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C. Bérenguer, France
Jonathan N. Blakely, USA
Stefano Boccaletti, Spain
Stephane P.A. Bordas, USA
Daniela Boso, Italy
M. Boutayeb, France
Michael J. Brennan, UK
Salvatore Caddemi, Italy
Piermarco Cannarsa, Italy
Jose E. Capilla, Spain
Carlo Cattani, Italy
Marcelo M. Cavalcanti, Brazil
Diego J. Celentano, Chile
Mohammed Chadli, France
Arindam Chakraborty, USA
Yong-Kui Chang, China
Michael J. Chappell, UK
Kui Fu Chen, China
Xinkai Chen, Japan
Kue-Hong Chen, Taiwan
Jyh-Horng Chou, Taiwan
Slim Choura, Tunisia
Cesar Cruz-Hernandez, Mexico
Swagatam Das, India
Filippo de Monte, Italy
Antonio Desimone, Italy
Yannis Dimakopoulos, Greece
Baocang Ding, China
Joao B. R. Do Val, Brazil
Daoyi Dong, Australia
B. Dubey, India
Horst Ecker, Austria
M. Onder Efe, Turkey

Elmetwally Elabbasy, Egypt
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Paulo B. Gonçalves, Brazil
Oded Gottlieb, Israel
Fabrizio Greco, Italy
Quang Phuc Ha, Australia
M. R. Hajj, USA
Tony S. W. Hann, Taiwan
Thomas Hanne, Switzerland
K. R. (Stevanovic) Hedrih, Serbia
M.I. Herreros, Spain
Wei-Chiang Hong, Taiwan
Jaromir Horacek, Czech Republic
Huabing Huang, China
Chuangxia Huang, China
Gordon Huang, Canada
Yi Feng Hung, Taiwan
Hai-Feng Huo, China
Asier Ibeas, Spain
Anuar Ishak, Malaysia
Reza Jazar, Australia
Zhijian Ji, China
Jun Jiang, China
J. J. Judice, Portugal
Tadeusz Kaczorek, Poland
Tamas Kalmar-Nagy, USA
Tomasz Kapitaniak, Poland
Hamid Reza Karimi, Norway
Metin O. Kaya, Turkey
Nikolaos Kazantzis, USA
Farzad Khani, Iran
K. Krabbenhoft, Australia

Ren-Jieh Kuo, Taiwan
Jurgen Kurths, Germany
Claude Lamarque, France
Usik Lee, Korea
Marek Lefik, Poland
Stefano Lenci, Italy
Roman Lewandowski, Poland
Shanling Li, Canada
Ming Li, China
Jian Li, China
Shihua Li, China
Teh-Lu Liao, Taiwan
Panos Liatsis, UK
Shueei M. Lin, Taiwan
Yi-Kuei Lin, Taiwan
Jui-Sheng Lin, Taiwan
Yuji Liu, China
Wanquan Liu, Australia
Bin Liu, Australia
Paolo Lonetti, Italy
V. C. Loukopoulos, Greece
Junguo Lu, China
Chien-Yu Lu, Taiwan
Alexei Mailybaev, Brazil
Manoranjan K. Maiti, India
O. D. Makinde, South Africa
R. Martinez-Guerra, Mexico
Driss Mehdi, France
Roderick Melnik, Canada
Xinzhu Meng, China
Yuri V. Mikhlin, Ukraine
G. Milovanovic, Serbia
Ebrahim Momoniat, South Africa
Trung NguyenThoi, Vietnam
Hung Nguyen-Xuan, Vietnam
Ben T. Nohara, Japan
Sotiris K. Ntouyas, Greece
Gerard Olivar, Colombia
Claudio Padra, Argentina
Bijaya Ketan Panigrahi, India
Francesco Pellicano, Italy
Matjaz Perc, Slovenia
Vu Ngoc Phat, Vietnam
M. do Rosário Pinho, Portugal
A. Pogromsky, The Netherlands



Seppo Pohjolainen, Finland
Stanislav Potapenko, Canada
Sergio Preidikman, USA
Carsten Proppe, Germany
Hector Puebla, Mexico
Justo Puerto, Spain
Dane Quinn, USA
K. R. Rajagopal, USA
Gianluca Ranzi, Australia
Sivaguru Ravindran, USA
G. Rega, Italy
Pedro Ribeiro, Portugal
J. Rodellar, Spain
R. Rodriguez-Lopez, Spain
A. J. Rodriguez-Luis, Spain
Ignacio Romero, Spain
Hamid Ronagh, Australia
Carla Roque, Portugal
Rubén R. Garćıa, Spain
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A system is said to have a delay when the rate of variation
in the system state depends on past states. Such a system is
called a time-delay system. Over the past several decades,
there has been extensive concern in time-delay systems in
the field of control theory and engineering. On one hand,
time delays are inherent in various engineering systems such
as long transmission lines in pneumatic systems, networked
control systems, nuclear reactors, rolling mills, hydraulic
systems, and manufacturing. On the other hand, it has been
recognized that time delay is often a source of generation of
oscillation, instability, or poor control performance of under-
lying control systems.Therefore, for time-delay systems, there
are many challenging issues, for example, stability analy-
sis, stabilization, 𝐻

∞
control, robust performance analysis,

model identification problem, and antidisturbance control,
that need to be solved.

This special issue contains twenty-one papers, of which
seven are related to stability analysis and stabilization of
different time-delay systems and four concern networked
control systems with time-delay. Six papers discuss antidis-
turbance problem and 𝐻-infinite robust control for various
time-delay systems. There is also a single paper focusing on
collaboration control for multiagent systems with sampling
delay. Another paper deals with online identification of
multivariable discrete time-delay systems. Finally, two papers
cover the switched models with state delays.

“Stability and 𝐿
1
gain analysis for positive 2D systems with

state delays in the Roesser model” by Z. Duan et al. concerns

the state-delay term described by the Roesser model and
shows the sufficient conditions of delay-dependent stability
for positive 2D systems. “New exponential stability conditions
of switched BAM neural networks with delays” by Y. Yang
constructs a new switching dependent Lyapunov-Krasovskii
function and solves the exponential stability problem for
a class of discrete-time switched BAM neural networks
with time delay, while “Stability analysis for delayed neural
networks: reciprocally convex approach” by H. Yu et al. inves-
tigates the global stability problem for a class of continuous
neural networks with time-varying delay by using recip-
rocally convex combination approaches. “Stability analysis
of a harvested prey-predator model with stage structure and
maturation delay” by C. Liu et al. proposes a harvested
prey-predator model to investigate the effects of density
dependent maturation delay and discusses the global stability
of positive equilibrium by utilizing an iterative technique. “𝑃-
moment stability of stochastic differential delay systems with
impulsive jump and Markovian switching” by L. Gao gives a
novel P-moment stability criteria for stochastic differential
delay systems. “A simplified descriptor system approach to
delay-dependent stability and robust performance analysis
for discrete-time systems with time delays” by F. Xu and
D. Li reduces the conservatism of the existing results of
time-delay discrete-time systems by removing the redundant
matrix variables. “Directly solving special second order delay
differential equations using Runge-Kutta-Nyström method” by
M. Mechee et al. studies a novel stability analysis method for
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the second order delay differential equations based on the
designed Runge-Kutta-Nyström algorithm.

“Robust fault tolerant control for a class of time-delay
systems with multiple disturbances” by S. Cao and J. Qiao
addresses a robust fault tolerant control approach for a class of
nonlinear systems with time-delay, actuator faults, andmulti-
ple disturbances using a composite strategy consisting of dis-
turbance observer-based control and fault accommodation.
“Enhanced disturbance-observer-based control for a class of
time-delay system with uncertain sinusoidal disturbances” by
X. Wen provides a thorough study on disturbance-observer-
based control (DOBC) for a class of time-delay systems under
uncertain sinusoidal disturbances. “Composite disturbance
observer-based control and 𝐻

∞
output tracking control for

discrete-time switched systems with time-varying delay” by H.
Sun and L. Hou concerns the problem of𝐻

∞
output tracking

control for discrete-time switched systems with time-varying
delay and external disturbances. Furthermore, “Robust 𝐻

∞

control of uncertain T-S fuzzy time-delay system: a delay
decomposition approach” by C. Gong and C. Han concerns
with the problem of robust𝐻

∞
control of a class of uncertain

time-delay fuzzy systems by utilizing the instrumental idea
of delay decomposition. “A novel approach to 𝐻

∞
control

design for linear neutral time-delay systems” by H. Xia et
al. explores some delay-dependent sufficient conditions of
linear time-varying neutral systems by designing the state
feedback controller with𝐻

∞
performance level. “𝐻

∞
control

for flexible spacecraft with time-varying input delay” by R.
Zhang et al. provides an effective 𝐻

∞
control algorithm for

flexible spacecraft with time-varying control input delay and
obtains a more flexible result.

“Performance of networked control systems” by Y. Zhang
et al. designs an optimal controller for the new NCSs with
data packets dropout andminimizes the infinite performance
index at each sampling time. “Control for networked control
systems with time delays and packet dropouts” by Y. Wang et
al. explores the mean square exponential 𝐻

∞
performance

for NCSs with random delay and packet dropout. “Improving
the performance metric of wireless sensor networks with
clustering Markov chain model and multilevel fusion” by S.
Havedanloo andH. R. Karimi proposes a performancemetric
evaluation of a distributed detection wireless sensor network
with respect to IEEE 802.15.4 standard and improves the
performance of network in terms of reliability, packet failure,
average delay, and power consumption. “Robust filtering for
networked stochastic systems subject to sensor nonlinearity” by
G. Wu et al. considers the effects of the sensor saturation,
output quantization, and network-induced delay in the net-
work environment and models the random delays as a linear
function of the stochastic variable described by a Bernoulli
random binary distribution.

“Collaboration control of fractional-order multiagent sys-
tems with sampling delay” by H.-Y. et al. Yang investigates
the novel collaboration control problems of continuous-time
networked fractional-order multiagent systems via sampled
control and sampling delay andmany sufficient conditions for
reaching consensus with sampled data, and sampling delay
can be obtained. “Online identification of multivariable dis-
crete time delay systems using a cursive least square algorithm”

by S. Bedoui identifies the time delays and the parameters of
linear discrete-time delay multivariable systems by using the
least square approach. Moreover, “Robust reliable control of
uncertain discrete impulsive switched systemswith state delays”
by X. Li et al. presents the problem of robust reliable control
for a class of uncertain discrete impulsive switched systems
with state delays and actuator failures. “Sliding mode control
based on observer for a class of state-delayed switched systems
with uncertain perturbation” by Z. He et al. proposes a state
observer-based slidingmode control designmethodology for
a class of continuous-time state-delayed switched systems
with unmeasurable states and nonlinear uncertainties.

It is noted that both the stability analyze method and
the 𝐻

∞
control for complex time-delay systems have always

been hot issues in the field of control theory for the last
20 years. Recently, networked control systems (NCSs) have
been extensively investigated due to its broad applications
in engineering, in which the phenomenon of networked-
induced communication time-delay has received more and
more research interests. It is well known that external dis-
turbances originating from various sources exist in almost
all controlled systems accompanied by increasingly large-
scale and complicated industrial processes.Thus, the research
of antidisturbance control and disturbance attenuation per-
formance for complex time-delay systems is a challenging
problem. On the other hand, the performance analyze for
switched systems with time-delay has also have received
considerable attention because of their applicability and
significance in various areas. In summary, almost all papers
in this special issue concern those recent focus and some new
developments emerged in the time-delay systems. Moreover,
many practical applications can also be found in this special
issue, such as truck trailer systems, flexible spacecraft, A4D
aircraft, and NCSs.

Of course, the selected topics and papers are not a
comprehensive representation of the area of this special
issue. Nonetheless, they represent the rich and many faceted
knowledge that we have the pleasure of sharing with the
readers.
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This paper addresses the problem of simultaneous identification of linear discrete time delay multivariable systems. This problem
involves both the estimation of the time delays and the dynamic parameters matrices. In fact, we suggest a new formulation of this
problem allowing defining the time delay and the dynamic parameters in the same estimated vector and building the corresponding
observation vector. Then, we use this formulation to propose a new method to identify the time delays and the parameters of
these systems using the least square approach. Convergence conditions and statistics properties of the proposed method are also
developed. Simulation results are presented to illustrate the performance of the proposed method. An application of the developed
approach to compact disc player arm is also suggested in order to validate simulation results.

1. Introduction

Time delay system identification has received great attention
in the last years since time delay is a physical phenomenon
which arises in most control loops industrial systems [1, 2].
Several reasons cause the presence of time delay in control
loops. In fact, it may be an inherent feature of the system such
as processes of transport (mass, energy, and information),
higher order processes, and accumulation of time lags in
several systems that are connected in series. It may also be
introduced by the devices of control loops, such as response
times of sensors and actuators, computation time of control
laws, and information transmission time in networks. This
delay can be neglected if its value is too small for the system
time constants. Otherwise, it cannot be neglected, and the
dynamic representation of the system must be described by
a time delay model. This model is, generally, constructed
using the identification approach which allows building a
mathematical model from input-output data.

The identification of time delay systems is known to
be a challenging identification problem because it involves
both the estimation of dynamic parameters and time delay.
Numerous methods have been proposed in the literature for
the identification of time delay systems [3–15].

Among these methods, the graphical approach has been
the most popular since it represents the first method pro-
posed in the literature for the identification of continuous
time delay systems [16]. Moreover, it is frequently used to
compute the parameters of PID controllers for industrial
processes. It consists in determining the time delay and the
dynamic parameters of the system from its step response.
The main advantage of this approach lies in the simplic-
ity of its implementation. However, it produces inaccurate
results because it is very sensitive to measurement noises.
Another popular approach is proposed in [9]. It is based on
the approximation of the time delay by a rational transfer
function using classical approximations such as Pade or
Laguerre. This method can insure very satisfactory results
in the case of linear systems with constant time delays and
lower order. However, its performance degrades rapidly in
the case of higher order systems or important time delays.
Moreover, it raises the computational complexity because
it increases the number of parameters to be estimated.
The parametrisation approach can be considered as one of
the interesting methods because it is based on theoretical
concepts of discrete time systems [17]. It consists, firstly,
in inserting a known time delay in the numerator of the
discrete time model, secondly, in estimating the dynamic
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parameters of the system using a recursive algorithm, and,
finally, in deducing the time delay from zero coefficients of
the numerator. In practice, it is difficult or rather impossible
to have zero coefficients from experimental data. Indeed,
we must set a threshold, which is a delicate task, mainly
in the case of a noisy output. The method developed in
[3] consists, It consists, firstly, in using the recursive least
square approach to identify the parameters assuming that
the time delay is known, and secondly, in estimating the
time delay, taking into account the results of the first step.
The time delay may be identified either by maximizing
the correlation function or by minimizing the quadratic
error. This method assumes that the domain range of the
time delay is a priori known. We also mention the method
presented in [18]. It allows the identification of the time delay
and the system parameters using the Levenberg-Marquaydt
optimization approach to minimize the prediction error. An
online identification algorithm for continuous-time single-
input single-output (SISO) linear time delay systems with
uncertain time invariant parameters is developed in [10]. It
consists in constructing a sliding mode-based observer of an
underlying system with uncertain parameters. This observer
is then used to design an adaptive identifier of system
parameters. A linear filteringmethod is introduced in [19] for
simultaneous parameter and time delay estimation of transfer
function models. This method estimates the time delay along
other model using an iterative way through simple linear
regression. Anothermethod that identifies the time delay and
the system parameters is presented in [20] which is based
on the correlation technique. The method developed in [21]
allows the identification of time delay and the parameters
of a system operating in the presence of colored noise.
This method is based on correlation analysis. The method
developed in [12, 22] allows the identification of time delay
and the parameters. It minimizes the error between the
process output and the process predictive model output,
and then the variable time delay parameter is identified. In
our previous work, we have proposed two methods for the
simultaneous identification of the time delay and dynamic
parameters of monovariable time delay discrete systems.
The first method is based on the least square approach [23,
24]. The second method consists in minimizing a quadratic
criterion using the gradient approach [25].

Most of these approaches deal with the problem of the
identification of single-input single-output (SISO) time delay
systems. However, the problem of multi-input multioutput
(MIMO) time delay systems is one of the most difficult
problems that represents an area of research where few
efforts have been devoted in the past. The use of time delay
approximation is extended to the MIMO case [26]. In fact,
the authors deal with the problem of the identification of
time delay processes using an overparameterization method.
In [27], a method is developed for time delay estimation
in the frequency domain of MIMO systems based on the
combination of continuous wavelet transform (CWT) and
cross-correlation. During the estimation, cross-correlation
computations are carried out between the CWT coefficients
of the input and the output data. The authors of [28] have
proposed a simple method based on the combination of two

well-known approaches: time delay estimation from impulse
response and subspace identification.

In this paper, we propose an alternative approach for
the problem of simultaneous identification of linear discrete
time delay multivariable systems. Indeed, we develop a new
formulation of the problem allowing to define the time delay
and the dynamic parameters in the same estimated vector
and to build the corresponding observation vector. Then, we
use this formulation to propose a newmethod to identify the
time delays and the parameters of these systems using the
least square approach. Convergence conditions and statistics
properties of the proposed method are also developed. Sim-
ulation and experimental examples are presented to illustrate
the effectiveness of the proposed methods and to compare
their performance in terms of convergence and speed. Our
approach presents several interesting properties which can be
summarized as follows.

(i) The simultaneous identification of the time delays and
parametersmatrices is achieved by a new formulation
of the parameters matrices.

(ii) No a priori knowledge of the time delay is required. In
fact, most of the publications assume the knowledge
of the time delay variation range or the initial condi-
tion.

(iii) The consistency of recursive least square methods
has received much attention in the identification
literature. In this paper, the proof of the consistency
of the estimates is established.

(iv) It can be used to deal with control adaptive purposes.

This paper is organized as follows. Section 2 presents
the model and its assumptions. In Section 3, we propose
an extended least square algorithm for simultaneous online
identification of unknown time delays and parameters of
multivariable discrete time delay systems. Moreover, we
develop the convergence properties of the estimates in order
to show that the obtained estimates are unbiased. Simulation
results and experimental test are provided in the last section.

2. Problem Statement

In this paper, we address the problem of identification of
square linear multivariable delay system with 𝑝 inputs and
𝑝 ARX model:

𝐴(𝑞
−1

) 𝑌 (𝑘) = 𝐵 (𝑞
−1

)𝑈
̃
(𝑘) + 𝑉 (𝑘) , (1)

where 𝑌(𝑘) = [𝑦
1
(𝑘), . . . , 𝑦

𝑝
(𝑘)]
𝑇 and 𝑈

̃
(𝑘) = [𝑈

1
(𝑘 −

𝑑
1
), . . . , 𝑈

𝑝
(𝑘 − 𝑑

𝑝
)]
𝑇 are the outputs and the delayed inputs

of the system at time 𝑘 and 𝑉(𝑘) = [𝑉
1
(𝑘), . . . , 𝑉

𝑝
(𝑘)]
𝑇 is a

vector of independent random variables sequences. Let {𝐷 =

diag[𝑑
1
, . . . , 𝑑

𝑝
]/𝑑
𝑖
∈ N, 𝑖 = 1, . . . , 𝑝} be the time delay

diagonalmatrix, also called the interactivematrix, and𝐴(𝑞−1)
and 𝐵(𝑞

−1

) two polynomial matrices in the unit backward



Mathematical Problems in Engineering 3

shift operator 𝑞−1(i.e., 𝑞−1𝑦
𝑖
(𝑘) = 𝑦

𝑖
(𝑘 − 1), 𝑖 = 1, . . . , 𝑝),

defined by

𝐴(𝑞
−1

) = 𝐼
𝑝
+ 𝐴
1
𝑞
−1

+ ⋅ ⋅ ⋅ + 𝐴
𝑛
𝑎

𝑞
−𝑛
𝑎 ,

dim𝐴
𝑟
= (𝑝, 𝑝) , 𝑟 ∈ [1, 𝑛

𝑎
] ,

𝐵 (𝑞
−1

) = 𝐵
1
𝑞
−1

+ ⋅ ⋅ ⋅ + 𝐵
𝑛
𝑏

𝑞
−𝑛
𝑏 ,

dim𝐵
𝑟
= (𝑝, 𝑝) , 𝑟 ∈ [1, 𝑛

𝑏
] .

(2)

The delayed inputs 𝑈
̃
(𝑘) can be expressed as

𝑈
̃
(𝑘) = Ω𝑈 (𝑘) , (3)

whereΩ is a diagonal matrix defined as

Ω =(

𝑞
−𝑑
1 0 ⋅ ⋅ ⋅ 0

0 𝑞
−𝑑
2 d

...
... d d 0

0 ⋅ ⋅ ⋅ 0 𝑞
−𝑑
𝑝

). (4)

The following assumptions are made.

(A1) The two polynomial matrices𝐴(𝑞−1) and 𝐵(𝑞−1) have
no common left factor.

(A2) The orders 𝑛
𝑎
and 𝑛
𝑏
of the model are known.

(A3) The input sequences {𝑈
̃

= [𝑈
1
(𝑘 − 𝑑

1
), . . . , 𝑈

𝑝
(𝑘 −

𝑑
𝑝
)]
𝑇

} are independent of 𝑉(𝑘), mutually indepen-
dent and identically distributed with 𝐸[𝑈(𝑘)] = 0 and
𝐸[𝑈(𝑘)𝑈(𝑘)

𝑇

] = 𝐼, and are persistently exciting (PE).

(A4) The disturbance 𝑉(𝑘) = [𝑉
1
(𝑘), . . . , 𝑉

𝑝
(𝑘)]
𝑇 is

sequences of independent, identically distributed ran-
dom variables with zero mean and finite variance Σ =
{𝜎
2

1
, . . . , 𝜎

2

𝑝
}.

(A5) The inputs, the outputs, and the noises are causal; that
is, 𝑈(𝑘) = [0], 𝑌(𝑘) = [0], and 𝑉(𝑘) = [0] for 𝑘 ⩽ 0.

Problem Statement. The goal is to develop a recursive algo-
rithm to estimate, simultaneously, the time delay matrix
𝐷 and the matrices {𝐴

𝑖
(𝑘), 𝐵
𝑖
(𝑘)} using the input/output

measurement data {𝑈(𝑘), 𝑌(𝑘)}.
In the following, we present three necessary definitions.

Definition 1. Operator round (𝑑) is defined by

round (𝑑
𝑖
) = {

int (𝑑
𝑖
) + 1 if 𝑑

𝑖
− int (𝑑

𝑖
) ⩾ 0.5

int (𝑑
𝑖
) if 𝑑

𝑖
− int (𝑑

𝑖
) < 0.5,

(5)

where int (𝑑) denotes the integer part of 𝑑
𝑖
, 𝑖 = 1, . . . , 𝑝.

Definition 2. Operator 𝑑(⋅) is defined by

𝑑
𝑖
(⋅) = round (𝑑

𝑖
(⋅)) , 𝑖 = 1, . . . , 𝑝. (6)

Definition 3. Operator𝐷(⋅) is defined by

𝐷 (⋅) =(

𝑑
1

0 ⋅ ⋅ ⋅ 0

0 𝑑
2

d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 𝑑
𝑝

). (7)

3. The Proposed Approach

In this section, an extended least square algorithm for simul-
taneous online identification of time delays and parameter
matrices is developed.

Equation (1) can be rewritten as

𝑌 (𝑘) = Θ
𝑇

𝜑 (𝑘,𝐷) + 𝑉 (𝑘) , (8)

where Θ is the parameter matrix and 𝜑(𝑘,𝐷) is the observa-
tion vector defined as

Θ
𝑇

= [𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
𝑎

, 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
𝑏

] ,

𝜑 (𝑘, 𝐷) = [−𝑌
𝑇

(𝑘 − 1) , −𝑌
𝑇

(𝑘 − 2) , . . . , −𝑌
𝑇

(𝑘 − 𝑛
𝑎
) ,

𝑈
̃

𝑇

(𝑘 − 1) , . . . , 𝑈
̃

𝑇

(𝑘 − 𝑛
𝑏
)]
𝑇

.

(9)

On the other hand, the estimated output is described by
the following relation:

�̂� (𝑘) = Θ̂
𝑇

𝜑 (𝑘,𝐷) , (10)

where Θ̂ and 𝐷 = diag[𝑑
1
, . . . , 𝑑

𝑝
] represent, respectively,

the estimated parameter matrix and the estimated time delay
matrix.

Let us consider the prediction error Υ(𝑘) given by

Υ (𝑘) = 𝑌 (𝑘) − Θ̂
𝑇

𝜑 (𝑘,𝐷) . (11)

Since parameter matrix Θ̂ does not contain the unknown
time delays 𝐷, then consequently it is not directly applicable
to achieve our objective which is the simultaneous identifi-
cation of the time delays and the parameter matrices of the
multivariable discrete time delay systems (1).

To overcome this problem, we suggest considering the
time delay matrix in parameter matrices Θ to be estimated.
Indeed, the newmatrix, called generalized matrix, is given by

Θ
𝑇

𝐺
= [Θ,𝐷] . (12)

Moreover, we propose the use of the negative gradient of
the error to obtain an appropriate observation vector which
is given by

Φ(𝑘, Θ̂
𝐺
) = −

𝜕Υ

𝜕Θ̂
𝐺

. (13)
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Then,

Φ(𝑘, Θ̂
𝐺
) = [𝜑

𝑇

(𝑘,𝐷) , −
𝜕Υ

𝜕𝐷

]

𝑇

,

Φ (𝑘, Θ̂
𝐺
) = [𝜑

𝑇

(𝑘, 𝐷) ,
𝜕�̂�

𝜕𝐷

]

𝑇

,

Φ (𝑘, Θ̂
𝐺
) = [𝜑

𝑇

(𝑘,𝐷) ,
𝜕

𝜕𝐷

𝑛
𝑏

∑

𝑖=1

𝑈
𝑇

(𝑘 − 𝑖) 𝐵
𝑖
Ω̂]

𝑇

.

(14)

The use of the approximation of Ln(𝑞) ≈ 1 − 𝑞
−1 (see the

appendix) leads to

Φ(𝑘, Θ̂
𝐺
) = [𝜑

𝑇

(𝑘,𝐷) , −

𝑛
𝑏

∑

𝑖=1

Δ𝑈
𝑇

(𝑘 − 𝑖) 𝐵
𝑖
Ω̂]

𝑇

, (15)

where Δ𝑈(𝑘) = 𝑈(𝑘) − 𝑈(𝑘 − 1).
Replacing 𝜑

𝑇

(𝑘, 𝐷) by its expression, we obtain the
generalized observation vector:

Φ(𝑘, Θ̂
𝐺
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑌
𝑇

(𝑘 − 1)

...
−𝑌
𝑇

(𝑘 − 𝑛
𝑎
)

Ω̂𝑈
𝑇

(𝑘 − 1)

...
Ω̂𝑈
𝑇

(𝑘 − 𝑛
𝑏
)

−

𝑛
𝑏

∑

𝑖=1

Δ𝑈
𝑇

(𝑘 − 𝑖) 𝐵
𝑖
Ω̂

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(16)

An estimation Θ̂
𝐺
of Θ
𝐺
is denoted by the minimization

of the following criterion:

𝐽 (𝑘, Θ
𝐺
) =

1

2

𝑘

∑

𝑖=0

Υ(𝑖)
2

. (17)

Then, the partial derivative of the criterion with respect to the
generalized matrix is

𝜕𝐽

𝜕Θ̂
𝐺

=

𝑘

∑

𝑖=0

𝜕Υ (𝑖)

𝜕Θ̂
𝐺

Υ (𝑖) = −

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
) Υ (𝑖) . (18)

So

𝜕𝐽

𝜕Θ̂
𝐺

= −

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
) [𝑌 (𝑖) − Θ̂

𝑇

𝜑 (𝑖, 𝐷)] . (19)

Let us consider

𝜓 = −

𝑛
𝑏

∑

𝑗=1

𝐷Δ𝑈
𝑇

(𝑖 − 𝑗) 𝐵
𝑗
Ω̂. (20)

Adding and subtracting from (19) the term 𝜓, given by (20),
we have

𝜕𝐽

𝜕Θ̂
𝐺

= −

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
) [𝑌 (𝑖) − Φ

𝑇

(𝑖, Θ̂
𝐺
) Θ̂
𝐺
+ 𝜓]

= −

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
) [𝑌 (𝑖) + 𝜓 − Φ

𝑇

(𝑖, Θ̂
𝐺
) Θ̂
𝐺
] .

(21)

Canceling the partial derivative of the criterion, we obtain

Θ̂
𝐺
(𝑘) = [

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
)Φ
𝑇

(𝑖, Θ̂
𝐺
)]

−1
𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
)

× [𝑌 (𝑖) + 𝜓] .

(22)

Let,

𝑅 (𝑘) =

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
)Φ
𝑇

(𝑖, Θ̂
𝐺
) . (23)

Based on assumption A3 which ensures that matrix 𝑅(𝑘) is
invertible [29], (22) can be rewritten as

Θ̂
𝐺
(𝑘) = 𝑅(𝑘)

−1

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
) [𝑌 (𝑖) + 𝜓] . (24)

It follows that

Θ̂
𝐺
(𝑘) = 𝑅(𝑘)

−1

(

𝑘−1

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
) [𝑌 (𝑖) + 𝜓]

+ Φ (𝑘, Θ̂
𝐺
) [𝑌 (𝑘) + 𝜓]) .

(25)

Using (22), we have

Θ̂
𝐺
(𝑘) = 𝑅(𝑘)

−1

(𝑅 (𝑘 − 1) Θ̂
𝐺
(𝑘 − 1)

+ Φ (𝑘, Θ̂
𝐺
) [𝑌 (𝑘) + 𝜓])

= 𝑅(𝑘)
−1

(𝑅 (𝑘) Θ̂
𝐺
(𝑘 − 1)

− Φ (𝑘, Θ̂
𝐺
)Φ
𝑇

(𝑘, Θ̂
𝐺
) Θ̂
𝐺
(𝑘 − 1)

+ Φ (𝑘, Θ̂
𝐺
) [𝑌 (𝑘) + 𝜓]) .

(26)

So

Θ̂
𝐺
(𝑘) = Θ̂

𝐺
(𝑘 − 1) + 𝑅(𝑘)

−1

Φ(𝑘, Θ̂
𝐺
)

× (−Φ
𝑇

(𝑘, Θ̂
𝐺
) Θ̂
𝐺
(𝑘 − 1) + [𝑌 (𝑘) + 𝜓]) .

(27)

It follows from (27) that

Θ̂
𝐺
(𝑘) = Θ̂

𝐺
(𝑘 − 1) + 𝑅(𝑘)

−1

Φ(𝑘, Θ̂
𝐺
)

× (𝑌 (𝑘) − Θ̂
𝑇

𝜑 (𝑘,𝐷)) .

(28)

Thus,

Θ̂
𝐺
(𝑘) = Θ̂

𝐺
(𝑘 − 1) + 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
) Υ (𝑘) , (29)

𝑃 (𝑘) = [

𝑘

∑

𝑖=0

Φ(𝑖, Θ̂
𝐺
)Φ
𝑇

(𝑖, Θ̂
𝐺
)]

−1

= [𝑅 (𝑘 − 1) + Φ (𝑘, Θ̂
𝐺
)Φ
𝑇

(𝑘, Θ̂
𝐺
)]
−1

.

(30)
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Using the matrix inversion lemma given by [29],

[𝐵 + 𝐶𝐷
𝑇

]
−1

= 𝐵
−1

− 𝐵
−1

𝐶𝐷
𝑇

𝐵
−1

[1 + 𝐷
𝑇

𝐵
−1

𝐶]
−1

. (31)

Let 𝐵 = 𝑅(𝑘 − 1), 𝐶 = Φ(𝑘,Θ
𝐺
), and 𝐷 = Φ(𝑘,Θ

𝐺
)
𝑇, and

then we have

𝑃 (𝑘) = 𝑃 (𝑘 − 1) −

𝑃 (𝑘 − 1)Φ (𝑘, Θ̂
𝐺
)Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘 − 1)

1 + Φ𝑇 (𝑘, Θ̂
𝐺
) 𝑃 (𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)

.

(32)

The previous approach can be summarized by Algorithm 1.

4. Convergence Properties

4.1. Consistency. For the system in (1), assume that (A3) and
(A4) hold.Then for any 𝑐 > 1, the parameter estimation error,
Θ̂
𝐺
→ Θ
𝐺
, associated with the LS algorithm in (29) and (30)

satisfies


Θ̂
𝐺
− Θ
𝐺



2

= 𝑂(
[Ln 𝑟 (𝑘)]𝑐

𝜆min [𝑃
−1
(𝑘)]

) , (33)

where 𝑟(𝑘) is the trace of the covariance matrix 𝑃−1(𝑘) and
𝜆min represents the minimum eigenvalues of 𝑃−1(𝑘).

Proof. Define the parameter estimation error vector:

Θ
𝐺
:= Θ̂
𝐺
− Θ
𝐺
. (34)

Using (27) and (11) we have

Θ
𝐺
(𝑘) = Θ

𝐺
(𝑘 − 1) + 𝑃Φ (𝑘, Θ

𝐺
)

× [Θ̂
𝑇

(𝑘 − 1) 𝜑 (𝑘,𝐷)

+ 𝑉 (𝑘) − Θ
𝑇

(𝑘 − 1) 𝜑 (𝑘, 𝐷)]

= Θ
𝐺
(𝑘 − 1) + 𝑃Φ (𝑘, Θ

𝐺
) [−𝜌 (𝑘) + 𝑉 (𝑘)] ,

(35)

where

𝜌 (𝑘) = Θ̂
𝑇

(𝑘 − 1) 𝜑 (𝑘,𝐷) − Θ
𝑇

(𝑘 − 1) 𝜑 (𝑘, 𝐷) . (36)

Equation (35) can be rewritten as (see the appendix)

Θ
𝐺
(𝑘) = Θ

𝐺
(𝑘 − 1) + 𝑃Φ (𝑘, Θ

𝐺
) [−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘)] ,

(37)

where

𝜉 (𝑘) =

𝑛𝑏

∑

𝑖=1

𝐵
𝑖
(Ω̂ − Ω)𝑈

𝑇

(𝑘 − 𝑖)

+

𝑛𝑏

∑

𝑖=1

(𝐷𝐵
𝑖
− 𝐷𝐵
𝑖
) Ω̂Δ𝑈

𝑇

(𝑘 − 𝑖) ,

𝑌 (𝑘) = Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
) .

(38)

Let us define now a nonnegative definite function:

𝑆 (𝑘) := Θ
𝑇

𝐺
(𝑘) 𝑃
−1

(𝑘)Θ
𝐺
(𝑘) . (39)

Replacing Θ𝑇
𝐺
(𝑘) by its expression, we obtain

𝑆 (𝑘) = [Θ
𝐺
(𝑘 − 1) + 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)

× (−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘))]
𝑇

𝑃
−1

(𝑘)

× [Θ
𝐺
(𝑘 − 1) + 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)

× (−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘))] .

(40)

So

𝑆 (𝑘) = Θ
𝑇

𝐺
(𝑘 − 1) 𝑃

−1

(𝑘)Θ
𝐺
(𝑘 − 1)

+ 2Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)

× [−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘)]

+ Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)

× [−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘)]

× [−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘)]
𝑇

.

(41)

Substituting 𝑃−1(𝑘) by (30), we get

𝑆 (𝑘) = Θ
𝑇

𝐺
(𝑘 − 1) [𝑃

−1

(𝑘 − 1)

+Φ (𝑘, Θ̂
𝐺
)Φ
𝑇

(𝑘, Θ̂
𝐺
)]

× Θ
𝐺
(𝑘 − 1) + 2Θ

𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)

× [−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘)]

+ Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)

× [−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘)]

× [−𝑌 (𝑘) − 𝜉 (𝑘) + 𝑉 (𝑘)]
𝑇

.

(42)

Then,
𝑆 (𝑘) = 𝑆 (𝑘 − 1) + 𝑌 (𝑘) 𝑌(𝑘)

𝑇

− 2𝑌 (𝑘) 𝑌(𝑘)
𝑇

− 2𝑌 (𝑘) 𝜉
𝑇

(𝑘)

+ 2𝑌 (𝑘)𝑉
𝑇

(𝑘) + Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ

× (𝑘, Θ̂
𝐺
) 𝑌 (𝑘) 𝑌(𝑘)

𝑇

− 2Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
) 𝑌 (𝑘)

× (−𝜉 (𝑘) + 𝑉 (𝑘))
𝑇

+ Φ
𝑇

(𝑘, Θ̂
𝐺
)

× 𝑃 (𝑘)Φ (𝑘, Θ̂
𝐺
) (𝜉 (𝑘) 𝜉(𝑘)

𝑇

+ 𝑉 (𝑘)𝑉(𝑘)
𝑇

− 2𝜉 (𝑘)𝑉
𝑇

(𝑘)) .

(43)
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Step 1. Data acquisition {𝑈(𝑘), 𝑌(𝑘)} and initialization:
set Θ̂
𝐺
= Θ
𝐺
0

and 𝑃 = 𝛽𝐼 where 𝛽 is a scalar and
𝐼 is the identity matrix of size
(𝑝, 𝑝(𝑛

𝑎
+ 𝑛
𝑏
+ 𝑛
𝑐
+ 1)) and 𝑘 = 0,

Step 2. Increment 𝑘 and construct the observation vector
𝜑(𝑘,𝐷), the generalized observation vector
Φ
𝑇

(𝑘, Θ̂
𝐺
) using (9) and (16),

Step 3. Estimate Θ̂
𝐺
using the developed identification

method:
Υ(𝑘) = 𝑌(𝑘) − Θ̂

𝑇

(𝑘 − 1)𝜑(𝑘,𝐷)

𝑃(𝑘) = 𝑃(𝑘 − 1) −
𝑃(𝑘 − 1)Φ(𝑘, Θ̂

𝐺
)Φ
𝑇

(𝑘, Θ̂
𝐺
)𝑃(𝑘 − 1)

1 + Φ𝑇(𝑘, Θ̂
𝐺
)𝑃(𝑘 − 1)Φ(𝑘, Θ̂

𝐺
)

Θ̂
𝐺
(𝑘) = Θ̂

𝐺
(𝑘 − 1) + 𝑃(𝑘)Φ(𝑘, Θ̂

𝐺
)Υ(𝑘)

Step 4. Return to Step 2 until 𝑘 = 𝑁 where𝑁 is the
number of input/output data.

Algorithm 1

It follows from (43) that

𝑆 (𝑘) = 𝑆 (𝑘 − 1)

− [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× 𝑌 (𝑘) 𝑌(𝑘)
𝑇

+ Φ
𝑇

(𝑘, Θ̂
𝐺
)

× 𝑃 (𝑘)Φ (𝑘, Θ̂
𝐺
)𝑉 (𝑘)𝑉(𝑘)

𝑇

+ 2 [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× 𝑌 (𝑘)𝑉
𝑇

(𝑘) − 2

× [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× 𝑌 (𝑘) 𝜉
𝑇

(𝑘) + Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ

× (𝑘, Θ̂
𝐺
) 𝜉 (𝑘) 𝜉(𝑘)

𝑇

− 2Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ

× (𝑘, Θ̂
𝐺
) 𝜉 (𝑘) 𝑉

𝑇

(𝑘) .

(44)

We have

− 2 [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× 𝑌 (𝑘) 𝜉
𝑇

(𝑘)

= [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× 𝑌 (𝑘) 𝑌(𝑘)
𝑇

+ [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× 𝜉 (𝑘) 𝜉(𝑘)
𝑇

− [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× (𝑌 (𝑘) + 𝜉 (𝑘)) (𝑌 (𝑘) + 𝜉 (𝑘))
𝑇

,

(45)

and the use of the relation

1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)

= [1 + Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)]
−1

⩾ 0

(46)

leads to

𝑆 (𝑘) ⩽ 𝑆 (𝑘 − 1) + Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ

× (𝑘, Θ̂
𝐺
)𝑉 (𝑘)𝑉(𝑘)

𝑇

+ 2

× [1 − Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)]

× 𝑌 (𝑘)𝑉
𝑇

(𝑘) + 𝜉 (𝑘) 𝜉(𝑘)
𝑇

− 2Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
) 𝜉 (𝑘) 𝑉

𝑇

(𝑘) .

(47)

Since𝑌(𝑘),Φ𝑇(𝑘, Θ̂
𝐺
)𝑃(𝑘)Φ(𝑘, Θ̂

𝐺
), 𝜉(𝑘), and 𝑆(𝑘−1) are

uncorrelated with 𝑉(𝑘), taking the conditional expectation
on both sides of (47) and using (A3) and (A4), we obtain

𝐸 [𝑆 (𝑘)] ⩽ 𝑆 (𝑘 − 1) + 2Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
) Σ + 𝛽.

(48)

Define

𝑊(𝑘) :=
𝑆 (𝑘)

[Ln 𝑃−1 (𝑘)
]
𝑐
. (49)
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Since [Ln|𝑃−1(𝑘)|]𝑐 is nondecreasing, we have

𝐸 [𝑊 (𝑘)] ⩽
𝑆 (𝑘 − 1)

[Ln 𝑃−1 (𝑘)
]
𝑐

+

2Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)

[Ln 𝑃−1 (𝑘)
]
𝑐

Σ

+
𝛽

[Ln 𝑃−1 (𝑘)
]
𝑐

⩽ 𝑊(𝑘 − 1)

+

2Φ
𝑇

(𝑘, Θ̂
𝐺
) 𝑃 (𝑘)Φ (𝑘, Θ̂

𝐺
)

[Ln 𝑃−1 (𝑘)
]
𝑐

Σ

+
𝛽

[Ln 𝑃−1 (𝑘)
]
𝑐
.

(50)

Using this property ∑
∞

𝑖=1
(Φ
𝑇

(𝑖, Θ̂
𝐺
)𝑃(𝑖)Φ(𝑖, Θ̂

𝐺
)/[Ln|

𝑃
−1

(𝑖)|]
𝑐

) < ∞ (the proof in the same way as the proof of
Lemma 1 in [30]), we can see that the sum of the right-hand
second term of equation (50) for 𝑘 from 1 to ∞ is finite.
Applying the martingale convergence theorem [30] to the
previous inequality, we conclude that𝑊(𝑘) converges a.s. to
a finite random variable, say𝑊

0
; that is,

𝑊(𝑘) =
𝑆 (𝑘)

[Ln 𝑃−1 (𝑘)
]
𝑐
→ 𝑊

0
< ∞ (51)

is equivalent to

𝑆 (𝑘) = 𝑂 ([Ln 𝑃
−1

(𝑘)

]
𝑐

) . (52)

From the definition of 𝑉(𝑘), we obtain


Θ
𝐺


⩽
Θ
𝐺
(𝑘)
𝑇

𝑃
−1

(𝑘)Θ
𝐺
(𝑘)

𝜆min [𝑃
−1
(𝑘)]

=
𝑆 (𝑘)

𝜆min [𝑃
−1
(𝑘)]

. (53)

Now, let us define the matrix trace

𝑟 (𝑘) = tr [𝑃−1 (𝑘)] . (54)

It follows that:

𝑃
−1

(𝑘)

⩽ 𝑟
𝑛

(𝑘) ,

𝑟 (𝑘) ⩽ 𝑛𝜆max

𝑃
−1

(𝑘)

,

Ln 𝑃
−1

(𝑘)

= 𝑂 (Ln 𝑟 (𝑘)) = 𝑂 (Ln 𝜆max


𝑃
−1

(𝑘)

) .

(55)

We obtain, finally,


Θ̂
𝐺
− Θ
𝐺



2

= 𝑂(

[Ln 𝑃
−1

(𝑘)

]
𝑐

𝜆min
𝑃
−1
(𝑘)



)

= 𝑂(
[Ln 𝑟(𝑘)]𝑐

𝜆min
𝑃
−1
(𝑘)



)

= 𝑂(

[𝜆max

𝑃
−1

(𝑘)

]
𝑐

𝜆min
𝑃
−1
(𝑘)



) .

(56)

4.2. Lemma. For the estimate (22) with the assumption (A4),
the following proprieties hold.

(P1) Θ̂
𝐺
is an unbiased estimate of Θ

𝐺
.

(P2) The covariance matrix of Θ̂
𝐺
is given by

𝐸 [(Θ̂
𝐺
− Θ
𝐺
) (Θ̂
𝐺
− Θ
𝐺
)
𝑇

]

= (

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ(𝑖, Θ

𝐺
)
𝑇

)

−1

Σ,

(57)

where

Σ =(

𝜎
2

1
0 ⋅ ⋅ ⋅ 0

0 𝜎
2

2
d

...
... d d 0

0 ⋅ ⋅ ⋅ 0 𝜎
2

𝑝

). (58)

Proof. If we replace (8) in (22), we have

Θ̂
𝐺
= [

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ
𝑇

(𝑖, Θ
𝐺
)]

−1

×

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
) [Θ
𝑇

𝜑 (𝑖, 𝐷) + 𝑉 (𝑖) + 𝜓] .

(59)

Then,

Θ̂
𝐺
= [

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ
𝑇

(𝑖, Θ
𝐺
)]

−1

×

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
) [Θ
𝑇

𝜑 (𝑖, 𝐷) + 𝜓]

+ [

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ
𝑇

(𝑖, Θ
𝐺
)]

−1

×

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
) 𝑉 (𝑖) .

(60)

So

𝐸 [Θ̂
𝐺
] = Θ

𝐺
+ 𝐸([

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ
𝑇

(𝑖, Θ
𝐺
)]

−1

×

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
) 𝑉 (𝑖)) .

(61)

Since 𝑉(𝑖) is uncorrelated with the elements of Φ(𝑖, Θ
𝐺
) (13),

then

𝐸 [Θ̂
𝐺
] = Θ

𝐺
(62)

which proves (P1).
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Consider the first-order Taylor series expansion around
the real matrix of Θ

𝐺
:

𝜕𝐽 (𝑘, Θ̂
𝐺
)

𝜕Θ̂
𝐺

=
𝜕𝐽 (𝑘, Θ

𝐺
)

𝜕Θ
𝐺

+
𝜕
2

𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
2

𝐺

(Θ̂
𝐺
− Θ
𝐺
) . (63)

Since 𝜕𝐽(𝑘, Θ̂
𝐺
)/𝜕Θ̂
𝐺
= 0, it derives from (63) that

(Θ̂
𝐺
− Θ
𝐺
) (Θ̂
𝐺
− Θ
𝐺
)
𝑇

= [
𝜕
2

𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
2

𝐺

]

−1

𝜕𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
𝐺

× [
𝜕𝐽 (𝑘, Θ

𝐺
)

𝜕Θ
𝐺

]

𝑇

[(
𝜕
2

𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
2

𝐺

)

−1

]

𝑇

.

(64)

The second partial derivative of the criterion with respect
to the generalized matrix is

𝜕
2

𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
2

𝐺

=

𝑘

∑

𝑖=0

(Υ (𝑖)
𝜕
2

Υ (𝑖)

𝜕2Θ
𝐺

−
𝜕Υ (𝑖)

𝜕Θ
𝐺

Φ(𝑖, Θ
𝐺
)) . (65)

So

𝜕
2

𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
2

𝐺

=

𝑘

∑

𝑖=0

(Υ (𝑖)
𝜕
2

Υ (𝑖)

𝜕2Θ
𝐺

+ Φ (𝑖, Θ
𝐺
)Φ
𝑇

(𝑖, Θ
𝐺
)) .

(66)

The use of the small residual algorithms [31] leads to neglect
the following term, then:

𝑘

∑

𝑖=0

Υ (𝑖)
𝜕
2

Υ (𝑖)

𝜕2Θ
𝐺

→ 0. (67)

Hence, an approach of 𝜕2𝐽(𝑘, Θ
𝐺
)/𝜕Θ
2

𝐺
is obtained:

𝜕
2

𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
2

𝐺

≃

𝑘

∑

𝑖=0

(Φ (𝑖, Θ
𝐺
)Φ
𝑇

(𝑖, Θ
𝐺
)) . (68)

Applying the mean value of (𝜕𝐽(𝑘, Θ
𝐺
)/𝜕Θ
𝐺
)(𝜕𝐽(𝑘, Θ

𝐺
)/

𝜕Θ
𝐺

𝑇

), we get:

𝐸[
𝜕𝐽 (𝑘, Θ

𝐺
)

𝜕Θ
𝐺

𝜕𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
𝐺

𝑇

]

=

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ(𝑖, Θ

𝐺
)
𝑇

𝐸 (Υ (𝑖) Υ(𝑖)
𝑇

) .

(69)

So

𝐸[
𝜕𝐽 (𝑘, Θ

𝐺
)

𝜕Θ
𝐺

𝜕𝐽 (𝑘, Θ
𝐺
)

𝜕Θ
𝐺

𝑇

] =

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ(𝑖, Θ

𝐺
)
𝑇

Σ.

(70)

Then, we have

𝐸 [(Θ̂
𝐺
− Θ
𝐺
) (Θ̂
𝐺
− Θ
𝐺
)
𝑇

]

= 𝐸[

[

(
𝜕
2

𝐽

𝜕Θ
2

𝐺

)

−1 𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ(𝑖, Θ

𝐺
)
𝑇

Σ[(
𝜕
2

𝐽

𝜕Θ
2

𝐺

)

−1

]

𝑇

]

]

.

(71)

Finally, we obtain

𝐸 [(Θ̂
𝐺
− Θ
𝐺
) (Θ̂
𝐺
− Θ
𝐺
)
𝑇

]

= (

𝑘

∑

𝑖=0

Φ(𝑖, Θ
𝐺
)Φ(𝑖, Θ

𝐺
)
𝑇

)

−1

Σ

(72)

which proves (P2).

5. Results

We now present a simulation example and an experimental
validation to illustrate the performance of the proposed
approach for the simultaneous identification of time delays
and parameter matrices of square multivariable systems.

5.1. Simulation Example. The objective of the simulation is to
compare the efficiency of the proposed method (DRLS) with
that of the classic recursive least square approach (RLS) [29]
which assumes that the delays are a priori known. In fact, we
consider the following cases.

Case 1. The output is noise-free and the RLSmethod uses the
true time delays.

Case 2. The output is noise free and the RLS method uses the
misestimated time delays.

Case 3. The output is contaminated by additive noise and the
RLS method uses the true time delays.

We consider a square linear multivariable discrete time
delay system with two inputs and two outputs described by
the following equation [32]:

𝐴(𝑞
−1

) 𝑌 (𝑘) = 𝐵 (𝑞
−1

)𝑈
̃
+ 𝑉 (𝑘) , (73)

where the delayed inputs and the outputs are defined, respec-
tively, by 𝑈

̃
(𝑘) = (

𝑢
1
(𝑘−𝑑
1
)

𝑢
2
(𝑘−𝑑
2
)
) and 𝑌(𝑘) = ( 𝑦1(𝑘)

𝑦
2
(𝑘)
).

The two polynomials matrices 𝐴(𝑞−1) and 𝐵(𝑞
−1

) are
given by

𝐴(𝑞
−1

) = (
1 0

0 1
) + (

0.9048 0

0 0.9048
) 𝑞
−1

,

𝐵 (𝑞
−1

) = (
0.09516 0.03807

−0.0297 0.0475
) 𝑞
−1

.

(74)

The time delay matrix𝐷 is given by

𝐷 = (
3 0

0 1
) . (75)
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Figure 1: Evolution of the true (-) and the estimated (- -) delays: Case 1.
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Figure 2: Evolution of the true and the estimated parameters: 𝐴
𝑖
: Case 1.

5.1.1. Case 1. The proposed approach (DLSR) and the RLS
algorithm are applied to estimate time delays and parameter
matrices. The estimation starts with zero initial conditions.
The obtained results are illustrated in Table 1 and Figures 1, 2,
and 3.

Figures 1–3 show the evolution of the estimated and the
true parameter matrices.

A validation of the obtainedmodel is presented in Figures
4 and 5 which show that the estimated outputs track fast and
accurately the true outputs.
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Figure 3: Evolution of the true and the estimated parameters: 𝐵
𝑖
: Case 1.

Table 1: Simulation results: Case 1.

True Developed RLS RLS

𝐴
1

0.9048 0 0.9 −0.0022 0.9048 −0.0000

0 0.9048 −0.0043 0.9021 −0.0000 0.9048

𝐵
1

0.09516 0.03807 0.0947 0.0378 0.0952 0.0381

−0.02974 0.04758 −0.0297 0.0475 −0.0297 0.0476

𝐷
3 0 3 0 Known
0 1 0 1

5.1.2. Case 2. We apply the proposed approach (DLSR) and
the RLS algorithm to estimate time delays and parameter
matrices. The RLS algorithm uses misestimated time delays
(
2 0

0 1
). The obtained results are illustrated in Table 2 and

Figures 6 and 7.
Figures 6 and 7 show the evolution of the estimated and

the true parameter matrices.

Table 2: Simulation results: Case 2.

True Developed RLS RLS

𝐴
1

0.9048 0 0.9 −0.0022 0.5829 −0.2376

0 0.9048 −0.0043 0.9021 −0.1288 −0.1288

𝐵
1

0.09516 0.03807 0.0947 0.0378 0.0692 0.0277

−0.02974 0.04758 −0.0297 0.0475 0.0277 0.0463

𝐷
3 0 3 0 2 0

0 1 0 1 0 1

5.1.3. Case 3. The system’s output is corrupted by additive
zero mean white noises 𝑉(𝑘) = [V

1
(𝑘), V
2
(𝑘)] with variances

𝜎
1
=0.0737, 𝜎

2
=0.086.

The result of the simulation is given in Table 3.
Figures 8, 9, and 10 show the evolution of the estimated

and the true parameter matrices.
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Table 3: Simulation results: Case 3.

True Developed RLS RLS

𝐴
1

0.9048 0 0.8949 −0.0084 0.9032 −0.0016

0 0.9048 −0.0084 0.9 0.0003 0.951

𝐵
1

0.09516 0.03807 0.0941 0.073 0.0952 0.0381

−0.02974 0.04758 −0.0303 0.0476 −0.0297 0.0476

𝐷
3 0 3 0 Known
0 1 0 1

Avalidation of the obtainedmodel is presented in Figures
11 and 12 which show that the estimated outputs track fast and
accurately the true outputs.

5.1.4. Observations. Based on Tables 1–3 and Figures 1–12, we
observe that

(i) the RLS method gives the better performance when
the true time delays are used. However, it poorly
performs for misestimated delays;

(ii) the proposed approach converges to the true delays
with acceptable speed for the considered cases.

5.2. Experiment Example. The experimental data from a
mechanical construction of a CD player arm is considered.
The system has two inputs that are forces of the mechanical
actuators (𝑈) and two outputs that are related to the tracking
accuracy of the arm (𝑌).

The data set contains 2048 sample points out of which
1000 were used for the identification procedure and the
rest to validate the identified models. The input/output
identification signals [33] are given in Figures 13 and 14.

The system is described by the following equation:

𝐴(𝑞
−1

) 𝑌 (𝑘) = 𝐵 (𝑞
−1

)𝑈
̃
(𝑘) + 𝑉 (𝑘) , (76)

where 𝑌(𝑘) and 𝑈
̃
(𝑘) are the output and the delayed input of

the system at time 𝑘, 𝑝 = 2 and the orders of 𝐴(𝑞−1), 𝐵(𝑞−1)
are 𝑛
𝑎
= 𝑛
𝑏
= 2.

The estimation starts with zero initial values for the
parameter and the time delay matrices. Applying the pro-
posed algorithm, we obtain

𝐴(𝑞
−1

) = (
1 0

0 1
) + (

−0.9464 −0.6600

−0.1263 −0.5278
) 𝑞
−1

+ (
0.0809 0.5506

−0.1066 0.2243
) 𝑞
−2

,

𝐵 (𝑞
−1

) = (
−1.4839 1.0274

0.2900 −1.1819
) 𝑞
−1

+ (
1.2452 −0.7638

−0.1866 0.8853
) 𝑞
−2

.

(77)

The estimated time delay matrix is

𝐷 = (
0 0

0 2
) . (78)

Another data set is used for the validation test which is
illustrated by Figures 15 and 16.

We can see clearly that the estimated output tracks fast
and accurately the true output.

6. Conclusions

In this paper, we have addressed the problem of identification
of linear discrete time delay multivariable systems. In fact,
we have proposed a novel approach for the simultaneous
identification of the unknown time delays and the parameter
matrices of these systems.The proposed approach consists in
constructing a linear-parameter formulation that is used to
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Figure 6: Evolution of the true and the estimated parameters: 𝐴
𝑖
: Case 2.

estimate the time delays and the polynomial matrices using
recursive least square algorithm.The obtained estimates were
shown to be unbiased, and an expression for their covariance
matrix was given. Numerical simulation and experimental
test are presented to demonstrate the performance of the
proposed approach.

Appendix

A. Approximation of Ln(𝑞)
Let us consider the shift operator and the backward difference
given, respectively, by

𝑞𝑢 (𝑘) = 𝑢 (𝑘 + 1) , (A.1)

Δ𝑢 (𝑘) = 𝑢 (𝑘) − 𝑢 (𝑘 − 1) . (A.2)

So

Δ𝑢 (𝑘) = (1 − 𝑞
−1

) 𝑢 (𝑘) . (A.3)

We can infer the identity between the shift operator and the
backward difference [34], and then

Δ = 1 − 𝑞
−1

. (A.4)

It is equivalent to

𝑞
−1

= 1 − Δ. (A.5)

Applying the logarithm function of both sides of (A.1), we get

Ln (𝑞) = −Ln (1 − Δ) . (A.6)

Using the series expansion of Ln(1 − 𝑥), we have

Ln (𝑞) = Δ + 1

2
Δ
2

+
1

3
Δ
3

+ ⋅ ⋅ ⋅ . (A.7)
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Figure 7: Evolution of the true and the estimated parameters: 𝐵
𝑖
: Case 2.

Finally, we use a first-order approximation of the shift
operator given by

Ln (𝑞) = Δ = 1 − 𝑞
−1

. (A.8)

B. Expression of 𝜕Ω̂/𝜕𝐷

The partial derivative of Ω̂ with respect to the estimated time
delay matrix is given by

𝜕Ω̂

𝜕𝐷

=
𝜕

𝜕𝐷

(

𝑞
−
̂
𝑑
1 0 ⋅ ⋅ ⋅ 0

0 𝑞
−
̂
𝑑
2 d

...
... d d 0

0 ⋅ ⋅ ⋅ 0 𝑞
−
̂
𝑑
𝑝

). (B.1)

It is equivalent to

𝜕Ω̂

𝜕𝐷

=
𝜕

𝜕𝐷

(

𝑒
−
̂
𝑑
1
Ln(𝑞)

0 ⋅ ⋅ ⋅ 0

0 𝑒
−
̂
𝑑
2
Ln(𝑞) d

...
... d d 0

0 ⋅ ⋅ ⋅ 0 𝑒
−
̂
𝑑
𝑝
Ln(𝑞)

). (B.2)

Equation (B.2) can be rewritten as

𝜕Ω̂

𝜕𝐷

=
𝜕

𝜕𝐷

𝑒
−�̂�Ln(𝑞)

. (B.3)

We then obtain

𝜕Ω̂

𝜕𝐷

= −Ln (𝑞) 𝜕𝑒
−�̂�Ln(𝑞)

𝜕𝐷

= −Ln (𝑞) Ω̂. (B.4)
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Figure 9: Evolution of the true and the estimated parameters: 𝐴
𝑖
: Case 3.

Using the approximation Ln(𝑞) ≃ (1 − 𝑞
−1

), we get the
partial derivative of Ω̂with respect to the estimated timedelay
matrix:

𝜕Ω̂

𝜕𝐷

≃ − (1 − 𝑞
−1

) Ω̂. (B.5)

C. Expression of 𝜌(𝑘)

We have
𝜌 (𝑘) = Θ̂

𝑇

(𝑘 − 1) 𝜑 (𝑘,𝐷) − Θ
𝑇

𝜑 (𝑘,𝐷) . (C.1)

In the same way as before (see the equations (22) and (21)),
the estimated generalized vector parameters Θ̂

𝐺
and the
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: Case 3.
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Figure 14: Evolution of output identification signals of CD arm.

0 200 400 600 800 1000

0

0.5

1

k

−0.5

−1
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generalized vector parameters Θ
𝐺
can appear after adding

and subtracting the appropriate term of the equation (C.1):

𝜌 (𝑘) = Θ̂
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)

+

𝑛𝑏

∑

𝑖=1

𝐷𝐵
𝑖
Ω̂Δ𝑈
𝑇

(𝑘 − 𝑖)

− Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ

𝐺
)

−

𝑛𝑏

∑

𝑖=1

𝐷𝐵
𝑖
ΩΔ𝑈
𝑇

(𝑘 − 𝑖) .

(C.2)
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Figure 16: The evolution of the true (-) and the estimated (- -)
outputs.

Adding and subtracting the term Θ
𝐺
(𝑘 − 1)Φ(𝑘, Θ̂

𝐺
) from

(C.2), we obtain

𝜌 (𝑘) = Θ̂
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)

− Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ

𝐺
) + 𝛼

+ Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)

− Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
) ,

(C.3)
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where

𝛼 =

𝑛𝑏

∑

𝑖=1

𝐷𝐵
𝑖
Ω̂Δ𝑈
𝑇

(𝑘 − 𝑖) −

𝑛𝑏

∑

𝑖=1

𝐷𝐵
𝑖
ΩΔ𝑈
𝑇

(𝑘 − 𝑖) ,

𝜌 (𝑘) = Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
)

−

𝑛𝑏

∑

𝑖=1

𝐵
𝑖
Ω𝑈 (𝑘 − 𝑖)

+

𝑛𝑏

∑

𝑖=1

𝐵
𝑖
Ω̂𝑈
𝑇

(𝑘 − 𝑖)

+

𝑛𝑏

∑

𝑖=1

𝐷𝐵
𝑖
Ω̂Δ𝑈
𝑇

(𝑘 − 𝑖)

−

𝑛𝑏

∑

𝑖=1

𝐷𝐵
𝑖
Ω̂Δ𝑈
𝑇

(𝑘 − 𝑖) .

(C.4)

So

𝜌 (𝑘) = 𝑌 (𝑘) + 𝜉 (𝑘) , (C.5)

where

𝜉 (𝑘) =

𝑛𝑏

∑

𝑖=1

𝐵
𝑖
(Ω̂ − Ω)𝑈

𝑇

(𝑘 − 𝑖)

+

𝑛𝑏

∑

𝑖=1

(𝐷𝐵
𝑖
− 𝐷𝐵
𝑖
) Ω̂Δ𝑈

𝑇

(𝑘 − 𝑖) ,

𝑌 (𝑘) = Θ
𝑇

𝐺
(𝑘 − 1)Φ (𝑘, Θ̂

𝐺
) .

(C.6)
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A robust fault tolerant control (FTC) approach is addressed for a class of nonlinear systems with time delay, actuator faults,
and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and
the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled
disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC),
fault accommodation, and a mixed 𝐻

2
/𝐻
∞

controller is constructed to reconfigure the considered systems with disturbance
rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the
proposed approach.

1. Introduction

To reduce the influence of model uncertainties and system
disturbances, there are several control approaches focusing
on nonlinear systems with unknown disturbances (see the
survey paper [1] and references therein). The methodologies
can be mainly classified into disturbance attenuation meth-
ods (such as 𝐻

∞
and 𝐻

2
control) and disturbance rejec-

tion approaches (such as output regulation theory, distur-
bance observer based control). The disturbance attenuation
approaches have conservativeness for bounded stochastic
disturbance. The disturbance rejection methods are estab-
lished based on model-matching conditions. It has been
shown that multiple disturbances exist in most practical
systems. The idea of disturbance observer based control
(DOBC) is to construct an observer to estimate and com-
pensate some external disturbances [2]. A composite control
scheme combining DOBC and PD (proportional derivative)
control for flexible spacecraft attitude control was proposed
in the presence of model uncertainty, elastic vibration,
and external disturbances [3]. For nonlinear systems with
multiple disturbances, it has been seen that the 𝐻

∞
and

variable structure control have been integrated with DOBC
in [4, 5]. In [6], a composite DOBC and adaptive control
approach were proposed for a class of nonlinear systems
with multiple disturbances. By constructing a disturbance
compensation gain vector in the composite control law,
a nonlinear robust DOBC was proposed to attenuate the
mismatched disturbances and the influence of parameter
variations from output channels [7].

In order to increase the reliability and safety of practical
engineering, the issues of fault diagnosis and fault tolerant
control (FTC) have become an attractive topic and have
been paid much attention in recent years (see [8–13] and
references therein). It is difficult to accommodate faults if the
disturbances and faults exist simultaneously in the controlled
systems. In [14], an optimal fault tolerant control approach
was proposed for the nonlinear systems, where generalized
𝐻
∞

optimization was applied to estimate the fault and
attenuate the disturbances. In [15], a robust observer was
proposed to simultaneously estimate system states, faults, and
their finite time derivatives and attenuate disturbances; then
an FTC approach was designed based on their estimations.
For systems with modeled disturbance, a fault diagnosis
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approach based on disturbance observer was firstly proposed
in [16] with disturbance rejection performance. For the
nonlinear system with multiple disturbances, [17] addressed
a fault tolerant control approach with disturbance rejection
and attenuation performances. It is well known that time
delay frequently occurs in many practical systems, such as
manufacturing systems, telecommunication, and economic
systems. Therefore, the problem of fault accommodation
for time-delay systems has been a hot topic in the control
field. Many important results have been reported in the
literature (see [18–21] and references therein). In [18], an
adaptive fuzzy fault accommodation control approach was
proposed for nonlinear time-delay system. In [19], a fault
accommodationwas addressed for time-varying delay system
using adaptive fault diagnosis observer. [20] dealt with fault
tolerant guaranteed cost controller design problem for linear
time-delay system against actuator faults.

In this paper, FTC problem is discussed for a class of
time-delay systems with actuator fault and multiple distur-
bances. The first part of multiple disturbances is modeled
disturbance formulated by an exogenous system and the
second one is normbounded uncertain variable. A composite
observer is designed to estimate the modeled disturbance
and time-varying fault. Then, an FTC scheme is addressed
with disturbance rejection and attenuation performance by
combining fault accommodation and DOBC with a robust
𝐻
2
/𝐻
∞

controller.

2. Model Description

In this paper, we consider the following nonlinear system
with time-varying faults, time-delay, and multiple distur-
bances simultaneously:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+ 𝐽 [𝑢 (𝑡) + 𝐹 (𝑡)] + 𝐽
1
𝑑
1
(𝑡) + 𝐽

2
𝑑
2
(𝑡)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is system state, 𝑢(𝑡) is control input,

and 𝑦(𝑡) ∈ 𝑅
𝑚 represents output variable. 𝐹(𝑡) is time-

varying actuator fault to be diagnosed.𝐴,𝐴
𝑑
, 𝐶, 𝐺, 𝐽, 𝐽

1
, and

𝐽
2
represent coefficient matrices of the system with suitable

dimensions. 𝜏 is a known constant delay. The modeled
external disturbance 𝑑

1
(𝑡) is supposed to be generated by a

linear exogenous system described by

𝜔 (𝑡) = 𝑊𝜔 (𝑡) + 𝐽
3
𝛿 (𝑡) ,

𝑑
1
(𝑡) = 𝑉𝜔 (𝑡) ,

(2)

where 𝜔(𝑡) is state variable, 𝑊 ∈ 𝑅
𝑝×𝑝

, and 𝑉 and 𝐽
3
are

known parameter matrices of the exogenous system. 𝛿(𝑡) is
additional disturbance which results from perturbations and
uncertainties in the exogenous system.Thedisturbances𝑑

2
(𝑡)

and 𝛿(𝑡) are supposed to have the bounded𝐻
2
norm.

For a known matrix 𝑈
1
, 𝑔(𝑥(𝑡)) is a known nonlinear

vector function that is supposed to satisfy 𝑔(0) = 0 and the
following norm condition:

𝑔 (𝑥
1
(𝑡)) − 𝑔 (𝑥

2
(𝑡))

 ≤
𝑈1 (𝑥1 (𝑡) − 𝑥

2
(𝑡))

 (3)

for any 𝑥
1
(𝑡) and 𝑥

2
(𝑡).

The following assumptions are required so that the
considered problem can be well-posed in this paper.

Assumption 1. (𝐴, 𝐽) is controllable; (𝑊, 𝐽
1
𝑉) is observable.

Assumption 2. rank(𝐽, 𝐽
1
) = rank(𝐽).

Remark 1. In practical engineering, the exogenous model
(2) can represent many kinds of disturbances including
harmonic disturbance signal caused by vibration, unknown
constant load in themotor, inertial sensor drift represented by
first-order Gaussian Markov process, and so on. Compared
with the previous works [17, 19, 20], both the time-delay
and multiple disturbances are simultaneously considered in
this paper. Furthermore, the modeled disturbance 𝑑

1
(𝑡) and

control input are assumed in different channels, while in [17]
are in the same channel.

3. Robust Fault Tolerant Controller Design

3.1. Disturbance Observer. In order to reject the mod-
eled external disturbance, disturbance observer should be
designed in this subsection. In this paper, we only consider
the case of available states. The disturbance observer is
formulated as

�̂� (𝑡) = 𝜉 (𝑡) − 𝐿𝑥 (𝑡) ,

𝑑
1
(𝑡) = 𝑉�̂� (𝑡) ,

(4)

where 𝜉(𝑡) is auxiliary variable generated by

̇𝜉 (𝑡) = (𝑊 + 𝐿𝐽
1
𝑉) [𝜉 (𝑡) − 𝐿𝑥 (𝑡)] + 𝐿

× [𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+𝐽𝑢 (𝑡) + 𝐽𝑢
𝑓𝑐

(𝑡)]

(5)

�̂�(𝑡) is estimation of 𝜔(𝑡), 𝑑
1
(𝑡) is estimation of modeled

disturbance 𝑑
1
(𝑡), matrix 𝐿 is the disturbance observer gain

to be determined later, and 𝑢
𝑓𝑐
(𝑡) = 𝐹(𝑡) is compensation

term to be designed in fault diagnosis observer, where 𝐹(𝑡) is
denoted as an estimation of fault 𝐹(𝑡).

By defining 𝑒
𝜔
(𝑡) = 𝜔(𝑡) − �̂�(𝑡) and 𝑒

𝐹
(𝑡) = 𝐹(𝑡) − 𝐹(𝑡),

estimation error system can be obtained from (1), (2), (4), and
(5) to show the following:

̇𝑒
𝜔
(𝑡) = (𝑊 + 𝐿𝐽

1
𝑉) 𝑒
𝜔
(𝑡) + 𝐿𝐽𝑒

𝐹
(𝑡) + 𝐿𝐽

2
𝑑
2
(𝑡) + 𝐽

3
𝛿 (𝑡) .

(6)

In the following subsection, we will construct a fault
diagnosis observer with disturbance estimation so that the
modeled disturbance can be rejected and fault can be diag-
nosed.
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3.2. Fault Diagnosis Observer. The following fault diagnosis
observer is constructed to diagnose the time-varying actuator
fault:

𝐹 (𝑡) = 𝜂 (𝑡) − 𝐾𝑥 (𝑡) ,

̇𝜂 (𝑡) = 𝐾𝐽 [𝜂 (𝑡) − 𝐾𝑥 (𝑡)]

+ 𝐾 [𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏)

+𝐺𝑔 (𝑥 (𝑡)) + 𝐽𝑢 (𝑡) + 𝐽
1
𝑢
𝑑𝑐

(𝑡)] ,

(7)

where 𝐹(𝑡) is estimation of 𝐹(𝑡). The disturbance observer
based control term 𝑢

𝑑𝑐
(𝑡) = 𝑑

1
(𝑡) is applied to reject

modeled disturbance𝑑
1
(𝑡) by its estimation fromdisturbance

observer. 𝐾 is the fault diagnosis observer gain to be deter-
mined later.

The fault estimation error system yields

̇𝑒
𝐹
(𝑡) = ̇𝐹 (𝑡) −

̇
�̂� (t)

= ̇𝐹 (𝑡) + 𝐾𝐽𝑒
𝐹
(𝑡) + 𝐾𝐽

1
𝑉𝑒
𝜔
(𝑡) + 𝐾𝐽

2
𝑑
2
(𝑡) .

(8)

In the next subsection, a composite fault tolerant con-
troller should be determined for reconfiguring the systems
with disturbance rejection and attenuation performance.

3.3. Composite Fault Tolerant Controller. In this section, the
object is to construct a control approach to guarantee that
the system (1) is stable in the presence (or absence) of faults
and multiple disturbances simultaneously for the considered
time-delay system. The structure of composite fault tolerant
controller is formulated as

𝑢 (𝑡) = 𝑢
𝑠𝑐
(𝑡) − 𝑢

𝑓𝑐
(𝑡) − 𝐽

∗

𝐽
1
𝑢
𝑑𝑐

(𝑡) , (9)

where 𝑢
𝑓𝑐
(𝑡) = 𝐹(𝑡), 𝑢

𝑑𝑐
(𝑡) = 𝑑

1
(𝑡), and 𝑢

𝑠𝑐
(𝑡) = 𝑆𝑥(𝑡), 𝑆

is the state feedback controller gain to be determined later.
Substituting (9) into (1), it can be seen that

̇𝑥 (𝑡) = (𝐴 + 𝐽𝑆) 𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+ 𝐽𝑒
𝐹
(𝑡) + 𝐽

1
𝑑
1
(𝑡) − 𝐽𝐽

∗

𝐽
1
𝑑
1
(𝑡) + 𝐽

2
𝑑
2
(𝑡) .

(10)

From Assumption 2, it can be seen that the vector space
spanned by the columns of 𝐽

1
is a subset of the space spanned

by the column vectors of 𝐽 [19]; that is, span (𝐽
1
) ⊂ span (𝐽),

which is equivalent to the existence of 𝐽, such that

𝐽
1
− 𝐽𝐽
∗

𝐽
1
= 0. (11)

Then, it can be concluded that

̇𝑥 (𝑡) = (𝐴 + 𝐽𝑆) 𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+ 𝐽𝑒
𝐹
(𝑡) + 𝐽

1
𝑉𝑒
𝜔
(𝑡) + 𝐽

2
𝑑
2
(𝑡) .

(12)

Combing estimation error equations (6) and (8) with (12)
yields

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡)) + 𝐽𝑑 (𝑡) ,

𝑧
2
(𝑡) = 𝐶

2
𝑥 (𝑡) + 𝐶

𝑑2
𝑥 (𝑡 − 𝜏) ,

𝑧
∞

(𝑡) = 𝐶
∞
𝑥 (𝑡) + 𝐶

𝑑∞
𝑥 (𝑡 − 𝜏) + 𝐷𝑑 (𝑡) ,

(13)

where

𝑥 (𝑡) = [

[

𝑥 (𝑡)

𝑒
𝜔
(𝑡)

𝑒
𝐹
(𝑡)

]

]

, 𝐴 = [

[

𝐴 + 𝐽𝑆 𝐽
1
𝑉 𝐽

0 𝑊 + 𝐿𝐽
1
𝑉 𝐿𝐽

0 𝐾𝐽
1
𝑉 𝐾𝐽

]

]

,

𝐺 = [

[

𝐺

0

0

]

]

,

𝐴
𝑑
= [

[

𝐴
𝑑

0 0

0 0 0

0 0 0

]

]

, 𝐽 = [

[

𝐽
2

0 0

𝐿𝐽
2

𝐽
3

0

𝐾𝐽
2

0 𝐼

]

]

,

𝑑 (𝑡) = [

[

𝑑
2
(𝑡)

𝛿 (𝑡)

̇𝐹 (𝑡)

]

]

,

𝑔 (𝑥 (𝑡)) = 𝑔 (𝑥 (𝑡))

(14)

𝑧
2
(𝑡) is𝐻

2
reference output,

𝑧
2
(𝑡) = 𝐶

21
𝑥 (𝑡) + 𝐶

22
[𝑒
𝑇

𝜔
(𝑡) 𝑒
𝑇

𝐹
(𝑡)]
𝑇

+ 𝐶
𝑑2
𝑥 (𝑡 − 𝜏) (15)

𝑧
∞
(𝑡) is𝐻

∞
reference output,

𝑧
∞

(𝑡) = 𝐶
∞1

𝑥 (𝑡) + 𝐶
∞2

[𝑒
𝑇

𝜔
(𝑡) 𝑒
𝑇

𝐹
(𝑡)]
𝑇

+ 𝐶
𝑑∞

𝑥 (𝑡 − 𝜏) + 𝐷𝑑 (𝑡) ,

(16)

where 𝐶
21
, 𝐶
22
, 𝐶
𝑑2
, 𝐶
∞1

, 𝐶
∞2

, 𝐶
𝑑∞

, and 𝐷 are the
selected weighting matrices.

Definition 2. For constants 𝛾
1
> 0, 𝛾

2
> 0, and 𝛾

3
> 0, the

𝐻
∞

performance is denoted as follows:

𝐽
∞

=
𝑧∞ (𝑡)



2

− 𝛾
2

1

𝑑2 (𝑡)


2

− 𝛾
2

2
‖𝛿 (𝑡)‖

2

− 𝛾
2

3


̇𝐹 (𝑡)



2

− 𝛿 (𝑃
1
, 𝑄) ,

(17)

where

𝛿 (𝑃
1
, 𝑄) = 𝜙

𝑇

(0) 𝑃
1
𝜙 (0) + ∫

0

−𝑑

𝜙
𝑇

(𝜏) 𝑄𝜙 (𝜏) 𝑑𝜏. (18)

Definition 3. The𝐻
2
performance measure for (13) is defined

as 𝐽
2
= ‖𝑧
2
(𝑡)‖
2.
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Remark 4. Compared with [17], 𝐻
2
/𝐻
∞

mixed multiobjec-
tive optimization technique is used for the composite system
(13). In the proposed approach, the modeled disturbance and
fault are rejected by their estimations, while𝐻

∞
performance

is adopted to attenuate norm bounded uncertain distur-
bances and 𝐻

2
performance index is applied to optimize

estimation error.
At this stage, the objective is to find𝐾, 𝐿, and 𝑆 such that

system (13) is stable. The following result provides a design
method based on convex optimization technology [22].

Theorem 5. If for the parameter 𝜆 > 0, 𝑟
𝑖
(𝑖 = 1, . . . , 4),

matrices 𝐶
21
, 𝐶
22
, 𝐶
𝑑2
, 𝐶
∞1

, 𝐶
∞2

, 𝐶
𝑑∞

, and𝐷, there exist
matrices 𝑃

0
> 0, 𝑃

2
> 0, 𝑄

0
> 0, 𝑅

0
, and𝑅

2
and constants

𝛾
1

> 0, 𝛾
2

> 0, and 𝛾
3

> 0, if the following LMI-based
optimization problem holds:

min{𝑟
1
𝛾
1
+ 𝑟
2
𝛾
2
+ 𝑟
3
𝛾
3
+ 𝑟
4
𝜙
𝑇

(0) 𝑃
−1

0
𝜙 (0)} (19)

subject to

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
1

𝐴
𝑑
𝑄
0

𝐺 𝑉 Ξ
15

𝑃
0
𝑈
𝑇

1
𝑃
0
𝐶
𝑇

∞1
𝑃
0
𝐶
𝑇

21
𝑃
0

∗ −𝑄
0

0 0 0 0 𝐶
𝑇

𝑑∞
𝐶
𝑇

𝑑2
0

∗ ∗ −
1

𝜆
𝐼 0 0 0 0 0 0

∗ ∗ ∗ Ξ
4

Ξ
45

0 𝐶
𝑇

∞2
𝐶
𝑇

22
0

∗ ∗ ∗ ∗ Ξ
5

0 𝐷
𝑇

0 0

∗ ∗ ∗ ∗ ∗ −𝜆𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(20)

where

Ξ
1
= sym (𝐴𝑃

0
+ 𝐽𝑅
0
) , Ξ

15
= [𝐽
2

0 0] ,

Ξ
4
= sym (𝑃

2
𝑊 + 𝑅

2
𝑉) ,

Ξ
45

= [𝑅
2
𝐽
2

𝑃
2
𝐽
3

𝑃
2
𝐽
1
] ,

Ξ
5
= [

[

−𝛾
2

1
𝐼 0 0

0 −𝛾
2

2
𝐼 0

0 0 −𝛾
2

3
𝐼

]

]

,

𝑊 = [
𝑊 0

0 0
] , 𝑉 = [𝐽

1
𝑉 𝐽] ,

𝐽
1
= [

0

𝐼
] , 𝐽

3
= [

𝐽
3

0
] , 𝐶 = [𝐶

1
𝐶
2
] ,

(21)

then with gains 𝑆 = 𝑅
0
𝑃
−1

0
and 𝐿 = [

𝐿

𝐾
] = 𝑃

−1

2
𝑅
2
, error

system (13) is stable and satisfies 𝐽
∞

< 0 and 𝐽
2

≤ 𝛿(𝑃
1
, 𝑄).

The symmetric terms in a symmetric matrix are denoted by ∗.
The symbol sym() represents sym(Θ) := Θ + Θ

𝑇.

Proof. Consider the following Lyapunov function:

Π (𝑡) = 𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝜏) 𝑄𝑥 (𝜏) 𝑑𝜏 + 𝑒
𝑇

(𝑡) 𝑃
2
𝑒 (𝑡)

+ 𝜆∫

𝑡

0

[‖𝑈𝑥 (𝜏)‖
2

−
𝑔 (𝜏)



2

] 𝑑𝜏.

(22)

It is verified that Π(𝑡) ≥ 0 holds for all arguments. Along
with the trajectories of (13), it can be shown that

Π̇ (𝑡) = 2𝑥
𝑇

(𝑡) 𝑃
1

̇𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥(𝑡 − 𝜏)
𝑇

𝑄𝑥 (𝑡 − 𝜏)

+ 2𝑒
𝑇

(𝑡) 𝑃
2

̇𝑒 (𝑡) + 𝜆 [‖𝑈𝑥 (𝑡)‖
2

−
𝑔 (𝑥 (𝑡))



2

]

= 2𝑥
𝑇

(𝑡) 𝑃
1
[(𝐴 + 𝐽𝑆) 𝑥 (𝑡) + 𝐴

𝑑
𝑥 (𝑡 − 𝜏) + 𝐺𝑔 (𝑥 (𝑡))

+𝐽
1
𝑉𝑒
𝜔
(𝑡) + 𝐽𝑒

𝐹
(𝑡) + 𝐽

2
𝑑
2
(𝑡)]

+ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥(𝑡 − 𝜏)
𝑇

𝑄𝑥 (𝑡 − 𝜏)

+ 𝜆𝑥
𝑇

(𝑡) 𝑈
𝑇

𝑈𝑥 (𝑡) − 𝜆
𝑔 (𝑥 (𝑡))



2

+ 2𝑒
𝑇

(𝑡)

× 𝑃
2
[(𝑊 + 𝐿𝑉) 𝑒 (𝑡) + 𝐿𝐽

2
𝑑
2
(𝑡) + 𝐽

3
𝛿 (𝑡) + 𝐽

1

̇𝐹 (𝑡)] .

(23)

In the absence of 𝑑(𝑡) (i.e., 𝑑(𝑡) = 0), it can be seen that

𝑉 (𝑡) = 𝑠
𝑇

(𝑡) [Φ − 𝜁𝜁
𝑇

] 𝑠 (𝑡) , (24)

where
𝑠
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏) 𝑔
𝑇

(𝑥 (𝑡)) 𝑒
𝑇

(𝑡)] ,

𝜁
𝑇

= [𝐶
21

𝐶
𝑑2

0 𝐶
22
] ,

Φ =

[
[
[
[
[

[

Φ
11

𝑃
1
𝐴
𝑑
+ 𝐶
𝑇

21
𝐶
𝑑2

𝑃
1
𝐺 𝑃
1
𝑉 + 𝐶

𝑇

21
𝐶
22

∗ −𝑄 + 𝐶
𝑇

𝑑2
𝐶
𝑑2

0 0

∗ ∗ −𝜆𝐼 0

∗ ∗ ∗ Φ
44

]
]
]
]
]

]

,
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Φ
11

= sym (𝑃
1
(𝐴 + 𝐽𝑆)) + 𝜆𝑈

𝑇

𝑈 + 𝑄 + 𝐶
𝑇

21
𝐶
21
,

Φ
44

= sym (𝑃
2
(𝑊 + 𝐿𝑉)) + 𝐶

𝑇

22
𝐶
22
.

(25)
From (20), it can be seen that

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
1
+ 𝑃
0
𝑄
−1

0
𝑃
0
+

1

𝜆
𝑃
0
𝑈
𝑇

0
𝑈
0
𝑃
0

𝑄
0
𝐴
𝑑

𝐺 𝑉 Ξ
15

𝑃
0
𝐶
𝑇

∞1
𝑃
0
𝐶
𝑇

21

∗ −𝑄
0

0 0 0 𝐶
𝑇

𝑑∞
𝐶
𝑇

𝑑2

∗ ∗ −
1

𝜆
𝐼 0 0 0 0

∗ ∗ ∗ Ξ
4

Ξ
45

𝐶
𝑇

∞2
𝐶
𝑇

22

∗ ∗ ∗ ∗ Ξ
5

0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (26)

From the first, second, third, fourth, and seventh columns
and rows of the leftmatrix in inequality (26) it can be verified
that

Φ
0
=

[
[
[
[
[
[
[
[

[

Ξ
1
+ 𝑃
0
𝑄
−1

0
𝑃
0
+

1

𝜆
𝑃
0
𝑈
𝑇

0
𝑈
0
𝑃
0

𝑄
0
𝐴
𝑑

𝐺 𝑉 𝑃
0
𝐶
𝑇

21

∗ −𝑄
0

0 0 𝐶
𝑇

𝑑2

∗ ∗ −
1

𝜆
𝐼 0 0

∗ ∗ ∗ Ξ
4

𝐶
𝑇

22

∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]

]

< 0.

(27)

Defining 𝑃
0

= 𝑃
−1

1
, 𝑄
−1

= 𝑄
0
, premultiplied and

postmultiplied simultaneously by diag {𝑃−1
0

, 𝑄
−1

0
, 𝐼, 𝐼, 𝐼}, it

can be seen by using Schur complement formula thatΦ
0
< 0

leads to Φ < 0. When Φ < 0 holds, we have

𝑉 (𝑡) < −𝑠
𝑇

(𝑡) 𝜁𝜁
𝑇

𝑠 (𝑡) = −𝑧
𝑇

2
𝑧
2
≤ 0. (28)

It follows that (13) is asymptotically stable in the absence
of the exogenous input 𝑑(𝑡). Next, we consider the perfor-
mances to be optimized for (13). Consider two auxiliary
functions as follows:

𝐽
0
= 𝑧
𝑇

2
(𝑡) 𝑧
2
(𝑡) + 𝑉 (𝑡) ,

𝐽
1
= 𝑧
𝑇

∞
(𝑡) 𝑧
∞

(𝑡) − 𝛾
2

1
𝑑
2
(𝑡)
𝑇

𝑑
2
(𝑡) − 𝛾

2

2
𝛿(𝑡)
𝑇

𝛿 (𝑡)

− 𝛾
2

3

̇𝐹(𝑡)
𝑇 ̇𝐹 (𝑡) + 𝑉 (𝑡) .

(29)

Following the definition of the 𝐻
2
performance, we only

consider the case in the absence of 𝑑(𝑡). It can be verified that
𝐽
0
≤ 𝑠
𝑇

(𝑡)Φ𝑠(𝑡).

In the presence of 𝑑(𝑡), it can be seen that 𝐽
1
= 𝑞
𝑇

(𝑡)Ψ𝑞(𝑡),
where

𝑞
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏) 𝑔
𝑇

(𝑥 (𝑡)) 𝑒
𝑇

(𝑡) 𝑑
𝑇

(𝑡)] ,

Ψ =

[
[
[
[
[
[

[

Ψ
11

𝑃
1
𝐴
𝑑

𝑃
1
𝐺 𝑃
1
𝑉 Ψ
15

∗ −𝑄 0 0 0

∗ ∗ −
1

𝜆
𝐼 0 0

∗ ∗ ∗ Ψ
44

Ψ
45

∗ ∗ ∗ ∗ Ξ
5

]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶
𝑇

∞1

𝐶
𝑇

𝑑∞

0

𝐶
𝑇

∞2

0

]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶
𝑇

∞1

𝐶
𝑇

𝑑∞

0

𝐶
𝑇

∞2

0

]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

,

(30)

where

Ψ
11

= sym (𝑃
1
𝐴 + 𝑃

1
𝐽𝑆) +

1

𝜆
𝑈
𝑇

𝑈 + 𝑄,

Ψ
15

= [𝑃
1
𝐽
2

0 0] ,

Ψ
44

= sym (𝑃
2
𝑊 + 𝑃

2
𝐿𝑉) ,

Ψ
45

= [𝑃
2
𝐿𝐽
2

𝑃
2
𝐽
3

𝑃
2
𝐽
1
] .

(31)

Denote

Ψ
0
= Ψ + [𝐶

21
𝐶
𝑑2

0 𝐶
22

0]
𝑇

[𝐶
21

𝐶
𝑑2

0 𝐶
22

0] .

(32)

It can be seen by using Schur complement formula that
(20) leads to Ψ

0
< 0, and then Ψ < 0 holds. It can be verified

that both 𝐽
0
< 0 and 𝐽

1
< 0 hold. This completes the proof.



6 Mathematical Problems in Engineering

4. Simulation Examples

In this section, we consider the longitudinal dynamics of A4D
aircraft at a flight condition of 15000 ft altitude and 0.9 Mach
given in [2]. The longitudinal dynamics can be denoted as

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐺𝑔 (𝑥 (𝑡)) + 𝐽 (𝑢 (𝑡) + 𝐹 (𝑡))

+ 𝐽
1
𝑑
1
(𝑡) + 𝐽

2
𝑑
2
(𝑡) ,

(33)

where 𝑥(𝑡) are measurable by using sensors technique. The
coefficient matrices of aircraft model are given by

𝐴 =

[
[
[

[

−0.0605 32.37 0 32.2

−0.00014 −1.475 1 0

−0.0111 −34.72 −2.793 0

0 0 1 0

]
]
]

]

,

𝐽 =

[
[
[

[

0

−0.1064

−33.8

0

]
]
]

]

, 𝐽
1
=

[
[
[

[

0

−0.0532

−16.9000

0

]
]
]

]

, 𝐽
2
=

[
[
[

[

0.1

0

−3

0.1

]
]
]

]

.

(34)

It is supposed that

𝐺 = [0 0 50 0]
𝑇

, 𝑔 (𝑥 (𝑡)) = sin (2𝜋5𝑡) 𝑥
2
(𝑡) . (35)

then, the matrix 𝑈 can be selected as 𝑈 = diag {0, 1, 0, 0}
and the norm condition (3) can be satisfied. 𝐴

𝑑
= 0.5 ×

𝐴, 𝜏 = 2. Periodic disturbance 𝑑
1
(𝑡) caused by rotating aerial

propeller is assumed to be anunknownharmonic disturbance
described by (2) with

𝑊 = [
0 5

−5 0
] , 𝐸 = [25 0] , 𝐻

3
= [

0.1

0.1
] , (36)

𝛿(𝑡) is the additional disturbance signal resulting from the
perturbations and uncertainties in the exogenous system (2)
and satisfies 2-norm boundedness. In simulation, we select
𝛿(𝑡) as the random signal with upper 2-norm bound 1. Wind
gust and system noises 𝑑

2
(𝑡) can also be considered as the

random signal with upper 2-norm bounded.
The initial values of the states are supposed to be 𝑥

𝑇

(0) =

[2 − 2 3 2]. For the reference output, it is denoted that

𝐶
∞1

= [1 1 1 1] , 𝐶
∞2

= [1 1 1] ,

𝐶
𝑑∞

= [0.1 0.1 0.1 0.1] ,

𝐶
21

= [0.1 0.1 0.1 0.1] , 𝐶
22

= [0.1 0.1 0.1] ,

𝐶
𝑑2

= [0.01 0.01 0.01 0.01] .

(37)

For 𝜆 = 1, 𝛾
1
= 1, 𝛾

2
= 1, and 𝛾

3
= 1, it can be solved via

LMI related to (20) that the gain of fault diagnosis observer
(7) is

𝐾 = [20.9299 10.0231 1.3553 20.9682] , (38)

the gain of disturbance observer (4) is

𝐿 = [
−0.2584 −0.5402 −0.0142 −0.2610

2.3246 0.7523 0.1526 2.3269
] , (39)
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Figure 1: Disturbances estimation error in disturbance observer.

0

1

2

3

4

5

Fault estimation
Real value
Estimation error

0 5 10 15 20 25 30 35 40
Time (s)

−1

Figure 2: Bias fault, its estimation, and error.

and the gain of state feedback controller is

𝑆 = [89.6396 471.0670 74.2419 465.7941] . (40)

When the disturbance observer is constructed based on
(4) and (5), the estimation error of exogenous disturbances
is shown in Figure 1. The actuator bias fault is supposed to
occur at 15th second as 𝐹 = 4. The estimation and its
error of fault with system disturbances are demonstrated
in Figure 2, where the solid line represents the real fault
signal, the dash-dotted line is its estimation, and the dash line
denotes its estimation error. In Figure 3, the state response
signals of the control system are illustrated. It can be seen
that the proposed fault tolerant controller has a good control
ability for configuring fault and rejecting and attenuating
disturbances simultaneously. In Figure 4, the ramp fault is
assumed to occur at 15th second with slope 0.1. From
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Figure 4: Ramp fault, its estimation, and error.

Figure 4, it is shown that the time-varying fault can also be
well estimated.

5. Conclusion

In this paper, a robust antidisturbance fault tolerant control
problem is investigated for nonlinear time delay systems
with faults andmultiple disturbances.There are the following
features of the proposed algorithm compared with the previ-
ous results. First, the multiple disturbances and state time-
delay are considered simultaneously in this paper. Second,
an FTC scheme is addressed with disturbance rejection and
attenuation performance by combining fault accommodation
and DOBC with a mixed 𝐻

2
/𝐻
∞

controller, with which the
fault can be accommodated and the disturbances can be
rejected and attenuated simultaneously. Finally, simulation

for a flight control system is given to show the efficiency of
the proposed approach.
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The exponential stability problem is considered in this paper for discrete-time switched BAM neural networks with time delay.
The average dwell time method is introduced to deal with the exponential stability analysis of the systems for the first time. By
constructing a new switching-dependent Lyapunov-Krasovskii functional, somenewdelay-dependent criteria are developed,which
guarantee the exponential stability. A numerical example is provided to demonstrate the potential and effectiveness of the proposed
algorithms.

1. Introduction

It is well known that bidirectional associative memory
(BAM) neural networks have been proposed by Kosko
[1, 2], which include two layers: the 𝑋-layer and the 𝑌-layer.
The neurons in one layer are fully interconnected to the
neurons in another layer. Recently, the dynamics analysis for
BAM neural networks has received much attention due to
their extensive applications in pattern recognition, solving
optimization, automatic control engineering, and so forth. It
is known that time delay, which will inevitably occur in the
communication owing to the unavoidable finite switching
speed of amplifiers, is the main cause of instability and
poor performance of neural networks. Hence, it is of great
importance to study the stability of BAM neural networks
with time delay. Many asymptotic or exponential stability
conditions for BAM neural networks with time delay were
developed, see, for example [3–10] and the references therein.

On the other hand, switched systems are an important
class of hybrid dynamical systems which consist of a family
of continuous-time or discrete-time subsystems and a rule
that orchestrates the switching among them. Switched sys-
tems provide a natural and convenient unified framework
for mathematical modeling of many physical phenomena
and practical applications such as autonomous transmission

systems, computer disc driver, room temperature control,
power electronics, and chaos generators, to name a few.
Lots of valuable results concerning the stability analysis and
stabilization for linear or nonlinear hybrid and switched
systems were established, see, for example [11–14] and the
references cited therein.

Recently, the switched neural networks, whose individual
subsystems are a set of neural networks, have found their
applications in the field of high-speed signal processing and
artificial intelligence. Many researchers have been devoted
to studying the stability issues for switched neural networks;
see, for example, [15–17]. In [15], by using switched Lyapunov
function method and a generalized Halanay inequality tech-
nique, the authors illustrated the asymptotic and exponen-
tial stability conditions for hybrid impulsive and switching
Hopfield neural networks. While the switched Hopfield
neural networks with time-varying delay were considered
in [16], a robust stability condition was proposed based on
the Lyapunov-Krasovskii functional approach. By combining
Cohen-Grossberg neural networks with an arbitrary switch-
ing rule, the model of the switched Cohen-Grossberg neural
networks with mixed time-varying delays was established
in [17], and the robust stability criteria were established for
these systems. However, all these results are related to the
continuous-time switched neural networks. To the best of
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the authors’ knowledge, stability issues of the discrete-time
switched neural networks have not been fully investigated
to date. Particularly for the exponential stability analysis of
the discrete-time switched BAMneural networks under some
constrained switching, few results have been available in the
literature so far, which motivates us to carry out the present
study.

In this paper, the exponential stability analysis of discrete-
time switched BAM neural networks with time delay is
considered. To begin with, the mathematical model of the
discrete-time switched BAM neural networks with time
delay is established. Then by constructing a new switching-
dependent Lyapunov-Krasovskii functional, some sufficient
criteria are developed to guarantee the discrete-time switched
BAM neural networks to be exponentially stable based on
the average dwell time approach and finite sum inequality
technology. Finally, A numerical example is provided to
demonstrate the potential and effectiveness of the proposed
algorithms.

Notations. In this paper, we use 𝐴 > 0 (𝐴 < 0) to denote
a positive- (negative-) definite matrix 𝐴; 𝐴𝑇 represents the
transpose of matrix 𝐴; 𝜆

𝑀
(⋅) (resp., 𝜆

𝑚
(⋅)) means the max-

imum (resp., minimum) eigenvalue of (⋅). Let R denote the
set of real numbers;R𝑛 denotes the 𝑛-dimensional Euclidean
space;R𝑛×𝑚 is the set of all 𝑛×𝑚 realmatrices;R+ denotes the
set of {0, 1, 2, . . .}. N = {1, 2, . . . , 𝑁} means a set of positive
integers; N = {1, 2, . . . , 𝑛}. The notation diag(⋅) denotes a
diagonal matrix. For given 𝜏 > 0 and 𝜃 ∈ [−𝜏, 0], ‖𝑥(𝑡)‖
denotes vector norm defined by ‖𝑥(𝑡)‖ = sup

−𝜏≤𝜃≤0
‖𝑥(𝑡 +

𝜃)‖. Matrices, if their dimensions are not explicitly stated,
are assumed to have compatible dimensions for algebraic
operations.

2. Problem Formulation and Preliminaries

In this section, firstly, we will establish the model of discrete-
time switched BAM neural networks. Consider the following
discrete-time BAM neural networks with time delay (Σ

1
):

𝑥
𝑝
(𝑘 + 1)

= 𝑎
𝑝
𝑥
𝑝
(𝑘) +

𝑛

∑

𝑞=1

𝑤
𝑞𝑝
𝑓
𝑞
(𝑦
𝑞
(𝑘 − 𝑑)) + 𝐼

𝑝
, 𝑝 ∈ N,

𝑦
𝑞
(𝑘 + 1)

= 𝑏
𝑞
𝑦
𝑞
(𝑘) +

𝑛

∑

𝑝=1

V
𝑝𝑞
𝑔
𝑝
(𝑥
𝑝
(𝑘 − 𝜏)) + 𝐽

𝑞
, 𝑞 ∈ N,

(1)

where 𝑥
𝑝
(𝑘), 𝑦

𝑞
(𝑘) are states of the 𝑝th neuron from the neu-

ral field𝐹
𝑋
and the 𝑞th neuron from the neural field𝐹

𝑌
at time

𝑘, respectively. 𝑎
𝑝
, 𝑏
𝑞
∈ (0, 1) describe the stability of internal

neuron processes on the𝑋-layer and the𝑌-layer, respectively.
𝑤
𝑞𝑝
, V
𝑝𝑞

are constants and denote the synaptic connection
weights. 𝑓

𝑞
(⋅) and 𝑔

𝑝
(⋅) denote the activation functions of the

𝑞th neuron from the neural field 𝐹
𝑌
and the 𝑝th neuron from

the neural field 𝐹
𝑋
, respectively. 𝐼

𝑝
and 𝐽
𝑞
are the external

constant inputs from outside of the network acting on the𝑝th

neuron from the neural field 𝐹
𝑋
and the 𝑞th neuron from the

neural field 𝐹
𝑌
, respectively. 𝑑 and 𝜏 are constant delays.

The system (Σ
1
) can be rewritten as the vector form (Σ

2
):

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑊
𝑇

𝑓 (𝑦 (𝑘 − 𝑑)) + 𝐼,

𝑦 (𝑘 + 1) = 𝐵𝑦 (𝑘) + 𝑉
𝑇

𝑔 (𝑥 (𝑘 − 𝜏)) + 𝐽,

(2)

where

𝑥 (𝑘) = [𝑥
1
(𝑘) , 𝑥

2
(𝑘) , . . . , 𝑥

𝑛
(𝑘)]
𝑇

,

𝑦 (𝑘) = [𝑦
1
(𝑘) , 𝑦

2
(𝑘) , . . . , 𝑦

𝑛
(𝑘)]
𝑇

,

𝐴 = diag (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) ,

𝐵 = diag (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) ,

𝑊 = (𝑤
𝑞𝑝
)
𝑛×𝑛

, 𝑉 = (V
𝑝𝑞
)
𝑛×𝑛

,

𝑓 (𝑦 (𝑘))

= [𝑓
1
(𝑦
1
(𝑘)) , 𝑓

2
(𝑦
2
(𝑘)) , . . . , 𝑓

𝑛
(𝑦
𝑛
(𝑘))]
𝑇

,

𝑔 (𝑥 (𝑘))

= [𝑔
1
(𝑥
1
(𝑘)) , 𝑔

2
(𝑥
2
(𝑘)) , . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑘))]
𝑇

,

𝐼 = [𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
] , 𝐽 = [𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
] .

(3)

Throughout this paper, we always assume the following.

(G
1
) The neurons activation functions 𝑓

𝑞
(⋅) and

𝑔
𝑝
(⋅) (𝑝, 𝑞 ∈ N) are bounded on R.

(G
2
) There exist constants ℓ(1)

𝑞
> 0 and ℓ

(2)

𝑝
> 0 such that


𝑓
𝑞
(𝜉
1
) − 𝑓
𝑞
(𝜉
2
)

≤ ℓ
(1)

𝑞

𝜉1 − 𝜉
2

 ,


𝑔
𝑝
(𝜉
1
) − 𝑔
𝑝
(𝜉
2
)

≤ ℓ
(2)

𝑝

𝜉1 − 𝜉
2

 ,

∀𝜉
1
, 𝜉
2
∈ R, 𝑝, 𝑞 ∈ N.

(4)

Then, under the assumptions (G
1
) and (G

2
), system (Σ

2
) has

at least one equilibrium.
Now, we shift equilibrium point 𝑥∗ = [𝑥

∗

1
𝑥
∗

2
. . .

𝑥
∗

𝑛
], 𝑦∗ = [𝑦

∗

1
𝑦
∗

2
⋅ ⋅ ⋅ 𝑦

∗

𝑛
] of system (Σ

2
) to the origin.

Let 𝑥(𝑘) = 𝑥(𝑘) − 𝑥
∗, 𝑦(𝑘) = 𝑦(𝑘) − 𝑦

∗; then the system (Σ
2
)

can be transformed to the following system (Σ
3
):

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑊
𝑇

𝑓 (𝑦 (𝑘 − 𝑑)) ,

𝑦 (𝑘 + 1) = 𝐵𝑦 (𝑘) + 𝑉
𝑇

𝑔 (𝑥 (𝑘 − 𝜏)) ,

(5)
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where

𝑥 (𝑘) = [𝑥
1
(𝑘) , 𝑥

2
(𝑘) , . . . , 𝑥

𝑛
(𝑘)]
𝑇

,

𝑦 (𝑘) = [𝑦
1
(𝑘) , 𝑦

2
(𝑘) , . . . , 𝑦

𝑛
(𝑘)]
𝑇

,

𝑓 (𝑦 (𝑘)) = [𝑓
1
(𝑦
1
(𝑘)) , 𝑓

2
(𝑦
2
(𝑘)) , . . . , 𝑓

𝑛
(𝑦
𝑛
(𝑘))]
𝑇

,

𝑔 (𝑥 (𝑘)) = [𝑔
1
(𝑥
1
(𝑘)) , 𝑔

2
(𝑥
2
(𝑘)) , . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑘))]
𝑇

,

𝑓
𝑞
(𝑦
𝑞
(𝑘)) = 𝑓

𝑞
(𝑦
𝑞
(𝑘)) − 𝑓

𝑞
(𝑦
∗

𝑞
) , 𝑞 ∈ N,

𝑔
𝑝
(𝑥
𝑝
(𝑘)) = 𝑔

𝑝
(𝑥
𝑝
(𝑘)) − 𝑔

𝑝
(𝑔
∗

𝑝
) , 𝑝 ∈ N.

(6)

Obviously, the activation functions 𝑓
𝑞
(⋅) and 𝑔

𝑝
(⋅) satisfy the

following conditions.

(G
3
) There exist constants ℓ(1)

𝑞
> 0 and ℓ

(2)

𝑝
> 0 such that


𝑓
𝑞
(𝜉)


≤ ℓ
(1)

𝑞

𝜉
 ,


𝑔
𝑝
(𝜉)


≤ ℓ
(2)

𝑝

𝜉
 ,

∀𝜉 ∈ R, 𝑝, 𝑞 ∈ N.

(7)

With the rapid development of intelligent control, hybrid
systems have been investigated due to their extensive applica-
tions. In recent years, considerable efforts have been focused
on analysis and design of switched systems. The discrete-
time switched system can be characterized by the following
difference equation (Σ

4
):

𝑥 (𝑘 + 1) = Γ
𝜎(𝑘)

𝑥 (𝑘) , (8)

where 𝜎(𝑘) is a switching signal which takes its values in the
finite setN = {1, 2, . . . , 𝑁}. Γ

𝜎(𝑘)
= Γ
𝑖
, when 𝜎(𝑘) = 𝑖, are the

functions of the switching signals.
Combining the theories of switched systems and discrete-

time BAM neural networks, the discrete-time switched BAM
neural networks can be formulated as the following system
(Σ):

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝑊
𝑇

𝜎(𝑘)
𝑓 (𝑦 (𝑘 − 𝑑)) ,

𝑦 (𝑘 + 1) = 𝐵
𝜎(𝑘)

𝑦 (𝑘) + 𝑉
𝑇

𝜎(𝑘)
𝑔 (𝑥 (𝑘 − 𝜏)) ,

(9)

where 𝜎(𝑘) is a switching signal which takes its values in the
finite setN = {1, 2, . . . , 𝑁}.

For the discrete-time switched BAMneural networks (Σ),
we have the following assumptions.
(H
1
) The initial value is 𝑥(𝑠) = 𝜙(𝑠), 𝑦(𝑠) = 𝜓(𝑠), 𝑠 ∈

[−ℎ, 0], where ℎ = max{𝑑, 𝜏}.
(H
2
) There exist matrices 𝐿

1
> 0 and 𝐿

2
> 0 such that

𝑓 (𝜉)
 ≤ 𝐿
1

𝜉
 ,

𝑔 (𝜉)
 ≤ 𝐿
2

𝜉
 , ∀𝜉 ∈ R, (10)

where 𝐿
1

= diag(ℓ(1)
1
, ℓ
(1)

2
, . . . , ℓ

(1)

𝑛
) and 𝐿

2
=

diag(ℓ(2)
1
, ℓ
(2)

2
, . . . , ℓ

(2)

𝑛
).

(H
3
) Switching sequence is defined as 𝜁 = {[𝑥

𝑘
0

𝑦
𝑘
0

]
𝑇

;

(𝑖
0
, 𝑘
0
), (𝑖
1
, 𝑘
1
), . . . , (𝑖

𝑚
, 𝑘
𝑚
), . . . , |𝑖

𝑚
∈ N, 𝑚 ∈ R+}.

When 𝑘 ∈ [𝑘
𝑚
, 𝑘
𝑚+1

), the 𝑘
𝑚
th subsystem is activated

and the states of system (Σ) do not jump when switch
occurs.

Remark 1. By combining the switched systems theory and the
discrete-timeBAMneural networksmodel, themathematical
model of discrete-time switched BAM neural networks is
introduced as above. A set of discrete-time BAM neural
networks with time delay are used as the subsystems, and
an arbitrary switching rule is assumed to coordinate the
switching between these neural networks.

To present the main results of this paper more precisely,
the following definitions and lemmas are introduced, which
will be essential for the later development.

Definition 2 (see [12]). For any 𝑘 ≥ 𝑘
0
and any switched signal

𝜎(𝜍), 𝑘
0
≤ 𝜍 < 𝑘, let𝑁

𝜎
denote the switching numbers of 𝜎(𝜍)

during the interval [𝑘
0
, 𝑘]. If there exist 𝑁

0
≥ 0 and 𝑇

𝑎
> 0

such that 𝑁
𝜎
(𝑘
0
, 𝑘) ≤ 𝑁

0
+ (𝑘 − 𝑘

0
)/𝑇
𝑎
, then 𝑇

𝑎
and 𝑁

0
are

called average dwell time and the chatter bound, respectively.

Definition 3. The discrete-time switched BAM neural net-
work (Σ) is said to be exponentially stable if its solution satis-
fies

‖𝑥 (𝑘)‖
2

+
𝑦 (𝑘)



2

≤ 𝐾 (
𝜙


2

𝐿
+
𝜓



2

𝐿
) 𝜆
−(𝑘−𝑘

0
)

, ∀𝑘 ≥ 𝑘
0
,

(11)

for any initial condition (𝑘
0
, 𝜙) ∈ R+ × 𝐶

𝑛 and (𝑘
0
, 𝜓) ∈

R+ × 𝐶
𝑛

⋅ ‖𝜙‖
𝐿

= sup
𝑘
0
−ℎ≤ℓ≤𝑘

0

‖𝜙(ℓ)‖, and ‖𝜓‖
𝐿

=

sup
𝑘
0
−ℎ≤ℓ≤𝑘

0

‖𝜓(ℓ)‖, ℎ = max{𝑑, 𝜏}. 𝐾 > 0 is the decay coef-
ficient, and 𝜆 > 1 is the decay rate.

Remark 4. Without loss of generality, in this paper, we
assume 𝑁

0
= 0 for simplicity as commonly used in the

literature.

Remark 5. Based on the definition of exponential stability for
BAMneural networks in [5] and the definition of exponential
stability for switched systems in [13], we give the above
definition of exponential stability for discrete-time switched
BAM neural networks.

Lemma 6 (the Schur complement [18]). For any symmetric
matrix 𝑆 = [

𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

] < 0, the following conditions are equiva-
lent:

(i) 𝑆
11

< 0, and 𝑆
22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0,
(ii) 𝑆
22

< 0, and 𝑆
11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 7 (finite sum inequality [13]). For any constant mat-
rix 𝑌 = [𝑀

1
𝑀
2
] ∈ R𝑛×2𝑛, 𝑅 > 0, ℎ ≥ 0, the following ineq-

uality holds:

−

𝑘−1

∑

𝑗=𝑘−ℎ

ℓ
𝑇

(𝑗) 𝑅ℓ (𝑗) ≤ 𝜉
𝑇

(𝑘) [

[

𝑀
𝑇

1
+𝑀
1

−𝑀
𝑇

1
+𝑀
2

∗ −𝑀
𝑇

2
−𝑀
2

]

]

× 𝜉 (𝑘) + ℎ𝜉
𝑇

(𝑘) 𝑌
𝑇

𝑅
−1

𝑌𝜉 (𝑘) ,

(12)

where ℓ(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘) and 𝜉(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − ℎ)]
𝑇.
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3. Main Result

In this section, the exponential stability condition for the
discrete-time switched BAM neural networks (Σ) will be
presented using the average dwell time method.

When 𝜎(𝑘) = 𝑖, we have the following subsystem (Σ
𝑖

):

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝑊

𝑇

𝑖
𝑓 (𝑦 (𝑘 − 𝑑)) ,

𝑦 (𝑘 + 1) = 𝐵
𝑖
𝑦 (𝑘) + 𝑉

𝑇

𝑖
𝑔 (𝑥 (𝑘 − 𝜏)) .

(13)

Choose the Lyapunov-Krasovskii functional candidate for the
subsystem (Σ

𝑖

) as

𝑉
𝑖
(𝑘) = 𝑉

1𝑖
(𝑘) + 𝑉

2𝑖
(𝑘) + 𝑉

3𝑖
(𝑘) , (14)

where

𝑉
1𝑖
(𝑘) = 𝑥

𝑇

(𝑘) 𝑃
1𝑖
𝑥 (𝑘) + 𝑦

𝑇

(𝑘) 𝑃
2𝑖
𝑦 (𝑘) ,

𝑉
2𝑖
(𝑘) =

𝑘−1

∑

𝜃=𝑘−𝜏

𝑟
𝜃−𝑘+1

𝑥
𝑇

(𝜃) 𝑄
1𝑖
𝑥 (𝜃)

+

𝑘−1

∑

𝜃=𝑘−𝑑

𝑟
𝜃−𝑘+1

𝑦
𝑇

(𝜃) 𝑄
2𝑖
𝑦 (𝜃) ,

𝑉
3𝑖
(𝑘) =

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

1
(𝜃) 𝑅
1𝑖
ℓ
1
(𝜃)

+

−1

∑

𝑠=−𝑑

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

2
(𝜃) 𝑅
2𝑖
ℓ
2
(𝜃) ,

ℓ
1
(𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) ,

ℓ
2
(𝑘) = 𝑦 (𝑘 + 1) − 𝑦 (𝑘) .

(15)

Now we give the following theorem, which plays an
important role in the derivation of the exponential stability
condition for the discrete-time switched BAM neural net-
works (Σ).

Theorem 8. Under the assumptions (𝐻
1
)–(𝐻
3
), for given

scalar 𝑟 > 1, the decay estimation

𝑉
𝑖
(𝑘) ≤ 𝑟

−(𝑘−𝑘
0
)

𝑉
𝑖
(𝑘
0
) (16)

is satisfied along any trajectory of system (Σ
𝑖

) if there exist
matrices 𝑃

1𝑖
> 0, 𝑃

2𝑖
> 0, 𝑄

1𝑖
> 0, 𝑄

2𝑖
> 0, 𝑅

1𝑖
> 0, 𝑅

2𝑖
>

0, 𝑁
1𝑖
, 𝑁
2𝑖
, 𝑀
1𝑖
, 𝑀
2𝑖
, 𝑇
1𝑖
> 0, and 𝑇

2𝑖
> 0, 𝑖 ∈ N, such that

the following linear matrix inequality holds:

[
[
[

[

Ω
𝑖

Γ
𝑇

1𝑖
Γ
𝑇

2𝑖

∗ −𝜏𝑟
𝜏

𝑅
1𝑖

0

∗ ∗ −𝑑𝑟
𝑑

𝑅
2𝑖

]
]
]

]

< 0, (17)

where

Ω
𝑖
=

[
[
[
[
[
[
[

[

Ω
11

Ω
12

0 0 0 Ω
16

∗ Ω
22

0 0 0 0

∗ ∗ Ω
33

Ω
34

0 0

∗ ∗ ∗ Ω
44

Ω
45

0

∗ ∗ ∗ ∗ Ω
55

0

∗ ∗ ∗ ∗ ∗ Ω
66

]
]
]
]
]
]
]

]

,

Γ
1𝑖
= [𝜏𝑁

1𝑖
𝜏𝑁
2𝑖

0 0 0 0] ,

Γ
2𝑖
= [0 0 0 𝑑𝑀

1𝑖
𝑑𝑀
2𝑖

0] ,

Ω
11

= 𝐴
𝑖
𝑃
1𝑖
𝐴
𝑖
− 𝑟
−1

𝑃
1𝑖
+ 𝑄
1𝑖

+ (𝐴
𝑖
− 𝐼) (𝜏𝑅

1𝑖
) (𝐴
𝑖
− 𝐼) + 𝑟

−𝜏

(𝑁
𝑇

1𝑖
+ 𝑁
1𝑖
) ,

Ω
12

= 𝑟
−𝜏

(−𝑁
𝑇

1𝑖
+ 𝑁
2𝑖
) ,

Ω
22

= −𝑟
−𝜏

(𝑄
1𝑖
+ 𝑁
𝑇

2𝑖
+ 𝑁
2𝑖
) + 𝑇
1𝑖
,

Ω
33

= 𝑉
𝑖
(𝑃
2𝑖
+ 𝑑𝑅
2𝑖
) 𝑉
𝑇

𝑖
− 𝐿
−1

1𝑖
𝑇
1𝑖
𝐿
−1

1𝑖
,

Ω
34

= 𝑉
𝑖
𝑃
2𝑖
𝐵
𝑖
+ 𝑉
𝑖
(𝑑𝑅
2𝑖
) (𝐵
𝑖
− 𝐼) ,

Ω
44

= 𝐵
𝑖
𝑃
2𝑖
𝐵
𝑖
− 𝑟
−1

𝑃
2𝑖
+ 𝑄
2𝑖
+ (𝐵
𝑖
− 𝐼) (𝑑𝑅

2𝑖
) (𝐵
𝑖
− 𝐼)

+ 𝑟
−𝑑

(𝑀
𝑇

1𝑖
+𝑀
1𝑖
) ,

Ω
45

= 𝑟
−𝑑

(−𝑀
𝑇

1𝑖
+𝑀
2𝑖
) ,

Ω
55

= −𝑟
−𝑑

(𝑄
2𝑖
+𝑀
𝑇

2𝑖
+𝑀
2𝑖
) + 𝑇
2𝑖
,

Ω
16

= 𝐴
𝑖
𝑃
1𝑖
𝑊
𝑇

𝑖
+ (𝐴
𝑖
− 𝐼) (𝜏𝑅

1𝑖
)𝑊
𝑇

𝑖
,

Ω
66

= 𝑊
𝑖
(𝑃
1𝑖
+ 𝜏𝑅
1𝑖
)𝑊
𝑇

𝑖
− 𝐿
−1

2𝑖
𝑇
2𝑖
𝐿
−1

2𝑖
.

(18)

Proof. Calculating the differential of 𝑉
𝑖
(𝑘) along the trajec-

tory of system (Σ
𝑖

), we obtain

Δ𝑉
1𝑖
(𝑘) = 𝑥

𝑇

(𝑘 + 1) 𝑃
1𝑖
𝑥 (𝑘 + 1)

+ 𝑦
𝑇

(𝑘 + 1) 𝑃
2𝑖
𝑦 (𝑘 + 1)

− 𝑥
𝑇

(𝑘) 𝑃
1𝑖
𝑥 (𝑘) − 𝑦

𝑇

(𝑘) 𝑃
2𝑖
𝑦 (𝑘)

= 𝑥
𝑇

(𝑘 + 1) 𝑃
1𝑖
𝑥 (𝑘 + 1)

− 𝑟
−1

𝑥
𝑇

(𝑘) 𝑃
1𝑖
𝑥 (𝑘) + 𝑦

𝑇

(𝑘 + 1) 𝑃
2𝑖
𝑦 (𝑘 + 1)

− 𝑟
−1

𝑦
𝑇

(𝑘) 𝑃
2𝑖
𝑦 (𝑘) + (𝑟

−1

− 1)𝑉
1𝑖
(𝑘) ,

(19)
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Δ𝑉
2𝑖
(𝑘) =

𝑘

∑

𝜃=𝑘+1−𝜏

𝑟
𝜃−𝑘

𝑥
𝑇

(𝜃) 𝑄
1𝑖
𝑥 (𝜃)

+

𝑘

∑

𝜃=𝑘+1−𝑑

𝑟
𝜃−𝑘

𝑦
𝑇

(𝜃) 𝑄
2𝑖
𝑦 (𝜃)

−

𝑘−1

∑

𝜃=𝑘−𝜏

𝑟
𝜃−𝑘+1

𝑥
𝑇

(𝜃) 𝑄
1𝑖
𝑥 (𝜃)

−

𝑘−1

∑

𝜃=𝑘−𝑑

𝑟
𝜃−𝑘+1

𝑦
𝑇

(𝜃) 𝑄
2𝑖
𝑦 (𝜃)

= 𝑥
𝑇

(𝑘) 𝑄
1𝑖
𝑥 (𝑘) − 𝑟

−𝜏

𝑥
𝑇

(𝑘 − 𝜏)𝑄
1𝑖
𝑥 (𝑘 − 𝜏)

+ 𝑦
𝑇

(𝑘) 𝑄
2𝑖
𝑦 (𝑘)

− 𝑟
−𝑑

𝑦
𝑇

(𝑘 − 𝑑)𝑄
2𝑖
𝑦 (𝑘 − 𝑑) + (𝑟

−1

− 1)𝑉
2𝑖
(𝑘) ,

Δ𝑉
3𝑖
(𝑘) =

−1

∑

𝑠=−𝜏

𝑘

∑

𝜃=𝑘+1+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

1
(𝜃) 𝑅
1𝑖
ℓ
1
(𝜃)

+

−1

∑

𝑠=−𝑑

𝑘

∑

𝜃=𝑘+1+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

2
(𝜃) 𝑅
2𝑖
ℓ
2
(𝜃)

−

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

1
(𝜃) 𝑅
1𝑖
ℓ
1
(𝜃)

−

−1

∑

𝑠=−𝑑

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

2
(𝜃) 𝑅
2𝑖
ℓ
2
(𝜃)

=

−1

∑

𝑠=−𝜏

(ℓ
𝑇

1
(𝑘) 𝑅
1𝑖
ℓ
1
(𝑘)

+

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

1
(𝜃) 𝑅
1𝑖
ℓ
1
(𝜃)

− 𝑟
𝑠

ℓ
𝑇

1
(𝑘 + 𝑠) 𝑅

1𝑖
ℓ
1
(𝑘 + 𝑠))

+

−1

∑

𝑠=−𝑑

(ℓ
𝑇

2
(𝑘) 𝑅
2𝑖
ℓ
2
(𝑘)

+

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘

ℓ
𝑇

2
(𝜃) 𝑅
2𝑖
ℓ
2
(𝜃)

− 𝑟
𝑠

ℓ
𝑇

2
(𝑘 + 𝑠) 𝑅

2𝑖
ℓ
2
(𝑘 + 𝑠)) − 𝑉

3𝑖
(𝑘)

= 𝜏ℓ
𝑇

1
(𝑘) 𝑅
1𝑖
ℓ
1
(𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜏

𝑟
𝑠−𝑘

ℓ
𝑇

1
(𝑠) 𝑅
1𝑖
ℓ
1
(𝑠) + 𝑑ℓ

𝑇

2
(𝑘) 𝑅
2𝑖
ℓ
2
(𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝑑

𝑟
𝑠−𝑘

ℓ
𝑇

2
(𝑠) 𝑅
2𝑖
ℓ
2
(𝑠) + (𝑟

−1

− 1)𝑉
3𝑖
(𝑘)

≤ 𝜏ℓ
𝑇

1
(𝑘) 𝑅
1𝑖
ℓ
1
(𝑘) + 𝑑ℓ

𝑇

2
(𝑘) 𝑅
2𝑖
ℓ
2
(𝑘)

−

𝑘−1

∑

𝑠=𝑘−𝜏

𝑟
−𝜏

ℓ
𝑇

1
(𝑠) 𝑅
1𝑖
ℓ
1
(𝑠)

−

𝑘−1

∑

𝑠=𝑘−𝑑

𝑟
−𝑑

ℓ
𝑇

2
(𝑠) 𝑅
2𝑖
ℓ
2
(𝑠) + (𝑟

−1

− 1)𝑉
3𝑖
(𝑘) .

(20)

Note that

− 𝑟
−𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

ℓ
𝑇

1
(𝑠) 𝑅
1𝑖
ℓ
1
(𝑠)

≤ 𝑟
−𝜏

𝜂
𝑇

1
(𝑘) [

𝑁
𝑇

1𝑖
+ 𝑁
1𝑖

−𝑁
𝑇

1𝑖
+ 𝑁
2𝑖

∗ −𝑁
𝑇

2𝑖
− 𝑁
2𝑖

] 𝜂
1
(𝑘)

+ 𝑟
−𝜏

𝜂
𝑇

1
(𝑘) [

𝑁
𝑇

1𝑖

𝑁
𝑇

2𝑖

] 𝜏𝑅
−1

1𝑖
[𝑁
1𝑖

𝑁
2𝑖
] 𝜂
1
(𝑘) ,

− 𝑟
−𝑑

𝑘−1

∑

𝑠=𝑘−𝑑

ℓ
𝑇

2
(𝑠) 𝑅
2𝑖
ℓ
2
(𝑠)

≤ 𝑟
−𝑑

𝜂
𝑇

2
(𝑘) [

𝑀
𝑇

1𝑖
+𝑀
1𝑖

−𝑀
𝑇

1𝑖
+𝑀
2𝑖

∗ −𝑀
𝑇

2𝑖
−𝑀
2𝑖

] 𝜂
2
(𝑘)

+ 𝑟
−𝑑

𝜂
𝑇

2
(𝑘) [

𝑀
𝑇

1𝑖

𝑀
𝑇

2𝑖

]𝑑𝑅
−1

2𝑖
[𝑀
1𝑖

𝑀
2𝑖
] 𝜂
2
(𝑘) ,

(21)

where

𝜂
1
(𝑘) = [

𝑥 (𝑘)

𝑥 (𝑘 − 𝜏)
] , 𝜂

2
(𝑘) = [

𝑦 (𝑘)

𝑦 (𝑘 − 𝑑)
] , (22)

𝑥
𝑇

(𝑘 − 𝜏) 𝑇
1𝑖
𝑥 (𝑘 − 𝜏)

− 𝑔
𝑇

(𝑥 (𝑘 − 𝜏)) 𝐿
−1

1𝑖
𝑇
1𝑖
𝐿
−1

1𝑖
𝑔 (𝑥 (𝑘 − 𝜏)) ≥ 0,

(23)

𝑦
𝑇

(𝑘 − 𝑑) 𝑇
2𝑖
𝑥 (𝑘 − 𝑑)

− 𝑓
𝑇

(𝑦 (𝑘 − 𝑑)) 𝐿
−1

2𝑖
𝑇
2𝑖
𝐿
−1

2𝑖
𝑓 (𝑦 (𝑘 − 𝑑)) ≥ 0.

(24)

From (20) to (24), the following inequality is satisfied:

Δ𝑉
𝑖
(𝑘)

≤ [
𝑥(𝑘)

𝑓(𝑦(𝑘 − 𝑑))
]

𝑇

[
𝐴
𝑖

𝑊
𝑖

]𝑃
1𝑖
[𝐴
𝑖
𝑊
𝑇

𝑖
] [

𝑥 (𝑘)

𝑓 (𝑦 (𝑘 − 𝑑))
]

− 𝑥
𝑇

(𝑘) 𝑟
−1

𝑃
1𝑖
𝑥 (𝑘) + 𝑥

𝑇

(𝑘) 𝑄
1𝑖
𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝜏) 𝑟
−𝜏

𝑄
1𝑖
𝑥 (𝑘 − 𝜏)

+ [
𝑦(𝑘)

𝑔(𝑥(𝑘 − 𝜏))
]

𝑇

[
𝐵
𝑖

𝑉
𝑖

]𝑃
2𝑖
[𝐵
𝑖
𝑉
𝑇

𝑖
] [

𝑦 (𝑘)

𝑔 (𝑥 (𝑘 − 𝜏))
]
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− 𝑦
𝑇

(𝑘) 𝑟
−1

𝑃
2𝑖
𝑦 (𝑘) + 𝑦

𝑇

(𝑘) 𝑄
2𝑖
𝑦 (𝑘)

− 𝑦
𝑇

(𝑘 − 𝑑) 𝑟
−𝑑

𝑄
2𝑖
𝑦 (𝑘 − 𝑑)

+ [
𝑥(𝑘)

𝑓(𝑦(𝑘 − 𝑑))
]

𝑇

[
𝐴
𝑖
− 𝐼

𝑊
𝑖

]

× 𝜏𝑅
1𝑖
[𝐴
𝑖
− 𝐼 𝑊

𝑇

𝑖
] [

𝑥 (𝑘)

𝑓 (𝑦 (𝑘 − 𝑑))
]

+ [
𝑦(𝑘)

𝑔(𝑥(𝑘 − 𝜏))
]

𝑇

[
𝐵
𝑖
− 𝐼

𝑉
𝑖

]

× 𝑑𝑅
2𝑖
[𝐵
𝑖
− 𝐼 𝑉

𝑇

𝑖
] [

𝑦 (𝑘)

𝑔 (𝑥 (𝑘 − 𝜏))
]

+ 𝑟
−𝜏

𝜂
𝑇

1
(𝑘) [

[

𝑁
𝑇

1𝑖
+ 𝑁
1𝑖

−𝑁
𝑇

1𝑖
+ 𝑁
2𝑖

∗ −𝑁
𝑇

2𝑖
− 𝑁
2𝑖

]

]

𝜂
1
(𝑘)

+ 𝑟
−𝜏

𝜂
𝑇

1
(𝑘) [

[

𝑁
𝑇

1𝑖

𝑁
𝑇

2𝑖

]

]

𝜏𝑅
−1

1𝑖
[𝑁
1𝑖

𝑁
2𝑖
] 𝜂
1
(𝑘)

+ 𝑟
−𝑑

𝜂
𝑇

2
(𝑘) [

[

𝑀
𝑇

1𝑖
+𝑀
1𝑖

−𝑀
𝑇

1𝑖
+𝑀
2𝑖

∗ −𝑀
𝑇

2𝑖
−𝑀
2𝑖

]

]

𝜂
2
(𝑘)

+ 𝑟
−𝑑

𝜂
𝑇

2
(𝑘) [

[

𝑀
𝑇

1𝑖

𝑀
𝑇

2𝑖

]

]

𝑑𝑅
−1

2𝑖
[𝑀
1𝑖

𝑀
2𝑖
] 𝜂
2
(𝑘)

+ 𝑥
𝑇

(𝑘 − 𝜏) 𝑇
1𝑖
𝑥 (𝑘 − 𝜏)

− 𝑔
𝑇

(𝑥 (𝑘 − 𝜏)) 𝐿
−1

1𝑖
𝑇
1𝑖
𝐿
−1

1𝑖
𝑔 (𝑥 (𝑘 − 𝜏))

+ 𝑦
𝑇

(𝑘 − 𝑑) 𝑇
2𝑖
𝑥 (𝑘 − 𝑑)

− 𝑓
𝑇

(𝑦 (𝑘 − 𝑑)) 𝐿
−1

2𝑖
𝑇
2𝑖
𝐿
−1

2𝑖
𝑓 (𝑦 (𝑘 − 𝑑))

+ (𝑟
−1

− 1)𝑉
𝑖
(𝑘)

= 𝜁
𝑇

(𝑘)Ω
𝑖
𝜁 (𝑘) + 𝑟

−𝜏

𝜂
𝑇

1
(𝑘) [

[

𝑁
𝑇

1𝑖

𝑁
𝑇

2𝑖

]

]

× 𝜏𝑅
−1

1𝑖
[𝑁
1𝑖

𝑁
2𝑖
] 𝜂
1
(𝑘)

+ 𝑟
−𝑑

𝜂
𝑇

2
(𝑘) [

[

𝑀
𝑇

1𝑖

𝑀
𝑇

2𝑖

]

]

𝑑𝑅
−1

2𝑖
[𝑀
1𝑖

𝑀
2𝑖
] 𝜂
2
(𝑘)

+ (𝑟
−1

− 1)𝑉
𝑖
(𝑘) ,

(25)

where

𝜁 (𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝜏) 𝑔
𝑇

(𝑥 (𝑘 − 𝜏)) 𝑦
𝑇

(𝑘) 𝑦
𝑇

(𝑘 − 𝑑) 𝑓
𝑇

(𝑦 (𝑘 − 𝑑))]
𝑇

. (26)

Therefore, from (17), we have

Δ𝑉
𝑖
(𝑘) ≤ (𝑟

−1

− 1)𝑉
𝑖
(𝑘) , (27)

which implies (16) is true. This completes the proof of
Theorem 8.

In what follows, we are in a position to derive the delay-
dependent exponential stability condition for the discrete-
time switched BAM neural networks (Σ), and the results are
given in the following theorem.

Theorem 9. Under the assumptions (𝐻
1
)–(𝐻
3
), for given

scalars 𝑟 > 1, 𝜇 ≥ 1, the system (Σ) is exponentially stable and
ensures a decay rate 𝜆, where 𝜆 = 𝑟

(− ln 𝜇/(𝑇
𝑎
ln 𝑟))+1, if there exist

matrices 𝑃
1𝑖

> 0, 𝑃
2𝑖

> 0, 𝑄
1𝑖

> 0, 𝑄
2𝑖

> 0, 𝑅
1𝑖

> 0, 𝑅
2𝑖

>

0, 𝑁
1𝑖
, 𝑁
2𝑖
, 𝑀
1𝑖
,𝑀
2𝑖
, and 𝑇

1𝑖
> 0, 𝑇

2𝑖
> 0, 𝑖 ∈ N, such that

(17) and the following inequalities hold:
𝑃
1𝛼

≤ 𝜇𝑃
1𝛽
, 𝑃

2𝛼
≤ 𝜇𝑃
2𝛽
, 𝑄

1𝛼
≤ 𝜇𝑄
1𝛽
, (28)

𝑄
2𝛼

≤ 𝜇𝑄
2𝛽
, 𝑅

1𝛼
≤ 𝜇𝑅
1𝛽
, 𝑅

2𝛼
≤ 𝜇𝑅
2𝛽
, (29)

𝑇
𝑎
≥ 𝑇
∗

𝑎
= ceil [

ln 𝜇
ln 𝑟

] , 𝛼, 𝛽 ∈ N. (30)

Proof. Choose the Lyapunov-Krasovskii functional candidate
of system (Σ) as

𝑉
𝜎(𝑘)

(𝑘) = 𝑉
1𝜎(𝑘)

(𝑘) + 𝑉
2𝜎(𝑘)

(𝑘) + 𝑉
3𝜎(𝑘)

(𝑘) , (31)

where

𝑉
1𝜎(𝑘)

(𝑘) = 𝑥
𝑇

(𝑘) 𝑃
1𝜎(𝑘)

𝑥 (𝑘) + 𝑦
𝑇

(𝑘) 𝑃
2𝜎(𝑘)

𝑦 (𝑘) ,

𝑉
2𝜎(𝑘)

(𝑘) =

𝑘−1

∑

𝜃=𝑘−𝜏

𝑟
𝜃−𝑘+1

𝑥
𝑇

(𝜃) 𝑄
1𝜎(𝑘)

𝑥 (𝜃)

+

𝑘−1

∑

𝜃=𝑘−𝑑

𝑟
𝜃−𝑘+1

𝑦
𝑇

(𝜃) 𝑄
2𝜎(𝑘)

𝑦 (𝜃) ,

𝑉
3𝜎(𝑘)

(𝑘) =

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

1
(𝜃) 𝑅
1𝜎(𝑘)

ℓ
1
(𝜃)

+

−1

∑

𝑠=−𝑑

𝑘−1

∑

𝜃=𝑘+𝑠

𝑟
𝜃−𝑘+1

ℓ
𝑇

2
(𝜃) 𝑅
2𝜎(𝑘)

ℓ
2
(𝜃) .

(32)
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From (16), (28), and (29), when 𝑘 ∈ [𝑘
𝑚
, 𝑘
𝑚+1

), there holds

𝑉
𝜎(𝑘)

(𝑘) ≤ 𝑟
−(𝑘−𝑘

𝑚
)

𝑉
𝜎(𝑘
𝑚
)
(𝑘
𝑚
)

≤ 𝜇𝑟
−(𝑘−𝑘

𝑚
)

𝑉
𝜎(𝑘
𝑚
−1)

(𝑘
𝑚
)

≤ 𝜇𝑟
−(𝑘−𝑘

𝑚
)

𝑟
−(𝑘
𝑚
−𝑘
𝑚−1
)

𝑉
𝜎(𝑘
𝑚
−1)

(𝑘
𝑚−1

)

= 𝜇𝑟
−(𝑘−𝑘

𝑚−1
)

𝑉
𝜎(𝑘
𝑚
−1)

(𝑘
𝑚−1

)

≤ ⋅ ⋅ ⋅ ≤ 𝜇
𝑁
𝜎𝑟
−(𝑘−𝑘

0
)

𝑉
𝜎(𝑘
0
)
(𝑘
0
) .

(33)

Observe that

𝑁
𝜎
≤

𝑘 − 𝑘
0

𝑇
𝑎

, 𝜇 = 𝑟
ln 𝜇/ ln 𝑟

. (34)

This together with (30) and (33) yields

𝜇
𝑁
𝜎𝑟
−(𝑘−𝑘

0
)

𝑉
𝜎(𝑘
0
)
(𝑘
0
) ≤ 𝜆
−(𝑘−𝑘

0
)

𝑉
𝜎(𝑘
0
)
(𝑘
0
) . (35)

This further implies

𝑉
𝜎(𝑘)

(𝑘) ≤ 𝜆
−(𝑘−𝑘

0
)

𝑉
𝜎(𝑘
0
)
(𝑘
0
) . (36)

Let

𝛽
1
= min {min

𝑖∈N
{𝜆
𝑚
(𝑃
1𝑖
)} , min
𝑖∈N

{𝜆
𝑚
(𝑃
2𝑖
)}} ,

𝛽
2
= max {𝛽

21
, 𝛽
22
} ,

(37)

where

𝛽
21

= max
𝑖∈N

{𝜆
𝑀
(𝑃
1𝑖
)} +

𝑟 (1 − 𝑟
−𝜏

)

𝑟 − 1
max
𝑖∈N

{𝜆
𝑀
(𝑄
1𝑖
)}

+ 2
𝑟𝜏 (𝑟 − 1) − 𝑟 (1 − 𝑟

−𝜏

)

(𝑟 − 1)
2

max
𝑖∈N

{𝜆
𝑀
(𝑅
1𝑖
)} ,

(38)

𝛽
22

= max
𝑖∈N

{𝜆
𝑀
(𝑃
2𝑖
)} +

𝑟 (1 − 𝑟
−𝑑

)

𝑟 − 1
max
𝑖∈N

{𝜆
𝑀
(𝑄
2𝑖
)}

+ 2

𝑟𝑑 (𝑟 − 1) − 𝑟 (1 − 𝑟
−𝑑

)

(𝑟 − 1)
2

max
𝑖∈N

{𝜆
𝑀
(𝑅
2𝑖
)} .

(39)

It can be verified from (31) that

𝑉
𝜎(𝑘)

(𝑘) ≥ 𝛽
1
(‖𝑥 (𝑘)‖

2

+
𝑦 (𝑘)



2

) , (40)

𝑉
𝜎(𝑘
0
)
(𝑘
0
) ≤ 𝛽
21

𝜙 (𝑘)


2

𝐿
+ 𝛽
22

𝜓 (𝑘)


2

𝐿
, (41)

which gives rise to

𝛽
1
(‖𝑥 (𝑘)‖

2

+
𝑦 (𝑘)



2

) ≤ 𝑉
𝜎(𝑘)

(𝑘) ≤ 𝜆
−(𝑘−𝑘

0
)

𝑉
𝜎(𝑘
0
)
(𝑘
0
)

≤ 𝜆
−(𝑘−𝑘

0
)

𝛽
2
(
𝜙


2

𝐿
+
𝜓



2

𝐿
) .

(42)

Therefore, we have

‖𝑥 (𝑘)‖
2

+
𝑦 (𝑘)



2

≤
𝛽
2

𝛽
1

(
𝜙


2

𝐿
+
𝜓



2

𝐿
) 𝜆
−(𝑘−𝑘

0
)

, (43)

which implies that the discrete-time switched BAM neural
networks (Σ) are exponentially stable. This completes the
proof of Theorem 9.

Remark 10. In (30), the function ceil(𝑡) is used, which
represents rounding real number 𝑡 to the nearest integer
greater than or equal to 𝑡. The reason that we introduce the
function ceil is that the dwell time length of the currently
active subsystem is the number of sampling periods between
the two consecutive switching times.

Remark 11. In [3–6], the asymptotic or exponential stability
problem is considered for continuous-time BAM neural
networks with time delay

̇𝑥 (𝑡) = −𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝑑)) , (44)

̇𝑦 (𝑡) = −𝐵𝑥 (𝑡) + 𝑉𝑔 (𝑥 (𝑡 − 𝜏)) . (45)

However, the dynamics of discrete-time neural networksmay
be quite different from those of continuous-time ones, and
the stability criteria established for continuous-time BAM
neural networks model are not necessarily applicable to
discrete-time systems. Considering the importance in both
theory and practice, it is necessary to study the dynamics of
the discrete-time BAM neural networks.

Remark 12. There are few references concerning exponential
stability analysis for discrete-time switched BAM neural
networks. In this paper, some delay-dependent sufficient
conditions checking the exponential stability of discrete-time
switched BAM neural networks using average dwell time
approach are presented.These conditions are proposed in the
form of linear matrix inequalities, which can be easily solved
by using the recently developed interior algorithms.

4. An Illustrative Example

Consider the discrete-time switched BAM neural networks
(Σ) combining two subsystems with the following parame-
ters:

𝐴
1
= [

0.5 0

0 0.5
] ,

𝑊
1
= [

−0.0483 −0.01

−0.03 −0.04
] , 𝐵

1
= [

0.3 0

0 0.2
] ,

(46)

𝑉
1
= [

−0.05 −0.01

−0.05 −0.06
] ,

𝐴
2
= [

0.7 0

0 0.4
] , 𝐵

2
= [

0.6 0

0 0.7
] ,

(47)

𝑊
2
= [

−0.032 −0.06

−0.01 −0.05
] , 𝑉

2
= [

−0.05 −0.01

−0.05 −0.06
] . (48)

The activation functions are taken as

𝑓 (𝑦) =
1

2
(
𝑦 + 1

 −
𝑦 − 1

) ,

𝑔 (𝑥) =
1

2
(|𝑥 + 1| − |𝑥 − 1|) .

(49)

Let 𝑑 = 1 and 𝜏 = 1. Solving LMI (17), (28), and
(29), it is found that the LMIs are feasible for all 𝑟 ≤ 1.47.
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Table 1: The maximum delay bound 𝜏, 𝑑 and decay rate 𝜆.

𝑟 1.45 1.4 1.35 1.3 1.25
𝜆 1.2083 1.1667 1.1250 1.0833 1.0417
𝑑 = 2, 𝜏max 10 14 18 22 28
𝑑 = 3, 𝜏max 9 13 17 21 27
𝑑 = 5, 𝜏max 7 11 15 19 25
𝑑 = 8, 𝜏max 4 8 12 16 22
𝑑 = 11, 𝜏max 1 5 9 13 19
𝑑 = 14, 𝜏max — 2 6 10 16
𝑑 = 17, 𝜏max — — 3 7 13
𝑑 = 20, 𝜏max — — — 4 10

max{𝑑 = 𝜏} 6 8 10 12 15

5 10 15 20 25 30

0

0.5

1

1.5

2

𝑥1

𝑥2

𝑦1

𝑦2

−1.5

−1

−0.5

Figure 1: State response of the given system.

The calculated values of the delay upper bound 𝜏 and decay
rate 𝜆 for different values of 𝑑 and 𝑟 are given in Table 1 when
𝑇
𝑎
= 1. FromTable 1, we can see that the delay is related to the

decay rate. For a given 𝑑, a smaller decay rate 𝜆 allows a larger
delay 𝜏max. Moreover, for every 𝑟, the delay 𝜏max decreases
when the delay 𝑑 increases.

Letting 𝑟 = 1.4, 𝑑 = 3, and 𝜇 = 1.2, we obtain that
𝑇
∗

𝑎
= ceil[0.5419]. Based on (30),𝑇

𝑎
= 1 is satisfied.Thenwe

can calculate that the decay rate 𝜆 = 𝑟
(− ln 𝜇/𝑇

𝑎
ln 𝑟)+1

= 1.1667.
Therefore, the discrete-time switched BAM neural networks
with time delay are exponentially stable with the decay rate
𝜆 = 1.1667 if the delay 𝜏 is not larger than 13 based on Table 1.

For 𝑟 = 1.4, 𝑑 = 3, and 𝜏 = 2, based on Definition 3,
the discrete-time switched BAM neural networks ensure the
following exponential decay estimation:

‖𝑥 (𝑘)‖
2

+
𝑦 (𝑘)



2

≤ 2.2866 × 1.1667
−(𝑘−𝑘

0
)

(
𝜙


2

𝐿
+
𝜓



2

𝐿
) , ∀𝑘 ≥ 𝑘

0
.

(50)

Let 𝑘
0
= 0. Suppose the switching sequence is: 121212 . . ..

It can be seen from switched sequence that 𝑇
𝑎
= 1. Choose

initial value as 𝜙(𝑠) = [0.5 − 0.6]
𝑇 and 𝜓(𝑠) = [0.8 − 0.7]

𝑇;
then we obtain Figure 1, which depicts the trajectories of the
system state.

5. Conclusions

In this paper, the exponential stability problem for the
discrete-time switched BAMneural networks with time delay
has been proposed. At first, the mathematical model of
the discrete-time switched BAM neural networks with time
delay has been established. And then by constructing a
new switching-dependent Lyapunov-Krasovskii functional,
some sufficient criteria have been developed to guarantee the
discrete-time switched BAM neural networks to be expo-
nentially stable based on the average dwell time approach
and finite sum inequality technology. Finally, a numerical
example has been provided to demonstrate the potential and
effectiveness of the proposed algorithms.
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Runge-Kutta-Nyström (RKN) method is adapted for solving the special second order delay differential equations (DDEs).The sta-
bility polynomial is obtained when this method is used for solving linear second order delay differential equation. A standard set of
test problems is solved using themethod together with a cubic interpolation for evaluating the delay terms.The same set of problems
is reduced to a system of first order delay differential equations and then solved using the existing Runge-Kutta (RK) method.
Numerical results show that the RKNmethod is more efficient in terms of accuracy and computational time when compared to RK
method.Themethods are applied to a well-known problem involving delay differential equations, that is, theMathieu problem.The
numerical comparison shows that both methods are in a good agreement.

1. Introduction

A special second order differential equations (ODEs) of the
form

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑦 (𝑡
0
) = 𝛼, 𝑦



(𝑡
0
) = 𝛽, 𝑡 ≥ 𝑡

0

(1)

which is not explicitly dependent on the first derivative of the
solution are frequently found inmany physical problems such
as electromagnetic waves, thin film flow, and gravity driven
flow. Most researchers, scientists, and engineers used to solve
(1) by converting the second order differential equations to a
system of first order equations twice the dimension. However
there are also studies on numerical methods which directly
solve (1) using one-step methods or multistep methods. Such
work can be seen in [1–6].

Most of the methods for solving special second order
ODEs can be adapted for solving special second order delay
differential equations (DDEs). In recent years there has been
a growing interest in numerical solutions ofDDEs.This is due
to the appearance of such equations in various areas such as

neural network theory, epidemiology, and time lag control
processes. DDEs also provide us with realistic model of many
phenomena arising in real world problems. For example,
DDEs can be used in modelling of population dynamics and
spread of infectious diseases and two body problems of elec-
trodynamics [7–12]. Most of the work concerning DDEs in
the literature involved first order delay differential equations.
Hence, in this research, we are going to focus on numerical
methods for solving special second order DDEs. Special
second order delay differential equations withmultiple delays
can be written in the following form:

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

2
) , . . . , 𝑦 (𝑡 − 𝜏

𝑛
)) ,

𝑡 > 𝑡
0

(2)

with initial conditions

𝑦 (𝑡) = 𝜑 (𝑡) , 𝑦


(𝑡) = 𝜑


(𝑡) , 𝑡 ≤ 𝑡
0
. (3)

Runge-Kutta-Nyström method of order four will be
adapted for solving second order DDEs (2). Stability polyno-
mial of the method is also presented when applied to linear
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secondorderDDE.Numerical results on a set of test problems
are given and compared with the numerical results when the
problems are reduced to a system of first order DDEs and
solved usingRunge-Kuttamethods.We are also going to solve
a well-known problem in engineering which involves second
order delay differential equations, that is, the Mathieu prob-
lem.

2. Numerical Methods for Second Order ODEs

Runge-Kutta methods are designed for special second order
differential equations:

𝑦


= 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑦 (𝑡
0
) = 𝛼, 𝑦



(𝑡
0
) = 𝛽, 𝑡 > 𝑡

0

(4)

and are usually termed as Runge-Kutta-Nyström formula
(RKN) since their introduction in 1925 by Nyström. An 𝑠-
stage RKN method for the numerical integration of the IVP
in (4) is given by

𝑦
𝑛+1

= 𝑦
𝑛

+ ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑖=1

𝑏
𝑖
𝑘
𝑖
,

𝑦


𝑛+1
= 𝑦


𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏


𝑖
𝑘
𝑖
,

(5)

where

𝑘
𝑖

= 𝑓 (𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑦
𝑛

+ 𝑐
𝑖
ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑗=1

𝑎
𝑖𝑗

𝑘
𝑗
) (6)

for 𝑖 = 1, 2, . . . , 𝑠. The RKN parameters 𝑐
𝑗
, 𝑎
𝑖𝑗

, 𝑏
𝑗
, and 𝑏



𝑗

are assumed to be real for 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑠 and 𝑠 is the
number of stages of the method. Let us introduce the 𝑠-
dimensional vectors 𝑐, 𝑏, and 𝑏

; moreover, the matrix 𝐴 is
𝑠 × 𝑠, where 𝑐 = [𝑐

1
, 𝑐
2
, 𝑐
3
, . . . , 𝑐

𝑠
], 𝑏 = [𝑏

1
, 𝑏
2
, 𝑏
3
, . . ., 𝑏

𝑠
],

𝑏


= [𝑏


1
, 𝑏


2
, 𝑏


3
, . . ., 𝑏



𝑠
], and 𝐴 = [𝑎

𝑖𝑗
], respectively. RKN

method can be expressed in Butcher notation using the table
of coefficients as follows:

𝑐 𝐴

𝑏
𝑇

𝑏
𝑇

(7)

RKN methods can be divided into two classes explicit
methods when 𝑎

𝑖𝑗
= 0 for 𝑖 ≤ 𝑗 and implicit methods other-

wise.

3. Runge-Kutta-Nyström for DDEs

Consider second order DDE

𝑦


= 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏
1
) , 𝑦 (𝑡 − 𝜏

2
) ,

𝑦 (𝑡 − 𝜏
3
) , . . . , 𝑦 (𝑡 − 𝜏

𝑚
)) , 𝑡 ≥ 𝑡

0

(8)

with initial conditions

𝑦 (𝑡) = 𝜑 (𝑡) , 𝑦


(𝑡) = 𝜑


(𝑡) , 𝑡 ≤ 𝑡
0

(9)

𝑦
𝑛
is the numerical solution of (8) for all 𝑡

𝑛
> 𝑡
0
, 𝑛 = 1, 2,

3, . . ..
The RKN for second order ODE has been adapted to

solve second order DDE and the formula can be written as
follows:
𝑦
𝑛+1

= 𝑦
𝑛

+ ℎ𝑦


𝑛

+ ℎ
2

𝑠

∑

𝑖=1

𝑏
𝑖
𝑘
𝑖
(𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
, 𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
1
) ,

𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
2
) , . . . , 𝑦 (𝑡

𝑛
+ 𝑐
𝑖
ℎ − 𝜏
𝑚

)) ,

𝑦


𝑛+1
= 𝑦


𝑛

+ ℎ

𝑠

∑

𝑖=1

𝑏


𝑖
𝑘
𝑖
(𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
, 𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
1
) ,

𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
2
) , . . . , 𝑦 (𝑡

𝑛
+ 𝑐
𝑖
ℎ − 𝜏
𝑚

)) ,

(10)

where

𝑘
𝑖

= 𝑓 (𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑦
𝑛

+ 𝑐
𝑖
ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑗=1

𝑎
𝑖𝑗

𝑘
𝑗
, 𝑦 (𝑥
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
1
) ,

𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
2
) , . . . , 𝑦 (𝑡

𝑛
+ 𝑐
𝑖
ℎ − 𝜏
𝑚

) )

(11)

for 𝑖 = 1, 2, . . . , 𝑠. It can be written as follows:

𝑦
𝑛+1

= 𝑦
𝑛

+ ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑖=1

𝑏
𝑖
𝑓 (𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
, 𝑧
𝑖
) ,

𝑦


𝑛+1
= 𝑦


𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏


𝑖
𝑓 (𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
, 𝑧
𝑖
) ,

(12)

where

𝑌
𝑖

= 𝑦
𝑛

+ 𝑐
𝑖
ℎ𝑦


𝑖
+ ℎ
2

𝑠

∑

𝑗=1

𝑎
𝑖𝑗

𝑘
𝑗

(𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑗
, 𝑧
𝑖
) ,

𝑧
𝑖

= (𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
1
) , 𝑦 (𝑡

𝑛
+ 𝑐
𝑖
ℎ − 𝜏
2
) , . . . ,

𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏
𝑚

)) .

(13)

3.1. Time Delay Interpolation. Let the interval of the defi-
nition of delay differential equation (8) be 𝐼 = [𝑎, 𝑏] and
𝑡
𝑖

= 𝑎 + 𝑖ℎ for 𝑖 = 0, 1, . . . , 𝑛 and ℎ = (𝑏 − 𝑎)/𝑛, where 𝑛

is the number of points in interval 𝐼. The numerical method
approximates the solutions at point 𝑡

𝑖
for 𝑖 = 1, 2, . . . , 𝑛, to

approximate the solution 𝑦
𝑖+1

at point 𝑡
𝑖+1

for 𝑖 = 0, 1, . . . , 𝑛 −

1. Hence,
𝑦
𝑖+1

= 𝑦
𝑖+1

(𝑡
𝑖
, 𝑦 (𝑡
𝑖

− 𝜏
1
) , 𝑦 (𝑡

𝑖
− 𝜏
2
) , . . . , 𝑦 (𝑡

𝑖
− 𝜏
𝑚

)) .

(14)

The method of interpolation has the following cases.
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Case 1. If time delay 𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
are constants and suppose

𝜏
𝑖
1

< 𝜏
𝑖
2

< ⋅ ⋅ ⋅ < 𝜏
𝑖
𝑚

for 𝑖
1
, 𝑖
2
, . . ., 𝑖

𝑚
= 1, 2, . . ., 𝑚, therefore

we can interpolate 𝑦(𝑡
𝑖

− 𝜏
1
), 𝑦(𝑡
𝑖

− 𝜏
2
), . . . , 𝑦(𝑡

𝑖
− 𝜏
𝑚

) as
follows:

𝑦 (𝑡
𝑖

− 𝜏
1
) = 𝑓
𝜏
1

(𝑡
𝑖−𝑑

, 𝑡
𝑖−𝑑+1

, . . . , 𝑡
𝑖
, 𝑦 (𝑡
𝑖−𝑑

) , 𝑦 (𝑡
𝑖−𝑑+1

) ,

. . . , 𝑦 (𝑡
𝑖
)) ,

𝑦 (𝑡
𝑖

− 𝜏
2
) = 𝑓
𝜏
2

(𝑡
𝑖−𝑑+1

, 𝑡
𝑖−𝑑+2

, . . . , 𝑡
𝑖
, 𝑦 (𝑡
𝑖−𝑑+1

) , 𝑦 (𝑡
𝑖−𝑑+2

) ,

. . . , 𝑦 (𝑡
𝑖
) , 𝑦 (𝑡

𝑖
− 𝜏
1
)) ,

𝑦 (𝑡
𝑖

− 𝜏
3
) = 𝑓
𝜏
3

(𝑡
𝑖−𝑑+2

, 𝑡
𝑖−𝑑+3

, . . . , 𝑡
𝑖
, 𝑦 (𝑡
𝑖−𝑑+2

) , 𝑦 (𝑡
𝑖−𝑑+3

) ,

. . . , 𝑦 (𝑡
𝑖
) , 𝑦 (𝑡

𝑖
− 𝜏
1
) , 𝑦 (𝑡

𝑖
− 𝜏
2
)) ,

...
...

𝑦 (𝑡
𝑖

− 𝜏
𝑑
) = 𝑓
𝜏
𝑑

(𝑡
𝑖−1

, 𝑡
𝑖
, 𝑦 (𝑡
𝑖−1

) , 𝑦 (𝑡
𝑖
) , 𝑦 (𝑡

𝑖
− 𝜏
1
) ,

𝑦 (𝑡
𝑖

− 𝜏
2
) , . . . , 𝑦 (𝑡

𝑖
− 𝜏
𝑑−1

)) ,

𝑦 (𝑡
𝑖

− 𝜏
𝑗
) = 𝑓
𝜏
𝑗

(𝑡
𝑖
, 𝑦 (𝑡
𝑖
) , 𝑦 (𝑡

𝑖
− 𝜏
1
) , 𝑦 (𝑡

𝑖
− 𝜏
2
) ,

. . . , 𝑦 (𝑡
𝑖

− 𝜏
𝑑
)) ,

𝑚 ≥ 𝑗 ≥ 𝑑.

(15)

The functions 𝑓
𝜏
𝑗

for 𝑗 = 1, 2, . . . , 𝑚 depend on the inter-
polation which is used in the numerical method which has
degree 𝑑.

Case 2. If 𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
are the variables of time delays, that

is, 𝜏
𝑗

= 𝜏
𝑗
(𝑡) for 𝑗 = 1, 2, . . . , 𝑚, however, we can consider

𝑦 (𝑡
𝑖

− 𝜏
𝑗
) = 𝑓
𝜏
𝑗

(𝑡
𝑖−𝑑

, 𝑡
𝑖−𝑑+1

, . . . , 𝑡
𝑖
, 𝑦 (𝑡
𝑖−𝑑

) , 𝑦 (𝑡
𝑖−𝑑+1

) ,

. . . , 𝑦 (𝑡
𝑖
))

(16)

for 𝑗 = 1, 2, . . . , 𝑚, knowing that 𝑦
𝑘

= 𝑦(𝑡
𝑘
) for 𝑘 = 𝑖 − 𝑑,

𝑖 − 𝑑 + 1, . . . , 𝑖. The function 𝑓
𝜏
𝑗

depends on the type and
degree of the interpolation. In this paper, we consider the
cubic interpolation to approximate DDEs with three time
delays.

4. Stability of the Method

Stability aspect of numerical methods for delay differential
equations has been introduced in [13–17]. To study the
stability of numerical method (10), consider the linear test
equation

𝑦


= 𝜆
2

𝑦 (𝑡) + 𝜇
2

𝑦 (𝑡 − 𝜏) . (17)

When the method is applied to the linear test equation
(17), we have

𝑦
𝑛+1

= 𝑦
𝑛

+ ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑖=1

𝑏
𝑖
𝑓 (𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
, 𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏))

= 𝑦
𝑛

+ ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑖=1

𝑏
𝑖
(𝜆
2

𝑌
𝑖

+ 𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏)) ,

𝑦


𝑛+1
= 𝑦


𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏


𝑖
𝑘
𝑖
(𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
, 𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏))

= 𝑦


𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏


𝑖
𝑘
𝑖
(𝜆
2

𝑌
𝑖

+ 𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏)) ,

(18)

where

𝑌
𝑖

= 𝑦
𝑛

+ 𝑐
𝑖
ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑗=1

𝑎
𝑖𝑗

𝑓 (𝑡
𝑛

+ 𝑐
𝑖
ℎ, 𝑌
𝑗
, 𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏))

= 𝑦
𝑛

+ 𝑐
𝑖
ℎ𝑦


𝑛
+ ℎ
2

𝑠

∑

𝑗=1

𝑎
𝑖𝑗

(𝜆
2

𝑌
𝑗

+ 𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
𝑖
ℎ − 𝜏)) ,

𝑍
𝑛+1

= 𝑇𝑍
𝑛

+ 𝜆
2

ℎ
2

𝐵𝑌 + 𝜇
2

ℎ
2

𝐵𝑍
𝑛

(𝜏)

(19)

such that

𝑍
𝑛

= (

𝑦
𝑛

ℎ𝑦


𝑛

) , 𝑇 = (
1 1

0 1
) , 𝐵 = (

𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑠

𝑏


1
𝑏


2
⋅ ⋅ ⋅ 𝑏


𝑠

) ,

𝑍
𝑛

(𝜏) = (

𝑦 (𝑡
𝑛

+ 𝑐
1
ℎ − 𝜏)

𝑦 (𝑡
𝑛

+ 𝑐
2
ℎ − 𝜏)

...
𝑦 (𝑡
𝑛

+ 𝑐
𝑠
ℎ − 𝜏)

) .

(20)

So

(

𝑌
1

𝑌
2

...
𝑌
𝑠

) = (

𝑦
𝑛

𝑦
𝑛

...
𝑦
𝑛

) + (

𝑐
1

𝑐
2

...
𝑐
𝑠

) ℎ𝑦


𝑛

+ ℎ
2

(

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑠

𝑎
21

𝑎
22

⋅ ⋅ ⋅ 𝑎
2𝑠

... d
...

𝑎
𝑠1

𝑎
𝑠2

⋅ ⋅ ⋅ 𝑎
𝑠𝑠

)

× (

𝜆
2

𝑌
1

+ 𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
1
ℎ − 𝜏)

𝜆
2

𝑌
2

+ 𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
2
ℎ − 𝜏)

...
𝜆
2

𝑌
𝑠

+ 𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
𝑠
ℎ − 𝜏)

)

= (

1

1

...
1

) 𝑦
𝑛

+ (

𝑐
1

𝑐
2

...
𝑐
𝑠

) ℎ𝑦


𝑛

+ ℎ
2

𝜆
2

𝐴 (

𝑌
1

𝑌
2

...
𝑌
𝑠

)
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+ 𝜇
2

ℎ
2

𝐴 (

𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
1
ℎ − 𝜏)

𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
2
ℎ − 𝜏)

...
𝜇
2

𝑦 (𝑥
𝑛

+ 𝑐
𝑠
ℎ − 𝜏)

) .

(21)

This implies that

(𝐼 − 𝐻
𝜆
𝐴) (

𝑌
1

𝑌
2

...
𝑌
𝑠

) = (

1 𝑐
1

1 𝑐
2

...
...

1 𝑐
𝑠

) 𝑍
𝑛

+ 𝐻
𝜇
𝐴 (

𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
1
ℎ − 𝜏)

𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
2
ℎ − 𝜏)

...
𝜇
2

𝑦 (𝑥
𝑛

+ 𝑐
𝑠
ℎ − 𝜏)

) ,

(22)

where 𝐻
𝜆

= (𝜆ℎ)
2

, 𝐻
𝜇

= (𝜇ℎ)
2.

So

(

𝑌
1

𝑌
2

...
𝑌
𝑠

) = (𝐼 − 𝐻
𝜆
𝐴)
−1

× (𝐶𝑍
𝑛

+ 𝐻
𝜇
𝐴 (

𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
1
ℎ − 𝜏)

𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
2
ℎ − 𝜏)

...
𝜇
2

𝑦 (𝑡
𝑛

+ 𝑐
𝑠
ℎ − 𝜏)

)) ,

(23)

where

𝐴 = (

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑠

𝑎
21

𝑎
22

⋅ ⋅ ⋅ 𝑎
2𝑠

... d
...

𝑎
𝑠1

𝑎
𝑠2

⋅ ⋅ ⋅ 𝑎
𝑠𝑠

) ,

𝐶 = (

1 𝑐
1

1 𝑐
2

...
...

1 𝑐
𝑠

) .

(24)

Hence, the stability polynomial of the method is

𝑍
𝑛+1

= 𝑇𝑍
𝑛

+ 𝐻
𝜆
𝐵(𝐼 − 𝐻

𝜆
𝐴)
−1

× (𝐶𝑍
𝑛

+ 𝐻
𝜇
𝐴𝑍
𝑛

(𝜏)) + 𝐻
𝜇
𝐵𝑍
𝑛

(𝜏) ,

𝑍
𝑛+1

= 𝑇
1
𝑍
𝑛

+ 𝑇
2
𝑍
𝑛

(𝜏) ,

𝑍
𝑛

(𝜏) = (

𝑦 (𝑡
𝑛

+ 𝑐
1
ℎ − 𝜏)

𝑦 (𝑡
𝑛

+ 𝑐
2
ℎ − 𝜏)

...
𝑦 (𝑥
𝑛

+ 𝑐
𝑠
ℎ − 𝜏)

) ,

𝑇
1

= 𝑇 + 𝐻
𝜆
𝐵(𝐼 − 𝐻

𝜆
𝐴)
−1

𝐶,

𝑇
2

= 𝐻
𝜇
𝐵 [𝐻
𝜆
(𝐼 − 𝐻

𝜆
𝐴)
−1

𝐴 + 𝐼] .

(25)

5. Numerical Results

In this section, some of the problems involving second order
DDEs are solved using RKN methods. Then the same set of
problems is reduced to a first order DDEs system and solved
using RK methods of the same order. Then numerical results
are given.

The following notations are used in Figures 1, 2, 3, 4, 5,
and 6:

(i) ℎ: stepsize used.
(ii) RKN4-N: the existing Rung-Kutta-Nyrström method

of order four derived by Senu et al. [18].
(iii) RKN4-D: the existing Rung-Kutta-Nyrström method

of order four as in [19].
(iv) RK4: existing Runge-Kutta method order four as

given in [20].
(v) DOPRI: existing Runge-Kuttamethod order fifth as in

Dormand [19].
(vi) Total time: the total time in second to solve the

problems.
(vii) MAX ERROR: Max

𝑛
|𝑦(𝑥
𝑛
) − 𝑦
𝑛
| Absolute value of the

true solution minus the computed solution.

Problem 1 (nonlinear). Consider the following:

𝑦


(𝑡) = 𝑒
−2𝜏

𝑦
2

(𝑡 − 𝜏)

𝑦 (𝑡)
, 𝑡 ≥ 𝑡

0
,

𝑦 (𝑡) = 𝑒
−𝑡

, 𝑦


(𝑡) = −𝑒
−𝑡

, 𝑡 ≤ 𝑡
0
,

𝜏 =
ℎ

10
.

(26)

Exact solution: 𝑦(𝑡) = 𝑒
−𝑡.

Problem 2 (nonlinear). Consider the following:

𝑦


(𝑡) = 𝑦
2

(𝑡 − 𝜏) −
1

4√(1 + 𝑡)
3

− (1 + 𝑡) + 𝜏, 𝑡 ≥ 𝑡
0
,

𝑦 (𝑡) = √1 + 𝑡, 𝑦


(𝑡) =
1

2√1 + 𝑡
, 𝑡 ≤ 𝑡

0
,

𝜏 =
ℎ

10
.

(27)

Exact solution: 𝑦(𝑡) = √1 + 𝑡.
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Figure 2: The efficiency curves for all methods for Problem 2 with
𝑡end = 1 and ℎ = 1/4
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, 𝑖 = 1, . . . , 5.

Problem 3 (linear example). Consider the following:

𝑦


(𝑡) = 𝑦 (𝑡 − 𝜏) −
1

(1 + 𝑡)
2

− ln (1 + 𝑡 − 𝜏) , 𝑡 ≥ 𝑡
0
,

𝑦 (𝑡) = ln (1 + 𝑡) , 𝑦


(𝑡) =
1

1 + 𝑡
, 𝑡 ≤ 𝑡

0
,

𝜏 =
ℎ

10
.

(28)

Exact solution: 𝑦(𝑡) = ln (1 + 𝑡).
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Figure 3: The efficiency curves for all methods for Problem 3 with
𝑡end = 1 and ℎ = 1/4
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Figure 4: The efficiency curves for all methods for Problem 4 with
𝑡end = 1 and ℎ = 1/4

𝑖

, 𝑖 = 1, . . . , 5.

Problem 4 (nonlinear). Consider the following:

𝑦


(𝑡) =
1

3
(𝑒
−𝜏
1𝑦 (𝑡 − 𝜏

1
) + 𝑒
−𝜏
2𝑦 (𝑡 − 𝜏

2
)

+𝑒
−𝜏
3𝑦 (𝑡 − 𝜏

3
)) , 𝑡 ≥ 𝑡

0
,

𝑦 (𝑡) = 𝑒
−𝑡

, 𝑦


(𝑡) = −𝑒
−𝑡

, 𝑡 ≤ 𝑡
0
,

𝜏
1

=
ℎ

10
, 𝜏

2
=

ℎ

20
, 𝜏

3
=

ℎ

30
.

(29)

Exact solution: 𝑦(𝑡) = 𝑒
−𝑡.

5.1. An Application to Mathieu Equation. In this section we
will apply the RKN and RK methods to solve a well-known
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Problem with 𝑡end = 10 and ℎ = 1/10.

equation in engineering, the Matheiu’s equation, which is
defined as follows:

𝑦


(𝑡) + (𝛿 + 𝑎 cos 𝑡) 𝑦 (𝑡) + 𝑐𝑦
3

(𝑡) = 𝑏𝑦 (𝑡 − 𝑇) , (30)

which is a nonlinear delay differential equation.
Where 𝛿, 𝑎, 𝑏, 𝑐, and 𝑇 are parameters.
𝛿 is the frequency squared of the simple harmonic

oscillator, and 𝑎 is the amplitude of the parametric resonance,
and 𝑏 is the amplitude of delay while 𝑐 is the amplitude of the
cubic nonlinearity and 𝑇 is the time delay.

Equation (30) is a model for high speed milling, a kind
of parametrically interrupted cutting as opposed to the self-
interrupted cutting arising in an unstable turning process.
More information on the problem can be found in [21]. Var-
ious special cases of (30) have been studied, depending on
which parameters are zero.

When 𝛿 = 𝑎 = 𝑏 = 1 and 𝑐 = 0 we obtained the following
linear Mathieu equation:

𝑦


(𝑡) = (1 + cos 𝑡) 𝑦 (𝑡) = 𝑦 (𝑡 − 𝑇) , 𝑡 ∈ [0, 10] ,

𝑦 (𝑡) = sin (𝑡) ,

𝑦


(𝑡) = cos (𝑡) , 𝑡 ≤ 0,

(31)

where 𝑇 = 𝜏 = ℎ/10 is the delay term, the exact solution does
not exist.

When 𝛿 = 𝑎 = 𝑏 = 𝑐 = 1, we obtained the following
nonlinear Mathieu equation:

𝑦


(𝑡) = (1 + cos 𝑡) 𝑦 (𝑡) + 𝑦
3

(𝑡)

= 𝑦 (𝑡 − 𝑇) , 𝑡 ∈ [0, 10] ,

𝑦 (𝑡) = sin (𝑡) ,

𝑦


(𝑡) = cos (𝑡) , 𝑡 ≤ 0,

(32)

where 𝑇 = 𝜏 = ℎ/10 is the delay term, the exact solution does
not exist.

Both the linear and nonlinear Mathieu equations are
solved using RKN andRKmethods and the results are plotted
in Figures 5 and 6.

6. Discussion and Conclusion

In this paper we adapted the Runge-Kutta-Nyström method
for solving special second order delay differential equations in
which cubic interpolation is used to evaluate the delay term.
We also presented the stability of the method when applied
to linear second order DDEs. We solved a set of DDEs using
RKN4-N by Senu et al. [6] and RKN4-D by Dormand [19].
For comparison purposes the same set of problems a reduced
to a system of first order DDEs and solved using classical
fourth order Runge-Kutta method and fifth order Runge-
Kuttamethod by Dormand [19].The log of maximum error is
plotted against time. From the numerical results, we observed
that both RKNmethods are just as efficient. However they are
more efficient compared to the fourth order classical Runge-
Kutta method followed by the fifth order Runge-Kutta
method by Dormand [19]. This is because RKN method
directly solved the equations whereas in RK method the
equations are reduced to a system of first order DDEs. The
fifth order RK method has more stages compared to the
fourth order RK method which required more function
evaluations at each step. Both RKN and RKmethods are also
used to solve the linear and nonlinear Mathieu equations.
Since they do not have the exact solution, we just plot the
numerical results in which both methods show a good agree-
ment.

Acknowledgment

The authors would like to thank the reviewers for their con-
structive comments and their careful reading of the paper.



Mathematical Problems in Engineering 7

References

[1] J. M. Franco, “A class of explicit two-step hybrid methods for
second-order IVPs,” Journal of Computational and Applied
Mathematics, vol. 187, no. 1, pp. 41–57, 2006.

[2] P. J. van derHouwen andB. P. Sommeijer, “Explicit Runge-Kutta
(-Nyström) methods with reduced phase errors for computing
oscillating solutions,” SIAM Journal on Numerical Analysis, vol.
24, no. 3, pp. 595–617, 1987.

[3] S. O. Imoni, F. O. Otunta, and T. R. Ramamohan, “Embedded
implicit Runge-Kutta Nyström method for solving second-
order differential equations,” International Journal of Computer
Mathematics, vol. 83, no. 11, pp. 777–784, 2006.

[4] S. N. Jator, “On a class of hybrid methods for 𝑦


= 𝑓(𝑥, 𝑦, 𝑦


),”
International Journal of Pure and Applied Mathematics, vol. 59,
no. 4, pp. 381–395, 2010.

[5] P. J. van der Houwen and B. P. Sommeijer, “Diagonally implicit
Runge-Kutta-Nyström methods for oscillatory problems,”
SIAM Journal on Numerical Analysis, vol. 26, no. 2, pp. 414–429,
1989.

[6] N. Senu, M. Suleiman, and F. Ismail, “An embedded explicit
rungekutta-nyström method for solving oscillatory problems,”
Physica Scripta, vol. 80, no. 1, Article ID 015005, 2009.

[7] H. Smith, An Introduction to Delay Differential Equations with
Applications to the Life Sciences, vol. 57 of Texts in Applied
Mathematics, Springer, New York, NY, USA, 2011.

[8] J. E. Forde, Delay differential equation models in mathematical
biol-ogy [Ph.D. thesis], The University of Michigan, 2005.

[9] A. Bellen and M. Zennaro, Numerical Methods for Delay Dif-
ferential Equations, Oxford Univrsity Press, New York, NY,
USA, 2003.

[10] T. Erneux,Applied Delay Differential Equations, vol. 3 of Surveys
and Tutorials in the Applied Mathematical Sciences, Springer,
New York, NY, USA, 2009.

[11] Y. Kuang,Delay Differential Equations with Applications in Pop-
ulation Dynamics, vol. 191 of Mathematics in Science and Engi-
neering, Academic Press, Boston, Mass, USA, 1993.

[12] R. D. Driver, Ordinary and Delay Differential Equations,
Springer, New York, NY, USA, 1977.

[13] K. Jiaoxun and C. Yuhao, Stability of Numerical Methods for
Delay Differentialequations, Science Press, 2005.

[14] H. J. Tian and J. X. Kuang, “The stability of the 𝜃-methods in the
numerical solution of delay differential equations with several
delay terms,” Journal of Computational and Applied Mathemat-
ics, vol. 58, no. 2, pp. 171–181, 1995.

[15] A. N. Al-Mutib, “Stability properties of numerical methods for
solving delay differential equations,” Journal of Computational
and Applied Mathematics, vol. 10, no. 1, pp. 71–79, 1984.

[16] M. Z. Liu and M. N. Spijker, “The stability of the 𝜃-methods
in the numerical solution of delay differential equations,” IMA
Journal of Numerical Analysis, vol. 10, no. 1, pp. 31–48, 1990.

[17] A. Bellen and M. Zennaro, Numerical Methods for Delay Dif-
ferential Equations, Numerical Mathematics and Scientific
Computation, The Clarendon Press Oxford University Press,
New York, NY, USA, 2003.

[18] N. Senu, M. Suleiman, F. Ismail, and M. Othman, “A zero-dis-
sipative Runge-Kutta-Nyström method with minimal phase-
lag,” Mathematical Problems in Engineering, Article ID 591341,
15 pages, 2010.

[19] J. R. Dormand, Numerical Methods for Differential Equations A
Computational Approach, Library of Engineering Mathematics,
CRC Press, Boca Raton, Fla, USA, 1996.

[20] J. D. Lambert, Computational Methods in Ordinary Differential
Equations, John Wiley-Sons, 1972.

[21] T. M. Morrison and R. H. Rand, “2 : 1 resonance in the delayed
nonlinear Mathieu equation,” Nonlinear Dynamics: An Interna-
tional Journal of Nonlinear Dynamics and Chaos in Engineering
Systems, vol. 50, no. 1-2, pp. 341–352, 2007.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 401538, 9 pages
http://dx.doi.org/10.1155/2013/401538

Research Article
𝑝-Moment Stability of Stochastic Differential Delay
Systems with Impulsive Jump and Markovian Switching

Lijun Gao

Department of Electrical Engineering and Automation, Qufu Normal University, Rizhao 276826, China

Correspondence should be addressed to Lijun Gao; gljwg1977@163.com

Received 2 February 2013; Revised 26 April 2013; Accepted 3 May 2013

Academic Editor: Yang Yi

Copyright © 2013 Lijun Gao. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates 𝑝-moment stability of the stochastic differential delay systems with impulsive jump and Markovian
switching. Some stability criteria are obtained based on Lyapunov functional method and stochastic theory. It is shown that, even if
all the subsystems governing the continuous dynamics without impulse are not stable, as impulsive and switching signal satisfies a
dwell-time upper bound condition, impulses can stabilize the systems in the𝑝-moment stability sense.The opposite situation is also
developed for which all the subsystems governing the continuous dynamics are 𝑝-moment stable. The results can be easily applied
to stochastic systems with arbitrarily large delays. The efficiency of the proposed results is illustrated by two numerical examples.

1. Introduction

Stochastic differential systems which include stochastic delay
differential systems have attracted much attention, owing
to stochastic modeling having played an important role in
many ways such as science and engineering and forecast of
the growth of population [1, 2]. Stability analysis of different
stochastic systems has been a subject of intense activities in
the literature [3–9]. Switched systems are an important class
of hybrid dynamical systems which are composed of a family
of continuous time or discrete-time dynamical systems and
a rule that orchestrates the switching among them [10]. A
particular class of switched systems is named as markovian
switched systems, whose system mode is governed by a
Markov process. During the past few decades, many issues
on Markovian switched systems such as stability and stabi-
lization [11–14], 𝐻

∞
control and filtering [15], and adaptive

control problem [16, 17] have been well investigated.
Beside stochastic effects andmarkovian switching, impul-

sive effect likewise exists in many evolution processed in
which systems states change abruptly at certain moments
of time, involving such fields as biology, engineering, and
information science [18].Therefore, the stability investigation
of stochastic differential systems with impulsive jump is
interesting to many investigators. The 𝑝-moment stability

of stochastic differential systems is studied in [19] for the
systems with impulsive jump, nonswitched, and no time
delay. Thus, the results in [19] cannot be easily applied to
the class of impulsive systems with markovian switching
and time-varying delay. Liu and Peng [20] discussed the 𝑝-
moment stability of stochastic differential delay systems with
impulsive jump and markovian switching. It is shown that
when the delayed continuous dynamics are𝑝-moment stable,
the stability properties is not destroyed by impulse at discrete
instants irrespective of the length of delay. It is also noticed
that the conclusions received in [20] are restricted to the
case that are all the subsystems that govern the continuous
dynamics are stable in 𝑝-moment sense.There is no attention
has been paid to the class of hybrid systems in which all the
subsystems that govern the continuous dynamics is not stable.
Thus, how to establish a sufficient condition of 𝑝-moment
stability for the class of stochastic delays hybrid systems is the
key problem to be solved in future research.

Based on the above analysis, in this work, the 𝑝-moment
stability of stochastic differential delay systems with impul-
sive jump andmarkovian switching is investigated.Motivated
by the work of [20], we first relax the global Lipschitz
condition of impulsive control law Δ𝑥(𝑡

𝑘
). Then, we will

propose some conditions of the 𝑝-moment stability for two
classes of stochastic hybrid delay systems, that is, all the
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subsystems that govern the continuous dynamics are stable
and not. Compared with [20], the criteria for the stable case
in this paper are more general. Further, the results are applied
to linear stochastic delay systems with arbitrarily large delays.

2. Preliminaries

Throughout this paper, unless otherwise specified, we let
(Ω, 𝐹, {𝐹

𝑡
}
𝑡≥0

, 𝑃) be a complete probability space with a
filtration {𝐹

𝑡
}
𝑡≥0

satisfying the usual conditions, that is, it is
right continuous and 𝐹

0
contains all 𝑃-null sets. 𝜔(𝑡) is an𝑚-

dimensional Brownian motion defined on (Ω, 𝐹, {𝐹
𝑡
}
𝑡≥0

, 𝑃).
Let 𝑍+ define the set of nonnegative real numbers and 𝑅

𝑛 the
𝑛-dimensional real Euclidean space. | ⋅ | denotes the Euclidean
norm for vectors or the spectral norm for matrices. For 𝑟 > 0,
let PC([−𝑟, 0], 𝑅

𝑛

)denote the class of functions from [−𝑟, 0] to
𝑅
𝑛 satisfying the following: (i) it has at most a finite number

of jump discontinuities on (−𝑟, 0]; (ii) it is continuous from
the right at all points in [−𝑟, 0). For simplicity, PC is used
for PC([−𝑟, 0], 𝑅

𝑛

) for the rest of this paper. For function 𝜙 :

[−𝑟, 0] → 𝑅
𝑛, a norm is defined as ‖𝜙‖

𝑟
= sup

−𝑟≤𝜃≤0
|𝜙(𝜃)|.

Given 𝑥 ∈ PC([−𝑟,∞], 𝑅
𝑛

) and for each 𝑡 ∈ 𝑅
+, define

𝑥
𝑡
, 𝑥

𝑡
− ∈ PC by 𝑥

𝑡
(𝑠) = 𝑥(𝑡 + 𝑠) for −𝑟 ≤ 𝑠 ≤ 0 and 𝑥

𝑡
−(𝑠) =

𝑥(𝑡+𝑠) for −𝑟 ≤ 𝑠 < 0, respectively. Denote by PC𝑝

𝐹
𝑡

the family
of all 𝐹

𝑡
-measurable PC-valued random variables 𝜙 = {𝜙(𝜃) :

−𝑟 ≤ 𝜃 ≤ 0}, satisfying sup
−𝑟≤𝜃≤0

𝐸‖𝜙(𝜃)‖
𝑝

< ∞, where 𝐸

stands for the mathematical expectation. Let PC𝑏

𝐹
𝑡

(𝛿) = {𝜙 :

𝜙 ∈ PC𝑝

𝐹
𝑡

([−𝑟, 0], 𝑅
𝑛

) and sup
−𝑟≤𝜃≤0

𝐸‖𝜙(𝜃)‖
𝑝

< 𝛿}.
The Markov process {𝑟(𝑡), 𝑡 ≥ 0} represents the switching

between the different modes taking values in a finite state
space 𝑆 = {1, 2, . . . , 𝑁} with generator 𝜋 = (𝜋

𝑖𝑗
)
𝑁×𝑁

given
by

Pr {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , if 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
Δ + 𝑜 (Δ) , if 𝑖 = 𝑗,

(1)

where 𝜋
𝑖𝑗
is the transition rate from mode 𝑖 to 𝑗 and satisfies

the following relations:

𝜋
𝑖𝑗
≥ 0, 𝜋

𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝜋
𝑖𝑗
, (2)

and 𝑜(Δ) is such that lim
Δ→0

𝑜(Δ)/Δ = 0. We assume that
theMarkov chain 𝑟(𝑡) is independent of the Brownianmotion
𝜔(⋅). It is known that almost every sample path of 𝑟(𝑡) is a
right-continuous step functionwith a finite number of simple
jumps in any finite subinterval of 𝑅+

= [0, +∞).
Consider the following stochastic nonlinear delay system

with impulsive jump and markovian switching

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥
𝑡
, 𝑡, 𝑟 (𝑡)) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥 (𝑡) = 𝐼
𝑘
(𝑥 (𝑡

−

) , 𝑡) , 𝑡 = 𝑡
𝑘
,

𝑥 (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝑟, 0] ,

(3)

where 𝜙(𝜃) ∈ PC is the initial data, 𝑥(𝑡) ∈ 𝑅
𝑛 is the systems

state, 𝑥(𝑡+) and 𝑥(𝑡
−

) denote the limit from the right and the
left at point 𝑡, respectively, and {𝑡

𝑘
: 𝑘 ∈ 𝑍

+

} ⊂ 𝑅
+ a strictly

increasing sequence. We assume that for each 𝑖 ∈ 𝑆, given
functional 𝑓 : 𝑅

𝑛

× PC × 𝑆 → 𝑅
𝑛, 𝑔 : 𝑅

𝑛

× PC × 𝑆 → 𝑅
𝑛×𝑚

satisfying𝑓(0, 0, 𝑡, 𝑖) ≡ 𝑔(0, 0, 𝑡, 𝑖) ≡ 0. 𝐼
𝑘
: 𝑅

𝑛

×𝑅 → 𝑅
𝑛 with

𝐼
𝑘
(0, 𝑡) ≡ 0 is the change of state variable at instant 𝑡

𝑘
. In this

paper, we always assume that there exists a unique stochastic
process satisfying systems (3), and all solutions of systems (3)
are continuous on the right-hand side and on the left-hand
side. Moreover, by 𝑓(0, 0, 𝑡, 𝑖) ≡ 𝑔(0, 0, 𝑡, 𝑖) ≡ 0 and 𝐼

𝑘
(0, 𝑡) ≡

0, it is easily obtained that system (3) admits a trivial solution.

Definition 1 (see [20]). The trivial solution of system (3) is
(1) 𝑝-moment stable if for any initial data 𝑥

𝑡
0

= 𝜙 and any
𝜀 > 0, there exists a 𝛿 > 0 such that

𝐸‖𝑥(𝑡)‖
𝑝

< 𝜀, 𝑡 ≥ 𝑡
0
, (4)

whenever ‖𝜙‖𝑝
𝑟
< 𝛿;

(2) uniformly 𝑝-moment stable if the 𝛿 in (1) is indepen-
dent of 𝑡

0
.

Definition 2. Let𝐶2,1

(𝑅
𝑛

×[𝑡
0
−𝑟,∞]×𝑆; 𝑅

+

)denote the family
of all nonnegative functions 𝑉(𝑥, 𝑡, 𝑖) that are continuously
twice differentiable in 𝑥 and once differentiable with respect
to 𝑡. For each𝑉(𝑥, 𝑡, 𝑖) ∈ 𝐶

2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆; 𝑅

+

), define
an operator 𝐿𝑉 from 𝑅

𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆 to 𝑅

+ as follows:

𝐿𝑉 (𝑥, 𝑡, 𝑖) = 𝑉
𝑡
(𝑥, 𝑡, 𝑖) + 𝑉

𝑥
(𝑥, 𝑡, 𝑖) 𝑓 (𝑥, 𝑦, 𝑡, 𝑖)

+
1

2
trace [𝑔𝑇

(𝑥, 𝑦, 𝑡, 𝑖) 𝑉
𝑥𝑥

(𝑥, 𝑡, 𝑖) 𝑔 (𝑥, 𝑦, 𝑡, 𝑖)]

+

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝑉 (𝑥, 𝑡, 𝑗) ,

(5)

where

𝑉
𝑡
(𝑥, 𝑡, 𝑖) =

𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑡
,

𝑉
𝑥
(𝑥, 𝑡, 𝑖) = (

𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑥, 𝑡, 𝑖)

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥

(𝑥, 𝑡, 𝑖) = (
𝜕
2

𝑉(𝑥, 𝑡, 𝑖)

𝜕𝑥
𝑖
𝜕𝑥

𝑗

)

𝑛×𝑛

.

(6)

Before giving the results, we need a lemma.

Lemma 3 (see [20]). If 𝑉 ∈ 𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆; 𝑅

+

),
then for any stopping times 0 ≤ 𝑡

1
≤ 𝑡

2
< +∞,

𝐸 (𝑉 (𝑥 (𝑡
2
) , 𝑡

2
, 𝑟 (𝑡

2
))) = 𝐸 (𝑉 (𝑥 (𝑡

1
) , 𝑡

1
, 𝑟 (𝑡

1
)))

+ 𝐸(∫

𝑡
2

𝑡
1

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠) ,

(7)

as long as the integration involved exist and finite.
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3. Main Results

In this section, Lyapunov-based sufficient conditions for 𝑝-
moment stability of system (3) are developed. The first result
is concerned with 𝑝-moment stability of system (3), in the
case when all the subsystems governing the continuous
dynamics of (3) are stable. Intuitively, the conditions in the
following theorem consist of three aspects: (i) the Lyapunov-
Krasovskii functionals satisfy certain positive definite and
decrescent conditions; (ii) there exist some negative estimates
of the upper right-hand derivatives of the functionals with
respect to each stable mode of system (3); (iii) the jumps
induced by the impulses and the estimates on the decay rate
of continuous dynamics satisfy certain conditions.

Theorem 4. Assume that there exist function 𝑉(𝑥(𝑡), 𝑡, 𝑖) ∈

𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞]× 𝑆; 𝑅

+

) and some positive constants 𝑝, 𝑎,
𝑏, 𝑒

𝑖
, the nonnegative and continuous functions 𝑐

𝑖
(𝑡) and 𝑑

𝑖
(𝑡),

such that

(i) 𝑎|𝑥|𝑝 ≤ 𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ 𝑏|𝑥
𝑡
|
𝑝

𝑟
;

(ii) 𝐸𝐿𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ −𝑐
𝑖
(𝑡)𝐸𝑉(𝑥(𝑡), 𝑡, 𝑖) + 𝑑

𝑖
(𝑡)𝐸𝑉(𝑥

𝑡
, 𝑡, 𝑖),

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 = 1, 2, . . .;

(iii) 𝐸𝑉(𝜙(0) + 𝐼
𝑘
(𝜙, 𝑡

𝑘
, �̃�) ≤ 𝑒

𝑖
𝑉(𝜙(0), 𝑡

−

𝑘
, 𝑖);

(iv) 0 < 𝑐
∗

< 1, where 𝑐
∗

= sup{𝑐∗
𝑖

| 𝑐
∗

𝑖
= 𝑏𝑒

𝑖
/𝑎, 𝑖 = 1,

2, . . .};
(v) 𝑐

𝑖
(𝑡) > 𝑑

𝑖
(𝑡)/𝑐

∗

, 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

);

then the trivial solution of system (3) is uniformly 𝑝-moment
stable.

Proof. For any 𝜀 > 0, there exists a 𝛿 = 𝛿(𝜀) > 0 such that
𝛿 < (𝑎𝑐

∗

/𝑏)𝜀 independent of 𝑡
0
. For any 𝑡

0
≥ 0 and 𝑥

𝑡
0

= 𝜙 ∈

PC𝑏

𝐹
𝑡

(𝛿), let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜙) be the solution of (3).

In the following, we will show that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , 𝑘 ∈ 𝑍

+

. (8)

It will be firstly proved that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
, 𝑡
1
) . (9)

For any initial data 𝑥
𝑡
0

∈ PC𝑏

𝐹
𝑡

(𝛿), it follows from assumption
(i) that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑏𝐸

𝑥
𝑡
0



𝑝

𝑟

≤ 𝑏𝛿 <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

0
] .

(10)

Suppose that (9) is not true, then there exists some 𝑡 ∈ (𝑡
0
, 𝑡
1
)

such that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) >
𝑏

𝑐∗
𝛿 > 𝑏𝛿 ≥ 𝐸𝑉 (𝑥 (𝑡

0
) , 𝑡

0
, 𝑟 (𝑡

0
)) .

(11)

Set 𝑡∗ = inf{𝑡 ∈ [𝑡
0
, 𝑡
1
) : 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) > (𝑏/𝑐

∗

)𝛿}. Observe
that 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is continuous on 𝑡 ∈ [𝑡

0
, 𝑡
1
), then 𝑡

∗

∈

(𝑡
0
, 𝑡
1
) and

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) =
𝑏

𝑐∗
𝛿, (12)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

∗

) . (13)

In view of (10), define 𝑡
∗∗

= sup{𝑡 ∈ [𝑡
0

− 𝑟, 𝑡
∗

] :

𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ≤ 𝑏𝛿}. Then 𝑡
∗∗

∈ (𝑡
0
, 𝑡

∗

) and

𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) = 𝑏𝛿, (14)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) > 𝑏𝛿, 𝑡 ∈ (𝑡
∗∗

, 𝑡
∗

] . (15)

Consequently, in view of (10)–(15), for all 𝑡 ∈ [𝑡
∗

, 𝑡
∗∗

] and
𝜃 ∈ [−𝑟, 0], one has

𝐸𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤
𝑏

𝑐∗
𝛿 ≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡

∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

))

≤
1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(16)

Now, combining (16) and condition (ii), we have

𝐸𝐿𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

≤ −𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) + 𝑑

𝑖
(𝑡) 𝐸𝑉 (𝑥

𝑡
, 𝑡, 𝑟 (𝑡))

≤ (−𝑐
𝑖
(𝑡) +

𝑑
𝑖
(𝑡)

𝑐∗
)𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(17)

Applying Lemma 3, integrating (17) on [𝑡
∗∗

, 𝑡
∗

], one obtains
that

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

))

≤ 𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

))

+ ∫

𝑡
∗

𝑡
∗∗

(−𝑐
𝑖
(𝑡) +

𝑑
𝑖
(𝑡)

𝑐∗
)𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠.

(18)

By condition (v) and (14) and the Gronwall inequality, one
has

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

))

≤ 𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) 𝑒
(−𝑐
𝑖
(𝑡)+(𝑑

𝑖
(𝑡)/𝑐
∗

))(𝑡
∗

−𝑡
∗∗

)

≤ 𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) = 𝑏𝛿 <
𝑏

𝑐∗
𝛿.

(19)

Since (19) contradicts with (12), inequality (9) holds and (8)
is true for 𝑘 = 1.

Now, assume that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , (20)
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for all 𝑘 ≤ 𝑚, where 𝑘,𝑚 ∈ 𝑍
+. We proceed to show that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

) . (21)

Suppose that (21) is not true, set 𝑡 = inf{𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

) :

𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) > (𝑏/𝑐
∗

)𝛿}. From condition (i), (iv), and (21),
we know that

𝐸𝑉 (𝑥 (𝑡
𝑚
) , 𝑡

𝑚
, 𝑟 (𝑡

𝑚
))

≤ 𝑒
𝑖
𝑚

𝐸𝑉 (𝑥 (𝑡
−

𝑚
) , 𝑡

−

𝑚
, 𝑟 (𝑡

−

𝑚
))

≤ 𝑏𝑒
𝑖
𝑚


𝑥
𝑡
−

𝑚



𝑝

𝑟

≤

𝑏𝑒
𝑖
𝑚

𝑎
sup

−𝑟≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡
−

𝑚
+ 𝜃) , 𝑡

−

𝑚
+ 𝜃, 𝑟 (𝑡

−

𝑚
+ 𝜃))

≤

𝑏𝑒
𝑖
𝑚

𝑎

𝑏

𝑐∗
𝛿 ≤ 𝑏𝛿 <

𝑏

𝑐∗
𝛿.

(22)

Owing to 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is continuous on 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

),
then 𝑡 ∈ (𝑡

𝑚
, 𝑡
𝑚+1

) and

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) =
𝑏

𝑐∗
𝛿, (23)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑚
, 𝑡) . (24)

Define 𝑡 = sup{𝑡 ∈ [𝑡
0
− 𝑟, 𝑡] : 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ≤ 𝑏𝛿}, then

𝑡 ∈ (𝑡
𝑚
, 𝑡) and

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) = 𝑏𝛿, (25)

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) > 𝑏𝛿, 𝑡 ∈ (𝑡, 𝑡] . (26)

Fix any 𝑡 ∈ [𝑡, 𝑡], when 𝑡+𝜃 ≥ 𝑡
𝑚
for all 𝜃 ∈ [−𝑟, 0], then from

(22)–(26), one has

𝐸𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤
𝑏

𝑐∗
𝛿 ≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

≤
1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(27)

When 𝑡 + 𝜃 < 𝑡
𝑚

for some 𝜃 ∈ [−𝑟, 0], without loss of
generality, we assume that 𝑡 + 𝜃 ∈ [𝑡

𝑙−1
, 𝑡
𝑙
) for some 𝑙 ∈ 𝑍

+,
𝑙 < 𝑚, then from (20) and (25), we obtain that

𝐸𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤
𝑏

𝑐∗
𝛿 ≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

≤
1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(28)

Therefore, from condition (ii), (27), and (28), one gets

𝐸𝐿𝑉 (𝑥 (𝑡 + 𝜃) , 𝑡 + 𝜃, 𝑟 (𝑡 + 𝜃))

≤ (−𝑐
𝑖
𝑚

(𝑡) +

𝑑
𝑖
𝑚

(𝑡)

𝑐∗
)𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(29)

Similar to the argument on [𝑡
∗∗

, 𝑡
∗

], an application of Ito’s
formula on [𝑡, 𝑡]will lead to𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) < (𝑏/𝑐

∗

)𝛿,which
would contradict with (23). So the inequality (21) is true.
Therefore, by mathematical induction, one can obtain that
(8) holds for all 𝑘 ∈ 𝑍

+. Then from condition (i) and the
definition of 𝛿, we have

𝐸‖𝑥(𝑡)‖
𝑝

≤
𝑏

𝑎𝑐∗
𝛿 < 𝜀, 𝑡 ≥ 𝑡

0
. (30)

According to Definition 1, it is concluded that the trivial
solution of system (3) is uniformly 𝑝-moment stable. The
proof is complete.

Corollary 5. Assume that there exist function 𝑉(𝑥(𝑡), 𝑡, 𝑖) ∈

𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞]× 𝑆; 𝑅

+

) and some positive constants 𝑝, 𝑎,
𝑏, 𝑒

𝑖
, 𝑐

𝑖
, and 𝑑

𝑖
such that

(i) 𝑎|𝑥|𝑝 ≤ 𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ 𝑏|𝑥
𝑡
|
𝑝

𝑟
;

(ii) 𝐸𝐿𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ −𝑐
𝑖
𝐸𝑉(𝑥(𝑡), 𝑡, 𝑖) + 𝑑

𝑖
𝐸𝑉(𝑥

𝑡
, 𝑡, 𝑖), 𝑡 ∈

[𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 = 1, 2, . . .;

(iii) 𝐸𝑉(𝜙(0) + 𝐼
𝑘
(𝜙, 𝑡

𝑘
, �̃�) ≤ 𝑒

𝑖
𝑉(𝜙(0), 𝑡

−

𝑘
, 𝑖);

(iv) 0 < 𝑐
∗

< 1, where 𝑐
∗

= sup{𝑐∗
𝑖

| 𝑐
∗

𝑖
= (𝑏𝑒

𝑖
/𝑎), 𝑖 =

1, 2, . . .};
(v) 𝑐

𝑖
> 𝑑

𝑖
/𝑐

∗, 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

);

then the trivial solution of system (3) is uniformly 𝑝-moment
stable.

Proof. Replacing 𝑐
𝑖
(𝑡) and 𝑑

𝑖
(𝑡) in Theorem 4 with 𝑐

𝑖
and

𝑑
𝑖
, respectively, we find that it is a direct conclusion of

Theorem 4.

Remark 6. From condition (ii) in Theorem 4, it is seen that
each of the continuous dynamics is stable. On the other
hand, from condition (iv), we see that each of the discrete
dynamics is also stabilizing (0 < 𝑐

∗

< 1 implies 𝑒
𝑖
< 1). It

implies that the stability properties of a time-delay impulsive
markovian switched system with stable continuous dynamics
can be preserved under stabilizing impulsive perturbations
irrespective of the times of impulses and switching. Hence,
the bound of dwell-time is not necessary.

Remark 7. If condition (iii) is omitted in Corollary 5, the
result is consistent with that of Theorem 1 in [20]. Thus, the
results in this work are an extension of that in [20].

We proceed to consider in next the 𝑝-moment stability of
systems (3). It is supposed that all the subsystems governing
the continuous dynamics of (3) can be unstable while the
impulses are stabilizing. Intuitively, the conditions in the
following theorem consist of four aspects: (i) the Lyapunov
functionals satisfy certain positive definite and decrescent
conditions; (ii) there exist some positive estimates of the
upper right-hand derivatives of the functionals with respect
to each unstable mode of system (3); (iii) the dwell time of
each mode of system (3) satisfies some supper bounds; (iv)
the jumps induced by the stabilizing impulses satisfy certain
diminishing conditions.
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Theorem 8. Assume that there exist function 𝑉(𝑥(𝑡), 𝑡, 𝑖) ∈

𝐶
2,1

(𝑅
𝑛

× [𝑡
0
− 𝑟,∞] × 𝑆; 𝑅

+

) and some positive scalars 𝑝, 𝑎, 𝑏,
𝑒
𝑖
, 𝜌 < 1, 𝛼, and 𝛽 such that

(i) 𝑎|𝑥|𝑝 ≤ 𝑉(𝑥(𝑡), 𝑡, 𝑖) ≤ 𝑏|𝑥
𝑡
|
𝑝

𝑟
;

(ii) 𝐸𝑉(𝜙(0) + 𝐼
𝑘
(𝜙, 𝑡

𝑘
, �̃�) ≤ 𝜌𝑒

𝑖
𝑉(𝜙(0), 𝑡

−

𝑘
, 𝑖);

(iii) 0 < 𝑐
∗

< 1, where 𝑐
∗

= sup{𝑐∗
𝑖

| 𝑐
∗

𝑖
= (𝑏/𝑎)𝜌𝑒

𝑖
, 𝑖 =

1, 2, . . .};

(iv) there exist nonnegative and piecewise continuous func-
tions 𝑐

𝑖
(𝑡) : [𝑡

0
,∞) → 𝑅

𝑛 satisfying ∫𝑡+𝛼

𝑡

𝑐
𝑖
(𝑠) 𝑑𝑠 ≤ 𝛼𝛽

for all 𝑡 ≥ 𝑡
0
, such that

𝐸𝐿𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤ 𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ,

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

(31)

whenever 𝑡 ≥ 𝑡
0
and 𝜙 ∈ PC𝑏

𝐹
𝑡

are such that 𝑐∗𝐸𝐿𝑉
(𝜙(𝑠), 𝑡 + 𝑠, �̃�) ≤ 𝐸𝑉(𝜙(0), 𝑡, 𝑖);

(v) sup
𝑘∈𝑍
+{𝑡

𝑘
− 𝑡

𝑘−1
} = 𝛼 < −(1/𝛽) ln((𝑏/𝑎)𝜌𝑒

𝑖
), 𝑘 ∈ 𝑍

+;

then the trivial solution of system (3) is uniformly 𝑝-
moment stable.

Proof. For any 𝜀 > 0, there exists a 𝛿 = 𝛿(𝜀) > 0 such that
𝛿 < (𝑎𝑐

∗

/𝑏)𝜀 independent of 𝑡
0
. For any 𝑡

0
≥ 0 and 𝑥

𝑡
0

= 𝜙 ∈

PC𝑏

𝐹
𝑡

(𝛿), let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜙) be the solution of (3).

By generalized Ito’s formula (Lemma 3), when 𝑡 ∈ [𝑡
𝑘
,

𝑡
𝑘+1

), we get

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

= 𝐸𝑉 (𝑥 (𝑡
𝑘
) , 𝑡

𝑘
, 𝑟 (𝑡

𝑘
))

+ 𝐸(∫

𝑡

𝑡
𝑘

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠)

+ 𝐸(∫

𝑡

𝑡
𝑘

𝜕𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))

𝜕𝑥 (𝑠)
𝑔 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝜔 (𝑠))

= 𝐸𝑉 (𝑥 (𝑡
𝑘
) , 𝑡

𝑘
, 𝑟 (𝑡

𝑘
))

+ 𝐸(∫

𝑡

𝑡
𝑘

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠) .

(32)

Given small enough Δ𝑡 > 0 such that 𝑡 + Δ𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), one
has

𝐸𝑉 (𝑥 (𝑡 + Δ𝑡) , 𝑡 + Δ𝑡, 𝑟 (𝑡 + Δ𝑡))

= 𝐸𝑉 (𝑥 (𝑡
𝑘
) , 𝑡

𝑘
, 𝑟 (𝑡

𝑘
))

+ 𝐸(∫

𝑡+Δ𝑡

𝑡
𝑘

𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) .

(33)

In view of condition (iv), (32), and (33), it follows that

𝐸𝑉 (𝑥 (𝑡 + Δ𝑡) , 𝑡 + Δ𝑡, 𝑟 (𝑡 + Δ𝑡))

− 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))

= ∫

𝑡+Δ𝑡

𝑡

𝐸𝐿𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠

≤ ∫

𝑡+Δ𝑡

𝑡

𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠)) 𝑑𝑠,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) .

(34)

From (34), one gets

𝐷
+

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) ,

(35)

where𝐷+ is the Dini-derivative defined as

𝐷
+

𝑉 (𝑡) = lim
ℎ→0

+

sup 𝑉 (𝑡 + ℎ) − 𝑉 (𝑡)

ℎ
, (36)

in which 𝑉(𝑡) is continuous function.
In the following, we will show that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , 𝑘 ∈ 𝑍

+

. (37)

For this purpose, we first prove that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
, 𝑡
1
) . (38)

From condition (i) and 𝑥
𝑡
0

∈ PC𝑏

𝐹
𝑡

(𝛿), it follows that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑏𝐸

𝑥
𝑡
0



𝑝

𝑟

≤ 𝑏𝛿 <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

0
] .

(39)

If (38) is not true, there must exist some 𝑡 ∈ [𝑡
0
, 𝑡
1
) such that

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) >
𝑏

𝑐∗
𝛿 > 𝑏𝛿 ≥ 𝐸𝑉 (𝑥 (𝑡

0
) , 𝑡

0
, 𝑟 (𝑡

0
)) .

(40)

Let 𝑡∗ = inf{𝑡 ∈ [𝑡
0
, 𝑡
1
) : 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) > (𝑏/𝑐

∗

)𝛿}. From
(39), one has 𝑡∗ ∈ (𝑡

0
, 𝑡
1
) and

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) =
𝑏

𝑐∗
𝛿,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) <
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

0
− 𝑟, 𝑡

∗

) ,

𝐷
+

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) ≥ 0.

(41)

Owing to (𝑏/𝑐
∗

)𝛿 > 𝑏𝛿 and 𝐸𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ≤ 𝑏𝛿 for 𝑡 ∈

[𝑡
0
− 𝑟, 𝑡

0
], then there exists a 𝑡

∗∗

∈ [𝑡
0
, 𝑡

∗

) such that

𝐸𝑉 (𝑥 (𝑡
∗∗

) , 𝑡
∗∗

, 𝑟 (𝑡
∗∗

)) = 𝑏𝛿,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) > 𝑏𝛿, 𝑡 ∈ (𝑡
∗∗

, 𝑡
∗

] ,

𝐷
+

𝐸𝑉 (𝑥 (𝑡
∗

) , 𝑡
∗

, 𝑟 (𝑡
∗

)) ≥ 0.

(42)
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Consequently, by (41) and (42), for 𝑡 ∈ [𝑡
∗

, 𝑡
∗∗

], we have

𝐸𝑉 (𝑥 (𝑡 + 𝑠) , 𝑡 + 𝑠, 𝑟 (𝑡 + 𝑠)) ≤
𝑏𝛿

𝑐∗
≤

1

𝑐∗
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) .

(43)

So, for 𝑡 ∈ [𝑡
∗

, 𝑡
∗∗

], it has

𝐷
+

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤ 𝑐
𝑖
(𝑡) 𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) . (44)

Integrating (44) from 𝑡
∗∗ to 𝑡

∗

∫

𝑡
∗

𝑡
∗∗

𝐷
+

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))
𝑑𝑠 ≤ ∫

𝑡
1

𝑡
0

𝑐
𝑖
(𝑡) 𝑑𝑠 ≤ 𝛼𝛽. (45)

Meanwhile, by condition (v), one has

∫

𝑡
∗

𝑡
∗∗

𝐷
+

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))

𝐸𝑉 (𝑥 (𝑠) , 𝑠, 𝑟 (𝑠))
𝑑𝑠

= ∫

𝐸𝑉(𝑥(𝑡
∗

),𝑡
∗

,𝑟(𝑡
∗

))

𝐸𝑉(𝑥(𝑡
∗∗
),𝑡
∗∗
,𝑟(𝑡
∗∗
))

1

𝑢
𝑑𝑢

= ∫

(𝑏/𝑐
∗

)𝛿

𝑏𝛿

1

𝑢
𝑑𝑢 = − ln 𝑐

∗

> 𝑐
𝑖
(𝑡
1
− 𝑡

0
) ,

(46)

which is contradictory with (45), so (38) is true.
By condition (i) and (38), we have

𝐸𝑉 (𝑥 (𝑡
1
) , 𝑡

1
, 𝑟 (𝑡

1
))

≤ 𝜌𝑒
𝑖
1

𝐸𝑉 (𝑥 (𝑡
−

1
) , 𝑡

−

1
, 𝑟 (𝑡

−

1
))

≤ 𝑏𝑒
𝑖
1


𝑥
𝑡
−

1



𝑝

𝑟

≤
𝑏

𝑎
𝜌𝑒

𝑖
1

sup
−𝑟≤𝜃≤0

𝐸𝑉 (𝑥 (𝑡
−

1
+ 𝜃) , 𝑡

−

1
+ 𝜃, 𝑟 (𝑡

−

1
+ 𝜃))

≤
𝑏

𝑎

𝑏

𝑐∗
𝜌𝑒

𝑖
1

𝛿 ≤ 𝑏𝛿 <
𝑏

𝑐∗
𝛿.

(47)

Now, we assume that (37) holds for 𝑘 = 1, 2, . . . , 𝑚, that is,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
] . (48)

We will prove that, for 𝑘 = 𝑚 + 1,

𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ≤
𝑏

𝑐∗
𝛿, 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

) . (49)

Suppose that (49) does not hold, by the same procedure as in
[𝑡
0
, 𝑡
1
), we can get a contradiction and (49) follows. Finally,

we get

𝐸‖𝑥(𝑡)‖
𝑝

≤
𝑏

𝑎𝑐∗
𝛿 < 𝜀, 𝑡 ≥ 𝑡

0
. (50)

From Definition 1, it is concluded that the trivial solution
of system (3) is uniformly 𝑝-moment stable. The proof is
complete.

Corollary 9. Assume that there exist positive scalars 𝑝, 𝑎, 𝑏,
𝜌 < 1, 𝑒

𝑖
, 𝑐

𝑖
(𝑖 ∈ 𝑆), 𝛼, and 𝛽 such that conditions (iv) in

Theorem 8 are replaced by the following:

(iv)∗ there exists positive number 𝑐
𝑖
such that

𝐸𝐿𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ≤ 𝑐
𝑖
𝐸𝑉 (𝑥 (𝑡) , 𝑡, 𝑖) ,

𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

(51)

whenever 𝑡 ≥ 𝑡
0
and 𝜑 ∈ PC𝑏

𝐹
𝑡

([−𝑟, 0]; 𝑅
𝑛

) are such that
𝑐
∗

𝐸𝐿𝑉(𝜑(𝑠), 𝑡 + 𝑠, �̃�) ≤ 𝐸𝑉(𝜑(0), 𝑡, 𝑖); and all other conditions
remain the same, then the trivial solution of system (3) is
uniformly 𝑝-moment stable.

Proof. Similar to the procedure of Theorem 8, correspond-
ingly, the item 𝑐

𝑖
(𝑡) in the proof is replaced by 𝑐

𝑖
.

Remark 10. It is clear that Theorem 8 implies that each of
the continuous dynamics can be unstable, since the item
𝑐
𝑖
(𝑡) in condition (iv), which characterizes the changing rate

of Lyapunov function 𝑉(𝑥(𝑡), 𝑡, 𝑟(𝑡)) at 𝑡, is assumed to be
nonnegative. Theorem 8 shows that an unstable stochastic
delay system can be successfully stabilized by impulse.

Remark 11. Constant 𝑒
𝑖
in condition (ii) characterizes certain

perturbations in the overall impulsive stabilization process,
that is, it is not strictly required by Theorem 8 that each
impulse contributes to stabilize the system, as long as the
overall contribution of the impulses is stabilizing. When 𝑒

𝑖
≡

1, it is easily obtained that each impulse must be stabilizing
(𝜌 < 1), which is more restrictive.

Now consider the linear stochastic system with impulses
and markovian switching

𝑑𝑥 (𝑡) = [𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝑟)] 𝑑𝑡

+ [𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝑟)] 𝑑𝜔 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝐸
𝑘
(𝑥 (𝑡

−

) , 𝑟 (𝑡)) , 𝑡 = 𝑡
𝑘
,

𝑥 (𝑡
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝑟, 0] ,

(52)

where 𝐴
𝑖
, 𝐵

𝑖
, 𝐶

𝑖
, 𝐷

𝑖
, and 𝐸

𝑘
are all 𝑛 × 𝑛 matrices and

𝜔 is a one-dimensional standard wiener process. 𝑟(𝑡) is a
Markov chain taking values in 𝑆 = {1, 2, . . . , 𝑁} in which the
transition rate is 𝜋

𝑖𝑗
.

Theorem 12. When 𝑟(𝑡) = 𝑖 ∈ 𝑆, define 𝐴(𝑟(𝑡)) = 𝐴
𝑖
,

𝐵(𝑟(𝑡)) = 𝐵
𝑖
, 𝐶(𝑟(𝑡)) = 𝐶

𝑖
,𝐷(𝑟(𝑡)) = 𝐷

𝑖
.

(i) If there exist constants 𝑝
𝑖
, 𝑐

𝑖
, 𝑑

𝑖
, 𝜀

1
, and 𝜀

2
such that

𝑝
𝑖
𝜆max (𝐴

𝑇

𝑖
+ 𝐴

𝑖
+ 𝜀

1
𝐼) + 𝑝

𝑖
(1 + 𝜀

2
)
𝐷𝑖



2

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑝
𝑗
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≤ −𝑐
𝑖
, 𝑝

𝑖
{𝜀

−1

1

𝐵𝑖



2

+ (1 + 𝜀
−1

2
)
𝐺𝑖



2

} ≤ 𝑑
𝑖
;

𝑝
𝑖
𝑐
𝑖

𝐼 + 𝐸
𝑘



2

> 𝑑
𝑖
,

(53)

then system (52) is uniformly 𝑝-moment stable.
(ii) If there exist constants 𝑐

𝑖
, 𝜀

1
, and 𝜀

2
such that

𝑝
𝑖
𝜆max (𝐴

𝑇

𝑖
+ 𝐴

𝑖
+ 𝜀

1
𝐼) + 𝑝

𝑖
(1 + 𝜀

2
)
𝐷𝑖



2

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
𝑝
𝑗
+ 2𝑝

𝑖
ln 𝐼 + 𝐸

𝑘



× [𝜀
−1

1

𝐵𝑖



2

+ (1 + 𝜀
−1

2
)
𝐺𝑖



2

] ≤ 𝑐
𝑖
;

ln (𝑝
𝑖

𝐼 + 𝐸
𝑘

) ≤ −
1

2
𝑐
𝑖
(𝑡
𝑘+1

− 𝑡
𝑘
) ,

(54)

then system (52) is uniformly 𝑝-moment stable.

Proof. It is a direct consequence of Corollaries 5 and 9 with
𝑉(𝑥(𝑡), 𝑟(𝑡)) = 𝑝

𝑖
‖𝑥(𝑡)‖

2.

4. Numerical Examples

The applicability of the results derived in the preceding
section is illustrated by the following two examples.

Example 1. Consider the following linear impulsive switching
delay system:

𝑑𝑥 (𝑡) = [𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝑡

+ [𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝜔 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝐸
𝑘
(𝑥 (𝑡

−

) , 𝑟 (𝑡)) , 𝑡 = 𝑡
𝑘
,

(55)

where

𝐴
1
= [

[

0.1 0.2 −0.1

0.2 0.15 0.3

0 0.24 0.1

]

]

, 𝐵
1
= [

[

−0.24 0.04 0

0.24 −0.4 0.1

0 0.24 −0.2

]

]

,

𝐷
1
= [

[

0.5 0.4 0.2

−0.24 0.32 0.3

0.6 0.26 −0.5

]

]

, 𝐺
1
= [

[

0.14 0 −0.21

0.2 0.1 0.16

0.1 0.15 0.17

]

]

,

𝐴
2
= [

[

0.2 0.3 −0.1

0.3 0.1 0.3

0 0.2 0.1

]

]

, 𝐵
2
= [

[

−0.2 0.04 0

0.2 −0.4 0.1

0 0.2 −0.2

]

]

,

𝐷
2
= [

[

0.5 0.4 0.2

−0.2 0.3 0.3

0.6 0.2 −0.5

]

]

, 𝐺
2
= [

[

0.24 0 −0.21

0.2 0.1 0.16

0.1 0.1 0.17

]

]

,

𝐸
𝑘
= [

[

−0.5 0 0

0 −0.4 0

0 0 −0.3

]

]

, 𝜋 =

[
[
[

[

−
1

3

1

3

2

3
−
2

3

]
]
]

]

.

(56)
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Figure 1: State response of system (55) under impulsive perturba-
tions.

Set 𝜀
1
= 𝜀

2
= 0.5, 𝑝

𝑖
= 1. It is easy to see that 𝜆max(𝐴

𝑇

1
+

𝐴
1
+ 0.5𝐼) = 1.3819, 𝜆max(𝐴

𝑇

2
+𝐴

2
+ 0.5𝐼) = 1.5020, ‖𝐵

1
‖
2

=

0.3141, ‖𝐵
2
‖
2

= 0.2764, ‖𝐷
1
‖
2

= 0.9175, ‖𝐷
2
‖
2

= 0.8737,
‖𝐺

1
‖
2

= 0.1360, ‖𝐺
2
‖
2

= 0.1219, and ‖𝐼 + 𝐸
𝑘
‖
2

= 4.9. Taking
𝑐
1
= 3.1, 𝑐

2
= 3.2, 𝑡

𝑘
− 𝑡

𝑘−1
= 0.22, we can verify that all the

conditions (ii) of Theorem 12 are satisfied:

𝜆max (𝐴
𝑇

1
+ 𝐴

1
+ 𝜀

1
𝐼) + (1 + 𝜀

2
)
𝐷1



2

+

𝑁

∑

𝑗=1

𝜋
1𝑗

+ 2 ln 𝐼 + 𝐸
𝑘



× [𝜀
−1

1

𝐵1



2

+ (1 + 𝜀
−1

2
)
𝐺1



2

]

= 3.0190 ≤ 𝑐
1
= 3.1;

𝜆max (𝐴
𝑇

2
+ 𝐴

2
+ 𝜀

1
𝐼) + (1 + 𝜀

2
)
𝐷1



2

+

𝑁

∑

𝑗=1

𝜋
2𝑗

+ 2 ln 𝐼 + 𝐸
𝑘



× [𝜀
−1

1

𝐵2



2

+ (1 + 𝜀
−1

2
)
𝐺2



2

]

= 3.1574 ≤ 𝑐
2
= 3.2;

ln 𝐼 + 𝐸
𝑘



2

= −0.7133 ≤ −𝑐
𝑖
(𝑡
𝑘+1

− 𝑡
𝑘
)

= −3.2 × 0.22 = −0.7040.

(57)

So, system (55) is 𝑝-moment stable. Numerical simulations
for this example are shown in Figures 1 and 2. It is clearly
demonstrated that impulses can successfully stabilize an
otherwise unstable stochastic delay system.
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Figure 2: State response of system (55) without impulsive perturbations.

Example 2. Consider the following linear impulsive switch-
ing delay system:

𝑑𝑥 (𝑡) = [𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝑡

+ [𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐷 (𝑟 (𝑡)) 𝑥 (𝑡 − 1)] 𝑑𝜔 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡) = 𝐸
𝑘
(𝑥 (𝑡

−

) , 𝑟 (𝑡)) , 𝑡 = 𝑡
𝑘
,

(58)

where

𝐴
1
= [

−4 0

0 −5
] , 𝐵

1
= [

0.2 0.3

0.5 0.1
] ,

𝐷
1
= [

0.3 0.4

0.5 0.2
] , 𝐺

1
= [

0.8 0.1

0.1 0.3
] ,

𝐸
𝑘
= [

−0.6 0.5

0.3 −0.5
] ,

𝐴
2
= [

−3 0

0 −4
] , 𝐵

2
= [

0.3 0.5

0.4 0.3
] ,

𝐷
2
= [

0.5 0.1

0.4 0.1
] , 𝐺

2
= [

0.2 0.2

0.1 0.4
] ,

(59)

𝑃 = [
0.5 0.5

0.5 0.5
] . (60)

Choosing 𝜀
1
= 𝜀

2
= 2, 𝑝

𝑖
= 1. It is easy to see that 𝜆max(𝐴

𝑇

1
+

𝐴
1
+ 2𝐼) = −6, 𝜆max(𝐴

𝑇

2
+ 𝐴

2
+ 2𝐼) = −4, ‖𝐵

1
‖
2

= 0.3403,
‖𝐵

2
‖
2

= 0.5687, ‖𝐷
1
‖
2

= 0.5009, ‖𝐷
2
‖
2

= 0.4298, ‖𝐺
1
‖
2

=

0.6712, ‖𝐺
2
‖
2

= 0.2347, ‖𝐼 + 𝐸
𝑘
‖
2

= 0.7467. Taking 𝑐
1
= 3.3,

𝑐
2

= 1.6, 𝑑
1

= 1.2, 𝑑
2

= 0.65, we can verify that all the
conditions (i) of Theorem 12 are satisfied:

𝜆max (𝐴
𝑇

𝑖
+ 𝐴

𝑖
+ 𝜀

1
𝐼) + (1 + 𝜀

2
)
𝐷𝑖



2

+

𝑁

∑

𝑗=1

𝜋
𝑖𝑗
= {

−3.4973 < −3.3 = 𝑐
1
;

−1.7166 < −1.6 = 𝑐
2
;

𝜀
−1

1

𝐵𝑖



2

+ (1 + 𝜀
−1

2
)
𝐺𝑖



2

= {
1.1770 < 1.2 = 𝑑

1
;

0.6364 < 0.65 = 𝑑
2
;

(61)

𝐼 + 𝐸
𝑘



2

𝑐
𝑖
= 0.7467 × {

3.3 = 2.4641 > 1.2 = 𝑑
1
;

1.6 = 1.1947 > 0.65 = 𝑑
2
.

(62)

Theorem 12 guarantees that the trivial solution of system
(58) is 𝑝-moment stable. Numerical simulations are shown
in Figure 3. It is clearly demonstrated that the 𝑝-moment
stability properties can be preserved irrespective of the length
of the delay.

5. Conclusions

In this paper, a method of multiple Lyapunov functionals
has been applied to deal with the effects of impulses on 𝑝-
moment stability of stochastic differential delay systems with
impulsive jump and markovian switching. Some stability cri-
teria are obtained based on Lyapunov functional method and
stochastic theory. It is shown that, even if all the subsystems
governing the continuous dynamics without impulse are not
stable, as impulsive and switching signal satisfies a dwell-time
upper bound condition, impulses can stabilize the systems
in the 𝑝-moment stability sense. The opposite situation is
also developed for which all the subsystems governing the
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Figure 3: State response of system (58) under impulsive perturba-
tions

continuous dynamics without impulse are 𝑝-moment stable.
Applying the derived results to a class of stochastic systems
with arbitrarily large delays, the deduced new stability criteria
can relax some restrictions on impulses imposed by the
existing results. Two illustrative examples have been provided
to demonstrate the main theoretical analysis.
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Data packet dropout is a special kind of time delay problem. In this paper, predictive controllers for networked control systems
(NCSs) with dual-network are designed by model predictive control method. The contributions are as follows. (1) The predictive
control problem of the dual-network is considered. (2)The predictive performance of the dual-network is evaluated. (3) Compared
to the popular networked control systems, the optimal controller of the newNCSs with data packets dropout is designed, which can
minimize infinite performance index at each sampling time and guarantee the closed-loop system stability. Finally, the simulation
results show the feasibility and effectiveness of the controllers designed.

1. Introduction

With the rapid development of computer networks technol-
ogy, the control system based onNCSs has become one of the
hot research tasks in the current international control field.
As stability analysis of NCSs subjected to packet dropping
has received much attention in [1–3], various approaches
for the delay issue in NCSs have been presented in [4–8],
and so on. Compared to the traditional control systems, the
main advantages of NCSs are lower cost, simpler installation,
and higher reliability [9–11]. Because of these attractive
advantages, typical application of these systems ranges from a
wide field, such as automotive [12], mobile [13], and advanced
aircraft [14]. However, the introduction of communication
networks in the control loops makes the analysis and design
of NCSs complex. For example, network-induced delays
and data packet dropout problem may be inevitable during
transmitting communication.

Data packet dropout is a special kind of time delay prob-
lems. Data packet dropout which is a kind of uncertainty
that may happen due to node failures or network congestion
is a common problem in networked systems. This loss will
deteriorate the performance and may even cause the system
to be unstable. Recently, the effect of data packet dropout
on the stability and performance of NCSs has received great

attention. In [15], the stability of a linear networked control
system in the presence of dropped packets was studied. A
stability analysis of model-based NCSs can be found in [2,
16–19], where an additional model was used for estimating
the plant state between transmission times and generating a
control signal. In [20], though turning themodel ofNCSs into
an asynchronous dynamic system, hybrid system technology
has been used to handle the system with time delay and data
dropouts. A stability condition was obtained for the Try-
Once-Discard networked protocol in [3]. In [21], Hadjicostis
and Touri analyzed the performance when lost data were
replaced by zeros. In [22, 23], Ling and Lemmon posed
the problem of optimal compensator design for the case
when data loss was independent and identically distributed.
Reference [24] addresses the random time delays and packet
losses issues of NCSs within the framework of jump linear
systems with mode-dependent time delays. Jump linear
systemswithMarkov chains [25, 26] alsowere used to analyze
the effect of dropouts on system stability and performance. In
[27], a delay-dependent stability condition was presented for
discrete-time jump time delay system where the time delay
was dependent on the system mode. In [28], the problem
of stability analysis and controller design has been proposed
based on a new model with packet dropouts.

Model predictive control (MPC) can now be found in a
wide variety of application areas including chemicals, food
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processing, and so on. MPC is also an effective method to
incorporate the input and output constraints into online
optimization, which increases the possibility of its application
in the synthesis and analysis of NCSs [29]. In [30], the MPC
strategy for multivariable plants was presented. Wu et al. [31]
introduced MPC into NCSs with time delay and designed an
optimal control rule. In [4], the networked predictive control
with modified MPC was proposed.

In this paper, the contributions are as follows. (1)The pre-
dictive control problemof the dual-network is considered. (2)
The predictive performance of the dual-network is evaluated.
(3) Compared to the popular networked control systems, the
optimal controller of the newNCSswith data packets dropout
is designed, which can minimize infinite performance index
at each sampling time and guarantee the closed-loop system
stability.

The remainder of this paper is organized as follows. The
problem descriptions and model of NCSs with packet drop-
outs are given in Section 2. The optimization method of
the new closed-loop systems is proposed in Section 3. The
stability analysis is given in Section 4. A numerical example
and an industrial example show the effectiveness of the pro-
posed method in Section 5, and some conclusions are given
in Section 6.

2. Problem Descriptions and Modeling of
NCSs with Packet Dropouts

Consider that NCSs model which is shown in Figure 1, sen-
sors, controllers, and actuators are connected by networks,
and we suppose that the communication link between pri-
mary sensor and controller (𝑆

1
/𝐶
1
) is ideal. Based on such

a structure, the problem of packet dropouts in network
transmission mainly exists in the actuator and secondary
sensor and controller (𝑆

2
/𝐶
2
and 𝐶

2
/𝐴).

In Figure 1, 𝑆
𝑖
(𝑖 = 1, 2), 𝐶

𝑖
(𝑖 = 1, 2), and 𝑃

𝑖
(𝑖 =

1, 2) denote the sensor, controller, and plant of primary and
secondary, respectively, and 𝐴 is actuator. 𝑢

1
(𝑘) and 𝑢

2
(𝑘)

are outputs of primary and secondary controllers at sampling
time 𝑘. 𝑢

2
(𝑘) is input of actuator at sampling time 𝑘, 𝑑𝐶2𝐴

𝑘

is the quantity of packet dropouts between sampling current
time 𝑘 and the latest communicate time successfully (𝑘−𝑑𝐶2𝐴

𝑘
)

on 𝐶
2
/𝐴 side, and 𝑑

𝑆
2
𝐶
2

𝑘
is the quantity of packet dropouts

at current time 𝑘 and the latest communicate successfully
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) on 𝑆

2
/𝐶
2
side. The quantity of packet dropouts on

𝑆
2
/𝐶
2
and 𝐶

2
/𝐴 sides is assumed to satisfy

𝑑
𝑚

≤ 𝑑
𝑆
2
𝐶
2

𝑘
≤ 𝑑
𝑀
, 𝜏

𝑚
≤ 𝑑
𝐶
2
𝐴

𝑘
≤ 𝜏
𝑀
, (1)

where 𝑑
𝑚
, 𝑑
𝑀
, 𝜏
𝑚
, and 𝜏

𝑀
are constant positive scalars rep-

resenting the minimum and maximum quantities of packet
dropouts on 𝑆

2
/𝐶
2
and 𝐶

2
/𝐴 sides, respectively, where 𝑑𝑆2𝐶2

𝑘

and 𝑑
𝐶
2
𝐴

𝑘
are two independent Markov chains. Without loss

of generality, define

0 ≤ 𝑑
𝑆
2
𝐶
2

𝑘
≤ 𝑑
𝑀
, 0 ≤ 𝑑

𝐶
2
𝐴

𝑘
≤ 𝜏
𝑀
. (2)

Suppose that under the condition 𝑑
𝑆
2
𝐶
2

𝑘
= 𝑖, the probability

that the state of packet dropouts at time 𝑘 + 1 is 𝑗 (𝑑𝑆2𝐶2
𝑘+1

= 𝑗)
is

Pr {𝑑𝑆2𝐶2
𝑘+1

= 𝑗 | 𝑑
𝑆
2
𝐶
2

𝑘
= 𝑖} = 𝜋

𝑖𝑗
∀𝑖, 𝑗 ∈ 𝜒1, (3)

where 𝜒1 = {0, 1, 2, . . . , 𝑑
𝑀
}. That is also to say that the

transition probability of 𝑑𝑆2𝐶2
𝑘

jumping frommode 𝑖 to 𝑗 is (3),
and the transition probability of 𝑑𝐶2𝐴

𝑘
jumping from mode 𝑟

to 𝑠 is

Pr {𝑑𝐶2𝐴
𝑘+1

= 𝑠 | 𝑑
𝐶
2
𝐴

𝑘
= 𝑟} = 𝜆

𝑟𝑠
∀𝑟, 𝑠 ∈ 𝜒2, (4)

where 𝜒2 = {0, 1, 2, . . . , 𝜏
𝑀
}, 𝜋
𝑖𝑗

≥ 0, ∑
𝑑
𝑀

𝑗=0
𝜋
𝑖𝑗

= 1,
∑
𝑑
𝑀

𝑗=0,𝑗 ̸= 𝑖
𝜋
𝑖𝑗
= 1 − 𝜋

𝑖𝑖
, and 𝜆

𝑟𝑠
≥ 0, ∑𝜏𝑀

𝑠=0
𝜆
𝑟𝑠

= 1.
For analysis convenience and without loss of generality,

we suppose that Markov chains jump no more than one
step. Thus, Markov chain transferring probability matrix is
satisfied [28]. Consider

𝜋
𝑖𝑗
= 0, if 𝑗 ̸= 𝑖 + 1, 𝑗 ̸= 0,

𝜆
𝑟𝑠

= 0, if 𝑠 ̸= 𝑟 + 1, 𝑠 ̸= 0.

(5)

And the two equations are used to produce the definition
of data packet dropout. 𝑖 denotes the quantity of the packet
dropouts at time 𝑘 − 1. 𝑗 denotes the quantity of packet
dropouts at time 𝑘. The system’s conditional probability of
data packets dropout is equal to zero when the difference of
the quantity of packet dropouts between time 𝑘 and 𝑘 − 1 is
not equal to 1 or there is no dropout at time 𝑘.

Some assumptions of NCSs are introduced as follows.

(1) The sensors, controllers, and actuators are clock-
driven.

(2) The buffers are big enough to hold all the data arrived,
and rule of the buffer is last-in-first-out.

(3) Transmission link of primary control loop is ideal
and data packet dropouts only happen in secondary
control loop.

(4) The transition of NCSs is single-packet transmission
and no timing sequence disordered.

The linear time-invariant discrete-time models of pri-
mary and secondary plants in Figure 1 are described as fol-
lows:

𝑃
1
: {

𝑥
1
(𝑘 + 1) = Φ

1
𝑥
1
(𝑘) + Γ

1
𝑦
2
(𝑘) ,

𝑦
1
(𝑘) = 𝐶

1
𝑥
1
(𝑘) ,

𝑃
2
: {

𝑥
2
(𝑘 + 1) = Φ

2
𝑥
2
(𝑘) + Γ

2
𝑢
2
(𝑘) ,

𝑦
2
(𝑘) = 𝐶

2
𝑥
2
(𝑘) ,

(6)

where𝑥
1
(𝑘) and𝑥

2
(𝑘) are the states of primary and secondary

plants, respectively, at sampling time 𝑘, 𝑢
2
(𝑘) is the input

of secondary plant 𝑃
2
at sampling time 𝑘, and Φ

1
, Γ
1
, 𝐶
1
,

Φ
2
, Γ
2
, 𝐶
2
are known constant matrixes with appropriate

dimensions.
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Figure 1: Networked control system model.

Due to the existence of data packet dropouts, transmis-
sion link in network cannot normally communicate. The
controller and actuator can use the buffer rule, named first-
in-last-out, to pick up signal [28]. Take the controller, for
example; when a secondary sensor data 𝑥

2
(𝑘) is false to

transmit, the secondary controller gets the latest data𝑥
2
(𝑘−1)

frombuffer and uses it as 𝑥
2
(𝑘) to calculate new control input.

Otherwise, the new sensor data 𝑥
2
(𝑘) will be saved to buffer

and used by the secondary controller as 𝑥
2
(𝑘). Thus,

𝑥
2
(𝑘) =

{

{

{

𝑥
2
(𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘
= 0,

𝑥
2
(𝑘 − 1) , 𝑑

𝑆
2
𝐶
2

𝑘
> 0.

(7)

Similarly

𝑢
2
(𝑘) =

{

{

{

𝑢
2
(𝑘) , 𝑑

𝐶
2
𝐴

𝑘
= 0,

𝑢
2
(𝑘 − 1) , 𝑑

𝐶
2
𝐴

𝑘
> 0.

(8)

It can easily derive

𝑥
2
(𝑘) = 𝑥

2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) . (9)

From the model of NCSs, as shown in Figure 1, 𝑢
1
(𝑘) is

the output of primary controller at sampling time 𝑘 as

𝑢
1
(𝑘) = 𝐹

1
𝑥
1
(𝑘) , (10)

where 𝐹
1
is to be designed by MPC method.

𝑢
2
(𝑘) is the output of secondary controller as

𝑢
2
(𝑘) = 𝑢

1
(𝑘) + 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘) , (11)

where 𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
) is to be designed by MPC method.

Substituting (9) and (10) into (11), we have

𝑢
2
(𝑘) = 𝐹

1
𝑥
1
(𝑘) + 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) . (12)

Therefore, (8) can be rewritten as

𝑢
2
(𝑘) =

{

{

{

𝐹
1
𝑥
1
(𝑘) + 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) , 𝑑

𝐶
2
𝐴

𝑘
= 0,

𝑢
2
(𝑘 − 1) , 𝑑

𝐶
2
𝐴

𝑘
> 0.

(13)

In order to simplify the expression of the closed-loop
control systems, a function 𝛼 = {

0, 𝑑
𝐶
2
𝐴

𝑘
=0

1, 𝑑
𝐶
2
𝐴

𝑘
>0

is introduced,
which is dependent on whether packet dropped or not,
instead of the quantity of packet dropouts. Combining (6)
and (13), it can obtain that

𝑢
2
(𝑘) = 𝛼𝑢

2
(𝑘 − 1) + [1 − 𝛼] 𝐹

1
𝑥
1
(𝑘)

+ [1 − 𝛼] 𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) ,

(14)

𝑥
1
(𝑘 + 1) = Φ

1
𝑥
1
(𝑘) + Γ

1
𝐶
2
𝑥
2
(𝑘) , (15)

𝑥
2
(𝑘 + 1) = Φ

2
𝑥
2
(𝑘) + Γ

2
𝛼𝑢
2
(𝑘 − 1)

+ Γ
2
[1 − 𝛼] 𝐹

1
𝑥
1
(𝑘) + Γ

2
[1 − 𝛼]

× 𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
) 𝑥
2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) .

(16)

Combining (10), (14), (15), and (16) and augmenting the
state vectors, the new resulting closed-loop control systems
and the augmenting vector (18) formed by predictive con-
troller (10) and (14) designed by MPC method are as follows:

𝑥 (𝑘 + 1) = 𝐴 (𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘) + 𝐵 (𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) ,

(17)

𝑢 (𝑘) = (

𝑢
1
(𝑘)

𝑢
2
(𝑘)

)

= 𝐶 (𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘) + 𝐷 (𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) ,

(18)
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where 𝑥(𝑘) = (𝑥
Τ

1
(𝑘) 𝑥

Τ

2
(𝑘) 𝑢

Τ

2
(𝑘 − 1))

Τ

,

𝑥 (𝑘 − 𝑑
𝑆
2
𝐶
2

𝑘
)

= (𝑥
Τ

1
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) 𝑥
Τ

2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) 𝑢
Τ

2
(𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
− 1))

T
,

𝐴 (𝑑
𝐶
2
𝐴

𝑘
) = (

Φ
1

Γ
1
𝐶
2

0

Γ
2
[1 − 𝛼] 𝐹

1
Φ
2

Γ
2
𝛼

[1 − 𝛼] 𝐹
1

0 𝛼

) ,

𝐵 (𝑑
𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) = (

0 0 0

0 Γ
2
[1 − 𝛼] 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) 0

0 [1 − 𝛼] 𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
) 0

) ,

𝐶 (𝑑
𝐶
2
𝐴

𝑘
) = (

𝐹
1

0 0

[1 − 𝛼] 𝐹
1

0 𝛼
) ,

𝐷 (𝑑
𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) = (

0 0 0

0 [1 − 𝛼] 𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
) 0

) .

(19)

Remark 1. The new closed-loop control systems (17) and the
augmenting vector (18) formed by predictive controller (10)
and (14) are linear jumping systems, where their communica-
tions are described by Markov chain which is the description
of the quantity of packet dropouts at sampling time 𝑘 on
𝐶
2
/𝐴 and 𝑆

2
/𝐶
2
sides. The value of 𝛼 depends on whether

the designed control signal is successfully transmitted or not.
Thereforewe can use the results of linear jumping systemwith
delay to analyze this class of NCSs with packets dropped.

3. Optimum Analysis Based on MPC

Assume that predictive horizon 𝑝 = ∞, control horizon
𝑞 = ∞, and the 𝑚 steps control sequences 𝑢(𝑘 + 𝑚 | 𝑘),
𝑚 = 0, 1, 2, . . . ,∞, are computed by minimizing the follow-
ing performance function:

𝐽
∞

=

∞

∑

𝑚=0

[‖𝑥 (𝑘 + 𝑚 | 𝑘)‖
2

𝑄
+ ‖𝑢 (𝑘 + 𝑚 | 𝑘)‖

2

𝑅
] . (20)

The norm terms in the performance function are defined
as

‖𝑥‖
2

𝑄
= 𝑥
Τ

𝑄𝑥. (21)

The exact measurement state of NCSs at each sampling
time 𝑘 is

𝑥 (𝑘 | 𝑘) = 𝑥 (𝑘) . (22)

By using the control input given in (18), the first control move
is

𝑢 (𝑘) = 𝑢 (𝑘 | 𝑘)

= 𝐶 (𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 | 𝑘)

+ 𝐷 (𝑑
𝑆
2
𝐶
2

𝑘|𝑘
, 𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
| 𝑘) .

(23)

According to (17) and (22), the predicted state at time 𝑘 +

𝑚 is obtained as (24) which is predicted based on the exact
measurement state 𝑥(𝑘 | 𝑘). Consider

𝑥 (𝑘 + 𝑚 + 1 | 𝑘)

= 𝐴 (𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
) 𝑥 (𝑘 + 𝑚 | 𝑘) + 𝐵 (𝑑

𝑆
2
𝐶
2

𝑘+𝑚|𝑘
, 𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
)

× 𝑥 (𝑘 + 𝑚 − 𝑑
𝑆
2
𝐶
2

𝑘+𝑚|𝑘
| 𝑘) ,

(24)

where 𝑑
𝑆
2
𝐶
2

𝑘+𝑚|𝑘
is model-dependent time invariable delay on

𝑆
2
/𝐶
2
side, which is 𝑚-step ahead prediction based on the

measurement time 𝑘. 𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
is the predicted quantity of

packet dropouts at time 𝑘 + 𝑚.
And the key of predictive controller rule is to compute the

matrixes 𝐹
1
and 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
) in (14). The predicted controller at

time 𝑘 + 𝑚 based on the first control move 𝑢(𝑘 | 𝑘) is

𝑢 (𝑘 + 𝑚 | 𝑘) = 𝐶 (𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
) 𝑥 (𝑘 + 𝑚 | 𝑘)

+ 𝐷 (𝑑
𝑆
2
𝐶
2

𝑘+𝑚|𝑘
, 𝑑
𝐶
2
𝐴

𝑘+𝑚|𝑘
) 𝑥 (𝑘 + 𝑚 − 𝑑

𝑆
2
𝐶
2

𝑘+𝑚|𝑘
| 𝑘) ,

(25)

where𝐶(𝑑
𝐶
2
𝐴

𝑘
) and𝐷(𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) arematrixeswhich contain

the control gain matrixes 𝐹
1
and 𝐹

2
(𝑑
𝑆
2
𝐶
2

𝑘
), respectively.

Next wewill introduce amethod to solve the optimal con-
trol sequencewhich canminimize the following performance
index at each sampling time:

min
𝑢(𝑘+𝑚|𝑘),𝑚=0,1,2,...,∞

𝐽
∞

=

∞

∑

𝑚=0

[𝑥
Τ

(𝑘 + 𝑚 | 𝑘)𝑄𝑥 (𝑘 + 𝑚 | 𝑘)

+𝑢
Τ

(𝑘 + 𝑚 | 𝑘) 𝑅𝑢 (𝑘 + 𝑚 | 𝑘)] .

(26)

𝑄 and 𝑅 are symmetric positive definite weight matrixes.
In order to simplify, let 𝑑𝑆2𝐶2

𝑘+𝑚|𝑘
= 𝜐, 𝑑𝐶2𝐴

𝑘+𝑚|𝑘
= 𝜍, 𝑑𝑆2𝐶2

𝑘+𝑚+1|𝑘
=

𝜐
1
.
First, consider a Lyapunov function candidate 𝑉(𝑋(𝑘 +

𝑚 | 𝑘), 𝜐) with𝑋(𝑘 + 𝑚 | 𝑘) = [𝑥
Τ

(𝑘 + 𝑚 | 𝑘), 𝑥
Τ

(𝑘 + 𝑚 − 1 |

𝑘), . . . , 𝑥
Τ

(𝑘 + 𝑚 − 𝜐 | 𝑘)]
Τ as follows:

𝑉 (𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = 𝑉
1
+ 𝑉
2
+ 𝑉
3
, (27)

where

𝑉
1
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = 𝑥

Τ

(𝑘 + 𝑚 | 𝑘) 𝑃 (𝜐) 𝑥 (𝑘 + 𝑚 | 𝑘) ,

𝑉
2
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) =

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝜐

𝑥
Τ

(𝑙 | 𝑘) 𝑆𝑥 (𝑙 | 𝑘) ,

𝑉
3
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐)

= (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ

(𝑙 | 𝑘) 𝑆𝑥 (𝑙 | 𝑘) .

(28)

Matrixes 𝑃(𝜐) and 𝑆 are positive definite with appropriate
dimensions.
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Second, suppose that at sampling time 𝑘, 𝑉(𝑋(𝑘 + 𝑚 |

𝑘), 𝜐) satisfies (29) for any 𝑥(𝑘 + 𝑚 | 𝑘) and 𝑢(𝑘 + 𝑚 | 𝑘).
Consider

𝑉 (𝑋 (𝑘 + 𝑚 + 1 | 𝑘) , 𝜐
1
) − 𝑉 (𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐)

≤ − [𝑥
Τ

(𝑘 + 𝑚 | 𝑘)𝑄𝑥 (𝑘 + 𝑚 | 𝑘)

+𝑢
Τ

(𝑘 + 𝑚 | 𝑘) 𝑅𝑢 (𝑘 + 𝑚 | 𝑘)] .

(29)

For the infinite performance index 𝐽
∞
(𝑘) to be finite, we

must set 𝑥(∞ | 𝑘) = 0; hence, 𝑉(𝑥(∞ | 𝑘), 𝑑
𝑆
2
𝐶
2

∞|𝑘
) = 0.

Summing (29) from 𝑚 = 0 to 𝑚 = ∞, it can be obtained
that

𝐽
∞

(𝑘) ≤ 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) . (30)

Therefore, the infinite optimization problem at time 𝑘

has transformed into optimizing upper function 𝑉(𝑋(𝑘 |

𝑘), 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) at each sampling time 𝑘. As a standard in MPC,

only the first control move 𝑢(𝑘|𝑘) is implemented, and at the
next sampling time 𝑘 + 1, the state 𝑥(𝑘 + 1) is measured
and the optimization is repeated to compute matrixes 𝐹

1
and

𝐹
2
(𝑑
𝑆
2
𝐶
2

𝑘
).

Third, a sufficient condition for existing of a set of control
sequence is

𝐽
∞

< Υ, (31)
whereΥ is a suitable nonnegative coefficient to beminimized.

Before proceeding, the following lemma needs to be
introduced.

Lemma 2 (Schur Complement Lemma). Given constant
matrixes 𝑍

1
, 𝑍
2
, 𝑍
3
, where 𝑍

1
= 𝑍
Τ

1
, 𝑍
2

= 𝑍
Τ

2
, then 𝑍

1
+

𝑍
Τ

3
𝑍
−1

2
𝑍
3
< 0 holds if ( 𝑍1 𝑍

Τ

3

𝑍
3
−𝑍
2

) < 0 or ( −𝑍2 𝑍3
𝑍
Τ

3
𝑍
1

) < 0.

Assumption 3. The values of 𝑑𝑆2𝐶2
𝑘

and 𝛼 are known to the
controller.

Theorem 4. Suppose the states 𝑥(𝑘 | 𝑘), 𝑥(𝑘−1 | 𝑘), . . . , 𝑥(𝑘−

𝑑
𝑀

| 𝑘) of system (17) are measured; then, the control rule in
(18)makeing (29) and 𝐽

∞
< Υ hold, if existingmatrixes𝑃(𝜐) >

0, 𝑆 > 0, 𝐶(𝜍),𝑋(𝜐) > 0,𝐷(𝜐, 𝜍), 𝐹, and scalar Υ > 0make the
following optimization feasible:

minΥ (32)
subject to

𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘
+

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝑑
𝑆𝐶

𝑘

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

≤ Υ,

(33)

(

−𝑃(𝜐) + (1 + 𝜇) 𝑆 + 𝑄 0 𝐴
Τ

(𝜍) 𝐶
Τ

(𝜍)

0 −𝑆 𝐵
Τ

(𝜐, 𝜍) 𝐷
Τ

(𝜐, 𝜍)

𝐴 (𝜍) 𝐵 (𝜐, 𝜍) −�̂�
−1

(𝜐) 0

𝐶 (𝜍) 𝐷 (𝜐, 𝜍) 0 −𝑅
−1

) < 0,

(34)

or

(

−𝑃(𝜐) + (1 + 𝜇) 𝑆 + 𝑄 ∗ ∗ ∗

0 −𝑆 ∗ ∗

𝐴 (𝜍) 𝐵 (𝜍) −Λ ∗

𝐼 (𝜍) + 𝐽 (𝜍) 𝐹�̃�
1

�̃� (𝜍) 𝐹�̃� 0 −𝑅
−1

) < 0,

(
𝑃 𝐼

𝐼 𝑋
) ≥ 0, 𝑃𝑋 = 𝐼,

(35)

where 𝜋
𝑚

= min{𝜋
𝑖𝑖
, 𝑖 ∈ 𝜒1}, �̂�(𝜐) = ∑

𝑑
𝑀

𝑗=𝑑
𝑚
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝑃(𝑗), 𝑖

denotes the quantity of packet dropouts, 𝑖 ∈ 𝜒1, 𝜒1 = {0, 1,

2, . . . , 𝑑
𝑀
}, 𝜇 = 𝑑

𝑀
(1−𝜋

𝑚
),𝐴(𝜍) = [√𝜋

𝑖0
𝐴(𝜍), √𝜋

𝑖1
𝐴(𝜍), . . . ,

√𝜋
𝑖𝑑
𝑀

𝐴(𝜍)]
Τ, 𝐵(𝜍) = [√𝜋

𝑖0
𝐵(𝜍), √𝜋

𝑖1
𝐵(𝜍), . . . , √𝜋

𝑖𝑑
𝑀

𝐵(𝜍)]
Τ,

Λ = diag(𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑖
), 𝑖 ∈ (0, 1, 2, . . . , 𝑑

𝑀
),

𝑋(𝜐) = 𝑃
−1

(𝜐), Θ = diag[−[1 + (1 − 𝜋
𝑚
)(𝑑
𝑀

− 1)𝑆]
−1,

−[1 + (1 − 𝜋
𝑚
)(𝑑
𝑀

− 2)𝑆]
−1

, . . . , −[(1 − 𝜋
𝑚
)𝑆]
−1

], 𝑥
𝑝

=

[𝑥(𝑘 − 1 | 𝑘), 𝑥(𝑘 − 2 | 𝑘), . . . , 𝑥(𝑘 − 𝑑
𝑀

+ 1 | 𝑘)]
T,

𝐹 = [𝐹
1
, 𝐹
2
].

In order to express conveniently, let 𝑥
𝑘+𝑚|𝑘

= 𝑥(𝑘 + 𝑚 |

𝑘), 𝑥
𝑘+𝑚−𝜐|𝑘

= 𝑥(𝑘 + 𝑚 − 𝜐 | 𝑘), 𝑢
𝑘+𝑚|𝑘

= 𝑢(𝑘 + 𝑚 | 𝑘),
𝑥
𝑙|𝑘

= 𝑥(𝑙 | 𝑘). Thus, (24) becomes 𝑥
𝑘+𝑚+1|𝑘

= 𝐴(𝜍)𝑥
𝑘+𝑚|𝑘

+

𝐵(𝜐, 𝜍)𝑥
𝑘+𝑚−𝜐|𝑘

.
The proof of the previous theorem is divided into the

following two steps: Step 1, we design a Lyapunov function
𝑉(𝑋(𝑘 + 𝑚 | 𝑘), 𝜐) for the systems; Step 2, an optimal con-
troller is designed such that the closed-loop systems are stable
and the optimal characteristics are satisfied.

Proof

Step 1. Consider a Lyapunov function candidate𝑉(𝑋(𝑘 +𝑚 |

𝑘), 𝜐) = 𝑉
1
+ 𝑉
2
+ 𝑉
3
with x ̸= 0, where

𝑉
1
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = 𝑥

Τ

𝑘+𝑚|𝑘

𝑃 (𝜐) 𝑥
𝑘+𝑚|𝑘

, (36)

𝑉
2
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) =

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝜐

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
,

𝑉
3
(𝑋 (𝑘 + 𝑚 | 𝑘) , 𝜐) = (1 − 𝜋

𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
,

Δ𝑉
1
= Ε [𝑉

1
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐)] − 𝑉
1
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

= Ε [𝑥
Τ

𝑘+𝑚+1|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚+1|𝑘
] − 𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘

= 𝑥
Τ

𝑘+𝑚+1|𝑘
�̂� (𝜐) 𝑥

𝑘+𝑚+1|𝑘
− 𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘

=𝜂
Τ

𝑘+𝑚|𝑘
(

𝐴
Τ

(𝜍) �̂� (𝜐)

×𝐴 (𝜍)−𝑃 (𝜐)
𝐴
Τ

(𝜍) �̂� (𝜐) 𝐵 (𝜐, 𝜍)

∗ 𝐵
Τ

(𝜐, 𝜍) �̂� (𝜐) 𝐵 (𝜐, 𝜍)

) 𝜂
𝑘+𝑚|𝑘

,

(37)
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where 𝜂
𝑘+𝑚|𝑘

= (𝑥
𝑘+𝑚|𝑘

𝑥
𝑘+𝑚−𝜐

)
Τ, and E is the mathematical

expectation. Consider

Δ𝑉
2
= Ε [𝑉

2
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
)] − 𝑉

2
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

= Ε[

[

𝑘+𝑚

∑

𝑙=𝑘+𝑚+1−𝑑
𝑆𝐶

𝑘

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

]

]

−

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝑑
𝑆𝐶

𝑘

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

= 𝑥
Τ

𝑘+𝑚|𝑘
𝑆𝑥
𝑘+𝑚|𝑘

− 𝑥
Τ

𝑘+𝑚−𝑑
𝑆𝐶

𝑘
|𝑘
𝑆𝑥
𝑘+𝑚−𝑑

𝑆𝐶

𝑘
|𝑘

+

𝑑
𝑀

∑

𝑗=0,𝑖 ̸= 𝑗

𝜋
𝑖𝑗
(

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+1−𝑑
𝑆𝐶

𝑘+1

−

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝑑
𝑆𝐶

𝑘

)𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
,

(38)

and ∑
𝑑
𝑀

𝑗=0,𝑗 ̸= 𝑖
𝜋
𝑖𝑗
= 1 − 𝜋

𝑖𝑖
≤ 1 − 𝜋

𝑚
, 0 ≤ 𝜐 ≤ 𝑑

𝑀
; thus,

Δ𝑉
2
= Ε [𝑉

2
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
)] − 𝑉

2
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

≤ 𝑥
Τ

𝑘+𝑚|𝑘
𝑆𝑥
𝑘+𝑚|𝑘

− 𝑥
Τ

𝑘+𝑚−𝜐|𝑘
𝑆𝑥
𝑘+𝑚−𝜐|𝑘

+ (1 − 𝜋
𝑚
)

𝑘+𝑚

∑

𝑙=𝑘+𝑚−𝑑
𝑀
+1

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
.

(39)

Similarly,

Δ𝑉
3
= Ε [𝑉

3
(𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
)] − 𝑉

3
(𝑋
𝑘+𝑚|𝑘

, 𝜐)

≤ 𝑑
𝑀

(1−𝜋
𝑚
) 𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
−(1−𝜋

𝑚
)

𝑘+𝑚

∑

𝑙=𝑘+𝑚−𝑑
𝑀
+1

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘
.

(40)

Therefore, Δ𝑉 = Δ𝑉
1
+ Δ𝑉
2
+ Δ𝑉
3
and

≤ 𝜂
Τ

𝑘+𝑚|𝑘
(

𝐴
Τ

(𝜍) �̂� (𝜐) 𝐴 (𝜍)

−𝑃 (𝜐)+(1+𝜇) 𝑆
𝐴
Τ

(𝜍) �̂� (𝜐) 𝐵 (𝜐, 𝜍)

∗ 𝐵
Τ

(𝜐, 𝜍) �̂� (𝜐) 𝐵 (𝜐, 𝜍)−𝑆

) 𝜂
𝑘+𝑚|𝑘

,

(A1)

where ∗ denotes the block determined by symmetry.
Substituting (25) and (A1) into (29), we have

𝑉 (𝑋
𝑘+𝑚+1|𝑘

, 𝜐
1
) − 𝑉 (𝑋

𝑘+𝑚|𝑘
, 𝜐) + 𝑥

Τ

𝑘+𝑚|𝑘
𝑄𝑥
𝑘+𝑚|𝑘

+ 𝑢
Τ

𝑘+𝑚|𝑘
𝑅𝑢
𝑘+𝑚|𝑘

≤ 𝜂
Τ

𝑘+𝑚|𝑘
Ξ𝜂
𝑘+𝑚|𝑘

,

Ξ = (

Φ 𝐴
Τ

(𝜍) �̂� (𝜐) 𝐵 (𝜐, 𝜍) + 𝐶
Τ

(𝜍) 𝑅𝐷 (𝜐, 𝜍)

∗ 𝐵
Τ

(𝜐, 𝜍) �̂� (𝜐) 𝐵 (𝜐, 𝜍) − 𝑆 + 𝐷
Τ

(𝜐, 𝜍) 𝑅𝐷 (𝜐, 𝜍)

) ,

(41)

whereΦ = 𝐴
Τ

(𝜍)�̂�(𝜐)𝐴(𝜍)−𝑃(𝜐)+(1+𝜇)𝑆+𝑄+𝐶
Τ

(𝜍)𝑅𝐶(𝜍).
According to Lemma 2, we obtain

Ξ =

(

−𝑃 (𝜐) + (1 + 𝜇) 𝑆 + 𝑄 0 𝐴
Τ

(𝜍) 𝐶
Τ

(𝜍)

0 −𝑆 𝐵
Τ

(𝜐, 𝜍) 𝐷
Τ

(𝜐, 𝜍)

𝐴 (𝜍) 𝐵 (𝜐, 𝜍) −�̂�
−1

(𝜐) 0

𝐶 (𝜍) 𝐷 (𝜐, 𝜍) 0 −𝑅
−1

).

(42)

According to (34), then

𝜂
Τ

𝑘+𝑚|𝑘
Ξ𝜂
𝑘+𝑚|𝑘

< 0. (43)

Hence, (29) holds.
And

𝑥
Τ

𝑘+𝑚|𝑘
𝑃 (𝜐) 𝑥

𝑘+𝑚|𝑘
+

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚−𝜐

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘+𝑚−1

∑

𝑙=𝑘+𝑚+𝜃

𝑥
Τ

𝑙|𝑘
𝑆𝑥
𝑙|𝑘

≤ Υ.

(44)

That is,

𝑉 (𝑋
𝑘+𝑚|𝑘

, 𝜐) ≤ Υ. (45)

From (30), we have

𝐽
∞

(𝑘) < Υ. (46)

Step 2. A congruence transformation to (17) and (18) leads to

𝐴 (𝜍) = 𝐷 (𝜍) + 𝐸 (𝜍) 𝐹�̃�
1
, 𝐵 (𝜐, 𝜍) = 𝐸 (𝜍) 𝐹�̃�,

𝐶 (𝜍) = 𝐼 (𝜍) + 𝐽 (𝜍) 𝐹�̃�
1
, 𝐷 (𝜐, 𝜍) = �̃� (𝜍) 𝐹�̃�,

(A2)

where

𝐷(𝜍) = (

Φ
1

Γ
1
𝐶
2

0

0 Φ
2

Γ
2
𝛼

0 0 𝛼

) ,

𝐸 (𝜍) = (

0

Γ
2
[1 − 𝛼]

[1 − 𝛼]

) , 𝐹 = [𝐹
1
, 𝐹
2
] ,

�̃� = (
0 0 0

0 Ι 0
) , 𝐼 (𝜍) = (

0 0 0

0 0 𝛼
) ,

𝐽 (𝜍) = (
Ι

[1 − 𝛼]
) , �̃�

1
= (

Ι 0 0

0 0 0
) ,

�̃� (𝜍) = (
0

[1 − 𝛼]
) .

(47)

Substituting (A2) into (34), (35) can be obtained.
The proof of Theorem 4 is completed.

Remark 5. According to the proposed method, the optimal
input is unique. Υ is a scalar and Υ > 0. Unique resolution is
given finally by using Toolbox of Matlab. Its convergence can
be found in Figure 3.

4. Stability Analysis of NCSs with
Packet Dropouts

Theorem 6. Suppose that the optimization problem in
Theorem 4 is feasible at time 𝑘; then, the new resulting closed-
loop systems in (17) are asymptotically stable by the optimal
control law in (18) which is obtained fromTheorem 4.
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Figure 2: The number of data packet dropouts of 𝑆 to 𝐶 and 𝐶
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Proof. First, the Lyapunov function, 𝑉(𝑋(𝑘 + 𝑚 | 𝑘), 𝜐) =

𝑉
1
+𝑉
2
+𝑉
3
is discussed and𝑉(𝑋(𝑘+𝑚 | 𝑘), 𝑑

𝑆
2
𝐶
2

𝑘+1|𝑘
)−𝑉(𝑋(𝑘 |

𝑘), 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) < 0 holds only when 𝑥 ̸= 0.

Next, in the following we will consider the situation at
time 𝑘 (i.e.,𝑚 = 0):

𝑉(𝑋 (𝑘 | 𝑘) , 𝑑
𝑆𝐶

𝑘|𝑘
) = 𝑥
Τ

𝑘|𝑘

𝑃
𝑘
𝑥
𝑘|𝑘

+

𝑘−1

∑

𝑙=𝑘−𝑑
𝑆𝐶

𝑘|𝑘

𝑥
Τ

𝑙|𝑘
𝑆
𝑘
𝑥
𝑙|𝑘

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘−1

∑

𝑙=𝑘+𝜃

𝑥
Τ

𝑙|𝑘
𝑆
𝑘
𝑥
𝑙|𝑘
,

(48)

where 𝑃
𝑘

> 0, 𝑆
𝑘

> 0 are obtained from the optimal
solution at time 𝑘. Suppose that the optimization problem
in Theorem 4 is feasible at time 𝑘, and according to the
introduction in [8], these optimization problems are also

feasible for all 𝑘 + 1. Let us note values of 𝑃
𝑘

> 0, 𝑆
𝑘

> 0,
𝐹
1𝑘
, 𝐹
2𝑘
, Υ
𝑘
, and 𝑃

𝑘+1
> 0, 𝑆

𝑘+1
> 0, 𝐹

1𝑘+1
, 𝐹
2𝑘+1

obtained
from the optimal solution at time 𝑘 and 𝑘 + 1, respectively.
Therefore, we have

𝑥
Τ

𝑘+1|𝑘+1

𝑃
𝑘+1

𝑥
𝑘+1|𝑘+1

+

𝑘

∑

𝑙=𝑘+1−𝑑
𝑆𝐶

𝑘+1|𝑘+1

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘+1

𝑥
𝑙|𝑘+1

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘

∑

𝑙=𝑘+1+𝜃

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘+1

𝑥
𝑙|𝑘+1

≤ 𝑥
Τ

𝑘+1|𝑘+1
𝑃
𝑘
𝑥
𝑘+1|𝑘+1

+

𝑘

∑

𝑙=𝑘+1−𝑑
𝑆𝐶

𝑘|𝑘

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘
𝑥
𝑙|𝑘+1

+ (1 − 𝜋
𝑚
)

0

∑

𝜃=−𝑑
𝑀
+1

𝑘

∑

𝑙=𝑘+1+𝜃

𝑥
Τ

𝑙|𝑘+1
𝑆
𝑘
𝑥
𝑙|𝑘+1

.

(49)

That is because 𝑃
𝑘+1

> 0, 𝑆
𝑘+1

> 0 are optimal, whereas 𝑃
𝑘
>

0, 𝑆
𝑘
> 0 are only feasible at time 𝑘.

From (29), it can be obtained that

𝑉(𝑋 (𝑘 + 1 | 𝑘) , 𝑑
𝑆
2
𝐶
2

𝑘+1|𝑘
) − 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
)

≤ − [𝑥
Τ

(𝑘 | 𝑘) 𝑄𝑥 (𝑘 |𝑘 ) + 𝑢
Τ

(𝑘 | 𝑘) 𝑅𝑢 (𝑘 | 𝑘)]

≤ −𝑥
Τ

(𝑘 | 𝑘) 𝑄𝑥 (𝑘 | 𝑘) ≤ −𝜆min (𝑄) {‖𝑥 (𝑘 | 𝑘)‖
2

} .

(50)

Because 𝑄 is symmetric positive definite, we have
𝜆min(𝑄) > 0 (the minimal eigenvalue of matrix 𝑄), and then

𝑉(𝑋 (𝑘 + 1 | 𝑘) , 𝑑
𝑆
2
𝐶
2

𝑘+1|𝑘
) − 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
) < 0. (51)

When𝑚 = 0, (24) is becoming

𝑥 (𝑘 + 1 | 𝑘) = 𝐴 (𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 | 𝑘)

+ 𝐵 (𝑑
𝑆
2
𝐶
2

𝑘|𝑘
, 𝑑
𝐶
2
𝐴

𝑘|𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
| 𝑘) .

(52)

Because of the measured state,

𝑥 (𝑘 + 1 | 𝑘 + 1)

= 𝑥 (𝑘 + 1)

= 𝐴 (𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘) + 𝐵 (𝑑

𝑆
2
𝐶
2

𝑘
, 𝑑
𝐶
2
𝐴

𝑘
) 𝑥 (𝑘 − 𝑑

𝑆
2
𝐶
2

𝑘
) .

(53)

So we have

𝑥 (𝑘 + 1 | 𝑘 + 1) = 𝑥 (𝑘 + 1 | 𝑘) . (54)

Comparing with (A1), it can be obtained that

𝑉(𝑋 (𝑘 + 1 | 𝑘 + 1) , 𝑑
𝑆
2
𝐶
2

𝑘+1|𝑘+1
) − 𝑉 (𝑋 (𝑘 | 𝑘) , 𝑑

𝑆
2
𝐶
2

𝑘|𝑘
) < 0.

(55)
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Figure 4: (a) State response of state 𝑥
2
with designed optimal controller, (b) state response of state 𝑥

1
with designed optimal controller, (c)

state trajectories of state 𝑥
2
, (d) state trajectories of state 𝑥

1
, (e) state response of state 𝑥

2
, and (f) state trajectories of state 𝑥

1
.
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Figure 5: The number of data packet dropouts of 𝑆 to 𝐶 side.

Therefore, the Lyapunov function 𝑉(𝑋(𝑘 | 𝑘), 𝑑
𝑆
2
𝐶
2

𝑘|𝑘
) is

decreasing for the new closed loop, and lim
𝑘→∞

𝑥(𝑘 | 𝑘) = 0

is concluded. The stochastic stability is obtained.

5. Simulation Examples

In order to show the effectiveness of the proposed method,
we will give some cases and simulations.

5.1. A Simple Example. Considering the coefficient matrixes
of 𝑃
1
and 𝑃

2

Φ
1
= (

0.9512 1.051

−0.6065 −1.1618
) , Γ

1
= (

8.5530

29.4735
) , (56)

𝐶
1
= (−0.0045 0.1004) ,

Φ
2
= (

−0.3667 −0.0111

1 0
) , Γ

2
= (

1

0
) ,

(57)

𝐶
2
= (0 0.0111) . (58)

Markov models of the whole closed control systems are
consisted. Suppose that 𝑑𝑆2𝐶2

𝑘
= 𝑖 ∈ (0, 1) and 𝑑

𝐶
2
𝐴

𝑘
= 𝑟 ∈

(0, 1), as shown in Figures 2 and 5, which means that the
number of data packet dropouts is 𝑖 at sensor to controller
of secondary side and, similarly, is 𝑟 at secondary controller
to actuator side at time 𝑘. In themethod,Υ is a scalar andΥ >

0. Its convergence is shown in Figure 3. Unique resolution
is given finally by using Toolbox of Matlab. The simulation
results under the optimal state feedback controller are shown
in Figure 4.

From the simulation (1) Figure 3 is the upper of per-
formance index. (2) In Figures 4(a) and 4(b), system state
trajectories will eventually be more stable. It is shown that

NCSs with data packet dropouts are stable with the optimal
controller which is designed by Theorem 4. (3) Through
comparing to LQR controller, which is showed in Figures
4(c), 4(d), 4(e), and 4(f), the systemovershoots are shortened,
and state trajectory paths aremore superior.Thus, the optimal
controller designed in our paper is effective.

5.2. Industrial Systems. In order to verify the method pro-
posed earlier, a networked control system for main furnace
temperature in industrial systems is taken for an example. It is
assumed that the transfer functions of the inertial and leading
sections are 𝐺

𝑝1
(𝑠) = (1/[(30𝑠 + 1)(3𝑠 + 1)]) and 𝐺

𝑝2
(𝑠) =

(1/[(𝑠 + 1)
2

(10𝑠 + 1)]), respectively. After discretization, the
following state space models are available:

𝑃
1
:

{{{{{{{

{{{{{{{

{

𝑥
1
(𝑘 + 1) = (

0.6887 −0.0093

0.8356 0.9951
)𝑥
1
(𝑘)

+(
0.8356

0.4437
)𝑦
2
(𝑘) ,

𝑦
1
(𝑘) = (0 0.0111) 𝑥

1
(𝑘) ,

𝑃
2
:

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑥
2
(𝑘 + 1) = (

−0.0342 −0.4364 −0.0342

0.3425 0.6849 −0.0254

0.2542 0.8762 0.9899

)𝑥
2
(𝑘)

+(

0.3425

0.2542

0.1008

)𝑢
2
(𝑘) ,

𝑦
2
(𝑘) = (0 0 0.1) 𝑥

2
(𝑘) .

(59)

Figures 6(a) and 6(b) can be obtained, from which the
systems in (17) are stabilized by our designed controller.
Through comparing to LQR controller, as shown in Figures
6(c), 6(d), 6(e), and 6(f), and the system overshoots short-
ened, state trajectories are more superior and performance of
the control systems is further improved. Thus, the proposed
optimal controller designed is effective and feasible.

6. Conclusions

In this paper, the modeling, optimal, and control problems
for a class of NCSs under data packet dropout effect have
been studied. The data packet dropouts are described by
Markov chains.TheMarkov chains describe that the quantity
of packet dropouts between current time 𝑘 and its latest
communicates successfully instead of whether the data pack-
ets dropped or not. Though augmenting the state vectors,
the resulting closed-loop control system is transformed into
a jump system with time delays. Model predictive control
method is applied to study optimization and stability prob-
lems of the resulting closed-loop NCSs. Sufficient conditions
are proposed for the optimization and stability of the resulting
closed-loop NCSs. Some simulations are given in the last
section and it can be seen that the designed controllers are
feasible and effective. In this work, the full state feedback
controllers are designed. However, it is difficult to obtain
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Figure 6: (a) State response of state 𝑥
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the full state. Output feedback controllers should be consid-
ered. Dynamic output feedback can be investigated in the
future work.
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systems over unreliable communication links,”Automatica, vol.
42, no. 9, pp. 1429–1439, 2006.

[31] J. Wu, L. Zhang, and T. Chen, “Model predictive control for
networked control systems,” International Journal of Robust and
Nonlinear Control, vol. 19, no. 9, pp. 1016–1035, 2009.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 329592, 11 pages
http://dx.doi.org/10.1155/2013/329592

Research Article
Stability Analysis of a Harvested Prey-Predator Model with
Stage Structure and Maturation Delay

Chao Liu,1,2 Qingling Zhang,1,2 and James Huang3

1 Institute of Systems Science, Northeastern University, Shenyang, Liaoning 110819, China
2 State Key Laboratory of Integrated Automation of Process Industry, Northeastern University, Shenyang, Liaoning 110819, China
3Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong

Correspondence should be addressed to Chao Liu; singularsystem@yahoo.com.cn

Received 7 February 2013; Accepted 11 April 2013

Academic Editor: Ligang Wu

Copyright © 2013 Chao Liu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A harvested prey-predatormodel with density-dependentmaturation delay and stage structure for prey is proposed, where selective
harvest effort on predator population is considered. Conditionswhich influence positiveness and boundedness of solutions ofmodel
system are analytically investigated. Criteria for existence of all equilibria and uniqueness of positive equilibrium are also studied.
In order to discuss effects of maturation delay and harvesting on model dynamics, local stability analysis around all equilibria of
the proposed model system is discussed due to variation of maturation delay and harvest effort level. Furthermore, global stability
of positive equilibrium is investigated by utilizing an iterative technique. Finally, numerical simulations are carried out to show
consistency with theoretical analysis.

1. Introduction

In the natural world, many species have a life history that
takes them through two stages, juvenile stage and adult
stage. Individuals in each stage are identical in biological
characteristics, and some vital rates (rates of survival, devel-
opment, and reproduction) of individuals in a population
almost always depend on stage structure. Furthermore, many
complex biological phenomena arising in prey-predator
ecosystem always depend on the past history of system, and
it has been recognized that time delay may have complicated
impact on dynamics of prey-predator ecosystem [1]. In the
past several decades, there has been an increasing interest in
prey-predator model system with stage structure and time
delay (see [2–26] and the references therein).

In the model proposed by Aiello and Freedman [2], stage
structure of single population growth with stage structure
and time delay representing for maturation of population is
considered. Their model predicts a positive steady state as
the global attractor, thereby suggesting that stage structure
does not generate sustained oscillations frequently observed

in single population in the real world. Subsequent work
made by other authors [3, 6, 7, 12–14] suggests that time
delay to adulthood should be state dependent. Generally,
boundedness and persistence of solutions of model system
may be affected by introduction of time delay into prey-
predator system with stage structure [14, 15, 20–22, 24–
26]. Time delay can also cause loss of stability and other
complicated dynamical behavior [27]. Especially, there is
a well-developed theory of stage-structured models which
incorporate time delay into maturity of population [4].

It is well known that harvesting has a strong impact on
dynamic evolution of a population; there has been consid-
erable interest in the modeling of harvesting of biological
resources [1]. In these models, the harvesting effort is con-
sidered to be a dynamic variable; several kinds of harvesting
policies are utilized to study the dynamical behavior of the
model system. In recent years, there has been growing interest
in the study of stage-structured prey-predator system with
harvesting. Several prey-predatormodels with stage structure
and harvest effort on predator have been investigated in [28–
33] and the references therein.
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Recently, Huo et al. [24] investigated dynamical behavior
and stability of the following stage-structured system with
time delay:

̇𝑥
1
(𝑡) = 𝑟

1
𝑥
2
(𝑡) − 𝑑𝑥

1
(𝑡) − 𝑟

1
𝑒
−𝑑𝜏

𝑥
2
(𝑡 − 𝜏) ,

̇𝑥
2
(𝑡) = 𝑟

1
𝑒
−𝑑𝜏

𝑥
2
(𝑡 − 𝜏) − 𝑏𝑥

2

2
(𝑡) −

𝑎
1
𝑦 (𝑡) 𝑥

2
(𝑡)

𝑥
2
(𝑡) + 𝑘

1

,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟
2
−

𝑎
2
𝑦 (𝑡)

𝑥
2
(𝑡) + 𝑘

2

) ,

(1)

where 𝑥
1
(𝑡), 𝑥
2
(𝑡), and𝑦(𝑡) represent the density of immature

prey population, mature prey population and predator popu-
lation, at time 𝑡, respectively; 𝑟

1
is the intrinsic growth rate of

mature prey population, and 𝑑 is the death rate of immature
prey population. Constant 𝜏 ≥ 0 denotes maturation delay of
immature prey population tomature prey population, and the
term 𝑟

1
𝑒
−𝑑𝜏

𝑥
2
(𝑡−𝜏) represents the immature prey population

who were born at time 𝑡 − 𝜏 and survived at time 𝑡. 𝑏 denotes
the intracompetition rate for mature prey population due to
overcrowding phenomenon with mature prey population. 𝑎

1

is the maximum value of the per capita reduction rate of
mature prey population due to predator population, and 𝑎

2
is

the maximum value of the per capita reduction rate of preda-
tor population due to mature prey population. 𝑘

1
measures

the extent to which the environment provides protection to
mature prey population, and 𝑘

2
measures the extent to which

the environment provides protection to predator population.
𝑟
2
represents the maximal per capita growth rate of predator

population. All the parameters mentioned previously are all
positive constants. Furthermore, global stability of positive
equilibrium of model system (1) is investigated in [26].

It is well known that the length of time for prey population
to maturity is density dependent; that is, maturation time
depends on the total population amount of prey population
within prey predator ecosystem, and prey population takes
less time to reach maturity with depletion of predator popu-
lation [23, 34–36]. Density-dependentmaturity of population
in prey predator ecosystem is discussed in their work,
which reveals that density-dependent effects of the predators’
counterparts to prey defenses and the density dependence
effect of each type of predator offense are analogous to the
corresponding type of prey defense. Dynamical behavior
and stability switch is investigated in [23, 34–36]. However,
harvest effort on population within prey-predator ecosystem
is not considered in [23, 34–36].

By assuming maturity delay of prey population is density
dependent and predator population is harvested; work done
in [24] is extended in this paper, and a harvested prey
predator model with density-dependent maturation delay
and stage structure for prey population is proposed in
the second section of this paper. In the third section of
this paper, positiveness and boundedness of solution of the
proposed model are studied, and the conditions for existence
of equilibria and uniqueness of positive equilibrium are also
investigated. Local stability analysis around all equilibria
is discussed due to variation of maturation delay as well
as harvest effort level. Furthermore, global stability of the
positive equilibrium of the proposed model system is studied

by utilizing an iterative technique. In the fourth section of
this paper, numerical simulations are carried out to show
consistency with theoretical analysis. Finally, this paper ends
with a conclusion.

2. Model Formulation

Based on the previous analysis, the model proposed by Huo
et al. in [24] is extended by incorporating harvest effort on
predator population and assuming that maturation delay of
prey population is density dependent, and the model can be
governed by the following differential equations:

̇𝑥
1
(𝑡) = 𝑟

1
𝑥
2
(𝑡) − 𝑑𝑥

1
(𝑡) − 𝑟

1
𝑒
−𝑑𝜏(𝑧(𝑡))

𝑥
2
(𝑡 − 𝜏 (𝑧 (𝑡))) ,

̇𝑥
2
(𝑡) = 𝑟

1
𝑒
−𝑑𝜏(𝑧(𝑡))

𝑥
2
(𝑡 − 𝜏 (𝑧 (𝑡))) − 𝑏𝑥

2

2
(𝑡) −

𝑎
1
𝑦 (𝑡) 𝑥

2
(𝑡)

𝑥
2
(𝑡) + 𝑘

1

,

̇𝑦 (𝑡) = 𝑦 (𝑡) (𝑟
2
−

𝑎
2
𝑦 (𝑡)

𝑥
2
(𝑡) + 𝑘

2

) − 𝑞𝐸𝑦 (𝑡) .

(2)

The initial conditions for model system (2) take the following
form:

𝑥
1
(0) > 0, 𝑦 (0) > 0,

𝑥
2
(𝜃) = 𝜙 (𝜃) > 0, 𝜃 ∈ [−𝜏, 0) ,

(3)

where 𝑧(𝑡) = 𝑥
1
(𝑡) + 𝑥

2
(𝑡) + 𝑦(𝑡), a scalar 𝐸 ≥ 0 denotes

the harvesting effort to predator population, constant 𝑞 is
the catchability coefficient of predator, and the harvesting
term 𝑞𝐸𝑦(𝑡) follows the catch per unit effort hypothesis [1].
Furthermore, 𝑟

1
, 𝑟
2
, 𝑑, 𝑏, 𝑎

1
,𝑎
2
, 𝑘
1
, and 𝑘

2
in model system (2)

share the same interpretations mentioned in model system
(1).

In the following section of this paper, model system (2) is
derived under the following hypotheses.

(H1) Prey population is divided into two-stage groups, that
is, immature and mature. The term 𝑟

1
𝑒
−𝑑𝜏(𝑧(𝑡))

𝑥
2
(𝑡 −

𝜏(𝑧(𝑡))) represents the immature prey population
born at time 𝑡 − 𝜏(𝑧(𝑡)) and survive at time 𝑡 with
death rate 𝑑, which represents transformation term
from immature prey to mature prey.

(H2) Density-dependent time delay 𝜏(𝑧(𝑡)) is taken to be
an increasing differentiable bounded function of the
total population (immature prey, mature prey, and
predator population), which satisfies

𝑑 [𝜏 (𝑧 (𝑡))]

𝑑𝑡
≥ 0, 0 ≤ 𝜏

0
≤ 𝜏 (𝑧 (𝑡)) ≤ 𝜏

1
,

lim
𝑧(𝑡)→0+

𝜏 (𝑧 (𝑡)) = 𝜏
0
, lim

𝑧(𝑡)→+∞

𝜏 (𝑧 (𝑡)) = 𝜏
1
.

(4)

(H3) For the continuity of initial conditions, it is required
that

𝑥
1
(0) = ∫

0

−𝜏

𝑟
1
𝑒
𝑑𝑠

𝜙 (𝑠) 𝑑𝑠, (5)
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where 𝜙(𝑠) is assumed to be continuous function (for
mathematical reason) and nonnegative (for biological
reason).

(H4) In order to exclude the possibility of immature prey
becoming mature prey except by birth, 𝑡 − 𝜏(𝑧(𝑡))
is assumed to be a strictly increasing function of 𝑡.
Otherwise, there are two different times at which the
same individual immature prey turns to be mature
prey twice at the same instant of time, which is absurd
to practical biological interpretations. (For detailed
methodology, see [3].)

3. Qualitative Analysis of Model System

In this section, positiveness and boundedness of solution of
model system (2) are analytically investigated. Criteria for
existence of equilibria and uniqueness of positive equilibrium
are also studied. By using differential dynamical system
theory and stability theory, local stability analysis around all
equilibria of model system is discussed. Furthermore, global
stability of the positive equilibrium of the proposed model
system is studied by utilizing an iterative technique.

3.1. Positiveness and Boundness of Solutions

Theorem 1. Under hypotheses (H1)–(H4), solutions of model
system (2)with given initial conditions are positive for all 𝑡 > 0.

Proof. Assume that there exists 𝑡
0
= inf{𝑡 > 0 | 𝑥

2
(𝑡) =

0}. Based on the continuity 𝑡
0
> 0, it can be computed by

evaluating the model system (2) at time 𝑡
0
:

̇𝑥
2
(𝑡
0
) = {

𝑟
1
𝑒
−𝑑𝜏(𝑧(𝑡

0
))

𝜙 (𝑡
0
− 𝜏 (𝑧 (𝑡

0
))) , 0 ≤ 𝑡

0
≤ 𝜏,

𝑟
1
𝑒
−𝑑𝜏(𝑧(𝑡

0
))

𝑥
2
(𝑡
0
− 𝜏 (𝑧 (𝑡

0
))) , 𝑡

0
> 𝜏.

(6)

According to (6) and the initial conditions of model
system (2), it is easy to show that ̇𝑥

2
(𝑡
0
) > 0. On the other

hand, it follows from the definition of 𝑡
0
that ̇𝑥

2
(𝑡
0
) = 0, which

is a contradiction. Consequently, 𝑥
2
(𝑡) > 0 for all 𝑡 > 0.

Based on the positiveness of 𝑥
2
(𝑡) and the third equation

of model system (2), it is easy to show that 𝑦(𝑡) > 0 for 𝑦(0) >
0, 𝑡 > 0.

Consider the equation

̇𝑢 (𝑡) = −𝑑𝑢 (𝑡) − 𝑟
1
𝑒
−𝑑𝜏(𝑧)

𝑥
2
(𝑡 − 𝜏 (𝑧)) ,

𝑢 (0) = 𝑥
1
(0) > 0.

(7)

It is obvious to show that ̇𝑢(𝑡) < 0; that is, 𝑢(𝑡) is strictly
decreasing. By virtue of positiveness of 𝑥

2
(𝑡), 𝑦(𝑡), it derives

that

𝑥
1
(𝑡) > 𝑢 (𝑡) , 0 < 𝑡 ≤ 𝜏. (8)

By solving (7), it gives that

𝑢 (𝑡) = 𝑒
−𝑑𝑡

𝑢 (0) − 𝑟
1
𝑒
−𝑑𝑡

∫

𝑡

0

𝑒
𝑑𝑞

𝑒
−𝑑𝜏(𝑧(𝑞))

𝑥
2
(𝑞 − 𝜏 (𝑧 (𝑞))) 𝑑𝑞.

(9)

According to (5), it derives that

𝑢 (𝑡) = 𝑒
−𝑑𝑡

∫

0

−𝜏

𝑟
1
𝑒
𝑑𝑠

𝜙 (𝑠) 𝑑𝑠

− 𝑟
1
𝑒
−𝑑𝑡

∫

𝑡

0

𝑒
𝑑𝑞

𝑒
−𝑑𝜏(𝑧(𝑞))

𝑥
2
(𝑞 − 𝜏 (𝑧 (𝑞))) 𝑑𝑞.

(10)

By substituting 𝑝 = 𝑞 − 𝜏(𝑧(𝑞)) in the above equation, it
can be obtained that

𝑢 (𝑡) = 𝑟
1
𝑒
−𝑑𝑡

∫

0

−𝜏

𝑒
𝑑𝑠

𝜙 (𝑠) 𝑑𝑠

− 𝑟
1
𝑒
−𝑑𝑡

∫

𝑡−𝜏(𝑧(𝑡))

−𝜏

𝑒
𝑑𝑝

𝑥
2
(𝑝)

1 − 𝜏 (𝑧) ̇𝑧 (𝑝)
𝑑𝑝,

(11)

which implies that

𝑢 (𝜏) = 𝑟
1
𝑒
−𝑑𝜏

∫

0

−𝜏

𝑒
𝑑𝑠

𝜙 (𝑠) 𝑑𝑠

− 𝑟
1
𝑒
−𝑑𝜏

∫

𝜏−𝜏(𝑧(𝜏))

−𝜏

𝑒
𝑑𝑝

𝑥
2
(𝑝)

1 − 𝜏 (𝑧) ̇𝑧 (𝑝)
𝑑𝑝.

(12)

According to 𝑥
2
(𝑡) > 0, 𝑦(𝑡) > 0 for all 𝑡 > 0 and 𝑡 −

𝜏(𝑧(𝑡)) is an increasing function based on (H4). 1−𝜏(𝑧) ̇𝑧(𝑡) >
0 holds for −𝜏 ≤ 𝑡 ≤ 𝜏 − 𝜏(𝑧(𝜏)), and the following inequality
can be obtained:

𝑢 (𝜏) ≥ 𝑟
1
𝑒
−𝑑𝜏

∫

0

−𝜏

𝑒
𝑑𝑝

𝜙 (𝑝)(1 −
1

1 − 𝜏 (𝑧) ̇𝑧 (𝑝)
)𝑑𝑝 > 0.

(13)

since 𝑢(𝜏) > 0 and 𝑢(𝑡) is strictly decreasing, 𝑥
1
(𝑡) > 0, −𝜏 ≤

𝑡 ≤ 0. By repeating this argument to include all positive time,
it can be shown that 𝑥

1
(𝑡) > 0 for all 𝑡 > 0. Hence, solutions

of model system (2) with given initial conditions are positive
for all 𝑡 > 0.

Theorem 2. If the hypotheses (H1)–(H4) hold and 𝑟
2
> 𝑞𝐸, all

solutions of model system (2) are bounded within a regionΩ:

Ω = {(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑦 (𝑡)) |

0 < 𝑥
1
(𝑡) + 𝑥

2
(𝑡) ≤ 𝑅

1
, 0 < 𝑦 (𝑡) ≤ 𝑅

2
} ,

(14)

where 𝑅
1
= (𝑟
1
+ 𝑑)
2

/4𝑏𝑑, 𝑅
2
= (𝑟
2
− 𝑞𝐸)(𝑅

1
+ 𝑘
2
)/𝑎
2
.

Proof. Let V(𝑡) = 𝑥
1
(𝑡) + 𝑥

2
(𝑡), and it is easy to show that

V(𝑡) > 0 based on positiveness of solutions of model system
(2). By calculating the derivative of V(𝑡) along the solutions, it
gives that

̇V (𝑡) = 𝑟
1
𝑥
2
(𝑡) − 𝑑𝑥

1
(𝑡) − 𝑏𝑥

2

2
(𝑡) −

𝑎
1
𝑥
2
(𝑡) 𝑦 (𝑡)

𝑥
2
(𝑡) + 𝑘

1

< (𝑟
1
+ 𝑑) 𝑥

2
(𝑡) − 𝑏𝑥

2

2
− 𝑑V (𝑡) .

(15)

By using the standard comparison principle in (15), it
derives that

lim
𝑡→∞

sup (V (𝑡)) ≤
(𝑟
1
+ 𝑑)
2

4𝑏𝑑
= 𝑅
1
. (16)
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It follows from the third equation ofmodel system (2) that

̇𝑦 (𝑡) = (𝑟
2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎
2
𝑦
2

(𝑡)

𝑥
2
(𝑡) + 𝑘

2

≤ (𝑟
2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎
2
𝑦
2

(𝑡)

𝑅
1
+ 𝑘
2

.

(17)

By utilizing the standard comparison principle in
inequality (17) and 𝑟

2
− 𝑞𝐸 > 0, it gives that

lim
𝑡→∞

sup𝑦 (𝑡) ≤
(𝑟
2
− 𝑞𝐸) (𝑅

1
+ 𝑘
2
)

𝑎
2

= 𝑅
2
. (18)

Consequently, all solutions of model system (2) are
bounded within a regionΩ:

Ω = {(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , 𝑦 (𝑡)) |

0 < 𝑥
1
(𝑡) + 𝑥

2
(𝑡) ≤ 𝑅

1
, 0 < 𝑦 (𝑡) ≤ 𝑅

2
} ,

(19)

where 𝑅
1
= (𝑟
1
+ 𝑑)
2

/4𝑏𝑑, 𝑅
2
= (𝑟
2
− 𝑞𝐸)(𝑅

1
+ 𝑘
2
)/𝑎
2
.

3.2. Existence of Equilibria and Uniqueness of Positive Equilib-
rium. The existence of biologically reasonable equilibria of
model system (2) is investigated in this subsection. Since the
biological interpretation of the positive equilibrium implies
that immature prey, mature prey, and predator population all
exist, uniqueness of positive equilibrium is also studied.

By simple computation, there are two equilibria denoted
by 𝑃
0
(0, 0, 0) and 𝑃

1
(0, 0, 𝑘

2
(𝑟
2
−𝑞𝐸)/𝑎

2
).The biological inter-

pretations of 𝑃
0
, 𝑃
1
are as follows. For 𝑃

0
(0, 0, 0), it implies

that all population in harvested prey predator ecosystem does
not exist. For 𝑃

1
(0, 0, 𝑘

2
(𝑟
2
− 𝑞𝐸)/𝑎

2
), it implies that there is

not any predation source for predator population. It follows
from the previous biological interpretations that population
in such ecosystem cannot be maintained at an ideal level
for sustainable development, which are not relevant to major
investigation in this paper.

Furthermore, there is one or more positive equilibria
denoted by 𝑃∗(𝑥∗

1
, 𝑥
∗

2
, 𝑦
∗

). In order to discuss the existence
of 𝑃∗, it is equivalent to show that the following equations
always have at least one positive solution:

𝑟
1
𝑥
2
− 𝑑𝑥
1
− 𝑟
1
𝑒
−𝑑𝜏(𝑥

1
+𝑥
2
+𝑦)

𝑥
2
= 0,

𝑟
1
𝑒
−𝑑𝜏(𝑥

1
+𝑥
2
+𝑦)

− 𝑏𝑥
2
−

𝑎
1
𝑦

𝑥
2
+ 𝑘
1

= 0,

𝑟
2
− 𝑞𝐸 −

𝑎
2
𝑦

𝑥
2
+ 𝑘
2

= 0.

(20)

It follows from (20) that

𝑦 =
(𝑟
2
− 𝑞𝐸) (𝑥

2
+ 𝑘
2
)

𝑎
2

= 𝑓 (𝑥
2
) , (21)

𝑟
1
𝑥
2
− 𝑑𝑥
1
= 𝑟
1
𝑥
2
𝑒
−𝑑𝜏(𝑥

1
+𝑔(𝑥
2
))

, (22)

𝑟
1
𝑒
−𝑑𝜏(𝑥

1
+𝑔(𝑥
2
))

= 𝑏𝑥
2
+ 𝑎
1
ℎ (𝑥
2
) , (23)

where 𝑔(𝑥
2
) = 𝑥
2
+𝑦 = 𝑥

2
+𝑓(𝑥

2
) and ℎ(𝑥

2
) = 𝑦/(𝑥

2
+𝑘
1
) =

𝑓(𝑥
2
)/(𝑥
2
+ 𝑘
1
).

Theorem 3 (existence of positive equilibrium). Supposing
that hypotheses (H1)–(H4) hold, if 𝑘

1
≥ 𝑘
2
, 𝑟
2
> 𝑞𝐸,

and 𝑎
2
𝑟
1
𝑒
−𝑑𝜏
1 > 𝑎

1
𝑟
2
, then there exists at least one positive

equilibrium 𝑃
∗.

Proof. Let Γ
1
and Γ
2
be the solution curves of (22) and (23)

for 𝑥
1
≥ 0, 𝑥

2
≥ 0, respectively. The analytical properties of

curve Γ
1
and Γ
2
are as follows.

For Γ
1
: by simple computing, it can be found that (0, 0) ∈

Γ
1
.
According to (H2) and positiveness of all solutions of

model system (2), it is easy to show that lim
𝑥
1
→+∞

𝜏(𝑥
1
(𝑡) +

𝑔(𝑥
2
)) = 𝜏

1
, and

lim
𝑥
1
→+∞

𝑥
2
(𝑥
1
) = lim
𝑥
1
→+∞

𝑑𝑥
1

𝑟
1
(1 − 𝑒−𝑑𝜏(𝑥1+𝑔(𝑥2))

= lim
𝑥
1
→+∞

𝑑𝑥
1

𝑟
1
(1 − 𝑒−𝑑𝜏1)

= +∞.

(24)

For Γ
2
: by differentiating 𝑥

2
against 𝑥

1
along Γ

2
, it can be

obtained that
𝑑𝑥
2

𝑑𝑥
1

= − 𝑑𝑟
1
𝑒
−𝑑𝜏(𝑥

1
+𝑔(𝑥
2
))

× (𝑑𝑟
1
𝑒
−𝑑𝜏(𝑥

1
+𝑔(𝑥
2
))

𝜏


(𝑥
1
+ 𝑔 (𝑥

2
))
𝑎
2
+ 𝑟
2
− 𝑞𝐸

𝑎
2

+𝑏 +
𝑎
1
(𝑟
2
− 𝑞𝐸) (𝑘

1
− 𝑘
2
)

𝑎
2
(𝑥
2
+ 𝑘
1
)
2

)

−1

.

(25)

It can be shown that (𝑑𝑥
2
/𝑑𝑥
1
) < 0, provided that 𝑘

1
≥

𝑘
2
, 𝑟
2
> 𝑞𝐸, and then Γ

2
is strictly decreasing.

Furthermore, according to 𝑘
1
≥ 𝑘
2
, 𝑟
2
> 𝑞𝐸, and

𝑎
2
𝑟
1
𝑒
−𝑑𝜏
1 > 𝑎
1
(𝑟
2
− 𝑞𝐸),

lim
𝑥
1
→∞

𝑥
2
(𝑥
1
) =

1

𝑏
(𝑟
1
𝑒
−𝑑𝜏
1 −

𝑎
1
(𝑟
2
− 𝑞𝐸) (𝑥

2
+ 𝑘
2
)

𝑎
2
(𝑥
2
+ 𝑘
1
)

) > 0.

(26)

Based on the above analysis, Γ
1
and Γ

2
intersect at

some positive values, which proves the existence of positive
equilibrium 𝑃

∗.

Theorem 4 (uniqueness of positive equilibrium). Supposing
that hypotheses (H1)–(H4) hold, if the following inequality
holds

1 − 𝑑𝜏


(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
)) (𝑏𝑥

∗

2
+ 𝑎
1
ℎ (𝑥
∗

2
))

× (𝑎
1
ℎ


(𝑥
∗

2
) + 𝑑𝑔



(𝑥
∗

2
) 𝜏


(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
))

× (𝑏𝑥
∗

2
+ 𝑎
1
ℎ (𝑥
∗

2
)) ) + 𝑎

1
𝑑ℎ


(𝑥
∗

2
)

+ 𝑑𝜏


(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
) 𝑔


(𝑥
∗

2
) (𝑏𝑥
∗

2
+ 𝑎
1
ℎ (𝑥
∗

2
))

× (𝑑 + 𝑏 + 𝑑𝜏


(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
))) > 0,

(27)

then there exists a unique positive equilibrium.
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Proof. Based on (22) and (23), 𝑥
2
can be defined as the

function of 𝑥
1
:

Γ
1
: 𝑥
2
= 𝑔
1
(𝑥
1
) ,

Γ
2
: 𝑥
2
= 𝑔
2
(𝑥
1
) .

(28)

The positive equilibrium 𝑃
∗ will be unique, provided that

𝑔


1
(𝑥
1
) > 𝑔



2
(𝑥
1
) for every such 𝑃

∗ otherwise reverse
inequality holds.

By differentiating (22) with respect to 𝑥
1
, it can be

obtained that

𝑔


1
(𝑥
1
) =

𝑑 + 𝑟
1
𝑒
−𝑑𝜏(𝑥

1
+𝑔(𝑥
2
))

(1 − 𝑑𝜏


(𝑥
1
+ 𝑔 (𝑥

2
)))

𝑟
1
(1 + 𝑒−𝑑𝜏(𝑥1+𝑔(𝑥2))𝑑𝜏 (𝑥

1
+ 𝑔 (𝑥

2
)) 𝑔 (𝑥

2
))
.

(29)

By differentiating (23) with respect to 𝑥
1
, it can be

obtained that

𝑔


2
(𝑥
1
)

= −
𝑏 + 𝑑𝑟

1
𝜏


(𝑥
1
+ 𝑔 (𝑥

2
)) 𝑒
−𝑑𝜏(𝑥

1
+𝑔(𝑥
2
))

𝑎
1
ℎ (𝑥
2
) + 𝑑𝑟

1
𝑔 (𝑥
2
) 𝜏 (𝑥

1
+ 𝑔 (𝑥

2
)) 𝑒−𝑑𝜏(𝑥1+𝑔(𝑥2))

.

(30)

On the other hand, some expressions about positive
equilibrium𝑃

∗

(𝑥
∗

1
, 𝑥
∗

2
, 𝑦
∗

) can be obtained based on (22) and
(23),

𝑟
1
𝑥
∗

2
− 𝑑𝑥
∗

1
= 𝑟
1
𝑥
∗

2
𝑒
−𝑑𝜏(𝑥

∗

1
+𝑔(𝑥
∗

2
))

,

𝑟
1
𝑒
−𝑑𝜏(𝑥

∗

1
+𝑔(𝑥
∗

2
))

= 𝑏𝑥
∗

2
+ 𝑎
1
ℎ (𝑥
∗

2
) .

(31)

According to (31), 𝑔
1
(𝑥
∗

1
) > 𝑔



1
(𝑥
∗

2
) is equivalent to the

following inequality:

1 − 𝑑𝜏


(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
)) (𝑏𝑥

∗

2
+ 𝑎
1
ℎ (𝑥
∗

2
))

× (𝑎
1
ℎ


(𝑥
∗

2
) + 𝑑𝑔



(𝑥
∗

2
) 𝜏


(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
))

× (𝑏𝑥
∗

2
+ 𝑎
1
ℎ (𝑥
∗

2
)) ) + 𝑎

1
𝑑ℎ


(𝑥
∗

2
)

+ 𝑑𝜏


(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
) 𝑔


(𝑥
∗

2
)

× (𝑏𝑥
∗

2
+ 𝑎
1
ℎ (𝑥
∗

2
)) (𝑑 + 𝑏 + 𝑑𝜏



(𝑥
∗

1
+ 𝑔 (𝑥

∗

2
))) > 0.

(32)

This completes the proof.

3.3. Local Stability Analysis around Equilibria. Local stability
of model system (2) around all equilibria of model system (2)
is investigated. Furthermore, stability switch due to variation
ofmaturity delay and harvest effort level is also studied in this
subsection.

The characteristic equation of model system (2) about
some equilibrium �̃� = (𝑥

1
, 𝑥
2
, 𝑦) takes the following form:



𝜆 + (𝑑 − 𝐴) 𝑒
−𝑑𝜏(�̃�)

𝑟
1
(1 + 𝑒

−(𝜆+𝑑)𝜏(�̃�)

) − 𝐴𝑒
−𝑑𝜏(�̃�)

−𝐴𝑒
−𝑑𝜏(�̃�)

𝐴𝑒
−𝑑𝜏(�̃�)

𝜆 + 2𝑏𝑥 +
𝑎
1
𝑘
1
𝑦

(𝑥
2
+ 𝑘
1
)
2
+ 𝐴𝑒
−𝑑𝜏(�̃�)

+ 𝑟
1
𝑒
−(𝜆+𝑑)𝜏(�̃�)

𝐴𝑒
−𝑑𝜏(�̃�)

+
𝑎
1
𝑥
2

𝑘
1
+ 𝑥
2

0 −
𝑎
2
𝑦
2

(𝑘
2
+ 𝑥
2
)
2

𝜆 − 𝑟
2
+ 𝑞𝐸 +

2𝑎
2
𝑦

𝑘
2
+ 𝑥
2



= 0, (33)

where 𝐴 = 𝑑𝑟
1
𝑥
2
𝜏


(�̃�).

Theorem 5. Local stability analysis of model system (2)
around 𝑃

0
and 𝑃

1
is as follows:

(a) if 𝑟
2
< 𝑞𝐸, then model system is locally stable around

𝑃
0
, and 𝑃

1
is a saddle point which is unstable in the 𝑦-

direction and stable in the 𝑥
1
-𝑥
2
plane;

(b) if 𝑟
2
> 𝑞𝐸, then model system is locally stable around

𝑃
1
, and 𝑃

0
is a saddle point which is unstable in the 𝑦-

direction and stable in the 𝑥
1
-𝑥
2
plane.

Proof. For 𝑃
0
(0, 0, 0), (33) reduces to

(𝜆 + 𝑑𝑒
−𝑑𝜏(0)

) (𝜆 + 𝑟
1
𝑒
−(𝜆+𝑑)𝜏(0)

) (𝜆 − (𝑟
2
− 𝑞𝐸)) = 0. (34)

By solving (34), it can be found that there are two negative
eigenvalues and only one positive eigenvalue, provided 𝑟

2
>

𝑞𝐸, which implies that 𝑃
0
is a saddle point which is unstable

in the 𝑦-direction and stable in the 𝑥
1
-𝑥
2
plane. On the other

hand, there are three negative eigenvalues, provided that 𝑟
2
<

𝑞𝐸, which implies that 𝑃
0
is a stable point.

For 𝑃
1
(0, 0, (𝑘

2
(𝑟
2
− 𝑞𝐸)/𝑎

2
)), (33) reduces to

(𝜆 + 𝑑𝑒
−𝑑𝜏(𝑦)

) (𝜆 + 𝑟
1
𝑒
−(𝜆+𝑑)𝜏(𝑦)

+
𝑎
1
𝑦

𝑘
1

) (𝜆 + (𝑟
2
− 𝑞𝐸)) = 0,

(35)

where 𝑦 = 𝑘
2
(𝑟
2
− 𝑞𝐸)/𝑎

2
. It follows from (35) that there are

two negative eigenvalues and only one positive eigenvalue,
provided 𝑟

2
< 𝑞𝐸, which implies that 𝑃

1
is a saddle

point which is unstable in the 𝑦-direction and stable in the
𝑥
1
-𝑥
2
plane. On the other hand, there are three negative
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eigenvalues, provided that 𝑟
2
> 𝑞𝐸, which implies that 𝑃

1
is a

stable point.
In order to discuss the local stability of model system (2)

around the positive equilibrium 𝑃
∗

(𝑥
∗

1
, 𝑥
∗

2
, 𝑦
∗

), (33) reduces
to



𝜆 + 𝑑𝐵
∗

− 𝐴
∗

𝑟
1
(1 + 𝐵

∗

𝑒
−𝜆𝜏(𝑧

∗

)

) − 𝐴
∗

−𝐴
∗

𝐴
∗

𝜆 + 𝐴
∗

+ 𝐵
∗

𝑒
−𝜆𝜏(𝑧

∗

)

+ 2𝑏𝑥
∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2

𝐴
∗

+
𝑎
1
𝑥
∗

2

𝑥
∗

2
+ 𝑘
1

0 −
𝑎
2
𝑦
∗2

(𝑥
∗

2
+ 𝑘
2
)
2

𝜆 − 𝑟
2
+ 𝑞𝐸 +

2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2



= 0, (36)

where 𝐴∗ = 𝑑(𝑟
1
𝑥
∗

2
− 𝑑𝑥
∗

1
)𝜏


(𝑧
∗

), 𝐵∗ = (𝑟
1
𝑥
∗

2
− 𝑑𝑥
∗

1
)/𝑟
1
𝑥
∗

2

and 𝑧∗ = 𝑥∗
1
+ 𝑥
∗

2
+ 𝑦
∗.

It can be computed that

𝑀(𝜆) + 𝑁 (𝜆) 𝑒
−𝜆𝜏(𝑧

∗

)

= 0, (37)

where𝑀(𝜆) = 𝜆3 + 𝑚
1
𝜆
2

+ 𝑚
2
𝜆 + 𝑚

3
and 𝑁(𝜆) = 𝑛

1
𝜆
2

+

𝑛
2
𝜆 + 𝑛
3
,

𝑚
1
= 𝑑𝐵
∗

+ 2𝑏𝑥
∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2
− 𝑟
2
+ 𝑞𝐸 +

2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

,

𝑚
2
= (

2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸)(𝐴

∗

+ 2𝑏𝑥
∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2
)

− 𝐴
∗

(𝑟
1
− 𝐴
∗

) ,

𝑚
3
=
𝑎
2
𝑦
∗2

𝐴
∗2

(𝑥
∗

2
+ 𝑘
2
)
2
+ 𝑑𝐵
∗

(𝐴
∗

+ 2𝑏𝑥
∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2
)

× (
2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸)

− 𝐴
∗

(𝑟
1
+ 2𝑏𝑥

∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2
)

× (
2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸) ,

𝑛
1
= 𝐵
∗

,

𝑛
2
= 𝐵
∗

(
2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸 − 𝑟

1
𝐴
∗

) ,

𝑛
3
= 𝐵
∗

(
2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸) (𝑑𝐵

∗

− 𝐴
∗

− 𝑟
1
𝐴
∗

) .

(38)

In the following part, dynamical behavior of model
system (2) around the positive equilibrium𝑃

∗ is investigated.
Furthermore, local stability analysis is discussed due to the
variation of maturation delay and harvest effort level. By
taking 𝜏(𝑧∗) as a bifurcation parameter, conditions for local
stability switch are discussed with the increase of 𝜏(𝑧∗) from
zero.

Case 1 (𝜏(𝑧∗) = 0). In the case of 𝜏(𝑧∗) = 0, it derives
that 𝜏(𝑧∗) remains as a constant (zero or a positive constant)
for all time 𝑡 > 0 based on (H2). In the following part,
𝜏(𝑧
∗

) is denoted as 𝜏∗ for simplifying. Furthermore, it can be
computed that 𝐴∗ = 0, and 𝑚

𝑖
, 𝑛
𝑖
(𝑖 = 1, 2, 3) in (37) can be

rewritten as follows:

�̂�
1
= 𝑑𝐵
∗

+ 2𝑏𝑥
∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2
− 𝑟
2
+ 𝑞𝐸 +

2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

,

�̂�
2
= (

2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸)(2𝑏𝑥

∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2
) ,

�̂�
3
= 𝑑𝐵
∗

(2𝑏𝑥
∗

2
+

𝑎
1
𝑘
1
𝑦
∗

(𝑥
∗

2
+ 𝑘
1
)
2
)(

2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸) ,

𝑛
1
= 𝐵
∗

,

𝑛
2
= 𝐵
∗

(
2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸) ,

𝑛
3
= 𝑑𝐵
∗2

(
2𝑎
2
𝑦
∗

𝑥
∗

2
+ 𝑘
2

− 𝑟
2
+ 𝑞𝐸) .

(39)

Theorem 6. Supposing that hypotheses (H1)–(H4) hold, if 𝑟
2
−

𝑞𝐸 > 0, then model system (2) is stable around the positive
equilibrium 𝑃

∗ in the case of 𝜏∗ = 0.

Proof. When 𝜏∗ = 0, (37) can be rewritten as follows:

𝜆
3

+ (�̂�
1
+ 𝑛
1
) 𝜆
2

+ (�̂�
2
+ 𝑛
2
) 𝜆 + �̂�

3
+ 𝑛
3
= 0. (40)

Based on the above analysis, it can be concluded that the
roots of (40) have negative real parts by using the Routh-
Hurwitz criteria [1]. Consequently, 𝑃∗ is locally stable in the
case of 𝜏∗ = 0.

When 𝜏∗ > 0, let 𝜆 = 𝑖𝜔 be a root of (37), where 𝜔 is
positive. Substitute 𝜆 = 𝑖𝜔 into (37) and separate the real and
imaginary parts, and then two transcendental equations can
be obtained as follows:

𝜔
3

− �̂�
2
𝜔 = (𝑛

1
𝜔
2

− 𝑛
3
) sin (𝜔𝜏∗) + 𝑛

2
𝜔 cos (𝜔𝜏∗) ,

�̂�
1
𝜔
2

− �̂�
3
= 𝑛
2
𝜔 sin (𝜔𝜏∗) − (𝑛

1
𝜔
2

− 𝑛
3
) cos (𝜔𝜏∗) .

(41)
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By squaring and adding (41), it can be obtained that

𝜔
6

+ 𝐵
1
𝜔
4

+ 𝐵
2
𝜔
2

+ 𝐵
3
= 0, (42)

where 𝐵
1
= �̂�
2

1
− 2�̂�
2
− 𝑛
2

1
, 𝐵
2
= �̂�
2

2
− 2�̂�
1
�̂�
3
+ 2𝑛
1
𝑛
3
− 𝑛
2

2
,

𝐵
3
= �̂�
2

3
−𝑛
2

3
, and �̂�

𝑖
, 𝑛
𝑖
(𝑖 = 1, 2, 3) have been defined in (40).

According to the values of 𝐵
𝑖
(𝑖 = 1, 2, 3) and the Routh-

Hurwitz criteria [1], a simple assumption of the existence of a
positive root for (42) is 𝐵

3
< 0.

If 𝐵
3
< 0 holds, then (42) has a positive root 𝜔

0
, and

(37) has a pair of purely imaginary roots of the form ±𝑖𝜔
0
.

Consequently, it can be obtained by eliminating sin(𝜔𝜏∗)
from (41):

cos (𝜔𝜏∗)

=
(𝑛
2
− �̂�
1
𝑛
1
) 𝜔
4

+ (�̂�
1
𝑛
3
+ �̂�
3
𝑛
1
− �̂�
2
𝑛
2
) 𝜔
2

− �̂�
3
𝑛
3

(𝑛
2
𝜔2)
2

+ (𝑛
3
− 𝑛
1
𝜔2)
2

,

(43)

The 𝜏
𝑘
corresponding to 𝜔

0
is as follows:

𝜏
𝑘
=
1

𝜔
0

arccos [ ((𝑛
2
− �̂�
1
𝑛
1
) 𝜔
4

+ (�̂�
1
𝑛
3
+ �̂�
3
𝑛
1
− �̂�
2
𝑛
2
) 𝜔
2

− �̂�
3
𝑛
3
)

×((𝑛
2
𝜔
2

)
2

+ (𝑛
3
− 𝑛
1
𝜔
2

)
2

)

−1

] +
2𝑘𝜋

𝜔
0

,

(44)

𝑘 = 0, 1, 2, . . .. By virtue of Butler’s lemma [37], it can be
concluded that the positive equilibrium 𝑃

∗ remains locally
stable for 𝜏∗ < 𝜏

0
, as 𝑘 = 0.

Case 2 (𝜏(𝑧∗) > 0). In the case of 𝜏(𝑧∗) > 0, local stability
of model system (2) around the positive equilibrium 𝑃

∗ can
change only if there exists at least one root of (37) such that
Re 𝜆 = 0.

Let 𝜆 = 𝑖] be one such root, where ] is positive. Substitute
𝜆 = 𝑖] into (37) and separate the real and imaginary parts, and
then two transcendental equations can be obtained as follows:

]3 − 𝑚
2
] = (𝑛

1
]2 − 𝑛

3
) sin (]𝜏 (𝑧∗))

+ 𝑛
2
] cos (]𝜏 (𝑧∗)) ,

𝑚
1
]2 − 𝑚

3
= 𝑛
2
] sin (]𝜏 (𝑧∗))

− (𝑛
1
]2 − 𝑛

3
) cos (]𝜏 (𝑧∗)) .

(45)

By squaring and adding (45), it can be obtained that

]6 + 𝐶
1
]4 + 𝐶

2
]2 + 𝐶

3
= 0, (46)

where 𝐶
1
= 𝑚
2

1
− 2𝑚
2
− 𝑛
2

1
,𝐶
2
= 𝑚
2

2
− 2𝑚
1
𝑚
3
+ 2𝑛
1
𝑛
3
− 𝑛
2

2
,

𝐶
3
= 𝑚
2

3
−𝑛
2

3
, and𝑚

𝑖
, 𝑛
𝑖
(𝑖 = 1, 2, 3) have been defined in (37).

According to the values of 𝐶
𝑖
(𝑖 = 1, 2, 3) and the Routh-

Hurwitz criteria [1], a simple assumption of the existence of a
positive root for (42) is 𝐶

3
< 0, which derives that

𝜏


(𝑧
∗

)

> (𝑎
1
𝑘
1
𝑟
1
(𝑟
2
− 𝑞𝐸) 𝑥

∗

2
(𝑥
∗

2
+ 𝑘
2
)

+ 𝑎
2
(𝑥
∗

2
+ 𝑘
1
)
2

(𝑟
1
𝑥
∗

2
(2𝑏𝑥
∗

2
− 1) + 𝑑𝑥

∗

1
))

× (𝑟
1
𝑥
∗

2
[𝑎
1
𝑘
1
𝑟
1
(𝑟
2
− 𝑞𝐸) 𝑥

∗

2
(𝑥
∗

2
+ 𝑘
2
)

+ 𝑎
2
(𝑥
∗

2
+ 𝑘
1
)
2

× (𝑑𝑥
∗

1
(𝑑 + 2) + 𝑟

1
𝑥
∗

2
(2𝑏𝑥
∗

2
− 𝑑 − 1))])

−1

.

(47)

If the above inequality holds, then model system (2) is
unstable around the positive equilibrium 𝑃

∗ in the case of
𝜏


(𝑧
∗

) > 0.

3.4. Global Stability Analysis of Positive Equilibrium. In this
section, global stability of the positive equilibrium 𝑃

∗ is
discussed by using an iterative technique in the case of
𝜏


(𝑧
∗

) = 0.

Lemma 7 (see [29]). Consider the following equation:

̇𝑥 = 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) − 𝑐𝑥
2

(𝑡) , (48)

where 𝑎, 𝑏, 𝑐, and 𝜏 are positive constants, and 𝑥(𝑡) > 0 for
𝑡 ∈ [−𝜏, 0]; it follows that

(i) If 𝑎 > 𝑏, then lim
𝑡→+∞

𝑥(𝑡) = (𝑎 − 𝑏)/𝑐;
(ii) If 𝑎 < 𝑏, then lim

𝑡→+∞
𝑥(𝑡) = 0.

Theorem 8. Supposing that hypotheses (H1)–(H4) and 𝑟
2
−

𝑞𝐸 > 0 hold, if the following inequalities hold

𝑏𝑘
2
+ 𝑟
1
𝑒
−𝑑𝜏
∗

< 𝑎
2
𝑏𝑦
∗

,

𝑎
2
𝑘
1
𝑟
1
𝑒
−𝑑𝜏
∗

> 𝑎
1
(𝑟
2
− 𝑞𝐸) (𝑅

1
+ 𝑘
2
) ,

(49)

then the positive equilibrium 𝑃
∗ is globally asymptotically

stable in the case of 𝜏(𝑧∗) = 0.

Proof. In the case of 𝜏(𝑧∗) = 0, it derives that 𝜏(𝑧∗) remains
as a constant (zero or a positive constant) for all time 𝑡 > 0
based on (H2). In the following part, 𝜏(𝑧∗) is denoted as 𝜏∗
for simplifying. Let

𝑈
1
= lim
𝑡→+∞

sup𝑥
2
(𝑡) , 𝑉

1
= lim
𝑡→+∞

inf 𝑥
2
(𝑡) ,

𝑈
2
= lim
𝑡→+∞

sup𝑦 (𝑡) , 𝑉
2
= lim
𝑡→+∞

inf 𝑦 (𝑡) .
(50)

In the following, we will claim that 𝑈
1
= 𝑉
1
= 𝑥
∗

2
, 𝑈
2
=

𝑉
2
= 𝑦
∗.

It follows from Theorem 2 that 𝑥
2
(𝑡) ≤ 𝑅

1
(𝑅
1
has been

defined inTheorem 2). From model system (2),

̇𝑦 (𝑡) ≤ (𝑟
2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎
2
𝑦
2

(𝑡)

𝑅
1
+ 𝑘
2

. (51)
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By standard comparison argument, it derives that

𝑈
2
≤
(𝑟
2
− 𝑞𝐸) (𝑅

1
+ 𝑘
2
)

𝑎
2

:= 𝐽
𝑦

1
, (52)

and then for sufficiently small 𝜖 > 0, there exists a 𝑇
11
> 0

such that if 𝑡 > 𝑇
11
, 𝑦(𝑡) ≤ 𝐽𝑦

1
+𝜖. Based onTheorem 1, 𝑥

2
(𝑡)+

𝑘
1
> 𝑘
1
, it can be obtained that for 𝑡 > 𝑇

11
+ 𝜏
∗,

̇𝑥
2
(𝑡) ≥ 𝑟

1
𝑒
−𝑑𝜏
∗

𝑥
2
(𝑡 − 𝜏

∗

) − 𝑏𝑥
2

2
(𝑡) −

𝑎
1
(𝐽
𝑦

1
+ 𝜖) 𝑥

2
(𝑡)

𝑥
2
(𝑡) + 𝑘

1

> 𝑟
1
𝑒
−𝑑𝜏
∗

𝑥
2
(𝑡 − 𝜏

∗

) − 𝑏𝑥
2

2
(𝑡) −

𝑎
1
(𝐽
𝑦

1
+ 𝜖) 𝑥

2
(𝑡)

𝑘
1

.

(53)

Consider the following auxiliary equation:

̇V (𝑡) = 𝑟
1
𝑒
−𝑑𝜏
∗

V (𝑡 − 𝜏∗) − 𝑏V2 (𝑡) −
𝑎
1
(𝐽
𝑦

1
+ 𝜖) V (𝑡)

𝑘
1

. (54)

Under the condition 𝑎
2
𝑘
1
𝑟
1
𝑒
−𝑑𝜏
∗

> 𝑎
1
(𝑟
2
− 𝑞𝐸)(𝑅

1
+ 𝑘
2
),

it follows from Lemma 7 that

lim
𝑡→+∞

V (𝑡) =
𝑘
1
𝑟
1
𝑒
−𝑑𝜏
∗

− 𝑎
1
(𝐽
𝑦

1
+ 𝜖)

𝑏𝑘
1

:= 𝐼
𝑥

1
. (55)

Hence, 𝑉
1
≥ 𝐼
𝑥

1
. For sufficiently small 𝜖 > 0, there exits

𝑇
12
≥ 𝑇
11
+ 𝜏
∗ such that if 𝑡 > 𝑇

22
, then 𝑥

2
(𝑡) ≥ 𝐼

𝑥

1
− 𝜖.

We derive from the model system (2) that for 𝑡 > 𝑇
12
,

̇𝑦 (𝑡) ≥ (𝑟
2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎
2
𝑦
2

(𝑡)

𝑘
2
+ 𝐼
𝑥

1
− 𝜖

. (56)

A standard comparison argument shows that

lim
𝑡→+∞

𝑦 (𝑡) =
(𝑟
2
− 𝑞𝐸) (𝑘

2
+ 𝐼
𝑥

1
− 𝜖)

𝑎
2

:= 𝐼
𝑦

1
. (57)

Hence, for sufficiently small 𝜖 > 0, there is a 𝑇
21
≥ 𝑇
12

satisfying if 𝑡 > 𝑇
21
, then 𝑦(𝑡) ≥ 𝐼

𝑦

1
− 𝜖. Consequently, for

𝑡 > 𝑇
21
+ 𝜏
∗,

̇𝑥
2
(𝑡) ≤ 𝑟

1
𝑒
−𝑑𝜏
∗

𝑥
2
(𝑡 − 𝜏

∗

) − 𝑏𝑥
2

2
(𝑡) −

𝑎
1
(𝐼
𝑦

1
− 𝜖) 𝑥

2
(𝑡)

𝑅
1
+ 𝑘
1

.

(58)

Consider the following auxiliary equation:

̇V (𝑡) = 𝑟
1
𝑒
−𝑑𝜏
∗

V (𝑡 − 𝜏∗) − 𝑏V2 (𝑡) −
𝑎
1
(𝐼
𝑦

1
− 𝜖) V (𝑡)

𝑅
1
+ 𝑘
1

. (59)

It follows from Lemma 7 that

lim
𝑡→+∞

V (𝑡) =
(𝑟
1
𝑒
−𝑑𝜏
∗

− 𝑏) (𝑅
1
+ 𝑘
1
)

𝑎
1
(𝐼
𝑦

1
− 𝜖)

:= 𝐽
𝑥

1
. (60)

Hence,𝑈
1
≤ 𝐽
𝑥

1
. For sufficiently small 𝜖 > 0, there exists a

𝑇
22
≥ 𝑇
21
+ 𝜏
∗ satisfying that if 𝑡 > 𝑇

22
, then 𝑥

2
(𝑡) ≤ 𝐽

𝑥

1
+ 𝜖.

For 𝑡 > 𝑇
22
, it gives that

̇𝑦 (𝑡) ≤ (𝑟
2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎
2
𝑦
2

(𝑡)

𝑘
2
+ 𝐽
𝑥

1
+ 𝜖
. (61)

By standard comparison argument, it derives that

lim
𝑡→+∞

𝑦 (𝑡) =
(𝑟
2
− 𝑞𝐸) (𝐽

𝑥

1
+ 𝑘
2
+ 𝜖)

𝑎
2

:= 𝐽
𝑦

2
. (62)

Hence, for sufficiently small 𝜖 > 0, there exists 𝑇
31
≥ 𝑇
22

satisfying that if 𝑡 > 𝑇
31
, 𝑦(𝑡) ≤ 𝐽𝑦

2
+ 𝜖, the for 𝑡 > 𝑇

31
+ 𝜏
∗

̇𝑥
2
(𝑡) ≥ 𝑟

1
𝑒
−𝑑𝜏
∗

𝑥
2
(𝑡 − 𝜏

∗

) − 𝑏𝑥
2

2
(𝑡) −

𝑎
1
(𝐽
𝑦

2
+ 𝜖) 𝑥

2
(𝑡)

𝑘
1

.

(63)

Consider the following auxiliary equation:

̇V (𝑡) = 𝑟
1
𝑒
−𝑑𝜏
∗

V (𝑡 − 𝜏∗) − 𝑏V2 (𝑡) −
𝑎
1
(𝐽
𝑦

2
+ 𝜖) V (𝑡)

𝑘
1

. (64)

By using Lemma 7, it can be obtained that

lim
𝑡→+∞

V (𝑡) =
𝑘
1
𝑟
1
𝑒
−𝑑𝜏
∗

− 𝑎
1
(𝐽
𝑦

2
+ 𝜖)

𝑏𝑘
1

:= 𝐼
𝑥

2
. (65)

Since it is true for any sufficiently small 𝜖 > 0, 𝑉
1
≥ 𝐼
𝑥

2
.

Therefore, there exists 𝑇
32
≥ 𝑇
31
+𝜏
∗ such that if 𝑡 > 𝑇

32
, then

𝑥
2
(𝑡) ≥ 𝐼

𝑥

2
− 𝜖.

It follows from model system (2) that for 𝑡 > 𝑇
32
,

̇𝑦 (𝑡) ≥ (𝑟
2
− 𝑞𝐸) 𝑦 (𝑡) −

𝑎
2
𝑦
2

(𝑡)

𝐼
𝑥

2
− 𝜖 + 𝑘

2

. (66)

By using standard comparison argument, it derives that

lim
𝑡→+∞

𝑦 (𝑡) =
(𝑟
2
− 𝑞𝐸) (𝐼

𝑥

2
− 𝜖 + 𝑘

2
)

𝑎
2

:= 𝐼
𝑦

2
. (67)

Since this is true for any sufficiently small 𝜖 > 0, 𝑉
2
≥ 𝐼
𝑦

2
.

Consequently, there exists𝑇
41
≥ 𝑇
32
satisfying if 𝑡 > 𝑇

41
, then

𝑦(𝑡) ≥ 𝐼
𝑦

2
− 𝜖.

It follows from model system (2) that for 𝑡 > 𝑇
41
+ 𝜏
∗,

̇𝑥
2
(𝑡) ≤ 𝑟

1
𝑒
−𝑑𝜏
∗

𝑥
2
(𝑡 − 𝜏

∗

) − 𝑏𝑥
2

2
(𝑡) −

𝑎
1
(𝐼
𝑦

2
− 𝜖) 𝑥

2
(𝑡)

𝑅
1
+ 𝑘
1

.

(68)

Consider the following auxiliary equation,

̇V (𝑡) ≤ 𝑟
1
𝑒
−𝑑𝜏
∗

V (𝑡 − 𝜏∗) − 𝑏V2 (𝑡) −
𝑎
1
(𝐼
𝑦

2
− 𝜖) V (𝑡)

𝑅
1
+ 𝑘
1

. (69)

By using Lemma 7, it derives that

lim
𝑡→+∞

𝑥
2
(𝑡) =

𝑟
1
𝑒
−𝑑𝜏
∗

(𝑅
1
+ 𝑘
1
) − 𝑎
1
(𝐼
𝑦

2
− 𝜖)

𝑏 (𝑅
1
+ 𝑘
1
)

:= 𝐽
𝑥

2
. (70)
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Continuing the above process, four sequences {𝐼𝑥
𝑛
}, {𝐼𝑦
𝑛
},

{𝐽
𝑥

𝑛
}, {𝐽𝑦
𝑛
}, 𝑛 = 1, 2, . . ., are obtained which take the following

form

𝐽
𝑥

𝑛
=
𝑟
1
𝑒
−𝑑𝜏
∗

(𝑅
1
+ 𝑘
1
) + 𝑎
1
𝜖 − 𝑎
1
𝐼
𝑦

𝑛

𝑏 (𝑅
1
+ 𝑘
1
)

,

𝐽
𝑦

𝑛
=
(𝜖 + 𝑘

2
) (𝑟
2
− q𝐸) + (𝑟

2
− 𝑞𝐸) 𝐽

𝑥

𝑛−1

𝑎
2

,

𝐼
𝑥

𝑛
=
𝑘
1
𝑟
1
𝑒
−𝑑𝜏
∗

− 𝑎
1
𝜖 − 𝑎
1
𝐽
𝑦

𝑛

𝑏𝑘
1

,

𝐼
𝑦

𝑛
=
(𝑟
2
− 𝑞𝐸) (𝑘

2
− 𝜖) + (𝑟

2
− 𝑞𝐸) 𝐼

𝑥

𝑛

𝑎
2

.

(71)

It is easy to show that

𝐼
𝑥

𝑛
≤ 𝑉
1
≤ 𝑈
1
≤ 𝐽
𝑥

𝑛
, 𝐼

𝑦

𝑛
≤ 𝑉
2
≤ 𝑈
2
≤ 𝐽
𝑦

𝑛
. (72)

By virtue of (71), it derives that

𝐽
𝑦

𝑛

=

(𝑟
2
− 𝑞𝐸) [𝑏 (𝜖 + 𝑘

2
) + 𝑟
1
𝑒
−𝑑𝜏
∗

]

𝑎
2
𝑏

+
𝑎
1
𝜖 (𝑟
2
− 𝑞𝐸)

𝑎
2
𝑏 (𝑅
1
+ 𝑘
1
)

−

𝑎
1
(𝑟
2
−𝑞𝐸)
2

[𝑘
1
(𝑟
1
𝑒
−𝑑𝜏
∗

+𝑏𝑘
2
)+𝜖 (𝑏𝑘

1
−𝑎
1
)−𝑎
1
𝐽
𝑦

𝑛−1
]

𝑎
2

2
𝑏2𝑘
1
(𝑅
1
+ 𝑘
1
)

.

(73)

Furthermore,

𝐽
𝑦

𝑛
− 𝐽
𝑦

𝑛−1

=

(𝑟
2
− 𝑞𝐸) [𝑏 (𝜖 + 𝑘

2
) + 𝑟
1
𝑒
−𝑑𝜏
∗

]

𝑎
2
𝑏

+
𝑎
1
𝜖 (𝑟
2
− 𝑞𝐸)

𝑎
2
𝑏 (𝑅
1
+ 𝑘
1
)

−

𝑎
1
(𝑟
2
−𝑞𝐸)
2

[𝑘
1
(𝑟
1
𝑒
−𝑑𝜏
∗

+𝑏𝑘
2
)+𝜖 (𝑏𝑘

1
−𝑎
1
)−𝑎
1
𝐽
𝑦

𝑛−1
]

𝑎
2

2
𝑏2𝑘
1
(𝑅
1
+ 𝑘
1
)

− 𝐽
𝑦

𝑛−1
.

(74)

If the following inequalities hold

𝑏𝑘
2
+ 𝑟
1
𝑒
−𝑑𝜏
∗

< 𝑎
2
𝑏𝑦
∗

,

𝑎
2
𝑘
1
𝑟
1
𝑒
−𝑑𝜏
∗

> 𝑎
1
(𝑟
2
− 𝑞𝐸) (𝑅

1
+ 𝑘
2
) ,

(75)

then 𝐽𝑦
𝑛
− 𝐽
𝑦

𝑛−1
≤ 0, which implies that {𝐽𝑦

𝑛
| 𝐽
𝑦

𝑛
≥ 𝑦
∗

, 𝑛 =

1, 2, . . .} is monotonically decreasing. Hence, it can be shown
that limitation of sequence {𝐽𝑦

𝑛
} exists. Taking 𝑛 → +∞, it

follows from (73) that

lim
𝑛→+∞

𝐽
𝑦

𝑛
= 𝑦
∗

. (76)

By using (71) and (76), it can be shown that

lim
𝑛→+∞

𝐽
𝑥

𝑛
= 𝑥
∗

2
, lim

𝑛→+∞

𝐼
𝑦

𝑛
= 𝑦
∗

, lim
𝑛→+∞

𝐼
𝑥

𝑛
= 𝑥
∗

2
.

(77)

According to the definition of𝑈
1
,𝑈
2
,𝑉
1
, and𝑉

2
, it derives

that

𝑈
1
= 𝑉
1
= 𝑥
∗

2
, 𝑈

2
= 𝑉
2
= 𝑦
∗

. (78)

Hence,

lim
𝑡→+∞

𝑥
2
(𝑡) = 𝑥

∗

2
, lim

𝑡→+∞

𝑦 (𝑡) = 𝑦
∗

. (79)

Based on (5), it derives that

𝑥
1
(𝑡) = ∫

𝑡

𝑡−𝜏

𝑟
1
𝑒
−𝑑(𝑡−𝑠)

𝜙 (𝑠) 𝑑𝑠. (80)

By using L’Hospital’s rule, it derives that

lim
𝑡→+∞

𝑥
1
(𝑡) = lim
𝑡→+∞

𝑟
1
[𝑒
𝑑𝑡

𝜙 (𝑡) − 𝑒
𝑑(𝑡−𝜏)

𝜙 (𝑡 − 𝜏)]

𝑑𝑒𝑑𝑡

= lim
𝑡→+∞

𝑟
1

𝑑
[𝜙 (𝑡) − 𝑒

−𝑑𝜏

𝜙 (𝑡 − 𝜏)]

= lim
𝑡→+∞

𝑟
1

𝑑
(1 − 𝑒

−𝑑𝜏

) 𝑥
∗

2
.

(81)

According to (20), it is easy to show that

lim
𝑡→+∞

𝑥
1
(𝑡) = lim
𝑡→+∞

𝑟
1

𝑑
(1 − 𝑒

−𝑑𝜏

) 𝑥
∗

2
= 𝑥
∗

1
. (82)

This completes the proof.

4. Numerical Simulation

With the help of MATLAB, numerical simulations are pro-
vided to understand the theoretical results which have been
established in the previous sections of this paper. In order to
facilitate the numerical simulation, it is assumed that 𝜏(𝑧(𝑡))
takes the following form [23]:

𝜏 (𝑧 (𝑡)) = 𝜏
0
+ 𝜏
𝑚
− 𝜏
𝑚
𝑒
−𝑧(𝑡)

, (83)

where 𝜏
𝑚

∈ (𝜏
0
, 𝜏
1
) satisfying 𝜏

0
+ 𝜏
𝑚

= 𝜏
1
. Based on

Theorem 1, it follows from simple computation that

lim
𝑡→0

𝜏 (𝑧 (𝑡)) = 𝜏
0
, lim

𝑡→+∞

𝜏 (𝑧 (𝑡)) = 𝜏
1
, (84)

which implies that (H2) holds.
Values of parameters are taken from [24] which are used

in Example 1 of [24] and set in appropriate units. 𝑟
1
= 12,

𝑑 = 0.2, 𝑏 = 1.2, 𝑎
1
= 0.5, 𝑎

2
= 2, 𝑘

1
= 2, 𝑘

2
= 1,

𝑟
2
= 2, 𝑞 = 0.25, and 𝐸 = 4. According to the given values of

parameters, it follows fromTheorems 3 and 4 that there exists
a unique positive equilibrium 𝑃

∗

(141.5454, 5.6252, 3.3126).
Furthermore, it can be verified that 𝑃∗ is globally attractive
based on Theorem 8. Responses of model system (2) are
indicated in Figure 1, and the phase portrait of model system
(2) with different initial values is plotted in Figure 2.
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Figure 1: Dynamical responses of model system (2).

5. Conclusion

In this paper, a harvested prey predator model is proposed
to investigate the effects of density-dependent maturation
delay and harvest effort on the dynamics. Conditions which
influence positiveness and boundedness of solutions ofmodel
system are obtained in Theorems 1 and 2, respectively.
Existence of all equilibria of model system and uniqueness
of the positive equilibrium are studied in Theorems 3 and
4, respectively. Biological interpretations of the positive
equilibrium mean immature prey, mature prey, predator
and harvest effort on predator population all exist in the
harvested ecosystem. Consequently, we mainly concentrate
on dynamical analysis around positive equilibrium in this
paper. Local stability analysis in Theorem 6 reveals that local
stability of the positive equilibrium loses due to variation
of maturation delay and harvest effort level. Furthermore,
global stability of the positive equilibrium is discussed by
utilizing an iterative technique inTheorem 8,which is utilized
to investigate the coexistence and interaction mechanism of
harvested prey-predator ecosystem.

Compared with the work done in [24] and the related
work in [26], maturation delay for prey population in this
paper relates to the density of all population within the
harvested ecosystem, which accurately reflects the practical
phenomena in the real world [23, 34–36]. Furthermore, it
should be noted that dynamics of prey predator model with
density-dependent delay for predator population is investi-
gated in [23], while dynamics of harvest effort on population
within ecosystem is not considered. Compared with the
work done in [23], harvest effort on predator population is
introduced, and the effect of harvesting on model dynamics
is also investigated in this paper. With the rapid development
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Figure 2: Phase portrait of model system (2) with different initial
values.

of commercial harvesting on prey predator ecosystem in the
real world, the introduction of harvest effort and related
qualitative analysis makes the work done in this paper have
some new and positive feature.
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Because of the complexity of the practical environments,many distributedmultiagent systems cannot be illustratedwith the integer-
order dynamics and can only be described with the fractional-order dynamics. In this paper, collaboration control problems of
continuous-time networked fractional-order multiagent systems via sampled control and sampling delay are investigated. Firstly,
the sampled-data control ofmultiagent systemswith fractional-order derivative operator is analyzed in a directedweighted network
ignoring sampling delay. Then, the collaborative control of fractional-order multiagent systems with sampled data and sampling
delay is studied in a directed and symmetrical network. Many sufficient conditions for reaching consensus with sampled data and
sampling delay are obtained. Some numerical simulations are presented to illustrate the utility of our theoretical results.

1. Introduction

In recent years, consensus problems in distributed networked
multiagent systems have attracted increasing attention of
more and more researches including control theory, math-
ematics, biology, physics, computer science, and robotics.
The applications of multiagent systems are extensive, ranging
from multiple space-craft alignment, heading direction in
flocking behavior, distributed computation, and rendezvous
of multiple vehicles. Based on certain quantities of interest,
collaboration control problems of agent systems have been
studied bymany researchers andmany important results have
been achieved in much literature [1–8].

With the development of digital sensors and controllers,
in many cases that the system itself is a continuous process,
the synthesis of control law can only use the data sampled
at the discrete sampling instants. Compare to continuous-
time systems with continuous-time controller, continuous-
time systems via sampled control havemany advantages, such
as flexibility, robustness, and low cost. Therefore, sampled
control for continuous-time system is more coincident with
applications in our real life. Robots, vehicles, airplanes,
satellites, and almost all of the modern artificial products

are controlled by digital controller where continuous signals
are transferred into discrete ones. For consensus problems
of continuous-time multiagent systems via sampled control,
some interesting results about consensus problem for mul-
tiagent system have been reported [9–15]. However, in the
many real applications, we always want to find how large
the sampling period should be chosen to guarantee that the
system runs well.This requires us to look for an upper bound
of sampling period. Moreover, sampling delay of the system
cannot be ignored and sometimes may play a key role in the
stability analysis of the networks.Therefore, wewill also study
the case when sampling delay exists.

The important results of the above literature focus the
consensus problems ofmultiagent systemswith integer-order
dynamical equation. In the complex environment, many
phenomena cannot be explained by the framework of integer-
order dynamics, for example, the synchronized motion of
agents in complex environments such as macromolecule
fluids and porous media [16–18]. Under these circumstances,
many dynamic characteristics of natural phenomena can
only be described in the dynamics of fractional-order (non-
integer order) behavior, for example: flocking movement
and food searching by means of the individual secretions
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and microbial, submarine underwater robots in the bottom
of the sea with a large number of microorganisms and
viscous substances, unmanned aerial vehicles running in
the complex space environment [19, 20]. Cao et al. [21, 22]
studied distribution coordination of multiagent systems with
fractional-order dynamics firstly and gave the relationship
between the number of individuals and the fractional order
in the stable multiagent systems. However, to the best of our
knowledge, there are few researches done on the coordination
control of fractional-order multiagent systems via sampled
data.

In this paper, we investigate the consensus of fractional-
order multiagent systems (FOMAS) with sampled-data con-
trol. Because few methods are presented to analyze the
fractional-order systems with sampling delay, the problems
of the fractional-order systems with sampling delay and
sampled data will become more difficult. The main inno-
vation of this paper lies in the study on the distributed
coordination of FOMAS with sampled data and sampling
delay. The rest of the paper is organized as follows. In
Section 2, we recall some basic definitions about fractional
calculus. In Section 3, some preliminaries about graph theory,
fractional-order coordination model of multiagent systems
are shown out. A distributed coordination algorithm for
FOMAS with sampled data control is studied in Section 4.
Section 5 presents the consensus of FOMAS with sampled
data and sampling delay. In Section 6, numerical examples
are simulated to verify the theoretical analysis. Conclusions
are finally drawn in Section 7.

2. Fractional Calculus

Fractional derivatives provide an excellent instrument to
describe the memory and hereditary features of various
materials and processes. Fractional calculus also appears
in the control of dynamical systems, when the controlled
system and the controller are described by a fractional-
order differential equation. This is the main advantage of
fractional derivatives in comparison with classical integer-
order models, in which such effects are in fact neglected. The
advantages of fractional-order derivatives become evident
in modeling mechanical and electrical characteristics of real
materials, as well as in many fields to describe the rheological
properties of rocks.

Fractional operator plays an important role in modern
science, which is used as a generalization of integration and
differentiation with noninteger order fundamental operator
𝑎
𝐷
𝑝

𝑡
, where a and t are the limits of the operation and 𝑝 ∈ 𝑅.

The continuous integrodifferential operator is defined as

𝑎
𝐷
𝑝

𝑡
=

{{{{{{{{{

{{{{{{{{{

{

𝑑
𝑝

𝑑𝑡𝑝
, 𝑝 > 0,

1, 𝑝 = 0,

∫

𝑡

𝑎

(𝑑𝜃)
−𝑝

, 𝑝 < 0.

(1)

Three definitions most frequently used for the general
fractional operators are the Grünwald-Letnikov (GL) defini-
tion, the Riemann-Liouville (RL), and the Caputo definition
[16–18]. The GL definition is given by

𝐺

𝑎
𝐷
𝑝

𝑡
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where [⋅] means the integer part, and (
𝑝

𝑘
) is fractional

binomial coefficients. The RL definition is given as
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for (𝑛 − 1 < 𝑝 < 𝑛) and where Γ(⋅) is the Gamma function.
The Caputo definition can be written as

𝐶

𝑎
𝐷
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𝑡
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1
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The initial conditions for the fractional order differential
equations with the Caputo derivatives are in the same form as
that for the integer-order differential equations. In this paper,
a simple notation 𝑓

(𝑝) is used to replace
𝑎
𝐷
𝑝

𝑡
𝑓(𝑡).

3. Problem Statement

Assume that multiagent system consists of 𝑛 autonomous
agents then connected relations between the agents constitute
a network topology G. Assume G = {𝑉, 𝐸, 𝐴} represents
a directed weighted graph, in which 𝑉 = {V

1
, V
2
, . . . , V

𝑛
}

represents a collection of 𝑛 nodes, and its set of edges is
𝐸 ⊆ 𝑉 × 𝑉. The node indexes belong to a finite index set
𝐼 = {1, 2, . . . , 𝑛}, with adjacency matrix 𝐴 = [𝑎

𝑖𝑙
] ∈ 𝑅
𝑛×𝑛 with

weighted adjacency elements 𝑎
𝑖𝑙
≥ 0. An edge of the weighted

diagraphG is denoted by 𝑒
𝑖𝑙
= (V
𝑖
, V
𝑙
) ∈ 𝐸.We assume that the

adjacency element 𝑎
𝑖𝑙
> 0when 𝑒

𝑖𝑙
∈ 𝐸; otherwise, 𝑎

𝑖𝑙
= 0.The

set of neighbors of a node 𝑖 is denoted by𝑁
𝑖
= {𝑙 ∈ 𝐼 : 𝑎

𝑖𝑙
> 0}.

LetG be a weighted digraph without self-loops, that is, let
𝑎
𝑖𝑖

= 0, and matrix 𝐷 = diag{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} be the diagonal

matrix with the diagonal elements 𝑑
𝑖
= ∑
𝑛

𝑙=1
𝑎
𝑖𝑙
representing

the sum of the elements in the 𝑖th row of matrix 𝐴. The
Laplacian matrix of the weighted digraphG is defined as 𝐿 =

𝐷−𝐴. For two nodes 𝑖 and 𝑙, there is subscript set {𝑙
1
, 𝑙
2
, . . . 𝑙
𝑘
}

satisfying 𝑎
𝑖𝑙
1

> 0, 𝑎
𝑙
1
𝑙
2

> 0, . . . , 𝑎
𝑙
𝑘
𝑙
> 0, and then there is

a directed linked path between node 𝑖 and node 𝑙 which is
used for the information transmission, also we can say that
node 𝑖 can receive the information from node 𝑙. If node 𝑖 can
find a path to reach any node of the graph, then node 𝑖 is
globally reachable from every other node in the digraph. In
this paper, the directed graph and directed symmetrical graph
for fractional-order multiagent systems will be considered.

Lemma 1 (see [5]). 0 is a simple eigenvalue of Laplacian
matrix 𝐿, and 𝑋

0
= 𝐶[1, 1, . . . , 1]

𝑇 is corresponding right
eigenvector, that is, 𝐿𝑋

0
= 0, if and only if the digraph G =

(𝑉, 𝐸, 𝐴) has a globally reachable node.
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Given that the dynamics of multiagent systems indicated
with fractional derivative in the complex environments, the
fractional dynamical equations are defined as

𝑥
(𝛼)

𝑖
= 𝑢
𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑛, (5)

where 𝑥
𝑖
(𝑡) ∈ 𝑅 and 𝑢

𝑖
(𝑡) ∈ 𝑅 represent the 𝑖th agent’s state

and control input, respectively, and 𝑥
(𝛼)

𝑖
represents the𝛼 (𝛼 >

0) order fractional derivative. Assume that the following con-
trol protocols are used in multiagent systems:

𝑢
𝑖
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𝑙∈𝑁
𝑖

𝑎
𝑖𝑙
[𝑥
𝑖
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𝑙
(𝑡)] , 𝑖 = 1, . . . , 𝑛, (6)

where 𝑎
𝑖𝑙
represents the (𝑖, 𝑙) elements of adjacency matrix

𝐴, 𝛾 > 0 is control gain, and 𝑁
𝑖
represents the neighbors

collection of the 𝑖th agent.
Suppose that for any initial value of the system, the states

of autonomous agents meet lim
𝑡→∞

(𝑥
𝑖
(𝑡) − 𝑥

𝑙
(𝑡)) = 0, for

𝑖, 𝑙 ∈ 𝐼, and then multiagent systems asymptotically reach
consensus.

4. Sampled Control of FOMAS

Suppose that the sampling period is ℎ; then the discrete-time
dynamics ofmultiagent systemswith fractional derivative can
be rewritten as

𝑥
𝑖
(𝑘 + 1) = 𝛼𝑥

𝑖
(𝑘) + ℎ

𝛼

𝑢
𝑖
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we have

𝑋 (𝑘 + 1) = Ψ𝑋 (𝑘) , (8)
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𝛾𝐿, and
𝐼
𝑛
is a unit matrix with 𝑛-dimensions. If the norm of matrix

Ψ is satisfying ||Ψ|| < 1, the fractional-order discrete-time
multiagent system (8) will asymptotically reach consensus.

Theorem 2. Suppose that multiagent systems are composed of
𝑛 independent agents, whose connection network topology is
directed, and there is a global reachable node. Then fractional-
order multiagent system (7) with sampled data can asymptoti-
cally reach consensus, if 𝛼 < 1 and

ℎ < min
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where 𝜆
𝑖
is the eigenvalue of the Laplacian matrix 𝐿.

Proof. Since the spectral radius 𝜌 of the matrixΨ is satisfying
𝜌 ≤ ||Ψ||, we will require the spectral radius 𝜌 < 1. By the
definition 𝜌(Ψ) = max{|𝜂

𝑖
|, 𝑖 = 1, . . . , 𝑛} where 𝜂

𝑖
is the

characteristic value of the matrix Ψ, we should calculate the
characteristic value 𝜂

𝑖
of the matrix Ψ with |𝜂

𝑖
| < 1.

For anymatrix𝐿, there exists a unitarymatrix𝑃 satisfying

Λ = 𝑃𝐿𝑃
𝐻

, (10)

where conjugate matrix 𝑃
𝐻
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−1, Λ is an upper triangular

matrix, and its diagonal elements 𝜆
1
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are the eigenval-

ues of matrix 𝐿. From 𝑃Ψ𝑃
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𝛾Λ, we can obtain the
characteristic values of matrix Ψ being
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Suppose that the connection network topology of FOMAS is
directed, and there is a global reachable node; thenRank(𝐿) =

𝑛 − 1 and 𝜆 = 0 is a single eigenvalue of Laplacian matrix 𝐿.
Suppose 𝜆

1
= 0, we have 𝜂

1
= 𝛼 − ℎ

𝛼

𝛾𝜆
1

= 𝛼. From the
stability requirement of the system (7), we obtain 𝛼 < 1.

For other characteristic values of Laplacian matrix 𝐿

with 𝜆
𝑖

̸= 0(𝑖 ̸= 1), the corresponding characteristic values of
matrix Ψ are being 𝜂

𝑖
= 𝛼 − ℎ

𝛼

𝛾𝜆
𝑖
, 𝑖 = 2, . . . , 𝑛. Let 𝜆 =

Re(𝜆
𝑖
)+𝑗 Im(𝜆

𝑖
) (where 𝑗 is complex number unit), and then

the corresponding characteristic values, for 𝑖 = 2, . . . , 𝑛, are

𝜂
𝑖
= 𝛼 − ℎ

𝛼

𝛾 (Re (𝜆
𝑖
) + 𝑗 Im (𝜆

𝑖
)) . (12)

From |𝜂
𝑖
| < 1, we can obtain

𝛼
2

− 2𝛼ℎ
𝛼

𝛾Re (𝜆
𝑖
) + ℎ
2𝛼

𝛾
2

𝜆
2

𝑖


< 1. (13)

It has

ℎ
𝛼

<
𝛼Re (𝜆

𝑖
)

𝛾
𝜆
2

𝑖



+
1

𝛾
𝜆𝑖



√1 − 𝛼2(
Im (𝜆

𝑖
)

𝜆𝑖


)

2

, 𝑖 = 2, . . . , 𝑛.

(14)

Then, the condition of the fractional-order multiagent
system (7) is obtained. The proof is finished.

Corollary 3. Suppose that multiagent systems are composed
of 𝑛 independent agents, whose connection network topology
is directed and symmetrical, and there is a global reachable
node.Then FOMAS (7) can asymptotically reach consensus via
sampled data, if 𝛼 < 1 and

ℎ < (
𝛼 + 1

𝛾𝜆
𝑛

)

1/𝛼

, (15)

where 𝜆
𝑛
is the maximum eigenvalue of the Laplacian matrix

𝐿.

Corollary 4. Suppose multiagent systems are composed of
𝑛 independent agents, whose connection network topology is
directed and symmetrical, and there is a global reachable node.
Then multiagent system (7) with 𝛼 = 1 can asymptotically
reach consensus via sampled data, if

ℎ <
2

𝛾𝜆
𝑛

, (16)

where 𝜆
𝑛
is the maximum eigenvalue of the Laplacian matrix

𝐿.
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Remark 5.ThesystemofCorollary 4 forfractional-order𝛼 = 1

becomes the first-order multiagent system. The consensus
condition obtained in Corollary 4 is same as that in [9].

5. Consensus of FOMAS with Sampled
Data and Sampling Delay

In the practical application, the sampled-data transferring
will result in the communication delays. The sampling delays
will affect the control features of the system and sometimes
may play a key role in the stability analysis of the network.
In this section, we will study the consensus of multiagent
systems with sampled data and sampling delay.

Suppose that land the sampling period is ℎ, the sampling
delay is 𝜏. The sampled control protocols are used in multia-
gent systems as follows:

𝑢
𝑖
(𝑡)

=

{{{{

{{{{

{

−𝛾∑

𝑙∈𝑁
𝑖

𝑎
𝑖𝑙
[𝑥
𝑖
(𝑘 − 1) − 𝑥

𝑙
(𝑘 − 1)] , 𝑡 ∈ [𝑘ℎ, 𝑘ℎ + 𝜏) ,

−𝛾∑

𝑙∈𝑁
𝑖

𝑎
𝑖𝑙
[𝑥
𝑖
(𝑘) − 𝑥

𝑙
(𝑘)] , 𝑡 ∈ [𝑘ℎ + 𝜏, 𝑘ℎ + ℎ) .

(17)

Based on (7) and (17), the dynamics of FOMAS with
sampled data and sampling delay can be rewritten as

(

𝑋 (𝑘 + 1)

𝑋 (𝑘)
) = Φ(

𝑋 (𝑘)

𝑋 (𝑘 − 1)
) , (18)

where

𝑋(𝑘) = [𝑥
1
(𝑘) , 𝑥

2
(𝑘) , . . . , 𝑥

𝑛
(𝑘)]
𝑇

,

Φ = (

𝛼𝐼
𝑛
− 𝛾 (ℎ

𝛼

− ℎ
𝛼

𝜏) 𝐿 −𝛾ℎ
𝛼

𝜏𝐿

𝐼
𝑛

0
) ,

(19)

and 𝐼
𝑛
is a unit matrix with 𝑛-dimensions. If the norm of

matrixΦ is satisfying ‖Φ‖ < 1, the discrete-time FOMAS (18)
will asymptotically reach consensus.

Lemma 6 (see [23, Hermite-Biehler Theorem]). Suppose the
polynomial

𝑝 (𝑠) = 𝑝
0
+ 𝑝
1
𝑠 + ⋅ ⋅ ⋅ + 𝑝

𝑛
𝑠
𝑛

. (20)

Substituting 𝑠 = 𝑖𝜔 into the polynomial 𝑝(𝑠) yields

𝑝 (𝜔) = 𝑚 (𝜔) + 𝑖𝑛 (𝜔) . (21)

Then, the polynomial 𝑝(𝑠) is Hurwitz stability if and only if
the related pair 𝑚(𝜔) and 𝑛(𝜔) is interlaced, and 𝑚(0)𝑛



(0) −

𝑚


(0)𝑛(0) > 0.

Theorem 7. Suppose that multiagent systems are composed of
𝑛 independent agents, whose connection network topology is
directed and symmetrical, and there is a global reachable node.

Then FOMAS (18) with sampled data and sampling delay can
asymptotically reach consensus, if 𝛼 < 1 and

ℎ < [
1

𝛾𝜏𝜆
𝑛

]

1/𝛼

, 𝜏 >
1

(3 + 𝛼)
,

ℎ < [
1 + 𝛼

𝛾𝜆
𝑛
(1 − 2𝜏)

]

1/𝛼

, 𝜏 ≤
1

(3 + 𝛼)
,

(22)

where 𝜆
𝑛
is the maximum eigenvalue of the Laplacian matrix

𝐿.

Proof. In order to prove the asymptotical consensus of
discrete-time systems (18), the spectral radius 𝜌 of the matrix
Φ should be satisfied with 𝜌(Φ) < 1. Since 𝜌(Φ) =

max{|]
𝑖
|, 𝑖 = 1, . . . , 𝑛} where ]

𝑖
is the characteristic value of

the matrix Φ, we should calculate the characteristic value ]
𝑖

of the matrixΦ with |]
𝑖
| < 1.

Suppose that the network topology of FOMAS is directed
and symmetrical, and there is a global reachable node; then
Rank(𝐿) = 𝑛 − 1 and 𝜆 = 0 is a single eigenvalue of Laplacian
matrix 𝐿. There exists an orthogonal matrix 𝑃 satisfying Λ =

𝑃𝐿𝑃
𝑇where𝑃𝑇 = 𝑃

−1,Λ is a diagonalmatrix, and its diagonal
elements 𝜆

1
, . . . , 𝜆

𝑛
are the characteristic values of matrix 𝐿.

Without loss of generality, we suppose 0 = 𝜆
1
< 𝜆
2
≤ ⋅ ⋅ ⋅ ≤

𝜆
𝑛
. The characteristic equation of matrixΦ will be calculated

as follows:
det (]𝐼

2𝑛×2𝑛
− Φ)

= det(]𝐼𝑛 − 𝛼𝐼
𝑛
+ 𝛾 (ℎ

𝛼

− ℎ
𝛼

𝜏) 𝐿 𝛾ℎ
𝛼

𝜏𝐿

−𝐼
𝑛

]𝐼
𝑛

)

= det (]2𝐼
𝑛
− ] (𝛼𝐼

𝑛
− 𝛾 (ℎ

𝛼

− ℎ
𝛼

𝜏) 𝐿) + 𝛾ℎ
𝛼

𝜏𝐿)

= Π
𝑛

𝑖=1
[]2 − ]𝛼 + (]ℎ𝛼 − ]ℎ𝛼𝜏 + ℎ

𝛼

𝜏) 𝛾𝜆
𝑖
] .

(23)

Let 𝑎(]) = ]2−]𝛼+(]ℎ𝛼−]ℎ𝛼𝜏+ℎ𝛼𝜏)𝛾𝜆
𝑖
.When𝜆

1
= 0 and

𝑎(]) = ]2 − ]𝛼, we can obtain the characteristic values ]
1
= 0

and ]
2
= 𝛼. From the stability requirement of the system (18),

we obtain 𝛼 < 1.
When 𝜆

𝑖
> 0 (𝑖 = 2, . . . , 𝑛), applying the bilinear

transform ] = (𝑠 + 1)/(𝑠 − 1), 𝑎(]) can be converted into 𝑏(𝑠)

as follows:

𝑏 (𝑠) = (1 − 𝛼 + ℎ
𝛼

𝛾𝜆
𝑖
) 𝑠
2

+ 2 (1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
) 𝑠

+ (1 + 𝛼 − ℎ
𝛼

𝛾𝜆
𝑖
+ 2ℎ
𝛼

𝜏𝛾𝜆
𝑖
) .

(24)

Let 𝑠 = 𝑗𝜔, and the we have

𝑏 (𝜔) = 𝑚 (𝜔) + 𝑗𝑛 (𝜔) , (25)

where𝑚(𝜔) = −(1−𝛼+ℎ
𝛼

𝛾𝜆
𝑖
)𝜔
2

+ (1+𝛼−ℎ
𝛼

𝛾𝜆
𝑖
+2ℎ
𝛼

𝜏𝛾𝜆
𝑖
)

and 𝑛(𝜔) = 2(1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
)𝜔. Applying Lemma 6, we have the

following.
(1) Bymeans of𝑚(0)𝑛



(0)−𝑚


(0)𝑛(0) = 2(1+𝛼−ℎ
𝛼

𝛾𝜆
𝑖
+

2ℎ
𝛼

𝜏𝛾𝜆
𝑖
)(1 − ℎ

𝛼

𝛾𝜏𝜆
𝑖
) > 0, we have

1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
> 0, (26)

1 + 𝛼 − ℎ
𝛼

𝛾𝜆
𝑖
+ 2ℎ
𝛼

𝜏𝛾𝜆
𝑖
> 0. (27)
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Based on (26), it has

ℎ
𝛼

<
1

𝛾𝜏𝜆
𝑖

. (28)

Discussing (27), if 𝜏 ≥ 0.5, then (27) comes into existence. If
𝜏 < 0.5, then it require is

ℎ
𝛼

<
1 + 𝛼

𝛾𝜆
𝑖
(1 − 2𝜏)

. (29)

(2) When 2(1 − ℎ
𝛼

𝛾𝜏𝜆
𝑖
) ̸= 0 from (26), the solution of

𝑛(𝜔) = 0 is 0. Since 𝛼 < 1 we have 1 − 𝛼 + ℎ
𝛼

𝛾𝜆
𝑖
> 0 and

1 + 𝛼 − ℎ
𝛼

𝛾𝜆
𝑖
+ 2ℎ
𝛼

𝜏𝛾𝜆
𝑖
> 0 from (27); then the solutions of

𝑚(𝜔) = 0 are ±√(1 + 𝛼 − ℎ𝛼𝛾𝜆
𝑖
+ 2ℎ𝛼𝜏𝛾𝜆

𝑖
)/(1 − 𝛼 + ℎ𝛼𝛾𝜆

𝑖
).

Therefore, the solutions of the related pair𝑚(𝜔) and 𝑛(𝜔) are
interlaced.

By comparing the right parts of (28) and (29), we can
obtain that when 𝜏 > 1/(3 + 𝛼), 1/𝛾𝜏𝜆

𝑖
< (1 + 𝛼)/𝛾𝜆

𝑖
(1 − 2𝜏);

otherwise, when 𝜏 ≤ 1/(3 + 𝛼), 1/𝛾𝜏𝜆
𝑖
≥ (1 + 𝛼)/𝛾𝜆

𝑖
(1 − 2𝜏).

Then, the consensus conditions of the multiagent system are
obtained. The proof is finished.

Remark 8. Suppose that the fractional-order 𝛼 = 1; we can
get the consensus condition ℎ < 1/𝛾𝜏𝜆

𝑛
when 𝜏 > 1/4, and

ℎ < 2/𝛾𝜆
𝑛
(1 − 2𝜏) when 𝜏 ≤ 1/4, where 𝜆

𝑛
is the maximum

eigenvalue of matrix 𝐿.

Remark 9. Suppose that the communication delay 𝜏 = 0, we
can get 𝜏 < 1/(3 + 𝛼); therefore, ℎ < ((1 + 𝛼)/𝛾𝜆

𝑛
)
1/𝛼 where

𝜆
𝑛
is the maximum eigenvalue of matrix 𝐿. This result is the

same as the consensus condition in Corollary 3.

6. Simulations

Suppose that the system is composed of four fractional-order
dynamical agents (Figure 1).The connectionweights between
individuals are 𝑎

21
= 𝑎
12

= 0.7, 𝑎
42

= 𝑎
24

= 0.8, 𝑎
31

= 𝑎
13

=

0.9, and 𝑎
14

= 𝑎
41

= 1. Through the network topology of the
system, we can get the adjacency matrix

𝐴 = (

0 0.7 0.9 1

0.7 0 0 0.8

0.9 0 0 0

1 0.8 0 0

) . (30)

Suppose that the order of the fractional multiagent
dynamics is 𝛼 = 0.8 and the system control gain is 𝛾 = 1;
then we can obtain the relationship between the sampling
period and the upper bound of sampling delays (Figure 2)
from the conditions in Theorem 7. In order to make the
system meet the condition of reaching consensus, we can set
the sampling period according to the sampling delay of the
system or decide the stable fields of sampling delays bymeans
of the sampling period. Suppose the order of the fractional
multiagent dynamics is 𝛼 = 0.8 and the control gain 𝛾 = 1;
then we can obtain that the upper bound of sampling period
ℎmax = 1.0993 s corresponding delay 𝜏 = 0.2632 s from
Figure 2.

1 2

3 4

Figure 1: Network topology of the multiagent systems.
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Figure 2: Relationship between the communication delay and the
upper bound of sampling period.

Simulation 1. Assume the sampling delay of multiagent sys-
tem is 𝜏 = 0.25 s, we can obtain the upper bound of sampling
period is 1.0272 s. In computer simulation, selecting the sam-
pling period ℎ = 0.90 s, the consensus can be asymptotically
reached (Figure 3) through fractional-order coordination
algorithm.

Simulation 2. Assume the sampled delay of multiagent sys-
tem is 𝜏 = 0.49 s, the upper bound of sampling period is
0.5054 in Figure 2. In computer simulation, selecting the
sampling period ℎ = 0.50 s, the consensus can be asymptoti-
cally reachedmuchmore slowly with increasing of time delay
(Figure 4).

Simulation 3. Assume the sampling delay of multiagent
system is 𝜏 = 0.50 s, the upper bound of sampling period
is 0.4928 in Figure 2. In computer simulation, selecting the
sampling period ℎ = 0.50 s, the movement trajectories of the
multiagent systems will be asymptotically diverged and the
consensus cannot be reached (Figure 5) through fractional-
order coordination algorithm.

Simulation 4. Let time delay continue increasing, suppose the
sampling delay is 𝜏 = 0.80 s, the upper bound of sampling
period will be 0.2739 in Figure 2. In computer simulation,
selecting the sampling period ℎ = 0.25 s, the movement
trajectories of the multiagent systems will be asymptotically
converged and the consensus can be reached (Figure 6).
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Figure 3: Movement trajectories of the multiagent systems with
delay 0.25 s and sampling period 0.90 s.
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Figure 4: Movement trajectories of the multiagent systems with
delay 0.49 s and sampling period 0.50 s.

Although the sampling period is less than the sampling delay,
the consensus can be still achieved under the condition of
Theorem 7.

7. Conclusions

This paper studies distributed coordination of fractional-
order multiagent system with sampled control and sam-
pling delay. By applying the stability theory of discrete-
time domain, sampled-data control of FOMAS with directed
network topology is investigated, and the upper bound of
the sampling period is obtained. Based on the Hermite-
BiehlerTheorem, the collaborative control of fractional-order
multiagent systems with sampled data and sampling delay is
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Figure 5: Movement trajectories of the multiagent systems with
delay 0.50 s and sampling period 0.50 s.
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Figure 6: Movement trajectories of the multiagent systems with
delay 0.80 s and sampling period 0.25 s.

studied. The relations between sampling delay and sampled
period are obtained to ensure the consensus of FOMAS.
Research of the robust stability of FOMAS will be carried out
in the following work.
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This paper is concerned with the problem of robust 𝐻
∞

control for a class of uncertain time-delay fuzzy systems with norm-
bounded parameter uncertainties. By utilizing the instrumental idea of delay decomposition, the decomposed Lyapunov-Krasovskii
functional is introduced to uncertain T-S fuzzy system, and some delay-dependent conditions for the existence of robust controller
are formulated in the form of linearmatrix inequalities (LMIs).When these LMIs are feasible, a controller is presented. A numerical
example is given to demonstrate the effectiveness of the proposed method.

1. Introduction

It is well known that time delay is built-in features in various
nonlinear systems such as tandem mills, remote control
systems, long transmission lines in pneumatic systems, and
chemical system. The time delay is recognized to be a
source of instability and performance deterioration of control
systems. Therefore, stability analysis and controller synthesis
for time-delay system have been one of the most hot research
area in the control community over the past years [1–14].

Fuzzy systems in the form of the Takagi-Sugeno (T-S)
model have attracted rapidly growing interest in recent years.
It has been shown that the T-S model method is a simple and
effective way to represent complex nonlinear systems by a set
of simple local linear dynamic systems with their linguistic
description [12, 15–19].Over the past few years,mostwork has
been devoted to analysis and synthesis of T-S fuzzy control
systems. See the survey papers [16, 17] and the reference citied
therein for the most recent advances on this topic.The appeal
and superiority of T-S fuzzy models is that the analysis and
synthesis of the overall fuzzy systems can be carried out in
the Lyapunov-function-based framework. To mention a few,
by using LMI, Cao and Frank presented controller design
for a class of fuzzy dynamic systems with time delay in both
continuous and discrete cases in [20, 21].Wu et al. studied the

model approximation problem and 𝐿
2
-𝐿

∞
control problem

for nonlinear time-delay systems in [22, 23]. Moreover, great
attention from researchers has been drawn to the study of
stability analysis and controller design for T-S fuzzy systems
with time delays [24–28]. On the other hand, type-2 fuzzy
mode are considered in [29, 30].

Recently, many scholars studied the stability problem
based on the piecewise Lyapunov-Krasovskii functional [31–
33]. Reference [31] investigated the linear continuous/discrete
systems with time-varying delay and divided the variation
interval of the time delay into several subintervals. based on
this method, [32]addressed the problem of the robust 𝐻

∞

filtering for singular linear parameter varying (LPV). Ref-
erence [33] researched the stability of linear time-invariant
systems and divided the delay interval into 𝑁 subintervals.
The simulations show these methods can lead to much less
conservative results than those in the existing references.

Motivated by the above observations, in this paper, wewill
investigate the problem of robust 𝐻

∞
control of uncertain

T-S fuzzy systems with constant delay. Attention is focused
on the design of robust 𝐻

∞
controllers via the parallel

distributed compensation scheme such that the closed-loop
fuzzy time-delay system is asymptotically stable and the
𝐻
∞

disturbance attenuation is below a prescribed level.
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Based on delay decomposition approach [33], the decom-
posed Lyapunov-Krasovskii functional is introduced, and
some delay-dependent conditions have been obtained. These
conditions are formulated in the form of LMIs, and the
controller design is cast into a convex optimization problem
subject to LMI constraints, which can be readily solved via
standard numerical software. Finally, a numerical example is
provided to show the effectiveness and less conservatism of
the proposed results.

The rest of this paper is organized as follows. In Section 2,
the model description and problem are first formulated. The
main results for delay-dependent robust 𝐻

∞
controller are

presented in Section 3. Illustrative examples are given in
Section 4, and the paper is concluded in Section 5.

Notations.The notations used throughout this paper are fairly
standard. The superscript “𝑇” stands for matrix transpose,
and the notation 𝑃 > 0 (𝑃 ≥ 0) means that matrix 𝑃 is
real symmetric and positive (or being positive semidefinite).
𝐼 and 0 are used to denote appropriate dimensions identity
matrix and zero matrix, respectively. The notation ∗ in
a symmetric always denotes the symmetric block in the
matrix. The parameter diag{⋅ ⋅ ⋅} denotes a block-diagonal
matrix. Matrices, if not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. System Descriptions and Preliminaries

Consider the uncertain nonlinear system with state delay
that is described by the following T-S model with uncertain
parameter matrices.

Plant Rule 𝑖. IF 𝑠
1
(𝑡) is 𝐹

𝑖1
and 𝑠

2
(𝑡) is 𝐹

𝑖2
and . . . and 𝑠

𝑛
(𝑡) is

𝐹
𝑖𝑛
THEN

̇𝑥 (𝑡) = (𝐴
𝑖
+ Δ𝐴

𝑖
) 𝑥 (𝑡) + (𝐴

𝑑𝑖
+ Δ𝐴

𝑑𝑖
) 𝑥 (𝑡 − 𝜏)

+ (𝐵
1𝑖
+ Δ𝐵

1𝑖
) 𝑢 (𝑡) + 𝐵

2𝑖
𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝑠
1
(𝑡), 𝑠

2
(𝑡), . . ., 𝑠

𝑛
(𝑡) are the premise variables that are

measurable and each𝐹
𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑛) is fuzzy set.𝑥(𝑡) ∈ 𝑅𝑛

is the state vector and 𝑢(𝑡) ∈ 𝑅𝑚 is the control input vector.
𝑧(𝑡) is the output vector. 𝜔(𝑡) ∈ 𝑅

𝑞 is the disturbance input
vector belongs to𝐿

2
[0,∞). 𝑟 is the number of IF-THEN rules,

𝜏 is the constant delay in the state. 𝜙(𝑡) is a vector-valued
initial continuous function.

The matrices Δ𝐴
𝑖
, Δ𝐴

𝑑𝑖
, and Δ𝐵

1𝑖
denote the parameters

uncertainties, which are assumed of the form

[Δ𝐴
𝑖
, Δ𝐴

𝑑𝑖
, Δ𝐵

1𝑖
] = MF (𝑡) [𝐸

𝑖
, 𝐸

𝑑𝑖
, 𝐸

1𝑖
] , (2)

where 𝑀, 𝐸
𝑖
, 𝐸

𝑑𝑖
, and 𝐸

1𝑖
are known constant matrices and

𝐹(𝑡) is an unknown time-varying matrix function satisfying
𝐹
𝑇

(𝑡)𝐹(𝑡) ≤ 𝐼.
For simplicity, introduce the following notations:

𝐴
𝑖
= 𝐴

𝑖
+ Δ𝐴

𝑖
𝐴
𝑑𝑖
= 𝐴

𝑑𝑖
+ Δ𝐴

𝑑𝑖
𝐵
1𝑖
= 𝐵

1𝑖
+ Δ𝐵

1𝑖
.

(3)

By using a center-average defuzzier, product fuzzy infer-
ence, and a singleton fuzzifier, the following global T-S fuzzy
model can be obtained:

̇𝑥 (𝑡) = (

𝑟

∑

𝑖=1

𝛼
𝑖
(𝑠 (𝑡)) [(𝐴

𝑖
+ Δ𝐴

𝑖
) 𝑥 (𝑡)

+ (𝐴
𝑑𝑖
+ Δ𝐴

𝑑𝑖
) 𝑥 (𝑡 − 𝜏)

+ (𝐵
1𝑖
+ Δ𝐵

1𝑖
) 𝑢 (𝑡) + 𝐵

2𝑖
𝜔 (𝑡)])

× (

𝑟

∑

𝑖=1

𝛼
𝑖
(𝑠 (𝑡)))

−1

=

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) [(𝐴

𝑖
+ Δ𝐴

𝑖
) 𝑥 (𝑡) + (𝐴

𝑑𝑖
+ Δ𝐴

𝑑𝑖
) 𝑥 (𝑡 − 𝜏)

+ (𝐵
1𝑖
+ Δ𝐵

1𝑖
) 𝑢 (𝑡) + 𝐵

2𝑖
𝜔 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) 𝐶

𝑖
𝑥 (𝑡)

= 𝐶 (𝑡) 𝑥 (𝑡) , 𝑥 (𝑡)

= 𝜙 (𝑡) 𝑡 ∈ [−𝜏, 0] ,

(4)

where 𝛼
𝑖
(𝑠(𝑡)) = ∏

𝑛

𝑗=1
𝐹
𝑖𝑗
(𝑠
𝑗
(𝑡)), 𝜇

𝑖
(𝑠(𝑡)) = 𝛼

𝑖
(𝑠(𝑡))/

∑
𝑟

𝑖=1
𝛼
𝑖
(𝑠(𝑡)), and 𝐹

𝑖𝑗
(𝑠
𝑗
(𝑡)) is the grade of membership of

𝑠
𝑗
(𝑡) in 𝐹

𝑖𝑗
, and it is assumed that 𝛼

𝑖
(𝑠(𝑡)) ≥ 0, 𝑖 =

1, 2, . . . , 𝑟 ∑
𝑟

𝑖=1
𝛼
𝑖
(𝑠(𝑡)) > 0 for all 𝑡. Therefore, 𝜇

𝑖
(𝑠(𝑡)) ≥ 0

and ∑𝑟

𝑖=1
𝜇
𝑖
(𝑠(𝑡)) = 1 for all 𝑡.

In this paper, employing the idea of parallel distributed
compensation (PDC), the T-S fuzzy-model-based controller
via the PDC can be constructed as follows.

Controller Rule 𝑖. IF 𝑠
1
(𝑡) is 𝐹

𝑖1
and 𝑠

2
(𝑡) is 𝐹

𝑖2
and . . . and 𝑠

𝑛
(𝑡)

is 𝐹
𝑖𝑛
THEN

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , (5)

where 𝐾
𝑖
(𝑖 = 1, 2, . . . , 𝑟) are the controller gains of (5) to be

determined.
Then, the overall output of the controller rules is given by

𝑢 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) 𝐾

𝑖
𝑥 (𝑡) . (6)

Substituting (6) into (4), the closed-loop system can be given
as

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑠 (𝑡)) 𝜇

𝑗
(𝑠 (𝑡))

× [(𝐴
𝑖
+ 𝐵

1𝑖
𝐾
𝑗
) 𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐵

2𝑖
𝜔 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) 𝐶

𝑖
𝑥 (𝑡) ,

(7)
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with its compact form

̇𝑥 (𝑡) = (𝐴 (𝑡) + 𝐵
1
(𝑡) 𝐾 (𝑡)) 𝑥 (𝑡)

+ 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡) ,

(8)

𝑧 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) , (9)

where

𝐴 (𝑡) = 𝐴 (𝑡) + Δ𝐴 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) [𝐴

𝑖
+ Δ𝐴

𝑖
(𝑡)] ,

𝐴
𝑑
(𝑡) = 𝐴

𝑑
(𝑡) + Δ𝐴

𝑑
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) [𝐴

𝑑𝑖
+ Δ𝐴

𝑑𝑖
(𝑡)] ,

𝐵
1
(𝑡) = 𝐵

1
(𝑡) + Δ𝐵

1
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) [𝐵

1𝑖
+ Δ𝐵

1𝑖
(𝑡)] ,

𝐵
2
(𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) 𝐵

2𝑖
, 𝐶 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) 𝐶

𝑖
,

𝐾 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) 𝐾

𝑖
.

(10)

Before ending this section, we introduce the following
definitions and lemmas, which will be used in the derivation
of our main results.

Definition 1 (𝐻
∞

performance). Given a scalar 𝛾 > 0 and
under zero initial condition, the system (1) is said to be
asymptotically stable with 𝛾-disturbance attenuation if the
system (4) is asymptotically stable and the output 𝑧(𝑡) satisfies

‖𝑧(𝑡)‖
2
≤ 𝛾‖𝜔 (𝑡)‖

2
, (11)

that is,

∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡 ≤ 0, (12)

for all nonzero 𝜔(𝑡) ∈ 𝐿
2
[0,∞).

Lemma 2 (see [34]). For any constant matrix 𝑊 ∈

𝑅
𝑛×𝑛

, 𝑊 = 𝑊
𝑇

> 0, scalar 𝑟 > 0, and vector-valued function
̇𝑥 : [−𝑟, 0] → 𝑅

𝑛 such that the following integration is well
defined; then

− ∫

𝑡

𝑡−𝑟

̇𝑥
𝑇

(𝑠) (𝑟𝑊) ̇𝑥 (𝑠) ds

≤ (𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑟)) (
−𝑊 𝑊

𝑊 −𝑊
)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝑟)
) .

(13)

Lemma 3 (see [35]). Given a symmetric matrix 𝑀 and
matrices 𝐷, 𝐹(𝑡), and 𝐸 of compatible dimensions, then, for
𝐹
𝑇

(𝑡)𝐹(𝑡) ≤ 𝐼, the inequality

𝑀+𝐷𝐹 (𝑡) 𝐸 + (𝐷𝐹 (𝑡) 𝐸)
𝑇

< 0 (14)

holds if and only if there exists a scalar 𝜀 > 0 such that

𝑀+ 𝜀𝐷𝐷
𝑇

+ 𝜀
−1

𝐸
𝑇

𝐸 < 0. (15)

3. Main Results

In this section, some delay-dependent sufficient conditions
on the existence of robust𝐻

∞
controller for T-S fuzzy system

(7) will be presented. A Lyapunov-Krasovskii functional,
based on the idea of delay decomposition approach, will be
introduced, which can potentially reduce the conservatism of
the results.

To this end, we first consider the following nominal
closed-loop system:

̇𝑥 (𝑡) = (𝐴 (𝑡) + 𝐵
1
(𝑡) 𝐾 (𝑡)) 𝑥 (𝑡)

+ 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡) ,

(16)

𝑧 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) . (17)

Firstly, the sufficient condition of 𝐻
∞

performance anal-
ysis for the unforced case of system (16) is established in
Proposition 4.

Proposition 4. For some prescribed 𝛾 > 0 and 𝜏 > 0, the
unforced case of system (16) is asymptotically stable with a
guaranteed 𝐻

∞
performance 𝛾, if there exist matrices 𝑃 > 0,

𝑅
𝑙
> 0, and 𝑄

𝑙
> 0 (𝑙 = 1, 2, . . . , 𝑁) such that the following

LMIs hold for 𝑖 = 1, 2, . . . , 𝑟:

Σ =
[
[

[

Σ
(1)

Σ
(2)

Σ
(3)

∗ −𝛾
2

𝐼 Σ
(4)

∗ ∗ Σ
(5)

]
]

]

< 0, (18)

where

Σ
(1)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
(1)

11
𝑅
1

0 ⋅ ⋅ ⋅ 0 𝑃𝐴
𝑑𝑖

∗ Σ
(1)

22
𝑅
2
⋅ ⋅ ⋅ 0 0

∗ ∗ Σ
(1)

33
⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ ⋅ ⋅ ⋅ Σ
(1)

𝑁𝑁
𝑅
𝑁

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ Σ
(1)

𝑁+1 𝑁+1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Σ
(1)

11
= 𝑄

1
− 𝑅

1
+ 𝐴

𝑇

𝑖
𝑃 + 𝑃𝐴

𝑖
+ 𝐶

𝑇

𝑖
𝐶
𝑖
,

Σ
(1)

22
= 𝑄

2
− 𝑄

1
− 𝑅

1
− 𝑅

2
,

Σ
(1)

33
= 𝑄

3
− 𝑄

2
− 𝑅

2
− 𝑅

3
,

...

Σ
(1)

𝑁𝑁
= 𝑄

𝑁
− 𝑄

𝑁−1
− 𝑅

𝑁−1
− 𝑅

𝑁
,

Σ
(1)

𝑁+1 𝑁+1
= −𝑄

𝑁
− 𝑅

𝑁
,



4 Mathematical Problems in Engineering

Σ
(2)

=

[
[
[
[
[

[

𝑃𝐵
2𝑖

0

...
0

]
]
]
]
]

]

,

Σ
(3)

=

[
[
[
[
[
[
[
[
[
[
[

[

ℎ𝐴
𝑇

𝑖
𝑅
1
ℎ𝐴

𝑇

𝑖
𝑅
2
⋅ ⋅ ⋅ ℎ𝐴

𝑇

𝑖
𝑅
𝑁

0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ 0

ℎ𝐴
𝑇

di𝑅1 ℎ𝐴
𝑇

di𝑅2 ⋅ ⋅ ⋅ ℎ𝐴
𝑇

di𝑅𝑁

]
]
]
]
]
]
]
]
]
]
]

]

Σ
(4)

= [ℎ𝐵
𝑇

2𝑖
𝑅
1
ℎ𝐵

𝑇

2𝑖
𝑅
2
⋅ ⋅ ⋅ ℎ𝐵

𝑇

2𝑖
𝑅
𝑁
] ,

Σ
(5)

= diag {−R
1
, −R

2
, . . . , −RN} .

(19)

Proof. Choose a Lyapunov-Krasovskii functional candidate
as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) ,

𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡) =

𝑁

∑

𝑙=1

∫

𝑡−(𝑙−1)ℎ

𝑡−𝑙ℎ

𝑥
𝑇

(𝑠) 𝑄
𝑙
𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) =

𝑁

∑

𝑙=1

∫

−(𝑙−1)ℎ

−𝑙ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) (ℎ𝑅
𝑙
) ̇𝑥 (𝑠) 𝑑𝑠𝑑𝜃,

(20)

where ℎ = 𝜏/𝑁 and 𝑁 is the partitioning number of time
delay 𝜏.

Taking the derivative of 𝑉
𝑖
(𝑡), for 𝑖 = 1, 2, 3, with respect

to 𝑡 along the trajectory of unforced case of system (16) yields

𝑉
1
(𝑡) = ̇𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃 ̇𝑥 (𝑡)

= (𝐴 (𝑡) 𝑥 (𝑡) + 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡))

𝑇

× 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃 (𝐴 (𝑡) 𝑥 (𝑡)

+𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡)) ,

𝑉
2
(𝑡) =

𝑁

∑

𝑙=1

(𝑥
𝑇

(𝑡 − (𝑙 − 1) ℎ)

× 𝑄
𝑙
𝑥 (𝑡 − (𝑙 − 1) ℎ) − 𝑥

𝑇

(𝑡 − 𝑙ℎ)𝑄
𝑙
𝑥 (𝑡 − 𝑙ℎ))

=

𝑁

∑

𝑙=1

𝑥
𝑇

(𝑡 − (𝑙 − 1) ℎ)𝑄
𝑙
𝑥 (𝑡 − (𝑙 − 1) ℎ)

−

𝑁

∑

𝑙=1

𝑥
𝑇

(𝑡 − 𝑙ℎ)𝑄
𝑙
𝑥 (𝑡 − 𝑙ℎ) ,

𝑉
3
(𝑡) =

𝑁

∑

𝑙=1

ℎ ̇𝑥
𝑇

(𝑡) (ℎ𝑅
𝑙
) ̇𝑥 (𝑡)

−

𝑁

∑

𝑙=1

∫

𝑡−(𝑙−1)ℎ

𝑡−𝑙ℎ

̇𝑥
𝑇

(𝑠) (ℎ𝑅
𝑙
) ̇𝑥 (𝑠) 𝑑𝑠.

(21)
By using Lemma 2, we obtain that
𝑉
3
(𝑡)

≤

𝑁

∑

𝑙=1

ℎ ̇𝑥
𝑇

(𝑡) (ℎ𝑅
𝑙
) ̇𝑥 (𝑡)

+

𝑁

∑

𝑙=1

(𝑥
𝑇

(𝑡 − (𝑙 − 1) ℎ) 𝑥
𝑇

(𝑡 − 𝑙ℎ))

× (
−𝑅
𝑙

𝑅
𝑙

𝑅
𝑙

−𝑅
𝑙

) (
𝑥 (𝑡 − (𝑙 − 1) ℎ)

𝑥 (𝑡 − 𝑙ℎ)
)

=

𝑁

∑

𝑙=1

(𝐴 (𝑡) 𝑥 (𝑡) + 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡))

𝑇

× (ℎ
2

𝑅
𝑙
) (𝐴(𝑡) 𝑥 (𝑡) + 𝐴

𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡))

+

𝑁

∑

𝑙=1

(𝑥
𝑇

(𝑡 − (𝑙 − 1) ℎ) 𝑥
𝑇

(𝑡 − 𝑙ℎ))

× (
−𝑅
𝑙

𝑅
𝑙

𝑅
𝑙

−𝑅
𝑙

) (
𝑥 (𝑡 − (𝑙 − 1) ℎ)

𝑥 (𝑡 − 𝑙ℎ)
)

= (𝐴(𝑡) 𝑥 (𝑡) + 𝐴
𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡))

𝑇

×(

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)(𝐴(𝑡) 𝑥 (𝑡) + 𝐴

𝑑
(𝑡) 𝑥 (𝑡 − 𝜏) + 𝐵

2
(𝑡) 𝜔 (𝑡))

+

𝑁

∑

𝑙=1

(𝑥
𝑇

(𝑡 − (𝑙 − 1) ℎ) 𝑥
𝑇

(𝑡 − 𝑙ℎ)) (
−𝑅
𝑙

𝑅
𝑙

𝑅
𝑙

−𝑅
𝑙

) (
𝑥 (𝑡 − (𝑙 − 1) ℎ)

𝑥 (𝑡 − 𝑙ℎ)
)

= [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

𝜔 (𝑡)

]

𝑇

×

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐴
𝑇

(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)𝐴(𝑡) 𝐴

𝑇

(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)𝐴
𝑑
(𝑡) 𝐴

𝑇

(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)𝐵
2
(𝑡)

𝐴
𝑇

𝑑
(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)𝐴(𝑡) 𝐴

𝑇

𝑑
(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)𝐴
𝑑
(𝑡) 𝐴

𝑇

𝑑
(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)𝐵
2
(𝑡)

𝐵
𝑇

2
(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑗
)𝐴(𝑡) 𝐵

𝑇

2
(𝑡)(

𝑁

∑

𝑗=1

ℎ
2

𝑅
𝑙
)𝐴
𝑑
(𝑡) 𝐵

𝑇

2
(𝑡) (

𝑁

∑

𝑙=1

ℎ
2

𝑅
𝑙
)𝐵
2
(𝑡)

]
]
]
]
]
]
]
]
]
]
]
]

]

×[

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

𝜔 (𝑡)

]

+

𝑁

∑

𝑙=1

(𝑥
𝑇

(𝑡 − (𝑙 − 1) ℎ) 𝑥
𝑇

(𝑡 − 𝑙ℎ))

× (
−𝑅
𝑙

𝑅
𝑙

𝑅
𝑙

−𝑅
𝑙

) (
𝑥 (𝑡 − (𝑙 − 1) ℎ)

𝑥 (𝑡 − 𝑙ℎ)
) .

(22)
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Define the variable 𝜂𝑇(𝑡) = [𝑥𝑇(𝑡), 𝑥𝑇(𝑡 − ℎ), . . . , 𝑥𝑇(𝑡 − (𝑁 −

1)ℎ), 𝑥
𝑇

(𝑡 − 𝜏)] and by simple manipulation, we have

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡)

≤ 𝜉
𝑇

(𝑡) (Π
1
+ Π

2
+ Π

3
) 𝜉 (𝑡) ,

(23)

where
Π
1

=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐴
𝑇

(𝑡) 𝑃 + 𝑃𝐴(𝑡) ⋅ ⋅ ⋅ 𝑃𝐴
𝑑
(𝑡) 𝑃𝐵

2
(𝑡)

...
. . .

...
...

𝐴
𝑇

𝑑
(𝑡) 𝑃 ⋅ ⋅ ⋅ 0 0

𝐵
𝑇

2
(𝑡) 𝑃 ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
2

=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑄
1

0 ⋅ ⋅ ⋅ 0 0

∗ 𝑄
2
− 𝑄

1
⋅ ⋅ ⋅ 0 0

...
...

. . .
...

...

∗ ∗ ⋅ ⋅ ⋅ 𝑄
𝑁
− 𝑄

𝑁−1
0

∗ ∗ ⋅ ⋅ ⋅ ∗ −𝑄
𝑁

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
3

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑅
1

𝑅
1

0 . . . 0 0 0

∗ −𝑅
1
− 𝑅

2
𝑅
2

. . . 0 0 0

∗ ∗ −𝑅
2
− 𝑅

3
. . . 0 0 0

...
...

...
. . .

...
...

...

∗ ∗ ∗ . . . −𝑅
𝑁−1

− 𝑅
𝑁

𝑅
𝑁

0

∗ ∗ ∗ . . . ∗ −𝑅
𝑁

0

∗ ∗ ∗ . . . ∗ ∗ 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

−
[

[

Σ
(3)

Σ
(4)

]

]

(Σ
(5)

)

−1

[

[

Σ
(3)

Σ
(4)

]

]

𝑇

,

𝜉 (𝑡) = [𝜂
𝑇

(𝑡) 𝜔
𝑇

(𝑡)]

𝑇

.

(24)

First, we prove the asymptotic stability of the system in (16).
To this end, assume 𝜔(t) ≡ 0, and thus Π

1
+ Π

2
+ Π

3
in (23)

reads

Π̃
1
+ Π̃

2
+ Π̃

3
, (25)

where

Π̃
1
=
[
[

[

𝐴
𝑇

(𝑡) 𝑃 + 𝑃𝐴 (𝑡) ⋅ ⋅ ⋅ 𝑃𝐴
𝑑
(𝑡)

...
. . .

...
∗ ⋅ ⋅ ⋅ 0

]
]

]

,

Π̃
2
=

[
[
[
[

[

𝑄
1

0 ⋅ ⋅ ⋅ 0

∗ 𝑄
2
− 𝑄

1
⋅ ⋅ ⋅ 0

...
...

. . . 0

∗ ∗ ⋅ ⋅ ⋅ 𝑄
𝑁
− 𝑄

𝑁−1

]
]
]
]

]

,

Π̃
3
=

[
[
[
[
[
[
[
[

[

−𝑅
1

𝑅
1

0 ⋅ ⋅ ⋅ 0 0

∗ −𝑅
1
− 𝑅

2
𝑅
2

⋅ ⋅ ⋅ 0 0

∗ ∗ −𝑅
2
− 𝑅

3
⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ ⋅ ⋅ ⋅ −𝑅
𝑁−1

− 𝑅
𝑁

0

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ −𝑅
𝑁

]
]
]
]
]
]
]
]

]

− (Σ
(3)

) (Σ
(5)

)
−1

(Σ
(3)

)
𝑇

.

(26)

From (18), we know that

Π̃
1
+ Π̃

2
+ Π̃

3
< 0, (27)

which guarantees 𝑉(𝑡) < 0 for all non-zero 𝜂(𝑡). Thus one
can always find a sufficiently small 𝜐 > 0 such that V̇(𝑡) <
−𝜐‖𝑥(𝑡)‖

2. The asymptotic stability of the considered system
is proved.

Next, assuming that 𝜔(𝑡) ̸= 0 and 𝜙(𝑡) = 0, 𝑡 ∈ [−𝜏, 0], we
consider𝐻

∞
performance of the system in Definition 1.

Considering 𝜇
𝑖
(𝑠(𝑡)) ≥ 0, ∑

𝑟

𝑖=1
𝜇
𝑖
(𝑠(𝑡)) = 1, we obtain

that

𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝑉 (𝑡) ≤

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑠 (𝑡)) 𝜉

𝑇

(𝑡) Ψ𝜉 (𝑡) ,

(28)

where

Ψ = [
Σ
(1)

Σ
(2)

∗ −𝛾
2

𝐼
] − [

Σ
(3)

Σ
(4)
] [Σ

(5)

]
−1

[
Σ
(3)

Σ
(4)
]

𝑇

. (29)

Applying Schur complement, guarantees Ψ < 0. From (28),
we can get that

𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) + 𝑉 (𝑡) ≤ 0. (30)

Integrating the preceding inequality from 0 to∞, it is easy to
get that

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 ≤ ∫

∞

0

𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡 + 𝑉 (𝑥
0
) − 𝑉 (𝑥

∞
) .

(31)

Since 𝑉(𝑥
0
) = 0 and 𝑉(𝑥

∞
) ≥ 0, we have

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 ≤ ∫

∞

0

𝛾
2

𝜔
𝑇

(𝑡) 𝜔 (𝑡) 𝑑𝑡. (32)

Then, according to Definition 1, the 𝐻
∞

performance of the
system in (16) is established. This completes the proof.
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In the following, based on Proposition 4, we design
robust state feedback𝐻

∞
controller for the system (7).

Theorem 5. For some prescribed 𝛾 > 0, 𝜏 > 0, 𝛿 > 0, and
N is a positive integer, if there exist scalar 𝜀 > 0, matrices
𝑋 > 0, 𝑉

𝑙
> 0 (𝑙 = 2, 3, . . . , 𝑁), and 𝑄

𝑙
> 0 (𝑙 = 1, 2 . . . 𝑁),

and appropriate dimension matrices 𝑊
𝑗
(𝑗 = 1, 2, . . . , 𝑟)

such that the following LMIs simultaneously hold for 𝑖,
𝑗 = 1, 2, . . . , 𝑟:

Ω
𝑖𝑖
< 0, (𝑖 = 1, 2, . . . , 𝑟) ,

(Ω
𝑖𝑗
+ Ω

𝑗𝑖
)

2
< 0, (1 ≤ 𝑖 < 𝑗 ≤ 𝑟) ,

𝑉
𝑖
𝑅
𝑖
= 𝐼, (𝑖 = 1, 2, . . . , 𝑁) ,

(33)

where

Ω
𝑖𝑗
=

[
[
[

[

Υ
𝑖𝑗

𝜀𝑈 𝑇
𝑇

𝑖𝑗

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]
]
]

]

, Υ
𝑖𝑗
=

[
[
[
[
[
[
[
[
[
[

[

Π
(1)

𝑖𝑗
Π
(2)

𝑖
Π
(3)

𝑖𝑗
Π
(6)

𝑖

∗ −𝛾
2

𝐼 Π
(4)

𝑖
0

∗ ∗ Π
(5)

0

∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]

]

,

𝑈 =

[
[
[
[

[

𝐻 0 0 0

∗ 0 0 0

∗ ∗ 𝑁 0

∗ ∗ ∗ 0

]
]
]
]

]

, 𝑇
𝑖𝑗
=

[
[
[
[

[

𝑆
𝑖𝑗

0 0 0

0 0 0 0

𝐿
𝑖𝑗
0 0 0

0 0 0 0

]
]
]
]

]

,

𝐻 =

[
[
[
[
[
[
[
[
[
[

[

𝑀 0 0 ⋅ ⋅ ⋅ 0 0

∗ 0 0 ⋅ ⋅ ⋅ 0 0

∗ ∗ 0 ⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ ⋅ ⋅ ⋅ 0 0

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ 0

]
]
]
]
]
]
]
]
]
]

]

,

𝑆
𝑖𝑗
=

[
[
[
[
[
[
[
[
[
[

[

𝐸
𝑖
𝑋 + 𝐸

1𝑖
𝑊
𝑗
0 0 ⋅ ⋅ ⋅ 0 E

𝑑𝑖

∗ 0 0 ⋅ ⋅ ⋅ 0 0

∗ ∗ 0 ⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ ⋅ ⋅ ⋅ 0 0

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ 0

]
]
]
]
]
]
]
]
]
]

]

,

𝐿
𝑇

𝑖𝑗

=

[
[
[
[
[
[
[
[
[
[

[

ℎ𝑋𝐸
𝑇

𝑖
+ ℎ𝑊

𝑇

𝑗
𝐸
𝑇

1𝑖
ℎ𝑋𝐸

𝑇

𝑖
+ ℎ𝑊

𝑇

𝑗
𝐸
𝑇

1𝑖
⋅ ⋅ ⋅ ℎ𝑋𝐸

𝑇

𝑖
+ ℎ𝑊

𝑇

𝑗
𝐸
𝑇

1𝑖

0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ 0

ℎ𝐸
𝑇

𝑑𝑖
ℎ𝐸

𝑇

𝑑𝑖
⋅ ⋅ ⋅ ℎ𝐸

𝑇

𝑑𝑖

]
]
]
]
]
]
]
]
]
]

]

,

Π
(1)

𝑖𝑗
=

[
[
[
[
[
[
[
[
[
[

[

Π
(1)

11𝑖𝑗
𝛿𝐼 0 . . . 0 𝐴di

∗ Π
(1)

22
𝑅
2

⋅ ⋅ ⋅ 0 0

∗ ∗ Π
(1)

33
⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ ⋅ ⋅ ⋅ Π
(1)

𝑁𝑁
𝑅
𝑁

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ Π
(1)

𝑁+1 𝑁+1

]
]
]
]
]
]
]
]
]
]

]

,

𝑁
𝑇

=

[
[
[
[
[
[
[
[
[

[

𝑀
𝑇

0 0 ⋅ ⋅ ⋅ 0 0

∗ 𝑀
𝑇

0 ⋅ ⋅ ⋅ 0 0

∗ ∗ 𝑀
𝑇

⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ ⋅ ⋅ ⋅ 𝑀
𝑇

0

∗ ∗ ∗ ⋅ ⋅ ⋅ ∗ 𝑀
𝑇

]
]
]
]
]
]
]
]
]

]

,

Π
(1)

11𝑖𝑗
= 𝑋𝑄

1
𝑋 − 𝛿𝑋 + 𝑋𝐴

𝑇

𝑖
+𝑊

𝑇

𝑗
𝐵
𝑇

1𝑖
+ 𝐴

𝑖
𝑋 + 𝐵

1𝑖
𝑊
𝑗
,

Π
(1)

22
= 𝑄

2
− 𝑄

1
− 𝛿𝑃 − 𝑅

2
,

Π
(1)

33
= 𝑄

3
− 𝑄

2
− 𝑅

2
− 𝑅

3
,

Π
(1)

𝑁𝑁
= 𝑄

𝑁
− 𝑄

𝑁−1
− 𝑅

𝑁−1
− 𝑅

𝑁
,

Π
(1)

𝑁+1 𝑁+1
= −𝑄

𝑁
− 𝑅

𝑁
,

Π
(4)

𝑖
= [ℎ𝐵

𝑇

2𝑖
ℎ𝐵

𝑇

2𝑖
⋅ ⋅ ⋅ ℎ𝐵

𝑇

2𝑖
] ,

Π
(5)

= diag {−𝛿−1𝑋, −𝑉
2
, . . . , −𝑉

𝑁
} ,

Π
(2)

𝑖
=

[
[
[
[

[

𝐵
2𝑖

0

...
0

]
]
]
]

]

,

Π
(3)

𝑖𝑗
=

[
[
[
[
[
[
[
[

[

ℎ𝑋𝐴
𝑇

𝑖
+ ℎ𝑊

𝑇

𝑗
𝐵
𝑇

1𝑖
ℎ𝑋𝐴

𝑇

𝑖
+ ℎ𝑊

𝑇

𝑗
𝐵
𝑇

1𝑖
⋅ ⋅ ⋅ ℎ𝑋𝐴

𝑇

𝑖
+ ℎ𝑊

𝑇

𝑗
𝐵
𝑇

1𝑖

0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ 0

ℎ𝐴
𝑇

di ℎ𝐴
𝑇

di ⋅ ⋅ ⋅ ℎ𝐴
𝑇

𝑑𝑖

]
]
]
]
]
]
]
]

]

Π
(6)

𝑖
=

[
[
[
[
[

[

𝑋𝐶
𝑇

𝑖

0

...
0

]
]
]
]
]

]

.

(34)

Then the closed-loop system (16) is asymptotically stable with
the H

∞
performance index 𝛾. Moreover, if the above condition

is feasible, the gain matrices of a desired controller in the form
of (6) can be designed by

𝐾
𝑗
= 𝑊

𝑗
𝑋
−1

. (35)

Proof. The proof of this theorem is divided into two parts.
First, we design the state-feedback 𝐻

∞
controller of the

nominal case of closed-loop system (7).
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According to Proposition 4, it is easy to know that the𝐻
∞

performance requirement of the nominal case of closed-loop
system (7) implies

Σ̃ < 0, (36)

where Σ̃ is a matrix derived from (18) by changing the term
𝐴
𝑖
to 𝐴

𝑖
+ 𝐵

1𝑖
𝐾
𝑗
.

Introduce the following matrix variables:

𝑋 = 𝑃
−1

, 𝑅
1
= 𝛿𝑃,

𝑉
2
= 𝑅

−1

2
, . . . , 𝑉

𝑁
= 𝑅

−1

𝑁
, 𝐾

𝑗
𝑋 = 𝑊

𝑗
.

(37)

Combined with Schur complement, and pre- and post-
multiply (36) by diag{𝑋, 𝐼, 𝛿−1𝑋,𝑉

2
, . . . , 𝑉

𝑁
, 𝐼} and its trans-

pose, respectively, we get

Υ
𝑖𝑗
< 0. (38)

Next, we investigate robust state feedback𝐻
∞

controller
of the closed-loop system (7).

Replace 𝐴
𝑖
, A

𝑑𝑖
, and 𝐵

𝑖
with 𝐴

𝑖
+ Δ𝐴

𝑖
, A

𝑑𝑖
+ ΔA

𝑑𝑖
, and

𝐵
1𝑖
+Δ𝐵

1𝑖
, respectively; then we obtain from (2) and (38) that

Υ
𝑖𝑗
+ 𝑈𝐹 (𝑡) 𝑇

𝑖𝑗
+ 𝑇

𝑇

𝑖𝑗
𝐹 (𝑡) 𝑈

𝑇

< 0. (39)

By Lemma 3, we can know (39) holds, if and only if the
following inequality holds:

Υ
𝑖𝑗
+ 𝜀𝑈𝑈

𝑇

+ 𝜀
−1

𝑇
𝑇

𝑖𝑗
𝑇
𝑖𝑗
< 0, (40)

where 𝜀 is a positive scalar.
Applying Schur complement to (40), we have that

𝐸
𝑖𝑗
= [

[

Υ
𝑖𝑗
𝜀𝑈 𝑇

𝑇

𝑖𝑗

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]

]

< 0. (41)

Noting 𝜇
𝑖
(𝑠(𝑡)) ≥ 0, ∑

𝑟

𝑖=1
𝜇
𝑖
(𝑠(𝑡)) = 1,

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑠 (𝑡)) 𝜇

𝑗
(𝑠 (𝑡)) 𝐸

𝑖𝑗

=

𝑟

∑

𝑖=1

𝜇
2

𝑖
(𝑠 (𝑡)) 𝐸

𝑖𝑖
+

𝑟

∑

𝑖<𝑗

𝜇
𝑖
(𝑠 (𝑡)) 𝜇

𝑗
(𝑠 (𝑡)) (𝐸

𝑖𝑗
+ 𝐸

𝑗𝑖
) .

(42)

Therefore, condition (33) can guarantee that condition (41)
holds. This completes the proof.

It should be noted that the obtained conditions in
Theorem 5 are not strict LMI conditions due to the existence
of nonlinear term 𝑋𝑄

1
𝑋 in (33). It cannot be directly solved

by standard LMI Toolbox. In the following, we present an
approach to solving the condition inTheorem 5.

Introduce additional matrix variable 𝐺 > 0 such that

𝑋𝑄
1
𝑋 ≤ 𝐺. (43)

By Schur complement, it follows from (43) that

[
−𝐺 𝑋

𝑋 −𝑄
−1

1

] ≤ 0. (44)

Then, we readily obtain the following theorem.

Theorem 6. For some prescribed 𝛾 > 0, 𝜏 > 0, 𝛿 > 0, and
N is a positive integer, if there exist scalar 𝜀 > 0, matrices
𝐺 > 0, 𝑃 > 0, 𝑋 > 0, 𝑉

𝑙
> 0 (𝑙 = 2, 3, . . . , 𝑁), 𝑄l > 0,

(l = 1, 2 . . . 𝑁), and 𝑄
1
> 0, and appropriate dimension

matrices 𝑊
𝑗
(𝑗 = 1, 2 . . . , 𝑟) such that the following LMIs

simultaneously hold for 𝑖, 𝑗 = 1, 2, . . . , 𝑟:

⌣

Ω
𝑖𝑖
< 0, (𝑖 = 1, 2, . . . , 𝑟) ,

(
⌣

Ω
𝑖𝑗
+

⌣

Ω
𝑗𝑖
)

2
< 0, (1 ≤ 𝑖 < 𝑗 ≤ 𝑟) ,

(45)

[
−𝐺 𝑋

𝑋 −𝑄
1

] ≤ 0, (46)

𝑄
1
𝑄
1
= 𝐼, 𝑃𝑋 = 𝐼, 𝑉

𝑖
𝑅
𝑖
= 𝐼, (𝑖 = 1, 2, . . . , 𝑁) ,

(47)

where
⌣

Ω
𝑖𝑗
is a matrix derived from Ωij by replacing the term

Π
(1)

11𝑖𝑗
= 𝑋𝑄

1
𝑋 − 𝑋 + 𝑋𝐴

𝑇

𝑖
+𝑊

𝑇

𝑗
𝐵
𝑇

1𝑖
+ 𝐴

𝑖
𝑋 + 𝐵

1𝑖
𝑊
𝑗

(48)

with

Π̂
(1)

11𝑖𝑗
= 𝐺 − 𝛿𝑋 + 𝑋𝐴

𝑇

𝑖
+𝑊

𝑇

𝑗
𝐵
𝑇

1𝑖
+ 𝐴

𝑖
𝑋 + 𝐵

1𝑖
𝑊
𝑗
, (49)

then the closed-loop system (25) is asymptotically stable with
the H

∞
performance index 𝛾. Moreover, if the above condition

is feasible, the gain matrices of a desired controller in the form
of (6) can be designed by

𝐾
𝑗
= 𝑊

𝑗
𝑋
−1

. (50)

Remark 7. Note that the obtained conditions in Theorem 6
are not all in LMI form due to equality constraints, which
cannot be solved directly using standard LMI procedures.
However, via the result in [35] which has been widely used
by many scholars [36, 37], we can solve these nonconvex fea-
sibility problems by formulating them into some sequential
optimization problems subject to LMIs constraints.

Now using the approach [35], we suggest the following
minimization problem involving LMI conditions instead of
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the original nonconvex feasibility problem formulated in
Theorem 6.

Problem HSFCD (𝐻
∞

state feedback controller design). Con-
sider the following:

Minimize trace (𝑃𝑋 + 𝐺𝐺 +

𝑁

∑

𝑗=2

𝑅
𝑗
𝑉
𝑗
)

subject to (45) , (46) and [
𝑃 𝐼

𝐼 𝑋
] ≥ 0,

[
𝑄
1

𝐼

𝐼 𝑄
1

] ≥ 0, [
𝑅
𝑗
𝐼

𝐼 𝑉
𝑗

]

𝑁

𝑗=2

≥ 0.

(51)

When minimize Trace (𝑃𝑋 + 𝑄
1
𝑄
1
+ ∑

𝑁

𝑗=2
𝑅
𝑗
𝑉
𝑗
) =

(𝑁 + 1)𝑛, then the conditions in Theorem 6 are solvable.
Algorithm 1 in [35] can be easily adapted to solve Problem
HSFCD.

4. Numerical Example

In this section, we use an example to show the applicability of
the results proposed in this paper.

Example 8. Consider the truck trailer system borrowed from
[38], which can be represented by the following uncertain
time-delay T-S fuzzy model.

Rule 1. If 𝜃(𝑡) = 𝑥
2
(𝑡)+𝑎(𝜐𝑡/2𝐿)𝑥

1
(𝑡)+(1−𝑎)(𝜐𝑡/2𝐿)𝑥

1
(𝑡−𝜏)

is about 0, then

̇𝑥 (𝑡) = (𝐴
1
+ Δ𝐴

1
) 𝑥 (𝑡) + (𝐴

𝑑1
+ Δ𝐴

𝑑1
) 𝑥 (𝑡 − 𝜏)

+ (𝐵
𝑢1
+ Δ𝐵

𝑢1
) 𝑢 (𝑡) + 𝐵

𝑤1
𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶
1
𝑥 (𝑡) .

(52)

Rule 2. If 𝜃(𝑡) = 𝑥
2
(𝑡)+𝑎(𝜐𝑡/2𝐿)𝑥

1
(𝑡)+(1−𝑎)(𝜐𝑡/2𝐿)𝑥

1
(𝑡−𝜏)

is about 𝜋 or −𝜋, then

̇𝑥 (𝑡) = (𝐴
2
+ Δ𝐴

2
) 𝑥 (𝑡) + (𝐴

𝑑2
+ Δ𝐴

𝑑2
) 𝑥 (𝑡 − 𝜏)

+ (𝐵
𝑢2
+ Δ𝐵

𝑢2
) 𝑢 (𝑡) + 𝐵

𝑤2
𝜔 (𝑡)

𝑧 (𝑡) = 𝐶
2
𝑥 (𝑡) ,

(53)

where

𝑎 = 0.7, 𝜐 = −1, 𝑡 = 2.0, 𝐿 = 5.5, 𝜏 = 0.5,

𝐴
1
= [

[

0.5091 0 0

−0.5091 0 0

−0.5091 −4 0

]

]

, 𝐴
𝑑1
= [

[

0.2182 0 0

−0.2182 0 0

0.2182 0 0

]

]

,

𝐵
𝑢1
= [

[

−1.4286

0

0

]

]

, 𝐵
𝑤1
= [

[

1

0

0

]

]

,

𝐴
2
= [

[

0.5091 0 0

−0.5091 0 0

−0.8102 −6.3662 0

]

]

,

𝐴
𝑑2
= [

[

0.2182 0 0

−0.2182 0 0

0.3472 0 0

]

]

, 𝐵
𝑢2
= [

[

−1.4286

0

0

]

]

,

𝐵
𝑤1
= [

[

1

0

0

]

]

,

[Δ𝐴
𝑖
, Δ𝐴

𝑑𝑖
, Δ𝐵

𝑢𝑖
] = 𝑀𝐹 (𝑡) [𝐸

𝑖
, 𝐸

𝑑𝑖
, 𝐸

𝑢𝑖
] ,

𝐶
1
= 𝐶

2
= [0 1 0] ,

𝑀 = diag {0.05, 0.05, 0.05} ,

𝐸
1
= [

[

0.5091 0 0

−0.5091 0 0

0.5091 0 0

]

]

, 𝐸
2
= [

[

0.5091 0 0

−0.5091 0 0

0.8107 0 0

]

]

,

𝐸
𝑑1
= [

[

0.2182 0 0

−0.2182 0 0

0.2182 0 0

]

]

, 𝐸
𝑑2
= [

[

0.2182 0 0

−0.2182 0 0

0.3472 0 0

]

]

,

𝐸
𝑢1
= [

[

−0.3571

0

0

]

]

, 𝐸
𝑢2
= [

[

−0.3571

0

0

]

]

.

(54)

For this example, the prescribed 𝐻
∞

performance level
is chosen as 𝛾 = 0.5. In order to design a robust 𝐻

∞
state

feedback controller for the given T-S fuzzy model, choose
𝛿 = 1, 𝑁 = 4. According to Theorem 5, the gain matrix of
controller is given as

𝐾
1
= [25.6229 −29.9005 8.0667] ,

𝐾
2
= [23.8882 −31.9243 8.1041] .

(55)

According to [38], take the membership function as

ℎ
1
= (1 −

1

1 + exp (−3 (𝜃 (𝑡) − 0.5𝜋))
)

× (
1

1 + exp (−3 (𝜃 (𝑡) + 0.5𝜋))
) ,

ℎ
2
= 1 − ℎ

1
.

(56)



Mathematical Problems in Engineering 9

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Time (s)

𝑤(𝑡)

𝑧(𝑡)

Figure 1: Controlled output 𝑧(𝑡) and the disturbance input 𝑤(𝑡).

−1
0
1
2

𝑥
1

0 10 20 30 40 50 60 70 80 90 100
Time (s)

(a)

−0.5
0

0.5
1

𝑥
2

0 10 20 30 40 50 60 70 80 90 100
Time (s)

(b)

−4−2
0
2

𝑥
3

0 10 20 30 40 50 60 70 80 90 100
Time (s)

(c)

−10
−5

0
5

𝑢

0 10 20 30 40 50 60 70 80 90 100
Time (s)

(d)

Figure 2: Response of the closed-loop system and controller input.

Let disturbance input 𝜔(𝑡) = sin(2𝑡)𝑒−0.05𝑡 and initial
condition 𝜙(𝑡) = [1 1 1]

𝑇

, 𝑡 ∈ [−0.5, 0], and simulation
time is 100 s.

Figure 1 shows the controlled output 𝑧(𝑡) and the distur-
bance input 𝜔(𝑡). According to Figure 1, the resulting output
energy of the robust 𝐻

∞
controller is ∫100

0

𝑧
2

(𝑡)𝑑𝑡 = 0.832,
while the input energy is ∫100

0

𝜔
2

(𝑡)𝑑𝑡 = 5. Simulation result
for the ratio of the output energy to the disturbance energy is
0.1664, and the 𝑙

2
-norm is √0.1664 = 0.41 < 𝛾 = 0.5 (due to

the fact that the state has been stable for a long time, we can
regard the value 0.41 as the 𝑙

2
-norm).

State response of the closed-loop system and controller
input are shown in Figure 2.

The simulation results show that the algorithm proposed
in this paper is effective for robust𝐻

∞
control problem of the

truck trailer system with time delay.

5. Conclusion

The problem of robust 𝐻
∞

controller design has been
addressed for a class of T-S fuzzy-model-based systems with
constant delay and norm-bounded parameter uncertainty.
Based on the Lyapunov-Krasovskii functional approach, a
sufficient condition for the existence of the robust 𝐻

∞
con-

troller, which robustly stabilizes the T-S fuzzy-model-based
uncertain systems and guarantees a prescribed level on dis-
turbance attenuation, has been obtained in an LMI form.
The given numerical example has shown the effectiveness of
the proposed method. In addition, the filtering problems of
T-S fuzzy delayed systems by using the delay decomposition
approach are also challenging, which could be our further
work.
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This paper considers the problem of 𝐻
∞

output tracking control for discrete-time switched systems with time-varying delay and
external disturbances.The control scheme combining disturbance observer-based control (DOBC) and𝐻

∞
control is proposed.The

disturbances are assumed to include two parts. One part is generated by an exogenous system,which imposes on systemwith control
inputs in the same channel. The other part is supposed to have the bounded 𝐻

2
norm. A new disturbance observer is developed

to estimate and reject the first case disturbances for switched system with time-varying delay, and the second case disturbances
are attenuated by𝐻

∞
control scheme.The stability analysis of the closed-loop system is developed by switched Lyapunov function,

and a solvable delay-dependent sufficient condition is presented in terms of linearmatrix inequalities (LMIs) and cone complement
linearization (CCL) methods. A numerical example is given to demonstrate the effectiveness of the proposed composite control
scheme.

1. Introduction

Switched systems are a special class of hybrid control
systems, which are composed of a family of subsystems
described by continuous or discrete time dynamics and a
switched rule among them [1, 2]. Switched systems can be
employed to represent many practical systems, for example,
power electronics, embedded systems, chemical processes,
computer-controlled systems, automotive industries, and so
on. Hence, switched systems have attracted considerable
attention during the last decade, andmanymeaningful results
have been reported on stability analysis and controller design
for switched systems (see, e.g., [3–14]). By far, there are
a number of methodologies on dealing with the stability
analysis and control synthesis of switched systems, such
as common Lyapunov function [1, 11], multiple Lyapunov
function [3, 12], dwell time and average dwell time method
[7, 13], and switched Lyapunov function [4, 14].

On the one hand, time delay always encounters in
various engineering systems, such as long transmission lines
in pneumatic, hydraulic, and chemical processes, economic
and rolling mill systems, to name a few, which usually
leads to instability and poor performance of the closed-
loop system. Recently, many researches have paid more and
more attention to stabilization and performance analysis of
systems or switched systems with delays [15–20]. On the
other hand, disturbances widely exist in systems, which may
degrade the closed-loop system performance. Usually, some
performance indexes, that is,𝐻

∞
and 𝐿

2
− 𝐿
∞

(𝑙
2
− 𝑙
∞
), are

employed to deal with external disturbances. Many results
have been developed with these performance indexes [10,
13, 18, 19, 21–25]. However, disturbances need to satisfy the
bounded 𝐻

2
norm. In reality, many disturbances do not

satisfy this condition, for example, constant disturbances or
harmonics disturbances. To improve the ability of distur-
bance attenuation and rejection, disturbance observer-based
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control (DOBC) scheme has been studied from 1980s and
applied inmany control fields [26–37], which can be regarded
as an active disturbance rejection method. In this method,
disturbances are estimated by disturbance observer (DOB),
and the disturbance estimation is employed to feedforward
compensation.

The problem of output tracking control is important and
numerous results have been developed for kinds of systems
in the literature [38–40]. Along with the development of
switched system theory, increased attention has been paid
to studying output tracking controller design for switched
systems. In [41–43], the tracking control problems have
been considered for kinds of continuous switched systems.
Exponential 𝑙

2
−𝑙
∞
output tracking control problem has been

solved in [13] for a class of discrete-time switched systems.
However, in [13], disturbances are assumed to be the bounded
𝐻
2
norm.
In this paper, a composite control scheme is developed

to solve the problem of 𝐻
∞

output tracking control for
discrete-time switched systems with time-varying delay and
external disturbances. Here, external disturbances can be
divided into two parts. One part is generated by exogenous
system, which imposes on system in the same channel
with control inputs. The other part satisfies bounded 𝐻

2

norm. A new disturbance observer is designed to estimate
and reject the first case disturbances for switched system
with time-varying delay. 𝐻

∞
control is employed to analyze

attenuation performance with respect to the second case
disturbances. Hence, a composite control method, consisting
of DOBC and 𝐻

∞
control, is proposed. By resorting to

the switched Lyapunov function approach and inspired by
[44, 45], some delay-dependent conditions for the problem
of 𝐻
∞

output tracking control are presented. In order to
obtain the desired controller and observer gains, a cone
complement linearization (CCL) method is used to trans-
form the nonconvex feasibility problem to some sequential
optimization problem subject to linear matrix inequalities
(LMIs) constraints. Finally, a numerical example is provided
to demonstrate the effectiveness of the main result.

2. Problem Formulation and Preliminaries

Consider the following discrete-time switched systems with
time-varying delays described by

Σ
0
: 𝑥 (𝑘 + 1) = 𝐴

𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝐵
𝜎(𝑘)
(𝑢 (𝑘) + 𝑑

1
(𝑘)) + 𝐵

1𝜎(𝑘)
𝑑
2
(𝑘) ,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐶

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐷

𝜎(𝑘)
𝑢 (𝑘) ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 = −𝜏, . . . , −1, 0,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the states, 𝑧(𝑘) ∈ R𝑞 is the signal to
be estimated, and 𝑢(𝑘) is the control input. 𝜎(𝑘) : Z+ →
N = {1, 2, . . . , 𝑁} is the switching signal, which specifies
which subsystem will be activated at a certain discrete time

instant and 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐵
𝑖
, 𝐵
1𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, 𝐷
𝑖
, 𝑖 ∈ N, are constant

matrices with appropriate dimensions. 𝜏(𝑘) is a time-varying
delay of the system and satisfies

𝜏 ≤ 𝜏 (𝑘) ≤ 𝜏, ∀𝑘 ∈ Z
+

, (2)

where 𝜏, 𝜏, 𝜏(𝑘) are nonnegative integer numbers. 𝜙(𝑘) is the
initial condition. 𝑑

2
(𝑘) ∈ R𝑝 is the external disturbances,

which is assumed to belong to 𝑙
2
[0,∞). 𝑑

1
(𝑘) is also the

external disturbances, which is generated by the exogenous
system

𝜔 (𝑘 + 1) = 𝑊𝜔 (𝑘) , 𝑑
1
(𝑘) = 𝑉𝜔 (𝑘) , (3)

where (𝑊, 𝐵
𝑖
𝑉) is observable.

Remark 1. It is clear that 𝜏(𝑘) is an interval-like time-varying
delay. When 𝜏 = 0, it is reduced to 0 ≤ 𝜏(𝑘) ≤ 𝜏, for all
𝑘 ∈ Z+, which was recently discussed in [23]. Therefore, this
note can be viewed as some extensions of their results.

Remark 2. System Σ
0
contains two kinds of external dis-

turbances: matched external disturbances and mismatched
external disturbances. Two different methods are employed
to deal with these disturbances. First, a disturbance observer
is introduced to estimate matched disturbances; then the
estimation values are used to feedforward compensation.
Then, a performance index, that is, 𝐻

∞
performance index,

is presented to reject and attenuatemismatched disturbances.

Assume that the reference signal 𝑧
𝑟
(𝑘) is generated by the

following system:

𝑥
𝑟
(𝑘 + 1) = 𝐴

𝑟
𝑥
𝑟
(𝑘) + 𝐵

𝑟
𝑟 (𝑘) ,

𝑧
𝑟
(𝑘) = 𝐶

𝑟
𝑥
𝑟
(𝑘) ,

(4)

where 𝑥
𝑟
(𝑘) is reference states, 𝑟(𝑘) ∈ 𝑙

2
[0,∞) is reference

input, and 𝐴
𝑟
is Hurwitz matrix with an appropriate dimen-

sion. Here we are interested in designing a state feedback
controller by the following formula:

𝑢 (𝑘) = 𝐾
1𝜎(𝑘)

𝑥 (𝑘) − 𝑑
1
(𝑘) + 𝐾

2𝜎(𝑘)
𝑥
𝑟
(𝑘) , (5)

where𝑑
1
(𝑘) is the estimation of the disturbances𝑑

1
(𝑘), which

is obtained by the following disturbance observer:

�̂� (𝑘) = ] (𝑘) − 𝐿𝑥 (𝑘) ,

] (𝑘 + 1) = 𝑊 (] (𝑘) − 𝐿𝑥 (𝑘))

+ 𝐿 (𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝐵
𝜎(𝑘)
(𝑢 (𝑘) + 𝑑

1
(𝑘))) ,

(6)

𝑑
1
(𝑘) = 𝑉�̂� (𝑘) . (7)
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Remark 3. In this paper, we assume that the switching signal
𝜎(𝑘) is not known a priori but its instantaneous value is
available in real time [4]. Here we only consider the case of
synchronous switching; that is, the controller switches just as
the system Σ

0
does.

Defining 𝑒
𝜔
(𝑘) = 𝜔(𝑘) − �̂�(𝑘) yields

𝑒
𝜔
(𝑘 + 1) = (𝑊 + 𝐿𝐵

𝜎(𝑘)
𝑉) 𝑒
𝜔
(𝑘) + 𝐵

1𝜎(𝑘)
𝑑
2
(𝑘) , (8)

where 𝐵
1𝜎(𝑘)

= 𝐿𝐵
1𝜎(𝑘)

.
Applying controller (5) to system Σ

0
and combining (3)

and (7), we obtain

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝐵
𝜎(𝑘)
(𝑑
1
(𝑘) − 𝑑

1
(𝑘)) + 𝐵

1𝜎(𝑘)
𝑑
2
(𝑘)

+ 𝐵
𝜎(𝑘)
𝑥
𝑟
(𝑘)

= 𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵

𝜎(𝑘)
𝑒
𝜔
(𝑘)

+ 𝐵
1𝜎(𝑘)

𝑑
2
(𝑘) + 𝐵

𝜎(𝑘)
𝑥
𝑟
(𝑘) ,

(9)

where

𝐴
𝜎
(𝑘) = 𝐴

𝜎(𝑘)
+ 𝐵
𝜎(𝑘)
𝐾
1𝜎(𝑘)

, 𝐵
𝜎(𝑘)

= 𝐵
𝜎(𝑘)
𝑉,

𝐵
𝜎(𝑘)

= 𝐵
𝜎(𝑘)
𝐾
2𝜎(𝑘)

, 𝑒
𝜔
(𝑘) = 𝜔 (𝑘) − �̂� (𝑘) .

(10)

Let

𝑒 (𝑘) = 𝑧 (𝑘) − 𝑧
𝑟
(𝑘) , (11)

then we have the following augmented switched system:

Σ
𝑒
: 𝜁 (𝑘 + 1) = A

𝜎(𝑘)
𝜁 (𝑘) +A

𝑑𝜎(𝑘)
𝜁 (𝑘 − 𝜏 (𝑘))

+B
𝜎(𝑘)
𝑒
𝜔
(𝑘) +B

1𝜎(𝑘)
V (𝑘) ,

𝑒
𝜔
(𝑘 + 1) = (𝑊 + 𝐿𝐵

𝜎(𝑘)
𝑉) 𝑒
𝜔
(𝑘) + B̆

1𝜎(𝑘)
V (𝑘) ,

𝑒 (𝑘) = C
𝜎(𝑘)
𝜁 (𝑘) +C

𝑑𝜎(𝑘)
𝜁 (𝑘 − 𝜏 (𝑘)) ,

(12)

where

A
𝜎(𝑘)

= [
𝐴
𝜎(𝑘)

𝐵
𝜎(𝑘)

0 𝐴
𝑟

] , A
𝑑𝜎(𝑘)

= [
𝐴
𝑑𝜎(𝑘)

0

0 0
] ,

B
𝜎(𝑘)

= [
𝐵
𝜎(𝑘)

0
] , B

1𝜎(𝑘)
= [
𝐵
1𝜎(𝑘)

0

0 𝐵
𝑟

] ,

𝜁 (𝑘) = [
𝑥 (𝑘)

𝑥
𝑟
(𝑘) ,

] ∈ R
𝑚

, V (𝑘) = [
𝑑
2
(𝑘)

𝑟 (𝑘)
] ,

C
𝜎(𝑘)

= [𝐶
𝜎(𝑘)

+ 𝐷
𝜎(𝑘)
𝐾
1𝜎(𝑘)

𝐷
𝜎(𝑘)
𝐾
2𝜎(𝑘)

− 𝐶
𝑟
] ,

C
𝑑𝜎(𝑘)

= [𝐶
𝑑𝜎(𝑘)

0] , B̆
1𝜎(𝑘)

= [𝐵
1𝜎(𝑘)

0] .

(13)

By defining

Â
𝜎(𝑘)

= [
𝐴
𝜎(𝑘)

0

0 𝐴
𝑟

] , B̂
𝜎(𝑘)

= [
𝐵
𝜎(𝑘)

0
] ,

𝐾
𝜎(𝑘)

= [𝐾
1𝜎(𝑘)

𝐾
2𝜎(𝑘)

] ,

Ĉ
𝜎(𝑘)

= [𝐶
𝜎(𝑘)

− 𝐶
𝑟
] ,

(14)

then we have

A
𝜎(𝑘)

= Â
𝜎(𝑘)

+ B̂
𝜎(𝑘)
𝐾
𝜎(𝑘)
,

C
𝜎(𝑘)

= Ĉ
𝜎(𝑘)

+ 𝐷
𝜎(𝑘)
𝐾
𝜎(𝑘)
,

(15)

and the controller can be rewritten as

𝑢 (𝑘) = 𝐾
𝜎(𝑘)
𝜁 (𝑘) − 𝑑

1
(𝑘) . (16)

In order to prepare for a precise formulation, we intro-
duce the following definition.

Definition 4 (𝐻
∞

output tracking control problem). Con-
sider system Σ

𝑒
. Given a prescribed 𝛾 > 0, if there

exists composite controller (5) such that the following two
conditions are satisfied:

(R1) system Σ
𝑒
is asymptotically stable when V(𝑘) = 0,

for all 𝑘 ≥ 0;

(R2) under the zero-initial condition, the following
inequality holds:

‖𝑒 (𝑘)‖
2
< 𝛾‖V (𝑘)‖

2
, (17)

for any nonzero V(𝑘) ∈ 𝑙
2
[0,∞), then system Σ

𝑒
is asymptot-

ically stable with an𝐻
∞

performance index 𝛾.

3. Main Results

3.1. 𝐻
∞

Output Tracking Performance Analysis. In this sub-
section, we focus on developing delay-dependent condition
to solve the𝐻

∞
output tracking control problem formulated

in previous section.

Theorem 5 (consider system Σ
𝑒
). For scalars 𝜏 > 0, 𝜏 >

0, 𝛾 > 0, the error system Σ
𝑒
is asymptotically stable with an

𝐻
∞
performance index, if there exist matrices𝑀

1
,𝑀
2
,𝑁
1
,𝑁
2
,

𝑇
1
, 𝑇
2
,𝐾
1𝑖
,𝐾
2𝑖
, 𝑃
𝑖
> 0, 𝑄

1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑅

1
> 0, 𝑅

2
>

0, 𝑆 > 0, 𝑖 ∈N, such that the following inequality holds:
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Φ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11𝑖

Φ
12

0 0 𝑀
𝑇

1
−𝑇
𝑇

1
A𝑇
𝑖
Φ
18𝑖

Φ
19𝑖

Φ
1,10

Φ
1,11

Φ
1,12

0

∗ Φ
22𝑖

0 0 𝑀
𝑇

2
−𝑇
𝑇

2
A𝑇
𝑑𝑖

A𝑇
𝑑𝑖

A𝑇
𝑑𝑖

Φ
2,10

Φ
2,11

Φ
2,12

0

∗ ∗ −𝑆 0 0 0 B𝑇
𝑖

B𝑇
𝑖

B𝑇
𝑖

0 0 0 Φ
3,13𝑖

∗ ∗ ∗ −𝛾
2

𝐼 0 0 B𝑇
1𝑖

B𝑇
1𝑖

B𝑇
1𝑖

0 0 0 B̆𝑇
1𝑖

∗ ∗ ∗ ∗ −𝑄
1

0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄
2

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
−1

𝑙
0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
88

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
99

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
10,10

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
11,11

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
12,12

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑆
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (18)

where

Φ
11𝑖
= − 𝑃

𝑖
+ 𝑄
1
+ 𝑄
2
+ (𝜏 − 𝜏 + 1)𝑄

3

+ 𝑁
1
+ 𝑁
𝑇

1
+C
𝑇

𝑖
C
𝑖
+C
𝑇

𝑖
C
𝑑𝑖
,

Φ
12
= −𝑁

𝑇

1
+ 𝑁
2
+ 𝑇
𝑇

1
−𝑀
𝑇

1
, Φ

18𝑖
= Φ
19𝑖
= (A
𝑖
− 𝐼)
𝑇

,

Φ
1,10

= 𝜏𝑁
𝑇

1
, Φ

1,11
= (𝜏 − 𝜏) 𝑇

𝑇

1
,

Φ
1,13

= (𝜏 − 𝜏)𝑀
𝑇

1
,

Φ
22𝑖
= −𝑄
3
− 𝑁
2
− 𝑁
𝑇

2
+ 𝑇
2
+ 𝑇
𝑇

2
−𝑀
2
−𝑀
𝑇

2
+C
𝑇

𝑑𝑖
C
𝑑𝑖
,

Φ
2,10

= 𝜏𝑁
𝑇

2
, Φ

2,11
= (𝜏 − 𝜏) 𝑇

𝑇

2
,

Φ
2,12

= (𝜏 − 𝜏)𝑀
𝑇

2
, Φ

3,13𝑖
= (𝑊 + 𝐿𝐵

𝑖
𝑉)
𝑇

,

Φ
88
= −(𝜏𝑅

1
)
−1

, Φ
99
= −((𝜏 − 𝜏)𝑅

2
)
−1

,

Φ
10,10

= −𝜏𝑅
1
,

Φ
11,11

= − (𝜏 − 𝜏) (𝑅
1
+ 𝑅
2
) , Φ

12,12
= − (𝜏 − 𝜏) 𝑅

2
.

(19)

Proof. Choose a Lyapunov-Krasovskii functional candidate
as

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) , (20)

where

𝑉
1
(𝑘) = 𝜁

𝑇

(𝑘) 𝑃
𝜎(𝑘)
𝜁 (𝑘) + 𝑒

𝑇

𝜔
(𝑘) 𝑆𝑒

𝜔
(𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝜃=𝑘−𝜏

𝜁
𝑇

(𝜃) 𝑄
1
𝜁 (𝜃) +

𝑘−1

∑

𝜃=𝑘−𝜏

𝜁
𝑇

(𝜃) 𝑄
2
𝜁 (𝜃)

+

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) ,

𝑉
3
(𝑘) =

−1

∑

𝑖=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑖

𝜌
𝑇

(𝜃) 𝑅
1
𝜌 (𝜃)

+

−𝜏

∑

𝑖=−𝜏+1

𝑘−1

∑

𝜃=𝑘+𝑖−1

𝜌
𝑇

(𝜃) 𝑅
2
𝜌 (𝜃)

+

−𝜏+1

∑

𝑖=−𝜏+2

𝑘−1

∑

𝜃=𝑘+𝑖−1

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) ,

(21)

and 𝜌(𝜃) = 𝜁(𝜃 + 1) − 𝜁(𝜃).
Without loss of generality, we assume that 𝜎(𝑘 + 1) =

𝑙, 𝜎(𝑘) = 𝑖, for all 𝑖, 𝑙 ∈N.Then taking the forward difference
yields

Δ𝑉
1
(𝑘) = 𝑉

1
(𝑘 + 1) − 𝑉

1
(𝑘)

= 𝜁
𝑇

(𝑘 + 1) 𝑃
𝑙
𝜁 (𝑘 + 1) − 𝜁

𝑇

(𝑘) 𝑃
𝑖
𝜁 (𝑘)

+ 𝑒
𝑇

𝜔
(𝑘 + 1) 𝑆𝑒

𝜔
(𝑘 + 1) − 𝑒

𝑇

𝜔
(𝑘) 𝑆𝑒

𝜔
(𝑘)

= 𝜉
𝑇

(𝑘)A
𝑇

𝑖
𝑃
𝑙
A
𝑖
𝜉 (𝑘) − 𝜁

𝑇

(𝑘) 𝑃
𝑖
𝜁 (𝑘)

+ 𝜉
𝑇

(𝑘)B
𝑇

𝑖
𝑆B
𝑖
𝜉 (𝑘) − 𝑒

𝑇

𝜔
(𝑘) 𝑆𝑒

𝜔
(𝑘) ,

(22)

where

𝜉
𝑇

(𝑘) = [𝜁
𝑇

(𝑘) 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑒
𝑇

𝜔
(𝑘) V𝑇 (𝑘)] ,

A
𝑖
= [A
𝑖
A
𝑑𝑖

B
𝑖
B
1𝑖
] ,

B
𝑖
= [0 0 (𝑊 + 𝐿𝐵

𝑖
𝑉) B̆

1𝑖
] .

(23)
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Direct computation gives

Δ𝑉
2
(𝑘) =

𝑘

∑

𝜃=𝑘+1−𝜏

𝜁
𝑇

(𝜃) 𝑄
1
𝜁 (𝜃) −

𝑘−1

∑

𝜃=𝑘−𝜏

𝜁
𝑇

(𝜃) 𝑄
1
𝜁 (𝜃)

+

𝑘

∑

𝜃=𝑘+1−𝜏

𝜁
𝑇

(𝜃) 𝑄
2
𝜁 (𝜃) −

𝑘−1

∑

𝜃=𝑘−𝜏

𝜁
𝑇

(𝜃) 𝑄
2
𝜁 (𝜃)

+

𝑘

∑

𝜃=𝑘+1−𝜏(𝑘+1)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃)

−

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃)

= 𝜁
𝑇

(𝑘) (𝑄
1
+ 𝑄
2
+ 𝑄
3
) 𝜁 (𝑘)

− 𝜁
𝑇

(𝑘 − 𝜏)𝑄
1
𝜁 (𝑘 − 𝜏)

− 𝜁
𝑇

(𝑘 − 𝜏)𝑄
2
𝜁 (𝑘 − 𝜏)

− 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑄
3
𝜁 (𝑘 − 𝜏 (𝑘))

+

𝑘−1

∑

𝜃=𝑘+1−𝜏(𝑘+1)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃)

−

𝑘−1

∑

𝜃=𝑘+1−𝜏(𝑘)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) .

(24)

Note that

𝑘−1

∑

𝜃=𝑘+1−𝜏(𝑘+1)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃)

=

𝑘−1

∑

𝜃=𝑘+1−𝜏

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) +

𝑘−𝜏

∑

𝜃=𝑘+1−𝜏(𝑘+1)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃)

≤

𝑘−1

∑

𝜃=𝑘+1−𝜏(𝑘)

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) +

𝑘−𝜏

∑

𝜃=𝑘+1−𝜏

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) .

(25)

Hence we obtain

Δ𝑉
2
(𝑘) ≤ 𝜁

𝑇

(𝑘) (𝑄
1
+ 𝑄
2
+ 𝑄
3
) 𝜁 (𝑘)

− 𝜁
𝑇

(𝑘 − 𝜏)𝑄
1
𝜁 (𝑘 − 𝜏)

− 𝜁
𝑇

(𝑘 − 𝜏)𝑄
2
𝜁 (𝑘 − 𝜏)

− 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑄
3
𝜁 (𝑘 − 𝜏 (𝑘))

+

𝑘−𝜏

∑

𝜃=𝑘+1−𝜏

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) .

(26)

After some manipulations, the following inequality is satis-
fied:

Δ𝑉
3
(𝑘) =

−1

∑

𝑖=−𝜏

𝑘

∑

𝜃=𝑘+1+𝑖

𝜌
𝑇

(𝜃) 𝑅
1
𝜌 (𝜃)

−

−1

∑

𝑖=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑖

𝜌
𝑇

(𝜃) 𝑅
1
𝜌 (𝜃)

+

−𝜏

∑

𝑖=−𝜏+1

𝑘

∑

𝜃=𝑘+𝑖

𝜌
𝑇

(𝜃) 𝑅
2
𝜌 (𝜃)

−

−𝜏

∑

𝑖=−𝜏+1

𝑘−1

∑

𝜃=𝑘+𝑖−1

𝜌
𝑇

(𝜃) 𝑅
2
𝜌 (𝜃)

+

−𝜏+1

∑

𝑖=−𝜏+2

𝑘

∑

𝜃=𝑘+𝑖

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃)

−

−𝜏+1

∑

𝑖=−𝜏+2

𝑘−1

∑

𝜃=𝑘+𝑖−1

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃)

= 𝜏𝜌
𝑇

(𝑘) 𝑅
1
𝜌 (𝑘) −

𝑘−1

∑

𝜃=𝑘−𝜏

𝜌
𝑇

(𝜃) 𝑅
1
𝜌 (𝜃)

+ (𝜏 − 𝜏) 𝜌
𝑇

(𝑘) 𝑅
2
𝜌 (𝑘) −

𝑘−𝜏−1

∑

𝜃=𝑘−𝜏

𝜌
𝑇

(𝜃) 𝑅
2
𝜌 (𝜃)

+ (𝜏 − 𝜏) 𝜁
𝑇

(𝑘) 𝑄
3
𝜁 (𝑘) −

𝑘−𝜏

∑

𝜃=𝑘+1−𝜏

𝜁
𝑇

(𝜃) 𝑄
3
𝜁 (𝜃) .

(27)

Observe that the following equalities hold naturally:

2 (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
)

× (𝜁 (𝑘) − 𝜁 (𝑘 − 𝜏 (𝑘)) −

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜌 (𝜃)) = 0,

2 (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝑑
𝑗
(𝑘)) 𝑇

𝑇

2
)

× (𝜁 (𝑘 − 𝜏 (𝑘)) − 𝜁 (𝑘 − 𝜏) −

𝑘−1−𝜏(𝑘)

∑

𝜃=𝑘−𝜏

𝜌 (𝜃)) = 0,

2 (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
)

× (𝜁 (𝑘 − 𝜏) − 𝜁 (𝑘 − 𝜏 (𝑘)) −

𝑘−1−𝜏

∑

𝜃=𝑘−𝜏(𝑘)

𝜌 (𝜃)) = 0.

(28)
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Then

−

𝑘−1

∑

𝜃=𝑘−𝜏

𝜌
𝑇

(𝜃) 𝑅
1
𝜌 (𝜃) −

𝑘−𝜏−1

∑

𝜃=𝑘−𝜏

𝜌
𝑇

(𝜃) 𝑅
2
𝜌 (𝜃)

= −

𝑘−𝜏(𝑘)−1

∑

𝜃=𝑘−𝜏

𝜌
𝑇

(𝜃) (𝑅
1
+ 𝑅
2
) 𝜌 (𝜃)

−

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜌
𝑇

(𝜃) 𝑅
1
𝜌 (𝜃) −

𝑘−𝜏−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜌
𝑇

(𝜃) 𝑅
2
𝜌 (𝜃)

+ 2 (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
)

× (𝜁 (𝑘) − 𝜁 (𝑘 − 𝜏 (𝑘)) −

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜌 (𝜃))

+ 2 (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑇
𝑇

2
)

× (𝜁 (𝑘 − 𝜏 (𝑘)) − 𝜁 (𝑘 − 𝜏) −

𝑘−1−𝜏(𝑘)

∑

𝜃=𝑘−𝜏

𝜌 (𝜃))

+ 2 (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
)

× (𝜁 (𝑘 − 𝜏) − 𝜁 (𝑘 − 𝜏 (𝑘)) −

𝑘−1−𝜏

∑

𝜃=𝑘−𝜏(𝑘)

𝜌 (𝜃))

= 2 (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
)

× (𝜁 (𝑘) − 𝜁 (𝑘 − 𝜏 (𝑘)))

+ 2 (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑇
𝑇

2
)

× (𝜁 (𝑘 − 𝜏 (𝑘)) − 𝜁 (𝑘 − 𝜏))

+ 2 (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
)

× (𝜁 (𝑘 − 𝜏) − 𝜁 (𝑘 − 𝜏 (𝑘)))

− 2 (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑇
𝑇

2
)

×

𝑘−1−𝜏(𝑘)

∑

𝜃=𝑘−𝜏

𝜌 (𝜃) −

𝑘−𝜏(𝑘)−1

∑

𝜃=𝑘−𝜏

𝜌
𝑇

(𝜃) (𝑅
1
+ 𝑅
2
) 𝜌 (𝜃)

− 2 (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
)

×

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜌 (𝜃) −

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜌
𝑇

(𝜃) 𝑅
1
𝜌 (𝜃)

− 2 (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
)

×

𝑘−1−𝜏

∑

𝜃=𝑘−𝜏(𝑘)

𝜌 (𝜃) −

𝑘−𝜏−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜌
𝑇

(𝜃) 𝑅
2
𝜌 (𝜃)

= 2 (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
)

× (𝜁 (𝑘) − 𝜁 (𝑘 − 𝜏 (𝑘)))

+ 2 (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑇
𝑇

2
)

× (𝜁 (𝑘 − 𝜏 (𝑘)) − 𝜁 (𝑘 − 𝜏))

+ 2 (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
)

× (𝜁 (𝑘 − 𝜏) − 𝜁 (𝑘 − 𝜏 (𝑘)))

+ 𝜏 (𝑘) (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
) 𝑅
−1

1

× (𝑁
1
𝜁 (𝑘) + 𝑁

2
𝜁 (𝑘 − 𝜏 (𝑘)))

+ (𝜏 − 𝜏 (𝑘)) (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑇
𝑇

2
)

× (𝑅
1
+ 𝑅
2
)
−1

(𝑇
1
𝜁 (𝑘) + 𝑇

2
𝜁 (𝑘 − 𝜏 (𝑘)))

+ (𝜏 (𝑘) − 𝜏) (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
) 𝑅
−1

2

× (𝑀
1
𝜁 (𝑘) + 𝑀

2
𝜁 (𝑘 − 𝜏 (𝑘)))

−

𝑘−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜂
𝑇

(𝑘)𝑁
𝑇

𝑅
−1

1
𝑁𝜂 (𝑘)

−

𝑘−1−𝜏(𝑘)

∑

𝜃=𝑘−𝜏

𝜂
𝑇

(𝑘) 𝑇
𝑇

(𝑅
1
+ 𝑅
2
)
−1

𝑇𝜂 (𝑘)

−

𝑘−𝜏−1

∑

𝜃=𝑘−𝜏(𝑘)

𝜂
𝑇

(𝑘)𝑀
𝑇

𝑅
−1

2
𝑀𝜂 (𝑘)

≤ 2 (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
)

× (𝜁 (𝑘) − 𝜁 (𝑘 − 𝜏 (𝑘)))

+ 2 (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑇
𝑇

2
)

× (𝜁 (𝑘 − 𝜏 (𝑘)) − 𝜁 (𝑘 − 𝜏))

+ 2 (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
)

× (𝜁 (𝑘 − 𝜏) − 𝜁 (𝑘 − 𝜏 (𝑘)))

+ 𝜏 (𝜁
𝑇

(𝑘)𝑁
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑁
𝑇

2
) 𝑅
−1

1

× (𝑁
1
𝜁 (𝑘) + 𝑁

2
𝜁 (𝑘 − 𝜏 (𝑘)))

+ (𝜏 − 𝜏) (𝜁
𝑇

(𝑘) 𝑇
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑇
𝑇

2
)

× (𝑅
1
+ 𝑅
2
)
−1

(𝑇
1
𝜁 (𝑘) + 𝑇

2
𝜁 (𝑘 − 𝜏 (𝑘)))

+ (𝜏 − 𝜏) (𝜁
𝑇

(𝑘)𝑀
𝑇

1
+ 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))𝑀
𝑇

2
) 𝑅
−1

2

× (𝑀
1
𝜁 (𝑘) + 𝑀

2
𝜁 (𝑘 − 𝜏 (𝑘))) ,

(29)
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where

𝜂
𝑇

(𝑘) = [𝜁
𝑇

(𝑘) 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝜌
𝑇

(𝜃)] ,

𝑁 = [𝑁
1
𝑁
2
𝑅
1
] ,

𝑀 = [𝑀
1
𝑀
2
𝑅
2
] , 𝑇 = [𝑇

1
𝑇
2
𝑅
1
+ 𝑅
2
] .

(30)

From (22)–(29), and by some manipulations, we obtain

Δ𝑉 (𝑘) ≤ 𝜆
𝑇

(𝑘)Φ
1𝑖
𝜆 (𝑘) + 𝜉

𝑇

(𝑘)Φ
2𝑖
𝜉 (𝑘) + 𝜂

𝑇

(𝑘)Φ
3
𝜂 (𝑘)

− 𝜂
𝑇

(𝑘) [

[

C𝑇
𝑖

C𝑇
𝑑𝑖

]

]

[C
𝑖
C
𝑑𝑖
] 𝜂 (𝑘) ,

(31)

where

𝜆
𝑇

(𝑘)

=[𝜁
𝑇

(𝑘) 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑒
𝑇

𝜔
(𝑘) V𝑇 (𝑘) 𝜁𝑇 (𝑘 − 𝜏) 𝜁𝑇 (𝑘 − 𝜏) ] ,

𝜂
𝑇

(𝑘) = [𝜁
𝑇

(𝑘) 𝜁
𝑇

(𝑘 − 𝜏 (𝑘))] ,

Φ
2𝑖
= [A𝑇

𝑖
𝑃
𝑙
A
𝑖
+B𝑇
𝑖
𝑆B
𝑖
+A
𝑇

𝑖
(𝜏𝑅
1
+ (𝜏 − 𝜏) 𝑅

2
)A
𝑖
] ,

A
𝑖
= [A

𝑖
− 𝐼] , 𝐼 = [𝐼 0 0 0] ,

Φ
3
= 𝜏[𝑁

1
𝑁
2
]
𝑇

𝑅
−1

1
[𝑁
1
𝑁
2
] + (𝜏 − 𝜏) [𝑇

1
𝑇
2
]
𝑇

× (𝑅
1
+ 𝑅
2
)
−1

[𝑇
1
𝑇
2
]

+ (𝜏 − 𝜏) [𝑀
1
𝑀
2
]
𝑇

𝑅
−1

2
[𝑀
1
𝑀
2
] ,

Φ
1𝑖
=

[
[
[
[
[
[
[
[

[

Φ
11𝑖

Φ
12

0 0 𝑀
𝑇

1
−𝑇
𝑇

1

∗ Φ
22𝑖

0 0 𝑀
𝑇

2
−𝑇
𝑇

2

∗ ∗ −𝑆 0 0 0

∗ ∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ ∗ −𝑄
2

]
]
]
]
]
]
]
]

]

.

(32)

Now, we develop the conclusion from two aspects. We first
establish the asymptotic stability of system Σ

𝑒
under the

condition of zero disturbances. In fact, when V(𝑘) = 0, it is
verified that

Δ𝑉 (𝑘) ≤ �̃�
𝑇

(𝑘) Φ̃
1𝑖
�̃� (𝑘) + 𝜉

𝑇

(𝑘) Φ̃
2𝑖
𝜉 (𝑘)

+

𝑚

∑

𝑗=1

𝜂
𝑇

𝑗
(𝑘)Φ
3𝑗
𝜂
𝑗
(𝑘) − 𝜁

𝑇

(𝑘)G
𝑇

𝑖
G
𝑖
𝜁 (𝑘) ,

(33)

where

�̃�
𝑇

(𝑘)

= [𝜁
𝑇

(𝑘) 𝜁
𝑇

(𝑘 − 𝜏 (𝑘)) 𝑒
𝑇

𝜔
(𝑘) 𝜁

𝑇

(𝑘 − 𝜏) 𝜁
𝑇

(𝑘 − 𝜏)] ,

Φ̃
2𝑖
= [̃A𝑇

𝑖
𝑃
𝑙
Ã
𝑖
+ B̂𝑇
𝑖
𝑆B̂
𝑖
+
̂A𝑇
𝑖
(𝜏𝑅
1
+ (𝜏 − 𝜏) 𝑅

2
) Â
𝑖
] ,

Ã
𝑖
= [A
𝑖
A
𝑑𝑖

B] , Â
𝑖
= [Ã

𝑖
− 𝐼] , 𝐼 = [𝐼 0 0] ,

B̂ = [0 0 𝑊 + 𝐿𝐵
𝑖
𝑉] ,

Φ̃
1𝑖
=

[
[
[
[
[
[

[

Φ
11𝑖

Φ
12

0 𝑀
𝑇

1
−𝑇
𝑇

1

∗ Φ
22𝑖

0 𝑀
𝑇

2
−𝑇
𝑇

2

∗ ∗ −𝑆 0 0

∗ ∗ ∗ −𝑄
1

0

∗ ∗ ∗ ∗ −𝑄
2

]
]
]
]
]
]

]

.

(34)

Applying Schur complement formula, we obtainΔ𝑉(𝑘) < 0 if
(18) is true.Therefore, it is easy to see that the error system Σ

𝑒

is asymptotically stable by the Lyapunov-Krasovskii stability
theorem.

Next, we will present that under the zero-initial condi-
tion, the time-delay system Σ

𝑒
satisfies (17) for all nonzero

V(𝑘) ∈ 𝑙
2
[0,∞). To this end, we introduce

𝐽
𝑁
=

𝑁

∑

𝑘=0

(𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘) + Δ𝑉 (𝑘)) − 𝑉 (𝑁 + 1) .

(35)

Then, by the Schur complement formula, it easily follows
from (18) and (31) that

𝐽
𝑁
≤

∞

∑

𝑘=0

(𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘) + Δ𝑉 (𝑘)) < 0, (36)

which implies that ‖𝑒(𝑘)‖
2
< 𝛾‖V(𝑘)‖

2
holds under the zero-

initial condition. This completes the proof.

Remark 6. It is obvious that the condition in (18) is not an
LMI with respect to the parameters 𝑃

1
, . . . , 𝑃

𝑁
, 𝑅
1
, 𝑅
2
, 𝑆. In

order to solve the controller in the form of (5), we will cast the
𝐻
∞
output tracking control problem into an LMI framework.

3.2. 𝐻
∞

Output Tracking Controller Design. In this subsec-
tion, we try to obtain a solvable condition for the problem of
𝐻
∞

output tracking controller design using CCL method.
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Define

𝑋
𝑖
= 𝑃
−1

𝑖
, 𝑅
1
= 𝑅
−1

1
, 𝑅
2
= 𝑅
−1

2
,

𝐾
𝑖
= 𝐾
𝑖
𝑋
𝑖
, 𝐿 = 𝑆𝐿,

𝑄
1𝑖
= 𝑋
𝑖
𝑄
1
𝑋
𝑖
, 𝑄
2𝑖
= 𝑋
𝑖
𝑄
2
𝑋
𝑖
, 𝑄
3𝑖
= 𝑋
𝑖
𝑄
3
𝑋
𝑖
,

𝑀
1
= 𝑋
𝑖
𝑀
1
𝑋
𝑖
, 𝑀

2
= 𝑋
𝑖
𝑀
2
𝑋
𝑖
, 𝑁
1
= 𝑋
𝑖
𝑁
1
𝑋
𝑖
,

𝑁
2
= 𝑋
𝑖
𝑁
2
𝑋
𝑖
, 𝑇
1
= 𝑋
𝑖
𝑇
1
𝑋
𝑖
,

𝑇
2
= 𝑋
𝑖
𝑇
2
𝑋
𝑖
,

Γ = diag {𝑋
𝑖
, 𝑋
𝑖
, 𝐼, 𝐼, 𝑋

𝑖
, 𝑋
𝑖
, 𝐼, 𝐼, 𝐼, 𝑋

𝑖
, 𝑋
𝑖
, 𝑋
𝑖
, 𝑆} .

(37)

Pre- and postmultiplying Γ and Γ𝑇 on (18), and using Schur
complement formula, we obtain

Φ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11𝑖

Φ
12

0 0 𝑀
𝑇

1
−𝑇
𝑇

1
Φ
17𝑖

Φ
18𝑖

Φ
19𝑖

Φ
1,10

Φ
1,11

Φ
1,12

0 Φ
1,14𝑖

∗ Φ
22𝑖

0 0 𝑀
𝑇

2
−𝑇
𝑇

2
𝑋
𝑖
A𝑇
𝑑𝑖
𝑋
𝑖
A𝑇
𝑑𝑖
𝑋
𝑖
A𝑇
𝑑𝑖

Φ
2,10

Φ
2,11

Φ
2,12

0 Φ
2,14𝑖

∗ ∗ −𝑆 0 0 0 B𝑇
𝑖

B𝑇
𝑖

B𝑇
𝑖

0 0 0 Φ
3,13𝑖

0

∗ ∗ ∗ −𝛾
2

𝐼 0 0 B𝑇
1𝑖

B𝑇
1𝑖

B𝑇
1𝑖

0 0 0 Φ
4,13𝑖

0

∗ ∗ ∗ ∗ −𝑄
1𝑖

0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄
2𝑖

0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑋
𝑙

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
88

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
99

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
10,10𝑖

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
11,11𝑖

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
12,12𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑆 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (38)

where

Φ
11𝑖
= −𝑋
𝑖
+ 𝑄
1𝑖
+ 𝑄
2𝑖
+ (𝜏 − 𝜏 + 1)𝑄

3𝑖
+ 𝑁
1
+ 𝑁
𝑇

1
,

Φ
12
= −𝑁

𝑇

1
+ 𝑁
2
+ 𝑇
𝑇

1
−𝑀
𝑇

1
,

Φ
17𝑖
= 𝑋
𝑖
Â
𝑇

𝑖
+ 𝐾
𝑇

𝑖
B̂
𝑇

𝑖
,

Φ
18𝑖
= Φ
19𝑖
= Φ
17𝑖
− 𝑋
𝑖
,

Φ
1,10

= 𝜏𝑁
𝑇

1
, Φ

1,11
= (𝜏 − 𝜏) 𝑇

𝑇

1
,

Φ
1,13

= (𝜏 − 𝜏)𝑀
𝑇

1
, Φ

1,14𝑖
= 𝑋
𝑖
Ĉ
𝑇

𝑖
+ 𝐾
𝑇

𝑖
𝐷
𝑇

𝑖
,

Φ
22𝑖
= −𝑄
3𝑖
− 𝑁
2
− 𝑁
𝑇

2
+ 𝑇
2
+ 𝑇
𝑇

2
−𝑀
2
−𝑀
𝑇

2
,

Φ
2,14𝑖

= 𝑋
𝑖
C
𝑇

𝑑𝑖
, Φ

2,10
= 𝜏𝑁
𝑇

2
,

Φ
2,11

= (𝜏 − 𝜏) 𝑇
𝑇

2
, Φ

2,12
= (𝜏 − 𝜏)𝑀

𝑇

2
,

Φ
3,13𝑖

= 𝑊
𝑇

𝑆 + (𝐿𝐵
𝑖
𝑉)
𝑇

,

Φ
88
= −

1

𝜏𝑅
1

, Φ
99
= −

1

(𝜏 − 𝜏) 𝑅
2

,

Φ
10,10𝑖

= −𝜏𝑋
𝑖
𝑅
1
𝑋
𝑖
, Φ

4,13𝑖
= B̆
𝑇

1𝑖
𝑆,

Φ
11,11𝑖

= − (𝜏 − 𝜏)𝑋
𝑖
(𝑅
1
+ 𝑅
2
)𝑋
𝑖
,

Φ
12,12𝑖

= − (𝜏 − 𝜏)𝑋
𝑖
𝑅
2
𝑋
𝑖
.

(39)

Theorem 7 (consider the system Σ
𝑒
). For scalars 𝜏 >

0, 𝜏 > 0, 𝛾 > 0, the error system Σ
𝑒
is asymptotically

stable with an 𝐻
∞

performance index, if there exist matrices
𝑀
1
, 𝑀
2
, 𝑁
1
, 𝑁
2
, 𝑇
1
, 𝑇
2
, 𝐾
1𝑖
, 𝐾
2𝑖
, 𝑋
𝑖
> 0, 𝑄

1
> 0, 𝑄

2
>

0, 𝑄
3
> 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝑆 > 0, 𝑖 ∈ N,

such that inequality (38) holds.

It is clear that (38) is a nonlinear matrix inequality due
to the existence of terms 𝑅

1
, 𝑅
2
, 𝑋
𝑖
𝑅
1
𝑋
𝑖
and 𝑋

𝑖
𝑅
2
𝑋
𝑖
. In

the sequel, the CCL method is resorted to solve the desired
controller gains and observer gain.

Introduce two new variables 𝑆
1𝑖

and 𝑆
2𝑖

such that
𝑋
𝑖
𝑅
1
𝑋
𝑖
≥ 𝑆
1𝑖
and𝑋

𝑖
𝑅
2
𝑋
𝑖
≥ 𝑆
2𝑖
, then we obtain the following

results.

Theorem 8 (Consider system Σ
𝑒
). For scalars 𝜏 > 0, 𝜏 >

0, 𝛾 > 0, the error system Σ
𝑒
is asymptotically stable

with an 𝐻
∞

performance index, if there exist matrices
𝑀
1
, 𝑀
2
, 𝑁
1
, 𝑁
2
, 𝑇
1
, 𝑇
2
, 𝐾
1𝑖
, 𝐾
2𝑖
, 𝑋
𝑖
> 0, 𝑄

1
> 0, 𝑄

2
>

0, 𝑄
3
> 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝑆 >

0, 𝑆
1𝑖
, 𝑆
2𝑖
, 𝑖 ∈N, such that the following inequalities hold
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Φ̂
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11𝑖

Φ
12

0 0 𝑀
𝑇

1
−𝑇
𝑇

1
Φ
17𝑖

Φ
18𝑖

Φ
19𝑖

Φ
1,10

Φ
1,11

Φ
1,12

0 Φ
1,14𝑖

∗ Φ
22𝑖

0 0 𝑀
𝑇

2
−𝑇
𝑇

2
𝑋
𝑖
A𝑇
𝑑𝑖
𝑋
𝑖
A𝑇
𝑑𝑖
𝑋
𝑖
A𝑇
𝑑𝑖

Φ
2,10

Φ
2,11

Φ
2,12

0 Φ
2,14𝑖

∗ ∗ −𝑆 0 0 0 B𝑇
𝑖

B𝑇
𝑖

B𝑇
𝑖

0 0 0 Φ
3,13𝑖

0

∗ ∗ ∗ −𝛾
2

𝐼 0 0 B𝑇
1𝑖

B𝑇
1𝑖

B𝑇
1𝑖

0 0 0 Φ
4,13𝑖

0

∗ ∗ ∗ ∗ −𝑄
1

0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄
2

0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑋
𝑙

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
88

0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
99

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̂
10,10𝑖

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̂
11,11𝑖

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̂
12,12𝑖

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑆 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (40)

𝑋
𝑖
𝑅
1
𝑋
𝑖
≥ 𝑆
1𝑖
, (41)

𝑋
𝑖
𝑅
2
𝑋
𝑖
≥ 𝑆
2𝑖
, (42)

where Φ̂
10,10𝑖

= −𝜏𝑆
1𝑖
, Φ̂
11,11𝑖

= −(𝜏 − 𝜏)(𝑆
1𝑖
+ 𝑆
2𝑖
), Φ̂
12,12𝑖

=

−(𝜏 − 𝜏)𝑆
2𝑖
.

From (41) and (42), we know that the conditions in
Theorem 8 are not strict linear matrix inequalities. By the
assistance of the CCL method [46], the nonconvex feasibility
problem formulated by (40)–(42) can be transformed into the
following nonlinear minimization problem:

Minimize Tr(
𝑁

∑

𝑖=1

(𝑋
𝑖
𝐻
𝑖
+ 𝑆
1𝑖
𝐽
1𝑖
+ 𝑆
2𝑖
𝐽
2𝑖
) + 𝑅
1
𝐺
1
+ 𝑅
2
𝐺
2
)

Subject to (40) and

[
𝐺
1
𝐻
𝑖

𝐻
𝑖
𝐽
1𝑖

] ≥ 𝐼, [
𝐺
2
𝐻
𝑖

𝐻
𝑖
𝐽
2𝑖

] ≥ 𝐼,

[
𝑆
1𝑖
𝐼

𝐼 𝐽
1𝑖

] ≥ 0, [
𝑆
2𝑖
𝐼

𝐼 𝐽
2𝑖

] ≥ 0,

[
𝑅
1
𝐼

𝐼 𝐺
1

] ≥ 0, [
𝑅
2
𝐼

𝐼 𝐺
2

] ≥ 0,

[
𝑋
𝑖
𝐼

𝐼 𝐻
𝑖

] ≥ 0.

(43)

If the solution of the above minimization problem is (6𝑁 +
4)𝑚, then system Σ

𝑒
is asymptotically stable with an 𝐻

∞

performance index via controller (5) and observer (6) with
gains𝐾

𝑖
= 𝐾
𝑖
𝑋
−1

𝑖
and 𝐿 = 𝑆−1𝐿, respectively.

4. A Numerical Example

Now, we provide an example to show the effectiveness of the
main result in this paper.

Consider discrete-time switched system with parameters
as follows:

𝐴
1
= [
0.2 0

0 −0.035
] , 𝐴

𝑑1
= [
0.02 0

0.01 −0.03
] ,

𝐵
1
= [
8

7
] ,

𝐵
11
= [
−0.03

0.05
] , 𝐶

1
= [ 1.2 0.8 ] ,

𝐶
𝑑1
= [ 1 −0.6 ] , 𝐷

1
= 16,

𝐴
2
= [
−0.3 0

0.01 −0.015
] , 𝐴

𝑑2
= [
0.01 −0.01

0.02 −0.05
] ,

𝐵
2
= [
10

10
] , 𝐵

12
= [
−0.01

0.07
] , 𝐶

2
= [ 0.6 1.6 ] ,

𝐶
𝑑2
= [ 0.8 −0.4 ] , 𝐷

2
= 14.

(44)

The reference model is given by the following parameters:

𝐴
𝑟
= [
0.5 −1

0.3 −0.035
] , 𝐵

𝑟
= [
0.2

0.8
] ,

𝐶
𝑟
= [ 0.5 0.5 ] .

(45)
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The disturbance model is presented by the following param-
eters:

𝑊 = [
0.8776 0.4794

−0.4794 0.8776
] , 𝑉 = [10 0] . (46)

Set 𝜏 = 1 and 𝜏 = 4. Here, we suppose the disturbance
attenuation level 𝛾 = 0.8. Then, using Matlab Control
Toolbox to solve Theorem 8, we obtain controller gains and
observer gain as follows:

𝐾
11
= [−0.0477 −0.0308] , 𝐾

21
= [−0.0011 0.0432] ,

𝐿 = [
−0.0012 −0.0004

0.0005 0.0002
] ,

𝐾
12
= [−0.0159 −0.0103] , 𝐾

22
= [−0.0004 0.0144] .

(47)

Suppose the switching sequence as 121212 ⋅ ⋅ ⋅ . The initial
value of the states is chosen as 𝜙(𝑠) = [−0.2𝑒

−𝑠

0.1𝑒
−𝑠

]
𝑇,

and the reference model of initial condition is selected as
𝑥
𝑟
= [0.1− 0.2]

𝑇. In the sequel, two kinds of reference inputs,
that is, step reference input and sinusoidal reference input, are
considered to demonstrate the effectiveness of the proposed
method.

Case 1 (step reference input). Let

𝑟 (𝑘) = {
10, 80 ≤ 𝑘 < 150,

0, else 𝑘,

𝑑
2
(𝑘) =

{

{

{

30

𝑘 + 1
, 80 ≤ 𝑘 < 150,

0, else 𝑘.

(48)

Curves of 𝑧
𝑘
and 𝑧
𝑟
are depicted in Figure 1 under input signal

(48). From Figure 1, we can see that the system output can
effectively track the reference model output in presence of
matched disturbances and mismatched disturbances, which
demonstrates the effectiveness of the proposed method. In
order to evaluate the effectiveness of the DOB, curves of dis-
turbances and disturbances estimation are shown in Figure 2.
It illustrates that DOB can effectively estimate disturbances.

Case 2 (sinusoidal reference input). Let

𝑟 (𝑘) = {
10 sin (𝑘) , 80 ≤ 𝑘 < 150,

0, else 𝑘,

𝑑
2
(𝑘) =

{

{

{

30

𝑘 + 1
, 80 ≤ 𝑘 < 150,

0, else 𝑘.

(49)

Figure 3 presents the curves of 𝑧
𝑘
and 𝑧

𝑟
under input signal

(49), which demonstrates that the proposed method obtains
good tracking performance in spite of matched disturbances
and mismatched disturbances. Figure 4 shows the distur-
bances estimation results, which depicts that the DOB can
effectively estimate disturbances.
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Figure 1: Curves of 𝑧(𝑘) and 𝑧
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(𝑘) under Case 1.
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Figure 2: Curves of disturbances and disturbances estimation under
Case 1.

Remark 9. In this paper, a composite tracking controller is
designed for a class of discrete-time switched systems with
time-varying delay. In reality, many physical systems can
be modelled as switched system, for example, flight control
systems [47, 48] and inverted-pendulum system [49]. Take
flight control system; for example, the flight control system
can be modelled as switched system corresponding to finite
operating points within the flight envelope, where 𝑑

2
(𝑡) is

denoted as wind gust and 𝑑
1
(𝑡) is regarded as unknown

harmonic disturbances. In order to better serve engineering,
we will pay attention to studying a tracking controller design
for a practical system based on our method in future.

5. Conclusions

The problem of 𝐻
∞

output tracking control for discrete-
time switched systems subject to time-varying delay and
disturbances has been studied. 𝐻

∞
control has achieved

the attenuation performance with respect to norm bounded
disturbances. DOBC has been employed to reject the dis-
turbances with some known information. In this paper, a
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composite control scheme, that is, consisting of 𝐻
∞

control
method andDOBC technique, has been proposed, which can
effectively attenuate and reject the external disturbances. A
numerical example has been provided to show the effective-
ness of the proposed algorithm.
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This paper is concerned with the 𝐻
∞

control issue for a class of networked control systems (NCSs) with packet dropouts and
time-varying delays. Firstly, the addressed NCS is modeled as a Markovian discrete-time switched system with two subsystems; by
using the average dwell time method, a sufficient condition is obtained for the mean square exponential stability of the closed-loop
NCS with a desired𝐻

∞
disturbance attenuation level. Then, the desired𝐻

∞
controller is obtained by solving a set of linear matrix

inequalities (LMIs). Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

1. Introduction

Networked control systems (NCSs) are distributed systems
in which communication between sensors, actuators, and
controllers is supported by a shared real-time network.
Compared with conventional point-to-point system connec-
tion, this new network-based control scheme reduces system
wiring and has low cost, high reliability, information sharing,
and remote control [1, 2]. Nevertheless, the introduction of
communication networks also brings some new problems
and challenges, such as time-delay, packet dropout, quanti-
zation, and band-limited channel [3–8], which all might be
potential sources of poor performance, even of instability.

Random delay and packet dropout in NCS are two
major causes for the deterioration of system stability; various
approaches have been developed for the NCS with random
communication delays and packet dropout in [9–17]. The
time delay occurs in various physical, industrial, and engi-
neering systems and is a source of poor performance and
instability of systems. In [9, 10], the uncertainties of the delays
are transformed into those of the system models with uncer-
tain parameters.The delay is limited to take finite values dur-
ing a sampling period, and the NCS is ultimately modeled as
a discrete-time switched system with a finite number of sub-
systems [11, 12]. In [13–15], the delay is assumed to be random

and follows some specific distribution laws, which may not
be exactly known prior in practice. And in some literature the
delay is separated into a nominal part and an uncertain part;
in this way, the NCS is represented as an uncertain system
with norm-bounded uncertainties or polytopic uncertainties.
Another important issue in NCS control problem is packet
dropout; most of the NCS models are presented by using the
Bernoulli random binary distributed sequence methods or
the Markov chain. For NCSs, let the binary-valued function
denote the data transmission status from sensor to controller
and controller to actuator, respectively, where 1 means suc-
cessful packet communication and 0 is the case of packet
dropout [16]. Reference [17] proposes an iterative method to
model NCSs with bounded packet dropout as MJLSs with
partly unknown transition probabilities.

On the other hand, in view of abrupt variation in the
structures, such as component failures, sudden environmen-
tal disturbance, and abrupt variations of the operating points
of NCSs, it is more appropriate tomodel such class of systems
as a special class of stochastic hybrid systems with finite
operation modes. And packet dropout (time-delay) of the
next sampling moment may have a close relation to the
previous moment, so it is reasonable to model NCS as the
Markov switched system. The mean square stabilization of a
class of Markovian NCS is studied in [18], and the average
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dwell time (ADT) approach is applied to investigate the
stability of the NCS in [19]. However, to the best of our
knowledge, the problems ofmean square exponential stability
and control for the NCS have not been fully investigated to
date. This motivates the present study.

With the motivation of the above reasons, we consider
the mean square exponential𝐻

∞
performance for NCS with

randomdelay and packet dropout.Themain contribution can
be summarized as follows: (i) an NCS model with random
delay and packet dropout is proposed firstly; the packet
dropout process is modeled as a finite stateMarkov chain and
the resulting closed-loop system is a Markovian switching
system; (ii) the parameter-dependent Lyapunov function is
applied for stability analysis and control synthesis, and suf-
ficient conditions for the robustly mean square exponential
stability of the closed-loop system are given by using theADT
method [20], where the convergence of the Markov chain is
utilized; and (iii) a state feedback controller is designed by
using a cone complementary linearization approach to ensure
that the closed-loop system is mean square exponentially
stable and achieves the disturbance attenuation level.

The paper is organized as follows. In Section 2, the NCS
with packet dropouts and time-varying delays is modeled as
a class of the Markovian discrete-time switched system with
two subsystems. The mean square exponential stability of
the closed-loop NCS with a desired 𝐻

∞
disturbance atten-

uation level is developed in Section 3 and the desired 𝐻
∞

controller is formulated in a set of LMIs.Anumerical example
is provided in Section 4. Finally, Section 5 concludes this
paper.

Notation 1. Throughout the paper, the superscript “−1” and
“𝑇” stand for the inverse and transpose of a matrix, respec-
tively; 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space and the
notation 𝑃 > 0 means that 𝑃 is a real symmetric positive
definite matrix. 𝐸{𝑥} is the expectation of the stochastic
variable 𝑥. 𝐼 and 0 represent identity matrix and zero matrix
with appropriate dimensions in different places. In symmetric
block matrices or complex matrix expressions, we use an
asterisk ∗ to represent a term that is induced by symmetry
and diag{⋅ ⋅ ⋅ } stands for a block diagonal matrix. ‖ ⋅ ‖ refers
to the Euclidean norm for vectors and induced 2-norm for
matrix. 𝐿

2
[𝑘
0
,∞) stands for the space of square integrable

functions on [𝑘
0
,∞).

2. Model of Networked Control System

Consider the following system:

̇𝑥 (𝑡) = 𝐴
𝑝
𝑥 (𝑡) + 𝐵

𝑝
𝑢 (𝑡) + 𝑓 (𝑥, 𝑡) + 𝐻

𝑝
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑢(𝑡) ∈ 𝑅

𝑚, and 𝑧(𝑡) ∈ 𝑅
𝑃 are the state

vector, control input vector, and controlled output vector,
respectively, and 𝑤(𝑡) ∈ 𝑅

𝑑 is the exogenous disturbance
signal belonging to 𝐿

2
[0,∞). 𝐴

𝑝
, 𝐵
𝑝
, 𝐻
𝑝
, and 𝐶 are known

real matrices with appropriate dimensions.𝑓 : Ω×[𝑡
0
,∞) →

𝑅
𝑛

(Ω ⊂ 𝑅
𝑛

) is the nonlinear function vector, and𝑓(0, 𝑡
0
) = 0.

𝑓 satisfies the local Lipschitz condition, that is,
𝑓 (𝑥1, 𝑡) − 𝑓 (𝑥2, 𝑡)

2
≤ 𝛼

𝑥1 − 𝑥2
2
,

∀𝑥
1
, 𝑥
2
∈ Ω ⊂ 𝑅

𝑛

, ∀𝑡 ∈ [𝑡
0
,∞) ,

(2)

where 𝛼 > 0 is a known constant.
In the considered NCS, time delays exist in both channels

from sensor to controller and from controller to actuator.
Sensor-to-controller delay and controller-to-actuator delay
are denoted by 𝜏sc and 𝜏ca, respectively. The assumptions in
the above NCS are as follows:

(1) the discrete-time state-feedback controller and the
actuator are event driven; the sensor is time-driven
with sampling period 𝑇,

(2) the network-induced delay 𝜏
𝑘
≜ 𝜏

sc
𝑘
+ 𝜏

ca
𝑘
satisfies 0 <

𝜏min ≤ 𝜏𝑘 ≤ 𝜏max < 𝑇,
(3) the zero-order hold device does not update the output

value until the new value arrives.

The output value of the discrete-time state-feedback
controller corresponding to 𝑥(𝑘) is denoted by

𝑢 (𝑘) = 𝐾𝑥 (𝑘) . (3)

Consider the plant input:

𝑢 (𝑘)

= {
�̂� (𝑘) if �̂� (𝑘) and 𝑥 (𝑘) is successfully transmitted,
𝑢 (𝑘−1) if �̂� (𝑘) or 𝑥 (𝑘) is lost during transmission.

(4)

Discretizing system (1) in one period, we can obtain the
discrete state equation of the NCS:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵
0
(𝜏
𝑘
) 𝑢 (𝑘)

+ 𝐵
1
(𝜏
𝑘
) 𝑢 (𝑘 − 1) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

(5)

where 𝐴 = 𝑒
𝐴
𝑝
𝑇, 𝐵
0
(𝜏
𝑘
) = ∫

𝑇−𝜏
𝑘

0

𝑒
𝐴
𝑝
𝑠

𝑑𝑠𝐵
𝑝
, 𝐵
1
(𝜏
𝑘
) =

∫
𝑇

𝑇−𝜏
𝑘

𝑒
𝐴
𝑝
𝑠

𝑑𝑠𝐵
𝑝
, 𝐻 = ∫

𝑇

0

𝑒
𝐴
𝑝
𝑠

𝑑𝑠𝐻
𝑝
, and 𝑓(𝑥, 𝑘) =

∫
𝑇

0

𝑒
𝐴
𝑝
𝑠

𝑑𝑠𝑓(𝑥, 𝑘).
By using the Jordan form of the matrix 𝐴

𝑝
, 𝐵
0
(𝜏
𝑘
) is

rewritten as [21]

𝐵
0
(𝜏
𝑘
) = 𝐹
0
+

V

∑

𝑖=1

𝜂
𝑖
(𝜏
𝑘
) 𝐹
𝑖

(6)

with V ≤ 𝑛, where 𝐹
0
and 𝐹

𝑖
are constant matrices, 𝜂

𝑖
(𝜏
𝑘
) =

𝑒
𝑎(𝑇−𝜏

𝑘
) cos(𝑏(𝑇 − 𝜏

𝑘
)) and the eigenvalue of 𝐴 is 𝜆 = 𝑎 + 𝑖𝑏.

Then, {𝐵
0
(𝜏
𝑘
) | 𝑘 ∈ 𝑁} is a subset of co(𝐹) with

𝐹 = {𝐹
0
+

V

∑

𝑖=1

𝜂
𝑖
𝐹
𝑖
| 𝜂
𝑖
= 𝜂
𝑖
, 𝜂
𝑖

, 𝑖 = 1, 2, . . . , V}

= {𝐹
𝑖
| 𝑖 = 1, 2, . . . , 2

V
} ,

(7)
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where 𝜂
𝑖
= max 𝜂

𝑖
(𝜏
𝑘
), 𝜂
𝑖

= min 𝜂
𝑖
(𝜏
𝑘
), 𝐹 is the set of vertices,

and co(⋅) denotes the convex hull. Thus we obtain

𝐵
0
(𝜏
𝑘
) =

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐹
𝑖
, (8)

with ∑2
V

𝑖=1
𝜉
𝑖
(𝑘) = 1, 𝜉

𝑖
(𝑘) ∈ [0, 1].

Defining an augmented vector 𝑥(𝑘) =

[𝑥
𝑇

(𝑘) 𝑢
𝑇

(𝑘 − 1)]
𝑇, during each sampling period, two

cases may arise, which can be listed as follows.
𝑆
1
: no packet dropout happens; (5) can be written as

𝑥 (𝑘 + 1) = 𝐴
1
(𝑘) 𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(9)

where

𝐴
1
(𝑘) = [

𝐴 + 𝐵
0
(𝜏
𝑘
)𝐾 𝐵

1
(𝜏
𝑘
)

𝐾 0
]

= [
𝐴 𝐵 − 𝐵

0
(𝜏
𝑘
)

0 0
] + [

𝐵
0
(𝜏
𝑘
)

𝐼
] [𝐾 0] ,

𝐵 = ∫

𝑇

0

𝑒
𝐴
𝑝
𝑠

𝑑𝑠𝐵
𝑝
, 𝐵

1
(𝜏
𝑘
) = 𝐵 − 𝐵

0
(𝜏
𝑘
) ,

𝑓 (𝑥, 𝑘) = [
𝑓 (𝑥, 𝑘)

0
] , 𝐻 = [

𝐻

0
] , 𝐶 = [𝐶 0] .

(10)

Substituting (8) into (9) gives rise to

𝐴
1
(𝑘) =

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
, (11)

where
𝐴
𝑖
= 𝐴
𝑖
+ 𝐵
𝑖
[𝐾 0] = 𝐴

𝑖
+ 𝐵
𝑖
𝐾,

𝐴
𝑖
= [

𝐴 𝐵 − 𝐹
𝑖

0 0
] , 𝐵

𝑖
= [

𝐹
𝑖

𝐼
] , 𝐾 = [𝐾 0] .

(12)

𝑆
2
: packet dropout happens; (5) can be written as

𝑥 (𝑘 + 1) = 𝐴
2
(𝑘) 𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(13)

where 𝐴
2
= [
𝐴 𝐵

0 𝐼
].

From (2)–(9), the nonlinear uncertainty 𝑓(𝑥, 𝑘) satisfies

𝑓
𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) = 𝑓
𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) ≤ 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) ,

(14)

where 𝑈 is a known constant positive-definite matrix.
By the above analysis and assumptions, we can see that

networked control system can be described by the following
switched system with two modes:

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

(𝑘) 𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) ,

(15)

where 𝜎(𝑘) is called a switching signal. 𝜎(𝑘) = 1 represents no
packet dropout, while 𝜎(𝑘) = 2 implies packet dropout. The
switching characteristics between the two modes are often
assumed as theMarkov chain, and𝜋

𝑟𝑙
is transition probability

from mode 𝑟 to 𝑙, 𝑟, 𝑙 = 1, 2; therefore, 𝜎(𝑘) of the Markov
chain has ergodicity and satisfied the following condition:

lim
𝑛→∞

𝜋
(𝑛)

𝑟𝑙
= 𝜋
𝑙
, 𝑟, 𝑙 = 1, 2, (16)

where𝜋
𝑙
is the limitation of state 𝑙. So {𝜋

1
, 𝜋
2
} is the stationary

distribution of the Markov chain.
For an arbitrary switching sequence 𝜎(𝑘) and any given

integer 𝑘 > 0, let 𝑘
0
imply the initial time, and 𝑘

0
< 𝑘
1
<

𝑘
2
< ⋅ ⋅ ⋅ 𝑘

𝑞
< ⋅ ⋅ ⋅ < 𝑘, 𝑞 ≥ 1 represent the switching instants.

Denote 𝑇1[𝑘
0
, 𝑘) as the all sequence of the time period in

which subsystem 1 is active during the time interval [𝑘
0
, 𝑘).

Similarly, 𝑇2[𝑘
0
, 𝑘) represents the all period sequence that

subsystem 2 is active during the time interval [𝑘
0
, 𝑘).

Lemma 1 (Schur complement [22]). For a given matrix 𝑆 =

[
𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

], where 𝑆
11
, 𝑆
22

are square matrices, the following
conditions are equivalent:

(1) 𝑆 < 0;

(2) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0;

(3) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 2 (see [23]). The stochastic stability in discrete time
implies the stochastic stability in continuous time.

Definition 3 (see [24]). The closed-loop system (15) is mean
square exponentially stable with 𝑤(𝑘) = 0, if there exists 𝛿 >
0, 0 < 𝛽 < 1, such that

𝐸 {‖𝑥 (𝑘)‖
2

} < 𝛿𝛽
𝑘−𝑘
0𝐸 {

𝑥 (𝑘0)


2

} (17)

for all initial condition (𝑥(𝑘
0
), 𝜎(𝑘
0
)).

Definition 4 (see [25]). For any 𝑘 > 𝑘
0
≥ 0, let 𝑁

𝜎
[𝑘
0
, 𝑘)

denote the total number of the switching of 𝜎(𝑘) during the
interval [𝑘

0
, 𝑘). If

𝑁
𝜎
[𝑘
0
, 𝑘) ≤ 𝑁

0
+
𝑘 − 𝑘
0

𝑇
𝑎

(18)

holds for a given 𝑁
0
≥ 0, 𝑇

𝑎
> 0, then the constant 𝑇

𝑎
is

called the average dwell time and𝑁
0
is the chatter bound. For

simplicity, we choose𝑁
0
= 0 without loss of generality.

Definition 5 (see [20]). Given scalars 𝛾 > 0 and 0 < 𝜆 < 1, the
closed-loop system (15) is robustly exponentially stable with
an exponential𝐻

∞
performance 𝛾 if the following conditions

are satisfied:

(a) the closed-loop system (15) with 𝜔(𝑘) ≡ 0 is
exponentially stable;
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(b) under the zero-initial condition, it holds that

∞

∑

𝑘=𝑘
0

𝐸 {𝜆
𝑘

𝑧
𝑇

(𝑘) 𝑧 (𝑘)}

< 𝛾
2

∞

∑

𝑘=𝑘
0

𝐸 {𝑤
𝑇

(𝑘) 𝑤 (𝑘)} , ∀𝑤 (𝑘) ∈ 𝐿
2
[𝑘
0
,∞) .

(19)

3. Main Results

The following theorems present a sufficient condition for the
mean square stability of the considered system and the 𝐻

∞

controller design method.

3.1. Stability Analysis. In this subsection, sufficient conditions
for the existence of mean square exponential stability of
system (15) with 𝜔(𝑘) ≡ 0 are given in the following theorem.

Theorem 6. System (15) is mean square exponentially stable
with a decay rate 𝜆𝜌, if there exist positive definite matrices 𝑃

𝑖
,

𝑄, scalars 𝜇 ≥ 1, 𝜆
1
, and 𝜆

2
, such that

[
𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+𝜋
12
𝑄)𝐴
𝑖
− 𝜆
1
𝑃
𝑖
+𝑈
𝑇

𝑈 𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+𝜋
12
𝑄)

∗ (𝜋
11
𝑃
𝑗
+𝜋
12
𝑄) − 𝐼

]

< 0,

(20)

[
𝐴
𝑇

2
(𝜋
21
𝑃
𝑗
+𝜋
22
𝑄)𝐴
2
− 𝜆
2
𝑄+𝑈
𝑇

𝑈 𝐴
𝑇

2
(𝜋
21
𝑃
𝑗
+𝜋
22
𝑄)

∗ (𝜋
21
𝑃
𝑗
+𝜋
22
𝑄) − 𝐼

]

< 0 𝑖, 𝑗 = 1, 2, 3, . . . , 2
V
,

(21)

1

𝜇
𝑄 ≤ 𝑃

𝑖
≤ 𝜇𝑄, (22)

0 < 𝜆 < 1, (23)

max {𝜋
12
, 𝜋
21
} < −

ln 𝜆
ln 𝜇

, (24)

where 𝜆 = 𝜆
𝜋
21
/(𝜋
12
+𝜋
21
)

1
𝜆
𝜋
12
/(𝜋
12
+𝜋
21
)

2
, 𝜌 = 1 + max{𝜋

12
, 𝜋
21
} ⋅

(ln 𝜇/ ln 𝜆).

Proof. For the system (15), define the following Lyapunov
function:

𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘)) = 𝑥
𝑇

(𝑘) �̃�
𝜎(𝑘)

𝑥 (𝑘) , (25)

where

�̃�
𝜎(𝑘)

=

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
, for 𝜎 (𝑘) = 1,

�̃�
𝜎(𝑘)

= 𝑄, for 𝜎 (𝑘) = 2.

(26)

For subsystem 1, it follows from (15) that

Δ𝑉
1
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘))

= 𝑥
𝑇

(𝑘 + 1)(𝜋
11

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
12
𝑄)𝑥 (𝑘 + 1)

− 𝜆
1
𝑥
𝑇

(𝑘)(

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
)𝑥 (𝑘)

≤ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘))

𝑇

× (𝜋
11

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
12
𝑄)

⋅ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘))

− 𝜆
1
𝑥
𝑇

(𝑘)(

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
)𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) − 𝑓
𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘)

=

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘)

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) [

𝑥 (𝑘)

𝑓 (𝑥, 𝑘)
]

𝑇

Θ[
𝑥 (𝑘)

𝑓 (𝑥, 𝑘)
] ,

(27)

where

Θ = [
𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐴
𝑖
− 𝜆
1
𝑃
𝑖
+ 𝑈
𝑇

𝑈 𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)

∗ (𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄) − 𝐼

] .

(28)

From inequality (20), one obtains

𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘)) . (29)

In the same way, for subsystem 2, we obtain

Δ𝑉
2
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘))

= 𝑥
𝑇

(𝑘 + 1)(𝜋
21

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
22
𝑄)𝑥 (𝑘 + 1)

− 𝜆
2
𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘)
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≤ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘))

𝑇

× (𝜋
21

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
22
𝑄)

⋅ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘)) − 𝜆

2
𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) − 𝑓
𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) ;

(30)

then

𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘)) . (31)

Considering the condition (22), we get that

𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘)) ≤ 𝜇𝑉

2
(𝑥 (𝑘
−

) , 𝜉 (𝑘
−

)) ,

𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘)) ≤ 𝜇𝑉

1
(𝑥 (𝑘
−

) , 𝜉 (𝑘
−

)) .

(32)

Then for 𝑘
𝑞
< 𝑘 < 𝑘

𝑞+1
, we get

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸 [𝜇𝜆
(𝑘−𝑘
𝑞
)

𝜎(𝑘𝑞)
𝑉
𝜎(𝑘
𝑞−1
)
(𝑥 (𝑘
𝑞
) , 𝜉 (𝑘

𝑞
))]

< 𝐸 [𝜇𝜆
(𝑘−𝑘
𝑞
)

𝜎(𝑘𝑞)
𝜆
(𝑘
𝑞
−𝑘
𝑞−1
)

𝜎(𝑘𝑞−1)
𝑉
𝜎(𝑘
𝑞−1
)
(𝑥 (𝑘
𝑞−1
) , 𝜉 (𝑘

𝑞−1
))]

...

< 𝐸 [𝜇
𝑁
𝜎
[𝑘
0
,𝑘)

𝜆
𝑇
1

[𝑘
0
,𝑘)

1
𝜆
𝑇
2

[𝑘
0
,𝑘)

2
𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))] .

(33)

Note that the Markov chain is stationary (16); then

𝐸 [𝑇
1

[𝑘
0
, 𝑘)] = 𝜋

1
(𝑘 − 𝑘

0
) ,

𝐸 [𝑇
2

[𝑘
0
, 𝑘)] = 𝜋

2
(𝑘 − 𝑘

0
) .

(34)

Therefore, we can obtain that

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸 [𝜇
𝑁
𝜎
[𝑘
0
,𝑘)

𝜆
𝜋
1
(𝑘−𝑘
0
)

1
𝜆
𝜋
2
(𝑘−𝑘
0
)

2
𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [𝜇
𝑁
𝜎
[𝑘
0
,𝑘)

𝜆
(𝜋
21
/(𝜋
12
+𝜋
21
))(𝑘−𝑘

0
)

1

×𝜆
(𝜋
12
/(𝜋
12
+𝜋
21
))(𝑘−𝑘

0
)

2
𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [𝜇
𝑁
𝜎
[𝑘
0
,𝑘)

𝜆
(𝑘−𝑘
0
)

𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [𝜆
𝑁
𝜎
[𝑘
0
,𝑘)(ln 𝜇/ ln𝜆)

𝜆
(𝑘−𝑘
0
)

𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝐸 [(𝜆
1+(𝑁
𝜎
[𝑘
0
,𝑘)/(𝑘−𝑘

0
))⋅(ln 𝜇/ ln𝜆)

)
(𝑘−𝑘
0
)

]

× 𝐸 [𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))] .

(35)

From Definition 4 we have that

𝑘 − 𝑘
0

𝑁
𝜎
[𝑘
0
, 𝑘)

≥ 𝑇
𝑎
. (36)

And from [24], we can get 1/𝐸(𝑇
𝑎
) ≤ max{𝜋

12
, 𝜋
21
}; then

combining (23) and (24), we can know that

0 < 𝜆
1+(𝑁
𝜎
[𝑘
0
,𝑘)/(𝑘−𝑘

0
))⋅(ln 𝜇/ ln𝜆)

< 1, (37)

which ensure the convergence of 𝐸[𝑉
𝜎(𝑘)

(𝑥(𝑘), 𝜉(𝑘))].
In this case,

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸 [(𝜆
1+(1/𝑇

𝑎
)⋅(ln 𝜇/ ln𝜆)

)
(𝑘−𝑘
0
)

]

× 𝐸 [𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

= 𝜆
(𝑘−𝑘
0
)[1+(1/𝐸(𝑇

𝑎
))⋅(ln 𝜇/ ln𝜆)]

𝐸 [𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))]

≤ (𝜆
𝜌

)
(𝑘−𝑘
0
)

𝐸 [𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘
0
) , 𝜉 (𝑘

0
))] .

(38)

Furthermore

𝐸 [𝑎‖𝑥 (𝑘)‖
2

] ≤ 𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< (𝜆
𝜌

)
(𝑘−𝑘
0
)

𝐸 [𝑏
𝑥 (𝑘0)



2

] .

(39)

Then

𝐸 [‖𝑥 (𝑘)‖
2

] ≤
𝑏

𝑎
(𝜆
𝜌

)
(𝑘−𝑘
0
)

𝐸 [
𝑥 (𝑘0)



2

] . (40)

Therefore, by Definition 3, system (15) is mean square expo-
nentially stable.

Remark 7. From Lemma 2, we know that system (1) is also
mean square exponentially stable.

3.2.𝐻
∞

Performance Analysis and Controller Design. In this
subsection, we are in the position to prove the main result.
The 𝐻

∞
controller design method is given in the following

theorem.

Theorem8. For given scalars𝜆
1
,𝜆
2
, 𝛾, and𝜇 ≥ 1, if there exist

positive definite matrices 𝑃
𝑖
, 𝑋
𝑖
, 𝑆, 𝑄, and matrix 𝐾 = [𝐾 0]

of appropriate dimensions, 𝑖, 𝑗 = 1, 2, 3, . . . , 2V, such that (22)–
(24) and the following inequalities:

[
[
[
[
[
[
[
[
[
[

[

−𝜆
1
𝑃
𝑖
0 0 Γ

14
Γ
15

𝐶
𝑇

𝑈
𝑇

∗ −𝐼 0 √𝜋11𝐼 √𝜋12𝐼 0 0

∗ ∗ −𝛾
2

𝐼 √𝜋11𝐻
𝑇

√𝜋12𝐻
𝑇

0 0

∗ ∗ ∗ −𝑋
𝑗

0 0 0

∗ ∗ ∗ ∗ −𝑆 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0, (41)
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where Γ
14

= √𝜋11𝐴
𝑇

𝑖
+ √𝜋11𝐾

𝑇

𝐵
𝑇

𝑖
, Γ
15

= √𝜋12𝐴
𝑇

𝑖
+

√𝜋12𝐾
𝑇

𝐵
𝑇

𝑖
,

[
[
[
[
[
[
[
[
[
[

[

−𝜆
2
𝑄 0 0 √𝜋21𝐴

𝑇

2
√𝜋22𝐴

𝑇

2
𝐶
𝑇

𝑈
𝑇

∗ −𝐼 0 √𝜋21𝐼 √𝜋22𝐼 0 0

∗ ∗ −𝛾
2

𝐼 √𝜋21𝐻
𝑇

√𝜋22𝐻
𝑇

0 0

∗ ∗ ∗ −𝑋
𝑗

0 0 0

∗ ∗ ∗ ∗ −𝑆 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0,

𝑋
𝑖
𝑃
𝑖
= 𝐼, 𝑆𝑄 = 𝐼, 𝑖, 𝑗 = 1, 2, 3, . . . , 2

V

(42)

hold, then system (15) with the controller gain matrix 𝐾

has robustly mean square exponential stability with 𝐻
∞

disturbance attenuation level 𝛾.

Proof. It is easy to obtain that (20) and (21) can be deduced
from (41) and (42), respectively. Then from Theorem 6, it
can be verified that closed-loop system (15) is mean square
exponentially stable with 𝑤(𝑘) = 0.

For the nonzero𝑤(𝑘), using the same Lyapunov function
candidates as in Theorem 6, the following relations can be
obtained:
Δ𝑉
1
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘))

≤ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

𝑇

× (𝜋
11

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
12
𝑄)

⋅ (

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝐴
𝑖
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

− 𝜆
1
𝑥
𝑇

(𝑘)(

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘) 𝑃
𝑖
)𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘) − 𝑓
𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) ,

Δ𝑉
2
[𝑥 (𝑘 + 1)]

= 𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] − 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘))

≤ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

𝑇

× (𝜋
21

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝑃

𝑗
+ 𝜋
22
𝑄)

⋅ (𝐴
2
𝑥 (𝑘) + 𝑓 (𝑥, 𝑘) + 𝐻𝑤 (𝑘))

− 𝜆
2
𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) + 𝑥
𝑇

(𝑘) 𝑈
𝑇

𝑈𝑥 (𝑘)

− 𝑓
𝑇

(𝑥, 𝑘) 𝑓 (𝑥, 𝑘) .

(43)

From inequalities (43), we have

Δ𝑉
1
[𝑥 (𝑘 + 1)] + 𝑧

𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

≤

2
V

∑

𝑖=1

𝜉
𝑖
(𝑘)

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝜂

𝑇

(𝑘) Ξ
1
𝜂 (𝑘) ,

(44)

Δ𝑉
2
[𝑥 (𝑘 + 1)] + 𝑧

𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

≤

2
V

∑

𝑗=1

𝜉
𝑗
(𝑘 + 1) 𝜂

𝑇

(𝑘) Ξ
2
𝜂 (𝑘) ,

(45)

where

𝜂 (𝑘) = [𝑥
𝑇

(𝑘) 𝑓
𝑇

(𝑥, 𝑘) 𝑤
𝑇

(𝑘)]
𝑇

,

Ξ
1
=
[
[

[

𝜓
1
𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄) 𝐴

𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐻

∗ 𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄 − 𝐼 (𝜋

11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐻

∗ ∗ 𝜑
1

]
]

]

,

Ξ
2
=
[
[

[

𝜓
2
𝐴
𝑇

2
(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄) 𝐴

𝑇

2
(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐻

∗ 𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄 − 𝐼 (𝜋

21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐻

∗ ∗ 𝜑
2

]
]

]

,

𝜓
1
= 𝐴
𝑇

𝑖
(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐴
𝑖
− 𝜆
1
𝑃
𝑖
+ 𝐶
𝑇

𝐶 + 𝑈
𝑇

𝑈,

𝜓
2
= 𝐴
𝑇

2
(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐴
2
− 𝜆
2
𝑄 + 𝐶

𝑇

𝐶 + 𝑈
𝑇

𝑈,

𝜑
1
= 𝐻
𝑇

(𝜋
11
𝑃
𝑗
+ 𝜋
12
𝑄)𝐻 − 𝛾

2

𝐼,

𝜑
2
= 𝐻
𝑇

(𝜋
21
𝑃
𝑗
+ 𝜋
22
𝑄)𝐻 − 𝛾

2

𝐼.

(46)

In terms of the Schur complement, we obtain

[
[
[
[
[
[

[

−𝜆
1
𝑃
𝑖
+ 𝐶
𝑇

𝐶 + 𝑈
𝑇

𝑈 0 0 √𝜋11𝐴
𝑇

𝑖
√𝜋12𝐴

𝑇

𝑖

∗ −𝐼 0 √𝜋11𝐼 √𝜋12𝐼

∗ ∗ −𝛾
2

𝐼 √𝜋11𝐻
𝑇

√𝜋12𝐻
𝑇

∗ ∗ ∗ −𝑃
−1

𝑗
0

∗ ∗ ∗ ∗ −𝑄
−1

]
]
]
]
]
]

]

< 0,

(47)

where 𝐴
𝑖
= 𝐴
𝑖
+ 𝐵
𝑖
𝐾,

[
[
[
[
[
[

[

−𝜆
2
𝑄 + 𝐶

𝑇

𝐶 + 𝑈
𝑇

𝑈 0 0 √𝜋21𝐴
𝑇

2
√𝜋22𝐴

𝑇

2

∗ −𝐼 0 √𝜋21𝐼 √𝜋22𝐼

∗ ∗ −𝛾
2

𝐼 √𝜋21𝐻
𝑇

√𝜋22𝐻
𝑇

∗ ∗ ∗ −𝑃
−1

𝑗
0

∗ ∗ ∗ ∗ −𝑄
−1

]
]
]
]
]
]

]

< 0.

(48)

In light of Lemma 1, if equalities (47) and (48) hold, then
combining (44) and (45), we have that
𝐸 [𝑉
1
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

1
𝑉
1
(𝑥 (𝑘) , 𝜉 (𝑘)) − 𝐽 (𝑘) ,

𝐸 [𝑉
2
(𝑥 (𝑘 + 1) , 𝜉 (𝑘 + 1))] < 𝜆

2
𝑉
2
(𝑥 (𝑘) , 𝜉 (𝑘)) − 𝐽 (𝑘) ,

(49)

where 𝐽(𝑘) = 𝑧𝑇(𝑘)𝑧(𝑘) − 𝛾2𝑤𝑇(𝑘)𝑤(𝑘).



Mathematical Problems in Engineering 7

Combining (22) and (49), it can be seen that

𝐸 [𝑉
𝜎(𝑘)

(𝑥 (𝑘) , 𝜉 (𝑘))]

< 𝐸[

[

𝜇𝜆
𝑘−𝑘
𝑞

𝜎(𝑘𝑞)
𝑉
𝜎(𝑘
𝑞−1
)
(𝑘
𝑞−1
) −

𝑘−1

∑

𝑠=𝑘
𝑞

𝜆
𝑘−𝑠−1

𝜎(𝑘𝑞)
𝐽 (𝑠)]

]

< 𝐸

{

{

{

𝜇𝜆
𝑘−𝑘
𝑞

𝜎(𝑘𝑞)
[

[

𝜆
𝑘
𝑞
−𝑘
𝑞−1

𝑘
𝑞−1

𝑉
𝜎(𝑘
𝑞−1
)
(𝑘
𝑞−1
)−

𝑘
𝑞
−1

∑

𝑠=𝑘
𝑞−1

𝜆
𝑘
𝑞
−𝑠−1

𝜎(𝑘𝑞−1)
𝐽 (𝑠)]

]

−

𝑘−1

∑

𝑠=𝑘
𝑞

𝜆
𝑘−𝑠−1

𝜎(𝑘𝑞)
𝐽 (𝑠)

}

}

}

...

< 𝐸[

[

𝜇
𝑁
𝜎
[𝑘
0
,𝑘)

𝜆
𝑇
1

[𝑘
0
,𝑘)

1
𝜆
𝑇
2

[𝑘
0
,𝑘)

2
𝑉
𝜎(𝑘
0
)
(𝑘
0
)

−

𝑘−1

∑

𝑠=𝑘
0

𝜇
𝑁
𝜎
[𝑠,𝑘)

𝜆
𝑇
1

[𝑠,𝑘−1)

1
𝜆
𝑇
2

[𝑠,𝑘−1)

2
𝐽 (𝑠)]

]

.

(50)

Since𝑉
𝜎(𝑘)

> 0 and the zero-initial state assumption, it can be
seen that

𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜇
𝑁
𝜎
[𝑠,𝑘)

𝜆
𝑇
1

[𝑠,𝑘−1)

1
𝜆
𝑇
2

[𝑠,𝑘−1)

2
𝐽 (𝑠)]

]

< 0. (51)

From (34), (51) can be written as

𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜇
𝑁
𝜎
[𝑠,𝑘)

𝜆
𝑘−1−𝑠

𝐽 (𝑠)]

]

< 0. (52)

Multiplying both sides of inequality (52) by −𝑁
𝜎
[0, 𝑘), we can

obtain

𝐸[

[

𝜇
−𝑁
𝜎
[0,𝑘)

𝑘−1

∑

𝑠=𝑘
0

𝜇
𝑁
𝜎
[𝑠,𝑘)

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)]

]

< 𝐸[

[

𝜇
−𝑁
𝜎
[0,𝑘)

𝑘−1

∑

𝑠=𝑘
0

𝜇
𝑁
𝜎
[𝑠,𝑘)

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)]

]

,

(53)

which is equivalent to

𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜇
−𝑁
𝜎
[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)]

]

< 𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜇
−𝑁
𝜎
[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)]

]

.

(54)

Then, from Definition 4 and (24)

𝑁
𝜎
[0, 𝑠) ≤

𝑠

𝑇
𝑎

< 𝑠 ⋅max {𝜋
12
, 𝜋
21
} < 𝑠 ⋅ (−

ln 𝜆
ln 𝜇

) , (55)

we have

𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜇
−𝑁
𝜎
[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)]

]

> 𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜇
𝑠⋅ln𝜆/ ln 𝜇

𝜆
(𝑘−1−𝑠)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)]

]

= 𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜆
(𝑘−1)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)]

]

,

𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜇
−𝑁
𝜎
[0,𝑠)

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)]

]

< 𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)]

]

.

(56)

Therefore

𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜆
(𝑘−1)

𝑧
𝑇

(𝑠) 𝑧 (𝑠)]

]

< 𝐸[

[

𝑘−1

∑

𝑠=𝑘
0

𝜆
(𝑘−1−𝑠)

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)]

]

,

(57)

which implies that

𝐸[

[

∞

∑

𝑠=𝑘
0

𝑧
𝑇

(𝑠) 𝑧 (𝑠)

∞

∑

𝑘=𝑠+1

𝜆
(𝑘−1)]

]

< 𝐸[

[

∞

∑

𝑠=𝑘
0

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)

∞

∑

𝑘=𝑠+1

𝜆
(𝑘−1−𝑠)]

]

.

(58)

Then

𝐸[

[

∞

∑

𝑠=𝑘
0

𝜆
𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠)]

]

< 𝐸[

[

∞

∑

𝑠=𝑘
0

𝛾
2

𝑤
𝑇

(𝑠) 𝑤 (𝑠)]

]

. (59)

By Definition 5, system (15) has an exponential 𝐻
∞

perfor-
mance 𝛾. This completes the proof.

Remark 9. It should be pointed out that the conditions
proposed inTheorem 8 are not standard LMIs. In this paper,
it is suggested to use the cone complementarity linearization
(CCL) algorithm to solve this problem [26]; a nonlinear
constraint can be converted to a linear optimization problem
with a rank constraint.
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Remark 10. In this paper, the mean square exponential
𝐻
∞

performance of the system (15) can be guaranteed,
which means the noise attenuation performance is different
when the decay degree of the system is different, and the
decay degree has a close relation with the elements of the
transition probabilities. Note that the scalar 𝜆 in the sequel
symbolizes the decreasing rate of the Lyapunov function to
be constructed for each subsystem fromTheorem 6. Then, if
𝜆 → 1, the evaluated performance index will approach the
normal𝐻

∞
performance for the whole time domain.

4. Numerical Example

In this section, we present an example to illustrate the effec-
tiveness of the proposed approach. Consider the following
system:

̇𝑥 (𝑡) = [
−1 1

0 −0.1
] 𝑥 (𝑡) + [

0

0.1
] 𝑢 (𝑡)

+ [
0.06𝑥
1
sin𝑥
1

0.01𝑥
2
cos𝑥
2

] + [
0.05

0.01
]𝑤 (𝑡) ,

𝑧 (𝑡) = [0.1 0.5] 𝑥 (𝑡) .

(60)

Let the sampling period be 𝑇 = 0.3 s, and 0 ≤ 𝜏
𝑘
≤ 0.1 s.

Assume that the transition probability matrix of stochastic
switching signals is given as 𝑃 = [

0.8 0.2

0.6 0.4
]; the corresponding

matrices are given by

𝐴
1
= [

[

0.5488 0.2219 0

0 0.9704 0

0 0 0

]

]

,

𝐴
2
= [

[

0.5488 0.2219 0.1

0 0.9704 0

0 0 0

]

]

,

𝐴
3
= [

[

0.5488 0.2219 −0.0980

0 0.9704 0.0098

0 0 0

]

]

,

𝐴
4
= [

[

0.5488 0.2219 0.0020

0 0.9704 0.0098

0 0 0

]

]

,

𝐴
2
= [

[

0.5488 0.2219 0.0037

0 0.9704 0.0296

0 0 1

]

]

, 𝐵
1
= [

[

0.0037

0.0296

1

]

]

,

𝐵
2
= [

[

−0.0963

0.0296

1

]

]

, 𝐵
3
= [

[

0.1017

0.0198

1

]

]

,

𝐵
4
= [

[

0.1017

0.0198

1

]

]

, 𝐻 = [

[

0.0116

0.0030

0

]

]

,

𝑈 = diag {0.2, 0.2, 0} , 𝐶 = [0.1 0.5 0] .

(61)
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Figure 1: State trajectories of the closed-loop system.

For subsystem 2 without state feedback, 𝐴
2
is an unstable

matrix, and 𝜆
2
> 1. By Theorem 6, we can get 0 < 𝜆

1
< 1.

Take 𝜆
1
= 0.45, 𝜆

2
= 2; then 𝜆 = 0.6533 < 1, which satisfies

the condition (16). It is assumed that 𝛾 = 2; solving LMIs (41)
and (42) inTheorem 8, we get the following solutions:

𝑋
1
= [

[

2.3889 −0.1809 0.9960

−0.1809 0.0703 −0.8737

0.9960 −0.8737 40.8886

]

]

,

𝑋
2
= [

[

6.4614 −0.1005 −31.2945

−0.1005 0.0663 −1.2282

−31.2945 −1.2282 275.1873

]

]

,

𝑋
3
= [

[

7.8714 −0.3703 43.1660

−0.3703 0.0723 −1.6709

43.1660 −1.6709 343.6616

]

]

,

𝑋
4
= [

[

2.4000 −0.1227 4.0524

−0.1227 0.2325 −11.7220

4.0524 −11.7220 145.1491

]

]

,

𝑆 = [

[

9.7289 −2.4859 9.0787

−2.4859 0.7924 −4.3508

9.0787 −4.3508 85.3273

]

]

.

(62)

Then the controller gain can be obtained:

𝐾 = [−0.8405 −14.2332] . (63)

The state trajectories of the NCS and the corresponding
switching signal are shown in Figures 1 and 2, respectively,
where the initial condition 𝑥

0
= [−1 1]

𝑇 and 𝑤(𝑘) =

0.05 exp(−0.01𝑘).
From simulation results, it can be seen that the NCS

is robustly mean square exponentially stable and the 𝐻
∞

disturbance attenuation level 𝛾 = 2.
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Figure 2: The stochastic switching signal.

5. Conclusions

In this paper, a discrete-time switched system with two
subsystems has been presented to model the NCS with time
delay and packet dropout. A new approach by using the
average dwell time method is proposed to study the robust
stabilization and 𝐻

∞
control of the addressed NCS. Finally,

a numerical example has been given to demonstrate the
effectiveness of the proposed method.
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This paper is concerned with disturbance-observer-based control (DOBC) for a class of time-delay systems with uncertain
sinusoidal disturbances. The disturbances are decomposed as precise and uncertain parts using nonlinear disturbance observer
(DO) after appropriate coordinate transformation. And then the two parts can be compensated by corresponding controller,
respectively, such that the classic DOBCmethod is extended to uncertain disturbance rejection. One novel feature of the proposed
method is that even if the precise disturbance parameters are inaccessible, the merits of DOBC can be inherited. By integrating
the disturbance observers with feedback control laws with time delay, the disturbances can be rejected and the desired dynamic
performances can be guaranteed. Finally, simulations for a flight control system are given to demonstrate the effectiveness of the
results.

1. Introduction

Dynamical systems with time delays [1–3] widely exist in
many systems, such as hydraulic processes, chemical systems,
and temperature processes. In addition, the presence of
exogenous disturbances is inevitable in engineering control
systems; a complex systemmay suffer various of disturbances
due to inherent physical property including sensor measure-
ment noise, control error, and structural vibrations. As the
phenomenons mentioned above are often primary sources
of instability and performance degradation, it is an impen-
dence thing to design control strategy for time-delay sys-
tems characteristic with antidisturbance performance. Some
researchers [4–6] have contributed on this subject recently, in
[4, 5] the 𝐻

∞
control is adopted to attenuate the influences

from disturbances to a desired level, for systems with the
bounded disturbances. In [6] a reduced-order observer is
structured for the estimation of the modeled disturbance;
simultaneously, 𝐻

∞
scheme can attenuate norm bounded

signals. Due to the increasing complexity of the controlled
plants and environment, it makes the higher demand for
system accuracy, reliability, and real-time performance.

Disturbance-observer-based control (DOBC) is a preva-
lent anti-disturbance control strategy, which has a simple

structure and is easily implemental in engineering (see sur-
veys [7] and references therein). If the priori characteristics
of disturbance to be estimated can be obtained, DOBC can be
implemented where the disturbance compensation dynamic
property within a composite system can be analyzed [8–
11]. Originating from [9], a hierarchical control strategy is
established in [6, 10, 11] aiming at multiple disturbances
in multiinput multioutput (MIMO) nonlinear system; the
outcome shows that the strategy has high precision together
with strong robustness.The literaturementioned above shows
that the DOBC is feasible for more complex structure and
can avoid heavy computation, such as resolve of partial dif-
ferential equations (PDEs) compared with output regulation
theory. However, themain limitation of the classical DOBC is
that the precise characteristic parameters of disturbancemust
be available. Moreover, failure in modeling for disturbance
accurately may lead to severe deterioration of closed loop
system performance, even to instability. It has not been
reported that DOBC is presented for time-delay systems
subject to uncertain disturbances.

In DOBC [9–11, 13], the disturbance is seen as extended
state, correspondingly an extended state observer; that is,
disturbance observer (DO) can be constructed to estimate
the disturbance. Once we have no access of the precise
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disturbance model, no effective observer can be constructed
directly to estimate the disturbance as thematching condition
[12] is not satisfied. It still remains challenging work to extend
the DOBC to the general case, in which the disturbance
dynamic model has parametric uncertainty The aim of this
paper is to provide a novel approach to estimate and reject
the uncertain disturbances, such that the merits of DOBC
can be inherited. We first construct an auxiliary observer
and then decompose the disturbances into a known precise
function, an uncertain nonlinear function, and a decaying
vector defined by the auxiliary observer. Corresponding
disturbance rejection strategy can be implemented to deal
with the uncertain disturbance after the sophisticated design
with lower conservativeness compared with the literature
mentioned above.

The organization of the problem is given below. Section 2
gives the problem formulation. In Section 3, the formulation
for the uncertain disturbance estimation with time delay is
introduced. In Section 4, by using the auxiliary vector, DOBC
combined with adaptive controller is designed to reject the
disturbance and globally stabilize the closed-loop systems. In
Section 5, the proposed method is applied to an A4D aircraft
model; simulations show the effectiveness of the proposed
approaches. Section 6 provides conclusions.

2. Formulation of the Problem

The following continuous time-delay system with uncertain
perturbation is considered:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐹𝑓 (𝑥 (𝑡) , 𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐵 [𝑢 (𝑡) + 𝑑 (𝑡)] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑢(𝑡) ∈ 𝑅

𝑚 are the state and the control
input, respectively. 𝐴 ∈ 𝑅

𝑛×𝑛, 𝐵 ∈ 𝑅
𝑛×𝑚, and 𝐴

𝑑
∈ 𝑅
𝑛×𝑛

are the coefficient matrices, satisfying rank(𝐵) = 𝑚. 𝐹 is
the corresponding weighting matrix, 𝑓(𝑥(𝑡), 𝑡) is nonlinear
function which is supposed to satisfy bounded conditions
described as Assumption 1. 𝑑(𝑡) is a vector of sinusoidal
disturbance and 𝜏 is the delay time. Such a model can also
represent a wider class of time-delay system compared with
papers [6, 9, 14].

Assumption 1. For any 𝑥
𝑗
(𝑡) ∈ 𝑅

𝑛, 𝑗 = 1, 2 nonlinear
functions 𝑓(𝑥, 𝑡) satisfy

𝑓 (0, 𝑡) = 0,

𝑓 (𝑥1 (𝑡) , 𝑡) − 𝑓 (𝑥2 (𝑡) , 𝑡)
 ≤

𝑈 (𝑥1 (𝑡) − 𝑥2 (𝑡))
 ,

(2)

where 𝑈 is the given constant weighting matrix.
Similar to the output regulation theory, DOBC strat-

egy [9, 15], each unknown external disturbance 𝑑
𝑖
(𝑖 =

1, 2, . . . , 𝑚) is supposed to be generated by an exogenous
system described by

̇𝑤
𝑖
= Γ
𝑖
𝑤
𝑖
,

𝑑
𝑖
= 𝑉
𝑖
𝑤
𝑖
,

(3)

where (Γ
𝑖
, 𝑉
𝑖
) is uniformly observable. To show the main

ideology of our paper, suppose 𝑤
𝑖
∈ 𝑅
2 and the linear

uncertain matrix Γ
𝑖
∈ 𝑅
2×2. For sake of simplicity, (Γ

𝑖
, 𝑉
𝑖
) has

observable canonical form,which can be expressed as follows:

Γ
𝑖
= [

0 1

−𝑊
𝑖
0
] , 𝑉

𝑖
= [1 0] , 𝑖 = 1, . . . , 𝑚, (4)

where𝑊
𝑖
is parameter characteristics related to disturbance

frequency; different from the present work, we consider𝑊
𝑖
to

be uncertain constant values, for the sake of simplicity, denote
that

𝑊 =
[
[

[

𝑊
1

...
𝑊
𝑛

]
]

]

, Θ =
[
[

[

Θ
1

...
Θ
𝑛

]
]

]

, Ξ =
[
[

[

Ξ
1

...
Ξ
𝑛

]
]

]

, (5)

where Θ
𝑖
and Ξ

𝑖
represent precise and unknown part of𝑊

𝑖
,

respectively, that is, 𝑊
𝑖
= Θ
𝑖
+ Ξ
𝑖
. In application, many

kinds of disturbances in engineering can be described by
this model, for example, the control of aircraft control [9],
magnetic bearing control [16], robotic systems [14], and so
forth.

In the conventional DOBC strategy [8, 9, 11, 14, 17], the
Γ
𝑖
in disturbance must be known in advance. This condition

is so strict for reason that the disturbances acting on a
system are difficult to be modeled precisely in general. Up
to now, there is no related method discussing the uncertain
disturbances estimation problem subject to time delay. This
is the major hurdle that mostly impedes the further research
and application in DOBC and other disturbance rejection
research.

In this paper, we will derive the relation between the
uncertain parameters Γ and 𝑑(𝑡), according to which the
exogenous disturbance may be expressed as nonlinear func-
tions including precise part and uncertain part. The control
problem considered will be solved by means of DOBC
combinedwith adaptive control (DOBC+ adaptive) such that
the proposed controller can achieve arbitrary disturbance
attenuation.

3. Nonlinear Disturbance Observer

Thedisturbance parameters are inaccessible in this state time-
delay system (1), so it is difficult to construct the disturbance
observer with traditional ways directly as in [9, 14]. In this
section, we first design the auxiliary observer for nonlinear
vector 𝜉 with time delay. After an appropriate coordinate
transformation, the disturbance 𝑑 may be formulated as a
parametric uncertain function. According to (2), 𝑑 in (1) can
be expressed as follows:

̇𝑤 = Γ𝑤,

𝑑 = 𝑉𝑤,

(6)

where 𝑤 ∈ 𝑅2𝑚, Γ ∈ 𝑅2𝑚×2𝑚, and

Γ = [

[

Γ
1
0 0

0 d 0

0 0 Γ
𝑛

]

]

, 𝑉 = [

[

𝑉
1
0 0

0 d 0

0 0 𝑉
𝑛

]

]

. (7)
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In this section, we suppose that 𝑓(𝑥(𝑡), 𝑡) is given and
Assumption 1 holds. When all states of the system are
available, it is unnecessary to estimate the states, then only
the estimation of the disturbance need to be concerned.
Construct an auxiliary MIMO nonlinear system as follows:

𝜉 = ] (𝑡) + 𝜓,

̇] = 𝐺 (] (𝑡) + 𝜓)

− 𝐿 ̌𝐵 (𝐴𝑥 + 𝐹𝑓 (𝑥 (𝑡) , 𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏) + 𝐵𝑢 (𝑡)) ,

𝜓 = 𝐿 ̌𝐵𝑥 (𝑡) ,

(8)

where

𝜉 =

[
[
[
[

[

𝜉
1

𝜉
2

...
𝜉
𝑛

]
]
]
]

]

, 𝜉
𝑖
= [

𝜉
𝑖1

𝜉
𝑖2

] . (9)

𝐺 and 𝐿 are given constant matrices in form of

𝐺 = [

[

𝐺
1
0 0

0 d 0

0 0 𝐺
𝑛

]

]

, 𝐿 = [

[

𝐿
1
0 0

0 d 0

0 0 𝐿
𝑛

]

]

, (10)

where

𝐿
𝑖
= [

0

1
] , 𝐺

𝑖
= [

0 1

−𝑔
𝑖1
−𝑔
𝑖2

] , (11)

𝐺
𝑖
is Hurwitz by selection of 𝑔

𝑖1
and 𝑔

𝑖2
. Considering

rank(𝐵) = 𝑚, there exists pseudoinverse ̌𝐵 such that ̌𝐵𝐵 = 𝐼,
so system (8) can be transformed as

̇𝜉 = 𝐺𝜉 + 𝐿𝑑. (12)

Comparing (6) with (12) yields

[

̇𝜉

̇𝑤
] = [

𝐺 𝐿𝑉

0 Γ
] [
𝜉

𝑤
] . (13)

Lemma 2. For system (6), if 𝐺
𝑖
and 𝐿

𝑖
have form of (11) and

guarantee

(𝑔
𝑖1
−𝑊
𝑖
)
2

+ 𝑔
2

𝑖2
𝑊
𝑖
̸= 0 (14)

in global region of𝑊
𝑖
, then there exists an invertible constant

matrix Π
𝑖
such that

̇𝜉
𝑖
+ Π
𝑖
̇𝑤
𝑖
= 𝐺
𝑖
(𝜉
𝑖
+ Π
𝑖
𝑤
𝑖
) . (15)

Proof. Considering an invertible matrix

𝑃
−1

𝑖
= [

𝐼
2×2

Π
𝑖

0 𝐼
2×2
] , (16)

where

Π
𝑖
=

[
−(𝑔𝑖1−𝑊𝑖) 𝑔

𝑖2

−𝑊
𝑖
𝑔
𝑖2
−(𝑔𝑖1−𝑊𝑖)

]

(𝑔
𝑖1
−𝑊
𝑖
)
2

+ 𝑔
2

𝑖2
𝑊
𝑖

,
(17)

it is obvious that if (14) is satisfied, then Π
𝑖
is invertible in

global region of𝑊
𝑖
; furthermore it can be derived that

Π
−1

𝑖
= [

−𝑔
𝑖1
+𝑊
𝑖

−𝑔
𝑖2

𝑊
𝑖
𝑔
𝑖2

−𝑔
𝑖1
+𝑊
𝑖

] . (18)

According to (13), notice that

[

̇𝜉
𝑖

̇𝑤
𝑖

] = [
𝐺
𝑖
𝑉
𝑖
𝐿
𝑖

0 Γ
𝑖

] [
𝜉
𝑖

𝑤
𝑖

] , (19)

we can define the following coordinate transformation

[
𝜉
𝑖

𝑤
𝑖

] = 𝑃
−1

𝑖
[
𝜉
𝑖

𝑤
𝑖

] . (20)

Combining (16) with (20) yields

[

̇
𝜉
𝑖

𝑤
𝑖

] = 𝑃
−1

𝑖
[
𝐺
𝑖
𝑉
𝑖
𝐿
𝑖

0 Γ
𝑖

]𝑃
𝑖
[
𝜉
𝑖

𝑤
𝑖

] . (21)

After calculation, it can be verified that

𝑃
−1

𝑖
[
𝐺
𝑖
𝐿
𝑖
𝑉
𝑖

0 Γ
𝑖

]𝑃
𝑖
= [

𝐺
𝑖
0

0 Γ
𝑖

] . (22)

Thus (15) can be got directly following (21) and (22).

Based on Lemma 2, we can give another form of 𝑑
𝑖
as

𝑑
𝑖
(𝑡) = 𝑉

𝑖
𝑤
𝑖
(𝑡) = −𝑉

𝑖
(𝑡) 𝜉
𝑖
(𝑡) + 𝑉

𝑖
(𝑡) 𝜉
𝑖
(𝑡) , (23)

where

𝑤
𝑖
(𝑡) = −Π

−1

𝑖
𝜉
𝑖
(𝑡) + Π

−1

𝑖
𝜉
𝑖
(𝑡) , 𝑉

𝑖
= 𝑉
𝑖
Π
−1

𝑖
,

𝜉
𝑖
= 𝜉
𝑖
+ Π
𝑖
𝑤
𝑖

(24)

and satisfy

̇
𝜉
𝑖
= 𝐺
𝑖
𝜉
𝑖
. (25)

Similarly, 𝑑 can be rewritten as

𝑑 = 𝑉𝜉 + 𝑉𝜉, (26)

where

𝑉 = [

[

𝑉
1
Π
−1

1
0 0

0 d 0

0 0 𝑉
𝑚
Π
−1

𝑚

]

]

, 𝜉 =

[
[
[

[

𝜉
1

...
𝜉
𝑚

]
]
]

]

, (27)

according to (10) and (25), 𝜉 satisfies

̇
𝜉 = 𝐺𝜉. (28)

From Lemma 2, we have given another form of 𝑑 through
auxiliary observer 𝜉, and can construct observer of 𝑑 as

𝑑 = 𝑉𝜉, (29)
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thus the proposed method will exhibit classic DOBC prop-
erty.

Notice that 𝑉 in observer 𝑑 cannot be implemented
directly as the𝑊

𝑖
is uncertain. To show it clearly, we divide

𝑑 into two parts. One part is a precise value that can be
predicted and the other is uncertain constant parameter
multiplied by a known nonlinear term. For the sake of
simplicity, denote

𝑉𝜉 = [

[

𝑉
1
0 0

0 d 0

0 0 𝑉
𝑛

]

]

[
[
[
[
[
[

[

−Π
−1

1
𝜉
1

−Π
−1

2
𝜉
2

...
−Π
−1

𝑛
𝜉
𝑛

]
]
]
]
]
]

]

=
[
[

[

(−𝑔
11
+ Θ
11
) 𝜉
11
+ (Θ
12
− 𝑔
12
) 𝜉
12

...
(−𝑔
𝑚1
+ Θ
𝑚1
) 𝜉
𝑚1
+ (Θ
𝑚2
− 𝑔
𝑚2
) 𝜉
𝑛2

]
]

]

+ [

[

𝜉
11

d
𝜉
𝑚1

]

]

[
[

[

Ξ
1

...
Ξ
𝑛

]
]

]

.

(30)

A notable property of (29) is that uncertain sinusoidal 𝑑
can be expressed in form of parametric uncertainty. So, we
need not estimate the upper bounds of 𝑑 as in [18–21].

4. DOBC with Stability Analysis

After substituting (26) into system (1), we have

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐹𝑓 (𝑥 (𝑡) , 𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏)

+ 𝐵 [𝑢 (𝑡) + 𝑉𝜉 + 𝑉𝜉] .

(31)

For the plants with known nonlinearity, the DOBC+adaptive
strategy can be designed by using the separation principle as
follows:

𝑢 = 𝐾𝑥 + 𝑢
𝑜
+ 𝑢
𝑎
, (32)

where 𝐾 is the conventional control gain for stabilization,
𝑢
𝑜
and 𝑢

𝑎
are used to reject and attenuate the disturbances

known and uncertain parts, respectively, and according to
(30) we select

𝑢
𝑜
= −

[
[

[

(−𝑔
11
+ Θ
11
) 𝜉
11
+ (Θ
12
− 𝑔
12
) 𝜉
12

...
(−𝑔
𝑚1
+ Θ
𝑚1
) 𝜉
𝑚1
+ (Θ
𝑚2
− 𝑔
𝑚2
) 𝜉
𝑚2

]
]

]

. (33)

Similar to [22], adaptive controller 𝑢
𝑎
is used to compen-

sate unknown part of disturbance 𝑑 which satisfies

𝑢
𝑎
= −ΘΞ̂ (34)

where

Θ = [

[

𝜉
11

d
𝜉
𝑛1

]

]

(35)

and Ξ̂ is estimation of Ξ. At last the dynamic system (31) may
be rewritten as follows:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐹𝑓 (𝑥 (𝑡) , 𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑)

+ 𝐵 [𝐾𝑥 + Θ (Ξ − Ξ̂) + 𝑉𝜉] .

(36)

At this stage, our objective is to find 𝐾 such that the
closed-loop system (31) with 𝑢 = 𝐾𝑥 is asymptotically
stable. For the sake of simplifying descriptions, we denote
sym(𝑀) := 𝑀 +𝑀

𝑇 and

𝑁
1
= 𝑃
1
(𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)

𝑇

𝑃
1
. (37)

Theorem 3. For given 𝜆 > 0, if (14) can be guaranteed and
there exist 𝑄

1
> 0, 𝑃

1
> 0, 𝐸 = 𝑆−1 > 0 and 𝑅

1
satisfying

Ω =

[
[
[
[
[
[
[
[
[

[

Sym (AQ1 + BR1) 𝐴𝑑𝐸 𝐹
1

𝑄
1

𝑈𝑄
1

∗ −𝐸 0 0 0

∗ ∗ −
1

𝜆
2

1

𝐼 0 0

∗ ∗ ∗ −𝐸 0

∗ ∗ ∗ ∗ ∗ −
1

𝜆
2

1

𝐼

]
]
]
]
]
]
]
]
]

]

< 0,

(38)

then under DOBC law (32) and adaptive dynamic

̇
Ξ̂ = 𝛾
1
Θ
𝑇

𝐵
𝑇

𝑃𝑥, (𝛾
1
> 0) (39)

the closed-loop system (36) with gain 𝐾 = 𝑅
1
𝑄
−1

1
is asymptot-

ically stable.

Proof. Denote𝑉(𝑥(𝑡), 𝜉(𝑡), Ξ̃(𝑡), 𝑡) = 𝑉
1
(𝑥(𝑡), 𝑡) +𝑉

2
(𝜉(𝑡), 𝑡) +

𝑉
3
(Ξ̃(𝑡), 𝑡), where

𝑉
1
(𝑥 (𝑡) , 𝑡) = 𝑥(𝑡)

𝑇

𝑃𝑥 (𝑡)

+
1

𝜆2
∫

𝑡

0

(‖𝑈𝑥 (𝜎)‖
2

−
𝑓 (𝑥 (𝜎) , 𝜎)



2

) 𝑑𝜎

+ ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝜎) 𝑆𝑥 (𝜎) 𝑑𝜎,

𝑉
2
(𝜉 (𝑡) , 𝑡) = 𝛾

2
𝜉(𝑡)
𝑇

𝑃
2
𝜉 (𝑡) , (𝛾

2
> 0)

𝑉
3
(Ξ (𝑡) , 𝑡) = 𝛾

−1

1
Ξ̃
𝑇

Ξ̃.

(40)
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Along with the trajectories of (36) and (39), firstly it can be
verified that

𝑉
1
(𝑥 (𝑡) , 𝑡) + 𝑉

3
(Ξ̃, 𝑡)

= ̇𝑥(𝑡)
𝑇

𝑃𝑥 (𝑡) + 𝑥(𝑡)
𝑇

𝑃 ̇𝑥 (𝑡)

+
1

𝜆2
(‖𝑈𝑥 (𝑡)‖

2

−
𝑓 (𝑥 (𝑡) , 𝑡)



2

)

+ 𝑥
𝑇

(𝑡) 𝑆𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏) 𝑆𝑥 (𝑡 − 𝜏) + 2𝑥
𝑇

(𝑡) 𝑃𝐵𝑉𝜉

≤ (𝐴𝑥 (𝑡) + 𝐹𝑓 (𝑥 (𝑡) , 𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏))

𝑇

𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃 (𝐴𝑥 (𝑡) + 𝐹𝑓 (𝑥 (𝑡) , 𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝜏))

+
1

𝜆2
𝑥
𝑇

(𝑡) 𝑈
𝑇

𝑈𝑥 (𝑡) −
1

𝜆2
𝑓
𝑇

(𝑥 (𝑡) , 𝑡) 𝑓 (𝑥 (𝑡) , 𝑡)

+ 𝑥
𝑇

(𝑡) 𝑆𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏) 𝑆𝑥 (𝑡 − 𝜏) + 2𝑥
𝑇

𝑃𝐵𝑉𝜉

= [

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

𝑓 (𝑥 (𝑡) , 𝑡)

]

]

𝑇

Ω
1

[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

𝑓 (𝑥 (𝑡) , 𝑡)

]

]

+ 2𝑥
𝑇

𝑃𝐵𝑉𝜉,

(41)

where

Ω
1
=

[
[
[
[
[

[

𝑁
1
+ 𝑆 +

1

𝜆
2

1

𝑈
𝑇

1
𝑈
1
𝑃𝐴
𝑑

𝑃𝐹
1

∗ −𝑆 0

∗ ∗ −
1

𝜆
2

1

𝐼

]
]
]
]
]

]

. (42)

Premultiplied and postmultiplied simultaneously by diag
{𝑄, 𝐼, 𝐼}, Ω

1
< 0 is equivalent to Ω

2
< 0, where

Ω
2
=

[
[
[

[

Sym (𝐴𝑄
1
+ 𝐵𝑅
1
) + 𝑄
1
𝑆𝑄
1
+
1

𝜆
2

1

𝑄
1
𝑈
𝑇

1
𝑈
1
𝑄
1
𝐴
𝑑

𝐹
1

∗ −𝑆 0

∗ ∗ −
1

𝜆
2

1

𝐼

]
]
]

]

.

(43)

Based on Schur complement, it can be seen that Ω
2
< 0 is

equivalent to Ω
3
< 0 and

Ω
3
=

[
[
[
[
[
[
[
[
[

[

Sym (𝐴𝑄
1
+ 𝐵𝑅
1
) 𝐴
𝑑
𝐸 𝐹

1
𝑄
1

𝑈
1
𝑄
1

∗ −𝑆 0 0 0

∗ ∗ −
1

𝜆
2

1

𝐼 0 0

∗ ∗ ∗ −𝑆
−1

0

∗ ∗ ∗ ∗ ∗ −
1

𝜆
2

1

𝐼

]
]
]
]
]
]
]
]
]

]

.

(44)

Premultiplied and postmultiplied simultaneously by diag
{𝐼, 𝐸, 𝐼, 𝐼, 𝐼}, Ω

3
< 0 is equivalent to Ω < 0. That is to say

that if (38) upholds, there exists constant 𝛼
1
> 0 such that

𝑉
1
(𝑥 (𝑡) , 𝑡) + 𝑉

3
(Ξ̃, 𝑡) < −𝛼

1



[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

𝑓 (𝑥 (𝑡) , 𝑡)

]

]



2

+ 2𝑥
𝑇

𝑃𝐵𝑉𝜉.

(45)

Together with the definition of𝐺 in (10), we can find that 𝛼
2
>

0 satisfies

𝐺
𝑇

𝑃
2
+ 𝑃
2
𝐺 + 𝛼

2
< 0. (46)

Furthermore, there exists 𝛾
3
> 0 depending on 𝑃

1
such that

for any 𝑥 and 𝜉

2𝑥
𝑇

𝑃
1
𝐵𝑉𝜉 ≤ 𝛾

3
‖𝑥‖


𝜉

. (47)

After substituting (45), (46), and (49), derivative along
Lyapunov function candidate is given by

𝑉(𝑥, 𝜉, Ξ̃) ≤ − 𝛼
1



[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)

𝑓 (𝑥 (𝑡) , 𝑡)

]

]



2

+ 𝛾
3
‖𝑥‖


𝜉

− 𝛼
2
𝛾
2


𝜉


2

≤ − 𝛼
1

[
𝑥 (𝑡)]



2

+ 𝛾
3
‖𝑥‖


𝜉

− 𝛼
2
𝛾
2


𝜉


2

.

(48)

The right part of the above inequality can be regarded as a
polynomial with respect to two variables ‖𝑥‖ and ‖𝜉‖. Thus
for all ‖𝑥‖ and ‖𝜉‖, 𝑉(𝑥, 𝜉, Ξ̃) ≤ 0 holds if there exists a group
of parameters 𝛾

𝑖
(𝑖 = 2, 3) satisfying

2√𝛼
1
𝛼
2
𝛾
2
≥ 𝛾
3
. (49)

The disturbance-observer-based control design proce-
dure can be summarized as follows.

Step 1. Select weighting matrices 𝐺 and 𝐿 with form of (10)
and (11), apply 𝐺 and 𝐿 into (8) to calculate auxiliary vector.

Step 2. According to (26), give another form of disturbance
represented by auxiliary vector.

Step 3. Design time-delay feedback controller 𝐾𝑋 based on
Theorem 3, apply controller into (32), then DOBC + adaptive
control can be realized.

5. Simulation

To show the efficiency of the proposed scheme, let us con-
sider the continuous time-delay models under the proposed
DOBC+ adaptive scheme.The longitudinal dynamics ofA4D
aircraft at a flight condition of 15000 ft altitude and 0.9Mach
can be given by (1). The meaning and significance of the
parameters are the same as in [6, 9], where𝑥

1
(𝑡) is the forward

velocity (𝑓𝑡/𝑠), 𝑥
2
(𝑡) is the angle of attack (rad), 𝑥

3
(𝑡) is the

pitching velocity (rad/𝑠), 𝑥
4
(𝑡) is the pitching angle (rad), and
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𝑢(𝑡) is elevator deflection (deg) and coefficient matrices:

𝐴 =

[
[
[

[

−0.0605 32.37 0 32.2

−0.00014 −1.475 1 0

−0.0111 −34.72 −2.793 0

0 0 1 0

]
]
]

]

,

𝐵 =

[
[
[

[

0

−1.1064

−33.8

0

]
]
]

]

,

𝐴
𝑑
=

[
[
[

[

0.09 0.03 0.03 1.03

0.002 0.04 0.07 −0.0034

−0.004 −0.04 0.03 −0.001

−0.0004 −0.014 0.008 0.03

]
]
]

]

,

𝐹 =

[
[
[

[

0

0

50

0

]
]
]

]

.

(50)

Similar to [9], it is supposed that nonlinearity and/or uncer-
tainty 𝑓(𝑥(𝑡), 𝑡) = sin(2𝜋5𝑡)𝑥

2
(𝑡), state delay time 𝜏 = 2, and

set 𝑈 = diag{0100} guarantee ‖𝑓(𝑥(𝑡), 𝑡)‖ ≤ ‖𝑈𝑓(𝑥(𝑡), 𝑡)‖.
Paper [9, 14] pointed out that if the frequency is perturbed,
the pure DOBC approach will be unavailable because the
disturbances cannot be rejected accurately. In order to inves-
tigate further, it has been considered that uncertainties exist
in such an exogenous model for the disturbance in (3). That
is,

𝑑 = 25 [sin ((1 + Ξ) 𝑡)] , (51)

where frequency perturbations Ξ
11
= Ξ
21
= 4. Set

𝐺 = [
0 1

−4 −4
] , 𝛾

1
= 10000. (52)

It is noted that the selection of 𝜆 is tradeoff and we select 𝜆 =
0.8, and the initial value of the disturbance is 0.When the full
states can be measured, applying the approach inTheorem 3,
when DOBC law is applied in system (31), the corresponding
parameter in (32) can be gotten that

𝐾 = [9.9316 530.5033 1.7402 552.7417] . (53)

Figure 1 plots the estimation error of the uncertain dis-
turbances with traditional DO [9, 11, 14]. The results show
that if system suffers uncertain disturbance, it may bring large
disturbance estimation error, and the control performance
is deteriorated (Figure 2). Figures 3 and 4 demonstrate the
system performance using the proposed DOBC + adaptive
schemes, obviously the system output converges to zero with
sufficiently small steady error.The results show that although
there exists uncertainty in the disturbance parameters, the
disturbance rejection performance is improved and enhanced
system responses can be achieved.

6. Conclusion

The DOBC strategy is extended to the uncertain disturbance
rejection problem by combining with adaptive control. We
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Figure 1: Estimation error using traditional DO.
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Figure 2: System output using traditional DOBC.

first construct the auxiliary observer for 𝑑(𝑡) with uncertain
parameters, and then the exogenous disturbance may be
divided into two parts. One part is a precise term which
can be compensated by a feed-forward controller, and the
other can be expressed as uncertain constant parameter
multiplied by a known nonlinear term; an adaptive controller
is adopted to compensate the effect of the second part.
Simulations on an aircraftmodel demonstrate the advantages
of the proposed scheme. However, if there exist multiple
disturbances and unmodeled dynamics in the system as in
[10, 11], the situation turns to be more complicated, and
further research is required in the future.
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Figure 3: Estimation error using DO proposed in this paper.
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This paper is concerned with a state observer-based sliding mode control design methodology for a class of continuous-time state-
delayed switched systems with unmeasurable states and nonlinear uncertainties.The advantages of the proposed schememainly lie
in which it eliminates the need for state variables to be full accessible and parameter uncertainties to be satisfied with the matching
condition. Firstly, a state observer is constructed, and a sliding surface is designed. Bymatrix transformation techniques, combined
with Lyapunov function and sliding surface function, a sufficient condition is given to ensure asymptotic stability of the overall
closed-loop systems composed of the observer dynamics and the estimation error dynamics. Then, reachability of sliding surface
is investigated. At last, an illustrative numerical example is presented to prove feasibility of the proposed approaches.

1. Introduction

A switched system consists of a finite number of subsystems
described by a class of differential or difference equations and
a logical law that is used to orchestrate switching between
these subsystems [1]. As increasing demand, this theory is
widely developed, which means that many working systems
can be modeled as switched systems, such as automated
highway systems [2].

It is well known that different switching strategies pro-
duce different systems stability and performance, and the
systems states cannot be directly measured. Accordingly,
choosing a suitable switching law that stabilizes switched
systems and designing an observer become an important
problem [3]. Various methods of observer design have been
successfully proposed, such as algebraic transfer function
and singular-value decomposition. However, designing state
observer turns out to bemuchmore difficult when the system
is nonlinear [4] and uncertain [5]. In [6], this problem of
state observer is considered for discrete time delay switched
systems with Lipschitz’s nonlinearity and random switching
law.

Since 1916, sliding mode control (SMC) has been proven
to be an effective robust control strategy for hybrid or
uncertain systems [7]. SMC belongs to variable structure

control (VSC), which utilizes a discontinuous control to force
the state trajectories of the system to some specific sliding
surfaces on which the system acquires desired properties
such as decay speed, disturbance rejection capability, and
robustness. Developments on SMC involve uncertain systems
[8, 9], time-delay systems [10, 11], fuzzy systems [12, 13], and
Markovian jump systems [14–18].

Full state feedback is not always available andmeasurable
in many practical systems. In Wu’s work [19] a new robust
stability condition based on observer is proposed for a class
of uncertain nonlinear neutral delay systems by using the
sliding mode control theory combined with reaching law
technique. In He’s paper [20], a sliding mode control strategy
of uncertain switched linear systems based on observer is
presented. The average dwell time is introduced and the
matching condition of parameter uncertainties needs not
to be satisfied. As the paper [19, 20] improved, this paper
presents a new observer design for a class of uncertain
nonlinear state-delayed switched systems by using the sliding
mode control theory.

In the present paper, the motivation of our work is to
introduce an SMC scheme based on observer for a class of
switched systems that are uncertain nonlinear state-delayed
systems with unmeasurable state, unknown nonlinear func-
tion, andmismatching parameter uncertainties.This is a new
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problem in SMC and switched systems research areas. In
this work, the sliding mode observer for each subsystem
is designed to estimate full state. By matrix transformation
techniques, a sufficient condition is proposed to ensure Lya-
punov asymptotic stability of the overall closed-loop switched
system. In addition, the derived SMC law is provided to
guarantee reachability of the designed sliding surface. Finally,
an example is given to prove the feasibility of the proposed
approaches.

2. Problem Formulation and Preliminaries

2.1. Switched Uncertain Nonlinear State-Delayed Systems. In
this work, consider the following uncertain nonlinear state-
delayed switched systems:

̇𝑥 (𝑡) = [𝐴
𝜎(𝑡)
+ Δ𝐴
𝜎(𝑡)
(𝑡)] 𝑥 (𝑡)

+ [𝐴
𝑑𝜎(𝑡)
+ Δ𝐴
𝑑𝜎(𝑡)
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵 [𝑢
𝜎(𝑡)
(𝑡) + 𝑓

𝜎(𝑡)
(𝑥 (𝑡) , 𝑡)] ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 denotes the vector of continuous-time state
variables; 𝑢

𝜎(𝑡)
(𝑡) ∈ 𝑅

𝑚 denotes the vector of control inputs;
𝑦(𝑡) ∈ 𝑅

𝑝 denotes the system outputs; 𝑓
𝜎(𝑡)
(𝑥(𝑡), 𝑡) ∈ 𝑅

𝑚

denotes an unknown nonlinearity; 𝐴
𝜎(𝑡)

, 𝐴
𝑑𝜎(𝑡)

, 𝐵, and 𝐶 are
known real constant matrixes of corresponding dimension
and the matrix 𝐵 is of full column rank for arbitrary 𝑖 ∈ I;
Δ𝐴
𝜎(𝑡)
(𝑡) and Δ𝐴

𝑑𝜎(𝑡)
(𝑡) are unknown time-varying system

parameter uncertainties; 𝜎(𝑡) : [0,∞) → I {1, . . . , 𝑁} is
switching signal which is assumed to be a piecewise constant
function of time 𝑡; 𝑘 denotes the total number of switching
modes. In this paper, the notations 𝑡

𝑖
𝑟
in and 𝑡

𝑖
𝑟
out are used

to denote the time at which, for the 𝑟th, the 𝑖th subsystem is
switched in and out, respectively, that is, 𝜎(𝑡+

𝑖
𝑟
in) = 𝜎(𝑡

−

𝑖
𝑟
out) =

𝑖. With these notations, 𝑖 is used to replace 𝜎(𝑡) for 𝑡
𝑖
𝑟
in ≤

𝑡 < 𝑡
𝑖
𝑟
out. 𝑑 is a known constant delay; 𝜑(𝑡) denotes a differ-

entiable vector-valued initial function on [−𝑑, 0].
The following assumptions are useful for the development

of our work.

Assumption 1. Each of the subsystems is completely observ-
able.

Assumption 2. The uncertain parameters are of the form
(Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡)) = 𝐸

𝑖
𝐹
𝑖
(𝑡) (𝐻

𝑖
𝐻
𝑑𝑖
) . (2)

Δ𝐴
𝑖
(𝑡) and Δ𝐴

𝑑𝑖
(𝑡) are composed by 𝐸

𝑖
, 𝐻
𝑖
, 𝐻
𝑑𝑖
, and 𝐹

𝑖
(𝑡),

where𝐸
𝑖
,𝐻
𝑖
, and𝐻

𝑑𝑖
are constantmatrices and𝐹

𝑖
(𝑡) is a time-

varying matrix function satisfying

𝐹
𝑇

𝑖
(𝑡) 𝐹
𝑖
(𝑡) ≤ 𝐼. (3)

Remark 1. Obviously, by comparison with Assumption 2,
the matching condition that the following function must be
satisfied is a stronger condition:

(Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡)) = 𝐵 (𝑀

𝑖
(𝑡) 𝑀

𝑑𝑖
(𝑡)) . (4)

Assumption 3. There exists a known scalar function 𝜌(𝑡, 𝑦)
such that the nonlinearities 𝑓

𝑖
(𝑥(𝑡), 𝑡), for arbitrary 𝑖 ∈ I,

satisfy


𝑓𝑖 (𝑥 (𝑡) , 𝑡)


 ≤ 𝜌𝑖 (𝑡, 𝑦) . (5)

2.2. Sliding Mode Control. According to the sliding mode
control theory, a sliding mode function is chosen as follows:

𝑆 (𝑥, 𝑡) = 𝐵
𝑇

𝑋𝑥 (𝑡) , (6)

where 𝑋 ∈ 𝑅𝑛×𝑛 is a positive definite matrix that will be
designed.

We know that an ideal sliding mode within the state-
estimate space exists if there exists a finite time 𝑡

𝑠
, such that

𝑆 (𝑡) = 0, ̇𝑆 (𝑡) = 0, 𝑡 ≥ 𝑡
𝑠

or 𝑆
𝑇 ̇𝑆 (𝑡) < 0. (7)

The second function of (7) will be used to prove the
accessibility condition. And in a conventional SMC design, a
class of equivalent control laws and some switching control
terms can be chosen to undertake that the accessibility
condition 𝑆𝑇 ̇𝑆 < 0 is satisfied.

Then, from

̇𝑆 =
𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝑡
= 𝐵
𝑇

𝑋 ̇𝑥 (𝑡)

= 𝐵
𝑇

𝑋{[𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥 (𝑡) + [𝐴

𝑑𝑖
+ Δ𝐴
𝑑𝑖
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵 [𝑢
𝑖
(𝑡) + 𝑓

𝑖
(𝑥 (𝑡) , 𝑡)]} ,

(8)

we get

𝐵
𝑇

𝑋{[𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥 (𝑡) + [𝐴

𝑑𝑖
+ Δ𝐴
𝑑𝑖
(𝑡)] 𝑥 (𝑡 − 𝑑)

+𝐵 [𝑢
𝑖
(𝑡) + 𝑓

𝑖
(𝑥 (𝑡) , 𝑡)]} = 0.

(9)

The solution 𝑢
𝑖
(𝑡) of (7), namely, sliding mode control

law, can be broken down into two parts: equivalent control
law 𝑢eq𝑖(𝑡) and switching control term 𝑢𝑐𝑖(𝑡), where the equiv-
alent control 𝑢eq𝑖(𝑡) is designed for a class of certain systems
without nonlinear disturbance and the switching control
𝑢
𝑐𝑖
(𝑡) is robust control of nonlinear uncertain systems.
So, 𝑢eq𝑖(𝑡) and 𝑢𝑐𝑖(𝑡) are designed as the following func-

tions (10) and (11), respectively:

𝑢eq𝑖 (𝑡) = −(𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋(𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑑)) , (10)

𝑢
𝑐𝑖
(𝑡) = − [(𝜌

𝑖
(𝑡, 𝑦) + 𝛾

1𝑖
) + 𝛾
2𝑖
] sgn (𝑆 (𝑡)) , (11)

where, 𝛾
1𝑖
, 𝛾
2𝑖
are real positive scalars to be specified and

function (10) is the solution of the following equation:

𝐵
𝑇

𝑋[𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑑) + 𝐵𝑢eq𝑖 (𝑡)] = 0. (12)

Remark 2. It should be noticed that the sliding surface
function defined in (6) does not switch with switching single
(so 𝐵 not 𝐵

𝑖
and 𝑋 not 𝑋

𝑖
are designed). It means that

there is a unique nonswitched sliding surface in order to
avoid repetitive jumps of the state trajectories between sliding
surfaces leading to instability and chattering.
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2.3. Some Lemmas. For further analysis, some lemmas are
given that are useful for stability analysis of the sliding mode
dynamics and the development of other theorems.

Lemma 3 (see [21]). Let 𝐸, 𝐹, and 𝐻 be real matrices of
appropriate dimensions, with 𝐹𝑇𝐹 ≤ 𝐼; then one has that for
any scalar 𝜀 > 0,

𝐸𝐹𝐻 +𝐻
𝑇

𝐹
𝑇

𝐸
𝑇

≤ 𝜀
−1

𝐸𝐸
𝑇

+ 𝜀𝐻
𝑇

𝐻. (13)

Lemma 4 (Schur complement). Let 𝑆 = [ 𝑆11 𝑆12
𝑆
21
𝑆
22

] be symmet-
rical matrix; then the following three functions are equivalent:

𝑆 < 0,

𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0,

𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

(14)

Lemma 5 (see [22]). Given matrixes𝐺 ∈ 𝑅𝑛×𝑛 and𝑈 ∈ 𝑅𝑛×𝑚.
Assume that 𝑈 has full rank𝑚 < 𝑛 and𝐺 = 𝐺𝑇.Then, 𝛿𝑈𝑈𝑇−
𝐺 > 0 for some scalar 𝛿 if and only if �̃�𝑇𝐺�̃� < 0 where �̃� is
any matrix whose columns from basis of the null space of 𝑈𝑇.

When the SMC is designed, we always suppose that all
of the system states are available. But, this assumption is
hardly satisfied on the practical viewpoint. Hence, in the
next chapter, the sliding mode control-based observer will be
designed.

3. Observer-Based Sliding Mode Control

In this section, a slidingmode observer is designed to provide
the estimate of state vector, and then a slidingmode controller
is synthesized based on state estimates. Furthermore, by
applying the slidingmode control and the multiple Lyapunov
function technique, a sufficient condition is given to ensure
the asymptotic stability of the overall closed-loop state-
delayed system. Finally, we guarantee that the sliding modes
within both the state estimate space and state estimation
errors pace are attained, respectively.

3.1. SlidingModeObserverDesign. Theslidingmode observer
to be designed, for state-delayed system (1)–(4), has the form
of (6), which can be given by

̇�̂� (𝑡) = 𝐴
𝑖
�̂� (𝑡) + 𝐴

𝑑𝑖
�̂� (𝑡 − 𝑑) + 𝐵𝑢

𝑖
(𝑡)

+ 𝐵𝑢
𝑒𝑖
(𝑡) + 𝐿

𝑖
(𝑦 (𝑡) − 𝐶�̂� (𝑡)) ,

(15)

where �̂�(𝑡) denotes the estimate of system state 𝑥(𝑡) and 𝐿
𝑖
∈

𝑅
𝑛×𝑝 is the observer feedbackmatrix to be computed later. 𝑢

𝑒𝑖

is a robust control term used to eliminate impact of nonlinear
𝑓
𝑖
(𝑥(𝑡), 𝑡), given by

𝑢
𝑒𝑖
(𝑡) = (𝜌

𝑖
(𝑡, 𝑦) + 𝛾

1𝑖
) sgn (𝑆

𝑒
(𝑡)) . (16)

The corresponding state-estimation error dynamics is
given by

̇𝑒 (𝑡) = (𝐴
𝑖
− 𝐿
𝑖
𝐶 + Δ𝐴

𝑖
(𝑡)) 𝑒 (𝑡)

+ (𝐴
𝑑𝑖
− Δ𝐴
𝑑𝑖
(𝑡)) 𝑒 (𝑡 − 𝑑) + Δ𝐴

𝑖
(𝑡) �̂� (𝑡)

+ Δ𝐴
𝑑𝑖
(𝑡) �̂� (𝑡 − 𝑑) − 𝐵

𝑖
(𝑢
𝑒𝑖
(𝑡) − 𝑓

𝑖
(𝑥 (𝑡) , 𝑡)) .

(17)

According to the sliding mode control theory and (6),
𝑆
𝑒
(𝑒(𝑡), 𝑡) = 𝐵

𝑇

𝑋𝑒(𝑡).
In (6), it is assumed that matrix𝑋 satisfies

𝐵
𝑇

𝑋 = 𝑁𝐶. (18)

We obtain

𝑆
𝑒
(𝑒 (𝑡) , 𝑡) = 𝑁𝐶𝑒 (𝑡) = 𝑁𝐶 (𝑥 (𝑡) − �̂� (𝑡))

= 𝑁 (𝑦 (𝑡) − 𝐶�̂� (𝑡)) .

(19)

This estimation error dynamics corresponds to a nonlin-
ear uncertain state-delayed system,which is dependent on the
observer feedbackmatrix𝐿

𝑖
and state estimates �̂�(𝑡), �̂�(𝑡−𝑑).

This means that stability analysis of the error dynamics (17)
is dependent on the observer dynamics. So, when designing
the sliding mode observer, the overall closed-loop system
composed of (15) and (17) must be considered to guarantee
system stability and accessibility of both the sliding surface
𝑆
𝑒
(𝑒(𝑡), 𝑡) = 𝐵

𝑇

𝑋𝑒(𝑡) = 𝑁(𝑦(𝑡) − 𝐶�̂�(𝑡)) = 0 in state-estima-
tion error space and the sliding surface �̂�(�̂�(𝑡), 𝑡) = 𝐵𝑇𝑋�̂�(𝑡)
= 0 in the state estimate space. Namely, as (7), the following
function should be satisfied:

�̂� (𝑡) = 0,
̇
�̂� (𝑡) = 0, 𝑡 ≥ 𝑡

𝑠
. (20)

Hence, as functions (10) and (11), equivalent control
law and switching control term are designed as follows,
respectively:

𝑢eq𝑖 (𝑡) = −(𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋(𝐴
𝑖
�̂� (𝑡) + 𝐴

𝑑𝑖
�̂� (𝑡 − 𝑑)) ,

𝑢
𝑐𝑖
(𝑡) = − [(𝜌

𝑖
(𝑡, 𝑦) + 𝛾

1𝑖
) + 𝛾
2𝑖
] sgn (�̂� (𝑡)) ,

(21)

where 𝛾
1𝑖
and 𝛾
2𝑖
are positive design constants, which should

be chosen suitably because approaching rate and chattering
of sliding mode face can be influenced by it.

Hence, we obtain the following sliding mode controller:

𝑢
𝑖
(𝑡) = 𝑢eq𝑖 (𝑡) + 𝑢𝑐𝑖 (𝑡) . (22)

3.2. Stability of Closed-Loop System with Observer. Summing
up, considering the design of sliding mode observer and
synthesis of slidingmode controller, a sufficient condition for
asymptotic stability of the overall closed-loop system can be
given as follows.

Theorem 6. If there exist matrices 𝑌
𝑖
, 𝑁,𝑋 > 0, 𝑄

1𝑖
> 0, and

𝑄
2𝑖
> 0, and scalars 𝛿

1𝑖
> 0, and 𝛿

2𝑖
> 0 satisfying
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(

Π
1𝑖

𝑋𝐴
𝑑𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖
𝐶
𝑇

𝑌
𝑇

𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖

𝑋𝐸

𝐴
𝑇

𝑑𝑖
𝑋 + 𝛿

1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

Π
2𝑖

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑑𝑖

0

𝑌
𝑖
𝐶 + 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖

Π
3𝑖

𝑋𝐴
𝑑𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖

0

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑑𝑖

𝐴
𝑇

𝑑𝑖
𝑋 + 𝛿

1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

Π
4𝑖

0

𝐸
𝑇

𝑋 0 0 0 −𝛿
1𝑖
𝐼

) ≤ 0, (23)

𝐵
𝑇

𝑋 = 𝑁𝐶, (24)

where

Π
1𝑖
= 𝑋𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑋 − 𝑌

𝑖
𝐶 − 𝐶

𝑇

𝑌
𝑇

𝑖
+ 𝑄
1𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑖
− 𝛿
2𝑖
𝐵𝐵
𝑇

,

Π
2𝑖
= − 𝑄

1𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑑𝑖
− 𝛿
2𝑖
𝐵𝐵
𝑇

,

Π
3𝑖
= 𝐴
𝑇

𝑖
𝑋 + 𝑋𝐴

𝑖
+ 𝑄
2𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑖
− 𝛿
2𝑖
𝐵𝐵
𝑇

,

Π
4𝑖
= − 𝑄

2𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑑𝑖
− 𝛿
2𝑖
𝐵𝐵
𝑇

,

(25)

then the sliding mode control law (21)-(22) guarantees that the
combined closed-loop switched system is asymptotically stable
for the switching signal satisfies

𝜎 (𝑡) = 𝑖 = arg {min (𝑉
𝑖
(𝑡))} , 𝑖 ∈ I. (26)

Furthermore, an observer feedback matrix is given by 𝐿
𝑖
=

𝑋
−1

𝑌
𝑖
.

Proof. Firstly, using the method of matrix transformation
[23] function (15) is transformed, and the transformation
matrix and the associated vector �̂�(𝑡) are defined as

�̂� (𝑡) = (
�̂�
1
(𝑡)

�̂�
2
(𝑡)
) = 𝑊�̂� (𝑡) , (27)

where �̂�
1
(𝑡) ∈ 𝑅

𝑛−𝑚, �̂�
2
(𝑡) ∈ 𝑅

𝑚, �̃� is an orthogonal com-
plement of 𝐵, which means �̃�𝑇𝐵 = 0. So 𝐵 is designed to a
nonsingularmatrix. It is easily known that𝑊−1 = (𝑋−1�̃� 𝐵)

and �̂�
2
(𝑡) = (𝐵

𝑇

𝑋𝐵)
−1

�̂�(𝑡) due to the following function:

(
(�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

(𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋

)(𝑋
−1

�̃� 𝐵)

= (
(�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

𝑋
−1

�̃� (�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

𝐵

(𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋𝑋
−1

�̃� (𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋𝐵

)

= (
𝐼 0

0 𝐼
) = 𝐼.

(28)

Because of the sliding surface �̂�(𝑥, 𝑡) = 0, we obtain
�̂�
2
(𝑡) = 0. So (𝑛 − 𝑚) reduced-order sliding mode dynamic

system as follows:

̇�̂�
1
= (�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

(𝐴
𝑖
− 𝐿
𝑖
𝐶)𝑋
−1

�̃��̂�
1
(𝑡)

+ (�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

𝐴
𝑑𝑖
𝑋
−1

�̃��̂�
1
(𝑡 − 𝑑)

+ (�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

𝐿
𝑖
𝐶𝑋
−1

�̃�𝑧
1
(𝑡) .

(29)

Similar to the previous method, function (17) is trans-
formed as

̇𝑒
𝑧1
(𝑡) = (�̃�

𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

(𝐴
𝑖
− 𝐿
𝑖
𝐶 + Δ𝐴

𝑖
(𝑡))𝑋

−1

�̃�𝑒
𝑧1
(𝑡)

+ (�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

Δ𝐴
𝑖
(𝑡) 𝑋
−1

�̃�V̂
1
(𝑡)

+ (�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

(𝐴
𝑑𝑖
+ Δ𝐴
𝑑𝑖
(𝑡))𝑋

−1

�̃�𝑒
𝑧1
(𝑡 − 𝑑)

+ (�̃�
𝑇

𝑋
−1

�̃�)

−1

�̃�
𝑇

Δ𝐴
𝑑𝑖
(𝑡) 𝑋
−1

�̃�V̂
1
(𝑡 − 𝑑) .

(30)

Then, the Lyapunov functional is chosen as

𝑉
𝑖
(𝑡) = 𝑒

𝑇

𝑧1
(𝑡) (�̃�

𝑇

𝑋
−1

�̃�) 𝑒
𝑧1
(𝑡)

+ ∫

𝑡

𝑡−𝑑

𝑒
𝑇

𝑧1
(𝜏) (�̃�

𝑇

𝑄
1𝑖
�̃�) 𝑒
𝑧1
(𝜏) 𝑑𝜏

+ �̂�
𝑇

1
(𝑡) (�̃�

𝑇

𝑋
−1

�̃�) �̂�
1
(𝑡)

+ ∫

𝑡

𝑡−𝑑

�̂�
𝑇

1
(𝜏) (�̃�

𝑇

𝑄
2𝑖
�̃�) �̂�
1
(𝜏) 𝑑𝜏,

𝑉
𝑖
(𝑡) = ̇𝑒

𝑇

𝑧1
(𝑡) (�̃�

𝑇

𝑋
−1

�̃�) 𝑒
𝑧1
(𝑡) + 𝑒

𝑇

𝑧1
(𝑡) (�̃�

𝑇

𝑋
−1

�̃�) ̇𝑒
𝑧1
(𝑡)

+ (𝑒
𝑇

𝑧1
(𝑡) (�̃�

𝑇

𝑄
1𝑖
�̃�) 𝑒
𝑧1
(𝑡))

𝑡

𝑡−𝑑

+ ̇�̂�
𝑇

1
(𝑡) (�̃�

𝑇

𝑋
−1

�̃�) �̂�
1
(𝑡) + �̂�

𝑇

1
(𝑡) (�̃�

𝑇

𝑋
−1

�̃�) ̇�̂�
1
(𝑡)

+ (�̂�
𝑇

1
(𝑡) (�̃�

𝑇

𝑄
2𝑖
�̃�) �̂�
1
(𝑡))

𝑡

𝑡−𝑑

.

(31)

Taking the time derivative along the state trajectories of (15)
and (17), and considering (21)-(22), it follows that

𝑉
𝑖
(𝑡) = 𝑍

𝑇

(𝑡) 𝐺
𝑖
(𝑡) 𝑍 (𝑡) , (32)
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where

𝐺
𝑖
(𝑡) = (

𝑋
−1

�̃� 0 0 0

0 𝑋
−1

�̃� 0 0

0 0 𝑋
−1

�̃� 0

0 0 0 𝑋
−1

�̃�

)

𝑇

(𝐺
1𝑖
+ 𝐺
2𝑖
(𝑡))

×(

𝑋
−1

�̃� 0 0 0

0 𝑋
−1

�̃� 0 0

0 0 𝑋
−1

�̃� 0

0 0 0 𝑋
−1

�̃�

) ,

𝑍 (𝑡) = (

𝑒
𝑧1
(𝑡)

𝑒
𝑧1
(𝑡 − 𝑑)

�̂�
1
(𝑡)

�̂�
1
(𝑡 − 𝑑)

) ,

𝐺
1𝑖
= (

Π
1𝑖
𝑋𝐴
𝑑𝑖
𝐶
𝑇

𝐿
𝑇

𝑖
𝑋 0

𝐴
𝑇

𝑑𝑖
𝑋 −𝑄

1𝑖
0 0

𝑋𝐿
𝑖
𝐶 0 Π

2𝑖
𝑋𝐴
𝑑𝑖

0 0 𝐴
𝑇

𝑑𝑖
𝑋 −𝑄

2𝑖

),

𝐺
2𝑖
(𝑡) = (

𝑋𝐸

0

0

0

)𝐹
𝑖
(𝑡) (𝐻

𝑖
𝐻
𝑑𝑖
𝐻
𝑖
𝐻
𝑑𝑖
)

+((

𝑋𝐸

0

0

0

)𝐹
𝑖
(𝑡) (𝐻

𝑖
𝐻
𝑑𝑖
𝐻
𝑖
𝐻
𝑑𝑖
))

𝑇

,

Π
1𝑖
= (𝐴
𝑖
− 𝐿
𝑖
𝐶)
𝑇

𝑋 + 𝑋 (𝐴
𝑖
− 𝐿
𝑖
𝐶) + 𝑄

1𝑖
,

Π
2𝑖
= 𝐴
𝑇

𝑖
𝑋 + 𝑋𝐴

𝑖
+ 𝑄
2𝑖
,

𝑄
1𝑖
= 𝑋𝑄

1𝑖
𝑋, 𝑄

2𝑖
= 𝑋𝑄

2𝑖
𝑋.

(33)

From (32), it is easily seen that 𝑉
𝑖
(𝑡) < 0 if 𝐺

𝑖
(𝑡) < 0 for

𝑍 ̸=0. So, we just prove the inequality 𝐺
𝑖
(𝑡) < 0 is satisfied.

By Lemma 3, the previous matrix inequality holds for
𝐹
𝑖
(𝑡) satisfying 𝐹𝑇

𝑖
(𝑡)𝐹
𝑖
(𝑡) ≤ 𝐼 if there exists a constant 𝛿

1𝑖
> 0

such that

𝐺
2𝑖
(𝑡) ≤ 𝐺

2𝑖
= 𝛿
−1

(

𝑋𝐸

0

0

0

)(𝐸
𝑇

𝑋 0 0 0)

+ 𝛿(

𝐻
𝑇

𝑖

𝐻
𝑇

𝑑𝑖

𝐻
𝑇

𝑖

𝐻
𝑇

𝑑𝑖

)(𝐻
𝑖
𝐻
𝑑𝑖
𝐻
𝑖
𝐻
𝑑𝑖
) .

(34)

So, 𝐺
𝑖
< 0 only if

(

𝑋
−1

�̃� 0 0 0

0 𝑋
−1

�̃� 0 0

0 0 𝑋
−1

�̃� 0

0 0 0 𝑋
−1

�̃�

)

𝑇

(𝐺
1𝑖
+ 𝐺
2𝑖
)

×(

𝑋
−1

�̃� 0 0 0

0 𝑋
−1

�̃� 0 0

0 0 𝑋
−1

�̃� 0

0 0 0 𝑋
−1

�̃�

) < 0.

(35)

By Lemma 4, inequality (35) is equivalent to the following
inequality (36):

(

𝑋
−1

�̃� 0 0 0

0 𝑋
−1

�̃� 0 0

0 0 𝑋
−1

�̃� 0

0 0 0 𝑋
−1

�̃�

)

𝑇

× 𝐺
3𝑖
(

𝑋
−1

�̃� 0 0 0

0 𝑋
−1

�̃� 0 0

0 0 𝑋
−1

�̃� 0

0 0 0 𝑋
−1

�̃�

) < 0,

(36)

where

𝐺
3𝑖
=(

Π
1𝑖

𝑋𝐴
𝑑𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖
𝐶
𝑇

𝑌
𝑇

𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖

𝑋𝐸

𝐴
𝑇

𝑑𝑖
𝑋 + 𝛿

1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

Π
2𝑖

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑑𝑖

0

𝑌
𝑖
𝐶 + 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖

Π
3𝑖

𝑋𝐴
𝑑𝑖
+ 𝛿
1𝑖
𝐻
𝑇

𝑖
𝐻
𝑑𝑖

0

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

𝛿
1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑑𝑖

𝐴
𝑇

𝑑𝑖
𝑋 + 𝛿

1𝑖
𝐻
𝑇

𝑑𝑖
𝐻
𝑖

Π
4𝑖

0

𝐸
𝑇

𝑋 0 0 0 −𝛿
1𝑖
𝐼

). (37)

By Lemma 5 and given 𝐿
𝑖
= 𝑋
−1

𝑌
𝑖
, LMI (23) is obtained.

Thatmeans𝑉
𝑖
(𝑡) < 0 only if there exist matrices𝑌

𝑖
, 𝑁,𝑋 > 0,

𝑄
1𝑖
> 0, and𝑄

2𝑖
> 0 and scalars 𝛿

1𝑖
> 0, and 𝛿

2𝑖
> 0 satisfying

LMI (23).

Remark 7. As a result of the given Theorem 6, the observer-
based SMC stable problembecomes a linearmatrix inequality
feasibility problem. Consider the linear equality condition

𝐵
𝑇

𝑋 = 𝑁𝐶, where 𝑁,𝑋 > 0 satisfies LMI (23), which can
be equivalently converted to

tr ((𝐵𝑇𝑋 −𝑁𝐶)
𝑇

(𝐵
𝑇

𝑋 −𝑁𝐶)) = 0. (38)

Introduce the condition

(𝐵
𝑇

𝑋 −𝑁𝐶)
𝑇

(𝐵
𝑇

𝑋 −𝑁𝐶) ≤ 𝛽𝐼, (39)
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and Lemma 4 gives

(
−√𝛽𝐼 𝑋𝐵 − 𝐶

𝑇

𝑁
𝑇

𝐵
𝑇

𝑋 −𝑁𝐶 −√𝛽𝐼
) ≤ 0. (40)

Hence, it is now changed to a problem in which a global
solution of the following minimization is found:

min𝛽 subject to (23) and (40) . (41)

So, it is a minimization problem relating linear objective
and LMI constraints; it has an infimum and when infimum
equals zero, the observed-based SMC problem is solvable.

3.3. Accessibility Condition. Finally, we prove the accessibility
of sliding surfaces �̂�(�̂�(𝑡), 𝑡) = 0 in the state-estimate space
and 𝑆
𝑒
(𝑒(𝑡), 𝑡) = 0 in estimation error space. So, Theorem 8 is

given.

Theorem8. If there existmatrices𝑌
𝑖
, 𝑁,𝑋 > 0,𝑄

1𝑖
> 0,𝑄

2𝑖
>

0 and scalars 𝛿
1𝑖
> 0, and 𝛿

2𝑖
> 0 satisfying (23)with (24), and

observer feedback matrix 𝐿
𝑖
= 𝑋
−1

𝑌
𝑖
, then the sliding mode

control law (26) with (23) and (24) guarantees that the sliding
motion is attained on the sliding surfaces �̂�(�̂�(𝑡), 𝑡) = 0 and
𝑆
𝑒
(𝑒(𝑡), 𝑡) = 0, respectively.

Proof. As (7), �̂�(�̂�(𝑡), 𝑡) = 0 and 𝑆
𝑒
(𝑒(𝑡), 𝑡) = 0 can be replaced

by �̂�𝑇 ̇�̂�(𝑡) < 0 and 𝑆𝑇
𝑒

̇𝑆
𝑒
(𝑡) < 0.

We know �̂�𝑇 ̇�̂�(𝑡) < 0 is the same as �̂�𝑇(𝐵𝑇𝑋𝐵)−1 ̇�̂�(𝑡) <
0, so �̂�𝑇 ̇�̂�(𝑡) < 0 and 𝑆𝑇

𝑒

̇𝑆
𝑒
(𝑡) < 0 can be replaced by

�̂�
𝑇

(𝐵
𝑇

𝑋𝐵)
−1 ̇
�̂�(𝑡)
−1

< 0 and 𝑆𝑇
𝑒
(𝐵
𝑇

𝑋𝐵)
−1 ̇𝑆
𝑒
(𝑡) < 0 to make

proving simpler:

�̂�
𝑇

(𝑡) (𝐵
𝑇

𝑋𝐵)
−1 ̇
�̂� (𝑡)

= �̂�
𝑇

(𝑡) (𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋[𝐴
𝑖
�̂� (𝑡) + 𝐴

𝑑𝑖
�̂� (𝑡 − 𝑑) + 𝐵𝑢

𝑖
(𝑡)

+ 𝐵𝑢
𝑒𝑖
(𝑡) + 𝐿

𝑖
(𝑦 (𝑡) − 𝐶�̂� (𝑡))]

= �̂�
𝑇

(𝑡) (𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋

× (𝐴
𝑖
�̂� (𝑡) + 𝐴

𝑑𝑖
�̂� (𝑡 − 𝑑) + 𝐿

𝑖
𝐶𝑒 (𝑡) + 𝐵𝑢eq𝑖)

− �̂�
𝑇

(𝑡) (𝑢
𝑐𝑖
+ 𝑢
𝑒𝑖
)

≤

�̂� (𝑡)

[

(𝐵
𝑇

𝑋𝐵)
−1

− 𝐼


× (

𝐵
𝑇

𝑋𝐴
𝑖


‖�̂� (𝑡)‖ +


𝐵
𝑇

𝑋𝐴
𝑑𝑖


‖�̂� (𝑡 − 𝑑)‖)

+

(𝐵
𝑇

𝑋𝐵)
−1


𝐵
𝑇

𝑋𝐿
𝑖
𝐶

‖𝑒 (𝑡)‖]

−

�̂� (𝑡)

[(𝜌
𝑖
(𝑡, 𝑦) + 𝛾

1𝑖
) + 𝛾
2𝑖
]

+

�̂� (𝑡)

(𝜌
𝑖
(𝑡, 𝑦) + 𝛾

1𝑖
)

≤

�̂� (𝑡)

[(−𝛾
2𝑖
+ 𝛼
1𝑖
𝛼
2𝑖
) ‖�̂� (𝑡)‖

+ 𝛼
1𝑖
𝛼
3𝑖
‖�̂� (𝑡 − 𝑑)‖ + 𝛼

4𝑖
𝛼
5𝑖
‖𝑒 (𝑡)‖] ,

𝑆
𝑇

𝑒
(𝑡) (𝐵

𝑇

𝑋𝐵)
−1

̇𝑆
𝑒
(𝑡)

= 𝑆
𝑇

𝑒
(𝑡) (𝐵

𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋[(𝐴
𝑖
− 𝐿
𝑖
𝐶 + Δ𝐴

𝑖
(𝑡)) 𝑒 (𝑡)

+ (𝐴
𝑑𝑖
+ Δ𝐴
𝑑𝑖
(𝑡)) 𝑒 (𝑡 − 𝑑)

− 𝐵 (𝑢
𝑒𝑖
(𝑡) − 𝑓

𝑖
(𝑥 (𝑡) , 𝑡))

+ Δ𝐴
𝑖
�̂� (𝑡) + Δ𝐴

𝑑𝑖
�̂� (𝑡 − 𝑑)]

= −𝑆
𝑇

𝑒
(𝑡) (𝑢
𝑒𝑖
(𝑡) − 𝑓

𝑖
(𝑥 (𝑡) , 𝑡))

+ 𝑆
𝑇

𝑒
(𝑡) (𝐵

𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋[(𝐴
𝑖
− 𝐿
𝑖
𝐶 + Δ𝐴

𝑖
(𝑡)) 𝑒 (𝑡)

+ (𝐴
𝑑𝑖
+ Δ𝐴
𝑑𝑖
(𝑡)) 𝑒 (𝑡 − 𝑑)

+ Δ𝐴
𝑖
�̂� (𝑡) + Δ𝐴

𝑑𝑖
�̂� (𝑡 − 𝑑)]

≤
𝑆𝑒 (𝑡)

 𝜌𝑖 (𝑡, 𝑦) +
𝑆𝑒 (𝑡)




(𝐵
𝑇

𝑋𝐵)
−1

× [

𝐵
𝑇

𝑋(𝐴
𝑖
− 𝐿
𝑖
𝐶)

‖𝑒 (𝑡)‖ +


𝐵
𝑇

𝑋𝐸


𝐻𝑖
 ‖𝑒 (𝑡)‖

+

𝐵
𝑇

𝑋𝐴
𝑑𝑖


‖𝑒 (𝑡 − 𝑑)‖ +


𝐵
𝑇

𝑋𝐸


𝐻𝑑𝑖
 ‖𝑒 (𝑡 − 𝑑)‖

+

𝐵
𝑇

𝑋𝐸


𝐻𝑖
 ‖�̂� (𝑡)‖ +


𝐵
𝑇

𝑋𝐸


𝐻𝑑𝑖
 ‖�̂� (𝑡 − 𝑑)‖]

≤
𝑆𝑒 (𝑡)

 [−𝛾1𝑖 + 𝛼4𝑖 (𝛽1𝑖 − 𝛽2𝑖) ‖𝑒 (𝑡)‖

+ (𝛼
3𝑖
+ 𝛽
3𝑖
) ‖𝑒 (𝑡 − 𝑑)‖ + 𝛽

2𝑖
‖�̂� (𝑡)‖

+ 𝛽
3𝑖
‖�̂� (𝑡 − 𝑑)‖]

(42)

with𝛼
1𝑖
= ||(𝐵

𝑇

𝑋𝐵)
−1

−𝐼||,𝛼
2𝑖
= ||𝐵
𝑇

𝑋𝐴
𝑖
||,𝛼
3𝑖
= ||𝐵
𝑇

𝑋𝐴
𝑑𝑖
||,

𝛼
4𝑖
= ||(𝐵

𝑇

𝑋𝐵)
−1

||, 𝛼
5𝑖
= ||𝐵

𝑇

𝑋𝐿
𝑖
𝐶||, 𝛽

1𝑖
= ||𝐵

𝑇

𝑋(𝐴
𝑖
−

𝐿
𝑖
𝐶)||, 𝛽

2𝑖
= ||𝐵
𝑇

𝑋𝐸||||𝐻
𝑖
||, 𝛽
3𝑖
= ||𝐵
𝑇

𝑋𝐸||||𝐻
𝑑𝑖
||.

In the state space composed of state estimate vector and
estimation error vector, we define the following domain:

Ω
𝛿𝑖
=

{{{{{

{{{{{

{

𝑍 ∈ 𝑅
4𝑛

: 𝛼
1𝑖
𝛼
2𝑖
‖�̂� (𝑡)‖ + 𝛼

1𝑖
𝛼
3𝑖
‖�̂� (𝑡 − 𝑑)‖

+ 𝛼
4𝑖
𝛼
5𝑖
‖𝑒 (𝑡)‖ < 𝛾

2𝑖
− 𝛿,

𝛼
4𝑖
(𝛽
1𝑖
− 𝛽
2𝑖
) ‖𝑒 (𝑡)‖ + 𝛽

2𝑖
‖�̂� (𝑡)‖

+ (𝛼
3𝑖
+ 𝛽
3𝑖
) ‖𝑒 (𝑡 − 𝑑)‖

+ 𝛽
3𝑖
‖�̂� (𝑡 − 𝑑)‖ < 𝛾

1𝑖
− 𝛿

}}}}}

}}}}}

}

(43)

with constant 𝛿 satisfying 0 < 𝛿 < min{𝛾
1𝑖
, 𝛾
2𝑖
}, so from (42),

in the domainΩ
𝛿𝑖
, we have �̂�𝑇 ̇�̂�(𝑡) < 0 and 𝑆𝑇

𝑒

̇𝑆
𝑒
(𝑡) < 0.

So, the sliding surfaces �̂�(�̂�(𝑡), 𝑡) = 0 in the state-estimate
space and 𝑆

𝑒
(𝑒(𝑡), 𝑡) = 0 in estimation error space can be

accessed.

Remark 9. Only when the state trajectories enter the Ω
𝛿𝑖
,

could �̂�(𝑡) = 0 and 𝑆
𝑒
(𝑡) = 0 happen. The region in which

sliding motion takes place is usually referred to as sliding
patch [24]. In the present scheme, it can be seen that size of
the sliding patch depends on design constants 𝛾

1𝑖
, 𝛾
2𝑖
.
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4. Simulation

In this section, the following switch system will be used to
illustrate the proposed sliding mode control scheme-based
observer is feasible:

̇𝑥 (𝑡) = [𝐴
𝜎(𝑡)
+ Δ𝐴
𝜎(𝑡)
(𝑡)] 𝑥 (𝑡)

+ [𝐴
𝑑𝜎(𝑡)
+ Δ𝐴
𝑑𝜎(𝑡)
(𝑡)] 𝑥 (𝑡 − 𝑑)

+ 𝐵 [𝑢
𝜎(𝑡)
(𝑡) + 𝑓

𝜎(𝑡)
(𝑥 (𝑡) , 𝑡)] ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(44)

where

𝐴
1
= (

−2 4 0

−7 −1.5 0

0 1 −1

) , 𝐴
2
= (

−1.2 0.9 0

2 −2 0

0 1.4 −1.3

) ,

𝐴
𝑑1
= (

−0.3 0.1 0.1

0.1 0.1 0

0 0.1 0.2

) , 𝐴
𝑑2
= (

0.1 0.2 0.3

0.12 0.09 0

0 0.1 0.2

) ,

𝐵 = (

2 1

1 2

1 1

) , 𝐶 = (
1 3 2

2 2 0
) ,

𝐸
1
= 𝐸
2
= (

0.1 0.2 0.2

0 0.2 0.1

0 0 0.3

) ,

𝐻
1
= 𝐻
2
= (

0.1 0.2 0.1

0 0.2 0.3

0.2 0.2 0.1

) ,

𝐻
𝑑1
= 𝐻
𝑑2
= (

0.2 0 0.1

0 0.1 0.1

0.1 0.1 0.2

) ,

𝑓
1
(𝑥 (𝑡) , 𝑡) = (

0.4 sin (𝑥
1
(𝑡))

0.2 cos (𝑥
2
(𝑡))
) ,

𝑓
2
(𝑥 (𝑡) , 𝑡) = (

0.3 sin (𝑥
2
(𝑡))

0.3 cos (𝑥
3
(𝑡))
) ,

𝐹
1
(𝑡) = (

sin (𝑡) 0 0

0 sin (𝑡) 0

0 0 cos (𝑡)
) ,

𝐹
2
(𝑡) = (

cos (𝑡) 0 0

0 sin (𝑡) 0
0 0 1

) ,

𝑑 (𝑡) = 2 sin (𝑡) + 1, 𝑑 = 3,

𝑥 (𝑡) = (1 −1 0)
𝑇

, 𝑡 ∈ [−2, 0] ,

𝑥 (0) = (1 −1 0.5)
𝑇

.

(45)

Then, the linear inequalities (23) and (24) with (41) are
solved, and we obtain:

𝑋 = (

2.8965 −0.8585 −5.1634

−0.8585 1.7945 1.2445

−5.1634 1.2445 10.6332

) ,

𝑁 = (
0.7754 −0.5022

3.9794 −3.9817
) ,

𝑌
1
= (

−4.3062 0.7478

−3.3264 0.1157

−1.9617 −1.3973

) ,

𝑌
2
= (

−0.6094 0.4116

0.5758 −0.6553

−0.0320 −0.1995

) ,

𝐿
1
= (

−16.3887 0.3210

−4.4045 0.2188

−7.6272 −0.0012

) ,

𝐿
2
= (

−1.5303 0.6209

0.1156 −0.2876

−0.7596 0.3164

) ,

�̂� (𝑡) = 𝐵
𝑇

𝑋�̂� (𝑡) = (
0.0091 0.0038 0.0017

−0.0090 0.0060 0.0145
) �̂� (𝑡) ,

𝑢
𝑖
(𝑡) = 𝑢eq𝑖 (𝑡) + 𝑢𝑐𝑖 (𝑡) ,

𝑢
𝑒𝑖
(𝑡) = (𝜌

𝑖
(𝑡, 𝑦) + 𝛾

1𝑖
) sgn (𝑆

𝑒
(𝑡)) ,

𝑢
𝑐𝑖
(𝑡) = − [(𝜌

𝑖
(𝑡, 𝑦) + 𝛾

1𝑖
) + 𝛾
2𝑖
] sgn (�̂� (𝑡)) ,

𝑢eq𝑖 (𝑡) = −(𝐵
𝑇

𝑋𝐵)
−1

𝐵
𝑇

𝑋(𝐴
𝑖
�̂� (𝑡) + 𝐴

𝑑𝑖
�̂� (𝑡 − 𝑑)) ,

𝑢eq1 (𝑡) = (
2.000 −3.0000 −1.0000

1.0000 2.1667 1.0000
) �̂� (𝑡)

+ (
−0.3000 0.0000 0.1000

0.1667 −0.0667 0.1333
) �̂� (𝑡 − 𝑑) ,

𝑢eq2 (𝑡) = (
1.2000 0.5000 −1.3000

−1.4667 −0.1333 1.3000
) �̂� (𝑡)

+ (
−0.1000 −0.1000 −0.1000

0.0267 0.0033 −0.0000
) �̂� (𝑡 − 𝑑) .

(46)

Let 𝛾
11
= 𝛾
12
= 60, 𝛾

21
= 𝛾
22
= 40, �̂�(𝑡) = (0 0 0)𝑇, 𝑡 ∈

[−2, 0], �̂�(0) = (0 0 0)𝑇. To restrain control signals from
quiver, sgn(�̂�(𝑡)) is replaced by �̂�(𝑡)/(||�̂�(𝑡)|| + 0.01), and 𝑆

𝑒
(𝑡)

is replaced by 𝑆
𝑒
(𝑡)/(||𝑆

𝑒
(𝑡)|| + 0.01). 𝜌

𝑖
(𝑡, 𝑦) is very tiny,

compared with 𝛾
1𝑖
, so it is ignored.

Figures 1–4 testify the simulation results. Figures 1 and
2 show the time evolution of states and confirm asymptotic
stability of the respective switched system. According to
Figure 1, we know that the opened-loop switched system
is instability and oscillation. Nevertheless, Figure 2 shows
that the closed-loop switched system is stability. So it can be
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Figure 1: State response of the opened-loop switched system.
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Figure 2: State response of the closed-loop switched system.
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Figure 3: State response of the observer system.
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Figure 4: Sliding mode variables.

seen that state response of the closed-loop switched system is
clearly superior to the opened-loop switched system.

And we check that, from Figure 3, the present observer
based on sliding mode control scheme effectively eliminated
effects of parameter uncertainties and nonlinearities and
guaranteed asymptotic stability of the closed-loop system.
Figure 4 shows that the sliding surface is accessibility but
continue chattering. The chattering of the sliding mode
variable �̂�(𝑡) is treated as reduced-order compensation of
dynamic system.

5. Conclusion

In this paper, an observer-based slidingmode control strategy
is presented for a class of uncertain nonlinear state-delayed
switched systems. Through this work, state-delayed switched
system with immeasurable states and nonlinear uncertainties
get better performance. Not only are the parameter uncer-
tainties not needed to satisfy matching condition, but also
the availabilities of all system states are no longer required.
Meanwhile, a unique nonswitched sliding surface is designed
in order to avoid repetitive jumps of the state trajectories
between sliding surfaces leading to instability and chattering.

The weakness is that only the switching signal satisfies
𝜎(𝑡) = 𝑖 = arg{min(𝑉

𝑖
(𝑡))}, can the switched system be

asymptotically stable. It is expected that the results developed
in the paper can be extended to common cases that the
underlying systems are involved in Markovian switching
signal [25–27] or arbitrary switching signal.
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This paper is concerned with𝐻
∞
control problem for flexible spacecraft with disturbance and time-varying control input delay. By

constructing an augmented Lyapunov functional with slack variables, a new delay-dependent state feedback controller is obtained
in terms of linear inequality matrix. These slack variables can make the design more flexible, and the resultant design also can
guarantee the asymptotic stability and𝐻

∞
attenuation level of closed-loop system.The effectiveness of the proposed designmethod

is illustrated via a numerical example.

1. Introduction

High-precision attitude control for flexible spacecrafts is a
difficult problem in communication, navigation and remote
sensing, and so forth. It is because modern spacecrafts often
employs large, complex, and lightweight structures such as
solar arrays in order to achieve the increased functional-
ity at a reduced launch cost and also provide sustainable
energy during space flight [1–4]. Consequently, the complex
space structure may lead to the decreased rigidity and low
frequency elastic modes. The dynamic model of a flexible
spacecraft usually includes the interaction between the rigid
and elastic modes [5, 6]. During the control of the rigid
body attitude, the unwanted excitation of the flexible modes,
together with other external disturbances, measurement, and
actuator error, may degrade the performance of attitude con-
trol systems (ACSs). Meanwhile, the spacecraft commonly
operates in the presence of various disturbances, including
gravitational torque, aerodynamic torque, radiation torque,
and other environmental and nonenvironmental torques.The
problem of disturbance rejection is particularly pronounced
in the case of low-earth-orbiting satellites that operate in alti-
tude ranges where their dynamics are substantially affected
by most of the disturbances mentioned above [7, 8]. In the
face of disturbance and uncertainty, 𝐻

∞
methods are ideally

suited for yielding a good performance of flexible spacecrafts.
𝐻
∞

control has been used in attitude control systems design
in [9, 10] where external disturbance and model uncertainty
are considered. An 𝐻

∞
multiobjective controller based on

the linear matrix inequality (LMI) framework is designed for
flexible spacecraft in [11].

On the other hand, in recent years, several studies related
to control of flexible spacecraft attitude system with input
saturation have beendone in [12, 13].However, the input delay
often exists in flexible spacecraft due to the physical structure
and energy consumption of the actuators. Although it is
not the most important factor to affect the attitude control,
it still leads to substantial performance deterioration and
even to instability of the system [14, 15]. Hence, stabilization
algorithms for such systems that explicitly take input time
delay into account are practical interest. Up to now, the issue
of control problems for flexible spacecraft subject to both dis-
turbance and input time delay has not been fully investigated
and remains to be open and challenging.

In control system design, it is usually desirable to design
the control systems which not only is robustly stable but also
guarantees an adequate level of performance. One approach
to this problem is the so-called guaranteed cost control
approach.
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Motivated by the preceding discussion, in this paper, we
consider𝐻

∞
control problem for flexible spacecraft subject to

both disturbance and input time-varying delay. By construct-
ing an augmented Lyapunov functional with slack variables,
a new delay-dependent state feedback controller is obtained
in terms of linear inequality matrix.These slack variables can
make the controller design more flexible and be extended to
the systems without time delay. The resultant design also can
guarantee the asymptotic stability and 𝐻

∞
performances of

closed-loop system. Finally, a numerical example is shown to
demonstrate the good performance of our method.

Notation. Throughout this paper, 𝑅𝑛 denotes the 𝑛-dimen-
sional Euclidean space; the space of square-integrable vector
functions over [0,∞) is denoted by 𝑙

2
[0,∞); the superscripts

“⊤” and “−1” stand for matrix transposition and matrix
inverse, respectively;𝑃 > (≥ 0)means that𝑃 is a real symmet-
ric and a positive definite (semidefinite). In symmetric block
matrices or complex matrix expressions, diag{⋅ ⋅ ⋅} stands for
a block-diagonal matrix, and ∗ represents a term that is
induced by symmetry. For a vector 𝜈(𝑡), its norm is given by
‖𝜈(𝑡)‖

2

2
= ∫
∞

0

𝜈
⊤

(𝑡)𝜈(𝑡)𝑑𝑡. Matrices, if their dimensions are
not explicitly stated, are assumed to be compatible for related
algebraic operations.

2. Problem Formulation and Preliminaries

To simplify the problem, only single-axis rotation is consid-
ered. We can obtain the single-axis model derived from the
nonlinear attitude dynamics of the flexible spacecraft (see also
[1, 7]). It is assumed that this model includes one rigid body
and one flexible appendage, and the relative elastic spacecraft
model is described as follows:

𝐽 ̈𝜃 + 𝐹 ̈𝜂 = 𝑢 (𝑡 − 𝜏 (𝑡)) ,

̈𝜂 + 2𝜉𝜔 ̇𝜂 + 𝜔
2

𝜂 + 𝐹
⊤ ̈𝜃 = 0,

(1)

where 𝜃 is the attitude angle, 𝐽 is the moment of inertia of the
spacecraft, 𝐹 is the rigid-elastic coupling matrix, 𝑢(𝑡 − 𝜏(𝑡))

is the control torque generated by the reaction wheels that
are installed in the flexible spacecraft, where 𝜏(𝑡) satisfies 0 ≤

𝜏(𝑡) ≤ 𝜏 and ̇𝜏(𝑡) ≤ 𝜇 ≤ 1, 𝜂 is the flexiblemodal coordinate, 𝜉
is the damping ratio, and 𝜔 is the modal frequency. Since the
vibration energy is concentrated in low frequency modes in
a flexible structure, its reduced order model can be obtained
by modal truncation. In this paper, only the first two bending
modes are taken into account. Then, we can get

(𝐽 − 𝐹𝐹
⊤

) ̈𝜃 = 𝐹 (2𝜉𝜔 ̇𝜂 + 𝜔
2

𝜂) + 𝑢 (𝑡 − 𝜏 (𝑡)) . (2)

We consider that 𝐹(2𝜉𝜔 ̇𝜂 + 𝜔
2

𝜂) as the disturbance due to
the elastic vibration of the flexible appendages. Denote 𝑥(𝑡) =
[𝜃(𝑡) ̇𝜃(𝑡)]

⊤, then (2) can be transformed into the state-space
form

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡 − 𝜏 (𝑡)) + 𝐵𝑑 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

(3)

where

𝐴 = [
0 1

0 0
] , 𝐵 = [

0

(𝐽 − 𝐹𝐹
⊤

)
−1] ,

𝐶 = [𝐼 0] .

(4)

𝑑(𝑡) = 𝐹(2𝜉𝜔 ̇𝜂 + 𝜔
2

𝜂) is the disturbance from the flexible
appendages and belongs to 𝑙

2
[0,∞) and ||𝑑(𝑡)|| ≤ 𝛿

𝑑
. For

system (3), the following control law is employed to deal with
the problem of𝐻

∞
control via state feedback

𝑢 (𝑡) = 𝐾𝑥 (𝑡) . (5)

Then, with the control law (5), the system (3) can be expressed
as follows:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵𝑑 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) .

(6)

Before stating ourmain results, the following lemmas are first
presented, which will be used in the proof of our result.

Lemma 1 (see [16]). For any matrix𝑀 > 0, scalars 𝑏 > 𝑎 and
𝑐 < 𝑑 ≤ 0, if there exists a Lebesgue vector function 𝜔(𝑠), then
the following inequalities hold:

−∫

𝑏

𝑎

𝜔
⊤

(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠 ≤ −
1

𝑏 − 𝑎
�̃�
⊤

(𝑠)𝑀�̃� (𝑠) ,

−∫

𝑑

𝑐

∫

𝑡

𝑡+𝜃

𝜔
⊤

(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠 𝑑𝜃 ≤ −
2

𝑐2 − 𝑑2
𝜔
⊤

(𝑠)𝑀𝜔 (𝑠) ,

(7)

where �̃�(𝑠) = ∫
𝑏

𝑎

𝜔
⊤

(𝑠)𝑑𝑠, 𝜔(𝑠) = ∫
𝑑

𝑐

∫
𝑡

𝑡+𝜃

𝜔(𝑠)𝑑𝑠 𝑑𝜃.

3. Main Result

First of all, a new version of delay-dependent bounded real
lemma for the system (6) is proposed in this section.

Theorem 2. Given scalars 𝛾 > 0, 𝜇 ≤ 1. For any delay
𝜏(𝑡) satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏, the system (6) is asymptotically
stable and satisfies ‖𝑧(𝑡)‖

2
< 𝛾‖𝑑(𝑡)‖

2
for any nonzero 𝑑(𝑡) ∈

𝑙
2
[0,∞) under the zero initial condition if there exist matrices

𝑃
1
> 0, 𝑄

1
> 0, 𝑄

2
> 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝑃

2
, and 𝑃

3
such

that the following inequality holds:

[
Ω + Ω 𝑌

𝑌
⊤

−𝛾
2

𝐼
] < 0, (8)
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where

Ω =

[
[
[
[
[
[
[
[
[
[
[

[

Ω
11

Ω
12

Ω
13

0
1

𝜏
𝑅
2

∗ Ω
22

𝑃
⊤

3
𝐵𝐾 0 0

∗ ∗ Ω
33

1

𝜏
𝑅
1

0

∗ ∗ ∗ −𝑄
1
−

1

𝜏
𝑅
1

0

∗ ∗ ∗ ∗ −
2

𝜏2
𝑅
2

]
]
]
]
]
]
]
]
]
]
]

]

,

𝑌 =

[
[
[
[
[

[

𝑃
⊤

2
𝐵

𝑃
⊤

3
𝐵

0

0

0

]
]
]
]
]

]

,

Ω = diag {𝐶⊤𝐶, 0, 0, 0, 0} ,

Ω
11

= 𝑃
⊤

2
𝐴 + 𝐴

⊤

𝑃
2
+ 𝑄
1
+ 𝑄
2
−

1

𝜏
𝑅
1
− 2𝑅
2
,

Ω
12

= 𝑃
1
− 𝑃
⊤

2
+ 𝐴
⊤

𝑃
3
,

Ω
13

= 𝑃
⊤

2
𝐵𝐾 +

1

𝜏
𝑅
1
,

Ω
22

= −𝑃
3
− 𝑃
⊤

3
+ 𝜏𝑅
1
+

𝜏
2

2
𝑅
2
,

Ω
33

= − (1 − 𝜇)𝑄
2
−

2

𝜏
𝑅
1
.

(9)

Proof. The first step is to analyze the asymptotic stability of
the system (6). Consider the system (6) in the absence of 𝑑(𝑡),
that is,

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡 − 𝜏 (𝑡)) . (10)

Choose the following Lyapunov-Krasovskii functional:

𝑉 (𝑡) = 𝜉
⊤

(𝑡) 𝐸𝑃𝜉 (𝑡) + ∫

𝑡

𝑡−𝜏

𝑥
⊤

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
⊤

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝑥
⊤

(𝑠) 𝑅
1
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜏

∫

0

𝜃

∫

𝑡

𝑡+𝜈

̇𝑥
⊤

(𝑠) 𝑅
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃 𝑑𝜈,

(11)

where

𝐸 = [
𝐼 0

0 0
] , 𝑃 = [

𝑃
1

0

𝑃
2

𝑃
3

] , 𝜉 (𝑡) = [
𝑥 (𝑡)

̇𝑥 (𝑡)
] ,

𝑃
1
> 0, 𝑄

𝑖
> 0, 𝑅

𝑖
> 0, 𝑖 = 1, 2.

(12)

Then, along the solution of the system in (10), the time deriv-
ative of 𝑉(𝑡) is given by

𝑉 (𝑡)

= 2𝜉
⊤

(𝑡) 𝑃
⊤

[
̇𝑥 (𝑡)

− ̇𝑥 (𝑡) + 𝐴𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡 − 𝜏 (𝑡))
]

+ 𝑥
⊤

(𝑡) (𝑄
1
+ 𝑄
2
) 𝑥 (𝑡)

− 𝑥
⊤

(𝑡 − 𝜏)𝑄
1
𝑥 (𝑡 − 𝜏)

− (1 − 𝜇) 𝑥
⊤

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑥 (𝑡 − 𝜏 (𝑡))

+ ̇𝑥
⊤

(𝑡) (𝜏𝑅
1
+

𝜏
2

2
𝑅
2
) ̇𝑥 (𝑡)

− ∫

𝑡

𝑡−𝜏

̇𝑥
⊤

(𝑠) 𝑅
1
̇𝑥 (𝑠) 𝑑𝑠 − ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝑥
⊤

(𝑠) 𝑅
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃.

(13)

From Lemma 1, It is easily shown that

− ∫

𝑡

𝑡−𝜏

̇𝑥
⊤

(𝑠) 𝑅
1
̇𝑥 (𝑠) 𝑑𝑠

= −∫

𝑡−𝑑(𝑡)

𝑡−𝜏

̇𝑥
𝜏

(𝑠) 𝑅
1
̇𝑥 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝜏

(𝑠) 𝑅
1
̇𝑥 (𝑠) 𝑑𝑠

≤ [𝑥
⊤

(𝑡) 𝑥
⊤

(𝑡 − 𝑑 (𝑡)) 𝑥
⊤

(𝑡 − 𝜏)]

×

[
[
[
[
[

[

−
𝑅
1

𝜏

𝑅
1

𝜏
0

∗ −
2𝑅
1

𝜏

𝑅
1

𝜏

∗ ∗ −
𝑅
1

𝜏

]
]
]
]
]

]

[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏)

]

]

.

(14)

Similarly, the following inequality is also true:

− ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝑥
⊤

(𝑠) 𝑅
2
̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃

≤ −
2

ℎ2
(∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)

⊤

𝑅
2

× (∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃)

= [𝑥
⊤

(𝑡) ∫

𝑡

𝑡−𝜏

𝑥
⊤

(𝑠) 𝑑𝑠]
[
[

[

−2𝑅
2

2

𝜏
𝑅
2

∗ −
2

𝜏2
𝑅
2

]
]

]

× [

[

𝑥 (𝑡)

∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠

]

]

.

(15)

Substituting (14) and (15) into (13) gives

𝑉 (𝑡) ≤ 𝜂
⊤

(𝑡) Ω𝜂 (𝑡) , (16)
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where 𝜂(𝑡) = [𝑥(𝑡) ̇𝑥(𝑡) 𝑥(𝑡 − 𝜏(𝑡)) 𝑥(𝑡 − 𝜏) ∫
𝑡

𝑡−𝜏

𝑥(𝑠)𝑑𝑠]

⊤

and Ω is defined in (8). Applying the Schur complement to
(8) gives Ω < 0, which implies 𝑉(𝑡) < 0. Hence, the system
(6) is asymptotically stable. Next, we will establish the 𝐻

∞

performance of the uncertain delay system (6) under zero
initial condition. Let

𝐽 (𝑡) = ∫

𝑡

0

[𝑧
⊤

(𝑠) 𝑧 (𝑠) − 𝛾
2

𝑑
⊤

(𝑠) 𝑑 (𝑠)] 𝑑𝑠. (17)

It can be shown that for any nonzero 𝑑(𝑡) ∈ 𝐿
2
[0,∞) and

𝑡 > 0,

𝐽 (𝑡) ≤ ∫

𝑡

0

[𝑧
⊤

(𝑠) 𝑧 (𝑠) − 𝛾
2

𝑑
⊤

(𝑠) 𝑑 (𝑠) + 𝑉 (𝑠)] 𝑑𝑠. (18)

It is noted that

𝑧
⊤

(𝑠) 𝑧 (𝑠) − 𝛾
2

𝑑
⊤

(𝑠) 𝑑 (𝑠)

=𝜙
⊤

(𝑡) diag {𝐶⊤𝐶, 0, 0, 0, 0, −𝛾
2

𝐼} 𝜙 (𝑡) ,

(19)

where 𝜙(𝑡) = [𝜂(𝑡), 𝑑(𝑡)] and the time derivative of 𝑉(𝑥
𝑠
)

along the solution of (6) gives

𝑉 (𝑠) ≤ 𝜙
⊤

(𝑡) [
Ω 𝑌

𝑌
⊤

0
] 𝜙 (𝑡) . (20)

Hence, 𝐽(𝑡) < 0 follows from (8), (19) and (20), which
implies that ‖𝑧(𝑡)‖

2
< 𝛾‖𝑑(𝑡)‖

2
holds for any nonzero 𝑑(𝑡) ∈

𝐿
2
[0,∞).

From the proof procedure of Theorem 2, one can see
that a new Lyapunov-Krasovskii functional is constructed
by employing slack variables 𝑃

2
and 𝑃

3
. It is worth pointing

out that the matrices 𝑃
2
and 𝑃

3
are useless for reducing the

conservatism of stability conditions by using the equivalence
idea in [17, 18]. However, they separates the Lyapunov
function matrix 𝑃

1
> 0 from system matrices 𝐴 and 𝐵, that

is, there are no terms containing the product of 𝑃
1
and any of

them, which is useful for the design of𝐻
∞
controller later on.

On the basis of Theorem 2, we will present a design
method of𝐻

∞
stabilizing controllers in the following.

Theorem 3. Given scalars 𝛾 > 0, 𝜇 ≤ 1 and 𝜀 ̸= 0. For
any delay 𝜏(𝑡) satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏, the system (6) is
asymptotically stable and satisfies ‖𝑧(𝑡)‖

2
< 𝛾‖𝑑(𝑡)‖

2
for any

nonzero 𝑑(𝑡) ∈ 𝑙
2
[0,∞) under the zero initial condition if there

exist matrices 𝑃
1
> 0, 𝑄

1
> 0, 𝑄

2
> 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝐹,

and invertible matrix 𝑃
2
such that the following inequality

holds:

[
Π 𝑌

𝑌
⊤

−𝛾
2

𝐼
] < 0, (21)

where

Π =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π
11

Π
12

Π
13

0
1

𝜏
𝑅
2

𝑃
⊤

2
𝐶
⊤

∗ Π
22

𝜀𝐵𝐹 0 0 0

∗ ∗ Π
33

1

𝜏
𝑅
1

0 0

∗ ∗ ∗ −𝑄
1
−

1

𝜏
𝑅
1

0 0

∗ ∗ ∗ ∗ −
2

𝜏2
𝑅
2

0

∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑌 =

[
[
[
[
[

[

𝐵

𝜀𝐵

0

0

0

]
]
]
]
]

]

,

Π
11

= 𝐴𝑃
2
+ 𝑃
⊤

2
𝐴
⊤

+ 𝑄
1
+ 𝑄
2
−

1

𝜏
𝑅
1
− 2𝑅
2
,

Π
12

= 𝑃
1
− 𝑃
2
+ 𝜀𝑃
⊤

2
𝐴
⊤

,

Π
13

= 𝐵𝐹 +
1

𝜏
𝑅
1
,

Π
22

= −𝜀𝑃
2
− 𝜀𝑃
⊤

2
+ 𝜏𝑅
1
+

𝜏
2

2
𝑅
2
,

Π
33

= − (1 − 𝜇)𝑄
2
−

2

𝜏
𝑅
1
.

(22)

Moreover, the feedback gain matrices 𝐾 are given by

𝐾 = 𝐹𝑃
−1

2
. (23)

Proof. Define some matrices as follows:

𝑃
2
= 𝑃
−1

2
, 𝑃

3
=

1

𝜀
𝑃
−1

2
, 𝑃

1
= 𝑃
⊤

2
𝑃
1
𝑃
2
,

𝑄
1
= 𝑃
⊤

2
𝑄
1
𝑃
2
, 𝑄

2
= 𝑃
⊤

2
𝑄
2
𝑃
2
,

𝑅
1
= 𝑃
⊤

2
𝑅
1
𝑃
2
, 𝑅

2
= 𝑃
⊤

2
𝑅
2
𝑃
2
.

(24)

Then, premultiplying (21) by diag{𝑃⊤
2
, 𝑃
⊤

2
, 𝑃
⊤

2
, 𝑃
⊤

2
, 𝑃
⊤

2
,

𝐼, 𝐼} and postmultiplying by diag{𝑃
2
, 𝑃
2
, 𝑃
2
, 𝑃
2
, 𝑃
2
, 𝐼, 𝐼},

we can get the following inequality:

[

[

Ω 𝑊 𝑌

𝑊
⊤

−𝐼 0

𝑌
⊤

0 −𝛾
2

𝐼

]

]

< 0, (25)

where 𝑊
⊤

= [𝐶 0 0 0 0]. Using Schur comple-
ment, from (25), it is clear that (8) holds. As a result, the
closed-loop system (6) is asymptotically stable and satisfies
‖𝑧(𝑡)‖

2
< 𝛾‖𝑑(𝑡)‖

2
. The proof is thus completed.

Comparing with the traditional controller design meth-
od, the matrix 𝑃

2
is invertible matrix instead of positive defi-

nite matrix, which make the design more flexible. Moreover,
this method also can be extended to the systems without time
delay.
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Figure 1: Spacecraft with flexible appendages.
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Figure 2: The responses of pitch attitude 𝜃.

4. Numerical Examples

In this section, we consider flexible spacecraft including
one rigid body and one flexible appendage depicted in
Figure 1. Numerical application of the proposed control
schemes to the attitude control of such system is presented
using MATLAB/SIMULINK software. In this paper, we only
consider the attitude in the pitch channel. Four bending
modes are considered for the practical spacecraft model at
𝜔
1

= 3.17 rad/s and 𝜔
2

= 7.18 rad/s with damping 𝜉 =

0.001 and 𝜉 = 0.0015. We suppose that 𝐹 = [𝐹
1

𝐹
2
], where

the coupling coefficients of the first two bending modes are
𝐹
1
= 1.27814, 𝐹

2
= 0.91756, and 𝐽 = 35.72 kgm2 which is

the nominal principal moment of inertia of pitch axis. The
flexible spacecraft is supposed tomove in a circular orbit with
the altitude of 500 km, then the orbit rate 𝑛 = 0.0011 rad/s.
The initial pitch attitude be of the spacecraft are 𝜃(0) =

0.08 rad and ̇𝜃(0) = 0.001 rad/s. And𝐻
∞
performance index

is supposed to 𝛾 = 0.1, and time delay satisfies 𝜏 = 0.3

and 𝑢 = 0.1. The tuning parameter is chosen as 𝜀 = 1. The
response of pitch attitude 𝜃, ̇𝜃, and the control are shown in
Figures 2, 3, and 4, respectively. From these figures, we can
see that our proposedmethod has a good performance under
disturbance and input time delay.
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Figure 3: The responses of pitch attitude ̇𝜃.
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Figure 4: The responses of control 𝑢(𝑡 − 𝜏(𝑡)).

5. Conclusion

In this paper, 𝐻
∞

control problem for flexible spacecraft
with disturbance and input time-varying delay has been
investigated. The LMI-based condition has been formulated
for the existence of the admissible controller, which ensures
that the closed-loop system is asymptotically stable with
a 𝐻
∞

disturbance attenuation level. Further improvement
in precision attitude control for flexible spacecrafts will be
considered in our future work.
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This paper is concerned with the problem of 𝐻
∞

control of linear neutral systems with time-varying delay. Firstly, by applying a
novel Lyapunov-Krasovskii functional which is constructedwith the idea of delay partitioning approach, appropriate free-weighting
matrices, an improved delay-dependent bounded real lemma (BRL) for neutral systems is established. By using the obtained BRL,
a delay-dependent sufficient condition for the existence of a state-feedback controller, which ensures asymptotic stability and a
prescribed 𝐻

∞
performance level of the corresponding closed-loop system, is formulated in terms of linear matrix inequalities.

Some numerical examples are given to illustrate the effectiveness of the proposed design method.

1. Introduction

A neutral time-delay system contains delays both in its states
and in its derivatives of states, which occurs in various
dynamic systems, such as economical systems, biological
systems, metallurgical processing systems, nuclear reactor,
power systems, and long-transmission lines in pneumatic and
hydraulic systems [1–10]. It has been recognized that time
delays can degrade system performance and even result in
instability [3–8]. Therefore, researchers have paid consider-
able attention to the problems of analysis and synthesis for
time-delay systems in the last decades (e.g., [1–16]).

In practical applications, however, it is desirable to design
a controller such that the closed-loop system is not only stable
but also possesses an adequate level of performance [6, 7, 10,
11]. One approach to cope with this problem is the so-called
𝐻
∞

control approach. The main objective of the𝐻
∞

control
is to obtain a controller such that the resulted closed system
allows a maximum delay size for a fixed 𝐻

∞
performance

bound or achieves a minimum𝐻
∞
performance bound for a

fixed delay size [10–12]. The conservatism in the 𝐻
∞

control
is hencemeasured by the allowable delay size or performance

bound obtained. Recently, many results on 𝐻
∞

control of
neutral systems have appeared in the literature; see [4, 10–
12, 16, 17] and the references therein.

In general, the existing literature for time-delay systems
can be roughly divided into two types: delay-independent
results [8–10] and delay-dependent ones [16–27]. The former
is irrelevant to the delay size while the latter includes the
information of delay size. Obviously, it has been recognized
that delay-dependent results are generally less conservative
than delay-independent ones, particularly when the delay
size is time varying [20–24, 28, 29]. In order to further
reduce the conservatism, some improved delay-dependent
stability conditions are derived by introducing free-weighting
matrices in [19]. In fact, Wu et al. and He et al. [20, 28] have
proposed some effective methods for dealing with time-delay
systems, which employ free-weighting matrices to express
the relationships between the terms in the Leibinz-Newton
formula.Themethod therein reduces the conservativeness of
methods involving a fixed model transformation. Additional
studies can be found in [8, 16, 20, 25, 28, 30] and references
cited therein.
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On the other hand, some other efforts on improving the
delay-dependent conditions were made through introducing
new Lyapunov-Krasovskii functional. To mention a few, new
classes of Lyapunov functional and augmented Lyapunov
functional were introduced to study the delay-dependent
stability for systems with time-varying delay in [28], which is
shown to possess less conservatism than the existing ones. In
[21], based on a novel fuzzy Lyapunov-Krasovskii functional
which is constructed using a delay partitioning method, a
delay-dependent criterion is developed for the stability anal-
ysis of fuzzy time-varying state delay systems. In [24], a less
conservative delay-dependent robust𝐻

∞
control is proposed

for uncertain linear systems with a state-delay based on
a new Lyapunov-Krasovskii functional. A new criterion of
asymptotic stability is derived in [26] by introducing a novel
Lyapunov functional with the idea of partitioning the lower
bound of the time-varying delay. Recently, there is enormous
growth of interest in using the delay partitioning technique to
deal with time-delay systems; see, for example [21–23, 26, 31–
33].The basic idea of this approach is to evenly partition time
delay into several components. By constructing a Lyapunov-
Krasovskii functional (LKF) with every delay component,
one can obtain a less conservative stability condition as
discussed by F. Gouaisbaut and Peaucelle [22] and Wu et al.
[21, 29]. More results can be found in articles [17, 21–27, 29–
33] and the references therein.

In this context, motivated byWu et al. [21] and Zhang and
Li [23], we will study the delay-dependent𝐻

∞
control prob-

lem of a class of neutral time-delay systems based on a delay
partitioning technique. The remainder of the paper is orga-
nized as follows. Section 2 gives problem formulation and
a necessary lemma. In Section 3, dividing the delay interval
into multiple segments, using the Lyapunov functional tech-
nology combined with matrix inequality technology, a new
delay-dependent bounded real lemma is proposed. Based on
the BRL, a condition for the existence of a state-feedback𝐻

∞

controller is introduced in terms of linearmatrix inequalities.
Numerical examples are given in Section 4, followed by the
conclusions, which are presented in Section 5.

Notation.Throughout this paper, “𝑇” stands for matrix trans-
position. “𝐼” denotes the identity matrix of appropriate
dimensions. “𝑃 > 0” means that 𝑃 is positive definite. “∗”
represents the elements below the main diagonal of a sym-
metric matrix.

2. Problem Formulations

Consider a class of linear time-varying discrete neutral sys-
tem:

̇𝑥 (𝑡) − 𝐶
𝑑

̇𝑥 (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝐵𝑤 (𝑡) + 𝐵
𝑢
𝑢 (𝑡) , 𝑡 > 0,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑢
𝑢 (𝑡) + 𝐷𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(1)

where𝑥(𝑡) is the state vector; thematrices𝐴,𝐴
𝑑
,𝐵,𝐶,𝐶

𝑑
, and

𝐷 are known constant matrices of appropriate dimensions,

and the eigenvalue of thematrix𝐶
𝑑
, 𝜌(𝐶
𝑑
) satisfies 𝜌(𝐶

𝑑
) < 1.

𝑤(𝑡) is the disturbance input that belongs to 𝐿
2
[0,∞). 𝑧(𝑡)

is the controlled output, and 𝑢(𝑡) is the controlled input.
𝜙(𝑡) (𝑡 ∈ [−𝑟, 0]) is the system’s initial function which is
continuous differentiable on [−𝑟, 0]. The scalar 𝜏 is a posi-
tive constant time delay. Time delay 𝑑(𝑡) is a continuously
differentiable function, satisfying the following conditions:

0 ≤ 𝑑 (𝑡) ≤ ℎ,

̇𝑑 (𝑡) ≤ 𝜇,

(2)

where ℎ, and 𝜇 are known positive real constants, and it is
assumed that 𝑟 = max{ℎ, 𝜏}. In this paper, we are interested
in designing a memoryless state-feedback controller

𝑢 (𝑡) = 𝐾𝑥 (𝑡) , (3)

where 𝐾 is a constant matrix, such that for a given scalar 𝛾,
the following requirements are satisfied:

(I) the corresponding closed-loop system is asymptoti-
cally stable when 𝑤(𝑡) = 0;

(II) under zero initial condition (i.e., 𝑥(𝑡) = 0 (𝑡 ∈ [−𝑟,

0])), the corresponding closed-loop system satisfies

‖𝑧‖
2
≤ 𝛾‖𝑤‖

2
, ∀𝑤 ∈ 𝐿

2
[0,∞) , (4)

where 𝛾 > 0 is a prescribed scalar.
In obtaining the main results of this paper, the following

lemma plays an important role.

Lemma 1 (Schur complement). For the symmetrical matrix
𝐿 = [

𝐿
11
𝐿
12

𝐿
𝑇

12
𝐿
22

], the followings are equivalent:

(1) 𝐿 < 0,

(2) 𝐿
11

< 0, 𝐿
22

− 𝐿
𝑇

12
𝐿
−1

11
𝐿
12

< 0,

(3) 𝐿
22

< 0, 𝐿
11

− 𝐿
12
𝐿
−1

22
𝐿
𝑇

12
< 0.

(5)

3. Main Results

In this section, we discuss the problem of 𝐻
∞

performance
and state-feedback𝐻

∞
controller design of system (1).

3.1. 𝐻
∞

Performance Analysis. In the following theorem, we
present a new version of delay-dependent bounded real lem-
ma for neutral system (1) with 𝑢(𝑡) ≡ 0; that is, we consider
the following system:

̇𝑥 (𝑡) − 𝐶
𝑑

̇𝑥 (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐵𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑤 (𝑡) .

(6)

Theorem 2. For given positive scalars ℎ > 0 and 𝜇 > 0, the
neutral system (6) with delay restrictions (2) is asymptotically
stable and satisfies ‖𝑧‖

2
≤ 𝛾‖𝑤‖

2
for any nonzero 𝑤(𝑡) ∈

𝐿
2
[0,∞) under the zero initial condition if there exist matrices
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𝑃 = 𝑃
𝑇

> 0, 𝑄
𝑖
= 𝑄

T
𝑖
≥ 0 (𝑖 = 1, . . . , 4), 𝑅 = 𝑅

𝑇

> 0, 𝑍 =

𝑍
𝑇

> 0,

𝑋 =

[
[
[
[
[
[
[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑋
15

𝑋
16

∗ 𝑋
22

𝑋
23

𝑋
24

𝑋
25

𝑋
26

∗ ∗ 𝑋
33

𝑋
34

𝑋
35

𝑋
36

∗ ∗ ∗ 𝑋
44

𝑋
45

𝑋
46

∗ ∗ ∗ ∗ 𝑋
55

𝑋
56

∗ ∗ ∗ ∗ ∗ 𝑋
66

]
]
]
]
]
]
]

]

≥ 0, (7)

and free-weighting matrices𝑁
𝑖
(𝑖 = 1, . . . , 6) with appropriate

dimensions, such that the following LMIs hold:

Φ =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

Φ
14

Φ
15

Φ
16

𝐴
𝑇

𝐻 0 𝐶
𝑇

∗ Φ
22

Φ
23

Φ
24

Φ
25

Φ
26

0 0 0

∗ ∗ Φ
33

Φ
34

Φ
35

Φ
36

𝐴
𝑇

𝑑
𝐻 0 0

∗ ∗ ∗ Φ
44

Φ
45

Φ
46

0 0 0

∗ ∗ ∗ ∗ Φ
55

Φ
56

0 0 0

∗ ∗ ∗ ∗ ∗ Φ
66

𝐶
𝑇

𝑑
𝐻 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐻 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(8)

Ψ =

[
[
[
[
[
[
[
[
[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑋
15

𝑋
16

𝑁
1

∗ 𝑋
22

𝑋
23

𝑋
24

𝑋
25

𝑋
26

𝑁
2

∗ ∗ 𝑋
33

𝑋
34

𝑋
35

𝑋
36

𝑁
3

∗ ∗ ∗ 𝑋
44

𝑋
45

𝑋
46

𝑁
4

∗ ∗ ∗ ∗ 𝑋
55

𝑋
56

𝑁
5

∗ ∗ ∗ ∗ ∗ 𝑋
66

𝑁
6

∗ ∗ ∗ ∗ ∗ ∗ 𝑍

]
]
]
]
]
]
]
]
]

]

≥ 0, (9)

where

Φ
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄
1
+ 𝑁
1
+ 𝑁
𝑇

1
+ ℎ𝑋
11
,

Φ
12

= 𝑁
T
2
+ ℎ𝑋
12
, Φ

13
= 𝑃𝐴
𝑑
− 𝑁
1
+ 𝑁

T
3
+ ℎ𝑋
13
,

Φ
14

= 𝑁
T
4
+ ℎ𝑋
14
, Φ

15
= 𝑁

T
5
+ ℎ𝑋
15
,

Φ
16

= 𝑃𝐶
𝑑
+ 𝑁

T
6
+ ℎ𝑋
16
,

Φ
22

= −(1 −
𝜇

2
)𝑄
1
+ 𝑄
2
+ ℎ𝑋
22
,

Φ
23

= −𝑁
2
+ ℎ𝑋
23
, Φ

24
= ℎ𝑋
24
,

Φ
25

= ℎ𝑋
25
, Φ

26
= ℎ𝑋
26
,

Φ
33

= − (1 − 𝜇)𝑄
2
+ 𝑄
3
− 𝑁
3
− 𝑁
𝑇

3
+ ℎ𝑋
33
,

Φ
34

= −𝑁
𝑇

4
+ ℎ𝑋
34
, Φ

35
= −𝑁

𝑇

5
+ ℎ𝑋
35

Φ
36

= −𝑁
𝑇

6
+ ℎ𝑋
36
,

Φ
44

= −(1 −
𝜇

2
)𝑄
3
+ 𝑄
4
+ ℎ𝑋
44
,

Φ
45

= ℎ𝑋
45
, Φ

46
= ℎ𝑋
46
,

Φ
55

= −𝑄
4
+ ℎ𝑋
55
, Φ

56
= ℎ𝑋
56
,

Φ
66

= −𝑅 + ℎ𝑋
66
, 𝐻 = 𝑅 + ℎ𝑍.

(10)
Proof. Under the condition of the theorem, we first show the
asymptotic stability of system (6). To this end, we consider
system (6) with 𝑤(𝑡) = 0, that is,

̇𝑥 (𝑡) − 𝐶
𝑑

̇𝑥 (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) . (11)

Inspired by the works of [23], we divided the delay inter-
val [0, ℎ] into [0, 𝑑(𝑡)/2], [𝑑(𝑡)/2, 𝑑(𝑡)], [𝑑(𝑡), (𝑑(𝑡) + ℎ)/2],
and [(𝑑(𝑡) + ℎ)/2, ℎ] for system (6). Corresponding to such
a division, the following Lyapunov-Krasovskii functional is
chosen for this system:

𝑉 (𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝑑(𝑡)/2

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝑑(𝑡)/2

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝑑(𝑡)

𝑡−(𝑑(𝑡)+ℎ)/2

𝑥
𝑇

(𝑠) 𝑄
3
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−(𝑑(𝑡)+ℎ)/2

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑄
4
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏

̇𝑥
𝑇

(𝑠) 𝑅 ̇𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑠) 𝑍 ̇𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

(12)

where 𝑃 = 𝑃
𝑇

> 0, 𝑄
𝑖
= 𝑄

T
𝑖
≥ 0 (𝑖 = 1, . . . , 4), 𝑅 = 𝑅

𝑇

> 0,
and 𝑍 = 𝑍

𝑇

> 0 are matrices to be determined. By using the
Leibniz-Newton formula, one has

𝑥 (𝑡 − 𝑑 (𝑡)) = 𝑥 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥 (𝑠) 𝑑𝑠. (13)

Since (13) can be rewritten as𝑥(𝑡)−𝑥(𝑡−𝑑(𝑡))−∫𝑡
𝑡−𝑑(𝑡)

̇𝑥(𝑠)𝑑𝑠 =

0. Due to this relation, one can introduce some appropriate
dimensional matrices𝑁

𝑖
(𝑖 = 1, . . . , 6), such that

2 [𝑥
𝑇

(𝑡)𝑁
1
+ 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑁
2
+ 𝑥
𝑇

(𝑡 − 𝑑 (𝑡))𝑁
3

+ 𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
)𝑁
4
+ 𝑥
𝑇

(𝑡 − ℎ)𝑁
5

+ ̇𝑥
𝑇

(𝑡 − 𝜏)𝑁
6
]

× [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑 (𝑡)) − ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥 (𝑠) 𝑑𝑠] = 0.

(14)

Moreover, it follows from (2) that for any appropriate dimen-
sional matrix𝑋 ≥ 0,

ℎ𝜂
𝑇

(𝑡) 𝑋𝜂 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
𝑇

(𝑡) 𝑋𝜂 (𝑡) 𝑑𝑠 ≥ 0, (15)
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where

𝜂 (𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
) 𝑥
𝑇

(𝑡 − ℎ) ̇𝑥
𝑇

(𝑡 − 𝜏)]

𝑇

. (16)

According to (14) and (15), and taking the time derivative of
the Lyapunov-Krasovskii functional candidate (12) gives that

𝑉 (𝑡, 𝑥
𝑡
)

= 2𝑥
𝑇

(𝑡) 𝑃 ̇𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡)

− (1 −

̇𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑄
1
𝑥(𝑡 −

𝑑 (𝑡)

2
)

+ (1 −

̇𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑄
2
𝑥(𝑡 −

𝑑 (𝑡)

2
)

− (1 − ̇𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
2
𝑥 (𝑡 − 𝑑 (𝑡))

+ (1 −

̇𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑄
2
𝑥(𝑡 −

𝑑 (𝑡)

2
)

− (1 − ̇𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
2
𝑥 (𝑡 − 𝑑 (𝑡))

+ (1 − ̇𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
3
𝑥 (𝑡 − 𝑑 (𝑡))

− (1 −

̇𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
)𝑄
3

× 𝑥(𝑡 −
𝑑 (𝑡) + ℎ

2
)

+ (1 −

̇𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
)𝑄
4

× 𝑥(𝑡 −
𝑑 (𝑡) + ℎ

2
) − 𝑥
𝑇

(𝑡 − ℎ)𝑄
4
𝑥 (𝑡 − ℎ)

+ ̇𝑥
𝑇

(𝑡) 𝑅 ̇𝑥 (𝑡) − ̇𝑥
𝑇

(𝑡 − 𝜏) 𝑅 ̇𝑥 (𝑡 − 𝜏)

+ ℎ ̇𝑥
𝑇

(𝑡) 𝑍 ̇𝑥 (𝑡) − ∫

𝑡

𝑡−ℎ

̇𝑥
𝑇

(𝑠) 𝑍 ̇𝑥 (𝑠) 𝑑𝑠

≤ 2𝑥
𝑇

(𝑡) 𝑃 [𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐶

𝑑
̇𝑥 (𝑡 − 𝜏)]

+ 𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡)

− (1 −
𝜇

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑄
1
𝑥(𝑡 −

𝑑 (𝑡)

2
)

+ (1 −

̇𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑄
2
𝑥(𝑡 −

𝑑 (𝑡)

2
)

− (1 − 𝜇) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
2
𝑥 (𝑡 − 𝑑 (𝑡))

+ (1 − ̇𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
3
𝑥 (𝑡 − 𝑑 (𝑡))

− (1 −
𝜇

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
)𝑄
3
𝑥(𝑡 −

𝑑 (𝑡) + ℎ

2
)

+ (1 −

̇𝑑 (𝑡)

2
) 𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
)𝑄
4

× 𝑥(𝑡 −
𝑑 (𝑡) + ℎ

2
) − 𝑥
𝑇

(𝑡 − ℎ)𝑄
4
𝑥 (𝑡 − ℎ)

+ ̇𝑥
𝑇

(𝑡) 𝑅 ̇𝑥 (𝑡) − ̇𝑥
𝑇

(𝑡 − 𝜏) 𝑅 ̇𝑥 (𝑡 − 𝜏)

+ ℎ ̇𝑥
𝑇

(𝑡) 𝑍 ̇𝑥 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥
𝑇

(𝑠) 𝑍 ̇𝑥 (𝑠) 𝑑𝑠

+ 2 [𝑥
𝑇

(𝑡)𝑁
1
+ 𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑁
2

+ 𝑥
𝑇

(𝑡 − 𝑑 (𝑡))𝑁
3
+ 𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
)𝑁
4

+𝑥
𝑇

(𝑡 − ℎ)𝑁
5
+ ̇𝑥
𝑇

(𝑡 − 𝜏)𝑁
6
]

× [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑 (𝑡)) − ∫

𝑡

𝑡−𝑑(𝑡)

̇𝑥 (𝑠) 𝑑𝑠]

+ ℎ𝜂
𝑇

(𝑡) 𝑋𝜂 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
𝑇

(𝑡) 𝑋𝜂 (𝑡) 𝑑𝑠

= 𝜂
𝑇

(𝑡) Ξ𝜂 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝜉
𝑇

(𝑡, 𝑠) Ψ𝜉 (𝑡, 𝑠) 𝑑𝑠

−

̇𝑑 (𝑡)

2
𝑥
𝑇

(𝑡 −
𝑑 (𝑡)

2
)𝑄
2
𝑥(𝑡 −

𝑑 (𝑡)

2
)

− ̇𝑑 (𝑡) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
3
𝑥 (𝑡 − 𝑑 (𝑡))

−

̇𝑑 (𝑡)

2
𝑥
𝑇

(𝑡 −
𝑑 (𝑡) + ℎ

2
)𝑄
4
𝑥(𝑡 −

𝑑 (𝑡) + ℎ

2
) ,

(17)

where
𝜉 (𝑡) = [𝜂

𝑇

(𝑡) ̇𝑥
𝑇

(𝑠)]
𝑇

,

Ξ =

[
[
[
[

[

Φ
11
+ 𝐴
𝑇

𝐻𝐴 Φ
12
Φ
13
+ 𝐴
𝑇

𝐻𝐴
𝑑
Φ
14
Φ
15
Φ
16
+ 𝐴
𝑇

𝐻𝐶
𝑑

∗ Φ
22

Φ
23

Φ
24
Φ
25

Φ
26

∗ ∗ Φ
33
+ 𝐴
𝑇

𝑑
𝐻𝐴
𝑑
Φ
34
Φ
35
Φ
36
+ 𝐴
𝑇

𝑑
𝐻𝐶
𝑑

∗ ∗ ∗ Φ
44
Φ
45

Φ
46

∗ ∗ ∗ ∗ Φ
55

Φ
56

∗ ∗ ∗ ∗ ∗ Φ
66
+ 𝐶
𝑇

𝑑
𝐻𝐶
𝑑

]
]
]
]

]

(18)

and Ψ is denoted in (9). The last three items of (17) are not
more than zero since 𝑄

𝑖
≥ 0 (𝑖 = 2, . . . , 4). Therefore, if
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Ξ < 0 and Ψ ≥ 0, there exists a positive scalar 𝜀 such
that 𝑉 (𝑡, 𝑥

𝑡
) ≤ −𝜀‖𝑥(𝑡)‖

2, which guarantees system (6) is
asymptotically stable. By Lemma 1, we can conclude that if
the matrix inequality (8) is feasible then the inequality Ξ < 0

is feasible.This implies that system (6) is asymptotically stable
if LMIs (8) and (9) are feasible.

Next, we shall establish the 𝐻
∞

performance of system
(6) under zero initial condition. To this end, we introduce

𝐽
𝛾
= ∫

𝑡

0

(𝑧
𝑇

(𝜃) 𝑧 (𝜃) − 𝛾
2

𝑤
𝑇

(𝜃) 𝑤 (𝜃)) 𝑑𝜃, (19)

where 𝑡 > 0.
By combining (17) with those results analyzed above, now

it is interesting to note that

𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝜂
𝑇

(𝑡) Ξ𝜂 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝜉
𝑇

(𝑡, 𝑠) Ψ𝜉 (𝑡, 𝑠) 𝑑𝑠. (20)

Considering zero initial condition, it is easy to see that
for any nonzero 𝑤 ∈ 𝐿

2
[0,∞) and 𝑡 > 0, the following

expression holds.

𝐽
𝛾
= ∫

𝑡

0

(𝑧
𝑇

(𝜃) 𝑧 (𝜃) − 𝛾
2

𝑤
𝑇

(𝜃) 𝑤 (𝜃) + 𝑉 (𝜃)) 𝑑𝜃 − 𝑉 (𝑡)

≤ ∫

𝑡

0

(𝑧
𝑇

(𝜃) 𝑧 (𝜃) − 𝛾
2

𝑤
𝑇

(𝜃) 𝑤 (𝜃) + 𝑉 (𝜃)) 𝑑𝜃

= ∫

𝑡

0

𝜂
𝑇

(𝜃) Ξ


𝜂 (𝜃) 𝑑𝜃

− ∫

𝑡

0

∫

𝜃

𝜃−𝑑(𝜃)

𝜉
𝑇

(𝜃, 𝑠) Ψ𝜉 (𝜃, 𝑠) 𝑑𝑠 𝑑𝜃,

(21)

where

𝜂
𝑇

(𝑡) = [𝜂
𝑇

(𝑡) 𝑤
𝑇

(𝑡)]

Ξ


=

[
[
[
[
[
[
[
[
[

[

Φ
11

+ 𝐴
𝑇

𝐻𝐴 + 𝐶
𝑇

𝐶 Φ
12

Φ
13

+ 𝐴
𝑇

𝐻𝐴
𝑑

Φ
14

Φ
15

Φ
16

+ 𝐴
𝑇

𝐻𝐶
𝑑

𝐶
𝑇

𝐷

∗ Φ
22

Φ
23

Φ
24

Φ
25

Φ
26

0

∗ ∗ Φ
33

+ 𝐴
𝑇

𝑑
𝐻𝐴
𝑑

Φ
34

Φ
35

Φ
36

+ 𝐴
𝑇

𝑑
𝐻𝐶
𝑑

0

∗ ∗ ∗ Φ
44

Φ
45

Φ
46

0

∗ ∗ ∗ ∗ Φ
55

Φ
56

0

∗ ∗ ∗ ∗ ∗ Φ
66

+ 𝐶
𝑇

𝑑
𝐻𝐶
𝑑

0

∗ ∗ ∗ ∗ ∗ ∗ 𝐷
𝑇

𝐷 − 𝛾
2

𝐼

]
]
]
]
]
]
]
]
]

]

< 0.

(22)

By carrying out some algebraic manipulations, the afore-
mentionedmatrix inequality (22) can be rewritten as follows:

[
[
[
[
[
[
[
[
[
[
[

[

Φ
11

Φ
12

Φ
13

Φ
14

Φ
15

Φ
16

𝐴
𝑇

𝐻 0

∗ Φ
22

Φ
23

Φ
24

Φ
25

Φ
26

0 0

∗ ∗ Φ
33

Φ
34

Φ
35

Φ
36

𝐴
𝑇

𝑑
𝐻 0

∗ ∗ ∗ Φ
44

Φ
45

Φ
46

0 0

∗ ∗ ∗ ∗ Φ
55

Φ
56

0 0

∗ ∗ ∗ ∗ ∗ Φ
66

𝐶
𝑇

𝑑
𝐻 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐻 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[

[

𝐶
𝑇

0

0

0

0

0

0

𝐷
𝑇

]
]
]
]
]
]
]
]
]
]
]

]

× [𝐶 0 0 0 0 0 0 𝐷] < 0.

(23)

By Schur complement (Lemma 1) and some matrices
primary manipulations, it is easy to see that the above-
mentioned matrix inequality (23) is equivalent to (8).

Combining (8) and (9), we have 𝜂𝑇(𝑡)Ξ𝜂(𝑡) ≤ 0 for any 𝜂(𝑡).
Therefore, the following expression holds for any 𝑡 > 0:

𝐽
𝛾
= ∫

𝑡

0

(𝑧
𝑇

(𝜃) 𝑧 (𝜃) − 𝛾
2

𝑤
𝑇

(𝜃) 𝑤 (𝜃)) 𝑑𝜃 ≤ 0. (24)

By letting 𝑡 → ∞, we lead to

∫

∞

0

𝑧
𝑇

(𝜃) 𝑧 (𝜃) 𝑑𝜃 ≤ 𝛾
2

∫

∞

0

𝑤
𝑇

(𝜃) 𝑤 (𝜃) 𝑑𝜃. (25)

And hence, (4) is satisfied for any nonzero 𝑤(𝑡) ∈ 𝐿
2
[0,∞).

The proof is thus completed.

Remark 3. Theorem 2 presents an improved bounded real
lemma for linear neutral system with time-varying delay by
defining a novel Lyapunov-Krasovskii functional. The merit
of the proposed BRL lies in its reduced conservatism, which
is based on a time-delay fractioning approach.

Remark 4. About the delay partitioning technique, the clas-
sical approach is to represent the time delay as two parts:
constant part and time-varying part, and then a Lyapunov-
Krasovskii functional is introduced by applying the idea of
delay partitioning to the constant part. However, in this
brief, we partition the whole time-varying delay interval
into multiparts and a novel Lyapunov-Krasovskii functional
(LKF) is constructed with every delay component. Then, we
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obtain a time-varying LKF since it is dependent on the time-
varying delay, which constitutes the major difference from
most existing results in the literature.

3.2. 𝐻
∞

Control of Neutral Time-Delay Systems. Now, we
are in a position to state the 𝐻

∞
control result based on the

BRL derived in the previous section. A sufficient condition
under which there exists a memoryless state-feedback 𝐻

∞

controller for the neutral system (1) is given in Theorem 5.

Theorem 5. For given positive scalars 𝜇 and 𝜆, there exists
a state-feedback controller in the form of (3) such that the
resulting closed-loop system satisfies the requirements (I) and

(II) if there exist matrices �̃� > 0, �̃�
𝑖
> 0 (𝑖 = 1, . . . , 4), �̃� > 0,

�̃� > 0,

�̃� =

[
[
[
[
[
[
[
[

[

�̃�
11

�̃�
12

�̃�
13

�̃�
14

�̃�
15

�̃�
16

∗ �̃�
22

�̃�
23

�̃�
24

�̃�
25

�̃�
26

∗ ∗ �̃�
33

�̃�
34

�̃�
35

�̃�
36

∗ ∗ ∗ �̃�
44

�̃�
45

�̃�
46

∗ ∗ ∗ ∗ �̃�
55

�̃�
56

∗ ∗ ∗ ∗ ∗ �̃�
66

]
]
]
]
]
]
]
]

]

≥ 0, (26)

free-weighting matrices �̃�
𝑖
(𝑖 = 1, . . . , 6) of appropriate

dimensions, and a scalar 𝛾 > 0, such that the following matrix
inequalities hold:

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ̃
11

Φ̃
12

Φ̃
13

Φ̃
14

Φ̃
15

Φ̃
16

𝜆�̃�𝐵
𝑇

+ 𝜆𝑌
𝑇

𝐵
𝑇

𝑢
0 �̃�𝐶

𝑇

+ 𝑌
𝑇

𝐶
𝑇

𝑢

∗ Φ̃
22

Φ̃
23

Φ̃
24

Φ̃
25

Φ̃
26

0 0 0

∗ ∗ Φ̃
33

Φ̃
34

Φ̃
35

Φ̃
36

𝜆�̃�𝐴
𝑇

𝑑
0 0

∗ ∗ ∗ Φ̃
44

Φ̃
45

Φ̃
46

0 0 0

∗ ∗ ∗ ∗ Φ̃
55

Φ̃
56

0 0 0

∗ ∗ ∗ ∗ ∗ Φ̃
66

𝜆�̃�𝐶
𝑇

𝑑
0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜆�̃� 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (27)

Ψ̃ =

[
[
[
[
[
[
[
[
[
[

[

�̃�
11

�̃�
12

�̃�
13

�̃�
14

�̃�
15

�̃�
16

�̃�
1

∗ �̃�
22

�̃�
23

�̃�
24

�̃�
25

�̃�
26

�̃�
2

∗ ∗ �̃�
33

�̃�
34

�̃�
35

�̃�
36

�̃�
3

∗ ∗ ∗ �̃�
44

�̃�
45

�̃�
46

�̃�
4

∗ ∗ ∗ ∗ �̃�
55

�̃�
56

�̃�
5

∗ ∗ ∗ ∗ ∗ �̃�
66

�̃�
6

∗ ∗ ∗ ∗ ∗ ∗ �̃�

]
]
]
]
]
]
]
]
]
]

]

≥ 0, (28)

where

Φ̃
11

= 𝐵
𝑢
𝑌 + 𝑌

𝑇

𝐵
𝑇

𝑢
+ �̃�𝐵
𝑇

+ 𝐵�̃� + �̃�
1
+ �̃�
1
+ �̃�
𝑇

1
+ ℎ�̃�
11
,

Φ̃
12

= �̃�
𝑇

2
+ ℎ�̃�
12
,

Φ̃
13

= 𝐴
𝑑
�̃� − �̃�

1
+ �̃�

T
3
+ ℎ�̃�
13
,

Φ̃
14

= �̃�
T
4
+ ℎ�̃�
14
, Φ̃

15
= �̃�

T
5
+ ℎ�̃�
15

Φ̃
16

= 𝐶
𝑑
�̃� + �̃�

T
6
+ ℎ�̃�
16
,

Φ̃
22

= −(1 −
𝜇

2
) �̃�
1
+ �̃�
2
+ ℎ�̃�
22
,

Φ̃
23

= −�̃�
2
+ ℎ�̃�
23
,

Φ̃
24

= ℎ�̃�
24
, Φ

25
= ℎ�̃�
25
, Φ̃

26
= ℎ𝑋
26
,

Φ̃
33

= − (1 − 𝜇) �̃�
2
+ �̃�
3
− �̃�
3
− �̃�
𝑇

3
+ ℎ�̃�
33
,

Φ̃
34

= −�̃�
4
+ ℎ�̃�
34
, Φ̃

35
= −�̃�

5
+ ℎ�̃�
35
,

Φ̃
36

= −�̃�
6
+ ℎ�̃�
36
,

Φ̃
44

= (
𝜇

2
− 1) �̃�

3
+ �̃�
4
+ ℎ�̃�
44
,

Φ̃
45

= ℎ�̃�
45
, Φ̃

46
= ℎ�̃�
46
,

Φ̃
55

= −�̃�
4
+ ℎ�̃�
55
, Φ̃

56
= ℎ�̃�
56
,

Φ̃
66

= −�̃� + ℎ�̃�
66
.

(29)
In this case, an𝐻

∞
state-feedback controller can be chosen as

𝑢 (𝑡) = 𝑌�̃�
−1

𝑥 (𝑡) . (30)

Proof. Assume that 𝑢(𝑡) = 𝐾𝑥(𝑡); 𝐵
𝑢
𝑢(𝑡) and𝐶

𝑢
𝑢(𝑡) in (1) are

replaced by 𝐵
𝑢
𝐾𝑥(𝑡) and 𝐶

𝑢
𝐾𝑥(𝑡), respectively. Define 𝐴

𝑘
≐
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𝐴 + 𝐵
𝑢
𝐾 and 𝐶

𝑘
≐ 𝐶 + 𝐶

𝑢
𝐾. Taking this into account, the

condition inTheorem 2 is replaced by

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ


11
Φ
12

Φ
13

Φ
14

Φ
15

Φ
16

𝐴
𝑇

𝑘
𝐻 0 𝐶

𝑇

𝑘

∗ Φ
22

Φ
23

Φ
24

Φ
25

Φ
26

0 0 0

∗ ∗ Φ
33

Φ
34

Φ
35

Φ
36

𝐴
𝑇

𝑑
𝐻 0 0

∗ ∗ ∗ Φ
44

Φ
45

Φ
46

0 0 0

∗ ∗ ∗ ∗ Φ
55

Φ
56

0 0 0

∗ ∗ ∗ ∗ ∗ Φ
66

𝐶
𝑇

𝑑
𝐻 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐻 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(31)

where

Φ


11
= 𝑃𝐴
𝑘
+ 𝐴
𝑇

𝑘
𝑃 + 𝑄

1
+ 𝑁
1
+ 𝑁
𝑇

1
+ ℎ𝑋
11
. (32)

Pre- and postmultiplying (31) by diag {𝑃
−𝑇

, 𝑃
−𝑇

, 𝑃
−𝑇

,

𝑃
−𝑇

, 𝑃
−𝑇

, 𝑃
−𝑇

, 𝑃
−𝑇

, 𝐼, 𝐼} and diag {𝑃
−1

, 𝑃
−1

, 𝑃
−1

, 𝑃
−1

, 𝑃
−1

,

𝑃
−1

, 𝑃
−1

, 𝐼, 𝐼}, respectively, and introducing an additional
constraint 𝐻 = 𝜆𝑃, then one can obtain an equivalent
expression of (31) as follows:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ


11
Φ
12

Φ
13

Φ
14

Φ
15

Φ
16

𝜆𝑃
−𝑇

𝐵
𝑇

+𝜆𝑃
−𝑇

𝐾
𝑇

𝐵
𝑇

𝑢

0
𝑃
−𝑇

𝐶
𝑇

+𝑃
−𝑇

𝐾
𝑇

𝐶
𝑇

𝑢

∗ Φ
22

Φ
23

Φ
24

Φ
25

Φ
26

0 0 0

∗ ∗ Φ
33

Φ
34

Φ
35

Φ
36

𝜆𝑃
−𝑇

𝐴
𝑇

𝑑
0 0

∗ ∗ ∗ Φ
44

Φ
45

Φ
46

0 0 0

∗ ∗ ∗ ∗ Φ
55

Φ
56

0 0 0

∗ ∗ ∗ ∗ ∗ Φ
66

𝜆𝑃
−𝑇

𝐶
𝑇

𝑑
0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜆𝑃
−𝑇

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼 𝐷
𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (33)

where

Φ


11
= 𝐵
𝑢
𝐾𝑃
−1

+ 𝑃
−𝑇

𝐾
𝑇

𝐵
𝑇

𝑢
+ 𝑃
−𝑇

𝐵
𝑇

+ 𝐵𝑃
−1

+ 𝑄
1
+ 𝑁
1
+ 𝑁
𝑇

1
+ ℎ𝑋
11
,

Φ
12

= 𝑁
𝑇

2
+ ℎ𝑋
12
,

Φ
13

= 𝐴
𝑑
𝑃
−1

− 𝑁
1
+ 𝑁
𝑇

3
+ ℎ𝑋
13
,

Φ
14

= 𝑁
𝑇

4
+ ℎ𝑋
14
, Φ

15
= 𝑁
𝑇

5
+ ℎ𝑋
15
,

Φ
16

= 𝐶
𝑑
𝑃
−1

+ 𝑁
𝑇

6
+ ℎ𝑋
16
,

Φ
22

= −(1 −
𝜇

2
)𝑄
1
+ 𝑄
2
+ ℎ𝑋
22
,

Φ
23

= −𝑁
2
+ ℎ𝑋
23
, Φ

24
= ℎ𝑋
24
,

Φ
25

= ℎ𝑋
25
, Φ

26
= ℎ𝑋
26
,

Φ
33

= − (1 − 𝜇)𝑄
2
+ 𝑄
3
− 𝑁
3
− 𝑁
𝑇

3
+ ℎ𝑋
33
,

Φ
34

= −𝑁
4
+ ℎ𝑋
34
, Φ

35
= −𝑁

5
+ ℎ𝑋
35
,

Φ
36

= −𝑁
6
+ ℎ𝑋
36
,

Φ
44

= −(1 −
𝜇

2
)𝑄
3
+ 𝑄
4
+ ℎ𝑋
44
,

Φ
45

= ℎ𝑋
45
, Φ

46
= ℎ𝑋
46
,

Φ
55

= −𝑄
4
+ ℎ𝑋
55
, Φ

56
= ℎ𝑋
56
,

Φ
66

= −𝑅 + ℎ𝑋
66
,

𝑄
𝑖
= 𝑃
−𝑇

𝑄
𝑖
𝑃
−1

(𝑖 = 1, . . . , 4) ,

𝑁
𝑖
= 𝑃
−𝑇

𝑁
𝑖
𝑃
−1

(𝑖 = 1, . . . , 6) ,

𝑅 = 𝑃
−𝑇

𝑅𝑃
−1

,

𝑋
𝑖𝑗
= 𝑃
−𝑇

𝑋
𝑖𝑗
𝑃
−1

(𝑖 = 1, . . . , 6, 𝑗 = 1, . . . , 6) ,

𝑍 = 𝑃
−𝑇

𝑍𝑃
−1

.

(34)

Introducing change of those above-mentioned variables
such that

�̃� = 𝑃
−𝑇

, 𝑌 = 𝐾�̃�, �̃�
𝑖
= 𝑄
𝑖

(𝑖 = 1, . . . , 4) ,

�̃�
𝑖
= 𝑁
𝑖

(𝑖 = 1, . . . , 6) ,

�̃�
𝑖𝑗
= 𝑋
𝑖𝑗

(𝑖 = 1, . . . , 6, 𝑗 = 1, . . . , 6) ,

�̃� = 𝑅, �̃� = 𝑍,

(35)

thus we can obtain (27).
The proof is thus completed.

Remark 6. It should be pointed out that Theorem 5 gives
a sufficient condition for the existence of a sate feedback
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compensation controller with the 𝐻
∞

performance bound 𝛾

in the form of (3) for system (1), which guarantees the closed-
loop system to be asymptotically stable.

Remark 7. Since conditions (27) and (28) inTheorem 5 are in
the LMI forms, for a given scalar 𝛾 > 0, the solutions can be
easily obtained using LMI Toolbox.The problem is then how
to find the optimal values of 𝛾. A feasible optimizing approach
is given in Corollary 8 as follows, which can be completed
using the Matlab commandmincx.

Corollary 8. A suboptimal 𝐻
∞

controller in the form of (3)
for the neutral time-delay system (1) can be found by solving
the following optimization problem:

min 𝛾

s.t. (27) , (28) .

(36)

4. Numerical Examples and Discussions

This section presents some examples to illustrate the effective-
ness of the methods described above.

Example 9. Consider the neutral system

̇𝑥 (𝑡) − 𝐶
𝑑

̇𝑥 (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐵𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑤 (𝑡)

(37)

with

𝐴 = [
−1.7 0

0 −0.9
] , 𝐵 = [

0.5

1
] ,

𝐴
𝑑
= [

−1 0

−1 −1
] , 𝐶

𝑑
= [

0.1 0

0 0.1
] ,

𝐶 = [1 0] , 𝐷 = 0.1.

(38)

By Theorem 2, the 𝐻
∞

index 𝛾 is listed in Table 1 for
various values of 𝜇 and ℎ. It is clear that our results presented
in this paper are feasible.

Example 10. Consider the neutral system

̇𝑥 (𝑡) − 𝐶
𝑑

̇𝑥 (𝑡 − 𝜏) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝐵𝑤 (𝑡) + 𝐵
𝑢
𝑢 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑢
𝑢 (𝑡) + 𝐷𝑤 (𝑡) ,

(39)

with

𝐴 = [
−1 −0.2

0 −1
] , 𝐴

𝑑
= [

1 0

0 1.2
] ,

𝐶
𝑑
= [

0.2 0

0 0.1
] , 𝐵

𝑢
= [

1

1
] , 𝐵 = [

1

1
] ,

𝐶 = [0 0.5] , 𝐶
𝑢
= 0.5, 𝐷 = 0.2.

(40)

Table 1:𝐻
∞
index 𝛾 for various values of 𝜇 and ℎ.

ℎ 0 0.5 1 1.97/1.57/1.31
𝜇 = 0 0.2859 0.3205 0.4678 0.6693
𝜇 = 0.5 0.2859 0.3205 0.5158 0.7722
𝜇 = 0.9 0.2859 0.3205 0.6010 0.9340

For 𝜇 = 0.5, ℎ = 0.8, 𝑥(𝑡) = [1 − 1]
𝑇, a minimum of 𝛾 =

0.8 with a corresponding gain 𝐾 = [0.9646 −12.1649 ] was
obtained with Theorem 5, which implies that the proposed
method is effective and feasible.

5. Conclusions

In this contribution, the 𝐻
∞

performance for linear neu-
tral system with time-varying delay is discussed and a
new bounded real lemma is presented by introducing a
novel Lyapunov-Krasovskii functional. Based on the BRL, an
approach to designmemoryless state-feedback𝐻

∞
controller

using LMI technique for linear neutral system with time-
varying delay is proposed, which can be solved readily by
using existing LMI optimization techniques. The numerical
example simulation results demonstrate that the method is
feasible and effective. Therefore, how to further reduce the
conservatism constitutes is an important problem for future
investigation.
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A simplified descriptor system approach is proposed for discrete-time systems with delays in terms of linear matrix inequalities. In
comparison with the results obtained by combining the descriptor system approach with recently developed bounding technique,
our approach can remove the redundant matrix variables while not reducing the conservatism. It is shown that the bounding
technique is unnecessary in the derivation of our results. Via the proposed method, delay-dependent results on quadratic cost and
𝐻
∞
performance analysis are also presented.

1. Introduction

In the past decades, considerable attention has been paid
to the problems of stability analysis and control synthe-
sis of time-delay systems. Many methodologies have been
proposed, and a large number of results have been estab-
lished (see, e.g., [1, 2] and the references therein). All these
results can be generally divided into two categories: delay-
independent stability conditions [3, 4] and delay-dependent
stability conditions [5–11]. The delay-independent stability
condition does not take the delay size into consideration and
thus is often conservative especially for systems with small
delays, while the delay-dependent stability condition makes
fully use of the delay information and thus is less conservative
than the delay-independent one. Very recently, in order to
provide less conservative delay-dependent stability criteria,
a descriptor system approach was proposed in [12, 13],
while a new bounding technique has been presented in [14]
(also called Moon’s inequality). By combining the descriptor
system approach with the bounding technique, novel delay-
dependent sufficient conditions for the existence of a mem-
oryless feedback guaranteed cost controller are derived for a
class of discrete-time systems with delays in [6, 7].

Although the descriptor systemapproach proposed in [12,
13] is powerful to deal with the stability analysis of time-delay

systems, there are too many matrix variables introduced. In
[15], a simplified but equivalent descriptor system approach
to delay-dependent stability analysis was established for the
continuous-time systems with delays. It is shown in [15] that
the bounding technique in [14] is not necessary when deriv-
ing the delay-dependent stability results. It should be pointed
out that the result in [15] is only applicable to continuous-
time systemswith delays. In this paper, we focus our attention
upon deriving a simplified descriptor system approach to
delay-dependent stability analysis in the context of discrete-
time systems with delays. It is shown that the results derived
by our approach are also equivalent to those obtained in [6, 7]
but with fewer variables to be determined. It is also proved
that, for discrete-time systems, the bounding technique in
[14] will introduce some redundant variables and thus is
unnecessary. Via the proposed method, delay-dependent
results on quadratic cost and 𝐻

∞
performance analysis are

also presented. It is worth mentioning that through the
approach proposed in this paper, the delay-dependent guar-
anteed cost control conditions in [6, 7] obtained by the
descriptor system approach and the bounding technique can
also be simplified.

Notations. Throughout this paper, for real symmetric matri-
ces 𝑋 and 𝑌, the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means
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that the matrix 𝑋 − 𝑌 is positive semidefinite (resp., positive
definite).The superscript “𝑇” represents the transpose. 𝐼 is an
identity matrix with appropriate dimension. diag (⋅) denotes
a diagonal matrix. 𝑙

2
[0,∞) refers to the space of square

summable infinite vector sequences. In symmetric blockmat-
rices, we use an asterisk “∗” to represent a term that is induced
by symmetry.Matrices, if not explicitly stated, are assumed to
have compatible dimensions for algebraic operations.

2. Main Results

In order to introduce the simplified descriptor system
approach, we consider the following discrete time-delay sys-
tem

(Σ
𝑎
) : 𝑥 (𝑘 + 1) =

2

∑

𝑖=0

𝐴
𝑖
𝑥 (𝑘 − 𝑑

𝑖
(𝑘)) ,

𝑥 (𝑘) = 𝜙 (𝑘) , ∀𝑘 ∈ [−ℎ, 0] ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state, 𝑑
0
(𝑘) = 0, 𝜙(𝑘) is the initial

condition, the scalar ℎ > 0 is an upper bound on the time
delays 𝑑

𝑖
(𝑘), 𝑖 = 1, 2, and 𝐴

𝑖
, 𝑖 = 0, 1, 2, are known real

constant matrices.
Throughout this paper, we make the following assump-

tion.

Assumption 1. 𝑑
𝑖
(𝑘) are unknown but satisfy for all 𝑘 ∈ Z+

0 < 𝑑
𝑖
(𝑘) ≤ 𝑑

𝑖
, 𝑖 = 1, 2. (2)

Now, we are in a position to present themain result of this
paper.

Theorem 2. Under Assumption 1, the time-delay system (Σ
𝑎
)

is asymptotically stable for all 𝑑
𝑖
(𝑘), 𝑖 = 1, 2, satisfying (2) if

there exist matrices 𝑃 > 0, 𝑃
𝑖
, 𝑅
𝑖
, 𝑆
𝑖
, and 𝐿

𝑖
, 𝑖 = 1, 2, such that

the following LMI holds:

[
[
[
[
[
[
[
[

[

Ω 𝐺
𝑇

[
0

𝐴
1

] − 𝐿
𝑇

1
𝐺
𝑇

[
0

𝐴
2

] − 𝐿
𝑇

2
−𝑑
1
𝐿
𝑇

1
−𝑑
2
𝐿
𝑇

2

∗ −𝑅
1

0 0 0

∗ ∗ −𝑅
2

0 0

∗ ∗ ∗ −𝑑
1
𝑆
1

0

∗ ∗ ∗ ∗ −𝑑
2
𝑆
2

]
]
]
]
]
]
]
]

]

< 0,

(3)

where

𝐺 = [
𝑃 0

𝑃
1
𝑃
2

] ,

Ω = 𝐺
𝑇

[
0 𝐼

𝐴
0
− 𝐼 −𝐼

] + [
0 𝐼

𝐴
0
− 𝐼 −𝐼

]

𝑇

𝐺 +

2

∑

𝑖=1

[
𝐿
𝑖

0
]

+

2

∑

𝑖=1

[
𝐿
𝑖

0
]

𝑇

+

[
[
[
[
[

[

2

∑

𝑖=1

𝑅
𝑖

0

0 𝑃 +

2

∑

𝑖=1

𝑑
𝑖
𝑆
𝑖

]
]
]
]
]

]

.

(4)

Proof. For all 𝑑
𝑖
(𝑘), 𝑖 = 1, 2, satisfying (2), it can be verified

that (3) implies that

Θ (𝑘)

:=

[
[
[
[
[
[
[

[

Ω 𝐺
𝑇

[
0

𝐴
1

]−𝐿
𝑇

1
𝐺
𝑇

[
0

𝐴
2

]−𝐿
𝑇

2
−𝑑
1
(𝑘) 𝐿
𝑇

1
−𝑑
2
(𝑘) 𝐿
𝑇

2

∗ −𝑅
1

0 0 0

∗ ∗ −𝑅
2

0 0

∗ ∗ ∗ −𝑑
1
(𝑘) 𝑆
1

0

∗ ∗ ∗ ∗ −𝑑
2
(𝑘) 𝑆
2

]
]
]
]
]
]
]

]

< 0.

(5)

Let

𝑦 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) . (6)

It is easy to see that

𝑥 (𝑘 − 𝑑
𝑖
(𝑘)) = 𝑥 (𝑘) −

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙) . (7)

Then, the system (Σ
𝑎
) can be transformed into an equivalent

descriptor form

𝑥 (𝑘 + 1) = 𝑥 (𝑘) + 𝑦 (𝑘) ,

0 = −𝑦 (𝑘) + (

2

∑

𝑖=0

𝐴
𝑖
− 𝐼)𝑥 (𝑘) −

2

∑

𝑖=1

𝐴
𝑖
(

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙)) .

(8)

Now, choose a Lyapunov functional candidate as

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) , (9)

where

𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘) 𝑃𝑥 (𝑘) ,

𝑉
2
(𝑘) =

2

∑

𝑖=1

{

{

{

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑥
𝑇

(𝑙) 𝑅
𝑖
𝑥 (𝑙)

}

}

}

,

𝑉
3
(𝑘) =

2

∑

𝑖=1

{

{

{

0

∑

𝜃=−𝑑
𝑖
(𝑘)+1

𝑘−1

∑

𝑙=𝑘−1+𝜃

𝑦
𝑇

(𝑙) 𝑆
𝑖
𝑦 (𝑙)

}

}

}

.

(10)
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Then,

Δ𝑉
1
(𝑘)

= 𝑉
1
(𝑘 + 1) − 𝑉

1
(𝑘)

= 2𝑥
𝑇

(𝑘) 𝑃𝑦 (𝑘) + 𝑦
𝑇

(𝑘) 𝑃𝑦 (𝑘)

= 2𝑥
𝑇

(𝑘) 𝐺
𝑇

[
𝑦 (𝑘)

0
] + 𝑦
𝑇

(𝑘) 𝑃𝑦 (𝑘)

= 2𝑥
𝑇

(𝑘) 𝐺
𝑇

×
[
[

[

𝑦 (𝑘)

−𝑦 (𝑘)+(

2

∑

𝑖=0

𝐴
𝑖
−𝐼)𝑥 (𝑘)−

2

∑

𝑖=1

𝐴
𝑖
(

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙))

]
]

]

+ 𝑦
𝑇

(𝑘) 𝑃𝑦 (𝑘)

= 2𝑥
𝑇

(𝑘) 𝐺
𝑇[
[

[

0 𝐼

2

∑

𝑖=0

𝐴
𝑖
− 𝐼 −𝐼

]
]

]

𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) [
0 0

0 𝑃
] 𝑥 (𝑘)

− 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

𝐺
𝑇

[
0

𝐴
𝑖

]

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙)

= 2𝑥
𝑇

(𝑘) 𝐺
𝑇[
[

[

0 𝐼

2

∑

𝑖=0

𝐴
𝑖
− 𝐼 −𝐼

]
]

]

𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) [
0 0

0 𝑃
] 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

(𝐿
𝑇

𝑖
− 𝐺
𝑇

[
0

𝐴
𝑖

])

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙)

− 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

𝐿
𝑇

𝑖

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙)

= 2𝑥
𝑇

(𝑘) 𝐺
𝑇[
[

[

0 𝐼

2

∑

𝑖=0

𝐴
𝑖
− 𝐼 −𝐼

]
]

]

𝑥 (𝑘) + 𝑥
𝑇

(𝑘) [
0 0

0 𝑃
] 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

(𝐿
𝑇

𝑖
− 𝐺
𝑇

[
0

𝐴
𝑖

]) [𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑
𝑖
(𝑘))]

− 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

𝐿
𝑇

𝑖

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙)

= 2𝑥
𝑇

(𝑘)(𝐺
𝑇

[
0 𝐼

𝐴
0
− 𝐼 −𝐼

] +

2

∑

𝑖=1

[
𝐿
𝑖

0
]

𝑇

)𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘) [
0 0

0 𝑃
] 𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

(𝐺
𝑇

[
0

𝐴
𝑖

] − 𝐿
𝑇

𝑖
)𝑥 (𝑘 − 𝑑

𝑖
(𝑘))

− 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

𝐿
𝑇

𝑖

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦 (𝑙) ,

(11)

where 𝑥(𝑘) = [𝑥𝑇(𝑘) 𝑦𝑇(𝑘)]𝑇.
Furthermore, from (11), we obtain

Δ𝑉
1
(𝑘)

=
1

𝑑
1
(𝑘) 𝑑
2
(𝑘)

×

𝑘−1

∑

𝛼
2
=𝑘−𝑑

2
(𝑘)

𝑘−1

∑

𝛼
1
=𝑘−𝑑

1
(𝑘)

[2𝑥
𝑇

(𝑘)

× (𝐺
𝑇

[
0 𝐼

𝐴
0
− 𝐼 −𝐼

]

+

2

∑

𝑖=1

[
𝐿
𝑖

0
]

𝑇

+ [

0 0

0
1

2
𝑃
])𝑥 (𝑘)

+ 2𝑥
𝑇

(𝑘)

2

∑

𝑖=1

(𝐺
𝑇

[
0

𝐴
𝑖

] − 𝐿
𝑇

𝑖
)

× 𝑥 (𝑘 − 𝑑
𝑖
(𝑘))

− 2𝑑
1
(𝑘) 𝑥
𝑇

(𝑘) 𝐿
𝑇

1
𝑦 (𝛼
1
)

−2𝑑
2
(𝑘) 𝑥
𝑇

(𝑘) 𝐿
𝑇

2
𝑦 (𝛼
2
) ] .

(12)

After some manipulations, we get

Δ𝑉
2
(𝑘) + Δ𝑉

3
(𝑘)

≤

2

∑

𝑖=1

[

[

𝑥
𝑇

(𝑘) 𝑅
𝑖
𝑥 (𝑘) + 𝑑

𝑖
𝑦
𝑇

(𝑘) 𝑆
𝑖
𝑦 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝑑
𝑖
(𝑘)) 𝑅

𝑖
𝑥 (𝑘 − 𝑑

𝑖
(𝑘))

−

𝑘−1

∑

𝑙=𝑘−𝑑
𝑖
(𝑘)

𝑦
𝑇

(𝑙) 𝑆
𝑖
𝑦 (𝑙)]

]

=
1

𝑑
1
(𝑘) 𝑑
2
(𝑘)
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×

𝑘−1

∑

𝛼
2
=𝑘−𝑑

2
(𝑘)

𝑘−1

∑

𝛼
1
=𝑘−𝑑

1
(𝑘)

{{{

{{{

{

𝑥
𝑇

(𝑘)

×

[
[
[
[
[

[

2

∑

𝑖=1

𝑅
𝑖

0

0

2

∑

𝑖=1

𝑑
𝑖
𝑆
𝑖

]
]
]
]
]

]

𝑥 (𝑘)

− 𝑑
2
(𝑘) 𝑦
𝑇

(𝛼
2
) 𝑆
2
𝑦 (𝛼
2
)

− 𝑑
1
(𝑘) 𝑦
𝑇

(𝛼
1
) 𝑆
1
𝑦 (𝛼
1
)

−

2

∑

𝑖=1

𝑥
𝑇

(𝑘 − 𝑑
𝑖
(𝑘))

×𝑅
𝑖
𝑥 (𝑘 − 𝑑

𝑖
(𝑘))

}}}

}}}

}

.

(13)

Combining (12) with (13) yields

Δ𝑉 (𝑘)

≤
1

𝑑
1
(𝑘) 𝑑
2
(𝑘)

×

𝑘−1

∑

𝛼
2
=𝑘−𝑑

2
(𝑘)

𝑘−1

∑

𝛼
1
=𝑘−𝑑

1
(𝑘)

𝜂
𝑇

(𝑘, 𝛼
1
, 𝛼
2
)Θ (𝑘) 𝜂 (𝑘, 𝛼

1
, 𝛼
2
) ,

(14)

where Θ(𝑘) is given in (5) and

𝜂 (𝑘, 𝛼
1
, 𝛼
2
)

=[𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘−𝑑
1
(𝑘)) 𝑥

𝑇

(𝑘−𝑑
2
(𝑘)) 𝑦

𝑇

(𝛼
1
) 𝑦
𝑇

(𝛼
2
)]
𝑇

.

(15)

Therefore, the time-delay system (Σ
𝑎
) is asymptotically stable

for all 𝑑
𝑖
(𝑘), 𝑖 = 1, 2, satisfying (2) by the Lyapunov stability

theory. This completes the proof.

Remark 3. It is noted that only two time delays are considered
for the sake of simplicity. However, the results in Theorem 2
can be extended to the case of multiple delays. The simplified
approach in Theorem 2 can also be used to tackle with the
discrete time-delay systemswith uncertainties, such as norm-
bounded parameter uncertainties and linear fractional uncer-
tainties.

Remark 4. Note that the delays considered here satisfy (2).
From the proof of Theorem 2, the delay-dependent results in
this paper can be extended to the case of interval delays (see

Table 1: the maximum delay bound of 𝑑
1
.

References [18] [17] [6] Theorem 2
𝑑
1

— 12 16 18

[16] for more details), where the delays vary between a lower
bound (may be not zero) and an upper bound.

By the method proposed in Theorem 2, the quadratic
cost analysis result derived by using the descriptor system
approach, together with the inequality in [14] as shown in
[6, 7], can also be simplified. To make it clear, introduce the
following quadratic cost function

𝐽 =

∞

∑

𝑘=0

𝑥
𝑇

(𝑘) 𝑄𝑥 (𝑘) . (16)

Then, byTheorem 2, we have the following result.

Theorem 5. There exist matrices 𝑃 > 0, 𝑃
𝑖
, 𝑅
𝑖
, 𝑆
𝑖
, and 𝐿

𝑖
, 𝑖 =

1, 2, such that the following LMI holds:

[
[
[
[
[
[
[
[
[
[

[

Ω
1
𝐺
𝑇

[
0

𝐴
1

] − 𝐿
𝑇

1
𝐺
𝑇

[
0

𝐴
2

] − 𝐿
𝑇

2
−𝑑
1
𝐿
𝑇

1
−𝑑
2
𝐿
𝑇

2

∗ −𝑅
1

0 0 0

∗ ∗ −𝑅
2

0 0

∗ ∗ ∗ −𝑑
1
𝑆
1

0

∗ ∗ ∗ ∗ −𝑑
2
𝑆
2

]
]
]
]
]
]
]
]
]
]

]

< 0,

(17)

where Ω
1
= Ω + diag (𝑄, 0), with 𝐺 and Ω being defined in

(4), then the system (Σ
𝑎
) is asymptotically stable, and the cost

function in (16) satisfies

𝐽 ≤ 𝐽
0

= 𝑥
𝑇

(0) 𝑃𝑥 (0)

+

2

∑

𝑖=1

{

{

{

−1

∑

𝑙=−𝑑
𝑖

𝑥
𝑇

(𝑙) 𝑅
𝑖
𝑥 (𝑙)+

0

∑

𝜃=−𝑑
𝑖
+1

−1

∑

𝑙=−1+𝜃

𝑦
𝑇

(𝑙) 𝑆
𝑖
𝑦 (𝑙)

}

}

}

,

(18)

where 𝑦(𝑙) = 𝑥(𝑙 + 1) − 𝑥(𝑙).

In the next, via the method proposed in Theorem 2, we
will present the𝐻

∞
performance analysis result.

Consider the following time-delay system:

(Σ
𝑏
) : 𝑥 (𝑘 + 1) =

2

∑

𝑖=0

𝐴
𝑖
𝑥 (𝑘 − 𝑑

𝑖
(𝑘)) + 𝐵𝜔 (𝑘) ,

𝑧 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝜔 (𝑘) ,

(19)

where 𝑧(𝑘) ∈ R𝑝 is the output and 𝜔(𝑘) ∈ R𝑞 is the distur-
bance signal which is assumed to be in 𝑙

2
[0, ∞).

Then, the following delay-dependent result on 𝐻
∞

per-
formance analysis can be obtained byTheorem 2.
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Theorem 6. Given a scalar 𝛾 > 0. Then, under Assumption 1,
the time-delay system (Σ

𝑏
):

(i) is asymptotically stable with 𝜔(𝑘) = 0,
(ii) satisfies

‖𝑧‖
2
< 𝛾‖𝜔‖

2
, (20)

under zero-initial condition for all nonzero 𝜔 ∈ 𝑙
2
[0,∞) if

there exist matrices 𝑃 > 0, 𝑃
𝑖
, 𝑅
𝑖
> 0, 𝑆

𝑖
> 0, 𝐿

𝑖
, 𝑖 = 1, 2, such

that the following LMI holds:

[
[
[
[
[
[
[
[
[
[
[

[

Ω
2
𝐺
𝑇

[
0

𝐴
1

] − 𝐿
𝑇

1
𝐺
𝑇

[
0

𝐴
2

] − 𝐿
𝑇

2
−𝑑
1
𝐿
𝑇

1
−𝑑
2
𝐿
𝑇

2
𝐺
𝑇

[
0

𝐵
] [

𝐶
𝑇

0
]

∗ −𝑅
1

0 0 0 0 0

∗ ∗ −𝑅
2

0 0 0 0

∗ ∗ ∗ −𝑑
1
𝑆
1

0 0 0

∗ ∗ ∗ ∗ −𝑑
2
𝑆
2

0 0

∗ ∗ ∗ ∗ ∗ −𝛾𝐼 𝐷
𝑇

∗ ∗ ∗ ∗ ∗ ∗ −𝛾𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0, (21)

whereΩ
2
= Ω + diag (𝐶𝑇𝐶, 0), with 𝐺 andΩ being defined in

(4).

3. A Numerical Example

In this section, we present a numerical example to the effec-
tiveness of the proposed algorithm. In order to show the com-
parison,we choose 𝐴

2
= 0 and 𝑑

2
= 0.

Example 7. Consider the system (Σ
𝑎
) with

𝐴
0
= [

0.8 0

0 0.97
] , 𝐴

1
= [

−0.1 0

−0.1 −0.1
] . (22)

Based on Theorem 2, we seek the maximum value of 𝑑
1
.

Compared with three methods, which are in [6, 17, 18], res-
pectively; we can illustrate the advantage of the proposed
algorithm in this paper. Table 1 presents the result of com-
parison.

4. Conclusions

In this paper, we have proposed a simplified delay-dependent
stability condition for discrete-time systems with delays. The
given condition has fewer variables compared with those
established using the descriptor system approachwithMoon’s
bounding technique. It has been shown thatMoon’s bounding
technique is unnecessary when deriving the delay-dependent
stability conditions. By the proposed method in this paper,
the delay-dependent results on quadratic cost and 𝐻

∞
per-

formance analysis have also been provided.
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This paper considers the problemof delay-dependent stability and 𝑙
1
-gain analysis for positive 2D systemswith state delays described

by the Roesser model. Firstly, the copositive-type Lyapunov function method is used to establish the sufficient conditions for the
addressed positive 2D system to be asymptotically stable.Then, 𝑙

1
-gain performance for the system is also analyzed. All the obtained

results are formulated in the form of linear matrix inequalities (LMIs) which are computationally tractable. Finally, an illustrative
example is given to verify the effectiveness of the proposed results.

1. Introduction

2D systems exist in many practical applications, such as
circuits analysis, digital image processing, signal filtering,
and thermal power engineering [1–4]. Thus the analysis
and synthesis of 2D systems are interesting and challenging
problems, and they have received considerable attention; for
example, 2D state-space realization theory was researched in
[5], the stability and 2D optimal control theory was studied
in [6, 7], and 𝐻

∞
control and filtering problem for 2D

systemswere addressed in [8–11]. In addition, linear repetitive
processes, a distinct class of 2D systems, have also been
investigated. For example, the quasi-sliding mode control
problem for linear repetitive processes with unknown input
disturbance was solved in [12].

Themost popular models of two-dimensional (2D) linear
systems were introduced by Roesser [13], Fornasini and
Marchesini [5, 14], and Kurek [15]. These models have been
extended to positive systems in [16–19]. A positive system
means that its state and output are nonnegative whenever the
initial condition and input are nonnegative [19–21]. Positive
2D systems are needed in many cases such as the wave
equation in fluid dynamics and the heat equation which
describes the temperature (using thermodynamic temper-
ature scale) in a given region over time and the Poisson’s

equation. These facts stimulate the research on 2D positive
discrete systems. Reference [22] investigated the choice of the
forms of Lyapunov functions for positive 2D Roesser model.
The problem of stability analysis for 2D positive systems
has been investigated in [17, 23–25]. It should be noted that
although positive 2D systems have been discussed in control
engineering and mathematics literature recently, there are
still many questions which deserve further investigation.

On the other hand, the reaction of real-world systems to
exogenous signals is never instantaneous and, always infected
by certain time delays. For general systems, even nominal
stable systems when were affected by delays may inherit very
complex behaviors such as oscillations, instability, and bad
performance [26], and delayed systems have attracted many
researchers’ attention [27–32]. The reachability, minimum
energy control, and realization problem for positive 2D
discrete-time systems with delays has been analyzed in [18,
33]. And the stability analysis for 2D positive delayed systems
has been investigated in [34–36]. In addition, perturbations
and uncertainties widely exist in the practical systems. In
some cases, the perturbations and unmodeled errors can
be merged into disturbances, which can be supposed to
be bounded in the appropriate norms. It is important and
necessary to establish a criterion evaluating the disturbance
attenuation performance for the positive 2D discrete-time
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systems. However, to the best of our knowledge, there has
been no literature considering the disturbance attenuation
performance for positive 2D systems, which motivates the
present study.

In this paper, we will study the problem of delay-
dependent stability and 𝑙

1
-gain analysis for positive 2D linear

systems with delays. The main theoretical contributions of
this paper are as follows (1) We use 𝑙

1
-gain to evaluate the

disturbance attenuation performance of positive 2D linear
systems. This important performance is firstly considered
for positive 2D systems, and a delay-dependent stability
criterion of these systems with state delays is developed. (2)
Copositive-type Lyapunov function method is firstly used to
analyze delay-dependent stability and 𝑙

1
-gain performance

for positive 2D linear systems. (3) It is significant to char-
acterize conditions under which the positive 2D delayed
system is asymptotically stable. All the developed results are
expressed in terms of feasibility testing of LMIs which is
computationally tractable.

The paper is organized as follows. In Section 2, problem
statement and some definitions concerning the positive 2D
linear systems with delays are given. In Section 3, some
theorems concerning the delay-dependent stability and 𝑙

1
-

gain analysis of positive 2D linear systems are presented.
In Section 4, a numerical example is given to illustrate the
effectiveness of the proposed results. Finally, concluding
remarks are provided in Section 5.

Notations. In this paper, the superscript “𝑇” denotes the
transpose. The notation 𝑋 > 𝑌 (𝑋 ≥ 𝑌) means that matrix
𝑋-𝑌 is positive definite (positive semidefinite, resp.). 𝐴 ⪰

0 (⪯0) means that all entries of matrix 𝐴 are nonnegative
(nonpositive). 𝐴 ≻ 0 (≺ 0) means that all entries of matrix
𝐴 are positive (negative). 𝑅𝑛×𝑚 denotes the set of 𝑛 × 𝑚 real
matrices. The set of real 𝑛 × 𝑚 matrices with nonnegative
entries will be denoted by 𝑅

𝑛×𝑚

+
, 𝑅𝑛
+
denotes the set of

vectors with nonnegative entries, and the set of nonnegative
integers will be denoted by 𝑍

+
. The 𝑛 × 𝑛 identity matrix

will be denoted by 𝐼
𝑛
. The 𝑙

1
norm of a 2D signal 𝑤(𝑖, 𝑗) =

[𝑤
1
(𝑖, 𝑗), 𝑤

2
(𝑖, 𝑗), . . . , 𝑤

𝑚
(𝑖, 𝑗)]
𝑇 is given by

𝑤 (𝑖, 𝑗)
1
=

𝑚

∑

𝑘=1

𝑤
𝑘
(𝑖, 𝑗) . (1)

And we say 𝑤(𝑖, 𝑗) ∈ 𝑙
1
, if ‖𝑤(𝑖, 𝑗)‖

1
< ∞.

2. Problem Formulation and Preliminaries

Consider the positive 2D Roesser model with state delays
[25]:

[
𝑥
ℎ

(𝑖 + 1, 𝑗)

𝑥
𝑣

(𝑖, 𝑗 + 1)
] = 𝐴[

𝑥
ℎ

(𝑖, 𝑗)

𝑥
𝑣

(𝑖, 𝑗)
] + 𝐴

𝑑
[
𝑥
ℎ

(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗)

𝑥
𝑣

(𝑖, 𝑗 − 𝑑
𝑣
(𝑗))

]

+ 𝐵𝑤 (𝑖, 𝑗) ,

(1a)

𝑧 (𝑖, 𝑗) = 𝐻𝑥 (𝑖, 𝑗) + 𝐿𝑤 (𝑖, 𝑗) , (1b)

where 𝑖 and 𝑗 are integers in𝑍
+
, 𝑥ℎ(𝑖, 𝑗) is the horizontal state

in 𝑅
𝑛
1

+
, 𝑥𝑣(𝑖, 𝑗) is the vertical state in 𝑅𝑛2

+
, 𝑥(𝑖, 𝑗) is the whole

state in 𝑅𝑛
+
, 𝑤(𝑖, 𝑗) ∈ 𝑅𝑚1

+
is the 𝑙

1
norm bounded disturbance

input, 𝑧(𝑖, 𝑗) ∈ 𝑅𝑚2
+

is the controlled output, and 𝐴, 𝐴
𝑑
, 𝐵,𝐻,

𝐿 ⪰ 0 are system matrices with compatible dimensions. The
matrices are

𝐴 = [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝐴
𝑑
= [

𝐴
𝑑11

𝐴
𝑑12

𝐴
𝑑21

𝐴
𝑑22

] , 𝐵 = [
𝐵
1

𝐵
2

] .

(2)

𝑑
ℎ
(𝑖) and 𝑑

𝑣
(𝑗) are delays along horizontal and vertical

directions, respectively.We assume that𝑑
ℎ
(𝑖) and𝑑

𝑣
(𝑗) satisfy

𝑑
ℎ𝐿
≤ 𝑑
ℎ
(𝑖) ≤ 𝑑

ℎ𝐻
, 𝑑

𝑣𝐿
≤ 𝑑
𝑣
(𝑗) ≤ 𝑑

𝑣𝐻
, (3)

where𝑑
ℎ𝐿
,𝑑
ℎ𝐻

and𝑑
𝑣𝐿
,𝑑
𝑣𝐻

denote the lower and upper delay
bounds along horizontal and vertical directions, respectively.
The boundary conditions are defined by

𝑥
ℎ

(𝑖, 𝑗) = ℎ
𝑖𝑗
, ∀0 ≤ 𝑗 ≤ 𝑧

1
, −𝑑
ℎ𝐻

≤ 𝑖 ≤ 0,

𝑥
ℎ

(𝑖, 𝑗) = 0, ∀𝑗 > 𝑧
1
, −𝑑
ℎ𝐻

≤ 𝑖 ≤ 0,

𝑥
𝑣

(𝑖, 𝑗) = 𝑣
𝑖𝑗
, ∀0 ≤ 𝑖 ≤ 𝑧

2
, −𝑑
𝑣𝐻

≤ 𝑗 ≤ 0,

𝑥
𝑣

(𝑖, 𝑗) = 0, ∀𝑖 > 𝑧
2
, −𝑑
𝑣𝐻

≤ 𝑗 ≤ 0,

ℎ
00
= 𝑣
00
,

(4)

where 𝑧
1
< ∞ and 𝑧

2
< ∞ are positive integers, ℎ

𝑖𝑗
∈ 𝑅
𝑛
1

+
and

𝑣
𝑖𝑗
∈ 𝑅
𝑛
2

+
are given vectors.

Definition 1. The 2D positive system (1a) and (1b) with
𝑤(𝑖, 𝑗) = 0 is said to be asymptotically stable if lim

𝑙→∞
𝑋
𝑙
= 0

for all bounded boundary conditions (4), where

𝑋
𝑙
= sup {𝑥 (𝑖, 𝑗)

 : 𝑖 + 𝑗 = 𝑙, 𝑖, 𝑗 ≥ 1} . (5)

Definition 2. For 𝛾 > 0, the system (1a) and (1b) is said to be
asymptotically stable with the 𝑙

1
-gain index 𝛾, if the following

conditions hold.

(1) The system (1a) and (1b) with 𝑤(𝑖, 𝑗) = 0 is
asymptotically stable.

(2) Under zero boundary conditions, that is, ℎ
𝑖𝑗
= 0, 𝑣
𝑖𝑗
=

0 in (4), it holds that

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑧(𝑖, 𝑗)
1
< 𝛾

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑤 (𝑖, 𝑗)
1
, ∀0 ̸=𝑤 (𝑖, 𝑗) ∈ 𝑙

1
.

(6)

Remark 3. From (6), we see that 𝛾 can characterize the
disturbance attenuation performance of the system (1a)
and (1b). The smaller the 𝛾 is, the better the disturbance
attenuation performance is.
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3. Main Results

3.1. Stability Analysis. In this subsection, we focus on the
problem of delay-dependent asymptotically stability analysis
for the positive 2D discrete linear systems with state delays.

Theorem 4. For given positive constants 𝑑
ℎ𝐿
, 𝑑
ℎ𝐻

, 𝑑
𝑣𝐿
, 𝑑
𝑣𝐻
,

the positive 2D system (1a) and (1b) with 𝑤(𝑖, 𝑗) = 0 is
asymptotically stable if there exist vectors 𝑝, 𝑞, 𝜍

1
, 𝜍
2
, 𝜁 ∈ 𝑅

𝑛

+
,

such that

Φ = diag {Φ
1
, Φ
2
, . . . , Φ

𝑛
, Φ


1
, Φ


2
, . . . , Φ



𝑛
, Φ


1
, Φ


2
, . . . , Φ



𝑛
,

Φ


1
, Φ


2
, . . . , Φ



𝑛
} < 0,

(7)

where

Φ
𝑘
=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝐸
𝑘
) 𝑞

+𝐸
𝑘
𝜁 + (𝑑

2

ℎ𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
ℎ𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

ℎ𝐻
𝐸
𝑘
𝜍
1
,

1≤𝑘≤𝑛
1
,

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝐸
𝑘
) 𝑞

+𝐸
𝑘
𝜁+(𝑑
2

𝑣𝐻
(𝑎
𝑇

𝑘
−𝐸
𝑘
)−𝑑
𝑣𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

𝑣𝐻
𝐸
𝑘
𝜍
1
,

𝑛
1
+1≤𝑘≤𝑛,

Φ


𝑘
=

{{

{{

{

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

ℎ𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 1 ≤ 𝑘 ≤ 𝑛

1
,

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

𝑣𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 𝑛
1
+ 1 ≤ 𝑘 ≤ 𝑛,

Φ


𝑘
=

{{

{{

{

−𝐸
𝑘
𝜁 + 𝑑
ℎ𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝐸
𝑘
𝜁 + 𝑑
𝑣𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 𝑛

1
+ 1 ≤ 𝑘 ≤ 𝑛,

Φ


𝑘
=

{{

{{

{

−𝑑
ℎ𝐻
𝐸
𝑘
𝜍
1
, 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝑑
𝑣𝐻
𝐸
𝑘
𝜍
1
, 𝑛
1
+ 1 ≤ 𝑘 ≤ 𝑛,

(8)

with 𝑘 ∈ 𝑛 = {1, 2, . . . , 𝑛}, 𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], and

𝑎
𝑘
(𝑎
𝑑𝑘
) represents the 𝑘th column vector of matrix 𝐴(𝐴

𝑑
).

Proof. Choose the following copositive Lyapunov-Krasovskii
functional candidate:

𝑉 (𝑖, 𝑗) = 𝑉
ℎ

(𝑖, 𝑗) + 𝑉
𝑣

(𝑖, 𝑗) , (9)

where

𝑉
ℎ

(𝑖, 𝑗) =

5

∑

𝑘=1

𝑉
ℎ

𝑘
(𝑖, 𝑗) ,

𝑉
ℎ

1
(𝑖, 𝑗) = 𝑥

ℎ𝑇

(𝑖, 𝑗) 𝑝
ℎ

,

𝑉
ℎ

2
(𝑖, 𝑗) =

𝑖

∑

𝑟=𝑖−𝑑
ℎ
(𝑖)

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

,

𝑉
ℎ

3
(𝑖, 𝑗) =

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝜁
ℎ

,

𝑉
ℎ

4
(𝑖, 𝑗) =

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

𝑖−1

∑

𝑟=𝑖+𝑠

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

,

𝑉
ℎ

5
(𝑖, 𝑗) = 𝑑

ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

𝑖−1

∑

𝑟=𝑖+𝑠

𝜂
ℎ𝑇

(𝑟, 𝑗) 𝜍
ℎ

,

𝑉
𝑣

(𝑖, 𝑗) =

5

∑

𝑘=1

𝑉
𝑣

𝑘
(𝑖, 𝑗) ,

𝑉
𝑣

1
(𝑖, 𝑗) = 𝑥

𝑣𝑇

(𝑖, 𝑗) 𝑝
𝑣

,

𝑉
𝑣

2
(𝑖, 𝑗) =

𝑗

∑

𝑠=𝑗−𝑑
𝑣(𝑗)

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

,

𝑉
𝑣

3
(𝑖, 𝑗) =

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻

𝑥
𝑣𝑇

(𝑖, 𝑡) 𝜁
𝑣

,

𝑉
𝑣

4
(𝑖, 𝑗) =

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

𝑗−1

∑

𝑡=𝑗+𝑠

𝑥
𝑣𝑇

(𝑖, 𝑡) 𝑞
𝑣

,

𝑉
𝑣

5
(𝑖, 𝑗) = 𝑑

𝑣𝐻

−1

∑

𝑠=−𝑑𝑣
𝐻

𝑗−1

∑

𝑡=𝑗+𝑠

𝜂
𝑣𝑇

(𝑖, 𝑡) 𝜍
𝑣

,

𝜂
ℎ

(𝑟, 𝑗) = [𝑥
ℎ𝑇

(𝑟, 𝑗) 𝛿
ℎ𝑇

(𝑟, 𝑗)]
𝑇

,

𝜂
𝑣

(𝑖, 𝑡) = [𝑥
𝑣𝑇

(𝑖, 𝑡) 𝛿
𝑣𝑇

(𝑖, 𝑡)]
𝑇

,

𝛿
ℎ

(𝑟, 𝑗) = 𝑥
ℎ

(𝑟 + 1, 𝑗) − 𝑥
ℎ

(𝑟, 𝑗) ,

𝛿
𝑣

(𝑖, 𝑡) = 𝑥
𝑣

(𝑖, 𝑡 + 1) − 𝑥
𝑣

(𝑖, 𝑡) ,

(10)

with 𝑝ℎ, 𝑞ℎ, 𝜁ℎ, 𝜍ℎ
1
, and 𝜍ℎ

2
∈ 𝑅
𝑛
1

+
,𝑝𝑣, 𝑞𝑣, 𝜁𝑣, 𝜍𝑣

1
, and 𝜍𝑣

2
∈ 𝑅
𝑛
2

+
,

𝜍
ℎ

= [𝜍
ℎ

1
𝜍
ℎ

2
]
𝑇

∈ 𝑅
2𝑛
1

+
, and 𝜍𝑣 = [𝜍𝑣

1
𝜍
𝑣

2
]
𝑇

∈ 𝑅
2𝑛
2

+
.

Along the trajectory of the system (1a) and (1b), we have

Δ𝑉 (𝑖, 𝑗) = 𝑉
ℎ

(𝑖 + 1, 𝑗) − 𝑉
ℎ

(𝑖, 𝑗) + 𝑉
𝑣

(𝑖, 𝑗 + 1) − 𝑉
𝑣

(𝑖, 𝑗)

=

5

∑

𝑘=1

Δ𝑉
ℎ

𝑘
(𝑖, 𝑗) +

5

∑

𝑘=1

Δ𝑉
𝑣

𝑘
(𝑖, 𝑗) ,

(11)
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where
Δ𝑉
ℎ

1
(𝑖, 𝑗) = 𝑥

ℎ𝑇

(𝑖 + 1, 𝑗) 𝑝
ℎ

− 𝑥
ℎ𝑇

(𝑖, 𝑗) 𝑝
ℎ

,

Δ𝑉
ℎ

2
(𝑖, 𝑗) =

𝑖+1

∑

𝑟=𝑖+1−𝑑
ℎ
(𝑖+1)

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

−

𝑖

∑

𝑟=𝑖−𝑑
ℎ
(𝑖)

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

= 𝑥
ℎ𝑇

(𝑖 + 1, 𝑗) 𝑞
ℎ

− 𝑥
ℎ𝑇

(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗) 𝑞

ℎ

+

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ
(𝑖+1)

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

−

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ
(𝑖)

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

≤ 𝑥
ℎ𝑇

(𝑖 + 1, 𝑗) 𝑞
ℎ

− 𝑥
ℎ𝑇

(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗) 𝑞

ℎ

+

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ𝐻

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

−

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ𝐿

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

= 𝑥
ℎ𝑇

(𝑖 + 1, 𝑗) 𝑞
ℎ

− 𝑥
ℎ𝑇

(𝑖 − 𝑑
ℎ
(𝑖) , 𝑗) 𝑞

ℎ

+

𝑟=𝑖−𝑑
ℎ𝐿

∑

𝑟=𝑖+1−𝑑
ℎ𝐻

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

,

Δ𝑉
ℎ

3
(𝑖, 𝑗) =

𝑖

∑

𝑟=𝑖+1−𝑑
ℎ𝐻

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝜁
ℎ

−

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝜁
ℎ

= 𝑥
ℎ𝑇

(𝑖, 𝑗) 𝜁
ℎ

− 𝑥
ℎ𝑇

(𝑖 − 𝑑
ℎ𝐻
, 𝑗) 𝜁
ℎ

,

Δ𝑉
ℎ

4
(𝑖, 𝑗) =

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

𝑖

∑

𝑟=𝑖+1+𝑠

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

−

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

𝑖−1

∑

𝑟=𝑖+𝑠

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

=

−𝑑
ℎ𝐿

∑

𝑠=−𝑑
ℎ𝐻
+1

[𝑥
ℎ𝑇

(𝑖, 𝑗) 𝑞
ℎ

−𝑥
ℎ𝑇

(𝑖+ 𝑠, 𝑗) 𝑞
ℎ

]

= (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝑥
ℎ𝑇

(𝑖, 𝑗) 𝑞
ℎ

−

𝑖−𝑑
ℎ𝐿

∑

𝑟=𝑖−𝑑
ℎ𝐻
+1

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

,

Δ𝑉
ℎ

5
(𝑖, 𝑗)

= 𝑑
ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

𝑖

∑

𝑟=𝑖+1+𝑠

𝜂
ℎ𝑇

(𝑟, 𝑗) 𝜍
ℎ

− 𝑑
ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

𝑖−1

∑

𝑟=𝑖+𝑠

𝜂
ℎ𝑇

(𝑟, 𝑗) 𝜍
ℎ

= 𝑑
ℎ𝐻

−1

∑

𝑠=−𝑑
ℎ𝐻

(𝜂
ℎ𝑇

(𝑖, 𝑗) 𝜍
ℎ

− 𝜂
ℎ𝑇

(𝑖 + 𝑠, 𝑗) 𝜍
ℎ

)

= 𝑑
2

ℎ𝐻
𝜂
ℎ𝑇

(𝑖, 𝑗) 𝜍
ℎ

− 𝑑
ℎ𝐻

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝜂
ℎ𝑇

(𝑟, 𝑗) 𝜍
ℎ

= 𝑑
2

ℎ𝐻
[𝑥
ℎ𝑇

(𝑖, 𝑗) 𝑥
ℎ𝑇

(𝑖 + 1, 𝑗) − 𝑥
ℎ𝑇

(𝑖, 𝑗)]
[
[

[

𝜍
ℎ

1

𝜍
ℎ

2

]
]

]

− 𝑑
ℎ𝐻
[

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻

𝑥
ℎ𝑇

(𝑖, 𝑗) 𝑥
ℎ𝑇

(𝑖, 𝑗) − 𝑥
ℎ𝑇

(𝑖 − 𝑑
ℎ𝐻
, 𝑗)]

× [

[

𝜍
ℎ

1

𝜍
ℎ

2

]

]

,

Δ𝑉
𝑣

1
(𝑖, 𝑗) = 𝑥

𝑣𝑇

(𝑖, 𝑗 + 1) 𝑝
𝑣

− 𝑥
𝑣𝑇

(𝑖, 𝑗) 𝑝
𝑣

,

Δ𝑉
𝑣

2
(𝑖, 𝑗) =

𝑗+1

∑

𝑠=𝑗+1−𝑑
𝑣(𝑗+1)

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

−

𝑗

∑

𝑠=𝑗−𝑑
𝑣(𝑗)

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

= 𝑥
𝑣𝑇

(𝑖, 𝑗 + 1) 𝑞
𝑣

− 𝑥
𝑣𝑇

(𝑖, 𝑗 − 𝑑
𝑣
(𝑗)) 𝑞
𝑣

+

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣(𝑗+1)

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

−

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣(𝑗)

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

≤ 𝑥
𝑣𝑇

(𝑖, 𝑗 + 1) 𝑞
𝑣

−𝑥
𝑣𝑇

(𝑖, 𝑗− 𝑑
𝑣
(𝑗)) 𝑞
𝑣

+

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣𝐻

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

−

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣𝐿

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

= 𝑥
𝑣𝑇

(𝑖, 𝑗 + 1) 𝑞
𝑣

− 𝑥
𝑣𝑇

(𝑖, 𝑗 − 𝑑
𝑣
(𝑗)) 𝑞
𝑣

+

𝑗−𝑑
𝑣𝐿

∑

𝑡=𝑗+1−𝑑
𝑣𝐻

𝑥
𝑣𝑇

(𝑖, 𝑡) 𝑞
𝑣

,
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Δ𝑉
𝑣

3
(𝑖, 𝑗) =

𝑗

∑

𝑠=𝑗+1−𝑑
𝑣𝐻

𝑥
ℎ𝑇

(𝑖, 𝑠) 𝜁
𝑣

−

𝑗−1

∑

𝑠=𝑗−𝑑
𝑣𝐻

𝑥
ℎ𝑇

(𝑖, 𝑎) 𝜁
𝑣

= 𝑥
𝑣𝑇

(𝑖, 𝑗) 𝜁
𝑣

− 𝑥
𝑣𝑇

(𝑖, 𝑗 − 𝑑
𝑣𝐻
) 𝜁
𝑣

,

Δ𝑉
𝑣

4
(𝑖, 𝑗) =

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

𝑗

∑

𝑡=𝑗+1+𝑠

𝑥
𝑣𝑇

(𝑖, 𝑡) 𝑞
𝑣

−

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

𝑗−1

∑

𝑡=𝑗+𝑠

𝑥
𝑣𝑇

(𝑖, 𝑡) 𝑞
𝑣

=

−𝑑
𝑣𝐿

∑

𝑠=−𝑑
𝑣𝐻
+1

[𝑥
𝑣𝑇

(𝑖, 𝑗) 𝑞
𝑣

− 𝑥
𝑣𝑇

(𝑖, 𝑗 + 𝑠) 𝑞
𝑣

]

= (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝑥
ℎ𝑇

(𝑖, 𝑗) 𝑞
𝑣

−

𝑗−𝑑
𝑣𝐿

∑

𝑡=𝑗−𝑑
𝑣𝐻
+1

𝑥
𝑣𝑇

(𝑖, 𝑡) 𝑞
𝑣

,

Δ𝑉
𝑣

5
(𝑖, 𝑗)

= 𝑑
𝑣𝐻

−1

∑

𝑠=−𝑑𝑣
𝐻

𝑗

∑

𝑡=𝑗+1+𝑠

𝜂
𝑣𝑇

(𝑖, 𝑡) 𝜍
𝑣

− 𝑑
𝑣𝐻

−1

∑

𝑠=−𝑑𝑣
𝐻

𝑗−1

∑

𝑡=𝑗+𝑠

𝜂
𝑣𝑇

(𝑖, 𝑡) 𝜍
𝑣

=𝑑
𝑣𝐻

−1

∑

𝑠=−𝑑
𝑣𝐻

(𝜂
𝑣𝑇

(𝑖, 𝑗) 𝜍
𝑣

−𝜂
𝑣𝑇

(𝑖, 𝑗+𝑠) 𝜍
𝑣

)

= 𝑑
2

𝑣𝐻
𝜂
𝑣𝑇

(𝑖, 𝑗) 𝜍
𝑣

− 𝑑
𝑣𝐻

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻

𝜂
𝑣𝑇

(𝑖, 𝑡) 𝜍
𝑣

= 𝑑
2

𝑣𝐻
[𝑥
𝑣𝑇

(𝑖, 𝑗) 𝑥
𝑣𝑇

(𝑖, 𝑗 + 1)−𝑥
𝑣𝑇

(𝑖, 𝑗)]

× [

[

𝜍
𝑣

1

𝜍
𝑣

2

]

]

−𝑑
𝑣𝐻

[

[

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻

𝑥
𝑣𝑇

(𝑖, 𝑗) 𝑥
𝑣𝑇

(𝑖, 𝑗)−𝑥
𝑣𝑇

(𝑖, 𝑗 − 𝑑
𝑣𝐻
)]

]

× [

𝜍
𝑣

1

𝜍
𝑣

2

] .

(12)

Substitute the previously mentioned formulations into (11),
and take

𝑝 = [
𝑝
ℎ

𝑝
𝑣
] , 𝑞 = [

𝑞
ℎ

𝑞
𝑣
] , 𝜁 = [

𝜁
ℎ

𝜁
𝑣
] ,

𝜍
1
= [

[

𝜍
ℎ

1

𝜍
ℎ

1

]

]

, 𝜍
2
= [

[

𝜍
ℎ

2

𝜍
ℎ

2

]

]

,

𝐷
𝐻
= [

𝑑
ℎ𝐻
𝐼
𝑛
1

0

0 𝑑
𝑣𝐻
𝐼
𝑛
2

] , 𝐷
𝐿
= [

𝑑
ℎ𝐿
𝐼
𝑛
1

0

0 𝑑
𝑣𝐿
𝐼
𝑛
2

] ,

𝑥 (𝑖, 𝑗) = [𝑥
ℎ𝑇

(𝑖, 𝑗) 𝑥
𝑣𝑇

(𝑖, 𝑗)]
𝑇

,

𝑥
𝑑
(𝑖, 𝑗) = [𝑥

ℎ𝑇

(𝑖 − 𝑑
ℎ
(𝑖), 𝑗) 𝑥

𝑣𝑇

(𝑖, 𝑗 − 𝑑
𝑣
(𝑗))]
𝑇

,

𝑥
𝐻
(𝑖, 𝑗) = [𝑥

ℎ𝑇

(𝑖 − 𝑑
ℎ𝐻
, 𝑗) 𝑥

𝑣𝑇

(𝑖, 𝑗 − 𝑑
𝑣𝐻
)]
𝑇

,

𝑥
𝑠
(𝑖, 𝑗) = [

[

𝑖−1

∑

𝑟=𝑖−𝑑
ℎ𝐻
+1

𝑥
ℎ𝑇

(𝑟, 𝑗)

𝑗−1

∑

𝑡=𝑗−𝑑
𝑣𝐻+1

𝑥
𝑣𝑇

(𝑖, 𝑡)]

]

𝑇

.

(13)

Then we have

Δ𝑉 (𝑖, 𝑗) = 𝑥
𝑇

(𝑖, 𝑗) {(𝐴
𝑇

− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇

+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞

+ 𝜁 + 𝐷
2

𝐻
((𝐴
𝑇

− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2
}

+ 𝑥
𝑇

𝑑
(𝑖, 𝑗) {𝐴

𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
}

+ 𝑥
𝑇

𝐻
(𝑖, 𝑗) {−𝜁 + 𝐷

𝐻
(𝜍
2
− 𝜍
1
)}

+ 𝑥
𝑇

𝑠
(𝑖, 𝑗) {−𝐷

𝐻
𝜍
1
} .

(14)

If condition (7) holds, one obtains

(𝐴
𝑇

− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇

+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞 + 𝜁

+ 𝐷
2

𝐻
((𝐴
𝑇

− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2
≺ 0,

𝐴
𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
≺ 0,

−𝜁 + 𝐷
𝐻
(𝜍
2
− 𝜍
1
) ≺ 0,

−𝐷
𝐻
𝜍
1
≺ 0.

(15)

It follows that Δ𝑉(𝑖, 𝑗) < 0, which means that

𝑉
ℎ

(𝑖 + 1, 𝑗) + 𝑉
𝑣

(𝑖, 𝑗 + 1) < 𝑉
ℎ

(𝑖, 𝑗) + 𝑉
𝑣

(𝑖, 𝑗) . (16)

Summing up both sides of (16) from 𝐷 to 0 with respect to 𝑖
and from 0 to𝐷with respect to 𝑗, for any nonnegative integer
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𝐷 ≥ max(𝑧
1
, 𝑧
2
), one gets

𝑉
ℎ

(1, 𝐷) + 𝑉
𝑣

(0, 𝐷 + 1) + 𝑉
ℎ

(2, 𝐷 − 1)

+ 𝑉
𝑣

(1, 𝐷) + ⋅ ⋅ ⋅ + 𝑉
ℎ

(𝐷 + 1, 0) + 𝑉
𝑣

(𝐷, 1)

= ∑

𝑖+𝑗=𝐷+1

𝑉
ℎ

(𝑖, 𝑗) + ∑

𝑖+𝑗=𝐷+1

𝑉
𝑣

(𝑖, 𝑗)

= ∑

𝑖+𝑗=𝐷+1

𝑉 (𝑖, 𝑗)

≤ 𝑉
ℎ

(0, 𝐷) + 𝑉
𝑣

(0, 𝐷) + 𝑉
ℎ

(1, 𝐷 − 1)

+ 𝑉
𝑣

(1, 𝐷 − 1) + ⋅ ⋅ ⋅ + 𝑉
ℎ

(𝐷, 0) + 𝑉
𝑣

(𝐷, 0)

= ∑

𝑖+𝑗=𝐷

𝑉 (𝑖, 𝑗) .

(17)

Then from (9), we can conclude that

lim
𝑖+𝑗→∞

𝑥 (𝑖, 𝑗) = 0, (18)

which implies that the system (1a) and (1b) with 𝑤(𝑖, 𝑗) = 0

is asymptotically stable.
This completes the proof.

When 𝑑
ℎ𝐻

= 𝑑
ℎ𝐿
= 𝑑
ℎ
, and 𝑑

𝑣𝐻
= 𝑑
𝑣𝐿
= 𝑑
𝑣
, the system

(1a) and (1b) with 𝑤(𝑖, 𝑗) = 0 is reduced to the following
system:

[
𝑥
ℎ

(𝑖 + 1, 𝑗)

𝑥
𝑣

(𝑖, 𝑗 + 1)
] = 𝐴[

𝑥
ℎ

(𝑖, 𝑗)

𝑥
𝑣

(𝑖, 𝑗)
] + 𝐴

𝑑
[
𝑥
ℎ

(𝑖 − 𝑑
ℎ
, 𝑗)

𝑥
𝑣

(𝑖, 𝑗 − 𝑑
𝑣
)
] , (19)

where 𝑑
ℎ
and 𝑑

𝑣
are constant delays along horizontal and

vertical directions, respectively, and the boundary conditions
are defined in (4). Then we can get the following result.

Corollary 5. For given positive constants 𝑑
ℎ
and 𝑑

𝑣
, the

positive 2D system (19) is asymptotically stable if there exist
vectors 𝑝 and 𝑞 ∈ 𝑅𝑛

+
, such that

Φ̃ = diag {Φ
1
, Φ
2
, . . . , Φ

𝑛
, Φ


1
, Φ


2
, . . . , Φ



𝑛
} < 0, (20)

where

Φ̃
𝑘
= (𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + 𝑎

𝑇

𝑘
𝑞,

Φ̃


𝑘
= 𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞,

(21)

with 𝑘 ∈ 𝐾 = {1, 2, . . . , 𝑛}, 𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], 𝑝,

𝑞 ∈ 𝑅
𝑛

+
, and 𝑎

𝑘
(𝑎
𝑑𝑘
) represents the 𝑘th column vector of matrix

𝐴(𝐴
𝑑
).

Proof. Choose the following copositive Lyapunov-Krasovskii
functional candidate for the system (19):

𝑉 (𝑖, 𝑗) = 𝑉
ℎ

(𝑖, 𝑗) + 𝑉
𝑣

(𝑖, 𝑗) , (22)

where

𝑉
ℎ

(𝑖, 𝑗) =

2

∑

𝑘=1

𝑉
ℎ

𝑘
(𝑖, 𝑗) , 𝑉

ℎ

1
(𝑖, 𝑗) = 𝑥

ℎ𝑇

(𝑖, 𝑗) 𝑝
ℎ

,

𝑉
ℎ

2
(𝑖, 𝑗) =

𝑖

∑

𝑟=𝑖−𝑑
ℎ

𝑥
ℎ𝑇

(𝑟, 𝑗) 𝑞
ℎ

,

𝑉
𝑣

(𝑖, 𝑗) =

2

∑

𝑘=1

𝑉
𝑣

𝑘
(𝑖, 𝑗) , 𝑉

𝑣

1
(𝑖, 𝑗) = 𝑥

𝑣𝑇

(𝑖, 𝑗) 𝑝
𝑣

,

𝑉
𝑣

2
(𝑖, 𝑗) =

𝑗

∑

𝑠=𝑗−𝑑
𝑣

𝑥
𝑣𝑇

(𝑖, 𝑠) 𝑞
𝑣

,

(23)

with 𝑝ℎ, 𝑞ℎ ∈ 𝑅𝑛1
+
, 𝑝𝑣, 𝑞𝑣 ∈ 𝑅𝑛2

+
. Then following the proof line

of Theorem 4, the corollary can be obtained.

3.2. 𝑙
1
-Gain Analysis. The following theorem establishes suf-

ficient condition of the asymptotical stability with 𝑙
1
-gain

performance for the system (1a) and (1b).

Theorem 6. For given positive constants 𝑑
ℎ𝐿
, 𝑑
ℎ𝐻

, 𝑑
𝑣𝐿
, 𝑑
𝑣𝐻
,

and 𝛾, the positive 2D system (1a) and (1b) is asymptotically
stable with the 𝑙

1
-gain index 𝛾 if there exist vectors 𝑝 ∈ 𝑅

𝑛

+
,

𝑞 ∈ 𝑅
𝑛

+
, 𝜍
1
∈ 𝑅
𝑛

+
, 𝜍
2
∈ 𝑅
𝑛

+
, and 𝜁 ∈ 𝑅𝑛

+
, such that

Φ = diag {Φ
1
, Φ
2
, . . . , Φ

𝑛
, Φ


1
, Φ


2
, . . . , Φ



𝑛
, Φ


1
, Φ


2
, . . . , Φ



𝑛
,

Φ


1
, Φ


2
, . . . , Φ



𝑛
, Τ
1
, Τ
2
, . . . , Τ

𝑚
} < 0,

(24)

whereΦ
𝑘
, Φ
𝑘
, and Φ

𝑘
are denoted as in Theorem 4, and

Φ
𝑘

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝐸
𝑘
) 𝑞 + 𝐸

𝑘
𝜁

+ (𝑑
2

ℎ𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
ℎ𝐻
𝐸
𝑘
) 𝜍
2

1 ≤ 𝑘 ≤ 𝑛
1
,

+𝑑
2

ℎ𝐻
𝐸
𝑘
𝜍
1
+
ℎ𝑘

1
,

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝐸
𝑘
) 𝑞 + 𝐸

𝑘
𝜁

+ (𝑑
2

𝑣𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
𝑣𝐻
𝐸
𝑘
) 𝜍
2

𝑛
1
+1 ≤ 𝑘 ≤ 𝑛,

+𝑑
2

𝑣𝐻
𝐸
𝑘
𝜍
1
+
ℎ𝑘

1
,

𝑇
𝜀
= 𝑏
𝑇

𝜀
𝑝 + 𝑏
𝑇

𝜀
𝑞 + 𝑏
𝑇

𝜀
𝐷
2

ℎ𝐻
𝜍
2
+
𝑙𝜀
1
− 𝛾, 1 ≤ 𝜀 ≤ 𝑚,

𝐷
𝐻
= diag {𝑑

ℎ𝐻
𝐼
𝑛
1

, 𝑑
𝑣𝐻
𝐼
𝑛
2

} ,

(25)

with 𝑘 ∈ 𝑛 = {1, 2, . . . , 𝑛}, 𝜀 ∈ 𝑚 = {1, 2, . . . , 𝑚},

𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], 𝑎

𝑘
, 𝑎
𝑑𝑘
, 𝑏
𝑘
, and ℎ

𝑘
represent the 𝑘th

column vector of matrices 𝐴, 𝐴
𝑑
, 𝐵, and𝐻, respectively, and 𝑙

𝜀

represents the 𝜀th column vector of matrix 𝐿.
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Proof. It is an obvious fact that (24) implies the following
inequality:

Ψ = diag {Ψ
1
, Ψ
2
, . . . , Ψ

𝑛
, Ψ


1
, Ψ


2
, . . . , Ψ



𝑛
, Ψ


1
, Ψ


2
, . . . ,

Ψ


𝑛
, Ψ


1
, Ψ


2
, . . . , Ψ



𝑛
} < 0,

(26)

where

Ψ
𝑘
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
ℎ𝐻

− 𝑑
ℎ𝐿
) 𝐸
𝑘
) 𝑞

+𝜁
𝑘
+ (𝑑
2

ℎ𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
ℎ𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

ℎ𝐻
𝐸
𝑘
𝜍
1
, 1 ≤ 𝑘 ≤ 𝑛

1
,

(𝑎
𝑇

𝑘
− 𝐸
𝑘
) 𝑝 + (𝑎

𝑇

𝑘
+ (𝑑
𝑣𝐻

− 𝑑
𝑣𝐿
) 𝐸
𝑘
) 𝑞

+𝜁
𝑘
+ (𝑑
2

𝑣𝐻
(𝑎
𝑇

𝑘
− 𝐸
𝑘
) − 𝑑
𝑣𝐻
𝐸
𝑘
) 𝜍
2

+𝑑
2

𝑣𝐻
𝐸
𝑘
𝜍
1
, 𝑛

1
+ 1 ≤ 𝑘 ≤ 𝑛,

Ψ


𝑘
=

{

{

{

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

ℎ𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 1 ≤ 𝑘 ≤ 𝑛

1
,

𝑎
𝑇

𝑑𝑘
𝑝 + (𝑎

𝑇

𝑑𝑘
− 𝐸
𝑘
) 𝑞 + 𝑑

2

𝑣𝐻
𝑎
𝑇

𝑑𝑘
𝜍
2
, 𝑛
1
+1≤𝑘≤𝑛,

Ψ


𝑘
=

{

{

{

−𝜁
𝑘
+ 𝑑
ℎ𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝜁
𝑘
+ 𝑑
𝑣𝐻
𝐸
𝑘
(𝜍
2
− 𝜍
1
) , 𝑛

1
+ 1 ≤ 𝑘 ≤ 𝑛,

Ψ


𝑘
={

−𝑑
ℎ𝐻
𝐸
𝑘
𝜍
1
, 1 ≤ 𝑘 ≤ 𝑛

1
,

−𝑑
𝑣𝐻
𝐸
𝑘
𝜍
1
, 𝑛
1
+ 1 ≤ 𝑘 ≤ 𝑛,

(27)

with 𝑘 ∈ 𝑛 = {1, 2, . . . , 𝑛}, 𝐸
𝑘
= [

𝑘−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1,

𝑛−𝑘

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0], and

𝑎
𝑘
(𝑎
𝑑𝑘
) represents the 𝑘th column vector of matrix 𝐴(𝐴

𝑑
).

By Theorem 4, we can obtain that the system (1a) and
(1b) with 𝑤(𝑖, 𝑗) = 0 is asymptotically stable. Now we are
in a position to prove that the system (1a) and (1b) has
a prescribed 𝑙

1
-gain index 𝛾 for any nonzero 𝑤(𝑖, 𝑗) ∈ 𝑙

1
.

To establish the 𝑙
1
-gain performance, we choose the same

copositive Lyapunov-Krasovskii functional candidate as in
(9) for the system (1a) and (1b). Following the proof line of
Theorem 4, we can get that

Δ𝑉 (𝑖, 𝑗) +
𝑧(𝑖, 𝑗)

1
− 𝛾

𝑤 (𝑖, 𝑗)
1

= 𝑥
𝑇

(𝑖, 𝑗) {(𝐴
𝑇

− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇

+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞

+𝜁 + 𝐷
2

𝐻
((𝐴
𝑇

− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2
}

+ 𝑥
𝑇

𝑑
(𝑖, 𝑗) {𝐴

𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
}

+ 𝑥
𝑇

𝐻
(𝑖, 𝑗) {−𝜁 + 𝐷

𝐻
(𝜍
2
− 𝜍
1
)}

+ 𝑥
𝑇

𝑠
(𝑖, 𝑗) {−𝐷

𝐻
𝜍
1
}

+ 𝑤
𝑇

(𝑖, 𝑗) {𝐵
𝑇

(𝑝 + 𝑞 + 𝐷
2

𝐻
𝜍
2
)}

+
𝐻𝑥 (𝑖, 𝑗)

1
+
𝐿𝑤 (𝑖, 𝑗)

1
− 𝛾

𝑤 (𝑖, 𝑗)
1
.

(28)

According to the definition of 𝑙
1
norm, one obtains

𝐻𝑥 (𝑖, 𝑗) =

[
[
[
[

[

ℎ
1,1

ℎ
1,2

⋅ ⋅ ⋅ ℎ
1,𝑛
1

ℎ
2,1

ℎ
2,2

⋅ ⋅ ⋅ ℎ
2,𝑛
1

...
... ⋅ ⋅ ⋅

...
ℎ
𝑝,1

ℎ
𝑝,2

⋅ ⋅ ⋅ ℎ
𝑝,𝑛
1

ℎ
1,𝑛
1
+1

ℎ
1,𝑛
1
+2

⋅ ⋅ ⋅ ℎ
1,𝑛

ℎ
2,𝑛
1
+1

ℎ
2,𝑛
1
+2

⋅ ⋅ ⋅ ℎ
2,𝑛

...
... ⋅ ⋅ ⋅

...
ℎ
𝑝,𝑛
1
+1

ℎ
𝑝,𝑛
1
+2

⋅ ⋅ ⋅ ℎ
𝑝,𝑛

]
]
]
]

]

[
[
[
[
[
[
[
[
[
[

[

𝑥
ℎ

1
(𝑖, 𝑗)

...
𝑥
ℎ

𝑛
1

(𝑖, 𝑗)

𝑥
𝑣

1
(𝑖, 𝑗)

...
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[

[

ℎ
1,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

1,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
1,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

1,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

ℎ
2,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

2,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
2,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

2,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

...
ℎ
𝑝,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑝,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
𝑝,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑝,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

]
]
]
]
]

]

,

𝐻𝑥 (𝑖, 𝑗)
1
=

𝑝

∑

𝑘=1

ℎ
𝑘,1
𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑘,𝑛
1

𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + ℎ
𝑘,𝑛
1
+1
𝑥
𝑣

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + ℎ

𝑘,𝑛
𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

= (

𝑝

∑

𝑘=1

ℎ
𝑘,1
)𝑥
ℎ

1
(𝑖, 𝑗) + ⋅ ⋅ ⋅ + (

𝑝

∑

𝑘=1

ℎ
𝑘,𝑛
1

)𝑥
ℎ

𝑛
1

(𝑖, 𝑗) + (

𝑝

∑

𝑘=1

ℎ
𝑘,𝑛
1
+1
)𝑥
𝑣

1
(𝑖, 𝑗)

+ ⋅ ⋅ ⋅ + (

𝑝

∑

𝑘=1

ℎ
𝑘,𝑛
)𝑥
𝑣

𝑛
2

(𝑖, 𝑗)

= 𝑥
𝑇

(𝑖, 𝑗) [
ℎ1

1

ℎ2
1

⋅ ⋅ ⋅
ℎ𝑛

1]
𝑇

,

(29)
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where ℎ
𝑘
represents the 𝑘th column vector and ℎ

𝑖,𝑗
represents

the entry located at (𝑖, 𝑗) of matrix𝐻. Then, similarly

𝐿𝑤 (𝑖, 𝑗)
1
= 𝑤
𝑇

(𝑖, 𝑗) [
𝑙1
1

𝑙2
1

⋅ ⋅ ⋅
𝑙𝑚

1]
𝑇

,

𝛾
𝑤 (𝑖, 𝑗)

1
= 𝑤
𝑇

(𝑖, 𝑗) [𝛾 𝛾 ⋅ ⋅ ⋅ 𝛾]
𝑇

,

(30)

where 𝑙
𝑘
represents the 𝑘th column vector of matrix 𝐿.

Substituting (29)-(30) into (28) leads to

Δ𝑉 (𝑖, 𝑗) +
𝑧(𝑖, 𝑗)

1
− 𝛾

𝑤 (𝑖, 𝑗)
1

= 𝑥
𝑇

(𝑖, 𝑗) { (𝐴
𝑇

− 𝐼
𝑛
) 𝑝 + (𝐴

𝑇

+ 𝐷
𝐻
− 𝐷
𝐿
) 𝑞 + 𝜁

+ 𝐷
2

𝐻
((𝐴
𝑇

− 𝐼
𝑛
) 𝜍
2
+ 𝜍
1
) − 𝐷
𝐻
𝜍
2

+[
ℎ1

1

ℎ2
1

⋅ ⋅ ⋅
ℎ𝑛

1]
𝑇

}

+ 𝑥
𝑇

𝑑
(𝑖, 𝑗) {𝐴

𝑇

𝑑
𝑝 + (𝐴

𝑇

𝑑
− 𝐼
𝑛
) 𝑞 + 𝐷

2

𝐻
𝐴
𝑇

𝑑
𝜍
2
}

+ 𝑥
𝑇

𝐻
(𝑖, 𝑗) {−𝜁 + 𝐷

𝐻
(𝜍
2
− 𝜍
1
)}

+ 𝑥
𝑇

𝑠
(𝑖, 𝑗) {−𝐷

𝐻
𝜍
1
}

+ 𝑤
𝑇

(𝑖, 𝑗) {𝐵
𝑇

(𝑝 + 𝑞 + 𝐷
2

𝐻
𝜍
2
)

+[
𝑙1
1

𝑙2
1

⋅ ⋅ ⋅
𝑙𝑚

1]
𝑇

−[𝛾 𝛾 ⋅ ⋅ ⋅ 𝛾]
𝑇

} .

(31)

If condition (24) holds, we have

𝑉
ℎ

(𝑖 + 1, 𝑗) − 𝑉
ℎ

(𝑖, 𝑗) + 𝑉
𝑣

(𝑖, 𝑗 + 1) − 𝑉
𝑣

(𝑖, 𝑗)

+
𝑧 (𝑖, 𝑗)

1
− 𝛾

𝑤 (𝑖, 𝑗)
1
< 0.

(32)

We know that

Δ𝑉 (𝑖, 𝑗) = 𝑉
ℎ

(𝑖 + 1, 𝑗) − 𝑉
ℎ

(𝑖, 𝑗) + 𝑉
𝑣

(𝑖, 𝑗 + 1) − 𝑉
𝑣

(𝑖, 𝑗) .

(33)

For any positive scalars 𝑘
ℎ
, and 𝑘

𝑣
∈ 𝑍
+
, it can be verified

that

𝑘
ℎ

∑

𝑖=0

𝑘
𝑣

∑

𝑗=0

Δ𝑉 (𝑖, 𝑗) =

𝑘
ℎ

∑

𝑖=0

𝑘
𝑣

∑

𝑗=0

(𝑉
ℎ

(𝑖 + 1, 𝑗) − 𝑉
ℎ

(𝑖, 𝑗))

+

𝑘
ℎ

∑

𝑖=0

𝑘
𝑣

∑

𝑗=0

(𝑉
𝑣

(𝑖, 𝑗 + 1) − 𝑉
𝑣

(𝑖, 𝑗))

=

𝑘
𝑣

∑

𝑗=0

(𝑉
ℎ𝑇

(𝑘
ℎ
+ 1, 𝑗) − 𝑉

ℎ𝑇

(0, 𝑗))

+

𝑘
ℎ

∑

𝑖=0

(𝑉
𝑣𝑇

(𝑖, 𝑘
𝑣
+ 1) − 𝑉

𝑣𝑇

(𝑖, 0)) .

(34)

When 𝑘
ℎ
and 𝑘
𝑣
= ∞, we have

∞

∑

𝑖=0

∞

∑

𝑗=0

(
𝑧 (𝑖, 𝑗)

1
− 𝛾

𝑤 (𝑖, 𝑗)
1
) <

∞

∑

𝑖=0

∞

∑

𝑗=0

Δ𝑉 (𝑖, 𝑗) . (35)

The existence of solution for LMI (24) implies that the
positive 2D system (1a) and (1b) is asymptotically stable.
Together with the zero boundary conditions, one can get

∞

∑

𝑖=0

∞

∑

𝑗=0

Δ𝑉 (𝑖, 𝑗) = 0. (36)

Applying (36) to (35), one has

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑧 (𝑖, 𝑗)
1
< 𝛾

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑤 (𝑖, 𝑗)
1
. (37)

By Definition 2, the positive 2D system (1a) and (1b) is
asymptotically stable and has the 𝑙

1
-gain index 𝛾.

This completes the proof.

Remark 7. In Theorem 6, the disturbance attenuation per-
formance of positive 2D linear systems is analyzed, and
sufficient conditions for the existence of 𝑙

1
-gain performance

for positive 2D system to (1a) and (1b) are proposed in terms
of LMIs which are computationally tractable. This is also the
major contribution of our paper.

4. Numerical Example

Consider the positive 2D system with delays in the Roesser
model (1a) and (1b), where

𝐴 =

[
[
[
[
[
[

[

0.10 0.20
... 0.2

0.00 0.30
... 0.10

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.00 0.10
... 0.40

]
]
]
]
]
]

]

,

𝐴
𝑑
=

[
[
[
[
[
[

[

0.10 0.01
... 0.05

0.10 0.02
... 0.05

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.03 0.12
... 0.03

]
]
]
]
]
]

]

,

𝐵 = [

[

0.2

0.1

0.1

]

]

, 𝐻 = [0.1 0 0.2] , 𝐿 = 0.1,

𝑑
ℎ
(𝑖) = 4 + 2 sin(𝜋𝑖

2
) , 𝑑

𝑣
(𝑗) = 5 + 2 sin(

𝜋𝑗

2
) ,

𝑤 (𝑖, 𝑗) = 𝑒
−(𝑖+0.5𝑗)

,

(38)
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𝑖 𝑗

𝑥
ℎ

1

0
10 20

30
40

50

0

20

40

0

0.05

0.1

0.15

Figure 1: State response of 𝑥ℎ
1
(𝑖, 𝑗).

where state dimensions are 𝑛
ℎ
= 2 and 𝑛

𝑣
= 1. The boundary

conditions are given by

𝑥
ℎ

(𝑖, 𝑗) = [
0.1

0.1
] , ∀0 ≤ 𝑗 ≤ 52, −𝑑

ℎ𝐻
≤ 𝑖 ≤ 0,

𝑥
𝑣

(𝑖, 𝑗) = 0.1, ∀0 ≤ 𝑖 ≤ 52, −𝑑
𝑣𝐻

≤ 𝑗 ≤ 0.

(39)

In this example, we can get 𝑑
ℎ𝐿

= 2, 𝑑
ℎ𝐻

= 6, 𝑑
𝑣𝐿
= 3, and

𝑑
𝑣𝐻

= 7. Given 𝛾 = 4.5, then by using the LMI Control
Toolbox [37] to solve the inequalities in Theorem 6, we can
get the following solutions:

𝑝 = [1.7310 1.6842 1.7364]
𝑇

,

𝑞 = [3.2077 2.8768 3.3026]
𝑇

,

𝜁 = [1.0334 1.1075 0.9957]
𝑇

,

𝜍
1
= [0.3675 0.4042 0.3552]

𝑇

,

𝜍
2
= [0.0385 0.0489 0.0330]

𝑇

.

(40)

Figures 1, 2, and 3 show the state responses of the system;
it can be seen that the corresponding positive 2D system
is asymptotically stable. Furthermore, by computing, under
zero boundary conditions, we have ∑∞

𝑖=0
∑
∞

𝑗=0
‖𝑧(𝑖, 𝑗)‖

1
=

4.0206∑
∞

𝑖=0
∑
∞

𝑗=0
‖𝑤(𝑖, 𝑗)‖

1
= 1.0977. It is obvious that the

prescribed 𝑙
1
-gain performance level 𝛾 = 4.5 is satisfied.

5. Conclusions

This paper has addressed the delay-dependent stability anal-
ysis with 𝑙

1
-gain performance for positive 2D systems with

state delays in the Roesser model. A sufficient condition for
the existence of the delay-dependent asymptotic stability of
positive 2D linear systems with time delays has been estab-
lished. Copositive-type Lyapunov function method has been
used to get a computationally tractable LMI-based sufficient
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Figure 2: State response of 𝑥ℎ
2
(𝑖, 𝑗).
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Figure 3: State response of 𝑥𝑣(𝑖, 𝑗).

criterion which ensures that the system is asymptotically
stable and has a prescribed 𝑙

1
-gain performance. A numerical

example has been given to illustrate the efficiency of the
results. Furthermore, our future work will be devoted to the
𝑙
1
-gain control problem for positive 2D systems with delays.
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This paper is concerned with the problem of robust reliable control for a class of uncertain discrete impulsive switched systems with
state delays, where the actuators are subjected to failures. The parameter uncertainties are assumed to be norm-bounded, and the
average dwell time approach is utilized for the stability analysis and controller design. Firstly, an exponential stability criterion is
established in terms of linear matrix inequalities (LMIs). Then, a state feedback controller is constructed for the underlying system
such that the resulting closed-loop system is exponentially stable. A numerical example is given to illustrate the effectiveness of the
proposed method.

1. Introduction

Switched systems are a class of dynamical systems comprised
of several continuous-time or discrete-time subsystems and
a rule that orchestrates the switching among different sub-
systems. These systems have attracted considerable attention
because of their applicability and significance in various
areas, such as power electronics, embedded systems, chemical
processes, and computer-controlled systems [1, 2]. Many
works in the field of stability analysis and control synthesis
for switched systems have appeared (see [3–11] and references
cited therein). However, in the real world, they may not cover
all the practical cases. People found that many systems are
affected not only by switching among different subsystems,
but also impulsive jumps at the switching instants. This
kind of systems is named after impulsive switched systems,
which have numerous applications in many fields, such as
mechanical systems, automotive industry, aircraft, air traffic
control, networked control, chaotic-based secure communi-
cation, quality of service in the internet, and video coding
[12].

Impulsive switched systems have received a considerable
research attention for more than one decade. The problems
of stability, controllability, and observability for impulsive

switched systems have been successfully investigated, and
a rich body of the literature has been available [13–17]. In
[13], the authors established the necessary and sufficient
conditions for controllability and controlled observability
with respect to a given switching time sequence. Some results
on the stability analysis and stabilization were developed
in [14–17]. Because time-delay exists widely in practical
environment and often causes undesirable performance, it
is necessary and significant to study time delayed systems.
Recently, such systems have stirred a great deal of research
attention [18–22]. So far, many stability conditions of impul-
sive switched systems with state delays have been obtained in
[23–26].

On the other hand, it is inevitable that the actuatorswill be
subjected to failures in a real environment. A control system
is said to be reliable if it retains certain properties when there
exist failures. When failure occurs, the conventional con-
troller will become conservative and may not satisfy certain
control performance indexes. In this case, reliable control
is a kind of effective control approach to improve system
reliability. Recently, several approaches for designing reliable
controllers have been proposed, and some of them have been
used to research the problem of reliable control for switched
systems [27–33]. In [27], a design methodology of the robust
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reliable control for switched nonlinear systems with time
delays was presented. In [32], 𝐿

∞
reliable control problem

for a class of continuous impulsive switched systems was
researched, and a state feedback controller was constructed
to restrain the outputs of the faulty actuators as well as
disturbance inputs below a specified level. However, to the
best of our knowledge, the existing results of the reliable
control for impulsive switched systems are in the continuous-
time framework, such topic on discrete impulsive switched
systems has not been fully investigated, which motivates our
present study.

In this paper, we will focus our interest on robust reliable
control problem for a class of uncertain discrete impulsive
switched systems with state delays. The dwell time approach
is utilized for the stability analysis and controller design.
The main contributions of this paper can be summarized
as follows: (i) stability and reliability of discrete impulsive
switched systems in the presence of actuators failures are
first considered; (ii) a state feedback design methodology is
proposed to achieve the exponential stability and reliability
for the underlying systems.

The remainder of the paper is organized as follows. In
Section 2, problem formulation and some necessary lemmas
are given. In Section 3, based on the dwell time approach, an
exponential stability criterion is established in terms of LMIs.
Then a delay-dependent sufficient condition for the existence
of a robust reliable controller is derived in terms of a set
of matrix inequalities. Section 4 gives a numerical example
to illustrate the effectiveness of the proposed approach.
Concluding remarks are given in Section 5.

Notations.Throughout this paper, the superscript “𝑇” denotes
the transpose, and the notation 𝑋 ≥ 𝑌 (𝑋 > 𝑌) means
that matrix𝑋−𝑌 is a positive semidefinite (positive definite,
resp.). ‖ ⋅ ‖ denotes the Euclidean norm. 𝐼 represents identity
matrixwith appropriate dimension; diag{𝑎

𝑖
}denotes diagonal

matrix with the diagonal elements 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. 𝑋−1

denotes the inverse of 𝑋. The asterisk ∗ in a matrix is used
to denote a term that is induced by symmetry. The set of all
positive integers is represented by 𝑍+.

2. Problem Formulation and Preliminaries

Consider the following uncertain discrete impulsive switched
systems with state delays:

𝑥 (𝑘 + 1) = �̂�
𝜎(𝑘)
𝑥 (𝑘) + �̂�

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝑑) + 𝐵

𝜎(𝑘)
𝑢
𝑓

(𝑘) ,

𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(1)

𝑥 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝑥 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

, (2)

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = [−𝑑, 0] , (3)

where 𝑥(𝑘) ∈ 𝑅
𝑛 is the state vector. 𝑢𝑓(𝑘) ∈ 𝑅

𝑝 is the
control input of actuator fault; 𝜙(𝜃) is a discrete vector-
valued initial function. 𝑑 is discrete time delay. 𝜎(𝑘) is a
switching signal which takes its values in the finite set 𝑁 :=
{1, . . . , 𝑁}, corresponding to it is the switching sequence

𝜗 = {(𝑘
0
, 𝜎(𝑘

0
)), (𝑘

1
, 𝜎(𝑘

1
)), . . . , (𝑘

𝑏
, 𝜎(𝑘

𝑏
)), . . .}, where 𝑘

0
is

the initial time and 𝑘
𝑏
(𝑏 ∈ 𝑍

+

) denotes the 𝑏th switching
instant. Moreover, 𝜎(𝑘) = 𝑖 ∈ 𝑁means that the 𝑖th subsystem
is activated. 𝜎(𝑘 − 1) = 𝑗 and 𝜎(𝑘) = 𝑖 (𝑖 ̸= 𝑗) indicate
that 𝑘 is a switching instant at which the system is switched
from the 𝑗th subsystem to the 𝑖th subsystem. 𝑁 denotes the
number of subsystems. Note that there exists an impulsive
jump described by (2) at the switching instant 𝑘

𝑏
(𝑏 ∈ 𝑍

+

).

Remark 1. The impulsive jump at the switching instant 𝑘
𝑏
is

represented by 𝐸
𝜎(𝑘
𝑏
)𝜎(𝑘
𝑏
−1)

. The matrix 𝐸
𝑖𝑗
(𝑖, 𝑗 ∈ 𝑁) is also

used in [34].Moreover,𝐸
𝑖𝑗
is a certain real-valuedmatrixwith

appropriate dimension and means that the impulse is only
determined by the subsystems activated before and after the
specific switching instant 𝑘

𝑏
.

For each 𝑖 ∈ 𝑁, �̂�
𝑖
�̂�
𝑑𝑖

are uncertain real-valued
matrices with appropriate dimensions and satisfy

[�̂�
𝑖
𝐴
𝑑𝑖
] = [𝐴

𝑖
𝐴
𝑑𝑖
] + 𝐻

𝑖
𝐹
𝑖
(𝑘) [𝑀

1𝑖
𝑀
2𝑖
] , (4)

where 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐻
𝑖
, 𝑀

1𝑖
, and 𝑀

2𝑖
(𝑖 ∈ 𝑁) are known real

constant matrices with appropriate dimensions. 𝐹
𝑖
(𝑘) are

unknown and possibly time-varying matrices with Lebesgue
measurable elements and satisfy

𝐹
𝑖

𝑇

(𝑘) 𝐹
𝑖
(𝑘) ≤ 𝐼. (5)

The control input of actuator fault 𝑢𝑓(𝑘) can be described as

𝑢
𝑓

(𝑘) = Ω
𝜎(𝑘)
𝑢 (𝑘) , (6)

where 𝑢(𝑘) = 𝐾
𝜎(𝑘)
𝑥(𝑘) is the control input to be designed,

Ω
𝑖
(𝑖 ∈ 𝑁) are the actuator fault matrices with the following

form:

Ω
𝑖
= diag {𝜔

𝑖1
, 𝜔
𝑖2
, . . . , 𝜔

𝑖𝑙
, . . . , 𝜔

𝑖𝑝
} , (7)

where 0 ≤ 𝜔
𝐿𝑖𝑘
≤ 𝜔

𝑖𝑘
≤ 𝜔

𝐻𝑖𝑘
, 𝜔
𝐻𝑖𝑘
≤ 1.

For simplicity, we define

Ω
10
= diag {�̃�

𝑖1
, �̃�
𝑖2
, . . . , �̃�

𝑖𝑖
, . . . , �̃�

𝑖𝑝
} ,

�̃�
𝑖𝑘
=
1

2
(𝜔
𝐿𝑖𝑘
+ 𝜔
𝐻𝑖𝑘
) ,

Ξ
2

𝑖
= diag {𝜉

𝑖1
, 𝜉
𝑖2
, . . . , 𝜉

𝑖𝑖
, . . . , 𝜉

𝑖𝑝
} ,

𝜉
𝑖𝑘
=
𝜔
𝐻𝑖𝑘
− 𝜔
𝐿𝑖𝑘

𝜔
𝐻𝑖𝑘
+ 𝜔
𝐿𝑖𝑘

,

Θ
𝑖
= diag {Θ

𝑖1
, Θ
𝑖2
, . . . , Θ

𝑖𝑖
, . . . , Θ

𝑖𝑝
} ,

Θ
𝑖𝑘
=
𝜔
𝑖𝑘
− �̃�

𝑖𝑘

�̃�
𝑖𝑘

.

(8)

Thus, we have

Ω
𝑖
= Ω

𝑖0
(𝐼 + Θ

𝑖
) ,

Θ𝑖
 ≤ Ξ

2

𝑖
≤ 𝐼, (9)

where |Θ
𝑖
| = diag{|Θ

𝑖1
|, |Θ

𝑖2
|, . . . , |Θ

𝑖𝑖
|, . . . , |Θ

𝑖𝑝
|}.

Before ending this section, we introduce the following
definitions and lemmas.
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Definition 2 (see [34]). Let 𝑁
𝜎
(𝑘
0
, 𝑘) denote the switching

number of 𝜎(𝑘) during the interval [𝑘
0
, 𝑘). If there exist𝑁

0
≥

0 and 𝜏
𝑎
≥ 0 such that

𝑁
𝜎
(𝑘
0
, 𝑘) ≤ 𝑁

0
+
𝑘 − 𝑘

0

𝜏
𝑎

, ∀𝑘 ≥ 𝑘
0
, (10)

then 𝜏
𝑎
and 𝑁

0
are called the average dwell time and the

chatter bound, respectively.

Remark 3. In this paper, the average dwell time method is
used to restrict the switching number during a time interval
such that the stability of system (1), (2), and (3) can be
guaranteed.

Definition 4 (see [35]). The system (1), (2), and (3) is said to
be exponentially stable if its solution satisfies

‖𝑥 (𝑘)‖ ≤ 𝜂
𝑥 (𝑘0)

ℎ
𝜌
−(𝑘−𝑘

0
)

, ∀𝑘 ≥ 𝑘
0
, (11)

for any initial condition 𝑥(𝑘
0
+ 𝜃), 𝜃 = [−𝑑, 0], where 𝜂 > 0

and 𝜌 > 1 is the decay rate, ‖𝑥(𝑘
0
)‖
ℎ
= max

𝑘
0
−𝑑≤𝑘≤𝑘

0

‖𝑥(𝑘)‖.

Lemma 5 (see [35]). For a given matrix 𝑆 = [ 𝑆11 𝑆12
𝑆
𝑇

12
𝑆
22

], where
𝑆
11
, 𝑆
22
are square matrices, then the following conditions are

equivalent:

(i) 𝑆 < 0,
(ii) 𝑆

11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(iii) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 6 (see [36]). Let 𝑈, 𝑉,𝑊, and 𝑋 be real matrices of
appropriate dimensions with𝑋 satisfying𝑋 = 𝑋𝑇, then for all
𝑉
𝑇

𝑉 ≤ 𝐼,𝑋+𝑈𝑉𝑊+𝑊𝑇𝑉𝑇𝑈𝑇 < 0, if and only if there exists
a scalar 𝜀 such that 𝑋 + 𝜀𝑈𝑈𝑇 + 𝜀−1𝑊𝑇𝑊 < 0.

Lemma 7 (see [37]). For matrices 𝑄
1
, 𝑄
2
with appropriate

dimensions, there exists a positive scalar 𝜀 such that

𝑄
1
Σ𝑄
2
+ 𝑄

𝑇

2
Σ
𝑇

𝑄
𝑇

1
≤ 𝜀𝑄

1
𝑈𝑄
𝑇

1
+ 𝜀
−1

𝑄
𝑇

2
𝑈𝑄
2

(12)

holds, whereΣ is a diagonalmatrix and𝑈 is a known real-value
matrix satisfying |Σ| ≤ 𝑈.

3. Main Results

3.1. Stability Analysis. In this subsection, we consider the
exponential stability of the following uncertain discrete
impulsive switched systems with state delays:

𝑥 (𝑘 + 1) = �̂�
𝜎(𝑘)
𝑥 (𝑘) + �̂�

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝑑) ,

𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(13)

𝑥 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝑥 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

, (14)

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = [−𝑑, 0] . (15)

Theorem 8. Consider system (13), (14), and (15), for given
positive scalars 𝑑, 0 < 𝛼 < 1, if there exist positive

definite symmetric matrices 𝑋
𝑖
, 𝑁
𝑖
(𝑖 ∈ 𝑁) with appropriate

dimensions and positive scalars 𝜀
𝑖
such that

[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋
𝑖

0 𝑋
𝑖
𝐴
𝑇

𝑖
𝑋
𝑖
𝑋
𝑖
𝑀
𝑇

1𝑖

∗ −𝛼
𝑑

𝑁
𝑖

𝑁
𝑖
𝐴
𝑇

𝑑𝑖
0 𝑁

𝑖
𝑀
𝑇

2𝑖

∗ ∗ −𝑋
𝑖
+ 𝜀
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
0 0

∗ ∗ ∗ −𝑁
𝑖

0

∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

]
]
]
]
]
]
]
]
]
]

]

< 0. (16)

Then, under the following average dwell time scheme:

𝜏
𝑎
> 𝜏
∗

𝑎
= −

ln 𝜇
ln𝛼

+ 1, (17)

the system is exponentially stable, where 𝜇 ≥ 1 satisfies

[
[
[

[

−𝜇𝑋
𝑖
𝑋
𝑖
𝐸
𝑇

𝑗𝑖
𝑋
𝑖

∗ −𝑋
𝑗

0

∗ ∗ −𝑁
𝑗

]
]
]

]

< 0,

𝛼𝑁
𝑖
≤ 𝜇𝑁

𝑗
, ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗.

(18)

Proof. Choose the following piecewise Lyapunov function
candidate for system (13), (14), and (15):

𝑉 (𝑘) = 𝑉
𝜎(𝑘)
(𝑘) , (19)

and the form of each 𝑉
𝜎(𝑘)
(𝑘) is given by

𝑉
𝜎(𝑘)
(𝑘) = 𝑉

1𝜎(𝑘)
(𝑘) + 𝑉

2𝜎(𝑘)
(𝑘) , (20)

where

𝑉
1𝜎(𝑘)

(𝑘) = 𝑥
𝑇

(𝑘) 𝑃
𝜎(𝑘)
𝑥 (𝑘) ,

𝑉
2𝜎(𝑘)

(𝑘) =

𝑘−1

∑

𝑟=𝑘−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝜎(𝑘)
𝑥 (𝑟) 𝛼

𝑘−𝑟−1

.

(21)

Let 𝑘
1
, . . . , 𝑘

𝑏
denote the switching instants during the

interval [𝑘
0
, 𝑘). Without loss of generality, assume that the 𝑖th

subsystem is activated at the switching instant 𝑘
𝑏−1

, and the
𝑗th subsystem is activated at the switching instant 𝑘

𝑏
.

When 𝑘 ∈ [𝑘
𝑏−1
, 𝑘
𝑏
− 1), 𝑏 ∈ 𝑍+, 𝜎(𝑘) = 𝜎(𝑘 + 1) = 𝑖

(𝑖 ∈ 𝑁), along the trajectory of system (13), (14), and (15), we
have

𝑉
𝑖
(𝑥 (𝑘 + 1)) − 𝛼𝑉

𝑖
(𝑥 (𝑘))

= 𝑥
𝑇

(𝑘 + 1) 𝑃
𝑖
𝑥 (𝑘 + 1)

+

𝑘

∑

𝑟=𝑘+1−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘−𝑟

− 𝛼𝑥
𝑇

(𝑘) 𝑃
𝑖
𝑥 (𝑘)

−

𝑘−1

∑

𝑟=𝑘−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘−𝑟

.

(22)
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Thus,

𝑉
𝑖
(𝑥 (𝑘 + 1)) − 𝛼𝑉

𝑖
(𝑥 (𝑘)) = 𝑋

𝑇

(𝑘) 𝜑
𝑖
𝑋 (𝑘) , (23)

where

𝜑
𝑖
= (
𝑅
𝑖
− 𝛼𝑃

𝑖
0

0 −𝛼
𝑑

𝑅
𝑖

) +(

�̂�
𝑇

𝑖

�̂�
𝑇

𝑑𝑖

)𝑃
𝑖
(�̂�
𝑖
�̂�
𝑑𝑖
) ,

𝑋 (𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑)]
𝑇

.

(24)

Thus, if the following inequality holds:

(
𝑅
𝑖
− 𝛼𝑃

𝑖
0

0 −𝛼
𝑑

𝑅
𝑖

) +(

�̂�
𝑇

𝑖

�̂�
𝑇

𝑑𝑖

)𝑃
𝑖
(�̂�
𝑖
�̂�
𝑑𝑖
) < 0, (25)

then we have

𝑉
𝑖
(𝑥 (𝑘 + 1)) < 𝛼𝑉

𝑖
(𝑥 (𝑘)) . (26)

Using diag{𝑃−1
𝑖
, 𝑅
−1

𝑖
} to pre- and postmultiply the left term

of (25) and applying Lemma 5, we can obtain that (25) is
equivalent to the following inequality:

(

(

−𝛼𝑃
−1

𝑖
0 𝑃

−1

𝑖
�̂�
𝑇

𝑖
𝑃
−1

𝑖

∗ −𝛼
𝑑

𝑅
−1

𝑖
𝑅
−1

𝑖
�̂�
𝑇

𝑑𝑖
0

∗ ∗ −𝑃
−1

𝑖
0

∗ ∗ ∗ −𝑅
−1

𝑖

)

)

< 0. (27)

Denote that 𝑋
𝑖
= 𝑃

−1

𝑖
, 𝑁
𝑖
= 𝑅

−1

𝑖
, then substituting (4) into

(27) and applying Lemma 6, we can obtain that (16) and (27)
are equivalent.

When 𝑘 = 𝑘
𝑏
−1, 𝜎(𝑘+1) = 𝜎(𝑘

𝑏
) = 𝑗, 𝜎(𝑘) = 𝜎(𝑘

𝑏
−1) =

𝑖, 𝑖 ̸= 𝑗, along the trajectory of system (13), (14), and (15), we
have

𝑉
𝑗
(𝑥 (𝑘

𝑏
)) = 𝑥

𝑇

(𝑘
𝑏
) 𝑃
𝑗
𝑥 (𝑘

𝑏
) +

𝑘
𝑏
−1

∑

𝑟=𝑘
𝑏
−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑗
𝑥 (𝑟) 𝛼

𝑘
𝑏
−𝑟−1

,

𝑉
𝑖
(𝑥 (𝑘

𝑏
− 1)) = 𝑥

𝑇

(𝑘
𝑏
− 1) 𝑃

𝑖
𝑥 (𝑘

𝑏
− 1)

+

𝑘
𝑏
−2

∑

𝑟=𝑘
𝑏
−1−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘
𝑏
−𝑟−2

,

𝑉
𝑗
(𝑥 (𝑘

𝑏
)) − 𝜇𝑉

𝑖
(𝑥 (𝑘

𝑏
− 1))

= 𝑥
𝑇

(𝑘
𝑏
− 1) (𝐸

𝑇

𝑗𝑖
𝑃
𝑗
𝐸
𝑗𝑖
− 𝜇𝑃

𝑖
) 𝑥 (𝑘

𝑏
− 1)

+

𝑘
𝑏
−1

∑

𝑟=𝑘
𝑏
−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑗
𝑥 (𝑟) 𝛼

𝑘
𝑏
−𝑟−1

− 𝜇

𝑘
𝑏
−2

∑

𝑟=𝑘
𝑏
−1−𝑑

𝑥
𝑇

(𝑟) 𝑅
𝑖
𝑥 (𝑟) 𝛼

𝑘
𝑏
−𝑟−2

= 𝑥
𝑇

(𝑘
𝑏
− 1) (𝐸

𝑇

𝑗𝑖
𝑃
𝑗
𝐸
𝑗𝑖
− 𝜇𝑃

𝑖
+ 𝑅
𝑗
) 𝑥 (𝑘

𝑏
− 1)

− 𝜇𝑥
𝑇

(𝑘
𝑏
− 1 − 𝑑) 𝑅

𝑖
𝑥 (𝑘

𝑏
− 1 − 𝑑) 𝛼

𝑑−2

+

𝑘
𝑏
−2

∑

𝑟=𝑘
𝑏
+1−𝑑

𝛼
𝑘
𝑏
−𝑟−2

𝑥
𝑇

(𝑟) (𝛼𝑅
𝑗
− 𝜇𝑅

𝑖
) 𝑥 (𝑟) .

(28)

From (18), we can get the following inequalities for all 𝑖, 𝑗 ∈
𝑁, 𝑖 ̸= 𝑗:

𝐸
𝑇

𝑗𝑖
𝑃
𝑗
𝐸
𝑗𝑖
− 𝜇𝑃

𝑖
+ 𝑅
𝑗
< 0,

𝛼𝑅
𝑗
− 𝜇𝑅

𝑖
≤ 0.

(29)

Then, it is not difficult to get
𝑉
𝑗
(𝑥 (𝑘

𝑏
)) < 𝜇𝑉

𝑖
(𝑥 (𝑘

𝑏
− 1)) , 𝑖 ̸= 𝑗. (30)

Thus, for 𝑘 ∈ [𝑘
𝑏
, 𝑘
𝑏+1
), we have

𝑉
𝜎(𝑘)
(𝑥 (𝑘)) < 𝛼

𝑘−𝑘
𝑏𝑉
𝜎(𝑘
𝑏
)
(𝑥 (𝑘

𝑏
))

< 𝜇𝛼
𝑘−𝑘
𝑏𝑉
𝜎(𝑘
𝑏
−1)
(𝑥 (𝑘

𝑏
− 1)) .

(31)

Repeating the above manipulation, one has that

𝑉
𝜎(𝑘)
(𝑥 (𝑘))

< 𝛼
𝑘−𝑘
𝑏𝑉
𝜎(𝑘
𝑏
)
(𝑥 (𝑘

𝑏
))

< 𝜇𝛼
𝑘−𝑘
𝑏𝑉
𝜎(𝑘
𝑏
−1)
(𝑥 (𝑘

𝑏
− 1))

≤ 𝜇𝛼
𝑘−𝑘
𝑏𝛼
𝑘
𝑏
−1−𝑘
𝑏−1𝑉

𝜎(𝑘
𝑏−1
)
(𝑥 (𝑘

𝑏−1
))

= 𝜇𝛼
𝑘−𝑘
𝑏−1
−1

𝑉
𝜎(𝑘
𝑏−1
)
(𝑥 (𝑘

𝑏−1
))

< 𝜇
2

𝛼
𝑘−𝑘
𝑏−1
−1

𝑉
𝜎(𝑘
𝑏−1
−1)
(𝑥 (𝑘

𝑏−1
− 1))

< ⋅ ⋅ ⋅

< 𝜇
𝑏

𝛼
𝑘−𝑘
0
−𝑏

𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘

0
)) .

(32)
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From Definition 2, we know that 𝑏 = 𝑁
𝜎
(𝑘
0
, 𝑘), then

𝑏 ≤ 𝑁
0
+
𝑘 − 𝑘

0

𝜏
𝑎

. (33)

It follows that

𝑉
𝜎(𝑘)
(𝑥 (𝑘))

< 𝜇
𝑏

𝛼
𝑘−𝑘
0
−𝑏

𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘

0
))

≤ (𝜇𝛼
−1

)
𝑁
0
+(𝑘−𝑘

0
)/𝜏
𝑎

𝛼
𝑘−𝑘
0𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘

0
))

= (𝜇𝛼
−1

)
𝑁
0

𝑒
((𝑘−𝑘

0
)/𝜏
𝑎
)(ln 𝜇−ln𝛼)

𝑒
(𝑘−𝑘
0
) ln𝛼
𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘

0
))

= (𝜇𝛼
−1

)
𝑁
0

𝑒
((ln 𝜇−ln𝛼)/𝜏

𝑎
+ln𝛼)(𝑘−𝑘

0
)

𝑉
𝜎(𝑘
0
)
(𝑥 (𝑘

0
)) ,

(34)

that is,

‖𝑥 (𝑘)‖ < 𝜂
𝑥 (𝑘0)

ℎ
𝜌
−(𝑘−𝑘

0
)

, ∀𝑘 ≥ 𝑘
0
, (35)

where

𝜂 = √
max

𝑖∈𝑁
{𝜆max (𝑋

−1

𝑖
) + 𝑑𝜆max (𝑁

−1

𝑖
)}

min
𝑖∈𝑁
𝜆min (𝑋

−1

𝑖
)

(𝜇𝛼
−1

)
𝑁
0
/2

,

𝜌 = 𝑒
−((ln 𝜇−ln𝛼)/𝜏

𝑎
+ln𝛼)/2

,
𝑥 (𝑘0)

ℎ
= max
𝑘
0
−𝑑≤𝑘≤𝑘

0

‖𝑥 (𝑘)‖ .

(36)

Then under the average dwell time scheme (17), it is easy to
get that 𝜌 > 1, which implies that the system (13), (14), and
(15) is exponentially stable.

This completes the proof.

Remark 9. When 𝜇 = 1, conditions (18) can be reduced to the
following inequalities:

[
[

[

−𝑋
𝑖
𝑋
𝑖
𝐸
𝑇

𝑗𝑖
𝑋
𝑖

∗ −𝑋
𝑗

0

∗ ∗ −𝑁
𝑗

]
]

]

< 0,

𝛼𝑁
𝑖
≤ 𝑁

𝑗
, ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗,

(37)

then 𝜏∗
𝑎
= 1.

Remark 10. It should be noted that some stability results of
discrete delayed systems with and without impulsive jumps
have been obtained by using standard Lyapunov-Krasovskii
function approach (see [5, 7, 38]). In this paper, these stability
criteria are extended to discrete impulsive switched delayed
system (1), (2), and (3). However, due to that there exist
impulsive jumps described by (2) at the switching instants,
the criterion inTheorem 8 is different from the existing ones.
The result is essential for designing the reliable controller for
system (1), (2), and (3).

3.2. Robust Reliable Control. In this subsection, we are inter-
ested in designing a state feedback controller such that the
resulting closed-loop system is exponentially stable.

For system (1), (2), and (3), under switching controller
𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘), the corresponding closed-loop system is

given by

𝑥 (𝑘 + 1) = (�̂�
𝜎(𝑘)
+ 𝐵
𝜎(𝑘)
Ω
𝜎(𝑘)
𝐾
𝜎(𝑘)
) 𝑥 (𝑘)

+ �̂�
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑) , 𝑘 ̸= 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

,

(38)

𝑥 (𝑘 + 1) = 𝐸
𝜎(𝑘+1)𝜎(𝑘)

𝑥 (𝑘) , 𝑘 = 𝑘
𝑏
− 1, 𝑏 ∈ 𝑍

+

, (39)

𝑥 (𝑘
0
+ 𝜃) = 𝜙 (𝜃) , 𝜃 = [−𝑑, 0] . (40)

Theorem 11. Consider the system (1), (2), and (3), for given
positive scalars𝑑 and𝛼 < 1; suppose there exist positive definite
symmetric matrices 𝑋

𝑖
, 𝑁
𝑖
, any matrices𝑊

𝑖
with appropriate

dimensions, and positive scalars 𝜀
𝑖
, 𝛾
𝑖
, 𝑖 ∈ 𝑁, such that

(
(
(

(

−𝛼𝑋
𝑖

0 𝑋
𝑖
𝐴
𝑇

𝑖
+𝑊
𝑇

𝑖
Ω
𝑇

𝑖0
𝐵
𝑇

𝑖
𝑋
𝑖
𝑋
𝑖
𝑀
𝑇

1𝑖
𝑊
𝑇

𝑖

∗ −𝛼
𝑑

𝑁
𝑖

𝑁
𝑖
𝐴
𝑇

𝑑𝑖
0 𝑁

𝑖
𝑀
𝑇

2𝑖
0

∗ ∗ −𝑋
𝑖
+ 𝜀
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
+ 𝛾
𝑖
𝐵
𝑖
Ω
𝑖0
Ξ
2

𝑖
Ω
𝑇

𝑖0
𝐴
𝑇

𝑖
0 0 0

∗ ∗ ∗ −𝑁
𝑖

0 0

∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼 0

∗ ∗ ∗ ∗ ∗ −𝛾
𝑖
(Ξ
2

𝑖
)

−1

)
)
)

)

< 0.

(41)

Then, under the reliable controller

𝑢 (𝑘) = 𝐾
𝜎(𝑘)
𝑥 (𝑘) , 𝐾

𝑖
= 𝑊

𝑖
𝑋
−1

𝑖
(𝑖 ∈ 𝑁) , (42)

and the average dwell time scheme (17) with 𝜇 satisfying (18),
the corresponding closed-loop system (38), (39), and (40) is
exponentially stable.

Proof. FromTheorem 8, we know that system (38), (39), and
(40) is exponentially stable if (18) and the following inequality
hold:

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋
𝑖

0 𝑋
𝑖
�̃�
𝑇

𝑖
𝑋
𝑖
𝑋
𝑖
𝑀
𝑇

1𝑖

∗ −𝛼
𝑑

𝑁
𝑖

𝑁
𝑖
𝐴
𝑇

𝑑𝑖
0 𝑁

𝑖
𝑀
𝑇

2𝑖

∗ ∗ −𝑋
𝑖
+ 𝜀
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
0 0

∗ ∗ ∗ −𝑁
𝑖

0

∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (43)
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where �̃�
𝑖
= 𝐴

𝑖
+𝐵
𝑖
Ω
𝑖
𝐾
𝑖
,Ω
𝑖
= Ω

𝑖0
(𝐼 +Θ

𝑖
), and |Θ

𝑖
| ≤ Ξ

2

𝑖
≤ 𝐼;

it can be obtained that (43) can be rewritten as the following
inequality:

(

−𝛼𝑋
𝑖

0 𝑋
𝑖
𝐴
𝑇

𝑖
+ (𝐾
𝑖
𝑋
𝑖
)
𝑇

Ω
𝑇

𝑖0
𝐵
𝑇

𝑖
𝑋
𝑖
𝑋
𝑖
𝑀
𝑇

1𝑖

∗ −𝛼
𝑑

𝑁
𝑖

𝑁
𝑖
𝐴
𝑇

𝑑𝑖
0 𝑁

𝑖
𝑀
𝑇

2𝑖

∗ ∗ −𝑋
𝑖
+ 𝜀
𝑖
𝐻
𝑖
𝐻
𝑇

𝑖
0 0

∗ ∗ ∗ −𝑁
𝑖

0

∗ ∗ ∗ ∗ −𝜀
𝑖
𝐼

)

+(

0

0

𝐵
𝑖
Ω
𝑖0

0

0

)Θ
𝑖
(

𝐾
𝑖
𝑋
𝑖

0

0

0

0

)

𝑇

+ (

𝐾
𝑖
𝑋
𝑖

0

0

0

0

)Θ
𝑇

𝑖
(

0

0

𝐵
𝑖
Ω
𝑖0

0

0

)

𝑇

< 0.

(44)

Denote that𝑊
𝑖
= 𝐾

𝑖
𝑋
𝑖
, then according to Lemmas 5 and 7,

we can easily get that (44) holds if (41) is satisfied, that is to
say, (41) guarantees that (43) is tenable.

This completes the proof.

Remark 12. In Theorem 11, a reliable controller design
method is proposed for discrete impulsive switched delayed
system (1), (2), and (3) with actuator fault. It is noted that a
kind of matrix Ω

𝑖
(𝑖 ∈ 𝑁), which is successfully adopted in

[27, 28], is introduced to describe all the situations that may
be encountered in the actuator.

Remark 13. It should be noted that 𝛼 plays a key role in
obtaining the infimum of the average dwell time 𝜏

𝑎
. From

Theorem 11, it is easy to see that a larger 𝛼 will be favorable to
the solvability of inequality (41), which leads to a larger value
for the average dwell time 𝜏

𝑎
. Considering these, we can first

select a larger𝛼 to guarantee the feasible solution of inequality
(41) and then decrease 𝛼 to obtain the suitable infimum of the
average dwell time 𝜏

𝑎
.

The detailed procedure of controller design can be given
in the following algorithm.

Algorithm 14. We have the following.
Step 1. Given the system matrices and positive constants 𝜀

𝑖
,

𝛾
𝑖
, and 0 < 𝛼 < 1, by solving the LMI (41), we can get the

solutions of the matrices𝑊
𝑖
, 𝑋
𝑖
, and𝑁

𝑖
. Then the controller

gain matrices can be obtained by (42).
Step 2. Substitute matrices 𝑋

𝑖
and 𝑁

𝑖
into (18), then solving

(18), we can find the infimum of 𝜇.
Step 3.Then the average dwell time 𝜏

𝑎
can be obtained by (17).

4. Numerical Example

In this section, we present an example to illustrate the
effectiveness of the proposed approach. Consider system (1),
(2), and (3) with parameters as follows:

𝐴
1
= [
2 −5

1 −1.5
] , 𝐴

𝑑1
= [
−0.4 0

−0.1 −0.1
] ,

𝐵
1
= [
−0.4 0

−0.1 −0.1
] , 𝐻

1
= [
0.1 0

0.1 0.1
] ,

𝑀
11
= [
0.2 −0.3

0 −0.2
] , 𝑀

21
= [
0.1 0

0.1 0.22
] ,

𝐹
1
= [

sin (0.5𝜋𝑘) 0

0 sin (0.2𝜋𝑘)] ,

𝐴
2
= [
1 0

3 −1
] , 𝐴

𝑑2
= [
−0.2 0

−0.4 0.3
] ,

𝐵
2
= [
−0.2 0

−0.4 0.3
] , 𝐻

2
= [
0.2 0.1

0.1 0.3
] ,

𝑀
12
= [
0.2 0

0.2 0.1
] , 𝑀

22
= [
0.2 0

0 0.2
] ,

𝐹
2
= [

sin (0.5𝜋𝑘) 0

0 sin (0.2𝜋𝑘)] ,

𝐸
12
= [
3.5 0

0 3.6
] , 𝐸

21
= [
3 0

0 4
] .

(45)

The fault matricesΩ
𝑖
= diag{𝜔

𝑖1
, 𝜔
𝑖2
} (𝑖 = 1, 2), where

0.4 ≤ 𝜔
11
≤ 0.5, 0.5 ≤ 𝜔

12
≤ 0.6,

0.5 ≤ 𝜔
21
≤ 0.6, 0.4 ≤ 𝜔

22
≤ 0.5.

(46)

Then we can obtain

Ω
10
= [
0.55 0

0 0.45
] , Ξ

2

1
=
[
[

[

1

11
0

0
1

9

]
]

]

,

Ω
20
= [
0.45 0

0 0.55
] , Ξ

2

2
=
[
[

[

1

9
0

0
1

11

]
]

]

.

(47)

Given 𝛼 = 0.7, 𝜀
1
= 𝜀
2
= 0.1, 𝛾

1
= 0.3, 𝛾

2
= 0.3, then

solving the matrix inequality (41) in Theorem 11, we get

𝑋
1
= [
0.0095 0.0046

0.0046 0.0058
] ,

𝑁
1
= [
0.0203 0.0116

0.0116 0.0573
] ,

𝑊
1
= [
−0.0192 −0.0902

0.0657 0.0170
] ,

𝑋
2
= [
0.0106 0.0098

0.0098 0.0445
] ,

𝑁
2
= [
0.0528 0.0383

0.0383 0.1505
] ,

𝑊
2
= [

0.1124 0.0990

−0.0113 0.1886
] .

(48)
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Figure 2: State trajectories of the closed-loop system.

Then from (42), the controller gain matrices can be obtained

𝐾
1
= [
8.9155 −22.5632

8.9651 −4.1574
] ,

𝐾
2
= [
10.6963 −0.1343

−6.2374 5.6124
] .

(49)

According to conditions (18), we can get 𝜇 = 11.5633.
From (17), it can be obtained that 𝜏∗

𝑎
= 7.863. Choosing 𝜏

𝑎
=

8, the simulation results are shown in Figures 1 and 2, where
the initial value 𝑥(0) = [3 4]𝑇, 𝑥(𝜃) = 0, and 𝜃 ∈ [−𝑑, 0).
Figure 1 depicts the switching signal, and the state trajectories
of the closed-loop system are shown in Figure 2.

From Figures 1 and 2, it can be observed that the
designed controller can guarantee the asymptotic stability of
the closed-loop system. This demonstrates the effectiveness
of the proposed method.

5. Conclusions

This paper has investigated the problem of robust reliable
control for a class of uncertain discrete impulsive switched
systems with state delays. By employing the average dwell
time approach, an exponential stability criterion has been
proposed in terms of a set of LMIs. On the basis of the
obtained stability criterion, the robust reliable controller has
been designed. An illustrative example has also been given to
illustrate the applicability of the proposed approach.
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The problem of network-based robust filtering for stochastic systems with sensor nonlinearity is investigated in this paper. In
the network environment, the effects of the sensor saturation, output quantization, and network-induced delay are taken into
simultaneous consideration, and the output measurements received in the filter side are incomplete. The random delays are
modeled as a linear function of the stochastic variable described by a Bernoulli random binary distribution.The derived criteria for
performance analysis of the filtering-error system and filter design are proposed which can be solved by using convex optimization
method. Numerical examples show the effectiveness of the design method.

1. Introduction

In recent years, networked control systems (NCSs) have
been extensively investigated due to thier broad applications
in industrial engineering [1]. NCSs hold a few excellent
advantages such as reduction of costs of cables and power,
simplification of the installation and maintenance of the
whole system, and increase of the reliability [2]. However,
the insertion of the communication channels also arises
some unexpected phenomenon in NCSs such as signals
quantization [1], intermittent data packet losses, and the
signal-transmission delay [3, 4]. These phenomena emerging
in NCSs are known to be the main causes for the perfor-
mance deterioration or even the instability of the controlled
networked system. Over the past few years, intensive research
interest has been reported in a wealth of the literature focus-
ing on the control and filtering problems of NCSs involved
with networked-induced time delay, packet losses, and signal
quantization (see, e.g., [1] and the references therein).

Stochastic phenomenon frequently exhibits in many
branches of science and engineering applications [5–10]. In
the past few years, increasing research interests have recently

been paid to the study of control and filtering problems for
various continuous-time or discrete-time stochastic systems
[5]. For instance, the 𝐻

∞
nonlinear filtering problem has

been investigated for discrete-time stochastic systems subject
to signal quantization in [2]. The design problem of state
estimation and stabilization for a nonlinear networked con-
trol systems has been addressed in [11], while the𝐻

∞
output

feedback control problem has been considered in [12].
In practical physical systems, sensors and actuators can-

not always provide unlimited amplitude signal mainly due
to the physical or safety constraints [13]. The phenomenon
of sensor and/or actuator saturation can yield significant
limitations on various aspects of sensor and/or actuator
performance, for example, the range limitations that results
in the nonlinear characteristic of sensors and/or actuator
[13, 14]. For actuator saturation, a great deal of attention
has been focused on the control and filtering problems
for various types of systems [15]. In particular, the control
problem has been investigated for continuous-time linear
delay systems subject to quantization and saturation in [16],
where both quantized state and quantized input are taken into
consideration.
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Figure 1: The structure of networked filtering systems.

It should be pointed out that, if we consider the filtering
problem for stochastic systems in a realistic networked envi-
ronment, the effects of sensor saturation, sensor quantization,
and random communication delay always exhibit simulta-
neously. However, in networked environments, the sensor
saturation may occur to be involved with state-dependent
disturbance, and it may result from random sensor failures
leading to intermittent saturation, sensor aging resulting in
changeable saturation level, repairs of partial components,
changes in the interconnections of subsystems, and so forth.
Therefore, when investigating the filtering problems of NCSs
with a stochastic plant, themodel under consideration should
be more comprehensive to reflect the realities such as the the
state-dependent stochastic disturbances, the coupling effects
of sensor saturation, output quantization, and networked-
induced transmission delay. Unfortunately, however, to the
best of the authors’ knowledge, the 𝐻

∞
filtering problem on

stochastic systems subject to sensor saturation, quantization,
and random communication delay has not been investigated
and remains to be important and challenging.This motivates
our current work.

In this paper, we are concerned with the filter design
problem for discrete-time networked stochastic systems sub-
ject to output saturation, quantization, and random com-
munication delay. The networked-induced communication
delay phenomena are modeled by a Bernoulli random
binary distributed white sequence with a known conditional
probability. In this network setting, the effects of sensor
saturation, output quantization, and communication delay in
the digital communication channel exhibit simultaneously,
and the signal received in the filter side is imperfect. The
objective is to analyze and design a robust filter such that
the asymptotic estimates of system states are obtained by
employing the incomplete output measurements. Moreover,
sufficient conditions will be proposed such that the derived
filtering error system is robustly stochastically stable with a
prescribed disturbance attenuation level. Finally, a numerical
example is provided to illustrate the effectiveness of the
proposed filtering design approach.

Throughout the paper, E{⋅} is the mathematical expec-
tation. ‖ ⋅ ‖ denotes the Euclidean norm of a vector. Given
a symmetric matrix 𝐴, the notation 𝐴 > 0 (<0) denotes a
positive definite matrix (negative definite, resp.). 𝐼

𝑛
denotes

an identity matrix with dimension 𝑛.

2. Problem Description

We consider the following discrete-time stochastic system
with state-dependent disturbance:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝜐 (𝑘) + [𝐸𝑥 (𝑘) + 𝐺𝜐 (𝑘)] 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

𝑦
𝜙
(𝑘) = 𝜙 (𝑦 (𝑘)) ,

𝑦
𝑞
(𝑘) = 𝑞 (𝑦

𝜙
(𝑘)) ,

𝑧 (𝑘) = 𝐿𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state; 𝑦(𝑘) ∈ R𝑝 is the output; the
saturation function 𝜙(⋅) is defined as in (3); 𝑦

𝑞
(𝑘) ∈ R𝑝 is

the quantized output, and 𝑞(⋅) is the logarithmic quantizer
defined in (6)-(7); 𝑧(𝑘) ∈ R𝑟 is the state combination to be
estimated; 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, 𝐶 ∈ R𝑝×𝑛, 𝐸 ∈ R𝑛×𝑛,
𝐺 ∈ R𝑛×𝑚, and 𝐿 ∈ R𝑟×𝑛 are known constant matrices.

In plant (1), 𝑤(𝑘) is a standard one-dimensional random
process on a probability space (Ω,F,P), where Ω is the
sample space, F is the 𝜎-algebra of subsets of the sample
space, andP is the probability measure onF. The sequence
of 𝑤(𝑘) is generated by (𝑤(𝑘))

𝑘∈N where N denotes the set of
natural numbers, and it satisfies thatE{𝑤(𝑘)} = 0,E{𝑤(𝑘)2} =
1, E{𝑤(𝑖)𝑤(𝑗)} = 0 for 𝑖 ̸= 𝑗.

Besides, it is assumed that the exogenous distur-
bance 𝜐(𝑘) ∈ R𝑚 belongs to L

𝐸
2

([0,∞);R𝑚), where
L
𝐸
2

([0,∞);R𝑚) denotes the space of 𝑘-dimensional nonan-
ticipatory square-integrable process 𝜑(⋅) = (𝜑(𝑘))

𝑘∈N on N

with respect to (𝜑
𝑘
)
𝑘∈N, and 𝜑(⋅) satisfies

𝜑


2

𝐸
2

= E{
∞

∑

𝑘=0

𝜑 (𝑘)


2

} =

∞

∑

𝑘=0

E {
𝜑 (𝑘)



2

} < ∞. (2)

Remark 1. As seen in plant (1), the phenomena of sensor
quantization and saturation are taken into consideration
simultaneously, which is one of the main contributions of
this paper. Although there have been much of the literature
devoted to quantized filtering, few of which has considered
the effect of sensor saturation.

The structure of the quantized filtering system is illus-
trated in Figure 1.
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We denote 𝑦(𝑘) as 𝑦
𝑘
for simplicity in the following

discussion. It is assumed that the saturation function 𝜙(⋅) :

R𝑝 → R𝑝 in (1) belongs to [𝐾
1
, 𝐾
2
] for some given diagonal

matrices 𝐾
1
∈ R𝑝×𝑝, 𝐾

2
∈ R𝑝×𝑝 with 𝐾

1
≥ 0, 𝐾

2
≥ 0 and

𝐾
2
> 𝐾
1
, and 𝜙(⋅) satisfies the following sector condition:

(𝜙 (𝑦
𝑘
) − 𝐾
1
𝑦
𝑘
)
𝑇

(𝜙 (𝑦
𝑘
) − 𝐾
2
𝑦
𝑘
) ≤ 0, ∀𝑦

𝑘
∈ R
𝑞

. (3)

In the light of (3), the nonlinear function 𝜙(𝑦
𝑘
) can be

decomposed into a linear and a nonlinear part as follows:

𝜙 (𝑦
𝑘
) = 𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝑦
𝑘
, (4)

and the nonlinearity 𝜙
𝑠
(𝑦
𝑘
) satisfies 𝜙

𝑠
(𝑦
𝑘
) ∈ Φ

𝑠
, where the

set Φ
𝑠
is defined as

Φ
𝑠
≜ {𝜙
𝑠
: 𝜙
𝑇

𝑠
(𝑦
𝑘
) (𝜙
𝑠
(𝑦
𝑘
) − 𝐾𝑦

𝑘
) ≤ 0} , (5)

and𝐾 ≜ 𝐾
2
− 𝐾
1
.

In this paper, we employ the logarithmic quantizer for
system (1) which is described as follows:

𝑞 (⋅) = [𝑞
1
(⋅) , 𝑞
2
(⋅) , . . . , 𝑞

𝑝
(⋅)]
𝑇

, (6)

and 𝑞
𝑖
(⋅) is defined as follows:

𝑞
𝑖
(𝜙 (𝑦
𝑖
(𝑘)))

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

𝜂
(𝑗)

𝑖

if 1

1 + 𝛿
𝑖

𝜂
(𝑗)

𝑖
< 𝜙 (𝑦

𝑖
(𝑘))

≤
1

1 − 𝛿
𝑖

𝜂
(𝑗)

𝑖
,

𝜙 (𝑦
𝑖
(𝑘)) > 0,

0

if 𝜙 (𝑦
𝑖
(𝑘)) = 0,

−𝑞
𝑖
(−𝜙 (𝑦

𝑖
(𝑘)))

if 𝜙 (𝑦
𝑖
(𝑘)) < 0, 𝑖 = 1, 2, . . . , 𝑝;

𝑗 = ±1, ±2, . . . ,

(7)

where 𝛿
𝑖
= (1 − 𝜌

𝑖
)/(1 + 𝜌

𝑖
) are the quantizer parameters.

In fact, the logarithmic quantizer (7) can be characterized
by the following form:

𝑞 (𝜙 (𝑦
𝑘
)) = (𝐼

𝑝
+ Λ (𝑘)) 𝜙 (𝑦

𝑘
) , (8)

where

Λ (𝑘) = diag {Λ
1
(𝑘) , Λ

2
(𝑘) , . . . , Λ

𝑝
(𝑘)} ,

Λ
𝑗
(𝑘) ∈ [−𝜂

𝑗
, 𝜂
𝑗
] , 𝑗 = 1, . . . , 𝑝.

(9)

In this filtering problem, the measured output received in
the filter side is involved with the effects of quantization and
communication delay, and it is described by

𝑦
𝑓
(𝑘) = (1 − 𝜃

𝑘
) 𝑞 (𝜙 (𝑦

𝑘
)) + 𝜃

𝑘
𝑞 (𝜙 (𝑦

𝑘−1
)) + 𝐷𝜐 (𝑘) ,

(10)

with 𝐷 ∈ R𝑝×𝑚, and the stochastic variable 𝜃
𝑘
∈ R is

a Bernoulli distributed white sequence with the probability
distribution as follows:

Prob {𝜃
𝑘
= 1} = E {𝜃

𝑘
} = 𝜃,

Prob {𝜃
𝑘
= 0} = 1 − E {𝜃

𝑘
} = 1 − 𝜃,

var {𝜃
𝑘
} = E {(𝜃

𝑘
− 𝜃)
2

} = (1 − 𝜃) 𝜃 = 𝜃
2

1
,

(11)

where 0 ≤ 𝜃 < 1 is a known positive constant to denote
the probability that the packet will be transmitted successfully
from sensor to filter, and 0 ≤ 𝜃

1
< 1 denotes the variance of

𝜃
𝑘
.
For simplicity, we denote 𝑥

𝑘
:= 𝑥(𝑘), 𝑓

𝑘
:= 𝑓(𝑘, 𝑥

𝑘
), 𝜔
𝑘
:=

𝜔(𝑘), 𝜐
𝑘
:= 𝜐(𝑘), Λ(𝑘) := Λ

𝑘
in the following discussion. In

the light of (4), (10) can be written as

𝑦
𝑓
(𝑘) = (1 − 𝜃

𝑘
) (𝐼
𝑝
+ Δ
𝑘
) (𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝐶𝑥
𝑘
)

+ 𝜃
𝑘
(𝐼
𝑝
+ Δ
𝑘
) (𝜙
𝑠
(𝑦
𝑘−1

) + 𝐾
1
𝐶𝑥
𝑘−1

) + 𝐷𝜐
𝑘
.

(12)

The main objective of this paper is to address the filtering
problem for stochastic system (1) by employing the incom-
plete measurements 𝑦

𝑓
(𝑘). To this end, we consider the

following filter of full order 𝑛:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑦
𝑓
(𝑘) , 𝑥 (𝑘) = 0,

�̂� (𝑘) = 𝐿𝑥 (𝑘) ,

(13)

where 𝑥(𝑘) ∈ R𝑝 is the state of the filter, and �̂�(𝑘) ∈ R𝑟 is the
estimated signal; 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are filter gains to
be designed.
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We define the following error variables:

𝑒
𝑥
(𝑘) ≜ 𝑥 (𝑘) − 𝑥 (𝑘) . (14)

Subtracting (13) from (1) and considering the imperfect
output measurements (12), we obtain the filtering error
dynamics as follows:

𝑒
𝑥
(𝑘 + 1) = [𝐴 − 𝐴 − (𝐼

𝑝
+ Δ
𝑘
) 𝐵𝐾
1
𝐶] 𝑥
𝑘

+ 𝐴𝑒
𝑥
(𝑘) − 𝐵 (𝐼

𝑝
+ Δ
𝑘
) 𝜙
𝑠
(𝑦
𝑘
)

+ [𝐸𝑥
𝑘
+ 𝐺𝜐
𝑘
] 𝜔
𝑘
− 𝐵𝐷𝜐

𝑘

+ 𝐵 (𝜃
𝑘
− 𝜃) (𝐼

𝑝
+ Δ
𝑘
) [𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝐶𝑥
𝑘
]

+ 𝐵𝜃 (𝐼
𝑝
+ Δ
𝑘
) [𝜙
𝑠
(𝑦
𝑘
) + 𝐾
1
𝐶𝑥
𝑘
]

− 𝐵 (𝜃
𝑘
− 𝜃) (𝐼

𝑝
+ Δ
𝑘−1

) [𝜙
𝑠
(𝑦
𝑘−1

) + 𝐾
1
𝐶𝑥
𝑘−1

]

− 𝐵𝜃 (𝐼
𝑝
+ Δ
𝑘−1

) [𝜙
𝑠
(𝑦
𝑘−1

) + 𝐾
1
𝐶𝑥
𝑘−1

] .

(15)

We define the following error variables:

𝑒 (𝑘) ≜ [𝑥
𝑇

𝑘
, 𝑒
𝑇

𝑥
(𝑘)]
𝑇

, 𝑒
𝑧
(𝑘) ≜ 𝑧 (𝑘) − �̂� (𝑘) . (16)

Combining the error dynamics (15) with the plant (1), we
obtain the following augmented filtering error dynamics:

𝑒 (𝑘 + 1) = (𝐴
1
+ Δ𝐴
1
) 𝑒
𝑘
+ (𝐻
1
+ Δ𝐻

1
) 𝜙
𝑠
(𝑦
𝑘
) + 𝐵
1
𝜐
𝑘

+ (𝜃
𝑘
− 𝜃)

× {(𝐴
2
+ Δ𝐴
2
) 𝑒
𝑘
+ (𝐻
2
+ Δ𝐻

2
) 𝜙
𝑠
(𝑦
𝑘
)}

+ (𝜃
𝑘
− 𝜃)

× {(𝐴
3
+ Δ𝐴
3
) 𝑒
𝑘−1

+ (𝐻
3
+ Δ𝐻

3
) 𝜙
𝑠
(𝑦
𝑘−1

)}

+ (𝐻
4
+ Δ𝐻

4
) 𝜙 (𝑦

𝑘−1
) + (𝐴

4
+ Δ𝐴
4
) 𝑒
𝑘−1

+ (𝐸𝑒
𝑘
+ 𝐺𝜐
𝑘
) 𝜔
𝑘
,

𝑒
𝑧
(𝑘) = 𝐿𝑒 (𝑘) ,

(17)

where

𝐴
1
= [

𝐴, 0

𝐴 − 𝐴 − 𝜃𝐵𝐾
1
𝐶, 𝐴

] , 𝐴
2
= [

0, 0

𝐵𝐾
1
𝐶, 0

] ,

𝐴
3
= [

0, 0

−𝐵𝐾
1
𝐶, 0

] , 𝐴
4
= [

0, 0

−𝜃𝐵𝐾
1
𝐶, 0

] ,

𝐵
1
= [

𝐵

𝐵𝐷
] , 𝐵

3
= [

0

−𝐵𝐷
] , 𝐵

4
= [

0

−𝜃𝐵𝐷
] ,

𝐻
1
= [

0

(𝜃 − 1) 𝐵
] , 𝐻

2
= [

0

𝐵
] ,

𝐻
3
= [

0

−𝐵
] , 𝐻

4
= [

0

−𝜃𝐵
] ,

Δ𝐴
1
= [

𝐴, 0

(𝜃 − 1) 𝐵Λ
𝑘
𝐾
1
𝐶, 0

] , Δ𝐴
2
= [

0, 0

𝐵Λ
𝑘
𝐾
1
𝐶, 0

] ,

Δ𝐴
3
= [

0, 0

−𝐵Λ
𝑘
𝐾
1
𝐶, 0

] , Δ𝐴
4
= [

0, 0

−𝜃𝐵Λ
𝑘
𝐾
1
𝐶, 0

] ,

Δ𝐵
3
= [

0

−𝐵Λ
𝑘−1

𝐷
] , Δ𝐵

4
= [

0

−𝜃𝐵Λ
𝑘−1

𝐷
] ,

Δ𝐻
1
= [

0

(𝜃 − 1) 𝐵Λ
𝑘

] , Δ𝐻
2
= [

0

𝐵Λ
𝑘

] ,

Δ𝐻
3
= [

0

−𝐵Λ
𝑘−1

] , Δ𝐻
4
= [

0

−𝜃𝐵Λ
𝑘−1

] ,

𝐸 = [
𝐸 0

𝐸 0
] , 𝐺 = [

𝐺

𝐺
] ,

𝐿 = [0, 𝐿] .

(18)

For simplicity, we denote

𝐴
1
:= 𝐴
1
+ Δ𝐴
1
(𝑘) , 𝐴

2
:= 𝐴
2
+ Δ𝐴
2
(𝑘) ,

𝐴
3
:= 𝐴
3
+ Δ𝐴
3
(𝑘) , 𝐴

4
:= 𝐴
4
+ Δ𝐴
4
(𝑘) ,

𝐵
3
:= 𝐵
3
+ Δ𝐵
3
(𝑘) , 𝐵

4
:= 𝐵
4
+ Δ𝐵
4
(𝑘) ,

�̃�
1
:= 𝐻
1
+ Δ𝐻

1
(𝑘) , �̃�

2
:= 𝐻
2
+ Δ𝐻

2
(𝑘) ,

�̃�
3
:= 𝐻
3
+ Δ𝐻

3
(𝑘) , �̃�

4
:= 𝐻
4
+ Δ𝐻

4
(𝑘) ,

(19)

in the following discussion.
System (17) contains sector-bounded uncertainty Λ

𝑘
and

stochastic parameters 𝜃
𝑘
, and thus it is an uncertain stochastic

parameter system where the uncertainties resulted from the
quantization error. Due to this fact, it is required to introduce
the notion of stochastic stability before proceeding with the
subsequent analysis.

Before formulating the problem to be investigated, we
introduce the following definition and lemma.
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Definition 2 (see [17]). The stochastic system (17) under
𝜐(𝑘) = 0 is said to be stochastically stable if there exists a
scalar 𝛽 > 0 such that

E{
∞

∑

𝑘=0

‖𝑥 (𝑘)‖
2

} ≤ 𝛽E {‖𝑥 (0)‖
2

} . (20)

Lemma3 (see [18]). For any real vectors 𝑎, 𝑏 andmatrix𝑅 > 0

of compatible dimensions, the following inequality holds:

𝑎
𝑇

𝑏 + 𝑏
𝑇

𝑎 ≤ 𝑎
𝑇

𝑅𝑎 + 𝑏
𝑇

𝑅
−1

𝑏. (21)

In the sequel, themain objective of this paper is as follows.

𝐻
∞

Filtering Problem. Given a disturbance attenuation level
𝛾 > 0, the parameters 𝐴 and 𝐵 of filter (13) are designed such
that (i) the resulting filtering error system is stochastically
stable for 𝜐(𝑘) = 0, and (ii) for any function 𝜙(⋅) ∈ [𝐾

1
, 𝐾
2
],

‖𝑧 − �̂�‖
𝐸
2

< 𝛾‖𝜐
𝑘
‖
𝐸
2

holds under zero initial conditions for all
𝜐(𝑘) ∈ L

𝐸
2

([0,∞);R𝑚).

3. Filtering Performance Analysis

In this section, we shall focus on the 𝐻
∞

performance,
that is, presenting sufficient conditions under which the𝐻

∞

performance index is achieved for a given filter.

Theorem 4. If there exist positive and definite matrices 𝑃 ∈

R𝑛×𝑛, such that the following matrix inequality constraint
holds:

Γ ≜

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 0 𝐶
𝑇

𝐾
𝑇

0 0 𝐴
𝑇

1
𝐴
𝑇

2

∗ −𝛾
2

𝐼
𝑚

0 0 0 𝐵
𝑇

1
0

∗ ∗ −2𝐼
𝑝

0 0 −�̃�
𝑇

1
�̃�
𝑇

2

∗ ∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

𝐴
𝑇

4
𝐴
𝑇

3

∗ ∗ ∗ ∗ −2𝐼
𝑝

�̃�
𝑇

4
�̃�
𝑇

3

∗ ∗ ∗ ∗ ∗ −𝑃
−1

0

∗ ∗ ∗ ∗ ∗ ∗ −𝜃
2

1
𝑃
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(22)

then the filtering error system (17) is stochastically stable.

Proof. Consider the filtering error system (17) with 𝜐(𝑘) = 0,
select the stochastic Lyapunov functional candidate as

𝑉 (𝑒 (𝑘) , 𝑘) = 𝑒
𝑇

(𝑘) 𝑃𝑒 (𝑘) + 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

, (23)

with 𝑃 = [
𝑃
1
0

0 𝑃
2

] > 0, 𝑄 = [
𝑄
1
0

0 𝑄
2

] > 0. It follows from (17)
that

Δ𝑉 (𝑘) = E {𝑉 (𝑒 (𝑘 + 1) , 𝑘 + 1) | 𝑥
𝑘
, 𝑒
𝑘
} − 𝑉 (𝑒 (𝑘) , 𝑘)

= [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ (𝐸𝑒
𝑘
)
𝑇

𝑃𝐸𝑒
𝑘
− 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ E {(𝜃
𝑘
− 𝜃)
2

}

× [𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)] .

(24)

Notice that E{(𝜃
𝑘
− 𝜃)
2

} = 𝜃
2

1
, and thus we have

Δ𝑉 (𝑘) = [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ (𝐸𝑒
𝑘
)
𝑇

𝑃 (𝐸𝑒
𝑘
) − 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ 𝜃
2

1
[𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)] .

(25)

In fact, for the saturation function 𝜙
𝑠
(𝑦
𝑘
), from (5) we have

that

−2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 2𝜙

𝑇

𝑠
(𝑦
𝑘
)𝐾𝑦
𝑘
> 0,

−2𝜙
𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

) + 2𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝑦
𝑘−1

> 0,

(26)

which implies that

−2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 2𝜙

𝑇

𝑠
(𝑦
𝑘
)𝐾𝐶𝑒

𝑘
> 0,

−2𝜙
𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

) + 2𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝐶𝑒
𝑘−1

> 0,

(27)

with 𝐶 ≜ [𝐶, 0].
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In the light of (26), (27), and (24), one can obtain

Δ𝑉 (𝑘) = [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ (𝐸𝑒
𝑘
)
𝑇

𝑃 (𝐸𝑒
𝑘
) − 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ 𝜃
2

1
[𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

− 2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 𝑒
𝑇

(𝑘) 𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘
)

+ 𝜙
𝑇

𝑠
(𝑦
𝑘
)𝐾𝐶𝑒 (𝑘) − 2𝜙

𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

)

+ 𝑒
𝑇

𝑘−1
𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘−1

) + 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝐶𝑒
𝑘−1

.

(28)

The following proof is divided into the following two parts:
(i) a proof that the filtering error system (17) is stochastically
stable with 𝜐(𝑘) = 0, and (ii) a proof that ‖𝑒

𝑧
(𝑘)‖
𝐸
2

< 𝛾‖𝜐
𝑘
‖
𝐸
2

.
(i) Firstly, we establish the stochastic stability of the

filtering error system (17) under the condition (22). It follows
from (28) with 𝜐

𝑘
= 0 that

Δ𝑉 (𝑘) = [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

+ 𝑒
𝑇

𝑘
𝐸
𝑇

𝑃𝐸𝑒
𝑘
− 𝑒
𝑇

𝑘
𝑄𝑒
𝑘
− 𝑒
𝑇

𝑘−1
𝑄𝑒
𝑘−1

+ 𝜃
2

1
[𝐴
2
𝑒
𝑘
+ �̃�
2
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
3
𝑒
𝑘−1

+ �̃�
3
𝜙 (𝑦
𝑘−1

)]
𝑇

× 𝑃 [𝐴
1
𝑒
𝑘
+ �̃�
1
𝜙
𝑠
(𝑦
𝑘
) + 𝐴
4
𝑒
𝑘−1

+ �̃�
4
𝜙 (𝑦
𝑘−1

)]

− 2𝜙
𝑇

𝑠
(𝑦
𝑘
) 𝜙
𝑠
(𝑦
𝑘
) + 𝑒
𝑇

(𝑘) 𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘
)

+ 𝜙
𝑇

𝑠
(𝑦
𝑘
)𝐾𝐶𝑒 (𝑘) − 2𝜙

𝑇

𝑠
(𝑦
𝑘−1

) 𝜙
𝑠
(𝑦
𝑘−1

)

+ 𝑒
𝑇

𝑘−1
𝐶
𝑇

𝐾
𝑇

𝜙
𝑠
(𝑦
𝑘−1

) + 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)𝐾𝐶𝑒
𝑘−1

≤ 𝜉
𝑇

(𝑘)Π𝜉 (𝑘) ,

(29)

where

𝜉 (𝑘) ≜ [𝑒
𝑇

(𝑘) , 𝜙
𝑇

𝑠
(𝑦
𝑘
) , 𝑒
𝑇

(𝑘 − 1) , 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)]
𝑇

,

Π ≜ [
𝐴
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2
�̃�
2
𝐴
3
�̃�
3

]

𝑇

[
𝑃 0

0 𝜃
2

1
𝑃
] [

𝐴
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2
�̃�
2
𝐴
3
�̃�
3

]

+

[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 𝐶
𝑇

𝐾
𝑇

0 0

∗ −2𝐼
𝑝

0 0

∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

∗ ∗ ∗ −2𝐼
𝑝

]
]
]
]

]

.

(30)

It is obvious that if Π < 0, one can obtain that Δ𝑉(𝑘) <
0. Therefore, it follows from Kolmanovskii and Myshkis
[19] that the filtering error system (17) with 𝜐(𝑘) = 0 is
stochastically stable. On the other hand, by means of Schur’s
complement, Π < 0 is equivalent to the following matrix
condition:

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 𝐶
𝑇

𝐾
𝑇

0 0 𝐴
𝑇

1
𝐴
𝑇

2

∗ −2𝐼
𝑝

0 0 �̃�
𝑇

1
�̃�
𝑇

2

∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

𝐴
𝑇

4
𝐴
𝑇

3

∗ ∗ ∗ −2𝐼
𝑝

�̃�
𝑇

4
�̃�
𝑇

3

∗ ∗ ∗ ∗ −𝑃
−1

0

∗ ∗ ∗ ∗ ∗ −𝜃
2

𝑃
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0.

(31)

Notice that the condition (22) can imply (31).Thismeans that
if there exist positive and definitematrices𝑃, such thatmatrix
condition (22) holds, then system (17) is stochastically stable.

(ii) Next, the objective should be devoted to prove that the
filtering error system (17) satisfies

𝑒𝑧 (𝑘)
𝐸
2

< 𝛾
𝜐𝑘

𝐸
2

, (32)

for all nonzero 𝜐(𝑘) ∈ L
𝐸
2

([0,∞);R𝑚).
In fact, under zero initial conditions, it is shown that

E {𝑉 (𝑒 (𝑘) , 𝑡)} = E{
𝑁

∑

𝑘=1

Δ𝑉 (𝑘)} . (33)

We define the following performance index function:

𝐽 (𝑘) = E{
𝑁

∑

𝑘=1

[𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2

𝜐
𝑇

𝑘
𝜐
𝑘
]} , (34)

for any integer𝑁.
It follows from (34) that

𝐽 (𝑘) = E{
𝑁

∑

𝑘=1

[𝑒
𝑇

𝑧
(𝑘) 𝑒
𝑧
(𝑘) − 𝛾

2

𝜐
𝑇

𝑘
𝜐
𝑘
+ Δ𝑉 (𝑘)]}

− E {𝑉 (𝑒 (𝑘) ,𝑁)}

≤ E{
𝑁

∑

𝑘=1

𝜁
𝑇

(𝑘) Ξ𝜁 (𝑘)} ,

(35)
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where

𝜁 (𝑘) ≜ [𝑒
𝑇

(𝑘) , 𝜐
𝑇

(𝑘), 𝜙
𝑇

𝑠
(𝑦
𝑘
) , 𝑒
𝑇

(𝑘 − 1) , 𝜙
𝑇

𝑠
(𝑦
𝑘−1

)]
𝑇

,

Ξ ≜ [
𝐴
1
𝐵
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2

0 �̃�
2
𝐴
3
�̃�
3

]

𝑇

[
𝑃 0

0 𝜃
2

1
𝑃
]

× [
𝐴
1
𝐵
1
�̃�
1
𝐴
4
�̃�
4

𝐴
2

0 �̃�
2
𝐴
3
�̃�
3

]

+

[
[
[
[
[
[

[

−𝑃 + 𝐿
𝑇

𝐿 0 𝐶
𝑇

𝐾
𝑇

0 0

∗ −𝛾
2

𝐼
𝑚

0 0 0

∗ ∗ −2𝐼
𝑝

0 0

∗ ∗ ∗ −𝑄 𝐶
𝑇

𝐾
𝑇

∗ ∗ ∗ ∗ −2𝐼
𝑝

]
]
]
]
]
]

]

.

(36)

From (35), it can be shown that if Ξ < 0 holds, then
𝐽(𝑘) < 0, which implies that (32) holds for any nonzero
𝜐(𝑘) ∈ L

𝐸
2

([0,∞);R𝑚). Furthermore, it is easy to see that
Ξ < 0 is equivalent to the condition (22). This means that the
condition (22) inTheorem 4 can imply ‖𝑒

𝑧
(𝑘)‖
𝐸
2

< 𝛾‖𝜐(𝑘)‖
𝐸
2

.
This completes the proof.

4. 𝐻
∞

Filter Design

In this section, the attention should be paid on coping with
the addressed filter design problem for the discrete-time
stochastic system (1) based onTheorem 4.

Lemma 5 (see [18]). Let 𝑄, 𝑅, and 𝐹(𝑡) be real matrices of
appropriate dimensions with 𝐹(𝑡) satisfying 𝐹𝑇(𝑡)𝐹(𝑡) < 𝐼.
Then, for any scalar 𝜀 > 0,

𝑄𝐹 (𝑡) 𝑅 + 𝑅
𝑇

𝐹
𝑇

(𝑡) 𝑄
𝑇

≤ 𝜀𝑄𝑄
𝑇

+ 𝜀
−1

𝑅
𝑇

𝑅. (37)

The following theorem provides the sufficient LMI condition
for the existence of the proposed robust filter (13).

Theorem 6. Consider the discrete-time stochastic system (1),
for a given disturbance level 𝛾 > 0, if there exist positive and
definite matrices 𝑋, 𝑌 ∈ R𝑛×𝑛, and matrices 𝑊 ∈ R𝑛×𝑛 and
𝑈 ∈ R𝑛×𝑚, and positive scalars 𝜀

1
, 𝜀
2
, and 𝜀

3
such that the

following LMI holds:

[

[

Φ
11

Φ
12

Φ
13

∗ Φ
22

Φ
23

∗ ∗ Φ
33

]

]

< 0, (38)

with

Φ
11
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ̃
11

0 0 𝐶
𝑇

𝐾
𝑇

0 0 0

∗ Γ̃
22

0 0 0 0 0

∗ ∗ Γ̃
33

0 0 0 0

∗ ∗ ∗ Γ̃
44

0 0 0

∗ ∗ ∗ ∗ −𝑄
1

0 𝐶
𝑇

𝐾
𝑇

∗ ∗ ∗ ∗ ∗ −𝑄
2

0

∗ ∗ ∗ ∗ ∗ ∗ −2𝐼
𝑝

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
12
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐴
𝑇

𝑋 Γ̃
1,9

0 Γ̃
1,11

0 𝐴
𝑇

𝑌 0 0

0 Γ̃
3,9

0 𝐷
𝑇

𝑈
𝑇

0 Γ̃
4,9

0 𝑈
𝑇

0 Γ̃
5,9

0 Γ̃
5,11

0 0 0 0

0 −𝜃𝑈
𝑇

0 −𝑈
𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
13
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 𝐸
𝑇

𝑋 𝐸
𝑇

𝑌

0 0 0 0 0

0 0 0 𝐺
𝑇

𝑋 𝐺
𝑇

𝑌

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Φ
22
= diag {−𝑋, −𝑌, −𝜃2

1
𝑋, −𝜃
2

1
𝑌} ,

Φ
23
=

[
[
[
[
[

[

0 0 0 0 0

Γ̃
9,12

Γ̃
9,13

Γ̃
9,14

0 0

0 0 0 0 0

𝑈 𝑈 𝑈 0 0

]
]
]
]
]

]

,

Φ
33
= diag {−𝜀

1
𝐼
𝑝
, −𝜀
2
𝐼
𝑝
, −𝜀
3
𝐼
𝑝
, −𝑋, −𝑌} ,

Γ̃
11
= −𝑃 + 𝐿

𝑇

𝐿 + 𝜀
1
𝐶
𝑇

𝐾
𝑇

1
Δ
𝑇

Δ𝐾
1
𝐶,

Γ̃
1,9

= 𝐴
𝑇

𝑌 − 𝐴
𝑇

𝑌 + (𝜃 − 1)𝐶
𝑇

𝐾
𝑇

1
𝐵
𝑇

𝑌,

Γ̃
1,11

= 𝐴
𝑇

𝑌 −𝑊
𝑇

+ (𝜃 − 1)𝐶
𝑇

𝐾
𝑇

1
𝑈
𝑇

,

Γ̃
22
= −𝑌 + 𝐿

𝑇

𝐿,

Γ̃
33
= −𝛾
2

𝐼
𝑟
+ 𝜀
2
𝐷
𝑇

ΔΔ𝐷,

Γ̃
3,9

= (𝜃 − 1)𝐷
𝑇

𝑈
𝑇

,

Γ̃
4,4

= −2𝐼
𝑝
+ 𝜀
3
ΔΔ,

Γ̃
4,9

= (𝜃 − 1)𝑈
𝑇

,
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Figure 2: 𝑥
1
(𝑘) and 𝑥

1
(𝑘).

Γ̃
5,9

= −𝜃𝐶
𝑇

𝐾
𝑇

1
𝑈
𝑇

,

Γ̃
5,11

= −𝐶
𝑇

𝐾
𝑇

1
𝑌,

Γ̃
9,12

= Γ̃
9,13

= Γ̃
9,14

= −𝜃𝑈,

(39)

then the 𝐻
∞

filtering problem is solved by the filter (13).
Furthermore, the filter gains are given by

𝐴 = 𝑌
−1

𝑊, 𝐵 = 𝑌
−1

𝑈. (40)

Proof. Thematrix condition (22) inTheorem 4 can be rewrit-
ten as

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

0 𝐶
𝑇

𝐾
𝑇

0 0 0 𝐴
𝑇

1
𝐴
𝑇

2

∗ Γ
22

0 0 0 0 𝐵
𝑇

1
0

∗ ∗ −2𝐼
𝑝

0 0 0 −𝐻
𝑇

1
𝐻
𝑇

2

∗ ∗ ∗ −𝑄 0 𝐶
𝑇

𝐾
𝑇

𝐴
𝑇

4
𝐴
𝑇

3

∗ ∗ ∗ ∗ −𝛾
2

𝐼
𝑚

0 𝐵
𝑇

4
𝐵
𝑇

3

∗ ∗ ∗ ∗ ∗ −2𝐼
𝑝

𝐻
𝑇

4
𝐻
𝑇

3

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
−1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜃
2

1
𝑃
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+𝑀
1
Λ
𝑘
𝑁
1
+ 𝑁
𝑇

1
Λ
𝑘
𝑀
𝑇

1
+𝑀
2
Λ
𝑘
𝑁
2

+ 𝑁
𝑇

2
Λ
𝑘
𝑀
𝑇

2
+𝑀
1
Λ
𝑘
𝑁
3
+ 𝑁
𝑇

3
Λ
𝑘
𝑀
𝑇

1
< 0,

(41)

where

𝑀
1
= [0, 0, 0, 0, 0, 0,𝐻

𝑇

1
, 𝐻
𝑇

2
]

𝑇

,

𝑁
1
= [𝐾
1
𝐶, 0, 0, 𝐾

1
𝐶, 0, 0, 0, 0] ,

𝑁
2
= [0, 𝐷, 0, 0, 𝐷, 0, 0, 0]

𝑇

,

𝑁
3
= [0, 0, 𝐼, 0, 0, 𝐼, 0, 0]

𝑇

.

(42)

In the light of Lemma 5, it is shown that the condition (41)
holds if the following condition holds:
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< 0. (43)
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Multiply diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑃
1
, 𝑃
1
, 𝐼, 𝐼, 𝐼} and its transpose on

the left side and the right side of (43), respectively, and let
𝑊 = 𝑌𝐴, 𝑈 = 𝑌𝐵, one can obtain the condition (38). This
means that if there exist scalars 𝜀

1
> 0, 𝜀

2
> 0, 𝜀

3
> 0

such that the LMI condition (38) holds, then the error system
(17) is stochastically stable, and the 𝐻

∞
performance (32) is

guaranteed. This completes the proof.

Remark 7. The LMI condition (38) of Theorem 6 is not
conservative, since the system matrix 𝐴 has been supposed
to be stable.

5. Simulation

We consider the system (1) with the following data: 𝑛 = 3,
𝑚 = 2, and 𝑝 = 2, 𝑟 = 2. For the logarithmic quantizer (7),
the quantizer densities are chosen as 𝜌

1
= 0.6667 and 𝜌

2
=

0.7391. The initial quantizer points are chosen as 𝜂(0)
1

= 40

and 𝜂(0)
2

= 40. It can be calculated that 𝛿
1
= 0.2 and 𝛿

2
= 0.15.

The random communication delay parameters are selected

as 𝜃 = 0.6, and 𝜃
1
= √𝜃(1 − 𝜃) = 0.4899. The saturation

parameter matrices are selected as follows:

𝐾
1
= [

0.6 0

0 0.7
] , 𝐾

2
= [

0.8 0

0 0.8
] , (44)

and 𝜙(𝑦
𝑘
) = (𝐾

1
+ 𝐾
2
)/2𝑦
𝑘
+ (𝐾
2
− 𝐾
1
)/2 sin(𝑦

𝑘
).

Besides, the model parameters are given as follows:

𝐴 = [

[

−0.3 0 0.01

−0.59 −0.24 0.02

0.1 −0.06 −0.68

]

]

, 𝐵 = [

[

−0.202

0.383

0.139

]

]

,

𝐶 = [
−0.2 −0.1 −0.2

0.5 0.2 0.21
] , 𝐷 = [

0.1

0.47
] ,

𝐸 = [

[

−0.12 −0.11 0.38

0.11 0.64 −0.18

−0.31 −0.63 −0.6

]

]

,

𝐺 = [

[

−0.13

0.11

0.051

]

]

, 𝐿 = [
0.1 0.09 0.1

0.05 0.05 0.05
] .

(45)

Without loss of generality, we assume that the noises 𝜐(𝑘) in
system (1) have the following form:

𝜐 (𝑘) =
1

0.1 + 𝑘2
, (46)

and it can be checked that 𝜐(𝑘) satisfies the constraint (2).
Solving the LMI condition (38), one can obtain the following
solutions:

𝑋 = [

[

3.6195 3.3264 2.2784

3.3264 10.8295 2.5230

2.2784 2.5230 7.4548

]

]

,

𝑌 = [

[

4.3244 1.5752 1.6206

1.5752 2.3707 0.2978

1.6206 0.2978 2.3496

]

]

,

𝑊 = [

[

−1.3882 −0.4611 −0.7446

−1.1207 −0.0697 −0.4972

−0.4623 −0.1005 −1.4395

]

]

,

𝑈 = [

[

0.0118 0.0050

0.0469 0.1449

0.0390 0.0963

]

]

.

(47)

The filter gain are then calculated as follows:

𝐴 = [

[

−0.1855 −0.1492 0.1803

−0.3463 0.0632 −0.2408

−0.0249 0.0521 −0.7065

]

]

,

𝐵 = [

[

−0.0165 −0.0580

0.0277 0.0909

0.0245 0.0695

]

]

.

(48)

The initial condition is selected as 𝑥(0) = [1.5 0 − 1]
𝑇,

𝑒(0) = [−0.5 1 1.5]
𝑇, and the quantizer parameter 𝜂

0
is

selected as 𝜂
0
= 50. The trajectories of plant states 𝑥

𝑘
and its

estimates are shown in Figures 2, 3, and 4; the comparisons
of the unquantized saturated outputs 𝜙(𝑦

𝑘
) and quantized

saturated outputs 𝑞(𝜙(𝑦
𝑘
)) are shown in Figures 5 and 6; the

trajectory of the error estimation signal 𝑒
𝑧
(𝑘) = 𝑧(𝑘) − �̂�(𝑘) is

illustrated in Figures 7 and 8. It can be seen that the obtained
state estimation is desirable.
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6. Conclusion

In this paper, the𝐻
∞
filtering problem has been investigated

for stochastic systems subject to sensor saturation over
limited capacity channel. The plant under consideration is
a class of stochastic systems with random noise depending
on state and external disturbance. In this setting, the effects
of sensor quantization, output logarithmic quantization, and
networked-induced communication delay are taken into
account simultaneously. The phenomenon of random com-
munication delay is described by a Bernoulli type stochastic
variable. Subsequently, the 𝐻

∞
filter is designed for the
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Figure 6: 𝜙(𝑦
2
(𝑘)) and quantized 𝜙(𝑦

2
(𝑘)).
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Figure 7: 𝑧
1
(𝑘) and �̂�

1
(𝑘).

considered plant by employing the quantized output mea-
surements, and sufficient conditions are established for the
existence of the proposed filter.
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This paper is concerned with global stability analysis for a class of continuous neural networks with time-varying delay. The lower
and upper bounds of the delay and the upper bound of its first derivative are assumed to be known. By introducing a novel
Lyapunov-Krasovskii functional, some delay-dependent stability criteria are derived in terms of linear matrix inequality, which
guarantee the considered neural networks to be globally stable. When estimating the derivative of the LKF, instead of applying
Jensen’s inequality directly, a substep is taken, and a slack variable is introduced by reciprocally convex combination approach, and
as a result, conservatism reduction is proved to be more obvious than the available literature. Numerical examples are given to
demonstrate the effectiveness and merits of the proposed method.

1. Introduction

In recent years, important application in the fields of pattern
recognition, signal processing, optimization and associative
memories, and so forth has made neural networks (NNs) the
eye of attention. Stability analysis of NNs with time-varying
delay, as a result, has received much attention ever since,
because time delay is frequently encountered in NNs, owing
to finite switching speed of amplifiers in the communication
and response of neurons, and could cause instability and
oscillations in the system. Both delay-independent and delay-
dependent stability criteria have been brought up. While
delay-independent criteria tend to be more conservative,
more attention is given to delay-dependent criteria, because
they could make use of the length of the delay.

Global stability of various recurrent neural networks has
been investigated in [1–4]. In stability analysis of neural
networks, the qualitative properties primarily concerned are
uniqueness, global asymptotic stability, and global exponen-
tial stability of their equilibria. When the system with time

delay is described by the following dynamic equation:

̇𝑥 (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − ℎ)) + 𝑢, (1)

exponential and asymptotic stability analysis has been done
by [5–10]. The stability criteria in [5, 9, 10] are delay inde-
pendent, while those in [6, 8, 11] are delay dependent, and
[12] includes both. Also, [8–10] adopted the delay-partition-
ing approach. After some changes are made on system
description, such as setting 𝐴 = 0, adding a new term
𝐷∫
𝑡

𝑡−𝑑

𝑓(𝑥(𝑠))𝑑𝑠, and introducing a new activation function
𝑔(𝑥(𝑡 − ℎ)) to substitute for 𝑓(𝑥(𝑡 − ℎ)), asymptotic stability
criteria are derived in [13–17], and uniqueness analysis is done
in [5, 18].

Various methods have been proposed to reduce conser-
vatism when deriving stability criteria. For example, the free-
weighting matrix approach noticed in [6, 7, 19–22] is proved
to be very effective since bounding techniques on some cross-
product terms are avoided. Stability analyses of NNs with
multiple and single time-varying delays are done by [17,
23], respectively. Moreover, a new free-weighting matrix
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approach is brought up in [24] to estimate the derivative of
Lyapunov functional without missing any negative quadratic
terms, and thus, improved delay-dependent stability criteria
are established. Along with free-weighting matrix approach,
[14, 25, 26] adopted the delay partitioning idea to solve
delay-dependent stability problem, and the proposed meth-
ods have significantly reduced conservatism.

When deriving stability criteria for delayed systems, two
kinds of approaches are usually used, namely, Lyapunov func-
tion approaches [27–29] andLyapunov-Krasovskii functional
(LKF) approaches [17, 23, 24, 30–33]. The former makes no
restriction on the derivative of time delay and usually gives
a simpler stability criterion or delay-independent criterion
while the latter, expressed in the form of LMI, takes the
derivative of time delay into account, gives a delay-dependent
criterion, and thus can be less conservative since LKF makes
use of more information about the system. Discretized LKF
method developed in [34] is another method for stability
analysis, and [13] made some necessary adjustments to make
themethod compatible with robust stability problem for NNs
with uncertain delays.

In addition, the range of time-varying delay for NNs is
mostly considered to have a lower bound of zero, as seen in
[7, 11, 23, 24], while in practice it may not be restricted to 0,
and setting ℎ

1
to zero would result in increased conservatism.

It is the same with the derivative of time delay. In many
papers, time delay of NNs is either constant or unknown, as
noticed in [14, 25, 26], while an upper or lower bound could
be assumed.

In this paper, the stability problem for continuous NNs
with time-varying delay is taken into consideration. A novel
LKF is brought up, and changes are made to deal with dif-
ferent cases concerning time delay and its derivative. When
estimating the derivative of LKF, instead of applying Jensen’s
inequality directly, a substep is taken, and a slack variable
is introduced, and consequently, conservatism reduction is
proved to be more obvious than existing results. Numerical
examples are given, and analysis is made to demonstrate the
effectiveness and merits of the proposed method.

In Section 1, a brief introduction is presented, and some
notations are defined. In Section 2, the stability problem is
formulated, and some preliminaries are given. In Section 3,
new criteria in the form of one theorem and three corollaries
for NNs with time-varying delay are presented. In Section 4,
numerical examples are presented, along with results from
the other literature. The paper is concluded in Section 5.

Notations. The notations used throughout the paper are
standard.The superscript “𝑇” stands formatrix transposition;
𝑅
𝑛 denotes the 𝑛-dimensional Euclidean space; the notation

𝑃 > 0 means that 𝑃 is a real positive definite; 𝐼 and 0 repre-
sent the identity matrix and a zero matrix, respectively;
diag(⋅ ⋅ ⋅) stands for a block-diagonal matrix; 𝜆min(𝑃)
(𝜆max(𝑃)) denotes the minimum (maximum) eigenvalue of
symmetric matrix 𝑃; ‖ ⋅ ‖ denotes the Euclidean norm of a
vector and its induced norm of a matrix. In symmetric block
matrices, we use an asterisk (∗) to represent a term that is
induced by symmetry. Matrices, if their dimensions are not

explicitly stated, are assumed to be compatible for algebraic
operations.

2. Model Descriptions and Preliminaries

The dynamic behavior of a continuous-time neural networks
with time delay can be described by the following state
equation:

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝐶𝑦 (𝑡) + 𝐴𝑔 (𝑦 (𝑡)) + 𝐵𝑔 (𝑦 (𝑡 − ℎ (𝑡))) + 𝑢,

(2)

where 𝑦(𝑡) is the state vector of the neural network; 𝐶 is
a positive matrix; 𝐴 and 𝐵 are the connection weight and
the delayed connection weight matrices, respectively. 𝑔(𝑦(𝑡))
represents the activation function vector of neurons, and 𝑢

is a constant external bias vector. ℎ(𝑡) denotes axonal signal
transmission delay, which is nonnegative, bounded, and has
0 < ℎ
1
< ℎ < ℎ

2
, 0 ≤ ℎ̇ ≤ 𝛾, and will be written as ℎ for short

throughout the paper. The initial conditions associated with
system (2) are of the form

𝑦
𝑖
(𝜃) = 𝜑

𝑖
(𝜃) , 𝜃 ∈ [−ℎ

2
, 0] , 𝑖 = 1, 2, . . . , 𝑛, (3)

where 𝜑
𝑖
(𝜃) ∈ 𝐶([−ℎ

2
, 0], 𝑅

𝑛

) is the Banach space of contin-
uous functions mapping interval [−ℎ

2
, 0] into 𝑅𝑛.

The following assumptions are made on system (2)
throughout this paper.
(H1) The activation functions 𝑔(𝑦(𝑡)) are bounded and

monotonically nondecreasing on 𝑅.
(H2) The activation functions 𝑔(𝑦(𝑡)) satisfy

𝑙
𝑚,𝑖

≤
𝑔
𝑖
(𝜔
1
) − 𝑔
𝑖
(𝜔
2
)

𝜔
1
− 𝜔
2

≤ 𝑙
𝑝,𝑖
, 𝜔
1

̸=𝜔
2
. (4)

It is known that bounded activation functions always
guarantee the existence of an equilibrium point for model
(2). For convenience of exposition, in the following, we will
shift the equilibrium point 𝑦∗ of model (2) to the origin. The
transformation 𝑥(𝑡) = 𝑦(𝑡) − 𝑦

∗ puts system (2) into the
following form:

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − ℎ)) , (5)

where 𝑥(𝑡) is the state vector of the transformed system, and
𝑓
𝑖
(𝑥
𝑖
) = 𝑔

𝑖
(𝑥
𝑖
+ 𝑦
∗

𝑖
) − 𝑔
𝑖
(𝑦
∗

𝑖
) with 𝑓

𝑖
(0) = 0, 𝑥

𝑖
(𝜃) = 𝜙

𝑖
(𝜃),

𝜃 ∈ [−ℎ
2
, 0], (𝑖 = 1, . . . , 𝑛). Obviously, the equilibrium point

𝑦
∗ of system (2) is globally stable if and only if the origin of

system (5) is globally stable. Assume that 𝑓
𝑖
(0) = 0, then the

functions 𝑓
𝑖
(⋅) satisfy

𝑓i (𝜔𝑖) ≤ 𝑙
𝑝,𝑖
𝜔
𝑖
,

𝑓
𝑖
(𝜔
𝑖
) ≥ 𝑙
𝑚,𝑖
𝜔
𝑖
, ∀𝜔

𝑖
∈ 𝑅.

(6)

Rewriting (6), we can get

𝐿
𝑝
𝜔 − 𝑓 (𝜔) ≥ 0, 𝑓 (𝜔) − 𝐿

𝑚
𝜔 ≥ 0,

[𝐿
𝑝
𝜔 − 𝑓(𝜔)]

𝑇

𝑆 [𝑓 (𝜔) − 𝐿
𝑚
𝜔] ≥ 0, 𝑆 ≥ 0,

(7)
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where 𝐿
𝑝
≜ diag(𝑙

𝑝,1
, 𝑙
𝑝,2
, . . . , 𝑙
𝑝,𝑛
) and 𝐿

𝑚
≜ diag(𝑙

𝑚,1
, 𝑙
𝑚,2

,

. . . , 𝑙
𝑚,𝑛

).

Lemma 1 (see [35]). For positive definite𝑀 ∈ 𝑅
𝑛×𝑛, scalars 𝑟

1

and 𝑟
2
, and a vector function 𝑤 ∈ 𝑅

𝑛, the following inequality
holds:

(∫

𝑟
2

𝑟
1

𝑤
𝑇

(𝑠) 𝑑𝑠)𝑀(∫

𝑟
2

𝑟
1

𝑤 (𝑠) 𝑑𝑠)

≤ (𝑟
2
− 𝑟
1
) ∫

𝑟
2

𝑟
1

𝑤
𝑇

(𝑠)𝑀𝑤 (𝑠) 𝑑𝑠.

(8)

3. Main Results

In this section, some delay-dependent sufficient conditions of
the global stability for the neural networks with time-varying
delay in (5) are derived. First, we consider the case where the
upper bound of ℎ̇ is known, and correspondingly, the global
stability condition is given as follows.

Theorem 2. Suppose that in reference system (5), the time
delay ℎ satisfies 0 < ℎ

1
< ℎ < ℎ

2
, 0 ≤ ℎ̇ ≤ 𝛾. Under the

condition given in (6), if there exist matrices 𝑃 > 0, 𝑄
1
> 0,

𝑄
2
> 0, 𝑅

1
> 0, 𝑅

2
> 0, 𝐾

1
> 0, 𝐾

2
> 0, 𝑆

𝑖
> 0, 𝑖 = 1, . . . , 4,

𝑆
1
≜ diag(𝑠

1,1
, 𝑠
1,2
, . . . , 𝑠

1,𝑛
), 𝑆
2
≜ diag(𝑠

2,1
, 𝑠
2,2
, . . . , 𝑠

2,𝑛
), and

𝑇 such that
Θ ≜ Υ

1
+ Υ
2
+ Υ
3
+ Υ
4
< 0,

Ψ ≜ [
𝑅
2

𝑇

∗ 𝑅
2

] ≥ 0,

(9)

where Υ
1
, Υ
2
, Υ
3
, and Υ

4
are defined as

Υ
1
≜ 𝐷
𝑇

𝑥
𝑃𝐷
̇𝑥
+ 𝐷
𝑇

̇𝑥
𝑃𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝑄
1
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
1

𝑄
1
𝐷
𝑥ℎ
1

+ 𝐷
𝑇

𝑥
𝑄
2
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
2

𝑄
2
𝐷
𝑥ℎ
2

,

Υ
2
≜ 𝐷
𝑇

𝑥
𝑆
3
𝐷
𝑥
− (1 − 𝛾)𝐷

𝑇

𝑥ℎ
𝑆
3
𝐷
𝑥ℎ
+ 𝐷
𝑇

𝑓
𝑆
4
𝐷
𝑓

− (1 − 𝛾)𝐷
𝑇

𝑓ℎ
𝑆
4
𝐷
𝑓ℎ

+ 2𝐷
𝑇

𝑓
𝑆
1
𝐷
̇𝑥
− 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝑆
1
𝐷
̇𝑥

− 2𝐷
𝑇

𝑓
𝑆
2
𝐷
̇𝑥
+ 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑝
𝑆
2
𝐷
̇𝑥
,

Υ
3
≜ 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ
− 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐷
𝑓ℎ

− 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ

+ 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐷
𝑓ℎ

+ 𝐷
𝑇

𝑓
𝐾
1
𝐿
𝑝
𝐷
𝑥
− 𝐷
𝑇

𝑓
𝐾
1
𝐷
𝑓

− 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐿
𝑝
𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐷
𝑓
,

Υ
4
≜ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
1
𝐷
̇𝑥
− (𝐷
𝑥
− 𝐷
𝑥ℎ
2

)
𝑇

𝑅
1
(𝐷
𝑥
− 𝐷
𝑥ℎ
2

)

+ (ℎ
2
−ℎ
1
)
2

𝐷
𝑇

̇𝑥
𝑅
2
𝐷
̇𝑥
−(𝐷
𝑥ℎ
−𝐷
𝑥ℎ
1

)
𝑇

𝑅
2
(𝐷
𝑥ℎ
−𝐷
𝑥ℎ
1

)

− (𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)
𝑇

𝑅
2
(𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)

− (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

)
𝑇

𝑇
𝑇

(𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ
)

− (𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ
)
𝑇

𝑇 (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

) ,

(10)

where𝐷
̇𝑥
,𝐷
𝑥
,𝐷
𝑥ℎ
,𝐷
𝑥ℎ
1

,𝐷
𝑥ℎ
2

,𝐷
𝑓
, and𝐷

𝑓ℎ
are defined as

𝐷
𝑓ℎ

≜ [0 0 0 0 0 𝐼] , 𝐷
𝑥
≜ [𝐼 0 0 0 0 0] ,

𝐷
𝑥ℎ

≜ [0 𝐼 0 0 0 0] , 𝐷
𝑥ℎ
1

≜ [0 0 𝐼 0 0 0] ,

𝐷
𝑥ℎ
2

≜ [0 0 0 𝐼 0 0] , 𝐷
𝑓
≜ [0 0 0 0 𝐼 0] ,

𝐷
̇𝑥
≜ [−𝐶 0 0 0 𝐴 𝐵] ,

(11)
then system (5) is globally stable. Moreover,

‖𝑥 (𝑡)‖ ≤ √
Δ

𝜆min (𝑃)

𝜙
 ,

(12)

where Δ is defined as

Δ ≜ 2 (𝜆max (𝑆2𝐿𝑝) − 𝜆min (𝑆2𝐿𝑚))

+ 3 [ℎ
3

2
𝜆max (𝑅1) + (ℎ

2
− ℎ
1
)
3

𝜆max (𝑅2)]

× (𝜆max (𝐶
𝑇

𝐶) + 𝜆max (𝐴
𝑇

𝐴)𝜆max (𝐿
2

𝑝
)

+𝜆max (𝐵
𝑇

𝐵) 𝜆max (𝐿
2

𝑝
)) + 𝜆max (𝑃) + ℎ

2
𝜆max (𝑆3)

+ ℎ
2
𝜆max (𝑆4) 𝜆max (𝐿

2

𝑝
) + ℎ
1
𝜆max (𝑄1)

+ ℎ
2
𝜆max (𝑄2) + 2 (𝜆max (𝑆1𝐿𝑝) − 𝜆min (𝑆1𝐿𝑚)) .

(13)
Proof. We choose an LKF as

𝑉 (𝑡) ≜ 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (14)

where

𝑉
1
(𝑡) ≜ 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 2

𝑛

∑

𝑖=1

𝑠
1,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑓
𝑖
(𝑠) − 𝑙

𝑚,𝑖
𝑥
𝑖
) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑠
2,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑙
𝑝,𝑖
𝑥
𝑖
− 𝑓
𝑖
(𝑠)) 𝑑𝑠,

𝑉
2
(𝑡) ≜∫

𝑡

𝑡−ℎ

[𝑥
𝑇

(𝑤) 𝑆
3
𝑥 (𝑤) + 𝑓

𝑇

(𝑥 (𝑤)) 𝑆
4
𝑓 (𝑥 (𝑤))] 𝑑𝑤

+ ∫

𝑡

𝑡−ℎ
1

𝑥
𝑇

(𝑤)𝑄
1
𝑥 (𝑤) 𝑑𝑤

+ ∫

𝑡

𝑡−ℎ
2

𝑥
𝑇

(𝑤)𝑄
2
𝑥 (𝑤) 𝑑𝑤,

𝑉
3
(𝑡) ≜ ℎ

2
∫

0

−ℎ
2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤) 𝑅
1
̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃

+ (ℎ
2
− ℎ
1
) ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤) 𝑅
2
̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃,

𝑍 (𝑤) ≜ [ 𝑥
𝑇

(𝑤) 𝑥
𝑇

(𝑤 − ℎ) 𝑥
𝑇

(𝑤 − ℎ
1
)

𝑥
𝑇

(𝑤 − ℎ
2
) 𝑓
𝑇

(𝑥 (𝑤)) 𝑓
𝑇

(𝑥 (𝑤 − ℎ)) ]
𝑇

.

(15)
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The derivatives of 𝑉
𝑖
(𝑡), 𝑖 = 1, 2, 3, are given, respectively, by

𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃 ̇𝑥 (𝑡) + ̇𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 2[𝑆
1
(𝑓 (𝑥) − 𝐿

𝑚
𝑥 (𝑡))]

𝑇

̇𝑥 (𝑡)

+ 2[𝑆
2
(𝐿
𝑝
𝑥 (𝑡) − 𝑓 (𝑥))]

𝑇

̇𝑥 (𝑡)

= 𝑍
𝑇

(𝑡) (𝐷
𝑇

𝑥
𝑃𝐷
̇𝑥
+ 𝐷
𝑇

̇𝑥
𝑃𝐷
𝑥
+ 2𝐷
𝑇

𝑓
𝑆
1
𝐷
̇𝑥

− 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝑆
1
𝐷
̇𝑥
+ 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑝
𝑆
2
𝐷
̇𝑥

−2𝐷
𝑇

𝑓
𝑆
2
𝐷
̇𝑥
)𝑍 (𝑡) ,

𝑉
2
(𝑡) ≤ 𝑥

𝑇

(𝑡) 𝑆
3
𝑥 (𝑡) + 𝑓

𝑇

(𝑥 (𝑡)) 𝑆
4
𝑓 (𝑥 (𝑡))

+ 𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝑄
2
𝑥 (𝑡)

− (1 − 𝛾) 𝑓
𝑇

(𝑥 (𝑡 − ℎ)) 𝑆
4
𝑓 (𝑥 (𝑡 − ℎ))

− (1 − 𝛾) 𝑥
𝑇

(𝑡 − ℎ) 𝑆
3
𝑥 (𝑡 − ℎ)

−𝑥
𝑇

(𝑡−ℎ
1
) 𝑄
1
𝑥 (𝑡−ℎ

1
) − 𝑥
𝑇

(𝑡−ℎ
2
) 𝑄
2
𝑥 (𝑡−ℎ

2
)

= 𝑍
𝑇

(𝑡) [𝐷
𝑇

𝑥
𝑆
3
𝐷
𝑥
− (1 − 𝛾)𝐷

𝑇

𝑥ℎ
𝑆
3
𝐷
𝑥ℎ

+ 𝐷
𝑇

𝑓
𝑆
4
𝐷
𝑓
− (1 − 𝛾)𝐷

𝑇

𝑓ℎ
𝑆
4
𝐷
𝑓ℎ

+ 𝐷
𝑇

𝑥
𝑄
1
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
1

𝑄
1
𝐷
𝑥ℎ
1

+𝐷
𝑇

𝑥
𝑄
2
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
2

𝑄
2
𝐷
𝑥ℎ
2

] 𝑍 (𝑡) ,

𝑉
3
(𝑡) = (ℎ

2
− ℎ
1
)
2

̇𝑥
𝑇

(𝑡) 𝑅
2
̇𝑥 (𝑡)

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ
1

𝑡−ℎ
2

̇𝑥
𝑇

(𝑤) 𝑅
1
̇𝑥 (𝑤) 𝑑𝑤

+ ℎ
2

2
̇𝑥
𝑇

(𝑡) 𝑅
1
̇𝑥 (𝑡) − ℎ

2
∫

𝑡

𝑡−ℎ
2

̇𝑥
𝑇

(𝑤) 𝑅
1
̇𝑥 (𝑤) 𝑑𝑤.

(16)

By Lemma 1, we can get

𝑉
3
(𝑡) ≤ ℎ

2

2
̇𝑥
𝑇

(𝑡) 𝑅
1
̇𝑥 (𝑡) + (ℎ

2
− ℎ
1
)
2

̇𝑥
𝑇

(𝑡) 𝑅
2
̇𝑥 (𝑡)

− (𝑥(𝑡) − 𝑥(𝑡 − ℎ
2
))
𝑇

𝑅
1
(𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

2
))

− (ℎ
2
− ℎ
1
) (∫

𝑡−ℎ

𝑡−ℎ
2

̇𝑥
𝑇

(𝑤) 𝑅
2
̇𝑥 (𝑤) 𝑑𝑤

+∫

𝑡−ℎ

𝑡−ℎ
2

̇𝑥
𝑇

(𝑤) 𝑅
2
̇𝑥 (𝑤) 𝑑𝑤)

≤ ℎ
2

2
̇𝑥
𝑇

(𝑡) 𝑅
1
̇𝑥 (𝑡) + (ℎ

2
− ℎ
1
)
2

̇𝑥
𝑇

(𝑡) 𝑅
2
̇𝑥 (𝑡)

− (𝑥(𝑡) − 𝑥 (𝑡 − ℎ
2
))
𝑇

𝑅
1
(𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

2
))

− [
ℎ
2
− ℎ
1

ℎ
2
− ℎ

(𝑥(𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))
𝑇

× 𝑅
2
(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ

2
))

+
ℎ
2
− ℎ
1

ℎ − ℎ
1

(𝑥(𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

𝑇

× 𝑅
2
(𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)) ]

= ℎ
2

2
̇𝑥
𝑇

(𝑡) 𝑅
1
̇𝑥 (𝑡) + (ℎ

2
− ℎ
1
)
2

̇𝑥
𝑇

(𝑡) 𝑅
2
̇𝑥 (𝑡)

− (𝑥(𝑡) − 𝑥 (𝑡 − ℎ
2
))
𝑇

𝑅
1
(𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

2
))

−
ℎ − ℎ
1

ℎ
2
− ℎ

(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))
𝑇

× 𝑅
2
(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ

2
))

− (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))
𝑇

× 𝑅
2
(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ

2
))

−
ℎ
2
− ℎ

ℎ − ℎ
1

(𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

𝑇

× 𝑅
2
(𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ))

− (𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

𝑇

× 𝑅
2
(𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ))

= ℎ
2

2
̇𝑥
𝑇

(𝑡) 𝑅
1
̇𝑥 (𝑡) + (ℎ

2
− ℎ
1
)
2

̇𝑥
𝑇

(𝑡) 𝑅
2
̇𝑥 (𝑡)

− (𝑥(𝑡) − 𝑥 (𝑡 − ℎ
2
))
𝑇

𝑅
1
(𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

2
))

−

[
[
[
[
[

[

√
ℎ
2
−ℎ

ℎ−ℎ
1

(𝑥 (𝑡−ℎ
1
)−𝑥 (𝑡−ℎ))

−√
ℎ−ℎ
1

ℎ
2
−ℎ

(𝑥 (𝑡−ℎ)−𝑥 (𝑡−ℎ
2
))

]
]
]
]
]

]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

×

[
[
[
[
[

[

√
ℎ
2
− ℎ

ℎ − ℎ
1

(𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

−√
ℎ − ℎ
1

ℎ
2
− ℎ

(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))

]
]
]
]
]

]

− [
𝑥(𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥(𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

× [
𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
]

≤ ℎ
2

2
̇𝑥
𝑇

(𝑡) 𝑅
1
̇𝑥 (𝑡) + (ℎ

2
− ℎ
1
)
2

̇𝑥
𝑇

(𝑡) 𝑅
2
̇𝑥 (𝑡)

− (𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
2
))
𝑇

𝑅
1
(𝑥 (𝑡) − 𝑥 (𝑡 − ℎ

2
))

− [
𝑥(𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥(𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

× [
𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
]
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≤ 𝑍
𝑇

(𝑡) [ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
1
𝐷
̇𝑥
+ (ℎ
2
− ℎ
1
)
2

𝐷
𝑇

̇𝑥
𝑅
2
𝐷
̇𝑥

− (𝐷
𝑥
− 𝐷
𝑥ℎ
2

)
𝑇

𝑅
1
(𝐷
𝑥
− 𝐷
𝑥ℎ
2

)

− [
𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ

𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

× [
𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ

𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

]]𝑍 (𝑡) .

(17)

By (16) and (17), we have

𝑉 (𝑡) ≤ 𝑍
𝑇

(𝑡) [𝐷
𝑇

𝑥
𝑃𝐷
̇𝑥
+ 𝐷
𝑇

̇𝑥
𝑃𝐷
𝑥
+ 2𝐷
𝑇

𝑓
𝑆
1
𝐷
̇𝑥

− 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝑆
1
𝐷
̇𝑥
+ 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑝
𝑆
2
𝐷
̇𝑥
− 𝐷
𝑇

𝑓
𝑆
2
𝐷
̇𝑥

+ 𝐷
𝑇

𝑥
𝑆
3
𝐷
𝑥
− (1 − 𝛾)𝐷

𝑇

𝑥ℎ
𝑆
3
𝐷
𝑥ℎ
+ 𝐷
𝑇

𝑓
𝑆
4
𝐷
𝑓

− (1 − 𝛾)𝐷
𝑇

𝑓ℎ
𝑆
4
𝐷
𝑓ℎ

+ 𝐷
𝑇

𝑥
𝑄
1
𝐷
𝑥

− 𝐷
𝑇

𝑥ℎ
1

𝑄
1
𝐷
𝑥ℎ
1

+ 𝐷
𝑇

𝑥
𝑄
2
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
2

𝑄
2
𝐷
𝑥ℎ
2

+ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
1
𝐷
̇𝑥
+ (ℎ
2
− ℎ
1
)
2

𝐷
𝑇

̇𝑥
𝑅
2
𝐷
̇𝑥

− (𝐷
𝑥
− 𝐷
𝑥ℎ
2

)
𝑇

𝑅
1
(𝐷
𝑥
− 𝐷
𝑥ℎ
2

)

− [
𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ

𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

× [
𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ

𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

]]𝑍 (𝑡)

= 𝑍
𝑇

(𝑡) Ω𝑍 (𝑡) ,

(18)

whereΩ is defined as

Ω ≜ 𝐷
𝑇

𝑥
𝑃𝐷
̇𝑥
+ 𝐷
𝑇

̇𝑥
𝑃𝐷
𝑥
+ 2𝐷
𝑇

𝑓
𝑆
1
𝐷
̇𝑥

− 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝑆
1
𝐷
̇𝑥
+ 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑝
𝑆
2
𝐷
̇𝑥
− 𝐷
𝑇

𝑓
𝑆
2
𝐷
̇𝑥

+ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
1
𝐷
̇𝑥
+ (ℎ
2
− ℎ
1
)
2

𝐷
𝑇

̇𝑥
𝑅
2
𝐷
̇𝑥

− (𝐷
𝑥
− 𝐷
𝑥ℎ
2

)
𝑇

𝑅
1
(𝐷
𝑥
− 𝐷
𝑥ℎ
2

)

+ 𝐷
𝑇

𝑥
𝑆
3
𝐷
𝑥
− (1 − 𝛾)𝐷

𝑇

𝑥ℎ
𝑆
3
𝐷
𝑥ℎ
+ 𝐷
𝑇

𝑓
𝑆
4
𝐷
𝑓

− (1 − 𝛾)𝐷
𝑇

𝑓ℎ
𝑆
4
𝐷
𝑓ℎ

+ 𝐷
𝑇

𝑥
𝑄
1
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
1

𝑄
1
𝐷
𝑥ℎ
1

+ 𝐷
𝑇

𝑥
𝑄
2
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
2

𝑄
2
𝐷
𝑥ℎ
2

− [
𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ

𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

] [
𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ

𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

] .

(19)

Then by (7), (18), and (19), we have

𝑉 (𝑡) ≤ 𝑍
𝑇

(𝑡) Ω𝑍 (𝑡) + (𝑍
𝑇

(𝑡) (𝐿
𝑝
𝐷
𝑥
− 𝐷
𝑓
)
𝑇

× 𝑆
1
(𝐷
𝑓
− 𝐿
𝑚
𝐷
𝑥
)𝑍 (𝑡))

+ 𝑍
𝑇

(𝑡) (𝐿
𝑝
𝐷
𝑥ℎ
− 𝐷
𝑓ℎ
)
𝑇

𝑆
2
(𝐷
𝑓ℎ

− 𝐿
𝑚
𝐷
𝑥ℎ
)𝑍 (𝑡)

= 𝑍
𝑇

(𝑡) Θ𝑍 (𝑡) .

(20)

It is clear that if (9) and (20) hold, then, for any 𝑍(𝑡) ̸= 0, we
have 𝑉(𝑡) < 0. It follows that

𝑉 (𝑡) ≤ 𝑉 (0) . (21)

From (15), we get

𝑉 (0) = 𝑥
𝑇

(0) 𝑃𝑥 (0) + 2

𝑛

∑

𝑖=1

∫

𝑥
𝑖
(0)

0

[𝑠
1,𝑖
(𝑓
𝑖
(𝑤) − 𝐿

𝑚,𝑖
𝑥
𝑖
)

+𝑠
2,𝑖
(𝐿
𝑝,𝑖
𝑥
𝑖
− 𝑓
𝑖
(𝑤))] 𝑑𝑤

+ ℎ
2
∫

0

−ℎ
2

∫

0

𝜃

̇𝑥
𝑇

(𝑤) 𝑅
1
̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃

+ (ℎ
2
− ℎ
1
) ∫

−ℎ
2

−ℎ
1

∫

0

𝜃

̇𝑥
𝑇

(𝑤) 𝑅
2
̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃

+ ∫

0

−ℎ
1

[𝑥
𝑇

(𝑤)𝑄
1
𝑥 (𝑤)] 𝑑𝑤

+ ∫

0

−ℎ
2

[𝑥
𝑇

(𝑤)𝑄
2
𝑥 (𝑤)] 𝑑𝑤

+ ∫

0

−ℎ

[𝑥
𝑇

(𝑤) 𝑆
3
𝑥 (𝑤) + 𝑓

𝑇

(𝑥 (𝑤)) 𝑆
4
𝑓 (𝑥 (𝑤))] 𝑑𝑤

≤ [𝜆max (𝑃) + ℎ
2
𝜆max (𝑆3) + ℎ

2
𝜆max (𝑆4) 𝜆max (𝐿

2

𝑝
)

+ ℎ
1
𝜆max (𝑄1) + ℎ

2
𝜆max (𝑄2)

+ 2 (𝜆max (𝑆1𝐿𝑝) − 𝜆min (𝑆1𝐿𝑚)

+𝜆max (𝑆2𝐿𝑝) − 𝜆min (𝑆2𝐿𝑚))]
𝜙


2

+ 𝜆max (𝑅2) (ℎ1 − ℎ
2
) ∫

−ℎ
2

−ℎ
1

∫

0

𝜃

̇𝑥
𝑇

(𝑤) ̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃

+ 𝜆max (𝑅1) ℎ2 ∫
0

−ℎ
2

∫

0

𝜃

̇𝑥
𝑇

(𝑤) ̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃.

(22)

By a similar method in [9], we have

̇𝑥
𝑇

(𝑤) ̇𝑥 (𝑤) ≤ 3 [𝜆max (𝐶
𝑇

𝐶) + 𝜆max (𝐴
𝑇

𝐴)𝜆max (𝐿
2

𝑝
)

+𝜆max (𝐵
𝑇

𝐵) 𝜆max (𝐿
2

𝑝
)]
𝜙


2

.

(23)

Thus, 𝑉(0) ≤ Δ‖𝜙‖
2, where Δ is defined in (13).
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Moreover,

𝑉 (𝑡) ≥ 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ≥ 𝜆min (𝑃) ‖𝑥(𝑡)‖
2

. (24)

Therefore, we have

‖𝑥 (𝑡)‖ ≤ √
Δ

𝜆min (𝑃)

𝜙
 ,

(25)

which shows that system (5) is globally stable.This completes
the proof.

Remark 3. Theorem 2 presents a stability criterion for
the delayed neural network. When coping with (ℎ

2
−

ℎ
1
) ∫
−ℎ
1

−ℎ
2

∫
𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤)𝑅
2
̇𝑥(𝑤)𝑑𝑤𝑑𝜃, instead of using Jensen’s

inequality directly, we use a substep which can make the
method less conservative, which can be noticed as recipro-
cally convex combination approach in [36]. It follows that

−
ℎ
2
− ℎ
1

ℎ
2
− ℎ

((𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))
𝑇

𝑅
2

× (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)))

−
ℎ
2
− ℎ
1

ℎ − ℎ
1

((𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

𝑇

𝑅
2

× (𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ)))

= −
ℎ − ℎ
1

ℎ
2
− ℎ

((𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))
𝑇

𝑅
2

× (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)))

− ((𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))
𝑇

𝑅
2

× (𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)))

−
ℎ
2
− ℎ

ℎ − ℎ
1

((𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

𝑇

𝑅
2

× (𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ)))

− ((𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

𝑇

𝑅
2

× (𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ)))

= −

[
[
[
[
[

[

√
ℎ
2
− ℎ

ℎ − ℎ
1

(𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

−√
ℎ − ℎ
1

ℎ
2
− ℎ

(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))

]
]
]
]
]

]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

×

[
[
[
[
[

[

√
ℎ
2
− ℎ

ℎ − ℎ
1

(𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

−√
ℎ − ℎ
1

ℎ
2
− ℎ

(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))

]
]
]
]
]

]

− [
𝑥(𝑡 − ℎ

1
) − 𝑥(𝑡 − ℎ)

𝑥(𝑡 − ℎ) − 𝑥(t − ℎ
2
)
]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

× [
𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
]

≤ − [
𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

× [
𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
] .

(26)

If no substep is taken, it will follow that

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ
1

𝑡−ℎ
2

̇𝑥
𝑇

(𝑤) 𝑅
2
̇𝑥 (𝑤) 𝑑𝑤

≤ − [𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ) + 𝑥 (𝑡 − ℎ)

−𝑥 (𝑡 − ℎ
2
)]
𝑇

𝑅
2

× [𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ) + 𝑥 (𝑡 − ℎ)

−𝑥 (𝑡 − ℎ
2
)]

= −[
𝑥(𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥(𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
]

𝑇

[
𝑅
2
𝑅
2

𝑅
2
𝑅
2

]

× [
𝑥 (𝑡 − ℎ

1
) − 𝑥 (𝑡 − ℎ)

𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
)
] .

(27)

We can see that compared to (27), (26) is relatively free
since T could be more than nonnegative, and consequently,
its LMI could suffer bigger delay. For the same reason, if the
middle term could be found between

−

[
[
[
[
[

[

√
ℎ
2
− ℎ

ℎ − ℎ
1

(𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

−√
ℎ − ℎ
1

ℎ
2
− ℎ

(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))

]
]
]
]
]

]

𝑇

[
𝑅
2

𝑇

∗ 𝑅
2

]

×

[
[
[
[
[

[

√
ℎ
2
− ℎ

ℎ − ℎ
1

(𝑥 (𝑡 − ℎ
1
) − 𝑥 (𝑡 − ℎ))

−√
ℎ − ℎ
1

ℎ
2
− ℎ

(𝑥 (𝑡 − ℎ) − 𝑥 (𝑡 − ℎ
2
))

]
]
]
]
]

]

(28)

and 0, conservatism would be further reduced.

Remark 4. Based on Theorem 2, we can determine the max-
imum admissible delay ℎ

1
and ℎ

2
at a known upper bound

of ℎ̇. Moreover, the relationship between 𝑓(𝑥) and 𝑥 could be
specified using 𝐿

𝑚
and 𝐿

𝑝
. As to the case when ℎ̇ is unknown,

we can refer to Corollary 5, where some changes are made on
the LKF.

Corollary 5. Suppose that the time delay ℎ in reference system
(5) satisfies 0 < ℎ

1
< ℎ < ℎ

2
. Under the condition given by (6)

and (7), if there exist matrices 𝑃 > 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑅

1
> 0,

𝑅
2
> 0, 𝐾

1
> 0, 𝐾

2
> 0, 𝑆

1
≜ diag(𝑠

1,1
, 𝑠
1,2
, . . . , 𝑠

1,𝑛
) > 0,
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𝑆
2
≜ diag(𝑠

2,1
, 𝑠
2,2
, . . . , 𝑠

2,𝑛
) > 0, and 𝑇 such that the following

matrix inequalities hold:

Θ̃ ≜ Υ̃
1
+ Υ̃
2
+ Υ̃
3
+ Υ̃
4
< 0,

Ψ̃ ≜ [
𝑅
2

𝑇

∗ 𝑅
2

] ≥ 0,

(29)

where Υ̃
1
, Υ̃
2
, Υ̃
3
, and Υ̃

4
are defined as

Υ̃
1
≜ 𝐷
𝑇

𝑥
𝑃𝐷
̇𝑥
+ 𝐷
𝑇

̇𝑥
𝑃𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝑄
1
𝐷
𝑥

− 𝐷
𝑇

𝑥ℎ
1

𝑄
1
𝐷
𝑥ℎ
1

+ 𝐷
𝑇

𝑥
𝑄
2
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
2

𝑄
2
𝐷
𝑥ℎ
2

,

Υ̃
2
≜ 2𝐷
𝑇

𝑓
𝑆
1
𝐷
̇𝑥
− 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝑆
1
𝐷
̇𝑥

− 2𝐷
𝑇

𝑓
𝑆
2
𝐷
̇𝑥
+ 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑝
𝑆
2
𝐷
̇𝑥
,

Υ̃
3
≜ 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ
− 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐷
𝑓ℎ

− 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ

+ 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐷
𝑓ℎ

+ 𝐷
𝑇

𝑓
𝐾
1
𝐿
𝑝
𝐷
𝑥
− 𝐷
𝑇

𝑓
𝐾
1
𝐷
𝑓

− 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐿
𝑝
𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐷
𝑓
,

Υ̃
4
≜ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
1
𝐷
̇𝑥
− (𝐷
𝑥
− 𝐷
𝑥ℎ
2

)
𝑇

𝑅
1
(𝐷
𝑥
− 𝐷
𝑥ℎ
2

)

+ (ℎ
2
− ℎ
1
)
2

𝐷
𝑇

̇𝑥
𝑅
2
𝐷
̇𝑥

− (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
1

)
𝑇

𝑅
2
(𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
1

)

− (𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)
𝑇

𝑅
2
(𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)

− (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

)
𝑇

𝑇
𝑇

(𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ
)

− (𝐷
𝑥ℎ
1

− 𝐷
𝑥ℎ
)
𝑇

𝑇 (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

) ,

(30)

where 𝐷
̇𝑥
, 𝐷
𝑥
, 𝐷
𝑥ℎ
, 𝐷
𝑥ℎ
1

, 𝐷
𝑥ℎ
2

, 𝐷
𝑓
, and 𝐷

𝑓ℎ
are defined in

(11), then system (5) is globally stable. Moreover,

‖𝑥 (𝑡)‖ ≤ √
Δ̃

𝜆min (𝑃)

𝜙
 ,

(31)

where Δ̃ is defined as

Δ̃ ≜ 𝜆max (𝑃) + ℎ
1
𝜆max (𝑄1) + ℎ

2
𝜆max (𝑄2)

+ 2 (𝜆max (𝑆1𝐿𝑝) − 𝜆min (𝑆1𝐿𝑚)

+𝜆max (𝑆2𝐿𝑝) − 𝜆min (𝑆2𝐿𝑚))

+3 [ℎ
3

2
𝜆max (𝑅1) + (ℎ

2
− ℎ
1
)
3

𝜆max (𝑅2)]

× [𝜆max (𝐶
𝑇

𝐶) + 𝜆max (𝐴
𝑇

𝐴)𝜆max (𝐿
2

𝑝
)

+𝜆max (𝐵
𝑇

𝐵) 𝜆max (𝐿
2

𝑝
)] .

(32)

Proof. We choose an LKF as

�̃� (𝑡) ≜ �̃�
1
(𝑡) + �̃�

2
(𝑡) + �̃�

3
(𝑡) , (33)

where

�̃�
1
(𝑡) ≜ 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 2

𝑛

∑

𝑖=1

𝑠
1,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑓
𝑖
(𝑠) − 𝑙

𝑚,𝑖
𝑥
𝑖
) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑠
2,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑙
𝑝,𝑖
𝑥
𝑖
− 𝑓
𝑖
(𝑠)) 𝑑𝑠,

�̃�
2
(𝑡) ≜ ∫

𝑡

𝑡−ℎ
1

𝑥
𝑇

(𝑤)𝑄
1
𝑥 (𝑤) 𝑑𝑤

+ ∫

𝑡

𝑡−ℎ
2

𝑥
𝑇

(𝑤)𝑄
2
𝑥 (𝑤) 𝑑𝑤,

�̃�
3
(𝑡) ≜ ℎ

2
∫

0

−ℎ
2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤) 𝑅
1
̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃

+ (ℎ
2
− ℎ
1
) ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤) 𝑅
2
̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃.

(34)

Since the result can be obtained directly fromTheorem 2,
the rest of the proof for Corollary 5 is omitted.

Remark 6. Corollary 5 presents the stability criterion when
the upper bound of ℎ̇ is unknown. Since 𝛾 is unknown
and under current conditions, it cannot be estimated or
substituted, the first term in �̃�

2
(𝑡) of ∫0

−ℎ

[𝑥
𝑇

(𝑤)𝑆
3
𝑥(𝑤) +

𝑓
𝑇

(𝑥(𝑤))𝑆
4
𝑓(𝑥(𝑤))]𝑑𝑤 should be changed or eliminated

from the LKF. In Corollary 5, the term is eliminated because
the other two terms in �̃�

2
(𝑡) can serve the same function, and

it is unnecessary to keep any extra 𝑥(𝑡 − ℎ) or 𝑓(𝑥(𝑡 − ℎ)).
The rest of the terms were reserved because they will not
generate any ℎ̇-related terms when estimating the derivative
of the LKF.

Corollary 7. Suppose that the time delay ℎ in reference system
(5) satisfies 0 < ℎ < ℎ

2
and 0 ≤ ℎ̇ ≤ 𝛾. Under the condition

given by (6) and (7), if there exist matrices 𝑃 > 0, 𝑄
2
> 0,

𝑅
1
> 0, 𝑅

2
> 0, 𝐾

1
> 0, 𝐾

2
> 0, 𝑆

𝑖
> 0, 𝑖 = 1, . . . , 4,

𝑆
1
≜ diag(𝑠

1,1
, 𝑠
1,2
, . . . , 𝑠

1,𝑛
), 𝑆
2
≜ diag(𝑠

2,1
, 𝑠
2,2
, . . . , 𝑠

2,𝑛
), and

𝑇 such that the following matrix inequalities hold:

Θ̂ ≜ Υ̂
1
+ Υ̂
2
+ Υ̂
3
+ Υ̂
4
< 0,

Ψ̂ ≜ [
𝑅
2

𝑇

∗ 𝑅
2

] ≥ 0,

(35)

where Υ̂
1
, Υ̂
2
, Υ̂
3
, and Υ̂

4
are defined as

Υ̂
1
≜ 𝐷
𝑇

𝑥
𝑃𝐷
̇𝑥
+ 𝐷
𝑇

̇𝑥
𝑃𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝑄
2
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
2

𝑄
2
𝐷
𝑥ℎ
2

,

Υ̂
2
≜ 𝐷
𝑇

𝑥
𝑆
3
𝐷
𝑥
− (1 − 𝛾)𝐷

𝑇

𝑥ℎ
𝑆
3
𝐷
𝑥ℎ
+ 𝐷
𝑇

𝑓
𝑆
4
𝐷
𝑓

− (1 − 𝛾)𝐷
𝑇

𝑓ℎ
𝑆
4
𝐷
𝑓ℎ

+ 2𝐷
𝑇

𝑓
𝑆
1
𝐷
̇𝑥
− 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝑆
1
𝐷
̇𝑥

− 2𝐷
𝑇

𝑓
𝑆
2
𝐷
̇𝑥
+ 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑝
𝑆
2
𝐷
̇𝑥
,
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Υ̂
3
≜ 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ
− 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐷
𝑓ℎ

− 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ

+ 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐷
𝑓ℎ

+ 𝐷
𝑇

𝑓
𝐾
1
𝐿
𝑝
𝐷
𝑥
− 𝐷
𝑇

𝑓
𝐾
1
𝐷
𝑓

− 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐿
𝑝
𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐷
𝑓
,

Υ̂
4
≜ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
1
D̂
̇𝑥
− (𝐷
𝑥
− 𝐷
𝑥ℎ
2

)
𝑇

𝑅
1
(𝐷
𝑥
− 𝐷
𝑥ℎ
2

)

+ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
2
𝐷
̇𝑥
− (𝐷
𝑥ℎ
− 𝐷
𝑥
)
𝑇

𝑅
2
(𝐷
𝑥ℎ
− 𝐷
𝑥
)

− (𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)
𝑇

𝑅
2
(𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)

− (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

)
𝑇

𝑇
𝑇

(𝐷
𝑥
− 𝐷
𝑥ℎ
)

− (𝐷
𝑥
− 𝐷
𝑥ℎ
)
𝑇

𝑇 (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

) ,

(36)

where𝐷
̇𝑥
,𝐷
𝑥
,𝐷
𝑥ℎ
,𝐷
𝑥ℎ
2

,𝐷
𝑓
, and𝐷

𝑓ℎ
are defined as

𝐷
̇𝑥
≜ [−𝐶 0 0 𝐴 𝐵] ,

𝐷
𝑥
≜ [𝐼 0 0 0 0] ,

𝐷
𝑥ℎ

≜ [0 𝐼 0 0 0] ,

𝐷
𝑥ℎ
2

≜ [0 0 𝐼 0 0] ,

𝐷
𝑓
≜ [0 0 0 𝐼 0] ,

𝐷
𝑓ℎ

≜ [0 0 0 0 𝐼] ,

(37)

then system (5) is globally stable. Moreover,

‖𝑥 (𝑡)‖ ≤ √
Δ̂

𝜆min (𝑃)

𝜙
 ,

(38)

where Δ̂ is defined as

Δ̂ ≜ 𝜆max (𝑃) + ℎ
2
𝜆max (𝑆3) + ℎ

2
𝜆max (𝑆4) 𝜆max (𝐿

2

𝑝
)

+ ℎ
2
𝜆max (𝑄2) + 2 (𝜆max (𝑆1𝐿𝑝) − 𝜆min (𝑆1𝐿𝑚)

+𝜆max (𝑆2𝐿𝑝) − 𝜆min (𝑆2𝐿𝑚))

+ 3ℎ
3

2
𝜆max (𝑅1 + 𝑅

2
) (𝜆max (𝐶

𝑇

𝐶)

+ 𝜆max (𝐴
𝑇

𝐴)𝜆max (𝐿
2

𝑝
)

+ 𝜆max (𝐵
𝑇

𝐵) 𝜆max (𝐿
2

𝑝
)) .

(39)

Proof. We choose an LKF as

�̂� (𝑡) ≜ �̂�
1
(𝑡) + �̂�

2
(𝑡) + �̂�

3
(𝑡) , (40)

where

�̂�
1
(𝑡) ≜ 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 2

𝑛

∑

𝑖=1

𝑠
1,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑓
𝑖
(𝑠) − 𝑙

𝑚,𝑖
𝑥
𝑖
) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑠
2,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑙
𝑝,𝑖
𝑥
𝑖
− 𝑓
𝑖
(𝑠)) 𝑑𝑠,

�̂�
2
(𝑡) ≜ ∫

𝑡

𝑡−ℎ

[𝑥(𝑤)
𝑇

𝑆
3
𝑥 (𝑤) + 𝑓

𝑇

(𝑥 (𝑤)) 𝑆
4
𝑓 (𝑥 (𝑤))] 𝑑𝑤

+ ∫

𝑡

𝑡−ℎ
2

𝑥
𝑇

(𝑤)𝑄
2
𝑥 (𝑤) 𝑑𝑤,

�̂�
3
(𝑡) ≜ ℎ

2
∫

0

−ℎ
2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤) (𝑅
1
+ 𝑅
2
) ̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃.

(41)

Since the result can be obtained directly fromTheorem 2,
the rest of the proof for Corollary 7 is omitted.

Remark 8. Corollary 7 presents the stability criterion when
the lower bound ℎ

1
is zero. If ℎ

1
is zero, the second term

in �̂�
2
(𝑡) of ∫

𝑡

𝑡−ℎ
1

𝑥
𝑇

(𝑤)𝑄
1
𝑥(𝑤)𝑑𝑤 should be changed or

eliminated from the LKF. In Corollary 7, the term is elim-
inated because there is no need to introduce an extra
variable 𝑄

1
, while 𝑃 and other matrices can serve the

same function. Moreover, ̇𝑥
𝑇

(𝑤)𝑅
1
̇𝑥(𝑤)𝑑𝑤𝑑𝜃 and (ℎ

2
−

ℎ
1
) ∫
−ℎ
1

−ℎ
2

∫
𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤)𝑅
2
̇𝑥(𝑤)𝑑𝑤𝑑𝜃 in �̂�

3
(𝑡) can be merged

because when ℎ
1
is zero, they have the same form. But 𝑅

1
and

𝑅
2
can be reserved, becausewhen estimating the upper bound

of the LKF, it is still useful to introduce a 𝑇 like Theorem 2.

Corollary 9. Suppose that the time delay ℎ in reference system
(5) satisfies 0 < ℎ < ℎ

2
. Under the condition given by (6) and

(7), if there exist matrices 𝑃 > 0, 𝑄
2
> 0, 𝑅

1
> 0, 𝑅

2
> 0,

𝐾
1
> 0, 𝐾

2
> 0, 𝑆

𝑖
> 0, 𝑖 = 1, 2, 𝑆

𝑖
> 0, 𝑖 = 1, . . . , 4,

𝑆
1
≜ diag(𝑠

1,1
, 𝑠
1,2
, . . . , 𝑠

1,𝑛
), 𝑆
2
≜ diag(𝑠

2,1
, 𝑠
2,2
, . . . , 𝑠

2,𝑛
), and

𝑇 such that the following matrix inequalities hold:

Θ ≜ Υ
1
+ Υ
2
+ Υ
3
+ Υ
4
< 0,

Ψ ≜ [
𝑅
2

𝑇

∗ 𝑅
2

] ≥ 0,

(42)

where Υ
1
, Υ
2
, Υ
3
, and Υ

4
are defined as

Υ
1
≜ 𝐷
𝑇

𝑥
𝑃𝐷
̇𝑥
+ 𝐷
𝑇

̇𝑥
𝑃𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝑄
2
𝐷
𝑥
− 𝐷
𝑇

𝑥ℎ
2

𝑄
2
𝐷
𝑥ℎ
2

,

Υ
2
≜ 2𝐷
𝑇

𝑓
𝑆
1
𝐷
̇𝑥
− 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝑆
1
𝐷
̇𝑥

− 2𝐷
𝑇

𝑓
𝑆
2
𝐷
̇𝑥
+ 2𝐷
𝑇

𝑥
𝐿
𝑇

𝑝
𝑆
2
𝐷
̇𝑥
,

Υ
3
≜ 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ
− 𝐷
𝑇

𝑓ℎ
𝐾
2
𝐷
𝑓ℎ

− 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐿
𝑝
𝐷
𝑥ℎ

+ 𝐷
𝑇

𝑥ℎ
𝐿
𝑇

𝑚
𝐾
2
𝐷
𝑓ℎ

+ 𝐷
𝑇

𝑓
𝐾
1
𝐿
𝑝
𝐷
𝑥
− 𝐷
𝑇

𝑓
𝐾
1
𝐷
𝑓

− 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐿
𝑝
𝐷
𝑥
+ 𝐷
𝑇

𝑥
𝐿
𝑇

𝑚
𝐾
1
𝐷
𝑓
,
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Υ
4
≜ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
1
𝐷
̇𝑥
− (𝐷
𝑥
− 𝐷
𝑥ℎ
2

)
𝑇

𝑅
1
(𝐷
𝑥
− 𝐷
𝑥ℎ
2

)

+ ℎ
2

2
𝐷
𝑇

̇𝑥
𝑅
2
𝐷
̇𝑥
− (𝐷
𝑥ℎ
− 𝐷
𝑥
)
𝑇

𝑅
2
(𝐷
𝑥ℎ
− 𝐷
𝑥
)

− (𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)
𝑇

𝑅
2
(𝐷
𝑥ℎ
2

− 𝐷
𝑥ℎ
)

− (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

)
𝑇

𝑇
𝑇

(𝐷
𝑥
− 𝐷
𝑥ℎ
)

− (𝐷
𝑥
− 𝐷
𝑥ℎ
)
𝑇

𝑇 (𝐷
𝑥ℎ
− 𝐷
𝑥ℎ
2

) ,

(43)

where 𝐷
̇𝑥
, 𝐷
𝑥
, 𝐷
𝑥ℎ
, 𝐷
𝑥ℎ
2

, 𝐷
𝑓
, and 𝐷

𝑓ℎ
are defined in (37),

then system (5) is globally stable. Moreover,

‖𝑥 (𝑡)‖ ≤ √
Δ

𝜆min (𝑃)

𝜙
 ,

(44)

where Δ is defined as

Δ ≜ 2 (𝜆max (𝑆1𝐿𝑝) − 𝜆min (𝑆1𝐿𝑚)

+𝜆max (𝑆2L𝑝) − 𝜆min (𝑆2𝐿𝑚))

+ 𝜆max (𝑃) + ℎ
2
𝜆max (𝑄2)

+ 3ℎ
3

2
𝜆max (𝑅1 + 𝑅

2
) (𝜆max (𝐶

𝑇

𝐶)

+ 𝜆max (𝐴
𝑇

𝐴)𝜆max (𝐿
2

𝑝
)

+𝜆max (𝐵
𝑇

𝐵) 𝜆max (𝐿
2

𝑝
)) .

(45)

Proof. We choose an LKF as

𝑉 (𝑡) ≜ 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (46)

where

𝑉
1
(𝑡) ≜ 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 2

𝑛

∑

𝑖=1

𝑠
1,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑓
𝑖
(𝑠) − 𝑙

𝑚,𝑖
𝑥
𝑖
) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑠
2,𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑙
𝑝,𝑖
𝑥
𝑖
− 𝑓
𝑖
(𝑠)) 𝑑𝑠,

𝑉
2
(𝑡) ≜ ∫

𝑡

𝑡−ℎ
2

𝑥
𝑇

(𝑤)𝑄
2
𝑥 (𝑤) 𝑑𝑤,

𝑉
3
(𝑡) ≜ ℎ

2
∫

0

−ℎ
2

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

(𝑤) (𝑅
1
+ 𝑅
2
) ̇𝑥 (𝑤) 𝑑𝑤𝑑𝜃.

(47)

Since the result can be obtained directly fromTheorem 2,
the rest of the proof for Corollary 9 is omitted.

Remark 10. Corollary 9 presents the stability criterion when
ℎ
1
is zero and the upper bound of time delay’s derivative, or

𝛾, is unknown. If ℎ
1
is zero and 𝛾 is unknown, the first and

second terms of ∫0
−ℎ

[𝑥
𝑇

(𝑤)𝑆
3
𝑥(𝑤) + 𝑓

𝑇

(𝑥(𝑤))𝑆
4
𝑓(𝑥(𝑤))]𝑑𝑤

and ∫
𝑡

𝑡−ℎ
1

𝑥
𝑇

(𝑤)𝑄
1
𝑥(𝑤)𝑑𝑤 in 𝑉

2
(𝑡) should be eliminated

from the LKF.There is no need to introduce an extra variable
𝑄
1
or keep any 𝑥(𝑡 − ℎ) or 𝑓(𝑥(𝑡 − ℎ)), and the reason is the

same with Corollaries 5 and 7. Moreover, the terms in 𝑉
3
(𝑡)

can be merged, while 𝑅
1
and 𝑅

2
should be reserved for the

same reason with Corollary 7.

4. Numerical Examples

In this section, examples are provided to demonstrate the
advantages of the proposed stability criteria.

Example 11. Consider the delayed neural network in (5) with
the following parameters, which has also been investigated by
[13, 39]:

𝐶 = [
2 0

0 2
] , 𝐴 = [

1 1

−1 −1
] ,

𝐵 = [
0.88 1

1 1
] , 𝐿

𝑝
= [

0.4 0

0 0.8
] ,

𝐿
𝑚
= [

0 0

0 0
] .

(48)

Our objective is to find the allowable maximum time delay
ℎ
2
such that the system is stable under different ℎ

1
and ℎ̇. The

simulation results from the available literature are shown in
Table 1, along with results fromTheorem 2 and Corollaries 5,
7, and 9. It is clear that the conservatism reduction proves to
be more obvious than those in [23, 24, 37, 38].

In addition, when 𝐶,𝐴, 𝐵, and 𝐿
𝑝
take the same values as

(48), and 𝐿
𝑚
takes a different value as

𝐿
𝑚
= [

0.1 0

0 0.2
] , (49)

results under the same systemwith (49) are shown in Table 2.
Since 𝐿

𝑚
is specified in (49), allowable maximum time delay

ℎ
2
is expected to be different from those of (48). As shown

in Table 2, with ℎ
1
getting bigger, the difference between ℎ

2

and ℎ
1
becomes smaller, to ensure stability of (49). Moreover,

allowable maximum ℎ
2
of (49) is apparently smaller than

their counterparts of (48) because 𝐿
𝑚
in (49) is a positive

definite, while its counterpart in (48) is zero, which means
that 𝑓(𝑥(𝑡)) in (49) is more closely related to 𝑥(𝑡) than (48).

Example 12. Consider the delayed system in (5) with

𝐶 = [

[

1 −1.5 0

−0.6 −0.2 1

0 −1 1

]

]

, 𝐴 = [

[

0.2 0.1 0.1

−0.1 0.1 0

0 0.1 −0.5

]

]

,

𝐿
𝑝
= [

[

1 0 0

0 1 0

0 0 1

]

]

, 𝐵 = [

[

−0.04 0.2 0.038

−0.03 0.1 0.024

0.01 −0.1 −0.014

]

]

,

𝐿
𝑚
= [

[

0.1 0 0

0 0.1 0

0 0 0.1

]

]

.

(50)
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Table 1: Allowable maximum time delay ℎ
2
under different ℎ

1
and 𝛾 in this paper along with results from other papers for comparison.

Methods ℎ
1

𝛾 = 0.8 𝛾 = 0.9 Unknown 𝛾
[37] ℎ

1
= 0 ℎ

2
= 2.3534 ℎ

2
= 1.605 ℎ

2
= 1.5103

[37] ℎ
1
= 1 ℎ

2
= 3.2575 ℎ

2
= 2.4769 ℎ

2
= 2.3606

[37] ℎ
1
= 2 ℎ

2
= 4.2552 ℎ

2
= 3.4769 ℎ

2
= 3.3606

[23] ℎ
1
= 0 ℎ

2
= 1.2281 ℎ

2
= 0.8636 ℎ

2
= 0.8298

[24] ℎ
1
= 0 ℎ

2
= 1.6831 ℎ

2
= 0.1493 ℎ

2
= 1.088

[38] ℎ
1
= 0 ℎ

2
= 2.8854 ℎ

2
= 1.9631 ℎ

2
= 1.781

ℎ
1
= 0 ℎ

2
= 5.088 (Corollary 7) ℎ

2
= 4.881 (Corollary 7) ℎ

2
= 5.023 (Corollary 9)

ℎ
1
= 1 ℎ

2
= 4.751 (Theorem 2) ℎ

2
= 4.066 (Theorem 2) ℎ

2
= 5.22 (Corollary 5)

ℎ
1
= 2 ℎ

2
= 4.689 (Theorem 2) ℎ

2
= 4.377 (Theorem 2) ℎ

2
= 4.788 (Corollary 5)

Table 2: Allowable maximum time delay ℎ
2
of (49) under different ℎ

1
and 𝛾.

Theorem 2 𝛾 = 0.3 𝛾 = 0.6 𝛾 = 0.9

ℎ
1
= 2 ℎ

2
= 3.836 ℎ

2
= 3.664 ℎ

2
= 4.135

ℎ
1
= 2.5 ℎ

2
= 4.152 ℎ

2
= 4.21 ℎ

2
= 3.904

ℎ
1
= 3 ℎ

2
= 3.355 ℎ

2
= 3.687 ℎ

2
= 3.908

Table 3: Allowable maximum time delay ℎ
2
of (50) under different ℎ

1
and 𝛾.

Theorem 2 𝛾 = 0 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.8 𝛾 = 1

ℎ
1
= 0.1 ℎ

2
= 1.064 ℎ

2
= 1.019 ℎ

2
= 1.044 ℎ

2
= 1.075 ℎ

2
= 1.062

ℎ
1
= 0.2 ℎ

2
= 0.992 ℎ

2
= 1.014 ℎ

2
= 1.021 ℎ

2
= 1.044 ℎ

2
= 1.076

ℎ
1
= 0.3 ℎ

2
= 0.987 ℎ

2
= 0.988 ℎ

2
= 1.008 ℎ

2
= 1.0151 ℎ

2
= 1.0171

ℎ
1
= 0.9 ℎ

2
= 0.995 ℎ

2
= 1.002 ℎ

2
= 1.008 ℎ

2
= 1.015 ℎ

2
= 1.011

Theorem 2 𝛾 = 1.2 𝛾 = 1.5 𝛾 = 1.8 𝛾 = 2 𝛾 = 5

ℎ
1
= 0.1 ℎ

2
= 1.072 ℎ

2
= 1.0811 ℎ

2
= 1.103 ℎ

2
= 1.101 ℎ

2
= 1.114

ℎ
1
= 0.2 ℎ

2
= 1.041 ℎ

2
= 1.055 ℎ

2
= 1.062 ℎ

2
= 1.054 ℎ

2
= 1.088

ℎ
1
= 0.3 ℎ

2
= 1.013 ℎ

2
= 1.036 ℎ

2
= 1.033 ℎ

2
= 1.036 ℎ

2
= 1.048

ℎ
1
= 0.9 ℎ

2
= 1.013 ℎ

2
= 1.01 ℎ

2
= 1.015 ℎ

2
= 1.017 ℎ

2
= 1.004

Table 4: Allowable maximum time delay ℎ
2
of (50) under different ℎ

1
and 𝛾.

Corollary 5 ℎ
1
= 0.1 ℎ

1
= 0.15 ℎ

1
= 0.2 ℎ

1
= 0.25 ℎ

1
= 0.3

Unknown 𝛾 ℎ
2
= 1.022 ℎ

2
= 1.015 ℎ

2
= 0.981 ℎ

2
= 0.972 ℎ

2
= 0.971

Corollary 5 ℎ
1
= 0.5 ℎ

1
= 0.9

Unknown 𝛾 ℎ
2
= 0.983 ℎ

2
= 0.995

Corollary 7 𝛾 = 0 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 0.8 𝛾 = 1

ℎ
1
= 0 ℎ

2
= 1.097 ℎ

2
= 1.107 ℎ

2
= 1.111 ℎ

2
= 1.1191 ℎ

2
= 1.121

Corollary 7 𝛾 = 1.2 𝛾 = 1.5 𝛾 = 1.8 𝛾 = 2 𝛾 = 5

ℎ
1
= 0 ℎ

2
= 1.133 ℎ

2
= 1.132 ℎ

2
= 1.142 ℎ

2
= 1.1272 ℎ

2
= 1.1471

Corollary 9 Unknown 𝛾
ℎ
1
= 0 ℎ

2
= 1.089

This example is used to demonstrate the effectiveness of
Theorem 2 in Table 3 and Corollaries 5, 7, and 9 in Table 4.
Both 𝐿

𝑝
and 𝐿

𝑚
have taken positive definite values, and

allowable maximum time delay ℎ
2
under different ℎ

1
and 𝛾

is presented in Tables 3 and 4.
As seen in Table 3, values of ℎ

2
change periodically with

different 𝛾 under the same ℎ
1
, but the difference between ℎ

2

and ℎ
1
decreases readily with increasing ℎ

1
under the same

𝛾. It can be expected that whatever value 𝛾 takes, when ℎ
1

is big enough, ℎ
1
and ℎ

2
would converge to a single point.

Moreover, it can be seen in Table 3 that the point is the same
with the convergence point under 𝛾 = 0, which is also the
allowable maximum constant time delay.

Table 4 is used to demonstrate the effectiveness of Corol-
laries 5, 7, and 9. Allowable maximum time delay is presented
under unknown 𝛾 for Corollary 5, ℎ

1
= 0 for Corollary 7,

and both unknown 𝛾 and ℎ
1
= 0 for Corollary 9. It can be

seen that when 𝛾 is unknown, ℎ
2
is apparently smaller than

otherwise. Moreover, sums of ℎ
1
and ℎ

2
are about the same

with those under ℎ
1

= 0.1 but smaller than those under
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ℎ
1
≥ 0.2, which signifies that ℎ

1
and ℎ

2
have a near-linear

relationship under 0 ≤ ℎ
1
≤ 0.1.

5. Conclusion

This paper has investigated the global stability of the neural
networks with time-varying delay. By introducing a novel
LKF, delay-dependent global stability criteria have been
obtained. By reciprocally convex combination approach, a
substep is taken, and a slack variable is introduced to estimate
the derivative of LKF, and as a result, the proposed method is
expected to be less conservative than the available literature.
The proposed criteria have been formulated in terms of
linear matrix inequalities and, thus, can be readily solved by
standard computing software. Numerical examples are given,
and analysis is made under different ranges and derivatives of
time delay.The conservatism reduction has been proved to be
more obvious than existing results.
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The paper proposes a performance metric evaluation for a distributed detection wireless sensor network with respect to IEEE
802.15.4 standard. A distributed detection scheme is considered with presence of the fusion node and organized sensors into the
clustering and non-clustering networks. Sensors are distributed in clusters uniformly and nonuniformly and network hasmultilevel
fusion centers. Fusion centers act as heads of clusters for decisionmaking based onmajority-like received signal strength (RSS) with
comparison the optimized value of the common threshold. IEEE 802.15.4 Markov chain model derived the performance metric of
proposed network architecture with MAC, PHY cross-layer parameters, and Channel State Information (CSI) specifications while
it is including Path-loss, Modulation, Channel coding and Rayleigh fading. Simulation results represent significant enhancement
on performance of network in terms of reliability, packet failure, average delay, power consumption, and throughput.

1. Introduction

In the recent years, employments of wireless sensor networks
(WSNs) have increased in many aspects of modern lifestyle.
Those applications have motivated the researchers around
the world to attempt into this field and investigate Quality
of Service (QoS) and improve performance and efficiency of
network. Usually, wireless sensor networks are supposed to
be in harsh environments; consequently, performance metric
evaluation at the real situation is difficult, where human inter-
vention for evaluating process, even maintenance, repair, or
fix purposes are in jeopardy. Hence, performance evaluation
based on the mathematical model of network and simulation
is highly considered. Sometimes controlling a process in
the large scale needs sensing a unique phenomenon of
interest with several sensors. An actuator reacts precisely in
relation to decision which is made based on received signals
from sensors. Fusion of multiple sensing signals makes a
decisionmore accurate than just one sensor and consequently
increases system efficiency.

To address problem, a novel performance evaluation
framework would be proposed. Mathematical model frame-
work of a decentralized distributed detection is studied
in cluster-based network with a Markov chain model for
IEEE 802.15.4 Medium Access Control (MAC) with respect
to CSMA/CA mechanism interplay by physical layer and
channel state information.The framework investigates appro-
priated strategies by configuration of wireless sensor nodes
based on the optimal tuning of IEEE 802.15.4 MAC and
PHY layer key parameters [1]. Head node of each cluster is
called Fusion Center (FC). Decision making at fusion node
performs with respect to majority-like reception of RSS with
Maximum-Likelihood Test.

Performance metric is evaluated for a clustering net-
work topology with respect to a Markov chain model for
CSMA/CA medium access control which proposed in [2]
for a single node. Model describes a generalized analytical
of the slotted CSMA/CA mechanism of beacon-enabled
IEEE 802.15.4 with retry limits for each packet transmis-
sion. Behavior of the Markov model proposed at [2] is
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describing CSMA/CA algorithm for a single node within star
network with 𝑁 sensor nodes whereas our attempt updates
performance metric equations with clustering topology and
is accompanied by FCs. Model in [2] is only considered
to packet collision probability as case of loss. Nevertheless,
physical layer and channel state are provoking factors to
loss indeed [3]. Therefore, physical-layer and CSI specifi-
cation such as modulation and channel coding are utilized
through the equations as a probability that denotes with
(𝑃csi). Network is supposed to be high data rate generation
for assessment of performance. Simulation is carried out to
represent probability of decision error at FC (𝑃

𝑒
) in a clus-

tered network with significant enhancement on performance
metric in terms of reliability (𝑅

𝑐
), packet failure (𝑃

𝑓
), average

delay (E(av)
𝑐
), power consumption with considering different

operation modes, idle (𝑃
𝑖
), sensing (𝑃sc), transmission (𝑃

𝑡
)

and receiving (𝑃
𝑟
), and also Network aggregation throughput

(𝑆
𝑐
).

2. Related Work

In the literature, for instance see [4] and the references
therein, wireless sensor network is studied with a small
amount of sensors and low signal to noise ratio (SNR),
distributed detection, and decision making fusion rules
carried out on multi-bit knowledge of local detecting sensors
with Monte-Carlo simulation methods. The performance of
proposed decision fusion rules is integrated with parameters
such as channel Rayleigh fading and adaptive Gaussian noise.
In [5, 6], the authors with respect to similar field of efforts
in [7], proposed a simulation-based analysis impact of data
fusion mechanisms in a Zigbee sensor network. It is used
to monitor a particular constant binary phenomenon and
evaluated performance indicators of interest, for example,
Bit Error Rate (BER) and networking oriented (delay and
aggregate throughput). In [8, 9] a distributed detection (DD)
system is considered formultiple sensors/detectors work, col-
laboratively and the fusion center is responsible for the final
decision-making task based on information gathered from
local sensors; moreover, the integration of wireless channel
conditions in algorithm design is also taken into the account
(also see [10, 11]). In [12], an important channel dynamic is
well defined; their studies are represented by the behavior of
a real link impact in low-power wireless networks. In partic-
ular, there is a large transitional region in wireless link quality
which is characterized by significant levels of unreliability
and asymmetry, significantly impacting on performance of
higher-layer protocols. In [3], the authors used the first way
to better understand IEEE 802.15.4 standard. Indeed, they
provided a comprehensive model, able more faithfully to
mimic the functionalities of this standard at the PHY and
MAC layers. They have proposed a combination of two
relevant models for the two layers. The PHY layer behavior is
reproduced by a mathematical framework, which is based on
radio and channelmodels, in order to quantify link reliability.
In [2, 13, 14] the authors proposed a generalized analysis of the
IEEE 802.15.4 medium access control (MAC) protocol with
focus on CSMA/CA algorithm in terms of reliability, delay,
and energy consumption (for more see [15, 16]). The rest of

this paper is as follows. In Section 3, we will describe the
analytical framework to evaluate performance metric. This
section consists of the several subsections. In Section 4 we
will represent simulation results and finally Section 5 would
conclud the paper.

3. Problem Framework

In this section, we investigate the problem of decentralized
distribution detection particularly when the sensor nodes
detect a constant binary phenomenon. Sensing data packages
and forwards to access point (AP) through intermediate
fusion center (FC). Decision making fusion rule performs
at FC with majority-like signal power level reception com-
pared to an optimized threshold. Two ideal and noisy (non-
ideal) channels assume and channel state information (CSI)
considers with its impacts on decision-making fusion rule
Probability of decision error measures at FC versus signal to
noise ratio with modulation and channel coding influences.
Sensor nodes distribution at each cluster is supposed to be
uniform and nonuniform.

The rest of section is organized as Sections 3.1 and
3.2 depict sensing model and distributed detection in
Parallel Fusion Architecture, respectively and Section 3.3
describes distributed detection in clustered Sensor Networks.
Section 3.4 comprises communication channel state informa-
tion such as The Rayleigh fading, path-loss and modulation,
and channel coding. Section 3.5 describes medium access
control role on clustered network and its performance metric
equations with presence FC and impacts of CSI.

3.1.The SensingModel. According to the stochastic geometry
of sensingmodel, distribution of the nodes over the observing
region A can be modelled by a homogeneous Poisson point
process (PPP) with intensity 𝜌. Sensing model is a isotropic
signal source model for detecting phenomena of interest
(PoI) with path loss factor 𝛼 depends on distance of sensor
from PoI and type of signal (chemical contamination, sound,
radioactive radiation, etc.) [17]. Here, we assume 𝛼 is equal
to 1 and sensor distance from PoI is 𝑑 = 1 meter. Due to
sensors are integrated with transmitters as a element of a
WSN, thus, the received detection signal strength to sensor
with a distance 𝑑 away from the PoI is given by:

𝑆 (𝑑) =
𝑆
0

𝑑𝛼
, (1)

P {𝑁
𝑡
= 𝑛
𝑡
} =

𝜆
𝑛
𝑡

𝑡
exp (−𝜆

𝑡
)

𝑛
𝑡
!

, 𝑛
𝑡
≥ 0, (2)

where 𝑁
𝑡
is a Poisson r.v. with mean 𝜆

𝑡
= E{𝑁

𝑡
} = 𝜌|A|,

whereas 𝜌 is intensity of distribution nodes over observing a
finite region of phenomenon with size |A|. We suppose the
nodes sensing periodically independent condition whether
PoI is absent or present. Particularly, while the PoI is present,
observations are not similar between nodes belong into the
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Figure 1: Parallel fusion architecture.

same group of sensors. In this case, observation indepen-
dently remarks at each sensor node after proper sampling and
processing is given by

𝑦
𝑛
=

{{

{{

{

𝑧
𝑛
, when PoI is absent,

√𝑆 (𝑑
𝑛
) + 𝑧
𝑛
, when PoI is present,

(3)

where 𝑛 = 1, 2, . . . , 𝑁
𝑡
, 𝑧
𝑛
is an independent observation

Gaussian distribution noise with zero-mean and variance 𝜎2
𝑧
.

𝑆(𝑑
𝑛
) is the received signal strength at the 𝑛th node with a

distance 𝑑
𝑛
far from the PoI given by (1).Thus, problem status

could be defined as follows:

𝐻 = {
𝐻
0
: absent PoI with probability 𝑝

0
,

𝐻
1
: present PoI with probabilty 1 − 𝑝

0
.

(4)

Information is gathered from observers of PoI, located in
center region 𝐴 (environment of observed PoI); hence, equal
probability is assumed in term of present or absent PoI, where
𝑝
0
= P{𝐻 = 𝐻

0
}, P{⋅} being the probability of a given PoI.

3.2. Distributed Detection in Parallel Fusion Architecture.
Sensor nodes are organized within Parallel Fusion Archi-
tecture (PFA) which is represented on Figure 1. Each sen-
sor independently detects the event under observation and
generates information and sends to FC through an ideal
communication link. Information could be sequence of bits
as symbol of present or absent PoI. According to (2) and (3),

sensors send 1 bit unit information to FC for decision mak-
ing. A basic equation derived for received sensor observation
signal at the FC from the 𝑛th sensor node is given by:

𝑟
𝑛
= 𝑐
𝐸
+ 𝑤
𝑛
, (5)

where 𝑐
𝐸
= √𝑎𝐸

𝑏
𝑢
𝑛
and 𝑤

𝑛
is a channel noise modeled

zero-mean Gaussian distribution with variance 𝑁
0
/2 and

across the nodes there is independent identical distribution
(i.i.d). 𝐸

𝑏
is transmission energy per bit and 𝑎 is up-link path

loss coefficient between sensor node and FC. Assume 𝑎 is
identical for all nodes. The 𝑢

𝑛
is quantized local decision for

observation of an event and characterized with two levels of
unit function as follow:

𝑢
𝑛
= {
+1: when �̃� (𝑦

𝑛
) = 𝐻

1
,

−1: when �̃� (𝑦
𝑛
) = 𝐻

0
,

(6)

whereas �̃�(𝑦
𝑛
) is the decision that made at the 𝑛th node

[17]. The FC would be synchronized with whole nodes in the
region A because of FC sends a beacon periodically when we
want to retrieve observation data. All nodes exactly trigger
and send observing data to corresponding fusion node at
region A. With hypothesis ideal communication channels,
decision is made at FC with Likelihood Raito Test (LRT)
level of received signal by comparison an optimized common
threshold value which denotes by 𝜉. Threshold level could
be adapted and trained during detection period according to
level of transmission signal power.
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Figure 2: Block diagram of a clustered sensors network.

3.2.1. LRT with Neyman-Pearson Hypothesis Testing. Here,
observing signal received to fusion node might be affected by
many factors in an unforeseen manner, hence, the decision-
makingwould be doing necessarily statistical.This formulates
with a decision rule based on optimality criterion. Normally,
optimal criteria are using threemajormethods, the Bayes risk
criterion, the min-max criterion, and the Neyman-Pearson
(NP) criterion. LRT is performed regarding NP criterion.
Under NP criterion, the optimal decision rule derives from
an LRT choosen based on the null and alternative hypotheses
conditional probabilities:

P {r | 𝐻
1
}

P {r | 𝐻
0
}

𝐻
1

>

≤
𝐻
0

𝜉, (7)

whereas data vector r is given under the alternative as
P{r | 𝐻

1
} and data vector r under the null hypothesis as

P{r | 𝐻
0
}. FC decision performs based on the 𝑁

𝑡
received

observations of nodes. The vector r denotes as a gain of
received signal in ideal Binary Symmetric Channels (BSCs).
This is corresponding to 𝑁

𝑡
specified in (5). Nevertheless,

the 𝜉 for simplicity is adapted with √SNR/2 where SNR =

𝑎𝐸
𝑏
/𝑁
0
is received signal energy per bit per noise power

spectral density, can be expressed using signal to noise
(SNR), to FC from each sensor node through communication

channel. The received signals vector from𝑁
𝑡
sensor nodes is

considered as follow:

r = [𝑟
1
, . . . , 𝑟

𝑖
]
𝑇

, 𝑖 = (1, . . . , 𝑁
𝑡
) . (8)

With the Bayesian approach, a priori probabilities of the
absent or present hypothesis PoI are P{𝐻

0
} and P{𝐻

1
} at

fusion center, respectively. Probability of decision error is
defined at fusion center as follow:

𝑃
𝑒
= P {�̂� = 𝐻

1
| 𝐻
0
}P {𝐻

0
} + P {�̂� = 𝐻

0
| 𝐻
1
}P {𝐻

1
} .

(9)

3.3. Distributed Detection in Clustered Sensor Networks. A
network with 𝑛 sensors observes a common binary phe-
nomenon whose status is defined at (4) with 𝑝

0
= P{𝐻 =

𝐻
0
}, P{⋅} denotes the probability of given PoI. The 𝑛 sensors

might be organized into several clusters whereas number
of cluster is 𝑛

𝑐
< 𝑛 sensor nodes. Sensors belong to a

cluster working as a RFD (Reduce Function Device) just
communicates with corresponding FC which is a FFD (Full
Function Device). Each cluster with collection of sensors
is a PFA represented in Section 3.2 and Figure 2 shows 𝑛

𝑐

cluster-based architecture [6]. The sensors are distributed in
each cluster uniformly or nonuniformly. Initially, the channel
between the sensors and fusion center is supposed to be
an ideal communication link such as a Binary Symmetric
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Channels (BSCs) with probability 𝑝 cross-over, memoryless
communication. To continue, wireless channel also would be
a non-ideal with respect to CSI specification.

3.3.1. Data-Fusion Model. Decision is made at fusion node
and carries out with majority-like mechanism. In some
literature this method is called consensus flooding or voting
mechanism. Basically, this mechanism is based on majority
similar received signal from sensors on the same cluster and
event under observe in precise time. According to Figure 2
two-level fusion is shown; in first level, each cluster contains
𝑑
𝑐
distributed sensors uniformly and 𝑛

𝑐
is number of clusters,

thus, 𝑛 = 𝑑
𝑐
× 𝑛
𝑐
is number of all sensors in network.

𝑘 = [𝑑
𝑐
/2] + 1 is acceptable floor of majority-like for first

level of fusion. In second level, decision-making is performed
at access Point (AP) similarly with assuming FCs as 𝑛

𝑐

sensors. Obviously, AP accepts mechanism with at least 𝑘
𝑓
=

[𝑛
𝑐
/2]+1majority-likes. Non-uniformdistribution of sensors

is defined as unequal number of sensors for each cluster.
It denotes clusters size vector by 𝐷 ≜ {𝑑

(1)

𝑐
, 𝑑
(2)

𝑐
, . . . , 𝑑

(𝑛
𝑐
)

𝑐
},

where 𝑑(𝑖)
𝑐

is the number sensors in the 𝑖th cluster (𝑖 = 1, 2,
. . . , 𝑛
𝑐
) and ∑𝑛𝑐

𝑖=1
𝑑
(𝑖)

𝑐
= 𝑁. The probability of decision error

in a generic scenario with non-uniform clustering can be
evaluated as below:

𝑃
𝑒
= 𝑝
0

𝑛
𝑐

∑

𝑖=𝑘
𝑓

(𝑛𝑐
𝑖
)

∑

𝑗=1

𝑛
𝑐

∏

ℓ=1

{𝑐
𝑖,𝑗
(ℓ) 𝑝
1|0

ℓ
+ (1 − 𝑐

𝑖,𝑗
(ℓ)) (1 − 𝑝

1|0

ℓ
)}

+ (1 − 𝑝
0
)

𝑘
𝑓
−1

∑

𝑖=0

(𝑛
𝑖
)

∑

𝑗=1

𝑛
𝑐

∏

ℓ=1

{𝑐
𝑖,𝑗
(ℓ) 𝑝
1|1

ℓ

+ (1 − 𝑐
𝑖,𝑗
(ℓ)) (1 − 𝑝

1|1

ℓ
)} ,

(10)

where 𝑝1|1
ℓ

≜ {𝑝
1|1

1
, 𝑝
1|1

2
, . . . , 𝑝

1|1

𝑛
𝑐

} represents probability of
success and 𝑝1|0

ℓ
≜ {𝑝
1|0

1
, 𝑝
1|0

2
, . . . , 𝑝

1|0

𝑛
𝑐

} represents probability
of failure decides at FC [9]. c

𝑖,𝑗
= (𝑐
𝑖,𝑗
(1), . . . , 𝑐

𝑖,𝑗
(𝑛
𝑐
)) is a

vector which designates the 𝑗th configuration of the decisions
from the first-level FCs in a case with 𝑖, 1𝑠 and 𝑛

𝑐
−𝑖, 0𝑠 [5, 12].

On the other words, 𝑐
𝑖,𝑗
can be represented by string(𝑖, 𝑗, ℓ) =

1 if there is a success, corresponding to a decision, at ℓth FC
or AP, in favor of 𝐻

1
, whereas it is 0 if there is a failure,

corresponding to a decision, at ℓ FC or AP in favor of 𝐻
0
.

string(𝑖, 𝑗, ℓ) could be an auxiliary binary function used to
distinguish, in the repeated trials formula, between a success
and a failure [12, 18]. For example, possible configuration for
𝑛
𝑐
= 4 clusters is illustrated in Table 1.

3.4. Communication Channel State Information. In this sec-
tion, channel rules will be explained in interplaying with
decision-making at fusion. Generated packet bits from
detected event sequentially, bit to bit would be sent to
fusion node through a communication channel. The impact
of channel condition or channel state information (CSI)
is significant on decision which would be made at fusion
node. In addition to sensor observation quality, probability

Table 1: Possible configuration of c
𝑖,𝑗
for 𝑛
𝑐
= 4 clusters.

𝑖 𝑗 𝑐
𝑖,𝑗

0 1 0000
1 1000

1 2 0100
3 0010
4 0001
1 1100
2 1010

2 3 1001
4 0101
5 0110
6 0011
1 1110

3 2 1011
3 0111
4 1101

4 1 1111

of decision error (𝑃
𝑒
) at FC completely is related to channel

condition and Received Signal Strength Indication (RSSI).
Therefore, new element is taken into the account as CSI
probability of channel which is denoted by 𝑃csi. Impact of 𝑃csi
will investigate decision-making accuracy. Here, the sensor
network is modeled with no interference impact (orthogonal
transmission) because of an exact scheduling between the
sensors and fusion node or AP. A beacon message transmits
periodically for synchronization to each sensor node when
FC and AP are ready for PoI sample reception.

3.4.1.The Rayleigh Fading. Equation (5) with Rayleigh fading
is given by:

𝑟
𝑖
= 𝑓
𝑖
(2𝑐
𝑖
− 1)√𝐸

𝑐
+ 𝑤
𝑖
, 𝑖 = 1, . . . , 𝑁 + 𝐿, (11)

where 𝑓
𝑖
is a random variable with Rayleigh distribution

which is perfectly coherent demodulation and 𝑐
𝑖
∈ {0, 1} is

the symbol transmitted from a sensor, 𝑐
𝑖
is an information bit

from sensor nodes [9]. The total number of transmission in
sensor network is 𝑁 + 𝐿 whereas, 𝑁 is number of sensors
and 𝐿 is bits according to the parity-check equations of the
Hamming code. The 𝐸

𝑐
is the energy per coded bit whereas

𝐸
𝑐
≜ 𝑅
𝑐
𝐸
𝑏
. 𝐸
𝑏
denotes the energy per bit information

and 𝑅
𝑐
= 1/𝑀 being code rate that interpreted as a

system embedding a repetition code at each sensor when
𝑀 is consecutive and independent observations of the same
phenomenon for a sensor networkwithmultiple observations
[18]. A systematic block channel code hypothesizing that
each sensor makes a single observation, by using Hamming
systematic block code, generates parity bits and sends them
to the FC or AP. For 𝑁 = 𝑘 = 4 observer sensors generate
𝐿 = 𝑛 − 𝑘 = 3 bits according to the parity-check equations.
It remarks (𝑛, 𝑘) = (7, 4) systematic Hamming code [8].



6 Mathematical Problems in Engineering

The total number of transmission acts in the proposed sensor
network is 𝑁 + 𝐿. 𝑅

𝑐
is computed in this distributed coded

scheme 𝑅
𝑐
= 𝑁/(𝑁 + 𝐿) = 4/7. Bit Error Rate (BER) with

QPSKmodulation at fusion node for Rayleigh fading channel
is given by:

𝑝
Rayleigh

=
1

2
[1 − √

𝑅
𝑐
𝛾
𝑏

1 + 𝑅
𝑐
𝛾
𝑏

] , (12)

where 𝛾
𝑏
≜ 𝐸
𝑏
/𝑁
0
is SNR received at Fusion node or AP [9].

3.4.2. Pathloss. According to channel model distance (𝑑)
between transmitter and receiver (FC or AP), the received
power 𝑃

𝑟
in dB is as follow:

𝑃
𝑟
(𝑑) = 𝑃

𝑡
− 𝑃𝐿 (𝑑

0
) − 10𝜂 log

10
(
𝑑

𝑑
0

) + 𝑁 (0, 𝜎) , (13)

𝑃𝐿 (𝑑
0
) = 20 ∗ log

10
(𝑓) , (14)

where𝑃
𝑡
is the output power, 𝜂 is the pathloss exponent which

takes the rate of signal attenuation based on different envi-
ronment obtains with empirical measurement [12]. 𝑁(0, 𝜎)
is a Gaussian random variable with mean 0 and variance
𝜎 (standard deviation due to multipath shadowing effects).
𝑃𝐿(𝑑
0
) is power attenuation at source with distance 𝑑

0
with

frequency 𝑓 = 𝑣/𝜆, 𝑣 is velocity light and 𝜆 is wavelength.
Equation (13) is an isotropic transmission. SNR in dB(𝛾dB) as
a function of distance (meter) is:

𝛾 (𝑑) = 𝑃
𝑟
(𝑑) − 𝑃

𝑛
, (15)

where 𝑃
𝑛
is noise floor, more details see [12]. With substitute

consequently,

𝛾dB (𝑑) = 𝑃𝑡 − 𝑃𝐿 (𝑑0) − 10𝜂 log10 (
𝑑

𝑑
0

) − 𝑁 (0, 𝜎) − 𝑃
𝑛
.

(16)

3.4.3. Modulation and Channel Coding. The QPSK Modu-
lation and NRZ (non-return zero) channel coding impact,
respectively, are:

𝑝
𝑏
= 𝑄(√2𝛾 (𝑑)

𝐵
𝑁

𝑅
) , (17)

where 𝛾
𝑑
= 10
𝛾dB/10 and 𝐵

𝑁
is noise bandwidth and 𝑅 is bit

data rate with channel coding given by,

𝑃csi = (1 − 𝑝𝑏)
8𝑒

(1 − 𝑝
𝑏
)
8(𝑏−𝑒)

, (18)

where 𝑒 is Preamble length, 𝑏 is frame length, for more details
see [12]. Rewriting (12) with channel state probability for
QPSK modulation and NRZ channel coding we get

𝑃
Rayleigh
csi =

1

2
[1 − √

𝑅
𝑐
𝛾
𝑏
(𝑑)

1 + 𝑅
𝑐
𝛾
𝑏
(𝑑)
] . (19)

Probability of decision error𝑃
𝑒
at Fusion or AP given in [6, 9]

and updated with 𝑃Rayleighcsi is

𝑃
𝑒
= 𝑝
0

𝑛
𝑐

∑

𝑖=𝑘
𝑓

(𝑛
𝑖
)

∑

𝑗=1

𝑛
𝑐

∏

ℓ=1

{𝑐
𝑖,𝑗
(ℓ) 𝑞
1|0

+ (1 − 𝑐
𝑖,𝑗
(ℓ)) (1 − 𝑞

1|0

)}

+ (1 − 𝑝
0
)

𝑘
𝑓
−1

∑

𝑖=0

(𝑛
𝑖
)

∑

𝑗=1

𝑛
𝑐

∏

ℓ=1

{𝑐
𝑖,𝑗
(ℓ) 𝑞
1|1

+ (1 − 𝑐
𝑖,𝑗
(ℓ)) (1 − 𝑞

1|1

)} ,

(20)

where 𝑞1|0 = 𝑝
1|0,Rayleigh
ℓ,csi , 𝑞1|1 = 𝑝

1|1,Rayleigh
ℓ,csi , and ℓ =

{1, . . . , 𝑛
𝑐
}.

3.5. Medium Access Control Role on Clustered Network.
Basically, Markov chain and performance metric expression
proposed in [2, 14] are considered with fusion and clustered
network (also see [19]). Three major parameters which
reformed into scenario are the probability of a node attempts
a first carrier sensing (CCA1) in randomly chosen time slot is
denoted with 𝑡 and given by

𝜏 = (
1 − 𝑥
𝑚+1

1 − 𝑥
)(

1 − 𝑦
𝑛+1

1 − 𝑦
) �̃�
0,0,0
, (21)

where approximation of state probability is

�̃�
0,0,0

≈
𝑊
0

2
(1 + 2𝑥) (1 + 𝑦) + 𝐿

𝑠
(1 − 𝑥

2

) (1 + 𝑦)

+ 𝐾
0
((𝑃
𝑐
(1 − 𝑥

2

))
2

((𝑃
𝑐
(1 − 𝑥

2

))
𝑛−1

+ 1) + 1)

−1

,

(22)

and, 𝑃
𝑐
, probability of transmitted packet encounter collision

when𝑁 is number of whole nodes, is given by

𝑃
𝑐
= 1 − (1 − 𝜏)

𝑁−1

, (23)

also, 𝐾
0
= 𝐿
0
𝑞
0
/(1 − 𝑞

0
) whereas, 𝐿

0
is the idle state length

without generating packets and, 𝑞
0
is the probability of going

back to the idle state. Consider

𝑥 = 𝛼 + (1 − 𝛼) 𝛽, (24)

𝑦 = 𝑃
𝑐
(1 − 𝑥

𝑚+1

) . (25)

The busy channel probabilities (CCA1) and (CCA2) are 𝛼, 𝛽,
respectively, given as follows:

𝛼 = 𝛼
1
+ 𝛼
2
, (26)

where

𝛼
1
= 𝐿 (1 − (1 − 𝜏)

𝑁−1

) (1 − 𝛼) (1 − 𝛽) ,

𝛼
2
= 𝐿ack

𝑁𝜏(1 − 𝜏)
𝑁−1

1 − (1 − 𝜏)
𝑁
(1 − (1 − 𝜏)

𝑁−1

) (1 − 𝛼) (1 − 𝛽) ,

(27)
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with

𝛽 =
1 − (1 − 𝜏)

𝑁−1

+ 𝑁𝜏(1 − 𝜏)
𝑁−1

2 − (1 − 𝜏)
𝑁

+ 𝑁𝜏(1 − 𝜏)
𝑁−1

. (28)

While the Markov chain just declared the probability of
collision 𝑃

𝑐
as cause of loss, we bring 𝑃csi which is derived

in (18), into the account as another possibility of loss due to
different SNR, modulation, and channel coding. Probability
of failure is defined as

𝑃fail = 1 − (1 − 𝑃𝑐) (1 − 𝑃csi) , (29)

where 𝑃
𝑐
is given in (23) as probability of packet collision.

Cluster network could be modeled with binominal random
variable with independent 𝑗th clusters 𝐷(𝑗)

𝑐
, where 𝑗 =

1, . . . , 𝑛
𝑐
, 𝑑(𝑗)
𝑐

is referring to cluster size, denotes a probability
𝑝mac(𝑑

(𝑗)

𝑐
) corresponding to 𝑗th cluster. Performance metric

expression that has been extracted fromMarkovmodel could
be updated according to our assumptions:

𝑃 (I) =

𝑑
(1)

𝑐

∑

𝑖
1
=0

⋅ ⋅ ⋅

𝑑
(𝑛𝑐)

𝑐

∑

𝑖
𝑛𝑐
=0

P {𝐷
(1)

= 𝑖
1
} ⋅ ⋅ ⋅ ⋅P {𝐷

(𝑛
𝑐
)

= 𝑖
𝑛
𝑐

} , (30)

whereI denotes possible variable which could be computed
by

P {𝐷
(ℓ)

= 𝑖
ℓ
} = (

𝑑
(ℓ)

𝑐

𝑖
ℓ

) [𝑝mac (𝑑
(ℓ)

𝑐
)]
𝑖
ℓ

[1 − 𝑝mac (𝑑
(ℓ)

𝑐
)]
𝑑
(ℓ)

𝑐
−𝑖
ℓ

.

(31)

Using Markov chain performance metric equations, we will
be obtaining the following.

3.5.1. Reliability. The probability of successful delivery of
packetsR as a clustering topology network, regarding reliabil-
ity in [2], (31), and (30) redefining the probability of successful
delivery of packets majority sensors per cluster which satisfy
majority-like fusion strategy, is:

𝑃
𝑖
ℓ

𝑅
=

𝑑
(ℓ)

𝑐

∑

𝑖
ℓ
=𝜒

𝑛
𝑐

∏

ℓ=1

(
𝑑
(ℓ)

𝑐

𝑖
ℓ

) [R (𝑑(ℓ)
𝑐
)]
𝑖
ℓ

[1 − R (𝑑(ℓ)
𝑐
)]
𝑑
(ℓ)

𝑐
−𝑖
ℓ

, (32)

where 𝜒 = ⌊𝑑(ℓ)
𝑐
/2⌋+1, ℓ = {1, . . . , 𝑛

𝑐
}. Two-level fusion at FC

and AP, 𝑃𝑖ℓ
𝑅
is given as the probability of successful delivery

distributed sensors in first level fusion; the probability of
successful delivery FC to AP has similarity by assuming as
a cluster with 𝑛

𝑐
sensors for second level fusion. Hence,

reliability equation for both levels of fusion at FC and AP is
remarked with R

𝑐
given by,

R
𝑐
= 𝑃
𝑖
ℓ

𝑅
⋅ 𝑃
(𝑓𝑐)

𝑅
, (33)

where 𝑃(𝑓𝑐)
𝑅

is obtained from (30) and (31) with 𝑑(𝑓𝑐)
𝑐

= 𝑛
𝑐
for

second level.

3.5.2. Average Delay. It is noted that communication delays
can deteriorate the performance of the network and even
can destabilize the systems when they are not considered
in the design (see [20, 21]). Therefore, the average delay for
clustering with two-level fusion is defined as average delay
of successfully received packet as the time interval from the
instant the packet is at the head of its MAC queue and ready
to be transmitted, until the transmission is successful and the
ACK is received from both level of fusion nodes, respectively.
According to [2], in framework except the constants (frame
length, Ack length, etc.), MAC parameters have only two
terms, 𝑃𝑟(𝐴

𝑗
| 𝐴
𝑡
) and �̃�(𝐵

𝑖
| 𝐵
𝑡
) that could be computed

based on (30) and (31). However, initially 𝛼, 𝛽, 𝜏 should be
calculated with respect to a given topology at clusters and
also 𝑥, 𝑦, and 𝑃

𝑐
with term (29). Obviously, MAC parameters

are similar for all equations with optimal tune. Framework
concerning majority-like mechanism should be taken into
account when encountered with 𝑁 number sensors in orig-
inal Markov chain equations that are replaced by ⌊𝑑

𝑐
/2⌋ +

1, . . . , 𝑑
𝑐
for each cluster by corresponding sensors. So far,

average delay is described for first level fusion of each cluster
separately. For second fusion level, it is acting as a cluster with
𝑛
𝑐
sensors. Average delay of whole network is proposed by:

E
(av)
𝑐
[𝐷] =

Emax + Emin
2

+ E
(𝑓𝑐)

[𝐷] , (34)

where, Emax = Max{E(1)
𝑐
[𝐷], . . . ,E(𝑛𝑐)

𝑐
[𝐷]} and Emin =

Min{E(1)
𝑐
[𝐷], . . . ,E(𝑛𝑐)

𝑐
[𝐷]}, first term is average delay for

which packets arriving for first level fusion at FC clusters
head, and second term forwhich packets arriving second level
fusion at AP. Because of synchronized network, transmission
happens at the same time and concurrently; hence, Max and
Min are computed regarding to cluster size and parameters.

3.5.3. Network Aggregate Throughput. Network aggregate
throughput would be computed for minimum effective num-
ber of nodes each cluster network with two-level fusion and
data rate 𝑔(bps) is given by:

𝑆
𝑐
= 𝑔 ⋅ 𝐴 ⋅ 𝐿

𝑠
⋅ ℎ ⋅ R

𝑐
, (35)

where ℎ = ∑𝑛𝑐
ℓ=1
⌊𝑑
(ℓ)

𝑐
/2⌋ + 1, R

𝑐
is computed at (33) and 𝐴 =

80 bit/0.32ms is a normalization constant to convert to bps.

3.5.4. Average Power Consumption. The average power con-
sumption equations are proposed in [2, 14] taken into con-
sideration by the clustering framework with two-level fusion.
Constant values given in Table 2 are used for first level fusion;
however, for second level fusion they are valid except 𝑃

𝑖
≈ 0

because of assuming fusion center does not have ideal state
at second level, also hypothesis 𝑃sc sensing power constant
at sensor is corresponding with power of decision-making at
fusion node and assumed same computation term.

4. Simulation Results

This section represents the results of simulation based on
problem framework. Basically, simulations are figured out
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Table 2: Power consumption of different operation modes.

Operation mode Power consumption
𝑃
𝑖

0.657mW
𝑃sc 35.46mW
𝑃
𝑡

31.32mW
𝑃
𝑟

35.46mW
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Figure 3: Probability of decision error as a function of SNR, 𝑛 = 32
sensors with AWGN.

with “32” nodes as detector of an event of interest, each
node generates high traffic data rates. Performance metric is
evaluated with probability of decision error and developed
equations of Markov model. Rest of section is organized into
two subsections based on those evaluations.

4.1. Probability of Decision Error. Simulation results shows
for evaluating probability of decision error in fusion center
based on described framework. Probability of decision error
is considered at fusion node with respect to clustering topol-
ogy as long as presence of uniform and non-uniform dis-
tributions of “32” sensors. Three non-uniform distributions
12.8.8.4, 16.8.4.4, and 25.5.2 are versus uniform distribution
8.8.8.8. Non-clustering by “32” sensors are shown as a proof
of comparison in Figure 3. It represents the probability of
decision error for non-clustering topology which looks like a
star network with coordinator acting as fusion node. Detec-
tion sequences just effect withAdditiveWhiteGaussianNoise
(AWGN) communication channel with OQPSK modulation
format.

Basically, an increment of SNR has improvement on
decision. According to various sensors distribution, Figure 3
is shown that non-clustering is worst case with respect to
our scenario; the decision is made at fusion based on vector
received signals on majority-like strategy. Hence, in case of
non-clustering at least 17 sensors similar to record as correct
decision should be received but for clustering this limitation
reduces to [𝑑

𝑐
/2] + 1. Number of sensors at each cluster for

example in 16.8.4.4 design by 4 clusters have 16, 8, 4, 4 sensors
at each cluster; therefore, fusion node at head of clusters
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Figure 4: Probability of decision error versus SNR, 𝑛 = 32 sensors
with 𝑃csi .

Table 3: Parameters value for physical layer.

Parameter Value
Minimum distance 1 meter
Maximum distance 40 meters
Frame length 808 bits
Power 𝑇𝑥 3 dBm
pramble length 40 bits
Noise figure −123 dBm
Noise −5 dBm
Band width 30 kHz
Signal frequency (𝑓) 2450MHz
Path loss exponent 4
Shadowing standard deviation 4

should be evaluated 9, 5, 3, 3 signals similarly which have
same level for corresponding clusters. However, in second
level decision-making at AP should be outcome of decision
on first level satisfies with 3 similar signals received form 4
fusion nodes.

Figure 4 shows the probability of decision error with
presence of 𝑃csi and fading effect. Impact of 𝑃csi and fading
effect are measured by attenuation on level of signal to
change probability in order to increscent decision error due
to channel influence. According to literatures of Monte Carlo
simulation of corresponding expressions in given framework
has confirmed our simulation. MAC and PHY parameters
values used for 𝑃csi are shown in Table 3.

4.2. Performance Metric Evaluation Based on Markov Chain.
Impact of MAC appraised on proposed framework. Simu-
lation of performance metric equations is carried out with
MAC and PHY-layers parameters denoted in Tables 3 and 4.

4.2.1. Reliability. Reliability is obtained for non-uniform and
uniform topology which is supposed to be with different
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Table 4: Parameters value for MAC layer.

Parameter Value
MacMaxFrameRetries (𝑛) 3
MacMaxCSMABackoffs (𝑚) 4
MacMinBE (𝑚

0
) 3

MacMaxBE (𝑚
𝑏
) 5

𝐿 1016 bits
𝐿ack 88 bits
𝑡ack 222𝑒 − 9 seconds
𝑡IFS 640𝑒 − 6 seconds
𝑡
𝑚,ack 200𝑒 − 9 seconds
aUnitBackoffPeriod 320𝑒 − 6 seconds
macACKWaitDuration 1920𝑒 − 6 seconds
aTurnaroundTime 192𝑒 − 6 seconds
𝑆
𝑏

128𝑒 − 6 seconds
𝐿
0

10𝑒 − 12

𝑊
0

2
macMinBE

𝑞
0

10𝑒 − 12
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16.8.4.4
12.8.8.4
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Figure 5: Reliability, 𝐸
𝑏
/𝑁
0
= 3, 12 [dB], OQPSK.

number of sensors at each clusters. Model is evaluated in
high data rate generation. Three non-uniformly distribution
16.8.4.4, 25.5.2, and 12.8.8.4 at each cluster and uniformly
8.8.8.8 distribution sensors are compared by non-clustering
which is similar to a star topology that originally was
assumed in Markov chain model. Result shows a significant
improvement in reliability in clustering topology even in
two-level fusion. However, in clustering based topologies
balance of sensors distribution (uniform) in clusters aremore
reliable than unbalances (non-uniform). Figure 5 represents
the reliability of system with signal to noise ratio equal
to 12 dB in solid line by comparison with 3 dB in dots
line. Reliability is enhanced in order to increment signal to
noise ratio. Direct relation between probability of success
packet reception or reliability, with probability of packet
failure shown in Figure 6, has consequent improvement on
reliability. Increasing SNR from 3 dB to 12 dB causes less
failure packet reception at fusion node. Result represents in
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Figure 6: Failure probability, 𝐸
𝑏
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0
= 3, 12 [dB], OQPSK.
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Figure 7: Average delay for two-level decision.

probability of decision error 𝑃
𝑒
also proving this improve-

ment at FC. However, packet failure is increased versus
packet generation rate; therefore, we can expect high packet
generation rate more effective than increment of SNR ratio in
failure term.

4.2.2. Average Delay. Measurement of average delay is
explained in framework. Simulation performs with high
traffic regime with two SNRs 3 dB and 12 dB, see Figure 7.
Important issue here is synchronizing between nodes by
specifying a time slot from FC to nodes for retrieve data.
Obviously, this time slot is corresponding to size of each
cluster, therefor, time slot for cluster with 8 sensors is four
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Figure 8: Average power consumption for two-level decision.
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times greater than time slot for cluster with 2 sensors because
of preventing collision in each cluster during transmitting
and each node of cluster has its own time slot to send. Clusters
are independent from each other and transmit in their
appropriated bandwidth. IEEE 802.15.4 has 16 channels in
2.4GHz, based on simulation with maximum 4 clusters there
is not any constraint in bandwidth scheduling; hence, each
cluster works in a unique bandwidth. Slotted Markov chain
model specification satisfies the condition. Non-clustering
topology has more average delay. That delay is imaginable
because time slot scheduling scenario for “32” nodes need
longer time slot length. Uniformed distribution 8.8.8.8 needs
a time slot with 8 portions at each cluster for retrieving data

process. Clusters that have more nodes need at least a time
slot longer than with 8 portions. Basically, effect of number
sensors on 𝛼 and 𝛽 and 𝜏 are important exact contribution
of less sensors causes increasing probability of access channel
and directly reduces delays.

4.2.3. Average Power Consumption. An increment of mean
power consumption with higher data generation rate obvi-
ously is illustrated in Figure 8. Basically, data transmission
consumes more power rather than computational matter
in sensor module. Nevertheless, number of sensors and
fusion level have critical roles to achieve power consump-
tion. Topology without clustering “32” sensors contribute in
decision-making in fusion node coordinates at least half plus
one received bits stream signal. Average power is increased
with 12 dB signal to noise ratio due to transmission power
consumption, 𝑃

𝑠
. While power consumption is a very critical

issue to wireless sensor network, increment of power con-
sumption is unwilling with respect to restriction on battery
capability. On the other view, preciseness of packet receipt
sometimes has privilege to power consumption.

4.2.4. Network Aggregate Throughput. Network aggregate
throughput is shown in Figure 9 as function of data gen-
eration rate with two SNR ratios. Throughput relation with
reliability is explained in framework description. All issues
represent improvement in higher signal to noise ratio.
Throughput reduction happens when data generation rate is
up to 900 bits per seconds in each node.

5. Conclusion

This paper considered a distributed detection in cluster
sensor network with fusion node as a decision maker head of
each cluster.We utilized aMarkov chainmodel for evaluation
network performance. Generally speaking, network cluster-
based topology with data fusion has better performance with
aim of data accuracy. Presence of clustering with balance
distribution of sensors is acting more efficiently than non-
uniform clustering with more number of distributed sensors.
Number of distribution sensors directly impacts average
delay in clusters; hence, a topology should be selected for
less delay achievement. Throughput has better outcome
in cluster-based with balance distribution sensors. Power
consumption has been acting better in uniformly distributed
topology instead of non-uniformly as well as clustering and
non-clustering. The main reason of this difference between
sensor arrangements is scheduling and timing issue on
network.Those issues influence directly on average delay and
power consumption. However, it can affect packet failure and
also reliability of system.

Based on the results in the paper, interesting future
research may be prospective as follows:

(1) optimized sensor arrangement in cluster and network
state estimation could be considered;

(2) fault detection and time delays in the network with
Markovian jump systems under partially known
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transition probabilities can be studied in the frame-
work of this paper (see for instance [22–25]);

(3) the approach, presented in this work, can also be
extended to complex networks with constrained
information exchange, and a partial knowledge of the
state variables (see [26, 27]).
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[6] G. Ferrari, M. Martalò, and R. Pagliari, “Decentralized detec-
tion in clustered sensor networks,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 47, no. 2, pp. 959–973,
2011.
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