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Osteogenesis is tightly correlated with angiogenesis during the process of bone development, regeneration, and remodeling. In
addition to providing nutrients and oxygen for bone tissue, blood vessels around bone tissue also secrete some factors to
regulate bone formation. Type H vessels which were regulated by platelet-derived growth factor-BB (PDGF-BB) were
confirmed to couple angiogenesis and osteogenesis. Recently, preosteoclasts have been identified as the most important source
of PDGF-BB. Therefore, inhibiting osteoclast maturation, improving PDGF-BB secretion, stimulating type H angiogenesis, and
subsequently accelerating bone regeneration may be potent treatments for bone loss disease. In the present study, aucubin,
an iridoid glycoside extracted from Aucuba japonica and Eucommia ulmoides, was found to inhibit bone loss in
ovariectomized mice. We further confirmed that aucubin could inhibit the fusion of tartrate-resistant acid phosphatase
(TRAP)+ preosteoclasts into mature osteoclasts and indirectly increasing angiogenesis of type H vessel. The underlying
mechanism is the aucubin-induced inhibition of MAPK/NF-κB signaling, which increases the preosteoclast number and
subsequently promotes angiogenesis via PDGF-BB. These results prompted that aucubin could be an antiosteoporosis drug
candidate, which needs further research.

1. Introduction

The functional changes of osteoblasts and osteoclasts cause
dynamic changes in the skeletal system. Uncoordinated
action between osteoclasts and osteoblasts might result in
many bone loss diseases, such as osteoporosis. Recently,
our understanding of bone disease has expanded beyond
the bone itself, and the relationship between the bone and
bone microenvironment, especially blood vessels, has been
gradually recognized. Type H vessels, a specific capillary
subtype featuring CD31 and endomucin (CD31hiEmcnhi)
markers, can provide nutrients and oxygen for bone tissue
[1, 2]. Importantly, type H vessels are further identified
around osteoprogenitors and interconnect the processes of
bone formation and bone absorption during bone regenera-

tion [3, 4]. The combination of angiocrine factors derived by
type H vessels, osteoblasts, and osteoclasts could couple the
interreaction of the bone microenvironment as well as the
coordinating of angiogenesis and osteogenesis [5–9]. How-
ever, the relative abundance of type H vessels is low and
reduces with the increasing of aging and the progressing of
diseases [2].

A previous study showed that PDGF-BB produced by
preosteoclasts had the ability to promote type H vessel
angiogenesis and subsequently increase osteogenesis [10].
However, with the maturation of osteoclasts, the amount
of PDGF-BB secreted by osteoclasts gradually decreased.
Therefore, inhibiting the maturation of preosteoclasts can
inhibit bone resorption and importantly promote bone
formation through promoting angiogenesis of type H

Hindawi
Stem Cells International
Volume 2022, Article ID 5226771, 19 pages
https://doi.org/10.1155/2022/5226771

https://orcid.org/0000-0002-0706-1047
https://orcid.org/0000-0003-0547-8639
https://orcid.org/0000-0001-5535-3848
https://orcid.org/0000-0002-9223-4255
https://orcid.org/0000-0002-9263-5614
https://orcid.org/0000-0001-8367-3304
https://orcid.org/0000-0002-3637-1685
https://orcid.org/0000-0003-2449-2815
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5226771


vessels and might be promising therapeutic strategies for
osteoporosis.

Aucubin is an iridoid glycoside extracted from Aucuba
japonica and Eucommia ulmoides leaves. It has multiple
functions, such as anti-inflammatory, antioxidative, cardio-
protective, and neuroprotective effects [11–16]. In recent
years, studies have found that aucubin is also related to bone
metabolism by increasing bone formation [17, 18]. In addi-
tion, aucubin has been reported to promote angiogenesis in
a mouse hindlimb ischaemia model [19]. Aucubin can play
an antioxidant role by suppressing the NF-κB signaling
pathway [11, 20], which is also a very important signal dur-
ing the process of osteoclastogenesis. However, the effects of
aucubin on osteoclasts and type H vessels angiogenesis
remain unknown. In this research, we explored whether
aucubin could inhibit the maturation of preosteoclasts
and amplify angiogenesis by upregulating the secretion of
PDGF-BB.

2. Materials and Methods

2.1. Animals and Treatments. All experiments of animal in
this present research were under the supervision of the ethics
committee of the Third Hospital of Hebei Medical Univer-
sity. The BALB/c female mice were purchased from the
animal experimental center of Hebei Medical University
and maintained until use. All mice were bred in a standard
environment room with ad libitum access to water and food.
All the animals were randomly assigned to the following
three groups: (1) the sham group (sham-operated group
+PBS), (2) the ovariectomy (OVX+PBS) group, and (3) the
aucubin group (OVX+aucubin). Ovariectomy was per-
formed by bilateral removal of ovaries at the 12 weeks old.
One week after OVX operation, the aucubin group received
5mg/kg aucubin by intraperitoneal injection every two days.
Correspondingly, the OVX group was injected with the same
amount of PBS at the same frequency. All mice were sacri-
ficed one month later; blood and femurs were collected for
further experiments.

2.2. Micro-CT Analysis. Micro-CT scans in isolated bones
were performed using SkyScan1176 (Bruker, Belgium) μCT
scanner. 9μm per pixel resolution was set in the study.
The scanning voltage is 65 kV, and the current is 153μA.
The trabecular parameters of femoral metaphysis were ana-
lyzed by data analysis software (CTAn, v1.9, SkyScan) and
3D model visualization software (CTVol, v2.0, SkyScan).
The 3D analysis of trabecular bone was performed by creat-
ing cross-sectional images of femur. The trabecular parame-
ters were measured by trabecular bone volume/total volume
(BV/TV, %), trabecular number (Tb.N, mm−1), trabecular
separation (Tb.Sp, μm), and trabecular thickness (Tb.Th,
mm), and the differences among the groups were compared.

2.3. Haematoxylin and Eosin (HE) Staining and Tartrate-
Resistant Acid Phosphatase (TRAP) Staining. HE staining
and TRAP staining were performed on 4μm sections of
the femur after 3 weeks of bone decalcification in 10% EDTA
solution. For HE staining, the 4μm thick section samples

were processed for staining after fixation, decalcification
and paraffin embedding. The images were obtained by an
optical microscope, and the relevant bone histological
parameters were calculated. For TRAP staining, a TRAP
staining kit (Sigma-Aldrich) was used after the tissue was
fixed and embedded according to the instructions. After trap
staining, samples were analyzed by optical microscope.
TRAP-positive cells with more than three nuclei were
defined as osteoclasts, and TRAP-positive cells with less than
three nuclei were preosteoclasts.

2.4. Immunofluorescent Analyses of Sample Sections. For
immunofluorescent (IF) staining, the femur samples were
cut into 16μm thick sections after being fixed for 24 hours,
decalcified for 3 weeks, and embedded in 8% gelatin. Briefly,
the 16μm thick sections were first washed with 1% PBST
(1% Triton X-100 dissolve in PBS) for 30min three times
before the slices were incubated with 5% BSA at 37°C for
1 h. Then, the samples were incubated with primary anti-
bodies against CD31 (Abcam, MA, USA), EMCN (Abcam,
MA, USA) and osteocalcin (Abcam, MA, USA) overnight
at 4°C. Finally, the corresponding fluorescence-conjugated
secondary antibodies were stained at 37°C for 1 h.

2.5. Cell Culture. RAW264.7 cells, the macrophage cell line,
was purchased from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China). α-MEM supplemented with
10% heat-inactivated foetal bovine serum (FBS) and 1%
penicillin-streptomycin was used to culture the RAW264.7
cells. To induce osteoclast differentiation, the cells were
treated with 50 ng/mL receptor activator for nuclear factor
κB ligand (RANKL) with different concentrations of aucubin
(0, 1, or 5μM) for 6 days. Microvascular endothelial cells of
mice (MMECs) were purchased from Procell (Wuhan,
China) and cultured in endothelial cell culture medium
(ECM). All cells were cultured at 37°C with 5% CO2.

2.6. Cell Viability Assay. Cell viability was performed by a
cell Counting Kit-8 (CCK-8) assay (Zomanbio, Beijing,
China) according to the manufacturer’s instructions. First,
RAW264.7 cells were seeded onto 96-well plates at a density
of 5 × 103 cells per well. After treatment with aucubin (0, 1,
or 5μM) for 24, 48, and 72 hours, 10μL CCK-8 solution
was added. Finally, the absorbance at 450nm was measured
by a microplate spectrophotometer (BioTek Instruments,
San Jose, CA, USA) after being incubated at 37°C for
another 4 h.

2.7. TRAP Staining of Cells. The macrophage cell lines were
fixed with 4% paraformaldehyde after several days of
osteoclastogenesis induction. Then, TRAP staining was
performed using a TRAP staining kit (Sigma-Aldrich, St.
Louis, USA) according to the manufacturers’ instructions.
After trap staining, samples were analyzed by optical micro-
scope. Same as tissue samples, TRAP+mononuclear cells and
multinucleated cells with more than three nuclei were identi-
fied as preosteoclasts and osteoclasts, respectively.

2.8. Immunofluorescent Analyses of Cells. For immunofluo-
rescent staining, cells were first treated in Triton X-100 for
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half an hour before blocking with 10% BSA. Then, the cells
were stained with primary antibodies against NFATc1
(Santa Cruz, CA, USA) or p65 (CST, MA, USA) at 4°C
overnight. Finally, the samples were stained with secondary
antibodies at room temperature for 1 h.

2.9. Actin Ring-Formation Assay. Briefly, the macrophage
line cells were first stimulated with Rankl and varying doses
of aucubin for 6 days. Then, the cultured osteoclasts were
permeabilization with 0.5% Triton X-100 after being fixed
with 4% paraformaldehyde. Subsequently, FITC-conjugated
phalloidin was used to stain F-actin rings, and the nuclei
were stained with 4′,6-diamidino-2-phenylindole (DAPI)
dye. Finally, a scanning confocal microscopy (Nikon, Tokyo,
Japan) was used to take fluorescence images. ImageJ soft-
ware was used to analysis the number and size of F-actin
rings.

2.10. Migration Assay. In the migration assay, MMECs were
seeded on 6-well culture plates and cultured until the single
cell layer was confluent. Then, cells were cultured in differ-
ent treatments. MMECs were used in two parallel experi-
ments. In the first experiment, MMECs were cultured in
endothelial cell culture medium with or without aucubin.
In the second experiment, MMECs were cultured in differ-
ent conditioned medium (CM). According to the treatments,
the groups were divided into the following groups: the
vehicle (CM was harvested from RAW264.7 cells)+IgG
(Abcam, Cambs, Britain) group, the Rankl (CM was gath-
ered from RAW264.7 cells stimulated with Rankl)+IgG
group, the Rankl+Aucubin (CM was gathered from
RAW264.7 cells which were stimulated with Rankl and
Aucubin at the same time)+IgG group, and the Rankl
+Aucubin (CM collected from RAW264.7 cells stimulated
with RANKL and aucubin)+PDGF-BB antibody (R&D,
Minneapolis, USA) group. The cell monolayer was scratched
with the tip of a pipette gun followed by washing with PBS.
After 0, 24, and 48 hours, the wounds were acquired by
microscopy and measured by ImageJ software.

2.11. Tube Formation Assay. To perform tube formation
assays, 50μL/well of Matrigel (BD, USA) was spread on
96-well culture plates and incubated at cell incubator for half
an hour. Then, MMECs were seeded on solidified gel in the
96-well plate and cultured under different treatments with a
density of 1 × 104 cells/well. MMECs were used in two par-
allel experiments similar to the scratch test. First, MMECs
were cultured in endothelial cell culture medium with or
without aucubin. Subsequently, MMEC groups were divided
into the following groups: the vehicle (CM was harvested
from RAW264.7 cells)+IgG group, the Rankl (CM was
gathered from RAW264.7 cells stimulated with Rankl)+IgG
group, the Rankl+Aucubin (CM was gathered from
RAW264.7 cells which were stimulated with Rankl and
Aucubin at the same time)+IgG group, and the Rankl
+Aucubin (CM collected from RAW264.7 cells stimulated
with RANKL and aucubin)+PDGF-BB antibody group.
After 6 hours, tube formation was acquired by microscopy
and measured by Image-Pro Plus 6 software.

2.12. Enzyme-Linked Immunosorbent Assay (ELISA). The
concentrations of CTX-1, OCN, PDGF-BB, and VEGF in
the blood serum, bone tissue, or conditioned medium were
measured using commercial ELISA Kits according to the
manufacturers’ instructions. The content of each group
was detected by a microplate reader. PDGF-BB ELISA Kit
was obtained from Cusabio (Wuhan, China). VEGF, CTX-
1, and OCN ELISA Kit were purchased from Multi Sciences
LTD (Hangzhou, China).

2.13. Real-Time RT-PCR. TRIzol reagent (Tiangen, Beijing,
China), RevertAid™ First Strand cDNA Synthesis Kit
(Thermo, Waltham, USA), and SuperReal PreMix Plus
(Tiangen, Beijing, China) PCR Kit were used to perform
the real-time RT-PCR analysis. First, total RNA was
extracted by TRIzol reagent according to the protocols
before reverse-transcribed into cDNA. Then, real-time RT-
PCR was performed following the instructions. During the
process, GAPDH was selected as the internal control, and
the 2−ΔΔCt method was used to evaluate relative gene expres-
sion. The specific primer sequences used for the experiments
are as follows: GAPDH: 5′-AGTTCAACGGCACAGTCAA
GG-3′, 5′-AGCACCAGCATCACCCCAT-3′; Atp6v0d2: 3′-
AGCAAAGAAGACAGGGAG-5′, 5′-CAGCGTCAAACAA
AGG-3′; NFATc1: 3′-CAACGCCCTGACCACCGATAG-5′,
5′-GGCTGCCTTCCGTCTCATAGT-3′; cathepsin K: 3′-
CAGCAGAACGGAGGCATTGA-5′, 5′-CTTTGCCGTGG
CGTTATACATACA-3′; PDGF-BB: 3′-CCTCGGCCTGT
GACTAGAAG-5′, 5′-CCTTGTCATGGGTGTGCTTA-3′;
DC-STAMP: 3′-GATCACCTGTGTTTTCCTATGC-5′, 5′-
CAATCAAAGCGTTCCTACCTTC-3′; C-fos: 3′-CGGG
TTTCAACGCCGACTA-5′, 5′-TTGGCACTAGAGACGG
ACAGA-3′; MMP-9: 3′-GCGTCGTGATCCCCACTTAC-
5′, 5′-CAGGCCGAATAGGAGCGTC-3′; VEGF: 3′-GAG
GTCAAGGCTTTTGAAGGC-5′, 5′-CTGTCCTGGTATT
GAGGGTGG-3′; MMP-2: 3′-TCAAGTTCCCCGGCGA
TG-5′, 5′-AGTTGGCCACATCTGGGTTG-3′.

2.14. Western Blot Analysis. RIPA lysis buffer (Beyotime,
Shanghai, China), 12% SDS-polyacrylamide gel electropho-
resis (SDS-PAGE) and polyvinylidene fluoride (PVDF)
membranes (Millipore, Billerica, MA, USA) were used to
perform the Western blot analysis. Briefly, RIPA lysis buffer
was used to obtain total proteins. Then, 25μg of protein was
resolved by SDS-PAGE and subsequently transferred to
PVDF membranes. Ten percent BSA in Tris-buffered saline
mixed with Tween 20 (TBST) was used to block the PVDF
membranes. The membranes were stained with primary
antibodies against GAPDH (1 : 10000), PDGF-BB (1 : 1000),
cathepsin K (1 : 1000), c-fos (1 : 1000), NFATc1 (1 : 1000),
p-JNK (1 : 500), JNK (1 : 1000), p-p38 (1 : 1000), p38
(1 : 1000), p-p65 (1 : 1000), p65 (1 : 1000), p-IKBα (1 : 1000),
or IKBα (1 : 1000) at 4°C for 8 h. Finally, the membranes
were incubated with secondary antibodies (1 : 20,000,
Rockland, USA) for 1 hour at room temperature. An Odys-
sey infrared imaging system was used to detect the inte-
grated intensity for each group. Antibodies of NFATc1,
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PDGF-BB, and Emcn were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA, USA). p-JNK, JNK, p-p38, p38,
p-IKBα, IKBα, p-p65, and p65 antibodies were obtained
from Cell Signaling Technology (Danvers, MA, USA). c-
Fos, CD31, OCN, and GAPDH antibodies were purchased
from Abcam (Cambridge, MA, USA).

2.15. Statistical Analysis. The results in the present study are
expressed as the mean ± standard deviation. The outcomes
were from at least 3 independent replications. The
Kolmogorov-Smirnov test was used to test the normality
assumptions of experimental data. An independent samples
t-test was used for the comparison between two groups, and
one-way analysis of variance (ANOVA) followed by the
Student Newman Keuls (S-N-K) post hoc analysis was used
for the analysis among multiple groups. For the nonpara-
metric data, the Kruskal-Wallis test was performed. All the
data analysis was using SPSS 20.0 software, and statistical
significance was measured by P < 0:05.

3. Results

3.1. Aucubin Inhibits OVX-Induced Bone Loss and Augments
Type H Vessel Formation. In order to assess the effect of
aucubin on bone loss and type H formation, an OVX mouse
model was generated in the present study. OVX clearly
impaired the bone structure compared to the sham group,
while intraperitoneal injection of aucubin in OVX mice
partly attenuated this bone loss as shown by micro-CT scans
(Figure 1(a)). Correspondingly, quantitative analyses of the
Tb.N, BV/BT%, and Tb.Th were significantly decreased after
OVX surgery; however, these reductions were mitigated by
the aucubin treatment (Figures 1(b)–1(d)). Aucubin also
reduced the increased trabecular bone volume fraction
(Tb.Sp) caused by OVX (Figure 1(e)). HE staining also ver-
ified that aucubin could rescue OVX-induced bone loss
(Figures 1(f) and 1(g)). Consistent with this finding, the
ELISA results indicated that aucubin significantly abolished
the decrease in serum levels of OCN as well as the increase
of CTX-1 content in serum induced by OVX (Figures 1(h)
and 1(i)).

TRAP staining was used to confirm the inhibitory func-
tion of aucubin on osteoclastogenesis in vivo. Consistent with
the change in the bone resorption index in the serum, OVX
mice had a larger number of multinucleated osteoclasts.
However, aucubin administration significantly reduced the
number of mature osteoclasts as well as increased the number
of preosteoclasts (Figures 2(a) and 2(b)). The results con-
firmed that aucubin has an inhibitory role in osteoclast mat-
uration. As the number of osteoclasts in each group was
different, the content of PDGF-BB in bone marrow changed
between groups. PDGF-BB decreased after the OVX opera-
tion. However, the PDGF-BB content increased after the
aucubin intervention (Figure 2(c)). Emcn and CD31 double
IF staining were used to confirm the effects of aucubin on
angiogenesis of type H blood vessel. The quantity of type H
vessels was decreased by OVX, and aucubin treatment results
in a remarkable upregulation in this particular type vessel
(Figures 2(d) and 2(e)). In addition, the influence of aucubin

on bone formation was also detected. Aucubin partially alle-
viated the decrease in OCN in the bone surface caused by
OVX (Figures 2(f) and 2(g)). The in vivo experiments
suggested that aucubin treatment decreases the number of
osteoclasts, promotes the angiogenesis of type H vessels,
and increases bone formation. All animal experiments indi-
cated that the preosteoclast-induced angiogenesis facilitation
might be a potential mechanism by which aucubin protects
skeleton.

3.2. Aucubin Increases the Preosteoclast Number and Inhibits
Osteoclast Maturation. CCK-8 assay was performed to detect
the effect of aucubin on cell viability. The results were
detected at 1, 2, and 3 days after administration of aucubin.
There were no significant influences of aucubin on cell
viability of RAW264.7 cells at low concentrations (1μM)
or high concentrations (5μM) (Figure 3(a)). In order to
detect the influence of aucubin on osteoclastogenesis, TRAP
staining was performed 6 days after the RAW264.7 cells
were stimulated by Rankl and administrated with or without
aucubin. The results showed that the number of mature
osteoclasts in RAW264.7 cells increased under Rankl induc-
tion while the fusion of TRAP+preosteoclasts was inhibited
by the aucubin treatment, with the inhibitory effect more
obvious with a high dose of aucubin (Figures 3(f) and
3(g)). These findings indicated that aucubin had the ability
to prevent the maturation process of preosteoclasts into
multinucleated osteoclasts. RT-PCR analysis was used to
evaluate the expression of osteoclast-related mRNA and
fusion-related mRNA, including NFATc1, cathepsin K
(CTSK), ATP6V0D2, and DC-STAMP. As shown in
Figures 3(b)–3(e), aucubin significantly suppressed
osteoclast-related mRNA (NFATc1 and CTSK) as well as
osteoclast fusion mRNA stimulated by RANKL in macro-
phage cells. In parallel tests, Western blot results indicated
that c-Fos and NFATc1 protein were downregulated by the
addition of aucubin (Figures 3(h)–3(j)). Next, IF staining
was performed to assess the effect of aucubin on NFATc1,
a key factor in osteoclast differentiation. The results showed
the increase in NFATc1 induced by RANKL after 12 hours
was partially offset by aucubin (Figures 3(k) and 3(l)). These
parts of results indicate that aucubin depresses the fusion of
preosteoclasts by inhibiting osteoclast-related factors.

3.3. Aucubin Promotes Angiogenesis via Increasing the
Production of PDGF-BB In Vitro. IF, ELISA, and Western
blotting were performed to determine the influence of
aucubin intervention on the production of PDGF-BB during
the osteoclastic differentiation (Figures 4(a)–4(e)). The
content of PDGF-BB increased by Rankl stimulation. Mean-
while, PDGF-BB further augmented with the inhibition of
osteoclast precursor cell fusion by the aucubin treatment
(Figures 4(a) and 4(b)). As confirmed by ELISA, Rankl
increased the content of PDGF-BB in the supernatant and
aucubin potentiated Rankl-induced PDGF-BB in a dose-
dependent manner (Figure 4(c)). Consistent with the ELISA
results, aucubin also upregulated the expression of PDGF-
BB in protein and mRNA level (Figures 4(d)–4(f)). Thus,
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Figure 1: Continued.
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Figure 1: Aucubin ameliorated bone loss induced by OVX. (a) Micro-CT images and quantitative analysis. (b–e) of the mouse femurs from
different groups. BV/TV: bone volume/total volume; Tb.N: trabecular number; Tb.Sp: trabecular separation; Tb.Th: trabecular
thickness. (f) Representative haematoxylin and eosin (HE) staining of femurs; scale bar: 100μm. (g) Quantification of BV/TV% of
HE staining. (h, i) The concentrations of OCN and CTX-1 in the serum were detected by ELISA. n = 5 per group. ∗P < 0:05 compared to
the sham group. #P < 0:05 compared to the OVX group.
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Figure 2: Aucubin represses osteoclast formation, promotes PDGF-BB secretion, and promotes type H vessel formation in OVX
mice. (a) TRAP staining of the femora to calculate the numbers of osteoclasts and preosteoclasts of bone surface. Scale bar:
200μm. (b) Quantification of OCs and POCs per bone surface of different groups. BS: bone surface. (c) Quantification of PDGF-BB
levels in bone marrow was detected by ELISA and analyzed. (d) Type H vessels were detected by CD31hiEmcnhidouble IF. Scale bar:
100μm. (e) Type H vessels were quantitative analysis in each group. BM: bone marrow; GP: growth plate. n = 5 per group.
(f) Representative images of IF staining of OCN, Scale bar: 50 μm. (g) The quantification of OCN+cell surfaces/bone surfaces.
TB: trabecular bone; BM: bone marrow. ∗P < 0:05 compared to the sham group; #P < 0:05 compared to the OVX group.
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Figure 3: Continued.
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we suggested that aucubin promoted the secretion of PDGF-
BB through raising the number of preosteoclasts.

To assess whether aucubin had the direct effect on angio-
genesis, the scratch wound assay (Figures 5(a) and 5(b)) and

tube formation assay (Figures 5(c) and 5(d)) were per-
formed. The quantitative measurements revealed that aucu-
bin had no significant effect on the migration ability and
tube formation ability of MMECs. In order to confirm the
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Figure 3: Aucubin increases the number of preosteoclasts in vitro. (a) Cell viability of RAW264.7 cells cultured with different concentrations
of aucubin (0, 1μM, and 5 μM) was analyzed via a CCK-8 assay. (b–e) Relative mRNA expression levels of NFATc1, c-FOS, DC-STAMP,
and ATP6V0D2 were analyzed. (f) Representative images of TRAP staining on day 6. Scale bar: 200μm. (g) Quantification of osteoclasts
(OCs) and preosteoclasts (POCs) on day 6. (h–j) Protein levels of c-Fos and NFATc1 were analyzed by WBs. (k) IF staining was
performed to observe the location of NFATc1. Scale bar: 50 μm. (l) The quantification of the relative NFATc1 fluorescence intensity in
different groups. ∗P < 0:05 compared to the control group; #P < 0:05 compared to the Rankl group.
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Figure 4: Continued.
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effect of aucubin in preosteoclast-stimulated angiogenesis
and migration, MMECs were cultured in different groups:
the vehicle+IgG group, the Rankl+IgG group, the Rankl+
Aucubin+IgG grpup, and Rankl+Aucubin+PDGF-BB anti-
body group. As shown in the scratch test, the migration abil-
ity of MMECs was significantly enhanced in the Rankl+IgG
group compared to the vehicle+IgG group, and the superna-
tant of the aucubin+Rankl group enhanced the effect when
combined with that of the Rankl group (Figures 5(g) and
5(h)). To further verify the changes mediated by PDGF-
BB, the PDGF-BB-neutralizing antibody was further added
to the RANKL+aucubin group, and the cell migration was
inhibited. The results of the tube formation experiment are
similar to those of the scratch test. The CM of Aucubin fur-
ther expanded the total tube length compared to the Rankl+
IgG group. However, this increase was attenuated by PDGF-
BB-neutralizing antibodies (Figures 5(i) and 5(j)). As
evidenced by PCR, the expression of MMP-9, MMP-2, and
VEGF mRNA of the aucubin+Rankl+IgG group was
increased when compared to that of the Rankl+IgG
group and PDGF-BB-neutralizing antibodies eliminated

the increase of MMP-9, MMP-2, and VEGF mRNA caused
by aucubin CM (Figure 5(e)). Consistent with the PCR
results, the increased concentration of VEGF in the aucubin
+Rankl+IgG group was blocked by neutralizing antibodies
against PDGF-BB (Figure 5(f)). In summary, aucubin pro-
motes angiogenesis via increasing the production of PDGF-
BB of preosteoclasts.

3.4. Aucubin Inhibits RANKL-Induced MAPK and NF-κB
Signaling. In order to elucidate the mechanism of aucubin
on osteoclast formation and PDGF-BB production, the
MAPK and NF-κB signaling pathways, which play impor-
tant roles in osteoclastogenesis, were detected. Western blots
confirmed that aucubin significantly suppressed the MAPK
signaling pathway. The active forms of ERK, p38 and JNK
at 20 and 30 minutes was inhibited by aucubin treatment
compared with that of the Rankl group (Figures 6(a)–
6(d)). To further clarify whether NF-κB signaling took part
in the mechanisms underlying the effect of aucubin, IKBα
and p65 protein were checked (Figures 6(e) and 6(f)). The
outcomes revealed that aucubin suppressed the activation
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Figure 4: Aucubin augments the production of PDGF-BB in vitro. (a) IF staining was performed to observe the production of PDGF-BB.
Scale bar: 50μm. (b) Quantification of the relative PDGF-BB fluorescence intensity. (c) Concentration of PDGF-BB in CM was analyzed by
ELISA. (d) Protein levels of PDGF-BB were analyzed by WBs. (e) Quantification of PDGF-BB protein expression with different treatments.
(f) Quantification of PDGF-BB mRNA expression with different treatments. ∗P < 0:05 compared to the control group; #P < 0:05 compared
to the Rankl group.
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of IKBα (Figures 6(e) and 6(f)). IKBα regulates the activity
of p65 in the NF-κB signaling pathway. In addition, the
phosphorylation of p65 was also inhibited by aucubin
(Figures 6(e) and 6(f)). Results of IF staining and qRT-
PCR further showed that NF-κB translocation to the
nucleus was activated by Rankl and inhibited by aucubin
(Figures 6(g) and 6(i)). The above results indicated that aucu-
bin inhibited Rankl-induced osteoclastogenesis through the
MAPK and NF-κB signaling pathways.

4. Discussion

Osteoporosis, characterized by quantitative and qualitative
deterioration of bone, has become one of the most serious
chronic diseases [21]. The imbalance of bone formation
and bone resorption is the most direct cause of osteoporosis.
Recent studies have confirmed that bone microenvironment,
especially the vascular system, plays a crucial part in main-
taining the normal progression of bone metabolism [22].
Type H vessels that are mostly regulated by PDGF-BB are
vital to bone remodeling [4]. Moreover, previous studies
have affirmed that the suppression of osteoclasts differentia-
tion at the precursor stage could promote the production of

PDGF-BB [23–25]. Thus, blocking bone absorption and
enhancing osteogenesis by promoting type H vessels might
represent a new direction for the treatment of bone-lost dis-
eases. In this research, it is demonstrated that aucubin inhib-
ited the preosteoclast fusion into multinucleated osteoclasts,
promoted the content of PDGF-BB, increased the quantity
of type H vessels, and eventually takes precautions against
OVX-induced bone loss in vivo.

Aucubin is derived from Eucommia ulmoides, a tradi-
tional Chinese medicine that has bone protection effects.
As an iridoid glycoside compound, aucubin displays anti-
inflammatory and antioxidative effects [26]. A recent study
also demonstrated that aucubin regulates neovascularization
in hindlimb ischaemia [19]. However, its effect on the bone
is not as well understood. In the present experiments, we
built an OVX model to detect the effect of aucubin on bone
metabolism. Intraperitoneal injection of aucubin can signif-
icantly increase bone mass caused by OVX, which agreed
with the outcomes reported by Li et al. [17, 18]. Meanwhile,
the contents of PDGF-BB in bone marrow increased
after aucubin intervention, suggesting that aucubin might
increase bone mass through the enhancing angiogenesis
induced by PDGF-BB. Further immunofluorescence results
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Figure 5: Aucubin promotes the proangiogenic effects of preosteoclasts on MMECs. (a) Representative images of the migration area of
MMECs in different treatments. Scale bar: 200μm. (b) The quantification of the migration area of MMECs in different treatments. Scale
bar: 200μm. (c) Representative images of tube formation in MMECs stimulated with different treatments. Scale bar: 200μm. (d) The
quantification of tube formation in MMECs stimulated with different treatments. (e) Relative mRNA expression levels of VEGF, MMP-9,
and MMP-2 in MMECs with different CMs. (f) Concentration of VEGF in CM was analyzed by ELISA. (g) Representative images of the
migration area of MMECs in different treatments. Scale bar: 200 μm. (h) The quantification of the migration area of MMECs in different
treatments. ∗P < 0:05 compared to the vehicle+IgG group; &P < 0:05 compared to the Rankl+IgG group; #P < 0:05 compared to the
Rankl+Aucubin+IgG group. (i) Representative images of tube formation in MMECs stimulated with different treatments. Scale bar:
200μm. (h) The quantification of tube formation in MMECs stimulated with different treatments. ∗P < 0:05 compared to the vehicle+IgG
group; &P < 0:05 compared to the Rankl+IgG group; #P < 0:05 compared to the Rankl+Aucubin+IgG group.
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were consistent with these findings and showed that aucu-
bin could upregulate the quantity of type H blood vessels
characterized by CD31 and endomucin. Despite the low
quantity, type H vessels undertake the process of bone for-
mation by closely surrounded by osteoprogenitors. In
addition to providing blood supply, type H vessels can
secrete many factors that stimulate the proliferation and
osteogenesis of osteoprogenitors. Bone loss related to age-
ing and bone diseases is at least partly resulting from the
changes in quantity and function of type H vessels. Con-
form with previous researches, the present study also
shows that the content of type H vessels is related to
OVX-induced bone loss. Researches have shown that type
H vessels play a vital role in the treatment of osteoporosis,
fracture, and other bone-loss disease models [27, 28]. In
the present study, aucubin attenuated the decreased OCN
in serum and bone tissue caused by OVX and enlarged
the number of type H vessels. This result shows that aucu-
bin might be a candidate for osteoporotic treatment.

In the present study, aucubin alone did not increase
angiogenesis in vitro indicating that the augmented angio-
genesis caused by aucubin might due to an indirect effect.
Furthermore, we found an upregulation of PDGF-BB in
the CM after the administration of aucubin. And the
remarkably enhanced angiogenic activities of MMECs were
accompanied by the increase of PDGF-BB level in the
cultured CM. Meanwhile, VEGF, the important marker of
angiogenesis, was upregulated after the administration of
aucubin+Rankl CM. Previous studies had shown that the
levels of PDGF-BB and VEGF were strongly correlated
[29]. PDGF is an important upstream mediator in
hypoxia-induced VEGF up-regulation [30]. And PDGF-BB
has been reported to induce the secretion of VEGF in a
manner dependent on both Akt and MAPK activation in
ovarian cancer [31]. The enhanced angiogenic activities
induced by aucubin+Rankl CM were abolished by the inter-
vention of PDGF-BB-neutralizing antibodies, confirming
that the upregulation of angiogenic activities was induced
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Figure 6: Aucubin inhibits the MAPK and NF-κB signaling pathways. (a) Protein levels of the MAPK family were analyzed by WBs.
(b–d) Quantification of MAPK family protein expression. ∗P < 0:05 compared to the Rankl group at 20min; #P < 0:05 compared to the
Rankl group at 30min. (e) Protein levels of the NF-κB family were analyzed by WBs. (f) Quantification of NF-κB family protein level.
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was observed via IF. Scale bar: 50 μm. (h) Relative p65 fluorescence intensity was analyzed. ∗P < 0:05 compared to the control group;
#P < 0:05 compared to the Rankl group. (i) Relative p65 mRNA was analyzed. ∗P < 0:05 compared to the control group; #P < 0:05
compared to the Rankl group.
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by PDGF-BB. Previous studies have confirmed that PDGF-
BB could enhance the type H vessels angiogenesis and subse-
quent osteogenesis during bone remodeling [32]. PDGF-BB
is an important member of the PDGF family which is
important in the process of the proliferation, migration,
and differentiation of endothelial progenitor cells. It exerts
its function by binding to its specific receptor PDGF recep-
tor β (PDGFRβ) mitogen-activated kinase and inducing a
signaling cascade [33]. Recently, preosteoclasts have been
confirmed as the most important source of PDGF-BB. In
the present experiment, aucubin administration led to an
accumulation of PDGF-BB in the CM as it increased the
number of preosteoclasts. Further mechanism experiments
showed aucubin increased the number of preosteoclasts by
decreasing the expression of NFATc1, DC-STAMP, and
ATPV0D2 mRNA induced by Rankl. NFATc1 is a vital reg-
ulator during the process of osteoclastogenesis. In addition
to controlling the expression of the osteoclast differentiation
related genes TRAP and cathepsin K, NFATc1 also partici-
pates in the multinucleation of osteoclasts through cell
fusion molecules [34, 35]. DC-STAMP and ATPV0D2 par-
ticipate in the process of cell-cell fusion [36, 37]. The fusion
of macrophage cells into foreign body giant cells was
completely abrogated in DC-STAMP-deficient mice [38].
In addition, knockdown of CTSK has been reported to
inhibit the maturation of osteoclasts [10]. The decreased
relative expression of osteoclast marker genes, including
CTSK, DC-STAMP, ATP6V0D2, c-Fos, and NFATc1, dem-
onstrated an inhibitory effect of aucubin on the differentia-
tion of preosteoclasts into osteoclasts. The above results
suggest that aucubin promotes type H vessel angiogenesis
by inhibiting osteoclast fusion to produce more PDGF-BB.

After confirming that aucubin inhibited osteoclast fusion
to promote type H vessel angiogenesis, we then explored the
mechanism by which aucubin suppress preosteoclast fusion.
In this research, we found that aucubin inhibited the activa-
tion of the MAPK signaling pathway. MAPK and NF-κB sig-
naling pathways are vital during Rankl-induced osteoclast
differentiation [39]. After Rankl administration, the activa-
tion of the MAPK family, namely, p38, JNK, and ERK,
increased. The ERK signaling is involved in the survival, pro-
liferation, and differentiation of osteoclasts [40]. Bone
marrow-derived macrophages isolated which were lacking
of JNK1 showed reduced osteoclast differentiation activity
[41]. Activated p38 directly stimulates NFATc1 to enhance
the differentiation of osteoclasts [42]. Meanwhile, aucubin
was found to inhibit the phosphorylation and degradation
of IKBα in the present study, which is an important part of
NF-κB signaling pathway and suppresses p65 nuclear trans-
location by binding to p65. The IF staining results also indi-
cated that aucubin inhibited the Rankl-induced activity of
p65 signaling pathway. Recently, the PDGF-B promoter
region was confirmed to contain an NF-κB binding domain
[43]. Thus, the decrease in p65 activation into the nucleus
directly inhibited the transcription of PDGF-BB. Taken
together, we conclude that aucubin might enhance preosteo-
clast PDGF-BB-induced angiogenesis by inhibiting MAPK/
NF-κB signaling and ultimately accelerate osteogenesis and
prevent bone loss induced by OVX.

5. Conclusions

In conclusion, our research demonstrated that aucubin has
the ability to inhibit multinucleated osteoclast maturation
and promote the formation of type H vessels in OVX mice.
The underlying mechanism may be that aucubin increases
preosteoclast and subsequent PDGF-BB-induced angiogene-
sis by inhibiting MAPK/NF-κB signaling. All the findings
indicate that aucubin might be an anti-bone-loss drug candi-
date which needs further research.
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Current research suggests that chronic high-fat dietary intake can lead to bone loss in adults; however, the mechanism by which
high-fat diets affect the development of osteoporosis in individuals is unclear. As high-fat diets are strongly associated with
ferroptosis, whether ferroptosis mediates high-fat diet-induced bone loss was the focus of our current study. By dividing the
mice into a high-fat diet group, a high-fat diet + ferroptosis inhibitor group and a normal chow group, mice in the high-fat
group were given a high-fat diet for 12 weeks. The mice in the high-fat diet + ferroptosis inhibitor group were given 1mg/kg
Fer-1 per day intraperitoneally at the start of the high-fat diet. Microscopic CT scans, histological tests, and biochemical
indicators of ferroptosis were performed on bone tissue from all three groups at the end of the modelling period. Mc3t3-E1
cells were also used in vitro and divided into three groups: high-fat medium group, high-fat medium+ferroptosis inhibitor
group, and control group. After 24 hours of incubation in high-fat medium, Mc3t3-E1 cells were assayed for ferroptosis
marker proteins and biochemical parameters, and osteogenesis induction was performed simultaneously. Cellular alkaline
phosphatase content and expression of osteogenesis-related proteins were measured at day 7 of osteogenesis induction. The
results showed that a high-fat diet led to the development of femoral bone loss in mice and that this process could be inhibited
by ferroptosis inhibitors. The high-fat diet mainly affected the number of osteoblasts produced in the bone marrow cavity. The
high-fat environment in vitro inhibited osteoblast proliferation and osteogenic differentiation, and significant changes in
ferroptosis-related biochemical parameters were observed. These findings have implications for the future clinical treatment of
bone loss caused by high-fat diets.

1. Introduction

Overweight and obesity are not only significant risk factors
for cardiovascular disease, hypertension, and other cardio-
vascular diseases [1, 2] but also have adverse effects on bone
through various mechanisms such as affecting bone forma-
tion and the bone marrow microenvironment [3]. The dis-

eases arising from abnormal lipid metabolism and the
development of osteoporosis are currently receiving increas-
ing attention from researchers, who have found that patients
with hyperlipidaemia can experience both bone loss and
osteoporosis [4, 5]. At the same time, patients who develop
osteoporosis and reduced bone mass also have abnormal
lipid metabolism and vascular calcification [6], suggesting
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that osteoporosis and lipid metabolism may be causally
linked. Osteoporosis is a systemic skeletal disease character-
ized by a reduction in bone mineral density and bone
strength, which increases the risk of fracture due to
increased bone fragility [7]. The pathogenesis of osteoporo-
sis is mainly due to a disruption of the balance between bone
resorption and bone formation, resulting in a disorder of
bone metabolism, which is associated with a decrease in
the number and function of osteoblasts [8, 9]. The process
of bone reconstruction is based on a dynamic balance
between the two main mechanisms of osteoclast-associated
bone resorption and osteoblast-associated bone formation
[8]. And osteoblast cell death is an important pathogenic
mechanism in osteoporosis [9]. Cell death is caused by a
variety of mechanisms. The modes of cell death include
autophagy, pyroptosis, senescence, and ferroptosis [10–12].
Osteoporosis is currently well studied in cellular senescence
[13], cellular autophagy [14], and cellular pyroptosis [15],
but less studied in cellular ferroptosis. Iron overload has
been reported in the literature to cause osteoporosis [16,
17]. Therefore, controlling ferroptosis could be effective in
preventing osteoporosis or promoting osteoblast osteogenic
capacity. We therefore shifted our experimental focus to
investigate the phenomenon of bone loss triggered by fer-
roptosis in osteoblasts. Ferroptosis was first proposed by
Dixon et al. in 2012 [18] and is essentially the result of lipid
peroxidation and excessive accumulation of intracellular
reactive oxygen species due to damage to the cellular antiox-
idant system, which in turn leads to ferroptosis [19]. In fer-
roptosis, inhibition of glutathione peroxidase 4 and cystine/
glutamate antiporter protein affects cysteine metabolism and
promotes lipid peroxidation in cells [20]. Excess intracellular
divalent iron causes ferroptosis in cells through the Fenton
reaction [18]. In recent years, researchers have found that
cells in high-fat environments are prone to ferroptosis [21,
22]. Ferroptosis plays an important role in cardiovascular
diseases caused by high-fat diets [23, 24]. Therefore, it is rea-
sonable to speculate that ferroptosis in osteoblasts in a high-
fat environment is an important pathway for bone loss due
to high-fat diets when mice are given a long-term high-fat
diet. This holds great promise for the future clinical treat-
ment of osteoporosis caused by high-fat diets.

2. Materials and Methods

2.1. Animals. The experimental protocol was approved by
the Southern Hospital Animal Care and Use Committee
and was conducted in accordance with the Southern Hos-
pital Southern Medical University Guide for Laboratory
Animals. The experimental mice were housed in a conven-
tional experimental environment where the mice underwent
a 12-hour light/12-hour dark cycle daily and were kept at a
controlled temperature of around 25°C and 50% relative
humidity with free access to food and drinking water. After
one week of adaptive feeding, the mice were randomly
assigned to three groups: normal control mice, high-fat diet
mice, and high-fat diet + inhibitor mice. Mice in the high-
fat diet group and mice in the high-fat diet + Fer-1 group
were given HFD (D12492, Research Diet, USA) for a total

of 12 weeks at the time of moulding. Mice in the high-fat diet
+ Fer-1 group were given a high-fat diet along with an intra-
peritoneal injection of 1mg/kg Fer-1 (MCE, HY-100579,
USA) starting daily. After the end of moulding, the mice were
executed by the cervical dislocation method, and tissues were
extracted for further experiments.

2.2. Micro-CT. After execution of the mice, the leg tissue was
cut, and the femur was removed and washed in saline. This
was followed by overnight fixation in 4% paraformaldehyde
in a cold room at 4°C and studied using high-resolution CT
scans (Skyscan 1172, Bruker MicroCT, Kontich, Belgium).
The scans were performed using an X-ray energy of
55 kVp and a current of 145mA, with a voxel size of
12μm and an integration time of 400ms. To get a clear pic-
ture of the changes in trabeculae in the region of the femoral
epiphysis in mice, we used quantitative analysis which was
performed using IPL software (Image Processing Language
V5.15, Scanco Medical AG, Switzerland) for quantitative
analysis. The region of the experiment (ROI) was selected
starting 1mm below the reference level of the distal epiphy-
seal plate and extending 2mm in length in a distal direction
for histomorphometric analysis of the trabeculae.

2.3. Histochemistry Staining. The femurs of the mice were
separated from the soft tissue and fixed in 4% paraformalde-
hyde for 36 hours. This was followed by decalcification in
0.5M ethylenediaminetetraacetic acid (EDTA, pH8.0) for
10 days, followed by paraffin embedding. The resulting
paraffin-embedded samples were cut longitudinally into
4μm-thick sections. Alkaline phosphatase (ALP) staining
and antitartrate acid phosphatase (TRAP) staining were per-
formed, together with eosin (H&E) staining to visualize the
histomorphology. To better assess the number of osteoblasts
and osteoclast activity on the surface of bone trabeculae in
experimental mice, the Wako TRAP/ALP stain kit (Cat.
294-67001) was used, and the manufacturer’s instructions
were followed: number of osteoblasts per millimeter of bone
surface (N. of Ob/mm) and number of TRAP+ cells per mil-
limeter of bone surface (N. of TRAP+). The number of oste-
oblasts per millimeter of bone surface (N. of Ob/mm) and
the number of TRAP+ cells per millimeter of bone (N. of
TRAP+/mm) were quantified.

2.4. Immunofluorescence Staining of Tissues and Cells

2.4.1. Immunofluorescence Staining of Tissues. The 4μm par-
affin wax was dewaxed and rehydrated into sodium citrate
antigen repair solution and water bathed for 2 hours at
75°C, rinsed with PBS 3 times/min, and closed with BSA
for one hour. This was followed by incubation with primary
antibody GPX4 (Abcam, ab125066, 1 : 200) overnight at 4°C
and then with fluorescently labelled secondary antibody for
1 hour at room temperature. Tissues were stained with
anti-fluorescence-attenuated blocker containing DAPI as a
counterstain (S2110, Solarbio, China). Sections were viewed
with a Zeiss Axio Imager.D2 (Axio imager M2 Microscope,
Germany). We randomly selected two nonoverlapping posi-
tions in three sections of each mouse specimen to quantify
positive cells.
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2.4.2. Immunofluorescence Staining of Cells. Cells were
removed from the cell incubator after 24 hours of high-fat
medium stimulation and Mc3t3-E1-E1 cells that had under-
gone seven days of osteogenic differentiation after high-fat
medium stimulation, washed three times with PBS, and
then, fixed with 4% paraformaldehyde for 15 minutes before
washing the cells three times with PBS. The membrane was
broken with 0.1% TritonX-100 for 15 minutes, followed by
closure with 5% BSA for one hour. At the end of the closure
high-fat medium was used to stimulate the cells for 24 hours
after stimulation with primary antibodies Gpx4 (Abcam,
ab125066, 1 : 50), Slc7a11 (Proteintech, 26864-1-AP, 1 : 50),
and Ki67 (Abcam, ab15580, 1 : 50) to observe intracellular
ferroptosis marker proteins and proliferation of changes.
Cells undergoing seven-day osteogenic differentiation were
treated with primary antibodies Osterix (Abcam,
ab209484,1 : 50), Osteocalcin (Proteintech, 23418-1-AP,
1 : 50), and Rux2 (HUABIO, ET1612-47, 1 : 50) to observe
changes in intracellular osteogenic-associated proteins. Cells
were observed with a Zeiss Axio Imager.D2 (Axio imager
M2 microscope, Germany).

2.5. Biochemical Analysis. The levels of reduced GSH/GSSG,
total GSH (G263, Tong Ren, Japan), malondialdehyde
(M496, Tong Ren, Japan), and divalent iron ions (l291, Tong
Ren, Japan) in mouse bone tissue and Mc3t3-E1 cells were
measured using commercial kits according to the manufac-
turer’s instructions. Measurements were made using com-
mercial kits, following the manufacturer’s instructions.

2.6. Cell Culture. MC3T3-E1 (GNM15, Cell Bank of Typical
Culture Preservation Committee of Chinese Academy of Sci-
ences, China) cells were cultured in medium containing 10%
FBS in α-MEM. To investigate whether osteoblasts under
high-fat condition media (Pythonbio, AAPR156-D500,
China) undergo ferroptosis and have reduced osteogenic
capacity, we seeded MC3T3-E1 cells at a density of 1 × 105
cells/well on six-well plates. Cells were divided into control,
high-fat, and high-fat plus Ferrostatin-1 groups at a concen-
tration of 5μmol/l. Cells were collected 24h later for
ferroptosis-related assays. For osteogenic differentiation,
MC3T3-E1 cells were divided into control group, high-fat
group, and high-fat plus Ferrostatin-1 group with
Ferrostatin-1 (MCE, HY-100579, China) at a concentration
of 5μmol/l. After 24 hours of treatment in the high-fat and
high-fat + Ferrostatin-1 groups, the medium was changed
back to the conventional osteogenic differentiation induction
medium. On the seventh day, ALP staining and immunofluo-
rescence staining for bone-formation-associated proteins were
performed, and the results of ALP staining were quantified.

2.7. Osteogenic Differentiation of Cells and ALP Staining.
Alkaline phosphatase (ALP) staining assays were used to
assess the effect of inhibition of cellular ferroptosis under
high-lipid conditions on osteogenic differentiation of
Mc3t3-E1cells. Mc3t3-E1 cell suspensions were added to
24-well plates (2 × 104 cells per well) and incubated in a con-
ventional incubator for 12 hours. The medium was then
changed to regular medium, high-fat medium, and high-fat

plus Ferrostatin-1 medium. After 24 hours of incubation,
all media were changed to osteogenic differentiation induc-
tion medium, which was prepared with 50μg/ml ascorbic
acid (Sigma, A4544-25G), 10 nmol/l dexamethasone (MCE,
HY-14648), and 10mmol/l β-glycerophosphate (Sigma,
G9422-10G). Seven days after osteogenic induction, half of
the cells were stained for ALP using the ALP staining kit
for the plates (Beyotime, C3206), and staining was per-
formed according to the kit guidelines. Observation was
made with a bright-field microscope. Photographs were then
taken with a bright-field microscope ((OLYMPUS, BX63).
The other half was assayed for ALP activity using the ALP
quantification kit. The supernatant was collected, and the
absorbance was measured at 405 nm (Beyotime, P0321S),
and the cellular ALP activity was counted quantitatively.

2.8. Statistics. All quantitative data were expressed as mean
± S:E:M. For cell culture experiments, all results were
obtained from independent replicates of the experiments,
which were repeated independently at least three times.
For comparisons between two groups, independent Stu-
dent’s t-tests were used. One-way analysis of variance
(ANOVA) and Bonferroni post hoc tests were used for mul-
tiple comparisons. Statistical analysis software was used for
the data using GraphPad, version 7.0 software (GraphPad
Software, USA). P values < 0.05 considered to be a statisti-
cally significant difference.

3. Results

3.1. Ferroptosis Inhibitor Ferrostatin-1 Can Prevent HFD-
Induced Bone Loss. To research the efficacy of Ferrostatin-1
on bone formation and bone resorption in high-fat diet
mice, we used a model of bone loss induced by a long-
term high-fat diet. Mice fed a high-fat diet were given intra-
peritoneal injections of Ferrostatin-1, and the results showed
that the administration of a high-fat diet to mice resulted in
a reduction in femoral trabecular bone mass. This high-fat
diet-mediated bone loss was inhibited by Ferrostatin-1.
Morphometric analysis of the distal femur showed that
BV/TV and number (Tb.N) were reduced and that this
change was inhibited by Ferrostatin-1. However, the effect
of Ferrostatin-1 on trabecular bone thickness (Tb.Th) but
trabecular bone separation (Tb.Sp) in mice on a high-fat diet
was not statistically significant (Figure 1(d)).

3.2. High-Fat Diet Induces Loss of Osteoblasts. As a result of
the analysis of micro-CT data, a chronic high-fat diet alters
the bone structure of long bones in mice. We investigated
in our experiments whether the bone marrow microenviron-
ment of HFD-fed mice leads to a decrease in the number of
osteoblasts. It was again verified by histological examination
of HE staining that bone loss in high-fat diet mice could be
mitigated by Ferrostatin-1, as shown by H&E staining
(Figure 2(a)). During the course of our study, we identified
an important role for the precursors of osteoblast formation.
Proosteoblasts are an important population for bone forma-
tion in the bone marrow cavity. In order to detect changes in
osteoblasts on the surface of bone trabeculae. ALP staining
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was used to quantify the number of osteoblasts in the exper-
iment (Figures 2(a) and 2(b)). The results showed that the
number of osteoblasts on the surface of bone trabeculae
was reduced in high-fat diet mice and that Ferrostatin-1

inhibited the reduction in their number, since the metabolic
balance of bone is maintained by a balance between osteo-
clast formation and bone resorption. For this reason, bone
tissue was experimentally stained with TRAP (Figures 2(a)
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Figure 1: In this experiment, it was found that feeding mice a high-fat diet reduced bone mass production and that intraperitoneal
administration of the ferroptosis inhibitor Ferrostatin-1 to mice fed a high-fat diet significantly reduced the bone mass loss in mice fed a
high-fat diet. Representative micro-CT images of the distal femur of mice fed a normal diet, a high-fat diet, and a high-fat diet plus a
ferroptosis inhibitor for 12 weeks (a). The femoral microstructure of mice was then quantified in terms of trabecular volume fraction
(BV/TV) (b), trabecular number (Tb.N) (c), trabecular thickness (Tb.Sp) (d), and trabecular separation (Tb.Th) (e). n = 5/group, ∗P <
0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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and 2(c)) to assess changes in osteoclast activity in the bone
marrow cavity of mice on a high-fat diet. However, we
observed no significant difference in the number of TRAP+

cells in the bone of mice given a high-fat diet. Therefore,
these results suggest that a high-fat diet may primarily
induce the loss of osteoblasts in mice.
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Figure 2: Chemical staining of mouse femurs with hematoxylin and eosin (H&E) after 12 weeks of feeding mice on normal and high-fat
diets revealed a significant reduction in the number of metaphyseal trabeculae in the femur, which was then restored to some extent
after administration of ferroptosis inhibitors (a); scale bar represents 200μm. Experiments revealed that after mice consumed a diet high
in fat content, the number of alkaline phosphatase- (ALP-) positive osteoblasts on the surface of the trabeculae in the femur was
significantly reduced (b), and the reduction in the number of osteoblasts was somewhat mitigated by a high-fat diet accompanied by
treatment with ferroptosis inhibitors in mice. Osteoblasts are shown in brown and nuclei in green. Quantification of the number of
osteoblasts per bone surface (b). Scale bars represent 100μm, n = 5/group, ∗P < 0:05, ∗∗∗P < 0:001. Quantification of staining for TRAP+
cells in the femoral bone marrow cavity (a, c), with osteoclasts in red and nuclei in green (a) and NS indicating no statistical difference
in component; scale bars represent 100μm, n = 5/groups.
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Figure 3: Continued.

6 Stem Cells International



3.3. Ferroptosis Plays an Important Role in High-Fat Diet-
Induced Bone Loss. In previous studies, researchers found
that Gpx4, a key protein for ferroptosis, is significantly
altered in a high-fat environment. Immunofluorescent stain-
ing of bone tissue from mice on a high-fat diet suggested that
Gpx4 protein expression was decreased in the bone marrow
lumen and that this process could be reversed by
Ferrostatin-1 (Figure 3(a)). The tibial bone tissues of mice
were also subjected to the determination of biochemical
indicators of ferroptosis, namely, total GSH, GSH/GSSG

ratio, MDA, and Fe2+ content. The results showed that these
MDA and Fe2+ were significantly elevated in the bone tis-
sues of mice on a high-fat diet. However, total GSH and
GSH/GSSG ratios were significantly lower. These data sug-
gest that ferroptosis plays an important role in the high-fat
diet-induced bone loss.

3.4. Ferroptosis Is an Important Way in Which Mc3t3-E1
Cells Undergo Death. Years of research have shown that
osteogenic differentiation of Mc3t3-E1 cells is important
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Figure 3: To demonstrate whether ferroptosis occurred in bone tissue of mice fed a high-fat diet, the expression of Gpx4 protein, a key
protein for ferroptosis, in the femur of mice was examined using immunofluorescence staining. A significant decrease in the number of
Gpx4 positive cells in the bone marrow of mice fed a high-fat diet was found (a), and after administration of a ferroptosis inhibitor, the
number of Gpx4-positive cells increased significantly compared to the group fed a high-fat diet alone (a, b). Gpx4-positive cells in red
and DAPI-stained nuclei in blue. n = 5/group, ∗P < 0:05, ∗∗P < 0:01. By measuring biochemical indicators of ferroptosis in the normal
diet group, high-fat diet group, and high-fat diet plus ferroptosis inhibitor group, iron content (c), the total GSH content (d), GSH/GSSG
ratio (e), and MDA content (f) in the femurs of mice were found to be n = 5/group, ∗P < 0:05, ∗∗P < 0:01; NS indicates no statistical
difference.
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for bone formation. If ferroptosis of Mc3t3-E1 cells is
increased in a high-fat environment, its function and prolif-
erative capacity will be greatly affected. To determine
whether Mc3t3-E1 undergoes ferroptosis under high-fat
conditions, immunofluorescence staining for Gpx4 and
Slc7a11, the key proteins of ferroptosis, and biochemical
indicators of ferroptosis, was performed. The results
revealed that total GSH and total GSH/GSSG ratio were
lower in Mc3t3-E1 cells treated with high-fat medium com-
pared to the control (Figures 4(e) and 4(f)), while Fe2+ and
MDA were higher in Mc3t3-E1 treated with high-fat
medium (Figures 4(d) and 4(g)) and increased, and Gpx4

and Slc7a11 proteins were significantly reduced compared
to the control. Moreover, the proliferation function of
Mc3t3-E1 cells was somewhat restricted compared to the
control group. This process could be inhibited by
Ferrostatin-1. These results suggest that ferroptosis is pres-
ent in Mc3t3-E1 cells cultured in a high-fat environment.

3.5. High-Fat Environment Inhibits Osteogenic
Differentiation of Mc3t3-E1 Cells. Although cell death is an
important factor affecting changes in bone mass in mice,
impaired osteogenic differentiation of Mc3t3-E1 cells has a
major impact on reduced bone mass in mice. Therefore,
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Figure 4: Mc3t3-E1 cells were used as cells for the in vitro study. Mc3t3-E1 cells were treated with high-fat medium for 24 hours, and Fer-1
at a concentration of 5 μmol/l was used to slow down the process of ferroptosis. 24 hours later, changes in the key ferroptosis proteins Gpx4
and Slc7a11 were measured (a, b), while there was also a significant decrease in cell proliferation capacity (c), a process that could be rescued
by ferroptosis inhibitors. Some of the treated cells were also used to assay ferroptosis biochemical parameters, and intracellular iron (d), total
GSH (e), GSH/GSSG (f), and MDA (g) were found to vary in the high-fat medium. n = 3/group, ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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the osteogenic differentiation capacity of Mc3t3-E1 cells was
examined in this experiment. During osteogenic differentia-
tion of the cells, we found that the early marker of osteogenic
differentiation, ALP, in Mc3t3-E1 cells treated with high-fat
medium was significantly decreased at the seventh day of
osteogenic differentiation induction (Figures 5(a) and
5(b)). The osteogenic-related proteins Osterix, Osteocalcin,
and Rux2 were also reduced to varying degrees
(Figures 5(c)–5(e)). And this process could be inhibited by
Ferrostatin-1.

4. Discussion

Chronic obesity caused by a high-calorie diet has a signifi-
cant negative impact on human bone mineral density
(BMD) [25]. The long-term reduction in BMD and conse-
quently osteoporosis increases the economic burden on soci-
ety [26]. However, the exact mechanism of bone loss caused
by a high-fat diet is not known [25]. Therefore, the search
for the exact mechanism of bone loss caused by a high-
calorie diet is of great importance for the prevention and
treatment of bone loss. The essence of cellular ferroptosis
is that lipid peroxidation and reduced expression of the core
proteins Gpx4 and Slc7a11 occur in response to external
stimuli that impair the cellular antioxidant system, which
also affects the metabolism of cystine transport [27, 28]. In
previous studies, the link between the occurrence of cellular
ferroptosis and abnormal cellular function in a high-fat envi-
ronment has been inextricably linked. The association
between high-fat environments and cellular ferroptosis is
mainly related to cardiovascular aspects [29], such as arterial

lipid deposition leading to plaque formation [30], cardiac
ejection capacity [31], and remodelling [32], but the mecha-
nisms are underlying alcoholic liver disease [33]. From these
studies, we can suggest that there is a link between a high-fat
diet and the development of cellular ferroptosis. Therefore, it
is reasonable to assume that the phenomenon of cellular fer-
roptosis plays an important role in the loss of bone mass in
mice on a high-fat diet. In a high-fat environment, most cells
undergo accumulation of lipids and excessive accumulation
of reactive oxygen species [34, 35]. These are necessary con-
ditions for ferroptosis to occur. Therefore, inhibition of fer-
roptosis is important in the process of impaired cellular
function caused by high-fat environments. In the present
experiment, mice on a high-fat diet injected with Ferrosta-
tin-1, a ferroptosis inhibitor, showed a significant reduction
in bone loss (Figure 1). In vivo experiments have confirmed
the important role of ferroptosis in bone loss due to a high-
fat diet. In the present study, the high-fat diet led to bone
loss in mice mainly due to a disruption of the balance
between osteogenesis and osteolysis, with a low number of
osteoblasts, resulting in impaired osteogenic mineralization
and reduced bone formation (Figure 5). In the present study,
we first demonstrated in vivo experiments in animals that
ferroptosis is an important influence on bone loss due to a
high-fat diet. Following in vivo experiments, we found that
impaired bone anabolism was an important factor in the
high-fat diet-induced bone loss. The biochemical parameters
of ferroptosis in mouse bone tissues also confirmed that fer-
roptosis occurs in the process of bone loss due to high-fat
diet (Figure 3). Since osteogenic differentiation of osteoblasts
is the cell that most directly affects bone synthesis, in the

DAPI Phalloidin Ocn Merge

HFM+Fer-1

Con

HFM

50 um 50 um 50 um 50 um

50 um 50 um 50 um 50 um

50 um 50 um 50 um 50 um

(e)

Figure 5: To verify that osteogenic formation is affected to some extent in a high-fat environment. We treated Mc3t3-E1 cells in high-fat
medium and then replaced the osteogenic induction medium for seven days of osteogenic differentiation culture. We found that the level of
alkaline phosphatase ALP was significantly reduced in high-fat conditioned medium-treated cells at day seven of osteogenic induction
culture (a, b) and that this process could be alleviated by ferroptosis inhibitors. n = 3/group, ∗P < 0:05, ∗∗P < 0:01. Early intracellular
osteogenic differentiation was measured by immunofluorescence at day seven of osteogenic differentiation in high-fat-treated cells
Osterix (c), Rux2 (d), and Ocn (e) found to be reduced to varying degrees. The addition of Fer-1, a ferroptosis inhibitor, to the high-fat
medium treatment significantly reduced the expression of osteogenic marker proteins (c–e).
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next study, we used in vitro culture of osteoblasts (Mc3t3-E1
cells) to verify whether bone formation of osteoblasts is
affected to some extent in a high-fat environment and that
cellular ferroptosis is an important factor affecting osteo-
genic differentiation of osteoblasts in a high-fat environ-
ment. The results of the cellular assays suggest that the
high-fat environment does indeed diminish osteoblast pro-
liferation (Figure 4) and osteogenic differentiation
(Figure 5) and that this process can be mitigated by ferrop-
tosis inhibitors. The results of this in vitro experiment are
consistent with those of the in vivo experiments. It confirms
that ferroptosis does occur in the high-fat environment and
attenuates the normal physiological functions of the cells.
The results of this study may provide a possible treatment
for the reduction in bone mineral density caused by a
high-fat diet. However, there are several shortcomings in
this study. Firstly, a high-fat diet does not only affect the
growth and development of bones but also other important
organs to varying degrees. Whether damage to other impor-
tant organs may indirectly lead to bone loss was also not
investigated in this study. For example, it has been estab-
lished that lipid deposition due to a high-fat diet has an
adverse effect on blood vessels throughout the body and that
the H-vessel, which represents bone anabolism, may also be
significantly reduced, thereby reducing the supply of nutri-
ents to the femoral epiphysis and indirectly leading to bone
loss. Secondly, other cells that represent bone anabolism
were not targeted and analyzed in this experiment, such as
whether the number and function of bone marrow mesen-
chymal stem cells, which have the potential for multidirec-
tional differentiation, were affected in some way and thus
were a factor in bone loss in mice on a high-fat diet. In
future studies, we will explore the clinical translation of cel-
lular ferroptosis in bone loss due to high-fat diet in an effort
to investigate the underlying mechanisms.

5. Conclusions

In the present experiment, we found that long-term high-fat
diet intake led to bone loss in mice by feeding them a high-
fat diet (a). And cellular ferroptosis was involved in the
whole process. The results suggest that impaired bone anab-
olism is an important factor in bone loss in mice fed a high-
fat diet (b). The reduced osteoblast differentiation function
under high-fat conditions is a major factor affecting bone
formation. Previous studies have found that high body
weight due to high calories is an important factor contribut-
ing to bone loss in people. As people’s standard of living has
now improved and their diet has changed, long-term high
calorie intake can lead to damage to bone microstructure.
Therefore, the high-fat diet found in this experiment inter-
feres with normal bone anabolic metabolism through the
ferroptosis pathway has some clinical significance. The pos-
sible pathways by which a high-fat diet leads to bone loss are
described from a mechanistic perspective. The antagonism
of ferroptosis through the administration of antioxidant
drugs to slow down bone loss due to high-fat diet may also
be a potential clinical treatment for bone loss due to high-
fat diet.
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Background. Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a
vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of
this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative
NPCs cocultured with mesenchymal stem cells (MSCs). Methods. A series of bioinformatic methods were used to calculate the
oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-
protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore
the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results. There
was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0:05). Forty-one
OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI
score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network,
which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship
between the oxidative stress score and autophagy score was observed (p < 0:05), and 125 significantly related gene pairs were
obtained (jrj > 0:90, p < 0:05). Conclusion. Stem cell therapy might repair the degenerative IVD via reducing the oxidative
stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide
new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.

1. Background

Low back pain (LBP) has become a very common health con-
cern in the modern society, which generates a social and eco-
nomic burden to human beings [1–3]. It is estimated that
approximately 80% of population experience the LBP at least
once in their lifetimes [4]. Intervertebral disc degeneration
(IDD) is the principal contributor to the LBP [2, 5]. IDD is
an inflammatory-catabolic process triggered by a series of

pathogenic factors, including gene susceptibility, increased
mechanical stress, abnormal immunity, metabolic disorders,
and oxidative stress [3, 6, 7]. The standard treatments for
LBP caused by IDD include the bed rest, administration of
nonsteroid anti-inflammatory drugs and analgesics, discect-
omy, and lumbar interbody fusion [2, 5]. However, the exist-
ing treatments can only relieve the clinical symptoms instead
of reversing the degeneration process. Therefore, novel ther-
apies targeting the degeneration process are urgently needed.
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In recent years, stem cell therapy has shown a promising
effect and potential clinical applicability in the management
of IDD [8–12]. Accumulating evidence has indicated that
mesenchymal stem cells (MSCs) might exert therapeutic
functions mostly through the paracrine process, such as
the release of growth factors, cytokines, extracellular vesicles,
and noncoding RNAs [8]. However, the definite underlying
mechanisms remain unclear. Oxidative stress has been dem-
onstrated to play important roles in the development of IDD
[13, 14]. Under normal circumstances, the microenviron-
ment of intervertebral disc (IVD) tissue is hypoxic, and there
is a dynamic balance between the generation and scavenging
of intracellular reactive oxide species [15]. However, the oxi-
dative stress occurs when this balance is disrupted, which
can lead to senescence and apoptosis of nucleus pulposus
cells (NPCs), and degradation of extracellular matrix [16].

Long noncoding RNAs (lncRNAs) refer to a type of non-
coding RNA longer than 200 nucleotides [17, 18]. Although
lncRNA lacks the ability to encode proteins, lncRNAs can
act as the competing endogenous RNAs (ceRNAs) by spong-
ing the microRNAs (miRNAs) to repress the translation of
genes [19, 20]. Autophagy is a well-known conserved cellu-
lar process through which cells can realize the self-
protection by scavenging the unwanted senescent organelles
and misfolded proteins [21, 22]. The dysregulation of
autophagy has been proved to associate with the develop-
ment of several human diseases, including the IDD [21,
23]. Previous studies have shown that the oxidative stress
could be relieved by activating the autophagy in degenerative
NPCs, thereby reducing the apoptosis and degradation of
extracellular matrix [22, 24, 25]. Nevertheless, to our knowl-
edge, few articles focus on the effects of MSCs on the allevi-
ation of oxidative stress via regulating the autophagy in IDD.

With the huge improvement of sequencing techniques,
many key genes and noncoding RNAs associated with the
IDD have been determined using the bioinformatic
approaches [13, 26, 27]. We previously reported that oxida-
tive stress is an important pathogenic factor for IDD [13].
Wang et al. found that infiltrating macrophages play impor-
tant roles in the pathogenesis of IDD [26]. In Li et al. study,
305 genes closely related to IDD were obtained, and the
authors also reported that DNA repair, oxidative phosphor-
ylation, peroxisome, IL-6-JAK-STAT3 signaling, and apo-
ptosis contributed to the development of IDD [27].
However, few bioinformatic analysis focusing on the role
of stem cell therapy in the management of IDD are pub-
lished to date. Hence, this study was conducted to explore
the underlying mechanisms of stem cell therapy in the man-
agement of IDD using the strict and mature bioinformatic
algorithms based on the relevant sequencing data.

2. Materials and Methods

This study has been approved by the Ethics Committee of
Peking University Third Hospital, and the informed consent
was not necessary because all data was obtained from public
databases. The flow chart of this study has been shown in
Figure 1.

2.1. Data Collection and Processing. Gene expression data of
mRNAs and lncRNAs in GSE112216 was downloaded from
Gene Expression Omnibus (GEO) database (https://www
.ncbi.nlm.nih.gov/geo/). This dataset contained the gene
chip sequencing data of 3 NPC/MSC samples and 3 NPC
samples, and compare the mRNA and lncRNA expression
of degenerative NPCs cocultured with adipose-derived
MSCs with degenerative NPCs solely. The oxidative stress-
related gene (OSRG) list was extracted from the Gene Set:
GOBP_RESPONSE_TO_OXIDATIVE_STRESS in Molecu-
lar Signatures Database (http://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) [26] (Supplementary Table 1). Besides,
the autophagy-related gene list was obtained from the
Human Autophagy Database (http://www.autophagy.lu/
index.html) (Supplementary Table 2).

2.2. Determination the Alteration of OSRGs during the
Coculture Process between NPCs and MSCs. The single sam-
ple gene set enrichment analysis (ssGSEA) is a bioinformatic
approach to determine that whether a priori defined set of
genes has statistical significance and concordant differences
between two biological conditions for a single sample [13].
To investigate the alteration of OSRGs during the coculture
process between NPCs and MSCs, the ssGSEA algorithm
was applied to calculate the oxidative stress score of each cell
sample [28]. The oxidative stress score was compared
between NPC/MSC samples and NPC sample.

2.3. Identification of Differentially Expressed Genes (DEGs),
Oxidative Stress-Related DEGs (OSRDEGs), and
Differentially Expressed lncRNAs (DElncRNAs). Both DEGs
and DElncRNAs were obtained from the GSE112216 with
the criterion of adjust p < 0:05 and fold change > 1:50. The
OSRDEGs were obtained with the intersection of DEGs
and OSRGs using the Venn diagram. Volcano plots and heat
maps were generated using the R package ggplot2.

2.4. Functional Enrichment Analysis and Protein-Protein
Interaction (PPI) Analysis of OSRDEGs. Gene ontology
(GO) analysis was conducted to explore the enriched biolog-
ical process, cell component, and molecular function of
OSRDEGs. Besides, the related signaling pathways of OSR-
DEGs were determined using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis. The GO and KEGG
functional enrichment analyses were performed using the
DAVID database (https://david.ncifcrf.gov/) [29]. GO and
KEGG items with p < 0:05 were considered as significantly
enriched, and some of significantly enrich items were visual-
ized using the R package ggplot2. The PPI analysis was con-
ducted using the STRING database (https://cn.string-db.org/
), and protein pairs with score > 0:40 were further used to
build the PPI network using the Cytoscape software
(https://cytoscape.org/). The PPI score was calculated using
the Degree method in the cytoHubba plug-in, and top 10
OSRDEGs ranked by the PPI score were considered as the
hub OSRDEGs.

2.5. Construction of DElncRNA-miRNA-Hub OSRDEG
Regulatory Network. The correlation analysis between
DElncRNAs and hub OSRDEGs was performed, and
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DElncRNA-OSRDEG pairs with r > 0:95 and p < 0:05 were
selected. The targeted miRNAs for 10 hub OSRDEGs were
predicted using TargetScan database (http://www
.targetscan.org/vert_80/) [30]. The targeted miRNAs for
DElncRNAs were predicted using the ENCORI database
(https://starbase.sysu.edu.cn/) [28]. Ultimately, the
DElncRNA-miRNA-hub OSRDEG regulatory network was
constructed using the Cytoscape software.

2.6. Correlation Analysis between Oxidative Stress and
Autophagy. To further explore the potential role of autoph-
agy during the coculture process, the autophagy score for
each cell sample was calculated using the ssGSEA algorithm
[5], and compared between NPC/MSC samples and NPC
samples. To obtain the autophagy-related DEGs, the inter-
section between autophagy-related genes and DEGs was
conducted using the Venn diagram. To detect the potential
relationship between oxidative stress and autophagy in
degenerative NPCs cocultured with MSCs, the correlation
analysis between oxidative stress score and autophagy score

was conducted. Furthermore, the relationship between hub
OSRDEGs and autophagy-related DEGs was explored using
the correlation analysis.

2.7. Statistical Analysis. All statistical analyses were per-
formed using the R software 4.1.2. The ssGSEA score for
oxidative stress and autophagy between NPC/MSC samples
and NPC samples were compared using the Student’s t
-test, and p < 0:05 indicated there was a significant difference
between NPC/MSC samples and NPC samples. Correlation
analysis was conducted using the Pearson test. All p values
were two sides, and p value less than 0.05 indicated there
was a significant difference.

3. Results

3.1. MSCs Might Alleviate the Oxidative Stress in
Degenerative NPCs. As shown in Figure 2(a), according to
the preset criterion (fold change > 1:5, p < 0:05), a total of
106 DEGs were determined, and the clustering analysis
showed these DEGs could clearly distinguish the NPC/

Download of GSE112216 from GEO database

Retrieval of oxidative stress-related gene list
from MSigDBdatabase

Calculation of the oxidative stress score using the ssGESA
algorithm

Identification of OSRDEGs
and DElncRNAs

Identification of autophagy-
related DEGs

GO, KEGG pathway, and PPI
analyses of OSRDEGs

Top 10 hub OSRDEGs

Construction of ceRNA
regulatory network

Prediction of targeted
miRNAs

Correlation analysis between
oxidative stress and autophagy

MSCs may alleviate the IDD by reducing the oxidative
stress in degenerative NPCs

Calculation of the autophagy
score 

Retrieval of autophagy-
related gene list from HADb

Figure 1: Flow chart of the bioinformatic analysis in the study.
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MSC samples and NPC samples (Figure 2(b)). Oxidative
stress is an important contributor to the IDD [6, 13]. To
explore whether MSCs changed the oxidative stress status
of degenerative NPCs, the oxidative stress score for each cell
sample was calculated. There was a significant difference
between NPC/MSC samples and NPC samples in terms of
oxidative stress score (Figure 2(c)). The principal compo-
nent analysis showed OSRGs could clearly distinguish the
NPC/MSC samples and NPC samples (Figure 2(d)), which
indicated that stem cell therapy might treat the IDD via
relieving the oxidative stress in NPCs. To further investigate
the underlying mechanisms, forty-one OSRDEGs were
obtained by intersecting the DEGs with OSRGs
(Figure 2(e)), and 11 of them were upregulated and 30 of

them were downregulated (Table 1). As shown in the heat
map (Figure 2(f)), the OSRDEGs significantly differed
between the NPC/MSC samples and NPC samples.

3.2. Function Enrichment Analysis and PPI Analysis of
OSRDEGs. The identified OSRDEGs were mapped into the
GO term and KEGG pathway enrichment analyses. As
shown in Figure 3(a), the following biological processes were
significantly affected: Response to oxidative stress, positive
regulation of transcription and DNA-templated, positive
regulation of transcription from RNA polymerase II pro-
moter, cellular oxidant detoxification, and so on. The most
enriched cellular component terms were Cytoplasm,
Nucleus, Cytosol, Extracellular exosome, and so on
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Figure 2: Determination of OSRDEGs in degenerative NPCs. (a) Volcano plot of DEGs; (b) Heat map of DEGs; (c) Comparison of oxidative
stress score between NPC/MSC samples and NPC samples; (d) Principal component analysis of OSRGs; (e) Venn diagram to obtain the
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(Figure 3(b)). The most enriched molecular function terms
included Identical protein binding, Peroxidase activity, Anti-
oxidant activity, Protein homodimerization activity, and so
on (Figure 3(c)). With respect to the KEGG pathway enrich-
ment analysis, the following pathways were most affected:
TNF signaling pathway, MAPK signaling pathway, Reactive
oxygen species, Apoptosis, IL-17 signaling pathway, and so
on (Figure 3(d)).

The PPI analysis was conducted using the STRING data-
base and visualized using the Cytoscape software
(Figure 4(a)). Top 10 hub genes were obtained according
to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS,
APOE, EDN1, TXNRD1, LRRK2, and KLF2 (Figure 4(b)).
As listed in Table 2, 8 hub OSRDEGs were downregulated
and 2 hub OSRDEGs were upregulated in NPC/MSC sam-
ples when compared to NPC samples. Moreover, the corre-
lation analysis among these 10 hub OSRDEGs was
conducted, and 45 significantly related pairs (jrj > 0:90, p <
0:05) were observed (Figure 4(c)). JUN-EDN1 was the most
positively related pair (r = 0:99, p < 0:01) (Figure 4(d)), and
CAT-TXNRD1 was the most negatively related pair
(r = −0:99, p < 0:05) (Figure 4(e)).

3.3. Construction of DElncRNA-miRNA-Hub OSRDEGs
Regulatory Network. LncRNAs can exert the important bio-
logical functions as the miRNA sponges in the ceRNA regu-
latory network [29, 31]. A total of 27 DElncRNAs were
determined (fold change > 1:50, p < 0:05) (Figure 5(a)), and
the heat map showed these DElncRNAs could obviously dis-
tinguish the NPC/MSC samples and NPC samples
(Figure 5(b)). To construct the ceRNA regulatory work, the
correlation analysis between DElncRNAs and hub OSR-
DEGs was conducted, and DElncRNA-OSRDEG pairs with
r > 0:95 and p < 0:05 were selected to construct the ceRNA
regulatory network (Figure 5(c)). The targeted miRNAs for
DElncRNA-OSRDEG pairs were predicted using the
ENCORI database and TargetScan database. Ultimately, a
total of 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs
were applied to construct the ceRNA regulatory network
(Figure 5(d)) (Supplementary Table 3).

3.4. Relationship between Hub OSRDEGs and Autophagy-
Related DEGs. Previous studies have shown that autophagy
played a protective role against the oxidative stress in degen-
erative NPCs [24, 30, 32]. In this research, a significantly dif-
ferent autophagy score between NPC/MSC samples and
NPC samples was observed (Figure 6(a)). And there was
an obvious association between oxidative stress score and
autophagy score (Figure 6(b)), which indicated that MSCs

might resist again the oxidative stress through restoring the
autophagy in degenerative NPCs. To further explore the
underlying mechanisms, thirteen autophagy-related DEGs
were obtained through the intersection between DEGs and
autophagy-related genes (Figure 6(c)), and the cluster analy-
sis showed these autophagy-related DEGs could distinctly
distinguish the NPC/MSC samples and NPC samples
(Figure 6(d)). The correlation analysis between hub OSR-
DEGs and autophagy-related DEGs was conducted, and
125 significantly related pairs were obtained (jrj > 0:90, p <
0:05) (Figure 6(e)). GABARAP-CAT was the most positively
related pair (r = 0:99, p < 0:01) (Figure 6(f)) and
GABARAP-TXNRD1 was the most negatively related pair
(r = −0:99, p < 0:01) (Figure 6(g)).

4. Discussion

IDD has become the principal contributor to the LBP, which
heavily affects the life quality of patients and brings a huge
economic burden to the society [2, 5]. Stem cell therapy
has been considered as a promising therapeutic option for
IDD, however, the involved underlying mechanisms remain
unclear to date [33–36]. In the current study, we used a
series of strict bioinformatic algorithms based on the
sequencing data to determine the potential mechanisms
involved in the stem cell therapy for IDD. We observed a
significantly different oxidative stress score between NPC/
MSC samples and NPC samples, which indicated that MSCs
might alleviate the IDD via suppressing the oxidative stress
in degenerative NPCs. Then, we determine the OSRDEGs,
and explored the potential biological process and signaling
pathways relevant to these OSRDEGs. Moreover, we got 10
hub OSRDEGs most worthwhile further exploring, and con-
structed the ceRNA regulatory network. More importantly,
we found that autophagy might play an important role in
the process of MSCs relieving the oxidative stress in degen-
erative NPCs. To the best knowledge of us, this study was
the first bioinformatic analysis to investigate the possible
mechanisms involved in the stem cell therapy for IDD.

Oxidative stress has been demonstrated to play a key role
in the pathogenesis of IDD [6, 13, 16]. Oxidative stress could
induce the apoptosis of normal NPCs, destroy the matrix
proteins, and thus damage the mechanical characteristics
of IVDs [16]. Some studies have explored the potential role
of oxidative stress in the stem cell therapy for IDD [33, 37]
. Hu et al. study showed that bone MSCs could alleviate
the compression-induced apoptosis of NPCs through inhi-
biting the oxidative stress via the exosomes [37]. Similarly,
Chen et al. reported that bone MSCs could relieve the

Table 1: Detailed information of 41 OSRDEGs.

Expression Gene symbols
Number

(n)

Upregulated ERMP1, CAT, ATF4, GPX3, PML, GPX4, XRCC1, APOE, ATP13A2, PDLIM1, and PDGFD 11

Downregulated
EDN1, FOS, PKD2, KLF2, DUSP1, MET, GCH1, PTGS2, LRRK2, JUN, LDHA, TXNIP, FER, MSRB3, TLR4,

CFLAR, MYEF2, CD38, ADAM9, CPEB2, SRXN1, MAPT, PXDN, PRKD1, HP, TXNRD1, ANGPTL7,
CCNA2, STX2, and ERO1A

30

OSRDEGs, oxidative stress related differentially expressed genes.
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compression-induced mitochondrial damage of NPCs
through reducing the reactive oxygen species level and
maintaining the mitochondrial functions [33]. In the current
study, we observed a significantly different oxidative stress
score between NPC/MSC samples and NPC samples, which
indicated that stem cell therapy might improve the IDD

through alleviating the oxidative stress in degenerative
NPCs.

To further explore the potential underlying mechanisms
involved in the stem cell therapy for IDD, we obtained 41
OSRDEGs and explored their main biological functions.
The most enriched biological process was Response to
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Figure 3: Functional enrichment analysis of OSRDEGs. (a) GO_ biological process; (b) GO _ cell component; (c) GO_ molecular function;
(d) KEGG analysis.

6 Stem Cells International



oxidative stress, cellular component was Cytoplasm, and
molecular function was Identical protein binding. More
importantly, we also investigated the potential signaling
pathways involved in the repair process of NPCs cocultured
with MSCs, and some of these signaling pathways have been
proved to play important roles in the pathophysiology of
IDD [38–42]. TNF signaling pathway and IL-17 signaling
pathway both were inflammation-related pathways, which
indicated that MSCs might reduce the oxidative stress, and
then improve the inflammatory status of degenerative NPCs
[38, 39]. MAPK signaling pathway was another vital biolog-

ical pathway in the development of IDD [40–42]. Zhang
et al. reported that platelet-derived growth factor-BB could
prevent the IDD through activating the MAPK signaling
pathway [40]. Cui et al. study showed that microRNA-129-
5p could alleviate the IDD via blocking the LRG1-mediated
p38 MAPK activation [41]. Sun et al. research indicated that
calcitonin gene-related peptide could regulate the apoptosis
and inflammation of NPCs via the MAPK signaling pathway
during the IDD [42]. For the first time, we discovered that
Relaxin signaling pathway and Oxytocin signaling pathway
might exert vital functions in the biological remediation of
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degenerative NPCs cocultured with MSCs. Both relaxin and
oxytocin have been demonstrated to exert important protec-
tive effects in human diseases by inhibiting the cell apoptosis
[43–47]. Therefore, we speculate that MSCs may relieve the
oxidative stress by activing the Relaxin or Oxytocin signaling
pathways, and then prevent the apoptosis of NPCs, which is
very worthy of further investigation.

Through a series of bioinformatic methods, 10 hub OSR-
DEGs were selected, including JUN, CAT, PTGS2, TLR4,
FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. PTGS2
was upregulated in degenerative NPCs, and associated with
the inflammation in IDD [48]. TLR4 inhibition could reduce
the LBP, pain-related neuroplasticity, and inflammation of
disc in mice [49]. Knockout of APOE could accumulate
the selective inflammatory catabolic factors, which aggra-
vated the imbalances between catabolic and anabolic factors
and deteriorated the premature IDD [50]. LRRK2 contrib-
uted to the pathogenesis of IDD, and knockdown of LRRK2
could inhibit the oxidative stress induced apoptosis through
the mitophagy [51]. The potential roles of JUN, CAT, FOS,
EDN1, TXNRD1, and KLF2 in IDD have not been investi-
gated in details up to now, and deserve the further investiga-
tion. Plenty of studies have shown that lncRNAs could
sponge miRNAs, also named as ceRNA regulatory network,

to regulate the gene expression at a posttranscriptional level
[52, 53]. To further explore the potential underlying mecha-
nisms associated with hub OSRDEGs, we constructed the
DElncRNA-miRNA- hub OSRDEG regulatory network con-
taining 17 DElncRNAs, 240 miRNAs, and 10 hub OSR-
DEGs, which should be further studied in the future.

Autophagy is a catabolic process that recycles the cellular
components and damaged organelles caused by various
stress status [16, 54]. The autophagy level was higher in
degenerative NPCs compared with normal NPCs, which
indicated that autophagy might be involved in the deteriora-
tion of IDD [55]. Many investigations have indicated that
autophagy was an important protective factor for IVD, and
the restoration of autophagy was a promising research direc-
tion in IDD [13, 56–58]. Some studies have indicated that
MSCs could significantly increase the autophagy level, and
reduce the apoptosis of NPCs [25, 59]. More importantly,
there was a close relationship between oxidative stress and
autophagy in IDD. Chen et al. found that the overproduc-
tion of reactive oxygen species could enhance the autophagy
via the AMPK/mTOR pathway in rat NPCs [60]. Moreover,
Park et al. found that high glucose-induced oxidative stress
could improve the autophagy by mitochondrial damage in
rat notochordal cells [61]. Chen et al. reported that H2O2

Table 2: Detailed information of top 10 hub OSRDEGs.

Gene
symbols

Full names Gene function
Log2
(fold

change)

P
value

Regulation

JUN Jun proto-oncogene
This gene encodes a protein which can regulate the gene expression via

interacting directly with specific target DNA sequences.
-1.03 <0.01 Down

CAT Catalase
This gene encodes the catalase, which is an important antioxidant

enzyme in the bodies against the oxidative stress.
0.62 <0.01 Up

PTGS2
Prostaglandin-
endoperoxide
synthase 2

The protein encoded by this gene is a vital enzyme in the process of
prostaglandin biosynthesis, and acts both as a dioxygenase and as a

peroxidase.
-1.12 <0.01 Down

TLR4 Toll like receptor 4
The protein encoded by this gene is a member of the toll-like receptor
family, which is involved in the pathogen recognition and activation of

inherent immunity.
-0.88 <0.01 Down

FOS Fos proto-oncogene
This gene encodes one member of leucine zipper proteins that can

dimerize with proteins of the JUN family to form the transcription factor
complex AP-1.

-1.63 <0.01 Down

APOE Apolipoprotein E
The protein encoded by this gene is a major apoprotein of the

chylomicron, which is indispensable for the catabolism of triglyceride-
rich lipoprotein constituents.

1.19 <0.01 Up

EDN1 Endothelin 1
This gene encodes a preproprotein that is proteolytically processed to
produce a secreted peptide. This gene is involved with the tumorigenesis

and pulmonary arterial hypertension.
-2.08 <0.01 Down

TXNRD1
Thioredoxin
reductase 1

The protein encoded by this gene is a member of the pyridine nucleotide-
disulfide oxidoreductase family, and the thioredoxin system.

-0.69 <0.01 Down

LRRK2
Leucine rich repeat

kinase 2
This gene is a member of the leucine-rich repeat kinase family, and the
dysregulated expression of this gene may lead to the Parkinson disease-8.

-1.09 <0.01 Down

KLF2 Kruppel like factor 2

The protein encoded by this gene is a member of Kruppel family of
transcription factors. It plays an important role in the adipogenesis,
embryonic erythropoiesis, epithelial integrity, inflammation and t-cell

viability.

-1.29 <0.01 Down

OSRDEGs, oxidative stress-related differentially expressed genes.
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could stimulate an early autophagy response through the
ERK/m-TOR signaling pathway [62]. In the current study,
we obtained 13 autophagy-related DEGs and performed
the correlation analysis between hub OSRDEGs and
autophagy-related DEGs. At last, 125 significantly related
pairs were obtained, which showed that autophagy might
expert vital functions in the stem cell therapy for IDD. The
GABARAP-CAT pair was the most positively related pair

and GABARAP-TXNRD1 pair was the most negatively
related pair, and both of them should be firstly investigated
in the future.

There were some limitations in the current study. First,
this study was conducted based on the analysis of sequenc-
ing data. Therefore, our findings need further in vivo or vitro
experiment validation. Second, oxidative stress was only one
of the important pathogenic factors for IDD, and stem cell
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therapy might also repair the degenerative IVD though other
pathways, such as relieving the inflammation. Third, the
sequencing data used in this study was obtained from the
cell samples, which could not completely simulate the
degenerative IVDs treated with stem cell therapy. Forth,
only six sequencing cell samples from one GEO dataset were
used in this study, which might reduce the reliability of find-
ings. Fifth, the MSCs used in this study were extracted from
adipose tissues, however, there were several other sources for
MSCs, such as bone marrows and embryonal tissues, which
needed further investigation. Despite these limitations, the
current study, for the first time, indicated that stem cell ther-
apy might repair the degenerative IVD through resisting the
oxidative stress via the ceRNA regulatory network and resto-
ration of autophagy in degenerative NPCs.

5. Conclusion

Stem cell therapy might repair the degenerative IVD via
reducing the oxidative stress through the ceRNA regulatory
work and restoration of autophagy in degenerative NPCs.
Further experiment studies should be conducted to validate
our findings in the future.
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The development and regeneration of the bone are tightly regulated by mechanical cues. Multiple cell types, including osteoblasts,
osteocytes, osteoclasts, mesenchymal stem cells (MSCs), and recently found skeletal stem cells (SSCs), are responsible for efficient
bone development and injury repair. The immune cells in the environment interact with bone cells to maintain homeostasis and
facilitate bone regeneration. Investigation of the mechanism by which these cells sense and respond to mechanical signals in bone
is fundamental for optimal clinical intervention in bone injury healing. We discuss the effects of exercise programs on fracture
healing in animal models and human patients, which encouragingly suggest that carefully designed exercise prescriptions can
improve the result of fracture healing during the remodeling phase. However, additional clinical tracing and date accumulation
are still required for the pervasive application of exercise prescriptions to improve fracture healing.

1. Introduction

The skeleton senses and responds to mechanical signals
while maintaining the tissue homeostasis [1]. Mechanical
forces take part in regulating the process of bone develop-
ment, repair, and regeneration by influencing multiple
cells in the bone. As it is able to completely recover with-
out the formation of scar, the mechanism of bone regener-
ation has attracted the attention of scientists and
clinicians. The three phases during bone repair, the
inflammatory phase, the proliferation phase and remodel-
ing phase, involve various cell types, including neutrophils,
macrophages, endothelial cells, osteoblasts, osteoclasts,
mesenchymal stem cells, and skeletal stem cells [2]. We
review how these components are regulated by mechanical
stimulation during the repair processes. In addition to the
molecular mechanism of mechanical regulation during
bone repair and regeneration, in vivo studies to investigate
the effects of exercise on fracture repair are introduced.
The results from animal models show that mechanical
stimulation during the remodeling phase significantly
enhanced the formation of the callus and ultimately pro-
moted fracture repair. We also discuss clinical research
that surveyed the effects of exercise on hip fracture recov-

ery. While some of these studies showed no difference
between the exercise group and the control group, some
found that patients attained better physical performance
and quality of life in the exercise group. More clinical data
and analysis are needed to increase the prevalence of exer-
cise prescriptions for better recovery of fracture patients.
In sum, we describe the mechanical regulation of the bone
during bone development, repair, and regeneration, as well
as the effects of exercise on fracture repair.

2. Homeostasic Maintenance of Bone

The bones in the body can be categorized into four types
according to their shapes: long bones, short bones, flat
bones, and irregular bones. Bones with specific shapes and
anatomical locations function to support the posture and
locomotion of the body, protect the viscera and hematopoi-
etic system, and maintain the balance of mineral and
secreted cytokines, growth factors, and other factors to exe-
cute reciprocal regulation with other parts in the body.

In long bones, the hollow shaft in the central part of the
long bone is the diaphysis, where dense cortical bone domi-
nates with the bone marrow (Figure 1(a)). In the ends of the
long bones, the epiphysis above the growth plate is
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composed mainly of a trabecular meshwork bone lined by a
layer of hyaline cartilage. Between the epiphysis and the
diaphysis, the region below the growth plate is called the
metaphysis [3]. Flat bones, such as skull and rib bones, pos-
sess a layer of sponge bone and two layers of compact bone
around it.

The cortical bone is covered by periosteum and endos-
teum outside and inside of the bone cavity [4]. With their
specific location and abundant cell types, the connective
fibrous tissue, periosteum, and endosteum have been proven
to participate in bone regeneration [5] and hematopoietic
stem cell population preservation [6].

The maintenance of bone homeostasis is mainly depen-
dent on the equilibrium between bone-forming osteoblasts
and bone-resorbing osteoclasts. Other cell types in the skel-
eton include osteocytes and chondrocytes. For the matura-
tion of osteoblasts, mesenchymal stem cells (MSCs) and
skeletal stem cells (SSCs) are needed. First found in the bone
marrow, bone marrow mesenchymal stem cells (BM-MSCs)
are multipotent stromal cells with the ability to differentiate
into osteoblasts, chondrocytes, and adipocytes. MSCs
express specific markers, including CD73, CD90, and
CD105 [7]. In addition to the bone marrow, MSCs can also
be isolated in other sites, including the periosteum and cor-
tical bone [8]. In the recent decade, SSCs have been found in
the growth plate and periosteum, whose role in bone regen-

eration is discussed in the next section. The deficiency of
periosteal stem cells leads to impaired postnatal skeletal
growth [9]. The relationship between the two stem cell pop-
ulations in the skeleton has not been clearly expounded
beyond the restricted comprehension of the full cell compo-
sition. Compared with MSCs, which were found in the bone
marrow [10], SSCs sorted through cell surface marker com-
binations are relatively newly characterized cell populations,
the properties and functions of which required further
research.

3. Bone Development and Tissue
Repair Process

3.1. The Development of Bone. As the scaffold of the body,
the development of the skeleton requires coordinated
mobilization of different cells derived from multiple germ
layers. Neural crest cells derived from neural ectoderm
give rise to part of the craniofacial bones and cartilage in
the anterior skull. The formation of the posterior skull is
dependent on cells from the prechordal mesoderm. The
paraxial mesoderm (somites) is responsible for the forma-
tion of the axial skeleton, while cells from the lateral plate
mesoderm develop into the appendicular skeleton [11].
Two processes with different cell transitions, intramembra-
nous ossification and endochondral ossification, mediate
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Figure 1: Bone structure and bone repair processes. (a) The basic anatomic structure of long bone. (b) The three phases in bone injury
repair.

2 Stem Cells International



ultimate bone maturation throughout the body. Intramem-
branous ossification is found in the development of flat
bones, including the skull, mandible, maxilla, and clavicle,
during which the mesenchymal cells in the condensation
differentiate directly into osteoblasts and osteocytes. On
the other hand, endochondral ossification involves the for-
mation of cartilage primordium, where the mesenchymal
cells in the center differentiate into chondrocytes first
and the perichondrium formed by surrounding chondro-
cytes compartmentalizes the future bone from other sur-
rounding tissues. The hypertrophy of the chondrocytes in
the perichondrium is followed by the invasion of blood
vessels, which allows for the recruitment of osteoprogeni-
tors and cartilage-absorptive cells. Then, the bone marrow
cavity, which is also called the primary ossification center
and the trabecular bone and haematopoietic cells within
it arise. Following the continued expansion of the primary
ossification center, the secondary ossification centers,
which lead to the development of the epiphysial growth
plate, form in the ends of the growing bones [12]. Essen-
tial for the elongation of long bones, the growth plate is a
complex region with chondrocytes at different states [13].
Located close to the epiphysis, chondrocytes in the quies-
cent zone serve as a pool for proliferating chondrocytes
in the proliferative zone. Towards the diaphysis, chondro-
cytes stop proliferating to become hypertrophic. Some of
these cells undergo apoptosis, while the other cells become
osteoblasts [14].

3.2. Mechanical Stimulation in Bone Development. Normal
development of the musculoskeletal system requires precise
coordination of bone and skeletal muscle. Except for the
cells that differentiate into osteolinage cells, normal develop-
ment of skeletal muscle is also necessary for the occurrence
of functional bones and joints. Muscle force is indispensable
for correct musculoskeletal assembly. Aberrant muscle for-
mation in paralyzed mouse embryos hinders the develop-
ment of the bone by impacting the length of the growth
plate and number of proliferating chondrocytes. Joint fusion
in mouse embryos was found when muscle contraction was
deficient [15]. During adulthood, the regulation of bone
homeostasis by mechanical stimulation is more obvious.
Mechanical load dynamically affects numerous aspects of
bone, including the trabecular bone volume and the thick-
ness of cortical bone [1, 16]. The discovery of the mechano-
sensitive channel protein Piezo1 partly explained the
mechanism by which mechanical stimulation regulates bone
formation.

The influence of mechanical loading on bone is not lim-
ited to bone cells. Since osteal lineage cells are niche cells of
the hematopoietic system, it is rational to hypothesize that
the response to mechanical loading of osteal lineage cells
affects the hematopoietic cell populations. The effects of
acute exercise and long-term exercise training on hemato-
poietic stem cell (HSC) survival, mobilization, and other
characteristics before and after HSC transplantation have
been discussed [17, 18]. The rapid development of single-
cell RNA sequencing (scRNA-seq) technology and the
refinement of cytometry allow for elucidation of the

responses of the bone microenvironment, including hemato-
poietic cells and immune cells, to mechanical stimula-
tion [19].

3.3. Bone Fracture Repair and Regeneration. Fracture is a fre-
quent injury occurring in the musculoskeletal system. Some
patients undergo delayed repair and nonunion, which
severely impact work capability and quality of life. Investiga-
tion of the mechanism of bone repair and regeneration may
provide more approaches for optimal treatment and more
efficient repair. During the occurrence of fracture, the rup-
ture of blood vessels and soft tissues directly leads to the ini-
tiation of the first phase of fracture healing, the
inflammatory phase [20]. The conversion of fibrinogen into
fibrin facilitates the formation of hematoma, where circulat-
ing and resident immune cells are recruited by the injury sig-
nal. Following the recruitment of neutrophils [21],
macrophages invading into the injury site undergo popula-
tion transition, which changes the state of the healing tissue
from proinflammatory to anti-inflammatory by altering the
cytokines secreted by the macrophages [22]. Precise tempo-
ral and spatial regulation of immune cell behavior, including
migration and polarization, is necessary for efficient fracture
repair [23]. Then, the presence of lymphocytes in the frac-
ture site activates adaptive immunity for fracture healing
[24]. In addition to immune cells, other more environmental
cells have been found to regulate the process of bone regen-
eration. For example, Schwann cells were demonstrated to
promote mandibular repair through crosstalk with skeletal
stem cells [25].

After the activation and recruitment of MSCs and SSCs
and the development of osteogenic progenitor cells, rapid
differentiation and proliferation of osteoblasts begin the sec-
ond phase, the proliferation phase. In this phase, a callus
forms to turn the hematoma into a harder scaffold between
the broken ends. Through endochondral ossification and
intramembranous ossification, the formation of a cartilage
callus by newly formed osteons completes the union of the
fractured bone (Figure 1(b)).

In addition to immune cells and bone-forming and
bone-absorbing cells, endothelial cells that mediate angio-
genesis and vasculogenesis are indispensable in bone regen-
eration. The two processes of new blood formation,
angiogenesis and vasculogenesis, involve the development
of new blood vessels with or without a preexisting vascular
component [26]. Whether both of the processes contribute
to fracture healing or whether one of them dominates in
the repair is still an open question. However, there is no
doubt that active blood vessel formation occurs at the injury
site. The blood vessels formed during fracture repair provide
the hematoma or callus with oxygen, nutrients, and cells
participating in the healing processes, such as MSCs. In
addition, the immune cells and MSCs secrete growth factors,
including vascular endothelial growth factors (VEGF), to
promote the formation of new blood vessels, which also
drive repair. Three isoforms of VEGF, A, B, and C, form
homo- and heterodimers to regulate the cell behavior of
endothelial cells by binding to their receptors, VEGFR1
and VEGFR2 [27]. The differentiation and proliferation of
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endothelial cells are enhanced by VEGF, which also activates
the recruitment and tube formation capacity of endothelial
progenitor cells. The collapse of the intact bone and the
destruction of the blood supply system result in necrosis of
the perifracture tissue and hypoxia in the hematoma and
adjacent tissue. By modifying the expression of hypoxia-
inducible factor α (HIFα), it was been discovered that osteo-
blasts sense the oxygen level and couple osteogenesis and
angiogenesis [28]. The expression of VEGF in osteoblasts
overexpressing HIF1α was upregulated, while the long bones
were dense and highly vascularized. When HIF1α was defi-
cient in osteoblasts, a reverse phenotype of thinner and less
vascularized long bones were observed. This research
revealed that correctly regulated angiogenesis is crucial for
bone formation and homeostasis maintenance. The fact that
growth factors from osteoblasts influence the behavior of
blood vessel-forming endothelial cells emphasizes the
importance of cell interactions in tissue repair. When nor-
mal blood supply cannot be met, pathological cases are pres-
ent [29]. Patients with abnormal distal arteriograms face a
higher risk of nonunion. Impaired vascular in-growth to
the callus in open fracture also increased the risk of non-
union, more tissue necrosis and reduced resistance to infec-
tion [30]. Interestingly, in the observed correlation between
smoking and increased risk of fracture, it was hypothesized
that smoking impedes vascularization at the fracture healing
site by the action of nicotine, thus leading to delayed miner-
alization and unrepaired bone fracture [31]. Although public
health data show that the rate of smoking in patients with
tibial nonunions is higher than that in the general public
[32], more evidence, including mechanistic research, is
needed.

As one of the determinants of successful bone regenera-
tion, vascularization is a target for the application of tissue
engineering in bone repair improvement. The combination
of VEGF and materials for bone regeneration enhancement
increased blood infiltration and bone mineral density in
in vivo bone defect models [33, 34].

After robust osteogenesis in the proliferation phase, the
shape of the bone differs from that prior to injury, which is
why osteoclasts are needed to start the remodeling phase.
Recruited by receptor activator of nuclear factor‐κB ligand-
(RANKL-) expressing osteocytes, osteoclast precursors give
rise to mature osteoclasts, which function in the resorption
of the redundant bone [35]. Correct progress of these heal-
ing phases guarantees that the bone can be repaired to its
uninjured form without the formation of a scar.

3.4. Stem Cells in Bone Regeneration. Given the potent mul-
tidirectional differentiation capacity of stem cells and the
attractive prospects of their clinical application, the explora-
tion of stem cells of specific tissues has not stopped since the
first discovery of hematopoietic stem cells [36]. During the
past decade, human and mouse skeletal stem and progenitor
cell populations and their hierarchy have been identified by a
combination of specific cell surface markers [37, 38]. The
cell surface marker combination was determined according
to the information from single-cell RNA-seq, which exam-
ined skeletal tissue cells. The differentiation potential of the

populations was verified through in vitro differentiation
and kidney capsule injection experiments. The definition of
skeletal stem cells is not restricted to a single surface marker
combination; other common molecular markers such as
Ctsk [39] and Gremlin1 [40] have been found to mark a spe-
cific stem cell population. Given the diversity of the cells in
bone tissue, the development of different regions is thought
to be dependent on the skeletal stem/progenitor cells from
corresponding locations, which has been demonstrated by
evidence from lineage tracing experiments. Among the var-
ious parts, the growth plate [41] and periosteum [42] have
received particular attention due to their importance for
bone growth and regeneration.

Since the identification of skeletal stem cells, their partic-
ipation and function in bone development, regeneration,
aging, and bone-related diseases have been gradually
unveiled. Gli1 was found to identify a cell population resid-
ing beneath the growth plate that produces osteoblasts dur-
ing bone development and fracture repair [43]. Through
the utilization of lineage tracing and cell lineage analysis,
parathyroid hormone-related protein- (PTHrP-) expressing
chondrocytes in the rest zone of the growth plate were iden-
tified as a population of skeletal stem cells that express skel-
etal stem cell surface markers and give rise to the
hypertrophic chondrocytes of the growth plate [44]. The
same research noted that Indian hedgehog (Ihh) signaling
is involved in the preservation of this growth plate skeletal
stem cell population. The SSCs identified in mice through
the immunophenotype (CD45−TER119−Tie2−AlphaV
+Thy−6C3−CD105+) were found to expand because of the
initiation of the fracture repair process and mediate bone
formation during healing [45]. The SSC population marked
by the cell marker Ctsk was demonstrated to take part in
fracture bone formation via intramembranous ossification
[39]. Transcriptome analysis of this periosteal SSC distin-
guished it from other skeletal stem cell populations that
mediate bone formation through endochondral ossification,
which indicates the complexity and diversity of the SSC pop-
ulations and their functional pathways in bones. In another
study, the SSC population found in the periosteum, labeled
by Mx1 and αSMA, was proven to be responsible for the
generation of periosteal osteoblasts. Rapid migration of these
cells to bone injury site was observed, mediated by CCL5
and its receptors CCR3 and CCR5 [46]. The discovery of
the mechanism regulating the migration behavior of SSCs
sheds new light on the mobilization of SSCs in bone
regeneration.

Additionally, the bone marrow is a complicated environ-
ment where elaborately regulated bone cell and hematopoie-
tic cell interactions occur. With the continuous innovation
of the methods used to portray the cell populations in tis-
sues, it is not hard to imagine that more markers will be pro-
posed in future investigations. For instance, the invention of
spatial single-cell transcriptomics, which adds spatial infor-
mation to single-cell transcriptomics, significantly deepened
the comprehension of tissue development and regeneration
[47]. The application of this cutting-edge technology may
provide new information and concepts about skeletal stem
cells.
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4. The Role of Mechanical Stimulation in Bone
Repair and Regeneration

4.1. Mechanical Stimulation in Bone Repair. In addition to
the resolution of inflammation, a stable supply of the
required growth factors and appropriate mechanical stimu-

lation are necessary for bone fracture healing from the very
beginning of the repair process (Figure 2(a)).

Immediately after the fracture, the fixation of the broken
bone will assure normal callus formation and eventual ossi-
fication. It has been proposed that rigid fixation mainly
results in intramembranous ossification, while flexible
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Figure 2: Mechanical stimulation and bone repair. (a) Cells and ECM in the bone tissue receive mechanical signals. (b) The effects of
mechanical stimulation and exercise on bone injury repair.
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fixation induces the process of endochondral ossification.
Apparently, the mechanical strain in the fixed space affects
the bone formation fashion and velocity to a large extent.
During the proliferation and long-lasting remodeling phase,
mechanical stimulation with proper intensity and frequency
is beneficial to increase bone formation at the fracture site.
Fundamentally, the influence of mechanical fixation and
loading on bone regeneration is attributed to the response
of the cells that function during the process and the extracel-
lular environment and mechanotransduction between them.
Through the three stages of sensation of the mechanical sig-
nal, signal transduction, and the response stage, mechanical
stimulation affects the shape of the normal and injured bone.
To investigate the mechanism by which the different types of
cells respond to mechanical signals, various in vitro systems
were used to simulate mechanical stimulation. Oscillatory
fluid flow, shear stress, fluid pulse, compression, and stretch
with different intensities and frequencies have been utilized
to determine the response of cells and explore relevant mol-
ecules and signaling pathways.

4.2. Mechanical Regulation of the Cells in Bone. Dwelling in
the lacunae, the osteocytes construct a subtle network to
communicate with each other and function as mechanosen-
sors [48]. The stress, strain, and shear fluid stress transmit
mechanical signals to the osteocytes. Among the mechanical
sensing proteins, Connexin43 (Cx43) has attracted signifi-
cant attention as it allows for the formation of gap junctions
between osteocytes and the transmission of signals, as a
hemichannel protein [49]. Increased expression of Cx43
and material exchange were found in osteocytes after shear
fluid stress stimulation. Structurally, it has been reported
that the application of shear stress on the dendritic side of
osteocytes results in the opening of hemichannels in the
cells. Moreover, other mechanosensitive proteins, including
transient receptor potential vanilloid 4 (TRPV4) [50] and
Piezo1, have been found to mediate mechanical stimulation
sensation in osteoblasts, osteocytes, and many other cells.
Both TRPV4 and Piezo1 are calcium ion channels that medi-
ate the extracellular-intracellular signal transduction
through the influx of calcium ions. The Wnt/β catenin path-
way and extracellular signal regulated kinase (ERK) pathway
have been demonstrated to mediate the mechanical signal
transduction in osteocytes [51]. In the response stage, multi-
ple factors are produced by the stimulated osteocytes to con-
tribute to the mechanical environment adaptation of the
bone. The production of PGE2 in osteocytes, which is medi-
ated by Cox2, accelerated bone formation [52]. However, the
expression of sclerostin, an inhibitor of bone formation that
antagonizes Wnt signaling, is reduced by oscillatory fluid
flow stress.

Of the diverse biophysical cues that regulate the lineage
commitment of mesenchymal stem cells, mechanical force
is indispensable for the maintenance of bone homeostasis
[53]. The conclusion that the stiffness of the extracellular
matrix substrate directs mesenchymal stem cell lineage spec-
ification in cell culture provides the theoretical basis for the
application of material bioengineering in tissue repair [54].
A stiffer extracellular environment induces the differentia-

tion of osteoblasts, while a softer substrate leads to the devel-
opment of adipocytes and neural cells. RhoA/ROCK
signaling [55] and YAP/TAZ signaling [56] have been inves-
tigated in the mechanical regulation of mesenchymal stem
cells. Although the cell population identification and regen-
eration participation of skeletal stem cells have been investi-
gated during the past decade, how the mechanical
stimulation regulates the cell behavior of SSCs is an impor-
tant question that still requires to further investigation.

4.3. Mechanical Stimulation and Vascularization in Bone
Repair. The mechanical regulation of vascularization also
suggests the importance of mechanical stimulation in bone
regeneration. During bone growth, active vascularization is
needed. Mechanical loading of the anterior limbs of rats
increased the vascularization in the periosteum [57]. A
recent study reported that mechanical forces, which are
associated with increased body weight at the end of adoles-
cence, drove the differentiation of the highly angiogenic
blood vessel subtype, type H vessels, into quiescent type L
endothelium. The transformation of blood vessels hinders
the growth of bones [58]. In a rat large bone defect model
using compliant fixation plates that allow for transfer of
mechanical loads or stiff fixation, early mechanical loading
inhibited vascular invasion and bone formation, whereas late
(after stiff fixation for 4 weeks) mechanical loading signifi-
cantly stimulated vascular remodeling and bone regenera-
tion [59]. This study highlights the mechanosensitivity of
the vascular network; the evidence showed that the response
of the blood vessel network to mechanical forces signifi-
cantly influences bone growth and regeneration. Given the
importance of vascularization in osteogenesis, researchers
have tried to address the relationship between physical exer-
cise and angiogenesis during osteogenesis. Mice and rats that
underwent treadmill training had significantly larger circu-
lating blood volumes than the sedentary control group
[60]. Another study also demonstrated the adaptation of
vascularization to mechanical stimulation. Rats that per-
formed running exercise for 2 weeks had a larger number
of blood vessels in the tibial proximal metaphysis and higher
expression of VEGF receptor mRNA [61].

Although works investigating the effects of exercise on
global vascularization have shown that exercise increases
the circulating endothelial progenitor cells and angiogenic
factors, specific studies on the response of angiogenesis to
physical exercise during osteogenesis in humans are still
lacking. New technology that allows for noninvasion moni-
toring of angiogenesis in patients may provide the necessary
clinical data to understand how mechanical loading regu-
lates angiogenesis and osteogenesis [62].

5. Effects of Physical Exercise on Bone Repair

Although cellular-level research is important to elucidate the
molecular mechanism of mechanical regulation during bone
regeneration, in vivo studies utilizing various bone injury
and regeneration models are necessary to verify the pro-
posed mechanism and assess the clinical implications of
the interferences derived from mechanistic research.
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Additionally, since it is not just about the individual cell
behavior and cell crosstalk and interaction are involved, an
in vivo study would expand our horizon for an integrative
understanding of view of the bone repair and regeneration
process. Recently, environmental cells, such as immune cells,
endothelial cells, and pericytes, have been recognized to
cooperate with tissue cells to facilitate tissue repair [63–66].

In a study using a rat fracture model, the fractured fem-
ora were mechanically stimulated 3 times a week between
Day 7 and Day 18 postinjury. They found that intermittent
tensile strain stimulation during fracture healing promoted
chondrogenesis and had better effects on fracture repair than
compressive strain or lack of stimulation, which was the
control [67]. In another study using rats, approximately
6mm defects were created in the femora. After the injury,
the bones were rigidly fixed by stiff plates or compliant
plates that allowed for compressive loading. Examination
of the repair by microcomputed tomography, mechanical
testing, and histology showed that loading significantly
increased the human bone morphogenetic protein-2-
(rhBMP-2-) induced regenerated bone volume [68]. Simi-
larly, the femur defect in rats was found to be nonunion
without BMP2 completed the repair efficiently. Mechanical
loading enhanced the effectiveness of BMP2 in promoting
bone regeneration [69]. Using time lapse in vivo imaging,
this research indicated that cyclic mechanical loading signif-
icantly increased the volume of the mineralized callus of the
defective bone during the remodeling phase, which is associ-
ated with the regulation of Wnt signaling [70].

The above studies assessing the effects of mechanical
stimulation on fracture healing used specific animal models
and surgery methods and, more importantly, customized
designs for the mechanical stimulation. Different stimula-
tion methods may lead to varying or even opposite conclu-
sions [71]. Although mechanical stimulation realized by
machine resulted in improved callus properties and healing
efficiency, a study testing the effects of exercise on fracture
healing in a mouse model failed to detect any significant dif-
ference between the exercise group and the control group in
bone fracture with stable fixation [72]. It is possible that an
adjusted exercise program or injury method would lead to
different results. Therefore, it is prudent to learn the specific
experimental parameters when evaluating the clinical impli-
cations of basic research. Furthermore, the surgery causing
bone injury and the mechanical stimulation method require
unification for more efficient and reliable communication of
research achievements.

According to the encouraging results from the basic
research based on animal models described above, it seems
that mechanical stimulation during remodeling can be ben-
eficial for human fracture healing (Figure 2(b)). An elabo-
rately designed and adjusted exercise prescription can
benefit patients with musculoskeletal problems. In regard
to the clinical effects of exercise on bone injury repair and
regeneration, the research results we can review at present
are mainly concerned of the application of exercise in frac-
ture recovery, especially for populations with impaired bone
formation capacity, such as older and menopausal women.
Fracture healing for most young patients is easier than for

older patients because of the more exuberant bone forma-
tion capacity. Physical activity usually returns to the normal
level prior to injury [73].

In the Baltimore hip study experience, women 65 years
of age and older who underwent hip fracture were recruited
to participate in a home-based postfracture exercise pro-
gram, which included strength and aerobic components
and expected the patients to exercise for 5 days per week.
Although this study did not determine whether exercise
improved the hip fracture healing of these frail older women,
the survey showed that a home-based exercise program of
strength and aerobic training after hip fracture is feasible
for older patients [74]. In a randomized controlled study
involving 26 older adults who experienced hip fracture,
patients in the exercise group received short-term leg-
strengthening exercise arranged by physical therapists, while
the control group received subcutaneous electrical nerve
stimulation and mental imagery. The exercise intervention
was exerted twice a week for 10 weeks. Through measure-
ments including isometric force production of lower extrem-
ity muscles, usual and fast gait speed, and a modified
physical performance test etc., the study concluded that the
short-term, high-intensity exercise improved the strength,
walking ability, and locomotion system function of the
patients compared to the control group 1 year after hip frac-
ture [75]. A study with 33 postmenopausal women engaged
in 3 months of weight-bearing and resistance training
showed that exercise significantly increased the amount of
osteogenic marker pro-collagen type 1 N-terminal peptide
(P1NP) and circulating osteogenic cells and improved the
quality of life [76]. For older hip fracture patients, a 12-
month home-based exercise program intervention was also
shown to improve the functioning and physical performance
of the subjects compared to the patients in the control group
who received the usual care only.

However, the actual situation can be more complicated
than the causal relationship that physical exercise therapy
improves the performance of fracture patients. There are
also examinations reporting no obvious effects of physical
exercise training on fracture rehabilitation. In a study that
recruited 32 control and 38 intervention volunteers aged
65 years or older and had just undergone hip fracture, the
intervention group received supervised high-intensity exer-
cise training twice a week for 8 weeks. Through assessments
including a one repetition maximum (1RM) test for muscle
strength evaluation, a 6-minute walk test, timed up and go
test, functional reach test, and observational gait analysis,
they did not find significant differences between the control
and intervention groups. Another randomized controlled
trial recruited 124 patients who had received surgery repair
of a hip fracture and gave the intervention group a twelve-
month, high-intensity progressive resistance training [77].
Through the evaluation of mortality, nursing home admis-
sions, basic and instrumental activities of daily living
(ADLs), and assistive device utilization, they concluded that
high-intensity weight-lifting exercise training reduced the
risk of death and nursing home admissions of hip fracture
patients in the intervention group. Moreover, the basic
ADLs declined less and assistive device use was reduced in
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the intervention group compared with the controls. In this
research, exercise significantly exerted positive effects on
the subjects’ recovery from hip fracture. From the assess-
ment results provided, it seems that exercise with a specific
intensity that lasts for a long time can improve the quality
of life of fracture patients. It is suggested that even for elderly
individuals, receiving treatment for fracture, appropriate
exercise training after fracture can be recommended instead
of long-time inactivity. The two cases above show that it is
still not feasible to directly compare the results from differ-
ent clinical trials, since the exercise protocols and evaluation
methods utilized can be fairly different. A study to assess the
effects of weight-bearing and nonweight-bearing exercise on
hip fracture rehabilitation recruited 80 inpatients who had
suffered from fall-related hip fracture. The subjects were
divided into two groups that received weight-bearing or
nonweight-bearing exercise prescribed by a physiotherapist
for 2 weeks. Strength, balance, gait, and functional perfor-
mance were evaluated in the two groups. There was little dif-
ference in the improvements after receiving the two forms of
exercise therapy. In this specific trial, it seems that weight
bearing is not a key factor that influences the effectiveness
of exercise. However, the exercise time in this case was rela-
tively short compared with other trials that lasted for 1 year
or longer. Thus, it is difficult to conclude if weight-bearing
exercise lasting for a longer time would result in different
outcomes.

Notwithstanding the limitations in these clinical studies
in determining the effects of exercise on fracture healing,
the results suggest that appropriate exercise prescriptions
made by professional physical therapists can effectively
improve the locomotion capability and quality of life of
patients. Supervision of the exercise exertion and the tracing
of the postexercise data are important to help clinicians to
optimize exercise programs for fracture patients [78].

6. Conclusion

In this review, we discussed the regulation of bone develop-
ment and regeneration by mechanical signals and the
mechanotransduction of bone cells. As the most researched
cell types, osteocytes and mesenchymal stem cells sense
mechanical signals and responses and influence the balance
of bone formation in healthy and pathological situations.
How the mechanical response of the newly discovered skel-
etal stem cells influences bone regeneration is an intriguing
question to explore. The molecular and cellular investiga-
tions depict the fundamental signaling pathways involved
in the mechanical regulation of the bone, while the studies
using animal models directly examined the effects of
mechanical loading on fracture healing. The current evi-
dence indicates that mechanical loading is positive for better
callus properties and faster bone regeneration. Clinical trials
involving older fracture patients showed improved healing
and locomotion system function. Improved comprehension
of the mechanical regulation of bone tissue and clinical data
about exercise intervention influencing fracture healing are
required to develop effective fracture treatment.
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The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation,
differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the
UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies
focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate
osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3
ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or
osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and
downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors,
drug molecules, and noncoding RNAs so far and prospects the future research and treatment.

1. Introduction

The ubiquitin-proteasome system (UPS) is comprised of
several key components: ubiquitin (Ub), Ub-activating
enzyme (E1), Ub-conjugating enzyme (E2), ubiquitin ligase
(E3), deubiquitinating enzyme (DUB), and proteasome.
UPS is an enzymatic cascade reaction that mediates the
labeling of target proteins with ubiquitin tags, leading to
their degradation via the proteasome pathway. The entire
ubiquitination process can be briefly described as follows:
Step 1: E1 activates ubiquitin and forms an E1-ubiquitin
intermediate. This process requires the consumption of
ATP. Step 2: ubiquitin is transferred from E1s to E2s, form-
ing an E2-ubiquitin intermediate. Step 3: the E3s first recog-
nize the target protein to be degraded and then recognize the

E2-ubiquitin intermediate, forming a complex containing
the E2-ubiquitin intermediate, the E3s, and the target pro-
tein, and finally transfer the activated ubiquitin from E2s
to the target protein. Step 4: the E2 enzyme and E3 enzyme
are released from the complex, leaving the ubiquitin-tagged
target protein. Step 5: the above process is repeated until
multiple ubiquitin molecules are attached to the target pro-
tein to form a ubiquitin chain. Step 6: the ubiquitinated tar-
get protein is recognized and degraded into small fragments
by the 26S proteasome. This process can be reversed by a
group of proteases called the deubiquitinating enzymes
(DUBs) which hydrolyze the peptide bond that links the
target protein and ubiquitin [1].

During bone formation and reconstruction, osteogenic
and osteoclastic activities need to be precisely coordinated

Hindawi
Stem Cells International
Volume 2022, Article ID 6948367, 13 pages
https://doi.org/10.1155/2022/6948367

https://orcid.org/0000-0003-4766-7286
https://orcid.org/0000-0003-1090-9288
https://orcid.org/0000-0002-2071-9114
https://orcid.org/0000-0002-7445-9725
https://orcid.org/0000-0002-2013-1396
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6948367


in order to maintain bone homeostasis. This is mainly medi-
ated through three cell lineages: osteoblasts, osteoclasts, and
osteocytes [2]. Osteoclasts differentiate from macrophages
and monocytes in the human hematopoietic system and play
essential roles in bone resorption [3]. Osteoblasts differenti-
ate from mesenchymal stem cells (MSC) and synthesize,
secrete, and mineralize bone matrix. Osteoblasts are the
main functional cells in bone formation [4]. Osteocytes are
the most common cells in mature bone tissue and are iso-
lated from osteoblasts, which sense and transmit signals
and secrete cytokines. These cells constitute the basic multi-
cellular unit (BMU) that performs the bone reconstruction
cycle [5]. Thus, the differentiation, function, and interaction
of these cells are critical for regulating bone remodeling and
maintaining bone homeostasis. E3 ubiquitin ligases have
been found to influence osteoblasts and osteoclasts from a
variety of mechanisms [6]. Therefore, regulating the relevant
E3 ubiquitin ligases is an ideal approach for the treatment of
the skeletal disorder.

In this review, we briefly describe the structure and func-
tion of the UPS, the mechanism of action of E3 ubiquitin
ligases in bone metabolism regulation, and the E3 ubiquitin
protein ligase inhibitors currently in use and molecules that
are promising targets for future drug therapy.

2. Effect of E3 Ubiquitin Ligases in Skeletal Cell
Fate and Pathology

E3 ubiquitin ligases can be classified into three major types
based on their structures: the “really interesting new gene”
(RING) family, the “homologous to E6-AP carboxyl termi-
nus” (HECT) family, and the RING-between-RING-RING
(RBR) family [7]. Different ligase domains can have specific
ubiquitin transfer modes. For example, the RING E3s act as
a scaffold that binds the E2 enzyme and substrate together,
and ubiquitin is transferred directly from the E2s to the sub-
strate without forming the E3-ubiquitin intermediate. How-
ever, in HECT E3s, an E3-ubiquitin intermediate is formed
before ubiquitin is transferred to its substrate. More than
600 types of E3 ligases have been identified in the human
genome, which contribute to the specificity of the UPS
system [8].

Differentiation of the osteoblast lineage is regulated by a
complex signaling pathway. Early osteoblast differentiation
is mainly regulated by the BMP-SMAD-RUNX2 pathway.
RUNX2 and its downstream molecule Osterix are the para-
mount osteoblast-specific transcription factors. This path-
way triggers the expression of osteoblast phenotype genes
and synthesizes bone matrix at a later stage [9]. In addition
to this, Hedgehog, JNK, TGF-β, and classical Wnt/β-catenin
signaling pathways are associated with the development of
osteoblasts [10]. Osteoblasts then embed in the bone matrix
as osteocytes or die at the end of their fate [11]. Many E3
enzymes can regulate these pathways and in turn affect oste-
ogenesis. For example, SMURF1 acts on multiple compo-
nents of the BMP-SMAD-RUNX2 and MEKK2-JNK-JUNB
pathways and inhibits osteogenesis. Cdh1 regulates the
MEKK2 pathway to inhibit osteogenesis. SMURF2 downre-
gulates the TGF-β pathway, thereby hindering the PI3-

kinase-AKT pathway activation, which in turn inhibits oste-
ogenesis. WWP1 inhibits osteogenesis by promoting the
degradation of SMAD4, RUNX2, and JUNB ubiquitination
in osteoblasts. ITCH negatively regulates osteogenesis
through JunB degradation. On the other hand, there are a
number of E3 ubiquitinases that could promote osteogene-
sis. For example, TRIM16 reduces CHIP, therefore alleviates
CHIP-mediated degradation of RUNX2, and then enhanced
osteogenic. Besides, there are also proteins such as Cbl-b and
c-Cbl that positively or negatively regulate bone formation
by ubiquitinating the RTK-PI3K-AKT axis and other c-Cbl
target proteins. In addition, insulin, through insulin-like
growth factor-I (IGF-I), also affects the generation and
differentiation of osteoblasts, while Cbl-b inhibits IGF-I-
regulated osteogenic differentiation [12] (Table 1).

Osteoclasts are large multinucleated cells derived from
the hematopoietic spectrum and regulated by several factors.
Among them, the production of M-SCF and RANKL by
bone marrow stromal cells and osteoblasts is essential in
promoting osteoclastogenesis. M-CSF promotes the prolifer-
ation of osteoclast precursors, while RANKL stimulates the
differentiation of osteoclast precursors to mature osteoclasts.
In addition, the NF-κB and Wnt/β-catenin pathways also
play an important role during osteoclast differentiation,
which is regulated by E3 ubiquitin ligases [13]. For example,
SMURF2 promotes osteoclastic differentiation by regulating
RANKL expression; TRIM38 and CHIP negatively regulate
NF-κB and inhibit osteoclastic differentiation; RNF146 regu-
lates the 3BP2/SRC pathway and Wnt/β-catenin pathway
and inhibits osteoclastic differentiation; LNX2 promotes
activation of the NF-κB and JNK pathways and downregula-
tion of North pathway which enhances osteoclast differenti-
ation (Table 1).

Following, we reviewed the detailed effects of a series of
E3 ubiquitin ligases which have been found to regulate the
differentiation of osteoblasts and osteoclasts.

2.1. SMURF1. SMURF1, which belongs to the Hect family of
E3 ubiquitin ligases, interacts with BMP pathway-specific
receptor-regulated SMADs to trigger their ubiquitination
and degradation, thereby inactivating them. SMADs have
three subgroups: receptor-activated SMADs (for example,
SMAD1, -2, -3, -5, and -8), common SMADs (for example,
SMAD4), and inhibitory SMADs (for example, SMAD6
and SMAD7) [14]. SMURF1 selectively interacts with BMP
pathway-targeted SMAD1 and SMAD5 to induce their deg-
radation, thus blocking BMP-SMAD-RUNX2 signal trans-
duction [15]. In addition, SMURF1 and SMAD (SMAD6
or 7) inhibitors synergistically negatively regulate BMP by
downregulating activated BMP receptors as well as receptors
of R-SMADs [16]. A regulatory circuit exists between
RUNX2 and the E3 ligase SMURF1. SMURF1 acts on the
C-terminal PY motif of RUNX2 and mediates RUNX2 ubiq-
uitination, while SMAD6 enhances SMURF1-induced
RUNX2 degradation [17] and RUNX2 activates SMURF1
transcription in osteoblasts [18].

TGF-β1 plays a multifaceted role in regulating osteoblast
differentiation. In the early differentiation of osteoblast cells,
TGF-β1 promotes proliferation and differentiation through
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the SMAD2/3 pathways [19]. However, TGF-β1 promotes
the ubiquitination and degradation of TGF-β1 type I recep-
tor by inducing SMURF1 and SMURF2, which in turn
inhibits osteoblast mineralization during the late stages of
osteoblast differentiation [20–22]. Moreover, TGF-β1
degrades the C/EBPβ protein by inducing SMURF1 expres-
sion at the transcriptional level, thereby reducing C/EBPβ-
DKK1 and inhibiting matrix mineralization during osteo-
blast differentiation [23].

RAS-MAPK-ERK signaling pathway also plays a dual
role in bone metabolism. Crosstalk exists between the
TGF-β/BMP-SMAD and RAS-MAPK signaling pathways
[24]. TGF-β can upregulate the expression of SMURF1 by
activating the MAPK-ERK pathway, then increase the pro-
teasome degradation of RUNX2 and SMAD1, and inhibit
osteogenic differentiation [25]. Furthermore, SMURF1 can
directly interact with MEKK2 and affect the activation of
the downstream JNK signal cascade [26].

Tumor necrosis factor (TNF) is a proinflammatory cyto-
kine which is one of the main factors involved in pathologi-
cal bone loss [27]. One of the mechanisms of TNF in
inflammatory bone disease is the induction of the expression
of the ubiquitin ligases SMURF1 and SMURF2, thus pro-
moting the ubiquitination degradation of SMAD1/5 and
RUNX2 and leading to systemic bone loss [28, 29]. The pos-
sible molecular mechanism underlying is that the presence
of AP-1, RUNX2, and TNF-α activates JNK and ERK, which
induces JNK binding of RUNX2 and c-Jun to the SMURF1
promoter, thus promoting SMURF1 transcription [30].

Furthermore, SMURF1 can regulate cell polarity and
process formation by targeting the RhoA ubiquitination deg-
radation [31] and negatively regulating MSC proliferation
and differentiation by promoting JunB degradation [32]. Con-
tinuous PTH treatment can increase SMURF1 expression in
osteoblasts, leading to RUNX2 degradation and reducing anti-
apoptotic signaling in osteoblasts [33] (Figure 1).

Table 1: E3 ubiquitin ligases and bone metabolism.

Broad group of
ligase

Name Function References

HECT SMURF1 Inhibits osteoblast differentiation and mineralization
[15–23, 25, 26,

28–33]

HECT SMURF2
Inhibits osteoblast differentiation; enhances osteoclast differentiation; inhibits angiogenesis;

stimulates endochondral ossification
[34–39]

HECT Nedd4-1 Enhances osteogenic differentiation [62–64]

HECT Nedd4-2 Inhibits osteoblast differentiation and mineralization [65]

HECT WWP1 Inhibits osteoblast differentiation and mineralization [35, 66–68]

HECT WWP2 Enhances osteogenic differentiation [69–71]

HECT Itch Inhibits or enhances osteogenic differentiation; inhibits osteoclastogenesis [84–87]

RING
APC/
CCDH1 Inhibits osteoblast differentiation and mineralization [42]

RING
APC/
CCDC20 Enhances osteogenic differentiation [41]

RING TRAF4 Enhances osteogenic differentiation [43]

RING TRAF6 Enhances osteoclast differentiation [44–46]

RING TRIM21 Inhibits osteogenic differentiation [51]

RING TRIM33 Protects osteoblasts against oxidative stress-induced apoptosis in osteoporosis [52, 53]

RING TRIM38 Enhances osteogenic differentiation; inhibits osteoclastogenesis [54]

RING RNF40 Enhances osteogenic differentiation [56, 57]

RING RNF146 Enhances osteogenic differentiation; inhibits osteoclastogenesis [58–60]

RING RNF185 Inhibits osteoblast differentiation and mineralization [61]

RING Mdm2 Enhances osteogenic differentiation [76, 77]

RING
Cbl-b and
c-Cbl

Inhibits osteoblast differentiation and mineralization; enhances osteogenic differentiation [6, 91–95]

RING LNX2 Enhances osteoclast differentiation [99]

RING Arkadia Enhances osteogenic differentiation [105]

B-box TRIM16 Enhances osteogenic differentiation [49, 50]

F-box SCFSkp2 Inhibits osteoblast differentiation and mineralization [80]

F-box FBL12 Inhibits osteoblast differentiation and mineralization [96, 97]

U-box CHIP Inhibits osteoblast differentiation and mineralization; inhibits osteoclastogenesis [88, 89]

RBR Parkin Enhances osteogenic differentiation [102, 103]
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2.2. SMURF2. SMURF2 is an E3 ligase of the Hect family
which mainly regulates TGF-β/BMP signaling through a
pathway similar to but independent of SMURF1. SMURF2
preferentially targets SMAD1 for ubiquitination and degra-
dation and has weaker affinity for SMAD2 and SMAD3
[34]. In addition, when SMURF2 was coexpressed with R-
SMAD and SMAD2, SMURF2 showed the ability to down-
regulate SMAD4 similarly to SMURF1 [35]. Under IFNγ
induction, SMURF2 and inhibitory SMADs (such as
SMAD7) form a SMAD7-SMURF2 complex, which targets
TGF-β receptors for degradation and thus bone metabolism
[36]. A study showed that SMURF2 mice showed severe
osteoporosis with an increased number of osteoclasts. A pos-
sible mechanism is that SMURF2-mediated SMAD3 ubiqui-
tination affects the interaction between SMAD3 and vitamin
D receptors, which regulates RANKL expression [37]. AKT
is one of the key cytokines in bone anabolic signaling [12],
and the PI3-kinase-AKT pathway intersects with the BMP
pathway. Experiments have shown that AKT enhances
RUNX2 expression by inducing SMURF2 ubiquitination
and degradation which enhances the stability of the RUNX2
protein [38]. SMURF2 also stimulates chondrocyte matura-
tion during endochondral ossification. Specifically, SMURF2
induces GSK-3 β ubiquitination and proteasome degrada-
tion, leading to the upregulation of β-catenin which pro-
motes endochondral ossification via the Wnt signaling
pathway [39].

2.3. APC/CCDC20 and APC/CCdh1. The anaphase-promoting
complex or cyclosome (APC/C) is a multisubunit ubiquitin
ligase that regulates multiple cell cycle transitions. Two
APC/C activators, Cdc20 and Cdh1, directly bind to APC/
C, activate its ubiquitin ligase activity, and contribute to its
substrate recognition and specificity [40]. APC/C also has
cell cycle-independent functions. APC/CCDC20 promoted

the osteogenic differentiation of BMSCs by ubiquitination
and degradation of p65 [41]. Conversely, the interaction
between Cdh1 and SMURF1 enhances Smurf1-mediated
ubiquitination of its downstream targets and inhibits osteo-
blast differentiation by regulating the activity of the MEKK2
pathway [42].

2.4. TRAF4. TNF receptor-associated factor 4 (TRAF4), a
member of the TRAF family and a ubiquitin ligase in the
RING family, plays an important role in the embryogenesis
and development of the skeletal system. It was demonstrated
that TRAF4 acts as an E3 ubiquitin ligase that positively reg-
ulates the osteogenesis of MSCs by mediating the ubiquitina-
tion of the K48 linkage of SMURF2 at the K119 locus and
leading to its degradation [43].

2.5. TRAF6. Tumor necrosis factor receptor-associated fac-
tor 6 (TRAF6), a ubiquitin ligase in the RING family, is a
key bridging molecule of the NF-κB pathway and plays an
important role in the regulation of osteoclast formation. Pre-
vious studies have shown that TRAF6-deficient mice have
bone abnormalities and osteosclerosis [44]. TRAF6 is essen-
tial for RANKL signaling and osteoclast differentiation.
RANKL recruits TRAF6 binding to E2 ligase Ubc13/Uev1A
which promotes site-specific autoubiquitination, thus acti-
vating the IKK/NF-κB and JNK/SAPK pathways which pro-
mote osteoclast differentiation [45, 46].

2.6. TRIM Family

2.6.1. TRIM16. The TRIM protein family includes about 75
proteins with E3 ligase activity and has multiple functions
in proliferation, differentiation, apoptosis, carcinogenesis,
and autophagy [47]. TRIM16, which belongs to the TRIM
family, does not have a RING domain but has E3 ubiquitin
ligase activity [48]. A study has shown that TRIM16 and
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Figure 1: The E3 ubiquitin ligase SMURF1 mediates the ubiquitination and degradation of key factors from BMP/TGF-β pathway, NF-κB
pathway, MAPK pathway, and other pathways, thereby regulating osteogenic differentiation. Notably, these pathways interconnected with
each other and formed a complex regulatory network.
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Galectin-3 coregulate the osteogenic differentiation of
hBMSCs [49]. Furthermore, TRIM16 reduces CHIP, which
reduces CHIP-mediated RUNX2 degradation, thus promot-
ing osteogenic differentiation of hPDLSCs [50].

2.6.2. TRIM21. Tripartite motif containing 21 (TRIM21) is a
member of the TRIM protein family with E3 ubiquitin ligase
activity. TRIM21 modulated the osteogenic process of MSCs
by acting as an E3 ubiquitin ligase to mediate the K48-linked
ubiquitination of Akt and cause degradation [51].

2.6.3. TRIM33. Triplex protein 33 (TRIM33) is a member of
the TRIM family and a RING type E3 ubiquitin ligase.
TRIM33 acts as a positive regulator of osteoblast differentia-
tion in the BMP pathway and its action is mediated by its
interaction and activation with Smad1/5 [52]. In addition,
TRIM33 protects osteoblasts against oxidative stress-
induced apoptosis in osteoporosis by inhibiting ubiquitina-
tion and degradation of FOXO3a [53].

2.6.4. TRIM38. Triplex protein 38 (TRIM38) is a member of
the TRIM family and a RING type E3 ubiquitin ligase.
TRIM38 is involved in various cellular processes such as
proliferation, differentiation, apoptosis, and antiviral
defense. TRIM38 regulates the NF-κB pathway involved in
osteoclast and osteoblast differentiation through ubiquitina-
tion and degradation of TGF-Beta Activated Kinase 1
(MAP3K7) Binding Protein 2 (TAB2) protein. Overexpres-
sion of TRIM38 in osteoclast precursor cells attenuates
RANKL-induced NF-κB activation and osteoblast prolifera-
tion and differentiation. Ectopic expression of TRIM38 in
osteoblast precursors negatively regulates NF-κB activation
and promotes BMP2-induced IκBα phosphorylation and
degradation for osteoblast differentiation [54].

2.7. RNF40. RNF40, a RING family of E3 ubiquitin ligases,
monoubiquitinates histone H2A at K119 or H2B at K120,
is known to function in transcriptional elongation, DNA
double-strand break (DSB) repair processes, maintenance
of chromatin differentiation, and exerting tumor suppressor
activity [55]. A recent study has found that RNF40-driven
H2B monoubiquitination is important for bone integrity in
osteoblasts. RNF40 expression is essential for the early stages
of lineage specification but is dispensable in mature osteo-
blasts [56, 57].

2.8. RNF146. RNF146 is a RING domain E3 ubiquitin ligase.
Mice lacking RNF146 develop a syndrome similar to cranio-
synostosis dysplasia (CCD) [58]. AXIN is a key node in the
Wnt pathway, and RNF146 controls the Wnt/β-linked pro-
tein pathway through ubiquitination of its substrate AXIN to
inhibit osteolysis [59]. 3BP2 is the bridging protein required
for the activation of SRC tyrosine kinases and coordinates
the attenuation of β-linked proteins, which are necessary
for osteoclast development. RNF146 also affects bone
remodeling via 3BP2 ubiquitination. Furthermore, by regu-
lating the WNT3a-FGF18-TAZ axis, RNF146 can promote
osteoblast differentiation and proliferation [60]. Overall,
RNF146 regulates the 3BP2/SRC and Wnt/β-catenin path-

ways on bone metabolism by ubiquitination of 3BP2 and
AXIN1.

2.9. RNF185. RNF185, a RING type E3 ubiquitin ligase,
inhibits osteogenic differentiation of mouse cranial-derived
MC3T3-E1 cells. The mechanism is the interaction between
RNF185 and Dvl2, a key mediator of the Wnt signaling
pathway. RNF185 inhibits Wnt signaling and negatively reg-
ulates osteogenesis by promoting ubiquitin and degradation
of Dvl2 [61].

2.10. NEDD4 Family

2.10.1. NEDD4-1. NEDD4/NEDD4-1, an E3 ubiquitin ligase
in the NEDD4 family, is essential for osteoblast differentia-
tion and proliferation. Lack of Nedd4 in preosteoblasts
results in reduced cell proliferation and altered osteogenic
differentiation. Nedd4 promotes the expansion of osteoblast
progenitor cell pools which plays an important role in cra-
niofacial development [62]. NEDD4 promotes bone forma-
tion primarily by enhancing TGF-β1 signaling. NEDD4
promotes osteoblast proliferation by degrading PTEN and
TGF-β1-activated pSMAD1, upregulating pSMAD2, and
promoting TGF-β1 gene expression by upregulating
PERK1/2 [63, 64].

2.10.2. NEDD4-2. NEDD4-2/NEDD4L is an E3 ubiquitin
ligase in the NEDD4 family. NEDD4-2/NEDD4L is similar
to SMURF1 and SMURF2. Under SMAD7 participation,
NEDD4-2 mediates its degradation by interacting with
TβR-I. In addition, NEDD4-2 interacts with SMAD2 and
induces its ubiquitinization and degradation. In general,
NEDD4-2 negatively regulates the TGF-β and BMP signal-
ing pathways [65].

2.11. WWP Family

2.11.1. WWP1. WWP1 is a member of the SMURF-like C2-
WW-HECT (WW is Trp-Trp and HECT is homologous to
the E6-accessory protein) type E3 ubiquitin ligases. WWP1
inhibits osteogenesis by promoting SMAD4 in osteoblasts
and RUNX2 ubiquitination [35, 66]. In patients with chronic
inflammatory diseases, elevated TNF inhibits bone forma-
tion through a variety of mechanisms. Junb protein is a
key transcription factor that modulates MSCs to differentiate
into osteoblasts. Under TNF-mediated mechanisms, WWP1
targets Junb protein proteasome degradation which inhibits
bone formation [67]. In addition, WWP1 negatively regu-
lates bone mass by inhibiting MSC migration and osteoblast
differentiation. It was also found that WWP1 expression is
lower in young MSCs and increases with aging [68].

2.11.2. WWP2. WWP2 is a member of the SMURF-like C2-
WW-HECT type E3 ubiquitin ligases, which promotes Sox6
expression through monoubiquitination of Goosecoid under
the transcriptional regulation of Sox9 and then promotes
craniofacial development [69]. Besides, both WWP2 and
Med25 could enhance Sox9 transcriptional activity [70].
Moreover, WWP2 promotes osteogenesis by enhancing
RUNX2 through nonproteolytic monoubiquitination [71].
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2.12. MDM2. MDM2 is an important negative regulator of
p53 and an E3 enzyme, which promotes p53 degradation
by p53 ubiquitination. P53 is an important tumor suppres-
sor gene in the apoptosis pathway. P53, as a transcription
factor, regulates cell cycle arrest, DNA repair, and apoptosis
[72]. MDM2 suppresses the action of p53 on the MDM2
gene response element, thus forming a p53-MDM2 regula-
tory feedback loop. Therefore, in normal cells, p53 is contin-
uously degraded through MDM2-mediated ubiquitination,
resulting in a sustained low expression level of p53 [73].
Studies have shown that p53 inhibits osteoblast differentia-
tion and osteoma formation by inhibiting the expression of
RUNX2 or Osterix without affecting osteoclast differentiation
[74, 75]. MDM2 negatively regulates p53 in favor of RUNX2
activation and is one of the necessary conditions for osteoblast
differentiation and appropriate bone formation [76]. Dlx3 is a
transcription factor that plays an important role in odonto-
blast differentiation. MDM2-ubiquitinated Dlx3 upregulates
Dspp expression, and MDM2 ubiquitinates P53, which
degrades it, reducing the inhibitory effect of mDPCs on
odontoblast-like differentiation [77].

2.13. SCFSKP2. SKP2 is a SCF family protein, and its complex
with SKP1 and CUL1 (SCFSKP2) is an E3 ubiquitin ligase
[78]. This plays an important role in regulating the cell cycle
[79]. SKP2 targets RUNX2 for ubiquitin-mediated degrada-
tion and thus negatively regulates osteogenesis. Moreover,
RUNX2 and SKP2 expression levels in vivo are negatively
related [80]. Therefore, SKP2 may be a therapeutic target
for osteoporosis.

2.14. ITCH. ITCH is a HECT family E3 ligase containing the
WW domain. ITCH E3 ubiquitin ligase deficiency in
humans and mice leads to syndromic multisystem autoim-
mune disease [81]. The molecular mechanism of ITCH defi-
ciency leading to autoimmune disease and multiorgan
inflammation is related to its negative regulation of JNK
and NF-κB signaling pathways [82, 83]. Therefore, the inves-
tigators found that Itch negatively regulates osteoblast differ-
entiation from bone marrow mesenchymal stem cells
through proteasome degradation of JunB protein [84]. Fur-
thermore, Itch binds to the N-terminal part of NICD
through its WW structural domain and inhibits the Notch
pathway by promoting Notch ubiquitination through its
HECT ubiquitin ligase structural domain [85]. Itch defi-
ciency leads to increased expression of the Notch signal
pathway and reduced differentiation of MSCs into osteo-
blasts, therefore resulting in osteopenic bone phenotype
[86]. A study also noted an increase in osteoclasts in the
bone marrow of ITCH−/− mice. One of the mechanisms is
that ITCH promotes the deubiquitination of TRAF6 by
recruiting CYLD to TRAF6 signal transduction complexes.
TRAF6 plays an important role in RANKL signal transduc-
tion in osteoclasts and osteoclast precursors (OCP). Thus,
deubiquitinated TRAF6 negatively regulates osteoclast for-
mation via the RANKL signaling pathway [87].

2.15. CHIP. The carboxyl terminus of Hsp70 interacting
protein (CHIP or STUB1) is an E3 ligase that regulates the

stability of several proteins involved in different cellular
functions. Deletion of the CHIP gene leads to a reduced
bone mineral phenotype and increased osteoclast formation.
CHIP interacts with TRAF6 to promote TRAF6 ubiquiti-
nation and proteasomal degradation, thereby inhibiting
TRAF6-mediated NF-κB signaling, and plays an important
role in osteoclastogenesis and bone reconstruction [88]. In
addition to regulating TRAF6, CHIP inhibits TNFα-
induced NF-κB signaling by promoting the degradation
of TRAF2 and TRAF5 [89].

2.16. Cbl-b and c-Cbl. The Cbl (Casitas b lineage lymphoma)
proteins are an evolutionarily conserved protein family that
includes three different gene products (Cbl or c-Cbl; Cbl-b;
and Cbl-c, Cbl-3, or Cbl-SL). Cbl-b and c-Cbl proteins are
members of the mammalian CBL (Casitas B lineage lym-
phoma) family and are also Ring E3 ubiquitin ligases which
regulate bone metabolism [90]. The effects of Cbl-b and c-
Cbl on bone metabolism have been extensively studied, with
the literature suggesting that Cbl proteins control osteoblast
proliferation, differentiation, and survival through ubiquiti-
nation affecting the RTK-PI3K-AKT axis and other c-Cbl
target proteins [6, 91, 92]. In addition, Cbl-b and c-Cbl have
some less noticeable regulatory effects on bone metabolism.
Osterix (also known as Sp7) is an osteogenic-specific cellular
regulator which acts downstream of RUNX2 [93]. It was
found that Cbl-b/C-cbl reduced the function of Osterix by
degrading Osterix with ubiquitin, which inhibited bmp2-
mediated osteogenic differentiation [94]. Cbl-b has been
shown to be significantly increased in osteoblasts of dener-
vatedmice which inhibits IGF-I-regulated osteogenic differen-
tiation by increasing IRS-1 ubiquitination and degradation
during denervation [95].

2.17. FBL12. FBL12 is an F-box protein induced by TGF-β1.
p57KIP2 is a cyclin-dependent kinase (CDK) inhibitor (CKI)
that plays an important role in cell proliferation and differ-
entiation and affects bone development [96]. Under the
stimulation of TGF-β1, FBL12 and SCF form the SCF
FBL12 complex, which directly ubiquitinates p57KIP2 and
leads to its degradation, thereby inhibiting osteoblast differ-
entiation [97].

2.18. LNX2. Notch signaling regulates proliferation, differen-
tiation, and apoptosis in a cell-cell contact-dependent man-
ner. It plays a crucial role in regulating the proliferation
and differentiation of osteoblasts and osteoclasts in skeletal
development and homeostasis in vivo [98]. LNX2 is a
RING-type E3 ubiquitin ligase, which promotes the activa-
tion of ERK and AKT induced by M-CSF and the activation
of NF-κB and JNK pathways stimulated by RANKL, which
in turn promote osteoclast differentiation. Numb protein is
an inhibitor of the Notch pathway and LNX2 binding to
Numb mediates its ubiquitinated degradation and inhibits
Numb-mediated inhibition of osteoblast differentiation by
downregulation of the Notch pathway [99].

2.19. Parkin. Parkin (Park2) is a RING-between-RING
(RBR) E3 ligase [100]. Parkin can be recruited to mitochon-
dria and mediates mitochondrial autophagy, which is related
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to the pathogenesis of Parkinson’s disease [101]. It reduces
ROS levels and inhibits apoptosis in osteoarthritic chondro-
cytes by promoting mitophagy to eliminate damaged/depo-
larized mitochondria [102] What is more, Parkin promotes
osteoblast differentiation of BMSCs by enhancing autophagy
and β-catenin signaling pathway [103]. NIPA2 is a selective
Mg2+ transporter and helps maintain Mg2+ influx. NIPA2
was found to be associated with the development of type 2
diabetic osteoporosis via the mitophagy pathway. The pos-
sible mechanism underlying this is that PINK1/Parkin-
mediated mitochondrial autophagy in osteoblasts is regulated
by NIPA2, which is regulated by the PGC-1α/FoxO3a/MMP
pathway [104].

2.20. Arkadia. Arkadia, a RING-type E3 ubiquitin ligase, is a
positive regulator of the TGF-β family of SMAD-dependent
signaling pathways. Arkadia promotes BMP-induced osteo-
blast differentiation by downregulating the BMP-specific
negative regulators SMAD6, SMAD7, and c-Ski/SnoN to
positively regulate BMP signaling [105].

3. UPS Inhibitors and Drugs Regulate Skeletal
Cell Fate and Pathology

The most commonly used UPS inhibitors in clinical practice
are proteasome inhibitors. In 2003, bortezomib (BTZ)
became the first proteasome inhibitor approved by the U.S.
Food and Drug Administration (FDA). BTZ has been shown
to positively affect bone metabolism in MM and promote
bone anabolism [106]. It directly inhibits osteoclastogenesis
and promotes osteoblastogenesis [107]. Specifically, BTZ can
upregulate BMP-2 expression and prevent the proteolytic deg-
radation of the osteoblast transcription factor RUNX2/Cbfa1
to regulate osteoblast differentiation [33, 108]. BTZ inhibits
osteoclast differentiation by inhibiting DKK1, RANKL, and
NF-κB pathway activity [109, 110]. Experiments have shown
that BTZ decreases skeletal complications of MM and prevents
mechanical unloading-induced bone loss and ovariectomy-
induced osteoporosis in mice [111–113].

In addition to specially developed UPS inhibitors, some
commonly used drugs have also been found to be involved
in bonemetabolism through the UPS system, including thalid-
omide, lansoprazole, carnosic acid, melatonin, clomipramine,
zoledronic acid, and Vitisin A. The immunomodulatory drug
(IMiD) thalidomide was originally considered a teratogenic
agent but is now used to treat a variety of clinical indications,
including MM. It has been found that the direct target of tha-
lidomide is the Cereblon (CRBN), a component of the cullin-4
RING E3 ligase complex. Thalidomide inhibits the ubiquitina-
tion of CRBN, leading to increased cullin-4 RING E3 ligase-
mediated degradation of target proteins [114]. Recent studies
indicate thalidomide has inhibitory effects on glucocorticoid-
induced osteoporosis and ovariectomy-induced osteoporosis
in mice, but excessive doses of thalidomide can exacerbate
osteoporosis [115, 116]. Lansoprazole, which is one of the
most commonly prescribed drugs for the treatment of acid-
related diseases, induces TRAF6 polyubiquitination, which
then activates the noncanonical TAK1–p38 MAPK pathway
and facilitates Runx2-mediated osteoblastogenesis [117]. Car-

nosic acid (CA) is a phenolic acid compound first found in
Salvia officinalis L., which possesses antioxidative and antimi-
crobial properties [118]. CA dually targets SREBP2 and ERRα,
thus inhibiting the RANKL-induced osteoclast formation and
improving OVX-induced bone loss [119]. Melatonin is a
signal molecule that modulates the biological circadian
rhythms of vertebrates. Melatonin treatment was found to
downregulate TNFα-induced SMURF1 expression and then
decrease SMURF1-mediated ubiquitination and degradation
of SMAD1 protein, leading to steady bone morphogenetic
protein-SMAD1 signaling activity and restoration of TNFα-
impaired osteogenesis [120]. Recent studies have shown that
clomipramine (CLP) induces bone loss and osteoporosis by
acting on Itch to promote osteoclastogenesis. On the contrary,
bisphosphonates, such as zoledronic acid (ZA) and prevent
bone loss from CLP treatment [121]. One such mechanism
is zoledronic acid- (ZA-) induced osteoclast cell ferroptosis
by triggering FBXO9-mediated p53 ubiquitination and degra-
dation [122]. A study found that oral administration of a drug
containing (+)-Vitisin A significantly improves bone loss in
ovariectomized mice. (+)-Vitisin A inhibits RANKL-induced
ubiquitination of TRAF6 and formation of the TRAF6-
TAK1 complex which inhibits activation of the IKK/NF-κB/
c-Fos/NFATc1 signaling pathway to inhibit osteoclast differ-
entiation [123].

There are also a considerable number of E3 ligase drugs
in preclinical or clinical trials [124, 125]. The issue is that
most of these inhibitors are more effective in cell culture
studies and less effective in animal models and clinical trials.
Therefore, further research and technological advances will
be required in the future [125].

4. Noncoding RNAs Regulate Skeletal Cell
Fate through the UPS System

Noncoding RNAs (ncRNAs) include intronic RNAs, micro-
RNAs (miRNAs), long noncoding RNAs (lncRNA), circular
RNAs (circRNA), and extracellular RNAs [126]. The ability
of ncRNAs to control gene expression makes them viable
targets for drug development. To date, several ncRNAs were
found to act on E3 ubiquitin ligases to regulate bone metab-
olism. The lncRNA RP11-527N22.2, named osteogenic dif-
ferentiation inhibitory lncRNA 1 (ODIR1), acts as a key
negative regulator during the osteogenic differentiation of
hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/
OSX axis [127]. miR-142-5p promoted osteoblast activity
and matrix mineralization by targeting the gene encoding
WW-domain-containing E3 ubiquitin protein ligase 1 [128].
miR-25 secreted by BMSC-Exo regulates the ubiquitination
degradation of Runx2 by SMURF1 to promote fracture heal-
ing in mice [129]. Mesenchymal stem cell-derived exosomal
miR-19b represses the expression of WWP1 or Smurf2 and
elevates KLF5 expression through the Wnt/β-catenin signal-
ing pathway, thereby facilitating fracture healing [130].
BMSC-derived exosomal miR-101 augments osteogenic dif-
ferentiation in MSCs by inhibiting FBXW7 to regulate the
HIF1α/FOXP3 axis [131]. Silencing DCAF1 by miR-3175
activated Nrf2 signaling to inhibit dexamethasone-induced
oxidative injury and apoptosis in human osteoblasts [132].
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miR-764-5p positively regulates osteoblast differentiation
from osteoblast progenitor cells by inhibiting CHIP protein
translation [133]. In addition, biomaterials have also been
used as drug delivery platforms to deliver ncRNA. In this
research, regenerative siRNA against WW domain-
containing E3 ubiquitin protein ligase 1 (Wwp1) complexed
with hybrid nanoparticle (NP) were entrapped within poly
(ethylene glycol) (PEG)-based hydrogels and implanted at
sites of murine middiaphyseal femur fractures. Results
showed that fractures treated with siRNA/NP hydrogels
exhibited accelerated bone formation and significantly
increased biomechanical strength [134].

5. Conclusions

Recognition and understanding of the role of the ubiquitin-
proteasome system in osteogenic regulation have gained sig-
nificance in the past decades. Its discovery has helped us
understand the nature of biochemical processes behind
major developmental and homeostatic events. Numerous
ubiquitin enzymes have been discovered so far, with E3
ubiquitin ligases being the most important and diverse. In
this review, we discuss and present the role of E3 ubiquitin
ligases in bone metabolism, drawing from historical studies
on E3 ubiquitin ligases in bone metabolism, as well as recent
findings. They regulate bone metabolism through several key
factors and pathways that act on osteogenesis and osteoclast.

Designing therapies that target each component of the
UPS in order to treat pathology holds great promise for clin-
ical practice. Some proteasome inhibitors are already in clin-
ical use and have been shown to be effective in the treatment
of multiple myeloma. Some of these drugs, such as bortezo-
mib, were found to prevent osteoporosis in mice. The main
pharmacological effects of some clinical drugs such as thalid-
omide, lansoprazole, carnosic acid, melatonin, clomipra-
mine, zoledronic acid, and Vitisin A are not related to the
UPS system. However, several recent studies have found that
these clinical drugs could affect different E3 ubiquitin ligases,
which in turn regulate different bone metabolic pathways.
Noncoding RNAs, such as miRNA, lncRNA, and siRNA,
have also been used to regulate bone metabolism by target-
ing the UPS system. However, the application of noncoding
RNAs is challenged by their poor stability, poor pharmaco-
kinetics, and potential off-target effect. The use of corre-
sponding biomaterials will greatly improve the therapeutic
efficacy of noncoding RNA. But the research in this area is
relatively basic, and there is still room for further improve-
ment. Moreover, there are a considerable number of E3
ligase drugs in preclinical or clinical trials. Further research
and technological advances such as PROTAC (Proteolysis
targeting chimeras) may take the research to a new level
[135]. With the further discovery of the mechanisms of the
E3 ubiquitin ligases related to bone metabolism, more drugs
targeting E3 ligases will be designed for the treatment of
skeletal disorders.
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Dental implant restoration is the preferred choice for patients with dentition defects or edentulous patients, and obtaining stable
osseointegration is the determining factor for successful implant healing. The risk of implant failure during the healing stage is still
an urgent problem in clinical practice due to differences in bone quality at different implant sites and the impact of some systemic
diseases on bone tissue metabolism. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive physical intervention method
widely recognized in the treatment of bone fracture and joint damage repair. Moreover, many studies indicated that LIPUS
could effectively promote the osseointegration of dental implants and improve the osteogenic differentiation of bone marrow
mesenchymal stem cells (BMSCs). This review is aimed at investigating the research progress on the use of LIPUS in dental
implant medicine from three aspects: (1) discuss the promoting effects of LIPUS on osseointegration and peri-implant bone
regeneration, (2) summarize the effects and associated mechanisms of LIPUS on the biological functions of BMSCs, and (3)
introduce the application and prospects of LIPUS in the clinical work of dental implantation. Although many challenges need
to be overcome in the future, LIPUS is bound to be an efficient and convenient therapeutic method to improve the dental
implantation success rate and expand clinical implant indications.

1. Introduction

With the advancement of dental implant science, implant
restoration has become the preferred treatment approach
for patients with dentition defects or edentulous to restore
oral function and aesthetics [1]. Osseointegration is an
important metabolic and remodeling process involving bone
tissues surrounding implant surfaces, and achieving stable
osseointegration during the healing period is a prerequisite
for successful dental implantation [2]. The theory of implant
osseointegration was first proposed by Brånemark in 1977,
who reported a direct structural and functional connection
between the surface of a titanium implant and the active
human bone tissues, without any connective tissue between
these two components [3]. The quality of osseointegration

is primarily influenced by the bone quality and bone mass
at the local implant site, and systemic health factors that
influence bone metabolism also play important roles [4].

Good bone quality and adequate bone mass can ensure
that dental implants are placed at the ideal site, leading to
a good functional and aesthetic outcome. However, peri-
odontal disease, trauma, and bone tissue atrophy or resorp-
tion often cause alveolar bone insufficiency, and thus,
different degrees of peri-implant bone defects appear after
the implants are placed. Therefore, bone augmentation sur-
gery, such as guided bone regeneration (GBR), is required
to cover the exposed surface of the implant [5]. However,
the period for achieving osseointegration in the bone defect
region is even longer and is closely associated with the sup-
ply of peripheral blood and the migration and differentiation
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of osteoblastic cells in the bone marrow [6]. At present,
firmly and quickly establishing osseointegration in the bone
defect area around the implant is still a clinical challenge.

Furthermore, systemic diseases, such as diabetes mellitus
and osteoporosis, are considered important risk factors that
impact the success rate of dental implant treatment. These
diseases are usually accompanied by different degrees of
bone remodeling disorders, which can interfere with the
osseointegration of implants during the healing period.
Although diabetes mellitus with good blood glucose control
and osteoporosis under systemic medication is no longer
absolute contraindications for implant surgery because of
the progress in implant surface treatment technology [7],
several studies have reported that the aforementioned dis-
eases still present a potentially high risk for implant failure
[8, 9]. An absence of osseointegration directly causes
implant loss and surgical failure and is difficult to predict.
Therefore, finding new methods to improve the osseointe-
gration of implants simply and quickly and shortening the
healing cycle have become the focus of current clinical
research.

Low-intensity pulsed ultrasound (LIPUS) is an emerging
noninvasive technology for physical intervention and can
directly act on target tissues using pulsed ultrasound at an
output intensity lower than 1W/cm2 to produce many bio-
logical effects, including promoting protein synthesis,
improving cell proliferation, and increasing cellular second-
ary messenger calcium uptake [10, 11]. LIPUS is widely rec-
ognized as a safe and effective method for treating bone,
cartilage, nerve, and soft tissue diseases and has almost no
toxic or side effects to normal tissue [12–15]. Many studies
have reported the promoting effect of LIPUS on tissue
regeneration and cell metabolism, particularly in treating
bone fracture and cartilage injury [16–18]. A systemic
review and meta-analysis even defined LIPUS as the most
effective method for treating bone nonunion besides surgery
[19]. In addition, several studies explored the therapeutic
effects of LIPUS on cartilage tissue injury of the temporo-
mandibular joint (TMJ) in the last 5 years and found that
LIPUS could effectively suppress temporomandibular joint
disorders (TMDs) in rats, which was caused by chronic sleep
deprivation (CSD) intervention [20–22]. A recent review
article also confirmed the effect of LIPUS on osteoarthritis
of the TMJ [23].

In recent years, many studies used LIPUS in the field of
dental implantation, seeking to use LIPUS to improve peri-
implant bone remodeling and shorten the healing cycle. In
vivo studies showed that LIPUS could significantly increase
the bone–implant contact (BIC) rate of implants and effec-
tively promote new bone formation [24]. In vitro studies fur-
ther confirmed that LIPUS could promote the proliferation,
migration, osteogenic differentiation, and mineralization
abilities of alveolar bone marrow mesenchymal stem cells
(BMSCs), activate osteogenesis-associated signaling path-
ways, and induce BMSCs to express osteogenic cytokines
and proteins [16]. LIPUS has high clinical application value
in the promotion of implant osseointegration and bone
regeneration around implants during the patient healing
period. The present study investigated the research progress

in LIPUS use in dental implant medicine from three aspects:
(1) the promotive effects of LIPUS on implant osseointegra-
tion and peri-implant bone regeneration, (2) the effects and
associated mechanisms of LIPUS on the biological functions
of BMSCs, and (3) the application and prospects of LIPUS in
the clinical work of dental implantation. Finally, future
research directions have been suggested in Conclusion.

2. Promotive Effects of LIPUS on Implant
Osseointegration and Peri-Implant
Bone Regeneration

In the last 30 years, the treatment of bone fractures and
other bone defect diseases with LIPUS has achieved land-
mark clinical effects. The osseointegration of implants shares
many similarities with the bone fracture healing process,
including blood clot filling, inflammatory response, osteoid
tissue formation, and bone remodeling [25]. After implants
are placed into the alveolar bone tissues, blood first fills the
gap between the implant surface and the surrounding bone
tissue, and then, osteoid tissues and new trabecular bone
gradually replace the blood clots during the early healing
stage. Next, the bone-like tissues are gradually remodeled
to form lamellar bone to achieve close contact with the
implant surface, and osseointegration is finally complete
[26]. Many studies have verified the promoting effect of
LIPUS in bone remodeling and regeneration, and in the fol-
lowing paragraphs, we will focus on the effects of LIPUS on
implant osseointegration. Current in vivo studies on the
application of LIPUS to dental implants are summarized in
Table 1.

2.1. Interventional Effects of LIPUS on Implant
Osseointegration. Many in vivo studies used LIPUS to pro-
mote the osseointegration of dental implants. Ustun et al.
[27] showed that the intervention of dental implants in rab-
bit tibias for 4–6 weeks using LIPUS at 30mW/cm2 intensity
significantly increased the BIC rate and the stability of
implants. Liu et al. [32] used 40mW/cm2 LIPUS to treat
implants in rabbit femurs and tibias, and 3 weeks of inter-
vention significantly increased the tissue mineral density,
bone volume/tissue volume (BV/TV) fraction, trabecular
thickness around the implants, and pullout torque of the
implants. Similarly, Zhou et al. [29] in a rat model showed
that the application of LIPUS at 30mW/cm2 significantly
increased the BIC rate and the BV/TV fraction in rat tibias
in week 4 compared with the natural healing control group.
However, the differences were not significant in weeks 8 and
12, suggesting that the advantage period of LIPUS in pro-
moting new bone formation around implants was during
the early healing period. Simultaneously, Kang et al. [28]
also concluded that LIPUS could effectively promote the
osseointegration of dental implants in 4 weeks in a canine
model. In addition, Ruppert et al. [34] compared the effects
of LIPUS and low-magnitude, high-frequency (LMHF)
vibration generated by a dual-limb local vibration stimulator
on implant healing in rat femurs and showed that LIPUS
promoted osseointegration after 4 weeks of intervention
and increased the pullout torque of implants more
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significantly than the vibration stimulator, allowing implants
to achieve the stable plateau stage earlier. However, the
aforementioned promoting effects disappeared after 8 weeks.
In summary, the aforementioned studies showed that LIPUS
strongly and stably promoted implant osseointegration and
peri-implant bone regeneration, and the promoting function

primarily occurred in the early period of osseointegration
(about 4 weeks).

In a recent study, Jiang et al. [24] also confirmed the pro-
moting effects of LIPUS at 30mW/cm2 intensity on implant
osseointegration in 4 weeks, and the aforementioned func-
tion was produced through the promotion of α-calcitonin

Table 1: Summary of LIPUS studies on implant osseointegration and peri-implant bone regeneration.

Studies Animal models
Titanium
implants

LIPUS parameters
Time of

stimulation
Major conclusions

Ustun
et al. [27]

New Zealand
rabbits
Tibiae

Length: 6.0mm
Diameter: 4.1mm
Screw-shaped

Intensity: 30mW/cm2

(/SATA)
Pulse frequency:

1.5MHz

20min/day
for 1, 2, 3, 4, 5,
and 6 weeks

LIPUS may have positive
effects on osseointegration and
stability of dental implants

Kang
et al. [28]

Mongrel dogs
Mandibular bone

Length: 8.5mm
Diameter: 3.3mm

Intensity: 240mW/cm2

(/SATA)
Pulse frequency:

3.0MHz

15min/day for
1 week

LIPUS may have a positive effect
on osseointegration and stability
of dental implants, especially in

early healing periods

Zhou
et al. [29]

SD rats
Tibiae

Length: 4.0mm
Diameter: 2.0mm
Pitch: 0.6mm
Screw-shaped

Intensity: 30mW/cm2

(/SATA)
Pulse frequency:

1.5MHz

20min/day
for 4, 8,

and 12 weeks

LIPUS therapy may accelerate
the bone healing and

osseointegration at the interlace
between titanium implant and

bone and promote remodeling of
bone trabecula in the early stage

Nakanishi
et al. [30]

Japanese
white rabbits

Femur

Length: 10mm
Diameter: 3.3mm

Intensity: 40mW/cm2

or 100mW/cm2

(/SATA)
Pulse frequency: 1MHz

or 3MHz

20min/day
for 2 weeks

Clinical application of LIPUS
for dental implants may
promote osseointegration

Hsu
et al. [31]

New Zealand
rabbits
Tibiae

Length: 8mm
Diameter: 3.6mm
Screw-shaped

Intensity: 50, 150, and
300mW/cm2 (/SATA)
Pulse frequency: 1MHz

10min/day
for 30 days

LIPUS at 0.05–0.3W/cm2

intensity may accelerate cell
proliferation and promote the
maturation of collagen fibers
and support osteointegration

Liu
et al. [32]

New Zealand
rabbits

Femur and tibiae

Length: 18mm
Diameter: 2.5mm
Screw-shaped

Intensity: 40mW/cm2

(/SATA)
Pulse frequency:

1.5MHz

10min twice a
day (total
20min)

for 3 weeks

LIPUS has the potential to
accelerate the osseointegration

of dental implants

Zhou
et al. [33]

Ovariectomized
SD rats
Tibiae

Length: 4.0mm
Diameter: 2.0mm
Pitch: 0.6mm
Screw-shaped

Intensity: 40mW/cm2

(/SATA)
Pulse frequency:

1.5MHz

20min/day for 2,
4,

6, 8, 10, and 12
weeks

LIPUS may enhance new bone
formation, especially in an
early stage, and improve

osseointegration in osteoporotic
bone as an auxiliary method

Ruppert
et al. [34]

SD rats
Femur

Length: 20mm
Diameter: 1.5mm

Intensity: 30mW/cm2

(/SATA)
Pulse frequency:

1.5MHz

20min/day for 4
and 8 weeks, 5
days per week

LIPUS is superior to vibration
for accelerating osseointegration
and increasing bone–implant

failure loads at 4 weeks

Jiang
et al. [24]

αCGRP+/+ and
αCGRP-/- mice
Maxillary first

molar extraction
sockets

Length: 1mm
Diameter: 0.6mm
Screw-shaped

Intensity: 30mW/cm2

(/SATA)
Pulse frequency: 1MHz

20min/day for 2
and 4 weeks

LIPUS can enhance
osseointegration of dental
implant by inducing local
neuronal production of
αCGRP, providing a new

idea to promote peri-implant
osseointegration and
bone regeneration

CGRP: calcitonin gene-related peptide; LIPUS: low-intensity pulsed ultrasound; SATA: spatial average temporal average; SD: Sprague–Dawley.

3Stem Cells International



gene-related peptide (αCGRP) synthesis and secretion by
dorsal root ganglia neurons. CGRP is a neuropeptide that
regulates the biological activities of nonneural cells, and the
major function of αCGRP is to regulate bone formation
and remodeling [35]. Jiang et al. [24] showed that LIPUS
intervention significantly promoted BIC, BV/TV, and the
mean trabecular number (Tb.N) and decreased the mean
trabecular separation (Tb.Sp). However, LIPUS did not have
significant effects in αCGRP knockout mice (Figure 1).
Therefore, αCGRP might be a hub through which LIPUS
promoted implant osseointegration, and this conclusion
provided a new perspective for the exploration of the mech-
anism of action of LIPUS.

2.2. Effect of LIPUS on Implant Osseointegration in the
Presence of Osteoporosis and Diabetes Mellitus. Osteoporosis

is a common human bone tissue disease primarily character-
ized by reduced bone density [36]. The reduction in bone
mass and volume caused by bone metabolism imbalances
not only affects implant osseointegration during the healing
period but is also an important risk factor for a decrease in
long-term implant survival rates [37, 38]. Systemic bispho-
sphate, estrogen, or parathyroid hormone treatment can
inhibit the activity of osteoclasts in osteoporotic bone tissues
and enhance osseointegration [39, 40]. However, treatment
with the aforementioned systemic drugs may lead to many
adverse reactions and toxic drug effects, of which osteone-
crosis of the jaw bone induced by bisphosphate drugs is
the most serious [41]. In this respect, LIPUS has unique
advantages because it is nontoxic, nonimmunogenic, and
noninvasive. Zhou et al. [33] confirmed that LIPUS could
effectively promote the osseointegration of titanium
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Figure 1: LIPUS enhanced the osseointegration of dental implant in αCGRP+/+ mice. (a) Tooth extraction and implant placement
procedure. The red circles indicate bilateral maxillary first molars. The yellow arrow points to the palatal root socket after tooth
extraction. (b) Three-dimensional reconstruction of the implant by microcomputed tomography (micro-CT). The green area indicates
implant, and the pink area indicates BIC. Scale bars = 100mm. (c) Micro-CT analysis of BIC, BV/TV, Tb.N, and Tb.Sp. Data are
presented as means ± standard deviation. ∗P < 0:05, n = 4 specimens/group. KO: αCGRP knockout mice; WT: wild type; BIC: bone–
implant contact; BV/TV: bone volume/tissue volume fraction; Tb.N: mean trabecular number; Tb.Sp: mean trabecular separation.
Reprinted from Jiang et al. [24], Copyright (2020), with permission from Elsevier.
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implants in osteoporotic bone tissues. Treatment with
LIPUS at 40mW/cm2 intensity for 2 weeks significantly
increased the BV/TV fraction around implants in the femurs
of ovariectomized rats; treatment for 4 weeks or more signif-
icantly increased the BIC rate of the implants; and treatment
for 6 weeks or more significantly increased the pullout tor-
que. In addition, the present study confirmed that the
enrichment and osteogenic differentiation of osteoblasts
close to the implant–bone interface stimulated by LIPUS
was an important route through which LIPUS exerted its
promoting effect on osseointegration. The aforementioned
results provided a theoretical basis for the application of
LIPUS to assist the healing of dental implantation in patients
with osteoporosis.

Diabetes mellitus is another important risk factor for
implant failure during the healing period [42–44]. Many
studies confirmed that the BIC rate of implants in Goto-
Kakizaki (GK) rats with type 2 diabetes mellitus was signifi-
cantly lower than that in normal Wistar rats, and hypergly-
cemia played a key role in causing the bone remodeling
disorders around the implants [45–47]. In addition, cellular
studies showed that a high-glucose microenvironment could
significantly inhibit the proliferation and osteogenic differ-
entiation capacity of BMSCs, reduce the expression of
osteogenesis-related genes, and decelerate in vitro minerali-
zation [48–50]. Unfortunately, to the best of our knowledge,
currently, no relevant clinical or in vivo studies have
reported the function and mechanism of LIPUS in the
osseointegration of implants in diabetic models. However,
in the field of bone fracture treatment, LIPUS significantly
promoted bone healing and angiogenesis in rats with diabe-
tes and increased the healing speed to a degree similar to
that observed in normal rats [51, 52]. Based on these studies
and the studies of LIPUS in the promotion of bone regener-
ation around implants, we speculated that LIPUS could also
be used as an effective adjunct treatment method to improve
implant osseointegration in patients with diabetes. However,
future in vivo studies and clinical studies are still necessary
for confirmation and more in-depth exploration.

2.3. Optimal LIPUS Treatment Parameters for Implant
Osseointegration. In current studies, the parameters of
LIPUS applied to dental implants, such as intensity, fre-
quency, and intervention cycle, primarily referred to previ-
ous studies on bone fracture treatment. Since Duarte [53]
used LIPUS for promoting bone fracture healing in 1983,
studies on LIPUS functions mostly adopted a stimulation
duration of 20min/day. The selection of this duration not
only effectively promoted bone regeneration and shortened
the healing cycle but also avoided the physical and mental
fatigue of patients caused by overly long intervention times.
In addition, in currently published studies, the ultrasound
intensity used to promote implant osseointegration and
peri-implant bone regeneration was typically 30–40mW/
cm2, and this intensity achieved good therapeutic effects
[24, 27, 29, 32–34]. Nakanishi et al. [30] showed that the
promoting effect of LIPUS at 40mW/cm2 intensity on the
osseointegration and stability of implants in rabbit femurs
was higher than that at 100mW/cm2 intensity. Similarly, cell

experiments showed that LIPUS at 40mW/cm2 intensity
induced more significant in vitro mineralization of the
mouse osteoblast cell line MC3T3-E1 compared with
120mW/cm2 intensity [54]. Therefore, it was speculated that
the vibration and heat generated by higher LIPUS intensities
might have negative effects on the biological functions of
bone-derived cells, lowering the efficacy of LIPUS compared
with that at 30–40mW/cm2 intensity. For the ultrasound
frequency, studies mainly used a fixed frequency of
1.5MHz due to the limitation of the LIPUS instrument
[27, 29, 32–34]. Only Nakanishi et al. [30] compared the
effects of LIPUS on osseointegration at different frequencies,
and showed that the promoting effect of LIPUS at a fre-
quency of 3MHz was higher than that at 1MHz. In addition,
Hsu et al. [31] applied pulsed-wave and continuous-wave
ultrasound to treat implants in rabbit tibias for 30 days
and showed that new bone formation around implants in
the pulsed-wave groups was faster and observed more
mature type I collagen expression and angiogenesis around
the implants. The present study confirmed that the effect
of LIPUS on implant osseointegration was better than that
of low-intensity continuous ultrasound (LICUS).

The results of the aforementioned studies could be sum-
marized as follows: LIPUS intervention at an intensity no
higher than 50mW/cm2 (recommendation: 30–40mW/
cm2) and a frequency of 1.5MHz for 20min/day for 4 weeks
is currently the most commonly used and effective scheme
for promoting dental implant osseointegration (Figure 2).
However, this point of view still requires to be confirmed
by controlled in vivo experiments with strict grouping in
the future.

3. Effects and Associated Mechanisms of LIPUS
on the Biological Functions of BMSCs

The osteogenic differentiation and bone-forming functions
of bone-derived cells play key roles throughout the entire
implant osseointegration process. In the early stage, after
implants are installed into the jaw bone, extracellular matrix
(ECM) proteins in the blood are rapidly adsorbed to the sur-
face of implants to form a “protein layer” [55, 56]. By recog-
nizing the Arg-Gly-Asp tripeptide sequence (RGD
sequence) on the “protein layer,” BMSCs and other osteo-
genic precursor cells begin to anchor on the surface of the
implants [57], initiating subsequent proliferation and differ-
entiation processes and synthesizing osteogenesis-associated
proteins [58, 59]. Therefore, the adhesion, proliferation, and
differentiation of bone-derived cells on the surface of the
implant were the initial steps in the early stage of osseointe-
gration [60].

Previous studies showed that LIPUS could be used as an
effective external stimulus to improve bone regeneration
around biomaterials through the promotion of proliferation
and differentiation of BMSCs and osteoblasts. Moonga et al.
[61] showed that LIPUS enhanced matrix mineralization of
mouse MC3T3-E1 osteoblasts in bovine trabecular bone
scaffold materials. Carina et al. [62] showed that LIPUS sig-
nificantly promoted the osteogenic differentiation of human
mesenchymal stem cells (MSCs) cultured in a mixed Mg-
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hydroxyapatite/collagen scaffold material. Zhou et al. [63]
found that LIPUS treatment enhanced the proliferation abil-
ity of human BMSCs on 3D-bioprinted tissue scaffolds and
increased the expression of alkaline phosphatase (ALP)
and matrix mineralization. An et al. [64] showed that LIPUS
significantly promoted the adhesion and proliferation of rat
BMSCs on the surface of titanium implants, and the
osteogenesis-related genes osteopontin (OPN), osteocalcin
(OCN), bone morphogenetic protein-2 (BMP-2), ALP,
Runt-related transcription factor 2 (Runx2), and collagen
type I were upregulated under LIPUS stimulation to improve
implant osseointegration.

The mechanisms through which LIPUS exerts its pro-
moting effects on cell metabolism and tissue repair are com-
plex and still not fully understood, but it is generally
recognized that they might be associated with the mechani-
cal stress and/or fluid microstreaming effect of LIPUS
[65–68]. Ultrasonic waves can produce a weak oscillatory
force resulting in potential changes in body tissues; such
forces can act on the ECM, transmembrane proteins, and
intracellular fluids to convert mechanical signals into bio-
chemical signals that affect target gene expression and cellu-
lar functions [23, 69]. The already known signal
transduction pathways regulated by LIPUS mainly include
the integrin and focal adhesion signaling pathway,
mitogen-activated protein kinase (MAPK) signaling path-
way, sonic hedgehog (SHH) signaling pathway, BMP/Smad
signaling pathway, cyclooxygenase-2 (COX-2)/prostaglan-
din E2 (PGE2) signaling, and stromal cell–derived factor-1
(SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) signal-
ing. These signaling pathways can eventually activate bone-

derived cell adhesion, migration, proliferation, and osteo-
genic differentiation to stimulate new bone formation and
promote implant osseointegration. The mechanistic studies
of these pathways can elucidate the phenomena observed
during in vivo studies from different perspectives. The afore-
mentioned pathways associated with the regulation of bone-
derived cell biology functions and implant osseointegration
promoted by LIPUS are summarized in Figure 3.

3.1. Integrin and Focal Adhesion Signaling Pathway. Integ-
rins are a family of transmembrane proteins that mediate
the connection between cells and the extracellular environ-
ment. They are also important mechanoreceptors of cells
that convert the mechanical signals of LIPUS into biochem-
ical signals. Many studies showed that LIPUS stimulation
could regulate the expression level of integrin on the cell
membrane. Chen et al. [70] showed that LIPUS at 60mW/
cm2 intensity significantly increased integrin alpha 8
(ITGA8) expression in rat BMSCs and promoted the migra-
tion ability of the cells through the focal adhesion signaling
pathway. Xiao et al. [71] found that after LIPUS interven-
tion, the expression of integrin β1 in rat BMSCs increased
and the cell migration ability significantly enhanced. The
“ECM–integrin–focal adhesion–cytoskeleton” connection is
the main pathway involved in the transmission of the LIPUS
signal into cells to exert biological effects [72]. Focal adhe-
sions are large protein complexes that connect ECM pro-
teins and intracellular cytoskeletal proteins and are hubs
for regulating cell adhesion, migration, and signal transduc-
tion [73]. When LIPUS signals are transmitted to integrin,
focal adhesion kinase (FAK) is first phosphorylated to

Optimal parameters

LIPUS

Daily duration

Intervention period

Ultrasonic intensity

Ultrasonic frequency

30-40 mW/cm2

1.5 MHz 

20 min per day

4 weeks

Biological effects

Bone-implant contact

Bone volume fraction

Mean trabecular number

Mean trabecular separation

Pull-out torque

Figure 2: Schematic diagram of the optimal parameters and biological effects of LIPUS used in dental implantations. Based on the results of
previous studies, LIPUS intervention at 30–40mW/cm2 intensity and 1.5MHz frequency for 20min/day for 4 weeks is the most commonly
used and effective scheme for promoting dental implant osseointegration.
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initiate the focal adhesion signaling pathway [74, 75], and
phosphorylated FAK can activate the downstream PI3K/
Akt signaling pathway to regulate the proliferation and dif-
ferentiation of osteogenesis-associated cells [76].

Tang et al. [77] showed that the treatment of rat primary
osteoblasts with LIPUS upregulated the expression of integ-
rins α2, α5, β1, and β3 on the cell membrane and promoted
osteoblast differentiation and bone formation through the
ITG/FAK/PI3K/Akt signaling pathway. Xie et al. [78]
showed that LIPUS treatment at 50 or 60mW/cm2 intensity
for 5min/day effectively promoted the proliferation ability
of human BMSCs by activating the PI3K/Akt signaling path-
way. Watabe et al. [79] found that LIPUS stimulation signif-
icantly upregulated integrin α5 (ITGA5) gene expression in
mouse osteoblasts derived from the long bone, mandible,
and cranial parietal bone and promoted the expression of
the osteogenesis-related genes ALP and Runx2 by activating
the PI3K/Akt signaling pathway.

In addition, studies found that LIPUS could also activate
β-catenin signaling to significantly influence osteoblast dif-
ferentiation and bone tissue regeneration [80]. Akt activa-
tion could further induce the phosphorylation of glycogen
synthase kinase 3 beta (GSK3β), inactivate the APC–Axin–
GSK3β complex, and inhibit the dissociation of β-catenin,

causing β-catenin to accumulate and enter the nucleus to
promote the transcription and synthesis of osteogenesis-
associated factors [81, 82]. Thus, it was speculated that
LIPUS stimulation could activate classical Wnt/β-catenin
signaling through the focal adhesion signaling pathway, thus
promoting new bone formation and implant osseointegra-
tion. However, the aforementioned mechanism still requires
further studies for confirmation.

3.2. MAPK Signaling Pathway. MAPKs can be activated by
cell stress responses induced by extracellular mechanical
stimulation, mediating the transduction of mechanical sig-
nals to regulate cell proliferation and differentiation [83].
The MAPK pathway also plays an important role in the bio-
logical processes of osteoblast differentiation and bone for-
mation [84].

The ITG/FAK/MAPK signaling pathway is a canonical
pathway regulating the biological activity of bone-derived
cells. FAK phosphorylation induced by LIPUS stimulation
further activates three important components, extracellular
signal–regulated kinase (ERK), Jun N-terminal kinase
(JNK), and p38, of the downstream MAPK pathway [85].
ERK signaling is primarily activated through the Ras/Raf/
MEK/ERK pathway to regulate cell proliferation, migration,

BMPR2

BMPs

Smad1/5/9

Smad4

Smad
Runx2

Src

APC
Axin

𝛽-catenin

Dissociation

FAK

PI3K

AKT

Cell adhesion
Cell migration

P

P

P

𝛽-catenin

ECM protein

Proliferation

ITG𝛼

RhoA

TAK1

MKK3/6

p38

Rac

MKK4/7

JNK

Ras

Raf

MEK1/2

ERK1/2

MEKK1/4

Proliferation/
apoptosis/

differentiation

COX-2

PGE2

Osteogenic
differentiation

TCF

Wnt

DVL P

Frizzled
LRP

X
PTC SMO

SHH

Sufu
Gli1

Sufu

Gli1

Gli1

Smad4
Smad1/5/9

P

SDF-1

CXCR4

Cell migration

p38 JNK ERK1/2

Osteogenic
differentiation

Osteogenic
differentiation

Osteogenic
differentiation

Cell nucleus

LIPUS intervention

GSK3β

BMPR2

P Frizzled

Figure 3: Schematic diagram of signaling pathways that can be activated by LIPUS in bone-derived cells for regulating cell biology functions
and implant osseointegration, which include integrin and focal adhesion pathway, MAPK pathway, SHH pathway, BMP/Smad pathway,
SDF-1/CXCR4 signaling, and COX-2/PGE2 signaling.
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differentiation, aging, and apoptosis [86]. Current studies
generally considered that Runx2 phosphorylation could be
activated by ERK signaling, which was an important mecha-
nism underlying the promotion of osteogenic differentiation
[87]. In addition, JNK activation plays a key role in cell pro-
liferation, apoptosis, and differentiation. However, the effect
of JNK on osteogenic differentiation is controversial. Some
studies showed that JNK activation could inhibit the adipo-
genic differentiation of stem cells and promote osteogenic
differentiation [88]. Other studies showed that the inhibition
of JNK phosphorylation in stem cells increased the ALP
expression level and promoted the osteogenic differentiation
ability of the cells [89]. p38 MAPK is a stress-activated pro-
tein kinase (SAPK) that can be activated by endogenous and
exogenous stimuli through MAP kinase kinase (MKK) 3/6 to
participate in the stress responses of cells and regulate cell
proliferation, apoptosis, and chromatin remodeling [90]. In
addition, p38 activation is necessary for osteoblast differenti-
ation [91, 92], can be activated by BMP signaling, and syner-
gistically promotes osteoblast differentiation with Smad
signaling [93, 94].

Gao et al. [95] found that LIPUS could regulate the pro-
liferation and apoptosis of different dental stem cell popula-
tions through the MAPK signaling pathway. JNK signaling
was activated by LIPUS in BMSCs, and specific inhibition
of the JNK pathway blocked the promoting effect of LIPUS
on cell proliferation. Kaur et al. [96] showed that LIPUS
stimulated ERK1/2 activation in MC3T3-E1 mouse osteo-
blasts and upregulated the expression of Runx2, OCN, and
OPN genes. Angle et al. [97] showed that LIPUS at 2, 15,
or 30mW/cm2 intensities regulated the activation of
ERK1/2 and p38 in rat BMSCs, thus regulating cell osteo-
genic differentiation. In addition, Kusuyama et al. [98]
showed that LIPUS promoted the expression of Cot/Tpl2
kinase in MSCs and further regulated MEK1 and ERK phos-
phorylation to inhibit adipogenic differentiation and pro-
mote the osteogenic differentiation of the cells. In
summary, as a group of important signaling molecules
downstream of FAK, MAPK pathway members played
important roles in the transition of MSCs into osteoblast cell
lines under LIPUS stimulation.

3.3. SHH Signaling Pathway. The SHH signaling pathway is
a classical pathway that regulates body development and
homeostasis and plays an important role in bone remodeling
and regeneration [99, 100]. After bone-derived cells are sub-
jected to external stimulation, SHH in the ECM begins to
interact with its membrane receptor Patched (Ptc) to relieve
the inhibition on Smoothened (Smo) protein, subsequently
promoting the entry of Gli protein into the nucleus to fur-
ther activate the transcription of downstream osteogenesis-
associated target genes [101], which directly affect the trans-
formation of MSCs into osteoblast cell lines [102]. Zhou
et al. [103] showed that LIPUS promoted the migration
and proliferation of MG63 osteoblast-like cells to accelerate
bone formation and the SHH inhibitor GDC0449 signifi-
cantly inhibited the aforementioned functions of LIPUS.
Matsumoto et al. [104] found that LIPUS significantly
increased the expression of the functional genes Gli1 and

Gli2 in the SHH signaling pathway and promoted the osteo-
genic differentiation of MC3T3-E1 cells and accelerate bone
tissue regeneration by activating the SHH pathway. In addi-
tion, another study showed that activated SHH signaling
could promote the osteogenesis-related gene expression of
MC3T3-E1 cells by upregulating FAK phosphorylation at
Tyr397 [105]. Therefore, LIPUS stimulation could not only
activate the SHH signaling pathway but also interact with
FAK-associated pathways to promote the osteogenic differ-
entiation of osteoprogenitor cells and bone remodeling.

3.4. BMP/Smad Signaling Pathway. BMPs are a group of
secretory proteins in the transforming growth factor-β
superfamily that play critical roles in the regulation of bone
metabolism [106]. After interaction with type I and type II
transmembrane serine/threonine kinase receptors (BMPR-I
and BMPR-II) on the cell surface, BMPs can transduce
external stimulus signals into cells to regulate the osteogenic
differentiation of BMSCs [107, 108]. BMP-2 is a classic
osteogenesis-promoting protein. Many studies found that
LIPUS could significantly promote BMP-2 synthesis and
secretion in bone-derived cells to improve bone metabolism
and promote bone formation [64, 109–111].

BMP-2 signaling is transmitted by intracellular signal
transduction proteins called Smads. When BMP-2 interacts
with its membrane receptors, Smads 1/5/9 begin to be phos-
phorylated and activated. Then, p-Smad 1/5/9 and Smad 4
oligomerize to form a complex and are transported into
the nucleus to regulate the expression of downstream genes.
Synthesis of Runx2 and many other bone formation-related
factors could be stimulated by the activated BMP-2/Smad
signaling pathway [106]. Maung et al. [112] showed that
LIPUS significantly increased the expression of BMP-2 in
periosteal cells and promoted Smad1/5/9 phosphorylation,
thus enhancing the transcription of osterix (OSX) and
improving the osteogenic differentiation potential of these
cells. Zhang et al. [113] showed that LIPUS at 20 or
30mW/cm2 intensity effectively promoted BMP-2 and
BMP-7 expression in stem cells, thus stimulating the osteo-
genic differentiation of the cells and inducing Runx2,
OCN, and OPN expression by promoting Smad1/5 phos-
phorylation. Runx2 is a transcription factor with an impor-
tant role in the bone formation process. Studies found that
the expression of Runx2 in rat osteoblasts and BMSCs was
significantly upregulated after LIPUS stimulation to pro-
mote the osteogenic differentiation of the cells [114–116].
Therefore, as a canonical regulatory pathway for osteogenic
differentiation, the BMP/Smad/Runx2 pathway activated by
the ultrasonic wave in various bone-derived cells is also an
important mechanism for LIPUS to exert its biological
functions.

3.5. SDF-1/CXCR4 Signaling. In the early stage of bone tissue
repair or implant osseointegration, BMSCs can be recruited
to the injured regions or implant sites to exert biological
functions, and in this process, cell migration and chemotaxis
play important roles. SDF-1 and its specific receptor,
CXCR4, are key factors that regulate the migration of
BMSCs to the bone remodeling site for promoting bone
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fracture repair, distraction osteogenesis, extraction socket
healing, and implant osseointegration [117–119]. Wang
et al. [120] confirmed that LIPUS could stimulate SDF-1
secretion in stem cells and promote cell migration ability
through the SDF-1/CXCR4 pathway. Xiao et al. [71] showed
that LIPUS significantly promoted the migration and che-
motaxis of rat BMSCs, upregulated SDF-1 and CXCR4
mRNA expression in the cells, and increased SDF-1 protein
synthesis and secretion. However, after cell treatment with
the SDF-1/CXCR4 pathway inhibitor AMD3100, the afore-
mentioned functions of LIPUS were almost completely
blocked. Wei et al. [121] showed that LIPUS promoted rat
BMSC migration to bone tissue repair areas and observed
that SDF-1 expression was upregulated in the local repair
areas and the serum. Similarly, after the inhibition of SDF-
1/CXCR4 signaling, the stimulatory function of LIPUS was
significantly reduced. The promotion of SDF-1-mediated
BMSC migration by LIPUS is also a key mechanism under-
lying the stimulation of implant healing because the implant
osseointegration process is the process of bone tissue repair
and regeneration around the implants.

3.6. COX-2/PGE2 Signaling. PGE2, a metabolite derived
from arachidonic acid, has been shown to be upregulated
when bone-derived cells perform their biological functions,
and the expression of PGE2 is closely associated with bone
remodeling and regeneration [122]. Studies showed that
LIPUS could effectively increase COX-2 gene expression in
osteoblasts and thereby promote PGE2 expression [123,
124]. Kokubu et al. [68] verified that COX-2 was the rate-
limiting enzyme in PGE2 synthesis during LIPUS stimula-
tion in MC3T3-E1 cells. Pretreatment of cells with specific
COX-2 inhibitors could block the promoting effect of LIPUS
on PGE2 expression and weaken the osteogenic ability of the
cells. Naruse et al. [125] showed that the speed of bone
remodeling significantly decreased in COX-2 gene knockout
mice. In addition, the promotion of bone regeneration
induced by LIPUS stimulation was also significantly inhib-
ited. However, the injection of PGE2 receptor agonists
restored the sensitivity of mice to LIPUS intervention. Fur-
thermore, Hidaka et al. [126] found that LIPUS intervention
increased the PGE2 level in the microenvironment of bone
tissue repair areas and recruited BMSCs through PGE2 to
promote local bone regeneration. Tang et al. [77] further
confirmed that LIPUS stimulated COX-2 expression
through the FAK/PI3K/Akt and ERK1/2 signaling pathways
in MC3T3-E1 cells and upregulated PGE2 synthesis, which
effectively promoted osteoblast differentiation and bone for-
mation. Therefore, PGE2 could be directly regulated by
COX-2 and might be the key target of LIPUS stimulation
for bone regeneration and implant osseointegration.

Thus far, although many studies have elucidated the signal-
ing pathways through which LIPUS regulates osteogenesis-
associated cellular functions and promotes new bone forma-
tion, how these pathways interact and which pathway plays
the most important role during implant healing are still not
clear. In the future, in vivo implant models should be used
for more intuitive validation and further investigation of the
mechanism of action.

4. Application and Prospects of LIPUS in the
Clinical Work of Dental Implantation

In recent years, LIPUS has been widely used as a convenient
and effective method to promote fracture healing and bone
defect repair. LIPUS was approved by the US Food and Drug
Administration (FDA) as early as in 1994 and 2000 for
accelerating fresh fracture healing and reconstitution of
bone nonunion [127]. At present, the clinical application
of LIPUS in dental implantation is still in its infancy. How-
ever, according to the existing in vivo studies and cell biology
studies, we speculate that LIPUS may have good application
value in promoting the osseointegration of implants in the
future clinic practice.

In a clinical study by Abdulhameed et al. [128], LIPUS was
applied to patients with dental implants in the premolar
region to accelerate osseointegration. After 2 weeks of the
implantation surgery, LIPUS intervention at 30mW/cm2

intensity and 1.5MHz frequency was used for 10 weeks, with
treatments twice a week for 20min each time. Six months after
the surgery, the clinical and imageological examinations
showed that the marginal bone loss of the implants was lower
in the LIPUS treatment group, vertical bone regeneration was
observed, and the implant stability coefficient by resonance
frequency (RF) analysis significantly increased compared with
that in the conventional healing group. In another double-
blind clinical study, this research group also confirmed that
LIPUS stimulation could significantly improve implant stabil-
ity assessed by both bone texture fractal dimension (FD) anal-
ysis and RF analysis (Figure 4) [129]. Thus, LIPUS could
effectively promote implant osseointegration during the heal-
ing period and shorten the healing cycle in clinical patients.
Furthermore, the aforementioned studies speculated that
LIPUS could be used to save initially unstable implants and
assist in obtaining higher-quality osseointegration, thus
improving the success rate of implantation, especially in
patients with osteoporosis and diabetes, which can affect bone
remodeling.

In addition, Abdulhameed et al. observed an increase in
the thickness of the buccal bone plate in the implantation
area stimulated by LIPUS, with a statistically significant dif-
ference compared with the control group of patients who
underwent conventional healing [128]. Moreover, Kim
et al. [130] found that the local intervention with LIPUS in
patients with maxillary sinus floor lift could effectively pro-
mote new bone formation, thus providing sufficient bone
mass for the implant surgery in the maxillary posterior tooth
area. Based on these studies, LIPUS may be used in patients
undergoing bone augmentation surgery during or prior to
implantation in the future to accelerate bone regeneration
and shorten the treatment cycle of patients with insufficient
alveolar bone for the implantation.

LIPUS has the advantages of low toxicity, low immuno-
genicity, noninvasiveness, high targeting selectivity, and
repeatability [11, 23, 69]. The current clinical application
of LIPUS has not caused any discomfort-related symptoms
in patients, and no abnormal reactions, such as redness,
swelling, or inflammation, have been observed in local soft
tissues after the intervention. In addition, the portable
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LIPUS instrument is small in size and powered by a mobile
unit, and the application is not limited by space. Therefore,
in the future, as an effective, safe, and comfortable physical
treatment method, LIPUS may lead to the adoption of a pat-
tern of chair-side or household treatments to assist dentists
and patients in achieving higher-quality implant osseointe-

gration, promote bone regeneration in the defect area
around the implant, and even prevent marginal bone loss
and improve the long-term retention rate of the implant.
However, more prospective cohort studies and randomized
controlled trials (RCTs) are necessary in the future to con-
firm the function and mechanism of LIPUS and to
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Figure 4: LIPUS stimulation could significantly improve implant stability assessed by both resonance frequency (RF) analysis and fractal
dimension (FD) analysis. Line graphs showing the time trend for (a) mean RF values, (b) mesial side mean FD values, and (c) distal side
mean FD values after surgery in the intervention group compared with the control group. Adapted from Abdulhameed et al. [129].

10 Stem Cells International



determine the indications for LIPUS use in clinical practice
of oral implantation, thus further supporting its application
value and prospects.

5. Conclusions

As novel physiotherapy, LIPUS has been widely used in
bone tissue, cartilage tissue, and soft tissue repair and recon-
struction, and many studies have used it to promote the
regeneration of oral and maxillofacial tissue. In the field of
dental implantology, the application of LIPUS is still in its
infancy. The existing studies provided a certain research
foundation concerning the mechanism and clinical function
of LIPUS, but further discussion is still needed.

In this review, based on the existing studies, it was found
that LIPUS had an apparent promoting effect on dental
implant osseointegration, suggesting that LIPUS could
shorten the healing cycle after implant surgery and acceler-
ate peri-implant bone reconstruction. Bone-derived cell
adhesion, proliferation, migration, and differentiation on
the surface of implants play a key role in the osseointegra-
tion process. This review systematically summarized the cur-
rent role of LIPUS in the biological functions of the cells and
related mechanisms. In addition, this review also addressed
the application prospects of LIPUS in clinical dental implan-
tation. Despite facing many challenges, based on the experi-
ence of LIPUS application in the treatment of bone tissue
diseases, such as fracture and bone defect, the potential value
of LIPUS in clinical dental implantation may be far beyond
the existing reports.

Based on the in-depth exploration of the mechanism of
LIPUS in vitro, we suggested that a transformation from a
small-animal model to a large-animal model be considered
for in vivo validation experiments. A model of jaw bone
implantation with weight-bearing stress can be established,
and the observation period can be further extended to more
convincingly detect the effect of LIPUS. In addition, we also
suggest exploring the therapeutic effect of LIPUS on the
osseointegration of implants in abnormal microenviron-
ments, such as in diabetes or osteoporosis, and clarifying
the intervention effect of LIPUS on implants with poor ini-
tial stability or a poor healing state, so as to provide a new
theoretical basis for improving the success rate of dental
implantation and expanding the clinical indications.
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Homing of mesenchymal stem cells (MSCs) to the defect site is indispensable for bone repair. Local endothelial cells (ECs) can
recruit MSCs; however, the mechanism remains unclear, especially in the context of the inflammatory microenvironment. This
study was aimed to investigate the role of ECs in MSCs migration during the inflammatory phase of bone repair. The
inflammatory microenvironment was mimicked in vitro via adding a cytokine set (IL-1β, IL-6, and TNF-α) to the culture
medium of ECs. The production of PDGF-BB from ECs was measured by ELISA. Transwell and wound healing assays were
employed to assess MSCs migration toward ECs and evaluate the implication of PDGF-BB/PDGFRβ. A series of shRNA and
pathway inhibitors were used to screen signal molecules downstream of PDGF-BB/PDGFRβ. Then, mouse models of femoral
defects were fabricated and DBM scaffolds were implanted. GFP+ MSCs were injected via tail vein, and the relevance of PDGF-
BB/PDGFRβ, as well as screened signal molecules, in cell homing was further verified during the early phase of bone repair. In
the mimicked inflammatory microenvironment, MSCs migration toward ECs was significantly promoted, which could be
abrogated by pdgfrb knockout in MSCs. Inhibition of Src or Akt led to negative effects analogous to pdgfrb knockout. Blockade
of JNK, MEK, and p38 MAPK had no impact. Meanwhile, the secretion of PDGF-BB from ECs was evidently motivated by the
inflammatory microenvironment. Adding recombinant PDGF-BB protein to the culture medium of ECs phenocopied the
inflammatory microenvironment with regard to attracting MSCs, which was abolished by pdgfb, src, or akt in MSCs. Moreover,
pdgfb knockout suppressed the expression and phosphorylation of Src and Akt in migrating MSCs. Src knockout impaired Akt
expression but not vice versa. In vivo, reduced infiltration of CD31+ ECs was correlated with diminished PDGF-BB in local
defect sites, and silencing pdgfb, src, or akt in MSCs markedly hampered cell homing. Together, these findings suggest that in
the inflammatory microenvironment, MSCs migrate toward ECs via PDGF-BB/PDGFRβ and the downstream Src-Akt signal
pathway.

1. Introduction

Large segmental bone defects caused by trauma, tumor
resection, or bone infection remain among the most preva-
lent clinical challenges. The in situ tissue engineering con-

cept, which is based on attracting and modulating
osteoprogenitors already present in a patient’s body to accel-
erate bone repair, has become a promising strategy. The
reparative specialty of resident mesenchymal stem cells
(MSCs) is worthless unless their directional homing is
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appropriately controlled [1]. Physiologically, MSCs reside in
the bone marrow niche, and their engagement and disen-
gagement maintain a dynamic balance. Upon injury, an
inflammatory microenvironment is triggered locally and
the balance is disrupted, leading to abundant cell egression
into circulation and migration to the injury sites [2]. Mean-
while, local vascularization is reinforced in response to
inflammation. During bone repair, angiogenesis, the forma-
tion of new blood vessels from preexisting ones, is closely
coupled with osteogenesis [3]. To a certain extent, the onset
time and extent of revascularization determine the outcome
of bone grafting [4]. Therefore, the inflammatory microenvi-
ronment and vascularization situation are critical factors for
effective MSCs homing. Nevertheless, the precise functional
modes and mechanisms remain confused.

During the embryonic and postnatal periods, intimate
physical proximity exists between blood vessels and osteopro-
genitors, implying a close relationship between endothelial
cells (ECs) and MSCs [5]. Indeed, the crosstalk of ECs and
MSCs has been widely documented and exploited to amelio-
rate blood supply and expedite tissue regeneration [6]. Ini-
tially, attention was given to the transdifferentiation of MSCs
into ECs or the regulatory effects of MSCs on ECs [7]. For
example, we and others have reported that MSCs can attract
endothelial lineages via the chemokine-receptor cascade reac-
tions [8, 9]. Currently, there is growing interest in the inversus
effects. Recent findings suggest that a certain subset of ECs,
mainly referred to as Type-H ECs (CD31hiEmcnhi), precedes
and guides homing of osteoprogenitors [3]. Reduction of EC
infiltration by VEGFR2 antagonist impedes migration of
osteoprogenitors and bone reconstruction. ECs can facilitate
tissue regeneration through their paracrine capacity [10], by
which they communicate with osteoprogenitors. The secre-
tome of ECs is influenced by the local microenvironment,
including inflammation. Among EC-derived biologics,
platelet-derived growth factor (PDGF) family is famous for
regulating the viability and proliferation of MSCs [11]. There-
into, the PDGF-BB homodimer appears to be highly potent in
fostering osteogenesis via activation of multiple kinase-
dependent signaling cascades [12]. Besides, the ability of
PDGF-BB in promoting cell migration has been widely docu-
mented [13]. The major receptor, platelet-derived growth fac-
tor receptor-β (PDGFRβ), is believed to mobilize cells of
mesenchymal origin [13].

Here, we tried to investigate the chemotactic effects of
ECs on MSCs in the early inflammatory microenvironment
following bone defects, as well as the involvement of
PDGF-BB/PDGFRβ, aiming to shed light on the early
angio-osteogenic coupling and provide therapeutic targets
for in situ bone tissue engineering. First, the inflammatory
microenvironment was mimicked in vitro as reported previ-
ously [14]. Next, MSCs movement toward ECs was evalu-
ated via migration assays. The relevance of PDGF-BB/
PDGFRβ was defined via gene silence and pathway inhibi-
tors. Then, signal molecules downstream of PDGF-BB/
PDGFRβ were screened out in vitro and further validated
in vivo. Eventually, we concluded that in the inflammatory
microenvironment, ECs promoted MSCs migration via the
PDGF-BB/PDGFRβ-Src-Akt pathway.

2. Materials and Methods

2.1. Cell Culture. All experiments on human and animal
samples were approved by the Ethics Committee, Southwest
Hospital, Army Military Medical University. Human bone
marrow MSCs (hBMSCs) and human umbilical vein endo-
thelial cells (HUVECs) were purchased from Cyagen Biosci-
ences (HUXMA-01001, HUVEC-20001). hBMSCs were
cultured in basic culture medium containing Dulbecco’s
modified Eagle’s medium/F12 (DMEM/F12; 1 : 1; HyClone,
USA) supplemented with 10% fetal bovine serum (FBS;
Gibco, USA) and 100U/ml penicillin/streptomycin (Gibco,
USA). HUVECs were cultured in Endothelial Cell Growth
Medium-2 (EGM; CC-3162; Lonza, Switzerland) containing
10% FBS and 100U/ml penicillin/streptomycin. The media
were changed every other day. When reaching 80-90% con-
fluence, cells were digested using 0.25% trypsin-EDTA
(Gibco, USA) and passaged. HUVECs at passage 3 and
hBMSCs at passage 4 were harvested for use.

Mouse mesenchymal stem cells (mBMSCs) were isolated
and cultured as described previously [9]. Briefly, bone mar-
rows were extracted from femurs by resecting the epiphyses
and flushing the shaft with cold phosphate buffered saline
(PBS; Beyotime, China). Cells were collected by centrifuga-
tion and resuspended in basic culture medium containing
DMEM/F12 supplemented with 15% FBS and 100U/ml
penicillin/streptomycin. Then, cells were incubated in a
5%-CO2 incubator at 37°C. After 24 h, nonadherent cells
were discarded and the culture media were changed every
48-72 h. When reaching confluence of more than 80%, cells
were trypsinized and passaged for 3 times before use.

2.2. Preparation of Conditioned Media. HUVECs were incu-
bated with EGM added with or without 4 ng/ml IL-1β,
10 ng/ml IL-6, and 20ng/ml TNF-a (all from PeproTech,
Rocky Hill, NJ, USA) to prepare conditioned media of
inflammatory ECs (IEC-CM) or ECs (EC-CM). After 48 h,
the supernatants were collected, centrifuged, aliquoted, and
stored at -80°C. EGM free of serum and supplemented with
stromal cell-derived factor 1 (SDF-1; 100ng/ml) served as
negative and positive controls, respectively. The contents of
PDGF-BB in IEC-CM and EC-CM were measured using a
human ELISA kit (Solarbio, Beijing, China) according to
the manufacturer’s instructions.

2.3. Gene Interference. HUVECs, hBMSCs, and GFP+-

mBMSCs (obtained from GFP transgenic C57 mice) were
infected with lentivirus particles encoding the corresponding
short hairpin RNA (shRNA; Santa Cruz Biotechnology, Dal-
las, TX, USA) according to the manufacturer’s instructions.
Clones expressing the virus were selected by their resistance
to puromycin (Sigma-Aldrich, St. Louis, Missouri, USA).
The interference efficiency was confirmed by western blot.

2.4. Migration Assay. Transwell inserts with 8-mm pores
(Corning, NY, USA) were used for in vitro migration assays.
Conditioned medium (700ml) was added to the bottom
compartment. hBMSCs were pre-treated with serum-free
medium or medium supplemented with inhibitors, as
detailed in Table 1. The upper chamber of Transwell insert
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was filled with 5× 104 cells, which were allowed to migrate at
37°C. Cells in partial groups were collected for biochemical
analysis at 30min. After 8 h, hBMSCs on the top side of
the insert (non-migrating cells) were dislodged with a cotton
tip applicator. Then, the migrated cells on the bottom side
were washed with PBS, followed by fixation with 4% para-
formaldehyde (Boster Biologic Technology, Wuhan, China).
The membrane was moved onto one object slide with the
lower side upward. Cells retained on the membrane were
labeled with DAPI (Invitrogen, Carlsbad, CA, USA) and
subjected to fluorescent microscopy. For every group, three
high-power fields (HPF, ×200) were randomly chosen and
migrated hBMSCs were counted and averaged. Migration
assay was repeated in triplicate.

For the wound healing assay, groups of hBMSCs were
seeded and cultured in 6-well plates (1× 105/well) to reach
the confluent monolayer. Then, cells were scraped using a
200μL pipette tip and washed with PBS to clear cell debris
and suspension. Complete medium was replaced with condi-
tioned media and cells were incubated for 12h. Microscopic
images were captured at the same position of the wound at 0
and 12h. Migration ability was measured by the rates of
scratch wound closure using the ImageJ software (National
Institutes of Health, Maryland, USA).

2.5. RT-PCR. Primers are shown in Table 2. Total RNA was
extracted using TRIzol reagents (Invitrogen, Carlsbad, CA).
cDNA was prepared using a cDNA Synthesis Kit (TaKaRa,
Japan) and RT-PCR was implemented with a QuantiTect™-
SYBR Green PCR Kit (TaKaRa, Japan). Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) served as a reference
control. Reactions were repeated in triplicate.

2.6. Western Blot. SDS lysis buffer (100mM Tris at pH8.0,
10% glycerol, and 1% SDS) was used for cell lysis. Using a
NanoVue spectrophotometer (GE Healthcare, Waukesha,
WI, USA), the protein concentration was measured. For
each sample, protein lysate (30mg) was isolated by SDS-
PAGE (120min, 80V; Beyotime, Shanghai, China) and elec-
trotransferred to the polyvinylidene fluoride membrane
(60min, 250mA; Millipore, MA, USA). After blocking using
milk (5%), each membrane was incubated at 4°C for 12 h

with the corresponding primary antibodies, which are
detailed in Table 3. Following a thorough wash with TBST,
the blots were incubated with the secondary antibody
(horseradish peroxidase-conjugated, 1 : 2000; Southern Bio-
tech, AL, USA) at room temperature (RT) for about 1 h.
The membranes were visualized by ECL (Kirkegaard&Perry
Lab, MD, USA). GAPDH was used as control. All experi-
ments were repeated for 3 times.

2.7. Animal Manipulation. Decalcified bone matrices (DBM)
were prepared from the trabecular bones of Yunnan minia-
ture pigs and surgeries were performed according to proce-
dures reported previously [15]. Femoral critical-sized bone
defects (2mm in length) were created in C57 mice (8weeks,
male) and DBM were implanted. Implants harvested at post-
operative days 1, 3, and 7 were subjected to fluorescence-
activated cell sorting (FACs), RT-PCR, and western blot.
At 7 days, wild GFP+ mBMSCs or cells intervened by shRNA
were injected (1× 106/mouse) via tail vein every 2 days (Sup-
plemental Figure 1) [16, 17].

2.8. FACs. Cells were harvested from implants by sufficient
digestion, which was achieved by using Type I collagenase
(1mg/ml) and trypsin (0.25%) plus EDTA (0.01%; Thermo
Fisher Scientific, MA, USA). Then, cells in each group were
filtered and centrifuged. After resuspension in PBS contain-
ing 2% FBS, cells were incubated with the antibody against
CD31 (fluorescence-conjugated; BD Biosciences, CA, USA)
at 4°C for 30min. Non-stained cells were incubated with
the isotype control. After centrifugation and resuspension
in propidium iodide, the sample was subjected to a Cyto-
FLEX S Flow Cytometer (Beckman Coulter, CA, USA). Data
were inspected with the CytoFlex software. For each group,
the experiment was repeated in triplicate.

2.9. Immunofluorescent Staining. Three mice from each
group were euthanized. The femurs were collected, fixed
with paraformaldehyde (4%) for 24h, and decalcificated
using EDTA for 7-10 days. Then, 7-mm-thick frozen sec-
tions were prepared and permeabilized using Triton X-100
(0.3%), followed by blocking with donkey serum (1 : 20;
Huayueyang Biotech, Beijing, China). Subject slides were

Table 1: Reagent information.

Reagent Target Concentration Duration Usage Source

AMD3100 CXCR4 5μg/ml 30min Pre-treat MSCs Sigma-Aldrich, St. Louis, MO, USA

AZD0530 Src 10μM 24 h Pre-treat MSCs Selleck Chemicals, Houston, TX, USA

MK-2206 Akt1/2/3 10μM 24 h Pre-treat MSCs Selleck Chemicals, Houston, TX, USA

U0126 MEK1/2 50μM 24 h Pre-treat MSCs Selleck Chemicals, Houston, TX, USA

SP600125 JNK1/2/3 10μM 24 h Pre-treat MSCs Selleck Chemicals, Houston, TX, USA

SB203580
p38

MAPK
1μM 30min Pre-treat MSCs Selleck Chemicals, Houston, TX, USA

JNJ-
10198409

PDGFRβ 5μM 1h Pre-treat MSCs
MedChemExpress, Monmouth Junction, NJ,

USA

SU5408 VEGFR2 5μM
1/2d since

implantation
Intraperitoneal

injection
MedChemExpress, Monmouth Junction, NJ,

USA
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incubated with primary antibodies (Table 3) at 4°C for 12 h.
Then, samples were stained with the corresponding second-
ary antibodies (Table 3) for 1 h and counterstained with
DAPI for about 10min. Randomly, three separate sections
were selected from more than 20 sections for each group.
Relative cellularity was measured by counting stained cells
in five HPF using a confocal laser scan microscope (Leica
Biosystems, Wetzlar, Germany).

2.10. Histological Observation. At 4 weeks postoperatively,
the implants were obstained, decalcified with EDTA (10%),
dehydrated in graded alcoholic solutions, and embedded in
paraffin. 7-mm-thick sections were prepared and stained
using by hematoxylin and eosin (HE) and Masson’s tri-
chrome methods. Using a microscope (Olympus, Hamburg,
German), images were taken.

2.11. Statistical Analysis. Data were presented as means
±SEM. For ELISA, RT-PCR, western blot, FACs, and migra-
tion assay, one-way ANOVA followed by SNK test was con-
ducted to determine the statistical significance between
groups (SPSS v.13.0). The correlation analysis was identified
by Pearson’s correlation coefficient. A value of P < 0:05 was
considered statistically significant.

3. Results

3.1. ECs Promote MSCs Migration in the Inflammatory
Microenvironment. Compared with control, EC-CM and
IEC-CM significantly promoted MSCs migration, and IEC-
CM showed the strongest chemotactic power (Figure 1(a)).
SDF-1 and its receptor CXCR4 have been widely docu-
mented to be indispensable for MSCs migration. Yet, the
chemotactic power of EC-CM and IEC-CM was much
greater than that of SDF-1(Figure 1(a)). Meanwhile,
AMD3100, a specific CXCR4 antagonist, had no effect on
IEC-CM-induced migration. Consistent findings were
obtained from the wound healing assay (Figure 1(b)).
Although both EC-CM and SDF-1 induced MSCs migration,
IEC-CM showed the highest rate of scratch area closure.
Together, these findings reinforced the recruiting effect of
ECs on MSCs, which could be remarkably enhanced by the
inflammatory microenvironment.

3.2. MSCs Migrate toward ECs via PDGF-BB/PDGFRβ in the
Inflammatory Microenvironment. Other than SDF-1/
CXCR4, signaling pathways mediated by PDGF-BB/
PDGFRβ possess a crucial role in stem cell motility. To
unveil the mechanism underlying MSCs migration toward
ECs in the inflammatory microenvironment, PDGFRβ was

Table 2: Primers for RT-PCR.

Gene Species Forward (5′-3′) Reverse (5′-3′)
Src Human AAGCTGAGGCATGAGAAG GTACTCCGTGACGATGTAA

Akt Human TATTGTGAAGGAGGGTTG ATTCTTGAGGAGGAAGTAG

GAPDH Human ATCAACTCACCGCCAACA CGACTCAATCTTCCTCTCCAG

PDGF-BB Mouse CATCGAGCCAAG ACACCTCA AGTGCCTTCTTGTCA TGGGT

GAPDH Mouse CGGATTTGGTCGTATTGG TCCTGGAAGATGGTGATG

Table 3: Antibody information.

Antibody Usage Host-reactivity Dilutions Clonality Source

PDGF-BB Western blot Rabbit anti-mouse 1 : 500 Polyclonal Abcam, Cambridge, UK

PDGF-BB Western blot Chicken anti-human 1 : 500 Polyclonal Abcam, Cambridge, UK

PDGFRβ Western blot
Rabbit anti-mouse/

human
1 : 1000 Monoclonal

Cell Signaling Technology, Danvers, MA,
USA

Src Western blot
Rabbit anti-mouse/

human
1 : 1000 Monoclonal

Cell Signaling Technology, Danvers, MA,
USA

p-Src Western blot
Rabbit anti-mouse/

human
1 : 1000 Monoclonal

Cell Signaling Technology, Danvers, MA,
USA

Akt Western blot
Rabbit anti-mouse/

human
1 : 1000 Monoclonal

Cell Signaling Technology, Danvers, MA,
USA

p-Akt Western blot
Rabbit anti-mouse/

human
1 : 2000 Monoclonal

Cell Signaling Technology, Danvers, MA,
USA

CD31 Immunofluorescence Goat anti-mouse 1 : 100 Polyclonal R&D Systems, Minneapolis, MN, USA

PDGFRβ Immunofluorescence Goat anti-mouse 1 : 100 Polyclonal R&D Systems, Minneapolis, MN, USA

Anti-GFP Immunofluorescence Rabbit anti-GFP 1 : 200 Polyclonal Abcam, Cambridge, UK

Alexa Fluor®
488

Immunofluorescence Goat anti-rabbit 1 : 200 Polyclonal Abcam, Cambridge, UK

NL557 Immunofluorescence Donkey anti-goat 1 : 500 Polyclonal R&D Systems, Minneapolis, MN, USA

4 Stem Cells International



firstly blocked in MSCs using a specific inhibitor, JNJ-
10198409. MSCs migration toward IEC-CM was abrogated
by JNJ-10198409 (Figure 2(a)), underlining the relevance
of PDGFRβ. Then, the concentration of PDGF-BB in the
conditioned media was measured. ECs secreted PDGF-BB
spontaneously, and the inflammatory microenvironment
memorably forced the production (Supplemental

Figure 2A). Thereafter, genes of pdgfb and pdgfrb were
knocked out by shRNA in cultured ECs and MSCs,
respectively. The interference efficiencies of shRNA were
checked by western blot. Sh-1 for PDGF-BB and sh-2 for
PDGFRβ were chosen for use (Supplemental Figure 2B,
2C). As a result, MSCs migration toward IEC-CM was
dramatically impeded by shRNA targeting PDGF-BB in
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Figure 1: MSCs migrated toward ECs via PDGF-BB/PDGFRβ in the inflammatory microenvironment. (a) Representative images of
migrated hBMSCs that had received different pre-treatments or had been exposed to different inducing media. The migration capacity of
hBMSCs was determined using a Transwell culture system. The quantification of migrated cells was shown as a bar graph. Scale bar,
50μm. ∗P < 0:05. (b) Representative images of wound healing assays. The rate of scratch wound closure was shown as a bar graph. Scale
bar, 200 μm. ∗P < 0:05. EGM: endothelial cell growth medium-2. EC-CM: conditioned media of endothelial cells. IEC-CM: conditioned
media of endothelial cells in the context of inflammatory microenvironment; shPDGF-BB: short hairpin RNA targeting pdgfb;
shPDGFRβ: shRNA targeting pdgfrb.
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ECs or PDGFRβ in MSCs (Figure 1(a)). Furthermore, the
wound healing assay verified the reduced ability of MSCs
in repairing the damaged area after gene silence
(Figure 1(b)). These results collectively suggested that
ECs-induced MSCs migration in the inflammatory
microenvironment was attributed to the activation of
PDGF-BB/PDGFRβ.

3.3. Src and Akt Function Downstream of PDGFRβ during
MSCs Migration toward ECs. In terms of cell migration, var-
ious signaling molecules have been identified to be associ-
ated with PDGF-BB/PDGFRβ, such as phosphoinositide 3-
kinase (PI3K)/protein kinase B (Akt), c-JunN-terminal
kinase (JNK), mitogen-activated protein (MEK), mitogen-
activated protein kinase (MAPK), and steroid receptor
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Figure 2: Src and Akt were required for ECs-induced MSCs migration in inflammatory microenvironment. (a) Representative images of
migrated hBMSCs in Transwell culture systems. Pathway inhibitors were used for pre-treating cells migrating to IEC-CM. The
quantification of migrated cells was shown as a bar graph. Data were compared with the groups of IEC-CM and shPDGFRβ from
Figure 1. Scale bar, 50μm. ∗P < 0:05. (b) Representative images of wound healing assays. The rate of scratch wound closure was shown
as a bar graph. Data were compared with the groups of IEC-CM and shPDGFRβ from Figure 1. Scale bar, 200μm. ∗P < 0:05. IEC-CM:
conditioned media of endothelial cells in the context of inflammatory microenvironment; shPDGFRβ: short hairpin RNA targeting
pdgfrb; shSrc: shRNA targeting src; shAkt: shRNA targeting akt.
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coactivator (Src). Next, we tried to screen signals down-
stream of PDGFRβ, based on a series of highly selective
pathway inhibitors. Accordingly, pre-treating MSCs with
an inhibitor of JNK (SP600125), MEK (U0126), or p38
MAPK (SB203580) only slightly weakened migration toward
IEC-CM (Figure 2(a)). In contrast, AZD0530 (Src) or MK-
2206 (Akt) led to a remarkable migratory energy in a man-
ner similar to pdgfrb interference, indicating the implication
of Src and Akt. Then, genes of src and akt were knocked out
in MSCs (Supplemental Figure 2C) and markedly
suppressed cell migration toward IEC-CM (Figure 2(a)).
Analogical findings were obtained from the wound healing
assay (Figure 2(b)). MSC movement to the scratch region,
induced by IEC-CM, was significantly inhibited after
knockout of pdgfrb, src, or akt. Nevertheless, blockade of
JNK, MEK, or p38 MAPK showed no obvious difference.
To figure out the relationship of Src and Akt with PDGF-BB,
recombinant PDGF-BB protein was added to EC-CM.
PDGF-BB elevated the chemotctic power of EC-CM to a
level similar to that of IEC-CM (Figure 3). The augmentative
effect of PDGF-BB was abrogated by knockout of pdgfrb, src,
or akt in MSCs. Collectively, these findings suggested that
Src and Akt were effectors downstream of PDGF-BB/
PDGFRβ.

For further verification, in vivo experiments were per-
formed. CD31+ ECs that infiltrated in the implantation area
were sorted and the expression of PDGF-BB was detected.
The ratio of ECs gradually increased over time
(Figure 4(a)). Similar variation trend was gained in the
mRNA and protein expression of PDGF-BB (Figure 4(b)).
Moreover, a positive correlation existed between the ratio
of CD31+ ECs and the protein level of PDGF-BB (Pearson’s
correlation coefficient R=0.926, P < 0:05; Figure 4(c)). At 7
days, administration of the VEGFR2 specific inhibitor,
SU5408, significantly impeded the infiltration of CD31+

ECs within implants (Figure 4(d)). In consequence, the con-
centration of PDGF-BB within implants was sharply
reduced to an extremely low level. According to the current
literature, VEGF-mediated activation of VEGFR2 sup-
pressed PDGFRβ signaling in vascular smooth muscle cells
through the assembly of the receptor complex consisting of
VEGFR2 and PDGFRβ [18]. Limited by the accessible evi-
dence, the potential effect of SU5408 on the expression of
PDGF-BB could not be entirely excluded. Considering that
ECs are one of the main sources of PDGF-BB, these findings
indirectly suggested that at least in the early inflammatory
phase (<7 days), the infiltrated ECs within implants served
as an important source of PDGF-BB at local sites. Then,
GFP+ mBMSCs with gene interference (pdgfb, src, or akt,
Supplemental Figure 2D) were administrated via tail
intravenous injection. At 10 days, GFP+ cells appeared in
the graft area and almost all of them expressed PDGFRβ
in the control group (Figure 4(e)). In contrast, knockout of
pdgfb, src, or akt resulted in a dramatic decrease in the
number of GFP+ cells within implants. It was notable that
although the amount was small, GFP+ cells were present
after pdgfb knockout but they seldom expressed PDGFRβ.
This might be ascribed to the fact that the interference
efficiency of PDGFRβ was not 100% and the participation

of other pathways guiding MSCs homing. Intriguingly,
GFP+ cells were almost invisible after src knockout, but
PDGFRβ+ cells were evident, indicating the predominant
role of Src in MSCs homing. As compared with control, a
smaller number of GFP+ cells were observed after akt
knockout and most of them were PDGFRβ positive
(Figure 4(c)). This finding suggested that despite its crucial
roles, Akt might not be indispensable in PDGFRβ-mediated
cell motility as compared with Src. At 4 weeks
postoperatively, the healing effects of different treatments for
bone defects were compared. As shown in Supplemental
Figure 3, bony development was advanced within control
group, as the implants were surrounded by chondrocyte,
osteoblast-like cells and filled with livable osteocytes. In the
other groups, no viable osteocytes were found in lacunas
within bone pieces, and implants were poorly embedded by
osteogenesis-related cells. These findings indicated the roles
of PDGFRβ, Src, and Akt in the development of bone grafts,
thus indirectly providing support for their relevance in
motility of host osteoprogenitors.

3.4. Src Is a Bridge Connection between PDGFRβ and Akt
during ECs-Induced MSCs Migration. To reveal the relation-
ship between Src and Akt, migrating MSCs were collected
in vitro. IEC-CM memorably increased the mRNA expres-
sion and phosphorylation of Src in MSCs, which were signif-
icantly attenuated by knockout of pdgfrb, but not akt
(Figure 5). Moreover, the mRNA expression and phosphor-
ylation of Akt were elevated by IEC-CM. Notably, knockout
of pdgfrb or src impaired the positive effect of IEC-CM on
Akt, although no difference was found in the protein level
of total Akt. Based on the findings mentioned above, we con-
cluded that in the inflammatory environment, ECs-induced
MSCs migration via the PDGFRβ-Src-Akt pathway.

4. Discussion

For bone repair, angiogenesis and osteogenesis are essential
processes taking ECs and MSCs as representative involved
cells, respectively. They are closely related as evidence indi-
cates the vicinal spatiotemporal loci between ECs and MSCs
during bone development and regeneration [3]. Indeed,
many perivascular cells exhibit characteristics of mesenchy-
mal progenitors and possess multilineage differentiation
potential [19]. Lineage tracing studies suggest that Nestin
expressing cells on arteries represent early mesenchymal
stem and progenitor cells, with the potential to generate
bone lineage cells [20]. In this context, various types of
EC-MSC coculture experiments have been conducted to
investigate the mechanism and impact of their crosstalk,
especially in the development of bone substitutes. In general,
findings are positive as MSCs promote ECs-mediated angio-
genesis and ECs may regulate the migration and differentia-
tion of MSCs [21]. Accordingly, their coculture has been
widely employed to ameliorate repairing efficacy via forming
vasculature and inducing vessel ingrowth prior to and after
bone grafting, respectively [6]. Nevertheless, unlike the
impact of MSCs on ECs, which has been widely described,
less is known on the inverse effects. Besides, most of
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Figure 3: Continued.
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in vitro studies on their crosstalk are performed under nor-
mal conditions [9]. However, the influence of cell crosstalk
in vivo may be entirely different due to the intricate internal
environment. Upon bone injury, local inflammatory
responses are incited to form a microenvironment rife with
bioactive cellular and molecular components [22]. Conse-
quently, angiogenic or osteogenic cells are educated to
change secretome and tropism [14]. On one side, the stimu-
lation of angiogenic cells enables and impulses angiogenesis.
Other than nutrient supply and metabolite exchange, hom-
ing of osteoprogenitors, as well as the fateful event of bone

repair, depends heavily on local vascularization status. On
the other side, the inflammatory microenvironment modu-
lates the secretome of MSCs and fosters congeneric recruit-
ment [14]. Therefore, the inflammatory situation cannot be
ignored while studying EC-MSC crosstalk. In this study,
we introduced a mimicking inflammatory microenviron-
ment in vitro to investigate cell motility. IL-1β, IL-6, and
TNF-a are representative pro-inflammatory cytokines with
peak levels in the early inflammatory phase of bone healing
and play crucial roles in bone reconstruction by triggering
highly complicated biological cascades [23]. Compared with
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Figure 3: Src and Akt functioned downstream of PDGFRβ. (a) Representative images of migrated hBMSCs in Transwell culture systems.
The quantification of migrated cells was shown as a bar graph. Data were compared with the group of IEC-CM from Figure 1. Scale bar,
50μm. ∗P < 0:05. (b) Representative images of wound healing assays. The rate of scratch wound closure was shown as a bar graph. Data
were compared with the group of IEC-CM from Figure 1. Scale bar, 200μm. ∗P < 0:05. IEC-CM: conditioned media of endothelial cells
in the context of inflammatory microenvironment; shPDGFRβ: short hairpin RNA targeting pdgfrb; shSrc: shRNA targeting src; shAkt:
shRNA targeting akt.
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common ECs inflammation models, which are usually
induced by lipopolysaccharide, the present inflammatory
microenvironment is more biomimetic since ECs are
exposed during the early stage and cell apoptosis caused by

LPS can be avoided effectively [12]. Based on this model,
we echoed the concept that ECs could induce MSCs migra-
tion physiologically. Under an inflammatory microenviron-
ment, ECs showed a more intensive chemotactic effect on
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Figure 4: Data of in vivo experiments. (a) Fluorescence-activated cell sorting of CD31+ cells within implants at postoperative days 1, 3, and
7. The percent of CD31+ cells migrated cells was shown as a bar graph. (b) Gene and protein expression of PDGF-BB in sorted CD31+ cells.
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MSCs. This phenomenon is readily comprehensible consid-
ering that when new blood vessels grow into the local
inflammatory loci, ECs release abundant chemokines to
guide vessel-associated MSCs entering to form sheets of
osteoblasts, which then secrete osteoid to fabricate bones as
oriented by the invading vessels.

Among the multiple chemokines of ECs, the PDGF fam-
ily has been recognized with significance in the angio-
osteogenic coupling [13]. PDGF consists of four polypep-
tides A, B, C, and D, which assemble into disulfide-linked
homodimers or heterodimers (PDGF-AA, -BB, -CC, -DD,
or -AB). Thereinto, PDGF-BB is the only dimer with high
affinity to all known receptor isoforms and has drawn exten-
sive attention. During bone repair, PDGF-BB plays an inte-
gral role in coordinating and linking ECs, MSCs, the
extracellular matrix, and signaling pathways [24]. More
accurately, PDGF-BB/PDGFRβ constitutes the principal
pathway responsible for the activation and function of
MSCs, the proliferation and migration of pericytes, and
the development of vasculature and new bones. PDGF-BB
is mainly secreted from ECs, preosteoclasts, and platelets
and supports migration, proliferation, and differentiation

of various bone marrow-derived mesenchymal cells to pro-
mote angiogenesis and osteogenesis [13]. Herein, we
reported that the inflammatory microenvironment forced
ECs to secrete an exponential amount of PDGF-BB. More-
over, the promigratory effect of ECs was visibly inhibited
by blockade of PDGFRβ. These results collectively con-
firmed the authority of PDGF-BB/PDGFRβ in osteopro-
genitor homing, a pivotal event in the early inflammatory
stage of bone repair.

Various signal molecules downstream of PDGF-BB/
PDGFRβ have been identified with influences in different
disease models. During bone modeling and remodeling, the
binding of PDGF-BB and PDGFRβ triggered PI3K/Akt
and MAPK signaling cascades, promoting the formation of
Type-H vessels and the migration of osteoprogenitors [25].
Also, PI3K and MAPK were requisite in PDGF-BB-
mediated MSC motility toward glioma [26]. Previous studies
on osteogenic MC3T3-E1 cells showed that the mitogenic
response stimulated by PDGF-BB was dependent on extra-
cellular signal-regulated kinase (Erk) and JNK, whereas the
migratory response involved MAPK and JNK [27]. JNK
was further verified with significance in PDGF-induced
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proliferation and migration of MSCs [28]. Endothelial pro-
genitor cells were reported to facilitate viability and nerve
regenerative ability of MSCs via PDGF-BB/PDGFRβ and
downstream PI3K/Akt and MEK/Erk pathways. Besides,
Src played key roles in the migration of metanephric mesen-
chymal cells toward PDGF-BB [29]. This study adopted a set
of pathway inhibitors to screen the predominant signal mol-
ecules involved. We found that Src and Akt were the main
effectors downstream of PDGF-BB/PDGFRβ during MSC
migration toward ECs in the inflammatory microenviron-
ment. Meanwhile, homing of MSCs to bone defects was sig-
nificantly impaired when pdgfrb, src, or akt was knocked
down. Conversely, the results denied the implication of
JNK, MEK, and MAPK. With regard to the difference, there
were two aspects of conceivable interpretations. One was the
extensive regulatory roles of PDGF-BB/PDGFRβ in cell
behaviors: viability, proliferation, differentiation, apoptosis,
migration, and communication [24]. Another reason lay in
the distinct cell and disease types among the currently avail-
able literature [30]. Nevertheless, the concurrent involve-
ment of Src and Akt in PDGF-BB-mediated MSCs
migration in the inflammatory microenvironment was veri-
fied for the first time.

Although Src and Akt link a variety of cell receptors to
elicit impacts, their relationship in terms of cell motility
remains confused. Most opinions support the upper position
of Src. For example, Src acts upstream of Akt in the neural
cell adhesion molecule-regulated proliferation, apoptosis,
autophagy, migration, and epithelial-to-mesenchymal tran-
sition of human melanoma cells [31]. During ASAP1-
regulated osteogenic differentiation of MSCs, Src and Akt
were implicated and Akt served as the downstream effector.
Yet, there is evidence demonstrating the regulatory effect of
Akt on Src [32]. As with MSCs, the influence of Src or Akt
has been generally accepted; however, little is known on
their interaction with regard to motility regulation. Limited
evidence suggests that Src may regulate the proliferation
and osteogenic differentiation of MSCs via Akt [33]. Here,
we showed that shRNA targeting Src downregulated the
mRNA expression and phosphorylation of Akt in MSCs.
Conversely, Akt shRNA had no significant effect on Src.
Thus, ECs recruited MSCs in the inflammatory environment
through PDGF-BB/PDGFRβ and its downstream Src-Akt
signaling pathway.

There are some limitations in the present study. First, we
failed to establish the bone defect models in mice where
PDGF-BB was conditionally knocked out in ECs. The death
rate was excessive after femoral defects were made with the
approach detailed above. This indirectly supported the vital
roles of PDGF-BB in sustaining ECs function. As a compro-
mise, MSCs with silenced gene expression were injected back
via tail vein, making the confidence level a little weak. Sec-
ond, the secretory profile of ECs in the inflammatory envi-
ronment was not fully plotted and there may be other
biologics and signaling pathways affecting MSCs migration.
Finally, the functional mechanism between and following
Src and Akt was not assessed in depth. Further experiments
based on proteomics and genomics are needed to gain more
insights.

In conclusion, to our knowledge, this study first reveals
the role of PDGF-BB/PDGFRβ, as well as downstream Src
and Akt signaling, in promoting MSC migration toward
ECs in the inflammatory microenvironment. Understanding
the functional interplay between ECs and MSCs is practi-
cally significant with regard to monitoring processes impli-
cated in bone development after implantation and
providing clues for efficacy promotion.
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Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential
differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation
modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make
the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA
sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone
modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as
proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the
behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of
methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone
methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the
opportunities and challenges for their application in tissue regeneration and disease therapy.

1. Background

Dental mesenchymal stem cells (DMSCs) are multipotent
progenitor cells with multilineage differentiation and self-
renewal capability [1]. Recently, DMSCs have been obtained
from periodontal, periapical, and pulpal tissue from perma-
nent teeth [2]. DMSCs, a group of multipotent MSCs, con-
tain dental follicle stem cells (DFSCs) [3], stem cells from
alveolar bone (ABMSCs) [4], periodontal ligament stem cells
(PDLSCs) [5], dental pulp stem cells (DPSCs) [6], stem cells

from apical papillae (SCAPs) [7], stem cells from exfoliated
deciduous teeth (SHED) [2], and stem cells from gingival tis-
sue (GMSCs) (Figure 1) [8, 9]. DMSCs can differentiate into
odontoblasts, chondrocytes, osteoblasts, adipocytes, neu-
rons, and so on [10]. The excellent properties of DMSC
make them play a critical role in tissue engineering and
regenerative medicine [10–13].

Epigenetic regulation changes gene expression without
altering the DNA sequence, meaning altering the gene
expression potential stably during cell proliferation and
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differentiation [14]. Epigenetic mechanisms can promote
appropriate biological behavior by postsynthetic modifica-
tion of DNA or protein, making the organism adapt to
developmental and environmental prompts by regulating
gene expression [15, 16]. The main mechanisms of epige-
netic regulation include methylation, ubiquitination, acetyla-
tion, and chromatin remodeling, which have been proven to
exert a significant effect on the behavior of DMSCs, such as
proliferation, self-renewal and differentiation potential [16].
Recently, there have been quantitative studies on the epi-
genetic underline of the biological and pathological pro-
cesses in embryogenesis, development, and diseases. One
important research topic is the effect of methyltransferase
on DMSC fate, which includes DNA methylation, RNA
methylation, and histone modifications [15, 17–19]. For
example, both the histone demethylase lysine (K)-specific
demethylase 6B (KDM6B) and lysine demethylase 2A
(KDM2A) [20] participate in the osteogenic differentiation
of DMSCs [21]. The histone demethylase KDM6B specifi-
cally demethylates dimethylation/trimethylation on lysine
27 of histone 3 (H3K27me2/3) and reactivates bone mor-
phogenetic protein 2 (BMP2), which regulates osteogenic
differentiation of DMSCs and plays a critical role in dental

regeneration [22]. The silencing of KDM2A increases the
H3K36me2 levels in the promoter of SFR2, which
enhances the odontoblast differentiation potential of
SCAPs [21]. 5-Aza-2′-deoxycytidine (5-Aza) is a DNA
methyltransferase inhibitor that enhances the odontogenic
differentiation of PDLSCs in DMSCs by decreasing the
proliferation rate [4]. It was reported that DNA/histone
methylation can regulate the osteogenic differentiation
and proliferation of DPSCs [23].

In this review, we briefly summarize the key functions
of histone methylation, RNA methylation, and DNA
methylation in the differentiation potential and self-
renewal of DMSCs as well as the opportunities and chal-
lenges for their application in tissue regeneration and dis-
ease therapy.

2. Characteristics and Clinical
Potential of DMSCs

DMSCs have excellent properties, including self-renewal
potency and multipotent differentiation capacity, which pro-
vide a new pathway for regenerative medicine [24]. Similar
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Figure 1: The different populations of dental tissue-derived stem cells and their distribution. Dental tissue-derived stem cells include dental
mesenchymal stem cells and dental tissue-derived epithelial stem cells. DPSCs: dental pulp-derived stem cells; DFSCs: dental follicle stem
cells; SCAPs: stem cells from apical papilla; PDLSCs: periodontal ligament stem cells; SHED: stem cells from exfoliated deciduous teeth
GMSCs: stem cells from gingival tissue; ABMSCs: stem cells from the alveolar bone.
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to stem cells (SCs), DMSCs are identified via cell surface
markers, such as CD13, CD29, CD73, CD44, CD90, and
CD105. Meanwhile, DMSCs negatively express hematopoietic
markers, including CD14, CD19, CD34, CD45, CD11b, and
HLR [25].

Among these DMSCs, DPSCs have attracted increasing
attention in tissue regeneration due to their clonogenic effi-
ciency and easy availability [26–29]. Moreover, DPSCs have
the capacity for odontogenic and osteogenic differentiation
to form dentin and bone tissues. PDLSCs exhibit multiline-
age differentiation potential and are isolated from human
periodontal ligament. PDLSCs can be effectively applied in
bone defect repair by modulating the immune microenvi-
ronment of the dental complex [30, 31]. A series of studies
have demonstrated the multilineage differentiation potential
and immunosuppressive property of DFSCs, and their unific
characteristics make them applicable to the repair of peri-
odontal defects and repression of inflammation in chronic
inflammatory disease [32]. SCAPs can differentiate into
osteoblasts, nerve cells, and adipocytes and exhibit immuno-
suppressive features [33]. SHED can regulate T cells and
repress the function of T helper 17 cells to achieve immuno-
modulatory functions [34]. ABMSCs can regenerate new
periodontium tissues and alveolar bone [35]. GMSCs can
repair tongue muscle, mandibular, and calvaria defects as
well as improve cementum, periodontal ligament, and alveo-
lar bone regeneration [36, 37]. MSCs derived from the tooth
germ (TGSCs) show excellent potential in osteogenic differ-
entiation. In addition, TGSCs can differentiate into osteo-
genic, chondrogenic, neurogenic, and adipogenic cells [38].
TGSCs could be used in gingival tissue regeneration and
therapy because of their easy accessibility and excellent dif-
ferentiation potential [32, 39].

Currently, DMSCs can be applied to the therapy of oral
diseases. DMSCs can reduce the inflammatory response by
inhibiting the release of inflammatory cytokines to treat
periodontal disease by promoting alveolar bone regeneration
[1, 40]. Clinical studies found that DMSCs were able to
regenerate compact substances of human mandibles, sug-
gesting that DMSCs can be an attractive source of autolo-
gous transplantation for regenerative treatment [41, 42].
For example, PDLSCs with bone grafting material were
transplanted into 16 defective teeth of three periodontitis
patients, and all probing depths were reduced [43]. In bone
tissue engineering, PDLSCs combined with tissue engineer-
ing scaffolds could regenerate alveolar bone in 30 periodon-
titis patients without significant adverse effects [44].
Autologous PDLSC niches were transplanted in 14 patients,
and the probing pocket depth was reduced [45]. DPSCs
combined with the scaffold material were implanted into
the defect area of root furcation in two patients, and the
results demonstrated that the periodontal defects were
repaired [46]. The transplantation of DPSCs in five pulpitis
patients promoted dentin formation safely and effectively
[47]. Moreover, when DPSCs were mixed with support
material and imputed into the bone defect of periodontitis
patients, the bone defect was repaired, bone mineral density
was increased, and the periodontal pocket depth was
decreased in patients [48, 49].

3. Methylation Modifications of Epigenetics

Methylation modifications are the most common mecha-
nism in complicated epigenetic processes and can regulate
genes by changing the state of chromatin without altering
the DNA sequence in cells [50], thus playing a vital role in
gene expression, protein function, and RNA processing. Fur-
thermore, methylation modifications include histone meth-
ylation, DNA methylation, and RNA methylation [51],
which are dynamic processes regulated by methyltransfer-
ases and demethylases of histones, DNA, and RNA
(Figure 2). These enzymes could control the fate of stem cells
by mediating their pluripotency or differentiation [9, 52–56].

3.1. DNA Methylation. DNA methylation is a specific epige-
netic mechanism that regulates gene expression and SC
functions [57–60]. DNA methylation refers to the symmetri-
cal addition of a methyl group on the 5-position of cytosine.
This process is catalyzed by a group of enzymes, DNA meth-
yltransferases (DNMTs), including DNMT1, DNMT3 L,
DNMT3B, and DNMT3A [17, 61–66]. DNMTs at the cyto-
sine residue at the 5-position in CpG dinucleotides transfer
methyl groups of SAM (S-adenosylmethionine) to SAH (S-
adenosylhomocysteine) and generate 5-methylcytosine (5-
mC) [67]. DNA 5mC was discovered in 1948 and marked
the prolusion of the consecutive research in epigenetic mod-
ification [66]. As one of the most common modification sites
in eukaryotes [14, 68–70], it represses the binding of RNA
polymerase and recruits binding proteins and thereby typi-
cally acts on epigenetic silencing of gene expression [18,
71]. DNA methylation status is stabilized via DNMTs and
DNA demethylases. DNA demethylation is also vital during
cellular proliferation and differentiation. 5-mC is converted
to 5-hydroxy methylcytosine (5-hmC) via an oxidation reac-
tion. This process is the first pathway of DNA demethylases
and is mediated by the Ten–eleven translocation (TET) fam-
ily, including TET1, TET2, and TET3 [61, 72]. Furthermore,
thymine DNA glycosylase (TDG) could convert 5-hmC back
to complete DNA demethylation and make the cytosine
totally unmethylated, which is associated with the modifica-
tion of G/T mismatches in DNA repair [17, 72] (Figure 3).
Thus, DNA methylation plays a crucial role in the fate of
SCs by gene regulation [59, 72].

3.2. Histone Methylation. DNA twines on histone proteins,
including two dimers, H3/H4 and H2A/H2B, all of which
compose a globular histone octamer and form the basic
units of chromatin as nucleosomes [73]. The special struc-
ture of histones in eukaryotes exhibits a diversity of histone
modifications, such as methylation, acetylation, phosphory-
lation, and ADP ribosylation [74]. Histone methylation
induces alterations in chromatin structure by adjusting the
density of nucleosomes, which regulates gene transcription
[73] (Figure 4). Histone methylation mainly occurs at argi-
nine and lysine residues of the tail in H3/4 and is mediated
by protein lysine methyltransferases (PKMTs) and protein
arginine methyltransferases (PRMTs) [74]. The lysine meth-
ylation sites, including histone H3 at lysine 4 (H3K4),
H3K79, H3K36, H3K27, and H3K9, and trimethylation sites
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on lysine 4 of histone 3 (H3K4me3), lysine 27 of histone 3
(H3K27me3), and lysine 9 of histone 3 (H3K9me3) have
been widely studied for the modification of genes [73,
75–77]. For instance, PRMTs catalyze arginine methylation.
The yeast Dot1 and the mammalian homolog telomeric
silencing 1 like (DOT1L) catalyze lysine methylation [78,
79]. Histone demethylases mainly contain the family of
dioxygenase Jumonji-C (JmjC) domain proteins and the
amine oxidases family of non-JmjC proteins, such as
KDM6B and lysine-specific demethylase1 (LSD1) [20]. For
example, KDM6B, a member of the oxidase family in the
JmjC domain, can downregulate insulin-like growth factor
binding protein 5 (IGFBP5) to enhance periodontal tissue
regeneration by MSCs [80, 81]. LSD1 can reverse the meth-
ylation of H3K4, which may repress gene transcription [20,
76, 82]. Histone methylation has been widely studied and
affects the fate of SCs [83, 84], such as cancer stem cells,
adult tissue stem cells, and embryonic stem cells [19, 78,
83]. Additionally, histone methylation has the ability to reg-
ulate ESC differentiation and maintain the regeneration of
neural stem cells and muscle stem cells [85]. They can also
promote liver regeneration in animal experiments [86].

3.3. RNA Methylation. RNA methylation refers to the pro-
cess of adding a methyl group to the methyl adenine of
RNA [87]. RNA methylation includes N1-methyladenosine
(m1A), N6-methyladenosine (m6A), 7-methyl guanosine
(m7G), and 5-methylcytosineylation (m5C) modification of
mRNA in eukaryotes [88–90]. As one of the most general
RNA methylations, m6A RNA methylation refers to methyl-
ation of the adenosine (A) base at the nitrogen-6 site [87],
and this has attracted more attention in recent years. RNA
methylation is a reversible and posttranslational modifica-
tion of RNA by catalysis of methyltransferase and demethy-
lase [91]. m6A RNA methyltransferases catalyze RNA

methylation and are known as “writers,” including
methyltransferase-like protein 3 (METTL3), METTL14,
and WTAP [92, 93]. The m6A RNA demethylase is known
as an “eraser,” containing obesity-associated protein (FTO)
and fat mass ALKB homolog 5 (ALKBH5), which regulates
RNA demethylation [87, 89]. Readers include the YTH
domain family (YTHDFs and YTHDCs) and IGF2BP1/2/3
family, which can directly bind to m6A to mediate down-
stream processes including mRNA export and mRNA trans-
lation [89–93] (Figure 5). m6A RNA methylation plays a
critical role in biological processes by affecting gene transla-
tion, the DNA damage response, autophagy, stem cell prolif-
eration, and fat formation [87, 89, 94–97]. For example,
METTL3, as the most well-studied subunit of the m6A
“writers,” could slow down the occurrence of chronic
obstructive pulmonary disease and might promote tumor
formation, migration, and invasion [98–100]. In addition,
ALKBH5 has high expression in the embryonic stage and
glioblastoma stem-like cells (GSCs), revealing that ALKBH5
may play an indispensable role in brain development and
GSC proliferation [101–103]. FTO is associated with human
diseases, including obesity, type 2 diabetes, coronary heart
disease, and cancer [90, 104, 105].

4. Regulation of DMSCs by Methylation

Methylation has been proven to play a critical role in
DMSCs, including PDLSCs, DFSCs, DPSCs, and SCAPs
[4]. We briefly summarize some recent studies on methyla-
tion modifications and the clinical application potential of
DMSCs.

4.1. PDLSCs. PDLSCs can be isolated from the periodontal
ligament [106], and they can differentiate into alveolar bone,
peripheral nerves, blood vessels, adipocytes, hepatocytes,

Histone tail Histone tail Histone tail

Methylation

Demethylation

DNA DNA

Histone tail

Heritable gene silencingActive transcription

Figure 4: Schematic representation of histone methylation and demethylation. DNA twines on histone proteins, including two dimers, H3/
H4 and H2A/H2B, all of which compose a globular histone octamer and form the basic units of chromatin as nucleosomes. Histone
methylation mainly occurs at arginine and lysine residues of the tail in H3/4 and is mediated by methyltransferases and histone
demethylation is regulated by demethylases. Histone methylation can affect the spatial structure of chromatin by affecting the structure
of nucleosomes and thus regulating the expression activity of genes. The nucleosome structure usually becomes crowded by adding
methyl group (Me) from arginine and lysine residues of the tail, which making it difficult for gene segments to be transcribed, so gene
expression is silenced. In contrast, the demethylation of histone usually could induce the open histone structure by removing methyl
group (Me) from arginine and lysine residues of the tail, which expose the transcription factor binding sites and regulates the
transcriptional activation of genes.
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and osteoblasts under specific conditions [21, 107]. PDLSCs
have a positive effect on alveolar bone formation, which
would rescue the loss of alveolar bone in periodontitis
[108]. Furthermore, PDLSCs are used for repair of peri-
odontal tissues and treatment of cartilage diseases in the
regenerative medicine field [109, 110].

4.1.1. Modification of PDLSCs by DNA Methylation. DNA
methylation is a key regulatory component of epigenetic
modification. Some papers have suggested that DNA meth-
ylation can regulate the fate of PDLSCs (Table 1). In the
genomic analysis of DNA methylation, the DNA methyla-
tion of bone formation-related genes in PDLSCs was differ-
ent from that in DPSCs and DFPCs. PDLSCs have lower
methylation of osteogenic-related genes, such as runt-
related transcription factor 2 (RUNX2), osteopontin
(OPN), and alkaline phosphatase (ALP), leading to PDLSCs
with better bone formation capacity in vivo [111]. Therefore,
a better understanding of the DNA methylation of genes in
PDLSCs is crucial to regulating osteogenic differentiation
of PDLSCs and regeneration of periodontal tissue. For
instance, the expression of RUNX2 was enhanced in the
coculture of dedifferentiated fat cells (DFATs) with PDLSCs
due to the downregulation of RUNX2 DNA methylation,
which promoted the osteogenic potential of PDLSCs and
DFATs [112]. Furthermore, hypermethylation of RUNX2
inhibits osteogenic differentiation of PDLSCs [113], and
RG108 and 5-Aza, as DNMT1 inhibitors, could restore
RUNX2 expression and increase the osteogenic potential of
PDLSCs by eliminating the upregulated expression of
DNMT1 in PDLSCs [114–116]. In addition, the destruction
of the periodontium caused by lipopolysaccharide (LPS)
leads to hypermethylation of RUNX2 in PDLSCs, which
might directly hinder periodontal regeneration [115]. 5-
Aza and RG108 may be potential therapies for periodontal
diseases by restoring the hypermethylation of RUNX2.

In addition, a high-glucose (HG) environment inhibits
the proliferation and differentiation of PDLSCs [117].
Increasing the expression of DNMT3A, DNMT3B, and
DNMT1 in an HG environment causes DNA hypermethyla-
tion of osteogenic-related genes in PDLSCs, which has an

inhibitory effect on the matrix mineralization of PDLSCs.
However, 5-Aza reduces the DNA hypermethylation level
and recovers the expression of osteogenic marker genes,
such as ALP, OCN, OPN, and osterix (OSX, also called
Sp7), thus rescuing matrix mineralization and stimulating
osteogenic differentiation of PDLSCs [108]. In addition,
tumor necrosis factor α (TNF-α) treatment of PDLSCs in
an HG environment could cause PDLSCs to have lower cell
viability [118]. The HG environment also inhibits the
expression of DNMT1 protein while upregulating tumor
necrosis factor-alpha receptor-1 (TNFR-1) due to the hypo-
methylation of CpG islands within the TNFR-1 gene in
PDLSCs. However, SAM could downregulate TNFR-1 by
increasing the methylation of TNFR-1 and then downregu-
lating TNF-α and rescuing the cell viability of PDLSCs
[118]. Modulation of DNA methylation by SAM or 5-Aza
could regulate the viability and differentiation of PDLSCs
in HG, which would be a potential treatment for periodonti-
tis [108, 118].

On the other hand, inhibition of Ten–eleven transloca-
tion 1 (TET1) and Ten–eleven translocation 2 (TET2) could
lead to the downregulation of the osteogenic and adipogenic
capacity of PDLSCs, while the proliferation of PDLSCs could
be enhanced [119]. In addition, Dickkopf-related protein-1
(DKK-1) exerts a negative effect on the Wnt pathway, thus
inhibiting the immunomodulatory capacity of PDLSCs
[120]. TET1 and TET2 binding to the DKK-1 promoter
could maintain the hypomethylation of DKK-1 in PDLSCs
and then inhibit the function of T cells induced by PDLSCs.
Therefore, inhibition of TET1 and TET2 could result in
hypermethylation of the DKK-1 promoter and significantly
inhibit the expression of DKK-1 and in turn enhance the
immunomodulatory capacity of PDLSCs [121]. Thus, down-
regulation of TET1 and TET2 may enhance the effect of
PDLSC-mediated immunotherapy [119, 122].

4.1.2. Modification of PDLSCs by Histone Methylation. His-
tone methylation is widely known to regulate the prolifera-
tion and differentiation of PDLSCs (Table 1). For example,
downregulating the long noncoding RNA SNHG1 and
upregulating Kruppel-like factor 2 (KLF2) both promote
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Figure 5: The dynamic and reversible processes of m6A methylation. m6A RNA methylation is mainly regulated by its “writers,” “erasers,”
and “readers.” Writers refer to the m6A methylase complex including METTL3, METTL14, and WTAP. Erasers are m6A demethylases
involving FTO and ALKBH5. Readers include the YTH domain family (YTHDFs and YTHDCs) and IGF2BP1/2/3 family. “Writers”
deposit m6A methylation on RNAs, while “erasers” remove the m6A marks. “Readers” can directly bind to m6A to mediate downstream
processes including mRNA export and mRNA translation.
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the osteoblastic differentiation of PDLSCs. SNHG1 inhibits
the osteoblastic differentiation of PDLSCs by regulating
H3K27me3 of KLF2 through zeste homolog 2 (EZH2)
[123]. In addition, stress stimulation resulted in the upregu-
lation of H3K27me3 signaling and the slight downregulation
of transcription factor 2 (E2F), which induced transcripto-
mic changes and impaired the pluripotency of PDLSCs.
Meanwhile, overexpression of EZH2 enhances the adipo-
genic differentiation of PDLSCs while suppressing osteo-
genic differentiation [110, 123]. Downregulation of EZH2
expression enhances ALP activity in PDLSCs induced by
LPS [124]. Therefore, EZH2, as a histone methyltransferase,
plays an important role in maintaining the differentiation of
PDLSCs. Moreover, the in vitro and in vivo results showed
that LPS induced the expression of H3K4me3 on
inflammation-related genes. Inhibition of the protein lysine
methyltransferase SET domain-containing 1B (SETD1B)
led to the downregulation of H3K4me3, which decreased
inflammatory genes and promoted osteogenic genes in
PDLSCs [125]. In addition, upregulating the specific methyl-
transferase H3K36me3, known as SET domain-containing
protein 2 (SETD2), can promote the osteogenic differentia-
tion of PDLSCs [126]. Furthermore, histone methyltransfer-
ases such as EZH2, SETD1B, and SETD2 regulate the
osteogenic differentiation of PDLSCs.

Histone methylation can be reversed by histone
demethylases, such as lysine-specific demethylase 6A
(KDM6A) and KDM6B. For instance, KDM6A promotes
the expression of osteogenesis-related genes through the
demethylation of H3K27me3 in the promoter region and
facilitates the osteogenic differentiation of PDLSCs. Hence,
overexpression of KDM6A enhances the osteogenic differen-
tiation of PDLSCs [22, 127]. In addition, the absence of
KDM6A elevates the level of H3K27me3 and decreases the
expression of trimethylation on lysine 4 of histone 3
(H3K4me3), which ultimately suppresses the chondrogenic

potential of PDLSCs [22]. However, treatment of PDLSCs
with an inhibitor of EZH2 (EPZ-6438) rescued the impaired
chondrogenesis of PDLSCs caused by the loss of KDM6A.
Therefore, the regulation of KDM6A demethylation and
the application of an EZH2 inhibitor potentially induces
MSC-mediated cartilage regeneration in osteoarthritis [22].
Furthermore, Jiang and Jia found that miR-153-3 could
inhibit the expression of KDM6A and the osteogenic differ-
entiation of PDLSCs [127]. Therefore, downregulation of
miR-153-3 or overexpression of KDM6A promotes the oste-
ogenic differentiation of PDLSCs. These findings provide a
new potential therapeutic application for PDLSCs in alveolar
bone regeneration.

Moreover, both histone methyltransferases and
demethylases regulate the fate of PDLSCs in an inflamma-
tory environment. Knockdown of KDM6B inhibits the
expression of RUNX2 and inflammatory factors in PDLSCs
stimulated by LPS [124]. In addition, treatment of PDLSCs
with LPS causes an increase in H3K27me3 on the promoters
of OSX, RUNX2 and IL-1β. Therefore, LPS inhibits the pro-
liferation and osteoblastic differentiation capacity of
PDLSCs by increasing H3K27me3 on genes in PDLSCs. Gly-
coprotein nonmetastatic melanoma protein B (GPNMB)
reduces LPS-induced apoptosis of PDLSCs as well as upre-
gulates the expression of KDM6B, which could result in
inhibiting the inflammatory response and apoptosis in peri-
odontitis [128]. IGFBP5 can promote cell proliferation, che-
motaxis, and migration in PDLSCs [80]. However, the
deletion of the PR domain containing 9 (PRDM9) gene
can upregulate IGFBP5 by increasing H3K4me3 of the
IGFBP5 promoter, which enhances the transcription of
IGFBP5 and promotes the proliferation, chemotaxis, and
migration of PDLSCs [109]. Therefore, histone methylation
has the ability to regulate the fate of PDLSCs via the regula-
tion of different genes, such as RUNX2, GPNMB, and
PRDM9.

Table 1: Methylation and demethylation in PDLSCs.

Methylated modification Epigenetic modifiers Epigenetic marks Functions

DNA methylation

RG108 DNMT inhibitor The hypomethylation of RUNX2 promoted osteogenic potential [116].

5-Aza DNMT inhibitor
Down-regulating expression of DNMT1, stimulating osteogenic

differentiation [108, 113, 115, 117, 118].

SAM Methyl-donor
Rescuing the cell viability and increasing the methylation

of TNFR-1 [118].

DNA demethylation TET1/2
DNA

demethylases
Enhancing differentiation while inhibiting immune regulation

[119–122, 129].

Histone methylation

EZH2 H3K27me3 Inhibiting the osteogenic differentiation [110, 123, 124, 129].

SETD1B H3K4me3
Downregulating the release of inflammatory factors from

PDLSCs stimulated by LPS [125].

SETD2 H3k36me3 Promoting the osteogenic differentiation [126].

Histone demethylation

KDM6A
H3K27me3,
H3K4me3

Enhancing the osteogenic differentiation [22, 127].

EPZ-6438 EZH2 inhibitor
Rescuing the chondrogenic potential of PDLSCs by decreased

H3K27me3 [22].

KDM6B H3K27
Enhancing periodontitis inflammatory response and

apoptosis [124, 128].

H3K4me3 Promoting potential of proliferation, chemotaxis and migration [109].

7Stem Cells International



4.2. DPSCs. DPSCs were first cultured in vitro by Gronthos
et al. in 2000 [6]. DPSCs can differentiate into osteoblasts,
cartilage heads, fats, blood vessels, odontoblasts, and so on
[130]. Compared with other mesenchymal stem cells, DPSCs
show better abilities, such as better odontoblast differentiation
and viability. Nevertheless, DPSCs showed lower chondro-
genic capacity [131–134]. Consequently, the differentiation
ability and clinical application potential of DPSCs in regener-
ative medicine have attracted extensive attention [27].

4.2.1. Modification of DPSCs by DNA Methylation. Numer-
ous studies have also reported the function and regulation
of DNA methylation in DPSCs (Table 2). DNMTs, such as
DNMT1, DNMT3A, and DNMT3B, have an important
effect on the differentiation of DPSCs [135]. DNA methyla-
tion mediated by these DNMTs can modulate odontogenic-
related genes and calcium nodule formation. For instance,
microRNA-675 (miR-675) regulates the odontogenic differ-
entiation of DPSCs by suppressing DNMT3B-mediated
methylation of distal-less homeobox 3 (DLX3) [136]. In
addition, overexpression of lncRNA H19 (a classic long non-
coding RNA) and miR-675 promotes the odontogenic differ-
entiation potential of DPSCs by downregulating DNMT3B-
mediated methylation of the DLX3 gene [137]. The methyl-
ation of KLF4 promoters mediated by DNMT1 is a tran-

scription factor that can inhibit the odontoblast
differentiation of DPSCs [138]. Kruppel-like factor 4
(KLF4) and SP1 enhance the odontoblastic differentiation
of DPSCs as transcription factors [139, 140]. In contrast,
RG108 and 5-Aza play a positive role in the differentiation
of DPSCs. Inhibition of DNMT1 by RG108 increases
KLF4, which improves the efficiency of odontoblast differen-
tiation [138]. Hence, RG108, as a DNMT1 inhibitor, medi-
ates the upregulation of SP1/KLF4 during the odontoblast
differentiation of DPSCs. 5-Aza inhibits DNMT1 and BMP
activity while promoting muscle-specific transcription fac-
tors in DPSCs. 5-Aza enhances the skeletal myogenic differ-
entiation of DPSCs [141]. Furthermore, 5-Aza can promote
myogenic differentiation and myogenic protein expression
of DPSCs, and it can be used for the therapy of craniofacial
muscles [142]. DPSCs with 5-Azax also increase ALP activ-
ity and calcified nodule formation, while odontogenic
markers, including dentin matrix protein-1 (DMP-1), dentin
sialo phosphoprotein (DSPP), RUNX2, DLX5, and OSX, are
upregulated [143]. Therefore, 5-Azax has the ability to
enhance the proliferation and differentiation of DPSCs by
inhibiting DNA methylation. It was also found that pretreat-
ment of DPSCs with 5-Aza after LPS stimulation reduced
the m5C level of the TNF receptor-associated factor 6
(TRAF6) promoter [144]. As a result, inflammation-related

Table 2: Methylation and demethylation in DPSCs.

Methylated modification Epigenetic modifiers Epigenetic mark Function

DNA methylation

DNMT3A DNMTs Regulating the odontogenic differentiation [135].

DNMT3B DNMTs
Enhancing the odontogenic differentiation of DPSCs by inhibiting

DNMT3B-mediated-methylation of DLX3 [135–137].

DNMT1 DNMTs
The methylation of KLF4 promoters by DNMT1 inhibited the

odontoblast differentiation of DPSCs [138].

RG108
DNMT
inhibitor

Improving the efficiency of odontoblast differentiation [138].

5-Aza
DNMT
inhibitor

Inhibiting inflammation while enhancing myogenic differentiation and
odontogenic differentiation [141–144].

DNA demethylation
TET2

DNA
demethylases

TET2 knockdown downregulates MyD88 promoter methylation and
inhibits LPS-induced inflammatory responses in DPSCs [145].

TET1
DNA

demethylases
Enhancing self-differentiation and odontogenesis [146–148].

Histone methylation

H3K4me3 Enhancing the differentiation [150].

EZH2 H3K27me3

Reducing H3K27me3 expression increased that of KDM6B in DPSCs
under inflammation and inhibition of EZH2 can activate β-catenin
transcription and Wnt signaling pathway to promote the osteogenic

differentiation [151–153].

Histone demethylation
KDM6B H3K27me3

Removing H3K27me3 methylation, activating odontogenic
transcriptional gene activation and enhancing the odontogenic

differentiation [151, 154, 155].

KDM5A H3K4me3
Demethylation of H3K4me3 suppresses the dentin differentiation of

DPSCs [156].

RNA methylation METTL3 m6A

Regulating the proliferation, migration, differentiation, root formation,
cell senescence, and apoptosis. Knockdown of METTL3 reduces the
expression of inflammation-related factors and activation of signaling

pathways induced by LPS [158/157, 159/158, 160/159].

RNA demethylation
METTL14 m6A Expressing in PDLSCs [158/157].

FTO m6A Expressing in PDLSCs [158/157].
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signaling pathways were activated, such as the mitogen-
activated protein kinase (MAPK) and nuclear factor-k-gene
binding (NF-κB) signaling pathways [144]. Therefore,
DNA methylation plays a negative role in the regulation of
DPSCs.

In contrast, DNA demethylase has a negative role in
inflammatory responses of DPSCs induced by LPS. DPSCs
stimulated by LPS increase the expression of TET2. TET2
knockdown downregulates the DNA hydroxymethylation
of myeloid differentiation factor 88 (MyD88) promoter and
inhibits the NF-κB signaling pathway [145]. Therefore,
understanding the regulation of DNA methylation is a
potential treatment for pulpitis and periodontitis. Moreover,
an in vitro experiment confirmed that the expression of
TET1 was significantly increased during the proliferation
of PDLSCs [146]. Therefore, the early differentiation and
odontogenesis of DPSCs are associated with the level of
TET1. Inhibiting the expression of TET1 in DPSCs decreases
ALP activity and mineralized nodules during the odonto-
genic differentiation of DPSCs, which can ultimately inhibit
the proliferation and differentiation of DPSCs [147]. During
the odontogenic differentiation of DPSCs, deletion of TET1
leads to the downregulation of the family with similarity
20 member C (FAM20C) and enhances the mineralization
of DPSCs [148]. FAM20C, also named dentin matrix protein
4 (DMP4), participates in the osteoblastic differentiation of
DPSCs [149]. Therefore, TET1 enhances the odontoblastic
differentiation of DPSCs by demethylating FAM20C.

4.2.2. Modification of DPSCs by Histone Methylation. Three
key markers of histone methylation, H3K4me3, trimethyla-
tion on lysine 9 of histone 3 (H3K9me3), and H3K27me3,
play a significant role in the regulation of DPSCs [150]
(Table 2). For instance, the promoters of early mineraliza-
tion genes in DPSCs, such as RUNX2, DLX5, and MSX2,
all contain H3K4me3 activity markers, which enhance the
differentiation of DPSCs [150]. In addition, EZH2 catalyzes
the methylation of H3K27me3, while KDM6B demethylates
H3K27me3. The expression of EZH2 and H3K27me3 is
decreased under inflammatory conditions [151], and the
downregulation of EZH2 enhances the differentiation of
DPSCs and suppresses the inflammatory response in DPSCs
[152]. Moreover, EZH2 inhibition can enhance the osteo-
genic differentiation of DPSCs by activating β-catenin tran-
scription and the Wnt signaling pathway [153]. Therefore,
EZH2 inhibits osteogenic differentiation and promotes the
inflammatory response. In contrast, KDM6B (also known
as JMJD3), a member of the oxidase family of the JmjC
domain, catalyzes the demethylation of H3K27me3 [154].
Under inflammatory conditions, the expression of KDM6B
is increased, while H3K27me3 is decreased in DPSCs
[151]. KDM6B activates odontogenic transcriptional genes
and enhances the odontogenic differentiation of DPSCs by
demethylating H3K27me3 of osteogenic genes, such as
BMP2 and RUNX2 [154, 155]. Therefore, EZH2 and
KDM6B could be applied to potential therapy in regenerat-
ing tooth structures. In addition, KDM5A is a histone
demethylase (HDM), which is increased during the differen-
tiation and early proliferation of DPSCs [156]. Knockdown

of KDM5A enhances odontogenesis and mineralization in
DPSCs by increasing H3K4me3 on the promoter of odonto-
genic marker genes [156]. Therefore, demethylation of
H3K4me3 by KDM5A suppresses the dentin differentiation
of DPSCs. These results indicated that the demethylation
of KDM5A could be applied to dentin repair.

4.2.3. Modification of DPSCs by RNA Methylation. There are
also some reports about the regulation of m6A RNA methyl-
ation on osteogenic differentiation and proliferation of
DPSCs (Table 2). m6A RNA methyltransferases (METTL3
and METTL14) and demethylases (FTO and ALKBH5) exist
in PDLSCs [157]. The METTL3-mediated methylation of
m6A RNA regulates the proliferation, migration, and differ-
entiation of DPSCs [157, 158]. Bioinformatics analysis found
that METTL3 was highly expressed in immature DPSCs and
could regulate cell senescence and apoptosis [158]. Deletion
of METTL3 resulted in activation of the p53 pathway in
DPSCs and had a negative effect on the self-renewal of
DPSCs. In addition, METTL3 mediates the expression of
Polo-like kinase 1 (PLK1), a mitotic regulator that partici-
pates in cell cycle control and senescence apoptosis [158].
The results of in vivo experiments demonstrated that condi-
tional knockout of METTL3 impaired the self-renewal, dif-
ferentiation, and proliferation of DPSCs, thus damaging
tooth root development [159]. The stimulation of LPS
increases the expression of METTL3, while knockdown of
METTL3 inhibits the expression of inflammation-related
factors and inflammation-related signaling pathways, such
as MAPK and NF-κB signaling pathways [157]. Therefore,
downregulating METTL3-catalyzed RNA methylation of
m6A may inhibit the LPS-induced inflammatory response
in DPSCs.

4.3. DFSCs. DFSCs can differentiate into alveolar bone, peri-
odontal ligament, and root cementum. As the progenitor
cells of some periodontal cell lineages [160–164], DFPCs
can differentiate into chondrocytes, osteoblasts, adipocytes,
and neural-like cells [4].

4.3.1. Modification of DFSCs by DNA Methylation. DNMT1
can inhibit the osteoblastic differentiation of DFSCs by
methylation of HOXA2 (Table 3). Overexpression of the
lncRNA HOXA transcript antisense RNA myeloid 1
(HOTAIRM1) inhibits proliferation and enhances osteo-
blastic differentiation of DFSCs [78, 165, 166]. HOTAIRM1
restrains the DNMT1 and DNA methylation of HOXA2 cat-
alyzed by DNMT1, which promotes the osteogenesis of
DFSCs. HOTAIRM1 regulates the methylation state of the
HOXA2 gene promoter by controlling DNMT1. Modulating
the expression of the HOXA2 gene regulates the osteoblastic
differentiation of DFSCs [78, 165, 166]. The upregulation of
HOTAIRM1 may prevent the overmethylation of DFSCs
from damaging periodontal tissue by inhibiting DNMT1.

4.3.2. Modification of DFSCs by Histone Methylation.
H3K4me3 is a marker that activates histone methylation,
and H3K9me3 and H3K27me3 are markers of histone meth-
ylation that inhibit histone methylation. All of these markers
can regulate the differentiation of DFSCs (Table 3). The
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promoters of the important factors that regulate osteogenic
differentiation of DFSCs and early mineralization contain
the active markers of H3K4me3. During osteogenic differen-
tiation of DFSCs, H3K27me3 displays a prominent effect on
DSPP and DMP-1, which are the promoters of dentin for-
mation genes [111, 150, 167]. DFSCs can alter the expression
of active H3K4me3, while PDLSCs and ABMSCs cannot.
The H3K4me3 marker can turn to the H3K9me3 markers
during osteogenic differentiation [167]. The expression of
EZH2 and H3K27me3 can be decreased during the osteo-
genesis of DFSCs. EZH2 inhibits the osteogenesis of DFSCs
by decreasing the H3K27me3 level of the Wnt gene pro-
moter [168].

4.4. SCAPs. SCAPs were discovered in the apical papilla of
human immature deciduous teeth, and they can differentiate
into periapical tissue and pulp tissue [7, 169, 170]. SCAPs
can exert vital effects on tooth development, especially in
the odontoblasts in the root of the tooth [171]. Under suit-
able conditions in vitro, SCAPs can differentiate into adipo-
cytes, hepatocytes, osteoblasts, neural cells, and odontoblasts
[7, 169, 171].

4.4.1. Modification of SCAPs by Histone Methylation.
Recently, the histone methylation involved in the regulation
of SCAP fate has attracted increasing attention (Table 4).
KDM2A plays a negative role in osteogenic differentiation
of SCAPs. The epiregulin (EREG) is a target of KDM2A
(also known as FBXL11) that enhances osteogenic differenti-
ation of SCAPs [172]. For instance, EREG is upregulated
while KDM2A is downregulated during osteogenic differen-
tiation of SCAPs. The KDM2A/BCL6 corepressor (BCOR)

complex restrains histone H3 lysine 36/4 dimethylation
(H3K36me2/H3K4me2) of the EREG promoter, which
represses the transcription of the EREG promoter and
inhibits osteogenic differentiation of SCAPs [172]. In addi-
tion, in SCAPs from oculofaciocardiodental (OFCD) syn-
drome patients, the methylation of H3K4 and H3K36 on
the promotor of EREG is increased, which contributes to
transcriptional activation of silent genes and enhancement
of the osteogenic differentiation potential of SCAPs [173,
174]. However, overexpression of the histone demethylase
KDM2A in SCAPs decreases EREG, which inhibits the
expression of key transcription factors of bone-dentin differ-
entiation, such as OSX and DLX2, and reduces the bone-
dentin differentiation potential of SCAPs [172]. The upregu-
lation of OSX and DLX2 promotes osteogenic differentiation
of SCAPs by enhancing ALP activity and calcium minerali-
zation [175]. In addition, secreted frizzled related protein 2
(SFRP2) inhibits NF-κB signaling by repressing the Wnt/β-
catenin signaling pathway in hypoxic and inflammatory
conditions, and the expression of KDM2A in SCAPs is
upregulated while the transcription of SFRP2 is inhibited
and the methylation of H3K4me3 and H3K36me2 on the
SCAP promoter is decreased [176]. Moreover, the study
found that deletion of the demethylase KDM2A in SCAPs
increased the methylation of H3K4 and H3K36 in the pro-
moter of SFRP2 and inhibited their transcription. SFRP2
activated OSX and enhanced bone-dentin differentiation,
while KDM2A exerted the opposite effect [177]. Therefore,
KDM2A inhibits the osteoblastic differentiation of SCAPs
by downregulating SFRP.

Lysine-specific demethylase 3B (KDM3B), lysine-specific
demethylase 1A (KDM1A), mixed-lineage leukemia (MLL),

Table 3: Methylation and demethylation in DFSCs.

Methylated modification Epigenetic modifiers Epigenetic marks Functions

DNA methylation
DNMT1 DNA methyltransferases Inhibiting osteogenesis [78, 166].

5-Aza DNMT inhibitor Promoting osteogenesis [78, 166].

Histone methylation

H3K4me3, H3K9me3
H3K4me3 marker will switch to the H3K9me3
marker during osteogenic differentiation [167].

EZH2 H3K27me3
EZH2 inhibits the osteogenesis of DFSCs

by reducing H3K27me3
expression of Wnt gene promoter [111, 150, 168].

Table 4: Methylation and demethylation in SCAPs.

Methylated
modification

Epigenetic
modifiers

Epigenetic
marks

Functions

Histone
demethylation

KDM2A
H3K36me2,
H3K4me2

Inhibiting osteogenic differentiation [172–177].

KDM3B H3K9me2
Exerting a positive impact on osteogenic differentiation of SCAPs and regulating the cell

cycle to accelerate the proliferation of SCAPs [178].

KDM1A
H3K4me2/1,
H3K9me2/1

KDM1A forms a protein complex with PLOD2 to inhibit the bone-dentin differentiation
[179].

MLL H3K4me3 Promoting odontogenic differentiation of SCAPs by upregulating Wnt5a [182].

KDM6B H3K27me3
Loss of the demethylase KDM6B increases H3K27me while inhibits odontogenic

differentiation [182].
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and KDM6B also play critical roles in regulating the fate of
SCAPs. KDM3B exerts a positive effect on osteoblastic dif-
ferentiation of SCAPs by upregulating the expression of
OCN, RUNX2, OSX, and DSPP. Moreover, KDM3B is
involved in regulating the cell cycle to accelerate the prolifer-
ation of SCAPs [178]. In vitro, knockdown of KDM1A in
SCAPs downregulates ALP activity and calcium mineraliza-
tion of SCAPs. KDM1A combines with PLOD2 to form a
protein complex that inhibits the bone-dentin differentiation
of SCAPs [179]. MLL is a methylase of H3K4me3, KDM6B
is the demethylase of H3K27me, and both promote odonto-
genic differentiation of SCAPs by upregulating Wnt5a
[180–182]. The transcriptional activity of Wnt5a is regulated
by H3K27me3 and H3K4me3. In addition, deficiency of the
demethylase KDM6B enhances H3K27me3 and inhibits
odontogenic differentiation [182].

5. Conclusion

Growing attention has been given to the differentiation, self-
renewal, and regulation of DMSCs in the field of regenera-
tive medicine [183–185]. For instance, DPSCs are used for
the treatment of mandible defects and periodontal regenera-
tion in chronic periodontitis patients [48, 186–188]. An
ABMSC-based treatment strategy in the periodontal recon-
struction of 27 patients enhanced periodontal tissue healing,
periodontal bone reconstruction, reduction of probing
pocket depth (mean ± SD, 0:75 ± 5:5mm), and no adverse
reactions after 12 months [189]. PDLSCs were filled into
10 patients with periodontal bone defects, and periodontal
probing depth was reduced (3:2 ± 1:9mm) while radio-
graphic bone height was increased (2:3 ± 1:8mm) in all 10
cases without serious adverse reactions in a clinical trial after
6 months [190]. The application of DMSCs is an opportu-
nity for regenerative medicine, including the treatment of
dental caries, pulp necrosis, periapical disease, and so on.
However, the mechanism of the biology and regenerative
ability of DMSCs requires further study.

Methylation modifications tightly and precisely regulate
the fate of SC differentiation. For example, DNMT-mediated
DNA methylation is essential for ESC differentiation [191].
Because of the lack of maintenance of DNMT1, extensive
nonCpG methylation at CpA dinucleotides exists in ESCs
[192]. Moreover,METTL3-/- mice showed abnormal differen-
tiation of ESCs in vitro. METTL3 is a writer of m6A RNA
methylation that can enhance the differentiation and reduce
the self-renewal of ESCs [193, 194]. Furthermore, methylation
modifications of SCs have been applied to clinical therapies. 5-
AZA, as a DNMT inhibitor targeting brain cancer SCs, has
been used in phase I trials to treat brain cancer [53]. It is also
used to treat juvenile mononuclear leukemia (JMML) in con-
junction with allogeneic hematopoietic stem cell transplanta-
tion (HSCT).

Recently, studies related to the cell proliferation and
immune regulation of DMSCs by methylation modifications
have attracted more attention [157, 158]. For example, the
methyltransferase SETD1B catalyzed H3K4 histone tri-
methylation when DMSCs were stimulated by LPS, which
increased H3K4me3 of gene promoters on IL-1β and IL-6,

thus activating inflammatory signaling pathways and releas-
ing inflammatory cytokines [125]. Knockdown of METTL3
and TET2 downregulated MyD88 and inhibited LPS-
induced inflammatory responses in DPSCs [145, 157].
Therefore, understanding the regulation of methylation
modifications on the immunoinflammatory responses
involved in DMSCs in periodontitis contributes to further
study of the mechanism of methylation on inflammation.

Increased DNA methylation and histone methylation
have been reported to regulate the osteogenic differentiation
of DMSCs, including PDLSCs, DPSCs, DFSCs, and SCAPs.
More attention should be given to the regulation of RNA
methylation in DMSCs. Additionally, further studies are also
needed to study the methylation modification of DMSC pro-
liferation, autophagy, apoptosis, and migration. Current
studies still focus on animal experiments. For instance,
DLX3 knockout in Wnt1-cre neural crest deletion mice
causes major dentin defects [195]. METTL3 conditional
knockout mice present molar root dysplasia [159]. Glucose
inhibited the activation of DNMT1 and TNFR-1 [118], while
TNF-α receptor p55-deficient mice showed less alveolar
bone loss in periodontal tissues [196]. Kdm3C KO mice
were more sensitive to LPS and showed increased alveolar
bone loss [197]. Osr2-Cre; Ezh2fl/fl mice exhibited EZH2
participation in root patterning during molar root develop-
ment [198]. In the future, more studies focusing on the
methylation modifications of DMSCs, especially applica-
tions in tissue engineering and regulation of inflammation,
are needed. These studies provide the basis for the therapy
of oral disease and tissue regeneration applications.
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Inflammation can influence the pluripotency and self-renewal of mesenchymal stem cells (MSCs), thereby altering their cartilage
regeneration ability. Sprague-Dawley (SD) rat bone marrow mesenchymal stem cells (BMSCs) were isolated and found to be
defective in differentiation potential in the interleukin-1β- (IL-1β-) induced inflammatory microenvironment. Glycogen
synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase that plays a role in numerous cellular
processes. The role of GSK-3β in inflammation may be related to the nuclear factor-κB (NF-κB) signaling pathway and the
Wnt/β-catenin signaling pathway, whose mechanism remains unclear. In this study, we found that GSK-3β can inhibit
chondrogenesis of IL-1β-impaired BMSCs by disrupting metabolic balance and promoting cell apoptosis. By using the
inhibitors LiCl and SN50, we demonstrated that GSK-3β regulates the chondrogenesis via the NF-κB and Wnt/β-catenin
signaling pathways and possibly mediates the cross-reaction between NF-κB and β-catenin in the nucleus. Given the molecular
mechanisms of GSK-3β in chondrogenic differentiation in inflammation, GSK-3β is a crucial target for the treatment of
inflammation-induced cartilage disease.

1. Introduction

Articular cartilage damage is a frequent clinical problem
with joint swelling and pain [1]. As the main character
of degenerative joint diseases, mainly osteoarthritis and
chronic inflammatory joint disease, such as rheumatoid
arthritis, it is important to study the mechanism of carti-
lage damage and how to promote cartilage repair [2, 3].
Bone marrow mesenchymal stem cells (BMSCs) can be
induced to differentiate into chondrocytes under certain
conditions, therefore they have a potential application in

the treatment of cartilage damage, inflammation, and other
cartilage diseases [4, 5].

Glycogen synthase kinase-3β (GSK-3β) is a serine/thre-
onine-protein kinase involved in many intracellular func-
tions [6]. And it is important in regulating the activity of
nuclear factor-κB (NF-κB) [7, 8]. The NF-κB signaling path-
way plays an essential role in inflammation by regulating the
transcription of genes involved in cell growth and cell death.
It is reported that NF-κB influences chondrogenic differenti-
ation by down-regulating the mRNA levels of Sox9, a chon-
drogenic transcription factor [9]. Meanwhile, the expression
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of NF-κB p65 in growth plate chondrocytes has been shown
to facilitate growth plate chondrogenesis [10].

In addition, GSK-3β earmarks β-catenin for degradation
by the proteasome, which mediates the Wnt/β-catenin sig-
naling pathway. The Wnt/β-catenin signaling pathway
widely participates in cellular differentiation, especially in
chondrogenesis and osteogenesis [11, 12]. And aberrations
in the Wnt/β-catenin signaling pathway are often associated
with defective cellular differentiation. However, the role of
GSK-3β in the BMSCs chondrogenesis in IL-1β-induced
inflammation has not been fully described, and the under-
ling mechanisms deserve exploring.

In this study, we investigated the effect of GSK-3β on IL-
1β-impaired chondrogenesis of BMSCs. Meanwhile, we used
LiCl, an inhibitor of GSK-3β, to explore the regulation of
GSK-3β on the NF-κB and Wnt/β-catenin signaling path-
ways. Furthermore, SN50, a specific inhibitor of NF-κB
translocation, was used to verify the cross-reaction between
NF-κB and β-catenin in the nucleus.

2. Materials and Methods

2.1. Cell Culture and Chondrogenic Differentiation. Sprague-
Dawley (SD) male rat BMSCs were purchased from Cyagen
Biosciences (RASMX-01001) and were cultured with
DMEM/F12 medium (BOSTER, PYG0084) containing 10%
fetal bovine serum (Gibico, 10100147) at 37°C with 5%
CO2 in a humidified incubator. BMSCs were passaged
according to the usual method when they were 90% conflu-
ent, and the third passage was used in the experiments.
Approximately 2:5 × 105 BMSCs were transferred into a
15mL reaction tube and centrifuged at 150 g for 5min at
room temperature. After incubation in 0.5mL chondrogenic
differentiation medium (CDM; Cyagen Biosciences,
RAXMX-90041) at 37°C with 5% CO2 for 24 h, the pellets
had a round morphology and floated within the medium.
Then based on previous researches, the pellets were stimu-
lated with 10 ng/mL IL-1β (PeproTech, 211-11B), 10 nM
GSK-3β (Creative BioMart, 2728R), 10mM LiCl (Sigma-
Aldrich, L9650), and/or 15μM SN50 (MedChemExpress,
HY-P0151) [13–16]. And the CDM was carefully replaced
every 2-3 days. After 3 weeks, the pellets were collected
and chondrogenic differentiation was evaluated. In addition,

BMSCs were seeds at 1 × 105 cells per well in 6-well plates.
After incubation for 24h, the medium was change to the
CDM, and BMSCs were stimulated at the same regimen
described above. On day 3, BMSCs were harvested to detect
apoptosis and explore the mechanisms.

2.2. Histological Analysis of Chondrogenic Pellet. The pellets
were washed with PBS, fixed with 4% paraformaldehyde
for three hours and prepared for paraffin embedding. Then
pellets were fixed to a paraffin block and 3μm sections were
obtained using a microtome. For Alcian blue staining, sec-
tions were incubated in 1% Alcian blue solution for 30
minutes. For immunofluorescent staining, sections were
incubated with 10% donkey serum for 30min after dewaxing
and antigen retrieval. Then sections were incubated with
anti-Col 2a antibody (Santa Cruz Biotechnology, sc-52658,
1 : 50) overnight at 4°C. The next day, sections were incu-
bated with FITC conjugated secondary antibody at 37°C
for 1 h in the dark. Finally, sections were incubated with 4′
,6-diamidino-2-phenylindole (DAPI; Solarbio, C0065) for
5min and then visualized under a fluorescence microscope
(Nikon, Japan).

2.3. DMMB Assay of GAG. At the end of the experiment, the
conditioned medium was collected, and glycosaminoglycan
(GAG) was quantified using a dimethyl-methylene blue
(DMMB; Sigma-Aldrich, USA) assay. Briefly, for each well
of 96-well plate, 40μL sample or standard was mixed with
250μL DMMB solution and incubated at 37°C for 1 h.
525 nm absorption was measured on a microplate ELISA
reader. The amount of GAG was calculated by the OD value
according to the chondroitin sulfate (Sigma-Aldrich, USA)
standard curve.

2.4. RNA Extraction and qRT-PCR Analysis. Total RNA was
extracted from the pellets using Trizol reagent (Invitrogen,
USA) according to the manufacturer’s protocol. Reverse
transcription was performed using a Superscript III first-
strand cDNA synthesis kit (Thermo Fisher Scientific,
USA). The expression levels of chondral-related genes
Sox9, Collagen 2a, and Aggrecan were assessed by quantita-
tive real-time PCR with SYBR-Green master mix (Thermo
Fisher Scientific, USA). GAPDH was selected as an internal

Table 1: The information of primers.

Gene Sequences

Sox9
Forward 5′-GTGGGAGCGACAACTTTACC-3′
Reverse 5′-GCGAGCACTTAGCAGAGGC-3′

Collagen 2a
Forward 5′-CACCCAGAGTGGAAGAGCG-3′
Reverse 5′-TCAGTGGACAGTAGACGGAGGA-3′

Aggrecan
Forward 5′-CAAACAGCAGAAACAGCCAAGT-3′
Reverse 5′-GAAGGCATAAGCATGTGAAAGTG-3′

GAPDH
Forward 5′-AACGACCCCTTCATTGACCTC-3′
Reverse 5′-CCTTGACTGTGCCGTTGAACT-3′
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control. Gene expression levels were normalized to GAPDH
by using the ΔΔCtmethod. The primers are listed in Table 1.

2.5. Western Blotting Analysis. Total proteins were collected
from the pellets or BMSCs. And the Nuclear and Cytoplas-
mic Protein Extraction Kit (Beyotime, P0027) was used to

extract proteins from BMSCs. Proteins were separated in
10% SDS-PAGE and transferred to PVDF membranes
(Millipore, USA). Then membranes were blocked with 5%
BSA for 1 h at room temperature and incubated with pri-
mary antibody overnight at 4°C. Specific bands were
detected with an HRP-conjugated secondary antibody and

Control IL

800 𝜇m

(a)

0.0
IL-1 – +

0.5

Re
la

tiv
e i

nt
en

su
ty

1.0

1.5

⁎

(b)

0.0

0.2

IL-1 – +

0.4

G
AG

 as
sa

y 
(u

g/
m

l) 0.8

0.6

1.0 ⁎

(c)

0.0

Contro
l

IL-1

0.5

1.0

1.5

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n
(F

ol
d 

ch
an

ge
)

⁎⁎

Contro
l

IL-1

⁎⁎

Contro
l

IL-1

⁎⁎

Sox9
Col 2a
Aggrecan

(d)

kDa

70Sox9

Col 2a

Aggrecan

GAPDH

IL-1 – +

120

250

37

(e)

0

1

2

3

4

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n

Contro
l

IL-1

⁎

Sox9
Col 2a
Aggrecan

Contro
l

IL-1

⁎

Contro
l

IL-1

⁎⁎

(f)

Figure 1: Chondrogenic differentiation of BMSCs in an IL-1β-induced inflammatory microenvironment. (a) and (b) Representative images
and intensity quantification of Alcian blue staining. (c) The GAG content in the culture medium. The expression level of Sox9, Collagen 2a
and Aggrecan were detected by qRT-PCR (d) and western blotting (e) and (f). All results are expressed as the mean ± SD (n = 3). NS: not
significant, ∗P < 0:05 and ∗∗P < 0:01. Bar = 800 μm.
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Figure 2: GSK-3β disrupts metabolic balance of IL-1β-impaired BMSCs. (a) Representative immunofluorescence images of collagen 2a. (b)
The GAG content in the culture medium. (c) The expression level of Sox9, C and Aggrecan were detected by qRT-PCR (c) and western
blotting (d) and (e). All results are expressed as the mean ± SD (n = 3). NS: not significant and ∗P < 0:05. Bar = 1000 μm.

4 Stem Cells International



37

16

26

20
kDa

Bax

Bcl-2

Survivin

LiCl +
–
+

–
+
+

–
–
+

+
–
–

–
+
–

–
–
–

GSK-3𝛽
IL-1

GAPDH

(a)

0.0

0.5

1.0

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n

1.5

IL-1

LiCl
GSK-3𝛽

–

–
–

–

–
+

–

+
–

+

–
–

+

–
+

+

+
–

Bcl-2/Bax
Survivin

⁎

⁎

⁎

–

–
–

–

–
+

–

+
–

+

–
–

+

–
+

+

+
–

⁎

⁎

⁎

(b)

Caspase 9 37

kDa

37

37

19

19

Caspase 3

Cleaved caspase 9

Cleaved caspase 3

GAPDH

IL-1 –
–
–

+
–
–

+
+
–

+
–
+LiCl

GSK-3𝛽

(c)

0.0

0.5

1.0

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n

1.5

IL-1

LiCl
GSK-3𝛽

–

–
–

+

–
–

+

–
+

+

+
–

Cleaved caspase 9/Casepase 9
Cleaved caspase 3/Casepase 3

⁎

⁎
⁎

–

–
–

+

–
–

+

–
+

+

+
–

⁎

⁎
⁎

(d)

0.23 2.82

95.94

100 101 102 103 104
100

101

102

103

104

1.00

4.47 18.97

66.77

100 101 102 103

Annexin V-FITC

PI

104
100

101

102

103

104

9.80

2.95 30.33

46.71

100 101 102 103 104
100

101

102

103

104

20.01

2.41 10.47

84.63

100 101 102 103 104
100

101

102

103

104

2.50

IL-1

LiCl
GSK-3𝛽

–

–
–

+

–
–

+

–
+

+

+
–

(e)

0

20Ap
op

to
sis

 ra
te

 (%
)

40

60

80

IL-1 –
–
–

+
–
–

+
+
–

+
–
+LiCl

GSK-3𝛽

⁎

⁎

⁎

(f)

Figure 3: Continued.
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were visualized by an enhanced chemiluminescence kit. The
expression of protein was normalized to GAPDH (Biotech-
nology, 60004-1-Ig) or Histone (Abcam, ab179) using Image
Lab software (Bio-Rad, USA). For total proteins from the
pellets, primary antibodies against Sox9 (CST, 82630), Col
2a, and Aggrecan (Biotechnology, 13880-1-AP) were used.
For total proteins from BMSCs, primary antibodies against
Bax (CST, 14796), Bcl-2 (Abcam, ab196495), Survivin
(CST, 2808), caspase 9 (CST, 9508), cleaved caspase 9
(CST, 9507), caspase 3 (CST, 9662), cleaved caspase 3
(CST, 9661), IKKβ (CST, 8943), p-IKKα/β-Ser176/Ser180
(CST, 2697), IκBα (CST, 9242), p-IκBα-Ser32 (CST, 2859),
NF-κB p65 (CST, 8242), p-NF-κB p65 (CST, 3033), β-
catenin (CST, 8480), p-β-catenin (CST, 4176), GSK-3β
(CST, 12456), and p-GSK-3β (CST, 5558) were used. For
nuclear and cytoplasmic protein from BMSCs, primary anti-
bodies against NF-κB p65 and β-catenin were used.

2.6. Apoptosis Evaluation. The apoptotic rate of BMSCs was
determined using the flow cytometry (FCM) analysis with
an Annexin V-FITC/PI Apoptosis kit (BD Bioscience,
USA). BMSCs were harvested and resuspended in a 500μL
binding buffer and stained with 5μL FITC Annexin V and
5μL propidium iodide (PI). After incubation for 15min,
the samples were tested using a flow cytometer (BD Biosci-
ence, USA). For each FCM analysis, 10,000 events were
recorded. Annexin V+/PI- and Annexin V+/PI+ cells were
considered as early and late phase apoptotic cells.

TUNEL staining was performed on BMSCs cultured on
12-well plates using a one-step TUNEL assay Kit (Beyotime,
China). According to the manufacturer’s instructions, the
samples were washed with PBS and fixed with 4% parafor-
maldehyde for 30min. Then the samples were incubated

with 50μL of TUNEL detection liquid for 60min at 37°C
in the dark. Finally, nuclei were stained with DAPI and sam-
ples were visualized under a fluorescence microscope.

2.7. Immunofluorescence. BMSCs were harvested and resus-
pended in PBS. The suspension was smeared to glass slide
and was dried. Cells were fixed with 4% paraformaldehyde,
permeabilized in 0.1% TritonX-100, and blocked with 3%
BSA. Thereafter, cells were incubated with the primary antibody
in blocking buffer against NF-κB p65 and β-catenin at 4°Cover-
night. The next day, cells were incubated with FITC conjugated
and TRITC conjugated secondary antibody at 37°C for 1h in
the dark. Finally, cells were stained with DAPI and visualized
under a laser confocal microscope (Olympus, Japan).

2.8. Statistical Analysis. All experimental group were inde-
pendently performed in biological triplicate. Data were pre-
sented as means ± standard deviation (SD). Statistical
analyses were performed using GraphPad Prism 8 (Graph-
Pad Software, USA). Student’s t-test was used to assess dif-
ferences between the two groups. One-way ANOVA was
used to assess differences among multiple groups. P values
<0.05 were considered statistically significant.

3. Results

3.1. Chondrogenic Differentiation of BMSCs in an IL-1β-
Induced Inflammatory Microenvironment. BMSCs were
formed into pellets and cultured in the CDM for 21 days.
To establish an inflammatory microenvironment, IL-1β
was added into the CDM from day 1. The Alcian blue stain-
ing intensity of the IL-1β group was much lower than those
of the control group (Figures 1(a) and 1(b)). And GAG

DAPI

Tunel

Merge

NC IL-1 IL-1 + GSK-3𝛽 IL-1 + Li-CL
800 𝜇m

(g)

Figure 3: GSK-3β promotes apoptosis of IL-1β-impaired BMSCs. (a)-(d) The expression level of caspase 9, cleaved caspase 9, caspase 3,
cleaved caspase 3, Bax, Bcl-2, and Survivin were detected by western blotting. Flow cytometric analysis (e) and (f) and TUNEL staining
(g) were performed to assess the number of apoptotic cells. All results are expressed as the mean ± SD (n = 3). NS: not significant, ∗P <
0:05. Bar = 800μm.

6 Stem Cells International



Ikk𝛽

p-Ikk𝛼/𝛽

I𝜅B𝛼

p-I𝜅B𝛼

NF-𝜅B p65

p-NF-𝜅B p65

GAPDH

IL-1

LiCl
GSK-3𝛽

–

–
–

+

–
–

+

–
+

+

+
–

kDa
87

87

39

39

65

65

37

(a)

0.0

0.5

1.0

1.5

2.0

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n

IL-1 –
–
–

–
–

+
+

+ +

+
–

–LiCl
GSK-3𝛽

⁎

NS

⁎⁎

–
–
–

–
–

+
+

+ +

+
–

–

–
–
–

–
–

+
+

+ +

+
–

–

⁎

NS

⁎⁎

⁎
⁎

⁎⁎

p-Ikk𝛼/𝛽/Ikk𝛽
p-I𝜅k𝛼/I𝜅k𝛼
p-NF-𝜅B p65/NF-𝜅B p65

(b)

NF-𝜅B p65

NF-𝜅B p65

GAPDH

65

kDa

37

37

65

Histone

IL-1

LiCl
GSK-3𝛽

–
–
–

–
–

+
+

+ +

+
–

–

Cytosol

Nucleus

(c)

0.0

0.5

N
F-
𝜅

B 
p6

5 
nu

cl
eu

s/
cy

to
so

l

1.0

1.5

2.0

IL-1 –
–
–

+
–
–

+
+
–

+
–
+LiCl

GSK-3𝛽

⁎⁎

⁎

⁎⁎

(d)

NF-𝜅B p65

NF-𝜅B p65

GAPDH

Histone

IL-1

SN50
GSK-3𝛽

+

–
–

+

–
+

+

+
–

+

+
+

65
kDa

37

17

65

Cytosol

Nucleus

(e)

0.0

0.5N
F-
𝜅

B 
p6

5 
nu

cl
eu

s/
cy

to
so

l

1.0

2.0

1.5

2.5

3.0

IL-1 +
–
–

+
+
–

+
–
+

+
+
+SN50

GSK-3𝛽

⁎

NS

NS

⁎

(f)

Figure 4: GSK-3β regulates the NF-κB signaling pathway in IL-1β-induced inflammation. Phosphorylation and/or total expression of
IKKβ, IKKα/β, IκBα, and NF-κB p65 (a) and (b) were detected by western blotting. Visualization and quantification of the expression of
cytoplasmic (c) and (d) and nuclear (e) and (f) NF-κB p65. All results are expressed as the mean ± SD (n = 3). NS: not significant, ∗P <
0:05, and ∗∗P < 0:01.
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quantity in the conditioned medium also decreased in the IL-
1β group (Figure 1(c)). Besides, IL-1β significantly decreased
the expression of Sox9, Collagen 2a (Col 2a), and Aggrecan
at both gene and protein levels (Figures 1(d)–1(f)).

3.2. GSK-3β Disrupts Metabolic Balance of IL-1β-Impaired
BMSCs. Immunofluorescence staining showed that compared
with the IL-1β group, the expression of Collagen 2a was
decreased in the GSK-3β+IL-1β group, while was significantly
increased in the LiCl+IL-1β group (Figure 2(a)). Compared
with the control group, GAG quantity in the conditional
medium was not changed by GSK-3β or LiCl alone, and
GSK-3β enhanced and IL-1β-induced decline in GAG quan-
tity, while LiCl reversed this trend (Figure 2(b)). Accordingly,
the expression of Sox9, Col 2a, and Aggrecan were signifi-
cantly decreased in the GSK-3β+IL-1β group than in the IL-
1β group at both gene and protein levels (Figures 2(c)–2(e)).

3.3. GSK-3β Promotes Apoptosis of IL-1β-Impaired BMSCs.
Western blotting analysis was used to detect the expression
of Bax, Bcl-2, and Survivin (Figures 3(a) and 3(b)). We found
that GSK-3β or LiCl only had no significant effect on the
expression of these proteins (although LiCl reduced Bax
expression, there was no statistical significance), and IL-1β
increased Bax expression and inhibited Bcl-2 and Survivin
expression. At the same time, the cointervention with GSK-
3β enhanced these trends, while LiCl reversed them. Mean-
while, the expression of caspase 9, cleaved caspase 9, caspase
3, and cleaved caspase 3 were also detected, and the results
were consistent (Figures 3(c) and 3(d)). In addition, the flow
cytometric analysis (Figures 3(e) and 3(f)) and TUNEL stain-
ing (Figure 3(g)) were performed to assess the number of apo-
ptotic cells. IL-1β markedly increased the cell apoptosis
compared to the control group, and the addition of GSK-3β
exacerbated this effect, while LiCl reversed it.

3.4. GSK-3β Regulates the NF-κB and Wnt/β-Catenin
Signaling Pathways in IL-1β-Induced Inflammation. To
explore the possible molecular mechanism, we investigated

the NF-κB and Wnt/β-catenin signaling pathways in BMSCs.
In this study, IL-1β significantly stimulated the phosphoryla-
tion of IKKα/β, IκBα, and NF-κB p65, which was enhanced
by the addition of GSK-3β. Interestingly, only NF-κB phos-
phorylation was reversed by LiCl (Figures 4(a) and 4(b)). In
addition, we found that the phosphorylation of GSK-3β was
significantly increased in the LiCl+IL-1β group. And com-
pared with the IL-1 group, the phosphorylation of β-catenin
was increased in the GSK-3β+IL-1β group while decreased
in the LiCl+IL-1β group (Figures 5(a)–5(d)).

3.5. GSK-3βMediates the Cross-Reaction between NF-κB and
β-Catenin in the Nucleus. Furthermore, the expression of
NF-κB and β-catenin in the cytosol and nucleus were
detected. IL-1β increased NF-κB expression in the nucleus,
and GSK-3β enhanced this trend, while LiCl and SN50
reversed it (Figures 4(c)–4(f)). Meanwhile, IL-1β decreased
β-catenin expression in the nucleus, and GSK-3β enhanced
this trend, while LiCl reversed it (Figures 5(e) and 5(f)).
Newly, after cointervention with SN50, a specific inhibitor of
NF-κB translocation, β-catenin expression in the nucleus
was significantly increased (Figures 5(g) and 5(h)). Mean-
while, immunofluorescence was performed (Figure 6). The
results showed that GSK-3β promoted the IL-1β-induced
nuclear translocation of NF-κB p65, while LiCl and SN50
decreased it. And in the IL-1β group and the GSK-3β+IL-1β
group, the green fluorescence signal (β-catenin) could be
clearly observed in the cytoplasm, but there was almost no sig-
nal in the nucleus. However, in the LiCl+IL-1β group, the
SN50+IL-1β group and the SN50+GSK-3β+IL-1β group, the
green fluorescence signal in cytoplasm was significantly
reduced, and only slight signal was observed in the nucleus.

4. Discussions

Bone marrow mesenchymal stem cells can be induced to dif-
ferentiate into chondrocytes under certain conditions, which
has potential application value in the treatment of cartilage
diseases [17]. In agreement with previous studies, we showed
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Figure 5: GSK-3β regulates the Wnt/β-catenin signaling pathway in IL-1β-induced inflammation. Phosphorylation and total expression of
GSK-3β (a) and (b) and β-catenin (c) and (d) were detected by western blotting. (e)-(h) visualization and quantification of the expression of
nuclear β-catenin. All results are expressed as the mean ± SD (n = 3). NS: not significant, ∗P < 0:05, and ∗∗P < 0:01.
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that IL-1β suppresses the chondrogenesis ability and carti-
lage matrix synthesis ability of BMSCs and also induces
BMSCs apoptosis during the process of chondrogenesis
[13, 17–20]. It has been shown that GSK-3β is extensively
involved in the regulation of glucose metabolism, cell pro-
liferation, differentiation, migration, and apoptosis [21–25]
and plays a key role in chondrogenic differentiation [26].
In this study, we found GSK-3β exacerbated the effects
detected by IL-1β stimulation, which could be reversed
by LiCl.

We further investigated the molecular mechanisms of
GSK-3β affecting chondroblast differentiation and apoptosis
in an inflammatory microenvironment. Previous studies
have confirmed the involvement of GSK-3β in the regulation
of NF-κB activation [7, 8]. Therefore, the regulation of NF-
κB signaling pathway by GSK-3β was first detected. It was
found that GSK-3β could activate NF-κB signaling pathway,
and only NF-κB phosphorylation was reversed by LiCl. Sim-
ilarly, Schwabe and Brenner reported that treatment of TNF-
α-stimulated cells with LiCl resulted in a decrease of the NF-
κB-dependent gene transcription, but did not affect IκBα
degradation or IKK activity [27]. Meanwhile, in our study,
GSK-3β promoted nuclear translocation of NF-κB p65,
which was attenuated by inhibition of GSK-3β activity
(LiCl) or NF-κB translocation inhibitor (SN50).

A large number of studies have shown that the Wnt/β-
catenin signaling pathway plays an essential role in regulat-
ing cell proliferation and differentiation [28–31], and GSK-
3β is the crucial regulator of the Wnt/β-catenin signaling

pathway [30]. Next, we examined the regulation of GSK-
3β on Wnt/β-catenin signaling pathway. As expected,
GSK-3β upregulated the phosphorylation of β-catenin,
while LiCl inhibited the activity of GSK-3β and thus down-
regulated the phosphorylation of β-catenin. Furthermore,
we detected the expression of β-catenin in the nucleus and
found that it was significantly decreased after GSK-3β stim-
ulation. This may be due to the phosphorylation of β-
catenin leading to its degradation, thereby reducing the
nuclear translocation [32]. Importantly, the expression of
β-catenin in the nucleus was increased when nuclear trans-
location of NF-κB p65 was specifically inhibited by SN50,
suggesting a cross-reaction between NF-κB and β-catenin
in the nucleus.

In summary, our study confirmed the role of GSK-3β in
chondrogenic differentiation of BMSCs in IL 1β-induced
inflammatory microenvironment. Additionally, our research
provides a new insight into the molecular mechanisms that
GSK-3β regulates the chondrogenesis via NF-κB and Wnt/
β-catenin signaling pathways and mediates the cross-
reaction between NF-κB and β-catenin in the nucleus
(Figure 7).

Data Availability

The original contributions presented in the study are
included in the article; further inquiries can be directed to
the corresponding author.
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Tendons are essential components of the musculoskeletal system that links the skeletal muscle to the skeleton. This dense
connective tissue exhibits great plasticity. Therefore, research on the influence of types of exercise, including acute and long-
term training, on the structural and mechanical properties of tendons in athletic and sedentary populations is of critical
importance in the design of scientific-based exercise plans and effective tendinopathy treatment. Here, we review recent studies
on the relationship between exercise and tendon health and tendinopathy repair to provide a general understanding of how
exercise may reshape tendons.

1. Introduction

Tendon injury, especially patellar and Achilles tendon inju-
ries, exhibits a high prevalence in professional athletes and
impacts sports performance [1]. In sedentary populations
and those who undergo repetitive overload of forearms dur-
ing work, microruptures induced by acute mechanical stim-
ulation and the subsequent unsolved chronic inflammation
cause sporadic pain and disability [2]. Exercise has a close
relationship with tendon homeostasis and injury repair.
Proper exercise training may improve the mechanical func-
tion of tendons, while acute excessive loading poses a threat
to tissue integrity. With increased understanding of tendon
tissue characteristics, more effective exercise plan could be
designed for different populations. Regarding the influence
of exercise on tendons, it should be clearly noted that the
modes, intensity, and frequency of exercise are all key
parameters that need to be taken into account because differ-
ent exercise executions involve various components of the
musculoskeletal system and pose distinct challenges to
energy metabolism and extracellular matrix (ECM) remod-
elling. On the other hand, the tendons in different locations
of the body may experience force transmission to variable

extents. Apparently, tendons that are mostly used and
injured, for instance, the patellar tendon and Achilles ten-
don, attract most of the attention of researchers.

To better monitor and reflect the situation of tendons,
many methodologies have been developed and utilized.
The mechanical properties of the tendon including stiffness,
tensile strength, cross-sectional area (CSA), slack length, and
elasticity are assessed by protocols based on ultrasound [3].
In noninvasive ultrasound elastography, an ultrasound
probe emitting external compression of the tissue is used
to attain real-time measurement of the mechanical proper-
ties. Ultrasound has been applied in the in vivo assessment
of different tendons [4, 5]. Moreover, measurement of the
biomechanical properties of tendon grafts serves as a signif-
icant reference for surgical treatment with transplantation.
Classical tensile testing machines and alternative video trac-
ing measurements with more accuracy realized by digital
cameras are applied in the examination of the mechanical
properties of tendon grafts [6].

Different exercise styles often affect the rehabilitation
care of patients with tendon injury. Previous studies have
shown that patients with tendon injury usually progress
from low-intensity exercise to high-intensity exercise, with
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increasing tendon load that patients must endure before
fully resuming high-demand activities [7]. While tendon
loading has been shown to improve patient symptoms, nor-
malize tendon structure, and optimize functional perfor-
mance, both acute and chronic Achilles tendon injuries
have negative consequences when overloading or underload-
ing [8]. Therefore, research on the influence of types of exer-
cise, including acute and long-term training, on the
structural and mechanical properties of tendons in athletic
and sedentary populations is of critical importance in the
design of scientific-based exercise plans and effective tendi-
nopathy treatment. Here, we review recent studies on the
relationship between exercise and tendon health and tendi-
nopathy repair to provide a general understanding of how
exercise may reshape tendons.

2. The Physiology and Pathology of Tendon

2.1. The Anatomical Structure of the Tendon. Before investi-
gating the relationship between exercise and tendon tissue, a
comprehensive understanding of the physiology and pathol-
ogy of tendons is necessary (Figure 1). Located in many
parts of the body, tendons are a crucial component in the
locomotion system, which connects skeletal muscle and
bone to play a mechanical stimulation transition role. In
addition to force transmission, the tendon also absorbs
shock and stores energy. Frequent use and heavy loading

reduce the energy the tendon absorbs but increase the adap-
tivity to heavy loading, whereas a low rate of loading
increases the viscosity of the tendon and the energy it
absorbs. Given its abundance in ECM, normal tendon func-
tion largely depends on the homeostatic metabolism of these
extracellular constituents. In addition to the ECM, the pro-
cess of tendon development and regeneration is tightly
regulated by transcription factors and growth factors belong-
ing to different signalling pathways [9]. In the three germ
layers during embryonic development, the origination of
tendon includes ectoderm and mesoderm. Craniofacial ten-
dons develop from neural crest cells of the ectoderm [10].
While tendons in the limb bud derived from the tendon pro-
genitor cells in mesoderm, whose development are regulated
by the signals of ectoderm and bone morphogenetic protein
(BMP) signaling [11].

Linking the skeletal muscle to the bone, the tendon
transmits the mechanical force from the skeletal muscle to
the bone, enabling locomotion. Similar to the structure of
the skeletal muscle, the fibrils in tendons have a hierarchical
relationship. The fibrils composed of type I collagen in a
triple-helical form fibre, then fascicles, and finally the tendon
[12]. To form fibrils, tropocollagen is synthesized in fibro-
blasts secreted and cleaved extracellularly to become collagen.
As the highest hierarchy in the tissue, fascicles are enfolded by
a mesh of loose connective tissue, namely, endotenon. The
endotenon structure enables the compartmentalization of
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Endotenon Peritenon

Epitenon
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Primary fiber bundle
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Figure 1: The anatomy structure of tendon. The cell composition including tenocytes, tenoblasts, and tendon-derived stem cells (TDSCs)
and the fibre organization of tendon and the enveloping structure are presented.
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fibre so that other components including blood vessels, nerves,
and lymphatics can infiltrate and nurture the fibre. The epite-
non, surrounding the whole tendon, is continuous throughout
the inner surface with the endotenon. In the outermost layer,
fatty, the areolar tissue is penetrated by nerves and vessels
and surrounded by paratenon, which allows the tendon to
move freely in the surrounding tissues without friction. The
thickness and organization of the fibril as well as the number,
size, and orientation of the collagen fibre coordinately deter-
mine the strength and viscoelasticity of the tendon. In addition
to type I collagen, the other ECM components in the fascicles
include proteoglycans, glycoproteins, elastin, and many other
types of collagens, which undergo reprogramming and
remodelling in the context of long-term mechanical stimula-
tion or injury healing [13]. As the cell type that dominates in
mature tendon tissues, tenocytes take a great responsibility
in ECM production, maintenance, and remodelling. It is
through regulating the extracellular environment that teno-
cytes sense and respond to mechanical stimulation [14]. Dur-
ing degradation, the enzymes for protein cleavage secreted out
of the cells so that the resulted digestion products can be
phagocytosed by tenocytes. These recycled collagen fibrils
may be used for new ECM formation intracellularly [15].

Away from the middle part of the tendon, the heteroge-
neity increases given the formation of junctions that link
the tendon to the skeletal muscle and the skeleton,
namely, the myotendinous junction and osteotendinous
junction, respectively. Between the muscle and the tendon,
the myotendinous junction receives stress during contractile
force transmission, where the fibre from the tendon inserts
into the muscle body to increase the stability of the struc-
ture. The fibrocartilaginous tissue that connects the tendon
and the skeleton is also called an enthesis. A large amount
of type II collagen produced by chondrocyte-like cells in this
area shapes the different mechanical properties and patho-
genesis of enthesis and tendon, although injuries occurring
in both areas are not easily repaired completely.

2.2. Blood Vessels and Nerves in the Tendon. Although the
situations are not all the same in all the tendons in the body,
generally, the tendons are relatively poorly vascularized with
more dependency on synovial fluid diffusion to provide
nutrition. The myotendinous junction, enthesis, and sur-
rounding connective tissue such as the paratenon serve as
the origin of blood supply for the tendon [16]. Blood vessels
from the perimysium, periosteum, paratenon, and mesoten-
don penetrated the endotenon and epitenon into the fibre
and those blood vessels from the paratenon predominating
in the middle part of the tendon. As a crucial source of nutri-
tion and an approach to metabolite exchange, the blood ves-
sel pattern changes when tendon injury results from acute
friction, rupture, torsion, or compression, especially in fre-
quently used tendons such as Achilles tendons. The pheno-
types are controversial. Specifically, hypovascularity was
found in some degenerated or ruptured tendons, whereas
large blood vessels were found in some tendinopathy cases.
Of note, blood vessels are not always a good sign for tendon
injury healing. The paratenon is also an origin of sensory
nerves for the tendons. The nerve plexuses penetrate the epi-

tenon and branch inside the tendon fibre [17]. The innerva-
tion of tendon tissue proper is described as relatively
scarce [18].

2.3. Cell Composition of Tendon. Mature tendons are com-
posed of dense connective tissue that is hypocellular, with
most of the cells in the tissue being active and being highly
proliferative and fibroblast-like tenoblasts and terminally
differentiated tenocytes. The tenocytes are spindle-shaped
flat cells lying in rows between collagen fibres, forming an
exquisite three-dimensional network in the ECM to main-
tain cell–cell communication [19]. The highly developed
rough endoplasmic reticulum in the tenoblasts allows the
efficient production of collagen and other ECM. Tenocytes
are tenospecific fibroblasts responsible for the production,
maintenance, repair, and modification of the ECM [20].
Scleraxis (Scx) and tenomodulin (TNMD), as relatively spe-
cific molecular markers of tendons, are often used for the
identification of tendon cells, and these proteins play a cen-
tral role in the development and maturation of tendons [21].
Cserjesi et al. discovered Scx in 1995 using the yeast two-
hybrid system for cell-type-specific proteins. Scx is expressed
in early embryonic development and regulates tendon mat-
uration [20]. Tenomodulin is a class of type II transmem-
brane proteins first reported by Shukunami et al. that can
regulate the proliferation of tendinocytes and the maturation
of collagen fibre [20, 22]. With the explosive-increase in the
stem cell research field and proposed bioengineering tissue
repair concepts, the search for a cell population with excel-
lent regenerative capability in tendon tissue is ongoing.
The identification of tendon-derived stem cells (TDSCs) in
animal models and humans is necessary for the elucidation
of the cell hierarchy development trajectory of tendons and
the identification of new cell sources for bioengineering
approaches in tendon injury treatment.

TDSCs were first isolated from human hamstring and
mouse patellar tendons in 2007, after which TDSCs were
identified in many other animals including rats and rabbits.
TDSCs express various markers, including octamer-binding
transcription factor-4 (Oct-4), Nanog, nucleostemin (NS),
stage-specific embryonic antigen (SSEA)-4, c-Myc, and
SRY-box transcription factor (Sox) 2 [23]. Here, we focus
on the relationship between exercise interference and ten-
dons, and more information about the labelling of the
TDSCs can be found elsewhere.

2.4. Tendon Mechanobiology. Macroscopically, exercise
stimulates the tendon mechanistically. Upon activation of
molecular signalling pathways, mechanical stimulation
signals are conveyed by the ECM deep into the cell and con-
verted to intracellular biological signals by mechanosensitive
receptors in the cell plasma membrane. Investigations of the
response of tendon cells to mechanical stimulation and the
underlying mechanism are of significance for guiding exer-
cise interference in tendon remodelling and tendinopathy
treatment. Conversely, the observation and summary of the
adaptation of tendons to mechanical loading would
enlighten research on the pathogenesis of tendinopathy.
With the development of different modes of mechanical
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stimulation including compression and tension and bioengi-
neering methods to construct cultured tendon tissue, an
increasing number of molecules and related signalling path-
ways involved in the mechanical regulation of the tendon
have been reported.

Composed of tendon cells, strong collagen fibre, and
diverse noncollagen ECM, tendons are dynamic responders
to frequent mechanical loads. ECM remodelling during this
process influences cell function. The secretion and degrada-
tion of the ECM in tendons change sensitively after mechan-
ical stimulation to adapt to the environment and maintain
homeostasis. Appropriate mechanical force from the struc-
tures around the tendon is necessary for the development
and maturation of the tendon. Among the molecules that
participate in the regulation of tendon dynamics, scleraxis
(Scx) has been studied most. This transcription factor is
expressed specifically in progenitors and cells in all tendons.
Scx deficiency in mice results in limited use of all paws and
back muscles and a complete inability to move the tail [24].
Fibroblast growth factor (FGF) in the MAPK/ERK signalling
pathway and transforming growth factor-beta (TGFβ) in the
SMAD2/3 signalling pathway are reported to regulate the
expression of Scx [25, 26]. During injury repair, numerous
growth factors and cytokines are expressed and secreted to
fulfil the proliferation and remodelling of tendons. Crucial
transcription factors including Scx and Mohawk (Mkx) are
upregulated after injury [27]. The upregulation of the tran-
scription factors paves the way for alteration of the extracel-
lular environment. Early growth response protein 1 (EGR1)
is required for the transcription of Col1a1 [28]. Fibroblast
growth factors (FGFs) also promote the production of colla-
gens [29]. TGFβ signalling functions in ECM organization
induced tenocyte morphogenesis and the formation of myo-
tendinous junctions [19, 30]. In addition to molecules that
are directly related to tendon cells, other cell types such as
immune cells and endothelial cells and their corresponding
factors, including vascular endothelial growth factor (VEGF)
and platelet-derived growth factor (PDGF), are critical to
confer recovery ability to the tendon [31, 32]. Further mech-
anistic research would reveal more unknown factors with the
potential to be treatment targets to develop better strategies
for tendon injury repair.

3. Exercise and Tendons

3.1. Acute Exercise and Tendons. The immediate effect of a
certain mode of exercise on tendons is worthy of exploration
for several reasons. Acute exercise with excessive dose and
intensity may expose the tendon on the risk of strain injury,
partial to complete rupture, and structural destruction of the
myotendinous junction [33, 34]. Measurements and analysis
of the morphological and mechanical property changes in
tendon tissue after acute exercise serve as the basis to under-
stand the mechanism of acute tendon injury and thus to
develop effective treatment intervention for exercise and
nonexercise populations. It is also important to note that
the same exercise mode and dose may have different effects
on tendons in healthy and diseased situations due to their
tolerance and the capacity to restore after mechanical load-

ing. Furthermore, the accumulation of knowledge of tendon
mechanical properties is valuable for the prevention of acute
tendon injury and consequential disability and pain.

The stiffness of the Achilles tendon is reduced after max-
imal voluntary contractions [35, 36]. However, during exer-
cise in the stretch shortening cycle mode, including running
and hopping, the stiffness of the Achilles tendon did not sig-
nificantly change [37]. After acute eccentric exercise, the
diameter of the Achilles tendon is reduced significantly
[38, 39]. The Achilles tendons of 14 participants who under-
went acute eccentric heel drop exercise exhibit significantly
increased free tendon length and strain [40]. Generally, the
Achilles tendon responds to prolonged stretching and
repeated maximal isometric contractions of the triceps surae
with transient reduced stiffness and hysteresis, whereas the
morphological and mechanical properties do not seem to
change after stretch-shortening cycle exercise, such as tread-
mill running and hopping [41]. It is concerning that the
reduced stiffness of the tendon resulting from acute overload
may increase the probability of tendon injury.

In addition to morphological analysis, for in-depth
knowledge of the alterations in tendons after acute exercise,
protein synthesis was examined in tendons. To assess pro-
tein synthesis in human subjects, isotope labelling through
intravenous injection was employed, and the labelling of tar-
get proteins was quantified by gas chromatography–mass
spectrometry for quantification. The study showed a rapid
increase in collagen synthesis in the patellar tendon after
strenuous exercise in the young male volunteers, and the
levels peaked at 24 hours post exercise [42]. Another assess-
ment of the expression of extracellular matrix components
and related factors revealed no change in the mRNA levels
of collagens and noncollagenous matrix proteins, whereas
mRNA expression levels of insulin-like growth factor IEa
(IGF-IEa) decreased. The biopsies in this research were col-
lected from 31 healthy young men who performed one-leg
kicking at 67% of the maximum workload for 1 hour [43].
Given that an increase in collagen protein was detected in
other studies, the lack of a change in mRNA expression
may imply that acute exercise with a certain intensity may
regulate the cleavage of procollagen and metabolism of
extracellular collagen. It would be intriguing to explore the
alteration in intracellular and extracellular collagen metabo-
lism after acute exercise.

In an observation of calf Achilles tendon, isolated eccen-
tric and concentric loading with the addition of 20% body
weight of the Achilles tendon was exerted by the two limbs
separately. Sonograms collected 3-24 hours after exercise
showed that both loading conditions resulted in decreased
normalized Achilles tendon thickness, whereas eccentric
loading induced a significantly greater Achilles tendon
thickness than concentric loading. However, the transient
change after the two modes of exercise completely recovered
during a similar time course [38]. An experiment involving 6
males and 4 females reported that there is no difference in
the stiffness of Achilles tendon after a single round of hop-
ping exercise with the assessment technique ultrasonogra-
phy and MRI, although the maximum tendon force during
maximum voluntary contraction was reduced after the
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exercise [44]. Although the number of subjects in this report
was relatively small, the findings suggested that in healthy
individuals and potentially in all cases, a single round of
physiological stress level exercise did not result in mechani-
cal fatigue of the Achilles tendon.

Stretching is also necessary to adjust the state of skeletal
muscle and tendons before and after exercise. Dissection of
the function of stretching in tendon movement is important
to obtain a proper warm-up effect before and after relaxation
of concentrated mechanical loading. A study with 14 partic-
ipants (7 men and 7 women) showed that the range of
motion and maximum voluntary contraction increased after
5 rounds of 60 seconds of static stretching, whereas the
muscle-tendon stiffness decreased immediately but not at 5
or 10 minutes poststretching. The mechanical changes in the
muscle-tendon junction were attributed to changes in muscle
elongation instead of changes in tendon morphology [45].

Although experimental and clinical data have continued
to accumulate since the scientific management of the muscu-
loskeletal system attracted the attention of the public, studies
on the relationship between acute exercise and tendon
health remain blurry and controversial given variations in
the methodologies and exercise modes and doses. Moreover,
for exercise and nonexercise populations or young and old
populations, the stimulation conditions established during
the test should differ, as the tendons of these populations
are manipulated in distinct manners via different mechani-
cal properties. Regardless of the measurement used for the
tendon itself, real-time, high-resolution observation and
reflection of the mechanical state of the myotendinous and
osteotendinous junction remain lacking. Acute stretching
and shortening of the tendon also place great stress on the
junction part of the tendon, and the environment is harsh
for repair if rupture occurs due to the diversity and low
proliferation activity of the cells. It is important to develop
suggestions for injury prevention based on a basic under-
standing of the mechanical characteristics; moreover, knowl-
edge on the junction is also critical.

3.2. Long-Term Exercise and Tendons. Compared with a sin-
gle bout of exercise, long-term training with a certain fre-
quency is more likely to reshape locomotion system
components. In a study involving 40 Chinese subjects 19
to 25 years old who were divided into two groups subject
to frequent or infrequent exercise, the mean thickness of
the Achilles tendon of subjects undergoing frequent-
exercise was significantly greater than that of subjects under-
going infrequent- exercise. The same result of the CSA of the
tendon was reported in the dominant ankle [46]. Similarly,
increased CSA and stiffness of the tendon were reported
after prolonged eccentric training [47, 48]. Collectively, the
increased CSA and stiffness of the tendon was regarded as
a positive sign because this would allow the tendon to sus-
tain greater mechanical loading and store elastic energy
more efficiently. In long term, the morphological and
mechanical changes of tendons made by long-term training
reduce the stress that the tendon absorbs and decrease the
probability of tendon injury when overload occurs. Research
comparing of male athletes and Achilles tendon rupture

patients through magnetic resonance imaging and maximal
isometric plantar flexion force measurements demonstrated
that the CSA of tendons normalized by body weight was
greater in athletes accepting intermittent high loads, and
no obvious structural or loading property differences were
noted between the Achilles tendons of rupture patients and
the athlete group. The Achilles tendon of rupture patients
did not undergo greater force or stress during maximal vol-
untary isometric plantar flexion than that of the athletes
[49]. To investigate the effect of habitual long-term training
on human tendons, the researchers assessed the tendon
elongation and CSA of the patellar tendon and Achilles ten-
don of female runners and nonrunners, (n = 10). The patel-
lar tendon and Achilles tendon CSA are all comparable in
trained and untrained women [50].

The effects of long-term training in a healthy athlete
population on tendons may also result in differences in exer-
cise performance. A study of 26 healthy recreational long-
distance runners assessed alterations in tendon force and
stiffness resulting from long-term resistance training and
running economy [51]. The exercise group was subject to
an additional a resistance training intervention in their pre-
vious running training for 14 weeks, whereas the training of
the control group remained the same. Ultrasonography results
indicated that the maximum plantar flexion muscle and
tendon-aponeurosis stiffness were significantly increased in
the exercise group. In the exercise group, better running econ-
omy was reflected by reduced oxygen consumption and
energy cost.

Along with other components in the musculoskeletal
system, the tendon is a highly adaptive tissue with dynamic
changes occurring inside after the stimulation of mechanical
loading. A meta-analysis focusing on the adaptation of
human tendons to mechanical loading reviewed different
studies on human tendon adaptation to mechanical loading
[52]. Conclusions from such review may serve as an impor-
tant reference given that these findings provided more statis-
tical evidence for one topic. They found in the reviewed
research that the exercise intervention-induced changes in
tendon stiffness seem to be more attributed to material
instead of morphological properties. In this analysis, the
authors demonstrated that loading magnitude is the key ele-
ment in the loading regimens in contrast to muscle contrac-
tion type. The results from this analysis advocate for a high
loading intensity and an intervention duration that is longer
than 12 weeks for an effective exercise intervention when
studying the influence of exercise on tendon properties.

Diverse animal models simulating human exercise were
devised to investigate how exercise influences healthy or
injured tendons. The horse is a large animal model used to
study human tendon physiology and pathology. Research
observing two groups of female horses with high or low
intensity exercise training for 18 months found that the col-
lagen fibril diameter of the superficial digital flexor tendon
decreased in the high intensity group, but no change in col-
lagen content was observed. Compared with the injury-
prone equine superficial digital flexor tendon, the rarely
injured common digital extensor tendon showed lower
water content and higher elastic modulus after long-term,
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high-intensity training; however, no signs of degeneration
or mechanical property changes were noted in the superfi-
cial digital flexor tendon [53]. In one study, 24-month-old
rats were divided into three groups based on a treadmill
exercise protocol of sedentary, moderate and high intensity
for up to 12 months. However, the exercise level did not
have a significant effect on the elastic modulus parameter
of the tail tendon; however, a decreasing trend was noted
at moderate and high intensity compared with the sedentary
control group [54]. This result suggested that even long-
term exercise was unable to induce a systemic effect on
the mechanical properties of old tendons, the structures of
which become disorganized during the process of ageing.
It is not practical to expect old tendons to exhibit properties
of young tendons when exercise is employed as the only
intervention after the structure of the tendon has been
completely transformed.

Given its regulatory function in fibroblast proliferation
and type I collagen synthesis, the TGF-β superfamily is
believed to be an essential signalling pathway that partici-
pates in the adaptation of tendons to exercise stimulation
[55]. Limb formation failure in TGF-β receptor inactivation
mice provides strong evidence. Nevertheless, the spatio-
temporal control of gene activation and inactivation by
genetically modified mouse models is urgently needed to
investigate the function of TGF-β function in adult ten-
dons during types of loading interventions.

A common understanding of the mechanism in tendon
physiology and pathology depends on the uniformity of
the criteria employed in the research methodology. A myr-
iad factors of factors should be taken into account when
reviewing different research results given that the assessment
approach and resolution, the exercise dose and intensity, the
race, age, and gender of the subjects and many other factors
may lead to variable conclusions. It was even suggested by
some scientists that conditioning exercises should be per-
formed to standardize the load history of tendons before
in vivo sonographic measurements of tendon thickness.
According to their findings from 30 healthy male partici-
pants, conditioning of the Achilles tendon via resistive ankle
exercise induced alterations in tendon structure that
improved correlations between tendon thickness and body
anthropometry [56]. This detailed exploration of the exper-
imental design provided information for a more scientific
protocol to examine the relationship between tendon physi-
ology and exercise.

In the observations of tendon adaptation to acute or
habitual mechanical loading, the difference between males
and females cannot be neglected. Of note, women are more
susceptible to soft tissue injury, but the reason is unknown.
It was reported that after a bout of acute exercise, collagen
synthesis in tendons of men was upregulated but the
increase in tendons of women was less profound or absent.
Additionally, the patellar tendon of men increased in size
after long-term training, whereas no alterations were noted
in women. A lower mechanical strength and reduced rate
of connective tissue formation in tendons of women were
proposed to explain the increased risk noted in women
[57]. Regarding the biological mechanism, ethinyl oestradiol,

a synthetic oestrogen, inhibits the acute exercise-induced
collagen synthesis in female tendons [58]. More specific
mechanisms should be studied to resolve the increased risk
of tendon injury in women (Table 1).

4. Exercise and Tendon Injury

Tendon pathologies can be divided into chronic injury and
acute injury with partial or complete tendon rupture in
different specific locations of the tendon. Tendon repair
injury includes three overlapping stages of inflammation,
proliferation and remodelling [9]. During an inflammatory
phase lasting several days, neutrophils recruit to the site of
injury and macrophages clear necrotic debris [59]. About
two days after the injury, tendinocytes are recruited to the
damaged area and stimulate proliferation. Meanwhile, mac-
rophages transform from phagocytosis to repair and pro-
mote fibroblast proliferation and guide ECM remodelling
by releasing chemokines and growth factors [60]. One to
two months after the injury, the synthesis of type I collagen
begins to dominate, and the tendon injury enters the
remodelling stage, which lasts for more than a year, and
the repaired tissue becomes scarring [61]. Sudden rupture
of tendons resulting from inappropriate locomotion system
utilization is followed by a cascade of repair featur includ-
ing inflammation, tendon tissue cell proliferation, and
ECM remodelling. Characterized by long-term pain and
impaired mobility, chronic tendon injury, which is also
known as tendinopathy, is often recognized as resulting
from tissue overuse. Chronic inflammation and ECM
reprogramming during tendinopathy are closely related to
the pathogenesis, but the exact mechanism remains to be
explored. Furthermore, the mechanisms underlying the
healing and the available interference for tendon degenera-
tion also depend on the elucidation of the pathogenesis of
tendon injury.

All the tendons in the body can be injured, among which
the tendons that are used more often and perform more
mechanical loading are injured more frequently. Triceps
tendinopathy occurs frequently in throwing athletes and
results from the insertion of the tendon into the olecranon.
Patellar injuries, as well as Achilles injuries, are common
in athletes involved in repetitive jumping, kicking, and run-
ning. Wrist extensor tendinopathy is associated with eccen-
tric loading of the forearm muscle in throwing movements.
Overload and repetitive improper employment of the mus-
culoskeletal system and the sequential unsolved chronic
inflammation, which impedes the proliferation of cells and
remodelling of the tissue, together make the recovery of ten-
dinopathy complicated [62].

Factors, including acute tearing, oxidative damage, and
accumulation of microtears, would cause structural destruc-
tion of the tendon matrix. The matrix synthesized after
injury acts as a template for sequential matrix remodelling.
As a result, fibrotic scars with different cell and ECM com-
positions compared with normal tendon tissue appear. The
poor mechanical properties of the scar affect the elongation
and energy storage of the tendon [63].
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5. Exercise in the Treatment of Tendon Injury
and Degeneration

The current treatments for tendon injury mainly include
conservative therapy and surgery followed by allogenic
transplantation. In the conservative strategies, eccentric
exercise therapy and other interventions, including extracor-

poreal shock wave, ultrasound, and low-intensity lase treat-
ment, are utilized [23] (Figure 2).

A scientifically developed exercise protocol was demon-
strated to be effective in Achilles tendon rehabilitation by
incrementally increasing the rate and magnitude of tendon
loading. To propose guidelines on how to improve the func-
tion of tendons, 8 healthy young adults performed a series of

Table 1: The influence of different modes of exercise on tendons.

Classification of exercise Type of exercise The influence on the tendon

Acute exercise

Running and hopping The stiffness of the Achilles tendon did not significantly change

Acute eccentric exercise The diameter of the Achilles tendon is reduced significantly

Acute eccentric heel drop exercise Free tendon length and strain increased

One-legged kicking exercise
An increase in collagen protein was detected, no change in the

mRNA levels of collagens

A single bout of hopping exercise No difference in the stiffness of Achilles tendon

Long-term exercise

Prolonged eccentric training CSA and stiffness of the tendon increased

An additional a resistance training intervention
after running training (14 weeks)

The maximum plantar flexion muscle and tendon-aponeurosis
stiffness were significantly increased

High intensity exercise
(18 months, female horses)

The collagen fibril diameter of the superficial digital flexor
tendon decreased

Moderate and high intensity treadmill
exercise (12 months, 24-month-old rats)

Long-term exercise was unable to induce a systemic effect
on the mechanical properties of old tendons, the structures
of which become disorganized during the process of aging

Healthy tendon

Injured tendon

Inflammation

Stem cells transplantation

Pain

Rupture

LLLT

ESWT

Different modes of exercise

Figure 2: Exercise combined with other approaches in tendon treatment. Different modes of exercise including eccentric exercise and
techniques such as extracorporeal shock wave therapy (ESWT), low-level laser therapy (LLLT), and tendon-derived stem cells (TDSCs)
transplantation are being applied in the treatment of tendinopathy.
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rehabilitation exercise according to the plan. They
researchers found that Achilles tendon loading increased
when a set of isolated ankle movements or multijoint move-
ments was performed [8]. The finding demonstrates that
tendon rehabilitation could be achieved through appropriate
exercise given the striking plasticity of tendon tissue. This
information has encouraged clinicians and researchers to
optimize the exercise training protocol in tendon treatment.
Given its potential benefits on the rehabilitation of Achilles
tendinopathy, biomechanical research of eccentric exercise
on tendon physiology and pathology should be performed
to develop an optimal treatment protocol. Real-time record-
ings of 16 healthy subjects performing one-legged full weight
bearing ankle plantar and dorsiflexion exercises revealed no
difference in Achilles tendon loads; however, the surface
electromyography of the lower leg muscles was reduced
[64]. The researchers argued that although the tendon loads
are similar, the tendon is vibrated at higher frequencies dur-
ing the eccentric phase than during the concentric phase.
This phenomenon may at least partially explain the effect
of eccentric exercise in tendinopathy treatment. In addition
to the widely used eccentric exercise, the treatment effect
of other types of exercise was also tested. In a clinical study
comparing progressive tendon-loading exercise (PTLE) with
eccentric exercise therapy (EEP), 76 patellar tendinopathy
patients were divided into two groups that received two
modes of training [65]. The researchers reported that PTLE
resulted in a significantly better clinical outcome after 24
weeks than EET. Such exploration broadens clinicians’ hori-
zons and provides superior choice than the conventional
eccentric exercise currently recommended.

Extracorporeal shock wave therapy (ESWT) is a physio-
therapeutic intervention utilized in tendinopathy treatment.
The superiority of the effectiveness of ESWT compared with
conservative treatment, such as inflammatory drugs, exercise
programs alone, or the use of knee traps in patellar tendino-
pathy treatment, has been demonstrated [66]. Recently, the
influence of ESWT combined with exercise on tendinopathy
treatment has been investigated. Thirty-four male athletes
suffering from patellar tendinopathy for more than 3
months were divided into an exercise control group who
received long-term eccentric exercise (i.e., 12-week single
legged decline squat exercise) and a combined group who
received a weekly session of ESWT in the initial 6 weeks
along with the same exercise plan as the control group.
Although a significant reduction in tendon stiffness, an
increase in tendon strain and a reduction of in pain intensity
were found after eccentric exercise, the addition of ESWT
did not seem to have an obvious effect on the clinical out-
come [67]. A similar result was found regarding the effect
of ESWT on rotator cuff tear repair. Thirty-five patients
underwent ESWT for 6 weeks after surgery, whereas the
control group did not. The examination included computed
tomographic arthrography 6 months after surgery and a
minimum one-year follow-up. No significant difference
was noted between the two groups [68]. The mechanism
was considered to involve the cellular changes induced by
mechanotransduction triggered by ESWT [69]. On the other
hand, an in vitro positive effect of extracorporeal shock

waves on the cell behaviour of tendon cells was demon-
strated. In cultured primary human tenocytes, shock wave
treatment promoted cell proliferation and collagen synthesis
[70]. The differentiation of human tendon-derived stem/
progenitor cells was also accelerated by ESWT [71]. Based
on in vivo and in vitro results of ESWT research, a deeper
understanding of the mechanism of how ESWT influences
tendon tissue is expected to facilitate improved clinical
guidelines.

Low-level laser therapy (LLLT) has also attracted the
attention of scientists in tendon injury repair. In a rat
Achilles tendon injury model achieved by surgical hemi-
transection of the Achilles tendon, different dosages of laser
treatment were combined with running exercise for 3 weeks
for injury repair. The results showed that rats receiving laser
irradiation had less load-relaxation than control rats [72].
During the compensatory overload of the plantar muscle
in rats, infrared laser irradiation improved collagen organi-
zation in tendons [73]. Combined with adipose-derived
mesenchymal stem cell transplantation in rat calcaneal ten-
don injury, LLLT also hastened collagen organization during
tendon repair [74]. Moreover, LLLT functions in different
phases in tendon repair including promoting angiogenesis
during the inflammatory phase and reducing the inflamma-
tory response during the remodelling phase [75].

In recent decades, burgeoning evidence in animal
models and human clinical trials has demonstrated that
stem cells derived from different tissues can be utilized in tis-
sue injury repair. The hypocellularity and hypovascularity in
the mature tendons makes their self-repair capability very
limited. The ECM-enriched tissue environment gives rise
to fibrosis and scar tissue with inferior mechanical proper-
ties. All these characteristics make the identification and
application of TDSCs in the repair of tendon injury urgent
and attractive.

Multipotent mesenchymal stem cells (MSCs) are com-
monly used in tissue regeneration given the abundance of
cell resources. The application of MSCs in tendon repair
has been tested, and the cells serve to increase early tendon
strength and decrease overall healing time [76]. TDSCs are
thought to be more suitable for the regeneration of tendons
given their high proliferative activity and more mature
tendon-like differentiated results. TDSCs promote tendon
repair in a rat patellar tendon window defect model and
facilitate improved cell alignment and collagen organization
[77]. With the assistance of tissue engineering, accurate cell
delivery and prolonged retention have been gradually
achieved [78]. However, the acquisition of sufficient TDSCs
with stable potent properties will still depend on further
developed cell culture and augmentation techniques.
Although the therapeutic use of TDSCs in tendon treatment
is promising due to the potent differentiation capability and
plasticity of stem cells, methods require further development
given that it is difficult to maintain stem cell properties dur-
ing the long culture and modification process. Development
of an ideal marker combination, standardization of cell cul-
ture, amplification and manipulation methods, and the
development of transplantation strategies are all noteworthy
points.
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6. Conclusions

Collectively, we discuss the physiology of tendons and the
pathology of tendinopathy. Although the basic anatomical
structure of the tendon is well understood, a significant
amount of mechanistic information remains unknown.
With the exception of tendon cells and the ECM, the com-
position and dynamics of other cell types, including endo-
thelial cells and pericytes of blood vessels, neurons, and
immune cells, in healthy or injured tendon tissue must be
further elucidated by newly developed methods, such as
intravital confocal microscopy. Acute exercise may lead to
transient alterations in collagen synthesis and the mechani-
cal properties of tendons. Acute overloading increases the
risk of tendon rupture, whereas proper static stretching pre-
pares the tendon for better mechanical loading performance.
The reshaping of tendons based on long-term frequent exer-
cise increases their adaptability to mechanical load stimula-
tion, reduces the probability for injury, and improves
better locomotion economy. In investigations on effects of
exercise on tendons, the modes and intensity of exercise
and the gender of the subjects are all should not be ignored
regardless of whether the subjects are athletic or sedentary.
Distinct exercise interventions based on the characteristics
of the population are recommended for tendon rupture pre-
vention and tendinopathy treatment. Exercise, especially
eccentric exercise, is regarded as effective in restoring tendon
function. More exercise mode options with logical design are
expected. Exercise rehabilitation combined with various
technologies, including ESWT, LLLT, tissue engineering,
and TDSTs, represents a powerful independent approach
or follow-up treatment after surgery.
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Mesenchymal stem cells (MSCs) have shown chondroprotective effects in cartilage repair. However, side effects caused by MSC
treatment limit their application in clinic. As a cell-free therapy, MSC-derived exosomes (EXOs) have attracted much more
attention in recent years. In the present study, we prepared EXOs from human bone marrow mesenchymal stem cells (hBMSCs)
and examined their therapeutic potentials in cartilage repair. Our results showed that the prepared extracellular vesicles exhibit
classical features of EXOs, such as cup-like shape, around 100 nm diameter, positive protein markers (CD81, TSG101, and
Flotillin 1), and ability of internalization. In primary chondrocytes, the treatment of hBMSC-EXOs markedly increases cell
viability and proliferation in a dose-dependent manner. Moreover, wound healing assay showed that hBMSC-EXOs accelerate cell
migration in primary chondrocytes. JC-1 staining revealed that the mitochondrial membrane potential was enhanced by hBMSC-
EXOs, indicating cell apoptosis was decreased in the presence of hBMSC-EXOs. In rabbits with articular cartilage defects, local
administration with hBMSC-EXOs facilitates cartilage regeneration as evidenced by gross view and hematoxylin-eosin (H&E) and
Saf-O/Fast Green staining. In addition, the International Cartilage Repair Society (ICRS) score was increased by the application of
hBMSC-EXOs. Overall, our data indicate that the treatment with hBMSC-EXOs is a suitable cell-free therapy for treating cartilage
defects, and these benefits are likely due to improved cell proliferation and migration in chondrocytes.

1. Introduction

Cartilage is a connective tissue with an important role for
keeping joints lubricated to ensure smooth movement [1].
Unlike most other tissues, cartilage is composed of gelati-
nous matrix such as collagen proteins, which were mainly
synthesized by chondrocytes. Of note, cartilage has no
blood vessels or nerves. Therefore, cartilage regeneration
is a tough task due to limited nutrient supply [2]. Carti-
lage dysfunctions such as defects and injuries often happen
that are causative factors for osteoarthritis [3]. Therefore,
functional recovery in articular cartilage after injury is a

big challenge. Traditional treatments for articular cartilage
repair, including nonsteroidal anti-inflammatory drugs,
corticoids, acetaminophen, and hyaluronic acid, only ame-
liorate the symptoms and have marginal effects on carti-
lage regeneration [4]. Most recently, several strategies
were developed for dealing with cartilage defects, including
implantation of chondrocytes, osteochondral autograft,
and cartilage allograft [5]. However, these mentioned
drugs and newly developed strategies still cannot fully
resolve cartilage defects in clinic [6]. Hence, alternative
strategies aimed at cartilage regeneration are urgently
required.
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Mesenchymal stem cells (MSCs) have shown promising
benefits for cartilage repair due to their potent capacity in
differentiation into various types of cells [7]. MSCs could
be induced into chondrocyte-like cells to produce extracellu-
lar matrix for cartilage regeneration [8]. In addition, MSCs
could secrete anti-inflammatory cytokines to modulate
immune response, by which a favorable microenvironment
was constructed during cartilage repair [9]. To date, MSCs
from different sources including bone marrow [10], adipose
tissue [11], peripheral blood [12], umbilical cord blood [13],
and umbilical cord [14] have been shown promising effects
in cartilage tissue engineering. Of them, bone marrow MSCs
are considered as the preferred seed cells for treating osteo-
chondral defects due to their advantages in proliferation,
chondrogenic differentiation, and easy collection [15]. How-
ever, several shortcomings including low survival rate in vivo
and potential immune rejection impede their application in
clinic [16].

Exosomes (EXOs) are small extracellular vesicles with
the diameter ranging from 30 to 150 nm, which hold great
potentials in translation medicine by delivering functional
molecules to treat various disorders [17]. The benefits of
MSC-based therapies in tissue repair have been ascribed to
the secreted trophic factors, in which EXOs may play a piv-
otal role. It has been shown that, similar to MSCs, MSC-
derived EXOs also have similar effects in tissue repair [18].
Hence, EXOs produced by MSCs, instead of MSCs them-
selves, were widely used in tissue repair due to the fact that
direct use of MSCs may cause side effects such as chromo-
somal variations and immune rejection [19]. As for cartilage
repair, several studies have demonstrated the therapeutic
potentials of MSC-derived EXOs. For instance, EXOs from
human embryonic MSCs improved cartilage regeneration
after injury in rats and micropigs [20, 21]. Articular cartilage
repair was enhanced by kartogenin-pretreated infrapatellar
fat pad MSC-derived EXOs [22]. EXOs derived from human
MSCs promoted cartilage repair and chondrocyte prolifera-
tion in osteoarthritis in rats [23]. However, there are several
unresolved aspects regarding this newly emerged therapy,
including source of MSCs, EXO delivery method and dos-
age, and the underlying molecular mechanisms.

In this study, therefore, we examined the effects of
human bone marrow mesenchymal stem cell- (hBMSC-)
derived EXOs on cartilage repair in rabbits. Our results
showed that EXOs from hBMSCs greatly improved cartilage
repair after injury, and these benefits are likely due to EXOs’
induced cell viability, proliferation, and migration in chon-
drocytes. These data suggest that EXOs derived from
hBMSCs hold great therapeutic potentials for treating carti-
lage dysfunction-associated diseases.

2. Materials and Methods

2.1. Isolation and Culture of hBMSCs. Human bone marrow
samples were obtained from Nantong Third People’s Hospi-
tal. Bone marrow samples were harvested from the iliac crest
of six normal human donors (mean age: 38 years old with
the range from 33 to 43). The study was approved by the
Institutional Review Board of the Affiliated Nantong Hospi-

tal 3 of Nantong University (IRB No. EL2022009). All par-
ticipants gave written informed consent. The procedures
for BMSC isolation were described previously [24]. Briefly,
2ml human bone marrow was mixed with 8ml alpha-
modified Eagle’s medium (α-MEM) (HyClone;
SH30265.01), in which 10% fetal bovine serum (FBS; Sigma)
and 1% penicillin-streptomycin (Beyotime; C0222) were
supplemented. The mixture was then added into 100mm
cell culture dish and cultured at 37°C with 5% CO2 atmo-
sphere. After 4 days, cell culture medium was refreshed to
remove nonadherent cells. The remaining attached cells
were considered as hBMSCs. Cells were passaged at 80%
confluence by adding 0.25% trypsin. Passage 3-4 (P3-P4)
cells were used for experiments [25].

2.2. hBMSC-EXO Isolation and Identification. Exosomes
(EXOs) were extracted from cell culture supernatant of
hBMSCs. For isolating EXOs, culture medium was switched
to serum-free medium for 48 h after cells reached 80% con-
fluence. The supernatant was collected and centrifuged at
500g for 10min to remove cell debris, followed by filtration
with a 0.22μm filter (Millipore). EXOs were isolated using
an exoEasy Kit (QIAGEN; 76064) from 15ml cell culture
supernatant according to the manufacturer’s protocol.
Briefly, filtered supernatant was carefully transferred to a
new tube. Then, 1 volume of buffer XBP was added to
cleared supernatant. After that, a total of 30ml of mixture
was added onto the exoEasy spin column and centrifuged
at 500g for 1min. After discarding the flow-through, the col-
umn was placed back into the same collection tube. The
above steps were repeated until the cleared supernatant
was no more than 2ml. Then, 10ml of buffer XWP was
added to the spin column and centrifuged to remove resid-
ual buffer at 5000g for 5min. Transfer the spin column to
a fresh collection tube. Add 400μl buffer XE to the mem-
brane and incubated for 1min. The eluate was collected by
centrifuging at 500g for 5min. Add the eluate to the spin
column and incubated for 1min again. Finally, collect the
eluate after centrifugation at 5000g for 5min. Carefully
resuspend the resulting EXOs in sterilized PBS and store at
-80°C until use.

Morphology of EXOs were observed with a transmission
electron microscope (TEM, Hitachi). EXO diameter and
particle number were analyzed by nanoparticle tracking
analysis (NTA, German Particle Metrix) with the software
of Zeta View 8.05.04 (German Particle Metrix). Protein con-
centration was measured using a bicinchoninic acid (BCA)
assay kit (Pierce; 23225). Exosomal markers CD81 (Abcam;
ab79599), Flotillin 1 (Abcam; ab133497), and tumor suscep-
tibility gene 101 (TSG101; Abcam; ab125011) were exam-
ined by western blot analysis [26].

2.3. Rabbit Primary Chondrocyte Culture and Treatment. To
isolate primary chondrocytes, 4-week-old New Zealand
white rabbits were used. The terminal of tibia and femur
was collected for preparing cartilage slices. After 3-time
washing in PBS, the slices were incubated with 0.25% trypsin
for 0.5 h, and then, 0.2% collagenase II (Sigma-Aldrich;
V900892) was added and digestion was performed at 37°C
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for 12 h. After digestion, the samples were filtered using a
strainer (200-mesh). The resulting filtrate was subjected to
5min centrifugation at 190g. The residue containing pri-
mary chondrocytes was then resuspended in DMEM/F12
medium containing 10% FBS and plated in flasks. P1 chon-
drocytes were analyzed by immunofluorescence analysis of
collagen II. P2 chondrocytes were used for experiments
[27]. To evaluate the potential roles of hBMSC-derived
EXOs in chondrocytes, the prepared EXOs at different dos-
ages were added into cell culture medium directly.

2.4. Cell Viability Assay. Chondrocytes were seeded in a 96-
well plate at 5 × 103 cells/well and cultured in a cell incuba-
tor for 6 h. Cells were treated with exosomes at different dos-
ages (2:5 × 108/ml, 5:0 × 108/ml, 1:0 × 109/ml, and
2:0 × 109/ml) for 24 h or 48 h. Cell viability was assayed
using a cell counting kit-8 (Dojindo Molecular Technologies;
CK04) with the manufacturer’s specifications. With a micro-
plate reader (BIOTEK), optical density at 450 nm was
measured.

2.5. Cell Proliferation Assay. Cell proliferation was analyzed
with a 5-ethynyl-20-deoxy uridine (EdU) labeling kit (Ribo-
bio; C10310-3). 50μM EdU was added to culture medium,
and 2h incubation was performed. After rinsing two times
in PBS, cells were then subjected to 30min fixation in 4%
paraformaldehyde. Glycine (2mg/ml) was added and incu-
bated for 5min to remove the aldehyde group. After washing
in PBS, cells were incubated with the Apollo staining solu-
tion. 30min postincubation, staining solution was removed
and cells were treated with 0.5% Triton X-100 for 10min.
Hoechst 3342 was used to stain the nuclei. Cell images were
taken with a fluorescence microscope (Life Technology;
EVOS FL Auto). Cell proliferation was analyzed by the per-
centage of EdU-positive cells.

2.6. Mitochondrial Membrane Potential Measurement. A JC-
1 kit (Beyotime; #C2005) was used to detect mitochondrial
membrane potential of chondrocytes. In a 24-well plate, cells
were seeded and treated with EXOs (1:0 × 109/ml) at 37°C
for 24 h or 48h. Cells were then subjected to JC-1 staining
via incubation in the working solution for 20min, and then,
a fluorescence microscope (Life Technology; EVOS FL
Auto) was used to observe and take images of cells. Fluores-
cence intensity was analyzed by the software of ImageJ.

2.7. Scratch Wound Healing Assay. Cell migration was ana-
lyzed by wound healing assay [28]. A culture-insert plate (ibidi
GmbH) was used in this assay, in which chondrocytes were
seeded at 2 × 104 cells per well. 12h postseeding, the culture
insert was removed and nonadherent cells were removed after
washing in PBS. Then, cells were incubated with EXOs
(1:0 × 109/ml) and photographed at 24 and 48h post-EXO
treatment. With a light microscope, migrated cell numbers
were manually counted. For each well, three fields were sub-
jected for counting. The areas were determined using the Ima-
geJ software (National Institutes of Health, USA).

2.8. Exosome Internalization Assay. PKH26 (Sigma-Aldrich;
PKH26PCL) was used for labeling EXOs according to the

manufacturer’s instructions. Excess dye was eliminated by
centrifugation at 5000g for 17min at 4°C using Amicon
Ultra-15 tube (Millipore; UFC9050). After 3-time washing
in PBS, the pellets were resuspended in PBS and designated
as labeled EXOs. For internalization, EXOs were cocultured
with rabbit chondrocytes at 1 × 109/ml in serum-free
medium at 37°C. 3, 6, 12, 24, 48, and 72 h postincubation,
cells were fixed with 4% paraformaldehyde. The nuclei were
stained with DAPI, and the cytoskeleton was stained by
FITC-Phalloidin (Sigma-Aldrich; P5282). Internalization of
EXOs was monitored with a confocal microscope (Zeiss
LSM710, Germany).

2.9. Osteochondral Defect Model in Rabbits. Six-month-old
male New Zealand white rabbits were provided by the Ani-
mal Center of Nantong University. Animals were randomly
allocated into four groups: normal group (n = 6), PBS group
(n = 6), low-dosage EXO group (n = 6), and high-dosage
EXO group (n = 6). After anesthetization, rabbits were sub-
jected to surgery to construct cylindrical defects
(4mm × 3mm; diameter × depth) in the patellar groove of
left posterior [29]. To avoid infection, penicillin was given to
rabbits at the dosage of 70mg/kg/day for 3 days via intramus-
cular injection after the incisions were closed. For pain relief,
rabbits received oral meloxicam at the dosage of 0.2mg/kg/
day for 3 days after surgery. One week later, rabbits in the
EXO group received 300μl of 1 × 1010 particles/ml (low dos-
age) or 5 × 1010 particles/ml (high dosage) by intra-articular
injection. Animals in the PBS group were administered
300μl of PBS. These treatments were performed once a week
and lasted for 4 weeks. At the 5th week, rabbit knee joints were
collected for further analysis after sacrifice. All animal proto-
cols were approved by the Ethics Committee of Nantong Uni-
versity and the Jiangsu Province Animal Care Ethics
Committee (Approval ID: SYXK [SU] 2017-0046).

2.10. Histological Staining and Evaluation of Cartilage
Repair. Tissues were fixed in 4% paraformaldehyde for
24 h, and then, tissues were subjected to 30-day decalcifica-
tion in 10% EDTA (pH 7.4). Tissues were then cut into
5μm thick sections after embedding in paraffin. With
200μm intervals, the medial and lateral compartments were
used for tissue sectioning. After being deparaffinized in
xylene, sections were rehydrated using a graded series of eth-
anol. Thereafter, Safranin O/Fast Green staining (Solarbio;
G1371-5) and hematoxylin and eosin staining (H&E) were
performed. Sample collection and photographing were
described elsewhere [30]. Cartilage repair was evaluated by
the International Cartilage Repair Society (ICRS) scoring
standard [31].

2.11. Statistical Analysis. The presented data were presented
asmean ± SEM from at least three independent experiments.
Statistical significance was analyzed using GraphPad Prism
software (Version 9.0.0; San Diego, CA, USA). One-way
analysis of variance (ANOVA) with Bonferroni’s post hoc
test was used for statistical analysis. P < 0:05 was considered
statistically significant.
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3. Results

3.1. Identification of hBMSCs and hBMSC-derived EXOs. In
the present study, hBMSCs were prepared from healthy
donors and were used for preparing EXOs. Transmission elec-
tron microscope (TEM) images showed that EXOs derived
from hBMSCs had a cub-like shape coated with bilayer mem-
branes (Figure 1(a)). Nanoparticle tracking analysis (NTA)
revealed that the average diameter of prepared EXOs was
131.2nm, and the EXO concentration was around 1:2 × 1011
particles/ml (Figure 1(b)). Furthermore, the positive markers
of EXOs such as CD81, TSG101, and Flotillin 1 were expressed
in hBMSC-EXOs, while β-Actin was only detected in the total
cell lysates of hBMSCs (Figure 1(c)). Next, we tested the ability
of internalization of these EXOs. To this end, we isolated pri-

mary chondrocytes from rabbits, which highly expressed col-
lagen II (Figure 1(d)). As shown in Figure 1(e), EXOs labeled
with PKH26 were gathered in rabbit primary chondrocytes
according to the confocal microscope images. These data
clearly indicate that the prepared extracellular vesicles from
hBMSCs are EXOs.

3.2. hBMSC-EXOs Facilitate Cell Proliferation in
Chondrocytes. Next, we examined the potential roles of
hBMSC-EXOs in primary chondrocytes. The results showed
that, after 24 h or 48 h incubation, EXOs markedly promoted
cell viability in chondrocytes in a dose-dependent manner
(Figure 2(a)). EdU incorporation assay showed that cell pro-
liferation was significantly enhanced by high dose of EXOs
(1 × 109/ml) at both 24 h and 48 h (Figures 2(b) and 2(c)).
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Figure 1: Characterization of human bone marrow stromal cell- (hBMSC-) derived exosomes (EXOs). (a) Representative transmission electron
microscope (TEM) images of hBMSC-EXOs (scale bar = 200 nm). (b) Nanoparticle tracking analysis for hBMSC-EXOs. (c) Western blots
showing the exosome markers including CD81, TSG101, and Flotillin 1. β-Actin was used as a negative control. (d) Identification of rabbit
chondrocytes. Cell morphology was observed at bright field with a microscope (scale bar = 100μm). Collagen II (COL II; red) was analyzed
by immunofluorescence. DAPI (blue) was used to designate the nuclei. Scale bar = 50μm. (e) Internalization of hBMSC-EXOs in primary
rabbit chondrocytes. hBMSC-EXOs were labeled by PKH26 (red) and incubated with primary chondrocytes. FITC-Phalloidin (green) and
DAPI (blue) were used to label the cytoskeleton and the nucleus, respectively. Scale bar = 25 μm.
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Figure 2: hBMSC-EXOs improve cell viability and proliferation in chondrocytes. Rabbit primary chondrocytes were treated with hBMSC-
EXOs at different dosages as indicated. 24 h or 48 h posttreatment, cell proliferation and cell viability were examined. (a) Cell viability was
increased by hBMSC-EXOs in chondrocytes. CCK-8 assay was used to analyze cell viability. n = 3. (b) Cell proliferation was enhanced by
hBMSC-EXOs in chondrocytes. Cell proliferation was assayed by EdU incorporation. n = 3. Scale bar = 400μm. (c) Quantitative analysis
for EdU incorporation as shown in (b). Values are presented as mean ± SEM. ns means no significance. ∗P < 0:05 and ∗∗∗P < 0:001,
versus the control group, one-way ANOVA.
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Figure 3: Continued.
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These data indicate that hBMSC-EXOs are capable of pro-
moting cell viability and proliferation in primary
chondrocytes.

3.3. hBMSC-EXOs Enhance Cell Migration and Inhibit
Apoptosis in Chondrocytes. Moreover, we also employed
wound healing assay to analyze cell migration. The results
showed that hBMSC-EXOs accelerated the motility of chon-
drocytes after 24 h or 48 h incubation (Figures 3(a) and
3(b)). JC-1 is a novel dye for evaluating the mitochondrial
membrane potential. A monomer with green fluorescence
was presented at low concentrations for this dye. At high
concentrations, JC-1 exists as aggregates with an emission
maximum at around 590nm. Our data showed that the
treatment of EXOs reduced JC-1 monomers in chondrocyte
as evidenced by decreased green fluorescence intensity
(Figure 3(c)). Meanwhile, JC-1 aggregates were increased
in chondrocytes due to enhanced red fluorescence intensity
(Figure 3(c)). As a result, the ratio between red to green fluo-
rescence intensity was improved by hBMSC-EXOs
(Figure 3(d)). These data indicate that EXOs derived from
hBMSCs have an ability for promoting the cell migration
and inhibiting apoptosis in chondrocytes.

3.4. hBMSC-EXOs Promote Cartilage Repair after Injury in
Rabbits. The above data showed that hBMSC-EXOs hold
benefits in chondrocytes, such as increasing cell viability
and proliferation and stimulating the mitochondrial func-
tion and cell migration. These observed benefits prompt us
to examine whether they have similar functions in vivo. To
select an appropriate regimen in animal experiments, we
first examined the time course effect of exosome internaliza-
tion in chondrocytes. The endocytosis of EXOs by chondro-
cytes occurred at 3 h, and thereafter, it was gradually
increased till 72 h (Figures 4(a) and 4(b)). Since there is
severe overlap of growing cells, we did not extend the test
time. Based on these findings, we predicted that the endocy-
tosis of hBMSC-EXOs in chondrocytes may peak at 3-4 days

postincubation. Therefore, we adopt the regimen in which
hBMSC-EXOs were given to the rabbits once a week. To
investigate the role of hBMSC-EXOs in cartilage repair
in vivo, we generated osteochondral defect model in rabbits;
a cylindrical defect with 4mm × 3mm (diameter × depth)
was created in the patellar groove. Histological analysis was
conducted after a 4-week treatment with hBMSC-EXOs.
The whole experimental design is illustrated in Figure 5(a).
According to the gross view and H&E staining, the defects
still could be seen in the PBS group; however, the treatment
of hBMSC-EXOs exhibited visible cartilage repair especially
in rabbits treated with higher dosage of EXOs (Figures 5(b)
and 5(c)). The Saf-O/Fast Green staining further confirmed
that the articular cartilage defects in rabbits were largely
improved by hBMSC-EXOs (Figure 6(a)). Meanwhile, we
also evaluated cartilage regeneration by using the ICRS
visual histological score system. Histological assessment
was performed in a blinded manner by the same two inde-
pendent observers. The scores in the EXO group were mark-
edly improved with comparison to those in the PBS group.
Of note, the score was further increased by high dosage of
hBMSC-EXOs (Figure 6(b)), which was consistent with the
histological staining as mentioned above.

4. Discussion

Cartilage is a flexible tissue, which is mainly composed of
water and several types of proteins including proteoglycans,
collagens, and noncollagenous proteins. Of note, these spe-
cialist proteins are produced by a group of cartilage cells
called chondrocytes. Therefore, chondrocytes are extremely
important for proper functioning of cartilage. To evaluate
the effects of hBMSC-EXOs in cartilage repair, we first ana-
lyzed the effects of hBMSC-EXOs on chondrocytes. Our data
showed that the cell proliferation and migration in chondro-
cytes were promoted by hBMSC-EXOs. Chondrocyte prolif-
eration and migration are two essential events for
maintaining healthy cartilage. In line with our findings,
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Figure 3: hBMSC-EXOs promote cell migration and mitochondrial function in chondrocytes. Rabbit primary chondrocytes were treated
with hBMSC-EXOs at 1:0 × 109/ml for 24 h or 48 h. Cell migration and mitochondrial membrane potential were assayed. (a) hBMSC-
EXOs stimulate cell migration. Wound healing assay was used to evaluate cell migration. Scale bar = 100μm. (b) Quantitative data for
wound healing assay as shown in (a). (c) hBMSC-EXOs increase the mitochondrial membrane potential. Representative fluorescence
images for JC-1 staining were shown. Scale bar = 100 μm. (d) Quantitative analysis for JC-1 staining as shown in (c). n = 3. Values are
presented as mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001, versus the control group, one-way ANOVA.
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other source EXOs also hold capacity for stimulating cell
migration and proliferation in chondrocytes [32–35].
Recently, rat BMSC-derived EXOs have shown to protect
chondrocytes from advanced glycation end product-
induced damages [36]. EXOs from human urine-derived
stem cells (hUSCs) are capable of inducing proliferation
and migration in chondrocytes [37]. Moreover, human
MSCs-EXOs were found to inhibit autophagy and apoptosis
in chondrocytes by activating the axis of PI3K/Akt/mTOR
[38]. Mitochondria are the power supply center of the cell,
providing ATP in many key biological events, such as cell
growth, differentiation, and migration [39]. Defects in mito-
chondrial function and damages induced by oxidative stress
are causative factors for loss of chondrocytes in cartilage
defects [40]. In the present study, we treated chondrocytes
with hBMSC-EXOs and found that this treatment greatly
improves mitochondrial activity. One previous study also
showed that EXO-derived MSCs inhibit mitochondrial dys-
function and reduce chondrocyte apoptosis [41].

To date, numerous studies examined the biological func-
tions of EXOs for dealing with various diseases such as cancer,
cardiovascular disorders, and neurological syndromes. How-
ever, the used dosages of EXOs are inconsistent, which vary
with differences in experimental animal species, delivery
methods, and kinds of diseases [42]. Several parameters were
established and employed for dosing EXOs. For instance, total
protein levels, total lipid levels, global RNA contents, and par-
ticle numbers are all used for quantifying amount of EXOs
[42]. By considering the possibility of contamination of pro-
tein and lipids during exosome preparation, particle numbers
are widely used for dosing EXOs [42]. In the present study, we
also used particle numbers for calculating the dosage of EXOs
for treating cartilage defects in rabbits. To select an appropri-
ate dosage, we first examined the effects of EXOs at different
dosages on cell viability, proliferation, andmigration. Our data
showed that 1 × 109 particles/ml is a suitable dosage in cul-
tured primary chondrocytes. Due to reduced bioavailability
in vivo, a higher dose (1 × 1010 particles/ml or 5 × 1010
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Figure 4: The time course effect of hBMSC-EXO internalization in chondrocytes. (a) EXO internalization was gradually increased along
with the time elongation. hBMSC-EXOs were labeled with PKH26 (red) and incubated with primary rabbit chondrocytes at the dosage
of 1 × 109/ml. Immunofluorescence staining was performed at different time points as indicated. FITC-Phalloidin (green) and DAPI
(blue) were used to label the cytoskeleton and the nucleus, respectively. Scale bar = 50 μm. (b) The fluorescence intensity for PKH26.
n = 3. Values are presented as mean ± SEM. ∗∗∗P < 0:001, versus the control group, one-way ANOVA.
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particles/ml; 30μl for each animal) was adopted for cartilage
repair in rabbits, which was comparable to the dose of exo-
somes for treating osteoarthritis in mice [43]. Moreover, both
studies used local administration of EXOs by intra-articular
injection. To select an appropriate regimen, we analyzed the
time course effects on exosome internalization in rabbit pri-
mary chondrocytes. We found that exosome internalization
starts at 3 h incubation, and it gradually increases along with
the time elongation and peaks at 72h. Due to severe overlap
of cells, we did not observe exosome internalization for longer
time. Based upon these data, we conclude that the internaliza-
tion of hBMSC-EXOs in chondrocytes may peak at 3-4 days
after treatment, indicating hBMSC-EXOs could last for 6-8
days. Therefore, we treated rabbits with prepared EXOs once
a week for 4 weeks. With this regimen, the prepared
hBMSC-EXOs were directly injected into the articular cavity.
Functional assays showed that osteochondral defects were
largely repaired by hBMSC-EXOs. In line with our findings,
several reports also have shown that EXOs from different
MSCs have benefits in cartilage repair [20–23, 35].

In general, EXOs act as cargo for delivering various sub-
stances such as nucleic acids, proteins, and lipids to recipient
cells and thus play their functions [44]. For example, Zhang
et al. found that MSC-derived exosomal CD73 stimulates
AKT and ERK signaling to increase cell proliferation and
infiltration in chondrocytes during cartilage repair [35]. In
addition to exosomal proteins, exosomal nucleic acids
including miRNAs and long noncoding RNAs (lncRNAs)
were extensively examined in cartilage regeneration. Wu
et al. showed that miR-100-5p was enriched in MSC-EXOs,
which inhibits mTOR signaling and thus attenuates articular
injury in osteoarthritis [43]. lncRNA KLF3-AS1 was highly
expressed in MSC-EXOs, and it suppresses IL-1β-induced
apoptosis in chondrocytes [23, 32]. Based upon these find-
ings, we proposed that hBMSC-EXO-mediated cartilage
repair in the present study is likely due to some specific pro-
teins, miRNAs, and/or lncRNAs in EXOs. Nevertheless,
lipids and some other metabolites present in hBMSC-EXOs
may also play a role in chondrocyte proliferation and extra-
cellular matrix synthesis in cartilage repair. One project
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aimed at this topic is ongoing, in which combined technolo-
gies including RNA-seq, lipidomics, and proteomics will be
employed to explore the underlying mechanisms.

In conclusion, in the present study, we prepared exo-
somes from hBMSCs to treat primary chondrocytes
in vitro and rabbits with cartilage defects in vivo. Our data
showed that hBMSC-EXOs improve cell viability, prolifera-
tion, and migration in primary chondrocytes. Meanwhile,
hBMSC-EXOs also reduce cell apoptosis in vitro. In rabbits
with cartilage defects, the application of hBMSC-EXOs
largely promotes cartilage repair. These data strongly suggest
that hBMSC-EXOs hold great therapeutic potentials for
treating cartilage dysfunction-associated diseases. Moreover,
these benefits are likely due to improved cellular functions in
chondrocytes induced by hBMSC-EXOs.

However, the present study still includes several limita-
tions. First, the observed benefits of hBMSC-EXOs in carti-
lage repair remain to be validated in more experiments
using other animal models. Second, the mechanisms respon-
sible for hBMSC-EXO-induced cartilage repair are still not
clear, although we observed hBMSC-EXOs improve cell pro-
liferation and migration in chondrocytes. The involved
mechanisms will be elucidated by analyzing the constituents
in prepared EXOs and related functional studies.

5. Conclusions

Overall, in the present study, we prepared exosomes from
human bone marrow MSCs, which were then used to treat
rabbits with osteochondral defects. Our data showed that
these prepared exosomes greatly improved cartilage repair
after injury. These benefits are likely due to increased cell
viability, proliferation, mitochondrial function, and cell
migration in chondrocytes induced by exosomes. All these
data strongly suggest that exosomes derived from bone mar-
row MSCs hold great therapeutic potentials for treating car-
tilage dysfunction-associated diseases such as osteoarthritis
and traumatic joint injury.
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Low back pain (LBP) is a common clinical symptom, and the prevalence is ranged from 60% to 70%. With the deepening of basic
research, the development of intervertebral disc regeneration-oriented cell therapy, especially stem and progenitor cells therapy,
showed good research prospects and was expected to become new methods of treatment for LBP. Our study is aimed at
analyzing the scientific output of stem and progenitor cells in intervertebral discs and at driving future research into new
publications. Researches focused on this file were searched from the Science Citation Index Expanded (SCI-E) of the Web of
Science (WOS) core collection database and were screened according to inclusion criteria. We evaluated and visualized the
results, including annual publications, citations, authors, organizations, countries, research directions, funds, and journals by
bibliometric website, VOSviewer, and Citespace softwares on May 27, 2022. A total of 450 original articles and reviews were
included, and the overall trend of the number of publications rapidly increased. In worldwide, China and the USA were the
leading countries for research production. The retrieved 450 publications received 14322 citations, with an average of 31.83
citations and an H-index of 62. The most high-yield author, organization, country, research directions, funds, and journals
were Chen QX from Zhejiang University, Zhejiang University, China, Cell Biology, National Natural Science Foundation of
China, and Spine, respectively. Keywords cluster analysis showed the research hotspots in the future, including “human
intervertebral disc”, “adipose-derived mesenchymal stem cell”, “intervertebral disc degeneration”, “degenerative disc model”,
“nucleus pulposus regeneration”, “human cartilage”, “3d culture”, “shrinkage-free preparation”, and “polylactide disc”.
Furthermore, with accumulating evidence demonstrating the role of stem and progenitor cells in intervertebral discs,
“microenvironment”, “activation”, “intervertebral disc degeneration”, and “oxidative stress” are becoming the research frontiers
and trends.

1. Introduction

The intervertebral disc consists of the nucleus pulposus,
annulus fibrosus, and cartilage endplates. Proteoglycan in
the nucleus pulposus has a large amount of anions and high
osmotic pressure, which can absorb water and swell. The
expansion converts the compressive load into a tensile effect
on the annulus, which acts as a tension “skin” to limit the
expansion of the nucleus pulposus [1]. Due to the structural
characteristics of the fibrous annulus, its resistance to com-
pression is far less than that of tensile capacity. The fibrous
ring structure is easily destroyed when a large compressive
load occurred [2]. More importantly, the intervertebral disc

itself lacks blood supply; it is very difficult to self-healing
once degeneration and damage happened [3]. In recent
years, researches on the pathophysiology of intervertebral
disc degeneration have opened a new avenue for disc regen-
eration therapy [4], particularly stem and progenitor cells
therapy for intervertebral disc problems.

Bibliometric analysis and visualization are not only more
effective methods to assess the thematic development of
structural contents. More importantly, it can help
researchers to better understand comprehensively about
hotspots, frontiers, and trends in particular topic [5–7]. Sci-
ence Citation Index Expanded (SCI-E) of Web of Science
(WOS) Core Collection Database is widely used as an
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important tool for scientific statistics and scientific evalua-
tion [8]. Thanks to the quantitative construction of this
database and the qualitative contribution of the biblio-
metrics, most cited publications, top high-yield countries,
organizations, authors, research directions, and funds, as
well as journals, can be comprehensively analyzed.

However, no bibliometric literature on stem and progen-
itor cells in intervertebral discs has been researched and
reported. Our study aims to draw the outline of the intellec-
tual connections within the dynamic changing of scientific
knowledge in the field of stem and progenitor cells in inter-
vertebral discs by making good use of the citation database
(SCI-E) and the software tools (https://bibliometric.com/,
VOSviewer, and Citespace). These results can benefit
scholars by better understanding future research directions
and trends.

2. Method

2.1. Data Collecting. The literature data were retrieved
through the SCI-E of WOS Core Collection Database in
Capital Medical University Library. The search query
was“((TI=(Stem Cell OR Progenitor Cell) AND TI=(nucleus
pulposus OR disc OR intervertebral discs OR annulus fibro-
sis OR endplates OR perichondrium)) AND LA=(English)
AND DT=(Article or review)”. The literature searching
was accomplished within a single day to avoid the bias due
to database updates on May 27, 2022. The records were
exported by “full records and cited references” in plain text
file format and tab delimited file format, respectively.

2.2. Bibliometric Analysis. The trends of publications and
citations were charted annually. Contribution of all coun-
tries by publications was made by a pie chart. A total num-
ber of publications and sum of total citations from 1999 to
2022 were obtained. Top 20 Most Cited Articles were
recorded and analyzed, including first author, article title,
journals of publication, year of publication, total number
of citations, and the impact factor of journals. The top 5
records, H-index, total citations, and average citations in
terms of authors, organizations, and countries were tabu-
lated directly. The top 5 research directions, funds, and jour-
nals with the most publications were meanwhile charted.

The co-authorship analysis of countries on stem and pro-
genitor cells in intervertebral disc degeneration was analyzed
by the bibliometric website (https://bibliometric.com/). The
co-authorship relations in the analysis units of authors and
organizations, the co-citation analysis of references, journals,
and authors were all mapped by VOSviewer-1.6.11 software
(Nees Jan van Eck and Ludo Waltman, 2019).

Co-citation timeline of references by keywords, key-
words clusters on stem and progenitor cells in intervertebral
discs, top 25 references with the strongest citation bursts,
and top 14 keywords with the strongest citation bursts, as
well as details of top 9 clusters, were visualized by Cite-
Space_5.8. R3 edition (Chaomei Chen, 2003-2022). The time
slicing was selected from January, 1999 to December, 2021.
Years per slice was picked by one. The rest of the parameters
are chosen by default setting. The reference was selected for

co-citation timeline and burst analyses. The keyword was
selected for burst analyses, and details of cluster with three
different algorithms (LSI, LLR, MI) were exported into a
table.

3. Results

3.1. General Information. A total of 450 articles and reviews
were retrieved in the SCI-E of WOS Core Collection Data-
base, with a sum of 14322 times cited, average citations of
31.83 per item, and an H-index of 62. Figure 1 showed the
annual publications and sum of times cited per year on stem
and progenitor cells in intervertebral discs. The year with
most publication was 2021 (n = 52), and the number of pub-
lications showed a fluctuating increase year by year. In
addition, the citation started in 2003 (n = 6), and the year
with most times cited was 2021 (n = 2098), and citations
increased linearly year by year.

3.2. Publications Distribution in Different Countries of the
World. A total of 25 countries were retrieved with publica-
tions on stem and progenitor cells in intervertebral discs.
China and the USA were in a dominant position, accounting
for more than 70% in all over the world (Figure 2(a)). China
had contributed 231 articles (51.33%) at the top. The USA is
the second contributing country with 94 articles (20.89%),
followed by England with 32 articles (7.11%), Japan with
30 articles (6.67%), and Switzerland both with 23 articles
(5.11%) (Figure 2(b)). Total times citations of the USA were
4792 at the first, followed by China (4523), Japan (2612),
England (1654), and Switzerland (950) (Figure 2(c)). Mean-
while, the H-index of the USA was 37 in the first place,
China was the second with 33, Japan (21), England (18),
and Switzerland (15) (Figure 2(d)).

3.3. Top 20 Most Cited Articles. A total of 450 articles from
Web of Science were collected. Top 20 most cited articles
on stem and progenitor cells in intervertebral discs are
showed in Table 1, including first author, article title, jour-
nals of publication, year of publication, total number of cita-
tions, and the impact factor of journals. The total citations of
the top 20 articles ranged from 141 to 311. The top article
had 311 citations and was published in 2003 by Sakai D
[9], followed by Sakai D [10] with 277 citations in 2006
and Sakai D with 267 citations in 2012 [11]. The oldest arti-
cle was published by Arai F in 2002 [12], and the most
recent article in top 20 was published in 2016 by Richardson
SM [13]. More importantly, the impact factor of 1 article was
more than 20, the impact factor of 6 articles was more than
14, and the impact factor of 10 articles was more than 6.

3.4. Contribution of Authors, Organizations, and Countries.
1909 authors, 532 organizations, and 25 countries contrib-
uted to this field, respectively. Table 2 showed that the top
author with most publications was Chen QX (n = 22) from
Zhejiang University and Zhou Y (n = 22) from Army Medi-
cal University [14, 15], followed by Li FC (n = 20) from Zhe-
jiang University [16], Liang CZ (n = 20) from Zhejiang
University [17], and Li H (n = 19) from Shanghai Jiao Tong
University [18]. Of the 532 organizations, Zhejiang
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University, Army Medical University, League of European
Research Universities-LERU, Huazhong University of Science
& Technology, and University of Hong Kong had contributed
33, 29, 29, 26, and 18 publications, respectively. The top 5
countries with the most publications were China (n = 231),
the USA (n = 94), England (n = 32), Japan (n = 30), and Swit-
zerland (n = 23). What’s more, the corresponding records, H-
index, total citations of the top 5 authors, organizations, and
countries were meanwhile showed in Table 2.

3.5. Contribution of Research Directions, Funds, and
Journals. There were 38 research directions, 478 funds, and
167 Journals contributed to publications on stem and pro-
genitor cells in intervertebral discs, respectively. Cell biology
occupied the most records (n = 181), the highest H-index of
35, the highest total citations (n = 4421), and average cita-
tions (n = 24:43) [19]. Neurosciences and neurology occu-
pied the most average citations (n = 52:94). Orthopedics
had the second records (n = 92), the highest H-index of 35,
the second total citations (n = 4347), and the second average
citations (n = 47:25) [20]. In addition, National Natural Sci-
ence Foundation of China had the most records (n = 157),
the highest H-index of 27, the highest total citations
(n = 2798), and average citations (n = 17:82) [21, 22].
National Institutes of Health (NIH), USA, and United States
Department of Health & Human Services were the second
with records (n = 30), H-index of 19, the total citations
(n = 1239), and the highest average citations (n = 41:30).
Furthermore, Spine occupied the most records (n = 27), the
highest H-index of 20, the highest total citations (n = 2025
), and the highest average citations (n = 75:00) [23, 24]. Stem
Cells International was the second with records (n = 23), H-
index of 12, the total citations (n = 359), and average cita-
tions (n = 15:61) [25–27]. Furthermore, the corresponding
records, H-index, total citations, and average citations of
the top 5 research directions, funds, and journals with the
most publications were meanwhile list in Table 3.

3.6. Co-Authorship Analysis of Publications. Zhou XP had the
most co-authorship strength (total link strength = 87), with 17
documents and 348 citations [28], followed by Liang CZ
(total link strength = 85) with 16 documents and 392 citations
[29] and Li FC (total link strength = 84) with 16 documents
and 358 citations [30] (Figure 3(a)). Moreover, the closest
collaboration organization was Shanghai Jiao Tong University
(total link strength = 20) with 15 documents and 290 cita-
tions, the second organization was Yangzhou University
(total link strength = 18) with 13 documents and 224 cita-
tions, and the third was Chinese Orthopaedic Regenerative
Medicine Society (total link strength = 14) with 6 documents
and 239 citations [31–33] (Figure 3(b)). Besides, the strongest
collaborative country was the USA (total link strength = 58)
with 94 documents and 4791 citations, followed by China
(total link strength = 35) with 231 documents and 4522 cita-
tions and Japan (total link strength = 24) with 30 documents
and 2612 citations (Figure 3(c)).

3.7. Co-Citation Analysis of Publications. The most co-
citation reference (n = 96) titled “Differentiation of mesen-
chymal stem cells towards a nucleus pulposus-like pheno-
type in vitro: implications for cell-based transplantation
therapy” was published by Risbud MV on Spine in 2004
[34]. The second reference (n = 92) titled “Differentiation
of mesenchymal stem cells transplanted to a rabbit degener-
ative disc model - Potential and limitations for stem cell
therapy in disc regeneration” was published by Sakai D on
Spine in 2005 [35], The third reference (n = 92) was “Trans-
plantation of mesenchymal stem cells embedded in Atelo-
collagen((R)) gel to the intervertebral disc: a potential
therapeutic model for disc degeneration”, published by Sakai
D on Biomaterials in 2003 (Figure 4(a)). On the other hand,
the most co-citation journal was Spine (n = 3179) [36],
followed by European Spine Journal (n = 774) [37] and Spine
Journal (n = 582) [38] (Figure 4(b)). Furthermore, the most
co-citation author was Sakai D (n = 547) [9], the second
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Figure 1: Annual publications and sum of times cited per year on stem and progenitor cells in intervertebral discs.
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Contribution of all countries or regions by publications
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Figure 2: Continued.

4 Stem Cells International



Number of publications

PEOPLES R CHINA

ENGLAND

USA

JAPAN

SOUTH KOREA

GERMANY

SWEDEN

SWITZERLAND

To
p 

10
 co

un
tr

ie
s o

r r
eg

io
ns

AUSTRALIA

ITALY

231

32

94

30

17

16

13

23

16

16

(b)

Sum of times citations

PEOPLES R CHINA

ENGLAND

USA

JAPAN

SOUTH KOREA

GERMANY

SWEDEN

TAIWAN

SWITZERLAND

To
p 

10
 co

un
tr

ie
s o

r r
eg

io
ns

ITALY

4792

2612

4523

1654

850

469

529

950

752

613

(c)

Figure 2: Continued.

5Stem Cells International



was Risbud MV (n = 333) [34], and the third was Richard-
son SM (n = 234) [39] (Figure 4(c)).

3.8. Co-Citation Timeline of References and Burst Analysis.
Co-citation of references for a timeline diagram was drawn
by Citespace software (Figure 5). References to the same
cluster are arranged on the timeline in chronological order
of publication. “bilaminar pellet”, “apoptosis”, and “pheno-
typic markers” were the clusters with most published refer-
ences. According to the year of publication, “tissue
engineering”, “angiogenesis”, and “tgf-beta” were the clus-
ters with the earliest references. “Apoptosis” and “pheno-
typic markers” were the clusters with the latest references.
The top 25 references with the highest burst value are shown
in Figure 6. The earliest reference with the strongest citation
bursts was “Transplantation of mesenchymal stem cells
embedded in Atelocollagen((R)) gel to the intervertebral
disc: a potential therapeutic model for disc degeneration”,
published by Sakai D on Biomaterials in 2003 [39]. The lat-
est reference with the strongest citation bursts was “Mesen-
chymal stem cells deliver exogenous miR-21 via exosomes
to inhibit nucleus pulposus cell apoptosis and reduce inter-
vertebral disc degeneration”, published by Cheng XF on
Journal of Cellular and Molecular Medicine in 2018 [18].

3.9. Keyword Visualization Analysis. The log-likelihood rate
(LLR) algorithm was used to cluster all keywords by Cite-
space software, and the top 9 clusters are shown in
Figure 7 and Table 4. Generally speaking, clustering
module value ðQÞ > 0:3, indicating that the clustering struc-
ture is significant; the average contour value ðSÞ > 0:7 means
that the clustering is convincing. Q = 0:4569, and S =
0:7188 in our study. Each label was interconnected and

developed, not independently exist. The color corresponding
to the cluster area indicated the first time that a co-citation
appeared. The clusters represented by green appeared later
than the clusters represented by blue and purple. The
smaller the cluster number stood for the more keywords
the cluster contained. The cluster labels were as follows: #0
human intervertebral disc, #1 adipose-derived mesenchymal
stem cell, #2 intervertebral disc degeneration, #3 degenera-
tive disc model, #4 nucleus pulposus regeneration, #5 human
cartilage, #6 3d culture, #7 shrinkage-free preparation, and
#8 polylactide disc.

The top 14 keywords with the highest burst value are
illustrated in Figure 8. The time period occupied by red on
the right was the duration of the keywords. According to
the burst strength and duration of the keywords, the trans-
formation of domain research direction can be roughly
divided into three stages. The first stage was from 2003 to
2009; the keywords were “in vivo”, “disc degeneration”, “disc
regeneration”, and “bone marrow”. The second stage was
from 2010 to 2016; the keywords were “tissue”, “chondro-
genesis”, “growth”, and “proliferation”. The third stage was
from 2017 to 2021; the keywords were “microenvironment”,
“activation”, “intervertebral disc degeneration”, and “oxida-
tive stress”.

4. Discussion

4.1. General Information and Bibliometric Analysis. The
number of publications on a specific topic can reflect the
popularity in this field. The researches regarding on stem
and progenitor cells in intervertebral discs was initially pub-
lished in 1999. The number of articles published increased
rapidly from 2002 to 2022. On the other hand, the quality
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Figure 2: (a) Contribution of all countries by Publications. (b–d) Total number of publications, sum of total citations, and H-index of top 10
countries on stem and progenitor cells in intervertebral discs.
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Table 1: Top 20 most cited articles on stem and progenitor cells in intervertebral discs.

First author Article title Journal
Publication

year
Total

citations
Impact
factor

Sakai, D
Transplantation of mesenchymal stem cells embedded in
Atelocollagen((R)) gel to the intervertebral disc: a potential

therapeutic model for disc degeneration
Biomaterials 2003 311 14.593

Sakai, D
Regenerative effects of transplanting mesenchymal stem

cells embedded in atelocollagen to the degenerated
intervertebral disc

Biomaterials 2006 277 14.593

Sakai, D
Exhaustion of nucleus pulposus progenitor cells with ageing

and degeneration of the intervertebral disc
Nature Communications 2012 267 14.919

Sakai, D
Differentiation of mesenchymal stem cells transplanted to a
rabbit degenerative disc model - potential and limitations

for stem cell therapy in disc regeneration
Spine 2005 265 3.468

Richardson, SM
Mesenchymal stem cells in regenerative medicine: docus on

articular cartilage and intervertebral disc regeneration
Methods 2016 251 3.608

Risbud, MV
Differentiation of mesenchymal stem cells towards a nucleus
pulposus-like phenotype in vitro: implications for cell-based

transplantation therapy
Spine 2004 250 3.468

Crevensten, G
Intervertebral disc cell therapy for regeneration:

mesenchymal stem cell implantation in rat
intervertebral discs

Annals of Biomedical
Engineering

2004 241 3.934

Sakai, D
Stem cell therapy for intervertebral disc regeneration:

obstacles and solutions
Nature Reviews
Rheumatology

2015 240 20.543

Richardson, SM
Intervertebral disc cell-mediated mesenchymal stem

cell differentiation
Stem Cells 2006 227 6.277

Risbud, MV
Evidence for skeletal progenitor cells in the degenerate

human intervertebral disc
Spine 2007 213 3.468

Steck, E
Induction of intervertebral disc-like cells from

adult mesenchymal stem cells
Stem Cells 2005 202 6.277

Dang, JM
Temperature-responsive hydroxybutyl chitosan for

the culture of mesenchymal stem cells and intervertebral
disk cells

Biomaterials 2006 190 14.593

Vadala, G
Mesenchymal stem cells injection in degenerated

intervertebral disc: cell leakage may induce osteophyte
formation

Journal of Tissue
Engineering and

Regenerative Medicine
2012 187 3.963

Hiyama, A
Transplantation of mesenchymal stem cells in a canine

disc degeneration model
Journal of Orthopaedic

Research
2008 184 2.359

Minogue, BM
Characterization of the human nucleus pulposus cell

phenotype and evaluation of novel marker gene expression
to define adult stem cell differentiation

Arthritis and
Rheumatism

2010 161 8.955

Arai, F
Mesenchymal stem cells in perichondrium express activated
leukocyte cell adhesion molecule and participate in bone

marrow formation

Journal of Experimental
Medicine

2002 158 14.307

Henriksson, HB
Transplantation of human mesenchymal stems cells into

intervertebral discs in a xenogeneic porcine model
Spine 2009 151 3.468

Henriksson, HB
Identification of cell proliferation zones, progenitor cells and
a potential stem cell niche in the intervertebral disc region

A study in four species
Spine 2009 148 3.468

Richardson, SM
Mesenchymal stem cells in regenerative medicine:
opportunities and challenges for articular cartilage

and intervertebral disc tissue engineering

Journal of Cellular
Physiology

2010 143 6.384

Sobajima, S
Feasibility of a stem cell therapy for intervertebral

disc degeneration
Spine Journal 2008 141 4.166
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on a specific topic can be judged by the number of citations.
There was a linear growth for the citation times from 1999 to
2022. From the result of Figure 1, we can know that the
future trend on stem and progenitor cells in intervertebral
discs looks very promising.

China was dominant in this field by the number of pub-
lications. Meanwhile, the publications of China and the USA
accounted for 72.22%, which indicates a great contribution
to this field by these two countries. It was might associated
with large disc degeneration populations and high incidence
in two countries [40]. China had the most publications.

However, the USA had the highest citations and H-index,
showing that China’s research in this field was not deep
enough. Sakai D, coming from Tokai University School
of Medicine in Japan, has 5 most cited articles in the
top 20 and 4 articles among them listed in top 4, with
more than 265 total citations. He focused on mesenchymal
stem cells embedded in Atelocollagen((R)) gel to the inter-
vertebral disc and stem cell therapy for intervertebral disc
regeneration [41].

From the analysis of number of publications issued by
the author, the top 5 authors all came from China. Professor

Table 2: The top 5 high-yield authors, organizations, and countries on stem and progenitor cells in intervertebral discs.

Category Rank Items Records H-index Total citations Average citations

Author

1 Chen, QX, Zhejiang University 22 15 571 25.95

1 Zhou, Y, Army Medical University 22 12 544 24.73

3 Li, FC, Zhejiang University 20 15 527 26.35

3 Liang, CZ, Zhejiang University 20 15 560 28.00

5 Li, H, Shanghai Jiao Tong University 19 15 637 33.53

Organization

1 Zhejiang University 33 16 726 22.00

2 Army Medical University 29 13 609 21.00

2 League of European Research Universities-LERU 29 18 1382 47.66

4 Huazhong University of Science & Technology 26 13 419 16.12

5 University of Hong Kong 18 15 1092 60.67

Country

1 China 231 33 4523 19.58

2 USA 94 37 4792 50.98

3 England 32 18 1654 51.69

4 Japan 30 21 2612 87.07

5 Switzerland 23 15 950 41.30

Table 3: The top 5 high-yield research directions, funds, and journals with the most publications on stem and progenitor cells in
intervertebral discs.

Category Rank Items Records
H-

index
Total

citations
Average
citations

Research
direction

1 Cell Biology 181 35 4421 24.43

2 Orthopedics 92 35 4347 47.25

3 Research & Experimental Medicine 78 24 1997 25.60

4 Engineering 74 28 3034 41.00

5 Neurosciences & Neurology 63 33 3335 52.94

Fund

1 National Natural Science Foundation of China (NSFC) 157 27 2798 17.82

2 National Institutes of Health (NIH) - USA 30 19 1239 41.30

2 United States Department of Health & Human Services 30 19 1239 41.30

4 European Commission 18 11 545 30.28

4
National Key Research and Development Program of

China
18 11 345 19.17

Journal

1 Spine 27 20 2025 75.00

2 Stem Cells International 23 12 359 15.61

3 Tissue Engineering Part A 16 13 611 38.19

4 Spine Journal 15 12 669 44.60

5 Stem Cell Research & Therapy 13 9 348 26.77
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Chen QX from Zhejiang University in China has a great
influence in this field. They had carried out numbers of
researches on improving the biological repair function of
nucleus pulposus mesenchymal stem cells by constructing
biological scaffolds and introducing growth factors [42,
43]. Professor Zhou Yue from the Chinese Army Military

Medical University was also made great contributions to
the research direction of mesenchymal stem cell differentia-
tion [42, 43].

Zhejiang University and Army Medical University were
listed in the top 2, and only one institution was not in China
in the top 5, which demonstrated that Chinese universities
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Figure 3: The co-authorship analysis of (a) authors, (b) organizations, and (c) countries on stem and progenitor cells in intervertebral discs.
(The size of the frames represents the proportion of the author in the analysis. The larger the frames, the greater the contribution. The line
between the frames represents the connection between the authors. The more or thicker the line, the stronger the connection. The color of
the area where organization is located represents the connection between organizations. The darker the color, the closer the collaboration
organization; the larger the area, the greater the contribution).
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Figure 4: The co-citation analysis of (a) references, (b) journals, and (c) authors on stem and progenitor cells in intervertebral discs. (A
point in the figure represents one reference, journal, and author, respectively. The color of the point represents different clusters; the size
of the point represents the number of citations for each reference, journal, and author, respectively. The more the number, the larger the
point. The connection between the two points represents two papers are jointly cited by another paper, and the length of the connection
between the two points represents the correlation between two articles; the shorter the line, the stronger the correlation).
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and institutions had a great contribution and influence in
the field of stem and progenitor cells in intervertebral discs.
From the analysis of number of publications issued by fund
and journal, National Natural Science Foundation of China
(NSFC) and National Institutes of Health (NIH), USA, were
in the top 2, which was consistent with the greatest contribu-
tion of China and the USA. Spine and Stem Cells Interna-
tional were listed top 2 in all journals. The co-authorship

analysis of authors, organizations, and countries on stem
and progenitor cells in intervertebral discs showed the coop-
eration between them was not closely enough.

4.2. Research Hotspots on Stem and Progenitor Cells in
Intervertebral Discs. Through the cluster analysis of key-
words, we can clearly know the research hotspots on stem
and progenitor cells in intervertebral discs.

Top 25 references with the strongest citation bursts

References Year
2003

2004

2006

2005

2004

2004

2005

2005

2006

2008

2009

2010

2010

2011

2011

2012

2011

2012

2013

2015
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2016

2017

2018

2017

2008

2009

2011

2010

2009

2009

2010

2010

2011

2013

2014

2015

2015

2016

2016

2017

2016

2017

2018

2021

2019

2021

2021

2021

2021

2004

2005

2006

2006

2006

2006

2006

2007

2007

2010

2010

2011

2011
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4.2.1. Cluster #0 Human Intervertebral Disc. The interverte-
bral disc is located between adjacent vertebral bodies and
consists of the peripheral annulus fibrosus (annulus fibrosus,
AF), central jelly-like nucleus pulposus (nucleus pulposus,
NP), and cartilage endplate (cartilage endplate, CE). The
peripheral AF is mainly composed of fibroblast-like annulus
fibrosus. And the main cell types of NP are stellate chon-
droid cells. The bone endplate is a thin layer of cartilage,
which is similar with articular cartilage tissue [44]. As all
we know, human intervertebral discs include NP, AF, hya-
line CE, and disc perichondrium. At present, stem cell ther-
apy mainly focuses on NP and AF [45–48].

4.2.2. Cluster #1 Adipose-Derived Mesenchymal Stem Cell,
ADMSC. ADMSCs are stem cells with pluripotent differenti-
ation potential, which isolated from adipose tissue that is
widely and readily available nowadays. It is the current
research hotspot of stem cell therapy for degenerative disc
diseases (DDD). Studies have shown that compared with
bone marrow derived mesenchymal stem cell (BMSCs),
ADMSCs have a higher nucleus pulposus-like differentiation
capacity. Therefore, ADMSC may be more suitable for the
treatment of DDD [49].

Clarke et al. found that the ability of ADMSC to differen-
tiate into nucleus pulposus cell phenotype was strongly
enhanced under the induction of TGF-β1, GDF5, and
GDF6. The cell culture medium level of sulfated glycosami-
noglycans and COL II significantly increased [50].

Han et al. performed the analysis of ADMSCs and
degenerated nucleus pulposus cells. In vitro co-culture, it
not only demonstrated that ADMSCs could promote the
repair of degenerated nucleus pulposus cells, but also the

first comprehensive identification of degenerative myeloid
when co-cultured with ADMSCs nuclear cells were capable
of producing lncRNA and mRNA differentially expressed
[51]. These research results further provided more valuable
information so that people can better understand the role
of stem cell therapy in IDD.

The current study shows that ADMSC can be success-
fully induced to differentiate into nucleus pulposus-like cells
under certain conditions to repair the degenerated interver-
tebral disc, and partially grow biofactors can enhance the
repair of ADMSCs. However, the long-term efficacy and
safety of ADMSC clinical trials still need to be further veri-
fied [52].

4.2.3. Cluster #2 Intervertebral Disc Degeneration, IDD.
There are many factors for the degeneration of intervertebral
disc, but the most important reason is the decrease of apo-
ptosis and activity of nucleus pulposus cells, which is recog-
nized by the world. The nucleus pulposus cells in the
intervertebral disc are in a microenvironment such as hyp-
oxia, acidity, hypertonicity, and lack peripheral blood nutri-
ent supply, which are totally different from other cells in the
intervertebral disc [53].

However, the number of NP cells in the intervertebral
disc is small, and the rate of cell regeneration is lower than
the rate of apoptosis and aging. Under natural conditions,
it is difficult for the degenerated intervertebral disc to regen-
erate and repair to achieve the desired effect. Therefore, it is
urgent to find a seed cell that can replace the degenerated NP
cells to delay the process of intervertebral disc degeneration.
NP cells and chondrocytes are very similar in terms of
molecular markers and cell phenotypes, so stem cells that
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Figure 8: Top 14 keywords with the strongest citation bursts on stem and progenitor cells in intervertebral discs.
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can differentiate into chondrocytes are the best source of cell
transplantation for the treatment of intervertebral disc
degeneration [54].

Therefore, IDD is difficult to repair by itself and is irre-
versible. In view of this feature, more and more teams have
begun to use stem cells to intervene in the IDD process in
order to slow down the IDD process or repair the degener-
ated intervertebral disc, including mesenchymal stem cells
(MSC), intervertebral disc-derived stem cells (IVDSC), and
pluripotent stem cells (PSC) [55].

4.2.4. Cluster #3 Degenerative Disc Model. At present, there
are more than a dozen animals used to construct interverte-
bral disc degeneration models, such as mice, rabbits, dogs,
pigs, sheep, cattle, and primates. Primates such as monkeys
and orangutans are close relatives of humans, and their
intervertebral discs are quite similar with human interverte-
bral discs in terms of physiological structure and biome-
chanics. However, the current animal experimental
research is limited by animal sources, experimental funds,
practical operations, and ethics. Therefor primates are rarely
used to construct intervertebral disc degeneration models. In
addition, large mammals also have disadvantages such as
high price and difficulty in feeding [56].

Nowadays, the ideal animal models are small animals
such as rabbits and rats. These two animals have the advan-
tages of pure species, many sources, easy to raise, and low
price. Although the intervertebral discs of tetrapods lack
comparison with human intervertebral discs, they have
made great contributions to the pathogenesis and treatment
of intervertebral discs [57].

4.3. Research Frontiers and Trends on Stem and Progenitor
Cells in Intervertebral Discs. The analysis of keyword bursts
can grasp the research frontier and latest progress in the field
of stem and progenitor cells in intervertebral discs. 4 key-
words with the strongest citation bursts appeared from
2017 to 2021, including “microenvironment”, “activation”,
“intervertebral disc degeneration”, and “oxidative stress”.

In recent years, related studies have shown that interver-
tebral disc degeneration is not only affected by the environ-
ment and genes, but also related to the microenvironment in
intervertebral disc, such as oxygen content, nutrients, and
growth factors, which can deteriorate the metabolic environ-
ment of nucleus pulposus cells, strengthen anaerobic metab-
olism, accumulate lactic acid, change acidity, and aggravate
intervertebral disc degeneration [58]. Bibby et al. studied
the standard unit of lumbar intervertebral disc and found
that the glucose concentration and oxygen partial pressure
in the endplate area were positively correlated with the cell
density in the nucleus pulposus and inversely proportional
to the lactate concentration [59], while Mokhbi Soukane
studied the standard unit of lumbar intervertebral disc. It
was confirmed that the lactate concentration in the blood
supply of the endplate cartilage was positively correlated
with the degeneration of the intervertebral disc in the corre-
sponding stage [60].

According to the free radical theory of aging, the decline
of tissue and organ function is closely related to the oxidative

stress induced by reactive oxygen species (ROS) [61]. The
occurrence and progression of intervertebral disc degenera-
tion is no exception [62, 63]. In the signaling pathway net-
work of nucleus pulposus cells, ROS acts as an important
mediator, regulating extracellular matrix metabolism, pro-
inflammatory factor phenotype, apoptosis, autophagy, and
aging. On the other hand, the antioxidant proteins in the
degenerated intervertebral disc tissue were significantly
decreased, which significantly reduced the antioxidant
capacity of the intervertebral disc tissue. These changes lead
to a redox imbalance in disc cells, which are vulnerable to
oxidative damage [64].

The pathophysiological role of oxidative stress on inter-
vertebral disc degeneration is complex. More and more stud-
ies are devoted to elucidate the relationship between
oxidative stress and intervertebral disc degeneration, and it
is found that oxidative stress may be a key factor of interver-
tebral disc degeneration. Antioxidative stress therapy recog-
nized as a promising treatment for disc degeneration [65].
However, in vitro experiments are insufficient to support
the true effectiveness of these antioxidants in preventing or
delaying human disc degeneration. Therefore, further clini-
cal research is needed.

5. Limitations

Bibliometric analysis is widely used to measure the impact of
articles in recent years. However, there are still some limita-
tions. First, we only used the core collection of Web of Sci-
ence (WOS) for searching literature. The more databases
we use, the more information we can get and analyze. Other
databases such as InCites and MEDLINE should be consid-
ered in future. Second, the main language of WOS is English.
Articles written by other languages are excluded, which
means some relevant articles to be not included. Third, cita-
tion number of each literature is time-dependent. Different
time to search the articles, different citations may obtain.
However, the trend of citation number of each literature is
nearly the same.

This is the first research focusing on stem and progenitor
cells in intervertebral disc by an analysis of the scientific
landscape using bibliometric method. Our results can benefit
scholars involved in the field of intervertebral disc degener-
ation by better understanding future research directions
and trends. They can more specifically improve the state of
treatment of intervertebral disc degeneration by paying
more attention to adipose-derived mesenchymal stem cell
and oxidative stress.

6. Conclusion

We demonstrated that research on stem and progenitor cells
in intervertebral discs was in a rapid development stage.
China had the most publications, and USA played a signifi-
cant role with highest citations and H-index. The most high-
yield author, organization, country, research directions,
funds, and journals were Chen QX from Zhejiang Univer-
sity, Zhejiang University, China, Cell Biology, National Nat-
ural Science Foundation of China, and Spine, respectively.
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Top 4 research hotspots contained “human intervertebral
disc”, “adipose-derived mesenchymal stem cell”, “interverte-
bral disc degeneration”, and “degenerative disc model”.
Meanwhile, research frontiers and trends were “microenvi-
ronment”, “activation”, “intervertebral disc degeneration”,
and “oxidative stress”.

Our results can benefit researches by quickly grasp
research hotspots and trends, which can provide a new per-
spective for further research.
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Osteoarthritis (OA) of the knee is a debilitating condition that can severely limit an individual’s mobility and quality of life. This
study was designed to evaluate the efficacy of bone marrow-derived mesenchymal stem cell (BM-MSC) treatment in cartilage
repair using a rat model of monoiodoacetate- (MIA-) induced knee OA. OA was induced in the knee joint of rats by an
intracapsular injection of MIA (2mg/50μL) on day zero. The rats were divided into three groups (n = 6): a normal control
group, an osteoarthritic control group, and an osteoarthritic group receiving a single intra-articular injection of BM-MSCs
(5 × 106 cells/rat). The knee diameter was recorded once per week. By the end of the performed experiment, X-ray imaging
and enzyme-linked immunosorbent assay analysis of serum inflammatory cytokines interleukin-1beta (IL-β), IL-6, and tumor
necrosis factor-α (TNF-α) and anti-inflammatory cytokines interleukin-10 and transforming growth factor-beta (TGF-β) were
carried out. In addition, RT-PCR was used to measure nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS),
and type II collagen mRNA levels and Western blot analysis was used to determine caspase-3 protein levels in all treated
groups. Finally, hematoxylin/and eosin stains were used for histopathological investigation. Administration of BM-MSCs
significantly downregulated knee joint swelling and MIA-induced (IL-1β, IL-6, and TNF-α) and upregulated IL-10 and TGF-β
as well. Moreover, BM-MSC-treated osteoarthritic rats exhibited decreased expression of NF-κB, iNOS, and apoptotic mediator
(caspase-3) and increased expression of type II collagen when compared to rats treated with MIA alone. The hematoxylin/
eosin-stained sections revealed that BM-MSC administration ameliorated the knee joint alterations in MIA-injected rats. BM-
MSCs could be an effective treatment for inflamed knee joints in the MIA-treated rat model of osteoarthritis, and the effect
may be mediated via its anti-inflammatory and antioxidant potential.

1. Introduction

Knee osteoarthritis (OA) is a disorder that influences the
musculoskeletal system in youth and the elderly [1]. It is a
degenerative joint disease, which is marked by pain, erosion

of articular cartilage, osteophytes, subchondral sclerosis, and
a variety of biochemical and morphologic changes that occur
in the synovial membrane and joint capsule [2]. The rapid
increase of OA is expected to significantly impact health care
and public health systems in the future. With an aging
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population, the physical and economic burden of OA is tre-
mendous as it is considered one of the main reasons for dis-
ability among the elderly [1, 3].

The pathogenesis of diseases of joints such as OA is asso-
ciated with progressive degeneration of articular cartilage,
bone remodeling, and locally produced cytokines, chemo-
kines, and other inflammatory mediators by synovium and
chondrocytes. Up to date, it is not clear to determine strictly
the exact cause of OA specifically and OA progression risk
depends on a wide range of factors. The dysbacteriosis of
the gut microbiota can be claimed to be a predisposing factor
for OA pathogenesis since it leads to obesity, insulin resis-
tance, and systemic inflammation [4]. However, most
attempts at treatment have only been effective at reducing
the disease symptoms (pain relief) [5].

Despite extensive work, there is currently no treatment
that can cure or effectively slow the progression of OA [6].
Because the efficacy of new therapeutics is initially tested
in animal models of OA [7], it is important to develop
animal models that accurately depict joint pathogenesis
and treatment response and provide useful biomechanical,
radiological, and microscopic assessments of OA-affected
tissues [8]. The monoiodoacetate- (MIA-) induced model
of OA, as opposed to surgical models, is an ideal experi-
mental model that is easy to generate, and it induces OA
alterations similar to those observed in humans [9]. It
exhibits increased inflammatory cytokines and decreased
anti-inflammatory cytokines, thereby mimicking the
inflammation process [10].

Current studies have focused on mesenchymal stem cell
(MSC) therapies as they promote the protection, regenera-
tion, and restoration of degenerated and injured joints
resulting from arthritis [11–13]. Although the precise mech-
anism underlying the effectiveness of stem cell-based inject-
able treatments is not yet completely known [14], the
capability of MSCs to migrate and engraft onto multiple
musculoskeletal tissues and undergo differentiation into

functional chondrocytes [15, 16], regenerate meniscus [17],
and produce therapeutic growth factors and cytokines [6,
18] has drawn significant interest as a way to facilitate the
repair of damaged tissues and halt disease progression. Con-
sequently, the main objective of the presented work is to
evaluate the ability of bone marrow-derived mesenchymal
stem cells (BM-MSCs) to repair deterioration in the articular
cartilage in MIA-induced osteoarthritis in a rat model utiliz-
ing radiographic, biochemical, and real-time polymerase
chain reaction (RT-PCR), Western blot, and histological
analyses.

2. Materials and Methods

The experiments were performed using eighteen adult male
Wistar rats (weighing 130–150 g). They were brought from
the animal house of Al-Nahda University, Beni Suef, Egypt,
maintained under conditions of controlled humidity, fed
with commercial rat pellets and water ad libitum, and their
weight was measured weekly. All procedures followed the
guidelines of the “experimental animal ethics committee”
of the faculty of science, Beni-Suef University, Egypt, for
the use and care of animals, and the ethical approval number
is BSU/FS/2018/15.

2.1. Induction of Osteoarthritis (OA). The osteoarthritis
model was constructed on day zero (Figure 1). The left knees
of twelve rats were sprayed with 70% alcohol and then intra-
articularly injected with 50μL of sterile saline (0.9%) contain-
ing monosodium iodoacetate (MIA) (2mg/50μL) using a 21-
gauge needle as previously described by Maresca et al. [19].

2.2. Isolation and Culture of Bone Marrow Mesenchymal
Stem Cells. The protocol for the isolation and culture of
BM-MSCs was done according to the procedure of Ahmed
et al. [11] and Chaudhary and Rath [20]. BM-MSCs were
flushed out of the humerus, femurs, and tibiae of the rats
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Figure 1: Timeline of the experiment depicting OA induction on zero day, treatment on the 14th day, and sacrifice of animals on the 28th day.
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and centrifuged at 3000 RPM for 5min at room temperature.
They were cultured in culture flasks containing Dulbecco’s
modified Eagle’s medium (DMEM) (Life Science Group Ltd.,
UK) supplemented with 10% fetal bovine serum (Lonza Ver-
viers Sprl, Belgium), 0.36% sodium hydrogen carbonate, and
1% penicillin/streptomycin (Life Science Group Ltd., UK)
and kept at 37°C in a 5% CO2 incubator. On the third day,
the culture medium was changed. After 7–10 days, the cells
were collected using trypsin (Greiner Bio-One, Germany).

2.3. Viability Assessment. For cell counting and viability
assessment, the collected cells were washed and resus-
pended in DMEM. Then, 10μL of 0.4% trypan blue
was added to 10μL of the cells and the mixture was
counted on a hemocytometer. The BM-MSCs dispersed
in DMEM with viability higher than 95% were immedi-
ately injected into the knee joint of osteoarthritic rats at
a dose of 5 × 106 cells/rat.

2.4. Animal Grouping and Experimental Design. Eighteen
adult male Wistar rats were randomly selected and catego-
rized into the following three groups (n = 6) (Figure 1):

2.4.1. G1 (Normal Control Group). The rats within the control
group received an intracapsular injection of saline (50μL) and
DMEM (50μL) into the left knee joint at 0 and 14 days.

2.4.2. G2 (MIA-Induced OA Group). The rats within this
group were administered a single intra-articular injection
of 50μL saline containing 2mg MIA [19] and 50μL of
DMEM into the left knee joint at 0 and 14 days.

2.4.3. G3 (MIA+BM-MSC Group). On the 14th-day post-
MIA injection, the rats were treated using a single intra-
articular injection (50μL) of BM-MSCs at a dose of 5 × 106
cells/joint [21].

2.4.4. Knee Measurement. The differences in the measure-
ments of the anterior-posterior diameters of the affected and
unaffected knee joints were measured using a manual caliper
[22]. The measurements were recorded on day zero and every
week post-MIA injection until the end of the experiment.
Then, the mean variance in the volume of injected knee edema
(swelling) relative to the noninjected knee was obtained.

2.4.5. Radiographic Assessment (X-Ray). On day 27 post-OA
induction and day 14 post-BM-MSC treatment, the knee
joints of haphazardly taken rats under anesthesia were X-
rayed (anterior-posterior position) using an X-ray apparatus
(Shimadzu Corporation, Japan) to observe impairment in
joint space, bone morphology, and response to BM-MSC
treatment.

2.4.6. Blood and Tissue Samples. After 28 days, animals were
anesthetized with diethyl ether inhalation and blood samples
were collected from the jugular vein. Obtained blood was left
to coagulate at ambient temperature for 30min, followed by
centrifugation at 3000 rpm for 15min. Obtained serum was
quickly removed and kept at −20°C until being used for
the analysis of various biochemical parameters. Three knee
samples from each group were fixed in 10% buffered forma-

lin for histopathological evaluation, whereas the others were
kept at −20°C until being utilized for RT-PCR and Western
blot analysis.

2.4.7. Enzyme-Linked Immunosorbent Assay Analysis. The
amounts of serum tumor necrosis factor-α (TNF-α),
interleukin-1 beta (IL-1β), IL-6, IL10, and transforming growth
factor-beta (TGF-β) of all groups were defined using specific
enzyme-linked immunosorbent assay kits supplied by MyBio-
Source (USA) according to the manufacturer’s instructions.

2.4.8. Antioxidant Defense System and Oxidative Stress
Analysis. The glutathione (GSH) content, lipid peroxidation,
and superoxide dismutase (SOD) activity were measured in
serum as part of the antioxidant defense system. Later on,
lipid peroxidation was determined following the method of
Preuss et al. [23] based on the determination of malondial-
dehyde (MDA), which is an end product of lipid peroxida-
tion reacting with thiobarbituric acid (TBA) to yield a
pink-colored TBA-reactive substance, which assesses the
amount of lipid peroxidation. SOD activity was determined
following the Nishikimi et al. [24] procedure. This assay
relies on the ability of the enzyme to inhibit the phenazine
methosulphate-mediated reduction of nitro blue tetrazolium
dye. GSH levels were measured following the method of
Beutler et al. [25]. It is the reduction of 5, 5′-dithiobis-2-
nitrobenzoic acid (DTNB) by the thiol group (SH) which
is present in GSH to form 5-thio-2-nitrobenzoic acid, where
the latter can be assayed colorimetrically.

2.4.9. Real Time-PCR (RT-PCR) Analysis. The QIAGEN tis-
sue extraction kit (QIAGEN, USA) was used for total RNA
isolation. Then, 0.5–2μg of total RNA was used for cDNA
synthesis using a kit from Fermentas (USA). An Applied
Biosystem instrument with software version 3.1 (StepOne™,
USA) was for real-time qPCR amplification and analysis.
The qPCR assay was done with primer sets optimized for
the annealing temperature. The sequences of the primers
are presented in Table 1.

2.4.10. Western Blot Analysis. Western blot (WB) analysis
was implemented to assess the amount of protein of NF-
κB p50, NF-κB p65, caspase-3, and cleaved caspase-3 in
the knee samples. Briefly, the proteins were extracted from
the left knee joints (n = 3) using ice-cold radioimmunopreci-
pitation assay buffer (RIPA buffer) supplemented with pro-
tease and phosphate inhibitors (Bio Basic Inc., Canada).
Equivalent amounts of protein (30μg) were isolated on
10% sodium dodecyl sulfate-polyacrylamide gels (SDS-
PAGE). Furthermore, proteins were transferred to polyviny-
lidene fluoride (PVDF) membranes and blocked with 5%
skim milk in TBS containing Tween 20 overnight. The
membranes were incubated at 4°C with primary antibodies
against NF-κB p50, NF-κB p65, caspase-3, and cleaved
caspase-3. Following washing with TBST, membranes were
incubated with the corresponding secondary antibodies
and developed using an enhanced chemiluminescence kit
(BioRad, USA). Finally, the developed blots were scanned
and band intensity was measured using ImageJ software
(NIH, USA).
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2.4.11. Histopathology of the Knee Joint. After dissection, 3
knee joint samples from each group were rapidly excised
and trimmed for histopathological examination. They
were fixed in 10% buffered formalin for 24 h and decalci-
fied in 10% formic acid solution, dehydrated, and embed-
ded in paraffin wax. After cutting into 5μm sections, the
slides were stained with hematoxylin and eosin stain for
examination by light microscopy. The histopathology of
OA is graded using the modified Mankin grading system
[26, 27] as follows: the cartilage structure was scored
from 0 to 4 (Table 2), where 0 is normal, 1 is surface
irregularities, 2 is complete disorganization, 3 is clefts
into the noncalcified cartilage layer, and 4 is clefts into
the calcified cartilage layer. Furthermore, cellular abnor-
malities were scored on a scale of 0 to 3, where 0 is nor-
mal, 1 is hypercellularity, including small superficial
clusters, 2 is clusters, and 3 is hypocellularity. Finally,
tidemark was graded on a scale of 0 to 1, where 0 is
intact and 1 is damaged.

2.4.12. Statistical Analysis. All the data were presented as the
mean ± SEM, where P < 0:05 was deemed statistically signif-
icant. All values were analyzed by IBM-SPSS software (ver-
sion 25.0) using one-way ANOVA followed by post hoc
Dunnett’s t-test at different variance levels.

3. Results

3.1. Effect of BM-MSCs on Knee Diameter Measurements.
The MIA-treated group showed an increase in knee diame-
ter during the first two weeks post-MIA injection compared
with the values on day zero before MIA injection. However,
MIA rats treated with BM-MSCs on day 14 exhibited a
reduction in the knee measurement throughout the third
and fourth weeks of the experiment compared to the MIA-
treated group (Figure 2).

3.2. Effect of BM-MSCs on Radiographic Changes. At the end
of the treatment period, the anterior and posterior views
of the left knee joints from all groups were X-rayed. Com-
pared with those of the normal rats (Figure 3(a)), the
knees of the MIA-treated group showed OA alterations,
such as cartilage degradation as evidenced by the existence
of bone erosions, a narrow joint space, and minute mar-
ginal osteophytes (Figure 3(b)). In contrast, the BM-

MSC-treated knees exhibited a significant restoration of
normal joint morphology, marked by the recovery of joint
space narrowing and disappearance of osteophytosis osteo-
phytotic (Figure 3(c)).

3.3. ELIZA Evaluation

(a) Effect of BM-MSCs on the serum proinflammatory
cytokines TNF-α, IL-1β, and IL-6

A remarkable increase (P < 0:05) in the serum levels of
TNF-α, interleukin-1 beta (IL-1β), and IL-6 (Table 3) was
observed in the MIA-treated group in comparison with the
normal control group. On the contrary, the MIA+BM-MSC
group had a significant decrease (P < 0:05) in the serum levels
of TNF-α, IL-1β, and IL-6 in comparison with theMIA group.

(b) Effect of BM-MSCs on serum IL-10

The serum levels of IL-10 (Table 3) were markedly
reduced in the osteoarthritic control group in comparison
with the normal control group (P < 0:05), whereas the
serum levels of IL-10 were remarkably increased
(P < 0:05) in the BM-MSC-treated group compared with
the MIA group.

(c) Effect of BM-MSCs on serum transforming growth
factor-beta (TGF-β)

Table 1: Primer sequences used for real-time PCR.

Target gene Primer sequence

NF-κB
Forward primer: 5′-CATTGAGGTGTATTTCACGG-3′
Reverse primer: 5′-GGCAAGTGGCCATTGTGTTC-3′

iNOS
Forward primer: 5′-GACCAGAAACTGTCTCACCTG-3′
Reverse primer: 5′-CGAACATCGAACGTCTCACA-3′

Type II collagen
Forward primer: 5′-GAGTGGAAGAGCGGAGACTACTG-3′
Reverse primer: 5′-CTCCATGTTGCAGAAGACTTTCA-3′

Beta-actin
Forward primer: 5′-TGTTTGAGACCTTCAACACC-3′
Reverse primer: 5′-CGCTCATTGCCGATAGTGAT-3′

Table 2: The modified Mankin score of microscopic observation of
OA articular cartilage.

Category Subcategory Score

Structure

Normal 0

Surface irregularities 1

Complete disorganization 2

Clefts to the noncalcified layer 3

Clefts to calcified layer 4

Cells

Normal 0

Hypercellularity 1

Hypocellularity 2

Pyknosis 3

Tidemarks
Intact 0

Damaged 1
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MIA administration had significantly increased the
serum levels of TGF-β (Table 3) compared with the normal
control rats. In contrast, the MIA+BM-MSC-treated group
showed a reduction (P < 0:05) in the levels of TGF-β com-
pared with the MIA-treated group and an increase relative
to the normal rats.

3.4. Effect of BM-MSCs on Serum Levels of Malondialdehyde
(MDA), Superoxide Dismutase (SOD), and Glutathione
(GSH). MIA-induced osteoarthritic rats had significantly
(P < 0:05) increased MDA levels and decreased the activity
of SOD and the concentration of GSH (Table 4). On the
other hand, BM-MSC-treated rats exhibited a significant
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Figure 2: Knee anterior-posterior diameter measurements in normal control, MIA, and MIA+BMMSC groups. At each period, the means,
which have different symbols (letters), are significantly different at P < 0:05.

(a) (b)

(c)

Figure 3: Radiographic changes in the left knee joint (L). (a) The normal control group shows a healthy knee joint with a smooth articular
cartilage surface and normal joint space (arrowhead). (b) The MIA-treated group demonstrates OA alternations such as a remarkable
narrowing of the joint space (arrowhead), erosion, subchondral sclerosis (curved arrow), and osteophyte (black arrow). (c) The MIA
+BMMSC-treated group shows nearly restored normal joint space (arrowhead) and cartilage surface.

Table 3: Effect of BM-MSCs on serum levels of TNF-α, IL-6, IL-10, and TGF-β of MIA-induced OA.

Groups
Parameters

TNF-α (pg/mL) IL-1β (pg/mL) IL-6 (pg/mL) IL-10 (pg/mL) TGF-β (pg/mL)

Normal control 22:16 ± 1:62a 8:58 ± 3:14a 60:06 ± 2:97a 320:19 ± 2:33c 114:49 ± 0:52a

MIA 95:033 ± 0:71c 130:39 ± 3:95c 178:40 ± 5:86c 119:08 ± 3:71a 260:65 ± 6:62c

MIA+BM-MSCs 60:40 ± 2:05b 2:21 ± 4:95b 130:13 ± 8:50b 288:36 ± 1:54b 134:98 ± 3:88b

The number of samples in each group is six and the data are described asmeans ± SEM. For each parameter, means, which have different superscript symbols,
are statistically significant, P < 0:05.

5Stem Cells International



decrease in MDA levels accompanied by an elevation in the
activity of SOD and the content of GSH.

3.5. Effect of BM-MSCs on mRNA Expression Levels of
Nuclear Factor-Kappa B (NF-κB), Inducible Nitric Oxide
Synthase (iNOS), and Type II Collagen. The role of BM-
MSC administration in osteoarthritic rats on the expression
of nuclear factor-kappa B (NF-κB), inducible nitric oxide
synthase (iNOS), and type II collagen was determined by
qRT-PCR (Figures 4–6), respectively. MIA administration
markedly increased the expression of NF-κB and iNOS in
comparison with the normal control group. On the contrary,
the BM-MSC treatment of osteoarthritic rats significantly
inhibited the expression levels of NF-κB and iNOS com-
pared with the group treated with MIA only. On the other
hand, BM-MSCs enhanced the expression of collagen type
II mRNA compared to that of the osteoarthritic control
group, which exhibited low expression of collagen type II.

3.6. Effect of BM-MSCs on the Protein Expression Levels of
NF-κB p50 and NF-κB p65. Western blot analysis demon-
strated the MIA-induced increase in the protein expression
levels of NF-κB p50 and NF-κB p65 (Figure 7) in the knee
joints of osteoarthritic rats relative to the normal knee joints,
whilst MIA+BM-MSC-treated knee joints showed signifi-
cant reduction in protein expression levels of NF-κB p50
and NF-κB p65 compared with the MIA-treated knee joints
without any treatment.

3.7. Effect of BM-MSCs on the Protein Expression Levels of
Caspase-3 and Cleaved Caspase-3. Western blot analysis
revealed that the protein levels of cleaved caspase-3 and
caspase-3 (Figure 8) were markedly enhanced in the knee
joints of osteoarthritic rats in comparison with the normal
rats. Furthermore, the upregulated protein levels of
caspase-3 and cleaved caspase-3 were significantly attenu-
ated in knee joints of osteoarthritic rats treated with BM-
MSCs compared with the osteoarthritic control group.

3.8. Effect of BM-MSCs on Histopathological Changes.Hema-
toxylin and eosin sagittal stained sections of the normal knee
revealed a normal histological composition of the joint cap-
sule, articular cartilage, and subchondral bone as well as
intact tidemarks (Figure 9(a)). In contrast, the stained sec-
tions of the osteoarthritic rats (MIA group) showed signifi-
cant histopathological alterations in the cartilage including
a reduction in thickness, clefting, uneven articular surface,
and degenerated chondrocytes accompanied by apoptosis
(Figure 9(b)). Osteoarthritic rats (Figure 9(b)) also displayed
bone destruction in the discontinuous thin cancellous bone
trabeculae with blind ends and widening of the bone marrow
space, which contained fewer hematopoietic cells as well as
invisible tidemarks. Moreover, matrix changes included a
severe loss, degeneration, and heterogeneous distribution of
chondrocytes in the growth plate (Figure 9(c)). However,
osteoarthritic rats treated with BM-MSCs exhibited no his-
topathological bone lesions. In contrast, osteoarthritic rats
treated with BM-MSCs showed profound protection against
OA-related articular cartilage defects and indicated no histo-
pathological lesions in cartilage or bone compared with oste-
oarthritic knee joints (Figures 9(d) and 9(e)). Likewise, the
total score of the modified Mankin system (Table 5) was sig-
nificantly lower in the BM-MSC osteoarthritic-treated group
(P < 0:05) in comparison with the osteoarthritic control
group which confirms the protective properties of stem cell
treatment against further destruction of the cartilage in OA
knee joints.

4. Discussion

OA was considered for a long time as a noninflammatory
wear and tear condition involving cartilage degeneration.
However, it has become clear that it is a whole-joint disease
in which catabolic processes cause cartilage degradation and
inflammation, which plays a key role in the pathogenesis
and development of OA [28].

Table 4: Effect of BM-MSCs on serum levels of MDA, GSH, and the activity of SOD of MIA-induced OA.

Groups
Parameters

MDA (nmol/mL) GSH (mg/dL) SOD (U/mL)

Normal control 0:016 ± 0:004a 183:96 ± 16:26c 339:46 ± 13:49c

MIA 0:162 ± 0:037c 16:057 ± 2:9a 150:97 ± 11:08a

MIA+BM-MSCs 0:087 ± 0:006b 55:33 ± 5:98b 227:68 ± 8:33b

The number of samples in each group is six and the data are described asmeans ± SEM. For each parameter, means, which have different superscript symbols,
are statistically significant, P < 0:05.
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Figure 4: Effect of BM-MSC treatment (5 × 106 cells/rat) on the
mRNA expression level of NF-κB in MIA-induced animals. Means,
which have different symbols, are significantly different at P < 0:05.
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Considering the limited reparability of cartilage [16, 29]
and that no cure is currently available for OA [30], MSCs are
regarded as an auspicious candidate for knee OA treatment
because of their chondroprotective effects, chondrogenic
potential, and paracrine effects [31–33], as well as their abil-
ity to enhance the production of various extracellular matrix
(ECM) components [34, 35].

In the present study, we shed light on the possible under-
lying mechanisms of action of a single intra-articular injec-
tion of BM-MSCs as therapy for cartilage damage in an
MIA-induced OA rat model (Figure 10).

Joint swelling is frequent in various kinds of arthritis
and is driven by edema, which occurs as a result of leak-
age of fluid from endothelial cells of the blood vessels
into the inflamed synovium [36]. The intrainjection of
BM-MSCs resulted in a substantial reduction in the
increased values of the left knee diameter post-MIA
administration. Similarly, a study by Kehoe et al. [37]
revealed that treatment with BM-MSCs reduced knee
swelling, which was ascribed to alterations in permeability
of synovial endothelial cells to soluble substances pro-
duced by the MSCs.

Our radiographic findings in harmony with de Morais
et al. [8] and Jaleel et al. [38] illustrated that MIA-induced
chondral injury along with inflammation resulted in osteo-
phytosis, bone sclerosis, and a reduction in joint space, anal-
ogous to human osteoarthritis. Moreover, radiography
images revealed that two weeks of treatment with BM-
MSCs attenuated the effect of MIA and resulted in a direct
regenerative effect on knee joint cartilage.

Because damaged cartilage is subjected to a progressive
inflammatory environment [39], several inflammatory sig-
naling pathways, including the nuclear factor-kappa B
(NF-κB), have been implicated in the control of OA [40].

The classical-canonical pathway of NF-κB is stimulated
in chondrocytes and synoviocytes of articular joints by
mechanical stress or cytokines (IL-1β and TNF-α)
(Figure 10). It is started with the activation of IB kinase
(IKK), resulting in phosphorylation and degradation of IκBα
by the proteasome, and then, NF-κB p65 as well as NF-κB
p50 protein is released and translocated from the cytoplasm
to the nucleus [41].

Activated chondrocytes and synoviocytes subsequently
produce a plethora of inflammation-related factors, includ-
ing matrix metalloproteinase proteins, inducible nitric oxide
synthase (iNOS), IL-1β, IL-6, and TNF-α, and these cyto-
kines further activate the signaling cascade [42].

Our results indicated that BM-MSCs significantly sup-
pressed NF-κB p50, NF-κB p65, TNF-α, IL-1β, and IL-6 in
osteoarthritic rats (Figure 10). These findings are consistent
with Mancuso et al. [43] and Wang et al. [44]. A study by
Wang et al. [45] hypothesized that MSC administration dis-
played anti-inflammatory effects via lessening excess TNF-α
(an activator of NF-κB) and blocking the phosphorylation of
the NF-κB p65 subunit in spinal cord injury.

Moreover, BM-MSC treatment significantly elevated the
serum levels of IL-10 which is considered an anti-
inflammatory cytokine that possesses chondroprotective
characteristics [46]. Moreover, it can induce the prolifera-
tion of chondrocytes [47] and ameliorate the severity of
arthritis and cartilage degeneration [48]. The immunomod-
ulatory capacity of activated MSCs alters inflammatory
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cytokine levels during OA and can affect IL-10 expres-
sion, which results in tissue survival [49]. Previous studies
proposed that prostaglandin E2 (PGE2) released by MSCs
can increase the secretion of IL-10 by engaging the E-
type prostanoid receptors, EP2 and EP4 receptors, on
M2 macrophages which eventually repair the damage of
the cartilage [44, 50].

In our study, BM-MSC injection also markedly
decreased inducible nitric oxide synthase expression in the
osteoarthritic knee joints. Hamilton et al. [51] stated that
intra-articular injection of MSC could downregulate the
iNOS level in macrophages and eventually reduces the gen-
eration of M1 macrophages.

The expression of proinflammatory and damaging medi-
ators of OA, such as the iNOS gene, has also been linked to
NF-κB signaling [52, 53]. iNOS is considered an enzyme
responsible for the generation of nitric oxide (NO). Exces-
sive production of NO by iNOS appears to be involved in
OA pathogenesis through modulating ECM homeostasis
and cytokine expression, which results in oxidative damage
and chondrocyte apoptosis [54].

The immunosuppressive nature of MSCs may also
explain the outcomes of iNOS levels in our study. Under
inflammatory conditions, interferon γ (IFNγ), in combina-
tion with one of three additional proinflammatory cytokines,
TNF-α, IL-1, or IL-1β, induces the immune activity of
MSCs. In response to this cytokine combination, MSCs
express multiple chemokines and iNOS, which directly pre-
vent the proliferation and function of T cells [55].

Even though transforming growth factor-beta (TGF-β)
signaling has a principal role in cartilage development and
in maintaining articular chondrocyte homeostasis in syno-
vial joints, in the present study, TGF-β is potentially
involved in joint degeneration. Similarly, a study by Dra-
nitsina et al. [56] revealed that MIA-OA causes an
increase in the expression of Tgfb1 genes in rat cartilage
cells. Our results, in contrast to Halfaya et al. [57], indi-
cated a significant rise in the level of transforming growth
factor β (TGF-β) in OA joints compared with that of the
control group [46]. Van der Kraan [28] postulated that an
elevation of the TGF-β level could activate inflammation
that may be involved in OA pathogenesis by altering

Normal control MIA MIA + BM - MSCs

NF-𝜅B p50

NF-𝜅B p65

𝛽-actin

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n 

of
 N

F-
𝜅

B 
p5

0 
&

 N
F-
𝜅

B 
p6

5

Normal control

6.0

5.0

4.0

3.0

2.0

1.0

0.0
MIA MIA + BM - MSCs

a a

c

c

b

b

NF-𝜅B p50
NF-𝜅B p65

Figure 7: Effect of BM-MSC treatment (5 × 106 cells/rat) on the protein levels of NF-κB p50 and NF-κB p65 in MIA-induced animals.
Means, which have different symbols, are significantly different at P < 0:05.

Normal control MIA MIA + BM - MSCs

𝛽-actin

Cleaved
caspase-3

Caspase-3

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n 

of
 cl

ea
ve

d 
ca

sp
as

e-
3 

&
 ca

sp
as

e-
3

Normal control

6.0

5.0

4.0

3.0

2.0

1.0

0.0
MIA MIA + BM - MSCs

Cleaved caspase-3
Caspase-3

a a

c

c

b b

Figure 8: Effect of BM-MSC treatment (5 × 106 cells/rat) on the protein levels of cleaved caspase-3 and caspase-3 in MIA-induced animals.
Means, which have different symbols, are significantly different at P < 0:05.

8 Stem Cells International



(a) (b)

(c) (d)
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Figure 9: Photomicrographs of hematoxylin and eosin- (H&E-) stained sections of left knees joints of the following groups: (a) is a section
from the control group which demonstrates the normal structure of articular cartilage, with a regular smooth intact surface and well-
organized chondrocytes, which appeared in noncalcified (NCC) and calcified (CC) regions of cartilage with a clear intact tidemark
(arrowhead) in between. The noncalcified region (NCC) of the articular cartilage is arranged in three zones: superficial (S), transitional
(T), and radial (R) zones. It also shows intact subchondral bone (SC) with well-oriented bony trabeculae (arrow) (scale bar = 200 μm).
(b, c) Are sections from osteoarthritic rats (MIA-treated group). (b) Depicts clefting (curved arrows), surface erosion, degeneration of the
surface layer with discontinuity of the matrix (star), discontinuous thin cancellous bone trabeculae having blind ends (arrows), decrease
in thickness of articular cartilage, degenerated chondrocytes with pyknotic nuclei (arrowheads), and widening of bone marrow space
(BM) containing less hemopoietic cells, invisible tidemark, and large, thickened area at the joint margin and disorganization of the
articular cartilage with some cell clusters (thick arrow). (c) Shows the matrix change, loss, degeneration (∗), and heterogeneous
distribution of chondrocytes in the growth plate. (d, e) Are sections from the treatment group (MIA+BMMSCs). (d) Displays intact
synovial membrane (SV) and marked restoration of the normal structure of the articular cartilage intact surface and increase in its
thickness and nearly normal bone marrow space (BM) compared to the MIA-treated group, organized fibrous connective tissue (thin
arrows), clarification of tidemark (arrowhead), and cell layers with few shrunken chondrocytes, some empty lacunae (scale bar = 200μm). (e)
Demonstrates neatly and normally oriented chondrocytes of the growth plate (scale bar = 200μm).
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cellular differentiation and causing joint deterioration.
Additionally, studies have reported that TGF-β signaling
mediated by Smad2/3 may be involved in OA progression
by inducing the recruitment of MSCs and osteoprogenitors
to the subchondral bone, ending with aberrant bone
remodeling that initiates and worsens osteoarthritis. Nev-
ertheless, the activation and catabolic role of TGF-β in
OA requires further investigation.

However, TGF-β levels after BM-MSC treatment were still
higher compared with those of the normal control group.
Studies have reported that MSCs could inhibit T-cell prolifer-
ation and promote apoptosis in T cells, ending with fragments
that trigger phagocytes to release TGF-β [6, 58].

Apoptosis also plays a key role in OA pathophysiology.
MIA has been shown to have necrotic and proapoptotic
effects on rat chondrocytes in vitro, whilst TNF-α activates
the tumor necrosis factor receptor (TNFR) or death recep-
tors which eventually triggers the extrinsic pathway of apo-
ptosis (Figure 10).

Korotkyi et al. [59] demonstrated that MIA-OA induced
free radical reactions that caused the accumulation of superox-
ide anion radicals, hydrogen peroxide, and NO and thiobarbi-
turic acid-reactive compounds that are intermediate products
of lipid peroxidation. Elevated oxidative stress and ROS levels
triggered by MIA led to the activation of the intrinsic pathway
through the depolarization of membrane potential, the pro-
motion of the discharge of cytochrome c, and the activation
of caspase-3 [10, 60, 61]. Caspase-3 contributes to the overall
apoptotic process by cleaving various cellular substrates [62].
Korotkyi et al. [59] also mentioned that MIA-induced OA
led to a decrease in superoxide dismutase (SOD) activity of
glutathione (GSH) which represents the first line of antioxi-
dants that catalytically scavenge the free radicals [13].

Overall, MIA-OA condition results in an imbalance
between the intensity of the formation of free radicals and
their neutralization by the antioxidant defense system.
Therefore, inhibiting ROS and caspase-3 expression in OA
could potentially inhibit apoptosis.

Table 5: Mankin scoring of the cartilage among experimental groups.

Groups
Parameters

Cartilage structure Cellularity Tidemarks Overall Mankin score

Normal control 0 ± 0 0 ± 0a 0 ± 0a 0 ± 0a

MIA 4:0 ± 1:41c 1:26 ± 0:52c 1:0 ± 0:0c 11:17 ± 1:28c

MIA+BM-MSCs 2:50 ± 0:76b 0:55 ± 0:22b 0:33 ± 0:21c 4:17 ± 0:60b

The number of samples in each group is six and the data are described asmeans ± SEM. For each parameter, means, which have different superscript symbols,
are statistically significant, P < 0:05.
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Figure 10: The therapeutic effect of BMMSCs on cartilage damage due to inflammation, extracellular matrix (ECM) degradation, and
apoptosis in MIA-induced knee osteoarthritis.
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In this context, we tested the effect of BM-MSC injection
on the increase of the lipid peroxidation product (MDA) and
the decrease of SOD and GSH levels in MIA-induced OA in
the knee joints of the rat. Our data showed that the antioxi-
dant system was boosted and that the increased level of
caspase-3 and MDA in OA knee joints was ameliorated fol-
lowing intra-articular MSC treatment.

MSCs release an array of paracrine molecules, known
as secretome, consisting of a variety of proteins with
diverse biological functions, including immune regulation,
antiapoptotic effects, and antioxidative effects. Antioxidant
effects exhibited by MSCs and their secretome are attrib-
uted to their ability to scavenge free radicals, upregulate
the antioxidant defense system, and alter cellular bioener-
getics [63]. MSC immunosuppressive capabilities can also
prevent the production of ROS and lower oxidative stress.
Most recently, BM-MSCs decreased oxidative stress and
enhanced antioxidant activity in severe acute pancreatitis
in rats by inducing the nuclear translocation of nuclear
factor erythroid 2-related factor 2, an emerging regulator
of cellular resistance to oxidants, via the PI3K/AKT signal-
ing pathway [64]. Meanwhile, He et al. [65] proposed that
the paracrine effect of MSC mitigated ischemia-induced
apoptosis by increasing the Bcl-2-to-Bax ratio and inhibit-
ing the activation of caspase-3.

Oxidative stress and ROS have also been linked to OA
pathophysiology by inhibiting new cartilage extracellular
material (ECM) synthesis, leading to a loss of integrity of
the cartilage [66]. The degradation and low accumulation
of type II collagen, a predominant component of ECM that
interacts with proteoglycans, supplying the cartilage with
the elasticity and capacity for deformation, have been impli-
cated in OA condition [67]. Besides, the newly produced
molecules to compensate for the loss are often damaged
which inhibits cartilage repair [68].

Lepetsos and Papavassiliou [54] suggested that ROS
restrains mitochondrial oxidative phosphorylation and
ATP formation in cultured chondrocytes, which eventually
decreases the synthesis of collagen and proteoglycans and
results in cartilage degradation.

On the other hand, MSCs have also been shown to pro-
mote chondrogenesis by replenishing the ECM of articular
cartilage [35]. Intra-articular BM-MSC administration dimin-
ished the loss of collagen type II in OA knee joints. Ahmed
et al. [13] have suggested that BM-MSCs could promote the
antioxidant defense system at the expense of the oxidative
stress in tissues, hence, inhibiting the subsequent inflamma-
tory process (Figure 10).

Histopathological evaluation was the major endpoint
examined in the current study. Four weeks post-MIA
administration, the osteoarthritic control displayed multi-
ple histopathological changes in the knee joint including
severe damage to the cartilage structure which was mani-
fested by a loss of integrity, clefts, degeneration of the sur-
face layer, matrix changes, dispersed and pyknotic
chondrocytes, and hypocellularity resulting from the loss
and degeneration of chondrocytes [69, 70]. In the present
study, a single intra-articular injection of BM-MSCs sig-
nificantly lessened the inflammation and provided ade-

quate protection against MIA-induced histopathological
alterations, which were demonstrated by the preserved
structure of articular cartilage, ECM, and the underlying
subchondral bone [21, 71], However, the impact of a
single injection of BM-MSC on cartilage regeneration
and proliferation should be further studied. These results
are also supported by the overall Mankin score as the
rats, which received an intra-articular injection of BM-
MSC showing a remarkable amelioration of the articular
cartilage structure represented by a lower Mankin score
compared with the osteoarthritic rats without treatment.

Considering the biochemical, molecular, and histopa-
thological outcomes, our results suggest that BM-MSC treat-
ment regulates and reduces OA-induced inflammation,
postpones cartilage degradation, and promotes cartilage
regeneration through paracrine activity [72].

Although this study has reached its aims, there were
some potential limitations that the relevant mechanism
underlying the effects of BM-MSCs on OA has not yet been
further confirmed because of an insufficient small sample
size and a lack of ability in predicting the pathway and safety
in clinical investigations. In future studies of OA and treat-
ments with BM-MSCs, researchers should focus on in-
depth investigations of the various molecular mechanisms
underlying OA and screening and identifying specific signal-
ing pathways.

5. Conclusion

It was concluded that intra-articular injections of BM-
MSCs significantly enhanced the radiological, biochemical,
molecular, and histopathological outcomes of rats suffering
from knee OA induced by MIA over a two-week period.
However, cartilage regeneration probably takes a long time
to develop. Therefore, to determine the long-term efficacy
of BM-MSCs on the progress of knee OA, long-term stud-
ies should be carried out.
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Ferroptosis is an iron-dependent form of programmed cell death and an important type of biological catabolism. Through the
action of divalent iron or ester oxygenase, ferroptosis can induce lipid peroxidation and cell death, regulating a variety of
physiological processes. The role of ferroptosis in the modulation of bone homeostasis is a significant topic of interest. Herein,
we review and discuss recent studies exploring the mechanisms and functions of ferroptosis in different bone-related cells,
including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. The association between ferroptosis and disorders of
bone homeostasis is also explored in this review. Overall, we aim to provide a detailed overview of ferroptosis, summarizing
recent understanding on its role in regulation of bone physiology and bone disease pathogenesis.

1. Introduction

Ferroptosis is a form of cell death that was only recently
defined by [1]. who proposed the concept in 2012 to describe
a nonapoptotic type of cell death which is iron-dependent
and is characterized by an accumulation of reactive oxygen
species (ROS). Ferroptosis is closely related to a variety of
metabolic disorders, tumors, and injuries [2–4]. During fer-
roptosis, the most susceptible lipids to peroxidation are
polyunsaturated fatty acids (PUFAs).

In cell physiology, an increase of polyunsaturated fatty acids
(PUFAs) on the cell membrane enhances the fluidity of the cell
membrane, which indirectly increases the migratory ability of
the cell [5]. Therefore, the increase in PUFAs is an important
hallmark in the process of cell evolution. However, introduction

of PUFAs also endangers cell survival. Hydrogen molecules
produced during the dissociation of PUFAs can react with oxide
and ferrous ions in the surrounding environment, resulting in
the accumulation of peroxide and subsequent cell damage [6].
Normally, cells use PUFAs efficiently without causing cell dam-
age by employing glutathione peroxidase 4 (GPX4) signaling
which partially decreases the levels of PUFAs [7]. Mechanisti-
cally, GPX4 uses its catalytic activity to weaken the toxicity of
lipid peroxides and maintain the homeostasis of lipid bilayer.
Recent evidence identified the regulatory role of GPX4 and fer-
roptosis in multiple pathological processes. Currently, ferropto-
sis has attracted accumulative focus in studies on a wide range
of diseases. Plenty of evidences have demonstrated that the
pathological process of ferroptosis involves the excessive pro-
duction of ROS, followed by abnormal activation of lipid
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peroxidation in an iron-dependent manner, accompanied with
amarked elevated uptake of PUFAs into the cellularmembrane.
The unique characteristics of ferroptosis make it complicated
related to several biological processes.

Bone homeostasis is a physiological process regulated by
bone related-stem cells, osteoblasts, osteoblasts, and osteo-
cytes [8]. During bone remodeling, osteocytes, osteoblasts,
and osteoclasts interact with one another in a paracrine
manner and regulate angiogenesis in the bone marrow to
maintain bone homeostasis [9]. Research has demonstrated
the crucial role of ferroptosis in regulating the survival of
bone-related cells and identified oxidative stress as an
important factor in cell death [10, 11]. However, the exact
mechanism of ferroptosis in bone homeostasis regulation
remains largely unknown, and it is yet unclear whether fer-
roptosis is a driver or a passenger event in bone homeostasis.

Herein, we aim to review the recent literature on the sub-
ject to explore the underlying mechanisms of ferroptosis and
its roles in different bone-related cells, including mesenchy-
mal stem cells, osteoblasts, osteoclasts, and osteocytes. We
summarize the recent findings on the role of ferroptosis in
regulation of bone physiology and osteopathogenesis.

2. Ferroptosis

As previously mentioned, ferroptosis was first proposed in
2012 but was redefined as a mode of programmed cell death
closely related to cell oxidative disturbance by the Nomen-
clature Committee on Cell Death in 2018 [12]. Compared
to other classic forms of cell death, ferroptosis is character-
ized by the accumulation of iron-dependent lipid ROS. Fer-
roptosis occurs following a depletion of glutathione (GSH),
subsequent decrease in the activity of glutathione peroxidase
4 (GPx4), and inhibition of lipid oxide metabolism as this is
a GPX4-dependent reaction. Following this, divalent iron
ions oxidize the lipid to produce ROS leading to ferropto-
sis [13].

Susceptibility to ferroptosis is closely related to multiple
biological processes, including iron and PUFA metabolism

and biosynthesis of GSH, phospholipid, nicotinamide ade-
nine dinucleotide phosphate hydrogen (NADPH), and coen-
zyme Q10 [13]. It has also been linked to the pathological
cell death seen in mammalian degenerative diseases, such
as tumors, stroke, cerebral hemorrhage, traumatic brain
injury, and renal failure [14, 15].

2.1. The Characteristics of Ferroptosis. During ferroptosis, a
large number of iron ions are deposited in the dead cells,
lipid peroxidation occurs intracellularly, ROS levels increase
significantly, and proteins that regulate iron homeostasis
and lipid peroxidation metabolism are altered [16]. Micro-
scopically, the mitochondrial membrane shrinks, the mito-
chondrial crest decreases or disappears, and the outer
membrane is broken, although the morphological changes
of the nucleus are not as obvious (Table 1).

2.2. Underlying Mechanisms of Ferroptosis. Investigations on
the regulation of ferroptosis have mainly focused on system
Xc- and GSH metabolism, regulation of GPX4 activity, and
ROS production (Figure 1). System Xc-, which comprises
of SLC3A2 and SLC7A11 dimers, has been reported in var-
ious cells as a promising target for ferroptosis induction
[17–19]. System Xc- is embedded into the cell membrane
and as an effective cystine/glutamate antiporter system regu-
lates the transport of cysteine and glutamate [20]. Glutamate
is transferred outside the cell, while simultaneously, cystine
is imported into the cell where it participates in the genera-
tion of GSH and thereby prevents ferroptosis [21]. A recent
study reported that IFN-γ was capable of suppressing the
expression of SLC3A2 and SLC7A11 via activation of JAK/
STAT signaling, and repression of system Xc- could induce
ferroptosis in hepatocellular carcinoma cells [22]. Similarly,
as a tumor suppressor gene, p53 was demonstrated to inhibit
cystine uptake by downregulating the expression of
SLC7A11, which could decrease the activity of GPX4 and
reduce the antioxidant ability of the cells ultimately inducing
ferroptosis [23].

Furthermore, GPX4 is considered a crucial molecule in
the regulation of ferroptosis [24]. The basis of ferroptosis is

Table 1: The comparative characteristics among ferroptosis, apoptosis, and autophagy.

RCD Ferroptosis Apoptosis Autophagy

Hallmarks
Mitochondrial crest disappeared; mitochondrial outer
membrane rupture and shrinkage; mitochondria are

deeply stained

Condensation and fragmentation of
chromatin; nucleoli disappeared; nuclear

pyknosis and fragmentation

Autophagy
lysosome
formation

Other
characteristics

No nuclear rupture; cell membrane rupture
Cell shrinkage; the outflow of the

cytoplasm and vacuolation of membrane

No changes in
nuclear and cell

membrane

Biomarkers Upregulated: ROS, PTGS2; downregulated: NADPH
Cytochrome C releases caspase-activated

intracellular calcium increases

Transformation
from LC3-I into

LC3-II

Positive
regulators

Erastin, RSL3, RAS, Sorafenib, p53 P53, Bax, Bak, TGF-B, radiation
ATG family,

Beclin1

Negative
regulators

GPX4, FSP1, SLC7A11, NRF2, Ferrostatin-1,
Liproxstatin-1, DFO

Bcl-2, Bcd-XL, Z-VAD-FMK
3-Methyladenine,
Wortmannin,
Spautin1

RCD: regulated cell death; PTGS2: prostaglandin endoperoxide synthase 2; FSP1: fibroblast-specific protein 1; NRF2: nuclear factor erythroid 2-related factor
2; DFO: desferrioxamine.
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the presence of free iron in the cells. The Fenton reaction
between iron ions and ROS leads to peroxidation of PUFAs
and formation of lipid peroxides, resulting in damage to the
cell membrane [25]. GPX4 is able to ameliorate the toxicity
of lipid peroxides via its catalytic activity and maintain the
homeostasis of the lipid bilayer. Prior studies have shown
that RSL3, an inhibitor of GPX4, can covalently bind to
GPX4 and inactivate it, ultimately leading to the accumula-
tion of intracellular peroxide and induction of ferropto-
sis [26].

In addition, the ROS-mediated pathway is a critical
mechanism of ferroptosis. As induction of ferroptosis leads
to the increase of intracellular lipid ROS, theoretically, lipid
antioxidants may be promising antiferroptosis agents [27].
Mitochondria, an organelle with abundant iron and ROS
production, are considered to be an important location of
the occurrence of ferroptosis.

2.3. Mitochondrial Dysfunction Regulates Ferroptosis. Given
the important role of mitochondria in ROS generation, their
function is critical in ferroptosis [28]. Prior research revealed
that complete inhibition of mitochondrial function could
significantly decrease cell sensitivity to ferroptosis under
cysteine-deprivation conditions [29]. Furthermore, Gaschler
et al. [30] reported that partially decreased functioning of

mitochondria could restore cell sensitivity to ferroptosis,
findings which highlight mitochondria’s significant function
in initiating ferroptosis. Suppression of the tricarboxylic acid
(TCA) cycle and electron transport chain (ETC) was also
demonstrated to inhibit ferroptosis, which is consistent with
the role of mitochondria in ROS generation [29, 30]. Several
enzymes in the TCA cycle are critical for inducing ferropto-
sis [31]. For instance, a recent study showed that deprivation
of fumarate hydratase in renal cancer cells could increase cell
tolerance to ferroptosis [32]. Moreover, disruption of the
TCA cycle was capable of suppressing lipid peroxidation
and ferroptosis [33]. Consistent with the significant role of
this process in mediating ferroptosis, suppression of the
ETC was found to inhibit ROS accumulation and the induc-
tion of ferroptosis in response to either cysteine deprivation
or erastin (a ferroptosis inducer) treatment [29].

3. Ferroptosis and Bone Homeostasis

Homeostasis is a complicated balance that is crucial for cells
to maintain their normal physiological functions [30]. A
tight balance between energy input and consumption is
important for cell homeostasis. During metabolism, cells
continuously consume energy and nutrients, while produc-
ing new energy and nutrients [31]. Similarly, our skeletal
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Figure 1: The molecular mechanism of ferroptosis.
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system has a continuous remodeling cycle, and an appropri-
ate balance between anabolism and catabolism is needed to
maintain the strength and healthy microstructure of bone
tissue [32]. Bone remodeling is accomplished through the
coordinated efforts of four key cells: bone marrow mesen-
chymal stem cells (MSCs) which are the source of osteo-
blasts (OBs) and exert regulatory functions throughout
remodeling; OBs are located on the bone surface and secrete
bone matrix; matrix-embedded OBs further differentiate
into persistent osteocytes (OCT), which form a mechano-
sensory network in bone and play a crucial role in paracrine
signaling. At the same time, osteoclasts (OC) continuously
degrade and absorb the surrounding bone base [33]. The
dynamic balance between bone formation and bone resorp-
tion is continuously coordinated. As ferroptosis is an impor-
tant mode of regulated cell death, its relationship with
skeletal cells, including MSCs, OBs, OCs, and OCTs, has
attracted attention in recent decades [34].

3.1. Ferroptosis and the MSCs. Recent research in the study
of bone tissue repair and regeneration has paid particular
attention to MSCs. MSCs have the potential of multidirec-
tional differentiation with low immunogenicity and wide
availability. They can migrate to damaged tissues and organs
to reconstruct these through direct differentiation or secre-
tion of exosomes, growth factors, and cytokines [35, 36].
Furthermore, the regulatory role of MSCs in ameliorating
cell ferroptosis has been well-documented [37]. For example,
it was recently shown that MSCs are capable of inhibiting
the production of lipid peroxidation and alleviating ferrop-
tosis both in vitro and in vivo. The authors also demon-
strated that MSC-derived exosomes are involved in the
underlying mechanisms of the effect of MSCs on ferroptosis,
which could significantly downregulate the expression of
prostaglandin-endoperoxide synthase 2 and promote
SLC7A11 expression [38]. Similarly, the suppressive effect
of MSCs on ferroptosis was seen in neuronal cells [39]. In
an acute spinal cord injury mouse model, researchers dem-
onstrated that MSCs and their exosomes could ameliorate
spinal cord injury through promotion of the expression of
ferroptosis inhibitor (FSP1) [39]. In addition to the discov-
ery of the antiferroptotic effect of MSCs, the underlying
mechanism of ferroptosis in MSCs was also investigated. It
is well-documented that NOP2/Sun RNA methyltransferase
5 (NSUN5) posttranscriptionally can mediate ferroptosis in
MSCs through RNA methylation [40]. A recent study fur-
ther found that NSUN5 is downregulated in erastin-
induced ferroptosis in MSCs, while NSUN5 is capable of
suppressing ferritin heavy chain/light-chain (FTH1/FTL)
activity. In the NSUN5 depletion experiments, they found
an accumulation of intracellular iron and a marked decrease
of GPX4, suggesting that the NSUN5-FTH1/FTL pathway
mediates ferroptosis in MSCs and that therapeutic targeting
of components of this pathway may promote resistance to
ferroptosis and improve the survival of MSCs [40].

3.2. Ferroptosis and OBs. The integrity of bone is maintained
through an appropriate balance between osteogenic and
osteoclastic activities, and the bone remodeling process is a

continuous cycle. OBs are mainly involved in bone recon-
struction, including formation, mineralization, and con-
struction of osteocytes [41]. A variety of studies have
focused on the potential mechanisms and agents regulating
OB ferroptosis [42]. Advanced glycation end products were
recently found to induce OB ferroptosis and promote osteo-
porosis [43]. Inversely, melatonin, a hormone secreted by
the pineal gland, was shown to ameliorate OB ferroptosis
and enhance the osteogenic capacity of OB via activation
of Nrf-2/HO-1 signaling [44]. Mechanistically, mitochon-
drial ferritin (FtMt) was reported to exert a critical role in
regulating cell ferroptosis via storing iron ions and intercept-
ing toxic ferrous ions in mitochondria [45]. The researchers
found that activation of FtMt could ameliorate OB ferropto-
sis while inhibition of FtMt could induce mitophagy through
ROS/PINK1/Parkin signaling [45]. Moreover, increased fer-
roptosis in OBs could be seen after activating mitophagy,
with the findings suggesting that FtMt can effectively sup-
press ferroptosis in OBs [45]. Interestingly, exosomes, extra-
cellular vesicles containing active regulatory factors, have
been shown to participate in the regulation of ferroptosis
in OB. For example, one recent study reported that vascular
endothelial cells could effectively prevent osteoblastic ferrop-
tosis through exosome release which could further suppress
ferritinophagy and limit ferroptosis of OBs [46]. Similarly,
using an osteoporotic murine model, it was reported that
exosomes from endothelial progenitor cells could inhibit
steroid-induced osteoporosis through suppression of the fer-
roptotic pathway [47].

3.3. Ferroptosis and OCs. Iron ions is capable to induce OC
differentiation and bone resorption through the production
of ROS [48, 49]. Zoledronic acid (ZA), a bisphosphonate,
has been reported to inhibit OC growth via induction of fer-
roptosis of the OC [49]. The role of ZA in regulating osteo-
clast function was evaluated using a RANKL-induced cell
model, which indicated that ZA treatment suppressed the
cell viability of osteoclasts and facilitated osteoclast ferropto-
sis with an increase in iron ions and ROS and decrease in the
GPX4 and GSH level [49]. Similarly, ferroptosis was
reported involved in OC function during RANKL-induced
differentiation and is induced by iron starvation response
and ferritin phagocytosis [50]. Mechanically, subsequent
RANKL stimulation can lead to iron droop due to iron star-
vation response (increased transferrin receptor 1 and
decreased ferritin) under normoxic but not hypoxic condi-
tions, due to downregulation of aconitase activity [50]. Based
on these results, it can be assumed that ferroptosis of OCs
can limit bone resorption, while inducing ferroptosis in
OCs could be an alternative treatment of disorders of bone
formation.

3.4. Ferroptosis and OCTs. OCTs, the most prevalent cells in
mineralized bone tissue, communicate with other bone cells,
such as OBs and OCs, via the lacunar-canalicular system and
through various secreted hormones [51]. Decreased activity
and death of OCTs induced by internal and external factors
can lead to bone loss and destruction of bone microstruc-
ture. Therefore, effective promotion of OCT survival is a
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promising therapeutic strategy for maintenance of bone
homeostasis. It has been reported that ferroptosis is an
important form of OCT death, which can be reversed by tar-
geting the inhibition of ferroptosis signaling pathways [52].
Yang et al. [53] found that a hyperglycemic microenviron-
ment is capable of promoting lipid peroxidation and iron
overload, thereby inducing osteocyte ferroptosis. Further-
more, RNA sequencing results indicated that heme
oxygenase-1 (HO-1) is overexpressed in ferroptotic osteo-
cytes, suggesting that HO-1 is essential for osteocyte ferrop-
tosis. Similarly, a recent study reported that dexamethasone
could notably induce ferroptosis in MC3T3-E1 cells (a type
of OCT precursor cell) via downregulation of the p53/
SLC7A11/GPX4 signaling pathway, providing a potential
mechanism for the effect of ferroptosis on osteocytes in ste-
roid- (glucocorticoid) induced osteonecrosis of the femoral
head [54]. These findings highlight a potential therapeutic
target for the treatment of skeletal disorders.

4. Ferroptosis and Bone Degenerative Disorders

Ferroptosis differs from apoptosis, autophagy, necrosis, and
pyrodeath, in that it mainly involves iron metabolism and
lipid peroxidation. Ferroptosis plays an important role in
malignant tumors, cardiovascular diseases, and neural sys-
tem diseases [55, 56]. Iron overload is closely related to cel-
lular ferroptosis, and iron overload and lipid peroxide
accumulation jointly mediate bone destruction, ultimately
leading to bone disorders.

4.1. Ferroptosis and Osteoporosis. Osteoporosis is a systemic
bone disease characterized by a reduction in bone mass and
a degeneration of the fibrous structure of bone tissue, which
results in increased bone brittleness and risk of fracture [57].
Its pathological features include the following [58]: (1)
decreased bone mass, including a reduction in the proportion
of bone minerals and other substrates; (2) degeneration of

bone microstructure, caused by absorption and imbalance of
bone tissue homeostasis, manifesting as destruction, deforma-
tion, and fracture of bone trabecular structure; and (3) increased
bone brittleness and decreased bone strength, increased fracture
deformation, decreased load bearing force, and more frequent
microfracture or complete fracturing. Iron is a strong oxidant
that can promote the production of ROS radicals, and iron
metabolism can directly or indirectly affect the occurrence
and development of type 2 diabetes [59, 60]. Ferroptosis results
in the production of abundant ROS through the Fenton reac-
tion, inducing accumulation of lipid peroxides and cell damage
[61]. It was well-documented that hyperglycemia can induce
ferroptosis in the bone tissue of an osteoporotic rat model by
production of ROS/lipid peroxidation. Melatonin was shown
to ameliorate the level of ferroptosis through activation of
Nrf2/HO-1 signaling and promotion of the osteogenic differen-
tiation of MC3T3-E1 cells [44]. Similarly, in a murine model of
diabetic osteoporosis (DOP), the researchers verified the impor-
tant role of ferroptosis in DOP-induced OCT death. Mechanis-
tically, activation of Nrf2/HO-1 signaling could lead to lipid
peroxidation and cell ferroptosis, suggesting that targeting inhi-
bition of OCT ferroptosis may be a potential therapeutic strat-
egy for DOP treatment [53].

Furthermore, the relationship between ferroptosis and
glucocorticoid-induced osteoporosis (GIOP) has been well
investigated [62]. For example, a recent study [47] reported
that high-dose dexamethasone (10μM) can induce ferropto-
sis of OB by inhibiting the expression of GPX4 and system
Xc-. To investigate the underlying mechanisms, extracellular
vesicles were extracted from bone marrow-derived endothe-
lial progenitor cells (EPC-EVs), which were seen to suppress
ferroptosis by restoring the activity of GPX4 and system Xc-.
Significantly, EPC-EVs were capable of reversing
dexamethasone-induced changes in cysteine and oxidative
damage markers and improved skeletal parameters in mice.
These results suggest that EPC-EVs reverse murine GIOP
through inhibition of OB ferroptosis.

Normal OA

Ferroptosis

Iron overloadLipid peroxidation

Chondrocytes

GPX4

ROSLipid ROS

Ferroptosis

MMP-13Col II

Inflammation

Figure 2: The potential mechanism of ferroptotic chondrocytes.
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4.2. Ferroptosis and Osteoarthritis (OA). OA is a degenera-
tive disease characterized by the pathological alteration of
the function and morphology of an entire joint, as well as
articular cartilage destruction and damage to other joint
components [63–66]. Generally, OA occurs due to chronic
heavy loading and biomechanical damage; however, patho-
logical progress at the molecular level has also been pro-
posed in the development of OA. Therefore, maintaining
chondrocytes in a healthy state is considered to be an effec-
tive strategy for preserving the integrity of the entire carti-
lage [67–70]. It can be, therefore, assumed that ferroptosis
may be involved in the progression of OA. In a recent study
[71], researchers used interleukin-1 beta (IL-1β) to construct
an in vitro iron-overload model. The authors found that IL-
1β could induce both ROS and lipid ROS accumulations and
saw ferroptosis-related protein expression changes in the
chondrocytes. Furthermore, increased MMP13 expression
and decreased collagen II expression were seen in the ferrop-
totic chondrocytes (Figure 2). In a murine OA model, intra-
articular injection of a ferroptosis inhibitor was seen to pre-
vent OA progression. These findings highlight the contribu-
tion of ferroptosis in chondrocytes to the progression of OA.
Studies have also been conducted to identify a feasible treat-
ment for chondrocyte degeneration with a focus on cell fer-
roptosis [72]. Deferoxamine (DFO) [73] and D-mannose
were recently demonstrated to alleviate OA progression by
inhibiting of chondrocyte ferroptosis. DFO was found to
both effectively ameliorate chondrocyte ferroptosis and
induce activation of the Nrf2 antioxidant system, which is
crucial for chondrocyte protection [73]. The efficacy of injec-
tion of DFO in OA mice was also demonstrated in vivo [73].
Similarly, Zhou et al. [74] investigated whether D-mannose
mediates chondrocyte ferroptosis during OA cartilage
degeneration in vitro and in vivo. They found that D-
mannose could exert a chondroprotective effect by attenuat-
ing the sensitivity of chondrocytes to ferroptosis and could
alleviate OA progression. Furthermore, HIF-2α was identi-
fied as a central mediator in the D-mannose-induced resis-
tance of chondrocytes to ferroptosis. These findings
provide potential therapeutic strategies for ferroptosis-
related bone diseases.

5. Conclusion

During the past decades, there has been an accumulative
research focus on the relationship between ferroptosis and
diseases [75, 76]. The significance of ferroptosis in cell sur-
vival and differentiation is widely accepted, and its regula-
tory role in the modulation and treatment of diverse
disease has been gradually uncovered [77, 78]. However,
there are still some academic problems yet to be resolved.
For example, the relationship between ferroptosis and the
other forms of regulated cell death in the regulation of skel-
etal disorders should be further revealed. Furthermore, the
detailed molecular mechanisms that activate ferroptosis are
still unascertained. In addition, plenty of emerging evidences
have demonstrated that exosomes are involved in the mod-

ulation of ferroptosis and skeletal disease [79, 80]. In-depth
knowledge of this exosome-mediated effect should be
achieved by performing more researches regarding the
crosstalk between exosome and ferroptosis.

The recent continuous efforts in the research of ferropto-
sis have shed light on the interaction between ferroptosis
and bone homeostasis. Technical limitations currently
restrict the in-depth understanding of the mechanisms
underlying ferroptotic regulation. Specifically, lack of an
effective and specific ferroptotic blocker precludes the obser-
vation of the effect of blockade on the physiological func-
tions of ferroptosis in in vivo models. Furthermore, lack of
defined and specific ferroptotic signaling pathways or bio-
markers hinders the verification of ferroptosis in physiolog-
ical or pathological conditions. In addition, given the
limitations of existing experimental techniques, we do not
yet have a visual reporting method of in vivo ferroptosis
detection. In future studies of ferroptosis, research should
focus on in-depth study of the molecular mechanisms
underlying ferroptosis and screening and identifying specific
signaling pathways. Furthermore, efforts should be invested
in developing a feasible detectable tool for measuring ferrop-
tosis in vivo. Finally, the regulatory role of ferroptosis in the
process of bone aging should be elucidated.
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Primary cilia are highly conserved microtubule-based organelles that project from the cell surface into the extracellular
environment and play important roles in mechanosensation, mechanotransduction, polarity maintenance, and cell behaviors
during organ development and pathological changes. Intraflagellar transport (IFT) proteins are essential for cilium formation
and function. The skeletal system consists of bones and connective tissue, including cartilage, tendons, and ligaments,
providing support, stability, and movement to the body. Great progress has been achieved in primary cilia and skeletal
disorders in recent decades. Increasing evidence suggests that cells with cilium defects in the skeletal system can cause
numerous human diseases. Moreover, specific deletion of ciliary proteins in skeletal tissues with different Cre mice resulted in
diverse malformations, suggesting that primary cilia are involved in the development of skeletal diseases. In addition, the intact
of primary cilium is essential to osteogenic/chondrogenic induction of mesenchymal stem cells, regarded as a promising target
for clinical intervention for skeletal disorders. In this review, we summarized the role of primary cilia and ciliary proteins in
the pathogenesis of skeletal diseases, including osteoporosis, bone/cartilage tumor, osteoarthritis, intervertebral disc
degeneration, spine scoliosis, and other cilium-related skeletal diseases, and highlighted their promising treatment methods,
including using mesenchymal stem cells. Our review tries to present evidence for primary cilium as a promising target for
clinical intervention for skeletal diseases.

1. Introduction

Primary cilia are highly conserved microtubule-based organ-
elles that project from the cells’ surface into the extracellular
environment and play important roles in mechanosensation,
mechanotransduction, and polarity maintenance during
organ development and pathological changes, including in
the skeletal system [1, 2]. The assembly and function of cilia
require effective intraflagellar transport (IFT) in the cilium,
which is a bidirectional transport operated by IFT protein
complexes and IFT motors. IFT protein complexes are
divided into complex A and complex B [3]. In primary cilia,

membrane cargos are trafficked in vesicles to the ciliary base
by the Bardet-Biedl syndrome (BBSome) coat complex [4].
The IFT gene or BBS gene mutation can cause cilium defects
or loss. Primary cilia have a complex function including
transducing Hedgehog signaling and sense and transduce
chemical or mechanical signal. The role of cilia in Hedgehog
signaling transduction was found by Huangfu et al. in 2003,
and the process has been well established [5]. In the absence
of ligand, Patched (Ptch) prevents translocation of Smooth-
ened (Smo) to the plasma membrane. A microtubule-
associated complex promotes the processing of Gli into its
repressor form. Upon activation of the pathway, Smo moves
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to the plasma membrane, and the Sufu-Gli complex associ-
ates with the carboxy-terminal tail of SMO, resulting in the
release of Gli and promotion of the processing of Gli into
its activated form [6].

The skeletal system consists of bones, cartilage, interver-
tebral disc (IVD), tendons, and ligaments, providing sup-
port, stability, and movement to the body. Skeletal systems
are exposed to various mechanical loads and function as a
major system for the mechanical transduction in our body.
Primary cilia were regarded as a chemical or mechanosensor
and signaling pathway transduction center. Therefore, it is
believed that cilia have a critical role in skeletal function.
In the last several years, emerging studies reported that cells
with cilium defects in skeletal systems can cause many
human diseases, including osteoarthritis (OA) and interver-
tebral disc degeneration (IVDD), tendinopathy, Jeune’s syn-
drome, and spinal scoliosis [7–11]. In addition, the primary
cilium is well known to play an important role in osteogenic/
chondrogenic induction of mesenchymal stem cells (MSCs),
regarded as a promising target for clinical intervention for
skeletal disorders. New approaches to treat osteoporosis,
OA, and other skeletal disorders have focused on promoting
bone or cartilage formation through the targeting of osteo-
blasts/chondrocyte and their progenitors or MSCs. Here,
we reviewed available literatures on primary cilia and their
role in skeletal disorders and their promising treatment
methods, including MSCs.

2. Primary Cilia and Ciliary Proteins in
Skeletal Diseases

2.1. Primary Cilia and Osteoporosis and Fracture Healing.
Osteoporosis is one of the most prevalent chronic skeletal
pathologic diseases characterized by decreased bone mass,
placing an enormous economic burden on patients and
payors all over the world [12]. As an exquisitely mechano-
sensitive organ, mechanical stimulation deficiency has been
regarded as a leading cause of osteoporosis. Primary cilia
are sensory organelles that play an important role in trans-
lating extracellular chemical and mechanical cues into cellu-
lar responses and are believed to be closely related to bone
development and osteoporosis. The essential role of primary
cilia on bone development and patterning has been well
established [1, 13, 14] (Table 1). Also, knockout of many
cilium-related genes leading to the cilium defects was
reported to cause mouse long bone or vertebral osteoporosis
phenotype, including IFT80, IFT88, Kinesin family member
3A (Kif3a), Evc, Pkd1, and IFT40 [11, 15–21].

New methods to treat osteoporosis focused on promot-
ing osteogenic induction of MSCs, and the primary cilia
were reported to be essential for MSCs’ osteogenic differen-
tiation [22]. Corrigan et al. [23] found that LiCl and fenoldo-
pam can be utilized to enhance ciliogenesis in MSCs and
fenoldopam is a viable ciliotherapeutic option to enhance
MSCs’ osteogenesis and potential to treat osteoporosis.
However, how the cilium changed in osteoblasts or osteo-
cytes during osteoporosis is largely unknown. Further study
to identify the relationship between primary cilia and osteo-
porosis needed to be investigated.

Fracture healing is a complex biological process that
shares some similarity feature with the bone development.
Recently, Liu et al. [24] found that conditional deletion of
IFT80 in chondrocytes utilizing tamoxifen-inducible Col2-
CreER mice resulted in low-density/porous woven bony
tissue compared to control during fracture healing. Mech-
anistically, IFT80 deletion can downregulate the TGF-β
signaling pathway by inhibiting the expression of TGF-βI
and TGF-βR and phosphorylation of Smad2/3 in the frac-
ture callus. Chinipardaz et al. [25] reported that loss of
cilia caused by diabetes in osteoblasts resulted in defective
diabetic fracture healing by using in a streptozotocin-
induced diabetes and Osx-cre;IFT80fl/fl mouse model. All
these demonstrated that cilia are important in bone
fracture healing.

2.2. Primary Cilia and Bone or Cartilage Tumors. Bone or
cartilage tumors are one of the most common human pri-
mary bone lesions, and they range from benign lesions, such
as enchondromas and osteochondromas, to malignant chon-
drosarcoma [26]. Enchondromas and osteochondromas are
the most common benign bone tumor, and they are always
developing during periods of bone growth in a location adja-
cent to the growth plate [26, 27]. Enchondromas occur
within the metaphyseal portion of bone. Osteochondromas
manifest as outgrowths of bone and cartilage from the meta-
physeal region of long bones, with a cartilage cap on. The
development of bone or cartilage tumors is always combined
with constitutively active hedgehog (Hh) signaling. The pri-
mary cilium is the center for the Hh signaling transduction;
thus, the relationship between cilia and osteochondromas
and enchondromas has been investigated. In osteochon-
droma, the primary cilium incidence was normal, but the cil-
ium orientation was dramatically disrupted compared with
control [28]. Cilium organization is essential for cells’ polar-
ity, and the disorganized cilium orientation in most cells of
osteochondromas may contribute to the loss of cell polarity
and arrangement in the growth plate [29]. However, the cil-
ium incidence in enchondroma is reported to vary in differ-
ent studies [28]. Ho et al. [30] reported that only 13.4% of
cells are ciliated in enchondroma tissues, which significantly
decreased compared with control articular cartilage
(Figure 1). Recently, we found that the cilium incidence
and cilium length were comparable between human enchon-
droma cells and control articular chondrocytes, but the cil-
ium orientation largely alters [31]. The different sample
resources may contribute to variation in different samples,
and the cilium features in more human enchondroma sam-
ples are needed to be identified in the future. Chondrosar-
coma is a cartilaginous origin malignant tumor with
aggressive behavior. In human and mouse chondrosarco-
mas, the cilium incidence of neoplastic chondrocytes is dra-
matically lost compared with normal articular cartilage [30].
Parts of chondrosarcoma are thought to originate from
benign tumors when combined with P53 mutation [26].
The dramatic decreased cilium incidence from osteochon-
dromas to chondrosarcoma transition suggested that the
percentage of ciliated cells can serve as a useful marker to
distinguish benign and malignant tumors.
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Hedgehog (Hh) concentration distribution gradient is
essential for normal chondrocyte proliferation and differen-
tiation. However, the Hh gradient is disrupted and showed a
homogeneous pattern in enchondroma or osteochondroma
[31]. Activated Hh signaling in the growth plate (Col2α1-
Gli2 overexpressed mouse) leads to enchondroma in mice.
Similar to the Col2α1-Gli2 mouse, IFT88 partial mutant also
developed enchondroma around the growth plate. Interest-
ingly, activated Hh signaling (Gli2-overexpressed) in the

IFT88 deficiency mouse can cause much more enchondro-
mas. The disruption of cilia in Gli2-overexpressed mouse
results in much more enchondromas, suggesting that cilia
can inhibit Hh signaling activation under these conditions
[30]. Some studies [32, 33] suggested that Hh signaling is
essential for bone tumor growth and process; loss of primary
cilium-disrupted Hh signaling can inhibit tumor growth or
process. However, we found that Indian hedgehog (Ihh)
ablation in aggrecan-positive progenitors produced

Table 1: The role of primary cilia in bone development illustrated by the conditional knock out mouse model.

Gene Function

IFT20
Col1-CreERT;IFT20fl/fl and Osx-Cre;IFT20fl/fl mice exhibit reduced bone mass and strength. Deletion of IFT20 impairs osteoblast

polarity and cell alignment via ceramide-PKCζ-β-catenin signaling [96]

IFT140
Osx-Cre;IFT140fl/fl mice exhibited dwarf phenotypes, such as short bone length, less bone mass, and decreased bone mineral

apposition rate [21]

IFT80
Osx-Cre;IFT80fl/fl mice show reduced bone mass with impaired osteoblast differentiation; IFT80 is required for osteoblast

differentiation by balancing between canonical and noncanonical Hedgehog pathways [11]

KIF3a
Osx-Cre;Kif3afl/fl mice display an osteopenia phenotype with impaired osteoblast function. Kif3a deletion in osteoblast impairs
osteoblast-mediated bone formation through multiple pathways including intracellular calcium, hedgehog, and Wnt signaling [16]
Col1-Cre;Kif3afl/fl mice have normal bone development but reduced bone formation in response to a cyclic ulnar loading [97]

PKD
Osx-Cre;Pkd1flox/m1Bei mice show reduced bone mass, mineral apposition rates, increased adipogenesis in bone marrow, and

impaired osteoblast differentiation [19]

Growth plate Osteochondroma 

Peripheral chondrosarcoma Giant-cell tumor of bone 

Central chondrosarcoma 

Cilium 

Chondrocyte 

Osteochondroma 
Chondrosarcoma 

Osteoclast 

Giant-cell tumor
of bone 

Figure 1: Schematic representation shows the cilium feature in bone or cartilage tumors. In both the proliferative and hypertrophic zones of
the normal growth plate, the cilium is well orientated as shown in each layer. However, in osteochondroma, chondrocyte arrangement and
cilia orientation are dramatically disorganized. In human malignant chondrosarcomas, cilium incidence is reduced and cilium orientation is
disorganized. In the mouse peripheral chondrosarcoma, primary cilium is dramatically reduced and cilium orientation is disorganized.
Giant cell tumor of bone is composed of mononuclear stromal cells and numerous macrophage giant cells, but only mononuclear
stromal cells of giant cell tumor of bone present primary cilia.
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enchondroma-like tissues near the growth plates in mice,
and smoothen agonists can significantly reduce the enchon-
droma incidence in Ihh-knockout mouse [31]. Consistently,
the dual and opposing roles of primary cilia and Hh signal-
ing were also found in medulloblastoma development [34].
How cilia and Hh signaling are involved in bone tumor
development and progress needs to be investigated furtherly.

Ciliogenesis and elongation processes require the coordi-
nation of microtubule assembly and protein modification.
Histone deacetylase 6 (HDAC6), as a special member of
the HDAC family, plays a vital role in microtubule
deacetylation [35]. Xiang et al. [35] reported that a signifi-
cant decrease in cilium expression and abnormal expression
of HDAC6 existed in human chondrosarcoma tissues, and
targeting inhibition of HDAC6 could significantly suppress
chondrosarcoma cell proliferation and invasion. The poten-
tial mechanism may affect ciliogenesis via the Aurora A-
HDAC6 cascade. Although these in vitro data on the thera-
peutic effect of HDAC inhibition on chondrosarcoma are
promising, the data from the clinical trial are discouraging
in patients [36]. Whether HDAC inhibition or other drugs
targeting cilia or cilium-related signaling are effective in
the treatment of chondrosarcoma remains to be demon-
strated in the future [37].

Giant cell tumor of bone, which usually appears in long
bone epiphysis in young adults, is a locally aggressive pri-
mary bone neoplasm composed of proliferative mononu-
clear stromal cells, numerous reactive macrophages, and
large osteoclast-like multinucleated giant cells. Castiella
et al. [38] found that mononuclear stromal cells of giant cell

tumor of bone present primary cilia, and the Hh signaling
pathway is activated in these cells. They speculated that pri-
mary cilia may play an important role in giant cell tumor of
bone tumorigenesis and could be used as a potential thera-
peutic target in the future.

2.3. Primary Cilia and OA. OA is one of the most prevalent
joint diseases of advanced age and is a leading cause of dis-
ability worldwide. OA patients usually suffer from many
annoying complications that negatively influence their qual-
ity of life. In pathophysiology, OA is characterized by the
degeneration of articular cartilage and elevated chondrocyte
mortality [39]. Abnormal mechanical overload has been
found to be one of the major contributions to the onset
and progression of OA. Primary cilia, which have been
found crucial in biomechanical signaling transduction, are
linked to OA by many studies in the last several years. Pri-
mary cilia were found present on both normal articular car-
tilage and OA tissue, and the cilium incidence and length
significantly increased in the eroding articulating surface of
human OA compared with normal human articular cartilage
[40] (Figure 2). Moreover, the cilia are oriented parallel to
the long axis of cells at the articulating surface in normal
articular cartilage, but they are oriented to the center of
abnormal cell clusters in osteoarthritic cells [40]. Alkapto-
nuria (AKU) is an inherited disease resulting from a defi-
ciency of the enzyme homogentisate 1,2-dioxygenase which
is characterized by severe cartilage degeneration, similar to
that observed in OA. However, Thorpe et al. [41] found that
the cilium length is dramatically decreased in AKU articular

Cilium

Chondrocyte

Normal articular cartilage OA articular cartilage 

Superficial

Intermediate

Deep

Calcified cartilage 

Bone 

Figure 2: Cilium in normal and osteoarthritis (OA) articular cartilage tissues. The normal articular cartilage can be divided into superficial,
intermediate, and deep zones as shown in figures. In the superficial zone of normal articular cartilage (left), the chondrocytes are ellipsoid.
Both chondrocyte and cilia are parallel to the surface of articular cartilage. In intermediate and deep zones, the chondrocytes are irregular,
but the cilium orientation is on the medial or lateral cell membranes along the longitudinal axis parallel to the chondrocyte. However, the
articular surface is eroding in human OA tissue, and the cilium incidence and length significantly increased compared with normal human
articular cartilage [40]. Moreover, the cilia are oriented parallel to the long axis of cells at the articulating surface in normal articular
cartilage, but it is oriented to the center of abnormal cell clusters in osteoarthritic cells.
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chondrocytes when compared to healthy controls. All these
suggested that primary cilia are closely related to OA, but
how cilia changed and functioned during this process is still
unclear.

To know how cilia functioned during articular cartilage
and OA development, different cilium-related genes were
deleted by genetic editing technology in the mouse model
(Table 2). Deletion of IFT88 in cartilage causes several OA
phenotypes with increased expression levels of degeneration
markers, including MMP13, collagen type X, Adamts5, and

Runx2 [8]. Similarly, the Bardet-Biedl syndrome 1 (Bbs1),
Bbs2, or Bbs6 gene mutation mouse model developed OA-
like cartilage abnormalities including proteoglycan loss,
small surface fibrillation, marked atrophy of the cartilage,
and increased MMP13 expression [42, 43]. Moreover,
IFT88 deletion following surgical destabilization of the
medial meniscus was found to have increased OARSI scores
of cartilage damage mouse [43]. All these studies suggested
that primary cilia are essential for cartilage development
and prevent its degeneration.

Table 2: The role of primary cilia in cartilage development illustrated by the conditional knock out mouse model.

Gene Function

IFT20
Col2-cre;Ift20fl/fl has normal limb development, but Prx-cre;Ift20fl/fl mouse shows four limb development defects. Deletion of Ift20
increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification [98]

IFT80

Deletion of IFT80 in the embryonic stage (injected tamoxifen at embryonic day 14.5 in Col2-creERT;IFT80 mouse) shows
shortened cartilage and limbs at birth; deletion of IFT80 in the postnatal stage (injected tamoxifen at postnatal day 4 in Col2-
creERT;IFT80 mouse) causes reduced growth plate length; loss of IFT80 blocks chondrocyte differentiation by disruption of

ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation
[99]

IFT88
Col2-Cre;Ift88fl/fl mice display disorganized columnar structure and early loss of growth plate; Ift88 regulates the expression of

Sfrp5 and Wnt signaling pathways in the growth plate via regulation of Ihh signaling [9]
Aggrecan-CreERT;Ift88fl/fl mice have a thinner articular cartilage thickness in the middle of tibia at 33 weeks old [43]

KIF3a
Col2α1-Cre;Kif3afl/fl mice show postnatal dwarfism with a disorganized growth plate and altered chondrocyte orientation; deletion
of Kif3a inhibits cell proliferation but accelerates hypertrophic differentiation, leading to the premature closure of the growth plate

[100]

KIF5b
Col2α1-Cre;Kif5bfl/fl mice were smaller in stature owing to shortened spine vertebrae and long bones; mutant mice characterized by

disorganized columnar structure in the growth plates; Kif5b mutation can cause incomplete cell rotation, proliferation, and
differentiation disruption and results in a disorganized growth plate [101]

Normal IVD Degenerated IVD

Nucleus
pulposus

Annulus fibrosus

Cilium 

Intervertebral 

Disc cells

Figure 3: Cilium orientation of the normal and degenerated intervertebral disc (IVD). The IVD consisted of nucleus pulposus (NP),
annulus fibrosus (AF), and endplate cartilage (EP). The primary cilia in AF are well organized and orientated: primary cilia were always
projected from the inner sides of AF cells (near the NP), and they are oriented parallel to the long axis of the cells. The cilia in NP were
disorganized and with varied cilium length. However, in the degenerated IVD, the cilia are disorganized in AF and cilium length and
cilium incidence are reduced in both NP and AF.
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Interleukin-1 (IL-1) is one of the most important inflam-
mation media during OA formation and process. Wann and
Knight [44] found that IL-1 can elongate the chondrocyte
cilia via a PKA-dependent mechanism. Moreover, cilium
loss can significantly attenuate IL-1-induced inflammatory
response and alleviate the progression of OA. Interestingly,
cilium elongation in response to IL-1 requires the accumula-
tion of hypoxia-inducible factor-2α (HIF-2α) in cilia. Con-
sistently, Yang et al. [45] reported that upregulated HIF-2α
contributes to OA development through mediating the pri-
mary cilium loss. Mechanical stimulation was reported to
be anti-inflammatory in many tissues. Recently, Fu et al.
[46] reported that mechanical loading can suppress chon-
drocyte inflammatory induced by IL-1β via HDAC6-
dependent modulation of tubulin leading to cilium disas-
sembly during OA. Most recently, Fu et al. [47] revealed that
osmotic-sensitive ion channel transient receptor potential
vanilloid 4 (TRPV4), the key protein for mechanotransduc-
tion, localizes to the cilium plasma membrane. Mechanical,
osmotic, or pharmaceutical activation of TRPV4 functioned
as an anti-inflammatory agent during OA via regulating
HDAC6-dependent modulation of ciliary tubulin. These
results provided evidence that primary cilium is involved
in an inflammatory process and it could be an important tar-
get for the treatment of inflammatory diseases such as OA.

Galectin 3 (Gal3) was found to be localized at the cilium
base, and its absence causing cilium abnormalities is associ-
ated with disrupted epithelial cell polarity. Recently, Hafsia
et al. reported that deletion of Gal3 in mouse can develop
early onset of OA and exacerbate joint instability-induced
OA via mitochondrial apoptosis [48].

2.4. Primary Cilia and IVDD. The IVDD occurs in more
than 90% of the population older than 50 years [49]. The
currently available treatments only provide symptomatic
relief from pain [50–53], and these measures cannot deceler-
ate or prevent the progression of degeneration of the inter-
vertebral disc (IVD). Understanding the exact etiology of
IVDD and finding the solution to the etiology is the key to
cure this disease. A variety of risk factors, such as abnormal
mechanical loading, aging, and smoking have been regarded
as important factors causing IVDD [54]. Among these fac-
tors, abnormal mechanical loading has been considered the
major contributor. Although the exact mechanism that
abnormal mechanical loads affect cell behaviors in IVD
remains unknown, previous studies have revealed that pri-
mary cilia played critical roles during cell mechanosensation
and mechanotransduction. In the last several years, some
scholars have tried to investigate the cilia in IVD and find
the existence of primary cilia in IVD. The IVD consisted of
nucleus pulposus (NP), annulus fibrosus (AF), and endplate
cartilage (EP). Donnelly et al. [55] first attempted to detect
cilia in rat IVDs by using multiphoton microscopy and
found positive staining in the AF. Zheng et al. [56] examined
the primary cilia in the mouse and human NP cells in vitro
after 48 h of serum starvation. They furtherly found that
parathyroid hormone 1 receptor (PTH1R) is expressed in
primary cilia of mouse and human NP cells and knockout
PTH1R or cilia in the NP cells result in significant IVDD

and blunt the effect of parathyroid hormone on attenuation
of aged discs.

Recently, we carefully reported that primary cilia are
present in the mouse IVD with the cilia-GFP and ARL13B-
mCherry;Centrin2-GFP cilium dual reporter-expressing
transgenic mouse model [57, 58]. With these two mouse
models, we found that the primary cilium length was 0.5-
15μm in the NP and 0.5-3.5μm in the AF. There are
33.62% of NP cells and 36.1% of AF cells that were ciliated
in the mouse’s third and fourth lumbar IVD (Figure 3).
The NP is derived from the embryonic node and notochord
during the development process. Leftward-directed fluid
flow, which is produced in embryonic node cilium move-
ment, was regarded as essential for left-right axis determina-
tion in mice. Consistently, in our previous study [58], about
2% of cilia with the irregular movement were identified in
mouse NP. However, the cilium movement type is different
from the clockwise movement of cilia in embryonic noto-
chord/node cells [59]. Interestingly, with the ARL13B-
mCherry;Centrin2-GFP mouse model, we find that the cilia
in AF are well organized and orientated: primary cilia were
always projected from the inner sides of AF cells (near the
NP), and they are oriented parallel to the long axis of the
cells [58]. To further study the function of primary cilia in
IVD, we crossed IFT80fl/fl mice with Col2a1-creERT mice
and Col1a2-creERT to impair the primary cilia in IVD. As
a result, we find that the deletion of IFT80 can cause an early
onset of the IVDD phenotype, characterized by disorganized
and decreased growth plate, EP, internal AF (IAF), less com-
pact and markedly decreased gel-like matrix in the NP, and
disorganized outer AF (OAF) with thinner, loosened, and
disconnected fiber alignment. All these demonstrated that
the primary cilia are essential for the maintenance of IVD
development [57].

It was reported that NP in IVD can adapt to their phys-
iologically hyperosmotic microenvironment and mediated
osmoregulation through the nuclear factor of activated T cell
5 (NFAT5), a tonicity-responsive enhancer-binding protein.
As an osmosensor in the natural world, whether cilia con-
tribute to NP cell osmoadaptive response in IVD remains
unknown. Choi et al. [60] found that primary cilia in NP
cells could change their length in response to osmotic stim-
ulation. However, when silencing of IFT88 or Kif3a to
impair primary ciliogenesis did not affect hyperosmotic
upregulation of TonEBP, then they concluded that primary
cilia in NP have not participated for TonEBP-dependent
osmoadaptive response.

In addition, we found that primary cilia in NP reduced
during aging and injured induced IVDD and significantly
increased during repair, indicating that primary cilia are
essential for IVD repair or regeneration [57]. Thus, promot-
ing ciliogenesis in AF and NP progenitors could be a prom-
ising target in the treatment of IVDD.

2.5. Primary Cilia and Idiopathic Scoliosis (IS). Scoliosis
manifests as spine abnormal three-dimensional curvature,
and around 10% of all scoliosis are idiopathic [61]. IS are
always born with a normal spine, and the abnormal curva-
ture may begin evident in the adolescent during growth,
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and IS is diagnosed by excluding congenital defects and
other causes of abnormal spine curvatures, such as interver-
tebral disc or vertebral development defects or other
syndromes.

The exact etiology of IS is largely unknown due to its
phenotypic and genetic heterogeneity. It is believed that
heredity, melatonin, and biomechanical factors of the mus-
culoskeletal system play an important role in its occurrence
and progress. Among these factors, the research on genetic
correlation has been done by many scholars. Although many
genome-wide association studies (GWAS) have found some
potential locus mutations, no clear and definite biological
mechanism for IS has emerged so far. Nowadays, more
and more scholars believed that IS is a complex consequence
of genetic variations coupled with biomechanical factors that
are affected by individual behavioral patterns. As an organ
that bears the main force of the body, the contribution of
biomechanics to IS is also valued by researchers. Mechanical
loading can alter primary cilium incidence, length, and ori-
entation of chondrocytes, and cilium direction is proven to
affect the growth direction in growth plates [57]. The disor-
ganized growth plates were also reported as one of the basic
pathology changes in IS [62, 63]. Moreover, several human
ciliopathies manifested as skeletal disorders, such as asphyx-
iating thoracic dystrophy syndrome [64]. Interestingly, the
fact that asphyxiating thoracic dystrophy syndrome patients
combined with scoliosis makes people believe that IS is a
ciliopathy and that the genetic architecture of IS may involve
cilium function [64].

Grimes et al. [10] revealed that protein tyrosine kinase-7
(ptk7) mutant zebrafish, a faithful genetic model of IS,
exhibits ependymal cell cilium development and cerebrospi-
nal fluid flow defects. Transgenic reintroduction of Ptk7 in

motile ciliated lineages prevents scoliosis in ptk7 mutants.
Oliazadeh et al. [65] found that primary cilia are signifi-
cantly elongated in bone cells of IS patients. These IS bone
cells can differentially express osteogenic factors and mecha-
nosensitive and signaling genes in response to mechanical
stimulation, compared with control. Moreover, many scolio-
sis association genes [66, 67], for example, TBX6 [68, 69],
LBX1, GPR126 [70], PAX1 [71–73], POC5 [74], KIF6 [75],
PTK7 [76, 77], FGF3 [78–80], SHP2 [81, 82], IFT88 [64,
83], IFT20 [83], Arl13b [83], and Yap [83], are found to be
associated with cilium function so far (Table 3). Therefore,
primary cilia are though important for IS development.
The monocilia, presenting on the ventral surface of the
mouse node, play an important role in determining human
left-right symmetry. In addition, the high prevalence of right
thoracic IS indicated the possible relation between IS and
primary cilia. Burwell et al. [67] think that should the left-
ward nodal flow of morphogens—which affect precursors
of the heart, great vessels, and viscera to create “handed
asymmetry”—be extended by anomalous genetic/environ-
mental factors to left-sided mesodermal precursors of verte-
brae and ribs, an asymmetric skeletal anomaly may be
imprinted. Such an anomaly may lead to relative left costo-
vertebral physeal overgrowth that triggers right thoracic IS
and anomalous upper limb length asymmetry. Coinciden-
tally, Burwell et al. found that 50% of patients with dextro-
cardia had curves convex to the right as it showed in
primary ciliary dyskinesia [67]. Schlösser et al. [84] found
that the prevalence of scoliosis (Cobb > 10 degrees) and sig-
nificant spinal asymmetry (Cobb 5–10 degree) were 8 and
23%, respectively, in 198 primary ciliary dyskinesia patients.
It was further found that the convexity of the thoracic curve
is predominantly to the right in normal organ anatomy and

Table 3: Primary cilium-related gene and scoliosis.

Gene Scoliosis phenotype Function in cilium biology

TBX6 Congenital and idiopathic scoliosis in humans [68, 69]
Affects morphology and motility of nodal cilia in

mice and zebrafish [102, 103]

LBX1
Idiopathic scoliosis association in several ethnic groups, confirmed using

different approaches [104–107]
Deleted in a mouse model of the primary ciliary

dyskinesia gene [108]

GPR126 Scoliosis in humans and mice [109–111]
Essential for the development of myelinated axons

[70, 112]

PAX1 Congenital and idiopathic scoliosis in humans and mice [71–73]
Other family members are associated with cilium

signaling pathways [113–115]

POC5 Idiopathic scoliosis in humans [74] Essential for centriole structure [116, 117]

KIF6 Idiopathic-type curvature in zebrafish [75]
Predicted to be involved in ciliary function or

structure [118]

PTK7 Idiopathic-type curvature in zebrafish [76] Role in cilium orientation in zebrafish [77]

FGF3
Idiopathic scoliosis in a KO mouse model; scoliosis in a human case report

carrying loss-of-function mutation in the gene [78, 79]
Affecting the organization of chondrocyte primary

cilia in the growth plate in mice [80]

SHP2 Idiopathic scoliosis in a KO mouse model [81, 82]
The length of primary cilia reduced in mutated

mice [81]

IFT88 Idiopathic-type curvature in human and zebrafish [64, 83] Essential for ciliogenesis [83]

IFT20 Idiopathic-type curvature in zebrafish [83] Essential for ciliogenesis [83]

Arl13b Idiopathic-type curvature in zebrafish [83] Essential for ciliogenesis [83]

Yap Idiopathic-type curvature in zebrafish [83] Interacts with cilia [83]

7Stem Cells International



to the left in patients with situs inversus totalis after the anal-
ysis of the scoliosis of 16 primary ciliary dyskinesia patients.
We observed that around 10% of mice developed scoliosis in
our cilium gene-knockout mouse model, even all the knock-
out mice combined with an extremely narrowed cage
(unpublished). Although it was also reported that the rib
cage abnormal development can result in progressive tho-
racic scoliosis [85], only around 10% of mice with the same
genotyping developed scoliosis suggesting that the environ-
mental factors or other factors may contribute to scoliosis.
It will be interesting to investigate the role of cilium biology
and environmental factors in the progress of idiopathic sco-
liosis in the future.

2.6. Primary Cilia and Tendon Disease. Tendons play vital
roles in transferring our force from muscle to bone. Tendi-
nopathy is a type of tendon injury and chronic tendon dis-
ease, and it is highly prevalent but has few treatment
methods so far. Tendon bears dynamic tensile mechanical
loading in normal conditions. As a mechanical sensitive
organelle, the primary cilia have been found to exist in ten-
don. Primary cilia were observed in 64% of tenocytes in 3-
week-old Sprague-Dawley rats, and they were aligned paral-
lel to the collagen fibers and the long axis of the tendon [86].

Fang et al. [87] found that cilium incidence of tendon
enthesis cells increased significantly between postnatal from
4.6% in one week old to 29.7% in two weeks old, and it
decreased to 12.1% at 13 weeks old. However, they found a
low level of ciliogenesis during the mouse postnatal stage
in tendon midsubstance cells. To further know the role of
primary cilia in tendon development, the IFT88fl/fl mouse
was crossed with Scx-cre mouse for deletion of IFT88 in
Scx-expressing cells. As a result, the growth of IFT88-
knockout mice was slower, and it showed significantly lower
body weights compared to controls. The tendon entheses
had decreased structural properties (maximum force and
stiffness) and increased material properties (stress and mod-
ulus) with drastically smaller cross-sectional areas in tendon
entheses in 13-week-old IFT88-knockout mouse, which is an
important feature for tendinopathy [88]. Considering that
physical loading is an important driver of tendon formation
or enthesis pathologies, primary cilia can be promising tar-
gets whose mechanosensitivity could potentially be tuned
to prevent the progression of tendinopathy. However, how
the cilia changed in the tendon during tendinopathy is still
largely unknown. Further study on cilia of tendinopathy
should be investigated in the future.

2.7. Primary Cilia and Other Skeletal Disorders. Ciliary gene
mutation can impair skeletal development and cause a group
of rare inherited chondrodysplasias diseases. All ciliary
chondrodysplasias are characterized by developmental skel-
etal defects, mainly affecting limbs, ribs, spine, and craniofa-
cial skeleton. They can be subdivided into different groups of
severity, clinical phenotype, and underlying genetic defects.

2.7.1. Short-Rib-Polydactyly Syndromes. It is a group of peri-
natal lethal skeletal dysplasia characterized by severe nar-
rowing of the thorax leading to pulmonary hypoplasia,

short limbs, and polydactyly. It is caused by NEK1,
DYNC2H1, and other gene mutations [89].

2.7.2. Oral-Facial-Digital Syndrome. Oral-facial-digital syn-
drome is characterized by pre- and postaxial polydactyly of
the hands and feet, tibia hypoplasia, and oral and facial
defects. Mutations in TCTN3 may cause up to 50% of all
cases [90].

2.7.3. Asphyxiating Thoracic Dystrophy. Asphyxiating tho-
racic dystrophy (Jeune’s syndrome) is characterized by a
variable degree of rib shortening, typical pelvis configuration
with trident acetabular roof, and acetabular spurs and rarely
exhibits polydactyly. Asphyxiating thoracic dystrophy usu-
ally is caused by mutations in DYNC2H1, IFT40 and
IFT80 [7, 91].

2.7.4. Mainzer-Saldino Syndrome. Mainzer-Saldino syn-
drome is characterized by cone-shaped epiphyses of the
hand, retinal disease, and deterioration of renal function. A
narrow ribcage, craniosynostosis, and liver involvement
can present in some cases. Causative mutations in IFT140
have been identified in this disease [92].

2.7.5. Cranial-Ectodermal Dysplasia. Cranial-ectodermal
dysplasia is a combination of dolichocephaly due to cranio-
synostosis of the sutura sagittalis, epicanthus, very thin,
sparse, and slow-growing hair, tooth abnormalities, brachy-
dactyly, and short rib. Cranial-ectodermal dysplasia is genet-
ically heterogeneous with causative mutations found in
IFT122, IFT43, WDR19, and WDR35 [93].

2.7.6. Ellis-van Creveld Syndrome. Ellis-van Creveld syn-
drome (EVC) is characterized by acromelic dwarfism, poly-
dactyly of the hands’ dysplastic nails, tooth abnormalities,
and cardiac defects. Biallelic causative mutations in EVC1
and EVC2 have been identified with mutations in EVC1
accounting for 75% and mutations in EVC2 accounting for
25% of the cases [94].

2.7.7. Weyers Acrofacial Dysostosis. Weyers acrofacial dysos-
tosis (Curry-Hall syndrome) is characterized by a milder
phenotype of polydactyly, dentition anomalies, and dystro-
phic nails. Dominant mutations in EVC1 and EVC2 have
been found to cause Weyers acrofacial dysostosis [95].

3. Conclusion

Numerous studies have shown a variety of functional and
structural relationships between primary cilia and physio-
logical as well as pathological aspects of the skeletal system.
In this review, we provide insight into the role of primary
cilia in skeletal disease and show evidence that the primary
cilia may be a promising target of clinical intervention for
bone/cartilage tumor, OA, IVDD, scoliosis, osteoporosis,
and cilium-related skeletal disease.
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