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Diego Córdoba, Spain
J. Carlos Cortés López, Spain
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Jesús Marı́n-Solano, Spain
Jose M. Martell, Spain
Mieczysław Mastyło, Poland
Ming Mei, Canada
Taras Mel’nyk, Ukraine
Anna Mercaldo, Italy
Changxing Miao, China
Stanislaw Migorski, Poland
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Ağacık Zafer, Turkey
Sergey V. Zelik, UK

Jianming Zhan, China
C. Zhang, China
Weinian Zhang, China
Meirong Zhang, China
Zengqin Zhao, China
Sining Zheng, China

Tianshou Zhou, China
Yong Zhou, China
Chun-Gang Zhu, China
Qiji J. Zhu, USA
M. R. Zizovic, Serbia
Wenming Zou, China



Contents

Functional Differential and Difference Equations with Applications, Josef Diblı́k,
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This special issue may be viewed as a sequel to Recent Progress in Differential and Difference
Equations edited by the four members of the present team and published by the Abstract and
Applied Analysis in 2011. Call for papers prepared by the Guest Editors and posted on the
journal’s web page encouraged the submission of state-of-the-art contributions on a wide
spectrum of topics such as asymptotic behavior of solutions, boundedness and periodicity
of solutions, nonoscillation and oscillation of solutions, representation of solutions, stability,
numerical algorithms, computational aspects, and applications to real-world phenomena.
Our invitation was warmly welcomed by the mathematical community—more than one
hundred manuscripts addressing important problems in the qualitative theory of functional
differential and difference equations were submitted to the editorial office and went through
a thorough peer-refereeing process. A thirty-eight carefully selected research articles for this
special issue reflect modern trends and advances in functional differential and difference
equations. Eighty-seven authors from seventeen countries (Bulgaria, China, Czech Republic,
Egypt, Germany, Greece, Korea, Libya, Poland, Saudi Arabia, Slovak Republic, Spain,
Thailand, Turkey, Ukraine, United Kingdom, and USA) have contributed to the success
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of this thematic collection of papers dealing with various classes of delay differential
equations, dynamic equations on time scales, partial differential equations, neutral functional
differential equations, systems with p-Laplacian, stochastic differential equations, and related
topics.

For many decades, the stability problems has attracted attention of researchers
working with the qualitative theory of differential, functional differential, and difference
equations. In this issue, the reader will find papers addressing stability of nonlinear
differential systems with random parameters, robust stability of interval neural networks
with discrete and distributed time delays, mean square exponential stability of stochastic-
switched systems with interval time-varying delays, global exponential stability of periodic
solutions to neural networks and impulsive neural networks with time-varying delays, and
stability of impulsive stochastic functional differential systems.

Important directions in the modern qualitative theory of differential equations include
periodicity, almost periodicity, oscillation, and nonoscillation of solutions to various classes
of equations. This special issue contains papers that are concerned with the existence of
periodic solutions to nonlinear dynamic equations on time scales, oscillation of second-
order quasilinear neutral functional differential equations, existence of periodic solutions
to difference systems with a p-Laplacian, interval oscillation criteria for second-order-mixed
nonlinear impulsive differential equations with delay, existence of positive periodic solutions
to first-order neutral functional differential equations with periodic delays, existence of
almost periodic solutions to parabolic inverse Cauchy problems, bounded oscillation of
forced nonlinear neutral differential equations, and existence of periodic solutions to Duffing-
type p-Laplacian equations with multiple constant delays. Two papers in this collection deal
with the asymptotic behavior of solutions to a class of two-dimensional differential systems
with a finite number of nonconstant delays and with the properties of smooth solutions to a
class of iterative functional differential equations.

It is for sure that existence of positive solutions is important for many applied
problems. In this special issue, the reader can find contributions that address positivity of
solutions to nonlinear two-dimensional difference systems with multiple delays, existence
of positive bounded solutions to third-order discrete equations, partial difference equations
with delays, Neumann boundary value problems for second-order impulsive differential
equations in Banach spaces, neutral differential equations, existence and multiplicity of
positive solutions to a class of nonlinear discrete fourth-order boundary value problems, and
existence of positive monotonic solutions to nonlocal boundary value problems for a class
of second-order functional differential equations. Estimates for positive solutions to discrete
linear equations with a single delay are also established in one of the papers.

Several articles deal with important aspects of the theory of boundary value and initial
value problems providing the analysis of a class of boundary value problems for a system of
autonomous second-order linear partial differential equations of parabolic type with a single
delay and Dirichlet problems with an indefinite and unbounded potential and concave-
convex nonlinearities. In other papers included in this special issue, linear homogeneous
partial differential equations with entire solutions represented by Laguerre polynomials are
studied, monotone-iterative methods for initial value problems for differential equations with
“maxima” and initial time differences are developed, necessary and sufficient conditions for
the existence of solutions to a class of discrete second-order boundary value problems are
derived, existence of one-signed solutions to some discrete second-order periodic boundary
value problems is established, and optimal conditions for the existence and uniqueness of
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solutions to a class of nonlocal boundary value problems for linear homogeneous second-
order functional differential equations with piecewise constant arguments are obtained.

The last but not the least, this issue features a number of publications that report
recent progress in the analysis of problems arising in various applications. In particular,
dynamics of delayed neural network models consisting of two neurons with inertial coupling
were studied, properties of a stochastic delay logistic model under regime switching
were explored, and analysis of the permanence and extinction of a single species with
contraception and feedback controls was conducted. Other applied problems addressed
in this special issue regard Cohen-Grossberg BAM neural networks with time-varying
delays, adaptive observer-based fault estimation for stochastic Markovian jumping systems,
hematopoiesis models, Lotka-Volterra systems, and finite-time attractivity for diagonally
dominant systems with off-diagonal delays.

It is certainly impossible to provide in this short editorial note a more comprehensive
description for all articles in the collection. However, the team of the Guest Editors believes
that results included in this volume represent significant contemporary trends in the
qualitative theory of ordinary, functional, partial, impulsive, dynamic, stochastic differential,
and difference equations and in applications. We hope that this special issue will serve as
a source of inspiration for researchers working in related areas providing specialists with a
wealth of new ideas, techniques, and unsolved problems.

Josef Diblı́k
Elena Braverman

István Györi
Yuriy Rogovchenko

Miroslava Růžičková
Ağacık Zafer
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A delayed neural network model of two neurons with inertial coupling is dealt with in this paper.
The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form
theory and the center manifold argument, we derive the explicit formulas for determining the
properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate
the effectiveness of the obtained results.

1. Introduction

In recent years, a number of different classes of neural networks with or without delays,
including Hopfield networks, cellular neural networks, Cohen-Grossberg neural networks,
and bidirectional associate memory neural networks have been active research topic as [1],
and substantial efforts have been made in neural network models, for example, Huang et
al. [2] studied the global exponential stability and the existence of periodic solution of a
class of cellular neural networks with delays, Guo and Huang [3] investigated the Hopf
bifurcation natures of a ring of neurons with delays, Yan [4] analyzed the stability and
bifurcation of a delayed tri-neuron network model, Hajihosseini et al. [5] made a discussion
on the Hopf bifurcation of a delayed recurrent neural network in the frequency domain,
and Liao et al. [6] did a theoretical and empirical investigation of a two-neuron system with
distributed delays in the frequency domain. Agranovich et al. [7] considered the impulsive
control of a hysteresis cellular neural network model. For more information, one can see
[8–24]. In 1986 and 1987, Babcock and Westervelt [25, 26] had investigated the stability
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and dynamics of the following simple neural network model of two neurons with inertial
coupling:

dx1

dt
= x3,

dx2

dt
= x4,

dx3

dt
= −2ξx3 − x1 +A2 tanh(x2),

dx4

dt
= −2ξx4 − x2 +A1 tanh(x1),

(1.1)

where xi (i = 1, 2) is the input voltage of the ith neuron, xj (j = 3, 4) denotes the
output of the jth neuron, ξ > 0 is the damping factor, and Ai (i = 1, 2) is the
overall gain of the neuron which determines the strength of the nonlinearity. For a more
detailed interpretation of the parameters, one can see [25, 26]. In 1997, Lin and Li [27]
made a detail discussion on the bifurcation direction of periodic solution for system
(1.1).

From applications point of view, considering that there is a time delay (we assume
that it is τ) in the response of the output voltages to changes in the input, that is, there exists
a feedback delay of the input voltage of the ith neuron to the growth of the output of the jth
neuron, then we modify system (1.1) as follows:

dx1

dt
= x3,

dx2

dt
= x4,

dx3

dt
= −2ξx3 − x1(t − τ) +A2 tanh(x2(t − τ)),

dx4

dt
= −2ξx4 − x2(t − τ) +A1 tanh(x1(t − τ)).

(1.2)

It is well known that the research on the Hopf bifurcation, especially on the stability of
bifurcating periodic solutions and direction of Hopf bifurcation is very critical. When delays
are incorporated into the network models, stability and Hopf bifurcation analysis become
more difficult. To obtain a deep and clear understanding of dynamics of neural network
model of two neurons with inertial coupling, we will make a discussion on system (1.2),
that is, we study the stability, the local Hopf bifurcation for system (1.2).

The remainder of this paper is organized as follows. In Section 2, we investigate the
stability of the equilibrium and the occurrence of local Hopf bifurcations. In Section 3, the
direction and stability of the local Hopf bifurcation are established. In Section 4, numerical
simulations are carried out to illustrate the validity of the main results.
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2. Stability of the Equilibrium and Local Hopf Bifurcations

In this section, we shall study the stability of the equilibrium and the existence of local Hopf
bifurcations. For simplification, we only consider the zero equilibrium. One can check that if
the following condition:

(H1)A1A2 < 1 (2.1)

holds, then (1.2) has a unique equilibrium E(0, 0, 0, 0). The linearization of (1.2) at E(0, 0, 0, 0)
is given by

dx1

dt
= x3,

dx2

dt
= x4,

dx3

dt
= −2ξx3 − x1(t − τ) +A2x2(t − τ),

dx4

dt
= −2ξx4 − x2(t − τ) +A1x1(t − τ),

(2.2)

whose characteristic equation takes the form of

det

⎛
⎜⎜⎜⎜⎜⎝

λ 0 −1 0

0 λ 0 −1

e−λτ −A2e
−λτ λ + 2ξ 0

−A1e
−λτ e−λτ 0 λ + 2ξ

⎞
⎟⎟⎟⎟⎟⎠

= 0, (2.3)

that is,

λ4 + 4ξλ3 + 4ξ2λ2 +
(

2λ2 + 4ξλ
)
e−λτ + (1 −A1A2)e−2λτ = 0. (2.4)

Multiplying eλτ on both sides of (2.4), it is easy to obtain

(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ + 2λ2 + 4ξλ + (1 −A1A2)e−λτ = 0. (2.5)

In order to investigate the distribution of roots of the transcendental equation (2.5), the
following lemma is helpful.
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Lemma 2.1 (see [28]). For the following transcendental equation:

P
(
λ, e−λτ1 , . . . , e−λτm

)
= λn + p

(0)
1 λn−1 + · · · + p

(0)
n−1λ + p

(0)
n

+
[
p
(1)
1 λn−1 + · · · + p

(1)
n−1λ + p

(1)
n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p

(m)
n−1λ + p

(m)
n

]
e−λτm = 0,

(2.6)

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P(λ, e−λτ1 , . . . , e−λτm) in the open right
half-plane can change, and only a zero appears on or crosses the imaginary axis.

For τ = 0, (2.5) becomes

λ4 + 4ξλ3 +
(

4ξ2 + 2
)
λ2 + 4ξλ + 1 −A1A2 = 0. (2.7)

In view of Routh-Hurwitz criteria, we know that all roots of (2.7) have a negative real part if
the following condition:

(H2)4ξ2 +A1A2 > 0 (2.8)

is fulfilled.
For ω > 0, iω is a root of (2.5) if and only if

(
ω4 − 4ξω3i − 4ξ2ω2

)
(cosωτ + i sinωτ) − 2ω2 + 4ξωi + (1 −A1A2)(cosωτ − i sinωτ) = 0.

(2.9)

Separating the real and imaginary parts gives

(
ω4 − 4ξ2ω2 + 1 −A1A2

)
cosωτ + 4ξω3 sinωτ = 2ω2,

(
ω4 − 4ξ2ω2 − 1 +A1A2

)
sinωτ − 4ξω3 cosωτ = −4ξω.

(2.10)

Then, we obtain

sinωτ =
4ξω5 + 16ξ3ω3 − (1 −A1A2)(
ω4 + 4ξ2ω2

)2 − (1 −A1A2)2
, (2.11)

cosωτ =
2ω6 + 8ξ2ω4 − (1 −A1A2)(
ω4 + 4ξ2ω2

)2 − (1 −A1A2)2
. (2.12)
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In view of sin2ωτ + cos2ωτ = 1, then, we have

[
4ξω5 + 16ξ3ω3 − (1 −A1A2)

]2
+
[
2ω6 + 8ξ2ω4 − (1 −A1A2)

]2

=
[(

ω4 + 4ξ2ω2
)2 − (1 −A1A2)2

]2

,

(2.13)

which is equivalent to

ω16 + l1ω
14 + l2ω

12 + l3ω
10 + l4ω

8 + l5ω
6 + l6ω

5 + l7ω
4 + l8ω

3 + l9 = 0, (2.14)

where

l1 = 16ξ2, l2 = 96ξ4 − 4, l3 = 256ξ6 − 48ξ2,

l4 = 256ξ8 − 64ξ4 − 128ξ3 − 2(1 −A1A2)
2, l5 = 2(1 −A1A2) − 16(1 −A1A2)

2ξ2 − 256ξ6,

l6 = 2ξ(1 −A1A2), l7 = 16ξ2(1 −A1A2) − 32ξ4(1 −A1A2)
2,

l8 = 32ξ3(1 −A1A2), l9 = −[(1 −A1A2)
4 + (1 −A1A2)

2].

Denote

h(ω) = ω16 + l1ω
14 + l2ω

12 + l3ω
10 + l4ω

8 + l5ω
6 + l6ω

5 + l7ω
4 + l8ω

3 + l9. (2.15)

Since l9 < 0 and limω→+∞h(ω) = +∞, then we can conclude that (2.14) has at least one positive
root. Without loss of generality, we assume that (2.14) has sixteen positive roots, denoted by
ωk (k = 1, 2, 3, . . . , 16). Then, by (2.12), we have

τ
(j)
k =

1
ωk

{
arccos

[
2ω6 + 8ξ2ω4 − (1 −A1A2)(
ω4 + 4ξ2ω2

)2 − (1 −A1A2)2

]
+ 2jπ

}
, (2.16)

where k = 1, 2, 3, . . . , 16; j = 0, 1, . . ., then ±iωk are a pair of purely imaginary roots of (2.4)
with τ

(j)
k

. Define

τ0 = τ
(0)
k0

= min
k∈{1,2,3,...,16}

{
τ
(0)
k

}
. (2.17)

The above analysis leads to the following result.

Lemma 2.2. If (H1) and (H2) hold, then all roots of (2.4) have a negative real part when τ ∈
[0, τ0) and (2.4) admits a pair of purely imaginary roots ±ωk when τ = τ

(j)
k
(k = 1, 2, 3, . . . , 16; j =

0, 1, 2, . . .).

Let λ(τ) = α(τ)+iω(τ) be a root of (2.5) near τ = τ
(j)
k , α(τ (j)k ) = 0, and ω(τ (j)k ) = ωk. Due

to functional differential equation theory, for every τ
(j)
k
, k = 1, 2, 3, . . . , 16; j = 0, 1, 2, . . ., there
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exists ε > 0 such that λ(τ) is continuously differentiable in τ for |τ − τ
(j)
k
| < ε. Substituting

λ(τ) into the left hand side of (2.5) and taking derivative with respect to τ , we have

[
dλ

dτ

]−1

=

(
4λ3 + 12ξλ2 + 8ξ2λ

)
eλτ + 4λ + 4ξ

λ(1 −A1A2)e−λτ − λ
(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ

− τ

λ
. (2.18)

Noting that

[
4λ3 + 12ξλ2 + 8ξ2λ

)
eλτ + 4λ + 4ξ

]
τ=τ (j)

k

= K1 +K2i,

[
λ(1 −A1A2)e−λτ − λ

(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ

]
τ=τ (j)

k

= P1 + P2i,
(2.19)

where

K1 = 4ξ − 12ξω2
k cosωkτ

(j)
k − (18ξ2ωk − 4ω3

k) sinωkτ
(j)
k ,

K2 = 4ωk + (8ξ2ωk − 4ω3
k
) cosωkτ

(j)
k

− 12ξω2
k

sinωkτ
(j)
k

.

P1 = 4ξω4
k cosωkτ

(j)
k + [(1 −A1A2)ωk −ω5

k − 4ξ2ω3
k] sinωkτ

(j)
k

P2 = [(1 −A1A2)ωk −ω5
k
− 4ξ2ω3

k
] cosωkτ

(j)
k

− 4ξω4
k

sinωkτ
(j)
k

,

we derive

[
d(Reλ(τ))

dτ

]−1

τ=τ (j)
k

= Re

{ (
4λ3 + 12ξλ2 + 8ξ2λ

)
eλτ + 4λ + 4ξ

λ(1 −A1A2)e−λτ − λ
(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ

}

τ=τ (j)
k

= Re
{
K1 +K2i

P1 + P2i

}
=

K1P1 −K2P2

P 2
1 + P 2

2

.

(2.20)

We assume that the following condition holds:

(H3)K1P1 /=K2P2. (2.21)

According to above analysis and the results of Kuang [29] and Hale [30], we have the
following.

Theorem 2.3. If (H1) and (H2) hold, then the equilibrium E(0, 0, 0, 0) of system (1.2) is
asymptotically stable for τ ∈ [0, τ0). Under the conditions (H1) and (H2), if the condition (H3)
holds, then system (1.2) undergoes a Hopf bifurcation at the equilibrium E(0, 0, 0, 0) when τ = τ

(j)
k ,

k = 1, 2, 3, . . . , 16; j = 0, 1, 2, . . ..

3. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtained conditions for Hopf bifurcation to occur when τ =
τ
(j)
k
, k = 1, 2, 3, . . . , 16; j = 0, 1, 2, . . .. In this section, we shall obtain the explicit formulae
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for determining the direction, stability, and periods of these periodic solutions bifurcating
from the equilibrium E(0, 0, 0, 0) at these critical value of τ , by using techniques from normal
form and center manifold theory [31]. Throughout this section, we always assume that
system (1.2) undergoes Hopf bifurcation at the equilibrium E(0, 0, 0, 0) for τ = τ

(j)
k , k =

1, 2, 3, . . . , 16; j = 0, 1, 2, . . ., and then ±iωk are corresponding purely imaginary roots of the
characteristic equation at the equilibrium E(0, 0, 0, 0).

For convenience, let xi(t) = xi(τt) (i = 1, 2, 3, 4) and τ = τ
(j)
k

+ μ, where τ
(j)
k

is defined
by (2.16) and μ ∈ R, drop the bar for the simplification of notations, then system (2.2) can be
written as an FDE in C = C([−1, 0]), R4) as

u̇(t) = Lμ(ut) + F
(
μ, ut

)
, (3.1)

where u(t) = (x1(t), x2(t), x3(t), x4(t))
T ∈ C and ut(θ) = u(t + θ) = (x1(t + θ), x2(t + θ), x3(t +

θ), x4(t + θ))T ∈ C, and Lμ : C → R, F : R × C → R are given by

Lμφ =
(
τ
(j)
k

+ μ
)

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 0 −2ξ 0

0 0 0 −2ξ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

φ1(0)

φ2(0)

φ3(0)

φ4(0)

⎞
⎟⎟⎟⎟⎟⎠

+
(
τ
(j)
k

+ μ
)

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

−1 A2 0 0

A1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

φ1(−1)

φ2(−1)

φ3(−1)

φ4(−1)

⎞
⎟⎟⎟⎟⎟⎠

,

f
(
μ, φ

)
=
(
τ
(j)
k

+ μ
)

⎛
⎜⎜⎜⎜⎜⎝

0

0

A2φ
3
2(−1) + h.o.t.

A1φ
3
1(−1) + h.o.t.

⎞
⎟⎟⎟⎟⎟⎠

,

(3.2)

respectively, where φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ))
T ∈ C.

From the discussion in Section 2, we know that if μ = 0, then system (3.1) undergoes a
Hopf bifurcation at the equilibrium E(0, 0, 0, 0) and the associated characteristic equation of
system (3.1) has a pair of simple imaginary roots ±ωkτ

(j)
k

.
By the representation theorem, there is a matrix function with bounded variation

components η(θ, μ), θ ∈ [−1, 0] such that

Lμφ =
∫0

−1
dη

(
θ, μ

)
φ(θ) for φ ∈ C. (3.3)
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In fact, we can choose

η
(
θ, μ

)
=

(
τ
(j)
k

+ μ
)
⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 −2ξ 0
0 0 0 −2ξ

⎞
⎟⎟⎠δ(θ)

−
(
τ
(j)
k + μ

)
⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
−1 A2 0 0
A1 −1 0 0

⎞
⎟⎟⎠δ(θ + 1),

(3.4)

where δ is the Dirac delta function.
For φ ∈ C([−1, 0], R4), define

A
(
μ
)
φ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,

∫0

−1
dη

(
s, μ

)
φ(s), θ = 0,

Rφ =

⎧
⎨
⎩

0, −1 ≤ θ < 0,

f
(
μ, φ

)
, θ = 0.

(3.5)

Then, (3.1) is equivalent to the following abstract differential equation:

u̇t = A
(
μ
)
ut + R

(
μ
)
ut, (3.6)

where ut(θ) = u(t + θ), θ ∈ [−1, 0]. For ψ ∈ C([0, 1], (R4)∗), define

A∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],

∫0

−1
dηT (t, 0)ψ(−t), s = 0.

(3.7)

For φ ∈ C([−1, 0], R4) and ψ ∈ C([0, 1], (R4)∗), define the following bilinear form:

〈
ψ, φ

〉
= ψ(0)φ(0) −

∫0

−1

∫θ

ξ=0
ψT (ξ − θ)dη(θ)φ(ξ)dξ, (3.8)
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where η(θ) = η(θ, 0), and the A = A(0) and A∗ are adjoint operators. By the discussions in
Section 2, we know that ±iωkτ

(j)
k

are eigenvalues of A(0), and they are also eigenvalues of A∗

corresponding to iωkτ
(j)
k and −iωkτ

(j)
k , respectively. By direct computation, we can obtain

q(θ) =
(
1, α, β, γ

)T
eiωkτ

(j)
k

θ, q∗(s) = D
(
1, α∗, β∗, γ∗

)
eiωkτ

(j)
k

s, (3.9)

where

α =
iωk(iωk + 2ξ) + e−iωkτ

(j)
k

A2e
−iωkτ

(j)
k

, β = −iωk, γ =
iωke

−iωkτ
(j)
k −ω2

k(iωk + 2ξ)

A2e
−iωkτ

(j)
k

,

α∗ =
iωk(2ξ − iωk) − e−iωkτ

(j)
k

A1e
−iωkτ

(j)
k

, β∗ =
1

2ξ − iωk
, γ∗ =

ω2
k(iωk + 2ξ) − iωke

−iωkτ
(j)
k

A2e
−iωkτ

(j)
k

,

D =
1

1 + αα∗ + ββ∗ + γγ∗ + τ
(j)
k

[
γ(A1 − α∗) − β(A2α∗ + 1)

]
eiωkτ

(j)
k

.

(3.10)

Furthermore, 〈q∗(s), q(θ)〉1 and 〈q∗(s), q(θ)〉0.
Next, we use the same notations as those in Hassard et al. [31] and we first compute

the coordinates to describe the center manifold C0 at μ = 0. Let ut be the solution of (3.1),
when μ = 0.

Define

z(t) =
〈
q∗, ut

〉
, W(t, θ) = ut(θ) − 2 Re

{
z(t)q(θ)

}
, (3.11)

on the center manifold C0, and we have

W(t, θ) = W(z(t), z(t), θ), (3.12)

where

W(z(t), z(t), θ) = W(z, z) = W20
z2

2
+W11zz +W02

z2

2
+ · · · , (3.13)

and z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Noting
that W is also real if ut is real, we consider only real solutions. For solutions ut ∈ C0 of (3.1),
we have

ż(t) = iωkτ
(j)
k
z + q∗(θ)f

(
0,W(z, z, θ) + 2 Re

{
zq(θ)

}) def= iωkτ
(j)
k
z + q∗(0)f0. (3.14)
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That is,

ż(t) = iωkτ
(j)
k z + g(z, z), (3.15)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.16)

Hence, we have

g(z, z) = q∗(0)f0(z, z) = q∗(0)f(0, ut)

= τ
(j)
k
D
(

1, α∗, β
∗
, γ∗

)
⎛
⎜⎜⎜⎜⎝

0
0

A2x
3
2t(−1) + h.o.t.

A1x
3
1t(−1) + h.o.t.

⎞
⎟⎟⎟⎟⎠

= Dτ
(j)
k

[
3β∗e−iωkτ

(j)
k + 3γ∗α2αe−2iωkτ

(j)
k

]
z2z + h.o.t,

(3.17)

and we obtain

g20 = g11 = g02 = 0, (3.18)

g21 = 2Dτ
(j)
k

[
3β∗e−iωkτ

(j)
k + 3γ∗α2αe−2iωkτ

(j)
k

]
. (3.19)

Thus, we derive the following values:

c1(0) =
i

2ωkτ
(j)
k

(
g20g11 − 2

∣∣g11
∣∣2 −

∣∣g02
∣∣2

3

)
+
g21

2
,

μ2 = − Re{c1(0)}
Re

{
λ′
(
τ
(j)
k

)} ,

β2 = 2 Re(c1(0)),

T2 = −
Im{c1(0)} + μ2 Im

{
λ′
(
τ
(j)
k

)}

ωkτ
(j)
k

,

(3.20)

which determine the quantities of bifurcation periodic solutions of (3.1) on the center
manifold at the critical value τ = τ

(j)
k , (k = 1, 2, 3, . . . , 16; j = 0, 1, 2, 3, . . .). Summarizing

the results obtained above leads to the following theorem.
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Theorem 3.1. The periodic solution is forward (backward) if μ2 > 0 (μ2 < 0). The bifurcating
periodic solutions on the center manifold are orbitally asymptotically stable with asymptotical phase
(unstable) if β2 < 0 (β2 > 0). The periods of the bifurcating periodic solutions increase (decrease)
if T2 > 0 (T2 < 0).

4. Numerical Examples

In this section, we present some numerical results of system (1.2) to verify the analytical
predictions obtained in the previous section. Let us consider the following system:

dx1

dt
= x3,

dx2

dt
= x4,

dx3

dt
= −0.8x3 − x1(t − τ) + 0.2 tanh(x2(t − τ)),

dx4

dt
= −0.8x4 − x2(t − τ) + 0.4 tanh(x1(t − τ)),

(4.1)

which has an equilibrium E0(0, 0, 0, 0) and satisfies the conditions indicated in Theorem 2.3.
The equilibrium E0(0, 0, 0, 0) is asymptotically stable for τ = 0. Using the software MATLAB
(here take j = 0 for example), we derive ω0 ≈ 4.1208, τ0 ≈ 0.6801, λ′(τ0) ≈ 0.3307 −
3.1524i, g21 ≈ −1.4203−4.5518i. Thus by algorithm (3.20) derived in Section 3, we have c1(0) ≈
−0.7102−2.1609i, μ2 ≈ −2.1476, β2 ≈ −1.4202, T2 ≈ 3.1867. Furthermore, it follows that μ2 > 0
and β2 < 0. Thus, the equilibrium E0(0, 0, 0, 0) is stable when τ < τ0 ≈ 0.6801. Figures 1(a)–1(j)
show that the equilibrium E0(0, 0, 0, 0) is asymptotically stable when τ = 0.65 < τ0 ≈ 0.6801.
It is observed from Figures 1(a)–1(j) that the input voltage of the i (i = 1, 2)th neuron and
the output of the j (j = 3, 4)th neuron converge to their steady states in finite time. If we
gradually increase the value of τ and keep other parameters fixed, when τ passes through
the critical value τ0 ≈ 0.6801, the equilibrium E0(0, 0, 0, 0) loses its stability and a Hopf
bifurcation occurs, that is, the input voltage of the i (i = 1, 2)th neuron the output of the
j (j = 3, 4)th neuron will keep an oscillary mode near the equilibrium E0(0, 0, 0, 0). Due to
μ2 > 0 and β2 < 0, the direction of the Hopf bifurcation is τ > τ0 ≈ 0.6801, and these
bifurcating periodic solutions from E0(0, 0, 0, 0) at τ0 ≈ 0.6801 are stable. Figures 1(j)–2(d)
suggest that Hopf bifurcation occurs from the equilibrium E0(0, 0, 0, 0) when τ = 0.8 > τ0 ≈
0.6801.

5. Conclusions

In this paper, we have studied the bifurcation natures of a delayed neural network model
of two neurons with inertial coupling. Regarding delay as the bifurcation parameter and
analyzing the characteristic equation of the linearized system of the original system at
the equilibrium E0(0, 0, 0, 0), we proposed the conditions to define the parameters for
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Figure 1: Continued.
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Figure 1: The time histories and phase trajectories of system (4.1) with τ = 0.65 < τ0 ≈ 0.6801 and the initial
value (0.05, 0.05, 0.05, 0.025). The equilibrium E0(0, 0, 0, 0) is asymptotically stable.

the occurrence of Hopf bifurcation and the oscillatory solutions of the models equations.
It is shown that if conditions (H1) and (H2) hold, the equilibrium E0(0, 0, 0, 0) of
system (1.2) is asymptotically stable for all τ ∈ [0, τ0). Under conditions (H1) and
(H2), if condition (H3) is satisfied, as the delay τ increases and crosses a threshold
value τ

(j)
k

, the equilibrium loses its stability and the delayed network model of two
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Figure 2: Continued.
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Figure 2: The time histories and phase trajectories of system (4.1) with τ = 0.8 > τ0 ≈ 0.6801 and the initial
value (0.05, 0.05, 0.05, 0.025). Hopf bifurcation occurs from the equilibrium E0(0, 0, 0, 0).

neurons with inertial coupling enters into a Hopf bifurcation. In addition, using the
normal form method and center manifold theorem, explicit formulaes for determining
the properties of periodic solutions are worked out. Simulations are included to verify
the theoretical findings. The obtained findings are useful in applications of network
control.
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Let T ⊂ R be a periodic time scale in shifts δ±. We use a fixed point theorem due to
Krasnosel’skiı̆ to show that nonlinear delay in dynamic equations of the form xΔ(t) = −a(t)xσ(t) +
b(t)xΔ(δ−(k, t))δΔ

− (k, t) + q(t, x(t), x(δ−(k, t))), t ∈ T, has a periodic solution in shifts δ±. We extend
and unify periodic differential, difference, h-difference, and q-difference equations and more by a
new periodicity concept on time scales.

1. Introduction

The time scales approach unifies differential, difference, h-difference, and q-differences
equations and more under dynamic equations on time scales. The theory of dynamic
equations on time scales was introduced by Hilger in this Ph.D. thesis in 1988 [1]. The
existence problem of periodic solutions is an important topic in qualitative analysis of
ordinary differential equations. There are only a few results concerning periodic solutions
of dynamic equations on time scales such as in [2, 3]. In these papers, authors considered the
existence of periodic solutions for dynamic equations on time scales satisfying the condition

“there exists a ω > 0 such that t ±ω ∈ T ∀t ∈ T.′′ (1.1)

Under this condition all periodic time scales are unbounded above and below. However, there
are many time scales such as qZ = {qn : n ∈ Z} ∪ {0} and

√
N = {√n : n ∈ N} which do not

satisfy condition (1.1). Adıvar and Raffoul introduced a new periodicity concept on time
scales which does not oblige the time scale to be closed under the operation t ± ω for a fixed
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ω > 0. He defined a new periodicity concept with the aid of shift operators δ± which are first
defined in [4] and then generalized in [5].

Let T be a periodic time scale in shifts δ± with period P ∈ (t0,∞)
T

and t0 ∈ T is
nonnegative and fixed. We are concerned with the existence of periodic solutions in shifts δ±
for the nonlinear dynamic equation with a delay function δ−(k, t):

xΔ(t) = −a(t)xσ(t) + b(t)xΔ(δ−(k, t))δΔ
− (k, t) + q(t, x(t), x(δ−(k, t))), t ∈ T, (1.2)

where k is fixed if T = R and k ∈ [P,∞)
T

if T is periodic in shifts δ± with period P .
Kaufmann and Raffoul in [2] used Krasnosel’skiı̆ fixed point theorem and showed

the existence of a periodic solution of (1.2) and used the contraction mapping principle to
show that the periodic solution is unique when T satisfies condition (1.1). Similar results
were obtained concerning (1.2) in [6, 7] in the case T = R, T = Z, respectively. Currently,
Adıvar and Raffoul used Lyapunov’s direct method to obtain inequalities that lead to stability
and instability of delay dynamic equations of (1.2) when q = 0 on a time scale having
a delay function δ− in [8] and also using the topological degree method and Schaefers
fixed point theorem, they deduce the existence of periodic solutions of nonlinear system of
integrodynamic equations on periodic time scales in [9].

Hereafter, we use the notation [a, b]
T

to indicate the time scale interval [a, b] ∩ T. The
intervals [a, b)

T
, (a, b]

T
and (a, b)

T
are similarly defined.

In Section 2, we will state some facts about the exponential function on time scales,
the new periodicity concept for time scales, and some important theorems which will be
needed to show the existence of a periodic solution in shifts δ±. In Section 3, we will give
some lemmas about the exponential function and the graininess function with shift operators.
Finally, we present our main result in Section 4 by using Krasnosel’skiı̆ fixed point theorem
and give an example.

2. Preliminaries

In this section, we mention some definitions, lemmas, and theorems from calculus on time
scales which can be found in [10, 11]. Next, we state some definitions, lemmas, and theorems
about the shift operators and the new periodicity concept for time scales which can be found
in [12].

Definition 2.1 (see [10]). A function p : T → R is said to be regressive provided 1+μ(t)p(t)/= 0
for all t ∈ T

κ, where μ(t) = σ(t)−t. The set of all regressive rd-continuous functions ϕ : T → R

is denoted by R while the set R+ is given by R+ = {ϕ ∈ R : 1 + μ(t)ϕ(t) > 0 for all t ∈ T}.

Let ϕ ∈ R and μ(t) > 0 for all t ∈ T. The exponential function on T is defined by

eϕ(t, s) = exp

(∫ t

s

ζμ(r)
(
ϕ(r)

)
Δr

)
, (2.1)
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where ζμ(s) is the cylinder transformation given by

ζμ(r)
(
ϕ(r)

)
:=

⎧⎪⎨
⎪⎩

1
μ(r)

Log
(
1 + μ(r)ϕ(r)

)
, if μ(r) > 0,

ϕ(r), if μ(r) = 0.
(2.2)

Also, the exponential function y(t) = ep(t, s) is the solution to the initial value problem yΔ =
p(t)y,y(s) = 1. Other properties of the exponential function are given in the following lemma
[10, Theorem 2.36].

Lemma 2.2 (see [10]). Let p, q ∈ R. Then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(iii) 1/ep(t, s) = e�(t, s), where, �p(t) = −(p(t))/(1 + μ(t)p(t));

(iv) ep(t, s) = 1/ep(s, t) = e�p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii) ep(t, s)/eq(t, s) = ep�q(t, s);

(viii) (1/ep(·, s))Δ = −p(t)/eσp (·, s).

The following definitions, lemmas, corollaries, and examples are about the shift
operators and new periodicity concept for time scales which can be found in [12].

Definition 2.3 (see [12]). Let T
∗ be a nonempty subset of the time scale T including a fixed

number t0 ∈ T
∗ such that there exist operators δ± : [t0,∞)

T
×T

∗ → T
∗ satisfying the following

properties.

(P.1) The function δ± are strictly increasing with respect to their second arguments, that
is, if

(T0, t), (T0, u) ∈ D± := {(s, t) ∈ [t0,∞)
T
× T

∗ : δ∓(s, t) ∈ T
∗}, (2.3)

then

T0 ≤ t < u implies δ±(T0, t) < δ±(T0, u). (2.4)

(P.2) If (T1, u), (T2, u) ∈ D with T1 < T2, then δ−(T1, u) > δ−(T2, u), and if (T1, u), (T2, u) ∈
D+ with T1 < T2, then δ+(T1, u) < δ+(T2, u).

(P.3) If t ∈ [t0,∞)
T

, then (t, t0) ∈ D+ and δ+(t, t0) = t. Moreover, if t ∈ T
∗, then (t0, t) ∈ D+

and δ+(t0, t) = t holds.

(P.4) If (s, t) ∈ D±, then (s, δ±(s, t)) ∈ D∓ and δ∓(s, δ±(s, t)) = t, respectively.

(P.5) If (s, t) ∈ D± and (u, δ±(s, t)) ∈ D±, then (s, δ∓(u, t)) ∈ D± and δ∓(u, δ±(s, t)) =
δ±(s, δ∓(u, t)), respectively.
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Then the operators δ− and δ+ associated with t0 ∈ T
∗ (called the initial point) are

said to be backward and forward shift operators on the set T
∗, respectively. The variable

s ∈ [t0,∞)
T

in δ±(s, t) is called the shift size. The values δ+(s, t) and δ−(s, t) in T
∗ indicate

s units translation of the term t ∈ T
∗ to the right and left, respectively. The sets D± are the

domains of the shift operator δ±, respectively. Hereafter, T
∗ is the largest subset of the time

scale T such that the shift operators δ± : [t0,∞)
T
× T

∗ → T
∗ exist.

Example 2.4 (see [12]).

(i) T = R, t0 = 0, T
∗ = R, δ−(s, t) = t − s and δ+(s, t) = t + s.

(ii) T = Z, t0 = 0, T
∗ = Z, δ−(s, t) = t − s and δ+(s, t) = t + s.

(iii) T = qZ ∪ {0}, t0 = 1, T
∗ = qZ, δ−(s, t) = t/s and δ+(s, t) = ts.

(iv) T = N
1/2, t0 = 0, T

∗ = N
1/2, δ−(s, t) =

√
t2 − s2 and δ+(s, t) =

√
t2 + s2.

Definition 2.5 (periodicity in shifts [12]). Let T be a time scale with the shift operators δ±
associated with the initial point t0 ∈ T

∗. The time scale T is said to be periodic in shift δ± if
there exists a p ∈ (t0,∞)

T∗ such that (p, t) ∈ D± for all t ∈ T
∗. Furthermore, if

P := inf
{
p ∈ (t0,∞)

T∗ :
(
p, t
) ∈ D±, ∀t ∈ T

∗}
/= t0, (2.5)

then P is called the period of the time scale T.

Example 2.6 (see [12]). The following time scales are not periodic in the sense of condition
(1.1) but periodic with respect to the notion of shift operators given in Definition 2.5:

(i) T1 = {±n2 : n ∈ Z}, δ±(P, t) =
{

(
√
t±
√
P)2, t>0;

±P, t=0;
−(√−t±

√
P)2, t<0;

, P = 1, t0 = 0,

(ii) T2 = qZ, δ±(P, t) = P±1t, P = q, t0 = 1,

(iii) T3 = ∪n∈Z[22n, 22n+1], δ±(P, t) = P±1t, P = 4, t0 = 1,

(iv) T4 = {qn/(1 + qn) : q > 1 is constant and n ∈ Z} ∪ {0, 1},

δ±(P, t) =
q((ln(t/(1−t))±ln(P/(1−P)))/ ln q)

1 + q((ln(t/(1−t))±ln(P/(1−P)))/ ln q)
, P =

q

1 − q
. (2.6)

Notice that the time scale T4 in Example 2.6 is bounded above and below and T
∗
4 =

{qn/(1 + qn) : q > 1 is constant and n ∈ Z}.

Remark 2.7 (see [12]). Let T be a time scale, that is, periodic in shifts with the period P . Thus,
by (P.4) of Definition 2.3 the mapping δP

+ : T
∗ → T

∗ defined by δP
+ (t) = δ+(P, t) is surjective.

On the other hand, by (P.1) of Definition 2.3 shift operators δ± are strictly increasing in their
second arguments. That is, the mapping δP

+ (t) = δ+(P, t) is injective. Hence, δP
+ is an invertible

mapping with the inverse (δP
+ )

−1 = δP
− defined by δP

− (t) := δ−(P, t).
We assume that T is a periodic time scale in shift δ± with period P . The operators

δP
± : T

∗ → T
∗ are commutative with the forward jump operator σ : T → T given by σ(t) :=

inf{s ∈ T : s > t}. That is, (δP
± ◦ σ)(t) = (σ ◦ δP

± )(t) for all t ∈ T
∗.
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Lemma 2.8 (see [12]). The mapping δP
+ : T

∗ → T
∗ preserves the structure of the points in T

∗. That
is,

σ(t) = t implies σ(δ+(P, t)) = δ+(P, t) andσ(t) > t implies σ(δ+(P, t)) > δ+(P, t). (2.7)

Corollary 2.9 (see [12]). δ+(P, σ(t)) = σ(δ+(P, t)) and δ−(P, σ(t)) = σ(δ−(P, t)) for all t ∈ T
∗.

Definition 2.10 (periodic function in shift δ± [12]). Let T be a time scale that is periodic in
shifts δ± with the period P . We say that a real value function f defined on T

∗ is periodic in
shifts δ± if there exists a T ∈ [P,∞)

T∗ such that

(T, t) ∈ D±, f
(
δT
±(t)
)
= f(t) ∀t ∈ T

∗, (2.8)

where δT
± := δ±(T, t). The smallest number T ∈ [P,∞)

T∗ such that (5) holds is called the period
of f .

Definition 2.11 (Δ-periodic function in shifts δ± [12]). Let T be a time scale that is periodic in
shifts δ± with the period P . We say that a real value function f defined on T

∗ is Δ-periodic in
shifts δ± if there exists a T ∈ [P,∞)

T∗ such that

(T, t) ∈ D± ∀t ∈ T
∗,

the shifts δT
± areΔ-differentiable with rd-continuous derivatives,

f
(
δT
±(t)
)
δΔT
± = f(t) ∀t ∈ T

∗,

(2.9)

where δT
± := δ±(T, t). The smallest number T ∈ [P,∞)

T∗ such that (2.9) hold is called the
period of f .

Notice that Definitions 2.10 and 2.11 give the classic periodicity definition on time
scales whenever δT

± := t ± T are the shifts satisfying the assumptions of Definitions 2.10 and
2.11.

Now, we give two theorems concerning the composition of two functions. The first
theorem is the chain rule on time scales [10, Theorem 1.93].

Theorem 2.12 (chain rule [10]). Assume that υ : T → R is strictly increasing and T̃ := υ(T) is a
time scale. Let w : T̃ → R. If νΔ(t) and wΔ̃ exist for t ∈ T

κ, then

(w ◦ v)Δ =
(
wΔ̃ ◦ ν

)
νΔ. (2.10)

Let T be a time scale that is periodic in shifts δ±. If one takes ν(t) = δ±(T, t), then one
has ν(T) = T and [f(ν(t))]Δ = (fΔ ◦ ν(t))νΔ(t).

The second theorem is the substitution rule on periodic time scales in shifts δ± which
can be found in [12].
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Theorem 2.13 (see [12]). Let T be a time scale that is periodic in shifts δ± with period P ∈ [t0,∞)
T∗

and f a Δ-periodic function in shifts δ± with the period T ∈ [P,∞)
T∗ . Suppose that f ∈ Crd(T), then

∫ t

t0

f(s)Δs =
∫δT

± (t)

δT
± (t0)

f(s)Δs. (2.11)

This work is mainly based on the following theorem [13].

Theorem 2.14 (Krasnosel’skiı̆). Let M be a closed convex nonempty subset of a Banach space
(B, ‖.‖). Suppose that A and B map M into B such that

(i) x, y ∈ M imply Ax + By ∈ M,

(ii) A is completely continuous,

(iii) B is a contraction mapping.

Then there exists z ∈ M with z = Az + Bz.

3. Some Lemmas

In this section, we show some interesting properties of the exponential functions ep(t, t0) and
shift operators on time scales.

Lemma 3.1. Let T be a time scale that is periodic in shifts δ± with the period P and the shift δT
± is Δ-

differentiable on t ∈ T
∗ where T ∈ [P,∞)

T∗ . Then the graininess function μ : T → [0,∞) satisfies

μ
(
δT
±(t)
)
= δΔT

± (t)μ(t). (3.1)

Proof. Since δT
± is Δ-differentiable at t we can use Theorem 1.16 (iv) in [10]. Then we have

μ(t)δΔT
± (t) = δT

±(σ(t)) − δT
±(t). (3.2)

Then by using Corollary 2.9 we have

μ(t)δΔT
± (t) = σ

(
δT
±(t)
)
− δT

±(t)

= μ
(
δT
±(t)
)
.

(3.3)

Thus, the proof is complete.

Lemma 3.2. Let T be a time scale, that is, periodic in shifts δ± with the period P and the shift δT
± is

Δ-differentiable on t ∈ T
∗, where T ∈ [P,∞)

T∗ . Suppose that p ∈ R is Δ-periodic in shifts δ± with the
period T ∈ [P,∞)

T∗ . Then,

ep
(
δT
±(t), δ

T
±(t0)

)
= ep(t, t0) for t, t0 ∈ T

∗. (3.4)
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Proof. Assume that μ(τ)/= 0. Set f(τ) = (1/μ(τ))Log(1 + p(τ)μ(τ)). Using Lemma 3.1 and
Δ-periodicity of p in shifts δ± we get

f
(
δT
±(τ)

)
δΔT
± (τ) =

δΔT
± (τ)

μ
(
δT
±(τ)

)Log
(

1 + p
(
δT
±(τ)

)
μ
(
δT
±(τ)

))

=
δΔT
± (τ)

μ
(
δT
±(τ)

)Log

(
1 + p

(
δT
±(τ)

)
δΔT
±

1
δΔT
±

μ
(
δT
±(τ)

))

=
1

μ(τ)
Log
(
1 + p(τ)μ(τ)

)

= f(τ).

(3.5)

Thus, f is Δ−periodic in shifts δ± with the period T . By using Theorem 2.13 we have

ep
(
δT
±(t), δ

T
±(t0)

)
=

⎧⎪⎪⎨
⎪⎪⎩

exp
(∫δT

± (t)
δT
± (t0)

1
μ(τ)

Log
(
1 + p(τ)μ(τ)

)
Δτ

)
, for μ(τ)/= 0,

exp
(∫δT

± (t)
δT
± (t0)

p(τ)Δτ
)
, for μ(τ) = 0,

=

⎧⎪⎪⎨
⎪⎪⎩

exp
(∫ t

t0

1
μ(τ)

Log
(
1 + p(τ)μ(τ)

)
Δτ

)
, for μ(τ)/= 0,

exp
(∫ t

t0
p(τ)Δτ

)
, for μ(τ) = 0,

= ep(t, t0).

(3.6)

The proof is complete.

Lemma 3.3. Let T be a time scale, that is, periodic in shifts δ± with the period P and the shift δT
± is

Δ-differentiable on t ∈ T
∗ where T ∈ [P,∞)

T∗ . Suppose that p ∈ R is Δ-periodic in shifts δ± with the
period T ∈ [P,∞)

T∗ . Then

ep
(
δT
±(t), σ

(
δT
±(s)
))

= ep(t, σ(s)) =
ep(t, s)

1 + μ(t)p(t)
for t, s ∈ T

∗. (3.7)

Proof. From Corollary 2.9, we know σ(δT
±(s)) = δT

±(σ(s)). By Lemmas 3.2 and 2.2 we obtain

ep
(
δT
±(t), σ

(
δT
±(s)
))

= ep
(
δT
±(t), δ

T
±(σ(s))

)
= ep(t, σ(s)) =

ep(t, s)
1 + μ(t)p(t)

. (3.8)

The proof is complete.
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4. Main Result

We will state and prove our main result in this section. We define

PT =
{
x ∈ C(T,R) : x

(
δT
+(t)
)
= x(t)

}
, (4.1)

where C(T,R) is the space of all real valued continuous functions. Endowed with the norm

‖x‖ = max
t∈[t0, δT

+ (t0)]T

|x(t)|, (4.2)

PT is a Banach space.

Lemma 4.1. Let x ∈ PT . Then ‖xσ‖ exists and ‖xσ‖ = ‖x‖.

Proof. Since x ∈ PT , then x(δT
+(t0)) = x(t0), and by Corollary 2.9, we have x(σ(δT

+(t0))) =
x(σ(t0)). For all t ∈ [t0, δT

+(t0)]T
,|x(σ(t))| ≤ ‖x‖. Hence ‖xσ‖ ≤ ‖x‖. Since x ∈ C(T,R), there

exists t1 ∈ [t0, δT
+(t0)] such that ‖x‖ = |x(t1)|. If t1 is left scattered, then σ(ρ(t1)) = t1. And

so, ‖xσ‖ ≥ |xσ(ρ(t1))| = x(t1) = ‖x‖. Thus, we have ‖xσ‖ = ‖x‖. If t1 is dense, σ(t1) = t1 and
‖xσ‖ = ‖x‖.

Assume that t1 is left dense and right scattered. Note that if t1 = t0 then we work
t1 = δT

+(t0). Fix ε > 0 and consider a sequence {an} such that an ↑ t1. Note that σ(an) ≤ t1
for all n. By the continuity of x, there exists N such that for all n > N, |x(t1) − xσ(an)| < ε.
This implies that ‖x‖ − ε ≤ ‖xσ‖. Since ε > 0 was arbitrary, then ‖x‖ = ‖xσ‖ and the proof is
complete.

In this paper we assume that a(t) ∈ R+ is a continuous function with a(t) > 0 for all
t ∈ T and

a
(
δT
+(t)
)
δΔT
+ (t) = a(t), b

(
δT
+(t)
)
= b(t), (4.3)

where bΔ(t) is continuous. We further assume that q(t, x, y) is continuous and periodic with
δ± in t and Lipschitz continuous in x and y. That is,

q
(
δT
+(t), x, y

)
δΔT
+ (t) = q

(
t, x, y

)
, (4.4)

and there are some positive constants L and E such that

∣∣q(t, x, y) − q(t, z,w)
∣∣ ≤ L‖x − z‖ + E

∥∥y −w
∥∥. (4.5)
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Lemma 4.2. Suppose that (4.3)–(4.5) hold. If x(t) ∈ PT , then x(t) is a solution of (1.2) if and only if

x(t) = b(t)x(δ−(k, t)) +
1

1 − e�a(t)
(
t, δT

−(t)
)

×
∫ t

δT
− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))
]
e�a(s)(t, s)Δs,

(4.6)

where

r(s) = a(s)bσ(s) + bΔ(s). (4.7)

Proof. Let x(t) ∈ PT be a solution of (1.2). We can rewrite (1.2) as

xΔ(t) + a(t)xσ(t) = b(t)xΔ(δ−(k, t))δΔ
− (k, t) + q(t, x(t), x(δ−(k, t))). (4.8)

Multiply both sides of the above equation by ea(t)(t, t0) and then integrate from δT
−(t) to t to

obtain

∫ t

δT
− (t)

[
x(s)ea(s)(s, t0)

]ΔΔs

=
∫ t

δT
− (t)

[
b(s)xΔ(δ−(k, s))δΔ

− (k, s) + q(s, x(s), x(δ−(k, s)))
]
ea(s)(s, t0)Δs.

(4.9)

We arrive at

x(t)
[
ea(t)(t, t0) − ea(t)

(
δT
−(t), t0

)]

=
∫ t

δT
− (t)

[
b(s)xΔ(δ−(k, s))δΔ

− (k, s) + q(s, x(s), x(δ−(k, s)))
]
ea(s)(s, t0)Δs.

(4.10)

Dividing both sides of the above equation by ea(t)(t, t0) and using x(δT
+(t)) = x(t) and

Lemma 2.2, we have

x(t)
(

1 − ea(t)
(
δT
−(t), t

))

=
∫ t

δT
− (t)

[
b(s)xΔ(δ−(k, s))δΔ

− (k, s) + q(s, x(s), x(δ−(k, s)))
]
ea(s)(s, t)Δs.

(4.11)

Now, we consider the first term of the integral on the right-hand side of (4.11)

∫ t

δT
− (t)

b(s)xΔ(δ−(k, s))δΔ
− (k, s)ea(s)(s, t)Δs. (4.12)
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Using integration by parts from rule [10] we obtain

∫ t

δT
− (t)

b(s)xΔ(δ−(k, s))δΔ
− (k, s)ea(s)(s, t)Δs

=
∫ t

δT
− (t)

[
b(s)ea(s)(s, t)x(δ−(k, s))

]ΔΔs −
∫ t

δT
− (t)

[
b(s)ea(s)(s, t)

]Δ
s x

σ(δ−(k, s))Δs

(4.13)

∫ t

δT
− (t)

b(s)xΔ(δ−(k, s))δΔ
− (k, s)ea(s)(s, t)Δs

= b(t)ea(t)(t, t)x(δ−(k, t)) − b
(
δT
−(t)
)
ea(s)

(
δT
−(t), t

)
x
(
δ−
(
k, δT

−(t)
))

−
∫ t

δT
− (t)

[
bσ(s)a(s)ea(s)(s, t) + bΔ(s)ea(s)(s, t)

]
xσ(δ−(k, s))Δs.

(4.14)

Since b(δT
−(t)) = b(t) and x(δT

−(t)) = x(t), the above equality reduces to

∫ t

δT
− (t)

b(s)xΔ(δ−(k, s))δΔ
− (k, s)ea(s)(s, t)Δs

= b(t)x(δ−(k, t))
(

1 − ea(s)
(
δT
−(t), t

))

−
∫ t

δT
− (t)

[
a(s)bσ(s) + bΔ(s)

]
xσ(δ−(k, s))ea(s)(s, t)Δs.

(4.15)

Substituting (4.15) into (4.11) we get

x(t) = b(t)x(δ−(k, t))

+
1

1 − e�a(t)
(
t, δT

−(t)
)

×
∫ t

δT
− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))
]
e�a(s)(t, s)Δs.

(4.16)

Thus the proof is complete.

Define the mapping H : PT → PT by

Hx(t) := b(t)x(δ−(k, t))

+
1(

1 − e�a(t)
(
t, δT

−(t)
))

×
∫ t

δT
− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))
]
e�a(s)(t, s)Δs.

(4.17)
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To apply Theorem 2.14 we need to construct two mappings: one map is a contraction and the
other map is compact and continuous. We express (4.17) as

Hx(t) = Bx(t) +Ax(t), (4.18)

where A, B are given

Bx(t) = b(t)x(δ−(k, t)), (4.19)

Ax(t) =
1

1 − e�a(t)
(
t, δT

−(t)
)

×
∫ t

δT
− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))
]
e�a(s)(t, s)Δs,

(4.20)

and r(s) is defined in (4.7).

Lemma 4.3. Suppose that (4.3)–(4.5) hold. ThenA : PT → PT , as defined by (4.20), is compact and
continuous.

Proof. We show that A : PT → PT . Evaluate (4.20) at δT
+(t),

Ax
(
δT
+(t)
)
=

1
1 − e�a(t)

(
δT
+(t), δT

−
(
δT
+(t)
))

×
∫δT

+ (t)

δT
−(δT

+ (t))

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))
]
e�a(s)

(
δT
+(t), s

)
Δs

=
1

1 − ep(t)
(
δT
+(t), t

)

×
∫δT

+ (t)

δT
+(δT

− (t))

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))
]
e�a(s)

(
δT
+(t), s

)
Δs.

(4.21)

Now, since (4.3) and Corollary 2.9 hold, then we have

r
(
δT
+(s)
)
δTΔ
+ (s) = a

(
δT
+(s)
)
δTΔ
+ (s)bσ

(
δT
+(s)
)
+ bΔ

(
δT
+(s)
)
δTΔ
+ (s)

= a(s)bσ(s) + bΔ(s) = r(s).
(4.22)
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That is, r(s) is Δ-periodic in δ± with period T . Using the periodicity of r, x, q, and Lemma 3.2
we get

[
−r
(
δT
+(s)
)
xσ
(
δ−
(
k, δT

+(s)
))

+ q
(
δT
+(s), x

(
δT
+(s)
)
, x
(
δ−
(
k, δT

+(s)
)))]

δTΔ
+ (s)

× e�a(s)
(
δT
+(t), δ

T
+(s)
)

=
[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))

]
e�a(s)(t, s).

(4.23)

That is, inside the integral of (4.21) is Δ-periodic in δ± with period T . By Theorem 2.13 and
Lemma 3.2 we have

Ax
(
δT
+(t)
)
=

1
1 − e�a(t)

(
t, δT

−(t)
)

×
∫ t

δT
− (t)

[−r(s)xσ(δ−(k, s)) + q(s, x(s), x(δ−(k, s)))
]
e�a(s)(t, s)Δs

= Ax(t).

(4.24)

That is, A : PT → PT .
To see that A is continuous, we let ϕ, ψ ∈ PT with ‖ϕ‖ ≤ C and ‖ψ‖ ≤ C and define

η := max
t∈[t0, δT

+ (t0)]
T

∣∣∣∣
(

1 − e�a(t)
(
t, δT

−(t)
))−1

∣∣∣∣, γ := max
u∈[δT

− (t),t]T

e�a(t)(t, u),

β := max
t∈[t0, δT

+ (t0)]
T

|r(t)|.
(4.25)

Given that ε > 0, take δ = ε/M such that ‖ϕ − ψ‖ < δ. By making use of the Lipschitz
inequality (4.5) in (4.20), we get

∥∥Aϕ −Aψ
∥∥ ≤ γη

∫ t

δT
− (t)

β
∥∥ϕ − ψ

∥∥ + L
∥∥ϕ − ψ

∥∥ + E
∥∥ϕ − ψ

∥∥Δs

= ηγ
[
β + L + E

](
t0 − δT

−(t0)
)∥∥ϕ − ψ

∥∥

≤ M
∥∥ϕ − ψ

∥∥ < ε,

(4.26)

where L, E are given by (4.5) and M = ηγ[β + L + E](t0 − δT
−(t0)). This proves that A is

continuous.
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We need to show that A is compact. Consider the sequence of periodic functions in
δ±{ϕn} ⊂ PT and assume that the sequence is uniformly bounded. Let R > 0 be such that
‖ϕn‖ ≤ R, for all n ∈ N. In view of (4.5) we arrive at

∣∣q(t, x, y)∣∣ = ∣∣q(t, x, y) − q(t, 0, 0) + q(t, 0, 0)
∣∣

≤ ∣∣q(t, x, y) − q(t, 0, 0)
∣∣ + ∣∣q(t, 0, 0)∣∣

≤ L‖x‖ + E
∥∥y∥∥ + α,

(4.27)

where α := maxt∈[t0, δT
+ (t0)]T

|q(t, 0, 0)|. Hence,

∣∣Aϕn

∣∣ =
∣∣∣∣∣

1
1 − e�a(t)

(
t, δT

−(t)
)
∫ t

δT
− (t)

[−r(s)ϕσ
n(δ−(k, s)) + q

(
s, ϕn(s), ϕn(δ−(k, s))

)]
e�a(s)(t, s)Δs

∣∣∣∣∣

≤ ηγ
[(
β + L + E

)∥∥ϕn

∥∥ + α
](

t0 − δT
−(t0)

)

≤ ηγ
[(
β + L + E

)
R + α

](
t0 − δT

−(t0)
)

:= D.

(4.28)

Thus, the sequence {Aϕn} is uniformly bounded. If we find the derivative of Aϕn, we have

(
Aϕn

)Δ(t) = a(t)Aϕn(t)

+
−a(t) + �a(t)

1 − e�a(t)
(
σ(t), δT

−(σ(t))
)

×
∫ t

δT
− (t)

[−r(s)ϕσ
n(δ−(k, s)) + q

(
s, ϕn(s), ϕn(δ−(k, s))

)]
e�a(s)(t, s)Δs

+
1

1 + μ(t)a(t)
[−r(t)ϕσ(δ−(k, s)) + q

(
s, ϕn(s), ϕn(δ−(k, s))

)]
.

(4.29)

Consequently,

∣∣∣(Aϕn

)Δ(t)
∣∣∣ ≤ D‖a‖ + [(β + E + L

)
R + α

][
2‖a‖γη

(
t0 − δT

−(t0)
)]

:= F. (4.30)

for all n. That is, |(Aϕn)
Δ(t)| ≤ F, for some positive constant F. Thus the sequence {Aϕn}

is uniformly bounded and equicontinuous. The Arzela-Ascoli theorem implies that {Aϕnk}
uniformly converges to a continuous T -periodic function ϕ∗ in δ±. Thus A is compact.

Lemma 4.4. Let B be defined by (4.19) and

‖b(t)‖ ≤ ξ < 1. (4.31)

Then B : PT → PT is a contraction.
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Proof. Trivially, B : PT → PT . For ϕ, ψ ∈ PT , we have

∥∥Bϕ − Bψ
∥∥ = max

t∈[t0, δT
+ (t0)]

T

∣∣Bϕ(t) − Bψ(t)
∣∣

= max
t∈[t0, δT

+ (t0)]
T

{|b(t)|∣∣ϕ(δ−(k, s)) − ψ(δ−(k, s))
∣∣}

≤ ξ
∥∥ϕ − ψ

∥∥.

(4.32)

Hence B defines a contraction mapping with contraction constant ξ.

Theorem 4.5. Let α := maxt∈[t0, δT
+ (t0)]T

|q(t, 0, 0)|. Let β, η, and γ be given by (4.39). Suppose that
(4.3)–(4.5) and (4.31) hold and that there is a positive constantG such that all solutions x(t) of (1.2),
x ∈ PT , satisfy |x(t)| ≤ G, the inequality

{
ξ + γη

(
β + L + E

)(
t0 − δT

−(t0)
)}

G + γηα
(
t0 − δT

−(t0)
)
≤ G (4.33)

holds. Then (1.2) has a T -periodic solution in δ±.

Proof. Define M := {x ∈ PT : ‖x‖ ≤ G}. Then Lemma 4.3 implies that A : PT → PT is compact
and continuous. Also, from Lemma 4.4, the mapping B : PT → PT is contraction.

We need to show that if ϕ, ψ ∈ M, we have ‖Aϕ − Bψ‖ ≤ G. Let ϕ, ψ ∈ M with
‖ϕ‖, ‖ψ‖ ≤ G. From (4.19) and (4.20) and the fact that |q(t, x, y)| ≤ L‖x‖ + E‖y‖ + α, we have

∥∥Aϕ + Bψ
∥∥ ≤ γη

∫ t

δT
− (t)

[
L
∥∥ϕ∥∥ + E

∥∥ϕ∥∥ + β
∥∥ϕ∥∥ + α

]
Δs + ξ

∥∥ψ∥∥

≤
{
ξ + γη

(
β + L + E

)(
t0 − δT

−(t0)
)}

G + γηα
(
t0 − δT

−(t0)
)

≤ G.

(4.34)

We see that all the conditions of Krasnosel’skiı̆ theorem are satisfied on the set M. Thus there
exists a fixed point z in M such that z = Bz +Az. By Lemma 4.2, this fixed point is a solution
of (2) has a T -periodic solution in δ±.

Theorem 4.6. Suppose that (4.3)–(4.5) and (4.31) hold. Let β, η, and γ be given by (4.39). If

ξ + γη
(
β + L + E

)(
t0 − δT

−(t0)
)
≤ 1, (4.35)

then (1.2) has a unique T -periodic solution in δ±.
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Proof. Let the mapping H be given by (4.17). For ϕ, ψ ∈ PT we have

∥∥Hϕ −Hψ
∥∥ ≤ ξ

∥∥ϕ − ψ
∥∥ + γη

∫ t

δT
− (t)

[
L
∥∥ϕ − ψ

∥∥ + E
∥∥ϕ − ψ

∥∥ + β
∥∥ϕ − ψ

∥∥]Δs

≤
[
ξ + γη

(
β + L + E

)(
t0 − δT

−(t0)
)]∥∥ϕ − ψ

∥∥.
(4.36)

This completes the proof.

Example 4.7. Let T = {2n}n∈N0
∪ {1/4, 1/2} be a periodic time scale in shift δ±(P, t) = P±1t

with period P = 2. We consider the dynamic equation (1.2) with a(t) = 1/5t, b(t) =
(1/500)(−1)ln t/ ln q and q(t, x, y) = (sinx + arctanx + 1)/1000t.

The operators δ−(s, t) = t/s and δ+(s, t) = st are backward and forward shift operators
for (s, t) ∈ D±. Here T

∗ = T, the initial point t0 = 1 and δ−(k, t) = t/k for k ∈ [2,∞)
T

. If we
consider conditions (4.3)-(4.4) we find T = 4. Then a(t), b(t) satisfy condition (4.3), a(t) ∈ R+

and q(t, x, y) satisfies the condition (4.4) for all t ∈ T. Also, q(t, x, y) is Lipschitz continuous
in x and y for L = E = 1/250. Since ‖b(t)‖ = ‖(1/500)(−1)ln t/ ln q‖ = (1/500) = ξ < 1, then the
condition (4.31) holds.

If we compute η, γ , and β, we have

η = max
t∈[t0, δT

+ (t0)]
T

∣∣∣∣
(

1 − e�a(t)
(
t, δT

−(t)
))−1

∣∣∣∣ ∼= 3, 45, α = max
t∈[t0, δT

+(t0)]T

∣∣q(t, 0, 0)∣∣ = 1
250 (4.37)

γ = max
u∈[δT

− (t), t]T

e�a(t)(t, u) ∼= 1, 5, β = max
t∈[t0, δT

+ (t0)]
T

|r(t)| = 11
2500

. (4.38)

If we take G = 1, then inequality (4.33) satisfies.
Let x(t) ∈ PT . We show that ‖x(t)‖ ≤ G = 1. Integrate (1.2) from 1 to 4, we get

x(4) − x(1) =
∫4

1

[
−a(t)xσ(t) + b(t)xΔ

(
t

k

)
1
k
+ q

(
t, x(t), x

(
t

k

))]
Δt. (4.39)

Since x(t) ∈ PT , then x(4) = x(1) and so after integration by parts (23) becomes

∫4

1
a(t)xσ(t)Δt =

∫4

1
q

(
t, x(t), x

(
t

k

))
− bΔ(t)x

(
t

k

)
Δt. (4.40)

Claim 1. There exist t∗ ∈ [1, 4]
T

such that 3a(t∗)xσ(t∗) ≤ ∫4
1 a(t)x

σ(t)Δt.
Suppose that the claim is false. Define S :=

∫4
1 a(t)x

σ(t)Δt. Then there exists ε > 0 such
that

3a(t)xσ(t) > S + ε, (4.41)
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for all t ∈ [1, 4]
T

. So,

S =
∫4

1
a(t)xσ(t)Δt >

1
3

∫4

1
(S + ε)ΔT = S + ε. (4.42)

That is, S > S + ε, a contradiction.
As a consequence of the claim, we have

3|a(t∗)||xσ(t∗)| ≤
∫4

1

∣∣∣∣q
(
t, x(t), x

(
t

k

))∣∣∣∣ +
∣∣∣∣bΔ(t)x

(
t

k

)∣∣∣∣Δt

≤
∫4

1
[(L + E)‖x‖ + α + δ‖x‖]Δt

= 3
[(

2
250

+
1

250

)
‖x‖ + 1

250

]
= 3
[

3
250

‖x‖ + 1
250

]
,

(4.43)

where δ = max[1,4]
T
|bΔ(t)| = 1/250.

So, |a(t∗)||xσ(t∗)| ≤ (3/250)‖x‖ + (1/250), which implies |xσ(t∗)| ≤ 20[(3/250)‖x‖ +
(1/250)]. Since for all t ∈ [1, 4]

T
,

xσ(t) = xσ(t∗) +
∫ t

t∗
xΔ(σ(s))Δs, (4.44)

we have

|xσ(t)| ≤ |xσ(t∗)| +
∫ t

1

∣∣∣xΔ(σ(s))
∣∣∣Δs ≤ 20

[
3

250
‖x‖ + 1

250

]
+ 3
∥∥∥xΔ
∥∥∥. (4.45)

This implies that

‖x‖ ≤ 2
19

+
1500

19

∥∥∥xΔ
∥∥∥. (4.46)

Taking the norm in (1.2) yields

∥∥∥xΔ
∥∥∥ ≤ (‖a‖ + L + E)‖x‖ + α

1 − ‖b‖ =
(1/5 + 2/250)‖x‖ + 1/250

1 − 1/500
=

104‖x‖ + 2
250.499

. (4.47)

Substitution of (4.47) into (4.46) yields that for all x(t) ∈ PT , ‖x(t)‖ ≤ G = 1. Then by
Theorem 4.5, (1.2) has a 4-periodic solution in shifts δ±.

In this example, if we take q(t, x, y) = (sinx + arctanx)/1000t, we have

ξ + γη
(
β + L + E

)(
t0 − δT

−(t0)
)
=

1
500

+
96255
2.106

< 1. (4.48)
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So, all the conditions of Theorem 4.6 are satisfied. Therefore, (1.2) has a unique
4-periodic solution in shifts δ±.
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This paper studies the nonlinear two-dimensional difference system with multiple delays
Δ(xn + p1nxn−τ1) + f1(n, xa1n , . . . , xahn , yb1n , . . . , ybkn) = q1n,Δ(yn + p2nyn−τ2) + f2(n, xc1n , . . . , xchn ,
yd1n , . . . , ydkn

) = q2n, n ≥ n0. Using the Banach fixed point theorem and a few new analysis
techniques, we show the existence of uncountably many bounded positive solutions for the
system, suggest Mann iterative algorithms with errors, and discuss the error estimates between the
positive solutions and iterative sequences generated by the Mann iterative algorithms. Examples
to illustrates the results are included.

1. Introduction and Preliminaries

In recent years, there has been an increasing interest in the study of oscillation, nonoscillation,
asymptotic behavior, existence and multiplicity of solutions, positive solutions, nonoscil-
latory solutions, and periodic solutions, respectively, for various difference equations and
systems, see for example, [1–34] and the references cited therein.

Jiang and Tang [18] and Graef and Thandapani [14] studied the oscillation of the linear
two-dimensional difference system

Δxn = pnyn,

Δyn−1 = −qnxn, n ≥ n0,
(1.1)
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and nonlinear two-dimensional difference system

Δxn = bng
(
yn

)
,

Δyn−1 = −anf(xn), n ≥ n0,
(1.2)

where n0 ∈ N, {pn}n≥n0
, {qn}n≥n0

, {an}n≥n0
, and {bn}n≥n0

are nonnegative sequences, f, g ∈
C(R,R) with uf(u) > 0 and ug(u) > 0 for all u/= 0. Jiang and Tang [19] also gave some
necessary and sufficient conditions for all solutions of System (1.2) to be oscillatory. Agarwal
et al. [2] discussed the two-dimensional nonlinear difference system of the form

Δxn = anf
(
yn

)
,

Δyn−1 = bng(xn), n ≥ n0,
(1.3)

where n0 ∈ N, {an}n≥n0
and {bn}n≥n0

are positive sequences, f, g ∈ C(R,R) are increasing with
uf(u) > 0 and ug(u) > 0 for all u/= 0, and they provided a classification scheme of positive
solutions for System (1.3) and established conditions for the existence of solutions with
designated asymptotic behavior. Li [21] introduced the two-dimensional nonlinear difference
system:

Δxn = anf
(
yn

)
,

Δyn = −bng(xn), n ≥ n0,
(1.4)

where n0 ∈ N, {an}n≥n0
and {bn}n≥n0

are nonnegative sequences, f, g ∈ C(R,R) with uf(u) > 0,
and ug(u) > 0 for all u/= 0, he showed both classification schemes for nonoscillatory solutions
of System (1.4) and gave necessary and sufficient conditions for the existence of these
solutions. Huo and Li [15, 16] considered the nonlinear two-dimensional difference system

Δxn = bng
(
yn

)
,

Δyn = −anf(xn) + rn, n ≥ n0,
(1.5)

and the Emden-Fowler difference system

Δxn = bng
(
yn

)
,

Δyn−1 = −anf(xn) + rn, n ≥ 1,
(1.6)

where n0 ∈ N, {an}n≥n0
is a real sequence, {bn}n≥n0

is a nonnegative sequence,
∑∞

i=1 |ri| < +∞,
f, g ∈ C(R,R) with uf(u) > 0, and ug(u) > 0 for all u/= 0, they proved some oscillation results
for Systems (1.5) and (1.6). Jiang and Li [17] investigated the nonlinear two-dimensional
difference system:

Δxn = ang
(
yn

)
,

Δyn−1 = f(n, xn), n ≥ n0,
(1.7)
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where n0 ∈ N, {an}n≥n0
is a nonnegative sequence, f ∈ C(Nn0 × R,R), g ∈ C(R,R) with

uf(n, u) > 0 for all n ∈ Nn0 , and u/= 0 and ug(u) > 0 for all u/= 0, they obtained some necessary
and sufficient conditions for all solutions of System (1.7) to be oscillatory. Thandapani and
Kumar [31] studied the oscillation for the nonlinear two-dimensional difference system of
the neutral type

Δ(xn − anxσn) = png
(
yn

)
,

Δyn = δqnf(xτn), n ≥ n0,
(1.8)

where δ = ±1, n0 ∈ N, {an}n≥n0
is a positive sequence, {pn}n≥n0

and {qn}n≥n0
are nonnegative

sequences with
∑∞

i=n0
pi = +∞, limn→∞σn = limn→∞τn = +∞, f, g ∈ C(R,R) are

nondecreasing with uf(u) > 0 and ug(u) > 0 for all u/= 0. Wu and Liu [33] established the
existence and multiplicity of periodic solutions for the first-order neutral difference system

Δ(xn − cxn−τ) = a1ng1(xn)xn − λb1nf1
(
xn−τ1n , yn−ρ1n

)
,

Δ
(
yn − cyn−τ

)
= a2ng2

(
yn

)
yn − μb2nf2

(
xn−τ2n , yn−ρ2n

)
,

(1.9)

where τ ∈ N, λ, μ ∈ R
+ \ {0}, c ∈ R with |c|/= 1, {a1n}, {a2n}, {b1n}, and {b2n} are positive

T -periodic sequences, {τ1n}, {τ2n}, {ρ1n}, and {ρ2n} are positive T -periodic integer sequences.
Tang [30] proved the existence results of a bounded nonoscillatory solution for the second-
order linear delay difference equation

Δ2xn = pnxn−k, n ≥ 0, (1.10)

where k ∈ N and {pn}n≥0 is a nonnegative sequence. Cheng [20] utilized the Banach fixed
point theorem to discuss the existence of a nonoscillatory solution for the second-order
neutral delay difference equation with positive and negative coefficients:

Δ2(xn + pxn−m
)
+ pnxn−k − qnxn−l = 0, n ≥ n0, (1.11)

where m, k, l ∈ N, p ∈ R \ {−1}, {pn}n≥0 and {qn}n≥0 are nonnegative sequences with∑∞
n=n0

nmax{pn,qn} < +∞. M. Migda and J. Migda [29] obtained the asymptotic behavior
of the second-order neutral difference equation:

Δ2(xn + pxn−k
)
+ f(n, xn) = 0, n ≥ 1, (1.12)

where p ∈ R, k ∈ N0, and f ∈ C(N × R,R). Liu et al. [27] studied the global existence of
uncountably many bounded nonoscillatory solutions for the second-order nonlinear neutral
delay difference equation:

Δ(anΔ(xn + bxn−τ)) + f(n, xn−d1n , xn−d2n , . . . , xn−dkn) = cn, n ≥ n0, (1.13)
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where b ∈ R, τ, k ∈ N, n0 ∈ N0, {an}n∈Nn0
is a positive sequence, {cn}n∈Nn0

is a real sequence,⋃k
l=1{dln}n∈Nn0

⊆ Z with limn→∞(n − dln) = +∞ for l ∈ {1, 2, . . . , k}, and f : Nn0 × R
k → R is a

mapping.
The purpose of this paper is to study the below nonlinear two-dimensional difference

system with multiple delays

Δ
(
xn + p1nxn−τ1

)
+ f1

(
n, xa1n , . . . , xahn , yb1n , . . . , ybkn

)
= q1n,

Δ
(
yn + p2nyn−τ2

)
+ f2

(
n, xc1n , . . . , xchn , yd1n , . . . , ydkn

)
= q2n, n ≥ n0,

(1.14)

where h, k, τi ∈ N, n0 ∈ N0, {pin}n∈Nn0
, {qin}n∈Nn0

⊂ R, and fi ∈ C(Nn0 × R
h+k,R) for i ∈ Λ2,

{aln}n∈Nn0
, {cln}n∈Nn0

⊂ Z with limn→∞aln = limn→∞cln = +∞ for l ∈ Λh and {bjn}n∈Nn0
,

{djn}n∈Nn0
⊂ Z with limn→∞bjn = limn→∞djn = +∞ for j ∈ Λk. It is easy to see that the system

(1.14) includes Systems (1.1)–(1.9), (1.10)–(1.13), and a lot of the first- and second-order
nonlinear, half-linear, and quasilinear difference equations as special cases. Using the Banach
fixed point theorem and some analysis techniques, we prove the existence of uncountably
many bounded positive solutions for System (1.14), establish their iterative approximations,
and discuss the error estimates between the positive solutions and iterative approximations.
Our results sharp, and improve [14, Theorem 1] and [27, Theorems 2.1–2.7]. To illustrate our
results, fifteen examples are also included.

Throughout this paper, we assume that Δ is the forward difference operator defined by
Δxn = xn+1 − xn, R = (−∞,+∞), R

+ = [0,+∞), Z, N, and N0 stand for the sets of all integers,
positive integers, and nonnegative integers, respectively,

Nn0 = {n : n ∈ N0 with n ≥ n0}, Λn = {1, . . . , n}, ∀n ∈ N,

α = inf
{
n0 − τ1, n0 − τ2, aln, cln, bjn, djn : n ∈ Nn0 , l ∈ Λh, j ∈ Λk

}
,

Zα = {n : n ∈ Z with n ≥ α},
(1.15)

l∞α denotes the Banach space of all bounded sequences on Zα with norm

‖x‖ = sup
n∈Zα

|xn| for x = {xn}n∈Zα
∈ l∞α . (1.16)

Let

A(N,M)

=
{(

x, y
)
=
(
{xn}n∈Zα

,
{
yn

}
n∈Zα

)
∈ l∞α × l∞α : N ≤ xn ≤ M, N ≤ yn ≤ M, n ∈ Zα

}
,

A(N,M,N0,M0)

=
{(

x, y
)
=
(
{xn}n∈Zα

,
{
yn

}
n∈Zα

)
∈ l∞α × l∞α : N ≤ xn ≤ M, N0 ≤ yn ≤ M0, n ∈ Zα

}
,

(1.17)
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for any M > N > 0 and M0 > N0 > 0. It is easy to see that A(N,M) and A(N,M,N0,M0)
are bounded closed and convex subsets of the Banach space l∞α × l∞α with norm

∥∥(x, y)∥∥1 = max
{‖x‖,∥∥y∥∥} for

(
x, y

) ∈ l∞α × l∞α . (1.18)

By a solution of System (1.14), we mean a sequence ({xn}n∈Zα
, {yn}n∈Zα

) with a positive
integer T ≥ n0 + τ1 + τ2 + |α| such that System (1.14) is satisfied for all n ≥ T . A solution
({xn}n∈Zα

, {yn}n∈Zα
) of System (1.14) is said to be positive if both components are positive.

Lemma 1.1 (see [35]). Let {An}n≥0, {Bn}n≥0, {Cn}n≥0, and {Dn}n≥0 be four nonnegative real
sequences satisfying the inequality

An+1 ≤ (1 −Dn)An +DnBn + Cn, ∀n ≥ 0, (1.19)

where {Dn}n≥0 ⊂ [0, 1],
∑∞

n=0 Dn = +∞, limn→∞Bn = 0, and
∑∞

n=0 Cn < +∞. Then limn→∞An =
0.

Lemma 1.2 (see [36]). Let τ ∈ N, n0 ∈ N0, and {Bn}n∈Nn0
be a nonnegative sequence. Then

∞∑
i=0

∞∑
n=n0+iτ

Bn < +∞ ⇐⇒
∞∑

n=n0

nBn < +∞. (1.20)

2. Main Results

In this section, we investigate the existence of uncountably many bounded positive solutions
for System (1.14) and their iterative approximations and the error estimates between the
positive solutions and iterative approximations.

Theorem 2.1. Assume that there exist constants M,N ∈ R
+ \ {0}, n1 ∈ Nn0 , and four nonnegative

sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying

∣∣fi(n, u1, . . . , uh, v1, . . . , vk)
∣∣ ≤ rin, ∀(n, ul, vj

) ∈ Nn1 × [N,M]2, l ∈ Λh, j ∈ Λk, i ∈ Λ2,

(2.1)
∣∣fi(n, u1, . . . , uh, v1, . . . , vk) − fi(n,w1, . . . , wh, z1, . . . , zk)

∣∣

≤ tin max
{|ul −wl|,

∣∣vj − zj
∣∣ : l ∈ Λh, j ∈ Λk

}
,

∀(n, ul,wl, vj , zj
) ∈ Nn1 × [N,M]4, l ∈ Λh, j ∈ Λk, i ∈ Λ2,

(2.2)

∞∑
n=n0

nmax
{
rin, tin,

∣∣qin
∣∣ : i ∈ Λ2

}
< +∞, (2.3)

N < M, pin = −1, ∀n ≥ n1, i ∈ Λ2. (2.4)
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Then,

(a) for each L ∈ (N,M), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α| such that for
any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann iterative sequence with errors

{(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by the schemes

x
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
x
μ
n

+βμ

⎧
⎨
⎩L−

∞∑
l=0

∞∑
m=n+(l+1)τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
⎫
⎬
⎭

+γμδ
μ

1n, μ ≥ 0, n ≥ TL,

(
1 − βμ − γμ

)
x
μ

TL

+βμ

⎧
⎨
⎩L −

∞∑
l=0

∞∑
m=TL+(l+1)τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
⎫
⎬
⎭

+γμδ
μ

1TL
, μ ≥ 0, α ≤ n < TL,

(2.5)

y
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
y
μ
n

+βμ

⎧
⎨
⎩L−

∞∑
l=0

∞∑
m=n+(l+1)τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
⎫
⎬
⎭

+γμδ
μ

2n, μ ≥ 0, n ≥ TL,

(
1 − βμ − γμ

)
y
μ

TL

+βμ

⎧
⎨
⎩L −

∞∑
l=0

∞∑
m=TL+(l+1)τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
−q2m

]
⎫
⎬
⎭

+γμδ
μ

2TL
, μ ≥ 0, α ≤ n < TL

(2.6)

converges to a bounded positive solution (x, y) ∈ A(N,M) of System (1.14) and has the
error estimate:

∥∥∥
(
xμ+1, yμ+1

)
− (x, y)

∥∥∥
1
≤ (

1 − βμ(1 − θL)
)∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ, ∀μ ≥ 0, (2.7)
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where {βμ}μ∈N0
, {γμ}μ∈N0

⊂ [0, 1] and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂
A(N,M) are arbitrary sequences with

∞∑
μ=0

βμ = +∞, (2.8)

∞∑
μ=0

γμ < +∞ or there exists a sequence
{
ημ
}
μ∈N0

⊂ [0,+∞) satisfying

γμ = βμημ, ∀μ ∈ N0, lim
μ→∞

ημ = 0,

(2.9)

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Proof. (a) Let L ∈ (N,M). Now we construct a contraction mapping SL : A(N,M) →
A(N,M) and prove that its fixed point is a bounded positive solution of System (1.14). It
follows from (2.3) and (2.4) that there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2}+n1+ |α| satisfying

θL =
∞∑

m=TL

(1 +m)max{tim : i ∈ Λ2}, (2.10)

∞∑
m=TL

(1 +m)max
{
rim +

∣∣qim
∣∣ : i ∈ Λ2

}
< min{M − L, L −N}. (2.11)

Define three mappings SL : A(N,M) → l∞α × l∞α , S1L, S2L : A(N,M) → l∞α by

S1L
(
xn, yn

)
=

⎧⎪⎪⎨
⎪⎪⎩

L −
∞∑
l=0

∞∑
m=n+(l+1)τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

S1L
(
xTL , yTL

)
, α ≤ n < TL,

(2.12)

S2L
(
xn, yn

)
=

⎧⎪⎪⎨
⎪⎪⎩

L −
∞∑
l=0

∞∑
m=n+(l+1)τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

S2L
(
xTL , yTL

)
, α ≤ n < TL,

(2.13)

SL

(
xn, yn

)
=
(
S1L

(
xn, yn

)
, S2L

(
xn, yn

))
, n ∈ Zα, (2.14)

for all (x, y) = ({xn}n∈Zα
, {yn}n∈Zα

) ∈ A(N,M). It follows from (2.1), (2.3), (2.12), (2.13), and
Lemma 1.2 that S1L and S2L are well defined.
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In view of (2.1), (2.2), and (2.10)–(2.14), we know that for any (x, y) = ({xn}n∈Zα
,

{yn}n∈Zα
) ∈ A(N,M) and (u, v) = ({un}n∈Zα

, {vn}n∈Zα
) ∈ A(N,M),

∥∥SL

(
x, y

) − SL(u, v)
∥∥

1

= max
{∥∥SiL

(
x, y

) − SiL(u, v)
∥∥ : i ∈ Λ2

}

= max

{
sup
n≥TL

∣∣SiL

(
xn, yn

) − SiL(un, vn)
∣∣ : i ∈ Λ2

}

≤ max

⎧
⎨
⎩sup

n≥TL

⎧
⎨
⎩

∞∑
l=0

∞∑
m=n+(l+1)τ1

∣∣f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

)

− f1(m,ua1m, . . . , uahm , vb1m, . . . , vbkm)
∣∣
}
,

sup
n≥TL

⎧
⎨
⎩

∞∑
l=0

∞∑
m=n+(l+1)τ2

∣∣f2
(
m,xc1m, . . . , xchm , ydb1m, . . . , ydkm

)

− f2(m,uc1m, . . . , uchm , vd1m, . . . , vdkm)
∣∣
⎫
⎬
⎭

⎫
⎬
⎭

≤ max

⎧
⎨
⎩

∞∑
l=0

∞∑
m=TL+(l+1)τ1

t1m max
{
|xaim − uaim |,

∣∣∣ybjm − vbjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}
,

∞∑
l=0

∞∑
m=TL+(l+1)τ2

t2m max
{
|xcim − ucim |,

∣∣∣ydjm − vdjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}
⎫
⎬
⎭

≤ max

⎧
⎨
⎩

∞∑
l=0

∞∑
m=TL+(l+1)τ1

t1m,
∞∑
l=0

∞∑
m=TL+(l+1)τ2

t2m

⎫
⎬
⎭max

{‖x − u‖,∥∥y − v
∥∥}

≤ max

{ ∞∑
m=TL

(
1 +

m

τ1

)
t1m,

∞∑
m=TL

(
1 +

m

τ2

)
t2m

}∥∥(x, y) − (u, v)
∥∥

1

≤
( ∞∑

m=TL

(1 +m)max{t1m, t2m}
)∥∥(x, y) − (u, v)

∥∥
1

= θL
∥∥(x, y) − (u, v)

∥∥
1,

max
{∣∣S1L

(
xn, yn

) − L
∣∣, ∣∣S2L

(
xn, yn

) − L
∣∣}

≤ max

⎧
⎨
⎩

∞∑
l=0

∞∑
m=n+(l+1)τ1

∣∣f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
∣∣,

∞∑
l=0

∞∑
m=n+(l+1)τ2

∣∣f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
∣∣
⎫
⎬
⎭
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≤ max

⎧
⎨
⎩

∞∑
l=0

∞∑
m=n+(l+1)τ1

(
r1m +

∣∣q1m
∣∣),

∞∑
l=0

∞∑
m=n+(l+1)τ2

(
r2m +

∣∣q2m
∣∣)
⎫
⎬
⎭

≤ max

{ ∞∑
m=TL

(
1 +

m

τ1

)(
r1m +

∣∣q1m
∣∣),

∞∑
m=TL

(
1 +

m

τ2

)(
r2m +

∣∣q2m
∣∣)
}

≤
∞∑

m=TL

(1 +m)max
{
rim +

∣∣qim
∣∣ : i ∈ Λ2

}

< min{M − L, L −N}, ∀n ≥ TL,

(2.15)

which give that

∥∥SL

(
x, y

) − SL(u, v)
∥∥

1 ≤ θL
∥∥(x, y) − (u, v)

∥∥
1, ∀(x, y), (u, v) ∈ A(N,M), (2.16)

N ≤ S1L
(
xn, yn

)≤M, N ≤ S2L
(
xn, yn

)≤M, ∀
(
{xn}n∈Zα

,
{
yn

}
n∈Zα

)
∈ A(N,M), n ≥ TL.

(2.17)

Observe that θL ∈ (0, 1). It is easy to see that (2.12)–(2.17) give that SL : A(N,M) →
A(N,M) is a contraction. Consequently, SL possesses a unique fixed point (x, y) =
({xn}n∈Zα

, {yn}n∈Zα
) ∈ A(N,M), which implies that

xn = L −
∞∑
l=0

∞∑
m=n+(l+1)τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

yn = L −
∞∑
l=0

∞∑
m=n+(l+1)τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

(2.18)

which yield that

xn − xn−τ1 = L −
∞∑
l=0

∞∑
m=n+(l+1)τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

− L +
∞∑
l=0

∞∑
m=n+lτ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

=
∞∑

m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, ∀n ≥ TL + τ1,
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yn − yn−τ2 = L −
∞∑
l=0

∞∑
m=n+(l+1)τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]

− L +
∞∑
l=0

∞∑
m=n+lτ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]

=
∞∑

m=n

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, ∀n ≥ TL + τ2,

(2.19)

which give that

Δ(xn − xn−τ1) = −f1
(
n, xa1n , . . . , xahn , yb1n , . . . , ybkn

)
+ q1n, ∀n ≥ TL + τ1,

Δ
(
yn − yn−τ2

)
= −f2

(
n, xc1n , . . . , xchn , yd1n , . . . , ydkn

)
+ q2n, ∀n ≥ TL + τ2,

(2.20)

that is, (x, y) is a bounded positive solution of System (1.14) in A(N,M).
In light of (2.5), (2.6), and (2.11)–(2.16), we arrive at

∥∥∥
(
xμ+1, yμ+1

)
− (x, y)

∥∥∥
1

= max

{
sup
n≥TL

∣∣∣xμ+1
n − xn

∣∣∣, sup
n≥TL

∣∣∣yμ+1
n − yn

∣∣∣
}

≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣xμ
n − xn

∣∣∣

+ βμ

∣∣∣∣∣∣
L −

∞∑
l=0

∞∑
m=n+(l+1)τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
− xn

∣∣∣∣∣∣

+ γμ
∣∣∣δμ

1n − xn

∣∣∣
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣yμ
n − yn

∣∣∣

+βμ

∣∣∣∣∣∣
L−

∞∑
l=0

∞∑
m=n+(l+1)τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
− yn

∣∣∣∣∣∣

+ γμ
∣∣∣δμ

2n − yn

∣∣∣
]}
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≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣xμ
n − xn

∣∣∣ + βμ
∣∣∣S1L

(
x
μ
n, y

μ
n

)
− S1L

(
xn, yn

)∣∣∣ + 2Mγμ
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣yμ
n − yn

∣∣∣+βμ
∣∣∣S2L

(
x
μ
n, y

μ
n

)
− S2L

(
xn, yn

)∣∣∣ + 2Mγμ
]}

≤ max
{(

1 − βμ − γμ
)‖xμ − x‖ + θLβμ

∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ,

(
1 − βμ − γμ

)∥∥yμ − y
∥∥ + θLβμ

∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ
}

≤ (
1 − βμ(1 − θL)

)∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ, ∀μ ≥ 0,

(2.21)

that is, (2.7) holds. It follows from (2.7)–(2.9) and Lemma 1.1 that limμ→∞‖(xμ, yμ)−(x, y)‖1 =
0.

(b) Let L1, L2 ∈ (N,M), and L1 /=L2. As in the proof of (a), we similarly infer that for
each i ∈ Λ2, there exist a constant θLi ∈ (0, 1), a positive integer TLi ≥ max{τ1, τ2}+n1+ |α|, and
mappings SLi , S1Li , S2Li satisfying (2.10)–(2.14), where L, θL and TL are replaced by Li, θLi

and TLi , respectively, and the contraction mappings SL1 and SL2 have the unique fixed points
(u, v) = ({un}n∈Zα

, {vn}n∈Zα
), (w, z) = ({wn}n∈Zα

, {zn}n∈Zα
) ∈ A(N,M), respectively, (u, v)

and (w, z) are bounded positive solutions of System (1.14) in A(N,M). In order to show
that System (1.14) possesses uncountably many bounded positive solutions in A(N,M), we
prove only that (u, v)/= (w, z). By means of (2.10) and (2.12)–(2.16), we conclude that

‖(u, v) − (w, z)‖1

= max{‖u −w‖, ‖v − z‖}

≥ max

⎧
⎨
⎩ sup

n≥max{TL1 ,TL2}
|un −wn|, sup

n≥max{TL1 ,TL2}
|vn − zn|

⎫
⎬
⎭

≥ max

⎧
⎨
⎩|L1 − L2| −

∞∑
l=0

∞∑
m=max{TL1 ,TL2}+(l+1)τ1

∣∣f1(m,ua1m, . . . , uahm , vb1m, . . . , vbkm)

− f1 (m,wa1m, . . . , wahm , zb1m, . . . , zbkm)
∣∣,

|L1 − L2| −
∞∑
l=0

∞∑
m=max{TL1 ,TL2}+(l+1)τ2

∣∣f2(m,uc1m, . . . , uchm , vd1m, . . . , vdkm)

− f2 (m,wc1m, . . . , wchm , zd1m, . . . , zdkm)
∣∣
⎫
⎬
⎭

≥max

⎧
⎨
⎩|L1 − L2| −

∞∑
l=0

∞∑

m=max{TL1 ,TL2}+(l+1)τ1

t1m max
{
|uaim −waim |,

∣∣∣vbjm − zbjm

∣∣∣ : i ∈ Λh, j ∈ ΛK

}
,
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|L1 − L2| −
∞∑
l=0

∞∑
m=max{TL1 ,TL2}+(l+1)τ2

t2m

× max
{
|ucim −wcim |,

∣∣∣vdjm − zdjm

∣∣∣ : i ∈ Λh, j ∈ ΛK

}
⎫
⎬
⎭

≥ max

⎧
⎨
⎩|L1 − L2| −

∞∑
l=0

∞∑
m=max{TL1 ,TL2}+(l+1)τ1

t1m max{‖u −w‖, ‖v − z‖},

|L1 − L2| −
∞∑
l=0

∞∑
m=max{TL1 ,TL2}+(l+1)τ2

t2m max{‖u −w‖, ‖v − z‖}
⎫
⎬
⎭

≥ |L1 − L2| −
⎛
⎝

∞∑
m=max{TL1 ,TL2}

(1 +m)max{tim : i ∈ Λ2}
⎞
⎠‖(u, v) − (w, z)‖1

≥ |L1 − L2| − max{θL1 , θL2}‖(u, v) − (w, z)‖1,

(2.22)

which implies that

‖(u, v) − (w, z)‖1 ≥ |L1 − L2|
1 + max{θL1 , θL2}

> 0, (2.23)

that is, (u, v)/= (w, z). This completes the proof.

Theorem 2.2. Assume that there exist constants M,N ∈ R
+ \ {0}, n1 ∈ Nn0 , and four nonnegative

sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1), (2.2),

∞∑
n=n0

max
{
rin, tin,

∣∣qin
∣∣ : i ∈ Λ2

}
< +∞, (2.24)

N < M, pin = 1, ∀n ≥ n1, i ∈ Λ2. (2.25)
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Then,

(a) for each L ∈ (N,M), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α| such that for
any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann iterative sequence with errors

{(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by the schemes

x
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
x
μ
n

+βμ

⎧
⎨
⎩L+

∞∑
l=1

n+2lτ1−1∑
m=n+(2l−1)τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
⎫
⎬
⎭

+γμδ
μ

1n, μ ≥ 0, n ≥ TL,

(
1 − βμ − γμ

)
x
μ

TL

+βμ

⎧
⎨
⎩L+

∞∑
l=1

T+2lτ1−1∑
m=TL+(2l−1)τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
⎫
⎬
⎭

+γμδ
μ

1TL
, μ ≥ 0, α ≤ n < TL,

(2.26)

y
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
y
μ
n

+βμ

⎧
⎨
⎩L+

∞∑
l=1

n+2lτ2−1∑
m=n+(2l−1)τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
⎫
⎬
⎭

+γμδ
μ

2n, μ ≥ 0, n ≥ TL,

(
1 − βμ − γμ

)
y
μ

TL

+βμ

⎧
⎨
⎩L+

∞∑
l=1

TL+2lτ2−1∑
m=TL+(2l−1)τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
⎫
⎬
⎭

+γμδ
μ

2TL
, μ ≥ 0, α ≤ n < TL

(2.27)

converges to a bounded positive solution (x, y) ∈ A(N,M) of System (1.14) and has the
error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
,

{δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with (2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Proof. (a) Let L ∈ (N,M). Now we construct a contraction mapping SL : A(N,M) →
A(N,M) and prove that its fixed point is a bounded positive solution of System (1.14). Note
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that (2.24) and (2.25) guarantee that there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α|
satisfying

θL =
∞∑

m=TL

max{tim : i ∈ Λ2}, (2.28)

∞∑
m=TL

max
{
rim +

∣∣qim
∣∣ : i ∈ Λ2

}
< min{M − L, L −N}. (2.29)

Define three mappings SL : A(N,M) → l∞α × l∞α , S1L, S2L : A(N,M) → l∞α by (2.14),

S1L
(
xn, yn

)
=

⎧⎪⎪⎨
⎪⎪⎩
L +

∞∑
l=1

n+2lτ1−1∑
m=n+(2l−1)τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

S1L
(
xTL , yTL

)
, α ≤ n < TL,

(2.30)

S2L
(
xn, yn

)
=

⎧⎪⎪⎨
⎪⎪⎩
L +

∞∑
l=1

n+2lτ2−1∑
m=n+(2l−1)τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

S2L
(
xTL , yTL

)
, α ≤ n < TL,

(2.31)

for all (x, y) = ({xn}n∈Zα
, {yn}n∈Zα

) ∈ A(N,M).

Using (2.1), (2.2), (2.14), and (2.28)–(2.31), we deduce that for any (x, y) =
({xn}n∈Zα

, {yn}n∈Zα
) and (u, v) = ({un}n∈Zα

, {vn}n∈Zα
) ∈ A(N,M),

∥∥SL

(
x, y

) − SL(u, v)
∥∥

1

= max
{∥∥SiL

(
x, y

) − SiL(u, v)
∥∥ : i ∈ Λ2

}

= max

{
sup
n≥TL

∣∣SiL

(
xn, yn

) − SiL(un, vn)
∣∣ : i ∈ Λ2

}

≤ max

⎧
⎨
⎩sup

n≥TL

⎧
⎨
⎩

∞∑
l=1

m=n+2lτ1−1∑
m=n+(2l−1)τ1

∣∣f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

)

− f1 (m,ua1m, . . . , uahm , vb1m, . . . , vbkm)
∣∣
⎫
⎬
⎭,

sup
n≥TL

⎧
⎨
⎩

∞∑
l=1

m=n+2lτ2−1∑
m=n+(2l−1)τ2

∣∣f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

)

− f2 (m,uc1m, . . . , uchm , vd1m, . . . , vdkm)
∣∣
⎫
⎬
⎭

⎫
⎬
⎭
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≤ max

{ ∞∑
m=TL+τ1

t1m max
{
|xaim − uaim |,

∣∣∣ybjm − vbjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}
,

∞∑
m=TL+τ2

t2m max
{
|xcim − ucim |,

∣∣∣ydjm − vdjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}}

≤ max

{ ∞∑
m=TL+τ1

t1m,
∞∑

m=TL+τ2

t2m

}
max

{‖x − u‖,∥∥y − v
∥∥}

≤
( ∞∑

m=TL

max{tim : i ∈ Λ2}
)∥∥(x, y) − (u, v)

∥∥
1

= θL
∥∥(x, y) − (u, v)

∥∥
1,

max
{∣∣S1L

(
xn, yn

) − L
∣∣, ∣∣S2L

(
xn, yn

) − L
∣∣}

≤ max

⎧
⎨
⎩

∞∑
l=1

n+2lτ1−1∑
m=n+(2l−1)τ1

∣∣f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
∣∣,

∞∑
l=1

n+2lτ2−1∑
m=n+(2l−1)τ2

∣∣f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
∣∣
⎫
⎬
⎭

≤ max

⎧
⎨
⎩

∞∑
l=1

n+2lτ1−1∑
m=n+(2l−1)τ1

(
r1m +

∣∣q1m
∣∣),

∞∑
l=1

n+2lτ2−1∑
m=n+(2l−1)τ2

(
r2m +

∣∣q2m
∣∣)
⎫
⎬
⎭

≤ max

{ ∞∑
m=TL+τ1

(
r1m +

∣∣q1m
∣∣),

∞∑
m=TL+τ2

(
r2m +

∣∣q2m
∣∣)
}

≤
∞∑

m=TL

max
{
rim +

∣∣qim
∣∣ : i ∈ Λ2

}

< min{M − L, L −N}, ∀n ≥ TL,

(2.32)

which imply (2.16) and (2.17) and which ensure that SL is a self-mapping from A(N,M) into
itself and is a contraction by θL ∈ (0, 1). The Banach fixed point theorem means that SL has a
unique fixed point (x, y) = ({xn}n∈Zα

, {yn}n∈Zα
) ∈ A(N,M), that is,

xn = L +
∞∑
l=1

n+2lτ1−1∑
m=n+(2l−1)τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

yn = L +
∞∑
l=1

n+2lτ2−1∑
m=n+(2l−1)τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

(2.33)
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which reveal that

xn + xn−τ1 = L +
∞∑
l=1

n+2lτ1−1∑
m=n+(2l−1)τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

+ L +
∞∑
l=1

n+(2l−1)τ1−1∑
m=n+2(l−1)τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

= 2L +
∞∑

m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, ∀n ≥ TL + τ1,

yn + yn−τ2 = L +
∞∑
l=1

n+2lτ2−1∑
m=n+(2l−1)τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]

+ L +
∞∑
l=1

n+(2l−1)τ2−1∑
m=n+2(l−1)τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]

= 2L +
∞∑

m=n

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, ∀n ≥ TL + τ2,

(2.34)

which yield that

Δ(xn − xn−τ1) = −f1
(
n, xa1n , . . . , xahn , yb1n , . . . , ybkn

)
+ q1n, ∀n ≥ TL + τ1,

Δ
(
yn − yn−τ2

)
= −f2

(
n, xc1n , . . . , xchn , yd1n , . . . , ydkn

)
+ q2n, ∀n ≥ TL + τ2,

(2.35)

that is, (x, y) is a bounded positive solution of System (1.14) in A(N,M).
It follows from (2.14), (2.16), (2.26)–(2.28), (2.30), and (2.31) that

∥∥∥
(
xμ+1, yμ+1

)
− (x, y)

∥∥∥
1

= max

{
sup
n≥TL

∣∣∣xμ+1
n − xn

∣∣∣, sup
n≥TL

∣∣∣yμ+1
n − yn

∣∣∣
}

≤ max

⎧
⎨
⎩sup

n≥TL

⎡
⎣(1 − βμ − γμ

)∣∣∣xμ
n − xn

∣∣∣

+ βμ

∣∣∣∣∣∣
L +

∞∑
l=1

n+2lτ1−1∑
m=n+(2l−1)τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
− xn

∣∣∣∣∣∣

+ γμ
∣∣∣δμ

1n − xn

∣∣∣
⎤
⎦,
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sup
n≥TL

⎡
⎣(1 − βμ − γμ

)∣∣∣yμ
n − yn

∣∣∣

+ βμ

∣∣∣∣∣∣
L +

∞∑
l=1

n+2lτ2−1∑
m=n+(2l−1)τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
− yn

∣∣∣∣∣∣

+ γμ
∣∣∣δμ

2n − yn

∣∣∣
⎤
⎦
⎫
⎬
⎭

≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣xμ
n − xn

∣∣∣ + βμ
∣∣∣S1L

(
x
μ
n, y

μ
n

)
− S1L

(
xn, yn

)∣∣∣ + 2Mγμ
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣yμ
n − yn

∣∣∣ + βμ
∣∣∣S2L

(
x
μ
n, y

μ
n

)
− S2L

(
xn, yn

)∣∣∣ + 2Mγμ
]}

≤ (
1 − βμ(1 − θL)

)∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ, ∀μ ≥ 0,

(2.36)

which implies (2.7). Thus Lemma 1.1 and (2.7)–(2.9) mean that limμ→∞‖(xμ, yμ)−(x, y)‖1 = 0.
(b) Let L1, L2 ∈ (N,M) and L1 /=L2. As in the proof of (a), we conclude that for each

i ∈ Λ2, there exist a constant θLi ∈ (0, 1), a positive integer TLi ≥ max{τ1, τ2} + n1 + |α|,
and mappings SLi , S1Li , S2Li satisfying (2.14) and (2.28)–(2.31), where L, θL, and TL are
replaced by Li, θLi , and TLi , respectively, and the contraction mappings SL1 and SL2 have the
unique fixed points (u, v) = ({un}n∈Zα

, {vn}n∈Zα
), (w, z) = ({wn}n∈Zα

, {zn}n∈Zα
) ∈ A(N,M),

respectively, (u, v) and (w, z) are bounded positive solutions of the system (1.14) in A(N,M).
In order to show that System (1.14) possesses uncountably many bounded positive solutions
in A(N,M), we prove only that (u, v)/= (w, z). By virtue of (2.14) and (2.28)–(2.31), we infer
that

‖(u, v) − (w, z)‖1

= max{‖u −w‖, ‖v − z‖}

≥ max

⎧
⎨
⎩ sup

n≥max{TL1 ,TL2}
|un −wn|, sup

n≥max{TL1 ,TL2}
|vn − zn|

⎫
⎬
⎭

≥ max

⎧
⎨
⎩|L1 − L2| −

∞∑
l=1

max{TL1 ,TL2}+2lτ1−1∑
m=max{TL1 ,TL2}+(2l−1)τ1

∣∣f1(m,ua1m, . . . , uahm , vb1m, . . . , vbkm)

−f1 (m,wa1m, . . . , wahm , zb1m, . . . , zbkm)
∣∣,
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|L1 − L2| −
∞∑
l=1

max{TL1 ,TL2}+2lτ2−1∑
m=max{TL1 ,TL2}+(2l−1)τ2

∣∣f2(m,uc1m, . . . , uchm , vd1m, . . . , vdkm)

− f2 (m,wc1m, . . . , wchm , zd1m, . . . , zdkm)
∣∣
⎫
⎬
⎭

≥ max

⎧
⎨
⎩|L1 − L2| −

∞∑
m=max{TL1 ,TL2}+τ1

t1m max
{
|uaim−waim |,

∣∣∣vbjm−zbjm
∣∣∣ : i ∈ Λh, j ∈ ΛK

}
,

|L1 − L2| −
∞∑

m=max{TL1 ,TL2}+τ2

t2m max
{
|ucim −wcim |,

∣∣∣vdjm − zdjm

∣∣∣ : i ∈ Λh, j ∈ ΛK

}
⎫
⎬
⎭

≥ max

⎧
⎨
⎩|L1 − L2| −

∞∑
m=max{TL1 ,TL2}+τ1

t1m max{‖u −w‖, ‖v − z‖},

|L1 − L2| −
∞∑

m=max{TL1 ,TL2}+τ2

t2m max{‖u −w‖, ‖v − z‖}
⎫
⎬
⎭

≥ |L1 − L2| −
⎛
⎝

∞∑
m=max{TL1 ,TL2}

max{tim : i ∈ Λ2}
⎞
⎠‖(u, v) − (w, z)‖1

≥ |L1 − L2| − max{θL1 , θL2}‖(u, v) − (w, z)‖1,

(2.37)

which yields that

‖(u, v) − (w, z)‖1 ≥ |L1 − L2|
1 + max{θL1 , θL2}

> 0, (2.38)

that is, (u, v)/= (w, z). This completes the proof.

Theorem 2.3. Assume that there exist constants M,N ∈ R
+ \ {0}, p, p ∈ R

+, n1 ∈ Nn0 , and
four nonnegative sequences {r1n}n∈Nn0

, {r2n}n∈Nn0
, {t1n}n∈Nn0

, and {t2n}n∈Nn0
satisfying (2.1), (2.2),

(2.24), and

N <
(

1 − p − p
)
M, p + p < 1, −p ≤ pin ≤ p, ∀n ≥ n1, i ∈ Λ2. (2.39)
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Then,

(a) for each L ∈ (N + pM,M(1 − p)), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α|
such that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann iterative

sequence with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by the
schemes

x
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
x
μ
n

+βμ
{
L − p1μx

μ
n−τ1

+
∞∑

m=n

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]}

+γμδ
μ

1n, μ ≥ 0, n ≥ TL,(
1 − βμ − γμ

)
x
μ

TL

+βμ

{
L − p1μx

μ

TL−τ1

+
∞∑

m=TL

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]}

+γμδ
μ

1TL
, μ ≥ 0, α ≤ n < TL,

(2.40)

y
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
y
μ
n

+βμ
{
L − p2μy

μ
n−τ2

+
∞∑

m=n

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]}

+γμδ
μ

2n, μ ≥ 0, n ≥ TL,(
1 − βμ − γμ

)
y
μ

TL

+βμ

{
L − p2μy

μ

TL−τ2

+
∞∑

m=TL

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]}

+γμδ
μ

2TL
, μ ≥ 0, α ≤ n < TL

(2.41)

converges to a bounded positive solution (x, y) ∈ A(N,M) of System (1.14) and has the
error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
,

{δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with (2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Proof. (a) Let L ∈ (N + pM,M(1 − p)). Now we construct a contraction mapping SL :
A(N,M) → A(N,M) and prove that its fixed point is a bounded positive solution of
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the system (1.14). Notice that (2.24) and (2.39) mean that there exist θL ∈ (0, 1) and TL ≥
max{τ1, τ2} + n1 + |α| satisfying

θL = p + p +
∞∑

m=TL

max{tim : i ∈ Λ2}, (2.42)

∞∑
m=TL

max
{
rim +

∣∣qim
∣∣ : i ∈ Λ2

}
< min

{
M
(

1 − p
)
− L, L −N − pM

}
. (2.43)

Define three mappings SL : A(N,M) → l∞α × l∞α , S1L, S2L : A(N,M) → l∞α by (2.14),

S1L
(
xn, yn

)
=

⎧
⎨
⎩
L − p1nxn−τ1 +

∞∑
m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

S1L
(
xTL , yTL

)
, α ≤ n < TL,

(2.44)

S2L
(
xn, yn

)
=

⎧
⎨
⎩
L − p2nyn−τ2 +

∞∑
m=n

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

S2L
(
xTL , yTL

)
, α ≤ n < TL,

(2.45)

for all (x, y) = ({xn}n∈Zα
, {yn}n∈Zα

) ∈ A(N,M).
It follows from (2.1), (2.2), (2.14), and (2.42)–(2.45) that for any (x, y) = ({xn}n∈Zα

,
{yn}n∈Zα

) and (u, v) = ({un}n∈Zα
, {vn}n∈Zα

) ∈ A(N,M),

∥∥SL

(
x, y

) − SL(u, v)
∥∥

1

= max
{∥∥SiL

(
x, y

) − SiL(u, v)
∥∥ : i ∈ Λ2

}

= max

{
sup
n≥TL

∣∣SiL

(
xn, yn

) − SiL(un, vn)
∣∣ : i ∈ Λ2

}

≤ max

{
sup
n≥TL

{∣∣p1n(xn−τ1 − un−τ1)
∣∣ +

∞∑
m=n

∣∣f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

)

− f1 (m,ua1m, . . . , uahm , vb1m, . . . , vbkm)
∣∣
}
,

sup
n≥TL

{∣∣p2n
(
yn−τ2 − vn−τ2

)∣∣ +
∞∑

m=n

∣∣f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

)

− f2 (m,uc1m, . . . , uchm , vd1m, . . . , vdkm)
∣∣
}}

≤ max

{(
p + p

)
‖x − u‖ +

∞∑
m=TL

t1m max
{
|xalm − ualm |,

∣∣∣ybjm − vbjm

∣∣∣ : l ∈ Λh, j ∈ Λk

}
,
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(
p + p

)∥∥y − v
∥∥ +

∞∑
m=TL

t2m max
{
|xclm − uclm |,

∣∣∣ydjm − vdjm

∣∣∣ : l ∈ Λh, j ∈ Λk

}}

≤ max

{(
p + p

)
‖x − u‖ +

∞∑
m=TL

t1m max
{‖x − u‖,∥∥y − v

∥∥},

(
p + p

)∥∥y − v
∥∥ +

∞∑
m=TL

t2m max
{‖x − u‖,∥∥y − v

∥∥}
}

≤
(
p + p +

∞∑
m=TL

max{tim : i ∈ Λ2}
)∥∥(x, y) − (u, v)

∥∥
1

= θL
∥∥(x, y) − (u, v)

∥∥
1,

S1L
(
xn, yn

)

= L − p1nxn−τ1 +
∞∑

m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

≤ L + pM +
∞∑

m=TL

(
r1m +

∣∣q1m
∣∣)

≤ L + pM + min
{
M
(

1 − p
)
− L, L −N − pM

}

≤ M, ∀n ≥ TL,

S1L
(
xn, yn

)

= L − p1nxn−τ1 +
∞∑

m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

≥ L − pM −
∞∑

m=TL

(
r1m +

∣∣q1m
∣∣)

≥ L − pM − min
{
M
(

1 − p
)
− L, L −N − pM

}

≥ N, ∀n ≥ TL,

N ≤ S2L
(
xn, yn

) ≤ M, ∀n ≥ TL, (2.46)

which give (2.16) and (2.17), which together with θL ∈ (0, 1) guarantee that SL : A(N,M) →
A(N,M) is a contraction. Thus the Banach fixed point theorem ensures that SL has a unique
fixed point (x, y) = ({xn}n∈Zα

, {yn}n∈Zα
) ∈ A(N,M), that is,

xn = L − p1nxn−τ1 +
∞∑

m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
,

yn = L − p2nyn−τ2 +
∞∑

m=n

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

(2.47)



22 Abstract and Applied Analysis

which yield that

Δ
(
xn + p1nxn−τ1

)
= −f1

(
n, xa1n , . . . , xahn , yb1n , . . . , ybkn

)
+ q1n,

Δ
(
yn + p2nyn−τ2

)
= f2

(
n, xc1n , . . . , xchn , yd1n , . . . , ydkn

)
+ q2n, ∀n ≥ TL,

(2.48)

that is, (x, y) is a bounded positive solution of System (1.14) in A(N,M).
In light of (2.14), (2.16), (2.40), (2.41), (2.44), and (2.45), we deduce that

∥∥∥
(
xμ+1, yμ+1

)
− (x, y)

∥∥∥
1

= max

{
sup
n≥TL

∣∣∣xμ+1
n − xn

∣∣∣, sup
n≥TL

∣∣∣yμ+1
n − yn

∣∣∣
}

≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣xμ
n − xn

∣∣∣

+ βμ

∣∣∣∣∣L − p1nxn−τ1 +
∞∑

m=n

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
− xn

∣∣∣∣∣

+ γμ
∣∣∣δμ

1n − xn

∣∣∣
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣yμ
n − yn

∣∣∣

+ βμ

∣∣∣∣∣L − p2nyn−τ2 +
∞∑

m=n

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
− yn

∣∣∣∣∣

+ γμ
∣∣∣δμ

2n − yn

∣∣∣
]}

≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)‖xμ − x‖ + βμ
∣∣∣S1L

(
x
μ
n, y

μ
n

)
− S1L

(
xn, yn

)∣∣∣ + 2Mγμ
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∥∥yμ − y
∥∥ + βμ

∣∣∣S2L

(
x
μ
n, y

μ
n

)
− S2L

(
xn, yn

)∣∣∣ + 2Mγμ
]}

≤ (
1 − βμ(1 − θL)

)∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ, ∀μ ≥ 0, (2.49)

which implies (2.7). Thus Lemma 1.1 and (2.7)–(2.9) imply that limμ→∞‖(xμ, yμ) − (x, y)‖1 =
0.
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(b) Let L1, L2 ∈ (N,M) and L1 /=L2. Similar to the proof of (a), we know that for each
i ∈ Λ2, there exist a constant θLi ∈ (0, 1), a positive integer TLi ≥ max{τ1, τ2} + n1 + |α| and
mappings SLi , S1Li , S2Li satisfying (2.14) and (2.42)–(2.45), where L, θL, and TL are replaced
by Li, θLi and TLi , respectively, and the contraction mappings SL1 and SL2 have the unique
fixed points (u, v) = ({un}n∈Zα

, {vn}n∈Zα
), (w, z) = ({wn}n∈Zα

, {zn}n∈Zα
) ∈ A(N,M), which

are bounded positive solutions of System (1.14) in A(N,M), respectively. In order to show
that System (1.14) possesses uncountably many bounded positive solutions in A(N,M), we
prove only that (u, v)/= (w, z). In terms of (2.14) and (2.42)–(2.45), we get that

‖(u, v) − (w, z)‖1

= max{‖u −w‖, ‖v − z‖}

≥ max

⎧
⎨
⎩ sup

n≥max{TL1 ,TL2}
|un −wn|, sup

n≥max{TL1 ,TL2}
|vn − zn|

⎫
⎬
⎭

≥ max

{
sup

n≥max{TL1 ,TL2}

{
|L1 − L2| −

∣∣p1n
∣∣|un−τ1 −wn−τ1 |

−
∞∑

m=n

∣∣f1(m,ua1m, . . . , uahm , vb1m, . . . , vbkm)

− f1(m,wa1m, . . . , wahm , zb1m, . . . , zbkm)
∣∣
}
,

sup
n≥max{TL1 ,TL2}

{
|L1 − L2| −

∣∣p2n
∣∣|vn−τ2 − zn−τ2 |

−
∞∑

m=n

∣∣f2(m,uc1m, . . . , uchm , vd1m, . . . , vdkm)

− f2 (m,wc1m, . . . , wchm , zd1m, . . . , zdkm)
∣∣
}}

≥ max

⎧
⎨
⎩|L1 − L2| −

(
p + p

)
‖u −w‖

−
∞∑

m=max{TL1 ,TL2}
t1m max

{
|uaim −waim |,

∣∣∣vbjm − zbjm

∣∣∣ : i ∈ Λh, j ∈ ΛK

}
,

|L1 − L2| −
(
p + p

)
‖v − z‖
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−
∞∑

m=max{TL1 ,TL2}
t2m max

{
|ucim −wcim |,

∣∣∣vdjm − zdjm

∣∣∣ : i ∈ Λh, j ∈ ΛK

}
⎫
⎬
⎭

≥ max

⎧
⎨
⎩|L1 − L2| −

(
p + p

)
‖u −w‖ −

∞∑
m=max{TL1 ,TL2}

t1m max{‖u −w‖, ‖v − z‖},

|L1 − L2| −
(
p + p

)
‖v − z‖ −

∞∑

m=max{TL1 ,TL2}
t2m max{‖u −w‖, ‖v − z‖}

⎫
⎬
⎭

≥ |L1 − L2| −
⎛
⎝p + p +

∞∑

m=max{TL1 ,TL2}
max{tim : i ∈ Λ2}

⎞
⎠‖(u, v) − (w, z)‖1

≥ |L1 − L2| − max{θL1 , θL2}‖(u, v) − (w, z)‖1,

(2.50)

which yields that

‖(u, v) − (w, z)‖1 ≥ |L1 − L2|
1 + max{θL1 , θL2}

> 0, (2.51)

that is, (u, v)/= (w, z). This completes the proof.

Theorem 2.4. Assume that there exist constants M,N, p, p ∈ R
+ \ {0}, n1 ∈ Nn0 and four

nonnegative sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1), (2.2),
(2.24), and

0 < N
(
p − 1

)
< M

(
p − 1

)
, −p ≤ pin ≤ −p, ∀n ≥ n1, i ∈ Λ2. (2.52)

Then,

(a) for each L ∈ (N(p − 1),M(p − 1)), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α|
such that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann iterative
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sequence with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by the
schemes

x
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
x
μ
n

+βμ

{
−L

p1n+τ1

− x
μ
n+τ1

p1n+τ1

+
1

p1n+τ1

×
∞∑

m=n+τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]}

+γμδ
μ

1n, μ ≥ 0, n ≥ TL,(
1 − βμ − γμ

)
x
μ

TL

+βμ

{
−L

p1TL+τ1

−
x
μ

TL+τ1

p1TL+τ1

+
1

p1TL+τ1

×
∞∑

m=TL+τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]}

+γμδ
μ

1TL
, μ ≥ 0, α ≤ n < TL,

(2.53)

y
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
y
μ
n

+βμ

{
−L

p2n+τ2

− y
μ
n+τ2

p2n+τ2

+
1

p2n+τ2

×
∞∑

m=n+τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]}

+γμδ
μ

2n, μ ≥ 0, n ≥ TL,(
1 − βμ − γμ

)
y
μ

TL

+βμ

{
−L

p2TL+τ2

−
y
μ

TL+τ2

p2TL+τ2

+
1

p2TL+τ2

×
∞∑

m=TL+τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]}

+γμδ
μ

2TL
, μ ≥ 0, α ≤ n < TL

(2.54)

converges to a bounded positive solution (x, y) ∈ A(N,M) of System (1.14) and
has the error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1] and {(δμ

1 , δ
μ

2 )}μ∈N0
=

{({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with (2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Proof. (a) Let L ∈ (N(p − 1),M(p − 1)). Now we construct a contraction mapping SL :
A(N,M) → A(N,M) and prove that its fixed point is a bounded positive solution of
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the system (1.14). Observe that (2.24) and (2.52) guarantee that there exist θL ∈ (0, 1) and
TL ≥ max{τ1, τ2} + n1 + |α| satisfying

θL =
1
p

(
1 +

∞∑
m=TL

max{tim : i ∈ Λ2}
)
, (2.55)

∞∑
m=TL

max
{
rim +

∣∣qim
∣∣ : i ∈ Λ2

}
< min

{
M
(
p − 1

) − L, p

(
L +N

p
−N

)}
. (2.56)

Define three mappings SL : A(N,M) → l∞α × l∞α , S1L, S2L : A(N,M) → l∞α by (2.14),

S1L
(
xn, yn

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−L
p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

S1L
(
xTL , yTL

)
, α ≤ n < TL,

(2.57)

S2L
(
xn, yn

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−L
p2n+τ2

− yn+τ2

p2n+τ2

+
1

p2n+τ2

∞∑
m=n+τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

S2L
(
xTL , yTL

)
, α ≤ n < TL,

(2.58)

for all (x, y) = ({xn}n∈Zα
, {yn}n∈Zα

) ∈ A(N,M).
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It follows from (2.1), (2.2), (2.14), and (2.55)–(2.58) that for any (x, y) = ({xn}n∈Zα
,

{yn}n∈Zα
) and (u, v) = ({un}n∈Zα

, {vn}n∈Zα
) ∈ A(N,M)

∥∥SL

(
x, y

) − SL(u, v)
∥∥

1

= max
{∥∥SiL

(
x, y

) − SiL(u, v)
∥∥ : i ∈ Λ2

}

= max

{
sup
n≥TL

∣∣SiL

(
xn, yn

) − SiL(un, vn)
∣∣ : i ∈ Λ2

}

≤ max

{
sup
n≥TL

{
1∣∣p1n+τ1

∣∣
(
|xn+τ1 − un+τ1 |

+
∞∑

m=n+τ1

∣∣f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

)

− f1 (m,ua1m, . . . , uahm , vb1m, . . . , vbkm)
∣∣
)}

,

sup
n≥TL

{
1∣∣p2n+τ2

∣∣
(∣∣yn+τ2 − vn+τ2

∣∣

+
∞∑

m=n+τ2

∣∣f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

)

− f2 (m,uc1m, . . . , uchm , vd1m, . . . , vdkm)
∣∣
)}}

≤ 1
p

max

{
‖x − u‖ +

∞∑
m=TL

t1m max
{
|xaim − uaim |,

∣∣∣ybjm − vbjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}
,

∥∥y − v
∥∥ +

∞∑
m=TL

t2m max
{
|xcim − ucim |,

∣∣∣ydjm − vdjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}}

≤ 1
p

max

{
‖x − u‖ +

∞∑
m=TL

t1m max
{‖x − u‖,∥∥y − v

∥∥},

∥∥y − v
∥∥ +

∞∑
m=TL

t2m max
{‖x − u‖,∥∥y − v

∥∥}
}

≤ 1
p

(
1 +

∞∑
m=TL

max{tim : i ∈ Λ2}
)∥∥(x, y) − (u, v)

∥∥
1

= θL
∥∥(x, y) − (u, v)

∥∥
1,
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S1L
(
xn, yn

)

=
−L

p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

≤ L

p
+
M

p
+

1
p

∞∑
m=TL+τ1

(
r1m +

∣∣q1m
∣∣)

≤ L

p
+
M

p
+

1
p

min

{
M
(
p − 1

) − L, p

(
L +N

p
−N

)}

≤ M, ∀n ≥ TL,

S1L
(
xn, yn

)

=
−L

p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

≥ L

p
+
N

p
− 1
p

∞∑
m=TL+τ1

(
r1m +

∣∣q1m
∣∣)

≥ L

p
+
N

p
− 1
p

min

{
M
(
p − 1

) − L, p

(
L +N

p
−N

)}

≥ N, ∀n ≥ TL,

N ≤ S2L
(
xn, yn

) ≤ M, ∀n ≥ TL,

(2.59)

which yield (2.16) and (2.17), which together with θL ∈ (0, 1) ensure that SL is a contraction
in A(N,M). By the Banach fixed point theorem, we deduce that SL has a unique fixed point
(x, y) = ({xn}n∈Zα

, {yn}n∈Zα
) ∈ A(N,M), that is,

xn =
−L

p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

yn =
−L

p2n+τ2

− yn+τ2

p2n+τ2

+
1

p2n+τ2

∞∑
m=n+τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

(2.60)

which yield that

xn + p1nxn−τ1 = −L +
∞∑

m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL + τ1,

yn + p2nyn−τ2 = −L +
∞∑

m=n

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL + τ2,
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Δ
(
xn + p1nxn−τ1

)
= −f1

(
n, xa1n , . . . , xahn , yb1n , . . . , ybkn

)
+ q1n, ∀n ≥ TL + τ1,

Δ
(
yn + p2nyn−τ2

)
= −f2

(
n, xc1n , . . . , xchn , yd1n , . . . , ydkn

)
+ q2n, ∀n ≥ TL + τ2,

(2.61)

that is, (x, y) is a bounded positive solution of the system (1.14) in A(N,M).
In light of (2.14), (2.16), (2.53)–(2.55), (2.57), and (2.58), we get that

∥∥∥
(
xμ+1, yμ+1

)
− (x, y)

∥∥∥
1

= max

{
sup
n≥TL

∣∣∣xμ+1
n − xn

∣∣∣, sup
n≥TL

∣∣∣yμ+1
n − yn

∣∣∣
}

≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣xμ
n − xn

∣∣∣ + βμ

×
∣∣∣∣∣

−L
p1n+τ1

− x
μ
n+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
− xn

∣∣∣∣∣

+ γμ
∣∣∣δμ

1n − xn

∣∣∣
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣yμ
n − yn

∣∣∣ + βμ

×
∣∣∣∣∣

−L
p2n+τ2

− y
μ
n+τ2

p2n+τ2

+
1

p2n+τ2

∞∑
m=n

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
− yn

∣∣∣∣∣

+ γμ
∣∣∣δμ

2n − yn

∣∣∣
]}

≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)‖xμ − x‖ + βμ
∣∣∣S1L

(
x
μ
n, y

μ
n

)
− S1L

(
xn, yn

)∣∣∣ + 2Mγμ
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∥∥yμ − y
∥∥ + βμ

∣∣∣S2L

(
x
μ
n, y

μ
n

)
− S2L

(
xn, yn

)∣∣∣ + 2Mγμ
]}

≤ (
1 − βμ(1 − θL)

)∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ, ∀μ ≥ 0,
(2.62)

which implies (2.7). Thus Lemma 1.1 and (2.7)–(2.9) imply that limμ→∞‖(xμ, yμ) − (x, y)‖1 =
0.

(b) Let L1, L2 ∈ (N,M) and L1 /=L2. Similar to the proof of (a), we conclude that for
each i ∈ Λ2, there exist a constant θLi ∈ (0, 1), a positive integer TLi ≥ max{τ1, τ2}+n1+ |α|, and
mappings SLi , S1Li , S2Li satisfying (2.14) and (2.55)–(2.58), where L, θL, and TL are replaced
by Li, θLi , and TLi , respectively, and the contraction mappings SL1 and SL2 have the unique
fixed points (u, v) = ({un}n∈Zα

, {vn}n∈Zα
), (w, z) = ({wn}n∈Zα

, {zn}n∈Zα
) ∈ A(N,M), which
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are bounded positive solutions of System (1.14) in A(N,M), respectively. In order to show
that System (1.14) possesses uncountably many bounded positive solutions in A(N,M), we
prove only that (u, v)/= (w, z). By virtue of (2.14) and (2.55)–(2.58), we get that

‖(u, v) − (w, z)‖1

= max{‖u −w‖, ‖v − z‖}

≥ max

⎧
⎨
⎩ sup

n≥max{TL1 ,TL2}
|un −wn|, sup

n≥max{TL1 ,TL2}
|vn − zn|

⎫
⎬
⎭

≥ max

{
sup

n≥max{TL1 ,TL2}

{
|L1 − L2|∣∣p1n+τ1

∣∣ − |un+τ1 −wn+τ1 |∣∣p1n+τ1

∣∣

− 1∣∣p1n+τ1

∣∣
∞∑

m=n+τ1

∣∣f1(m,ua1m, . . . , uahm , vb1m, . . . , vbkm)

− f1 (m,wa1m, . . . , wahm , zb1m, . . . , zbkm)
∣∣
}
,

sup
n≥max{TL1 ,TL2}

{
|L1 − L2|∣∣p2n+τ2

∣∣ − |un+τ2 −wn+τ2 |∣∣p2n+τ2

∣∣ − 1∣∣p2n+τ2

∣∣

×
∞∑

m=n+τ2

∣∣f2(m,uc1m, . . . , uchm , vd1m, . . . , vdkm)

− f2 (m,wc1m, . . . , wchm , zd1m, . . . , zdkm)
∣∣
}}

≥ max

⎧
⎨
⎩

|L1 − L2|
p

− ‖u −w‖
p

− 1
p

∞∑

m=max{TL1 ,TL2}
t1m max

{
|uaim −waim |,

∣∣∣vbjm − zbjm

∣∣∣ : i ∈ Λh, j ∈ ΛK

}
,

|L1 − L2|
p

− ‖v − z‖
p

− 1
p

∞∑
m=max{TL1 ,TL2}

t2m max
{
|ucim −wcim |,

∣∣∣vdjm − zdjm

∣∣∣ : i ∈ Λh, j ∈ ΛK

}
⎫
⎬
⎭

≥ max

⎧
⎨
⎩

|L1 − L2|
p

− ‖u −w‖
p

− 1
p

∞∑

m=max{TL1 ,TL2}
t1m max{‖u −w‖, ‖v − z‖},
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|L1 − L2|
p

− ‖v − z‖
p

− 1
p

∞∑
m=max{TL1 ,TL2}

t2m max{‖u −w‖, ‖v − z‖}
⎫
⎬
⎭

≥ |L1 − L2|
p

− 1
p
(1 + max{θL1 , θL2})‖(u, v) − (w, z)‖1,

(2.63)

which yields that

‖(u, v) − (w, z)‖1 ≥ p|L1 − L2|
p
(
p + max{θL1 , θL2}

) > 0, (2.64)

that is, (u, v)/= (w, z). This completes the proof.

Theorem 2.5. Assume that there exist constants M,N, p, p ∈ R
+ \ {0}, n1 ∈ Nn0 and four

nonnegative sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1), (2.2),
(2.24), and

N
(
p2 − p

)

p
<

M
(
p2 − p

)

p
, 1 < p ≤ pin ≤ p < p2, ∀n ≥ n1, i ∈ Λ2. (2.65)

Then,

(a) for each L ∈ (p(M/p+N), p(N/p+M)), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2}+
n1 + |α| such that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann

iterative sequence with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by
the schemes

x
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
x
μ
n

+βμ

{
L

p1n+τ1

− x
μ
n+τ1

p1n+τ1

+
1

p1n+τ1

×
∞∑

m=n+τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]}

+γμδ
μ

1n, μ ≥ 0, n ≥ TL,
(
1 − βμ − γμ

)
x
μ

TL

+βμ

{
L

p1TL+τ1

−
x
μ

TL+τ1

p1TL+τ1

+
1

p1TL+τ1

×
∞∑

m=TL+τ1

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]}

+γμδ
μ

1TL
, μ ≥ 0, α ≤ n < TL,

(2.66)
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y
μ+1
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − βμ − γμ

)
y
μ
n

+βμ

{
L

p2n+τ2

− y
μ
n+τ2

p2n+τ2

+
1

p2n+τ2

×
∞∑

m=n+τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]}

+γμδ
μ

2n, μ ≥ 0, n ≥ TL,
(
1 − βμ − γμ

)
y
μ

TL

+βμ

{
L

p2TL+τ2

−
y
μ

TL+τ2

p2TL+τ2

+
1

p2TL+τ2

×
∞∑

m=TL+τ2

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]}

+γμδ
μ

2TL
, μ ≥ 0, α ≤ n < TL

(2.67)

converges to a bounded positive solution (x, y) ∈ A(N,M) of System (1.14) and has the
error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
,

{δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with (2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Proof. (a) Let L ∈ (p(M/p + N), p(N/p + M)). Now we construct a contraction mapping
SL : A(N,M) → A(N,M) and prove that its fixed point is a bounded positive solution
of System (1.14). Observe that (2.24) and (2.65) imply that there exist θL ∈ (0, 1) and TL ≥
max{τ1, τ2} + n1 + |α| satisfying

θL =
1
p

(
1 +

∞∑
m=TL

max{tim : i ∈ Λ2}
)
, (2.68)

∞∑
m=TL

max
{
rim +

∣∣qim
∣∣ : i ∈ Λ2

}
< min

{
Np

p
+Mp − L,

Lp

p
−M −Np

}
. (2.69)

Define three mappings SL : A(N,M) → l∞α × l∞α , S1L, S2L : A(N,M) → l∞α by (2.14),

S1L
(
xn, yn

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L

p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

S1L
(
xTL , yTL

)
, α ≤ n < TL,

(2.70)
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S2L
(
xn, yn

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L

p2n+τ2

− yn+τ2

p2n+τ2

+
1

p2n+τ2

∞∑
m=n+τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

S2L
(
xTL , yTL

)
, α ≤ n < TL,

(2.71)

for all (x, y) = ({xn}n∈Zα
, {yn}n∈Zα

) ∈ A(N,M).
Using (2.1), (2.2), (2.14), (2.65), and (2.68)–(2.71), we deduce that for any (x, y) =

({xn}n∈Zα
, {yn}n∈Zα

) and (u, v) = ({un}n∈Zα
, {vn}n∈Zα

) ∈ A(N,M),

∥∥SL

(
x, y

) − SL(u, v)
∥∥

1

= max
{∥∥SiL

(
x, y

) − SiL(u, v)
∥∥ : i ∈ Λ2

}

= max

{
sup
n≥TL

∣∣SiL

(
xn, yn

) − SiL(un, vn)
∣∣ : i ∈ Λ2

}

≤ max

{
sup
n≥TL

{
1∣∣p1n+τ1

∣∣
(
|xn+τ1 − un+τ1 | +

∞∑
m=n+τ1

∣∣f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

)

− f1 (m,ua1m, . . . , uahm , vb1m, . . . , vbkm)
∣∣
)}

,

sup
n≥TL

{
1∣∣p2n+τ2

∣∣
(∣∣yn+τ2 − vn+τ2

∣∣

+
∞∑

m=n+τ2

∣∣f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

)

− f2 (m,uc1m, . . . , uchm , vd1m, . . . , vdkm)
∣∣
)}}

≤ 1
p

max

{
‖x − u‖ +

∞∑
m=TL

t1m max
{
|xaim − uaim |,

∣∣∣ybjm − vbjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}
,

∥∥y − v
∥∥ +

∞∑
m=TL

t2m max
{
|xcim − ucim |,

∣∣∣ydjm − vdjm

∣∣∣ : i ∈ Λh, j ∈ Λk

}}

≤ 1
p

max

{
‖x − u‖+

∞∑
m=TL

t1m max
{‖x − u‖,∥∥y − v

∥∥},∥∥y − v
∥∥+

∞∑
m=TL

t2m max
{‖x − u‖,∥∥y − v

∥∥}
}

≤ 1
p

(
1 +

∞∑
m=TL

max{t1m, t2m}
)∥∥(x, y) − (u, v)

∥∥
1

= θL
∥∥(x, y) − (u, v)

∥∥
1,
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S1L
(
xn, yn

)

=
L

p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

≤ L

p
− N

p
+

1
p

∞∑
m=TL+τ1

(
r1m +

∣∣q1m
∣∣)

≤ L

p
− N

p
+

1
p

min

{
Np

p
+Mp − L,

Lp

p
−M −Np

}

≤ M, ∀n ≥ TL,

S1L
(
xn, yn

)

=
L

p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]

≥ L

p
− M

p
− 1
p

∞∑
m=TL+τ1

(
r1m +

∣∣q1m
∣∣)

≥ L

p
− M

p
− 1
p

min

{
Np

p
+Mp − L,

Lp

p
−M −Np

}

≥ N, ∀n ≥ TL,

N ≤ S2L
(
xn, yn

) ≤ M, ∀n ≥ TL, (2.72)

which yield (2.16) and (2.17), and which guarantee that SL is a self-mapping from A(N,M)
into itself and is a contraction by θL ∈ (0, 1). Thus the Banach fixed point theorem means that
SL has a unique fixed point (x, y) = ({xn}n∈Zα

, {yn}n∈Zα
) ∈ A(N,M), that is,

xn =
L

p1n+τ1

− xn+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n+τ1

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL,

yn =
L

p2n+τ2

− yn+τ2

p2n+τ2

+
1

p2n+τ2

∞∑
m=n+τ2

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL,

(2.73)
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which yield that

xn + p1nxn−τ1 = L +
∞∑

m=n

[
f1
(
m,xa1m, . . . , xahm , yb1m, . . . , ybkm

) − q1m
]
, n ≥ TL + τ1,

yn + p2nyn−τ2 = L +
∞∑

m=n

[
f2
(
m,xc1m, . . . , xchm , yd1m, . . . , ydkm

) − q2m
]
, n ≥ TL + τ2,

Δ
(
xn + p1nxn−τ1

)
= −f1

(
n, xa1n , . . . , xahn , yb1n , . . . , ybkn

)
+ q1n, ∀n ≥ TL + τ1,

Δ
(
yn + p2nyn−τ2

)
= −f2

(
n, xc1n , . . . , xchn , yd1n , . . . , ydkn

)
+ q2n, ∀n ≥ TL + τ2,

(2.74)

that is, (x, y) is a bounded positive solution of the system (1.14) in A(N,M).
In view of (2.14), (2.16), (2.65)–(2.67), (2.70), and (2.71), we gain that

∥∥∥
(
xμ+1, yμ+1

)
− (x, y)

∥∥∥
1

= max

{
sup
n≥TL

∣∣∣xμ+1
n − xn

∣∣∣, sup
n≥TL

∣∣∣yμ+1
n − yn

∣∣∣
}

≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣xμ
n − xn

∣∣∣ + βμ

×
∣∣∣∣∣

L

p1n+τ1

− x
μ
n+τ1

p1n+τ1

+
1

p1n+τ1

∞∑
m=n

[
f1

(
m,x

μ
a1m, . . . , x

μ
ahm , y

μ

b1m
, . . . , y

μ

bkm

)
− q1m

]
− xn

∣∣∣∣∣

+ γμ
∣∣∣δμ

1n − xn

∣∣∣
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∣∣∣yμ
n − yn

∣∣∣ + βμ

×
∣∣∣∣∣

L

p2n+τ2

− y
μ
n+τ2

p2n+τ2

+
1

p2n+τ2

∞∑
m=n

[
f2

(
m,x

μ
c1m, . . . , x

μ
chm , y

μ

d1m
, . . . , y

μ

dkm

)
− q2m

]
− yn

∣∣∣∣∣

+ γμ
∣∣∣δμ

2n − yn

∣∣∣
]}
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≤ max

{
sup
n≥TL

[(
1 − βμ − γμ

)‖xμ − x‖ + βμ
∣∣∣S1L

(
x
μ
n, y

μ
n

)
− S1L

(
xn, yn

)∣∣∣ + 2Mγμ
]
,

sup
n≥TL

[(
1 − βμ − γμ

)∥∥yμ − y
∥∥ + βμ

∣∣∣S2L

(
x
μ
n, y

μ
n

)
− S2L

(
xn, yn

)∣∣∣ + 2Mγμ
]}

≤ (
1 − βμ(1 − θL)

)∥∥(xμ, yμ) − (x, y)∥∥1 + 2Mγμ, ∀μ ≥ 0,

(2.75)

which implies (2.7). Thus, Lemma 1.1 and (2.7)–(2.9) imply that limμ→∞‖(xμ, yμ)− (x, y)‖1 =
0.

(b) Let L1, L2 ∈ (N,M) and L1 /=L2. Similar to the proof of (a), we conclude that for
each i ∈ Λ2, there exist a constant θLi ∈ (0, 1), a positive integer TLi ≥ max{τ1, τ2}+n1+ |α|, and
mappings SLi , S1Li , S2Li satisfying (2.14) and (2.68)–(2.71), where L, θL, and TL are replaced
by Li, θLi , and TLi , respectively, and the contraction mappings SL1 and SL2 have the unique
fixed points (u, v) = ({un}n∈Zα

, {vn}n∈Zα
), (w, z) = ({xn}n∈Zα

, {yn}n∈Zα
) ∈ A(N,M), which

are bounded positive solutions of System (1.14) in A(N,M), respectively. In order to show
that System (1.14) possesses uncountably many bounded positive solutions in A(N,M), we
prove only that (u, v)/= (w, z). In light of (2.14) and (2.68)–(2.71), we have

‖(u, v) − (w, z)‖1

= max{‖u −w‖, ‖v − z‖}

≥ max

⎧
⎨
⎩ sup

n≥max{TL1 ,TL2}
|un −wn|, sup

n≥max{TL1 ,TL2}
|vn − zn|

⎫
⎬
⎭

≥ max

{
sup

n≥max{TL1 ,TL2}

{
|L1 − L2|∣∣p1n+τ1

∣∣ − |un+τ1 −wn+τ1 |∣∣p1n+τ1

∣∣

− 1∣∣p1n+τ1

∣∣
∞∑

m=n+τ1

∣∣f1(m,ua1m, . . . , uahm , vb1m, . . . , vbkm)

− f1 (m,wa1m, . . . , wahm , zb1m, . . . , zbkm)
∣∣
}
,

sup
n≥max{TL1 ,TL2}

{
|L1 − L2|∣∣p2n+τ2

∣∣ − |un+τ2 −wn+τ2 |∣∣p2n+τ2

∣∣ − 1∣∣p2n+τ2

∣∣

×
∞∑

m=n+τ2

∣∣f2(m,uc1m, . . . , uchm , vd1m, . . . , vdkm)

− f2 (m,wc1m, . . . , wchm , zd1m, . . . , zdkm)
∣∣
}}
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≥ max

{
|L1 − L2|

p
− ‖u −w‖

p

− 1
p

∞∑
m=max{TL1 ,TL2}

t1m max
{
|ualm −walm |,

∣∣∣vbjm − zbjm

∣∣∣ : l ∈ Λh, j ∈ ΛK

}
,

|L1 − L2|
p

− ‖v − z‖
p

− 1
p

∞∑
m=max{TL1 ,TL2}

t2m max
{
|uclm −wclm |,

∣∣∣vdjm − zdjm

∣∣∣ : l ∈ Λh, j ∈ ΛK

}
⎫
⎬
⎭

≥ max

⎧
⎨
⎩

|L1 − L2|
p

− ‖u −w‖
p

− 1
p

∞∑

m=max{TL1 ,TL2}
t1m max{‖u −w‖, ‖v − z‖},

|L1 − L2|
p

− ‖v − z‖
p

− 1
p

∞∑
m=max{TL1 ,TL2}

t2m max{‖u −w‖, ‖v − z‖}
⎫
⎬
⎭

≥ |L1 − L2|
p

− 1
p
(1 + max{θL1 , θL2})‖(u, v) − (w, z)‖1,

(2.76)

which yields that

‖(u, v) − (w, z)‖1 ≥
p|L1 − L2|

p
(
p + max{θL1 , θL2}

) > 0, (2.77)

that is, (u, v)/= (w, z). This completes the proof.

Remark 2.6. Let (a1, b1) and (a2, b2) be two arbitrary intervals in R. It is easy to see that

(a1, b1) ∩ (a2, b2)/= ∅ ⇐⇒ max{a1, a2} < min{b1, b2}. (2.78)

From Remark 2.6 and Theorems 2.1–2.5, we can obtain the following.
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Theorem 2.7. Assume that there exist constants M,N ∈ R
+ \ {0}, n1 ∈ Nn0 and four nonnegative

sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1), (2.2),

∞∑
n=n0

nmax
{
r1n, t1n,

∣∣q1n
∣∣} < +∞, (2.79)

∞∑
n=n0

max
{
r2n, t2n,

∣∣q2n
∣∣} < +∞, (2.80)

N < M, p1n = −1, ∀n ≥ n1, (2.81)

p2n = 1, ∀n ≥ n1. (2.82)

Then,

(a) for each L ∈ (N,M), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α| such
that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann iterative sequence

with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by Schemes (2.5) and
(2.27) converges to a bounded positive solution (x, y) ∈ A(N,M) of System (1.14)
and has the error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1] and {(δμ

1 , δ
μ

2 )}μ∈N0
=

{({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with (2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Theorem 2.8. Assume that there exist constants M,N ∈ R
+ \ {0}, p, p ∈ R

+, n1 ∈ Nn0 , and
four nonnegative sequences {r1n}n∈Nn0

, {r2n}n∈Nn0
, {t1n}n∈Nn0

, and {t2n}n∈Nn0
satisfying (2.1), (2.2),

(2.79)–(2.81),

N <
(

1 − p − p
)
M, p + p < 1, −p ≤ p2n ≤ p, ∀n ≥ n1. (2.83)

Then,

(a) for each L ∈ (N,M)∩(N+pM,M(1−p)), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2}+
n1 + |α| such that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann

iterative sequence with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by
Schemes (2.5) and (2.41) converges to a bounded positive solution (x, y) ∈ A(N,M)
of System (1.14) and has the error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1] and

{(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with
(2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Theorem 2.9. Assume that there exist constants M,N, p, p ∈ R
+ \ {0}, n1 ∈ Nn0 and four

nonnegative sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
and {t2n}n∈Nn0

, satisfying (2.1), (2.2),
(2.79)–(2.81),

0 < N
(
p − 1

)
< M

(
p − 1

)
, −p ≤ p2n ≤ −p, ∀n ≥ n1, (2.84)

max
{
N,N

(
p − 1

)}
< min

{
M,M

(
p − 1

)}
. (2.85)
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Then,

(a) for each L ∈ (N,M)∩(N(p−1),M(p−1)), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2}+
n1 + |α| such that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann

iterative sequence with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by
Schemes (2.5) and (2.54) converges to a bounded positive solution (x, y) ∈ A(N,M)
of System (1.14) and has the error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1] and

{(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with
(2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Theorem 2.10. Assume that there exist constants M,N,M0,N0, p0, p0
∈ R

+ \ {0}, n1 ∈ Nn0 and
four nonnegative sequences {r1n}n∈Nn0

, {r2n}n∈Nn0
, {t1n}n∈Nn0

, and {t2n}n∈Nn0
satisfying (2.1), (2.2)

with i = 1, (2.79)–(2.81),

∣∣f2(n, u1, . . . , uh, v1, . . . , vk)
∣∣ ≤ r2n, ∀(n, ul, vj

) ∈ Nn1 × [N0,M0]2, l ∈ Λh, j ∈ Λk, (2.86)
∣∣f2(n, u1, . . . , uh, v1, . . . , vk) − f2(n,w1, . . . , wh, z1, . . . , zk)

∣∣

≤ t2n max
{|ul −wl|,

∣∣vj − zj
∣∣ : l ∈ Λh, j ∈ Λk

}
,

∀(n, ul,wl, vj , zj
) ∈ Nn1 × [N0,M0]4, l ∈ Λh, j ∈ Λk,

(2.87)

N0

(
p2

0 − p
0

)

p0
<

M0

(
p2

0
− p0

)

p
0

, 1 < p
0
≤ p2n ≤ p0 < p2

0
, ∀n ≥ n1, (2.88)

max

{
N,p0

(
M0

p
0

+N0

)}
< min

{
M,p

0

(
N0

p0
+M0

)}
. (2.89)

Then,

(a) for each L ∈ (N,M) ∩ (p0(M0/p
0
+ N0), p

0
(N0/p0 + M0)), there exist θL ∈

(0, 1) and TL ≥ max{τ1, τ2} + n1 + |α| such that for any (x0, y0) = ({x0
n}n∈Zα

,
{y0

n}n∈Zα
) ∈ A(N,M,N0,M0), the Mann iterative sequence with errors {(xμ, yμ)}μ∈N0

=
{({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by Schemes (2.5) and (2.67) converges to a bounded
positive solution (x, y) ∈ A(N,M,N0,M0) of System (1.14) and has the error
estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
,

{δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M,N0,M0) are arbitrary sequences with (2.8) and (2.9),

(b) the system (1.14) has uncountably many bounded positive solutions inA(N,M,N0,M0).

Theorem 2.11. Assume that there exist constants M,N ∈ R
+ \ {0}, p, p ∈ R

+, n1 ∈ Nn0 and
four nonnegative sequences {r1n}n∈Nn0

, {r2n}n∈Nn0
, {t1n}n∈Nn0

, and {t2n}n∈Nn0
satisfying (2.1), (2.2),

(2.24), (2.83) and

N < M, p1n = 1, ∀n ≥ n1. (2.90)
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Then,

(a) for each L ∈ (N,M)∩(N+pM,M(1−p)), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2}+
n1 + |α| such that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann

iterative sequence with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by
Schemes (2.26) and (2.41) converges to a bounded positive solution (x, y) ∈ A(N,M)
of System (1.14) and has the error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and

{(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with
(2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Theorem 2.12. Assume that there exist constants M,N, p, p ∈ R
+ \ {0}, n1 ∈ Nn0 and four

nonnegative sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1), (2.2),
(2.24), (2.84), (2.85), and (2.90). Then,

(a) for each L ∈ (N,M)∩(N(p−1),M(p−1)), there exist θL ∈ (0, 1) and TL ≥ max{τ1, τ2}+
n1 + |α| such that for any (x0, y0) = ({x0

n}n∈Zα
, {y0

n}n∈Zα
) ∈ A(N,M), the Mann

iterative sequence with errors {(xμ, yμ)}μ∈N0
= {({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by
Schemes (2.26) and (2.54) converges to a bounded positive solution (x, y) ∈ A(N,M)
of System (1.14) and has the error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and

{(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary sequences with
(2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Theorem 2.13. Assume that there exist M,N,M0,N0, p0, p0
∈ R

+ \ {0}, n1 ∈ Nn0 and four
nonnegative sequences {r1n}n∈Nn0

, {r2n}n∈Nn0
, {t1n}n∈Nn0

, and {t2n}n∈Nn0
satisfying (2.1), (2.2) with

i = 1, (2.24), and (2.86)–(2.90). Then,

(a) for each L ∈ (N,M) ∩ (p0(M0/p
0
+ N0), p

0
(N0/p0 + M0)), there exist θL ∈

(0, 1) and TL ≥ max{τ1, τ2} + n1 + |α| such that for any (x0, y0) = ({x0
n}n∈Zα

,
{y0

n}n∈Zα
) ∈ A(N,M,N0,M0), the Mann iterative sequence with errors {(xμ, yμ)}μ∈N0

=
{({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by Schemes (2.26) and (2.67) converges to a
bounded positive solution (x, y) ∈ A(N,M,N0,M0) of System (1.14) and has the error
estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
,

{δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M,N0,M0) are arbitrary sequences with (2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M,N0,M0).

Theorem 2.14. Assume that there exist constantsM,N, p, p ∈ R
+ \ {0}, p1, p1

∈ R
+, n1 ∈ Nn0 and

four nonnegative sequences {r1n}n∈Nn0
, {r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1), (2.2),
(2.24), (2.84),

N <
(

1 − p
1
− p1

)
M, p

1
+ p1 < 1, −p

1
≤ p1n ≤ p1, ∀n ≥ n1, (2.91)

max
{
N +Mp1,N

(
p − 1

)}
< min

{
M
(

1 − p
1

)
,M

(
p − 1

)}
. (2.92)



Abstract and Applied Analysis 41

Then,

(a) for each L ∈ (N +Mp1,M(1 − p
1
)) ∩ (N(p − 1),M(p − 1)), there exist θL ∈ (0, 1) and

TL ≥ max{τ1, τ2}+n1+ |α| such that for any (x0, y0) = ({x0
n}n∈Zα

, {y0
n}n∈Zα

) ∈ A(N,M),
the Mann iterative sequence with errors {(xμ, yμ)}μ∈N0

= {({xμ
n}n∈Zα

, {yμ
n}n∈Zα

)}μ∈N0

generated by Schemes (2.41) and (2.54) converges to a bounded positive solution (x, y) ∈
A(N,M) of System (1.14) and has the error estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂

[0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M) are arbitrary
sequences with (2.8) and (2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M).

Theorem 2.15. Assume that there exist constantsM,N,M0,N0, p0, p0
, p1, p1

∈ R
+\{0}, n1 ∈ Nn0

and four nonnegative sequences {r1n}n∈Nn0
,{r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1),
(2.2) with i = 1, (2.24), (2.86)–(2.88), (2.91), and

max

{
N +Mp1, p0

(
M0

p
0

+N0

)}
< min

{
M
(

1 − p
1

)
, p

0

(
N0

p0
+M0

)}
. (2.93)

Then,

(a) for each L ∈ (N +Mp1,M(1 − p
1
)) ∩ (p0(M0/p

0
+N0), p

0
(N0/p0 +M0)), there exist

θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α| such that for any (x0, y0) = ({x0
n}n∈Zα

,
{y0

n}n∈Zα
) ∈ A(N,M,N0,M0), the Mann iterative sequence with errors {(xμ, yμ)}μ∈N0

=
{({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by Schemes (2.41) and (2.67) converges to a
bounded positive solution (x, y) ∈ A(N,M,N0,M0) of System (1.14) and has the error
estimate (2.7), where {βμ}μ∈N0

, {γμ}μ∈N0
⊂ [0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
= {({δμ

1n}n∈Zα
,

{δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M,N0,M0) are arbitrary sequences with (2.8) and (2.9)

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M,N0,M0).

Theorem 2.16. Assume that there exist constantsM,N,M0,N0, p0, p0
, p1, p1

∈ R
+\{0}, n1 ∈ Nn0

and four nonnegative sequences {r1n}n∈Nn0
,{r2n}n∈Nn0

, {t1n}n∈Nn0
, and {t2n}n∈Nn0

satisfying (2.1),
(2.2) with i = 1, (2.24), (2.86)–(2.88),

0 < N
(
p

1
− 1

)
< M

(
p1 − 1

)
, −p

1
≤ p1n ≤ −p1, ∀n ≥ n1, (2.94)

max

{
N
(
p

1
− 1

)
, p0

(
M0

p
0

+N0

)}
< min

{
M
(
p1 − 1

)
, p

0

(
N0

p0
+M0

)}
. (2.95)

Then,

(a) for each L ∈ (N(p
1
− 1),M(p1 − 1)) ∩ (p0(M0/p

0
+N0), p

0
(N0/p0 +M0)), there exist

θL ∈ (0, 1) and TL ≥ max{τ1, τ2} + n1 + |α| such that for any (x0, y0) = ({x0
n}n∈Zα

,
{y0

n}n∈Zα
) ∈ A(N,M,N0,M0), the Mann iterative sequence with errors {(xμ, yμ)}μ∈N0

=
{({xμ

n}n∈Zα
, {yμ

n}n∈Zα
)}μ∈N0

generated by Schemes (2.54) and (2.67) converges to a
bounded positive solution (x, y) ∈ A(N,M,N0,M0) of System (1.14) and has
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the error estimate (2.7), where {βμ}μ∈N0
, {γμ}μ∈N0

⊂ [0, 1], and {(δμ

1 , δ
μ

2 )}μ∈N0
=

{({δμ

1n}n∈Zα
, {δμ

2n}n∈Zα
)}μ∈N0

⊂ A(N,M,N0,M0) are arbitrary sequences with (2.8) and
(2.9),

(b) System (1.14) has uncountably many bounded positive solutions in A(N,M,N0,M0).

Remark 2.17. Theorems 2.1–2.5 extend and improve [14, Theorem 1] and [27, Theorems 2.1–
2.7].

3. Examples

In this section we construct fifteen examples to explain the results presented in Section 2.

Example 3.1. Consider the nonlinear difference system with multiple delays:

Δ(xn − xn−τ1) +
x3
n−3yn−6 −

√
nxn−4y

2
n−5

n3 + nx2
n−3 + (n2 + 1)x4

n−4y
2
n−6

=
(−1)n−1

n4 +
√
n + 1

,

Δ
(
yn − yn−τ2

)
+
(n + 1)x2

n−2yn−5 + (−1)nyn−2

n4 + (n + 2)x2
n−1

=

√
n + 1

n3 + (n + 2) lnn
, n ≥ 1,

(3.1)

where τ1, τ2 ∈ N are fixed. Let

n0 = n1 = 1, h = k = 2, M > N > 0, α = min{1 − τ1, 1 − τ2,−5}, a1n = n − 3,

a2n = n − 4, b1n = n − 6, b2n = n − 5, c1n = n − 2, c2n = n − 1, d1n = n − 5,

d2n = n − 2, p1n = p2n = −1, q1n =
(−1)n−1

n4 +
√
n + 1

, q2n =

√
n + 1

n3 + (n + 2) lnn
,

f1(n, u1, u2, v1, v2) =
u3

1v1 −
√
nu2v

2
2

n3 + nu2
1 + (n2 + 1)u4

2v
2
1

, f2(n, u1, u2, v1, v2) =
(n + 1)u2

1v2 + (−1)nv1

n4 + (n + 2)u2
2

,

r1n =
M3(M +

√
n
)

n3 + nN2 + (n2 + 1)N6
, r2n =

M
(
1 + (n + 1)M2)

n4 + (n + 2)N2
,

t1n =
nM2(4n2M + 3n5/2 + 2M3 + 5

√
nM2 + 16nM7 + 14

√
nM6)

(n3 + nN2 + (n2 + 1)N6)2
,

t2n =
1
n7

(
6n4M2 + n3 + 30nM4 + 9M2

)
, ∀(n, u1, u2, v1, v2) ∈ Nn0 × R

4.

(3.2)

It is easy to see that (2.1)–(2.4) are satisfied. Thus Theorem 2.1 implies that System (3.1)
possesses uncountably many bounded positive solutions in A(N,M). But [14, Theorem 1]
and [27, Theorem 2.1] are not valid for System (3.1).
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Example 3.2. Consider the nonlinear difference system with multiple delays:

Δ(xn + xn−τ1) +
nx3

n−1 − (n − 1)yn−4

n3 + x2
n−1y

2
n−4

=
n2 − 1

n4 + 2n + 1
,

Δ
(
yn + yn−τ2

)
+

n9xn−3y
2
n−2

n12 + (n6 − 1)x2
n−3

=
(−1)nn2ln3n

(n2 + 1)2
, n ≥ 1,

(3.3)

where τ1, τ2 ∈ N are fixed. Let

n0 = n1 = 1, h = k = 1, M > N > 0, α = min{1 − τ1, 1 − τ2,−3}, a1n = n − 1,

b1n = n − 4, c1n = n − 3, d1n = n − 2, p1n = p2n = 1, q1n =
n2 − 1

n4 + 2n + 1
,

q2n =
(−1)nn2ln3n

(n2 + 1)2
, f1(n, u, v) =

nu3 − (n − 1)v
n3 + u2v2

, f2(n, u, v) =
n9uv2

n12 + (n6 − 1)u2
,

r1n =
nM(M + 1)
n3 +N4

, r2n =
n9M3

n12 + (n6 − 1)N2
, t1n =

n
(
n3(2M + 1) + 3M4 + 2M5)

(
n3 +N4

)2
,

t2n =
3n15(n6 + 1

)
M2

(
n12 + (n6 − 1)N2

)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.4)

It is easy to verify that (2.1), (2.2), (2.24), and (2.25) are fulfilled. Thus Theorem 2.2 implies
that System (3.3) possesses uncountably many bounded positive solutions in A(N,M). But
in [14, Theorem 1] and [27, Theorem 2.2] are unapplicable for System (3.3).

Example 3.3. Consider the nonlinear difference system with multiple delays:

Δ

(
xn +

n2

2n2 + 3
xn−τ1

)
+

xn−2 − 2yn−6

n2 + sin
(
xn−1yn−6

) =

√
n − 2 cos

(
n3 − 3n2 + 6

)

n3 + 3n + 1
,

Δ
(
yn +

(−1)n

3n + 1
yn−τ2

)
+
nxn−1 + (2n − 1)y2

n−3

n3 + x2
n−1

=

(
n2 − 3

)
sin

(
n5 − 2n + 1

)

n4 + ln3n
, n ≥ 2,

(3.5)
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where τ1, τ2 ∈ N are fixed. Let

n0 = n1 = 2, h = k = 1, M > 6N > 0,

α = min{2 − τ1, 2 − τ2,−4}, a1n = n − 2,

b1n = n − 6, c1n = n − 1, d1n = n − 3, p1n =
n2

2n2 + 3
,

p2n =
(−1)n

3n + 1
, p =

1
2
, p =

1
3
,

q1n =

√
n − 2 cos

(
n3 − 3n2 + 6

)

n3 + 3n + 1
, q2n =

(
n2 − 3

)
sin

(
n5 − 2n + 1

)

n4 + ln3n
,

f1(n, u, v) =
u − 2v

n2 + sin(uv)
,

f2(n, u, v) =
nu + (2n − 1)v2

n3 + u2
, r1n =

3M
n2 − 1

, r2n =
nM(1 + 2M)

n3 +N2
,

t1n =
6
(
n2 +M2)

(n2 − 1)2
, t2n =

n
(
(1 + 4M)n3 +M2 + 8M3)

(n3 +N2)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.6)

It is easy to see that (2.1), (2.2), (2.24), and (2.39) hold. Thus, Theorem 2.3 ensures that System
(3.5) possesses uncountably many bounded positive solutions in A(N,M). But [14, Theorem
1] and [27, Theorems 2.3, 2.5, and 2.6] are not valid for System (3.5).

Example 3.4. Consider the nonlinear difference system with multiple delays:

Δ
(
xn +

(
−4 + sin

(
2n2

))
xn−τ1

)
+

n5x2
n−1y

5
n−2

n10 + 5n8 + 1
=

(−1)nn3 ln(1 + n)
n9 + n5 + 1

,

Δ
(
yn +

(
−4 + cos

(
5n3

))
yn−τ2

)
+

n2xn−2 − (n + 2)y2
n−3

n8 + 1 + nx2
n−2 + y2

n−3

=
n5 − 6

(n + 1)7
, n ≥ 1,

(3.7)
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where τ1, τ2 ∈ N are fixed. Let

n0 = n1 = h = k = 1, M > 2N > 0, α = min{1 − τ1, 1 − τ2,−2},
a1n = n − 1, b1n = n − 2,

c1n = n − 2, d1n = n − 3, p1n = −4 + sin
(

2n2
)
,

p2n = −4 + cos
(

5n3
)
, p = 3, p = 5,

q1n =
(−1)nn3 ln(1 + n)

n9 + n5 + 1
, q2n =

n5 − 6

(n + 1)7
, f1(n, u, v) =

n5u2v5

n10 + 5n8 + 1
,

f2(n, u, v) =
n2u − (n + 2)v2

n8 + 1 + nu2 + v2
, r1n =

M7

n5
,

r2n =
n2M + (n + 2)M2

n8 + 1 + nN2 +N2
, t1n =

7M6

n5
,

t2n =
n2(2n8 + 8n7M + nM2 + 8M3 + 3M2)

(n8 + 1 + nN2 +N2)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.8)

Clearly (2.1), (2.2), (2.24), and (2.52) hold. Thus, Theorem 2.4 means that System (3.7)
possesses uncountably many bounded positive solutions in A(N,M). But [14, Theorem 1]
and [27, Theorem 2.4] are inapplicable for System (3.7).

Example 3.5. Consider the nonlinear difference system with multiple delays:

Δ

(
xn +

8n2 + 1
n2 + 1

xn−τ1

)
+
n − (n − 1)y3

b1n

n3 + x2
a1n

=
√
n − (−1)n(n+1)/2√3n − 2

n2 +
√

2n + 1
,

Δ

(
yn +

1 + 24 ln3n

2 + 3 ln3n
yn−τ2

)
+

2nxc1n − 3
√
n + 1y3

d1n

n4 + x2
c1ny

2
d1n

=
1 + n ln

(
1 + n2)

n3ln3(1 + n2)
, n ≥ 1,

(3.9)

where τ1, τ2 ∈ N are fixed and

a1n =

⎧
⎨
⎩

n

2
if n is even,

n − 2 if n is odd,
b1n =

⎧
⎨
⎩
n − 1 if n is even,
n − 1

2
if n is odd,

c1n =

{
n − 2 if n is even,
n − 1 if n is odd,

d1n =

⎧⎪⎪⎨
⎪⎪⎩

n

2
− 1 if n is even,

n + 1
2

if n is odd.

(3.10)
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Let

n0 = 1, n1 = 10, h = k = 1, M >
399
328

N > 0,

α = min{1 − τ1, 1 − τ2,−1}, p1n =
8n2 + 1
n2 + 1

,

p2n =
1 + 24 ln3n

2 + 3 ln3n
, p = 8, p = 7,

q1n =
√
n − (−1)n(n+1)/2√3n − 2

n2 +
√

2n + 1
, q2n =

1 + n ln
(
1 + n2)

n3ln3(1 + n2)
,

f1(n, u, v) =
n − (n − 1)v3

n3 + u2
, f2(n, u, v) =

2nu − 3
√
n + 1v3

n4 + u2v2
,

r1n =
n
(
1 +M3)

n3 +N2
,

r2n =
nM

(
2 + 3M2)

n4 +N4
, t1n =

nM
(
2 + 3n3M + 5M3)

(n3 +N2)2
,

t2n =
n
(
2n4 + 6M2 + 9n4M2 + 9M6)

(
n4 +N4

)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.11)

Obviously (2.1), (2.2), (2.24), and (2.65) hold. Thus, Theorem 2.5 implies that System (3.9)
possesses uncountably many bounded positive solutions in A(N,M). But [14, Theorem 1]
and [27, Theorem 2.7] are useless for System (3.9).

Example 3.6. Consider the nonlinear difference system with multiple delays:

Δ(xn − xn−τ1) +
2n2x3

a1n
+ n − 1

n5 + n
(
nxa1n − (3n + 2)yb1n

)2
=

(−1)(n−1)n(n+1)/3√2n3 + 4

n4 + sin2(2n4 + 1
) ,

Δ
(
yn + yn−τ2

)
+
(−1)nx2

c1n
− ny3

d1n

(n + 1)2(√n + 1
) =

(−1)n−1 ln
(
n3 + 2n + 1

)

n3/2 + ln3(1 + n2)
, n ≥ 1,

(3.12)

where τ1, τ2 ∈ N are fixed and

a1n =

{
n − 1 if n ≥ 100,
n − 2 if 1 ≤ n < 100,

b1n =

⎧⎪⎨
⎪⎩

n

2
if n is even,

n − 1
2

if n is odd,

c1n =

⎧
⎪⎨
⎪⎩

n

2
− 2 if n is even,

n − 1
2

if n is odd,
d1n =

{
n − 3 if n ≥ 100,
n if 1 ≤ n < 100.

(3.13)
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Let

n0 = n1 = h = k = 1, M > N > 0, α = min{1 − τ1, 1 − τ2,−1}, p1n = −1,

p2n = 1, q1n =
(−1)(n−1)n(n+1)/3√2n3 + 4

n4 + sin2(2n4 + 1
) , q2n =

(−1)n−1 ln
(
n3 + 2n + 1

)

n3/2 + ln3(1 + n2)
,

f1(n, u, v) =
2n2u3 + n − 1

n5 + n(nu − (3n + 2)v)2
, f2(n, u, v) =

(−1)nu2 − nv3

(n + 1)2(√n + 1
) ,

r1n =
1 + 2nM3

n4
, r2n =

M2 + nM3

n5/2
,

t1n =
6M

(
16 + n3M + 8(2n +M)M2 + 3nM3)

n6
,

t2n =
2M + 3nM2

n5/2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.14)

It is easy to see that (2.1), (2.2), and (2.79)–(2.82) are satisfied. Thus, Theorem 2.7 implies that
System (3.12) possesses uncountably many bounded positive solutions in A(N,M).

Example 3.7. Consider the nonlinear difference system with multiple delays:

Δ(xn − xn−τ1) +
nx3

a1n
− yb1n

(n + 1)4 +
(√

n + 1
)
y2
b1n

=
(−1)n(n+1)/2

(
1 − √

3n + 1
)

n3 +
√

3n + 2
,

Δ

(
yn +

n2 − 1
3n2 + 2

yn−τ2

)
+

√
n(n + 1)y4

d1n

(n + 2)3 + nx2
c1n

=

√
2n + 1(n + 3)2 ln

(
1 + n4)

(n + 1)4
, n ≥ 1,

(3.15)

where τ1, τ2 ∈ N are fixed and

a1n =

{
n − 4 if n is even,
n − 1 if n is odd,

b1n =

⎧
⎨
⎩
n − 2 if n is even,
n − 1

2
if n is odd,

c1n =

⎧
⎨
⎩
n − 1 if n is even,
n + 1

2
if n is odd,

d1n =

⎧
⎨
⎩

n

2
if n is even,

n − 2 if n is odd.

(3.16)
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Let

n0 = n1 = h = k = 1, M > 6N > 0, α = min{1 − τ1, 1 − τ2,−2},

p1n = −1, p2n =
n2 − 1
3n2 + 2

,

p =
1
3
, p =

1
2
, q1n =

(−1)n(n+1)/2
(

1 − √
3n + 1

)

n3 +
√

3n + 2
,

q2n =

√
2n + 1(n + 3)2 ln

(
1 + n4)

(n + 1)4
,

f1(n, u, v) =
nu3 − v

(n + 1)4 +
(√

n + 1
)
v2

, f2(n, u, v) =
√
n(n + 1)v4

(n + 2)3 + nu2
,

r1n =

(
nM2 + 1

)
M

(n + 1)4
,

r2n =
√
n(n + 1)M4

(n + 2)3 + nN2
, t1n =

(n + 1)4(3nM2 + 1
)
+
(
5nM2 + 1

)(√
n + 1

)
M2

(
(n + 1)4 +

(√
n + 1

)
N2

)2
,

t2n =
2
√
n(n + 1)M3

(
2(n + 2)3 + 3nM2

)

(
(n + 2)3 + nN2

)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.17)

Clearly (2.1), (2.2), (2.79)–(2.81), and (2.83) are satisfied. Thus, Theorem 2.8 guarantees that
System (3.15) possesses uncountably many bounded positive solutions in A(N,M).

Example 3.8. Consider the nonlinear difference system with multiple delays:

Δ(xn − xn−τ1) +
n7 − x2

a1n

n10 + 2y2
b1n

=
n20 − (−1)(n+1)(n+2)/2(3n5 + 1

)2

n23 + (n + 5)5ln8(n2 + 1)
,

Δ

(
yn − 6n5

2n5 + 1
yn−τ2

)
+

n3xc1ny
2
d1n

n6 + (n + 1)x4
c1n

=
n8 − (−1)n−1(n3 + 1

)2

(n + 1)11
, n ≥ 2,

(3.18)

where τ1, τ2 ∈ N are fixed and

a1n =

⎧⎪⎨
⎪⎩

n

2
− 1 if n is even,

n − 3
2

if n is odd,
b1n =

{
n − 1 if n is even,
n − 2 if n is odd,

c1n =

⎧
⎪⎨
⎪⎩

n

2
+ 1 if n is even,

n + 1
2

if n is odd,
d1n =

{
n − 5 if n is even,
n − 3 if n is odd.

(3.19)



Abstract and Applied Analysis 49

Let

n0 = n1 = 2, h = k = 1, M > 6N > 0, α = min{2 − τ1, 2 − τ2,−3}, p1n = −1,

p2n = − 6n5

2n5 + 1
, p = 2, p = 3, q1n =

n20 − (−1)(n+1)(n+2)/2(3n5 + 1
)2

n23 + (n + 5)5ln8(n2 + 1)
,

q2n =
n8 − (−1)n−1(n3 + 1

)2

(n + 1)11
, f1(n, u, v) =

n7 − u2

n10 + 2v2
, f2(n, u, v) =

n3uv2

n6 + (n + 1)u4
,

r1n =
n7 +M2

n10 + 2N2
, r2n =

n3M3

n6 + (n + 1)N4
, t1n =

2M
(
2n7 + n10 + 4M2)
(
n10 + 2N2

)2
,

t2n =
3n3M2(n6 + (n + 1)M4)

(
n6 + (n + 1)N4

)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.20)

Obviously (2.1), (2.2), (2.79)–(2.81), (2.84), and (2.85) hold. Thus, Theorem 2.9 implies that
System (3.18) possesses uncountably many bounded positive solutions in A(N,M).

Example 3.9. Consider the nonlinear difference system with multiple delays:

Δ(xn − xn−τ1) +
nx2

a1n
− y3

b1n

n3ln2n + 1
=

n2 − (−1)n−1(3n + 1)

n5 + 8(n + 1)4 + 1
,

Δ

(
yn +

8n2

2n2 + 3
yn−τ2

)
+

n2

n4 +
∣∣xc1nyd1n

∣∣ =
(−1)n−1 sin

(
n5 + 1

)

n2 + 1
, n ≥ 1,

(3.21)

where τ1, τ2 ∈ N are fixed and

a1n =

⎧
⎨
⎩
n − 2 if n is even,
n − 3

2
if n is odd,

b1n =

⎧
⎪⎨
⎪⎩

n

2
if n is even,

n + 1
2

if n is odd,

c1n =

⎧
⎨
⎩
n − 1 if n is even,
n − 1

2
if n is odd,

d1n =

{
n − 4 if n is even,
n − 2 if n is odd.

(3.22)
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Let

n0 = 1, n1 = 3, h = k = 1, M = 3000,

N = 2000, M0 = 1200, N0 = 40,

α = min{1 − τ1, 1 − τ2,−2}, p1n = −1, p2n =
8n2

2n2 + 3
, p0 = 4, p

0
= 3,

q1n =
n2 − (−1)n−1(3n + 1)

n5 + 8(n + 1)4 + 1
, q2n =

(−1)n−1 sin
(
n5 + 1

)

n2 + 1
, f1(n, u, v) =

nu2 − v3

n3ln2n + 1
,

f2(n, u, v) =
n2

n4 + |uv| , r1n =
M2(n +M)

n3ln2n + 1
, r2n =

n2

n4 +N2
0

,

t1n =
M(2n + 3M)

n3ln2n + 1
, t2n =

2n2M0(
n4 +N2

0

)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.23)

It is easy to verify that (2.1), (2.2) with i = 1, (2.79)–(2.81), and (2.86)–(2.89) are satisfied.
Thus, Theorem 2.10 reveals that System (3.21) possesses uncountably many bounded positive
solutions in A(N,M,N0,M0).

Example 3.10. Consider the nonlinear difference system with multiple delays:

Δ(xn + xn−τ1) +
1 − n5x2

a1n

n7 + (n + 3) ln
(

1 + y2
b1n

) =
n4 − 4n3 + n − 1

n6 + (n − 1)4
,

Δ

(
yn − 2n2

5n2 + 6
yn−τ2

)
+

n2yd1n

n4 + sin2
(
x2
c1n + ny2

d1n

) =
(−1)n

√
n − 1

n3 + 2n2 + 1
, n ≥ 2,

(3.24)

where τ1, τ2 ∈ N are fixed and

a1n =

⎧
⎨
⎩
n − 3 if n is even,
n − 1

2
if n is odd,

b1n =

⎧
⎪⎨
⎪⎩

n

2
+ 1 if n is even,

n − 1
2

if n is odd,

c1n =

⎧
⎨
⎩
n − 1 if n is even,
n + 1

2
if n is odd,

d1n =

⎧
⎨
⎩
n − 2 if n is even,
n + 1

2
if n is odd.

(3.25)
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Let

n0 = n1 = 2, h = k = 1, M >
5N
3

> 0, α = min{1 − τ1, 1 − τ2,−1}, p1n = 1,

p2n = − 2n2

5n2 + 6
, p = 0, p =

2
5
, q1n =

n4 − 4n3 + n − 1

n6 + (n − 1)4
, q2n =

(−1)n
√
n − 1

n3 + 2n2 + 1
,

f1(n, u, v) =
1 − n5u2

n7 + (n + 3) ln(1 + v2)
, f2(n, u, v) =

n2v

n4 + sin2(u2 + nv2)
,

r1n =
1 + n5M2

n7 + (n + 3) ln(1 +N2)
, r2n =

M

n2
,

t1n =
1

(n7 + (n + 3) ln(1 +N2))2

[
2M(n + 3)

1 +N2
+ n12 + n5(n + 3)

(
2M2

1 +N2
+ ln

(
1 +M2

))]
,

t2n =
n4 + 4nM2 + 4M2 + 1

n6
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.26)

Obviously (2.1), (2.2), (2.24), (2.83), and (2.90) hold. Thus, Theorem 2.11 gives that System
(3.24) possesses uncountably many bounded positive solutions in A(N,M).

Example 3.11. Consider the nonlinear difference system with multiple delays:

Δ(xn + xn−τ1) +
n2 − x2

a1n
yb1n

n4 + (n + 1)y4
b1n

=
n6 − 9n5 + (−1)nn4 − n3 + n − 1
n8 + 3n7 + n5 + 4n4 + n2 + 1

,

Δ

(
yn − 3n3

n3 + 1
yn−τ2

)
+

ny2
d1n

n3 + x2
c1n

=
(−1)n(n+1)/2(2n − 5)ln2(1 + n2)

n3 + 3n2 + 5n + 1
, n ≥ 1,

(3.27)

where τ1, τ2 ∈ N are fixed and

a1n =

⎧
⎨
⎩
n − 2 if n is even,
n + 1

2
if n is odd,

b1n =

⎧
⎪⎨
⎪⎩

n

2
− 1 if n is even,

n + 1
2

if n is odd,

c1n =

⎧
⎨
⎩
n − 3 if n is even,
n − 3

2
if n is odd,

d1n =

⎧
⎨
⎩
n − 4 if n is even,
n − 1

2
if n is odd.

(3.28)
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Let

n0 = n1 = h = k = 1, M > 4N > 0, α = min{1 − τ1, 1 − τ2,−2}, p1n = 1,

p2n = − 3n3

n3 + 1
, p =

3
2
, p = 3, q1n =

n6 − 9n5 + (−1)nn4 − n3 + n − 1
n8 + 3n7 + n5 + 4n4 + n2 + 1

,

q2n =
(−1)n(n+1)/2(2n − 5)ln2(1 + n2)

n3 + 3n2 + 5n + 1
, f1(n, u, v) =

n2 − u2v

n4 + (n + 1)v4
,

f2(n, u, v) =
nv2

n3 + u2
, r1n =

n2 +M3

n4 + (n + 1)N4
, r2n =

nM2

n3 +N2
,

t1n =
nM2(8n2M + 3n3 + 10M4)

(
n4 + (n + 1)N4

)2
, t2n =

2M
(
n3 + 2M2)

(n3 +N2)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.29)

Clearly (2.1), (2.2), (2.24), (2.84), (2.85), and (2.90) hold. Thus, Theorem 2.12 ensures that
System (3.27) possesses uncountably many bounded positive solutions in A(N,M).

Example 3.12. Consider the nonlinear difference system with multiple delays:

Δ(xn + xn−τ1) +
n25 − (n15 + 1

)
y2
n−1

n30 +
(
n18 + 1

)
x2
n−2

=
n38 − 19n25 + 30n18 − 3n9 + 2n − 1

n40 + 8n30 + n15 + 6n2 + 1
,

Δ

(
yn +

16n3 + 1
4n3 + 131

yn−τ2

)
+

x3
n−4y

2
n−3

n ln10n + 1
=

n34 − 6n32 − 7n15 + (−1)nn7 − 1
n36 + 6n30 + 5n12 + 6n6 + n3 + 1

, n ≥ 2,

(3.30)

where τ1, τ2 ∈ N are fixed. Let

n0 = 2, n1 = 4, h = k = 1, M = 800N0,

N = 500N0, M0 = 300N0 > 0,

α = min{2 − τ1, 2 − τ2,−2}, a1n = n − 2, b1n = n − 1,

c1n = n − 4, d1n = n − 3,
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p1n = 1, p2n =
16n3 + 1
4n3 + 131

, p0 = 4, p
0
= 3,

q1n =
n38 − 19n25 + 30n18 − 3n9 + 2n − 1

n40 + 8n30 + n15 + 6n2 + 1
,

q2n =
n34 − 6n32 − 7n15 + (−1)nn7 − 1
n36 + 6n30 + 5n12 + 6n6 + n3 + 1

, f1(n, u, v) =
n25 − (n15 + 1

)
v2

n30 +
(
n18 + 1

)
u2

,

f2(n, u, v) =
u3v2

n ln10n + 1
, r1n =

n25 +
(
n15 + 1

)
M2

n30 +
(
n18 + 1

)
N2

, r2n =
M5

0

n ln10n + 1
,

t1n =
4n33M

(
n10 + n12 + 4M2)

(
n30 +

(
n18 + 1

)
N2

)2
, t2n =

5M4
0(

n ln10n + 1
)2

, ∀(n, u, v) ∈ Nn0 × R
2.

(3.31)

It is easy to verify that (2.1), (2.2) with i = 1, (2.24), and (2.86)–(2.90) hold. Thus, Theorem 2.13
guarantees that System (3.30) possesses uncountably many bounded positive solutions in
A(N,M,N0,M0).

Example 3.13. Consider the nonlinear difference system with multiple delays:

Δ

(
xn +

3(−1)nn10 + 2n + 1
9n10 + 4n8 + 1

xn−τ1

)
+
xn−3 − nyn−1

n4 + x2
n−3

=
n4 − √

2n + 5 ln5n

n6 + 6n2 + 1
,

Δ

(
yn −

(
4 + (−1)n

)
n4 + 5

n4 + 1
yn−τ2

)
+

n3xn−2yn−4

n5 + (n + 1)y2
n−4

=
n7 − (−1)nn4 − 1
n9 + 3n6 + 5

, n ≥ 2,

(3.32)

where τ1, τ2 ∈ N are fixed. Let

n0 = 2, n1 = 4, h = k = 1, M > 10N > 0, α = min{2 − τ1, 2 − τ2,−2},

a1n = n − 3, b1n = n − 1, c1n = n − 2, d1n = n − 4, p1n =
3(−1)nn10 + 2n + 1

9n10 + 4n8 + 1
,

p2n = −
(
4 + (−1)n

)
n4 + 5

n4 + 1
, p1 = p

1
=

1
3
, p = 3, p = 5, q1n =

n4 − √
2n + 5 ln5n

n6 + 6n2 + 1
,

q2n =
n7 − (−1)nn4 − 1
n9 + 3n6 + 5

, f1(n, u, v) =
u − nv

n4 + u2
, f2(n, u, v) =

n3uv

n5 + (n + 1)v2
,

r1n =
M(n + 1)
n4 +N2

, r2n =
n3M2

n5 + (n + 1)N2
, t1n =

n4 +M2 + n5 + 3nM2

(
n4 +N2

)2
,

t2n =
2n3M

(
n5 + (n + 1)M2)

(n5 + (n + 1)N2)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.33)
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Obviously (2.1), (2.2), (2.24), (2.84), (2.91), and (2.92) hold. Thus, Theorem 2.14 means that
System (3.32) possesses uncountably many bounded positive solutions in A(N,M).

Example 3.14. Consider the nonlinear difference system with multiple delays:

Δ
(
xn +

(−1)nn + 1
4n + 100

xn−τ1

)
+

xn−2 − nyn−1

n3 + x2
n−2y

2
n−1

=
n5ln9n − (−1)n

n8 + 5n7 + 1
,

Δ

(
yn +

64n8 + 1
8n8 + 3n4 + 7

yn−τ2

)
+
nx2

n−5 − yn−3 sinn

n2ln2n + 1
=

n6 − (−1)nn2 + 1
n8 + 7n7 + 2

, n ≥ 2,

(3.34)

where τ1, τ2 ∈ N are fixed. Let

n0 = n1 = 2, h = k = 1, M = 40000, N = 5000, M0 = 4480, N0 = 80,

α = min{2 − τ1, 2 − τ2,−3}, a1n = n − 2, b1n = n − 1, c1n = n − 5, d1n = n − 3,

p1n =
(−1)nn + 1
4n + 100

, p2n =
64n8 + 1

8n8 + 3n4 + 7
, p1 = p

1
=

1
4
, p0 = 8, p

0
= 7,

q1n =
n5ln9n − (−1)n

n8 + 5n7 + 1
, q2n =

n6 − (−1)nn2 + 1
n8 + 7n7 + 2

, f1(n, u, v) =
u − nv

n3 + u2v2
,

f2(n, u, v) =
nu2 − v sinn

n2ln2n + 1
, r1n =

M(n + 1)
n3 +N4

, r2n =
M0(M0 + 1)

n2ln2n + 1
,

t1n =
n3 + 3M4 + n4 + 3nM2

(
n3 +N4

)2
, t2n =

2M0 + 1
(
n2ln2n + 1

)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.35)

It is easy to see that (2.1), (2.2) with i = 1, (2.24), (2.86)–(2.88), (2.91), and (2.93) hold. Thus,
Theorem 2.15 implies that System (3.34) possesses uncountably many bounded positive
solutions in A(N,M,N0,M0).

Example 3.15. Consider the nonlinear difference system with multiple delays:

Δ
(
xn +

−20n + 1
4n + 9

xn−τ1

)
+

nx3
n−1

n3 + y2
n−2

=

√
n3 + 3n2

√
n − 1 + 1

n5 + 3n4 + 1
,

Δ

(
yn +

6n2 + 1
2n2 + 5n + 3

yn−τ2

)
+

xn−2yn−4

n2 + cos(n2 + 1)
=

n4 + 5n2 − 7
n6 + 4n3 + 1

, n ≥ 2,

(3.36)
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where τ1, τ2 ∈ N are fixed. Let

n0 = 2, n1 = 10, h = k = 1, M = 2N0, N = N0 > 0, M0 = 30N0,

α = min{2 − τ1, 2 − τ2,−2}, a1n = n − 1, b1n = n − 2, c1n = n − 2, d1n = n − 4,

p1n =
−20n + 1

4n + 9
, p2n =

6n2 + 1
2n2 + 5n + 3

, p1 = 4, p
1
= 5, p0 = 3, p

0
= 2,

q1n =

√
n3 + 3n2

√
n − 1 + 1

n5 + 3n4 + 1
, q2n =

n4 + 5n2 − 7
n6 + 4n3 + 1

, f1(n, u, v) =
nu3

n3 + v2
,

f2(n, u, v) =
uv

n2 + cos(n2 + 1)
, r1n =

nM3

n3 +N2
, r2n =

M2
0

n2 − 1
,

t1n =
nM2(3n3 + 5M2)

(n3 +N2)2
, t2n =

2M0

(n2 − 1)2
, ∀(n, u, v) ∈ Nn0 × R

2.

(3.37)

Clearly (2.1), (2.2) with i = 1, (2.24), (2.86)–(2.88), (2.94), and (2.95) hold. Thus, Theorem 2.16
implies that System (3.36) possesses uncountably many bounded positive solutions in
A(N,M,N0,M0).
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The asymptotic behaviour of a real two-dimensional differential system x′(t) = A(t)x(t) +∑m
k=1 Bk(t)x(θk(t))+h(t, x(t), x(θ1(t)), . . . , x(θm(t))) with unbounded nonconstant delays t−θk(t) ≥

0 satisfying limt→∞θk(t) = ∞ is studied under the assumption of instability. Here, A, Bk, and h are
supposed to be matrix functions and a vector function. The conditions for the instable properties
of solutions and the conditions for the existence of bounded solutions are given. The methods are
based on the transformation of the considered real system to one equation with complex-valued
coefficients. Asymptotic properties are studied by means of a Lyapunov-Krasovskii functional and
the suitable Ważewski topological principle. The results generalize some previous ones, where the
asymptotic properties for two-dimensional systems with one constant or nonconstant delay were
studied.

1. Introduction

Consider the real two-dimensional system

x′(t) = A(t)x(t) +
m∑
k=1

Bk(t)x(θk(t)) + h(t, x(t), x(θ1(t)), . . . , x(θm(t))), (1.1)
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where θk(t) are real functions, A(t) = (aij(t)), Bk(t) = (bijk(t))(i, j = 1, 2; k = 1, . . . , m) are
real square matrices, and h(t, x, y) = (h1(t, x, y1, . . . , ym), h2(t, x, y1, . . . , ym)) is a real vector
function, x = (x1, x2), yk = (y1k, y2k). It is supposed that the functions θk, aij are locally
absolutely continuous on [t0,∞), bijk are locally Lebesgue integrable on [t0,∞), and the
function h satisfies Carathéodory conditions on [t0,∞) × R

2(m+1).
There are a lot of papers dealing with the stability and asymptotic behaviour of n-

dimensional real vector equations with delay. Among others we should mention the recent
results [1–13]. Since the plane has special topological properties different from those of n-
dimensional space, where n ≥ 3 or n = 1, it is interesting to study the asymptotic behaviour
of two-dimensional systems by using tools that are typical and effective for two-dimensional
systems. The convenient tool is the combination of the method of complexification and the
method of Lyapunov-Krasovskii functional. For the case of instability, it is useful to add to
this combination the version of Ważewski topological principle formulated by Rybakowski
in the papers [14, 15]. Using these techniques, we obtain new and easy applicable results on
stability, asymptotic stability, instability, or boundedness of solutions of the system (1.1).

The main idea of the investigation, the combination of the method of complexification
and the method of Lyapunov-Krasovskii functional, was introduced for ordinary differential
equations in the paper by Ráb and Kalas [16] in 1990. The principle was transferred to
differential equations with delay by Kalas and Baráková [17] in 2002. The results in the
case of instability were obtained for ODEs by Kalas and Osička [18] in 1994 and for delayed
differential equations by Kalas [19] in 2005.

We extend such type of results to differential equations with a finite number of
nonconstant delays. We introduce the transformation of the considered real system to one
equation with complex-valued coefficients. We present sufficient conditions for the instability
of a solution and for the existence of a bounded solution. The applicability of the results is
demonstrated with several examples.

At the end of this introduction we append a brief overview of notation used in
the paper and the transformation of the real system to one equation with complex-valued
coefficients.

R is the set of all real numbers,

R+ the set of all positive real numbers,

R
0
+ the set of all nonnegative real numbers,

R− the set of all negative real numbers,

R
0
− the set of all nonpositive real numbers,

C the set of all complex numbers,

C the class of all continuous functions [−r, 0] → C,

ACloc(I,M) the class of all locally absolutely continuous functions I → M,

Lloc(I,M) the class of all locally Lebesgue integrable functions I → M,

K(I×Ω,M) the class of all functions I×Ω → M satisfying Carathéodory conditions
on I ×Ω,
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Rez the real part of z,

Imz the imaginary part of z, and

z the complex conjugate of z.

Introducing complex variables z = x1 + ix2, w1 = y11 + iy12,..., wm = ym1 + iym2, we can
rewrite the system (1.1) into an equivalent equation with complex-valued coefficients

z′(t) = a(t)z(t) + b(t)z(t) +
m∑
k=1

[Ak(t)z(θk(t)) + Bk(t)z(θk(t))]

+ g(t, z(t), z(θ1(t)), . . . , z(θm(t))),

(1.2)

where θk ∈ ACloc(J,R) for k = 1, . . . , m, Ak, Bk ∈ Lloc(J,C), a, b ∈ ACloc(J,C), g ∈ K(J ×
C

m+1,C), J = [t0,∞).
The relations between the functions are as follows:

a(t) =
1
2
(a11(t) + a22(t)) +

i

2
(a21(t) − a12(t)),

b(t) =
1
2
(a11(t) − a22(t)) +

i

2
(a21(t) + a12(t)),

Ak(t) =
1
2
(b11k(t) + b22k(t)) +

i

2
(b21k(t) − b12k(t)),

Bk(t) =
1
2
(b11k(t) − b22k(t)) +

i

2
(b21k(t) + b12k(t)),

g(t, z,w1, . . . , wm) = h1

(
t,

1
2
(z + z),

1
2i
(z − z),

1
2
(w1 +w1), . . . ,

1
2i
(wm −wm)

)

+ ih2

(
t,

1
2
(z+z),

1
2i
(z−z), 1

2
(w1+w1),

1
2i
(w1−w1), . . . ,

1
2i
(wm−wm)

)
.

(1.3)

Conversely, putting

a11(t) = Re[a(t) + b(t)], a12(t) = Im[b(t) − a(t)],

a21(t) = Im[a(t) + b(t)], a22(t) = Re[a(t) − b(t)],

b11k(t) = Re[Ak(t) + Bk(t)], b12k(t) = Im[Bk(t) −Ak(t)],

b21k(t) = Im[Ak(t) + Bk(t)], b22k(t) = Re[Ak(t) − Bk(t)],

h1
(
t, x, y1, . . . , ym

)
= Reg

(
t, x1 + ix2, y11 + iy12, . . . , ym1 + iym2

)
,

h2
(
t, x, y1, . . . , ym

)
= Img

(
t, x1 + ix2, y11 + iy12, . . . , ym1 + iym2

)
,

(1.4)

the equation (1.2) can be written in the real form (1.1) as well.
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2. Preliminaries

We consider (1.2) in the case when

lim inf
t→∞

(∣∣∣∣Ima(t)
∣∣∣∣ − |b(t)|

)
> 0 (2.1)

and study the behavior of solutions of (1.2) under this assumption. This situation corresponds
to the case when the equilibrium 0 of the autonomous homogeneous system

x′ = Ax, (2.2)

where A is supposed to be regular constant matrix, is a centre or a focus. See [16] for more
details.

Regarding (2.1) and since the delay functions θk satisfy limt→∞θk(t) = ∞, there are
numbers T1 ≥ t0, T ≥ T1, and μ > 0 such that

∣∣∣∣Ima(t)
∣∣∣∣ > |b(t)| + μ for t ≥ T1, t ≥ θk(t) ≥ T1 for t ≥ T(k = 1, . . . , m). (2.3)

Denote

γ̃(t) = Ima(t) +

√(
Ima(t)

)2

− |b(t)|2sgn
(

Ima(t)
)
, c̃(t) = −ib(t). (2.4)

Notice that the above-defined function γ̃ need not be positive.
Since |γ̃(t)| > |Ima(t)| and |c̃(t)| = |b(t)|, the inequality

∣∣γ̃(t)∣∣ > |c̃(t)| + μ (2.5)

is valid for t ≥ T1. It can be easily verified that γ̃ , c̃ ∈ ACloc([T1,∞),C).
For the rest of this section we will denote

ϑ̃(t) =
Re

(
γ̃(t)γ̃ ′(t) − c̃(t)c̃′(t)

)
− ∣∣γ̃(t)c̃′(t) − γ̃ ′(t)c̃(t)

∣∣

γ̃2(t) − |c̃(t)|2
. (2.6)

The instability and boundedness of solutions are studied subject to suitable subsets of
the following assumptions.

(i) The numbers T1 ≥ t0, T ≥ T1, and μ > 0 are such that (2.3) holds.

(ii) There exist functions κ̃, κ̃k, � : [T,∞) → R such that
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∣∣γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)

∣∣

≤ κ̃(t)
∣∣γ̃(t)z + c̃(t)z

∣∣ +
m∑
k=1

κ̃k(t)
∣∣γ̃(θk(t))wk + c̃(θk(t))wk

∣∣ + �(t)
(2.7)

for t ≥ T , z,wk ∈ C(k = 1, . . . , m), where � is continuous on [T,∞).

(iin) There exist numbers Rn ≥ 0 and functions κ̃n, κ̃nk : [T,∞) → R such that

∣∣ γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)
∣∣

≤ κ̃n(t)
∣∣γ̃(t)z + c̃(t)z

∣∣ +
m∑
k=1

κ̃nk(t)
∣∣γ̃(θk(t))wk + c̃(θk(t))wk

∣∣ (2.8)

for t ≥ τn ≥ T, |z| +∑m
k=1 |wk| > Rn.

(iii) β̃ ∈ ACloc([T,∞),R0
−) is a function satisfying

θ′
k(t)β̃(t) ≤ −λ̃k(t) a.e. on [T,∞), (2.9)

where λ̃k is defined for t ≥ T by

λ̃k(t) = κ̃k(t) + (|Ak(t)| + |Bk(t)|)
∣∣γ̃(t)∣∣ + |c̃(t)|∣∣γ̃(θk(t))

∣∣ − |c̃(θk(t))|
. (2.10)

(iiin) β̃n ∈ ACloc[T,∞),R0
−) is a function satisfying

θ′
k(t)β̃n(t) ≤ −λ̃nk(t) a.e. on [τn,∞), (2.11)

where λ̃nk is defined for t ≥ T by

λ̃nk(t) = κ̃nk(t) + (|Ak(t)| + |Bk(t)|)
∣∣γ̃(t)∣∣ + |c̃(t)|∣∣γ̃(θk(t))

∣∣ − |c̃(θk(t))|
. (2.12)

(ivn) Λ̃n is a real locally Lebesgue integrable function satisfying the inequalities β̃′n(t) ≥
Λ̃n(t)β̃n(t), Θ̃n(t) ≥ Λ̃n(t) for almost all t ∈ [τn,∞), where Θ̃n is defined by

Θ̃n(t) = Rea(t) + ϑ̃(t) − κ̃n(t) +mβ̃n(t). (2.13)

Obviously, if Ak, Bk, κ̃k, and θ′
k

are locally absolutely continuous on [T,∞) and λ̃k(t) ≥
0, θ′

k
(t) > 0, the choice β̃(t) = −maxk=1,...,m[λ̃k(t)(θ′

k
(t))−1] is admissible in (iii). Similarly, if Ak,
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Bk, κ̃nk, and θ′
k are locally absolutely continuous on [T,∞) and λ̃nk(t) ≥ 0, θ′

k(t) > 0, the choice
β̃n(t) = −maxk=1,...,m[λ̃nk(t)(θ′

k(t))
−1] is admissible in (iiin).

Denote

Θ̃(t) = Rea(t) + ϑ̃(t) − κ̃(t). (2.14)

From assumption (i) it follows that

∣∣∣ϑ̃
∣∣∣ ≤

∣∣∣∣Re
(
γ̃ γ̃ ′ − c̃c̃′

)∣∣∣∣ +
∣∣γ̃c′ − γ̃ ′c

∣∣

γ̃2 − |c̃|2
≤

(∣∣γ̃ ′∣∣ + |c̃′|)(∣∣γ̃∣∣ + |c̃|)

γ̃2 − |c̃|2

=

∣∣γ̃ ′∣∣ + |c̃′|∣∣γ̃∣∣ − |c̃| ≤ 1
μ

(∣∣γ̃ ′∣∣ + ∣∣c̃′∣∣);

(2.15)

therefore the function ϑ̃ is locally Lebesgue integrable on [T,∞), assuming that (i) holds true.
If the relations β̃n ∈ ACloc([T,∞),R−), κ̃n ∈ Lloc([T,∞),R), and β̃′n(t)/β̃n(t) ≤ Θ̃n(t) for almost
all t ≥ τn together with conditions (i) and (iin) are fulfilled, then we can choose Λ̃n(t) = Θ̃n(t)
for t ∈ [T,∞) in (ivn).

3. Results

Theorem 3.1. Let assumptions (i), (ii0), (iii0), and (iv0) be fulfilled for some τ0 ≥ T . Suppose there
exist t1 ≥ τ0 and ν ∈ (−∞,∞) such that

inf
t≥t1

[∫ t

t1

Λ̃0(s)ds − ln
(∣∣γ̃(t)∣∣ + |c̃(t)|)

]
≥ ν. (3.1)

If z(t) is any solution of (1.2) satisfying

min
θ(t1)≤s≤t1

|z(s)| > R0, Δ(t1) > R0e
−ν, (3.2)

where

θ(t) = min
k=1,...,m

θk(t),

Δ(t) =
(∣∣γ̃(t)∣∣ − |c̃(t)|)|z(t)| + β̃0(t) max

θ(t)≤s≤t
|z(s)|

m∑
k=1

∫ t

θk(t)

(∣∣γ̃(s)∣∣ + |c̃(s)|)ds,
(3.3)



Abstract and Applied Analysis 7

then

|z(t)| ≥ Δ(t1)∣∣γ̃(t)∣∣ + |c̃(t)| exp

[∫ t

t1

Λ̃0(s)ds

]
(3.4)

for all t ≥ t1, for which z(t) is defined.

In the proof we use the following Lemma.

Lemma 3.2. Let a1, a2, b1, b2 ∈ C, |a2| > |b2|. Then,

Re
a1z + b1z

a2z + b2z
≥

Re
(
a1a2 − b1b2

)
− |a1b2 − a2b1|

|a2|2 − |b2|2
(3.5)

for z ∈ C, z/= 0.

The proof is analogous to that of Lemma 1 in [20, page 101] or to the proof of Lemma
in [16, page 131].

Proof of Theorem 3.1. Let z(t) be any solution of (1.2) satisfying (3.2). Consider the Lyapunov
functional

V (t) = U(t) + β̃0(t)
m∑
k=1

∫ t

θk(t)
U(s)ds, (3.6)

where

U(t) =
∣∣γ̃(t)z(t) + c̃(t)z(t)

∣∣. (3.7)

For brevity we shall denote wk(t) = z(θk(t)) and we shall write the function of variable t
simply without indicating the variable t, for example, γ̃ instead of γ̃(t).

In view of (3.6), we have

V ′ = U′ + β̃′0
m∑
k=1

∫ t

θk(t)
U(s)ds +mβ̃0

∣∣γ̃z + c̃z
∣∣

−
m∑
k=1

θ′
kβ̃0

∣∣γ̃(θk(t))wk + c̃(θk(t))wk

∣∣
(3.8)

for almost all t ≥ t1 for which z(t) is defined and U′(t) exists. Put K = {t ≥ t1 :
z(t) exists, |z(t)| > R0}. Clearly U(t)/= 0 for t ∈ K. The derivative U′(t) exists for almost
all t ∈ K.
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Since z(t) is a solution of (1.2), we obtain

UU′ = Re
[(

γ̃z + c̃z
)(

γ̃ ′z + γ̃z′ + c̃′z + c̃z′
)]

= Re

{(
γ̃z + c̃z

)[
γ̃ ′z + c̃′z + γ̃

(
az + bz +

m∑
k=1

(Akwk + Bkwk) + g

)

+c̃
(
az + bz

)
+

m∑
k=1

(
Akwk + Bkwk + g

)]}

= Re

{(
γ̃z + c̃z

)[
γ̃ ′z + c̃′z +

(
γ̃a + c̃b

)
z +

(
γ̃b + c̃a

)
z

+γ̃

(
m∑
k=1

(Akwk + Bkwk) + g

)
+ c̃

(
m∑
k=1

(
Akwk + Bkwk

)
+ g

)]}

(3.9)

for almost all t ∈ K. Taking into account

(
γ̃a + c̃b

)
c̃ =

(
γ̃b + c̃a

)
γ̃ , (3.10)

we get

UU′ ≥ Re
{(

γ̃z + c̃z
)(

γ̃a + c̃b
)(

z +
c̃

γ̃
z

)}

+ Re

{(
γ̃z + c̃z

)[
γ̃

m∑
k=1

(Akwk + Bkwk) + c̃
m∑
k=1

(
Akwk + Bkwk

)]}

+ Re
{(

γ̃z + c̃z
)(

γ̃g + c̃g
)}

+ Re
{(

γ̃z + c̃z
)(

γ̃ ′z + c̃′z
)}

≥ U2Re
(
a +

c̃

γ̃
b

)
−U

(∣∣γ̃∣∣ + |c̃|)
(

m∑
k=1

|Akwk + Bkwk|
)

−U
∣∣γ̃g + c̃g

∣∣ +U2Re
γ̃ ′z + c̃′z
γ̃z + c̃z

.

(3.11)

By the use of Lemma 3.2, we get

Re
γ̃ ′z + c̃′z
γ̃z + c̃z

≥ ϑ̃. (3.12)

The last inequality together with (2.12), taken for n = 0, assumption (ii0), and the
relation

Re
(
a +

c̃

γ̃
b

)
= Rea (3.13)
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yields

UU′ ≥ U2
(

Rea + ϑ̃ − κ̃0

)
−U

m∑
k=1

(
κ̃0k

∣∣γ̃(θk)wk + c̃(θk)wk

∣∣)

−U
(∣∣γ̃∣∣ + |c̃|)

(
m∑
k=1

|Ak||wk| + |Bk||wk|∣∣γ̃(θk)
∣∣ − |c̃(θk)|

(∣∣γ̃(θk)
∣∣ − |c̃(θk)|

))

≥ U2
(

Rea + ϑ̃ − κ̃0

)

−U

{
m∑
k=1

[
κ̃0k + (|Ak| + |Bk|)

∣∣γ̃∣∣ + |c̃|∣∣γ̃(θk)
∣∣ − |c̃(θk)|

]∣∣γ̃(θk)wk + c̃(θk)wk

∣∣
}

≥ U2
(

Rea + ϑ̃ − κ̃0

)
−U

m∑
k=1

λ̃0k
∣∣γ̃(θk)wk + c̃(θk)wk

∣∣

(3.14)

for almost all t ∈ K.
Consequently,

U′ ≥ U

(
Rea + ϑ̃ − κ̃0

)
−

m∑
k=1

λ̃0k
∣∣γ̃(θk)wk + c̃(θk)wk

∣∣ (3.15)

for almost all t ∈ K. Inequality (3.15) together with relation (3.8) gives

V ′ ≥ U

(
Rea + ϑ̃ − κ̃0 +mβ̃0

)
−

m∑
k=1

(
λ̃0k + θ′

kβ̃0

)∣∣γ̃(θk)wk + c̃(θk)wk

∣∣

+ β̃′0
m∑
k=1

∫ t

θk(t)

∣∣γ̃(s)z(s) + c̃(s)z(s)
∣∣ds.

(3.16)

Using (2.11) and (2.13) for n = 0, we obtain

V ′(t) ≥ U(t)Θ̃0(t) + β̃′0(t)
m∑
k=1

∫ t

θk(t)
U(s)ds. (3.17)

Hence, in view of (iv0),

V ′(t) − Λ̃0(t)V (t) ≥ 0 (3.18)

for almost all t ∈ K.
Multiplying (3.18) by exp[− ∫ t

t1
Λ̃0(s)ds] and integrating over [t1, t], we get

V (t) exp

[
−
∫ t

t1

Λ̃0(s)ds

]
− V (t1) ≥ 0 (3.19)
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on any interval [t1, ω), where the solution z(t) exists and satisfies the inequality |z(t)| > R0.
Now, with respect to (3.6), (3.7), and β̃0 ≤ 0, we have

(∣∣γ̃(t)∣∣ + |c̃(t)|)|z(t)| ≥ V (t) ≥ V (t1) exp

[∫ t

t1

Λ̃0(s)ds

]
≥ Δ(t1) exp

[∫ t

t1

Λ̃0(s)ds

]
. (3.20)

If (3.2) is fulfilled, there is R > R0 such that Δ(t1) > Re−ν. By virtue of (3.1), and (3.2), we can
easily see that

|z(t)| ≥ Δ(t1)∣∣γ̃(t)∣∣ + |c̃(t)| exp

[∫ t

t1

Λ̃0(s)ds

]
≥ Re−νeν = R (3.21)

for all t ≥ t1, for which z(t) is defined.

To obtain results on the existence of bounded solutions, we shall suppose that (1.2)
satisfies the uniqueness property of solutions. Moreover, we suppose that the delays are
bounded, that is, that the functions θk satisfy the condition

t − r ≤ θk(t) ≤ t for t ≥ t0 + r, (3.22)

where r > 0 is a constant. Our assumptions imply the existence of numbers T1 = t0 + r, T ≥ T1,
and μ > 0 such that

∣∣∣∣Ima(t)
∣∣∣∣ > |b(t)| + μ for t ≥ T1, t ≥ θk(t) ≥ t − r for t ≥ T(k = 1, . . . , m). (5′)

In view of this, we replace (2.3) in assumption (i) with (5′). All other assumptions we
keep in validity.

In the proof of the following theorem we shall utilize Ważewski topological principle
for retarded functional differential equations of Carathéodory type. Details of this theory can
be found in the paper of Rybakowski [15].

Theorem 3.3. Let conditions (i), (ii), and (iii) be fulfilled, and let Λ̃, θ′
k

(k = 1, . . . , m) be continuous
functions such that the inequality Λ̃(t) ≤ Θ̃(t) holds a.e. on [T,∞), where Θ̃ is defined by (2.14).
Suppose that ξ : [T − r,∞) → R is a continuous function such that

Λ̃(t) + β̃(t)
m∑
k=1

θ′
k(t) exp

[
−
∫ t

θk(t)
ξ(s)ds

]
− ξ(t) > �(t)C−1 exp

[
−
∫ t

T

ξ(s)ds

]
(3.23)
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for t ∈ [T,∞] and some constant C > 0. Then, there exist t2 > T and a solution z0(t) of (1.2)
satisfying

|z0(t)| ≤ C∣∣γ̃(t)∣∣ − |c̃(t)| exp

[∫ t

T

ξ(s)ds

]
(3.24)

for t ≥ t2.

Proof. Write (1.2) in the form

z′ = F(t, zt), (2′)

where F : J × C → C is defined by

F
(
t, ψ

)
= a(t)ψ(0) + b(t)ψ(0) +

m∑
k=1

[
Ak(t)ψ(θk(t) − t) + Bk(t)ψ(θk(t) − t)

]

+ g
(
t, ψ(0), ψ(θ1(t) − t), . . . , ψ(θm(t) − t)

) (3.25)

and zt is the element of C defined by the relation zt(θ̃) = z(t + θ̃), θ̃ ∈ [−r, 0]. Let τ > T . Put

Ũ(t, z, z) =
∣∣γ̃(t)z + c̃(t)z

∣∣ − ϕ(t),

ϕ(t) = C exp

[∫ t

T

ξ(s)ds

]
,

Ω0 =
{
(t, z) ∈ (τ,∞) × C : Ũ(t, z, z) < 0

}
,

ΩŨ =
{
(t, z) ∈ (τ,∞) × C : Ũ(t, z, z) = 0

}
.

(3.26)

It can be easily verified that Ω0 is a polyfacial set generated by the functions Û(t) = τ−t,
Ũ(t, z, z) (see Rybakowski [15, page 134]). It holds that ΩŨ ⊂ ∂Ω0. As (|γ̃(t)| + |c̃(t)|)|z(t)| ≥
|γ̃(t)z + c̃(t)z|, we have

|z| ≥ ϕ(t)∣∣γ̃(t)∣∣ + |c̃(t)| =
C∣∣γ̃(t)∣∣ + |c̃(t)| exp

[∫ t

T

ξ(s)ds

]
> 0 (3.27)

for (t, z) ∈ ΩŨ. It holds that

D+Û(t) =
∂

∂t
(τ − t) = −1 < 0. (3.28)
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Let (t∗, ζ) ∈ ΩŨ and φ ∈ C be such that φ(0) = ζ and (t∗ + θ̃, φ(θ̃)) ∈ Ω0 for all θ̃ ∈ [−r, 0). If
(t, ψ) ∈ (τ,∞) × C, then

D+Ũ
(
t, ψ(0), ψ(0)

)
: = lim sup

h→ 0+

(
1
h

)[
Ũ
(
t + h, ψ(0) + hF

(
t, ψ

)
, ψ(0) + hF

(
t, ψ

))

−Ũ(
t, ψ(0), ψ(0)

)]

=
∂Ũ

(
t, ψ(0) , ψ(0)

)

∂t
+
∂Ũ

(
t, ψ(0), ψ(0)

)

∂z
F
(
t, ψ

)

+
∂Ũ

(
t, ψ(0), ψ(0)

)

∂z
F
(
t, ψ

)
.

(3.29)

Therefore,

D+Ũ
(
t, ψ(0), ψ(0)

)
=
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣Re
γ̃ ′(t)ψ(0) + c̃′(t)ψ(0)
γ̃(t)ψ(0) + c̃(t)ψ(0)

− ϕ′(t)

+
1
2
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣−1

×
{[

γ̃(t)
(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
+
(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
c̃(t)

]
F
(
t, ψ

)

+
[
c̃(t)

(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
+ γ̃(t)

(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)]
F
(
t, ψ

)}

(3.30)

provided that the derivatives γ̃ ′(t), c̃′(t) exist and that ψ(0)/= 0. Thus,

D+Ũ
(
t, ψ(0), ψ(0)

)
=
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣Re
γ̃ ′(t)ψ(0) + c̃′(t)ψ(0)
γ̃(t)ψ(0) + c̃(t)ψ(0)

− ϕ′(t)

+
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣−1Re
{
γ̃(t)

(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
F
(
t, ψ

)

+ c̃(t)
(
γ̃(t)ψ(0) + c̃(t)ψ(0)

)
F
(
t, ψ

)}

=
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣Re
γ̃ ′(t)ψ(0) + c̃′(t)ψ(0)
γ̃(t)ψ(0) + c̃(t)ψ(0)

− ϕ′(t)

+
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣−1 Re
{(

γ̃(t)ψ(0) + c̃(t)ψ(0)
)

×
(
γ̃(t)F

(
t, ψ

)
+ c̃(t)F

(
t, ψ

))}
.

(3.31)

Using (3.10), (3.13), and (ii), similarly to the proof of Theorem 3.1, we obtain

D+Ũ
(
t, ψ(0), ψ(0)

) ≥ ∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)
∣∣Rea(t)

−
m∑
k=1

∣∣Ak(t)ψ(θk(t) − t) + Bk(t)ψ(θk(t) − t)
∣∣(∣∣γ̃(t)∣∣ + |c̃(t)|)

− κ̃(t)
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣
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−
m∑
k=1

κ̃k(t)
∣∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)

∣∣

+ ϑ̃(t)
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣ − �(t) − ϕ′(t)

(3.32)

and consequently, with respect to (iii),

D+Ũ
(
t, ψ(0), ψ(0)

) ≥
(

Rea(t) + ϑ̃(t) − κ̃(t)
)∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣

−
m∑
k=1

λ̃k(t)
∣∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)

∣∣ − �(t) − ϕ′(t)

≥ Θ̃(t)
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣

+ β̃(t)
m∑
k=1

θ′
k(t)

∣∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)
∣∣ − �(t) − ϕ′(t)

≥ Λ̃(t)
∣∣γ̃(t)ψ(0) + c̃(t)ψ(0)

∣∣

+ β̃(t)
m∑
k=1

θ′
k(t)

∣∣γ̃(θk(t))ψ(θk(t) − t) + c̃(θk(t))ψ(θk(t) − t)
∣∣ − �(t) − ϕ′(t)

(3.33)

for almost all t ∈ (τ,∞) and for ψ ∈ C sufficiently close to φ. Replacing t and ψ by t∗ and φ,
respectively, in the last expression, we get

Λ̃(t∗)
∣∣∣γ̃(t∗)φ(0) + c̃(t∗)φ(0)

∣∣∣ + β̃(t∗)
m∑
k=1

θ′
k(t

∗)
∣∣∣γ̃(θk(t∗))φ(θk(t∗) − t∗) + c̃(θk(t∗))φ(θk(t∗) − t∗)

∣∣∣

− �(t∗) − ϕ′(t∗)

≥ Λ̃(t∗)
∣∣∣γ̃(t∗)ζ + c̃(t∗)ζ

∣∣∣ + β̃(t∗)
m∑
k=1

θ′
k(t

∗)ϕ(θk(t∗)) − �(t∗) − ϕ′(t∗)

≥ Λ̃(t∗)ϕ(t∗) + β̃(t∗)
m∑
k=1

θ′
k(t

∗)ϕ(θk(t∗)) − �(t∗) − ϕ′(t∗)

= Λ̃(t∗)C exp

[∫ t∗

T

ξ(s)ds

]
+ β̃(t∗)

m∑
k=1

θ′
k(t

∗)C exp

[∫θk(t∗)

T

ξ(s)ds

]

− �(t∗) − Cξ(t∗) exp

[∫ t∗

T

ξ(s)ds

]

=

{
Λ̃(t∗) + β̃(t∗)

m∑
k=1

θ′
k(t

∗) exp

[
−
∫ t∗

θk(t∗)
ξ(s)ds

]
− ξ(t∗)

}
C exp

[∫ t∗

T

ξ(s)ds

]

− �(t∗) > 0.
(3.34)
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Therefore, in view of the continuity, D+Ũ(t, ψ(0), ψ(0)) > 0 holds for ψ sufficiently close to φ
and almost all t sufficiently close to t∗. Hence, Ω0 is a regular polyfacial set with respect to
(2′).

Choose Z = {(t2, z) ∈ Ω0 ∪ΩŨ}, where t2 > τ + r is fixed. It can be easily verified that
Z ∩ΩŨ is a retract of ΩŨ, but Z ∩ΩŨ is not a retract of Z. Let η ∈ C be such that η(0) = 1 and
0 ≤ η(θ) < 1 for θ ∈ [−r, 0). Define the mapping p : Z → C for (t2, z) ∈ Z by the relation

p(t2, z)(θ) =
ϕ(t2 + θ)η(θ)(

γ̃2(t2 + θ) − |c̃(t2 + θ)|2
)
ϕ(t2)

[(
γ̃(t2)γ̃(t2 + θ) − c̃(t2)c̃(t2 + θ)

)
z

+
(
γ̃(t2 + θ)c̃(t2) − γ̃(t2)c̃(t2 + θ)

)
z
]

(3.35)

The mapping p is continuous, and it holds that

p(t2, z)(0) = z for (t2, z) ∈ Z, p(t2, 0)(θ) = 0 for θ ∈ [−r, 0]. (3.36)

Since

γ̃(t2 + θ)p(t2, z)(θ) + c̃(t2 + θ)p(t2, z)(θ) =
ϕ(t2 + θ)η(θ)

ϕ(t2)
(
γ̃(t2)z + c̃(t2)z

)
, (3.37)

we have

∣∣γ̃(t2)z + c̃(t2)z
∣∣ < ϕ(t2), (3.38)

∣∣∣γ̃(t2 + θ)p(t2, z)(θ) + c̃(t2 + θ)p(t2, z)(θ)
∣∣∣ < ϕ(t2 + θ) (3.39)

for (t2, z) ∈ Z ∩ Ω0 and θ ∈ [−r, 0]. Clearly, inequality (3.39) holds also for (t2, z) ∈ Z ∩ ΩŨ

and θ ∈ [−r, 0).
Using a topological principle for retarded functional differential equations (see

Rybakowski [15, Theorem 2.1]), we see that there is a solution z0(t) of (1.2) such that
(t, z0(t)) ∈ Ω0 for all t ≥ t2 for which the solution z0(t) exists. Obviously, z0(t) exists for
all t ≥ t2 and

(∣∣γ̃(t)∣∣ − |c̃(t)|)|z0(t)| ≤
∣∣γ̃(t)z0(t) + c̃(t)z0(t)

∣∣ ≤ ϕ(t) for t ≥ t2. (3.40)

Hence

|z0(t)| ≤
ϕ(t)∣∣γ̃(t)∣∣ − |c̃(t)| for t ≥ t2. (3.41)

Theorem 3.4. Suppose that hypotheses (i), (ii), (iin), (iii), (iiin), and (ivn) are fulfilled for τn ≥ T and
n ∈ N, where Rn > 0, infn∈NRn = 0. Let Λ̃, θ′

k
be continuous functions satisfying the inequality
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Λ̃(t) ≤ Θ̃(t) a.e. on [T,∞), where Θ̃ is defined by (2.14). Assume that ξ : [T − r,∞) → R is a
continuous function such that

Λ̃(t) + β̃(t)
m∑
k=1

θ′
k(t) exp

[
−
∫ t

θk(t)
ξ(s)ds

]
− ξ(t) > ρ(t)C−1 exp

(
−
∫ t

T

ξ(s)ds

)
(3.42)

for t ∈ [T,∞) and some constant C > 0. Suppose that

lim sup
t→∞

[∫ t

T

(
Λ̃n(s) − ξ(s)

)
ds + ln

∣∣γ̃(t)∣∣ − |c̃(t)|∣∣γ̃(t)∣∣ + |c̃(t)|

]
= ∞, (3.43)

lim
t→∞

[
β̃n(t) max

θ(t)≤s≤t

exp
[∫s

T ξ(σ) dσ
]

∣∣γ̃(s)∣∣ − |c̃(s)|
m∑
k=1

∫ t

θk(t)

(∣∣γ̃(s)∣∣ + |c̃(s)|)ds
]
= 0, (3.44)

inf
τn≤s≤t<∞

[∫ t

s

Λ̃n(σ)dσ − ln
(∣∣γ̃(t)∣∣ + |c̃(t)|)

]
≥ ν (3.45)

for n ∈ N, where θ(t) = mink=1,...,mθk(t) and ν ∈ (−∞,∞). Then, there exists a solution z0(t) of
(1.2) such that

lim
t→∞

min
θ(t)≤s≤t

|z0(s)| = 0. (3.46)

Proof. By the use of Theorem 3.3 we observe that there is a t2 ≥ T and a solution z0(t) of (1.2)
with property

|z0(t)| ≤ C∣∣γ̃(t)∣∣ − |c̃(t)| exp

[∫ t

T

ξ(s)ds

]
(3.47)

for t ≥ t2. Suppose that (3.46) is not satisfied. Then, there is ε0 > 0 such that

lim sup
t→∞

min
θ(t)≤s≤t

|z0(s)| > ε0. (3.48)

Choose N ∈ N such that

max
{
RN,

2
μ
RNe−ν

}
< ε0. (3.49)

It holds that

min
θ(τ)≤s≤τ

|z0(s)| > max
{
RN,

2
μ
RNe−ν

}
(3.50)
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for some τ > max{T, τN, t2}. In view of (3.44), we can suppose that

∣∣∣β̃N(τ)
∣∣∣C max

θ(τ)≤s≤τ

exp
[∫s

T ξ(σ) dσ
]

∣∣γ̃(s)∣∣ − |c̃(s)|
m∑
k=1

∫ τ

θk(τ)

(∣∣γ̃(s)∣∣ + |c̃(s)|)ds <
1
2
RNe−ν. (3.51)

Therefore, taking into account (2.5), (3.47), (3.50), and (3.51) and the nonpositiveness of βN ,
we have

(∣∣γ̃(τ)∣∣ − |c̃(τ)|)|z0(τ)| + β̃N(τ) max
θ(τ)≤s≤τ

|z0(s)|
m∑
k=1

∫ τ

θk(τ)

(∣∣γ̃(s)∣∣ + |c̃(s)|)ds

≥ (∣∣γ̃(τ)∣∣ − |c̃(τ)|)|z0(τ)|

+ β̃N(τ)C max
θ(τ)≤s≤τ

exp
[∫s

T ξ(σ) dσ
]

∣∣γ̃(s)∣∣ − |c̃(s)|
m∑
k=1

∫ τ

θk(τ)

(∣∣γ̃(s)∣∣ + |c̃(s)|)ds

≥ μ
2
μ
RNe−ν − 1

2
RNe−ν > RNe−ν.

(3.52)

Moreover, (3.45) implies that

inf
τ≤t<∞

[∫ t

τ

Λ̃N(s)ds − ln
(∣∣γ̃(t)∣∣ + |c̃(t)|)

]
≥ ν > −∞. (3.53)

By Theorem 3.1, we obtain an estimation

|z0(t)| ≥ Ψ(τ)∣∣γ̃(t)∣∣ + |c̃(t)| exp

[∫ t

τ

Λ̃N(s)ds

]
(3.54)

for all t ≥ τ , Ψ being defined by

Ψ(τ) =
(∣∣γ̃(τ)∣∣ − |c̃(τ)|)|z0(τ)| + β̃N(τ) max

θ(τ)≤s≤τ
|z0(s)|

m∑
k=1

∫ τ

θk(τ)

(∣∣γ̃(s)∣∣ + |c̃(s)|)ds. (3.55)

Relation (3.47) together with (3.54) yields

Ψ(τ)∣∣γ̃(t)∣∣ + |c̃(t)| exp

[∫ t

τ

Λ̃N(s)ds

]
≤ C∣∣γ̃(t)∣∣ − |c̃(t)| exp

[∫ t

T

ξ(s)ds

]
, (3.56)

that is

∫ t

T

[
Λ̃N(s) − ξ(s)

]
ds + ln

∣∣γ̃(t)∣∣ − |c̃(t)|∣∣γ̃(t)∣∣ + |c̃(t)| ≤
∫ τ

T

Λ̃N(s)ds − ln
[
C−1Ψ(τ)

]
(3.57)

for t ≥ τ . However, the last inequality contradicts (3.43) and Theorem 3.4 is proved.
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From Theorem 3.1 we easily obtain several corollaries.

Corollary 3.5. Let the assumptions of Theorem 3.1 be fulfilled with R0 > 0. If

lim inf
t→∞

[∫ t

t1

Λ̃0(s)ds − ln
(∣∣γ̃(t)∣∣ + |c̃(t)|)

]
= ς > ν, (3.58)

then for any ε, 0 < ε < R0e
ς−ν, there is t2 ≥ t1 such that

|z(t)| > ε (3.59)

for all t ≥ t2, for which z(t) is defined.

Proof. Without loss of generality we can assume that ε > R0. Choose χ, 0 < χ < 1 such that
R0 < ε < χR0e

ς−ν. In view of (3.58), there is t2 ≥ t1 such that

∫ t

t1

Λ̃0(s)ds − ln
(∣∣γ̃(t)∣∣ + |c̃(t)|) > ς + lnχ (3.60)

for t ≥ t2. Hence,

∫ t

t1

Λ̃0(s)ds − ln
(∣∣γ̃(t)∣∣ + |c̃(t)|) > ν + ln

ε

R0
(3.61)

for t ≥ t2. Estimation (3.4) together with (3.2) now yields

|z(t)| > R0e
−νeν

ε

R0
= ε (3.62)

for all t ≥ t2, for which z(t) is defined.

Corollary 3.6. Let the assumptions of Theorem 3.1 be fulfilled with R0 > 0. If

lim
t→∞

[∫ t

t1

Λ̃0(s)ds − ln
(∣∣γ̃(t)∣∣ + |c̃(t)|)

]
= ∞, (3.63)

then for any ε > 0 there exists t2 ≥ t1 such that (3.59) holds for all t ≥ t2, for which z(t) is defined.

The efficiency of Theorem 3.1 and Corollary 3.6 is demonstrated in the following
example.

Example 3.7. Consider (1.2) where a(t) ≡ 4 + 3i, b(t) ≡ 2, Ak(t) ≡ 0, Bk(t) ≡ 0 for k = 1, . . . , m,
θk(t) = t + (1/2k)(cos kt − 1), g(t, z,w1, . . . , wm) = 3z +

∑m
k=1(1/2m)e−twk.
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Obviously, t− (1/k) ≤ θk(t) ≤ t and 1/2 ≤ θ′
k(t) ≤ (3/2). Suppose that t0 = 1 and T ≥ 2.

Then, γ̃ ≡ 3 +
√

5, c̃ ≡ −2i. Further,

∣∣γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)
∣∣ ≤ 3

∣∣γ̃(t)z + c̃(t)z
∣∣

+
m∑
k=1

1
2m

−t
e
∣∣γ̃(θk(t))wk + c̃(θk(t))wk

∣∣. (3.64)

Taking κ̃0(t) ≡ 3, κ̃0k(t) = (1/2m)e−t, τ0 = T , R0 = 0, ϑ̃(t) ≡ 0, β̃0(t) = −(1/m)e−t,
Λ̃0(t) = Θ̃0(t) = 1 − e−t (> 0) in Theorem 3.1, we have

θ′
k(t)β̃0(t) ≤ −λ̃0k(t), β̃′0(t) ≥ Θ̃0(t)β̃0(t) (3.65)

for t ∈ [T,∞) and Theorem 3.1 and Corollary 3.6 are applicable to the considered equation.
As a corollary of Theorem 3.3 we obtain sufficient conditions for the existence of a

bounded solution of (1.2) or the existence of a solution z0(t) of (1.2) satisfying limt→∞z0(t) =
0.

Corollary 3.8. Let the assumptions of Theorem 3.3 be satisfied. If

lim sup
t→∞

[
1∣∣γ̃(t)∣∣ − |c̃(t)| exp

(∫ t

T

ξ(s)ds

)]
< ∞, (3.66)

then there is a bounded solution z0(t) of (1.2). If

lim
t→∞

[
1∣∣γ̃(t)∣∣ − |c̃(t)| exp

(∫ t

T

ξ(s)ds

)]
= 0, (3.67)

then there is a solution z0(t) of (1.2) such that

lim
t→∞

z0(t) = 0. (3.68)

The next example shows how Theorem 3.3 and Corollary 3.8 (namely the first part)
can be used.

Example 3.9. Consider (1.2) where a(t) ≡ 4 + 3i, b(t) ≡ i, Ak(t) ≡ 0, Bk(t) ≡ 0, θk(t) = t − e−kt

for k = 1, . . . , m, g(t, z,w1, . . . , wm) = (1/2)z +
∑m

k=1(1/4m)wk + e−t.
Obviously t − 1 ≤ θk(t) ≤ t and θ′

k
(t) = 1 + ke−kt ≥ 1 > 0 for t ≥ 0. Suppose that t0 = 1

and T ≥ 2. Then,

γ̃(t) = Ima(t) +

√(
Ima(t)

)2

− |b(t)|2sgn
(

Ima(t)
)

≡ 3 + 2
√

2,

c̃(t) = −ib(t) ≡ 1.

(3.69)
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Further,

∣∣γ̃(t)g(t, z,w1, . . . , wm) + c̃(t)g(t, z,w1, . . . , wm)
∣∣

≤
∣∣γ̃∣∣ + |c̃|∣∣γ̃∣∣ − |c̃|

1
2
∣∣γ̃(t)z + c̃(t)z

∣∣

+

∣∣γ̃∣∣ + |c̃|∣∣γ̃∣∣ − |c̃|
m∑
k=1

[
1

4m
∣∣γ̃(θk(t))wk + c̃(θk(t))wk

∣∣
]
+

−t
e

=
√

2
2

∣∣γ̃(t)z + c̃(t)z
∣∣ +

√
2

m∑
k=1

[
1

4m
∣∣γ̃(θk(t))wk + c̃(θk(t))wk

∣∣
]
+

−t
e .

(3.70)

If we take κ̃(t) ≡ √
2/2, κ̃k(t) =

√
2/4m, ϑ̃(t) ≡ 0, β̃(t) = −√2/4m, Λ̃(t) = Θ̃(t) =

4 − (
√

2/2) in Theorem 3.3, we observe that

θ′
k(t)β̃(t) = −

(
1 + k

−kt
e
)√

2
4m

≤ −
√

2
4m

= −λ̃k(t) (3.71)

for t ∈ [T,∞). Then, for ξ ≡ 0 and C = 1, we have

Λ̃(t) + β̃(t)
m∑
k=1

θ′
k(t) exp

[
−
∫ t

θk(t)
ξ(s)ds

]
− ξ(t)

= 4 −
√

2
2

−
√

2
4m

m∑
k=1

(
1 + k

−kt
e
)

≥ 4 −
√

2
2

−
√

2
4m

· 2m = 4 −
√

2 > 1

>
−t
e= ρ(t)C−1 exp

(
−
∫ t

T

ξ(s)ds

)
(3.72)

for t ∈ [T,∞) and

lim sup
t→∞

[
1∣∣γ̃(t)∣∣ − |c̃(t)| exp

(∫ t

T

ξ(s)ds

)]
=

1

2 + 2
√

2
< ∞, (3.73)

and hence the assertions of Theorem 3.3 and the first part of Corollary 3.8 hold true.

4. Summary

We investigated the problem of instability and asymptotic behaviour of real two-dimensional
differential system with a finite number of nonconstant delays. We focused on the case
corresponding to the situation when the equilibrium 0 of the autonomous system (2.2) is
a focus or a centre and it is unstable. We obtained several criteria for instability properties
of the solutions as well as conditions for the existence of bounded solutions. We used the
methods of complexification, the method of Lyapunov-Krasovskii functional and a Ważewski
topological principle for retarded functional differential equations of Carathéodory type. At
the end we supplied several corollaries and explanatory examples.
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[10] J. Diblı́k, Z. Svoboda, and Z. Šmarda, “Retract principle for neutral functional differential equations,”
Nonlinear Analysis, vol. 71, no. 12, pp. e1393–e1400, 2009.
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The first boundary-value problem for an autonomous second-order system of linear partial
differential equations of parabolic type with a single delay is considered. Assuming that a
decomposition of the given system into a system of independent scalar second-order linear partial
differential equations of parabolic type with a single delay is possible, an analytical solution to the
problem is given in the form of formal series and the character of their convergence is discussed.
A delayed exponential function is used in order to analytically solve auxiliary initial problems
(arising when Fourier method is applied) for ordinary linear differential equations of the first
order with a single delay.

1. Introduction

In this paper, we deal with an autonomous second-order system of linear partial differential
equations of the parabolic type with a single delay

∂u(x, t)
∂t

= a11
∂2u(x, t − τ)

∂x2
+ a12

∂2v(x, t − τ)
∂x2

+ b11
∂2u(x, t)

∂x2
+ b12

∂2v(x, t)
∂x2

,

∂u(x, t)
∂t

= a21
∂2u(x, t − τ)

∂x2
+ a22

∂2v(x, t − τ)
∂x2

+ b21
∂2u(x, t)

∂x2
+ b22

∂2v(x, t)
∂x2

,

(1.1)
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where the matrices of coefficients

A =
(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
(1.2)

are constant and τ > 0, τ = const.
Usually, when systems of differential equations are investigated, the main attention is

paid to systems of ordinary differential equations or systems of partial differential equations
[1–5]. The analysis of systems of partial differential equations with delay is rather neglected.
This investigation is extremely rare.

The first boundary-value problem for (1.1) is solved for A having real eigenvalues λ1,
λ2, and B having real eigenvalues σ1 > 0, σ2 > 0. Throughout the paper, we assume that there
exists a real constant regular matrix

S =
(
s11 s12

s21 s22

)
, (1.3)

simultaneously reducing both matrices A and B into diagonal forms

Λ =
(
λ1 0
0 λ2

)
, Σ =

(
σ1 0
0 σ2

)
, (1.4)

that is,

S−1AS = Λ, S−1BS = Σ, (1.5)

where

S−1 =
1
Δ

(
s22 −s12

−s21 s11

)
, Δ = s11s22 − s12s22. (1.6)

For some classes of matrices, suitable transformations are known. Let us mention one of such
results [6, Theorem 11′, page 291]. First, we recall that a complex square matrix A is a normal
matrix if A∗A = AA∗ where A∗ is the conjugate transpose of A. If A is a real matrix, then
A∗ = AT , that is, the real matrix is normal if ATA = AAT . A square matrix U is called unitary
if UU∗ = E where E is the identity matrix.

Theorem 1.1. If a finite or infinite set of pairwise commuting normal matrices is given, then all these
matrices can be carried by one and the same unitary transformation into a diagonal form.

Let l be a positive constant, and let

μi : [−τ,∞) −→ R, i = 1, 2,

θi : [−τ,∞) −→ R, i = 1, 2,

ϕ : [0, l] × [−τ, 0] −→ R,

ψ : [0, l] × [−τ, 0] −→ R

(1.7)
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be continuously differentiable functions such that

μ1(t) = ϕ(0, t), t ∈ [−τ, 0],
μ2(t) = ϕ(l, t), t ∈ [−τ, 0],
θ1(t) = ψ(0, t), t ∈ [−τ, 0],
θ2(t) = ψ(l, t), t ∈ [−τ, 0].

(1.8)

Together with system (1.1), we consider the first boundary-value problem, that is, the
boundary conditions

u(0, t) = μ1(t), t ∈ [−τ,∞), (1.9)

u(l, t) = μ2(t), t ∈ [−τ,∞), (1.10)

v(0, t) = θ1(t), t ∈ [−τ,∞), (1.11)

v(l, t) = θ2(t), t ∈ [−τ,∞) (1.12)

and the initial conditions

u(x, t) = ϕ(x, t), (x, t) ∈ [0, l] × [−τ, 0], (1.13)

v(x, t) = ψ(x, t), (x, t) ∈ [0, l] × [−τ, 0]. (1.14)

A solution to the first boundary-value problem (1.1), (1.9)–(1.14) is defined as a pair of
functions

u, v : [0, l] × [−τ,∞) −→ R, (1.15)

continuously differentiable with respect to variable t if (x, t) ∈ [0, l] × [0,∞), twice
continuously differentiable with respect to x if (x, t) ∈ [0, l] × [0,∞), satisfying the system
(1.1) for (x, t) ∈ [0, l]× [0,∞), the boundary conditions (1.9)–(1.12), and the initial conditions
(1.13), (1.14). If necessary, we restrict the above definition of the solution to (x, t) ∈ [0, l] ×
[−τ, kτ] where k is a positive integer.

The purpose of the paper is to describe a method of constructing a solution of the
above boundary-initial problem. Assuming that a decomposition of system (1.1) into a
system of independent scalar second-order linear partial differential equations of parabolic
type with a single delay is possible, an analytical solution to the problem (1.9)–(1.14) is
given in the form of formal series in part 3. Their uniform convergence as well as uniform
convergence of the partial derivatives of a formal solution is discussed in part 4. A delayed
exponential function (defined in part 2 together with the description of its main properties)
is used in order to analytically solve auxiliary initial problems (arising when Fourier method
is applied) for ordinary linear differential equations of the first-order with a single delay.
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To demonstrate this method, we will use systems of two equations only, although it
can simply be extended to systems of n equations.

2. Preliminaries—Representation of Solutions of
Linear Differential Equations with a Single Delay

A solution of the systems (1.1) satisfying all boundary and initial conditions (1.9)–(1.14)
will be constructed by the classical method of separation of variables (Fourier method).
Nevertheless, due to delayed arguments, complications arise in solving analytically auxiliary
initial Cauchy problems for first-order linear differential equations with a single delay. We
overcome this circumstance by using a special function called a delayed exponential, which
is a particular case of the delayed matrix exponential (as defined, e.g., in [7–10]). Here we
give a definition of the delayed exponential, its basic properties needed, and a solution
of the initial problem for first-order homogeneous and nonhomogeneous linear differential
equations with a single delay.

Definition 2.1. Let b ∈ R. The delayed exponential function expτ{b, t} : R → R is a function
continuous on R \ {−τ} defined as

expτ{b, t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if −∞ < t < −τ,
1 if − τ ≤ t < 0,

1 + b
t

1!
if 0 ≤ t < τ,

· · ·
1 + b

t

1!
+ b2 (t − τ)2

2!
+ · · · + bk

(t − (k − 1)τ)k

k!
if (k − 1)τ ≤ t < kτ,

· · ·

(2.1)

where k = 0, 1, 2, . . . .

Lemma 2.2. For the differentiation of a delayed exponential function, the formula

d

dt
expτ{b, t} = b expτ{b, t − τ} (2.2)

holds within every interval (k − 1)τ ≤ t < kτ , k = 0, 1, 2, . . . .

Proof. Within the intervals (k − 1)τ ≤ t < kτ , k = 0, 1, 2, . . ., the delayed exponential function
is expressed as

expτ{b, t} = 1 + b
t

1!
+ b2 (t − τ)2

2!
+ b3 (t − 2τ)3

3!
+ · · · + bk

(t − (k − 1)τ)k

k!
. (2.3)
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Differentiating this expression, we obtain

d

dt
expτ{b, t} = b + b2 t − τ

1!
+ b3 (t − 2τ)2

2!
+ · · · + bk

(t − (k − 1)τ)k−1

(k − 1)!

= b

[
1 + b

t − τ

1!
+ b2 (t − 2τ)2

2!
+ · · · + bk−1 [t − (k − 1)τ]k−1

(k − 1)!

]

= b expτ{b, t − τ}.

(2.4)

2.1. First-Order Homogeneous Linear Differential Equations with
a Single Delay

Let us consider a linear homogeneous equation with a single delay

ẋ(t) = bx(t − τ), (2.5)

where b ∈ R, together with the initial Cauchy condition

x(t) = β(t), t ∈ [−τ, 0]. (2.6)

From (2.2), it immediately follows that the delayed exponential expτ{b, t} is a solution
of the initial Cauchy problems (2.5), (2.6) with β(t) ≡ 1, t ∈ [−τ, 0].

Theorem 2.3. Let β : [−τ, 0] → R be a continuously differentiable function. Then the unique
solution of the initial Cauchy problems (2.5), (2.6) can be represented as

x(t) = expτ{b, t}β(−τ) +
∫0

−τ
expτ{b, t − τ − s}β′(s)ds, (2.7)

where t ∈ [−τ,∞).

Proof. The representation (2.7) is a linear functional of the delayed exponential function
expτ{b, t} and expτ{b, t − τ − s}. Because by Lemma 2.2 the delayed exponential function
is the solution of (2.5), the functional on the right-hand side of (2.7) is a solution of the
homogeneous equation (2.5) for arbitrary (differentiable) β(t).

We will show that initial condition (2.6) is satisfied as well, that is, we will verify that,
for −τ ≤ t ≤ 0, the next identity is correct:

β(t) ≡ expτ{b, t}β(−τ) +
∫0

−τ
expτ{b, t − τ − s}β′(s)ds. (2.8)

We rewrite (2.7) as

x(t) = expτ{b, t}β(−τ) +
∫ t

−τ
expτ{b, t − τ − s}β′(s)ds +

∫0

t

expτ{b, t − τ − s}β′(s)ds. (2.9)
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From Definition 2.1, it follows:

expτ{b, t} ≡ 1 if − τ ≤ t ≤ 0,

expτ{b, t − τ − s} ≡ 1 if − τ ≤ s ≤ t,

expτ{b, t − τ − s} ≡ 0 if t < s < 0.

(2.10)

Therefore,

x(t) = β(−τ) +
∫ t

−τ
β′(s)ds = β(−τ) + β(t) − β(−τ) = β(t). (2.11)

Remark 2.4. Computing the integral in formula (2.7) by parts, we obtain for t ≥ τ :

x(t) = expτ{b, t − τ}β(0) + b

∫0

−τ
expτ{b, t − 2τ − s}β(s)ds. (2.12)

We remark that it is possible to prove this formula assuming only continuity of the function
β, that is, continuous differentiability of β is, in general, not necessary when we represent x
by formula (2.12).

Further we will consider the linear nonhomogeneous differential equation with a
single delay

ẋ(t) = ax(t) + bx(t − τ), (2.13)

where a, b ∈ R, together with initial Cauchy condition (2.6).

Theorem 2.5. Let the function β in (2.6) be continuously differentiable. Then the unique solution of
the initial Cauchy problems (2.13), (2.6) can be represented as

x(t) = expτ{b1, t}ea(t+τ)β(−τ) +
∫0

−τ
expτ{b1, t − τ − s}ea(t−s)[β′(s) − aβ(s)

]
ds, (2.14)

where b1 = be−aτ and t ∈ [−τ,∞).

Proof. Transforming x by a substitution

x(t) = eaty(t), (2.15)

where y is a new unknown function, we obtain

aeaty(t) + eatẏ(t) = aeaty(t) + bea(t−τ)y(t − τ) (2.16)
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or

ẏ(t) = b1y(t − τ). (2.17)

Correspondingly, the initial condition for (2.17) is

y(t) = e−atβ(t), t ∈ [−τ, 0]. (2.18)

As follows, from formula (2.7), the solution of the corresponding initial Cauchy problems
(2.17), (2.18) is

y(t) = expτ{b1, t}eaτβ(−τ) +
∫0

−τ
expτ{b1, t − τ − s}[e−asβ′(s) − ae−asβ(s)

]
ds. (2.19)

Using substitution (2.15), we obtain

x(t) = expτ{b1, t}ea(t+τ)β(−τ) +
∫0

−τ
expτ{b1, t − τ − s}ea(t−s)[β′(s) − aβ(s)

]
ds, (2.20)

which is formula (2.14).

2.2. First-Order Nonhomogeneous Linear Differential Equations with
a Single Delay

Let a linear non-homogeneous delay equation with a single delay

ẋ(t) = ax(t) + bx(t − τ) + f(t) (2.21)

be given, where a, b ∈ R and f : [0,∞) → R. We consider the Cauchy problem with a zero
initial condition

x(t) = 0, t ∈ [−τ, 0], (2.22)

that is, we put β ≡ 0 in (2.6).

Theorem 2.6. The unique solution of the problem (2.21), (2.22) is given by the formula

x(t) =
∫ t

0
expτ{b1, t − τ − s}ea(t−s)f(s)ds, (2.23)

where b1 = be−aτ .

Proof. We apply substitution (2.15). Then

aeaty(t) + eatẏ(t) = aeaty(t) + bea(t−τ)y(t − τ) + f(t), (2.24)
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or, equivalently,

ẏ(t) = b1y(t − τ) + e−atf(t). (2.25)

We will show that the solution of the non-homogeneous equation (2.25) satisfying a zero
initial condition (deduced from (2.15) and (2.22)) is

y(t) =
∫ t

0
expτ{b1, t − τ − s}e−asf(s)ds. (2.26)

Substituting (2.26) in (2.25), we obtain

expτ{b1, t − τ − s}e−asf(s)∣∣s=t + b1

∫ t

0
expτ{b1, t − 2τ − s}e−asf(s)ds

= b1

∫ t−τ

0
expτ{b1, t − 2τ − s}e−asf(s)ds + e−atf(t).

(2.27)

Since

expτ{b1, t − τ − s}e−asf(s)∣∣s=t = exp{b1,−τ}e−atf(t) = e−atf(t), (2.28)

we obtain

e−atf(t) + b1

∫ t−τ

0
expτ{b1, t − 2τ − s}e−asf(s)ds + b1

∫ t

t−τ
expτ{b1, t − 2τ − s}e−asf(s)ds

= b1

∫ t−τ

0
expτ{b1, t − 2τ − s}e−asf(s)ds + e−atf(t).

(2.29)

Hence,

∫ t

t−τ
expτ{b1, t − 2τ − s}e−asf(s)ds = 0. (2.30)

This equality is true since

t − 2τ − s ≤ t − 2τ − (t − τ) = −τ (2.31)

and, by formula (2.1) in Definition 2.1,

expτ{b1, t − 2τ − s} ≡ 0 (2.32)
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if t − 2τ − s < −τ . In accordance with (2.15), we get

x(t) = eaty(t) =
∫ t

0
expτ{b1, t − τ − s}ea(t−s)f(s)ds, (2.33)

that is, formula (2.23) is proved.

Combining Theorems 2.5, and 2.6 we get the following Corollary.

Corollary 2.7. Let the function β in (2.6) be continuously differentiable. Then the unique solution of
the problems (2.21), (2.6) is given as

x(t) = expτ{b1, t}ea(t+τ)β(−τ)

+
∫0

−τ
expτ{b1, t − τ − s}ea(t−s)[β′(s) − aβ(s)

]
ds

+
∫ t

0
expτ{b1, t − τ − s}ea(t−s)f(s)ds,

(2.34)

where b1 = be−aτ .

3. Partial Differential Systems with Delay

Now we consider second-order autonomous systems of linear partial homogeneous
differential equations of parabolic type with a single delay (1.1) where 0 ≤ x ≤ l and t ≥ −τ .
The initial conditions (1.13), (1.14) are defined for (x, t) ∈ [0, l]× [−τ, 0]. Boundary conditions
(1.9)–(1.12) are defined for t ≥ −τ and compatibility conditions (1.8) are fulfilled on the
interval −τ ≤ t ≤ 0.

By the transformation

(
u(x, t)
v(x, t)

)
= S

(
ξ(x, t)
η(x, t)

)
, (3.1)

the systems (1.1) can be reduced to a form

⎛
⎜⎝

∂ξ(x, t)
∂t

∂η(x, t)
∂t

⎞
⎟⎠ = Λ

⎛
⎜⎜⎝

∂2ξ(x, t − τ)
∂x2

∂2η(x, t − τ)
∂x2

⎞
⎟⎟⎠ + Σ

⎛
⎜⎜⎝

∂2ξ(x, t)
∂x2

∂2η(x, t)
∂x2

⎞
⎟⎟⎠, (3.2)

that is, into two independent scalar equations

∂ξ(x, t)
∂t

= λ1
∂2ξ(x, t − τ)

∂x2
+ σ1

∂2ξ(x, t)
∂x2

, (3.3)

∂η(x, t)
∂t

= λ2
∂2η(x, t − τ)

∂x2
+ σ2

∂2η(x, t)
∂x2

. (3.4)
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Initial and boundary conditions reduce to

ξ(0, t) = μ∗
1(t), t ∈ [−τ,∞),

ξ(l, t) = μ∗
2(t), t ∈ [−τ,∞),

(3.5)

η(0, t) = θ∗
1(t), t ∈ [−τ,∞),

η(l, t) = θ∗
2(t), t ∈ [−τ,∞),

(3.6)

and to

ξ(x, t) = ϕ∗(x, t), (x, t) ∈ [0, l] × [−τ, 0], (3.7)

η(x, t) = ψ∗(x, t), (x, t) ∈ [0, l] × [−τ, 0], (3.8)

where

(
μ∗

1(t)
θ∗

1(t)

)
= S−1

(
μ1(t)
θ1(t)

)
,

(
μ∗

2(t)
θ∗

2(t)

)
= S−1

(
μ2(t)
θ2(t)

)
,

(
ϕ∗(x, t)
ψ∗(x, t)

)
= S−1

(
ϕ(x, t)
ψ(x, t)

)
.

(3.9)

3.1. Constructing of a Solution of (3.3)

We will consider (3.3) with the boundary conditions (3.5), (3.6) and the initial condition (3.7).
We will construct a solution in the form

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + μ∗
1(t) +

x

l

[
μ∗

2(t) − μ∗
1(t)

]
, (3.10)

where (x, t) ∈ [0, l] × [−τ,∞), ξ0(x, t) is a solution of (3.3) with zero boundary conditions

ξ0(0, t) = 0, ξ0(l, t) = 0, t ∈ [−τ,∞) (3.11)

and with a nonzero initial condition

ξ0(x, t) = Φ(x, t) := ϕ∗(x, t) − μ∗
1(t) −

x

l

[
μ∗

2(t) − μ∗
1(t)

]
, (x, t) ∈ [0, l] × [−τ, 0], (3.12)

and ξ1(x, t) is a solution of a non-homogeneous equation

∂ξ(x, t)
∂t

= λ1
∂2ξ(x, t − τ)

∂x2
+ σ1

∂2ξ(x, t)
∂x2

+ F(x, t), (3.13)
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where

F(x, t) := −μ̇∗
1(t) −

x

l

[
μ̇∗

2(t) − μ̇∗
1(t)

]
, (3.14)

with zero boundary conditions

ξ1(0, t) = 0, ξ1(l, t) = 0, t ∈ [−τ,∞) (3.15)

and a zero initial condition

ξ1(x, t) = 0, (x, t) ∈ [0, l] × [−τ, 0]. (3.16)

3.1.1. Equation (3.3)—Solution of the Problems (3.11), (3.12)

For finding a solution ξ = ξ0(x, t) of (3.3), we will use the method of separation of variables.
The solution ξ0(x, t) is seen as the product of two unknown functions X(x) and T(t), that is,

ξ0(x, t) = X(x)T(t). (3.17)

Substituting (3.17) into (3.3), we obtain

X(x)T ′(t) = λ1X
′′(x)T(t − τ) + σ1X

′′(x)T(t). (3.18)

Separating variables, we have

T ′(t)
λ1T(t − τ) + σ1T(t)

=
X′′(x)
X(x)

= −κ2, (3.19)

where κ is a constant. We consider two differential equations

T ′(t) + σ1κ
2T(t) + λ1κ

2T(t − τ) = 0, (3.20)

X′′(x) + κ2X(x) = 0. (3.21)

Nonzero solutions of (3.21) that satisfy zero boundary conditions

X(0) = 0, X(l) = 0, (3.22)
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exist for the choice κ2 = κ2
n = (πn/l)2, n = 1, 2, . . ., and are defined by the formulas

X(x) = Xn(x) = An sin
πn

l
x, n = 1, 2, . . . , (3.23)

where An are arbitrary constants. Now we consider (3.20) with κ = κn:

T ′
n(t) = −σ1

(πn
l

)2
Tn(t) − λ1

(πn
l

)2
Tn(t − τ), n = 1, 2, . . . . (3.24)

Each of (3.24) represents a linear first-order delay differential equation with constant
coefficients. We will specify initial conditions for each of (3.23), (3.24). To obtain such initial
conditions, we expand the corresponding initial condition Φ(x, t) (see (3.12)) into Fourier
series

Φ(x, t) =
∞∑
n=1

Φn(t) sin
πn

l
x, (x, t) ∈ [0, l] × [−τ, 0], (3.25)

where

Φn(t) =
2
l

∫ l

0
Φ(s, t) sin

πn

l
sds

=
2
l

∫ l

0

[
ϕ∗(s, t) − μ∗

1(t) −
s

l

(
μ∗

2(t) − μ∗
1(t)

)]
sin

πn

l
sds

=
2
l

∫ l

0
ϕ∗(s, t) sin

πn

l
sds

− 2μ∗
1(t)
l

∫ l

0
sin

πn

l
s ds − 2

(
μ∗

2(t) − μ∗
1(t)

)

l2

∫ l

0
s · sin

πn

l
sds

=
2
l

∫ l

0
ϕ∗(s, t) sin

πn

l
sds +

2
πn

[
(−1)nμ∗

2(t) − μ∗
1(t)

]
, t ∈ [−τ, 0].

(3.26)

We will find an analytical solution of the problem (3.24) with initial function (3.26), that is,
we will find an analytical solution of the Cauchy initial problem

T ′
n(t) = −σ1

(πn
l

)2
Tn(t) − λ1

(πn
l

)2
Tn(t − τ),

Tn(t) = Φn(t), t ∈ [−τ, 0],
(3.27)

for every n = 1, 2, . . . . Using the results of Part 2, we will solve the problem (3.27). According
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to formula (2.14), we get

Tn(t) = expτ{r1n, t}e−σ1(πn/l)
2(t+τ)Φn(−τ)

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)
[
Φ′

n(s) + σ1

(πn
l

)2
Φn(s)

]
ds,

(3.28)

where

r1n = −λ1

(πn
l

)2
eσ1(πn/l)

2τ , n = 1, 2, . . . . (3.29)

Thus, the solution ξ0(x, t) of the homogeneous equation (3.3) that satisfies zero boundary
conditions (3.11) and a nonzero initial condition (3.12) (to satisfy (3.12) we set An = 1, n =
1, 2, . . . in (3.23)) is

ξ0(x, t) =
∞∑
n=1

⎡
⎣expτ{r1n, t}e−σ1(πn/l)

2(t+τ)Φn(−τ)

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)
[
Φ′

n(s) + σ1

(πn
l

)2
Φn(s)

]
ds

⎤
⎦ sin

πn

l
x,

(3.30)

where Φn is defined by (3.26), r1n by (3.29), and (x, t) ∈ [0, l] × [−τ,∞).

3.1.2. Nonhomogeneous Equation (3.13)

Further, we will consider the non-homogeneous equation (3.13) with zero boundary
conditions (3.15) and a zero initial condition (3.16). We will try to find the solution in the
form of an expansion

ξ1(x, t) =
∞∑
n=1

T0
n(t) sin

πn

l
x, (3.31)

where (x, t) ∈ [0, l] × [−τ,∞) and T0
n : [−τ,∞) → R are unknown functions. Substituting

(3.31) into (3.13) and equating the coefficients of the same functional terms, we will obtain a
system of equations:

(
T0
n

)′
(t) = −σ1

(πn
l

)2
T0
n(t) − λ1

(πn
l

)2
T0
n(t − τ) + fn(t), t ∈ [0,∞), n = 1, 2, . . . , (3.32)
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where fn : [−τ,∞) → R are Fourier coefficients of the function F(x, t), that is,

fn(t) =
2
l

∫ l

0
F(s, t) sin

πn

l
sds

= − 2
l

∫ l

0

(
μ̇∗

1(t) +
s

l

[
μ̇∗

2(t) − μ̇∗
1(t)

])
sin

πn

l
sds

= − 2
l
μ̇∗

1(t)
∫ l

0
sin

πn

l
s ds − 2

l2
(
μ̇∗

2(t) − μ̇∗
1(t)

) ∫ l

0
s · sin

πn

l
sds

= − 2
πn

(
(−1)n+1μ̇∗

2(t) + μ̇∗
1(t)

)
.

(3.33)

In accordance with (3.15), we assume zero initial conditions

T0
n(t) = 0, t ∈ [−τ, 0], n = 1, 2, . . . (3.34)

for every equation (3.32). Then, by formula (2.23) in Theorem 2.6, a solution of each of the
problems (3.32), (3.34) can be written as

T0
n(t) =

∫ t

0
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)fn(s)ds, t ∈ [−τ,∞), n = 1, 2, . . . , (3.35)

where r1n is defined by formula (3.29).
Hence, the solution of the non-homogeneous equation (3.13) with zero boundary

conditions and a zero initial condition is

ξ1(x, t) =
∞∑
n=1

[∫ t

0
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)fn(s)ds

]
sin

πn

l
x, (3.36)

where fn is given by formula (3.33).

3.2. Formal Solution of the Boundary Value Problem

Now we complete the particular results giving a solution of the boundary value problem
of the initial system (1.1) satisfying conditions (1.9)–(1.14) in the form of a formal series.
Conditions of their convergence will be discussed in the following Part 4.

Since the solutions ξ0(x, t) and ξ1(x, t) of auxiliary problems are formally differentiable
once with respect to t and twice with respect to x, and functions μ∗

1(t), μ∗
2(t) are once

differentiable, we conclude that a formal solution of the first boundary value problem (3.5),
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(3.6) and (3.7) for (3.3) can be expressed by the formula:

ξ(x, t) =
∞∑
n=1

[
expτ{r1n, t}e−σ1(πn/l)

2(t+τ)Φn(−τ)

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)
[
Φ′

n(s) + σ1

(πn
l

)2
Φn(s)

]
ds

+
∫ t

0
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)fn(s)ds
]

sin
πn

l
x

+ μ∗
1(t) +

x

l

[
μ∗

2(t) − μ∗
1(t)

]
,

(3.37)

where (x, t) ∈ [0, l]× [−τ,∞), coefficients Φn are defined by formulas (3.26), coefficients fn by
formulas (3.33), and the numbers r1n by formula (3.29).

Similarly, a formal solution of the first boundary value problem for (3.4) is given by
the formula:

η(x, t) =
∞∑
n=1

[
expτ{r2n, t}e−σ2(πn/l)

2(t+τ)Ψn(−τ)

+
∫0

−τ
expτ{r2n, t − τ − s}e−σ2(πn/l)

2(t−s)
[
Ψ′

n(s) + σ2

(πn
l

)2
Ψn(s)

]
ds

+
∫ t

0
expτ{r2n, t − τ − s}e−σ2(πn/l)

2(t−s)gn(s)ds
]

sin
πn

l
x

+ θ∗
1(t) +

x

l

[
θ∗

2(t) − θ∗
1(t)

]
,

(3.38)

where (x, t) ∈ [0, l] × [−τ,∞) and (by analogy with (3.26), (3.33) and (3.29))

Ψn(t) =
2
l

∫ l

0
ψ∗(s, t) sin

πn

l
s ds +

2
πn

[
(−1)nθ∗

2(t) − θ∗
1(t)

]
, t ∈ [−τ, 0],

gn(t) = − 2
πn

(
(−1)n+1θ̇∗

2(t) + θ̇∗
1(t)

)
, t ∈ [−τ,∞),

r2n = −λ2

(πn
l

)2
eσ2(πn/l)

2τ .

(3.39)

Then, a formal solution of the boundary value problem of the initial system (1.1)
satisfying conditions (1.9)–(1.14) is given by the formulas

u(x, t) = s11ξ(x, t) + s12η(x, t),

v(x, t) = s21ξ(x, t) + s22η(x, t),
(3.40)

where ξ(x, t), η(x, t) are defined by (3.37) and (3.38).
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4. Convergence of Formal Series

A solution of the first boundary value problem for (3.3), (3.4) is presented in the form of
formal series (3.37), (3.38). We will show that, when certain conditions are satisfied, the series
(together with its relevant partial derivatives) converges for (x, t) ∈ [0, l ] × [−τ, t∗ ] where
t∗ > 0 is arbitrarily large and, consequently, is a solution of partial delay differential equations
(3.3), (3.4).

Theorem 4.1. Let, for the functions

Φn : [−τ, 0] −→ R, fn : [−τ,∞) −→ R, n = 1, 2, . . . (4.1)

defined by (3.26) and (3.33), for an integer k ≥ 1 and arbitrary t∗ ∈ [(k − 1)τ, kτ], there exist
constantsM ≥ 0, α > 0 such that

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k max

−τ≤t≤kτ

∣∣fn(t)
∣∣ ≤ M

n1+α
, e−σ1(πn/l)

2(t∗−(k−1)τ)n2k max
−τ≤t≤0

|Φn(t)| ≤ M

n3+α
.

(4.2)

Then, for (x, t) ∈ [0, l] × [0, kτ], the formal series on the right-hand side of expression (3.37) as well
as its first derivative with respect to t and its second derivative with respect to x converge uniformly.
Moreover, equality (3.37) holds, and the function ξ(x, t) is a solution of (3.3) for (x, t) ∈ [0, l] ×
[−τ, kτ].

Proof. First we prove that the right-hand side of expression (3.37) uniformly converges.
Decompose the function ξ(x, t) as

ξ(x, t) = S1(x, t) + S2(x, t) + S3(x, t) + μ∗
1(t) +

x

l

[
μ∗

2(t) − μ∗
1(t)

]
, (4.3)

where

S1(x, t) =
∞∑
n=1

An(t) sin
πn

l
x,

An(t) := expτ{r1n, t}e−σ1(πn/l)
2(t+τ)Φn(−τ),

S2(x, t) =
∞∑
n=1

Bn(t) sin
πn

l
x,

Bn(t) :=
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)
[
Φ′

n(s) + σ1

(πn
l

)2
Φn(s)

]
ds,

S3(x, t) =
∞∑
n=1

Cn(t) sin
πn

l
x,

Cn(t) :=
∫ t

0
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)fn(s)ds.

(4.4)
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In the following parts, we will prove the uniform convergence of each of the series Si(x, t),
i = 1, 2, 3 separately.

Throughout the proof, we use the delayed exponential function defined by
Definition 2.1, formula (2.1). Note that this function is continuous on R \ {−τ} and at knots
t = kτ where k = 0, 1, . . . two lines in formula (2.1) can be applied. We use this property in the
proof without any special comment.

Uniform Convergence of the Series S1(x, t)

We consider the coefficients An(t), n = 1, 2, . . . of the first series S1(x, t). As follows from
Definition 2.1 of the delayed exponential function, the following equality holds:

An(t∗) = expτ{r1n, t
∗}e−σ1(πn/l)

2(t∗+τ)Φn(−τ)

= e−σ1(πn/l)
2(t∗+τ)Φn(−τ)

[
1 + r1n

t∗

1!
+ r2

1n
(t∗ − τ)2

2!
+ · · · + rk1n

(t∗ − (k − 1)τ)k

k!

]

= e−σ1(πn/l)
2(t∗+τ)Φn(−τ)

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ t
∗

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ (t
∗ − τ)2

2!

+ · · · + (−λ1)
k
(πn

l

)2k
ekσ1(πn/l)

2τ (t
∗ − (k − 1)τ)k

k!

]
.

(4.5)

Therefore,

S1(x, t∗) =
∞∑
n=1

An(t∗) sin
πn

l
x =

∞∑
n=1

expτ{r1n, t
∗}e−σ1(πn/l)

2(t∗+τ)Φn(−τ) sin
πn

l
x

=
∞∑
n=1

e−σ1(πn/l)
2(t∗+τ)Φn(−τ) sin

πn

l
x − λ1

t∗

1!

∞∑
n=1

e−σ1(πn/l)
2t∗
(πn

l

)2
Φn(−τ) sin

πn

l
x

+ λ2
1
(t∗ − τ)2

2!

∞∑
n=1

e−σ1(πn/l)
2(t∗−τ)

(πn
l

)4
Φn(−τ) sin

πn

l
x + · · ·

+ (−1)kλk1
(t∗ − (k − 1)τ)k

k!

∞∑
n=1

e−σ1(πn/l)
2(t∗−(k−1)τ)

(πn
l

)2k
Φn(−τ) sin

πn

l
x.

(4.6)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k|Φn(−τ)| ≤ M

n3+α
. (4.7)

Therefore, the series S1(x, t∗) converges uniformly with respect to x ∈ [0, l] and t∗ ∈ [(k −
1)τ, kτ]. If t∗ ∈ [(k∗ − 1)τ, k∗τ] where k∗ ∈ {1, 2, . . . , k − 1}, then the estimations remain valid.
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Note that inequalities (4.2) are also valid for k = k∗ because

max
−τ≤t≤k∗τ

∣∣fn(t)
∣∣ ≤ M

n2k+1+α
≤ M

n2k∗+1+α
,

e−σ1(πn/l)
2(t∗−(k∗−1)τ)n2k max

−τ≤t≤0
|Φn(t)| ≤ M

n3+α
.

(4.8)

Consequently, it is easy to see that the series S1(x, t) converges uniformly for x ∈ [0, l] and
t ∈ [0, kτ].

Uniform Convergence of the Series S2(x, t)

We consider the coefficients Bn(t), n = 1, 2, . . . of the second series S2(x, t). In the
representation

Bn(t) = σ1

(πn
l

)2
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)Φn(s)ds

+
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)Φ′
n(s)ds,

(4.9)

we calculate the second integral by parts and use formula (2.2) in Lemma 2.2:

Bn(t) = σ1

(πn
l

)2
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)Φn(s)ds

+ expτ{r1n, t − τ}e−σ1(πn/l)
2tΦn(0) − expτ{r1n, t}e−σ1(πn/l)

2(t+τ)Φn(−τ)

+
∫0

−τ
λ1

(πn
l

)2
expτ{r1n, t − 2τ − s}e−σ1(πn/l)

2(t−s−τ)Φn(s)ds

− σ1

(πn
l

)2
∫0

−τ
expτ{r1n, t − τ − s}e−σ1(πn/l)

2(t−s)Φn(s)ds

= expτ{r1n, t − τ}e−σ1(πn/l)
2t Φn(0) − expτ{r1n, t}e−σ1(πn/l)

2(t+τ)Φn(−τ)

+
∫0

−τ
λ1

(πn
l

)2
expτ{r1n, t − 2τ − s}e−σ1(πn/l)

2(t−s−τ)Φn(s)ds

= Bn1(t) − Bn2(t) + Bn3(t),

(4.10)

where

Bn1(t) = expτ{r1n, t − τ}e−σ1(πn/l)
2t Φn(0),

Bn2(t) = expτ{r1n, t}e−σ1(πn/l)
2(t+τ)Φn(−τ),

Bn3(t) =
∫0

−τ
λ1

(πn
l

)2
expτ{r1n, t − 2τ − s}e−σ1(πn/l)

2(t−s−τ)Φn(s)ds.

(4.11)
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As follows from the Definition 2.1 of the delayed exponential function, for t∗ ∈ [(k − 1)τ, kτ],
the following equality holds:

Bn1(t∗) = expτ{r1n, t
∗ − τ}e−σ1(πn/l)

2t∗Φn(0)

= e−σ1(πn/l)
2t∗Φn(0) ×

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ t
∗ − τ

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ (t
∗ − 2τ)2

2!

+ · · · + (−1)k−1λk−1
1

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)

2τ (t
∗ − (k − 1)τ)k−1

(k − 1)!

]
.

(4.12)

Therefore, for

S21(x, t∗) :=
∞∑
n=1

Bn1(t∗) sin
πn

l
x, (4.13)

we get

S21(x, t∗) =
∞∑
n=1

Bn1(t∗) sin
πn

l
x =

∞∑
n=1

expτ{r1n, t
∗ − τ}e−σ1(πn/l)

2t∗Φn(0) sin
πn

l
x

=
∞∑
n=1

e−σ1(πn/l)
2t∗Φn(0) sin

πn

l
x − λ1

t∗ − τ

1!

∞∑
n=1

(πn
l

)2
e−σ1(πn/l)

2(t∗−τ)Φn(0) sin
πn

l
x

+ λ2
1
(t∗ − 2τ)2

2!

∞∑
n=1

(πn
l

)4
e−σ1(πn/l)

2(t∗−2τ)Φn(0) sin
πn

l
x + · · ·

+ (−1)k−1λk−1
1

(t∗ − (k − 1)τ)k−1

(k − 1)!

∞∑
n=1

(πn
l

)2(k−1)
e−σ1(πn/l)

2(t∗−(k−1)τ)Φn(0) sin
πn

l
x.

(4.14)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k|Φn(0)| ≤ M

n3+α
. (4.15)

The proof of the uniform convergence of the series S21(x, t) for x ∈ [0, l] and t ∈ [0, kτ] can
now be performed in a way similar to the proof of the uniform convergence of the series
S1(x, t) for x ∈ [0, l] and t ∈ [0, kτ].
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For the coefficients Bn2(t), the following holds:

Bn2(t∗) = expτ{r1n, t
∗}e−σ1(πn/l)

2(t∗+τ)Φn(−τ)

= e−σ1(πn/l)
2(t∗+τ)Φn(−τ) ×

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ t
∗

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ (t
∗ − τ)2

2!

+ · · · + (−1)kλk1
(πn

l

)2k
ekσ1(πn/l)

2τ (t
∗ − (k − 1)τ)k

k!

]
.

(4.16)

Therefore, for

S22(x, t∗) :=
∞∑
n=1

Bn2(t∗) sin
πn

l
x, (4.17)

we get

S22(x, t∗) =
∞∑
n=1

Bn2(t∗) sin
πn

l
x =

∞∑
n=1

expτ{r1n, t
∗}e−σ1(πn/l)

2(t∗+τ)Φn(−τ) sin
πn

l
x

=
∞∑
n=1

e−σ1(πn/l)
2(t∗+τ)Φn(−τ) sin

πn

l
x − λ1

t∗

1!

∞∑
n=1

(πn
l

)2
e−σ1(πn/l)

2t∗Φn(−τ) sin
πn

l
x

+ λ2
1
(t∗ − τ)2

2!

∞∑
n=1

(πn
l

)4
e−σ1(πn/l)

2(t∗−τ)Φn(−τ) sin
πn

l
x + · · ·

+ λk1
(t∗ − (k − 1)τ)k

k!

∞∑
n=1

(πn
l

)2k
e−σ1(πn/l)

2(t∗−(k−1)τ)Φn(−τ) sin
πn

l
x.

(4.18)

Due to (4.7), the proof of the uniform convergence of the series S22(x, t) for x ∈ [0, l] and
t ∈ [0, kτ] can now be performed in a way similar to the proof of the uniform convergence of
the series S1(x, t) for x ∈ [0, l] and t ∈ [0, kτ].

Finally, we consider the coefficients Bn3(t) at t = t∗ ∈ [(k − 1)τ, kτ]. Substituting t∗ −
2τ − s = ω, we obtain the following:

Bn3(t∗) =
∫0

−τ

(
λ1

(πn
l

)2
eσ1(πn/l)

2τexpτ{r1n, t
∗ − 2τ − s}

)
e−σ1(πn/l)

2(t∗−s)Φn(s)ds

= λ1

(πn
l

)2
eσ1(πn/l)

2τ

∫ t∗−τ

t∗−2τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+2τ)Φn(t∗ − 2τ −ω)dω.

(4.19)
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We will split this integral in two:

Bn3(t∗) = λ1

(πn
l

)2
eσ1(πn/l)

2τ

∫ (k−2)τ

t∗−2τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+2τ)Φn(t∗ − 2τ −ω)dω

+ λ1

(πn
l

)2
eσ1(πn/l)

2τ

∫ t∗−τ

(k−2)τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+2τ)Φn(t∗ − 2τ −ω)dω.

(4.20)

Therefore, owing to the mean value theorem, there are values ω1 and ω2 such that

t∗ − 2τ ≤ ω1 ≤ (k − 2)τ,

(k − 2)τ ≤ ω2 ≤ t∗ − τ,
(4.21)

and (using the Definition 2.1 of the delayed exponential function) we have

Bn3(t∗) = λ1

(πn
l

)2
e−σ1(πn/l)

2(ω1+τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)expτ{r1n, ω1}

+ λ1

(πn
l

)2
e−σ1(πn/l)

2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)expτ{r1n, ω2}

= λ1

(πn
l

)2
e−σ1(πn/l)

2(ω1+τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)

×
[

1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω1

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ (ω1 − τ)2

2!

+ · · · + (−1)k−2λk−2
1

(πn
l

)2(k−2)
e(k−2)σ1(πn/l)

2τ (ω1 − (k − 3)τ)k−2

(k − 2)!

]

+ λ1

(πn
l

)2
e−σ1(πn/l)

2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

×
[

1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω2

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ (ω2 − τ)2

2!

+ · · · + (−1)k−1λk−1
1

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)

2τ (ω2 − (k − 2)τ)k−1

(k − 1)!

]
.

(4.22)

Hence, for

S23(x, t∗) :=
∞∑
n=1

Bn3(t∗) sin
πn

l
x, (4.23)
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we get

S23(x, t∗) =
∞∑
n=1

Bn3(t∗) sin
πn

l
x

=
∞∑
n=1

{
λ1

(πn
l

)2
e−σ1(πn/l)

2(ω1+τ)Φn

× (t∗ − 2τ −ω1)(kτ − t∗)

⎡
⎣1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω1

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ

× (ω1 − τ)2

2!
+ · · · + (−1)k−2λk−2

1

(πn
l

)2(k−2)

×e(k−2)σ1(πn/l)
2τ (ω1 − (k − 3)τ)k−2

(k − 2)!

]

+ λ1

(πn
l

)2
e−σ1(πn/l)

2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

×
[

1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω2

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ (ω2 − τ)2

2!
+ · · ·

+(−1)k−1λk−1
1

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)2τ (ω2 − (k − 2)τ)k−1

(k − 1)!

]}
sin

πn

l
x.

(4.24)

After some rearranging, we get

S23(x, t∗) = λ1

∞∑
n=1

[
e−σ1(πn/l)

2(ω1+τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)

+e−σ1(πn/l)
2(ω2+τ)Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

](πn
l

)2
sin

πn

l
x

− λ2
1

∞∑
n=1

[
e−σ1(πn/l)

2ω1Φn(t∗ − 2τ −ω1)(kτ − t∗) × ω1

1!

+ e−σ1(πn/l)
2ω2Φn(t∗ − 2τ −ω2)(t∗ − (k − 1)τ)

ω2

1!

](πn
l

)4
sin

πn

l
x

+ λ3
1

∞∑
n=1

[
e−σ1(πn/l)

2(ω1−τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)
(ω1 − τ)2

2!

+ e−σ1(πn/l)
2(ω2−τ)Φn(t∗ − 2τ −ω2)(t∗ −(k − 1)τ)

(ω2 − τ)2

2!

](πn
l

)6
sin

πn

l
x

+ · · ·
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+ (−1)k−2λk−1
1

∞∑
n=1

[
e−σ1(πn/l)

2(ω1−(k−3)τ)Φn(t∗ − 2τ −ω1)(kτ − t∗)

× (ω1 − (k − 3)τ)k−2

(k − 2)!
+ e−σ1(πn/l)

2(ω2−(k−3)τ)Φn(t∗ − 2τ −ω2)

× (t∗ − (k − 1)τ)
(ω2 − (k − 3)τ)k−2

(k − 2)!

⎤
⎦
(πn

l

)2k−2
sin

πn

l
x

+ (−1)k−1λk1(t
∗ − (k − 1)τ)

(ω2 − (k − 2)τ)k−1

(k − 1)!

×
∞∑
n=1

(πn
l

)2k
e−σ1(πn/l)

2(ω2−(k−2)τ)Φn(t∗ − 2τ −ω2) sin
πn

l
x.

(4.25)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(ω2−(k−2)τ)n2k max

−τ≤t≤0
|Φn(t)| ≤ M

n3+α
. (4.26)

The proof of the uniform convergence of the series S23(x, t) for x ∈ [0, l] and t ∈ [0, kτ] can
now be performed in a way similar to the proof of uniform convergence of the series S1(x, t)
for x ∈ [0, l] and t ∈ [0, kτ].

Uniform Convergence of the Series S3(x, t)

We will consider the coefficients Cn(t), n = 1, 2, . . . of the series S3(x, t) at t = t∗ ∈ [(k−1)τ, kτ].
Substituting t∗ − τ − s = ω, we obtain

Cn(t∗) =
∫ t∗

0
expτ{r1n, t

∗ − τ − s}e−σ1(πn/l)
2(t∗−s)fn(s)ds

=
∫ t∗−τ

−τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+τ)fn(t∗ − τ −ω)dω

=
∫0

−τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+τ)fn(t∗ − τ −ω)dω

+
∫ τ

0
expτ{r1n, ω}e−σ1(πn/l)

2(ω+τ)fn(t∗ − τ −ω)dω

+
∫2τ

τ

expτ{r1n, ω}e−σ1(πn/l)
2(ω+τ)fn(t∗ − τ −ω)dω

+ · · · +
∫ t∗−τ

(k−2)τ
expτ{r1n, ω}e−σ1(πn/l)

2(ω+τ)fn(t∗ − τ −ω)dω.

(4.27)
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Owing to the mean value theorem, there are values ωi, i = 1, 2, . . . , k such that

−τ ≤ ω1 ≤ 0, 0 ≤ ω2 ≤ τ, . . . , (k − 2)τ ≤ ωk ≤ t∗ − τ

Cn(t∗) = τe−σ1(πn/l)
2(ω1+τ)fn(t∗ − τ −ω1)

+ τ

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω2

1!

]
e−σ1(πn/l)

2(ω2+τ)fn(t∗ − τ −ω2)

+ τ

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ω3

1!
+ λ2

1

(πn
l

)4
e2σ1(πn/l)

2τ (ω3 − τ)2

2!

]
e−σ1(πn/l)

2(ω3+τ)

× fn(t∗ − τ −ω3) + · · · + τ

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ωk−1

1!
+ . . .

+ (−1)k−2λk−2
1

(πn
l

)2(k−2)
e(k−2)σ1(πn/l)

2τ

× [ωk−1 − (k − 3)τ]k−2

(k − 2)!

]
e−σ1(πn/l)

2(ωk−1+τ)

× fn(t∗ − τ −ωk−1)

+ [t∗ − (k − 1)τ]

[
1 − λ1

(πn
l

)2
eσ1(πn/l)

2τ ωk

1!
+ . . . + (−1)k−1

× λk−1
1

(πn
l

)2(k−1)
e(k−1)σ1(πn/l)

2τ [ωk − (k − 2)τ]k−1

(k − 1)!

]

× e−σ1(πn/l)
2(ωk+τ)fn(t∗ − τ −ωk).

(4.28)

Hence,

S3(x, t∗) =
∞∑
n=1

Cn(t∗) sin
πn

l
x

=
∞∑
n=1

[
τ
k−1∑
i=1

e−σ1(πn/l)
2(ωi+τ)fn(t∗ − τ −ωi) + (t∗ − (k − 1)τ)

× e−σ1(πn/l)
2(ωk+τ)fn (t∗ − τ −ωk)

]
× sin

πn

l
x

− λ1

∞∑
n=1

[
τ
k−1∑
i=2

ωi

1!
e−σ1(πn/l)

2ωifn(t∗ − τ −ωi) + (t∗ − (k − 1)τ)

× ωk

1!
e−σ1(πn/l)

2ωkfn (t∗ − τ −ωk)

]
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×
(πn

l

)2
sin

πn

l
x

+ λ2
1

∞∑
n=1

[
τ
k−1∑
i=3

(ωi − τ)2

2!
e−σ1(πn/l)

2(ωi−τ)fn(t∗ − τ −ωi)

+ (t∗ − (k − 1)τ)
(ωk − τ)2

2!
e−σ1(πn/l)

2(ωk−τ)fn(t∗ − τ −ωk)

]

×
(πn

l

)4
sin

πn

l
x + . . . + (−1)k−2λk−2

1

×
∞∑
n=1

[
τ
(ωk−1 − (k − 3)τ)k−2

(k − 2)!
e−σ1(πn/l)

2(ωk−1−(k−3)τ)fn(t∗ − τ −ωk−1)

+ [t∗ − (k − 1)τ]
(ωk − (k − 3)τ)k−2

(k − 2)!
e−σ1(πn/l)

2(ωk−(k−3)τ)fn(t∗ − τ −ωk)

]

×
(πn

l

)2(k−2)
sin

πn

l
x

+ (−1)k−1λk−1
1 [t∗ − (k − 1)τ]

(ωk − (k − 2)τ)k−1

(k − 1)!

×
∞∑
n=1

(πn
l

)2(k−1)
e−σ1(πn/l)

2(ωk−(k−2)τ)fn(t∗ − τ −ωk) sin
πn

l
x.

(4.29)

Due to condition (4.2), we conclude that

e−σ1(πn/l)
2(ωk−(k−2)τ)n2(k−1) max

−τ≤t≤kτ

∣∣fn(t)
∣∣ ≤ M

n3+α
. (4.30)

S3(x, t)x ∈ [0, l]t ∈ [0, kτ]S1(x, t)x ∈ [0, l]t ∈ [0, kτ].

Uniform Convergence of the Formal Series for ξ(x, t)

Above, the absolute and uniform convergence of the series S1(x, t), S2(x, t), S3(x, t) was
proved. Therefore, the series for ξ(x, t) converges absolutely and uniformly as well.

Uniform Convergence of the Formal Series for ξ′t(x, t) and ξ
′′
xx(x, t)

To prove the uniform convergence of the series for ξ′t(x, t) and ξ′′xx(x, t), we can proceed as in
the above proof of the uniform convergence of ξ(x, t). The above scheme can be repeated, and
the final inequalities (4.7), (4.15), (4.26), and (4.30) are replaced as follows: inequality (4.7)
by

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k+2|Φn(−τ)| ≤ M

n1+α
, (4.31)
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inequality (4.15) by

e−σ1(πn/l)
2(t∗−(k−1)τ)n2k+2|Φn(0)| ≤ M

n1+α
, (4.32)

inequality (4.26) by

e−σ1(πn/l)
2(ω2−(k−2)τ)n2k+2 max

−τ≤t≤0
|Φn(t)| ≤ M

n1+α
, (4.33)

and inequality (4.30) by

e−σ1(πn/l)
2(ωk−(k−2)τ)n2k max

−τ≤t≤kτ

∣∣fn(t)
∣∣ ≤ M

n1+α
. (4.34)

The proof of the uniform convergence of the series, which represents the solution
η(x, t) by formula (3.38), and the proof of the uniform convergence of the series for η′

x(x, t)
and η′′

xx(x, t) are much the same.

Corollary 4.2. Functions u(x, t), v(x, t) are linear combinations of ξ(x, t) and η(x, t). Therefore,
representations (3.40) are the solutions of the system system (1.1) satisfying all boundary and initial
conditions (1.9)–(1.14).

Remark 4.3. Tracing the proof of Theorem 4.1, we see that inequalities (4.2) for functions Φn :
[−τ, 0] → R, n = 1, 2, . . ., and fn : [−τ,∞) → R, n = 1, 2, . . . are too restrictive if t∗ ∈
[(k∗ − 1)τ, (k∗ − 1)τ + ε], k∗ ∈ {1, 2, . . . , k}, where ε is an arbitrarily small positive number. The
question whether the series are uniformly convergent for (x, t) ∈ [0, l]×[(k∗−1)τ, (k∗−1)τ+ε],
k∗ ∈ {1, 2, . . . , k} remains open if, for example, Φn : [−τ, 0] → R, n = 1, 2, . . ., and fn :
[−τ,∞) → R, n = 1, 2, . . . satisfy only the inequalities

max
−τ≤t≤kτ

∣∣fn(t)
∣∣ ≤ M∗

n
, max

−τ≤t≤0
|Φn(t)| ≤ M∗

n
(4.35)

for a positive constant M∗ because inequalities (4.2) cannot be valid. Nevertheless, in such a
case, the series converge at least point-wise for t ∈ [(k∗ − 1)τ, (k∗ − 1)τ + ε], k∗ ∈ {1, 2, . . . , k}
and uniformly for x ∈ [0, l]. In other words, in such a case, the series converge uniformly for

(x, t) ∈ [0, l] ×
(
[0, kτ] \

k⋃
k∗=1

[(k∗ − 1)τ, (k∗ − 1)τ + ε]

)
, (4.36)

(where ε > 0 is fixed but arbitrarily small).
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New oscillation criteria are established for the second-order nonlinear neutral functional differ-
ential equations of the form (r(t)|z′(t)|α−1z′(t))

′
+ f(t, x[σ(t)]) = 0, t ≥ t0, where z(t) = x(t) +

p(t)x(τ(t)), p ∈ C1([t0,∞), [0,∞)), and α ≥ 1. Our results improve and extend some known results
in the literature. Some examples are also provided to show the importance of these results.

1. Introduction

This paper is concerned with the oscillation problem of the second-order nonlinear functional
differential equation of the following form:

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′

+ f(t, x[σ(t)]) = 0, t ≥ t0, (1.1)

where α ≥ 1 is a constant, z(t) = x(t) + p(t)x[τ(t)].
Throughout this paper, we will assume the following hypotheses:

(A1) r ∈ C1([t0,∞),R), r(t) > 0 for t ≥ t0,

(A2) p ∈ C1([t0,∞), [0,∞)),

(A3) τ ∈ C2([t0,∞),R), τ ′(t) > 0, limt→∞τ(t) = ∞,

(A4) σ ∈ C([t0,∞),R), limt→∞σ(t) = ∞, τ ◦ σ = σ ◦ τ ;
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(A5) f(t, u) ∈ C([t0,∞)×R,R), and there exists a function q ∈ C([t0,∞), [0,∞)) such that

f(t, u) sgn u ≥ q(t)|u|α, for u/= 0, t ≥ t0. (1.2)

By a solution of (1.1), we mean a function x ∈ C([Tx,∞),R) for some Tx ≥ t0 which
has the property that r(t)|z′(t)|α−1z′(t) ∈ C1([Tx,∞),R) and satisfies (1.1) on [Tx,∞). As is
customary, a solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [t0,∞);
otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all of its
nonconstant solutions are oscillatory.

We note that neutral delay differential equations find numerous applications in electric
networks. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines which rise in high-speed computers where the lossless
transmission lines are used to interconnect switching circuits; see [1]. Therefore, there is
constant interest in obtaining new sufficient conditions for the oscillation or nonoscillation
of the solutions of varietal types of the second-order equations, see, e.g., papers [2–17].

Known oscillation criteria require various restrictions on the coefficients of the studied
neutral differential equations.

Agarwal et al. [2], Chern et al. [3], Džurina and Stavroulakis [4], Kusano et al. [5, 6],
Mirzov [7], and Sun and Meng [8] observed some similar properties between

(
r(t)
∣∣x′(t)

∣∣α−1
x′(t)

)′
+ q(t)|x[σ(t)]|α−1x[σ(t)] = 0 (1.3)

and the corresponding linear equation

(
r(t)x′(t)

)′ + q(t)x(t) = 0. (1.4)

Liu and Bai [10], Xu and Meng [11, 12], and Dong [13] established some oscillation criteria
for (1.3) with neutral term under the assumption that

∫∞

t0

1
r1/α(t)

dt = ∞. (1.5)

Han et al. [14] examined the oscillation of second-order linear neutral differential
equation

(
r(t)
[
x(t) + p(t)x(τ(t))

]′)′ + q(t)x[σ(t)] = 0, t ≥ t0, (1.6)

where τ ′(t) = τ0 > 0, 0 ≤ p(t) ≤ p0 < ∞, and obtained some oscillation criteria for (1.6) when

∫∞

t0

1
r(t)

dt = ∞. (1.7)
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Han et al. [15] studied the oscillation of (1.6) under the case 0 ≤ p(t) ≤ 1 and

∫∞

t0

1
r(t)

dt < ∞. (1.8)

Tripathy [16] considered the nonlinear dynamic equation of the form

(
r(t)
[(
x(t) + p(t)x(t − τ)

)Δ]γ)Δ + q(t)|x(t − δ)|γ sgnx(t − δ) = 0, (1.9)

where 0 ≤ p(t) ≤ p0 < ∞, γ is a the ratios of two positive odd integers, and obtained some
oscillation criteria under the following conditions:

∫∞

t0

(
1

r(t)

)γ

dt = ∞. (1.10)

Džurina [17] was concerned with the oscillation behavior of the solutions of the
second-order neutral differential equations as follows

(
a(t)
[(
x(t) + p(t)x(τ(t))

)′]γ)′ + q(t)xβ(σ(t)) = 0, (1.11)

where 0 ≤ p(t) ≤ p0 < ∞, γ is a the ratios of two positive odd integers, and obtained some
new results under the following conditions

∫∞

t0

(
1

a(t)

)γ

dt = ∞. (1.12)

Our purpose of this paper is to establish some new oscillation criteria for (1.1), and we
will also consider the cases (1.5) and

∫∞

t0

1
r1/α(t)

dt < ∞. (1.13)

To the best of my knowledge, there is no result for the oscillation of (1.1) under the
conditions both 0 ≤ p(t) ≤ p0 < ∞ and (1.13).

In this paper, we will use a new inequality to establish some oscillation criteria for
(1.1) for the first time. Some examples will be given to show the importance of these results.
In Sections 3 and 4, for the sake of convenience, we denote that

Q(t) := min
{
q(t), q[τ(t)]

}
, d+(t) := max{0, d(t)}, ξ(t) :=

αp′[σ(t)]σ ′(t)
p[σ(t)]

− τ ′′(t)
τ ′(t)

,

ζ(t) :=

(
ρ′(t)

)
+

ρ(t)
+ ξ(t), ϕ(t) :=

(
ρ′+(t)
ρ(t)

)α+1

+
pα[σ(t)](ζ+(t))

α+1

τ ′(t)
, δ(t) :=

∫∞

η(t)

ds
r1/α(s)

.

(1.14)
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2. Lemma

In this section, we give the following lemma, which we will use in the proofs of our main
results.

Lemma 2.1. Assume that α ≥ 1, a, b ∈ R. If a ≥ 0, b ≥ 0, then one has

aα + bα ≥ 1
2α−1

(a + b)α. (2.1)

Proof. (i) Suppose that a = 0 or b = 0. Then we have (2.1). (ii) Suppose that a > 0, b > 0.
Define the function g by g(x) = xα, x ∈ (0,∞). Then g ′′(x) = α(α − 1)xα−2 ≥ 0 for x > 0. Thus,
g is a convex function. By the definition of convex function, for λ = 1/2, a, b ∈ (0,∞), we
have

g

(
a + b

2

)
≤ g(a) + g(b)

2
, (2.2)

that is,

aα + bα ≥ 1
2α−1

(a + b)α. (2.3)

This completes the proof.

3. Oscillation Criteria for the Case (1.5)

In this section, we will establish some oscillation criteria for (1.1) under the case (1.5).

Theorem 3.1. Suppose that (1.5) holds, σ ∈ C([t0,∞),R), σ ′(t) > 0, σ(t) ≤ t, and σ(t) ≤ τ(t)
for t ≥ t0. Furthermore, assume that there exists a function ρ ∈ C([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

ρ(s)

{
Q(s)
2α−1

− r[σ(s)]ϕ(s)

(α + 1)α+1(σ ′(s))α

}
ds = ∞. (3.1)

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. By applying
(1.1), for all sufficiently large t, we obtain that

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′

+ q(t)xα[σ(t)] + q[τ(t)]pα[σ(t)]xα(σ[τ(t)])

+
pα[σ(t)]
τ ′(t)

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1
z′[τ(t)]

)′ ≤ 0.
(3.2)
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Using (2.1) and the definition of z, we conclude that

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′

+
1

2α−1
Q(t)zα[σ(t)] +

pα[σ(t)]
τ ′(t)

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1
z′[τ(t)]

)′ ≤ 0. (3.3)

In view of (1.1), we obtain that

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′ ≤ −q(t)xα[σ(t)] ≤ 0, t ≥ t1. (3.4)

Thus, r(t)|z′(t)|α−1z′(t) is decreasing function. Now we have two possible cases for z′(t) :
(i) z′(t) < 0 eventually and (ii) z′(t) > 0 eventually.

(i) Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. Then, from (3.4), we get

r(t)
∣∣z′(t)∣∣α−1

z′(t) ≤ r(t2)
∣∣z′(t2)

∣∣α−1
z′(t2), t ≥ t2, (3.5)

which implies that

z(t) ≤ z(t2) − r1/α(t2)
∣∣z′(t2)

∣∣
∫ t

t2

r−1/α(s)ds. (3.6)

Letting t → ∞, by (1.5), we find z(t) → −∞, which is a contradiction.
(ii) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. We define a Riccati substitution

ω(t) = ρ(t)
r(t)(z′(t))α

(z[σ(t)])α
, t ≥ t2. (3.7)

Then ω(t) > 0. From (3.4), we have

z′[σ(t)] ≥
(

r(t)
r[σ(t)]

)1/α

z′(t). (3.8)

Differentiating (3.7), we find that

ω′(t) = ρ′(t)
r(t)(z′(t))α

(z[σ(t)])α
+ ρ(t)

(
r(t)(z′(t))α

)′
(z[σ(t)])α

− αρ(t)
r(t)(z′(t))αzα−1[σ(t)]z′[σ(t)]σ ′(t)

(z[σ(t)])2α
.

(3.9)

Therefore, by (3.7), (3.8), and (3.9), we see that

ω′(t) ≤ ρ′(t)
ρ(t)

ω(t) + ρ(t)

(
r(t)(z′(t))α

)′
(z[σ(t)])α

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t). (3.10)
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Similarly, we introduce a Riccati substitution

υ(t) = ρ(t)
r[τ(t)](z′[τ(t)])α

(z[σ(t)])α
, t ≥ t2. (3.11)

Then υ(t) > 0. From (3.4), we have

z′[σ(t)] ≥
(
r[τ(t)]
r[σ(t)]

)1/α

z′[τ(t)]. (3.12)

Differentiating (3.11), we find that

υ′(t) = ρ′(t)
r[τ(t)](z′[τ(t)])α

(z[σ(t)])α
+ ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[σ(t)])α

− αρ(t)
r[τ(t)](z′[τ(t)])αzα−1[σ(t)]z′[σ(t)]σ ′(t)

(z[σ(t)])2α
.

(3.13)

Therefore, by (3.11), (3.12), and (3.13), we see that

υ′(t) ≤ ρ′(t)
ρ(t)

υ(t) + ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[σ(t)])α

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t). (3.14)

Thus, from (3.10) and (3.14), we have

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ ρ(t)

{(
r(t)(z′(t))α

)′
(z[σ(t)])α

+
pα[σ(t)]
τ ′(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[σ(t)])α

}
+
ρ′(t)
ρ(t)

ω(t)

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t).

(3.15)

It is follows from (3.3) that

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ − 1
2α−1

ρ(t)Q(t) +
ρ′+(t)
ρ(t)

ω(t)

− ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′+(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t).

(3.16)
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Integrating the above inequality from t2 to t, we obtain that

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

1
2α−1

ρ(s)Q(s)ds

+
∫ t

t2

[
ρ′+(s)
ρ(s)

ω(s) − ασ ′(s)
ρ1/α(s)r1/α[σ(s)]

ω(α+1)/α(s)

]
ds

+
∫ t

t2

pα[σ(s)]
τ ′(s)

{[
ρ′+(s)
ρ(s)

+ ξ(s)
]

+
υ(s) − ασ ′(s)

ρ1/α(s)r1/α[σ(s)]
υ(α+1)/α(s)

}
ds.

(3.17)

Define

A :=

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]α/(α+1)

ω(t), B :=

⎡
⎣ρ

′
+(t)
ρ(t)

α

α + 1

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]−α/(α+1)
⎤
⎦

α

.

(3.18)

Using the following inequality:

α + 1
α

AB1/α −A(α+1)/α ≤ 1
α
B(α+1)/α, for A ≥ 0, B ≥ 0 are constants, (3.19)

we have

ρ′+(t)
ρ(t)

ω(t) − ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

ω(α+1)/α(t) ≤ 1

(α + 1)α+1

r[σ(t)]
(
ρ′+(t)

)α+1

(
ρ(t)σ ′(t)

)α . (3.20)

On the other hand, define

A :=

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]α/(α+1)

υ(t), B :=

⎡
⎣ζ+(t) α

α + 1

[
ασ ′(t)

ρ1/α(t)r1/α[σ(t)]

]−α/(α+1)
⎤
⎦

α

.

(3.21)

So we have

ζ+(t)υ(t) − ασ ′(t)
ρ1/α(t)r1/α[σ(t)]

υ(α+1)/α(t) ≤ 1

(α + 1)α+1

r[σ(t)](ζ+(t))
α+1ρ(t)

(σ ′(t))α
. (3.22)
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Thus, from (3.17), we get

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

ρ(s)

{
Q(s)
2α−1

− r[σ(s)]

(α + 1)α+1(σ ′(s))α

[(
ρ′+(s)
ρ(s)

)α+1

+
pα[σ(s)](ζ+(s))

α+1

τ ′(s)

]}
ds,

(3.23)

which contradicts (3.1). This completes the proof.

When p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, where p0, τ0 are constants, we obtain the following
result.

Theorem 3.2. Suppose that (1.5) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, σ ∈ C([t0,∞),R), σ ′(t) >
0, σ(t) ≤ t, σ(t) ≤ τ(t) for t ≥ t0. Further, assume that there exists a function ρ ∈ C([t0,∞), (0,∞))
such that

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[σ(s)]

(
ρ′+(s)

)α+1

(
ρ(s)σ ′(s)

)α
]
ds = ∞. (3.24)

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Using (1.1), for
all sufficiently large t, we obtain that

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′

+ q(t)xα[σ(t)] + pα0q[τ(t)]x
α(σ[τ(t)])

+
pα0
τ0

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1
z′[τ(t)]

)′ ≤ 0.
(3.25)

By applying (2.1) and the definition of z, we conclude that

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′

+
1

2α−1
Q(t)zα[σ(t)]

+
pα0
τ0

(
r[τ(t)]

∣∣z′[τ(t)]∣∣α−1
z′[τ(t)]

)′ ≤ 0.

(3.26)

The remainder of the proof is similar to that of Theorem 3.1 and hence is omitted.

Theorem 3.3. Suppose that (1.5) holds, τ(t) ≤ t, σ(t) ≥ τ(t) for t ≥ t0. Furthermore, assume that
there exists a function ρ ∈ C([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

ρ(s)

{
Q(s)
2α−1

− r[τ(s)]ϕ(s)

(α + 1)α+1(τ ′(s))α

}
ds = ∞. (3.27)

Then (1.1) is oscillatory.
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Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Proceeding
as in the proof of Theorem 3.1, we get (3.3) and (3.4). In view of (3.4), r(t)|z′(t)|α−1z′(t) is
decreasing function. Now we have two possible cases for z′(t) : (i) z′(t) < 0 eventually and
(ii) z′(t) > 0 eventually.

(i) Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. Then, similar to the proof of case (i) of
Theorem 3.1, we obtain a contradiction.

(ii) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. We define a Riccati substitution

ω(t) = ρ(t)
r(t)(z′(t))α

(z[τ(t)])α
, t ≥ t2. (3.28)

Then ω(t) > 0. From (3.4), we have

z′[τ(t)] ≥
(

r(t)
r[τ(t)]

)1/α

z′(t). (3.29)

Differentiating (3.28), we find that

ω′(t) = ρ′(t)
r(t)(z′(t))α

(z[τ(t)])α
+ ρ(t)

(
r(t)(z′(t))α

)′
(z[τ(t)])α

− αρ(t)
r(t)(z′(t))αzα−1[τ(t)]z′[τ(t)]τ ′(t)

(z[τ(t)])2α
.

(3.30)

Therefore, by (3.28), (3.29), and (3.30), we see that

ω′(t) ≤ ρ′(t)
ρ(t)

ω(t) + ρ(t)

(
r(t)(z′(t))α

)′
(z[τ(t)])α

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t). (3.31)

Similarly, we introduce a Riccati substitution

υ(t) = ρ(t)
r[τ(t)](z′[τ(t)])α

(z[τ(t)])α
, t ≥ t2. (3.32)

Then υ(t) > 0. Differentiating (3.32), we find that

υ′(t) = ρ′(t)
r[τ(t)](z′[τ(t)])α

(z[τ(t)])α
+ ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[τ(t)])α

− αρ(t)
r[τ(t)](z′[τ(t)])αzα−1[τ(t)]z′[τ(t)]τ ′(t)

(z[τ(t)])2α
.

(3.33)

Therefore, by (3.32) and (3.33), we see that

υ′(t) =
ρ′(t)
ρ(t)

υ(t) + ρ(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[τ(t)])α

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t). (3.34)



10 Abstract and Applied Analysis

Thus, from (3.31) and (3.33), we have

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ ρ(t)

{(
r(t)(z′(t))α

)′
(z[τ(t)])α

+
pα[σ(t)]
τ ′(t)

(
r[τ(t)](z′[τ(t)])α

)′
(z[τ(t)])α

}
+
ρ′(t)
ρ(t)

ω(t)

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t).

(3.35)

It follows from (3.3) that

ω′(t) +
pα[σ(t)]
τ ′(t)

υ′(t) ≤ − 1
2α−1

ρ(t)Q(t) +
ρ′+(t)
ρ(t)

ω(t)

− ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t) +
pα[σ(t)]
τ ′(t)

ρ′+(t)
ρ(t)

υ(t)

− pα[σ(t)]
τ ′(t)

ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t).

(3.36)

Integrating the above inequality from t2 to t, we obtain that

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

1
2α−1

ρ(s)Q(s)ds

+
∫ t

t2

[
ρ′+(s)
ρ(s)

ω(s) − ατ ′(s)
ρ1/α(s)r1/α[τ(s)]

ω(α+1)/α(s)

]
ds

+
∫ t

t2

pα[σ(s)]
τ ′(s)

{[
ρ′+(s)
ρ(s)

+ ξ(s)
]

+
υ(s) − ατ ′(s)

ρ1/α(s)r1/α[τ(s)]
υ(α+1)/α(s)

}
ds.

(3.37)

Define

A :=

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]α/(α+1)

ω(t), B :=

⎡
⎣ρ

′
+(t)
ρ(t)

α

α + 1

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]−α/(α+1)
⎤
⎦

α

.

(3.38)
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Using (3.19), we have

ρ′+(t)
ρ(t)

ω(t) − ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

ω(α+1)/α(t) ≤ 1

(α + 1)α+1

r[τ(t)]
(
ρ′+(t)

)α+1

(
ρ(t)τ ′(t)

)α . (3.39)

On the other hand, define

A :=

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]α/(α+1)

υ(t), B :=

⎡
⎣ζ+(t) α

α + 1

[
ατ ′(t)

ρ1/α(t)r1/α[τ(t)]

]−α/(α+1)
⎤
⎦

α

.

(3.40)

So we have

ζ+(t)υ(t) − ατ ′(t)
ρ1/α(t)r1/α[τ(t)]

υ(α+1)/α(t) ≤ 1

(α + 1)α+1

r[τ(t)](ζ+(t))
α+1ρ(t)

(τ ′(t))α
. (3.41)

Thus, from (3.37), we get

ω(t) −ω(t2) +
pα[σ(t)]
τ ′(t)

υ(t) − pα[σ(t2)]
τ ′(t2)

υ(t2)

≤ −
∫ t

t2

ρ(s)

{
Q(s)
2α−1

− r[τ(s)]

(α + 1)α+1(τ ′(s))α

[(
ρ′+(s)
ρ(s)

)α+1

+
pα[σ(s)](ζ+(s))

α+1

τ ′(s)

]}
ds,

(3.42)

which contradicts (3.27). This completes the proof.

When p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, where p0, τ0 are constants, we obtain the following
result.

Theorem 3.4. Suppose that (1.5) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, τ(t) ≤ t, σ(t) ≥ τ(t) for
t ≥ t0. Furthermore, assume that there exists a function ρ ∈ C([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[τ(s)]

(
ρ′+(s)

)α+1

(
τ0ρ(s)

)α
]
ds = ∞. (3.43)

Then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Using (1.1)
and the definition of z, we obtain (3.26) for all sufficiently large t. The remainder of the proof
is similar to that of Theorem 3.3 and hence is omitted.

4. Oscillation Criteria for the Case (1.13)

In this section, we will establish some oscillation criteria for (1.1) under the case (1.13).
In the following, we assume that p0, τ0 are constants.
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Theorem 4.1. Suppose that (1.13) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, σ(t) ≤ t, σ ∈
C([t0,∞),R), σ ′(t) > 0, σ(t) ≤ τ(t) for t ≥ t0. Further, assume that there exists a function
ρ ∈ C([t0,∞), (0,∞)) such that (3.24) holds. If there exists a function η ∈ C1([t0,∞),R), η(t) ≥
t, η′(t) > 0 for t ≥ t0 such that

lim sup
t′ →∞

∫ t′

t0

[
Q(s)
2α−1

δα(s) −
(

1 +
pα0
τ0

)( α

α + 1

)α+1 η′(s)
δ(s)r1/α

[
η(s)

]
]
ds = ∞, (4.1)

then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 and x[σ(t)] > 0 for all t ≥ t1. Proceeding as in
the proof of Theorem 3.2, we get (3.26). In view of (1.1), we have (3.4). Thus, r(t)|z′(t)|α−1z′(t)
is decreasing function. Now we have two possible cases for z′(t) : (i) z′(t) < 0 eventually and
(ii) z′(t) > 0 eventually.

(i) Suppose that z′(t) > 0 for t ≥ t2 ≥ t1. Then, by Theorem 3.2, we obtain a
contradiction with (3.24).

(ii) Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. We define the function u by

u(t) = −r(t)(−z
′(t))α

zα
[
η(t)
] , t ≥ t2. (4.2)

Then u(t) < 0. Noting that r(t)(−z′(t))α is increasing, we get

r1/α(s)z′(s) ≤ r1/α(t)z′(t), s ≥ t ≥ t2. (4.3)

Dividing the above inequality by r1/α(s), and integrating it from η(t) to t′, we obtain that

z
(
t′
) ≤ z

[
η(t)
]
+ r1/α(t)z′(t)

∫ t′

η(t)

ds
r1/α(s)

. (4.4)

Letting t′ → ∞, we have

0 ≤ z
[
η(t)
]
+ r1/α(t)z′(t)δ(t), (4.5)

that is,

−δ(t)r
1/α(t)z′(t)
z
[
η(t)
] ≤ 1. (4.6)

Hence, by (4.2), we get

−δα(t)u(t) ≤ 1. (4.7)
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Similarly, we define the function v by

v(t) = −r[τ(t)](−z
′[τ(t)])α

zα
[
η(t)
] , t ≥ t2. (4.8)

Then v(t) < 0. Noting that r(t)(−z′(t))α is increasing, we get the following:

r(t)
(−z′(t))α ≥ r[τ(t)]

(−z′[τ(t)])α. (4.9)

Thus 0 < −v(t) ≤ −u(t). So by (4.7), we see that

−δα(t)v(t) ≤ 1. (4.10)

Differentiating (4.2), we obtain that

u′(t) =

(−r(t)(−z′(t))α)′zα[η(t)] + αr(t)(−z′(t))αzα−1[η(t)]z′[η(t)]η′(t)

z2α
[
η(t)
] , (4.11)

by (3.4), and we have z′[η(t)] ≤ (r(t)/r[η(t)])1/αz′(t), so

u′(t) ≤
(−r(t)(−z′(t))α)′

zα
[
η(t)
] − α

η′(t)
r1/α
[
η(t)
](−u(t))(α+1)/α. (4.12)

Similarly, we see that

v′(t) ≤
(−r[τ(t)](−z′[τ(t)])α)′

zα
[
η(t)
] − α

η′(t)
r1/α
[
η(t)
](−v(t))(α+1)/α. (4.13)

Therefore, by (4.12) and (4.13), we get the following:

u′(t) +
pα0
τ0

v′(t) ≤
(−r(t)(−z′(t))α)′

zα
[
η(t)
] +

pα0
τ0

(−r[τ(t)](−z′[τ(t)])α)′
zα
[
η(t)
]

− α
η′(t)

r1/α
[
η(t)
](−u(t))(α+1)/α − αpα0

τ0

η′(t)
r1/α
[
η(t)
] (−v(t))(α+1)/α.

(4.14)

Using (3.26) and (4.14), we obtain that

u′(t) +
pα0
τ0

v′(t) ≤ −Q(t)
2α−1

− α
η′(t)

r1/α
[
η(t)
](−u(t))(α+1)/α − αpα0

τ0

η′(t)
r1/α
[
η(t)
] (−v(t))(α+1)/α. (4.15)
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Multiplying (4.15) by δα(t), and integrating it from t2 to t′, we have

u
(
t′
)
δα(t′) − u(t2)δα(t2) + α

∫ t′

t2

δα−1(s)η′(s)u(s)
r1/α
[
η(s)

] ds + α

∫ t′

t2

η′(s)δα(s)
r1/α
[
η(s)

] (−u(s))(α+1)/αds

+
pα0
τ0

v
(
t′
)
δα(t′) − pα0

τ0
v(t2)δα(t2) +

αpα0
τ0

∫ t′

t2

δα−1(s)η′(s)v(s)
r1/α
[
η(s)

] ds

+
αpα0
τ0

∫ t′

t2

η′(s)δα(s)
r1/α
[
η(s)

](−v(s))(α+1)/αds +
∫ t′

t2

Q(s)
2α−1

δα(s)ds ≤ 0.

(4.16)

Using (3.19), (4.7), and (4.10), we find that

∫ t′

t2

[
Q(s)
2α−1

δα(s) −
(

1 +
pα0
τ0

)( α

α + 1

)α+1 η′(s)
δ(s)r1/α

[
η(s)

]
]

ds ≤ u(t2)δα(t2) +
pα0
τ0

v(t2)δα(t2)

+ 1 +
pα0
τ0

.

(4.17)

Letting t′ → ∞, we obtain a contradiction with (4.1). This completes the proof.

From Theorems 3.4 and 4.1, we have the following result.

Theorem 4.2. Suppose that (1.13) holds, p(t) ≤ p0 < ∞, τ ′(t) ≥ τ0 > 0, τ(t) ≤ t, σ(t) ≥ τ(t) for
t ≥ t0. Further, assume that there exists a function ρ ∈ C([t0,∞), (0,∞)) such that (3.43) holds. If
there exists a function η ∈ C1([t0,∞),R), η(t) ≥ t, η′(t) > 0, σ(t) ≤ η(t) for t ≥ t0 such that (4.1)
holds, then (1.1) is oscillatory.

5. Examples

In this section, we will give some examples to illustrate the main results.

Example 5.1. Study the second-order neutral differential equation

[∣∣(x(t) + tx(t − λ1))
′∣∣α−1(x(t) + tx(t − λ1))

′
]′
+ β|x(t − λ2)|α−1x(t − λ2) = 0, t ≥ t0, (5.1)

where α ≥ 1, 0 < λ1 ≤ λ2 < 1, β > 0 are constants.

Let r(t) = 1, p(t) = t, ρ(t) = 1. It is easy to see that all the conditions of Theorem 3.1
hold. Hence, (5.1) is oscillatory.

Example 5.2. Consider the second-order quasilinear neutral differential equation

[∣∣∣(x(t) + p(t)x(λ1t)
)′∣∣∣

α−1(
x(t) + p(t)x(λ1t)

)′]′ + β

tα+1
|x(λ2t)|α−1x(λ2t) = 0, t ≥ t0, (5.2)

where α ≥ 1, β > 0 are constants, λ1, λ2 ∈ (0, 1), λ2 ≤ λ1.
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Let r(t) = 1, 0 ≤ p(t) ≤ p0 < ∞, q(t) = β/tα+1, τ(t) = λ1t, σ(t) = λ2t, and ρ(t) = tα.
Then, we have

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[σ(s)]

(
(ρ′(s)+

)α+1

(
ρ(s)σ ′(s)

)α
]

ds

=

[
β

2α−1
− αα+1

(α + 1)α+1λα2

(
1 +

pα0
λ1

)]
lim sup

t→∞

∫ t

t0

ds
s

= ∞,

(5.3)

if β > 2α−1αα+1(1 + pα0/λ1)/[(α + 1)α+1λα2]. Hence, by Theorem 3.2, (5.2) is oscillatory if

β >
2α−1αα+1

(α + 1)α+1λα2

(
1 +

pα0
λ1

)
. (5.4)

Example 5.3. Investigate the second-order neutral differential equation

[
x(t) +

(t − 1)(t − 4π)
t

x(t − 4π)
]′′

+ (t − 2π)x(t − 2π) = 0, t ≥ t0. (5.5)

Let r(t) = 1, p(t) = (t − 1)(t − 4π)/t, q(t) = t − 2π, and ρ(t) = 1. It is easy to see that
all the conditions of Theorem 3.3 hold. Hence, (5.5) is oscillatory, for example, x(t) = sin t/t
is a solution of (5.5).

Example 5.4. Discuss the second-order quasilinear neutral differential equation

[∣∣∣(x(t) + p(t)x(λ1t)
)′∣∣∣

α−1(
x(t) + p(t)x(λ1t)

)′]′ + β

tα+1
|x(λ2t)|α−1x(λ2t) = 0, t ≥ t0, (5.6)

where α ≥ 1, β > 0 are constants, λ1 ∈ (0, 1), λ2 ∈ [λ1,∞).

Let r(t) = 1, 0 ≤ p(t) ≤ p0 < ∞, q(t) = β/tα+1, τ(t) = λ1t, σ(t) = λ2t, ρ(t) = tα. Then,
we have

lim sup
t→∞

∫ t

t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

pα0
τ0

)
r[τ(s)]

(
ρ′(s)+

)α+1

τ0
(
ρ(s)

)α
]

ds

=

[
β

2α−1
− αα+1

(α + 1)α+1λα1

(
1 +

pα0
λ1

)]
lim sup

t→∞

∫ t

t0

ds
s

= ∞
(5.7)

if β > 2α−1αα+1(1 + pα0/λ1)/[(α + 1)α+1λα1]. Hence, by Theorem 3.4, (5.6) is oscillatory if

β >
2α−1αα+1

(α + 1)α+1λα1

(
1 +

pα0
λ1

)
. (5.8)
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Example 5.5. Examine the second-order quasilinear neutral differential equation

[
t2α
∣∣∣(x(t) + p(t)x(λ1t)

)′∣∣∣
α−1(

x(t) + p(t)x(λ1t)
)′]′ + βtα−1|x(λ2t)|α−1x(λ2t) = 0, t ≥ t0, (5.9)

where α ≥ 1, β > 0 are constants, λ1, λ2 ∈ (0, 1), λ2 ≤ λ1.

Let r(t) = t2α, 0 ≤ p(t) ≤ p0 < ∞, q(t) = βtα−1, τ(t) = λ1t, σ(t) = λ2t, and ρ(t) = 1.
Then, Q(t) = βλα−1

1 tα−1. It is easy to see that (3.24) holds. On the other hand, taking η(t) = t,
then δ(t) = 1/t. Therefore, one has

lim sup
t′ →∞

∫ t′

t0

[
Q(s)
2α−1

δα(s) −
(

1 +
pα0
τ0

)( α

α + 1

)α+1 η′(s)
δ(s)r1/α

[
η(s)

]
]

ds

=
[

β

2α−1
λα−1

1 − 1
2

(
1 +

pα0
λ1

)( α

α + 1

)α+1
]

lim sup
t′ →∞

∫ t′

t0

ds
s

= ∞
(5.10)

if β > 2α−2(1 + pα0/λ1)(α/α + 1)α+1/λα−1
1 . Thus, by Theorem 4.1, (5.9) oscillates if

β >
2α−2

λα−1
1

(
1 +

pα0
λ1

)( α

α + 1

)α+1
. (5.11)

6. Conclusions

Inequality technique plays an important role in studying the oscillatory behavior of
differential equations; in this paper, we establish a new inequality (2.1); by using (2.1) and
Riccati substitution, we establish some new oscillation criteria for (1.1). Theorem 3.1 can
be applied to the case τ(t) ≥ t. Specially, taking α = 1, our results include and improve
the results in [15]; for example, and Theorem 4.1 includes [15, Theorem 3.1], Theorem 4.2
includes [15, Theorem 3.2]. The method can be applied on the second-order Emden-Fowler
neutral differential equations

[
r(t)
(
x(t) + p(t)x(τ(t))

)′]′ + q(t)|x(δ(t))|α−1x(δ(t)) = 0, t ≥ t0, (6.1)

where α ≥ 1. It would be interesting to find another method to investigate (1.1) when τ ◦
σ /≡σ ◦ τ .
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The paper deals with nonlinear differential systems with random parameters in a general form. A
new method for construction of the Lyapunov functions is proposed and is used to obtain sufficient
conditions for L2-stability of the trivial solution of the considered systems.

1. Introduction

1.1. The Aim of the Contribution

The method of Lyapunov functions is one of the most effective methods for investigation
of self-regulating systems. It is important for determining the fact of stability or instability
of given systems among other purposes. A successfully constructed Lyapunov function
for given nonlinear self-regulating systems makes it possible to solve all the complex
problems important in practical applications such as estimation of changes of a self-regulated
variable, estimation of transient processes, estimation of integral criteria of the quality of self-
regulation, or estimation of what is called guaranteed domain of stability.

In [1] it is explained why not every positive definite function can serve as a Lyapunov
function for a system of differential equations. As experience shows, the most suitable
Lyapunov functions have physical meaning. The Lyapunov function method is an effective
method for the investigation of stability of linear or nonlinear differential systems that are
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explicitly independent of time (see, e.g., [1–9]). But there are no universal methods for
constructing appropriate Lyapunov functions because, as well-known, in nonlinear differen-
tial systems, each case considered requires an individual method for constructing a Lyapunov
function.

However, the method of Lyapunov functions is often difficult to apply to the inves-
tigation of some kinds of stability of nonstationary differential systems because the concept
of Lyapunov stability can make the Lyapunov functions inconvenient to use. This problem
was solved by a new definition of what is called L2-stability of the trivial solution of the
nonstationary differential (or difference) systems [10, 11], which is compatible with the
method of Lyapunov functions.

In this paper, we deal with much more complicated investigation of the Lyapunov
stability of differential systems with random parameters. We define a concept of L2-stability
of the trivial solution of the differential systems with semi-Markov coefficients and give an
analogy between the L2-stability and the stability obtained by Lyapunov functions. A new
method of constructing Lyapunov functions is proposed for the study of stability of systems,
and Lyapunov functions are derived for systems of differential equations with coefficients
depending on a semi-Markov process. Sufficient conditions of stability are given, and it is
proved that the condition of L2-stability implies the existence of Lyapunov functions. In
addition to this, the case of the coefficients of the considered systems depending on Markov
process is analyzed.

1.2. Systems Considered

In this part, a new concept of semi-Markov function is proposed. It will be used later for the
construction of Lyapunov functions.

Consider nonlinear n-dimensional differential system

dX(t)
dt

= F(t, X(t), ξ(t)), F(t, 0, ξ) = 0, (1.1)

on the probability space (Ω ≡ {ω},T,P,F ≡ {Ft : t ≥ 0}). A vector-function X = X(t), t ≥ 0,
is called a solution of (1.1) if X(t) is a random vector-function from the set of random vector-
functions defined on Ω, there exists mathematical expectation of {X2(t)}, and (1.1) is satisfied
for t ≥ 0. The derivative is understood in the meaning of differentiability of a random process
[12].

A space of solutions X can be interpreted as a phase space of states of a random
environment. Measurable subsets of a random environment form a collection of its states.
As a phase space of states serves a complete metric separable space (as a rule the Euclidean
space or a finite space equipped with σ-algebra of all subsets of X). Under assumptions of our
problem (and in similar problems as well), solutions are defined in the meaning of a strong
solution of the Cauchy problem [13].

Together with (1.1), we consider the initial condition

X(0) = ϕ(ω), ϕ : Ω → R
n. (1.2)

In fact, any solution X(t) of (1.1) depends on the random variable ω, that is, X(t) ≡ X(t, ω).
The random process ξ(t), t ≥ 0, is a semi-Markov process with the states

θ1, θ2, . . . , θn. (1.3)
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We assume ξ(t0) = 0 where t0 = 0, and moments of jumps tj , j = 0, 1, . . . , n, t0 < t1 < · · · < tn
of the process ξ are such that ξ(tj) = limt→ tj+0ξ(t) and ξ(t) = θs, s ∈ {1, 2, . . . , n} if tj ≤ t < tj+1,
j = 0, 1, . . . , n − 1.

The transition from state θl to state θs is characterized by the intensity qls(t), l, s = 1,
2, . . . , n, and the semi-Markov process is defined by the intensity matrix

Q(t) =
(
qls(t)

)n
l,s=1, (1.4)

whose elements satisfy the relationships

qls(t) ≥ 0,
n∑
l=1

∫∞

0
qls(t)dt = 1. (1.5)

Let mutually different functions ws(t, x), s = 1, 2, . . . , n, be defined for t > 0, x ∈ R
n.

Definition 1.1. The function w(t, x, ξ(t)) is called a semi-Markov function if the equalities

w(t, x, ξ(t) = θs) = ws

(
t − tj , x

)
, s = 1, 2, . . . , n (1.6)

hold for tj ≤ t ≤ tj+1.

It means that the semi-Markov function w(t, x, ξ(t)) is a functional of a random process
ξ(t). The value of w(t, x, ξ(t)) is determined by the values t, x, ξ(t) at the time t and also by
the value of the jump of the process ξ(t) at time tj , which precedes time t. In fact, the system
(1.1) means n different differential systems in the form

dX(t)
dt

= Fs(t, X(t)), s = 1, 2, . . . , n, (1.7)

where

Fs(t, x) ≡ F(t, x, θs). (1.8)

We assume that there exists a unique solution of (1.7) for every point (t, x) such that t ≥ 0,
‖x‖ < ∞ (‖ · ‖ stands for Euclidean norm), continuable on [0,∞).

1.3. Auxiliaries

In the paper, in addition to what was mentioned above, the following notations and assump-
tions are introduced:

(1) the functions Fs(t, x), s = 1, 2, . . . , n, are Lipschitz functions with the Lipschitz con-
stants ρs, that is, the inequalities

∥∥Fs(t, x) − Fs

(
t, y

)∥∥ ≤ ρs
∥∥x − y

∥∥, s = 1, 2, . . . , n (1.9)

hold.
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(2) If x = 0, then

Fs(t, 0) ≡ 0, s = 1, 2, . . . , n, t ≥ 0. (1.10)

(3) The inequalities

‖Ns(t, x)‖ ≤ ρse
−αst, s = 1, . . . , n, t ≥ 0 (1.11)

are valid. Here ρs, s = 1, . . . , n are the Lipschitz constants, αs, s = 1, . . . , n are positive
constants, and Ns(t, X(0)), s = 1, . . . , n is the solution X(t) of (1.7) in the Cauchy
form, that is,

X(t) = Ns(t, X(0)), s = 1, 2, . . . , n. (1.12)

(4) We introduce the Lyapunov functional

V =
∫∞

0
E(w(t, x, ξ(t)))dt, (1.13)

where E(·) denotes mathematical expectation, and we assume that the integral is
convergent.

Definition 1.2. The trivial solution of the differential systems (1.1) is said to be L2-stable if, for
any solution X(t) with bounded initial values of the mathematical expectation

E(X(0)X∗(0)), (1.14)

the integral

J =
∫∞

0
E
(
‖X(t)‖2

)
dt (1.15)

converges.

Remark 1.3. It is easy to see that (1.15) converges if and only if the matrix integral

∫∞

0
E(X(t)X∗(t))dt (1.16)

is convergent.

Lemma 1.4. Let the function w(t, x, ξ) be bounded, that is, there exists a constant β such that the
inequalities

0 ≤ w(x) ≤ w(t, x, ξ) ≤ β‖x‖2, for ξ = θs, s = 1, 2, . . . , n, (1.17)
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or the inequalities

0 ≤ w(x) ≤ ws(t, x) ≤ β‖x‖2, s = 1, . . . , n (1.18)

hold where w(x) is a positive definite and differentiable function satisfying the inequality

E(w(X(t))) ≤ E(w(t, X(t), ξ(t))) ≤ βE
(
‖X(t)‖2

)
. (1.19)

Let, moreover, the Lyapunov functional (1.13) exist for the system (1.7) with an L2-stable trivial
solution.

Then the Lyapunov functional (1.13) can be expressed in the form

V =
∫

En

n∑
s=1

vs(x)fs(0, x)dx, dx ≡ dx1 · · ·dxn (1.20)

if the particular Lyapunov functions

vs(x) =
∫∞

0
E(w(t, X(t), ξ(t)) | X(0) = x, ξ(0) = θs)dt, s = 1, . . . , n (1.21)

are known.

Proof. The functions vs(x), s = 1, . . . , n, will be defined using auxiliary functions

us(t, x) = E(w(t, X(t), ξ(t)) | X(0) = x, ξ(0) = θs), s = 1, . . . , n. (1.22)

The mathematical expectation in (1.22) can be calculated by the transition intensities qls(t),
l, s = 1, . . . , n, t ≥ 0

Ψs(t) =
∫∞

t

qs(τ)dτ, qs(t) ≡
n∑
l=1

qls(t), s = 1, . . . , n, (1.23)

whence the system

us(t, x) = Ψs(t)ws(t, Xs(t, x)) +
n∑
l=1

∫ t

0
qls(τ)ul(t − τ,Ns(τ, x))dτ, s = 1, . . . , n (1.24)

is obtained. Integrating the system of equations (1.24) with respect to t, we get the system of
functional equations

vs(x) =
∫∞

0
Ψs(t)ws(t,Ns(t, x))dt

+
n∑
l=1

∫∞

0

[∫ t

0
qls(τ)vl(t − τ,Ns(τ, x))dτ

]
dt, s = 1, . . . , n,

(1.25)
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for

vs(x) =
∫∞

0
us(t, x)dt, s = 1, . . . , n. (1.26)

The system (1.25) thus obtained can be solved by successive approximations

v0
s(x) ≡ 0, s = 1, . . . , n, v(α+1)

s (x)

=
∫∞

0
Ψs(t)ws(t,Ns(t, x))dt

+
n∑
l=1

∫∞

0
qls(t)v

(α)
l (Ns(t, x))dt, s = 1, . . . , n, α = 0, 1, 2, . . . .

(1.27)

2. Main Results

2.1. The Case of a Semi-Markovian Random Process ξ(t)

Theorem 2.1. Let the functions Fs(t, x), s = 1, 2, . . . , n, in the system (1.7) satisfy conditions
(1.9), (1.11), let the semi-Markov process ξ(t) be determined by the transition intensities qls(t), l, s =
1, . . . , n, t ≥ 0 satisfying (1.5), and let the functions w(t, x, ξ(t)) satisfy (1.17). Then the following
statements are true.

(1) The relationships

v
(α)
s (x) ≤ C

(α)
s ‖x‖2, s = 1, . . . , n, α = 0, 1, . . . , (2.1)

∫∞

0
Ψs(t)e−2αstdt < ∞,

∫∞

0
qs(t)e−2αstdt < ∞, s = 1, . . . , n, (2.2)

imply that, for the system (1.7), the particular Lyapunov functions can be established in the
form

vs(x) = Ψs(t)ws(t,Ns(t, x)) +
n∑
l=1

∫ t

0
qls(τ)vl(Ns(τ, x))dτ, s = 1, . . . , n, (2.3)

(2) If the spectral radius of the matrix Γ = (γls)
n
l,s=1 is less than one, then the particular

Lyapunov functions vs(x), s = 1, . . . , n, can be found by the method of successive
approximations (1.27).

(3) Under assumption (1.11), the method of successive approximations (1.27) converges and
the inequalities

v
(α+1)
s ≥ v

(α)
s (x), v

(α)
s (x) ≤ vs(x), s = 1, . . . , n (2.4)

hold. Then the sequence of functions v
(α)
s (x), s = 1, . . . , n, α = 0, 1, 2, . . ., is monotone

increasing and bounded from above by the functions vs(x), s = 1, . . . , n.
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Proof. Applying estimation (2.1) and assumption (2.2) to the successive approximations
(1.27), we get

C
(α+1)
s ≤ βρ2

s

∫∞

0
Ψs(t)e−2αstdt

+ ρ2
s

n∑
l=1

∫∞

0
qls(t)e−2αstdtC

(α)
l

, s = 1, . . . , n, α = 0, 1, 2, . . . .

(2.5)

It is sufficient to assume the existence of a bounded solution of the system of inequalities (2.1)
whence the existence follows of a positive solution of the system of linear algebraic equations
(2.3). Moreover, assumption (2.2) guarantees the convergence of the improper integrals in the
system (1.27) and so, for the existence of a positive solution of the system (2.3), it is sufficient
that the spectral radius ρ(Γ) of the matrix

Γ =
(
γls

)n
l,s=1 (2.6)

is less than one. For this, it is sufficient that

n∑
l=1

γls ≡ ρ2
s

∫∞

0
qs(t)t−2αstdt < 1, s = 1, . . . , n. (2.7)

The convergence of the sequence v
(α)
s (x), s = 1, . . . , n, α = 0, 1, 2, . . ., can be determined by the

system

v
(α+1)
s (x) − v

(α)
s (x)

=
n∑
l=1

∫∞

0
qls(t)

[
v
(α)
l (Ns(t, x)) − v

(α−1)
l (Ns(t, x))

]
dt, s = 1, . . . , n, α = 1, 2, 3, . . . .

(2.8)

If there exist the inequalities

∣∣∣v(α)
s (x) − v

(α−1)
s (x)

∣∣∣ ≤
n∑
l=1

∫∞

0
qls(t)ρ2

se
−2αstdt d

(α)
s ‖x‖2, s = 1, . . . , n, (2.9)

where

d
(α+1)
s =

n∑
l=1

γsld
(α)
l

, s = 1, . . . , n, (2.10)

hold, then estimation (2.4) is true for all α = 2, 3, . . ., d(1)
s = Cs, s = 1, . . . , n.

Under assumptions (2.8), it follows

lim
α→+∞

d
(α)
s = 0, s = 1, . . . , n, (2.11)

which implies a uniform convergence of the sequence v
(α)
s (x), s = 1, . . . , n, α = 0, 1, 2, . . . .
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Corollary 2.2. If the trivial solution of the differential systems (1.1) is L2-stable, then there exist
particular Lyapunov functions vs(x), s = 1, . . . , n that satisfy (2.3).

Corollary 2.3. Let the function w(t, x, ξ(t)) satisfy the inequality:

β1‖x‖2 ≤ w(t, x, ξ(t)) ≤ β‖x‖2, β1 > 0. (2.12)

If there exist the Lyapunov functions vs(x), s = 1, . . . , n for the system (1.21), then the trivial solution
of the differential systems (1.1) is L2-stable.

Corollary 2.4. Let the semi-Markov process ξ(t) in the system (1.1) have jumps at the times tj , j =
0, 1, 2, . . ., t0 = 0, in the transition from state θs to state θl, and let the jumps satisfy the equation

X
(
tj
)
= Φls

(
X
(
tj − 0

))
, Φls(0) = 0, j = 1, 2, . . . , (2.13)

where Φls(x) are any continuous Lipschitz vector functions. Then the system (2.3) has the form

vs(x) =
∫∞

0
Ψs(t)ws(t,Ns(t, x))dt

+
n∑
l=1

∫∞

0
qls(t)vs(Φls(Ns(t, x)))dt, s = 1, . . . , n,

(2.14)

and its solution can be found by the method of successive approximations.

2.2. The Case of a Markovian Random Process ξ(t)

Next result relates to the case of the semi-Markov process ξ(t) being transformed into a
Markov process described by the system of ordinary differential equations:

dP

dt
= AP(t), A = (als)nl,s=1, (2.15)

under the influence of which the considered system

dX(t)
dt

= F(X(t), ξ(t)), F(0, ξ(t)) ≡ 0, (2.16)

takes the form

dX(t)
dt

= Fs(X(t)), s = 1, . . . , n. (2.17)

We also assume that, if tj ≤ t < tj+1, ξ(t) = θs, then

w(t, x, ξ(t)) = ws(x), ws(0) = 0, s = 1, . . . , n. (2.18)
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Then the system of equations (2.14) has the form

vs(x) =
∫∞

0
easstws(Ns(t, x))dt +

n∑
l=1
l /= s

∫∞

0
alse

asstvl(Ns(t, x))dt, s = 1, . . . , n. (2.19)

Theorem 2.5. Let the nonlinear differential system (1.1), depending on the Markov process ξ(t),
be described by (2.15). Then the particular Lyapunov functions vs(x) satisfy the linear differential
system:

Dvs(x)
Dx

Fs(x) +ws(x) +
n∑
l=1

alsvl (x) = 0, s = 1, . . . , n. (2.20)

Proof. Let us write the solution of the system (2.17) in the Cauchy form:

X(t) = Ns(t − τ,X(τ)), s = 1, . . . , n. (2.21)

Differentiating (2.21) with respect to τ , we get

−∂Ns(t − τ,X(τ))
∂t

+
DNs(t − τ,X(τ))

DX(τ)
Fs(X(τ)) = 0, (2.22)

which, for τ = 0, X(0) = x, takes the form:

DNs(t, x)
Dx

Fs(x) ≡ ∂Ns(t, x)
∂x

, s = 1, . . . , n. (2.23)

Then

DNs(t, x)
Dx

Fs + assvs(x) = −
∫∞

0
asse

asst(ws(Ns(t, x))) +
n∑
l=1
l /= s

alse
asstvl(Ns(t, x))dt

+
∫∞

0
easst

∂

∂t
(ws(Ns(t, x))) +

n∑
l=1
l /= s

alsvl(Ns(t, x))dt

=
∫∞

0

∂

∂t

(
easst(ws(Ns(t, x)))

)

+
n∑
l=1
l /= s

alsvl(Ns(t, x))dt

= −
n∑
l=1
l /= s

alsvl(x),

(2.24)
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which implies (2.20) if

lim
t→+∞

eαsst(ws(Ns(t, x))) +
n∑
l=1
l /= s

alsvl(Ns(t, x)) = 0, s = 1, . . . , n (2.25)

and the functions ws(x), vs(x), s = 1, . . . , n are differentiable.

Corollary 2.6. If the solutions of the system (2.16) have the same jumps as the solution of the system
(2.14) and converge to the jumps of the Markov process ξ(t) such that Φls(x) ≡ E, l = 1, . . . , n, then
the system (2.19) takes the form

vs(x) =
∫∞

0
easstws(Ns(t, x))dt

+
n∑
l=1
l /= s

∫∞

0
alse

asstvl(Φls(Ns(t, x)))dt, s = 1, . . . , n,
(2.26)

and the system (2.20) takes the form

Dvs(x)
Dx

= Fs(x) +
n∑
l=1

alsvl(Φls(x)) = −ws(x), s = 1, . . . , n. (2.27)

Example 2.7. Let us investigate the stability of solutions of two-dimensional system

dX(t)
dt

= (ν − λ − α)X(t) +G(X(t), ξ(t)), α + λ > ν, α > 0, (2.28)

where ξ(t) is a random Markov process having two states θ1, θ2 with probabilities pk =
P{ξ(t) = θk}, k = 1, 2, that satisfy the equations

dp1(t)
dt

= −λp1(t) + νp2(t),

dp2(t)
dt

= λp1(t) − νp2(t),

(2.29)

where λ > 0. The random matrix function G is known:

G1(x) = G(x, θ1) =
(−γ1x2 −x3

1
γ1x1 −x3

2

)
,

G2(x) = G(x, θ2) =
(

γ2x2 −x3
1

−γ2x1 −x3
2

)
.

(2.30)
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Taking the positive definite functions

w1(x) = w2(x) = x2
1 + x2

2 +
1
α

(
x4

1 + x4
2

)
, x = (x1, x2), (2.31)

we can verify that the positive definite particular Lyapunov functions

ν1(x) = ν2(x) =
1

2α

(
x2

1 + x2
2

)
(2.32)

are the solutions to (2.20). Consequently, since the integral (1.13)

ν =
∫∞

0

〈
x2

1 + x2
2 +

1
α

(
x4

1 + x4
2

)〉
dt, (2.33)

is convergent, the zero solution of the considered system is L2-stable.
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The interval exponential state estimation and robust exponential stability for the switched interval
neural networks with discrete and distributed time delays are considered. Firstly, by combining
the theories of the switched systems and the interval neural networks, the mathematical model
of the switched interval neural networks with discrete and distributed time delays and the
interval estimation error system are established. Secondly, by applying the augmented Lyapunov-
Krasovskii functional approach and available output measurements, the dynamics of estimation
error system is proved to be globally exponentially stable for all admissible time delays. Both the
existence conditions and the explicit characterization of desired estimator are derived in terms of
linear matrix inequalities (LMIs). Moreover, a delay-dependent criterion is also developed, which
guarantees the robust exponential stability of the switched interval neural networks with discrete
and distributed time delays. Finally, two numerical examples are provided to illustrate the validity
of the theoretical results.

1. Introduction

In the past few decades, the different models of neural networks such as Hopfield neural
networks, Cohen-Grossberg neural networks, cellular neural networks, and bidirectional
associative memory neural networks have been extensively investigated due to their wide
applications in areas like associative memory, pattern classification, reconstruction of moving
images, signal processing, solving optimization problems, and so forth, see [1]. In almost
all applications about neural networks, a fundamental problem is the stability, which is the
prerequisite to ensure that the developed neural network can work [2–12]. In hardware
implementation of the neural networks, time delay is inevitably encountered and is usually
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discrete and distributed due to the finite switching speed of amplifiers. It is known that
time delay is often the main cause for instability and poor performance of neural networks.
Moreover, due to unavoidable factors, such as modeling error, external perturbation, and
parameter fluctuation, the neural networks model certainly involves uncertainties such as
perturbations, and component variations, which will change the stability of neural networks.
Therefore, it is of great importance to study the robust stability of neural networks with
time delays in the presence of uncertainties, see, for example, [11, 13–26] and the references
therein. There are mainly two forms of uncertainties, namely, the interval uncertainty and the
norm-bounded uncertainty. Recently, some sufficient conditions for the global robust stability
of interval neural networks with time delays and parametric uncertainties have been obtained
in terms of LMIs [13–16, 18].

A class of hybrid systems have attracted significant attention because it can model
several practical control problems that involve the integration of supervisory logic-based
control schemes and feedback control algorithms. As a special class of hybrid systems,
switched systems are regarded as nonlinear systems, which are composed of a family of
continuous-time or discrete-time subsystems and a rule that orchestrates the switching
between the subsystems. Recently, switched neural networks, whose individual subsystems
are a set of neural networks, have found applications in fields of high-speed signal processing,
artificial intelligence, and gene selection in a DNA microarray analysis [27–29]. Therefore,
some researchers have studied the stability issues for switched neural networks [19–24].
In [19], based on the Lyapunov-Krasovskii method and LMI approach, some sufficient
conditions were derived for global robust exponential stability of a class of switched Hopfield
neural networks with time-varying delay under uncertainty. In [20], by combining Cohen-
Grossberg neural networks with an arbitrary switching rule, the mathematical model of a
class of switched Cohen-Grossberg neural networks with mixed time varying delays were
established, and the robust stability for such switched Cohen-Grossberg neural networks
were analyzed. In [21], by employing nonlinear measure and LMI techniques, some new
sufficient conditions were obtained to ensure global robust asymptotic stability and global
robust stability of the unique equilibrium for a class of switched recurrent neural networks
with time-varying delay. In [22], a large class of switched recurrent neural networks
with time-varying structured uncertainties and time-varying delay were investigated, and
some delay-dependent robust periodicity criteria were derived to guarantee the existence,
uniqueness, and global asymptotic stability of periodic solution for all admissible parametric
uncertainties by taking free weighting matrices and LMIs. In [23], based on multiple
Lyapunov functions method and LMI techniques, the authors presented some sufficient
conditions in terms of LMIs, which guarantee the robust exponential stability for uncertain
switched Cohen-Grossberg neural networks with interval time-varying delay and distributed
time-varying delay under the switching rule with the average dwell time property. It should
be noted that, almost all results treated the robust stability for switched neural networks with
norm-bounded uncertainty in the above literature [19–23], there are few researchers to deal
with the global exponential robust stability for switched neural networks with the interval
uncertainty in the existing literature, despite its potential and practical importance in many
different areas such as system control and error analysis, see [14, 15].

The neuron states in relatively large-scale neural networks are not often completely
available in the network outputs. Thus, in many applications, one often needs to estimate
the neuron states through available measurements and then utilizes the estimated neuron
states to achieve certain design objectives. For example, in [30], a recurrent neural network
was applied to model an unknown system, and the neuron states of the designed neural
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network were then utilized by the control law. Therefore, from the point of view of control,
the state estimation problem for neural networks is of significance for many applications.
Recently, there are some results for the neuron state estimation problem of neural networks
with or without time delays in the existing available [31–35]. In [31, 32], the authors
studied state estimation for Markovian jumping recurrent neural networks with time-delays
by constructing Lyapunov-Krasovskii functionals and LMIs. In [33], the interconnection
matrix of neural networks are assumed to be norm-bounded. Through available output
measurements and by using LMI technique, the authors proved that the dynamics of
the estimation error was globally exponentially stable for all admissible time-delays for
delayed neural networks. In [34], based on the free-weighting matrix approach, a delay-
dependent criterion was established to estimate the neuron states through available output
measurements such that the dynamics of the estimation error was globally exponentially
stable for neural networks with time-varying delays. The results were applicable to the case
that the derivative of a time-varying delay takes any value. In [35], by using the Lyapunov-
Krasovskii functional approach, the authors presented the existence conditions of the state
estimators in terms of the solution to an LMI. In [36], the neuron activation function and
perturbed function of the measurement equation were assumed to be sector-bounded, an
LMI-based state estimator and a stability criterion for delayed Hopfield neural networks
are developed. In [37], based on augmented Lyapunov-Krasovskii functional and passivity
theory, the authors proved that the estimation error system was exponentially stable and
passive from the control input to the output error. A new delay-dependent state estimator
for switched Hopfield neural networks was achieved by solving LMIs obtained. In spite of
these advances in studying neural network state estimation, the state estimation problem for
switched interval neural networks has not been investigated in the literature, and it is very
important in both theories and applications.

Motivated by the preceding discussion, the aim of this paper is to present a new
class of neural network models, that is, switched interval neural networks with discrete and
distributed time delays, under interval parameter uncertainties by integrating the theory of
switched systems with neural networks. Based on Lyapunov stability theory and by using
available output measurements, the dynamics of estimation error system will be proved to
be globally exponentially stable for all admissible time delays. Both the existence conditions
and the explicit characterization of desired estimator are also derived in terms of LMIs.
In addition, a delay-dependent criterion will be derived such that the proposed switched
interval neural networks is globally robustly exponentially stable. The proposed criterion is
represented in terms of LMIs, which can be solved efficiently by using recently developed
convex optimization algorithms [38].

The rest of this paper is organized as follows. In Section 2, the model formulation
and some preliminaries are given. Section 3 treats switched exponential state estimation
problem for interval neural networks with discrete and distributed time delays. In Section 4,
the robust exponential stability is discussed and a delay-dependent criterion is developed.
Two numerical examples are presented to demonstrate the validity of the proposed results in
Section 5. Some conclusions are drawn in Section 6.

Notations. Throughout this paper, R denotes the set of real numbers, R
n denotes the n-

dimensional Euclidean space, and R
m×n denotes the set of all m × n real matrices. For

any matrix A, A > 0 (A < 0) means that A is positive definite (negative definite). A−1

denotes the inverse of A. AT denotes the transpose of A. λmax(A) and λmin(A) denote the
maximum and minimum eigenvalue of A, respectively. Given the vectors x = (x1, . . . , xn)

T ,
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y = (y1, . . . , yn)
T ∈ R

n, ‖x‖ = (
∑n

i=1 x
2
i )

1/2, xTy =
∑n

i=1 xiyi. For r > 0, C([−r, 0]; Rn)
denotes the family of continuous function ϕ from [−r, 0] to R

n with the norm ‖ϕ‖ =
sup−r≤s≤0|ϕ(s)|. ẋ(t) denotes the derivative of x(t), ∗ represents the symmetric form of matrix.
Matrices, if their dimensions not explicitly stated, are assumed to have compatible dimen-
sions for algebraic operations.

2. Neural Network Model and Preliminaries

The model of interval neural network with discrete and distributed time delays can be de-
scribed by differential equation system

ẋ(t) = −Ax(t) + B1g1(x(t − τ)) + B2

∫ t

t−h
g2(x(s))ds + J,

y(t) = Cx(t) + f(t, x(t)),

A ∈ Al, Bk ∈ B
(k)
l

, k = 1, 2,

(2.1)

where x(t) = (x1(t), . . . , xn(t))
T ∈ R

n is the vector of neuron states; y(t) = (y1(t), . . . , yn(t))
T ∈

R
m is the output vector; gi(x) = (gi1(x1), . . . , gin(xn))

T : R
n → R

n, i = 1, 2, are the vector-
valued neuron activation functions; f(t, x) is a mapping from R × R

n to R
m, which is the

neuron-dependent nonlinear disturbances on the network outputs; C = (cij)m×n is a known
constant matrix with appropriate dimension; J = (J1, . . . , Jn)

T is a constant external input
vector. τ , h denote the discrete and distributed time delays, respectively, and τ > 0, h > 0;
A = diag(a1, . . . , an) is an n × n constant diagonal matrices, ai > 0, i = 1, . . . , n, are the
neural self-inhibitions; Bk = (b(k)ij ) ∈ R

n×n, k = 1, 2, are the connection weight matrices; Al =

[A,A] = {A = diag(ai) : 0 < ai ≤ ai ≤ ai, i = 1, 2, . . . , n}, B(k)
l = [Bk, Bk] = {Bk = (b(k)ij ) : 0 <

b
(k)
ij ≤ b

(k)
ij ≤ b

(k)
ij , i, j = 1, 2, . . . , n} with A = diag(a1, a2, . . . , an), A = diag(a1, a2, . . . , an), Bk =

(b(k)ij )n×n, Bk = (b
(k)
ij )n×n.

The initial value associated with the system (2.1) is assumed to be x(s) = ϕ(s), ϕ(s) ∈
C([−r, 0]; Rn), r = max{τ, h}.

Throughout this paper, the following assumptions are made on gi(·), i = 1, 2, and
f(t, x).

(H1) For any two different s, t ∈ R,

0 ≤ gij(s) − gij(t)
s − t

≤ σij , i = 1, 2, j = 1, . . . , n, (2.2)

where Λi = diag(σi1, σi2, . . . , σin). σij > 0 is a constant, i = 1, 2, j = 1, 2, . . . , n.

(H2) For any two different x, y ∈ R
n,

∥∥f(t, x) − f
(
t, y
)∥∥ ≤ ∥∥F(x − y

)∥∥, (2.3)

where F ∈ R
n×n is a constant matrix.
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Based on some transformations [15], the system (2.1) can be equivalently written as

ẋ(t) = −[A0 + EAΣAFA]x(t) + [B10 + E1Σ1F1]g1(x(t − τ)) + [B20 + E2Σ2F2]
∫ t

t−h
g2(x(s))ds + J,

y(t) = Cx(t) + f(t, x(t)),
(2.4)

where ΣA ∈ Σ, Σk ∈ Σ, k = 1, 2.

Σ =
{

diag[δ11, . . . , δ1n, . . . , δn1, . . . , δnn] ∈ R
n2×n2

:
∣∣δij
∣∣ ≤ 1, i, j = 1, 2, . . . , n

}
,

A0 =
A +A

2
, HA =

[
αij

]
n×n =

A −A

2
· Bk0 =

Bk + Bk

2
, H

(k)
B =

[
βij
]
n×n =

Bk − Bk

2
,

EA =
[√

α11e1, . . . ,
√
α1ne1, . . . ,

√
αn1en, . . . ,

√
αnnen

]
n×n2 ,

FA =
[√

α11e1, . . . ,
√
α1nen, . . . ,

√
αn1e1, . . . ,

√
αnnen

]T
n2×n,

Ek =
[√

β
(k)
11 e1, . . . ,

√
β
(k)
1n e1, . . . ,

√
β
(k)
n1 en, . . . ,

√
β
(k)
nn en

]

n×n2
,

Fk =
[√

β
(k)
11 e1, . . . ,

√
β
(k)
1n en, . . . ,

√
β
(k)
n1 e1, . . . ,

√
β
(k)
nn en

]T
n2×n

,

(2.5)

where ei ∈ R
n denotes the column vector with ith element to be 1 and others to be 0.

The switched interval neural network with discrete and distributed time delays
consists of a set of interval neural network with discrete and distributed time delays and
a switching rule. Each of the interval neural networks was regarded as an individual
subsystem. The operation mode of the switched neural networks is determined by the
switching rule. According to (2.1), the switched interval neural network with discrete and
distributed delays can be represented as follows:

ẋ(t) = −Aσ(t)x(t) + B1σ(t)g1(x(t − τ)) + B2σ(t)

∫ t

t−h
g2(x(s))ds + J,

y(t) = Cσ(t)x(t) + f(t, x(t)),

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B
(k)
lσ(t)

, k = 1, 2,

(2.6)

where Alσ(t) = [Aσ(t), Aσ(t)] = {Aσ(t) = diag(aiσ(t) ) : 0 < aiσ(t)
≤ aiσ(t) ≤ aiσ(t) , i = 1, 2, . . . , n},

B
(k)
lσ(t)

= [Bkσ(t)
, Bkσ(t) ] = {Bkσ(t) = [b(k)ijσ(t)

] : 0 < b
(k)
ijσ(t)

≤ b
(k)
ijσ(t)

≤ b
(k)
ijσ(t) , i, j = 1, 2, . . . , n} with Aσ(t) =

diag(a1σ(t)
, a2σ(t)

, . . . , anσ(t)
), Aσ(t) diag(a1σ(t) , a2σ(t) , . . . , anσ(t) ), Bkσ(t)

= [b(k)ijσ(t)
]
n×n, Bkσ(t) = [b

(k)
ijσ(t) ]n×n

A0σ(t) =
Aσ(t) +Aσ(t)

2
, HAσ(t) =

[
αijσ(t)

]
n×n =

Aσ(t) −Aσ(t)

2
,

Bk0σ(t) =
Bkσ(t) + Bkσ(t)

2
, H

(k)
Bσ(t)

=
[
βijσ(t)

]
n×n =

Bkσ(t) − Bkσ(t)

2
,
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EAσ(t) =
[√

α11σ(t)e1, . . . ,
√
α1nσ(t)e1, . . . ,

√
αn1σ(t)en, . . . ,

√
αnnσ(t)en

]
n×n2

,

FAσ(t) =
[√

α11σ(t)e1, . . . ,
√
α1nσ(t)en, . . . ,

√
αn1σ(t)e1, . . . ,

√
αnnσ(t)en

]T
n2×n

,

Ekσ(t) =

[√
β
(k)
11σ(t)

e1, . . . ,

√
β
(k)
1nσ(t)

e1, . . . ,

√
β
(k)
n1σ(t)

en, . . . ,
√
β
(k)
nnσ(t)en

]

n×n2

,

Fkσ(t) =

[√
β
(k)
11σ(t)

e1, . . . ,

√
β
(k)
1nσ(t)

en, . . . ,

√
β
(k)
n1σ(t)

e1, . . . ,
√
β
(k)
nnσ(t)en

]T

n2×n
,

(2.7)

σ(t) : [0,+∞) → Γ = {1, 2, . . . ,N} is the switching signal, which is a piecewise constant
function of time. For any i ∈ {1, 2, . . . , l}, Ai = A0i + EAiΣAiFAi , Bki = Bk0i + EkiΣkiFki , and
ΣAi ∈ Σ, Σki ∈ Σ, k = 1, 2. This means that the matrices (Aσ(t), B1σ(t) , B2σ(t) ) are allowed to take
values, at an arbitrary time, in the finite set {(A1, B11 , B21), (A2, B12 , B22), . . . , (AN,B1N , B2N )}.
In this paper, it is assumed that the switching rule σ is not known a priori and its
instantaneous value is available in real time.

By (2.4), the system (2.6) can be rewritten as

ẋ(t) = −A0σ(t)x(t) + B10σ(t)g1(x(t − τ)) + B20σ(t)

∫ t

t−h
g2(x(s))ds + Eσ(t)Δσ(t)(t) + J,

y(t) = Cσ(t)x(t) + f(t, x(t)),

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B
(k)
lσ(t)

, k = 1, 2,

(2.8)

where Eσ(t) = [EAσ(t) , E1σ(t) , E2σ(t) ],

Δσ(t)(t) =

⎡
⎢⎢⎣

−ΣAσ(t)FAσ(t)x(t)
Σ1σ(t)F1σ(t)g1(x(t − τ))

Σ2σ(t)F2σ(t)

∫ t

t−h
g2(x(s))ds

⎤
⎥⎥⎦

= diag
{
ΣAσ(t) ,Σ1σ(t) ,Σ2σ(t)

}
⎡
⎢⎢⎣

−FAσ(t)x(t)
F1σ(t)g1(x(t − τ))

F2σ(t)

∫ t

t−h
g2(x(s))ds

⎤
⎥⎥⎦,

(2.9)

and Δσ(t)(t) satisfies the following matrix quadratic inequality:

ΔT
σ(t)(t)Δσ(t)(t) ≤

⎡
⎢⎢⎢⎢⎣

x(t)
g1(x(t − τ))
∫ t

t−h
g2(x(s))ds

⎤
⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎣

FT
Aσ(t)

FT
1σ(t)

FT
2σ(t)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

FT
Aσ(t)

FT
1σ(t)

FT
2σ(t)

⎤
⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎣

x(t)
g1(x(t − τ))
∫ t

t−h
g2(x(s))ds

⎤
⎥⎥⎥⎥⎦
. (2.10)
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Define the indicator function ξ(t) = [ξ1(t), ξ2(t), . . . , ξN(t)]T , where

ξi(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, when the switched system is described by the ith mode
A0i , Bk0i , k = 1, 2, Ei,

0, otherwise,

(2.11)

where i = 1, 2, . . . ,N. Therefore, the system model (2.8) can also be written as

ẋ(t) =
N∑
i=1

ξi(t)

{
−A0ix(t) + B10ig1(x(t − τ)) + B20i

∫ t

t−h
g2(x(s))ds + EiΔi(t) + J

}
,

y(t) =
N∑
i=1

ξi(t)
{
Cix(t) + f(t, x(t))

}
,

(2.12)

where
∑N

i=1 ξi(t) = 1 is satisfied under any switching rules.
In this paper, our main purpose is to develop an efficient algorithm to estimate the

neuron states x(t) in (2.12) from the available network outputs y(t) in (2.12). The full-order
state estimator is of the form

˙̂x(t) =
N∑
i=1

ξi(t)

{
−A0i x̂(t) + B10ig1(x̂(t − τ)) + B20i

∫ t

t−h
g2(x̂(s))ds

+EiΔ̂i(t) +Ki

[
y(t) − Cix̂(t) − f(t, x̂(t))

]
+ J

}
,

(2.13)

where x̂(t) is the estimation of the neuron state, and the matrix Ki ∈ R
n×m is the estimator

gain matrix to be designed.
Let the error state be e(t) = x(t) − x̂(t); then it follows from (2.12) and (2.13) that

ė(t) =
N∑
i=1

ξi(t)

{
(−A0i −KiCi)e(t) + B10i

[
g1(x(t − τ)) − g1(x̂(t − τ))

]

+ B20i

∫ t

t−h

[
g2(x(s)) − g2(x̂(s))

]
ds + Ei

[
Δi(t) − Δ̂i(t)

]

−Ki

[
f(t, x(t)) − f(t, x̂(t))

]}
.

(2.14)

For presentation convenience, set AKi = −A0i − KiCi, ψk(t) = gk(x(t)) − gk(x̂(t)), k =
1, 2, φ(t) = f(t, x(t)) − f(t, x̂(t)), Δi(t) = Δi(t) − Δ̂i(t). Then the system (2.14) becomes

ė(t) =
N∑
i=1

ξi(t)

{
AKie(t) + B10iψ1(t − τ) + B20i

∫ t

t−h
ψ2(s)ds + EiΔi(t) −Kiφ(t)

}
, (2.15)
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where

Δi(t) = diag{ΣAi ,Σ1i ,Σ2i}

⎡
⎢⎢⎢⎢⎣

−FAie(t)
F1iψ1(t − τ)

F2i

∫ t

t−h
ψ2(s)ds

⎤
⎥⎥⎥⎥⎦
, (2.16)

and it satisfies the following quadratic inequality

Δ
T

i (t)Δi(t) ≤

⎡
⎢⎢⎢⎢⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤
⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎣

FT
Ai

FT
1i

FT
2i

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

FT
Ai

FT
1i

FT
2i

⎤
⎥⎥⎥⎦

T
⎡
⎢⎢⎢⎢⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤
⎥⎥⎥⎥⎦
. (2.17)

The initial value associated with (2.15) is e(s) = φ(s), φ(s) ∈ C([−r, 0]; Rn), r =
max{τ, h}.

To obtain the main results of this paper, the following definitions and lemmas are
introduced.

Definition 2.1. For the switched estimation error-state system (2.15), the trivial solution is said
to be globally exponentially stable if there exist positive scalars α > 0 and β > 0 such that

∥∥e(t, φ)∥∥ ≤ α−βt∥∥φ∥∥, t ≥ 0, (2.18)

where e(t, φ) is the solution of the system (2.15) with the initial value e(s) = φ(s), φ(s) ∈
C([−r, 0]; Rn), r = max{τ, h}.

Lemma 2.2 (see [15]). Let Γ0(x) and Γ1(x) be two arbitrary quadratic forms overR
n, then Γ0(x) < 0

for all x ∈ R
n − {0} satisfying Γ1(x) ≤ 0 if and only if there exists ε ≥ 0 such that

Γ0(x) − εΓ1(x) < 0, ∀x ∈ R
n − {0}. (2.19)

Lemma 2.3 (Jensen’s Inequality). For any constant matrix Ω ∈ R
n×n, Ω = ΩT > 0, scalar γ > 0,

vector function ω : [t− γ, t] → R
n, t ≥ 0, such that the integrations concerned are well defined, then

(∫ t

t−γ
ω(s)ds

)T

Ω

(∫ t

t−γ
ω(s)ds

)
≤ γ

(∫ t

t−γ
ωT (s)Ωω(s)ds

)
. (2.20)

Lemma 2.4 (see [38]). The following LMI

[
E(x) H(x)
HT (x) F(x)

]
> 0, (2.21)
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where E(x) = ET (x), F(x) = FT (x), and H(x) depend on x, is equivalent to each of the following
conditions:

(1) E(x) > 0, F(x) −HT (x)E−1(x)H(x) > 0,

(2) F(x) > 0, E(x) −H(x)F−1(x)HT (x) > 0.
(2.22)

Lemma 2.5. Given any real matrices X, Y , and Q > 0 with appropriate dimensions, then the fol-
lowing matrix inequality holds:

XTY + YTX ≤ XTQX + YTQ−1Y. (2.23)

3. Switched Exponential State Estimation for
Interval Neural Networks

In this section, we will study the global exponential stability of the system (2.15) under
arbitrary switching rule. By constructing a suitable Lyapunov-Krasovskii functional, a delay-
dependent criterion for the global exponential stability of the estimation process (2.15) is
derived. The following theorem shows that this criterion can be obtained if a quadratic matrix
inequality involving several scalar parameters is feasible.

Theorem 3.1. If there exist scalars β > 0 and ε > 0, a matrix P > 0 and two diagonal matrices
Q1 > 0, Q2 > 0 such that the following quadratic matrix inequalities:

∏
i

=

⎡
⎢⎢⎢⎢⎢⎣

∏
i11

PB10i + FT
Ai
F1i PB20i + FT

Ai
F2i PEi

∗ −e−βτQ2 + FT
1i
F1i FT

1i
F2i 0

∗ ∗ − 1
h
e−βhQ2 + FT

2i
F2i 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.1)

are satisfied, where

∏
i11

= βP + (−A0i −KiCi)TP + P(−A0i −KiCi) +Q1Λ2
1 + hQ2Λ2

2

+ FT
Ai
FAi + εFTF + ε−1PKiK

T
i P,

(3.2)

then the switched error-state system (2.14) of the neural network (2.12) is globally exponentially stable
under any switching rules. Moreover, the estimate of the error-state decay can be given by

∥∥e(t, φ)∥∥ ≤ √
αe−(β/2)t∥∥φ∥∥, (3.3)

where α = (λmax(P) + τλmax(Q1Λ2
1) + (h2/2)λmax(Q2Λ2

2))/λmin(P).
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Proof. Consider the following Lyapunov-Krasovskii functional:

V (e(t), t) = eβteT (t)Pe(t) +
∫ t

t−τ
eβsψT

1 (s)Q1ψ1(s)ds +
∫ t

t−h

∫ t

θ

eβsψT
2 (s)Q2ψ2(s)dsdθ. (3.4)

Calculating the time derivative of V (e(t), t) along the solution e(t, φ) of the system (2.15), it
can follow that

V̇ (e(t), t) = βeβteT (t)Pe(t) + 2eβteT (t)Pė(t) + eβtψT
1 (t)Q1ψ1(t) − eβ(t−τ)ψT

1 (t − τ)Q1ψ1(t − τ)

−
∫ t

t−h
eβsψT

2 (s)Q2ψ2(s)ds +
∫ t

t−h
eβtψT

2 (t)Q2ψ2(t)dθ

= βeβteT (t)Pe(t) + 2eβteT (t)P

[
N∑
i=1

ξi(t)

{
AKie(t) + B10iψ1(t − τ) + B20i

∫ t

t−h
ψ2(s)ds

+EiΔi(t) −Kiφ(t)

}]
+ eβtψT

1 (t)Q1ψ1(t)

− eβ(t−τ)ψT
1 (t − τ)Q1ψ1(t − τ) −

∫ t

t−h
eβsψT

2 (s)Q2ψ2(s)ds +
∫ t

t−h
eβtψT

2 (t)Q2ψ2(t)dθ

=
N∑
i=1

ξi(t)

{
βeβteT(t)Pe(t) + 2eβteT(t)PAKie(t) + 2eβteT (t)PB10iψ1(t − τ)

+ 2eβteT (t)PB20i

∫ t

t−h
ψ2(s)ds + 2eβteT (t)PEiΔi(t)

+ 2eβteT (t)PKiφ(t) + eβtψT
1 (t)Q1ψ1(t) − eβ(t−τ)ψT

1 (t − τ)Q1ψ1(t − τ)

−
∫ t

t−h
eβsψT

2 (s)Q2ψ2(s)ds + heβtψT
2 (t)Q2ψ2(t)

}
.

(3.5)

By the assumption (H1) and Lemmas 2.3 and 2.5, we have

−
∫ t

t−h
eβsψT

2 (s)Q2ψ2(s)ds ≤ − 1
h
eβ(t−h)

(∫ t

t−h
ψ2(s)ds

)
Q2

(∫ t

t−h
ψ2(s)ds

)
, (3.6)

ψT
1 (t)Q1ψ1(t) ≤ eT(t)Q1Λ2

1e(t), (3.7)

ψT
2 (t)Q2ψ2(t) ≤ eT(t)Q2Λ2

2e(t), (3.8)

2eT (t)PKiφ(t) ≤ εφT (t)φ(t) + ε−1eT(t)PKiK
T
i Pe(t)

≤ eT(t)
[
εFTF + ε−1PKiK

T
i P
]
e(t).

(3.9)
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In the light of (3.7)–(3.10), we obtain that

V̇ (e(t), t) ≤
N∑
i=1

ξi(t)eβt
{
βeT (t)Pe(t) + 2eT (t)PAKie(t) + 2eT (t)PB10iψ1(t − τ)

+ 2eT (t)PB20i

∫ t

t−h
ψ2(s)ds + eT(t)PEiΔi(t) + eT(t)Q1Λ2

1e(t)

− e−τψT
1 (t − τ)Q1ψ1(t − τ) + eT(t)

[
εFTF + ε−1PKiK

T
i P
]
e(t)

− 1
h
e−βh
(∫ t

t−h
ψ2(s)ds

)
Q2

(∫ t

t−h
ψ2(s)ds

)
+ heT (t)Q2Λ2

2e(t)

}
.

(3.10)

This implies that

V̇ (e(t), t) − eβt
N∑
i=1

ξi(t)

⎛
⎜⎜⎜⎜⎜⎝

Δ
T

i (t)Δi(t) −

⎡
⎢⎢⎢⎢⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤
⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎣

FT
Ai

FT
1i

FT
2i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

FT
Ai

FT
1i

FT
2i

⎤
⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎣

e(t)
ψ1(t − τ)
∫ t

t−h
ψ2(s)ds

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

≤ eβt
N∑
i=1

ξi(t)FT (t)ΠiF(t),

(3.11)

where F(t) = [eT(t)ψT
1 (t − τ(t))(

∫ t
t−h ψ2(s)ds)

T
Δ

T

i (t)]
T

. By Lemma 2.2, (2.17) and (3.11), we
can obtain that V̇ (e(t), t) < 0 for all F(t)/= 0. Hence,

V (e(t), t) ≤ V (e(0), 0), t > 0. (3.12)

From (3.4), it is easy to get

V (e(0), 0) ≤
[
λmax(P) + τλmax

(
Q1Λ2

1

)
+
h2

2
λmax

(
Q2Λ2

2

)]∥∥φ∥∥2
. (3.13)

On the other hand, we also have

V (e(t), t) ≥ λmin(P)eβt‖e(t)‖2. (3.14)

By combining (3.12), (3.13), and (3.14), it follows that

‖e(t)‖ ≤ √
αe−(β/2)t∥∥φ∥∥, (3.15)

where α = (λmax(P)+τλmax(Q1Λ2
1)+(h

2/2)λmax(Q2Λ2
2))/λmin(P). The proof is completed.
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The inequalities in (3.1) are nonlinear and coupled, each involving many parameters.
Obviously, the inequalities in (3.1) are difficult to solve. A meaningful approach to tackling
such a problem is to convert the nonlinearly coupled matrix inequalities into LMIs, while
the estimator gain is designed simultaneously. In the following, we will deal with the design
problem, that is, giving a practical design procedure for the estimator gain, Ki, such that the
set of inequalities (3.1) in Theorem 3.1 are satisfied.

Theorem 3.2. If there exist two scalars β > 0, ε > 0, a matrix P > 0, and two diagonal matrices
Q1 > 0, Q2 > 0 such that the following linear matrix inequalities:

Γi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γi11 PB10i + FT
Ai
F1i PB20i + FT

Ai
F2i PEi Ri

∗ −e−βτQ2 + FT
1i
F1i FT

1i
F2i 0 0

∗ ∗ − 1
h
e−βhQ2 + FT

2i
F2i 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.16)

are satisfied, where

Γi11 = βP −AiP − PAi − RiCi − CT
i R

T
i +Q1Λ2

1 + hQ2Λ2
2 + FT

Ai
FAi + εFTF, (3.17)

and the estimator gain is given by Ri = PKi, then the switched error-state system (2.14) of the neural
network (2.12) is globally exponentially stable under any switching rules. Moreover, the estimate of
the error-state decay can be given by

‖e(t)‖ ≤ √
αe−(β/2)t∥∥φ∥∥, (3.18)

where α = (λmax(P) + τλmax(Q1Λ2
1) + (h2/2)λmax(Q2Λ2

2))/λmin(P).

Proof. Using Lemma 2.4, (3.16) holds if and only if

⎡
⎢⎢⎢⎢⎢⎢⎣

Γ∗i11 PB10i + FT
Ai
F1i PB20i + FT

Ai
F2i PEi

∗ −e−βτQ2 + FT
1i
F1i FT

1i
F2i 0

∗ ∗ − 1
h
e−βhQ2 + FT

2i
F2i 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (3.19)

where Γ∗i11 = βP −AiP − PAi − RiCi − CT
i R

T
i +Q1Λ2

1 + hQ2Λ2
2 + FT

Ai
FAi + εFTF + ε−1RT

i Ri.

Noticing that Ki = P−1Ri, it can be easily seen that (3.19) is the same as (3.1). Hence,
it follows from Theorem 3.1 that, with the estimator gain given by Ki = P−1Ri, the switched
error-state system (2.14) of the neural network (2.12) is globally exponentially stable under
any switching rules. The proof of Theorem 3.2 is complete.
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4. The Stability of Switched Interval Neural Networks

In the section, we will consider the stability of switched interval neural network (2.1) with
discrete and distributed time delays and without the output y(t). It should be noted that
the stability of switched interval neural network (2.1) without the output y(t) can be as a
by-product, and the main results can be easily derived from the previous section.

Consider the interval neural network (2.1) without the output y(t)

ẋ(t) = −Ax(t) + B1g1(x(t − τ)) + B2

∫ t

t−h
g2(x(s))ds + J,

A ∈ Al, Bk ∈ B
(k)
l

, k = 1, 2.

(4.1)

The assumptions on the model (4.1) are same as the above in Section 2. With loss of
generality, it is assumed that the neural network (4.1) has only one equilibrium point, and
denoted by x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)

T . For the purpose of simplicity, the equilibrium x∗ will be
shifted to the origin by letting μ = x − x∗ and the system (4.1) can be represented as

μ̇(t) = −Aμ(t) + B1l1
(
μ(t − τ)

)
+ B2

∫ t

t−h
l2
(
μ(s)
)
ds,

A ∈ Al, Bk ∈ B
(k)
l , k = 1, 2,

(4.2)

where lj(μ(t)) = gj(μ(t) + x∗) − gj(x∗), j = 1, 2, . . . , n. The initial value associated with (4.1) is
changed to be μ(s) = ϕ(s) − x∗ = η(s).

The system (4.2) can also be written as an equivalent form

μ̇(t) = −[A0 + EAΣAFA]μ(t) + [B10 + E1Σ1F1]l1
(
μ(t − τ)

)

+ [B20 + E2Σ2F2]
∫ t

t−h
l2
(
μ(s)
)
ds.

(4.3)

Similar to the system (2.8), the switched interval neural network with discrete and
distributed time delays and without the output y(t) can be written as

μ̇(t) = −A0σ(t)μ(t) + B10σ(t) l1
(
μ(t − τ)

)
+ B20σ(t)

∫ t

t−h
l2
(
μ(s)
)
ds + Eσ(t)Δσ(t)(t),

Aσ(t) ∈ Alσ(t) , Bkσ(t) ∈ B
(k)
lσ(t)

, k = 1, 2.

(4.4)

The following theorem gives a condition, which can ensure that the switched system
(4.4) is globally exponentially stable under any switching rules.
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Theorem 4.1. If there exist a scalar β > 0, a matrix P > 0, and two diagonal matricesQ1 > 0,Q2 > 0
such that the following linear matrix inequalities:

Γi =

⎡
⎢⎢⎢⎢⎢⎣

Γi11 PB10i + FT
Ai
F1i PB20i + FT

Ai
F2i PEi

∗ −e−βτQ2 + FT
1i
F1i FT

1i
F2i 0

∗ ∗ − 1
h
e−βhQ2 + FT

2i
F2i 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0 (4.5)

are satisfied, where

Γi11 = βP −AiP − PAi +Q1Λ2
1 + hQ2Λ2

2 + FT
Ai
FAi , (4.6)

then switched interval neural network system (4.4) is exponentially stable under any switching rules.
Moreover, the estimate of the state decay is given by

∥∥μ(t)∥∥ ≤ √
αe−(β/2)t∥∥η∥∥, (4.7)

where α = (λmax(P) + τλmax(Q1Λ2
1) + (h2/2)λmax(Q2Λ2

2))/λmin(P).

Proof. By using Lyapunov-Krasovskii functional in (3.4), let the matrix Ki = Ci = F = 0, and
following the similar line of the proof of Theorem 3.1, it is not difficult to get the proof of
Theorem 4.1.

When the distributed delays h = 0, the system (4.4) changes as the switched interval
neural networks with discrete delays

μ̇(t) =
N∑
i=1

ξi(t)
{−A0iμ(t) + B10i l1

(
μ(t − τ)

)
+ EiΔi(t)

}
. (4.8)

By Theorem 4.1, it is easy to obtain the following corollary.

Corollary 4.2. If there exist scalars β > 0, ε > 0, a matrix P > 0, and two diagonal matrices Q1 > 0,
Q2 > 0, such that the following linear matrix inequalities:

Γi =

⎡
⎢⎢⎢⎢⎣

Γi11 PB10i + FT
Ai
F1i PB20i + FT

Ai
F2i PEi

∗ −e−βτQ2 + FT
1i
F1i FT

1i
F2i 0

∗ ∗ Q2 + FT
2i
F2i 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦

< 0 (4.9)
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are satisfied, where

Γi11 = βP −AiP − PAi +Q1Λ2
1 + FT

Ai
FAi , (4.10)

then switched interval neural network system (4.8) is globally exponentially stable under any
switching rules. Moreover, the estimate of the state decay is given by

∥∥μ(t)∥∥ ≤ √
αe−(β/2)t∥∥η∥∥, (4.11)

where α = (λmax(P) + τλmax(Q1Λ2
1))/λmin(P).

Remark 4.3. In [25], based on homeomorphism mapping theorem and by using Lyapunov
functional, some delay-independent stability criteria were obtained to ensure the existence,
uniqueness, and global asymptotic stability of the equilibrium point for neural networks
with multiple time delays under parameter uncertainties. In [26], authors dealt with the
global robust asymptotic stability of a great class of dynamical neural networks with multiple
time delays, a new alternative sufficient condition for the existence, uniqueness, and global
asymptotic stability of the equilibrium point under parameter uncertainties is proposed by
employing a new Lyapunov functional. In this paper, when N = 1, the switched system
model (4.4) degenerated into the interval neural network model (4.1) with discrete and
distributed time delays. It is easy to see that the model studied in [25, 26] is a special case
of the model (4.1). Hence, the results obtained in this paper expand and improve the stability
results in the existing literature [25, 26].

Remark 4.4. In [39], the authors considered Markovian jumping fuzzy Hopfield neural
networks with mixed random time-varying delays. By applying the Lyapunov functional
method and LMI technique, delay-dependent robust exponential state estimation and new
sufficient conditions guaranteeing the robust exponential stability (in the mean square sense)
were proposed. In [40], the authors considered delay-dependent robust asymptotic state
estimation for fuzzy Hopfield neural networks with mixed interval time-varying delay.
By constructing a Lyapunov-Krasovskii functional containing triple integral term and by
employing some analysis techniques, sufficient conditions are derived in terms of LMIs.
In the future, based on [39, 40], the model of the switched interval fuzzy Hopfield neural
networks with mixed random time-varying delays and the switched interval discrete-time
fuzzy complex networks will be expected to be established, the strategy proposed in this
paper will be utilized to investigate the state estimation and stability problems.

5. Illustrative Examples

In this section, two illustrative examples will be given to check the validity of the results
obtained in Theorems 3.2 and 4.1.

Example 5.1. Consider the second-order switched interval neural network with discrete and
distributed delays in (2.6) described by σ(t) : [0,+∞) → Γ = {1, 2}, gi(x) = (1/2) tanx +
(1/2) sinx, i = 1, 2, τ = h = 1, and f(t, x) = t cosx. Obviously, the assumptions H1 and
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H2 are satisfied with Λ1 = Λ2 = F = diag(1, 1). The neural network system parameters are
defined as

A1 =
(

3.99 0
0 2.99

)
, A1 =

(
4.01 0

0 3.01

)
, B11 =

(
1.188 0.09
0.09 1.188

)
, B11 =

(
1.208 0.11
0.11 1.208

)
,

B21 =
(

0.09 0.14
0.05 0.09

)
, B21 =

(
0.11 0.16
0.07 0.11

)
, C1 =

(
0.45 −0.2
0.3 0.42

)
,

A2 =
(

1.99 0
0 2.99

)
, A2 =

(
2.01 0

0 3.01

)
, B12 =

(−0.07 0.03
−0.01 0.02

)
, B12 =

(−0.05 0.05
−0.04 0.04

)
,

B22 =
(−0.47 −0.15

0.11 −0.54

)
, B22 =

(−0.45 −0.13
0.13 −0.54

)
, C2 =

(−0.3 0.1
−0.3 −0.6

)
.

(5.1)

In the following, we will design an estimator Ki, i = 1, 2, for the switched interval
neural network in this example. Solving the LMI in (3.16) by using appropriate LMI solver in
the Matlab, the scalars β > 0, ε > 0 and feasible positive definite matrices P, Qi, i = 1, 2, and
the matrices Ri, i = 1, 2, could be as

P =
(

3.5939 −0.3052
−0.3052 3.6769

)
, R1 =

(
0.0600 −0.0309
−0.0309 0.1288

)
, R2 =

(−0.0615 −0.0665
−0.0665 −0.1316

)
,

Q1 =
(

0.8083 0
0 0.8520

)
, Q2 =

(
3.9057 0

0 7.1313

)
, β = 0.5108, ε = 0.9788.

(5.2)

Then the the estimator gain Ki, i = 1, 2, can be designed as

K1 = P−1R1 =
(

0.0161 −0.0057
−0.0071 0.0346

)
, K2 = P−1R2 =

(−0.0188 −0.0217
−0.0196 −0.0376

)
. (5.3)

By Theorem 3.2, the switched error-state system of the neural network in this example is
globally exponentially stable under any switching rules. Moreover, the estimate of the error-
state decay is given by

∥∥e(t, ϕ)∥∥ ≤ 1.5852e−0.2554∥∥ϕ∥∥, t ≥ 0. (5.4)

For making numerical simulation for the switched error-state system, set A1 =
A1, B11 = B11, B21 = B21, C = C1 and A2 = A2, B12 = B12, B22 = B22, C = C2, and assume
that two subsystems are switched every five seconds. Figure 1 displays the trajectories of

the error-state e(t, ϕ) with initial value (ϕ1(t), ϕ2(t))
T = ((tan 2t)2 − 0.3, (sin 2t)2 − 0.6)

T
, t ∈

[−1, 0]. It can be seen that these trajectories converge to e∗ = (0, 0)T . This is in accordance
with the conclusion of Theorem 3.2.
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Figure 1: The state trajectories e1 and e2 of the network with initial value (ϕ1(t), ϕ2(t))
T =

((tan 2t)2 − 0.3, (sin 2t)2 − 0.6)
T
, t ∈ [−1, 0].

Example 5.2. Consider the second-order switched interval neural network with discrete and
distributed delays described by

μ̇i(t) = −aiσ(t)μi(t) +
2∑

j=1

b
(1)
ijσ(t)

lj
(
μj(t − τ)

)
+

2∑
j=1

b
(2)
ijσ(t)

∫ t

t−h
lj
(
μj(s)

)
ds,

aiσ(t) ∈
[
aiσ(t)

, aiσ(t)

]
, b

(k)
ijσ(t)

∈
[
b
(k)
ijσ(t)

, b
(k)
ijσ(t)

]
, k = 1, 2,

μi(t) = ηi(t), t ∈ [−h, 0], i, j = 1, 2,

(5.5)

where σ(t) : [0,+∞) → Γ = {1, 2}, li(x) = (1/2) tanx + (1/2) sinx, i = 1, 2, τ = h = 1. H1

and H2 are satisfied with Λ1 = Λ2 = diag(1, 1). The neural network system parameters are
defined as

A1 =
(

3.99 0
0 2.99

)
, A1 =

(
4.01 0

0 3.01

)
, B11 =

(
1.188 0.09
0.09 1.188

)
, B11 =

(
1.208 0.11
0.11 1.208

)
,

B21 =
(

0.09 0.14
0.05 0.09

)
, B21 =

(
0.11 0.16
0.07 0.11

)
,

A2 =
(

1.99 0
0 2.99

)
, A2 =

(
2.01 0

0 3.01

)
, B12 =

(−0.07 0.03
−0.01 0.02

)
, B12 =

(−0.05 0.05
−0.04 0.04

)
,

B22 =
(−0.47 −0.15

0.11 −0.54

)
, B22 =

(−0.45 −0.13
0.13 −0.54

)
.

(5.6)
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Figure 2: The state trajectories e1 and e2 of the network with initial value (η1(t), η2(t))
T =

((sin 3t)2 − 0.3, (cos 5t)2 − 0.6)
T
, t ∈ [−1, 0].

Solving the LMI in (4.5) by using appropriate LMI solver in the Matlab, the scalar β and
feasible positive definite matrices P,Qi, i = 1, 2, could be as follows:

P =
(

3.1369 −0.0638
−0.0638 4.4315

)
, Q1 =

(
0.7493 0

0 1.1935

)
, Q2 =

(
3.2851 0

0 9.0429

)
,

β = 0.5108.

(5.7)

By Theorem 4.1, the switched interval neural network in this example is exponentially stable.
Moreover, the state μ(t) of the system satisfies

∥∥μ(t)∥∥ ≤ 1.7997e−0.2554∥∥η∥∥, t ≥ 0. (5.8)

Let A1 = A1, B11 = B11, B21 = B21, and A2 = A2, B12 = B12, B22 = B22. For
numerical simulation, assume that the two subsystems are switched every five seconds.
Figure 2 displays the state trajectories of this network with initial value (η1(t), η2(t))

T =

((sin 3t)2 − 0.3, (cos 5t)2 − 0.6)
T
, t ∈ [−1, 0]. It can be seen that these trajectories converge to

the unique equilibrium μ∗ = (0, 0)T of the network. This is in accordance with the conclusion
of Theorem 4.1.

6. Conclusion

In this paper, a novel class of switched interval neural networks with discrete and distributed
delays has been presented by combing the theories of the switched systems and the
interval neural networks with discrete and distributed delays. By using feasible output
measurements and constructing Lyapunov-Krasovskii functional, the existence conditions
and explicit characterization have been obtained for desired estimator and exponential
stability criteria for the switched interval neural networks with discrete and distributed
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delays under arbitrary switching rule in terms of LMIs. Two illustrative examples have been
also given to demonstrate the effectiveness and validity of the proposed LMI-based stability
criteria.
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By applying the least action principle and minimax methods in critical point theory, we prove the
existence of periodic solutions for a class of difference systems with p-Laplacian and obtain some
existence theorems.

1. Introduction

Consider the following p-Laplacian difference system:

Δ
(
|Δu(t − 1)|p−2Δu(t − 1)

)
= ∇F(t, u(t)), t ∈ Z, (1.1)

where Δ is the forward difference operator defined by Δu(t) = u(t + 1) − u(t), Δ2u(t) =
Δ(Δu(t)), p ∈ (1,+∞) such that 1/p + 1/q = 1, t ∈ Z, u ∈ R

N , F : Z × R
N → R, and F(t, x) is

continuously differentiable in x for every t ∈ Z and T -periodic in t for all x ∈ R
N .

When p = 2, (1.1) reduces to the following second-order discrete Hamiltonian system:

Δ2u(t − 1) = ∇F(t, u(t)), t ∈ Z. (1.2)

Difference equations provide a natural description of many discrete models in real
world. Since discrete models exist in various fields of science and technology such as
statistics, computer science, electrical circuit analysis, biology, neural network, and optimal
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control, it is of practical importance to investigate the solutions of difference equations. For
more details about difference equations, we refer the readers to the books [1–3].

In some recent papers [4–18], the authors studied the existence of periodic solutions
and subharmonic solutions of difference equations by applying critical point theory. These
papers show that the critical point theory is an effective method to the study of periodic
solutions for difference equations. Motivated by the above papers, we consider the existence
of periodic solutions for problem (1.1) by using the least action principle and minimax
methods in critical point theory.

2. Preliminaries

Now, we first present our main results.

Theorem 2.1. Suppose that F satisfies the following conditions:

(F1) there exists an integer T > 1 such that F(t + T, x) = F(t, x) for all (t, x) ∈ Z × R
N ;

(F2) there exist f , g ∈ l1([1, T],R+) and α ∈ [0, p − 1) such that

|∇F(t, x)| ≤ f(t)|x|α + g(t), ∀(t, x) ∈ Z[1, T] × R
N, (2.1)

where Z[a, b] := Z ∩ [a, b] for every a, b ∈ Z with a ≤ b,

(F3)

lim inf
|x|→+∞

|x|−qα
T∑
t=1

F(t, x) >
2qα(T − 1)q(2p−1)/p

qT

T∑
t=1

fq(t), ∀t ∈ Z[1, T]. (2.2)

Then problem (1.1) has at least one periodic solution with period T .

Theorem 2.2. Suppose that F satisfies (F1) and the following conditions:

T∑
t=1

f(t) <
Tp

2p−1(T − 1)p(1+q)/q
; (2.3)

(F2)’ there exist f , g ∈ l1([1, T],R+) such that

|∇F(t, x)| ≤ f(t)|x|p−1 + g(t), ∀(t, x) ∈ Z[1, T] × R
N, (2.4)

where Z[a, b] := Z ∩ [a, b] for every a, b ∈ Z with a ≤ b;
(F4)

lim inf
|x|→+∞

|x|−p
T∑
t=1

F(t, x) >
2pTq/p(T − 1)q(2p−1)/p

[
Tp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q/p
T∑
t=1

fq(t), ∀t ∈ Z[1, T]. (2.5)

Then problem (1.1) has at least one periodic solution with period T .
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Theorem 2.3. Suppose that F satisfies (F1), (F2), and the following condition:
(F5)

lim sup
|x|→+∞

|x|−qα
T∑
t=1

F(t, x)

< −
[

2qα(T − 1)q(2p−1)/p

pT
+

2qα(T − 1)(q−1)2(2p−1)/p

qT (q−1)2/q
+

2qα(T − 1)2p−1+(2p−1)/p

pT (p+1)/q

]
T∑
t=1

fq(t)

∀t ∈ Z[1, T].

(2.6)

Then problem (1.1) has at least one periodic solution with period T .

Theorem 2.4. Suppose that F satisfies (F1), (2.3), (F2)’, and the following condition:

(F6)

lim sup
|x|→+∞

|x|−p
T∑
t=1

F(t, x)

< −

⎡
⎢⎣

2p
(
pT

)q/p(T − 1)q(2p−1)/p
(
Tp + 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

)

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q

+
2p

(
pT

)1/p
T(T − 1)2p−1+(2p−1)/p

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]1+1/p

+
2p

(
pT

)(q−1)2/p(T − 1)(q−1)2(2p−1)/p

q
[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

](q−1)2/p

⎤
⎥⎥⎦

T∑
t=1

fq(t), ∀t ∈ Z[1, T].

(2.7)

Then problem (1.1) has at least one periodic solution with period T .

Remark 2.5. The lower bounds and the upper bounds of our theorems are more accurate than
the existing results in the literature. Moreover, there are functions satisfying our results but
not satisfying the existing results in the literature.

Let the Sobolev space ET be defined by

ET =
{
u : Z −→ R

N | u(t + T) = u(t), t ∈ Z

}
. (2.8)

For u ∈ ET , let u = (1/T)
∑T

t=1 u(t), u = u + ũ, and ẼT = {u ∈ ET | u = 0}, then ET =
R

N ⊕ ẼT . Let

‖u‖ =

(
|u|p +

T∑
t=1

|Δũ(t)|p
)1/p

, u ∈ ET . (2.9)

As usual, let

‖u‖∞ = sup{|u(t)| : t ∈ Z[1, T]}, ∀u ∈ l∞
(
Z[1, T],RN

)
. (2.10)
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For any u ∈ ET , let

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

F(t, u(t)) =
1
p

T∑
t=1

|Δũ(t)|p +
T∑
t=1

F(t, u(t)). (2.11)

To prove our results, we need the following lemma.

Lemma 2.6 (see [18]). Let u ∈ ET . If
∑T

t=1 u(t) = 0, then

‖u‖∞ ≤ (T − 1)(1+q)/q

T
‖ũ‖, (2.12)

‖u‖pp =
T∑
t=1

|u(t)|p ≤ (T − 1)2p−1

Tp−1
‖ũ‖p. (2.13)

3. Proofs

For the sake of convenience, we denote

M1 =

(
T∑
t=1

fq(t)

)1/q

, M2 =
T∑
t=1

f(t), M3 =
T∑
t=1

g(t). (3.1)

Proof of Theorem 2.1. From (F3), we can choose a1 > (T − 1)(2p−1)/p/T (p−1)/p such that

lim inf
|x|→+∞

|x|−qα
T∑
t=1

F(t, x) >
a
q

12qα

q
M

q

1 . (3.2)

It follows from (F2), (2.12), and (2.13) that

∣∣∣∣∣
T∑
t=1

[F(t, u(t)) − F(t, u)]

∣∣∣∣∣

=

∣∣∣∣∣
T∑
t=1

∫1

0
(∇F(t, u + sũ(t)), ũ(t))ds

∣∣∣∣∣

≤
T∑
t=1

∫1

0
f(t)|u + sũ(t)|α|ũ(t)|ds +

T∑
t=1

∫1

0
g(t)|ũ(t)|ds

≤ 2α
T∑
t=1

f(t)
(|u|α + |ũ(t)|α)|ũ(t)| +

T∑
t=1

g(t)|ũ(t)|

≤ 2α|u|α
(

T∑
t=1

fq(t)

)1/q( T∑
t=1

|ũ(t)|p
)1/p

+ 2α‖ũ‖1+α
∞

T∑
t=1

f(t) + ‖ũ‖∞
T∑
t=1

g(t)

= 2α|u|αM1‖ũ‖p + 2αM2‖ũ‖1+α
∞ +M3‖ũ‖∞
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≤ 1

pa
p

1

‖ũ‖pp +
a
q

12qα

q
|u|qαMq

1 + 2αM2‖ũ‖1+α
∞ +M3‖ũ‖∞

≤ (T − 1)2p−1

pa
p

1T
p−1

‖ũ‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũ‖1+α +

a
q

12qα

q
|u|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũ‖.
(3.3)

Hence, we have

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

F(t, u(t))

=
1
p

T∑
t=1

|Δũ(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, u)] +
T∑
t=1

F(t, u)

≥ 1
p

T∑
t=1

|Δũ(t)|p − 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũ‖1+α +

T∑
t=1

F(t, u)

− (T − 1)2p−1

pa
p

1T
p−1

‖ũ‖p − a
q

12qα

q
|u|qαMq

1 −
M3(T − 1)(1+q)/q

T
‖ũ‖

=

(
1
p
− (T − 1)2p−1

pa
p

1T
p−1

)
‖ũ‖p − 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũ‖1+α

+ |u|qα
(
|u|−qα

T∑
t=1

F(t, u) − a
q

12qα

q
M

q

1

)
− M3(T − 1)(1+q)/q

T
‖ũ‖.

(3.4)

The above inequality and (3.2) imply that ϕ(u) → +∞ as ‖u‖ → ∞. Hence, by the least
action principle, problem (1.1) has at least one periodic solution with period T .

Proof of Theorem 2.2. From (2.3) and (F4), we can choose a constant a3 ∈ R such that

a3 >
T1/p(T − 1)(2p−1)/p

[
Tp − 2p−1M2(T − 1)p(1+q)/q

]1/p
> 0,

lim inf
|x|→+∞

|x|−p
T∑
t=1

F(t, x) >
a
q

32p

q
M

q

1 .

(3.5)

It follows from (F2)’ and Lemma 2.6 that

∣∣∣∣∣
T∑

t=1

[F(t, u(t)) − F(t, u)]

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫1

0
(∇F(t, u + sũ(t)), ũ(t))ds

∣∣∣∣∣

≤
T∑
t=1

∫1

0
f(t)|u + sũ(t)|p−1|ũ(t)|ds +

T∑
t=1

g(t)|ũ(t)|
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≤
T∑
t=1

∫1

0
2p−1f(t)

(
|u|p−1 + sp−1|ũ(t)|p−1

)
|ũ(t)|ds +

T∑
t=1

g(t)|ũ(t)|

=
T∑
t=1

2p−1f(t)
(
|u|p−1 +

1
p
|ũ(t)|p−1

)
|ũ(t)| +

T∑
t=1

g(t)|ũ(t)|

≤ 2p−1|u|p−1

(
T∑
t=1

fq(t)

)1/q( T∑
t=1

|ũ(t)|p
)1/p

+
2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

= 2p−1M1|u|p−1‖ũ‖p +
2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

≤ 1

pa
p

3

‖ũ‖pp +
a
q

3M
q

12p

q
|u|p + 2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

≤
(

(T − 1)2p−1

pa
p

3T
p−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũ‖p + a

q

3M
q

12p

q
|u|p

+
M3(T − 1)(1+q)/q

T
‖ũ‖,

(3.6)

which implies that

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, u)] +
T∑
t=1

F(t, u)

≥
(

1
p
− (T − 1)2p−1

pa
p

3T
p−1

− 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũ‖p

− M3(T − 1)(1+q)/q

T
‖ũ‖ + |u|p

(
|u|−p

T∑
t=1

F(t, u) − a
q

3M
q

12p

q

)
.

(3.7)

The above inequality and (3.5) imply that ϕ(u) → +∞ as ‖u‖ → ∞. Hence, by the least
action principle, problem (1.1) has at least one periodic solution with period T .

Proof of Theorem 2.3. First we prove that ϕ satisfies the (PS) condition. Assume that {un} is a
(PS) sequence of ϕ; that is, ϕ′(un) → 0 as n → ∞ and {ϕ(un)} is bounded. By (F5), we can
choose a2 > (T − 1)(2p−1)/p/T (p−1)/p such that

lim sup
|x|→+∞

|x|−qα
T∑
t=1

F(t, x) < −
⎛
⎝2qαaq

2

p
+

2qαa(q−1)2

2

q
+

2qαa2(T − 1)2p−1

pTp−1

⎞
⎠M

q

1 . (3.8)

In a similar way to the proof of Theorem 2.1, we have∣∣∣∣∣
T∑
t=1

(∇F(t, un(t)), ũn(t))

∣∣∣∣∣ ≤
(T − 1)2p−1

pa
p

2T
p−1

‖ũn‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α

+
a
q

22qα

q
|un|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.9)
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Hence, we have

‖ũn‖p ≥ 〈
ϕ′(un), ũn

〉

=
T∑
t=1

|Δun(t)|p +
T∑
t=1

(∇F(t, un(t)), ũn(t))

≥
(

1 − (T − 1)2p−1

pa
p

2T
p−1

)
‖ũn‖p − M3(T − 1)(1+q)/q

T
‖ũn‖

− 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α − a

q

22qα

q
|un|qαMq

1 .

(3.10)

From (2.13), we have

‖ũn‖p =

(
T∑
t=1

|ũn(t)|p
)1/p

≤ (T − 1)(2p−1)/p

T (p−1)/p
‖ũn‖. (3.11)

From (3.10) and (3.11), we obtain

a
q

22qαMq

1

q
|un|qα ≥

(
1 − (T − 1)2p−1

pa
p

2T
p−1

)
‖ũn‖p − (T − 1)(2p−1)/p

T (p−1)/p
‖ũn‖

− 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α − M3(T − 1)(1+q)/q

T
‖ũn‖

≥ p − 1
p

‖ũn‖p + C1

=
1
q
‖ũn‖p + C1,

(3.12)

where C1 = mins∈[0,+∞){(1/p − (T − 1)2p−1/pa
p

2T
p−1)sp − (2αM2(T − 1)(1+q)(1+α)/q/T1+α)s1+α −

[(T − 1)(2p−1)/p/T (p−1)/p + M3(T − 1)(1+q)/q/T]s}. Notice that a2 > (T − 1)(2p−1)/p/T (p−1)/p

implies −∞ < C1 < 0. Hence, it follows from (3.12) that

‖ũn‖p ≤ 2qαaq

2M
q

1 |un|qα − qC1, (3.13)

‖ũn‖ ≤ 2qα/paq/p

2 M
q/p

1 |un|qα/p + C2, (3.14)

where C2 > 0. By the proof of Theorem 2.1, we have∣∣∣∣∣
T∑
t=1

[F(t, un(t)) − F(t, un)]

∣∣∣∣∣ ≤ 2αM1|un|α‖ũn‖p + 2αM2‖ũn‖1+α
∞ +M3‖ũn‖∞

≤ (T − 1)2p−1

pa
q−1
2 Tp−1

‖ũn‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α

+
a
(q−1)2

2 2qα

q
|un|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.15)
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It follows from the boundedness of ϕ(un), (3.13)–(3.15) that

C3 ≤ ϕ(un)

=
1
p

T∑
t=1

|Δun(t)|p +
T∑
t=1

[F(t, un(t)) − F(t, un)] +
T∑
t=1

F(t, un)

≤
⎛
⎝1

p
+
(T − 1)2p−1

pa
q−1
2 Tp−1

⎞
⎠‖ũn‖p + 2αM2(T − 1)(1+q)(1+α)/q

T1+α
‖ũn‖1+α

+
a
(q−1)2

2 2qα

q
|un|qαMq

1 +
M3(T − 1)(1+q)/q

T
‖ũn‖ +

T∑
t=1

F(t, un)

≤
⎛
⎝1

p
+
(T − 1)2p−1

pa
q−1
2 Tp−1

⎞
⎠(

2qαaq

2M
q

1 |un|qα − qC1

)
+
a
(q−1)2

2 2qα

q
|un|qαMq

1 +
T∑
t=1

F(t, un)

+
2αM2(T − 1)(1+q)(1+α)/q

T1+α

(
2qα/paq/p

2 M
q/p

1 |un|qα/p + C2

)1+α

× M3(T − 1)(1+q)/q

T

(
2qα/paq/p

2 M
q/p

1 |un|qα/p + C2

)

≤
⎛
⎝2qαaq

2

p
+
a
(q−1)2

2 2qα

q
+
a22qα(T − 1)2p−1

pTp−1

⎞
⎠M

q

1 |un|qα −
⎛
⎝1

p
+
(T − 1)2p−1

pa
q−1
2 Tp−1

⎞
⎠qC1

+
22αM2(T − 1)(1+q)(1+α)/q

T1+α

(
2qα(1+α)/paq(1+α)/p

2 M
q(1+α)/p
1 |un|qα(1+α)/p + C1+α

2

)

+
T∑
t=1

F(t, un) +
M3(T − 1)(1+q)/q

T

(
2qα/paq/p

2 M
q/p

1 |un|qα/p + C2

)

= |un|qα
⎡
⎣|un|−qα

T∑
t=1

F(t, un) +

⎛
⎝2qαaq

2

p
+
a
(q−1)2

2 2qα

q
+
a22qα(T − 1)2p−1

pTp−1

⎞
⎠M

q

1

+
22α+qα(1+α)/pa

q(1+α)/p
2 M

q(1+α)/p
1 M2(T − 1)(1+q)(1+α)/q

T1+α
|un|α(1+α−p)(q−1)

+
2qα/paq/p

2 M
q/p

1 M3(T − 1)(1+q)/q

T
|un|−α

⎤
⎦ + C4,

(3.16)

where C3 is a positive constant and C4 is a constant. The above inequality and (3.8) imply that
{un} is bounded. Hence {un} is bounded by (2.13) and (3.13). Since ET is finite dimensional,
we conclude that ϕ satisfies (PS) condition.

In order to use the saddle point theorem ([19], Theorem 4.6), we only need to verify
the following conditions:

(I1) ϕ(u) → −∞ as |u| → ∞ in R
N ,

(I2) ϕ(u) → +∞ as |u| → ∞ in ẼT ,



Abstract and Applied Analysis 9

In fact, from (F5), we have

T∑
t=1

F(t, u) −→ −∞ as |u| −→ ∞ in R
N, (3.17)

which together with (2.11) implies that

ϕ(u) =
T∑
t=1

F(t, u) −→ −∞ as |u| −→ ∞ in R
N. (3.18)

Hence, (I1) holds.
Next, for all u ∈ ẼT , by (F2) and (2.12), we have

∣∣∣∣∣
T∑
t=1

[F(t, u(t)) − F(t, 0)]

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫1

0
(∇F(t, su(t)), u(t))ds

∣∣∣∣∣

≤
T∑
t=1

f(t)|u(t)|1+α +
T∑
t=1

g(t)|u(t)|

≤ M2‖u‖1+α
∞ +M3‖u‖∞

≤ M2(T − 1)(1+q)(1+α)/q

T (1+α)
‖ũ‖1+α +

M3(T − 1)(1+q)/q

T
‖ũ‖,

(3.19)

which implies that

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, 0)] +
T∑
t=1

F(t, 0)

≥ 1
p
‖ũ‖p − M2(T − 1)(1+q)(1+α)/q

T (1+α)
‖ũ‖1+α

− M3(T − 1)(1+q)/q

T
‖ũ‖ +

T∑
t=1

F(t, 0),

(3.20)

for all u ∈ ẼT . By Lemma 2.6, ‖u‖ → ∞ in ẼT if and only if ‖ũ‖ → ∞, so from (3.20), we
obtain ϕ(u) → +∞ as ‖u‖ → ∞ in ẼT ; that is, (I2) is verified. Hence, the proof of Theorem 2.3
is complete.

Proof of Theorem 2.4. First we prove that ϕ satisfies the (PS) condition. Assume that {un} is a
(PS) sequence of ϕ; that is, ϕ′(un) → 0 as n → ∞ and {ϕ(un)} is bounded. By (2.3) and (F6),
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we can choose a4 ∈ R such that

a4 >
p1/pT1/p(T − 1)(2p−1)/p

[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p
, (3.21)

lim sup
|x|→+∞

|x|−p
T∑
t=1

F(t, x)

< −

⎡
⎢⎣

2paq

4

(
Tp + 2p−1M2(T − 1)p(1+q)/q

)
+ 2pTa4(T − 1)2p−1

pTp − 2p−1M2(T − 1)p(1+q)/q
+

2pa(q−1)2

4

q

⎤
⎥⎦Mq

1 .

(3.22)

In a similar way to the proof of Theorem 2.2, we obtain

∣∣∣∣∣
T∑
t=1

(∇F(t, un(t)), ũn(t))

∣∣∣∣∣ ≤
(

(T − 1)2p−1

pa
p

4T
p−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p

+
a
q

4M
q

12p

q
|un|p + M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.23)

Hence, we have

‖ũn‖p ≥ 〈
ϕ′(un), ũn

〉

=
1
p

T∑
t=1

|Δun(t)|p +
T∑
t=1

(∇F(t, un(t)), ũn(t))

≥
(

1 − (T − 1)2p−1

pa
p

4T
p−1

− 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p −

a
q

4M
q

12p

q
|un|p

− M3(T − 1)(1+q)/q

T
‖ũn‖,

(3.24)

which together with (3.11) implies that

a
q

4M
q

12p

q
|un|p ≥

(
1 − (T − 1)2p−1

pa
p

4T
p−1

− 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p

− M3(T − 1)(1+q)/q

T
‖ũn‖ − (T − 1)(2p−1)/p

T1/q
‖ũn‖

≥ 1
q

(
1 − 2p−1M2(T − 1)p(1+q)/q

pTp

)
‖ũn‖p + C5,

(3.25)
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where C5 = mins∈[0,+∞){(1/p − (T − 1)2p−1/pa
p

4T
p−1 − 2p−1M2(T − 1)p(1+q)/q/p2Tp)sp −

[M3(T − 1)(1+q)/q/T + (T − 1)(2p−1)/p/T1/q]s}. It follows from (3.21) that −∞ < C5 < 0, so,
we obtain

‖ũn‖p ≤ pTpa
q

4M
q

12p

pTp − 2p−1M2(T − 1)p(1+q)/q
|un|p −

pTpqC5

pTp − 2p−1M2(T − 1)p(1+q)/q
, (3.26)

‖ũn‖ ≤ 2p1/pTa
q/p

4 M
q/p

1[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p
|un| + C6, (3.27)

where C6 is a positive constant. By the proof of Theorem 2.2, we have

∣∣∣∣∣
T∑
t=1

(F(t, un(t)) − F(t, un))

∣∣∣∣∣

≤ 2p−1M1|u|p−1‖ũ‖p +
2p−1

p
M2‖ũ‖p∞ +M3‖ũ‖∞

≤
⎛
⎝(T − 1)2p−1

pa
q−1
4 Tp−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

⎞
⎠‖ũn‖p +

a
(q−1)2

4 M
q

12p

q
|un|p

+
M3(T − 1)(1+q)/q

T
‖ũn‖.

(3.28)

It follows from the boundedness of ϕ(un), (3.26), (3.27), and the above inequality that

C7 ≤ ϕ(un)

=
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

[F(t, u(t)) − F(t, u)] +
T∑
t=1

F(t, u)

≤
⎡
⎣1
p
+
(T − 1)2p−1

pa
q−1
4 Tp−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

⎤
⎦‖ũn‖p +

T∑
t=1

F(t, un)

+
M3(T − 1)(1+q)/q

T
‖ũn‖ +

a
(q−1)2

4 M
q

12p

q
|un|p

≤
⎡
⎣1
p
+
(T − 1)2p−1

pa
q−1
4 Tp−1

+
2p−1M2(T − 1)p(1+q)/q

pTp

⎤
⎦

×
(

pTpa
q

4M
q

12p

pTp − 2p−1M2(T − 1)p(1+q)/q
|un|p −

pTpqC5

pTp − 2p−1M2(T − 1)p(1+q)/q

)
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+
T∑
t=1

F(t, u) +
a
(q−1)2

4 M
q

12p

q
|un|p

+
M3(T − 1)(1+q)/q

T

⎛
⎜⎝ 2p1/pTa

q/p

4 M
q/p

1[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p
|un| + C6

⎞
⎟⎠

= |un|p
⎧⎪⎨
⎪⎩

⎡
⎢⎣

2paq

4

(
Tp + 2p−1M2(T − 1)p(1+q)/q

)
+ 2pTa4(T − 1)2p−1

pTp − 2p−1M2(T − 1)p(1+q)/q
+

2pa(q−1)2

4

q

⎤
⎥⎦Mq

1

+|un|−p
T∑
t=1

F(t, un) +
2p1/pTa

q/p

4 M
q/p

1 M3(T − 1)(1+q)/q

T
[
pTp − 2p−1M2(T − 1)p(1+q)/q

]1/p
|un|−p+1

⎫⎪⎬
⎪⎭

+ C8,

(3.29)

where C7 is a positive constant and C8 is a constant. The above inequality and (3.22) imply
that {un} is bounded. Hence, {un} is bounded by (2.13) and (3.26).

Similar to the proof of Theorem 2.3, we only need to verify (I1) and (I2). It is easy to
verify (I1) by (F6). Now, we verify that (I2) holds. For u ∈ ẼT , by (F2)’ and (2.12), we have

∣∣∣∣∣
T∑
t=1

(F(t, u(t)) − F(t, 0))

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫1

0
(∇F(t, su(t)), u(t))ds

∣∣∣∣∣

≤
T∑
t=1

∫1

0
f(t)sp−1|u(t)|pds +

T∑
t=1

g(t)|u(t)|

≤ M2

p
‖u‖p∞ +M3‖u‖∞

≤ M2(T − 1)p(1+q)/q

pTp
‖ũ‖p + M3(T − 1)(1+q)/q

pT
‖ũ‖.

(3.30)

Thus, we have

ϕ(u) =
1
p

T∑
t=1

|Δu(t)|p +
T∑
t=1

(F(t, u(t)) − F(t, 0)) +
T∑
t=1

F(t, 0)

≥
(

1
p
− M2(T − 1)p(1+q)/q

pTp

)
‖ũ‖p − M3(T − 1)(1+q)/q

pT
‖ũ‖ +

T∑
t=1

F(t, 0),

(3.31)

for all u ∈ ẼT . By Lemma 2.6, ‖u‖ → ∞ in ẼT if and only ‖ũ‖ → ∞. So from the above
inequality, we have ϕ(u) → +∞ as ‖u‖ → ∞, that is (I2) is verified. Hence, the proof of
Theorem 2.4 is complete.
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4. Example

In this section, we give four examples to illustrate our results.

Example 4.1. Let p = 5/2 and

F(t, x) = sin
(

2πt
T

)
|x|5/3 +

(
sin

2πt
T

+ 1
)
|x|4/3 + (h(t), x), (4.1)

where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 5
3

∣∣∣∣sin
2πt
T

∣∣∣∣|x|2/3 +
4
3

∣∣∣∣sin
2πt
T

+ 1
∣∣∣∣|x|1/3 + |h(t)|

≤ 5
3

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
|x|2/3 + a(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.2)

where ε > 0, and a(ε) is a positive constant and is dependent on ε. The above shows that (F2)
holds with α = 2/3 and

f(t) =
5
3

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
, g(t) = a(ε) + |h(t)|. (4.3)

Moreover, we have

lim inf
|x|→+∞

|x|−2α
T∑
t=1

F(t, x) = T,

2qα(T − 1)q(2p−1)/p

qT

T∑
t=1

fq(t) =
3 × 210/9(T − 1)8/3

5

(
5
3
ε

)5/3

.

(4.4)

We can choose ε suitable such that

lim inf
|x|→+∞

|x|−2α
T∑
t=1

F(t, x) = T >
3 × 210/9(T − 1)8/3

5

(
5
3
ε

)5/3

=
2qα(T − 1)q(2p−1)/p

qT

T∑
t=1

fq(t), (4.5)

which shows that (F3) holds. Then from Theorem 2.1, problem (1.1) has at least one periodic
solution with period T .

Example 4.2. Let p = 2, then q = 2. Let

F(t, x) =
1
6

(
1
2
+ sin

2πt
T

)
|x|2 + |x|3/2 + (h(t), x), (4.6)
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where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 1
3

∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣|x| +
3
2
|x|1/2 + |h(t)|

≤ 1
3

(∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣ + ε

)
|x| + b(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.7)

where ε > 0, and b(ε) is a positive constant and is dependent on ε. The above shows that (F2)’
holds with

f(t) =
1
3

(∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣ + ε

)
, g(t) = b(ε) + |h(t)|. (4.8)

Observe that

|x|−p
T∑
t=1

F(t, x) = |x|−2
T∑
t=1

[
1
6

(
1
2
+ sin

2πt
T

)
|x|2 + |x|3/2 + (h(t), x)

]

=
T

12
+ T |x|−1/2 +

(
T∑
t=1

h(t), |x|−2x

)
.

(4.9)

On the other hand, if we let T = 2, then we have

T∑
t=1

f(t) =
2
3

(
1
2
+ ε

)
,

T∑
t=1

f2(t) =
1
9

T∑
t=1

(∣∣∣∣
1
2
+ sin

2πt
T

∣∣∣∣ + ε

)2

=
2
9

(
1
2
+ ε

)2

,

2pTq/p(T − 1)q(2p−1)/p

[
Tp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q/p
T∑
t=1

fq(t) =
2 + 8ε + 8ε2

15 − 6ε
.

(4.10)

We can choose ε sufficiently small such that

T∑
t=1

f(t) =
2
3

(
1
2
+ ε

)
< 2 =

Tp

2p−1(T − 1)p−1
,

lim inf
|x|→+∞

|x|−p
T∑
t=1

F(t, x) =
1
6
>

2 + 8ε + 8ε2

15 − 6ε

=
2pTq/p(T − 1)q(2p−1)/p

[
Tp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q/p
T∑
t=1

fq(t),

(4.11)

which shows that (2.3) and (F4) hold. Then from Theorem 2.2, problem (1.1) has at least one
periodic solution with period T .

Example 4.3. Let p = 2, then q = 2. Let

F(t, x) = sin
(

2πt
T

)
|x|7/4 +

(
sin

2πt
T

− 1
)
|x|3/2 + (h(t), x), (4.12)
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where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 7
4

∣∣∣∣sin
2πt
T

∣∣∣∣|x|3/4 +
3
2

∣∣∣∣sin
2πt
T

− 1
∣∣∣∣|x|1/2 + |h(t)|

≤ 7
4

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
|x|3/4 + c(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.13)

where ε > 0 and c(ε) is a positive constant and is dependent on ε. The above shows that (F2)
holds with α = 3/4 and

f(t) =
7
4

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)
, g(t) = c(ε) + |h(t)|. (4.14)

Observe that

|x|−qα
T∑
t=1

F(t, x) = |x|−3/2
T∑
t=1

[
sin

(
2πt
T

)
|x|7/4 +

(
sin

2πt
T

− 1
)
|x|3/2 + (h(t), x)

]

= − T +

(
T∑
t=1

h(t), |x|−3/2x

)
.

(4.15)

On the other hand, we have

[
2qα(T − 1)q(2p−1)/p

pT
+

2qα(T − 1)(q−1)2(2p−1)/p

qT (q−1)2/q
+

2qα(T − 1)2p−1+(2p−1)/p

pT (p+1)/q

]
T∑
t=1

fq(t)

=

[√
2(T − 1)3

T
+
√

2(T − 1)3/2

T1/2
+
√

2(T − 1)9/2

T3/2

]
T∑
t=1

49
16

(∣∣∣∣sin
2πt
T

∣∣∣∣ + ε

)2

=
49
√

2ε2(T − 1)3/2
[
T1/2(T − 1)3/2 + T + (T − 1)3

]

16T1/2
.

(4.16)

We can choose ε suitable such that

lim sup
|x|→+∞

|x|−qα
T∑
t=1

F(t, x)

= −T

< −
49
√

2ε2(T − 1)3/2
[
T1/2(T − 1)3/2 + T + (T − 1)3

]

16T1/2

= −
[

2qα(T − 1)q(2p−1)/p

pT
+

2qα(T − 1)(q−1)2(2p−1)/p

qT (q−1)2/q
+

2qα(T − 1)2p−1+(2p−1)/p

pT (p+1)/q

]
T∑
t=1

fq(t),

(4.17)
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which shows that (F5) holds. Then from Theorem 2.3, problem (1.1) has at least one periodic
solution with period T .

Example 4.4. Let p = 2, then q = 2. Let

F(t, x) =
1
3

(
sin

2πt
T

− 1
8

)
|x|2 + |x|3/2 + (h(t), x), (4.18)

where h ∈ l1(Z[1, T],RN) and h(t + T) = h(t). It is easy to see that F(t, x) satisfies (F1) and

|∇F(t, x)| ≤ 2
3

∣∣∣∣sin
2πt
T

− 1
8

∣∣∣∣|x| +
3
2
|x|1/2 + |h(t)|

≤ 2
3

(∣∣∣∣sin
2πt
T

− 1
8

∣∣∣∣ + ε

)
|x| + d(ε) + |h(t)|, ∀(t, x) ∈ Z[1, T] × R

N,

(4.19)

where ε > 0, d(ε) is a positive constant and is dependent on ε. The above shows that (F2)’
holds with

f(t) =
2
3

(∣∣∣∣sin
2πt
T

− 1
8

∣∣∣∣ + ε

)
, g(t) = d(ε) + |h(t)|. (4.20)

Observe that

|x|−p
T∑
t=1

F(t, x) = |x|−2
T∑
t=1

[
1
3

(
sin

2πt
T

− 1
8

)
|x|2 + |x|3/2 + (h(t), x)

]

= − T

24
+ T |x|−1/2 +

(
T∑
t=1

h(t), |x|−2x

)
.

(4.21)

On the other hand, if we let T = 2, then we have

T∑
t=1

f(t) =
4
3

(
1
8
+ ε

)
,

T∑
t=1

f2(t) =
4
9

T∑
t=1

(∣∣∣∣
1
8
+ sin

2πt
T

∣∣∣∣ + ε

)2

=
8
9

(
1
8
+ ε

)2

, (4.22)
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−

⎡
⎢⎣

2p
(
pT

)q/p(T − 1)q(2p−1)/p
(
Tp + 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

)

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q

+
2p

(
pT

)1/p
T(T − 1)2p−1+(2p−1)/p

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]1+1/p

+
2p

(
pT

)(q−1)2/p(T − 1)(q−1)2(2p−1)/p

q
[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

](q−1)2/p

⎤
⎥⎥⎦

T∑
t=1

fq(t)

=

[
192 + 128 × (1/8 + ε)

3 × (8 − (8/3)(1/8 + ε))2
+

16

(8 − (8/3)(1/8 + ε))3/2

+
8

(8 − (8/3)(1/8 + ε))1/2

]
× 8

9

(
1
8
+ ε

)2

.

(4.23)

We can choose ε sufficiently small such that

T∑
t=1

f(t) =
4
3

(
1
8
+ ε

)
< 2 =

Tp

2p−1(T − 1)p−1
, (4.24)

lim sup
|x|→+∞

|x|−p
T∑
t=1

F(t, x) = − 1
12

<

[
192 + 128 × (1/8 + ε)

3 × (8 − (8/3)(1/8 + ε))2
+

16

(8 − (8/3)(1/8 + ε))3/2

+
8

(8 − (8/3)(1/8 + ε))1/2

]
× 8

9

(
1
8
+ ε

)2

= −

⎡
⎢⎣

2p
(
pT

)q/p(T − 1)q(2p−1)/p
(
Tp + 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

)

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]q

+
2p

(
pT

)1/p
T(T − 1)2p−1+(2p−1)/p

[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

]1+1/p

+
2p

(
pT

)(q−1)2/p(T − 1)(q−1)2(2p−1)/p

q
[
pTp − 2p−1(T − 1)p(1+q)/q

∑T
t=1 f(t)

](q−1)2/p

⎤
⎥⎥⎦

T∑
t=1

fq(t),

(4.25)

which shows that (F6) holds. Then from Theorem 2.4, problem (1.1) has at least one periodic
solution with period T .
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This paper is concerned with a delay logistical model under regime switching diffusion in random
environment. By using generalized Itô formula, Gronwall’s inequality, and Young’s inequality,
some sufficient conditions for existence of global positive solutions and stochastically ultimate
boundedness are obtained, respectively. Also, the relationships between the stochastic permanence
and extinction as well as asymptotic estimations of solutions are investigated by virtue of V -
function technique, M-matrix method, and Chebyshev’s inequality. Finally, an example is given
to illustrate the main results.

1. Introduction

The delay differential equation

dx(t)
dt

= x(t)[a − bx(t) + cx(t − τ)] (1.1)

has been used to model the population growth of certain species, known as the delay logistic
equation. There is an extensive literature concerned with the dynamics of this delay model.
We here only mention Gopalsamy [1], Kolmanovskiı̆, and Myshkis [2], Kuang [3] among
many others.

In (1.1), the state x(t) denotes the population size of the species. Naturally, we focus
on the positive solutions and also require the solutions not to explode at a finite time. To
guarantee positive solutions without explosion (i.e., there exists global positive solutions), it
is generally assumed that a > 0, b > 0, and c < b [4] (and the references cited therein).
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On the other hand, the population growth is often subject to environmental noise,
and the system will change significantly, which may change the dynamical behavior of
solutions significantly [5, 6]. It is therefore necessary to reveal how the noise affects on the
dynamics of solutions for the delay population model. First of all, let us consider one type
of environmental noise, namely, white noise. In fact, recently, many authors have discussed
population systems subject to white noise [7–9]. Recall that the parameter a in (1.1) represents
the intrinsic growth rate of the population. In practice, we usually estimate it by an average
value plus an error term. According to the well-known central limit theorem, the error term
follows a normal distribution. In term of mathematics, we can therefore replace the rate a by

a + σẇ(t), (1.2)

where ẇ(t) is a white noise (i.e., w(t) is a Brownian motion) and σ is a positive number
representing the intensity of noise. As a result, (1.1) becomes a stochastic differential equation
(SDE, in short)

dx(t) = x(t)[(a − bx(t) + cx(t − τ))dt + σdw(t)]. (1.3)

We refer to [4] for more details.
To our knowledge, much attention to environmental noise is paid on white noise ([10–

14] and the references cited therein). But another type of environmental noise, namely, color
noise or say telegraph noise, has been studied by many authors (see, [15–19]). In this context,
telegraph noise can be described as a random switching between two or more environmental
regimes, which are different in terms of factors such as nutrition or as rain falls [20, 21].
Usually, the switching between different environments is memoryless and the waiting time
for the next switch has an exponential distribution. This indicates that we may model the
random environments and other random factors in the system by a continuous-time Markov
chain r(t), t ≥ 0 with a finite state space S = {1, 2, . . . , n}. Therefore, the stochastic delay
logistic (1.3) in random environments can be described by the following stochastic model
with regime switching:

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t) + c(r(t))x(t − τ))dt + σ(r(t))dw(t)]. (1.4)

The mechanism of ecosystem described by (1.4) can be explained as follows. Assume that
initially, the Markov chain r(0) = ι ∈ S, then the ecosystem (1.4) obeys the SDE

dx(t) = x(t)[(a(ι) − b(ι)x(t) + c(ι)x(t − τ))dt + σ(ι)dw(t)], (1.5)

until the Markov chain r(t) jumps to another state, say, ς. Then the ecosystem satisfies the
SDE

dx(t) = x(t)[(a(ς) − b(ς)x(t) + c(ς)x(t − τ))dt + σ(ς)dw(t)], (1.6)

for a random amount of time until r(t) jumps to a new state again.
It should be pointed out that the stochastic logistic systems under regime switching

have received much attention lately. For instance, the study of stochastic permanence and
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extinction of a logistic model under regime switching was considered in [18], a new single-
species model disturbed by both white noise and colored noise in a polluted environment was
developed and analyzed in [22], a general stochastic logistic system under regime switching
was proposed and was treated in [23].

Since (1.4) describes a stochastic population dynamics, it is critical to find out whether
or not the solutions will remain positive or never become negative, will not explode to infinity
in a finite time, will be ultimately bounded, will be stochastically permanent, will become
extinct, or have good asymptotic properties.

This paper is organized as follows. In the next section, we will show that there exists a
positive global solution with any initial positive value under some conditions. In Sections 3
and 4, we give the sufficient conditions for stochastic permanence or extinction, which show
that both have closed relations with the stationary probability distribution of the Markov
chain. If (1.4) is stochastically permanent, we estimate the limit of the average in time of the
sample path of its solution in Section 5. Finally, an example is given to illustrate our main
results.

2. Global Positive Solution

Throughout this paper, unless otherwise specified, let (Ω,F, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets ). Let w(t), t ≥ 0, be a scalar standard Brownian
motion defined on this probability space. We also denote by R+ the interval (0,∞) and denote
by R+ the interval [0,∞). Moreover, let τ > 0 and denote by C([−τ, 0];R+) the family of
continuous functions from [−τ, 0] to R+.

Let r(t) be a right-continuous Markov chain on the probability space, taking values in
a finite state space S = {1, 2, . . . , n}, with the generator Γ = (γuv) given by

P{r(t + δ) = v | r(t) = u} =

⎧
⎨
⎩
γuvδ + o(δ), if u/=v,

1 + γuvδ + o(δ), if u = v,
(2.1)

where δ > 0, γuv is the transition rate from u to v and γuv ≥ 0 if u/=v, while γuu = −∑v /=u γuv.
We assume that the Markov chain r(·) is independent of the Brownian motion w(·). It is well
known that almost every sample path of r(·) is a right continuous step function with a finite
number of jumps in any finite subinterval of R+. As a standing hypothesis we assume in this
paper that the Markov chain r(t) is irreducible. This is a very reasonable assumption as it
means that the system can switch from any regime to any other regime. Under this condition,
the Markov chain has a unique stationary (probability) distribution π = (π1, π2, . . . , πn) ∈
R1×n which can be determined by solving the following linear equation:

πΓ = 0, (2.2)

subject to
n∑
i=1

πi = 1, πi > 0, ∀ i ∈ S. (2.3)

We refer to [9, 24] for the fundamental theory of stochastic differential equations.
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For convenience and simplicity in the following discussion, define

f̂ = min
i∈S

f(i), f̌ = max
i∈S

f(i), f = max
i∈S

∣∣f(i)∣∣, (2.4)

where {f(i)}i∈S is a constant vector.
As x(t) in model (1.4) denotes population size at time t, it should be nonnegative.

Thus, for further study, we must give some condition under which (1.4) has a unique global
positive solution.

Theorem 2.1. Assume that there are positive numbers θ(i) (i = 1, 2, . . . , n) such that

max
i∈S

(
−b(i) + 1

4θ(i)
c2(i) + θ̌

)
≤ 0. (2.5)

Then, for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique solution x(t)
to (1.4) on t ≥ −τ and the solution will remain in R+ with probability 1, namely, x(t) ∈ R+ for all
t ≥ −τ a.s.

Proof. Since the coefficients of the equation are locally Lipschitz continuous, for any given
initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique maximal local solution x(t)
on t ∈ [−τ, τe), where τe is the explosion time. To show that this solution is global, we need to
prove τe = ∞ a.s.

Let k0 > 0 be sufficiently large for

1
k0

< min
−τ≤t≤0

x(t) ≤ max
−τ≤t≤0

x(t) < k0. (2.6)

For each integer k ≥ k0, define the stopping time

τk = inf
{
t ∈ [0, τe) : x(t) /∈

(
1
k
, k

)}
, (2.7)

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly, τk
is increasing as k → ∞. Set τ∞ = limk→∞τk, where τ∞ ≤ τe a.s. If we can show that τ∞ = ∞
a.s., then τe = ∞ a.s. and x(t) ∈ R+ a.s. for all t ≥ 0. In other words, we need to show τ∞ = ∞
a.s. Define a C2-function V : R+ → R+ by

V (x) = x − 1 − logx, (2.8)

which is not negative on x > 0. Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T , it is not
difficult to show by the generalized Itô formula that

dV (x(t)) = LV (x(t), x(t − τ), r(t))dt + σ(r(t))(x(t) − 1)dw(t), (2.9)
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where LV : R+ × R+ × S → R is defined by

LV
(
x, y, i

)
= −a(i) + 1

2
σ2(i) + (a(i) + b(i))x − c(i)y − b(i)x2 + c(i)xy. (2.10)

Using condition (2.5), we compute

−b(i)x2 + c(i)xy ≤ −b(i)x2 +
1

4θ(i)
c2(i)x2 + θ(i)y2 ≤ −θ̌x2 + θ̌y2. (2.11)

Moreover, there is clearly a constant K1 > 0 such that

−a(i) + 1
2
σ2(i) + (a(i) + b(i))x − c(i)y ≤ K1

(
1 + x + y

)
. (2.12)

Substituting these into (2.10) yields

LV
(
x, y, i

) ≤ K1
(
1 + x + y

) − θ̌x2 + θ̌y2. (2.13)

Noticing that u ≤ 2(u − 1 − logu) + 2 on u > 0, we obtain that

LV
(
x, y, i

) ≤ K2
(
1 + V (x) + V

(
y
)) − θ̌x2 + θ̌y2, (2.14)

where K2 is a positive constant. Substituting these into (2.9) yields

dV (x(t)) ≤
[
K2(1 + V (x(t)) + V (x(t − τ))) − θ̌x2(t) + θ̌x2(t − τ)

]
dt

+ σ(r(t))(x(t) − 1)dw(t).
(2.15)

Now, for any t ∈ [0, T], we can integrate both sides of (2.15) from 0 to τk ∧ t and then
take the expectations to get

EV (x(τk ∧ t)) ≤ V (x(0)) + E

∫ τk∧t

0

[
K2(1 + V (x(s)) + V (x(s − τ))) − θ̌x2(s) + θ̌x2(s − τ)

]
ds.

(2.16)

Compute

E

∫ τk∧t

0
V (x(s − τ))ds = E

∫ τk∧t−τ

−τ
V (x(s))ds

≤
∫0

−τ
V (x(s))ds + E

∫ τk∧t

0
V (x(s))ds,

(2.17)
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and, similarly

E

∫ τk∧t

0
x2(s − τ)ds ≤

∫0

−τ
x2(s)ds + E

∫ τk∧t

0
x2(s)ds. (2.18)

Substituting these into (2.16) gives

EV (x(τk ∧ t)) ≤ K3 + 2K2E

∫ τk∧t

0
V (x(s))ds

≤ K3 + 2K2E

∫ t

0
V (x(τk ∧ s))ds

= K3 + 2K2

∫ t

0
EV (x(τk ∧ s))ds,

(2.19)

where K3 = V (x(0)) +K2T +K2
∫0
−τ V (x(s))ds + θ̌

∫0
−τ x

2(s)ds.
By the Gronwall inequality, we obtain that

EV (x(τk ∧ T)) ≤ K3e
2TK2 . (2.20)

Note that for every ω ∈ {τk ≤ T}, x(τk, ω) equals either k or 1/k, thus

V (x(τk, ω)) ≥
[(
k − 1 − log k

) ∧
(

1
k
− 1 + log k

)]
. (2.21)

It then follows from (2.20) that

K3e
2TK2 ≥ E

[
1{τk≤T}(ω)V (x(τk ∧ T,ω))

]

= E
[
1{τk≤T}(ω)V (x(τk, ω))

]

≥ P{τk ≤ T}
[(
k − 1 − log k

) ∧
(

1
k
− 1 + log k

)]
,

(2.22)

where 1{τk≤T} is the indicator function of {τk ≤ T}. Letting k → ∞ gives limk→∞P{τk ≤ T} = 0
and hence P{τ∞ ≤ T} = 0. Since T > 0 is arbitrary, we must have P{τ∞ < ∞} = 0, so
P{τ∞ = ∞} = 1 as required.

Corollary 2.2. Assume that there is a positive number θ such that

max
i∈S

(
−b(i) + 1

4θ
c2(i) + θ

)
≤ 0. (2.23)

Then the conclusions of Theorem 2.1 hold.
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The following theorem is easy to verify in applications, which will be used in the
sections below.

Theorem 2.3. Assume that

−b̂ + c ≤ 0. (2.24)

Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique solution x(t)
to (1.4) on t ≥ −τ and the solution will remain in R+ with probability 1, namely, x(t) ∈ R+ for all
t ≥ −τ a.s.

Proof. The proof of this theorem is the same as that of the theorem above. Let

V (x) = x − 1 − logx on x > 0, (2.25)

then we have (2.9) and (2.10). By (2.24), we get

LV
(
x, y, i

) ≤ −a(i) + 1
2
σ2(i) + (a(i) + b(i))x − c(i)y − b(i)x2 + c(i)xy

≤ K
(
1 + x + y

)
+ (−b(i) + c)x2 − 1

2
cx2 +

1
2
cy2

≤ K
(
1 + x + y

) − 1
2
cx2 +

1
2
cy2,

(2.26)

where K is a positive constant. The rest of the proof is similar to that of Theorem 2.1 and
omitted.

Note that condition (2.5) is used to derive (2.13) from (2.10). In fact, there are several
different ways to estimate (2.10), which will lead to different alternative conditions for the
positive global solution. For example, we know

c(i)xy ≤ 1
2θ(i)

c2(i)x2 +
θ(i)

2
y2,

−b(i)x2 + c(i)xy ≤ − b(i)x2 +
1

2θ(i)
c2(i)x2 +

θ(i)
2

y2

=

(
−b(i) + 1

2θ(i)
c2(i) +

θ̌

2

)
x2 − θ̌

2
x2 +

θ̌

2
y2.

(2.27)

Therefore, if we assume that

max
i∈S

(
−b(i) + 1

2θ(i)
c2(i) +

θ̌

2

)
≤ 0, (2.28)
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then

−b(i)x2 + c(i)xy ≤ − θ̌
2
x2 +

θ̌

2
y2, (2.29)

hence

LV
(
x, y, i

) ≤ K1
(
1 + x + y

) − θ̌

2
x2 +

θ̌

2
y2, (2.30)

from which we can show in the same way as in the proof of Theorem 2.1 that the solution
of (1.4) is positive and global. In other words, the arguments above can give an alternative
result which we describe as a theorem as below.

Theorem 2.4. Assume that there are positive numbers θ(i) (i = 1, 2, . . . , n) such that

max
i∈S

(
−b(i) + 1

2θ(i)
c2(i) +

θ̌

2

)
≤ 0. (2.31)

Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique solution x(t)
to (1.4) on t ≥ −τ and the solution will remain in R+ with probability 1, namely, x(t) ∈ R+ for all
t ≥ −τ a.s.

Similarly, we can establish a corollary as follows.

Corollary 2.5. Assume that there is a positive number θ such that

max
i∈S

(
−b(i) + 1

2θ
c2(i) +

θ

2

)
≤ 0. (2.32)

Then the conclusions of Theorem 2.4 hold.

3. Asymptotic Bounded Properties

For convenience and simplicity in the following discussion, we list the following assump-
tions.

(A1) For each i ∈ S, b(i) > 0, and − b̂ + c ≤ 0.

(A1′) For each i ∈ S, b(i) > 0, and − b̂ + c < 0.

(A1′′) For each i ∈ S, b(i) > 0, c(i) ≥ 0 and − b̂ + č < 0.

(A2) For some u ∈ S, γiu > 0 (∀i /=u).

(A3)
∑n

i=1 πi[a(i) − (1/2)σ2(i)] > 0.

(A3′)
∑n

i=1 πi[a(i) − (1/2)σ2(i)] < 0.

(A4) For each i ∈ S, a(i) − (1/2)σ2(i) > 0.

(A4′) For each i ∈ S, a(i) − (1/2)σ2(i) < 0.
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Definition 3.1. Equation (1.4) is said to be stochastically permanent if for any ε ∈ (0, 1), there
exist positive constants H = H(ε), δ = δ(ε) such that

lim inf
t→+∞

P{x(t) ≤ H} ≥ 1 − ε, lim inf
t→+∞

P{x(t) ≥ δ} ≥ 1 − ε, (3.1)

where x(t) is the solution of (1.4) with any positive initial value.

Definition 3.2. The solutions of (1.4) are called stochastically ultimately bounded, if for any
ε ∈ (0, 1), there exists a positive constant H = H(ε), such that the solutions of (1.4) with any
positive initial value have the property that

lim sup
t→+∞

P{x(t) > H} < ε. (3.2)

It is obvious that if a stochastic equation is stochastically permanent, its solutions must
be stochastically ultimately bounded. So we will begin with the following theorem and make
use of it to obtain the stochastically ultimate boundedness of (1.4).

Theorem 3.3. Let (A1′) hold and p is an arbitrary given positive constant. Then for any given initial
data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) has the properties that

lim sup
t→∞

E(xp(t)) ≤ K1
(
p
)
, (3.3)

lim sup
t→∞

1
t

∫ t

0
E
(
xp+1(s)

)
≤ K2

(
p
)
, (3.4)

where both K1(p) and K2(p) are positive constants defined in the proof.

Proof. By Theorem 2.3, the solution x(t) will remain in R+ for all t ≥ −τ with probability 1. Let

−λ =
(

1 +
c

p + 1

)−1(
−b̂ + c

)
, (3.5)

γ = τ−1 log(1 + λ). (3.6)

Define the function V : R+ × R+ → R+ by

V (x, t) = eγtxp. (3.7)

By the generalized Itô formula, we have

dV (x(t), t) = LV (x(t), x(t − τ), t, r(t))dt + peγtσ(r(t))xp dw(t), (3.8)
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where LV : R+ × R+ × R+ × S → R is defined by

LV
(
x, y, t, i

)
= eγt

(
γ + pa(i) +

1
2
p
(
p − 1

)
σ2(i)

)
xp − peγtb(i)xp+1 + peγtc(i)xpy. (3.9)

By (3.5) and Young’s inequality, we obtain that

LV
(
x, y, t, i

)

≤ eγt
(
γ + pa(i) +

1
2
p
(
p − 1

)
σ2(i)

)
xp − peγtb(i)xp+1 + peγtc

(
p

p + 1
xp+1 +

1
p + 1

yp+1
)

≤ eγt
[(

γ + pǎ +
1
2
p
(
p − 1

)
σ2(i)

)
xp − λpxp+1

]
+ eγt

pc

p + 1

[
−(1 + λ)xp+1 + yp+1

]

≤ H1e
γt + eγt

pc

p + 1

(
−eγτxp+1 + yp+1

)
,

(3.10)

where H1 = maxi∈S{supx∈R+
[(γ + pǎ + (1/2)p(p − 1)σ2(i))xp − λpxp+1]}. Moreover,

∫ t

0
eγsxp+1(s − τ)ds ≤ eγτ

∫0

−τ
xp+1(s)ds + eγτ

∫ t

0
eγsxp+1(s)ds. (3.11)

By (3.10) and (3.11), one has

eγtE(xp(t)) ≤ xp(0) +
H1

γ

(
eγt − 1

)
+

pc

p + 1
eγτ

∫0

−τ
xp+1(s)ds, (3.12)

which yields

lim sup
t→∞

E(xp(t)) ≤ K1
(
p
)
, (3.13)

where

K1
(
p
)
= max

i∈S

{
sup
x∈R+

γ−1
[(

γ + pǎ +
1
2
p
(
p − 1

)
σ2(i)

)
xp − λpxp+1

]}
. (3.14)
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By the generalized Itô formula, Young’s inequality and (3.5) again, it follows

0 ≤ E(xp(t))

≤ x
p

0 + E

∫ t

0
pxp(s)

[
1
2
(
p − 1

)
σ2(r(s)) + a(r(s))

]
− pb(r(s))xp+1(s) + pcxp(s)x(s − τ)ds

≤ x
p

0 + E

∫ t

0

{
1
2
p
(
p − 1

)
σ2(r(s))xp(s) + pa(r(s))xp(s)

+p
[
−
(

1 +
c

p + 1

)
λ

]
xp+1(s) +

pc

p + 1

(
−xp+1(s) + xp+1(s − τ)

)}
ds

≤ H2 + E

∫ t

0

{
1
2
p
(
p − 1

)
σ2(r(s))xp(s) + pa(r(s))xp + p

[
−
(

1 +
c

p + 1

)
λ

]
xp+1(s)

}
ds,

(3.15)

where H2 = xp(0) + (pc/(p + 1))
∫0
−τ x

p+1(s)ds. This implies

pλE

∫ t

0
xp+1(s)ds ≤ H2 + E

∫ t

0

1
2
p
(
p − 1

)
σ2(r(s))xp(s) + pa(r(s))xp(s) − λpc

p + 1
xp+1(s)ds.

(3.16)

The inequality above implies

lim sup
t→∞

1
t
E

∫ t

0
xp+1(s) ≤ H3

pλ
, (3.17)

where H3 = maxi∈S{supx∈R+
[(1/2)p(p − 1)σ2(i)xp + pa(i)xp − (λpc/(p + 1))xp+1]} and the

desired assertion (3.4) follows by setting K2(p) = H3/pλ.

Remark 3.4. From (3.3) of Theorem 3.3, there is a T > 0 such that

E(xp(t)) ≤ 2K1
(
p
) ∀ t ≥ T. (3.18)

Since E(xp(t)) is continuous, there is a K1(p, x0) such that

E(xp(t)) ≤ K1
(
p, x0

)
for t ∈ [0, T]. (3.19)

Taking L(p, x0) = max(2K1(p), K1(p, x0)), we havefor the fundamental theory of

E(xp(t)) ≤ L
(
p, x0

) ∀ t ∈ [0,∞). (3.20)

This means that the pth moment of any positive solution of (1.4) is bounded.
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Remark 3.5. Equation (3.4) of Theorem 3.3 shows that the average in time of the pth (p > 1)
moment of solutions of (1.4) is bounded.

Theorem 3.6. Solutions of (1.4) are stochastically ultimately bounded under (A1′).

Proof. This can be easily verified by Chebyshev’s inequality and Theorem 3.3.

Based on the results above, we will prove the other inequality in the definition of
stochastic permanence. For convenience, define

β(i) = a(i) − 1
2
σ2(i). (3.21)

Under (A3), it has
∑n

i=1 πiβ(i) > 0. Moreover, let G be a vector or matrix. By G � 0 we mean
all elements of G are positive. We also adopt here the traditional notation by letting

Zn×n =
{
A =

(
aij

)
n×n : aij ≤ 0, i /= j

}
. (3.22)

We will also need some useful results.

Lemma 3.7 (see [24]). If A ∈ Zn×n, then the following statements are equivalent.

(1) A is a nonsingular M-matrix (see [24] for definition of M-matrix).

(2) All of the principal minors of A are positive; that is,

∣∣∣∣∣∣
a11 · · · a1k

· · · · · · · · ·
ak1 · · · akk

∣∣∣∣∣∣
> 0 for every k = 1, 2, . . . , n. (3.23)

(3) A is semipositive, that is, there exists x � 0 in Rn such that Ax � 0.

Lemma 3.8 (see [18]). (i) Assumptions (A2) and (A3) imply that there exists a constant θ > 0 such
that the matrix

A(θ) = diag(ξ1(θ), ξ2(θ), . . . , ξn(θ)) − Γ (3.24)

is a nonsingular M-matrix, where ξi(θ) = θβ(i) − (1/2)θ2σ2(i), ∀i ∈ S.
(ii) Assumption (A4) implies that there exists a constant θ > 0 such that the matrix A(θ) is a

nonsingular M-matrix.

Lemma 3.9. If there exists a constant θ > 0 such that A(θ) is a nonsingular M-matrix and c(i) ≥
0 (i = 1, 2, . . . , n), then the global positive solution x(t) of (1.4) has the property that

lim sup
t→∞

E
(
|x(t)|−θ

)
≤ H, (3.25)

whereH is a fixed positive constant (defined by (3.35) in the proof).
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Proof. Let U(t) = x−1(t) on t ≥ 0. Applying the generalized Itô formula, we have

dU(t) = U(t)
(
−a(r(t)) + σ2(r(t)) + b(r(t))x(t) − c(r(t))x(t − τ)

)
dt − σU(t)dw(t). (3.26)

By Lemma 3.7, for the given θ, there is a vector �q = (q1, q2, . . . , qn)
T � 0 such that

�λ = (λ1, λ2, . . . , λn)
T = A(θ)�q � 0, (3.27)

namely,

qi

(
θβ(i) − 1

2
θ2σ2(i)

)
−

n∑
j=1

γijqj > 0 ∀ 1 ≤ i ≤ n. (3.28)

Define the function V : R+ ×S → R+ by V (U, i) = qi(1+U)θ. Applying the generalized
Itô formula again, we have

EV (U(t), r(t)) = V (U(0), r(0)) + E

∫ t

0
LV (U(s), x(s − τ), r(s))ds, (3.29)

where LV : R+ × R+ × S → R is defined by

LV
(
U,y, i

)
= (1 +U)θ−2

⎧
⎨
⎩−U2

⎡
⎣qi

(
θβ(i) − 1

2
θ2σ2(i)

)
−

n∑
j=1

γijqj

⎤
⎦

+U

⎡
⎣qiθ

(
b(i) − a(i) + σ2(i)

)
+ 2

n∑
j=1

γijqj

⎤
⎦

+

⎡
⎣qiθb(i) +

n∑
j=1

γijqj − qiθc(i)(1 +U)Uy

⎤
⎦
⎫
⎬
⎭.

(3.30)

Now, choose a constant κ > 0 sufficiently small such that

�λ − κ�q � 0, (3.31)

that is,

qi

(
θβ(i) − 1

2
θ2σ2(i)

)
−

n∑
j=1

γijqj − κqi > 0 ∀ 1 ≤ i ≤ n. (3.32)
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Then, by the generalized Itô formula again,

E
[
eκtV (U(t), r(t))

]

= V (U(0), r(0)) + E

∫ t

0

[
κeκtV (U(s), r(s)) + eκtLV (U(s), x(s − τ), r(s))

]
ds.

(3.33)

It is computed that

κeκtV (U, i) + eκtLV
(
U,y, i

)

≤ eκt(1 +U)θ−2

⎧
⎨
⎩−U2

⎡
⎣qi

(
θβ(i) − 1

2
θ2σ2(i)

)
−

n∑
j=1

γijqj − κqi

⎤
⎦

+U

⎡
⎣qiθ

(
b(i) − a(i) + σ2(i)

)
+ 2

n∑
j=1

γijqj + 2κqi

⎤
⎦

+qiθb(i) +
n∑
j=1

γijqj + κqi

⎫
⎬
⎭

≤ q̂κHeκt,

(3.34)

where

H =
1
q̂κ

max
i∈S

⎧
⎨
⎩sup

U∈R+

(1 +U)θ−2

⎧
⎨
⎩−U2

⎡
⎣qi

(
θβ(i) − 1

2
θ2σ2(i)

)
−

n∑
j=1

γijqj − κqi

⎤
⎦

+U

⎡
⎣qiθ

(
b(i) − a(i) + σ2(i)

)
+ 2

n∑
j=1

γijqj + 2κqi

⎤
⎦

+qiθb(i) +
n∑
j=1

γijqj + κqi

⎫
⎬
⎭, 1

⎫
⎬
⎭,

(3.35)

which implies

q̂E
[
eκt(1 +U(t))θ

]
≤ q̌
(

1 + x−1(0)
)θ

+ q̂Heκt. (3.36)

Then

lim sup
t→∞

E
(
Uθ(t)

)
≤ lim sup

t→∞
E
[
(1 +U(t))θ

]
≤ H. (3.37)

Recalling the definition of U(t), we obtain the required assertion.
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Theorem 3.10. Under (A1′′), (A2), and (A3), (1.4) is stochastically permanent.

The proof is a simple application of the Chebyshev inequality, Lemmas 3.8 and 3.9,
and Theorem 3.6. Similarly, it is easy to obtain the following result.

Theorem 3.11. Under (A1′′) and (A4), (1.4) is stochastically permanent.

Remark 3.12. It is well-known that if a > 0, b > 0 and 0 ≤ c < b, then the solution x(t) of (1.1)
is persistent, namely,

lim inf
t→∞

x(t) > 0. (3.38)

Furthermore, we consider its associated stochastic delay equation (1.4), that is,

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t) + c(r(t))x(t − τ))dt + σ(r(t))dw(t)], (3.39)

where a(i) > 0, b(i) > 0, c(i) ≥ 0, for i ∈ S, and č < b̂. Thus, applying Theorem 3.10 or
Theorem 3.11, we can see that (1.4) is stochastically permanent, if the noise intensities are
sufficiently small in the sense that

n∑
i=1

πi

[
a(i) − 1

2
σ2(i)

]
> 0 or a(i) − 1

2
σ2(i) > 0, for each i ∈ S. (3.40)

Corollary 3.13. Assume that for some i ∈ S, b(i) > 0, −b(i) + |c(i)| ≤ 0, and a(i)− (1/2)σ2(i) > 0.
Then the subsystem

dx(t) = x(t)[(a(i) − b(i)x(t) + c(i)x(t − τ))dt + σ(i)dw(t)] (3.41)

is stochastically permanent.

4. Extinction

In the previous sections we have shown that under certain conditions, the original (1.1) and
the associated SDE (1.4) behave similarly in the sense that both have positive solutions which
will not explode to infinity in a finite time and, in fact, will be ultimately bounded. In other
words, we show that under certain condition the noise will not spoil these nice properties.
However, we will show in this section that if the noise is sufficiently large, the solution to
(1.4) will become extinct with probability 1.

Theorem 4.1. Assume that (A1) holds. Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];R+), the solution x(t) of (1.4) has the property that

lim sup
t→∞

logx(t)
t

≤
n∑
i=1

πi

[
a(i) − 1

2
σ2(i)

]
a.s. (4.1)
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Proof. By Theorem 2.3, the solution x(t) will remain in R+ for all t ≥ −τ with probability 1.
We have by the generalized Itô formula and (A1) that

d logx(t) ≤
(
a(r(t)) − 1

2
σ2(r(t)) − b̂x(t) + b̂x(t − τ)

)
dt + σ(r(t))dw(t), (4.2)

where (A1) is used in the last step. Then,

log(V (x(t))) ≤ log(V (x(0))) + b̂

∫0

−τ
x(s)ds +

∫ t

0

(
a(r(s)) − 1

2
σ2(r(s))

)
ds +M(t), (4.3)

where M(t) =
∫ t

0 σ(r(t))dw(t). The quadratic variation of M(t) is given by

〈M,M〉t =
∫ t

0
σ2(r(s))ds ≤ σ2t. (4.4)

Therefore, applying the strong law of large numbers for martingales [24], we obtain

lim
t→∞

M(t)
t

= 0 a.s. (4.5)

It finally follows from (4.3) by dividing t on the both sides and then letting t → ∞ that

lim sup
t→∞

logx(t)
t

≤ lim sup
t→∞

1
t

∫ t

0

[
a(r(s)) − 1

2
σ2(r(s))

]
ds =

n∑
i=1

πi

[
a(i) − 1

2
σ2(i)

]
a.s., (4.6)

which is the required assertion (4.1).

Similarly, it is easy to prove the following conclusions.

Theorem 4.2. Assume that (A1) and (A3′) hold. Then for any given initial data {x(t) : −τ ≤ t ≤
0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) has the property that

lim sup
t→∞

logx(t)
t

< 0 a.s. (4.7)

That is, the population will become extinct exponentially with probability 1.

Theorem 4.3. Assume that (Al) and (A4′) hold. Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];R+), the solution x(t) of (1.4) has the property that

lim sup
t→∞

logx(t)
t

≤ −ϕ
2

a.s., (4.8)

where ϕ = mini∈S(σ2(i) − 2a(i)) > 0. That is, the population will become extinct exponentially with
probability 1.
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Remark 4.4. If the noise intensities are sufficiently large in the sense that

n∑
i=1

πi

[
a(i) − 1

2
σ2(i)

]
< 0 or a(i) − 1

2
σ2(i) < 0, for each i ∈ S, (4.9)

then the population x(t) represented by (1.4) will become extinct exponentially with pro-
bability 1. However, the original delay equation (1.1) may be persistent without environmen-
tal noise.

Remark 4.5. Let A1′′ and A2 hold,
∑n

i=1 πi[a(i) − (1/2)σ2(i)]/= 0. Then, SDE (1.4) is either
stochastically permanent or extinctive. That is, it is stochastically permanent if and only if∑n

i=1 πi[a(i)− (1/2)σ2(i)] > 0, while it is extinctive if and only if
∑n

i=1 πi[a(i)− (1/2)σ2(i)] < 0.

Corollary 4.6. Assume that for some i ∈ S,

−b(i) + |c(i)| ≤ 0, a(i) − 1
2
σ2(i) < 0. (4.10)

Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), the solution x(t) of subsystem

dx(t) = x(t)[(a(i) − b(i)x(t) + c(i)x(t − τ))dt + σ(i)dw(t)] (4.11)

tend to zero a.s.

5. Asymptotic Properties

Lemma 5.1. Assume that (A1′) holds. Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];R+), the solution x(t) of (1.4) has the property

lim sup
t→∞

log(x(t))
log t

≤ 1 a.s. (5.1)

Proof. By Theorem 2.3, the solution x(t) will remain in R+ for all t ≥ −τ with probability 1. It
is known that

dx(t) ≤ (ǎx(t) + cx(t)x(t − τ))dt + σ(r(t))dw(t),

E

(
sup

t≤u≤t+1
x(u)

)
≤ E(x(t)) + ǎ

∫ t+1

t

E(x(s))ds + c

∫ t+1

t

E(x(s)x(s − τ))ds

+ E

(
sup

t≤u≤t+1

∫u

t

σ(r(s))x(s)dw(s)

)
.

(5.2)
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From (3.3) of Theorem 3.3, it has

lim sup
t→∞

E(x(t)) ≤ K1(1),

lim sup
t→∞

E
(
x2(t)

)
≤ K1(2).

(5.3)

By the well-known BDG’s inequality [24] and the Hölder’s inequality, we obtain

E

(
sup

t≤u≤t+1

∫u

t

σ(r(s))x(s)dB(s)

)
≤ 3E

[∫ t+1

t

(σ(r(s))x(s))2ds

]1/2

≤ E

(
sup

t≤u≤t+1
x(u) · 9σ̌

∫ t+1

t

x(s)ds

)1/2

≤ 1
2
E

(
sup

t≤u≤t+1
x(u)

)
+ 9σ̌2

∫ t+1

t

E(x(s))ds.

(5.4)

Note that

∫ t+1

t

E[x(s)x(s − τ)]ds ≤ 1
2

∫ t+1

t

E
(
x2(s)

)
ds +

1
2

∫ t+1

t

E
(
x2(s − τ)

)
ds. (5.5)

Therefore,

E

(
sup

t≤u≤t+1
x(u)

)
≤ 2E(x(t)) + 2ǎ

∫ t+1

t

E(x(s))ds + c

∫ t+1

t

E
(
x2(s)

)
ds

+ c

∫ t+1

t

E
(
x2(s − τ)

)
ds + 18σ̌2

∫ t+1

t

E(x(s))ds.

(5.6)

This, together with (5.3), yields

lim sup
t→∞

E

(
sup

t≤u≤t+1
x(u)

)
≤ 2
(

1 + ǎ + 18σ̌2
)
K1(1) + 2cK1(2). (5.7)

From (5.7), there exists a positive constant M such that

E

(
sup

k≤t≤k+1
x(t)

)
≤ M, k = 1, 2, . . . . (5.8)
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Let ε > 0 be arbitrary. Then, by Chebyshev’s inequality,

P

(
sup

k≤t≤k+1
x(u) > k1+ε

)
≤ M

k1+ε
, k = 1, 2, . . . . (5.9)

Applying the well-known Borel-Cantelli lemma [24], we obtain that for almost all ω ∈ Ω

sup
k≤t≤k+1

x(u) ≤ k1+ε, (5.10)

for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for which (5.10)
holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and k ≤ t ≤ k + 1, then

log(x(t))
log t

≤ (1 + ε) log k

log k
= 1 + ε. (5.11)

Therefore,

lim sup
t→∞

log(x(t))
log t

≤ 1 + ε a.s. (5.12)

Letting ε → 0, we obtain the desired assertion (5.1).

Lemma 5.2. If there exists a constant θ > 0 such that A(θ) is a nonsingular M-matrix and c(i) ≥
0 (i = 1, 2, . . . , n), then the global positive solution x(t) of SDE (1.4) has the property that

lim inf
t→∞

log(x(t))
log t

≥ − 1
θ

a.s. (5.13)

Proof. Applying the generalized Itô formula, for the fixed constant θ > 0, we derive from
(3.26) that

d
[
(1 +U(t))θ

]
≤ θ(1 +U(t))θ−2

[
−U2(t)

(
β̂ − 1

2
σ̌2
)
+U(t)

(
b̌ + σ̌2

)
+ b̌

]
dt

− θσ(r(t))(1 +U(t))θ−1U(t)dw(t),

(5.14)

where U(t) = 1/x(t) on t > 0. By (3.37), there exists a positive constant M such that

E
[
(1 +U(t))θ

]
≤ M on t ≥ 0. (5.15)

Let δ > 0 be sufficiently small for

θ

{[
β̂ + 2b̌ +

1
2
(θ + 2)σ̌2

]
δ + 3ǎδ1/2

}
<

1
2
. (5.16)
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Then (5.14) implies that

E

[
sup

(k−1)δ≤t≤kδ
(1 +U(t))θ

]

≤ E
[
(1 +U((k − 1)δ))θ

]

+ E

{
sup

(k−1)δ≤t≤kδ

∣∣∣∣∣
∫ t

(k−1)δ
θ(1 +U(s))θ−2

[
−U2(s)

(
β̂ − 1

2
θσ̆2

)
+U(s)

(
b̆ + σ̆2

)
+ b̆

]
ds

∣∣∣∣∣

}

+ E

{
sup

(k−1)δ≤t≤kδ

∣∣∣∣∣
∫ t

(k−1)δ
θσ(r(s))(1 +U(s))θ−1U(s)dw(s)

∣∣∣∣∣

}
.

(5.17)

By directly computing, we have

E

{
sup

(k−1)δ≤t≤kδ

∣∣∣∣∣
∫ t

(k−1)δ
θ(1 +U(s))θ−2

[
−U2(s)

(
β̂ − 1

2
θσ̌2

)
+U(s)

(
b̌ + σ̌2

)
+ b̌

]
ds

∣∣∣∣∣

}

≤ θE

{∫ t

(k−1)δ

[
β̂ + 2b̌ +

1
2
(θ + 2)σ̌2

]
(1 +U(s))θds

}

≤ θ

[
β̂ + 2b̌ +

1
2
(θ + 2)σ̌2

]
δE

[
sup

(k−1)δ≤t≤kδ
(1 +U(t))θ

]
.

(5.18)

By the BDG’s inequality, it follows

E

{
sup

(k−1)δ≤t≤kδ

∣∣∣∣∣
∫kδ

(k−1)δ
θσ(r(s))(1 +U(s))θ−1U(s)dw(s)

∣∣∣∣∣

}
≤3θσ̌δ1/2E

{
sup

(k−1)δ≤t≤kδ
(1 +U(s))θ

}
.

(5.19)

Substituting this and (5.18) into (5.17) gives

E

[
sup

(k−1)δ≤t≤kδ
(1 +U(t))θ

]

≤ E
[
(1 +U((k − 1)δ))θ

]
+ θ

{[
β̂ + 2b̌ +

1
2
(θ + 2)σ̌2

]
δ + 3σ̌δ1/2

}
E

{
sup

(k−1)δ≤t≤kδ
(1 +U(s))θ

}
.

(5.20)
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Making use of (5.15) and (5.16), we obtain

E

[
sup

(k−1)δ≤t≤kδ
(1 +U(t))θ

]
≤ 2M on t ≥ 0. (5.21)

Let ε > 0 be arbitrary. Then, we have by Chebyshev’s inequality that

P

{
ω : sup

(k−1)δ≤t≤kδ
(1 +U(t))θ > (kδ)1+ε

}
≤ 2M

(kδ)1+ε
, k = 1, 2, . . . . (5.22)

Applying the Borel-Cantelli lemma, we obtain that for almost all ω ∈ Ω,

sup
(k−1)δ≤t≤kδ

(1 +U(t))θ ≤ (kδ)1+ε
(5.23)

holds for all but finitely many k. Hence, there exists an integer k0(ω) > 1/δ + 2, for almost all
ω ∈ Ω, for which (5.23) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0

and (k − 1)δ ≤ t ≤ kδ,

log (1 +U(t))θ

log t
≤ (1 + ε) log(kδ)

log((k − 1)δ)
≤ 1 + ε. (5.24)

Therefore,

lim sup
t→∞

log (1 +U(t))θ

log t
≤ 1 + ε a.s. (5.25)

Let ε → 0, we obtain

lim sup
t→∞

log (1 +U(t))θ

log t
≤ 1 a.s. (5.26)

Recalling the definition of U(t), this yields

lim sup
t→∞

log
(
1/xθ(t)

)

log t
≤ 1 a.s., (5.27)

which further implies

lim inf
t→∞

log(x(t))
log t

≥ − 1
θ

a.s. (5.28)

This is our required assertion (5.13).
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Theorem 5.3. Assume that (A1′′), (A2), and (A3) hold. Then for any given initial data {x(t) : −τ ≤
t ≤ 0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) obeys

lim sup
t→∞

1
t

∫ t

0
x(s)ds ≤ 1

b̂ − c

n∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
a.s., (5.29)

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥ 1

b̌

n∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
a.s. (5.30)

Proof. By Theorem 2.3, the solution x(t) will remain in R+ for all t ≥ −τ with probability 1.
From Lemmas 3.8, 5.1, and 5.2, it follows

lim
t→∞

log(x(t))
t

= 0 a.s. (5.31)

By generalized Itô formula, one has

logx(t) = logx0 +
∫ t

0

(
a(r(s)) − 1

2
σ2(r(s))

)
ds −

∫ t

0
b(r(s))x(s)ds

+
∫ t

0
c(r(s))x(s − τ)ds +

∫ t

0
σ(r(s))dw(s).

(5.32)

Dividing by t on both sides, then we have

logx(t)
t

≤ logx0

t
+

1
t

∫ t

0

(
a(r(s)) − 1

2
σ2(r(s))

)
ds +

(
−b̂ + c

)1
t

∫ t

0
x(s)ds

+
c

t

∫0

−τ
x(s)ds +

1
t

∫ t

0
σ(r(s))dw(s).

(5.33)

Let t → ∞, by the strong law of large numbers for martingales and (5.31), we therefore
have

lim sup
t→∞

1
t

∫ t

0
x(s)ds ≤ 1

b̂ − c

n∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
a.s., (5.34)

which is the required assertions (5.29). And we also have

logx(t)
t

≥ 1
t

logx0 +
1
t

∫ t

0

(
a(r(s)) − 1

2
σ2(r(s))

)
ds − b̌

t

∫ t

0
x(s)ds +

1
t

∫ t

0
σ(r(s))dw(s).

(5.35)
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Let t → ∞, by the strong law of large numbers for martingales and (5.21), we therefore have

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥ 1

b̌

n∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
a.s., (5.36)

which is the required assertions (5.30).

Similarly, by using Lemmas 3.8, 5.1, and 5.2, it is easy to show the following conclusion.

Theorem 5.4. Assume that (A1′′) and (A4) hold. Then for any given initial data {x(t) : −τ ≤ t ≤
0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) obeys

lim sup
t→∞

1
t

∫ t

0
x(s)ds ≤ 1

b̂ − c

n∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
a.s.,

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥ 1

b̌

n∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
a.s.

(5.37)

Corollary 5.5. If that for some i ∈ S,

b(i) > 0, b(i) > |c(i)|, a(i) − 1
2
σ2(i) > 0, (5.38)

then the solution with positive initial value to subsystem

dx(t) = x(t)[(a(i) − b(i)x(t) + c(i)x(t − τ))dt + σ(i)dw(t)] (5.39)

has the property that

a(i) − (1/2)σ2(i)
b(i)

≤ lim inf
t→∞

1
t

∫ t

0
x(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
x(s)ds ≤ a(i) − (1/2)σ2(i)

b(i) − |c(i)| a.s.

(5.40)

Remark 5.6. If c = 0, (1.4) will be written by

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t))dt + σ(r(t))dw(t)], (5.41)

which is investigated in [18]. It should be pointed out that (1.4) is more difficult to handle
than (5.41). Fortunately, it overcomes the difficulties caused by delay term with the help of
Young’s inequality. Meanwhile, we get the similar results for τ ≥ 0.
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6. Examples

Example 6.1. Consider a 2-dimensional stochastic differential equation with Markovian
switching of the form

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t) + c(r(t))x(t − τ))dt + σ(r(t))dw(t)] on t ≤ 0, (6.1)

where r(t) is a right-continuous Markov chain taking values in S = {1, 2}, and r(t) and w(t)
are independent. Here

a(1) = 2, b(1) = 3, c(1) = 1, σ(1) = 1,

a(2) = 1, b(2) = 2, c(2) =
3
2
, σ(2) = 2.

(6.2)

It can be computed that

b̂ = 2; č =
3
2

; a(1) − 1
2
σ2(1) =

3
2

; a(2) − 1
2
σ2(2) = −1. (6.3)

By Theorem 2.3, the solution x(t) of (6.1) will remain in R+ for all t ≥ −τ with pro-
bability 1.

Case 1. Let the generator of the Markov chain r(t) be

Γ =
(−1 1

2 −2

)
. (6.4)

By solving the linear equation πΓ = 0, we obtain the unique stationary (probability) dis-
tribution

π = (π1, π2) =
(

2
3
,

1
3

)
. (6.5)

Therefore,

2∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
=

2
3
> 0. (6.6)

By Theorems 3.10 and 5.3, (6.1) is stochastically permanent and its solution x(t) with any
positive initial value has the following properties:

1
3
≤ lim inf

t→∞
1
t

∫ t

0
x(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
x(s)ds ≤ 4

3
a.s. (6.7)
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Case 2. Let the generator of the Markov chain r(t) be

Γ =
(−2 2

1 −1

)
. (6.8)

By solving the linear equation πΓ = 0, we obtain the unique stationary (probability) dis-
tribution

π = (π1, π2) =
(

1
3
,

2
3

)
. (6.9)

So,

2∑
i=1

πi

(
a(i) − 1

2
σ2(i)

)
= −1

6
< 0. (6.10)

Applying Theorems 4.2, (6.1) is extinctive.
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We introduce a notion of attractivity for delay equations which are defined on bounded time
intervals. Our main result shows that linear delay equations are finite-time attractive, provided
that the delay is only in the coupling terms between different components, and the system is
diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that
the delay is harmless and does not destroy finite-time attractivity.

1. Introduction

Finite-time dynamical systems generated by nonautonomous differential equations which are
defined only on a compact interval of time have recently become an active field of research,
see, for example, [1–3] and the references therein.

A key ingredient of a qualitative theory is the notion of hyperbolicity of solutions.
Finite-time versions of hyperbolicity are introduced and discussed, for example, in [4–8].
Finite-time attractivity is a special case of finite-time hyperbolicity, in case the unstable
direction is missing. So far finite-time attractivity has been discussed only for ordinary
differential equations, see [9, 10]. For a closely related notion, namely, finite-time stability,
we refer to [11, 12] and the references therein for an overview. In this paper we go one step
further to extend and investigate finite-time attractivity for delay equations.

For a nonnegative number r ≥ 0, let C := C([−r, 0],Rd) denote the space of all
continuous functions ϕ : [−r, 0] → R

d. For γ ∈ R, the norm ‖ · ‖γ,∞ on C is defined as follows:

∥∥ϕ∥∥γ,∞ := max
{
eγs
∥∥ϕ(s)∥∥∞ : s ∈ [−r, 0]}, (1.1)
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where ‖x‖∞ = max{|xi| : i = 1, . . . , d} for all x = (x1, . . . , xd)
T ∈ R

d. Consider a finite-time
delay differential equation

ẋ = f(t, xt) for t ∈ [0, T], (1.2)

where f : [0, T]×C → R
d is assumed to be continuous and Lipschitz in the second argument.

For each ϕ ∈ C, let x(·, ϕ) denote the solution of (2.1) satisfying the initial condition x(s) =
ϕ(s) for all s ∈ [−r, 0]. The evolution operator S : [0, T]×C → C generated by (1.2) is defined
as

(
S(t)ϕ

)
(s) = x

(
t + s, ϕ

) ∀s ∈ [−r, 0], t ∈ [0, T]. (1.3)

Motivated by recent results on finite-time hyperbolicity (see, e.g., [4, 6, 7]), we introduce in
the following an analog notion of finite-time attractivity for delay equations.

Definition 1.1 (finite-time attractivity). The solution S(·, ϕ) is called finite-time attractive on
[0, T] with respect to the norm ‖ · ‖γ,∞ if there exist positive constants α and η such that for all
t, s ∈ [0, T] with s ≤ t the following estimate holds:

∥∥S(t, ϕ) − S
(
t, ψ
)∥∥

γ,∞ ≤ e−α(t−s)
∥∥S(s, ϕ) − S

(
s, ψ
)∥∥

γ,∞ (1.4)

for all ψ in the neighborhood Bη(ϕ) of ϕ.

Remark 1.2. In the case that f : [0, T] × C → R
d is a linear function in the second argument,

it is easy to see that the generated semigroup S : [0, T] × C → C is also linear in the second
argument. In particular, for linear systems the following statements are equivalent:

(i) there exists a finite-time attractive solution S(·, ϕ) for a ϕ ∈ C,

(ii) for all ϕ ∈ C, the solution S(·, ϕ) is finite-time attractive, and

(iii) there exists α > 0 such that for all 0 ≤ s ≤ t ≤ T we have

∥∥S(t, ϕ)∥∥γ,∞ ≤ e−α(t−s)
∥∥S(s, ϕ)∥∥γ,∞ ∀ϕ ∈ C. (1.5)

In this paper, we prove the finite-time attractivity for linear off-diagonal delay systems
in Section 2. Section 3 is devoted to show the finite-time attractivity of the equilibrium for a
Lotka-Voltera system.

2. Finite-Time Attractivity for Linear Off-Diagonal Delay Systems

In this section, we consider the following finite-time nonautonomous linear differential
equation with off-diagonal delays (see, e.g., [13] and the reference therein):

ẋi(t) = aii(t)xi(t) +
d∑

j=1,j /= i

aij(t)xj

(
t − τij

)
for i = 1, . . . , d, t ∈ [0, T], (2.1)
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where T is a given positive constant, aij : R → R, i, j = 1, . . . , d, are continuous functions and
τij > 0 for i, j = 1, . . . , d with i /= j. Define

r := max
{
τij : i, j = 1, . . . , d, i /= j

}
. (2.2)

Note that (2.1) is a special case of (1.2). More precisely, the right hand side of (2.1) equals
f(t, xt), where f = (f1, . . . , fd) : [0, T] × C → R

d is defined as follows:

fi
(
t, ϕ
)

:= aii(t)ϕ(0) +
d∑

j=1,j /= i

aij(t)ϕj

(−τij
)
. (2.3)

Let S : [0, T] × C → C denote the evolution operator of (2.1). From (2.3), we see that the
function f is linear in the second argument. Therefore, the evolution operator S is also linear
in the second argument. Our aim in this section is to provide a sufficient condition for the
finite-time attractivity for the zero solution of (2.1) and thus for all solutions of (2.1), see
Remark 1.2.

Before presenting the main result, we recall the notion of row diagonal dominance. We
refer the reader to [14, Definition 7.10] for a discussion of this notion. System (2.1) is called
row diagonally dominant if there exists a positive constant δ such that

|aii(t)| ≥
d∑

j=1,j /= i

∣∣aij(t)
∣∣ + δ for t ∈ [0, T]. (2.4)

Theorem 2.1 (finite-time attractivity for delay equations). Consider system (2.1) on a finite-time
interval [0, T]. Suppose that system (2.1) is row diagonally dominant with a positive constant δ and
aii(t) < 0 for all i = 1, . . . , d and t ∈ [0, T]. Define

M := max

⎧
⎨
⎩

d∑
j=1,j /= i

∣∣aij(t)
∣∣ : i = 1, . . . , d, t ∈ [0, T]

⎫
⎬
⎭, (2.5)

and let γ∗ be a positive number satisfying that

γ∗

2
+
(
eγ

∗r − 1
)
M = δ. (2.6)

Then for every γ ∈ [0, γ∗], the zero solution of (2.1) is finite-time attractive with respect to the
norm ‖ · ‖γ,∞ with exponent −γ/2, that is,

∥∥S(t, ϕ)∥∥γ,∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞ for 0 ≤ s ≤ t ≤ T. (2.7)

Proof. We divide the proof into two steps.
Step 1. We show that for ϕ ∈ C the inequality

∥∥x(t, ϕ)∥∥∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞ ∀0 ≤ s ≤ t ≤ T (2.8)
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holds. Suppose the opposite, that is, assume that there exists s ∈ [0, T] such that the set

N :=
{
t ∈ [s, T) :

∥∥x(t, ϕ)∥∥∞ > e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞
}

(2.9)

is not empty. Define tinf = inf{t : t ∈ N}. By continuity of the map t 
→ ‖x(t, ϕ)‖∞, we get that

∥∥x(tinf, ϕ
)∥∥

∞ = e−(γ/2)(tinf−s)∥∥S(s, ϕ)∥∥γ,∞, (2.10)
∥∥x(t, ϕ)∥∥∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞ ∀t ∈ [s, tinf]. (2.11)

Now, we will show that

∥∥x(tinf, ϕ
)∥∥

∞ ≥ e−γr
∥∥x(t, ϕ)∥∥∞ ∀t ∈ [tinf − r, tinf]. (2.12)

Indeed, we consider the following two cases: (i) t ∈ [s, tinf]∩ [tinf − r, tinf] and (ii) t ∈ (−∞, s]∩
[tinf − r, tinf].

Case (i). If t ∈ [s, tinf] ∩ [tinf − r, tinf], then, according to (2.10) and (2.11), we obtain that

∥∥x(tinf, ϕ
)∥∥

∞ = e−(γ/2)(tinf−s)∥∥S(s, ϕ)∥∥γ,∞
≥ e−(γ/2)(tinf−s)e(γ/2)(t−s)∥∥x(t, ϕ)∥∥∞
≥ e−γr

∥∥x(t, ϕ)∥∥∞,

(2.13)

which proves (2.12) in this case.
Case (ii). If t ∈ (−∞, s] ∩ [tinf − r, tinf], then, according to (2.10) and the definition of the

norm ‖ · ‖γ,∞, we obtain that

∥∥x(tinf, ϕ
)∥∥

∞ = e−(γ/2)(tinf−s) max
ω∈[−r,0]

eγω
∥∥S(s, ϕ)(ω)

∥∥
∞

= max
ω∈[−r,0]

e−(γ/2)(tinf−s−2ω)∥∥x(s +ω,ϕ
)∥∥

∞

≥ e−(γ/2)(tinf+s−2t)∥∥x(t, ϕ)∥∥∞
≥ e−γr

∥∥x(t, ϕ)∥∥∞.

(2.14)

Hence, (2.12) is proved. To conclude the proof of this step, we estimate the norm ‖x(t, ϕ)‖∞
for all t in a neighborhood of tinf in order to show a contradiction to the assumption that the
set N is not empty. To this end, we define the following set:

I :=
{
i ∈ {1, . . . , d} :

∣∣xi

(
tinf, ϕ

)∣∣ = ∥∥x(tinf, ϕ
)∥∥

∞
}
. (2.15)
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The continuity of the functions t 
→ xi(t, ϕ) for i = 1, . . . , d implies that there exists a
neighborhood (tinf − ε, tinf + ε) for some ε > 0 such that

∥∥x(t, ϕ)∥∥∞ = max
i∈I

∣∣xi

(
t, ϕ
)∣∣ ∀t ∈ (tinf − ε, tinf + ε). (2.16)

By virtue of (2.1), the derivative of the function t 
→ x2
i (t, ϕ) is estimated as follows:

1
2
d

dt
x2
i

(
t, ϕ
)∣∣∣∣

t=tinf

= xi

(
tinf, ϕ

)
⎡
⎣aii(tinf)xi

(
tinf, ϕ

)

+
d∑

j=1,j /= i

aij(tinf)xj

(
tinf − τij , ϕ

)
⎤
⎦

≤ aii(tinf)xi

(
tinf, ϕ

)2

+
∣∣xi

(
tinf, ϕ

)∣∣
d∑

j=1,j /= i

∣∣aij(tinf)
∣∣∥∥x(tinf − τij , ϕ

)∥∥
∞,

(2.17)

which together with (2.12) and the definition of I implies that for all i ∈ I

1
2
d

dt
xi

(
t, ϕ
)2
∣∣∣∣
t=tinf

≤ xi

(
tinf, ϕ

)2

⎡
⎣aii(tinf) + eγr

d∑
j=1,j /= i

∣∣aij(tinf)
∣∣
⎤
⎦. (2.18)

Thus, from the row diagonal dominance (2.4) and bound (2.5), we derive that

1
2
d

dt
xi

(
t, ϕ
)2
∣∣∣∣
t=tinf

≤ [−δ + (eγr − 1)M]x2
i

(
tinf, ϕ

)
. (2.19)

Using (2.6), we obtain that

1
2
d

dt
x2
i

(
t, ϕ
)∣∣∣∣

t=tinf

< −γ
2
x2
i

(
tinf, ϕ

)
, (2.20)

which yields that there exists a neighborhood (tinf, tinf + ε2) for an ε2 > 0 such that for i ∈ I

∣∣xi

(
t, ϕ
)∣∣ ≤ e−(γ/2)(t−tinf)

∣∣xi

(
tinf, ϕ

)∣∣ ∀t ∈ (tinf, tinf + ε2). (2.21)

Thus, for all t ∈ (tinf, tinf + ε) with ε := min{ε1, ε2}, we have

∥∥x(t, ϕ)∥∥∞ ≤ e−(γ/2)(t−tinf)
∥∥x(tinf, ϕ

)∥∥
∞, (2.22)
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which together with (2.10) implies that

∥∥x(t, ϕ)∥∥∞ ≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞. (2.23)

Consequently, N∩ (tinf, tinf + ε) = ∅, and this is a contradiction to the definition of N and tinf.
Thus, (2.8) is proved.

Step 2. Using (2.8) from Step 1, we show (2.7) by considering two cases: (i) t ∈ [s +
r, T] ∩ [s, T] and (ii) t ∈ [s, s + r] ∩ [s, T].

Case (i). If t ∈ [s + r, T] ∩ [s, T], then by virtue of (2.8) we have

∥∥S(t, ϕ)∥∥γ,∞ = sup
ω∈[−r,0]

eγω
∥∥x(t +ω,ϕ

)∥∥
∞

≤ sup
ω∈[−r,0]

eγωe−(γ/2)(t+ω−s)∥∥S(s, ϕ)∥∥γ,∞

≤ e−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞,

(2.24)

which proves (2.7) in this case.
Case (ii). If t ∈ [s, s + r] ∩ [s, T], then we have

∥∥S(t, ϕ)∥∥γ,∞ = max

{
sup

ω∈[−(t−s),0]
eγω
∥∥x(t +ω,ϕ

)∥∥
∞,

sup
ω∈[−r,−(t−s)]

eγω
∥∥x(t +ω,ϕ

)∥∥
∞

}
.

(2.25)

Hence, using (2.8), we obtain that

∥∥S(t, ϕ)∥∥
γ,∞ ≤ max

{
sup

ω∈[−(t−s),0]
e(γ/2)ωe−(γ/2)(t−s)∥∥S(s, ϕ)∥∥γ,∞,

e−γ(t−s)
∥∥S(s, ϕ)∥∥γ,∞

}
.

(2.26)

Thus, (2.7) is proved, and the proof is complete.

3. Finite-Time Attractivity of Lotka-Voltera Systems

Consider a Lotka-Voltera system of the following form:

ẋi(t) = xi(t)

⎛
⎝ri +

d∑
j=1

aijxj

(
t − rij

)
⎞
⎠, i = 1, . . . , d, (3.1)
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where rij ≥ 0 and rii = 0 for all i = 1, . . . , d. Suppose that A = (aij)i,j=1,...,d is row diagonal
dominant with aii < 0 for all i = 1, . . . , d; that is, there exists δ > 0 such that

|aii| ≥
d∑

j=1,j /= i

∣∣aij

∣∣ + δ. (3.2)

We assume in the following that there exists a positive vector x∗ ∈ R
d
+ such that

r +Ax∗ = 0 where r = (r1, . . . , rd)T . (3.3)

To shorten the notation, the function t 
→ x∗ for all t ∈ [−r, 0] is also denoted by x∗. The
function x∗ is a fixed point of the evolution operator S(t, ·) generated by (3.1), that is, S(t, x∗) =
x∗ for all t. For system (3.1), the result in [13, Theorem 1] showed that the equilibrium x∗ is
exponentially attractive on the positive real line R+; that is, there exist positive constants K,α
and η such that

∥∥S(t, ϕ) − x∗∥∥
0,∞ ≤ Ke−αt

∥∥ϕ − x∗∥∥ ∀ϕ ∈ Bη(x∗). (3.4)

However, the constant K is usually greater than 1. Using the result developed in the
preceding section, we show in the next theorem that the constant K in (3.4) can be chosen
to be equal to 1 on the state space C with norm ‖ · ‖γ,∞ for some γ ≥ 0. As a consequence, the
equilibrium solution of system (3.1) is finite-time attractive with respect to these norms.

Theorem 3.1 (finite-time attractive equilibrium of Lotka-Voltera equations). Consider (3.1) on
an arbitrary finite-time interval [0, T] satisfying (3.2) and (3.3). Then, there exists a positive weight
factor γ∗ such that for all γ ∈ [0, γ∗] the positive equilibrium x∗ is finite-time attractive on [0, T] with
respect to the norm ‖ · ‖γ,∞.

Proof . The proof is divided into three steps.
Step 1. Construction of the weight factor γ∗. Due to compactness of [0, T] and

continuity of solutions of (3.1), there exists η∗ > 0 such that

∥∥S(t, ϕ) − x∗∥∥
0,∞ ≤ mini=1,...,dx

∗
i

2
for t ∈ [0, T], ϕ ∈ Bη∗(x∗). (3.5)

Then, we have

∣∣xi

(
t, ϕ
) − x∗

i

∣∣ ≤ ∥∥S(t, ϕ) − x∗∥∥
0,∞ ≤ mini=1,...,dx

∗
i

2
, (3.6)

which implies that for all t ∈ [0, T] and ϕ ∈ Bη∗(x∗) we have

mini=1,...,dx
∗
i

2
≤ ∣∣xi

(
t, ϕ
)∣∣ ≤ mini=1,...,dx

∗
i

2
+ max

i=1,...,d
x∗
i . (3.7)
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Define

δ∗ :=
mini=1,...,dx

∗
i

2
δ, M :=

(mini=1,...,dx
∗
i

2
+ max

i=1,...,d
x∗
i

)
max
i=1,...,d

d∑
j=1,j /= i

∣∣aij

∣∣. (3.8)

Now let γ∗ > 0 be the solution of the following equation:

γ∗

2
+
(
eγ

∗r − 1
)
M = δ∗. (3.9)

Step 2. In this step, we show that y(t) := x(t, ϕ)−x∗ is the solution of the delay equation

ẏi(t) = aii(t)yi(t) +
d∑

j=1,j /= i

aij(t)yj

(
t − rij

)
for i = 1, . . . , d (3.10)

with the initial condition y(s) = ϕ(s) − x∗ for s ∈ [−r, 0], where

aij(t) := aijxi

(
t, ϕ
)

for i, j = 1, . . . , d. (3.11)

Indeed, we have

ẏi(t) = xi

(
t, ϕ
)
⎡
⎣ri +

d∑
j=1

aijxj

(
t − rij , ϕ

)
⎤
⎦

= xi

(
t, ϕ
)
⎡
⎣ri +

d∑
j=1

aijx
∗
j +

d∑
j=1

aijyj

(
t − rij

)
⎤
⎦,

(3.12)

which together with the fact that r + Ax∗ = 0 implies that y(t) is a solution of (3.10).
Furthermore, we have

S∗(t, ϕ − x∗) = S
(
t, ϕ
) − x∗ ∀t ∈ [0, T], (3.13)

where S∗ denotes the evolution operator generated by (3.10).
Step 3. In this step, we show that for all γ ∈ [0, γ∗] and ϕ ∈ Bη∗(x∗) we have

∥∥S(t, ϕ) − x∗∥∥
γ,∞ ≤ e−γ(t−s)/2∥∥S(s, ϕ) − x∗∥∥

γ,∞ ∀0 ≤ s ≤ t ≤ T. (3.14)
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Choose and fix ϕ ∈ Bη∗(x∗), and we show that (3.10) fulfills all assumptions of Theorem 2.1.
Indeed, using (3.7) and the definition of M, we obtain the following upper bound:

max
t∈[0,T],i=1,...,d

d∑
j=1,j /= i

∣∣aij(t)
∣∣ ≤
(mini=1,...,dx

∗
i

2
+ max

i=1,...,d
x∗
i

)
max
i=1,...,d

d∑
j=1,j /= i

∣∣aij

∣∣

≤ M.

(3.15)

Combining (3.2) and (3.7), we also get that

|aii(t)| −
d∑

j=1,j /= i

∣∣aij(t)
∣∣ = ∣∣xi

(
t, ϕ
)∣∣
⎛
⎝|aii| −

d∑
j=1,j /= i

∣∣aij

∣∣
⎞
⎠

≥ mini=1,...,dx
∗
i

2
δ = δ∗.

(3.16)

Therefore, system (3.10) fulfills all assumptions of Theorem 2.1. Then, the zero solution of
system (3.10) is finite-time attractive with respect to the norm ‖ · ‖γ,∞ for all γ ∈ [0, γ∗], that
is,

∥∥S∗(t, ψ)∥∥γ,∞ ≤ e−γ(t−s)/2∥∥S∗(s, ψ)∥∥γ,∞ ∀0 ≤ s ≤ t ≤ T, ψ ∈ C. (3.17)

In particular, substituting ψ = ϕ − x∗ we get that

∥∥S∗(t, ϕ − x∗)∥∥
γ,∞ ≤ e−(γ(t−s))/2∥∥S∗(s, ϕ − x∗)∥∥

γ,∞ ∀0 ≤ s ≤ t ≤ T, (3.18)

which together with (3.13) implies (3.14) and the proof is complete.

In the rest of the paper, we discuss a planar Lotka-Voltera system, for which we can
explicitly compute its equilibrium. Consequently, applying Theorem 3.1 yields a sufficient
condition for finite-time attractivity of this equilibrium.

Example 3.2. Consider a planar Lotka-Voltera of the following form:

ẋ1(t) = x1(t)(r1 + a11x1(t) + a12x2(t − τ12)),

ẋ2(t) = x2(t)(r2 + a21x1(t − τ21) + a22x2(t)),
(3.19)

where r1, r2, τ12, τ21 > 0 and the coefficients aij for i, j = 1, 2 satisfy the following inequalities
for some ε > 0:

a11, a22 < 0, |a11| ≥ |a12| + ε, |a22| ≥ |a21| + ε. (3.20)
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Additionally, we assume that the equilibrium point x∗ = (x∗
1, x

∗
2) is positive, where

x∗
1 =

r2a12 − r1a22

a11a22 − a12a21
, x∗

2 =
r1a21 − r2a11

a11a22 − a12a21
. (3.21)

According to Theorem 3.1, for any finite-time interval [0, T], there exists a positive weight
factor γ∗ such that for all γ ∈ [0, γ∗] the positive equilibrium x∗ is finite-time attractive on
[0, T] with respect to the norm ‖ · ‖γ,∞.
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pp. 195–213, Birkhäuser, Boston, Mass, USA, 2006.

[12] P. Dorato, “An overview of finite-time stability,” in Current Trends in Nonlinear Systems and Control,
Systems & Control: Foundations & Applications, pp. 185–194, Birkhäuser, Boston, Mass, USA, 2006.
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This paper studies the following third order neutral delay discrete equation Δ(anΔ2(xn+pnxn−τ ))+
f(n, xn−d1n , . . . , xn−dln

) = gn, n ≥ n0, where τ, l ∈ N, n0 ∈ N ∪ {0}, {an}n∈Nn0
, {pn}n∈Nn0

, {gn}n∈Nn0
are

real sequences with an /= 0 for n ≥ n0, {din}n∈Nn0
⊆ Z with limn→∞(n − din) = +∞ for i ∈ {1, 2, . . . , l}

and f ∈ C(Nn0 × R
l ,R). By using a nonlinear alternative theorem of Leray-Schauder type, we get

sufficient conditions which ensure the existence of bounded positive solutions for the equation.
Three examples are given to illustrate the results obtained in this paper.

1. Introduction and Preliminaries

The oscillatory, nonoscillatory and asymptotic behaviors and existence of solutions for
various difference equations have received more and more attentions in recent years. For
details, we refer the reader to [1–11] and the references therein.

In 2005, M. Migda and J. Migda [10] studied the asymptotic behavior of solutions for
the second order neutral difference equation

Δ2(xn + pxn−k
)
+ f(n, xn) = 0, n ≥ 1, (1.1)

where p ∈ R, k is a nonnegative integer and f : N × R → R. In 2008, Cheng and Chu [7]
established sufficientand necessary conditions of oscillation for the second order difference
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equation

Δ(rn−1Δxn−1) + pnx
γ
n = 0, n ≥ 1, (1.2)

where γ is the quotient of two odd positive integers and pn, rn ∈ (0,+∞) for n ∈ N. In 2000, Li
et al. [9] gave several necessary and/or sufficient conditions of the existence of unbounded
positive solution for the nonlinear difference equation

Δ(rnΔxn) + f(n, xn) = 0, n ≥ n0, (1.3)

where n0 is a fixed nonnegative integer, r : Nn0 → (0,+∞) and f : Nn0 × R → R. In 2003,
using the Leray-Schauder’s nonlinear alternative theorem, Agarwal et al. [1] presented the
existence of nonoscillatory solutions for the discrete equation

Δ
(
anΔ

(
xn + pxn−τ

))
+ F(n + 1, xn+1−σ) = 0, n ≥ 1, (1.4)

where τ, σ are fixed nonnegative integers, p ∈ R, a : N → (0,+∞) and F : N × (0,+∞) →
[0,+∞) is continuous. In 1995, Yan and Liu [11] proved the existence of a bounded
nonoscillatory solution for the third order difference equation

Δ3xn + f(n, xn, xn−r) = 0, n ≥ n0 (1.5)

by utilizing the Schauder’s fixed point theorem. In 2005, Andruch-Sobiło and Migda [2]
studied the third order linear difference equations of neutral type

Δ3(xn − pnxσn

) ± qnxτn = 0, n ≥ n0 (1.6)

and obtained sufficient conditions under which all solutions of (1.6) are oscillatory.
The aim of this paper is to study the following third order neutral delay discrete

equation

Δ
(
anΔ2(xn + pnxn−τ

))
+ f(n, xn−d1n , . . . , xn−dln) = gn, n ≥ n0, (1.7)

where τ, l ∈ N,n0 ∈ N ∪ {0}, {an}n∈Nn0
, {pn}n∈Nn0

, {gn}n∈Nn0
are real sequences with an /= 0 for

n ≥ n0, {din}n∈Nn0
⊆ Z with limn→∞(n−din) = +∞ for i ∈ {1, 2, . . . , l} and f ∈ C(Nn0 ×R

l,R). By
making use of the Leray-Schauder’s nonlinear alternative theorem, we establish the existence
results of bounded positive solutions for (1.7), which extend substantially Theorem 2 in [11].
Three nontrivial examples are given to illustrate the superiority and applications of the results
presented in this paper.
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Let us recall and introduce the below concepts, signs and lemmas. Let R,Z and N

denote the sets of all real numbers, integers and positive integers, respectively,

Nn0 = {n : n ∈ N withn ≥ n0}, Zβ =
{
n : n ∈ Z withn ≥ β

}
,

β = min{n0 − τ, inf{n − din : 1 ≤ i ≤ l, n ∈ Nn0}}
(1.8)

and l∞β stand for the Banach space of all bounded sequences on Zβ with norm

‖x‖ = sup
n∈Zβ

|xn| forx = {xn}n∈Zβ
∈ l∞β . (1.9)

For any constants M > N > 0, put

E(N) =
{
x = {xn}n∈Zβ

∈ l∞β : xn ≥ N forn ∈ Zβ

}
,

U(M) = {x ∈ E(N) : ‖x‖ < M}.
(1.10)

It is easy to verify that E(N) is a nonempty closed convex subset of l∞
β

and U(M) is a
nonempty open subset of E(N).

By a solution of (1.7), we mean a sequence {xn}n∈Zβ
with a positive integer T ≥ τ + |β|

such that (1.7) holds for all n ≥ T .
For any subset U of a Banach space X, let U and ∂U denote the closure and boundary

of U in X, respectively.

Lemma 1.1 (see [8]). A bounded, uniformly Cauchy subset D of l∞
β
is relatively compact.

Lemma 1.2 (Leray-Schauder’s Nonlinear Alternative Theorem [1]). Let E be a nonempty closed
convex subset of a Banach space X and U be an open subset of E with p∗ ∈ U. Also G : U → E is a
continuous, condensing mapping with G(U) bounded. Then either

(A1) G has a fixed point inU; or

(A2) there are x ∈ ∂U and λ ∈ (0, 1) with x = (1 − λ)p∗ + λGx.

2. Existence of Bounded Positive Solutions

Now we investigate sufficient conditions of the existence of bounded positive solutions for
(1.7) by using the Leray-Schauder’s Nonlinear Alternative Theorem.
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Theorem 2.1. Assume that there exist constants k0 ∈ Nn0 and M,N, p and p satisfying

∞∑
s=k0

∞∑
k=s

1
|ak|

∞∑
j=k

sup
{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
< +∞; (2.1)

∞∑
s=k0

∞∑
k=s

1
|ak|

∞∑
j=k

∣∣gj
∣∣ < +∞; (2.2)

0 < N <
(

1 − p − p
)
M, min

{
p, p

}
≥ 0, p + p < 1 (2.3)

−p ≤ pn ≤ p, n ≥ k0. (2.4)

Then (1.7) possesses a bounded positive solution inU(M).

Proof. Let L ∈ (pM + N,M(1 − p)). It follows from (2.1)–(2.3) that there exists a positive
integer T > 1 + τ + k0 + |β| sufficiently large satisfying

∞∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ + sup

{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

< min
{
L − pM −N, M

(
1 − p

)
− L
}
.

(2.5)

Choose p∗ = M − ε0 with ε0 ∈ (0,min{L − pM −N,M(1 − p) − L}) and

∞∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ + sup

{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

≤ min
{
L − pM −N,M

(
1 − p

)
− L
}
− ε0.

(2.6)

Note that

M > M − ε0 = p∗ > M − min
{
L − pM −N,M

(
1 − p

)
− L
}
≥ N +M

(
1 + p

) − L > N,

(2.7)

which implies that p∗ = {p∗}n∈Zβ
∈ U(M). Define two mappings AL, BL : U(M) → l∞

β
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by

ALxn =

{
L − pnxn−τ , n ≥ T + 1
L − pTxT , β ≤ n ≤ T ;

(2.8)

BLxn =

⎧⎪⎪⎨
⎪⎪⎩
−
n−1∑
s=T

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
, n ≥ T + 1

0, β ≤ n ≤ T

(2.9)

for all x = {xn}n∈Zβ
∈ U(M).

We now show that

DL = AL + BL : U(M) −→ E(N). (2.10)

For each x = {xn}n∈Zβ
∈ U(M), by (2.4)–(2.9), we have

ALxn + BLxn = L − pnxn−τ −
n−1∑
s=T

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]

≥ L − pM −
n−1∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]

≥ L − pM − min
{
L − pM −N,M

(
1 − p

)
− L
}
+ ε0

≥ N + ε0

> N, n ≥ T + 1

ALxn + BLxn = L − pTxT ≥ L − pM > N, β ≤ n ≤ T,

(2.11)

We next assert that

BL : U(M) −→ l∞β is a continuous, compact mapping. (2.12)

Let {xα}α∈N
⊆ U(M) be an arbitrary sequence and x0 ∈ l∞β with

∥∥∥xα − x0
∥∥∥ −→ 0 asα −→ ∞. (2.13)

Since U(M) is closed, it follows that x0 ∈ U(M). Given ε > 0. Using (2.1), (2.13) and the
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continuity of f , we infer that there exists T ∗∗, T ∗ ∈ N with T ∗ > T + 1 satisfying

∞∑
s=T∗

∞∑
k=s

1
|ak|

∞∑
j=k

sup
{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
<

ε

16
; (2.14)

∞∑
k=T∗

1
|ak|

∞∑
j=k

sup
{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
<

ε

16(T ∗ − T)
; (2.15)

T∗−1∑
s=T

T∗−1∑
k=s

1
|ak|

∞∑
j=T∗

sup
{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
<

ε

16
; (2.16)

T∗−1∑
s=T

T∗−1∑
k=s

1
|ak|

T∗−1∑
j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣ < ε

2
, α ≥ T ∗∗. (2.17)

Combining (2.9) and (2.14)–(2.17), we conclude that
∥∥∥BLx

α − BLx
0
∥∥∥

= max

{
sup
β≤n≤T

∣∣∣BLx
α
n − BLx

0
n

∣∣∣, sup
n≥T+1

∣∣∣BLx
α
n − BLx

0
n

∣∣∣
}

≤ max

⎧
⎨
⎩0, sup

n≥T+1

n−1∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣
⎫
⎬
⎭

≤
T∗−1∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+
∞∑

s=T∗

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)∣∣∣ +
∣∣∣f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣
]

≤
T∗−1∑
s=T

T∗−1∑
k=s

1
|ak|

∞∑
j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+
T∗−1∑
s=T

∞∑
k=T∗

1
|ak|

∞∑
j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)∣∣∣ +
∣∣∣f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+ 2
∞∑

s=T∗

∞∑
k=s

1
|ak|

∞∑
j=k

sup
{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}

≤
T∗−1∑
s=T

T∗−1∑
k=s

1
|ak|

T∗−1∑
j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+
T∗−1∑
s=T

T∗−1∑
k=s

1
|ak|

∞∑
j=T∗

[∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)∣∣∣ +
∣∣∣f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣
]

+ 2(T ∗ − T)
∞∑

k=T∗

1
|ak|

∞∑
j=k

sup
{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
+ 2 · ε

16

<
ε

2
+ 2 · ε

16
+ 2(T ∗ − T) · ε

16(T ∗ − T)
+
ε

8
< ε, α ≥ T ∗∗,

(2.18)
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which means that BL is continuous in U(M). On the other hand, in light of (2.6) and (2.9),
we get that for each x = {xn}n∈Zβ

∈ U(M)

‖BLx‖ = max

{
sup
β≤n≤T

|BLxn|, sup
n≥T+1

|BLxn|
}

≤ sup
n≥T+1

n−1∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]

≤
∞∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ + sup

{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

≤ min
{
L − pM −N,M

(
1 − p

)
− L
}
− ε0

≤ M,

(2.19)

which yields that BL(U(M)) is a bounded subset of l∞β . By virtue of (2.1) and (2.2), we deduce
that for any ε > 0, there exists T0 > T satisfying

∞∑
s=T0

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ + sup

{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

< ε, (2.20)

which together with (2.9) gives that for any x = {xn}n∈Zβ
∈ U(M)

|BLxn − BLxm|

=

∣∣∣∣∣∣
n−1∑
s=T

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
−

m−1∑
s=T

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
∣∣∣∣∣∣

≤
m−1∑
s=n

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]

<
∞∑

s=T0

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ + sup

{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

< ε, m > n ≥ T0,

(2.21)

which means that BL(U(M)) is uniformly Cauchy. Thus Lemma 1.1 ensures that BL(U(M))
is a relatively compact subset of l∞

β
.

Let x = {xn}n∈Zβ
, y = {yn}n∈Zβ

∈ U(M). In view of (2.3), (2.4) and (2.8), we know that

∣∣ALxn −ALyn

∣∣ = ∣∣L − pnxn−τ − L + pnyn−τ
∣∣ ≤ ∣∣pn

∣∣∥∥x − y
∥∥ ≤

(
p + p

)∥∥x − y
∥∥, n ≥ T + 1,

∣∣ALxn −ALyn

∣∣ = ∣∣L − pTxT−τ − L + pTyT−τ
∣∣ ≤ ∣∣pT

∣∣∥∥x − y
∥∥ ≤

(
p + p

)∥∥x − y
∥∥, β ≤ n ≤ T,

(2.22)
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which implies that

∥∥Ax −Ay
∥∥ ≤

(
p + p

)∥∥x − y
∥∥, (2.23)

which together with (2.10) and (2.12) guarantees that DL : U(M) → E(N) is a continuous,
condensing mapping.

In order to show the existence of a fixed point of DL, we need to prove that (A2) in
Lemma 1.2 does not hold. Otherwise there exist x = {xn}n∈Zβ

∈ ∂U(M) and λ ∈ (0, 1) such
that x = (1 − λ)p∗ + λDLx. Let

S1 =
{
x ∈ l∞β : N ≤ xn ≤ M, ∀n ≥ β, ‖x‖ = M

}
,

S2 =
{
x ∈ l∞β : N ≤ xn ≤ M, ∀n ≥ β, and there existsn∗ ≥ β satisfyingxn∗ = N

}
.

(2.24)

It is easy to verify that ∂U(M) = S1 ∪ S2. Now we have to discuss two possible cases as
follows:

Case 1. Let x ∈ S1. It follows from (2.3), (2.4), (2.8) and (2.9) that

xn = (1 − λ)p∗ + λ[ALxn + BLxn]

= (1 − λ)p∗ + λ

⎡
⎣L − pnxn−τ −

n−1∑
s=T

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
⎤
⎦

≤ (1 − λ)p∗ + λ

⎡
⎣L + pM +

n−1∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]
⎤
⎦

≤ (1 − λ)(M − ε0) + λ
[
L + pM + min

{
L − pM −N, M

(
1 − p

)
− L
}
− ε0

]

≤ (1 − λ)(M − ε0) + λ(M − ε0)

= M − ε0, n ≥ T + 1,

(2.25)

xn = (1 − λ)p∗ + λ
[
L − pTxT

] ≤ (1 − λ)p∗ + λ
(
L + pM

)

≤ (1 − λ)(M − ε0) + λ(M − ε0) = M − ε0, β ≤ n ≤ T,

(2.26)

which yield that

M = ‖x‖ ≤ M − ε0 < M, (2.27)

which is a contradiction;
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Case 2. Let x ∈ S2. If n∗ ≥ T + 1, by (2.3), (2.4), (2.8) and (2.9), we deduce that

N = xn∗ = (1 − λ)p∗ + λ[ALxn∗ + BLxn∗]

= (1 − λ)p∗ + λ

⎡
⎣L − pn∗xn∗−τ −

n∗−1∑
s=T

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
⎤
⎦

≥ (1 − λ)(M − ε0) + λ

⎡
⎣L − pM −

n∗−1∑
s=T

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]
⎤
⎦

> (1 − λ)N + λ
[
L − pM − min

{
L − pM −N, M

(
1 − p

)
− L
}
+ ε0

]

≥ (1 − λ)N + λ(N + ε0)

= N + ε0

> N,

(2.28)

which is impossible; if n∗ ≤ T , by (2.3), (2.4), (2.8) and (2.9), we arrive at

N = xn∗ = (1 − λ)p∗ + λ
[
L − pTxT

] ≥ (1 − λ)p∗ + λ
(
L − pM

)

≥ (1 − λ)N + λ(N + ε0) = N + ε0

> N,

(2.29)

which is absurd.
Consequently Lemma 1.2 ensures that there is x = {xn}n∈Zβ

∈ U(M) such that DLx =
ALx + BLx = x, which is a bounded positive solution of (1.7). This completes the proof.

Remark 2.2. Under the conditions of Theorem 2.1 we prove also that (1.7) has uncountably
many bounded positive solutions in U(M).

In fact, as in the proof of Theorem 2.1, for any different L1, L2 ∈ (pM+N,M(1−p)) we
conclude that for each r ∈ {1, 2}, there exist a constant Tr > 1 + τ + k0 + |β| and two mappings
Ar, Br : U(M) → l∞

β
satisfying (2.6)–(2.9) and

∞∑
s=min{T1,T2}

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ + sup

{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}] ≤ |L1 − L2|

4
,

(2.30)

where T, L,AL and BL are replaced by Tr, r,Ar and Br , respectively, and Ar + Br has a fixed
point zr = {zrn}n∈Zβ

∈ U(M), which is a bounded positive solution of (1.7). In order to prove
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that (1.7) possesses uncountably many bounded positive solutions in U(M), we need only to
prove that z1 /= z2. It follows from (2.8), (2.9) and (2.30) that for n ≥ min{T1, T2}

∣∣∣z1
n − z2

n

∣∣∣ =
∣∣∣∣∣∣
L1 − pnz

1
n−τ −

n−1∑
s=T1

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, z1

j−d1j
, . . . , z1

j−dlj

)]

−L2 + pnz
2
n−τ +

n−1∑
s=T2

∞∑
k=s

1
ak

∞∑
j=k

[
−gj + f

(
j, z2

j−d1j
, . . . , z2

j−dlj

)]
∣∣∣∣∣∣

≥ |L1 − L2| −
(
p + p

)∥∥∥z1 − z2
∥∥∥

− 2
∞∑

s=min{T1,T2}

∞∑
k=s

1
|ak|

∞∑
j=k

[∣∣gj
∣∣ + sup

{∣∣f(j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

≥ |L1 − L2| −
(
p + p

)∥∥∥z1 − z2
∥∥∥ − |L1 − L2|

2
,

(2.31)

which implies that

∥∥z1 − z2
∥∥ ≥ |L1 − L2|

2
(

1 + p + p
) > 0, (2.32)

which yields that z1 /= z2.

Remark 2.3. If either p = 0 or p = 0, then Theorem 2.1 reduces to the below results,
respectively.

Theorem 2.4. Assume that there exist constants k0 ∈ Nn0 and M,N and p satisfying (2.1), (2.2)
and

0 < N <
(
1 − p

)
M, 0 ≤ pn ≤ p < 1, n ≥ k0. (2.33)

Then (1.7) possesses a bounded positive solution inU(M).

Theorem 2.5. Assume that there exist constants k0 ∈ Nn0 and M,N and p satisfying (2.1), (2.2)
and

0 < N <
(

1 − p
)
M, −1 < −p ≤ pn ≤ 0, n ≥ k0. (2.34)

Then (1.7) possesses a bounded positive solution inU(M).

Remark 2.6. Theorems 2.1–2.3 include Theorem 2 in [11] as special cases. Examples 3.1–3.3 in
Section 3 explain that Theorems 2.1–2.3 are genuine generalizations of Theorem 2 in [11].
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3. Examples and Applications

Now we construct three nontrivial examples to explain the superiority and applications of
Theorems 2.1-2.3, respectively.

Example 3.1. Consider the third order neutral delay discrete equation

Δ

(
(−1)nn3Δ2

(
xn +

n sin
(
n2)

3n + 1
xn−τ

))
+
n3xn2−2 −

√
nx3

n3−6

n5 + 5n + nx2
2n+5

=
cos
(
n ln

(
n2 + 1

))
√
n3 + 1

, n ≥ 1,

(3.1)

where τ ∈ N is fixed. Let l = 3, n0 = 1, k0 = 2, p = 1/2, p = 1/3, M = 7, N = 1,

an = (−1)nn3, pn =
n sin

(
n2)

3n + 1
,

gn =
cos
(
n ln

(
n2 + 1

))
√
n3 + 1

, d1n = −n2 + n + 2,

d3n = −n − 5, f(n, u, v,w) =
n3u − √

nv3

n5 + 5n + nw2
, ∀(n, u, v,w) ∈ N × R

3.

(3.2)

It is easy to verify that (2.1)–(2.4) hold. It follows from Theorem 2.1 that (3.1) has a bounded
positive solution in U(M). However Theorem 2 in [11] is useless for (3.1).

Example 3.2. Consider the third order neutral delay discrete equation

Δ
(
(n + 1)2ln3(n + 2)Δ2

(
xn +

3n − 4
4n + 2

xn−τ

))
+
x2
n(n+1)/2x

3
n(n−1)/2√

n3 + 1
=

(−1)n

n2
, n ≥ 1, (3.3)

where τ ∈ N is fixed. Let l = 2, n0 = 1, k0 = 2, p = 3/4, M = 40, N = 8,

an = (n + 1)2ln3(n + 2), pn =
3n − 4
4n + 2

, d1n =
n(1 − n)

2
, d2n =

n(3 − n)
2

,

gn =
(−1)n

n2
, f(n, u, v) =

u2v3

√
n3 + 1

, ∀(n, u, v) ∈ N × R
2.

(3.4)

It is clear that (2.1), (2.2) and (2.33) hold. Consequently Theorem 2.4 guarantees that (3.3) has
a bounded positive solution in U(M). But Theorem 2 in [11] is inapplicable for (3.3).

Example 3.3. Consider the third order neutral delay discrete equation

Δ

(√
n5 + 1Δ2

(
xn − n3 + 1

3n3 + 4
xn−τ

))
+

√
nx6

n2−2n

n4 + n + 1
+

x3
2n+3

n2 + 2
=

sin
(
n2 − n

)

n2 + 1
, n ≥ 1, (3.5)
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where τ ∈ N is fixed. Let l = 2, n0 = 1, k0 = 3, p = 1/3, M = 30, N = 19,

an =
√
n5 + 1, pn = − n3 + 1

3n3 + 4
, d1n = n(3 − n), d2n = −n − 3,

gn =
sin
(
n2 − n

)

n2 + 1
, f(n, u, v) =

u6√n

n4 + n + 1
+

v3

n2 + 2
, ∀(n, u, v) ∈ N × R

2.

(3.6)

Obviously, (2.1), (2.2) and (2.34) hold. Thus Theorem 2.5 ensures that (3.5) has a bounded
positive solution in U(M). While Theorem 2 in [11] is unfit for (3.5)
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This paper studies the adaptive fault estimation problems for stochastic Markovian jump systems
(MJSs) with time delays. With the aid of the selected Lyapunov-Krasovskii functional, the adaptive
fault estimation algorithm based on adaptive observer is proposed to enhance the rapidity and
accuracy performance of fault estimation. A sufficient condition on the existence of adaptive
observer is presented and proved by means of linear matrix inequalities techniques. The presented
results are extended to multiple time-delayed MJSs. Simulation results illustrate that the validity
of the proposed adaptive faults estimation algorithms.

1. Introduction

Fault detection and isolation (FDI) [1, 2] has been the subject of extensive research since the
1970s and becomes one of the hotspots in control theory presently. With the rising demands
of product quality, effectiveness, and safety in modern industries, people expect that they
can get the failure information before the fault damages the system. Many techniques have
been proposed especially for sensor and actuator failures with application to a wide range
of engineering fields. Among these, the most commonly used schemes for fault detection
relate to observer-based approaches [2–5]. It should be pointed out that the observer-based
approach, which uses a parametric design technique to perform both detection and diagnosis,
only works for a small number of sensor faults. In some cases, fault estimation strategies [6–
8] are needed to carry on controlling the faulty system. Compared with FDI, fault estimation
is a more challenging task because it requires an estimation of the location after the alarm
has been set, and the size of the fault should be made. Recently, some results based on
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adaptive or robust observers [2–8] for fault estimation have been obtained. However, very
few results in the literature consider the fault detection and estimation problem for stochastic
systems.

In fact, as a special class of stochastic systems [9, 10] that involves both time-evolving
and event-driven mechanisms, Markovian jump systems (MJSs) [11] have received consid-
erable attention. This class of systems includes two components which are the mode and
the state and the dynamics of jumping modes and continuous states, which are, respectively,
modeled by finite-state Markov chains and differential equations. It can be used to model a
variety of physical systems, which may experience abrupt changes in structures and parame-
ters due to, for example, sudden environment changes, subsystem switching, system noises,
and failures occurred in components or interconnections and executor faults. Some illustra-
tive applications of MJSs can be found for examples in [3, 4, 6, 12–18] and the references
therein. In recent years, the FDI problems for MJSs have regained increasing interest, and
some results are also available [3, 4, 16–18]. However, very little is known on the problem of
fault estimation for time-delay nonlinear MJSs. This problem forms the main purpose of this
paper, where an adaptive technique [1, 19–21] is proposed and modified for the estimation
of actuator faults.

In this paper, we studied the problem of fault estimation for a class of time-delay MJSs.
By comparing with the presented results of time-delay and linear dynamic systems, it can
be shown that a derivative term is added on the basis of fault estimation equation in our
design, which renders that the conventional adaptive fault estimation algorithm [21] can be
treated as a special case of the fast adaptive fault estimation algorithm. The introduction of
the derivative term plays a major role in improving the rapidity of fault estimation. The aug-
mented dynamic system is firstly constructed based on the adaptive fault estimation observer,
and the observer parameters are designed on the system modes. Sufficient conditions are
subsequently established on the existence of the mode-dependent adaptive fault estimation
observer. The design criterions are presented in the form of linear matrix inequalities (LMIs)
[22], which can be easily checked. The presented results are then extended to multiple time-
delayed MJSs case. Finally, a numerical example is included to illustrate the effectiveness of
the developed techniques.

Let us introduce some notations. The symbols �n and �n×m stand for an n-dimensional
Euclidean space and the set of all n × m real matrices, respectively, AT and A−1 denote the
matrix transpose and matrix inverse, diag{A B} represents the block-diagonal matrix of A
and B, σmax(C) denote the maximal eigenvalue of a positive-define matrix C,

∑N
i<j denotes, for

example, for N = 3,
∑N

i<j aij ⇔ a12+a13+a23, ‖∗‖ denotes the Euclidean norm of vectors, E{∗}
denotes the mathematics statistical expectation of the stochastic process or vector, Ln

2(0 ∞)
is the space of n dimensional square integrable function vector over (0 ∞), P > 0 (or P ≥ 0)
stands for a positive-definite (or nonnegative-definite) matrix, I is the unit matrix with
appropriate dimensions, 0 is the zero matrix with appropriate dimensions, ∗ means that the
symmetric terms in a symmetric matrix.

2. Problem Formulation

Given a probability space (Ω, F, ρ), where Ω is the sample space, F is the algebra of events,
and ρ is the probability measure defined on F. Let the random form process {rt, t ≥ 0} be
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the continuous-time discrete-state Markov stochastic process taking values in a finite set Λ =
{1, 2, . . . ,N} with transition probabilities given by

Pr

{
rt+Δt = j | rt = i

}
=

{
πijΔt + o(Δt), i /= j,

1 + πiiΔt + o(Δt), i = j,
(2.1)

where Δt > 0 and limΔt↓0 o(Δt)/Δt → 0. πij ≥ 0 are the transition probability rates from
mode i at time t to mode j(i /= j) at time t + Δt, and

∑N
j=1,i /= j πij = −πii.

Consider the following linear MJSs over the probability space (Ω, F, ρ):

ẋ(t) = A(rt)x(t) +Ad(rt)x(t − d) + B(rt)u(t) + Bf(rt)f(t),

y(t) = C(rt)x(t),

x(t) = η(t), r(t) = r0, t ∈ [−d 0
]
, i = 1, 2, . . . , S,

(2.2)

where x(t) ∈ �n is the state, y(t) ∈ �m is the measured output, u(t) ∈ �l is the controlled
input, f(t) ∈ �p is the unknown actuator fault, and we assume that its derivative is the norm
bounded with ‖ḟ(t)‖ ≤ f , wherein 0 ≤ f < ∞. d > 0 is the time delay constant, η(t) ∈ �n

is a continuous vector-valued initial function assumed to be continuously differentiable
on [−d 0], and r0 is the initial mode. A(rt), Ad(rt), B(rt), Bf(rt), and C(rt) are known
mode-dependent matrices with appropriate dimensions, Bf(rt) is of full column rank with
rank[Bf(rt)] = p, and rt represents a continuous-time discrete state Markov stochastic process
with values in the finite set Λ.

For presentation convenience, we denote x(t−d), A(rt), Ad(rt), B(rt), Bf(rt), and C(rt)
as xd, Ai, Adi, Bi, Bfi, Ci and, respectively.

Definition 2.1 (see Mao [23]). Let V (x(t), rt, t > 0) = V (x(t), i) be the positive stochastic
functional and define its weak infinitesimal operator as

�V (x(t), i) = lim
Δt→ 0

1
Δt

[E{V (x(t + Δt), rt+Δt, t + Δt) | x(t), rt = i} − V (x(t), i, t)]. (2.3)

Refer to observer design [2–4, 7] and consider the following systems:

˙̂x(t) = Aix̂(t) +Adix̂d + Bfif̂(t) + Biu(t) + Li

[
y(t) − ŷ(t)

]
+ Ldi

[
yd − ŷd

]
,

ŷ(t) = Cix̂(t),
(2.4)

where x̂(t) ∈ �n is the observer state vector, ŷ(t) ∈ �m is the observer output vector, and
f̂(t) ∈ �p is an estimate of actuator fault of f(t). Denote

e(t) = x(t) − x̂(t),

z(t) = y(t) − ŷ(t),

ef(t) = f(t) − f̂(t).

(2.5)
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Then, we can present the error dynamics (2.4) as

ė(t) = Aie(t) +Adied + Bfief(t),

z(t) = Cie(t),
(2.6)

where Ai = Ai − LiCi, Adi = Adi − LdiCi.
In this paper, by comparison with the conventional adaptive fault estimation

algorithm [21], we consider the following fast adaptive fault estimation algorithm. In this
algorithm, we add a derivative term ż(t) in estimation equation, that is,

˙̂f(t) = ΓHi[ż(t) + z(t)], (2.7)

which can realize limt→∞z(t) = 0, where Hi is a given mode-dependent matrix and Γ = ΓT > 0
is a prespecified matrix which defines the learning rate for (2.6).

Remark 2.2. In the conventional adaptive fault estimation algorithm f̂(t) = ΓH
∫ t
tf
z(τ)dτ , it

is only an integral term in essence. It fails to deal with time-varying faults, that is, ḟ(t)/= 0
though it assumes that the constant fault (ḟ(t) = 0) estimation is unbiased. In this paper, we
add a derivative term ż(t) in estimation equation and improve the conventional adaptive
fault estimation algorithm such that the time-varying faults can be considered. For the
stochastic modes jumping case, we select the given matrix Hi as a mode-dependent one.

3. Adaptive Fault Estimation Observer Design

Theorem 3.1. If there exist a set of positive definite symmetric matrices Pi,Q,U and mode-dependent
matricesHi, Xi, and Xdi, such that the following matrix equations hold for all i ∈ Λ:

HiCi = BT
fiPi, (3.1)

Πi =

⎡
⎢⎢⎢⎢⎢⎣

Ξi PiAdi −XdiCi −AT
i PiBfi + CT

i X
T
i Bfi

∗ −Q −AT
di
PiBfi + CT

i X
T
di
Bfi

∗ ∗ −2BT
fi
PiBfi +U

⎤
⎥⎥⎥⎥⎥⎦

< 0, (3.2)

where Ξi = AT
i Pi + PiAi − XiCi − CT

i X
T
i + Q +

∑N
i=1 πijPj . Then the fast adaptive fault estimation

algorithm of (2.7) can be realized. And in the estimated time-interval, it can estimate errors with the
uniformly boundedness of the states and faults. Moreover, the observer gains are respectively as

Li = P−1
i Xi, Ldi = P−1

i Xdi. (3.3)
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Proof. Let the mode at time t be i, that is, rt = i ∈ Λ. Take the stochastic Lyapunov-Krasovskii
function V (e(t), ef(t), rt, t > 0) : �n × �n ×Λ × �+ → �+ as

V
(
e(t), ef(t), i

)
= V1

(
e(t), ef(t), i

)
+ V2

(
e(t), ef(t), i

)
+ V3

(
e(t), ef(t), i

)
, (3.4)

where V1(e(t), ef(t), i) = eT(t)Pie(t), V2(e(t), ef(t), i) =
∫ t
t−d e

T(t)Qe(t)dτ , V3(e(t), ef(t), i) =
eT
f
(t)Γ−1ef(t), in which Pi ∈ �n×n, Q ∈ �n×n are the given mode-dependent symmetric

positive-definite matrix for each modes i ∈ Λ.
According to Definition 2.1 and along the trajectories of the error dynamics MJSs (2.6),

we can derive the following:

�V1
(
e(t), ef(t), i

)
= 2eT(t)Piė(t) + eT(t)

N∑
i=1

πijPje(t)

= 2eT(t)Pi

[
Aie(t) +Adi(r)ed + Bfief(t)

]
+ eT(t)

N∑
i=1

πijPje(t)

= eT(t)

[
A

T
i Pi + PiAi +

N∑
i=1

πijPj

]
e(t) + 2eT(t)PiAdied + 2eT(t)PiBfief(t),

�V2
(
e(t), ef(t), i

)
= eT(t)Qe(t) − eT

dQed +
N∑
i=1

πij

∫ t

t−d
eT(t)Qe(t)dτ

= eT(t)Qe(t) − eT
dQed +

(
N∑
i=1

πij

)(∫ t

t−d
eT(t)Qe(t)dτ

)

= eT(t)Qe(t) − eT
dQed,

�V3
(
e(t), ef(t), i

)
= 2eT

f (t)Γ
−1ėf(t) = 2eT

f (t)Γ
−1
[
ḟ(t) − ˙̂f(t)

]

= − 2eT
f (t)Hi[ż(t) + z(t)] + 2eT

f (t)Γ
−1ḟ(t)

= − 2eT
f (t)B

T
fiPiė(t) − 2eT

f (t)B
T
fiPie(t) + 2eT

f (t)Γ
−1ḟ(t)

= − 2eT
f (t)B

T
fiPiAie(t) − 2eT

f (t)B
T
fiPiAdied − 2eT

f (t)B
T
fiPiBfief(t)

− 2eT
f (t)B

T
fiPie(t) + 2eT

f (t)Γ
−1ḟ(t).

(3.5)

Given a symmetric positive definite matrix U, we can use the following relation:

2eT
f (t)Γ

−1ḟ(t) ≤ eT
f (t)Uef(t) + ḟT(t)Γ−1U−1Γ−1ḟ(t)

≤ eT
f (t)Uef(t) + ḟ2σmax

(
Γ−1U−1Γ−1

)
.

(3.6)
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Then, we can get

�V
(
e(t), ef(t), i

)
= �V1

(
e(t), ef(t), i

)
+�V2

(
e(t), ef(t), i

)
+�V3

(
e(t), ef(t), i

)

= eT(t)

[
A

T
i Pi + PiAi +

N∑
i=1

πijPj +Q

]
e(t) + 2eT(t)PiAdied − eT

dQed

− 2eT
f (t)B

T
fiPiAie(t) − 2eT

f (t)B
T
fiPiAdied − 2eT

f (t)B
T
fiPiBfief(t)

+ eT
f (t)Uef(t) + ḟ2σmax

(
Γ−1U−1Γ−1

)
.

(3.7)

By letting Xi = PiLi and Xdi = PiLdi, the derivative of �V (e(t), ef(t), i) with respect to
time follows that

�V
(
e(t), ef(t), i

) ≤ ζT(t)Πiζ(t) + η, (3.8)

where ζ(t) =
[

e(t)
ed

ef (t)

]
, η = ḟ2σmax(Γ−1U−1Γ−1).

Thus, it concludes that �V (e(t), ef(t), i) ≤ −λ‖ζ(t)‖2+η, wherein λ = minr∈Λσmin(−Πi).
Obviously, we can get �V (e(t), ef(t), i) < 0 if η < λ‖ζ(t)‖2. According to stochastic Lyapunov-
Krasovskii stability theory, the trajectory of ζ(t) will converge to the small set Φ = {ζ(t) |
‖ζ(t)‖2 ≤ η/λ}, though it is outside set S. Therefore, ζ(t) is ultimately bounded. This
completes the proof.

Remark 3.2. It is necessary to point out that if the presented faults are constant, that is, ḟ(t) = 0,
then the designed adaptive algorithm can achieve asymptotical convergence from (3.8). Then
we can get that �V (e(t), ef(t), i) ≤ −λ‖ζ(t)‖2 ≤ 0, which proves the stability of the origin
e(t) = 0, ef(t) = 0 and the uniformly boundedness of e(t) and ef(t) with e(t) ∈ Ln

2(0 ∞).
Then, limt→∞e(t) → 0 holds by Barbalat’s Lemma.

4. Extension to Multiple Time-Delayed MJSs

Consider the following multiple time-delayed MJSs over the probability space (Ω, F, ρ):

ẋ(t) = Aix(t) +
M∑
m=1

Admix(t − dm) + Biu(t) + Bfif(t),

y(t) = Cix(t),

x(t) = η(t), r(t) = r0, t ∈ [−max(dm) 0
]
,

(4.1)

where dm, m = 1, 2, . . . ,M are multiple time delays with 0 ≤ dm < ∞, and other notations are
the same as in Section 2.
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Similar to Section 3, the following observer can be constructed:

˙̂x(t) = Aix̂(t) +
M∑
m=1

Admix̂(t − dm) + Bfif̂(t) + Biu(t)

+ Li

[
y(t) − ŷ(t)

]
+

M∑
m=1

Ldmi

[
y(t − dm) − ŷ(t − dm)

]
,

ŷ(t) = Cix̂(t)

(4.2)

where x̂(t) ∈ �n is the observer state vector, ŷ(t) ∈ �m is the observer output vector, and
f̂(t) ∈ �p is an estimate of actuator fault of f(t).

Then, we can obtain the error dynamics by using the same notations of e(t), ef(t), and
z(t) as follows:

ė(t) = Aie(t) +
M∑
m=1

Admied(t − dm) + Bfief(t),

z(t) = Cie(t)

(4.3)

where Ai = Ai − LiCi, Admi = Admi − LdmiCi.
Prior to the design of an adaptive diagnostic law, we can get the following results for

multiple time-delayed MJSs (4.1).

Theorem 4.1. If there exist a set of positive definite symmetric matrices Pi,Q,U and mode-dependent
matrices Hi, Xi, and Xdmi, m = 1, 2, . . . ,M, such that the following matrix equations hold for all
i ∈ Λ:

HiCi = BT
fiPi, (4.4)

Ψi =

⎡
⎢⎢⎢⎢⎢⎣

Ξi PiAdi −
M∑
m=1

XdmiCi −AT
i PiBfi + CT

i X
T
i Bfi

∗ −Q −AT
di
PiBfi + CT

i

M∑
m=1

XT
dmi

Bfi

∗ ∗ −2BT
fi
PiBfi +U

⎤
⎥⎥⎥⎥⎥⎦

< 0. (4.5)

Then, the fast adaptive fault estimation algorithm of (2.7) can be realized. And in the estimated time
interval, it can estimate errors with the uniformly boundedness of the states and faults. Moreover, the
observer gains are respectively as follows:

Li = P−1
i Xi, Ldmi = P−1

i Xdmi, m = 1, 2, . . . ,M. (4.6)

When there are difficulties in solving (3.1) or (4.4), we can transform them into the
following SDP problems via disciplined convex programming [24]:

min δ

s.t.

[
δI BT

fiPi −HiCi

PiBfi − CT
i H

T
i δI

]
> 0.

(4.7)
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In order to make BT
fiPi approximate to HiCi with a satisfactory precision, we can firstly select

a sufficiently small scalar δ > 0 to meet (4.7).

Remark 4.2. The solutions of Theorems 3.1 and 4.1 can be obtained by solving an optimization
problem with (4.7). By using the Matlab LMI Toolbox, it is straightforward to check the
feasibility of LMIs. In order to illustrate the effectiveness of the developed techniques, we
will give several numerical examples about fuzzy jump system with time delays in Section 5.

5. Numeral Example

We consider the following time-delayed stochastic MJSs with parameters given by

A1 =
[−0.5 −0.3
−0.1 −1.0

]
, A2 =

[
0.5 −0.4
−0.1 −1.06

]
, Ad1 =

[
0.05 −0.1

0 0.05

]
, Ad2 =

[
0.07 −0.1

0 −0.05

]
,

B1 = B2 =
[

1.0
0.5

]
, Bf1 = Bf2 =

[
0

0.1

]
, C1 =

[
0.2 −0.1

]
, C2 =

[−0.2 0.4
]
.

(5.1)

The transition rate matrix that relates the two operation modes is given as Π =
[ −0.5 0.5

0.3 −0.3

]
. By

solving the LMIs in (3.1), (3.2), and (4.7) with δ = 8.9252 × 10−4, we can get the following
solutions:

L1 =
[

4.5853
2.2033

]
, L2 =

[−8.3797
1.6944

]
,

Ld1 =
[

0.1110
0.0691

]
, Ld2 =

[−0.2448
−0.1343

]
,

H1 = −0.0061, H2 = 0.0019.

(5.2)

To show the effectiveness of the designed methods, the time-delay d is assumed to be
0.2 s, and we consider two kinds of actuator faults f1(t) and f2(t) in the simulation over the
finite-time interval t ∈ [0 10]:

f1(t) =

{
0, 0 ≤ t ≤ 4,
0.5 sin(5t), 4 < t ≤ 10,

f2(t) =

{
0.5, 2k − 1 < t ≤ 2k, k ∈ {N+, 1 ≤ k ≤ 5},
0, others.

(5.3)

Let r0 = 2 and Γ = 10, the jumping modes are shown in Figure 1. The estimated faults
and estimation errors of f1(t) and f2(t) are shown in Figures 2 and 3, respectively. From the
simulation results and design algorithm, it can be concluded that the adaptive fault diagnosis
observer can enhance the performance of fault estimation for slow and fast time-varying
faults.
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Figure 1: The estimation of changing between modes during the simulation with initial mode 2.
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Figure 2: Fault f1(t) and the estimated f̂1(t).
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Figure 3: Fault f2(t) and the estimated f̂2(t).
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6. Conclusions

In this paper, we have studied the design of adaptive fault estimation observer for time-
delayed MJSs. It ensures the rapidity and accuracy performance of fault estimation of the
designed observer. By selecting the appropriate Lyapunov-Krasovskii function and applying
matrix transformation and variable substitution, the main results are provided in terms
of LMIs form and then extended to multiple time-delayed MJSs case. Simulation example
demonstrates the effectiveness of the developed techniques.

Acknowledgments

This work was supported in part by the State Key Program of National Natural Science
Foundation of China (Grant no. 61134007), the Key Program of Natural Science Foundation
of Education Department of Anhui Province (Grant no. KJ2012A014), and Doctor Research
Project of Anhui University (Grant no. 32030017).

References

[1] J. Gertler, “Fault detection and isolation using parity relations,” Control Engineering Practice, vol. 5, no.
5, pp. 653–661, 1997.

[2] H. Hammouri, M. Kinnaert, and E. H. El Yaagoubi, “Observer-based approach to fault detection and
isolation for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 44, no. 10, pp. 1879–1884,
1999.

[3] S. He and F. Liu, “Fuzzy model-based fault detection for Markov jump systems,” International Journal
of Robust and Nonlinear Control, vol. 19, no. 11, pp. 1248–1266, 2009.

[4] S. He and F. Liu, “Filtering-based robust fault detection of fuzzy jump systems,” Fuzzy Sets and
Systems, vol. 185, pp. 95–110, 2011.

[5] B. Jiang, K. Zhang, and P. Shi, “Integrated fault estimation and accommodation design for discrete-
time takagiSugeno fuzzy systems with actuator faults,” IEEE Transactions on Fuzzy Systems, vol. 19,
no. 2, Article ID 5648342, pp. 291–304, 2011.

[6] Z. Mao, B. Jiang, and P. Shi, “Fault detection for a class of nonlinear networked control systems,”
International Journal of Adaptive Control and Signal Processing, vol. 24, no. 7, pp. 610–622, 2010.

[7] K. Zhang, B. Jiang, and A. Shumsky, “A new criterion of fault estimation for neutral delay systems
using adaptive observer,” Acta Automatica Sinica, vol. 35, no. 1, pp. 85–91, 2009.

[8] M. Zhong, S. X. Ding, Q.-L. Han, and Q. Ding, “Parity space-based fault estimation for linear discrete
time-varying systems,” IEEE Transactions on Automatic Control, vol. 55, no. 7, pp. 1726–1731, 2010.
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This paper is concerned with mean square exponential stability of switched stochastic system
with interval time-varying delays. The time delay is any continuous function belonging to a given
interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-
Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean
square exponential stability of switched stochastic system with interval time-varying delays
and new delay-dependent sufficient conditions for the mean square exponential stability of the
switched stochastic system are first established in terms of LMIs. Numerical example is given to
show the effectiveness of the obtained result.

1. Introduction

Stability analysis of linear systems with time-varying delays ẋ(t) = Ax(t) + Dx(t − h(t))
is fundamental to many practical problems and has received considarable attention [1–11].
Most of the known results on this problem are derived assuming only that the time-varing
delay h(t) is a continuously differentiable function, satisfying some boundedness condition
on its derivative: ḣ(t) ≤ δ < 1. In delay-dependent stability criteria, the main concern is
to enlarge the feasible region of stability criteria in given time-delay interval. Interval time-
varying delay means that a time delay varies in an interval in which the lower bound is
not restricted to be zero. By constructing a suitable augmented Lyapunov functionals and
utilizing free weight matrices, some less conservative conditions for asymptotic stability
are derived in [12–21] for systems with time delay varying in an interval. However, the
shortcoming of the method used in these works is that the delay function is assumed to
be differential and its derivative is still bounded: ḣ(t) ≤ δ. This paper gives the improved
results for the mean square exponential stability of switched stochastic system with interval
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time-varying delay. The time delay is assumed to be a time-varying continuous function
belonging to a given interval, but not necessary to be differentiable. Specifically, our goal is to
develop a constructive way to design switching rule to the mean square exponential stability
of switched stochastic system with interval time-varying delay. By constructing argumented
Lyapunov functional combined with LMI technique, we propose new criteria for the mean
square exponential stability of the switched stochastic system. The delay-dependent stability
conditions are formulated in terms of LMIs.

The paper is organized as follows: Section 2 presents definitions and some well-
known technical propositions needed for the proof of the main results. Delay-dependent
mean square exponential stability conditions of the switched stochastic system and numerical
example showing the effectiveness of proposed method are presented in Section 3.

2. Preliminaries

The following notations will be used in this paper. R+ denotes the set of all real nonnegative
numbers; Rn denotes the n-dimensional space with the scalar product 〈·, ·〉 and the vector
norm ‖ · ‖; Mn×r denotes the space of all matrices of (n × r)-dimensions; AT denotes the
transpose of matrix A; A is symmetric if A = AT ; I denotes the identity matrix; λ(A) denotes
the set of all eigenvalues of A; λmin/max(A) = min/max{Reλ; λ ∈ λ(A)}; xt := {x(t + s) : s ∈
[−h, 0]}, ‖xt‖ = sups∈[−h,0]‖x(t + s)‖; C([0, t], Rn) denotes the set of all Rn-valued continuous
functions on [0, t]; matrix A is called semipositive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all
x ∈ Rn;A is positive definite (A > 0) if 〈Ax, x〉 > 0 for all x /= 0;A > B means A − B > 0. ∗
denotes the symmetric term in a matrix.

Consider a switched stochastic system with interval time-varying delay of the form

ẋ(t) = Aγx(t) +Dγx(t − h(t)) + σγ(x(t), x(k − h(t)), t)ω(t), t ∈ R+,

x(t) = φ(t), t ∈ [−h2, 0],
(2.1)

where x(t) ∈ Rn is the state; γ(·) : Rn → N := {1, 2, . . . ,N} is the switching rule, which is
a function depending on the state at each time and will be designed. A switching function
is a rule which determines a switching sequence for a given switching system. Moreover,
γ(x(t)) = i implies that the system realization is chosen as the ith system, i = 1, 2, . . . ,N.
It is seen that the system (2.1) can be viewed as an autonomous switched system in which
the effective subsystem changes when the state x(t) hits predefined boundaries. Ai, Di ∈
Mn×n, i = 1, 2, . . . ,N are given constant matrices, and φ(t) ∈ C([−h2, 0], Rn) is the initial
function with the norm ‖φ‖ = sups∈[−h2,0]‖φ(s)‖.

ω(k) is a scalar Wiener process (Brownian Motion) on (Ω,F,P) with

E{ω(t)} = 0, E
{
ω2(t)

}
= 1, E

{
ω(i)ω

(
j
)}

= 0
(
i /= j

)
, (2.2)

and σi: Rn ×Rn ×R → Rn, i = 1, 2, . . . ,N is the continuous function and is assumed to satisfy
that

σT
i (x(t), x(t − h(t)), t)σi(x(t), x(t − h(t)), t) ≤ ρi1x

T (t)x(t) + ρi2x
T (t − h(t))x(t − h(t)),

x(t), x(t − h(t)) ∈ Rn,
(2.3)
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where ρi1 > 0 and ρi2 > 0, i = 1, 2, . . . ,N are known constant scalars. For simplicity, we denote
σi(x(t), x(t − h(t)), t) by σi, respectively.

The time-varying delay function h(t) satisfies

0 ≤ h1 ≤ h(t) ≤ h2, t ∈ R+. (2.4)

The stability problem for switched stochastic system (2.1) is to construct a switching rule that
makes the system exponentially stable.

Definition 2.1. Given α > 0, the switched stochastic system (2.1) is α-exponentially stable in
the mean square if there exists a switching rule γ(·) such that every solution x(t, φ) of the
system satisfies the following condition:

∃N > 0 : E
{∥∥x(t, φ)∥∥} ≤ E

{
Ne−αt

∥∥φ∥∥}, ∀t ∈ R+. (2.5)

We end this section with the following technical well-known propositions, which will be used
in the proof of the main results.

Proposition 2.2 (Cauchy inequality). For any symmetric positive definite marix N ∈ Mn×n and
a, b ∈ Rn one has

±aTb ≤ aTNa + bTN−1b. (2.6)

Proposition 2.3 (see [22]). For any symmetric positive definite matrixM ∈ Mn×n, scalar γ > 0 and
vector function ω : [0, γ] → Rn such that the integrations concerned are well defined, the following
inequality holds:

(∫ γ

0
ω(s)ds

)T

M

(∫ γ

0
ω(s)ds

)
≤ γ

(∫ γ

0
ωT (s)Mω(s)ds

)
. (2.7)

Proposition 2.4 (see [23]). Let E,H, and F be any constant matrices of appropriate dimensions and
FTF ≤ I. For any ε > 0, one has

EFH +HTFTET ≤ εEET + ε−1HTH. (2.8)

Proposition 2.5 (Schur complement lemma [24]). Given constant matrices X,Y,Z with appro-
priate dimensions satisfying X = XT, Y = YT > 0. Then X + ZTY−1Z < 0 if and only if

(
X ZT

Z −Y
)

< 0 or
(−Y Z
ZT X

)
< 0. (2.9)
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3. Main Results

Let us set

Mi =

⎛
⎜⎜⎜⎜⎜⎝

M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55

⎞
⎟⎟⎟⎟⎟⎠

,

λ1 = λmin(P),

λ2 = λmax(P) + 2h2
2λmax(R),

M11 = AT
i P + PAi − S1Ai −AT

i S
T
1 + 2αP

− e−2αh1R − e−2αh2R + 2ρi1,

M12 = e−2αh1R − S2Ai,

M13 = e−2αh2R − S3Ai,

M14 = PDi − S1Di − S4Ai,

M15 = S1 − S5Ai,

M22 = −e−2αh1R,

M24 = S2Di,

M33 = −e−2αh2R,

M34 = −S3Di,

M44 = −S4Di + 2ρi2,

M45 = S4 − S5Di,

M55 = S5 + ST
5 + h2

1R + h2
2R.

(3.1)

The main result of this paper is summarized in the following theorem.

Theorem 3.1. Given α > 0, the zero solution of the switched stochastic system (2.1) is α-
exponentially stable in the mean square if there exist symmetric positive definite matrices P,R, and
matrices Si, i = 1, 2, . . . , 5 satisfying the following conditions:

(i) Mi < 0, i = 1, 2, . . . ,N.

The switching rule is chosen as γ(x(t)) = i. Moreover, the solution x(t, φ) of the switched
stochastic system satisfies

E
{∥∥x(t, φ)∥∥} ≤ E

⎧
⎨
⎩

√
λ2

λ1
e−αt

∥∥φ∥∥
⎫
⎬
⎭, ∀t ∈ R+. (3.2)
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Proof. We consider the following Lyapunov-Krasovskii functional for the system (2.1):

E{V (t, xt)} =
3∑
i=1

E{Vi}, (3.3)

where

V1 = xT (t)Px(t),

V2 = h1

∫0

−h1

∫ t

t+s
e2α(τ−t)ẋT (τ)Rẋ(τ)dτ ds,

V3 = h2

∫0

−h2

∫ t

t+s
e2α(τ−t)ẋT (τ)Rẋ(τ)dτ ds.

(3.4)

It easy to check that

E
{
λ1‖x(t)‖2

}
≤ E{V (t, xt)} ≤ E

{
λ2‖xt‖2

}
, ∀t ≥ 0, (3.5)

Taking the derivative of Lyapunov-Krasovskii functional along the solution of system (2.1)
and taking the mathematical expectation, we obtained

E
{
V̇1
}
= E

{
2xT (t)Pẋ(t)

}

= E
{
xT (t)

[
AT

i P +AiP
]
x(t) + 2xT (t)PDix(t − h(t)) + 2xT (t)Pσiω(t)

}
,

E
{
V̇2
}
= E

{
h2

1ẋ
T (t)Rẋ(t) − h1e

−2αh1

∫ t

t−h1

ẋT (s)Rẋ(s)ds − 2αV2

}
,

E
{
V̇3
}
= E

{
h2

2ẋ
T (t)Rẋ(t) − h2e

−2αh2

∫ t

t−h2

ẋT (s)Rẋ(s)ds − 2αV3

}
.

(3.6)

Applying Proposition 2.3 and the Leibniz-Newton formula, we have

E

{
−hi

∫ t

t−hi

ẋT (s)Rẋ(s)ds

}
≤ E

⎧
⎨
⎩−

[∫ t

t−hi

ẋ(s)ds

]T
R

[∫ t

t−hi

ẋ(s)ds

]⎫⎬
⎭

≤ E
{
−[x(t) − x(t − hi)]

TR[x(t) − x(t − hi)]
}

= E
{
−xT (t)Rx(t) + 2xT (t)Rx(t − hi) − xT (t − hi)Rx(t − hi)

}
,

(3.7)
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Therefore, we have

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P +AiP + 2αP
]
x(t)

}

+ E
{

2xT (t)PDix(t − h(t)) + 2xT (t)Pσiω(t)
}

+ E
{
ẋT (t)

[(
h2

1 + h2
2

)
R
]
ẋ(t)

}

− E
{
e−2αh1[x(t) − x(t − h1)]

TR[x(t) − x(t − h1)]
}

− E
{
e−2αh2[x(t) − x(t − h2)]

TR[x(t) − x(t − h2)]
}
.

(3.8)

By using the following identity relation

ẋ(t) −Aix(t) −Dix(t − h(t)) = 0, (3.9)

we have

2xT (t)S1ẋ(t) − 2xT (t)S1Aix(t) − 2xT (t)S1Dix(t − h(t)) − 2xT (t)S1σiω(t) = 0,

2xT (t − h1)S2ẋ(t) − 2xT (t − h1)S2Aix(t) − 2xT (t − h1)S2Dix(t − h(t))

− 2xT (t − h1)S2σiω(t) = 0,

2xT (t − h2)S3ẋ(t) − 2xT (t − h2)S3Aix(t) − 2xT (t − h2)S3Dix(t − h(t))

− 2xT (t − h2)S3σiω(t) = 0,

2xT (t − h(t))S4ẋ(t) − 2xT (t − h(t))S4Aix(t) − 2xT (t − h(t))S4Dix(t − h(t))

− 2xT (t − h(t))S4σiω(t) = 0,

2ẋT (t)S5ẋ(t) − 2ẋT (t)S5Aix(t) − 2ẋT (t)S5Dix(t − h(t)) − 2ẋT (t)S5σiω(t) = 0,

2ωT (t)σT
i ẋ(t) − 2ωT (t)σT

i Aix(t) − 2ωT (t)σT
i Dix(t − h(t)) − 2ωT (t)σT

i σiω(t) = 0.

(3.10)

Adding all the zero items of (3.10) into (3.8), we obtain

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P + PAi + 2αP − e−2αh1R
]
x(t)

}

− E
{
xT (t)

[
e−2αh2R − S1Ai −AT

i S
T
1

]
x(t)

}

+ E
{

2xT (t)
[
e−2αh1R − S2Ai

]
x(t − h1)

}

+ E
{

2xT (t)
[
e−2αh2R − S3Ai

]
x(t − h2)

}

+ E
{

2xT (t)[PDi − S1Di − S4Ai]x(t − h(t))
}
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+ E
{

2xT (t)[S1 − S5Ai]ẋ(t)
}

+ E
{

2xT (t)
[
Pσi − S1σi −AT

i σi

]
ω(t)

}

+ E
{
xT (t − h1)

[
−e−2αh1R

]
x(t − h1)

}

+ E
{

2xT (t − h1)[−S2Di]x(t − h(t))
}

+ E
{

2xT (t − h1)S2ẋ(t) + 2xT (t − h1)[−S2σi]ω(t)
}

+ E
{
xT (t − h2)

[
−e−2αh2R

]
x(t − h2)

}

+ E
{
xT (t − h2)[−S3Di]x(t − h(t))

}

+ E
{

2xT (t − h2)S3ẋ(t) + 2xT (t − h2)[−S3σi]ω(t)
}

+ E
{
xT (t − h(t))[−S4Di]x(t − h(t))

}

+ E
{

2xT (t − h(t))[S4 − S5Di]ẋ(t)
}

+ E
{

2xT (t − h(t))
[
−S4σi −DT

i σi

]
ω(t)

}

+ E
{
ẋT (t)

[
S5 + ST

5 + h2
1R + h2

2R
]
ẋ(t)

}

+ E
{

2ẋT (t)
[
σT
i − S5σi

]
ω(t)

}

+ E
{

2ωT (t)[−σiσi]ω(t)
}
.

(3.11)

By assumption (2.2), we have

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P + PAi + 2αP − e−2αh1R
]
x(t)

}

− E
{
xT (t)

[
e−2αh2R − S1Ai −AT

i S
T
1

]
x(t)

}

+ E
{

2xT (t)
[
e−2αh1R − S2Ai

]
x(t − h1)

}

+ E
{

2xT (t)
[
e−2αh2R − S3Ai

]
x(t − h2)

}

+ E
{

2xT (t)[PDi − S1Di − S4Ai]x(t − h(t))
}

+ E
{

2xT (t)[S1 − S5Ai]ẋ(t)
}

+ E
{
xT (t − h1)

[
−e−2αh1R

]
x(t − h1)

}
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+ E
{

2xT (t − h1)[−S2Di]x(t − h(t))
}

+ E
{
xT (t − h2)

[
−e−2αh2R

]
x(t − h2)

}

+ E
{
xT (t − h2)[−S3Di]x(t − h(t))

}

+ E
{

2xT (t − h2)S3ẋ(t)
}

+ E
{
xT (t − h(t))[−S4Di]x(t − h(t))

}

+ E
{

2xT (t − h(t))[S4 − S5Di]ẋ(t)
}

+ E
{
ẋT (t)

[
S5 + ST

5 + h2
1R + h2

2R
]
ẋ(t)

}

+ E
{

2
[
−σT

i σi

]}
.

(3.12)

Applying assumption (2.3), the following estimations hold:

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P + PAi + 2αP − e−2αh1R
]
x(t)

}

− E
{
xT (t)

[
e−2αh2R − S1Ai −AT

i S
T
1 + 2ρi1I

]
x(t)

}

+ E
{

2xT (t)
[
e−2αh1R − S2Ai

]
x(t − h1)

}

+ E
{

2xT (t)
[
e−2αh2R − S3Ai

]
x(t − h2)

}

+ E
{

2xT (t)[PDi − S1Di − S4Ai]x(t − h(t))
}

+ E
{

2xT (t)[S1 − S5Ai]ẋ(t)
}

+ E
{
xT (t − h1)

[
−e−2αh1R

]
x(t − h1)

}

+ E
{

2xT (t − h1)[−S2Di]x(t − h(t))
}

+ E
{
xT (t − h2)

[
−e−2αh2R

]
x(t − h2)

}

+ E
{
xT (t − h2)[−S3Di]x(t − h(t))

}

+ E
{

2xT (t − h2)S3ẋ(t)
}

+ E
{
xT (t − h(t))

[−S4Di + 2ρi2I
]
x(t − h(t))

}

+ E
{

2xT (t − h(t))[S4 − S5Di]ẋ(t)
}
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+ E
{
ẋT (t)

[
S5 + ST

5 + h2
1R + h2

2R
]
ẋ(t)

}

= E
{
ζT (t)Miζ(t)

}
,

(3.13)

where

ζ(t) = [x(t), x(t − h1), x(t − h2), x(t − h(t)), ẋ(t)],

Mi =

⎡
⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55

⎤
⎥⎥⎥⎥⎥⎦
,

M11 = AT
i P + PAi − S1Ai −AT

i S
T
1

+ 2αP − e−2αh1R − e−2αh2R + 2ρi1,

M12 = e−2αh1R − S2Ai,

M13 = e−2αh2R − S3Ai,

M14 = PDi − S1Di − S4Ai,

M15 = S1 − S5Ai,

M22 = −e−2αh1R,

M24 = −S2Di,

M33 = −e−2αh2R,

M34 = −S3Di,

M44 = −S4Di + 2ρi2I,

M45 = S4 − S5Di,

M55 = S5 + ST
5 + h2

1R + h2
2R.

(3.14)

Therefore, we finally obtain from (3.13) and the condition (i) that

E
{
V̇ (·) + 2αV (·)} < 0, ∀i = 1, 2, . . . ,N, t ∈ R+, (3.15)

and hence

E
{
V̇ (t, xt)

} ≤ −E{2αV (t, xt)}, ∀t ∈ R+. (3.16)
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Integrating both sides of (3.16) from 0 to t, we obtain

E{V (t, xt)} ≤ E
{
V
(
φ
)
e−2αt

}
, ∀t ∈ R+. (3.17)

Furthermore, taking condition (3.5) into account, we have

E
{
λ1
∥∥x(t, φ)∥∥2

}
≤ E{V (xt)} ≤ E

{
V
(
φ
)
e−2αt

}
≤ E

{
λ2e

−2αt∥∥φ∥∥2
}
, (3.18)

then

E
{∥∥x(t, φ)∥∥} ≤ E

⎧
⎨
⎩

√
λ2

λ1
e−αt

∥∥φ∥∥
⎫
⎬
⎭, t ∈ R+, (3.19)

By Definition 2.1, the system (2.1) is exponentially stable in the mean square. The proof is
complete.

To illustrate the obtained result, let us give the following numerical examples.

Example 3.2. Consider the following the switched stochastic systems with interval time-
varying delay (2.1), where the delay function h(t) is given by

h(t) = 0.1 + 0.8311sin23t,

A1 =
( −1 0.01

0.02 −2

)
, A2 =

(−1.1 0.02
0.01 −2

)
,

D1 =
(−0.1 0.01

0.02 −0.3

)
, D2 =

(−0.1 0.02
0.01 −0.2

)
.

(3.20)

It is worth noting that the delay function h(t) is nondifferentiable. Therefore, the methods
used is in [2–15] are not applicable to this system. By LMI toolbox of MATLAB, by using
LMI Toolbox in MATLAB, the LMI (i) is feasible with h1 = 0.1, h2 = 0.9311, α = 0.1, ρ11 =
0.01, ρ12 = 0.01, ρ21 = 0.01, ρ22 = 0.01, and

P =
(

2.0788 −0.0135
−0.0135 1.5086

)
, R =

(
1.0801 −0.0042
−0.0042 0.8450

)
,

S1 =
(−0.6210 −0.0335

0.0499 −0.3576

)
, S2 =

(−0.3602 0.0170
0.0298 −0.3550

)
,

S3 =
(−0.3602 0.0170

0.0298 −0.3550

)
, S4 =

(
0.6968 −0.0401
−0.0525 0.7040

)
, S5 =

(−1.4043 0.0265
−0.0028 −0.9774

)

(3.21)
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By Theorem 3.1 the switched stochastic systems (2.1) are 0.1-exponentially stable in the mean
square and the switching rule is chosen as γ(x(t)) = i. Moreover, the solution x(t, φ) of the
system satisfies

E
{∥∥x(t, φ)∥∥} ≤ E

{
1.8731e−0.1t∥∥φ∥∥

}
, ∀t ∈ R+. (3.22)

4. Conclusions

In this paper, we have proposed new delay-dependent conditions for the mean square
exponential stability of switched stochastic system with non-differentiable interval time-
varying delay. By constructing a set of improved Lyapunov-Krasovskii functionals and
Newton-Leibniz formula, the conditions for the exponential stability of the systems have been
established in terms of LMIs.
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[8] J. Baštinec, J. Diblı́k, D. Y. Khusainov, and A. Ryvolová, “Exponential stability and estimation of
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Population control has become a major problem in many wildlife species. Sterility control through
contraception has been proposed as a method for reducing population size. In this paper, the single
species with sterility control and feedback controls is considered. Sufficient conditions are obtained
for the permanence and extinction of the system. The results show that the feedback controls do
not influence the permanence of the species.

1. Introduction

Control of wildlife pest populations has usually relied on methods like chemical pesticides,
biological pesticides, remote sensing and measure, computers, atomic energy, and so forth.
Some brilliant achievements have been obtained. However, the warfare will never be over.
Although a large variety of pesticide were used to control wildlife pest populations, the
wildlife pests impairing crops are increasing especially because of resistance to the pesticide.
So the pesticides are invalid. Moreover, wildlife pests will continue. On the other hand, the
chemical pesticide kills not only wildlife pests but also their natural enemies. Therefore,
wildlife pests are rampant. Now, sterile control to suppress wildlife pests is one of the most
important measures in wildlife pest control. Sterile control [1–5] is especially for the purpose
of suppressing the abundance of the pest in a new target region to a level at which it no
longer causes economic damage. This can be achieved by releasing sterile insects into the
environment in very large numbers in order to mate with the native insects that are present
in the environment. A native female that mates with a sterile male will produce eggs, but
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the eggs will not hatch (the same effect will occur for the reciprocal cross). If there is a
sufficiently high number of sterile insects than most of the crosses are sterile, and as time
goes on, the number of native insects decreases and the ratio of sterile to normal insects
increases, thus driving the native population to extinction. Sterile male techniques were first
used successfully in 1958 in Florida to control Screwworm fly (Cochliomya omnivorax). A
number of mathematical models have been done to assist the effectiveness of the SIT (see,
e.g., [2–4]). Recently, Liu and Li [6] considered the following contraception control model:

x′
1(t) = x1(t)

(
b − k(x1(t) + x2(t)) − μ

)
,

x′
2(t) = μx1(t) − [d + k(x1(t) + x2(t))]x2(t),

(1.1)

where x1(t), x2(t) represent, respectively, the density of the fertile species and the sterile
species at time t. The authors proved the equilibrium point of system (1.1) is stable under
appropriate conditions. In view of the effects of a periodically changing environment, we
consider the following nonautonomous contraception model:

x′
1(t) = x1(t)

(
b(t) − k(t)(x1(t) + x2(t)) − μ(t)

)
,

x′
2(t) = μ(t)x1(t) − [d(t) + k(t)(x1(t) + x2(t))]x2(t).

(1.2)

However, we note that ecosystem in the real world are continuously disturbed by
unpredictable forces which can result in changes in the biological parameters such as survival
rates. Of practical interest in ecosystem is the question of whether or not an ecosystem
can withstand those unpredictable forces which persist for a finite period of time. In the
language of control variables, we call the disturbance functions as control variables. So it is
necessary to study models with control variables which are so-called disturbance functions,
and to find some suitable conditions to prevent a particular species from dying out. In 1993,
Gopalsamy and Weng [7] introduced a feedback control variable into the delay logistic model
and discussed the asymptotic behavior of solution in logistic models with feedback controls,
in which the control variables satisfy certain differential equation.

In recent years, the population dynamical systems with feedback controls have been
studied in many articles, for example, see [7–12] and references cited therein. However, to
the best of the authors knowledge, to this day, still less scholars consider the nonautonomous
single species with contraception control and feedback controls.

Motivated by the above works, we focus our attention on the permanence of species
for the following single species nonautonomous systems with delays and feedback control:

x′
1(t) = x1(t)

(
b(t) − k(t)(x1(t) + x2(t)) − μ(t) − c1(t)u(t − σ1(t))

)
,

x′
2(t) = μ(t)x1(t) − [d(t) + k(t)(x1(t) + x2(t)) + c2(t)u(t − σ2(t))]x2(t),

u′(t) = −e(t)u(t) + f1(t)x1(t − τ1(t)) + f2(t)x2(t − τ2(t)),

(1.3)

where x1(t), x2(t) represent, respectively, the density of the fertile population and the sterile
population at time t. u(t) is the control variable at time t. b(t), k(t) represent, respectively,
the intrinsic growth rate and density-dependent rate of the species at time t, respectively.
μ(t) is the migration rates from the fertile population to the sterile population. The function
b(t) is bounded continuous defined on R+ = [0, ∞); functions μ(t), k(t), d(t), e(t), ci(t),
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fi(t), σi(t), and τi(t) (i = 1, 2) are continuous, bounded, and nonnegative defined on R+. Let
τ = sup{τ1(t), τ2(t), σ1(t), σ2(t) : t ≥ 0}.

We will consider (1.3) together with initial conditions:

xi(θ) = φi(θ), u(θ) = ψ(θ), (1.4)

where φi(θ), ψ(θ) ∈ BC+[−τ, 0] and

BC+[−τ, 0] = {
φ ∈ C([−τ, 0], [0,+∞]) : φ(0) > 0, φ (θ) is bounded

}
. (1.5)

By the fundamental theory of functional differential equations [12], it is not difficult to
see that the solution (x1(t), x2(t), u(t)) of (1.3) is unique and positive if initial functions satisfy
initial condition (1.4). So, in this paper, the solution of (1.3) satisfying initial conditions (1.4)
is said to be positive.

The main purpose of this paper is to establish a new general criterion for the
permanence and the extinction of (1.3), which is described by integral form and independent
feedback controls. The paper is organized as follows. In the next section, we will give
some assumptions and useful lemmas. In Section 3, some new sufficient conditions which
guarantee the permanence of all positive solutions for (1.3) are obtained. In Section 4, we
obtained some new sufficient conditions which guarantee the extinction of all positive
solutions for (1.3).

2. Preliminaries

Throughout this paper, we will introduce the following assumptions:

(H1) there exist constants ωi > 0 (i = 1, 2) such that

lim inf
t→∞

∫ t+ω1

t

[
b(s) − μ(s)

]
ds > 0, lim inf

t→∞

∫ t+ω2

t

μ(s)ds > 0; (2.1)

(H2) there exist constants λi > 0 (i = 1, 2), such that

lim inf
t→∞

∫ t+λ1

t

k(s)ds > 0, lim inf
t→∞

∫ t+λ2

t

d(s)ds > 0; (2.2)

(H3) there exists a constant γ > 0 such that

lim inf
t→∞

∫ t+γ

t

e(s)ds > 0. (2.3)

In addition, for a function g(t) defined on set I ⊂ R, we denote

gL = inf
t∈I

g(t), gM = sup
t∈I

g(t). (2.4)
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Now, we state several lemmas which will be useful in the proving of main results in
this paper.

First, we consider the following nonautonomous logistic equation:

x′(t) = x(t)(r(t) − a(t)x(t)), (2.5)

where functions a(t), r(t) are bounded and continuous on R+. Furthermore, a(t) ≥ 0 for all
t ≥ 0. We have the following result which is given in [13] by Teng and Li.

Lemma 2.1. Suppose that there exist constants λ, σ such that

lim inf
t→∞

∫ t+λ

t

r(s)ds > 0, lim inf
t→∞

∫ t+σ

t

a(s)ds > 0. (2.6)

Then,

(a) there exist positive constantsm and M such that

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ M. (2.7)

for any positive solution x(t) of (2.5);

(b) limt→∞(x(1)(t) − x(2)(t)) = 0 for any two positive solutions x(1)(t) and x(2)(t) of (2.5).

Further, consider the following nonautonomous linear equation:

u′(t) = r(t) − e(t)u(t), (2.8)

where functions r(t) and e(t) are bounded continuous defined on R+, and r(t) ≥ 0 for all t ≥ 0.
One has the following result.

Lemma 2.2. Suppose that (H3) holds. Then,

(a) there exists a positive constantU such that lim supt→∞u(t) ≤ U for any positive solution
u(t) of (2.8);

(b) limt→∞(u(1)(t) − u(2)(t)) = 0 for any two positive solutions u(1)(t) and u(2)(t) of (2.8).

The proof of Lemma 2.2 is very simple by making a transformation with u(t) = 1/x(t).
This produces the calculations: u′(t) = −(1/x2(t))x′(t) and x′(t) = x(t)(e(t) − r(t)x(t)). Then,
according to the Lemma 2.1 one can obtain Lemma 2.2.

Lemma 2.3. Suppose that (H3) holds. Then, for any constants ε > 0 andM > 0, there exist constants
δ = δ(ε) > 0 and T = T(ε,M) > 0 such that for any t0 ∈ R+ and u0 ∈ R with |u0| ≤ M, when
|r(t)| < δ for all t ≥ t0, one has

|u(t, t0, u0)| < ε ∀t ≥ t0 + T, (2.9)

where u(t, t0, u0) is the solution of (2.8) with initial condition u(t0) = u0.
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The proof of Lemma 2.3 can be found as Lemma 2.4 in [11] by Wang et al.

3. Main Results

In this section, we study the permanence of species x1(t), x2(t) of (1.3). First, we have the
theorem on the ultimate boundedness of all positive solutions of (1.3).

Theorem 3.1. Suppose that assumptions (H1)–(H3) hold. Then, any positive solution of (1.3) is
ultimate bounded, in the sense that there exists a positive constantM > 0 such that

lim sup
t→∞

x1(t) < M, lim sup
t→∞

x2(t) < M, lim sup
t→∞

u(t) < M, (3.1)

for any positive solution (x1(t), x2(t), u(t)) of (1.3).

Proof. Let (x1(t), x2(t), u(t)) be any positive solution of (1.3). We first prove that the
component x1(t) of (1.3) is ultimately bounded. From the first equation of (1.3), we have

dx1(t)
dt

≤ x1(t)
(
b(t) − μ(t) − k(t)x1(t)

)
. (3.2)

We consider the following auxiliary equation:

dy(t)
dt

= y(t)
(
b(t) − μ(t) − k(t)y(t)

)
, (3.3)

then by (H1) and applying Lemma 2.1, there exists a constant M1 such that

lim sup
t→∞

y(t) < M1 (3.4)

for any positive solution y(t) of (3.3). Let y∗(t) be the solution of (3.3) satisfying initial
condition y∗(t0) = x1(t0). Further, from comparison theorem, it follows that

x1(t) < y∗(t) ∀t > t0. (3.5)

Thus, we finally obtain that

lim sup
t→∞

x1(t) < M1. (3.6)

From inequality (3.6), we obtain that there exists a positive constant T1 such that

x1(t) < M1 ∀t ≥ T1. (3.7)
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Hence, from the second equation of (1.3), one has

dx2(t)
dt

≤ μ(t)M1 − d(t)x2(t) (3.8)

for all t ≥ T1. Further, consider the following auxiliary equation:

dv(t)
dt

= μ(t)M1 − d(t)v(t), (3.9)

from assumptions (H1) and (H2) and according to Lemma 2.2, there exists constant M2 > 0
such that

lim sup
t→∞

v(t) < M2 (3.10)

for the solution v(t) of (3.9) with initial condition v(T1) = x2(T1). By the comparison theorem,
we have

x2(t) ≤ v(t) ∀t ≥ T1. (3.11)

From this, we further obtain

lim sup
t→∞

x2(t) < M2. (3.12)

Then, we obtain that there exists constant T2 > T1 such that

x2(t) < M2 ∀t ≥ T2. (3.13)

From the third equation of (1.3), we have

du(t)
dt

≤ −e(t)u(t) +M1f1(t) +M2f2(t) (3.14)

for all t ≥ T2 + τ . Consider the following auxiliary equation:

dv(t)
dt

= −e(t)v(t) +M1f1(t) +M2f2(t). (3.15)

By assumption (H3) and conclusions of Lemma 2.2, we can get that there exists a constant
M3 > 0 such that

lim sup
t→∞

v(t) < M3 (3.16)
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for the solution v(t) of (3.15) with initial condition v(T2 + τ) = u(T2 + τ). By the comparison
theorem, we have

u(t) ≤ v(t) ∀t ≥ T2 + τ. (3.17)

Hence, we further obtain

lim sup
t→∞

u(t) < M3. (3.18)

Choose the constant M = max{M1,M2,M3}, then we finally obtain

lim sup
t→∞

x1(t) < M, lim sup
t→∞

x2(t) < M, lim sup
t→∞

u(t) < M. (3.19)

This completes the proof.

Theorem 3.2. Suppose that assumptions (H1)–(H3) hold. Then, there exists a constant η > 0, which
is independent of any solution of (1.3), such that

lim inf
t→∞

x1(t) > η, lim inf
t→∞

x2(t) > η, (3.20)

for any positive solution (x1(t), x2(t), u(t)) of (1.3).

Proof. Let (x1(t), x2(t), u(t)) be a solution of (1.3) satisfying initial condition (1.4). In view of
Theorem 3.1, there exists a T0 such that for all t > T0 we have xi(t) < M, u(t) < M (i = 1, 2).
According to (H1), we can choose constants ε0 > 0 and T1 > 0 such that, for all t ≥ T1, we have

∫ t+ω1

t

(
b(s) − μ(s) − 2k(s)ε0 − c1(s)ε0

)
ds > ε0. (3.21)

Next, we consider the following equation:

du(t)
dt

= −e(t)u(t) + f1(t)α0 + f2(t)α0, (3.22)

where α0 was given in the later. By (H3), we have (3.22) satisfying all the conditions of
Lemma 2.3. So, we can obtain that, for given constants ε0 > 0 and M > 0 (M was given
in Theorem 3.1), there exist constants δ0 = δ0(ε0) > 0 and T ∗ = T ∗(ε0,M) > 0 such that for any
t0 ∈ R+ and 0 ≤ u0 ≤ M, when α0f1(t) + α0f2(t) < δ0 for all t ≥ t0, we have

u(t, t0, u0) < ε0 ∀t ≥ t0 + T ∗, (3.23)

where u(t, t0, u0) is the solution of (3.22) with initial condition u(t0) = u0.
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Further, consider the following equation:

dz(t)
dt

= μ(t)α0 − d(t)z(t), (3.24)

where α0 was given in (3.22). By (H2), we have (3.24) satisfying all the conditions of
Lemma 2.3, so by Lemma 2.3, for given constants α0 > 0 and M > 0, there exist constants
δ1 = δ1(α0) > 0 and T ∗∗ = T ∗∗(α0,M) > 0 such that for any t0 ∈ R+ and 0 ≤ z0 ≤ M, when
μ(t)α0 < δ1 for all t ≥ t0, we have

z(t, t0, z0) < α0 ∀t ≥ t0 + T ∗∗, (3.25)

where z(t, t0, z0) is the solution of (3.24) with initial condition z(t0) = z0.
Let α0 ≤ min{ε0, (δ1/(μM + 1)), (δ0/(fM

1 + fM
2 + 1))} such that for all t ≥ T1, we have

∫ t+ω1

t

(
b(s) − μ(s) − 2k(s)α0 − f1(s)ε0

)
ds > ε0. (3.26)

We first prove that

lim sup
t→∞

x1(t) ≥ α0. (3.27)

In fact, if (3.27) is not true, then there exist a positive solution (x1(t), x2(t), u(t)) of (1.3) and a
constant T2 ≥ T1 such that

x1(t) < α0, (3.28)

for all t ≥ T2.
From the second equation of (1.3), we have

dx2(t)
dt

≤ μ(t)α0 − d(t)x2(t) (3.29)

for all t ≥ T2. Let ẑ(t) be the solution of (3.24) with initial condition ẑ(T2) = x2(T2), by the
comparison theorem, we have x2(t) ≤ ẑ(t) for all t ≥ T2. In (3.25), we choose t0 = T2 and
ẑ0 = x2(T2), since μ(t)α0 < δ1, we obtain ẑ(t, t0, ẑ0) < α0 for all t ≥ T2 + T ∗∗. Hence, we further
obtain

x2(t, T2, x2(T2)) < α0 ∀t ≥ T2 + T ∗∗. (3.30)

By applying (3.28) and (3.30) to the third equation of (1.3), it follows that

du(t)
dt

≤ −e(t)u(t) + f1(t)α0 + f2(t)α0, (3.31)
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for all t ≥ T2 + T ∗∗ + τ . Let û(t) be the solution of (3.22) with initial condition û(T2 + T ∗∗ + τ) =
u(T2 + T ∗∗ + τ), by the comparison theorem, we have

u(t) ≤ û(t) ∀t ≥ T2 + T ∗∗ + τ. (3.32)

In (3.23), we choose t0 = T2 + T ∗∗ + τ and û0 = u(T2 + T ∗∗ + τ), since α0f1(t) + α0f2(t) < δ0 for
all t ≥ T2 + T ∗∗ + τ , we obtain

û(t, T2 + T ∗∗ + τ, u(T2 + T ∗∗ + τ)) < ε0 ∀t ≥ T2 + T ∗∗ + τ + T ∗. (3.33)

Hence, from (3.32), we further obtain

u(t, T2 + T ∗∗ + τ, u(T2 + T ∗∗ + τ)) < ε0 ∀t ≥ T2 + T ∗∗ + τ + T ∗. (3.34)

Hence, by (3.30) and (3.34) it follows that

dx1(t)
dt

≥ x1(t)
(
b(t) − μ(t) − 2k(t)α0 − c1(t)ε0

)
, (3.35)

for any t > T2 + T ∗∗ + T ∗ + 2τ . Integrating (3.35) from T3 = T2 + T ∗∗ + T ∗ + 2τ to t we have

x1(t) ≥ x1(T3) exp
∫ t

T3

(
b(s) − μ(s) − 2k(s)α0 − c1(s)ε0

)
ds. (3.36)

Thus, from (3.26), we have x1(t) → ∞ as t → ∞, which leads to a contradiction. So, (3.27)
holds.

Now, we prove the conclusion of Theorem 3.2. In fact, if it is not true, then there exists
an initial functions sequence {Z(m)} = {(φ(m)

1 (θ), φ(m)
2 (θ), ψ(m)(θ))}, θ ∈ [−τ, 0] such that

lim inf
t→∞

x1

(
t, Z(m)

)
<

α0

(m + 1)2
∀ m = 1, 2, . . . , (3.37)

for the solution (x1(t, Z(m)), x2(t, Z(m)), u(t, Z(m))) of (1.3). From (3.27) and (3.37), for every
m, there are two time sequences {s(m)

q } and {t(m)
q }, satisfying 0 < s

(m)
1 < t

(m)
1 < s

(m)
2 < t

(m)
2 <

· · · < s
(m)
q < t

(m)
q < · · · and limq→∞s

(m)
q = ∞, such that

x1

(
s
(m)
q , Z(m)

)
=

α0

m + 1
, x1

(
t
(m)
q , Z(m)

)
=

α0

(m + 1)2
, (3.38)

α0

(m + 1)2
≤ x1

(
t, Z(m)

)
≤ α0

m + 1
∀t ∈

(
s
(m)
q , t

(m)
q

)
. (3.39)
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From Theorem 3.1, we can choose a positive constant T (m) such that x1(t, Z(m)) < M

and x2(t, Z(m)) < M and u(t, Z(m)) < M, for all t > T (m). Further, there is an integer K(m)
1 > 0

such that s(m)
q > T (m) + τ for all q ≥ K

(m)
1 . Let q ≥ K

(m)
1 , for any t ∈ (s(m)

q , t
(m)
q ), we have

dx1
(
t, Z(m))

dt
≥ x1

(
t, Z(m)

)[
b(t) − μ(t) − k(t)M − k(t)M − c1(t)M

]

≥ −γ1x1

(
t, Z(m)

)
,

(3.40)

where γ1 = supt∈R+
{|b(t)−μ(t)−2k(t)M−c1(t)M|}. Integrating the above inequality from s

(m)
q

to t
(m)
q , we further have

α0

(m + 1)2
= x1

(
t
(m)
q , Z(m)

)
≥ x1

(
s
(m)
q , Z(m)

)
exp

[
−γ1

(
t
(m)
q − s

(m)
q

)]

=
α0

m + 1
exp

[
−γ1

(
t
(m)
q − s

(m)
q

)]
.

(3.41)

Consequently,

t
(m)
q − s

(m)
q ≥ ln(m + 1)

γ1
∀q ≥ K

(m)
1 , m = 1, 2, . . . , (3.42)

we can choose a large enough N0 such that

t
(m)
q − s

(m)
q ≥ T ∗∗ + T ∗ + 2τ +ω1 ∀m ≥ N0, q ≥ K

(m)
1 . (3.43)

For any m ≥ N0, q ≥ K
(m)
1 , and t ∈ [s(m)

q , t
(m)
q ], from (3.39), we can obtain

dx2
(
t, Z(m))

dt
≤ μ(t)

α0

m + 1
− d(t)x2

(
t, Z(m)

)

≤ μMα0 − d(t)x2

(
t, Z(m)

)
.

(3.44)

Let ẑ(t) be solution of (3.24) with initial condition ẑ(s(m)
q ) = x2(s

(m)
q ), by the comparison

theorem, we have x2(t) ≤ ẑ(t) for all t ≥ s
(m)
q . In (3.25), we choose t0 = s

(m)
q and ẑ0 = z(s(m)

q ),

since μMα0 < δ1 and x2(s
(m)
q < M, we obtain ẑ(t, s(m)

q , z(s(m)
q )) < α0 for all t ≥ s

(m)
q + T ∗∗.

By Lemma 2.3, we can obtain that T ∗∗ = T ∗∗(α0,M) is independent of m. Hence, we further
obtain

x2

(
t, s

(m)
q , x2

(
s
(m)
q

))
< α0, (3.45)
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for all t > s
(m)
q + T ∗∗. From the third equation of (1.3), we obtain

du
(
t, Z(m))

dt
= −e(t)u

(
t, Z(m)

)
+ f1(t)x1

(
t − τ1(t), Z(m)

)
+ f2(t)x2

(
t − τ2(t), Z(m)

)

≤ −e(t)u
(
t, Z(m)

)
+ f1(t)α0 + f2(t)α0,

(3.46)

for all t ≥ s
(m)
q + T ∗∗ + τ . Assume that ũ(t) is the solution of (3.22) with initial condition

ũ(s(m)
q + T ∗∗ + τ) = u(s(m)

q + T ∗∗ + τ), then we have

u
(
t, Z(m)

)
≤ ũ(t) ∀t ∈

[
s
(m)
q + T ∗∗ + τ, t

(m)
q

]
, m ≥ N0, q ≥ K

(m)
1 . (3.47)

In (3.23), we choose t0 = s
(m)
q +T ∗∗+τ and u0 = u(s(m)

q +T ∗∗+τ). Obviously, α0(f1(t)+f2(t)) < δ0

for all t ≥ s
(m)
q + T ∗∗ + τ . So, we have

ũ(t) = ũ
(
t, s

(m)
q + T ∗∗ + τ, u

(
s
(m)
q + T ∗∗ + τ

))
< ε0 (3.48)

for all t ∈ [s(m)
q + T ∗∗ + τ + T ∗, t(m)

q ]. Using the comparison theorem, it follows that

u
(
t, Z(m)

)
< ε0 (3.49)

for all t ∈ [s(m)
q + T ∗∗ + τ + T ∗, t(m)

q ], q ≥ K
(m)
1 , and m ≥ N0.

So, for any m ≥ N0, q ≥ K
(m)
1 , and t ∈ [s(m)

q + T ∗∗ + T ∗ + 2τ, t(m)
q ], from (3.26), (3.45), and

(3.49), it follows

dx1
(
t, Z(m))

dt
=x1

(
t, Z(m)

)(
b(t)−μ(t)−k(t)

(
x1

(
t, Z(m)

)
+x2

(
t, Z(m)

))
−c1(t)u

(
t−σ1(t), Z(m)

))

≥ x1

(
t, Z(m)

)(
b(t) − μ(t) − 2k(t)α0 − c1(t)ε0

)
.

(3.50)

Integrating the above inequality from t
(m)
q −ω1 to t

(m)
q , then from (3.26), we obtain

α0

(m + 1)2
= x1

(
t
(m)
q , Z(m)

)

≥ x1

(
t
(m)
q −ω1, Z

(m)
)

exp
∫ t

(m)
q

t
(m)
q −ω1

(
b(t) − μ(t) − 2k(t)α0 − c1(t)ε0

)
dt

≥ α0

(m + 1)2
exp(α0) >

α0

(m + 1)2
,

(3.51)
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which leads to a contradiction. Therefore, this contradiction shows that there exists constant
η1 > 0 such that

lim inf
t→∞

x1(t) > η1, (3.52)

for any positive solution (x1(t), x2(t), u(t)) of (1.3). Therefore, there exists constant η2 > 0
such that

lim inf
t→∞

x2(t) > η2, (3.53)

for any positive solution (x1(t), x2(t), u(t)) of (1.3). This completes the proof.

Remark 3.3. In Theorem 3.2, we note that (H1)–(H3) are decided by (1.3), which is
independent of the feedback controls. So, the feedback controls have no influence on the
permanence of (1.3).

4. Extinction

In this section, we discuss the extinction of the component x1(t), x2(t) of (1.3).

Theorem 4.1. Suppose that there exist constants σ1, σ2, such that

lim sup
n→∞

∫ t+σ1

t

(
b(s) − μ(s)

)
ds < 0; lim inf

t→∞

∫ t+σ2

t

k(s)ds > 0 (4.1)

hold. Then,

lim
t→∞

x1(t) = 0, lim
t→∞

x2(t) = 0, (4.2)

for any positive solution (x1(t), x2(t), u(t)) of (1.3).

Proof. By the condition, for every given positive constant ε, there exist constants ε1 and T1

such that

∫ t+σ1

t

(
b(s) − μ(s) − k(s)ε

)
ds < −ε1, (4.3)

for all t > T1. First, we show that there exists a T2 > T1, such that x1(T2) < ε. Otherwise, we
have

x1(t) ≥ ε, ∀t > T1. (4.4)

Hence, for all t ≥ T1, one has

x′
1(t) < x1(t)

(
b(t) − k(t)ε − μ(t)

)
. (4.5)
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Thus, as t → +∞, we have

ε ≤ x1(t) < x1(T1) exp

{∫ t

T1

(
b(s) − μ(s) − k(s)ε

)
ds

}

< x1(T1) exp{−ε1(t − T1)} −→ 0.

(4.6)

So, ε < 0, which leads to a contradiction. Therefore, there exists a T2 > T1, such that x1(T2) < ε.
Second, we show that

x1(t) < ε exp
{
μ1σ1

} ∀t > T2, (4.7)

where μ1 = maxt∈[0,+∞]{b(t)+μ(t)+k(t)ε}. Otherwise, there exists a T3 > T2, such that x1(T3) >
ε exp{μ1σ1}. By the continuity of x1(t), there must exist T4 ∈ (T2, T3) such that x1(T4) = ε and
x1(t) > ε for t ∈ (T4, T3). Let P1 be the nonnegative integer such that T3 ∈ (T4 + P1σ1, T4 + (P1 +
1)σ1). Further, we obtain that

ε exp
{
μ1σ1

}
< x1(T3) < x1(T4) exp

{∫T3

T4

(
b(s) − μ(s) − k(s)ε

)
ds

}

= x1(T4) exp

{∫T4+P1σ1

T4

(
b(s) − μ(s) − k(s)ε

)
ds

+
∫T3

T4+P1σ1

(
b(s) − μ(s) − k(s)ε

)
ds

}

< ε exp
{
μ1σ1

}
,

(4.8)

which leads to contradiction. This shows that (4.7) holds. By the arbitrariness of ε, it
immediately follows that x1(t) → 0 as t → +∞. Further, we can obtain that x2(t) → 0
as t → +∞. This completes the proof of Theorem 4.1.
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We study the following second order mixed nonlinear impulsive differential equations with delay
(r(t)Φα(x′(t)))′+p0(t)Φα(x(t))+

∑n
i=1 pi(t)Φβi(x(t−σ)) = e(t), t ≥ t0, t /= τk, x(τ+k ) = akx(τk), x′(τ+

k
) =

bkx
′(τk), k = 1, 2, . . ., where Φ∗(u) = |u|∗−1u, σ is a nonnegative constant, {τk} denotes the

impulsive moments sequence, and τk+1 − τk > σ. Some sufficient conditions for the interval
oscillation criteria of the equations are obtained. The results obtained generalize and improve
earlier ones. Two examples are considered to illustrate the main results.

1. Introduction

We consider the following second order impulsive differential equations with delay

(
r(t)Φα

(
x′(t)

))′ + p0(t)Φα(x(t)) +
n∑
i=1

pi(t)Φβi(x(t − σ)) = e(t), t ≥ t0, t /= τk,

x
(
τ+k
)
= akx(τk), x′(τ+k

)
= bkx

′(τk), k = 1, 2, . . . ,

(1.1)

where Φ∗(u) = |u|∗−1u, σ is a nonnegative constant, {τk} denotes the impulsive moments
sequence, and τk+1 − τk > σ, for all k ∈ N.
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Let J ⊂ R be an interval, and we define

PLC(J,R) :=
{
y : J −→ R | y is continuous everywhere except each τk at which y

(
τ+k
)

and y
(
τ−k
)

exist and y
(
τ−k
)
= y(τk), k ∈ N

}
.

(1.2)

For given t0 and φ ∈ PLC([t0 − σ, t0],R), we say x ∈ PLC([t0 − σ,∞),R) is a solution of (1.1)
with initial value φ if x(t) satisfies (1.1) for t ≥ t0 and x(t) = φ(t) for t ∈ [t0 − σ, t0].

A solution of (1.1) is said to be nonoscillatory if it is eventually positive or eventually
negative. Otherwise, this solution is said to be oscillatory.

Impulsive differential equation is an adequate mathematical apparatus for the simula-
tion of processes and phenomena observed in control theory, physics, chemistry, population
dynamics, biotechnologies, industrial robotics, economics, and so forth. Because it has more
richer theory than its corresponding without impulsive differential equation, much research
has been done on the qualitative behavior of certain impulsive differential equations (see
[1, 2]).

In the last decades, there is constant interest in obtaining new sufficient conditions for
oscillation or nonoscillation of the solutions of various impulsive differential equations, see,
for example, [1–9] and the references cited therein.

In recent years, interval oscillation of impulsive differential equations was also
arousing the interest of many researchers. In 2007, Özbekler and Zafer [10] investigated the
following equations:

(
m(t)ϕα

(
y′))′ + q(t)ϕβ

(
y
)
= f(t), t /= θi,

Δ
(
m(t)ϕα

(
y′)) + qiϕβ

(
y
)
= fi, t = θi, (i ∈ N),

(1.3)

(
m(t)y′)′ + s(t)y′ + q(t)ϕβ

(
y
)
= f(t), t /= θi,

Δ
(
m(t)y′) + qiϕβ

(
y
)
= fi, t = θi,

(
β ≥ 1

)
,

(1.4)

where ϕ∗(u) = |u|∗−1u, β ≥ α, {qi} and {fi} are sequences of real numbers. In 2009, they further
gave a research [11] for equations of the form

(
r(t)ϕα

(
x′))′ + p(t)ϕα

(
x′) + q(t)ϕβ(x) = e(t), t /= θi,

Δ
(
r(t)ϕα

(
x′)) + qiϕβ(x) = ei, t = θi,

(1.5)

and obtained some interval oscillation results which improved and extended the earlier ones
for the equations without impulses.

For the mixed type Emden-Fowler equations

(
r(t)x′(t)

)′ + p(t)x(t) +
n∑
i=1

pi(t)|x(t)|αi−1x(t) = e(t), t /= τk,

x
(
τ+k
)
= akx(τk), x′(τ+k

)
= bkx

′(τk), k ∈ N,

(1.6)
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Liu and Xu [12] established some interval oscillation results. Recently, Özbekler and Zafer
[13] investigated the more general cases

(
r(t)Φα

(
x′(t)

))′ + q(t)Φα(x(t)) +
n∑

k=1

qk(t)Φβk(x(t)) = e(t), t /= θi,

x
(
θ+
i

)
= aix(θi), x′(θ+

i

)
= bix

′(θi),

(1.7)

where β1 > · · · > βm > α > βm+1 > · · · > βn > 0.
However, for the impulsive equations, almost all of interval oscillation results in the

existing literature were established only for the case of “without delay.” In other words, for
the case of “with delay” the study on the interval oscillation is very scarce. To the best of
our knowledge, Huang and Feng [14] gave the first research in this direction recently. They
considered second order delay differential equations with impulses

x′′(t) + p(t)f(x(t − τ)) = e(t), t ≥ t0, t /= tk, k = 1, 2, . . . ,

x
(
t+k
)
= akx(tk), x′(t+k

)
= bkx

′(tk), k = 1, 2, . . .
(1.8)

and established some interval oscillation criteria which developed some known results for
the equations without delay or impulses [15–17].

Motivated mainly by [13, 14], in this paper, we study the interval oscillation of the
delay impulsive (1.1). By using some inequalities, Riccati transformation and H functions
(introduced first by Philos [18]), we establish some interval oscillation criteria which
generalize and improve some known results. Moreover, examples are considered to illustrate
the main results.

2. Main Results

Throughout the paper, we always assume that the following conditions hold:

(A1) the exponents satisfy that β1 > · · · > βm > α > βm+1 > · · · > βn > 0;

(A2) r(t) ∈ C([t0,∞), (0,∞)) is nondecreasing, e(t), pi(t) ∈ PLC([t0,∞),R), i =
0, 1, . . . , n;

(A3) {ak} and {bk} are real constant sequences such that bk ≥ ak > 0, k ∈ N.

It is clear that all solutions of (1.1) are oscillatory if there exists a subsequence {ki} of
{k} such that aki ≤ 0 for all i ∈ N. So, we assume ak > 0 for all k ∈ N in condition (A3).

In this section, intervals [c1, d1] and [c2, d2] are considered to establish oscillation
criteria. For convenience, we introduce the following notations (see [12]). Let

k(s) = max{i : t0 < τi < s}, rj = max
{
r(t) : t ∈ [cj , dj

]}
,

Ω
(
cj , dj

)
=
{
wj ∈ C1[cj , dj

]
: wj(t)/≡ 0, wj

(
cj
)
= wj

(
dj

)
= 0
}
, j = 1, 2.

(2.1)
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For two constants c, d /∈ {τk} with c < d and k(c) < k(d) and a function ϕ ∈ C([c, d],R), we
define an operator Q : C([c, d],R) → R by

Qd
c

[
ϕ
]
= ϕ

(
τk(c)+1

) bα
k(c)+1 − aα

k(c)+1

aα
k(c)+1

(
τk(c)+1 − c

)α +
k(d)∑

i=k(c)+2

ϕ(τi)
bαi − aα

i

aα
i (τi − τi−1)α

, (2.2)

where
∑t

s = 0 if s > t.
In the discussion of the impulse moments of x(t) and x(t−σ), we need to consider the

following cases for k(cj) < k(dj)

(S1) τk(cj ) + σ < cj and τk(dj ) + σ > dj ,

(S2) τk(cj ) + σ < cj and τk(dj ) + σ < dj ,

(S3) τk(cj ) + σ > cj and τk(dj ) + σ > dj ,

(S4) τk(cj ) + σ > cj and τk(dj ) + σ < dj ,

and the cases for k(cj) = k(dj)

(S1) τk(cj ) + σ < cj ,

(S2) cj < τk(cj ) + σ < dj ,

(S3) τk(cj ) + σ > dj .

Combining (S∗) with (S∗), we can get 12 cases. In order to save space, throughout the
paper, we study (1.1) under the case of combination of (S1) with (S1) only. The discussions
for other cases are similar and omitted.

The following preparatory lemmas will be useful to prove our theorems. The first is
derived from [19] and second is from [20].

Lemma 2.1. For any given n-tuple {β1, β2, . . . , βn} satisfying (A1), then there exists an n-tuple
{η1, η2, . . . , ηn} such that

n∑
i=1

βiηi = α,
n∑
i=1

ηi = λ, 0 < ηi < 1, (2.3)

where λ ∈ (0, 1].

Lemma 2.2. Suppose X and Y are nonnegative, then

λXYλ−1 −Xλ ≤ (λ − 1)Yλ, λ > 1, (2.4)

where equality holds if and if X = Y .

Let α > 0, B ≥ 0, A > 0, and y ≥ 0. Put

λ = 1 +
1
α
, X = Aα/(α+1)y, Y =

( α

α + 1

)α
BαA−α2/(α+1). (2.5)
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It follows from Lemma 2.2 that

By −Ay(α+1)/α ≤ αα

(α + 1)α+1

Bα+1

Aα
. (2.6)

Theorem 2.3. Assume that for any T ≥ t0, there exist cj , dj /∈ {τk}, j = 1, 2, such that T < c1 <
d1 ≤ c2 < d2 and for j = 1, 2

pi(t) ≥ 0, t ∈ [cj − σ, dj

] \ {τk}, i = 0, 1, 2, . . . , n;

(−1)je(t) ≥ 0, t ∈ [cj − σ, dj

] \ {τk}.
(2.7)

If there existwj(t) ∈ Ω(cj , dj) and ρ(t) ∈ C1([cj , dj], (0,∞)) such that, for k(cj) < k(dj), j = 1, 2,

∫ τk(cj )+1

cj

Wj(t)

(
t − τk(cj ) − σ

)α
(
t − τk(cj )

)α dt

+
k(dj )−1∑
i=k(cj )+1

[∫ τi+σ

τi

Wj(t)
(t − τi)α

bαi (t + σ − τi)α
dt +

∫ τi+1

τi+σ
Wj(t)

(t − τi − σ)α

(t − τi)α
dt

]

+
∫dj

τk(dj )

Wj(t)

(
t − τk(dj )

)α

bα
k(dj )

(
t + σ − τk(dj )

)α dt

+
∫dj

cj

ρ(t)

⎛
⎝p0(t)

∣∣wj(t)
∣∣α+1 − r(t)

(∣∣∣w′
j(t)

∣∣∣ +
∣∣ρ′(t)∣∣∣∣wj(t)

∣∣
(α + 1)ρ(t)

)α+1
⎞
⎠dt ≥ ρjrjQ

dj

cj

[∣∣wj

∣∣α+1
]
,

(2.8)

where ρj is maximum value of ρ(t) on [cj , dj] and, for k(cj) = k(dj), j = 1, 2,

∫di

ci

⎛
⎝Wj(t)

(t − ci)α

(t − ci + σ)α
+ ρ(t)

⎛
⎝p0(t)

∣∣wj(t)
∣∣α+1 − r(t)

(∣∣∣w′
j(t)

∣∣∣ +
∣∣ρ′(t)∣∣∣∣wj(t)

∣∣
(α + 1)ρ(t)

)α+1
⎞
⎠dt≥ 0,

(2.9)

where Wj(t) = η
−η0

0 |e(t)|η0
∏n

i=1η
−ηi
i (pi(t))

ηi |wj(t)|α+1 with η0 = 1 −∑n
i=1 ηi and η1, η2, . . . , ηn are

positive constants satisfying conditions of Lemma 2.1, then (1.1) is oscillatory.

Proof. Assume, to the contrary, that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we assume that x(t) > 0 and x(t − σ) > 0 for t ≥ t0. In this case the interval of t
selected for the following discussion is [c1, d1]. Define

u(t) = ρ(t)
r(t)Φα(x′(t))
Φα(x(t))

, t ∈ [c1, d1]. (2.10)
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It follows, for t /= τk, that

u′(t) = −ρ(t)p0(t) − ρ(t)

[
n∑
i=1

pi(t)Φβi−α(x(t − σ)) +
|e(t)|

Φα(x(t − σ))

]
Φα(x(t − σ))
Φα(x(t))

+
ρ′(t)
ρ(t)

u(t) − α
(
ρ(t)r(t)

)1/α
|u(t)|(α+1)/α.

(2.11)

Now, let

v0 = η−1
0

|e(t)|
Φα(x(t − σ))

, vi = η−1
i pi(t)Φβi−α(x(t − σ)), i = 1, 2, . . . , n, (2.12)

where η1, η2, . . . , ηn are positive constants satisfying conditions of Lemma 2.1 and η0 = 1 −∑n
i=1 ηi. Employing in (2.11) the arithmetic-geometric mean inequality (see [20])

n∑
i=0

ηivi ≥
n∏
i=0

v
ηi
i (2.13)

and in view of (2.3), we have that

u′(t) ≤ −ρ(t)p0(t) − ρ(t)ψ(t)
Φα(x(t − σ))
Φα(x(t))

− α
(
ρ(t)r(t)

)1/α
|u(t)|(α+1)/α +

ρ′(t)
ρ(t)

u(t), (2.14)

where

ψ(t) = η
−η0

0 |e(t)|η0

n∏
i=1

η
−ηi
i

(
pi(t)

)ηi . (2.15)

First, we consider the case k(c1) < k(d1).
In this case, we assume impulsive moments in [c1, d1] are τk(c1)+1, τk(c1)+2, . . . , τk(d1).

Choosing w1(t) ∈ Ω(c1, d1), multiplying both sides of (2.14) by |w1(t)|α+1 and then integrating
it from c1 to d1, we obtain

⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

∫ τi+1

τi

+
∫d1

τk(d1)

⎞
⎠u′(t)|w1(t)|α+1dt

≤
⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

∫ τi+1

τi

+
∫d1

τk(d1)

⎞
⎠
(

ρ′(t)
ρ(t)

u(t) − α
(
ρ(t)r(t)

)1/α
|u(t)|(1+α)/α

)
|w1(t)|α+1dt

−
⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

+
∫ τi+1

τi+σ

]
+
∫d1

τk(d1)

⎞
⎠xα(t − σ)

xα(t)
W1(t)dt

−
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt,

(2.16)



Abstract and Applied Analysis 7

where W1(t) = ρ(t)ψ(t)|w1(t)|α+1. Using the integration by parts formula in the left-hand side
of above inequality and noting the condition w1(c1) = w1(d1) = 0, we obtain

k(d1)∑
i=k(c1)+1

|w1(τi)|α+1[u(τi) − u
(
τ+i
)]

≤
⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

∫ τi+1

τi

+
∫d1

τk(d1)

⎞
⎠

×
[
(α + 1)Φα(w1(t))w′

1(t)u(t) +
ρ′(t)
ρ(t)

u(t)|w1(t)|α+1

− α
(
ρ(t)r(t)

)1/α
|u(t)|(1+α)/α|w1(t)|α+1

]
dt

−
⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

+
∫ τi+1

τi+σ

]
+
∫d1

τk(d1)

⎞
⎠xα(t − σ)

xα(t)
W1(t)dt

−
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt,

≤
⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

∫ τi+1

τi

+
∫d1

τk(d1)

⎞
⎠

×
[
(α + 1)|w1(t)|α|u(t)|

(∣∣w′
1(t)

∣∣ +
∣∣ρ′(t)∣∣|w1(t)|
(α + 1)ρ(t)

)

− α
(
ρ(t)r(t)

)1/α
|u(t)|(1+α)/α|w1(t)|α+1

]
dt

−
⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

+
∫ τi+1

τi+σ

]
+
∫d1

τk(d1)

⎞
⎠xα(t − σ)

xα(t)
W1(t)dt

−
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt.

(2.17)

Letting y = |w1(t)|α|u(t)|, B = (α + 1)(|w′
1(t)| + |ρ′(t)||w1(t)|/(α + 1)|ρ(t)|), A = α/(ρ(t)r(t))1/α

and using (2.6), we have for the integrand function in above inequality that

(α + 1)|w1(t)|α
∣∣w′

1(t)
∣∣|u(t)| − α

r1/α(t)
|u(t)|(1+α)/α|w1(t)|α+1

≤ ρ(t)r(t)

(∣∣w′
1(t)

∣∣ +
∣∣ρ′(t)∣∣|w1(t)|
(α + 1)ρ(t)

)α+1

.

(2.18)
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In view of the impulse condition in (1.1) and the definition of u we have, for t = τk,
k = 1, 2, . . ., that

u
(
τ+k
)
=

bαk
aα
k

u(τk). (2.19)

From (2.19), we have

k(d1)∑
i=k(c1)+1

|w1(τi)|α+1[u(τi) − u
(
τ+i
)]

=
k(d1)∑

i=k(c1)+1

(
1 − bαi

aα
i

)
|w1(τi)|α+1u(τi). (2.20)

Therefore, we get

k(d1)∑
i=k(c1)+1

(
1 − bαi

aα
i

)
|w1(τi)|α+1u(τi)

≤
∫d1

c1

ρ(t)r(t)

(∣∣w′
1(t)

∣∣ +
∣∣ρ′(t)∣∣|w1(t)|
(α + 1)ρ(t)

)α+1

dt

−
⎛
⎝
∫ τk(c1)+1

c1

+
k(d1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

+
∫ τi+1

τi+σ

]
+
∫d1

τk(d1)

⎞
⎠xα(t − σ)

xα(t)
W1(t)dt

−
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt.

(2.21)

On the other hand, for t ∈ [c1, d1] \ {τi},

(
r(t)Φα(x′(t))

)′ = e(t) − p0(t)Φα(x(t)) −
n∑
i=1

pi(t)Φβi(x(t − σ)) ≤ 0. (2.22)

Hence r(t)Φα(x′(t)) is nonincreasing on [c1, d1] \ {τk}.
Because there are different integration intervals in (2.21), we will estimate x(t−σ)/x(t)

in each interval of t as follows.

Case 1. t ∈ (τi, τi+1] ⊂ [c1, d1], for i = k(c1) + 1, . . . , k(d1) − 1.

Subcase 1. If τi + σ < t ≤ τi+1, then (t − σ, t) ⊂ (τi, τi+1]. Thus there is no impulsive moment in
(t − σ, t). For any s ∈ (t − σ, t), we have

x(s) − x
(
τ+i
)
= x′(ξ1)(s − τi), ξ1 ∈ (τi, s). (2.23)
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Since x(τ+i ) > 0, r(s) is nondecreasing, function Φα(·) is an increasing function and
r(t)Φα(x′(t)) is nonincreasing on (τi, τi+1), we have

Φα(x(s)) ≥ r(ξ1)
r(s)

Φα(x(s)) >
r(ξ1)
r(s)

Φα

(
x′(ξ1)(s − τi)

)
=

r(ξ1)Φα(x′(ξ1))
r(s)

(s − τi)α

≥ r(s)Φα(x′(s))
r(s)

(s − τi)α = Φα

(
x′(s)(s − τi)

)
, ξ1 ∈ (τi, s).

(2.24)

Therefore,

x′(s)
x(s)

<
1

s − τi
. (2.25)

Integrating both sides of the above inequality from t − σ to t, we obtain

x(t − σ)
x(t)

>
t − τi − σ

t − τi
, t ∈ (τi + σ, τi+1]. (2.26)

Subcase 2. If τi < t < τi + σ, then τi − σ < t − σ < τi < t < τi + σ. There is an impulsive moment
τi in (t − σ, t). For any t ∈ (τi, τi + σ), we have

x(t) − x
(
τ+i
)
= x′(ξ2)(t − τi), ξ2 ∈ (τi, t). (2.27)

Using the impulsive condition of (1.1) and the monotone properties of r(t), Φα(·) and
r(t)Φα(x′(t)), we get

Φα(x(t) − aix(τi)) =
r(ξ2)Φα(x′(ξ2))

r(ξ2)
(t − τi)α ≤ r(τi)Φα

(
x′(τ+i

))

r(ξ2)
(t − τi)α

=
r(τi)Φα(bix′(τi)(t − τi))

r(ξ2)
.

(2.28)

Since x(τi) > 0, we have

Φα

(
x(t)
x(τi)

− ai

)
≤ r(τi)

r(ξ2)
Φα

(
bi
x′(τi)
x(τi)

(t − τi)
)
. (2.29)

In addition,

x(τi) > x(τi) − x(τi − σ) = x′(ξ3)σ, ξ3 ∈ (τi − σ, τi). (2.30)

Using the same analysis as (2.24) and (2.25), we have

x′(τi)
x(τi)

<
1
σ
. (2.31)
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From (2.29) and (2.31) and note that the monotone properties of Φα(·) and r(t), we get

Φα

(
x(t)
x(τi)

− ai

)
<

r(τi)
r(ξ2)

Φα

(
bi
σ
(t − τi)

)
≤ Φα

(
bi
σ
(t − τi)

)
. (2.32)

Then,

x(t)
x(τi)

< ai +
bi
σ
(t − τi). (2.33)

In view of (A3), we have

x(τi)
x(t)

>
σ

σai + bi(t − τi)
≥ σ

bi(t + σ − τi)
> 0. (2.34)

On the other hand, similar to the above analysis, we get

x′(s)
x(s)

<
1

s − τi + σ
, s ∈ (τi − σ, τi). (2.35)

Integrating (2.35) from t − σ to τi, where t ∈ (τi, τi + σ), we have

x(t − σ)
x(τi)

>
t − τi
σ

≥ 0. (2.36)

From (2.34) and (2.36), we obtain

x(t − σ)
x(t)

>
t − τi

bi(t + σ − τi)
, t ∈ (τi, τi + σ). (2.37)

Case 2 (t ∈ [c1, τk(c1)+1]). Since τk(c1)+σ < c1, then t−σ ∈ [c1−σ, τk(c1)+1−σ] ⊂ (τk(c1), τk(c1)+1−σ].
So, there is no impulsive moment in (t − σ, t). Similar to (2.26) of Subcase 1, we have

x(t − σ)
x(t)

>
t − τk(c1) − σ

t − τk(c1)
, t ∈ [c1, τk(c1)+1

]
. (2.38)

Case 3 (t ∈ (τk(d1), d1]). Since τk(d1) + σ > d1, then t − σ ∈ (τk(d1) − σ, d1 − σ] ⊂ (τk(d1) − σ, τk(d1)).
Hence, there is an impulsive moment τk(d1) in (t−σ, t). Making a similar analysis of Subcase 2,
we obtain

x(t − σ)
x(t)

>
t − τk(d1)

bk(d1)
(
t + σ − τk(d1)

) ≥ 0, t ∈ (τk(d1), d1
]
. (2.39)
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From (2.21), (2.26), (2.37), (2.38), and (2.39) we get

k(d1)∑
i=k(c1)+1

(
1 − bαi

aα
i

)
|w1(τi)|α+1u(τi)

<

∫d1

c1

ρ(t)r(t)

(∣∣w′
1(t)

∣∣ +
∣∣ρ′(t)∣∣|w1(t)|
(α + 1)ρ(t)

)α+1

dt −
∫ τk(c1)+1

c1

W1(t)

(
t − τk(c1) − σ

)α
(
t − τk(c1)

)α dt

−
k(d1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

W1(t)
(t − τi)α

bαi (t + σ − τi)α
dt −

∫ τi+1

τi+σ
W1(t)

(t − τi − σ)α

(t − τi)α
dt

]

−
∫d1

τk(d1)

W1(t)

(
t − τk(d1)

)α
bα
k(d1)

(
t + σ − τk(d1)

)α dt −
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt.

(2.40)

On the other hand, for t ∈ (τi−1, τi] ⊂ [c1, d1], i = k(c1) + 2, . . . , k(d1), we have

x(t) − x(τi−1) = x′(ξ)(t − τi−1), ξ ∈ (τi−1, t). (2.41)

In view of x(τi−1) > 0 and the monotone properties of Φα(·), r(t)Φα(x′(t)) and r(t), we obtain

Φα(x(t)) > Φα

(
x′(ξ)

)
Φα(t − τi−1) ≥ r(t)

r(ξ)
Φα

(
x′(t)

)
Φα(t − τi−1). (2.42)

This is

ρ(t)
r(t)Φα(x′(t))
Φα(x(t))

<
ρ1r(ξ)

(t − τi−1)α
. (2.43)

Letting t → τ−i , we have

u(τi) = ρ(t)
r(τi)Φα(x′(τi))

Φα(x(τi))
<

ρ1r1

(τi − τi−1)α
, i = k(c1) + 2, . . . , k(d1). (2.44)

Using similar analysis on (c1, τk(c1)+1], we get

u
(
τk(c1)+1

)
<

ρ1r1(
τk(c1)+1 − c1

)α . (2.45)

Then from (2.44), (2.45), and (A3), we have

k(d1)∑
i=k(c1)+1

(
bαi
aα
i

− 1

)
|w1(τi)|α+1u(τi) < ρ1r1

⎡
⎣∣∣w1

(
τk(c1)+1

)∣∣α+1
θ(c1) +

k(d1)∑
i=k(c1)+2

|w1(τi)|α+1ζ(τi)

⎤
⎦

= ρ1r1Q
d1
c1

[
|w1|α+1

]
,

(2.46)

where θ(c1) = (bα
k(c1)+1 − aα

k(c1)+1)/a
α
k(c1)+1(τk(c1)+1 − c1)

α and ζ(τi) = (bαi − aα
i )/a

α
i (τi − τi−1)

α.
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From (2.40) and (2.46), we obtain

∫ τk(c1)+1

c1

W1(t)

(
t − τk(c1) − σ

)α
(
t − τk(c1)

)α dt

+
k(d1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

W1(t)
(t − τi)α

bαi (t + σ − τi)α
dt +

∫ τi+1

τi+σ
W1(t)

(t − τi − σ)α

(t − τi)α
dt

]

+
∫d1

τk(d1)

W1(t)

(
t − τk(d1)

)α
bα
k(d1)

(
t + σ − τk(d1)

)α dt

+
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt −
∫d1

c1

ρ(t)r(t)

(∣∣w′
1(t)

∣∣ +
∣∣ρ′(t)∣∣|w1(t)|
(α + 1)ρ(t)

)α+1

dt

< ρ1r1Q
d1
c1

[
|w1|α+1

]
.

(2.47)

This contradicts (2.8).
Next we consider the case k(c1) = k(d1). From the condition (S1) we know that there is

no impulsive moment in [c1, d1]. Multiplying both sides of (2.47) by |w1(t)|α+1 and integrating
it from c1 to d1, we obtain

∫d1

c1

u′(t)|w1(t)|α+1dt ≤ −
∫d1

c1

α
(
ρ(t)r(t)

)1/α
|u(t)|(α+1)/α|w1(t)|α+1dt

−
∫d1

c1

xα(t − σ)
xα(t)

W1(t)dt −
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt.

(2.48)

Similar to the proof of (2.21), we have

∫d1

c1

⎡
⎣xα(t − σ)

xα(t)
W1(t) + ρ(t)p0(t)

∣∣wj(t)
∣∣α+1 − ρ(t)r(t)

(∣∣∣w′
j(t)

∣∣∣ +
∣∣ρ′(t)∣∣∣∣wj(t)

∣∣
(α + 1)ρ(t)

)α+1
⎤
⎦dt ≤ 0.

(2.49)

Using same way as Subcase 1, we get

x(t − σ)
x(t)

>
t − c1

t − c1 + σ
, t ∈ [c1, d1]. (2.50)

From (2.49) and (2.50) we obtain

∫d1

c1

⎡
⎣W1(t)

(t − c1)α

(t − c1 + σ)α
+ ρ(t)p0(t)

∣∣wj(t)
∣∣α+1 − ρ(t)r(t)

(∣∣∣w′
j(t)

∣∣∣ +
∣∣ρ′(t)∣∣∣∣wj(t)

∣∣
(α + 1)ρ(t)

)α+1
⎤
⎦dt < 0.

(2.51)

This contradicts condition (2.9).
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When x(t) < 0, we can choose interval [c2, d2] to study (1.1). The proof is similar and
will be omitted. Therefore, we complete the proof.

Remark 2.4. In article [14], the authors obtained the following inequalities:

x(t)
x
(
tj
) > aj

tj + τ − t

τ
≥ 0, t ∈ (tj , tj + τ

)
, (2.52)

See [14, equation (2.9)],

x(t) − τ

x
(
tj
) >

t − tj

τ
≥ 0, t ∈ (tj , tj + τ

)
. (2.53)

See [14, equation (2.10)].
Dividing [14, equation (2.10)] by [14, equation (2.9)], they obtained

x(t) − τ

x(t)
>

t − tj

aj

(
tj + τ − t

) ≥ 0, t ∈ (tj , tj + τ
)
. (2.54)

See [14, equation (2.11)]
This is an error. Moreover, similar errors appeared many times in the later arguments,

for example, in inequalities (2.15), (2.19), and (2.20) in [14]. Moreover, the above substitution
can lead to some divergent integrals, for example, the integrals in (2.22), (2.24) in [14].
Therefore, the conditions of their Theorems 2.1–2.5 must be defective. In the proof of our
Theorem 2.3, this error is remedied.

Remark 2.5. When σ = 0, that is, the delay disappears, (1.1) reduces to (1.7) studied by
Özbekler and Zafer [13]. In this case, our result with ρ(t) = 1 is Theorem 2.1 of [13].

Remark 2.6. When σ = 0, that is, the delay disappears in (1.1) and α = 1, our result reduces to
Theorem 2.1 of [12].

Remark 2.7. When ak = bk = 1 for all k = 1, 2, . . . and σ = 0, that is, both impulses and delay
disappear in (1.1), our result with α = 1 and ρ(t) = 1 reduces to Theorem 1 of [21].

In the following we will establish a Kong-type interval oscillation criteria for (1.1) by
the ideas of Philos [18] and Kong [22].

Let D = {(t, s) : t0 ≤ s ≤ t}, H1,H2 ∈ C1(D,R), then a pair function H1,H2 is said
to belong to a function set H, defined by (H1,H2) ∈ H, if there exist h1, h2 ∈ Lloc(D,R)
satisfying the following conditions:

(C1) H1(t, t) = H2(t, t) = 0, H1(t, s) > 0,H2(t, s) > 0 for t > s;

(C2) (∂/∂t)H1(t, s) = h1(t, s)H1(t, s), (∂/∂s)H2(t, s) = h2(t, s)H2(t, s).

We assume that there exist cj , dj , δj /∈ {τk, k = 1, 2, . . . .}(j = 1, 2) such that T < c1 <
δ1 < d1 ≤ c2 < δ2 < d2 for any T ≥ t0. Noticing whether or not there are impulsive
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moments of x(t) in [cj , δj] and [δj , dj], we should consider the following four cases, namely,
(S5) k(cj) < k(δj) < k(dj); (S6) k(cj) = k(δj) < k(dj); (S7) k(cj) < k(δj) = k(dj) and (S8)
k(cj) = k(δj) = k(dj). Moreover, in the discussion of the impulse moments of x(t − σ), it is
necessary to consider the following two cases: (S5) τk(δj ) + σ > δj and (S6) τk(δj ) + σ ≤ δj . In
the following theorem, we only consider the case of combination of (S5) with (S5). For the
other cases, similar conclusions can be given and the proofs will be omitted here.

For convenience in the expression below, we define, for j = 1, 2,

Π1,j =:
1

H1
(
δj , cj

)

×

⎧⎪⎨
⎪⎩

∫ τk(cj )+1

cj

H̃1
(
t, cj

)
(
t − τk(cj ) − σ

)α
(
t − τk(cj )

)α dt

+
k(δj )−1∑
i=k(cj )+1

[∫ τi+σ

τi

H̃1
(
t, cj

) (t − τi)α

bαi (t + σ − τi)α
dt +

∫ τi+1

τi+σ
H̃1
(
t, cj

)(t − τi − σ)α

(t − τi)α
dt

]

+
∫δj

τk(δj )

H̃1
(
t, cj

)
(
t − τk(δj )

)α

bα
k(δj )

(
t + σ − τk(δj )

)α dt +
∫δj

cj

ρ(t)p0(t)H1
(
t, cj

)
dt

− 1

(α + 1)α+1

∫δj

cj

ρ(t)r(t)H1
(
t, cj

)∣∣∣∣h1
(
t, cj

)
+
ρ′(t)
ρ(t)

∣∣∣∣
α+1

dt

⎫⎪⎬
⎪⎭
,

Π2,j =:
1

H2
(
dj, δj

)

⎧⎪⎨
⎪⎩

∫ τk(δj )+σ

δj

H̃2
(
dj, t

)
(
t − τk(δj )

)α

bα
k(δj )

(
t + σ − τk(δj )

)α dt

+
∫ τk(δj )+1

τk(δj )+σ
H̃2
(
dj, t

)
(
t − τk(δj ) − σ

)α
(
t − τk(δj )

)α dt

+
k(dj )−1∑
i=k(δj )+1

[∫ τi+σ

τi

H̃2
(
dj, t

) (t − τi)α

bαi (t + σ − τi)α
dt+

∫ τi+1

τi+σ
H̃2
(
dj, t

) (t−τi−σ)α
(t−τi)α

dt

]

+
∫dj

τk(dj )

H̃2
(
dj, t

)
(
t − τk(dj )

)α

bα
k(dj )

(
t + σ − τk(dj )

)α dt

− 1

(α + 1)α+1

∫dj

δj

ρ(t)r(t)H2
(
dj, t

)∣∣∣∣h2
(
dj, t

)
+
ρ′(t)
ρ(t)

∣∣∣∣
α+1

dt

+
∫dj

δj

ρ(t)p0(t)H2
(
dj, t

)
dt

⎫⎪⎬
⎪⎭
,

(2.55)
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where H̃1(t, cj)= H1(t, cj)ψ(t), H̃2(dj, t) = H2(dj, t)ψ(t) and ψ(t) = η
−η0

0 |e(t)|η0
∏n

i=1η
−ηi
i (pi(t))

ηi

with η0 = 1 − ∑n
i=1 ηi and η1, η2, . . . , ηn are positive constants satisfying conditions of

Lemma 2.1.

Theorem 2.8. Assume (2.7) holds. If there exists a pair of (H1,H2) ∈ H such that

Π1,j + Π2,j >
ρjrj

H1
(
δj , cj

)Qδj
cj

[
H1
(·, cj

)]
+

ρjrj

H2
(
dj , δj

)Qdj

δj

[
H2
(
dj , ·

)]
, j = 1, 2, (2.56)

then (1.1) is oscillatory.

Proof. Assume, to the contrary, that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we assume that x(t) > 0 and x(t − σ) > 0 for t ≥ t0. In this case the interval of t
selected for the following discussion is [c1, d1]. Similar to the proof of Theorem 2.3, we can
get (2.14) and (2.19). Multiplying both sides of (2.14) by H1(t, c1) and integrating it from c1

to δ1, we have

∫δ1

c1

H1(t, c1)u′(t)dt ≤
∫δ1

c1

H1(t, c1)

(
ρ′(t)
ρ(t)

u(t) − α
(
ρ(t)r(t)

)1/α
|u(t)|(1+α)/α

)
dt

−
∫δ1

c1

H̃1(t, c1)
xα(t − σ)
xα(t)

dt −
∫δ1

c1

H1(t, c1)ρ(t)p0(t)dt,

(2.57)

where H̃1(t, c1) = H1(t, c1)ρ(t)ψ(t), ψ(t) = η
−η0

0 |e(t)|η0
∏n

i=1η
−ηi
i (pi(t))

ηi with η0 = 1 −∑n
i=1 ηi

and η1, η2, . . . , ηn are positive constants satisfying conditions of Lemma 2.1.
Noticing impulsive moments τk(c1)+1, τk(c1)+2, . . . , τk(δ1) are in [c1, δ1] and using the

integration by parts formula on the left-hand side of above inequality, we obtain

∫δ1

c1

H1(t, c1)u′(t)dt =

(∫ τk(c1)+1

c1

+
∫ τk(c1)+2

τk(c1)+1

+ · · · +
∫δ1

τk(δ1)

)
H1(t, c1)du(t)

=
k(δ1)∑

i=k(c1)+1

(
1 − bαi

aα
i

)
H1(τi, c1)u(τi) +H1(δ1, c1)u(δ1)

−
(∫ τk(c1)+1

c1

+
∫ τk(c1)+2

τk(c1)+1

+ · · · +
∫δ1

τk(δ1)

)
H1(t, c1)h1(t, c1)u(t)dt.

(2.58)
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Substituting (2.58) into (2.57), we obtain

∫δ1

c1

H̃1(t, c1)
xα(t − σ)
xα(t)

dt ≤
k(δ1)∑

i=k(c1)+1

(
bαi
aα
i

− 1

)
H1(τi, c1)u(τi) −H1(δ1, c1)u(δ1)

+

(∫ τk(c1)+1

c1

+
∫ τk(c1)+2

τk(c1)+1

+ · · · +
∫δ1

τk(δ1)

)
H1(t, c1)

×
[∣∣∣∣h1(t, c1) +

ρ′(t)
ρ(t)

∣∣∣∣|u(t)| −
α

(
ρ(t)r(t)

)1/α
|u(t)|(α+1)/α

]
dt

−
∫δ1

c1

ρ(t)p0(t)H1(t, c1)dt.

(2.59)

Letting A = α/(ρ(t)r(t))1/α, B = |h1(t, c1) + ρ′(t)/ρ(t)|, y = |u(t)| and using (2.6) to the right-
hand side of above inequality, we have

∫δ1

c1

H̃1(t, c1)
xα(t − σ)
xα(t)

dt ≤
k(δ1)∑

i=k(c1)+1

(
bαi
aα
i

− 1

)
H1(τi, c1)u(τi) −H1(δ1, c1)u(δ1)

+
1

(α + 1)α+1

∫δ1

c1

ρ(t)r(t)H1(t, c1)
∣∣∣∣h1(t, c1) +

ρ′(t)
ρ(t)

∣∣∣∣
α+1

dt

−
∫δ1

c1

ρ(t)p0(t)H1(t, c1)dt.

(2.60)

Similar to the proof of Theorem 2.3, we need to divide the integration interval [c1, δ1] into
several subintervals for estimating the function x(t − σ)/x(t). Using the methods of (2.26),
(2.37), (2.38), and (2.39) we estimate the left-hand side of above inequality as follows:

∫δ1

c1

H̃1(t, c1)
xα(t − σ)
xα(t)

dt

>

∫ τk(c1)+1

c1

H̃1(t, c1)

(
t − τk(c1) − σ

)α
(
t − τk(c1)

)α dt

+
k(δ1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

H̃1(t, c1)
(t − τi)α

bαi (t + σ − τi)α
dt +

∫ τi+1

τi+σ
H̃1(t, c1)

(t − τi − σ)α

(t − τi)α
dt

]

+
∫δ1

τk(δ1)

H̃1(t, c1)

(
t − τk(δ1)

)α
bα
k(δ1)

(
t + σ − τk(δ1)

)α dt.

(2.61)
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From (2.60) and (2.61), we have

∫ τk(c1)+1

c1

H̃1(t, c1)

(
t − τk(c1) − σ

)α
(
t − τk(c1)

)α dt

+
k(δ1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

H̃1(t, c1)
(t − τi)α

bαi (t + σ − τi)α
dt +

∫ τi+1

τi+σ
H̃1(t, c1)

(t − τi − σ)α

(t − τi)α
dt

]

+
∫δ1

τk(δ1)

H̃1(t, c1)

(
t − τk(δ1)

)α
bα
k(δ1)

(
t + σ − τk(δ1)

)α dt

− 1

(α + 1)α+1

∫δ1

c1

ρ(t)r(t)H1(t, c1)
∣∣∣∣h1(t, c1) +

ρ′(t)
ρ(t)

∣∣∣∣
α+1

dt +
∫δ1

c1

ρ(t)p0(t)H1(t, c1)dt

<
k(δ1)∑

i=k(c1)+1

(
bαi
aα
i

− 1

)
H1(τi, c1)u(τi) −H1(δ1, c1)u(δ1).

(2.62)

On the other hand, multiplying both sides of (2.14) by H2(d1, t) and using similar analysis to
the above, we can obtain

∫ τk(δ1)+σ

δ1

H̃2(d1, t)

(
t − τk(δ1)

)α
bα
k(δ1)

(
t + σ − τk(δ1)

)α +
∫ τk(δ1)+1

τk(δ1)+σ
H̃2(d1, t)

(
t − τk(δ1) − σ

)α
(
t − τk(δ1)

)α dt

+
k(d1)−1∑
i=k(δ1)+1

[∫ τi+σ

τi

H̃2(d1, t)
(t − τi)α

bαi (t + σ − τi)α
dt +

∫ τi+1

τi+σ
H̃2(d1, t)

(t − τi − σ)α

(t − τi)α
dt

]

+
∫d1

τk(d1)

H̃2(d1, t)

(
t − τk(d1)

)α
bα
k(d1)

(
t + σ − τk(d1)

)α dt +
∫d1

δ1

ρ(t)p0(t)H2(d1, t)dt

− 1

(α + 1)α+1

∫d1

δ1

ρ(t)r(t)H2(d1, t)
∣∣∣∣h2(d1, t) +

ρ′(t)
ρ(t)

∣∣∣∣
α+1

dt

<
k(d1)∑

i=k(δ1)+1

(
bαi
aα
i

− 1

)
H2(d1, τi)u(τi) +H2(d1, δ1)u(δ1).

(2.63)

Dividing (2.62) and (2.63) by H1(δ1, c1), and H2(d1, δ1) respectively, and adding them, we
get

Π1,1 + Π2,1 <
1

H1(δ1, c1)

k(δ1)∑
i=k(c1)+1

(
bαi
aα
i

− 1

)
H1(τi, c1)u(τi)

+
1

H2(d1, δ1)

k(d1)∑
i=k(δ1)+1

(
bαi
aα
i

− 1

)
H2(d1, τi)u(τi).

(2.64)
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Using the same methods as (2.46), we have

k(δ1)∑
i=k(c1)+1

(
bαi
aα
i

− 1

)
H1(τi, c1)u(τi) ≤ ρ1r1Q

δ1
c1
[H1(·, c1)],

k(d1)∑
i=k(δ1)+1

(
rib

α
i

aα
i

− 1

)
H2(d1, τi)u(τi) ≤ ρ1r1Q

d1
δ1
[H2(d1, ·)].

(2.65)

From (2.64), (2.65), we can obtain a contradiction to the condition (2.56).
When x(t) < 0, we choose interval [c2, d2] to study (1.1). The proof is similar and will

be omitted. Therefore, we complete the proof.

Remark 2.9. When σ = 0, that is, the delay disappears and α = 1 in (1.1), our result
Theorem 2.8 reduces to Theorem 2.2 of [12].

3. Examples

In this section, we give two examples to illustrate the effectiveness and nonemptiness of our
results.

Example 3.1. Consider the following delay differential equation with impulse:

x′′(t) + μ1

∣∣∣x
(
t − π

12

)∣∣∣
3/2

x
(
t − π

12

)
+ μ2

∣∣∣x
(
t − π

12

)∣∣∣
−1/2

x
(
t − π

12

)
= − sin(2t), t /= τk,

x
(
τ+k
)
= akx(τk), x′(τ+k

)
= bkx

′(τk), t = τk,
(3.1)

where τk : τn,1 = 2nπ + 5π/18, τn,2 = 2nπ + 11π/18, n ∈ N and μ1, μ2 are positive constants.

For any T > 0, we can choose large n0 such that T < c1 = 2nπ + π/6, d1 = 2nπ +
π/3, c2 = 2nπ + π/2, d2 = 2n + 2π/3, n = n0, n0 + 1, . . .. There are impulsive moments τn,1
in [c1, d1] and τn,2 in [c2, d2]. From τn,2 − τn,1 = π/3 > π/12 and τn+1,1 − τn,2 = 5π/3 > π/12
for all n > n0, we know that condition τk+1 − τk > σ is satisfied. Moreover, we also see the
conditions (S1) and (2.7) are satisfied.

We can choose η0 = η1 = η2 = 1/3 such that Lemma 2.1 holds. Let w1(t) = w2(t) =
sin(6t) and ρ(t) = 1. It is easy to verify that W1(t) = 3(μ1μ2)

1/3| sin(2t)|1/3sin2(6t). By a simple
calculation, the left side of (2.8) is the following:

∫ τk(c1)+1

c1

W1(t)

(
t − τk(c1) − σ

)α
(
t − τk(c1)

)α dt

+
k(d1)−1∑
i=k(c1)+1

[∫ τi+σ

τi

W1(t)
(t − τi)α

bαi (t + σ − τi)α
dt +

∫ τi+1

τi+σ
W1(t)

(t − τi − σ)α

(t − τi)α
dt

]

+
∫d1

τk(d1)

W1(t)

(
t − τk(d1)

)α
bα
k(d1)

(
t + σ − τk(d1)

)α dt +
∫d1

c1

ρ(t)p0(t)|w1(t)|α+1dt
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−
∫d1

c1

ρ(t)r(t)

(∣∣w′
1(t)

∣∣ +
∣∣ρ′(t)∣∣|w1(t)|
(α + 1)ρ(t)

)α+1

dt

=
∫2nπ+5π/18

2nπ+π/6
W1(t)

t − 2(n − 1)π − 11π/18 − π/12
t − 2(n − 1)π − 11π/18

dt

+
∫2nπ+π/3

2nπ+5π/18
W1(t)

t − 2nπ − 5π/18
bn,1(t − 2nπ − 5π/18 + π/12)

dt −
∫2nπ+π/3

2nπ+π/6
36 cos26t dt

=
∫5π/18

π/6
W1(t)

t + 47π/36
t + 25π/18

dt +
∫π/3

5π/18
W1(t)

t − 5π/18
bn,1(t − 7π/36)

dt − 3π

≈ 3 3
√
μ1μ2

(
0.199 +

0.715
bn,1

)
− 3π.

(3.2)

On the other hand, we have

Qd1
c1

[
w2

1

]
=

27
4π

bn,1 − an,1

an,1
. (3.3)

Thus if

3 3
√
μ1μ2

(
0.199 +

0.715
bn,1

)
≥ 3π +

27
4π

bn,1 − an,1

an,1
, (3.4)

the condition (2.8) is satisfied in [c1, d1]. Similarly, we can show that for t ∈ [c2, d2] the
condition (2.8) is satisfied if

3 3
√
μ1μ2

(
0.057 +

0.003
bn,2

)
≥ 3π +

27
4π

bn,2 − an,2

an,2
. (3.5)

Hence, by Theorem 2.3, (3.1) is oscillatory, if (3.4) and (3.5) hold. Particularly, let ak = bk, for
all k ∈ N, condition (3.4) and (3.5) become

3
√
μ1μ2

(
0.199 +

0.715
bn,1

)
≥ π,

3
√
μ1μ2

(
0.057 +

0.003
bn,2

)
≥ π.

(3.6)

Example 3.2. Consider the following equation:

x′′(t) + μ1p1(t)
∣∣∣∣x
(
t − 2

3

)∣∣∣∣
3/2

x

(
t − 2

3

)
+ μ2p2(t)

∣∣∣∣x
(
t − 2

3

)∣∣∣∣
−1/2

x

(
t − 2

3

)
= e(t), t /= τk,

x
(
τ+k
)
= akx(τk), x′(τ+k

)
= bkx

′(τk), k = 1, 2, . . . ,
(3.7)
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where μ1, μ2 are positive constants; τk : τn,1 = 9n + 3/2, τn,2 = 9n + 5/2, τn,3 = 9n + 15/2,
τn,4 = 9n + 17/2 (n = 0, 1, 2, . . .) and τk+1 − τk > σ = 2/3. In addition, let

p1(t) = p2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t − 9n)3, t ∈ [9n, 9n + 3],

33, t ∈ [9n + 3, 9n + 6],

(9n + 9 − t)3, t ∈ [9n + 6, 9n + 9],

e(t) = (t − 9n − 3)3, t ∈ [9n, 9n + 9].

(3.8)

For any t0 > 0, we choose n large enough such that t0 < 9n, and let [c1, d1] = [9n + 1, 9n + 3],
[c2, d2] = [9n + 7, 9n + 9], δ1 = 9n + 2 and δ2 = 9n + 8. It is easy to see that condition (2.7)
in Theorem 2.8 is satisfied. Letting H1(t, s) = H2(t, s) = (t − s)3, we get h1(t, s) = −h2(t, s) =
3/(t − s). By simple calculation, we have

Π1,1 = 3 3
√
μ1μ2

{∫9n+3/2

9n+1
(t − 9n − 1)3(9n + 3 − t)(t − 9n)2 t − 9n − 1/6

t − 9n + 1/2
dt

+
∫9n+2

9n+3/2
(t − 9n − 1)3(9n + 3 − t)(t − 9n)2 t − 9 − 3/2

bn,1(t − 9n − 5/6)
dt

}
− 9

8

= 3 3
√
μ1μ2

(∫3/2

1

u2(u − 1)3(3 − u)(u − 1/6)
u + 1/2

du +
∫2

3/2

u2(u − 1)3(3 − u)(u − 3/2)
bn,1(u − 5/6)

du

)
− 9

8

≈ 3 3
√
μ1μ2

(
0.32 +

0.290
bn,1

)
− 9

8
,

Π2,1 = 3 3
√
μ1μ2

{∫9n+13/6

9n+2
(9n + 3 − t)4(t − 9n)2 t − 9n − 3/2

bn,1(t − 9n + 5/6)
dt

+
∫9n+5/2

9n+13/6
(9n + 3 − t)4(t − 9n)2 t − 9n − 13/6

t − 9n − 3/2
dt

+
∫9n+3

9n+5/2
(9n + 3 − t)4(t − 9n)2 t − 9n − 5/2

bn,2(t − 9n − 11/6)
dt

}
− 9

8

= 3 3
√
μ1μ2

{∫13/6

2

u2(3 − u)4(u − 3/2)
bn,1(u + 5/6)

dt +
∫5/2

13/6

u2(3 − u)4(u − 13/6)
u − 3/2

dt

+
∫3

5/2

u2(3 − u)4(u − 5/2)
bn,2(u − 11/6)

dt

}
− 9

8

≈ 3 3
√
μ1μ2

(
0.102
bn,1

+ 0.056 +
0.005
bn,2

)
− 9

8
.

(3.9)



Abstract and Applied Analysis 21

Then the left-hand side of the inequality (2.56) is

Π1,1 + Π2,1 ≈ 3 3
√
μ1μ2

(
0.376 +

0.392
bn,1

+
0.005
bn,2

)
− 9

4
. (3.10)

Because r1 = r2 = 1, τk(c1)+1 = τk(δ1) = τn,1 = 9n + 3/2 ∈ (c1, δ1) and τk(δ1)+1 = τk(d1) =
τn,2 = 9n + 5/2 ∈ (δ1, d1), it is easy to get that the right-hand side of the inequality (2.56) for
j = 1 is

r1

H1(δ1, c1)
Qδ1

c1
[H1(·, c1)] +

r1

H2(d1, δ1)
Qd1

δ1
[H2(d1, ·)] =

bn,1 − an,1

4an,1
+
bn,2 − an,2

4an,2
. (3.11)

Thus (2.56) is satisfied with j = 1 if

3 3
√
μ1μ2

(
0.376 +

0.392
bn,1

+
0.005
bn,2

)
>

9
4
+
bn,1 − an,1

4an,1
+
bn,2 − an,2

4an,2
. (3.12)

When j = 2, with the same argument as above we get that the left-hand side of
inequality (2.56) is

Π1,2 + Π2,2

= 3 3
√
μ1μ2

{∫15/2

7

(u − 9)2(u − 3)(u − 7)3(u − 19/6)
u − 5/2

du

+
∫8

15/2

(u − 9)2(u − 3)(u − 7)3(u − 15/2)
bn,3(u − 41/6)

du

+
∫49/6

8

(u − 3)(9 − u)5(u − 15/2)
bn,3(u − 41/6)

du +
∫17/2

49/6

(u − 3)(9 − u)5(u − 19/6)
u − 5/2

du

+
∫9

17/2

(u − 3)(9 − u)5(u − 17/2)
bn,4(u − 47/6)

du

}
− 9

4

≈ 3 3
√
μ1μ2

(
0.400 +

0.724
bn,3

+
0.001
bn,4

)
− 9

4
,

(3.13)

and the right-hand side of the inequality (2.56) is

r2

H2(δ2, c2)
Qδ2

c2
[H1(·, c2)] +

r2

H2(d2, δ2)
Qd2

δ2
[H2(d2, ·)] =

bn,3 − an,3

4an,3
+
bn,4 − an,4

4an,4
. (3.14)

Therefore, (2.51) is satisfied with j = 2 if

3 3
√
μ1μ2

(
0.400 +

0.724
bn,3

+
0.001
bn,4

)
>

9
4
+
bn,3 − an,3

4an,3
+
bn,4 − an,4

4an,4
. (3.15)
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Hence, by Theorem 2.8, (3.7) is oscillatory if

3 3
√
μ1μ2

(
0.376 +

0.392
bn,1

+
0.005
bn,2

)
>

9
4
+
bn,1 − an,1

4an,1
+
bn,2 − an,2

4an,2
,

3 3
√
μ1μ2

(
0.400 +

0.724
bn,3

+
0.001
bn,4

)
>

9
4
+
bn,3 − an,3

4an,3
+
bn,4 − an,4

4an,4
.

(3.16)

Particularly, when ak = bk, for all k ∈ N, condition (3.16) becomes

3 3
√
μ1μ2

(
0.376 +

0.392
bn,1

+
0.005
bn,2

)
>

9
4
,

3 3
√
μ1μ2

(
0.400 +

0.724
bn,3

+
0.001
bn,4

)
>

9
4
.

(3.17)

Acknowledgments

The authors thank the anonymous reviewers for their detailed and insightful comments and
suggestions for improvement of the paper. They were supported by the NNSF of China
(11161018), the NSF of Guangdong Province (10452408801004217).

References

[1] V. Lakshmikantham, D. D. Baı̆nov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6,
World Scientific, Singapore, 1989.

[2] D. D. Bainov and P. S. Simieonov, Impulsive Differential Equations: Periodic Solution and Applications,
Longman, London, UK, 1993.

[3] K. Gopalsamy and B. G. Zhang, “On delay differential equations with impulses,” Journal of
Mathematical Analysis and Applications, vol. 139, no. 1, pp. 110–122, 1989.

[4] Y. Zhang, A. Zhao, and J. Yan, “Oscillation criteria for impulsive delay differential equations,” Journal
of Mathematical Analysis and Applications, vol. 205, no. 2, pp. 461–470, 1997.

[5] A. Zhao and J. Yan, “Necessary and sufficient conditions for oscillations of delay equations with
impulses,” Applied Mathematics Letters, vol. 10, no. 1, pp. 23–29, 1997.

[6] L. Berezansky and E. Braverman, “Oscillation of a linear delay impulsive differential equation,”
Communications on Applied Nonlinear Analysis, vol. 3, no. 1, pp. 61–77, 1996.

[7] L. Berezansky and E. Braverman, “On oscillation of a second order impulsive linear delay differential
equation,” Journal of Mathematical Analysis and Applications, vol. 233, no. 1, pp. 276–300, 1999.

[8] M. Peng and W. Ge, “Oscillation criteria for second-order nonlinear differential equations with
impulses,” Computers & Mathematics with Applications, vol. 39, no. 5-6, pp. 217–225, 2000.

[9] M. Peng, “Oscillation caused by impulses,” Journal of Mathematical Analysis and Applications, vol. 255,
no. 1, pp. 163–176, 2001.
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We consider a parametric semilinear Dirichlet problem with an unbounded and indefinite
potential. In the reaction we have the competing effects of a sublinear (concave) term and
of a superlinear (convex) term. Using variational methods coupled with suitable truncation
techniques, we prove two multiplicity theorems for small values of the parameter. Both theorems
produce five nontrivial smooth solutions, and in the second theorem we provide precise sign
information for all the solutions.

1. Introduction

Let Ω ∈ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we study the

following parametric nonlinear Dirichlet problem:

−Δu(z) + β(z)u(z) = λg(z, u(z)) + f(z, u(z)) in Ω,

u|∂Ω = 0, λ > 0.
((P)λ)

Here β ∈ Ls(Ω) with s > N/2 (N � 2) is a potential function which may change sign
(indefinite potential). Also λ > 0 is a parameter, and g, f : Ω × R → R are Carathéodory
functions (i.e., for all ζ ∈ R, functions z �→ g(z, ζ) and z �→ f(z, ζ) are measurable and for
almost all z ∈ Ω, functions ζ �→ g(z, ζ) and ζ �→ f(z, ζ) are continuous). We assume that for
almost all z ∈ Ω, the function ζ �→ g(z, ζ) is strictly sublinear near ±∞, while the function
ζ �→ f(z, ζ) is superlinear near ±∞. So, problem ((P)λ) exhibits competing nonlinearities of
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the concave-convex type. This situation was first studied with β ≡ 0 and the right hand side
nonlinearity being

λ|ζ|q−2ζ + |ζ|r−2ζ, (1.1)

with

1 < q < 2 < r < 2∗ =

⎧
⎨
⎩

2N
N − 2

if N > 2,

+∞ if N = 2,
(1.2)

by Ambrosetti et al. [1]. In [1], the authors focus on positive solutions and proved certain
bifurcation-type phenomena as λ > 0 varies. Further results in this direction can be found in
the works of I’lyasov [2], Li et al. [3], Lubyshev [4], and Rădulescu and Repovš [5]. In all
the aforementioned works β ≡ 0. We should also mention the recent work of Motreanu et al.
[6], where the authors consider equations driven by the p-Laplacian, with concave term of
the form |ζ|q−2ζ (where 1 < q < p) and a perturbation exhibiting an asymmetric behaviour
at +∞ and at −∞ ((p − 1)-superlinear near +∞ and (p − 1)-sublinear near −∞). They prove
multiplicity results producing four nontrivial solutions with sign information.

In this work, we prove two multiplicity results for problem ((P)λ) when the parameter
λ > 0 is small. In both results we produce five nontrivial smooth solutions, and in the second
we provide precise sign information for all the solutions. For the superlinear (“convex”)
nonlinearity f(z, ·), we do not employ the usual in such cases Ambrosetti-Rabinowitz
condition. Instead, we use a more general condition, which incorporates in our framework
also superlinear perturbations with “slow” growth near ±∞, which do not satisfy the
Ambrosetti-Rabinowitz condition. We should point out that none of the works mentioned
earlier provide sign information for all the solutions (in particular, none of them produced a
nodal (sign changing) solution) and all use the Ambrosetti-Rabinowitz condition to express
the superlinearity of the “convex” contribution in the reaction.

Our approach is variational based on the critical point theory which is combined with
suitable truncation techniques. In the next section we recall the main mathematical tools we
will use in the analysis of problem ((P)λ). We also introduce the hypotheses on the terms g
and f .

2. Mathematical Background and Hypotheses

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the Cerami condition, if the
following is true.

Every sequence {xn}n�1 ⊆ X, such that {ϕ(xn)}n�1 ⊆ R is bounded and

(1 + ‖xn‖)ϕ′(xn) −→ 0 in X∗, (2.1)

admits a strongly convergent subsequence.

This compactness-type condition is in general weaker than the usual Palais-Smale
condition. However, the Cerami condition suffices to prove a deformation theorem and from
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it we derive the minimax theory for certain critical values of ϕ ∈ C1(X) (see Gasiński and
Papageorgiou [7] and Motreanu and Rădulescu [8]). In particular, we can have the following
theorem, known in the literature as the mountain pass theorem.

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X) satisfies the Cerami condition, x0, x1 ∈ X, � >
0‖x1 − x0‖ > �:

max
{
ϕ(x0), ϕ(x1)

}
< inf

{
ϕ(x) : ‖x − x0‖ = �

}
= η�,

c = inf
γ∈Γ

max
t∈[0,1]

ϕ
(
γ(t)
)
, (2.2)

where

Γ =
{
γ ∈ C([0, 1];X) : γ(0) = x0, γ(1) = x1

}
. (2.3)

Then c � η� and c are a critical value of ϕ.

In the analysis of problem ((P)λ), in addition to the Sobolev space H1
0(Ω), we will also

use the Banach space

C1
0

(
Ω
)
=
{
u ∈ C1

(
Ω
)

: u|∂Ω = 0
}
. (2.4)

This is an ordered Banach space with positive cone:

C+ =
{
u ∈ C1

0

(
Ω
)

: u(z) � 0 ∀z ∈ Ω
}
. (2.5)

This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 ∀z ∈ Ω,

∂u

∂n
(z) < 0 ∀z ∈ ∂Ω

}
, (2.6)

where n(·) is the outward unit normal on ∂Ω.
In the proof of the second multiplicity theorem and in order to produce a nodal (sign

changing) solution, we will also use critical groups. So, let us recall their definition. Let ϕ ∈
C1(X) and let c ∈ R. We introduce the following sets:

ϕc =
{
x ∈ X : ϕ(x) � c

}
,

Kϕ =
{
x ∈ X : ϕ′(x) = 0

}
.

(2.7)

Also, if (Y1, Y2) is a topological pair with Y2 ⊆ Y1 ⊆ X and k � 0 is an integer, by Hk(Y1, Y2) we
denote the kth relative singular homology group for the pair (Y2, Y1) with integer coefficients.
The critical groups of ϕ at an isolated critical point x0 ∈ X of ϕ with ϕ(x0) = c are defined by

Ck

(
ϕ, x0

)
= Hk

(
ϕc ∩U,ϕc ∩U \ {x0}

) ∀k � 0, (2.8)
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where U is a neighbourhood of x0, such that Kϕ ∩ ϕc ∩ U = {x0}. The excision property of
singular homology implies that this definition is independent of the particular choice of the
neighbourhood U.

Using the spectral theorem for compact self-adjoint operators, we can show that the
differential operator

H1
0(Ω) � u �−→ −Δu + βu (2.9)

has a sequence of distinct eigenvalues {λ̂k}k�1, such that

λ̂k −→ +∞ as k −→ +∞. (2.10)

The first eigenvalue is simple and admits the following variational characterization:

λ̂1 = inf

{
σ(u)

‖u‖2
2

: u ∈ H1
0(Ω), u /= 0

}
, (2.11)

where

σ(u) = ‖∇u‖2
2 +
∫

Ω
β(z)u(z)2dz ∀u ∈ H1

0(Ω). (2.12)

Moreover, the corresponding eigenfunction û ∈ C1
0(Ω) does not change sign, and in fact we

can take û(z) > 0 for all z ∈ Ω (see Gasiński and Papageorgiou [9]). Using (2.11) and this
property of the principal eigenfunction, we can have the following lemma (see Gasiński and
Papageorgiou [9, Lemma 2.1]).

Lemma 2.2. If η ∈ Ls(Ω), η(z) � λ̂1 for almost all z ∈ Ω, η /= λ̂1, then there exists ĉ > 0, such that

σ(u) −
∫

Ω
ηu2 dz � ĉ‖u‖2 ∀u ∈ H1

0(Ω). (2.13)

Also, from Gasiński and Papageorgiou [9] we know that there exist ĉ0, ĉ1 > 0, such
that

‖u‖2 � ĉ0

(
σ(u) + ĉ1‖u‖2

2

)
∀u ∈ H1

0(Ω), (2.14)

with ‖u‖ = ‖∇u‖2, the norm of the Sobolev space H1
0(Ω).

Next we state the hypotheses on the two components g and f of the reaction in
problem ((P)λ).

Let

G(z, ζ) =
∫ ζ

0
g(z, s)ds, F(z, ζ) =

∫ ζ

0
f(z, s) ds. (2.15)
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Hg : g : Ω×R → R is a Carathéodory function, such that g(z, 0) = 0 for almost all z ∈ Ω.

(i) For every � > 0, there exists a function a� ∈ L∞(Ω)+, such that

∣∣g(z, ζ)∣∣ � a�(z) for almost all z ∈ Ω, all |ζ| � �. (2.16)

(ii) We have

lim
ζ→±∞

g(z, ζ)
ζ

= 0 uniformly for almost all z ∈ Ω. (2.17)

(iii) There exist constants c1, c2 > 0, 1 < q < μ < 2 and δ0 > 0, such that

c1|ζ|q � g(z, ζ)ζ for almost all z ∈ Ω, all ζ ∈ R ,

μG(z, ζ) − g(z, ζ)ζ � c2|ζ|q for almost all z ∈ Ω, all |ζ| � δ0.
(2.18)

(iv) For every � > 0, we can find γ� > 0, such that for almost all z ∈ Ω

the map
[−�, �] � ζ �−→ g(z, ζ) + γ�|ζ|q−2ζ is nondecreasing. (2.19)

Remark 2.3. Hypothesis Hg(ii) implies that for almost all z ∈ Ω, the function g(z, ·) is strictly
sublinear near ±∞. Hence g(z, ·) is the “concave” component in the reaction of ((P)λ) (the
terminology “concave” and “convex” nonlinearities is due to Ambrosetti [1]). Note that
hypothesis Hg(iii) implies that for almost all z ∈ Ω, the function g(z, ·) has a similar growth
near 0 that is, we have a concave term near zero. Hypothesis Hg(iv) is weaker than assuming
the monotonicity of g(z, ·) for almost all z ∈ Ω.

Hf : f : Ω×R → R is a Carathéodory function, such that f(z, 0) = 0 for almost all z ∈ Ω.

(i) There exist a ∈ L∞(Ω)+, c > 0 and r ∈ (2, 2∗), such that

∣∣f(z, ζ)∣∣ � a(z) + c|ζ|r−1 for almost all z ∈ Ω, all ζ ∈ R. (2.20)

(ii) We have

lim
ζ→±∞

F(z, ζ)
ζ2

= +∞ uniformly for almost all z ∈ Ω. (2.21)

(iii) There exist functions η0, η̂0 ∈ L∞(Ω)+, such that η0(z) � λ̂1 for almost all z ∈ Ω,
η0 /= λ̂1 and

η̂0(z) � lim inf
ζ→ 0

f(z, ζ)
ζ

� lim sup
ζ→ 0

f(z, ζ)
ζ

� η0(z) (2.22)

uniformly for almost all z ∈ Ω.
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(iv) For every � > 0, we can find γ̂� > 0, such that for almost all z ∈ Ω, we have

the map
[−�, �] � ζ �−→ f(z, ζ) + γ̂�ζ is nondecreasing. (2.23)

Remark 2.4. Hypothesis Hf(ii) implies that for almost all z ∈ Ω, the function F(z, ·) is
superquadratic near ±∞. Evidently, this is satisfied if the function f(z, ·) is superlinear near
±∞, that is, when

lim
ζ→±∞

f(z, ζ)
ζ

= +∞ uniformly for almost all z ∈ Ω. (2.24)

So, f(z, ζ) is the “convex” component of the reaction which “competes” with the “concave”
component g(z, ζ).

Note that in Hf , we did not include the Ambrosetti-Rabinowitz condition to
characterize the superlinearity of f(z, ·). We recall that the Ambrosetti-Rabinowitz condition
says that there exist τ > 2 and M > 0, such that

0 < τF(z, ζ) � f(z, ζ)ζ uniformly for almost all z ∈ Ω, all |ζ| � M, (2.25)

ess inf
Ω

F(·,M) > 0. (2.26)

Integrating (2.25) and using (2.26), we obtain the weaker condition

c3|ζ|τ � F(z, ζ) uniformly for almost all z ∈ Ω, all |ζ| � M. (2.27)

Therefore, for almost all z ∈ Ω, the function

ζ �−→ λG(z, ζ) + F(z, ζ) (2.28)

is superquadratic with at least τ-growth near ±∞. Hence the Ambrosetti-Rabinowitz
condition excludes superlinear perturbations with “slower” growth near ±∞. For this reason,
here we employ a weaker condition. So, let

ξλ(z, ζ) =
(
λg(z, ζ) + f(z, ζ)

)
ζ − 2(λG(z, ζ) + F(z, ζ)). (2.29)

We employ the following hypothesis.

H0 : For every λ > 0, there exists a function ϑ∗
λ ∈ L1(Ω)+, such that

ξλ(z, ζ) � ξλ
(
z, y
)
+ ϑ∗

λ(z) for almost all z ∈ Ω, all 0 � ζ � y,

ξλ(z, ζ) � ξλ
(
z, y
)
+ ϑ∗

λ(z) for almost all z ∈ Ω, all y � ζ � 0.
(2.30)
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Remark 2.5. Hypothesis H0 is a generalized version of a condition first introduced by Li and
Yang [10], where the reader can find other possible extensions of the Ambrosetti-Rabinowitz
condition and comparisons between them. Hypothesis H0 is a quasimonotonicity condition
on ξλ(z, ·), and it is satisfied if there exists M > 0, such that for almost all z ∈ Ω, the function

ζ �−→ λg(z, ζ) + f(z, ζ)
ζ

(2.31)

is increasing on [M,+∞] and is decreasing on [−∞,−M] (see Li and Yang [10]).

Example 2.6. The following pairs of functions satisfy hypotheses Hg , Hf , and H0 (for the sake
of simplicity we drop the z-dependence):

g1(ζ) = |ζ|q−2ζ, f1(ζ) = |ζ|p−2ζ + η0ζ,

g2(ζ) = |ζ|q−2ζ, f2(ζ) = |ζ|p−2ζ ln(1 + |ζ|) + η0ζ,

g3(ζ) = |ζ|q−2ζ − |ζ|τ−2ζ, f3(ζ) =

⎧
⎨
⎩
η0

(
ζ − |ζ|r−2ζ

)
if |ζ| � 1,

|ζ|p−2ζ ln|ζ| if |ζ| > 1,

(2.32)

with 1 < q < τ < 2 < p < 2∗, 2 < r, η0 < λ̂1.
Note that f2 and f3 do not satisfy the Ambrosetti-Rabinowitz condition (see (2.25)-

(2.26)).

For every u ∈ H1
0(Ω), we set

‖u‖ = ‖∇u‖2 (2.33)

(by virtue of the Poincaré inequality). We mention that the notation ‖ · ‖ will be also used
to denote the R

N-norm. It will always be clear from the context which norm is used. For
ζ ∈ R, let ζ± = max{±ζ, 0}. Then for u ∈ W

1,p
0 (Ω), we set u±(·) = u(·)±. We have u± ∈ H1

0(Ω),
|u| = u+ + u−, and u = u+ − u−. For a given measurable function h : Ω × R → R (e.g., a
Carathéodory function), we set

Nh(u)(·) = h(·, u(·)) ∀u ∈ W
1,p
0 (Ω). (2.34)

Finally, let A ∈ L(H1
0(Ω),H−1(Ω)) be the operator, defined by

〈
A(u), y

〉
=
∫

Ω

(∇u,∇y
)

RNdz ∀u, y ∈ H1
0(Ω). (2.35)

For the properties of the operator A we refer to Gasiński and Papageorgiou [11, Proposition
3.1, page 852].
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3. Solutions of Constant Sign

In this section, for λ > 0 small, we generate four nontrivial smooth solutions of constant sign
(two positive and two negative). To this end, we introduce the following modifications of the
nonlinearities g(z, ·) and f(z, ·):

g±(z, ζ) = g
(
z,±ζ±), f̂±(z, ζ) = f

(
z,±ζ±) + ĉ1

(±ζ±), (3.1)

with ĉ1 > 0 as in (2.14). These modifications are Carathéodory functions. We set

G±(z, ζ) =
∫ ζ

0
g±(z, s)ds, F̂±(z, ζ) =

∫ ζ

0
f̂±(z, s)ds (3.2)

and consider the C1-functionals ϕ̂±
λ : H1

0(Ω) → R, defined by

ϕ̂±
λ(u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 − λ

∫

Ω
G±(z, u(z)) −

∫

Ω
F̂±(z, u(z))dz ∀u ∈ H1

0(Ω). (3.3)

Proposition 3.1. If hypotheses Hg , Hf , and H0 hold and λ > 0, then the functionals ϕ̂±
λ
satisfy the

Cerami condition.

Proof. We do the proof for ϕ̂+
λ , the proof for ϕ̂−

λ being similar.
So, let {un}n�1 ⊆ H1

0(Ω) be a sequence, such that

∣∣ϕ̂+
λ(un)

∣∣ � M1 ∀n � 1, (3.4)

for some M1 > 0 and

(1 + ‖un‖)
(
ϕ̂+
λ

)′(un) −→ 0 in H−1(Ω). (3.5)

From (3.5), we have

∣∣∣∣〈A(un), h〉 +
∫

Ω

(
β + ĉ1

)
unhdz − λ

∫

Ω
g+(z, un)hdz −

∫

Ω
f̂+(z, un)hdz

∣∣∣∣

� εn‖h‖
1 + ‖un‖ ∀h ∈ H1

0(Ω),
(3.6)

with εn ↘ 0. In (3.6) we choose h = −u−
n ∈ H1

0(Ω). Then

∣∣∣σ(u−
n

)
+ ĉ1
∥∥u−

n

∥∥2
2

∣∣∣ � εn ∀n � 1, (3.7)

so

1
ĉ0

∥∥u−
n

∥∥2 � εn ∀n � 1 (3.8)
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(see (2.14)), and hence

u−
n −→ 0 in H1

0(Ω). (3.9)

From (3.4) and (3.9), we have

σ(u+
n) − λ

∫

Ω
2G+(z, u+

n)dz −
∫

Ω
2F(z, u+

n)dz � M2 ∀n � 1, (3.10)

for some M2 > 0. Also, if in (3.6) we choose h = u+
n ∈ H1

0(Ω), then

−σ(u+
n) + λ

∫

Ω
g(z, u+

n)u
+
ndz +

∫

Ω
f(z, u+

n)u
+
n dz � εn ∀n � 1. (3.11)

Adding (3.10) and (3.11), we obtain

∫

Ω
ξλ(z, u+

n) dz ≤ M3 ∀n � 1, (3.12)

for some M3 > 0 (see (2.29) for the definition of ξλ).

Claim 1. The sequence {u+
n}n�1 ⊆ H1

0(Ω) is bounded.
Arguing by contradiction, suppose that the claim is not true. Then by passing to a

subsequence if necessary, we may assume that

‖u+
n‖ −→ +∞. (3.13)

Let

yn =
u+
n

‖u+
n‖

∀n � 1. (3.14)

Then

∥∥yn

∥∥ = 1 ∀n � 1. (3.15)

And so, passing to a subsequence if necessary, we may assume that

yn −→ y weakly in H1
0(Ω), (3.16)

yn −→ y in Lr(Ω). (3.17)

If y /= 0, then

u+
n(z) −→ +∞ for almost all z ∈ Ω+ =

{
y > 0

}
(3.18)
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(recall that y � 0). So, by virtue of hypotheses Hg(ii) and Hf(ii), for almost all z ∈ Ω+, we
have

lim
n→+∞

G(z, u+
n(z))

‖u+
n‖2

= lim
n→+∞

G(z, u+
n(z))

u+
n(z)

2
yn(z)2 = 0,

lim
n→+∞

F(z, u+
n(z))

‖u+
n‖2

= lim
n→+∞

F(z, u+
n(z))

u+
n(z)

2
yn(z)2 = +∞.

(3.19)

Then Fatou’s lemma implies that

lim
n→+∞

(
λ

∫

Ω

G(z, u+
n)

‖u+
n‖2

dz +
∫

Ω

F(z, u+
n)

‖u+
n‖2

dz

)
= +∞. (3.20)

But from (3.4) and (3.9), we have

λ

∫

Ω
G(z, u+

n) dz +
∫

Ω
F(z, u+

n) dz � M4 + |σ(u+
n)| ∀n � 1, (3.21)

for some M4 > 0, so

λ

∫

Ω

G(z, u+
n)

‖u+
n‖2

dz +
∫

Ω

F(z, u+
n)

‖u+
n‖2

dz � M5 ∀n � 1, (3.22)

for some M5 > 0 (since the sequence {σ(yn)}n�1 is bounded in R). Comparing (3.20) and
(3.22), we reach a contradiction.

So, we have y = 0. We fix μ > 0 and set

vn =
(
2μ
)1/2

yn ∀n � 1. (3.23)

Evidently

vn −→ 0 in Lr(Ω) (3.24)

(see (3.17)). Hence by Krasnoselskii’s theorem (see Gasiński and Papageorgiou [12,
Proposition 1.4.14, page 87] and hypotheses Hg(i) and Hf(i)), we have

∫

Ω
G(z, vn(z))dz −→ 0,

∫

Ω
F(z, vn(z))dz −→ 0. (3.25)

Since ‖u+
n‖ → +∞, we can find n0 � 1, such that

0 <
(
2μ
)1/2 1

‖u+
n‖

< 1 ∀n � n0. (3.26)
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Let tn ∈ [0, 1] be such that

ϕ̂+
λ(tnu

+
n) = max

0�t�1
ϕ̂+
λ(tu

+
n). (3.27)

By virtue of (3.26), we have

ϕ̂+
λ(tnu

+
n) � ϕ̂+

λ(vn)

= 2μσ
(
yn

) − λ

∫

Ω
G(z, vn)dz −

∫

Ω
F(z, vn)dz

= 2μ + 2μ
∫

Ω
βy2

n dz − λ

∫

Ω
G(z, vn)dz −

∫

Ω
F(z, vn)dz.

(3.28)

Note that

∫

Ω
βy2

n dz −→ 0. (3.29)

This fact together with (3.25) and (3.28) implies that

ϕ̂+
λ(tnu

+
n) � μ ∀n � n1, (3.30)

for some n1 � n0. Since μ > 0 is arbitrary, we infer that

ϕ̂+
λ(tnu

+
n) −→ +∞. (3.31)

Note that

ϕ̂+
λ(0) = 0, ϕ̂+

λ(u
+
n) � M6 ∀n � 1, (3.32)

for some M6 > 0 (see (3.4) and (3.9)).
Hence (3.31) implies that there exists n2 � n1, such that

tn ∈ (0, 1) ∀n � n2. (3.33)

And so from the choice of tn, we have

d

dt
ϕ̂+
λ(tu

+
n)
∣∣
t=tn

= 0 ∀n � n2, (3.34)

so

〈(
ϕ̂+
λ

)′(tnun), un

〉
= 0 ∀n � n2, (3.35)
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thus

〈(
ϕ̂+
λ

)′(tnun), tnun

〉
= 0 ∀n � n2, (3.36)

and hence

σ(tnu+
n) = λ

∫

Ω
g(z, tnu+

n)tnu
+
n dz +

∫

Ω
f(z, tnu+

n)tnu
+
n dz. (3.37)

Hypothesis H0 implies that

∫

Ω
ξλ(z, tnu+

n)dz �
∫

Ω
ξλ(z, u+

n)dz +
∥∥ϑ∗

λ

∥∥
1 ∀n � 1, (3.38)

so

2ϕ̂+
λ(tnu

+
n) �

∫

Ω
ξλ(z, u+

n)dz +
∥∥ϑ∗

λ

∥∥
1 ∀n � 1 (3.39)

(see (3.37)), and thus

2ϕ̂+
λ(tnu

+
n) � M3 +

∥∥ϑ∗
λ

∥∥
1 ∀n � 1 (3.40)

(see (3.12)).
Comparing (3.31) and (3.40), we reach a contradiction. This proves the claim.

By virtue of the claim and (3.9), we have that the sequence {un}n�1 ⊆ H1
0(Ω) is

bounded. So, we may assume that

un −→ u weakly in H1
0(Ω), (3.41)

un −→ u in Lr(Ω). (3.42)

In (3.6) we choose h = un − u, pass to the limit as n → +∞, and use (3.42). Then

lim
n→+∞

〈A(un), un − u〉 = 0, (3.43)

so

‖un‖ = ‖∇un‖2 −→ ‖∇u‖2 = ‖u‖ (3.44)

(see Gasiński and Papageorgiou [11, Proposition 3.1, page 852]), and thus

un −→ u in H1
0(Ω) (3.45)
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(by the Kadec-Klee property of Hilbert spaces). This proves that ϕ̂+
λ satisfies the Cerami

condition.
Similarly we show that ϕ̂−

λ
also satisfies the Cerami condition.

Our aim is to apply Theorem 2.1 (the mountain pass theorem) to two functionals ϕ̂+
λ

and ϕ̂−
λ
. We have checked that both functionals satisfy the Cerami condition. So, it remains to

show that they satisfy the mountain pass geometry as it is described in Theorem 2.1.
The next proposition is a crucial step in satisfying the mountain pass geometry for the

two functionals ϕ̂+
λ

and ϕ̂−
λ
.

Proposition 3.2. If hypotheses Hg and Hf hold, then there exist λ∗± > 0, such that for every λ ∈
(0, λ∗±), we can find �±

λ
> 0, such that

inf
{
ϕ̂±
λ(u) : ‖u‖ = �±λ

}
= η̂±

λ > 0. (3.46)

Proof. Hypotheses Hg(i) and (ii) imply that for a given ε > 0, we can find c4 = c4(ε) > 0, such
that

g(z, ζ) � εζ + c4ζ
q−1 for almost all z ∈ Ω, all ζ � 0, (3.47)

so

G(z, ζ) � ε

2
ζ2 +

c4

q
ζq for almost all z ∈ Ω, all ζ � 0. (3.48)

Similarly hypotheses Hf(i) and (iii) imply that for a given ε > 0, we can find c5 = c5(ε) > 0,
such that

f(z, ζ) �
(
η0(z) + ε

)
ζ + c5ζ

r−1 for almost all z ∈ Ω, all ζ � 0, (3.49)

so

F(z, ζ) � 1
2
(
η0(z) + ε

)
ζ2 +

c5

r
ζr for almost all z ∈ Ω, all ζ � 0. (3.50)

Then, for u ∈ H1
0(Ω), we have

ϕ̂+
λ(u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 − λ

∫

Ω
G+(z, u)dz −

∫

Ω
F̂+(z, u)dz

� 1
2
σ(u+) − 1

2

∫

Ω
η0(u+)2dz − ε

2
‖u+‖2

2 −
c5

r
‖u+‖rr

− λε

2
‖u+‖2

2 −
λc4

q
‖u+‖qq +

1
2
σ
(
u−) + ĉ1

2
∥∥u−∥∥2

2

� 1
2

(
ĉ − ε(λ + 1)

λ̂1

)
‖u+‖2 +

1
2ĉ0

∥∥u−∥∥2 − c6
(‖u‖r + λ‖u‖q),

(3.51)

for some c6 > 0 (see (3.48), (3.50), (2.11), (2.14), and Lemma 2.2).
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Choosing ε ∈ (0, λ̂1ĉ/(λ + 1)), we have

ϕ̂+
λ(u) � c7‖u‖2 − c6

(‖u‖r + λ‖u‖q)

=
(
c7 − c6

(
‖u‖r−2 + λ‖u‖q−2

))
‖u‖2,

(3.52)

for some c7 > 0. Let

μλ(t) = tr−2 + λtq−2 ∀t > 0. (3.53)

Since q < 2 < r, we have

lim
t→ 0+

μλ(t) = lim
r→+∞

μλ(t) = +∞. (3.54)

Also μλ is continuous in (0,+∞). Therefore, we can find t0 ∈ (0,+∞), such that

μλ(t0) = inf
t>0

μλ(t), (3.55)

so

μ′
λ(t0) = 0, (3.56)

and thus

t0 = t0(λ) =

(
λ
(
2 − q

)

r − 2

)1/(r−q)
. (3.57)

Evidently

μλ(t0) −→ 0 as λ −→ 0+. (3.58)

Hence we can find λ∗+ > 0, such that

μλ(t0) <
c7

c6
∀λ ∈ (0, λ∗+), (3.59)

so

inf
{
ϕ̂+
λ(u) : ‖u‖ = �+λ = t0(λ)

}
= η̂+

λ > 0 (3.60)

(see (3.52)).
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Similarly, for ϕ̂−
λ , we can find λ∗− > 0, such that for all λ ∈ (0, λ∗−) there exists �−λ > 0,

such that

inf
{
ϕ̂−
λ(u) : ‖u‖ = �−λ

}
= η̂−

λ > 0. (3.61)

With the next proposition we complete the mountain pass geometry for problem
((P)λ).

Proposition 3.3. If hypothesesHg and Hf hold, λ > 0 and ũ ∈ int C+ with ‖ũ‖2 = 1, then

ϕ̂±
λ(tũ) −→ −∞ as t −→ ±∞. (3.62)

Proof. By virtue of hypotheses Hg(i) and (ii), for a given ε > 0, we can find c8 = c8(ε) > 0,
such that

G(z, ζ) � −ε
2
ζ2 − c8, for almost all z ∈ Ω, all ζ ∈ R. (3.63)

Similarly, hypotheses Hf(i) and (ii) imply that for any given ξ > 0, we can find c9 = c9(ξ) > 0,
such that

F(z, ζ) � ξ

2
ζ2 − c9, for almost all z ∈ Ω, all ζ ∈ R. (3.64)

Then, we have

ϕ̂+
λ(tũ) =

t2

2
σ(ũ) +

(
λε − ξ

2

)
t2 + c10

� t2

2

(
‖ũ‖2 +

∥∥β∥∥s‖ũ‖2s′ + λε − ξ
)
+ c10

(3.65)

for some c10 > 0 (see (3.63), (3.64) and recall that ũ ∈ int C+, ‖ũ‖2 = 1 and 1/s + 1/s′ = 1).
Since ξ > 0 is arbitrary, choosing

ξ > λε + ‖ũ‖2 +
∥∥β∥∥s‖ũ‖2s′ , (3.66)

from (3.65), we infer that

ϕ̂+
λ(tũ) −→ −∞ as t −→ ±∞. (3.67)

Now we are ready to produce the first two nontrivial smooth solutions of constant
sign. In what follows, we set

λ∗ = min{λ∗−, λ∗+}. (3.68)
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Proposition 3.4. If hypotheses Hg , Hf , and H0 hold and λ ∈ (0, λ∗], then problem ((P)λ) has at
least two nontrivial smooth solutions of constant sign:

u0, v0 ∈ C1
0

(
Ω
)
, with v0(z) < 0 < u0(z) ∀z ∈ Ω. (3.69)

Proof. Propositions 3.1, 3.2, and 3.3 permit the application of the mountain pass theorem (see
Theorem 2.1) for the functional ϕ̂+

λ
, and so we obtain u0 ∈ H1

0(Ω), such that

ϕ̂+
λ(0) = 0 < η̂+

λ � ϕ̂+
λ(u0), (3.70)

(
ϕ̂+
λ

)′(u0) = 0. (3.71)

From (3.70), we see that u0 /= 0. From (3.71), we have

A(u0) + βu0 + ĉ1u0 = λNg+(u0) +Nf̂+
(u0). (3.72)

On (3.72) we act with −u−
0 ∈ H1

0(Ω) and obtain

σ
(
u−

0

)
+ ĉ1
∥∥u−

0

∥∥2
2 = 0, (3.73)

so

1
ĉ0

∥∥u−
0

∥∥2 � 0 (3.74)

(see (2.14)); hence u0 � 0, u0 /= 0.
Therefore (3.72) becomes

A(u0) + βu0 = λNg(u0) +Nf(u0), (3.75)

so

−Δu0(z) + β(z)u0(z) = λg(z, u0(z)) + f(z, u0(z)) in Ω,

u0|∂Ω = 0.
(3.76)

From the regularity theory for Dirichlet problems (see Struwe [13, pp. 217–219]), we have
that u0 ∈ C1

0(Ω). Moreover, invoking the weak Harnack inequality of Pucci and Serrin [14,
page 154], we have that u0(z) > 0 for all z ∈ Ω.

Similarly working with ϕ̂−
λ , this time we obtain a nontrivial smooth negative solution

v0 ∈ C1
0(Ω) with v0(z) < 0 for all z ∈ Ω.

We can improve the conclusion of this proposition by strengthening the condition on
the potential β:

Hβ : β ∈ Ls(Ω) with s > N/2 and β+ ∈ L∞(Ω)+.
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Remark 3.5. So, the potential function is bounded from above but in general can be
unbounded from below.

Proposition 3.6. If hypotheses Hg , Hf , H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has
at least two nontrivial smooth solutions of constant sign:

u0 ∈ int C+, v0 ∈ −int C+. (3.77)

Proof. From Proposition 3.4, we already have two solutions:

u0, v0 ∈ C1
0

(
Ω
)
, with v0(z) < 0 < u0(z) ∀z ∈ Ω. (3.78)

We have

−Δu0(z) + β(z)u0(z) = λg(z, u0(z)) + f(z, u0(z))

� f(z, u0(z)) for almost all z ∈ Ω
(3.79)

(see hypothesis Hg(iii)). Let � = ‖u0‖∞ and let γ̂� > 0 be as postulated by hypothesis Hf(iv).
Then from (3.79), we have

−Δu0(z) +
(
β(z) + γ̂�

)
u0(z) � f(z, u0(z)) + γ̂�u0(z), for almost all z ∈ Ω, (3.80)

so

Δu0(z) �
(∥∥β+∥∥∞ + γ̂�

)
u0(z) for almost all z ∈ Ω. (3.81)

and thus u0 ∈ int C+ (see Vázquez [15] and Pucci and Serrin [14, page 120]).
Similarly for the negative solution v0.

To continue and produce additional nontrivial smooth solutions of constant sign, we
need to keep hypotheses Hβ.

Proposition 3.7. If hypotheses Hg , Hf , H0 and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has
at least four nontrivial smooth solutions of constant sign:

u0, û ∈ int C+, û − u0 ∈ int C+,

v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+.
(3.82)

Proof. From Proposition 3.6, we already have two solutions:

u0 ∈ int C+, v0 ∈ −int C+. (3.83)
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We introduce the following truncation perturbation of the reaction of the problem ((P)λ):

h+
λ(z, ζ) =

⎧
⎨
⎩
λg(z, u0(z)) + f(z, u0(z)) + ĉ1u0(z) if ζ � u0(z),

λg(z, ζ) + f(z, ζ) + ĉ1ζ if u0(z) < ζ.
(3.84)

This is a Carathéodory function. We set

H+
λ (z, ζ) =

∫ ζ

0
h+
λ(z, s)ds (3.85)

and consider the C1-functional ψ+
λ

: H1
0(Ω) → R, defined by

ψ+
λ (u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
H+

λ (z, u(z))dz ∀u ∈ H1
0(Ω). (3.86)

Claim 2. We have Kψ+
λ
⊆ [u0), where

[u0) =
{
u ∈ H1

0(Ω) : u0(z) � u(z) for almost all z ∈ Ω
}
. (3.87)

Let ũ ∈ Kψ+
λ
. Then

A(ũ) +
(
β + ĉ1

)
ũ = Nh+

λ
(ũ). (3.88)

On (3.88) we act with (u0 − ũ)+ ∈ H1
0(Ω). Then

〈
A(ũ), (u0 − ũ)+

〉
+
∫

Ω

(
β + ĉ1

)
ũ(u0 − ũ)+dz

=
∫

Ω
h+
λ(z, ũ)(u0 − ũ)+dz

=
∫

Ω

(
λg(z, u0) + f(z, u0) + ĉ1u0

)
(u0 − ũ)+dz

= 〈A(u0), (u0 − û)+〉 +
∫

Ω

(
β + ĉ1

)
u0(u0 − ũ)+dz

(3.89)

(see (3.84)), so

〈
A(u0 − ũ), (u0 − ũ)+

〉
+
∫

Ω
β(u0 − ũ)(u0 − ũ)+dz + ĉ1

∥∥(u0 − ũ)+
∥∥2

2 = 0, (3.90)

thus

σ
(
(u0 − ũ)+

)
+ ĉ1
∥∥(u0 − ũ)+

∥∥2
2 = 0, (3.91)
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hence

1
ĉ0

∥∥(u0 − ũ)+
∥∥2 � 0 (3.92)

(see (2.14)), and so finally u0 � ũ. This proves Claim 2.

Claim 3. We may assume that u0 is a local minimizer of ψ+
λ .

Let μ ∈ (λ, λ∗), and consider problem (P)μ. As we did in the proof of Proposition 3.4,
via the mountain pass theorem, we obtain a nontrivial smooth positive solution uμ, and
by virtue of the strong maximum principle, we have uμ ∈ int C+ (see the proof of
Proposition 3.7). Then

−Δuμ(z) + β(z)uμ(z) = μg
(
z, uμ(z)

)
+ f
(
z, uμ(z)

)

� λg
(
z, uμ(z)

)
+ f
(
z, uμ(z)

)
for almost all z ∈ Ω

(3.93)

(see Hg(iii) and recall that λ < μ).
We consider the following truncation perturbation of the reaction of problem ((P)λ):

γ+λ (z, ζ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ζ < 0,
λg(z, ζ) + f(z, ζ) + ĉ1ζ if 0 � ζ � uμ(z),
λg
(
z, uμ(z)

)
+ f
(
z, uμ(z)

)
+ ĉ1uμ(z) if uμ(z) < ζ.

(3.94)

This is a Carathéodory function. We set

Γ+λ(z, ζ) =
∫ ζ

0
γ+λ (z, s)ds (3.95)

and consider the C1-functional ψ̂+
λ

: H1
0(Ω) → R, defined by

ψ̂+
λ (u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
Γ+λ(z, u(z))dz ∀u ∈ H1

0(Ω). (3.96)

From (3.94), it is clear that ψ̂+
λ

is coercive. Also, using the Sobolev embedding theorem, we
check that ψ̂+

λ
is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem,

we can find uλ ∈ H1
0(Ω), such that

ψ̂+
λ (uλ) = inf

u∈H1
0 (Ω)

ψ̂+
λ (u). (3.97)

By virtue of hypothesis Hf(iii), we can find c11 > 0 and δ̂0 > 0, such that

F(z, ζ) � −c11

2
ζ2 for almost all z ∈ Ω, all |ζ| � δ̂0. (3.98)
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Let ũ ∈ int C+ and let t ∈ (0, 1) be small, such that

tũ � uμ, tũ(z) � δ̂0 ∀z ∈ Ω (3.99)

(recall that uμ ∈ int C+). Then, we have

ψ̂+
λ (tũ) =

t2

2
σ(ũ) +

t2ĉ1

2
∥∥ũ−∥∥2

2 − λ

∫

Ω
G(z, tũ)dz −

∫

Ω
F(z, tũ)dz

� t2

2

(
σ(ũ) + (ĉ1 + c11)‖ũ‖2

2

)
− λtqc1

q
‖ũ‖qq

(3.100)

(see (3.94), hypothesis Hg(iii), and (3.98)). Since q < 2, by choosing t ∈ (0, 1) even smaller if
necessary, we have

ψ̂+
λ (tũ) < 0, (3.101)

so

ψ̂+
λ (uλ) < 0 = ψ̂+

λ (0) (3.102)

(see (3.97)); hence uλ /= 0.
From (3.97), we have

(
ψ̂+
λ

)′(uλ) = 0, (3.103)

so

A(uλ) +
(
β + ĉ1

)
uλ = Nγ+

λ
(uλ). (3.104)

Acting on (3.104) with −u−
λ ∈ H1

0(Ω), we obtain that uλ � 0, uλ /= 0. Also, acting on (3.104)
with (uλ − uμ)

+ ∈ H1
0(Ω), we have

〈A(uλ),
(
uλ − uμ

)+〉 +
∫

Ω

(
β + ĉ1

)
uλ

(
uλ − uμ

)+
dz

=
∫

Ω
γ+λ (z, uλ)

(
uλ − uμ

)+
dz

=
∫

Ω

(
λg
(
z, uμ

)
+ f
(
z, uμ

)
+ ĉ1uμ

)(
uλ − uμ

)+
dz

�
〈
A
(
uμ

)
,
(
uλ − uμ

)+〉 +
∫

Ω

(
β + ĉ1

)
uμ

(
uλ − uμ

)+
dz

(3.105)

(see (3.94) and (3.93)), so

〈A(uλ − uμ

)
,
(
uλ − uμ

)+〉 +
∫

Ω

(
β + ĉ1

)(
uλ − uμ

)
(uλ − uμ)

+dz � 0, (3.106)
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thus

σ
((

uλ − uμ

)+) + ĉ1

∥∥∥(uλ − uμ

)+∥∥∥
2

2
� 0, (3.107)

hence

1
ĉ0

∥∥∥(uλ − uμ

)+∥∥∥
2

� 0 (3.108)

(see (2.14)) and so finally

uλ � uμ. (3.109)

So, we have proved that

uλ ∈ [0, uμ

]
=
{
u ∈ H1

0(Ω) : 0 � u(z) � uμ(z) for almost all z ∈ Ω
}
. (3.110)

Hence (3.104) becomes

A(uλ) + βuλ = λNg(uλ) +Nf(uλ) (3.111)

(see (3.94)), so

−Δuλ(z) + β(z)uλ(z) = λg(z, uλ(z)) + f(z, uλ(z)) in Ω,

uλ|∂Ω = 0,
(3.112)

thus uλ ∈ int C+ (as in the proof of Proposition 3.6) and it is a solution of ((P)λ).
If uλ /=u0, then this is the desired second nontrivial positive smooth solution of ((P)λ).
So, we may assume that uλ = u0 and that there is no other solution of ((P)λ) in the

order interval

[u0, uλ] =
{
u ∈ H1

0(Ω) : u0(z) � u(z) � uμ(z) for almost all z ∈ Ω
}
. (3.113)

We introduce the following truncation of γ+λ (z, ·):

γ̃+λ (z, ζ) =

⎧
⎨
⎩
γ+
λ (z, u0(z)) if ζ < u0(z),

γ+
λ (z, ζ) if u0(z) � ζ.

(3.114)

This is a Carathéodory function. We set

Γ̃+λ(z, ζ) =
∫ ζ

0
γ̃+λ (z, s)ds (3.115)
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and consider the C1-functional ψ̃+
λ : H1

0(Ω) → R, defined by

ψ̃+
λ (u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
Γ̃+λ(z, u(z))dz ∀u ∈ H1

0(Ω). (3.116)

From (3.94) and (3.114), it follows that ψ̃+
λ

is coercive. Also, it is sequentially weakly lower
semicontinuous. Hence, we can find ũλ ∈ H1

0(Ω), such that

ψ̃+
λ (ũλ) = inf

u∈H1
0 (Ω)

ψ̃+
λ (u), (3.117)

so

(
ψ̃+
λ

)′(ũλ) = 0, (3.118)

and thus

A(ũλ) +
(
β + ĉ1

)
ũλ = Nγ̃+

λ
(ũλ). (3.119)

As before, acting on (3.119) with (u0 − ũλ)
+ ∈ H1

0(Ω) and with (ũλ − uμ)
+ ∈ H1

0(Ω), we show
that ũλ ∈ [u0, uμ]. Then, from (3.94) and (3.114), it follows that

A(ũλ) + βũλ = λNg(ũλ) +Nf(ũλ), (3.120)

so ũλ ∈ int C+ is a solution of ((P)λ) in [u0, uμ], hence ũλ = u0.
Let � = ‖u0‖∞ and let γ� > 0 and γ̂� > 0 be as postulated by hypotheses Hg(iv) and

Hf(iv), respectively. We have

−Δu0(z) +
(
β(z) + γ̂�

)
u0(z) + λγ�u0(z)q−1

= λg(z, u0(z)) + λγ�u0(z)q−1 + f(z, u0(z)) + γ̂�u0(z)

� λg
(
z, uμ(z)

)
+ λγ�uμ(z)q−1 + f

(
z, uμ(z)

)
+ γ̂�uμ(z)

� μg
(
z, uμ(z)

)
+ μγ�uμ(z)q−1 + f

(
z, uμ(z)

)
+ γ̂�uμ(z)

= −Δuμ(z) +
(
β(z) + γ̂�

)
uμ(z) + μγ�uμ(z)q−1 for almost all z ∈ Ω

(3.121)

(see Hg(iv) and (iii), Hf(iv) and recall that u0 � uμ and λ < μ), so there exists c12 > 0, such
that

Δ
(
uμ − u0

)
(z) �

(∥∥β+∥∥∞ + γ̂�
)(
uμ − u0

)
(z) + μγ�c12

(
uμ − u0

)
(z), (3.122)

for almost all z ∈ Ω (recall that the function ζ �→ ζq−1 is locally Lipschitz); thus

uμ − u0 ∈ int C+ (3.123)
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(see Struwe [13] and Pucci and Serrin [14, page 120]). So, we have that

uλ = u0 ∈ int
C1

0(Ω)

[
0, uμ

]
. (3.124)

Note that

ψ̃+
λ |[0,uμ] = ψ+

λ |[0,uμ] (3.125)

(see (3.94) and (3.114)), so

u0 is alocal C1
0

(
Ω
)

-minimizer of ψ+
λ (3.126)

(see (3.124)), and thus

u0 is alocal H1
0(Ω)-minimizer of ψ+

λ (3.127)

(Brézis and Nirenberg [16]). This proves Claim 3.

By virtue of Claim 3, as in Gasiński and Papageorgiou [17, proof of Theorem 3.4], we
can find �λ ∈ (0, 1) small, such that

ψ+
λ (u0) < inf

{
ψ+
λ (u) : ‖u − u0‖ = �λ

}
= η+

λ . (3.128)

As in Proposition 3.4, for ũ ∈ int C+ with ‖ũ‖2 = 1, we have

ψ+
λ (tũ) −→ −∞ as t −→ +∞. (3.129)

Note that ϕ̂+
λ
= ψ+

λ
− ξ+

λ
with ξ+

λ
∈ R. Hence by virtue of Proposition 3.1, ψ+

λ
satisfies the Cerami

condition. This fact together with (3.128) and (3.129) permits the use of the mountain pass
theorem (see Theorem 2.1). So, we can find û ∈ H1

0(Ω), such that

ψ+
λ (u0) < η+

λ � ψ+
λ (û), (3.130)

(
ψ+
λ

)′(û) = 0. (3.131)

From (3.130) we have û /=u0. From (3.131) and Claim 2, we have that

u0 � û. (3.132)

Hence

A(û) + βû = λNg(û) +Nf(û) (3.133)

(see (3.84)), and so û ∈ int C+ solves problem ((P)λ).
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Moreover, as before, using the strong maximum principle (see Vázquez [15] and Pucci
and Serrin [14, page 120]), we have

û − u0 ∈ int C+. (3.134)

In a similar way, using v0 ∈ −int C+, we define

h−
λ(z, ζ) =

{
λg(z, ζ) + f(z, ζ) + ĉ1ζ if ζ < v0(z),
λg(z, v0(z)) + f(z, v0(z)) + ĉ1v0(z) if v0(z) � ζ.

(3.135)

This is a Carathéodory function. We set

H−
λ (z, ζ) =

∫ ζ

0
h−
λ(z, s)ds (3.136)

and consider the C1-functional ψ−
λ : H1

0(Ω) → R, defined by

ψ−
λ (u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
H−

λ (z, u(z))dz ∀u ∈ H1
0(Ω). (3.137)

Reasoning as above, using this time ψ−
λ , we obtain a second negative smooth solution v̂ ∈

−int C+ of problem ((P)λ), such that

v0 − v̂ ∈ int C+. (3.138)

4. Five Solutions

In this section, we prove two multiplicity theorems, establishing five nontrivial smooth
solutions when λ ∈ (0, λ∗). In the second multiplicity theorem, we provide sign information
for all the solutions (i.e., we show that the fifth solution is actually nodal).

Theorem 4.1. If hypotheses Hg, Hf ,H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has at
least five nontrivial smooth solutions:

u0, û ∈ int C+, û − u0 ∈ int C+, v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+

y0 ∈ C1
0

(
Ω
)
, u0 − y0 ∈ int C+, y0 − v0 ∈ int C+.

(4.1)

Proof. From Proposition 3.7, we already have four nontrivial smooth solutions of constant
sign:

u0, û ∈ int C+, û − u0 ∈ int C+, v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+. (4.2)
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We consider the following truncation perturbation of the reaction of problem ((P)λ):

h∗
λ(z, ζ) =

⎧⎪⎪⎨
⎪⎪⎩

λg(z, v0(z)) + f(z, v0(z)) + ĉ1v0(z) if ζ < v0(z),
λg(z, ζ) + f(z, ζ) if v0(z) � ζ � u0(z),
λg(z, u0(z)) + f(z, u0(z)) + ĉ1u0(z) if u0(z) < ζ.

(4.3)

This is a Carathéodory function. We set

H∗
λ(z, ζ) =

∫ ζ

0
h∗
λ(z, s)ds (4.4)

and consider the C1-functional ψ∗
λ

: H1
0(Ω) → R, defined by

ψ∗
λ(u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
H∗

λ(z, u(z))dz ∀u ∈ H1
0(Ω). (4.5)

From (4.3), it follows that ψ∗
λ is coercive. Also, it is sequentially weakly lower semicontinuous.

So, we can find y0 ∈ H1
0(Ω), such that

ψ∗
λ

(
y0
)
= inf

u∈H1
0 (Ω)

ψ∗
λ(u). (4.6)

As in the proof of Proposition 3.7, using (3.98), we show that

ψ∗
λ

(
y0
)
< 0 = ψ∗

λ(0), (4.7)

hence y0 /= 0. From (4.6), we have

(
ψ∗
λ

)′(
y0
)
= 0, (4.8)

so

A
(
y0
)
+
(
β + ĉ1

)
y0 = Nh∗

λ

(
y0
)
. (4.9)

On (4.9) we act with (y0 − u0)
+ ∈ H1

0(Ω). Then

〈
A
(
y0
)
,
(
y0 − u0

)+〉 +
∫

Ω

(
β + ĉ1

)
y0
(
y0 − u0

)+
dz

=
∫

Ω

(
λg(z, u0) + f(z, u0) + ĉ1u0

)(
y0 − u0

)+
dz

=
〈
A(u0),

(
y0 − u0

)+〉 +
∫

Ω

(
β + ĉ

)
u0
(
y0 − u0

)+
dz

(4.10)
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(see (4.3)), so

〈
A
(
y0 − u0

)
,
(
y0 − u0

)+〉 +
∫

Ω

(
β + ĉ1

)(
y0 − u0

)(
y0 − u0

)+
dz = 0, (4.11)

thus

σ
((

y0 − u0
)+) + ĉ1

∥∥∥(y0 − u0
)+∥∥∥

2

2
= 0, (4.12)

and hence

1
ĉ0

∥∥∥(y0 − u0
)+∥∥∥

2
� 0 (4.13)

(see (2.14)); hence y0 � u0.
Similarly, acting on (4.9) with (v0 − y0)

+ ∈ H1
0(Ω), we show that v0 � y0. Therefore,

y0 ∈ [v0, u0] =
{
u ∈ H1

0(Ω) : v0(z) � u(z) � u0(z) for almost all z ∈ Ω
}
, (4.14)

and so (4.9) becomes

A
(
y0
)
+ βy0 = λNg

(
y0
)
+Nf

(
y0
)

(4.15)

(see (4.3)); thus

y0 ∈ C1
0

(
Ω
)

(4.16)

(regularity theory; see Struwe [13]), and it solves problem ((P)λ).
Moreover, as in the proof of Proposition 3.7, using hypotheses Hg(iv) and Hf(iv), we

also show that

u0 − y0 ∈ int C+, y0 − v0 ∈ int C+. (4.17)

Next we will improve the conclusion of Theorem 4.1 and show that the fifth solution
y0 is nodal (sign changing). To do this we need to strengthen a little bit the hypotheses on
f(z, ·).

The new hypotheses of f are the following:

H ′
f

: f : Ω × R → R is a Carathéodory function, such that f(z, 0) = 0 for almost all

z ∈ Ω,

(i), (iii), (iv) are the same as the corresponding hypotheses Hf(i), (iii), (iv),
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(ii) we have

lim
ζ→±∞

f(z, ζ)
ζ

= +∞ uniformly for almost all z ∈ Ω. (4.18)

Remark 4.2. Hypothesis H ′
f

is a slight restricted version of hypothesis Hf . Note that if

ξ̂(z, ζ) = f(z, ζ)ζ − 2F(z, ζ) (4.19)

and there exists a function ϑ̂∗ ∈ L1(Ω)+, such that

ξ̂(z, ζ) � ξ̂
(
z, y
)
+ ϑ̂∗(z) for almost all z ∈ Ω, all 0 � ζ � y or y � ζ � 0, (4.20)

then (4.20) and Hf (ii) imply H ′
f
(ii) (see Li and Yang [10]). Also, note that hypotheses Hf(i),

(ii), and (iii) imply that there exists c∗ > 0, such that

f(z, ζ)ζ + c∗ζ2 � 0 for almost all z ∈ Ω, all ζ ∈ R. (4.21)

We consider the following auxiliary Dirichlet problem:

−Δu(z) + β(z)u(z) = λc1|u(z)|q−2u(z) − c∗u(z) in Ω,

u|∂Ω = 0.
((Q)λ)

Here c1 > 0 and q ∈ (1, 2) are as in hypothesis Hg(iii) and c∗ > 0 is as in (4.21).

Proposition 4.3. For every λ > 0, problem ((Q)λ) has a unique nontrivial positive solution uλ ∈
int C+, and by oddness, we have that −uλ = vλ ∈ −int C+ is the unique negative solution of ((Q)λ).

Proof. Let k+
λ

: Ω × R → R be the Carathéodory function, defined by

k+
λ(z, ζ) =

{
0 if ζ � 0,
λc1ζ

q−1 − (ĉ1 − c∗)ζ if ζ > 0.
(4.22)

Clearly, we can always assume that c∗ � ĉ1 (see (4.21)). Let

K+
λ(z, ζ) =

∫ ζ

0
k+
λ(z, s)ds, (4.23)

and consider the C1-functional θ+
λ : H1

0(Ω) → R, defined by

θ+
λ(u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
K+

λ(z, u(z))dz ∀u ∈ H1
0(Ω). (4.24)
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Using (2.14) and (4.22), we have

θ+
λ(u) � 1

2ĉ0
‖u‖2 +

c∗ − ĉ1

2
‖u+‖2

2 −
λc1

q
‖u+‖qq. (4.25)

Since q < 2, from (4.25), we infer that θ+
λ

is coercive. Also, it is sequentially weakly lower
semicontinuous (recall that c∗ � ĉ1). So, by the Weierstrass theorem, we can find uλ ∈ H1

0(Ω),
such that

θ+
λ

(
uλ

)
= inf

u∈H1
0 (Ω)

θ+
λ(u). (4.26)

As before (see the proof of Proposition 3.7), since q < 2, we have

θ+
λ

(
uλ

)
< 0 = θ+

λ(0), (4.27)

hence uλ /= 0. From (4.26), we have

(
θ+
λ

)′(
uλ

)
= 0, (4.28)

so

A
(
uλ

)
+
(
β + ĉ1

)
uλ = Nk+

λ

(
uλ

)
. (4.29)

Acting on (4.29) with −u−
λ ∈ H1

0(Ω), we show that uλ � 0, uλ /= 0 (see (2.14)). Then (4.29)
becomes

A
(
uλ

)
+
(
β + c∗

)
uλ = λc1u

q−1
λ

, (4.30)

so

−Δuλ(z) +
(
β(z) + c∗

)
uλ(z) � 0 for almost all z ∈ Ω, (4.31)

thus

Δuλ(z) �
(∥∥β+∥∥∞ + c∗

)
uλ(z) for almost all z ∈ Ω (4.32)

(see hypothesis Hβ), and hence

uλ ∈ int C+ (4.33)

(see Vázquez [15] and Pucci and Serrin [14, page 120]).
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We claim that this solution is the unique nontrivial positive solution of ((Q)λ). To this
end, let u, v ∈ int C+ be two positive solutions of ((Q)λ). We have

∫

Ω

λc1u
q−1 − c∗u
u

(
u2 − v2

)
dz

=
∫

Ω

(
λc1u

q−1 − c∗u
)(

u − v2

u

)
dz

=
∫

Ω
(−Δu)

(
u − v2

u

)
dz +

∫

Ω
β
(
u2 − v2

)
dz

=
∫

Ω

(
∇u,∇u − ∇

(
v2

u

))

RN

dz +
∫

Ω
β
(
u2 − v2

)
dz

= ‖∇u‖2
2 −
∫

Ω

(
∇u,

2v
u
∇v − v2

u2
∇u

)

RN

dz +
∫

Ω
β
(
u2 − v2

)
dz

= ‖∇u‖2
2 −
∫

Ω

2v
u
(∇u,∇v)

RNdz

+
∫

Ω

v2

u2 ‖∇u‖2 dz +
∫

Ω
β
(
u2 − v2

)
dz.

(4.34)

Interchanging the roles of u and v in the above argument, we also have

∫

Ω

λc1v
q−1 − c∗v
v

(
v2 − u2

)
dz

= ‖∇v‖2
2 −
∫

Ω

2u
v
(∇v,∇u)

RNdz +
∫

Ω

u2

v2 ‖∇v‖2dz +
∫

Ω
β
(
v2 − u2

)
dz.

(4.35)

Adding (4.34) and (4.35), we obtain

∫

Ω

(
λc1u

q−1 − c∗u
u

− λc1v
q−1 − c∗v
v

)(
u2 − v2

)
dz =

∥∥∥∇u − u

v
∇v
∥∥∥

2

2
+
∥∥∥∥∇v − v

u
∇u

∥∥∥∥
2

2
� 0.

(4.36)

Since q < 2, the function ζ �→ (λc1ζ
q−1 − c∗ζ)/ζ is strictly decreasing on (0,+∞). Hence, from

(4.36), we infer that u = v. This proves the uniqueness of the nontrivial positive solution
uλ ∈ int C+ of problem ((Q)λ).

The oddness of problem ((Q)λ) implies that vλ = −uλ ∈ − int C+ is the unique
nontrivial negative solution of ((Q)λ).

Using Proposition 4.3, we can show that problem ((P)λ) (for λ ∈ (0, λ∗)) has extremal
constant sign solutions; that is, it has a smallest nontrivial positive solution and a biggest
nontrivial negative solution.
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Proposition 4.4. If hypotheses Hg , H ′
f , H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has

a smallest nontrivial positive solution uλ
+ ∈ int C+ and a biggest nontrivial negative solution vλ

− ∈
int −C+.

Proof. Let u be a nontrivial positive solution of ((P)λ). From the proof of Proposition 3.6, we
know that u ∈ int C+. We have

−Δu(z) + β(z)u(z) = λg(z, u(z)) + f(z, u(z)) � λc1u(z)q−1 − c∗u(z), (4.37)

for almost all z ∈ Ω (see hypothesis Hg(iii) and (4.21)).
We consider the following Carathéodory function:

k̂+
λ(z, ζ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ζ � 0,
λc1ζ

q−1 + (ĉ1 − c∗)ζ if 0 � ζ � u,

λc1u(z)q−1 + (ĉ1 − c∗)u(z) if u < ζ.

(4.38)

Let

K̂+
λ(z, ζ) =

∫ ζ

0
k̂+
λ(z, s)ds, (4.39)

and consider the C1-functional ξ+
λ

: H1
0(Ω) → R, defined by

ξ+λ(u) =
1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
K̂+

λ(z, u(z))dz ∀u ∈ H1
0(Ω). (4.40)

From (4.38) and (2.14), it is clear that ξ+
λ

is coercive. Also ξ+
λ

is sequentially weakly lower
semicontinuous. Thus we can find w0 ∈ H1

0(Ω), such that

ξ+λ(w0) = inf
u∈H1

0 (Ω)
ξ+λ(u). (4.41)

As before, the presence of the “concave” term λc1ζ
q−1 implies that

ξ+λ(w0) < 0 = ξ+λ(0), (4.42)

that is, w0 /= 0. From (4.41), we have

(
ξ+λ
)′(w0) = 0, (4.43)

so

A(w0) +
(
β + ĉ1

)
w0 = Nk̂+

λ
(w0). (4.44)
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On (4.44) we act with −w−
0 ∈ H1

0(Ω) and obtain

σ
(
w−

0

)
+ ĉ1
∥∥w−

0

∥∥2
2 = 0 (4.45)

(see (4.38)), so

1
ĉ0

∥∥w−
0

∥∥2 � 0 (4.46)

(see (2.14)), and hence w0 � 0, w0 /= 0.
Also, on (4.44) we act with (w0 − u)+ ∈ H1

0(Ω). Then

〈A(w0), (w0 − u)+〉 +
∫

Ω

(
β + ĉ1

)
w0(w0 − u)+dz

=
∫

Ω
k̂+
λ(z,w0)(w0 − u)+dz

=
∫

Ω

(
λc1u

q−1 − c∗u
)
(w0 − u)+dz

� 〈A(u), (w0 − u)+〉 +
∫

Ω
β
(
(w0 − u)+

)
dz + ĉ1

∥∥(w0 − u)+
∥∥2

2

(4.47)

(see (4.38) and (4.37)), so

σ
(
(w0 − u)+

)
+ ĉ1
∥∥(w0 − u)+

∥∥2
2 � 0, (4.48)

thus

1
ĉ0

∥∥(w0 − u)+
∥∥2 � 0 (4.49)

(see (2.14)), and hence

w0 � u. (4.50)

So, we have proved that

w0 ∈ [0, u] =
{
u ∈ H1

0(Ω) : 0 � u(z) � u(z) for almost all z ∈ Ω
}
. (4.51)

This means that (4.44) becomes

A(w0) + βw0 = λc1w
q−1
0 − c∗w0, (4.52)
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so w0 ∈ int C+ (regularity theory of Struwe [13] and strong maximum principle due to
Vázquez [15] and Pucci Serrin [14, page 120]) and it solves problem ((Q)λ). Thus

w0 = uλ (4.53)

(see Proposition 4.3), and

uλ � u. (4.54)

This shows that every nontrivial positive solution u of ((P)λ) satisfies

uλ � u. (4.55)

Similarly, we show that every nontrivial negative solution v of problem ((P)λ) satisfies

v � vλ = −uλ. (4.56)

Let S+(λ) (resp., S−(λ)) be the set of nontrivial positive (resp., negative) solutions
of problem ((P)λ). Let C ⊆ S+(λ) be a chain (i.e., a totally ordered subset of S+(λ)). From
Dunford and Schwartz [18, page 336], we can find a sequence {un}n�1 ⊆ C, such that

infC = inf
n�1

un. (4.57)

Lemma 1.5 of Heikkilä and Lakshmikantham [19, page 15] implies that we can have the
sequence {un}n�1 ⊆ C to be decreasing. Then we have

A(un) + βun = λNg(un) +Nf(un), uλ � un � u1 ∀n � 1, (4.58)

so

the sequnece {un}n�1 ⊆ H1
0(Ω) is bounded. (4.59)

Hence by passing to a suitable subsequence if necessary, we may assume that

un −→ u∗ weakly in H1
0(Ω), (4.60)

un −→ u∗ in L2s′(Ω) and in Lr(Ω). (4.61)

So, passing to the limit as n → +∞ in (4.58) and using (4.61), we obtain

A(u∗) + βu∗ = λNg(u∗) +Nf(u∗), uλ � u∗, (4.62)
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so

infC = u∗ ∈ S+(λ). (4.63)

Since C was an arbitrary chain, invoking the Kuratowski-Zorn lemma, we infer that S+(λ) has
a minimal element uλ

+ ∈ int C+. From Gasiński and Papageorgiou [17, Lemma 4.2, page 5763],
we know that S+(λ) is downward directed (i.e., if u1, u2 ∈ S+(λ); then we can find u ∈ S+(λ),
such that u � u1 and u � u2). So, it follows that uλ

+ is the smallest nontrivial positive solution
of problem ((P)λ).

Similarly, we introduce the biggest nontrivial negative solution vλ
− ∈ − int C+ of

problem ((P)λ). Note that S−(λ) is upward directed (i.e., if v1, v2 ∈ S−(λ), then we can find
v ∈ S−(λ), such that v1 � v and v2 � v; see Gasiński and Papageorgiou [17, Lemma 4.3, page
5764]).

Now that we have these extremal constant sign solutions, we can produce a nodal
solution of problem ((P)λ) (with λ ∈ (0, λ∗)).

Theorem 4.5. If hypotheses Hg , H ′
f , H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has at

least five nontrivial smooth solutions:

u0, û ∈ int C+, û − u0 ∈ int C+, v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+

y0 ∈ C1
0

(
Ω
)
nodal with u0 − y0 ∈ int C+, y0 − v0 ∈ int C+.

(4.64)

Moreover, problem ((P)λ) has a smallest nontrivial positive solution and a biggest negative solution.

Proof. The existence of extremal nontrivial constant sing solutions is guaranteed by
Proposition 4.4. Let uλ

+ ∈ int C+ and vλ
− ∈ −int C+ be these two extremal solutions.

We introduce the following truncation perturbation of the reaction of problem ((P)λ):

γλ(z, ζ) =

⎧⎪⎪⎨
⎪⎪⎩

λg
(
z, vλ

−(z)
)
+ f
(
z, vλ

−(z)
)
+ ĉ1v

λ
−(z) if ζ < vλ

−(z),

λg(z, ζ) + f(z, ζ) + ĉ1ζ if vλ
−(z) � ζ � uλ

+(z),
λg
(
z, uλ

+(z)
)
+ f
(
z, uλ

+(z)
)
+ ĉ1u

λ
+(z) if uλ

+(z) < ζ.

(4.65)

This is a Carathéodory function. We set

Γλ(z, ζ) =
∫ ζ

0
γλ(z, s)ds (4.66)

and consider the C1-functional χλ : H1
0(Ω) → R, defined by

χλ(u) =
1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
Γλ(z, u(z))dz ∀u ∈ H1

0(Ω). (4.67)



34 Abstract and Applied Analysis

Also, we introduce

γ±λ (z, ζ) = γλ
(
z,±ζ±), Γ±λ(z, ζ) =

∫ ζ

0
γ±λ (z, s)ds (4.68)

and consider the C1-functionals χ±
λ : H1

0(Ω) → R, defined by

χ±
λ(u) =

1
2
σ(u) +

ĉ1

2
‖u‖2

2 −
∫

Ω
Γ±λ(z, u(z))dz ∀u ∈ H1

0(Ω). (4.69)

As in the proof of Theorem 4.1, we show that

Kχλ ⊆
[
vλ
−, u

λ
+

]
, Kχ+

λ
⊆
[
0, uλ

+

]
, Kχ−

λ
⊆
[
vλ
−, 0
]

(4.70)

(see (4.65)). The extremality of the solutions vλ
− and uλ

+ implies that

Kχλ ⊆
[
vλ
−, u

λ
+

]
, Kχ+

λ
=
{

0, uλ
+

}
, Kχ−

λ
=
{
vλ
−, 0
}
. (4.71)

Claim 4. Solutions uλ
+ and vλ

− are both local minimizers of χλ.
Evidently χ+

λ
is coercive (see (4.65)) and sequentially weakly lower semicontinuous.

So, we can find u+ ∈ H1
0(Ω), such that

χ+
λ(u+) = inf

u∈H1
0 (Ω)

χ+
λ(u). (4.72)

As before (see the proof of Proposition 3.7), the presence of the “concave” term implies that

χ+
λ(u+) < 0 = χ+

λ(0), (4.73)

hence u+ /= 0, and so u+ = uλ
+ (see (4.71)). Since

χλ

∣∣
C+

= χ+
λ

∣∣
C+
, (4.74)

it follows that u+ = uλ
+ ∈ int C+ is local C1

0(Ω)-minimizers of χλ; hence by Brézis and
Nirenberg [16], it is also local H1

0(Ω)-minimizers of χλ.
Similarly this is for vλ

− using this time the functional χ−
λ . This proves the claim.

Without any loss of generality, we may assume that

χλ

(
vλ
−
)

� χλ

(
uλ
+

)
. (4.75)
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The analysis is similar, if the opposite inequality holds. Because of the claim, we can find
� ∈ (0, 1) small, such that

χλ

(
vλ
−
)

� χλ

(
uλ
+

)
< inf

{
χλ(u) :

∥∥∥u − uλ
+

∥∥∥ = �
}
= ηλ (4.76)

(see Gasiński and Papageorgiou [17, proof of Theorem 3.4]).
Since χλ is coercive (see (4.65)), it satisfies the Cerami condition. This fact and (4.76)

permit the use of the mountain pass theorem (see Theorem 2.1). So, we can find y0 ∈ Kχλ ⊆
[vλ

−, u
λ
+] (see (4.71)), such that

ηλ � χλ

(
y0
)
, (4.77)

so

y0 /∈
{
vλ
−, u

λ
+

}
(4.78)

(see (4.76)).
Since y0 is a critical point of χλ of mountain pass type, we have

C1
(
χλ, y0

)
/= 0 (4.79)

(see e.g., Chang [20]). On the other hand, hypothesis Hf(iii) implies that we can find ξ̂1 > 0,
such that

f(z, ζ)ζ − μF(z, ζ) � ξ̂1ζ
2 for almost all z ∈ Ω, all |ζ| � δ1, (4.80)

for some δ1 � δ0. This combined with hypothesis Hg(iii) implies that

μλG(z, ζ) + μF(z, ζ) � λg(z, ζ)ζ + f(z, ζ)ζ

> 0 for almost all z ∈ Ω, all |ζ| � δ2,
(4.81)

for some δ2 � δ1 and

ess sup
Ω

λG(·, δ2) + F(·, δ2) > 0. (4.82)

Hence invoking Proposition 2.1 of Jiu and Su [21], we infer that

Ck

(
χλ, 0

)
= 0 ∀k � 0. (4.83)

Combining (4.79) and (4.83), we have that y0 /= 0. Since y0 ∈ [vλ
−, u

λ
+], the extremality of vλ

−
and uλ

+ implies that y0 must be a nodal solution of problem ((P)λ), and the regularity theory
(see Struwe [13]) implies that y0 ∈ C1

0(Ω).
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[7] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, vol. 9 of Series in Mathematical Analysis and
Applications, Chapman & Hall/CRC Press, Boca Raton, Fla, USA, 2006.
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This paper deals with solvability of the third-order nonlinear partial difference equation with
delays Δn(am,nΔ2

m(xm,n+bm,nxm−τ0 ,n−σ0))+f(m,n, xm−τ1,m,n−σ1,n , . . . , xm−τk,m,n−σk,n) = cm,n, m ≥ m0, n ≥
n0. With the help of the Banach fixed-point theorem, the existence results of uncountably many
bounded positive solutions for the partial difference equation are given; some Mann iterative
schemes with errors are suggested, and the error estimates between the iterative schemes and
the bounded positive solutions are discussed. Three nontrivial examples illustrating the results
presented in this paper are also provided.

1. Introduction and Preliminaries

In the past twenty years many authors studied the oscillation, nonoscillation, asymptotic
behavior, and solvability for various neutral delay difference and partial difference equations;
see, for example, [1–14] and the references cited therein.

By using the Banach fixed-point theorem, Cheng [2] investigated the existence of a
nonoscillatory solution for the second-order neutral delay difference equation with positive
and negative coefficients

Δ2(xn + pxn−m
)
+ pnxn−k − qnxn−l = 0, n ≥ n0 (1.1)
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under the condition p ∈ R\{−1}. Applying a nonlinear alternative of Leray-Schauder type for
condensing operators, Agarwal et al. [1] discussed the existence of a bounded nonoscillatory
solution for the discrete equation:

Δ
(
anΔ

(
xn + pxn−τ

))
+ F(n + 1, xn+1−σ) = 0, n ≥ 0. (1.2)

Liu et al. [6] introduced the second-order nonlinear neutral delay difference equation

Δ(anΔ(xn + bxn−τ)) + f(n, xn−d1n , xn−d2n , . . . , xn−dkn) = cn, n ≥ 0 (1.3)

with respect to all b ∈ R and gave the existence of uncountably many bounded nonoscillatory
solutions for (1.3) by utilizing the Banach fixed-point theorem. Kong et al. [3] investigated a
class of BVPs for the third-order functional difference equation

Δ3xn + anf
(
n, xw(n)

)
= 0, n ≥ 0 (1.4)

and established the existence of positive solutions for (1.4) under certain conditions. Using
the Schauder fixed-point theorem, Yan and Liu [12] studied the existence of a bounded
nonoscillatory solution for third order nonlinear delay difference equation

Δ3xn + f(n, xn, xn−r) = 0, n ≥ n0 (1.5)

and provided also a necessary and sufficient condition for the existence of a bounded
nonoscillatory solution of (1.5).

Karpuz and Öcalan [4] discussed the first-order linear partial difference equation:

xm+1,n + xm,n+1 − xm,n + pm,nxm−k,n−l = 0, (m,n) ∈ Z0,0, (1.6)

where {pm,n}(m,n)∈Z0,0
is a nonnegative sequence and k, l ∈ N1 and obtained sufficient

conditions under which every solution of (1.6) is oscillatory. Yang and Zhang [14] considered
oscillations of the partial difference equation with several nonlinear terms of the form

xm+1,n + xm,n+1 − xm,n +
h∑
i=1

pi(m,n)|xm−ki,n−li |αi sgnxm−ki,n−li = 0 (1.7)

and established some new oscillatory criteria by making use of frequency measures. Wong
and Agarwal [10] considered the partial difference equations

xm+1,n + βm,nxm,n+1 − δm,nxm,n + p(m,n, xm−k,n−l) = Q(m,n, xm−k,n−l), m ≥ m0, n ≥ n0,
(1.8)

xm+1,n + βm,nxm,n+1 − δm,nxm,n +
τ∑
i=1

pi(m,n, xm−k,n−l) =
τ∑
i=1

Q(m,n, xm−k,n−l), m ≥ m0, n ≥ n0

(1.9)
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and offered sufficient conditions for the oscillation of all solutions for (1.8) and (1.9),
respectively. Wong [9] established the existence of eventually positive and monotone
decreasing solutions for the partial difference inequalities

ΔmΔnxm,n +
r∑
i=1

pi
(
m,n, xgi(m),hi(n)

) ≥ (≤)
r∑
i=1

Qi

(
m,n, xgi(m),hi(n)

)
, m ≥ m0, n ≥ n0, (1.10)

where gi(m) and hi(m) are some deviating arguments for 1 ≤ i ≤ τ .
However, to the best of our knowledge, there is no literature referred to the following

third order nonlinear partial difference equation with delays:

Δn

(
am,nΔ2

m(xm,n + bm,nxm−τ0,n−σ0)
)
+ f
(
m,n, xm−τ1,m,n−σ1,n , . . . , xm−τk,m,n−σk,n

)

= cm,n, m ≥ m0, n ≥ n0,

(1.11)

where m0, n0 ∈ N0, k, τ0, σ0 ∈ N, {am,n}(m,n)∈Nm0 ,n0
, {bm,n}(m,n)∈Nm0 ,n0

, {cm,n}(m,n)∈Nm0 ,n0
are real

sequences with am,n /= 0, bm,n /= ± 1 for (m,n) ∈ Nm0,n0 , f : Nm0,n0 × R
k → R and {τl,m, σl,n :

(m,n) ∈ Nm0,n0 , l ∈ {1, 2, . . . , k}} ⊆ Z with

lim
m→∞

(m − τl,m) = lim
n→∞

(n − σl,n) = +∞, l ∈ {1, 2, . . . , k}. (1.12)

The aim of this paper is to establish three sufficient conditions of the existence of
uncountably many bounded positive solutions for (1.11) by using the Banach fixed-point
theorem, to suggest some Mann iterative methods with errors for these bounded positive
solutions and to compute the error estimates between the bounded positive solutions and
the sequences generated by the Mann iterative methods with errors. In order to explain the
results presented in this paper, three nontrivial examples are constructed.

Throughout this paper, the forward partial difference operators Δm and Δn are defined
by Δmxm,n = xm+1,n − xm,n and Δnxm,n = xm,n+1 − xm,n, respectively the second and third-
order partial difference operators are defined by Δ2

mxm,n = Δm(Δmxm,n) and ΔnΔ2
mxm,n =

Δn(Δ2
mxm,n), respectively. Let R = (−∞,+∞), N and Z denote the sets of all positive integers

and integers, respectively,

N0 = {0} ∪ N, Ns = {n : n ∈ N0 with n ≥ s}, s ∈ N0,

Ns,t = {(m,n) : m,n ∈ N0 with m ≥ s, n ≥ t}, s, t ∈ N0,

Zs,t = {(m,n) : m,n ∈ Z with m ≥ s, n ≥ t}, s, t ∈ Z,

α = min{m − τ0, m − τl,m : 1 ≤ l ≤ k,m ∈ Nm0},
β = min{n − σ0, n − σl,n : 1 ≤ l ≤ k, n ∈ Nn0}.

(1.13)
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l∞α,β represents the Banach space of all bounded sequences on Zα,β with the norm

‖x‖ = sup
m,n∈Zα,β

|xm,n| for x = {xm,n}(m,n)∈Zα,β
∈ l∞α,β,

A(N,M) =
{
x = {xm,n}(m,n)∈Zα,β

∈ l∞α,β : N ≤ xm,n ≤ M, (m,n) ∈ Zα,β

}
for M > N > 0.

(1.14)

It is not difficult to see that A(N,M) is a bounded closed and convex subset of the Banach
space l∞

α,β
. By a solution of (1.11), we mean a sequence {xm,n}(m,n)∈Zα,β

with positive integers
m1 ≥ m0 + τ0 + |α| and n1 ≥ n0 + σ0 + |β| such that (1.11) is satisfied for all m ≥ m1 and n ≥ n1.

Lemma 1.1 (see [15]). Let {α(n)}n∈N0
, {β(n)}n∈N0

, {γ(n)}n∈N0
, and {t(n)}n∈N0

be nonnegative
sequences satisfying the inequality

α(n + 1) ≤ (1 − t(n))α(n) + t(n)β(n) + γ(n), n ∈ N0, (1.15)

where {t(n)}n∈N0
⊂ [0, 1] with

∑∞
n=0 t(n) = +∞, limn→∞β(n) = 0 and

∑∞
n=0 γ(n) < +∞. Then

limn→∞α(n) = 0.

2. Existence of Uncountably Many Bounded Positive Solutions and
Mann Iterative Schemes with Errors

Utilizing the Banach fixed-point theorem, we now investigate the existence of uncountably
many bounded positive solutions for (1.11), suggest the Mann type iterative schemes with
errors and discuss the error estimates between the bounded positive solutions and the
sequences generated by the Mann iterative schemes.

Theorem 2.1. Assume that there exists positive constants M and N, nonnegative constants b1 and
b2, and nonnegative sequences {Pm,n}(m,n)∈Nm0 ,n0

and {Qm,n}(m,n)∈Nm0 ,n0
satisfying

b1 + b2 < 1, N < [1 − (b1 + b2)]M, (2.1)

−b2 ≤ bm,n ≤ b1, eventually, (2.2)

∣∣f(m,n, u1, u2, . . . , uk) − f(m,n, u1, u2, . . . , uk)
∣∣ ≤ Pm,n max{|ul − ul| : 1 ≤ l ≤ k},

(m,n, ul, ul) ∈ Nm0,n0 × [N,M]2, 1 ≤ l ≤ k,
(2.3)

∣∣f(m,n, u1, u2, . . . , uk)
∣∣ ≤ Qm,n, (m,n, ul) ∈ Nm0,n0 × [N,M], 1 ≤ l ≤ k; (2.4)

∞∑
j=m0

∞∑
i=j

sup
n∈Nn0

{
1

|ai,n|
∞∑
t=n

max{Pi,t, Qi,t, |ci,t|}
}

< +∞. (2.5)
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Then

(a) for any L ∈ (N + b1M, (1 − b2)M), there exist θ ∈ (0, 1), m1 ≥ m0 + τ0 + |α| and n1 ≥
n0 + σ0 + |β| such that for any x(0) = {xm,n(0)}(m,n)∈Zα,β

∈ A(N,M), the Mann iterative
sequence with errors {x(s)}s∈N0

= {xm,n(s)}(m,n,s)∈Zα,β×N0
generated by the scheme:

xm,n(s + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 − α(s) − β(s)

]
xm,n(s) + α(s)

×
⎧
⎨
⎩L − bm,nxm−τ0,n−σ0(s) +

∞∑
j=m

∞∑
i=j

1
ai,n

×
∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t(s), . . . , xi−τk,i,t−σk,t(s)

) − ci,t
]
⎫
⎬
⎭

+β(s)γm,n(s), (m,n) ∈ Zm1,n1 , s ∈ N0,
[
1 − α(s) − β(s)

]
xm1 ,n1

(s) + α(s)

×
⎧
⎨
⎩L − bm1,n1xm1−τ0,n1−σ0(s) +

∞∑
j=m1

∞∑
i=j

1
ai,n1

∞∑
t=n1

×[f(i, t, xi−τ1,i ,t−σ1,t(s), . . . , xi−τk,i,t−σk,t(s)
) − ci,t

]
⎫
⎬
⎭

+β(s)γm1,n1(s), (m,n) ∈ Zα,β \ Zm1,n1 , s ∈ N0,

(2.6)

converges to a bounded positive solution x ∈ A(M,N) of (1.11) and has the following error estimate:

‖x(s + 1) − x‖ ≤ [1 − (1 − θ)α(s)]‖x(s) − x‖ + 2Mβ(s), s ∈ N0, (2.7)

where {γ(s)}s∈N0
is an arbitrary sequence inA(M,N), {α(s)}s∈N0

and {β(s)}s∈N0
are any sequences

in [0, 1] such that

∞∑
s=0

α(s) = +∞, (2.8)

∞∑
s=0

β(s) < +∞ or there exists a sequence {ξ(s)}s∈N0
⊆ [0,+∞) satisfying

β(s) = ξ(s)α(s), s ∈ N0, lim
s→∞

ξ(s) = 0;

(2.9)

(b) (1.11) possesses uncountably many bounded positive solutions in A(M,N).
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Proof. First of all we show that (a) holds. Set L ∈ (N + b1M, (1 − b2)M). It follows from (2.1),
(2.2), and (2.5) that there exist θ ∈ (0, 1), m1 ≥ m0 + τ0 + |α| and n1 ≥ n0 + σ0 + |β| such that

θ = b1 + b2 +
∞∑

j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

Pi,t

}
, (2.10)

−b2 ≤ bm,n ≤ b1, (m,n) ∈ Nm1,n1 , (2.11)

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≤ min{(1 − b2)M − L, L − b1M −N}. (2.12)

Define a mapping TL : A(N,M) → l∞
α,β

by

TLxm,n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L − bm,nxm−τ0,n−σ0 +
∞∑
j=m

∞∑
i=j

1
ai,n

×
∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]
, (m,n) ∈ Zm1,n1 ,

TLxm1,n1 , (m,n) ∈ Zα,β \ Zm1,n1

(2.13)

for each x = {xm,n}(m,n)∈Zα,β
∈ A(N,M). By employing (2.1)–(2.4) and (2.10)–(2.13), we infer

that for x = {xm,n}(m,n)∈Zα,β
, y = {ym,n}(m,n)∈Zα,β

∈ A(N,M) and (m,n) ∈ Zm1,n1

∣∣TLxm,n − TLym,n

∣∣ =
∣∣∣∣∣∣
bm,n

(
xm−τ0,n−σ0 − ym−τ0,n−σ0

)

−
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)

−f(i, t, yi−τ1,i ,t−σ1,t , . . . , yi−τk,i,t−σk,t

)]
∣∣∣∣∣∣

≤ |bm,n|
∣∣xm−τ0,n−σ0 − ym−τ0,n−σ0

∣∣

+
∞∑
j=m

∞∑
i=j

1
|ai,n|

∞∑
t=n

∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)

−f(i, t, yi−τ1,i ,t−σ1,t , . . . , yi−τk,i,t−σk,t

)∣∣

≤ (b1 + b2)
∥∥x − y

∥∥ +
∞∑
j=m

∞∑
i=j

1
|ai,n|

×
∞∑
t=n

Pi,t max
{∣∣xi−τl,i ,t−σl,t − yi−τl,i,t−σl,t

∣∣ : 1 ≤ l ≤ k
}
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≤
⎛
⎝b1 + b2 +

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠∥∥x − y

∥∥ = θ
∥∥x − y

∥∥,

TLxm,n = L − bm,nxm−τ0,n−σ0 +
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]

≤ L + b2M +
∞∑
j=m

∞∑
i=j

1
|ai,n|

∞∑
t=n

[∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)∣∣ + |ci,t|
]

≤ L + b2M +
∞∑

j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≤ L + b2M + min{(1 − b2)M − L, L − b1M −N} ≤ M,

TLxm,n = L − bm,nxm−τ0,n−σ0 +
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]

≥ L − b1M −
∞∑
j=m

∞∑
i=j

1
|ai,n|

∞∑
t=n

[∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)∣∣ + |ci,t|
]

≥ L − b1M −
∞∑

j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≥ L − b1M − min{(1 − b2)M − L, L − b1M −N} ≥ N,

(2.14)

which lead to

TL(A(N,M)) ⊆ A(N,M),
∥∥TLx − TLy

∥∥ ≤ θ
∥∥x − y

∥∥, x, y ∈ A(N,M). (2.15)

Consequently, (2.15) means that TL is a contraction mapping in A(N,M) and it has a unique
fixed-point x = {xm,n}(m,n)∈Zα,β

∈ A(N,M), which together with (2.13) gives that for (m,n) ∈
Zm1,n1

xm,n = L − bm,nxm−τ0,n−σ0 +
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]
, (2.16)

which yields that for (m,n) ∈ Zm1,n1

Δm(xm,n + bm,nxm−τ0,n−σ0) = −
∞∑
i=m

1
ai,n

∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]
,

Δ2
m(xm,n + bm,nxm−τ0,n−σ0) =

1
am,n

∞∑
t=n

[
f
(
m, t, xm−τ1,m,t−σ1,t , . . . , xm−τk,m,t−σk,t

) − cm,t

]
,

Δn

(
am,nΔ2

m(xm,n + bm,nxm−τ0,n−σ0)
)
= −f(m,n, xm−τ1,m,n−σ1,t , . . . , xm−τk,m,t−σk,t

)
+ cm,n,

(2.17)

that is, x = {xm,n}(m,n)∈Zα,β
is a bounded positive solution of (1.11) in A(N,M).
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Using (2.6), (2.13), and (2.15), we infer that for any s ∈ N0 and (m,n) ∈ Zm1,n1

|xm,n(s + 1) − xm,n| =
∣∣∣∣∣∣
[
1 − α(s) − β(s)

]
xm,n(s) + α(s)

×
⎧
⎨
⎩L − bm,nxm−τ0,n−σ0(s)

+
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t(s), . . . , xi−τk,i,t−σk,t(s)

) − ci,t
]
⎫
⎬
⎭

+β(s)γm,n(s) − xm,n

∣∣∣∣∣∣

≤ [1 − α(s) − β(s)
]|xm,n(s) − xm,n| + α(s)|TLxm,n(s) − TLxm,n|

+ β(s)
∣∣γm,n(s) − xm,n

∣∣

≤ [1 − α(s) − β(s)
]‖x(s) − x‖ + α(s)θ‖x(s) − x‖ + 2Mβ(s)

≤ [1 − (1 − θ)α(s)]‖x(s) − x‖ + 2Mβ(s),
(2.18)

which yields that

‖x(s + 1) − x‖ ≤ [1 − (1 − θ)α(s)]‖x(s) − x‖ + 2Mβ(s), s ∈ N0. (2.19)

That is, (2.7) holds. Consequently, Lemma 1.1 and (2.7)–(2.9) imply that lims→∞x(s) = x.
Next we show that (b) holds. Let L1, L2 ∈ (N+b1M, (1−b2)M) and let L1 /=L2. As in the

proof of (a), we infer that for each i ∈ {1, 2}, there exist θi, mi+1, ni+1 and TLi satisfying (2.10)–
(2.13), where θ, m1, n1, L and TL are replaced by θi, mi+1, ni+1, Li, and TLi , respectively, and
the mapping TLi has a fixed-point xi = {xi

m,n}(m,n)∈Zα,β
∈ A(N,M), which is a bounded positive

solution of (1.11), that is,

x1
m,n = L1 − bm,nx

1
m−τ0,n−σ0

+
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)
− ci,t

]
, (m,n) ∈ Zm2,n2,

x2
m,n = L2 − bm,nx

2
m−τ0,n−σ0

+
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)
− ci,t

]
, (m,n) ∈ Zm3,n3 .

(2.20)
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In order to show that the set of bounded positive solutions of (1.11) is uncountable, it is
sufficient to prove that x1 /=x2. It follows from (2.3), (2.10), (2.11), (2.20) that for (m,n) ∈
Zmax{m2,m3},max{n2,n3}

∣∣∣x1
m,n − x2

m,n

∣∣∣ =
∣∣∣∣∣∣
L1 − L2 − bm,n

(
x1
m−τ0,n−σ0

− x2
m−τ0,n−σ0

)

+
∞∑
j=m

∞∑
i=j

1
ai,n

∞∑
t=n

[
f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)

−f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)]
∣∣∣∣∣∣

≥ |L1 − L2| − |bm,n|
∣∣∣x1

m−τ0,n−σ0
− x2

m−τ0,n−σ0

∣∣∣

−
∞∑
j=m

∞∑
i=j

1
|ai,n|

∞∑
t=n

[∣∣∣f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)

−f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)∣∣∣
]

≥ |L1 − L2| − (b1 + b2)
∥∥∥x1 − x2

∥∥∥

−
∞∑
j=m

∞∑
i=j

1
|ai,n|

∞∑
t=n

Pi,t max
{∣∣∣x1

i−τl,i,t−σl,t
− x2

i−τl,i ,t−σl,t

∣∣∣ : 1 ≤ l ≤ k
}

≥ |L1 − L2| −
⎛
⎝b1 + b2 +

∞∑
j=m

∞∑
i=j

1
|ai,n|

∞∑
t=n

Pi,t

⎞
⎠
∥∥∥x1 − x2

∥∥∥

≥ |L1 − L2| −
⎛
⎝b1 + b2 +

∞∑
j=max{m2,m3}

∞∑
i=j

sup
n∈Nmax{n2 ,n3}

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠
∥∥∥x1 − x2

∥∥∥

≥ |L1 − L2| − max{θ1, θ2}
∥∥∥x1 − x2

∥∥∥,
(2.21)

which implies that ∥∥∥x1 − x2
∥∥∥ ≥ |L1 − L2|

1 + max{θ1, θ2} > 0, (2.22)

that is, x1 /=x2. This completes the proof.

Theorem 2.2. Assume that there exist positive constants M and N, negative constants b1 and b2

and nonnegative sequences {Pm,n}(m,n)∈Nm0 ,n0
and {Qm,n}(m,n)∈Nm0 ,n0

satisfying (2.3)–(2.5) and

b1 < −1, N(1 + b2) > M(1 + b1); (2.23)

b2 ≤ bm,n ≤ b1, eventually. (2.24)
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Then
(a) for any L ∈ (M(1 + b1),N(1 + b2)), there exist θ ∈ (0, 1), m1 ≥ m0 + τ0 + |α| and

n1 ≥ n0 + σ0 + |β| such that for each x(0) = {xm,n(0)}(m,n)∈Zα,β
∈ A(N,M), the Mann iterative

sequence with errors {x(s)}s∈N0
= {xm,n(s)}(m,n,s)∈Zα,β×N0

generated by the scheme:

xm,n(s + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 − α(s) − β(s)

]
xm,n(s) + α(s)

×
⎧
⎨
⎩

L

bm+τ0,n+σ0

− xm+τ0,n+σ0(s)
bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t(s), . . . , xi−τk,i,t−σk,t(s)

) − ci,t
]}

+β(s)γm,n(s), (m,n) ∈ Zm1,n1 , s ∈ N0,
[
1 − α(s) − β(s)

]
xm1,n1(s) + α(s)

×
⎧
⎨
⎩

L

bm1+τ0,n1+σ0

− xm1+τ0,n1+σ0(s)
bm1+τ0,n1+σ0

+
1

bm1+τ0,n1+σ0

∞∑
j=m1+τ0

∞∑
i=j

1
ai,n1+σ0

×
∞∑

t=n1+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t(s), . . . , xi−τk,i,t−σk,t(s)

) − ci,t
]}

+β(s)γm1,n1(s), (m,n) ∈ Zα,β \ Zm1,n1 , s ∈ N0

(2.25)

converges to a bounded positive solution x ∈ A(N,M) of (1.11) and has the error estimate (2.7),
where {γ(s)}s∈N0

is an arbitrary sequence inA(N,M), {α(s)}s∈N0
and {β(s)}s∈N0

are any sequences
in [0, 1] satisfying (2.8) and (2.9);

(b) (1.11) possesses uncountably many bounded positive solutions in A(M,N).

Proof. First of all we show (a). Taking L ∈ (M(1+b1),N(1+b2)), from (2.5), (2.23), and (2.24)
we infer that there exist θ ∈ (0, 1), m1 ≥ m0 + τ0 + |α| and n1 ≥ n0 + σ0 + |β| such that

θ = − 1
b1

⎛
⎝1 +

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠, (2.26)

b2 ≤ bm,n ≤ b1, (m,n) ∈ Nm1,n1 , (2.27)

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≤ min
{
L −M(1 + b1), b1N

(
1 +

1
b2

)
− b1L

b2

}
. (2.28)

Define a mapping TL : A(N,M) → l∞
α,β

by

TLxm,n =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L

bm+τ0,n+σ0

− xm+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]
, (m,n) ∈ Zm1,n1 ,

TLxm1,n1 , (m,n) ∈ Zα,β \ Zm1,n1

(2.29)
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for each x = {xm,n}(m,n)∈Zα,β
∈ A(N,M). It follows from (2.3), (2.4), (2.23), (2.24), and (2.26)–

(2.29) that for x = {xm,n}(m,n)∈Zα,β
, y = {ym,n}(m,n)∈Zα,β

∈ A(N,M) and (m,n) ∈ Zm1,n1 :

∣∣TLxm,n − TLym,n

∣∣ =
∣∣∣∣∣∣
xm+τ0,n+σ0 − ym+τ0,n+σ0

bm+τ0,n+σ0

− 1
bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)

−f(i, t, yi−τ1,i ,t−σ1,t , . . . , yi−τk,i,t−σk,t

)]
∣∣∣∣∣

≤ −
∣∣xm+τ0,n+σ0 − ym+τ0,n+σ0

∣∣
bm+τ0,n+σ0

− 1
bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)

−f(i, t, yi−τ1,i ,t−σ1,t , . . . , yi−τk,i,t−σk,t

)∣∣

≤ −
∥∥x − y

∥∥
b1

− 1
b1

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

Pi,t max
{∣∣xi−τl,i,t−σl,t − yi−τl,i ,t−σl,t

∣∣ : 1 ≤ l ≤ k
}

≤ − 1
b1

⎛
⎝1 +

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠∥∥x − y

∥∥ = θ
∥∥x − y

∥∥,

TLxm,n =
L

bm+τ0,n+σ0

− xm+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]

≤ L

b1
− M

b1
− 1
b1

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

[∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)∣∣ + |ci,t|
]

≤ L

b1
− M

b1
− 1
b1

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

∞∑
t=n+σ0

(Qi,t + |ci,t|)

≤ L

b1
− M

b1
− 1
b1

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≤ L

b1
− M

b1
− 1
b1

min
{
L −M(1 + b1), b1N

(
1 +

1
b2

)
− b1L

b2

}
≤ M,
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TLxm,n =
L

bm+τ0,n+σ0

− xm+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]

≥ L

b2
− N

b2
+

1
b1

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

[∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)∣∣ + |ci,t|
]

≥ L

b2
− N

b2
+

1
b1

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

∞∑
t=n+σ0

(Qi,t + |ci,t|)

≥ L

b2
− N

b2
+

1
b1

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≥ L

b2
− N

b2
+

1
b1

min
{
L −M(1 + b1), b1N

(
1 +

1
b2

)
− b1L

b2

}
≥ N,

(2.30)

which imply that (2.15) holds. Consequently, (2.15) ensures that TL is a contraction mapping
in A(N,M) and it has a unique fixed-point x = {xm,n}(m,n)∈Zα,β

∈ A(N,M), which together
with (2.29) gives that

xm,n =
L

bm+τ0,n+σ0

− xm+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]
, (m,n) ∈ Zm1,n1 ,

(2.31)

which yields that for (m,n) ∈ Zm1,n1

Δm(xm,n + bm,nxm−τ0,n−σ0) = −
∞∑
i=m

1
ai,n

∞∑
t=n

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]
,

Δ2
m(xm,n + bm,nxm−τ0,n−σ0) =

1
am,n

∞∑
t=n

[
f
(
m, t, xm−τ1,m,t−σ1,t , . . . , xm−τk,m,t−σk,t

) − cm,t

]
,

Δn

(
am,nΔ2

m(xm,n + bm,nxm−τ0,n−σ0)
)
= −f(m,n, xm−τ1,m,n−σ1,t , . . . , xm−τk,m,t−σk,t

)
+ cm,n,

(2.32)

which implies that x = {xm,n}(m,n)∈Zα,β
is a bounded positive solution of (1.11) in A(N,M).
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It follows from (2.15), (2.25) and (2.29) that for any s ∈ N0 and (m,n) ∈ Zm1,n1

|xm,n(s + 1) − xm,n| =
∣∣∣∣∣∣
[
1 − α(s) − β(s)

]
xm,n(s) + α(s)

×
⎧
⎨
⎩

L

bm+τ0,n+σ0

− xm+τ0,n+σ0(s)
bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

×
∞∑

j=m+τ0

∞∑
i=j

1
ai,n+σ0

∞∑
t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t(s), . . . , xi−τk,i,t−σk,t(s)

) − ci,t
]
⎫
⎬
⎭

+β(s)γm,n(s) − xm,n

∣∣∣∣∣∣

≤ [1 − α(s) − β(s)
]|xm,n(s) − xm,n| + α(s)|TLxm,n(s) − TLxm,n|

+ β(s)
∣∣γm,n(s) − xm,n

∣∣

≤ [1 − α(s) − β(s)
]‖x(s) − x‖ + α(s)θ‖x(s) − x‖ + 2Mβ(s)

≤ [1 − (1 − θ)α(s)]‖x(s) − x‖ + 2Mβ(s),
(2.33)

which yields (2.7). Thus Lemma 1.1 and (2.7)–(2.9) ensure that lims→∞x(s) = x.
Next we show that (b) holds. Let L1, L2 ∈ (M(1+b1), N(1+b2)) let and L1 /=L2. As in the

proof of (a), we infer that for each i ∈ {1, 2}, there exist θi, mi+1, ni+1 and TLi satisfying (2.26)–
(2.29), where θ, m1, n1, L and TL are replaced by θi, mi+1, ni+1, Li and TLi , respectively, and
the mapping TLi has a fixed-point xi = {xi

m,n}(m,n)∈Zα,β
∈ A(N,M), which is a bounded positive

solution of (1.11), that is:

x1
m,n =

L1

bm+τ0,n+σ0

− x1
m+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)
− ci,t

]
, (m,n) ∈ Zm2,n2 ,

(2.34)

x2
m,n =

L2

bm+τ0,n+σ0

− x2
m+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)
− ci,t

]
, (m,n) ∈ Zm3,n3 .

(2.35)
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In order to show that the set of bounded positive solutions of (1.11) is uncountable, it is
sufficient to prove that x1 /=x2. It follows from (2.3), (2.26), (2.27), (2.34), and (2.35) that for
(m,n) ∈ Zmax{m2,m3},max{n2,n3}

∣∣∣x1
m,n − x2

m,n

∣∣∣ =
∣∣∣∣∣∣
L1 − L2

bm+τ0,n+σ0

− x1
m+τ0,n+σ0

− x2
m+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)
− f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)]∣∣∣∣∣

≥ − |L1 − L2|
bm+τ0,n+σ0

+

∣∣x1
m+τ0,n+σ0

− x2
m+τ0,n+σ0

∣∣
bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

∣∣∣f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)
− f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)∣∣∣

≥ −|L1 − L2|
b2

+

∥∥x1 − x2
∥∥

b1
+

1
b1

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

Pi,t max
{∣∣∣x1

i−τ1,i ,t−σ1,t
− x2

i−τ1,i ,t−σ1,t

∣∣∣ : 1 ≤ l ≤ k
}

≥ −|L1 − L2|
b2

+
1
b1

⎛
⎝1 +

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

∞∑
t=n+σ0

Pi,t

⎞
⎠
∥∥∥x1 − x2

∥∥∥

≥ −|L1 − L2|
b2

+
1
b1

⎛
⎝1 +

∞∑
j=max{m2,m3}

∞∑
i=j

sup
n∈Nmax{n2 ,n3}

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠
∥∥∥x1 − x2

∥∥∥

≥ −|L1 − L2|
b2

− max{θ1, θ2}
∥∥∥x1 − x2

∥∥∥,
(2.36)

which implies that

∥∥∥x1 − x2
∥∥∥ ≥ − |L1 − L2|

b2(1 + max{θ1, θ2}) > 0, (2.37)

that is, x1 /=x2. This completes the proof.

Theorem 2.3. Assume that there exist positive constants M and N, nonnegative constants b1 and
b2, and nonnegative sequences {Pm,n}(m,n)∈Nm0 ,n0

and {Qm,n}(m,n)∈Nm0 ,n0
satisfying (2.3)–(2.5), (2.24)

and

1 < b2, b1 < b2
2, Mb1

(
b2

2 − b1

)
> Nb2

(
b2

1 − b2

)
. (2.38)
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Then
(a) for any L ∈ (b1N + b1M/b2 , b2M+ b2N/b1 ), there exist θ ∈ (0, 1),m1 ≥ m0 + τ0 + |α|

and n1 ≥ n0 + σ0 + |β| such that for each x(0) = {xm,n(0)}(m,n)∈Zα,β
∈ A(N,M), the Mann iterative

sequence with errors {x(s)}s∈N0
= {xm,n(s)}(m,n,s)∈Zα,β×N0

generated by (2.25) converges to a bounded
positive solution x ∈ A(N,M) of (1.11) and has the error estimate (2.7), where {γ(s)}s≥0 is an
arbitrary sequence in A(N,M), {α(s)}s≥0 and {β(s)}s≥0 are any sequences in [0, 1] satisfying (2.8)
and (2.9);

(b) (1.11) possesses uncountably many bounded positive solutions in A(M,N).

Proof. Set L ∈ (b1N + b1M/b2), b2M + b2N/b1). It follows from (2.5), (2.24), and (2.38) that
there exist θ ∈ (0, 1), m1 ≥ m0 + τ0 + |α| and n1 ≥ n0 + σ0 + |β| satisfying (2.27):

θ =
1
b2

⎛
⎝1 +

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠, (2.39)

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≤ min
{
b2M − L +

b2N

b1
,
b2L

b1
−M − b2N

}
. (2.40)

Let the mapping TL : A(N,M) → l∞
α,β

be defined by (2.29). It follows from (2.3), (2.4), (2.24),
(2.27), (2.29), and (2.38)–(2.40) that for x = {xm,n}(m,n)∈Zα,β

, y = {ym,n}(m,n)∈Zα,β
∈ A(N,M) and

(m,n) ∈ Zm1,n1

∣∣TLxm,n − TLym,n

∣∣ =
∣∣∣∣∣∣
xm+τ0,n+σ0 − ym+τ0,n+σ0

bm+τ0,n+σ0

− 1
bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)

−f(i, t, yi−τ1,i ,t−σ1,t , . . . , yi−τk,i,t−σk,t

)]
∣∣∣∣∣

≤
∣∣xm+τ0,n+σ0 − ym+τ0,n+σ0

∣∣
bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)

−f(i, t, yi−τ1,i ,t−σ1,t , . . . , yi−τk,i,t−σk,t

)∣∣

≤
∥∥x − y

∥∥
b2

+
1
b2

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

Pi,t max
{∣∣xi−τl,i ,t−σl,t − yi−τl,i ,t−σl,t

∣∣ : 1 ≤ l ≤ k
}

≤ 1
b2

⎛
⎝1 +

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠∥∥x − y

∥∥ = θ
∥∥x − y

∥∥,
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TLxm,n =
L

bm+τ0,n+σ0

− xm+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0,m

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]

≤ L

b2
− N

b1
+

1
b2

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

[∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)∣∣ + |ci,t|
]

≤ L

b2
− N

b1
+

1
b2

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1

|ai,n|
∞∑
t=n

(Qi,t + |ci,t|)
}

≤ L

b2
− N

b1
+

1
b2

min
{
b2M − L +

b2N

b1
,
b2L

b1
−M − b2N

}
≤ M,

TLxm,n =
L

bm+τ0,n+σ0

− xm+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0,m

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]

≥ L

b1
− M

b2
− 1
b2

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

[∣∣f(i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

)∣∣ + |ci,t|
]

≥ L

b1
− M

b2
− 1
b2

∞∑
j=m1

∞∑
i=j

sup
n∈Nn1

{
1
ai,n

∞∑
t=n

(Qi,t + |ci,t|)
}

≥ L

b1
− M

b2
− 1
b2

min
{
b2M − L +

b2N

b1
,
b2L

b1
−M − b2N

}
≥ N,

(2.41)

which imply that (2.15) holds. Consequently (2.15) ensures that TL is a contraction mapping,
and hence it has a unique fixed-point x = {xm,n}(m,n)∈Zα,β

∈ A(N,M), which gives that

xm,n =
L

bm+τ0,n+σ0

− xm+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, xi−τ1,i ,t−σ1,t , . . . , xi−τk,i,t−σk,t

) − ci,t
]
, (m,n) ∈ Zm1,n1 .

(2.42)

As in the proof of Theorem 2.2, it is easy to verify that x = {xm,n}(m,n)∈Zα,β
is a bounded positive

solution of (1.11) in A(N,M); (2.7) holds and lims→∞x(s) = x.
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Next we show that (b) holds. Let L1, L2 ∈ (b1N +b1M/b2 , b2M+b2N/b1) and L1 /=L2.
As in the proof of (a), we infer that for each i ∈ {1, 2}, there exist θi,mi+1, ni+1 and TLi satisfying
(2.27), (2.29), (2.39), and (2.40), where θ, m1, n1, L and TL are replaced by θi, mi+1, ni+1, Li,
and TLi , respectively, and the mapping TLi has a fixed-point xi = {xi

m,n}(m,n)∈Zα,β
∈ A(N,M),

which is a bounded positive solution of (1.11) and satisfies (2.34) and (2.35). In order to
show that the set of bounded positive solutions of (1.11) is uncountable, it is sufficient to
prove that x1 /=x2. It follows from (2.3), (2.27), (2.34), (2.35), and (2.39) that for (m,n) ∈
Zmax{m2,m3},max{n2,n3}

∣∣∣x1
m,n − x2

m,n

∣∣∣ =
∣∣∣∣∣∣
L1 − L2

bm+τ0,n+σ0

− x1
m+τ0,n+σ0

− x2
m+τ0,n+σ0

bm+τ0,n+σ0

+
1

bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
ai,n+σ0

×
∞∑

t=n+σ0

[
f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)

−f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)]
∣∣∣∣∣∣

≥ |L1 − L2|
bm+τ0,n+σ0

−
∣∣x1

m+τ0,n+σ0
− x2

m+τ0,n+σ0

∣∣
bm+τ0,n+σ0

− 1
bm+τ0,n+σ0

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

∣∣∣f
(
i, t, x1

i−τ1,i ,t−σ1,t
, . . . , x1

i−τk,i,t−σk,t

)
− f
(
i, t, x2

i−τ1,i ,t−σ1,t
, . . . , x2

i−τk,i,t−σk,t

)∣∣∣

≥ |L1 − L2|
b1

−
∥∥x1 − x2

∥∥
b2

− 1
b2

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

×
∞∑

t=n+σ0

Pi,t max
{∣∣∣x1

i−τ1,i ,t−σ1,t
− x2

i−τ1,i ,t−σ1,t

∣∣∣ : 1 ≤ l ≤ k
}

≥ |L1 − L2|
b1

− 1
b2

⎛
⎝1 +

∞∑
j=m+τ0

∞∑
i=j

1
|ai,n+σ0 |

∞∑
t=n+σ0

Pi,t

⎞
⎠
∥∥∥x1 − x2

∥∥∥

≥ |L1 − L2|
b1

− 1
b2

⎛
⎝1 +

∞∑
j=max{m2,m3}

∞∑
i=j

sup
n∈Nmax{n2 ,n3}

{
1

|ai,n|
∞∑
t=n

Pi,t

}⎞
⎠
∥∥∥x1 − x2

∥∥∥

≥ |L1 − L2|
b1

− max{θ1, θ2}
∥∥∥x1 − x2

∥∥∥,
(2.43)

which implies that
∥∥∥x1 − x2

∥∥∥ ≥ |L1 − L2|
b1(1 + max{θ1, θ2}) > 0, (2.44)

that is, x1 /=x2. This completes the proof.
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3. Examples

Now we illustrate the results presented in Section 2 with the following three examples. Note
that none of the known results can be applied to the examples.

Example 3.1. Consider the third-order nonlinear partial difference equation with delays:

Δn

(
(−1)mnm4n3Δ2

m

(
xm,n +

(−1)m+n

3
xm−τ0,n−σ0

))
+

√
n

m2(n2 + 1)
x3
m2,n(n+1)/2

−cos
(
m3n5 − lnm

)

(m + 1)2n2
x2
m3−2m,n2−n =

(−1)n sin
(
m2 − 2n

)
√
m5n4 + 1

, m ≥ 1, n ≥ 1,

(3.1)

where τ0, σ0 ∈ N are fixed. Let m0 = n0 = 1, k = 2, b1 = b2 = 1/3, α = min{1−τ0,−1}, β = 1−σ0,
M and let N be two positive constants with M > 3N and

am,n = (−1)mnm4n3, bm,n =
(−1)m+n

3
, cm,n =

(−1)m+n sin
(
m2 − 2n

)
√
m5n4 + 1

,

f(m,n, u, v) =
√
n

m2(n2 + 1)
u3 − cos

(
m3n5 − lnm

)

(m + 1)2n2
v2,

τ1,m = m(1 −m), τ2,m = m
(

3 −m2
)
, σ1,n =

n(1 − n)
2

, σ2,n = n(2 − n),

Pm,n =
3M2√n

m2(n2 + 1)
+

2M

(m + 1)2n2
, Qm,n =

M3√n

m2(n2 + 1)
+

M2

(m + 1)2n2
,

(m,n, u, v) ∈ Nm0,n0 × R
2.

(3.2)

It is easy to verify that (2.1)–(2.4) hold. Note that

∞∑
j=m0

∞∑
i=j

sup
n≥n0

{
1

|ai,n|
∞∑
t=n

max{Pi,t, Qi,t, |ci,t|}
}

=
∞∑

j=m0

∞∑
i=j

sup
n≥n0

{
1

i4n3

∞∑
t=n

max

{
3M2

√
t

i2(t2 + 1)
+

2M

(i + 1)2t2
,

M3
√
t

i2(t2 + 1)
+

M2

(i + 1)2t2
,

∣∣sin
(
i2 − 2t

)∣∣
√
i5t4 + 1

}}

<
(

1 + 2M + 4M2 +M3
)( ∞∑

t=n0

1√
t3

) ∞∑
j=m0

∞∑
i=j

1
i4

< +∞.

(3.3)

Hence the conditions of Theorem 2.1 are fulfilled. It follows from Theorem 2.1 that (3.1)
possesses uncountably many bounded positive solutions in A(N,M). On the other hand, for
any L ∈ (N + (1/3)M, (2/3)M), there exist θ ∈ (0, 1) and m1 ≥ m0 + τ0 + |α|, n1 ≥ n0 + σ0 + |β|
such that the Mann iterative sequence with errors {x(s)}s≥0 generated by (2.6) converges to
a bounded positive solution x ∈ A(N,M) of (3.1) and has the error estimate (2.7), where
{γ(s)}s≥0 is an arbitrary sequence in A(N,M), {α(s)}s≥0 and {β(s)}s≥0 are any sequences in
[0, 1] satisfying (2.8) and (2.9).
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Example 3.2. Consider the third-order nonlinear partial difference equation with delays:

Δn

(
(−1)nm3ln2(m + n)Δ2

m

(
xm,n − 4n + (−1)mn

n + 1
xm−τ0,n−σ0

))

+
x2
m−2,n−3x

3
3m2−2,n5−1

m3n2
=

cos
(
nm3 − √

m
)

√
n3 + 1

, m ≥ 1, n ≥ 1,

(3.4)

where τ0, σ0 ∈ N are fixed. Let m0 = n0 = 1, k = 2, b1 = −2, b2 = −5, α = min{1 − τ0,−1}, β =
min{1 − σ0,−2}, M and let N be two positive constants with M > 4N and

am,n = (−1)nm3 ln2(m + n), bm,n = −4n + (−1)mn
n + 1

, cm,n =
cos
(
nm3 − √

m
)

√
n3 + 1

,

f(m,n, u, v) =
u2v3

m3n2
, τ1,m = 2, τ2,m = −3m2 +m + 2, σ1,n = 3, σ2,n = −n5 + n + 1,

Pm,n =
5M4

m3n2
, Qm,n =

M5

m3n2
, (m,n, u, v) ∈ Nm0,n0 × R

2.

(3.5)

It is clear that (2.3), (2.4), (2.23), and (2.24) hold. Observe that

∞∑
j=m0

∞∑
i=j

sup
n≥n0

{
1

|ai,n|
∞∑
t=n

max{Pi,t, Qi,t, |ci,t|}
}

=
∞∑

j=m0

∞∑
i=j

sup
n≥n0

⎧
⎨
⎩

1

i3 ln2(i + n)

∞∑
t=n

max

⎧
⎨
⎩

5M4

i3t2
,
M5

i3t2
,

∣∣∣cos
(
ti3 − √

i
)∣∣∣

√
t3 + 1

⎫
⎬
⎭

⎫
⎬
⎭

<
1 + 5M4 +M5

ln22

( ∞∑
t=n0

1√
t3

) ∞∑
j=m0

∞∑
i=j

1
i3

< +∞.

(3.6)

That is, the conditions of Theorem 2.2 are fulfilled. Thus Theorem 2.2 ensures that (3.4) has
uncountably many bounded positive solutions in A(N,M). On the other hand, for any L ∈
(−M,−4N), there exist θ ∈ (0, 1) and m1 ≥ m0 + τ0 + |α|, n1 ≥ n0 + σ0 + |β| such that the Mann
iterative sequence with errors {x(s)}s≥0 generated by (2.25) converges to a bounded positive
solution x ∈ A(N,M) of (3.4) and has the error estimate (2.7), where {γ(s)}s≥0 is an arbitrary
sequence in A(N,M),{α(s)}s≥0 and {β(s)}s≥0 are any sequences in [0, 1] satisfying (2.8) and
(2.9).
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Example 3.3. Consider the third-order nonlinear partial difference equation with delays:

Δn

(
(−1)n

(
m5n

)
Δ2

m

(
xm,n +

2mn + 3
mn + 1

xm−τ0,n−σ0

))
+

(
(−1 )m − 1/n

)
x4
m−4,n−3

m3n2 + x2
m2−2m,n3−n

=
(−1)n+m

(
m2 − 3n3)

m5(n7 + 1)
, m ≥ 1, n ≥ 1,

(3.7)

where τ0, σ0 ∈ N are fixed. Let m0 = n0 = 1, k = 2, b1 = 3, b2 = 2, α = min{1 − τ0,−3}, β =
min{1 − σ0,−2}, M and N be two positive constants with M > (14/3)N and

am,n = (−1)n
(
m5n

)
, bm,n =

2mn + 3
mn + 1

, cm,n =
(−1)n+m

(
m2 − 3n3)

m5(n7 + 1)
,

f(m,n, u, v)=

(
(−1)m−1/n

)
u4

m3n2 + v2
, τ1,m=4, τ2,m=m(3 −m), σ1,n=3, σ2,n = −n3 + 2n,

Pm,n =
2M3(2m3n2 + 2M2 + 1

)

(m3n2 +N2)2
, Qm,n =

2M4

m3n2 +N2
, (m,n, u, v) ∈ Nm0,n0 × R

2.

(3.8)

Clearly (2.3), (2.4), (2.24), and (2.38) hold. Notice that

∞∑
j=m0

∞∑
i=j

sup
n≥n0

{
1

|ai,n|
∞∑
t=n

max{Pi,t, Qi,t, |ci,t|}
}

=
∞∑

j=m0

∞∑
i=j

sup
n≥n0

{
1
i5n

∞∑
t=n

max

{
2M3(2i3t2 + 2M2 + 1

)

(i3t2 +N2)2
,

2M4

i3t2 +N2
,

∣∣i2 − 3t3
∣∣

i5(t7 + 1)

}}

< max
{

4, 2M4, 4M3
(

1 +M2
)}( ∞∑

t=n0

1
t2

) ∞∑
j=m0

∞∑
i=j

1
i5

< +∞.

(3.9)

Hence the conditions of Theorem 2.3 are fulfilled. Consequently Theorem 2.3 implies that
(3.7) possesses uncountably many bounded positive solutions in A(N,M). On the other
hand, for any L ∈ (3N+(3/2)M, 2M+(2/3)N), there exist θ ∈ (0, 1) and m1 ≥ m0+τ0+|α|, n1 ≥
n0 + σ0 + |β| such that the Mann iterative sequence with errors {x(s)}s≥0 generated by (2.25)
converges to a bounded positive solution x ∈ A(N,M) of (3.7) and has the error estimate
(2.7), where {γ(s)}s≥0 is an arbitrary sequence in A(N,M), {α(s)}s≥0 and {β(s)}s≥0 are any
sequences in [0, 1] satisfying (2.8) and (2.9).
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We study the uniqueness problems on entire functions and their difference operators or shifts. Our
main result is a difference analogue of a result of Jank-Mues-Volkmann, which is concerned with
the uniqueness of the entire function sharing one finite value with its derivatives. Two relative
results are proved, and examples are provided for our results.

1. Introduction and Main Results

Throughout this paper, we assume the reader is familiar with the standard notations and
fundamental results of Nevanlinna theory of meromorphic functions (see, e.g., [1–3]). In
what follows, a meromorphic function always means meromorphic in the whole complex
plane, and c always means a nonzero complex constant. For a meromorphic function f(z),
we define its shift by f(z + c) and its difference operators by

Δcf(z) = f(z + c) − f(z), Δn
c f(z) = Δn−1

c

(
Δcf(z)

)
, n ∈ N, n ≥ 2. (1.1)

For a meromorphic function f(z), we use S(f) to denote the family of all meromorphic
functions a(z) that satisfy T(r, a) = S(r, f), where S(r, f) = o(T(r, f)), as r → ∞ outside of
a possible exceptional set of finite logarithmic measure. Functions in the set S(f) are called
small functions with respect to f(z).

Let f(z) and g(z) be two meromorphic functions, and let a(z) be a small function with
respect to f(z) and g(z). We say that f(z) and g(z) share a(z) IM, provided that f(z) − a(z)
and g(z) − a(z) have the same zeros (ignoring multiplicities), and we say that f(z) and g(z)
share a(z) CM, provided that f(z) − a(z) and g(z) − a(z) have the same zeros with the same
multiplicities.
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Uniqueness theory of meromorphic functions is an important part of the Nevanlinna
theory. In the past 40 years, a very active subject is the investigation on the uniqueness of the
entire function sharing values with its derivatives, which was initiated by Rubel and Yang
[4]. We first recall the following result by Jank et al. [5].

Theorem A (see [5]). Let f be a nonconstant meromorphic function, and let a/≡ 0 be a finite
constant. If f , f ′, and f ′′ share the value a CM, then f ≡ f ′.

Recently, value distribution in difference analogues of meromorphic functions has
become a subject of some interest (see, e.g., [6–11]). In particular, a few authors started to
consider the uniqueness of meromorphic functions sharing small functions with their shifts
or difference operators (see, e.g., [12, 13]).

In this paper, we consider difference analogues of Theorem A.

Theorem 1.1. Let f(z) be a nonconstant entire function of finite order, and let a(z)(/≡ 0) ∈ S(f) be
a periodic entire function with period c. If f(z), Δcf , and Δ2

cf share a(z) CM, then Δ2
cf = Δcf .

Example 1.2. Let f(z) = ez ln 2 and c = 1. Then, for any a ∈ C, we notice that f(z), Δcf , and
Δ2

cf share a CM and can easily see that Δ2
cf = Δcf . This example satisfies Theorem 1.1.

Remark 1.3. In Example 1.2, we have Δ2
cf = Δcf = f . However, it remains open whether

the claim Δ2
cf = Δcf in Theorem 1.1 can be replaced by Δcf = f in general. In fact, the

next example resulted from our efforts to find an entire function f(z) satisfying Theorem 1.1,
while Δcf /= f .

Example 1.4. Let f(z) = ez ln 2 − 2, a = −1, b = 1, and c = 1. Then we observe that f(z) − a =
ez ln 2 −1,Δcf −b = ez ln 2 −1, and Δ2

cf −b = ez ln 2 −1 share 0 CM. Here, we also get Δ2
cf = Δcf .

From this example, it is natural to ask what happens if f(z) − a(z), Δcf − b(z), and
Δ2

cf − b(z) share 0 CM, where a(z) and b(z) are two (not necessarily distinct) small periodic
entire functions. Considering this question, we prove the following Theorem 1.5, whose proof
is omitted as it is similar to the proof of Theorem 1.1.

Theorem 1.5. Let f(z) be a nonconstant entire function of finite order, and let a(z), b(z)(/≡ 0) ∈
S(f) be periodic entire functions with period c. If f(z) − a(z), Δcf − b(z), and Δ2

cf − b(z) share 0
CM, then Δ2

cf = Δcf .

Now it would be interesting to know what happens if the difference operators of f(z)
are replaced by shifts of f(z) in Theorem 1.5. We prove the following result concerning this
question.

Theorem 1.6. Let f(z) be a nonconstant entire function of finite order, let a(z), b(z) ∈ S(f) be two
distinct periodic entire functions with period c, and let n andm be positive integers satisfying n > m.
If f(z) − a(z), f(z +mc) − b(z), and f(z + nc) − b(z) share 0 CM, then f(z +mc) = f(z + nc) for
all z ∈ C.

Example 1.7. Let f(z) = sin z + 1, a = 0, b = 2, and c = π . Then we notice that f(z) − a =
sin z + 1, f(z + c) − b = − sin z − 1, and f(z + 3c) − b = − sin z − 1 share 0 CM and can easily
see that f(z + c) = f(z + 3c) for all z ∈ C. This example satisfies Theorem 1.6.
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Example 1.8. Let f(z) = ez
2
+a(z), where a(z) ∈ S(f) is a periodic entire function with period

1. Then f(z) − a(z) = ez
2
, f(z + 1) − a(z) = e(z+1)2

, and f(z + 3) − a(z) = e(z+3)2
share 0 CM,

while f(z + c) − f(z + 3c)/≡ 0. This example shows that the condition that a(z) and b(z) are
distinct in Theorem 1.6 cannot be deleted.

2. Proof of Theorem 1.1

Lemma 2.1 (see [8, Theorem 2.1]). Let f(z) be a meromorphic function of finite order ρ and let c
be a nonzero complex constant. Then, for each ε > 0,

T
(
r, f(z + c)

)
= T

(
r, f(z)

)
+O

(
rρ−1+ε

)
+O

(
log r

)
. (2.1)

Lemma 2.2 (see [10, Lemma 2.3]). Let c ∈ C, n ∈ N, and let f(z) be a meromorphic function of
finite order. Then for any small periodic function a(z) with period c, with respect to f(z),

m

(
r,

Δn
c f

f − a

)
= S

(
r, f

)
, (2.2)

where the exceptional set associated with S(r, f) is of at most finite logarithmic measure.

Proof of Theorem 1.1. Suppose, on the contrary, the assertion that Δ2
cf /=Δcf . Note that f(z) is

a nonconstant entire function of finite order. By Lemma 2.1, Δcf and Δ2
cf are entire functions

of finite order.
Since f(z), Δcf , and Δ2

cf share a(z) CM, then we have

Δ2
cf − a(z)

f(z) − a(z)
= eα(z),

Δcf − a(z)
f(z) − a(z)

= eβ(z), (2.3)

where α(z) and β(z) are polynomials.
Set

ϕ(z) =
Δ2

cf −Δcf

f(z) − a(z)
. (2.4)

From (2.3), we get ϕ(z) = eα(z) − eβ(z). Then by supposition and (2.4), we see that
ϕ(z)/≡ 0. By Lemma 2.2, we deduce that

T
(
r, ϕ

)
= m

(
r, ϕ

)

≤ m

(
r,

Δ2
cf

f(z) − a(z)

)
+m

(
r,

Δcf

f(z) − a(z)

)
+ log 2 = S

(
r, f

)
.

(2.5)
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Note that eα/ϕ − eβ/ϕ = 1. By using the second main theorem and (2.5), we have

T

(
r,
eα

ϕ

)
≤ N

(
r,
eα

ϕ

)
+N

(
r,

ϕ

eα

)
+N

(
r,

1
eα/ϕ − 1

)
+ S

(
r,
eα

ϕ

)

= N

(
r,
eα

ϕ

)
+N

(
r,

ϕ

eα

)
+N

(
r,

ϕ

eβ

)
+ S

(
r,
eα

ϕ

)

= S
(
r, f

)
+ S

(
r,
eα

ϕ

)
.

(2.6)

Thus, by (2.5) and (2.6), we have T(r, eα) = S(r, f). Similarly, T(r, eβ) = S(r, f).
By Lemma 2.2 and the first equation in (2.3), we deduce that a(z)/(f(z) − a(z)) =

Δ2
cf/(f(z) − a(z)) − eα(z) and

m

(
r,

1
f(z) − a(z)

)
= m

(
r,

1
a(z)

(
Δ2

cf

f(z) − a(z)
− eα(z)

))

≤ m

(
r,

Δ2
cf

f(z) − a(z)

)
+m

(
r, eα(z)

)
+ S

(
r, f

)

= S
(
r, f

)
.

(2.7)

From (2.7), we see that

N

(
r,

1
f(z) − a(z)

)
= T

(
r, f(z)

) −m

(
r,

1
f(z) − a(z)

)
+ S

(
r, f

)

= T
(
r, f(z)

)
+ S

(
r, f

)
.

(2.8)

Now we rewrite the second equation in (2.3) as Δcf = eβ(z)(f(z) − a(z)) + a(z) and
deduce that

Δ2
cf = Δc

(
eβ(z)

(
f(z) − a(z)

)
+ a(z)

)

= eβ(z+c)
(
f(z + c) − a(z + c)

)
+ a(z + c) − eβ(z)

(
f(z) − a(z)

) − a(z)

= eβ(z+c)
(
f(z + c) − a(z)

) − eβ(z)
(
f(z) − a(z)

)
.

(2.9)

This together with the first equation in (2.3) gives

f(z + c) =
(
eα(z)−β(z+c) + eβ(z)−β(z+c)

)
f(z)

− a(z)
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1 − e−β(z+c)

)
,

(2.10)
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that is,

Δcf =
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1

)
f(z)

− a(z)
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1 − e−β(z+c)

)
.

(2.11)

Thus, (2.11) can be rewritten as

Δcf = γ(z)f(z) + δ(z), (2.12)

where

γ(z) = eα(z)−β(z+c) + eβ(z)−β(z+c) − 1,

δ(z) = −a(z)
(
eα(z)−β(z+c) + eβ(z)−β(z+c) − 1 − e−β(z+c)

)

= −a(z)γ(z) + a(z)e−β(z+c),

(2.13)

which satisfy T(r, γ) = S(r, f) and T(r, δ) = S(r, f).
Now we rewrite Δcf = γ(z)f(z) + δ(z) as

Δcf − a(z) − γ(z)
(
f(z) − a(z)

)
= γ(z)a(z) + δ(z) − a(z). (2.14)

Suppose that γ(z)a(z)+δ(z)−a(z)/≡ 0. Let z0 be a zero of f(z)−a(z) with multiplicity
k. Since f(z), Δcf share a(z) CM, then z0 is a zero of Δcf − a(z) with multiplicity k. Thus,
z0 is a zero of Δcf − a(z) − γ(z)(f(z) − a(z)) with multiplicity at least k. Then, by (2.8) and
(2.14), we see that

N

(
r,

1
γ(z)a(z) + δ(z) − a(z)

)
= N

(
r,

1
Δcf − a(z) − γ(z)

(
f(z) − a(z)

)
)

≥ N

(
r,

1
f(z) − a(z)

)

= T
(
r, f(z)

)
+ S

(
r, f

)
.

(2.15)

On the other hand, we have

N

(
r,

1
γ(z)a(z) + δ(z) − a(z)

)
≤ T

(
r,

1
γ(z)a(z) + δ(z) − a(z)

)
= S

(
r, f

)
. (2.16)

Then, by (2.15) and (2.16), we get T(r, f) ≤ S(r, f), which is a contradiction.
Thus, γ(z)a(z)+δ(z)−a(z) ≡ 0. Noting that δ(z) = −a(z)γ(z)+a(z)e−β(z+c), we deduce

that e−β(z+c) ≡ 1. So, eβ(z) ≡ eβ(z+c) ≡ 1, since β(z) is a polynomial.
By the second equation in (2.3), we obtain Δcf = f , which leads to Δ2

cf = Δcf . This is
a contradiction. The proof is thus completed.
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3. Proof of Theorem 1.6

Lemma 3.1 (see [9, Corollary 2.2]). Let f(z) be a nonconstant meromorphic function of finite order,
c ∈ C and δ < 1. Then

m

(
r,
f(z + c)
f(z)

)
= o

(
T
(
r + |c|, f)

rδ

)
, (3.1)

for all r outside of a possible exceptional set with finite logarithmic measure.

Proof of Theorem 1.6. Suppose, on the contrary, the assertion that f(z+mc)−f(z+nc)/≡ 0. Since
f(z) − a(z), f(z +mc) − b(z), and f(z + nc) − b(z) share 0 CM, then we have

f(z + nc) − b(z)
f(z) − a(z)

= eα(z),
f(z +mc) − b(z)

f(z) − a(z)
= eβ(z), (3.2)

where α(z) and β(z) are polynomials.
By (3.2), we obtain

f(z + nc) − f(z +mc)
f(z) − a(z)

= eα(z) − eβ(z). (3.3)

Set ψ(z) = eα(z) − eβ(z). Then by supposition, we see that ψ(z)/≡ 0. By Lemma 3.1, we
deduce that

T
(
r, ψ

)
= m

(
r,
f(z + nc) − f(z +mc)

f(z) − a(z)

)

≤ m

(
r,
f(z + nc) − a(z + nc)

f(z) − a(z)

)
+m

(
r,
f(z +mc) − a(z +mc)

f(z) − a(z)

)
+ log 2

= S
(
r, f

)
.

(3.4)

Note that eα/ψ−eβ/ψ = 1. Thus, using a similar method as in the proof of Theorem 1.1,
we get T(r, eα) = S(r, f) and T(r, eβ) = S(r, f).

By Lemma 3.1 and the first equation in (3.2), we deduce that

m

(
r,

1
f(z) − a(z)

)
= m

(
r,

1
b(z) − a(z)

(
f(z + nc) − a(z)

f(z) − a(z)
− eα(z)

))

≤ m

(
r,
f(z + nc) − a(z + nc)

f(z) − a(z)

)
+m(r, eα) + S

(
r, f

)

= S
(
r, f

)
.

(3.5)
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From (3.5), we see that

N

(
r,

1
f(z) − a(z)

)
= T

(
r, f(z)

)
+ S

(
r, f

)
. (3.6)

Now we rewrite the second equation in (3.2) as f(z +mc) = eβ(z)(f(z) − a(z)) + b(z)
and deduce that

f(z + nc) = eβ(z+(n−m)c)(f(z + (n −m)c) − a(z + (n −m)c)
)

+ b(z + (n −m)c).
(3.7)

This together with the first equation in (3.2) gives

f(z + (n −m)c) = eα(z)−β(z+(n−m)c)f(z)

− a(z)eα(z)−β(z+(n−m)c) + a(z + (n −m)c),
(3.8)

that is,

f(z + nc) = eα(z+mc)−β(z+nc)f(z +mc)

− a(z +mc)eα(z+mc)−β(z+nc) + a(z + nc)

= eα(z+mc)−β(z+nc)f(z +mc) − a(z)eα(z+mc)−β(z+nc) + a(z).

(3.9)

Now we rewrite (3.9) as

f(z + nc) − b(z) − eα(z+mc)−β(z+nc)(f(z +mc) − b(z)
)

= (b(z) − a(z))
(
eα(z+mc)−β(z+nc) − 1

)
.

(3.10)

Suppose that eα(z+mc)−β(z+nc) ≡ 1; then, by (3.9), we get f(z + nc) = f(z +mc), which is
a contradiction.

Now we have eα(z+mc)−β(z+nc) − 1/≡ 0. Then using a similar method as in the proof of
Theorem 1.1, we can also get a contradiction and obtain that f(z + mc) = f(z + nc) for all
z ∈ C. Thus, Theorem 1.6 is proved.
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In this paper, two classes of first-order neutral functional differential equations with periodic
delays are considered. Some results on the existence of positive periodic solutions for the equations
are obtained by using the Krasnoselskii fixed point theorem. Four examples are included to
illustrate our results.

1. Introduction and Preliminaries

In recent years, there have been a few papers written on the existence of periodic solutions,
nontrivial periodic solutions, maximal and minimal periodic solutions and positive periodic
solutions for several classes of functional differential equations with periodic delays, which
arise from a number of mathematical ecological models, economical and control models,
physiological and population models, and other models, see, for example, [1–5] and the
references therein.

In 2004, Wan et al. [5] studied the first-order functional differential equation with
periodic delays

x′(t) = −a(t)x(t) + f(t, x(t − τ(t))), ∀t ∈ R, (1.1)

where a ∈ C(R,R+ \ {0}), τ ∈ C(R,R) are ω-periodic, and f ∈ C(R × R
+,R+) is ω-periodic

with respect to the first variable. By using a fixed point theorem in cones, they proved the
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existence of a periodic solution and a positive periodic solution of (1.1), respectively, under
certain conditions. In 2005, Kang and Zhang [2] used the partial ordering and topological
degree theory to establish the existence of a nontrivial periodic solution of (1.1). In 2010,
Kang et al. [1] gave the existence of maximal and minimal periodic solutions of (1.1) by
utilizing the method of lower and upper solutions. By means of the continuation theorem of
coincidence degree principle, Serra [4] discussed the existence of periodic solutions for the
following neutral functional differential equation

[x(t) + cx(t − τ)]′ = f(t, x(t)), ∀t ∈ R, (1.2)

where |c| ≤ 1 and τ > 0 are constants. In 2008, Luo et al. [3] employed the Krasnoselskii fixed
point theorem to prove the existence of positive periodic solutions for two kinds of neutral
functional differential equations with periodic delays

[x(t) − cx(t − τ(t))]′ = −a(t)x(t) + f(t, x(t − τ(t))), ∀t ∈ R,

[
x(t) − c

∫0

−∞
Q(r)x(t + r)dr

]′
= −a(t)x(t) + b(t)

∫0

−∞
Q(r)f(t, x(t + r))dr, ∀t ∈ R,

(1.3)

where ω ∈ R
+ \ {0} and |c| < 1 are constants, τ ∈ C(R,R), a, b ∈ C(R,R+ \ {0}), f ∈ C(R2,R),

τ, a, and b are ω-periodic and f is ω-periodic with respect to the first variable, Q ∈ C(R−,R+),
and

∫0
−∞ Q(r)dr = 1.

Motivated by the papers [1–5] and the references therein, we consider two new kinds
of first-order neutral functional differential equations with periodic delays:

[
g(t)(x(t) + c(t)x(t − τ(t)))

]′ = −a(t)x(t) + f(t, x(t − τ(t))), ∀t ∈ R, (1.4)
[
g(t)

(
x(t) + c(t)

∫0

−∞
Q(r)x(t + h(r))dr

)]′

= −a(t)x(t) + b(t)
∫0

−∞
Q(r)f(t, x(t + h(r)))dr, ∀t ∈ R,

(1.5)

where ω ∈ R
+ \ {0} is a constant, τ, a, b, c ∈ C(R,R), f ∈ C(R2,R), h ∈ C(R−,R),

g ∈ C1(R,R+ \ {0}), τ , a, b, c, and g are ω-periodic functions and f is ω-periodic with respect
to the first variable, Q ∈ C(R−,R+), and

∫0
−∞ Q(r)dr = 1. It is evident that (1.4) and (1.5)

include, respectively, (1.1)–(1.3) as special cases. To the best of our knowledge, the existence
of periodic solutions for (1.4) and (1.5) have not been investigated till now. The aim of this
paper is, by applying the Krasnoselskii fixed point theorem and some new techniques, to
establish a set of sufficient conditions which guarantee the existence of positive periodic
solutions of (1.4) and (1.5). Four examples are given to show the efficiency and applications
of our results.
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Throughout this paper, we assume that R = (−∞,+∞), R
+ = [0,+∞), R− = (−∞, 0], N

denotes the set of all positive integers, P = mint∈[0,ω]g(t),

G(t, s) =
exp

(∫s
t

((
g ′(r) + a(r)

)
/g(r)

)
dr

)

g(s)
[
exp

(∫ω
0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
] , ∀(t, s) ∈ R

2,

X = {x ∈ C(R,R) : x(t) = x(t +ω), ∀t ∈ R}.
(1.6)

It is well known that X is a Banach space with the norm

‖x‖ = sup
t∈[0,ω]

|x(t)|, for each x ∈ X. (1.7)

Let

A(N,M) = {x ∈ X : N ≤ x(t) ≤ M, ∀t ∈ [0, ω]}, for any M > N ≥ 0. (1.8)

It is easy to see that A(N,M) is a bounded closed and convex subset of the Banach space X.

Lemma 1.1 (the Krasnoselskii fixed point theorem). Let Y be a nonempty bounded closed convex
subset of a Banach space Z and f, g mappings from Y into Z such that fx + gy ∈ Y for every pair
x, y ∈ Y . If f is a contraction mapping and g is completely continuous, then the equation fx+gx = x
has at least one solution in Y .

2. Main Results

Now we use the Krasnoselskii fixed point theorem to show the existence of positive solutions
for (1.4) and (1.5).

Theorem 2.1. Assume that there exist constantsN,M, G1, G2, c1, and c2 satisfying

0 < N < M, c1 ≥ 0, c2 ≥ 0, c1 + c2 < 1, −c1 ≤ c(t) ≤ c2, ∀t ∈ [0, ω], (2.1)

0 < G1 ≤ g ′(t) + a(t) ≤ G2, ∀t ∈ [0, ω], (2.2)

(N + c2M)G2 ≤ f(t, s) + a(t)c(t)s ≤ (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M]. (2.3)

Then (1.5) has at least one positive ω-periodic solution in A(N,M).

Proof. It is obvious that (1.4) has a solution x(t) if and only if the integral equation

x(t) =
∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c(t)x(t − τ(t)), ∀t ∈ R,

(2.4)
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has a solution x(t). Define two mappings T and S : A(N,M) → X by

(Tx)(t) =
∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds, ∀t ∈ R,

(Sx)(t) = −c(t)x(t − τ(t)), ∀t ∈ R,

(2.5)

for each x ∈ A(N,M). It follows from (2.5) that for any x ∈ A(N,M) and t ∈ R

(Tx)(t +ω) =
∫ t+2ω

t+ω
G(t +ω, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds

=
∫ t+ω

t

G(t +ω, u +ω)
[
f(u +ω, x(u +ω − τ(u +ω)))

+a(u +ω)c(u +ω)x(u +ω − τ(u +ω))]du

=
∫ t+ω

t

G(t, u)
[
f(u, x(u − τ(u))) + a(u)c(u)x(u − τ(u))

]
du = (Tx)(t),

(Sx)(t +ω) = −c(t +ω)x(t +ω − τ(t +ω)) = −c(t)x(t − τ(t)) = (Sx)(t),

(2.6)

which mean that

T(A(N,M)) ⊆ X, S(A(N,M)) ⊆ X. (2.7)

Using (2.1)–(2.3) and (2.5), we infer that for all x, y ∈ A(N,M) and t ∈ R

(Tx)(t) +
(
Sy

)
(t) =

∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c(t)y(t − τ(t))

≤ (1 − c1)MG1

∫ t+ω

t

G(t, s)ds + c1M

≤ (1 − c1)M
∫ t+ω

t

G(t, s)
[
g ′(s) + a(s)

]
ds + c1M

=
(1 − c1)M[

exp
(∫ω

0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
]

×
∫ t+ω

t

exp
(∫s

t

(
g ′(r) + a(r)

g(r)

)
dr

)(
g ′(s) + a(s)

g(s)

)
ds + c1M

=
(1 − c1)M[

exp
(∫ω

0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
]

×
[

exp

(∫ t+ω

t

(
g ′(r) + a(r)

g(r)

)
dr

)
− 1

]
+ c1M

= (1 − c1)M + c1M = M,

(2.8)
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(Tx)(t) +
(
Sy

)
(t) ≥ (N + c2M)G2

∫ t+ω

t

G(t, s)ds − c2M ≥ N + c2M − c2M = N, (2.9)

∣∣(Sx)(t) − (
Sy

)
(t)

∣∣ = |c(t)|∣∣x(t − τ(t)) − y(t − τ(t))
∣∣ ≤ (c1 + c2)

∥∥x − y
∥∥, (2.10)

which imply that

Tx + Sy ∈ A(N,M),
∥∥Sx − Sy

∥∥ ≤ (c1 + c2)
∥∥x − y

∥∥, ∀x, y ∈ A(N,M). (2.11)

Now we show that T is a completely continuous mapping in A(N,M). First, we claim
that T is continuous in A(N,M). Let {yk}k∈N ⊂ A(N,M) and y ∈ A(N,M) with limk→∞yk =
y. Note that f ∈ C(R2,R). It follows from the uniform continuity of f in [0, ω] × [N,M] that
for given ε > 0, there exists δ > 0 satisfying

∣∣f(t1, s1) − f(t2, s2)
∣∣ < G1ε

2
,

∀(t1, t2, s1, s2) ∈ [0, ω]2 × [N,M]2,

with max{|t1 − t2|, |s1 − s2|} < δ.
(2.12)

Since limk→∞yk = y, it follows that there exists N1 ∈ N satisfying

∥∥yk − y
∥∥ <

G1 min{ε, δ}
2(1 +G2)(1 + ‖a‖) , ∀k ≥ N1. (2.13)

In view of (2.1), (2.2), (2.5), (2.12), and (2.13), we get that

∥∥Tyk − Ty
∥∥ = sup

t∈[0, ω]

∣∣∣∣∣
∫ t+ω

t

G(t, s)
[
f
(
s, yk(s − τ(s))

)
+ a(s)c(s)yk(s − τ(s))

]
ds

−
∫ t+ω

t

G(t, s)
[
f
(
s, y(s − τ(s))

)
+ a(s)c(s)y(s − τ(s))

]
ds

∣∣∣∣∣

≤ sup
t∈[0, ω]

∫ t+ω

t

G(t, s)
[∣∣f(s, yk(s − τ(s))

) − f
(
s, y(s − τ(s))

)∣∣

+|a(s)c(s)|∣∣yk(s − τ(s)) − y(s − τ(s))
∣∣]ds

< G1

[
ε

2
+
‖a‖(c1 + c2)min{ε, δ}

2(1 +G2)(1 + ‖a‖)
]

sup
t∈[0,ω]

∫ t+ω

t

G(t, s)ds < ε, ∀k ≥ N1,

(2.14)

which yields that limk→∞Tyk = Ty, that is, T is continuous in A(N,M).
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Second, we claim that T(A(N,M)) is relatively compact. It is sufficient to show that
T(A(N,M)) is uniformly bounded and equicontinuous in [0, ω]. Notice that (2.1)–(2.3) and
(2.5) ensure that

‖Tx‖ = sup
t∈[0, ω]

∣∣∣∣∣
∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds

∣∣∣∣∣

≤ (1 − c1)MG1 sup
t∈[0,ω]

∫ t+ω

t

G(t, s)ds ≤ (1 − c1)M, ∀x ∈ A(N,M),

∣∣(Tx)′(t)∣∣ =
∣∣∣∣−

g ′(t) + a(t)
g(t)

(Tx)(t) +G(t, t +ω)

× [
f(t +ω, x(t +ω − τ(t +ω))) + a(t +ω)c(t +ω)x(t +ω − τ(t +ω))

]

−G(t, t)
[
f(t, x(t − τ(t))) + a(t)c(t)x(t − τ(t))

]∣∣∣∣

≤ g ′(t) + a(t)
g(t)

|(Tx)(t)| + |G(t, t +ω) −G(t, t)|∣∣f(t, x(t − τ(t))) + a(t)c(t)x(t − τ(t))
∣∣

≤ G2

P
(1 − c1)M +

exp
(∫ω

0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1

g(t)
[
exp

(∫ω
0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
](1 − c1)MG1

≤ (1 − c1)M(G1 +G2)
P

, ∀(x, t) ∈ A(N,M) × [0, ω],

(2.15)

which give that T(A(N,M)) is uniformly bounded and equicontinuou sin [0, ω], which
together with (2.7), (2.11), and Lemma 1.1 yields that there is x0 ∈ A(N,M) with Tx0 +Sx0 =
x0. It follows from (2.4) and (2.5) that x0 is a positive ω-periodic solution of (1.4). This
completes the proof.

Theorem 2.2. Assume that there exist constants N, M, G1, G2, c1, c2, and t0 ∈ [0, ω] satisfying
(2.2), (2.3):

0 ≤ N < M, c1 ≥ 0, c2 ≥ 0, c1 + c2 < 1, −c1 ≤ c(t) ≤ c2, ∀t ∈ [0, ω], (2.16)

and either

f(t0, s) + a(t0)c(t0)s > (N + c2M)G2, ∀s ∈ [N,M], (2.17)

or

g ′(t0) + a(t0) < G2. (2.18)

Then (1.4) has at least one positive ω-periodic solution x ∈ A(N,M) with N < x(t) ≤ M for each
t ∈ [0, ω].
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Proof. As in the proof of Theorem 2.1, we conclude similarly that (1.4) has an ω-periodic
solution x ∈ A(N,M). Now we assert that x(t) > N for all t ∈ [0, ω]. Otherwise, there exists
t∗ ∈ [0, ω] satisfying x(t∗) = N. In view of (2.4), (2.5), and (2.16), we have

N =
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c(t∗)x(t∗ − τ(t∗))

≥
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c2M,

(2.19)

which implies that

0 ≥
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − (N + c2M)

=
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)

(
g ′(s) + a(s)

)]
ds.

(2.20)

Assume that (2.17) holds. By means of (2.2), (2.3), (2.17), and the continuity of G, f , a,
c, g, g ′, τ , and x, we get that

∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)

(
g ′(s) + a(s)

)]
ds

≥
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)G2

]
ds > 0,

(2.21)

which contradicts (2.20).
Assume that (2.18) holds. In light of (2.2), (2.3), (2.18), and the continuity of G, f , a, c,

g, g ′,τ , and x, we infer that

∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)

(
g ′(s) + a(s)

)]
ds

>

∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)G2

]
ds ≥ 0,

(2.22)

which contradicts (2.20). This completes the proof.

Theorem 2.3. Assume that there exist constants N, M, G1, G2, c1, and c2 satisfying (2.1), (2.2),
and

(N + c2M)G2 ≤ b(t)f(t, s) + a(t)c(t)s ≤ (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M]. (2.23)

Then (1.5) has at least one positive ω-periodic solution in A(N,M).
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Proof. It is obvious that (1.5) has a solution x(t) if and only if the integral equation

x(t) =
∫ t+ω

t

G(t, s)

[
b(s)

∫0

−∞
Q(r)f(s, x(s + h(r)))dr + a(s)c(s)

∫0

−∞
Q(r)x(s + h(r))dr

]
ds

− c(t)
∫0

−∞
Q(r)x(t + h(r))dr, ∀t ∈ R,

(2.24)

has a solution x(t). Define two mappings T and S : A(N,M) → X by

(Tx)(t) =
∫ t+ω

t

G(t, s)

[
b(s)

∫0

−∞
Q(r)f(s, x(s + h(r)))dr + a(s)c(s)

∫0

−∞
Q(r)x(s + h(r))dr

]
ds,

(Sx)(t) = −c(t)
∫0

−∞
Q(r)x(t + h(r))dr,

(2.25)

for each (x, t) ∈ A(N,M) × R. The rest of the proof is similar to that of Theorem 2.1, and is
omitted. This completes the proof.

Theorem 2.4. Assume that there exist constants N, M, G1, G2, c1, c2, and t0 ∈ [0, ω] satisfying
(2.2), (2.16), (2.23), and either (2.18) or

b(t0)f(t0, s) + a(t0)c(t0)s > (N + c2M)G2, ∀s ∈ [N,M]. (2.26)

Then (1.5) has at least one positive ω-periodic solution x ∈ A(N,M) with N < x(t) ≤ M for each
t ∈ [0, ω].

The proof of Theorem 2.4 is similar to that of Theorems 2.2 and 2.3 and is omitted.

Remark 2.5. Even if g(t) ≡ 1, c(t) ≡ c and h(r) = r for all r ∈ R−, the conditions of
Theorems 2.2 and 2.4 in this paper are different from these conditions of Theorems 2.1–2.4
in [3], respectively.

3. Examples

Now we construct four examples which illustrate the results obtained in Section 2. Note that
none of the known results can be applied to the examples.

Example 3.1. Consider the first-order neutral functional differential equation with periodic
delays

[(
1 +

cos t
100

)(
x(t) +

1 + 2 sin t

100
x(t − 3 sin t − 2 cos t)

)]′

= −
(

1 +
sin t

50

)
x(t) + 20 + cos2t + sin2

(
x5(t − 3 sin t − 2 cos t) cos t

)
, ∀t ∈ R.

(3.1)
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Let ω = 2π , M = 100, N = 1, c1 = 1/100, c2 = 3/100, G1 = 99/100, G2 = 101/100, and

g(t) = 1 +
cos t
100

, c(t) =
1 + 2 sin t

100
, a(t) = 1 +

sin t

50
, τ(t) = 3 sin t + 2 cos t,

f(t, s) = 20 + cos2t + sin2
(
s5 cos t

)
, ∀(t, s) ∈ R

2.

(3.2)

It is easy to see that (2.1) and (2.2) hold. Notice that

(N + c2M)G2 = 4.04 < 20 +
(

1 +
1

50

)
1 − 2
100

· 100 ≤ f(t, s) + a(t)c(t)s

≤ 22 +
(

1 +
1

50

)
1 + 2
100

· 100 < 98.01 = (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M],

(3.3)

that is, (2.3) is satisfied. Thus Theorem 2.1 yields that (3.1) has a positive ω-periodic solution
in A(N,M).

Example 3.2. Consider the first-order neutral functional differential equation with periodic
delays

[
3 + 2 cos t + sin t

100

(
x(t) +

2 + 2 sin t + cos t
20

x
(
t − sin3t

))]′

= −
(

100 + 2 sin t + 3 cos t
100

)
x(t) + 60 +

x
(
t − sin3t

)
sin

√∣∣∣t + x8
(
t − sin3t

)∣∣∣ + 1

50 + 10 cos
(
t − x5

(
t − sin3t

)) , ∀t ∈ R.

(3.4)

Let ω = 2π , M = 100, N = 0, c1 = 1/20, c2 = 1/4, G1 = 24/25, G2 = 26/25, t0 = π/2, and

g(t) =
3 + 2 cos t + sin t

100
, c(t) =

2 + 2 sin t + cos t
20

, τ(t) = sin3t,

a(t) =
100 + 2 sin t + 3 cos t

100
, f(t, s) = 60 +

s sin
√
|t + s8| + 1

50 + 10 cos(t − s5)
, ∀(t, s) ∈ R

2.

(3.5)

It is clear that (2.2), (2.16), and (2.18) hold. It follows that

(N + c2M)G2 = 26 < 60 +
100(−1)
50 − 10

+
105
100

· −1
20

· 100 ≤ f(t, s) + a(t)c(t)s

≤ 60 +
100

50 − 10
+ 26.25 < 91.2 = (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M],

(3.6)
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that is, (2.3) holds. Obviously (2.17) follows from the above inequalities. Hence, Theorem 2.2
ensures that (3.4) has a positive ω-periodic solution x ∈ A(N,M) with N < x(t) ≤ M for all
t ∈ [0, ω].

Example 3.3. Consider the first-order neutral functional differential equation with periodic
delays

[
5 + cos t + 3 sin t

50 + sin t

(
x(t) +

2 + 3 sin t

6(50 − sin t)2

∫0

−∞
exp(r)x(t − r cos r)dr

)]′

= −151 + 50 sin t

(50 + sin t)2
x(t) +

1
3 + 2 sin t

×
∫0

−∞
exp(r)

[
4.53+3 sin t+

3 + 2 sin t

10000 + cos t

[
x(t − r cos r)cos2t + cos

(
t + x100(t − r cos r)

)]]
dr,

∀t ∈ R.

(3.7)

Let ω = 2π , M = 1440.6, N = 1, c1 = 1/14406, c2 = 5/14406, G1 = 5/2601, G2 = 295/2401, and

g(t) =
5 + cos t + 3 sin t

50 + sin t
, c(t) =

2 + 3 sin t

6(50 − sin t)2
, a(t) =

151 + 50 sin t

(50 + sin t)2
, b(t) =

1
3 + 2 sin t

,

f(t, s) = 4.53 + 3 sin t +
(3 + 2 sin t)

[
s cos2t + cos

(
t + s100)]

10000 + cos t
, ∀(t, s) ∈ R

2,

Q(r) = exp(r), h(r) = −r cos r, ∀r ∈ R−.
(3.8)

Clearly, (2.1) and (2.2) hold. Note that

(N + c2M)G2 =
885

4802
<

4.53 + 3
3 + 2

+
−1

10000 − 1
+

302 − 553
37470006

· 1440.6 ≤ b(t)f(t, s) + a(t)c(t)s

≤ 4.53 − 3
3 − 2

+
1441.6

10000 − 1
+

1005
37470006

· 1440.6 <
14404
5282

= (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M],
(3.9)

that is, (2.23) is fulfilled. Thus Theorem 2.3 yields that (3.7) has a positive ω-periodic solution
in A(N,M).
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Example 3.4. Consider the first-order neutral functional differential equation with periodic
delays

[
ln(100 + 2 sin t)

(
x(t) +

2 + 3 cos t
100 − 2 sin t

∫0

−∞
exp(r)x(t + r)dr

)]′

= −
(

3
100 + 2 sin t

)
x(t)

+
(

1 +
cos t + sin t

100

)∫0

−∞
exp(r)

[
4 +

2x(t + r) sin t + cos2t

5000 + 5sin2[t − ln(1 + x2(t + r))]

]
dr, ∀t ∈ R.

(3.10)

Let ω = 2π , M = 1000, N = 1, c1 = 1/98, c2 = 5/98, G1 = 1/102, G2 = 5/98, t0 = π/2, and

g(t) = ln(100 + 2 sin t), c(t) =
2 + 3 cos t

100 − 2 sin t
, a(t) =

3
100 + 2 sin t

, b(t) = 1 +
cos t + sin t

100
,

f(t, s) = 4+
2s sin t + cos2t

5000 + 5sin2[t − ln(1 + s2)]
, ∀(t, s) ∈ R

2, Q(r) = exp(r), h(r) = r, ∀r ∈ R−.

(3.11)

Obviously, (2.2), (2.16), and (2.18) hold. A simple calculation yields that

(N + c2M)G2 =
12745
4802

<
336103
104125

=
(

1 +
−1 − 1

100

)(
4 +

−2000 + 0
5000

)
+

6 − 9
10000 − 4

· 1000

≤ b(t)f(t, s) + a(t)c(t)s ≤
(

1 +
1 + 1
100

)(
4 +

2000 + 1
5000

)
+

6 + 9
10000 − 4

· 1000

=
623563
104125

<
24250
2499

= (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M];

(3.12)

that is, (2.23) holds. Clearly (2.26) follows from the above inequalities. Thus Theorem 2.4
ensures that (3.10) has a positive ω-periodic solution x ∈ A(N,M) with N < x(t) ≤ M for all
t ∈ [0, ω].
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We study a homogeneous partial differential equation and get its entire solutions represented in
convergent series of Laguerre polynomials. Moreover, the formulae of the order and type of the
solutions are established.

1. Introduction and Main Results

The existence and behavior of global meromorphic solutions of homogeneous linear partial
differential equations of the second order

a0
∂2u

∂t2
+ 2a1

∂2u

∂t∂z
+ a2

∂2u

∂z2
+ a3

∂u

∂t
+ a4

∂u

∂z
+ a6u = 0, (1.1)

where ak = ak(t, z) are polynomials for (t, z) ∈ C
2, have been studied by Hu and Yang [1].

Specially, in [1, 2], they have studied the following cases of (1.1)

t2
∂2u

∂t2
− z2 ∂

2u

∂z2
+ (2t + 2)

∂u

∂t
− 2z

∂u

∂z
= 0, (1.2)

t2
∂2u

∂t2
− z2 ∂

2u

∂z2
+ t

∂u

∂t
− z

∂u

∂z
+ t2u = 0 (1.3)
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and showed that the solutions of (1.2) and (1.3) are closely related to Bessel functions
and Bessel polynomials, respectively. Hu and Li [3] studied meromorphic solutions of
homogeneous linear partial differential equations of the second order in two independent
complex variables:

(
1 − t2

)∂2u

∂t2
+ z2 ∂

2u

∂z2
− {α − β +

(
α + β + 2

)
t
}∂u
∂t

+
(
α + β + 2

)
z
∂u

∂z
= 0, (1.4)

where α, β ∈ C. Equation (1.4) has a lot of entire solutions on C
2 represented by Jacobian

polynomials. Global solutions of some first-order partial differential equations (or system)
were studied by Berenstein and Li [4], Hu and Yang [5], Hu and Li [6], Li [7], Li and Saleeby
[8], and so on.

In this paper, we concentrate on the following partial differential equation (PDE)

t
∂2u

∂t2
+ (α + 1 − t)

∂u

∂t
+ z

∂u

∂z
= 0 (1.5)

for a real α > 0. We will characterize the entire solutions of (1.5), which are related to Laguerre
polynomials. Further, the formulae of the order and type of the solutions are obtained.

It is well known that the Laguerre polynomials are defined by

Ln(α, t) =
n∑

k=0

(
n + α
n − k

)
(−t)k
k!

, (1.6)

which are solutions of the following ordinary differential equations (ODE):

t
d2ω

dt2
+ (α + 1 − t)

dω

dt
+ nω = 0. (1.7)

Moreover, Hu [9] pointed out that the generating function of Ln(α, t)

F(α, t, z) = (1 − z)−α−1e−tz/(1−z) =
∞∑
n=0

Ln(α, t)zn (1.8)

is a solution of the PDE (1.5). Based on the methods from Hu and Yang [2], we get the
following results.

Theorem 1.1. The partial differential equation (1.5) has an entire solution u = f(t, z) on C
2, if and

only if u = f(t, z) has a series expansion

f(t, z) =
∞∑
n=0

cnLn(α, t)zn (1.9)
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such that

lim sup
n→∞

n

√
|cn| = 0. (1.10)

If f(t, z) is an entire function on C
2, set

M
(
r, f
)
= max

|t|≤r,|z|≤r

∣∣f(t, z)∣∣, (1.11)

we define its order by

ord
(
f
)
= lim sup

r→∞

log+log+M
(
r, f
)

log r
, (1.12)

where

log+x =

{
logx, if x ≥ 1,
0, if x < 1.

(1.13)

Theorem 1.2. If f(t, z) is defined by (1.9) and (1.10), then

ρ ≤ ord
(
f
) ≤ max

(
1, ρ
)
, (1.14)

where

ρ = lim sup
n→∞

logn

log
(

1/ n
√
|cn|
) . (1.15)

Valiron [10] showed that each entire solution of a homogeneous linear ODE with
polynomial coefficients was of finite order. By studying (1.2) and (1.3), Hu and Yang showed
that Valiron’s theorem was not true for general partial differential equations. Here by using
Theorems 1.1 and 1.2, we can construct entire solution of (1.5) with arbitrary order ρ (ρ ≥ 1).

If 0 < λ = ord(f) < ∞, we define the type of f by

typ
(
f
)
= lim sup

r→∞

log+M
(
r, f
)

rλ
. (1.16)

Theorem 1.3. If f(t, z) is defined by (1.9) and (1.10), and 1 < λ = ord(f) < ∞, then the type
σ = typ(f) satisfies

eσλ = lim sup
n→∞

n
n

√
|cn|λ. (1.17)
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Lindelöf-Pringsheim theorem [11] gave the expression of order and type for one
complex variable entire function, and for two variable entire function the formulae of order
and type were obtained by Bose and Sharma in [12]. Hu and Yang [2] established an analogue
of Lindelöf-Pringsheim theorem for the entire solution of PDE (1.2). But from Theorems 1.2
and 1.3, we find that the analogue theorem for the entire solution of (1.5) is different from the
results due to Hu and Yang.

2. An Estimate of Laguerre Polynomials

Before we prove our theorems, we give an upper bound of Ln(α, t), which will play an
important role in this paper. The following asymptotic properties of Ln(α, t) can be found
in [13]:

(a)

Ln(α, t) =
1

2
√
π
et/2(−t)−α/2−1/4nα/2−1/4e2

√−nt
(

1 +O
(
n−1/2

))
(n −→ ∞) (2.1)

holds for t in the complex plane cut along the positive real semiaxis; thus, for |t| ≤ r, we obtain
that

|Ln(α, t)| ≤ nα/2−1/4er/2r−α/2−1/4e2
√
nr (2.2)

holds when n is large enough.
(b)

Ln(α, t)
nα/2

= et/2t−α/2Jα
(

2
√
nt
)
+O
(
n−3/4

)
(n −→ ∞) (2.3)

holds uniformly on compact subsets of (0,+∞), where Jα is the Bessel function and

Jα
(

2
√
nt
)
=

2√
πΓ(α + 1/2)

(√
nt
)α ∫π/2

0
cos
(√

nt cosx
)

sin2αxdx, (2.4)

combining with (2.3), for |t| ≤ r we can deduce that

|Ln(α, t)| ≤ πnα

√
πΓ(α + 1/2)

et/2 ≤ πnα

√
πΓ(α + 1/2)

er/2 ≤ nα/2−1/4er/2r−α/2−1/4e2
√
nr (2.5)

holds when n is large enough. Then (2.2) and (2.5) imply

M(r, Ln) ≤ nα/2−1/4er/2r−α/2−1/4e2
√
nr , (2.6)

where

M(r, Ln) = max
|t|≤r

|Ln(α, t)|. (2.7)
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3. Proof of Theorem 1.1

Assuming that u = f(t, z) is an entire solution on C
2 satisfying (1.5), we have Taylor

expansion

f(t, z) =
∞∑
n=0

wn(t)
n!

zn, (3.1)

where

wn(t) =
∂nf

∂zn
(t, 0). (3.2)

Hence wn(t) is an entire solution of (1.7).
By the method of Frobenius (see [14]), we can get a second independent solution

Xn(α, t) of (1.7) which is

Xn(α, t) = qLn(α, t) log t +
∞∑
i=0

pit
i, (3.3)

where q(/= 0), pi are constants.
So there exist cn and bn satisfying

wn(t) = n!cnLn(α, t) + bnXn(α, t). (3.4)

Because of the singularity of Xn(α, t) at t = 0, we obtain bn = 0. That shows

f(t, z) =
∞∑
n=0

cnLn(α, t)zn. (3.5)

Now we need to estimate the terms of cn. Since

f(0, z) =
∞∑
n=0

cnLn(α, 0)zn (3.6)

is an entire function, we have

lim sup
n→∞

n

√
|cn|Ln(α, 0) = 0. (3.7)

Since

Ln(α, 0) =
(
n + α
n

)
≈ nα

Γ(α + 1)
, (3.8)

we easily get

lim sup
n→∞

n

√
|cn| = 0. (3.9)
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Conversely, the relations (1.7), (1.9), and (1.10) imply that

t
∂2f

∂t2
+ (α + 1 − t)

∂f

∂t
+ z

∂f

∂z
=

∞∑
n=0

cn

{
t
d2Ln(α, t)

dt2
+ (α + 1 − t)

dLn(α, t)
dt

+ nLn(α, t)

}
zn = 0

(3.10)

holds for all (t, z) ∈ C
2. Since (2.6) implies

lim sup
n→∞

n

√
M(r, Ln) ≤ 1, (3.11)

we have

lim sup
n→∞

n

√
|cnLn(α, t)| ≤ lim sup

n→∞
n

√
|cn|M(r, Ln) ≤ lim sup

n→∞
n

√
|cn|. (3.12)

Combining (1.10), (3.10) with (3.12), we can get that u = f(t, z) is obviously an entire solution
of (1.5) on C

2.

4. Proof of Theorem 1.2

Firstly, we prove ρ ≤ ord(f). If ρ = 0, the result is trivial. Now we assume 0 < ρ ≤ ∞ and
prove ord(f) ≥ k1 for any 0 < k1 < ρ. The relation (1.15) implies that there exists a sequence
nj → ∞ such that

nj lognj ≥ k1 log
1∣∣∣cnj

∣∣∣
. (4.1)

By using Cauchy’s inequality of holomorphic functions, we have

∣∣∣∣
∂nf

∂zn
(0, 0)

∣∣∣∣ ≤ n!r−nM
(
r, f
)
, (4.2)

together with the formula of the coefficients of the Taylor expansion

∂nf

∂zn
(0, 0) = cnLn(α, 0)n!, (4.3)

we obtain M(r, f) ≥ |cnLn(α, 0)|rn. Since |Ln(α, 0)| ≥ 1, we have

|cn|rn ≤ M
(
r, f
)
, (4.4)
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then

logM
(
r, f
) ≥ log|cn| + n log r ≥ nj

(
log r − 1

k1
lognj

)
. (4.5)

Putting rj = (enj)
1/k1 , we have

logM
(
rj , f
) ≥

rk1
j

ek1
, (4.6)

which means ord(f) ≥ k1. Then we can get ord(f) ≥ ρ.
Next, we will prove ord(f) ≤ max(1, ρ). Set ρ′ = max(1, ρ). The result is easy for ρ′ = ∞;

then we assume ρ′ < ∞. For any ε > 0, (1.15) implies that there exists n0 > 0, when n > n0, we
have

|cn| < n−n(1+2ε)/ρ′(1+3ε) = n−n(1+2ε)/k2 , (4.7)

where k2 = ρ′(1 + 3ε) > 1. For any α ≥ 0, there exists n1 > n0 such that when n > n1,

n(α/2−1/4) < nn(ε/k2), (4.8)

combining with (2.6) and (4.7), we get

M
(
r, f
) ≤

∞∑
n=0

|cn|M(r, Ln)rn

≤ Cr2n1 + C
∞∑

n>n1

|cn|nα/2−1/4er/2e2
√
nrrn

≤ Cr2n1 + Cer/2
∞∑

n>n1

n−(1+ε)n/k2e2
√
nrrn,

(4.9)

where C is a constant but not necessary to be the same every time.
Set m1(r) = ((1/ε)(2

√
r/ log r))2, which means that e2

√
nr < rεn for n > m1(r). Further

set m2(r) = (2r)k2 , which yields that when n ≥ m2(r),

(
n−1/k2r

)(1+ε)n ≤
(

1
2

)(1+ε)n

<

(
1
2

)n

. (4.10)

Obviously, we can choose r0 > 0 such that m2(r) > m1(r) for r > r0. Then

∑
n>m2(r)

n−(1+ε)n/k2e2
√
nrrn ≤

∞∑
n>m2(r)

n−(1+ε)n/k2r(1+ε)n ≤
∞∑

n>m2(r)

(
1
2

)n

≤ 1. (4.11)
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We also have

∑
n1<n≤m2(r)

n−(1+ε)n/k2e2
√
nrrn ≤

∑
n1<n≤m2(r)

n−(1+ε)n/k2e2
√

m2(r)rrm2(r)

≤
∑

n1<n≤m2(r)

n−(1+ε)n/k2rm2(r)rεm2(r)

≤ r(1+ε)m2(r)
∑

n1<n≤m2(r)

n−(1+ε)n/k2

≤ Cr(1+ε)m2(r)

= Cr(1+ε)(2r)
k2
.

(4.12)

Therefore, when |t| = r ≥ r0, we have

M
(
r, f
) ≤ Cr2n1 + Cer/2 + Cer/2r(1+ε)(2r)

k2
, (4.13)

which means ord(f) ≤ k2. Hence ord(f) ≤ ρ′ = max(1, ρ) follows by letting ε → 0.

5. Proof of Theorem 1.3

Set

κ = lim sup
n→∞

n
n

√
|cn|λ. (5.1)

At first, we prove eλσ ≥ κ. The result is trivial for κ = 0, we assume 0 < κ ≤ ∞ and take ε
with 0 < ε < κ, set

k3 =

⎧
⎨
⎩
κ − ε, if κ < ∞,
1
ε
, if κ = ∞.

(5.2)

Equation (5.1) implies that there exists a sequence nj → ∞ satisfying

∣∣∣cnj

∣∣∣ >
(

k3

nj

)nj/λ

, (5.3)

combining with (4.4), we can deduce that

M
(
r, f
) ≥
∣∣∣cnj

∣∣∣rnj ≥
(

k3

nj

)nj/λ

rnj =

(
k3

nj
rλ
)nj/λ

. (5.4)

Taking rλj = enj/k3, we get M(rj , f) > ek3r
λ
j /eλ, which yields σ ≥ k3/eλ, so eλσ ≥ κ.
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Next, we prove eλσ ≤ κ. We may assume κ < ∞. Equation (5.1) implies that for any
ε > 0, there exists n0 > 0, such that when n > n0,

|cn | <
(
κ + (ε/2)

n

)n/λ

. (5.5)

For any α ≥ 0, we choose n1(> n0) such that when n > n1,

nα/2−1/4 <

(
κ + ε

κ + (ε/2)

)n/λ

, (5.6)

combining with (2.6), we have

M
(
r, f
) ≤

∞∑
n=0

|cn|M(r, Ln)rn

≤ Cr2n1 + C
∞∑

n>n1

|cn|nα/2−1/4er/2e2
√
nrrn

≤ Cr2n1 + Cer/2
∞∑

n>n1

(
κ + ε

n

)n/λ

e2
√
nrrn.

(5.7)

Set m3(r) = 16rλ2, when n > m3(r), we deduce e2
√
nr < en/2λ. Set m4(r) = 2(κ + ε)rλ,

it is obvious that (κ + ε)rλ/n < 1/2 for n > m4(r). Since λ > 1, there exists r1 such that when
r > r1,

m4(r) = 2(κ + ε)rλ > 16rλ2 = m3(r). (5.8)

Then

∞∑
n>m4(r)

(
κ + ε

n

)n/λ

e2
√
nrrn =

∞∑
n>m4(r)

(
(κ + ε)rλ

n

)n/λ

e2
√
nr ≤

∞∑
n>m4(r)

(e
4

)n/2λ
≤ C. (5.9)

We note that for a > 0, b > 0, maxx>0(a/x)
x/b = ea/eb, then we have

(
κ + ε

n

)n/λ

rn =

(
(κ + ε)rλ

n

)n/λ

≤ e(κ+ε)r
λ/eλ. (5.10)

This shows

∑
n1<n≤m4(r)

(
κ + ε

n

)n/λ

e2
√
nrrn ≤ m4(r)e2

√
m4(r)re(κ+ε)r

λ/eλ

≤ 2(κ + ε)rλe2
√

2(κ+ε)rλ+1
e(κ+ε)r

λ/eλ.

(5.11)
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Therefore when |t| = r ≥ r1,

M
(
r, f
) ≤ Cer/2(κ + ε)rλe2

√
2(κ+ε)rλ+1

e(κ+ε)r
λ/eλ + Cr2n1 + Cer/2. (5.12)

Together with λ > 1 and the definition of type, we can get σ ≤ (κ+ε)/eλ, which yields eλσ ≤ κ
by letting ε → 0.
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We first show the existence and uniqueness of (pseudo) almost periodic solutions of some types
of parabolic equations. Then, we apply the results to a type of Cauchy parabolic inverse problems
and show the existence, uniqueness, and stability.

1. Introduction

Zhang in [1, 2] defined pseudo almost periodic functions. As almost periodic functions,
pseudo almost periodic functions are applied to many mathematical areas, particular to the
theory of ordinary differential equations. (e.g., see [3–26] and references therein). However,
the study of the related topic on partial differential equations has only a few important
developments. On the other hand, almost periodic functions to various problems have been
investigated (e.g., see [27–32] and references therein), but little has been done about the
inverse problems except for our work in [33–36]. In [36], we study pseudo almost periodic
solutions to parabolic boundary value inverse problems. In this paper, we devote such
solutions to cauchy problems.

To this end, we need first to define the spaces in a more general setting. Let J ∈ {R,Rn}.
Let C(J) (resp., C(J × Ω), where Ω ⊂ Rm) denote the C∗-algebra of bounded continuous
complex-valued functions on J (resp. J × Ω) with the supremum norm. For f ∈ C(J) (resp.,
C(J×Ω)) and s ∈ J , the translation of f by s is the function Rsf(t) = f(t+s) (resp., Rsf(t, Z) =
f(t + s, Z), (t, Z) ∈ J ×Ω).

Definition 1.1. (1) A function f ∈ C(J) is called almost periodic if for every ε > 0 the set

T
(
f, ε

)
=
{
τ ∈ J :

∥∥Rτf − f
∥∥ < ε

}
(1.1)



2 Abstract and Applied Analysis

is relatively dense in J . Denote by AP(J) the set of all such functions. The number (vector) τ
is called ε-translation number (vector) of f .

(2) A function f ∈ C(J × Ω) is said to be almost periodic in t ∈ J and uniform on
compact subsets of Ω if f(·, Z) ∈ AP(J) for each Z ∈ Ω and is uniformly continuous on
J ×K for any compact subset K ⊂ Ω. Denote by AP(J ×Ω) the set of all such functions. For
convenience, such functions are also called uniformly almost periodic.

(3) A function f ∈ C(J)(C(J ×Ω)) is called pseudo almost periodic if

f = g + ϕ, (1.2)

where g ∈ AP(J)(AP(J ×Ω)) and ϕ ∈ PAP0(J)(PAP0(J ×Ω)),

PAP0(J) =

{
ϕ ∈ C(J) : lim

r→∞
1

(2r)n

∫

[−r,r]n
∣∣ϕ(x)∣∣dx = 0

}
,

PAP0(J ×Ω) =

{
ϕ ∈ C(J ×Ω) : lim

r→∞
1

(2r)n

∫

[−r,r]n
∣∣ϕ(x,Z)

∣∣dx = 0

}
,

(1.3)

uniformly with respect to Z ∈ K, where K is any compact subset of Ω. Denote by
PAP(J)(PAP(J ×Ω)) the set of all such functions.

Set

APT(J) ∈ {AP(J), PAP(J)},

APT(J ×Ω) ∈ {AP(J ×Ω), PAP(J ×Ω)}.
(1.4)

Members of APT(J)(APT(J ×Ω)) are called almost periodic type.
We will use the notations throughout the paper: Rm

T = Rm × (0, T), ‖F‖T =
sup{|F(x, t)| : x ∈ Rn, 0 ≤ t ≤ T}. F ∈ APT(Rn × Rm

T ) means that F(x(1), x(2), t) is almost
periodic type in x(1) ∈ Rn and uniformly for (x(2), t) ∈ Rm

T ; F ∈ APT(Rn × Rm) means that
F(x(1), x(2)) is almost periodic type in x(1) ∈ Rn and uniformly for x(2) ∈ Rm.

Let

Z(x, t; ξ, s) =
1(

2
√
π(t − s)

)n+m exp

{
−
∑

(xi − ξi)
2

4(t − s)

}
, (x, ξ ∈ Rn+m), (1.5)

be the fundamental solution of the heat equation [37].
In the next section, we will show the existence and uniqueness of some type of para-

bolic equations. Sections 3 is devoted to a type of Cauchy Problem respectively.
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2. Solutions of Parabolic Equations

Lemma 2.1. Let T > 0. If ϕ ∈ APT(Rn × Rm) and

u(x, t; s) =
∫

Rn+m
ϕ(ξ)Z(x, t; ξ, s)dξ, (2.1)

then for each fixed s ∈ [0, T) u ∈ APT(Rn × Rm × [s, T]).

Proof. First consider the case that ϕ ∈ AP(Rn × Rm). Let τ ∈ Rn be an ε-translation vector of
ϕ:

u
(
x(1) + τ, x(2), t; s

)
− u

(
x(1), x(2), t; s

)

=
∫

Rn+m
ϕ
(
ξ(1), ξ(2)

)[
Z
(
x(1) + τ, x(2), t; ξ(1), ξ(2), s

)
− Z

(
x(1), x(2), t; ξ(1), ξ(2), s

)]
dξ(1)dξ(2)

=
∫

Rn+m

[
ϕ
(
x(1) + τ + ξ(1), x(2) + ξ(2)

)
− ϕ

(
x(1) + ξ(1), x(2) + ξ(2)

)]
Z(0, t; ξs)dξ,

(2.2)

where 0 ∈ Rn+m is the zero vector. Note that
∫
Rn+m Z(0, t; ξ, s)dξ = 1, we get

‖Rτu − u‖ ≤ ∥∥Rτϕ − ϕ
∥∥
∫

Rn+m
Z(0, t; ξ, s)dξ < ε, (2.3)

where t ∈ [s, T] and x(2) ∈ B with B a bounded subset of Rm. This shows that u ∈ AP(Rn ×
Rm × [s, T]).

To show that u ∈ PAP(Rn ×Rm × [s, T]) if ϕ ∈ PAP(Rn ×Rm), we only need to show
that u ∈ PAP0(Rn × Rm × [s, T]) if ϕ ∈ PAP0(Rn × Rm). That is,

lim
r→∞

1
(2r)n

∫

[−r,r]n

∣∣∣u
(
x(1), x(2), t; s

)∣∣∣ds(1) = 0, (2.4)

uniformly with respect to (x(2), t) ∈ Ω, here Ω is any compact subset of Rm × [s, T].
Since ϕ ∈ PAP0(Rn × Rm), for ε > 0 there exist positive numbers A and r0 such that,

when r ≥ r0 for all ξ(1) ∈ [−A,A]n and ξ(2) ∈ Ω ∩ Rm, one has

1
(2r)n

∫

[−r,r]n

∣∣∣ϕ
(
x(1) + ξ(1), ξ(2)

)∣∣∣dx(1) <
ε

3
,

∫−A

−∞
+
∫∞

A

∣∣∣ϕ
(
x(1) + ξ(1), ξ(2)

)∣∣∣Z
(

0, x(2), t; ξ, s
)
dξ <

2ε
3
.

(2.5)
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Therefore,

1
(2r)n

∫

[−r,r]n

∣∣∣u
(
x(1), x(2), t; s

)∣∣∣dx(1)

≤ 1
(2r)n

∫

[−r,r]n

∫

Rn+m

∣∣∣ϕ
(
x(1) + ξ(1), ξ(2)

)∣∣∣Z
(

0, x(2), t; ξ, s
)
dξdx(1)

=
∫−A

−∞
+
∫A

−A
+
∫∞

A

Z
(

0, x(2), t; ξ, s
)
dξ

1
(2r)n

∫

[−r,r]n

∣∣∣ϕ
(
x(1) + ξ(1), ξ(2)

)∣∣∣dx(1) < ε

(2.6)

uniformly with respect to (x(2), t) ∈ Ω, where by
∫b
a F(ξ)dξ we mean that

∫b

a

F(ξ)ξ =
∫

[a,b]n+m
F(ξ)dξ =

∫b

a

· · ·
∫b

a

F(ξ)dξ1dξ2 · · ·dξn+m. (2.7)

This shows that u ∈ PAP0(Rn × Rm). The proof is complete.

Corollary 2.2. Let ϕ, ∂ϕ/∂xi ∈ APT(Rn × Rm), and let u be as in Lemma 2.1. Then, ∂u/∂xi ∈
APT(Rn × Rm × [s, T]).

Proof. Note that

∂u(x, t; s)
∂xi

=
∫

Rn+m
ϕ(ξ)

∂Z(x, t; ξ, s)
∂xi

dξ

= −
∫

Rn+m
ϕ(ξ)

∂Z(x, t; ξ, s)
∂ξi

dξ

=
∫

Rn+m

∂ϕ(ξ)
∂ξi

Z(x, t; ξ, s)dξ.

(2.8)

By Lemma 2.1 we get the conclusion.

Lemma 2.3. If f(x, t) ∈ APT(Rn × Rm
T ) and

u(x, t) =
∫ t

0
ds

∫

Rn+m
f(ξ, s)Z(x, t; ξ, s)dξ, (2.9)

then u and ∂u(x, t)/∂xi(i = 1, 2, . . . , n +m) are all inAPT(Rn × Rm
T ).

The proof is similar to that of Lemma 2.1, so we omit it.
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Theorem 2.4. Consider the heat problem

∂u

∂t
−

n+m∑
i=1

[
∂2u

∂x2
i

+ bi(x, t)
∂u

∂xi

]
− c(x, t)u = f(x, t), (x, t) ∈ Rn+m

T ,

u(x, 0) = ϕ(x), x ∈ Rn+m.

(2.10)

If f(x, t), bi(x, t), ∂bi/∂xj (i, j = 1, 2, . . . , n+m), c(x, t) are inAPT(Rn×Rm
T ) and ϕ, ∂ϕ/∂xi (i =

1, 2, . . . , n +m) are inAPT(Rn × Rm), then (2.10) has a unique solution u ∈ APT(Rn × Rm
T ).

Proof. Problem (2.10) has the standard solution (see [37]):

u(x, t) =
∫

Rn+m
ϕ(ξ)Γ(x, t; ξ, 0)dξ +

∫ t

0
ds

∫

Rn+m
f(ξ, s)Γ(x, t; ξ, s)dξ = I1 + I2, (2.11)

where

Γ(x, t; ξ, s) = Z(x, t; ξ, s) +
∫ t

s

∫

Rn+m
Z
(
x, t;y, η

) ·Φ(
y, η; ξ, s

)
dydη,

Φ
(
y, η; ξ, s

)
=

∞∑
l=1

(LZ)l
(
y, η; ξ, s

)
, (LZ)1 = LZ,

(LZ)l+1
(
y, η; ξ, s

)
=
∫ t

s

∫

Rn+m

[
LZ

(
y, η;v, σ

)]
(LZ)l(v, σ; ξ, s)dvdσ,

(2.12)

and L is the parabolic operator

L =
n+m∑
i=1

[
∂2

∂x2
i

+ bi(x, t)
∂

∂xi

]
+ c(x, t) − ∂

∂t
. (2.13)

Now, we show that u ∈ APT(Rn × Rm
T ) :

I1 =
∫

Rn+m
ϕ(ξ)Z(x, t; ξ, 0)dξ

+
∫

Rn+m
ϕ(ξ)dξ

∫ t

0
dη

∫

Rn+m
Z
(
x, t;y, η

) ∞∑
l=1

(LZ)l
(
y, η; ξ, 0

)
dy

= u1(x, t) +
∞∑
l=1

∫ t

0
dη

∫

Rn+m
Z
(
x, t;y, η

)
dy

∫

Rn+m
ϕ(ξ)(LZ)l

(
y, η; ξ, 0

)
dξ,
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I2 =
∫ t

0
ds

∫

Rn+m
f(ξ, s)Z(x, t; ξ, s)dξ

+
∫ t

0
ds

∫

Rn+m
f(ξ, s)dξ

∫ t

s

dη

∫

Rn+m
Z
(
x, t;y, η

) ∞∑
l=1

(LZ)lZ
(
y, η; ξ, s

)
dy

= u2(x, t) +
∞∑
l=1

∫ t

0
dη

∫

Rn+m
Z
(
x, t;y, η

)
dy

∫η

0
ds

∫

Rn+m
f(ξ, s)(LZ)l

(
y, η; ξ, s

)
dξ.

(2.14)

By Lemmas 2.1 and 2.3, ui ∈ APT(Rn × Rm
T ) (i = 1, 2, ).

Obviously,

LZ(x, t; ξ, s) =
n+m∑
i=1

bi(x, t)
∂Z(x, t; ξ, s)

∂xi
+ c(x, t)Z(x, t; ξ, s). (2.15)

By Lemmas 2.1 and 2.3 we only need to show that the functions

wl(x, t) =
∫

Rn+m
ϕ(ξ)(LZ)l(x, t; ξ, 0)dξ,

vl(x, t) =
∫ t

0
ds

∫

Rn+m
f(ξ, s)(LZ)l(x, t; ξ, s)dξ,

(2.16)

are in APT(Rn × Rm
T ). We do this by induction. By Lemmas 2.1 and 2.3 and Corollary 2.2, it

is true for the case l = 1. Suppose that wl(x, t), vl(x, t) ∈ APT(Rn × Rm
T ). Then,

wl+1(x, t) =
∫

Rn+m
ϕ(ξ)dξ

∫ t

0
dη

∫

Rn+m
LZ

(
x, t;y, η

)
(LZ)l

(
y, η; ξ, 0

)
dy

=
∫ t

0
dη

∫

Rn+m
LZ

(
x, t;y, η

)
dy

∫

Rn+m
ϕ(ξ)(LZ)l

(
y, η; ξ, 0

)
dξ

=
∫ t

0
dη

∫

Rn+m
wl

(
y, η

)
LZ

(
x, t;y, η

)
dy.

(2.17)

By the induction assumption and Lemma 2.3, we have wl+1(x, t) ∈ APT(Rn × Rm
T ). Similarly

one shows that vl+1(x, t) ∈ APT(Rn × Rm
T ). The proof is complete.

3. Cauchy Problem

Starting this section we will apply the results of the last section to inverse problems of partial
differential equations. We will investigate two types of initial value problems in this and
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the next sections, respectively. We will keep the notation in Section 2 and, at the same time,
introduce the following new notation:

x = (x1, x2, . . . , xn−1), ξ = (ξ1, ξ2, . . . , ξn−1),

X = (x, xn), ζ = (ξ, ξn).
(3.1)

The following estimates are easily obtained:

∥∥∥∥∥
∫ t

0
ds

∫

Rn

Z(X, t; ζ, s)dζ

∥∥∥∥∥
T

≤ m(T), (3.2)

where m(T) are positive and increasing for T ≥ 0 and m(T) → 0 as T → 0.
To show the main results of this and the next sections, the following lemmas are

needed. The first lemma is the Gronwall-Bellman lemma; the convenient reference should
be an ODE text, for instance, it is proved on page 15 of [38].

Lemma 3.1. Let ϕ, φ, and χ be real, continuous functions on [0, T] with χ ≥ 0. If

ϕ(t) ≤ φ(t) +
∫ t

0
χ(s)ϕ(s)ds (t ∈ [0, T]), (3.3)

then

ϕ(t) ≤ φ(t) +
∫ t

0
χ(s)φ(s) exp

{∫ t

s

χ
(
ρ
)
dρ

}
ds (t ∈ [0, T]). (3.4)

Lemma 3.2. Let ϕ be a continuous function on [0, T]. If φ, χ1, and χ2 are nondecreasing and non-
negative on [0, T] and

ϕ(t) ≤ φ(t) + χ1(t)
∫ t

0
ϕ(s)ds + χ2(t)

∫ t

0

ϕ(s)√
t − s

ds (t ∈ [0, T]), (∗)

then

ϕ(t) ≤ φ(t)
[
1 + tχ1(t) + 2

√
tχ2(t)

]
etχ(t), (3.5)

where

χ(t) = tχ2
1(t) + 4

√
tχ1(t)χ2(t) + πχ2

2(t). (3.6)
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Proof. Replacing ϕ(s) in the two integrals of (∗) by the expression on the right-hand side in
(26), changing the integral order of the resulting inequality, and making use of the mono-
tonicity of φ, χ1, and χ2, one gets

ϕ(t) ≤ φ(t)
[
1 + tχ1(t) + 2

√
tχ2(t)

]
+
[
tχ2

1(t) + 4
√
tχ1(t)χ2(t) + πχ2

2(t)
] ∫ t

0
ϕ(s)Ds. (3.7)

Using Lemma 3.1 leads to the conclusion.

Lemma 3.3. Let F(X, t) ∈ C(Rn
T ) and ϕ ∈ C(Rn). If u(X, t) is a solution of the problem

ut −Δu + qu = F(X, t), (X, t) ∈ Rn
T ,

u(X, 0) = ϕ(X), X ∈ Rn,
(3.8)

then

‖u‖T ≤ K(T)
(
T‖F‖T +

∥∥ϕ∥∥), (3.9)

where K(T) = 1 + T‖q‖TeT‖q‖T .

One sees that K(T) depends on ‖q‖T only and is bounded near zero.

Proof. The solution u can been written as

u(X, t) =
∫

Rn

ϕ(ζ)Z(X, t; ζ, 0)dζ +
∫ t

0
ds

∫

Rn

F(ζ, s)Z(X, t; ζ, s)dζ

−
∫ t

0
ds

∫

Rn

q(ξ, s)u(ζ, s)Z(X, t; ζ, s)dζ,

(3.10)

so,

‖u‖t ≤
∥∥ϕ∥∥ +

∫ t

0
‖F‖sds +

∫ t

0

∥∥q∥∥s‖u‖sds. (3.11)

By Lemma 3.1 one gets the desired result. The proof is complete.

Problem 1. Find functions u(X, t) ∈ APT(Rn−1 × RT ) and q(x, t) ∈ APT(Rn−1
T ) such that

ut −Δu + qu = F(X, t), (X, t) ∈ Rn
T , (3.12)

u(X, 0) = ϕ(X), X ∈ Rn, (3.13)

u(x, 0, t) = h(x, t), (x, t) ∈ Rn−1
T , (3.14)

where ϕ(x, xn), ϕxnxn(x, xn) ∈ APT(Rn−1 × R), h(x, t) ≥ const > 0, h(x, t), (Δh − ht) ∈
APT(Rn−1

T0
), and F(x, xn, t), Fxnxn(x, xn, t) ∈ APT(Rn−1 × RT0). T0 > T > 0 are constants.
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By (3.13) and (3.14), one sees that h(x, 0) = ϕ(x, 0).
We have the following additional problem.

Problem 2. Find functions W(X, t) ∈ APT(Rn−1 × RT ) and q(x, t) ∈ APT(Rn−1
T ) such that

Wt −ΔW + qW = Fxnxn(X, t), (X, t) ∈ Rn
T , (3.15)

W(X, 0) = ϕxnxn(X), X ∈ Rn, (3.16)

W(x, 0, t) = ht −Δh + qh − F(x, 0, t), (x, t) ∈ Rn−1
T . (3.17)

The Cauchy problems with unknown coefficient belong to inverse problems [39]. “In
the last two decades, the field of inverse problems has certainly been one of the fastest
growing areas in applied mathematics. This growth has largely been driven by the needs
of applications both in other sciences and in industry.” [40]. For the two problems above, we
have the following.

Lemma 3.4. Problems 1 and 2 are equivalent to each other.

Proof. Let V (X, t) = uxn(X, t). Then, V (X, t) satisfies

Vt −ΔV + qV = Fxn(X, t), (X, t) ∈ Rn
T , (3.18)

V (X, 0) = ϕxn(X), X ∈ Rn, (3.19)

Vxn(x, 0, t) = ht −Δh + qh − F(x, 0, t), ϕ(x, 0) = h(x, 0), (x, t) ∈ Rn−1
T . (3.20)

So, if Problem 1 has a solution (u, q), then Problems (3.18)–(3.20) have the solution (V, q) with
V (X, t) = uxn(X, t). Obviously V (X, t) ∈ APT(Rn−1 × RT ) if u(X, t) ∈ APT(Rn−1 × RT ).

On the other hand, if V (X, t) ∈ APT(Rn−1 × RT ) and q(x, t) ∈ APT(Rn−1
T ) satisfy

(3.18)–(3.20), then we will show that Problem 1 has a unique solution (u, q) and u(X, t) ∈
APT(Rn−1 × RT ).

The uniqueness comes from the uniqueness of Cauchy Problem (1)-(2). For the
existence, note the fact that if (u, q) is a solution of (3.12)–(3.14), then V = uxn . Thus, we
define

u(X, t) =
∫xn

0
V
(
x, y, t

)
dy + Φ(x, t). (3.21)

It follows from (3.14) that Φ = h. Now, u satisfies (3.13) because

u(X, 0) =
∫xn

0
V
(
x, y, 0

)
dy + h(x, 0) = ϕ(X) − ϕ(x, 0) + h(x, 0) = ϕ(X). (3.22)
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It follows from (3.18), (3.20), and (3.21) that

ut −Δu + qu =
∫xn

0

(
Vt −ΔV + qV

)
dy +

∫xn

0

∂2V
(
x, y, t

)

∂y2
dy

− ∂2

∂x2
n

∫xn

0
V
(
x, y, t

)
dy + ht − ∇h + qh

= F(x, xn, t) − F(x, 0, t) + Vxn(x, xn, t) − Vxn(x, 0, t) − Vxn(x, xn, t)

+ ht −Δh + qh = F(X, t).

(3.23)

Thus, u satisfies (3.12) and (u, q) is a unique solution of Problem 1.

It follows from V (X, t) ∈ APT(Rn−1 ×RT , h(x, t) ∈ APT(Rn−1
T ), and (3.21) that u(X, t)

in (3.21) is in APT(Rn−1 × RT ).
Since we have shown that Problem 1 is equivalent to (3.18)–(3.20), to show the lemma

we only need to show that Problem 2, equivalent to (3.18)–(3.20) too.
If (V, q) is a solution of (3.18)–(3.20), let W(X, t) = Vxn(X, t). Then one can directly

calculate that (W,q) is a solution of (3.15)–(3.17) and W(X, t) ∈ APT(Rn−1 × RT ).
On the other hand, if (W,q) is a solution of (3.15)–(3.17), let

V (X, t) =
∫xn

0
W

(
x, y, t

)
dy + Φ(x, t), (3.24)

where Φ is the solution of the Cauchy problem

Φt −ΔΦ + qΦ = Wxn(x, 0, t) + Fxn(x, 0, t), (x, t) ∈ Rn−1
T

Φ(x, 0) = ϕxn(x, 0), x ∈ Rn−1.

(3.25)

Since W(X, t) ∈ APT(Rn−1 × RT ), Wxn(x, 0, t) ∈ APT(Rn−1
T ). By Theorem 2.4, Φ(x, t) ∈

APT(Rn−1
T ) and so V (X, t) ∈ APT(Rn−1 × RT ).

Obviously, Vxn(x, 0, t) = W(x, 0, t) = ht − Δh + qh − F(x, 0, t), and this shows that V
satisfies (3.20). V satisfies (3.19) because

V (X, 0) =
∫xn

0
W

(
x, y, 0

)
dy + Φ(x, 0) =

∫xn

0
ϕxnxn

(
x, y

)
dy + Φ(x, 0)

= ϕxn(x, xn) − ϕxn(x, 0) + Φ(x, 0) = ϕxn(X).

(3.26)
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Finally,

Vt −ΔV + qV =
∫xn

0

(
Wt −ΔW + qW

)
dy +

∫xn

0

∂2W
(
x, y, t

)

∂y2
dy

− ∂2

∂x2
n

∫xn

0
W

(
x, η, t

)
dη + Φt −ΔΦ + qΦ

= Fxn(x, xn, t) − Fxn(x, 0, t) +Wxn(x, xn, t) −Wxn(x, 0, t) −Wxn(x, xn, t)

+ Φt −ΔΦ + qΦ = Fxn(X, t).
(3.27)

This shows that V satisfies (3.18). The proof is complete.

By (3.15)-(3.16) we have the integral equation about W(X, t):

W(X, t) =
∫

Rn

ϕxnxn(ζ)Z(X, t; ζ, 0)dζ +
∫ t

0
ds

∫

Rn

Fxnxn(ζ, s)Z(X, t; ζ, s)dζ

−
∫ t

0
ds

∫

Rn

q(ξ, s)W(ζ, s)Z(X, t; ζ, s)dζ,

(3.28)

q = Lq

= [Δh − ht + F(x, 0, t)]h−1 + h−1
∫

Rn

ϕxnxn(ζ)Z(x, 0, t; ζ, 0)dζ

+ h−1
∫ t

0
ds

∫

Rn

Fxnxn(ζ, s)Z(x, 0, t; ζ, s)dζ

− h−1
∫ t

0
ds

∫

Rn

q(ξ, s)W(ζ, s)Z(x, 0, t; ζ, s)dζ (x, t) ∈ Rn−1
T ,

(3.29)

where W is determined by (3.28).
It is readily to show that (3.15)–(3.17) are equivalent to (3.28)-(3.29).

Note that, for a given q(x, t) ∈ APT(Rn−1
T ), Theorem 2.4 shows the Cauchy problem

(3.15) and (3.16) (or equivalently (3.28)) has a unique solution W ∈ APT(Rn × RT ). Thus,
(3.29) does define an operator L. To show that Problem 2 (and so Problem 1) has a unique

solution, we only need to show that (3.29) has a solution q(x, t) ∈ APT(Rn−1
T ). That is, L has

a fixed point in APT(Rn−1
T ). To this end, let

∥∥∥∥[Δh − ht + F(x, 0, t)]h−1 + h−1
∫

Rn

ϕxnxn(ζ)Z(x, 0, t; ζ, 0)dζ

+h−1
∫T

0
ds

∫

Rn

Fxnxn(ζ, s)Z(x, 0, t; ζ, s)dζ

∥∥∥∥∥
T0

=
M

2
.

(3.30)
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Set B(M,T) = {q(x, t) ∈ APT(Rn−1
T ) : ‖q‖T ≤ M}. Now, we show that for small T the operator

L in (3.29) is a contraction from B(M,T) into itself.
If q ∈ B(M,T), then, according to Theorem 2.4, the function W determined by (3.15)-

(3.16) and therefore by (3.28) belongs to APT(Rn−1 ×RT ). Note that ϕxnxn ∈ APT(Rn−1 ×R),

(Δh−ht) ∈ APT(Rn−1
T ), and Fxnxn ∈ APT(Rn−1×RT ). It follows from Lemma 2.3, Theorem 2.4,

and (3.29) that Lq ∈ APT(Rn−1
T ) and

∥∥Lq∥∥T ≤
∥∥∥∥[Δh − tt + F(x, 0, t)]h−1 + h−1

∫

Rn

ϕxnxn(ζ)Z(x, 0, t; ζ, 0)dζ

+h−1
∫ t

0
ds

∫

Rn

Fxnxn(ζ, s)Z(x, 0, t; ζ, s)dζ

∥∥∥∥∥
T

+
∥∥∥h−1

∥∥∥
T

∥∥q∥∥T‖W‖Tm(T)

≤ 1
2
M +

∥∥∥h−1
∥∥∥
T
MK0(T)

(∥∥ϕxnxn

∥∥ + T‖Fxnxn‖T
)
m(T),

(3.31)

where K0 comes from Lemma 3.3. Noting that m(T) → 0 ad T → 0, we choose T1 ≤ T0 such
that when T < T1 one has

∥∥∥h−1
∥∥∥
T
K0(T)

(∥∥ϕxnxn

∥∥ + T‖Fxnxn‖T
)
m(T) ≤ 1

2
. (3.32)

So, Lq ∈ B(M,T). For q1, q2 ∈ B(M,T), by (3.29)

∥∥Lq1 − Lq2
∥∥ ≤

∥∥∥h−1
∥∥∥
T

∥∥W1q1 −W2q2
∥∥
Tm(T)

≤ m(T)
∥∥∥h−1

∥∥∥
T

[‖W1‖T
∥∥q1 − q2

∥∥
T +

∥∥q2
∥∥
T‖W1 −W2‖T

]
.

(3.33)

The function V = W1 −W2 is a solution of the Cauchy problem

Vt −ΔV + q1V = W2
(
q2 − q1

)
, (X, t) ∈ Rn

T ,

V (X, 0) = 0, X ∈ Rn.
(3.34)

Thus, by Lemma 3.3

‖V ‖T ≤ K1(T)‖W2‖T
∥∥q2 − q1

∥∥. (3.35)
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Applying Lemma 3.3 to (W1, q1) and (W2, q2), respectively, one gets

‖W1‖ ≤ K1(T)
(∥∥ϕxnxn

∥∥ + T‖Fxnxn‖
)
,

‖W2‖ ≤ K2(T)
(∥∥ϕxnxn

∥∥ + T‖Fxnxn‖
)
.

(3.36)

If we choose T2 ≤ T1 so that when T ≤ T2

2m(T)
∥∥∥h−1

∥∥∥
T

(∥∥ϕxnxn

∥∥ + T‖Fxnxn‖
)
K1(T)[1 +MK2(T)] ≤ 1, (3.37)

then
‖Lq1 − Lq2‖T ≤ m(T)‖h−1‖T [‖W1‖ +MK1(T)‖W2‖]‖q2 − q1‖T

≤ m(T)‖h−1‖TK1(T)(1 +MK2(T))(‖ϕxnxn‖ + T‖Fxnxn‖T )‖q2 − q1‖T

≤ 1
2
‖q2 − q1‖T .

One sees that for such T , the operator L is a contraction from B(M,T) into itself and,
therefore, has a unique fixed point in B(M,T). Thus, we have shown.

Theorem 3.5. If functions F, ϕ, and h satisfy the conditions of Problem 1, M and T are determined
by (3.30) and (3.32), (3.37) respectively, then in Rn

T , Problem 1 has a unique solution (u, q) with

u ∈ APT(Rn−1 × RT ) and q ∈ APT(Rn−1
T ).

Furthermore, we have the following.

Theorem 3.6. Let F, ϕ, and h be as in Problem 1. Then, there exists an almost periodic type solution
for Problem 1 in Rn

T0
.

Proof. We show that the conclusion of Theorem 3.5 can be extended to Rn
T0

. Let T = sup{s :
Problem 1 has solution in Rn

s}. By Theorem 3.5, T > 0. Suppose that T < T0. Consider the
problem

ut −Δu + qu = F(X, t), X ∈ Rn, T ≤ t ≤ T0,

u(X, T) = f(X), X ∈ Rn,

u(x, 0, t) = h(x, t), (x, t) ∈ Rn−1 × [T, T0].

(3.38)

For q we can write the integral equation similar to (3.29), but this time its domain is
x ∈ Rn−1, t ∈ [T, T0]. As the proof above, define the ball B1(M,S) in APT(Rn−1×[T, T0]); then
there exists a t0 > 0 such that the operator Lt0 is a contraction from B1(M,S) into itself. So,
(3.29) has a solution for the domain x ∈ Rn−1, t ∈ [T, T + t0]. This contradicts the definition of
T . We must have T = T0.

For the stability, we have the following.
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Theorem 3.7. Let functions hi, ϕi, and Fi(i = 1, 2) be as in Problem 1. If Wi(X, t) ∈ APT(Rn−1 ×
RT ) and qi ∈ APT(Rn−1

T ) (i = 1, 2) are solutions to (3.15)–(3.17), then

∥∥q2 − q1
∥∥
t ≤ c1‖h2 − h1‖t + c2

∥∥∥∥
(

∂

∂t
−Δ

)
(h2 − h1)

∥∥∥∥
t

+ c3

∥∥∥∥∥
∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥∥∥∥∥ + c4‖F2 − F1‖t + c5

∥∥∥∥∥
∂2

∂x2
n

(F2 − F1)

∥∥∥∥∥
t

,

(3.39)

where cj (1 ≤ j ≤ 5) depends on T, ‖h1‖t, ‖(∂2/∂x2
n)ϕ1‖, ‖F1‖t, ‖(∂2/∂x2

n)F1‖t, and ‖qi‖t (i =
1, 2) only.

Proof. By (3.29),

h1
(
q2 − q1

)
= −q2(h2 − h1) −

(
∂

∂t
−Δ

)
(h2 − h1) + F2(x, 0, t) − F1(x, 0, t)

+
∫

Rn

∂2

∂ξ2
n

(
ϕ2(ζ) − ϕ1(ζ)

)
Z(x, 0, t; ζ, 0)dζ

+
∫ t

0
ds

∫

Rn

∂2

∂ξ2
n

(F2 − F1)Z(x, 0, t; ζ, s)dζ

−
∫ t

0
ds

∫

Rn

[
(W2 −W1)q2 +W1

(
q2 − q1

)]
Z(x, 0, t; ζ, s)dζ.

(3.40)

By Lemma 3.3,

‖W1‖t ≤ K1(t)

[∥∥∥∥∥
∂2ϕ1

∂x2
n

∥∥∥∥∥ + t

∥∥∥∥∥
∂2F1

∂x2
n

∥∥∥∥∥
t

]
. (3.41)

Since the function V = W2 −W1 is the solution of the Cauchy problem

Vt −ΔV + q2V =
∂2

∂x2
n

(F2 − F1) −W1
(
q2 − q1

)
, (X, t) ∈ Rn

T

V (X, 0) =
∂2

∂x2
n

[
ϕ2(X) − ϕ1(X)

]
, X ∈ Rn,

(3.42)

one has

‖V ‖t ≤ K2(T)

[∥∥∥∥∥
∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥∥∥∥∥ + t

∥∥∥∥∥
∂2

∂x2
n

(F2 − F1)

∥∥∥∥∥
t

+K1(t)

(∥∥∥∥∥
∂2

∂x2
n

ϕ1

∥∥∥∥∥ + t

∥∥∥∥∥
∂2

∂x2
n

F1

∥∥∥∥∥

)∥∥q2 − q1
∥∥
t

]
.

(3.43)
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Therefore,

∥∥q2 − q1
∥∥
t ≤

∥∥∥h−1
1

∥∥∥
t

{∥∥q2
∥∥
t‖h2 − h1‖t +

∥∥∥∥
(

∂

∂t
−Δ

)
(h2 − h1)

∥∥∥∥
t

+ ‖F2(x, 0, t) − F1(x, 0, t)‖t

+

∥∥∥∥∥
∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥∥∥∥∥ + T

∥∥∥∥∥
∂2

∂x2
n

(F2 − F1)

∥∥∥∥∥
t

+
∫ t

0
K2(s)

[∥∥∥∥∥
∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥∥∥∥∥ + s

∥∥∥∥∥
∂2

∂x2
n

(F2 − F1)

∥∥∥∥∥
s

]∥∥q2
∥∥
sds

+
∫ t

0
K1(s)

[∥∥∥∥∥
∂2

∂x2
n

ϕ1

∥∥∥∥∥ + s

∥∥∥∥∥
∂2

∂x2
n

F1

∥∥∥∥∥
s

]∥∥q2 − q1
∥∥
sds

+
∫ t

0
K1(s)K2(s)

[∥∥∥∥∥
∂2

∂x2
n

ϕ1

∥∥∥∥∥ + s

∥∥∥∥∥
∂2

∂x2
n

F1

∥∥∥∥∥
s

]∥∥q2 − q1
∥∥
s

∥∥q2
∥∥
sds

}
.

(3.44)

Using Lemma 3.1, we get the estimates desired if we let

c1 =
∥∥∥h−1

1

∥∥∥
t

∥∥q2
∥∥
t

[
1 +

∥∥∥h−1
1

∥∥∥
t

∫ t

0
χ(s) exp

{∥∥∥h−1
1

∥∥∥
t

∫ t

s

χ
(
ρ
)
dρ

}
ds

]
,

c2 =
∥∥∥h−1

1

∥∥∥
t

[
1 +

∥∥∥h−1
1

∥∥∥
t

∫ t

0
χ(s) exp

{∥∥∥h−1
1

∥∥∥
t

∫ t

s

χ
(
ρ
)
dρ

}
ds

]
,

c3 =
∥∥∥h−1

1

∥∥∥
t

[
1 +

∫ t

0

∥∥q2
∥∥
sK2(s)ds

][
1 +

∥∥∥h−1
1

∥∥∥
t

∫ t

0
χ(s) exp

{∥∥∥h−1
1

∥∥∥
t

∫ t

s

χ
(
ρ
)
dρ

}
ds

]
,

c4 = c2 c5 = c3,

(3.45)

where

χ(t) =

[∥∥∥∥∥
∂2

∂x2
n

ϕ1

∥∥∥∥∥ + t

∥∥∥∥∥
∂2

∂x2
n

F1

∥∥∥∥∥
t

]
K1(t)

(
1 +K2(t)

∥∥q2
∥∥
t

)
. (3.46)

The proof is complete.

Corollary 3.8. If Problem 1 has a solution in Rn
T0
, then it has a unique one.
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This paper is concerned with the nth-order forced nonlinear neutral differential equation [x(t) −
p(t)x(τ(t))](n) +

∑m
i=1 qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))) = g(t), t ≥ t0. Some necessary and

sufficient conditions for the oscillation of bounded solutions and several sufficient conditions for
the existence of uncountably many bounded positive and negative solutions of the above equation
are established. The results obtained in this paper improve and extend essentially some known
results in the literature. Five interesting examples that point out the importance of our results are
also included.

1. Introduction

Consider the following nth-order forced nonlinear neutral differential equation:

[
x(t) − p(t)x(τ(t))

](n) +
m∑
i=1

qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))) = g(t), t ≥ t0, (1.1)

where t0 ∈ R and n,m, ki ∈ N are constants for 1 ≤ i ≤ m. In what follows, we assume that

(A1) p, g, τ, σij ∈ C([t0,+∞),R) and qi ∈ C([t0,+∞),R+) satisfy that

lim
t→+∞

τ(t) = lim
t→+∞

σij(t) = +∞, 1 ≤ j ≤ ki, 1 ≤ i ≤ m, (1.2)
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and there exists 1 ≤ i0 ≤ m such that qi0 is positive eventually:

(A2) τ is strictly increasing and τ(t) < t in [t0,+∞);

(A3) fi ∈ C(Rki ,R) satisfies that

fi(u1, u2, . . . , uki) > 0, ∀(u1, u2, . . . , uki) ∈ (R+ \ {0})ki ,

fi(u1, u2, . . . , uki) < 0, ∀(u1, u2, . . . , uki) ∈ (R− \ {0})ki
(1.3)

for 1 ≤ i ≤ m.

During the last decades, the oscillation criteria and the existence results of nonoscil-
latory solutions for various linear and nonlinear differential equations have been studied
extensively, for example, see [1–28] and the references cited therein. In particular, Zhang and
Yan [25] obtained some sufficient conditions for the oscillation of the first-order linear neutral
delay differential equation with positive and negative coefficients:

[
x(t) − p(t)x(t − τ)

]′ + q(t)x(t − σ) − r(t)x(t − δ) = 0, t ≥ t0, (1.4)

where p, q, r ∈ C([t0,+∞),R+), τ > 0, and σ ≥ δ ≥ 0. Das and Misra [7] studied the
nonhomogeneous neutral delay differential equation:

[x(t) − cx(t − τ)]′ + q(t)f(x(t − σ)) = g(t), t ≥ t0, (1.5)

where q, g ∈ C([T,+∞),R+ \ {0}), σ > 0, τ > 0, c ∈ [0, 1), f : R → R, tf(t) > 0 for t /= 0,
f is nondecreasing, Lipschitzian, and satisfies

∫k
0 (1/f(t))dt < +∞ for every k > 0, and they

obtained a necessary and sufficient condition for the solutions of (1.5) to be oscillatory or tend
to zero asymptotically. Parhi and Rath [18] extended Das and Misra’s result to the following
forced first-order neutral differential equation with variable coefficients:

[
x(t) − p(t)x(t − τ)

]′ + q(t)f(x(t − σ)) = g(t), t ≥ 0, (1.6)

where p ∈ C(R+,R), and they got necessary and sufficient conditions which ensures every
solution of (1.6) is oscillatory or tends to zero or to ±∞ as t → +∞. By using Banach’s fixed
point theorem, Zhang et al. [24] proved the existence of a nonoscillatory solution for the
first-order linear neutral delay differential equation:

[
x(t) + p(t)x(t − τ)

]′ +
n∑
i=1

fi(t)x(t − σi) = 0, t ≥ t0, (1.7)

where p ∈ C([t0,+∞),R), τ > 0, σi ∈ R
+, and fi ∈ C([t0,+∞),R) for 1 ≤ i ≤ m. Çakmak and

Tiryaki [6] showed several sufficient conditions for the oscillation of the forced second-order
nonlinear differential equations with delayed argument in the form:

x′′(t) + p(t)f(x(α(t))) = g(t), t ≥ t0 ≥ 0, (1.8)
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where p, α, g ∈ C([t0,+∞),R), α(t) ≤ t, limt→+∞α(t) = +∞, and f ∈ C(R,R). Travis [20]
investigated the oscillatory behavior of the second-order differential equation with functional
argument:

x′′(t) + p(t)f(x(t), x(α(t))) = 0, t ≥ t0, (1.9)

where p, α ∈ C([t0,+∞),R) and f ∈ C(R2,R) satisfies that f(s, t) has the same sign of s and
t when they have the same sign. Lin [12] got some sufficient conditions for oscillation and
nonoscillation of the second order nonlinear neutral differential equation:

[
x(t) − p(t)x(t − τ)

]′′ + q(t)f(x(t − σ)) = 0, t ≥ 0, (1.10)

where p, q ∈ C(R+,R), p ∈ [0, 1) with 0 ≤ p(t) ≤ p eventually, f ∈ C(R,R), f is nondecreasing
and tf(t) > 0 for t /= 0. Kulenović and Hadžiomerspahić [9] deduced the existence of a
nonoscillatory solution for the neutral delay differential equation of second order with
positive and negative coefficients:

[x(t) + cx(t − τ)]′′ + q1(t)x(t − σ1) − q2(t)x(t − σ2) = 0, t ≥ t0, (1.11)

where c /= ± 1, τ > 0, σi ∈ R
+, qi ∈ C([t0,+∞),R+), and

∫+∞
t0

qi(t)dt < +∞ for i ∈ {1, 2}.
Utilizing the fixed point theorems due to Banach, Schauder and Krasnoselskii, and Zhou
and Zhang [27], and Zhou et al. [28] established some sufficient conditions for the existence
of a nonoscillatory solution of the following higher-order neutral functional differential
equations:

[x(t) + cx(t − τ)](n) + (−1)n+1[P(t)x(t − σ) −Q(t)x(t − δ)] = 0, t ≥ t0,

[
x(t) + p(t)x(t − τ)

](n) +
m∑
i=1

qi(t)fi(x(t − σi)) = g(t), t ≥ t0,
(1.12)

where c ∈ R \ {±1}, τ, σ, δ, σi ∈ R
+, P,Q ∈ C([t0,+∞),R+), and p, g, fi ∈ C([t0,+∞),R) for

1 ≤ i ≤ m. Li et al. [11] investigated the existence of an unbounded positive solution, bounded
oscillation, and nonoscillation criteria for the following even-order neutral delay differential
equation with unstable type:

[
x(t) − p(t)x(t − τ)

](n) − q(t)|x(t − σ)|α−1x(t − σ) = 0, t ≥ t0, (1.13)

where τ > 0, σ > 0, α ≥ 1, and p, q ∈ C([t0,+∞),R+). Zhang and Yan [22] obtained
some sufficient conditions for oscillation of all solutions of the even-order neutral differential
equation with variable coefficients and delays:

[
x(t) + p(t)x(τ(t))

](n) + q(t)x(σ(t)) = 0, t ≥ t0, (1.14)

where n is even, p, q, τ, σ ∈ C([t0,+∞),R+), p(t) < 1, τ(t) ≤ t and σ(t) ≤ t for t ∈ [t0,+∞), and
limt→+∞τ(t) = limt→+∞σ(t) = +∞. Yilmaz and Zafer [21] discussed sufficient conditions for
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the existence of positive solutions and the oscillation of bounded solutions of the nth-order
neutral type differential equations:

[x(t) + cx(τ(t))](n) + q(t)f(x(σ(t))) = 0, t ≥ t0,

[
x(t) + p(t)x(τ(t))

](n) + q(t)f(x(σ(t))) = g(t), t ≥ t0,
(1.15)

where c ∈ R \ {±1}, τ, σ ∈ C([t0,+∞),R+), p, q, g ∈ C([t0,+∞),R), and f ∈ C(R,R). Bolat
and Akin [4, 5] got sufficient criteria for oscillatory behaviour of solutions for the higher-
order neutral type nonlinear forced differential equations with oscillating coefficients:

[
x(t) + p(t)x(τ(t))

](n) +
m∑
i=1

qi(t)fi(x(σi(t))) = 0, t ≥ t0,

[
x(t) + p(t)x(τ(t))

](n) +
m∑
i=1

qi(t)fi(x(σi(t))) = g(t), t ≥ t0,

(1.16)

where n ∈ N\{1}, m ∈ N, p, fi, g, τ, σi ∈ C([t0,+∞),R), fi is nondecreasing and ufi(u) > 0 for
u/= 0, σi ∈ C1([t0,+∞),R), σ ′

i(t) > 0, σi(t) ≤ t for t ∈ [t0,+∞), limt→+∞τ(t) = limt→+∞σi(t) =
+∞ for 1 ≤ i ≤ m, and p and g are oscillating functions. Zhou and Yu [26] attempted to
extend the result of Bolat and Akin [4] and established a necessary and sufficient condition for
the oscillation of bounded solutions of the higher-order nonlinear neutral forced differential
equation of the form:

[
x(t) − p(t)x(τ(t))

](n) +
m∑
i=1

qi(t)fi(x(σi(t))) = g(t), t ≥ t0, (1.17)

where n ∈ N \ {1}, m ∈ N, and

(C1) p, qi, τ, g ∈ C([t0,+∞),R) for i = 1, 2, . . . , m and limt→+∞τ(t) = +∞;

(C2) p and g are oscillating functions;

(C3) σi ∈ C([t0,+∞),R), σ ′
i(t) > 0, σi(t) ≤ t and limt→+∞σi(t) = +∞ for i =

1, 2, . . . , m;

(C4) fi ∈ C(R,R) is nondecreasing function, ufi(u) > 0 for u/= 0 and i = 1, 2, . . . , m.

That is, they claimed the following result.

Theorem 1.1 (see [26, Theorem 2.1]). Assume that

(C5) there is an oscillating function r ∈ C([t0,+∞),R) such that r(n)(t) = g(t) and
limt→+∞r(t) = 0;

(C6) p is an oscillating function and |p(t)| ≤ p0 < 1/2;

(C7) qi(t) ≥ 0, i = 1, 2, . . . , m.

Then, every bounded solution of (1.17) either oscillates or tends to zero if and only if

∫+∞

t0

sn−1qi(s)ds = +∞, i = 1, 2, . . . , m. (1.18)



Abstract and Applied Analysis 5

We, unfortunately, point out that the necessary part in Theorem 1.1 is false, see
Remark 4.2 and Example 4.7 below. It is clear that (1.1) includes (1.4)–(1.17) as special cases.
To the best of our knowledge, there is no literature referred to the oscillation and existence
of uncountably many bounded nonoscillatory solutions of (1.1). The aim of this paper is to
establish the bounded oscillation and the existence of uncountably many bounded positive
and negative solutions for (1.1) without the monotonicity of the nonlinear term fi. Our results
extend and improve substantially some known results in [4, 5, 9, 10, 20, 24, 26–28] and correct
Theorem 2.1 in [26].

The paper is organized as follows. In Section 2, a few notation and lemmas are
introduced and proved, respectively. In Section 3, by employing Krasnoselskii’s fixed point
theorem and some techniques, the existence of uncountably many bounded positive and
negative solutions for (1.1) are given, and some necessary and sufficient conditions for all
bounded solutions of (1.1) to be oscillatory or tend to zero as t → +∞ are provided. In
Section 4, a number of examples which clarify advantages of our results are constructed.

2. Preliminaries

It is assumed throughout this paper that R = (−∞,+∞), R
+ = [0,+∞), R− = (−∞, 0] and

β = min
{
t0, inf

{
τ(t), σij(t) : t ∈ [t0,+∞), 1 ≤ j ≤ ik, 1 ≤ i ≤ m

}}
. (2.1)

By a solution of (1.1), we mean a function x ∈ C([β,+∞),R) for some T ≥ t0+β, such that x(t)−
p(t)x(τ(t)) is n times continuously differentiable in [T,+∞) and such that (1.1) is satisfied for
t ≥ T . As is customary, a solution of (1.1) is said to be oscillatory if it has arbitrarily large
zeros. Otherwise, it is nonoscillatory, that is, if it is eventually positive or eventually negative.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Let BC([β,+∞),R) stand for the Banach space of all bounded continuous functions in
[β,+∞) with the norm ‖x‖ = supt≥β|x(t)| for each x ∈ BC([β,+∞),R) and

A(N,M) =
{
x ∈ BC

([
β,+∞)

,R
)

: N ≤ x(t) ≤ M, t ≥ β
}

for M,N ∈ R with M > N.
(2.2)

It is easy to see that A(N,M) is a bounded closed and convex subset of the Banach space
BC([β,+∞),R).

Lemma 2.1. Let n ∈ N and x ∈ Cn([t0,+∞),R) be bounded. If x(n)(t) ≤ 0 eventually, then

(a) limt→+∞x(t) exists and limt→+∞x(i)(t) = 0 for 1 ≤ i ≤ n − 1; furthermore, there exists
θ = 0 for n odd and θ = 1 for n even such that

(b) (−1)θ+ix(i)(t) ≥ 0 eventually for 1 ≤ i ≤ n;

(c) (−1)θ+ix(i) is nonincreasing eventually for 0 ≤ i ≤ n − 1.

Proof. Now, we consider two possible cases below.

Case 1. Assume that n = 1. Let θ = 0. Note that x′(t) ≤ 0 eventually. It follows that there exists
a constant t1 > t0 satisfying x′(t) ≤ 0, for all t ≥ t1, which yields that x is nonincreasing in
[t1,+∞). Since x is bounded in [t0,+∞), it follows that limt→+∞x(t) exists.
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Case 2. Assume that n ≥ 2. Notice that θ+n is odd. It follows that (−1)θ+nx(n)(t) ≥ 0 eventually,
which implies that there exists a constant t1 > t0 satisfying

(−1)θ+nx(n)(t) ≥ 0, ∀t ≥ t1, (2.3)

which means that

(−1)θ+n−1x(n−1)(t) is nonincreasing in [t1,+∞). (2.4)

Suppose that there exists a constant t2 ≥ t1 satisfying (−1)θ+n−1x(n−1)(t2) < 0, which
together with (2.4) gives that

(−1)θ+n−1x(n−1)(t) ≤ (−1)θ+n−1x(n−1)(t2) < 0, ∀t ≥ t2, (2.5)

which guarantees that (−1)θ+n−2x(n−2)(t) is increasing in [t2,+∞) and

(−1)θ+n−1x(n−2)(t) − (−1)θ+n−1x(n−2)(t2)

=
∫ t

t2

(−1)θ+n−1x(n−1)(s)ds ≤ (−1)θ+n−1x(n−1)(t2)(t − t2) −→ −∞ as t −→ +∞,
(2.6)

that is,

lim
t→+∞

x(n−2)(t) = −∞, (2.7)

which means that

lim
t→+∞

x(n−3)(t) = lim
t→+∞

x(n−4)(t) = · · · = lim
t→+∞

x′(t) = lim
t→+∞

x(t) = −∞, (2.8)

which contradicts the boundedness of x. Consequently, we have

(−1)θ+n−1x(n−1)(t) ≥ 0, ∀t ≥ t1. (2.9)

Combining (2.4) and (2.9), we conclude easily that there exists a constant L ≥ 0 with

lim
t→+∞

(−1)θ+n−1x(n−1)(t) = L. (2.10)

Next, we claim that L = 0. Otherwise, there exists a constant b > t1 satisfying

(−1)θ+n−1x(n−1)(t) ≥ L

2
> 0, ∀t ≥ b, (2.11)
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which yields that

(−1)θ+n−1x(n−2)(t) − (−1)θ+n−1x(n−2)(b)

=
∫ t

b

(−1)θ+n−1x(n−1)(s)ds ≥ L(t − b)
2

−→ +∞ as t −→ +∞,
(2.12)

which gives that

lim
t→+∞

x(n−2)(t) = +∞, (2.13)

which means that

lim
t→+∞

x(n−3)(t) = lim
t→+∞

x(n−4)(t) = · · · = lim
t→+∞

x′(t) = lim
t→+∞

x(t) = +∞, (2.14)

which contradicts the boundedness of x in [t0,+∞). Hence, L = 0, that is,

lim
t→+∞

x(n−1)(t) = 0. (2.15)

Repeating the proof of (2.3)–(2.15), we deduce similarly that

(−1)θ+jx(j) is nonincreasing and nonnegative in [t1,+∞),

lim
t→+∞

x(j)(t) = 0, 1 ≤ j ≤ n − 1,
(2.16)

which together with the boundedness of x implies that (−1)θx is nonincreasing in [t1,+∞)
and limt→+∞x(t) exists.

Thus, (2.3) and (2.16) yield (a)–(c). This completes the proof.

Lemma 2.2. Let x, p, τ, r, y ∈ C([t0,+∞),R) satisfy (A2) and

y(t) = x(t) − p(t)x(τ(t)) − r(t), ∀t ≥ t0; (2.17)

x is bounded and lim
t→+∞

τ(t) = +∞; (2.18)

lim
t→+∞

y(t) = lim
t→+∞

r(t) = 0,
∣∣p(t)∣∣ ≥ p0 > 1 eventually, (2.19)

where p0 is a fixed constant. Then, limt→+∞x(t) = 0.

Proof. Since τ is a strictly increasing continuous function, τ(t) < t in [t0,+∞) and
limt→+∞τ(t) = +∞, it follows that the inverse function τ−1 of τ is also strictly increasing
continuous, τ−1(t) > t in [τ(t0),+∞) and limj→∞τ−j(t) = +∞, where τ−j = τ−(j−1)(τ−1) for all
j ∈ N. Equation (2.18) implies that there exists a constant B > 0 with

|x(t)| ≤ B, ∀t ≥ t0. (2.20)
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Using (2.18) and (2.19), we deduce that, for any ε > 0, there exist sufficiently large numbers
T > 1 + |t0| and K ∈ N satisfying

B

pK0
<

ε

4
, max

{∣∣y(t)∣∣, |r(t)|} <
ε
(
p0 − 1

)

4
,

∣∣p(t)∣∣ ≥ p0, ∀t ≥ T. (2.21)

In view of (2.17), (2.20), and (2.21), we infer that for all t ≥ T

|x(t)| =
∣∣x(τ−1(t)

) − y
(
τ−1(t)

) − r
(
τ−1(t)

)∣∣
∣∣p(τ−1(t)

)∣∣

≤
∣∣x(τ−1(t)

)∣∣ + ∣∣y(τ−1(t)
)∣∣ + ∣∣r(τ−1(t)

)∣∣
∣∣p(τ−1(t)

)∣∣

<
1
p0

∣∣∣x
(
τ−1(t)

)∣∣∣ + ε
(
p0 − 1

)

2p0

≤ 1
p0

[
1
p0

∣∣∣x
(
τ−2(t)

)∣∣∣ + ε
(
p0 − 1

)

2p0

]
+
ε
(
p0 − 1

)

2p0

=
1
p2

0

∣∣∣x
(
τ−2(t)

)∣∣∣ + ε
(
p0 − 1

)

2p0

(
1 +

1
p0

)

≤ · · ·

≤ 1
pK0

∣∣∣x
(
τ−K(t)

)∣∣∣ + ε
(
p0 − 1

)

2p0

(
1 +

1
p0

+ · · · + 1
pK−1

0

)

≤ B

pK0
+
ε
(
p0 − 1

)

2p0
· 1

1 − 1/p0

< ε,

(2.22)

which gives that limt→+∞x(t) = 0. This completes the proof.

Lemma 2.3. Let x, p, τ, r, and y be in C([t0,+∞),R) satisfying (A2), (2.17), (2.18), and

lim
t→+∞

∣∣y(t)∣∣ = d > 0, lim
t→+∞

r(t) = 0; (2.23)

p1 ≥ ∣∣p(t)∣∣ ≥ p0 > 1 eventually, p2
0 > p0 + p1, (2.24)

where d, p0, and p1 are constants. Then, there exists L > 0 such that |x(t)| ≥ L eventually.

Proof. Obviously, (2.20) holds. It follows from (2.18), (2.23), and (2.24) that for ε = d[p0(p0 −
1) − p1]/(p0(p0 − 1) + p1) > 0, there exist K ∈ N and T > 1 + |t0| satisfying

B

pK0
<

ε

4p1
, d − ε

4
<
∣∣y(t)∣∣ < d +

ε

4
, |r(t)| < ε

4p0
, p1 ≥ ∣∣p(t)∣∣ ≥ p0, ∀t ≥ T. (2.25)
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Put L = d[p0(p0 − 1) − p1]/2p1p0(p0 − 1). In light of (2.17), we conclude that for each t ≥ T

x(t) =
x
(
τ−1(t)

)

p
(
τ−1(t)

) − y
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

)

=
1

p
(
τ−1(t)

)
[
x
(
τ−2(t)

)

p(τ−2(t))
− y

(
τ−2(t)

)

p(τ−2(t))
− r

(
τ−2(t)

)

p(τ−2(t))

]
− y

(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

)

=
x
(
τ−2(t)

)

Π2
i=1p(τ

−i(t))
−

2∑
j=1

y
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

−
2∑

j=1

r
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

= · · ·

=
x
(
τ−K(t)

)

ΠK
i=1p(τ

−i(t))
−

K∑
j=1

y
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

−
K∑
j=1

r
(
τ−j(t)

)

Πj

i=1p(τ
−i(t))

,

(2.26)

which together with (2.20) and (2.25) yields that for any t ≥ T

|x(t)| ≥
∣∣y(τ−1(t)

)∣∣
∣∣p(τ−1(t)

)∣∣ −
∣∣x(τ−K(t))∣∣

ΠK
i=1

∣∣p(τ−i(t))∣∣ −
K∑
j=2

∣∣y(τ−j(t))∣∣
Πj

i=1

∣∣p(τ−i(t))∣∣
−

K∑
j=1

∣∣r(τ−j(t))∣∣
Πj

i=1

∣∣p(τ−i(t))∣∣

≥ d − ε/4
p1

− B

pK0
−
(
d +

ε

4

) K∑
j=2

1

p
j

0

− ε

4p0

K∑
j=1

1

p
j

0

≥ d − ε/4
p1

− ε

4p1
−
(
d +

ε

4

)
· 1/p2

0

1 − 1/p0
− ε

4p0
· 1/p0

1 − 1/p0

=
d − ε/2

p1
− d + ε/2
p0
(
p0 − 1

) =
d
[
p0
(
p0 − 1

) − p1
] − (ε/2)

[
p0
(
p0 − 1

)
+ p1

]

p1p0
(
p0 − 1

)

= L.

(2.27)

This completes the proof.

Similar to the proof of Lemma 3.2 in [26], we have the following two lemmas.

Lemma 2.4. Let x, p, τ, r, and y be in C([t0,+∞),R) satisfying (A2), (2.17), (2.18), and

lim
t→+∞

y(t) = lim
t→+∞

r(t) = 0; (2.28)

∣∣p(t)∣∣ ≤ p0 <
1
2
eventually, (2.29)

where p0 is a constant. Then, limt→+∞x(t) = 0.
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Lemma 2.5. Let x, p, τ , r, and y be in C([t0,+∞),R) satisfying (A2), (2.17), (2.18), (2.23), and
(2.29). Then, there exists L > 0 such that |x(t)| ≥ L eventually.

Lemma 2.6 (Krasnoselskii’s fixed point theorem). Let X be a Banach space, let Y be a nonempty
bounded closed convex subset of X, and let f , g be mappings of Y into X such that fx + gy ∈ Y for
every pair x, y ∈ Y . If f is a contraction mapping and g is completely continuous, then the mapping
f + g has a fixed point in Y .

3. Main Results

First, we use the Krasnoselskii’s fixed point theorem to show the existence and multiplicity
of bounded positive and negative solutions of (1.1).

Theorem 3.1. Let (A1), (A2), and (A3) hold. Assume that there exist p0, p1 ∈ R
+\{0}, r0, r1 ∈ R

+,
and r ∈ Cn([t0,+∞),R) satisfying

p1 ≥ p(t) ≥ p0 > 1 eventually, p2
0 > p0 + p1; (3.1)

r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1 eventually; (3.2)
∫+∞

t0

sn−1
m∑
i=1

qi(s)ds < +∞. (3.3)

Then, the following hold:

(a) for arbitrarily positive constantsM and N with

(
p0 − 1

)
M >

(
p1 − 1

)
N +

p1r1

p0
+ r0, (3.4)

equation (1.1) has uncountably many bounded positive solutions x ∈ A(N,M) with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M; (3.5)

(b) for arbitrarily positive constantsM and N with

(
p0 − 1

)
N >

(
p1 − 1

)
M +

p1r0

p0
+ r1, (3.6)

equation (1.1) has uncountably many bounded negative solutions x ∈ A(−N,−M) with

−N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ −M. (3.7)
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Proof. It follows from (3.1) and (3.2) that there exists an enough large constant T0 with
τ−1(T0) > 1 + |t0| + |β| satisfying

p0 ≤ p(t) ≤ p1, r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1, ∀t ≥ T0. (3.8)

(a) Assume that M and N are arbitrary positive constants satisfying (3.4). Let D ∈
((p1 − 1)N + (p1r1/p0) , (p0 − 1)M − r0). First of all, we prove that there exist two mappings
FD,GD : A(N,M) → BC([β,+∞),R) and a constant TD > τ−1(T0) such that FD + GD has
a fixed point x ∈ A(N,M), which is also a bounded positive solution of (1.1) with N ≤
lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M. Put

B = max
{∣∣fi(u1, u2, . . . , uki)

∣∣ : uj ∈ [N,M], 1 ≤ j ≤ ki, 1 ≤ i ≤ m
}
. (3.9)

In light of (3.3), (3.9), and (A2), we infer that there exists a sufficiently large number TD >

τ−1(T0) satisfying

B

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds < min
{
M − D +M + r0

p0
,
D +N

p1
− r1

p0
−N

}
. (3.10)

Define two mappings FD,GD : A(N,M) → C([β,+∞),R) by

(FDx)(t) =

⎧⎪⎪⎨
⎪⎪⎩

D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) , t ≥ TD

(FDx)(TD), β ≤ t < TD,

(3.11)

(GDx)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1

×
m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, t ≥ TD,

(GDx)(TD), β ≤ t < TD,

(3.12)
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for each x ∈ A(N,M). In view of (3.1), (3.8), and (3.10)–(3.12), we conclude that for any
x, u ∈ A(N,M) and t ≥ TD

|(FDx)(t) − (FDu)(t)| =
∣∣∣∣∣
x
(
τ−1(t)

) − u
(
τ−1(t)

)

p
(
τ−1(t)

)
∣∣∣∣∣ ≤

1
p0

‖x − u‖,

(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p0
+
M

p0
+

r0

p0
+

B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

<
D +M + r0

p0
+ min

{
M − D +M + r0

p0
,
D +N

p1
− r1

p0
−N

}

≤ M,

(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p1
+
N

p1
− r1

p0
− B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

>
D +N

p1
− r1

p0
− min

{
M − D +M + r0

p0
,
D +N

p1
− r1

p0
−N

}

≥ N,

|(GDu)(t)|

=

∣∣∣∣∣
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

∣∣∣∣∣

≤ B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

< min
{
M − D +M + r0

p0
,
D +N

p1
− r1

p0
−N

}

< M,

(3.13)
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which ensures that

‖FDx − FDu‖ = sup
t≥TD

|(FDx)(t) − (FDu)(t)| ≤ 1
p0

‖x − u‖, ∀x, u ∈ A(N,M), (3.14)

FDx +GDu ∈ A(N,M), ∀x, u ∈ A(N,M), (3.15)

‖GDu‖ ≤ M, ∀u ∈ A(N,M). (3.16)

It follows from (3.11), (3.12), (3.15), and (3.16) that FD and GD map A(N,M) into
BC([β,+∞),R), respectively.

Now, we show that GD is continuous in A(N,M). Let {xl}l∈N
⊂ A(N,M) and x ∈

A(N,M) with liml→∞xl = x, given ε > 0. It follows from the uniform continuity of fi in
[N,M]ki for 1 ≤ i ≤ m and liml→∞xl = x that there exist δ > 0 and K ∈ N satisfying

∣∣fi(ui1, ui2, . . . , uiki) − fi(vi1, vi2, . . . , viki)
∣∣

<
ε

1 +
(
1/p0(n − 1)!

) ∫+∞
τ−1(TD)

sn−1
∑m

i=1 qi(s)ds
, ∀uij , vij ∈ [N,M],

∣∣uij − vij

∣∣ < δ, 1 ≤ j ≤ ki, 1 ≤ i ≤ m,

‖xl − x‖ < δ, ∀l ≥ K.

(3.17)

In view of (3.8), (3.12), (3.17), we arrive at

‖GDxl −GDx‖

= sup
t≥TD

∣∣∣∣∣
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)
[
fi(xl(σi1(s)), xl(σi2(s)), . . . , xl(σiki(s)))

−fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))
]
ds

∣∣∣∣∣

≤ sup
t≥TD

1
p0(n − 1)!

×
∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)
∣∣fi(xl(σi1(s)), xl(σi2(s)), . . . , xl(σiki(s)))

−fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))
∣∣ds

≤ 1
p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds · ε

1 + 1/p0(n − 1)!
∫+∞
τ−1(TD)

sn−1
∑m

i=1 qi(s)ds

< ε, ∀l ≥ K, (3.18)

which means that GD is continuous in A(N,M).
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Next, we show that GD(A(N,M)) is equicontinuous in [β,+∞). Let ε > 0. Taking into
account (3.3) and (A2), we know that there exists T ∗ > TD satisfying

1
p0(n − 1)!

∫+∞

τ−1(T∗)
sn−1

m∑
i=1

qi(s)ds <
ε

4
. (3.19)

Put

B1 = max

{
sn−1

m∑
i=1

qi(s) : τ−1(TD) ≤ s ≤ τ−1(T ∗)

}
. (3.20)

It follows from the uniform continuity of pτ−1 and τ−1 in [TD, T ∗] that there exists δ > 0
satisfying

∣∣∣p
(
τ−1(t1)

)
− p

(
τ−1(t2)

)∣∣∣ < εp2
0(n − 1)!

4
[
1 + B

∫+∞
τ−1(TD)

sn−1
∑m

i=1 qi(s)ds
] ,

∀t1, t2 ∈ [TD, T ∗] with |t1 − t2| < δ;

∣∣∣τ−1(t1) − τ−1(t2)
∣∣∣ < εp0(n − 1)!

4B
[
1 + B1 + (n − 1)

∫+∞
τ−1(TD)

un−1
∑m

i=1 qi(s)ds
] ,

∀t1, t2 ∈ [TD, T ∗] with |t1 − t2| < δ.

(3.21)

Let x ∈ A(N,M) and t1, t2 ∈ [β,+∞) with |t1 − t2| < δ. We consider three possible cases.

Case 1. Let t1, t2 ∈ [T ∗,+∞). In view of (3.8), (3.9), (3.12), and (3.19), we conclude that

|(GDx)(t1) − (GDx)(t2)|

=
1

(n − 1)!

∣∣∣∣∣
1

p
(
τ−1(t1)

)

×
∫+∞

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

− 1
p
(
τ−1(t2)

)

×
∫+∞

τ−1(t2)

(
s − τ−1(t2)

)n−1 m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣∣∣∣∣
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≤ B

p0(n − 1)!

[∫+∞

τ−1(t1)
sn−1

m∑
i=1

qi(s)ds +
∫+∞

τ−1(t2)
sn−1

m∑
i=1

qi(s)ds

]

<
ε

2
.

(3.22)

Case 2. Let t1, t2 ∈ [TD, T ∗]. In terms of (3.8), (3.9), (3.12), (3.21), we arrive at

|(GDx)(t1) − (GDx)(t2)|

=
1

(n − 1)!

∣∣∣∣∣
1

p
(
τ−1(t1)

)

×
∫+∞

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

− 1
p
(
τ−1(t2)

)

×
∫+∞

τ−1(t2)

(
s − τ−1(t2)

)n−1 m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣∣∣∣∣

≤ 1
(n − 1)!

{∣∣∣∣∣
1

p
(
τ−1(t1)

) − 1
p
(
τ−1(t2)

)
∣∣∣∣∣

×
∫+∞

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

+
1

p
(
τ−1(t2)

)

×
[∣∣∣∣∣
∫ τ−1(t2)

τ−1(t1)

(
s − τ−1(t1)

)n−1 m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣∣∣∣∣

+
∫+∞

τ−1(t2)

∣∣∣∣
(
s − τ−1(t1)

)n−1 −
(
s − τ−1(t2)

)n−1
∣∣∣∣

×
m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

]}

≤ B

(n − 1)!

{∣∣p(τ−1(t1)
) − p

(
τ−1(t2)

)∣∣
p
(
τ−1(t1)

)
p
(
τ−1(t2)

)
∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds +
1
p0

×
[∣∣∣∣∣
∫ τ−1(t2)

τ−1(t1)
sn−1

m∑
i=1

qi(s)ds

∣∣∣∣∣

+
∫+∞

τ−1(t2)
(n − 1)smax{n−2,0}

∣∣∣τ−1(t1) − τ−1(t2)
∣∣∣

m∑
i=1

qi(s)ds

]}
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≤ B

p2
0(n − 1)!

∣∣∣p
(
τ−1(t1)

)
− p

(
τ−1(t2)

)∣∣∣
∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds

+
B

p0(n − 1)!

[
B1 + (n − 1)

∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds

]∣∣∣τ−1(t1) − τ−1(t2)
∣∣∣

<
ε

2
.

(3.23)

Case 3. Let t1, t2 ∈ [β, TD]. By (3.12), we have

|(GDx)(t1) − (GDx)(t2)| = |(GDx)(TD) − (GDx)(TD)| = 0 < ε. (3.24)

Thus, GD(A(N,M)) is equicontinuous in [β,+∞). Consequently, GD(A(N,M)) is relatively
compact by (3.16) and the continuity of GD. By means of (3.14), (3.15), and Lemma 2.6, we
infer that FD +GD possesses a fixed point x ∈ A(N,M), that is,

x(t) =
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, ∀t ≥ TD,

(3.25)

which gives that

x(t) − p(t)x(τ(t)) = −D + r(t) +
(−1)n−1

(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds,

∀t ≥ τ−1(TD),

[
x(t) − p(t)x(τ(t))

](n) = g(t) −
m∑
i=1

qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))), ∀t ≥ τ−1(TD),

(3.26)

which mean that x ∈ A(N,M) is a bounded positive solution of (1.1) with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M. (3.27)

Let D1 and D2 be two arbitrarily different numbers in ((p1 − 1)N + (p1r1/p0), (p0 −
1)M − r0). Similarly, we conclude that for each l ∈ {1, 2} there exist two mappings FDj , GDj :
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A(N,M) → BC([β,+∞),R) and a sufficiently large number TDl > τ−1(T0) satisfying (3.8)–
(3.12), where D, TD, FD, and GD are replaced by Dl, TDl , FDl , and GDl , respectively, and
FDl + GDl has a fixed point xl ∈ A(N,M), which is also a bounded positive solution with
N ≤ lim inft→+∞xl(t) ≤ lim supt→+∞xl(t) ≤ M, that is,

xl(t) =
Dl

p
(
τ−1(t)

) +
xl

(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(xl(σi1(s)), xl(σi2(s)), . . . , xl(σiki(s)))ds, ∀t ≥ TDl .

(3.28)

It follows from (3.3) that there exists T3 > max{TD1 , TD2} satisfying

B

p0(n − 1)!

∫+∞

τ−1(T3)
sn−1

m∑
i=1

qi(s)ds <
|D1 −D2|

4p1
. (3.29)

Combining (3.8), (3.28), and (3.29), we conclude easily that

|x1(t) − x2(t)|

=

∣∣∣∣∣
D1 −D2

p
(
τ−1(t)

) +
x1
(
τ−1(t)

) − x2
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1

×
m∑
i=1

qi(s)
[
fi(x1(σi1(s)), x1(σi2(s)), . . . , x1(σiki(s)))

−fi(x2(σi1(s)), x2(σi2(s)), . . . , x2(σiki(s)))
]
ds

∣∣∣∣∣

≥ |D1 −D2|
p
(
τ−1(t)

) −
∣∣x1

(
τ−1(t)

) − x2
(
τ−1(t)

)∣∣
p
(
τ−1(t)

) − 2B
p
(
τ−1(t)

)
(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

≥ |D1 −D2|
p1

− ‖x1 − x2‖
p0

− 2B
p0(n − 1)!

∫+∞

τ−1(T3)
sn−1

m∑
i=1

qi(s)ds

>
|D1 −D2|

p1
− ‖x1 − x2‖

p0
− |D1 −D2|

2p1

=
|D1 −D2 |

2p1
− ‖x1 − x2‖

p0
, ∀t ≥ T3,

(3.30)
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which guarantees that

‖x1 − x2‖ ≥ p0|D1 −D2|
2p1

(
1 + p0

) > 0, (3.31)

that is, x1 /=x2. Hence, (1.1) has uncountably many bounded positive solutions x ∈ A(N,M)
with N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

(b) Assume that M and N are arbitrary positive constants satisfying (3.6) and put

B2 = max
{∣∣fi(u1, u2, . . . , uki)

∣∣ : uj ∈ [−N,−M], 1 ≤ j ≤ ki, 1 ≤ i ≤ m
}
. (3.32)

Let D ∈ ((1 − p0)N + r1, (1 − p1)M − (p1r0/p0)). It follows from (3.3), (3.8), (3.32), and (A2)
that there exists TD > τ−1(T0) satisfying

B2

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds < min
{
−M +

M −D

p1
− r0

p0
,N +

D −N − r1

p0

}
. (3.33)

Let the mappings FD,GD : A(−N,−M) → C([β,+∞),R) be defined by (3.11) and (3.12),
respectively.

Using (3.1), (3.8), (3.11), (3.12), and (3.33), we deduce that for any x, u ∈ A(−N,−M)
and t ≥ TD

(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p1
− M

p1
+

r0

p0
+

B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

<
D −M

p1
+

r0

p0
+ min

{
−M +

M −D

p1
− r0

p0
, N +

D −N − r1

p0

}

≤ −M,
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(FDx)(t) + (GDu)(t)

=
D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p0
− N

p0
− r1

p0
− B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

>
D −N − r1

p0
− min

{
−M +

M −D

p1
− r0

p0
, N +

D −N − r1

p0

}

≥ −N,

(3.34)

which give that

FDx +GDu ∈ A(−N,−M), ∀x, u ∈ A(−N,−M). (3.35)

The rest of the proof is similar to the proof of (a) and is omitted. This completes the proof.

Theorem 3.2. Let (A1), (A2), and (A3), hold. Assume that there exist p0, p1 ∈ R
+ \ {0}, r0, r1 ∈

R
+, and r ∈ Cn([t0,+∞),R) satisfying (3.2), (3.3), and

p1 ≥ −p(t) ≥ p0 > 1 eventually. (3.36)

Then, the following hold:

(a) for arbitrarily positive constantsM and N with

N < M,
(
p2

0 − p1

)
M >

(
p1 −

p0

p1

)
p0N + p0r1 + p1r0, (3.37)

equation (1.1) has uncountably many bounded positive solutions x ∈ A(N,M) with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M; (3.38)

(b) for arbitrarily positive constantsM and N with

M < N,
(
p2

0 − p1

)
N >

(
p1 −

p0

p1

)
p0M + p1r1 + p0r0, (3.39)
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equation (1.1) has uncountably many bounded negative solutions x ∈ A(−N,−M) with

−N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ −M. (3.40)

Proof. It follows from (3.2) and (3.36) that there exists a constant T0 with τ(T0) > 1 + |t0| + |β|
satisfying

p0 ≤ −p(t) ≤ p1, r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1, ∀t ≥ T0. (3.41)

(a) Assume that M and N are arbitrary positive constants satisfying (3.37). Let D ∈
(p1((M + r0)/p0 +N), p0(N/p1 +M) − r1) and B be defined by (3.9). In light of (3.3), (3.9),
and (A2), there exists a sufficiently large number TD > τ−1(T0) satisfying

B

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds < min
{
M − D + r1

p0
+
N

p1
,
D

p1
− M + r0

p0
−N

}
. (3.42)

Define two mappings FD,GD : A(N,M) → C([β,+∞),R) by (3.12) and

(FDx)(t) =

⎧⎪⎪⎨
⎪⎪⎩

− D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) , t ≥ TD

(FDx)(TD), β ≤ t < TD

(3.43)

for each x ∈ A(N,M). In view of (3.12), (3.36), and (3.41)–(3.43), we conclude that for any
x, u ∈ A(N,M) and t ≥ TD

(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p0
− N

p1
+

r1

p0
+

B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

<
D

p0
− N

p1
+

r1

p0
+ min

{
M − D + r1

p0
+
N

p1
,
D

p1
− M + r0

p0
−N

}

≤ M,
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(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p1
− M

p0
− r0

p0
− B

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

>
D

p1
− M + r0

p0
− min

{
M − D + r1

p0
+
N

p1
,
D

p1
− M + r0

p0
−N

}

≥ N,

(3.44)

which imply (3.15). The rest of the proof is similar to that of Theorem 3.1 and is omitted.
(b) Assume that M and N are arbitrary positive constants satisfying (3.39). Let D ∈

(−p0(N+(M/p1))M+r0, −Mp1−(p1/p0)(N+r1)) and B2 be defined by (3.32). Note that (3.3),
(3.32), and (A2) yield that there exists a sufficiently large number TD > τ−1(T0) satisfying

B2

p0(n − 1)!

∫+∞

τ−1(TD)
sn−1

m∑
i=1

qi(s)ds < min
{
−M − D

p1
− N + r1

p0
,N +

D − r0

p0
+
M

p1

}
. (3.45)

Let the mappings FD,GD : A(−N,−M) → C([β,+∞),R) be defined by (3.12) and (3.43),
respectively.

Using (3.12), (3.36), (3.41), and (3.45), we infer that for any x, u ∈ A(N,M) and t ≥ TD

(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D

p1
+
N

p0
+

r1

p0
+

B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

<
D

p1
+
N

p0
+

r1

p0
+ min

{
−M − D

p1
− N + r1

p0
,N +

D − r0

p0
+
M

p1

}

≤ −M,
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(FDx)(t) + (GDu)(t)

= − D

p
(
τ−1(t)

) +
x
(
τ−1(t)

)

p
(
τ−1(t)

) − r
(
τ−1(t)

)

p
(
τ−1(t)

) +
(−1)n

p
(
τ−1(t)

)
(n − 1)!

×
∫+∞

τ−1(t)

(
s − τ−1(t)

)n−1 m∑
i=1

qi(s) fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D

p0
+
M

p1
− r0

p0
− B2

p0(n − 1)!

∫+∞

τ−1(t)
sn−1

m∑
i=1

qi(s)ds

>
D

p0
+
M

p1
− r0

p0
− min

{
−M − D

p1
− N + r1

p0
,N +

D − r0

p0
+
M

p1

}

≥ −N,

(3.46)

which give (3.15). The rest of the proof is similar to the proof of Theorem 3.1 and is omitted.
This completes the proof.

Theorem 3.3. Let (A1) and (A3) hold. Assume that there exist p0, p1 ∈ R
+ \ {0}, r0, r1 ∈ R

+, and
r ∈ Cn([t0,+∞),R) satisfying (3.2), (3.3), and

−p0 ≤ p(t) ≤ p1 eventually, p0 + p1 < 1. (3.47)

Then, the following hold:
(a) for arbitrarily positive constants M and N with

r0 + r1 +N <
(
1 − p0 − p1

)
M, (3.48)

equation (1.1) has uncountably many bounded positive solutions x ∈ A(N,M) with

N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M; (3.49)

for arbitrarily positive constantsM and N with

r0 + r1 +M <
(
1 − p0 − p1

)
N, (3.50)

equation (1.1) has uncountably many bounded negative solutions x ∈ A(−N,−M) with

−N ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ −M. (3.51)

Proof. It follows from (3.2) and (3.47) that there exists a constant T0 > 1 + |t0| + |β| satisfying

−p0 ≤ p(t) ≤ p1, r(n)(t) = g(t), −r0 ≤ r(t) ≤ r1, ∀t ≥ T0. (3.52)
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(a) Assume that M and N are arbitrary positive constants satisfying (3.48). Let D ∈
(p0M + r0 +N, (1 − p1)M1 − r1) and B be defined by (3.9). In light of (3.3), (3.9), and (A2),
we infer that there exists a sufficiently large number TD > max{T0, τ(T0)} satisfying

B

p0(n − 1)!

∫+∞

TD

sn−1
m∑
i=1

qi(s)ds < min
{
M −D − p1M − r1, D − p0M − r0 −N

}
. (3.53)

Define two mappings FD,GD : A(N,M) → C([β,+∞),R) by

(FDx)(t) =

⎧
⎨
⎩
D + p(t)x(τ(t)) + r(t), t ≥ TD,

(FDx)(TD), β ≤ t < TD,
(3.54)

(GDx)(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−1

(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, t ≥ TD

(GDx)(TD), β ≤ t < TD,

(3.55)

for each x ∈ A(N,M). In view of (3.47) and (3.52)–(3.55), we conclude that for any x, u ∈
A(N,M) and t ≥ TD

|(FDx)(t) − (FDu)(t)| ≤
∣∣p(t)(x(τ(t)) − u(τ(t)))

∣∣ ≤ (
p0 + p1

)‖x − u‖,

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1

(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D + p1M + r1 +
B

(n − 1) !

∫+∞

t

sn−1
m∑
i=1

qi(s)ds

< D + p1M + r1 + min
{
M −D − p1M − r1, D − p0M − r0 −N

} ≤ M,

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1

(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds



24 Abstract and Applied Analysis

≥ D − p0M − r0 − B

(n − 1)!

∫+∞

t

sn−1
m∑
i=1

qi(s)ds

> D − p0M − r0 − min
{
M −D − p1M − r1, D − p0M − r0 −N

}

≥ N,

(3.56)

which yield (3.15). The rest of the proof is similar to that of Theorem 3.1 and is omitted.
(b) Assume that M and N are arbitrary positive constants satisfying (3.50). Let D ∈

(r0 − (1−p1)N −M−N, p0 − r1) and B2 be defined by (3.32). In light of (3.3), (3.32), and (A2),
we infer that there exists a sufficiently large number TD > max{T0, τ(T0)} satisfying

B2

p0(n − 1)!

∫+∞

TD

sn−1
m∑
i=1

qi(s)ds < min
{−M −D − p0N − r1, D +N

(
1 − p1

) − r0
}
. (3.57)

Define two mappings FD,GD : A(−N,−M) → C([β,+∞),R) by (3.54) and (3.55). In view of
(3.47), (3.52), (3.54), (3.55), and (3.57), we conclude that (3.56) holds and

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1

(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≤ D + p0N + r1 +
B

(n − 1) !

∫+∞

t

sn−1
m∑
i=1

qi(s)ds

< D + p0N + r1 + min
{−M −D − p0N − r1, D +N

(
1 − p1

) − r0
}

≤ −M, ∀x, u ∈ A(N,M), t ≥ TD,

(FDx)(t) + (GDu)(t) = D + p(t)x(τ(t)) + r(t) +
(−1)n−1

(n − 1)!

×
∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(u(σi1(s)), u(σi2(s)), . . . , u(σiki(s)))ds

≥ D − p1N − r0 − B

(n − 1)!

∫+∞

t

sn−1
m∑
i=1

qi(s)ds

> D − p1N − r0 − min
{−M −D − p0N − r1, D +N

(
1 − p1

) − r0
}

≥ −N, ∀x, u ∈ A(N,M), t ≥ TD.

(3.58)
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Thus, (3.15) follows from (3.58). The rest of the proof is similar to that of Theorem 3.1 and is
omitted. This completes the proof.

Second, we provide necessary and sufficient conditions for the oscillation of bounded
solutions of (1.1).

Theorem 3.4. Let (A1), (A2), and (A3) hold. Assume that there exist p0, p1 ∈ R
+ \ {0} and r ∈

Cn([t0,+∞),R) satisfying (2.24) and

lim
t→+∞

r(t) = 0, r(n)(t) = g(t) eventually. (3.59)

Then, each bounded solution of (1.1) either oscillates or tends to 0 as t → +∞ if and only if

∫+∞

t0

sn−1
m∑
i=1

qi(s)ds = +∞. (3.60)

Proof.

Sufficiency. Suppose, without loss of generality, that (1.1) possesses a bounded eventually
positive solution x with lim supt→+∞x(t) > 0, which together with (A1), (A3), (2.17), (2.24),
and (3.60), yields that there exist constants M > 0 and T > 1 + |t0| + |β| satisfying

0 < x(t) ≤ M, ∀t ≥ T ; (3.61)

y(n)(t) = −
m∑
i=1

qi(t)fi(x(σi1(t)), x(σi2(t)), . . . , x(σiki(t))) < 0, ∀t ≥ T. (3.62)

Obviously (2.17), (2.24), (3.59), and the boundedness of x imply that y is bounded. It follows
from (2.17), (3.62), Lemmas 2.1 and 2.2 that there exists a constant L satisfying

lim
t→+∞

y(t) = L/= 0, lim
t→+∞

y(i)(t) = 0, 1 ≤ i ≤ n − 1. (3.63)

Thus, (A1), (3.61), (3.63), and Lemma 2.3 imply that there exist constants N and T1 ≥ T0 ≥ T
satisfying

inf
{
σij(t) : t ≥ T1, 1 ≤ j ≤ ki, 1 ≤ i ≤ m

} ≥ T0,

[7pt]0 < N ≤ x(t),
∣∣y(t) − L

∣∣ < 1, ∀t ≥ T1.
(3.64)

Put

B3 = min
{
fi(u1, u2, . . . , uki) : uj ∈ [N,M], 1 ≤ j ≤ ki, 1 ≤ i ≤ m

}
. (3.65)
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Clearly, (A3) guarantees that B3 > 0. Integrating (3.62) from t to +∞, by (3.63) and (3.64), we
have

y(n−1)(t) = (−1)2
∫+∞

t

m∑
i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1, ∀t ≥ T1,

(3.66)

repeating this procedure, we obtain that

y(n−2)(t) = (−1)3
∫+∞

t

du2

∫+∞

u2

m∑
i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1, ∀t ≥ T1,

· · ·

y′(t) =(−1)n
∫+∞

t

dun−1

∫+∞

un−1

dun−2 · · ·

×
∫+∞

u2

m∑
i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1, ∀t ≥ T1,

L − y(t) = lim
u→+∞

y(u) − y(t)

= (−1)n
∫+∞

t

dun

∫+∞

un

dun−1 · · ·

×
∫+∞

u2

m∑
i=1

qi(u1)fi(x(σi1(u1)), x(σi2(u1)), . . . , x(σiki(u1)))du1

=
(−1)n

(n − 1)!

∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds, ∀t ≥ T1,

(3.67)

which together with (3.64) and (A3) means that

1 >
∣∣L − y(t)

∣∣ =
∣∣∣∣∣
(−1)n

(n − 1)!

∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)fi(x(σi1(s)), x(σi2(s)), . . . , x(σiki(s)))ds

∣∣∣∣∣

≥ B3

(n − 1)!

∫+∞

t

(s − t)n−1
m∑
i=1

qi(s)ds, ∀t ≥ T1,

(3.68)

which gives that

∫+∞

T1

sn−1
m∑
i=1

qi(s)ds < +∞, (3.69)

which contradicts (3.60).
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Necessity. Suppose that (3.60) does not hold. Observe that limt→+∞r(t) = 0 implies that there
exist two positive constants r0 and r1 satisfying

−r0 ≤ r(t) ≤ r1 eventually. (3.70)

It follows from Theorem 3.1 or Theorem 3.2 that, for any positive constants M and N
satisfying (3.4) or (3.37), (1.1) possesses uncountably many bounded positive solutions
x ∈ A(N,M) with M ≥ lim supt→+∞x(t) ≥ lim inft→+∞x(t) ≥ N. This is a contradiction.
This completes the proof.

As in the proof of Theorem 3.4, by means of Lemmas 2.1, 2.4, and 2.5, we have

Theorem 3.5. Let (A1) and (A3) hold. Assume that there exist p0 ∈ R
+ \ {0} and r ∈

Cn([t0,+∞),R) satisfying (2.29) and (3.59). Then, each bounded solution of (1.1) either oscillates or
tends to 0 as t → +∞ if and only if (3.60) holds.

4. Remarks and Examples

Now, we compare the results in Section 3 with some known results in the literature. In
order to illustrate the advantage and applications of our results, five nontrivial examples
are constructed.

Remark 4.1. Theorems 3.1–3.3 extend and improve the Theorem in [9], Theorem 8.4.2 in [10],
Theorem 1 in [21], Theorems 1–3 in [24], Theorem 2.2 in [26], and Theorems 1–4 in [27, 28].

Remark 4.2. The sufficient part of Theorem 3.5 is a generalization of Theorem 3.1 in [4, 5].
Theorem 3.5 corrects and perfects Theorem 2.1 in [26].

The examples below show that our results extend indeed the corresponding results
in [4, 5, 9, 10, 21, 24, 26–28]. Notice that none of the known results can be applied to these
examples.

Example 4.3. Consider the nth-order forced nonlinear neutral differential equation:

[
x(t) − 3 + 4tn

1 + tn
x
(√

t
)](n)

+

(
1 +

√
3 + 2t

)[
x5(3t + sin t) + x3(t − 1/t)

]

(1 + tn+3)
[
1 +

∣∣∣x8(3t2) − 2x21
(
t − √

t − 1
)∣∣∣
]

+
tx(3t − ln t)x4(t2 − t

)
x6(t − 2) + 5tx

(
t(1 + 1/t)t

)
(
1 + 3t3n+1

)[
1 + |x3(4t − cos3t) − 4x4(t − 1)|] =

1
2

sin
(
t +

nπ

2

)
, t ≥ 2,

(4.1)

where t0 = 2, m = 2, and n ∈ N. Put k1 = 4, k2 = 6, β = 0, r0 = r1 = 1/2, p0 = 3, p1 = 4,

p(t) =
3 + 4tn

1 + tn
, q1(t) =

1 +
√

3 + 2t
1 + tn+3

, q2(t) =
t

1 + 3t3n+1
,

g(t) =
1
2

sin
(
t +

nπ

2

)
, r(t) =

1
2

sin t, τ(t) =
√
t, σ11(t) = 3t + sin t,
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σ12(t) = t − 1
t
, σ13(t) = 3t2, σ14(t) = t −

√
t − 1, σ21(t) = 3t − ln t,

σ22(t) = t2 − t, σ23(t) = t − 2, σ24(t) = t

(
1 +

1
t

)t

, σ25(t) = 4t − cos3t,

σ26(t) = t − 1, f1(u, v,w, z) =
u5 + v3

1 + |w8 − 2z21| ,

f2
(
u, v,w, z, y, s

)
=

uv4w6 + 5z
1 +

∣∣y3 − 4s4
∣∣ , ∀(t, u, v,w, z, y, s

) ∈ [t0,+∞) × R
6.

(4.2)

Clearly (A1), (A2), (A3), and (3.1)–(3.3) hold.
Let M and N be arbitrarily positive constants satisfying M > (3/2)N + 7/12. It is

easy to verify that (3.4) holds. It follows from Theorem 3.1 that (4.1) has uncountably many
bounded positive solutions x ∈ A(N,M) with N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

Let M and N be arbitrarily positive constants satisfying N > 3M/2+7/12. It is easy to
verify that (3.6) holds. It follows from Theorem 3.1 that (4.1) has uncountably many bounded
negative solutions x ∈ A(−N,−M) with −N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ −M.

Example 4.4. Consider the nth-order forced nonlinear neutral differential equation:

[
x(t) +

8 + 10t5

2 + t5
x
(√

t2 + 1 − 1
)](n)

+

(
t2 + 3t3

)
x7(3t2

)
x(t − 1)x3(t ln t)(

2 + sin3(t2) + tn+5
)[

1 + x2(t − 1)x4(t ln t)
]

+

(
3 + t2

)[
x5(t2 + 1

)
+ 7x3(t4 − 2

)
+ x9

(
t +

√
t
)
x8(t − 4)

]

(√
t + 1 + tn+3

)[
1 +

(
x5
(
t +

√
t
)
− 4x4(t − 4) − 3

)6
] =

(−1)nn!
tn+1

+
n!

(1 − t)n+1
, t ≥ 3,

(4.3)

where t0 = 3, m = 2, and n ∈ N. Put k1 = 3, k2 = 4, β = −1, r0 = 1/2, r1 = 0, p0 = 4, p1 = 10,

p(t) = −8 + 10t5

2 + t5
, q1(t) =

t2 + 3t3

2 + sin3(t2) + tn+5
, q2(t) =

3 + t2√
t + 1 + tn+3

,

g(t) =
(−1)nn!
tn+1

+
n!

(1 − t)n+1
, r(t) =

1
t(1 − t)

, τ(t) =
√
t2 + 1 − 1,

σ11(t) = 3t2, σ12(t) = t − 1, σ13(t) = t ln t, σ21(t) = t2 + 1,

σ22(t) = t4 − 2, σ23(t) = t +
√
t, σ24(t) = t − 4, f1(u, v,w) =

u7vw3

1 + v2w4
,

f2(u, v,w, z) =
u5 + 7v3 +w9z8

1 +
(
w5 − 4z4 − 3

)6
, ∀(t, u, v,w, z) ∈ [t0,+∞) × R

4.

(4.4)

Clearly (A1), (A2), (A3), (3.2), (3.3), and (3.36) hold.
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Let M and N be arbitrarily positive constants satisfying M > (32/5)N + 5/6. It is
easy to verify that (3.37) holds. It follows from Theorem 3.2 that (4.3) has uncountably many
bounded positive solutions x ∈ A(N,M) with N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

Let M and N be arbitrarily positive constants satisfying N > (32/5)M + 1/3. It is
easy to verify that (3.39) holds. It follows from Theorem 3.2 that (4.3) has uncountably many
bounded negative solutions x ∈ A(−N,−M) with −N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤
−M.

Example 4.5. Consider the nth-order forced nonlinear neutral differential equation:

⎡
⎢⎣x(t) −

2 sin
(
t2 − √

t
)

5 + sin
(
t2 − √

t
)x

(
(t − 5)2

)
⎤
⎥⎦

(n)

+

(
3
√
t − 1 + t5

)
x3(t − 4)

(√
t2 + 1 + tn+6

)[
2 + cos5x

(√
t + 1 − 3

)]

+

(
1 −

√
t + 1ln2t + t4

)
x9(2t + sin

(
t2 + 1

))
(
1 − 2t3 + 3t4 + tn+5

)
ln
[
2 + x2

(
t2
√

1 + 2t
)] = (−1)n cos

(
t +

nπ

2

)
, t ≥ 1,

(4.5)

where t0 = 1, m = 2, and n ∈ N. Put k1 = k2 = 2, β = −4, r0 = r1 = 1, p0 = 1/2, p1 = 1/3,

p(t) =
2 sin

(
t2 − √

t
)

5 + sin
(
t2 − √

t
) , q1(t) =

3
√
t − 1 + t5√

t2 + 1 + tn+6
, q2(t) =

1 −
√
t + 1ln2t + t4

1 − 2t3 + 3t4 + tn+5
,

g(t) = (−1)n cos
(
t +

nπ

2

)
, r(t) = (−1)n cos t, τ(t) = (t − 4)2 σ11(t) = t − 5,

σ12(t) =
√
t + 1 − 3, σ21(t) = 2t + sin

(
t2 + 1

)
, σ22(t) = t2

√
1 + 2t,

f1(u, v) =
u3

2 + cos5v
, f2(u, v) =

u9

ln(2 + v2)
, ∀(t, u, v) ∈ [t0,+∞) × R

2.

(4.6)

Clearly (A1), (A3), (3.2), (3.3), and (3.47) hold.
Let M and N be arbitrarily positive constants satisfying M > 6N + 12. It is easy

to verify that (3.48) holds. It follows from Theorem 3.3 that (4.5) has uncountably many
bounded positive solutions x ∈ A(N,M) with N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤ M.

Let M and N be arbitrarily positive constants satisfying N > 6M + 12. It is easy
to verify that (3.50) holds. It follows from Theorem 3.3 that (4.5) has uncountably many
bounded negative solutions x ∈ A(−N,−M) with −N ≤ lim inft→+∞x(t) ≤ lim supt→+∞x(t) ≤
−M.

Example 4.6. Consider the nth-order forced nonlinear neutral differential equation:

⎡
⎢⎣x(t) −

(−1)n
(

5 + 9ln2t
)

1 + ln2t
x
(√

t − 1
)
⎤
⎥⎦

(n)

+
(
t8 + 9t5 + 3

)[
2x3

(
tln2t

)
+ 5x7(t − 16)

]
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+ t2
(

2 + sin
(
t3 − 5t

))
x9
(
t − sin t

t

)[
x4(t − cos t) + 4x6

(
1 + t + t2 + t3

1 + t + t2

)]2

+

[
(t + 1)2 − √

t
]
x5
(
t arctan

(
t3 + 1

)
/
(

1 +
√
t + 1

))
ln
(
1 + x6(t + 1)/

(
1 + x2(t − 2)

))
[
2tn+3 +

√
t sin(3t5 − 1)

][
1 + x2(t2 − t)x4(t2 + t)

]

=
(−1)nn!

(
ln t −∑n

i=1(1/i)
)

tn+1
, t ≥ 4,

(4.7)

where t0 = 4, m = 3, and n ∈ N. Put k1 = 2, k2 = 3, k3 = 5, β = −12, p0 = 5, p1 = 9,

p(t) =
(−1)n

(
5 + 9ln2t

)

1 + ln2t
, q1(t) = t8 + 9t5 + 3, q2(t) = t2

(
2 + sin

(
t3 − 5t

))
,

q3 =
(t + 1)2 − √

t

2tn+3 +
√
t sin(3t5 − 1)

, g(t) =
(−1)nn!

(
ln t −∑n

i=1 1/i
)

tn+1
, r(t) =

ln t

t
,

τ(t) =
√
t − 1, σ11(t) = tln2t, σ12(t) = t − 16, σ21(t) = t − sin t

t
,

σ22(t) = t − cos t, σ23(t) =
1 + t + t2 + t3

1 + t + t2
, σ31(t) =

t arctan
(
t3 + 1

)

1 +
√
t + 1

,

σ32(t) = t + 1, σ33(t) = t − 2, σ34(t) = t2 − t, σ35(t) = t2 + t,

f1(u, v) = 2u3 + 5v7, f2(u, v,w) = u9
(
v4 + 4w6

)2
,

f3
(
u, v,w, y, z

)
=

u5 ln
(
1 + v6/

(
1 +w2))

1 + y2z4
, ∀(t, u, v,w, y, z

) ∈ [t0,+∞) × R
5.

(4.8)

Clearly (A1), (A2), (A3), (2.24), (3.59), and (3.60) hold. It follows from Theorem 3.4 that each
bounded solution of (4.7) either oscillates or tends to 0 as t → +∞.

Example 4.7. Consider the nth-order forced nonlinear neutral differential equation:

[
x(t) − (−1)ncos3(3t − 1)

4 + cos3(3t − 1)
x(t − sin t)

](n)

+

(
t3 + 2t2 − √

t + 1
)
x5
(√

t − 2 − 1
)

1 + x2
(√

t − 2 − 1
)

+

√
t2 − 1

[
x3(t − 1/t) + 5x7(t − 1/t)

]
ln
(
2 + x6(t − 1/t)

)

t2n+1 + 2tnln3(1 + t2) + 1
=

2n sin
(√

2t + nπ/4
)

e
√

2t
, t ≥ 6,

(4.9)
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where t0 = 6, m = 2, and n ∈ N. Put k1 = k2 = 1, β = 1, p0 = 1/3,

p(t) =
(−1)ncos3(3t − 1)
4 + cos3(3t − 1)

, q1(t) = t3 + 2t2 −
√
t + 1,

q2(t) =

√
t2 − 1

t2n+1 + 2tnln3(1 + t2) + 1
, g(t) =

2n sin
(√

2t + nπ/4
)

e
√

2t
, r(t) =

sin
(√

2t
)

e
√

2t
,

τ(t) = t − sin t, σ1(t) =
√
t − 2 − 1 σ2(t) = t − 1

t
, f1(u) =

u5

1 + u2
,

f2(u) = u3 + 5u7 ln
(

2 + u6
)
, ∀(t, u) ∈ [t0,+∞) × R.

(4.10)

Clearly (A1), (A3), (2.29), (3.59), and (3.60) hold. It follows from Theorem 3.5 that each
bounded solution of (4.9) either oscillates or tends to 0 as t → +∞.

Next, we prove that the necessary part of Theorem 2.1 in [26] does not hold by means
of (4.9). It is easy to verify that the conditions of Theorem 2.1 in [26] are fulfilled. Suppose
that the necessary part of Theorem 2.1 in [26] is true. Because each bounded solution of (4.9)
either oscillates or tends to 0 as t → +∞, it follows that the necessary part of Theorem 2.1 in
[26] gives that

∫+∞

t0

sn−1qi(s)ds = +∞, i ∈ {1, 2}, (4.11)

which yields that

+∞ =
∫+∞

t0

sn−1q2(s)ds =
∫+∞

t0

sn−1
√
s2 − 1

s2n+1 + 2snln3(1 + s2) + 1
ds ≤

∫+∞

t0

1
sn+1

ds < +∞, (4.12)

which is a contradiction.
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We study a frequently investigated class of linear difference equations Δv(n) = −p(n)v(n − k)
with a positive coefficient p(n) and a single delay k. Recently, it was proved that if the function
p(n) is bounded above by a certain function, then there exists a positive vanishing solution of the
considered equation, and the upper bound was found. Here we improve this result by finding
even the lower bound for the positive solution, supposing the function p(n) is bounded above and
below by certain functions.

1. Introduction

Throughout this paper, we use the following notation: for an integer q, we define

Z
∞
q :=

{
q, q + 1, . . .

}
. (1.1)

We investigate the asymptotic behavior as n → ∞ of the solutions of the discrete delayed
equation of the (k + 1)-th order

Δv(n) = −p(n)v(n − k), (1.2)
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where n is the independent variable assuming values from the set Z
∞
a with a fixed a ∈ N =

{0, 1, 2, . . .}. The number k ∈ N, k ≥ 1 is the fixed delay, Δv(n) = v(n+1)−v(n), and p : Z
∞
a →

R
+ = (0,∞).

Along with (1.2), we consider k + 1 initial conditions

v(a + s − k) = va+s−k ∈ R, s = 0, 1, . . . , k. (1.3)

Initial problem (1.2), (1.3) obviously has a unique solution, defined for every n ∈ Z
∞
a−k.

Moreover, the solution of (1.2) continuously depends on initial conditions (1.3).
Equation (1.2) is investigated very frequently. It was analyzed, for example, in

papers [1–3] (where the comparison method [4, 5] was used) and [6]. Similar problems for
differential and dynamic equations are studied, for example, in [7–10].

In a recent work of the authors [6], it is proved that if the function p(n) is bounded
above by a certain function, then there exists a positive vanishing (i.e., tending to 0 as n → ∞)
solution of the considered equation. Moreover, its upper bound was found. Our aim is to
improve this result and to show that if the coefficient p(n) is between two functions p�(n) −
ψ(n) and p�(n) + ω(n) (see (2.3), (2.6), and (2.7) below) then (1.2) has a positive vanishing
solution which is bounded from below by the function α�(n) (see (2.5)) and from above by
the function ν�(n) (see (2.4)). Due to the linearity of equation considered it becomes clear that
a similar result holds for a one-parametric family of positive vanishing solutions of (1.2).

To prove this, we will use Theorem 1.1 which is one of the main results of [6]. This
theorem is valid for any delayed difference equation of the form:

Δv(n) = f(n, v(n), v(n − 1), . . . , v(n − k)). (1.4)

Theorem 1.1. Let b(n), c(n), b(n) < c(n) be real functions defined on Z
∞
a−k. Further, let f : Z

∞
a ×

R
k+1 → R be a continuous function and let the inequalities:

b(n) + f(n, b(n), v2, . . . , vk+1) < b(n + 1), (1.5)

c(n) + f(n, c(n), v2, . . . , vk+1) > c(n + 1), (1.6)

hold for every n ∈ Z
∞
a and every v2, . . . , vk+1 such that

b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1. (1.7)

Then there exists a solution v = v∗(n) of (1.4) satisfying the inequalities

b(n) < v∗(n) < c(n), (1.8)

for every n ∈ Z
∞
a−k.

For related comparison theorems for solutions of difference equations as well as
related methods and their applications, see, for example, [1, 11–21] and the related references
therein. Investigation of positive solutions (and connected problems of oscillating solutions)
attracted recently large attention. Except the references given above, one refers as well to
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[11, 22–33], and to the references therein. Existence of positive solutions of some classes of
difference equations has been also studied in papers [12–16]. The existence of unbounded
solutions by some comparison methods can be found, for example, in [17, 18].

2. Auxiliary Functions and Lemmas

Define the expression lnq n, q ∈ N \ {0}, as

lnq n := ln
(
lnq−1 n

)
, (2.1)

where ln0 n := n. We will write only lnn instead of ln1n. Further, for a fixed integer � ≥ 0

define auxiliary functions:

μ�(n) :=
1

8n2
+

1

8(n lnn)2
+ · · · + 1

8(n lnn · · · ln�n)
2
, (2.2)

p�(n) :=
(

k

k + 1

)k

·
(

1
k + 1

+ kμ�(n)
)
, (2.3)

ν�(n) :=
(

k

k + 1

)n

·
√
n lnn ln2n · · · ln�n, (2.4)

α�(n) :=
(

k

k + 1

)n

·
√
n lnn ln2n · · · ln�n ln−σ

�+1n,
(2.5)

where σ ∈ R, σ > 0, is a constant. Notice that if a is sufficiently large, all these functions are
well defined for n ∈ Z

∞
a .

Finally, let functions ψ,ω : Z
∞
a → R

+ satisfy for n ∈ Z
∞
a the inequalities:

ψ(n) ≤
(

k

k + 1

)k

· δ

(n lnn · · · ln�n)
2lnβ

�+1n
, (2.6)

ω(n) ≤ ε

(
k

k + 1

)k

· k(2k − 1)
16n3

, (2.7)

for fixed δ > 0, β > 2 and ε ∈ (0, 1).
In [3], it was proved that if p(n) in (1.2) is a positive function bounded above by p�(n)

for some � ≥ 0, then there exists a positive solution of (1.2) bounded above by the function
ν�(n) for n sufficiently large. Since limn→∞ν�(n) = 0, such solution will vanish as n → ∞.
This result was further improved in [6], where it was shown that (1.2) has a positive solution
bounded above by ν�(n) even if the coefficient p(n) satisfies a less restrictive inequality,
namely, p(n) < p�(n) +ω(n). Here we will prove that function α� provides the lower estimate
of the solution, supposing p�(n) − ψ(n) ≤ p(n) ≤ p�(n) + ω(n). The proof of this statement
will be based on the following four lemmas. The symbols “o” and “O” stand for the Landau
order symbols and are used as n → ∞.
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Lemma 2.1. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representation:

lnq(n − r) = lnq n − r

n lnn · · · lnq−1n
− r2

2n2 lnn · · · lnq−1n

− r2

2(n lnn)2ln2n · · · lnq−1n
− · · · − r2

2
(
n lnn · · · lnq−1n

)2
+ o

(
1
n3

)
,

(2.8)

holds as n → ∞.

Proof. Relation (2.8) can be proved by induction with respect to q, for details, see [6].

Lemma 2.2. For fixed r, s ∈ R \ {0} and fixed q ∈ N, the asymptotic representations:

(
lnq(n − r)

lnqn

)s

= 1 − rs

n lnn · · · lnq n
− r2s

2n2 lnn · · · lnq n
− r2s

2(n lnn)2ln2n · · · lnq n
− · · ·

− r2s

2
(
n lnn · · · lnq−1n

)2lnq n
+

r2s(s − 1)

2
(
n lnn · · · lnq n

)2
+ o

(
1
n3

)
,

(2.9)

√
n − r

n
= 1 − r

2n
− r2

8n2
− r3

16n3
+ o

(
1
n3

)
, (2.10)

hold as n → ∞.

Proof. Both these relations are simple consequences of the asymptotic formula:

(1 − x)s = 1 − sx +
s(s − 1)

2
x2 − s(s − 1)(s − 2)

6
x3 + o

(
x3
)

as x −→ 0. (2.11)

and of Lemma 2.1 (for formula (2.9)).

In the case of relation (2.10), we put x = r/n and s = 1/2.
To prove relation (2.9), first notice that dividing (2.8) by lnqn, we get

lnq(n − r)
lnqn

= 1 − r

n lnn · · · lnq−1n lnq n
− r2

2n2 lnn · · · lnq−1n lnq n

− r2

2(n lnn)2ln2 n · · · lnq−1n lnq n
− · · · − r2

2
(
n lnn · · · lnq−1 n

)2lnq n
+ o

(
1
n3

)
.

(2.12)
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Thus, putting

x = 1 − lnq(n − r)
lnq n

=
r

n ln n · · · lnq n
+

r2

2n2 lnn · · · lnq n
+ · · · + r2

2
(
n lnn · · · lnq−1n

)2lnq n
+ o

(
1
n3

) (2.13)

and using (2.11), we get (2.9).

The following lemma is proved in [6].

Lemma 2.3. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representation:

√
(n − r)

n
· ln(n − r)

lnn
· · · lnq(n − r)

lnqn

= 1 − r

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · lnq n

)
− r2μq(n) − r3

16n3
+ o

(
1
n3

)
,

(2.14)

holds as n → ∞.

Lemma 2.4. For fixed r ∈ R \ {0}, σ ∈ R
+ and q ∈ N, the asymptotic representation:

√√√√ (n − r)
n

· ln(n − r)
lnn

· · · lnq(n − r)
lnqn

·
ln−σ

q+1(n − r)

ln−σ
q+1n

= 1 − r

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · lnq n

− σ

2n ln n · · · lnq n lnq+1 n

)

− r2μq(n) +
σ(σ + 2)

8
· r2

(
n ln n · · · lnq+1 n

)2
− r3

16n3
+ o

(
1
n3

)
,

(2.15)

holds as n → ∞.

Proof. Using Lemma 2.2 with s = −σ/2 and q + 1 instead of q, we get for n → ∞
√√√√ ln−σ

q+1(n − r)

ln−σ
q+1n

= 1 +
rσ

2n ln n · · · lnq+1 n
+

r2σ

4n2 lnn · · · lnq+1 n
+

r2σ

4(n lnn)2 ln2n · · · lnq+1 n
+ · · ·

+
r2σ

4
(
n lnn · · · lnq n

)2 lnq+1 n
+

r2σ(σ + 2)

8
(
n lnn · · · lnq+1 n

)2
+ o

(
1
n3

)
.

(2.16)

Multiplying the asymptotic representations (2.14) and (2.16), we get (2.15).
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3. Main Result

Now we are ready to prove that there exists a positive solution of (1.2) which is bounded
below and above. Remind the functions p� , ν� , α� , ψ, and ω were defined by (2.3)–(2.6) and
(2.7), respectively.

Theorem 3.1. Suppose that there exist numbers a, � ∈ N, and σ > 0, such that the function p in
(1.2) satisfies the inequalities

0 < p�(n) − ψ(n) ≤ p(n) ≤ p�(n) +ω(n), (3.1)

for every n ∈ Z
∞
a . Then there exists a solution v = v∗(n), n ∈ Z

∞
a−k of (1.2) such that for n sufficiently

large the inequalities:

α�(n) < v∗(n) < ν�(n), (3.2)

hold.

Proof. Show that all the assumptions of Theorem 1.1 are fulfilled. For (1.2),

f(n, v1, . . . , vk+1) = −p(n)vk+1. (3.3)

This is a continuous function. Put

b(n) := α�(n), c(n) := ν�(n). (3.4)

We have to prove that for every v2, . . . , vk+1 such that

b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1, (3.5)

the inequalities (1.5) and (1.6) hold for n sufficiently large. Start with (1.5). That gives that
for

b(n − k) < vk+1 < c(n − k), (3.6)

it has to be

α�(n) − p(n) · vk+1 < α�(n + 1), (3.7)

which is equivalent to the inequality

−p(n)vk+1 < α�(n + 1) − α�(n). (3.8)
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Denote the left-hand side of (3.8) as L(3.8). As vk+1 > b(n−k) = α�(n−k) and as by (2.3), (2.6),
and (3.1)

p(n) ≥
(

k

k + 1

)k

·
(

1
k + 1

+ kμ�(n)
)
−
(

k

k + 1

)k

· δ

(n lnn · · · ln� n)
2lnβ

�+1 n
, (3.9)

we have

L(3.8) < −
(

k

k + 1

)k
⎛
⎝ 1

k + 1
+ kμ�(n) − δ

(n ln n · · · ln� n)
2 lnβ

�+1 n

⎞
⎠

×
(

k

k + 1

)n−k√
(n − k) ln(n − k) · · · ln�(n − k)ln−σ

�+1(n − k)

= −
(

k

k + 1

)n
⎛
⎝ 1

k + 1
+ kμ�(n) − δ

(n ln n · · · ln� n)
2lnβ

�+1 n

⎞
⎠

×
√
(n − k) ln(n − k) · · · ln�(n − k)ln−σ

�+1(n − k).

(3.10)

Further, we can easily see that

α�(n + 1) − α�(n) =
(

k

k + 1

)n√
n lnn · · · ln�nln−σ

�+1n

×
⎛
⎝ k

k + 1

√√√√ (n + 1)
n

ln(n + 1)
lnn

· · · ln�(n + 1)
ln�n

ln−σ
�+1(n + 1)

ln−σ
�+1n

− 1

⎞
⎠.

(3.11)

Thus, to prove (3.8), it suffices to show that for n sufficiently large, the following inequality
holds:

−
⎛
⎝ 1

k + 1
+ kμ�(n) − δ

(n ln n · · · ln� n)
2 lnβ

�+1n

⎞
⎠
√√√√ (n − k)

n

ln(n − k)
ln n

· · · ln�(n − k)
ln� n

ln−σ
�+1(n − k)

ln−σ
�+1 n

<
k

k + 1

√√√√ (n + 1)
n

ln(n + 1)
lnn

· · · ln�(n + 1)
ln� n

ln−σ
�+1(n + 1)

ln−σ
�+1 n

− 1.

(3.12)

Denote the left-hand side of inequality (3.12) as L(3.12) and the right-hand side as R(3.12). In
the following computation we will use the fact that β > 2 and

μ�(n) =
1

8n2
+O

(
1

n2ln2 n

)
, (3.13)
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and we will omit all the terms which are of order o(1/n3). Applying Lemma 2.4 with r = k
and q = �, we can write

L(3.12) = −
⎛
⎝ 1

k + 1
+ kμ�(n) − δ

(n ln n · · · ln� n)
2 lnβ

�+1n

⎞
⎠

×
(

1 − k

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

− σ

2n ln n · · · ln� n ln�+1 n

)

−k2μ�(n) +
σ(σ + 2)

8
· k2

(n lnn · · · ln�+1 n)
2
− k3

16n3
+ o

(
1
n3

))

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

− σ

2n ln n · · · ln� n ln�+1 n

)

+
k2

k + 1
μ�(n) − σ(σ + 2)

8(k + 1)
· k2

(n ln n · · · ln�+1 n)
2
+

k3

16n3(k + 1)

− kμ�(n) +
k2

16n3
+

δ

(n ln n · · · ln� n)
2lnβ

�+1 n
+ o

(
1
n3

)

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

− σ

2n ln n · · · ln� n ln�+1 n

)

− k

k + 1
μ�(n) − σ(σ + 2)

8(k + 1)
· k2

(n ln n · · · ln�+1 n)
2
+

2k3 + k2

16n3(k + 1)

+
δ

(n ln n · · · ln� n)
2lnβ

�+1 n
+ o

(
1
n3

)
.

(3.14)

Using Lemma 2.4 with r = −1 and q = �, we get for R(3.12)

R(3.12) =
k

k + 1

(
1 +

1
2n

+
1

2n ln n
+ · · · + 1

2n ln n · · · ln� n
− σ

2n ln n · · · ln� n ln�+1 n

−μ�(n) +
σ(σ + 2)

8
· 1

(n ln n · · · ln�+1 n)
2
+

1
16n3

+ o

(
1
n3

))
− 1

=
−1

k + 1
+

k

k + 1

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

− σ

2n ln n · · · ln� n ln�+1 n

)

− k

k + 1
· μ�(n) +

σ(σ + 2)k
8(k + 1)

· 1

(n lnn · · · ln�+1 n)
2
+

k

16n3(k + 1)
+ o

(
1
n3

)
.

(3.15)
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It is easy to see that the inequality (3.12) reduces to

− σ(σ + 2)k2

8(k + 1)
· 1

(n lnn · · · ln�+1 n)
2
+

2k3 + k2

16n3(k + 1)
+

δ

(n lnn · · · ln�n)
2lnβ

�+1 n
+ o

(
1
n3

)

<
σ(σ + 2)k
8(k + 1)

· 1

(n lnn · · · ln�+1 n)
2
+

k

16n3(k + 1)
+ o

(
1
n3

)
.

(3.16)

This inequality is equivalent to

−σ(σ + 2)k
8

· 1

(n lnn · · · ln�+1 n)
2
+
k(2k − 1)

16n3
+

δ

(n lnn · · · ln�n)
2lnβ

�+1 n
+ o

(
1
n3

)
< 0.

(3.17)

The last inequality holds for n sufficiently large because k ≥ 1, σ > 0, β > 2, and as n → ∞,

δ

(n lnn · · · ln�n)
2lnβ

�+1 n
,

1
n3

(3.18)

tend to zero faster than

1

(n lnn · · · ln�+1 n)
2

(3.19)

does.
Thus, we have proved that inequality (1.5) holds.
Next, according to (1.6), we have to prove that

ν�(n) − p(n)vk+1 > ν�(n + 1), (3.20)

which is equivalent to the inequality:

−p(n)vk+1 > ν�(n + 1) − ν�(n). (3.21)

Denote the left-hand side of (3.21) as L(3.21). As vk+1 < c(n − k) = ν�(n − k) and as by (2.3),
(3.1), and (2.7)

p(n) ≤
(

k

k + 1

)k

·
(

1
k + 1

+ kμ�(n)
)
+ ε

(
k

k + 1

)k

· k(2k − 1)
16n3

, (3.22)
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we have

L(3.21) > −
(

k

k + 1

)k( 1
k + 1

+ kμ�(n) + ε · k(2k − 1)
16n3

)

×
(

k

k + 1

)n−k√
(n − k) ln(n − k) · · · ln�(n − k)

= −
(

k

k + 1

)n( 1
k + 1

+ kμ�(n) + ε · k(2k − 1)
16n3

)
·
√
(n − k) ln(n − k) · · · ln�(n − k).

(3.23)

Further, we can easily see that

ν�(n + 1) − ν�(n) =
(

k

k + 1

)n√
n lnn · · · ln�n

⎛
⎝ k

k + 1

√
(n + 1)

n
· ln(n + 1)

lnn
· · · ln�(n + 1)

ln�n
− 1

⎞
⎠.

(3.24)

Thus, to prove (3.21), it suffices to show that for n sufficiently large, the following inequality
holds:

−
(

1
k + 1

+ kμ�(n) + ε · k(2k − 1)
16n3

)√
(n − k)

n
· ln(n − k)

lnn
· · · ln�(n − k)

ln�n

>
k

k + 1

√
(n + 1)

n
· ln(n + 1)

ln n
· · · ln�(n + 1)

ln� n
− 1.

(3.25)

Denote the left-hand side of inequality (3.25) as L(3.25) and the right-hand side as R(3.25). Using
Lemma 2.3 with r = k and q = �, we can write

L(3.25) = −
(

1
k + 1

+ kμ�(n) + ε · k(2k − 1)
16n3

)

×
(

1 − k

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

)
− k2μ�(n) − k3

16n3
+ o

(
1
n3

) )

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

)

+
k2

k + 1
μ�(n) +

k3

16n3(k + 1)
− kμ�(n) +

k2

16n3
− ε · k(2k − 1)

16n3
+ o

(
1
n3

)

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

)

− k

k + 1
μ�(n) +

k3

16n3(k + 1)
+
k(k − ε(2k − 1))

16n3
+ o

(
1
n3

)
.

(3.26)
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Using Lemma 2.3 with r = −1 and q = �, we get for R(3.25)

R(3.25) =
k

k + 1

(
1 +

1
2n

+
1

2n ln n
+ · · · + 1

2n ln n · · · ln�n
− μ�(n) +

1
16n3

+ o

(
1
n3

))
− 1

=
−1

k + 1
+

k

k + 1

(
1

2n
+

1
2n ln n

+ · · · + 1
2n ln n · · · ln� n

)

− k

k + 1
· μ�(n) +

k

16n3(k + 1)
+ o

(
1
n3

)
.

(3.27)

It is easy to see that the inequality (3.25) reduces to

k3

16n3(k + 1)
+
k(k − ε(2k − 1))

16n3
+ o

(
1
n3

)
>

k

16n3(k + 1)
+ o

(
1
n3

)
. (3.28)

This inequality is equivalent to

k(2k − 1)(1 − ε)
16n3

+ o

(
1
n3

)
> 0. (3.29)

The last inequality holds for n sufficiently large because k ≥ 1 and 1 − ε ∈ (0, 1). We have
proved that all the assumptions of Theorem 1.1 are fulfilled and hence there exists a solution
of (1.2) satisfying conditions (1.8), that is, in our case, conditions (3.2).
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[7] L. Berezansky, J. Diblı́k, and Z. Šmarda, “On connection between second-order delay differential
equations and integro-differential equations with delay,” Advances in Difference Equations, vol. 2010,
Article ID 143298, 8 pages, 2010.

[8] E. Braverman and B. Karpuz, “Nonoscillation of first-order dynamic equations with several delays,”
Advances in Difference Equations, vol. 2010, Article ID 873459, 22 pages, 2010.



12 Abstract and Applied Analysis

[9] E. Braverman and B. Karpuz, “Nonoscillation of second-order dynamic equations with several
delays,” Abstract and Applied Analysis, vol. 2011, Article ID 591254, 34 pages, 2011.

[10] J. Diblı́k and N. Koksch, “Positive solutions of the equation i(t) = −c(t)x(t − τ) in the critical case,”
Journal of Mathematical Analysis and Applications, vol. 250, no. 2, pp. 635–659, 2000.

[11] R. P. Agarwal, M. Bohner, and W.-T. Li, Nonoscillation and Oscillation: Theory for Functional Differential
Equations, Marcel Dekker, New York, NY, USA, 2004.
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We investigate first the existence of periodic solution in general Cohen-Grossberg BAM neural
networks with multiple time-varying delays by means of using degree theory. Then using the
existence result of periodic solution and constructing a Lyapunov functional, we discuss global
exponential stability of periodic solution for the above neural networks. Our result on global
exponential stability of periodic solution is different from the existing results. In our result, the
hypothesis for monotonicity ineqiality conditions in the works of Xia (2010) Chen and Cao (2007)
on the behaved functions is removed and the assumption for boundedness in the works of Zhang
et al. (2011) and Li et al. (2009) is also removed. We just require that the behaved functions satisfy
sign conditions and activation functions are globally Lipschitz continuous.

1. Introduction

In 1983, Cohen and Grossberg [1] constructed a kind of simplified neural networks that
are now called Cohen-Grossberg neural networks (CGNNs); they have received increasing
interesting due to their promising potential applications in many fields such as pattern
recognition, parallel computing, associative memory, and combinatorial optimization. Such
applications heavily depend on the dynamical behaviors. Thus, the qualitative analysis of
the dynamical behaviors is a necessary step for the practical design and application of neural
networks (or neural system [2–4]). The stability of Cohen-Grossberg neural network with or
without delays has been widely studied by many researchers, and various interesting results
have been reported [5–14].

On the other hand, since the pioneering work of Kosko [15, 16], a series of neural
networks related to bidirectional associative memory models have been proposed. These
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models generalized the single-layer autoassociative Hebbian correlator to a class of two-
layer pattern-matched heteroassociative circuits. Bidirectional associative memory neural
networks have also been used in many fields such as pattern recognition and automatic
control and image and signal processing. During the last years, many authors have discussed
the existence and global stability of BAM neural networks [17–20]. In recent years, a few
authors [17, 21–26] discussed global stability of Cohen-Grossberg BAM neural networks.

As is well known, the studies on neural dynamical system not only involve a
discussion of stability properties but also involve other dynamic behavior, such as periodic
oscillatory behavior, chaos, and bifurcation. In many applications, periodic oscillatory
behavior is of great interest; it has been found in applications in learning theory. Hence, it
is of prime importance to study periodic oscillatory solutions of neural networks.

This motivates us to consider periodic solutions of Cohen-Grossberg BAM neural
networks. Recently, a few authors discussed the existence and stability of periodic solution to
Cohen-Grossberg BAM neural networks with delays [27–31].

In [27], the authors proposed a class of bidirectional Cohen-Grossberg neural networks
with distributed delays as follows:

dxi(t)
dt

= −ai(xi(t))

⎡
⎣bi(t, xi(t))−

m∑
j=1

pij(t)
∫∞

0
Kji(u) × fj

(
t, λjyj(t − u)

)
du − Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

dyj(t)
dt

= −cj
(
yj(t)

)[
dj

(
t, yj(t)

)−
n∑
i=1

qji(t)
∫∞

0
Lij(u) × gi

(
t, μixi(t − u)

)
du − Jj(t)

]
, j = 1, 2, . . . , m.

(1.1)

By using the Lyapunov functional method and some analytical techniques, some sufficient
conditions were obtained for global exponential stability of periodic solutions to these
networks.

In [28], the authors discussed the following Cohen-Grossberg-type BAM neural
networks with time-varying delays:

dxi(t)
dt

= −ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

pij(t)fj
(
λjyj

(
t − τij(t)

)) − Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

dyj(t)
dt

= −cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

qji(t)gi
(
μixi

(
t − σji(t)

)) − Jj(t)

]
, j = 1, 2, . . . , m,

(1.2)

where n,m ≥ 2 are the number of neurons in the networks with initial value conditions:

xi(θ) = φi(θ), θ ∈ [−r1, 0], yj(θ) = φj(θ), θ ∈ [−r2, 0], (1.3)

where r1 = max1≤i≤n, 1≤j≤m, 0≤t≤ω{σji(t)}, r2 = max1≤i≤n,1≤j≤m,0≤t≤ω{τij(t)}, ai(xi(t)), bi(xi(t)),
cj(yj(t)), dj(yj(t)) are continuous functions, fj(λjyj(t − τji(t))), gi(μixi(t − δij(t))) are
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continuous functions, λj , μi are parameters, Ii(t) and Jj(t) are continuous functions, xi and yj

denote the state variables of the ith neurons from the neural field FU and the jth neurons from
the neural field FV at time t, respectively, ai(xi(t)) > 0, cj(yj(t)) > 0 represent amplification
functions of the ith neurons from the neural field FU and the jth neurons from the neural field
FV , respectively, bi(xi(t)), dj(yj(t)) are appropriately behaved functions of the ith neurons
from the neural field FU and the jth neurons from the neural field FV , respectively, fj , gi are
the activation functions of the jth neurons from the neural field FV and the ith neurons from
the neural field FU, respectively, Ii, Jj are the exogenous inputs of the ith neurons from the
neural field FU and the jth neurons from the neural field FV , respectively, pij and qji are the
connection weights, which denote the strengths of connectivity between the neuron j from
the neural field FV and the neuron i from the neural field FU, and τij(t), σij(t) correspond to
the transmission time delays.

By using the analysis method and inequality technique, some sufficient conditions
were obtained to ensure the existence, uniqueness, global attractivity, and exponential
stability of the periodic solution to this neural networks.

In [29, 30], the authors discussed, respectively, two Cohen-Grossberg BAM neural
networks on time scales. When time scale T becomes R, the existence and global exponential
stability of periodic solution are obtained in [29, 30] under the assumptions that activation
functions satisfy global Lipschitz conditions and boundedness conditions and behaved
functions satisfy some inequality conditions.

In [31], the authors discussed the following Cohen-Grossberg BAM neural networks
of neutral type with delays:

dxi(t)
dt

= −ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

aij(t)fj
(
yj

(
t − τij(t)

))

−
m∑
j=1

bij(t)fj
(
yj

(
t − σij(t)

)) − Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

dyj(t)
dt

= −cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

cji(t)gi

(
xi

(
t − pji(t)

))

−
n∑
i=1

dji(t)gi
(
xi

(
t − qji(t)

)) − Jj(t)

]
, j = 1, 2, . . . , m.

(1.4)

Under the assumptions that activation functions satisfy global Lipschitz conditions and
behaved functions satisfy some inequality conditions, global exponential stability of periodic
solution is obtained for system (1.4).

In this paper, our purpose is to obtain a new sufficient condition for the existence
and global exponential stability of periodic solution of system (1.2). The paper is organized
as follows. In Section 2, we discuss the existence of periodic solution of system (1.2) by
using coincidence degree theory and inequality technique. In Section 3, we study the global
exponential stability of periodic solution of system (1.2) by using the existence result of
periodic solution and constituting Lyapunov functional. Our result on global exponential
stability of periodic solution is different from the existing results. In our result, the hypotheses
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for monotonicity inequalities in [27, 28] on behaved functions are replaced with sign
conditions and the assumption for boundedness in [29, 30] on activation functions is
removed.

2. Existence of Periodic Solution

In this section, we first establish the existence of at least a periodic solution by applying the
coincidence degree theory. To establish the existence of at least a periodic solution by applying
the coincidence degree theory, we recall some basic tools in the frame work of Mawhin’s
coincidence degree [32] that will be used to investigate the existence of periodic solutions.

Let X, Z be Banach spaces, L: DomL ⊂ X → Z a linear mapping, and N : X → Z
a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dim KerL = codim Im L < ∞ and ImL is closed in Z. If L is a Fredholm mapping of index
zero, then there exist continuous projectors P : X → KerL and Q : Z → Z/ ImL such
that ImP = KerL and ImL = KerQ = Im(I − Q). It follows that L/DomL∩KerP : (I − P)X →
ImL is invertible. We denote the inverse of the map L/DomL∩KerP by Kp. If Ω is an open
bounded subset of X, the mapping N will be called L-compact on Ω if (QN)(Ω) is bounded
and Kp(I − Q)N : Ω → X is compact. Since Im Q is isomorphic to Ker L, there exists an
isomorphism J : ImQ → KerL.

In the proof of our existence theorem, we will use the continuation theorem of Gaines
and Mawhin [32].

Lemma 2.1 (continuation theorem). Let L be a Fredholm mapping of index zero, and let N be
L-compact on Ω. Suppose

(a) Lx/=λN(x), for all λ ∈ (0, 1), x ∈ ∂Ω,

(b) QN(x)/= 0, for all x ∈ KerL ∩ ∂Ω,

(c) deg(JQNx,Ω ∩ KerL, 0)/= 0.

Then, Lx = Nx has at least one solution in DomL ∩Ω.

For the sake of convenience, we introduce some notations.
| · | denotes the norm in R, f = max0≤t≤ω|f(t)|, f = min0≤t≤ω|f(t)|, where f(t) is a continuously
periodic function with common period ω. Our main result on the existence of at least a
periodic solution for system (1.2) is stated in the following theorem.

Theorem 2.2. One assume that the following conditions holds:

(i) pij(t), qji(t), Ii(t), Jj(t) are continuously periodic functions on t ∈ [0,+∞)with common
period ω > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m;

(ii) ai(·) and cj(·) are continuously bounded, that is, there exist positive constants li, l
∗
i ,

kj , k
∗
j (i = 1, . . . , n, j = 1, . . . , m) such that

li ≤ ai ≤ l∗i ,

kj ≤ cj ≤ k∗
j ;

(2.1)
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(iii) bi(xi(t)) and dj(yj(t)) are continuous and there exist positive constants Mi,Nj (i =
1, . . . , n, j = 1, . . . , m) such that for all x, y /=x ∈ R,

sign
(
x − y

)[
bi(x) − bi

(
y
)] ≥ Mi

∣∣x − y
∣∣,

sign
(
x − y

)[
dj(x) − dj

(
y
)] ≥ Nj

∣∣x − y
∣∣; (2.2)

(iv) there exist positive constants Aj , Bi (i = 1, . . . , n, j = 1, 2, . . . , m) such that for all x, y ∈
R,

∣∣fj(x) − fj
(
y
)∣∣ ≤ Aj

∣∣x − y
∣∣,∣∣gi(x) − gi

(
y
)∣∣ ≤ Bi

∣∣x − y
∣∣; (2.3)

(v) there exist two positive constants ri > 1, i = 1, 2 with τ ′ij < min{1, 1 − r−1
1 } < 1 and

σ ′
ji < min{1, 1 − r−1

2 } < 1 such that for i = 1, . . . , n; j = 1, . . . , m,

liMi >
m∑
j=1

l∗i pijAjλj
√
r1,

kjNj >
n∑
i=1

k∗
j qjiBiμi

√
r2.

(2.4)

Then, system (1.2) has at least one ω-periodic solution.

Proof. In order to apply Lemma 2.1 to system (1.2), let

X =
{
u =

(
x1, x2, . . . , xn, y1, y2, . . . , ym

)T ∈ C(R,Rm+n) : u(t +ω) = u(t)
}
,

Z = {z ∈ C(R,Rm+n) : z(t +ω) = z(t)}.
(2.5)

Define

‖u‖ = max
t∈[0,ω]

n∑
i=1

|xi(t)| + max
t∈[0,ω]

m∑
j=1

∣∣yj(t)
∣∣, u ∈ X or Z. (2.6)

Equipped with the above norm ‖ · ‖, X and Z are Banach spaces.
Let for u ∈ X

Nu =
(
Hi(t)
Kj(t)

)
=

⎛
⎜⎜⎜⎜⎜⎝

−ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

pij(t)fj
(
λjyj

(
t − τij(t)

)) − Ii(t)

⎤
⎦

−cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

qji(t)gi
(
μixi

(
t − σji(t)

)) − Jj(t)

]

⎞
⎟⎟⎟⎟⎟⎠

,

Lu = u′ =
du(t)

dt
, Pu =

1
ω

∫ω

0
u(t)dt, u ∈ X, Qz =

1
ω

∫ω

0
z(t)dt, z ∈ Z.

(2.7)
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Then, it follows that KerL = R(m+n), ImL = {z ∈ Z :
∫ω

0 z(t)dt = 0} is closed in Z, dim KerL =
m + n = codim ImL, and P,Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q). (2.8)

Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
Kp: ImL → KerP ∩ DomL is given by

Kp(z) =
∫ t

0
z(s)ds − 1

ω

∫ω

0

∫s

0
z(t)dtds. (2.9)

Then,

QNu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ω

∫ω

0
H1(s)ds

1
ω

∫ω

0
H2(s)ds

...
1
ω

∫ω

0
Hn(s)ds

1
ω

∫ω

0
K1(s)ds

1
ω

∫ω

0
K2(s)ds

...
1
ω

∫ω

0
Km(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Kp(I −Q)Nu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ft
0H1(s)ds − 1

ω

∫ω

0

∫ t

0
H1(s)dsdt +

(
1
2
− t

ω

)∫ω

0
H1(s)ds

ft
0H2(s)ds − 1

ω

∫ω

0

∫ t

0
H2(s)dsdt +

(
1
2
− t

ω

)∫ω

0
H2(s)ds

...

ft
0Hn(s)ds − 1

ω

∫ω

0

∫ t

0
Hn(s)dsdt +

(
1
2
− t

ω

)∫ω

0
Hn(s)ds

ft
0K1(s)ds − 1

ω

∫ω

0

∫ t

0
K1(s)dsdt +

(
1
2
− t

ω

)∫ω

0
K1(s)ds

...

ft
0Km(s)ds − 1

ω

∫ω

0

∫ t

0
Km(s)dsdt +

(
1
2
− t

ω

)∫ω

0
Km(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.10)



Abstract and Applied Analysis 7

Obviously, QN and KP (I−Q)N are continuous. It is not difficult to show that Kp(I−Q)N(Ω)
is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem. Moreover,
QN(Ω) is clearly bounded. Thus, N is L-compact on Ω with any open bounded set Ω ⊂ X.

Condition (iii) in Theorem 2.2 implies that for all x ∈ R

signxbi(x) ≥ Mi|x| + signxbi(0),

signxdj(x) ≥ Nj |x| + signxdj(0).
(2.11)

Condition (iv) in Theorem 2.2 implies that for all x ∈ R

∣∣fj(x)
∣∣ ≤ Aj |x| +

∣∣fj(0)
∣∣,∣∣gi(x)

∣∣ ≤ Bi|x| +
∣∣gj(0)

∣∣. (2.12)

Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have for i = 1, 2, . . . , n, j =
1, . . . , m

dxi(t)
dt

= λHi(t),

dyj(t)
dt

= λKj(t).
(2.13)

Assume that u ∈ X is a solution of system (2.13) for some λ ∈ (0, 1). Multiplying the first
equation of system (2.13) by xi(t) and integrating over [0, ω], we have

∫ω

0
xi(t) signxi(t) signxi(t)

×
⎧
⎨
⎩ai(xi(t))

⎡
⎣bi(xi(t)) −

m∑
j=1

pij(t) fj
(
λjyj

(
t − τij(t)

)) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt = 0.

(2.14)

Multiplying the second equation of system (2.13) by yj(t) and integrating over [0, ω], we
have

∫ω

0
yj(t) signyj(t) signyj(t)

×
{
cj
(
yj(t)

)[
dj

(
yj(t)

) −
n∑
i=1

qji(t)gi
(
μixi

(
t − σji(t)

)) − Jj(t)

]}
dt = 0.

(2.15)
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From (2.14) and (2.15), we obtain

liMi

∫ω

0
|xi(t)|2dt

≤ l∗i

∫ω

0
|xi(t)|

⎧
⎨
⎩−ai signxi(t)bi(0) +

m∑
j=1

pij
(
Ajλj

∣∣yj

(
t − τij(t)

)∣∣ + ∣∣fj(0)
∣∣) + Ii

⎫
⎬
⎭dt,

(2.16)

kiNj

∫ω

0

∣∣yj(t)
∣∣2dt

≤ k∗
j

∫ω

0

∣∣yj(t)
∣∣
{
−cj signyj(t)dj(0) +

n∑
i=1

qji
(
Biμi

∣∣xi

(
t − σji(t)

)∣∣ + ∣∣gi(0)
∣∣) + Jj

}
dt.

(2.17)

Hence,

liMi

∫ω

0
|xi(t)|2dt

≤ l∗i

(∫ω

0
|xi(t)|2dt

)1/2

×
⎧
⎨
⎩

m∑
j=1

pij

[
Ajλj

(∫ω

0

∣∣yj

(
t − τij(t)

)∣∣2dt
)1/2

+
√
ω
∣∣fj(0)

∣∣
]
+ l∗i |bi(0)| +

√
ωIi

⎫
⎬
⎭,

(2.18)

kjNj

∫ω

0

∣∣yj(t)
∣∣2dt

≤ k∗
j

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

×
{

n∑
i=1

qji

[
Biμi

(∫ω

0

∣∣xi

(
t − σji(t)

)∣∣2dt
)1/2

+
√
ω
∣∣gi(0)

∣∣
]
+ k∗

j

∣∣dj(0)
∣∣ +√

ωJj

}
(2.19)

Denoting s = t − τij(t) = g(t), σ = t − σji(t) = h(t), then

(∫ω

0

∣∣yj

(
t − τij(t)

)∣∣2dt
)1/2

=

(∫ω

0

∣∣yj(s)
∣∣2

1 − τ ′ij
(
g−1(s)

)ds

)1/2

, (2.20)

(∫ω

0

∣∣xi

(
t − σji(t)

)∣∣2dt
)1/2

=

(∫ω

0

|xi(σ)|2
1 − σ ′

ji

(
h−1(σ)

)dσ

)1/2

. (2.21)
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Substituting (2.20) into (2.18) and substituting (2.21) into (2.19) give for i = 1, . . . , n, j =
1, . . . , m

liMi

∫ω

0
|xi(t)|2dt

≤ l∗i

(∫ω

0
|xi(t)|2dt

)1/2

×
⎧
⎨
⎩

m∑
j=1

pijAjλj
√
r1

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

+
√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + |bi(0)| + Ii

⎞
⎠
⎫
⎬
⎭,

(2.22)

kjNj

∫ω

0

∣∣yj(t)
∣∣2dt

≤ k∗
j

(∫ω

0

∣∣yj(t)
∣∣2
)1/2

×
{

n∑
i=1

qjiBiμi
√
r2

(∫ω

0
|xi(t)|2dt

)1/2

+
√
ω

(
n∑
i=1

qji
∣∣gi(0)

∣∣ + ∣∣dj(0)
∣∣ + Jj

)}
.

(2.23)

Denoting for the sake of convenience

max
1≤i≤n

{(∫ω

0
|xi(t)|2dt

)1/2
}

=
(∫ω

0
|xi0(t)|2dt

)1/2

,

max
1≤j≤m

{(∫ω
0

∣∣yj(t)
∣∣2dt

)1/2
}

=
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2
,

(2.24)

where, i0 ∈ {1, 2, . . . , n}, j0 ∈ {1, 2, . . . , m}, and from (2.22) and (2.23), we obtain

li0Mi0

(∫ω

0
|xi0(t)|2dt

)1/2

≤ l∗i0

m∑
j=1

pi0jAjλj
√
r1

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

+ l∗i0
√
ω

⎛
⎝

m∑
j=1

pi0j
∣∣fj(0)

∣∣ + |bi0(0)| + Ii0

⎞
⎠,

(2.25)

kj0Nj0

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤ k∗
j0

n∑
i=1

qj0iBiμi
√
r2

(∫ω

0
|xi0(t)|2dt

)1/2

+ k∗
j0

√
ω

(
n∑
i=1

qj0i
∣∣gi(0)

∣∣ + ∣∣dj0(0)
∣∣ + Jj0

)
.

(2.26)
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Now we consider two possible cases for (2.26) and (2.25):

(i)
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤
(∫ω

0
|xi0(t)|2dt

)1/2

,

(ii)
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

>

(∫ω

0
|xi0(t)|2dt

)1/2

.

(2.27)

When (
∫ω

0 |yj0(t)|2dt)
1/2 ≤ (

∫ω
0 |xi0(t)|2dt)1/2, from (2.25), we have

⎛
⎝li0Mi0 − l∗i0

m∑
j=1

pi0jAjλj
√
r1

⎞
⎠
(∫ω

0
|xi0(t)|2dt

)1/2

≤ l∗i0
√
ω

⎛
⎝

m∑
j=1

pi0j
∣∣fj(0)

∣∣ + |bi0(0)| + Ii0

⎞
⎠.

(2.28)

Thus,

(∫ω

0
|xi0(t)|2dt

)1/2

≤
l∗i0
√
ω
(∑m

j=1 pi0j
∣∣fj(0)

∣∣ + |bi0(0)| + Ii0

)

li0Mi0 − l∗i0
∑m

j=1 pi0jAjλj
√
r1

≤ max
1≤i≤n

⎧
⎨
⎩

l∗i
√
ω
(∑m

j=1 pij
∣∣fj(0)

∣∣ + |bi(0)| + Ii
)

liMi − l∗i
∑m

j=1 pijAjλj
√
r1

⎫
⎬
⎭

def= d1.

(2.29)

Therefore,

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤
(∫ω

0
|xi0(t)|2dt

)1/2

≤ d1.

(2.30)

(ii) When (
∫ω

0 |yj0(t)|2dt)
1/2

> (
∫ω

0 |xi0(t)|2dt)
1/2

, from (2.26), we have

(
kj0Nj0 − k∗

j0

n∑
i=1

qj0iBiμi
√
r2

)(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤ k∗
j0

√
ω

(
n∑
i=1

qj0i
∣∣gi(0)

∣∣ + ∣∣dj0(0)
∣∣ + Jj0

)
.

(2.31)
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Thus,

(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤
k∗
j0

√
ω
(∑n

i=1 qj0i
∣∣gi(0)

∣∣ + ∣∣dj0(0)
∣∣ + Jj0

)

kj0Nj0 − k∗
j0

∑n
i=1 qj0iBiμi

√
r2

≤ max
1≤j≤m

⎧
⎨
⎩

k∗
j

√
ω
(∑n

i=1 qji
∣∣gi(0)

∣∣ + ∣∣dj(0)
∣∣ + Jj

)

kjNj − k∗
j

∑n
i=1 qjiBiμi

√
r2

⎫
⎬
⎭

def= d2.

(2.32)

Therefore,

(∫ω

0
|xi0(t)|2dt

)1/2

≤
(∫ω

0

∣∣yj0(t)
∣∣2dt

)1/2

≤ d2.

(2.33)

Hence, from (2.30) and (2.33), we have for i = 1, 2, . . . , n, j = 1, 2, . . . , m, t ∈ [0, ω]

(∫ω

0
|xi(t)|2dt

)1/2

< max{d1, d2} def= d, (2.34)

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

< max{d1, d2} = d. (2.35)

Multiplying the first equation of system (2.13) by x′
i(t) and integrating over [0, ω], from (2.20)

and (2.35) and the fact that

∫ω

0
ai(xi(t))bi(xi(t))x′

i(t)dt = 0, (2.36)

it follows that

(∫ω

0

∣∣x′
i(t)
∣∣2dt

)1/2

≤ l∗i
m∑
j=1

pijAjλj

(∫ω

0

∣∣yj

(
t − τij(t)

)∣∣dt
)1/2

+ l∗i
√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + Ii

⎞
⎠

≤ l∗i
m∑
j=1

pijAjλj
√
r1

(∫ω

0

∣∣yj(t)
∣∣2dt

)1/2

+ l∗i
√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + Ii

⎞
⎠

< max
1≤i≤n

⎧
⎨
⎩l∗i

m∑
j=1

pijAjλj
√
r1d + l∗i

√
ω

⎛
⎝

m∑
j=1

pij
∣∣fj(0)

∣∣ + Ii

⎞
⎠
⎫
⎬
⎭

def= c1.

(2.37)
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Similarly, multiplying the second equation of system (2.13) by yj(t) and integrating over
[0, ω], from (2.21) and (2.34) and the fact that

∫ω

0
cj
(
yj(t)

)
dj

(
yj(t)

)
y′
j(t)dt = 0, (2.38)

it follows that there exists a positive constant c2 such that

(∫ω

0

∣∣∣y′
j(t)
∣∣∣

2
dt
)1/2

< c2. (2.39)

From (2.34) and (2.35), it follows that there exist points ti and tj such that

|xi(ti)| < d√
ω
, (2.40)

∣∣∣yj

(
tj
)∣∣∣ < d√

ω
. (2.41)

Since for all t ∈ [0, ω],

|xi(t)| ≤ |xi(ti)| +
∫ω

0

∣∣x′
i(t)
∣∣dt

≤ |xi(ti)| +
√
ω

(∫ω

0

∣∣x′
i(t)
∣∣2
)1/2

,

(2.42)

∣∣yj(t)
∣∣ ≤ ∣∣yj(ti)

∣∣ +
∫ω

0

∣∣∣y′
j(t)
∣∣∣dt

≤ ∣∣yj(t)
∣∣ +√

ω

(∫ω

0

∣∣∣y′
j(t)
∣∣∣

2
)1/2

,

(2.43)

then from (2.40)–(2.43), we have for t ∈ [0, ω], i = 1, . . . , n, j = 1, . . . , m

|xi(t)| ≤ d√
ω

+
√
ωc1,

∣∣yj(t)
∣∣ ≤ d√

ω
+
√
ωc2.

(2.44)

Obviously, d/
√
ω,

√
ωc1, and

√
ωc2 are all independent of λ. Now let

Ω =
{
u =

(
x1, x2, . . . , xn;y1, y2, . . . , ym

)T ∈ X :

‖u‖ < n

(
d√
ω

+ r1 +
√
ωc1

)
+m

(
d√
ω

+ r2 +
√
ωc2

)}
,

(2.45)
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where r1, r2 are two chosen positive constants such that the bound of Ω is larger. Then, Ω is
bounded open subset of X. Hence, Ω satisfies requirement (a) in Lemma 2.1. We prove that
(b) in Lemma 2.1 holds. If it is not true, then when u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R(m+n) we have

QNu

=
(

1
ω

∫ω

0
H1(t)dt,

1
ω

∫ω

0
H2(t)dt, . . . ,

1
ω

∫ω

0
Hn(t)dt;

1
ω

∫ω

0
K1(t)dt, . . . ,

1
ω

∫ω

0
Km(t)dt

)T

= (0, . . . , 0)T .
(2.46)

Therefore, there exist points ξi (i = 1, 2, . . . , n) and ηj (j = 1, 2, . . . , m) such that

Hi(ξi) = 0,

Kj

(
ηj
)
= 0.

(2.47)

From this and following the arguments of (2.40) and (2.41), we have for forall i = 1, 2,
. . . , n, j = 1, 2, . . . , m, t ∈ [0, ω]

|xi(t)| < d√
ω
,

∣∣yj(t)
∣∣ < d√

ω
.

(2.48)

Hence,

‖u‖ < n
d√
ω

+m
d√
ω
. (2.49)

Thus, u ∈ Ω ∩ R(m+n). This contradicts the fact that u ∈ ∂Ω ∩ R(m+n). Hence, this proves that
(b) in Lemma 2.1 holds. Finally, we show that (c) in Lemma 2.1 holds. We only need to prove
that deg{−JQNu,Ω ∩ KerL, (0, 0)T}/= (0, 0, . . . , 0)T . Now, we show that

deg
{
−JQNu,Ω ∩ KerL, (0, 0, . . . , 0)T

}

= deg
{(

l1M1x1, l2M2x2, . . . , lnMnxn; k1N1y1, . . . , kmNmym

)T
, Ω ∩ KerL, (0, . . . , 0)T

}
.

(2.50)

To this end, we define a mapping φ : DomL × [0, 1] → X by

φ
(
x1, x2, . . . , xn;y1, y2, . . . , ym, μ

)

= − μ

ω

(∫ω

0
H1(t)dt,

∫ω

0
H2(t)dt, . . . ,

∫ω

0
Hn(t)dt,

∫ω

0
K1(t)dt, . . . ,

∫ω

0
Km(t)dt

)

+
(
1 − μ

)(
l1M1x1, l2M2x2, . . . , lnMnxn; k1N1y1, . . . , kmNmym

)
,

(2.51)
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where μ ∈ [0, 1] is a parameter. We show that when u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R(m+n),
φ(x1, x2, . . . , xn; y1, . . . , ym, μ)/= (0, 0, . . . , 0)T . If it is not true, then when u ∈ ∂Ω ∩ KerL =
∂Ω∩R(m+n), φ(x1, x2, . . . , xn;y1, . . . , ym, μ) = (0, 0, . . . , 0)T . Thus, constant vector u with u ∈ ∂Ω
satisfies for i = 1, 2, . . . , n, j = 1, 2, . . . , m,

μ

ω

∫ω

0

⎧
⎨
⎩ai(xi)

⎡
⎣bi(xi) − ai(xi)

m∑
j=1

pij(t)fj
(
λjyj

) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt +

(
1 − μ

)
liMixi = 0,

μ

ω

∫ω

0

{
cj
(
yj

)[
dj

(
yj

) − cj
(
yj

) n∑
i=1

qji(t)gi
(
μiui

) − Jj(t)

]}
dt +

(
1 − μ

)
kjNjyj = 0.

(2.52)

That is,

μ

ω

∫ω

0
signxi

⎧
⎨
⎩ai(xi)(bi(xi) − bi(0)) + ai(xi)bi(0) − ai(xi)

⎡
⎣

m∑
j=1

pij(t)fj
(
λjyj

) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt

+
(
1 − μ

)
liMi|xi| = 0,

(2.53)

μ

ω

∫ω

0
signyj

{
cj
(
yj

)(
dj

(
yj

) − dj(0)
)
+ cj

(
yj

)
dj(0) − cj

(
yj

)[ n∑
i=1

qji(t)gi
(
μiui

) − Jj(t)

]}
dt

+
(
1 − μ

)
kjNj

∣∣yj

∣∣ = 0.
(2.54)

Denote |yj0 | = max1≤j≤m{|yj |}, |xi0 | = max1≤i≤n{|xi|}.

Claim 1. We claim that |xi0 | < (d/
√
ω) +

√
ωc1 + r1, otherwise, |xi0 | ≥ (d/

√
ω) +

√
ωc1 + r1. We

consider two possible cases: (i) |yj0 | ≤ |xi0 | and (ii) |yj0 | > |xi0 |.

(i) When |yj0 | ≤ |xi0 |, we have

μ

ω

∫ω

0
signxi0

⎧
⎨
⎩ai(xi0)(bi(xi0) − bi(0)) + ai(xi0)

⎡
⎣bi(0) −

m∑
j=1

pij(t)fj
(
λjyj

) − Ii(t)

⎤
⎦
⎫
⎬
⎭dt

+
(
1 − μ

)
liMi|xi0 |

≥ μliMi|xi0 | − l∗i

⎡
⎣|bi(0)| +

m∑
j=1

pij
(
λjAj

∣∣yj

∣∣ + ∣∣fj(0)
∣∣) + Ii

⎤
⎦ +

(
1 − μ

)
liMi|xi0 |
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≥ liMi|xi0 | − l∗i

⎡
⎣|bi(0)| +

m∑
j=1

pij
(
λjAj

∣∣yj0

∣∣ + ∣∣fj(0)
∣∣) + Ii

⎤
⎦

≥
⎛
⎝liMi − l∗i

m∑
j=1

Ajλjpij

⎞
⎠|xi0 | − l∗i

⎡
⎣|bi(0)| +

m∑
j=1

pij
(
λjAj

∣∣yj0

∣∣ + ∣∣fj(0)
∣∣) + Ii

⎤
⎦

≥
⎛
⎝liMi−l∗i

m∑
j=1

Ajλjpij

⎞
⎠
(

d1√
ω
+
√
ωc1+r1

)
−l∗i

⎡
⎣|bi(0)|+

m∑
j=1

pij
(
λjAj

∣∣yj0

∣∣+∣∣fj(0)
∣∣)+Ii

⎤
⎦

>

⎛
⎝liMi − l∗i

m∑
j=1

Ajλjpij

⎞
⎠r1

> 0,

(2.55)

which contradicts (2.53).

(ii) When |yj0 | > |xi0 |, we have

μ

ω

∫ω

0
signyj0

{
cj
(
yj0

)(
dj

(
yj0

) − dj(0)
)
+ cj

(
yj0

)[
dj(0) −

n∑
i=1

qji(t)gi
(
μixi

) − Jj(t)

]}
dt

+
(
1 − μ

)
kjNj

∣∣yj0

∣∣

≥ μkjNj

∣∣yj0

∣∣ − k∗
j

[∣∣dj(0)
∣∣ +

n∑
i=1

qji
(
μiBi|xi| +

∣∣gi(0)
∣∣) + Jj

]
+
(
1 − μ

)
kjNj

∣∣yj0

∣∣

≥ kjNj

∣∣yj0

∣∣ − k∗
j

[∣∣dj(0)
∣∣ +

n∑
i=1

qji
(
μiBi|xi0 | +

∣∣gi(0)
∣∣) + Jj

]

≥
(
kjNj − k∗

j

n∑
i=1

Biμiqji

)∣∣yj0

∣∣ − k∗
j

[∣∣dj(0)
∣∣ +

n∑
i=1

qji
(
μiBi|xi0 | +

∣∣gi(0)
∣∣) + Jj

]

≥
(
kjNj−k∗

j

n∑
i=1

Biμiqji

)(
d2√
ω
+
√
ωc1 + r1

)
−k∗

j

[∣∣dj(0)
∣∣+

n∑
i=1

qji
(
μiBi|xi0 |+

∣∣gi(0)
∣∣)+Jj

]

>

(
kjNj − k∗

j

n∑
i=1

Biμiqji

)
r1

> 0,

(2.56)

which contradicts (2.54). From the discussion of (i) and (ii), Claim 1 holds.

Claim 2. We claim that |yj0 | < (d/
√
ω) +

√
ωc2 + r2, otherwise, |yj0 | ≥ (d/

√
ω) +

√
ωc2 + r2. We

consider two possible cases: (i) |xi0 | ≤ |yj0 | and (ii) |xi0 | > |yj0 |.
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The proofs of (i) and (ii) are similar to those of (ii) and (1) in Claim 1, respectively,
therefore Claim 2 holds.

Thus, |xi| < (d1/
√
ω) + c1

√
ω+ r1 and |yj | < (d2/

√
ω) +

√
ωc2 + r2. Thus, u ∈ Ω∩R(m+n).

This contradicts the fact that u ∈ ∂Ω∩R(m+n). According to the topological degree theory and
by taking J = I since KerL = ImQ, we obtain

deg
{
−JQNu,Ω ∩ KerL, (0, 0)T

}

= deg
{
φ(u1, u2, . . . , un;v1, v2, . . . , vm, 1),Ω ∩ KerL, (0, 0)T

}

= deg
{
φ(u1, u2, . . . , un;v1, v2, . . . , vm, 0),Ω ∩ KerL, (0, 0)T

}

= deg
{(

l1M1x1, l2M2x2, . . . , lnMnxn; k1N1y1, . . . , kmNmym

)T
,Ω ∩ KerL, (0, . . . , 0)T

}

/= 0.
(2.57)

So far, we have proved that Ω satisfies all the assumptions in Lemma 2.1. Therefore, system
(1.2) has at least one ω-periodic solution.

3. Global Exponential Stability of Periodic Solution

In this section, by constructing a Lyapunov functional, we derive new sufficient conditions
for global exponential stability of a periodic solution of system (1.2).

Theorem 3.1. In addition to all conditions in Theorem 2.2, one assumes further that the following
conditions hold:

(H1) there exists two positive constants ri ≥ 1 (i = 1, 2) with Mi >
∑m

j=1 qjiμiBir2 and Nj >∑n
i=1 pijλjAjr1 such that τ ′ij < min{1, 1 − r−1

1 } < 1 and σ ′
ji < min{1, 1 − r−1

2 } < 1;

(H2) there exist constants τij and σji, i = 1, 2, . . . , n, j = 1, 2, . . . , m, such that

0 < τij(t) < τij , 0 < σji(t) < σji. (3.1)

Then, the ω periodic solution of system (1.2) is globally exponentially stable.

Proof. By Theorem 2.2, system (1.2) has at least one ω periodic solution, say, u∗(t) =
(x∗

1(t), x
∗
2(t), . . . , x

∗
n(t);y

∗
1(t), . . . , y

∗
m(t))

T . Suppose that u(t) = (x1(t), x2(t), . . . , xn(t), y1(t), . . . ,
ym(t))

T is an arbitrary ω periodic solution of system (1.2). From (H1), we can choose a
suitable θ such that

Mi >
θ

li
+

m∑
j=1

qjiμiBir2 exp
(
θτij

)
,

Nj >
θ

kj
+

n∑
i=1

pijλjAjri exp
(
θσji

)
.

(3.2)
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We define a Lyapunov functional as follows for t > 0, i = 1, 2, . . . , n, j = 1, 2, . . . , m :

V (t) = exp(θt)

⎧
⎨
⎩

n∑
i=1

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ +
m∑
j=1

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

∣∣∣∣∣ds
⎫
⎬
⎭

+
n∑
i=1

m∑
j=1

pijλjAj

∫ t

t−τij (t)
exp

[
θ
(
σ + τij

(
g−1(σ)

))]
∣∣∣yj(σ) − y∗

j (σ)
∣∣∣

1 − τ ′ij
(
g−1(σ)

) dσ

+
n∑
i=1

m∑
j=1

qjiμiBi

∫ t

t−σji(t)
exp

[
θ
(
σ + σji

(
h−1(σ)

))]∣∣xi(σ) − x∗
i (σ)

∣∣
1 − σ ′

ji

(
h−1(σ)

)dσ,

(3.3)

where g(t) = t−τij(t), h(t) = t−σji(t), i = 1, 2, . . . , n, j = 1, . . . , m. Calculating the upper right
derivative D+V (t) of V (t) along the solutions of system (1.2), we obtain

D+V (t) ≤ exp(θt)
n∑
i=1

{
θ

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ −Mi

∣∣xi(t) − x∗
i (t)
∣∣

+
m∑
j=1

pijλjAj

∣∣∣yj

(
t − τij(t)

) − y∗
j

(
t − τij(t)

)∣∣∣
⎫
⎬
⎭

+ exp(θt)
m∑
j=1

{
θ

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

ds

∣∣∣∣∣ −Nj

∣∣∣yj(t) − y∗
j (t)

∣∣∣

+
n∑
i=1

qjiμiBi

∣∣xi

(
t − σji(t)

) − x∗
i

(
t − τji(t)

)∣∣
}

+ exp(θt)
n∑
i=1

m∑
j=1

pijλjAj

⎧
⎨
⎩

∣∣∣yj(t) − y∗
j (t)

∣∣∣ exp
[
θτij

(
s−1(t)

)]

1 − τ ′ij
(
s−1(t)

)

−
∣∣∣yj

(
t − τij(t)

) − y∗
j

(
t − τij(t)

)∣∣∣
⎫
⎬
⎭

+ exp(θt)
n∑
i=1

m∑
j=1

qjiμiBi

{∣∣xi(t) − x∗
i (t)
∣∣ exp

[
θσji

(
h−1(t)

)]

1 − σ ′
ji

(
h−1(t)

)

−∣∣xi

(
t − σji(t)

) − x∗
i

(
t − σji(t)

)∣∣
}
.

(3.4)
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Since there exist points ξi, ηj such that

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ =
1

ai(ξi)

∣∣xi(t) − x∗
i (t)
∣∣,

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

ds

∣∣∣∣∣ =
1

cj
(
ηj
)
∣∣∣yj(t) − y∗

j (t)
∣∣∣,

(3.5)

from (3.4), we have

D+V (t) ≤ − exp(θt)
m∑
j=1

{
Nj − θ

kj
−

n∑
i=1

pijλjAjr1 exp
(
θσji

)}∣∣∣yj(t) − y∗
j (t)

∣∣∣

− exp(θt)
n∑
i=1

⎧
⎨
⎩Mi − θ

li
−

m∑
j=1

qjiμiBir2 exp
(
θτij

)
⎫
⎬
⎭
∣∣xi(t) − x∗

i (t)
∣∣.

(3.6)

In view of (3.2), it follows that V (t) < V (0). Therefore,

exp(θt)

⎧
⎨
⎩

n∑
i=1

∣∣∣∣∣
∫xi(t)

x∗
i (t)

1
ai(s)

ds

∣∣∣∣∣ +
m∑
j=1

∣∣∣∣∣
∫yj (t)

y∗
j (t)

1
cj(s)

ds

∣∣∣∣∣

⎫
⎬
⎭ < V (t) < V (0). (3.7)

Equation (3.3) implies that

V (0) <
n∑
i=1

⎧
⎨
⎩

1
li
+

m∑
j=1

wjiμiBir2

∫0

−σji(0)
exp

[
θ
(
σ + σji

(
h−1(σ)

))]
dσ

⎫
⎬
⎭ sup

0≤≤ω

∣∣xi(s) − x∗
i (s)

∣∣

+
m∑
j=1

{
1
kj

+
n∑
i=1

hijλjAjr1

∫0

−τij
exp

[
θ
(
σ + τij

(
g−1(σ)

))]
dσ

}
sup

0≤s≤ω

∣∣∣yj(s) − y∗
j (s)

∣∣∣.

(3.8)

Substituting (3.8) into (3.7) gives

n∑
i=1

∣∣xi(t) − x∗
i (t)
∣∣ +

m∑
j=1

∣∣∣yj(t) − y∗
j (t)

∣∣∣

<
M

N
exp(−θt)

⎧
⎨
⎩

n∑
i=1

sup
0≤s≤ω

∣∣xi(s) − x∗
i (s)

∣∣ +
m∑
j=1

sup
0≤s≤ω

∣∣∣yj(s) − y∗
j (s)

∣∣∣
⎫
⎬
⎭,

(3.9)
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where

M = max
1≤i≤n,1≤j≤m

⎧
⎨
⎩

1
li
+

n∑
i=1

hijλjAjr1

∫0

−τij (0)
exp

[
θ + τij

(
g−1(σ)

)]
dσ,

1
kj

+
m∑
j=1

wjiμiBir2

∫0

−σji(0)
exp

[
θ + σji

(
h−1(σ)

)]
dσ

⎫
⎬
⎭,

N = min

{
1
l∗i
,

1
k∗
j

}
.

(3.10)

The proof of Theorem 3.1 is complete.

4. An Example

Example 4.1. Consider the following Cohen-Grossberg BAM neural networks with time-
varying delays:

dx1(t)
dt

= −(2 + sinx1)
{

200x1(t) + 100 sinx1(t) − (2 + sin t)
∣∣∣∣y1

[
t −
(

1 +
sin t

2

)]∣∣∣∣ − sin t

}
,

dy1(t)
dt

= −(3 + cosy1
){

200y1(t) + 100 siny1(t) − (2 + cos t)
∣∣∣∣x1

[
t −
(

1 +
sin t

3

)]∣∣∣∣ − cos t
}
.

(4.1)

In Theorem 3.1,

A1 = 1, B1 = 1, l1 = 1, l∗1 = 3, k1 = 2, k∗
1 = 4, M1 = 100,

N1 = 100, p11 = 3, q11 = 3, λ1 = μ1 = 1,

τ ′11 =
cos t

2
, σ ′

11 =
cos t

3
.

(4.2)

Since

1 − cos t
2

≥ 1 − |cos t|
2

≥ 1
2
, 1 − cos t

3
≥ 1 − |cos t|

3
≥ 2

3
, (4.3)

then r1 = 2, r2 = 3/2.
Since

M1 = 100 > q11μ1B1r2 =
9
2
, N1 = 100 > p11λ1A1r1 = 6,

l1M1 = 100 > l∗1p11A1
√
r1 = 9

√
2, k1N1 = 200 > q11B1μ1

√
r2 = 12

√
3
2
,

(4.4)
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then conditions (H1), (H2), and (v) are satisfied. It is easy to prove that the rest of the con-
ditions in Theorem 3.1 are satisfied. By Theorem (3.2) , system (4.1) has a unique ω periodic
solution that is globally exponentially stable.

5. Conclusion

We investigate first the existence of the periodic solution in general Cohen-Grossberg BAM
neural networks with multiple time-varying delays by means of using degree theory. Then,
using the existence result of periodic solution and constructing a Lyapunov functional, we
discuss global exponential stability of periodic solution for the above neural networks. In our
result, the hypotheses for monotonicity in [27, 28] on the behaved functions are replaced with
sign conditions and the assumption for boundedness on activation functions is removed. We
just require that the behaved functions satisfy sign conditions and activation functions are
globally Lipschitz continuous.
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By using Schaeffer’s theorem and Lyapunov functional, sufficient conditions of the existence and
globally exponential stability of positive periodic solution to an impulsive neural network with
time-varying delays are established. Applications, examples, and numerical analysis are given to
illustrate the effectiveness of the main results.

1. Introduction

It is well known that in implementation of neural networks, time delays are inevitably
encountered because of the finite switching speed of amplifiers. Specially in electronic neural
networks, delays are usually time-varying and often become sources of instability. So it is
important to investigate the dynamics of neural networks with delays [1–7]. Recently, the
study of the existence of periodic solutions of neural networks has received much attention.
The common approaches are based on using Mawhin continuation theorem [1, 2, 8–10],
Banach’s fixed point theorem [11–13], fixed point theorem in a cone [14], Schaeffer’s theorem
[15, 16], and so on. On the other hand, studies on neural dynamical systems not only
involve the existence of periodic solutions, but also involve other dynamical behaviors such
as stability of periodic solutions, bifurcations, and chaos. In recent years, the stability of
solutions of neural networks has attracted attention of many researchers and many nice
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results have been obtained [1–3, 5–13, 16–25]. For example, M. Tan and Y. Tan [1] considered
the following neural network with variable coefficients and time-varying delays:

x′
i(t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t),

i = 1, 2, . . . , n.

(1.1)

By using the Mawhin continuation theorem, they discussed the existence and globally
exponential stability of periodic solutions.

However, in real world, many physical systems often undergo abrupt changes at
certain moments due to instantaneous perturbations, which lead to impulsive effects. In
fact, impulsive differential equation represents a more natural framework for mathematical
modelling of many real world phenomena such as population dynamic and neural networks.
The theory of impulsive differential equations is now being recognized to be richer than
the corresponding theory of differential equations without impulse, and various kinds of
impulsive differential equations have been extensively studied, see [8–16, 18, 19, 21–25] and
references therein. Then, considering impulsive effects, it is necessary and interesting for us
to study further the dynamics of system (1.1). Furthermore, as pointed by Gopalsamy and
Sariyasa [4], it would be of great interest to study neural networks in periodic environment.
On the other hand, to the best of our knowledge, few authors considered the existence of
periodic solutions by using Schaeffer’s theorem. Hence, in this paper, by using Schaeffer’s
theorem and Lyapunov functional, we aim to discuss the existence and exponential stability
of periodic solutions to a class of impulsive neural networks with periodic coefficients and
time-varying delays. The model is as follows:

x′
i(t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t), t /= tk,

xi(t+) =
(

1 + qki

)
xi(t), t = tk,

(1.2)

with initial conditions

xi(s) = φi(s), φi(s) ∈ C([−τ, 0], Rn), i = 1, 2, . . . , n, (1.3)

where xi(t) corresponds to the state of the ith unit, ci(t) represents the rate with which
the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs, fj(xj(t)) denotes the output of the jth unit, aij(t) and
bij(t) denote the strength of the jth unit on the ith unit, respectively, Ji(t) is the external
bias on the ith unit, τij(t) corresponds to the transmission delay along the axon of the
jth unit, tk denotes the impulsive moment, and t1 < t2 < · · · is a strictly increasing
sequence such that limk→∞ tk = ∞, C([−τ, 0], Rn) denotes the Banach space of continuous
mapping from [−τ, 0] to Rn equipped with the norm ‖φ‖ = max1≤i≤n supt∈[0,ω]|φi(t)| for all

φ = (φ1(t), φ2(t), . . . , φn(t))
T ∈ C([−τ, 0], Rn), where τ = max1≤i≤n supt∈[0,ω]τij(t).
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Throughout this paper, we always assume the following.

(H1) ci(t) > 0, aij(t), bij(t), Ji(t), τij(t) are all continuous ω-periodic functions for i, j =
1, 2, . . . , n.

(H2) fj : R → R is continuous and there exists positive constant kj such that fj(u) −
fj(v) ≤ kj |u − v| for any u, v ∈ R and j = 1, 2, . . . , n.

(H3) There exists positive integer p such that tk+p = tk +ω, qki = q
k+p
i . Then

[0, ω] ∩ {tk, k = 1, 2, . . .} =
{
t1, t2, . . . , tp

}
. (1.4)

For convenience, we use the following notations:

f =
1
ω

∫ω

0

∣∣f(t)∣∣dt, fM = max
t∈[0,ω]

∣∣f(t)∣∣, fm = min
t∈[0,ω]

∣∣f(t)∣∣, (1.5)

where f(t) is continuous and ω-periodic function.

The rest of this paper is organized as follows. In Section 2, by using Schaeffer’s
theorem, sufficient conditions of the existence of ω-periodic solution to system (1.2) with
initial conditions (1.3) are established. In Section 3, by using Lyapunov functional, we derive
the conditions under which the periodic solution is globally exponentially stable. In Section 4,
applications, illustrative examples, and simulations are given to show the effectiveness of the
main results. Finally, some conclusions are drawn in Section 5.

2. Existence of Periodic Solution

First we make some preparations. As usual in the theory of impulsive differential equation,
by a solution of model (1.2), it means the following.

(i) x(t) = (x1(t), x2(t), . . . xn(t))
T ∈ Rn, xi(t) is piecewise continuous such that xi(t−k) =

xi(tk), xi(t+k) exists, and xi(t) is differentiable on (tk−1, tk) for i = 1, 2, . . . , n, k =
1, 2, . . ..

(ii) xi(t) satisfies (1.2) for i = 1, 2, . . . , n.

Definition 2.1. The set A is said to be quasi-equicontinuous in [0, ω] if for any ε > 0, there
exists δ > 0 such that, if x ∈ A, t ∈ Z, t′, t′′ ∈ (tk−1, tk) ∩ [0, ω] and |t′ − t′′| < δ, then
|x(t′) − x(t′′)| < ε.

Lemma 2.2 (see [26, Compactness criterion]). The set A ⊂ X is relatively compact if and only if

(i) A is bounded, that is, ‖x‖ ≤ M for each x ∈ A and some M > 0,

(ii) A is quasi-equicontinuous in [0, ω].

The following lemma is fundamental to our discussion. The method is similar to that
of [13, 16], so the proof is omitted here.
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Lemma 2.3. x(t) = (x1(t), x2(t), . . . , xn(t))
T is an ω-periodic solution of system (1.2) which is

equivalent to x(t) = (x1(t), x2(t), . . . , xn(t))
T is an ω-periodic solution of the following equation:

xi(t) =
∫ω

0
Gi(t, s)

⎛
⎝

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞
⎠ds

+
p∑

k=1

Gi(t, tk)qki xi(tk),

(2.1)

where G(t, s) = (G1(t, s), G2(t, s), . . . , Gn(t, s))
T , and

Gi(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e
∫ω

0 ci(u)du−
∫ t
s ci(u)du

e
∫ω

0 ci(u)du − 1
, 0 ≤ s ≤ t ≤ ω,

e
∫s
t ci(u)du

e
∫ω

0 ci(u)du − 1
, 0 ≤ t ≤ s ≤ ω.

(2.2)

It is easy to show that Gi(t +ω, s +ω) = Gi(t, s), Gi(t, t +ω) −Gi(t, t) = 1 and

1
σi − 1

≤ Gi(t, s) ≤ σi

σi − 1
, (2.3)

where σi = e
∫ω

0 ci(u)du and i = 1, 2, . . . , n.

Lemma 2.4 (see [27, Schaeffer’s theorem]). LetX be a normed space and φ : X → X be a compact
operator. Define

H
(
φ
)
=
{
x | x ∈ X, x = λφx, 0 < λ < 1

}
. (2.4)

Then either

(i) setH(φ) is unbounded, or

(ii) operator φ has a fixed point in X.

In order to use Lemma 2.4, let

PC([0, ω],Rn)

=

{
x : [0, ω]−→Rn | lim

s→ t
x(s) = x(t), t/=tk, lim

t→ t−
k

x(t)=x(tk), lim
t→ t+

k

x(t) exists, k=1, 2, . . . , p

}
,

(2.5)

with the norm ‖x‖ = max1≤i≤n supt∈[0,ω]|xi(t)|, then PC([0, ω], Rn) is a Banach space.



Abstract and Applied Analysis 5

Define a mapping φ : PC([0, ω], Rn) → PC([0, ω], Rn) by (φx)(t) = x(t), where (φx)(t) =
((φx)1(t), (φx)2(t), . . . , (φx)n(t))

T and

(
φx
)
i(t) =

∫ t+ω

t

Gi(t, s)

⎛
⎝

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞
⎠ds

+
p∑

k=1

Gi(t, tk)qki xi(tk).

(2.6)

By Lemma 2.3, it is easy to see that the existence of ω-periodic solution of (1.2) is equivalent to the
existence of fixed point of the mapping φ in PC([0, ω], Rn).

Theorem 2.5. Suppose that (H1)–(H3) hold. Further,

(H4) max1≤i≤n(σi/σi − 1)(
∑n

j=1(aij + bij)kj +
∑p

k=1 |qki |) := θ < 1.

Then system (1.2) admits an ω-periodic solution.

Proof. By Lemma 2.3, it suffices to prove that the mapping φ admits a fixed point in
PC([0, ω], Rn).

For any constant H > 0, let Ω = {x | x ∈ PC([0, ω], Rn), ‖x‖ < H}. For x ∈ Ω, from
(2.3) and (H2), we have

∥∥φx∥∥ = max
1≤i≤n

sup
t∈[0,ω]

∣∣∣∣∣∣

∫ t+ω

t

Gi(t, s)

⎛
⎝

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(s)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞
⎠ds

+
p∑

k=1

Gi(t, tk)qki xi(tk)

∣∣∣∣∣∣

≤ max
1≤i≤n

sup
t∈[0,ω]

σi

σi − 1

∫ω

0

⎛
⎝

n∑
j=1

∣∣aij(t)fj
(
xj(t)

)∣∣ +
n∑
j=1

∣∣bij(t)fj
(
xj

(
t − τij(t)

))∣∣ + |Ji(t)|
⎞
⎠dt

+
σi

σi − 1

p∑
k=1

∣∣∣qki xi(tk)
∣∣∣

≤ max
1≤i≤n

sup
t∈[0,ω]

σi

σi − 1

∫ω

0

⎛
⎝

n∑
j=1

∣∣aij(t)
∣∣(kj
∣∣xj(t)

∣∣ + ∣∣fj(0)
∣∣)

+
n∑
j=1

∣∣bij(t)
∣∣(kj
∣∣xj

(
t − τij(t)

)∣∣ + ∣∣fj(0)
∣∣)
⎞
⎠dt

+
∫ω

0
|Ji(t)|dt + σi

σi − 1

p∑
k=1

∣∣∣qki xi(tk)
∣∣∣
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≤ max
1≤i≤n

σi

σi − 1

⎛
⎝

n∑
j=1

(
aij + bij

)
kj +

p∑
k=1

∣∣∣qki
∣∣∣
⎞
⎠‖x‖ + σi

σi − 1

⎛
⎝Ji +

n∑
j=1

∣∣fj(0)
∣∣(aij + bij

)
⎞
⎠

≤ max
1≤i≤n

σi

σi − 1

⎛
⎝

n∑
j=1

(
aij + bij

)
kj +

p∑
k=1

∣∣∣qki
∣∣∣
⎞
⎠H +

σi

σi − 1

⎛
⎝Ji +

n∑
j=1

∣∣fj(0)
∣∣(aij + bij

)
⎞
⎠ := R.

(2.7)

It implies that φ(Ω) is uniformly bounded.
For any t ∈ [0, ω], x ∈ Ω, we have

(
φx
)′
i(t) =

d

dt

⎛
⎝
∫ t+ω

t

Gi(t, s)

⎛
⎝

n∑
j=1

aij(s)fj
(
xj(s)

)
+

n∑
j=1

bij(t)fj
(
xj

(
s − τij(s)

))
+ Ji(s)

⎞
⎠ds

+
p∑

k=1

Gi(t, tk)qixi(tk)

)

= −ci(t)
(
φx
)
i(t) +

⎛
⎝

n∑
j=1

aij(t)fj
(
xj(t)

)
+

n∑
j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t)

⎞
⎠.

(2.8)

If t = tk, it is obvious that (φx)′i(t) = limt→ t−
k
(φx)′i(t). Hence, from (2.7) and (2.8), we have

∣∣∣(φx)′i(t)
∣∣∣ ≤ cMi R +

n∑
j=1

((
aM
ij + bMij

)
kj
)
H +

⎛
⎝JMi +

n∑
j=1

∣∣fj(0)
∣∣(aM

ij + bMij

)
⎞
⎠ := βi. (2.9)

Therefore, φ(Ω) ⊂ PC([0, ω], Rn) is a family of uniformly bounded and equicontinuous
subset. By Lemma 2.2, the mapping φ is compact.

Let x ∈ PC([0, ω], Rn), and considering the following operator equation:

x = λ
(
φx
)
, λ ∈ (0, 1). (2.10)

If x is a solution of (2.10), then

‖x‖ ≤ ∥∥φx∥∥ ≤ θ‖x‖ + max
1≤i≤n

σi

σi − 1

⎛
⎝Ji +

n∑
j=1

∣∣fj(0)
∣∣(aij + bij

)
⎞
⎠. (2.11)

According to (H4), we deduce that

‖x‖ ≤
max1≤i≤n(σi/(σi − 1))

(
Ji +
∑n

j=1

∣∣fj(0)
∣∣(aij + bij

))

1 − θ
:= M. (2.12)
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It implies that ‖x‖ is bounded, which is independent of λ ∈ (0, 1). By Lemma 2.4, we obtain
that the mapping φ admits a fixed point in PC([0, ω], Rn). Hence system (1.2) admits an ω-
periodic solution such that ‖x‖ ≤ M. This completes the proof.

3. Globally Exponentially Stable

In this section, the sufficient conditions ensuring that (1.2) admits a unique ω-periodic
solution and all solutions of (1.2) exponentially converge to the unique ω-periodic solution
are to be established.

Definition 3.1. Let x∗(t) be an ω-periodic solution of system (1.2) with initial value φ∗. If there
exist constants α > 0, P ≥ 1, for every solution x(t) of (1.2) with initial φ, such that

∥∥xi(t) − x∗
i (t)
∥∥ ≤ P

∥∥φ − φ∗∥∥e−αt for any t > 0, i = 1, 2, . . . , n, (3.1)

then x∗(t) is said to be globally exponentially stable.

Theorem 3.2. Suppose that (H1)–(H4) hold. Further,

(H5) −cmi +
∑n

j=1(a
M
ij + bMij )kj < 0, i = 1, 2, . . . , n,

(H6) ln max1≤i≤n|1 + qki |/tk − tk−1 ≤ ζ < α,

where max1≤i≤n|1 + qki | ≥ 1, ζ > 0 is a constant, α is a constant determined in (3.5).
Then system (1.2) admits a unique ω-periodic solution, which is globally exponentially stable.

Proof. By Theorem 2.5, system (1.2) admits an ω-periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), . . . ,

x∗
n(t)) with initial value φ∗. Let x(t) = (x1(t), x2(t), . . . , xn(t)) be an arbitrary solution of (1.2)

with initial value φ. Define zi(t) = x∗
i (t)−xi(t) and gj(zj(t)) = fj(zj(t)+xj(t))−fj(xj(t)), then

we have

z′i(t) = −ci(t)zi(t) +
n∑
j=1

aij(t)gj
(
zj(t)

)
+

n∑
j=1

bij(t)gj
(
zj
(
t − τij(t)

))
, t /= tk,

zi(t+) =
(

1 + qki

)
zi(t), t = tk.

(3.2)

By (H5), we have −cmi +
∑n

j=1(a
M
ij + bMij )kj < 0 for i = 1, 2, . . . , n. Let

hi(λ) = λ − cmi + eλτ
n∑
j=1

(
aM
ij + bMij

)
kj . (3.3)

It is clear that hi(λ) is continuous on R and hi(0) < 0, i = 1, 2, . . . , n. In addition,

d(hi(λ))
dλ

= 1 + τeλτ
n∑
j=1

(
aM
ij + bMij

)
kj > 0, (3.4)
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and hi(+∞) = +∞, then hi(λ) is strictly monotone increasing. Therefore, there exists a unique
λi > 0 such that λi − cmi + eλiτ

∑n
j=1(a

M
ij + bMij )kj = 0 for i = 1, 2, . . . , n. Let

α = min{λ1, λ2, . . . , λn}, (3.5)

then

hi(α) = α − cmi + eατ
n∑
j=1

(
aM
ij + bMij

)
kj ≤ 0, i = 1, 2, . . . , n. (3.6)

Obviously, for t ∈ [−τ, 0] and the above α, we have

|zi(t)| ≤
∥∥φ − φ∗∥∥ ≤ ∥∥φ − φ∗∥∥e−αt, i = 1, 2, . . . , n, (3.7)

where ‖φ − φ∗‖ = max1≤i≤nsup−τ≤s≤0|φi(s) − φ∗
i (s)|.

Define V (t) = (V1(t), V2(t), . . . , Vn(t))
T by

Vi(t) = eαt|zi(t)|, i = 1, 2, . . . , n. (3.8)

In view of (3.2) and (3.8), for t /= tk, we have

d+Vi(t)
dt

= αeαt|zi(t)|+ eαt sgn zi(t)

⎧
⎨
⎩−ci(t)zi(t) +

n∑
j=1

aij(t)gj
(
zj(t)

)
+

n∑
j=1

bij(t)gj
(
zj
(
t − τij(t)

))
⎫
⎬
⎭

≤ (α − ci(t))eαt|zi(t)| + eαt
n∑
j=1

∣∣aij(t)
∣∣kj
∣∣zj(t)

∣∣ + eαt
n∑
j=1

∣∣bij(t)
∣∣kj
∣∣zj
(
t − τij(t)

)∣∣

≤ (α − cmi
)
Vi(t) +

n∑
j=1

aM
ij kjVj(t) + eατ

n∑
j=1

bMij kjVj

(
t − τij(t)

)
.

(3.9)

We claim that

Vi(t) = eαt|zi(t)| ≤
∥∥φ − φ∗∥∥ for t ∈ (0, t1), i = 1, 2, . . . , n. (3.10)

If not, then there exist i0 ∈ {1, 2, . . . , n} and 0 < t < t1 such that

Vi0

(
t
)
=
∥∥φ − φ∗∥∥,

d+Vi0

(
t
)

dt
> 0, Vi(t) ≤

∥∥φ − φ∗∥∥, (3.11)
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for t ∈ (−τ, t], i = 1, 2, . . . , n. Then, it follows from (3.9) and (3.11) that

0 <
d+Vi0

(
t
)

dt
≤ (α − cmi

)
Vi

(
t
)
+

n∑
j=1

aM
ij kjVj

(
t
)
+ eατ

n∑
j=1

bMij kjVj

(
t − τij

(
t
))

≤
⎛
⎝α − cmi0 + eατ

n∑
j=1

(
aM
ij + bMij

)
kj

⎞
⎠∥∥φ − φ∗∥∥.

(3.12)

Equation (3.12) leads to

α − cmi0 + eατ
n∑
j=1

(
aM
i0j

+ bMi0j

)
kj > 0, (3.13)

which contradicts (3.6). Thus (3.10) holds, that is,

zi(t) ≤
∥∥φ − φ∗∥∥e−αt, for any t ∈ [0, t1), i = 1, 2, . . . , n. (3.14)

If t = t1, we have

∣∣zi
(
t+1
)∣∣ =

∣∣∣
(

1 + q1
i

)
zi(t1)

∣∣∣ =
∣∣∣1 + q1

i

∣∣∣ lim
t→ t−1

|zi(t)| ≤
∣∣∣1 + q1

i

∣∣∣∥∥φ − φ∗∥∥e−αt1 , (3.15)

for i = 1, 2, . . . , n. Similar to the steps of (3.10)–(3.14), we can derive that

|zi(t)| ≤
∣∣∣1 + q1

i

∣∣∣∥∥φ − φ∗∥∥e−αt, for t ∈ [t1, t2), i = 1, 2, . . . , n. (3.16)

If t = t2, then

∣∣zi
(
t+2
)∣∣ =

∣∣∣
(

1 + q2
i

)
zi(t2)

∣∣∣ ≤
∣∣∣
(

1 + q1
i

)(
1 + q2

i

)∣∣∣∥∥φ − φ∗∥∥e−αt2 . (3.17)

By repeating the same procedure, then

|zi(t)| ≤
∣∣∣
(

1 + q1
i

)(
1 + q2

i

)
· · ·
(

1 + q
p

i

)∣∣∣ · ∥∥φ − φ∗∥∥e−αt, t ∈ (tp, tp+1
)
, i = 1, 2, . . . , n. (3.18)

It follows from (H6) that |1 + qki | ≤ eζ(tk−tk−1), which leads to

∣∣∣
(

1 + q1
i

)(
1 + q2

i

)
· · ·
(

1 + q
p

i

)∣∣∣ ≤ eζ(t1−t0)eζ(t2−t1) · · · eζ(tp−tp−1) ≤ eζteζ(ω−tp), (3.19)

for any t ∈ [tk, tk+1), i = 1, 2, . . . , n, k = 1, 2, . . .. So the combination (3.18) and (3.19) gives

|zi(t)| ≤ eζ(ω−tp)∥∥φ − φ∗∥∥e−(α−ζ)t, t ∈ [tk, tk+1), i = 1, 2, . . . , n, k = 1, 2, . . . . (3.20)
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In addition, it is clear that

|zi(t)| ≤ eζ(ω−tp)∥∥φ − φ∗∥∥e−(α−ζ)t, t ∈ [0, t1), i = 1, 2, . . . , n. (3.21)

Therefore, from (3.20) and (3.21), for any t > 0, we have

∣∣xi(t) − x∗
i (t)
∣∣ = |zi(t)| ≤ eζ(ω−tp)∥∥φ − φ∗∥∥e−(α−ζ)t, i = 1, 2, . . . , n. (3.22)

It implies that the ω-periodic solution x∗(t) of (1.2) is globally exponentially stable. Hence,
(1.2) admits a unique ω-periodic solution, which is globally exponentially stable. This
completes the proof.

Remark 3.3. Theorem 3.2 implies that the impulse qki affects the existence and exponential
stability of the periodic solution of system (1.2). It shows the dynamics of impulsive
differential system (1.2) is richer than the corresponding system (1.1) without impulse.

4. Applications and Examples

In (1.2), if aij(t) ≡ 0, then (1.2) reads:

x′
i(t) = −ci(t)xi(t) +

n∑
j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ji(t), t /= tk,

xi(t+) =
(

1 + qki

)
xi(t), t = tk.

(4.1)

For system (4.1), we have the following result.

Proposition 4.1. Suppose that (H1)–(H3) hold. Further,

(H7) max1≤i≤n(σi/(σi − 1))(
∑n

j=1 bijkj +
∑p

k=1 |qki |) := θ < 1,

(H8) −cmi +
∑n

j=1 b
M
ij kj < 0,

(H9) ln max1≤i≤n|1 + qki |/(tk − tk−1) ≤ ζ < α,

where max1≤i≤n|1 + qki | ≥ 1, ζ > 0 is a constant, α is determined in Theorem 3.2.
Then system (4.1) admits a unique ω-periodic solution, which is globally exponentially stable.

If the impulses are absent in system (1.2), that is, qki ≡ 0, then (1.2) leads to (1.1).
Similarly we have the following.

Proposition 4.2. Suppose that (H1)–(H3) hold. Further,

(H10) max1≤i≤n(σi/(σi − 1))
∑n

j=1(aij + bij)kj := θ < 1,

(H11) −cmi +
∑n

j=1(a
M
ij + bMij )kj < 0,

then system (1.1) admits a unique ω-periodic solution, which is globally exponentially stable.
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Remark 4.3. Proposition 4.2 implies that the sufficient conditions of the existence and globally
exponential stability of periodic solution to (1.1) are independent of the time-varying delays,
while the corresponding results obtained by authors [5] are dependent on delays. Without
effect from time-varying delays, our results are better for people to keep the stability of system
(1.1). Although the authors [1] also established similar conditions which are independent
of delays, their employed tool and analysis techniques are very different so that their main
results are different from ours. Particularly, (1.1) is the special case of (1.2) without impulse.
Hence, in this sense, results of this paper complement or improve some previously known
results [1, 5].

Finally, two examples and numerical analysis are given to show the usefulness of the
main results.

Example 4.4. Let

x′
1(t) = −c1(t)x1(t) + b11(t)f(x1(t − τ11(t)) + b12(t)f(x2(t − τ12(t)) + J1(t) ,

x′
2(t) = −c2(t)x2(t) + b21(t)f(x1(t − τ21(t)) + b22(t)f(x2(t − τ22(t)) + J2(t) ,

Δxi(t) =
(

1 + qki

)
xi(t), i = 1, 2,

(4.2)

where f(x) = x, c1(t) = 1 + sinπt/4, c2(t) = 2 + cosπt/4, a11(t) = a12(t) = a21(t) = a22(t) =
0, b11(t) = 1/8+sinπt/16, b12(t) = 1/8+cosπt/16, b21(t) = 1/16−cosπt/32, b22(t) = 1/16−
sinπt/24, τ11(t) = τ12(t) = cosπt, τ21(t) = τ22(t) = 1/2− sinπt/3, J1(t) = 5+2 cosπt, J2(t) =
7 − sinπt, qki = 1/8, tk = k − 1/2. Then k1 = k2 = 1, ω = 2, τ = 1, {tk, k = 1, 2, . . .} ∩ [0, 2] =
{t1, t2}.

By easy computation, σ1 = e2, σ2 = e4, and θ ≈ 0.8674 < 1, which implies (H4) holds.
On the other hand, it is easy to verify that (H5) holds. By verification, α > 1/4 > ln(1+(1/8)),
namely, (H6) holds too. From Theorems 2.5 and 3.2, we obtain that (4.2) has a unique 2-
periodic solution, which is globally exponentially stable, see Figure 1.

Example 4.5. Let

x′
1(t) = −

(
1
2
+

sin 2πt
4

)
x1(t) +

(
1
4
+

cos 2πt
6

)
f(x1(t − (2 + sin 2πt)))

+
(

1
4
− sin 2πt

8

)
f(x2(t − (3 − sin 2πt)) + cos 2πt),

x′
2(t) = −

(
1
2
+

cos 2πt
4

)
x2(t) +

(
1
3
+

cos 2πt
4

)
f(x1(t − (5 − sin 2πt)))

+
(

1
6
− cos 2πt

8

)
f(x2(t − (1 + cos 2πt)) + sin 2πt),

(4.3)

where f(x) = (1/4)x for x ∈ R, c1(t) = 1/2+sin 2πt/4,c2(t) = 1/2+cos 2πt/4,a11(t) = a12(t) =
a21(t) = a22(t) = 0, b11(t) = 1/4 + cos 2πt/6, b12(t) = 1/4 − sin 2πt/8, b21(t) = 1/3 + cos 2πt/4,
b22(t) = 1/6 − cos 2πt/8. Then k1 = k2 = (1/4), ω = 1.

By computation, θ ≈ 0.318 < 1, which implies that (H10) holds. It is easy to verify that
(H11) holds too. From Proposition 4.2, system (4.3) has a unique 1-periodic solution, which is
globally exponentially stable, see Figure 2. However, by calculation, conditions of the results
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Figure 1: Dynamics of (4.2)—(a) time series of x1, (b) time series of x2, and (c) portrait of (x1, x2).

of [1] fail, then one cannot obtain the existence of periodic solution of system (4.3) by results
of reference [1], which further shows that the results complement or improve previously
known results.

5. Conclusions

In this paper, the existence and globally exponential stability of the periodic solution of
system (1.2) are studied. Model (1.2) is very general, including such models as continuous
bidirectional associative memory networks, cellular neural networks, and Hopfield-type
neural networks (see, e.g., [6, 7, 28]). The main methods employed here are Schaeffer’ the-
orem, differential inequality techniques, and Lyapunov functional, which are very different
from [1]. The sufficient conditions obtained here are new and complement or improve
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Figure 2: Dynamics of (4.3)—(a) time series of x1, (b) time series of x2.

the previously known results [1, 5–7]. Finally, applications, two illustrative examples and
simulations, are given to show the effectiveness of the main results.
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The object of investigation of the paper is a special type of functional differential equations
containing the maximum value of the unknown function over a past time interval. An improved
algorithm of the monotone-iterative technique is suggested to nonlinear differential equations with
“maxima.” The case when upper and lower solutions of the given problem are known at different
initial time is studied. Additionally, all initial value problems for successive approximations have
both initial time and initial functions different. It allows us to construct sequences of successive
approximations as well as sequences of initial functions, which are convergent to the solution and
to the initial function of the given initial value problem, respectively. The suggested algorithm is
realized as a computer program, and it is applied to several examples, illustrating the advantages
of the suggested scheme.

1. Introduction

Equations with “maxima” find wide applications in the theory of automatic regulation. As a
simple example of mathematical simulations by means of such equations, we shall consider
the system of regulation of the voltage of a generator of constant current ([1]). The object
of regulation is a generator of constant current with parallel stimulation, and the quantity
regulated is the voltage on the clamps of the generator feeding an electric circuit with different
loads. An equation with maxima is used if the regulator is constructed such that the maximal
deviation of the quantity is regulated on the segment [t − r, t]. The equation describing the
work of the regulator has the form

Tu′(t) + u(t) + q max
s∈[t−r,t]

u(s) = f(t), (1.1)
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where T and q are constant characterizing the object, u(t) is the voltage regulated, and f(t) is
the perturbing effect.

Note that the above given model as well as all types of differential equations with
“maxima” could be considered as delay functional differential equations. Differential equa-
tions with delay are studied by many authors (see, e.g., [2–14]). At the same time, the
presence of maximum function in the equations causes impossibilities of direct application
of almost all known results for delay functional differential equations (see the monograph
[15]). Also, in the most cases, differential equations with “maxima,” including the some linear
scalar equations, are not possible to be solved in an explicit form. That requires the application
of approximate methods. In the recent years, several effective approximate methods, based
on the upper and lower solutions of the given problem, was proved for various problems of
differential equations in [16–21].

In the current paper, an approximate method for solving the initial value problem for
nonlinear differential equations with “maxima” is considered. This method is based on the
method of lower and upper solutions. Meanwhile, in studying the initial value problems
the authors usually keep the initial time unchanged. But, in the real repeated experiments
it is difficult to keep this time fixed because of all kinds of disturbed factors. It requires
the changing of initial time to be taken into consideration. Note that several qualitative
investigations of the solutions of ordinary differential equations with initial time difference
are studied in [22–30]. Also some approximate methods for various types of differential
equations with initial time difference are proved in [23, 26, 31–33].

In this paper, an improved algorithm of monotone-iterative techniques is suggested to
nonlinear differential equations with “maxima.” The case when upper and lower solutions
of the given problem are known at different initial time is studied. The behavior of the
lower/upper solutions of the initial value problems with different initial times is studied.
Also, some other improvements in the suggested algorithm are given. The main one is
connected with the initial functions. In the known results for functional differential equations,
the initial functions in the corresponding linear problems for successive approximations are
the same (see, e.g., [20, 34–42]). In our case, it causes troubles with obtaining the solutions,
which are successive approximations. To avoid these difficulties, we consider linear problems
with different initial functions at any step. It allows us to chose appropriate initial data.
Additionally, in connection with the presence of the maximum function in the equation
and computer application of the suggested algorithm, an appropriate computer program
is realized and it is applied to some examples illustrating the advantages and the practical
application of the considered algorithm.

2. Preliminary Notes and Definitions

Consider the following initial value problem for the nonlinear differential equation with
“maxima” (IVP):

x′ = f

(
t, x(t), max

s∈[t−r,t]
x(s)

)
for t ∈ [t0,∞), (2.1)

x(t) = ϕ(t − t0) for t ∈ [t0 − r, t0], (2.2)

where x ∈ R, t0 ≥ 0, f : R+ × R × R → R, ϕ(t) : [−r, 0] → R, and r > 0 is a fixed constant.
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In the paper, we will study the differential equation with “maxima” (2.1) with an
initial condition at two different initial points. For this purpose, we consider the differential
equation (2.1) with the initial condition

x(t) = ϕ(t − τ0) for t ∈ [τ0 − r, τ0], (2.3)

where τ0 ≥ 0.
Assume there exist a solution x(t; t0, ϕ) of the IVP (2.1), (2.2) defined on [t0 − r, t0 + T],

and there exists a solution y(t; τ0, ϕ) of the IVP (2.1), (2.3) defined on [τ0 − r, τ0 + T], where
T > 0 is a given constant. In the paper, we will compare the behavior of both solutions.

Definition 2.1. The function α ∈ C([t0−r, t0+T),R)∪C1([t0, t0+T),R) is called a lower (upper)
solution of the IVP (2.1), (2.2) for t ≥ t0 − h if the following inequalities are satisfied:

α′(t) ≤ (≥)f
(
t, α(t), max

s∈[t−r,t]
α(s)

)
for t ∈ [t0, t0 + T],

α(t) ≤ (≥)ϕ(t − t0) for t ∈ [t0 − r, t0].
(2.4)

Note that the function α(t) is a lower (upper) solution of the IVP (2.1), (2.3) for t ∈
[τ0 − r, τ0 + T] if the point t0 in the inequalities (2.4) is replaced by τ0.

3. Comparison Results

Often in the real world applications, the lower and upper solutions of one and the same
differential equation are obtained at different initial time intervals.

The following result is a comparison result for lower and upper solutions with initial
conditions given on different initial time intervals.

Theorem 3.1. Let the following conditions be satisfied.

(1) Let t0, τ0 ≥ 0 be fixed such that η = τ0 − t0 > 0.

(2) The function α ∈ C([t0 − r, t0 + T],R) ∪ C1([t0, t0 + T],R) is a lower solution of the IVP
(2.1), (2.2).

(3) The function β ∈ C([τ0 − r, τ0 +T],R)∪C1([τ0, τ0 +T],R) is an upper solution of the IVP
(2.1), (2.3).

(4) The function f(t, u, v) : R+ × R × R → R is nondecreasing in its both first and third
argument t for any u ∈ R, and there exist positive constants L1, L2 such that for t ∈ R+ and
u1 ≥ u2 and v1 ≥ v2, the inequality

f(t, u1, v1) − f(t, u2, v2) ≤ L1(u1 − u2) + L2(v1 − v2) (3.1)

holds.

(5) The function ϕ(t) ∈ C([−r, 0],R).

Then α(t) ≤ β(t + η) for t ∈ [t0, t0 + T].
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Proof. Choose a positive number M such that M > L1 + L2 and a positive number ε. Define a
function w(t) = β(t + η) + εeMt for t ∈ [t0, t0 + T] and w(t) = β(t + η) + εeMt0 for t ∈ [t0 − r, t0).
Then for t ∈ [t0, t0 + T], the following inequalities

w(t) > β
(
t + η

)
,

max
s∈[t−r,t]

w(s) = max
s∈[t−r,t]

(
β
(
s + η

)
+ εeMs

)
≥ max

s∈[t−r,t]
(
β
(
s + η

))
= max

s∈[t+η−r,t+η]
β(s),

max
s∈[t−r,t]

w(s) ≤ max
s∈[t−r,t]

(
β
(
s + η

))
+ εeMt = max

s∈[t+η−r,t+η]
β(s) + εeMt

(3.2)

hold.
Therefore, we obtain

w′(t) ≥ f

(
t + η, β

(
t + η

)
, max
s∈[t+η−r,t+η]

β(s)
)
+ εMeMt

≥ −L1
(
w(t) − β

(
t + η

)) − L2

(
max

s∈[t−r,t]
w(s) − max

s∈[t+η−r,t+η]
β(s)

)

+ f

(
t + η,w(t), max

s∈[t−r,t]
w(s)

)
+ εMeMt

≥ f

(
t + η,w(t), max

s∈[t−r,t]
w(s)

)
+ εeMt(M − L1 − L2)

> f

(
t + η,w(t), max

s∈[t−r,t]
w(s)

)
≥ f

(
t,w(t), max

s∈[t−r,t]
w(s)

)
.

(3.3)

Note that for t ∈ [t0 − r, t0] we have α(t) ≤ ϕ(t − t0) = ϕ(t + η − τ0) ≤ β(t + η) < w(t). We
will prove that

α(t) ≤ w(t) for t ∈ [t0 − r, t0 + T]. (3.4)

Assume the contrary, that is, there exists a point t1 > t0 such that α(t) < w(t) for
t ∈ [t0 − r, t1), α(t1) = w(t1) and α(t) ≥ w(t) for t ∈ (t1, t2), where t2 is sufficiently
close to t1. Therefore α′(t1) ≥ w′(t1). Then w′(t1) ≤ α′(t1) ≤ f(t1, α(t1),maxs∈[t1−r,t1]α(s)) ≤
f(t1, w(t1),maxs∈[t1−r,t1]w(s)) < w′(t1). The obtained contradiction proves the claim.

Therefore, α(t) ≤ w(t) < β(t + η) for t ∈ [t0 − r, t0 + T].

Corollary 3.2. Let the conditions of Theorem 3.1 be fulfilled. Then α(t−η) ≤ β(t) for t ∈ [τ0 − r, τ0 +
T].

The comparison results are true if the inequality τ0 < t0 holds.

Theorem 3.3 (comparison result). Let the following conditions be satisfied.

(1) The conditions 2, 3, 5 of Theorem 3.1 are satisfied.

(2) Let t0, τ0 ≥ 0 be fixed such that η = τ0 − t0 < 0.
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(3) The function f(t, u, v) : R+ × R × R → R is nonincreasing in its first argument and is
nondecreasing in its third argument for any u ∈ R, and there exist positive constants L1, L2

such that for t ∈ R+ and u1 ≥ u2 and v1 ≥ v2 the inequality

f(t, u1, v1) − f(t, u2, v2) ≤ L1(u1 − u2) + L2(v1 − v2) (3.5)

holds.
Then α(t) ≤ β(t + η) for t ≥ t0.

The proof of Theorem 3.3 is similar to the proof of Theorem 3.1 and we omit it.
In what follows, we shall need that the functions α, β ∈ C([t0 − r, T + t0],R) are such

that α(t) ≤ β(t + η).
Consider the sets:

S
(
α, β, t0, η

)
=
{
u ∈ C([t0 − r, T + t0],R) : α(t) ≤ u(t) ≤ β

(
t + η

)
for t ∈ [t0 − r, T + t0]

}
,

S̃
(
α, β, τ0, η

)
=
{
u ∈ C([τ0 − r, T + τ0],R) : α

(
t − η

) ≤ u(t) ≤ β(t) for t ∈ [τ0 − r, T + τ0]
}
,

Ω
(
α, β, t0

)
=
{(

t, x, y
) ∈ [t0, T + t0] × R

2 : α(t) ≤ x ≤ β(t), max
s∈[t−r,t]

α(s) ≤ y ≤ max
s∈[t−r,t]

β(s)
}
.

(3.6)

In our further investigations, we will need the following comparison result on
differential inequalities with “maxima.”

Lemma 3.4 (see [43, Lemma 2.1]). Let the functionm ∈ C([t0 − r, T + t0],R)∪C1([t0, T + t0],R)
satisfies the inequalities

m′ ≤ −L1m(t) − L2 min
s∈[t−r,t]

m(s) for t ∈ [t0, T + t0],

m(t) ≤ 0 for t ∈ [t0 − r, t0],
(3.7)

where the positive constants L1, L2 are such that (L1 + L2)T ≤ 1.
Then the inequalitym(t) ≤ 0 holds on [t0 − r, T + t0].

In our further investigations, we will use the following result, which is a partial case
of Theorem 3.1 [44].

Lemma 3.5 (existence and uniqueness result). Let the following conditions be fulfilled.

(1) The functions Q ∈ C([t0, t0 + T],R), q ∈ C([t0, t0 + T],R).

(2) The functions ϕ ∈ C([−r, 0],R).

Then the initial value problem for the linear scalar equation

u′ = L1u(t) + L2 max
s∈[t−r,t]

u(s) +Q(t) for t ∈ [t0, T + t0],

u(t) = ϕ(t − t0) for t ∈ [t0 − r, t0]
(3.8)

has a unique solution u(t − t0) on the interval [t0 − r, T + t0].
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4. Main Results

Denote J1 = [t0 − r, T + t0] and J2 = [τ0 − r, T + τ0], where t0, τ0 ≥ 0 are fixed numbers.

Case 1. Let t0 ≤ τ0.

Theorem 4.1. Let the following conditions be fulfilled.

(1) The points t0, τ0 ≥ 0 are such that η = τ0 − t0 ≥ 0.

(2) The function α0(t) ∈ C([t0 − r, T + t0],R) ∪ C1([t0, T + t0],R) is a lower solution of the
IVP (2.1), (2.2) in J1.

(3) The function β0(t) ∈ C([τ0 − r, T + τ0],R)∪C1([τ0, T + τ0],R) is an upper solution of the
IVP (2.1), (2.3) in J2.

(4) The function ϕ ∈ C([−r, 0],R).

(5) The function f ∈ C(Ω(α0, β0, t0),R) is nondecreasing in its first argument and satisfies
the one side Lipschitz condition

f(t, u1, v1) − f(t, u2, v2) ≥ L1(u2 − u1) + L2(v2 − v1), (4.1)

for u1 ≤ u2 and v1 ≤ v2, where L1, L2 > 0 are such that

(L1 + L2)T ≤ 1. (4.2)

Then there exist two sequences of functions {αn(t)}∞0 and {βn(t)}∞0 such that

(a) the functions αn(t) = 1, 2, . . . are lower solutions of the IVP (2.1), (2.2) on [t0 − r, T + t0];

(b) the functions βn(t) = 1, 2, . . . are upper solutions of the IVP (2.1), (2.3) on [τ0 − r, T + τ0];

(c) the sequence {αn(t)}∞0 is increasing;

(d) the sequence {βn(t)}∞0 is decreasing;

(e) the inequalities

α0(t) ≤ · · · ≤ αn(t) ≤ βn
(
t + η

) ≤ · · · ≤ β0
(
t + η

)
, t ∈ [t0 − r, T + t0],

α0
(
t − η

) ≤ · · · ≤ αn

(
t − η

) ≤ βn(t) ≤ · · · ≤ β0(t), t ∈ [τ0 − r, T + τ0]
(4.3)

hold;

(f) both sequences uniformly converge and x(t) = limn→∞αn(t) is a solution of the IVP (2.1),
(2.2) in S(α0, β0, t0, η), and y(t) = limn→∞βn(t) is a solution of the IVP (2.1), (2.3) in
S̃(α0, β0, τ0, η).

Proof. According to Theorem 3.1, the inequality α0(t) ≤ β0(t + η) holds on [t0 − r, T + t0].
Let L0 = mins∈[t0−r,t0](ϕ(s − t0) − α0(s)) ≥ 0. Choose a number k0 ∈ [0, 1) such that

k0 ≤ L0. (4.4)
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Therefore, ϕ(t − t0) − α0(t) ≥ L0 > k0L0 or α0(t) ≤ ϕ(t − t0) − k0L0 on [t0 − r, t0].
We consider the linear differential equation with “maxima”

x′(t) = f

(
t, α0(t), max

s∈[t−r,t]
α0(s)

)
− L1(x(t) − α0(t))

− L2

(
max

s∈[t−r,t]
x(s) − max

s∈[t−r,t]
α0(s)

)
for t ∈ [t0, T + t0],

(4.5)

with the initial condition

x(t) = ϕ(t − t0) − k0L0 for t ∈ [t0 − r, t0]. (4.6)

According to Lemma 3.5, the linear initial value problem (4.5), (4.6) has a unique solution
α1(t) in J1.

We will prove that α0(t) ≤ α1(t) on J1.
From the choice of L0, k0 and equality (4.6), it follows that α0(t) ≤ ϕ(t−t0)−k0L0 = α1(t)

for t ∈ [t0 − r, t0].
Now, let t ∈ [t0, T + t0]. Consider the function u(t) = α0(t) − α1(t) defined on J1. It is

clear that u(t) ≤ 0 on [t0 − r, t0]. From the definition of the function α0(t) and (4.5), we have

u′(t) ≤ −L1u(t) − L2

(
max

s∈[t−r,t]
α0(s) − max

s∈[t−r,t]
α1(s)

)
for t ∈ [t0, T + t0]. (4.7)

Now from inequality (4.7) and

max
s∈[t−h,t]

α0(s) − max
s∈[t−r,t]

α1(s) = max
s∈[t−r,t]

α0(s) − α1(ξ)

≥ α0(ξ) − α1(ξ)

≥ min
s∈[t−r,t]

(α0(s) − α1(s))

= min
s∈[t−r,t]

u(s),

(4.8)

we obtain

u′(t) ≤ −L1u(t) − L2 min
s∈[t−r,t]

u(s), t ∈ [t0, T + t0]. (4.9)

According to Lemma 3.4, the inequality u(t) ≤ 0 holds on J1, that is, α0(t) ≤ α1(t).
We will prove that the function α1(t) is a lower solution of the IVP (2.1), (2.2) on J1.
From equality (4.6), it follows the validity of the inequality α1(t) ≤ ϕ(t−t0) on [t0−r, t0].

Now, let t ∈ [t0, T + t0]. Then, since α0(t) ≤ α1(t), according to the one side Lipschitz condition
2 of Theorem 4.1, we have

α′
1(t) = Q(t) − L1(α1(t) − α0(t)) − L2

(
max

s∈[t−r,t]
α1(s) − max

s∈[t−r,t]
α0(s)

)

= f

(
t, α1(t), max

s∈[t−r,t]
α1(s)

)
+ f

(
t, α0(t), max

s∈[t−r,t]
α0(s)

)
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− f

(
t, α1(t), max

s∈[t−r,t]
α1(s)

)
− L1(α1(t) − α0(t))

− L2

(
max

s∈[t−r,t]
α1(s) − max

s∈[t−r,t]
α0(s)

)

≤ f

(
t, α1(t), max

s∈[t−r,t]
α1(s)

)
for t ∈ [t0, T + t0],

(4.10)

where Q(t) = f(t, α0(t),maxs∈[t−r,t]α0(s)).
Next, according to Lemma 3.4 for the function u(t) = α1(t) − β0(t − η), the inequality

α1(t) ≤ β0(t + η) holds on J1, that is, the inclusion α1 ∈ S(α0, β0, t0, η) is valid.
Let C0 = mins∈[τ0−r,τ0](β0(s) − ϕ(s − τ0)) ≥ 0. Choose a number p0 ∈ [0, 1) such that

p0 ≤ C0. (4.11)

Therefore, β0(t) − ϕ(t − τ0) ≥ C0 > p0C0 or β0(t) ≥ ϕ(t − τ0) + p0C0 on [τ0 − r, τ0].
We consider the linear differential equation with “maxima”

x′(t) = f

(
t, β0(t), max

s∈[t−r,t]
β0(s)

)
− L1

(
x(t) − β0(t)

)

− L2

(
max

s∈[t−r,t]
x(s) − max

s∈[t−r,t]
β0(s)

)
for t ∈ [τ0, T + τ0]

(4.12)

with the initial condition

x(t) = ϕ(t + τ0) + p0C0 for t ∈ [τ0 − r, τ0]. (4.13)

There exists a unique solution β1(t) of the IVP (4.12), (4.13), which is defined on J2.
The function β1(t) is an upper solution of the IVP (2.1), (2.3) on J2, and the inclusion

β1 ∈ S̃(α0, β0, τ0, η) is valid. The proofs are similar to the ones about the function α1. We omit
the proofs.

Functions α1(t), β1(t) are a lower and an upper solution of the IVP (2.1), (2.2) and (2.1),
(2.3) correspondingly. According to Lemma 3.4 the inequality α1(t) ≤ β1(t + η) on J1 holds.

Similarly, recursively, we can construct two sequences of functions {αn(t)}∞0 and
{βn(t)}∞0 . In fact, if the functions αn(t) and βn(t) are known, and Ln = mins∈[−r,0](ϕ(s) −
αn(s)), Cn = mins∈[−r,0](βn(s) − ϕ(s)), and the numbers kn, pn ∈ [0, 1) are such that

kn ≤ Ln, pn ≤ Cn, (4.14)
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then the function αn+1(t) is the unique solution of the initial value problem for the linear
differential equation with “maxima”

x′ = f

(
t, αn(t), max

s∈[t−r,t]
αn(s)

)
− L1(x − αn(t))

− L2

(
max

s∈[t−r,t]
x(s) − max

s∈[t−r,t]
αn(s)

)
for t ∈ [t0, T + t0],

(4.15)

x(t) = ϕ(t) − knLn for t ∈ [t0 − r, t0], (4.16)

and the function βn+1(t) is the unique solution of the initial value problem

x′(t) = f

(
t, βn(t), max

s∈[t−r,t]
βn(s)

)
− L1

(
x − βn(t)

)

− L2

(
max

s∈[t−h,t]
x(s) − max

s∈[t−r,t]
βn(s)

)
for t ∈ [τ0, T + τ0],

(4.17)

x(t) = ϕ(t) + pnCn for t ∈ [τ0 − r, τ0]. (4.18)

Now following exactly as for the case n = 0, it can be proved that the function αn+1(t)
is a lower solution of the IVP (2.1), (2.2) on J1, the function βn+1(t) is an upper solution of the
IVP (2.1), (2.3) on J2, the inclusions αn+1 ∈ S(αn, βn, t0, η), βn+1 ∈ S̃(αn, βn, τ0, η) are valid, and
the inequalities (4.3) hold.

Therefore, the sequence {αn(t)}∞0 is uniformly convergent on J1 and {βn(t)}∞0 is
uniformly convergent on J2.

Denote

lim
n→∞

αn(t) = u(t), t ∈ [t0 − r, T + t0],

lim
n→∞

βn(t) = v(t), t ∈ [τ0 − r, T + τ0].
(4.19)

From the uniform convergence and the definition of the functions αn(t) and βn(t), it follows
that the following inequalities hold

α0(t) ≤ u(t) ≤ v
(
t + η

) ≤ β0
(
t + η

)
, t ∈ [t0 − r, T + t0]. (4.20)

Case 2. Let t0 > τ0.
In this case, we could approximate again the solution of the given initial value

problem, starting from lower and upper solutions given at two different initial points. Since
the proofs are similar, we will set up only the results.

Theorem 4.2. Let the following conditions be fulfilled.

(1) The points t0, τ0 ≥ 0 are such that η = t0 − τ0 ≥ 0.

(2) The conditions 2, 3, 4 of Theorem 4.1 are satisfied.
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(3) The function f ∈ C(Ω(α0, β0, τ0),R) is nonincreasing in its first argument and satisfies
the one side Lipschitz condition

f(t, u1, v1) − f(t, u2, v2) ≥ L1(u2 − u1) + L2(v2 − v1) (4.21)

for u1 ≤ u2 and v1 ≤ v2, where L1, L2 > 0 are such that

(L1 + L2)T ≤ 1. (4.22)

Then there exist two sequences of functions {αn(t)}∞0 and {βn(t)}∞0 such that

(a) the functions αn(t) = 1, 2, . . . are lower solutions of the IVP (2.1), (2.2) on [t0 − r, T + t0];

(b) the functions βn(t) = 1, 2, . . . are upper solutions of the IVP (2.1), (2.3) on [τ0 − r, T + τ0];

(c) the sequence {αn(t)}∞0 is increasing;

(d) the sequence {βn(t)}∞0 is decreasing;

(e) the inequalities

α0(t) ≤ · · · ≤ αn(t) ≤ βn
(
t + η

) ≤ · · · ≤ β0
(
t + η

)
, t ∈ [t0 − r, T + t0],

α0
(
t − η

) ≤ · · · ≤ αn

(
t − η

) ≤ βn(t) ≤ · · · ≤ β0(t), t ∈ [τ0 − r, T + τ0]
(4.23)

hold;

(f) both sequences uniformly converge and x(t) = limn→∞αn(t) is a solution of the IVP (2.1),
(2.2) in S(α0, β0, t0, η) and y(t) = limn→∞βn(t) is a solution of the IVP (2.1), (2.3) in
S̃(α0, β0, τ0, η).

5. Computer Realization

Since the set of differential equations, which could be solved in an explicit form, is very
narrow, we will realize the above suggested algorithm numerically. At present, we cannot
solve numerically differential equations with “maxima” by the existing ready-made systems,
such as Mathematica, Mathlab, and so forth, because of the maximum of the unknown function
over a past time interval. It requires proposed and computer realized new algorithms for
solving such kind of equations. In [43], an algorithm for solving a class of differential
equations with “maxima,” based on the trapezoid’s method, is presented. The main problem
in the suggested algorithm is obtaining the maximum of the unknown function over a past
time interval. It is based on the idea that the local maximum depends on values that are
initially inserted and later they are removed within the range. A special structure is applied
to help quicker obtaining the local maximum ([43]). The suggested scheme could be based
on any numerical method for solving differential equations. In this paper, we will use Euler
method in the application of the algorithm ([43]) for solving differential equations with
“maxima.” We combine the algorithm of Euler method and obtaining of maximum of the
function, and we get the following modification:

tk+1 = tk + h,

yn+1(tk+1) = yn+1(tk) + hf
(
tk, yn+1(tk), yn(tk),maxyn,k,maxyn+1,k

)
,

(5.1)
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where the values maxyn,k = maxs∈[tk−r,tk]yn(s) and maxyn+1,k = maxs∈[tk−r,tk]yn+1(s) are
obtained by the algorithm suggested in [43], and the initial values of yn+1(t0) are found by
initial conditions (4.16) and (4.18).

6. Applications

Now we will illustrate the employment of the suggested above scheme to a particular
nonlinear scalar differential equations with “maxima.”

Initially we will consider the case of one and the same initial points of both initial
value problems. By this way, we will emphasize our considerations to the advantages of the
involved in the initial conditions constants.

Example 6.1. Consider the following scalar nonlinear differential equation with “maxima”:

x′ =
1

1 − x(t)
− 2 max

s∈[t−0.1,t]
x(s) − 1, for t ∈ [0, 0.35], (6.1)

with the initial condition

x(t) = 0, t ∈ [−0.1, 0], (6.2)

where x ∈ R. It is easy to check that the initial value problem (6.1), (6.2) has a zero solution.
In this case f(t, x, y) ≡ 1/(1 − x) − 2y − 1, t0 = τ0 = 0, T = 0.35, r = 0.1, J1 = J2 =

[−0.1, 0.35]. Choose α0(t) = −1/4 and β0(t) = 1/4. Then α0(t) is a lower solution and β0(t) is
an upper solution of the IVP (6.1), (6.2). In this case, Ω(α0, β0, t0) = {(t, u, v) ∈ [0, 0.35] × R

2 :
−1/4 ≤ u, v ≤ 1/4}. Let (t, u1, v1), (t, u2, v2) ∈ Ω(α0, β0, t0) and u1 ≤ u2 and v1 ≤ v2. Then

f(t, u1, v1) − f(t, u2, v2) =
1

1 − u1
− 1

1 − u2
+ 2(v2 − v1)

=
1

(1 − u1)(1 − u2)
(u2 − u1) + 2(v2 − v1)

≥ 16
25

(u2 − u1) + 2(v2 − v1).

(6.3)

That is, L1 = 0.64, L2 = 2, and the inequality (L1 + L2)T < 1 holds.
The successive approximations αn+1(t) and βn+1(t) will be the unique solutions of the

linear problems

x′ =
1

1 − αn(t)
+ 0.64αn(t) − 1 − 0.64x − 2 max

s∈[t−0.1,t]
x(s) for t ∈ [0, 0.35],

x(t) = −knLn for t ∈ [−0.1, 0],

x′(t) =
1

1 − βn(t)
− 1 + 0.64βn(t) − 0.64x − 2 max

s∈[t−0.1,t]
x(s) for t ∈ [0, 0.35],

x(t) = pnCn for t ∈ [−0.1, 0],

(6.4)
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where Ln = mins∈[−0.1,0](−αn(s)) ≥ 0, Cn = mins∈[−0.1,0](βn(s)) ≥ 0, and the numbers kn, pn ∈
[0, 1) are chosen such that kn ≤ Ln, pn ≤ Cn, n = 1, 2, 3, . . . .

Now we will construct an increasing sequence of lower solutions and a decreasing
sequence of upper solutions, which will be convergent to the zero solution.

The first lower approximation α1(t) is a solution of the IVP

x′ = − 9
25

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) = −k0

4
, t ∈ [−0.1, 0].

(6.5)

Choose k0 = 6/11. Then the IVP (6.5) has an exact solution α1(t) = −3/22.
The second lower approximation α2(t) is a solution of the IVP

x′ = − 57
275

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) = −k1
3

22
, t ∈ [−0.1, 0].

(6.6)

Choose k1 = 19/33. Then the IVP (6.6) has an exact solution α2(t) = −57/725. It is clear that
α0(t) ≤ α1(t) ≤ α2(t) < 0 = x(t).

The first upper approximation β1(t) is a solution of the IVP

x′(t) =
37
75

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) =
p0

4
, t ∈ [−0.1, 0].

(6.7)

Choose p0 = 74/99. Then the IVP (6.7) has an exact solution β1(t) = 37/198 ≈ 0.1869.
The second upper approximation β2(t) is a solution of the IVP

x′ = −114481
398475

− 0.64x − 2 max
s∈[t−0.1,t]

x(s) for t ∈ [0, 0.35],

x(t) = p1
37
198

, t ∈ [−0.1, 0].
(6.8)

Choose p1 = 114481/196581. Then the IVP (6.8) has an exact solution β2(t) = 114481/
1051974 ≈ 0.108825.

It is obviouse that β0(t) > β1(t) > β2(t) > 0 = x(t) > α2(t) > α1(t) > α0(t) on the interval
[−0.1, 0.35].

Example 6.1 illustrates that the presence of the constants pn and kn allow us easily to
construct each successive approximation in an explicit form.

Now we will illustrate the suggested method in the case when lower and upper
solutions are defined for different initial points and on different intervals.
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Example 6.2. Consider the following IVP for the scalar nonlinear differential equation with
“maxima”:

x′ =
t

1 + x(t)
− 0.5 max

s∈[t−0.1,t]
x(s) − 2 for t ∈ [1.5, 1.75],

x(t) = 0, t ∈ [1.4, 1.5],
(6.9)

x′ =
t

1 + x(t)
− 0.5 max

s∈[t−0.1,t]
x(s) − 2 for t ∈ [2.35, 2.6],

x(t) = 0, t ∈ [2.25, 2.35],
(6.10)

where x ∈ R.
In this case, f(t, x, y) ≡ t/(1+x)−0.5y−2, t0 = 1.5, τ0 = 2.35, η = τ0 − t0 = 0.85, T = 0.25,

r = 0.1, J1 = [1.4, 1.75], J2 = [2.25, 2.6].
Choose α0(t) = −1/4. Then for t ∈ [1.5, 1.75] the inequality

f

(
t, α0(t), max

s∈[t−0.1,t]
α0(s)

)
=

t

1 − 1/4
+

1
8
− 2 =

4t
3

− 15
8

≥ 1.5
4
3
− 15

8
= 0.125 > 0 (6.11)

holds. Therefore, α0(t) is a lower solution of the IVP (6.9) in [1.4, 1.75].
Let β0(t) = 1/4. Then for t ∈ [2.35, 2.6] the inequality

f

(
t, β0(t), max

s∈[t−0.1,t]
β0(s)

)
=

t

1 + 1/4
− 1

8
− 2 =

4t
5

− 17
8

≤ 2.6
4
5
− 17

8
= −0.045 < 0 (6.12)

holds. Therefore, β0(t) is an upper solution of the IVP (6.10) on [2.25, 2.6].
In this case, τ0 > t0 and Ω(α0, β0, τ0) = {(t, u, v) ∈ [1.5, 1.75] × R

2 : −1/4 ≤ u, v ≤ 1/4}.
Let t ∈ [1.5, 1.76], −1/4 ≤ u1 ≤ u2 ≤ 1/4 and −1/4 ≤ v1 ≤ v2 ≤ 1/4. Then from the

inequality t/((1 + u1)(1 + u2)) ≤ (16/9)t ≤ 3.1111 < 3.2, we obtain

f(t, u1, v1) − f(t, u2, v2) =
t

1 + u1
− t

1 + u2
+ 0.5(v2 − v1)

=
t

(1 + u1)(1 + u2)
(u2 − u1) + 0.5(v2 − v1) ≤ 3.2(u2 − u1) + (v2 − v1).

(6.13)

That is, L1 = 3.2, L2 = 0.5, and the inequality (L1 + L2)T < 1 holds.
According to Theorem 4.1, there exist two convergent monotone sequences of

functions {αn(t)}∞0 and {βn(t)}∞0 such that (4.3) holds and their limits are solutions of the
IVP (6.9) and (6.10).
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Figure 1: (graphs of αk(t) and βk(t + .85), k = 1, 2, 3, 4).

The successive approximations αn+1(t) will be the unique solutions of the linear
problems

x′ =
t

1 + αn(t)
− 0.5αn(t) − 2 − 3.2(x − αn(t)) − 0.5

(
max

s∈[t−0.1,t]
x(s) − max

s∈[t−0.1,t]
αn(s)

)

=
t

1 + αn(t)
+ 2.7αn(t) + 0.5 max

s∈[t−0.1,t]
αn(s) − 2 − 3.2x − 0.5 max

s∈[t−0.1,t]
x(s) for t ∈ [1.5, 1.75],

x(t) = −knLn for t ∈ [1.4, 1.5],
(6.14)

and the successive approximations βn+1(t) will be the unique solutions of the linear problems

x′(t) =
t

1 + βn(t)
+ 2.7βn(t) + 0.5 max

s∈[t−0.1,t]
βn(s) − 2 − 3.2x − 0.5 max

s∈[t−0.1,t]
x(s) for t ∈ [2.35, 2.6],

x(t) = pnCn for t ∈ [2.25, 2.35],
(6.15)

where α0(t) = −1/4, β0(t) = 1/4, Ln = Cn = 0.25, kn = 0.25n, pn = 0.25n, and n = 1, 2, 3, . . . .
Note the above IVPs are linear, but we are not able to obtain their solutions in explicit

form because of the presence of maximum function.

We will use the computer realization of the considered method, explained in Section 4,
to solve the initial value problems (6.14) and (6.15) for n = 1, 2, 3, 4, 5. In this case at any
step, the function yn(tk) in (5.1) is replaced by the functions αn(tk) or βn(tk), respectively,
the function yn+1(tk) is the next approximation αn+1(tk) or βn+1(tk), respectively, and the
function f is the right part of (6.14) or (6.15), respectively, and h = 0.00001. Some of
the numerical values of the successive approximations {αn(t)}∞0 and {βn(t)}∞0 , which are
lower/upper solutions of the given problem, are shown in the Table 1. Also, the obtained
successive approximations are graped on the Figure 1. Both, Table 1 and Figure 1, illustrate us
the monotonicity of the sequences {αn(t)}∞0 and {βn(t)}∞0 and the validity of the inequalities

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ βn(t + .85) ≤ · · · ≤ β0(t + .85), t ∈ [1.5, 1.75]. (6.16)



Abstract and Applied Analysis 15

Table 1: Values of the successive lower/upper approximations αk(t) and βk(t + .85).

t 1.50 1.55 1.60 1.65 1.70 1.75

β1(t+ .85) 0.2500000 0.2396285 0.2326388 0.2286608 0.2273177 0.2281468
β2(t+ .85) 0.0625000 0.0795487 0.0954878 0.1138875 0.1307175 0.1464314
β3(t+ .85) 0.0156250 0.0322634 0.0490684 0.0671041 0.0850914 0.1029515
β4(t+ .85) 0.0039063 0.0211106 0.0383552 0.0558882 0.0734248 0.0909491
β5(t+ .85) 0.0009766 0.0183982 0.0358232 0.0532996 0.0707523 0.0881732

α5(t) −0.0009766 −0.0236676 −0.0416446 −0.0552493 −0.0648509 −0.0708277
α4(t) −0.0039063 −0.0269991 −0.0452915 −0.0591247 −0.0688717 −0.0749110
α3(t) −0.0156250 −0.0399773 −0.0590208 −0.0731539 −0.0828101 −0.0884511
α2(t) −0.0625000 −0.0871172 −0.1048556 −0.1164338 −0.1225992 −0.1243204
α1(t) −0.2500000 −0.2427252 −0.2336358 −0.2230384 −0.2111877 −0.1982954
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This paper is concerned with stabilization of impulsive stochastic delay differential systems. Based
on the Razumikhin techniques and Lyapunov functions, several criteria on pth moment and almost
sure exponential stability are established. Our results show that stochastic functional differential
systems may be exponentially stabilized by impulses.

1. Introduction

In the past decades, many authors have obtained various results of deterministic functional
differential systems (see [1–6] and the references therein). But it is well known that there
are many stochastic factors in the realistic environment, and it is necessary to consider
stochastic models. In fact, stochastic functional differential systems (SFDSs) have received
more attention in recent years. The properties of SFDSs including stability have been
studied in [7–10], which can be widely used in science and engineering (see [11] and the
references therein). Furthermore, besides stochastic effects, impulsive effects likewise exist
in many evolution processes in which system states change abruptly at certain moments of
time, involving such fields as medicine and biology, economics, mechanics, electronics, and
telecommunications, and so forth. The impulsive control theory comes to play an important
role in science and industry [12]. So the stability investigation of impulsive stochastic
differential systems (ISDSs) and impulsive stochastic functional differential systems (ISFDSs)
is interesting to many authors [13–20].

Recently, the Razumikhin-type asymptotical stability theorems for ISFESs were
established [21, 22]. However, little work has been done on generally exponential stability
of ISFESs [23, 24]. In this paper, stability criteria for impulsive stochastic function differential
systems are investigated by Razumikhin technique and Lyapunov functions. It is shown that
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an unstable stochastic delay system can be successfully stabilized by impulses and the results
can be easily applied.

2. Preliminaries

Throughout this paper, unless otherwise specified, let (Ω,F, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets). w(t) = (w1(t), w2(t), . . . , wd(t))

T means a d-
dimensional Brownian motion defined on this probability space. R denotes the set of real
numbers, R+ is the set of nonnegative real numbers, and Rn denotes the n-dimensional real
space equipped with Euclidean norm | · |. If A is a vector or matrix, its transpose is denoted
by AT and its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}. Moreover, let τ > 0 and
denote by C([−τ, 0];R+) the family of continuous functions from [−τ, 0] to R+. Let N denote
the set of positive integers, that is, N = {1, 2, . . .}.

For −∞ < a < b < +∞, a function from [a, b] to Rn is called piecewise continuous, if the
function has at most a finite number of jump discontinuities on (a, b], which is continuous
from the right for all points in [a, b). Given τ > 0, PC([−τ, 0];Rn) denotes the family of
piecewise continuous functions from [−τ, 0] to Rn. A norm on PC([−τ, 0];Rn) is defined as
‖φ‖ = sup−τ≤s≤0|φ(s)| for φ ∈ PC([−τ, 0];Rn).

For p > 0 and t ≥ 0, let PC
p

Ft
([−τ, 0];Rn) denote the family of all Ft-

measurable PC([−τ, 0];Rn)-value random variables φ such that sup−τ≤θ≤0E|φ(θ)|p < ∞
and PCb

Ft
([−τ ,0];Rn) denote the family of PC([−τ, 0];Rn)-value random variables that are

bounded and Ft-measurable.
In this paper, we consider the following ISFDS:

dx(t) = f(xt, t)dt + g(xt, t)dw(t), t /= tk, t ≥ t0,

Δx(tk) = Ik
(
xt−

k
, tk

)
, k ∈ N,

xt0 = ξ,

(2.1)

where the initial value ξ ∈ PCb
Ft0

([−τ, 0];Rn), x(t) = (x1(t), . . . , xn(t))
T , xt is regarded as a

PC([−τ, 0];Rn)-value process and xt(θ) = x(t + θ), θ ∈ [−τ, 0]. Similarly, xt− is defined by
xt−(θ) = x(t + θ), θ ∈ [−τ, 0) and xt−(0) = lims→ t−x(s). Both f : PCb

Ft
([−τ, 0];Rn) × R+ →

Rn and g : PCb
Ft
([−τ, 0];Rn) × R+ → Rn×d are Borel measurable, and Ik : PCb

Ft
([−τ, 0];Rn) ×

R+ → Rn represents the impulsive perturbation of x at time tk. The fixed moments of impulse
times tk satisfy 0 ≤ t0 < t1 < · · · < tk < · · · , tk → ∞ (as k → ∞), Δx(tk) = x(tk) − x(t−k).
Moreover, f , g, and Ik are assumed to satisfy necessary assumptions so that, for any initial
data ξ ∈ PCb

Ft0
([−τ, 0];Rn), system (2.1) has a unique global solution, denoted by x(t; t0, ξ)

(e.g., see [25] for existence and uniqueness results for general impulsive hybrid stochastic
delay systems including (2.1)). For the purpose of stability in this note, we also assume the
f(0, t) ≡ 0, g(t, 0) ≡ 0 and Ik(0, t) ≡ 0 for all t ≥ t0, k ∈ N, then system (2.1) admits a trivial
solution.

Definition 2.1. The trivial solution of system (2.1) is said to be pth (p > 0) moment
exponentially stable if there is a pair of positive constants λ, C such that

E|x(t; t0, ξ)|p ≤ C‖ξ‖pe−λ(t−t0), t ≥ t0, (2.2)
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for all ξ ∈ PCb
Ft0

([−τ, 0];Rn). When p = 2, it is usually said to be exponentially stable in mean
square. It follows from (2.2) that

lim sup
t→∞

1
t

logE|x(t; t0, ξ)|p ≤ −λ. (2.3)

The left-hand side of (2.3) is called the pth moment Lyapunov exponent of the solution.

Definition 2.2. The trivial solution of system (2.1) is said to be almost exponentially stable if
there is a pair of positive constants λ, C such that for t ≥ t0

|x(t; t0, ξ)|p ≤ C‖ξ‖e−λ(t−t0), a.s., (2.4)

for all ξ ∈ PCb
Ft0

([−τ, 0];Rn). It follows from (2.4) that

lim sup
t→∞

1
t

log|x(t; t0, ξ)| ≤ −λ. (2.5)

The left-hand side of (2.5) is called the Lyapunov exponent of the solution.

Definition 2.3. Let C2,1(Rn × [t0,∞);R+) denote the family of all nonnegative functions V (x, t)
on Rn × [t0 − τ,∞) that are continuously twice differential in x and once in t. If V ∈ C2,1(Rn ×
[t0,∞);R+), define the operator LV : PC([−τ, 0];Rn) × [t0,∞) → R for system (2.1) by

LV (xt, t) = Vt(x, t) + Vx(x, t)f(xt, t) +
1
2

trace
[
gT (xt, t)Vxx(x, t)g(xt, t)

]
, (2.6)

where Vt(x, t) = ∂V (x, t)/∂t, Vx(x, t) = (∂V (x, t)/∂x1, . . . , ∂V (x, t)/∂xn), Vxx(x, t) =
(∂2V (x, t)/∂xi∂xj)n×n.

3. Main Results

In this section, we will establish some criteria on the pth moment exponential stability
and almost exponential stability for system (2.1) by using the Razumikhin technique and
Lyapunov functions. We begin with the following lemma, which concerns with the continuity
of EV (x(t), t).

Lemma 3.1. Let V (x, t) ∈ C2,1(Rn × [t0,∞);R+), and let x(t) be a solution of system (2.1). If there
exists c > 0 such that V (x, t) ≤ c|x|p, then EV (x(t), t) is continuous on [tk−1, tk), k ∈ N.

Proof. By the Itô formula,

V (x(t), t) = V (x(tk−1), tk−1) +
∫ t

tk−1

LV (xs, s)ds +
∫ t

tk−1

Vx(x(s), s)g(xs, s)dw(s) (3.1)
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for all t ∈ [tk−1, tk), where k ∈ N. Since xtk−1 ∈ PCb
Ftk−1

([−τ, 0];Rn), we can find an integer l0

such that ‖xtk−1‖ < l0 a.s. For any integer l > l0, define the stopping time

ρl = inf{t ∈ [tk−1, tk) : |x(t)| ≥ l}, (3.2)

where inf ∅ = ∞ as usual. Since x(t) is continuous on [tk−1, tk), |x(t)| is also continuous on
[tk−1, tk). Clearly, ρl → ∞ a.s. as l → ∞. Moreover, it has EV (x(tk−1), tk) ≤ cl0, following
from xtk−1 ∈ PCb

Ftk−1
([−τ, 0];Rn). It then follows from the definition of ρl above that

EV
(
x
(
t′l
)
, t′l

)
= EV (x(tk−1), tk−1) + E

[∫ t′
l

tk−1

LV (xs, s)ds

]
, (3.3)

where t′
l
= t ∧ ρl. So, letting l → ∞, by the dominated convergence theorem and Fubini’s

theorem, we have

EV (x(t), t) = EV (x(tk−1), tk−1) + E

[∫ t

tk−1

LV (xs, s)ds

]

= EV (x(tk−1), tk−1) +
∫ t

tk−1

E[LV (xs, s)]ds,

(3.4)

for t ∈ [tk−1, tk). This implies that EV (x(t), t) is continuous on [tk−1, tk), k ∈ N.

Theorem 3.2. Let V ∈ C2,1(Rn × [t0 − τ,∞);R+) and u : [t0,∞) → R+ be a piecewise continuous
function. Suppose there exist some positive constants p, c1, c2, and λ such that

(i) for all (x, t) ∈ Rn × [t0 − τ,∞),

c1|x|p ≤ V (x, t) ≤ c2|x|p, (3.5)

(ii) for all k ∈ N, and φ ∈ PC
p

Ft
([−τ, 0];Rn),

EV
(
φ
(
0−
)
+ I

(
tk, φ

)
, tk

) ≤ dkEV
(
φ
(
0−
)
, t−k

)
, (3.6)

where 0 < dk < exp{−λ(tk+1 − tk) −
∫ tk+1

tk
u(s)ds},

(iii) for all t ≥ t0, t /= tk, k ∈ N and φ ∈ PC
p

Ft
([−τ, 0];Rn),

E
[LV

(
φ, t

)] ≤ u(t)EV
(
φ(0), t

)
(3.7)

whenever

EV
(
φ, t + θ

)
< qEV

(
φ(0), t

)
, θ ∈ [−τ, 0], (3.8)

where q > maxk∈N{d−1
k eλτ} ∨ exp{∫ t1t0 u(s)ds}.
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Then the trivial solution of system (2.1) is pth moment exponentially stable and its pth
moment Lyapunov exponent is not greater than −λ.

Proof. Given any initial data ξ ∈ PCb
Ft0

([−τ, 0];Rn), the global solution x(t; t0, ξ) = x(t) of (2.1)
is written as x(t) in this proof. Without loss of generality, assume that the initial date ξ is
nontrivial so that x(t) is not a trivial solution. Choose M such that

c2e
λ(t1−t0)+

∫ t1
t0
u(s)ds < M < c2qe

λ(t1−t0). (3.9)

Then it follows from condition (i) and (3.9) that

EV (x(t), t) ≤ c2‖ξ‖p < M‖ξ‖pe−λ(t1−t0), t ∈ [t0 − τ, t0]. (3.10)

In the following, we will show that

EV (x(t), t) ≤ M‖ξ‖pe−λ(tk−t0), t ∈ [tk−1, tk), k ∈ N. (3.11)

In order to do so, we first prove that

EV (x(t), t) ≤ M‖ξ‖pe−λ(t1−t0), t ∈ [t0, t1). (3.12)

If (3.12) is not true, then there exist some t ∈ [t0, t1) such that EV (x(t), t) > M‖ξ‖pe−λ(t1−t0). Set
t∗ = inf{t ∈ [t0, t1) : EV (x(t), t) > M‖ξ‖pe−λ(t1−t0)}. Then t∗ ∈ (t0, t1) and also, by the continuity
of EV (x(t), t)) (see Lemma 3.1),

EV (x(t), t) < EV (x(t∗), t∗) = M‖ξ‖pe−λ(t1−t0), t ∈ [t0 − τ, t∗). (3.13)

In view of (3.10), define t∗ = sup{t ∈ [t0 − τ, t∗) : EV (x(t), t) ≤ c2‖ξ‖p}. Then t∗ ∈ [t0, t∗) and,
by the continuity of EV (x(t), t),

EV (x(t), t) > EV (x(t∗), t∗) = c2‖ξ‖p, t ∈ (t∗, t∗]. (3.14)

Now in view of (3.9), (3.13), and (3.14), one has, for t ∈ [t∗, t∗] and θ ∈ [−τ, 0],

EV (x(t + θ), t + θ) ≤ M‖ξ‖pe−λ(t1−t0) < qEV (x(t∗), t∗) ≤ qEV (x(t), t). (3.15)

By the Razumikhin-type condition (iii),

E[LV (xt, t)] ≤ u(t)EV (x(t), t), ∀t ∈ [t∗, t∗]. (3.16)

Applying Itô formula and by (3.16), one obtains that

EV (x(t∗), t∗) ≤ EV (x(t∗), t∗) +
∫ t∗

t∗
u(s)EV (x(s), s)ds. (3.17)
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Finally, by (3.9), (3.13), (3.14), and the Gronwall inequality,

EV (x(t∗), t∗) ≤ EV (x(t∗), t∗)e
∫ t∗
t∗ u(s)ds ≤ c2‖ξ‖pe

∫ t1
t0
u(s)ds

< M‖ξ‖pe−λ(t1−t0) = EV (x(t∗), t∗),
(3.18)

which is a contradiction. So inequality (3.12) holds and (3.11) is true for k = 1.
Now assume that

EV (x(t), t) ≤ M‖ξ‖pe−λ(tk−t0), ∀t ∈ [tk−1, tk), k ∈ N, (3.19)

for all k ≤ m, where k,m ∈ N. We proceed to show that

EV (x(t), t) ≤ M‖ξ‖pe−λ(tm+1−t0), ∀t ∈ [tm, tm+1). (3.20)

Suppose (3.20) is not true, set t = inf{t ∈ [tm, tm+1) : EV (x(t), t) > M‖ξ‖pe−λ(tm+1−t0)}. By
condition (ii) and (3.20), we know

EV (x(tm), tm) ≤ dmEV
(
x
(
t−m
)
, t−m

) ≤ dmM‖ξ‖pe−λ(tm−t0) < M‖ξ‖pe−λ(tm+1−t0). (3.21)

From this, together with EV (x(t), t) being continuous on t ∈ [tm, tm+1), we know that t ∈
(tm, tm+1) and

EV (x(t), t) < EV
(
x
(
t
)
, t
)
= M‖ξ‖pe−λ(tm+1−t0), ∀t ∈

[
tm, t

)
. (3.22)

Define t = sup{t ∈ [t0, t] : EV (x(t), t) ≤ dmM‖ξ‖pe−λ(tm−t0)}, then t ∈ [tm, t) and

EV (x(t), t) > EV
(
x
(
t
)
, t
)
= dmM‖ξ‖pe−λ(tm−t0), ∀t ∈

(
t, t

]
. (3.23)

For t ∈ [t, t] and θ ∈ [−τ, 0], when t + θ ≥ tm, then (3.22) and (3.23) imply that

EV (x(t + θ), t + θ) ≤ M‖ξ‖pe−λ(tm+1−t0) < M‖ξ‖pe−λ(t+θ−t0)

≤ Meλτ‖ξ‖pe−λ(t−t0) ≤ Meλτ‖ξ‖pe−λ(tm−t0)
≤ qEV

(
x
(
t
)
, t
)
.

(3.24)

If t+ θ < tm for some θ ∈ [−τ, 0), we assume that, without loss of generality, t+ θ ∈ [tl, tl+1) for
some l ∈ N, l ≤ m − 1, then from (3.19) and (3.23),

EV (x(t + θ), t + θ) ≤ M‖ξ‖pe−λ(tl+1−t0) < M‖ξ‖pe−λ(t+θ−t0)

≤ Meλτ‖ξ‖pe−λ(t−t0) ≤ Meλτ‖ξ‖pe−λ(tm−t0)
≤ qEV

(
x
(
t
)
, t
)
.

(3.25)
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Therefore,

EV (x(t + θ), t + θ) < qEV (x(t), t), t ∈
[
t, t

]
, θ ∈ [−τ, 0]. (3.26)

Then, it follows from condition (iii) that

E[LV (xt, t)] ≤ u(t)EV (x(t), t), ∀t ∈
[
t, t

]
. (3.27)

Combining Itô formula with (3.27), we can check that

EV
(
x
(
t, t

))
≤ EV

(
x
(
t
)
, t
)
+
∫ t

t

u(s)EV (x(s), s)ds. (3.28)

Finally, by (3.22), (3.23), and the Gronwall inequality,

EV
(
x
(
t
)
, t
)
≤ EV

(
x
(
t
)
, t
)
e
∫ t
t u(s)ds ≤ EV

(
x
(
t
)
, t
)
e
∫ tm+1
tm

u(s)ds

= dmM‖ξ‖pe−λ(tm−t0)e
∫ tm+1
tm

u(s)ds < EV
(
x
(
t
)
, t
)
,

(3.29)

which is a contradiction. So inequality (3.20) holds. By mathematical induction, we obtain
that (3.11) holds for all k ∈ N. Furthermore, from condition (i), we have

E|x(t)|p ≤ c1

c2
M‖ξ‖pe−λ(tk−t0) ≤ c1

c2
M‖ξ‖pe−λ(t−t0), t ∈ [tk−1, tk), k ∈ N, (3.30)

which implies

E‖x‖p ≤ c1

c2
M‖ξ‖pe−λ(t−t0), t ≥ t0, (3.31)

that is, system (2.1) is pth moment exponentially stable. The proof is complete.

Remark 3.3. If u(t) ≡ c > 0, then Theorem 3.1 of [23] follows from Theorem 3.2 immediately.

Theorem 3.4. Let V ∈ C2,1(Rn×[t0−τ,∞);R+), and let u : [t0,∞) → R+ be a piecewise continuous
function. Suppose there exist some positive constants p, c1, c2, and λ such that

(i) for all (x, t) ∈ Rn × [t0 − τ,∞),

c1|x|p ≤ V (x, t) ≤ c2|x|p, (3.32)

(ii) for all k ∈ N and φ ∈ PC
p

Ft
([−τ, 0];Rn),

EV
(
φ
(
0−
)
+ I

(
tk, φ

)) ≤ ρdkEV
(
φ
(
0−
)
, t−k

)
, (3.33)

where 0 < ρ < max{e−λ(tm+1−tm)} and dk > 0 with d̂ = supn∈NΠn
k=1dk < ∞,
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(iii) for all t ≥ t0, t /= tk, k ∈ N, and φ ∈ PC
p

Ft
([−τ, 0];Rn),

E
[LV

(
φ, t

)] ≤ u(t)EV
(
φ(0), t

)
(3.34)

whenever

EV
(
φ, t + θ

)
< qEV

(
φ(0), t

)
, θ ∈ [−τ, 0], (3.35)

where q > (ρ−1eλτ) ∨ (ρ−1eλτ d̂−1).

Then the trivial solution of system (2.1) is pth moment exponentially stable and its pth
moment Lyapunov exponent is not greater than −λ.

Proof. Given any initial data ξ ∈ PCb
Ft0

([−τ, 0];Rn), the global solution x(t; t0; ξ) = x(t) of (2.1)
is written as x(t) in this proof. Without loss of generality, assume that the initial date ξ is
nontrivial so that x(t) is not a trivial solution. Choose M such that

c2e
λ(t1−t0)+

∫ t1
t0
u(s)ds < M < c2qe

λ(t1−t0). (3.36)

Then it follows from condition (i) and (3.36) that

EV (x(t), t) ≤ c2‖ξ‖p < M‖ξ‖pe−λ(t1−t0), t ∈ [t0 − τ, t0]. (3.37)

In the following, we will show that

EV (x(t), t) ≤ Mk‖ξ‖pe−λ(tk−t0), t ∈ [tk−1, tk), (3.38)

where k ∈ N and Mk is defined as M1 = M and Mk = MΠ1≤l≤k−1dl. Similarly, as the proof in
Theorem 3.2, one can prove that

EV (x(t), t) ≤ M‖ξ‖pe−λ(t1−t0), t ∈ [t0, t1). (3.39)

Now assume that

EV (x(t), t) ≤ Mk‖ξ‖pe−λ(tk−t0), ∀t ∈ [tk−1, tk), k ∈ N, (3.40)

for all k ≤ m, where k,m ∈ N. We proceed to show that

EV (x(t), t) ≤ Mm+1‖ξ‖pe−λ(tm+1−t0), ∀t ∈ [tm, tm+1). (3.41)
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Suppose (3.41) is not true, set t = inf{t ∈ [tm, tm+1) : EV (x(t), t) > Mk‖ξ‖pe−λ(tm+1−t0)}. By
condition (ii),

EV (x(tm), tm) ≤ ρdmEV
(
x
(
t−m
)
, t−m

) ≤ ρMm+1‖ξ‖pe−λ(tm−t0)

< Mm+1‖ξ‖pe−λ(tm+1−t0).
(3.42)

From this, together with EV (x(t), t) being continuous on t ∈ [tm, tm+1), we know that t ∈
(tm, tm+1) and

EV (x(t), t) < EV
(
x
(
t
)
, t
)
= Mm+1‖ξ‖pe−λ(tm+1−t0), ∀t ∈

[
tm, t

)
. (3.43)

Define t = sup{t ∈ [t0, t] : EV (x(t), t) ≤ ρMm+1‖ξ‖pe−λ(tm−t0)}, then t ∈ [tm, t) and

EV (x(t), t) > EV
(
x
(
t
)
, t
)
= ρMm+1‖ξ‖pe−λ(tm−t0), ∀t ∈

(
t, t

]
. (3.44)

For t ∈ [t, t] and θ ∈ [−τ, 0], when t + θ ≥ tm, then (3.44) implies that

EV (x(t + θ), t + θ) ≤ Mm+1‖ξ‖pe−λ(tm+1−t0)

= ρ−1e−λ(tm+1−tm)EV
(
x
(
t
)
, t
)

< qEV
(
x
(
t
)
, t
)
.

(3.45)

If t+ θ < tm for some θ ∈ [−τ, 0), we assume that, without loss of generality, t+ θ ∈ [tl, tl+1) for
some l ∈ N, l ≤ m − 1, then from (3.41) and (3.44), we obtain

EV (x(t + θ), t + θ) ≤ Ml+1‖ξ‖pe−λ(tl+1−t0) < Ml+1‖ξ‖pe−λ(t+θ−t0)

≤ Ml+1e
λτ‖ξ‖pe−λ(t−t0) ≤ ρ−1eλτ

Ml+1

Mm+1
EV

(
x
(
t
)
, t
)

= ρ−1eλτ d̂−1EV
(
x
(
t
)
, t
) ≤ qEV

(
x
(
t
)
, t
)
.

(3.46)

Therefore,

EV (x(t + θ), t + θ) < qEV (x(t), t), t ∈
[
t, t

]
, θ ∈ [−τ, 0]. (3.47)

The rest of the proof is similar to that of Theorem 3.2 and omitted here.

Remark 3.5. Let u and δ be positive constants. Assume that the conditions of Theorem 3.4
hold, function u : [t0,∞) → R+ satisfies

∫ t+δ
t u(s)ds ≤ uδ and supk∈N

{tk − tk−1} = δ <
−(ln ρ/(λ + u)). Then Theorem 3.1 of [24] follows immediately.

Remark 3.6. It is not strictly required by condition (ii) of Theorem 3.4 that each impulse
contributes to stabilize the system, as long as the overall contribution of the impulses are
stabilizing. Without these dk (i.e., dk ≡ 1), it is required that each impulse is a stabilizing
factor (ρ < 1), which is more restrictive.
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Remark 3.7. It is clear that Theorems 3.2 and 3.4 allow the continuous dynamics of system
(2.1) to be unstable, since the function u(t), which characterizes the changing rate of V (x(t), t)
at t, is assumed to be nonnegative. Theorems 3.2 and 3.4 show that an unstable stochastic
delay system can be successfully stabilized by impulses.

The following theorems show that the trivial solutions of system (2.1) are also almost
surely exponentially stable, under some additional conditions.

Assumption 3.8. Suppose the impulsive instances tk satisfy

sup
k∈N

{tk − tk−1} < ∞, inf
k∈N

{tk − tk−1} > 0. (3.48)

Assumption 3.9. Assume that there is a constant L > 0 such that, for all (φ, t) ∈
PC

p

Ft
([−τ, 0];Rn) × [t0,∞),

E
[∣∣f(φ, t)∣∣p + ∣∣g(φ, t)∣∣p] ≤ L sup

−τ≤θ≤0
E
∣∣φ(θ)∣∣. (3.49)

Lemma 3.10 (see [23]). Let p ≥ 1, and let Assumptions 3.8 and 3.9 hold. Then (3.31) implies that,
for all t ≥ t0,

|x(t; ξ, t0)| ≤ Ce−(λ/p)(t−t0)‖ξ‖p a.s., (3.50)

where C is a positive constant. In other words, under Assumptions 3.8 and 3.9, the pth moment
exponential stability implies the almost exponential stability for system (2.1).

By using Theorems 3.2 and 3.4 and Lemma 3.10, it is easy to show the following
conclusions.

Theorem 3.11. Suppose that p ≥ 1, Assumptions 3.8 and 3.9 and the same conditions as in
Theorem 3.2 hold. Then the trivial solution of system (2.1) is also almost surely exponentially stable,
with its Lyapunov exponent not greater than −λ/p.

Theorem 3.12. Suppose that p ≥ 1, Assumptions 3.8 and 3.9 and the same conditions as in
Theorem 3.4 hold. Then the trivial solution of system (2.1) is also almost surely exponentially stable,
with its Lyapunov exponent not greater than −λ/p.

4. An Example

Example 4.1. Consider a scalar ISDDs of the form

dx(t) = x(t)dt +
1
4

√
x2(t) + x2(t − 2)dw(t), t /= tk, t ≥ t0,

Δx(tk) = −0.4x
(
t−k
)
, k ∈ N.

(4.1)

It is easy to check that the corresponding system without impulses is not mean square
exponentially stable. In fact, if V (x, t) = x2, then it follows from the Itô formula that
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E[LV (x(t), x(t − 2), t)] ≥ 2E|x(t)|2 = 2EV (x(t), t). This leads to E|x(t)|2 = EV (x(t), t) ≥
EV (x(0), 0)e2t = E|x(0)|2e2t for all t ≥ 0. But, in the following, we will show that system
(4.1) is mean square exponentially stable and almost exponentially stable.

If V (x(t), t) = x2, then condition (i) of Theorem 3.2 holds with c1 = c2 = 1, p = 2,
and condition (ii) holds with dk = 0.36. By calculating, we have E[LV (x(t), x(t − 2), t)] ≤
(33/16)EV (x(t), t) + (1/16)EV (x(t − 2), t). By taking q = 5, λ = 0.5, and tk − tk−1 = 0.3, it
is easy to verify that condition (iii) of Theorem 3.2 is satisfied, which means system (4.1) is
mean square exponentially stable. Applying Theorem 3.11, we can derive that system (4.1) is
almost exponentially stable.
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By Faà di Bruno’s formula, using the fixed-point theorems of Schauder and Banach, we study
the existence and uniqueness of smooth solutions of an iterative functional differential equation
x′(t) = 1/(c0x

[0](t) + c1x
[1](t) + · · · + cmx

[m](t)).

1. Introduction

There has been a lot of monographs and research articles to discuss the kinds of solutions of
functional differential equations since the publication of Jack Hale’s paper [1]. Several papers
discussed the iterative functional differential equations of the form

x′(t) = H
(
x[0](t), x[1](t), . . . , x[m](t)

)
, (1.1)

where x[0](t) = t, x[1](t) = x(t), x[k](t) = x(x[k−1](t)), k = 2, . . . , m. More specifically, Eder
[2] considered the functional differential equation

x′(t) = x[2](t) (1.2)

and proved that every solution either vanishes identically or is strictly monotonic.
Furthermore, Fečkan [3] and Wang [4] studied the equation

x′(t) = f
(
x[2](t)

)
(1.3)
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with different conditions. Staněk [5] considered the equation

x′(t) = x(t) + x[2](t) (1.4)

and obtained every solution either vanishes identically or is strictly monotonic. Si and his
coauthors [6, 7] studied the following equations:

x′(t) = x[m](t),

x′(t) =
1

x[m](t)
,

(1.5)

x′(t) =
1

c0x[0](t) + c1x[1](t) + · · · + cmx[m](t)
(1.6)

and established sufficient conditions for the existence of analytic solutions. Especially in [8,
9], the smooth solutions of the following equations:

x′(t) =
m∑
j=1

ajx
[j](t) + F(t),

x′(t) =
m∑
j=1

aj(t)x[j](t) + F(t),
(1.7)

have been studied by the fixed-point theorems of Schauder and Banach.
A smooth function is taken to mean one that has a number of continuous derivatives

and for which the highest continuous derivative is also Lipschitz. Let x ∈ Cn if x′, . . . , x(n) are
continuous, Cn(I, I) is the set in which x ∈ Cn and maps a closed interval I into I. As in [9],
we, using the same symbols, denote the norm

‖x‖n =
n∑

k=0

∥∥∥x(k)
∥∥∥, ‖x‖ = max

t∈I
{|x(t)|}, (1.8)

then Cn(I, R) with ‖ · ‖n is a Banach space, and Cn(I, I) is a subset of Cn(I, R). For given
Mi > 0 (i = 1, 2, . . . , n + 1), let

Ω(M1, . . . ,Mn+1; I) =
{
x ∈ Cn(I, I) :

∣∣∣x(i)(t)
∣∣∣ ≤ Mi, i = 1, 2, . . . , n;

∣∣∣x(n)(t1) − x(n)(t2)
∣∣∣ ≤ Mn+1|t1 − t2|, t, t1, t2 ∈ I

}
.

(1.9)

For convenience, we will make use of the notation

xij(t) = x(i)
(
x[j](t)

)
, x∗jk(t) =

(
x[j](t)

)(k)
, (1.10)
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where i, j, and k are nonnegative integers. Let I be a closed interval in R. By induction, we
may prove that

x∗jk(t) = Pjk

(
x10(t), . . . , x1,j−1(t); . . . ;xk0(t), . . . , xk,j−1(t)

)
, (1.11)

βjk = Pjk

⎛
⎜⎜⎝

j terms︷ ︸︸ ︷
x′(ξ), . . . , x′(ξ); . . . ;

j terms︷ ︸︸ ︷
x(k)(ξ), . . . , x(k)(ξ)

⎞
⎟⎟⎠, (1.12)

Hjk = Pjk

⎛
⎜⎝

j terms︷ ︸︸ ︷
1, . . . , 1;

j terms︷ ︸︸ ︷
M2, . . . ,M2; . . . ;

j terms︷ ︸︸ ︷
Mk, . . . ,Mk

⎞
⎟⎠, (1.13)

where Pjk is a uniquely defined multivariate polynomial with nonnegative coefficients. The
proof can be found in [8].

In order to seek a solution x(t) of (1.6), in Cn(I, I) such that ξ is a fixed point of the
function x(t), that is, x(ξ) = ξ, it is natural to seek an interval I of the form [ξ − δ, ξ + δ] with
δ > 0.

Let us define

X(ξ; ξ0, . . . , ξn; 1,M2, . . . ,Mn+1; I)

=
{
x ∈ Ω(1,M2, . . . ,Mn+1; I) : x(ξ) = ξ0 = ξ, x(i)(ξ) = ξi, i = 1, 2, . . . , n

}
.

(1.14)

2. Smooth Solutions of (1.6)

In this section, we will prove the existence theorem of smooth solutions for (1.6). First of all,
we have the inequalities in the following for all x(t), y(t) ∈ X:

∣∣∣x[j](t1) − x[j](t2)
∣∣∣ ≤ |t1 − t2|, t1, t2 ∈ I, j = 0, 1, . . . , m, (2.1)

∥∥∥x[j] − x[j]
∥∥∥ ≤ j

∥∥x − y
∥∥, j = 1, . . . , m, (2.2)

∥∥x − y
∥∥ ≤ δn

∥∥∥x(n) − y(n)
∥∥∥, (2.3)

and the proof can be found in [9].

Theorem 2.1. Let I = [ξ − δ, ξ + δ], where ξ and δ satisfy

ξ ≥ 1
|c0| −

∑m
i=1|ci|

, 0 < δ ≤ ξ − 1
|c0| −

∑m
i=1|ci|

, (2.4)

where |c0| >
∑m

i=0 |ci|, then (1.6) has a solution in

X(ξ; ξ0, . . . , ξn; 1,M2, . . . ,Mn+1; I), (2.5)
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provided the following conditions hold:
(i)

ξ1 = ξ−1

(
m∑
i=0

ci

)−1

, (2.6)

ξk =
∑ (−1)s (k − 1)!s!

s1!s2! · · · sk−1!

(
ξ

m∑
i=0

ci

)−s−1(∑m
i=0 ciβi1

1!

)s1

×
(∑m

i=0 ciβi2
2!

)s2

· · ·
(∑m

i=0 ciβik−1

(k − 1)!

)sk−1

,

(2.7)

where k = 2, . . . , n, and the sum is over all nonnegative integer solutions of the Diophantine equation
s1 + 2s2 + · · · + (k − 1)sk−1 = k − 1 and s = s1 + s2 + · · · + sk−1,

(ii)

∑ (k − 1)!s!
s1!s2! · · · sk−1!

(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1(∑m

i=0|ci|Hi1

1!

)s1

×
(∑m

i=0|ci|Hi2

2!

)s2

· · ·
(∑m

i=0|ci|Hik−1

(k − 1)!

)sk−1

≤ Mk, k = 2, . . . , n,

(2.8)

where s1 + 2s2 + · · · + (k − 1)sk−1 = k − 1 and s = s1 + s2 + · · · + sk−1,
(iii)

∑ (n − 1)!s!
s1!s2! · · · sn−1!1!s1 2!s2 · · · (n − 1)!sn−1

×
⎡
⎣(s + 1)(ξ − δ)−s−2

(
|c0| −

m∑
i=1

|ci|
)−s−2( m∑

i=0
|ci|Hi1

)s1+1( m∑
i=0

|ci|Hi2

)s2

× · · · ×
(

m∑
i=0

|ci|Hin−1

)sn−1

+ s1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1−1

×
(

m∑
i=0

|ci|Hi2

)s2+1( m∑
i=0

|ci|Hi3

)s3

· · ·
(

m∑
i=0

|ci|Hin−1

)sn−1

+ · · · + sn−1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1

· · ·
(

m∑
i=0

|ci|Hin−2

)sn−2

×
(

m∑
i=0

|ci|Hin−1

)sn−1−1( m∑
i=0

|ci|Hin

)⎤
⎦

≤ Mn+1,

(2.9)

where s1 + 2s2 + · · · + (n − 1)sn−1 = n − 1 and s = s1 + s2 + · · · + sn−1,



Abstract and Applied Analysis 5

Proof. Define an operator T from X into Cn(I, I) by

(Tx)(t) = ξ +
∫ t

ξ

1
c0x[0](s) + c1x[1](s) + · · · + cmx[m](s)

ds. (2.10)

We will prove that for any x ∈ X, Tx ∈ X,

|(Tx)(t) − ξ| =
∣∣∣∣∣
∫ t

ξ

1∑m
i=0 cix

[i](s)
ds

∣∣∣∣∣ ≤
(
(ξ − δ)

(
|c0| −

m∑
i=1

|ci|
))−1

|t − ξ| ≤ δ, (2.11)

where the second inequality is from (2.4) and x(I) ⊆ I. Thus, (Tx)(I) ⊆ I.
It is easy to see that

(Tx)′(t) =
1∑m

i=0 cix
[i](t)

, (2.12)

and by Faà di Bruno’s formula, for k = 2, . . . , n, we have

(Tx)(k)(t) =

(
1∑m

i=0 cix
[i](t)

)(k−1)

=
∑(−1)s(k − 1)!s!

s1!s2! · · · sk−1!
1

(∑m
i=0 cix

[i](t)
)s+1

((∑m
i=0 cix

[i](t)
)′

1!

)s1

×
((∑m

i=0 cix
[i](t)

)′′
2!

)s2

· · ·
⎛
⎝

(∑m
i=0 cix

[i](t)
)(k−1)

(k − 1)!

⎞
⎠

sk−1

=
∑ (−1)s(k − 1)!s!

s1!s2! · · · sk−1!
1

(∑m
i=0 cix[i](t)

)s+1

(∑m
i=0 cix∗i1(t)

1!

)s1

×
(∑m

i=0 cix∗i2(t)
2!

)s2

· · ·
(∑m

i=0 cix∗ik−1(t)
(k − 1)!

)sk−1

,

(2.13)

where the sum is over all nonnegative integer solutions of the Diophantine equation s1+2s2+
· · · + (k − 1)sk−1 = k − 1 and s = s1 + s2 + · · · + sk−1.
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Furthermore, note (Tx)(ξ) = ξ, by (2.6) and (2.7),

(Tx)′(ξ) =
1∑m

i=0 cix
[i](ξ)

=
1

ξ
∑m

i=0 ci
= ξ1,

(Tx)(k)(ξ) =
∑ (−1)s(k − 1)!s!

s1!s2! · · · sk−1!
1

(
ξ
∑m

i=0 ci
)s+1

(∑m
i=0 cix∗i1(ξ)

1!

)s1

×
(∑m

i=0 cix∗i2(ξ)
2!

)s2

· · ·
(∑m

i=0 cix∗ik−1(ξ)
(k − 1)!

)sk−1

=
∑ (−1)s(k − 1)!s!

s1!s2! · · · sk−1!
1

(
ξ
∑m

i=0 ci
)s+1

(∑m
i=0 ciβi1

1!

)s1

×
(∑m

i=0 ciβi2
2!

)s2

· · ·
(∑m

i=0 ciβik−1

(k − 1)!

)sk−1

= ξk, k = 2, . . . , n,

(2.14)

where s1 + 2s2 + · · · + (k − 1)sk−1 = k − 1 and s = s1 + s2 + · · · + sk−1. Thus, (Tx)(k)(ξ) = ξk for
k = 0, 1, . . . , n,

∣∣(Tx)′(t)∣∣ =
∣∣∣∣∣

1∑m
i=0 cix

[i](t)

∣∣∣∣∣ ≤
(
(ξ − δ)

(
|c0| −

m∑
i=1

|ci|
))−1

≤ 1 = M1, (2.15)

By (2.8), we have

∣∣∣(Tx)(k)(t)
∣∣∣ ≤

∑ (k − 1)!s!
s1!s2! · · · sk−1!

1∣∣∑m
i=0 cix

[i](t)
∣∣s+1

(∑m
i=0|ci||x∗i1(t)|

1!

)s1

×
(∑m

i=0|ci||x∗i2(t)|
2!

)s2

· · ·
(∑m

i=0|ci||x∗ik−1(t)|
(k − 1)!

)sk−1

≤
∑ (k − 1)!s!

s1!s2! · · · sk−1!
(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1(∑m

i=0|ci|Hi1

1!

)s1

×
(∑m

i=0|ci|Hi2

2!

)s2

· · ·
(∑m

i=0|ci|Hik−1

(k − 1)!

)sk−1

≤ Mk, k = 2, . . . , n,

(2.16)

where s1 + 2s2 + · · · + (k − 1)sk−1 = k − 1 and s = s1 + s2 + · · · + sk−1.
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Finally,

∣∣∣(Tx)(n)(t1) − (Tx)(n)(t2)
∣∣∣

≤
∑ (n − 1)!s!

s1!s2! · · · sn−1!1!s1 2!s2 · · · (n − 1)!sn−1

×
∣∣∣∣∣∣

(
m∑
i=0

cix
[i](t1)

)−s−1( m∑
i=0

cix∗i1(t1)

)s1
(

m∑
i=0

cix∗i2(t1)

)s2

· · ·
(

m∑
i=0

cix∗in−1(t1)

)sn−1

−
(

m∑
i=0

cix
[i](t2)

)−s−1( m∑
i=0

cix∗i1(t2)

)s1
(

m∑
i=0

cix∗i2(t2)

)s2

· · ·
(

m∑
i=0

cix∗in−1(t2)

)sn−1
∣∣∣∣∣∣

≤
∑ (n − 1)!s!

s1!s2! · · · sn−1!1!s1 2!s2 · · · (n − 1)!sn−1

×
[∣∣∣∣∣

1
(∑m

i=0 cix
[i](t1)

)s+1
− 1
(∑m

i=0 cix
[i](t2)

)s+1

∣∣∣∣∣

(
m∑
i=0

|ci||x∗i1(t1)|
)s1

× · · ·
(

m∑
i=0

|ci||x∗in−1(t1)|
)sn−1

+

∣∣∣∣∣∣

(
m∑
i=0

cix
[i](t2)

)−s−1
∣∣∣∣∣∣

×
∣∣∣∣∣

(
m∑
i=0

cix∗i1(t1)

)s1

−
(

m∑
i=0

cix∗i1(t2)

)s1
∣∣∣∣∣

(
m∑
i=0

|ci||x∗i2(t1)|
)s2

· · ·

×
(

m∑
i=0

|ci||x∗in−1(t1)|
)sn−1

+ · · · +
∣∣∣∣∣∣

(
m∑
i=0

cix
[i](t2)

)−s−1
∣∣∣∣∣∣

(
m∑
i=0

|ci||x∗i1(t2)|
)s1

×
(

m∑
i=0

|ci||x∗i2(t2)|
)s2

· · ·
(

m∑
i=0

|ci||x∗in−2(t2)|
)sn−2

×
∣∣∣∣∣

(
m∑
i=0

cix∗in−1(t1)

)sn−1

−
(

m∑
i=0

cix∗in−1(t2)

)sn−1
∣∣∣∣∣

]

≤
∑ (n − 1)!s!

s1!s2! · · · sn−1!1!s1 2!s2 · · · (n − 1)!sn−1

×
⎡
⎣(s + 1)(ξ − δ)−s−2

(
|c0| −

m∑
i=1

|ci|
)−s−2( m∑

i=0
|ci|Hi1

)s1+1( m∑
i=0

|ci|Hi2

)s2

× · · · ×
(

m∑
i=0

|ci|Hin−1

)sn−1

+ s1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1−1

×
(

m∑
i=0

|ci|Hi2

)s2+1( m∑
i=0

|ci|Hi3

)s3

· · ·
(

m∑
i=0

|ci|Hin−1

)sn−1

+ · · · + sn−1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1

· · ·
(

m∑
i=0

|ci|Hin−2

)sn−2

×
(

m∑
i=0

|ci|Hin−1

)sn−1−1( m∑
i=0

|ci|Hin

)⎤
⎦|t1 − t2|,

(2.17)
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where s1 + 2s2 + · · · + (k − 1)sk−1 = k − 1 and s = s1 + s2 + · · · + sk−1. By (2.9), we see that

∣∣∣(Tx)(n)(t1) − (Tx)(n)(t2)
∣∣∣ ≤ Mn+1|t1 − t2|. (2.18)

Now, we can say that T is an operator from X into itself.
Next, we will show that T is continuous. Let x, y ∈ X, then

∥∥Tx − Ty
∥∥
n =

∥∥Tx − Ty
∥∥ +

∥∥∥(Tx)′ − (Ty)′
∥∥∥ +

n∑
k=2

∥∥∥(Tx)(k) − (Ty)(k)
∥∥∥

= max
t∈I

∣∣∣∣∣
∫ t

ξ

(
1∑m

i=0 cix
[i](s)

− 1∑m
i=0 ciy

[i](s)

)
ds

∣∣∣∣∣

+ max
t∈I

∣∣∣∣∣
1∑m

i=0 cix
[i](t)

− 1∑m
i=0 ciy

[i](t)

∣∣∣∣∣

+
n∑

k=2

max
t∈I

∣∣∣∣
∑ (k − 1)!s!

s1!s2! · · · sk−1!1!s1 2!s2 · · · (k − 1)!sk−1

×
[

1
(∑m

i=0 cix
[i](t)

)s+1

(
m∑
i=0

cix∗i1(t)

)s1
(

m∑
i=0

cix∗i2(t)

)s2

· · ·

×
(

m∑
i=0

cix∗ik−1(t)

)sk−1

− 1
(∑m

i=0 ciy
[i](t)

)s+1

(
m∑
i=0

ciy∗i1(t)

)s1

×
(

m∑
i=0

ciy∗i2(t)

)s2

· · ·
(

m∑
i=0

ciy∗ik−1(t)

)sk−1
]∣∣∣∣∣

≤ δ(ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2( m∑

i=0
|ci|

∥∥∥x[i] − y[i]
∥∥∥
)

+ (ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2( m∑

i=0
|ci|

∥∥∥x[i] − y[i]
∥∥∥
)

+
n∑

k=2

max
t∈I

∑ (k − 1)!s!
s1!s2! · · · sk−1!1!s1 2!s2 · · · (k − 1)!sk−1

×
⎡
⎣
∣∣∣∣∣∣

(
m∑
i=0

cix
[i](t)

)−s−1

−
(

m∑
i=0

ciy
[i](t)

)−s−1
∣∣∣∣∣∣

(
m∑
i=0

|ci||x∗i1(t)|
)s1

· · ·

×
(

m∑
i=0

|ci||x∗ik−1(t)|
)sk−1

+

∣∣∣∣∣∣

(
m∑
i=0

ciy
[i](t)

)−s−1
∣∣∣∣∣∣

×
∣∣∣∣∣

(
m∑
i=0

cix∗i1(t)

)s1

−
(

m∑
i=0

ciy∗i1(t)

)s1
∣∣∣∣∣
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×
(

m∑
i=0

|ci||x∗i2(t)|
)s2

· · ·
(

m∑
i=0

|ci||x∗ik−1(t)|
)sk−1

+ · · · +
∣∣∣∣∣∣

(
m∑
i=0

ciy
[i](t)

)−s−1
∣∣∣∣∣∣

(
m∑
i=0

|ci|
∣∣y∗i1(t)

∣∣
)s1

· · ·
(

m∑
i=0

|ci|
∣∣y∗ik−2(t)

∣∣
)sk−2

×
∣∣∣∣∣

(
m∑
i=0

cix∗ik−1(t)

)sk−1

−
(

m∑
i=0

ciy∗ik−1(t)

)sk−1
∣∣∣∣∣

]

≤ (ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2(

|c0| +
m∑
i=1

i|ci|
)∥∥x − y

∥∥

+
n∑

k=2

∑ (k − 1)!s!
s1!s2! · · · sk−1!1!s1 2!s2 · · · (k − 1)!sk−1

×
⎡
⎣(s + 1)(ξ − δ)−s−2

(
|c0| −

m∑
i=1

|ci|
)−s−2( m∑

i=0
|ci|

∥∥∥x[i] − y[i]
∥∥∥
)

×
(

m∑
i=0

|ci|Hi1

)s1

· · ·
(

m∑
i=0

|ci|Hik−1

)sk−1

+ s1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1−1

×
(

m∑
i=0

|ci|Hi2

)s2+1

· · ·
(

m∑
i=0

|ci|Hik−1

)sk−1
(

m∑
i=0

|ci|
∥∥∥x[i] − y[i]

∥∥∥
)

+ · · · + sk−1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1

· · ·

×
(

m∑
i=0

|ci|Hik−2

)sk−2
(

m∑
i=0

|ci|Hik−1

)sk−1−1( m∑
i=0

ciHik

)

×
(

m∑
i=0

|ci|
∥∥∥x[i] − y[i]

∥∥∥
)]

+ δn+1(ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2(

|c0| +
m∑
i=1

i|ci|
)∥∥∥x(n) − y(n)

∥∥∥,

(2.19)

where s1 + 2s2 + · · · + (k − 1)sk−1 = k − 1 and s = s1 + s2 + · · · + sk−1.
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Moreover, we can find some constants Pk such that

n∑
k=2

∑ (k − 1)!s!
s1!s2! · · · sk−1!1!s1 2!s2 · · · (k − 1)!sk−1

×
⎡
⎣(s + 1)(ξ − δ)−s−2

(
|c0| −

m∑
i=1

|ci|
)−s−2( m∑

i=0
|ci|

∥∥∥x[i] − y[i]
∥∥∥
)
×

×
(

m∑
i=0

|ci|Hi1

)s1

· · ·
(

m∑
i=0

|ci|Hik−1

)sk−1

+ s1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1−1

×
(

m∑
i=0

|ci|Hi2

)s2+1

· · ·
(

m∑
i=0

|ci|Hik−1

)sk−1
(

m∑
i=0

|ci|
∥∥∥x[i] − y[i]

∥∥∥
)

+ · · · + sk−1(ξ − δ)−s−1

(
|c0| −

m∑
i=1

|ci|
)−s−1( m∑

i=0
|ci|Hi1

)s1

· · ·

×
(

m∑
i=0

|ci|Hik−2

)sk−2
(

m∑
i=0

|ci|Hik−1

)sk−1−1( m∑
i=0

ciHik

)

×
(

m∑
i=0

|ci|
∥∥∥x[i] − y[i]

∥∥∥
)]

≤
n−1∑
k=1

Pk

(
ξ, δ, ci,Hij

)∥∥∥x(k) − y(k)
∥∥∥,

(2.20)

where

Pk

(
ξ, δ, ci,Hij

)
= P(ξ, δ; c1, . . . , cm;H11, . . . ,H1k+1; . . . ;Hm1, . . . ,Hmk+1; ) (2.21)

are the positive constants depend on ξ, δ, ci, and Hij , i = 1, . . . , m; j = 1, . . . , k + 1. Then

∥∥Tx − Ty
∥∥
n ≤ (ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2(

|c0| +
m∑
i=1

i|ci|
)∥∥x − y

∥∥

+
n−1∑
k=1

Pk

(
ξ, δ, ci,Hij

)∥∥∥x(k) − y(k)
∥∥∥

+ δn+1(ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2(

|c0| +
m∑
i=1

i|ci|
)∥∥∥x(n) − y(n)

∥∥∥

≤ Γ
∥∥x − y

∥∥
n.

(2.22)



Abstract and Applied Analysis 11

Here,

Γ = max

⎧
⎨
⎩(ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2(

|c0| +
m∑
i=1

i|ci|
)

; max
1≤k≤n−1

{
Pk

(
ξ, δ, ci,Hij

)}
;

δn+1(ξ − δ)−2

(
|c0| −

m∑
i=1

|ci|
)−2(

|c0| +
m∑
i=1

i|ci|
)⎫
⎬
⎭,

(2.23)

k = 1, . . . , n − 1. So we can say that T is continuous.
It is easy to see that X is closed and convex. We now show that X is a relatively compact

subset of Cn(I, I). For any x = x(t) ∈ X,

‖x‖n ≤ ‖x‖ +
n∑

k=1

∥∥∥x(k)
∥∥∥ ≤ |ξ| + δ + 1 +

n∑
k=2

Mk. (2.24)

Next, for any t1, t2 in I, we have

|x(t1) − x(t2)| ≤ |t1 − t2|. (2.25)

Hence, X is bounded in Cn(I, I) and equicontinuous on I, and by the Arzela-Ascoli theorem,
we know X is relatively compact in Cn(I, I), since Cn(I, I) is the subset of Cn(I, R), and we
can say that X is relatively compact in Cn(I, R).

From Schauder’s fixed-point theorem, we conclude that

x(t) = ξ +
∫ t

ξ

1
c0x[0](s) + c1x[1](s) + · · · + cmx[m](s)

ds, (2.26)

for some x = x(t) in X. By differentiating both sides of the above equality, we see that x is the
desired solution of (1.6). This completes the proof.

Theorem 2.2. Let I = [ξ − δ, ξ + δ], where ξ and δ satisfy (2.4), then (1.6) has a unique solution in

X(ξ; ξ0, . . . , ξn; 1,M2, . . . ,Mn+1; I), (2.27)

provided the conditions (2.6)–(2.9) hold and Γ < 1 in (2.23).

Proof. Since Γ < 1, we see that T defined by (2.10) is contraction mapping on the close subset X
of Cn(I, I). Thus, the fixed point x in the proof of Theorem 2.1 must be unique. This completes
the proof.

Remark 2.3. By Theorem 2.1 or Theorem 2.2, the existence and uniqueness of smooth solutions
of an iterative functional differential equation of the form (1.6) can be obtained. If n → +∞,
we can also find that the solution is C∞-smooth.



12 Abstract and Applied Analysis

Now, we will show that the conditions in Theorem 2.1 do not self-contradict. Consider
the following equation:

x′(t) =
1

t + (1/2)x(t) + (1/4)x(x(t))
, (2.28)

where c0 = 1, c1 = (1/2), c2 = (1/4), and ξ ≥ 4. Moreover, we take 0 < δ ≤ ξ − 4. Then, (2.4)
is satisfied, and ξ, δ define the interval I = [ξ − δ, ξ + δ]. Now, take ξ0 = ξ,

ξ1 =
4
7
ξ−1,

ξ2 = −16
49

ξ−2
(

1 +
1
2
ξ1 +

1
4
ξ2

1

)
,

ξ3 =
4

343
ξ−3

(
4 + 2ξ1 + ξ2

1

)2 − 4
49

ξ−2ξ2

(
2 + ξ1 + ξ2

1

)
,

(2.29)

then (2.6) and (2.7) are satisfied.
Finally, if we take

M1 = 1, M2 = 28(ξ − δ)−2, M3 = 392(ξ − δ)−3 + 16(ξ − δ)−2M2 (2.30)

as positive, and

M4 = 8232(ξ − δ)−4 + 576(ξ − δ)−3M2 + 8(ξ − δ)−2
(

6M2
2 + 5M3

)
, (2.31)

then (2.8) and (2.9) are satisfied.
Thus, we have shown that when ξ0, . . . , ξ3 and M1, . . . ,M4 are defined as above, then

there will be a solution for (2.28) in X(ξ; ξ0, . . . , ξ3; 1, . . . ,M4; I).
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This paper is concerned with the existence of solutions for the discrete second-order boundary
value problem Δ2u(t − 1) + λ1u(t) + g(Δu(t)) = f(t), t ∈ {1, 2, . . . , T}, u(0) = u(T + 1) = 0, where
T > 1 is an integer, f : {1, . . . , T} → R, g : R → R is bounded and continuous, and λ1 is the first
eigenvalue of the eigenvalue problem Δ2u(t − 1) + λu(t) = 0, t ∈ T, u(0) = u(T + 1) = 0.

1. Introduction

Let g : R → R and p : [0, π] → R be continuous. The nonlinear two-point boundary value
problem of ordinary differential equation

u′′(t) + u(t) + g
(
u′) = p(t), t ∈ (0, π),

u(0) = u(π) = 0,
(1.1)

is very important in applications. Let us mention the problems arising in viscosity, nonlinear
oscillations, electric circuits, and so forth. The term g(u′) may be regarded as a nonlinear
damping term in resonance problems and its appears, for example, in Rayleigh’s equation
(which is closely connected with a theory of oscillation of violin string), in oscillations of a
simple pendulum under the action of viscous damping, in dry (Coulomb) friction (which
occurs when the surfaces of two solids are contact and relative motion without lubrication),
and in some cases of van der Pol oscillator, see [1–4] and the references therein.
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Since the pioneer work of Landesman and Lazer [5], the problems of the type

u′′(t) + u(t) + g(u) = f(t), t ∈ (0, π),

u(0) = u(π) = 0,
(1.2)

(where g is independent of u′) have been extensively studied in the past forty years, see
Iannacci and Nkashama [6] and the references therein.

It has been remarked (see [7, 8]) that conditions of the Landesmen-Lazer type are not
appropriated to yield the existence of solutions to (1.1). Thus, it is usually much more difficult
to deal with (1.1) than to deal with (1.2), see Kannan et al. [7], Cañada and Drábek [8], Habets
and Sanchez [9], Drábek et al. [10], and Del Toro and Roca [11].

In [8], Cañada and Drábek used the well-known Lyapunov-Schmidt method and the
Schauder fixed point theorem to find a necessary and sufficient condition for the existence of
solutions of (1.1). To wit, they proved

Theorem A (See [8, Theorem 3.1]). Let p : [0, π] → R be continuous and let

p(t) = s

√
2
π

sin t + p̃(t), s ∈ R,

∫π

0
p̃(t) sin t dt = 0. (1.3)

Let g : R → R be continuous and bounded with g(−∞) = g(+∞) and g(ξ) < g(+∞) for ξ ∈ R,
where

g(−∞) := lim
s→−∞

g(s), g(+∞) := lim
s→+∞

g(s). (1.4)

Then for any p̃ ∈ C[0, π] with
∫π

0 p̃(t) sin t dt = 0, there exists a real number gp̃ <

2
√

2/πg(+∞) such that (1.1) has at least one solution u ∈ C2[0, π] if and only if

s ∈
⎡
⎣gp̃, 2

√
2
π
g(+∞)

⎞
⎠. (1.5)

It is the purpose of this paper to establish the similar results for the discrete analogue of (1.1)
of the form

Δ2u(t − 1) + λ1u(t) + g(Δu(t)) = f(t), t ∈ T,

u(0) = u(T + 1) = 0,
(1.6)

where T > 1 is an integer, T := {1, . . . , T}, g : R → R is bounded and continuous, f : T → R,
λ1 is the first eigenvalue of the linear eigenvalue problem

Δ2u(t − 1) + λu(t) = 0, t ∈ T,

u(0) = u(T + 1) = 0.
(1.7)
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Finally, it is worth remarking that the existence of solutions for nonlinear problem

Δ2u(t − 1) + λ1u(t) + g(u(t)) = f(t), t ∈ T,

u(0) = u(T + 1) = 0,
(1.8)

which is a discrete analogue of (1.2), has been studied by Rodriguez [12] and Ma [13]. For
other recent results on the existence of solutions of discrete problems, see [14–21] and the
reference therein.

The rest of this paper is arranged as follows. In Section 2, we give some preliminaries
and develop the methods of lower and upper solutions for the more generalized problems,
that is, the case of the nonlinearity g = g(t, u,Δu); in Section 3, we state our main result and
provide the proof.

2. Preliminaries

Recall that T = {1, 2, . . . , T}. Let T̂ = {0, 1, . . . , T + 1}. Let X := {u | u : T̂ → R}, Y := {u | u :
T → R} be equipped with the norm

‖u‖X = max
k∈T̂

|u(k)|, ‖u‖Y = max
k∈T

|u(k)|, (2.1)

respectively. It is easy to see that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces.
Assume that g0 : T × R

2 → R is a continuous function, bounded by a constant M > 0:

∣∣g0
(
t, η, ξ

)∣∣ ≤ M (2.2)

for t ∈ T and (η, ξ) ∈ R
2. Consider the following problem:

Δ2u(t − 1) + λ1u(t) + g0(t, u(t),Δu(t)) = f(t), t ∈ T, (2.3)

u(0) = u(T + 1) = 0. (2.4)

Definition 2.1. If x ∈ X satisfies

Δ2x(t − 1) + λ1x(t) ≥ f(t) − g0(t, x(t),Δx(t)), t ∈ T,

x(0) ≤ 0, x(T + 1) ≤ 0,
(2.5)

then one says x(t) is a lower solution of (2.3), (2.4). If y ∈ X satisfies

Δ2y(t − 1) + λ1y(t) ≤ f(t) − g0
(
t, y(t),Δy(t)

)
, t ∈ T,

y(0) ≥ 0, y(T + 1) ≥ 0,
(2.6)

then one says y(t) is an upper solution of (2.3), (2.4).
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Theorem 2.2. Suppose that x(t), y(t) are the lower and upper solutions of (2.3), (2.4), respectively,
and x(t) ≤ y(t), t ∈ T. Then BVP (2.3) and (2.4) have at least one solution u(t) satisfies

x(t) ≤ u(t) ≤ y(t). (2.7)

Proof. Define the function p : T × R → R by

p(t, u(t)) =

⎧⎪⎪⎨
⎪⎪⎩

x(t), u(t) < x(t),
u(t), x(t) ≤ u(t) ≤ y(t),
y(t), u(t) > y(t).

(2.8)

Set f∗(t, u, v) = f(t) − g0(t, u, v) − λ1u. Consider the auxiliary problems:

Δ2u(t − 1) = f∗(t, p(t, u),Δp(t, u)
)
, t ∈ T,

u(0) = u(T + 1) = 0.
(2.9)

From (2.8) and the boundness of g0, we know f∗(t, p(t, u),Δp(t, u)) is bounded. So, by the
Schauder fixed point theorem, (2.9) has a solution u ∈ X.

Now, we only prove u(t) ≤ y(t), the other case u(t) ≥ x(t) is similar.
Set z(t) = u(t)−y(t). Suppose that z(t) > 0, for t ∈ {t0+1, t0+2, . . . , t0+p}, and z(t0) ≤ 0,

z(t0 + p + 1) ≤ 0, where t0 ∈ {0, 1, . . . , T}, p ∈ {1, 2, . . . , T}.
On the other hand, by the definition of upper solution, for t ∈ {t0 + 1, t0 + 2, . . . , t0 + p},

Δ2y(t − 1) ≤ f∗(t, y(t),Δy(t)
)

= f(t) − λ1y(t) − g0
(
t, y(t),Δy(t)

)

= f(t) − λ1p(t, u) − g0
(
t, p(t, u(t)),Δp(t, u(t))

)

= Δ2u(t − 1).

(2.10)

Then

Δ2z(t − 1) ≥ 0, t ∈ {t0 + 1, t0 + 2, . . . , t0 + p
}
,

z(t0) ≤ 0, z
(
t0 + p + 1

) ≤ 0.
(2.11)

Now, by the convexity of z on {t0+1, t0+2, . . . , t0+p}, we get z(t) ≤ 0, t ∈ {t0+1, t0+2, . . . , t0+p},
that is, u(t) ≤ y(t), t ∈ {t0 + 1, t0 + 2, . . . , t0 + p}. This contradicts u(t) > y(t), t ∈ {t0 + 1, t0 +
2, . . . , t0 + p}. Thus, u(t) ≤ y(t), t ∈ T̂.

Lemma 2.3. See
∑T

t=1 sin2(πt/(T + 1)) = (T + 1)/2.

Proof. Let ω = cos(2π/(T + 1)) + i sin(2π/(T + 1)). Then ωT+1 = 1 and (1 −ω)(1 +ω +
ω2 + · · · +ωT ) = 0. Since 1 −ω/= 0, we have

∑T
t=1 cos(2πt/(T + 1)) = −1. This together with the

fact that
∑T

t=1 sin2(πt/(T + 1)) =
∑T

t=1(1− cos(2πt/(T + 1)))/2 implies the assertion holds.



Abstract and Applied Analysis 5

Now, let ψ1(t) :=
√

2/(T + 1) sin(πt/(T + 1)), t ∈ T, denote the positive eigenfunction
corresponding to the first eigenvalue λ1 = 4sin2(π/2(T + 1)) of (1.7). Then by Lemma 2.3,∑T

t=1 ψ
2
1(t) = 1.
Since ψ1(t) is located on

√
2/(T + 1) sin t, t ∈ [0, π], by the direct computation, we can

obtain the following result.

Lemma 2.4. If T is an odd number, then

Δψ1(t) > 0, for t ∈
{

0, . . .

[
T

2

]}
, Δψ1(t) < 0, for t ∈

{[
T

2

]
+ 1, . . . , T

}
, (2.12)

if T is an even number, then Δψ1(T/2) = 0,

Δψ1(t) > 0, for t ∈
{

0, . . .
T

2
− 1
}
, Δψ1(t) < 0, for t ∈

{
T

2
+ 1, . . . , T

}
. (2.13)

Define the operator L : D(L) ⊂ X → Y by

Lu(t) = Δ2u(t − 1) + λ1u(t), (2.14)

where D(L) = {u ∈ X | u(0) = u(T + 1) = 0}.
Define N : X → Y by

(Nu)(t) = f(t) − g0(t, u(t),Δu(t)). (2.15)

Then (2.3), (2.4) is equivalent to the operator equation Lu = Nu.
In Theorem 2.2, we established the methods of lower and upper solutions under well

order. Now, we can also develop the methods of lower and upper solutions for (2.3), (2.4)
when x(t) ≤ y(t) is not necessary, its proofs are based on the following lemma, that is, the
connectivity properties of the solution sets of parameterized families of compact vector fields,
they are a direct consequence of Mawhin [22, Lemma 2.3].

Lemma 2.5 (see [22, Lemma 2.3]). Let E be a Banach space andC ⊂ E a nonempty, bounded, closed
convex subset. Suppose that T : [a, b] × C → C is completely continuous. Then the set

S = {(λ, x) | T(λ, x) = x, λ ∈ [a, b]} (2.16)

contains to be a closed connected subset Σ which connects {a} × C to {b} × C.

Theorem 2.6. Assume that x(t), y(t) are the lower solution and the upper solution of (2.3), (2.4),
respectively. Then (2.3) and (2.4) have at least one solution.

Proof. Define the projections P : X → X, Q : Y → R by

(Pu)(t) =

[
T∑
t=1

u(t)ψ1(t)

]
ψ1(t),

(
Qy
)
(t) =

T∑
t=1

y(t)ψ1(t). (2.17)
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Then ImP = KerL, KerQ = ImL, and X = (KerP ⊕ KerL),Y = (ImL ⊕ ImQ). Now, the
operator equation Lu = Nu is equivalent to the alternative system

u − Pu = K(I −Q)Nu,

QNu = 0,
(2.18)

where K is the inverse of mapping L : (D(L) ∩ KerP) → ImL.
Writing u ∈ D(L) in the form u(t) = cψ1(t) +w(t), c ∈ R,

∑T
t=1 ψ1(t)w(t) = 0, (2.3) and

(2.4) are equivalent to the system

w = K(I −Q)N
(
cψ1(·) +w

)
, (2.19)

QN
(
cψ1(·) +w

)
= 0. (2.20)

Since X is finite dimensional, it is easy to see that K(I −Q)N is completely continuous, by the
Schauder fixed point theorem and the fact N(cψ1(t) +w(t)) is bounded, we get that for any
fixed c ∈ R, W(c) := {w ∈ X ∩ KerP | (c,w) satisfies (2.19)}/= ∅ and W(c) is bounded. Then
there exist positive constants α > τ such that −τψ1 ≤ w ≤ τψ1 for all w ∈ W(c), (α−τ)ψ1 ≥ x(t)
and −(α − τ)ψ1 ≤ y(t). Let

γ(c,w) =
T∑
t=1

N
(
cψ1(t) +w(t)

)
ψ1(t) (2.21)

for all (c,w) ∈ R × W(c). Observe that Lemma 2.5 is applicable. Hence there exists a
connected subset of {(c,w) ∈ R × (X ∩ Ker P) | (c,w) satisfies (2.19)}, Σα(ψ1), which
connected {−α} ×W(−α) and {α} ×W(α). Since γ : Σα(ψ1) → R is continuous, I := γ(Σα(ψ1))
is an interval. If 0 ∈ I, then (2.3) and (2.4) have a solution. If I ⊂ (0,∞), then every cψ1 + w
with (c,w) ∈ Σα(ψ1) is an upper solution. Indeed, it is obvious that

L
(
cψ1(t) +w(t)

) −N
(
cψ1(t) +w(t)

)
= −γ(c,w) ≤ 0, t ∈ T,(

cψ1 +w
)
(0) =

(
cψ1 +w

)
(T + 1) = 0.

(2.22)

By construction, αψ1 + w with (α,w) ∈ Σα(ψ1) satisfies x(t) ≤ αψ1 + w. Hence, from
Theorem 2.2, (2.3) and (2.4) have a solution. A similar argument applies if I ⊂ (−∞, 0).

Theorem 2.7. Suppose that f satisfies

f(t) = sψ1(t) + f̃(t), s ∈ R, (2.23)

where f̃ satisfies

T∑
t=1

f̃(t)ψ1(t) = 0. (2.24)
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Then, there exists a nonempty, connected, and bounded set Jf̃ ⊂ R such that (2.3) and (2.4) have at
least one solution u ∈ X if and only if s ∈ Jf̃ .

Proof. As the proof of Theorem 2.6, (2.3) and (2.4) are equivalent to the system (2.19), (2.20).
Since N is bounded, applying the Schauder fixed point theorem we obtain that for any fixed
c ∈ R, there exits at least one wc ∈ X such that (2.19) holds.

Now, (2.20) becomes

T∑
t=1

g0
(
t, cψ1(t) +wc(t), cΔψ1(t) + Δwc(t)

)
ψ1(t) = s. (2.25)

Hence, for a given f̃ ,
∑T

t=1 f̃(t)ψ1(t) = 0, (2.3), (2.4) with f(t) = cψ1(t) + f̃(t) has at least
one solution if and only if s belongs to the range of the (multivalued, in general) function
Γf̃ : R → Γf̃(R),

Γf̃(c) =
T∑
t=1

g0
(
t, cψ1(t) +wc(t), cΔψ1(t) + Δwc(t)

)
ψ1(t), (2.26)

where wc ∈ {w ∈ D(L) : w is a solution of (2.19) for fixed c}. But Jf̃ ≡ Γf̃(R) is a connected

set. In fact, let s1 and s2 belong to Jf̃ and s1 ≤ s2. Then (2.3), (2.4) with f1 = s1ψ1 + f̃ and

f2 = s2ψ1 + f̃ has solutions u1 and u2, respectively. If we consider (2.3), (2.4) with f = sψ1 + f̃ ,
where s ∈ [s1, s2], then u1 is an upper solution and u2 is a lower solution to this problem.
By Theorem 2.6, there exists at least one solution, that is, s belongs to Jf̃ . Moreover, since g is
bounded, the range of Γf̃ is bounded.

3. Main Results

In this section, we deal with (1.6). First, let us make the following assumptions:
(H1) g : R → R is a bounded and continuous function and satisfies g(+∞) = g(−∞)

and g(ξ) < g(+∞) for any ξ ∈ R,
(H2) f : T → R satisfies

f(t) = sψ1(t) + f̃(t), s ∈ R,
T∑
t=1

f̃(t)ψ1(t) = 0. (3.1)

Theorem 3.1. Suppose that (H1), (H2) hold. Then there exists a real number gf̃ , gf̃ <√
2/(T + 1)g(+∞)

∑T
t=1 sin(πt/(T + 1)), such that (1.6) has at least one solution u ∈ X if and

only if

s ∈
⎡
⎣gf̃ ,

√
2

T + 1
g(+∞)

T∑
t=1

sin
πt

T + 1

⎞
⎠. (3.2)
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Proof. Note that ψ1(t) =
√

2/(T + 1) sin(πt/(T +1)). Due to the consideration in the the proof
of Theorem 2.7. It is sufficient to show that for a given f̃ with

∑T
t=1 f̃(t)ψ1(t) = 0, we have

Γf̃(R) =

⎡
⎣gf̃ ,

√
2

T + 1
g(+∞)

T∑
t=1

sin
πt

T + 1

⎞
⎠. (3.3)

The (possibly multivalued) function Γf̃ has the following form:

Γf̃(c) =

√
2

T + 1

T∑
t=1

g
(
cΔψ1(t) + Δwc(t)

)
sin

πt

T + 1
, (3.4)

where c ∈ R and wc verify (2.19). From the boundedness of g and (2.19), there exists a
constant D > 0 (independent of c) such that ‖wc‖X ≤ D for any c ∈ R, furthermore,

max
t∈{0,1,...,T}

|Δwc(t)| ≤ 2D. (3.5)

Now, we divide the proof into two cases.

Case 1. T is an odd number. By Lemma 2.4, we obtain that

T∑
t=1

g

⎛
⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞
⎠ sin

πt

T + 1

=
[T/2]∑
t=1

g

⎛
⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞
⎠ sin

πt

T + 1

+
T∑

t=[T/2]+1

g

⎛
⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞
⎠ sin

πt

T + 1

−→
[T/2]∑
t=1

g(±∞) sin
πt

T + 1
+

T∑
s=[T/2]+1

g(∓∞) sin
πt

T + 1
,

(3.6)

as c → ±∞. Due to g(+∞) = g(−∞), we get

Γf̃(c) →
√

2
T + 1

g(+∞)
T∑
t=1

sin
πt

T + 1
. (3.7)

The assumption g(ξ) < g(+∞), ξ ∈ R, and (3.5) yields

Γf̃(c) <

√
2

T + 1
g(+∞)

T∑
t=1

sin
πt

T + 1
(3.8)

for any c ∈ R.
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Case 2. T is an even number. By Lemma 2.4, we know that

Δψ1

(
T

2

)
=

√
2

T + 1
Δ sin

πT

2(T + 1)
= 2

√
2

T + 1
sin

π

2(T + 1)
cos

π(2T/2 + 1)
2(T + 1)

= 0. (3.9)

Hence,

T∑
t=1

g

⎛
⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞
⎠ sin

πt

T + 1

=
(T/2)−1∑

t=1

g

⎛
⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞
⎠ sin

πt

T + 1

+
T∑

t=(T/2)+1

g

⎛
⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞
⎠ sin

πt

T + 1

+ g

(
Δwc

(
T

2

))
sin

πT

2(T + 1)
.

(3.10)

By (3.5) and the assumption g(ξ) < g(+∞), ξ ∈ R, we know that for any c ∈ R, g(Δwc(T/
2)) < g(+∞). Thus, for any c ∈ R,

Γf̃(c) <

√
2

T + 1
g(+∞)

T∑
t=1

sin
πt

T + 1
. (3.11)

It is sufficient to prove that this infimum is achieved. Let us denote

gf̃ = inf
c∈R

Γf̃(c). (3.12)

Suppose that {sn} ⊂ Γf̃(R) satisfies sn → gf̃ and {cn} is the corresponding minimizing se-

quence, that is, un(t) = cn
√

2/(T + 1) sin(πt/(T + 1)) + wcn(t), are the solution of (1.1), with
the right-hand sides fn(t) = sn

√
2/(T + 1) sin(πt/(T + 1)) + f̃(t).

We claim that {cn} is bounded. In fact, if cn → ∞ as n → ∞, then we can get two
contradictions in the following two cases.

Case 1. If T is an odd number, then by (2.20),

√
2

T + 1

T∑
t=1

g

⎛
⎝2cn

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwcn(t)

⎞
⎠ sin

πt

T + 1
= sn, (3.13)
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letting n → ∞ in (3.13), we get

√
2

T + 1

T∑
t=1

g(+∞) sin
πt

T + 1
= gf̃ . (3.14)

From (H1), we arrive for any ξ ∈ R, g(ξ) < g(+∞), which together with (3.14) implies
that

√
2

T + 1

T∑
t=1

g

⎛
⎝2c

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwc(t)

⎞
⎠ sin

πt

T + 1
< gf̃ . (3.15)

This contradicts (3.12).

Case 2. If T is an even number, then by (2.20) and Δψ1(T/2) = 0, we get

sn =

√
2

T + 1

(T/2)−1∑
t=1

g

⎛
⎝2cn

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwcn(t)

⎞
⎠ sin

πt

T + 1

+

√
2

T + 1

T∑
t=(T/2)+1

g

⎛
⎝2cn

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwcn(t)

⎞
⎠ sin

πt

T + 1

+

√
2

T + 1
g

(
Δwcn

(
T

2

))
sin

πT

2(T + 1)
.

(3.16)

This implies that

gf̃ ≥
√

2
T + 1

(T/2)−1∑
t=1

g(+∞) sin
πt

T + 1
+

√
2

T + 1

T∑
t=(T/2)+1

g(+∞) sin
πt

T + 1

+

√
2

T + 1
inf

wcn∈X
g

(
Δwcn

(
T

2

))
sin

πT

2(T + 1)
.

(3.17)

On the other hand, by (3.12) and (H1), we get that for any fixed n ∈ N,

gf̃ ≤
√

2
T + 1

(T/2)−1∑
t=1

g

⎛
⎝2cn

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwcn(t)

⎞
⎠ sin

πt

T + 1

+

√
2

T + 1

T∑
t=(T/2)+1

g

⎛
⎝2cn

√
2

T + 1
sin

π

2(T + 1)
cos

π(2t + 1)
2(T + 1)

+ Δwcn(t)

⎞
⎠ sin

πt

T + 1

+

√
2

T + 1
inf

wcn∈X
g

(
Δwcn

(
T

2

))
sin

πT

2(T + 1)
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<

√
2

T + 1

(T/2)−1∑
t=1

g(+∞) sin
πt

T + 1
+

√
2

T + 1

T∑
t=(T/2)+1

g(+∞) sin
πt

T + 1

+

√
2

T + 1
inf

wcn∈X
g

(
Δwcn

(
T

2

))
sin

πT

2(T + 1)
.

(3.18)

Now, we obtain a contradiction. Thus, cn is bounded.
Since X is finite dimensional and wcn is bounded, we obtain that cn → c, wcn → wc

(at least for a subsequence), and u(t) = c
√

2/(T + 1) sin(πt/(T + 1)) + wc(t) is a solution of
(1.1) with f(t) = gf̃

√
2/(T + 1) sin(πt/(T + 1)) + f̃(t). Hence, the infimum is achieved in c.
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Using inequality techniques and coincidence degree theory, new results are provided concerning
the existence and uniqueness of periodic solutions for the Duffing type p-Laplacian equation with
multiple constant delays of the form (ϕp(x′(t)))′ + Cx′(t) + g0(t, x(t)) +

∑n
k=1 gk(t, x(t − τk)) = e(t).

Moreover, an example is provided to illustrate the effectiveness of the results in this paper.

1. Introduction

Referring to the work of Esmailzadeh and Nakhaie-Jazar [1], Duffing type equation is the
simplest case of a vibrating system with nonlinear restoring force generator element. This
is equivalent to a mechanical vibrating system with either a hard or soft spring. Thus, this
equation and its modifications have been extensively and intensively studied. In particular,
the existence of periodic solutions for Duffing type equations with and without delays have
been discussed by various researchers (see, e.g., [2–8] and the references given therein).
However, to the best of our knowledge, the existence and uniqueness of periodic solutions
of Duffing type p-Laplacian equation whose delays more than two have not been sufficiently
researched. Motivated by this, we shall consider the Duffing type p-Laplacian equations with
multiple constant delays of the form

(
ϕp

(
x′(t)

))′ + Cx′(t) + g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk)) = e(t), (1.1)
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where p > 1 and ϕp : R → R is given by ϕp(s) = |s|p−2s for s /= 0 and ϕp(0) = 0, C and τk
are constants, e : R → R and g0, gk : R × R → R are continuous functions, τk and e are
T -periodic, g0 and gk are T -periodic in the first argument, T > 0 and k = 1, 2, . . . , n. The main
purpose of this paper is to establish sufficient conditions for the existence and uniqueness of
T -periodic solutions of (1.1). The results of this paper are new and complement previously
known results. Moreover, we give an example to illustrate the results.

2. Preliminary Results

Throughout this paper, we will denote

C1
T :=

{
x ∈ C1(R) : x is T -periodic

}
,

|x|k =

(∫T

0
|x(t)|kdt

)1/k

(k > 0), |x|∞ = max
t∈[0,T]

|x(t)|.
(2.1)

For the periodic boundary value problem

(
ϕp

(
x′(t)

))′ = f̃
(
t, x, x′), x(0) = x(T), x′(0) = x′(T), (2.2)

where f̃ ∈ C(R3, R) is T -periodic in the first variable, we have the following lemma.

Lemma 2.1 (see [9]). Let Ω be an open bounded set in C1
T , if the following conditions hold.

(i) For each λ ∈ (0, 1) the problem

(
ϕp

(
x′(t)

))′ = λf̃
(
t, x, x′), x(0) = x(T), x′(0) = x′(T), (2.3)

has no solution on ∂Ω.

(ii) The equation

F(a) :=
1
T

∫T

0
f̃(t, a, 0)dt = 0 (2.4)

has no solution on ∂Ω
⋂
R.

(iii) The Brouwer degree of F

deg
(
F,Ω

⋂
R, 0

)
/= 0. (2.5)

Then, the periodic boundary value problem (2.2) has at least one T -periodic solution on Ω.

We can easily obtain the homotopic equation of (1.1) as follows:

(
ϕp

(
x′(t)

))′ + λCx′(t) + λ

[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t − τk))

]
= λe(t), λ ∈ (0, 1). (2.6)
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Lemma 2.2. Assume that the following conditions are satisfied.
(A1) There exists a constant d > 0 such that

(1)
∑n

k=0 gk(t, xk) − e(t) < 0 for xk > d, t ∈ R, k = 0, 1, 2, . . . , n,

(2)
∑n

k=0 gk(t, xk) − e(t) > 0 for xk < −d, t ∈ R, k = 0, 1, 2, . . . , n.

Moveover, if x(t) is a T -periodic solution of (2.6), then

|x|∞ ≤ d +
1
2

√
T
∣∣x′∣∣

2. (2.7)

Proof. Let x(t) be a T -periodic solution of (2.6). Then, integrating (2.6) over [0, T], we have

∫T

0

[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t − τk)) − e(t)

]
dt = 0. (2.8)

Using the integral mean-value theorem, it follows that there exists t1 ∈ [0, T] such that

g0(t1, x(t1)) +
n∑

k=1

gk(t1, x(t1 − τk)) − e(t1) = 0. (2.9)

We now prove that there exists a constant t2 ∈ R such that

|x(t2)| ≤ d. (2.10)

Indeed, suppose otherwise. Then,

|x(t)| > d ∀t ∈ R. (2.11)

Let τ0 = 0. From (A1), (2.9), and (2.11), we see that there exist 0 ≤ i, j ≤ n such that

x(t1 − τi) = max
0≤k≤n

x(t1 − τk) ≥ min
0≤k≤n

x(t1 − τk) = x
(
t1 − τj

)
, (2.12)

which, together with (2.11), implies

−d > x(t1 − τi) = max
0≤k≤n

x(t1 − τk) or x
(
t1 − τj

)
= min

0≤k≤n
x(t1 − τk) > d. (2.13)

Without loss of generality, we may assume that x(t1 − τj) > d (the situation is analogous for
−d > x(t1 − τi)). Then, we have

x(t1 − τi) ≥ x(t1 − τk) ≥ x
(
t1 − τj

)
> d, k = 0, 1, 2, . . . , n. (2.14)
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According to (2.14) and (A1), we obtain

0 >
n∑

k=0

gk(t1, x(t1 − τk)) − e(t1), (2.15)

this contradicts the fact (2.9); thus, (2.10) is true.
Let t2 = mT + t0 where t0 ∈ [0, T] and m is an integer. Then, by the same approach used

in the proof of inequality (3.3) of [7], we have

|x|∞ = max
t∈[t0,t0+T]

|x(t)| ≤ max
t∈[t0,t0+T]

{
d +

1
2

(∫ t

t0

∣∣x′(s)
∣∣ds +

∫ t0

t−T

∣∣x′(s)
∣∣ds

)}
≤ d +

1
2

√
T
∣∣x′∣∣

2.

(2.16)

This completes the proof of Lemma 2.2.

Lemma 2.3. Let (A1) holds. Assume that the following condition is satisfied.
(A2) There exist nonnegative constants b0, b0, b1, b2, . . . , bn such that

b0|x1 − x2|2 ≤ −(g0(t, x1) − g0(t, x2)
)
(x1 − x2),

b0 > b1 + b2 + · · · + bn,
∣∣gk(t, x1) − gk(t, x2)

∣∣ ≤ bk|x1 − x2|,
(2.17)

for all t, x1, x2 ∈ R, k = 0, 1, 2, . . . , n.
Then, (1.1) has at most one T -periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of (1.1). Set Z(t) = x1(t) −
x2(t). Then, we obtain

(
ϕp

(
x′

1(t)
) − ϕp

(
x′

2(t)
))′ + C

(
x′

1(t) − x′
2(t)

)
+
[
g0(t, x1(t)) − g0(t, x2(t))

]

+
n∑

k=1

[
gk(t, x1(t − τk)) − gk(t, x2(t − τk))

]
= 0.

(2.18)

Multiplying Z(t) and (2.18) and then integrating it from 0 to T, from (A2) and Schwarz
inequality, we get

b0|Z|22 = b0

∫T

0
|Z(t)|2dt

≤ −
∫T

0
(x1(t) − x2(t))

[
g0(t, x1(t)) − g0(t, x2(t))

]
dt

= −
∫T

0

(
ϕp

(
x′

1(t)
) − ϕp

(
x′

2(t)
))(

x′
1(t) − x′

2(t)
)
dt

+
n∑

k=1

∫T

0

[
gk(t, x1(t − τk)) − gk(t, x2(t − τk))

]
Z(t)dt
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≤
n∑

k=1

bk

∫T

0
|x1(t − τk) − x2(t − τk)||Z(t)|dt

≤
n∑

k=1

bk

(∫T

0
|x1(t − τk) − x2(t − τk)|2dt

)1/2

|Z|2

=
n∑

k=1

bk|Z|22.

(2.19)

Since b0 > b1 + b2 + · · · + bn, we have

Z(t) ≡ 0 ∀t ∈ R. (2.20)

Thus, x1(t) ≡ x2(t) for all t ∈ R. Therefore, (1.1) has at most one T -periodic solution. The
proof of Lemma 2.3 is now complete.

3. Main Results

Theorem 3.1. Let (A1) and (A2) hold. Then, (1.1) has a unique T -periodic solution in C1
T .

Proof. By Lemma 2.3, it is easy to see that (1.1) has at most one T -periodic solution in C1
T .

Thus, in order to prove Theorem 3.1, it suffices to show that (1.1) has at least one T -periodic
solution in C1

T . To do this, we are going to apply Lemma 2.1. Firstly, we claim that the set of
all possible T -periodic solutions of (2.6) in C1

T is bounded.
Let x(t) ∈ C1

T be a T -periodic solution of (2.6). Multiplying x(t) and (2.6) and then
integrating it from 0 to T, we have

−
∫T

0
ϕp

(
x′(t)

)
x′(t)dt + λ

∫T

0
x(t)

[
g0(t, x(t)) +

n∑
k=1

gk(t, x(t − τk)) − e(t)

]
dt = 0. (3.1)

Since x(0) = x(T), then there exists t0 ∈ [0, T] such that x′(t0) = 0. And since ϕp(0) = 0, we
have

∣∣ϕp

(
x′(t)

)∣∣ =
∣∣∣∣∣
∫ t

t0

(
ϕp

(
x′(s)

))′
ds

∣∣∣∣∣ ≤ λ

∫ t0+T

t0

∣∣∣∣∣g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk)) − e(t)

∣∣∣∣∣dt, (3.2)

where t ∈ [t0, t0 + T].
In view of (3.1), (A2), and Schwarz inequality, we get

b0|x|22 = b0

∫T

0
|x(t)|2dt

≤ −
∫T

0
(x(t) − 0)

(
g0(t, x(t)) − g0(t, 0)

)
dt
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= − 1
λ

∫T

0
ϕp

(
x′(t)

)
x′(t)dt +

n∑
k=1

∫T

0

[
gk(t, x(t − τk)) − gk(t, 0)

]
x(t)dt

+
n∑

k=0

∫T

0
gk(t, 0)x(t)dt −

∫T

0
x(t)e(t)dt

≤
n∑

k=1

bk

∫T

0
|x(t − τk)||x(t)|dt +

n∑
k=0

∫T

0

∣∣gk(t, 0)
∣∣|x(t)|dt +

√
T |e|∞|x|2

≤
n∑

k=1

bk

(∫T

0
|x(t − τk)|2dt

)1/2

|x|2 +
√
T

n∑
k=0

∣∣gk(t, 0)
∣∣
∞|x|2 +

√
T |e|∞|x|2

=
n∑

k=1

bk|x|22 +
√
T

n∑
k=0

∣∣gk(t, 0)
∣∣
∞|x|2 +

√
T |e|∞|x|2.

(3.3)

It follows that

|x|2 ≤
√
T
∑n

k=0

∣∣gk(t, 0)
∣∣
∞ +

√
T |e|∞

b0 −
∑n

k=1 bk
:= θ. (3.4)

Again from (A2) and Schwarz inequality, (3.2) and (3.4) yield

∣∣x′∣∣p−1
∞ = max

t∈[t0, t0+T]
{∣∣ϕp

(
x′(t)

)∣∣} = max
t∈[t0,t0+T]

{∣∣∣∣∣
∫ t

t0

(
ϕp

(
x′(s)

))′
ds

∣∣∣∣∣

}

≤
∫ t0+T

t0

∣∣∣∣∣g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk)) − e(t)

∣∣∣∣∣dt

=
∫T

0

∣∣∣∣∣g0(t, x(t)) +
n∑

k=1

gk(t, x(t − τk)) − e(t)

∣∣∣∣∣dt

≤
∫T

0

∣∣g0(t, x(t)) − g0(t, 0)
∣∣dt +

n∑
k=1

∫T

0

∣∣gk(t, x(t − τk)) − gk(t, 0)
∣∣dt

+
n∑

k=0

∫T

0

∣∣gk(t, 0)
∣∣dt + T |e|∞

≤ b0

∫T

0
|x(t)|dt +

n∑
k=1

∫T

0
bk|x(t − τk)|dt +

n∑
k=0

T
∣∣gk(t, 0)

∣∣
∞ + T |e|∞

≤ b0
√
T |x|2 +

n∑
k=1

bk
√
T |x|2 +

n∑
k=0

T
∣∣gk(t, 0)

∣∣
∞ + T |e|∞
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≤ b0
√
Tθ +

n∑
k=1

bk
√
Tθ +

n∑
k=0

T
∣∣gk(t, 0)

∣∣
∞ + T |e|∞

:= η,

(3.5)

which, together with (2.7), implies that there exists a positive constant M > 1+(η)1/(p−1) such
that, for all t ∈ R,

∣∣x′∣∣
∞ < M, |x|∞ ≤ d +

1
2

√
T
∣∣x′∣∣

2 ≤ d +
1
2
T
∣∣x′∣∣

∞ < M. (3.6)

Set

Ω =
{
x ∈ C1

T : |x|∞ ≤ M,
∣∣x′∣∣

∞ ≤ M
}
, (3.7)

then we know that (2.6) has no T -periodic solution on ∂Ω as λ ∈ (0, 1) and when x(t) ∈
∂Ω

⋂
R, x(t) = M or x(t) = −M, from (A2), we can see that

1
T

∫T

0

{
−g0(t,M) −

n∑
k=1

gk(t,M) + e(t)

}
dt > 0,

1
T

∫T

0

{
−g0(t,−M) −

n∑
k=1

gk(t,−M) + e(t)

}
dt < 0,

(3.8)

so condition (ii) of Lemma 2.1 is also satisfied. Set

H
(
x, μ

)
= μx − (

1 − μ
) 1
T

∫T

0

[
g0(t, x) +

n∑
k=1

gk(t, x) − e(t)

]
dt, (3.9)

and when x ∈ ∂Ω
⋂
R, μ ∈ [0, 1], we have

xH
(
x, μ

)
= μx2 − (

1 − μ
)
x

1
T

∫T

0

[
g0(t, x) +

n∑
k=1

gk(t, x) − e(t)

]
dt > 0. (3.10)

Thus, H(x, μ) is a homotopic transformation and

deg
{
F,Ω

⋂
R, 0

}
= deg

{
− 1
T

∫T

0

[
g0(t, x) +

n∑
k=1

gk(t, x) − e(t)

]
dt,Ω

⋂
R, 0

}

= deg
{
x,Ω

⋂
R, 0

}
/= 0,

(3.11)

so condition (iii) of Lemma 2.1 is satisfied. In view of the previous Lemma 2.1, (1.1) has at
least one solution with period T . This completes the proof.
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4. Example and Remark

Example 4.1. Let p = 4, g0(t, x) = −10e20+sin tx, g1(t, x) = −2e2+sin t sinx, and g2(t, x) =
−3e3+cos t cosx for all t, x ∈ R. Then, the following Liénard type p-Laplacian equation with
two constant delays

(
ϕpx

′(t)
)′ + 55x′(t) + g0(t, x(t)) + g1(t, x(t − 1)) + g2(t, x(t − 2)) = cos t (4.1)

has a unique 2π-periodic solution.

Proof. From (4.1), it is straight forward to check that all the conditions needed in Theorem 3.1
are satisfied. Therefore, (4.1) has at least one 2π-periodic solution.

Remark 4.2. Obviously, the results in [2–5] obtained on Duffing type p-Laplacian equation
with single delay and without multiple delays cannot be applicable to (4.1). This implies that
the results of this paper are essentially new.
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We provide optimal conditions for the existence and uniqueness of solutions to a nonlocal
boundary value problem for a class of linear homogeneous second-order functional differential
equations with piecewise constant arguments. The nonlocal boundary conditions include terms of
the state function and the derivative of the state function. A similar nonhomogeneous problem is
also discussed.

1. Introduction

In the study of second-order functional differential equations, there is a wide range of
works dealing with periodic boundary value problems and piecewise continuous functional
dependence. We mention, for instance, [1], where an equation independent of the first
derivative is analyzed, and many other works as [2–14], where existence and stability results
are provided.

Most of works on this field deal with nonconstructive existence results. However, in
[7, 11], explicit solutions are found for second-order functional differential equations with
piecewise constant arguments, through the calculus of the Green’s function. Other works in
relation with first and higher-order differential equations with delay are [15–18].

In [19], a class of linear second-order differential equations with piecewise constant
arguments is considered under the nonlocal conditions x(0) = ϕ, x(T) = x(μ) + ψ, where
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ϕ, ψ ∈ R, that is, an initial position is assumed and the boundary conditions are independent
of the derivative of the function.

In this paper, we study the following nonlocal boundary value problem for homoge-
neous linear second-order functional differential equations:

x′′(t) + ax′(t) + bx(t) + cx′([t]) + dx([t]) = 0, t ∈ J = [0, T],

x(T) = x
(
μ
)
+ ϕ,

x′(T) = x′(μ) + ψ,

(1.1)

for a, b, c, d, ϕ, ψ ∈ R, T > 0 and μ ∈ (0, T), where the functional dependence is given by
the greatest integer part [t], and the nonlocal boundary conditions involve both the state
function and its derivative, which is the main difference from the study in [19]. A discussion
for nonhomogeneous equations is also included. We consider the existence and uniqueness of
solution to this problem, providing optimal conditions and calculating the exact expression
of solutions.

To better illustrate the significant differences between the results included in this paper
and those in [19], we remark that [19] is devoted to the study of the same class of linear
second-order differential equations with piecewise constant arguments but considering a
nonlocal boundary value problem where the value of the unknown function x is fixed at
the initial instant t = 0 (i.e., an initial condition is imposed) and the boundary condition
also involves the value of the sought solution at the right endpoint of the interval T and
an intermediate point μ. None of the conditions imposed in [19] involve the value of the
rate of change of the solution at any points. Thus, the nonlocal conditions in [19] can be
reduced, by using the expression of the solution, to a boundary value problem affecting only
the state of the solution, being independent of the rate of change of the state of the system.
On the other hand, the nonlocal problem considered in this paper does not fix a certain initial
position and, moreover, the boundary condition introduces the dependence, not only on the
state, but also on the variation of the state of the system. Indeed, the value of the unknown
function and its derivative is determined by the value of the corresponding magnitudes at an
intermediate point of the interval of interest. Moreover, since the results in these two papers
are also extensible to the special case where the intermediate point is identical to the initial
instant (μ = 0), we compare the consequences of both works to explain better the implications
of the study of each problem. If we consider μ = 0, the results in [19] are applicable to
obtain the solution to a class of linear second-order differential equations with piecewise
constant arguments subject to the boundary conditions x(0) = ϕ, x(T) = x(0) + ψ = ϕ + ψ
and, therefore, we solve a problem with fixed values of the function at the end-points of the
interval. However, again for μ = 0, the results presented in this paper allow to characterize
the existence of solution (and provide its explicit expression) imposing boundary conditions
of the type x(T) = x(0) + ϕ, x′(T) = x′(0) + ψ, which include, as a particular case, periodic
boundary conditions (on x and x′).

The main results are stated after a few preliminary results are recalled, and, finally,
examples are included to show the applicability of these results.
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2. Preliminaries

Consider the equation

x′′(t) + ax′(t) + bx(t) + cx′([t]) + dx([t]) = 0, t ∈ J = [0, T], (2.1)

where a, b, c, d and T > 0. The following concepts and results come from [7].

Definition 2.1. [7] Let the spaces

Λ :=
{
y : J −→ R : y is continuous in J \ {1, 2, . . . , [T]},
and there exist y

(
n−) ∈ R, y(n+) = y(n), ∀n ∈ {1, 2, . . . , [T]}},

E := {x : J −→ R : x, x′ are continuous and x′′ ∈ Λ}.

(2.2)

A solution to (2.1) is a function x ∈ E which satisfies (2.1), taking x′′ (n) = x′′ (n+), for all n ∈
{0, 1, 2, . . . , [T]}.

For the constants a, b, c, d ∈ R, we define h1(s) as

1 − d

a
s +

d

a2

(
1 − e−as

)
, if b = 0, a /= 0,

1 − d

2
s2, if b = 0, a = 0,

(
1 +

d

b

)(
1 +

a

2
s
)
e−(a/2)s − d

b
, if b /= 0, a2 = 4b,

(
1 +

d

b

)
βeαs − αeβs

β − α
− d

b
, if b/= 0, a2 > 4b,

(
1 +

d

b

)
e−(a/2)s

⎧
⎨
⎩cos

√
b − a2

4
s +

a

2
√
b − a2/4

sin

√
b − a2

4
s

⎫
⎬
⎭ − d

b
, if b /= 0, a2 < 4b.

(2.3)

Consider also h2(s) given by

1
a

(
1 − e−as − cs +

c

a

(
1 − e−as

))
, if b = 0, a /= 0,

s − c

2
s2, if b = 0, a = 0,

e−(a/2)s
{ c
b

(
1 +

a

2
s
)
+ s
}
− c

b
, if b /= 0, a2 = 4b,
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(
βc/b − 1

)
eαs + (1 − αc/b)eβs

β − α
− c

b
, if b /= 0, a2 > 4b,

e−(a/2)s

⎧
⎨
⎩

c

b
cos

√
b − a2

4
s +

1 + ac/(2b)√
b − a2/4

sin

√
b − a2

4
s

⎫
⎬
⎭ − c

b
, if b /= 0, a2 < 4b.

(2.4)

In the definitions of functions h1 and h2, we denote, for b /= 0, a2 > 4b,

α = −a
2
+

√(a
2

)2
− b, β = −a

2
−
√(a

2

)2
− b. (2.5)

It is easy to check [7] that h1(0) = 1, h2(0) = 0, h′
1(0) = 0, h′

2(0) = 1.

Theorem 2.2 (see [7, Theorem 2.1]). The initial value problem

v′′(t) + av′(t) + bv(t) + cv′([t]) + dv([t]) = 0, t ∈ [0,+∞),

v(0) = v0,

v′(0) = v′
0,

(2.6)

for v0, v
′
0 ∈ R, has the solution

v(t) =
(
h1(t − n) h2(t − n)

)(C1 C2

C′
1 C′

2

)n(
v0

v′
0

)
, t ∈ [n, n + 1), (2.7)

where n ∈ Z
+,

C1 = h1(1), C2 = h2(1),

C′
1 = h′

1(1), C′
2 = h′

2(1).
(2.8)

To simplify calculus, for z ∈ [0, 1], one denotes

H(z) =

(
h1(z) h2(z)

h′
1(z) h′

2(z)

)
,

C = H(1) =

(
C1 C2

C′
1 C′

2

)
.

(2.9)
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3. Main Results

First, we consider the nonlocal boundary value problem

x′′(t) + ax′(t) + bx(t) + cx′([t]) + dx([t]) = 0, t ∈ J = [0, T],

x(T) = x
(
μ
)
+ ϕ,

x′(T) = x′(μ) + ψ,

(3.1)

for a, b, c, d, ϕ, ψ ∈ R, T > 0 and μ ∈ (0, T).
If μ = 0 = ϕ, the condition x(T) = x(μ) +ϕ is reduced to a periodic boundary condition

of Dirichlet type. On the other hand, if μ = 0, we obtain x′(T) = x′(0) + ψ, and, moreover, if
ψ = 0, we deduce the periodicity of the derivative of the function.

Theorem 3.1. If T > 0 and μ ∈ (0, T), then problem (3.1) is solvable for each
( ϕ
ψ

)
in the image of the

mapping

F :

(
u

v

)
−→
[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
C[μ]

(
u

v

)
. (3.2)

Hence, there exists a unique solution to (3.1) for every
( ϕ
ψ

) ∈ R
2 if and only if the matrix

[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
C[μ] (3.3)

is nonsingular. In this case, the solution is given by

v(t) =
(
h1(t − n) h2(t − n)

)
Cn

(
v0

v′
0

)
, t ∈ [n, n + 1), n ∈ Z

+, (3.4)

where
(

v0
v′

0

)
is the inverse image of

( ϕ
ψ

)
by F.

If the matrix (3.3) is singular, then there exists an infinite number of solutions to problem (3.1)
for every

( ϕ
ψ

)
in the image of F, taking as initial position and initial slope in (3.4) any preimage of( ϕ

ψ

)
by F, and there exist no solutions for the remaining pairs

( ϕ
ψ

) ∈ R
2.

Proof. We consider the initial value problem

v′′(t) + av′(t) + bv(t) + cv′([t]) + dv([t]) = 0, t ∈ [0,+∞),

v(0) = v0,

v′(0) = v′
0,

(3.5)
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for v0, v
′
0 ∈ R, whose solution is, by Theorem 2.2 [7, Theorem 2.1],

v(t) =
(
h1(t − n) h2(t − n)

)
Cn

(
v0

v′
0

)
, t ∈ [n, n + 1), (3.6)

where n ∈ Z
+. We analyze under which conditions the boundary conditions are fulfilled,

taking into account that

v′(t) =
(
h′

1(t − n) h′
2(t − n)

)
Cn

(
v0

v′
0

)
, t ∈ [n, n + 1), (3.7)

where n ∈ Z
+.

First, we consider the case T /∈ Z, and μ /∈ Z. To obtain the solution to (3.1), we calcu-
late v0 and v′

0 from the expressions of (3.6) and (3.7), in order to satisfy v(T) = v(μ) + ϕ and
v′(T) = v′(μ) + ψ. Hence the boundary conditions are written as

[(
h1(T − [T]) h2(T − [T])

)
C[T]−[μ] − (h1

(
μ − [μ]) h2

(
μ − [μ]))

]
C[μ]

(
v0

v′
0

)
= ϕ,

[(
h′

1(T − [T]) h′
2(T − [T])

)
C[T]−[μ] − (h′

1

(
μ − [μ]) h′

2

(
μ − [μ]))

]
C[μ]

(
v0

v′
0

)
= ψ,

(3.8)

that is,

[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
C[μ]

(
v0

v′
0

)
=

(
ϕ

ψ

)
. (3.9)

The properties of functions h1 and h2 produce that the boundary conditions, in the cases
where T ∈ Z, or μ ∈ Z (or both), can be derived from the expression obtained in the case
studied T /∈ Z, and μ /∈ Z.

Therefore, this system has a solution only for
( ϕ
ψ

)
in the image of the mapping

(
u

v

)
−→
[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
C[μ]

(
u

v

)
. (3.10)

Therefore, the solution is unique if the matrix (3.3) is nonsingular, in which case, the initial
condition and initial slope are given as

(
v0

v′
0

)
=
([

H(T − [T])C[T]−[μ] −H
(
μ − [μ])

]
C[μ]
)−1
(
ϕ

ψ

)

=
(
C[μ]
)−1[

H(T − [T])C[T]−[μ] −H
(
μ − [μ])

]−1
(
ϕ

ψ

)
.

(3.11)
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On the other hand, if the matrix (3.3) is singular, for
( ϕ
ψ

)
in the image of F, the infinitely

many solutions are calculated from (3.6) taking as initial conditions any preimage of
( ϕ
ψ

)
by

F, which proves the result.

Remark 3.2. The existence and uniqueness condition (3.3) is reduced, if [μ] > 0, to the nonsin-
gularity of the matrices C and

[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
. (3.12)

On the other hand, if [μ] = 0, it is just reduced to the nonsingularity of the matrix [H(T −
[T])C[T] −H(μ)].

Remark 3.3. In Theorem 3.1, if we consider μ = 0, then the boundary conditions are x(T) =
x(0)+ϕ, x′(T) = x′(0)+ψ, and the condition of existence and uniqueness of solution is reduced
to the nonsingularity of

[
H(T − [T])C[T] − I

]
, (3.13)

which coincides with condition (15) in [7, Theorem 2.2]. Moreover, if ϕ = ψ = 0, the above-
mentioned nonsingularity condition provides that the unique solution to the homogeneous
equation subject to periodic boundary value conditions is the trivial solution (see [7,
Theorem 2.2]).

Remark 3.4. In Theorem 3.1, the order 2 matrix (3.3) can be written in a simplified manner in
the following particular cases.

(i) If T /∈ Z and T − [T] = μ − [μ],

H(T − [T])
[
C[T]−[μ] − I

]
C[μ]. (3.14)

(ii) If T /∈ Z and μ ∈ Z,

[
H(T − [T])C[T]−μ − I

]
Cμ. (3.15)

(iii) If T ∈ Z and μ /∈ Z,

[
CT−[μ] −H

(
μ − [μ])

]
C[μ]. (3.16)

(iv) If T, μ ∈ Z,

[
CT−μ − I

]
Cμ. (3.17)
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Remark 3.5. Summarizing, the study of the solvability of (3.1) is reduced to the discussion of
system (3.9). In the case of existence of an infinite number of solutions, we must analyze the
rank of the matrix in (3.3) to determine whether any pair is admissible as initial position and
slope or the space of initial conditions is one-dimensional. If the rank of (3.3) is zero, problem
(3.1) is solvable only for

( ϕ
ψ

)
=
(

0
0

)
, that is, problem

x′′(t) + ax′(t) + bx(t) + cx′([t]) + dx([t]) = 0, t ∈ J = [0, T],

x(T) = x
(
μ
)
,

x′(T) = x′(μ),
(3.18)

for a, b, c, d ∈ R, T > 0 and μ ∈ (0, T), has an infinite number of solutions, given by (3.4), for
any initial point

(
v0
v′

0

)
∈ R

2.

On the other hand, and denoting by G the matrix in (3.3), if rank(G) = 1 and
( ϕ
ψ

)
depends linearly on each column of G, then we have a one-dimensional space of solutions,
whose starting conditions V0 =

(
v0
v′

0

)
are determined from the row of the system G

(
v0
v′

0

)
=
( ϕ
ψ

)

corresponding to a nonzero minor of G.
Next, with the purpose of extending Theorem 3.1 to the nonhomogeneous case, we

consider the following nonlocal boundary value problem for a nonhomogeneous equation:

x′′(t) + ax′(t) + bx(t) + cx′([t]) + dx([t]) = σ(t), t ∈ J = [0, T],

x(T) = x
(
μ
)
+ ϕ,

x′(T) = x′(μ) + ψ,

(3.19)

for a, b, c, d, ϕ, ψ ∈ R, T > 0, μ ∈ (0, T), and σ ∈ Λ. Using the expression of the solution for the
corresponding initial value problem provided by [19, Theorem 5.2], we prove the following
existence (and uniqueness) result.

Theorem 3.6. Consider a, b, c, d ∈ R, T > 0, μ ∈ (0, T), σ ∈ Λ and ϕ, ψ ∈ R. Then problem (3.19)
has a unique solution if and only if the matrix (3.3) is nonsingular. Under this assumption, the unique
solution to (3.19) is given by

x(t) =
(
h1(t − n) h2(t − n)

)
CnV0

+
n−1∑
k=0

∫k+1

k

(
h1(t − n) h2(t − n)

)
Cn−1−k

(
g(k + 1 − s)

g ′(k + 1 − s)

)
σ(s)ds

+
∫ t
n

g(t − s)σ(s)ds, t ∈ [n, n + 1), n ∈ Z
+,

(3.20)
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with g defined as

g(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
a
(1 − e−az), if b = 0, a /= 0,

z, if b = 0, a = 0,

ze−(a/2)z, if b /= 0, a2 = 4b,

eβz − eαz

β − α
, if b /= 0, a2 > 4b,

1√
b − a2/4

e−(a/2)z sin

√
b − a2

4
z, if b /= 0, a2 < 4b,

(3.21)

and taking, as the initial condition V0,

V0 =
[
H(T − [T])C[T] −H

(
μ − [μ])C[μ]

]−1
((

ϕ

ψ

)
−MT,μ,σ

)
, (3.22)

where

MT,μ,σ =
[μ]−1∑
k=0

∫k+1

k

[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
C[μ]−1−k

(
g(k + 1 − s)

g ′(k + 1 − s)

)
σ(s)ds

+
[T]−1∑
k=[μ]

∫k+1

k

H(T − [T])C[T]−1−k
(

g(k + 1 − s)

g ′(k + 1 − s)

)
σ(s)ds

+
∫T
[T]

(
g(T − s)

g ′(T − s)

)
σ(s)ds −

∫μ
[μ]

(
g
(
μ − s
)

g ′(μ − s
)
)
σ(s)ds.

(3.23)

On the other hand, if the matrix (3.3) is singular, the number of solutions to (3.19) is determined by
the discussion of the linear system

[
H(T − [T])C[T] −H

(
μ − [μ])C[μ]

]
V0 =

((
ϕ

ψ

)
−MT,μ,σ

)
, (3.24)

and, for each solution V0 to this system (in case it exists), the expression (3.20) provides a solution to
(3.19).
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Proof. The result follows from the expression of the solution (3.20) for the corresponding
initial value problem, whose derivative is given by

x′(t) =
(
h′

1(t − n) h′
2(t − n)

)
CnV0

+
n−1∑
k=0

∫k+1

k

(
h′

1(t − n) h′
2(t − n)

)
Cn−1−k

(
g(k + 1 − s)

g ′(k + 1 − s)

)
σ(s)ds

+
∫ t
n

g ′(t − s)σ(s)ds, t ∈ [n, n + 1), n ∈ Z
+,

(3.25)

and the fact that the restrictions represented by the boundary conditions produce, respec-
tively,

(
1 0
)[
H(T − [T])C[T] −H

(
μ − [μ])C[μ]

]
V0 = ϕ − (1 0

)MT,μ,σ ,

(
0 1
)[
H(T − [T])C[T] −H

(
μ − [μ])C[μ]]V0 = ψ − (0 1

)MT,μ,σ .

(3.26)

4. Examples

We present some examples where different situations are analyzed in order to decide if the
existence and uniqueness condition (nonsingularity of (3.3)) holds and, in case of nonuni-
queness, the dimension of the space of solutions. The exact expression of the solution (or
solutions) is given explicitly.

We recall that, for s ∈ [0, 1], H(s) is given, depending on the values of the coefficients
a, b, c, d as follows.

(i) If b = 0, a /= 0,

H(s) =

⎛
⎜⎜⎜⎝

1 − d

a
s +

d

a2 (1 − e−as)
1
a

(
1 − e−as − cs +

c

a
(1 − e−as)

)

d

a
(−1 + e−as)

1
a
((a + c)e−as − c)

⎞
⎟⎟⎟⎠, (4.1)

thus

C = H(1) =

(
C1 C2

C′
1 C′

2

)
=

⎛
⎜⎜⎝

1 − d

a
+

d

a2 (1 − e−a)
1
a

(
1 − e−a − c +

c

a
(1 − e−a)

)

d

a
(−1 + e−a)

1
a
((a + c)e−a − c)

⎞
⎟⎟⎠. (4.2)
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Note that the determinant of the matrix C is equal to

det(C) =
e−a
(
(ea − a − 1)d + (a − a ea)c + a2)

a2
. (4.3)

(ii) If b = 0, a = 0,

H(s) =

⎛
⎜⎝

1 − d

2
s2 s − c

2
s2

−ds 1 − cs

⎞
⎟⎠, (4.4)

thus

C = H(1) =

(
C1 C2

C′
1 C′

2

)
=

⎛
⎜⎝

1 − d

2
1 − c

2

−d 1 − c

⎞
⎟⎠. (4.5)

The determinant of the matrix C is equal to

det(C) =
d

2
− c + 1. (4.6)

(iii) If b /= 0, a2 = 4b,

H(s) =

⎛
⎜⎜⎜⎜⎝

(
1 +

d

b

)(
1 +

a

2
s
)
e−(a/2)s − d

b
e−(a/2)s

{ c
b

(
1 +

a

2
s
)
+ s
}
− c

b
(

1 +
d

b

)(
−a

2

4
s

)
e−(a/2)s e−(a/2)s

{
−a2c

4b
s − a

2
s + 1

}

⎞
⎟⎟⎟⎟⎠

, (4.7)

thus

C = H(1) =

⎛
⎜⎜⎜⎜⎝

(
1 +

d

b

)(
1 +

a

2

)
e−a/2 − d

b
e−a/2

{ c
b

(
1 +

a

2

)
+ 1
}
− c

b

(
1 +

d

b

)(
−a

2

4

)
e−a/2 e−a/2

{
−a2c

4b
− a

2
+ 1

}

⎞
⎟⎟⎟⎟⎠

. (4.8)

The determinant of the matrix C is equal to

det(C) = e−a
(
(2a − 4)ea/2 + 4

)
d − a2 ea/2c + 4b

4b
. (4.9)
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(iv) If b /= 0, a2 > 4b, and denoting

α = −a
2
+

√(a
2

)2
− b, β = −a

2
−
√(a

2

)2
− b,

H(s) =

⎛
⎜⎜⎜⎜⎝

(
1 +

d

b

)
βeαs − αeβs

β − α
− d

b

(
βc/b − 1

)
eαs + (1 − αc/b)eβs

β − α
− c

b

(b + d)
eαs − eβs

β − α

(c − α)eαs +
(
β − c
)
eβs

β − α

⎞
⎟⎟⎟⎟⎠

,

(4.10)

thus

C = H(1) =

⎛
⎜⎜⎜⎜⎝

(
1 +

d

b

)
βeα − αeβ

β − α
− d

b

(
βc/b − 1

)
eα + (1 − αc/b)eβ

β − α
− c

b

(
1 +

d

b

)
b
(
eα − eβ

)

β − α

(c − α)eα +
(
β − c
)
eβ

β − α

⎞
⎟⎟⎟⎟⎠

. (4.11)

In this case, the determinant of the matrix C is equal to

det(C) =
(

1 +
d

b

)((
βeα − αeβ

)(
(c − α)eα +

(
β − c
)
eβ
)

(
β − α

)2 −
(
eα − eβ

)(
βc − b

)
eα + (b − αc)eβ

(
β − α

)2
)

− d

b

(c − α)eα +
(
β − c
)
eβ

β − α
+ c

(
1 +

d

b

)
eα − eβ

β − α

=
(

1 +
d

b

)
α2 + β2 − 2b
(
β − α

)2 eα+β +
1

β − α

(
d

b
αeα − d

b
βeβ + ceα − ceβ

)

=
(

1 +
d

b

)
e−a +

1
β − α

((
d

b
α + c

)
eα −
(
d

b
β + c

)
eβ
)
.

(4.12)

(v) If b /= 0, a2 < 4b, and denoting R =
√
b − a2/4,

H(s)=

⎛
⎜⎜⎜⎝

(
1 +

d

b

)
e−(a/2)s

{
cosRs +

a

2R
sinRs

}
− d

b
e−(a/2)s

{
c

b
cosRs +

1 + ac/(2b)
R

sinRs

}
− c

b

− 1
R
(b + d) e−(a/2)s sinRs e−(a/2)s

{
cosRs − a + 2c

2R
sinRs

}

⎞
⎟⎟⎟⎠,

(4.13)
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thus

C = H(1) =

⎛
⎜⎜⎜⎝

(
1 +

d

b

)
e−a/2

{
cosR +

a

2R
sinR

}
− d

b
e−a/2

{
c

b
cosR +

1 + ac/(2b)
R

sinR

}
− c

b

− 1
R
(b + d) e−a/2 sinR e−a/2

{
cosR − a + 2c

2R
sinR

}

⎞
⎟⎟⎟⎠.

(4.14)

The determinant of C is given by

det(C) =
(

1 +
d

b

)
e−a
{

cos2R − c

R
sinR cosR − a(a + 2c)

4R2
sin2R

}

− d

b
e−a/2 cosR +

d

b

a + 2c
2R

sinR +
1
R

(
1 +

d

b

)
ce−a sinR cosR

+
b + d

R2
e−a
(

1 +
ac

2b

)
sin2R − c

R

(
1 +

d

b

)
e−a/2 sinR

=
(

1 +
d

b

)
e−acos2R +

(
1 +

d

b

)
e−a
(
−a(a + 2c)

4R2
+

b

R2

(
1 +

ac

2b

))
sin2R

− d

b
e−a/2 cosR +

1
R

(
d(a + 2c)

2b
− c

(
1 +

d

b

)
e−a/2

)
sinR

=
(

1 +
d

b

)
e−a − d

b
e−a/2 cosR +

1
R

(
d(a + 2c)

2b
− c

(
1 +

d

b

)
e−a/2

)
sinR.

(4.15)

Example 4.1. Consider the problem

x′′(t) + x′(t) + dx([t]) = 0, t ∈ J =
[

0,
3
2

]
,

x

(
3
2

)
= x

(
1
2

)
+ ϕ,

x′
(

3
2

)
= x′
(

1
2

)
+ ψ,

(4.16)

where d, ϕ, ψ ∈ R. In this case, b = c = 0, a = 1/= 0, T = 3/2 and μ = 1/2. Therefore, we
get H(s) =

(
d(1−e−s)−ds+1 1−e−s

de−s−d e−s

)
so that matrix G = [H(T − [T])C[T]−[μ] − H(μ − [μ])]C[μ] =

H(1/2)[C − I] is reduced to

G =

⎛
⎜⎜⎝

−e
−3/2(√e

(
d2 + 2ed

) − 2d2 + (2 − 2e)d
)

2
e−3/2(√e(e − 1)d + (2 − 2e)d + 2e − 2

)

2

e−3/2(√ed2 − d2 + (1 − e)d
) −e−3/2(√e(e − 1)d + (1 − e)d + e − 1

)

⎞
⎟⎟⎠, (4.17)
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whose determinant is calculated as

det(G) = −e
−2(√e

(
(3e − 3)d2 + (2 − 2e)d

)
+
(
2e − 2e2)d2)

2

= −
(
e−3/2(3e − 3) + 2e−1 − 2

)
d2 + e−3/2(2 − 2e)d

2
.

(4.18)

Hence, G is nonsingular if and only if d /= 0 and d /= 2/(3 − 2e1/2). In this case, problem (4.16)
has a unique solution for every

( ϕ
ψ

) ∈ R
2, given by (see (3.4))

x(t) =
(
d
(
1 − e−t

) − dt + 1
)
v0 +
(
1 − e−t

)
v′

0, t ∈ [0, 1),

x(t) =
(

1 − e1−t
)((

e−1d − d
)
v0 + e−1v′

0

)

+
(
d
(

1 − e1−t
)
− d(t − 1) + 1

)(((
1 − e−1

)
d − d + 1

)
v0 +
(

1 − e−1
)
v′

0

)

= −e−t−1
((((

ed − d2
)
t + 2d2 − ed − e

)
et − ed2 + ed

)
v0

+
(
((e − 1)dt + (2 − 2e)d − e)et +

(
e2 − e

)
d + e

)
v′

0

)
, t ∈

[
1,

3
2

]
,

(4.19)

where

(
v0

v′
0

)
= G−1

(
ϕ

ψ

)

=

⎛
⎜⎜⎜⎜⎝

− 2
(√

e − 1
)
d + 2(

2
√
e − 3
)
d2 + 2d

−
(√

e − 2
)
d + 2(

2
√
e − 3
)
d2 + 2d

− 2
(√

e − 1
)
d − 2e + 2(√

e(2e − 2) + (3 − 3e)
)
d + 2e − 2

−
(√

e − 2
)
d + 2

√
ee − 2e + 2(√

e(2e − 2) + (3 − 3e)
)
d + 2e − 2

⎞
⎟⎟⎟⎟⎠

(
ϕ

ψ

)
,

(4.20)

that is,

v0 =
−(2(√e − 1

)
d + 2

)
ϕ − ((√e − 2

)
d + 2

)
ψ(

2
√
e − 3
)
d2 + 2d

v′
0 =

−2
((√

e − 1
)
d − 2e + 2

)
ϕ − ((√e − 2

)
d + 2

√
ee − 2e + 2

)
(√

e(2e − 2) + (3 − 3e)
)
d + 2e − 2

.

(4.21)



Abstract and Applied Analysis 15

For the particular case where d = 2, ϕ = 1, and ψ = −1, then

(
v0

v′
0

)
= G−1

(
1

−1

)

=

⎛
⎜⎜⎜⎝

−2
√
e − 1

4
√
e − 4

−1
4

− −e + 2
√
e − 1√

e(2e − 2) − 2e + 2
− e + 1

2e − 2

⎞
⎟⎟⎟⎠

(
1

−1

)
=

⎛
⎜⎜⎜⎝

−1
4

√
e√

e − 1

1
2

√
e√

e − 1

⎞
⎟⎟⎟⎠,

(4.22)

and hence the unique solution to

x′′(t) + x′(t) + 2x([t]) = 0, t ∈ J =
[

0,
3
2

]
,

x

(
3
2

)
= x

(
1
2

)
+ 1,

x′
(

3
2

)
= x′
(

1
2

)
− 1,

(4.23)

is given by

x(t) =
√
e(2t − 1) − 2et + e

−4e + 8
√
e − 4

, t ∈ [0, 1),

x(t) = −
√
e
(((

2e2 + 6e
)
t − 7e2 − 21e

)
et + 4e3 + 12e2)

(4e2 + 24e + 4)et+1/2 + (−16e2 − 16e)et

−
((−6e2 − 2e

)
t + 21e2 + 7e

)
et − 12e3 − 4e2

(4e2 + 24e + 4)et+1/2 + (−16e2 − 16e)et
, t ∈

[
1,

3
2

]
.

(4.24)

See Figure 1.
If d = 0, then H(s) =

(
1 1−e−s
0 e−s

)
and the matrix

G =
[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
C[μ] = H

(
1
2

)
[C − I] (4.25)

is reduced to G =
(

0 e−3/2 (e−1)
0 −e−3/2 (e−1)

)
, which has rank one. Since G is singular, there exists an infi-

nite number of solutions to problem (4.16) for every
( ϕ
ψ

)
in the image of the mapping given

by the matrix G, that is, for every
( ϕ
−ϕ
)
, where ϕ ∈ R. On each of these cases, the solutions
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Figure 1: Solution to problem (4.23).

are given by (3.4) taking as initial position and initial slope any preimage of
( ϕ
−ϕ
)
, that is, the

initial slope can be taken as

v′
0 =

e3/2ϕ

e − 1
, (4.26)

and the initial position can be chosen as any real number v0.
Hence, the solutions to the problem

x′′(t) + x′(t) = 0, t ∈ J =
[

0,
3
2

]
,

x

(
3
2

)
= x

(
1
2

)
+ ϕ,

x′
(

3
2

)
= x′
(

1
2

)
− ϕ,

(4.27)

where ϕ ∈ R, are given by

x(t) = v0 +
(
1 − e−t

)
v′

0, t ∈ [0, 1), (4.28)

and the same expression

x(t) =
(
1
(
1 − e−(t−1)))

(
1 1 − e−1

0 e−1

)(
v0

v′
0

)

= v0 +
(
1 − e−t

)
v′

0, t ∈
[

1,
3
2

]
,

(4.29)
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Figure 2: Solution which generates by vertical shifts the remaining solutions to problem (4.27) with ϕ = 1.

where v0 ∈ R and v′
0 = e3/2ϕ/(e − 1). Hence, for each ϕ fixed, all the vertical shifts of the

function x(t) = (1 − e−t) (e3/2ϕ/(e − 1)), t ∈ [0, 3/2] are solutions to (4.27). In Figure 2, we
show the graph of a solution which generates, by vertical shifting, all the solutions to problem
(4.27) for ϕ = 1.

If ψ /= − ϕ, there is no solution for problem (4.16) with d = 0.
Finally, if d = 2/(3 − 2e1/2), then

H(s) =

⎛
⎜⎜⎜⎝

5 − 2
√
e − 2s − 2e−s

3 − 2
√
e

1 − e−s

2(e−s − 1)
3 − 2

√
e

e−s

⎞
⎟⎟⎟⎠,

G = H

(
1
2

)
[C − I]

=

⎛
⎜⎜⎜⎜⎜⎜⎝

4 − 2
√
e − 2e−1/2

3 − 2
√
e

1 − e−1/2

2
(
e−1/2 − 1

)

3 − 2
√
e

e−1/2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−2e−1

3 − 2
√
e

1 − e−1

2
(
e−1 − 1

)

3 − 2
√
e

e−1 − 1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−2e−3/2 + 2e−1 + 6e−1/2 − 10 + 4
√
e

(
3 − 2

√
e
)2

−e−3/2 + e−1 + e−1/2 − 1
3 − 2

√
e

2e−3/2 − 6e−1/2 + 4
(
3 − 2

√
e
)2

e−3/2 − e−1/2

3 − 2
√
e

⎞
⎟⎟⎟⎟⎟⎠

(4.30)
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has rank one. Hence problem (4.16), for d = 2/(3− 2e1/2), has an infinite number of solutions
for
( ϕ
ψ

)
in the image of the mapping given by the matrix G, that is, for the values of ϕ, and ψ

satisfying the system

(
−2e−3/2 + 2e−1 + 6e−1/2 − 10 + 4

√
e
)
v0 +
(
−3e−3/2 + 5e−1 + e−1/2 − 5 + 2e1/2

)
v′

0 = ϕ
(
3 − 2

√
e
)2
,

(
2e−3/2 − 6e−1/2 + 4

)
v0 +
(

3e−3/2 − 3e−1/2 − 2e−1 + 2
)
v′

0 = ψ
(
3 − 2

√
e
)2
,

(4.31)

for some values of v0, v
′
0 ∈ R. For the existence of these values of v0, v

′
0, it is necessary and

sufficient that the rank of the matrix of the system (equal to one) coincides with the rank of
the matrix

⎛
⎝−2e−3/2 + 2e−1 + 6e−1/2 − 10 + 4

√
e −3e−3/2 + 5e−1 + e−1/2 − 5 + 2e1/2 ϕ

(
3 − 2

√
e
)2

2e−3/2 − 6e−1/2 + 4 3e−3/2 − 3e−1/2 − 2e−1 + 2 ψ
(
3 − 2

√
e
)2

⎞
⎠,

(4.32)

that is, for instance,

det

(−3e−3/2 + 5e−1 + e−1/2 − 5 + 2e1/2 ϕ

3e−3/2 − 3e−1/2 − 2e−1 + 2 ψ

)
= 0, (4.33)

equivalent to

ψ =
3e−3/2 − 3e−1/2 − 2e−1 + 2

−3e−3/2 + 5e−1 + e−1/2 − 5 + 2e1/2
ϕ. (4.34)

Under this assumption, there exists an infinite number of solutions to problem

x′′(t) + x′(t) +
2

3 − 2e1/2
x([t]) = 0, t ∈ J =

[
0,

3
2

]
,

x

(
3
2

)
= x

(
1
2

)
+ ϕ,

x′
(

3
2

)
= x′
(

1
2

)
+ ψ,

(4.35)
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which are given by

x(t) =
5 − 2

√
e − 2t − 2e−t

3 − 2
√
e

v0 +
(
1 − e−t

)
v′

0, t ∈ [0, 1),

x(t) =
(

5 − 2
√
e − 2(t − 1) − 2e−(t−1)

3 − 2
√
e

1 − e−(t−1)
)
⎛
⎜⎜⎜⎜⎝

3 − 2
√
e − 2e−1

3 − 2
√
e

1 − e−1

2
(
e−1 − 1

)

3 − 2
√
e

e−1

⎞
⎟⎟⎟⎟⎠

(
v0

v′
0

)

=
−2e−t + 4e1/2−t + 4

√
et + 4e−1t − 6t + 4e − 16

√
e − 8e−1 + 15

(
3 − 2

√
e
)2 v0

+
−e−t − 2e1−t + 2e1/2−t + 2e−1t − 2t − 2

√
e − 4e−1 + 7

3 − 2
√
e

v′
0, t ∈

[
1,

3
2

]
,

(4.36)

where v0 and v′
0 satisfy (one of) the equations in (4.31).

On the other hand, if (4.34) fails, there is no solution to (4.35).

Example 4.2. Next, consider the problem

x′′(t) + cx′([t]) + dx([t]) = 0, t ∈ J =
[

0,
3
2

]
,

x

(
3
2

)
= x

(
1
2

)
+ ϕ,

x′
(

3
2

)
= x′
(

1
2

)
+ ψ,

(4.37)

where c, d, ϕ, ψ ∈ R. In this case, a = b = 0, T = 3/2, and μ = 1/2. Hence, the matrix

G =
[
H(T − [T])C[T]−[μ] −H

(
μ − [μ])

]
C[μ] = H

(
1
2

)
[C − I] (4.38)

is reduced to

G =

⎛
⎜⎜⎜⎝

d2 + (2c − 16)d
16

(c − 2)d + 2c2 − 16c + 16
16

d2 + (2c − 4)d
4

(c − 2)d + 2c2 − 4c
4

⎞
⎟⎟⎟⎠, (4.39)
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whose determinant is det(G) = d((d + 8 − 4c)/8). If d /= 0 and d /= 4c − 8, then G is invertible
and problem (4.37) has a unique solution for every

( ϕ
ψ

) ∈ R
2. Since

G−1 =
1

d − 4c + 8

⎛
⎜⎜⎜⎝

(2c − 4)d + 4c2 − 8c
d

− (c − 2)d + 2c2 − 16c + 16
2d

−(2d + 4c − 8)
d + 2c − 16

2

⎞
⎟⎟⎟⎠, (4.40)

the unique solution to (4.37), for
( ϕ
ψ

)
fixed, is given by

v(t) =
(

1 − d

2
t2
)
v0 +
(
t − c

2
t2
)
v′

0, t ∈ [0, 1),

v(t) =
(

1 − d

2
(t − 1)2 (t − 1) − c

2
(t − 1)2

)⎛
⎝1 − d

2
1 − c

2
−d 1 − c

⎞
⎠
(
v0

v′
0

)

=
((

1 − d

2
(t − 1)2

)(
1 − d

2

)
+
(
(t − 1) − c

2
(t − 1)2

)
(−d)
)
v0

+
((

1 − d

2
(t − 1)2

)(
1 − c

2

)
+
(
(t − 1) − c

2
(t − 1)2

)
(1 − c)

)
v′

0, t ∈
[

1,
3
2

]
,

(4.41)

where

v0 =
(2c − 4)d + 4c2 − 8c

d(d + 8 − 4c)
ϕ − (c − 2)d + 2c2 − 16c + 16

2d(d + 8 − 4c)
ψ,

v′
0 = −2d + 4c − 8

d − 4c + 8
v0 +

d + 2c − 16
2(d − 4c + 8)

v′
0.

(4.42)

For instance, for c = 2 and d = 1, then H(s) =
(

1−s2/2 s−s2

−s 1−2s

)
and G =

(
−11/16 −1/2

1/4 0

)
,

which is invertible with inverse G−1 =
( 0 4
−2 −11/2

)
. Then the unique solution to (4.37), for c = 2

and d = 1 and
( ϕ
ψ

)
fixed, is given by

v(t) = 2
(
t2 − t
)
ϕ +

1
2

(
7t2 − 11t + 8

)
ψ, t ∈ [0, 1),

v(t) = −1
2

(
4t2 − 12t + 8

)
ϕ +

1
2

(
−5t2 + 13t − 4

)
ψ, t ∈

[
1,

3
2

]
.

(4.43)

See Figure 3 for the solution to (4.37) with c = 2, d = 1, ϕ = 1, and ψ = −1:

v(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
(−3 t2 + 7t − 8

)
, t ∈ [0, 1),

1
2
(
t2 − t − 4

)
, t ∈

[
1,

3
2

]
.

(4.44)
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Figure 3: Solution to (4.37) for c = 2, d = 1, ϕ = 1, and ψ = −1.

On the other hand, if d = 0, then

H(s) =

⎛
⎝1 s − cs2

2
0 1 − cs

⎞
⎠,

G = H

(
1
2

)
[C − I] =

⎛
⎜⎜⎝

0
c2 − 8c + 8

8

0
c2 − 2c

2

⎞
⎟⎟⎠

(4.45)

is singular with rank 1, since G12 = 0 if and only if c = 4 ± 2
√

2 and G22 = 0 if and only if c = 0
or c = 2.

Hence, there exists an infinite number of solutions to problem (4.37) with d = 0, for
every

( ϕ
ψ

)
in the image of the mapping given by the matrix G, that is, for every

( ϕ
ψ

) ∈ R
2 such

that 4(c2 − 2c)ϕ = (c2 − 8c + 8)ψ. Under this assumption, the solutions to (4.37) with d = 0 are
given by

v(t) = v0 +
(
t − c

2
t2
)
v′

0, t ∈ [0, 1),

v(t) =
(

1 (t − 1) − c

2
(t − 1)2

)
⎛
⎝1 1 − c

2

0 1 − c

⎞
⎠
(
v0

v′
0

)

= v0 +
(

1 − c

2
+ (1 − c)

(
t − 1 − c

2
(t − 1)2

))
v′

0, t ∈
[

1,
3
2

]
,

(4.46)
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where the initial position v0 can be chosen as any real number and the initial slope must
satisfy

v′
0 =

8ϕ
c2 − 8c + 8

, if c /= 4 ± 2
√

2,

v′
0 =

2ψ
c2 − 2c

, if c /= 0, c /= 2.

(4.47)

For instance, if d = 0 and c = 1, then H(s) =
(

1 s−s2/2
0 1−s

)
, so that G =

(
0 1/8
0 −1/2

)
. Therefore,

there exists an infinite number of solutions to problem (4.37) with d = 0 and c = 1, for every( ϕ
ψ

)
such that ψ = −4ϕ. In this case, the solutions to (4.37) with d = 0 and c = 1 are given by

v(t) = v0 +

⎧⎪⎪⎨
⎪⎪⎩

8
(
t − 1

2
t2
)
ϕ, t ∈ [0, 1),

4ϕ, t ∈
[

1,
3
2

]
,

(4.48)

where v0 is any real number. Note that v′
0 = 8ϕ. All the solutions are obtained as vertical shifts

of the function

f(t) =

⎧⎪⎪⎨
⎪⎪⎩

8
(
t − 1

2
t2
)
ϕ, t ∈ [0, 1),

4ϕ, t ∈
[

1,
3
2

]
.

(4.49)

See Figure 4 for the graph of function f for ϕ = 1, which generates by vertical shifting
the one-dimensional space of solutions to problem (4.37) with d = 0, c = 1, ϕ = 1, and ψ = −4.

Finally, if d = 4c − 8, then

H(s) =

⎛
⎝1 − (2c − 4)s2 s − c

2
s2

(−4c + 8)s 1 − cs

⎞
⎠,

G =

⎛
⎜⎜⎜⎝

3c2 − 18c + 24
2

3c2 − 16c + 16
8

6c2 − 24c + 24
3c2 − 10c + 8

2

⎞
⎟⎟⎟⎠,

(4.50)

which has rank 1. Note that G11 /= 0 for c /= 2 and c /= 4; G12 /= 0 for c /= 4/3 and c /= 4; G21 /= 0 for
c /= 2; and G22 /= 0 for c /= 2 and c /= 4/3.
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Figure 4: Solution which generates by vertical shifting the remaining solutions to problem (4.37) with
d = 0, c = 1, ϕ = 1, and ψ = −4.

Therefore, problem (4.37) for d = 4c − 8 has solution (an infinite number of solutions)
if and only if

3c2 − 18c + 24
2

ψ =
(

6c2 − 24c + 24
)
ϕ, (4.51)

3c2 − 16c + 16
8

ψ =
3c2 − 10c + 8

2
ϕ, (4.52)

in which case the expressions of the solutions are given by (4.41), replacing the value of d,
where v0 and v′

0 satisfy

3c2 − 18c + 24
2

v0 +
3c2 − 16c + 16

8
v′

0 = ϕ, (4.53)

(
6c2 − 24c + 24

)
v0 +

3c2 − 10c + 8
2

v′
0 = ψ. (4.54)

Indeed,

(i) if c = 2, then G =
( 0 −1/2

0 0

)
, and the problem has an infinite number of solutions for

ψ = 0 (see (4.52) since (4.51) is trivially satisfied), where v0 ∈ R and v′
0 = −2ϕ (from

(4.53) since (4.54) is trivially satisfied),

(ii) if c = 4/3, then G =
(

8/3 0
8/3 0

)
, and the problem has an infinite number of solutions

for ϕ = ψ (see (4.51) since (4.52) is trivially satisfied), where v0 = (3/8)ϕ = (3/8)ψ
(from (4.53) or (4.54)) and v′

0 ∈ R,

(iii) if c /= 2 and c /= 4/3, then the elements in the second row of G are nonzero and, hence,
the problem has an infinite number of solutions for ϕ = ((3c2−18c+24)/(2(6c2−24c+
24)))ψ (from (4.51) or the same expression ϕ = ((3c2 −16c+16)/(4(3c2 −10c+8)))ψ
from (4.52)). The initial position and slope are taken satisfying (4.54).
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If we take c = 4 (see the last case distinguished), then G =
( 0 0

24 16

)
, and conditions (4.51) and

(4.52) are reduced to ϕ = 0 and (4.54) is written as 24v0 + 16v′
0 = ψ.

5. Conclusions

In this work, we have analyzed the existence and uniqueness of solutions to the nonlocal
boundary value problem for linear second-order functional differential equations with piece-
wise constant arguments:

x′′(t) + ax′(t) + bx(t) + cx′([t]) + dx([t]) = σ(t), t ∈ J = [0, T],

x(T) = x
(
μ
)
+ ϕ,

x′(T) = x′(μ) + ψ,

(5.1)

where a, b, c, d, ϕ, ψ ∈ R, T > 0, μ ∈ (0, T) and σ ∈ Λ, by reducing the study to the discussion
of a linear system of order 2. The nonlocal boundary conditions considered involve terms
of the state function and the derivative of the state function, and the problem of interest
also includes, as a particular case, periodic boundary value problems for second-order linear
differential equations with functional dependence given by the greatest integer part.

Besides providing conditions on the existence and uniqueness of solutions, this
approach also allows to obtain the expression of solutions explicitly, process which is illus-
trated with some examples.

The differences between the results in this paper and those in [19] have been included
in the introduction.

Acknowledgments

The authors thank the editor and the anonymous referees for their helpful suggestions to-
wards the improvement of the paper. This research is partially supported by Ministerio de
Ciencia e Innovación and FEDER, Project MTM2010-15314.

References

[1] F. Q. Zhang, “Boundary value problems for second order differential equations with piecewise
constant arguments,” Annals of Differential Equations, vol. 9, no. 3, pp. 369–374, 1993.

[2] M. U. Akhmet, “On the reduction principle for differential equations with piecewise constant argu-
ment of generalized type,” Journal ofMathematical Analysis and Applications, vol. 336, no. 1, pp. 646–663,
2007.
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The existence of positive solutions for Neumann boundary value problem of second-order
impulsive differential equations −u′′(t) + Mu(t) = f(t, u(t), t ∈ J , t /= tk , −Δu′|t=tk = Ik(u(tk)),
k = 1, 2, . . . , m, u′(0) = u′(1) = θ, in an ordered Banach space E was discussed by employing
the fixed point index theory of condensing mapping, where M > 0 is a constant, J = [0, 1],
f ∈ C(J×K,K), Ik ∈ C(K,K), k = 1, 2, . . . , m, and K is the cone of positive elements in E. Moreover,
an application is given to illustrate the main result.

1. Introduction

The theory of impulsive differential equations is a new and important branch of differential
equation theory, which has an extensive physical, chemical, biological, engineering back-
ground and realistic mathematical model, and hence has been emerging as an important area
of investigation in the last few decades; see [1]. Correspondingly, boundary value problems
of second-order impulsive differential equations have been considered by many authors, and
some basic results have been obtained; see [2–7]. But many of them obtained extremal solu-
tions by monotone iterative technique coupled with the method of upper and lower solutions;
see [2–4]. The research on positive solutions is seldom and most in real space R; see [5–7].

In this paper, we consider the existence of positive solutions to the second-order impul-
sive differential equation Neumann boundary value problem in an ordered Banach space E:

−u′′(t) +Mu(t) = f(t, u(t)), t ∈ J, t /= tk,

−Δu′|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u′(0) = u′(1) = θ,

(1.1)
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where M > 0 is a constant, f ∈ C(J × E, E), J = [0, 1]; 0 < t1 < t2 < · · · < tm < 1; Ik ∈ C(E, E)
is an impulsive function, k = 1, 2, . . . , m. Δu′|t=tk denotes the jump of u′(t) at t = tk, that is,
Δu′|t=tk = u′(t+

k
) − u′(t−

k
), where u′(t+

k
) and u′(t−

k
) represent the right and left limits of u′(t) at

t = tk, respectively.
In the special case where E = R

+ = [0,+∞), Ik = 0, k = 1, 2, . . . , m, NBVP (1.1) has
been proved to have positive solutions; see [8, 9]. Motivated by the aforementioned facts, our
aim is to study the positive solutions for NBVP (1.1) in a Banach space by fixed point index
theory of condensing mapping. Moreover, an application is given to illustrate the main result.
As far as we know, no work has been done for the existence of positive solutions for NBVP
(1.1) in Banach spaces.

2. Preliminaries

Let E be an ordered Banach space with the norm ‖ · ‖ and partial order ≤, whose positive
cone K = {x ∈ E | x ≥ θ} is normal with normal constant N. Let J = [0, 1]; 0 = t0 < t1 <
t2 < · · · < tm < tm+1 = 1; Jk = [tk−1, tk ], k = 1, 2, . . . , m + 1, J ′ = J \ {t1, t2, . . . , tm}. Let
PC1(J, E) = {u ∈ C(J, E) | u′(t) is continuous at t /= tk, and left continuous at t = tk, and
u′(t+

k
) exists, k = 1, 2, . . . , m}. Evidently, PC1(J, E) is a Banach space with the norm ‖u‖PC1 =

max{‖u(t)‖C, ‖u′‖PC}, where ‖u‖C = supt∈J‖u(t)‖, ‖u′‖PC = supt∈J‖u′(t)‖; see [2]. An abstract
function u ∈ PC1(J, E) ∩ C2(J ′, E) is called a solution of NBVP (1.1) if u(t) satisfies all the
equalities of (1.1).

Let C(J, E) denote the Banach space of all continuous E-value functions on interval
J with the norm ‖u‖C = supt∈J‖u(t)‖. Let α(·) denote the Kuratowski measure of non-
compactness of the bounded set. For the details of the definition and properties of the
measure of noncompactness, see [10, 11]. For any B ⊂ C(J, E) and t ∈ J , set B(t) =
{u(t) | u ∈ B} ⊂ E. If B is bounded in C(J, E), then B(t) is bounded in E, and α(B(t)) ≤
α(B).

Now, we first give the following lemmas in order to prove our main results.

Lemma 2.1 (see [12]). Let B ⊂ C(J, E) be equicontinuous. Then α(B(t)) is continuous on J , and

α(B) = max
t∈J

α(B(t)) = α(B(J)). (2.1)

Lemma 2.2 (see [13]). Let B = {un} ⊂ C(J, E) be a bounded and countable set. Then α(B(t)) is
Lebesgue integral on J , and

α

({∫

J

un(t)dt | n ∈ N

})
≤ 2
∫

J

α(B(t))dt. (2.2)

Lemma 2.3 (see [14]). Let D ⊂ E be bounded. Then there exists a countable set D0 ⊂ D, such that
α(D) ≤ 2α(D0).
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To prove our main results, for any h ∈ C(J, E), we consider the Neumann boundary
value problem (NBVP) of linear impulsive differential equation in E:

−u′′(t) +Mu(t) = h(t), t ∈ J ′,

−Δu′|t=tk = yk, k = 1, 2, . . . , m,

u′(0) = u′(1) = θ,

(2.3)

where M > 0, yk ∈ E, k = 1, 2, . . . , m.

Lemma 2.4. For any h ∈ C(J, E), M > 0, and yk ∈ E, k = 1, 2, . . . , m, the linear NBVP (2.3) has
a unique solution u ∈ PC1(J, E) ∩ C2(J ′, E) given by

u(t) =
∫1

0
G(t, s)h(s)ds +

m∑
k=1

G(t, tk)yk, (2.4)

where

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh
√
M(1 − t) cosh

√
Ms√

M sinh
√
M

, 0 ≤ s ≤ t ≤ 1,

cosh
√
Mt cosh

√
M(1 − s)√

M sinh
√
M

, 0 ≤ t < s ≤ 1.

(2.5)

Proof. Suppose that u(t) is a solution of (2.3); then

u′′(t) −Mu(t) = −h(t),
[
e−2

√
Mt
(
e
√
Mtu(t)

)′]′
= −Me−

√
Mtu(t) + e−

√
Mtu′′(t) = −e−

√
Mth(t).

(2.6)

Let y(t) = e−2
√
Mt(e

√
Mtu(t))

′
; then

y′(t) = −e−
√
Mth(t), Δy|t=tk = −e−

√
Mtkyk. (2.7)

Integrating (2.7) from 0 to t1, we have

y(t1) − y(0) = −
∫ t1

0
e−

√
Msh(s)ds. (2.8)

Again, integrating (2.7) from t1 to t, where t ∈ (t1, t2], then

y(t) = y
(
t+1
) −
∫ t

t1

e−
√
Msh(s)ds = y(0) −

∫ t

0
e−

√
Msh(s)ds − e−

√
Mt1y1. (2.9)
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Repeating the aforementioned procession, for t ∈ J , we have

y(t) = y(0) −
∫ t

0
e−

√
Msh(s)ds −

∑
0<tk<t

e−
√
Mtkyk. (2.10)

Hence,

(
e
√
Mtu(t)

)′
= e2

√
Mt

(
y(0) −

∫ t

0
e−

√
Msh(s)ds −

∑
0<tk<t

e−
√
Mtkyk

)
. (2.11)

For t ∈ J , integrating (2.11) from 0 to t, we have

u(t) = e−
√
Mt

(
u(0) +

∫ t

0
e2

√
Msy(0)ds −

∫ t

0
e2

√
Ms

∫s

0
e−

√
Mτh(τ)dτ ds

−
∫ t

0
e2

√
Ms
∑

0<tk<s

e−
√
Mtkykds

)

= e−
√
Mt

{
u(0) +

1

2
√
M

[
y(0)

(
e2

√
Mt − 1

)
− e2

√
Mt

∫ t

0
e−

√
Msh(s)ds

+
∫ t

0
e
√
Msh(s)ds −

∑
0<tk<t

(
e2

√
Mt − e2

√
Mtk
)
e−

√
Mtkyk

]}
.

(2.12)

Notice that y(0) =
√
Mu(0) + u′(0); thus, for t ∈ J , we have

u(t) =
1

2
√
M

[
e−

√
Mt2

√
Mu(0) +

(√
Mu(0) + u′(0)

)
e
√
Mt

−
(√

Mu(0) + u′(0)
)
e−

√
Mt + e−

√
Mt

∫ t

0
e
√
Msh(s)ds

−e
√
Mt

∫ t

0
e−

√
Msh(s)ds −

∑
0<tk<t

(
e2

√
Mt − e2

√
Mtk
)
e−

√
M(t+tk)yk

]

=
1

2
√
M

[(√
Mu(0) − u′(0)

)
e−

√
Mt +

(√
Mu(0) + u′(0)

)
e
√
Mt
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+ e−
√
Mt

∫ t

0
e
√
Msh(s)ds − e

√
Mt

∫ t

0
e−

√
Msh(s)ds

−
∑

0<tk<t

(
e
√
M(t−tk) yk − e

√
M(tk−t)yk

)]
,

(2.13)

u′(t) =
1
2

[
−
(√

Mu(0) − u′(0)
)
e−

√
Mt +

(√
Mu(0) + u′(0)

)
e
√
Mt

− e−
√
Mt

∫ t

0
e
√
Msh(s)ds − e

√
Mt

∫ t

0
e−

√
Msh(s)ds

−
∑

0<tk<t

(
e
√
M(t−tk)yk + e−

√
M(t−tk)yk

)]
.

(2.14)

In view of that u′(0) = u′(1) = θ, we have

u(0) =
∫1

0

e
√
M(1−s) + e−

√
M(1−s)

√
M
(
e
√
M − e−

√
M
) h(s)ds +

m∑
k=1

e
√
M(1−tk) + e−

√
M(1−tk)

√
M
(
e
√
M − e−

√
M
)

=
∫1

0

cosh
√
M(1 − s)√

M sinh
√
M

h(s)ds +
m∑
k=1

cosh
√
M(1 − tk)√

M sinh
√
M

yk.

(2.15)

Substituting (2.15) into (2.13), for t ∈ J , we obtain

u(t) =
∫ t

0

(
e
√
M(1−t) + e−

√
M(1−t)

)(
e
√
Ms + e−

√
Ms
)

2
√
M
(
e
√
M − e−

√
M
) h(s)ds

+
∑

0<tk<t

(
e
√
M(1−t) + e−

√
M(1−t)

)(
e
√
Mtk + e−

√
Mtk
)

2
√
M
(
e
√
M − e−

√
M
) yk

+
∫1

t

cosh
√
Mt cosh

√
M(1 − s)√

M sinh
√
M

h(s)ds

+
∑

t≤tk<1

cosh
√
Mt cosh

√
M(1 − tk)√

M sinh
√
M

yk

=
∫1

0
G(t, s)h(s)ds +

m∑
k=1

G(t, tk)yk.

(2.16)

Inversely, we can verify directly that the function u ∈ PC1(J, E) ∩ C2(J ′, E) defined by
(2.4) is a solution of the linear NBVP (2.3). Therefore, the conclusion of Lemma 2.4 holds.
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By (2.5), it is easy to verify that G(t, s) has the following property:

1√
M sinh

√
M

≤ G(t, s) ≤ cosh2√M√
M sinh

√
M

. (2.17)

Evidently, C(J, E) is also an ordered Banach space with the partial order ≤ reduced by
the positive cone C(J,K) = {u ∈ C(J, E) | u(t) ≥ θ, t ∈ J}. C(J,K) is also normal with the
same normal constant N.

Define an operator A : C(J,K) → C(J,K) as follows:

Au(t) =
∫1

0
G(t, s)f(s, u(s))ds +

m∑
k=1

G(t, tk)Ik(u(tk)). (2.18)

Clearly, A : C(J,K) → C(J,K) is continuous, and the positive solution of NBVP (1.1) is the
nontrivial fixed point of operator A. However, the integral operator A is noncompactness in
general Banach space. In order to employ the topological degree theory and the fixed point
theory of condensing mapping, there demands that the nonlinear f and impulsive function
Ik satisfy some noncompactness measure condition. Thus, we suppose the following.

(P0) For any R > 0, f(J ×KR) and Ik(KR) are bounded and

α
(
f(t,D)

) ≤ Lα(D), α(Ik(D)) ≤ Mkα(D), k = 1, 2, . . . , m, (2.19)

where KR = K ∩ B(θ, R), D ⊂ K is arbitrarily countable set, L > 0 and Mk ≥ 0 are counsants
and satisfy (4L/M) + (2cosh2 √

M
∑m

k=1 Mk/
√
M sinh

√
M) < 1.

Lemma 2.5. Suppose that condition (P0) is satisfied; then A : C(J,K) → C(J,K) is condensing.

Proof. Since A(B) is bounded and equicontinuous for any bounded and nonrelative compact
set B ⊂ C(J,K), by Lemma 2.3, there exists a countable set B1 = {un} ⊂ B, such that

α(A(B)) ≤ 2α(A(B1)). (2.20)

By assumption (P0) and Lemma 2.1,

α(A(B1)(t)) = α

({∫1

0
G(t, s)f(s, un(s))ds +

m∑
k=1

G(t, tk)Ik(un(tk))

})

≤ α

({∫1

0
G(t, s)f(s, un(s))ds

})
+ α

({
m∑
k=1

G(t, tk)Ik(un(tk))

})

≤ 2
∫1

0
G(t, s)α

(
f(s, B1(s))

)
ds +

m∑
k=1

G(t, tk)α(Ik(B1(tk)))
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≤ 2
∫1

0
G(t, s)Lα(B1(s))ds +

m∑
k=1

G(t, tk)Mkα(B1(tk))

≤ 2L
∫1

0
G(t, s)dsα(B1) +

m∑
k=1

MkG(t, tk)α(B1)

≤ 2L
M

α(B1) +
cosh2√M

∑m
k=1 Mk√

M sinh
√
M

α(B1)

=

(
2L
M

+
cosh2√M

∑m
k=1 Mk√

M sinh
√
M

)
α(B1).

(2.21)

Since A(B1) is equicontinuous, by Lemma 2.1, we have

α(A(B1)) = max
t∈J

α(A(B1)(t)) ≤
(

2L
M

+
cosh2√M

∑m
k=1 Mk√

M sinh
√
M

)
α(B1). (2.22)

Combining (2.20) and (P0), we have

α(A(B)) ≤ 2α(A(B1)) ≤
(

4L
M

+
2cosh2√M

∑m
k=1 Mk√

M sinh
√
M

)
α(B). (2.23)

Hence, A : C(J,K) → C(J,K) is condensing.

Let P be a cone in C(J,K) defined by

P = {u ∈ C(J,K) | u(t) ≥ σu(τ), ∀t, τ ∈ J}, (2.24)

where σ = 1/cosh2√M.

Lemma 2.6. For any f(J,K) ⊂ K, A(C(J,K)) ⊂ P .

Proof. For any u ∈ C(J,K), t, τ ∈ J , by (2.18) and the second inequality of (2.17), we have

A(u(τ)) =
∫1

0
G(τ, s)f(s, u(s))ds +

m∑
k=1

G(τ, tk)Ik(u(tk))

≤ cosh2√M√
M sinh

√
M

(∫1

0
f(s, u(s))ds +

m∑
k=1

Ik(u(tk))

)
.

(2.25)
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By this, (2.18), and the first inequality of (2.17), we have

A(u(t)) =
∫1

0
G(t, s)f(s, u(s))ds +

m∑
k=1

G(t, tk)Ik(u(tk))

≥ 1√
M sinh

√
M

(∫1

0
f(s, u(s))ds +

m∑
k=1

Ik(u(tk))

)

≥ σA(u(τ)).

(2.26)

Hence, A(C(J,K)) ⊂ P .
Thus, for any f(J,K) ⊂ K, A : P → P is condensing mapping; the positive solution

of NBVP (1.1) is equivalent to the nontrivial fixed point of A in P . For 0 < r < R < ∞, let
Pr = {u ∈ P | ‖u‖C < r}, and ∂Pr = {u ∈ P | ‖u‖C = r}, which is the relative boundary bound
of Pr in P . Denote that Pr,R = PR \ Pr ; then the fixed point of A in Pr,R is the positive solution
of NBVP (1.1). We will use the fixed point theory of condensing mapping to find the fixed
point of A in Pr,R.

Let X be a Banach space and let P ⊂ X be a cone in X. Assume that Ω is a bounded open
subset of X and let ∂Ω be its bound. Let Q : P ∩Ω → P be a condensing mapping. If Qu/=u
for every u ∈ P ∩ ∂Ω, then the fixed point index i(Q,P ∩Ω, P) is defined. If i(Q,P ∩Ω, P)/= 0,
then Q has a fixed point in P ∩ Ω. As the fixed point index theory of completely continuous
mapping, see [10, 11], we have the following lemmas that are needed in our argument for
condensing mapping.

Lemma 2.7. Let Q : P → P be condensing mapping; if

u/=λAu, ∀u ∈ ∂Pr, 0 < λ ≤ 1, (2.27)

then i(Q,Pr, P) = 1.

Lemma 2.8. Let Q : P → P be condensing mapping; if there exists v0 ∈ P, v0 /= θ, such that

u −Au/= τv0, ∀u ∈ ∂Pr, τ ≥ 0, (2.28)

then i(Q,Pr, P) = 0.

3. Main Results

(P1) (i) There exist δ > 0, a, ak > 0, such that for all x ∈ Pδ and t ∈ J , f(t, x) ≤
ax, Ik(x) ≤ akx, and a + (

∑m
k=1 ak/σ

2) < M.
(ii) There exist b, bk > 0, h0 ∈ C(J,K), and yk ∈ K, such that for all x ∈ P and
t ∈ J , f(t, x) ≥ bx − h0(t), Ik(x) ≥ bkx − yk, and b + σ2∑m

k=1 bk > M.

(P2) (i) There exist δ > 0, b, bk > 0, such that for all x ∈ Pδ and t ∈ J , f(t, x) ≥ bx, Ik(x) ≥
bkx, and b + σ2∑m

k=1 bk > M.
(ii) There exist a, ak > 0, h0 ∈ C(J,K), and yk ∈ K, such that for all x ∈ P and
t ∈ J , f(t, x) ≤ ax + h0(t), Ik(x) ≤ akx + yk, and a + (

∑m
k=1 ak/σ

2) < M.
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Theorem 3.1. Let E be an ordered Banach space, whose positive cone K is normal, f ∈ C(J ×K,K),
and Ik ∈ C(K,K), k = 1, 2, . . . , m. Suppose that conditions (P0) and (P1) or (P2) are satisfied; then
the NBVP (1.1) has at least one positive solution.

Proof. We show, respectively, that the operator A defined by (2.18) has a nontrivial fixed point
in two cases that (P1) is satisfied and (P2) is satisfied.

Case 1. Assume that (P1) is satisfied; let 0 < r < δ, where δ is the constant in condition (P1),
to prove that A satisfies

u/=λAu, ∀u ∈ ∂Pr, 0 < λ ≤ 1. (3.1)

If (3.1) is not true, then there exist u0 ∈ ∂Pr and 0 < λ0 ≤ 1, such that u0 = λ0Au0; by the
definition of A, u0(t) satisfies

−u′′
0(t) +Mu0(t) = λ0f(t, u0(t)), t ∈ J, t /= tk,

−Δu′
0|t=tk = λ0Ik(u0(tk)), k = 1, 2, . . . , m,

u′
0(0) = u′

0(1) = θ.

(3.2)

Integrating (3.2) from 0 to 1, using (i) of assumption (P1), we have

(M − a)
∫1

0
u0(t)dt ≤

m∑
k=1

aku0(tk). (3.3)

Since u0 ∈ P , for any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s), u0(tk) ≤
(1/σ)u0(s), and thus

σ(M − a)u0(s) ≤
∑m

k=1 ak

σ
u0(s), (3.4)

that is; (M − (a + (
∑m

k=1 ak/σ
2))) u0(s) ≤ θ. So we obtain that u0(s) ≤ θ in J , which contracts

with u0 ∈ ∂Pr . Hence (3.1) is satisfied; by Lemma 2.7, we have

i(A,Pr, P) = 1. (3.5)

Let e ∈ C(J,K), ‖e‖ = 1, v0(t) ≡ e, and obviously v0 ∈ P . We show that if R is large enough,
then

u −Au/= τv0, ∀u ∈ ∂PR, τ ≥ 0. (3.6)



10 Abstract and Applied Analysis

In fact, if there exist u0 ∈ ∂PR, τ0 ≥ 0 such that u0 − Au0 = τ0v0, then Au0 = u0 − τ0v0; by the
definition of A, u0(t) satisfies

−u′′
0(t) +Mu0(t) −Mτ0v0 = f(t, u0(t)), t ∈ J, t /= tk,

−Δu′
0|t=tk = Ik(u0(tk)), k = 1, 2, . . . , m,

u′
0(0) = u′

0(1) = θ.

(3.7)

By (ii) of assumption (P1), we have

−u′′
0(t) +Mu0(t) = f(t, u0(t)) +Mτ0v0 ≥ bu0(t) − h0(t), t ∈ J ′. (3.8)

Integrating on J and using (ii) of assumption (P1), we have

(b −M)
∫1

0
u0(t)dt +

m∑
k=1

bku0(tk) ≤
∫1

0
h0(t)dt +

m∑
k=1

yk. (3.9)

If b > M, for any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s); u0(tk) ≥ σu0(s); thus

(
σ(b −M) + σ

m∑
k=1

bk

)
u0(s) ≤

∫1

0
h0(t)dt +

m∑
k=1

yk. (3.10)

By σ(b −M) + σ
∑m

k=1 bk > 0 and the normality of cone K, we have

‖u0‖C ≤ N
(‖h0‖C +

∑m
k=1 ‖yk‖

)

σ(b −M) + σ
∑m

k=1 bk
� R1. (3.11)

If b ≤ M, then for any t, s ∈ J , by the definition of P , we have u0(t) ≤ (1/σ)u0(s), u0(tk) ≥
σu0(s); thus

(
(b −M)

σ
+ σ

m∑
k=1

bk

)
u0(s) ≤

∫1

0
h0(t)dt +

m∑
k=1

yk. (3.12)

By b + σ2∑m
k=1 bk > M, and the normality of K, we have

‖u0‖C ≤ N
(‖h0‖C +

∑m
k=1 ‖yk‖

)

((b −M)/σ) + σ
∑m

k=1 bk
� R2. (3.13)

Let R > max{R1, R2, r}; then (3.6) is satisfied; by Lemma 2.8, we have

i(A,PR, P) = 0. (3.14)
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Combining (3.5), (3.14), and the additivity of fixed point index, we have

i(A,Pr,R, P) = i(A,PR, P) − i(A,Pr, P) = −1/= 0. (3.15)

Therefore A has a fixed point in Pr,R, which is the positive solution of NBVP (1.1).

Case 2. Assume that (P2) is satisfied; let 0 < r < δ, where δ is the constant in condition (P2),
to proof that A satisfies

u −Au/= τv0, ∀u ∈ ∂Pr, τ ≥ 0, (3.16)

where v0(t) = e ∈ P, e /= θ. In fact, if there exists u0 ∈ ∂Pr and τ0 ≥ 0, such that u0−Au0 = τ0v0,
then u0 satisfies (3.7) and (i) of condition (P2), and we have

−u′′
0(t) +Mu0(t) = f(t, u0(t)) +Mτ0v0 ≥ bu0(t), t ∈ J ′. (3.17)

Integrating on J and using (i) of assumption (P2), we have

(b −M)
∫1

0
u0(t)dt +

m∑
k=1

bku0(tk) ≤ θ. (3.18)

If b > M, for any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s), u0(tk) ≥
σu0(s), for all t, s ∈ J , and thus

(
σ(b −M) + σ

m∑
k=1

bk

)
u0(s) ≤ θ. (3.19)

By σ(b −M) + σ
∑m

k=1 bk > 0, we obtain that u0(s) ≤ θ, which contracts with u0 ∈ ∂Pr . Hence
(3.16) is satisfied.

If b ≤ M, for any t, s ∈ J , by the definition of P , we have u0(t) ≤ (1/σ)u0(s), u0(tk) ≥
σu0(s), for all t, s ∈ J , and thus

(
1
σ
(b −M) + σ

m∑
k=1

bk

)
u0(s) ≤ θ. (3.20)

By b + σ2∑m
k=1 bk > M, we obtain that u0(s) ≤ θ, which contracts with u0 ∈ ∂Pr . Hence (3.16)

is satisfied.
Hence, by Lemma 2.8, we have

i(A,Pr, P) = 0. (3.21)

Next, we show that if R is large enough, then

u/=λAu, ∀u ∈ ∂PR, 0 < λ ≤ 1. (3.22)
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In fact, if there exists u0 ∈ ∂PR and 0 < λ0 ≤ 1 such that u0 = λ0Au0, then u0 satisfies (3.2).
Integrating (3.2) on J , and using (ii) of (P2), we have

(M − a)
∫1

0
u0(t)dt −

m∑
k=1

aku0(tk) ≤
∫1

0
h0(t)dt +

m∑
k=1

yk. (3.23)

For any t, s ∈ J , by the definition of P , we have u0(t) ≥ σu0(s), u0(tk) ≤ (1/σ)u0(s), for
all t, s ∈ J , and thus

(
σ(M − a) − 1

σ

m∑
k=1

ak

)
u0(s) ≤

∫1

0
h0(t)dt +

m∑
k=1

yk. (3.24)

By a + (
∑m

k=1 ak/σ
2) < M, we have

u0(s) ≤
∫1

0 h0(t)dt +
∑m

k=1 yk

σ(M − a) − (1/σ)
∑m

k=1 ak
. (3.25)

By the normality of K, we have

‖u0(s)‖ ≤
N
∥∥∥∫1

0 h0(t)dt +
∑m

k=1 yk

∥∥∥
σ(M − a) − (1/σ)

∑m
k=1 ak

. (3.26)

Thus

‖u0‖C ≤ N
(‖h0‖C +

∑m
k=1

∥∥yk

∥∥)

σ(M − a) − (1/σ)
∑m

k=1 ak
� R3. (3.27)

Let R > max{R3, r}; then (3.22) is satisfied; by Lemma 2.7, we have

i(A,PR, P) = 1. (3.28)

Combining (3.21), (3.28), and the additivity of fixed index, we have

i(A,Pr,R, P) = i(A,PR, P) − i(A,Pr, P) = 1. (3.29)

Therefore A has a fixed point in Pr,R, which is the positive solution of NBVP (1.1).

Remark 3.2. The conditions (P1) and (P2) are a natural extension of suplinear condition and
sublinear condition in Banach space E. Hence if Ik = θ, then Theorem 3.1 improves and
extends the main results in [8, 9].
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4. Example

We provide an example to illustrate our main result.

Example 4.1. Consider the following problem:

− ∂2

∂t2
w(t, x) +w(t, x) =

∫1

0
e(t−s)w2(s, x)ds +

1
100

w(t, x), t ∈ J ′, x ∈ I,

−Δ ∂

∂t
w(t, x)|t=1/2 =

1
100

w

(
1
2
, x

)
, x ∈ I,

∂

∂t
w(0, x) =

∂

∂t
w(1, x) = 0, x ∈ I,

(4.1)

where J = [0, 1], J ′ = J \ {1/2}, I = [0, T], and T > 0 is a constant.

Conclusion

Problem (4.1) has at least one positive solution.

Proof. Let E = C(I), and K = {w ∈ C(I) | w(x) ≥ 0, x ∈ I}; then E is a Banach space with
norm ‖w‖ = maxt∈I |w(x)|, and K is a positive cone of E. Let u(t) = w(t, ·); then the problem
(4.1) can be transformed into the form of NBVP (1.1), where M = 1, f(t, u) =

∫1
0 e

(t−s)u2(s)ds+
(1/100)u(t), and I1(u(1/2)) = (1/100)u(1/2). Evidently C(J, E) is a Banach space with norm
‖u‖C = maxt∈J‖u(t)‖, and C(J,K) is positive cone of C(J, E). Let P = {u ∈ C(J,K) | u(t) ≥
σu(s), t, s ∈ J}, where σ = 1/cosh2 1; then P is a cone in C(J,K), and for any u ∈ P, t ∈ J ,
we have σ‖u‖C ≤ u(t) ≤ ‖u‖C.

Next, we will verify that the conditions (P0) and (P1) in Theorem 3.1 are satisfied.
It is easy to verify that for any R > 0, f(J ×KR) and I1(KR) are bounded. Let g(t, u) =∫1

0 e
(t−s)u2(s)ds; then g is completely continuous. So for any countable bounded set D ⊂ K,

we have

α
(
f(t,D)

) ≤ α
(
g(t,D)

)
+

1
100

α(D) =
1

100
α(D), α(I1(D)) =

1
100

α(D), (4.2)

and for L = 1/100, and M1 = 1/100, by simple calculations, (4L/M) + (2cosh2 √
M M1/√

M sinh
√
M) < 1. So condition (P0) is satisfied.

Let δ = 1/100; then for u ∈ Pδ, we have

f(t, u) ≤ δ
∫1

0 e
(t−s)ds

σ
u(t) +

1
100

u(t) ≤
(
δ(e − 1)

σ
+

1
100

)
u(t),

I1

(
u

(
1
2

))
=

1
100

u

(
1
2

)
≤ 1

100σ
u(t).

(4.3)

Let a = (δ(e−1)/σ)+(1/100), a1 = (1/100)σ; by simple calculations, we have a+(a1/σ
2) < 1.

So (i) of condition (P1) is satisfied.
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Let R = 100, for u ∈ P, ‖u‖C ≥ R; we have f(t, u) ≥ (1/2 σ2R + (1/100))u(t). For
u ∈ P , 0 ≤ ‖u‖C ≤ R, we have f(t, u) ≤ R2et + 1. Hence, let h0(t) = 10000et + 1, y1 = 0; then
for any u ∈ P , we have

f(t, u) ≥
(

1
2
σ2R +

1
100

)
u(t) − h0(t)

I1

(
u

(
1
2

))
≥ 1

100
σu(t).

(4.4)

Let b = (1/2)σ2R + (1/100), and b1 = (1/100)σ; by simple calculations, we have b + σ2b1 > 1,
so (ii) of condition (P1) is satisfied.

By Theorem 3.1, Problem (4.1) has at least one positive solution.
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we show the existence and multiplicity of positive solutions of the nonlinear discrete fourth-order
boundary value problem Δ4u(t − 2) = λh(t)f(u(t)), t ∈ �2, u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0,
where λ > 0, h : �2 → (0,∞) is continuous, and f : � → [0,∞) is continuous, T > 4, �2 =
{2, 3, . . . , T}. The main tool is the Dancer’s global bifurcation theorem.

1. Introduction

It’s well known that the fourth order boundary value problem

u′′′′(t) = f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.1)

can describe the stationary states of the deflection of an elastic beam with both ends hinged,
(it also models a rotating shaft). The existence and multiplicity of positive solutions of the
boundary value problem (1.1) have been considered extensively in the literature, see [1–10].
The existence and multiplicity of positive solutions of the parameterized boundary value
problem

u′′′′(t) = λh(t)f(u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.2)
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have also been studied by several authors, see Bai and Wang [11], Cid et al. [12], and the ref-
erences therein.

However, relatively little is known about the corresponding discrete fourth-order pro-
blems. Let

T > 4, �0 = {0, 1, . . . , T + 2}, �1 = {1, 2, . . . , T + 1}, �2 = {2, 3, . . . , T}. (1.3)

Zhang et al. [13], and He and Yu [14] used the fixed point index theory in cones to study the
following discrete analogue

Δ4u(t − 2) = λh(t)f(u(t)), t ∈ �2, (1.4)

u(0) = u(T + 2) = Δ2u(0) = Δ2u(T) = 0, (1.5)

where Δ4u(t − 2) denote the fourth forward difference operator and Δu(t) = u(t + 1) − u(t). It
has been pointed out in [13, 14] that (1.4), (1.5) are equivalent to the equation of the form:

u(t) = λ
T+1∑
s=1

G(t, s)
T∑
j=2

G1
(
s, j
)
h
(
j
)
f
(
u
(
j
))

=: A0u(t), t ∈ �0, (1.6)

where

G(t, s) =
1

T + 2

⎧
⎨
⎩
s(T + 2 − t), 1 ≤ s ≤ t ≤ T + 2,

t(T + 2 − s), 0 ≤ t ≤ s ≤ T + 1,

G1
(
s, j
)
=

1
T

⎧
⎨
⎩
(T + 1 − s)

(
j − 1

)
, 2 ≤ j ≤ s ≤ T + 1,

(
T + 1 − j

)
(s − 1), 1 ≤ s ≤ j ≤ T.

(1.7)

Notice that two distinct Green’s functions used in (1.6) make the construction of cones and
the verification of strong positivity of A0 become more complex and difficult. Therefore, Ma
and Xu [15] considered (1.4) with the boundary condition

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0, (1.8)

and introduced the definition of generalized positive solutions:

Definition 1.1. A function y : �0 → �
+ is called a generalized positive solution of (1.4), (1.8), if

y satisfies (1.4), (1.8), and y(t) ≥ 0 on �1 and y(t) > 0 on �2.

Remark 1.2. Notice that the fact y : �0 → �
+ is a generalized positive solution of (1.4), (1.8)

does not means that y(t) ≥ 0 on �0. In fact, y satisfies
(1) y(t) ≥ 0 for t ∈ �2;
(2) y(1) = y(T + 1) = 0;
(3) y(0) = −y(2), y(T + 2) = −y(T).
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Ma and Xu [15] also applied the fixed point theorem in cones to obtain some results
on the existence of generalized positive solutions.

It is the purpose of this paper to show some new results on the existence and multi-
plicity of generalized positive solutions of (1.4), (1.8) by Dancer’s global bifurcation theorem.
To wit, we get the following.

Theorem 1.3. Let h : �2 → (0,∞), f ∈ C(�, [0,∞)), and

lim
s→ 0+

f(s)
s

= f0 ∈ (0,∞), lim
s→∞

f(s)
s

= f∞ = +∞. (1.9)

Assume that there exists B ∈ [0,+∞] such that f is nondecreasing on [0, B). Then

(i) (1.4), (1.8) have at least one generalized positive solution if 0 < λ < λ1/f0;

(ii) (1.4), (1.8) have at least two generalized positive solutions if

λ1

f0
< λ < sup

s∈(0,B)

s

γ ∗f(s)
, (1.10)

where γ ∗ = maxt∈�1

∑T
s=2 K(t, s)h(s), K(t, s) is defined as (2.3) and λ1 is the first eigen-

value of

Δ4u(t − 2) = λh(t)u(t), t ∈ �2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0.
(1.11)

The “dual” of Theorem 1.3 is as follows.

Theorem 1.4. Let h : �2 → (0,∞), f ∈ C(�, [0,∞)), and

lim
s→ 0+

f(s)
s

= f0 ∈ (0,∞), lim
s→∞

f(s)
s

= f∞ = 0. (1.12)

Assume that there exists B ∈ [0,+∞] such that f is nondecreasing on [0, B). Then

(i) (1.4), (1.8) have at least a generalized positive solution provided

λ > inf
s∈(0,c1B)

s

c1γ∗f(s)
, (1.13)

where γ∗ = mint∈�2

∑T
s=2 K(t, s)h(s);
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(ii) (1.4), (1.8) have at least two generalized positive solutions provided

inf
s∈(0,c1B)

s

c1γ∗f(s)
< λ <

λ1

f0
. (1.14)

The rest of the paper is organized as follows: in Section 2, we present the form of
the Green’s function of (1.4), (1.8) and its properties, and we enunciate the Dancer’s global
bifurcation theorem ([16, Corollary 15.2]). In Section 3, we use the Dancer’s bifurcation
theorem to prove Theorems 1.3 and 1.4 and in Section 4, we finish the paper presenting a
couple of illustrative examples.

Remark 1.5. For other results on the existence and multiplicity of positive solutions and nodal
solutions for fourth-order boundary value problems based on bifurcation techniques, see [17–
21].

2. Preliminaries and Dancer’s Global Bifurcation Theorem

Lemma 2.1. Let h : �2 → �. Then the linear boundary value problem

Δ4u(t − 2) = h(t), t ∈ �2,

u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0 (2.1)

has a solution

u(t) =
T∑
s=2

K(t, s)h(s), t ∈ �1, (2.2)

where

K(t, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(s − 1)(T + 1 − t)
(

2T(t − 1) − (t − 1)2 − (s − 2)s
)

6T
, 2 ≤ s ≤ t ≤ T + 1,

(t − 1)(T + 1 − t)
(

2T(s − 1) − (s − 1)2 − (t − 2)t
)

6T
, 1 ≤ t ≤ s ≤ T.

(2.3)

Proof. By a simple summing computation and u(1) = Δ2u(0) = 0, we can obtain

u(t) = Δu(0)(t − 1) +
t(t − 1)(t − 2)

6
Δ3u(0) +

t−1∑
s=2

(t − s)(t − s − 1)(t − s + 1)
6

h(s).

(2.4)
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This together with u(T + 1) = Δ2u(T) = 0, it follows that

u(t) =
T∑
s=2

(T + 1 − s)(t − 1)
[
2T(s − 1) − (s − 1)2 − t(t − 2)

]

6T
h(s)

+
t−1∑
s=2

(t − s)(t − s − 1)(t − s + 1)
6T

h(s)

=
T∑
s=t

(T + 1 − s)(t − 1)
[
2T(s − 1) − (s − 1)2 − t(t − 2)

]

6T
h(s)

+
t−1∑
s=2

(T + 1 − t)(s − 1)
[
2T(t − 1) − (t − 1)2 − s(s − 2)

]

6T
h(s).

(2.5)

Therefore, (2.2) holds.

Remark 2.2. It has been pointed out in [15] that (2.1) is equivalent to the summation equation
of the form

u(t) =
T∑
s=2

G1(t, s)
T∑
j=2

G1
(
s, j
)
h
(
j
)
, t ∈ �1. (2.6)

It is easy to verify that (2.2) and (2.6) are equivalent.
By a similar method in [9], it follows that K(t, s) satisfies

K(t, s) ≤ Φ(s) for s ∈ �1, t ∈ �1,

K(t, s) ≥ c(t)Φ(s) for s ∈ �1, t ∈ �1,
(2.7)

where

Φ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
3

27T
(s − 1)

(
T2 − (s − 2)s

)3/2
, 1 ≤ s ≤ T

2
+ 1,

√
3

27T
(T + 1 − s)(2T(s − 1) − (s − 2)s)3/2,

T

2
+ 1 < s ≤ T + 1,

(2.8)

c(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3
√

3
[
T2 − t(t − 2)

]
(t − 1)

2(T2 + 1)3/2
, 1 ≤ t ≤ T

2
+ 1,

3
√

3(T + 1 − t)[2T(t − 1) − t(t − 2)]

2(T2 + 1)3/2
,

T

2
+ 1 < t ≤ T + 1.

(2.9)
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Moreover, we have that

K(t, s) ≥ c1Φ(s), for s ∈ �1, t ∈ �2. (2.10)

here c1 = 3
√

3T2/2(T2 + 1)3/2.
Let X be a real Banach space with a cone K such that X = K − K. Let us consider the

equation:

x = μ(Lx +Nx), μ ∈ �, x ∈ X (2.11)

under the assumptions:

(A1) The operators L,N : X → X are compact. Furthermore,L is linear, ‖Nx‖X/‖x‖X →
0 as ‖x‖X → 0, and (L +N)(K) ⊆ K.

(A2) The spectral radius r(L) of L is positive. Denote μ0 = r(L)−1.

(A3) L is strongly positive.

Dancer’s global bifurcation theorem is the following.

Theorem 2.3 (see [16, Corollary 15.2]). Let

S+ :=
{(

μ, x
) ∈ � ×X | (μ, x) is a solution of (2.11) with x > 0 and μ > 0

}
. (2.12)

If (A1) and (A2) are satisfied, then (μ0, 0) is a bifurcation point of (2.11) and S+ has an unbounded
solution componentC+ which passes through (μ0, 0). Additionally, if (A3) is satisfied, then (μ, x) ∈ C+

and μ/=μ0 always implies x > 0 and μ > 0.

3. Proof of the Main Results

Before proving Theorem 1.3, we state some preliminary results and notations. Let

ρ := 4 sin2 π

2T
, e(t) := sin

π(t − 1)
T

, t ∈ �1, (3.1)

X :=
{
u | u : �0 −→ �, u(1) = u(T + 1) = Δ2u(0) = Δ2u(T) = 0

}
. (3.2)

Then X is a Banach space under the normal:

‖u‖X := inf
{
γ

ρ
| −γe(t) ≤ −Δ2u(t − 1) ≤ γe(t), t ∈ �1

}
. (3.3)

See [22] for the detail.
Let

K :=
{
u ∈ X | Δ2u(t − 1) ≤ 0, u(t) ≥ 0, t ∈ �1

}
. (3.4)

Then K is normal and has a nonempty interior and X = K −K.
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Let Y = {u | u : �2 → �}. Then Y is a Banach space under the norm:

‖u‖∞ = max
t∈�2

|u(t)|. (3.5)

Define L : X → Y by setting

Lu := Δ4u(t − 2), u ∈ X. (3.6)

It is easy to check that L−1 : Y → X is compact.

Lemma 3.1. Let h ∈ Y with h ≥ 0 and h(t0) > 0 for some t0 ∈ �2, and

Lu − h = 0. (3.7)

Then u ∈ intK.

Proof. It is enough to show that there exist two constants r1, r2 ∈ (0,∞) such that

r1e(t) ≤ −Δ2u(t − 1) ≤ r2e(t), t ∈ �1. (3.8)

In fact, we have from (3.7) that

−Δ2u(t − 1) =
T∑
s=2

G1(t, s)h(s), t ∈ �1. (3.9)

This together with the relation ((t − 1)(T + 1 − t)/T)G1(s, s) ≤ G1(t, s) ≤ (t − 1)(T + 1 − t)/T
implies that

[
T∑
s=2

G1(s, s)h(s)

]
(t − 1)(T + 1 − t)

T
≤

T∑
s=2

G1(t, s)h(s) ≤ ‖h‖∞
(t − 1)(T + 1 − t)

T
.

(3.10)

Combining (3.9) with (3.10) and the fact that

c1 sin
π(t − 1)

T
≤ (t − 1)(T + 1 − t)

T
≤ c2 sin

π(t − 1)
T

, t ∈ �1 (3.11)

for some constants c1, c2 ∈ (0,∞), we conclude that (3.8) is true.

Let ζ ∈ C(�,�) be such that

f(u) = f0u + ζ(u), (3.12)
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clearly

lim
|u| → 0

ζ(u)
u

= 0. (3.13)

Let us consider

Lu = λ
(
h(·)f0u + h(·)ζ(u)) (3.14)

as a bifurcation problem from the trivial solution u ≡ 0.
By (1.4), (1.8), it follows that if u(t) ∈ X is one solution of (1.4), (1.8), then u(t) satisfies

u(0) = −u(2), u(T + 2) = −u(T). So, (u(0), 0, u(2), . . . , u(T), 0, u(T + 2)) is a solution of (1.4),
(1.8), if and only if, (0, u(2), . . . , u(T), 0) solves the operator equation

u(t) = λ
T∑
s=2

G(t, s)h(s)f(u(s)), t ∈ �1. (3.15)

Now, let J : Y → X be the linear operator:

J(u(2), u(3), . . . , u(T)) = (−u(2), 0, u(2), u(3), . . . , u(T), 0,−u(T)), u ∈ Y. (3.16)

Let L,N : X → X be the operators:

Lu := (J ◦ L)−1(h(·)f0u
)
, (3.17)

Nu := (J ◦ L)−1(h(·)ζ(u)), (3.18)

respectively. Then Lemma 3.1 yields that L : X → X is strongly positive. Moreover, [16,
Theorem 7.c] implies r(L) > 0.

Now, it follows from Theorem 2.3 that there exists a continuum

C+ ⊆ {(μ, x) ∈ � ×X | (μ, x) is a solution of (1.4), (1.8) with x > 0 and μ > 0
}
,

(3.19)

which joins (r(L)−1, 0) with infinity in (0,∞) ×K and

(
μ, x
) ∈ C+, μ /= r(L)−1 =⇒ x > 0, μ > 0. (3.20)

It is easy to check that

r(L)−1 =
λ1

f0
. (3.21)
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Lemma 3.2. Let h1, h2 ∈ Y with h1 ≥ h2 > 0. Then the eigenvalue problems

Lu(t) = λhi(t)u(t), t ∈ �2, i = 1, 2 (3.22)

have the principal eigenvalue λi, i = 1, 2 such that λ1 ≤ λ2. Moreover, the corresponding eigenfunc-
tions ψi are positive in �2.

Proof . Let Li : X → X be the operator

Liu := λ(J ◦ L)−1(hi(·)u), i = 1, 2. (3.23)

Then Lemma 3.1 yields that Li : X → X is strongly positive. By Krein-Rutman
theorem [16, Theorem 7.c] the spectral radius r(Li) > 0 and there exist ψi ∈ X with ψi > 0 on
�2 such that

Liψi(t) = r(Li)ψi(t), i = 1, 2. (3.24)

That is, the eigenvalue problems (3.22) have the principal eigenvalues λi = 1/r(Li), and ψi(t)
is the corresponding eigenfunctions of λi, i = 1, 2.

Next, we prove λ1 ≤ λ2. Since
∑T

t=2 Δ
4ψ1(t − 2) ψ2(t) =

∑T
t=2 ψ1(t)Δ4ψ2(t − 2), it follows

that

T∑
t=2

h1(t)ψ1(t)ψ2(t) ≥
T∑
t=2

λ2

λ2

h2(t)ψ2(t)ψ1(t) =
T∑
t=2

1

λ2

Δ4ψ2(t − 2)ψ1(t)

=
T∑
t=2

1

λ2

ψ2(t)Δ4ψ1(t − 2) =
T∑
t=2

ψ2(t)

λ2

λ1h1(t)ψ1(t)

=
λ1

λ2

T∑
t=2

h1(t)ψ1(t)ψ2(t).

(3.25)

Therefore, λ1 ≤ λ2.

Suppose that �a = {a + 1, a + 2, . . . , b − 1} is a strict subset of �2 and ha denote the
restriction of h on �a. Consider the linear eigenvalue problems:

Δ4u(t − 2) = λha(t)f0u(t), t ∈ �a,

u(a) = u(b) = Δ2u(a − 1) = Δ2u(b − 1) = 0.
(3.26)

Then we get the following result.

Lemma 3.3. Let λ̃1 is the principal eigenvalue of (3.17), then (3.26) has only one principal eigenvalue
λa such that 0 < λ̃1 < λa.
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Proof. It is not difficult to prove that (3.26) has only one principal eigenvalue λa > 0 by
Lemma 3.1, and the corresponding eigenfunction ψa > 0 on �a. So we only to verify that
0 < λ̃1 < λa.

Let ψ1 be the corresponding eigenfunction of λ̃1, we have that

b−1∑
t=a+1

Δ4ψa(t − 2)ψ1(t) =
b−1∑
t=a+1

Δ4ψ1(t − 2)ψa(t) − ψ1(b)Δ2ψa(b − 2) − ψa(b − 1)Δ2ψ1(b − 1)

−Δ2ψa(a)ψ1(a) − ψa(a + 1)Δ2ψ1(a − 1)

>
b−1∑
t=a+1

Δ4ψ1(t − 2)ψa(t).

(3.27)

So

b−1∑
t=a+1

h(t)ψa(t)ψ1(t) =
b−1∑
t=a+1

1
λa

Δ4ψa(t − 2)ψ1(t)

>
b−1∑
t=a+1

1
λa

Δ4ψ1(t − 2)ψa(t)

=
b−1∑
t=a+1

ψa(t)
λa

λ̃1h(t)ψ1(t)

=
λ̃1

λa

b−1∑
t=a+1

h(t) ψa(t)ψ1(t).

(3.28)

Thus 0 < λ̃1 < λa.

Proof of Theorem 1.3. We divide the proof into three steps.
Let {(μn, yn)} ⊂ C+ be such that

∣∣μn

∣∣ + ∥∥yn

∥∥
X → ∞, n → ∞. (3.29)

Then

Δ4yn(t − 2) = μnh(t)f
(
yn(t)

)
, t ∈ �2,

yn(1) = yn(T + 1) = Δ2yn(0) = Δ2yn(T) = 0.
(3.30)

Step 1. We show that there exists a constant M such that μn ∈ (0,M] for all n.
Suppose on the contrary that

lim
n→∞

μn= ∞. (3.31)



Abstract and Applied Analysis 11

Let vn = yn/‖yn‖X . Then it follows from (3.30) that

Δ4vn(t − 2) = μnh(t)
f
(
yn(t)

)

yn(t)
vn(t), t ∈ �2,

vn(1) = vn(T + 1) = Δ2vn(0) = Δ2vn(T) = 0.

(3.32)

Since

inf
{
f(s)
s

| s > 0
}

:= M0 > 0, (3.33)

there exists a constant M0 > 0, such that

f
(
yn(t)

)

yn(t)
> M0 > 0. (3.34)

Let λ∗ be the principal eigenvalue of the linear eigenvalue problems:

Δ4v(t − 2) = λh(t) M0v(t), t ∈ �2,

v(1) = v(T + 1) = Δ2v(0) = Δ2v(T) = 0.
(3.35)

Combining (3.31) and (3.34) with the relation (3.32), using Lemma 3.2, we get

0 < μn ≤ λ∗. (3.36)

This contradicts (3.31). So μn ∈ (0,M] for all n.

Step 2. We show that C+ joins (λ1/f0, 0) with (0,∞).
Assume that there exist δ > 0 and {(μn, yn)} ⊂ C+ such that

0 < δ ≤ μn ≤ M;
∥∥yn

∥∥
X −→ ∞, n −→ ∞. (3.37)

First, we show that
∥∥yn

∥∥
X
−→ ∞ =⇒ ∥∥yn

∥∥
∞ −→ ∞. (3.38)

Suppose on the contrary that
∥∥yn

∥∥
∞ ≤ M1 (3.39)

for some M1 > 0 (independent on n). Then it follows from (3.30) and 0 < δ ≤ |μn| ≤ M that
∥∥∥Δ4yn

∥∥∥
∞
≤ M‖h‖∞ sup

{
f(s) | 0 < s ≤ M1

}
, (3.40)

and subsequently, {‖yn‖X} is bounded. This is a contradiction. So, (3.38) holds.
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Next, we show that

∥∥yn

∥∥
∞ −→ ∞ ⇒ min

{
yn(t) | t ∈ �2

} −→ ∞. (3.41)

In fact,

yn(t) = μn

T∑
s=2

K(t, s)h(s)f
(
yn(s)

)
, t ∈ �1. (3.42)

This together with (2.7) imply that (3.41) is valid.
Finally, we have from the facts that min{yn(t) | t ∈ �2} → ∞ and 0 < δ ≤ |μn| ≤ M

that

μn

f
(
yn(t)

)

yn(t)
−→ ∞, n −→ ∞ for any t ∈ �a. (3.43)

Consider the following linear eigenvalue problems:

Δ4v(t − 2) = λha(t) v(t), t ∈ �a,

v(a) = v(b) = Δ2v(a − 1) = Δ2v(b − 1) = 0.
(3.44)

By Lemma 3.3 and (3.32), (3.44) has a positive principal eigenvalue λa, and

μn

f
(
yn(t)

)

yn(t)
≤ λa, (3.45)

which contradicts (3.43). Thus limn→∞μn = 0.

Step 3. Fixed λ such that

0 < λ < sup
s∈(0,B)

s

γ ∗f(s)
. (3.46)

Then there exists b ∈ (0, B] such that

0 < λ <
b

γ ∗f(b)
. (3.47)

We show that there is no (μ, u) ∈ C+ such that

‖u‖∞ = b, 0 < μ <
b

γ ∗f(b)
. (3.48)
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In fact, if there exists (η, y) ∈ C+ satisfying (3.48), then

y(t) = η
T∑
s=2

K(t, s)h(s)f
(
y(s)

)

≤ ηγ ∗f(b)

= ηγ ∗
f(b)
b

· b

(3.49)

for t ∈ �1, and subsequently, η ≥ b/γ ∗ f(b). Therefore, no (μ, u) ∈ C+ satisfies (3.48).

Now, combining the conclusions in Steps 2 and 3, using the fact that no (μ, u) ∈ C+

satisfies (3.48), it concludes that for every λ ∈ (λ1/f0, b/γ ∗f(b)), (1.4), (1.8) has at least two
generalized positive solutions in C+. For arbitrary λ ∈ (0, sups∈(0,B)(s/γ

∗f(s))), we may find

b = b(λ) satisfying (3.47). So, for every λ ∈ (λ1/f0, sups∈(0,B)(s/γ
∗f(s))), (1.4), (1.8) has at

least two generalized positive solutions in C+.

Proof of Theorem 1.4. We divide the proof into three steps.

Step 1. We show that there exists a positive constant β > 0 such that

inf
{
μ | (μ, u) ∈ C+

}
=: β > 0. (3.50)

Suppose on the contrary that there exists {(μn, yn)} ⊂ C+ such that

μn → 0+, as n → ∞. (3.51)

Then we have from (3.32), (3.51), f0 ∈ (0,∞) and f∞ = 0 that

‖vn‖X → 0, as n → ∞. (3.52)

However, this contradicts with the fact that ‖vn‖X = 1 for all n ∈ �. Therefore, (3.50) holds.

Step 2. We show that for any closed interval I ⊂ [β,∞), there exists MI > 0 such that

sup
{‖u‖ | (μ, u) ∈ C+

} ≤ MI. (3.53)

Suppose on the contrary that there exists {(μn, yn)} ⊂ C+ with

{
μn

} ⊂ I,
∥∥yn

∥∥
X
−→ ∞ as n −→ ∞. (3.54)

Then by (3.38),

∥∥yn

∥∥
∞ −→ ∞, n −→ ∞. (3.55)
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and subsequently

min
t∈�2

yn(t) ≥ c1
∥∥yn

∥∥
∞ −→ ∞. (3.56)

This together with (3.32) and f0 ∈ (0,∞) and f∞ = 0 that

‖(vn|�2)‖∞ −→ 0, n −→ ∞. (3.57)

However, this contradicts with the fact that

min
t∈�2

vn(t)≥ c1, n ∈ �. (3.58)

Therefore, (3.53) holds.

Step 3. Fixed λ such that

λ > inf
s∈(0,c1B)

s

c1γ∗f(s)
. (3.59)

Then there exists l ∈ (0, c1B) such that

λ >
l

γ∗c1f(l)
. (3.60)

We show that there is no (η, y) ∈ C+ such that

∥∥y∥∥∞ =
l

c1
η >

l

γ∗c1f(l)
. (3.61)

Suppose on the contrary that there exists (η, y) ∈ C+ satisfying (3.61). Then for t ∈ �2,

y(t) = η
T∑
s=2

K(t, s)h(s)f
(
y(s)

)

≥ η
T∑
s=2

K(t, s)h(s)f
(
c1
∥∥y∥∥∞

)

= η
T∑
s=2

K(t, s)h(s)f(l)

≥ ηγ∗f(l) = ηγ∗
f(l)
l

· l,

(3.62)

and subsequently, η ≤ l/c1γ∗f(l). Therefore, there is no (η, y) ∈ C+ such that (3.61) holds.



Abstract and Applied Analysis 15

Now, combining the conclusions in Steps 2 and 3, using the fact that no (μ, u) ∈ C+

satisfying (3.61), it concludes that for every λ ∈ (l/c1γ∗f(l), λ1/f0), (1.4), (1.8) has at least
two generalized positive solutions in C+. For arbitrary λ ∈ (infs∈(0,c1B)(s/c1γ∗f(s)), ∞), we
may find l = l(λ) satisfying (3.60). So, for every λ ∈ (infs∈(0,c1B)(s/γ∗f(s)), λ1/f0), (1.4), (1.8)
has at least two generalized positive solutions in C+.

4. Some Examples

In this section, we will apply our results to two examples.
For convenience, set T = 12, then �1 = {1, 2, . . . , 13}, �2 = {2, 3, . . . , 12}.

Example 4.1. Let us consider the boundary value problem

Δ4u(t − 2) = λf(u(t)), t ∈ �2,

u(1) = u(13) = Δ2u(0) = Δ2u(12) = 0,
(4.1)

where

f(u) =

⎧
⎨
⎩

arctanu, u ∈ (0, 1000],

(u − 1000)2 + arctan 1000, u ∈ (1000,∞).
(4.2)

Clearly, f(u) is nondecreasing, f0 = 1, f∞ = ∞. Take B = 1000. By a simple computation, it
follows that infs∈(0,1000)(f(s)/s) = arctan 1000/1000 ≈ 0.00157, λ1 = 16 sin4(π/24) ≈ 0.0048
and γ ∗ = maxt∈�1

∑12
s=2 K(t, s) = 1629/6, then

0.0048 ≈ 16 sin4 π

24
=
λ1

f0
< sup

s∈(0,1000)

s

f(s)γ ∗
=

6
1629 infs∈(0,1000)

(
f(s)/s

) ≈ 2.34631. (4.3)

So, Theorem 1.3(i) implies that (4.1) has at least one generalized positive solution for

0 < λ <
λ1

f0
≈ 0.0048; (4.4)

Theorem 1.3(ii) implies that (4.1) has at least two generalized positive solutions for

λ1

f0
< λ <

1

γ ∗
(

16sin4(π/24) − 1
) ≈ 2.34631. (4.5)

Example 4.2. Let us consider the boundary value problem:

Δ4u(t − 2) = λf̃(u(t)), t ∈ �2,

u(1) = u(13) = Δ2u(0) = Δ2u(12) = 0,
(4.6)
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where

f̃(u) =

⎧
⎪⎪⎨
⎪⎪⎩

eu − 1
u

, u ∈ (0, 30],

√
u − 30 +

e30 − 1
30

, u ∈ (30,∞).
(4.7)

Obviously, f̃(u) is nondecreasing in [0,∞), so f̃0 = limu→ 0(f̃(u)/u) = 1, f̃∞ =
limu→ 0(f̃(u)/u) = 0. By a simple computation, it follows that λ1 = 16 sin4(π/24) and
γ∗ = mint∈�2

∑12
s=2 K(t, s) = 143/2, c1 = 216

√
3/145

√
145 ≈ 0.214. Take B = 50. Since

sups∈(0,10.715 )(f̃(s)/s) = (e10.715 − 1)/10.715 ≈ 4202.0726, it follows that

0.0000155 ≈ inf
s∈(0,c1B)

s

c1γ∗f̃(s)
=

1

sups∈(0,10.715)

(
f̃(s)/s

)
c1γ∗

<
λ1

f̃0

= 16 sin4 π

24
≈ 0.0048.

(4.8)

Therefore, (i) of Theorem 1.4 implies that (4.6) has at least one generalized positive solution
for

λ > inf
s∈(0,c1B)

s

c1γ∗f̃(s)
≈ 0.0000155; (4.9)

(ii) of Theorem 1.4 implies that (4.6) has at least two generalized positive solutions for

0.0000155 < λ < 16 sin4 π

24
. (4.10)
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We present some results to the existence and uniqueness of the periodic solutions for the
hematopoiesis models which are described by the functional differential equations with multiple
delays. Our methods are based on the equivalent norm techniques and a new fixed point theorem
in the continuous function space.

1. Introduction

In this paper, we aim to establish the existence and uniqueness result for the periodic
solutions to the following functional differential equations with multiple delays:

x′(t) = −a(t)x(t) + f(t, x(t − τ1(t)), . . . , x(t − τm(t))), (1.1)

where a, τi ∈ C(R,R+), f ∈ C(Rm+1, R) are T -periodic functions on variable t for T > 0 and m
is a positive integer.

Recently, many authors investigate the dynamics for the various hematopoiesis
models, which includ the attractivity and uniqueness of the periodic solutions. For examples,
Mackey and Glass in [1] have built the following delay differential equation:

x′(t) = −ax(t) + βθn

θn + xn(t − τ)
, (1.2)

where a, n, β, θ, τ are positive constants, x(t) denotes the density of mature cells in blood
circulation, and τ is the time between the production of immature cells in the bone marrow
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and their maturation for release in the circulating bloodstream; Liu et al. [2],Yang [3], Saker
[4], Zaghrout et al. [5], and references therein, also investigate the attractivity and uniqueness
of the periodic solutions for some hematopoiesis models.

This paper is organized as follows. In Section 2, we present two new fixed point
theorems in continuous function spaces and establish the existence and uniqueness results
for the periodic solutions of (1.1). An illustrative example to the hematopoiesis models is
exhibited in the Section 3.

2. Fixed Point Theorems and Existence Results

2.1. Fixed Point Theorems

In this subsection, we will present two new fixed point theorems in continuous function
spaces. More details about the fixed point theorems in continuous function spaces can be
found in the literature [6–8] and references therein.

Let E be a Banach space equipped with the norm ‖ · ‖E. BC(R,E) which denotes
the Banach space consisting of all bounded continuous mappings from R into E with norm
‖u‖C = max{‖u(t)‖E : t ∈ R} for u ∈ BC(R,E).

Theorem 2.1. Let F be a nonempty closed subset of BC(R,E) and A : F → F an operator. Suppose
the following:

(H1) there exist β ∈ [0, 1) and G : R × R → R such that for any u, v ∈ F,

‖Au(t) −Av(t)‖E ≤ β‖u(t) − v(t)‖E +
∫ t

t−T
G(t, s)‖u(s) − v(s)‖Eds for t ∈ R, (2.1)

(H2) there exist an α ∈ [0, 1 − β) and a positive bounded function y ∈ C(R,R) such that

∫ t

t−T
G(t, s)y(s)ds ≤ αy(t) ∀t ∈ R. (2.2)

Then A has a unique fixed point in F.

Proof. For any given x0 ∈ F, let xn = Axn−1, (n = 1, 2, . . .). By (H1), we have

‖Axn+1(t) −Axn(t)‖E ≤ β‖xn+1(t) − xn(t)‖E +
∫ t

t−T
G(t, s)‖xn+1(s) − xn(s)‖Eds. (2.3)

Set an(t) = ‖xn+1(t) − xn(t)‖E, then we get

an+1(t) ≤ βan(t) +
∫ t

t−T
G(t, s)an(s)ds. (2.4)
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In order to prove that the sequence {xn} is a Cauchy sequence with respect to norm
‖·‖C, we introduce an equivalent norm and show that {xn} is a Cauchy sequence with respect
to the new one. Basing on the condition (H2), we see that there are two positive constants M
and m such that m ≤ y(t) ≤ M for all t ∈ R. Define the new norm ‖ · ‖1 by

‖u‖1 = sup
{

1
y(t)

‖u(t)‖E : t ∈ R

}
, u ∈ BC(R,E). (2.5)

Then,

1
M

‖u‖C ≤ ‖u‖1 ≤ 1
m
‖u‖C. (2.6)

Thus, the two norms ‖ · ‖1 and ‖ · ‖C are equivalent.
Set an = ‖xn+1 − xn‖1, then we have an(t) ≤ y(t)an for t ∈ R. By (2.13), we have

1
y(t)

an+1(t) ≤ βan +
1

y(t)

∫ t

t−T
G(t, s)an(s)ds

≤ βan +
an

y(t)

∫ t

t−T
G(t, s)y(s)ds ≤ (

β + α
)
an.

(2.7)

Thus,

an+1 ≤ (
β + α

)
an ≤ (

β + α
)2
an−1 ≤ · · · ≤ (

β + α
)n+1

a0. (2.8)

This means {xn} is a Cauchy sequence with respect to norm ‖ · ‖1. Therefore, also, {xn} is a
Cauchy sequence with respect to norm ‖ · ‖C. Thus, we see that {xn} has a limit point in F,
say u. It is known that u is the fixed point of A in F.

Suppose both u and v (u/=v) are the fixed points of A, then Au = u, Av = v. Following
the similar arguments, we prove that

‖u − v‖1 = ‖Au −Av‖1 ≤ (
β + α

)‖u − v‖1. (2.9)

It is impossible. Thus the fixed point of A is unique. This completes the proof of Theorem 2.1.

Let PC(R,E) be a Banach space consisting of all T -periodic functions in BC(R,E) with
the norm ‖u‖P = max{‖u(t)‖E : t ∈ [0, T]} for u ∈ PC(R,E). Then, following the similar
arguments in Theorem 2.1, we deduce Theorem 2.2 which is a useful result for achieving the
existence of periodic solutions of functional differential equations.
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Theorem 2.2. Let A : PC(R,E) → PC(R,E) be an operator. Suppose the following:

(H̃1) there exist β ∈ [0, 1) and G : R × R → R such that for any u, v ∈ PC(R,E),

‖Au(t) −Av(t)‖E ≤ β‖u(t) − v(t)‖E +
∫ t

t−T
G(t, s)

n∑
i=1

∥∥u(ηi(s)
) − v

(
ηi(s)

)∥∥
Eds, (2.10)

where ηi ∈ C([0, T], R+) with ηi(s) ≤ s and n is a positive integer;

(H̃2) there exist two constants α,K and a positive function y ∈ C(R,R) such that nKα ∈
[0, 1 − β), y(ηi(s)) ≤ Ky(s), and

∫ t

t−T
G(t, s)y(s)ds ≤ αy(t) ∀t ∈ [0, T]. (2.11)

Then A has a unique fixed point in PC(R,E).

Proof. For any given x0 ∈ F, let xk = Axk−1, (k = 1, 2, . . .). By (H̃1), we have

‖Axk+1(t) −Axk(t)‖E ≤ β‖xk+1(t) − xk(t)‖E +
∫ t

t−T
G(t, s)

n∑
i=1

∥∥xk+1
(
ηi(s)

) − xk

(
ηi(s)

)∥∥
Eds.

(2.12)

Set ak(t) = ‖xk+1(t) − xk(t)‖E, then we get

ak+1(t) ≤ βak(t) +
∫ t

t−T
G(t, s)

n∑
i=1

ak

(
ηi(s)

)
ds. (2.13)

Basing on the condition (H̃2), we see that there are two positive constants M and m
such that m ≤ y(t) ≤ M for all t ∈ [0, T]. Define the new norm ‖ · ‖2 by

‖u‖2 = sup
{

1
y(t)

‖u(t)‖E : t ∈ [0, T]
}
, u ∈ PC(R,E). (2.14)

Then,

1
M

‖u‖p ≤ ‖u‖2 ≤ 1
m
‖u‖p. (2.15)

Thus, the two norms ‖ · ‖2 and ‖ · ‖p are equivalent.
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Set ak = ‖xk+1 − xk‖2, then we have ak(t) ≤ y(t)ak for t ∈ [0, T]. By (2.13), we have

1
y(t)

ak+1(t) ≤ βak +
1

y(t)

∫ t

t−T
G(t, s)

n∑
i=1

ak

(
ηi(s)

)
ds

≤ βak +
ak

y(t)

∫ t

t−T
G(t, s)

n∑
i=1

y
(
ηi(s)

)
ds ≤ (

β + nKα
)
ak.

(2.16)

Thus,

ak+1 ≤ (
β + nKα

)
ak ≤ (

β + nKα
)2
ak−1 ≤ · · · ≤ (

β + nKα
)k+1

a0. (2.17)

This means {xk} is a Cauchy sequence with respect to norm ‖ · ‖2. Therefore, {xk} is a Cauchy
sequence with respect to norm ‖ · ‖p. Therefore, we see that {xk} has a limit point in PC(R,E),
say u. It is easy to prove that u is the fixed point of A in PC(R,E). The uniqueness of the fixed
point is obvious. This completes the proof of Theorem 2.2.

2.2. Existence and Uniqueness of the Periodic Solution

In order to show the existence of periodic solutions of (1.1), we assume that the function f is
fulfilling the following conditions:

(Hf) there exist Li > 0 (i = 1, 2, . . . , m) such that for any xi, yi ∈ R,

∣∣f(t, x1, . . . , xm) − f
(
t, y1, . . . , ym

)∣∣ ≤
m∑
i=1

Li

∣∣xi − yi

∣∣, (2.18)

(Hfτ) for all t ∈ [0, T], t ≥ τi(t) ≥ 0 (i = 1, 2, . . . , m).

Theorem 2.3. Suppose (Hf) and (Hfτ) hold. Then the equation (1.1) has a unique T -periodic
solution in C[0, T].

Proof. By direction computations, we see that ϕ(t) is the T -periodic solution if and only if ϕ(t)
is solution of the following integral equation:

x(t) =
eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
(λ − a(s))x(s) + f(s, x(s − τ1(s)), . . . , x(s − τm(s)))

]
ds, (2.19)

where λ = max{|a(t)| : t ∈ [0, T]}.
Thus, we would transform the existence of periodic solution of (1.1) into a fixed point

problem. Considering the map A : PC(R,R) → PC(R,R) defined by, for t ∈ [0, T],

(Ax)(t) =
eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
(λ − a(s))x(s) + f(s, x(s − τ1(s)), . . . , x(s − τm(s)))

]
ds.

(2.20)

Then, u is a T -periodic solution of (1.1) if and only if u is a fixed point of the operator A in
PC(R,R).
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At this stage, we should check that A fulfill all conditions of Theorem 2.2. In fact, for
x, y ∈ PC(R,R), by assumption (Hf), we have

∣∣(Ax)(t) − (
Ay

)
(t)

∣∣

≤ eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
2λ

∣∣x(s) − y(s)
∣∣ +

m∑
i=1

Li

∣∣x(s − τi(s)) − y(s − τi(s))
∣∣
]
ds

≤ LeλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
m+1∑
i=1

∣∣x(ηi(s)
) − y

(
ηi(s)

)∣∣
]
ds,

(2.21)

where ηi(s) = s − τi(s) (i = 1, 2, . . . , m), ηm+1(s) = s and L = max{2λ, L1, . . . , Lm}.
Thus, the condition (H̃1) in Theorem 2.2 holds for β = 0, n = m + 1, and G(t, s) =

(LeλT/(eλT − 1))e−λ(t−s).
On the other hand, we choose a constant c > 0 such that 0 < (m + 1)(LeλT/(eλT −

1))(1/(c + λ)) < 1. Take α = (LeλT/(eλT − 1))(1/(c + λ)) and y(t) = ect for t ∈ [0, T], then
y(ηi(t)) ≤ y(t), and we have

∫ t

t−T
G(t, s)y(s)ds =

∫ t

t−T

LeλT

eλT − 1
e−λ(t−s)ecsds ≤ αy(t). (2.22)

This implies the condition (H̃2) in Theorem 2.2 holds for K = 1.
Following Theorem 2.2, we conclude that the operator A has a unique fixed point, say

ϕ, in PC(R,R). Thus, (1.1) has a unique T -periodic solution in PC(R,R). This completes the
proof of Theorem 2.3.

3. Application to the Hematopoiesis Model

In this section, we consider the periodic solution of following hematopoiesis model with
delays:

x′(t) = −a(t)x(t) +
m∑
i=1

bi(t)
1 + xn(t − τi(t))

, (3.1)

where a, bi, τi ∈ C(R,R+) are T -periodic functions, τi satisfies conditions (Hfτ), and n ≥ 1 is a
real number (i = 1, . . . , m).

Theorem 3.1. The delayed hematopoiesis model (3.1) has a unique positive T -periodic solution.

Proof. Let C+
T = {y : y ∈ CT and y(t) ≥ 0 for t ≥ 0}, define the operator F : C+

T → C+
T by

(Ax)(t) =
eλT

eλT − 1

∫ t

t−T
e−λ(t−s)

[
(λ − a(s))x(s) +

m∑
i=1

bi(s)
1 + xn(s − τi(s))

]
ds. (3.2)
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It is easy to show that A is welldefined. Furthermore, since the function

g(t, x1, . . . , xm) =
m∑
i=1

bi(t)
1 + xn

i

for xi ∈ R+ (3.3)

with the bounded partial derivative

∂g(t, x1, . . . , xm)
∂xi

≤ max

{
bi(t)nxn−1

i

1 + xn
i

: t ∈ [0, T], 1 ≤ i ≤ m

}
, (3.4)

then it is easy to prove that the condition (Hf) holds. Following the similar arguments of
Theorem 2.3, we claim that the operator A has a unique fixed point in C+

T , which is the unique
positive T -periodic solution for equation (3.1). This completes the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 exhibits that the periodic coefficients hematopoiesis model admits a
unique positive periodic solution without additional restriction. Also, Theorem 3.1 improves
Theorem 2.1 in [2] and Corollary 1 in [3].
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The paper contains some suffcient conditions for the existence of positive solutions which are
bounded below and above by positive functions for the nonlinear neutral differential equations
of higher order. These equations can also support the existence of positive solutions approaching
zero at infinity.

1. Introduction

This paper is concerned with the existence of a positive solution of the neutral differential
equations of the form:

dn

dtn
[x(t) − a(t)x(t − τ)] = (−1)n+1p(t)f(x(t − σ)), t ≥ t0, (1.1)

where n > 0 is an integer, τ > 0, σ ≥ 0, a ∈ C([t0,∞), (0,∞)), p ∈ C(R, (0,∞)), f ∈ C(R,R), f
is a nondecreasing function and xf(x) > 0, x /= 0.

By a solution of (1.1) we mean a function x ∈ C([t1 − τ,∞), R) for some t1 ≥ t0, such
that x(t) − a(t)x(t − τ) is n-times continuously differentiable on [t1,∞) and such that (1.1) is
satisfied for t ≥ t1.

The problem of the existence of solutions of neutral differential equations has been
studied and discussed by several authors in the recent years. For related results we refer
the reader to [1–17] and the references cited therein. However, there is no conception which
guarantees the existence of positive solutions which are bounded below and above by
positive functions. Maybe it is due to the technical difficulties arising in the analysis of
the problem. In this paper we presented some conception. The method also supports the
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existence of positive solutions which approaching zero at infinity. Some examples illustrating
the results.

The existence and asymptotic behavior of solutions of the nonlinear neutral differential
equations and systems have been also solved in [1–7, 12, 15].

As much as we know for (1.1) in the literature, there is no result for the existence of
solutions which are bounded by positive functions. Only the existence of solutions which
are bounded by constants is treated and discussed, for example, in [10, 15, 17]. It seems that
conditions of theorems are rather complicate, but cannot be simpler due to Corollaries 2.4,
2.8, and 3.3.

The following fixed point theorem will be used to prove the main results in the next
section.

Lemma 1.1 (see [7, 10, 12] Krasnoselskii’s fixed point theorem). Let X be a Banach space, let Ω
be a bounded closed convex subset of X, and let S1, S2 be maps of Ω into X such that S1x + S2y ∈ Ω
for every pair x, y ∈ Ω. If S1 is a contractive and S2 is completely continuous then the equation:

S1x + S2x = x (1.2)

has a solution in Ω.

2. The Existence of Positive Solution

In this section, we will consider the existence of a positive solution for (1.1) which is bounded
by two positive functions. We will use the notation m = max{τ, σ}.

Theorem 2.1. Suppose that there exist bounded functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0,
and t1 ≥ t0 +m such that

u(t) ≤ v(t), t ≥ t0, (2.1)

v(t) − v(t1) − u(t) + u(t1) ≥ 0, t0 ≤ t ≤ t1, (2.2)

1
u(t − τ)

(
u(t) +

1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(v(s − σ))ds
)

≤ a(t) ≤ 1
v(t − τ)

(
v(t) +

1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(u(s − σ))ds
)

≤ c < 1, t ≥ t1.

(2.3)

Then (1.1) has a positive solution which is bounded by the functions u, v.

Proof. Let C([t0,∞), R) be the set of all continuous bounded functions with the norm ||x|| =
supt≥t0 |x(t)|. Then C([t0,∞), R) is a Banach space. We define a closed, bounded, and convex
subset Ω of C([t0,∞), R) as follows:

Ω = {x = x(t) ∈ C([t0,∞), R) : u(t) ≤ x(t) ≤ v(t), t ≥ t0}. (2.4)
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We now define two maps S1 and S2 : Ω → C([t0,∞), R) as follows:

(S1x)(t) =

⎧
⎨
⎩
a(t)x(t − τ), t ≥ t1,

(S1x)(t1), t0 ≤ t ≤ t1,

(S2x)(t) =

⎧⎪⎨
⎪⎩
− 1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(x(s − σ))ds, t ≥ t1,

(S2x)(t1) + v(t) − v(t1), t0 ≤ t ≤ t1.

(2.5)

We will show that for any x, y ∈ Ω we have S1x + S2y ∈ Ω. For every x, y ∈ Ω and t ≥ t1 we
obtain

(S1x)(t) +
(
S2y
)
(t) ≤ a(t)v(t − τ) − 1

(n − 1)!

∫∞

t

(s − t)n−1p(s)f(u(s − σ))ds ≤ v(t). (2.6)

For t ∈ [t0, t1] we have

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≤ v(t1) + v(t) − v(t1) = v(t).
(2.7)

Furthermore for t ≥ t1 we get

(S1x)(t) +
(
S2y
)
(t) ≥ a(t)u(t − τ) − 1

(n − 1)!

∫∞

t

(s − t)n−1p(s)f(v(s − σ))ds ≥ u(t). (2.8)

Finally let t ∈ [t0, t1] and with regard to (2.2) we get

v(t) − v(t1) + u(t1) ≥ u(t), t0 ≤ t ≤ t1. (2.9)

Then for t ∈ [t0, t1] and any x, y ∈ Ω we get

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≥ u(t1) + v(t) − v(t1) ≥ u(t).
(2.10)

Thus, we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
We will show that S1 is a contraction mapping on Ω. For x, y ∈ Ω and t ≥ t1 we have

∣∣(S1x)(t) −
(
S1y
)
(t)
∣∣ = |a(t)|∣∣x(t − τ) − y(t − τ)

∣∣ ≤ c
∥∥x − y

∥∥. (2.11)

This implies that

∥∥S1x − S1y
∥∥ ≤ c

∥∥x − y
∥∥. (2.12)



4 Abstract and Applied Analysis

Also for t ∈ [t0, t1] the inequality above is valid. We conclude that S1 is a contraction mapping
on Ω.

We now show that S2 is completely continuous. First we will show that S2 is
continuous. Let xk = xk(t) ∈ Ω be such that xk(t) → x(t) as k → ∞. Because Ω is closed,
x = x(t) ∈ Ω. For t ≥ t1 we have

|(S2xk)(t) − (S2x)(t)|

≤ 1
(n − 1)!

∣∣∣∣
∫∞

t

(s − t)n−1p(s)
[
f(xk(s − σ)) − f(x(s − σ))

]
ds

∣∣∣∣

≤ 1
(n − 1)!

∫∞

t1

(s − t1)n−1p(s)
∣∣f(xk(s − σ)) − f(x(s − σ))

∣∣ds.

(2.13)

According to (2.8) we get

∫∞

t1

(s − t1)n−1p(s)f(v(s − σ))ds < ∞. (2.14)

Since |f(xk(s − σ)) − f(x(s − σ))| → 0 as k → ∞, by applying the Lebesgue dominated
convergence theorem we obtain that

lim
k→∞

‖(S2xk)(t) − (S2x)(t)‖ = 0. (2.15)

This means that S2 is continuous.
We now show that S2Ω is relatively compact. It is sufficient to show by the Arzela-

Ascoli theorem that the family of functions {S2x : x ∈ Ω} is uniformly bounded and
equicontinuous on [t0,∞). The uniform boundedness follows from the definition of Ω. For
the equicontinuity we only need to show, according to Levitan result [8], that for any given
ε > 0 the interval [t0,∞) can be decomposed into finite subintervals in such a way that on
each subinterval all functions of the family have change of amplitude less than ε. With regard
to the condition (2.14), for x ∈ Ω and any ε > 0 we take t∗ ≥ t1 large enough so that

1
(n − 1)!

∫∞

t∗
(s − t1)n−1p(s)f(x(s − σ))ds <

ε

2
. (2.16)

Then for x ∈ Ω, T2 > T1 ≥ t∗ we have

|(S2x)(T2) − (S2x)(T1)|

≤ 1
(n − 1)!

∫∞

T2

(s − t1)n−1p(s)f(x(s − σ))ds +
1

(n − 1)!

∫∞

T1

(s − t1)n−1p(s)f(x(s − σ))ds

<
ε

2
+
ε

2
= ε.

(2.17)
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For x ∈ Ω, t1 ≤ T1 < T2 ≤ t∗ and n ≥ 2 we get

|(S2x)(T2) − (S2x)(T1)| = 1
(n − 1)!

∣∣∣∣∣
∫∞

T1

(s − T1)n−1p(s)f(x(s − σ))ds

−
∫∞

T2

(s − T2)n−1p(s)f(x(s − σ))ds

∣∣∣∣∣

=
1

(n − 1)!

∣∣∣∣∣
∫T2

T1

(s − T1)n−1p(s)f(x(s − σ))ds

+
∫∞

T2

(s − T1)n−1p(s)f(x(s − σ))ds

−
∫∞

T2

(s − T2)n−1p(s)f(x(s − σ))ds

∣∣∣∣∣

≤ 1
(n − 1)!

∫T2

T1

sn−1p(s)f(x(s − σ))ds

+
1

(n − 1)!

∫∞

T2

[
(s − T1)n−1 − (s − T2)n−1

]
p(s)f(x(s − σ))ds

≤ max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
(T2 − T1)

+
1

(n − 1)!

∫∞

T2

[(s − T1) − (s − T2)]

×
[
(s − T1)n−2 + (s − T1)n−3(s − T2) + · · · + (s − T1)(s − T2)n−3

+ (s − T2)n−2
]
p(s)f(x(s − σ))ds

≤ max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
(T2 − T1)

+
1

(n − 2)!

∫∞

T2

(T2 − T1)(s − T1)n−2p(s)f(x(s − σ))ds.

(2.18)

With regard to the condition (2.14) we have that

1
(n − 2)!

∫∞

T2

(s − T1)n−2p(s)f(x(s − σ))ds < B, B > 0. (2.19)
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Then we obtain

|(S2x)(T2) − (S2x)(T1)| <
(

max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
+ B

)
(T2 − T1). (2.20)

Thus there exists a δ1 = ε/(M + B), where

M = max
t1≤s≤t∗

{
1

(n − 1)!
sn−1p(s)f(x(s − σ))

}
, (2.21)

such that

|(S2x)(T2) − (S2x)(T1)| < ε if 0 < T2 − T1 < δ1. (2.22)

For n = 1 we proceed by the similar way as above. Finally for any x ∈ Ω, t0 ≤ T1 < T2 ≤ t1
there exists a δ2 > 0 such that

|(S2x)(T2) − (S2x)(T1)| = |v(T1) − v(T2)| =
∣∣∣∣∣
∫T2

T1

v′(s)ds

∣∣∣∣∣

≤ max
t0≤s≤t1

{∣∣v′(s)
∣∣}(T2 − T1) < ε if 0 < T2 − T1 < δ2.

(2.23)

Then {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞) and hence S2Ω is
relatively compact subset of C([t0,∞), R). By Lemma 1.1 there is an x0 ∈ Ω such that S1x0 +
S2x0 = x0. We conclude that x0(t) is a positive solution of (1.1). The proof is complete.

Corollary 2.2. Suppose that all conditions of Theorem 2.1 are satisfied and

lim
t→∞

v(t) = 0. (2.24)

Then (1.1) has a positive solution which tends to zero.

Corollary 2.3. Suppose that there exist bounded functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0
and t1 ≥ t0 +m such that (2.1), (2.3) hold and

v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. (2.25)

Then (1.1) has a positive solution which is bounded by the functions u, v.

Proof. We only need to prove that condition (2.25) implies (2.2). Let t ∈ [t0, t1] and set

H(t) = v(t) − v(t1) − u(t) + u(t1). (2.26)
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Then with regard to (2.25), it follows that H ′(t) = v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. Since H(t1) = 0
and H ′(t) ≤ 0 for t ∈ [t0, t1], this implies that

H(t) = v(t) − v(t1) − u(t) + u(t1) ≥ 0, t0 ≤ t ≤ t1. (2.27)

Thus all conditions of Theorem 2.1 are satisfied.

Corollary 2.4. Suppose that there exists a bounded function v ∈ C1([t0,∞), (0,∞)), constant c > 0
and t1 ≥ t0 +m such that

a(t) =
1

v(t − τ)

(
v(t) +

1
(n − 1)!

∫∞

t

(s − t)n−1p(s)f(v(s − σ))ds
)

≤ c < 1, t ≥ t1. (2.28)

Then (1.1) has a solution x(t) = v(t), t ≥ t1.

Proof. We put u(t) = v(t) and apply Theorem 2.1.

Theorem 2.5. Suppose that p is bounded and there exist bounded functions u, v ∈ C1([t0,∞),
(0,∞)), constant c > 0 and t1 ≥ t0 +m such that (2.1), (2.2) hold and

1
u(t − τ)

(
u(t) − 1

(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(u(s − σ))ds

)

≤ a(t) ≤ 1
v(t − τ)

(
v(t) − 1

(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds

)

≤ c < 1, t ≥ t1,

(2.29)

if n is odd,

1
u(t − τ)

(
u(t) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds

)

≤ a(t) ≤ 1
v(t − τ)

(
v(t) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(u(s − σ))ds

)

≤ c < 1, t ≥ t1,

(2.30)

if n is even, and

∫ t

t1

(t − s)n−2p(s)f(v(s − σ))ds ≤ K, t ≥ t1, K > 0, n ≥ 2. (2.31)

Then (1.1) has a positive solution which is bounded by the functions u, v.
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Proof. Let C([t0,∞), R) be the set as in the proof of Theorem 2.1. We define a closed, bounded,
and convex subset Ω of C([t0,∞), R) as in the proof of Theorem 2.1. We define two maps S1

and S2 : Ω → C([t0,∞), R) as follows:

(S1x)(t) =

⎧
⎨
⎩
a(t)x(t − τ), t ≥ t1,

(S1x)(t1), t0 ≤ t ≤ t1,

(S2x)(t) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)n+1

(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(x(s − σ))ds, t ≥ t1,

(S2x)(t1) + v(t) − v(t1), t0 ≤ t ≤ t1.

(2.32)

We shall show that for any x, y ∈ Ω we have S1x + S2y ∈ Ω. For n odd, every x, y ∈ Ω and
t ≥ t1 we obtain

(S1x)(t) +
(
S2y
)
(t) ≤ a(t)v(t − τ) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds ≤ v(t).

(2.33)

For t ∈ [t0, t1], we have

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≤ v(t1) + v(t) − v(t1) = v(t).
(2.34)

Furthermore for t ≥ t1, we get

(S1x)(t) +
(
S2y
)
(t) ≥ a(t)u(t − τ) +

1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(u(s − σ))ds ≥ u(t).

(2.35)

Let t ∈ [t0, t1] and according to (2.2) we have

v(t) − v(t1) + u(t1) ≥ u(t). (2.36)

Then for t ∈ [t0, t1] and any x, y ∈ Ω we get

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≥ u(t1) + v(t) − v(t1) ≥ u(t).
(2.37)

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
For n even by the similar way as above we can prove that S1x + S2y ∈ Ω for any

x, y ∈ Ω.
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As in the proof of Theorem 2.1, we can show that S1 is a contraction mapping on Ω.
We now show that S2 is completely continuous. First, we will show that S2 is

continuous. Let xk = xk(t) ∈ Ω be such that xk(t) → x(t) as k → ∞. Because Ω is closed,
x = x(t) ∈ Ω. For t ≥ t1 we have

|(S2xk)(t) − (S2x)(t)| ≤ 1
(n − 1)!

∫ t

t1

(t − s)n−1p(s)
∣∣f(xk(s − σ)) − f(x(s − σ))

∣∣ds. (2.38)

According to (2.33) there exists a positive constant M such that

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds ≤ M for t ≥ t1. (2.39)

The inequality above also holds for n even.
Since |f(xk(s−σ))−f(x(s−σ))| → 0 as k → ∞, by applying the Lebesgue dominated

convergence theorem we obtain that

lim
k→∞

‖(S2xk)(t) − (S2x)(t)‖ = 0. (2.40)

This means that S2 is continuous.
We now show that S2Ω is relatively compact. It is sufficient to show by the Arzela-

Ascoli theorem that the family of functions {S2x : x ∈ Ω} is uniformly bounded and
equicontinuous on [t0,∞). The uniform boundedness follows from the definition of Ω. For
n ≥ 2 and with regard to (2.31) we have

∣∣∣∣
d

dt
(S2x)(t)

∣∣∣∣ =
1

(n − 2)!

∫ t

t1

(t − s)n−2p(s)f(x(s − σ))ds

≤ 1
(n − 2)!

∫ t

t1

(t − s)n−2p(s)f(v(s − σ)) ≤ M1,

(2.41)

and for n = 1 we obtain
∣∣∣∣
d

dt
(S2x)(t)

∣∣∣∣ = p(t)f(v(t − σ)) ≤ M2, (2.42)

for t ≥ t1, M2 > 0 and |(d/dt)(S2x)(t)| = |v′(t)| ≤ M3 for t0 ≤ t ≤ t1, M3 > 0, which shows
the equicontinuity of the family S2Ω, (cf. [7, page 265]). Hence S2Ω is relatively compact and
therefore S2 is completely continuous. By Lemma 1.1, there is x0 ∈ Ω such that S1x0 + S2x0 =
x0. Thus x0(t) is a positive solution of (1.1). The proof is complete.

Corollary 2.6. Suppose that all conditions of Theorem 2.5 are satisfied and

lim
t→∞

v(t) = 0. (2.43)

Then (1.1) has a positive solution which tends to zero.



10 Abstract and Applied Analysis

Corollary 2.7. Suppose that p is bounded and there exist bounded functions u, v ∈ C1([t0,∞),
(0,∞)), constant c > 0 and t1 ≥ t0 +m such that (2.1), (2.29), (2.30), (2.31) hold and

v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. (2.44)

Then (1.1) has a positive solution which is bounded by the functions u, v.

Proof. The proof is similar to that of Corollary 2.3 and we omit it.

Corollary 2.8. Suppose that p is bounded and there exists a bounded function v ∈ C1([t0,∞),
(0,∞)), constant c > 0 and t1 ≥ t0 +m such that (2.31) holds and

a(t) =
1

v(t − τ)

(
v(t) +

(−1)n

(n − 1)!

∫ t

t1

(t − s)n−1p(s)f(v(s − σ))ds

)

≤ c < 1, t ≥ t1.

(2.45)

Then (1.1) has a solution x(t) = v(t), t ≥ t1.

Proof. We put u(t) = v(t) and apply Theorem 2.5.

3. Applications and Examples

In this section, we give some applications of the theorems above.

Theorem 3.1. Suppose that 0 < k1 ≤ k2 and there exist γ ≥ 0, c > 0, t1 ≥ t0 +m such that

k1

k2
exp

(
(k2 − k1)

∫ t0

t0−γ
p(t)dt

)
≥ 1, (3.1)

exp

(
−k2

∫ t

t−τ
p(s)ds

)
+

1
(n − 1)!

exp

(
k2

∫ t−τ

t0−γ
p(s)ds

)

×
∫∞

t

(s − t)n−1p(s)f

(
exp

(
−k1

∫ s−σ

t0−γ
p(ξ)dξ

))
ds ≤ a(t)

≤ exp

(
−k1

∫ t

t−τ
p(s)ds

)
+

1
(n − 1)!

exp

(
k1

∫ t−τ

t0−γ
p(s)ds

)

×
∫∞

t

(s − t)n−1p(s)f

(
exp

(
−k2

∫ s−σ

t0−γ
p(ξ)dξ

))
ds ≤ c < 1, t ≥ t1.

(3.2)

Then (1.1) has a positive solution which is bounded by two exponential functions.
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Proof. We set

u(t) = exp

(
−k2

∫ t

t0−γ
p(s)ds

)
, v(t) = exp

(
−k1

∫ t

t0−γ
p(s)ds

)
, t ≥ t0. (3.3)

We will show that the conditions of Corollary 2.3 are satisfied. With regard to (3.1) for t ∈
[t0, t1] we get

v′(t) − u′(t) = −k1p(t)v(t) + k2p(t)u(t)

= p(t)v(t)

[
−k1 + k2u(t) exp

(
k1

∫ t

t0−γ
p(s)ds

)]

= p(t)v(t)

[
−k1 + k2 exp

(
(k1 − k2)

∫ t

t0−γ
p(s)ds

)]

≤ p(t)v(t)

[
−k1 + k2 exp

(
(k1 − k2)

∫ t0

t0−γ
p(s)ds

)]
≤ 0.

(3.4)

Other conditions of Corollary 2.3 are also satisfied. The proof is complete.

Corollary 3.2. Suppose that all conditions of Theorem 3.1 are satisfied and

∫∞

t0

p(t)dt = ∞. (3.5)

Then (1.1) has a positive solution which tends to zero.

Corollary 3.3. Suppose that k > 0, c > 0, t1 ≥ t0 +m and

a(t) = exp

(
−k
∫ t

t−τ
p(s)ds

)
+

1
(n − 1)!

exp

(
k

∫ t−τ

t0

p(s)ds

)

×
∫∞

t

(s − t)n−1p(s)f

(
exp

(
−k
∫ s−σ

t0

p(ξ)dξ

))
ds ≤ c < 1, t ≥ t1.

(3.6)

Then (1.1) has a solution:

x(t) = exp

(
−k
∫ t

t0

p(s)ds

)
, t ≥ t1. (3.7)

Proof. We put k1 = k2 = k, γ = 0 and apply Theorem 3.1.
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Example 3.4. Consider the nonlinear neutral differential equation:

[x(t) − a(t)x(t − 2)]′ = px3(t − 1), t ≥ t0, (3.8)

where p ∈ (0,∞). We will show that the conditions of Theorem 3.1 are satisfied. The condition
(3.1) has a form:

k1

k2
exp
(
(k2 − k1)pγ

) ≥ 1, (3.9)

0 < k1 ≤ k2, γ ≥ 0. For function a(t), we obtain

exp
(−2pk2

)
+

1
3k1

exp
(
p
[
k2
(
γ − t0 − 2

) − 3k1
(
γ − t0 − 1

)
+ (k2 − 3k1)t

])

≤ a(t) ≤ exp
(−2pk1

)

+
1

3k2
exp
(
p
[
k1
(
γ − t0 − 2

) − 3k2
(
γ − t0 − 1

)
+ (k1 − 3k2)t

])
, t ≥ t0.

(3.10)

For p = 1, k1 = 1, k2 = 2, γ = 1, t0 = 1, the condition (3.9) is satisfied and

e−4 +
1

3e
e−t ≤ a(t) ≤ e−2 +

e4

6
e−5t, t ≥ t1 ≥ 3. (3.11)

If the function a(t) satisfies (3.11), then (3.8) has a solution which is bounded by the functions
u(t) = exp(−2t), v(t) = exp(−t), t ≥ 3.

Example 3.5. Consider the nonlinear differential equation:

[x(t) − a(t)x(t − π)]′ = p(t)f(x(t − π)), t ≥ 0, (3.12)

where f(x) =
√
x, x > 0, p(t) = 0.8 exp(π − t + 0.05 cos t), t ≥ 0, and

e0.1 cos t
(
e0.1 cos t + 0.8

(
eπ−t − 1

)) ≤ a(t) ≤ e0.1 cos t
(
e0.1 cos t +

0.8√
b

(
eπ−t − 1

))
< 1, (3.13)

for t ≥ π, b ∈ [1, 2]. Set

u(t) = e0.1 cos t, v(t) = be0.1 cos t, t ≥ 0. (3.14)

Then we have

v′(t) − u′(t) = −0.1be0.1 cos t sin t + 0.1e0.1 cos t sin t

= −0.1(b − 1)e0.1 cos t sin t ≤ 0 for t ∈ [0, π].
(3.15)
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By Corollary 2.7, (3.12) has a solution which is bounded by the functions e0.1 cos t and
be0.1 cos t, t ≥ π . If

a(t) = e0.1 cos t
(
e0.1 cos t + 0.8

(
eπ−t − 1

))
for t ≥ π, (3.16)

then (3.12) has the positive periodic solution x(t) = u(t) = e0.1 cos t, t ≥ π .
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We study the existence of at least one monotonic positive solution for the nonlocal boundary value
problem of the second-order functional differential equation x′′(t) = f(t, x(φ(t))), t ∈ (0, 1), with
the nonlocal condition

∑m
k=1 akx(τk) = x0, x′(0) +

∑n
j=1 bjx

′(ηj) = x1, where τk ∈ (a, d) ⊂ (0, 1),
ηj ∈ (c, e) ⊂ (0, 1), and x0, x1 > 0. As an application the integral and the nonlocal conditions∫d
a x(t)dt = x0, x′(0) + x(e) − x(c) = x1 will be considered.

1. Introduction

The nonlocal boundary value problems of ordinary differential equations arise in a variety of
different areas of applied mathematics and physics.

The study of nonlocal boundary value problems was initiated by Il’in and Moiseev
[1, 2]. Since then, the non-local boundary value problems have been studied by several
authors. The reader is referred to [3–22] and references therein.

In most of all these papers, the authors assume that the function f : [0, 1] × R+ → R+

is continuous. They all assume that

lim
x→∞

f(x)
x

= 0 or ∞,

lim
x→ 0

f(x)
x

= 0 or ∞.

(1.1)
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These assumptions are restrictive, and there are many functions that do not satisfy these
assumptions.

Here we assume that the function f : [0, 1] × R+ → R+ is measurable in t ∈ [0, 1] for
all x ∈ R+ and continuous in x ∈ R+ for almost all t ∈ [0, 1] is and there exists an integrable
function a ∈ L1[0, 1] and a constant b > 0 such that

∣∣f(t, x)∣∣ ≤ |a(t)| + b|x|, ∀(t, x) ∈ [0, 1] ×D. (1.2)

Our aim here is to study the existence of at least one monotonic positive solution for the
nonlocal problem of the second-order functional differential equation

x′′(t) = f
(
t, x
(
φ(t)
))
, t ∈ (0, 1), (1.3)

with the nonlocal condition

m∑
k=1

akx(τk) = x0, x′(0) +
n∑
j=1

bjx
′(ηj
)
= x1, (1.4)

where τk ∈ (a, d) ⊂ (0, 1), ηj ∈ (c, e) ⊂ (0, 1), and x0, x1 > 0.
As an application, the problem with the integral and nonlocal conditions

∫d

a

x(t)dt = x0, x′(0) + x(e) − x(c) = x1, (1.5)

is studied.
It must be noticed that the nonlocal conditions

x(τ) = x0, τ ∈ (a, d) , x′(0) + x′(η) = x1, η ∈ (c, e),

m∑
k=1

akx(τk) = 0, τk ∈ (a, d), x′(0) +
n∑
j=1

bjx
′(ηj
)
= 0, ηj ∈ (c, e),

∫d

a

x(t)dt = 0, x′(0) + x(e) = x(c)

(1.6)

are special cases of our the nonlocal and integral conditions.

2. Integral Equation Representation

Consider the functional differential equation (1.3) with the nonlocal condition (1.4) with the
following assumptions.
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(i) f : [0, 1] × R+ → R+ is measurable in t ∈ [0, 1] for all x ∈ R+ and continuous in
x ∈ R+ for almost all t ∈ [0, 1] and there exists an integrable function a ∈ L1[0, 1],
and a constant b > 0 such that

∣∣f(t, x)∣∣ ≤ |a(t)| + b|x|, ∀(t, x) ∈ [0, 1] ×D. (2.1)

(ii) φ : (0, 1) → (0, 1) is continuous.

(iii) b < 1/(3 − B), B = (
∑n

j=1 bj + 1)−1.

(iv)

m∑
k=1

ak > 0, ∀k = 1, 2, . . . , m,
n∑
j=1

bj > 0, ∀j = 1, 2, . . . , n. (2.2)

Now, we have the following Lemma.

Lemma 2.1. The solution of the nonlocal problem (1.3)-(1.4) can be expressed by the integral equation

x(t) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(
t −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds,

(2.3)

where A = (
∑m

k=1 ak)
−1, B = (

∑n
j=1 bj + 1)−1.

Proof. Integrating (1.3), we get

x′(t) = x′(0) +
∫ t

0
f
(
s, x
(
φ(s)

))
ds. (2.4)

Integrating (2.4), we obtain

x(t) = x(0) + x′(0)t +
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds. (2.5)

Let t = τk, in (2.5), we get

m∑
k=1

akx(τk) =
n∑

k=1

akx(0) +
n∑

k=1

akτkx
′(0) +

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds, (2.6)
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and we deduce that

x(0) = A

{
x0 −

m∑
k=1

akτkx
′(0) −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}
, A =

(
m∑
k=1

ak

)−1

. (2.7)

Substitute from (2.7) into (2.5), we obtain

x(t) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}
+ x′(0)

(
t −A

m∑
k=1

akτk

)

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds.

(2.8)

Let t = ηj , in (2.4), we obtain

n∑
j=1

bjx
′(ηj
)
=

n∑
j=1

bjx
′(0) +

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds,

x1 − x′(0) = x′(0)
n∑
j=1

bj +
n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds,

(2.9)

and we deduce that

x′(0) = B

⎛
⎝x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎞
⎠, B =

⎛
⎝

n∑
j=1

bj + 1

⎞
⎠

−1

. (2.10)

Substitute from (2.10) into (2.8), we obtain

x(t) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(
t −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭,

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds,

(2.11)

which proves that the solution of the nonlocal problem (1.3)-(1.4) can be expressed by the
integral equation (2.3).
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3. Existence of Solution

We study here the existence of at least one monotonic nondecreasing solution x ∈ C[0, 1] for
the integral equation (2.3).

Theorem 3.1. Assume that (i)–(iv) are satisfied. Then the nonlocal problem (1.3)-(1.4) has at least
one solution x ∈ C[0, 1].

Proof. Define the subset Qr ⊂ C(0, 1) by Qr = {x ∈ C : |x(t)| ≤ r, r = (Ax0 + Bx1 + (3 −
B)‖a‖)/(1 − (3 − B)b), r > 0}. Clear the set Qr which is nonempty, closed, and convex.

Let H be an operator defined by

(Hx)(t) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(
t −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭

+
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds.

(3.1)

Let x ∈ Qr , then

|(Hx)(t)| ≤ A

{
x0 +

m∑
k=1

ak

∫ τk

0
(τk − s)

∣∣f(s, x(φ(s)))∣∣ds
}

+ B

(
t −A

m∑
k=1

akτk

)⎧⎨
⎩x1 +

n∑
j=1

bj

∫ηj

0

∣∣f(s, x(φ(s)))∣∣ds
⎫
⎬
⎭

+
∫ t

0
(t − s)

∣∣f(s, x(φ(s)))∣∣ds

≤ A

{
x0 +

m∑
k=1

ak

∫1

0

[|a(s)| + b
∣∣x(φ(s))∣∣]ds

}

+ B

⎧
⎨
⎩x1 +

n∑
j=1

bj

∫1

0

[|a(s)| + b
∣∣x(φ(s))∣∣]ds

⎫
⎬
⎭

+
∫1

0

[|a(s)| + b
∣∣x(φ(s))∣∣]ds

≤ Ax0 + ‖a‖ + b sup
t∈I

∣∣x(φ(t))∣∣ + Bx1 + B
n∑
j=1

bj‖a‖

+ bB
n∑
j=1

bjsup
t∈I

∣∣x(φ(t))∣∣ + ‖a‖ + b sup
t∈I

∣∣x(φ(t))∣∣
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≤ Ax0 + Bx1 + 2‖a‖ + 2b‖x‖ + (1 − B)‖a‖ + b(1 − B)‖x‖
≤ Ax0 + Bx1 + (3 − B)‖a‖ + (3 − B)br ≤ r,

(3.2)

then H : Qr → Qr and {Hx(t)} is uniformly bounded in Qr .
Also for t1, t2 ∈ [0, 1] such that t1 < t2, we have

(Hx)(t2) − (Hx)(t1) = B

(
t2 −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(t)
))
ds

⎫
⎬
⎭

+
∫ t2

0
(t2 − s)f

(
s, x
(
φ(t)
))
ds

− B

(
t1 −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(t)
))
ds

⎫
⎬
⎭

−
∫ t1

0
(t1 − s)f

(
s, x
(
φ(t)
))
ds

= B(t2 − t1)

⎧
⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(t)
))
ds

⎫
⎬
⎭

+
∫ t1

0
(t2 − t1)f

(
s, x
(
φ(t)
))
ds

+
∫ t2

t1

(t2 − s)f
(
s, x
(
φ(t)
))
ds.

(3.3)

Then

|(Hx)(t2) − (Hx)(t1)| ≤ B|t2 − t1|
⎧
⎨
⎩x1 +

n∑
j=1

bj

∫ηj

0

[|a(s)| + b
∣∣x(φ(s))∣∣]ds

⎫
⎬
⎭

+ |t2 − t1|
∫ t1

0

[|a(s)| + b
∣∣x(φ(s))∣∣]ds

+
∫ t2

t1

(t2 − s)
[|a(s)| + b

∣∣x(φ(s))∣∣]ds



Abstract and Applied Analysis 7

≤ B|t2 − t1|x1 +
n∑
j=1

bj[‖a‖ + br]

+ |t2 − t1|[‖a‖ + br] +
∫ t2

t1

‖a‖ds + br[t2 − t1].

(3.4)

The above inequality shows that

|(Hx)(t2) − (Hx)(t1)| −→ 0 as t2 −→ t1. (3.5)

Therefore {Hx(t)} is equicontinuous. By the Arzelà-Ascoli theorem, {Hx(t)} is relatively
compact.

Since all conditions of the Schauder theorem hold, then H has a fixed point in Qr

which proves the existence of at least one solution x ∈ C[0, 1] of the integral equation (2.3),
where

lim
t→ 0+

x(t) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

− BA
m∑
k=1

akτk

⎧
⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭ = x(0),

lim
t→ 1−

x(t) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(
1 −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭

+
∫1

0
(1 − s)f

(
s, x
(
φ(s)

))
ds = x(1).

(3.6)

To complete the proof, we prove that the integral equation (2.3) satisfies nonlocal problem
(1.3)-(1.4). Differentiating (2.3), we get

x′(t) = B

⎧
⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭ +

∫ t

0
f
(
s, x
(
φ(s)

))
ds, (3.7)

x′′(t) = f
(
t, x
(
φ(t)
))
. (3.8)
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Let t = τk in (2.3), we obtain

x(τk) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}
+
∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds, (3.9)

which proves

m∑
k=1

akx(τk) = x0. (3.10)

Also let t = ηj in (3.7), we obtain

x′(ηj
)
= B

⎧
⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭ +

∫ηj

0
f
(
s, x
(
φ(s)

))
ds, (3.11)

then

n∑
j=1

bjx
′(ηj
)
= B

n∑
j=1

bj

⎧
⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭ +

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds. (3.12)

Let t = 0 in (3.7), we obtain

x′(0) = B

⎧
⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭. (3.13)

Adding (3.12) and (3.13), we obtain

x′(0) +
n∑
j=1

bjx
′(ηj
)
= x1. (3.14)

This implies that there exists at least one solution x ∈ C[0, 1] of the nonlocal problem (1.3)
and (1.4). This completes the proof.
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Corollary 3.2. The solution of the problem (1.3)-(1.4) is monotonic nondecreasing.

Proof. Let t1 < t2, we deduce from (2.3) that

x(t1) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(
t1 −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭

+
∫ t1

0
(t1 − s)f

(
s, x
(
φ(s)

))
ds

< A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}

+ B

(
t2 −A

m∑
k=1

akτk

)⎧⎨
⎩x1 −

n∑
j=1

bj

∫ηj

0
f
(
s, x
(
φ(s)

))
ds

⎫
⎬
⎭

+
∫ t2

0
(t2 − s)f

(
s, x
(
φ(s)

))
ds = x(t2),

(3.15)

which proves that the solution x of the problem (1.3)-(1.4) is monotonic nondecreasing.

3.1. Positive Solution

Let bj = 0, j = 1, 2, . . . n and x1 = 0, then the nonlocal problem condition (1.4) will be

m∑
k=1

akx(τk) = x0, x′(0) = 0. (3.16)

Theorem 3.3. Let the assumptions (i)–(iv) of Theorem 3.1 be satisfied. Then the solution of the
nonlocal problem (1.3)–(3.16) is positive t ∈ [d, 1].

Proof. Let bj = 0, j = 1, 2, . . . n and x1 = 0 in the integral equation (2.3) and the nonlocal
condition (1.4), then the solution of the nonlocal problem (1.3)–(3.16) will be given by the
integral equation

x(t) = A

{
x0 −

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds

}
+
∫ t

0
(t − s) f

(
s, x
(
φ(s)

))
ds, (3.17)

where A = (
∑m

k=1 ak)
−1.
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Let t ∈ [d, 1], then

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds ≤

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds, τk ≤ t,

m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds ≤

m∑
k=1

ak

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds.

(3.18)

Multiplying by A = (
∑m

k=1 ak)
−1, we obtain

A
m∑
k=1

ak

∫ τk

0
(τk − s)f

(
s, x
(
φ(s)

))
ds ≤ A

m∑
k=1

ak

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds

=
∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds,

(3.19)

and the solution x of the nonlocal problem (1.3) and (3.16), given by the integral equation
(3.17), is positive for t ∈ [d, 1]. This complete the proof.

Example 3.4. Consider the nonlocal problem of the second-order functional differential
equation (1.3) with two-point boundary condition

x′(0) = 0, x
(
η
)
= x0, η ∈ (a, d) ⊂ (0, 1). (3.20)

Applying our results here, we deduce that the two-point boundary value problem (1.3)–
(3.20) has at least one monotonic nondecreasing solution x ∈ C[0, 1] represented by the
integral equation

x(t) = x0 −
∫η

0

(
η − s

)
f
(
s, x
(
φ(s)

))
ds +

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
ds. (3.21)

This the solution is positive with t > η.

4. Nonlocal Integral Condition

Let x ∈ C[0, 1] be the solution of the nonlocal problem (1.3) and (1.4).
Let ak = tk − tk−1, τk ∈ (tk−1, tk) ⊂ (a, d) ⊂ (0, 1) and let bj = ξj − ξj−1, ηj ∈ (ξj−1, ξj) ⊂

(c, e) ⊂ (0, 1), then

m∑
k=1

(tk − tk−1)x(τk) = x0, x′(0) +
n∑
j=1

(
ξj − ξj−1

)
x′(ηj

)
= x1. (4.1)
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From the continuity of the solution x of the nonlocal problem (1.3) and (1.4), we obtain

lim
m→∞

m∑
k=1

(tk − tk−1)x(τk) =
∫d

a

x(s)ds,

x′(0) + lim
n→∞

n∑
j=1

(
ξj − ξj−1

)
x′(ηj

)
= x′(0) +

∫e

c

x′(s)ds,

(4.2)

and the nonlocal condition (1.4) transformed to the integral condition

∫d

a

x(s)ds = x0, x′(0) + x(e) − x(c) = x1, (4.3)

and the solution of the integral equation (2.3) will be

x(t) = (d − a)−1

{
x0 −

∫d

a

∫ t

0
(t − s)f

(
s, x
(
φ(s)

))
dsdt

}

+ ((b − c) + 1)−1(t − 1)

{
x1 −

∫e

c

∫ t

0
f
(
s, x
(
φ(s)

))
dsdt

}

+
∫ t

0
f
(
s, x
(
φ(s)

))
ds.

(4.4)

Now, we have the following theorem.

Theorem 4.1. Let the assumptions (i)–(iv) of Theorem 3.1 be satisfied. Then the nonlocal problem

x′′(t) = f
(
t, x
(
φ(t)
))
, t ∈ (0, 1) ,

∫d

a

x(s)ds = x0, x′(0) + x(e) − x(c) = x1

(4.5)

has at least one monotonic nondecreasing solution x ∈ C[0, 1] represented by (4.4).
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We prove the existence of one-signed periodic solutions of second-order nonlinear difference
equation on a finite discrete segment with periodic boundary conditions by combining some
properties of Green’s function with the fixed-point theorem in cones.

1. Introduction

Let R be the set of real numbers, Z be the integers set, T, a, b ∈ Z with T > 2, a > b, and
[a, b]

Z
= {a, a + 1, . . . , b}.
In recent years, the existence and multiplicity of positive solutions of periodic

boundary value problems for difference equations have been studied extensively, see [1–5]
and the references therein. In 2003, Atici and Cabada [2] studied the existence of solutions of
second-order difference equation boundary value problem

Δ2y(n − 1) + a(n)y(n) + f
(
n, y(n)

)
= 0, n ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(1.1)

where a, f satisfy
(H1) a : [1, T]

Z
→ (−∞, 0] and a(·)/≡ 0;

(H2) f : [1, T]
Z
× R → R is continuous with respect to y ∈ R.

The authors obtained the existence results of solutions of (1.1) under conditions (H1), (H2),
and the used tool is upper and lower solutions techniques.

Naturally, whether there exists the Green function G(t, s) of the homogeneous linear
boundary value problem corresponding to (1.1) if a(n) ≥ 0? Moreover, if the answer is
positive, whether G(t, s) keeps its sign? To the knowledge of the authors, there are very few
works on the case a(n) ≥ 0.
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Recently, in 2003, Torres [6] investigated the existence of one-signed periodic solutions
for second-order differential equation boundary value problem

x′′(t) = f(t, x(t)), t ∈ [1, T],

x(0) = x(T), x′(0) = x′(T),
(1.2)

by applying the fixed-point theorem in cones, and constructed Green’s function of

x′′(t) + a(t)x(t) = 0, t ∈ [1, T],

x(0) = x(T), x′(0) = x′(T),
(1.3)

where a ∈ Lp(0, T) satisfies either
(H3) a ≤ 0, a(·)/≡ 0 on [0, T];
(H4) a ≥ 0, a(·)/≡ 0 on [0, T] and ‖a‖p ≤ K(2p∗) for some 1 ≤ p ≤ +∞.
Motivated by Torres [6], in Section 2, the paper gives the new expression of Green’s

function of the linear boundary value problem

Δ2y(t − 1) + a(t)y(t) = 0, t ∈ [1, T]
Z
, (1.4)

y(0) = y(T), Δy(0) = Δy(T), (1.5)

where a ∈ Λ+ ∪Λ− and

Λ− = {a | a : [1, T]
Z
−→ (−∞, 0], a(·)/≡ 0},

Λ+ =
{
a | a : [1, T]

Z
−→ [0,∞), a(·)/≡ 0, max

t∈[1,T]
Z

|a(t)| < 4 sin2 π

2T

}
,

(1.6)

and obtains the sign properties of Green’s function of (1.4), (1.5).
In Section 3, we obtain the existence of one-signed periodic solutions of the discrete

second-order nonlinear periodic boundary value problem

Δ2y(t − 1) = f
(
t, y(t)

)
, t ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(1.7)

where f : [1, T]
Z
× R → R is continuous. For related results on the associated differential

equations, see Torres [6].

2. Preliminaries

Let

E =
{
y | y : [0, T + 1]

Z
−→ R, y(0) = y(T), y(1) = y(T + 1)

}
(2.1)

be a Banach space endowed with the norm ‖y‖ = maxt∈[0,T+1]
Z
|y(t)|.
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We say that the linear boundary value problem (1.4), (1.5) is nonresonant when its
unique solution is the trivial one. If (1.4), (1.5) is nonresonant, and let h : [1, T]

Z
→ R, by

the virtue of the Fredholm’s alternative theorem, we can get that the discrete second-order
periodic boundary value problem

Δ2y(t − 1) + a(t)y(t) = h(t), t ∈ [1, T]
Z

(2.2)

y(0) = y(T), Δy(0) = Δy(T) (2.3)

has a unique solution y,

y(t) =
T∑
s=1

G(t, s)h(s), t ∈ [0, T + 1]
Z
, (2.4)

where G(t, s) is Green’s function related to (1.4), (1.5).

Definition 2.1 (see [7]). We say that a solution y of (1.4) has a generalized zero at t0 provided
that y(t0) = 0 if t0 = 0 and if t0 > 0 either y(t0) = 0 or y(t0 − 1)y(t0) < 0.

Theorem 2.2. Assume that the distance between two consecutive generalized zeros of a nontrivial
solution of (1.4) is greater than T . Then Green’s function G(t, s) has constant sign.

Proof. Obviously, G is well defined on [0, T + 1]
Z
× [1, T]

Z
. We only need to prove that G

has no generalized zero in any point. Suppose on the contrary that there exists (t0, s0) ∈
[0, T + 1]

Z
× [1, T]

Z
such that (t0, s0) is a generalized zero of G(t, s). It is well known that for

a given s0 ∈ [1, T]
Z

, G(t, s0) as a function of t is a solution of (1.4) in the intervals [0, s0 − 1]
Z

and [s0 + 1, T + 1]
Z

such that

G(0, s0) = G(T, s0), G(1, s0) = G(T + 1, s0). (2.5)

Case 1 (G(t0, s0) = 0, (t0, s0) ∈ [0, T + 1]
Z
× [1, T]

Z
). If t0 ∈ [s0 + 1, T + 1]

Z
, we can construct

y(t) =
{

G(t, s0), t ∈ [s0, T + 1]
Z
,

G(t − T, s0), t ∈ [T + 1, s0 + T]
Z
.

(2.6)

Consequently, y is a solution of (1.4) in the whole interval [s0, s0 + T]
Z

. Since y(t0) = 0, we
have Δ2y(t0 − 1) = −a(t)y(t0) = 0, that is, y(t0 − 1)y(t0 + 1) < 0. Moreover, y(s0) = y(s0 + T),
so there at least exists another generalized zero t1 ∈ [s0+1, s0+T]Z

of y. Note that the distance
between t0 and t1 is smaller than T , which is a contradiction.

Analogously, if t0 ∈ [0, s0 − 1]
Z

, we get a contradiction by the same reasoning with

y(t) =
{

G(t + T, s0), t ∈ [s0 − T, 0]
Z
,

G(t, s0), t ∈ [0, s0]Z
.

(2.7)

If t0 = s0, we can apply y as defined (2.7). Since y(t0) = y(s0) = 0 and y(s0 −T) = y(s0),
which contradicts with the hypothesis.
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Case 2 (G(t0 − 1, s0)G(t0, s0) < 0, (t0, s0) ∈ [1, T + 1]
Z
× [1, T]

Z
). If t0 ∈ [s0 + 1, T + 1]

Z
, we can

construct y defined as (2.6). It is not difficult to verify that y is a solution of (1.4) in the whole
interval [s0, s0 +T]

Z
. Also, we have that y(t0 − 1)y(t0) < 0, that is, t0 is a generalized zero of y.

Moreover, y(s0) = y(s0+T), so there at least exists another generalized zero t1 ∈ [s0+1, s0+T]Z

of y. Note that the distance between t0 and t1 is smaller than T , which is a contradiction.
Similarly, if t0 ∈ [1, s0 − 1]

Z
, we can get a contradiction by the same reasoning as y

defined (2.7).
If t0 = s0, we can construct y defined by (2.7). Since y(t0 − 1)y(t0) = y(s0 − 1)y(s0) < 0

and y(s0−T) = y(s0), it is clear that there exists another generalized zero t1 ∈ [s0−T, s0]Z
of y.

Note that the distance between t0 and t1 is smaller than T , this contradicts with the hypothesis.

To apply the above result, we are going to study the two following cases.

Corollary 2.3. If a ∈ Λ−, then G(t, s) < 0 for all (t, s) ∈ [0, T + 1]
Z
× [1, T]

Z
.

Proof. If a ∈ Λ−, by [7, Corollary 6.7], it is easy to verify that (1.4) is disconjugate on [0, T+1]
Z

,
and any nontrivial solution of (1.4) has at most one generalized zero on [0, T + 1]

Z
. Hence, by

Theorem 2.2, Green’s function G(t, s) has constant sign. We claim that the sign is negative. In
fact, y(t) =

∑T
s=1 G(t, s) is the unique T -periodic solution of the equation

Δ2y(t − 1) + a(t)y(t) = 1, (2.8)

and summing both sides of (2.8) from t = 1 to t = T , we can get

T∑
t=1

a(t)y(t) = T > 0. (2.9)

Since a(t) < 0, y(t) < 0 for some t ∈ [1, T]
Z

, and as a consequence G(t, s) < 0 for all (t, s) ∈
[0, T + 1]

Z
× [1, T]

Z
.

Remark 2.4. If a(·) ≡ a0 (a0 is a negative constant), then by computing we can obtain

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− λt−s1 + λT−t+s1(
λ1 − λ−1

1

)(
λT1 − 1

) , 1 ≤ s ≤ t ≤ T + 1,

− λs−t1 + λT−s+t1(
λ1 − λ−1

1

)(
λT1 − 1

) , 0 ≤ t ≤ s ≤ T,

(2.10)

where λ1 = (2 − a0 +
√
a2

0 − 4a0)/2 > 1. Obviously, G(t, s) < 0, (t, s) ∈ [0, T + 1]
Z
× [1, T]

Z
.

If a ≥ 0, then the solutions of (1.4) are oscillating, that is, there are infinite zeros, and
to get the required distance between generalized zeros, a should satisfy Λ+.

Corollary 2.5. If a ∈ Λ+, then G(t, s) > 0 for all (t, s) ∈ [0, T + 1]
Z
× [1, T]

Z
.

Proof. We claim that the distance between two consecutive generalized zeros of a nontrivial
solution y of (1.4) is strictly greater than T . In fact, it is not hard to verify that
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Δ2y(t − 1) + ‖a‖y(t) = 0 is disconjugate on [0, T + 1]
Z

under assumption ‖a‖ < 4 sin2(π/2T).
Since a(t) ≤ ‖a‖, t ∈ [1, T]

Z
, by Sturm comparison theorem [7, Theorem 6.19], (1.4) is

disconjugate on [0, T +1]
Z

, that is, any nontrivial solution of (1.4) has at most one generalized
zero on [0, T + 1].

Hence, by Theorem 2.2, G(t, s) has constant sign on [0, T+1]
Z
×[1, T]

Z
, and the positive

sign of G is determined as the proof process of Corollary 2.3.

Remark 2.6. If a(·) ≡ a (a is apositive constant), and 0 < a < 4 sin2(π/2T), then by
computing we can obtain

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

sin[θ(t − s)] + sin[θ(T − t + s)]
2 sin θ(1 − cos(θT))

, 1 ≤ s ≤ t ≤ T + 1,

sin[θ(s − t)] + sin[θ(T − s + t)]
2 sin θ(1 − cos(θT))

, 0 ≤ t ≤ s ≤ T,

(2.11)

where θ = arccos((2 − a)/2) and 0 < θ < π/T . Clearly, G(t, s) > 0, (t, s) ∈ [0, T + 1]
Z
× [1, T]

Z
.

If a(·) ≡ a and a = 4 sin2(π/2T), then θ = π/T , and by computing we get

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 sin(π/T)

sin
[π
T
(t − s)

]
, 1 ≤ s ≤ t ≤ T + 1,

1
2 sin(π/T)

sin
[π
T
(s − t)

]
, 0 ≤ t ≤ s ≤ T.

(2.12)

Obviously, Green’s function G(t, s) = 0 for t = s and G(t, s) > 0 for t /= s.
If a(·) ≡ a and a = 4 sin2(π/T), then θ = 2π/T , and it is not difficult to verify that

ϕ(t) = sin
(

2π
T

t

)
, ψ(t) = cos

(
2π
T

t

)
, t ∈ [0, T + 1]

Z
(2.13)

are nontrivial solutions of (1.4), (1.5). That is, the problem (1.4), (1.5) has no Green’s function.
If a(·) ≡ a and 4 sin2(π/2T) < a < 4 sin2(π/T), then Green’s function may change

its sign. For example, let T = 6, a = 4 sin2(π/8) = 2 − √
2, it is easy to verify that 2 − √

3 =
4sin2(π/12) < a < 4sin2(π/6) = 1 and θ = π/4, thus

G(t, s) =

⎧⎪⎨
⎪⎩

sin
[π

4
(t − s − 1)

]
, 1 ≤ s ≤ t ≤ T + 1,

sin
[π

4
(s − t − 1)

]
, 0 ≤ t ≤ s ≤ T.

(2.14)

Clearly, G(t, s) = − sin(π/4) < 0 for t = s, G(t, s) = 0 for |t − s| = 1, and G(t, s) = sin(π/4) > 0
for |t − s| = 2.

Consequently, a ∈ Λ+ is the optimal condition of G(t, s) > 0, (t, s) ∈ [0, T +1]
Z
×[1, T]

Z
.

Next, we provide a way to get the expression of G(t, s). Let u be the unique solution of
the initial value problem

Δ2u(t − 1) + a(t)u(t) = 0, t ∈ [1, T]
Z
, u(0) = 0, Δu(0) = 1, (2.15)
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and v be the unique solution of the initial value problem

Δ2v(t − 1) + a(t)v(t) = 0, t ∈ [1, T]
Z
, v(T) = 0, Δv(T) = −1. (2.16)

Lemma 2.7. Let a ∈ Λ− ∪Λ+. Then Green’s function G(t, s) of (1.4), (1.5) is explicitly given by

G(t, s) =
[u(s) + v(s)][u(t) + v(t)]
v(0)[2 + v(1) − u(T + 1)]

− 1
v(0)

{
u(t)v(s), 0 ≤ t ≤ s ≤ T,
u(s)v(t), 1 ≤ s ≤ t ≤ T + 1.

(2.17)

Proof. Suppose that Green’s function of (1.4), (1.5) is of the form

G(t, s) =
[
α(s)u(t) + β(s)v(t)

] − 1
v(0)

{
u(t)v(s), 0 ≤ t ≤ s ≤ T,
u(s)v(t), 1 ≤ s ≤ t ≤ T + 1,

(2.18)

where α(s), β(s) can be determined by imposing the boundary conditions.
From the basis theory of Green’s function, we know that

G(0, s) = G(T, s), G(1, s) = G(T + 1, s), ∀s ∈ [1, T]
Z
, v(0) = u(T). (2.19)

Hence, β(s)v(0) = G(0, s) = G(T, s) = α(s)u(T), s ∈ [1, T]
Z

, combining with v(0) = u(T), we
can get

α(s) = β(s), s ∈ [1, T]
Z
. (2.20)

Moreover, since G(1, s) = G(T + 1, s), it follows that

α(s) =
u(s) + v(s)

v(0)[2 + v(1) − u(T + 1)]
. (2.21)

Note that α(·) has the same sign with a(·). In fact, by the comparison theorem [7,
Theorem 6.6], it is easy to prove that u, v ≥ 0 on [0, T]

Z
. If a(t) ≥ 0, then

Δ2u(t − 1) = −a(t)u(t) ≤ 0, Δu(t) ≤ Δu(t − 1), t ∈ [1, T]
Z
. (2.22)

Thus Δu(T) < Δu(0) = 1. Similarly, we can get that Δv(0) > Δv(T) = −1. Since v(0) = u(T),
we have

2 + v(1) − u(T + 1) = 2 + Δv(0) −Δu(T) > 0. (2.23)

That is α(t) = (u(t) + v(t))/(v(0)[2 + v(1) − u(T + 1)]) > 0.
If a(·) ≤ 0, by the similar method, we can prove α(·) < 0.
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Lemma 2.8. Let a ∈ Λ− ∪Λ+. Then the periodic boundary value problem (2.2), (2.3) has the unique
solution

y(t) =
T∑
s=1

G(t, s)h(s), t ∈ [0, T + 1]
Z
, (2.24)

where G(t, s) is defined by (2.17).

Proof. We check that y satisfies (2.2). In fact,

y(t) =
T∑
s=1

(u(t) + v(t))α(s)h(s) − 1
v(0)

t−1∑
s=1

u(t)v(s)h(s) − 1
v(0)

T∑
s=t

u(s)v(t)h(s)

= (u(t) + v(t))
T∑
s=1

α(s)h(s) − u(t)
v(0)

t−1∑
s=1

v(s)h(s) − v(t)
v(0)

T∑
s=t

u(s)h(s),

y(t + 1) = (u(t + 1) + v(t + 1))
T∑
s=1

α(s)h(s)

− u(t + 1)
v(0)

t∑
s=1

v(s)h(s) − v(t + 1)
v(0)

T∑
s=t+1

u(s)h(s),

y(t − 1) = (u(t − 1) + v(t − 1))
T∑
s=1

α(s)h(s)

− u(t − 1)
v(0)

t−2∑
s=1

v(s)h(s) − v(t − 1)
v(0)

T∑
s=t−1

u(s)h(s),

Δ2y(t − 1) + a(t)y(t) = y(t + 1) − (2 − a(t))y(t) + y(t − 1)

=
[
Δ2u(t − 1) + a(t)u(t) + Δ2v(t − 1) + a(t)v(t)

] T∑
s=1

α(s)h(s)

− Δ2u(t − 1) + a(t)u(t)
v(0)

t−2∑
s=1

v(s)h(s)

− Δ2v(t − 1) + a(t)v(t)
v(0)

T∑
s=t+1

u(s)h(s)

− u(t − 1)h(t − 1)
v(0)

[
Δ2v(t − 1) + a(t)v(t)

]

− u(t)h(t)
v(0)

[
Δ2v(t − 1) + a(t)v(t)

]

+
u(t)v(t − 1)h(t) − u(t − 1)v(t)h(t)

v(0)
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=
h(t)
v(0)

∣∣∣∣∣
u(t) v(t)

u(t − 1) v(t − 1)

∣∣∣∣∣ =
h(t)
v(0)

∣∣∣∣∣
u(1) v(1)

u(0) v(0)

∣∣∣∣∣ = h(t).

(2.25)

On the other hand, it is easy to verify that y(0) = y(T), y(1) = y(T + 1).

Denote that

m = min
t,s∈[1,T]

Z

G(t, s), M = max
t,s∈[1,T]

Z

G(t, s). (2.26)

As a direct application, we can compute the maximum and the minimum of the Green’s
function when a(·) ≡ a0, it follows that

0 > m ≥ − 2λT/2
1(

λ1 − λ−1
1

)(
λT1 − 1

) , M = − λT1 + 1(
λ1 − λ−1

1

)(
λT1 − 1

) , (2.27)

where λ1 is defined in Remark 2.4. Similarly, when 0 < a(·) ≡ a < 4 sin2(π/2T), we can get

m =
1

2 sin θ
cot
(
θT

2

)
> 0, M ≤ 1

2 sin θ sin(θT/2)
, (2.28)

where θ is defined in Remark 2.6.

3. Main Results

In this section, we consider the existence of one-signed solutions of (1.7). The following well-
known fixed-point theorem in cones is crucial to our arguments.

Theorem 3.1 (see [8]). Let E be a Banach space and K ⊂ E be a cone. Suppose Ω1 and Ω2 are
bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2. Assume that A : K ∩ (Ω2 \ Ω1) → K is a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2 or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \Ω1).

Theorem 3.2. Assume that there exist a ∈ Λ+ and 0 < r < R such that

f
(
t, y
)
+ a(t)y ≥ 0, ∀y ∈

[
m

M
r,
M

m
R

]
, t ∈ [1, T]

Z
. (3.1)

If one of the following conditions holds:
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(i)

f
(
t, y
)
+ a(t)y ≥ M

Tm2
y, ∀y ∈

[ m
M

r, r
]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≤ 1

TM
y, ∀y ∈

[
R,

M

m
R

]
, t ∈ [1, T]

Z
,

(3.2)

(ii)

f
(
t, y
)
+ a(t)y ≤ 1

TM
y, ∀y ∈

[ m
M

r, r
]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≥ M

Tm2
y, ∀y ∈

[
R,

M

m
R

]
, t ∈ [1, T]

Z
,

(3.3)

then problem (1.7) has a positive solution.

Proof. From Corollary 2.5, we get that M > m > 0. It is easy to see that the equation Δ2y(t−1) =
f(t, y(t)) is equivalent to

Δ2y(t − 1) + a(t)y(t) = f
(
t, y(t)

)
+ a(t)y(t). (3.4)

Define the open sets

Ω1 =
{
y ∈ E :

∥∥y∥∥ < r
}
, Ω2 =

{
y ∈ E :

∥∥y∥∥ <
M

m
R

}
, (3.5)

and the cone P in E,

P =
{
y ∈ E : min

t∈[0,T+1]
Z

y(t) >
m

M

∥∥y∥∥
}
. (3.6)

Clearly, if y ∈ P ∩ (Ω2 \Ω1), then (m/M)r ≤ y(t) ≤ (M/m)R, for all t ∈ [0, T + 1]
Z

.
From Lemma 2.8, we define the operator A : E → E by

(
Ay
)
(t) =

T∑
s=1

G(t, s)
[
f
(
s, y(s)

)
+ a(s)y(s)

]
, t ∈ [0, T + 1]

Z
. (3.7)

From (3.1), if y ∈ P ∩ (Ω2 \Ω1), then

Ay(t) ≥ m

M
M

T∑
s=1

[
f
(
s, y(s)

)
+ a(s)y(s)

]

>
m

M
max

t∈[0,T+1]
Z

T∑
s=1

G(t, s)
[
f
(
s, y(s)

)
+ a(s)y(s)

]
=

m

M

∥∥Ay
∥∥.

(3.8)
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Thus A(P ∩ (Ω2 \Ω1)) ⊂ P . Moreover, E is a finite space, it is easy to prove that A : P ∩ (Ω2 \
Ω1) → P is a completely continuous operator. Clearly, y is the solution of problem (1.7) if
and only if y is the fixed point of the operator A.

We only prove (i). (ii) can be obtained by the similar method. If y ∈ ∂Ω1 ∩ P , then
‖y‖ = r and (m/M)r ≤ y(t) ≤ r for all t ∈ [0, T + 1]

Z
. Therefore, from (i),

Ay(t) ≥ m
T∑
s=1

[
f
(
s, y(s)

)
+ a(s)y(s)

] ≥ M

Tm

T∑
s=1

y(s) ≥ r =
∥∥y∥∥. (3.9)

If y ∈ ∂Ω2 ∩ P , then ‖y‖ = (M/m)R and R ≤ y(t) ≤ (M/m)R for all t ∈ [0, T + 1]
Z

. As a
consequence,

Ay(t) ≤ M
T∑
s=1

[
f
(
s, y(s)

)
+ a(s)y(s)

] ≤ 1
T

T∑
s=1

y(s) ≤ ∥∥y∥∥. (3.10)

From Theorem 3.1, A has a fixed point y ∈ P ∩ (Ω2 \Ω1) and satisfies

m

M
r ≤ y(t) ≤ M

m
R. (3.11)

Therefore, y is a positive solution of (1.7).

Similar to the proof of Theorem 3.2, we can prove the following.

Corollary 3.3. Assume that there exist a ∈ Λ+ and 0 < r < R such that

f
(
t, y
)
+ a(t)y ≤ 0, ∀y ∈

[
−M
m

R,− m

M
r

]
, t ∈ [1, T]

Z
. (3.12)

If one of the following conditions holds

(i)

f
(
t, y
)
+ a(t)y ≤ M

Tm2
y, ∀y ∈

[
−r,− m

M
r
]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≥ 1

TM
y, ∀y ∈

[
−M
m

R,−R
]
, t ∈ [1, T]

Z
,

(3.13)

(ii)

f
(
t, y
)
+ a(t)y ≥ 1

TM
y, ∀y ∈

[
−r,− m

M
r
]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≤ M

Tm2
y, ∀y ∈

[
−M
m

R,−R
]
, t ∈ [1, T]

Z
,

(3.14)

then (1.7) has a negative solution.
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Applying the sign properties of G(t, s) when a ∈ Λ− and the similar argument to prove
Theorem 3.2 with obvious changes, we can prove the following.

Theorem 3.4. Assume that there exist a ∈ Λ− and 0 < r < R such that

f
(
t, y
)
+ a(t)y ≤ 0, ∀y ∈

[
M

m
r,

m

M
R

]
, t ∈ [1, T]

Z
. (3.15)

If one of the following conditions holds

(i)

f
(
t, y
)
+ a(t)y ≤ m

TM2
y, ∀y ∈

[
M

m
r, r

]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≥ 1

Tm
y, ∀y ∈

[
R,

m

M
R
]
, t ∈ [1, T]

Z
,

(3.16)

(ii)

f
(
t, y
)
+ a(t)y ≥ 1

Tm
y, ∀y ∈

[
M

m
r, r

]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≤ m

TM2
y, ∀y ∈

[
R,

m

M
R
]
, t ∈ [1, T]

Z
,

(3.17)

then (1.7) has a positive solution.

Proof. Since m < M < 0, define the open sets

Ω1 =
{
y ∈ E :

∥∥y∥∥ < r
}
, Ω2 =

{
y ∈ E :

∥∥y∥∥ <
m

M
R
}
, (3.18)

and define the cone P in E,

P =
{
y ∈ E : min

t∈[0,T+1]
Z

y(t) >
M

m

∥∥y∥∥
}
. (3.19)

If x ∈ P ∩ (Ω2 \Ω1), then

M

m
r ≤ y(t) ≤ m

M
R, ∀t ∈ [0, T + 1]

Z
. (3.20)

Define the operator A as (3.7), and the proof is analogous to that of Theorem 3.2 and is
omitted.

Corollary 3.5. Assume that there exist a ∈ Λ− and 0 < r < R such that

f
(
t, y
)
+ a(t)y ≥ 0, ∀y ∈

[
− m

M
R,−M

m
r

]
, t ∈ [1, T]

Z
. (3.21)
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If one of the following conditions holds

(i)

f
(
t, y
)
+ a(t)y ≥ m

TM2
y, ∀y ∈

[
−r,−M

m
r

]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≤ 1

Tm
y, ∀y ∈

[
− m

M
R,−R

]
, t ∈ [1, T]

Z
,

(3.22)

(ii)

f
(
t, y
)
+ a(t)y ≤ 1

Tm
y, ∀y ∈

[
−r,−M

m
r

]
, t ∈ [1, T]

Z
,

f
(
t, y
)
+ a(t)y ≥ m

TM2
y, ∀y ∈

[
− m

M
R,−R

]
, t ∈ [1, T]

Z
,

(3.23)

then (1.7) has a negative solution.

Example 3.6. Let us consider the periodic boundary value problem

Δ2y(n − 1) = f
(
n, y(n)

)
, n ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(3.24)

where

f
(
n, y
)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2n2 + 3y, y ∈
[√

2
2

r, r

]
, n ∈ [1, T]

Z
,

(
2n2 + 3y

)R − y

R − r
− 0.25y

y − r

R − r
, y ∈ [r, R], n ∈ [1, T]

Z
,

−0.25y, y ∈
[
R,

√
2R
]
, n ∈ [1, T]

Z
.

(3.25)

Consider the auxiliary problem

Δ2y(n − 1) + a(n)y(n) = f
(
n, y(n)

)
+ a(n)y(n), n ∈ [1, T]

Z
,

y(0) = y(T), Δy(0) = Δy(T),
(3.26)

take r = 2
√

2, R = 8
√

2, T = 3, a(n) ≡ a = 2 − √
3 < 4 sin2(π/2T), θ = π/6, cos θ =

(2−a)/2 =
√

3/2, sin θ = 1/2, m = (1/2 sin θ)cot(θT/2) = 1, M = 1/(2 sin θ sin(θT/2)) =
√

2.
By computing, f(n, y) + a(n)y ≥ 0, y ∈ [(

√
2/2)r,

√
2R], n ∈ [1, T]

Z
;f(n, y) + a(n)y ≥

(
√

2/3)y, y ∈ [(
√

2/2)r, r], n ∈ [1, T]
Z

; f(n, y)+a(n)y ≤ (1/3
√

2)y, y ∈ [R,
√

2R], n ∈ [1, T]
Z

.
Consequently, from Theorem 3.2, the problem (3.24) has a positive solution.
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