses the
drift of course. It is worth noting that VA-INS combines
the advantages of the two and achieves the best
performance.

7. The Visual-Restricted Experiment

In the mixed experiment of stairs and corridors, the trial
walk along the corridors and walk up the stairs from the sec-
ond floor to the fifth floor, where he encounters pedestrians,
low light condition, texture-less area, glass, and reflection.
Then, the trial climb down the stairs and walk back to the
origin. Key-frames of typical scenes are shown in Figure 10.

As shown in Figure 11, we compare our results with
VINS-Mono and fixed-threshold INS. Noticeable VIO drifts

Table 1: Results in the multi-motion experiment outdoor.

Sensor Parameter Index

Gyroscope

Bias stability <8°/h
Angle random walk 0.36°/h

Sampling frequency 400Hz

Accelerometer

Bias stability 0.03mg

Random walk 0.045m/s/h^0.5
Sampling frequency 400Hz

Camera

Image resolution ratio 1280*720

Baseline 36.2625mm

Sampling frequency 30Hz

U-blox
Navigation sensitivity –167 dBm

Sampling frequency 10Hz

Stereo camera

GNSS moudle

MIMU

 

Figure 8: The sensor suite we used for the experiment, which
contains ta foot-mounted MIMU and a stereo camera (Intel
Realsense D455).
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Figure 9: The trajectories of our indoor hallway experiment
recovered from real trajectory, ZUPT-aided INS, VINS-Mono and
the proposed algorithm, respectively.

Table 2: Results in the mu Hallway Experiment Indoor.

Algorithm VINS-mono SHOE VA-INS

MEAN[m] 0.60 2.01 0.36

RMSE[m] 0.69 2.61 0.39
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occurred when the experimenter encounters the dynamic
objects, and the system is even unavailable when the exper-
imenter climbed up and down the stairs, where texture-less
area is in all places. In sharp contrast, although ZUPT-
aided INS has the cumulative error with time, it is more
robust to changes in experimental scenes. In contrast to
them, the fusion foot-mounted IMU with cameras sup-
presses the error accumulation and improves the robustness
by exerting their respective advantages.

Table 3 shows the RMSE (Root Mean Square Errors) and
MEAN (Mean Errors) of HPE. The robustness of the visual
odometer is poor in the indoor environment with limited
visual conditions, where the error of INS accumulates with
time but is limited. VA-INS uses the pose estimation of
VINS-Mono in a good environment to correct the error of
INS. Combining the trials above, we can see that the visual
odometer is poor robust in the dynamic environment and
our algorithm outperforms VINS-Mono and ZUPT-aided
INS, which demonstrates the algorithm proposed effectively

(a) (b)

(c) (d)

Figure 10: B Experimental key-frames of the camera for pose
estimation in VIO, which consist of glass/reflection(a),
pedestrian(b), high light condition(c), texture-less area (d).
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Figure 11: The trajectories of our indoor visual-restricted
experiment recovered from real trajectory, ZUPT-aided INS,
VINS-Mono and the proposed algorithm, respectively.

Table 3: Results in visual-restricted Experiment indoor.

Algorithm VINS-mono SHOE VA-INS

MEAN[m] 7.62 3.51 2.38

RMSE[m] 7.89 3.74 2.57
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Figure 12: Partial acceleration measurements of foot-mounted
MIMU in multi-motion experiment outdoor. For MIMU, there is
different characteristics in various motion states.
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Figure 13: The trajectories of our multi-motion experiment
recovered from real trajectory, ZUPT-aided INS, VINS-Mono and
the proposed algorithm, respectively.
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reduces the influence of experimental scene on vision and
improve navigation accuracy.

7.1. The Multi-Motion Experiment Outdoor. We evaluated
our proposed detector over longer trajectories by carrying
out a multi-motions trial in an outdoor setting. The trial
subject started and ended at the same position on the test
course. The experimenter started from the doorway of the
building and walked along the building. Then the trial
instructed to alternate between jogging, walking, and fast
running. Finally, we went back to the building and returned
to the origin. The whole trajectory is more than 450 meters
and lasts approximately eight minutes. The IMU measure-
ment of multi-motion states can be seen in Figure 12.

Figure 13 shows trajectory comparison is shown. The
RMSE (Root Mean Square Errors).

and MEAN (Mean Errors) of HPE is shown in Table 4.
Due to the low adaptability of the threshold for various
states, we can see obvious translation drift in the estimated
trajectory of INS. What’s more, VINS-Mono is almost no

heading deviation but there are offsets in position estimation
when the trial jogs or runs. From the trajectory comparison,
we can see that the proposed system improved the accuracy
of INS a lot with the real-time adaptive parameters. The
algorithm proposed achieved the best performance.

7.2. A Large-Scale Experiment. We have chosen a campus
environment as the experimental scene to verify the
improvement in the long-range positioning performance.
In this large-scale scene test, the trial distance is 2.2 km with
about 164028min.

As is shown in Table 5. The RMSE of HPE in the pro-
posed algorithm is 7.53m. Under the same test conditions,
results by the fixed-threshold INS and VINS-Mono are
26.04m and 21.73m. Similarly, the mean error of our algo-
rithm is significantly lower than the others. It is obvious that
the algorithm proposed provides accurate positioning even
in the large-scale scene.

The estimated trajectory is aligned with Google Map in
Figure 14. It can be seen from the figure that the visual loop
can correct the navigation error. However, the overall opti-
mization of the trajectory may also affect the overall pose
estimation accuracy. Compared with Google Map, we can
see our results are almost drift-free in this very long-
duration test.

8. Conclusions

In this work, we have proposed a novel visual-aid inertial
navigation system for pedestrians with a detailed description
of its building blocks and an exhaustive evaluation. The
approach could increase the accuracy of pose estimation
with flexible-connection sensors fusion and optimize the
parameter of INS. We establish the functional relationship
between the zero-speed interval disturbance and the naviga-
tion results, which is the basis of our work. Using the factor
graph, the visual odometer is fused with the foot-mounted
MIMU to overcome the error drift in inertial navigation
results. Then the fusion-optimized pose is taken as the
observation to optimize the zero-velocity interval of each
step, which further updates the zero-velocity detection
threshold of the pedestrian in the current motion state. We
show superior performance by comparing against both the
pedestrian inertial navigation algorithm based on fixed
threshold and the typical visual-inertial fusion algorithm.
Future work will extend the method to fusion other sensors
for more accurate pose estimation, such as GPS, WIFI- fin-
gerprint, UWB, and Magnetometer. The goal is to not only
further improve the accuracy of pose estimation but also
realize the plug-and-play of sensor fusion for pedestrian
navigation.

Data Availability

The visual inertia raw data used to support the findings of
this study are available from the corresponding author upon
request.

Table 4: Results in the multi-motion experiment outdoor.

Algorithm VINS-mono SHOE Proposed

MEAN[m] 5.56 2.54 0.89

RMSE[m] 6.12 3.16 0.91

Table 5: Results in the large-scale experiment.

Algorithm VINS-mono SHOE Proposed

MEAN[m] 13.36 18.75 5.58

RMSE[m] 21.73 26.04 7.53

Real trajectory
INS
VINS-mono

Proposed
Origin
End of each method

Figure 14: The trajectories of the large-scale experiment outdoor
recovered from ZUPT-aided INS, VINS-Mono, and the proposed
algorithm, respectively.
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A global navigation satellite system and inertial navigation system- (GNSS/INS-) integrated system is employed to provide direct
georeferencing (DG) in aerial photogrammetry. However, GNSS/INS suffers from stochastic error, strong nonlinearity, and weak
observability problems in high dynamic or less maneuver scenarios. In this paper, we proposed a new triple filtering algorithm for
aerial GNSS/INS integration. The new algorithm implements filtering in the sequence of forward, backward, and forward
directions. Each filter is initialized by a previous filter to get a quick convergence, and the final result is combination of the last
two filtering to smooth error. The proposed triple filtering strategy avoids inaccuracy in the 1st forward filtering when the
system has not reached convergence. Moreover, it facilitates engineering implementation because backward filtering can
employ the same equations with forward filtering. To assess stochastic error of the inertial measurement unit, the Allan
variance method is used and abbreviated stochastic model is built. A real aerial testing is conducted, and the result indicates
that DG can achieve horizontal accuracy of 5 cm by the proposed algorithm, which has 63% improvement compared to
standard extended Kalman filter.

1. Introduction

Aerial photogrammetry performs surveying and mapping by
taking images of ground from an elevated position. The images
could be collected by sensors like digital cameras, Lidar, and
multispectral or hyperspectral scanners, to make digital ortho-
photo map (DOM), digital elevation model (DEM), digital line
graphic (DLG), and other mapping products. Before mapping,
the exterior orientation elements (positions and attitude) of
every image need to be known when taking images. Normally,
these elements are resolved by ground control points and aerial
triangulation (AT) algorithm. With the aid of a GNSS/INS-
integrated system, which works as direct georeferencing
(DG), the exterior orientation elements could be directly mea-
sured [1, 2]. Thus, the ground control points can be consider-
ably reduced or even entirely eliminated.

Generally, differential GNSS is used to get 3-dimensional
coordinates with centimeter-level precision [3, 4], while

inertial measurement unit (IMU) in aerial photogrammetry
application is commonly of tactical grade, consisting of three
close loop fiber optic gyros (FOG) with 0.1~ 10°/h bias and
three quartz accelerometers with 0.1~ 1mg bias. The
primary error sources of GNSS/INS integration in aerial
application are sensor stochastic error, strong nonlinearity,
and weak observability, among which sensors’ stochastic
errors are very intractable as many types of stochastic pro-
cesses are involved. They cause accumulative positioning
and orientation error with time. Thus, the implementation
of GNSS/INS-integrated system requires careful and accu-
rate error modeling. On the other hand, it is unreasonable to
model all the stochastic processes since their observability
will significantly decrease in GNSS denied environment and
deficient maneuver scenarios, which consequently results in
system instability. In most cases, abbreviated stochastic pro-
cesses are accounted to approximate real situation in the inte-
gration model, while others are ignored or merged to existing
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error [5]. These approximate models would make the system
performance worse, especially in high kinematic scenarios.

Inertial navigation is a typical nonlinear system, and the
nonlinearity of INS will be strengthened when vehicle makes
rapid maneuver such as turning, acceleration, and decelera-
tion. Classical extended Kalman filter (EKF) takes lineariza-
tion to the nonlinear model and implements the linear KF
algorithm for estimation of the state vector; thus, it has been
extensively used in many engineering applications. However,
it suffers from strong nonlinearity, such as large maneuver
or environment influence. For these cases, some other nonlin-
ear filters are carried out to solve the nonlinearity problem,
such as iterated EKF [6, 7], unscented Kalman filter (UKF)
[8, 9], particle filter (PF) [10–12], and neural network method
[13, 14], among which iterated EKF and UKF are effective for
a nonlinear model, but they are on the assumption of Gaussian
stochastic process. PF and neural network can deal well with
both nonlinearity and inaccurate model problem. However,
these nonlinear filters are not valid to improve observability.

Weak observability is another problem in aerial
GNSS/INS integration, which often happens when GNSS
signal is challenged or the vehicle is lack of maneuver. The
former is mainly caused by signal interference, ionosphere
scintillation, or signal blockage by inclined airframe when
making U-turn, while the latter is due to the rarely changed
flight state in aerial photogrammetry. The plane requires to
fly with straight and parallel air routes to capture images of
ground and make a U-turn while switching to the adjacent
air route. Long straight and steady flying lead to decrease
of heading observability, so that heading accuracy is
degraded in each straight air route. The theoretical scheme
to solve this heading observability reduction is to shorten
the straight routes and make more turning, but it will clearly
decrease the mapping efficiency. In practical processing, a
back propagation model is always applied to estimate system
states since aerial photography does not require real-time
processing in most cases. Different from the standard for-
ward model, the back propagation model has good observ-
ability at the end of straight route or GNSS outage, but
weak observability at the beginning. The combination of
the forward and backward propagation model leads to the
smoothing EKF. Several smoothers can be found in the liter-
ature [15], in which the most used are forward-backward
(FB) smoother [16, 17], Rauch–Tung–Striebel (RTS)
smoother [18, 19], and their modifications. FB smoother
needs to define new variable to avoid matrix inversion and
provide a valid boundary initialization. It employs the infor-
mation form of EKF instead of the standard EKF for back-
ward filtering. By comparison, RTS does not require full
backward EKF that results in good computational efficiency.
However, the computation is not of first priority in posttask.
Meanwhile, RTS also requires a different form of EKF for
backward filtering. Moreover, the attitude is not accurate at
the beginning of forward filtering for both FB smoother
and RTS, because the initial attitude is obtained by coarse
alignment, which will deteriorate the combined result in
spite of being averaged by backward filtering.

In this research, we present a new triple filtering algo-
rithm for aerial GNSS/INS-integrated DG. Firstly, stochastic

processes are investigated by the Allan variance method. The
state equation of EKF is built including the navigation error
propagation model and abbreviated stochastic model of IMU.
Secondly, a forward-backward-forward EKF (FBF-EKF) is pro-
posed to address the inaccuratemodel, strong nonlinearity, and
weak observability problems. Specifically, this algorithm
implements triple filtering in the sequence of forward, back-
ward, and forward filtering. The 1st forward EKF mainly
works for convergence of the filter, and the last two EKFs are
initialized by foregoing EKF. Our final result is combination
of the backward EKF and the 2nd forward EKF. The scheme
of FBF-EKF leads to two principal benefits compared with
commonly used smoothers: (1) eliminations of inaccuracy
before EKF convergence and (2) easy implementation on the
base of standard EKF.

The content of this paper is organized as follows. Section
2 introduces the identification and modeling of IMU sto-
chastic process. Section 3 describes the error model of
Kalman Filter, including the navigation propagation model
and stochastic processing model. Section 4 presents the
FBF-EKF algorithm, and the experiment is outlined in
Section 5. Conclusion is presented in Section 6.

2. Identification for IMU Stochastic Process

The error of IMU sensor consists of deterministic and sto-
chastic errors. According to IEEE Standard 647 and Standard
528 [20, 21], stochastic errors include white noise, rate ran-
dom walk, Markov process, quantization noise, flicker noise,
sinusoidal noise, and rate ramp. The bias is different every
time when the IMU sensor is powered on, and it is not corre-
lated to the angle rate or acceleration; thus, the bias can be
modeled as a random constant. The rate white noise, also
called angle random walk, is a result of wide band noise being
added on the rate data. Integrating rate white noise on angu-
lar acceleration and jerk results in rate random walk. Flicker
noise is the low-frequency bias fluctuations on the measured
rate data, which represents the best instability of sensor.
Flicker noise can be modeled by the combination of several
Markov processes, while rate ramp can be modeled by a
second-order differential equation driven by white noise.
Sinusoidal noise can be usually characterized by a number
of distinct frequencies, and quantization noise is caused by
sampling a continuous signal with finite byte length. Models
of each stochastic error are shown in Equation (1), taking a
gyro as an example.

_bω = 0,
s _f ω = 0,
wω =N ⋅ v,
δ _ωK = K ⋅ v,
δ _ωB = −βBδωB + βBB ⋅ v,
δ€ωR = R ⋅ v,
δ _ωM = −βMδωM + βMM ⋅ v,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ
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where bω is the gyro’s bias, sf ωdenotes the scale factor error,
wω is the white noise, δωKrepresents the rate random walk,
δωB denotes the flicker noise, δωR shows the rate ramp, and
δωM is Markov process. N , K , B, R, and M are the power
spectral density (PSD) coefficients of rate white noise, rate
random walk, flicker noise, rate ramp, and Markov process,
respectively, while v is a unit Gaussian white noise.

Assuming all of the above stochastic processes are inde-
pendent, the total stochastic error is the sum of each noise
type, which is shown in Equation (2), including both gyro
and accelerometer.

δa = sf a ⋅ a + ba + δaK + δaB + δaR + δaM +wa,
δω = sf ω ⋅ ω + bω + δωK + δωB + δωR + δωM +wω,

(

ð2Þ

where ba,sf a, wa, δaK , δaB, δaR, and δaM are the accelerom-
eter’s bias, scale factor error, white noise, rate random walk,
flicker noise, rate ramp, and Markov process, respectively. ω
and a are the angle rate and specific force.

Allan variance is a standard approach to characterize
stochastic errors of inertial sensors. To identify and evaluate
the stochastic process of IMU, the Allan variance method
was used due to its recognized simplicity and efficiency in
our previous work [5]. The relationship between Allan vari-
ance and PSD is expressed as follows:

σ2 τð Þ = 4
ð∞
0
Sω fð Þ sin

4 πf τð Þ
πf τ2

df , ð3Þ

where τ is the correlation time, σ2ðτÞ denotes the Allan
variance, f presents the frequency, and Sωð f Þ is the PSD of
inertial sensor’s output.

Equation (3) can be considered a band-pass filter, and its
bandwidth depends on correlation time τ. The resulted
Allan variance is proportional to the energy of signal within
the bandwidth. In general, different stochastic processes
have different correlation times. They present different
piecewise linearity with associated slope and intercept after
passing though the filter, which can be used for identifica-
tion of stochastic processes. A detailed relationship between
the slope, stochastic process, and coefficient can be found in
reference [21].

Assuming that the angular rate ω is sampled with rate f s
for a collection of N data points, The data can be divided into
K =N/M clusters, where M is the number of points in each
cluster. The corresponding correlation time is τ =M/f s. Then,
the average of each cluster is

�ω = 1
M

〠
M

i=1
ω k−1ð ÞM+i, k = 1,⋯, K: ð4Þ

Allan Variance can be computed by the following
averaging operation:

σ2A τMð Þ = 1
2 K − 1ð Þ 〠

K−1

k=1
�ωk+1 Mð Þ − �ωk Mð Þ½ �2: ð5Þ

In this work, eight hours’ static IMU data was sampled
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Figure 1: Allan variance of gyros.
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with a rate of 200Hz. The Allan variance results are shown in
Figures 1 and 2. The dominant stochastic processes are rate
white noise and rate random walk for both FOG and acceler-
ometers. The PSD coefficients of these two stochastic
processes are listed in Table 1, in which the largest values
among three axes are used for the following Kalman filter.
Flicker noise is also found in Figures 1 and 2. However, it is
highly unlikely to model all of the stochastic processes and
to make estimation because of poor observability. This effort
may even lead to the instability of the filter. Therefore, only
selected and principal stochastic processes are considered in
practical applications. Here, four stochastic components are
considered for the aerial referencing system, which are bias,
white noise, rate random walk, and scale factor error. Both
bias and scale factor error are modeled as random constant.
Then, Equation (2) can be rewritten as follows:

δω = sf ω ⋅ ω + bω + δωK +wω,
δa = sf a ⋅ a + ba + δaK +wa,

(
ð6Þ

3. Error Models in Kalman Filter

The data fusion schemes for GNSS/INS are generally divided
into loosely coupling and tightly coupling modes based on
combination information, among which the Kalman filter
in loosely coupling has a lower order and is more reliable
compared to tightly coupling. The main reason is that GNSS
and INS work independently in the loosely coupling and
integrate on navigation result. However, loosely coupling
has to depend on pure INS when three or less GNSS satel-

lites are observed. In free inertial mode, the accuracy will
be quickly degraded because of sensor stochastic errors. By
comparison, tightly coupling does not have limitation on
the satellite number. The integration can work even when
the GNSS satellite number is inadequate for positioning.
Therefore, tightly coupling has a higher accuracy than the
loosely coupling in GNSS-challenged scenario. Aerial appli-
cation has an open view of satellites, and the satellite number
normally can be more than 20 with gradual establishment of
multiconstellation GNSS. Therefore, loosely coupling is used
in the GNSS/INS-integrated DG with consideration of sys-
tem reliability and GNSS quality control.

The INS equation must be linearized before filtering
because of its strong nonlinearity [18]. The linearized state
equation of continuous system and discrete observation
equation are expressed as follows:

_x tð Þ = F tð Þx tð Þ +G tð ÞW tð Þ,
yk =Hkxk +Vk,

(
ð7Þ

where xk is the error states vector of the Kalman filter, yk
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Figure 2: Allan variance of accelerometers.

Table 1: Stochastic process coefficient.

N (rad/s1/2) K (m/s3/2)

Gyro 2:53 × 10−3 9:82 × 10−5

Accelerometer 4:30 × 10−4 8:81 × 10−5
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denotes the observation vector, and FðtÞ and GðtÞ are the
dynamics matrix and coefficient matrix of process noise,
respectively.Hk is the observation coefficient matrix, while

WðtÞ and Vk are process noise and observation noise,
respectively. Please note that the continuous state equation
needs to be discretized before use.

Acc Gyro

INS
Mechanization

GNSS
Base

GNSS
Rover

Differential GNSS

0 1 2 N–2 N–1 N

x⌃1, f, P⌃1, f x⌃2, f, P⌃2, f x⌃3, f, P⌃3, f x⌃N–2, f, P⌃N–2, f x⌃N–1, f, P⌃N–1, f x⌃N, f, P⌃N, f

1st forward EKF

……

x⌃1, f, P⌃1, f x⌃2, f, P⌃2, f x⌃3, f, P⌃3, f x⌃N–2, f, P⌃N–2, f x⌃N–1, f, P⌃N–1, f x⌃N, f, P⌃N, f……

x⌃1, b, P⌃1, b x⌃2, b, P⌃2, b x⌃3, b, P⌃3, b x⌃N–2, b, P⌃N–2, b x⌃N–1, b, P⌃N–1, b x⌃N, b, P⌃N, b……

……

0 1 2 N–2 N–1 N……

0 1 2 N–2 N–1 N……

Backward EKF

2nd forward EKF

……

Smoother

……

DG
Output

x⌃k = (Pk,bx⌃k,f + Pk,f x⌃k,b)(Pk,f + Pk,b)–1

Pk = (Pk,f + Pk,b)–1–1–1

Figure 3: FBF-EKF Algorithm.
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According to the sensor stochastic error models in
Equation (6) with considering navigation errors, the state
equation of the Kalman filter can be concluded as

_xrvε

_xa

_xω

2
664

3
775 =

F11 F12 F13

F21 F22 F23

F31 F32 F33

2
664

3
775

xrvε

xa

xω

2
664

3
775 +

G11 G12

G21 G22

G31 G32

2
664

3
775 Wa

Wω

" #
,

ð8Þ

where xrvε is the 9-order navigation error including position,
velocity, and attitude. xa and xω are the stochastic error of
gyro and accelerometer, respectively. As depicted in Equa-
tion (6), they are composed by bias, rate random walk, and
scale factor stochastic errors, which are shown in Equations
(9) and (10), respectively.

xa = ba δaK sf a½ �T , ð9Þ

xω = bω δωK sf ω½ �T : ð10Þ

The white noise in Equation (6) is not included in xa and xω
, as it is the component of the system-driven noisesWaandWω:

Wa =
Na

Ka

" #
v, ð11Þ

Wω =
Nω

Kω

" #
v, ð12Þ

where Na and Ka are accelerometer’s PSD coefficients of rate
white noise and rate random walk, respectively. Nω and Kω
are gyro’s PSD coefficients of rate white noise and rate random
walk, respectively.

For dynamics matrix, F11 is the navigation coefficient
matrix and can be found in many literatures, e.g., [22, 23].
F21, F22, F23, F31, F32, and F33 are 9-order zero square
matrices. F12 and F13 are presented as follows:

F12 =
03×3 03×3 03×3
Ce
b Ce

b Ce
b diag að Þ

03×3 03×3 03×3

2
664

3
775, ð13Þ

F13 =
03×3 03×3 03×3
03×3 03×3 03×3
Ce
b Ce

b Ce
b diag ωð Þ

2
664

3
775, ð14Þ

where Ce
b is the rotation matrix from body frame to

reference frame, and ECEF is used in this paper. diag ðÞ is
a diagonal matrix of the elements.

According to the definition of system-driven noises Wa
and Wω in Equations (11) and (12), the coefficient matrix
of process noise GðtÞis easily derived as

G11 =
03×3 03×3
Ce
b 03×3

03×3 03×3

2
664

3
775, ð15Þ

G12 =
03×3 03×3
03×3 03×3
Ce
b 03×3

2
664

3
775, ð16Þ

G21 =
03×3 03×3
03×3 I3×3

03×3 03×3

2
664

3
775, ð17Þ

G32 =
03×3 03×3
03×3 03×3
03×3 I3×3

2
664

3
775, ð18Þ

where I3×3 is a 3-order identity matrix. G22 and G31 are 9 by
6 zero matrices.

Figure 4: The assembly of sensors.

Figure 5: Aerial trajectory on Google Earth.
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In loosely coupling, the observation is the difference
between INS and GPS:

y =
rINS − rGPS

vINS − vGPS

" #
, ð19Þ

among which rINS and vINS are the 3-dimension position and
velocity vectors by INS, rGPS and vGPS are the 3-dimension
position and velocity vectors by GPS. The observation coef-
ficient matrix can be written as

H = I6 06×21½ �: ð20Þ

4. Forward-Backward-Forward EKF

The advantage of postprocessing is that all observations can
be used for the state estimation at any epoch. Smoothing
Kalman filter is very suitable for processing errors caused
by an inaccurate system model and environment influence,
such as inaccuracy of stochastic process model, linearization
error of the extended Kalman filter, and GNSS interruption.

In this paper, a forward-backward-forward EKF (FBF-
EKF) is proposed to smooth the navigation result. After
filtering, for all epochs by the 1st forward, EKF runs in a
reversed direction, which means the state equation evolves

in backward time sequence. Following that, forward filtering
will be run for the second time. The final result is a combi-
nation of backward and the 2nd forward estimation. The
main task of the 1st forward EKF is to provide initializations
for the backward and 2nd forward EKFs, such as navigation
states, sensor’s error, and their covariance. These initializa-
tions are more accurate compared to the initial alignment.
This triple filtering strategy avoids inaccuracy in the 1st for-
ward EKF when the filter has not reached convergence.
Another bonus is the backward filtering can employ stan-
dard EKF equations like forward EKF as it starts with a finite
covariance. These characteristics are very attractive in the
view of engineering implementation.

The algorithm of FBF-EKF is presented in Figure 3:

(i) Perform forward EKF with Equation (7) as the sys-
tem model

(ii) Initialize the backward EKF with

x̂−N ,b = x̂+N ,f ,

P−
N ,b = P+

N ,f ,

(
ð21Þ

where x̂−N ,b and P−
N ,b are the prior estimation and

covariance of backward EKF at the last epoch N ,
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Figure 6: Position Std of FBF-EKF.
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respectively. x̂+N ,f and P+
N ,f are posterior estimation

and covariance of 1st forward EKF at the last epoch
N , respectively

(iii) Perform backward EKF with the system model as

_x −tð Þ = F −tð Þx −tð Þ +G −tð ÞW −tð Þ,
yk =Hkxk +Vk

(
ð22Þ

(iv) Initialize the 2nd forward EKF with Equation (23),

x̂−1,f = x̂+1,b,

P−
1,f = P+

1,b,

(
ð23Þ

where x̂−1,f and P−
1,f are the prior estimation and

covariance of 2nd forward EKF at the first epoch,
respectively. x̂+1,b and P+

1,b are posterior estimation
and covariance of backward EKF at the first epoch,
respectively.

(v) Perform 2nd forward EKF with Equation (7) as the
system model

(vi) Combine the 2nd forward estimation and backward
estimation as

x̂k = Pk,bx̂k,f + Pk,f x̂k,b
� �

Pk,f + Pk,b
� �−1,

Pk = P−1
k,f + P−1

k,b

� �−1
,

8><
>: ð24Þ

where x̂k and Pk are the combination estimation and
covariance, respectively. x̂k,f and Pk,f denote the 2nd
forward estimation and covariance, respectively,
while x̂k,b and Pk,b present the backward estimation
and covariance.

It should be noticed that the backward state propagation
in Equation (22) is in the negative of time interval. It avoids
the matrix inversion like other EKF smoothers. Similarly, the
backward INS equations are also implemented in the nega-
tive of time interval. Therefore, only the time interval is
changed for both backward EKF and backward INS com-
pared to the standard algorithm. This makes the forward
and backward algorithm possible to share the same coding
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function and facilitates the FBF-EKF being extended from
the EKF algorithm.

5. Aerial Test and Performance Assessment

To evaluate the performance of the proposed FBF-EKF algo-
rithm, an aerial surveying task was performed in Huanghua,
Hebei Province, China. Dual-frequency GPS/GLOANSS/BDS
data of both base and rover receivers were collected with a
sampling rate of 1Hz. The flying time in surveying area was
about 1 hour, and the longest baseline was about 50km. An
FOG based IMU with 200Hz sampling rate was rigidly
mounted with camera sensor to provide its exterior orienta-
tion elements. Figure 4 shows the assembly of all sensors,
and the trajectory in surveying area is shown in Figure 5.
The surveying area was 22km long and 5.3 km wide, covered
by 7 straight routes.

The position standard deviation (Std) of FBF-EKF on
surveying routes was displayed in Figure 6, including the
1st forward, backward, 2nd forward, and the smoothing
EKF. We observe that the Std of three single-directional
EKF have similar values. Both horizontal and elevation Std
are less than 5 cm for most epochs, while the smoothing
EKF has smaller Std compared to single-directional EKF.
All the four processing have a peak at the time of 45min
due to 10 seconds GNSS interruption.

To investigate the performance of FBF-EKF, partial details
around GNSS interruption are presented in Figure 7. We find
that the error presents periodicity according to GNSS observa-
tion. In each GNSS interval, the error of forward EKF grows
up with increased time and reaches the largest value at end
of the interval. However, the error of backward EKF rises with
decreasing time and reaches the largest value at beginning of
the interval. For the smoothing EKF, the error exhibits archy
appearance. It rises and drops in each GNSS interval. The
maximum error happens at middle of the GNSS observation.
Themaximum Stds of 2nd forward EKF in GNSS interruption
are 21.6 cm, 21.5 cm, and 13.3 cm in the east, north, and eleva-
tion directions, respectively. By contrast, their values are
7.9 cm, 8.0 cm, and 6.5 cm, respectively, by smoothing EKF.
In this way, the positioning error was reduced to approximate
37% in horizontal and 49% in elevation after utilizing smooth-
ing EKF. On the other hand, it is reasonable to assume that
positioning error grows quadratically with time, since the spe-
cific force is integrated twice to calculate position. After a com-
bination of forward and backward EKF, the largest error
happens at the middle time of each GNSS interval, where the
error is approximately a quarter of the largest in theory, which
is close to the performance obtained by processing results.

Figure 8 presents the attitude Std by single-directional
EKF and smoothing EKF. It has the same characteristics with
position Std when single-directional EKF and smoothing EKF
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are considered. The pitch and roll standard deviation are less
than 0.01°, and the yaw is within 0.07° for single-directional
EKF. By comparison, the smoothing EKF has better accuracy.
The pitch and roll standard deviation are less than 0.008°, and
the yaw is within 0.04°. However, the periodicity of attitude Std
are different from position Std. Yaw Std presents obvious peri-
odicity according to flight route, and it is contrary to position
Std that possesses periodicity coincident with GNSS observa-
tion. Specifically, yaw Std grows up with increasing time by
forward EKF and rises with decreasing time by backward
EKF. For smoothed EKF, the yaw Std rises in the first half of

a straight route and decreases in the second half. This is
because yaw has weak observability when the plane is in a
straight movement. When the plane makes maneuvering like
a U-turn, it can help calibrate the yaw angle. Another reason
is the smoothing algorithm. Forward filtering yields a good
estimation at beginning of the straight route but deteriorates
at the end, while backward filtering has the opposite function.
As a consequence, smoothing EKF presents an archy error in
one straight route, compared to monotone increasing error by
single-directional EKF. The value of attitude error is also
reduced by the smoother.
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Figure 9 demonstrates the yaw angle of the 1st and 2nd
forward filtering at beginning time of the test. We observe
that there is about a 10.2-degree difference between two for-
ward EKF at the beginning, and the difference decreases
after the airplane starts at 200 s. After 5-minute maneuver-
ing, the yaw angles between two forward EKF are basically
identical. This is because the attitude is not convergent after
coarse and fine alignment in the 1st forward EKF. It will
deteriorate the smoother if 1st forward EKF and backward
EKF are combined. In the FBF-EKF, the 2nd forward EKF
is initialized by backward EKF, which makes better estima-

tion of attitude at the beginning time. Therefore, the 2nd for-
ward EKF is essential to situations with deficient maneuver,
during when the system cannot get convergent before enter-
ing surveying route.

Figure 10 presents horizontal positioning innovation of
the 2nd forward EKF, while Figure 11 displays the cumula-
tive distribution of positioning innovation. Elevation inno-
vation of the 2nd forward EKF and its cumulative
distribution are shown in Figures 12 and 13, respectively.
Due to similar results as the 2nd forward EKF, innovation
of the 1st forward EKF and backward EKF is not displayed

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

Time (s)

El
ev

at
io

n 
in

no
va

tio
n 

(m
)

Figure 12: Elevation innovation of the 2nd forward EKF.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Cumulative Distribution Functions

Horizontal Innovation (m)

Pe
rc

en
ta

ge

0.152

1𝜎

Figure 11: Cumulative distribution of horizontal Innovation in the 2nd forward EKF.

11Journal of Sensors



here. Considering differential GNSS result as a reference,
innovation, that is, the observation in Equation (19), is used
as evaluation of the INS error. We find that the forward EKF
has horizontal positioning accuracy of 15.2 cm (1σ) and ele-
vation positioning accuracy of 49.9 cm (1σ). According to
Figures 6 and 7, the horizontal and elevation error can be
reduced to 37% and 49% of single-directional EKF after
the smoothing algorithm has been implemented. Therefore,
the horizontal and elevation positioning accuracy of FBF-
EKF are about 5.6 cm (1σ) and 24.4 cm (1σ), respectively.
The largest error also happens at the middle time of each
GNSS observation interval.

6. Conclusions

This paper studies the stochastic process modelling and
smoothing method of GNSS/INS-integrated direct georefer-
encing system. To identify and evaluate the error types and
values, Allan variance is applied for IMU static data of eight
hours. Four types of stochastic errors are considered, that is,
bias, rate random walk, scale factor, and white noise. A 27-
order error state vector is established, including navigation
errors and stochastic errors of IMU. In order to solve the
problem of inaccuracy model, strong nonlinearity, and weak
observability, which are commonly occurred in aerial photo-
grammetry applications, a new FBF-EKF is proposed to
make optimal estimation. It carries out triple EKF, in which
the 1st EKF converges the system and the last two smooth
the error. This new scheme avoids inaccuracy of the 1st for-
ward EKF and makes it possible to implement the same EKF
equations and codes for all the three filtering process. Our
testing result indicates that the horizontal and elevation
accuracy can be improved by 63% and 51%, respectively,
by utilizing the proposed algorithm. Finally, it leads to posi-
tioning accuracy of centimeter level (5.6 cm) in horizontal
and decimeter level (24.4 cm) in elevation.
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Satellite images have been widely used to produce land use and land cover maps and to generate other thematic layers through
image processing. However, images acquired by sensors onboard various satellite platforms are affected by a systematic sensor
and platform-induced geometry errors, which introduce terrain distortions, especially when the sensor does not point directly
at the nadir location of the sensor. To this extent, an automated processing chain of WorldView-3 image orthorectification is
presented using rational polynomial coefficient (RPC) model and laser scanning data. The research is aimed at analyzing the
effects of varying resolution of the digital surface model (DSM) derived from high-resolution laser scanning data, with a novel
orthorectification model. The proposed method is validated on actual data in an urban environment with complex structures.
This research suggests that a DSM of 0.31m spatial resolution is optimum to achieve practical results (root-mean-square error
= 0:69m) and decreasing the spatial resolution to 20m leads to poor results (root-mean-square error = 7:17). Moreover,
orthorectifying WorldView-3 images with freely available digital elevation models from Shuttle Radar Topography Mission
(SRTM) (30m) can result in an RMSE of 7.94m without correcting the distortions in the building. This research can improve
the understanding of appropriate image processing and improve the classification for feature extraction in urban areas.

1. Introduction

Increased availability of high-resolution satellite images is
driving the rapid expansion in remote sensing applica-
tions, including commercial, industrial, governmental,
and research domains [1–10]. High-resolution satellite
images are also commonly used in urban remote sensing
applications, such as change detection, urban sprawl, land
use/land cover mapping, environmental studies, and trans-
portation [5–7].

Terrain distortions in satellite imagery off-nadir angle
data acquisition require sophisticated data preprocessing
algorithms to obtain useful data for these applications. The

effect of relief displacement on off-nadir satellite images
causes difficulty in accurately extracting features in urban
areas surrounded by high-rise buildings. Joshi et al. [2] and
Peng et al. [6] suggested that using elevation data or multiple
images acquired from different angles in remote sensing
applications, such as image classification, building detection,
and city modeling, is preferable. These problems originated
from the reduced pixel dimensions and off-nadir viewing.
One approach to correct such geometric errors in satellite
images is called orthorectification, which is the adjustment
of a perspective image geometrically to an orthogonal image
by transforming the coordinates from an image to the
ground spaces and removing relief displacements and tilt.
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Different from other terrain correction methods, which
depend on the horizontal position of image pixels [11],
orthorectification considers the pixel positional shift caused
by the earth’s curvature and provides actual ground coordi-
nates (X, Y , and Z values) for all pixels. Orthorectification
requires a digital elevation model (DEM) and ground con-
trol points (GCPs). The DEM can be obtained from a variety
of sources with various resolutions, such as Radarsat-1 and
Light Detection and Ranging (LiDAR) data [12].

Several techniques and algorithms have been developed
to improve the orthorectification processes and decrease
the distortions resulting from these processes. Belfiore and
Parente [13] compared different methods, including polyno-
mial functions and rational functions, for correcting defor-
mations of WorldView-2 satellite images with a variable
number of GCPs. The rational functions were more suitable
than the other techniques for correcting deformations in
WorldView-2 images. Prakash et al. [14] proposed an
inverse orthorectification method, which utilizes road data
and DEM to correct geometric deformations in satellite
images. These methods showed acceptable accuracy and
improved the road feature extraction from satellite images.
Alrajhi et al. [15] developed an automatic procedure that
can orthorectify high-resolution satellite images with no
GCPs and can respond to real-time geospatial data updates.
Furthermore, Whiteside and Bartolo [16] investigated
orthorectified images with the aid of the sensor’s rational
polynomial coefficients (RPCs) and GCPs using differential
global positioning system (DGPS) with an accuracy of
10 cm. Zhang et al. [1] proposed a new method for integrated
PCI-RPC and ArcGIS-Spline tools for orthorectification in
satellite images. The integrated approach improved the
RMSE accuracy from 2.94m to 1.10m. Henrico et al. [15]
developed an orthorectification process based on high-
quality 2m DEM and applied two different GCP collection
methods. First, field survey method with the aid of DGPS
was adopted. In the second method, TerraSAR-X-based
GCPs were acquired from Airbus Defense and Space. The
manual GCPs yielded better positional orthoimages than
the TerraSAR-X-based GCPs [17, 18].

The above literature review shows the various orthor-
ectification processing methods. However, many researches
confined correction the image geometry based on DEM
and DSM data, not on the correcting the buildings distor-
tions of high-resolution satellite images. As a result, the
following sections present and discuss a novel orthorectifi-
cation method designed for WorldView-3 data with a high
off-nadir angle. The following important questions are
answered: (1) the required resolution of DSM data to obtain
practical results and (2) whether or not using high-resolution
DSM data instead of the freely available digital elevation
models is beneficial or is the latter sufficient for correcting
terrain distortions in WorldView-3 imageries.

2. Materials and Methods

2.1. Study Area. The experiment was conducted in an area
located in Selangor, Malaysia, that is geographically bounded
between (101°30′-102°0′) E and (3°00′-3°30′) N. The study

area was carefully selected to successfully achieve our objec-
tives. Various land uses, such as residential, commercial,
industrial, public, sport, educational, and religious facilities,
and land covers related to human activities are available in
the study area, as shown in Figure 1.

2.2. Datasets. Laser cloud points: point clouds are defined as
a set of vertices in a three-dimensional coordinate system,
and these clouds add a new type of geometry to the system.
Point clouds, as the output of 3D scanning processes, have
many purposes, such as creating 3D models for multitude
visualization, rendering, animation, and mass customization
applications. In this research, airborne LiDAR point clouds
were used to create an extremely high-resolution DEM and
digital surface model (DSM), as shown in Figure 2. The
LiDAR data were gathered by using an airborne system
(Optech Airborne Laser Terrain Mapper 3100) on Novem-
ber 2, 2015. The camera had a spatial resolution of 10 cm;
the laser scanner had a scanning angle of 60° with a camera
angle of ±30° and the flying height of 1510m with clear skies.
The posting density of the LiDAR data was 3–4 pts/m2 (aver-
age point spacing = 0:30m) with a 25,000Hz pulse rate
frequency. The number of points is 1,300,000 points for
the study area.

WorldView-3: the WorldView-3 satellite image showed
eight bands of panchromatic spatial resolution, multispec-
tral, short-wave infrared, and Clouds, Aerosols, Vapours,
Ice, and Snow (CAVIS) resolution at 0.31, 1.24, 3.7, and
30m, respectively. The four standard VNIR colours were
blue, green, red, and near-infrared, and the additional
VNIR colours were coastal, yellow, red edge, and near-
IR2. Twelve (12) CAVIS bands (atmospheric sensor) were
used, and the off-nadir angle was 14°. The data were gath-
ered on April 25, 2015.

2.3. Methodology. Figure 3 shows the methodology adopted
in this research using orthorectification and involves an
indirect method. The indirect method requires building the
RPC model to derive at least four GCPs from DEM 30 cm.
A total of 55 GCPs, which were derived from DEM of
30 cm, were used. Orthorectification was applied through
ArcGIS application to process the oblique images of tall
buildings. Moreover, global mapper software was used to
process the LiDAR data, whereas ENVI was used to build
the RPCs, radiometric calibration, geometric calculations,
and filtering. Pan-sharpening was responsible for merging
high-resolution panchromatic and low-resolution multispec-
tral images of the WorldView-3 to produce a high-resolution
colour image.

Data preparation: two distinct datasets are prepared for
this study.

(1) LiDAR data processing: it consists of multiple steps,
beginning with LiDAR georeferencing. It is defined
by transforming the LiDAR data coordinate system
to the Universal Transverse Mercator projection
and the world geodetic system 1984 datum by using
Global Mapper. The LiDAR data are classified based
on the multiscale curvature classification (MCC)
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method [11] to classify the data into ground points
and nonground points. Filtering is then applied to
remove existing noise from the cloud points. How-
ever, the LiDAR data derived from DEM and DSM
were created based on the point clouds with exten-
sion LAS by using the ArcGIS application. The mul-
tiscale curvature classification (MCC) algorithm was
applied to classify the LiDAR returns to the ground
and nonground points. The algorithm incorporated

curvature filtering with a scale component and vari-
able curvature tolerance. A surface was interpolated
at different resolutions using the thin-plate spline
method [19], and the points were classified based
on a progressive curvature threshold parameter.
The curvature tolerance parameter increased as reso-
lution coarsened to compensate for the slope effect
because the data were generalized. Moreover, the
DEM applied was 0.31m, and the DSM values were
0.31, 0.5, 1, 3, 5, 10, 15, and 20m

(2) WorldView-3 image processing: this requires cali-
bration because the spectral data acquired by the
satellite sensors are influenced by several factors,
such as sensor calibration, atmospheric absorption
and scattering, sensor-target-illumination geometry,
and image calibration, and these factors tend to
change overtime. Therefore, radiometric correction
must be performed by detecting actual landscape
changes, as revealed by the changes in surface reflec-
tance from multidate satellite images. After image
calibration, we used and applied the pan-sharpening
tool to merge the WorldView-3 panchromatic image
(31 cm) with WorldView-3 multispectral image
(1.24m) to produce a high resolution of 31 cm with
eight bands. This process involves producing a single
high-resolution colour image by merging high-
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Figure 1: Study area map.

Figure 2: LiDAR point clouds representing the study area.
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Figure 4: WorldView-3 after calibration and pan-sharpened process (a) before and (b) after.
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resolution panchromatic and lower-resolution multi-
spectral images. The benefit of this process is to
obtain multispectral resolution with high-spatial
resolution. Figure 4 shows the WorldView-3 image,
before and after results of the processing

Orthorectification model: the modeling involves three
key stages.

(1) GCP collection: GCP collection is required for orthor-
ectification. In this study, the GCP data were acquired
through a very high-resolution DEM (31 cm) based on
LiDAR [12]. During orthorectification, 55 points were
used in the area under consideration. Each GCP was
situated on easily identifiable objects in the image that
can be obtained in the field. It is positioned in the
angle of the identified objects displayed in high con-
trast; the objects are usually artificial, such as bridges,
street corner, and buildings. But in this study, we
focused on the distortion building which the number
of the distortion building is 43 in this study, so we
added the GCP on these buildings as shown in
Figure 5

(2) Rectification model with RPC: Grodecki and Dial
[20] reported that the RPC model is developed based
on GCPs and DEM data to orthorectify images. This
model is superior to the sensor model used to
acquire lines and rows of images by using the ratio
of two polynomial functions, which are functions
of the ground coordinates. Nichol et al. [21] inferred
that the RPC model is developed to generalize the
polynomial and linear transform model, which is
appropriate for different sensor types. In the RPC
rectification model, the image coordinates are the

ratios of two polynomials, in which the three-
dimensional coordinates of GCPs are set as indepen-
dent variables, as shown in

rn =
P1 Xn, Yn, Znð Þ
P2 Xn, Yn, Znð Þ

� �
, ð1Þ

cn =
P3 Xn, Yn, Znð Þ
P4 Xn, Yn, Znð Þ

� �
, ð2Þ

where ðrn, cnÞ and ðXn, Yn, ZnÞ are the normalized image
coordinates ðr, cÞ and ground coordinates ðX, Y , ZÞ,
respectively, derived from translating and scaling the RPC
model.

Xn =
X − X0
Xs

� �
,

Yn =
Y − Y0
Ys

� �
,

Zn =
Z − Z0
Zs

� �
,

rn =
r − r0
rs

� �
,

cn =
c − c0
cs

� �
,

ð3Þ

where X0, Y0, Z0, r0, and C0 represent the translating
parameters for standardization, and these parameters are
the coordinates of the origin of the RPC model in the
mapping coordinate system. Xs, Ys, Zs, rs, and cs are the
proportionality parameters of standardization. In the poly-
nomial, Pi ðX, Y , ZÞ (i = 1, 2, 3, 4) is the maximum, and the
sum power of each coordinate component is not greater
than three.

P X, Y , Zð Þ = a0 + a1X + a2Y + a3Z + a4XY + a5XZ + a6YZ

+ a7X2 + a8Y2 + a9Z2 + a10XYZ + a11X2Y

+ a12X2Z + a13Y2X + a14Y2Z + a15XZ2
+ a16YZ2 + a17X3 + a18Y3 + a19Z3,

ð4Þ

where the polynomial coefficients a0, a1,⋯, a19 are desig-
nated as the coefficients of the rational polynomial func-
tion. (2) Orthorectification principle of the RPC model:

r = rs
P1 Xn, Yn, Znð Þ
P2 Xn, Yn, Znð Þ + r0

� �
,

c = cs
P3 Xn, Yn, Znð Þ
P4 Xn, Yn, Znð Þ + c0

� �
,

r = rsF Xn, Yn, Znð Þ + r0,
c = csG Xn, Yn, Znð Þ + c0:

ð5Þ

Figure 5: GCP distribution on DEM raster.
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Let FðXn, Yn, ZnÞ = ðP1ðXn, Yn, ZnÞÞ/ðP2ðXn, Yn, ZnÞÞ
andGðXn, Yn, ZnÞ = ðP1ðXn, Yn, ZnÞÞ/ðP2ðXn, Yn, ZnÞÞ; then,
Equation (6) can be rewritten as follows:

r = _r + ∂r
∂x

ΔX + ∂r
∂y

ΔY + ∂r
∂z

ΔZ + r0,

r = _c + ∂c
∂x

ΔX + ∂c
∂x

ΔY + ∂c
∂x

ΔZ + c0:

8>>><
>>>:

ð6Þ

Equation (7) can be represented in Taylor formula format
as follows:

ϑr =
∂r
∂x

∂r
∂y

∂r
∂z

" # ΔX

ΔY

ΔZ

2
664

3
775 + r − _rð Þ,

ϑc =
∂c
∂x

∂c
∂y

∂c
∂z

� � ΔX

ΔY

ΔZ

2
664

3
775 + c − _cð Þ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

Figure 7: Image after orthorectification process based on different spatial resolution DSM.

Figure 6: Image prior to orthorectification.
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V =
ϑr

ϑc

" #
,

A

∂r
∂x

∂r
∂y

∂r
∂z

∂c
∂x

∂c
∂y

∂c
∂z

2
6664

3
7775,

Δ =
ΔX

ΔY

ΔZ

2
664

3
775,

l =
+ r − _rð Þ
+ c − _cð Þ

" #
: ð8Þ

Lastly, the equation can be modified in amatrix and vector
form, as follows:

V = AΔ + l, ð9Þ

where AΔ is a matrix of ΔX, ΔY ,ΔZ representing the ground
coordinates ðX, Y , ZÞ and l is the normalized image
coordinates.

Tao et al. suggested that the least squares solution of
coordinate corrections can be derived from Equation (10),
as follows:

Δ = ΔX ΔY ΔZ½ �T = A−1 V − 1ð Þ = ATA
� �−1

A−1 V − 1ð Þ:
ð10Þ

(3) Orthorectification on GIS: orthorectification was
applied using GIS tools to produce different orthor-
ectified images that were derived from the integra-
tion of very high-resolution image (WorldView-3)
and DSM with different accuracies, such as 0.31, 1,
2, 3, 5, 10, 15, and 20m. The results were compared
with one source (WorldView-3) to investigate the
optimal image with DSM. Images can be orthorecti-
fied by pixel tying to an actual location in 3-
dimensional (XYZ) space; orthorectification can be
achieved with a mathematical model with RPCs or
with a geometric model, which is more or less an
internal sensor model; these techniques are called
RPC orthorectification and rigorous orthorectifica-
tion, respectively. Recently, several sensors, includ-
ing RPCs, with image delivery systems have been
used in this regard. Developing a system for images
that are not associated with such RPCs is possible if
the main properties of internal camera orientation
and external environment are known. DEM, auto-
mated tie point generation, and a couple of ground
control points can facilitate RPC orthorectification
accurately

3. Results and Discussion

3.1. WorldView-3 Image Orthorectification-Based GCPs and
LiDAR DSM. WorldView-3 was orthorectified to the final
orthoimage using the above-referenced method in Figure 6.
The results are presented as nine images with different accu-
racies based on varying DSM resolutions (i.e., 31 cm, 50 cm,
1m, 2m, 3m, 5m, 10m, 15m, and 20m) and GCPs, as
shown in Figure 7.

3.2. Accuracy Assessment. Table 1 presents the results of the
minimum, maximum, and the root-mean-square error
(RMSE) of orthorectified images based on different DSM
resolutions with respect to the GCPs. The horizontal accu-
racy of the orthorectified images is evaluated based on RMSE
error value obtained by computing changes in the coordi-
nate object at a very high-resolution DEM of 31 cm to the
coordinate object in the orthoimage result. Equations (1),
(2), and (3) [22] are used to determine the RMSE for X
and Y coordinates and RMSE horizontal ðX, YÞ, respec-
tively.

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 x input − x controlj jð Þ2 + y input − y controlj jð Þ2
n

r
:

ð11Þ

X and Y inputs represent the coordinates of the orthoimage
WorldView-3 and X control; Y control represents the coor-
dinates of the intensity of the DEM at 31 cm reference
points. The parameters n and i represent the checkpoints
tested for an integer between 1 to n, respectively. Table 1
indicates that the RMSE was 0.638 at DSM value of 31 cm.
This value increased to 0.764 when the DSM resolution
increased to 50 cm. A consistent increase in RMSE values
was observed between DSM 1m and 20m resolution, yield-
ing RMSE values from 1.302 to 7.175. Similarly, Figure 7
shows the image after orthorectification process based on
different spatial resolution DSM such as a1 with 31 cm and

Table 1: Summary of residual errors of GCPs for orthoimages
(unit: meter).

Warp image and DSM Orthorectified image RMSE

WorldView-3 and DSM 31 cm a1 0.638

WorldView-3 and DSM 50 cm a2 0.764

WorldView-3 and DSM 1m a3 1.302

WorldView-3 and DSM 2m a4 1.718

WorldView-3 and DSM 3m a5 2.106

WorldView-3 and DSM 5m a6 3.26

WorldView-3 and DSM 10m a7 5.529

WorldView-3 and DSM 15m a8 6.501

WorldView-3 and DSM 20m a9 7.175

WorldView-3 and free DEM 30m a10 7.947
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a2 with DSM 50 cm. The experimental results consistently
yielded the most accurate values for validating the GCPs of
the orthoimage based on 30 cm DSM in orthoimages. Thus,
the accuracy of the orthoimages was improved reasonably
based on DSM data.

The RPC orthorectification model was applied to the
WorldView-3 image based on the free source DEM of 30m

(SRTM). The result obtained indicated the highest RMSE
value of 7.947 compared with the orthoimage, which was
obtained from high-resolution DSM of 31 cm (RMSE =
0:638). The significant difference between the DSM (31 cm)
and the DEM (SRTM) (30m) results indicated a unique rela-
tionship between the DEM or DSM accuracy and orthorec-
tification accuracy.

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 8: (a) Leaning of the building prior to orthorectification; (b–j) image after the orthorectification process and the effects of DSM
accuracy on the building lean.
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According to the results obtained, the final optimal
DSM of the orthorectification process was 31 cm resolution,
which showed the least RMSE value. The high-resolution
DSM and GCPs derived from high-resolution DEM combined
in the proposed model (RPC orthorectification model)
reduced the RMSE of the orthorectification of the final result
to 0.638m compared with the 1.07m achieved by Zhang
et al. [1], who developed a model based on the combination
of RPCs and the Spline Function Model and using DEM
SRTM at 30m. The orthorectification model was applied dif-
ferent times to produce various orthoimages. Each orthoimage
showed different horizontal distortions and building lean
effects. Therefore, increasing the DSM resolution increased
the accuracy level of the orthoimages, whereas distortion and
building lean effects were decreased, as shown in Figure 8.
Additionally, our proposed was also applied for the orthorec-
tification process on the scenario image (Figure 8) based on a
varying resolution of DSM form 31cm to 20m.

The final results revealed that building lean and DSM
accuracy are highly related. The original building lean was
13.65, which decreased to 11.46 after applying orthorectifi-

cation to the building at DSM of 20m. Figure 9 shows the
details of the results obtained after orthorectification.

Therefore, developing an approach to present a table-
based ranking that compares the accuracy of the same image
obtained from orthorectification and GCP with different

(a) (b) (c)

(d) (e) (f)

(g)

Figure 9: (a–f) Relation between DSM resolution and leaning of building; (g) image prior to the orthorectification process.

Table 2: Sample of horizontal distortion in buildings with height of
91–120m.

Type of DSM Horizontal distortion

Original image prior to orthorectification 13.5–14.5

DSM 30 cm 1.31–1.4

DSM 50 cm 1.41–1.6

DSM 1m 2.51–3.00

DSM 2m 3.51–4.00

DSM 3m 5.01–5.8

DSM 5m 8.01–10.00

DSM 10m 9.41–11.30

DSM 15m 10.61–12.20

DSM 20m 10.81–12.40
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DSM resolutions is necessary. This approach would provide
clear information for future analysis and development.
LiDAR point clouds with very high spatial resolution were
used to produce a very high-resolution DEM. Thus far,
no available criterion has been provided regarding the best
DEM data. Improved image orthorectification result could
be achieved if DEM data with high spatial resolution are
available for orthorectifying images. The increased DSM
resolution indicated the decreased error in the horizontal
distortion of high buildings (>30m). For instance, for a
building height of 91–120m, the horizontal distortion was
measured and is shown in Table 2. Additionally, Figure 10
shows the leaning of the building prior to orthorectifica-
tion based on DSM 0.30 cm, where it can be observed that
the building height at A is 95m and at C is between 109
and 116m and the horizontal distortion is between 1.33
and 1.36.

4. Conclusions

LiDAR-derived GCPs and different DSM resolutions (31
and 50 cm and 1, 2, 3, 5, 10, 15, and 20m) were proposed
for image orthorectification. LiDAR data were used to obtain
high-ability GCPs and DSM at the increased accuracy
required for photogrammetry and orthorectification. The
final image demonstrated the advantage of LiDAR-based
GCPs with high-resolution DSM in producing high-quality
orthoimages with an accuracy of 0.638m. The accuracy of
the orthorectified image was improved by increasing GCPs
to more than the usual value. The comparison between final
results indicated that the optimal orthoimage was selected
based on the best accuracy of the final results, depending
on the optimal images. Moreover, the optimal DSM used
in orthorectification with the WV-3 image was DSM resolu-
tion of 31 cm. The orthorectification applied on WV-3

(a) (b)

(c) (d)

Figure 10: Leaning of the building prior to orthorectification based on DSM 0.30 cm whereas (a, c) before orthorectification and (b, d) after
orthorectification.

10 Journal of Sensors



multispectral image resolution was 1m, and the optimal
DSM was 1m. Furthermore, the correlation between hori-
zontal distortion and DSM resolution was identified. The
increased accuracy led to decreased horizontal distortion.
The developed advanced remote sensing data allowed the
generation of GCPs and was useful in the event of limited
access to field surveys. Therefore, it can be said that a better
result for image orthorectification may be expected with
higher spatial resolution; especially, DSM was produced
from airborne laser-scanning, which provides a very useful
source of information for 3D building reconstruction. The
orthorectified images increased the quality of land use and
land cover used in many fields. Therefore, the proposed
methodology will provide a useful tool to aid decision-
makers in selecting the best LiDAR for orthorectification.
With the wide range of application of high-resolution satel-
lite imagery, using existing commercial image processing
packages, the development of operational and efficient satel-
lite image processing procedures such as high accurate
image orthorectification will benefit those users who have a
limited knowledge of remote sensing image processing.
Finally, our method has been proven to be applicable to cor-
rect significant geometric distortions present on test image
sets.
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Aiming at abrupt faults in GNSS/INS integrated systems in complex environments, classical fault detection algorithms are mostly
developed from the measurement domain. A robust chi-square test method based on the state domain is proposed in this paper.
The fault detection statistic is built based on the difference between the prior state estimation and the posterior state estimation in
Kalman filtering. To improve the calculation stability, singular value decomposition (SVD) is used to factor the covariance matrix
of the difference. The relevant formulas of the proposed method were theoretically derived, and the relationship between the
proposed method and the existing innovation chi-square test method was revealed. The proposed method was compared with
state-of-the-art chi-square test methods and verified by GNSS/INS integrated navigation experiments using simulation data
and real data. The experimental results show that the proposed method (a) directly works in the state domain, (b) does not
require the known real system state, (c) has computational efficiency and good robustness, and (d) accurately detects abrupt faults.

1. Introduction

To take full advantage of each individual navigation sys-
tem and overcome their shortcomings, integrated naviga-
tion systems based on Global Navigation Satellite System
(GNSS) and Inertial Navigation System (INS) are widely
used in positioning and attitude determination applica-
tions [1]. Kalman filtering plays an important role in the
integration of GNSS and INS data. A basic assumption
for applying standard Kalman filtering is that both the
dynamic model and the stochastic information provided
to the filter are accurate [2]. If this assumption is not valid
or there are many outliers, the Kalman filter may result in
poor performance such as abrupt faults in the filtering
result [3, 4]. Therefore, it is necessary to carry out real-
time fault detection to ensure the reliability and precision
of the integrated navigation system [5, 6].

In the field of integrated navigation fault detection, chi-
square test methods are the classical methods and are widely
used because they can detect the faults caused by outliers in

the measurements and inaccurate dynamic models or ran-
dom information of the Kalman filter. The methods deter-
mine the fault detection threshold by the probability of a
false alarm (FA) specified in the integrated navigation sys-
tem, so they do not require any user interaction. The
methods can be principally divided into two groups [7–9]:

(i) State chi-square test methods: detect faults through
the state estimate error. A state chi-square test
method, which directly detects faults based on the
difference between the true state and the posterior
state estimate, was proposed in [10]; however, it
requires knowledge of the true state and is thus suit-
able for simulation-based fault detection, not for
real-time fault detection. The state chi-square test
method, which is based on a state propagator and
detects faults based on the difference between the
estimate of the state propagator and the posterior
state estimate, is affected by the initial system value
error, the system noise, and the modelling error as
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it works, and the state propagator value will deviate
increasingly from the true value because there is no
measurement update [11]. The double-state chi-
square test method uses two state propagators that
work alternately and correct each other, which can
avoid the problem of no measurement update, but
the fault detection rate and calculation efficiency will
decrease over time [12–17]

(ii) Innovation chi-square test methods: detect faults
through the innovation (i.e., the measurement pre-
diction error). The innovation chi-square test
method, which indirectly detects faults based on
the difference between the true measurement and
the predictive measurement, can detect abrupt faults
in time with a small amount of calculation [18–22].
In [23], the Federal Kalman filter based on the inno-
vation chi-square test method is used in suborbital
vehicles, and the results show that the proposed
method can quickly correct the errors caused by
GPS abrupt faults within 1 s. However, this method
provides a direct assessment of the measurement
prediction error but only an indirect assessment of
the filtering state estimate error. In fact, accurate
and consistent measurement predictions do not
necessarily result in accurate and consistent state
estimates [24]

The goal of the paper is to propose a state-domain
robust fault detection method addressing the aforemen-
tioned limitations of the state-of-the-art tests, i.e., to design
a method that (a) directly works in the state domain, (b)
does not require the known real system state, (c) has com-
putational efficiency (i.e., detect faults without state propa-
gators) and good robustness, and (d) accurately detects
the abrupt fault.

The remainder of this paper is organized as follows.
Section 2 lists the formulas of the dynamic and observa-
tion equations of the GNSS/INS system. In Section 3, the
innovation chi-square test method is reviewed and ana-
lysed. The state-domain robust fault detection method is
described in Section 4. The experimental description and
analysis are given in Section 5. Finally, the paper is con-
cluded in Section 6.

2. The Dynamic and Observation Equations of
the GNSS/INS System

A loosely coupled GNSS/INS system is adopted. The state
vectors are composed of the position and velocity error in
an earth-centered and earth-fixed frame (ECEF frame, e
frame), the attitude error is described between the computer
e frame and the platform e′ frame, and the gyro and acceler-
ometer drift error is in the body frame (b frame), which can
be expressed as [25–27]

xk = ΔReΔVeφe∇bεb
h iT

: ð1Þ

The nonlinear differential error model of a low-cost INS
is as follows:

Δ _Re = ΔVe,
Δ _Ve = I3×3 −Ce

e′
� �

fe′ + Ce′
b ∇

b − 2Ωe
ieΔVe,

_φe = I3×3 − Ce′
e

� �
ωe
ie −Ce′

b εb,

_∇b = 0,
_εb = 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

where ΔRe and ΔVe are the position and velocity error in the
e frame, respectively; _φe is the attitude error between the
computer e frame and the platform e′ frame; I3×3 is a 3 × 3
unit matrix; Ce

e′ is the rotation matrix between the computer

e frame and the platform e′ frame; Ce′
b is the rotation matrix

between the body frame and the platform e′ frame; Ωe
ie is the

skew symmetric matrix of the earth rotation rate ωe
ie; and εb

and ∇b are gyro and accelerometer drift errors in the body
frame, respectively.

The dynamic model of a loosely coupled GNSS/INS sys-
tem can be expressed as follows:

xk+1 = fk xkð Þ +wk, ð3Þ

where the vector xk represents the state of the system, fk is
the system function, and wk is the process noise vector,
which is commonly assumed to be zero-mean Gaussian
white noise with covariance matrix Qk.

Generally, the measurement model can be expressed as

zk =
R̂e
INS − R̂e

GPS

V̂e
INS − V̂e

GPS

" #
= hk xkð Þ + vk, ð4Þ

where the vector zk represents the measurement, R̂e
INS and

V̂e
INS are the INS-computed position and velocity vectors in

the e frame, R̂e
GPS and V̂e

GPS are the GNSS vector outputs,
hk is the measurement function, and vk is the measurement
noise vector, which is commonly assumed to be zero-mean
Gaussian white noise with covariance matrix Rk.

3. Problem Formulation

Fault detection is a vital and safety-related task for integrated
navigation systems. In this section, the Kalman filter for
GNSS/INS integrated navigation is formulated and the inno-
vation chi-square test method, which is a popular and widely
discussed test used for several decades, is introduced and
analysed.

3.1. Kalman Filter for GNSS/INS Integrated Navigation. The
methods purposely designed for abrupt fault detection in the
integrated navigation system are based on the Gaussian
assumption and the statistical hypothesis testing. Therefore,
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let a state variable x with a known prior Gaussian probability
density function (PDF)

p xð Þ =N x ; x̂′, Pxx′
n o

ð5Þ

be considered, where the notation N fx ; x̂′, Pxx′ g stands for
the normal distribution with the mean x̂′ = E½x� and the
covariance matrix Pxx′ = cov ½x�; meanwhile, the time update
and measurement update of the Kalman filter for GNSS/INS
integrated navigation can be expressed as follows:

x̂k = x̂k′ +Kk zk − ẑk′
� �

, ð6Þ

Kk = Pxz,k′ Pzz,k′
� �−1

, ð7Þ

Pxx,k = Pxx,k′ −KkPzz,k′ Kkð ÞT , ð8Þ

x̂k+1′ ≈
ð
fk xkð ÞN xk ; x̂k, Pxx,k

� �
dxk, ð9Þ

Pxx,k+1′ ≈
ð

fk xkð Þ −cx′ k+1
� 	

fk xkð Þ −cx′ k+1
� 	

N

� xk ; x̂k, Pxx,k
� �

dxk +Qk,
ð10Þ

ẑk′ ≈
ð
hk xkð ÞN xk ; x̂k′ , Pxx,k′

n o
dxk, ð11Þ

Pzz,k′ ≈
ð

hk xkð Þ − ẑk′
� �

hk xkð Þ − ẑk′
� �

N xk ; x̂k′ , Pxx,k′
n o

dxk + Rk,

ð12Þ

Pxz,k′ ≈
ð

xk −cx′ k
� 	

hk xkð Þ − ẑk′
� �

N xk ; x̂k′ , Pxx,k′
n o

dxk,

ð13Þ

where x̂k′ is the prior state estimate, Pxx,k′ is the covariance

matrix of x̂k′, Kk is the gain matrix, x̂k is the posterior state
estimate, Pxx,k is the covariance matrix of x̂k, ẑk′ is the predic-
tive measurement, Pzz,k′ is the covariance matrix of ẑk′, and
Pxz,k′ is the “crosscovariance” matrix of joint x̂k′ and ẑk′.

3.2. The Innovation Chi-Square Test Method. In principle,
the detection of the abrupt faults can be formulated using
statistical hypothesis testing. The null hypothesis H0: assum-
ing no fault, i.e., assuming x̂k and Pxx,k, is accurate enough,
which is tested against the alternative hypothesis H1: assum-
ing there is a fault.

The innovation chi-square test method that detects
abrupt faults by predictive measurement ẑk′ and measure-
ment zk is described as follows:

Step 1. Define a required (or allowed) probability of false
alert PFA.

Step 2. Compute statistic

Zk = ekð ÞT Pzz,k′
� �−1

ek, Zk ∼ p Zkð Þ: ð14Þ

If the null hypothesis H0 is valid, then the PDF pðZkÞ is
(approximately) a chi-squared distribution with nz degrees
of freedom (DOF), where ek = zk − ẑk′ and nz is the dimen-
sion of the measurement domain.

Step 3. Compute the corresponding PFA quantile

qZFA,k = inf Zk∈ : 1 − PFAð Þ ≤ F Zkð Þf g, ð15Þ

where FðZkÞ is the cumulative distribution function with
respect to pðZkÞ and the operator inf stands for the infi-
mum. The quantile qZFA,k is further denoted as the fault
detection threshold.

Step 4. Compare the statistic Zk (14) with the threshold
qZFA,k (15). If Zk ≤ qZFA,k, then it is considered to be no fault.
Otherwise, it would be considered to have a fault.

However, this method provides a direct assessment of
the measurement prediction error ek but just an indirect
assessment of the filtering state estimate error. In fact, accu-
rate and consistent measurement predictions do not neces-
sarily result in accurate and consistent state estimates. The
measurement domain test assumes the Gaussian of the
measurement prediction PDF and therefore cannot con-
sider the error in computation of the “crosscovariance”
matrix Pxz,k′ [24].

4. The State-Domain Robust Chi-Square
Test Method

In this section, the state-domain robust chi-square test
method is proposed.

4.1. Derivation. The proposed test is based on a statistical
analysis of the difference between prior and posterior state
estimates defined as

dk = x̂k − x̂k′: ð16Þ

Its statistical properties are summarized in the following
theorem.

Theorem 1. Under valid hypothesis H0, the difference dk is a
random variable with

d̂k = E dk½ � = 0nx , ð17Þ

Pdd,k = Pxx,k′ − Pxx,k =KkPzz,k′ Kkð ÞT , ð18Þ

where nx is the dimension of the state domain.
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Proof. The proof of (17): both the prior and posterior mean
estimates are unbiased, i.e., x̂k′ = x̂k = E½xk�. The proof of (18):
the difference dk (16) can be written as

dk = xk − x̂k′ − xk − x̂kð Þ = ~xk′ − ~xk, ð19Þ

where ~xk′ is the prior state estimate error and ~xk is the poste-
rior state estimate error.

Pdd,k = E dkdTk
h i

= Pxx,k′ + Pxx,k −Mx ′x,k −Mxx ′,k, ð20Þ

where the (cross-)second-order moment of the posterior and
prior state estimate error is defined as Mx ′x,k = E½~xk′~xkT �, and
Mx ′x,k = ðMxx ′ ,kÞT .

Mx ′x,k = E xk − x̂k′
� �

xk − x̂k′ −Kk zk − ẑk′
� �� �T


 �
= Pxx,k′ − Pxz,k′ Kkð ÞT
= Pxx,k:

ð21Þ

Then, by substituting (21) into (20), the expression for
(18) is obtained.
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4.2. Algorithm. The state-domain robust chi-square test
method that detects abrupt faults by the difference dk is
described as follows:

Step 1. Define a required (or allowed) probability of false
alert PFA.

Step 2. Compute statistic

Ck = dkð ÞT Pdd,kð Þ−1dk, Ck ∼ p Ckð Þ: ð22Þ

If the null hypothesis H0 is valid, then the PDF pðCkÞ is
(approximately) a chi-squared distribution with nx DOF. To
improve the calculation stability, singular value decomposi-
tion (SVD) is used to factor Pdd,k.

Step 3. Compute the corresponding PFA quantile

qCFA,k = inf Ck∈ : 1 − PFAð Þ ≤ F Ckð Þf g, ð23Þ

where FðCkÞ is the cumulative distribution function with
respect to pðCkÞ.

Step 4. Compare the statistic Ck (22) with the threshold qCFA,k
(23). If Ck ≤ qCFA,k, then it is considered to be no fault. Oth-
erwise, it would be considered to have a fault.

4.3. Relationship between the Proposed Method and the
Innovation Chi-Square Test Method. The innovation chi-
square test method can be seen as a special case of
the proposed method under the consideration of certain
simplifications.

With respect to (6) and (8), the difference dk and Pdd,k
can be written as

dk =Kkek,
Pdd,k =KkPzz,k′ Kkð ÞT :

ð24Þ

Assuming nx = nz , Kk is invertible, and faults caused by
the outliers in the measurements and inaccurate dynamic
models or random information of the Kalman filter, the sta-
tistic Ck (22) can be further treated as

Ck = ekð ÞT Kkð ÞT KkPzz,k′ Kkð ÞT
� �−1

Kkek

= ekð ÞT Pzz,k′
� �−1

ek
=Zk:

ð25Þ

In this case, the proposed method is equivalent to the
innovation chi-square test method.

5. Experiment Description

In this section, the proposed method, called the state-
domain robust chi-square test method (SRCTM), is com-
pared with the innovation chi-square test method (ICTM)
and the state chi-square test method (SCTM) and verified
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by GNSS/INS integrated navigation experiments using sim-
ulation data and real data. To objectively compare the effi-
ciency of the different methods, the probability of false
alerts PFA is set as 10-6 and nx = nz = 6. Meanwhile, the same
hardware and software are adopted. The hardware is a PC
with a Core i5-10500 CPU and 16GB RAM. The R2019b

version of MATLAB software running on a Windows 10 sys-
tem is used to design the different algorithms.

5.1. GNSS/INS Integrated Navigation Experiment Using the
Simulation Data. The GNSS/INS integrated navigation
experiment using simulation data utilized a simulation
framework for low-cost integrated navigation systems called
NaveGo, which simulates measurements from inertial sen-
sors and a GNSS receiver. It is found that the absolute differ-
ences between real and simulated systems are under 23
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centimeters for 2D position and under 10 centimeters for
vertical position [28].

To verify the effectiveness of the SRCTM and compare it
with the ICTM and the RCTM, two abrupt faults based on
the standard deviation (STD) as 9STDs were added in the
dynamic model (3) artificially at 10 s and 100 s, and two
abrupt faults based on the STD as 5STDs were added in
the posterior state estimate (6) artificially at 300 s and
400 s. Figure 1 shows the true trajectory and the estimated
trajectory, which contains the abrupt faults.

Figure 2 contains the position error of the GNSS/INS and
confidence region based on the STD as ±3STDs, and the error
exceeds 3STDs at the time when the abrupt fault is added.

Figure 3 shows the statistics of the different methods,
and both the ICTM and the SRCTM are very sensitive to
abrupt faults in the dynamic model. Only the SRCTM can
detect faults in the posterior state estimate (because the
SRCTM is based on the difference between the prior and pos-
terior state estimates). In addition, the SRTM can hardly
detect faults, and the statistics change only in the initial period,
because the state propagator value will deviate increasingly
from the true value without measurement update. Note that
the SRTM is clearly more time-consuming than the ICTM
and the SRCTM because of the extra state propagator. In
Figure 4, the position error using the simulation data and
the confidence region of the state propagator defined by
3STDs are provided.

5.2. GNSS/INS Integrated Navigation Experiment Using the
Real Data. The GNSS/INS integrated navigation experiment
using real data was carried out at the University of Notting-
ham, UK, in November 2013. A GNSS antenna, a GNSS
receiver, and a SPAN-LCI IMU were mounted in a van,
and data were logged from the receiver’s serial ports to a lap-
top for storage and processing. The vector between the IMU
center and GNSS antenna was accurately surveyed using a
total station and was considered accurate within 1 cm. A base
station was set up on the roof of the Nottingham Geospatial
Building to provide DGPS and RTK corrections. The update
rate of INS is 200Hz, and that of the GNSS is 1Hz. The aver-
age baseline length was less than 3km for the test. When driv-
ing on the roads of the University of Nottingham, the test
vehicle performed accelerations and braking at an average
speed of at least 20km/h. Figure 5 is a photograph of the
van, and Figure 6 is the test trajectory. The high accuracy
real-time output results of the SPAN system are used as the
reference value, and the double-difference code GNSS position
and velocity results are used as the input measurements.

To verify the effectiveness of the SRCTM and compare it
with the SCTM and the ICTM, an abrupt fault based on the
STD as 5STDs was artificially added in the measurement
model (4) at 540 s, and an abrupt fault based on the STD as
5STDs was added in the posterior state estimate (6) artificially
at 570 s. In addition, the results contain some outliers due to
the vehicle passing over a speed bump or the data was lost.

Figure 7 contains the position error of the GNSS/INS
using real data and the confidence region given by ±3STDs,
and the error exceeds 3STDs at the time when the abrupt
fault is added or there are many outliers.

Figure 8 shows the statistics of the different methods
using the real data, and it can be seen that both the ICTM
and the SRCTM are very sensitive to abrupt faults in the
measurement model. Only the SRCTM can detect the fault
in the posterior state estimate (because the SRCTM is based
on the difference between the prior and posterior state esti-
mates). As in Section 5.1, the SRTM can hardly detect the
faults, and the statistics change only in the initial period
because the state propagator value will deviate increasingly
from the true value without measurement update. In
Figure 9, the position error using the real data and the con-
fidence region of the state propagator defined by 3STDs are
provided.

6. Conclusion

This paper focuses on detecting abrupt faults in integrated
navigation systems. A state-domain robust chi-square test
method was proposed. Compared to the state-of-the-art
method, the proposed method (a) directly works in the state
domain, (b) does not require the known real system state, (c)
has computational efficiency and good robustness, and (d)
can accurately detect abrupt faults. The performance and
properties of the proposed method are illustrated in the the-
oretical derivation and experimental description.
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Global navigation satellite systems are essential for positioning, navigation, and timing services. The quality and reliability of
satellite observations determine the system performance, especially in the case of the newly launched global BDS-3 service.
However, analyses of multipath delays in BDS-3 satellite observations suggest that there are appreciable errors at different
frequencies. Improvement of the accuracy and precision of positioning, navigation, and timing services provided by BDS-3
requires the mitigation of multipath delays of the satellite observations. This paper models the multipath delays of BDS-3
observations using a least-squares combined autoregressive method. Furthermore, a sparse modeling algorithm is proposed to
obtain a multipath delay series using total variation and elastic net terms for denoising and eliminating the effect of limited
original observations. The estimated coefficients of multipath delays are then set as prior information to correct the next-arc
code observations, where the square-root information filter is used in the coefficient estimation. Moreover, four groups of
experiments are conducted to analyze the results of modeling the BDS-3 multipath delay using the proposed methods, with
single-frequency precise point positioning (PPP) and real-time PPP solutions being selected to test the correction of multipath
delays in BDS-3 code observations. The residuals of iGMAS and MGEX station coordinates indicate improvements in
eastward, northward, and upward directions of at least 4.1%, 9.6%, and 1.2%, respectively, for the frequency B1I; 6.6%, 5.3%,
and 0.2%, respectively, for B3I, 12.5%, 14.3%, and 3.8%, respectively, for B1C; and 5.9%, 7.4%, and 18.1%, respectively, for B2a
relative to the use of the traditional method in BDS-3 single-frequency PPP. Furthermore, the real-time double-frequency PPP
is optimized by at least 10% for B1I + B3I and B1C + B2a. An improved result was obtained with the proposed strategy in a
standard point positioning experiment. The proposed multipath delay mitigation method is therefore effective in improving
BDS-3 satellite code observations.

1. Introduction

Global navigation satellite systems (GNSSs) provide all-
weather and continuous services to global users in the area
of high-precision spatial information. China has developed
the BeiDou Navigation Satellite System (BDS) in a three-
step strategy involving a verification system (BDS-1),
regional system (BDS-2), and global system (BDS-3) [1, 2].
BDS-3 was officially announced to be operational in 2020,
representing a shift in the BDS from regional to global ser-
vices [3]. At present, more than 40 BDS satellites in the orbit
provide positioning, navigation, and timing (PNT) services

(http://www.csno-tarc.cn). BDS-3 will provide the majority
of spatial and temporal references for services in the future.
Therefore, the high performance of BDS-3 services, especially
in terms of the precision and accuracy of observations, is
essential for the development of BDS [4, 5].

The GNSS observation quality relates to the ambiguity
resolution [6], bias parameters [7, 8], and correction models
[9]. The parameter estimation of the satellite orbit and clock
offsets is affected by errors in the satellite-ground observa-
tions, such as multipath delays. Meanwhile, the precision
of precise point positioning (PPP) is directly limited by the
quality of satellite observations [10, 11]. In terms of quality
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control, studies on BDS observations have focused on the
C/N0 ratio [12, 13], corrections for noise and multipath
delay [14], and precision analyses of the phase and code
[15]. Moreover, for BDS-3 multifrequency observations,
the characteristics of the observation signals [16], qualities
of new observations [17], and biases of data fusion [3] have
typically been discussed. In summary, the quality of BDS-3
satellite observations is better than that of traditional BDS-
2 satellite observations [16]. However, the results of experi-
ments on BDS-3 code multipath delays suggest that there
is a trend term in the code observations [2]. Therefore, to
mitigate BDS-3 code multipath delays, methods of modeling
BDS-3 multipath delays need to be studied for high-
precision applications.

In the processing of GNSS observation multipath delays,
there are four aspects to high-precision estimation and
modeling methods: (1) time domain filtering algorithms,
such as the wavelet algorithm and Vondrak algorithm, (2)
modeling using the repeating periods of satellites, such as
modeling using the sidereal filtering algorithm [18], (3)
compensation algorithms in the spatial domain, which pro-
vide a multipath hemispherical map [14] and allow spherical
harmonic analysis [19], and (4) machine learning methods,
such as Tikhonov regularization and sparse modeling [20,
21]. The literature indicates that all the methods mentioned
above are useful for the mitigation of BDS code multipath
delays. Notably, new signals and their modulation and mul-
tiplexing techniques are used for BDS-3 satellites. However,
widely used strategies for BDS code multipath delays focus
on BDS-2 observations, for example, a two-step modeling
method, which first models the multipath delay and then
the code bias [2], cannot be applied to BDS-3. Owing to dif-
ferences in the signal characteristics, signal numbers, signal
quality, and satellite spatial distributions between BDS-2
and BDS-3, BDS-3 observations should be carefully investi-
gated when using multiple frequencies. The present study
divides the code multipath delays of BDS-3 observations
(at four frequencies) into systematic and random parts for
modeling and mitigation, respectively.

It is difficult to directly construct the multipath delay
with a theoretical model owing to the effects of the complex
environment and receiver front end. Additionally, the esti-
mated multipath delays are mainly contaminated by noise,
which cannot be modeled and mitigated for using an empir-
ical algorithm [20]. Additionally, the Tikhonov regulariza-
tion algorithm has been used to denoise a series of BDS
clock offsets [22] and model GNSS multipath errors [20],
with the results of experiments suggesting that the regulari-
zation algorithm obtains a better PPP solution. Moreover,
Kalman filtering [23], spectral analysis [24], and the particle
filter [25] have been proposed to denoise a series of GNSS
multipath delays. Meanwhile, to improve the accuracy of
models, machine learning methods, such as sparse modeling
[21] and the kernel trick [26], have been presented recently
for processing GNSS observations, where the least absolute
shrinkage selection operator (Lasso), elastic net, and fast
iterative shrinkage threshold algorithm (FISTA) are used to
output the estimated model coefficients. However, two
important issues, namely, the length of the multipath delay

series and the condition of noise in the observations, are
ignored in widely used sparse modeling strategies [27]. In
general, elastic net is an improved version of the Lasso algo-
rithm to conduct the sparse modelling, which is more stable
for the extreme correlations among various predictors as the
combination of L1 norm and L2 norm regularization terms.
Thus, elastic net is set in the process of minimizing the loss
function, which ensures the sparsity of the model and
increases the stability of the model solution. Additionally,
total variation uses the nonsmooth norm to replace the tra-
ditional L2 norm regularization, in which the local structure
information can be captured to further eliminate the influ-
ence of noise on the reconstruction of a complex network
structure and to increase the robustness of the model. In
consideration of the characteristic of BDS-3 code observa-
tions and the limited sample points, sparse modeling com-
bined with the elastic net term EN and the total variation
term TV [27] is investigated for improving the robustness
of BDS-3 multipath modeling in the present paper.

The aim of this paper is at optimizing the model of BDS-
3 code multipath delay and at mitigating the effects of the
delay on rapid PPP solutions. A new strategy for modeling
the BDS-3 code multipath delay is proposed in Section 2,
where sparse modeling combined with EN and TV terms is
first presented, an integrated estimation of model coeffi-
cients is then derived in detail, and the correction model of
next-arc observations is finally designed using prior infor-
mation. Section 3 tests single-frequency PPP, real-time
PPP, and standard point positioning (SPP) using the pro-
posed strategy. Conclusions and perspectives are presented
in Section 4.

2. Materials and Methods

The service performance of a satellite system directly reflects
observation multipath delays as a main error in GNSS PPP.
To reduce the effects of noise and limited observations, this
section discusses the high-precision modeling of BDS-3 code
multipath delays, for which the systematic and random parts
are separately considered. Meanwhile, a strategy of correct-
ing for the code multipath delay of the next-arc observation
is also studied.

2.1. Modeling BDS-3 Code Multipath Delays. To overcome
the effects of the observation noise and series length in
modeling BDS-3 multipath delays, sparse modeling from
the field of machine learning [27] is adopted to optimize
and process the series of BDS-3 multipath errors (raw code
multipath delays for each satellite with continuous ambigu-
ity calculated by equations (1) and (2)). In this research,
based on the continuous tracking of satellites, the multipath
delays of different BDS-3 code observations are first esti-
mated using a combination of two frequencies as [2].

MPs
i tkð Þ = Ps

i tkð Þ −ms
ij ⋅ λi ⋅ ϕ

s
i tkð Þ + ms

ij − 1
� �

⋅ λ j ⋅ ϕ
s
j tkð Þ,

ð1Þ
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ms
ij =

f 2i + f 2j
f 2i − f 2j

, ð2Þ

where f and λ are the frequency and wavelength of the sig-
nals, respectively, the subscripts i and j indicate different fre-
quencies, s represents the satellite (BDS-3 in this paper), φ
and P are the observations of the phase and code, respec-
tively, and tk is the epoch time.

Using the estimated code multipath delays, a series func-
tion is written for the ith BDS-3 satellite as

yi t1ð Þ
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⋮
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where y denotes the multipath delays of different epochs or
elevations (estimated values), ɸ denotes the independent
variable of multipath models, which can be constructed
using the epoch, elevation, and azimuth, x denotes the
model coefficients, ζ denotes the residuals of the models,
and M and N are the total number of epochs and the length
of the series, respectively.

Equation (3) is rewritten in matrix form as

Yi = φi ⋅Xi + ςi: ð4Þ

Then, to improve the robustness of equation (4) against
observation noise, EN of the sparse structure and the TV
term are introduced into the objective function [28]:

F Mið Þ = Yi − φiXik k22 +
β

2
φiXik k22 + λ φiXik k1 + γTV φiXið Þ =min,

ð5Þ

where ðβ/2ÞkφiXik22 + λkφiXik1 denotes the regularization
term of EN, TVðφiXiÞ is the regularization term of TV,
and β, λ, and γ are coefficients of the objective function,
which can be set as prior values or selected using the
Thomas algorithm [20]. The smoothness strategy of TV reg-
ularization is adopted to obtain solutions to equation (5)
[29] as follows:

TV φiXið Þ =〠 A ⋅ φiXik k, A =

−1 1

−1 1

⋯ ⋯

−1 1

−1 1

2
666666664

3
777777775
:

ð6Þ

We adopt the concept of FISTA to iterate the results of
model coefficients using the inequality approximation algo-
rithm and the corresponding interval threshold of conver-
gence (ε) [30]. The final solutions of equation (5) are thus
obtained using the iteration condition

F Mk+1
i

� �
− F Mk

i

� ���� ��� ≤ ε, ð7Þ

where k is the number of iterations.

2.2. Integrated Modeling of BDS-3 Code Multipath Delays.
On the basis of the sparse modeling of BDS-3 code observa-
tion multipath delays, the PPP service can be improved the-
oretically through the precise correction of multipath errors.
However, the short-term prediction of multipath delays
should be obtained for next-arc or real-time PPP uses, where
a more precise model coefficient is needed to construct the
BDS-3 code multipath delay. Adopting the integrated esti-
mation strategy, the systematic and random parts of the
multipath series are separated and modeled in one solution.
Taking the kth BDS-3 satellite as an example, the code
multipath delays are expressed as a function of the satellite
elevation:

Yk eið Þ = Bk eið Þ + Rk eið Þ + εk eið Þ, ð8Þ

where ei is the ith elevation of the satellite, Yk denotes the
code multipath delays after processing with equations
(1)–(7), and BðeiÞ and RðeiÞ are functions of systematic
and random parts, respectively. Traditionally, the systematic
part is modeled with a polynomial function, where a second-
order function is used to process the BDS code multipath
delays [2]. The random part can be expressed as an autore-
gressive (AR) model. ε represents the model residuals.

As mentioned above, the AR model is used to describe
the random terms of multipath errors, where the relation-
ship among variables of a random series is expressed as

Rk eið Þ = κ1kRk ei − 1ð Þ+⋯+κdkRk ei − 1ð Þ + μk eið Þ: ð9Þ

Here, κ is the coefficient of the AR model estimated by
the least-squares (LS) algorithm, d is the order of the model,
and μ is the white noise. In equation (9), the order of the AR
model is selected using the Akaike information criterion [22,
29]. To estimate the model coefficients properly and rapidly,
we take all coefficients into one solution as

Yk ei+1ð Þ =Kk ei+1ð Þ ⋅ bk + Rk ei+1ð Þ + υk eið Þ, ð10Þ

where υ is the model error, KðeiÞ = ½1 ei e2i �, and bk =
bk0 bk1 bk2

� �T. Equation (10) can be rewritten as

Rk ei+1ð Þ = Yk ei+1ð Þ −Kk ei+1ð Þ ⋅ bk + υk eið Þ
= κ1k ⋅ Yk eið Þ −Kk eið Þ ⋅ bkÞ½ �+⋯+κdk

⋅ Yk ei+1−dð Þ −Kk ei+1−dð Þ ⋅ bkÞ½ � + υk eið Þ:
ð11Þ
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Furthermore, inserting equation (10) into equation (11)
yields

Yk ei+1ð Þ − κ1k ⋅ Yk eið Þ+⋯+κdk ⋅ Yk ei+1−dð Þ
h i

+ υk′ eið Þ

=Kk ei+1ð Þ ⋅ bk − 〠
d

h=1
κhk ⋅Kk ei+1−hð Þ ⋅ bk + υk′ eið Þ:

ð12Þ

Stacking all equations for satellite elevations from eð f Þ to
eðtÞ, the model coefficients for the kth satellite are obtained
from the integrated estimation as
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where ⊗ denotes the Kronecker product, F= It−d ⊗ κTk , κk
= κ1k κ2k ⋯ κdk
� �T, It−d is an identity matrix with order

t – d, cj is the jth column of the t × t identity matrix, Nj =

cTj−1 cTj−2 ⋯ cTj−d
h iT

, and Mj = Akðej−1Þ Akðej−2Þ
�

⋯Akðej−dÞ�T.
The model coefficients are obtained from the estimation

of equation (13). Using equation (11), all satellites (e.g., sat-
ellite l) are processed in one solution:

C ⋅ Y′ = T ⋅ b, ð14Þ

Y′ = Y1 Y2 ⋯ Yk ⋯ Yl½ �T

b = b1 b2 ⋯ bk ⋯ bl½ �
C = C1 C2 ⋯ Ck ⋯ Cl½ �
T = T1 T2 ⋯ Tk ⋯ Tl½ �
Ck = cTd+1 cTd+2 ⋯ cTt

� �T − F ⋅ Nd+1 Nd+2 ⋯ Nt½ �T
h i

Tk = Ak ed+1ð Þ Ak ed+2ð Þ ⋯ Ak etð Þ½ �T − F ⋅ Md+1 Md+2 ⋯ Mt½ �T
h i

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

:

ð15Þ
2.3. Multipath Delay Correction of Next-Arc Observations.
The estimated coefficients are traditionally introduced into
next-arc observations to mitigate the multipath delays [2].
However, considering the orbital period and the surround-
ing environments of the receivers, it is difficult to obtain a
perfect PPP solution under the effect of code multipath
delays. For correction of the multipath delays of the
next-arc BDS-3 code observations using the estimated
coefficients, a new strategy is proposed to further improve
the accuracy of multipath mitigation. The estimation of
the next-arc multipath delays using the LS algorithm is
expressed as

r = Bx + ηP, ð16Þ

where x denotes the true values of the model coefficients
for the next-arc multipath delay and P is the weight
matrix. In addition, to improve the accuracy of the model
coefficients, a constraint function based on the prior infor-
mation x0, ~x0 = x + ~ε0, is used. Here, a weight matrix ~P0 is
set. ε and η are the model residuals. During the estimation

of equation (16), the weight matrix is decomposed as ~P0

= ~R−1
0
~R−T
0 and P = R−1R−T.

Equation (16) and its constraint function are then
rewritten as

~z0 = ~R0 ⋅ x + ~v0,

z =Ax + v,
ð17Þ

where ~z0 = ~R0 ⋅ ~x0, z = R ⋅ v, A = R ⋅ B, ~v0 = ~R0 ⋅ ~ε0, and v =
R ⋅ η.

Meanwhile, the Householder conversion for equation
(17) is further expressed as
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" #
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" #
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" #
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ẑ0
e
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" #
,

ð18Þ

where e and ve are the model errors and the corresponding
noise, respectively.

An objective function is defined as

J xð Þ =
~R0

A

" #
x −

~z0
z

" #�����
�����
2

= R∧0x − z∧0k k2 + ek k2 ≥ ek k2:

ð19Þ

In obtaining the minimum JðxÞ, the parameter solution
reads as

R̂0x = ẑ0: ð20Þ

Finally, the solution to equation (20) is

x = R̂−1
0 ⋅ ẑ0, ð21Þ

where the covariance matrix of the estimated x is P̂0 = R̂−1
0 ⋅

R̂−T
0 .
According to equations (16)–(21), the code multipath

delay of BDS-3 can be further mitigated, especially in rapid
applications, with the aid of prior information. Figure 1 is
a flowchart of the integrated method of processing BDS-3
code observations proposed in this research.

3. Experiments and Results

To verify the proposed strategy of correcting for BDS-3
observation multipath delays, BDS-3 observations of the
Multi-GNSS Experiment (MGEX) and International GNSS
Monitoring and Assessment System (iGMAS) are used in
positioning experiments. The distribution of MGEX and
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iGMAS stations relating to the BDS-3 observations is pre-
sented in Figure 2.

3.1. Analysis of BDS-3 Code Multipath Delays. Four groups
of experiments are conducted with different schemes to ana-
lyze the proposed method. In the experiments, one-month
observations (day of year (DOY) 214–244, 2020) made by
BDS-3 stations are selected. The characteristics of the multi-
path delays of BDS-3 satellite code observations at different
frequencies (i.e., B1I, B3I, B1C, and B2a) are first analyzed.
Results for two iGMAS stations calculated using equations
(1)–(7) are shown in Figure 3, where the series of multipath
delays of station-WUH1 code observations of three satellites
(i.e., C34, C38, and C59) and the corresponding satellite ele-
vations are plotted for DOY 228 as examples. Figure 3 sug-
gests that BDS-3 observations contain appreciable code
multipath delays. Meanwhile, a trend term is seen along
the satellite elevation, with the observations corresponding
to lower elevations having more obvious multipath errors.

Therefore, the trend term (systematic part) and the residual
term (random part) should be modeled separately in the
mitigation of BDS-3 multipath errors.

The first group of experiments are conducted to test the
algorithm of sparse modeling in processing the BDS-3 code
multipath series. In the experiments, three comparison
schemes are designed to fully analyze the performance of
the sparse modeling of the multipath delays of BDS-3 code
observations.

Scheme 1: A series of estimated BDS-3 multipath delays
at different frequencies is first modeled using a regulariza-
tion algorithm [20]. Typical distributions for MP1 (station
MP at the B1I frequency) after regularization are plotted in
Figure 4(b), where all medium Earth orbit (MEO) satellite
observations of WUH1 on DOY 228 are input in the
analysis.

Scheme 2: Similarly, the series of multipath delays are
optimized using EN of the sparse structure. The processed
series are presented in Figure 4(c).

Constructing objective
function by Eq.(5)

Calculating BDS-3 code
multipath delays by Eq.(1)

Introducing and estimating TV
term by Eq.(6)

BDS-3 code observation multipath delays
series after sparse modelling

Stack all observation by Eqs. (13)-(15)Obtaining the results of
objective function by Eq.(7)

Integrated estimation
of coefficients

BDS-3 code multipath
delays

Model coefficients of BDS-3 code
multipath delay

Conduct integrated modelling

Mitigating BDS-3 code observations
multipath delays of current epochs

Next-arc
observation

Integrated modelling multipath series
by Eqs. (8)-(12)

Determining the orders of Eq.(8)

Figure 1: Flowchart of mitigating BDS-3 code observation multipath delays.
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Figure 2: Distribution of BDS-3 satellite tracking stations.
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The objective function of Scheme 2 is further improved
by introducing the TV term. The corresponding typical dis-
tributions of the MP1 series are shown in Figure 4(d).

Owing to the large volume of experimental observations,
the MEO satellites of BDS-3 observations are taken as exam-

ples to show the performances of the sparse modeling algo-
rithm in Figure 4. Furthermore, the results for frequencies
B3I, B1C, and B2a are analyzed using the one-month obser-
vations for all BDS-3 MEO satellites, where the standard
deviations of the series are given in Table 1. The table shows
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Figure 3: Series of BDS-3 multipath delays for the iGMAS (WUH1) station (DOY 228).
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that different values of the standard deviation are output for
different schemes, where the adoption of regularization, EN,
and TV denoises the MP series, realizes sparse modeling,
and overcomes the restriction of limited series, respectively.

The results of multipath delays obtained using the differ-
ent processing strategies indicate that sparse modeling with
the aid of the TV term provides a more stable series. Because
the series of observations selected in constructing the
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Figure 4: Typical distributions of the BDS-3 MP1 series obtained using the sparse modeling algorithm.
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mitigation model of multipath delays are usually within a
period of 1 day, the TV term added to the sparse modeling
function theoretically reduces the effects of noise and limited
epochs. An integrated modeling strategy of the BDS-3 mul-
tipath series is investigated in the second group of experi-
ments. Three modeling scenarios of multipath delays are
considered for four iGMAS and four MGEX stations. The
details of integrated modeling were presented in Figure 1.
The experiments on multipath modeling using the proposed
methods are described as follows.

3.1.1. Scenario 1. On the basis of the results of Scheme 3, the
series of BDS-3 multipath delays is firstly modeled using the
AR algorithm. Model residuals are output and analyzed.

3.1.2. Scenario 2. In mitigating the trend terms of the resid-
uals of Scenario 1, a polynomial function is used to reduce
the multipath errors. Meanwhile, the strategy of Scenario 1
is adopted to model residuals after the processing of trend
terms.

3.1.3. Scenario 3. With the consideration of the two-step
strategy adopted in Scenario 2, the integrated estimation of
model coefficients is tested using the integrated LS-
combined AR method.

The model residuals of the three scenarios are shown in
Figure 5 for the analysis of the results of the integrated
method in modeling the BDS-3 multipath series. The figure
shows that the integrated method, especially in one-step esti-
mation, is more stable than the traditional AR-only method.
Therefore, the integrated estimation strategy of modeling
multipath delays using the LS-combined AR method is rec-
ommended for the processing of BDS-3 code observations.

Figure 5 shows that the LS-combined AR-integrated
strategy well models and mitigates the BDS-3 code multi-
path errors and can be induced to improve the quality of
BDS-3 satellite observations. However, the real-time applica-
tions of BDS-3 services cannot estimate model parameters
with long-term observations. As an example, widely adopted
sidereal filtering is conducted on the basis of the satellite
orbit period. Therefore, in correcting for the multipath
delays of next-arc observations in real-time or near real-
time applications, it is necessary to further improve the
model coefficients of multipath errors. According to

Figure 1, the multipath delays are output and modeled by
LS-combined AR method based on equations (1)–(15) for
BDS-3 satellites’multifrequency observations. As mentioned
above, we take the estimated model coefficients as prior
information into the solution of multipath errors of the
next-arc observations for real-time or rapid applications. In
experiments, the tracking station of iGMAS (WUH1, DOY
228, 2020) is taken into modelling and correcting BDS-3
(MEO satellites) multipath delays. It should be noted that
the proposed method takes the correlation between multi-
path delays and satellites’ elevations into consideration,
which is different from the traditional sidereal filtering based
on the repeat time of satellites’ orbit. Therefore, only one-
day (DOY 228, 2020) observations are selected into experi-
ments to model multipath delay and real-time correction
with its prior information. In verifying the availability of
the improved multipath model with the prior constraints,
two experiments are conducted to analyze the multipath
residuals. Additionally, the observations are preprocessed
to detect and repair the cycle slips and delete satellites with-
out observations during modeling multipath delays.

3.1.4. Experiment 1. On the basis of the estimated model
coefficients of a multipath series, the next-arc observations
are corrected using the predicted values. The residuals
between the predicted and real multipath series are plotted
in Figure 6(b) (AR method only) and Figure 6(c) (inte-
grated-LS combined AR method).

3.1.5. Experiment 2. In the correction of next-arc BDS-3
multipath errors, the estimated model coefficients are set as
prior information to obtain the new model. The next-arc
residuals between the real and calculated values are shown
in Figure 6(d).

The residuals of the multipath series in the third group
of experiments show that the next-arc BDS-3 observations
can be optimized with the prior information in the estima-
tion of multipath models. Table 2 gives the average daily
root-mean-square (RMS) values of multipath residuals for
different frequencies (MGEX stations) to show the perfor-
mance of the proposed strategy in Experiments 1 and 2.
Figure 6 and Table 2 show that the improved strategy of
modeling BDS-3 multipath delays indeed improves the
accuracy of BDS-3 observations for rapid and real-time

Table 1: Standard deviations (m) of multipath series at frequencies B1I, B3I, B1C, and B2a for BDS-3 satellite observations.

B1I B3I B1C B2a
MEO IGSO MEO IGSO MEO IGSO MEO IGSO

MGEX

Original series 0.300 0.295 0.209 0.287 0.228 0.225 0.240 0.194

Scheme 1 0.286 0.281 0.199 0.273 0.216 0.214 0.228 0.185

Scheme 2 0.194 0.193 0.105 0.191 0.126 0.133 0.138 0.102

Scheme 3 0.169 0.172 0.097 0.188 0.114 0.119 0.129 0.098

iGMAS

Original series 0.311 0.407 0.266 0.368 0.316 0.495 0.259 0.347

Scheme 1 0.296 0.388 0.254 0.350 0.301 0.472 0.247 0.331

Scheme 2 0.214 0.333 0.186 0.303 0.208 0.367 0.175 0.226

Scheme 3 0.209 0.285 0.180 0.242 0.196 0.355 0.171 0.224
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Figure 5: Continued.
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applications. In previous researches [2], the BDS-2 satellites’
code biases are discussed and corrected by a proposed
method called the one-step method, in which the high-
correction factor between multipath delays and code biases
are considered. In this research, the multipath delays of
BDS-3 multifrequency observations are analyzed, in which
a systematic term and a random term divided from BDS-3
satellites’ code observations can be found from the first

group of experiments. It should be noted that the BDS-2
code biases are different from BDS-3 systematic multipath
delays based on mechanism, characteristic, and order of
magnitude. Although the code bias related to the BDS-2
internal multipath vanished for BDS-3 code observations,
the multipath of BDS-3 multifrequency observations should
be paid more attention and be improved to optimize the
positioning services. Due to the differences between BDS-2
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Figure 5: Model residuals of BDS-3 B1I and B3I code observations (original series and post modeling) for Scenarios 1, 2, and 3 (C33, C34,
and C35).
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and BDS-3 satellites, we usually take additional parameters,
such ISB and DCB, to accurately estimate BDS-2- and
BDS-3-related results [3]. In this research, it is difficult to
mitigate the multipath delays of BDS-2 and BDS-3 within
one solution, which reasons can be summarized as two
points: firstly, differences of the coefficient of systematic
terms for the BDS-2 and BDS-3 multipath delays are more
than an order of magnitude [16]. So, we cannot together
estimate the coefficients with a unified model; secondly, the
code bias of BDS-2 observations should be firstly corrected.
And the residuals of multipath of BDS-2 can be modeled
with a same strategy of BDS-3. In the next step, we will take
the proposed model into the positioning services of com-
bined BDS-2 and BDS-3 satellites after the model and elim-
ination of BDS-2 code biases.

3.2. Results for BDS-3 PPP Solutions. The aim of this study is
at improving the performance of BDS-3 PPP services. It is
concluded from the above three groups of experiments that
the proposed integrated method with the aid of sparse
modeling provides a more stable series of the BDS-3 multi-
path delay. Meanwhile, a fourth group of experiments on
BDS-3 single-frequency PPP and double-frequency real-
time PPP is conducted using the proposed strategy for the
BDS-3 multipath delay. Further details of configurations
for single-frequency PPP and real-time PPP have been pub-
lished [2]. We set the cutoff angle at 5° in estimating the
positioning parameters. The antenna types are described in
the literature [3]. Because of the lack of accurate BDS-3 sat-
ellite phase center variation (PCV) parameters, we simply
ignore the effects of PCV on the PPP solution. All position-

ing experiments are conducted using the orbit determination
and positioning software package of CUM (an iGMAS anal-
ysis center), where the reference frame is ITRF 2014.

3.2.1. Single-Frequency PPP Experiments. Three iGMAS sta-
tions and one MGEX station making BDS-3 observations are
selected in the experiments for the analysis of BDS-3 single-
frequency PPP. The configuration of single-frequency PPP is
listed in Table 3. The double-frequency combination is
adopted to model multipath delays. The experimental ses-
sion is set as DOY 221–228, 2020, for which observations
made at four frequencies (i.e., BI1, B3I, B1C, and B2a) are
analyzed. Precise satellite products, such as orbit and clock
offsets, are downloaded from the GFZ analysis center
(GBM products). Moreover, four schemes using different
strategies to mitigate BDS-3 multipath delays, namely, the
original series (none), AR model (AR), LS + AR (two-step),
and integrated correction (one step), are analyzed. Residuals
of station coordinates are plotted in Figure 7 (B1I) and
Figure 8 (B1C), where the results for DOY 226–228 are pre-
sented with 2880 epochs per day. Moreover, to present all
results of the four stations and four frequencies, the average
RMS values of eight-day single-frequency PPP and the cor-
responding improvements are given in Table 4 (B1I and
B3I) and Table 5 (B1C and B2a). In particular, the process-
ing of different strategies for the single-frequency PPP solu-
tion is analyzed after the sparse modeling of BDS-3
multipath delays with the aid of the EN structure and TV
term.

In the experiments, to avoid errors common to the dif-
ferent PPP solutions, positions of the double-frequency
BDS/global positioning system (GPS) solution (i.e., the mil-
limeter difference with the SINEX file) are taken as refer-
ences to calculate the accuracy of single-frequency PPP.
Figures 7 and 8 show that the quality is obviously better
for B1C than for B1I, which is consistent with the results
of previous research [16]. Additionally, the integrated LS-
combined AR strategy obtains position solutions more
accurately. Specifically, the results of single-frequency PPP
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(d) Multipath residuals with prior information

Figure 6: Residuals between predicted and estimated delays of Experiments 1 and 2 in the third group of experiments (WUH1, DOY 228,
2020).

Table 2: Average daily RMS values (m) of multipath residuals in
the third group of experiments.

B1I B3I B1C B2a

Experiment 1 (LS combined AR) 0.261 0.144 0.172 0.154

Experiment 2 (prior information) 0.135 0.102 0.092 0.089
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obtained for the four frequencies reveal that the accuracy in
eastward (E), northward (N), and upward (U) directions is
improved by at least 4.1%, 9.6%, and 1.2%, respectively, for
B1I; 6.6%, 5.3%, and 0.2%, respectively, for B3I, 12.5%,
14.3%, and 3.8%, respectively, for B1C; and 5.9%, 7.4%,
and 18.1%, respectively, for B2a, relative to the results
obtained using the traditional method (none). However,
because of the high-quality observation of BDS-3, the inte-
grated strategy is slightly more optimized than the two-
step method. The ultimate goal of the present study is the
development of rapid and high-accuracy positioning services
of BDS-3. Therefore, real-time double-frequency BDS-3 PPP
is tested with different strategies for multipath errors in the
following experiments.

The real-time PPP solution is obtained according to the
stage of CUM. A flowchart of real-time BDS-3 double-
frequency PPP has been published in the literature [2].
Before obtaining the solution of real-time PPP, the satellite
ultrarapid orbit and clock offsets are first estimated [2],
which is not the focus of the present study. Additionally,
the experimental session of real-time PPP is set as DOY
221–228, 2020, where the combinations of B1I + B3I and B
1C + B2a are tested for four iGMAS and four MGEX sta-
tions. To avoid the restrictions of the real-time stream in
the experiments, the RINEX files of observations are input
into real-time PPP solutions. Similarly, four schemes of
comparative experiments on BDS-3 multipath delays are
designed, namely, no correction (none), correction with

Table 3: Strategy for the single-frequency PPP solution [2].

Parameters Main configurations

Observations Four frequencies of phase and pseudorange (B1I, B3I, B1C, and B2a)

Cutoff elevation angle 5°

Weigh assignment Elevation-dependent (below 30° by 1/2sin (elevation))

Epoch interval 30 seconds per epoch

Ionospheric parameters Prior products + random walk

Tropospheric parameters Saastamonient + estimated wet components

Satellites PCO http://www.igmas.org

Tide models International earth rotation and reference systems (IERS) 2010

Relativity IERS 2010

Gravity model EGM 08 model with 12 × 12 orders

Satellites PCV Ignored

Station positions Estimated and output

Receivers clock errors Estimated and output

Ambiguity parameters Float solutions
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Figure 7: Results of BDS-3 single-frequency PPP obtained for B1I observations (DOY 226-228).
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the AR model (AR), correction with the two-step LS + AR
model (LS + AR), and the integrated estimation of the LS
+ AR model (one step). However, in comparison with
BDS-3 single-frequency PPP, the AR strategy is adopted
for the estimated coefficients of the previous day and the
multipath delays are mitigated by the predicted values. In
contrast, the one-step and two-step strategies are based on
the prior information of previous model coefficients. Fur-
thermore, the updated model coefficients are estimated with
short-term observations (of an hour or so).

The position residuals (BJF1) for three continuous days
(DOY 226–228, 2020) are plotted in Figure 9 (B1I + B3I)
and Figure 10 (B1C + B2a) to show the results of BDS-3

real-time PPP. Moreover, the average daily RMS residuals
for eight days, four stations, and three strategies (none,
two-step, and one-step) and the corresponding improve-
ments are listed in Table 6. Figures 9 and 10 show that there
are no appreciable differences in the final precision among
the four strategies, although the one-step correction per-
forms slightly better that the two-step strategy. Furthermore,
there is a bias in the direction of U, which might be due to
the uncalibrated PCV and phase center offset of the
satellites.

There are no obvious differences in the simulated final
position residuals between single-frequency PPP and real-
time PPP. Table 6 shows that the improvements in E, N,
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Figure 8: Results of BDS-3 single-frequency PPP for B1C observations (DOY 226-228).

Table 4: Average daily RMS values (m) of position residuals (B1I, B3I) for four stations obtained using three BDS-3 observation multipath
delay processing strategies and the corresponding improvements.

Stations Directions
B1I B3I

None Two-step Imp. (%) One-step Imp. (%) None Two-step Imp. (%) One-step Imp. (%)

WUH2

E −0.085 −0.037 56.5 −0.032 62.4 −0.253 −0.249 1.6 −0.132 47.8

N −0.044 −0.041 6.8 −0.033 25.0 −0.091 −0.084 7.6 −0.056 38.5

U −0.089 −0.084 5.6 −0.059 33.7 −0.239 −0.205 14.2 −0.150 37.2

KNDY

E −0.024 −0.019 20.8 −0.018 25.0 −0.042 −0.037 11.9 −0.034 19.0

N −0.022 −0.013 40.9 −0.012 45.4 −0.042 -0.036 14.3 −0.028 33.3

U 0.259 0.225 13.1 0.222 14.3 0.178 0.175 1.6 0.171 3.9

BJF1

E −0.049 −0.048 2.0 −0.047 4.1 −0.045 −0.045 0.0 −0.042 6.6

N −0.031 −0.029 6.5 −0.028 9.6 −0.038 −0.036 5.2 −0.036 5.3

U 0.058 0.051 12.1 0.043 25.9 0.033 −0.033 0.0 0.032 3.0

XIA1

E −0.043 −0.039 9.3 −0.036 16.3 −0.041 −0.039 4.9 −0.038 7.3

N −0.029 −0.026 10.3 −0.024 17.2 −0.045 −0.044 2.2 −0.042 6.6

U 0.580 0.577 0.5 0.573 1.2 0.886 0.885 0.1 0.884 0.2
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and U directions are at least 13.9%, 60.0%, and 45.9%,
respectively, and 19.1%, 46.5%, and 23.9%, respectively, for
B1I + B3I and B1C + B2a, respectively. It is suggested that
the one-step strategy with the prior information for model-
ing the BDS-3 multipath has better real-time application
than the traditional method (none). It should be noted that
the convergence time is also an important indicator for the
PPP performances. In experiments, the convergence time
and position residuals are simultaneously considered. How-
ever, it is suggested that there is an average improvement
within 2% for E and N directions based on the proposed
method, which cannot be as a significant improvement in
experiments. However, it is difficult to count the conver-
gence time of the U direction as a systematic error found.

Therefore, the convergence time of the PPP solution is
ignored in experiments.

More BDS-3 observations collected by GNSS receivers
are used to test the proposed strategy of mitigating the
BDS-3 multipath delay. Furthermore, the results of the SPP
experiment are verified using a set of real observations, the
trajectory of which is shown in Figure 11. In consideration
of the decoding ability of GNSS receivers, the code observa-
tions of B1C are analyzed with an interval of 0.2 s, where B1I
and B3I are used to model the code multipath delays. In
experiments, three test scenarios are conducted with the
same observations, strategies, and parameter estimations.
However, the BDS-3 code multipath delays are modeled
and corrected with the proposed method (one-step),

Table 5: Average daily RMS values (m) of position residuals (B1C, B2a) for four stations obtained using three BDS-3 observation multipath
delay processing strategies and the corresponding improvements.

Stations Directions
B1C B2a

None Two-step Imp. (%) One-step Imp. (%) None Two-step Imp. (%) One-step Imp. (%)

WUH2

E −0.058 −0.050 13.8 −0.045 22.4 −0.029 −0.025 13.8 −0.025 13.8

N −0.038 −0.034 10.5 0.032 15.8 0.082 0.052 36.6 0.050 39.0

U −0.249 −0.228 8.4 −0.222 10.8 −0.271 −0.240 11.4 −0.222 18.1

KNDY

E −0.050 0.018 64.0 0.009 82.0 −0.115 −0.080 30.4 −0.035 69.6

N −0.030 −0.029 3.3 −0.017 43.3 −0.054 −0.052 3.7 −0.050 7.4

U −0.105 −0.105 0.0 −0.101 3.8 −0.240 −0.076 68.3 −0.059 75.4

BJF1

E −0.022 −0.022 0.0 −0.013 40.9 −0.055 −0.028 49.1 −0.027 50.9

N −0.028 −0.028 0.0 −0.024 14.3 −0.017 −0.0150 11.8 −0.050 70.6

U −0.320 −0.314 1.9 −0.282 11.9 −0.608 −0.592 2.6 −0.073 87.9

XIA1

E −0.032 −0.029 9.4 −0.028 12.5 −0.017 −0.016 5.9 −0.016 5.9

N −0.020 −0.016 20.0 −0.015 25.0 −0.024 −0.023 4.2 −0.022 8.3

U −0.075 −0.071 5.3 −0.069 8.0 −0.033 −0.021 36.4 −0.014 57.6
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Figure 9: Position residuals of BDS-3 double-frequency real-time PPP for B1I + B3I (BJF1).
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traditional method (two-step), and none considerations
(none) in the preprocessing of BDS-3 observations. In a
word, the changes of position residuals are caused by the dif-
ferent multipath mitigation method. The single-epoch solu-
tion of SPP in E and N directions is shown for three
strategies (none, one-step, and two-step) in Figure 12. In
analyzing the accuracy of SPP, the station positions of GPS
double-frequency kinematic PPP are taken as a reference.
SPP does not provide the desired result owing to the com-
plex kinematic environments around the stations. However,
the precision and stability can be improved easily by adopt-
ing the one-step and two-step strategies. Moreover, there are
no appreciable differences in results between the one-step
and two-step strategies as no prior information is used in
modeling BDS-3 multipath errors. Therefore, a more precise
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Figure 10: Position residuals of BDS-3 double-frequency real-time PPP for B1C + B2a (BJF1).

Table 6: Average daily RMS values (m) of position residuals for four stations and three multipath error modeling strategies and
corresponding improvements.

Stations Directions
B1I + B3I B1C + B2a

None Two-step Imp. (%) One-step Imp. (%) None Two-step Imp. (%) One-step Imp. (%)

BJF1

E −0.054 −0.040 25.9 −0.039 27.8 −0.056 −0.048 14.3 −0.041 26.8

N −0.040 −0.023 42.5 −0.016 60.0 −0.043 −0.032 25.6 −0.023 46.5

U −0.174 −0.157 9.8 −0.094 45.9 −0.156 −0.127 18.6 −0.092 41.0

KNDY

E −0.055 −0.055 0.0 −0.043 21.8 −0.047 −0.043 8.5 −0.038 19.1

N −0.040 −0.016 60.0 −0.013 67.5 −0.040 −0.025 37.5 −0.021 47.5

U −0.204 −0.093 54.4 −0.043 78.9 −0.161 −0.149 7.5 −0.103 36.0

WUH1

E −0.043 −0.043 0.0 −0.037 13.9 −0.039 −0.026 33.3 −0.026 33.3

N −0.035 −0.016 54.3 −0.013 62.9 −0.039 −0.022 43.6 −0.017 56.4

U −0.183 −0.100 45.4 −0.046 74.9 −0.154 −0.131 14.9 −0.092 40.3

XIA1

E −0.052 −0.014 73.1 −0.013 75.0 −0.051 −0.050 1.9 −0.034 33.3

N −0.054 −0.015 72.2 −0.013 75.9 −0.033 −0.028 15.2 −0.016 51.5

U −0.108 −0.058 46.3 −0.028 74.1 −0.142 −0.134 5.6 −0.108 23.9

Figure 11: Trajectory of the SPP experiment.
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and accurate strategy should be developed to outperform the
proposed one-step correction for multipath delays in real-
time applications. Figure 6 shows that the multiple paths
resulting from the kinematic environment cannot be pre-
cisely corrected for, whereas the systematic and trend terms
along the elevation angle can be reduced using our method.
Because of the complex environments, the improvements of
dynamic multipath mitigation for position residuals cannot
totally be ascribed to the proposed method as the significant
errors in different directions. In the next step, the dynamic
multipath mitigation will be paid more attention to improve
the applications of BDS-3 real-time services.

4. Discussion

The present study modeled and mitigated the multipath
delays of BDS-3 code observations adopting a new strategy,
namely, the one-step mitigation strategy, where three points
are optimized in contrast with the algorithm traditionally
used. First, to avoid the effects of noise and limited observa-
tions in modeling the multipath series, sparse modeling is
adopted using a combination of TV and EN terms. Second,
the multipath series of BDS-3 observations can be divided
into two parts, namely, random and systematic components.
Therefore, a one-step estimation strategy based on the LS
+ AR model was proposed. Third, in consideration of real-
time and near real-time high-precision applications, the
model coefficients of multipath series are estimated and
improved with the aid of a prior information.

To verify the proposed strategy, four groups of experi-
ments were conducted with one-month iGMAS and MGEX
observations. The model residuals suggest that sparse
modeling by adding TV and EN terms improves the accu-
racy of multipath series. Meanwhile, single-frequency PPP
and double-frequency PPP were tested for the proposed
one-step mitigation method. The accuracy in E, N, and U
directions was improved by at least 4.1%, 9.6%, and 1.2%,
respectively, for B1I; 6.6%, 5.3%, and 0.2%, respectively, for
B3I; 12.5%, 14.3%, and 3.8%, respectively, for B1C; and
5.9%, 7.4%, and 18.1%, respectively, for B2a relative to the
use of the traditional (AR) method in BDS-3 single-
frequency PPP. Moreover, there were improvements in E,
N, and U directions of at least 13.9%, 60.0%, 45.9%, respec-

tively, for B1I + B3I and 19.1%, 46.5% and 23.9%, respec-
tively, for B1C + B2a. Furthermore, the solution of SPP can
be optimized using the proposed method. The use of the
proposed method thus improves the accuracy of BDS-3 mul-
tipath mitigation and real-time application.

As discussed above, the multipath delays of BDS-3 code
observations affect the PPP solution, especially in single-
frequency applications. In general, continuously operating
reference stations and base stations can ignore the effects
of multipath delays by adopting a suitable cutoff elevation
angle. However, three problems relating to the raw observa-
tions remain: (1) iGMAS and MGEX code observations
suggest that there are multipath delays in different observa-
tions, with which values are lower than that of actual situ-
ations [20], (2) the multipath delays have systematic and
random components, which can be explained by code bias
[2] and the complex environments around stations [20],
and (3) the most destructive near-field multipath has a
frequency exceeding 1Hz, as verified by real-time SPP solu-
tions. In fact, widely used 30 s observations cannot avoid
the effects of the environment and the characteristics of sig-
nals. In improving the performance of BDS-3, we need to
analyze and mitigate the effects of multiple paths of code
observations, which are the result of complex factors, espe-
cially for the newly deployed BDS-3 satellites. Furthermore,
the method can be used in the application of low-cost
receivers [31].

Researches about mitigating GPS multipath delays from
day-to-day range measurements [32] involved the pseudo-
observation with an empirical sample variance, in which sys-
tems of errors are divided into two subsystems. Compared
with this research, improved algorithms and more analyses
are included in our study, in which differences can be sum-
marized as three points: (1) the new-generation BDS-3 satel-
lites and its multifrequency observations are fully discussed.
In fact, there are a lot of methods, strategies and algorithms
about the mitigation of GPS multipath delays, while the
BDS-3 should be carefully studied as its new services, espe-
cially for new observations, (2) the purpose of this research
mainly focuses on the real-time or near real-time applica-
tions, in which the sample mean and variance cannot be
used in estimation of multipath parameters. In addition,
the BDS-3 code multipath delays are divided into two parts,
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namely, systematic and random components, to model and
reduce the next-arc multipath delays, respectively, and (3)
the improved method is more easier to conduct and insert
into the preprocessing of PPP software. Moreover, the prior
information of unknown coefficients can optimize the esti-
mation models. In general, the new method is further
improved and simplified than that of traditional algorithms.

In summary, the main goal of the present study was the
mitigation of the multipath delay of BDS-3 code observa-
tions with the aid of sparse modeling and integrated estima-
tion. We first analyzed the characteristics of BDS-3
multipath delays, which were then modeled using regulari-
zation, EN, and TV terms and an integrated LS-combined
AR algorithm based on static station observations. Multipath
delay coefficients cannot be used for accurate corrections in
the real-time and near near-time applications of BDS-3. We
therefore proposed an improved method that takes the
estimated coefficients as prior information and feeds the
coefficients into the real-time correction of BDS-3 raw
observations. Because of the function between the multipath
delay and elevation, the next-arc raw observations can be
further improved with the real-time estimated coefficients
through the accumulation of short-arc observations. Simi-
larly, in dynamic observations, we can accumulate static
observations over a short period (of an hour or so) to calcu-
late multipath coefficients, while the prior values are set at
zero.

5. Conclusions

The BDS-3 system adopts new frequencies, new observa-
tions, and new technologies in providing global services,
and these need to be further discussed for high-precision
applications. The performance of the BDS-3 system is
important in the research field of GNSS navigation and
positioning while innovations and developments of the
BDS-3 system are important in further expanding high-
quality PNT services. In this paper, the mitigation model
of the BDS-3 multipath error was optimized for rapid
high-accuracy applications. The PPP solution cannot be
improved appreciably because the processing of the multi-
ple frequencies and errors of observations still refers to
BDS-2 [2]. In future work, we will consider ultrarapid
BDS-3 satellite products and bias parameters in optimizing
rapid BDS-3 services.
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Tropospheric delay is an important error affecting GNSS high-precision navigation and positioning, which will decrease the
precision of navigation and positioning if it is not well corrected. Actually, tropospheric delay, especially in the zenith direction,
is related to a series of meteorological parameters, such as temperature and pressure. To estimate the zenith tropospheric delay
(ZTD) as accurately as possible, the paper proposes a new fused model using the least squares support vector machines
(LSSVM) and the particle swarm optimization (PSO) to improve the precision and temporal resolution of meteorological
parameters in global pressure and temperature 2 wet (GPT2w). The proposed model uses the time series of meteorological
parameters from the GPT2w model as the initial value, and thus, the time series of the residuals can be obtained between the
meteorological parameters from meteorological sensors (MS) and the GPT2w model. The long time series of meteorological
parameters is the evident periodic signal. The GPT2w model describes its dominant frequency (harmonics), and the residuals
thus can be seen as the short-period signal (nonharmonics). The combined PSO and LSSVM model (PSO-LSSVM) is used to
predict the specific value of the short-period signal. The new GPT2w model, in which the meteorological parameter value is
obtained by combining the estimated meteorological parameters residuals and the GPT2w-derived meteorological parameters,
can be acquired. The GNSS network stations in Hong Kong throughout 2017-2018 are processed by the GNSS Processing and
Analysis Software (GPAS), which is developed by the Chinese Academy of Surveying & Mapping, to estimate the zenith
tropospheric delay and station coordinates using the new GPT2w model. Statistical results reveal that the accuracy of the new
GPT2w model-derived ZTD was improved by 60% or more compared with that of the GPT2w-derived ZTD. In addition, the
positioning accuracy of the GNSS station has been effectively improved up to 44.89%. Such results reveal that the new GPT2w
model can greatly reduce the influence of nonharmonic components (short-period terms) of the meteorological parameter time
series and achieve better accuracy than the GPT2w model.

1. Introduction

Tropospheric delay is an important error that affects the
positioning accuracy of the global navigation satellite system
(GNSS). However, it is also an important parameter to calcu-
late tropospheric delay for GNSS meteorology. Usually, the
value can reach tens of meters [1] for satellites with low alti-
tude so that this error should be carefully considered in the
GNSS positioning. Establishing an accurate and reliable
ZTD model becomes crucial and critical for GNSS research.

According to the relationships between ZTD and meteo-
rological parameters obtained from the ground, the com-

monly ZTD models are established including Hopfield
model [2], Saastamoinen model [3], Black model [4], and Ifa-
dis model [5]. The accuracy of these models is limited by the
input meteorological parameters and environments. When
meteorological parameters cannot be acquired accurately,
the accuracy of GNSS high-precision positioning will be
decreased. Additionally, when GNSS stations are not
equipped with the meteorological sensors, ZTD is not able
to be obtained by these models.

Thus, the ZTD empirical models are proposed that only
rely on the location and observation time without the need
of any auxiliary information. For example, the UNB3 model
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[6] stores the meteorological parameters in the form of a
table from the equator to poles at the intervals of 15 degrees.
IGGtrop model [7] is established by using four years of
National Centers for Environment Prediction (NCEP) data.
Yao used the Global Geodetic Observing System (GGOS)
Atmosphere data to establish the GZTD model [8] and
improved the GZTD2 model [9] by introducing diurnal var-
iations. Some other ZTD empirical models are also estab-
lished by considering other factors, such as IGGtrop_SH
and IGGtrop_RH models [10], the GZTDS model [11], the
SHAtropE model [12], the RGZTD model [13], and the
global pressure and temperature 2 wet (GPT2w) model
[14]. The GPT2wmodel that is the paper concerned can offer
precise ZTD products.

However, the ZTD empirical models are not applicable to
some regions limited by the spatiotemporal resolution. For-
tunately, the Continuously Operating Reference Station
(CORS), whose ZTD products have high accuracy and high
temporal resolution, provides an opportunity for establishing
new ZTD models with higher accuracy. This paper proposes
a new model combining the particle swarm optimization
algorithm with the least squares support vector machine
(PSO-LSSVM) model to improve the GPT2w model. First,
the GPT2w is used to calculate meteorological parameters
that as the initial value. Second, the time series of meteoro-
logical parameters residuals can be obtained as the difference
between meteorological parameters frommeteorological sen-
sors (MS-derived) and GPT2w-derived meteorological
parameters over GNSS stations. Third, the PSO-LSSVM
model is used to predict meteorological parameters residuals.
So the meteorological parameter value can be acquired by
combining the estimated meteorological parameters and
GNSS-derived meteorological parameters. Finally, the zenith
tropospheric delay (ZTD), zenith hydrostatic delay (ZHD),
and station coordinates can be obtained by GNSS Processing
and Analysis Software (GPAS) using the meteorological
parameters, which is developed by the Chinese Academy of
Surveying & Mapping.

2. Metholodogy

2.1. The GPT2w Model. The Global Pressure and Tempera-
ture (GPT) series model is an empirical model to provide
the global temperature and pressure at any GNSS station in
the world. These models include GPT [15], GPT2 [16], and
GPT2w [14]. GPT2w, a very comprehensive tropospheric
model, can be used for a range of geodetic, meteorological,
and climatic purpose without auxiliary information. It pro-
vides the annual and semiannual amplitudes of a set of mete-
orological parameters that include pressure (P) in hpa,
weighted mean temperature (Tm) in K, water vapor pressure
(e) in hpa, and water vapor lapse rate (λ). These parameters
are originated from the European Center for Medium-
Range Weather For Medium-Range Weather Forecasts
(ECMWF ERA-Interim) reanalysis data with a global
horizontal resolution of 1° × 1° geographical grid from 2001
to 2010. The GPT2w model, as an empirical model, only
needs to input the ellipsoidal coordinates (latitude, longitude,
and height) of GNSS stations and the consistent modified

Julian date. The meteorological parameters are calculated
by equation (1).

r tð Þ = A0 + A1 cos
doy

365:25
2π

� �
+ B1 sin

doy
365:25

2π
� �

+ A2 cos
doy

365:25
4π

� �
+ B2 sin

doy
365:25

4π
� �

ð1Þ

In equation (1), rðtÞ is the estimated meteorological
parameters. A0 denotes the mean value as well as A1,B1
and A2,B2 are annual and semiannual amplitudes, which
can be downloaded from https://vmf.geo.tuwien.ac.at/
codes/gpt2_1w.grd. doy denotes the day of the year. So the
needed meteorological quantities at the four nearest grid
points can be acquired. Then, the estimated meteorological
parameters of a site can be calculated by the bilinear interpo-
lation algorithm. The ZTD values are calculated [17] as
equations (2)–(4).

ZHD =
0:0022768 × P

1 − 0:00266 × cos 2φð Þ − 0:00028 ×H
, ð2Þ

ZWD = 10−6 k2′ +
k3
Tm

� �
Rd

λ + 1ð Þgm
e, ð3Þ

ZTD = ZHD + ZWD: ð4Þ
In equations (2)–(4), ZHD and ZWD denote, respec-

tively, the zenith hypostatic delay and zenith wet delay, φ
is the latitude of station, H is the geoid height of the sta-
tion, and P is the surface pressure. Rd is the dry air ratio
gas constant with a value of 287:0464JK−1kg−11, k2′ and k3
are the atmospheric refractive index formula constants with
values of 16:52K/hpa and 3:776 × 105K2/hpa, respectively;
gm is the mean gravity acceleration with a value of
9:80665m/s2 at the mass center of the vertical column of
the atmosphere.

2.2. The Least Squares Support Vector Machine. Support vec-
tor machine (SVM) is a machine learning method with a per-
fect theoretical system, which is different from general
statistical methods. It avoids the process from induction
to deduction and thus realizes the inference and estimation
from training samples to forecast samples and obtains the
simplification of regression analysis and other problems
[18]. The Least Squares Support Vector Machine (LSSVM)
inherits the basic idea of SVM and uses the quadratic
square loss function instead of the classical SVM quadratic
programming method. The LSSVM model converts the
optimization problem to the linear equation problem,
reducing the complexity of the algorithm [19]. Therefore,
the LSSVM model can solve the problem of inequality con-
strains and improve the speed and accuracy in solving the
linear equation problem simultaneously [20]. Additionally,
the random error and overtraining can be avoided in this
model [21].
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The LSSVM can be explained as follows: for the training
sample D = fðxk,ykÞ ∣ k = 1, 2,⋯,Ng, where xk ∈ Rm is the
input data and yk ∈ R is the output data. The linear regression
function can be introduced to establish relationship between
xk and yk as equation (5).

f xð Þ =wTφ xð Þ + b ð5Þ

In equation (5), w is the weight vector of the hyperplane,
b is the bias constant, and φðxÞ is the linear mapping function
which can make the input vector be mapped to a high-
dimensional feature space so that the original linearly insep-
arable samples can be separated in the kernel space. Then, the
regression problem is converted into a quadratic optimiza-
tion problem whose objective function and constraints are
as equations (6) and (7).

min
w,b,e

J w, eð Þ = 1
2
wTw +

1
2
γ〠

N

k=1
e2k ð6Þ

yk =wTφ xð Þ + b + ek, k = 1,⋯,N ð7Þ
In equations (6) and (7), J is loss function, γ is the regu-

larization parameter, and e is slack variable.
The equation (6) is convex function which belongs to the

quadratic programming problems. To solve the optimization
problem, the equation (8) is introduced.

L w, b, e, að Þ = J w, eð Þ − 〠
N

k=1
ak wTφ xkð Þ + b + ek − yk
� � ð8Þ

In equation (8), the ak is the Lagrange multiplier of the
model.
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Figure 1: The parametrization workflow of PSO-LSSVM.
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Let ∂L/∂w = 0,∂L/∂b = 0,∂L/∂ek = 0,∂L/∂ak = 0, then the
equations (9)–(13) can be acquired.

0 ET
v

ET
v Ω +

1
γ
I

2
64

3
75 b

a

" #
=

0

y

" #
, ð9Þ

Ev = 1 ⋯ 1½ �T , ð10Þ

a = a1 ⋯ aN½ �T , ð11Þ

Ω = φ xkð ÞTφ xlð Þ, k, l = 1,⋯,N , ð12Þ

y = y1 ⋯ yN½ �T : ð13Þ

In equation (9), I is the identity matrix and the kernel
function is Ω:a and b can be calculated by the least square
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Figure 4: Time series of pressure fromMS andGPT2w at stations. (a) HKOH. (c) HKKT. (e) HKPC. (g) HKSC. (i) HKSS. (k) HKST. Time series
of temperature from MS and GPT2w at stations. (b) HKOH. (d) HKKT. (f) HKPC. (h) HKSC. (j) HKSS. (l) HKST. Throughout 2017-2018.
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model. Thus, the regression estimation function of the
LSSVM is equation (14).

y xð Þ = 〠
N

k=1
akk x, xkð Þ + b: ð14Þ

In equation (14), the constructed support vector
machine varies with the kernel function. Since the radial
basis kernel function (RBF) corresponds to an infinite
dimensional feature space, the limited samples are linearly
separable in the feature space, and it has better computa-
tional performance. Therefore, the RBF kernel function is
chosen as equation (15).

k xk, xlð Þ = exp
− xk − xlk k

2σ2

� �
: ð15Þ

In equation (15), xk and xl are the input data and σ is the
shape parameter of the RBF kernel function.

2.3. Fusion of Particle Swarm Optimization and LSSVM.
There are two important parameters (σ and γ) determined
difficultly for the LSSVMmodel, which decrease the accuracy
of the LSSVMmodel if they are not well treated. Actually, it is
usually tried or determined by experience, which may not be
effective. The Particle Swarm Optimization (PSO) originally
originated from the foraging behavior of bird flocks [22]. It
simulates the mutual learning behavior between individuals

through the shared information in the biological group and
finds the optimal solution in its solution space [23]. The
PSO can determine the optimal parameters through individ-
ual and global particle optimization, which is practicable for
the LSSVM parameter determination.

For the optimization problem of the PSO, the solution
can be regarded as a bird in the search space, which has its
own initial velocity, position, and fitness to a certain position.
Finding the optimal solution is to find the position where the
particle has the best fitness value from the starting position to
the current position. The update formulas for the velocity
and position of each particle in the particle swarm are as
equations (16) and (17).

vi t + 1ð Þ =wvi tð Þ + c1R1 Rb
i tð Þ − xi tð Þ

h i
+ c2R2 Rb

g tð Þ − xi tð Þ
h i

,

ð16Þ

xi t + 1ð Þ = xi tð Þ + φvi t + 1ð Þ: ð17Þ
In equations (16) and (17), t is the defined number of iter-

ations, and viðtÞ is the speed of the ith particle in the particle
swarm at the tth iteration; xiðtÞ is the location of the ith parti-
cle in the particle swarm at the tth iteration; c1 and c2 are the
positive learning coefficients and influence partial search capa-
bility and global search capability, respectively; R1 and R2 are
two uniformly distributed random numbers that ensure the
particles move to their optimal position and the optimal posi-
tion of the group in the form of equational probability;w is the
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Figure 5: Time series of (a) pressure and (b) temperature residuals between MS and GPT2w at HKOH.
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ability of a particle to maintain the state of motion at the
previous moment that can achieve a balance between global
search and partial search of particles. Rb

i ðtÞ is the optimal loca-

tion of the individuals; Rb
gðtÞ is the global optimal location of

the community. φ is the shrink silver that keeps the particle
speed in a certain range to ensure convergence.
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Figure 7: Time series of (a) pressure and (b) temperature residuals of the observed and proposed model prediction at HKOH.
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To demonstrate the advantage of the LSSVM and the
PSO clearly, the optimization process is shown in Figure 1.
The steps are as follows:

Step 1. Initialize the particle swarm and the parameters of the
LSSVM.

Step 2. Calculate the fitness of each particle. The fitness of the
current particle is compared with the fitness of the individ-
ual’s optimal position and the historical optimal position. If
the fitness of the current particle is optimal, the position is
replaced; otherwise, the original optimal position is
maintained.
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Figure 8: Time series of ZHD of the GPT2w, MS and PSO-LSSVM at stations. (a) HKKT. (b) HKOH. (c) HKPC. (d) HKSC. (e) HKSS. (f)
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Step 3.Update the position and velocity of the particles by the
maximum number of evolutions.

Step 4. Judgment of termination conditions. When the error
requirements or the maximum number of evolutions are
met, the process will end. Otherwise, the process will repeat
Step 2 to continue until reach the requirements.

2.4. GNSS Station Solution Based on PSO-LSSVMModel. The
GNSS Processing and Analysis Software (GPAS) is developed
by Chinese Academy of Surveying & Mapping to obtain the
zenith tropospheric delay (ZTD), zenith hydrostatic delay
(ZHD), and station coordinates. The process of GPAS is
shown in Figure 2. To clarify the tropospheric delay with
the proposed PSO-LSSVM method, tropospheric delay is
given before the least squares. Firstly, it is necessary to initial-
ize GNSS orbit and determine GNSS clock including
preparation of earth rotation parameters and ephemeris, cal-
culating GNSS clock by broadcast ephemeris and checking
the ephemeris. Secondly, GNSS observation data is prepro-
cessed including conversion of data format, detecting cycle
slip and marking resolution. At the same time, some errors
are corrected including tropospheric delay, where GPT2w
model and PSO-LSSVM model are contrastively analyzed.
Then, the traditional GNSS data processing is implemented
to get the station coordinates, such as the least squares
estimation, residual edit, and ambiguity resolution.

3. Experiment Description

The Hong Kong Survey and Mapping Office (SMO) of the
Lands Department builds a local satellite positioning reference
station network (SatRef). It consists eighteen CORSs and six of
them are chosen considering the continuity and completeness
of observation data, which is shown in Figure 3. The paper
adopts the meteorological observations from January 1,
2017, to December 31, 2018, with a temporal resolution of 1
hour and the GNSS observations’ sampling rate is 30 s.

The ground weather stations obtain the temperature, air
pressure, relative humidity, and other meteorological param-
eters at the site through meteorological sensors (MS). The air

pressure detection accuracy can reach 0:5 hpa, and the air
temperature detection accuracy is high. Therefore, the mete-
orological sensors are regarded as a criterion for selected
GNSS stations. Since the temporal resolution of the GPT2w
model is one day, the GPT2w-derived meteorological param-
eter for each hour is replaced the calculation value of GPT2w
model. Then long-term meteorological parameters residuals
between GPT2w-derived and MS-derived can be obtained.
The residual data from January 1, 2017, to November 30,
2017, is used to train the PSO-LSSVM model; the residual
data from December 2017 is used to test whether the model
has overfitting Phenomenon; the residual data for the whole
year of 2018 is used as the validation set. Then, the paper
adds the fitted residual data and the GPT2w model value of
the corresponding time period to obtain the improved mete-
orological parameters, and analyzes the root mean square
error (RMS) as the evaluation index as equation (18).

RMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 Yi − Yi
i

� �2
n

:

s
ð18Þ

In equation (18), Yi is the improved meteorological para-
meters;Yi

i is the MS-derived parameters; n is the time of
prediction.

4. Analysis and Discussion of Experiment

The time series of pressure and temperature residuals
between GPT2w and MS at stations (HKOH, HKKT, HKPC,
HKSC, HKSS, and HKST) are given in Figure 4. The MS-
derived meteorological parameters in the unit of day are
obtained by taking the average of meteorological parameters
a day. It can be seen from Figure 4 that the time series of
meteorological parameters such as atmospheric pressure
and temperature consists two parts: harmonic and nonhar-
monic. The harmonic part reflects its long-period character-
istics, and the nonharmonic part reflects its short-period
characteristics. The GPT2w model fits the harmonic part of
the meteorological parameter time series well and reflects
its long-period characteristics. However, for its nonharmonic

2300

2280

2260

2240

2220

2200

ZH
D

 (m
m

)

0 40002000 6000
Hour (h)

8000 10000

GPT2W ZHD
MS ZHD
PSO-LSSVM ZHD

ZH
D

 (m
m

)

2230

2235

2240

2245

2250

0 100 200 300 400 500
Hour (h)

Figure 9: Time series of ZHD of the GPT2w, MS, and PSO-LSSVM at station HKOH in 2018 (left) and Time series of ZHD of the GPT2w,
MS, and PSO-LSSVM at station HKOH throughout August 10, 2018-August 27, 2018 (right).

10 Journal of Sensors



−20 0
0

0.005

0.01

0.015

0.02

0.025

0.03

Fr
eq

ue
nc

y 
de

ns
ity

20 40 60

(a)

−5
0

0 5 10

0.2

0.1

0.3

0.4

Fr
eq

ue
nc

y 
de

ns
ity

(b)

−20 0
0

0.01

0.005

0.015

0.02

0.025

Fr
eq

ue
nc

y 
de

ns
ity

20 40 60

(c)

−20
0

−10 0 10

0.05

0.1

0.15

Fr
eq

ue
nc

y 
de

ns
ity

(d)

−20 0
0

0.005

0.01

0.015

0.02

0.025

0.03

Fr
eq

ue
nc

y 
de

ns
ity

20 40 60

(e)

−5
0

0 5 10

0.2

0.1

0.3

0.4

Fr
eq

ue
nc

y 
de

ns
ity

(f)

Figure 10: Continued.
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part, there is still some residual errors affecting the accuracy
to a certain extent. If those errors can be reduced, it will be
meaningful for the improvement of accuracy.

Taking the HKOH as example, Figure 5 presents the
short-period (nonharmonic) part of the meteorological
parameters. The results of other stations are similar.

In Figure 5, there is the phenomena of nonlinearity, non-
stationarity, and noise in the time series of residuals. This
means that it is difficult to establish the relationship between
the time series in the past and in the future. The PSO-LSSVM
model is used to solve this problem.
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Figure 10: Frequency histogram of the ZTD difference using the GPT2w model at selected stations. (a) HKKT. (c) HKOH. (e) HKPC. (g)
HKSC. (i) HKSS. (k) HKST. Frequency histogram of the ZTD difference using the PSO-LSSVM model at selected stations. (b) HKKT. (d)
HKOH. (f) HKPC. (h) HKSC. (j) HKSS. (l) HKST.

Table 1: Comparison of ZTD between GPT2w and PSO-LSSVM at
selected stations.

GNSS
stations

GPT2w-ZTD
RMS (mm)

PSO-LSSVM-ZTD
RMS (mm)

Percentage of
improvement

HKKT 1.4514 0.4989 65.62%

HKOH 1.3078 0.3231 75.29%

HKPC 1.4006 0.3320 76.29%

HKSC 1.3983 0.3141 77.54%

HKSS 1.3845 0.3014 78.23%

HKST 1.3074 0.3036 76.78%
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The LSSVM is a nonparametric model, which means that
it does not require any prior information about the underly-
ing data. Thus, this paper uses the past 24 hours of historical
meteorological parameters residuals (nonharmonic part) to
train the model. To determine the appropriate forecast range,
the meteorological parameters residuals of the next 1 h, 2 h,
4 h, 6 h, 8 h, 10 h, and 12 h are, respectively, predicted. The
RMS values of the model meteorological parameters and
the measured meteorological parameters are calculated to
evaluate the performance of different prediction models. It
can also be seen from Figure 6 that with the increase of the
prediction range, the RMS value also increases. So the predic-
tion range is 1 h.

Figure 7 is the time series of the model prediction and the
observed value (nonharmonic component). The RMS of the
pressure residuals and temperature residuals are, respec-
tively, 0.8536 hpa and 0.5609°C, which have high accuracy.

Thus, the predicted meteorological parameters are
obtained by adding the predicted nonharmonic components
and the harmonic components estimated by the GPT2w
model and then the GPAS software is used to output ZHD
and ZTD.

It can be seen from Figure 8 that the predicted results of
the PSO-LSSVM model are usually consistent with the MS.
The ZHD output by the meteorological parameters from
the PSO-LSSVM are in good agreement with the MS. This
is because the good performance of the GPT2w empirical
model itself, which better fits the harmonic components of
the meteorological parameter time series, provides a solid
foundation for further prediction of nonharmonic compo-
nents. At the same time, the nonlinear factors of the time
series are not ignored, and the nonlinear relationship can
be found by the RBF kernel function of the LSSVM.

The paper selects the data from August 10th, 2018, to
August 27th, 2018, when the weather of Hong Kong was
rainy continuously to validate the proposed model. The right
picture in Figure 9 is the time series of ZHD from the
GPT2w, MS, and PSO-LSSVM model from August 10th,
2018, to August 27th, 2018, at station HKOH. It can be seen
from the right picture that the PSO-LSSVM ZHD are in good
agreement with theMS ZHD. However, the GPT2w ZHD has
a large bias with the MS ZHD. This verifies the new proposed
model has a better performance than GPT2w model. The
results of other stations are similar.

The left pictures of Figure 10 are the frequency histo-
grams of the difference between the GPT2w-derived ZTD

and the MS-derived ZTD, and the right are the difference
between the ZTD output by the PSO-LSSVM model and
MS-derived ZTD. In Figure 10, the frequency histograms of
the right pictures are thinner than the left pictures which
demonstrate the standard deviations of the right pictures
are smaller. According to the properties of Gaussian func-
tion, the smaller the standard deviation is, the more stable
the distribution will be. Thus, the LSSVM has a certain learn-
ing ability for Gaussian white noise in the time series of ZTD.

It can be seen from Table 1 that the improved meteoro-
logical parameter model proposed in this paper shows better
performance than the GPT2w model. The accuracy of the
ZTD value has been effectively improved. Especially, the pro-
posed model achieves RMS of 0.4989mm, 0.3231mm,
0.3320mm, 0.3141mm, 0.3014mm, and 0.3036mm at sta-
tions of HKKT, HKOH, HKPC, HKSC, HKSS, and HKST,
respectively, which has approximately 65.62%, 75.29%,
76.29%, 77.54%, 78.23%, and 76.78% improvements over
them, respectively.

Finally, the proposed model is applied to the GPAS and
compared with the GPT2wmodel. From Table 2, it is obvious
that the proposed model also reaches improvements of more
than 30% over stations of HKKT, HKOH, HKPC, and HKSC
though the improvements are not evident over HKSS and
HKST. Above all, for each station, the positioning accuracy
has also been improved. The improvement verifies the uni-
versality and effectiveness of the model proposed in this
paper for the research GNSS stations.

5. Conclusions

To improve the accuracy of estimating ZTD, the new meteo-
rological parameters model based on GPT2w model and
PSO-LSSVM model is proposed. Based on the advantages
of MS-derived meteorological parameters and GPT2w
model, the time series of meteorological parameters is
divided into two categories: harmonic and nonharmonic.
Then, the PSO-LSSVMmodel is used to estimate the nonhar-
monic and GPT2w is applied to fit the harmonic. Then, the
improved meteorological parameters are obtained. Finally,
these parameters are input into GPAS which can process
GNSS data; the ZTD and coordinates of stations are obtained
accordingly. The results show that the proposed model has
higher temporal resolution and higher accuracy than GPT2w
model. Also, the proposed model is robust even though the
weather is rainy.

Table 2: Comparison of coordinate accuracy between GPT2w and PSO-LSSVM at selected stations.

GNSS stations
GPT2w-coordinate RMS (mm)

PSO-LSSVM-coordinate RMS
(mm)

Percentage of improvement

X Y Z X Y Z X Y Z

HKKT 0.4366 0.7504 0.3188 0.2936 0.4117 0.1757 32.75% 45.14% 44.89%

HKOH 0.3499 0.5935 0.2735 0.2324 0.3495 0.1483 33.58% 41.11% 45.78%

HKPC 0.2678 0.5316 0.2585 0.2216 0.3654 0.1555 17.25% 31.26% 39.85%

HKSC 0.4832 0.5391 0.2514 0.2975 0.3768 0.1425 38.43% 30.11% 43.32%

HKSS 0.2610 0.5217 0.2543 0.2439 0.3792 0.1917 6.55% 27.31% 24.62%

HKST 0.2766 0.5170 0.2462 0.2569 0.4627 0.2189 7.12% 10.50% 11.09%
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The future work will focus on the following aspects. First,
the past 24 h of historical meteorological parameter residuals
(nonharmonic part) are used to train the PSO-LSSVM
model. A shorter time should also be considered, such as
12 h. Second, the estimation and forecasting of meteorologi-
cal parameters are a complicated process. This paper only
considers the correlation of its one-dimensional time series.
In the following work, more relevant variables can be consid-
ered to improve the accuracy of model.

Data Availability

The codes of GPT2w model can be downloaded at https://
vmf.geo.tuwien.ac.at/codes/. The GNSS observation and
meteorological data of Hong Kong can be obtained from
https://www.geodetic.gov.hk/en/satref/satref.htm.
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