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One of the mayor challenges facing current society is to
transform its energy model, allowing for secure, affordable,
and efficient energy. The search for new energy sources with
a minimal impact on the environment has brought about
new complex technical solutions that require novel control
algorithms in their path to commercialization.

This is special issue aims to increase the performance
and reliability of complex clean energy devices, subsystems,
and processes by developing control solutions based on
alternative approaches. The articles provide controls that
improve the performance and reliability of complex devices
or components targeting clean energy. Contributions con-
taining research to predict, diagnose, monitor, and manage
the state or condition of engineering assets using various
advanced controls have been considered.

We received a total of twenty submissions, and after two
rounds of rigorous review, nine papers were accepted.

Z. Jin et al. in their paper titled “Design, Modeling, and
Experiments of the Vortex-Induced Vibration Piezoelectric
Energy Harvester with Bionic Attachments” propose a bionic
attachment structure that widens the bandwidth and effi-
ciency of a piezoelectric energy harvester. Comparedwith the
smooth cylinder which is taken as a carrier, in the harvester
with the bionic structure the threshold speed decelerates from
1.8m/s to 1 m/s while the bandwidth increases from 39.3% to
51.4%, while its output power enhances from0.48 to 0.56mW.
See, for example, [1].

C. Zhang et al. in their paper titled “Multiobjective Opti-
mization of a Fractional-Order PID Controller for Pumped
Turbine Governing System Using an Improved NSGA-III

Algorithm under Multiworking Conditions” improve the
pump turbine governing system, PTGS. This is the core
control system of the pumped storage power station which
is responsible for regulating the unit power, which plays
an important role in maintaining the grid’s requirements
balancing power supply and demand. The fractional-order
PID controller under single working conditions is extended
to amultiobjective framework. To establish the cost function,
the integral of the time absolute error index of PTGS running
at low and highworkingwater heads is considered. Finally, an
improved nondominated sorting genetic algorithm III based
on Latin hypercube sampling and chaos theory (LCNSGA-
III) is proposed to solve the optimization problem. See also
[2].

E. Otaola et al. in their paper titled “A Comparative
Analysis of Self-Rectifying Turbines for the Mutriku Oscil-
lating Water Column Energy Plant” present an analysis the
performance of different self-rectifying turbines.This turbine
comparison is carried out for the oscillating water column
converters located at the Mutriku wave energy power plant.
Further details may also be found in [3].

J.-L. Casteleiro et al. in their paper titled “Fuel Cell Output
Current Prediction with a Hybrid Intelligent System” present
a dynamic model of a real hydrogen fuel cell in order to
apply hybrid control strategies The use of a hybrid scheme
improves the performance of neural networks reducing to
half the mean squared error obtained for a global model of
the fuel cell. See also [4].

R. Gammoudi et al. in their paper titled “Estimation
of Climatic Parameters of a PV System Based on Gradient
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Method” present a novel formulation for a photovoltaic
generator. The model is based in its current-voltage charac-
teristic whose appearance depends on the climatic conditions
(temperature and solar radiation). These two parameters are
estimated from an experimental curve Ipv (Vpv), using novel
mathematical calculation strategy. Similar approach may be
found in [5].

A. Marco et al. in their paper titled “A Variable Structure
Control Scheme Proposal for the Tokamak à Configuration
Variable” present and apply a Sliding Mode Controller to the
plasma current control problem, using theRZIpmodel for the
Tokamak à Configuration Variable (TCV) reactor. See also
[6].

H. E. Espitia et al. in their paper titled “Proposal of
an Adaptive Neurofuzzy System to Control Flow Power in
Distributed Generation Systems” describe the implementa-
tion of an adaptive neurofuzzy system for voltage control for
a distributed generation system. Previous research may be
found in [7].

S. V. Medina et al. in their paper titled “Performance
Sensitivity of a Wind Farm Power Curve Model to Different
Signals of the Input Layer of ANNs: Case Studies in the
Canary Islands” improve the estimation of the power output
of a wind farm. A wind farm power curvemodel is developed
using artificial neural networks, and a study is undertaken of
the influence on model performance when parameters such
as the meteorological conditions (wind speed and direction)
of areas other than thewind farm location are added as signals
of the input layer of the neural network. Further research on
wind farm for Canary Island may be found in [8].

R. De-Luca et al. in their paper titled “Meteorologi-
cal Data-Based Optimal Control Strategy for Microalgae
Cultivation in Open Pond Systems” present a control and
optimization strategy for outdoor biofuel production from
microalgae. It is based on weather forecast coupled to a
detailed predictive model of algal productivity to online
optimize the rates of fresh medium injection and culture
removal into and from the pond. See also [6].
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Fusion power is the most significant prospects in the long-term future of energy in the sense that it composes a potentially
clean, cheap, and unlimited power source that would substitute the widespread traditional nonrenewable energies, reducing the
geographical dependence on their sources as well as avoiding collateral environmental impacts. Although the nuclear fusion
research started in the earlier part of 20th century and the fusion reactors have been developed since the 1950s, the fusion reaction
processes achieved have not yet obtained net power, since the generated plasma requires more energy to achieve and remain in
necessary particular pressure and temperature conditions than the produced profitable energy. For this purpose, the plasma has to
be confined inside a vacuum vessel, as it is the case of the Tokamak reactor, which consists of a device that generatesmagnetic fields
within a toroidal chamber, being one of the most promising solutions nowadays. However, the Tokamak reactors still have several
issues such as the presence of plasma instabilities that provokes a decay of the fusion reaction and, consequently, a reduction in
the pulse duration. In this sense, since long pulse reactions are the key to produce net power, the use of robust and fast controllers
arises as a useful tool to deal with the unpredictability and the small time constant of the plasma behavior. In this context, this
article focuses on the application of robust control laws to improve the controllability of the plasma current, a crucial parameter
during the plasma heating and confinement processes. In particular, a variable structure control scheme based on sliding surfaces,
namely, a slidingmode controller (SMC) is presented and applied to the plasma current control problem. In order to test the validity
and goodness of the proposed controller, its behavior is compared to that of the traditional PID schemes applied in these systems,
using the RZIp model for the Tokamak à Configuration Variable (TCV) reactor. The obtained results are very promising, leading
to consider this controller as a strong candidate to enhance the performance of the PID-based controllers usually employed in this
kind of systems.

1. Introduction

Traditional nonrenewable energy sources are called to play a
minor role in the near future, due to the increasing demand
for energy in the world and the limited resources present
on the planet. Other factors that have also an impact on
this kind of energies are the pollution provoked by the
carbon-based fuels, such as petroleum or coal, as well as the
nuclear waste and risks originated by the fission reactors.
However, nowadays the nonrenewable energies still represent
the 86% of the world total primary energy supply [1]. The
renewable energies are being developed and improved for

the purpose of increasing their efficiency and ensuring that
all the energy needs are covered. The biomass, hydroelectric,
solar, and the wind power are some of the most widely used
renewable energies, but they suffer from several issues such
as intermittency and dispersion, or pollution in the case of
biomass. Besides, they usually require subsidies, large areas
to be located, and sometimes rare-earth materials.

In this context, the most promising solution to meet the
world energy needs is the fusion power, which presents many
advantages compared to the fission power: the resources
needed are virtually unlimited on Earth, the nuclear waste is
limited—just short-live activated materials of the reactor are
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Tritium
Helium

Deuterium
Neutron

Figure 1: D-T fusion reaction.

generated, some of which could be reused as fuel—there is no
risk of nuclear explosion or disaster, and the fusion reaction
provides the largest amount of energy per kilogram of fuel
used. The nuclear fusion consists in artificially provoking
the combination of light atom nuclei such as deuterium and
tritium (Figure 1). This reaction releases a huge amount of
energy, which can be used to heat water and drive a turbine
and generate electricity.

The main disadvantages of the fusion power are the large
quantity of energy needed to start and hold the reaction and
the short duration of the plasma achieved until now. This
article tackles this issue by developing advanced controls so
as to increase the confinement time and energy availability.

In order to test the feasibility of the nuclear fusion as a
power source, an experimental fusion reactor called ITER
(International Thermonuclear Experimental Reactor) [2] has
been promoted by an international consortium formed by the
European Union, China, Japan, India, South Korea, Russia,
and the United States. ITER considers a Tokamak fusion
reactor that confines the hot plasma in a toroidal chamber
using high magnetic fields. The ITER project will test all
elements required for the construction of a functional fusion
reactor such as the breeder blanket modules, which will
provide the tritium obtained from lithium, needed for the D-
T reaction.Once the new technologies have been tested, a new
reactor, namely, DEMO [3], will be built to demonstrate that
the production of energy is feasible.

ITER andDEMOare being planned, developed, and built,
while several small Tokamaks serve as a test bench to research
the fusion power [4], such as the Globus-M Spherical
Tokamak [5] in Russia or the Joint European Torus (JET)
[6] in Europe which is the world’s largest Tokamak with
38 MW of heating power and 100 m3 of plasma volume.
Another interesting operational experimental fusion reactor
is theTokamak àConfigurationVariable (TCV) [7], a control-
oriented research fusion reactor of the Ecole Polytechnique
Fédérale de Lausanne (EPFL), shown inFigure 2, whosemain
objective is the study of the plasma shape.

Nowadays, the current controller in the TCV and in most
of the experimental Tokamaks is the traditional Proportional-
Integral-Derivative controller (PID) which has proved to
solve the main instabilities problems of the fusion reaction
in the Tokamaks but not the major disruptions which are

Figure 2: TCV reactor.

Table 1: TCV coils.

Types # Coils Power Source
Toroidal Field Coils 16 1
OH Coils 7 2
Shaping Coils 16 16
In-vessel Vertical fb Coils 2 1

still an inherent issue of them [8–12]. In this context, this
article seeks tomaximize pulse length bymaking use of a new
control scheme for the plasma current. Themodel for plasma
current, position, and shape to be used is based on the RZIp
and extracted from real experimental data of TCV.

The TCV reactor, despite its small size of 1.54 m height by
0.56width, is a very complex machine, fully loaded of sensors
(the so-called diagnostics) and actuators, as it can be seen in
Figure 3. Among the diagnostics, there are some for the mea-
surement of the spatial profiles of the electron temperature
and density, such as the Thomson Scattering Diagnostic [13],
or for the measurement for the plasma currents, temperature,
density, and potential, such as the Langmuir probes [14],
whose locations are illustrated in Figure 4.The data obtained
from some diagnostics (as well as many others related to
the plasma physics) are processed and serve as input for
the control system, which can actuate over different types
of actuators, the Electron Cyclotron Resonance Heating and
Current Drive System (ECRH-ECCD), the gas valves, and
the coils. The coils are the main actuators for the plasma
control, as gathered in Table 1, and there are 4 types with 41
total number of coils fed with 20 independent power sources.
Currently, the control system of the TCV is fed with 128 input
signals from the diagnostics, which are linearly transformed
into 24 observers. This set of observers is composed of
the plasma current 𝐼𝑝, the PF coil currents, the difference
between the currents in the two Ohmic coil circuits, the
vertical position estimator, the radial position estimator, an
elongation estimator, and the line-integrated density. With
these observables and the reference signals, 24 error signals
are generated and serve as input to a PID controller whose
outputs are the required voltages for the coils [8, 9].The scope
of this article is to enhance the current PID controller that
acts in one of these observers, the plasma current, a relevant
parameter to achieve and maintain the fusion reaction. It
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is obvious that better control implies a better response of
the system and instability corrections, which may extend the
duration of the pulses. The sliding mode control scheme has
been studied in this article to enhance the actual control
system, which is a variable structure control that presents a
robust behavior against plant uncertainties and a finite-time
convergence. To test the improvements of this new control
scheme, a simulation based on real experimental data has
been performed with Simulink.

The remainder of this article is organized as follows:
Section 2 introduces the TCV system and explains the RZIp
model. In Section 3, the simulation model is presented and
the proposed sliding mode control scheme is explained in

detail. The Lyapunov stability is studied for the sliding mode
controller in Section 4. Results and comparisons are given in
Section 5. Section 6 gathers the concluding remarks.

2. System Description

Tokamaks are devices where the plasma is confined in a
toroidal chamber by magnetic fields. These magnetic fields
are created by two groups of coils:

(i) Poloidal field coils:There are coils along the torus that
create the poloidal magnetic field. They control the
plasma current and stabilize the plasma. In particular,
the main coils that act on the plasma current are the
OH coils (serving as primary winding like a trans-
former), which are divided into two sets where the
control signals concerning this article will be input.

(ii) Toroidal field coils: There are coils set in poloidal
planes that create a toroidal magnetic field. They
control the shape of the plasma.

One of the main issues to overcome in the path to com-
mercialization is the instabilities [15–24]. These instabilities
cause disruptions, limiting the maximal achievable time for
plasma confinement and making indispensable an optimal
control system.

In order to develop the control system, a plant model
is required. The TCV is simulated by the RZIp model [15],
which considers a rigid plasma radial and vertical displace-
ment.TheRZIpmodel is widely used for simulation purposes
and design of real time controllers [19–24].

The state variables of the model are the plasma current,
𝐼𝑒, the structure currents, 𝐼𝑠, and the radial, 𝑅, and vertical,
𝑧, position of the plasma (1):

𝑞̇ = [[[
𝐼𝑒

𝐼𝑠

𝑟̇

]]]
, where 𝑟 = [𝑅

𝑧
] (1)

The input variables are the effective voltages applied to
each plasma element, 𝑉𝑒, and the external poloidal field coil
voltages, 𝑉𝑠, (2):

𝑈 = [[[
𝑉𝑒

𝑉𝑠

0

]]]
. (2)

TheRZIpmodel takes into account four vector equations,
Kirchoff ’s voltage law for the plasma elements (3), Kirchoff ’s
voltage law for the structural and poloidal circuits (4), and the
force balance for the radial (5) and vertical (6) directions:

𝑑 (𝐿𝑒𝐼𝑒 +𝑀𝑒𝑠𝐼𝑠 + 𝑅𝐸𝐼𝑒)𝑑𝑡 +Ω𝑒𝐼𝑒 = 𝑉𝑒, (3)

𝑑 (𝐿𝑠𝐼𝑠 +𝑀𝑠𝑒𝐼𝑒)𝑑𝑡 +Ω𝑠𝐼𝑠 = 𝑉𝑠, (4)
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𝑑 (𝑚𝑒𝑅̇)𝑑𝑡 = 12𝐼󸀠𝑒 𝜕𝐿𝑒𝜕𝑅 𝐼𝑒 + 𝐼󸀠𝑠 𝜕𝑀𝑠𝑒𝜕𝑅 𝐼𝑒 + 𝐸𝐼
2
𝑒2 , (5)

𝑑 (𝑚𝑒𝑧̇)𝑑𝑡 = 12𝐼󸀠𝑒 𝜕𝐿𝑒𝜕𝑧 𝐼𝑒 + 𝐼󸀠𝑠 𝜕𝑀𝑠𝑒𝜕𝑧 𝐼𝑒. (6)

where subindex 𝑒 denotes the plasma elements, subindex 𝑠
denotes the structural elements, 𝐿 and 𝑀 are the self and
mutual inductance matrices, Ω is the resistance matrix, 𝐸
is a constant matrix, and the mass matrix 𝑚𝑒 contains the
mass of each plasma current elements. Due to the complexity
and nonlinearity of the equations that describe the behavior
of the system, it will be linearized and simplified around an
operation point using real data from the experiments. In this
article, the data used for the model and simulation have been
obtained from the shot numbers #49626 and #57587 of the
TCV and can be represented by the following state-space
system:

𝑥̇𝑅𝑍𝐼𝑝 = 𝐴𝑥𝑅𝑍𝐼𝑝 + 𝐵𝑢𝑅𝑍𝐼𝑝
𝑦𝑅𝑍𝐼𝑝 = 𝐶𝑥𝑅𝑍𝐼𝑝. (7)

where 𝑥𝑅𝑍𝐼𝑝 are the state vector, 𝑢𝑅𝑍𝐼𝑝 are the input vector,
which are the supplied voltages for the coils, 𝑦𝑅𝑍𝐼𝑝 is the
output vector that comprises the observers of the system
including the plasma current, 𝐴 is the state matrix, 𝐵 is the
input matrix, and 𝐶 is the output matrix. As in 𝑦𝑅𝑍𝐼𝑝 there
are other variables that are out of the scope of this article and
are not going to be controlled using the SMC algorithm, and
the plasma current output may be obtained from 𝑢𝑅𝑍𝐼𝑝 and
expressed as 𝑦𝐼𝑝 = 𝐶𝐼𝑝𝑦𝑅𝑍𝐼𝑝, where 𝐶𝐼𝑝 selects the desired
output, so that the state variables can be rewritten as

𝑥𝑅𝑍𝐼𝑝 = (𝐶𝐼𝑝𝐶)−1 𝑦𝐼𝑝. (8)

Introducing (8) in (7), the state-space system can be reformu-
lated as

𝑦̇𝐼𝑝 = (𝐶𝐼𝑝𝐶)𝐴 (𝐶𝐼𝑝𝐶)−1 𝑦𝐼𝑝 + (𝐶𝐼𝑝𝐶)𝐵𝑢𝑅𝑍𝐼𝑝. (9)

The dynamic equation of the plasma current model may
be written in a simplified way as

̇𝑦𝐼𝑝 = 𝑎𝑦𝐼𝑝 + 𝑏𝑢𝑂𝐻 − 𝑑 (10)

where 𝑢𝑂𝐻 is the input that controls the plasma current, 𝑑
is the term that gathers all the uncertainties and noncontrol-
lable inputs, and the state matrix can be reduced to a single
scalar as follows:

𝑎 = (𝐶𝐼𝑝𝐶)𝐴 (𝐶𝐼𝑝𝐶)−1 . (11)

The tracking error of the plasma current, 𝑒𝐼𝑝, is defined as
the difference of plasma current reference, 𝑟𝐼𝑝, and its actual
value:

𝑒𝐼𝑝 = 𝑟𝐼𝑝 − 𝑦𝐼𝑝. (12)

Deriving the tracking error and substituting the plasma
current model described in (10), the following expression is
obtained:

̇𝑒𝐼𝑝 = ̇𝑟𝐼𝑝 − 𝑦̇𝐼𝑝 = 𝑎𝑒𝐼𝑝 + 𝑢 + 𝛿 (13)

All Refs+

+

-

-

rIp eIp

All Outputs

Original
PID
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IIp

Combine
Controllers

u RZIp
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Figure 5: General overview of the model.

where the control signal, 𝑢, collects the following term:

𝑢 = −𝑏𝑢𝑂𝐻 (14)

and the disturbances, uncertainties, and commands are gath-
ered in 𝛿:

𝛿 = 𝑑 + ̇𝑟𝐼𝑝 − 𝑎𝑟𝐼𝑝. (15)

3. Sliding Mode Control Scheme

In order to improve the robustness of theTCVcontrol system,
the original PID has been enhanced with a sliding mode
control for the plasma current, 𝐼𝑝. A schematic view of
the general model may be observed in Figure 5, where in
the box “SMC” the proposed sliding mode controller will
be implemented and the resulting control signals will be
combined in the box “Combine Controllers” [19, 24].

The sliding mode controller [25–27] uses a discontinuous
control law to lead the system state to a specified sliding
surface, 𝜎, and to remain in it. This control law has two main
advantages: the first is that the system behaves like a system
of reduced order and the second is that the disturbances
and uncertainties do not affect the movement on the sliding
surface of the system. The development of the sliding control
law is divided into two phases.

The first phase is to construct a sliding surface to confine
the system dynamics to a sliding manifold with the desired
behavior. Let us consider the ideal disturbance-free tracking
error expression (13) and suppose that the trajectory of the
state has intercepted the sliding surface 𝜎 at 𝑡0, and exists a
slidingmode at 𝑡 ≥ 𝑡0 implying that𝜎 = 0 and 𝜎̇ = 0. Deriving𝜎 with respect to time along the trajectory is defined by (13):

𝜎̇ = ( 𝜕𝜎𝜕𝑒𝐼𝑝) ̇𝑒𝐼𝑝 = ( 𝜕𝜎𝜕𝑒𝐼𝑝)(𝑎𝑒𝐼𝑝 + 𝑢𝑒𝑞) = 0 (16)

where 𝑢𝑒𝑞 is the equivalent control, whose action entails that
any trajectory starting at 𝜎 = 0 remains on it since 𝜎̇ = 0.This
equivalent control can be extracted from (16):

𝑢𝑒𝑞 = −( 𝜕𝜎𝜕𝑒𝐼𝑝)
−1 ( 𝜕𝜎𝜕𝑒𝐼𝑝)𝑎𝑒𝐼𝑝 = −𝑎𝑒𝐼𝑝. (17)
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Therefore, combining (13) and (17), given 𝜎(𝑡0) = 0, the
dynamics of the system on the sliding surface for 𝑡 ≥ 𝑡0 arė𝑒𝐼𝑝 = 𝑎𝑒𝐼𝑝 − 𝑎𝑒𝐼𝑝 = 0. (18)

In this case, the sliding surface is computed with the error of
the plasma current and its integral, taking the form of

𝜎 = 𝑒𝐼𝑝 + 𝐵∫ 𝑒𝐼𝑝𝑑𝑡 (19)

where B is the relative weight between the integral of the error
and the error of the plasma current.

The second phase is to design a discontinuous control law
which is responsible for forcing the system to reach the sliding
surface and maintains it there. For this reason, the control
signal 𝑢 is divided into two terms:

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑁 (20)

where the continuous term 𝑢𝑒𝑞 is the equivalent control
defined in (17) and 𝑢𝑁 is the discontinuous term. In this
particular case, the discontinuous term has been selected as
a relay with state dependent gain, presenting the following
expression:

𝑢𝑁 = −𝛽 (𝑒𝐼𝑝) sign (𝜎) (21)

where 𝛽(𝑒𝐼𝑝) > 0 for all 𝑒𝐼𝑝. The term 𝛽(𝑒𝐼𝑝) has been defined
as

𝑢𝑁 = −(𝑘1 󵄨󵄨󵄨󵄨󵄨𝑒𝐼𝑝󵄨󵄨󵄨󵄨󵄨 + 𝑘2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫ 𝑒𝐼𝑝𝑑𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨) sign (𝜎) . (22)

Consequently, the control signal depends on the error of the
plasma current and on the absolute value of the error and
the integral of the error of the plasma current, and its sign is
obtained from the sliding surface. This control signal is given
by the following combining (17) and (22):

𝑢 = −𝑘𝑐𝑒𝐼𝑝 − (𝑘1 󵄨󵄨󵄨󵄨󵄨𝑒𝐼𝑝󵄨󵄨󵄨󵄨󵄨 + 𝑘2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫ 𝑒𝐼𝑝𝑑𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨) sign (𝜎) (23)

where 𝑘𝑐, 𝑘1, and 𝑘2 are tunable parameters.
The discontinuity of the sign function in 𝜎 = 0 leads to

an undesirable chattering effect; thus the discontinuous tran-
sition is subject to smoothing. In order to obtain this smooth
transition, the hyperbolic tangent of the sliding surface has
been considered. So, the equationmay be rewritten as follows:

𝑢 = −𝑘𝑐𝑒𝐼𝑝 − (𝑘1 󵄨󵄨󵄨󵄨󵄨𝑒𝐼𝑝󵄨󵄨󵄨󵄨󵄨 + 𝑘2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫ 𝑒𝐼𝑝𝑑𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨) tanh ( 𝜎𝑘𝑡) (24)

where 𝑘𝑡 is determined by the order of magnitude of the
sliding surface.

Gathering (19) and (24), the sliding mode controller
scheme is represented in Figure 6.

4. Lyapunov Stability

Rewrite the expression of the sliding surface𝜎, defined in (19),
as

𝜎 (𝑡) = 𝑒𝐼𝑝 (𝑡) + ∫𝑡
0
(𝑘 − 𝑎) 𝑒𝐼𝑝 (𝜏) 𝑑𝜏. (25)

eIp

eIp + B∫t
0
eIp()d

 Ｎ；ＨＢ 

Kt

K1
eIp

 + K2


∫t
0
eIp()d



KceIp

-
uSM

×

Figure 6: Sliding mode scheme.

So its derivative is

𝜎̇ (𝑡) = ̇𝑒𝐼𝑝 (𝑡) + (𝑘 − 𝑎) 𝑒𝐼𝑝 (𝑡) . (26)

Let us also recall the slidingmode controller law given in (23):

𝑢 (𝑡) = −𝑘𝑒𝐼𝑝 (𝑡) − 𝛽 sign (𝜎 (𝑡)) . (27)

In order to ensure the tracking capability, some assumptions
shall be established:

(i) 𝑘 shall be chosen so that the term (𝑘 − 𝛼) is strictly
positive. Hence 𝑘 > 𝛼.

(ii) 𝛽 shall be chosen so that 𝛽 ≥ |𝛿| ∀𝑡. To guarantee the
robustness of the control action, a switching action is
added with a size bigger than the perturbance. This
condition implies that the uncertainties of the system
are bounded magnitudes.

If the previous assumptions are verified and, using the
Lyapunov stability theory, it is possible to demonstrate that
the error of the plasma current defined in (12) tends to zero
as time tends to infinity.

The Lyapunov function is defined by means of the
following expression:

𝑉 = 12𝜎𝜎 (28)

and its time derivative is

𝑉̇ = 𝜎𝜎̇ = 𝜎 ( ̇𝑒𝐼𝑝 + (𝑘 − 𝑎) 𝑒𝐼𝑝) = 𝜎 (𝑘𝑒𝐼𝑝 + 𝛿 + 𝑢)
= 𝜎 (𝛿 − 𝛽 sign (𝜎)) ≤ − |𝜎| (𝛽 − |𝛿|) ≤ 0. (29)

As 𝑉 is clearly positive definite, 𝑉̇ is negative definite and
when 𝜎 tends to infinity, 𝑉 tends to infinity; then the
equilibrium at the origin 𝜎 = 0 is globally asymptotically
stable. This is to say, 𝜎 tends to zero as time tends to infinity,
and all trajectories starting off 𝜎 = 0 must reach it in finite
time and then remain on it, being in the so-called sliding
mode.

5. Results

In order to validate the control scheme, the sliding mode
controller has been simulated with a linearized RZIp model
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Table 2: Simulated shots.

#49626 #57587
Starting Time (s) 0.8 1
Duration (s) 0.5 0.5
Starting Ip (A) -2.4E5 -2.8E5
Starting Radial Pos. (m) 0.872 0.879
Starting Vertical Pos. (m) 0.398 0.262

PID #49626 - Ip Response
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Figure 7: PID Response (Shot #49626).

PID #57587 - Ip Response
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Figure 8: PID response (Shot #57587).

of the TCV and two distinct shots, #49626 and #57587, as
shown in Table 2. The initial conditions of the system and
the reference that the controller has to follow have also been
obtained from the experimental data. In addition, to show
the improvement of the new control scheme, the original
PID controller has been implemented. The plasma current
controller acts on the OH coils, which have a physical limit of±1400 V, so the output has been saturated in case of overflow.

For a better comparison, the results have been divided
into five groups: (A) system response, (B) RMS error, (C)
integral error, and (D) control signals.

5.1. System Response. In Figures 7–10, the blue line represents
the real measurement of the plasma current, the green dashed
line is the reference commanded, and the red line is the
response of the simulated system.

It can be clearly seen in Figures 7 and 8 that the original
PID produces an underdamped response, which takes a long

SM #49626 - Ip Response

meas rzip ref

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50
Time (s)

−2.5

−2.45

−2.4

−2.35

−2.3

−2.25

Ip
 (A

)

×105

Figure 9: Sliding mode response (Shot #49626).
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Figure 10: Sliding mode response (Shot #57587).

Table 3: RMS error.

Shot # RMS PID RMS Sliding Mode
49626 2.69E3 2.42E2
57587 3.12E3 2.18E2

time to reach the specified reference. This indicates that the
response of the system may be subject to improvement.

The response of the sliding mode controller, shown in
Figures 9 and 10, is better than that of the original PID
controller because it reaches faster the reference with smaller
oscillations. Even more, it may be seen that the response takes
about the same time (10 ms) to start correcting the error and
has an overshoot much smaller than using the PID.

5.2. RMS Error. One significant quantitative estimator is the
RootMean Square (RMS), which is ameasure of the goodness
of the controllers. The RMS for a discrete time series of the
plasma current error with a fixed-time step can be computed
with the following expression:

𝑅𝑀𝑆𝑒𝐼𝑝 = √ 1𝑁
𝑁∑
𝑖=1

𝑒2𝐼𝑝,𝑖. (30)

In Table 3, the RMS errors of the PID and the Sliding Mode
controlled are depicted. The sliding mode controller reduces
the RMS error by one order of magnitude.
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PID #49626 - Integral Error
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Figure 11: PID integral error (Shot #49626).

PID #57587 - Integral Error
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Figure 12: PID integral error (Shot #57587).
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SM #49626 - Integral Error
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Figure 13: Sliding mode integral error (Shot #49626).

5.3. Integral Error. The integral error measures how the error
accumulates along the time. It is clearly seen from Figures 11
and 12 that with the PID there are oscillations in the integral
error.

However, in the integral error in the case of the sliding
mode controller, as seen in Figures 13 and 14, there are no
oscillations and the values are less than half of the PID’s
values.

5.4. Control Signals. It is important to keep in mind the fea-
sibility of these controllers. The plasma current is controlled
by two sets of OH coils, with a limit of ±1400 V for both. The
difference between the control signals of the two sets is due
to the controller of another plasma variable that is acting on
them, which does not affect the performance of the plasma
current response.

SM #57587 - Integral Error
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Figure 14: Sliding mode integral error (Shot #57587).

PID #49626 - Control Signals [UOH]
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Figure 15: PID control signal (Shot #49626).
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Figure 16: PID control signal (Shot #57587).

Figures 15 and 16 show the PID control signals, which
have many oscillations until they reach the stationary state.

The sliding mode control signals are shown in Figures 17
and 18 where it can be seen that the oscillations are strongly
reduced with a control effort smaller than that of the PID
controller.

6. Conclusions

The use of optimal and robust control schemes seems to
be one of the best ways to ensure an adequate control of
the stability of the plasma, so as to extend the duration of
the pulses. The traditional PID controllers now implemented
within the Tokamak’s control system do not allow achieving
long enough duration pulses to enable energy production. In
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SM #49626 - Control Signals [UOH]
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Figure 17: Sliding mode control signal (Shot #49626).
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Figure 18: Sliding mode control signal (Shot #57587).

this context, new control laws have been developed and tested
in order to obtain better results extending the pulse duration
and making possible the production of fusion energy. The
candidate proposed in this article to enhance the baseline
PID-based scheme has been the sliding mode controller,
which consists of a variable structure control law with low
sensitivity to uncertainties.

As is shown from the results, the plasma current of
the systems controlled by the original PID-based controller
presents slow and underdamped oscillating responses. In
contrast, the proposed sliding mode controller affords excel-
lent results, with an improved fast system response and
reduced oscillations of the plasma current, coupled with a
more uniform control signal. Furthermore, the RMS errors
of the sliding mode controller response show an order of
magnitude improvement with respect to the PID ones.

Therefore, in view of the promising results gathered in
this article, the next steps are to test them in different TCV
scenarios to assure a good response of the controller in several
situations and considering other external disturbances in the
model that could be studied. In addition, parameter tuning
algorithms, such as the Particle Swarm Optimization or the
Water Cycle Algorithm, can be proposed.

Finally, the controllers should be tested in a real situation,
implementing them at the 2019 experimental campaign of the
TCV.
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Since the energy demand increases, the sources of fluid energy such as wind energy and marine energy have attracted widespread
attention, especially vortex-induced vibrations excited by wind energy. It is well known that the lock-in effect in vortex-induced
vibration can be applied to the piezoelectric energy harvester. Although numerous researches have been conducted on piezoelectric
energy harvesting devices in recent years, a common problem of low bandwidth and harvesting efficiency still exists. In order to
increase the response amplitude and decrease the threshold wind speed of vortex-induced vibration, a bionic attachment structure
is proposed based on the experimental method. In the present work, twelve models are designed according to the size of pits and
hemispheric protrusions which are added to the surface of a flexible smooth cylinder. Compared with the smooth cylinder which is
taken as a carrier, the harvesterwith the bionic structure shows stronger energy capture performance on the whole. As the threshold
speed decelerates from 1.8m/s to 1 m/s, the bandwidth, on the contrary, increases from 39.3% to 51.4%. Particularly, for the 10 mm
pits structure with 5 columns, its peak voltage can reach 47 V, and its peak power can reach 1.21 mW with a resistance of 800 kΩ,
0.57 mW higher than that of the smooth cylinder. Comparatively speaking, the hemispherical projections structure figures with a
much more different energy capturing characteristic. Starting from the column, the measured voltage of the hemispherical bionic
harvester is much smaller than that of the smooth cylinder, with a peak voltage less than 15 V and a reducing bandwidth. However,
compared with the smooth cylinder, hemispheric projections with 3 columns have a better energy capture effect with a measured
voltage of 35V, a resistance of 800kΩ, and a wind speed of 3.097m/s. Besides, its output power also enhances from 0.48 to 0.56mW.

1. Introduction

Energy policy has become a key strategy in the recent decades
in the world [1], and researches focus on energy has been
extended in many fields, e.g., environmental protection [2–
4], industrial catalysis [5–7], and energy storage [8–13].
Additionally, in recent years, under the background of big
data technology [14, 15], some new types of low-power
consumption technologies like MEMs and WSNs [16, 17]
have been introduced into many areas. As a widespread
phenomenon in the natural environment, fluid flow contains
a lot of energy, which will provide great convenience for
power systems to transform the kinetic energy of fluid
into electricity, especially for those that need electronic

components with lower power. Over the past few years,
a new technology based on vortex-induced vibration has
been widely developed to extract energy from wind and
oceanic or other fluid flow energy; in brief, the source of
energy is responsible for the vibration. Nevertheless, as a
destructive phenomenon in the engineering structure for
a long time, vortex-induced vibration requires a nonlinear
bluff body structure such as a cylinder of smooth surface. In
engineering, when the fluid flows through the surface of the
bluff body [18–20], the flow will separate on the surface of the
bluff body at the same time, and then the vortex begins to shed
alternately around the bluff body under the action of the shear
layer, thus generating periodic fluid force which will act on
the surface of the cylinder. The bluff body begins to oscillate
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when the frequency of the vortex shedding corresponds to the
natural frequency of the elastic structural oscillations. As the
fluid dynamics theory emerges, an effective drag reduction
method called bionic drag reduction has been found, which
can not only reduce the resistance, but also be widely used
in energy collection. It is green, simple, and feasible for the
bionic structure to extend the bandwidth and increase the
voltage in the energy harvesting system. Since the last decade,
the bionic structure drag reduction has become much more
prevalent, motivating more and more scholars to do a lot
of simulation and experimental researches in this field from
different perspectives.

Emerging in the 1980s, nonsmooth surface bionic drag
reduction has grown rapidly in recent years. Zhu and Zhang
[21] built a H-shaped cantilevered structure. Though D-
shaped cross section can increase the drag force with the
natural resonant vibration frequency, it can strengthen the
vortex shedding and the beam deflection. Until now, a
square column has been studied the most as the choosing
bluff body in galloping piezoelectric energy harvesting. Lim
and Lee [22] used wind tunnel tests and flow patterns
to study the drag reduction of the flow field around the
cylinder on the surface of the convex ring. Wind tunnel
tests show that the convex ring on the cylinder (d = 0.0167
D in a pitch interval of 0.165D) can reduce resistance by
9% under the condition that the Reynolds number (Re)
is 1.2×105 based on the diameter of the cylinder. Wang et
al. [23] numerically simulated a concave cylinder with the
subcritical Reynolds number (Re = 4×104) on nonsmooth
cylindrical flow reduction problem.The sensitivity analysis of
the structure parameters including the depth, internal shape,
and distribution of the pit was also conducted, the results
of which show that the concave cylinder has a good drag
reduction effect and will work best when h = 0.015 D. The
average resistance coefficients of cylindrical concave pit and
circular cylinder of diamond distribution pit texture are both
0.923, lower than that of the spherical pit cylinder with 0.94
and that of rectangle with 0.973, respectively. Some scholars
have applied the bionic concept to vortex-induced vibra-
tion piezoelectric energy harvesting (VIVPEH). Allen and
Smits [24] proposed an “eel” shaped flow energy harvester.
Experiments were performed to investigate the possibility of
using flexible piezoelectric membranes as power generation
devices in the ocean. Membranes are excited by the von
Kármán vortex street forming behind a bluff body which can
transform the flow energy into piezoelectric energy. Bernitsas
and his coworkers [25, 26] studied fluid-induced vibrations
of smooth cylinders with PTC module, and they divided
the galloping into two categories: soft galloping and hard
galloping. The former one refers to the gradual increase of
the flow velocity when the object is transformed from vortex-
induced vibration to galloping by means of self-excitation;
the latter one means that the bluff body cannot change
from self-excitation to galloping, but it can be converted to
galloping by external excitation at a high flow rate. At present,
PTC has been successfully applied in VIVACE flow-induced
vibration. Based on the morphology of the heterocercal tail
of thresher sharks and the ionic polymer-metal composites,
Cha et al. [27] designed a bionic fish tail to collect energy

from its impact and then proposed a modeling framework
for underwater vibration of bionic tail. It is worthmentioning
that the feasibility of the model to obtain energy is verified
experimentally and theoretically. Akaydin et al. [28] experi-
mentally studied a self-excited energy harvester, which refers
to a column attached to the free end of a cantilever beam
and partially covered by piezoelectric sheets. The energy
harvester is tested in a wind tunnel, generating about 0.1 mW
of nonrectified power when the wind speed is 1.192 m/s. The
resonant mechanical and electrical efficiency is calculated as
0.72%, while the power of each device is 23.6mW/ m3, and
the piezoelectric volume is 233 W/ m3. Recently, in order
to obtain stronger and more standard eddy current, Pan
et al. [29] studied a circular cylinder with an opening and
concave surface through experiment and simulation, which
simulates two kinds of vortex type systems, respectively, by
using two kinds of vortex generator. The results indicate an
increase of the induction frequency of the modified cylinder
from 2.7 to 2.9 Hz and the peak voltage from 0.35 to 0.41
V. At present, as the derivation direction of vortex-induced
vibration with bionic structure becomes more and more
diverse, a large number of scholars commit themselves to
exploring the nonlinearity [30–33], multi-degree of freedom
[34], and multicylinder string juxtaposition [35–37]. To sum
up, the bionic structure is indeed a feasible and effective
method to improve the bandwidth and output voltage of the
energy harvester based on vortex-induced vibration.

In this paper, the VIVPEH characteristics of the bionic
cylinder are studied experimentally. In Section 2, the physical
and mathematical models of VIVPEH are given. It is noted
that the bionic structure model is guaranteed to have the
same mass as the corresponding smooth cylinder model.The
model verified by experiment in Section 3 is focused on the
analysis of the wake oscillator model based on the vortex-
induced vibration. The influence of bionic structure model
on the performance of harvester is discussed frommeasuring
voltage, bandwidth, and efficiency in Section 4, while the
conclusions are given in Section 5.

2. Physical and Mathematical Models

To the best of our knowledge, reducing the resistance in fluid-
induced vibration by using the bionic nonsmooth surface
structure has been successfully applied in bionic drag reduc-
tion technology [38–40]. Based on bionics and mechanical-
electric conversion mechanism, the concept of bionics is
adopted for the design of bluff body in this paper.

2.1. Physical Model. Many organisms in nature have evolved
nonsmooth structures that can help reduce resistance, such
as shark scales and the surface of the planthopper’s chest.
Of course, this pit or convex-clad structure has also been
applied to the design of many materials with the golf ball
being the most remarkable. As the golf ball moves through
the concave structure on the surface, the airflow generates a
small vortex near the pit [41]. With the adsorption force of
the vortex, the airflow near the sphere begins to move closer
to the wall, causing the separation point of the boundary
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Figure 1: Physical model of bluff bodies with bionic structure. (a) Schematic of the protrusions; (b) schematic of the pits.
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Figure 2: Schematic diagram of VIVPEH with bionic structure: (a) physical diagram in the wind tunnel test; (b) equivalent schematic
diagram.

layer to move backward. The vortex area at the rear of the
sphere and the pressure difference between the front and the
back decline gradually, and so does the pressure difference
resistance compared with the smooth sphere. Serving as a
bionic structure for fluid vibration experiments in this paper,
the size of pits and hemispheric convex is 6 mm, 8 mm, and
10 mm; the number of pits in each smooth cylinder is 3, 4,
5, and 6; and there are twelve bionic structures with pits and
hemispheric protrusions, respectively. The physical model is
shown in Figure 1.

Based on vortex-induced motions, the mechanism of
generating device can be divided into piezoelectric [42–44],
electromagnetic, and electrostatic [45–47], among which,
piezoelectric type is used and valued the most. Most piezo-
electric energy harvesters use a cantilever beam of one or
two piezoelectric ceramic layers [48]. The cantilever beam
is generally placed on the body of a vibrating structure, and
the strain of the piezoelectric layer caused by the vibration
can result in an alternating output voltage through the
electrode. Figures 2(a) and 2(b) show the schematic diagram
of the presented VIVPEH with bionic structure. As shown in
Figure 2(a), thewind speed is perpendicular to the cylindrical
section, the whole system of which can be simplified as a

single degree of freedom system (1DOF). Here, Figure 2(b)
can also be called the efficientM-C-K vibration system.

In fact, it is feasible to introduce the load resistance
into the cantilever energy collection system for equivalent
analysis. Besides, another requirement is that the converter
is used to adjust the output voltage to maximize the power
of the charging and storage device, and to meet the charging
demand of small batteries or capacitors [49–51]. For cylinders
with bionic structures, it is abstract to study the flow-induced
vibration of bluff body directly. Hence, it can be simplified
as a mass-spring-damping system on a single degree of
freedom.

2.2. Mathematical Model. As shown in Figure 2, there is a
cantilever which can vibrate when the bluff body is interacted
by the coming wind. As the piezoelectric sheet is coherent in
the bottom of the cantilever, a distributed model is used here
to simulate the vibration of the cantilever. The distributed
parameter model of the energy harvester can be obtained
according to the following formula.

̈𝜂 (𝑡) + 2𝜁𝜔𝑛 ̇𝜂 (𝑡) + 𝜔𝑛2𝜂 (𝑡) = 𝐹𝑉𝐼𝑉 (𝑡) (1)



4 Complexity

Here 𝜂(𝑡) is the model coordinate, and the force caused by
vortex-induced vibration can be presented as

𝐹𝑉𝐼𝑉 (𝑡) = 0.25𝐶𝐿0𝜙 (𝐿) 𝜌𝐷𝐿𝑈2𝑞 (𝑡)

− 0.5𝐶𝐷𝜌𝐷𝐿𝑈𝜙2 (𝐿) ̇𝜂 (𝑡)
(2)

where 𝐶𝐿0, 𝐶𝐷 are constants which can be tested by a wind
tunnel test, 𝜙(𝑥) is the model shape function of the cantilever,
and 𝑞(𝑡) is the variable in the Van Del Pol wake oscillator
model for describing the vortex-induced vibration effect
which could be determined by

̈𝑞 (𝑡) + 𝜀𝜔𝑓 [𝑞2 (𝑡) − 1] ̇𝑞 (𝑡) + 𝜔2𝑓𝑞 (𝑡) =
𝐴
𝐷𝜙 (𝐿) ̈𝜂 (𝑡) (3)

where 𝜀 and A are also constants which can be tested by wind
tunnel test. By adding 𝜂(𝑡)𝜙(𝐿) = 𝑦(𝑡), 𝑀𝑒𝑓𝑓 = 1/𝜙2(𝐿),
𝐶𝑒𝑓𝑓 = 2𝜁𝜔𝑛/𝜙2(𝐿),𝐾𝑒𝑓𝑓 = 𝜔2𝑛/𝜙2(𝐿), the reduced lumped
parameter model can be obtained as follows.

𝑀𝑒𝑓𝑓 ̈𝑦 (𝑡) + 𝐶𝑒𝑓𝑓 ̇𝑦 (𝑡) + 0.5𝐶𝐷𝜌𝐷𝐿𝑈𝑦̇ (𝑡) + 𝐾𝑒𝑓𝑓𝑦 (𝑡)

= 0.25𝐶𝐿0𝜌𝐷𝐿𝑈2𝑞 (𝑡)
(4)

̈𝑞 (𝑡) + 𝜀𝜔𝑓 [𝑞2 (𝑡) − 1] ̇𝑞 (𝑡) + 𝜔2𝑓𝑞 (𝑡) =
𝐴
𝐷 ̈𝑦 (𝑡) (5)

By adding the electromechanical coupling governing equa-
tion:

𝑉 (𝑡)
𝑅 + 𝐶𝑝𝑉̇ (𝑡) + 𝜃 ̇𝑦 (𝑡) = 0 (6)

the whole governing equations of the present energy harvest-
ing system could be obtained.

𝑀𝑒𝑓𝑓 ̈𝑦 (𝑡) + 𝐶𝑒𝑓𝑓 ̇𝑦 (𝑡) + 0.5𝐶𝐷𝜌𝐷𝐿𝑈𝑦̇ (𝑡) + 𝐾𝑒𝑓𝑓𝑦 (𝑡)

− 𝜃𝑉 (𝑡) = 0.25𝐶𝐿0𝜌𝐷𝐿𝑈2𝑞 (𝑡)
𝑉 (𝑡)
𝑅 + 𝐶𝑝𝑉̇ (𝑡) + 𝜃 ̇𝑦 (𝑡) = 0

̈𝑞 (𝑡) + 𝜀𝜔𝑓 [𝑞2 (𝑡) − 1] ̇𝑞 (𝑡) + 𝜔2𝑓𝑞 (𝑡) =
𝐴
𝐷 ̈𝑦 (𝑡)

(7)

Equation (7) is called the concentrated parameter model of
nonlinear harvester: 𝑀𝑒𝑓𝑓 and 𝐾𝑒𝑓𝑓 are the equivalent mass;
𝐶𝑒𝑓𝑓 is the system damping, which is related to damping
coefficient 𝜁.𝐾𝑒𝑓𝑓 is the system equivalent stiffness which
depends on the physical properties of the cantilever beam.
y(t) is the displacement of bluff body vibrating, and V(t) is
the output voltage. C𝑃 is the capacitance, 𝜃 is the piezoelectric
coupling coefficient, and F(t) is the fluid-dynamical force. It is
worth noting that damping coefficient 𝜁 is defined as the ratio
of system damping to critical damping, which is expressed as
follows.

𝜁 = 𝐶𝑠𝑦𝑠𝑡𝑒𝑚
𝐶𝑐

= 𝐶𝑠𝑦𝑠𝑡𝑒𝑚
2√𝑀𝑒𝑓𝑓𝐾𝑒𝑓𝑓

(8)

The symbol 𝜁 can also be obtained by the free decay experi-
ment. Equation (3) can be rewritten as follows.

𝜁 = 𝐼𝑛𝛿
√4𝜋2 + (𝐼𝑛𝛿)2 (9)

Here, 𝛿 is the ratio of the two adjacent amplitudes in the
free decay experiment. Considering the natural frequency
𝜔𝑛 = √𝐾𝑒𝑓𝑓/𝑀𝑒𝑓𝑓, the system damping C𝑠𝑦𝑠𝑡𝑒𝑚 obtained by
the formula is given as below.

𝐶𝑠𝑦𝑠𝑡𝑒𝑚 = 2𝑀𝑒𝑓𝑓𝜔𝑛
𝐼𝑛𝛿

√4𝜋2 + (𝐼𝑛𝛿)2 (10)

The resistors with different resistance values are connected
into the circuit to obtain the optimal load, and the measured
data can be used to obtain the open circuit 𝜔𝑛𝑜𝑐 and short
circuit 𝜔𝑛𝑠𝑐 frequency by Fourier transform. In this point, the
piezoelectric coupling coefficient 𝜃 is obtained through the
following formula.

𝜃 = √(𝜔2𝑛𝑜𝑐 − 𝜔2𝑛𝑠𝑐)𝑀𝑒𝑓𝑓𝐶𝑝 (11)

Finally, the average power expression 𝑃𝑎V𝑔 = ∫𝑈2
𝑈1
(𝑉𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒/

√2)2/𝑅𝑑𝑈 is used to obtain the power of harvester, in which
V𝑚𝑎𝑥 is the maximum voltage harvested under the maximum
tip deflection y𝑚𝑎𝑥.

3. Experimental Setup and the
Theoretical Validation

Figure 3 shows all the instruments needed for this experi-
ment, while the schematic diagram of the bionic structure
energy collection system is shown in Figure 1. The entire
experiment is implemented in a wind tunnel with the wind
speed controlled by frequency conversiondevice and the con-
version relation between frequency andwind speed expressed
as 𝑈 = 0.137𝑓 + 0.18. The range of wind speed is set at 0 to 7
m/s in the experiment.

The device includes an aluminum cantilever beam with
MFC on the root, and the cantilever beam and its column are
arranged in “1” shape and placed vertically with a total weight
of 5.73 g. With a total length of 168 mm, the cantilever beam
is split into two parts which are inserted into the bluff body
and exposed to air with a ratio of 0.68 (6.8mm:10mm). The
data acquisition instrument is used for signal processing to
acquire frequency components. At different wind speeds and
resistive loads, a two-channel digital oscilloscope is used to
determine the harvester amplitude and peak voltage values.
The peak power can be calculated simply from the voltage
in the circuit and the corresponding load. In order to ensure
the same quality as smooth cylinder, it is essential to have
a quality inspection of the cylinder with concave pits and
hemispheric convex during the experiment, that is, to add
a mass block. The model parameters of concave pits and
hemispheric convex are shown in Tables 1 and 2, respectively.
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(a) (b)

(c) (d)

Figure 3: Entire experimental setup. (a)The fabricated energy harvester; (b) the data acquisition system; (c) honey comb for air stability; (d)
the global views of the wind tunnel.

As is seen in Tables 1 and 2, the maximum mass of
the bionic model is 2.48 g and 2.90 g, demonstrating
that the mass of other models can be achieved by adding
mass blocks. Of course, the same is true for the smooth
cylinder. Here, the side length of the pit and the diameter
of the hemispherical projection are denoted by L and d,
respectively.

Aiming to validate the present aero-electromechanically
coupled model, a VIVPEH prototype is prepared and tested
in the wind tunnel (Figure 3). The VIVPEH prototype
comprises an aluminum cantilever beam bonded with a
piezoelectric transducer connected to an electrical load
resistance (R𝐿), and an equilateral smooth cylinder bluff
body. The frontal characteristic dimension of the equilateral
triangular bluff body is 0.032 m. The identified effective
parameters of the VIVPEH are listed in Table 3. Figure 4
shows the comparison of experimental and theoretical results
for VIVPEH with smooth cylinder shaped bluff body in an
open circuit condition. As shown in Figure 4, in general,
the output voltage increases first and then decreases when
the wind speed increases. Though the measured data is
slightly higher than the theoretical prediction, the theoretical
solution and experimental results are generally consistent
with each other. The discrepancy is probably attributed to
the error caused by the aerodynamic force coefficient of
the bluff body. Computed by theoretical method and used
in the vortex-induced vibration model, it could be slightly
different due to somedegree of uncertainty in the experiment.
The time history diagrams of peak voltage calculated by
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Figure 4: Comparison of experimental and theoretical results for
VIVPEH with smooth cylinder shaped bluff body.

experiment and theory are shown in the middle of Figure 4,
in which the peaks are 20.8 V and 20 V, respectively. On
the right is the natural frequency, clearly showing that the
experimental result is reasonably close to the theoretical
calculating value.

4. Results and Discussions

To highlight the comparison with a smooth cylinder, an
experimental analysis on the smooth cylinder is needed.
One of the important parameters mentioned in the previous
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Table 1: Mass parameters of convex pit models.

Size 3 columns 4 columns 5 columns 6 columns
6mm 2.48g 2.06g 2.16g 2.00g
8mm 2.30g 2.10g 1.91g 2.18g
10mm 2.00g 2.10g 1.91g 2.05g

Table 2: Mass parameters of hemispheric convex models.

Size 3 columns 4 columns 5 columns 6 columns
6mm 2.50g 2.57g 2.51g 2.50g
8mm 2.64g 2.50g 2.55g 2.57g
10mm 2.90g 2.61g 2.60g 2.54g

Table 3: Material parameters involved in the system.

Material parameter value
Elastic coefficient (Keff)(N⋅m−1) 34.07
Capacity (Cp)(nF) 15.7
Active diameter (Da)(mm) 32
Active height (H)(mm) 118
Active mass (mc)(g) 2.48/2.90
Equivalent mass (Meff)(g) 6.44/6.86
Density (𝜌)(kg⋅m−3) 27.38/31.25
System damping (Ceff)(N⋅s⋅m−1) 0.0098
Piezoelectric coupling coefficient (𝜃 )(N⋅V−1) 1.183×10−5

section is obtained by the free decay experiment. The natural
frequencies �𝑛 are obtained by the free decay experiment of
the smooth cylinder, as shown in Figure 5.

Figure 5(a) shows the time history voltage and displace-
ment: the free decay test of vortex -induced vibration requires
initial disturbance to grow until it reaches a locked area and
ends up in a stable state. Corresponding to the wave peak,
the horizontal coordinate shown as 11.50 Hz is the natural
frequency of the system. In order to analyze the influence
of bionic structures on the performance of the harvester,
the characteristics of smooth, pit, and convex bluff body
under different wind speeds and different resistance values
are compared in detail, and the resistance values are set as
400 kΩ, 500 kΩ, 600 kΩ, 700 kΩ, 800 kΩ, and 900 kΩ.

4.1. Performance Analysis on Bionic Bluff Body with Pit Shape.
The time step curve and the measured voltage under different
wind speeds are shown in Figures 6 and 7, respectively. It can
be seen fromFigure 7 that from three columns to six columns,
the voltage rises at first and then declines as the wind
speed grows, which verifies the characteristics of VIV; the
VIV can be separated into three regions: presynchronization
region, lock-in region, and postsynchronization region [52].
Through the overall comparison with the smooth bluff body,
the starting vibration wind speed of the bionic structure
decreases from 1.8 to 1 m/s, showing that energy can also be

harvested at low wind speed. When the size of the square
pits on the surface of the cylinder is 6mm, 8mm, and 10mm,
the voltage peak also reaches 40, 45, and 47 V, successively,
10 to 15 V higher than that of a smooth cylinder, and the
bandwidth also increases from 39.3% to 51.4%. But it is not
always suitable to have a bigger or smaller size of the pit for
some specific structures, and there is an optimal size. The
following is a concrete analysis of each column of pits: in the
case of 3 columns, it is obvious that the 10 mm pit has the
best vibration effect and plays a reinforcing role in the whole
vibration stagewith itsmeasured voltage reaching 40V. In the
4 columns, the voltage curves of the 6 mm and 10mm pits are
always above the smooth cylinder, and the bandwidth is also
extended. Although the 10 mm pit has an inhibitory effect in
the early stage, the voltage in the later stage increases rapidly,
even exceeding the voltage values of 6 mm and 10 mm pits.
For 5 columns, the 6 mm and 10 mm pits have a weak effect,
but the 8 mm pits increase significantly when the wind speed
reaches 2.8 m/s. For 6 columns, 8 mm pits show a significant
inhibition effect on energy harvesting, and 6mm and 10 mm
pits are better than smooth cylinder as the voltage is above 45
V.Therefore, in the engineering field, it is of great significance
for the above four models to raise the efficiency of energy
collection without increasing the processing materials.

Figures 8(a) and 8(b) are the voltage-wind speed curves of
the pit structure and the smooth cylinder, respectively. With
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Figure 5: Free decay test of the energy harvester: (a) time history response curve; (b) fast Fourier transforming result.
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Figure 6: Time history curve of voltage output.

the structure of 4 columns with one side 8mm long selected,
it can be seen from Figure 7 that as the wind speed expedites,
the voltage and power increase gradually with a constant
resistance, but they then descend slowly when reaching their
peaks. For the pit structure, the maximum peak voltage is 46
V with a wind speed of 2.92 m/s and a resistance of 900 kΩ,
and the maximum peak power is 1.21 mWwith a resistance of
800kΩ. The voltage and power begin to decrease when their
resistance surpasses 800kΩ. Regardless of voltage or power,
the pit structure is higher than the smooth blunt body under
the same wind speed and resistance. The optimal resistance
measured for the maximum power is 800 kΩ. For the smooth
bluff body, the peak voltage is lower than 35 V, about 10 V less
than the bionic structure voltage, and the maximum power
is only 0.64mW. It can be demonstrated in Figure 8 that the
optimal load is around 800 kΩ, which can also be calculated
from the time constant in a RC circuit R𝑜𝑝𝑡= 1/�𝑛. C𝑃= 881.5
kΩ, where�𝑛 is the natural frequency, and𝜔𝑛 = 2𝜋𝑓𝑛, f 𝑛= 11.5
Hz. It is obvious that the resistance measured is very close to
the actual value.

4.2. Performance Analysis on Bionic Bluff Body with Spherical
Convex. As it is mentioned in the second section, the
convex object model also needs quality inspection, and the
quality after verification is 2.90 g. The natural frequency
of the vibration changes along with the quality of the bluff
body. Therefore, it is also necessary to conduct free decay
experiments on the smooth cylinder of 2.90 g and to obtain
the natural frequency of the system f 𝑛 = 11.2 Hz. The output
voltage of the bionic structure with different hemispheres of
different sizes is measured in the wind tunnel, as shown in
Figure 9.

For the 3 columns of convex bionic structure, the hemi-
spherical enhances the amplitude of vortex-induced vibration
for the diameter from 6 to 10 mm. Specifically, the output
voltage of the 10 mm hemisphere is the largest with its
measured voltage close to 50V, 100% higher than that of
the smooth cylinder. The enhancement effect is 10 mm>8
mm>6mm in turn, as shown in Figure 9(a). Figures 9(b) and
9(c) both show strong inhibitory effects, and the measured
voltage of the bionic structure is much smaller than that of
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Figure 7: Measured piezoelectric energy harvester data (no resistance): (a) peak voltage versus wind speed of 3 columns of pits; (b) peak
voltage versus wind speed of 4 columns of pits; (c) peak voltage versus wind speed of 5 columns of pits; (d) peak voltage versus wind speed
of 6 columns of pits.

the smooth cylinder, which means that the 4-column and
5-column hemisphere models have no sense for enhancing
the flow-induced vibration. On the contrary, it is of great
significance in mitigating the damage of buildings affected
by the wind. The relationship between the measured voltage
and the wind speed of a 6-column hemispherical bionic
cylinder is shown in Figure 9(d). Figure 9(d) shows that
10 mm to 6 mm exhibits different degrees of enhancement
or inhibition for flow-induced vibration, but the measured
voltage increases first and then decreases as the wind speed
accelerates, which is in line with the curve of vortex-induced
vibration. In detail, the 10 mm hemisphere acts as reinforce-
ment, and the 6 to 8mm hemisphere suppresses the vibration

of the bluff body. Figures 10(a)–10(d) show the power-wind
speed curve of two energy harvesting machines, and three
columns of 10 mm hemispherical bionic bluff bodies are
selected. Figure 10 shows that the threshold wind speed of
both energy harvesters is 1.7 m/s.Themaximum peak voltage
is close to 35 V with a resistance of 800 kΩ and a wind speed
of 3.097 m/s. Compared with the smooth structure, the peak
power increases from 0.48 to 0.56mWwith the resistance 800
kΩ. Corresponding to the pit model, the optimal load of the
hemispheric model is also around 800 kΩ; therefore, it can be
considered that the added mass of the hemispheric model is
tiny compared with that of the pit model, which can also be
verified in Figure 10.
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Figure 8:The power-wind and voltage-wind curve of the energy harvester of the pit bionic and smooth structure: (a) the voltage-wind curve
of the pit structure; (b) the voltage-wind curve of the smooth cylinder; (c) the power-wind curve of the pit structure; (d) the power-wind
curve of the smooth cylinder.

5. Conclusions

Thepiezoelectric energy harvesting characteristics of smooth
cylinders with pits and hemispherical protrusions are com-
prehensively evaluated by experimental methods. The rela-
tionship between maximum voltage and resonance frequen-
cies of each model under different wind speeds is studied
under the condition of the same equivalent mass. The exper-
imental result demonstrates an effect on the performance
of the harvester exerted by the size and distribution of the
square pit and hemispherical convex hull. In terms of the pit
structure, the locking area is concentrated on 2 to 3.5 m/s.
The 6 to 10mm square pit can reduce the threshold wind
speed;meanwhile, it has a different effect on the enhancement

of vibration, which is closely related to the number of pit
columns. For example, the measured voltage of 4 columns
and 5 columns of 8 mm pits can reach about 47 V, while
the voltage of 6 columns of 8 mm pits is much lower than
that of the smooth cylinders. As for convex structures, the
10 mm hemispherical convex structures of 3 columns and
6 columns have excellent effects on increasing amplitude of
vibration, according to the piezoelectric principle; namely,
the higher the amplitude is, the higher the measuring voltage
will be. The measured voltage is close to 50 V, completely
higher than that of the smooth cylinder. The power output
of 10 mm convex structure is 0.56 mW, slightly higher
than the smooth cylinder under the same conditions. On
the contrary, 4-column and 5-column hemispheric convex
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Figure 9: Measured piezoelectric energy harvester data (no resistance): (a) peak voltage versus wind speed of 3-column hemisphere
protrusion; (b) peak voltage versus wind speed of 4-column hemisphere protrusion; (c) peak voltage versus wind speed of 5-column
hemisphere protrusion; (d) peak voltage versus wind speed of 6-column hemisphere protrusion.

structures have obvious inhibiting effects on the flow-induced
vibration of bluff body, which can be used for vibration
reduction. For wind tunnel experiments with load resistance,
the measured voltage increases with the load resistance, and
the optimal load of both bionic energy collection systems
is around 800 kΩ. In summary, the bionic structure energy
harvesting system design can serve as a good method to
obtain high voltage from wind-induced vibration. Finally,
it should be mentioned that the parametric study is per-
formed for our present bionic structures. A comparison
to other methods and more efficient bionic structures for

improving performance will be further studied in the future
work.
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Figure 10: Comparison of voltage and power response between smooth cylinder and hemisphere protrusion structure: (a) voltage response of
smooth cylinder; (b) voltage response of hemisphere; (c) power response of hemisphere protrusion structure; (d) power response of smooth
cylinder structure.
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Improving the estimation of the power output of a wind farm enables greater integration of this type of energy source in electrical
systems. The development of accurate models that represent the real operation of a wind farm is one way to attain this objective.
A wind farm power curve model is proposed in this paper which is developed using artificial neural networks, and a study is
undertaken of the influence on model performance when parameters such as the meteorological conditions (wind speed and
direction) of areas other than the wind farm location are added as signals of the input layer of the neural network. Using such
information could be of interest, either to study possible improvements that could be obtained in the performance of the original
model, which uses exclusively the meteorological conditions of the area where the wind farm is located, or simply because no
reliable meteorological data for the area of the wind farm are available. In the study developed it is deduced that the incorporation
of meteorological data from an additional weather station other than that of the wind farm site can improve by up to 17.6% the
performance of the original model.

1. Introduction

The power curve of a wind turbine (WT) is a model that
relates the electrical power generated by the WT to the
wind speed. This characteristic of a WT is of fundamental
importance in power output estimation processes. A precise
knowledge of the power curve of aWT is vital to optimise the
efficiency of these processes and is indispensable for massive
wind power integration in electrical systems [1–6].

Manufacturers of WTs provide certified power curve
models based on the IEC 61400-12-1 standard [7]. To obtain
this certification for the full operating range of theWTwithin
an acceptable period of time, these curves are usually certified
using wind simulation systems and not directly at the site
where theWTwill be definitively located.The power curve of

aWT that is obtained in this way is therefore static. That is to
say, it is independent of the actual meteorological conditions
of the site where it is to be located, of the surrounding
conditions of the terrain (roughness) and of the variations
that it may undergo over time or of changes to the operation
of the WT due to aging of the system.

Other procedures have been proposed in the literature to
establish the power curve models of a WT. These include,
for example, polynomial and exponential type parametric
models. These define the operating curve of a WT according
to various design values including, amongst others, rotor
diameter, blade design, start-up speed, rated speed, etc. [8–
13]. Carrillo et al. [12] and Lydia et al. [9] reviewed the
different types of parametric models defined in the literature,
comparing them according to their fit with the power curve
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of the manufacturer defined in accordance with IEC 61400-
12-1. Carrillo et al. [12] point out in their study that one of the
major drawbacks of this type of generic power curve model
is the difficulty of confirming that these models are an exact
representation of each of the different WT technologies.

Nonparametric models have also been developed to
define the power curve of a single WT using artificial
intelligence methods [14, 15].

Terrain roughness is one of the factors that most impacts
the uncertainty of the energy estimation process of aWT [16,
17]. Terrain roughness additionally needs to be considered
according to the direction the wind is coming from [18]. In
this respect, in the power curve model development process
and for a better estimation of the electrical power of the WT,
it is considered important to also take into account wind
direction as well as wind speed.

Currently, the integration of wind power in the markets
and electrical systems is done through the installation of
wind farms (WF) comprised of groups of WTs [19–21]. In
these cases, the uncertainty in the estimation of the electrical
power of a WT, obtained from the individual power curve
model, is increased as a result of the additional wake effect
generated between the different WTs in the WF [17, 18, 22–
24]. This effect depends on the relative location of each WT
with respect to the others, on the predominant wind direction
and on the distance between the WTs [18].

This additional uncertainty as a consequence of the
integration of a WT in a WF can be corrected through the
development of global WF power curve models.

Mingdi You et al. [25] developed a linear power curve of
a WT as an integral component of a WF. For development
of the individualised model, both wind speed and direction
are taken into account. With respect to wind direction, the
idea is to divide the spectrum of possible directions into a
specific number of ranges, developing a different WT power
curve for each of them. Sixteen sectors at most are used,
which is equivalent to developing the same model for the
data corresponding to a 22.5∘ range of directions. To estimate
the different parameters of the model, these authors used
information about the neighbouring WTs. For this reason,
according to the authors, the reliability of this model is
limited to its use in WFs with a large number of WTs (tens
or hundreds).

All the parametric models published in the literature are
based exclusively on identifying the power curve of individual
WTs.

Marvuglia and Messineo [26] compared three WF power
curve models developed on the basis of artificial intelligence
techniques. All of these models use the historic wind speed
and global power output data of a real WF. They do not
consider wind direction as a signal of the input layer.

For estimation of the meteorological conditions of a
specific site, studies have been published in the literature in
which meteorological data from different areas have been
used to optimize the estimation process [27, 28]. For the
specific case of the generation of power curve models of
WTs or WFs, none of the models found in the literature
take into account meteorological conditions (wind speed and
direction) of areas other than those of the wind farm. Using

such information could be of interest, either to study possible
improvements that could be obtained in the performance of
the original model which uses exclusively the meteorological
conditions of the area where the wind farm is located, or
simply because no reliable meteorological data for the area
of the wind farm are available.

The research work undertaken in the present study aims
to cover this gap found in the body of knowledge. For
this purpose, an adaptive wind farm power curve model
(ADWFPC) is proposed using regression techniques based
on artificial neural networks (ANNs). The following original
studies have been carried out:

(i) A study of the improvements in the model efficiency
when meteorological data corresponding to weather
stations other than the reference weather station of
the wind farm is additionally incorporated in the
input layer of the neural network.

(ii) A study of the possibility of using exclusively informa-
tion from a weather station other than the reference
station to generate the adaptive wind farm power
curve model.
This case studies the option of generating the power
curve model based on real data from other weather
stations instead of using estimated meteorological
data for the area where the wind farm is situated.
Using estimatedmeteorological data introduces addi-
tional uncertainty in the estimation process of the
wind farm power output, namely, the uncertainty
associated with the model used for the estimation of
the meteorological data.

Themodel was applied to two realWFs located on two islands
of the Canary Archipelago (Spain).

2. Materials

The models were generated using real electricity production
data of two WFs on two islands of the Canary Archipelago
(Spain).The electricity production data corresponded to time
instants when all the WTs in the corresponding WF were
available for operation.

Wind farm 1 (WF-1) (Figure 1) is located on the east coast
of the island of GranCanaria, very close to the sea and in a flat
area with very few natural obstacles in the vicinity. WF-1 has
4 Gamesa G47-660kW wind turbines. These are distributed
in two lines virtually perpendicular to the dominant wind
direction of the area: the line which connects WT1 with
WT2 and the line which joins WT3 with WT4. The distance
betweenWTs in the same line and between lines is 1.6 and 5.5
times the rotor diameter, respectively.

Wind farm 2 (WF-2) (Figure 2) is located inland on
Lanzarote island in an area of variable orography. It has 9
Gamesa G52-850 kW wind turbines. Unlike WF-1, all the
WTs of WF-2 are practically distributed along a single line
(line which connects WT1 with WT9) perpendicular to the
dominant wind direction. The distance between the different
WTs, measured along that line, is variable, ranging between
2 and 3 times the rotor diameter.
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Figure 1: Distribution of the four wind turbines of WF-1 on Gran
Canaria island [29].
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Figure 2: Distribution of wind turbines of WF-2 on Lanzarote [29].

As is clear from the above description, and as can be seen
in Figures 1 and 2, the two WFs used for this study differ in
terms of the distribution pattern of their respective WTs.

Shown in Table 1 are the geographic coordinates of the
WTs of the two WFs.

The meteorological data (wind speeds and directions)
were recorded at 9 weather stations (WS) installed on four of
the seven main islands that make up the Canary Archipelago
(Figure 3). These were numbered from WS-1 to WS-9. The
reference stations are WS-1 and WS-9 in, respectively, WF-1
and WF-2.

The data used are from 2008 and have a mean hourly
frequency.

The meteorological data series were provided by the
Technological Institute of the Canary Islands (ITC, Instituto

Table 1: Geographic coordinates of the wind turbines.

Code X(m.) Y(m.) Z(m.)
Wind Farm 1

WF1-WT1 461764 3086314 3
WF1-WT2 461839 3086301 1
WF1-WT3 461681 3086067 5
WF1-WT4 461753 3086038 2

Wind Farm 2
WF2-WT1 645043 3219819 486
WF2-WT2 645147 3219752 478
WF2-WT3 645186 3219638 473
WF2-WT4 645264 3219548 464
WF2-WT5 645333 3219462 456
WF2-WT6 645403 3219369 448
WF2-WT7 645406 3219213 440
WF2-WT8 645554 3219194 425
WF2-WT9 645664 3219133 405

Tecnológico de Canarias) [30], the Spanish State Meteoro-
logical Agency (AEMET, Agencia Española deMeteorologı́a)
[31], and the owners of the WFs. The ITC is a public
research and development company which pertains to the
Canary Government. Among its many lines of research are
the analysis of renewable resources and the undertaking of
projects such as the wind map of the Canary Islands [32, 33].

Table 2 shows the general data of each of theWSs: the code
assigned to each of them, the height above ground level, the
geographic coordinates, and the mean annual wind speed for
2008.

Figure 4 shows the distribution of real wind directions for
the reference WSs (WS-1 and WS-9) of the WFs.

Table 3 shows the linear correlation coefficients (CC) (1)
between the mean hourly wind speeds of the different WSs.
The range of CCs obtained is between 0.10 and 0.87. The
lowest value was obtained between WS-3 and WS-9. The
highest CCs were observed between WS-1 and WS-2 and
between WS-2 and WS-7.

CC = ∑mi=1 (V1i − V1) × (V2i − V2)
√∑mi=1 (V1i − V1)2 × √∑mi=1 (V2i − V2)2 (1)

where
CC is Pearson’s correlation coefficient between the wind

speeds of two weather stations.
V
1i and V

2i are the wind speed data of the two weather
stations for hour “i.”

m is the number of data available in the year.
V
1
and V

2
are the mean wind speed values for the

available data series of the two weather stations.

3. Methodology

3.1. Architecture Used for the Neural Network. The architec-
ture used for the ANNs was comprised of three layers with
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Figure 3: Location of the weather stations (WS) and wind farms (WF) used in the study.

Table 2: Weather stations used in the study.

Code Height (m a.g.l.) X(m.)
(north)

Y(m.)
(west)

Z(m.)
(m.) Annual mean wind speed(m/s)

WS-1 40 461811 3086432 16 8.3
WS-2 10 461905 3081754 3 7.7
WS-3 10 611130 3147885 24 5.6
WS-4 10 636430 3203469 10 5.4
WS-5 13 461882 3100217 5 6.9
WS-6 10 433517 3111235 472 8.5
WS-7 10 458351 3090136 186 6.0
WS-8 10 345575 3102967󸀠󸀠 51 6.0
WS-9 40 645405 3219587 457 8.4

feedforward connections. More specifically, multilayer per-
ceptron topologies (MLPs) were used [34, 35]. This architec-
ture has shown its capacity to satisfactorily approximate any
continuous transformation [34, 35] and has been proposed
by various authors [36, 37]. A total of 20 neurons were used
for the hidden layer. It was verified that model efficiency was
not improved withmore neurons in this layer.The number of
neurons in the input layer varies depending on the case under
study. In all the cases considered, the output layer comprised
just a single neuron.

The designed architectures were trained using the back-
propagation algorithm with sigmoidal activation function
[34, 35] and the Levemberg-Marquard method [34, 38] for
mean square error minimisation.

The different tests were performed using Matlab software
tools for neural networks (the licence was acquired by the
Group for Research on Renewable Energy Systems of the
University of Las Palmas de Gran Canaria).

3.2. Description of the Study Cases. Figure 5 is a schematic
description of the general methodology for generation of
ADWFPCs using ANNs.The input layer neurons correspond
to the meteorological information (wind speed and/or direc-
tion) of one or variousWSs.Theoutput layerwill have a single
neuron which corresponds to the WF power output.

All the available data are divided randomly into three
parts to be used in the training, validation and test stages
(Figure 5). The proportion of data used for the training, vali-
dation, and test stages was 70%, 15%, and 15%, respectively.

The training data subset was used to estimate the weights
of the ANN. The validation data subset was used to check
the progress of the training of the ANNs, optimizing their
parameters. Based on this, and using the data reserved for
the test stage, the hourly WF power output is estimated. To
assess model precision, a comparison of the data estimated in
the test stage with the observed data is undertaken. That is, it
constitutes an independent measure of the functioning of the
ANN after its training.
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Table 3: Linear correlation coefficients between the wind speeds recorded at the different weather stations.

WS-1 WS-2 WS-3 WS-4 WS-5 WS-6 WS-7 WS-8 WS-9
WS-1 1 0.84 0.27 0.34 0.74 0.73 0.77 0.50 0.50
WS-2 0.81 1 0.19 0.25 0.79 0.74 0.87 0.44 0.54
WS-3 0.27 0.19 1 0.70 0.16 0.16 0.18 0.16 0.10
WS-4 0.34 0.25 0.70 1 0.20 0.21 0.22 0.20 0.11
WS-5 0.74 0.79 0.16 0.20 1 0.49 0.78 0.21 0.44
WS-6 0.73 0.74 0.16 0.21 0.49 1 0.61 0.62 0.54
WS-7 0.77 0.87 0.18 0.22 0.78 0.61 1 0.39 0.46
WS-8 0.50 0.44 0.16 0.20 0.21 0.62 0.39 1 0.34
WS-9 0.50 0.54 0.10 0.11 0.44 0.54 0.46 0.34 1

The results obtained were analysed in the present paper
for the following cases.

Case 1. This case considers the original model which uses
exclusively, as signals of the input layer of the ANN, mete-
orological data of the reference station of the wind farm.The
results obtained in this case were differentiated according to
whether only thewind speed datawere used, or both thewind
speed and wind direction data were used simultaneously
(Figure 6(a) vs. Figure 6(b)).

Case 2. Analysis of improvements in the precision of the
adaptive model when the data from a WS other than the
reference station of theWF is additionally incorporated in the
ANN input layer.

Figure 7 shows a schematic representation of the ANN for
this case. Unlike the adaptive model of Case 1, this ANN will
have an input layer of 4 neurons.

A total of 9 WSs were used in this study (including each
referenceWS of the twoWFs). EachWF reference stationwas
combinedwith the sevenWSs with no connection to either of
the twoWFs.Thismeans the generation of 7 different models
for each of the two WFs.

Case 3. Analysis of the performance of the adaptive model
when only the data fromaWSother than the reference station
of the WF is used in the input layer.

This case was considered because it is possible that there
may be no reliable reference station meteorological data
available [39]. With this in mind, adaptive models were
generated using meteorological data from WSs other than
the reference station. The precision of these models was
compared with that of the adaptive model obtained following
option (b) of Case 1 (Figure 6(b)).

Figure 8 shows a schematic representation of the ANN
model for this case. The number of neurons in the different
layers is the same as in Case 1, option (b).

3.3. Metrics Used to Compare the Different Models. The
metrics defined in (2), (3), and (4) were used to compare the
precision of the different models that were generated. These

metrics are commonly used in analyses of model efficiency
[40–42].

MARE = 1
n

n∑
i=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Pi − ∧Pi

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Pi
; {{{

Pi > 0
∧

Pi > 0 (2)

where
MARE is the mean absolute relative error.
Pi is the observed value of the wind farm power output

for the time instant i.
∧

Pi is the estimated value of the wind farm power output
for the time instant i.

n is the number of data used in the test stage.

R = ∑ni=1 (Pi − P) × ( ∧Pi − ∧P)
√∑ni=1 (Pi − P)2 × √∑ni=1 ( ∧Pi − ∧P)2

(3)

where
R is Pearson’s correlation coefficient between the esti-

mated and observed values of the wind farm power output.
P is the mean of the observed values of the power output

for the data series of the test stage (Figure 5).
∧

P is the mean of the estimated values of the power output
for the data series of the test stage (Figure 5).

IoA = 1 − ∑ni=1 ( ∧Pi −Pi)2
∑ni=1 (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∧Pi −P󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨Pi − P󵄨󵄨󵄨󵄨󵄨)2

(4)

where
IoA (Index of Agreement) evaluates the index of agree-

ment between the values estimated by the model and the
observed values of the wind farm power output [40].

4. Results and Discussion

4.1. Discussion of Results for Case 1 (C1). Table 4 shows the
results obtained for the different metrics.
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Figure 4: Annual wind direction frequency distribution for WS-1 and WS-9.

Table 4: Comparison of the results of the models generated
according to (a) and (b) of Figure 6.

Wind farm Input layer signal
(wind speed)

Input layer signals
(wind speed and

direction)
MARE R IoA MARE R IoA

C1-WF-1 0.2492 0.9174 0.9546 0.2438 0.9236 0.9591
C1-WF-2 0.1094 0.9716 0.9855 0.0991 0.9803 0.99

In the simulation of the models generated for the two
WFs, it can be seen that the reliability of the model obtained
for WF-2 is higher than that for WF-1. This difference in
model performance is due to the greater difficulty in the
learning stage ofWF-1which has amore complex distribution
of WTs on the ground: there are various lines of WTs and the
distances are relatively small, both betweenWTs on the same
line and between lines.

Another of the conclusions that can be drawn from the
data shown in Table 4 is that, when incorporating wind
direction in the input layer of the ANN, the new models that
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Figure 5: General layout of the methodology followed to obtain the adaptive wind farm power curves.
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Figure 6: Schematic representation of the ANNs of the ADWFPC model when only wind speed is used in the input layer (option (a)) vs.
when wind speed and direction are used (option (b)).

are generated for the WFs perform better than the original
model. It can also be seen that the degree of improvement
differs depending on whether the new model is applied to
WF-1 or WF-2. For WF-1, and in relation to the MARE
metric, a 2.2% improvement is found and for WF-2 the
improvement is 4.3 times greater (9.4%).

4.2. Discussion of the Results for Case 2 (C2). The different
simulations analysed in Case 2 were coded as shown in
Table 5.The simulations coded as “C2-WF1 S0” and “C2-WF2
S0” correspond to the adaptive models obtained according
to Case 1 (Figure 6(b)). These were compared with the
remaining simulations, the wind farm power curve models
which were obtained according to Case 2 (Figure 7).

Figures 9 and 10 show, respectively, the “MARE” and
correlation coefficient “R” results obtainedwhen applying the
different models. For WF-1, it can be seen that the results
obtained with the models developed for all the simulations
of Case 2 were better than those obtained according to
Case 1, option (b) (Table 4). The degree of improvement is
independent of the correlation coefficient (Table 3) that exists
between the reference WS of the WF and the additional WS.
That is, a better value for the correlation coefficient does not
directly imply a better degree of improvement. An example of
this can be seen by comparing the results of the simulations
C2-WF1 S3 and C2-WF1 S6.

For WF-2, the results obtained initially for Simulation 0
are already quite good, with a “MARE” below 0.1 and an IoA
of 0.99. Even so, some of the models developed according
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to Case 2 improved on the initial result. More specifically,
the “MARE” and “R” results with the Case 2 models for
the C2-WF2 S4 and the C2-WF2 S6 were better than those
obtained with the Case 1 models, option (b). As with WF-
1, it is concluded that the degree of improvement in model
efficiency is independent of the CC that exists between the
reference WS of the WF and the additional WS.

Figure 11 shows the results obtained for “IoA” (4). The
results follow the same general pattern seen for “MARE” and
“R.” That is, for the case of WF-1, the results obtained with
all the models of Case 2 were better than the initial result
obtained with a single station (C2-WF1 S0). Similarly, it can
be seen forWF-2 that the results obtained for C2-WF2 S4 and
C2-WF2 S6 were better than the initial result.

4.3. Discussion of the Results for Case 3. For Case 3 and for
each of the WFs, the adaptive models were generated using

Table 5: Simulations studied in Case 2.

Simulations for WF1 Simulations for WF2 Additional WS
C2-WF1 S0 C2-WF2 S0 None
C2-WF1 S1 C2-WF2 S1 WS-2
C2-WF1 S2 C2-WF2 S2 WS-3
C2-WF1 S3 C2-WF2 S3 WS-4
C2-WF1 S4 C2-WF2 S4 WS-5
C2-WF1 S5 C2-WF2 S5 WS-6
C2-WF1 S6 C2-WF2 S6 WS-7
C2-WF1 S7 C2-WF2 S7 WS-8

the meteorological data of a WS other than the reference
stations. A total of 7 models were therefore obtained for
each WF. Model performance according to Case 3 was then
comparedwith that of the adaptivemodel obtained according
to Case 1, option (b) (Figure 6(b)). For this purpose, the
ratio was calculated between the IoA obtained for each of the
models of Case 3 (C3-IoA) and that obtained for each of the
models of Case 1 (C1-IoA).The results are shown in Figure 12.
Represented on the x-axis is the CC between the WS used
to generate the model other than the reference WSs and the
actual reference WS of the WF.

It can be seen that the higher the CC the greater the
degree of similarity between the ADWFPC models obtained
according toCases 1 and 3. ForCCvalues above 0.7, the degree
of similarity, expressed as the ratio between the IoAs, is above
0.9.

5. Conclusions

From the study undertaken in the present paper it can
be deduced that when the meteorological data from an
additional weather station other than the reference station
of the wind farm (Case 2 of this study) are incorporated in
the input layer of the neural network, themodel performance
can improve the results obtained for the original model (Case
1). For WF-1, model performance increased in 100% of the
cases. It was also observed that the degree of improvement is
independent of the correlation coefficient (CC) between the
corresponding referenceweather station of thewind farmand
the additional weather station.

The conclusions obtained from the comparison of the
models developed according to Cases 1 and 2 can serve as
a reference for optimization of the performance of already
developed power curve models in which only data from the
reference weather station of the wind farm are used.

When the meteorological data from a weather station
other than the reference station were used instead of the data
of the actual reference station of the wind farm in the input
layer of the ANN (Case 3), the degree of similarity between
the results of the adaptive model obtained in this way and the
results obtained with the adaptive model according to Case
1, option (b) (Figure 6(b)), increases with the CC between
the wind speeds of the reference station and the nonreference
station. For a CC over 0.7, the degree of similarity between
the adaptive models obtained according to Cases 1 and 3 was
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above 0.9 (Figure 12). In this respect, it is possible to know
the additional uncertainty when the power curve model is
generated with data other than the data of the reference
weather station of the wind farm.

Nomenclature

ANN: Artificial neural network
CC: Pearson’s correlation coefficient between

the wind speeds of different weather
stations

IoA: Index of Agreement
MARE: Mean absolute relative error
ADWFPC: Adaptive wind farm power curve
R: Pearson’s correlation coefficient between

the estimated and observed values of the
electrical power of a wind farm

WF-1: Wind farm 1
WF-2: Wind farm 2
WS: Weather station
WT: Wind turbine.

Data Availability

Thewind farms data used to support the findings of this study
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conditions and so cannot be made freely available. Requests
for access to these data should be made to the following:
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Wind farm 2: Owner: Eólicas de Lanzarote, S.L. (https://
empresite.eleconomista.es/EOLICAS-LANZAROTE.html).
The meteorological data used to support the findings of this
study are available from the corresponding author upon
request.
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(AEMET - Agencia Española de Meteorologı́a),” 2018, http://
www.aemet.es/es/en.

[32] Technological Institute of the Canary Islands (ITC - Instituto
Tecnológico de Canarias), “Valoración de recursos energéticos
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Systems of distributed generation have shown to be a remarkable alternative to a rational use of energy. Nevertheless, the proper
functioning of them still manifests a range of challenges, including both the adequate energy dispatch depending on the variability
of consumption and the interaction between generators. This paper describes the implementation of an adaptive neurofuzzy
system for voltage control, regarding the changes observed in the consumption within the distribution system. The proposed
design employs two neurofuzzy systems, one for the plant dynamics identification and the other for control purposes. This focus
optimizes the controller using the model achieved through the identification of the plant, whose changes are produced by charge
variation; consequently, this process is adaptively performed. The results show the performance of the adaptive neurofuzzy system
via statistical analysis.

1. Introduction

The increasing demands of energy, together with the associ-
ated costs, enhance the necessity of creating new energetic
alternatives covering aspects such as the economic gener-
ation of energy and uninterrupted production. Distributed
Generation (DG) has become an attractive method that
offers electricity to consumers. This focus lowers the costs of
installation of generators and the production of electricity; in
addition, the electrical efficiency can also be improved using
cogeneration [1]. Distributed energy resources have demon-
strated potential advantages for use in energy generation and
distribution [2].

Conventionally, electric energy systems consist of large
interconnections characterized by a centralized high voltage
generation and transmission over long distances. In recent
years, a DG approach is being implemented to reduce energy
losses in transmissions [3]. According to [4], electricity DG
units located in adequate places (near to users) allow reducing

transmission losses and increasing the flexibility to the gener-
ation system using local renewable energy sources. A micro-
grid integrates heterogeneous distributed energy resources
within the distribution system [5]. Microgrids represent a
challenge that requires control techniques, automation, and
computation for generation and distribution [6].

In terms of energy systems, resources of distributed
energy, such as fuel cells,microturbines, wind generation, and
photovoltaic systems, have a wide range of advantages [7, 8].
For instance, demands can be efficientlymitigated, increasing
the reliability against failures in energy systems and improv-
ing the quality of those systems through sophisticated control
schemes. The concept of microgrid has been proposed for
solving common interconnection problems of individual DG
in different energy systems [9]. A microgrid is defined as
an independent grid power of low or medium voltage of
distribution that operates in three differentmodes: connected
to a power grid, isolated (autonomous), and transition mode
[10].
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2 Complexity

Generator systems require to operate in the boundaries of
design as complexity increases and doubts arise in terms of
functioning, which also makes necessary more requirements
in control systems [11, 12].

In relation to applied computational intelligence in
energy distribution systems, reference [13] shows the design
of an automatic voltage regulator using machine learning;
this system is tested in distribution systems with 6 and 118
nodes. A related work can be seen in [14], where is proposed
the use of reinforcement learning technique to implement
a decentralized voltage control of the distribution network.
Reinforcement learning is a method used to improve the
agent action through several trials in an unknown environ-
ment.

According to [15], state estimation is fundamental to
energy management in distribution systems; in this way,
the authors develop a state estimation using artificial neural
networks, to observe the system performance. The tests
are made in distribution systems with 33 and 69 nodes
where connection/disconnection of DG and load variation is
considered.

An approach for power flow and voltage regulation
using multiagents is proposed in [16, 17]. The attractive
characteristic of multiagents is the distributive operation;
related to this issue, [18] proposed a tool for agent simulation
for decentralized control strategies in electrical distribution
systems; this tool allows observing the emergent behavior
produced by agents. Additionally, in [19] is presented a
proposal based on consensus protocol for cooperative voltage
control applied to wind farms. Another related work is shown
in [20] where optimal control strategies are proposed for
distributed photovoltaic systems which manage the energy
flow among the energy system in a power grid to charge
electric vehicles.

About other related applications of computational intelli-
gence, [21] proposes the identification of a permanentmagnet
synchronous generator using neuronal networks. Regarding
applications using fuzzy logic, reference [22] shows a fuzzy
predictive control for a gas turbine used for the power
generation process. Authors emphasize the relevance of
advanced control strategies to satisfy the control demands
of energy generation. Meanwhile, in [23] is proposed an
adaptive fuzzy logic system for load frequency control of
multiarea power system. Load frequency control consists of
regulating the distribution system frequency in a specified
value and maintains the interchange power between areas
[23].

According to the above, the DG is a remarkable alter-
native for the generation of electricity; however, advanced
control techniques are required for its operation. In this
way, a proposal of a neurofuzzy adaptive approach for the
regulation of voltage in a distribution system controlling the
power flow is presented in this document. This adaptive
control system allows having a distributed implementation
of controllers such that without direct communication each
controller can assimilate the effects of other controllers aswell
as load variations in the distribution system. In order to have a
frame of reference, a description of the characteristics of the

neurofuzzy adaptive control and the model of a neurofuzzy
controller used are provided below.

1.1. Characteristics of the Neurofuzzy Adaptive Control. From
a biological perspective, adaptability refers to a capacity
present in organisms, which allows them to survive in a par-
ticular environment; once the adaptation occurs, they pros-
per and produce offspring; otherwise, they may disappear
[24]. According to [25] and [26], this principlemay be applied
in both optimization and adaptive intelligent control systems.
Also [25] displays a proposal using bioinspired optimization
algorithms in adaptive control systems. Moreover, in [26]
the author points out that intelligent control represents the
study to achieve automatic control through the emulation of
biologic intelligent systems (biomimetic).

Taking into account [27], adaptive control systems are
appropriate for monitoring and controlling systems with
variable and unknown parameters. Besides, considering the
training techniques associated with optimization methods,
evolutionary algorithms have shown to be a useful tool to
approach an optimum global value. However, they require
several executions and a high number of evaluations of the
objective function. Meanwhile, methods based on gradient
calculations manifest a rapid convergence, although they
are highly susceptible to the initial search point and show
convergence towards local minima [28].

According to [25], techniques based on gradient calcu-
lations offer practical and effective methods to undertake
online optimization in order to achieve all parameter adjust-
ments in the control system. The basic approach consists of
adjusting parameters iteratively to minimize the error. How-
ever, local minima are usually presented since, in general, the
objective function that characterizes the error is not convex.
According to [29], the gradient calculation is widely utilized
in algorithms for neuronal systems, particularly the descend-
ing gradient method which is used for the Backpropagation
algorithm for neuronal networks training [30].

Considering the above, an adequate option for improving
the performance of the adaptive control system employing
gradient-based algorithms consists of a suitable preliminary
configuration for both identification of the plant and control;
meanwhile, a fuzzy system allows the establishment of a
preliminary structure and configuration of the system that
is used for identification of the plant and the optimization
of the control. This also allows dealing with the problems
present when setting neuronal networks as well as parameter
initialization [31]. In general, when using neuronal networks,
the initial configuration is random, while a fuzzy system
permits a previously set configuration based on a preliminary
knowledge of the system. The initial configuration of fuzzy
systems can be designed considering the general system
behavior; then, training data is used to adjust themodel of the
plant and the controller. According to [27], when it comes to
highly complex systems with uncertainty and variability, the
adaptive feature is remarkably important.

The proposal made in this paper uses the compact fuzzy
system shown in Section 3which allows establishing an initial
configuration (Figure 12); in this way, the optimization is
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Figure 1: Control using a neurofuzzy system.

made via the gradient-descend method described in Sec-
tion 4. This fuzzy system and optimization process are used
in the control structure.

1.2. General Model of a Neurofuzzy Controller. Two neuro-
fuzzy systems are implemented in this architecture, one for
the controller and the other for the plant model. In such a
scheme, firstly the plant identification is made and later the
training of the controller. Figure 1 displays the neurofuzzy
systems used.

As shown in Figure 1, the plant model has 𝑢[𝑛] as input
and 𝑦[𝑛] as output signal, resulting in a structure given by
(1).

𝑦 [𝑛 + 1] = 𝑓𝑝 (𝑦 [𝑛] , 𝑦 [𝑛 − 1] , . . . , 𝑦 [𝑛 − 𝑁𝑦] , 𝑢 [𝑛] ,

𝑢 [𝑛 − 1] , . . . , 𝑢 [𝑛 − 𝑁𝑢])
(1)

Meanwhile, for the input controller, the error signal is
𝑒[𝑛], the output to action control is 𝑢[𝑛], resulting in a general
equation for the controller as

𝑢 [𝑛 + 1] = 𝑓𝑐 (𝑢 [𝑛] , 𝑢 [𝑛 − 1] , . . . , 𝑢 [𝑛 − 𝑁𝑢] , 𝑒 [𝑛] , . . . ,

𝑒 [𝑛 − 𝑁𝑒] , )
(2)

where𝑁𝑦 represents the number of output delays,𝑁𝑢 the
input delays, and 𝑁𝑒 the error signal delays. Generally, the
number of delays implemented increases with the order of
the plant. Furthermore, the plant identification (distribution
system) is necessary to perform the controller optimization.

The control model shown in Figure 1 is used for the
distribution system, because the plant identification per-
mits acquiring system information such as power flow,
the interaction between generators and load variation. This
characteristic, combined with an adaptive process, allows the
controller adjustment when changes occur in the distribution
system.The following section describes the adaptive process.

2. Description of the Neurofuzzy Adaptive
System for the Generation System

Regarding the above, to implement an adaptive control
system, the structure of the control system and the train-
ing methods must allow the parameter adjustments in the

y[n]

nTp Tc

Tm

Ta

Tc

Figure 2: Times involved in the adaptation and control process.

required time according to the application. As previously
highlighted, for plant identification and controller optimiza-
tion, evolutionary algorithmsmay be implemented; however,
the number of iterations is higher than a gradient-based
algorithm [28, 32].

Fuzzy systems allow modeling nonlinear processes and
obtaining information from a dataset using training algo-
rithms. Unlike neuronal systems, those based on fuzzy logic
allow an easy use of the knowledge of experts as a direct
initial point for their optimization [33]. Meanwhile, fuzzy
systems based on Boolean relations show a compact scheme,
which facilitates the calculations associatedwith the inference
process, having compact structures for the identification of
the plant as well as the controller [34, 35].

2.1. Adaptive Control Process. For the implementation of the
adaptive control system, the plant is first identified, then
the training of the neurofuzzy controller is performed; this
scheme integrates the model of the plant with the controller.

The time lapses involved during a cycle of the adaptation
process appear in Figure 2, where 𝑇𝑝 corresponds to the time
of the controller operation after a change is present in the
system; 𝑇𝑐 represents the time when the system operates with
the controller adjustment;𝑇𝑚 is the time interval in which the
system presents variation. Finally, 𝑇𝑎 is the time available to
perform the adaptation process to identify the plant and the
optimization of the controller. Moreover, in this specific case
it is necessary to have adequate algorithms for the adaptation
process in this lapse.

A graphical example of the neurofuzzy adaptive control
process is presented using a radial net similar to the one
considered in [36]. Summarizing, the adaptive process is as
follows.

2.1.1. Initial Configuration. Here, based on knowledge of the
system behavior, a general structure of fuzzy controller and
plant model is established. Then, the plant identification
is made, taking the nominal model (open loop) of the
distribution network.Therefore, using the plant fuzzy model,
the controller training is performed. Figures 3 and 4 show
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Figure 3: Plant identification using the grid nominal model.
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Figure 4: Training of the controller with the net nominal model.

a representation of the process; in this way both initial
configurations of the controller and the neurofuzzy model of
the plant are obtained.

2.1.2. Data Acquisition. In this process, input-output data of
the plant are obtained during the functioning of the system.
An example of this step is given in Figure 5.

2.1.3. Plant Adjustment. The acquired data allow a new
training of the neurofuzzy model of the plant in a way that
parameters are adapted to the new data. Figure 6 displays this
process.

2.1.4. Controller Training. With the new adjusted plant
model, the training of the controller (optimization) is per-
formed. Figure 7 shows the process example.

2.1.5. Optimized Controller Operation. During this process,
the new controller (optimized) is activated to correct the
variation in the system. Figure 8 shows an example of this
process.

2.1.6. Repeat Process. The process is repeated from step 2 for
the next time interval in a way that an iterative process for
identification and training of the controller is performed.The
example of this process is displayed in Figure 9.

Regarding the limited amount of data produced during
the charge variation and the system response after the con-
troller optimization, the process of plant identification and
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Figure 5: Operation of the control system when load variation
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controller training is iteratively undertaken. It is noticeable
the importance of establishing an initial search point to
identify the plant and to optimize the controller when charge
variation is present this is achieved with the neurofuzzy
systems determined in the first point of the process.

2.2. General Architecture for the Plant Model. According to
[37], an approach to obtain a model system consists of the
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estimation of a structure working the same function of the
plant. The input and output samples are taken from the plant
to perform the identification using the neurofuzzy system
in a way to perceive these signals as a nonlinear function.
Figure 10 displays the basic scheme to identify the plant.

Considering Figure 10 the model for output 𝑦𝑠[𝑛 + 1] is
𝑦𝑠 [𝑛 + 1] = 𝑓𝑝 (𝑦𝑠 [𝑛] , . . . , 𝑦𝑠 [𝑛 − 𝑁𝑦] , 𝑢 [𝑛] , . . . ,

𝑢 [𝑛 − 𝑁𝑢] ,H𝑝)
(3)

where 𝑁𝑦 is the number of previous output samples, 𝑁𝑢 the
number of previous input samples, andH𝑝 the system vector
parameter to be optimized.

2.3. General Architecture for Controller. Considering 𝑒[𝑛] as
the input of neurofuzzy controller, this can be represented as
shown in Figure 11.

The controller equation with this structure is

𝑢 [𝑛] = 𝑓𝑐 (𝑒 [𝑛] , 𝑒 [𝑛 − 1] , . . . , 𝑒 [𝑛 − 𝑁𝑒] , 𝑢 [𝑛 − 1] , . . . ,

𝑢 [𝑛 − 𝑁𝑢] ,H𝑐)
(4)

where 𝑁𝑒 is the number of previous error samples and H𝑐 is
the vector parameter for neurofuzzy controller.

3. Compact Fuzzy System for
Control and Identification

The proposed compact fuzzy system used for identification
and control is obtainedmodifying a linear system (in discrete
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time) using fuzzy sets to model nonlinear relations. The
neurofuzzy architecture is obtained considering a general
linear discrete-time system whose transfer function is

𝐶 (𝑧) = 𝑈 (𝑧)
𝐸 (𝑧) =

𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋅ ⋅ ⋅ + 𝑏𝑁𝑒𝑧
−𝑁𝑒

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + ⋅ ⋅ ⋅ + 𝑏𝑁𝑢𝑧−𝑁𝑢
(5)

The system equation in discrete time is

𝑢 [𝑛] = 𝑏0𝑒 [𝑛] + 𝑏1𝑒 [𝑛 − 1] + 𝑏2𝑒 [𝑛 − 2] + ⋅ ⋅ ⋅

+ 𝑏𝑗𝑒 [𝑛 − 𝑗] + ⋅ ⋅ ⋅ + 𝑏𝑁𝑒 [𝑛 − 𝑁𝑒] − 𝑎1𝑢 [𝑛 − 1]

− 𝑎2𝑢 [𝑛 − 2] − ⋅ ⋅ ⋅ − 𝑎𝑖𝑢 [𝑛 − 𝑖] − ⋅ ⋅ ⋅

− 𝑎𝑁𝑢𝑢 [𝑛 − 𝑁𝑢]

(6)

where coefficients 𝑎𝑖, 𝑏𝑗 are constant, while for the fuzzy
system these constant values are replaced by nonlinear
relations given by fuzzy membership so that

𝑢 [𝑛] = 𝑓𝑒,0 (𝑒 [𝑛]) + 𝑓𝑒,1 (𝑒 [𝑛 − 1]) + 𝑓𝑒,2 (𝑒 [𝑛 − 2])

+ ⋅ ⋅ ⋅ + 𝑓𝑒,𝑁𝑒 (𝑒 [𝑛 − 𝑁𝑒]) − 𝑓𝑢,1 (𝑢 [𝑛 − 1])

− 𝑓𝑢,2 (𝑢 [𝑛 − 2]) − ⋅ ⋅ ⋅ − 𝑓𝑢,𝑁𝑢 (𝑢 [𝑛 − 𝑁𝑢])
(7)

The fuzzy sets displayed in Figure 12 are considered
to implement the fuzzy system; particularly, Figure 12(a)
presents a sigmoidal fuzzy set for modeling positive values in
the universe of discourse; meanwhile, Figure 12(b) represents
negative values.

Considering the fuzzy sets of Figure 12 and the general
structure given by (7), Figure 13 provides the scheme of the
proposed compact fuzzy system, where 𝑔[𝑛] is the input,𝑓[𝑛]
the output, 𝑝 and 𝑞 the number of output and input samples,
respectively. According to Figures 10 and 11, the controller
is implemented taking 𝑓[𝑛] = 𝑢[𝑛] and 𝑔[𝑛] = 𝑒[𝑛];
meanwhile, the plant model uses the configuration 𝑓[𝑛] =
𝑦[𝑛] and 𝑔[𝑛] = 𝑢[𝑛].

Considering Figure 13 the fuzzy output system can be
calculated as

𝑓 [𝑛] =
𝑝+𝑞

∑
𝑖=1

2

∑
𝑗=1

V𝑖𝑗𝜇𝑖𝑗 (𝑥𝑖) (8)

where 𝑥𝑖 ∈ {𝑓[𝑛 − 1], 𝑓[𝑛 − 2], . . . , 𝑓[𝑛 − 𝑝], 𝑔[𝑛], 𝑔[𝑛 −
1], . . . , 𝑓[𝑛 − 𝑞], }. Each input 𝑥𝑖 has an associated function
𝑓𝑖 given by

𝑓𝑖 =
2

∑
𝑗=1

V𝑖𝑗𝜇𝑖𝑗 (𝑥𝑖) = V𝑖1𝜇𝑖1 (𝑥𝑖) + V𝑖2𝜇𝑖2 (𝑥𝑖) (9)

Meanwhile, the membership function 𝜇𝑖𝑗(𝑥𝑖) is

𝜇𝑖𝑗 (𝑥𝑖) =
1

1 + 𝑒−𝜎𝑖𝑗(𝑥𝑖−𝛾𝑖𝑗) (10)

Thus, the group of parameters corresponds to H ∈
{V𝑖𝑗, 𝛾𝑖𝑗, 𝜎𝑖𝑗}, which are the parameters to be optimized (adap-
tation parameters), being V𝑖𝑗 the virtual actuators, 𝛾𝑖𝑗 the
midpoint value of the sigmoidal function, and 𝜎𝑖𝑗 the curve
steepness. For plant identification H corresponds to H𝑝 and
H𝑐 to controller.

4. Fuzzy Systems Optimization Process

The gradient-descend method is used to implement the
optimization; such process is performed until the desired
value is achieved in the objective function. Consequently,
Figure 14 shows the optimization scheme, by which the
system is first evaluated with the parameters to be optimized.
Then, the objective function is calculated using the system
response. Finally, using gradient calculations, the system
parameters adjustment is developed.

In this process the objective function is

𝐽 = 1
2
𝑁

∑
𝑛=1

[𝑦𝑑 [𝑛] − 𝑦𝑠 [𝑛]]2 (11)

where𝑁 is the number of total data, 𝑦𝑑 is the desired output,
and 𝑦𝑠 is the neurofuzzy system response. For identification
process 𝑦𝑑 corresponds to the plant data, 𝑦𝑠 is the neuro-
fuzzy output, and 󳨀→𝑥 corresponds to the neurofuzzy vector
parameter H𝑝. Meanwhile, for controller optimization 𝑦𝑑
corresponds to the reference 𝑟[𝑛], 𝑦𝑠 is the simulated system
control output, and 󳨀→𝑥 is the controller vector parameterH𝑐.

4.1. Gradient-Descend Method. This algorithm calculates the
gradient of the objective function for a current position in the
search space; then, the gradient of the objective function 𝑓 is

󳨀→𝐺 = 󳨀→∇𝑓(󳨀→𝑥) (12)
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Geometrically, vector 󳨀→𝐺 points to the direction where the
objective function has a bigger descent. If the step is small
enough in the direction of −󳨀→𝐺, then the value of the objective
function in this new point will be smaller. The next position
is calculated through

󳨀→𝑥 𝑘+1 = 󳨀→𝑥 𝑘 − 𝜂󳨀→𝐺 (13)

Here, 𝜂 ∈ R+ is the descent rate. It is also possible to
implement a sequence of values 𝜂𝑘 which diminishes as 𝑘
increases (for convergence). Using a higher learning rate the
algorithm will move farther in a single step, taking the risk of
going above a minimum.

Bold driver is another known variation of the algorithm;
this technique modifies the learning rate while the objective
function is minimized [38]. An implementation of this
algorithm employs the following rule to update 𝜂:

𝜂𝑘+1 =
{
{
{

1.1𝜂𝑘, if ; Δ𝑓 ≤ 0;
0.5𝜂𝑘, if ; Δ𝑓 > 0.

(14)

where Δ𝑓 = 𝑓(󳨀→𝑥 𝑘) − 𝑓(󳨀→𝑥 𝑘−1) represents the change
in the value of the objective function between steps 𝑘 − 1
and 𝑘. If Δ𝑓 > 0, then 󳨀→𝑥 𝑘 = 󳨀→𝑥 𝑘−1 and it is reduced to
half the learning rate, ensuring the algorithm avoids moving
in an ascendant way [38]. In addition, the learning rate is
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Figure 15: Model for the network considered.

continually increasing as the objective function decreases.
Generally, the methods that use gradients as stopping criteria
take a tolerance value 𝜖 ∈ R+ so that

󵄨󵄨󵄨󵄨Δ𝑓
󵄨󵄨󵄨󵄨 ≤ 𝜖 (15)

5. Energy Distribution System

5.1. Distribution Network Operator. Power distribution net-
works are a key constituent in the infrastructure as they
permit carrying electricity to business and homes, offering
a continuous service which is an essential function of the
Distribution Network Operators (DNOs). The incorporation
of Distributed Generation (DG) in the distribution networks
carries out important effects in the distribution systems
operation. The current distribution networks are designed to
be passive, which leaves the transport of electricity with min-
imum surveillance, supervision, and control; likewise, these
networks have been designed without the capacity to manage
generators with lower voltage. Although DG introduces new
challenges to DNOs, it also brings opportunities as economic
benefits derived from more active networks [39].

5.2. Power Flow Calculation. In electrical engineering, the
power flow study is an important tool for numeric analysis
in energy systems [40]. Such studies are implemented to
ensure that energy transfer from generators to consumers
is stable, reliable, and economic. Moreover, flow power
calculations allow determining power and tension values in
a system of energy according to the capacity of regulation
of the generators, condensers, and transformers [41]. The
efficiency of the algorithms to establish the flow of power is
fundamental whenever numerous estimations of this flow are
required. In this regard, the Backward/Forward Sweep BFS is
the most widely used technique for flow power calculation in
radial topology networks.

5.3. Energy Distribution Model. Figure 15 shows the radial
network model considered for the distribution system which
also includes the nodes identification.

The system,which is taken from [42], consists of 33 nodes.
The impedance values for the lines of the distribution system
are shown in Table 1. Meanwhile, power charges are shown in
Table 2. In the case of one generator, this is located in node 18
and the variable charge in node 17. For three generators these
are placed in the nodes 18, 22, and 33. Additionally, variable

loads are held in the nodes 17, 21, and 32. Finally, the node of
reference corresponds to number 1.

6. Methodology for the Analysis of
Statistical Results

Given the stochastic nature of the system, variability of
results may appear when a particular configuration of the
control system is implemented. A test is performed to observe
if a relevant difference in the results obtained is present
(regarding the aspects to be compared); then, a statistical
hypothesis is performed as follows:

(i) 𝐻0Null hypothesis: the results obtained by the control
systems exhibit equal average values.

(ii) 𝐻1 Alternative hypothesis: the results obtained by the
control systems show no equal average values.

When formulating this hypothesis, there exists the possi-
bility of making mistakes as shown in Table 3 in which error
type I occurswhen the null hypothesis is rejected even though
it is true; meanwhile, for type II error the null hypothesis is
accepted even though it is false [43].

Usually, the hypothesis test is performed considering
a level of significance referred to as 𝑝-value which is the
probability of making a type I error. Under this orientation,
the null hypothesis is rejected if the statistical 𝑝-value test is
equal to or less than an established significance level, which
is in general 5% [43].

6.1. Statistical Tests. The statistical test can be classified as
parametric or nonparametric in terms of their application.
Parametric tests are robust but based on normality and
data equality variance. On the other hand, suppositions
are not required in nonparametric tests but information is
missed in their process as the comparison is made with the
representation of data on an ordinal scale [43].

Figure 16 shows the suggested methodology for the
hypothesis test as follows:

(i) Kolmogorov-Smirnov: this test is applied to deter-
mine the data normality. Besides, other alternative
tests are the Shapiro-Wilk and the Anderson-Darling.

(ii) Levene: through this test the variance equality
(homoscedasticity) is established; another alternative
is the Bartlett test.
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Table 1: Network impedances.

Line Input bus Output bus Resistance Reactance
1 1 2 0.0922 0.0470
2 2 3 0.4930 0.2511
3 3 4 0.3660 0.1864
4 4 5 0.3811 0.1941
5 5 6 0.8190 0.7070
6 6 7 0.1872 0.6188
7 7 8 0.7114 0.2351
8 8 9 1.0300 0.7400
9 9 10 1.0440 0.7400
10 10 11 0.1966 0.0650
11 11 12 0.3744 0.1238
12 12 13 1.4680 1.1550
13 13 14 0.5416 0.7129
14 14 15 0.5910 0.5260
15 15 16 0.7463 0.5450
16 16 17 1.2890 1.7210
17 17 18 0.7320 0.5740
18 2 19 0.1640 0.1565
19 19 20 1.5042 1.3554
20 20 21 0.4095 0.4784
21 21 22 0.7089 0.9373
22 3 23 0.4512 0.3083
23 23 24 0.8980 0.7091
24 24 25 0.8960 0.7011
25 6 26 0.2030 0.1034
26 26 27 0.2842 0.1447
27 27 28 1.0590 0.9337
28 28 29 0.8042 0.7006
29 29 30 0.5075 0.2585
30 30 31 0.9744 0.9630
31 31 32 0.3105 0.3619
32 32 33 0.3410 0.5302

(iii) Welch: this test is used to compare several distribu-
tions. It is an extension of the T-student; this test
requires data normality.

(iv) ANOVA: this test compares several distributions and
requires normality and homoscedasticity.

(v) Kruskal-Wallis: it is a nonparametric test to compare
several distributions; this test requires no previous
suppositions.

Multiple tests of comparison are performed when having
significant differences in experimental groups to determine
such differences [44].

As in Figure 16, the same methodology is applied when
assumptions of normality and homoscedasticity are fulfilled;
here,Duncan andNewman-Keuls, Bonferroni, Scheff orHSD
of Tukey contrasts can be used [43, 44]. Meanwhile, when
these assumptions are not fulfilled, nonparametric contrasts
of Nemenyi, Holm, and Bonferroni-Dunn are used [45–47].

The outcome of comparing the groups corresponds to
“comparison intervals” which allow determining the differ-
ence between groups. A way to show such a result consists
of graphically displaying the average ranking in each group
and an equivalent interval; thus, with this representation, two
groups are considered as different if their intervals are not
overlapped [48].

7. Experimental Results

These results are directed to show the ability of adaptation of
the neurofuzzy system proposed; whereby, the comparison is
made with the fuzzy controller without adaptation.

According to [26], there are different alternatives to
control, from the formal and traditional ones to those
based on flexible computation and bioinspired systems. In
addition, [27] this approach consists of showing the ability
of adaptation present in these systems.
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Figure 16: Methodology to determine the hypothesis test.

Table 2: Grid power charges.

Bus Real Reactive
1 0 0
2 100 60
3 90 40
4 120 80
5 60 30
6 60 20
7 200 100
8 200 100
9 60 20
10 60 20
11 45 30
12 60 35
13 60 35
14 120 80
15 60 10
16 60 20
17 60 20
18 90 40
19 90 40
20 90 40
21 90 40
22 90 40
23 90 50
24 420 200
25 420 200
26 60 25
27 60 25
28 60 20
29 120 70
30 200 600
31 150 70
32 210 100
33 60 40

The performance value used for comparison is the mean
square error (MSE) which is also used as objective function
for the controller optimization; the MSE value can be deter-
mined as

Table 3: Type I and II errors.

Decision \ Real condition 𝐻0 true 𝐻0 false
Reject𝐻0 Type I error Right
Accept𝐻0 Right Type II error

𝑀𝑆𝐸 = 1
𝑁
𝑁

∑
𝑛=1

(𝑟 [𝑛] − 𝑦 [𝑛])2 (16)

7.1. Experiments Configuration. Three aspects are considered
to carry out the experimental design to observe the charac-
teristics of the adaptive control system. A first comparison
consists of regarding the controller performance with and
without the adaptive process. Secondly, the configuration
used for the control system considers the number of input
and output delays (Figures 10 and 11). Considering the data of
charge variation for each hour and using a scale of minutes,
then, 𝑇𝑚 = 60𝑚𝑖𝑛 and 𝑇𝑝 = 𝑇𝑐 = 20𝑚𝑖𝑛 are taken.
On the other hand, the controller and the model of the
plant have different configurations depending on the inputs
and feedback. Table 4 shows the experimental configurations
considered for both adaptive and nonadaptive cases.

Considering the stochastic characteristics of the system,
each configuration must be executed several times to be
statistically valid; thus, the analysis described in Section 6 can
be performed [43].

A 10 times simulation of 10 hours is performed to
determine the experimental data for each configuration;
thereby, each simulation obtained consists of 600 minutes
and 10 load changes. Likewise, data of charge are randomly
generated with data distributed (uniformly) in values from 0
to 1000𝐾𝑊.

7.2. Results Using One Generator. In this case, the generator
is located at node 18 and the charge (variable) at node
17. After carrying out the respective executions for each
configuration, MSE is calculated. The results summary is
shown in Table 5, including minimum and maximum values,
standard deviation STD, and average value.

The respective tests are performed using the acquired
data from the experiments. Table 6 shows both the results
of the normality test in each experimental group and the
accomplishment of the normality requirement.
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Table 4: Experimental configurations.

Inputs Feedbacks Nonadaptive Adaptive
1 2 CS1AD0 CS1AD1
2 2 CS2AD0 CS1AD1
1 3 CS3AD0 CS1AD1
2 3 CS4AD0 CS1AD1

Table 5: Summary of statistical values in the obtained results.

Configuration Minimum Maximum STD Mean
CS1AD0 0.0007138 0.0013849 0.0001969 0.00095738
CS2AD0 0.0007061 0.0013707 0.00019503 0.00094726
CS3AD0 0.00071098 0.0013793 0.00019609 0.00095358
CS4AD0 0.00070439 0.0013672 0.00019449 0.00094491
CS1AD1 7.3672 × 10−5 0.00014293 2.0351 × 10−5 9.8719 × 10−5

CS2AD1 7.3218 × 10−5 0.00014205 2.024 × 10−5 9.8079 × 10−5

CS3AD1 7.3305 × 10−5 0.00014222 2.0249 × 10−5 9.825 × 10−5

CS4AD1 7.2702 × 10−5 0.00014104 2.0086 × 10−5 9.7411 × 10−5

Table 6: Summary of normality test.

Configuration 𝑝-value
CS1AD0 0.6230
CS2AD0 0.6223
CS3AD0 0.6231
CS4AD0 0.6225
CS1AD1 0.6258
CS2AD1 0.6241
CS3AD1 0.6262
CS4AD1 0.6247

The homoscedasticity test produces a 𝑝-value of 8.3068 ×
10−6 which indicates that the equality variance requirement is
not accomplished. Considering the results of homoscedastic-
ity and normality test, a Kruskal-Wallis test is undertaken to
determine if there exists a representative difference between
the experimental groups. Then a 𝑝-value of 1.9486 × 10−10 is
obtained, which indicates the presence of differences between
groups. In this way, Figure 17 shows the nonparametric test of
Bonferroni performed for multiple comparisons; the level of
significance considered is 0.05.

If the intervals of two groups in Figure 17 are overlapped,
then there is no statistical difference between them. These
results show a better controller response when the process of
adaptation is used.

7.2.1. Simulation Results. The configuration CS2AD1 is taken
to qualitatively show the behavior of the control system.
Figure 18 graphically displays the system response with the
conventional controller and the adaptive system also shows
that the controller adjusts the value of the systemoutput to the
reference value after a charge variation. Figure 18(a) shows the
voltage regulation and Figure 18(b) displays the control signal
corresponding to the amount of power to be delivered.

0 20 40 60 80

CS4AD1

CS3AD1

CS2AD1

CS1AD1

CS4AD0

CS3AD0

CS2AD0

CS1AD0

Ranking MSE

Figure 17: Multiple comparisons results.

Figure 19 shows the detailed adjustments made by the
adaptive system. In the simulation, it is noticeable the time
when the progressive adjustments of the controller are made
to correct the change present when the charge has variance.

7.3. Results for Three Generators. A key aspect in the dis-
tributed generation systems is the capacity to plug and unplug
several generators in the distribution network showing no
major alterations among voltage values in the nodes. In order
to observe the performance in the neuroadaptive control,
different generators are included in the distribution network
as shown in Figure 15. Consequently, three generators located
in the following nodes are considered:

(i) Generator 1: Node 18.
(ii) Generator 2: Node 25.
(iii) Generator 3: Node 33.
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Figure 18: Control system response with and without adaptation process.
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Figure 19: Detailed system response of the adaptive control system.

Meanwhile, there are nodes considered for charge varia-
tion:

(i) Variable charge 1: Node 17.
(ii) Variable charge 2: Node 24.
(iii) Variable charge 3: Node 32.
Data for charge variation are evenly generated at random

with values between 0𝐾𝑊 and 1000𝐾𝑊. The experimental
groups are taken in the same way as in the implementation
for one generator. Considering that each generator has an
associated value of mean square error (MSE), then the
performance index used for the statistical analysis is the sum
of MSE for three generators:

𝑀𝑆𝐸𝑇 = 𝑀𝑆𝐸𝐺1 +𝑀𝑆𝐸𝐺2 +𝑀𝑆𝐸𝐺3 (17)

Table 7 shows the minimum and maximum values, stan-
dard deviation STD, and average results for the 10 executions
of each configuration.

With the data obtained the statistical tests can be made.
The normality test results are shown in Table 8 in which the
normality requirement is accomplished.

The 𝑝-value obtained for the homoscedasticity test is
8.3068 × 10−6; this indicates that equality of variance is not
met. Regarding the results in the normality and homoscedas-
ticity tests, the Kruskal-Wallis test is performed; as a result,
the outcome value is 1.9486×10−10.This shows the difference
between experimental groups. The Bonferroni nonparamet-
ric test ofmultiple comparisons is then performed to establish
differences between groups, using a significance level of
0.05. The results are displayed in Figure 20, where the
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Table 7: Summary of statistical values of the results.

Configuration Minimum Maximum STD Mean
CS1AD0 0.0015202 0.0030316 0.00051718 0.0022923
CS2AD0 0.0015496 0.0030854 0.00052539 0.0023342
CS3AD0 0.001546 0.0030808 0.00052423 0.00233
CS4AD0 0.0015356 0.0030595 0.00052081 0.0023144
CS1AD1 8.3829 × 10−5 0.00016181 2.6401 × 10−5 0.00012498
CS2AD1 8.5712 × 10−5 0.00016511 2.713 × 10−5 0.00012664
CS3AD1 8.4852 × 10−5 0.00016398 2.6979 × 10−5 0.00012559
CS4AD1 8.4648 × 10−5 0.00016333 2.687 × 10−5 0.00012521

Table 8: Summary of normality test.

Configuration 𝑝-value
CS1AD0 0.6230
CS2AD0 0.6223
CS3AD0 0.6231
CS4AD0 0.6225
CS1AD1 0.6258
CS2AD1 0.6241
CS3AD1 0.6262
CS4AD1 0.6247

statistical results show that the adaptive system has a better
performance. No overlapping is present for the comparison
intervals of adaptive and nonadaptive configurations. The
configurations for the adaptive cases obtain lower values of
MSE.

7.3.1. Simulation Results. The CS2AD1 configuration is used
to show the control system simulation. Figure 21 shows the
system response for three generators using adaptive control.
Figures 21(a) and 21(b) show the voltage regulation and the
control signals, respectively.

Meanwhile, Figure 22 presents the simulation when
nonadaptive process is performed. It is worth noting that in
Figure 21 the adaptive controller makes adjustments of the
output system once the charge variation has occurred.

Figure 23 shows the adjustments made for the adaptive
system when charge variation is present. It highlights that
several adjustments are required to adjust the output. Fig-
ure 23(a) shows the voltage regulation detail and Figure 23(b)
displays the respective control signals detail.

8. Discussion

This article is focused on showing the capabilities of the
adaptive control system proposed to manage the flow of
energy in a distribution system. It is seen that the proposed
system is a good alternative to manage the power flow in the
distribution network. However, there are several aspects of
the distribution system which should be studied in subse-
quent works.

Taking into account the above, in this work the profile of
the voltages throughout the network is not considered. Only
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Figure 20: Results of multiple comparisons.

the voltages on the points are consideredwhere the generators
are located. This type of application might be studied in
greater detail in future developments.

The charge and the generation power are considered only
with the real component; therefore, for future works it is
possible to include a complex power for load and generators.

Additionally, the generators connection in the grid is
considered where the greatest voltage drop occurs. However,
a further study can contemplate different locations of these,
including their dynamic connection and disconnection.

9. Conclusions

The scheme of the neurofuzzy system was proposed consid-
ering the general structure of a discrete-time system. It is
also noteworthy that the considered plant presents parameter
variations as well as generators interaction.

The proposed neurofuzzy scheme allows the adjustment
of the controller after a charge variation. The system works
satisfactorily in three generators, which is important in
systems of distributed generation.

The statistical analysis reflects a better performance when
the adaptation process is made; it is also observed that there
are no differences in the configuration sets considered (input-
output delays) in the neurofuzzy system. For the simulation



14 Complexity

0 100 200 300 400 500 600
0.98

1

1.02

1.04

1.06

1.08

Time [minutes]

Vo
lta

ge
 [n

or
m

al
iz

ed
]

Generator 1
Generator 2
Generator 3

(a) Output response

0 100 200 300 400 500 600
0

1

2

3

4

5

Po
w

er
 [n

or
m

al
iz

ed
]

Time [minutes]

Generator 1
Generator 2
Generator 3

(b) Control signal

Figure 21: The response of the control system with adaptation process.
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Figure 22: The response of the control system without the adaptation process.

case, when three generators are used, the several adjustments
made after a load variation are worth highlighting.

The plant identification is highly relevant for the proper
functioning of the adaptive control system; therefore, the
progressive adjustment is made to identify the plant and
controller optimization.

The strategy proposed allows handling the low amount of
data available to identify the plant when the variation of the

charge is present. For that reason, it is also important to make
iterative controller adjustments.

Data Availability

The data of this study are included within the supplementary
information files.
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Figure 23: Detail of the adaptive control system response.
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In order to make the pump turbine governing system (PTGS) adaptable to the change of working conditions and suppress the
frequency oscillation caused by the “S” characteristic area running at middle or low working water heads, the traditional single-
objective optimization for fractional-order PID (FOPID) controller under single working conditions is extended to amultiobjective
framework in this study. To establish themultiobjective FOPID controller optimization (MO-FOPID) problemundermultiworking
conditions, the integral of the time multiplied absolute error (ITAE) index of PTGS running at low and high working water
heads is adopted as objective functions. An improved nondominated sorting genetic algorithm III based on Latin hypercube
sampling and chaos theory (LCNSGA-III) is proposed to solve the optimization problem. The Latin hypercube sampling is
adopted to generate well-distributed initial population and take full of the feasible domain while the chaos theory is introduced
to enhance the global search and local exploration ability of the NSGA-III algorithm. The experimental results on eight test
functions and a real-world PTGS have shown that the proposed multiobjective framework can improve the Pumped storage units’
adaptability to changeable working conditions and the proposed LCNSGA-III algorithm is able to solve the MO-FOPID problem
effectively.

1. Introduction

With the continuous expansion of the power system scale,
the power grid’s requirements for power quality, safety, and
intelligence have been constantly improving. Pumped storage
units (PSUs) have played an important role in maintaining
the balance of power supply and demand because of their
fast start-up and shutdown speed, flexible working condition
conversion, excellent peak-load regulation, and frequency
regulation ability [1–3]. Pump turbine governing system is
the core control system of the pumped storage power station
which is responsible for stabilizing the unit frequency and
regulating the unit power [4, 5]. Due to the huge flow inertia

of the long-distance water pipeline and the existence of the
unstable “S” characteristic area, the optimal control of PTGS
is highly complex [6].Therefore, it is of great theoretical value
and practical significance to explore optimization methods
for PTGS and research new control laws. The control quality
of PSU and the dynamic response performance of PTGS can
then be improved.

The classical Proportional-Integral-Derivative (PID) con-
troller is widely used in the optimal control of PTGS because
of its simple and reliable structure and easy adjustment of
control parameters [7–10]. However, due to the strong non-
linear characteristics of different parts of PSUand the change-
able working conditions, the traditional PID controller often
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fails to realize the global optimization of PTGS. The con-
trol problems of phase modulation instability and no-load
frequency fluctuation are becoming increasingly prominent.
As an extension of the classical PID controller, the fractional-
order PID controller (FOPID) has attracted the attention of
many scholars for its better adaptability and flexibility and
greater potential to obtain better control performance [11–
15]. Li et al. [16] proposed an improved gravitational search
algorithmusing theCauchy andGaussianmutations to adjust
the parameters of the FOPID controller automatically. A
number of tests have shown that the FOPID controller can
improve the dynamic characteristics and stability of regula-
tion frequency of PSUs. In Xu et al. [17], a robust nonfragile
FOPID controller was proposed for PTGS. The parameters
of the FOPID controller were selected using the bacterial
foraging algorithm and multiscenario analysis functions.
The FOPID controller turned out to have obtained higher
robustness and stability compared with the traditional PID
controller. And it can fully track the nonlinear characteristics
of PTGS in the “S” area. Xu et al. [18] proposed an adaptively
fast fuzzy fractional-order PID (AFFFOPID) control method
for PSUs by combining a fuzzy fractional-order PD controller
with a fuzzy fractional-order PI controller. Experiments of
PTGS at variouswater heads under unload running condition
have shown that the controller can effectively improve the
performance and control quality of PSUs during the transient
process.

Apart from the advantages of the FOPID compared with
the PID controller, one of the most important and challenge
issues of the employment of FOPID controller in PTGS is the
optimal optimization of its parameters. With the continuous
development of optimization algorithms and control theory
in recent years, scholars have combined the FOPID controller
with intelligent algorithms to achieve the optimal tuning
of control parameters and improvement of control laws for
PTGS [19]. The related works on optimal optimization for
PID controller or hydroturbine governing system (HTGS)
can also provide meaningful reference for the research of
FOPID controller for PTGS. Fang et al. [20] developed
an improved particle swarm optimization (PSO) algorithm
for optimal tuning of PID control parameters for water
turbine governor. Simulation results have demonstrated the
stable convergence characteristic and good computational
ability of the developed optimization stagey. Kou et al. [21]
proposed a novel BFO-PSO algorithm by introducing PSO
into the framework of the bacterial foraging optimization
(BFO) algorithm to improve the control performance of the
PID controller for HTGS. The advantages of the proposed
algorithm to the BFO and PSO algorithms have been demon-
strated through experiments at real working conditions.
Wang et al. [22] proposed a three-stage start-up strategy for
PSUs by opening guide vanes to a large opening degree firstly
and then reducing the opening degree and finally switching
to the PID controller. The switching time and PID control
parameters are optimized synchronously using an integrated
optimization scheme based on artificial sheep algorithm
(ASA). Simulation results under various water heads have
shown that the control strategy can shorten the start-up time
and reduce the speed oscillation.

Some researchers have paid attention to multiobjective
designing to consider multiobjectives that reflect the specific
characteristics of the control system [23, 24]. Zamani et al.
[25] developed a multiobjective cuckoo search approach to
optimize the parameters of a FOPID controller. Sánchez et
al. [26] proposed a multiobjective optimization strategy for
identifying the optimal solution for a robust FOPID con-
troller. Zhao et al. [27] proposed a parameter tuning scheme
based on two lbests multiobjective PSO (2LB-MOPSO) to
minimize the integral squared error and balanced robust
performance criteria of a robust PID controller simultane-
ously. Chen et al. [28, 29] put forward a parameter tuning
scheme to optimize the integral of the squared error (ISE)
and the integral of the time multiplied squared error (ITSE)
performance indices of PTGS simultaneously. The adaptive
grid PSO (AGPSO) and the chaotic nondominated sorting
genetic algorithm II (NSGA II) were adopted to realize
the optimal control of the PID and the FOPID controllers,
respectively. The proposed multiobjective PID and FOPID
controller turned out to have achieved better control effects
than the compared methods.

It is noticed that most of the research works on optimal
control of the PID or FOPID controllers are designed under a
singleworking condition.The traditionalmultiobjective opti-
mization control usually adopts a set of objective functions
to obtain the Pareto optimal solutions for a certain condition
and then select the compromise optimal solution. The tra-
ditional multiobjective optimization control is essentially an
optimization scheme for singleworking conditions.However,
the characteristics of the controlled object of PTGS are not
only related to the nonlinear characteristics of the pump
turbine, the penstock system, the generator, and the other
parts of PTGS but also vary with the changes of the working
conditions. The optimal control of a single working condition
is often at the expense of the deterioration of some other
working conditions. The optimal control of PTGS under
multiworking conditions should be a process of overall trade-
off and cannot be limited to the pursuit of the optimal control
under a certain working condition. In order to enhance the
adaptability of PTGS to the change of working conditions,
a multiobjective optimization framework which takes into
account the integral of the time multiplied absolute error
(ITAE) index of PTGS running at multiworking conditions
is constructed. The nondominated sorting genetic algorithm
III based on the Latin hypercube sampling and chaos theory
(LCNSGA-III) is proposed to optimize the control parame-
ters of the FOPID controller for PTGS under multiworking
conditions.

The rest of this paper is arranged as follows: Section 2
gives a brief introduction to the multiobjective optimiza-
tion problem; Section 3 builds the mathematical model of
MO-FOPID under multiworking conditions; Section 4 pro-
poses the LCNSGA-III algorithm based on Latin hyper-
cube sampling and the chaos theory to solve the MO-
FOPID problem; Section 5 employs eight benchmark func-
tions and a real-world PTGS to verify the effectiveness of
the LCNSGA-III algorithm and the developed multiobjec-
tive optimization framework; Section 6 gives the conclu-
sions.
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2. Multiobjective Optimization
Problem (MOOP)

The purpose of the single-objective (SO) optimization prob-
lem is to obtain the optimal solution by searching for the
minimum or maximum value of one single objective func-
tion. However, optimization problems in scientific research
or engineering application usually contain not only one
objective. These objectives are sometimes in concordance
with each other, but sometimes there are conflicts between
them. The objective of the multiobjective optimization prob-
lem (MOOP) is to search for the optimal solutions of all
objectives, which is also known as the Pareto optimal solution
[30]. A typical MOOP with D decision variables, N objective
functions, andm+k constraints can be described as follows:

min 𝐹 (𝑋) = (min𝑓1 (𝑥) ,min𝑓2 (𝑥) , . . . ,min𝑓𝑖 (𝑥) ,
. . . ,min𝑓𝑁 (𝑥))

𝑠𝑡. {{{
𝑔𝑖 (𝑋) ≥ 0, 𝑖 = 1, 2, . . . , 𝑚
ℎ𝑗 (𝑋) = 0, 𝑖 = 1, 2, . . . , 𝑘

𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑑, . . . , 𝑥𝐷, ]
𝑥𝑑 min ≤ 𝑥𝑑 ≤ 𝑥𝑑 max 𝑑 = 1, 2, . . . , 𝐷

(1)

where 𝑋 is the decision variable in 𝐷 dimensions; 𝐹(𝑋) is
the objective function in 𝑁 dimensions; 𝑔𝑖(𝑋) represents
the 𝑖th inequality equation; ℎ𝑗(𝑋) represents the 𝑖th equality
equation; 𝑥𝑑 min and 𝑥𝑑 min represent the upper and lower
bounds of the 𝑑th decision variable, respectively.

To define the Pareto optimal solution, four definitions are
given as follows.

Pareto Dominance Relationship. A vector 𝑋∗ = [𝑥∗1 , 𝑥∗2 , . . . ,𝑥∗𝑑 , . . . , 𝑥∗𝐷, ] is said to dominate𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑑, . . . , 𝑥𝐷, ]
(known as𝑋∗ ≺ 𝑋) if and only if the following two conditions
are satisfied:∀𝑛, 𝑓𝑛 (𝑋∗) ≤ 𝑓𝑛 (𝑋) , 𝑛 = 1, 2, . . . ,N,

∃𝑛0, 𝑓𝑛0 (𝑋∗) < 𝑓𝑛0 (𝑋) , 1 ≤ 𝑛0 ≤ N. (2)

ParetoOptimal Solution. Pareto optimal solution is a solution
that cannot be dominated by any solution in the feasible
region 𝑆 which means that if and only if ¬∃𝑋 ∈ 𝑆 : 𝑋 ≺ 𝑋∗,𝑋∗ is the Pareto optimal solution.

Pareto Optimal Set. For a given MOOP, the Pareto optimal
set 𝑃∗ can be defined as

𝑃∗ = {𝑋∗ ∈ 𝑆 | ¬∃𝑋 ∈ 𝑆 : 𝑋 ≺ 𝑋∗} (3)

Pareto Optimal Front. For a given MOOP, the Pareto optimal
front 𝑃𝑓∗ can be described as

𝑃𝑓∗ = {𝑢 = 𝐹 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝑁 (𝑥))𝑇 | 𝑋
∈ 𝑃∗} (4)

3. Problem Formulation of the MO-FOPID
Problem under Multiworking Conditions

To formulate the multiobjective FOPID controller optimiza-
tion problem (MO-FOPID) under multiworking conditions,
the fractional calculus theory and fractional-order PID
(FOPID) controller are first introduced.

3.1. Introduction to Fractional Calculus Theory and FOPID
Controller. Fractional calculus theory is an extension of the
traditional calculus theory to the fractional systems. The
fractional calculus theory can describe complex systems in an
easy way with a clear physical meaning. Among the various
fractional calculus operators, the Laplacian transformation
defined by Caputo is the most usual mathematical expression
for calculating the fractional-order time derivatives and has
been widely used in fractional-order PID controller [28,
31]. Given a continuous derivable function 𝑓(𝑡), Caputo’s
fractional derivative of order 𝑎 can be defined as

0𝐷𝛼
𝑡 𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫𝑡

0

𝑓𝑛 (𝑡)(𝑡 − 𝜏)𝛼+1−𝑛𝑑𝜏 (5)

where 0𝐷𝛼
𝑡 denotes the fractional calculus operator and Γ(⋅)

denotes the Euler Gamma function.
Fractional calculus equations usually need to be trans-

formed into algebraic equations. The Laplacian transforma-
tion of (5) under zero initial condition can be expressed as

∫∞

0
𝑒−𝑠𝑡𝐷𝛼𝑓 (𝑡) 𝑑𝑡 = 𝑠𝛼𝐹 (𝑠) (6)

In recent years, with the further research and devel-
opment of fractional calculus theory, the combination of
fractional calculus theory and modern control theory is
becoming more and more popular. Controllers based on
fractional calculus have been implemented and applied in
many research fields [12, 25]. The Oustaloup recursive filter
and its improved version have been widely adopted to realize
the discretization approximation of the fractional calculus
operator. The expression of the Oustaloup filter is as follows:

𝑠𝛼 ≈ 𝐾 𝑁∏
𝑘=−𝑁

((𝑠 + 𝜔󸀠
𝑘)(𝑠 + 𝜔𝑘) ) (7)

where 𝜔𝑘 = 𝜔𝑏(𝜔ℎ/𝜔𝑏)(𝑘+𝑁+(1+𝛼)/2)/(2𝑁+1); 𝜔󸀠
𝑘 = 𝜔𝑏(𝜔ℎ/𝜔𝑏)(𝑘+𝑁+(1−𝛼)/2)/(2𝑁+1); 𝐾 = 𝜔𝛼

ℎ ; 𝛼 denotes the order of the
fractional calculus; (2N+1) is the order of filter; (𝜔𝑏, 𝜔ℎ)
denotes the expected fitting range; 𝑁, 𝜔𝑏, and 𝜔ℎ are
determined according to the accuracy requirement of the
numerical approximation.

The FOPID controller proposed by Professor Podlubny
[32] is an extension of the classical PID controller. Compared
with the classical PID controller, the range of control rate of
the FOPID controller is much wider.The transfer function of
the FOPID controller is as follows:

𝑈 (s)𝐸 (s) = 𝐾𝑝 + 𝐾𝑖𝑠𝜆 + 𝐾𝑑𝑠𝑢 (8)
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Figure 1: The structure of the FOPID controller for pumped turbine governing system.

where 𝐸 denotes the control deviation; 𝑈 denotes the con-
troller output; 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 represent the gain parameter,
the integral order, and the differential order, respectively.
The traditional PID controller is a special case of the
FOPID controller when 𝜆 = 1 and 𝑢 = 1. Because the
integral and differential orders are variational, the FOPID
controller has better adaptability and flexibility and bigger
potential to obtain better control performance [33]. The
structure of the FOPID controller for PTGS is shown in
Figure 1. In Figure 1, 𝑥𝑐 denotes the given unit speed; 𝑥
denotes the unit speed; 𝑏𝑝 denotes the permanent slip
coefficient; 𝑇𝑑 denotes the differential time constant; 𝐾𝑝, 𝐾𝑖,
and 𝐾𝑑 represent the proportional, integral, and differential
gain coefficients of the controller, respectively; 𝜆 and 𝜇
denote the integral and differential orders of the controller,
respectively.

3.2. Description of the PTGS System. PTGS is a complex
nonlinear time-varying system of hydraulic, mechanical,
and electrical connections. PTGS mainly contains five parts,
namely, a controller, an electrohydraulic servomechanism
system, a pump turbine, a generator, and a penstock system,
where the controller and the servomechanism system consist
of the speed governor of PTGS [4]. A PID controller has
always been employed as part of the speed governor of PTGS.
In this study, the FOPID controller is designed for PTGS.The
FOPID controller has been described in Section 3.1. In what
follows, transfer functions of the other four connectors are
illuminated.

(1) Servomechanism System. Servomechanism is the actuator
of the governor of PSU. It is made up of an auxiliary
servomotor and a main servomotor of which the transfer
functions are as follows:

𝐺 (𝑠) = 𝐾V1 + 𝑇𝑦1𝑠
𝐺V (𝑠) = 1𝑇𝑦𝑠

(9)

where 𝑇𝑦1 and 𝐾V are the time constant and scale factor of
the auxiliary servomotor, respectively, and 𝑇𝑦 represents the
main servomotor open-loop time constant.

(2) Pump Turbine. To reflect the complex nonlinear char-
acteristics among water, machine, and electricity during the
operation process accurately, the pump turbine model based
on characteristic curves is constructed. The model of pump
turbine is as follows:

𝑀11 = 𝑓𝑀 (𝑎,𝑁11)
𝑄11 = 𝑓𝑄 (𝑎,𝑁11) (10)

where𝑀11, 𝑄11, and𝑁11 represent the unit torque, unit flow,
and unit speed, respectively; 𝑎 is the guide vane opening;𝑓𝑀 and 𝑓𝑄 denote the functions of the moment and flow
characteristic curves, respectively. Because of the strong
nonlinear characteristics of the flow and moment charac-
teristic curves, the improved Suter transform is introduced
to transfer the flow and moment characteristic curves into
WH and WM characteristic curves, respectively [4]. The
WH and WM characteristic curves of a pump turbine in a
pumped storage power station in China using the improved
Suter transform have been illustrated in Zhou et al. [4]. In
this study, the WH and WM characteristic curves in two
dimensions in [4] have been changed to three dimensions.
The three-dimensional WH and WM characteristic curves
are illustrated as in Figure 2.

(3) Generator. The common first-order model [6, 16, 18] is
adopted in this study to balance the pump turbine torque and
the generator torque. The transfer function of the first-order
model is as follows:

𝐺𝑔 (𝑠) = 1𝑇𝑎𝑠 + 𝑒𝑛 (11)

where 𝑇𝑎 and 𝑒𝑛 are the inertia time constant and self-
adjusting factor of the generator, respectively.

(4) Penstock System. Because of the fluid and tube wall
elastic effects on the penstock, the second-order elastic water
hammer model is exploited in this study by applying the
second-order Taylor expansion on the nonlinear hyperbolic
tangent function. The transfer function of the second-order
elastic water hammer model is as follows:

𝐺ℎ (𝑠) = 𝐻 (𝑠)𝑄 (𝑠) = −𝑇𝑤𝑠1 + 0.5𝑓𝑇𝑟𝑠 + 0.125𝑇𝑟2𝑠2 (12)
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Figure 2: Three-dimensional surface of the characteristic curves of pump turbine.

where 𝑇𝑤 denotes water flow inertia time constant, 𝑓 repre-
sents the water head loss coefficient, and 𝑇𝑟 is the reflection
time of water hammer wave.

3.3. Multiobjective Optimization of FOPID Controller for
PTGS. For single-optimization of the FOPID controller
under a certain working condition, the ITAE [34, 35] is
usually employed as the objective function to obtain satisfac-
tory transient dynamic performance of the system.The ITAE
index is defined as follows:

ITAE = ∫𝑇

0
𝑡 |𝑒 (𝑡)| 𝑑𝑡 (13)

where 𝑒(𝑡) denotes the relative deviation of the rotational
speed of PTGS.The ITAE index considers the stable time and
overshoot of the dynamic response of PTGS simultaneously.
It can evaluate the speed and stability of the system at the
same time. The smaller the ITAE, the better the speed and
stability of the system.

When operating at the working condition of low water
head, the PSU is easy to fall into the “S” characteristic
region, resulting in oscillation of the unit speed near the
rated frequency. The working condition of medium or high
water head, in the other way, is the most common working
condition in the operation process of PSU. The optimal
control of PTGS under different working conditions should
be considered and researched to make the PTGS system
better adapt to the changeable working environment. How-
ever, the ITAE for PTGS at working condition of low head
(referred as ITAE1) and that of high head (referred as ITAE2)
usually influence and restrict each other. In this study, the
single-objective optimization of the FOPID controller for
PTGS is expanded to multiobjective theoretical framework
to find a compromise solution and ensure that the PTGS
system can achieve relatively better control performance
under changeable working conditions. To formulate the
MO-FOPID problem, the ITAE1 and ITAE2 are adopted
as objective functions. The five parameters of the FOPID

controller for PTGS including the proportional coefficient𝐾𝑝, the integral coefficient 𝐾𝑖, the differential coefficient 𝐾𝑑,
the integral order 𝜆, and the differential order 𝜇 are taken
as decision variables. The MO-FOPID problem can then be
formulated as

Min
{{{

𝑓1 = ITAE1 = 𝑓1 (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇)𝑓2 = ITAE2 = 𝑓2 (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇) (14)

subject to

{{{{{{{{{{{{{{{{{{{{{

𝐾𝑝min ≤ 𝐾𝑝 ≤ 𝐾𝑝max𝐾𝑖min ≤ 𝐾𝑖 ≤ 𝐾𝑖max𝐾𝑑min ≤ 𝐾𝑑 ≤ 𝐾𝑑max𝜆min ≤ 𝜆 ≤ 𝜆max𝜇min ≤ 𝜇 ≤ 𝜇max

(15)

where 𝑓1(⋅) and 𝑓2(⋅) are functions of 𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇 at
working condition of low water head and high water head,
respectively. 𝑋min and 𝑋max are the lower and upper bounds
of 𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇 of the FOPID controller, respectively.

4. Nondominated Sorting Genetic
Algorithm-III Based on Latin-Hypercube
Sampling and Chaos Theory (LCNSGA-III)

An improved version of NSGA-III based on Latin-hypercube
sampling and chaos theory is developed to solve the proposed
MO-FOPID problem under multiworking conditions.

4.1. Brief Introduction to NSGA-III. TheNSGA-III algorithm
[36], first introduced by Deb and Jain in 2014, is a novel
reference-point-based nondominated sorting genetic algo-
rithm following the NSGA-II framework. Unlike the crowd-
ing distance operator exploited in NSGA-II [37], NSGA-
III employed a reference point-based mechanism to make
the Pareto optimal front well-distributed. The step-to-step
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procedures of the NSGA-III algorithm can be expressed as
follows.

Step 1. Calculate the number of reference points (𝐻) to be
placed on the hyper-plane.

𝐻 = (𝐶 + 𝑔 − 1𝑔 ) (16)

where 𝐶 represents the number of objective functions and 𝑔
denotes the number of divisions (For 𝐶 = 3 and 𝑔 = 4, 𝐻 is
calculated as 15).

Step 2. Generate NP individuals in the feasible region
randomly to form the initial population of the NSGA-III
algorithm, and record it as 𝑃𝑘. Set the iteration number as𝑘 = 1.
Step 3. Generate the offspring population 𝑄𝑘 using the
simulation binary crossover (SBX) operator and polynomial
mutation operator.

Step 4. Let𝑅𝑘 = 𝑄𝑘∪𝑃𝑘 and calculate the fitness value of each
individual in 𝑅𝑘.

Step 5. Identify the nondominated level 𝐹1, 𝐹2, . . . , 𝐹𝑡 for each
individual in 𝑅𝑘 using the nondominated sorting operator.

Step 6. Normalize the objectives and associate the solutions
in 𝑅𝑘 with the reference points. Delete the useless reference
points and preserve solutions with higher rankings according
to the niche preservation strategy to construct the next
generation of population 𝑃𝑘+1.
Step 7. If 𝑘 < 𝐺max, skip to Step 3; else stop iteration and
output the Pareto optimal set.

The crossover and mutation operators in Step 3 and the
nondominated sorting operator in Step 5 of the NSGA-III
algorithm are the same as those of the NSGA-II algorithm. In
Step 6, the NSGA-III algorithm generates the next population
using the reference point-based selection mechanism other
than the crowding distance operator of NSGA-II. Readers
can refer to [36] for more details about NSGA-III. The
improvements of the NSGA-III algorithms including the
Latin hypercube sampling-based initialization technique and
the chaotic crossover and mutation operators are introduced
in the following subsections.

4.2. Latin Hypercube Sampling Based Initialization Technique.
NSGA-III generates the initial values of the decision variables
in the feasible region randomly to form the initial population
of the algorithm. However, a large number of individuals may
assemble into a local area of the feasible region because of
the random initiation, leading to premature convergence in
the iterative process. In order to make the individuals of the
initial population well-distributed in the feasible region, the
Latin hypercube sampling based initialization technique [38]
is introduced toNSGA-III to improve its search performance.

The brief steps to generate the initial population of NSGA-III
using Latin hypercube sampling are as follows.

Step 1. Suppose the size of the population is 𝑁 and each
individual in the population contains𝐿discrete elements.The
range of the discrete element 𝑥𝑙, 𝑙 = 1, 2, . . . , 𝐿 of individual𝑥 can be divided into 𝑁 equal mini zones:

𝑥𝑙 𝑚𝑖𝑛 = 𝑥0𝑙 < 𝑥1𝑙 < ⋅ ⋅ ⋅ < 𝑥𝑗
𝑙
< ⋅ ⋅ ⋅ < 𝑥𝑁𝑙 = 𝑥𝑙 𝑚𝑎𝑥 (17)

where 𝑃(𝑥𝑗
𝑙
< 𝑥 < 𝑥𝑗+1

𝑙
) = 1/𝑁 and the value space of 𝑥 can

be divided into 𝑁𝐿 small hypercubes finally.

Step 2. Generate a matrix 𝑀 of which the dimension is𝑁 × 𝐿, and every column of 𝑀 is the full permutation of{1, 2, . . . , 𝑁}.
Step 3. Generate an individual in each row of 𝑀 randomly;
an initial population with 𝑁 individuals is then generated.

4.3. Chaotic Crossover and Mutation Operators. The NSGA-
III algorithm generates a random number 𝑟𝑐 to determine
whether to apply the crossover operator or not. The SBX
operator is implemented when 𝑟𝑐 < 𝜂𝑐, where 𝜂𝑐 represents
the crossover distribution index. For two parent individuals𝑥𝑝1 = {𝑥1𝑝1, . . . , 𝑥𝑖𝑝1, . . . , 𝑥𝑛𝑝1} and 𝑥𝑝2 = {𝑥1𝑝2, . . . , 𝑥𝑖𝑝2, . . . ,𝑥𝑛𝑝2}, the NSGA-III algorithm generates two offspring indi-
viduals 𝑥𝑐1 = {𝑥1𝑐1, . . . , 𝑥𝑖𝑐1, . . . , 𝑥𝑛𝑐1} and 𝑥𝑐2 = {𝑥1𝑐2, . . . , 𝑥𝑖𝑐2,. . . , 𝑥𝑛𝑐2} according to the following:

𝑥𝑖𝑐1 = 12 [(1 − 𝛽) 𝑥𝑖𝑝1 + (1 + 𝛽) 𝑥𝑖𝑝2]
𝑥𝑖𝑐2 = 12 [(1 + 𝛽) 𝑥𝑖𝑝1 + (1 − 𝛽) 𝑥𝑖𝑝2]

(18)

where 𝛽 represents the crossover coefficient. 𝛽 can be calcu-
lated according to the following:

𝛽 = {{{{{
(2𝑢)1/(𝜂𝑐+1) , 𝑢 ≤ 0.5
( 12 (1 − 𝑢))

1/(𝜂𝑐+1) , 𝑒𝑙𝑠𝑒 (19)

where 𝑢 = rand (⋅) is a random number uniformly generated
in [0, 1].

The NSGA-III algorithm generates a random number𝑟𝑚 to determine whether to apply the mutation operator or
not.The polynomial mutation operator is implemented when𝑟𝑚 < 𝜂𝑚, where 𝜂𝑚 represents the mutation distribution
index. For the feasible solution 𝑥𝑠, the mutation individual
is generated using the polynomial mutation operator:

𝑥∗𝑠 = 𝑥𝑠 + (𝑥𝑢𝑠 − 𝑥𝑙𝑠) × 𝛿𝑠 (20)

where 𝑥∗𝑠 represents the mutation individual; 𝑥𝑢𝑠 and 𝑥𝑙𝑠
represent the upper and lower bounds of 𝑥𝑠, respectively; 𝛿𝑠
is the mutation coefficient; 𝛿𝑠 can be calculated as follows:

𝛿𝑠 = {{{
(2𝑢𝑠)1/(𝜂𝑚+1) − 1, 𝑢𝑠 < 0.5
1 − (2 × (1 − 𝑢𝑠))1/(𝜂𝑚+1) , 𝑒𝑙𝑠𝑒 (21)
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where 𝑢𝑠 = rand(⋅) is a random number uniformly generated
in [0, 1].

The standard NSGA-III algorithm has excellent com-
putational efficiency and stability. However, the NSGA-III
algorithm sometimes may fall into the local optimal solu-
tion because of the insufficient exploration of the feasible
region. Because of the ergodicity and stochasticity of chaotic
sequences [39], the chaotic map which can generate chaotic
sequences is introduced into the crossover and mutation
operators of NSGA-III to enhance its global search and local
exploration ability [40]. In this study, the tent map [41] is
employed to improve the crossover and mutation operators
of NSGA-III.

The tent chaotic map with uniform distribution probabil-
ity density can be expressed as

𝑐𝑥(𝑘+1) = {{{{{
𝑐𝑥(𝑘)0.5 𝑐𝑥(𝑘) < 0.5
2 ⋅ (1 − 𝑐𝑥(𝑘)) 𝑒𝑙𝑠𝑒 (22)

where 𝑥(𝑘) ∈ (0, 1) denotes the chaotic variable generated in
the 𝑘th iteration.

According to (19) and (21), the crossover and mutation
operators of the standard NSGA-III algorithm need to gen-
erate two random numbers 𝑢 and 𝑢𝑠 in [0, 1], respectively.
The two numbers 𝑢 and 𝑢𝑠 are generated using the tent
chaotic map in the LCNSGA-III algorithm. The two random
numbers 𝑢 and 𝑢𝑠 are generated according to the following:

𝑢 = 𝑐𝑥(𝑘+1) (23)

𝑢𝑠 = 𝑐𝑥(𝑘+1) (24)

4.4. The Flowchart of LCNSGA-III for MOOPs. Based on
the above introduction of LCNSGA-III, the Latin hypercube
sampling, and the chaotic crossover and mutation operators,
the flowchart of LCNSGA-III for MOOPs is shown in
Figure 3.

4.5. Implementation of LCNSGA-III for Solving the MO-
FOPID Problem under Multiworking Conditions. The above
LCNSGA-III algorithm is used to optimize the FOPID
controller for PTGS under multiworking conditions. The
schematic diagram of the MO-FOPID problem optimized
by LCNSGA-III under multiworking conditions is shown in
Figure 4. In Figure 4, 𝑥𝑐 denotes the rotational speed (or
frequency) and 𝑦𝑐 denotes the given guide vane opening.
Since the frequency of the rotational speed is 50 Hz and the
frequency disturbance is 2 Hz, the frequency perturbation is
set as 4% of the rated frequency.

5. Numerical Experiments and Analysis

5.1. Experiments for Benchmark Functions

5.1.1. Benchmark Functions and Performance Metrics. In
order to validity the effectiveness of the newly developed
LCNSGA-III algorithm based on Latin-hypercube sampling

Generate the initial population Pk using 
Latin-hypercube sampling

Generate the offspring population Qk based on 
chaotic crossover and mutation operators

Let Rk = Pk Qk and calculate the fitness 
value of each individual in Rk

Start

Initialize the parameters and set the ranges 
for LCNSGA-III

Apply the non-dominated sorting algorithm 
to each individual in Rk and identify its 

non-dominated level F1 ,F2 ,…,Ft

Select NP best individuals as the next population 
based on the reference point-based mechanism

Reach the maximum 
iteration

Yes

No

End

∪

Figure 3: Flowchart of LCNSGA-III for MOOPs.

and chaotic map, a total number of eight test functions
including the ZDT1-4, 6 [42] and the DTLZ1-2, 5 [43] (shown
in Table 1) are employed to test its performance. Among
the eight test functions for MOOPs, the ZDT benchmark
functions are two-objective MOOPs. The dimension of the
decision variables and the number of the test functions of the
DTLZbenchmark functions can be adjusted. In this study, the
number of the objective functions of the DTLZ test functions
is selected as three to display the Pareto front of three-
objective MOOPs. Four other typical multiobjective algo-
rithms including NSGA-II, NSGA-III, MOEA/D, and PESA-
II [30, 44] are adopted as control group. The performances
of the multiobjective evolutionary algorithms (MOEAs) are
evaluated and compared using the widely used evaluation
metrics of generational distance (GD) and Spread. GD is
adopted to measure the mean value of the distance between
the Pareto solution set and the real Pareto front. Spread
is employed to describe the distribution uniformity of the
Pareto optimal set [40]. GD can be expressed as follows:

GD = 1𝑁√ 𝑁∑
𝑖=1

𝐷𝑖
2 (25)
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Figure 4: Schematic diagram of the MO-FOPID problem optimized by LCNSGA-III under multiworking conditions.

where𝐷𝑖 denotes the Euclideandistance between the ith non-
dominated solution and the nearest nondominated solution
on the real Pareto front and 𝑁 denotes the size of the Pareto
optimal set.The smaller theGD, the closer the Pareto solution
set to the real Pareto front and the better the convergence
accuracy.

Spread can be expressed as follows:

Spread = ∑𝑀
𝑗=1 𝑑𝑒𝑗 + ∑𝑁

𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − 𝑑󵄨󵄨󵄨󵄨󵄨∑𝑀
𝑗=1 𝑑𝑒𝑗 + 𝑁 ⋅ 𝑑 (26)

where 𝑑𝑖 denotes the distance between ith solution with its
neighboring solution; 𝑑 is the mean of 𝑑𝑖; 𝑑𝑒𝑗 denotes the
Euclidean distance between the extreme solution of the real
Pareto front and the boundary solution of the obtained Pareto
optimal set; M denotes the number of objective functions.
The smaller the Spread, the better the distribution of the
solutions.

5.1.2. Results Analysis. The parameters of the five algorithms
for MOOPs with two objectives are set as follows: the
population size is set as 100 while the number of iterations is
set as 300. The parameters of the five algorithms for MOOPs
with three objectives are set as follows: the population size is
set as 150 while the number of iterations is 500.The crossover
and mutation probability of the five algorithms are set as 0.7
and 0.3, respectively. The neighborhood size of MOEA/D is
set as 20 [45, 46]. All the experiments are implemented in
Matlab environment. Because of the random initialization of
theMOOPs, all the experiments have been repeated ten times
independently to eliminate the effectiveness of randomness.
The average GD and Spread of the five algorithms for the
eight benchmark functions are given in Tables 2 and 3,
respectively. Numbers in bold represent the optimal GD and
Spread among the five algorithms for the eight benchmark
functions.

As can be seen fromTable 2, the GD of the Pareto optimal
solution obtained by the newly developed LCNSGA-III is the

best out of the total eight benchmark functions. Although
the GD of LCNSGA-III algorithm is slightly worse than that
of NSGA-II and NSGA-III to optimize ZDT4 and DTLZ1,
the Spread of LCNSGA-III is prominent. The Spread of
LCNSGA-III performs best to optimize the ZDT1, ZDT4, and
DTLZ5 benchmark problems. And the Spread for LCNSGA-
III does not differ much from those for the other five MOOPs
except DTLZ1, which indicates that the LCNSGA-III algo-
rithm can obtain good convergence performance for the eight
benchmark functions. The Pareto optimal front obtained by
LCNSGA-III to optimize the eight benchmark functions is
shown in Figure 5 (ZDT1-4) and Figure 6 (ZDT6, DTLZ1-2,
5) (Grey points denote the true Pareto front while blue ones
denote the obtained Pareto front), respectively. As depicted
in Figures 5 and 6, the Pareto front obtained by LCNSGA-III
to optimize the eight benchmark MOOPs can approximate
the real Pareto front perfectly and the distributions of the
Pareto optimal sets are uniform. As a result, the LCNSGA-
III algorithm has prominent convergence performance and
optimization ability compared with the other algorithms.

5.2. Experiments for Nonlinear PTGS

5.2.1. Experiments Design and Results. In order to fully
verify the performance and effectiveness of the LCNSGA-
III algorithm in solving the MO-FOPID problem under
multiworking conditions, the nonlinear model of PTGS with
different controllers (PID and FOPID) and water heads
(198m, 205m, and 210m) under no-load conditions is simu-
lated onMATLAB environment. The frequency perturbation
is set as 4% of the rated frequency and the simulation time is
set as 50s. A total number of ten schemes have been designed
to obtain the optimal parameters. The ten schemes can be
divided into four categories as follows:

(1) The backtracking search algorithm (BSA) [47] is
exploited to optimize the parameters of PID controller under
a single working condition of different water heads (198m,
205m, and 210m). The ITAE of PTGS under a certain
working condition is selected as the objective function for
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Table 1: Eight test functions for MOOPs.

Name Functions Dimension of
decision variable Feasible region Type of Pareto Front

ZDT1

𝑓1(𝑋) = 𝑥1,
30 [0, 1] High dimension, convex𝑓2(𝑋) = 𝑔 ⋅ (1 − √𝑓1𝑔 )

𝑔 (𝑋) = 1 + 9 ⋅ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)
ZDT2

𝑓1(𝑋) = 𝑥1,
30 [0, 1] High dimension, convex𝑓2(𝑋) = 𝑔 ⋅ (1 − (𝑓2𝑔 )2)

𝑔(𝑋) = 1 + 9 ⋅ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)
ZDT3

𝑓1(𝑋) = 𝑥1
30 [0, 1] Discontinuous, convex𝑓2 (𝑋) = 𝑔 ⋅ (1 − √𝑓1𝑔 ) − (𝑓1𝑔 ) sin (10𝜋𝑓1))

𝑔(𝑋) = 1 + 9 ⋅ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)
ZDT4

𝑓1(𝑋) = 𝑥1
10

𝑥1 ∈ [0, 1]
Multi-modal, convex𝑓2(𝑋) = 𝑔 ⋅ (1 − √𝑓1𝑔 ) 𝑥𝑖 ∈ [−5, 5]

𝑔(𝑋) = 1 + 10(𝑛 − 1) + 𝑛∑
𝑖=2

[𝑥2𝑖 − 10 cos(4𝜋𝑥𝑖)] 𝑖 = 2, 3, . . . , 𝑛

ZDT6

𝑓1 (𝑋) = 1 − exp (−4𝑥1) sin6 (6𝜋𝑥1)
10 [0, 1] Inhomogeneous𝑓2 (𝑋) = 𝑔 ⋅ (1 − (𝑓1𝑔 )2)

𝑔 (𝑋) = 1 + 9 ⋅ [ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)]
0.25

DTLZ1

𝑓1(𝑋) = 12𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑀−1 (1 + 𝑔 (𝑥𝑀))

7 [0, 1] Linear, multimodal

𝑓2(𝑋) = 12𝑥1𝑥2 ⋅ ⋅ ⋅ (1 − 𝑥𝑀−1) (1 + 𝑔 (𝑥𝑀))...
𝑓𝑀−1 (𝑋) = 12𝑥1 (1 − 𝑥2) (1 + 𝑔 (𝑥𝑀))

𝑓𝑀(𝑋) = 12 (1 − 𝑥1) (1 + 𝑔 (𝑥𝑀))
𝑔 (𝑋𝑀) =

100(𝑥𝑀 + ∑
𝑥𝑖∈𝑥𝑀

∗ (𝑥 − 0.5)2 + cos (20𝜋 (𝑥 − 0.5)))

DTLZ2

𝑓1 (𝑋) = (1 + 𝑔 (𝑥𝑀)) cos(𝑥2𝜋2 ) ⋅ ⋅ ⋅ cos (𝑥𝑀−1𝜋2 )

12 [0, 1] Complex nonconvex
𝑓2(𝑋) = (1 + 𝑔 (𝑥𝑀)) cos (𝑥1𝜋2 ) ⋅ ⋅ ⋅ cos(𝑥𝑀−1𝜋2 )...

𝑓𝑀(𝑋) = (1 + 𝑔 (𝑥𝑀)) sin(𝑥1𝜋2 )
𝑔(𝑋𝑀) = ∑ ∗ (𝑥 − 0.5)2)

DTLZ5

replace the 𝑥𝑖 in DTLZ2 with 𝜃𝑖
12 [0, 1] Space arc𝜃𝑖 = 𝜋4 (1 + 𝑞 (𝑟)) (1 + 2𝑔 (𝑟) 𝑥𝑖)

𝑔 (𝑥𝑀) = Σ𝑥𝑖∈𝑥𝑀
𝑥0.1𝑖
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Table 2: Comparison of GD for eight benchmark functions.

Benchmark functions Multi-objective optimization algorithms
PESA-II MOEA/D NSGA-II NSGA-III LCNSGA-III

ZDT1 7.72E-05 3.66E-04 5.77E-05 7.95E-05 3.80E-05
ZDT2 3.37E-04 8.27E-04 3.11E-05 6.77E-05 2.84E-05
ZDT3 6.14E-05 1.90E-03 4.23E-05 7.48E-05 3.56E-05
ZDT4 1.41E-02 2.05E-03 2.00E-04 2.52E-04 3.15E-04
ZDT6 1.09E-02 7.38E-04 4.30E-05 7.84E-05 3.63E-05
DTLZ1 1.97E-02 3.01E-04 4.75E-04 2.25E-04 4.33E-04
DTLZ2 9.77E-04 4.18E-04 9.30E-04 4.14E-04 3.78E-04
DTLZ5 1.50E-04 7.88E-05 1.32E-04 1.55E-04 5.34E-05

Table 3: Comparison of Spread for eight benchmark functions.

Benchmark functions Multi-objective optimization algorithms
PESA-II MOEA/D NSGA-II NSGA-III LCNSGA-III

ZDT1 9.67E-01 4.53E-01 4.25E-01 3.47E-01 3.24E-01
ZDT2 9.83E-01 6.73E-01 4.68E-01 2.15E-01 2.99E-01
ZDT3 1.01E+00 6.79E-01 5.87E-01 7.52E-01 6.65E-01
ZDT4 1.02E+00 5.51E-01 4.31E-01 3.93E-01 3.30E-01
ZDT6 1.04E+00 1.55E-01 4.15E-01 1.13E-01 1.20E-01
DTLZ1 8.02E-01 3.11E-02 4.95E-01 3.40E-02 3.51E-01
DTLZ2 3.88E-01 1.73E-01 5.21E-01 1.74E-01 3.01E-01
DTLZ5 9.20E-01 2.03E+00 6.61E-01 9.78E-01 4.58E-01
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Figure 5: Pareto optimal solutions obtained by LCNSGA-III for ZDT1-4.
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Figure 6: Pareto optimal solutions obtained by LCNSGA-III for ZDT6, DTLZ1-2, 5.

single-objective optimization. The experiments are simpli-
fied as S-198-PID, S-205-PID, and S-210-PID, respectively.
The optimized control parameters are applied on the other
two working conditions to test the adaptability of different
schemes in tracking the dynamic responses of PTGS. (e.g., for
scheme S-198-PID, the working condition running at 198m
water head is used for training while those at 205m and 210m
are used for testing);

(2)TheBSAalgorithm is exploited to optimize the param-
eters of FOPID controller under a single working condition
of different water heads (198m, 205m, and 210m). The exper-
iments are simplified as S-198-FOPID, S-205-FOPID, and S-
210-FOPID, respectively. The optimized control parameters
are applied on the other two working conditions to test the
adaptability of different schemes in tracking the dynamic
responses of PTGS;

(3) The NSGA-III algorithm is adopted to optimize the
parameters of PID or FOPID controller under two working
conditions (198m and 210m). The ITAE of PTGS at working
conditions of 198m and 210m water head is selected as the
objective functions for multiobjective optimization, and the
compromise optimal solution among the Pareto optimal set
is selected. The experiments are simplified as NSGA-III-PID
and NSGA-III-FOPID for the PID and FOPID controller,
respectively. The compromise optimal control parameters are
applied on the working condition of 205m water head to test
the adaptability of different schemes in tracking the dynamic
responses of PTGS;

(4)TheLCNSGA-III algorithm is adopted to optimize the
parameters of PID or FOPID controller under two working
conditions (198m and 210m). The experiments are simplified

as LCNSGA-III-PID and LCNSGA-III-FOPID for the PID
and FOPID controller, respectively. The compromise optimal
control parameters are applied on the working condition of
205m water head to test the adaptability of different schemes
in tracking the dynamic responses of PTGS.

The parameters of PTGS are set as follows: the ranges
of 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 of the PID and FOPID controllers are
all set as [0, 15] and the ranges of 𝜆 and 𝑢 are all set as[0, 2].The parameters of the BSA algorithm are set as follows:
the population size is set as 50, the number of iterations is
200, and the control parameter 𝐹 is set as the default value.
The parameters of the NSGA-III and LCNSGA-III algorithms
are as follows: the population size is set as 50; the iteration
number is 300; the crossover probability is 0.7; the mutation
probability is 0.3.

Apart from ITAE, the integral of the ITSE [29], the stable
time (ST) and the overshoot (OSO) is adopted to evaluate the
performance of different schemes. The ITSE index is defined
as follows:

ITSE = ∫𝑇

0
𝑡 (𝑒 (𝑡))2 𝑑𝑡 (27)

In this study, the best compromise solution is selected
according to the subjective weighting method based on
experts’ preferences of weights. The optimal control param-
eters of the ten schemes for PTGS are shown in Table 4. The
performance indices including ITAE, ITSE, ST, and OSO of
the ten schemes under different working water heads are
shown inTable 5. InTable 5, for scheme S-198-PID, the results
for 198m water head are training results while those for 205m
and 210mheads are testing results. For scheme S-205-PID, the



12 Complexity

Table 4: Optimal control parameters for nonlinear PTGS using different schemes.

Schemes Optimal parameters𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
S-198-PID 5.05 0.72 2.08 / /
S-205-PID 8.00 1.00 2.91 / /
S-210-PID 6.97 0.87 5.00 / /
S-198-FOPID 9.00 0.52 0.82 0.49 0.97
S-205-FOPID 1.36 0.58 1.74 0.64 0.98
S-210-FOPID 8.91 0.56 1.98 0.77 0.99
NSGA-III-PID 9.92 1.04 1.62 / /
NSGA-III-FOPID 8.90 0.52 1.02 0.57 0.98
LCNSGA-III-PID 14.72 0.97 0.81 / /
LCNSGA-III-FOPID 10.62 0.58 1.12 0.56 0.98

Table 5: Performance indices for nonlinear PTGS using different schemes at different water heads.

Experiments 198m 205m 210m
ITAE ITSE ST (s) OSO (%) ITAE ITSE ST (s) OSO (%) ITAE ITSE ST (s) OSO (%)

S-198-PID 5.68 0.04 49.9 17.7 4.10 0.02 35.6 15.0 3.16 0.02 35.5 12.4
S-205-PID 37.28 0.17 / 25.4 2.69 0.02 29.3 22.9 1.93 0.02 20.1 20.5
S-210-PID 54.29 0.35 / 22.8 37.88 0.21 / 11.7 1.34 0.02 18.6 9.3
S-198-FOPID 2.10 0.02 27.6 3.6 1.50 0.02 26.1 0.5 1.87 0.02 27.1 0.9
S-205-FOPID 23.29 0.10 / 10.5 1.11 0.02 25.0 0.5 1.48 0.01 28.2 0.7
S-210-FOPID 20.11 0.08 / 7.9 1.81 0.02 25.7 3.3 0.96 0.02 17.0 0.3
NSGA-III-PID 5.88 0.04 / 37.1 2.82 0.03 23.2 34.5 2.04 0.02 23.7 32.4
NSGA-III-FOPID 2.18 0.02 27.4 5.6 1.52 0.02 24.1 3.0 1.41 0.02 26.6 0.9
LCNSGA-III-PID 5.43 0.04 / 33.3 2.76 0.03 18.4 30.4 1.90 0.02 18.4 27.6
LCNSGA-III-FOPID 1.90 0.02 27.6 5.5 1.37 0.02 23.3 2.3 1.42 0.01 25.9 1.1

results for 205m water head are training results while those
for 198m and 210m heads are testing results. For scheme S-
210-PID, the results for 210m water head are training results
while those for 198m and 205m heads are testing results.
The single-objective schemes are designed to compare with
the multiobjective schemes to highlight the effectiveness of
multiobjective schemes in optimizing PTGS. “/” means that
the system is unstable and when the fluctuation of frequency
is smaller than 0.003, it is considered to be stable.

5.2.2. Comparison of PID and FOPID Controllers under
Different Working Conditions. From Table 5, it is known that
the FOPID controller generally achieves better performance
than the corresponding PID controller in terms of ITAE,
ITSE ST, and OSO for 198m, 205m, and 210m working water
heads.The ITAE, ITSE ST, and OSO for the FOPID controller
are either smaller or in coincidence with those of the PID
controller. For example, the improved percentages of scheme
S-198-FOPID compared with scheme S-198-PID are 63.0%,
50.0%, 44.7%, and 79.7% in terms of ITAE, ITSE, ST, and
OSO, respectively in the training stage (198m).The improved
percentages in the testing stage (205m) are 63.4%, 26.7%, and
96.7% in terms of ITAE, ST, and OSO, respectively. The ITSE
for S-198-FOPID and scheme S-198-PID in the testing stage
(205m) is the same. To further compare the effects of different
controllers in capturing the dynamic performances of PTGS,

the test unit frequency at 198m, 205m, and 210m working
water heads using different controllers is illustrated in Figures
7–9, respectively. As can be seen fromFigures 7–9, the FOPID
controller for PTGS can obtain smaller overshoot ITAE,
ITSE, ST, and OSO in most cases. For working condition of
198mwater headwhich is easy to fall into the “S” area, the unit
frequency oscillates a lot using PID controller. The FOPID
controller, in the other way, can effectively restrain the strong
nonlinear characteristics of PTGS and significantly improve
the control quality.

5.2.3. Analysis of Controllers Optimized under a Single Work-
ing Condition. It is noticed from Table 5 that for controllers
optimized at a single working condition, the performance
is only good for the training working condition, but the
test working conditions. It can also be seen from Table 5
and Figures 7–9 that the S-210-FOPID scheme can obtain
good control performance when PTGS is running at 210m
water head, but not 198m. For schemes S-198-PID and S-198-
FOPID, PTGS can obtain good control performance at 205m
and 210mworking water heads, which conforms to the actual
physical phenomenon that the control parameters suitable
for low water head may also suitable for middle or high
water heads. However, due to the lack of comprehensive con-
sideration for complex working conditions, the adaptability
and robustness of the PID and FOPID controllers optimized
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Figure 7: Unit frequency obtained at 198m working water head.

at complex operating conditions simultaneously using mul-
tiobjective optimization algorithms should be studied and
investigated.

5.2.4. Analysis of Controllers Optimized under Multiworking
Conditions. The Pareto fronts obtained by LCNSGA-III-
PID and LCNSGA-III-FOPID are shown in Figure 10. From
Figure 10, it can be noticed that the Pareto front of LCNSGA-
III-FOPID can dominate that of LCNSGA-III-PID, which
further demonstrate the superiority of the FOPID controller.
It can also be noticed from Figure 10 that the ITAE1 for

low water head (198m) and the ITAE2 for high water head
(210m) are two conflicting indices. The optimal solution for
working condition at low water head is not the best one
for working condition at high water head. The employment
of multiobjective optimization algorithms to optimize the
two objectives simultaneously can help researchers find the
compromise optimal solutions. Compare the ITAE indices
for S-198-PID and S-210-PID in Table 5 with the Pareto
front obtained by LCNSGA-III-PID; in Figure 10, it can be
found that the ITAE indices for the two schemes are the
nearest to the two edge solutions of the Pareto front of
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Figure 8: Unit frequency obtained at 205m working water head.

LCNSGA-III-PID. Similar phenomenon also exists between
the solutions obtained by S-198-FOPID and S-210-FOPID
and the Pareto optimal solutions obtained by LCNSGA-III-
FOPID, which demonstrates that the pursing for a single
objective (high or low water head) is at the cost of the
other objective (corresponding low or high water head).
What is more, compared with the schemes for single working
conditions, the adaptability and robustness of the controllers
can be greatly improved using multiobjective optimization
schemes. A set of Pareto optimal solutions are obtained using
multiobjective optimization schemes; it is convenient for the

operator to select the most appropriate control parameters
when the working condition changes ormuchmore attention
should be paid to the extremely low water head or high water
head working conditions.

The effectiveness of the developed LCNSGA-III algo-
rithm has been verified using the eight test functions which
have been described in Section 5.1. In what follows the supe-
riority of the developed LCNSGA-III algorithm is further
demonstrated by applying it to PTGS. The Pareto fronts of
PID and FOPID controllers optimized by the two algorithms
have been illustrated in Figures 11(a) and 11(b), respectively.
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Figure 9: Unit frequency obtained at 210m working water head.

It can be observed from Figure 11 that the Pareto optimal
solutions obtained by LCNSGA-III can dominate almost all
of those obtained byNSGA-III. And the Pareto front obtained
by LCNSGA-III distributes more uniformly and extensively.
It can be found in Table 5 that the performances indices
for the compromise Pareto optimal solution of LCNSGA-III
are all smaller than NSGA-III, which further demonstrates
the superiority of LCNSGA-III in optimizing the MO-
FOPID problem. For example, the improved percentages
of scheme LCNSGA-III-PID to scheme NSGA-III-PID are
62.9%, 50.0%, and 84.9% in terms of ITAE, ITSE, and OSO,
respectively in the training stage (198m). The improved

percentages in the testing stage (205m) are 46.1%, 33.3%, and
91.3% in terms of ITAE, ITSE, and OSO, respectively.

6. Conclusions

In order to make PSUs adaptable to the changes of working
environment and improve their control quality and sta-
bility, this study constructs a multiobjective optimization
framework to optimize the FOPID controller for PTGS
under multiworking conditions. An LCNSGA-III algorithm
based on Latin-hypercube sampling and chaos theory is pro-
posed to solve the MO-FOPID problem under multiworking
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Figure 11: Comparison of Pareto fronts obtained by LCNSGA-III and NSGA-III for PID and FOPID controllers.

conditions. Implementation of the MO-FOPID controller
optimized by LCNSGA-III relies on the simultaneous opti-
mization of two complementary features: the ITAE index
under low and high water heads. The experiment results
indicate the following:

(1) The classical NSGA-III algorithm is improved using
the Latin hypercube sampling- based initialization technique
and the chaotic crossover and mutation operators. Exper-
iments of the eight test functions show that the improve-
ment strategies can effectively improve the convergence
and diversity of the Pareto optimal front of the NSGA-III
algorithm.

(2) Compared with the traditional PID controller, the
FOPID can effectively suppress the frequency oscillation of
PSUs in the “S” characteristic area running at middle or low
working water heads and can enhance the dynamic response
performance of PTGS.

(3) This study extends the single-objective optimiza-
tion under single working conditions to the multiobjective
optimization framework under multiworking conditions.
The multiobjective framework has provided better dynamic
performances than the single-objective optimization meth-
ods. The multiobjective implementation of FOPID makes
it much more convenient for a operator to select the most
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appropriate control parameters for a certain working condi-
tion.

This work sets a basis for research on multiobjective opti-
mization of a FOPID controller of PTGS under multiworking
conditions. The extension of the single-objective optimiza-
tion under a single working-condition to the multiobjective
framework under complex working conditions can provide
new control law and optimization algorithms for the optimal
control of PTGS. What is more, the proposed LCNSGA-III
algorithm can be easily extended to optimization problems in
other fields of scientific research and industrial application.
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The behavior of a photovoltaic generator is generally described by its current-voltage characteristic whose appearance depends on
the climatic conditions (temperature and solar radiation).The aim of this work is to show the possibility of identifying the values of
these two parameters from an experimental curve Ipv (Vpv) using numerical method. Subsequently, we will also estimate the series
and shunt resistors of the equivalent scheme of a PVG. This estimate is certainly beneficial to properly evaluate its energy balance.
The integration of these resistances allows us to obtain a new model. In this work, we will propose a mathematical calculation
strategy to ensure the estimation of all the parameters.

1. Introduction

It is now recognized internationally that the supply of
energy, in its various forms, contributes to the sustainable
development of the countries. In this context, fossil fuels
(oil, gas, uranium, etc.), despite their contributions, have
disadvantages in terms of capacity that comes from the
deterioration of the world’s reserves and in terms of the
impact on the environment. The latter is visible by the
rejection of greenhouse gases that causes global warming.
These disadvantages give rise to technologies that help the
exploitation of inexhaustible clean natural energies. In recent
decades, as a result of improved panel performance, pho-
tovoltaic, as well as the progression of benefits including
subsidies, the profitability of a photovoltaic installation has
become justified [1, 2].

The output characteristics of a photovoltaic panel depend
essentially on the solar radiation to which it is subjected and
its temperature, which makes the knowledge of these two
parameters is very important. These two quantities can be

measured using sensors, also they can be estimed in order
to minimize the number of sensors used which is a very
important factor in the design of photovoltaic systems.

The model of a photovoltaic cell with a single diode is
the most used thanks to the simplification of the equivalent
electrical circuit which makes it possible to describe the
behavior of the cell with the minimum of equations. For
constant climatic conditions, this model has five parameters.
In the case of variable climatic conditions, these parameters
change in consequence.The estimation of the series and shunt
resistance of the photovoltaic generator equivalent diagram
is certainly beneficial to correctly evaluate its energy balance
[3, 4].

In this work, in order to treat the characteristics and
to analyze the impact of the variations of the quantities
intervening from it from a practical point of view, we study
the case of the photovoltaic panel TITAN-12-50 of ERCO-
INSAT laboratory.

In the first part, we will be interested in the mathematical
model of a photovoltaic cell, the developed model takes
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Figure 1: Equivalent circuit of real solar cell.

into account climatic variations such as temperature, solar
radiation and wind speed. Support simulations are presented
to show the dynamic behavior of the system.these simulations
show that the shnut and series resistances are influenced by
the climatic parameters or the interest of estimating them in
real time. In the second part the expression of the two resis-
tances has been developed. The efficiency of the new model
has been validated experimentally while using a Dspace1104
card. The third part revolves around the estimation of two
main parameters (solar radiation and temperature) through
an algebraic strategy from an experimental curve I𝑝𝑣 (V𝑝𝑣).
Finally, we did a case study on the TITAN 12-50 panel
installed on the roof of the ERCO-INSAT research unit.

2. Modeling of Solar Cell and
Experimental Database

The equivalent circuit of a photovoltaic cell is given by
Figure 1.

In the sense of this model, we can write the following
relation:

𝑖𝑝ℎ = 𝑖𝑑 + 𝑖𝑝V + 𝑖𝑠ℎ = 𝑖𝑑 + 𝑖𝑝V + V𝑝V + 𝑟𝑠𝑖𝑝V𝑟𝑠ℎ (1)

with V𝑝V and 𝑖𝑝V being, respectively, the output voltage and
the output current of PV cell. 𝑟𝑠 and 𝑟𝑠ℎ are the series and
shunt resistors of the cell, 𝑖𝑠ℎ is the current passing in the 𝑟𝑠ℎ
resistance, and 𝑖𝑑 is the current of the diode.

The current of the diode 𝑖𝑑 is strongly related to the
temperature and the gap energy of the junction. It also
depends on the voltage across the diode. It is given by the
equation below:

𝑖𝑑 = 𝑖𝑠 (exp(V𝑝V + 𝑟𝑠𝑖𝑝V
V𝑡

) − 1) (2)

where 𝑖𝑠 is the reverse saturation current of the diode and V𝑡
is the solar cell thermal voltage.

The inverse saturation current and the thermal voltage are
given by the following equations:

𝑖𝑠 = 𝑖𝑠 (𝑇𝑗) = 𝑖𝑠𝑟 ( 𝑇𝑗𝑇𝑗𝑟)
3

exp(𝑤𝑔 ( 1
V𝑡𝑟

− 1
V𝑡
)) (3)

V𝑡 = K𝐼K𝐵𝑞 𝑇𝑗,
V𝑡𝑟 = K𝐼K𝐵𝑞 𝑇𝑗𝑟

(4)

where V𝑡1 = K𝐼K𝐵/𝑞.
Wenote here that the index (r) used in this paper indicates

that the value corresponds to the STC condition (Standard
Test Condition: E=E𝑠=1000W/m2, TA=TAr=25

∘C).𝑤𝑔 is the energy of gap, K𝐵 Boltzmann constant, K𝐼
coefficient of ideality, and 𝑞 the electron charge, and the main
variable of this model is the temperature of the p-n junction
of the diode 𝑇𝑗 (expressed in ∘K).

The following model was adopted taking into account
variations in solar radiation, wind speed, and ambient tem-
perature 𝑇𝐴.

𝑇𝑗 = 𝑇𝐴 (∘𝐶) + 273.15 + 33.75𝐸𝑠𝑓𝑊 (𝜗𝑊) (5)

The solar radiation 𝐸𝑠 is expressed inW/m2 and the function𝑓𝑊(𝜗𝑊) introduces the effect of the wind speed.

𝑓𝑊 (𝜗𝑊) = exp (−𝛾 (𝜗𝑊 − 1)) 𝜗𝑊 ≥ 1 (6)

The parameter 𝛾 must be positive for the function to vary in
the opposite direction of the wind speed. Indeed the increase
of the wind speed makes the solar cell cool [5].

The current of solar photons 𝑖𝑝ℎ is strongly dominated
by a variation of solar radiation and very slightly variable
under the effect of the temperature. Given these properties,
the current of photons is governed by the following model.

𝑖𝑝ℎ = 𝑖𝑝ℎ (𝐸𝑠, 𝑇𝑗) = 𝐸𝑠 [𝑖𝑝ℎ𝑟 + 𝑘𝑇 (𝑇𝑗 − 𝑇𝑗𝑟)] (7)

𝑘𝑇 is the temperature coefficient that depends a lot on the
manufacturing technology and it is basically provided by the
manufacturer.

Table 1 gives the values of the different quantities used in
PVG model.

All the quantities related to the climatic conditions are
defined.The electrical behavior in charge of the solar cell will
be described by (8).

𝑓 (V𝑝V, 𝑖𝑝V) = 𝑖𝑝V − 𝑖𝑝ℎ + 𝑖𝑠( exp(V𝑝V + 𝑟𝑠𝑖𝑝V
V𝑡

− 1)
+ V𝑝V + 𝑟𝑠𝑖𝑝V𝑟𝑠ℎ

(8)

This function is a nonlinear function and involves several
variables. In order to resolve it, we need a numerical method;
in this work Newton-Raphson method is exploited [6].

The nominal powers of solar cells are always limited to a
few watts. So the solution in this case is to switch to serial-
parallel coupling of several cells. Solar energy is marketed in
the form of panels or photovoltaic generator [7–9].

A PVG is a configuration comprisingNp rows in parallel;
each of the rows is formed by Ns panels in series, with each
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Table 1: Quantities related to the physical model of the solar cell.

Notation Designation Numerical values𝐸𝑠𝑟 Reference solar radiation (w/m2) in STC 1000𝑇𝐴𝑟 Ambient temperature (∘C) in STC 25𝑇𝑗𝑟 Reference junction temperature (∘K) in STC 298.15𝑤𝑔 Energy of gap (eV) 1.12𝑞 Electron charge (C) 1.602 × 10−19𝐾𝐵 Boltzmann constant (J/∘K) 1.38065 × 10−23𝐾𝐼 Constant of ideality 1==>2𝑘𝑇 Temperature coefficient (A/∘C) 0.0032
panel being itself formed of ns series cells. So we finally get
the following.

𝐼𝑝V = 𝑖𝑝V × 𝑁𝑝,
𝑉𝑝V = 𝑛𝑠 × 𝑁𝑠 × V𝑝V

(9)

For this purpose, we denote, respectively, by I𝑝𝑣 and V𝑝𝑣 the
current and the voltage of PVG.

So, finally we get for a photovoltaic generator the follow-
ing mathematical model (10):

𝐹 (𝐼𝑝, 𝑉𝑝) = 𝐼𝑝 − 𝐼𝑝ℎ + 𝐼𝑠 (exp(𝑉𝑝 + 𝑅𝑠𝐼𝑝𝑉𝑡 ) − 1)
+ 𝑉𝑝 + 𝑅𝑠𝐼𝑝𝑅𝑠ℎ = 0

(10)

with

𝑅𝑠 = 𝑁𝑠𝑛𝑠𝑟𝑠𝑁𝑝
𝑅𝑠ℎ = 𝑁𝑠𝑛𝑠𝑟𝑠ℎ
𝐼𝑠 = 𝑁𝑝𝑖𝑠

𝐼𝑝ℎ = 𝑁𝑝𝑖𝑝ℎ
𝑉𝑇 = 𝑁𝑠𝑛𝑠V𝑇.

(11)

2.1. Nonlinear Characteristic 𝐼𝑝V = 𝑓(𝑉𝑝V). Themathematical
model of a photovoltaic generator is expressed in the follow-
ing form. 𝑓 = 𝐼𝑝V − 𝐼𝑝ℎ − 𝐼𝑠 +J𝑠 +J𝑠ℎ = 0 (12)

To arrange the calculation in the simplest way and therefore
as clear as possible, we will define the following quantities.

J𝑠 (𝑉𝑝V, 𝐼𝑝V) = 𝐼𝑠 exp(𝑉𝑝V + 𝑅𝑠𝐼𝑝V𝑉𝑇 ) (13)

J𝑠ℎ (𝑉𝑝V, 𝐼𝑝V) = 𝑉𝑝V + 𝑅𝑠𝐼𝑝V𝑅𝑠ℎ = 𝐺𝑠ℎ (𝑉𝑝V + 𝑅𝑠𝐼𝑝V) (14)

We must solve the following system with two variables 𝑉𝑝V
and 𝐼𝑝V.

𝑓 (𝑉𝑝V, 𝐼𝑝V) = 𝐼𝑝V − 𝐼𝑝ℎ − 𝐼𝑠 +J𝑠 +J𝑠ℎ = 0 (15)

This function is nonlinear; the most appropriate method
for its resolution is the method of “Newton Raphson”. This
technique requires the development of the Jacobian matrix.
The elements of this matrix are defined below.

𝐽 = [ 𝜕𝑓𝜕𝐼𝑝V 𝜕𝑓𝜕𝑉𝑝V ] (16)

𝜕𝑓𝜕𝐼𝑝V = 1 + 𝑅𝑠J𝑠𝑉𝑡 + 𝑅𝑠𝐺𝑠ℎ
𝜕𝑓𝜕𝑉𝑝V = J𝑠𝑉𝑡 + 𝐺𝑠ℎ

(17)

Table 2 gives the main data of the solar panel TITAN-12-
50.

2.2. Influence of Solar Radiation on the Classic Model. To
show the influence of solar radiation on the 𝐼𝑝V = 𝑓(𝑉𝑝V)
characteristic from the previously developed database, the
characteristics are measured at the same constant tempera-
ture of 26∘C and different solar radiation ranging from 200
to 900 W/m2 as shown in Figure 2. It can be seen that the
short-circuit current varies in the same direction as the solar
radiation while the open circuit voltage varies slightly with
the solar radiation.

2.3. Influence of Temperature on the Classic Model. For
different temperatures and with a constant solar radiation
equal to 600W/m2, we acquire the voltage at the terminals
of the PVG and the current flow as shown in Figure 3.

We notice that the short-circuit current is not sensitive
to the variation of the temperature. On the other hand, the
open circuit voltage varies in the opposite direction of the
temperature.

3. Estimation of Series and Shunt Resistances

The estimation of the series and shunt resistances of the
equivalent PVG scheme is certainly beneficial to correctly
evaluate its energy balance.

3.1. Influence of Series Resistance on the Classic Model. For
different values of the series resistance, the behavior of the
PVG generator was simulated by plotting the 𝐼𝑝V = 𝑓(𝑉𝑝V)
characteristics. Figure 4 shows the evolution of the PV
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Figure 2: Influence of solar radiation on the 𝐼𝑝V = 𝑓(𝑉𝑝V)
characteristic.
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Figure 3: Influence of temperature on the 𝐼𝑝V = 𝑓(𝑉𝑝V) characteris-
tic.

current with the PV voltage for different values of series
resistance.

It is noted that the short-circuit current and the open
circuit voltage are not affected by the variation of the series
resistance. On the other hand, the slope of the characteristic
is very sensitive to this variation. The slope variation affects
the maximum power as shown in Figure 5.

So, we can say here that the increase of the series
resistance weakens the optimal power. This result is very
obvious because a part of the power produced would be lost
by Joule effect.

3.2. Influence of Shunt Resistance on the Classic Model. We
will now set the value of the series resistance to see the
influence of the shunt resistor, Figure 6.

Table 2: Electrical parameters of the solar panel TITAN-12-50.

Name Manufacturer TITAN
Description STP-50-01
Cell types Polycrystalline
Cell size 100cm2

Cell number 36
Rated power 50Wc
Power tolerance ±5%
Optimal voltage 17.2V
Optimal current 2.9A
Open circuit voltage 21V
Short circuit current 3.4A
Efficiency 11.3%
Manufacturer’s warranty 20 years
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Figure 4: Influence of series resistance on the 𝐼𝑝V = 𝑓(𝑉𝑝V)
characteristic.

Like the series resistor, the shunt resistor also does not
have an influence on the open circuit voltage and the short-
circuit current.The effect of the shunt resistor is very focused
on the optimum operating point of the PVG, Figure 7.

The increase in shunt resistance slightly weakens the
optimal power. The joules losses due to the shunt resistor
remain much lower than those due to the series resistance.

I𝑝ℎ𝑟 and I𝑠𝑟 are, respectively, the saturation and photons
currents in the reference regime. The values of these quan-
tities are usually evaluated from two particular regimes. For
the open circuit and short-circuit regimes, the experience
confirms that the effect of series and shunt resistances is
almost negligible regardless of the weather conditions.

In open circuit regime, we have the following.

𝑉𝑝V = 𝑉𝑜𝑐
𝐼𝑝V = 0 (18)
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Figure 5: Influence of serie resistance on the 𝑃𝑝V = 𝑓(𝑉𝑝V)
characteristic.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

Rsh=54ohm
Rsh=1000ohm
Rsh=25ohm

Figure 6: Influence of shunt resistance on the 𝐼𝑝V = 𝑓(𝑉𝑝V)
characteristic.

So, we obtain the following.

𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑝V − 𝐼𝑠ℎ = 0
𝐼𝑝ℎ − 𝐼𝑠 (exp(𝑉𝑜𝑐𝑉𝑡 ) − 1) = 0

𝐼𝑝ℎ = 𝐼𝑠 (exp(𝑉𝑜𝑐𝑉𝑡 ) − 1)
(19)

In short-circuit regime, we have the following.

𝑉𝑝V = 0
𝐼𝑝V = 𝐼𝑐𝑐 (20)

So, we obtain the following.

𝐼𝑝ℎ = 𝐼𝑐𝑐 (21)
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Figure 7: Influence of shunt resistance on the 𝑃𝑝V = 𝑓(𝑉𝑝V)
characteristic.

Back to the open circuit regime, we can write the following in
reference climatic condition.

𝐼𝑠𝑟 = 𝐼𝑝ℎ𝑟(exp (𝑉𝑜𝑐𝑟/𝑉𝑡𝑟) − 1) = 𝐼𝑐𝑐𝑟 exp(−𝑉𝑜𝑐𝑟𝑉𝑡𝑟 ) (22)

3.3. Estimation of Series Resistance. The internal conductance
of the photovoltaic generator in any mode satisfies the
relation below.

𝐺𝑝V (𝑉𝑝V, 𝐼𝑝V) = 𝜕𝐼𝑝V𝜕𝑉𝑝V = − 𝐺𝑠ℎ𝑉𝑇 +J𝑠𝑉𝑇 + 𝑅𝑠J𝑠 + 𝑉𝑇𝑅𝑠𝐺𝑠ℎ (23)

To estimate the value of the series resistor, it is necessary
to carry out an open circuit test because the effect of the
series resistance is manifested in the vicinity of the open
circuit operation, unlike the effect of the shunt resistor, which
remains insignificant. The value of the series resistance is
estimated by the following relation.

𝑅𝑠 = −𝜕𝑉𝑝V𝜕𝐼𝑝V when 𝐼𝑝V = 0 and 𝑉𝑝V = 𝑉𝑜𝑐 (24)

By applying (23) in (24), we can deduce the following.

𝑅𝑠 = − 1𝐺𝑝V (𝑉𝑜𝑐, 0) = 𝑉𝑡𝐼𝑠 exp (𝑉𝑜𝑐/𝑉𝑡)
= 𝑉𝑡𝐼𝑠 exp(−𝑉𝑜𝑐𝑉𝑡 )

(25)

Under Standard Test Conditions (STC), we consider the
following peer relationship.

𝑅𝑠𝑟 = 𝑉𝑡𝑟𝐼𝑠𝑟 exp(−𝑉𝑜𝑐𝑟𝑉𝑡𝑟 ) (26)

Applying the expression of I𝑠𝑟, we obtain the following.

𝑅𝑠𝑟 = 𝑉𝑡𝑟𝐼𝑐𝑐𝑟 (1 − exp(−𝑉𝑜𝑐𝑟𝑉𝑡𝑟 )) (27)
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3.4. Estimation of Shunt Resistance. The effect of the shunt
resistor is significant around the point of short-circuit oper-
ation, so it is necessary to perform a short-circuit test to
estimate this resistance.

The conductance 𝐺𝑠ℎ has the following expression:
𝐺𝑠ℎ = − 𝜕𝐼𝑝V𝜕𝑉𝑝V when 𝐼𝑝V = 𝐼𝑐𝑐 and 𝑉𝑝V = 0 (28)

or, in other terms,

𝐺𝑠ℎ = −G𝑝V (0, 𝐼𝑐𝑐) = 𝐺𝑠ℎ𝑉𝑡 +J𝑠𝑐𝑐𝑉𝑡 + 𝑅𝑠J𝑠𝑐𝑐 + 𝑉𝑡𝑅𝑠𝐺𝑠ℎ
J𝑠𝑐𝑐 = J𝑠 (0, 𝐼𝑐𝑐) = 𝐼𝑠 exp(𝑅𝑠𝐼𝑐𝑐𝑉𝑡 ) (29)

so, finally we get (30).

𝑉𝑡𝑅𝑠𝐺𝑠ℎ2 + (𝑅𝑠𝐼𝑠 exp(𝑅𝑠𝐼𝑐𝑐𝑉𝑡 ))𝐺𝑠ℎ
− 𝐼𝑠 exp(𝑅𝑠𝐼𝑐𝑐𝑉𝑡 ) = 0 (30)

It is a second-order equation, and its solution passes by the
computation of the discriminate, in which the square of the
saturation current is involved, which is a very small quantity.
We can thus eliminate the second term of this equation and
estimate the shunt resistance by the following.

𝑅𝑠ℎ = √𝑅𝑠𝑉𝑡𝐼𝑠 exp(−𝑅𝑠𝐼𝑐𝑐𝑉𝑡 ) (31)

In STC, this relation becomes as follows.

𝑅𝑠ℎ𝑟 = √𝑅𝑠𝑟𝑉𝑡𝑟𝐼𝑠𝑟 exp(−𝑅𝑠𝑟𝐼𝑐𝑐𝑟𝑉𝑡𝑟 ) (32)

This relation shows on one side a term proportional to the
temperature and on the other side a second term, which
decreases exponentially with the temperature.

3.5. Validation of the Proposed Model: Checking of the
Evolution of Open Circuit Voltage with Temperature. The
manufacturer supplies, under STC conditions, a coefficient
of sensitivity of the open circuit voltage versus the value
temperature. So, we can write the following.

𝑉𝑜𝑐 = 𝑉𝑜𝑐𝑟 − 0.0798 (𝑇𝐴 − 𝑇𝐴𝑟)
= 22.9950 − 0.0798𝑇𝐴 (33)

Moreover, in the sense of the model, the open circuit voltage
verifies.

𝑉𝑜𝑐 = 𝑉𝑇 log(1 + 𝐼𝑝ℎ𝐼𝑠 ) (34)

The curves in Figure 8 correspond, respectively, to formula
(33) given by constructor and to formula (34). The difference
between the two curves is acceptable.
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Figure 8: Variation of the open circuit voltage of the TITAN-12-50
panel with temperature.

3.6. Experimental Validation. To validate the previously pro-
posedmodel, the photovoltaic panels installed at the research
unit were exploited. The experimental installation comprises
a photovoltaic generator whose characteristics are given in
Table 2, a voltage sensor, a solar radiation sensor, and a
temperature sensor.This experimental bench is controlled by
a DS1104 dSPACE card.

The proposed strategy is implemented and tested in real
time with a sampling frequency of 10 kHz. Figure 9 shows the
complete configuration of the system described above.

Figures 10 and 11 show, respectively, the scenario of solar
radiation and the comparison between the measured voltage
and the voltage estimated by the developed model. It is
constant that the tensions converge towards the same value
whatever the variation of the solar radiation.

4. Estimation of Solar Radiation
and Temperature

To measure the temperature, it is necessary to provide the
solar panel with an integrated temperature sensor, which
would greatly increase the cost on the one hand and com-
plicate its manufacture on the other hand. A possible indirect
solution for the junction temperature evaluation would be to
identify it from the measurement results and establish a link
with the ambient temperature.

With regard to solar radiation, the hardware solution
of placing multiple solar radiation sensors would obviously
increase the cost of installation [10–13]. The purpose of this
section is to show the possibility of identifying the values of
solar radiation and temperature from an experimental point
of view.

Before going on to the method of the estimation of the
solar radiation and the temperature for a photovoltaic system,
we will present the notions of the adapted gradient method.

4.1. Quadratic Minimization by the Conjugate Gradient
Method. The optimization, especially numerical optimiza-
tion, has experienced a significant increase in recent years
with the advent of the computer. It is often the last stage
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of numerical analysis, where we have studied a physical
phenomenon, put it into an equation, studied these equations,
and shown that one could calculate the solutions with a
computer.We begin to optimize the system by changing some
parameters to change the solution in a desired direction.

Several methods are used for numerical optimization
such as Newton’s method, the quasi-Newton method, the
conjugate gradientmethod, linear search, the regions of trust,
and Nelder-Mead’s method.

In this part, we will use the conjugate gradient method
to minimize a nonlinear functionΦ(𝑋) differentiable at least
twice.

The development of the Taylor series function Φ(𝑋)
around an initial condition X0 is expressed as follows.

Φ(𝑋0 + Δ𝑋) ≅ Φ (𝑋0) +∑
𝑖

𝜕Φ𝜕𝑥𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑋

0

Δ𝑥𝑖
+ 12∑
𝑖,𝑗

𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑋

0

Δ𝑥𝑖Δ𝑥𝑗
(35)

This equation can be further rewritten in the following form
involving the gradient vector 𝐺 and the Hessian matrix𝐻 of
the second derivatives evaluated in 𝑋0. The Hessian matrix
constitutes the Jacobian matrix of the gradient vector.

Φ(𝑋0 + Δ𝑋) ≅ Φ (𝑋0) + 𝐺𝑇0Δ𝑋 + 12Δ𝑋𝑇𝐻0Δ𝑋 (36)

𝐺0 = 𝐺 (𝑋0) = 𝜕Φ𝜕𝑋
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑋

0

𝐻0 = 𝐻 (𝑋0) = [𝜕𝐺 (𝑋)𝜕𝑋 ]
𝑋

0

(37)

In expanded form, the matrix𝐻(𝑋)is symmetric and has the
following expression.

ℎ𝑖𝑗 = ℎ𝑗𝑖 = 𝜕𝑔𝑖𝜕𝑥𝑗 =
𝜕𝑔𝑗𝜕𝑥𝑖 = 𝜕2𝜕𝑥𝑖𝜕𝑥𝑗 = 𝜕2𝜕𝑥𝑗𝜕𝑥𝑖 (38)

The solution of minimizing a quadratic problem of the type
below using the conjugate gradient method is given by the
following system.

min
𝑋

Φ(𝑋)
Φ (𝑋) = 12𝑋𝑇𝐻𝑋 + 𝐶𝑇𝑋 (39)
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To minimize the function Φ(𝑋) we could proceed to a local
minimization in terms of Δ𝑋 with 𝐺0 and 𝐻0 constant and
repeat the same calculation as many times as necessary by
rectifying each time the initial condition, the gradient vector,
and theHessianmatrix. Obviously, it is admitted here that the
Hessian matrix remains positive, which is often the case.

4.2. Estimation of Solar Radiation and Temperature: Minimiz-
ing the Vp(Ip) Function. In this section, we are interested
in the identification of E𝑠 and V 𝑡 parameters from a given(𝑉𝑝V, 𝐼𝑝V) operating point.

As we have already presented in the first section, the
model of a photovoltaic generator is described by the follow-
ing.

𝑓 = 𝐼𝑝 − 𝐼𝑝ℎ − 𝐼𝑠 +J𝑠 +J𝑠ℎ = 0 (40)

The different terms of this model are defined as follows.𝑉𝑇 = 𝜂𝑇𝑗
𝑉𝑇𝑟 = 𝜂𝑇𝑗𝑟
𝐼𝑝ℎ = 𝐸𝑠 [𝐼𝑐𝑐𝑟 + 𝐾𝑇𝑟 (𝑉𝑇 − 𝑉𝑇𝑟)]
𝐼𝑠 = 𝐼𝑠𝑟 ( 𝑉𝑇𝑉𝑇𝑟)

3

exp(𝑊𝑔𝑉𝑇𝑟 −
𝑊𝑔𝑉𝑇 )

U𝑝 = 𝑉𝑝 + 𝑅𝑠𝐼𝑝
J𝑠 = 𝐼𝑠 exp(U𝑝𝑉𝑇 )
J𝑠ℎ = 𝐺𝑠ℎU𝑝

(41)

Themain variables of this model are, respectively, the voltage
across the generator 𝑉𝑝 and the current 𝐼𝑝 delivered to
the load. These quantities vary, of course, with the load,
solar irradiance, and temperature. The solar radiation is
denoted here as 𝐸𝑠. The junction temperature appears by the
magnitude 𝑉𝑇, which is proportional to it, provided that the
factor of constant ideality is considered. The parameters 𝑅𝑠
and 𝐺𝑠ℎ correspond, respectively, to the series resistance and
the shunt conductance of the equivalent scheme. The other
parameters are constants.

The mathematical model of a photovoltaic generator for
a given operating point becomes as follows.

𝑓 (𝑉𝑇, 𝐸𝑠) = 0 (42)

Before exposing the identification technique used, it is neces-
sary to develop the first and second derivatives of the terms of
the function f of the model with respect to these parameters.
We establish the following.

𝑢𝑝 = 𝑉𝑝V + 𝑅𝑠𝐼𝑝V
𝜕𝐼𝑝ℎ𝜕𝑉𝑡 = 𝐸𝑠𝐾𝑇𝑟
𝜕𝐼𝑝ℎ𝜕𝐸𝑠 = 𝐼𝑐𝑐𝑟 + 𝐾𝑇𝑟 (𝑉𝑡 − 𝑉𝑡𝑟)

𝜕𝐼𝑠𝜕𝑉𝑡 = 𝐼𝑠 (3𝑉𝑡 +𝑊𝑔𝑉𝑡2 )
𝜕J𝑠𝜕𝑉𝑡 = J𝑠 (3𝑉𝑡 +𝑊𝑔 − 𝑢𝑝𝑉𝑡2 )

𝜕2𝐼𝑝ℎ𝜕𝐸𝑠2 = 𝜕2𝐼𝑝ℎ𝜕𝑉𝑡2 = 0
𝜕2𝐼𝑠𝜕𝑉𝑡2 = 𝐼𝑠((2𝑉𝑡 +𝑊𝑔)2 + 2𝑉𝑡2𝑉𝑡4 )
𝜕2J𝑠𝜕𝑉𝑡2 = J𝑠((2𝑉𝑡 +𝑊𝑔 − 𝑢𝑝)2 + 2𝑉𝑡2𝑉𝑡4 )

(43)

Let us consider an experimental point (𝑉𝑝V, 𝐼𝑝V) raised to solar
radiation and temperature supposed unknown.The injection
of this point into the function f of the mathematical model
(40) would lead to a nonzero value because of the error
between the real values of the parameters and the values used
in the model.

By denoting by 𝑋 the vector of the parameters (V 𝑡, E𝑠)
to be identified, the function (40) of the model would be
denoted accordingly by 𝑓(𝑋). The object is to determine the
vector𝑋 that makes 𝑓(𝑋) tend to zero.

In order to take advantage of the available digital
quadratic programming tools, we perform the minimization
of the following quadratic criterion.

Φ(𝑋) = 12𝑓2 (𝑋) (44)

The Taylor series development expresses Φ(𝑋) as follows:
Φ(𝑋0 + 𝑥) = Φ (𝑋0) + 𝐺0𝑥 + 12𝑥𝐻0𝑥 (45)

where𝐺0 and𝐻0 are, respectively, the gradient vector and the
Hessian matrix of Φ(𝑋) around an initial condition 𝑋0. The
vector 𝑥 corresponds to the variation to be made around𝑋0.

The gradient vector and the Hessian matrix are expressed
as follows.

𝐺 (𝑋) = 𝜕Φ𝜕𝑋 = 𝑓 (𝑋) 𝜕𝑓 (𝑋)𝜕𝑋
𝐻(𝑋) = 𝜕𝐺 (𝑋)𝜕𝑋

(46)

By involving the sensitivity relationships defined above, the
gradient vector 𝐺(𝑋) has for relation (47) the following.

𝜓1 = 𝜕𝑓𝜕𝑉𝑡 =
𝜕𝐼𝑝V𝜕𝑉𝑡 −

𝜕𝐼𝑝ℎ𝜕𝑉𝑡 − 𝜕𝐼𝑠𝜕𝑉𝑡 + 𝜕J𝑠𝜕𝑉𝑡 + 𝜕J𝑠ℎ𝜕𝑉𝑡
= −𝜕𝐼𝑝ℎ𝜕𝑉𝑡 − 𝜕𝐼𝑠𝜕𝑉𝑡 + 𝜕J𝑠𝜕𝑉𝑡
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= −𝐸𝑠𝐾𝑡𝑟 − 𝐼𝑠 (3𝑉𝑡 +𝑊𝑔𝑉𝑡2 )
+J𝑠 (3𝑉𝑡 +𝑊𝑔 − 𝑢𝑝𝑉𝑡2 )

𝜓2 = 𝜕𝑓𝜕𝐸𝑠 =
𝜕𝐼𝑝V𝜕𝐸𝑠 −

𝜕𝐼𝑝ℎ𝜕𝐸𝑠 − 𝜕𝐼𝑠𝜕𝐸𝑠 + 𝜕J𝑠𝜕𝐸𝑠 + 𝜕J𝑠ℎ𝜕𝐸𝑠
= −𝜕𝐼𝑝ℎ𝜕𝐸𝑠 = − [𝐼𝑐𝑐𝑟 + 𝐾𝑇𝑟 (𝑉𝑡 − 𝑉𝑡𝑟)]

𝐺 = [𝜓1𝜓2]
(47)

In order to simplify the calculation without losing too much
on precision, the Hessian matrix could be expressed by the
approximate Gaussian relation below.

𝐻(𝑋) ≃ (𝜕𝑓 (𝑋)𝜕𝑋 )(𝜕𝑓 (𝑋)𝜕𝑋 )𝑇 = [ 𝜓12 𝜓1𝜓2𝜓1𝜓2 𝜓22 ] (48)

We can express exactly this matrix by the use of the following
complete formula.

𝐻 = [ 𝜓1 + 𝜓3𝑓 𝜓1𝜓2 − 𝐾𝑇𝑟𝑓𝜓1𝜓2 − 𝐾𝑇𝑟𝑓 𝜓22 ]
𝜓3 = 𝜕𝜓1𝜕𝑉𝑡 = 𝜕𝜕𝑉𝑡 ( 𝜕𝑓𝜕𝑉𝑡)

= 𝜕𝜕𝑉𝑡 (−
𝜕𝐼𝑝ℎ𝜕𝑉𝑡 − 𝜕𝐼𝑠𝜕𝑉𝑡 + 𝜕J𝑠𝜕𝑉𝑡 ) = − 𝜕2𝐼𝑠𝜕𝑉𝑡2 + 𝜕2J𝑠𝜕𝑉𝑡2

= −𝐼𝑠((2𝑉𝑡 +𝑊𝑔)2 + 2𝑉𝑡2𝑉𝑡4 )

+J𝑠((2𝑉𝑡 +𝑊𝑔 − 𝑢𝑝)2 + 2𝑉𝑡2𝑉𝑡4 )

(49)

The proposed technique is to iteratively apply the conjugate
gradient method using 𝐻(𝑋) and 𝐺(𝑋) as parameters of the
quadratic problem. The algorithm consists of the following
steps:

(i) Give an initial condition 𝑋0 for the parameter vector𝑋.
(ii) Calculate 𝐺(𝑋0) and𝐻(𝑋0) and readjust the limits of

the variation vector 𝑥.
(iii) To seek the optimal solution of the quadratic problem

by the constrained conjugate gradient technique to establish
the correction 𝑥 necessary for the minimization of Φ(𝑋)
around𝑋0,

min
𝑥

(12𝑥𝑇𝐻𝑥 + 𝐺𝑇𝑥)
𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥.

(50)

(iv) Correct the parameter vector by 𝑋0 = 𝑋0 + 𝑥 and
return to step (ii).

Table 3: Different experimental values of the characteristics (Vpv,
Ipv).

𝑉𝑝V 𝐼𝑝V
0 3.300
3.5353 3.2505
5.5500 3.2010
6.7962 3.1680
8.3215 3.1185
9.7205 3.0690
10.9567 3.0195
12.2502 2.9535
13.8727 2.8545
15.2266 2.7555
16.5322 2.5740
17.2528 2.4255
17.9818 2.1945
18.4340 1.9800
18.7883 1.7655
19.1226 1.5345
19.3951 1.3200
19.6467 1.1055
19.8972 0.8745
20.1202 0.6600
20.3465 0.4455
20.5306 0.2145
20.6500 0

4.3. Estimation of 𝑇𝑗 and 𝐸𝑠 (Application on the Photovoltaic
Panel TITAN 12-50). Just to fix the ideas and check the
relations, consider the constant parameters of the Table 1
and a function point corresponding to 𝑉𝑝 = 13.8727V and𝐼𝑝 = 2.8545A. Propose as initial conditions 𝑋0 = [1.3 1] =[𝑉𝑇 𝐸𝑠]0.

With this initial condition, we calculate the following.

𝑓0 = −0.3045
𝐺0 = [−0.05800.9743 ]
𝐻0 = [ 0.0362 −0.6092−0.6092 10.2387]

(51)

By completing the algorithm flow with the limits

[ 10.8] ≤ 𝑋 ≤ [1.61.2] (52)

we reach the solution:𝑋 = [1.3056, 0.9052]𝑉𝑇 = 1.3056 and 𝐸𝑠 = 0.9052.
We note here that the estimated value of the solar

radiation is divided by a ratio of 1000. Still as a test and
validation of the developments made, consider the complete
curve (V𝑝𝑣, I𝑝𝑣) given by Table 3 with the parameters of the
TITAN-12-50 module already introduced in Table 2.
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Figures 12 and 13 give, respectively, the variation of solar
radiation and the temperature with the load voltage

5. Conclusion

In this paper, we have proposed amethod based on numerical
development to estimate through an experimental curve the
two main parameters influencing the operation of a PV
system. In the same way, we estimated the two series and
shunt resistors while showing the influence of the climatic
conditions on these resistances, which allows us to develop
a new model of a PVG. Finally, we showed the efficiency of
this model experimentally using dSPACE 1104.

Data Availability

The parameters of the photovoltaic panel are included in the
article, while the simulation programs used in the study are
available from the corresponding author on request.
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Copyright © 2019 José-Luis Casteleiro-Roca et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A fuel cell is a complex system,which produces electricity through an electrochemical reaction. For the formal application of control
strategies on a fuel cell, it is very important to have a precise dynamic model of it. In this paper, a dynamic model of a real hydrogen
fuel cell is obtained to predict its response. The data used in this paper to obtain the model have been acquired from a real fuel
cell subjected to different load patterns by means of a programmable electronic load. Using this data, a nonlinear model based on a
hybrid intelligent system is obtained.This hybrid model uses artificial neural networks to predict the output current of the fuel cell
in a very precise way. The use of a hybrid scheme improves the performance of neural networks reducing to half the mean squared
error obtained for a global model of the fuel cell.

1. Introduction

The problems derived from pollution, and the increasingly
alarming climate change, have led modern society to look for
clean energy sources.One of themost promising technologies
for accomplishing hybrid energy topologies is based on
renewable sources centers on hydrogen, due to its possible
generation by electrolysers and then its storage. Subsequently,
from this gas, the generation of electrical energy by fuel
cells is absolutely feasible [1]. In this sense, fuel cell based
systems are an energy source that appears as a hopeful choice
as a result of their increased performance, high reliability
in steady applications, and small environmental incidence,
space and automotive applications [2].

A fuel cell is a complex system consisting of a series
connection of individual cells (a stack), where the electric
current is produced by an electrochemical reaction, com-
bined with all other systems necessary for its operation, that
is, filters and systems that condition the gases involved in
the reaction (𝐻

2
and 𝑂

2
), a cooling system, and, of course,

a control system [3]. Compared to other clean technologies,
such as wind or photovoltaic generation, fuel cells do not
require a specific location to obtain higher performance. In
addition, they are very respectful of the environment. Proton
Exchange Membrane (PEM) fuel cells (PEMFC) offer high
energy density and a number of advantages, such as their
low volume and weight compared to other technologies.
PEMFC operate at low temperatures (50∘C–100∘C), which
allow them to start more quickly (requiring less heating
time), and result in less wear and tear on system components
and better durability. PEMFC are commercially available
in a large range of powers (from some watts to several
MW), permitting their use in a large number of applications
[2]. For example, in stationary applications, fuel cells can
be connected to the electrical network [4], installed as
separate generators [5], or operate in landfills and wastewater
treatment plants [6]. Its use is also interesting in transport
applications, owing to the scarcity of fossil fuels and their
polluting effects [7, 8], or on other types of mobile stations
[9].
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Figure 1: Fuel cell diagram.

A fuel cell behaves as a nonlinear dynamical system,
which generates electrical energy through an electrochem-
ical reaction. The energy generated by the fuel cell is not
regulated; thus, a control system is necessary for its efficient
use [10–13]. In this way, for the formal application of control
strategies on a fuel cell, it is very important to have a model
of its dynamic behaviour [1, 14–18]. Hou et al. [19] analysed
stack voltage response to current steps measuring voltage
variation rate, initial value of dynamic voltage, time to reach
steady state and dynamic resistance factor. The results of this
investigation show that the dynamic response of the stack
voltage is different for increases and decreases in current [20],
what must be taken into account when establishing a test
pattern to obtain data from the fuel cell.

It is important to be able to predict the behaviour of
fuel cells for their efficient use; hence, obtaining an accurate
model is a very important task before designing a control
strategy. Achieving an accurate model of a system is a
fundamental part of its study; however, we do not always have
enough information to obtain an acceptable mathematical
model. Therefore, we must resort to modelling techniques
based on input–output data [21–25]. In control systems this
process is even more critical, since it requires a model as
accurate as possible, both to perform analysis on the system
[26–28] and to design a suitable and efficient controller for it
[29–31].

For the current prediction in this paper, several regression
techniques had been checked.The algorithms based onmulti-
ple regression analysis are accepted regression methods used
in several applications [32–37]. Some previous works have
shown the use of these methods despite its low performance
[33, 38–40]. In this paper, to overcome this limitation, we
propose to use hybrid intelligent system to accomplish the
regression task, more specifically, an artificial neural network
(ANN) hybrid system as the ones used in [41–46], since
ANNs allow obtaining simple and very accurate nonlinear
models [47–50].

This work is divided into the following sections. After
to the current introduction, the case study is described in
detail. Afterwards, the model approach and the employed
algorithms are presented. The results section explains the

best achieved configuration of the hybrid model, and the
validation of the accomplished prediction model. Lastly,
conclusions are explained and future works are depicted.

2. Case of Study

A single fuel cell of a PEM stack consists of an electrolyte
layer in contact with an anode and a cathode on both
sides; see Figure 1 . A PEM fuel cell produces electrochemical
energy when a hydrogen-rich gas passes through the anode
and a gas rich in oxygen (or air) passes through the cathode
with an electrolyte between the anode and the cathode,
which allows the exchange of electrical charge (ions) [51].
The dissociation of hydrogen molecules produces the flow of
ions through the electrolyte and an electric current through
an external circuit. The only residue generated is pure water.
A usual single fuel cell produces approximately 1.2 V under
normal operating conditions. For the creation of higher
power systems, cells are connected in series forming a stack.

The data used for the realisation of the model were
acquired through laboratory tests of an air-cooled polymer
electrolyte fuel cell (AC-PEFC). Specifically, a PEM FCgen-
1020AVS stack from Ballard was used [52]. This stack was
built with 80 BAM4G cells [53] based on polymeric com-
position. The anode and cathode side are made of a porous
carbon cloth with a catalyst based on platinum and platinum-
ruthenium [54]. The stack was assembled with graphite
plates and sandwiched between aluminium end plates by
compression. The PEM FCgen-1020AVS stack is designed to
provide up to 3.4 kW stable nonregulated electrical power
with 45.33 V and 75 A. This stack is air-cooled, and a
dead-ended configuration is used; thus, it does not require
external humidification of the air or hydrogen. The inlet
hydrogen pressure can vary from 1.16 to 1.56 bar. The
oxidant and cooling subsystem were built based on the
manufacturer’s instructions [55]. The complete sequence to
put into operation the individual devices that make up
the stack, the oxidation and cooling subsystem, the electric
subsystem, and the implementation of the balance of plant
(BoP), whose schema is shown in Figure 2 and a real image of
the laboratory in Figure 3, were thoroughly explained in [56].
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To test the system an Amrel PLA5K-120-1200 programmable
electronic load was used. A system was implemented to
monitor all the fuel cell systems and store the data resulting
from the tests, which was described in [57, 58]. In [59], a
detailed thermal model based on differential equations is
established according to the conservation equations of mass
and energy for a 16 cells PEMFC stack. In this work, the
effects of the temperature on the operation of the cell are

Current

Voltage

M
od

el

Temperature

Figure 4: Basic schematic model.

demonstrated. In order to avoid these effects of operation, the
used BoP includes a temperature control system to guarantee
the maintenance of the fuel cell at its optimum value. In
addition, it is necessary to keep inmind that the hydrogen gas
should be vented periodically to the atmosphere and replaced
with fresh hydrogen using a purge process according to [55].

3. Model Approach

Themodel proposal implemented in this work is illustrated in
Figure 4, where the inputs are the voltage and the temperature
measured at the BoP and the output is the present value of the
current. To take into account the process dynamic, the inputs
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of themodel include the previousmeasured values of voltage,
temperature, and current.

An internal layout of the model with the mentioned pre-
vious variable values is shown in Figure 5, where the hybrid
model is represented. Due to the possible nonlinear response,
this hybrid model is built upon clustering; the modelling
dataset is divided in groups with similar characteristics. A
different regression model was created for each cluster with
the objective to increase the whole model performance.

Figure 6 represents the operation of the hybrid model
shown in Figure 5. The number of clusters is obtained by
testing different topologies. This figure represents a general
hybrid model, with 𝑛 clusters and 𝑛 models with the specific
parameters for each one.

Clustering

Regression on each
cluster

The best local model
selection 

The best topology
selection for the hybrid

model creation

Figure 7: Flowchart of the hybrid model creation phases.

To create a hybrid model, the modelling process could be
divided into the following steps (Figure 7):

(1) Clustering phase
(2) Regression modelling phase for each cluster
(3) Selection of the best local model (by cluster)
(4) Selection of the best topology for the hybrid model

For the clustering phase, the k-means algorithm has been
used to achieve the groups with similar features. To perform
the regressionmodelling phase, the ANN algorithmwas cho-
sen considering its capacity to predict the output of nonlinear
systems with a simple internal configuration. Although this
is a hybrid system, the model achieves better results if the
regression algorithms are intelligent systems than if they
are traditional regression methods.The regression modelling
phase uses k-fold to achieve a more real approach in the
model performancemeasurement.The k-fold testingmethod
is explained in Figure 8. The data for each cluster is divided
into 𝑘 times and 𝑘 models with the same configuration and
are trained with different test data.

As it is shown in Figure 8, the errors values between the
measured and the predicted output for eachmodel are stored.
When the k-fold process finished, all the data of a specific
cluster is used to test the model, and the performance could
be achieved.When all the different possible configurations for
the models are tested, the best regression algorithm for each
group is chosen based on the lowest error reached.

For the hybrid model topology definition, the number
of clusters must be determined. This choice is done based
on the global error considering the samples quantity for
every cluster and estimating a weighted error.The best hybrid
configuration is the one with the best whole performance.

3.1. K-Means Algorithm. The k-means method is used to
create a certain number of groups in an unlabeled data
set. The idea is to place centroids in the corresponding
hyperspace, so that the data belonging to the same centroid
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have similar characteristics and represent a data cluster [60,
61].

Every new sample, once the centroids are trained and
correctly placed in the hyperspace, is compared with them
and is associated with the centroid that is closest in terms of
the chosen distance, usually the Euclidean [62].

This algorithm has an initial training phase that needs to
know the number of clusters to divide the data. This phase
could be slow depending on the number of groups and the
data size; however, once the training is finished, the cluster
assignment is very fast for new data [63].

The initial location of the centroids is chosen randomly.
Then, the location varies, until reaching the greatest distance
between them, according to the following procedure:

(i) Each sample is associated with the nearest centroid
and is included in a specific list.

(ii) After checking all the samples and being associated
with the list of the corresponding centroid, the list of
labelled samples will be available.

(iii) The location of the centroid is recalculated obtaining
the center of the set of samples that have been
associated with it.

(iv) The procedure is repeated until the centroids are no
longer displaced in the successive calculations.

Moreover, as the initial centroids are randomly selected,
the procedure is repeated several times until the largest
distance between centroids is reached.

3.2. Artificial Neural Networks. The ANN is an intelligent
algorithm that uses small processing units called neu-
rons. These neurons are interconnected between each other
through links, and each one calculates a function taking into
account the different inputs. All the inputs to each neuron
have its weight in the activation function inside the neuron
[64].

The main specific characteristics of ANNs are that they
can learn from experience through the generalization of cases
[65].TheANNs are adaptive intelligent systems that can carry
out certain functions through training.TheANNs create their
own internal representation of the problem with the training
and respond according to the situations, although they had
not previously learned a specific situation. Then, the ANNs
are able to generalize from previous cases to new ones [66].

The activation function defines the new state, or output,
of the neuron as level of excitation [67].The activation degree
of the artificial neuron can usually vary between a range
(normally [0, 1] or [-1, 1]).This value indicates the state of the
neuron: inactive (0 or -1), active (1), or an intermediate state
between these limits which indicates its activation degree.

The topology, or architecture, of an ANN is determined
by the organization of the neurons, their arrangement, and
their connections. The architecture depends on four main
parameters: the layers quantity in the system, the number of
neurons of every layer, the connectivity between neurons, and
the activation functions [68].

The basic structure to interconnect neurons is the mul-
tilayer perceptron. This type of ANN is organized in several
layers: input, intermediate or hidden and output. A layer is
a set of neurons whose input information comes from the
same source: the inputs of the ANN for the input layer or
the previous layer for the rest of the layers. The output of the
neurons in the same layer has the same destination too: the
next layer or the output of the ANN (in the case of the output
layer).

Normally, the output layer neurons use special activation
functions depending on the use of the ANN; for regression,
the typical is the linear function.

3.3. Data Processing. The data set in this research is collected
using the BoP system described in the case study section.
With this equipment, the samples from two different days
were collected. A total of 774391 samples were recorded from
these tests and, after discarding the bad measurements, the
data sets were reduced to 774,385. As themodel used previous
values, it was necessary to eliminate the samples that did not
have all the inputs values to model.

Although there were 774,379 valid samples, only 1/5 of
them were used to train the hybrid model; they were selected
randomly to ensure the generalization of the model. Then,
only 154,875 samples were used in the modelling phase.

In addition, the samples of another different day were
used to validate the hybrid model achieved. 4,832 samples,
which were not used in the modelling phase, were recorded
from two separate tests (1,489 and 3,343 samples each), and
they were used in the validation phase of the research.

4. Results

The results of this research could be divided into three differ-
ent parts: the clustering, the modelling, and the validation.

4.1. Clustering Results. The clusters were created with the
explained k-means algorithm. Nine hybrid systems were
created with different number of clusters (between 2 and 9),
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Table 1: Number of samples in each created cluster.

Cl-1 Cl-2 Cl-3 Cl-4 Cl-5 Cl-6 Cl-7 Cl-8 Cl-9 Cl-10
Global 154,875
Hybrid 2 75,814 79,061
Hybrid 3 47,719 50,414 56,742
Hybrid 4 10,699 37,213 50,414 56,549
Hybrid 5 10,699 28,324 30,251 37,020 48,581
Hybrid 6 10,699 22,194 28,058 28,324 28,580 37,020
Hybrid 7 285 10,699 22,194 28,084 28,273 28,320 37,020
Hybrid 8 285 2,627 10,475 22,194 28,084 28,273 28,320 34,617
Hybrid 9 285 2,627 5,375 8,161 22,194 27,538 28,084 28,250 32,361
Hybrid 10 285 2,027 2,627 5,099 8,161 22,194 26,447 27,533 28,139 32,363

Table 2: Configuration for each individual hybrid model.

Cl-1 Cl-2 Cl-3 Cl-4 Cl-5 Cl-6 Cl-7 Cl-8 Cl-9 Cl-10
Global ANN15
Hybrid 2 ANN15 ANN12
Hybrid 3 ANN14 ANN11 ANN12
Hybrid 4 ANN14 ANN15 ANN14 ANN11
Hybrid 5 ANN11 ANN13 ANN11 ANN14 ANN15
Hybrid 6 ANN12 ANN13 ANN15 ANN12 ANN15 ANN12
Hybrid 7 ANN11 ANN14 ANN12 ANN12 ANN11 ANN12 ANN13
Hybrid 8 ANN11 ANN15 ANN11 ANN11 ANN11 ANN11 ANN12 ANN14
Hybrid 9 ANN11 ANN15 ANN13 ANN11 ANN12 ANN13 ANN11 ANN12 ANN15
Hybrid 10 ANN11 ANN13 ANN11 ANN13 ANN11 ANN12 ANN12 ANN15 ANN11 ANN15

Table 3: Mean square error for each individual hybrid model.

Cl-1 Cl-2 Cl-3 Cl-4 Cl-5 Cl-6 Cl-7 Cl-8 Cl-9 Cl-10
Global 0.0043
Hybrid 2 0.0014 0.0028
Hybrid 3 0.0012 0.0046 0.0030
Hybrid 4 0.0000 0.0010 0.0069 0.0046
Hybrid 5 0.0000 0.0000 0.0102 0.0032 0.0144
Hybrid 6 0.0000 0.0146 0.0037 0.0000 0.0085 0.0010
Hybrid 7 0.0000 0.0000 0.0147 0.0034 0.0058 0.0000 0.0014
Hybrid 8 0.0000 0.0075 0.0000 0.0184 0.0031 0.0017 0.0000 0,0003
Hybrid 9 0.0000 0.0075 0.0000 0.0000 0.0171 0.0000 0.0030 0.0082 0.0002
Hybrid 10 0.0000 0.0000 0.0075 0.0000 0.0000 0.0041 0.0000 0.0074 0.0019 0.0000

as the optimal number of groups was previously unknown.
The algorithm was trained with random initialisation of the
centroids, and the training was repeated 20 times to ensure
the best divisions, the furthest centroids. The number of
samples used in themodelling phase for each cluster is shown
in Table 1.

4.2. Modelling Results. The ANN regression algorithm is
configured with only a single hidden layer. The input layer
has 5 inputs, one for each variable explained in the model
approach section, and only 1 output in the last layer.
Several configurations of the ANNs for each cluster were
trained, all of them with tan-sigmoid activation function

for the internal neurons (in the hidden layer) and, in the
output layer, a linear activation function was used. The
difference in the several configurations was the hidden
layer neurons’ quantity. This layer size varied from 1 to 15
neurons.

To train each ANN configuration, the Levenberg-
Marquardt optimization algorithm was used. Moreover, to
finish the training phase, gradient descent was used base on
theMSE (mean squared error).The best ANN configurations
for each cluster are indicated in Table 2.

The selection of these advantageous configurations uses
the MSE as a performance measurement for the created
models. In Table 3 it is possible to see the lowest error for
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Table 4: Mean squared error for each model.

Global Hybrid model (local models)
2 3 4 5 6 7 8 9 10

MSE 0.0043 0.0021 0.0030 0.0042 0.0073 0.0046 0.0041 0.0037 0.0047 0.0024
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Figure 9: Validation test 1.

Table 5: Performance values for the validation tests.

MSE NMSE MAE MAPE
Validation test 1 0.5327 0.0043 0.0704 1.9414
Validation test 2 0.4384 8.4272e-4 0.1889 3.7677

each cluster achieved with the configuration that is shown in
Table 2.

To calculate the best hybrid configuration for the whole
model, as explained, the number of samples was considered.
The performance of the different hybrids and the global
model is presented in Table 4. It is shown that the best
configuration implies a hybrid model with two clusters, and
the error using a global model is more than the double.

4.3. Validation Procedure. Two validation data sets were used
to check the final hybrid model accomplished with 2 clusters
and configurations of 15 and 12 internal neurons.The first test
is shown in Figure 9, where the current has few changes, but
it is possible to appreciate that the real data (blue dotted line)
and the output of the model (green continuous line) are very
close all the time.

The second validation data set (Figure 10) shows a usual
test for the fuel cells. In this case, the current is increased until
its maximum and, then, reduced gradually. The predicted
value in this case shows the biggest error in the middle of the
test when the current has the highest values.

In Table 5 different error values are shown for the valida-
tion data: MSE, NMSE (normalize mean square error), MAE
(mean absolute error), andMAPE (mean absolute percentage
error). Despite the graphical error shown for the second

validation data in Figure 10, the error values are very good.
The worst value is the MAE because, in the test, the current
has very high values; however, the other error values are
lower than the ones obtained in the first validation data. This
fact could be confirmed with Figure 11, where the percentage
absolute error of the second validation data is in the worst
part of the test (the central part of Figure 10).

5. Conclusions

Amodel of a fuel cell based on hydrogen has been developed
in this work. The model predicts the current in the fuel cell
under differentworking points, and it could be used in several
ways as control or fault detection. As an example, in the
fault detection field, the model output must be similar to the
real measure of a current sensor, and if the measured value
deviates from the modelled one, a sensor failure or a system
malfunction could be represented.

Since the fuel cell is a nonlinear system, a hybrid model
instead of a global is selected. In this paper, ANNs are used as
regression algorithm due to its accuracy. Furthermore, with
the hybrid model, the performance of the ANNs is increased
up reducing to half the MSE obtained with a global model.

Very good results are obtained in terms of error in the
predicted current considering that the MSE value is 0.0021
for the hybrid model with 2 clusters. One of them used an
ANN with 15 internal neurons and the other an ANN with
12 neurons. To validate the model, two different data sets
were used and, although the maximumMAE was 0.1889, the
maximum NMSE was only 0.0043.

As for futureworks, the possibility of predicting the future
values of the current will be examined.This future prediction
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would increase the fuel cell performance, since it could be
adapted faster to new working points.
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data acquisition system for real time cell temperature monitor-
ing in air-cooled polymer electrolyte fuel cells,” Sensors, vol. 17,
no. 7, article no. 1600, 2017.

[59] X. Li, Z. Deng, D. Wei et al., “Parameter optimization of
thermal-model-oriented control law for PEM fuel cell stack via
novel genetic algorithm,” Energy Conversion and Management,
vol. 52, no. 11, pp. 3290–3300, 2011.

[60] J. MacQueen, “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the Berkeley
Symposium on Mathematical Statistics and Probability, Volume
1: Statistics, vol. 1, pp. 281–297, 1967.

[61] J.Moody andC. J. Darken, “Fast learning in networks of locally-
tuned processing units,” Neural Computation, vol. 1, no. 2, pp.
281–294, 1989.

[62] J. Orallo, M. Quintana, and C. Ramı́rez, Introducción a la
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OscillatingWater Column (OWC) based devices are arising as one of the most promising technologies for wave energy harnessing.
However, the most widely used turbine comprising its power take-off (PTO) module, the Wells turbine, presents some drawbacks
that require special attention. Notwithstanding different control strategies are being followed to overcome these issues; the use of
other self-rectifying turbines could directly achieve this goal at the expense of some extra construction,maintenance, and operation
costs. However, these newly developed turbines in turn show diverse behaviours that should be compared for each case.This paper
aims to analyse this comparison for the Mutriku wave energy power plant.

1. Introduction

1.1. Energy Problem. An increase in the energy consumers'
environmental awareness seems to be driving a decrease on
the fossil fuels and nuclear fission consumption, currently
the most used energy resources [1–3]. This realization is
pressuring into pushing renewable energy technology and its
sources beating out other nonrenewables [4–6], as the 2020
climate and energy package reflects [7]. Renewable energy
evolves around the natural resources that provide practically
inexhaustible amounts of energy [8], either through the
massive latent energy or through regenerative capabilities
within the human time-scale. The most studied renewable
energies today are solar, wind, wave, hydraulic, biomass,
geothermic, and tidal [9].

Delucchi and Jacobson state that the total energy require-
ments could be fulfilled from solar, wind, and wave energy
[10–12]. However, wave energy has lagged behind, even
though the power density analysis stands up for the opposite
[4]. According to this concept, when solar radiation heats
air masses to different temperatures, it forces them to move
and thus creates wind. Therefore, wind pools solar energy

and increases the power density. In turn, the ocean allows
transferring energy from the wind to mechanical energy
within the waves. Through this principle, at about 15-degree
latitude, where the sun radiation is of 0.17 kW/m2, the wind
power density rises to 0.58 kW/m2 and the wave power
density climbs up to 8.42 kW/m2 [4].

Additionally, the power density increment of the waves
means that a sudden sun radiation stop would not suppose
a wave activity decrease until many hours later. Besides, the
sun could have easily come back by then, generating new
powerful waves. This makes wave energy a precious and
available resource. An analysis of the wave energy available
to be harnessed estimates an annual total production around
100,000 kWh, compared to the 16,000 kWh annual consump-
tion [13].

Consequently, hundreds of patents have been developed
all around the globe to harness wave energy [14, 15]. Their
classification divides them into on-shore or off-shore devices
[16]. On-shore machines are easily manufactured and main-
tained, but harness less energy and there are fewer locations
for installation. Oscillating vanes [17], tapering canals [18],
and oscillating wave column (OWC) [19] are the most
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Figure 1: The OWC power plant of Mutriku.

widely used types. Off-shore devices quite often require to be
affixed to the seabed and are not as developed as on-shore
ones. Mighty Whale [20], Wave Dragon [21], Wave Plane
[22], Pelamis [23], Archimedes [24], Wave Star [25], and
Power Buoy [26] technologies are examples of such type of
technology. Oscillating wave column technology is nowadays
deemed as the most promising candidate, due to it having the
largest development rate compared to the rest [27–29].

1.2. Background. An OWC-technology-based device con-
verts wave energy into an oscillating air flow, which in
turn makes a turbine rotate. With the turbine attached to a
power induction generator, energy is harnessed [19]. It can be
understood as two main subassemblies: the capture chamber
and the power take-off (PTO) system.

The capture chamber [30] consists of a hollow structure
with an aperture placed in such a way that it stays below
the sea water level (SWL) regardless of the tide. This con-
figuration allows the water in and out of the cavity, which
compresses and decompresses the air inside the cavity as the
waves enter and leave. The air pressure variation forces an
upwards and downwards air stream.

This air stream acts upon the PTO system composed of a
turbine and a power induction generator [31]. It flows through
the turbine, forcing it to spin and generating a pressure drop
as a result. The spin creates a torque that turns the generator.
The oscillating airflow would make a common turbine spin
in a different direction each time. To optimize the turbine
for unidirectional movement, a valve-based rectifying system
could be used [19] or, in a more straightforward way, self-
rectifying turbines.

Based on this technology, the Basque Energy Board
(EVE) has built a ground-breaking power plant known as
NEREIDA MOWC [32] in the Basque town of Mutriku
(Figure 1), which consists of 16 turbo-generator modules
rated at 18.5 kWh each with self-rectifying turbines coupled
to a DFIG generator. This power plant makes use of 5-blade
Wells turbines from the series NACA00XX [33–35]. The

Wells turbine, invented by Alan A. Wells in 1976, is regarded
as the first of its kind [33, 34, 36–38]. Its rotor is made up
of a number of blades symmetric in the direction normal
to the airflow, allowing the tangential force to keep constant
regardless of the airflow direction, making them spin always
in the same direction [39]. However, this symmetry presents
an inherit drawback, the stalling effect, which makes the
turbine stall when the airflow through the turbine goes over
a certain value.This sharply drops he efficiency of the turbine
[40, 41].

There are many methods oriented towards the solution of
this issue [42–45]:

(i) relief valves

(ii) air valve control

(iii) rotational speed control

Relief valves permit some airflow to be bypassed to reduce the
incoming air stream into the turbine [5, 46].

Air valve control allows for the regulation of the airflow
input to the turbine so that it never reaches the airflow limit
value, thus avoiding the stall effect. Several control methods
have been developed for this model, such as artificial-neural-
networks-based controllers [47] or robust sliding-mode con-
trollers [48], but PID type controller is still considered the
most efficient one [49].

The turbine can also be prevented from stalling by
controlling its rotational speed which involves accelerating
the turbine to a sufficient speed (Figure 2). In this case, the
slip of the DFIG generator is set to vary so that higher speeds
can be reached [47, 50]. This approach tends to calculate
the maximum pressure drop throughout the turbine without
stalling to determine the slip of the DFIG and modify the
turbine rotational speed [49] (Figure 3).

As it can be observed, solving the stalling effect requires
sufficient control mechanisms. However, it could be avoided
directly by using a turbinewithout this issue.This substitution
would additionally allow the focus of the control only on
increasing the torque output of the system. There are many
turbines that have been developed since Wells was created
which could yield promising results. Pitch-controlled Wells,
impulse, and radial with pitch-controlled guide vanes and
biradial turbines are compared to the Wells turbine installed
in Mutriku throughout this paper.

2. Materials and Methods

2.1. Turbines Description. Pitch-controlled Wells turbines
(Figure 4) consist of endowing the Wells turbine with the
capability of modifying the pitch angel between two extreme
angles, ±𝛾, to convert the incoming airflow more efficiently
into rotational motion [51]. This increase in efficiency stems
from the ability to diminish the hysteresis of a vane due to the
influence of the vanes in close proximity [52]. This turbine
also enhances the performance when starting up or at low
speeds [53], allowing reaching higher speeds in a shorter
amount of time, a desirable feature in OWC-based devices
[54].
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Impulse turbines (Figure 5) solve the stalling problem, are
capable of starting in a short period of time and of working at
low speeds [55]. Setoguchi et al. [56–63] developed a variation
of this turbine adding two rows of guide vanes, one upstream
and other downstream, whose pitch is controlled to increase
its efficiency. These guide vanes are mechanically coupled so
that the one in the outcoming path does not obstruct the
airflow when controlling the ingoing vane to optimize the
energy conversion [64].

Radial turbines with pitch-controlled guide vanes (Fig-
ure 6) are similar to impulse turbines with the difference that
the airflow enters the turbine radially and not axially [65–71].
They also include two rows of guide vanes, one upstream and
other downstream, whose pitch is controlled between two
extreme angles [70]. These turbines reduce the mechanical
requirements of the impulse turbines but maintain all their
benefits, such as the removal of the stall effect [72]. However,

the trade-off requires an extra system forcing the air in the
radial direction.

Biradial turbines (Figure 7) are a new kind of a radially
attacking turbine [73].This turbine is also equipped with two
rows of mechanically coupled guide vanes, which are axially
displaced to guide the input airflow without obstructing
the outgoing airflow. Obstructing the airflow would make
the vanes stall [74]. Since these turbines use impulse-type
vanes, all the drawbacks from the Wells turbines are solved.
Additionally, their mechanical design allows them to convert
wave energy more efficiently [73].

The data obtained by different sensors placed in the
Mutriku wave power plant is used to compare these turbines,
along with the Wells variant. From the data, inputs for
the different turbine models can be created and therefore
compute their outputs when subjected to the same inputs.
This way, the most adequate turbine can be determined.
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2.2. Sensors Description and Data Treatment. The data used
to simulate the environment and the control of the turbines
comes from three different sources:

(i) Basque Energy Board (EVE)
(ii) AZTI-Tecnalia
(iii) State harbours (website)

The following variables are provided by the EVE, from
January 1st 2014 toMay 15th 2014, with half second resolution:

(i) Pressure (Pa)

(ii) Air valve angle (degree)

(iii) Rotational speed (rpm)

(iv) System extracted power (kW)

From the aforementioned data, rotational speed and valve
angle depend on the control strategy, whose parameters vary
from one turbine to another. Therefore, these values depend
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(a) (b)

Figure 8: Pressure sensors in Mutriku. (a) Capture chamber static pressure sensor. (b) Pressure drop along the PTO sensor.

(a) (b)

Figure 9: (a) Wave spectrum record. (b) RDI 600kHz.

on each turbine and the ones provided by the EVE are related
to the Wells turbine use case.

The pressure and the extracted torque outputs are exten-
sively used to compare against the outputs from the other
turbines' models and hence determine the turbine whose
response would best fit in Mutriku.

There are two types of pressure sensors in the power plant
of Mutriku: one to measure the static pressure of the capture
chamber and the other for the pressure drop along the turbo-
generator module. The pressure of the capture chamber is
measured bymeans of aPTX 7355 typeDruck sensor installed
at the base of the power plant (Figure 8(a)). However, in order
to obtain the pressure drop through the turbo-generator, two
CMR controls P-sensors for low air pressure are employed,
one at the inlet of the turbine and the second at the top of the
turbo-generator module (Figure 8(b)) [75].

AZTI-Tecnalia provided the average height and period of
the wave trains that took place during a period of 20 mins
every 2 hours on May 12th 2014. From the wave fundamental
parameters, two half-a-second resolutions vectors are gener-
ated, one for the amplitude and another for the period.Those
vectors are used as inputs for all the models of the different
turbines to objectively compare their response for the exact
same conditions.

The sensor used to acquire this information is the Tele-
dyne RDI 600kHz, an Acoustic Doppler Current Profiler
(Figure 9).

This sensor measures water depth ranging from 0.7m to
90m. Laying in the seabed next to Mutriku, where the water
depth is around 5m, this sensor allows measuring all the
different wave heights. In order to harness the data, this can
be done well via a serial/DC/computer cable well storing it in
an internal memory card and then recovering it in the PC.

2.3. TurbineModelsDevelopment. Theexpression obtained in
[76] to work out the pressure drop through the Wells turbine
installed in Mutriku is a function of a parameter depending
on the turbine itself, the power coefficient (𝐶𝑎),

𝑑𝑝 = 𝐶𝑎
𝜌𝑏𝑙1𝑛
2
1
𝑎1
(V𝑡
2 + 𝜔𝑡

2𝑟2) , (1)

The definition of this parameter may however vary from one
turbine to another, making the expression of the pressure
drop through the turbine change. Therefore, to make use of
the previous unaltered expression, it is necessary to obtain an
equation that relates the power coefficient in (1) to the power
coefficient definition for each turbine.
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Figure 10: Relationship between flow coefficient-power coefficient and flow coefficient-torque coefficient.

Additionally, to benchmark the different turbines a com-
parison of the corresponding output torque directly linked
to the output power is needed. According to [76], the output
torque of the Wells turbine is defined as

𝑇𝑡 =
𝑑𝑝 ⋅ 𝐶𝑡 ⋅ 𝑟 ⋅ 𝑎1
𝐶𝑎

(2)

Integrating (1) into (2), the output torque can also be defined
as

𝑇𝑡 = 𝐶𝑡
𝜌𝑏𝑙1𝑛
2
𝑟 (V𝑡
2 + 𝜔𝑡

2𝑟2) (3)

This equation also depends on a coefficient of the turbine
in use, the torque coefficient (𝐶𝑡). Hence, as expected, this
expression may differ from one turbine to another. Conse-
quently, it is necessary to find and expression relating the
torque coefficient in (3) and the torque coefficient for each
turbine to compare.

Both previous parameters, power and torque coefficient,
depend in turn on the flow coefficient, defined as

Φ = V𝑡
𝜔𝑡𝑟

(4)

This definition may differ for some turbines, too. An expres-
sion relating this expression to the one defined for each
turbine may thus also be necessary in those situations.

The relationships between flow coefficient and power
coefficient and flow coefficient and torque coefficient rela-
tionships for the case of the Wells turbine are described in
Figure 10.

In this sense, adapting the Wells turbine model for the
case of Mutriku [76] to the different definitions of the
torque coefficients, the pressure drop and output torque can
be obtained for all the turbines and, therefore, determine
which turbine would be the most appropriate for the case at
Mutriku.

A convergence of the expressions for the different tur-
bines is developed in the following way. The flow coefficients
of the turbines to be compared are written as a function
of the flow coefficient of the Wells turbine. The power and
torque coefficients are in turn expressed reversely, writing the

Table 1: Parameters of the pitch-controlledWells turbine.

Blade profile NACA0021
Blade number 20
Cord length 75 mm
Solidity 0.75
Hub to tip ratio 0.7
Aspect ratio 0.6
Diameter 750 mm
Gap between rotor and casing 1 mm
Angle range 0-12∘

coefficients for theWells as a function of the coefficients of the
new turbines.

This stems from the fact that the new turbines' expressions
are integrated within a model devoted to the Wells. So to
obtain the power or torque coefficients, the flow coefficient
is used as an input. Therefore, once the flow coefficient
(4) is calculated by the model for the different turbines,
this serves as the input for the graph relating the flow
coefficient to the other two (Figure 10 for the Wells turbine
in Mutriku). Once the power and torque coefficients are
obtained from the graphs, both are rewritten into the same
form as the coefficients defined for theWells turbine and then
implemented in the model.

Pitch-Controlled Wells. The pitch-controlled Wells turbine
analysed in this section is an adaptation to the duct diameter
in Mutriku of the turbine defined in [54]. The main features
of this turbine can be summarised in Table 1.

Regarding the turbine parameters, they are defined as

𝐶𝑎𝑝𝑊 =
𝑑𝑝𝑝𝑊𝑄

(𝜌𝑏𝑙1V𝑎𝑛 (V𝑡2 + 𝜔𝑡2𝑟2)) /2
, (5)

𝐶𝑡𝑝𝑊 =
𝑇𝑡𝑝𝑊

(𝜌𝑏𝑙1𝑟𝑛 (V𝑡2 + 𝜔𝑡2𝑟2)) /2
, (6)

Φ𝑝𝑊 =
V𝑡
𝜔𝑡𝑟

(7)
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Table 2: Parameters of the biradial turbine.

Rotor
Diameter 244 mm
Input/output width 53.7 mm
Blade number 3
Width 3.7 mm
Input/output angle 40∘

Gap between rotor and casing 1 mm
Guide vanes
Vane number 23
Geometry Aerofoil
Rotor axis -vane distance 274 mm
Rotor end-vane distance 30 mm
Duct
Diameter 750 mm

After a few modifications, it can be obtained that, for this
turbine,

𝑑𝑝𝑝𝑊 = 𝐶𝑎
𝜌𝑏𝑙1𝑛
2
1
𝑎1
(V𝑡
2 + 𝜔𝑡

2𝑟2) , (8)

𝑇𝑡𝑝𝑊 = 𝐶𝑡
𝜌𝑏𝑙1𝑛
2
𝑟 (V𝑡
2 + 𝜔𝑡

2𝑟2) (9)

Hence, the power and torque coefficient defined for this
turbine can be directly used within the model developed for
the Wells turbine [76] without further modifications.

Biradial. The biradial turbine analysed in this section is an
adaptation to the duct diameter in Mutriku of the turbine
described in [74]. The main features of this turbine can be
summarised in Table 2.

Regarding the turbine parameters, they are defined as

𝐶𝑎𝐵 =
𝑑𝑝𝐵
𝜌𝜔𝑡2𝐷2

=
𝑑𝑝𝐵
4𝜌𝜔𝑡2𝑟2

, (10)

𝐶𝑡𝐵 =
𝑇𝑡𝐵
𝜌𝜔𝑡2𝐷5
, (11)

Φ𝐵 =
𝑄
𝜔𝑡𝐷2

(12)

It can be observed how all parameters vary with respect to the
ones defined for the Wells turbine used in Mutriku. In this
scenario, an expression to convert them into the type used in
the Wells turbine model [76] must be worked out.

In the case of the power coefficient, (1) and (10) have been
compared and, since the expression is equivalent,

𝑑𝑝 = 𝑑𝑝𝐵, (13)

𝐶𝑎
𝜌𝑏𝑙1𝑛
2
1
𝑎1
(V𝑡
2 + 𝜔𝑡

2𝑟2) = 4𝐶𝑎𝐵 ⋅ 𝜌𝜔𝑡
2𝑟2,

𝐶𝑎 =
4𝐶𝑎𝐵 ⋅ 𝜌𝜔𝑡

2𝑟2 ⋅ 2𝑎1
𝜌𝑏𝑙1𝑛 (V𝑡2 + 𝜔𝑡2𝑟2)

(14)

𝐶𝑎 = 𝐶𝑎𝐵 ⋅
8𝑎1

𝑏𝑙1𝑛 (Φ2 + 1)
(15)

In this way, once the power coefficient has been worked out
via the graphs in [76], it is adequately transformed into the
power coefficient defined for the Wells turbine by means of
(15) so that it can be used in the pressure drop calculation.

Regarding the torque coefficient, since the torque output
must be equal regardless of the equation used, (3) and (11)
have to be compared and equal.

𝑇𝑡 = 𝑇𝑡𝐵 , (16)

𝐶𝑡
𝜌𝑏𝑙1𝑛
2
𝑟 (V𝑡
2 + 𝜔𝑡

2𝑟2) = 𝐶𝑡𝐵𝜌𝜔𝑡
2𝐷5 = 32𝐶𝑡𝐵𝜌𝜔𝑡

2𝑟5,

𝐶𝑡 =
32𝐶𝑡𝐵𝜌𝜔𝑡

2𝑟5 ⋅ 2
𝜌𝑏𝑙1𝑛𝑟 (V𝑡2 + 𝜔𝑡2𝑟2)

(17)

𝐶𝑡 = 𝐶𝑡𝐵 ⋅
64𝑟2

𝑏𝑙1𝑛 (Φ2 + 1)
(18)

Analogous to the power coefficient, once the torque coeffi-
cient is determined, it is rewritten in an expression compat-
ible with (3), which is then implemented in the model to
obtain the output torque.

Finally, prior to the power and torque coefficient, the flow
coefficient defined for the Wells turbine (implemented in the
model)must be rewritten as a function of the type defined for
the biradial (input of the graph). Therefore,

Φ𝐵 =
𝑄
𝜔𝑡𝐷3
= V𝑡𝑎1
8𝜔𝑡𝑟3
= V𝑡𝜋𝑟

2

8𝜔𝑡𝑟3
= V𝑡𝜋
8𝜔𝑡𝑟
= 𝜋
8

V𝑡
𝜔𝑡𝑟

= 𝜋
8
Φ

(19)

Now, all the necessary modifications have been obtained for
the model to work properly for the Biradial, which is now
ready for implementation.

Impulse. The impulse turbine analysed in this section is
adapted to the duct diameter in Mutriku for the turbine
defined in [64]. The main features of this turbine can be
summarised in Table 3.
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Table 3: Parameters of the impulse turbine.

Rotor

Geometry Circular arc (r = 30.2 mm)
and ellipse

Cord length 54 mm
Edge radius 0.5 mm
Gap between rotor
and casing 1 mm

Blade number 38
Radius 375 mm
Hub radius 210 mm
Angle 60∘

Blade height 16.1 mm
Guide vanes
Vane number 26

Geometry Straight line and circular
arc (r = 32 mm)

Cord length 70 mm
Angle 15∘

Regarding the turbine parameters, they are defined as

𝐶𝑎𝐼 =
𝑑𝑝𝐼𝑄

(𝜌𝑏𝑙1V𝑎𝑛 (V𝑡2 + 𝜔𝑡2𝑟2)) /2
, (20)

𝐶𝑡𝐼 =
𝑇𝑡𝐼

(𝜌𝑏𝑙1𝑟𝑛 (V𝑡2 + 𝜔𝑡2𝑟2)) /2
, (21)

Φ𝐼 =
V𝑡
𝜔𝑡𝑟

(22)

After a few modifications, it can be obtained that, for this
turbine,

𝑑𝑝𝐼 = 𝐶𝑎𝐼
𝜌𝑏𝑙1𝑛
2
1
𝑎1
(V𝑡
2 + 𝜔𝑡

2𝑟2) , (23)

𝑇𝑡𝐼 = 𝐶𝑡𝐼
𝜌𝑏𝑙1𝑛
2
𝑟 (V𝑡
2 + 𝜔𝑡

2𝑟2) , (24)

and, hence, that the power and torque coefficient defined for
this turbine can be directly used within the model developed
for the Wells turbine [76] without further modifications.

Radial with Pitch-Controlled Guide Vanes. The radial with
pitch-controlled guide vanes turbine analysed in this section
is adapted to the duct diameter in Mutriku for the turbine
defined in [71]. The main features of this turbine can be
summarised in Table 4.

Table 4: Parameters of the radial turbine.

Rotor
Geometry Circular arc (r = 30.2 mm) and ellipse
Cord length 54 mm
Edge radius 0.5 mm
Blade number 88
Radius 375 mm
Angle 60∘

Solidity 2.02
Guide vanes
Vane number 26
Geometry Straight line and circular arc (r = 24.8 mm)
Cord length 50 mm
Outer vane solidity 2.31
Inner vane solidity 2.29
Input angle 15∘

Regarding the turbine parameters, they are defined as

𝐶𝑎𝑅 =
𝑑𝑝𝑅

(𝜌 (V𝑡2 + 𝜔𝑡2𝑟2)) /2
, (25)

𝐶𝑡𝑅 =
𝑇𝑡𝑅

(𝜌𝑎1𝑟 (V𝑡2 + 𝜔𝑡2𝑟2)) /2
, (26)

Φ𝑅 =
V𝑡
𝜔𝑡𝑟

(27)

It can be seen directly how the first two parameters, power
and torque coefficient, vary with respect to the ones defined
for the Wells turbine used in Mutriku. In this scenario, an
expression to convert the previous two into the type used in
the Wells turbine model [76] has to be worked out.

As in the biradial case, both output pressure and torque
have to be the same regardless of the equation used to work it
out. Equalling (1) and (25),

𝑑𝑝 = 𝑑𝑝𝑅, (28)

𝐶𝑎
𝜌𝑏𝑙1𝑛
2
1
𝑎1
(V𝑡
2 + 𝜔𝑡

2𝑟2) = 𝐶𝑎𝑅 ⋅
𝜌
2
(V𝑡
2 + 𝜔𝑡

2𝑟2) , (29)

𝐶𝑎 = 𝐶𝑎𝑅 ⋅
𝑎1
𝑏𝑙1𝑛

(30)

Equalling (3) and (26), the expression to modify the torque
coefficient is obtained.

𝑇𝑡 = 𝑇𝑡𝑅 , (31)

𝐶𝑡
𝜌𝑏𝑙1𝑛
2
𝑟 (V𝑡
2 + 𝜔𝑡

2𝑟2) = 𝐶𝑡𝑅 ⋅
𝜌𝑎1𝑟
2
(V𝑡
2 + 𝜔𝑡

2𝑟2) , (32)

𝐶𝑡 = 𝐶𝑡𝑅 ⋅
𝑎1
𝑏𝑙1𝑛

(33)

Now, all the necessary modifications have been obtained
for the model to work properly with the radial with pitch-
controlled guide vanes turbine and the model is ready to be
implemented.
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Figure 11: Model pressure drop output for the different turbines.

3. Results

3.1. ModelsModifications. In [76], a mathematical model was
developed for the complete capture chamber of an OWC sys-
tem including the turbine by determining both the pressure
drop and the output torque of the turbine from the input wave
parameters. For that, a Wells turbine was modelled and was
validated with data from the Mutriku facility where a Wells
turbine is installed. Then, [75] integrated this partial model
into a complete wave-to-grid model. This complete model
allowedmodifying the control strategy obtaining the pressure
drop and output torque for each control case study and thus
implementing a control strategy to make the most of each
turbine. Comparing the output torque of each turbine, the
most adequate one can be chosen.

Taking that into account, the part of the model regarding
the capture chamber along with the expressions obtained in
the previous section, the turbine equation can be rewritten
to suit the different definitions of flow, power, and torque
coefficients whenever these modifications are needed, as in
the case of the biradial and the radial with pitch-controlled
guide vanes.

For pitch-controlled Wells and impulse turbines, each of
themhas proven that no expressionmodifications are needed.
Therefore, only power and torque coefficients curves for each
turbine have to be modified.

3.2. Models Outputs. Once the models are ready, the data
in Section 2.1 is used to run the models and determine the
pressure drop and output torque for the five studied turbines.
Besides, the parameters of the turbines, such as radius and
cord length are obtained from the turbines' data presented in
Section 2.2.
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Figure 12: Model torque output for the different turbines.

This way, every turbine is tested within the exact same
test environment (same wave parameters and same capture
chamber geometry) but with its own attributes (turbine
geometry and optimized control parameters). This allows for
a comparison the response of the turbines in an unbiasedway,
thus extracting the most accurate conclusions when it comes
to determining the most appropriate turbine for the case of
Mutriku.

The pressure drop and output torque for the different
turbines are as shown in Figures 11 and 12.

As it can be outlined from the previous figures, according
to the pressure drop the radial turbine with pitch-controlled
guide vanes seems to be the most appropriate for the case
of Mutriku, for its pressure values exceed all others. Impulse
turbines are the ones with the lowest pressure drop and
therefore it seems not to be a well suited turbine for Mutriku.

However, this way to choose the most suitable turbine is
regarding the output power that the turbine can provide, a
feature related to the output torque that the turbine applies
on the generator over time. Therefore, analysing the output
torque of each turbine allows for the election of the one
that provides the highest torque for the case of Mutriku
disregarding the cost of manufacture, maintenance, and
operation. Besides, even though the biradial turbine seems
to provide the largest output torque, some uncertainty exists
because the radial turbine presents the greatest peak value.
Therefore, a more thorough analysis may be necessary, to
work out the mean output torque, since this variable is one
decisive feature to determine the best turbine for this case
study (Table 5).

From the results above, the biradial turbine is deemed
the most suitable option for the Mutriku wave power plant
installation when considering only the output torque. It
generates the largest pressure drop and mean output torque,
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Table 5: Output torque mean values.

Wells 4.9428
Wells with pitch control 8.1732
Impulse 4.1148
Radial with pitch controlled guide vanes 7.0273
Biradial 9.7282

a 136% above the one that provides the lowest torque and
a 19% above the second one, the Wells turbine with pitch
control. This leaves the radial turbine with pitch-controlled
guide vanes in the third place. Finally, Wells turbine and
impulse turbine lag behind with results close to the others.

4. Conclusions

The results obtained throughout the present paper show how
new self-rectifying turbines invented along the recent past
years since the Wells invention have suffered an enormous
enhancement. This upgrade has provided not only OWC
technology-based power plants with a larger energy harness-
ing capability, but also additional benefits such as a slighter
computational load since the stall effect control is avoided.
This former fact allows for the development of more complex
control algorithms that result in an increase of the amount of
energy harnessed from the waves.

This way, it is evinced how, even if the current trends
are prone to relate all the upcoming upgrades of OWC
technology-based devices to software advancement, research
on mechanical components shows how mechanical parts,
such as self-rectifying turbines, also play an important role in
it. This fact stands up for making progress on both research
branches in parallel, one feeding the other, to achieve a faster,
more advantageous, and more successful evolution of OWC
technology-based devices.

Besides, this article is proof of how the model-based
methodology is a good choice when carrying out analytic
studies both of controllers and mechanical components and
so. Following this approach, adapting the turbine model
and adjusting the control for the particularities for each
turbine, a systematic comparative analysis procedure has
been performed for the different turbines in a reliable and
low-cost effective manner.

Nomenclature

𝑎: Wave amplitude
𝑎1: Capture chamber area
𝑏: Blade’s height
𝑐: Wave propagation speed
𝐶𝑎: Power coefficient
𝐶𝑡: Torque coefficient
𝑑𝑝: Pressure drop
𝐷: Diameter of the duct
𝑙: Length of the capture chamber
𝑙1: Length of blade’s chord
𝑛: Number of blades
𝑄: Air flow

𝑟: Turbine’s mean diameter
𝑡: Time variable
T: Wave period
Tt: Output torque
vt: Airflow linear speed
𝜔: Wave angular frequency
𝜔t: Turbine rotation speed
x: Space variable
y: Wave instantaneous height
𝜆: Wavelength
𝜌: Air density
C: Flow coefficient

Superscripts

B: Biradial turbine
I: Impulse turbine
R: Radial turbine with pitch-controlled guide vanes
pW: Pitch-controlled Wells turbine.
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energı́as renovables, pp. 588–593, Madrid, España: Pearson
Educación, 1st edition, 2009.

[20] J. A. Carta González, R. Calero Pérez, A. Colmenar Santos,
and M. A. Castro Gil, “Mighty Whale (Poderosa Ballena),”
in Centrales de energı́as renovables: Generación eléctrica con
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Outdoor biofuel production from microalgae is a complex dynamical process submitted to climatic variations. Controlling and
optimizing such a nonlinear process strongly influenced by weather conditions is therefore tricky, but it is crucial to make this
process economically sustainable. The strategy investigated in this study uses weather forecast coupled to a detailed predictive
model of algal productivity for online optimization of the rates of fresh medium injection and culture removal into and from the
pond.This optimization strategy was applied at various climatic conditions and significantly increased productivity compared to a
standard operation with constant pond depth and dilution rate, by up to a factor of 2.2 in a Mediterranean climate in summer. A
thorough analysis of the optimizer strategy revealed that the increase of productivity in summer was achieved by finding a trade-
off between algal concentration to optimally distribute light and pond temperature to get closer to optimal growth temperature.
This study also revealed that maintaining the temperature as high as possible is the best strategy to maximize productivity in cold
climatic conditions.

1. Introduction

Microalgae cultivation for biofuel and food production has
been the focus of many studies for the past 20 years [1]. Sev-
eral environmental [2, 3] and technoeconomic assessments
[4–6] aimed to quantify the profitability of algal cultivation
systems and compare algalfuel to other biofuels.

It turns out that culturing process optimization is
required to reduce the energy need, reduce the environmental
footprint, and make algal biofuel cleaner and profit earning.
Among the strategies to reduce impacts and costs while
increasing productivity, online control and optimization
has proven to be very efficient [7]. However, it becomes
very challenging for microalgae which receive their energy
from the sun. In particular, the combination of light and
temperature both influencing the system dynamics must be
anticipated to maintain the process in adequate production
domains. Regulating the temperature by heating and cooling,
or lighting the process to maintain the algae closer to their

optimum would increase the productivity, but it would
immediately jeopardize the benefit of this clean energy source
[8], and there is a need for a passive strategy to avoid any
additional energetic inputs.

Several models have been published in the last decade,
which can accurately predict algal yields at full-scale depend-
ing on the species, weather conditions, system design, and
operation [9–11]. Some studies have even proposed full scale
validation when weather fluctuations were recorded [12, 13].

When assuming rudimentary weather patterns, these
models were used to support the optimization of the system
design [14, 15] and operation [16, 17]. With the development
and the miniaturization of computational power, it is now
conceivable to locally compute an advanced control strategy
based on weather forecasts to optimize system operation
maximizing algal productivity.

Model Predictive Control (MPC) has already been
applied to microalgae culture for controlling pH [18], opti-
mization of CO2 fixation [19, 20], or optimization of more
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specific criteria including microalgal products [21, 22]. The
MPC approach revealed efficient tomanage the complexity of
themodel, but these approaches implicitly admitted that light
pattern was perfectly known well in advance. Recently, [23,
24] proposed an online control strategy based on the knowl-
edge of future weather conditions to online optimization
system operation, namely, the inflow and outflow rates of the
photobioreactor. TheMPC strategy consisted of determining
iteratively the optimal inflow and outflow hourly rates for an
entire week based on the weekly weather forecasts. Unlike in
[16], the culture depth could vary and thus thermal inertia of
the cultivation system could be modified to optimize system
temperature fluctuations. The benefits of this approach were
briefly assessed on the basis of a week of cultivation in Nice
(France) in summer.

The objective of this new study is first to more extensively
investigate how this MPC framework can, without additional
energy input, manage different climates (given by different
seasons and locations). Furthermore, with a reverse engineer-
ing approach, a second goal is to analyse the strategies of the
MPC and derive a reduced number of operational rules. Such
simplified framework may be applied even without the need
of implementing advanced automatic control/optimisation
techniques. Finally, we compute the water need associated
with each control strategy, and we identify paths to reduce
the water use and tailor it to the local water availability.

This work is organised as follows: in Section 2 a brief
description of the model used for describing microalgae pro-
ductivity in open ponds is given; moreover, the description
of the cultivation system and the definition of the adopted
optimisation function are reported at the end of this section.
Section 3 deals with the productivity results obtained with
different climatic conditions in Nice and Rennes (France);
then, after a brief discussion about the theoretical control
logic ensuring the highest possible productivity, a detailed
analysis of the optimization strategy is reported.The analysis
of the optimization scheme, split into four phases, aims to
extract a reduced set of ‘rules to be used as a future practical
guideline. Finally, Section 4 presents a brief discussion of the
key aspect of the resulting control logic, whereas Section 5
presents the main conclusions and some hints for future
research.

2. Materials and Methods

The optimization strategy investigated in this study requires
amodel predicting algal productivity in outdoor open ponds.
The selected model combines three submodels predicting (i)
the temperature fluctuations in an open pond [9], (ii) the
light distribution in the culture medium, and (iii) the algal
productivity as a function of temperature fluctuations and
light distribution. The model equations are presented and
described in the following two paragraphs.

2.1. Productivity Model. The high rate open pond is a stan-
dard process to growmicroalgae with reduced energy inputs.
It consists of a raceway shaped reactor mixed with a paddle
wheel. In general, medium depth is fixed between 0.1 m
and 0.5 m (typically 0.3 m). Here, we consider possible

fluctuations of depth between these bounds. The reactor is
modeled as an ideally mixed system, with a fresh medium
inflow (flow rate 𝑞𝑖𝑛, in m3 s−1) and a culture outflow for
extraction (𝑞𝑜𝑢𝑡, in m3 s−1). The pond is inoculated at the
beginning of the cultivation period. The evolution of the
biomass concentration can be expressed from the following
mass balance:

𝑑 (𝑥 (𝑡) 𝑉 (𝑡))
𝑑𝑡 = −𝑥 (𝑡) 𝑞𝑜𝑢𝑡 (𝑡) + 𝐺 (⋅) 𝑉 (𝑡)

− 𝑅 (⋅) 𝑉 (𝑡) ,
(1)

where 𝑡 is the time variable (s), 𝑥(𝑡) is the algal biomass
concentration (kg m−3), 𝐺(⋅) is the algal specific growth rate
(kg m−3 s−1), 𝑅(⋅) is the respiration rate (kg m−3 s−1),s and
𝑉(𝑡) is the pond volume (m3).𝑉(𝑡) varies over time according
to the following equation:

𝑑𝑉 (𝑡)
𝑑𝑡 = 𝑞𝑖𝑛 (𝑡) − 𝑞𝑜𝑢𝑡 (𝑡) + V𝑟 (𝑡) 𝑆 − 𝑚𝑒 (𝑡) 𝑆𝜌𝑤 , (2)

where 𝑆 is the pond surface area (m2), 𝜌𝑤 is water density
(kg m−3), V𝑟(𝑡) is the rainwater flow (m s−1), and 𝑚𝑒(𝑡) is
the mass flux caused by evaporation at the pond surface
(kg m−2 s−1). Changes in pond volume are associated with
changes in pond depth 𝑙𝑝(𝑡) = 𝑉(𝑡)/𝑆. The specific growth
rate 𝐺(⋅) in (1) depends on the biomass concentration 𝑥(𝑡),
the solar irradiance at the pond top surface 𝐻𝑠(𝑡) (W m−2),
and the pond temperature 𝑇𝑝(𝑡). By using a modified Beer-
Lambert law to model light distribution within the algal
culture, 𝐺(𝑡, 𝑥(𝑡),𝐻𝑠(𝑡), 𝑇𝑝(𝑡)) was expressed as [25]

𝐺 (𝑡, 𝑥 (𝑡) ,𝐻𝑠 (𝑡) , 𝑇𝑝 (𝑡))

= 1
𝑙𝑝 (𝑡) ∫

𝑙𝑝(𝑡)

0
𝜇𝑚𝑥 (𝑡) 𝜎𝜂𝐻𝐻𝑠 (𝑡) 𝑒−𝜎𝑥(𝑡)𝑧

𝐾𝐼 + 𝜎𝜂𝐻𝐻𝑠 (𝑡) 𝑒−𝜎𝑥(𝑡)𝑧 𝑑𝑧
(3)

where 𝜇𝑚 is the maximum specific growth rate (s−1), 𝜎 is the
extinction coefficient (set at 120 m2 kg−1; see [9]), 𝜂𝐻 is the
photosynthetically active radiation (PAR) fraction of solar
light (set at 0.47), 𝑧 is the local depth (m), and 𝐾𝐼 is a half-
saturation parameter (W kg−1). The specific respiration rate
𝑅(⋅) in (1) depends on pond temperature 𝑇𝑝(𝑡) and biomass
concentration 𝑥(𝑡) through the following equation [25]:

𝑅 (𝑡, 𝑥 (𝑡) , 𝑇𝑝 (𝑡)) = 𝜆𝑟𝑥 (𝑡) , (4)

where 𝜆𝑟 is the respiration coefficient (s−1). As 𝜇𝑚, 𝐾𝐼, and𝜆𝑟 values change with temperature (see [25]), these three
parameters were henceforth renamed 𝜇𝑚(𝑇𝑝(𝑡)), 𝐾𝐼(𝑇𝑝(𝑡)),
and 𝜆𝑟(𝑇𝑝(𝑡)), respectively. Reference [26] showed that the
evolution of parameter 𝜇𝑚(𝑇𝑝(𝑡)) with temperature could be
fitted to the following function:

𝜇𝑚 (𝑇𝑝 (𝑡)) = 𝜇𝑚,𝑚𝑎𝑥𝜙𝑇 (𝑇𝑝 (𝑡)) , (5)

where 𝜇𝑚,𝑚𝑎𝑥 is the maximum value of 𝜇𝑚(𝑇𝑝(𝑡)) (s−1) and𝜙𝑇(𝑇𝑝(𝑡)) is the temperature-dependent function reported in
the following equation [26]:
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𝜙𝑇 (𝑇𝑝 (𝑡)) = 0 if 𝑇𝑝 ≤ 𝑇𝑚𝑖𝑛 or if 𝑇𝑝 (𝑡) ≥ 𝑇𝑚𝑎𝑥
otherwise

𝜙𝑇 (𝑇𝑝 (𝑡)) =
(𝑇𝑝 (𝑡) − 𝑇𝑚𝑎𝑥) (𝑇𝑝 (𝑡) − 𝑇𝑚𝑖𝑛)2

(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛) [(𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛) (𝑇𝑝 (𝑡) − 𝑇𝑚𝑖𝑛) − (𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑎𝑥) (𝑇𝑜𝑝𝑡 + 𝑇𝑚𝑖𝑛 − 2𝑇𝑝 (𝑡))]
,

(6)

where 𝑇𝑚𝑖𝑛 is the temperature below which the growth is
assumed to be zero, 𝑇𝑚𝑎𝑥 is the temperature above which
there is no growth nor respiration, and𝑇𝑜𝑝𝑡 is the temperature
at which 𝜇𝑚(𝑇𝑝(𝑡)) = 𝜇𝑚,𝑚𝑎𝑥. This model does not explicitly
represent mortality for temperatures above 𝑇𝑚𝑎𝑥 [27]. As
it will be discussed later on, the optimisation strategy will
always maintain temperature below 𝑇𝑚𝑎𝑥, so that mortality
will eventually not occur.

Experimental values of 𝜇𝑚(𝑇𝑝(𝑡)), 𝐾𝐼(𝑇𝑝(𝑡)), and
𝜆𝑟(𝑇𝑝(𝑡)) were extracted from the study of [25] conducted
on Chlorella vulgaris as the model of [25] was shown
to accurately predict algal productivity in outdoor
photobioreactors under various weather conditions [28].
As 𝜆𝑟(𝑇𝑝(𝑡)) and 𝐾𝐼(𝑇𝑝(𝑡)) exhibited similar evolution
with temperature, the same function 𝜙𝑇(𝑇𝑝(𝑡)) was used
for fitting the behavior of these two parameters at different
temperatures:

𝐾𝐼 (𝑇𝑝 (𝑡)) = 𝐾𝐼,𝑚𝑎𝑥𝜙𝑇 (𝑇𝑝 (𝑡)) ,
𝜆𝑟 (𝑇𝑝 (𝑡)) = 𝜆𝑟,𝑚𝑎𝑥𝜙𝑇 (𝑇𝑝 (𝑡)) .

(7)

Fitting these parameters was performed by using the Max-
imum Likelihood method included in the entity Parameter
estimation of the gPROMS� software (4.1 version). The
complete set of the parameter values used to describe the
temperature function 𝜙𝑇 is reported in Table 1.

2.2. Temperature Model. The universal model for tempera-
ture prediction in shallow algal ponds developed by [29] has
been used in this work.This model was validated against data
collected fromahigh rate algal pond [13, 25].The temperature
model, valid for any opaque water body having a uniform
temperature profile, is based on eight heat fluxes that can be
expressed from available meteorological data/system design
parameters. Pond temperature obeys the following equation
[29]:

𝜌𝑤𝑉(𝑡) 𝑐𝑝𝑤
𝑑𝑇𝑝 (𝑡)
𝑑𝑡 = 𝑄𝑟𝑎,𝑝 (𝑡) + 𝑄𝑟𝑎,𝑠 (𝑡) + 𝑄𝑟𝑎,𝑎 (𝑡)

+ 𝑄𝑒V (𝑡) + 𝑄𝑐𝑜𝑛V (𝑡) + 𝑄𝑐𝑜𝑛𝑑 (𝑡)
+ 𝑄𝑖 (𝑡) + 𝑄𝑟 (𝑡) ,

(8)

where 𝑐𝑝𝑤 is the specific heat capacity of water (J kg−1K−1),
𝑄𝑟𝑎,𝑝(𝑡) is the radiation flow from the pond surface (W),
𝑄𝑟𝑎,𝑠(𝑡) is the global (direct and diffuse) solar irradiance
(W), 𝑄𝑟𝑎,𝑎(𝑡) is the radiation flow from the air to the pond

(W), 𝑄𝑒V(𝑡) is the evaporation heat flow (W), 𝑄𝑐𝑜𝑛V(𝑡) is the
convective heat flow at the pond surface (W), 𝑄𝑐𝑜𝑛𝑑(𝑡) is the
conductive heat flow with the ground at the pond bottom
(W), 𝑄𝑖(𝑡) is the heat flow associated with the water inflow
(W), and 𝑄𝑟(𝑡) is the heat flow associated with rainfall (W).
A detailed description of the equations used to describe each
heat flux can be found in the supplementary material (S1.1).

2.3. Weather Data. Weather data originates from the Euro-
peanCentre forMedium-RangeWeather Forecast (ECMWF)
website (year 2012). This data, available every 6 hours,
includes the air temperature 𝑇𝑎, the relative humidity 𝑅𝐻,
the wind velocity V𝑤, the rain volumetric flux V𝑟, and the
sky cloudiness 𝐶𝐶 (see supplementary material (S2) for
complete description). The solar irradiance at the ground
level, 𝐻𝑠, was determined combining the solar irradiance at
the top of the atmosphere (determined by the latitude and
the solar declination angle) with the sky cloudiness 𝐶𝐶 (see
supplementary material (S1.2) for further details).

2.4. SystemDescription. Theoptimization strategy was inves-
tigated at two different locations in France, representing
two very different climates: a Mediterranean climate in Nice
(43∘42󸀠11󸀠󸀠N, 7∘15󸀠57󸀠󸀠E) and a temperate climate in Rennes
(48∘06󸀠 53󸀠󸀠N, 1∘40󸀠46󸀠󸀠W). Simulationswere performed over
one week at three different seasons at each location (winter:
January; spring:March; summer: July).The pond surface area
𝑆 was 100 m2. The initial conditions were as follows:

(i) The initial pond temperature 𝑇𝑝(𝑡 = 0) was set at the
average value of air temperature𝑇𝑎,𝑎V𝑔 over the period𝜏 of simulation as a reasonable estimation of 𝑇𝑝 in the
absence of actual measurements.

(ii) the initial biomass concentration 𝑥 was set to 0.4
kg/m3.

(iii) the initial pond depth 𝑙𝑝 was set to the typical value of
0.3 m [30].

(iv) the inflow temperature 𝑇𝑖𝑛 was set at a value equal to
𝑇𝑎,𝑎V𝑔.

Standard pond operation consisted of maintaining the pond
depth and dilution rates at typical values during the entire
cultivation period (depth of 0.25 m and dilution rate of 0.1
day−1, as discussed in [31–33]).

2.5. Numerical Optimization. The optimization strategy con-
sisted of permanently adjusting inflow and outflow rates (𝑞𝑖𝑛
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Figure 1: 𝑃𝑛𝑒𝑡 obtained with the optimal control strategy (blue continuous line: Nice; dashed red line: Rennes. The background is colored in
white at daytime and in grey at nighttime).

and 𝑞𝑜𝑢𝑡, respectively) to maximize the productivity over the
period of time considered (1 week), defined by the following
equation (see [34]):

𝑃𝑛𝑒𝑡 (𝑡) = ∫
𝜏

0
(𝐺 (𝑡, 𝑥 (𝑡) ,𝐻𝑠 (𝑡) , 𝑇𝑝 (𝑡))

− 𝑅 (𝑡, 𝑥 (𝑡) , 𝑇𝑝 (𝑡))) 𝑉 (𝑡) 𝑑𝑡.
(9)

The pond depth changed with time since 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡
were not identical. These two control inputs were taken as
piecewise constant variables within the range [0÷1] m3/s.
The pond depth was constrained between 0.05 m and 0.5 m.
The optimization was implemented through the gPROMS�
software (4.1 version) by using the default optimization solver
NLPSQP, which uses a sequential quadratic programming
method for the solution of nonlinear programming problems.

2.6. Water Demand. The net water demand (𝑊𝐷(𝑡)) associ-
ated with algal cultivation was calculated as follows:

𝑊𝐷(𝑡) = ∫
𝜏

0
𝑞𝑖𝑛 (𝑡) 𝑑𝑡 +max (0, 𝑉0 − 𝑉𝜏) , (10)

where 𝑉0 and 𝑉𝜏 are, respectively, the pond volume at the
beginning and at the end of the cultivation period. This

Table 1: Values of the parameters used in the temperature function
𝜙𝑇.
Parameter Description Value
𝑇𝑚𝑖𝑛 Minimum growth temperature -10.0 (∘C)
𝑇𝑚𝑎𝑥 Maximum growth temperature 42.1 (∘C)
𝑇𝑜𝑝𝑡 Optimum growth temperature 35.8 (∘C)
𝜆𝑟,𝑚𝑎𝑥 Max. respiration coefficient 2.01⋅10−6 (s−1)
𝜇𝑚,𝑚𝑎𝑥 Max. specific growth rate 6.48⋅10−5 (s−1)
𝐾𝐼,𝑚𝑎𝑥 Max. half-saturation constant 7192.92 (W kg−1)

expression accounts for both water use for fresh water
injection and change in pond volumebetween initial and final
times.

3. Results

3.1. Strategy Impact on Productivity. Figure 1 shows the
algal productivity obtained during optimized and standard
cultivation, at Nice and Rennes for three seasons (winter,
spring, and summer). The reported results (see Table 2)
show that the optimization strategy significantly increased
productivity compared to standard operation, by up to a
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Table 2: Standard cultivation versus optimal control strategy: productivity and water demand.

Case studies
Productivity Water demand
(kg⋅week−1) (m3⋅week−1)

Nice Rennes Nice Rennes

Winter Standard cultivation strategy 2.59 1.25 17.53 17.53
Optimal control strategy 3.73 2.12 26.83 25.02

Spring Standard cultivation strategy 5.60 3.96 17.53 17.33
Optimal control strategy 9.02 5.61 32.60 27.48

Summer Standard cultivation strategy 11.62 12.71 17.53 17.53
Optimal control strategy 25.83 19.59 122.98 45.97

factor of 2.2 for the summer case inNice. Interestingly, Table 2
shows that productivity was slightly higher in Rennes than
in Nice in summer under standard operation. This result is
explained by the high temperature peaks inNice, which cause
productivity to significantly drop. Figure 2 shows the optimal
𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 profiles maximizing algal productivity over the
entire cultivation period.

Figure 2 reveals that medium injection or culture extrac-
tion only occurred at day time. Although the resulting control
strategy was different for the two locations, a qualitatively
recurrent behavior can be identified despite the weather
variability along cultivation and for the different periods of
the year.Thebehavior of the optimizerwas therefore analyzed
on a time window of three cultivation days only.

3.2. Optimal Operation Strategy: Key Features. The ideal
control logic to enhance productivity should result from
several considerations.

Firstly, algal concentration must be optimized at daytime
by accounting for two processes: (1) biomass losses through
respiration linearly increase with the algal concentration, and
(2) the amount of light intensity captured by algal cells, hence
photosynthetic rate, increases with algal concentration. As
a result, there is an optimal algal concentration that should
ensure that most of the light entering the pond is captured
by algae while still maintaining respiration rates at a low
value. Previous studies show that this optimal concentration
is reachedwhen the specific rate of photosynthesis at the pond
bottom equals the specific rate of respiration [35]. Mathemat-
ically, these conditions are reached when the ‘compensation
function’ defined below is equal to 1 [35]:

𝑓𝑐𝑜𝑚𝑝 (𝑡) = 𝜇𝑚,𝑚𝑎𝑥

⋅ 𝜎𝜂𝐻𝐻𝑠 (𝑡) 𝑒
−𝜎𝑥(𝑡)𝑙𝑝(𝑡)/ (𝐾𝐼,𝑚𝑎𝑥𝜙𝑇 (𝑡) + 𝜎𝜂𝐻𝐻𝑠 (𝑡) 𝑒−𝜎𝑥(𝑡)𝑙𝑝(𝑡))

𝜆𝑟,𝑚𝑎𝑥 .
(11)

If this function is higher than 1, the pond productivity could
be improved by increasing biomass in the system. Conversely,
values lower than 1 indicate that the net rate of growth
at the pond bottom is negative: diluting the system would
increase productivity. In summary, the ideal optimal biomass
concentration at daytime 𝑥𝑜𝑝𝑡(𝑡) is the algal concentration
that guarantees that the compensation function defined in
(11) equals 1.

Secondly, maximal productivity is achieved when the
pond temperature 𝑇𝑝(𝑡) is maintained at 𝑇𝑜𝑝𝑡 at daytime.
At nighttime, the pond temperature 𝑇𝑝(𝑡) and the biomass
concentration 𝑥(𝑡) should bemaintained as low as possible in
order tominimize respiration rates, hence biomass losses.The
ideal optimal pond operation would therefore require a dras-
tic change of the algal concentration and pond temperature at
sunrise and sunset to stay optimal at daytime and nighttime.
Such drastic changes are in practice difficult to achieve and
the next paragraph discusses how they are handled by the
optimization scheme.

3.3. Detailed Analysis of the Optimization Scheme. The anal-
ysis of the optimization scheme is split into four phases, from
morning to night.

Morning. Focusing first on the summer case study, Figures
3(a) and 3(b) show that no water was injected to or extracted
from the pond in themorning (𝑞𝑖𝑛(𝑡), 𝑞𝑜𝑢𝑡(𝑡)= 0), tomaintain
the pond depth in Rennes at a constant and low value (𝑙𝑝(𝑡) =
0.05 m; see Figure 3(c)). Very small depths indeed minimize
the thermal inertia of the pond and thus allow a fast increase
of the pond temperature 𝑇𝑝(𝑡) (see Figure 3(d)), hence a
greater productivity increase. The same control strategy was
used in Nice although the pond depth in Nice was slightly
above its minimal constraint (see Figure 3(c)). Removing
culture from the pond would lead to lower the biomass
content and therefore increase the compensation function
which is already significantly higher than 1 (Figure 3(f)).
Removing more biomass would thus cause productivity
losses.

The morning control strategies in spring and winter were
similar (Figures 4(a), 4(b), 5(a), and 5(b)), except for Nice in
winter. In this particular case, a fraction of the culture was
replaced by freshmedium at sunrise of days 4 and 5. It slightly
increased temperature (see Figure 4(d)) as injected medium
was hotter than the algal culture.

Based on these observations, the optimizer behavior in
the Morning phase can be schematized by the following
simple rules:

(i) During the morning the pond depth is maintained as
low as possible in order to rapidly reach both optimal
pond temperature and biomass concentration.

(ii) In winter, if pond temperature is lower than inflow
temperature and if the biomass content in the pond
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Figure 2: 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 optimized profile (blue continuous line: Nice; dashed red line: Rennes. The background is colored in white at daytime
and in grey at nighttime).

is high enough to avoid ‘washout’ conditions, the
culture can be partially replaced with fresh medium
to increase temperature.

Afternoon. Figures 3(a) and 3(b) show that the inflow rate
𝑞𝑖𝑛(𝑡) in Nice exhibits a ‘bell curve’ profile from midday until
late afternoon in summer. 𝑞𝑜𝑢𝑡(𝑡) followed the same dynamics
but started slightly later in the day. In other words, the control
strategy was mainly based on replacing the pond culture by
fresh medium (‘flushing’ strategy). This culture replacement
had two main consequences. Firstly, as shown in Figure 3(f),
the compensation function𝑓𝑐𝑜𝑚𝑝(𝑡)wasmaintained at a value
close to 1 during the afternoon, indicating that the algal

concentration was kept at its optimal value 𝑥𝑜𝑝𝑡(𝑡). Secondly
(‘flushing strategy’), replacing algal culture by relatively cold
freshmedium helpedmaintaining pond temperature close to
optimal level𝑇𝑜𝑝𝑡 (35.8∘C, Figure 3(d)). Figure 3(c) shows that
the pond depth 𝑙𝑝 in Nice increased until mid-afternoon and
then decreased, which indicates that culture replacement was
not sufficient to maintain pond temperature at the optimal
level. Increasing the pond depth increased its thermal inertia
and eventually limited temperature increase (‘depth strat-
egy’). Figures 3(a), 3(b), and 3(c) show that the same ‘flushing’
and ‘depth’ strategies were used in Rennes in summer during
day 5, but not during days 3 and 4. As Figure 3(f) shows
that the compensation function was significantly lower than
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Figure 3: July. Three-day zoom of the optimized profiles (blue continuous line: Nice; dashed red line: Rennes. The background is colored in
white at daytime and in grey at nighttime).

1 during the afternoons of days 3 and 4, further culture
replacement could have theoretically been used to maintain
the biomass concentration at its optimal value. Yet, replacing
the culture by colder fresh medium would have significantly
decreased the pond temperature and therefore lower biomass
productivity. Figure 3(d) shows indeed that days 3 and 4
were relatively cold, differently from day 5 in which the pond
temperature reached its optimal value. In other words, the
optimizer found the best trade-off between optimal biomass
concentration and optimal temperature conditions in the
case of warm but not hot weather conditions. In addition,

Figure 3(c) shows that in Rennes the depth was maintained
at its lowest value in the afternoon of days 3 and 4 (warm
days) in order to maximize the temperature increase. Figures
4(a), 4(b), 5(a), and 5(b) show that both 𝑞𝑖𝑛(𝑡) and 𝑞𝑜𝑢𝑡(𝑡)were
maintained at 0 in winter and spring in Rennes and Nice.
As a result, the biomass concentration slightly increased at
daytime (Figures 4(e) and 5(e)). In addition, the depthwas left
at its lowest value (0.05 m) all day long. These observations
indicate that the optimal strategy during cold days consists
of maintaining the pond temperature as high as possible
even if biomass concentration is significantly higher than
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Figure 4: January.Three-day zoom of the optimized profiles (blue continuous line: Nice; dashed red line: Rennes.The background is colored
in white at daytime and in grey at nighttime).

the optimal concentration. The optimizer behavior in the
Afternoon phase can be schematized by the following simple
rule:

(i) In the afternoon the culture can be flushed to main-
tain the algal concentration at its optimal level. In
summer, this ‘flushing strategy’ can be combined
with depth increase strategy to control temperature
at its optimal level. In spring and winter, the optimal
strategy consists in staying in batch at daytime while
maintaining the pond depth at a minimal value, to

ensure that pond temperature reaches the highest
possible value.

Sunset. In summer, Figures 3(a) and 3(b) show that a high
fraction of the culturewas replaced by freshmediumat sunset
in Rennes. ‘Flushing’ the system at sunset both lowered pond
temperature (see Figure 3(d)) and biomass concentration
(see Figure 3(e)), which in turn limited respiration rates at
nighttime. The alternative strategy used in Nice was based
on decreasing the pond depth when approaching sunset
(Figure 3(c)), to remove a significant fraction of the biomass.
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Figure 5: March.Three-day zoom of the optimized profiles (blue continuous line: Nice; dashed red line: Rennes. The background is colored
in white at daytime and in grey at nighttime).

In addition, decreasing pond depth accelerates the pond tem-
perature decrease at night. Similarly to the ‘flushing’ strategy
used inRennes, this ‘depth-decrease’ control strategy reduced
respiration at nighttime. Removing too much biomass from
the system would reduce respiration at nighttime but this
would also cause the productivity to be low the day after. As
a result, the optimizer finds the optimal algal concentration
ensuring both low respiration rates at nighttime and sus-
tained productivities the following morning. In winter only
a small fraction of the culture was replaced by fresh medium
in Nice (Figures 4(a) and 4(b)) as night-time respiration rates
were limited by cold temperatures (Figure 3(d)). In Rennes
the ‘flushing strategy’ at sunset was not applied, mostly

because inflow temperature was higher (9.2∘C) than pond
temperature 𝑇𝑝(𝑡) at sunset. Injecting relatively warm water
at sunset would therefore enhance respiration at nighttime.
The optimal strategy at Nice in spring consisted on partly
‘flushing’ the system at sunset similarly to the summer case. In
Rennes, culture was not replaced at sunset in spring, mostly
because maintaining temperatures as high as possible was the
best strategy to optimize productivity (Figures 5(a) and 5(b)).
The optimizer behavior at Sunset can be schematized by the
following simple rule:

(i) During hot days, a fraction of the culture is replaced
with fresh medium at sunset to minimize nighttime
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respiration rates. Pond depth is also maintained at a
low level to faster decrease temperatures at nighttime.
In winter or in colder climates, culture is not replaced
by fresh medium at sunset to maximize temperature
during the following day.

Night.The pond depth was maintained at its sunset value
all night long independently on the season (Figures 3(c), 4(c),
and 5(c)). In addition, Figures 3(a), 3(b), 4(a), 4(b), 5(a), and
5(b) show that, in general, no ‘flushing’ was used at nighttime
(𝑞𝑖𝑛 = 0 and 𝑞𝑜𝑢𝑡 = 0). The only exceptions were in spring at
day 4 for Rennes and at day 5 for Nice, which correspond
to culture extraction just after rainfall to maintain the pond
depth at its lowest possible value. In summer, temperatures
are minimized at nighttime. In winter, low thermal inertia
and therefore low depth must be maintained at daytime to
increase temperature and this constrains pond depths to be
low at nighttime. The optimizer behavior at Night can be
schematized by the following simple rule:

(i) The pond stays in batch and thus depth is maintained
at the sunset value.

4. Discussion

The optimization technique significantly increased the pro-
ductivity at the two locations and three seasons considered.
The productivity boost in summer mainly results from
the optimizer ability to maintain, during large periods of
daytime, ideal growth conditions, i.e., providing efficient
trade-off between optimal concentration and temperature
(via the ‘flushing’ and ‘depth’ strategies). In spring and winter,
the optimal temperature for the species C. vulgaris (35.8∘C)
cannot be reached, so the optimal strategy consists of limiting
culture replacement to ensure higher temperatures, even if
it leads to relatively high biomass concentrations. Because
of relatively low temperatures, respiration rates are indeed
relatively low, so these higher biomass concentrations is not
too penalized by respiration.

The knowledge of future weather is crucial to optimize
the process inflows and outflows, and this can be illustrated
in several cases. Firstly, in hot days, slowly increasing the
pond depth can help to maintain the pond temperature at
its optimal value during daytime. As temperature dynamics
is relatively slow due to the high thermal inertia of water,
only an accurate knowledge of future weather conditions and
their impact on pond temperature can help to maintain pond
temperature as close as possible to its optimal value. Secondly,
a fraction of the algal culture is replaced by fresh medium at
sunset to minimize respiration losses at nighttime. However,
removing toomuch biomass from the pondwould lead to low
productivity values themorning after, and especially if the day
after is particularly sunny. Determining the optimal fraction
of culture to remove from the pond at sunset therefore
requires knowing the weather conditions of the following
day. Sensitivity of the management strategy to accuracy in
the future weather was assessed in [23]. It was shown that,
especially for hot periods, biases in weather predictions can
deeply affect the productivity. Higher frequency weather data
acquisition will mitigate this risk. Weather predictions at

short term should also be combined with actual measure-
ments of water temperature and solar fluxes. Also, the main
rules guiding the optimisation can be used to check that the
logic of the control action stay coherent and possibly limit
the controller action in case of conflict. These rules must also
be used to initialize the MPC strategy with reasonable profile
inflow and outflow profiles. It will reduce the risk of local
minima in the determination of the optimal strategy.

This study covers most of the possible combinations of
light and temperature ranges. Having in depth examined the
control strategy has provided the keys for understanding the
control under most of the possible climates. The study in
[23] was focused on a hot climate. It proposed a first picture,
but it is crucial to better understand how to manage the
trade-off between light access and optimal temperature for
a larger variety of seasons and latitudes. This MPC strategy
must still be tested for a larger range of locations at all
seasons. But the study with the climates of Rennes and
Nice through all the seasons provide hints that it might
stay efficient in many other locations. In the most extreme
cases, complementary strategies could be jointly used tomore
efficiently heat water in winter or decrease temperature in
summer.Heat exchangers have a potential here, provided that
the unavoidable energy consumption (at least for pumps) is
compensated by the productivity gain.

Temperature control by playing on thermal inertia and
culture replacement by fresh medium is central in the
optimization strategy. This point was so far never considered
in the previous optimization studies which focused on opti-
mizing algal access to light by playing on the compensation
function. Chlorella vulgaris is relatively resistant to high tem-
peratures (𝑇𝑚𝑎𝑥 = 42∘C). However, for a cold-adapted algae
species, the possibility of culture crashes due to temperatures
above 𝑇𝑚𝑎𝑥 triggering cell mortality [27, 36] would increase
further the impact of temperature on productivity. In this
case, the optimizer would likely place temperature control
above concentration control in summer to avoid culture
crashes.

In this study, we did not include the water cost in the
optimization criterion. However, the optimal management
induces high dilution rates, especially in summer, both to
reduce temperature and to dilute culture at high density.
Water demands were consequently higher than the standard
management procedure (Table 2) which required a signifi-
cantly lower amount of water (only 17.53 m3 week−1 for all
the seasons). This shows that the management of process
temperature must be designed to have a limited impact on
water consumption.

In particular, the optimized control strategy increased the
𝑊𝐷 at Nice in summer up to a factor of 7.7, which means an
increase by a factor of 3.2 per kg of produced algae: from 1.25
m3 kg−1 up to 4 m3 kg−1. This computation also highlights
the necessity to recycle water after biomass extraction to
reduce the water need.

As a perspective, the same optimisation strategy should
be studied when constraining the maximum amount of water
that can be used in the process (based for example on the
availability on rainwater at the location considered) and
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assuming that an important fraction of the water can be
recycled, as suggested by [37].

5. Conclusions

TheMPC scheme based on a complex dynamical model able
to describe the algal growth in open ponds through meteo-
rological data allows significant increase of the productivity
efficiency compared to standard operation. Productivity gain
was achieved via two main mechanisms: culture replacement
(compensation condition) and pond depth control (thermal
optimization). A short list of simple rules was extracted for
simplified operation. Temperature control turns out to be a
key factor to achieve maximal productivity. The drawback of
this strategy is a relatively high water demand, especially in
sunny and hot climates. Further research needs to address
water recycling implementation and include it in the cost
criterion to reach a compromise between maximizing pro-
ductivity while reducing the water demand. The analysis
of the optimal strategy for a diversity of heat fluxes and
temperature conditions offer a general strategy which is
likely to be efficient in many other locations. More extensive
simulations must now consider other production sites to
consolidate the management strategy and further generalise
it.
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