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�is study applies a novel cloud seedingmethod using an unmanned aerial vehicle (UAV) and a research aircraft in Korea. For this
experiment, the UAV sprayed a cloud seeding material (calcium chloride), and the aircraft monitored the clouds in the southern
part of the Korean Peninsula on April 25, 2019. Cloud observation equipment in the aircraft indicated an increase in the number
concentration and average particle size of large cloud particles after the seeding. Weather radar re�ectivity increased by ap-
proximately 10 dBZ above the experimental area due to the development of clouds and precipitation systems. Rain was observed
after seeding, and 0.5mm was recorded, including natural and mixed precipitation from the cloud seeding. In addition, it showed
that the rapid increase in the number of raindrops and vertical re�ectivity was approximately 10 dBZ. �erefore, these results
showed the possibility of cloud seeding using UAVs and atmospheric research aircraft. �e e�ects of cloud seeding are indicated
through the increased number concentration and size of cloud particles, radar re�ectivity, and ground-based
precipitation detection.

1. Introduction

Aerosols can act as cloud condensation nuclei or ice nuclei
and a�ect cloud formation and lifetime. Understanding the
microphysical e�ects of aerosols on clouds and precipitation
is critical in understanding and predicting climate change
[1]. In weather modi�cation technology, cloud seeding
materials corresponding to these aerosols act as cloud
condensation or ice nuclei, thus a�ecting cloud and pre-
cipitation formation. Weather modi�cation is an advanced
scienti�c technique that is used in the meteorological �eld to
enhance precipitation, suppress hail, and dissipate fog. It is
an important method that can be used to alleviate water
resource scarcity, drought relief, and forest-�re prevention.

For the future of atmospheric sciences, weather modi�cation
techniques are critical. Cloud seeding experiments have been
performed using seeding materials that have been used since
1946 [2–5]. Weather modi�cation is a technology in which
cloud seeding materials arti�cially cause cloud condensation
and precipitation development in areas of the atmosphere
with insu�cient cloud condensation or ice nuclei.

Weather modi�cation techniques originated from the
discovery that spraying arti�cial ice nuclei into supercooled
clouds can increase the number concentration of ice crystals
[2, 3]. �e cloud seeding method depends on precipitation
formation processes, which vary with cloud temperature. In
cold clouds (below 0°C), precipitation is induced by spraying
ice nuclei materials, such as silver iodide or dry ice, to
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produce or strengthen ice. In warm clouds (above 0°C),
precipitation is induced by spraying hygroscopic substances,
such as sodium chloride or calcium chloride, which act as
cloud condensation nuclei and promote the collision-coa-
lescence process in the cloud. )e seeding particles serve to
increase the drop-size distribution, which accelerates the
rain process [6, 7].

)e World Meteorological Association (WMO) noted
that the development of meteorological projects, such as
weather modification activities, has grown significantly due
to an increase in social-economic demand for drought relief,
water resources, and fire forest prevention [8]. Weather
modification has been proposed as a means to minimize
environmental problems and secure water resources at a
relatively low cost [9, 10]. )us, cloud seeding experiments
and analysis technologies are needed. Currently, weather
modification projects are underway worldwide, including in
the United States, China, Japan, the United Arab Emirates,
and Russia [8]. Cloud seeding experiments using aircraft
have been performed to gain meaningful results
[6, 9, 11–26]. Furthermore, the method shows high success
for rain enhancement [5, 6, 27–29]. )e United States and
)ailand are conducting cloud seeding experiments with
aircraft to increase long-term precipitation; they suggested
an increase in annual precipitation through cloud seeding
[30–32]. Various other cloud seeding studies have been
conducted using aircraft. An overview of these studies/ex-
periments is provided in the following.

)e Wyoming Weather Modification Pilot Project
(WWMPP) was performed to statistically evaluate the ef-
fectiveness of cloud seeding with silver iodide in the
Medicine Bow and Sierra Madre Ranges of south-central
Wyoming [30]. )e cloud seeding program over the Sierra
Nevada mountains region resulted in six successful and five
unsuccessful cases [33]. )e Seeded and Natural Orographic
Wintertime Cloud: the Idaho Experiment (SNOWIE)
project was performed to verify the cloud seeding effect
using meteorological radar and cloud droplet instrument
[34]. )e Queensland Cloud Seeding Research Program
(QCSRP) was carried out in Australia to investigate the
cloud seeding effect on cloud and precipitation in a clean
aerosol environment [35]. In South Africa, seeding with
hygroscopic seeding flares from the wings of an aircraft
resulted in an increase in radar-measured rain mass [20].
)e cloud seeding experiments in Israel showed the pre-
cipitation enhancement over the target area with strong low
pressure, precipitation, and wind of synoptic condition [36].
In India, cloud seeding from aircraft-based hygroscopic
flares attributed an approximate 17% of the total rainfall.)e
growth rate was shown to be sensitively affected by aerosol
size distribution, vertical velocity, pressure, temperature,
and relative humidity [37]. )ese cloud seeding experiments
have been attempted using various types of aircraft, such as
helicopters, drones, rockets, and airplanes [8, 38].

In Korea, cloud seeding experiments using aircraft were
first conducted in 1963 [39] and are still being used [40–47].
Since 2018, cloud seeding experiments and observations
have been executed using atmospheric research aircraft
[45, 46].)e available days for a cloud seeding experiment in

Korea are estimated to be between 40 and 91 per annum to
cover all the focus areas, namely, water resources, drought
relief, forest-fire prevention, and air quality improvement
[47]. However, these experiments entail considerable costs
associated with building and maintaining infrastructure
(e.g., aircraft and equipment).

Recently, an unmanned aerial vehicle (UAV) has been
proposed as an alternative, more cost-effective solution to
expand weather modification technology. )us, more re-
cently, UAV systems have been tested for their use in various
fields, including meteorology, environment, and its appli-
cations [48–52]. )e UAV system is a useful tool for cloud
seeding operations and efficiency analysis. In the United
States, an unmanned aerial system platform was established
to investigate the potential of UAVs in conducting cloud
observation experiments [48, 50]. )ey tried to develop a
framework to use autonomous unmanned aircraft systems
for the operation and evaluation of cloud seeding activities.
)ey found major advantages in using the UAV system for
cloud seeding operations that enable the identification of the
atmospheric environmental conditions for more effective
implementation of cloud seeding. )ey further provided a
context and guidance on using unmanned aircraft systems
for the operation and implementation of cloud seeding. For
the operation of cloud seeding, a large UAV system, in-
cluding sensors and seeding material, is needed [48, 50]. )e
Lower Atmospheric Process Studies at Elevation-a Remotely
Piloted Aircraft Team Experiment (LAPSE-RATE) cam-
paign was conducted using an unmanned aerial system to
observe the vertical profile of aerosol, carbon dioxide, water
vapor, and other meteorological parameters [53]. Compared
to manned aircraft, UAVs require less workforce and lower
budgets and can fly during severe weather conditions.

)is study introduces and analyzes the first cloud
seeding experiment using both UAVs and atmospheric
research aircraft in Korea. It further presents research di-
rection for future cloud seeding experiments utilizing UAVs.
Moreover, the experiment and observations considered the
differences between the windward and leeward sides of the
flight area and utilized diverse verification methods, such as
satellites, radar, aircraft observation equipment, ground-
based observation equipment, and numerical models.

2. Materials and Methods

In this study, cloud seeding experiments were conducted
using a UAV and an atmospheric research aircraft. Figure 1
shows the aircraft and instruments in the (a) UAV and (b)
Korea Meteorological Administration (KMA)/National In-
stitute of Meteorological Sciences (NIMS) Atmospheric Re-
search Aircraft (NARA). Table 1 provides the respective
specifications.)eUAV used in this study is a TR-60 practical
tiltrotor UAV developed by the Korea Aerospace Research
Institute, which can take off and land vertically and fly at high
speeds. )is is a next-generation UAV system that can
perform reconnaissance and surveillance missions through a
fast approach towards the target point [54–56]. It has a wing
length of 3m, maximum takeoff payload of 200 kg, maximum
flight time of 5 h, and maximum ceiling altitude of 3 km.)is
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enables vertical takeoff and landing operations in narrow
areas, high-speed flight, and high-efficiency reconnaissance
and monitoring. To expand the utility of the UAV, it was
developed to control a flare rack installed underneath it to
conduct cloud seeding experiments.)e flare rack is designed
to be equipped with four to six flares.

)e NARA used in this study was a King Air 350 HW
model manufactured by Beechcraft in the United States in
November 2017. )e engine is a turbo-prop model in which
two propellers operate, with a maximum ceiling of 10 km
and a maximum flight time of 5.5 h. )e NARA was
equipped with a total of 25 types of meteorological obser-
vation instruments to conduct severe weather monitoring,
environmental monitoring, greenhouse gas monitoring,
cloud physics observations, and cloud seeding [57]. To
conduct cloud seeding experiments, the NARA was
equipped with a flare rack, cloud condensation nuclei
counter (CCNC) for 0.75–10 μm cloud condensation nuclei
observation, cloud imaging probe (CIP) for 7.5–930 μm
cloud particle observation, cloud droplet probe (CDP) for
2–50 μm cloud particle observation, precipitation imaging
probe for 100–6,200 μm precipitation particle observations,
andmultielement water content measurement (WCM-2000)
for liquid water content. Cloud physics observations and
cloud seeding experiments using NARAs have been actively
conducted since 2018 and showed increases in cloud particle
size and ground precipitation [45].

To conduct the cloud seeding experiment, the first in
Korea to use both the UAV and NARA, an experimental
design suitable for the purpose of each aircraft was prepared.

)e experiment sprayed cloud seeding material using the
UAV and observed the atmospheric conditions and cloud
particles using NARA. To apply cloud seeding to warm
clouds, the UAV was equipped with calcium chloride flares
from the Ice Crystal Engineering company. To verify the
experiment results, data from the CIP, CDP, weather radar,
automatic weather system (AWS), micro rain radar, dis-
drometer, and a numerical model were analyzed.

Variations in the cloud particle microphysics were an-
alyzed using cloud physics observation equipment mounted
on the NARA. )e C-band weather radar at the Korea
Aerospace Research Institute was used to record reflectivity
changes. Rainfall detection and amount data were collected
from the ground-based observation network within the
seeding particle diffusion range and time. In addition, the
reflectivity before and after the experiment and the size
distribution of the raindrops by field observations, such as by
micro rain radar and disdrometer, were analyzed.

To verify the effectiveness of the cloud seeding experi-
ment, a numerical simulation was performed using a weather
research and forecasting (WRF) model. )e Morrison mi-
crophysical scheme [58] of the WRF model was modified for
the cloud seeding experiment, which was successfully sim-
ulated for orographic cloud in the winter [59].

3. Results and Discussion

3.1.DescriptionofCloudSeedingExperiment. Processes, such
as weather forecast analysis, seeding scenario establishment,
and licensing for aircraft operations, were conducted prior

Unmanned Aerial Vehicle

Flare rackIcing detector

(a)

KMA/NIMS Atmospheric Research Aircra�

CCPPIP

Flare rack

Ejectable flare rack AIMMS-20

Icing detector

(b)

Figure 1: Aircraft and its instruments in (a) UAV and (b) NARA.

Table 1: Specification of UAV and NARA.

Unmanned aerial vehicle (UAV) KMA/NIMS Atmospheric Research Aircraft (NARA)
Type TR60 King Air 350 HW
Manufacturer Korea Aerospace Research Institute (Korea) Beechcraft (USA)
Size (m) Wing: 3 L/W/H: 14.22/17.65/4.37
Maximum ceiling (km) 3 10
Maximum speed (km/h) 240 578
Maximum takeoff payload (kg) 200 7,425
Maximum flight time (hour) 5 5.5
Maximum range (km) 240 2,871
Scientific instruments Flare rack Flare rack, CCNC, CIP, CDP, PIP, and WCM-2000
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to the cloud seeding experiment. )e experiment was
conducted by observing variations in atmospheric condi-
tions and cloud particles using the NARA after spraying
cloud seeding material using the UAV. )is was conducted
on April 25, 2019, during which the UAV flew from 0912 to
1037 local standard time (LST) (85min) and the NARA flew
from 0930 to 1254 LST (204min). )e UAV sprayed the
cloud seeding material from 0917 to 1029 LST (72min). )e
study area included Goheung and Boseong, Jeollanam-do.
Figure 2 shows the target area and flight path of seeding by
the UAV and the observation by the NARA over the
southern part of the Korean peninsula. )e UAV seeded the
clouds using 12 calcium chloride flares at a height of 760m
on the windward side of the area; the NARA traveled straight
at 1-2 km in height on the windward and leeward sides.

3.2. Weather Conditions during Cloud Seeding Experiment.
Investigating whether the weather conditions were suitable
before the cloud seeding experiment was a major factor
influencing its success. Moreover, the seeding material
species are dependent on the threshold for atmospheric
temperature. )us, the threshold value and weather con-
ditions were compared (Table 2). Table 2 provides the
weather condition checklist for this experiment. )e at-
mospheric conditions for cloud seeding experiments in
warm clouds, as suggested by the NIMS, are a temperature
above 0°C, a liquid water content over 0.1 g/m3, and a wind
speed below 15m/s at the seeding height. )e NARA per-
formed the atmospheric conditions at the seeding height to
ensure the suitability of these conditions for seeding. )e
measured conditions were as follows: temperature of 10.1°C,
liquid water content of 0.71 g/m3, and wind speed of 6.9m/s.

Information on the prevailing synoptic conditions is
useful to estimate the movement and characteristics of the
cloud system for cloud seeding purposes. )e synoptic
weather conditions by Unified Model (UM) in KMA and
satellite infrared satellite image during this experiment are
provided in Figure 3. Figure 3 shows the (a) surface weather
chart, (b) the gap between temperature and dew point
temperature, dew point temperature, and wind at 850 hPa,
(c) the weather chart at 850 hPa, and (d) the temperature at
850 hPa and vertical velocity at 700 hPa at 0900 LSTon April
25, 2019. As shown in Figures 3(a) and 3(c), during the
experiment, the middle and upper clouds, accompanied by
an upper air pressure valley near Balhae Bay, were moving
northeast, and the developed low and convective clouds
behind them moved northeast to the northern Yellow Sea.
As the southwest wind continued to blow from southern
China, the dew point deficit in the target area increased from
0 to 1°C (Figure 3(b)), and the vertical velocity was −5 hPa/h,
with a weak upward wind (Figure 3(d)). It was presumed
that the seeding material sprayed in this moist atmosphere
rose vertically and reacted with the cloud particles.

Vertical weather conditions were determined using the
vertical sounding profile and (b) precipitable water in
Heuksando at 0900 LST and 2100 LST on April 25, 2019.
Figure 4 reflects (a) the vertical sounding profile and (b)
precipitable water in Heuksando at 0900 LST and 2100 LST

on April 25, 2019. In the vertical profile of the atmospheric
conditions, shown in Figure 4(a), the lifting condensation
level was recorded at approximately 990 hPa, and the
K-index increased by 9.2 after the cloud seeding, indicating
the possibility of showers or thunderstorms. In Figure 4(b),
the precipitable water increased in most areas from the lower
to the upper layer. Moreover, the precipitable water at the
surface was 0.65–0.76mm, and the accumulated precipitable
water was 1.70–2.39m. From this vertical profile, it was
observed that moisture and unstable cloud conditions were
present, making it suitable for conducting cloud seeding
experiments.

Information on the cloud characteristics was based on
the data obtained from the Communication, Ocean, and
Meteorological Satellite (COMS) and is presented in Fig-
ure 5. Figure 5 shows the horizontal distribution of the (a)
cloud top height, (b) cloud type, (c) cloud top temperature,
and (d) cloud optical depth at 1030 LST, as well as the (e)
time series of cloud top height (grey), cloud thickness
(green), observed height by the aircraft (black), cloud top
temperature (red), liquid water path (blue), cloud base
height (red triangle), and cloud type (character) on April 25,
2019. As shown in Figure 5, the cloud top height was
0.5–2 km (Figure 5(a)), and the cloud top temperature was
5–15°C (Figure 5(c)). )e cloud optical thickness was 5–25
(Figure 5(d)), and the total liquid water content was 30–70 g/
m2 (Figure 5(e)). )is indicates low stratocumulus clouds
with liquid status (Figure 5(b)). )is experiment was con-
ducted with the NARA flight design that performed the
entire cloud distribution from a cloud base of 0.1 km to a
cloud top of 1.7 km. )e cloud base height calculated from
NARA and satellite data was similar to that from the ceil-
ometer at the Boseong Weather Observatory (BSWO), in-
dicating that stratus clouds with a cloud thickness of
0.2–0.3 km occurred.

3.3. Results of Cloud Seeding Experiment. )e results of the
cloud seeding were determined using field observations and
a numerical simulation.

To analyze the drop-size distribution in the cloud to
determine the effect of cloud seeding, the information
collected by NARA was utilized as shown in Figure 6, which
depicts (a) the flight path map, (b) time series of flight height
from 1030 to 1145 LST, and (c) average cloud size distri-
bution at 1 km in height before (cyan) and after seeding
(blue) on April 25, 2019. Considering the southeast wind and
the spraying height during the cloud seeding (Figure 6(a)),
the windward side (the section not affected by the cloud
seeding material, shown in cyan) and the leeward side (the
section affected by the cloud seeding material, shown in
blue) were divided into three layers at 2.0, 1.5, and 1.0 km
(Figure 6(b)). During the cloud observation flight, the points
marked OB1-1 and OB1-2 were observed windward in the
order of 2.0, 1.5, and 1.0 km in height, and the points OB3-1
and OB3-2 were observed leeward in the order of 1.0, 1.5,
and 2.0 km in height. As shown in Figure 6(c), at 1 km cloud
seeding height, the number concentration of the cloud
particles below 10 μm in diameter was similar before and
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after seeding. However, the particle size of the cloud particles
over 10 μm increased. )erefore, the maximum number
concentration decreased, and a wide cloud particle spectrum
appeared in 10–100 μm particles because of the competition
effect and formation of precipitation by strengthening the
collision-coalescence process in the cloud [14]. In addition,
the cloud droplets showed a wide cloud particle spectrum in
cloud particles over 100 μm through giant cloud conden-
sation nuclei activity that appeared due to the tail effect,
accelerating precipitation formation [6, 60]. Table 3 com-
pares the average number concentration (cm−3) before and
after cloud seeding at a height of 1 km on April 25, 2019.
When comparing the result after seeding to those before the
cloud seeding experiment, the cloud particles with diameters
of 2–50 μm, as measured using the CDP, had similar number
concentrations after the seeding, whereas those particles
with diameters of 60–500 μm as measured using the CIP
increased 1.52 times, from 12.52 cm−3 before to 19.01 cm−3

after cloud seeding, which was significant. )e NARA ob-
served an increase in the number concentration of cloud
particles on the leeward side after the seeding, which is due
to the growth of large cloud particles after cloud seeding.

)e weather radar detected the sensitive fluctuation of
precipitation in the cloud seeding experiment. )e variation
in the radar reflectivity to determine the effect of the cloud
seeding is shown in Figure 7. Figure 7 shows the (a) hori-
zontal distribution of reflectivity at 1100 LST and (b) time

series of reflectivity (red solid line with circles) and radar
precipitation (blue dotted line with triangles) at BSWO (red
point) from 0800 to 1400 LST on April 25, 2019. )e pink
line in the black box in Figure 7(a) is the area in which the
UAV sprayed the cloud seeding material, and the red circle
represents the BSWO. As shown in Figure 7, reflectivity near
the target area was weak, at −10 to −5 dBZ. Figure 7(b) shows
reflectivity near the BSWO, which was less than −10 dBZ
before the seeding and less than −15 dBZ during the ex-
periment. After the experiment, the reflectivity increased to
−5 dBZ due to the inflow of a weak cloud system. )is
indicates that the cloud seeding enhanced reflectivity as a
result of the reaction of cloud seeding material and the
growth of cloud particles. )is echoes the result of the AgI
Seeding Cloud Impact Investigation project conducted in
Wyoming, USA, of an increase in reflectivity of approxi-
mately 10 dBZ after cloud seeding [23].

)e BSWO data was further used to analyze the variation
of rainfall on the surface to determine the effect of the cloud
seeding (Figure 8). Figure 8 shows (a) the horizontal distri-
bution of rain detection at 1130 LST, (b) the time series of
relative humidity (blue), temperature (red), rain (black), and
cloud top height (green), (c) the reflectivity, and (d) the
number concentration (black) and diameter (red) of rain-
drops at BSWO from 0800 to 1500 LST on April 25, 2019.
After the cloud seeding experiment, rainfall detection showed
at the target Beolgyo (BG), Gwangyang-si (GYS), andHadong

NARA

UAV

Boseong-Gun

Goheung-Gun

Figure 2: Target area and flight path of seeding by the UAV (red) and observation by the NARA (blue) over the southern part of the Korean
peninsula on April 25, 2019.

Table 2: )e weather condition checklist for cloud seeding experiment on April 25, 2019.

)reshold for warm cloud Value at seeding height
Temperature (°C) Over 0.0 10.1
Liquid water content (g/m3) Over 0.1 0.71
Wind speed (m/s) Below 15.0 for enough time for droplet growing 6.9
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(HD) AWS sites (Figure 8(a)). At the BSWO site (Figure 8),
rain was detected but rainfall was not recorded after the cloud
seeding experiment at 1023, 1036, 1045, 1050, or 1053 LST. In
addition, these three sites recorded approximately 0.5mm of
precipitation, which was presumed to be a mix of natural
precipitation and precipitation caused by seeding. At the
BSWO, the relative humidity was 84–94% (humid condi-
tions), and the temperature decreased by more than 1°C after
the experiment (Figure 8(b)). In Figures 8(c) and 8(d), the
cloud seeding time is shown in a red box, and the cloud
seeding effect time is shown in a purple box. After cloud

seeding, the reflectivity increased by approximately 10 dBZ at
750m in height at 1120 LST. Additionally, the average
number concentration of the raindrop particles increased
rapidly, and raindrops of approximately 0.2mm were
recorded from 1100 to 1135 LST. Although rainfall was not
observed at the BSWO at 1100 LST, the effects of the seeding
could be estimated through rainfall detection, increased
reflectivity, and the increased number concentration and size
of the raindrops.

A numerical model is a useful tool to estimate the
dispersion of seeding material and the increase in rain

(a) (b)

(c) (d)

Figure 3: (a) Surface weather chart, (b) gap between temperature and dew point temperature, dew point temperature, wind at 850 hPa,
(c) weather chart at 850 hPa, and (d) temperature at 850 hPa and vertical velocity at 700 hPa at 0900 LST on April 25, 2019.
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during a cloud seeding experiment because the classifi-
cation of natural and artificial (by cloud seeding effect)
precipitation is complex. )e modified numerical model
simulation was used to verify the dispersion of seeding
material during the cloud seeding experiment (Figure 9).
Figure 9 shows the numerical simulation of the horizontal
distribution of the seeding material dispersion (calcium
chloride (CaCl2)) at (a) 0930, (b) 1030, and (c) 1130 LSTas
well as precipitation differences at (d) 0930–1030, (e)
1030–1130, and (f ) 1130–1230 LST on April 25, 2019.
Figure 9 shows a numerical simulation performed using
the WRF model with Unified Model-Local Data Assim-
ilation and Prediction System analysis data and global
positioning system location information as input data
[61]. In Figures 9(a)–9(c), the shaded area indicates the
distribution of the number concentration of the seeding
material (calcium chloride), and the vector represents the
wind field at 0.75 height. )e seeding material after being
sprayed dispersed throughout the points of Boseong (BS),
BSWO, BG, Gwangyang-eup (GYU), GYS, and Geumnam
(GN). )e cloud seeding material at seeding height spread
to the BS, BSWO, BG, GYU, and GYS points due to the
southeast wind but gradually spread northwest over time.
In Figures 9(d)– 9(f ), the red and blue colors indicate an
increase and decrease in precipitation, respectively.
Figures 9(d)–9(f ) show that the accumulated rain amount
increased in the northwest portions of BS and BSWO,
where the seeding material dispersed gradually. )ree
hours after the cloud seeding experiment, the accumu-
lated rain amount increased to 5.1 mm at 1210 LST (not
shown). )is is a sufficient response time for calcium
chloride, as a hygroscopic material, to react with clouds
and precipitation; therefore, this was an effect of the cloud
seeding experiment.

3.4.DesigningCloud Seeding ExperimentsUsingTwoVehicles.
A successful cloud seeding experiment using two types of
aircraft can be conducted to mitigate the disadvantages of
atmospheric research aircraft. Atmospheric research aircraft
have difficulty flying in low clouds. )e UAV used for this
study can fly in low clouds. )us, the most important aspect
of cloud seeding experiments using UAVs and atmospheric
research aircraft is the experimental design. For the two
aircraft to perform effectively and coordinated manner
during cloud seeding experiments without safety concerns,
the experiment must be designed considering temporal and
spatial conditions. Figure 10 shows a schematic diagram of
the cloud seeding experiment using the UAV (red) and the
NARA (blue). As shown in Figure 10, the UAV should
perform the cloud seeding first, and the atmospheric re-
search aircraft should subsequently observe the meteoro-
logical conditions. Spatially, the experiment can be designed
by dividing it into vertical and horizontal areas. Vertically,
UAVs should fly in the lower regions of the clouds, and
atmospheric research aircraft should fly in the middle and
upper levels of the clouds, maintaining at least a hundred
meters between the two aircraft to reduce safety problems
and accidents. A previous study [50] emphasized main-
taining a 100–300m interval between the two aircraft; thus,
this experiment was conducted with an interval of
240–1280m. Horizontally, the atmospheric research aircraft
must fly in a verification area where ground-based obser-
vation equipment is installed, and UAVs must fly in the
seeding area of the target cloud. Cloud seeding experiments
can be verified in various ways (ground-based and upper
layers). Overall, when designing cloud seeding experiments
using multiple aircraft, the UAV should spray cloud seeding
material near the cloud base over the experimental area first,
and atmospheric research aircraft should observe the
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Figure 4: (a) Vertical sounding profile of sounding and (b) precipitable water in Heuksando at 0900 LST and 2100 LST on April 25, 2019.
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Figure 6: (a) Flight path map, (b) time series of flight height from 1030 to 1145 LST, and (c) average cloud size distribution at 1 km height
before (cyan) and after seeding (blue) on April 25, 2019.

Table 3: Comparison of average cloud number concentration (cm−3) between before and after cloud seeding at 1 km height on April 25,
2019.

Small cloud droplet (2∼50 μm) Large cloud droplet (60∼500 μm)
Before cloud seeding (cm−3) 4671.05 12.52
After cloud seeding (cm−3) 4648.38 19.01
Variance 1.00 time 1.52 times
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atmospheric conditions in themiddle and upper cloud layers
over the verification area at a later stage. Effective and safe
cloud seeding experiments and verification can therefore be
conducted by using these two types of aircraft. )is study
(especially, Figure 10) will serve as a guideline for cloud
seeding experiment using two or several aircraft.

4. Conclusions

)is study investigated for the first time in Korea the
possibility of cloud seeding using crewed atmospheric re-
search aircraft and UAVs. A thorough experimental design
was prepared to spray cloud seeding material with the UAV
and to observe the cloud physics by using the NARA. )e
meteorological conditions (temperature, liquid water con-
tent, and wind speed) on April 25, 2019, were suitable for
cloud seeding experiments using calcium chloride as seed
material. It showed that there were low clouds with liquid
status, moist conditions, and a 0-1°C dew point deficit in the
experimental area. Observations showed an increase in the
number concentration of cloud particles over 10 μm in
diameter, an increase in radar reflectivity of over 10 dBZ,
rainfall detection, and an increase in the number concen-
tration and size of the raindrops. Moreover, a numerical
simulation showed the dispersion of the cloud seeding
material. )erefore, the growth of the clouds and raindrops
was likely due to the cloud seeding experiment. )e analysis
criteria for cloud seeding effects proposed by the NIMS and
KMA are increased surface precipitation, cloud particles,
and radar reflectivity [45]; thus, this study shows suitable
results.

Although increases in precipitation and clouds in the
target area after the experiment were indicated, this may
have been a natural increase. )erefore, statistical verifica-
tion through more experiments is needed. Although this was
the first cooperative experiment using UAVs and atmo-
spheric research aircraft in Korea, we expect to see similar

experiments from other researchers and collaborative op-
erators. Priority for investment to develop further weather
modification technologies was analyzed using the 10 indi-
cators for 16 technologies and noted that the development of
new weather sensors for UAVs, spraying and diffusion of
cloud seeding material, verification, numerical modelling,
and ground-based experiments are required [62]. )erefore,
the KMA will continue to strive for technology development
in cloud seeding experiments using UAVs and atmospheric
research aircraft. In the future, we plan to improve cloud
seeding efficiency using UAVs through continued dual
aircraft experiments.
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�e Single European Sky Air Tra�c Management Research (SESAR) program aims at modernizing and harmonizing the
European airspace, which currently has a strongly fragmented character. Besides turbulence and convection, in-�ight icing is part of
SESAR and can be seen as one of the most important meteorological phenomena, which may lead to hazardous �ight conditions for
aircraft. In this study, several methods with varying complexities are analyzed for combining three individual in-�ight icing forecasts
based on numerical weather prediction models from Deutscher Wetterdienst, Météo-France, and Met O�ce. �e optimal method will
then be used to operate one single harmonized in-�ight icing forecast over Europe. As veri�cation data, pilot reports (PIREPs) are used,
which provide information about hazardous weather and are currently the only direct regular measure of in-�ight icing events available.
In order to assess the individual icing forecasts and the resulting combinations, the probability of detection skill score is calculated based
onmulticategory contingency tables for the forecast icing intensities.�e scores aremerged into a single skill score to give an overview of
the quality of the icing forecast and enable comparison of the di�erentmodel combination approaches.�e concluding results show that
the most complex combination approach, which uses iteratively optimized weighting factors for each model, provides the best forecast
quality according to the PIREPs.�e combination of the three icing forecasts results in a harmonized icing forecast that exceeds the skill
of each individual icing forecast, thus providing an improvement to in-�ight icing forecasts over Europe.

1. Introduction

�e European airspace has a strongly fragmented character.
At the continental scale, there are multiple air navigation
service providers each responsible for a portion of the
European airspace. Furthermore, air tra�c control in
Europe is very complex because the airspace is one of the
busiest in the world with over 30,000 �ights daily on average
(2018, before COVID-19 pandemic) and a very high airport
density. In the year 2000, the Single European Sky initiative
was created to structure airspace and air navigation services
in Europe to overcome the fragmentation and increase �ight
capacity and air tra�c management e�ciency. �e Single
European Sky Air Tra�c Management Research (SESAR)
program aims at modernizing and harmonizing the

European airspace through the development and imple-
mentation of a new set of operational procedures and sys-
tems among European aviation stakeholders [1, 2].

In order to achieve the goals of SESAR, aeronautical and
meteorological information need to be harmonized and
consistent over Europe. Several national meteorological
service providers operate their own Numerical Weather
Prediction (NWP) systems on various grid scales (global to
regional) and time scales resulting in several weather
forecasts available over Europe at any given time. Addi-
tionally, harmonized global aviation weather forecasts
provided by the World Area Forecast Centre’s are available.
However, for the highly fragmented and high-capacity
European airspace, there is a need for more detailed weather
forecast information (high-resolution aeronautical
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meteorological (MET) information for short-distance
flights, terminal areas, and airports). $e SESAR Deploy-
ment project [3] 2015_068_AF5 “European Harmonised
Forecasts of Adverse Weather (Icing, Turbulence, Convec-
tion and Winter Weather)” aims at fulfilling this need by
providing European harmonized MET products of aviation
weather hazards in high resolution and of high accuracy.

Alongside turbulence and convection, in-flight icing is
seen as one of the most important meteorological phe-
nomena, which may lead to hazardous flight conditions for
aircraft. In-flight icing typically occurs in clouds with
supercooled water droplets. $e temperature within these
clouds is usually between 0 and -20°C [4] and can be,
depending on the surrounding conditions (such as the
absence of ice nuclei), as cold as -40°C [5]. An aircraft flying
through such a cloud may collect some of the supercooled
droplets on its wings, propellers, or turbines, measuring
instruments and other structures of the aircraft.$e droplets
freeze instantaneously in contact with the aircraft (large
droplets may remain in a semi-liquid state for up to one
second [5]) and can accrete to form an ice layer of up to
several centimeters [6]. $ese ice layers can have a strong
impact on the maneuverability of the aircraft and may lead
to hazardous flight conditions in such a way that measuring
instruments and the aircraft aerodynamics are compro-
mised. In the latter case, icing causes an increased drag and a
decreased lift, which results in control problems [7]. Green
[8] gives a long-term overview (1978–2002) of accidents and
incidents related to in-flight icing. Further descriptions of
some individual incidents are discussed by Bernstein et al.
[9].

Due to the hazardous nature of in-flight icing, aircraft
are equipped with anti-icing and de-icing systems. $e two
most commonly used systems are heated surfaces and
pneumatic rubber boots on the leading edge of the wings and
at other locations where ice accretion may lead to flight
problems. However, their utilization leads to a significant
increase in fuel consumption, and therefore, avoidance of
icing conditions is preferred. Consequently, there is a de-
mand for more reliable icing forecasts to reduce costs as well
as increase flight safety.

In this study, a harmonized icing forecast over Europe is
produced using forecast data from Deutscher Wetterdienst
(DWD), Météo-France (MF), and Met Office (MO). $e
three icing forecast products, each based upon a different
NWP model, are ADWICE from DWD [5] (postprocessing
based on model ICON-EU [10]), ARPEGE from MF [11],
and Unified Model (UM) from MO [12]. $e harmonized
product, hereafter called by its working title “HarmonICE,”
is produced by combining the different icing indices created
by each of the individual NWP models.

$e primary goal of this study is to analyze different
methods combining the icing indices, such as the minimum,
maximum, or mean of all data and, as a more complex
approach, themethod suggested by Pepe and$ompson [13]
described in detail below. $e approach with the highest
forecast skill will be deployed operationally to provide a
harmonized European icing forecast with a high accuracy

and consistency across national borders and among airspace
users and aviation stakeholders.

Pilot reports (PIREPs) are used to verify the forecasts as
supported by previous studies, for example, Brown et al. [14]
who describe in detail the advantages and disadvantages of
using PIREPs for NWP verification. PIREPs provide in-
formation about hazardous weather and are currently the
only direct regular measure of in-flight icing events. An
overview of the PIREPs used in this study and the methods
for the combination of the individual icing forecasts are
described in the next section, followed by a detailed de-
scription of the results and an outlook.

2. Data and Methods

PIREPs from the winter season 2017/18 (October 2017 to
April 2018) are used in order to determine the best approach
for combining the three icing forecasts based on single NWP
models and to verify the final harmonized icing forecast,
HarmonICE. Icing events over Europe typically occur more
frequently during this period of the year than in other
months. However, compared to the large amount of forecast
data available in the time period, there are few observations
of the icing phenomenon.

2.1. Observation Data. An icing event reported by a PIREP
provides a point observation of the existence and severity of
icing (categorized as none, trace, light, moderate, or severe)
at the location of the aircraft. Alongside the five-level icing
intensity, the geographic location, altitude, and observation
time are reported. PIREPs have been used as icing obser-
vation data in several other studies such as Brown et al. [14],
Taffner et al. [15], and Kalinka et al [5].

In total, 4268 PIREPs were collected during the winter
season. $e geographical distribution of “no icing” and
“icing” events is shown in Figure 1. $e majority of the
positive icing events were reported over land in themiddle of
Europe and close to large cities. Aircraft sending these
PIREPs were often located at middle flight levels during
approach or landing. $is can be seen in the altitude dis-
tribution of the PIREPs in Figure 2. In contrast, negative
reports were mostly sent from over the sea in the western
part of the analyzed area (Figure 1) and from higher flight
levels (Figure 2). As a result, a large number of “no icing”
reports are at heights that are above the maximum forecast
level (FL 360) where supercooled liquid water rarely exists
due to very low temperatures.

$e frequency distributions of the PIREPs separated into
four icing intensities can be seen in Figure 3. Trace icing
observations are included in the light icing intensity category
as there are few trace icing reports compared to light icing
reports. By far, most PIREPs report moderate icing. A
relatively small number of negative reports are available
(662) compared to the number of positive icing events
(3606). $is distribution can be explained by the fact that
pilots are expected to avoid areas with severe icing intensities
and that light icing intensities may not give rise to a level of
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concern for the pilot to consider making a report. Fur-
thermore, icing intensity is subjective since no quantitative
de�nition of severity exists. A detailed discussion about the
low quality and quantity of PIREPs is given by Brown et al.
[14]. �ey conclude that PIREPs are challenging to use in an
absolute sense for NWP veri�cation. However, in a relative
sense, they can be useful, for example, for comparing the
detection rates of di�erent icing forecasts or the combina-
tion of them as presented in this study.

2.2. Forecast Data. �e three icing forecasts used for the
harmonized product from DWD, MF, and MO are based on
di�ered NWP systems. ADWICE from DWD provides
hourly data output with a horizontal grid spacing of 0.0625°
and 32 vertical layers up to 225 hPa. �e icing intensities
provided by ADWICEmatch the four categories used for the
PIREP values in the study. �e icing index based on

ARPEGE from MF has a lower horizontal grid resolution of
0.1° and 14 layers up to 400 hPa vertically. �e data output is
hourly up to forecast hour 12 and then every three hours
with an icing intensity range between 1 and 10 in steps of
one. �e UM icing index from MO provides hourly data
with 0.140626° horizontal grid spacing in east-west direction
and 0.09375° in north-south direction with 16 vertical grid
layers extending up to 250 hPa. �e icing intensity is con-
tinuous ranging between 0 and 1. All models are run every
six hours (0, 6, 12, and 18 UTC) and simulate up to 36 hours
or longer.

�e di�erent grid spacings and time resolutions have to
be considered in the �nal harmonized product. �e ap-
proach used for HarmonICE uses the �nest of the afore-
mentioned horizontal grid resolutions of 0.0625° and 29
vertical grid layers (up to 225 hPa or �ight level 360). �is is
done so that in the �nal product, there is no loss of icing
intensity information resulting from extrapolation to a
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Figure 1: Geographical distribution of the PIREPs used in this study. �e area shown represents the geographical coverage of HarmonICE.
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Figure 2: Distribution of the PIREPs by altitude (left: positive icing, right: negative icing). Note that di�erent ranges on the abscissa are
shown due to the relatively small number of no icing reports. One report may be counted multiple times because the report identi�es
multiple levels.
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coarser grid. Furthermore, customers who currently use the
�ner resolved single product could have reservations against
the harmonized product if it contained less information.
Any reduction of information in the vertical dimension
would result in less �ight levels available in the forecasts,
reducing the icing intensity information available when
compared to existing single model forecasts, which is un-
desirable for customers. �is may give the impression that
the harmonized product is not as good as the higher resolved
single product and result in reluctance to use HarmonICE.

Data output of HarmonICE is hourly up to forecast hour
36. �e �nal output is the categorical icing intensity forecast
utilizing the categories recommended in ICAO Annex 3
[16], which are the same categories used for PIREPs. �e
domain of HarmonICE goes from 23.5° West to 62.5° East
and from 29.5° to 70.5° North (see Figure 1).

In order to combine the three di�erent centers’ forecasts,
each individual icing forecast is re-gridded to the Har-
monICE grid using linear interpolation. Time interpolation
is performed with the ARPEGE data, and the icing indices of
ARPEGE and UM are transformed to the four-step cate-
gorical range of HarmonICE by applying the thresholds
listed in Table 1. �is transformation is necessary because
unlike ADWICE, which produces categorical icing intensity
forecasts, there are no internal calculations to a categorical
icing intensity within ARPEGE and UM. �e thresholds
listed in Table 1 were calculated during an earlier phase of
the project using PIREPs from another winter season. �ey
are currently �xed at the given values but will be veri�ed and
if necessary recalculated in future.

Due to storage problems, some gaps in the forecast data
exist for the analyzed winter season 2017/18. All three
datasets cover approx. 70% of the complete winter time
period so not all PIREPs gathered could be used for com-
parison with the forecast data. In total, 3010 PIREP forecast
data comparisons could be performed.

2.3. Analyzing Methods. �is section describes the data
processing required to enable evaluation and veri�cation of
the forecasts. First, the forecast data corresponding to each
PIREP are extracted from the four-dimensional data �les.
Second, the individual icing forecasts are combined in order
to produce the harmonized icing intensity.

2.4. Pairing Data. For each PIREP of the examined winter
season, the position, observation time, and icing intensity
were compared with the forecast data. �e point in time for
each PIREP was shifted to the nearest full hour so that a
maximum time di�erence between an icing forecast validity
time and the PIREP time was 30 minutes. Within this half-
hour window, the detected icing area (cloud) could be
advected horizontally some distance according to the mean
wind at this altitude leading to some spatial deviation in the
location of the icing forecast. Assuming typical mean wind
speed of around 15m/s in a middle altitude of the tropo-
sphere, the advection would lead to a distance of around
30 km between the measuring point and the potential new
position of the measured cloud half an hour earlier or later.
Another source of uncertainty lies in the reported infor-
mation in the PIREP (e.g., rounding errors of the longitude
and latitude values or a time o�set during the observation
resulting from aircraft travel). In order to account for these
uncertainties in time and space, a box was placed around
each PIREP and the maximum forecast icing intensity in the
box was used to compare to the observed icing intensity
(similar to other studies, e.g., Kalinka et al. [5]). �e sen-
sitivity of the results to the size of such a box was tested by
using four di�erent box sizes. �e smallest box is simply a
single grid length in all dimensions, which results in a point-
to-point comparison. All other boxes are increased vertically
by one grid point up and down (totaling three grid points in
height), and by one, two, and three grid points, respectively,
in all four horizontal directions. �us, the largest box has
dimensions 3× 7× 7, totaling 147 grid points, that is, three
vertical grid points and seven horizontal grid points in
North-South and East-West directions (denoted as 3v7h),
corresponding to approximately 600m vertically and 50 km
in both horizontal directions.

2.5. Merging Data. For merging the individual icing fore-
casts, di�erent approaches were tested. Besides the classical
method to calculate the mean of the three forecasts, the
combination of the maximum and minimumwas calculated.
Additionally, the method proposed by Pepe and �ompson
[13] is used. �is method combines the forecast values p1,
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Figure 3: Frequency distribution of the icing intensity.

Table 1: �resholds used for the transformation of the original
icing index potential based on ARPEGE and UM to the four-step
range used in HarmonICE.

HarmonICE ARPEGE UM
No� 0 0 0–0.59
Light� 1 0.1–3.9 0.6–0.79
Moderate� 2 4.0–7.9 0.8–0.89
Severe� 3 8.0–10.0 0.9–1.0
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p2, p3 by choosing a weighting factor λ ∈ [-1,1] in such a way
that the combinations λpi + pj (with i, j ∈ {1,2,3}) result in an
optimal value for the chosen skill score for each pair of
possible combinations (pi, pj). �e pair with the highest
resulting skill score is then combined into a new interme-
diate combined icing forecast value pij. �is process is then
repeated for the remaining pair of icing forecasts pk, pij
(with k ∈ {1,2,3}) in order to calculate a second weighting
factor for the �nal product, which has the following form:
pijk� pi + λ1 pj + λ2 pk.

2.6. Evaluating Data. Former studies often used a binary
yes/no icing analyzing method, for example, Brown et al.
[14] and Kalinka et al. [5]. A contingency table enables the
calculation of POD (probability of detection) for yes and no
icing as well as calculation of the FAR (false alarm rate). �e
AUC (area under the curve) can also be calculated. �ese
skill scores provide an overview of the forecast quality and
enable comparisons of di�erent NWPmodel performance to
be made. However, this binary method distinguishes only
between an icing and a no icing event with no consideration
to the intensity. For this reason and the fact that only a small
number of negative icing reports are available (they are
needed for the FAR calculation), a more complex

multicategory contingency table is used to analyze the data
(e.g., Murphy [17], Brooks [18]). A detailed description of
the method applied in this study for calculating skill scores
from the multicategory contingency tables is given in the
next section alongside an example.

3. Results and Discussion

In this section, the results are presented for combining
individual in-�ight icing forecasts using simple and more
sophisticated methods. �e skill of each method for com-
bining the individual in-�ight icing forecasts as well as of
each individual in-�ight icing forecast is shown. Based on
these results, the recommended approach for combining the
in-�ight icing forecasts for HarmonICE is presented.

3.1. Example of a Combination of Individual Forecasts.
One of the simplest ways of combining the icing forecasts is
by calculating the average icing intensity (meanmethod). An
example of such an icing intensity �eld is shown in Figure 4.
A pressure level of 600 hPa on 11 December 2017 at 6 UTC
(model run at 00 UTC) is chosen. At this time, the single
forecasts show some signi�cant di�erences in the icing
intensities (ADWICE has only very small areas of severe
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Figure 4: Example of the icing intensity of the three icing forecasts andHarmonICE (meanmethod applied) for 11 December 2017, 06 UTC,
600 hPa. �e corresponding PIREPs from this altitude and point in time are plotted as dots with the same color map as the forecast data.
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icing) and in the areas where icing occurs (ARPEGE has no
icing in the northeastern and northwestern part of the
domain). However, the position and spatial extension of the
frontal zone agree well between all models. In the Har-
monICE �eld, the mean method is shown to remove icing
areas with light intensities predicted by only one of the three
forecast products and typically reduces the higher icing
intensity areas since the highest intensity predicted by all
products appears only in few areas.

�e two PIREPs available at this �ight level and time,
shown as colored dots in Figure 4, agree well with the
forecast icing intensities of HarmonICE. In contrast, not all
of the individual forecasts are a good �t to the PIREPs,
further highlighting the bene�t of intelligently combining
the individual in-�ight icing forecasts into HarmonICE.
Analysis of all data during the winter season for this mean-
method case is shown in Figure 5. �e multicategory con-
tingency table belongs to the point comparison (smallest
model box size around each PIREP) and can be read as
follows: on the green diagonal, the forecast values agree
perfectly with the observed data. An optimal forecast would
generate nonzero values only along this diagonal; all other
entries would be zero. �e blue cells show under-forecast
cases where the predicted icing intensity is smaller than the
corresponding PIREP icing intensity. �e red cells show the
over-forecast cases. �e darker the red and blue colors, the
larger the di�erences between the forecast icing intensities
and each corresponding PIREP. �e percentage of the three
categories (perfect forecast, under-forecast, and over-fore-
cast) is mentioned below the table. �e gray cells give the
sum of the corresponding rows and columns. As mentioned
previously, 3010 PIREPs were compared with a forecast
value. �is is less than the total amount of PIREPs available
in the winter season (see section “Data and Methods”) since
not all forecasts were not available over the entire time
period and some PIREPs were reported from an altitude
above the model domain height.

In this example of averaging the individual model
forecasts, the results show a tendency to underestimate the
icing intensities. Nearly half of the compared values of the
mean-method data are smaller than the corresponding
PIREP. A perfect forecast, where the predicted icing in-
tensity and the corresponding observed icing intensity are
identical, is observed in 41.7% of all cases.

�e multicategory contingency table provides a variety
of di�erent information about the analyzed forecast product.
However, it does not provide one single skill score, which
would allow an overall evaluation of the product and a
simple comparison with multicategory contingency tables
derived from other forecast products. In order to create a
single skill score to use to compare the individual icing
forecasts, the PODs of each icing intensity, as well as the total
hit rate, the FARs of each icing intensity as well as the total
false-forecast rate and under- and over-forecasting rates
were calculated. For the latter four values, the total amount
of observed PIREPs (3010) was used as the divisor. To
calculate the icing intensity hit rates (no, light, moderate,
and severe), the number of correctly forecast icing intensities
(green values on the diagonal of the table in Figure 5) was

divided by the amount of PIREPs with the corresponding
icing intensity (gray values in the last line of the table in
Figure 5). For example, the hit rate of no icing was calculated
by dividing 236 by 247, which results in 0.96. Figure 6 shows
the above-listed skill scores calculated from the multi-
category contingency table (Figure 5). �e very high hit rate
for no icing reports (0.96) highlights the problems men-
tioned in section “Observation Data” section with PIREPs of
no icing. Most of the no icing PIREPs are at altitudes where
no icing clouds occur and thus these statistics look very
good. �e reason for taking both the single hit rates of each
icing intensity (hit no, hit light, hit moderate, hit severe) and
the total hit rate (hit all) into account is that in the total hit
rate, each value has the same in�uence on the probability,
while the single hit rates are di�erently in�uenced by one
value because their total numbers are di�erent.

In order to determine one single skill score from the
values shown in Figure 6, they were merged into three
di�erent groups of skill scores: the hit rates for the single
icing intensities (hit no, hit light, hit moderate, and hit
severe), the total hit rate, which is equal to 1-false all and the
under- and over-forecast rates. �ese three groups of scores
contain all relevant information in the multicategory con-
tingency table (Figure 5). By averaging the single scores
within the groups and then averaging the three groups, one
multicategory average skill score (MCASS) is obtained,
which contains all relevant characteristics of the multi-
category contingency table. �e calculation described above
can be mathematically formulated as

MCASS � ∑
4
i�1 hitsi
4

+ hitsall + 1 −
(underf . + overf .)

2
( ) ,

(1)

with the �rst term representing the average of the single hits,
the second term representing all hits, and the third term
giving consideration to under- and over-forecast events. �e
under-forecast and over-forecast values are subtracted from
one in order to get a value that is best when it is equal to 1.
�e authors are aware that there are other scores or com-
binations of scores that can be derived from the multi-
category contingency table such as the Heidke skill score
(HSS) [19]. However, the MCASS (equation (1)) provides a
good and su�cient indication of the icing forecast skills
investigated in this study.�is was also manually checked by

Observed icing intensities (PIREPs)

0
1
2
3
all

Fo
re

ca
st 

ic
in

g
in

te
ns

iti
es

236 42 561 63 902
0 1 2 3 all

4 29 568 72 673
7 60 949 145 1161
0 14 219 41 274

247

Blueish cells:
Green cells:
Reddish cell:

underforecast:
Perfect forecast:
Overforecast:

1451 = 48.2%
1255 = 41.7%
304 = 10.1%

145 2297 321 3010

Figure 5: Multicategory contingency table for the mean method
using point data comparison.
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comparing a set of calculated MCASS with the corre-
sponding multicategory contingency tables.

One additional advantage to the formulation of the
MCASS over skill scores such as the HSS is that it can be
modi�ed by di�erent weighting factors for each term in
equation (1) in order to consider certain single terms more
than others. �is might be the case if customer requirements
are modi�ed in a way that, for example, over-forecasting
must have a stronger impact than under-forecasting or the
hit rate of severe must be considered stronger than the other
hit rates. In the current study, however, the single terms of
equation (1) are weighted homogeneously. More detailed
analysis of the di�erences as well as the advantages and
disadvantages of the MCASS in comparison with other skill
scores will be investigated in future studies.

�e MCASS was computed for each individual icing
forecast and each individual combination method discussed
in the “Merging Data” section (results for the mean method
presented in Figures 5 and 6).

3.2. Overview of Various Combination Methods.
Following the example for the multicategory contingency
table in the previous section, the performance of each in-
dividual icing forecast and combination method is now
assessed. A �nal value of MCASS is shown for the recom-
mended combination method for producing HarmonICE.

For the Pepe and �ompson (PT) method, the best
values for λ1 and λ2 were iteratively calculated as 0.6 and
-0.2, respectively. �e �nal optimized combination results in
ADWICE+ λ1UM+ λ2ARPEGE. In Figure 7, all results are
summarized for the three forecast products as well as for the
four combinations (min, mean, max, and PT). �e box sizes
used around the PIREPs are indicated as di�erent colors of

the bars. Figure 7 shows that when considering the indi-
vidual forecasts, the box size only has a signi�cant in�uence
on ADWICE. �e larger the box size, the better the results
indicated by the MCASS. �is can be explained by the
relatively high grid resolution of ADWICE compared to the
other two forecasts. �e higher grid resolution leads to
higher spatial �uctuations of the icing intensity within small
areas, and hence, larger icing intensity values are more likely
to be encountered by increasing the box size. Furthermore,
ADWICE tends to underestimate the icing intensity more
than the other models for the smallest box size (not directly
shown here but re�ected by the relatively small blue bar of
ADWICE in Figure 7), which also leads to better results for
an increasing box size.�e box size dependency of ADWICE
can also be seen in the combined PTmethod since ADWICE
is included with the largest factor of one. Overall, the PT
method leads to the best results of all forecast combinations
and is better than each individual forecast product. �is
statement is independent of the box size around the PIREPs.
For each box size (bar color), the PT method provides the
largest MCASS value.

In order to give a better insight into the improvement of
HarmonICE provided by the PTmethod, Figure 8 shows the
multicategory contingency table, which belongs to the
largest bar in Figure 7 box 3v7h of PTmethod red bar). �e
table in Figure 8 can be compared with that of Figure 5,
which was obtained by using the mean method with the
smallest box size (box 1v1h of the mean method in
Figure 7—blue bar).

�e MCASS di�erence between these two examples is
approximately 0.12. �is is less than the di�erence between
the PT method and most of the individual forecasts. �e
perfect forecast using the PTmethod is 63.1%, more than 20
percentage points larger than with the mean method (41.3%,
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see Figure 5), and the under-forecasting is reduced to 29.6%.
�e main reason for the higher skill using the PTmethod is
that a large number of the light icing forecasts in the other
methods are increased to moderate icing.�is leads to a high
hit rate of moderate icing, which is the group with the most
icing reports and consequently has a large impact on the
results. Despite this increase, the hit rate of the no icing
events is still very good with the PTmethod (234 vs. 236 with
the mean method). �is shows that the in�uence on the hit
rate of no icing reports is small.

4. Conclusion and Outlook

In this study, a method for harmonizing in-�ight icing
forecasts over Europe is introduced. Di�erent approaches
were tested in order to �nd the best combination of three in-
�ight icing forecast indices based on three di�erent NWP
models. PIREPs are used as veri�cation data, although they

have some disadvantages for this purpose. An example on a
single day shows the di�erences in the individual forecast
products and the combined forecast product using the mean
method. �e PIREPs reported during the single day event �t
reasonably well to the combined data set.

In order to be able to compare the di�erent combination
methods, the MCASS was derived from each multicategory
contingency table generated for various forecast combina-
tions and the individual forecast products. �e MCASS
contains all relevant information given by the multicategory
contingency table, that is, the hit rates of the four icing
intensities, over- and under-forecasting, and the total hit
rate. It allows quantitative comparisons of the forecast skill
from each icing forecast product as well as from the com-
bination methods presented.

�e �nal comparison of the MCASS of the di�erent
forecast combinations and the individual forecast products
shows that the PTmethod provides the best results including
showing an improvement compared to each single icing
intensity forecast. �e sensitivity study of box sizes around
the PIREP positions in which the forecast data were
extracted shows that the results are independent of the
chosen box size; however, it does have an in�uence on the
MCASS. In most cases, an increased box size leads to a larger
MCASS, but for certain forecast products or combinations,
the results were una�ected by box size or showed a decrease
in MCASS.

Within the SESAR Deployment project, initial tests of
the preoperational version of HarmonICE have run since the
middle of 2019. Since 2020, the data have been provided as a
six-hourly icing forecast over Europe. Veri�cation to inform
the revision of the best forecast combinationmethod—and if
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necessary, a new calculation of the weighting factors—is and
will be performed annually with the PIREPs from the
previous winter season. Within that recalculation, it will also
be possible to adapt MCASS to user requests.$e calculation
method allows for a different weighting of the single skill
score terms such as over-forecasting or a certain intensity hit
rate (e.g., severe icing intensity). If one of these single skill
score terms must be considered more strongly than the
others, it can be implemented in the average skill score
calculation.

PIREPs are used for icing verification since better
alternatives have previously been unavailable. One al-
ternative for determining observed icing intensities, or at
least whether icing occurs or not, is the use of a satellite
inferred icing potential [20]. Stretton et al. [21] showed
that satellite data can be used to detect the “no icing”
regions in cloud-free areas. Furthermore, cloud top
heights and the corresponding icing potential at this
height level can be derived from the satellite. Overall,
satellite data cannot provide a three-dimensional dataset
of icing intensities, but it can help to improve the forecast
of the areas of icing conditions and accuracy of the
verification dataset together with PIREPs. $e use of
satellite data as a verification tool alongside PIREPs will be
explored in future work.

Data Availability

$e underlying data have been produced for aviation
purposes. $ey can be provided for aviation use and for
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,e aviation industry has a global economic impact of $2.7 trillion (including direct, indirect, induced, and tourism catalytic
effects) and contributes 3.6 percent of global GDP. Weather is one of the most essential elements impacting how an aircraft runs
and how safely it can fly.,e correlation coefficient is the most significant index explaining the relationship between variables and
can result in teleconnection patterns of climate indices. El Nino-Southern Oscillation (ENSO) and India Ocean Dipole (IOD) were
used in this study based on the ERA5 reanalysis dataset for 30 years (1991–2020). Myanmar’s Yangon International Airport has
recordedmore than 119874 times of observation data from 2009 to 2019.,emean percentage of occurrences of weather elements
is calculated for eachmonth and each season. Analysis of flight delay and accident data was obtained statistically from the Aviation
Safety Network (ASN). According to the monthly delay index, July, August, andMarch are the maximum delay indexmonths, and
the correlation value between aircraft movement and delays is maximum in July and August and minimum in January and
February. After examining numerous characteristics of Yangon International Airport, we identified which elements had a big
impact on operations through vital interviews with operators, the accident case study section, and climatology analysis. As a result,
we identified two meteorological occurrences: thunderstorm rain (TSRA) and fog (FG) are of high frequency and TSRA poses a
larger risk than FG for aviation operation. ,e maximum frequency (%) of thunderstorm occurrences was 22% in July and the
minimumwas 1% in January. Annual frequency analysis revealed that TSRA days are becoming more common year after year as a
result of global climate change. According to a spatial gridded analysis by ERA5 reanalysis data (1991–2020), the annual convective
available potential energy (CAPE) values over local airport regions, the Bay of Bengal (BOB), the western equatorial Pacific, and
the South China Sea show a positive correlation with convective rainfall. In contrast, negative convective inhibition (CIN)
anomalies have been observed over the same areas as above, except for the western part of BOB along the Indian Coast. ,e
primary innovation is that we look at the effects of thunderstorms on airport operations before determining their link with ENSO
and the IOD individually and then combining them during their full phases. ,is raises a new question and a new possibility for
viewing climatology from a new perspective.

1. Introduction

,e aviation industry is critical to the economies of de-
veloped countries such as China, landlocked countries such
as Laos, and small island nation states such as Madagascar.
,e aviation industry is a vital component of long-term
economic development. It also acts as a significant driver of
other economic activities like internal trade, military op-
erations, and tourism.

According to the Air Transport Action Group, the
aviation industry generated 704.4 billion dollars in direct
gross benefits in 2019 and supported 65.5 million jobs
worldwide (Figure 1). Aviation has a $2.7 trillion global
economic impact (including direct, indirect, induced, and
tourism catalytic effects) and contributes 3.6 percent of
global GDP in 2019 [2].

,e Republic of the Union of Myanmar (also known as
Burma) is one of the world’s most densely populated

Hindawi
Advances in Meteorology
Volume 2022, Article ID 5356563, 15 pages
https://doi.org/10.1155/2022/5356563

mailto:kyawthanoo34@outlook.com
https://orcid.org/0000-0003-1727-3462
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5356563


countries. It is bordered on the north-east by the People’s
Republic of China, the east by Laos, the southeast by
,ailand, and the south by India [3]. ,e busiest airport in
Myanmar is Yangon (RGN)/Yangon International Airport
(VYYY), with flights to 56 destinations in 14 countries and
catering to about six million passengers [4]. Yangon In-
ternational Airport is the main airport in Myanmar (for-
merly known as Burma). It has one runway with two
touchdown zones (TDZ) and an elevation of 33.6M (110 FT)
above sea level. ,e airport is home to all ten Myanmar
airlines as well as roughly 30 international airlines [5].

,e weather is one of themost critical factors influencing
how an aircraft runs and how safely it can operate. Weather
is also important for the aviation industry benefits, but,
unfortunately, it is an uncontrollable factor, as everyone
knows. Annual analysis of flight delay causes shows that
weather accounts for 6% of total aircraft operation delays
(Figure 2) [6].

Aviation and meteorology have a long and illustrious
history. Climatology can anticipate significant changes in
local weather as well as severe weather patterns. Heavy rain,
thunderstorms, hailstorms, and cyclones are all common,
resulting in losses in the aviation industry as well as delayed
or cancelled flights [7]. As a result, unless new solutions are
found, the impact of weather on aviation is likely to increase
over time. It is impossible to avoid delays in flying all of the
time. Changing climatic and meteorological conditions at
the same time have a significant impact on aircraft per-
formance at the airport, which cannot be prevented in the
end. ,ese delays are sometimes necessary to demonstrate
that the safety of our passengers is our first priority. As of
Figure 2, the weather is the only uncontrollable factor among
the five forms of aviation delays. As a result, departure delays
caused by bad weather are virtually always unavoidable. It is
critical to be prepared for departure delays in order for
airfield operations to run properly; thus preparedness is
necessary [8].

Even in bad weather on an aerodrome, air weather
services do not have the authority or ability to close an
airport [9]. Airport operators are the only authorities able to
close an airport, and this would only be taken in extreme

circumstances. ,e degree to which an aircraft’s departure
and arrival are visible (or RVR) is determined by the so-
phistication of ground equipment and the qualification of
the flight crew [5]. At or near an airport, low cloud, fog, and
rain can make visibility difficult, while thunderstorms and
lightning can cause substantial delays in flight schedules.
,understorm rain (TSRA) and the fast rising or lowering
air currents that frequently accompany it can make flying
uncomfortable for passengers and difficult for pilots. Air-
craft are unable to take off or land during a TSRA and are
usually rerouted around storm cells or diverted from their
original locations. ,understorms and lightning strikes near
airports may cause ground operations to be halted until the
storm passes. As a result, data on the spatial and temporal
distribution and fluctuations of thunderstorm occurrence
and convective rainfall is critical not only for understanding
basic climate dynamics but also for societal uses such as
airport operations and aircraft operations.

,e primary research focus is Yangon International
Airport (VYYY), and this work is the first to investigate the
impact of aviation climatology over Yangon International
Airport (Figure 3). Statistical analysis of the observation data
is obtained by the meteorological station. ,e purpose of the
studies has looked at the individual effects of thunderstorms
on regions, the El Nino-Southern Oscillation (ENSO), or the
Indian Ocean Dipole (IOD) on regional convective rainfall,
with only a few taking into account the combined effects of all
three on airport operations. Furthermore, the majority of past
studies on the association between ENSO/the IOD and
precipitation focused on just one or two seasons rather than
the full ENSO/IOD cycle. We elaborate on this previous
research in this paper by looking at the prospective effects of
the ENSO and IOD phenomena, as well as their combined
effects, on the annual and seasonal variance of thunderstorm
or convective rainfall throughout their phases. Other aviation
weather elements may have a significant impact on airport
operations. However, in this study, we will just look at these
two phenomena. ,e main difference is that we examine the
effects of thunderstorms on airport operations before eval-
uating their relationship with ENSO and the IOD separately
and then integrating them during their complete phases. It is
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also intended not only for airport operations but also for a
diverse group of users, including international and domestic
civil airlines flying to and from Myanmar airports, private
pilots, airport operational and administrative services, aero-
nautical administration, air navigation service providers, and
the Myanmar Civil Aviation Agency. Besides the potential
users mentioned above, this summary can also be used by
specialists from other domains for scientific research.

2. Materials and Methods

,e International Civil Aviation Organization (ICAO) and
theWorldMeteorological Organization (WMO) have issued
recommendations for the processing of climatologic data,

which are followed in the creation of statistical data [12].
Count 119874 times of observation data (thirty-minute
(xx20, and xx50) METARs) from Yangon International
Airport between 2009 and 2019.

Flight delay and accident data are obtained from the
Aviation Safety Network (ASN) and the ICAO Safety API
Data Service. ,e aerodrome’s data is supported by YIA
Service Company Limited and MC-Jalux Airport Services
Company Limited. ,e depicted observation data from the
meteorological stations at Yangon Airport meets all the
established requirements: the data is representative, con-
tinuous, and reliable. ,e Meteorological Service holds a
Quality Management ISO 9001 : 2015 Certificate, which was
issued by the SGS international organization.

Figure 3: Study area. ,e red box shows the Flight Information Region (FIR) coverage area of Yangon International Airport Control
(Yellow Polygon) [11].
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,e large-scale atmospheric parameters such as sea
surface temperature (SST) and two-component wind (1991
to 2020) data are taken from the ERA5 reanalysis dataset
produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). Also, atmospheric stability
indices like Convective Available Potential Energy (CAPE),
Convective Inhibition (CIN), K-Index (K), and Total Totals
Index (TT) data are taken from the same ERA5 reanalysis
(0.25× 0.25) resolution dataset of ECMWF for 30 years
(1991–2020).

Frequency is a measure of the number of occurrences of
a particular score in a given set of data [13]. ,e climatology
is the examination for each month and each season to de-
termine the mean proportion of occurrences of meteoro-
logical factors at the study area. ,e percentage is obtained
by dividing the frequency of the category by the total
number of participants and multiplying by 100% [14].

Frequency Percentage �
Frequencies of element∗

Total of Observation Times
. (1)

To improve the climatology results, we performed the
vital and online qualitative survey questionnaire about
weather experiences for aviation people, resulting in the
worst weather phenomena for flight operations at VYYY and
a case study of weather-related aircraft accidents at that
airport. 15 senior pilots from three airlines (Myanmar In-
ternational Airline, Air ,an Lwin Airline, and Air KBZ
Airline) are interviewed.

,ere are several statistical relationships for perceiving
the relationships between two variables which are expressed
in both linear and nonlinear equations. ,e correlation
coefficient, which displays the intensity and type (direct or
reverse) of the association, is the most important statistic for
explaining the relationship between variables. ,is coeffi-
cient’s computed value ranges from −1 to +1. Based on the
average values, we carried on and performed a correlation
coefficient for deep analysis. Before performing composite
and correlation analyses, all climatic parameters’ data were
detrended. Generally, the most common index for showing
the correlation is Pearson’s correlation coefficient. ,is
index shows the degree and direction of correlation. ,e
Pearson correlation coefficient (r) is calculated using the
following equation:

r �
n 􏽐 xy( 􏼁 − 􏽐 X( 􏼁 􏽐 y( 􏼁

���������������������������

n􏽐x
2

− 􏽐 x( 􏼁
2

􏽨 􏽩 n􏽐y
2

− 􏽐 y( 􏼁
2

􏽨 􏽩

􏽱 . (2)

Teleconnection patterns can be the result of correlation
analysis, as with other techniques. ,is method has been
widely used in climate research, and each offers some ad-
vantages [15]. ,e global climate indices El Nino-Southern
Oscillation (ENSO) and Indian Ocean Dipole (IOD) were
used in this study and were studied from the same ERA5
SST. ,e average SST anomaly in the region of 5N to 5S and
170W to 120W (NINO3.4 region) index is a largely used
indicator of ENSO. Similarly, the Indian Ocean Dipole
(IOD) is the difference between two SSTs in the equatorial
Indian Ocean’s western (50E–70 E and 10S–10N) and
eastern (90E–110 E and 10S–10N) halves [16]. Our study

also analyzed annual and seasonal correlations of gridded
data for SST, convective rainfall over Yangon Region, and
CAPE index based on the ERA-5 dataset to calculate TSRA
occurrence indices using IBM SPSS, CDO, and open-grads.
Student’s t-test with a 95 percent confidence interval was
used to establish the statistical significance of the composite
analysis in this study. ,e application of this technique to
South Asian countries has been presented in a previous
number of works [7–9]. ,e Pearson correlation analysis is
used in this study to show the association between the
variables with a 95% confidence level.

3. Results and Discussion

3.1. Flight Delay Causes. It is critical to investigate airplane
delays and their causes in order to preserve airspace effi-
ciency and safety [21]. Delay samples, on the other hand,
are not independent because they consistently display the
same aggregation pattern. ,ese delays take one of three
forms: ground delay programs, ground stops, or general
airport delays. A ground delay program may be instituted
when the arrival demand at an airport is greater than the
determined capacity of the airport [21]. ,ese programs
limit the number of aircraft that can land at an affected
airport. Because demand is greater than the aircraft’s ar-
rival capacity, flight delays will result [22]. Second, when
severe weather is forecast for a short period or the weather
at the airport is unsuitable for landing, ground stops are
issued. Ground stops mean that traffic bound for the im-
pacted airport is prohibited from leaving for a set amount
of time. Finally, there are general delays in arrival and
departure. ,is usually means that arriving traffic is en-
countering airborne delays or that outgoing traffic is suf-
fering longer than usual cab wait times or gate delays. ,is
could be caused by a variety of factors, including nearby
thunderstorms, heavy departure demand, or a runway
modification. Total flight delay categories at VYYY during
2019–2021 are shown in Figure 4.

As the delay index, compiled by Airports INFO Sta-
tistics, shows that the relationship between aircraft delays
and adverse weather is primarily relative at Yangon In-
ternational Airport (Figure 5). Weather delays can occur in
both direct and indirect ways. If airport weather is bad, that
can be a direct impact, and bad weather situations on the
route of the aircraft can be an indirect impact, as a flight can
be arriving late.

After categorizing the delay causes, we found that the
weather-related delay index is high. ,e delay index rep-
resents the percentage of delayed flights (take-offs) [23]. For
example, if there are 10 flights on a day and 5 are delayed,
then the delay index would be 50%.

By the monthly delay index, we found July, August, and
March are the maximum delay index months, andMay is the
minimummonth within 2019–2021 (Figure 5). As the above
delay index with aircraft movement by month, the corre-
lation value is maximum in July and August and minimum
in January and February (Figure 6). Aircraft movement
means all airport movements for this airport. A movement
can be a take-off or a landing, which are summed up.
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Weather conditions can create major delays in air travel
[22], resulting in the cancellation or postponement of
hundreds or thousands of flights, affecting the itineraries and
budgets of millions of people. More than that, bad weather
conditions may lead to flight accidents. A comprehensive
study was conducted on Yangon International Airport using
climatology data and the aircraft delay index to identify the
particular meteorological elements that cause flight delays
and cancellations by month.

Airport weather directly impacts airport operations, and
other aviation hazards also occur based on these weather
phenomena. ,us, as a result, we found that, among the
20219 times weather phenomena occurred, including 1237
times of thunderstorms (maximum in July) during this study
period. Compared to the flight delay index, July is also the
highest delay index during 2019–2021 (Figure 6).

3.2. Qualitative Survey Results and Accident Cases Study.
Interviews are conducted with the 15 senior pilots from 3
airlines (Myanmar International Airline, Air ,an Lwin
Airline, and Air KBZ Airline). ,e questionnaires included
the following questions:

(1) What are the worst weather-related aviation
hazards?

(2) What time of day is the best for weather conditions
for flying?

(3) How much visibility is important in flight and in
which phase of flight?

(4) What is the worst weather phenomenon at Yangon
International Airport?

For the survey result of vital or online question No. 1,
52% answered that thunderstorms are the worst weather
phenomenon for flight operations, and 10% answered that
fog conditions are the worst also. Other weather phenomena
were mentioned by 38% of those polled, but the majority of
them were thunderstorm-related (Figure 7(a)). ,us, we can
assume that thunderstorms and fog are the worst weather
phenomena for flight operations in Myanmar.

For question No. 2, 55% said that 09:00 am to 12:00 pm
local time (01:30 UTC to 05:30 UTC) is the best time to fly
(Figure 7(b)). For question No. 3, 87.5% answered that
visibility is very important for aircraft approach and landing
(Figure 7(c)). As the survey result of question No. 4, 30%
answered that thunderstorms are the worst weather phe-
nomenon at Yangon International Airport and 10% an-
swered that fog conditions are the worst also. Another 20%
answered that rain on airplanes’ approaches is relative to
poor visibility, and the other 16% answered that heavy gust
wind is the worst weather phenomenon at Yangon Inter-
national Airport. Other answers are low ceilings with cloudy
conditions (Figure 7(d)). However, most of them are
thunderstorm-related phenomena.,us, we can assume that
poor visibility, low ceiling, and thunderstorm and fog
weather conditions are the worst weather phenomena for
Yangon International Airport according to survey results.

3.3. Causes of Aircraft Accidents over Myanmar. It is quite
rare for an accident to be explained by one single cause.
Almost every catastrophe is the result of a series of cir-
cumstances, and most accident reports distinguish between
the main cause and multiple contributory elements. Figure 8
shows the distribution of the main causes identified in an
aircraft accident. ,e main root cause is weather-related
accidents. Also, some loss of control accidents may be
unfortunate factors that can result in aviation accidents.
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Figure 4: Flight delay categories during 2019–2021.

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00

JA
N

FE
B

M
A

R

A
PR

M
AY JU

N

JU
L

AU
G

SE
P

O
C

T

N
O

V

D
EC

5.81 6.14

9.06

7.07

1.35
2.57

12.19

9.84

7.53
6.74

4.80

7.87

D
el

ay
 In

de
x 

(%
)

VYYY Weather Delay Index (2019-2021)

Figure 5: Weather delay index for VYYY (2019–2021).

0.00

20.00

40.00

60.00

80.00

100.00

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

VYYY Monthly Average A/C Movement and Delay Index

A/C Movement

Delay Index (%)

Figure 6: Correlation of monthly aircraft movement and delay
index.

Advances in Meteorology 5



Among an aircraft’s greatest threats are the effects of sig-
nificant flight icing or in-flight turbulence.

,ere are a lot of noted weather-related aircraft accidents
over VYYY, such as Air Bagan 424 landing crash in 2015
[24], the Shaanxi Y-8-200F transport plane crash near Dawei

in 2017 [25], and the Biman Bangladesh Airlines DHC-8-400
accident in 2019 [26]. According to accident reports, these
accidents may be caused by the direct or indirect impact of a
thunderstorm, and the satellite image analysis results can be
seen in Figure 9.

As a result of vital or online questions, most answered
that thunderstorms rain (TSRA) and fog (FG) are the worst
weather phenomena for flight operations and others an-
swered with other weather phenomena, but most are
thunderstorm-related phenomena. For Yangon Interna-
tional Airport (VYYY), many answered that 6:00 am to 12:00
pm local time (23:30 UTC to 05:30 UTC) is the best time for
flight operations and that TSRA and FG are the worst
weather phenomena for operations. According to the ac-
cident case study, most aircraft accidents are found to be
thunderstorm-related accidents exhibited in Figure 9 during
2009–2019. From all the above results, we may assume that
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Figure 7: Questionnaires survey results.
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the worst weather phenomena for flight operations in
Myanmar are thunderstorms.

3.4. ,understorm Days Analysis. We count 119874 oc-
currences of observation from Yangon International Airport
using half-hourly METAR data. ,is data contained 20219
instances of meteorological phenomena, including 1237
thunderstorms. ,e percentage of each weather phenome-
non that happens, including thunderstorms, is shown in
distinct hues in Figure 10. ,e maximum frequencies in
February are mist (BR) 0.86%, haze (HZ) 8.35%, and fog
(FG) 11.55%. Maximum thunderstorm rain (TSRA) of
12.13% occurred in July during 2009–2019 with Drizzle (DZ)
of 9.74%, Rain (RA) of 6.49% (Figure 10).

After examining numerous characteristics for Yangon
International Airport, we identified which elements had a
big impact on operations, and we obtained a lot of practical
information from the operators during the important in-
terview phase. ,e accident case study section also dem-
onstrates how weather, specifically TSRA and visibility, can
influence aviation crashes. As a result, we identified two
meteorological events (TSRA and fog) that were very likely
to cause plane accidents or operational delays. Because it is
associated with a range of other weather phenomena such as
hail, wind shear, and lightning, TSRA provides a larger risk
than fog.

,e three seasons in Myanmar are summer or hot
weather season (March–mid-May), rainy or southwest
monsoon season (mid-May–October), and winter or

(a) (b)

(c)

Figure 9: Actual thunderstorm cloud condition satellite image at a time of (a) Air Bagan ATR72, (b) Biman DHC-8-400, and (c) Y-8-200
FW aircraft’s accidents.
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northeast monsoon season (November–February) as by
Myanmar Climate Report 2017 [27]. During the winter, fog
and haze weather phenomena are more common. ,un-
derstorms have been reported not only during the southwest
monsoon (wet) seasons but also during the second half of the
summer (dry) season, which extends from April to No-
vember each year. As the result of Figure 10, maximum
thunderstorm conditions have been present for at least
8months at Yangon International Airport.

,understorms (TS) and fog are the most dangerous
weather phenomena at Yangon International Airport (FG)
as shown in Figure 11. ,understorms had a greater in-
fluence on airport operations because of the numerous types
of weather that followed, such as hail, strong winds, heavy
rain, lightning, and extreme turbulence. All of these factors
have a significant impact on aircraft and airfield operations.
,us, the following evaluations of TSRA conditions are
carried out in great depth.

From 2009 to 2019, the frequencies (%) of thunderstorm
occurrences were analyzed for monthly and daily occur-
rences are as shown in Figure 12(a). ,e maximum fre-
quency is 22% in July, the minimum frequency is 1% in
January, and there are no occurrences in February, March,
and December. According to the seasonal distribution, July
is the southwest monsoon season and thunderstorms are
typical during this time of year. Tropical cyclones from the
Bay of Bengal or the Western Pacific, on the other hand, are
the predominant cause of thunderstorms in the winter and
summer [27].

For the frequencies (%) for daily analysis of TSRA during
this 2009 to 2019 period, the maximum frequency of TSRA
may occur from 08:30 to 10:00 UTC during a day
(Figure 12(b)). ,e minimum frequency may occur from 19:
00 to 20:00 UTC. According to time zones, 08:30 UTC will
be 15:00 afternoon in the local time. ,us, maximum TSRA
occurrences may have occurred between 15:00 and 16:30
afternoon on those TSRA days at Yangon International
Airport. In such TSRA days, 00:00 UTC to 04:00 UTC is the
best time for daytime operations for aviation.

,e yearly frequencies research revealed that TSRA days
become increasingly common year after year, indicating that
global climate change is to blame. In 2010, there were 255
instances, the lowest amount in the previous eleven years.

,e average number of incidents in 2018 was 527, and it was
920 in 2017 (Figure 13). ,e trend forecast showed a pos-
itively increasing thunderstorm occurrence in the future,
and the regression value of this trend is strong (R2> 0.7) at
more than 95% significance level.

3.5. Synoptic Mechanisms Possibly Underlying ,understorm
Variability. Most of the world’s climate change and India’s
monsoon system is deeply concerned with the Pacific Nino
area SST [29]. To result in the teleconnection pattern, we
used a correlation between the Nino Index and yearly
convective rainfall. Before analysis, we performed the cor-
relation of standardized monthly convective rainfall based
on ERA5 and observed stations TSRA occurrence datasets,
averaged over longitudes 96°E-97°E and latitudes 16°N-17°N
during 2009–2019. ,e results demonstrate a strong positive
connection between both variables with a 95% level of
significance (Figure 14). According to the above result, the
spatial analysis is carried out using ERA5 reanalysis data, as
shown next.

,understorms are caused by the convective downpour,
which occurs when the Earth’s surface warms rapidly,
resulting in an unstable atmosphere. As the heated surface
air rises, it cools, resulting in clouds and heavy rain [30]. In
meteorology, moisture, instability, and lifting are three
components required for a thunderstorm [31]. ,e con-
vective available potential energy (CAPE) is a measure of
thunderstorm potential [32]. CAPE is the total amount of
work performed by the upward (positive) buoyancy force on
a certain mass of air (called an air-parcel) if it were to climb
vertically through the entire atmosphere (often abbreviated
as CAPE) [33]. ,e index is based on measures such as
“vertical temperature lapse rate, lower atmosphere moisture
content, and the vertical panes of the moist layer,” according
to the NOAA.

,e composite with annual 10 m component wind, the
correlation of convective rainfall over VYYY with annual
anomalies of CAPE Index, and convective inhibition of the
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region are exhibited in Figure 15. Convective available
potential energy (CAPE) and convective inhibition (CIN)
both respond to changes in the heat and humidity profiles of
the atmosphere in the absence of moist convection [34].
,ese changes are explained in terms of a direct effect, which
involves changes in the profile in the absence of parcel
changes, and an indirect effect, which involves changes in
air-parcel evolution in a developing convective boundary
layer. A simple estimate of the direct influence on CAPE,
which is independent of the assumptions related to choosing
parcel ascent, is shown to give accurate results. As a result of
Figure 15(a), the annual CAPE over local airport regions, the
Bay of Bengal (BOB), the western equatorial Pacific, and the

South China Sea shows a strong positive correlation with
convective rainfall over the study area. In contrast, negative
CIN anomalies have been observed over the same areas as
above, except for the western part of BOB along the Indian
Coast (Figure 15(b)). It is shown that these areas had a strong
chance to experience convective activity. Furthermore, the
annual component wind, which blows from the southwest
sea to the northeast, may result in increased moisture
transport to the BOB’s northeast continental area and en-
courage convective rainfall over the airport regions (Fig-
ure 15).,ese results are agreed with previous studies on the
South Asian summer monsoon [35].

Several recent studies have highlighted the ocean’s role
in climate and weather predictability, as well as the regional
patterns of the effects of global teleconnections like IOD and
ENSO. ,e ENSO indicator of atmospheric variability has
been thoroughly investigated, and it is thought to serve as an
“atmospheric bridge” connecting interannual SST fluctua-
tions in the tropical Pacific with oceanic variations at higher
latitudes [36]. ,e following correlation results show that
interannual convective rainfall over the study area does not
have any significant correlation with SST at NINO 3-4
(5N–5S and 170W–120W) in the Pacific Ocean, but a
significant negative correlation is found clearly over Indian
Ocean (Figure 16(a)). However, seasonal relationship
analysis shows different results, with a positive correlation
over the Nino 3-4 region. Especially in the summer
southwest monsoon season (JJAS) (Figure 16(b)), there was
a positive (warming) strong correlation of convective rainfall
with SST over the Nino 3-4 area in the equatorial Pacific
regions. But there was only a weak positive correlation
during the winter months (DJF) (Figure 16(c)).

,ere is maximum TSRA occurrence also found during
the summer months (Figure 12(a)) and convective rainfall
also exceeds that in the other months as in Figure 14. It
means that Nino 3-4 SST anomalies can strongly impact on
thunderstorm occurrence and convective rainfall over the
study region during the summer months (JJAS). A weak
positive IOD phase can also be found during summer
(Figure 16(b)). In contrast, the negative IOD phase can be
found in the winter months (DJF) (Figure 16(c)). But only
Indian Ocean (IO) SST shows a strong negative correlation
with convective rainfall for the annual mode (Figure 16(a)).
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Figure 12: (a) monthly (b) and daily frequencies of TSRA occurrences at Yangon International Airport from 2009 to 2019 [28].
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,e main conclusion is that increased convective rainfall
may occur during the summer El Nino phase of ENSO
(JJAS). Interannual negative Indian Ocean SST anomalies
may also result in increased convective rainfall over the
study area as the result of Figure 16(a).

,e influence of the ENSO signals on precipitation can
persist from year to year [37]. Furthermore, the lagged
relationship between convective rainfall over the study re-
gion, NINO 3-4, IOD, and IO during 1991–2020 was cal-
culated for significant results (Table 1). ,e robust
relationship of convective rainfall is observed with only
summer NINO3-4 and winter IOD. Moreover, the con-
current response of NINO3-4 to summer (JJAS) convective
rainfall for the study period is 0.50 (P< 0.01) (Table 1). A
negative correlation value of −0.44 (p−0.02) with IOD is
found for the winter months (DJF). But neither NINO 3-4
nor IOD found significant value for annual analysis. Only IO
SST has a negative correlation of −0.65 (p 0.01) with con-
vective rainfall over the study region during 1991–2020.

In order to select the anomalous convective rainfall
exceed or less years, standardized anomalies at or above ± 1
have been used. (Figure 17). ,e black line represents the

reference line and the black-dotted line separates the ex-
ceeding and less years during 1991–2020. ,e result shows
each positive (exceeding: 1994, 1999, 2006, and 2008) and
negative (less: 2001, 2010, 2015, 2019, and 2020) anomaly
year.

Previous correlations (Figure 16) show only that summer
convective rainfall over the study area has a strong positive
correlation with SST at NINO 3-4 (5N–5S and
170W–120W) and a weak positive correlation with the IOD
(see Figure 16). To understand the reason for negative and
positive anomalies of convective rainfall over the study area,
Figure 18 depicts a composite of the correlation between
convective rainfall anomalies and SSTduring exceeding and
less years of convective rainfall. ,e lagged correlation be-
tween detrended seasonal convective rainfall and SST for 30
years (1991–2020) is presented in Figure 18 to observe the
dependency of summer (JJAS) convective rainfall on large-
scale global force.

,e lagged years analysis was performed based on
Figure 17 to show a more dominant annual and seasonal
correlation. ,e converse pattern was observed during ex-
ceeding and less years (Figures 18(a)–18(d)) of annual and
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Figure 15:,e composite of correlation between annual convective rainfall over VYYY and (a) annual anomalies of CAPE Index (J kg−1) of
the region and (b) annual anomalies of convective inhibition (J kg−1) of the region (ms−1), with annual 10m component wind (ms−1).
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Figure 16: Correlation of SST with convective rainfall over the VYYY (shaded) and correlation significant area (hatched) for (a) annual,
(b) summer (JJAS), and (c) winter (DJF) at 95% confidence level.
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Table 1: Lagged correlation of JJAS rainfall with NINO, IOD, and IO during 1991–2020.

NINO 3–4 IOD IO
Annual −0.18 (p � 0.35) 0.05 (p � 0.81) −0.65 (p< 0.01)
JJAS 0.50 (p< 0.01) 0.14 (p � 0.45) −0.17 (p � 0.37)
DJF −0.02 (p � 0.93) −0.44 (p � 0.02) −0.14 (p � 0.47)
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Figure 18: Correlation of SSTwith convective rainfall over the VYYY (shaded) and significant area (hatch) of (a) annual of exceeding years,
(b) annual of less years, (c) summer (JJAS) of exceeding years, and (d) summer (JJAS) of less years based on Figure 17 during 1991–2020 at a
95% confidence level.
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summer (JJAS). It is discovered that IO SST anomalies are
the main driver of convective rainfall over the study area
during summer (JJAS). Because SST anomalies over NINO
3-4 region have positive correlation in both exceeding and
less years of summer (JJAS) (Figure 18(c) and 18(d)). ,e
spatial result agrees with the previous temporal result in
Table 1. But IO has only dominant different negative
(positive) during exceed (less) years in annual analysis
(Figures 18(a) and 18(b)). As a result of Figure 18(b), the
positive anomalies, the warm phase of ENSO and IO SST
may result in less convective rainfall over the study area. In
contrast, the reverse pattern can be found during the years
covered by Figure 18(a).

Generally, yearly frequency analysis showed how TSRA
days occur more frequently year by year due to global cli-
mate change. During the eleven years (2009–2019), the
minimum occurrences were 255 times in 2010. ,e average
number of occurrences is 527, with 920 occurrences in 2018.
,understorms have occurred at their peak during half of
the summer and the entire southwest season, and they have
occurred at their peak at Yangon International Airport for at
least 8months. ,e maximum frequency of occurrence is
22% in July, the minimum occurrence is 1% in January, and
there are no occurrences in February, March, and December.
,e annual CAPE values over local airport regions, the Bay
of Bengal (BOB), the western equatorial Pacific, and the
South China Sea show a strong positive correlation with
convective rainfall over the study area. In contrast, negative
CIN anomalies have been observed over the same areas as
above, except for the western part of BOB along the Indian
Coast. ,is indicates that these places had a good possibility
of experiencing convective activity. Furthermore, the annual
component wind, which blows from the southwest sea to the
northeast, may result in increased moisture transport to the
BOB’s northeast continental area and encourage convective
rainfall over the airport regions. Interannual convective
rainfall has no significant correlation with SST at NINO 3-4
(5N–5S and 170W–120W) in the Pacific Ocean, but there is
a clear negative correlation over the Indian Ocean. However,
the results of a seasonal connection analysis demonstrate a
favorable correlation over the Nino 3-4 region, especially in
the summer southwest monsoon season (JJAS). ,e major
conclusion shows that, during the summer El Nino phase of
ENSO, more convective rainfall may occur (JJAS). Increased
convective rainfall over the research area may possibly be a
result of negative IO SST anomalies. Positive anomalies, the
warm phase of ENSO, and the IO SST, on the other hand,
may result in less convective rainfall over the research area
[34–19].

4. Conclusions

“Before-Flight-Briefing without weather discussion will lead
to your flight as a blindfold beyond your vision.”

Hlaing Myint (Flight Captain, Air ,anlwin, Myanmar).
On a day-to-day basis, the airliner is routed to take

advantage of weather or atmospheric elements (e.g., jet
stream tailwind to improve fuel efficiency). In addition,
every pilot and aircrew need to know what weather situation

has occurred on their route of flight. Before each flight, pilots
should obtain all the pertinent information relevant to the
flight’s nature. A weather briefing obtained by the pilot from
an approved weather source, via the Internet and/or from
weather forecasting professional, is included in this.

In this study, we can learn the climatology of Yangon
International Airport, which is a vital resource for the
country’s economic gateway. Weather forecasters or spe-
cialists can get a lot of important and useful information for
weather forecasters or specialists, such as analyzing what
weather situation is the most important or best time for
flight operations. Fog and haze weather phenomena are most
common in the winter. ,understorms, on the other hand,
have been most common during the first half of summer and
the entire southwest monsoon season, which lasts at least
eight months. After examining numerous characteristics of
Yangon International Airport, we identified which elements
had a big impact on operations, and we obtained a lot of
practical information from the operators during the im-
portant interview phase. Weather, notably TSRA and visi-
bility, can influence aviation mishaps, as seen in the accident
case study section. As a result, we identified two meteoro-
logical occurrences (TSRA and fog) that were extremely
likely to result in plane crashes or operational delays. TSRA
poses a greater risk than fog because it is linked to a variety of
other weather phenomena such as hail, wind shear, and
lightning. Yearly frequency of occurrence research revealed
that, as a result of global climate change, TSRA days occur
more frequently year after year. ,e lowest number of oc-
currences was 255 times in 2010 throughout the eleven years
(2009–2019). With 920 occurrences in 2018, the average
number of occurrences is 527. ,understorms peaked in the
second half of the summer and throughout the entire
southwest season, and they peaked at Yangon International
Airport for at least eight months. In July, the largest fre-
quency of occurrence is 22%.

,e annual CAPE across local airport districts, the Bay of
Bengal (BOB), the western equatorial Pacific, and the South
China Sea is strongly correlated with convective rainfall over
the study area. In contrast, negative CIN anomalies have
been found over the same locations as above, except for the
western part of BOB near the Indian Coast. ,is indicates
that the study area had a good possibility of experiencing
convective activity significantly. Furthermore, the annual
component wind, which travels from the southwest to the
northeast, could improve moisture delivery to the BOB’s
northeast continental area and encourage convective ac-
tivity. In the Pacific Ocean, there is no significant link be-
tween interannual convective rainfall and SST at NINO 3-4
(5N–5S and 170W–120W), whereas there is a distinct
negative correlation over the Indian Ocean. But seasonal
analysis reveals a positive link in the NINO 3-4 zone, es-
pecially during the summer monsoon season in the
southwest (JJAS). ,e key finding suggests that more con-
vective rainfall may occur in the El Nino phase of ENSO
during the summer (JJAS) at study area. Negative IO SST
anomalies may also result in increased convective rainfall
over the study area. In contrast, the positive anomalies, the
warm phase of ENSO and IO SST, may result in less
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convective rainfall over the study area. ,is may lead to
direct or indirect influence over aircraft operation and ac-
cident prevention due to convective clouds or thunder-
storms, which are high-risk aviation hazards as everyone
knows.,e main innovation is that we investigate the effects
of thunderstorms on airport operations before determining
their relationship with ENSO and the IOD separately and
combined during their complete phases. ,e present finding
has another implication for forecasters. ,us, to obtain a
realistic prediction of Yangon International Airport, we also
need to study other variables and need to simulate the
model. According to a well-known physicist in another
context, the current discovery raises a new question and a
new possibility for viewing climatology from a new per-
spective andmaking significant progress in the predictability
study.

Data Availability

Meteorological statistical data (METAR) based on the rec-
ommendations of the International Civil Aviation Organi-
zation (ICAO) and the World Meteorological Organization
(WMO) are obtained from the Department of Meteorology
and Hydrology (DMH, Myanmar) and the University of
Wyoming (http://weather.uwyo.edu/surface/meteorogram/
seasia.shtml), and these can be obtained freely. Flight de-
lay and accident data are obtained from Aviation Safety
Network (ASN) (aviation-safety.net) and ICAO Safety API
Data Service (ICAO.int). ,ese also can be downloaded
freely. Historical Himawari-8 satellite images developed by
Japan Meteorological Agency can be obtained from JAXA
Himawari Monitor (P-Tree System) freely. Aerodrome’s
data are supported by YIA Service Company Limited and
MC-Jalux Airport Services Company Limited and hence
cannot be freely distributed. Requests for access to these data
should be made at https://yangonairport.aero/index.php/en/
. ,e SST NINO 3.4 indexes (area-averaged SSTA over
150W–90W, 5S–5N) data are taken from the website of the
National Centre for Atmospheric Research (US), Climate
Data Store, and they can be obtained freely from NINO SST
Indices (NINO 1+ 2, 3, 3.4, 4; ONI and TNI) | NCAR-
Climate Data Guide (ucar.edu). CAPE Index value, K-Index,
and Bay of Bengal SST data are taken from ERA5 reanalysis
data from ECMWF (https://cds.climate.Copernicus.EU/
cdsapp#!/home?tab�overview). ,e above datasets are
now freely available from 1950 to the present by registration
at ECMWF. Open Grads (OpenGrADS-Home), climate data
operator (https://code.mpimet.mpg.de/), and IBM SPSS are
mainly used for this study. Among these the first two are
open-source applications for everyone.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
with the publication of this article.

Acknowledgments

,e researchers extend their gratitude to all of the professors
who approved and supported this research, as well as the
Nanjing University of Information Science, for their assis-
tance in completing it. ,e authors would like to express
their gratitude to the Department of Meteorology and
Hydrology for their support of Myanmar data, as well as
Professor Larry Oolman of the University of Wyoming’s
Department of Atmospheric Science, for his support of
METAR data for airfields. Professor U Chit Kyaw, De-
partment of Meteorology and Hydrology, Professor Badri
Jijelava, Head of Met Office at SAKAERONAVIGATSIA,
and Captain Hlaing Myint, Air ,anlwin, deserve special
thanks for their contributions to research concepts and
analysis procedures, and Captain Hlaing Myint, Air
,anlwin, deserves special thanks for coordinating the
questionary survey. Also, the authors want to express their
gratitude to all Myanmar aviation services, particularly
Myanmar National Airline and Aviation Safety Network, for
providing data for this paper. Finally, the authors would like
to express their gratitude to ProfessorWangWen of Nanjing
University of Information Science and Technology for su-
pervising this study and providing support throughout the
research process.

References

[1] A. Gittens, S. Hocquard, A. de Juniac, F. Liu, and E. Fanning,
“Aviation Benefits Report,” International Civil Aviation Or-
ganization, vol. 76, 2019, https://www.icao.int/sustainability/
Documents/AVIATION-BENEFITS-2019-web.pdf.

[2] Industry High-level Group, Aviation Benefits Report, p. 76,
2019.

[3] M. Vorstenbosch and W. van der Pijl, “Myanmar seafood
exports - quick scan of the eu market potential,” pp. 1–28,
2012.

[4] PricewaterhouseCoopers, “Myanmar Business Guide,” vol. 3,
pp. 1–38, 2012.

[5] D. C. A. (Myanmar), “AIP MYANMAR — YANGON/
YANGON INTERNATIONAL,” vol. 24, 2019.

[6] Bureau of Transportation Statistics, “Delay cause by year, as a
percent of total delay minutes,” Bureau of Transportation
Statistics, Wahington, Dc, USA, 2019, https://www.bts.gov/
delay-cause-year-percent-total-delay-minutes.

[7] WMO (World Meteorological Organization), “World mete-
orological organization aviation hazards,” Techniques,
vol. 1390, 2007.

[8] V. Lo, “Weather index project: investigating the effect of
weather on flight delays,” 2013.

[9] R. Dorian and T. Robinson, ““IATA guidance booklet: airport
ownership and regulation,” the world bank/public - private
infrastructure advisory facility,” 2018, https://www.iata.
org/policy/infrastructure/Documents/Airport-ownership-
regulation-booklet.pdf.

[10] “No Title,” Visibility, https://www.skybrary.aero/index.php/
Visibility.

14 Advances in Meteorology

http://weather.uwyo.edu/surface/meteorogram/seasia.shtml
http://weather.uwyo.edu/surface/meteorogram/seasia.shtml
http://aviation-safety.net
https://yangonairport.aero/index.php/en/
https://cds.climate.copernicus.eu/cdsapp
https://cds.climate.copernicus.eu/cdsapp
https://code.mpimet.mpg.de/
https://www.icao.int/sustainability/Documents/AVIATION-BENEFITS-2019-web.pdf
https://www.icao.int/sustainability/Documents/AVIATION-BENEFITS-2019-web.pdf
https://www.bts.gov/delay-cause-year-percent-total-delay-minutes
https://www.bts.gov/delay-cause-year-percent-total-delay-minutes
https://www.iata.org/policy/infrastructure/Documents/Airport-ownership-regulation-booklet.pdf
https://www.iata.org/policy/infrastructure/Documents/Airport-ownership-regulation-booklet.pdf
https://www.iata.org/policy/infrastructure/Documents/Airport-ownership-regulation-booklet.pdf
https://www.skybrary.aero/index.php/Visibility
https://www.skybrary.aero/index.php/Visibility


[11] ATC Service Back to Normal in Myanmar – International Ops
2021 – OPSGROUP.” https://ops.group/blog/atc-for-overflights-
in-myanmar-following-military-coup/.

[12] ICAO, “Annex 3, meteorological service for international air
navigation,” 2018.

[13] Frequency Analysis - an Overview | ScienceDirect Topics.”
https://www.sciencedirect.com/topics/earth-and-planetary-
sciences/frequency-analysis.

[14] K. Carlson and J. Winquist, “Introduction to statistics and
frequency distribution,” An Introduction to Statistics: An
Active Learning Approach, vol. 23, pp. 1–32, 2014.

[15] K. Hamal, S. Sharma, B. Baniya, N. Khadka, and X. Zhou,
“Inter-annual variability of winter precipitation over Nepal
coupled with ocean-atmospheric patterns during 1987-2015,”
Frontiers of Earth Science, vol. 8, 2020.

[16] N. H. Saji, P. N. Goswami, P. N. Vinayachandran,
T. Yamagata, and N. A. Saji, “Dipole mode in the tropical
indain ocean,” Nature, vol. 401, pp. 360–363, 1999, http://www.
nature.com/doifinder/10.1038/43854%0Apapers3://publication/
doi/10.1038/43854.

[17] E. E. Zin, “Myanmar Climate Report,” Norwgian Metero-
logical Inst, vol. 9, p. 105, 2017, http://files/679/
MyanmarClimateReportFINAL11Oct2017.pdf.

[18] V. Krishnamurthy and J. Shukla, “Intraseasonal and inter-
annual variability of rainfall over India,” Journal of Climate,
vol. 13, no. 24, pp. 4366–4377, 2000.

[19] A. P. Dimri, “Sub-seasonal interannual variability associated
with the excess and deficit Indian winter monsoon over the
Western Himalayas,” Climate Dynamics, vol. 42, no. 7–8,
pp. 1793–1806, 2014, https://go.gale.com/ps/i.do?
p�AONE&sw�w&issn�09307575&v�2.1&it�r&id�GALE%
7CA380747281&sid�googleScholar&linkaccess�fulltext.

[20] S. Cheng, Y. Zhang, S. Hao, R. Liu, X. Luo, and Q. Luo, “Study
of flight departure delay and causal factor using spatial
analysis,” Journal of Advanced Transportation, vol. 2019,
pp. 1–11, 2019.

[21] L. Dray, “An empirical analysis of airport capacity expansion,”
Journal of Air Transport Management, vol. 87, p. 101850, 2020.

[22] S. Borsky and C. Unterberger, “Bad weather and flight delays:
the impact of sudden and slow onset weather events,” Eco-
nomics of Transportation, vol. 18, pp. 10–26, 2019.

[23] Airport Statistics Paris, Charles De Gaulle | CDG.” https://
airportinfo.live/airport-statistics/cdg-paris-charles-de-gaulle.

[24] Final Report of Runway Excursion Accident of Air Bagan,”
vol. 72, pp. 1–23, 2015.

[25] ASN Aircraft Accident Shaanxi Y-8F-200W 5820 Dawei.”
https://aviation-safety.net/database/record.php?id�20170607-0.

[26] 20 Suffer Injuries in Biman Airline Crash | the Myanmar
Times.” https://www.mmtimes.com/news/20-suffer-injuries-
biman-airline-crash.html.

[27] L. L. Aung, “Myanmar Climate Report,” Norwgian Metero-
logical Inst, vol. 9, p. 105, 2017.

[28] K. T. Oo,,understormDays in Yangon International Airport.
[29] A. McGregor, L. Law, G. Banks, W. Murray, and N. I. ÑO. EL,

“Taking stock: reflecting on AsiaPacificViewpoint,” Asia
Pacific Viewpoint, vol. 55, no. 1, pp. 1–5, 2014.

[30] A. ,ompson, “Rain from thunderstorms is rising due to
climate change - scientific American,” 2017, https://www.
scientificamerican.com/article/rain-from-thunderstorms-is-
rising-due-to-climate-change/.

[31] S. Das, “Severe ,understorm observation and modeling – a
review,” 2018.

[32] S. S. V. S. Ramakrishna, “Prediction of severe thunderstorms
over Sriharikota Island by using the WRF-ARW operational

model,” Remote Sens. Model. Atmos. Ocean. Interact. VI,
vol. 9882, Article ID 988214, 2016.

[33] P. Summary, L. Index, and M. C. Updraft, “Convective
Available Potential Energy (CAPE),” 2014.

[34] D. J. Parker, “,e response of CAPE and CIN to tropospheric
thermal variations,” Quarterly Journal of the Royal Meteo-
rological Society, vol. 128, no. 579, pp. 119–130, 2002.

[35] Inter-annual Variability of Moisture Transport over the
Northern Indian Ocean and South Asian Summer Monsoon
on JSTOR.” https://www.jstor.org/stable/26496989.

[36] M. A. Alexander, I. Bladé, M. Newman, J. R. Lanzante,
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Complex orography is still a big challenge for all numerical weather prediction (NWP) models. Orography is an important factor
that affects the NWP results. )e orography in NWP mainly affects the main accuracy of the results through two aspects:
orographic representation in models dynamics and orography-related parameterization schemes in the physical processes. To
ensure the accuracy of NWP results, it is necessary to have a comprehensive understanding of the application of orographic data in
NWP. )is paper summarized the influence of orography on weather, the influence of orographic representation on prediction
accuracy, and the parametrization of orography-related drag in NWP models. Finally, this paper elaborates the problems of the
application of orographic data in NWP and looks forward to future directions in this field, hoping to improve the performance of
NWP in complex orographic areas and provide a reference for better application in NWP.

1. Introduction

Orography plays an important role in atmospheric motion at
different scales, and it also has an important influence on the
movement and evolution of a weather system. When air
flows through uneven mountains, the orography causes the
airflow to climb and go around orography, and this affects
the atmosphere’s energy transmission and budget through
its thermal action. Currently, numerical weather prediction
(NWP) models are widely used with the development of
computer technology. However, various NWP and climate
models still have a typical problem; that is, they cannot
accurately predict the intensity and structure of the zonal
flow in complex orographic areas. Orography is one of the
key factors affecting the prediction accuracy of NWPmodels
[1, 2].

)e NWP in complex terrain has always been a research
hotspot because of its inaccurate predictions. For example,
Moya-Álvarez et al. [3] studied the simulation of rainfall
under complex orographic conditions such as the central
Andes of Peru by the Weather Research and Forecasting

Model (WRF). In normal simulations, the model over-
estimated the amount of precipitation, but in extreme
precipitation and hail weather, the model underestimated
the amount of precipitation. It can be seen that there is still a
lot of room for improvement in the numerical prediction in
complex orographic areas. Inappropriate representation of
the current land, especially the inappropriate description of
orography and biophysical parameters in specific spatial
areas, has led to the uncertainty of simulation from local to
regional scales in the NWP model [4]. Caccamo et al. [5]
used different grid resolutions and orographic data to
simulate the impact of heavy rainfall event in Sicily when
studying weather prediction performances for complex
orographic areas. It is found that it was still a challenge to
provide accurate and timely prediction of extreme rainfall in
complex orographic areas. However, if appropriate high
spatial resolution models are used, the forecast performance
can be effectively improved. Mass et al. [6] also found that in
coastal areas with complex orography, high-resolution NWP
models can improve forecasting skills. Besides, Alpert et al.
[7] also found that the high-resolution NWP models have
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better performance in capturing precipitation in high-alti-
tude areas. One of themain reasons is that the representation
of orography can be improved at high resolution.

Around the 1950s, there was no orographic data in the
various digitized versions that are now available. )e first
orographic data used in NWP models was read from
aeronautical orographic charts (Figure 1) [8]. At that time,
orographic heights were averaged by eye over one-degree
squares, and aeronautical charts were not complete, so there
was an urgent need to develop a set of orographic datasets
with high quality and high global coverage. However, with
the development of satellite and remote sensing technology,
various global datasets with different resolutions have been
developed, such as ETOPO5, GTOPO30, Shuttle Radar
Topography Mission data (SRTM), and ASTER GDEM
[9–11]. Later, these orographic datasets started to be applied
to various global and regional NWP models and greatly
improved the model performance [4, 5, 12–15]. In addition,
orographic data of various regions were generated, such as
the high-resolution orographic dataset of the Heihe River
Basin [16]. Different resolutions of orographic data repre-
sent different orographic characteristics. As a result, dif-
ferent meteorological features and different weather
phenomena will be obtained if different orographic data are
utilized. Nunalee and Horváth [17] compared the prediction
results from orographic data with different resolutions and
confirmed that different orographic data can generate
completely different orographic wake mechanics, such as
whether or not vortex shedding exists. Vortex shedding
means that when the wind hits a mountain and flows along
its surface, the airflow will change, and a circulating vortex
will be generated at the end of the airflow. He et al. [18]
compared the simulation results from various orographic
data, including the Shuttle Radar Topography Mission
(SRTM), and found that orographic data had a much higher
impact on temperature than precipitation.

Complex orography is still a big challenge for all NWP
models [19]. Orography is the key factor in the inaccuracy of
NWP results in complex orographic areas. )e orography in
NWP mainly affects the accuracy of the results through two
aspects: orographic representation in models dynamics and
orography-related parameterization schemes in the physical
processes (Figure 2). Hence, to predict the weather more
accurately in complex orographic areas, it is essential to have
a comprehensive understanding of the application of oro-
graphic data in NWP. As shown in Figure 2, this paper
reviewed recent developments from several aspects, in-
cluding the influences of orography on weather, the influ-
ence of orographic representation on prediction accuracy
and the parametrization of orography-related drag in NWP
models, hoping to provide references for future studies and
operations.

2. The Effect of Orography on Weather

When Dimri [20] simulated rainfall caused by an active
western disturbance in India, it was found that the distri-
bution and rate of rainfall were highly sensitive to orogra-
phy. It can be seen that orography is an important factor

affecting rainfall. However, the basic mechanisms of oro-
graphic rainfall had not yet been fully resolved. )e large
number of physical processes involved and interactions
between different processes make the quantitative prediction
of rainfall in complex orography a difficult task [21]. )e
influence of orography on rainfall has been a hot topic since
ancient times. For example, Oikonomou et al. [22] utilized
the regional climate model, RegCM3.1, to set up two sim-
ulation experiments. One retained the land cover data but
removed the orographic height in the study area to become a
flat orography. )is was termed the “flat experiment.” )e
other preserved the original orography to study the rela-
tionship between the Greek orography and prolonged
drought. It was found that due to the effect of orography,
there was a significant precipitation system between the
Greek mainland and Crete Island. When the orographic
height was removed, the duration of extreme drought was
significantly extended.)is indicated that the orography had
a very important impact on the distribution of local extreme
drought. Alpert et al. [7] also found that there is a significant
relationship between seasonal precipitation and orographic
altitude. Sethunadh et al. [23] simulated a rainstorm event
over the city of Chennai using the high-resolution regional
National Center for Medium Range Weather Forecast
(NCMRWF) Unified Model (UM). After improving the
orographic representation, it was found that the local details
of the rainfall distribution were better simulated. )e pos-
sible reason is that after improving the orographic repre-
sentation, the detailed orographic features that affect rainfall
have been more realistically represented. Torma and Giorgi
[24] studied the rainfall in the Carpathians Mountains and
found that the elevation, size, and orientation of the
mountains in the complex orography play a key role in the
occurrence and changes of rainfall. Besides, many scholars
have also studied the relationship and mechanisms between
orography and rainfall [17, 25, 26]. It can be seen that
orography plays an important role in the generation and
development of rainfall. In the global distribution of heavy
rain (Figure 3(a)), most of the rainstorm centers were lo-
cated near complex orographic areas, such as the Qinghai-
Tibet Plateau, Cordillera Mountains, Appalachian Moun-
tains, Andes Mountains, and so on [27]. In the average
number of rainstorm days in eastern China (Figure 3(b)), the
areas with the most rainstorm days were mostly located on
the southeast windward slope of mountains, such as Taihang
Mountains, Funiu Mountains, Dabie Mountains, Wuyi
Mountains, and Nanling Mountains. When a rainfall
weather system moves closer to a mountainous area,
orography can make the original weather system without
precipitation begin to show precipitation, and the distri-
bution of rainfall in the weather system with precipitation
becomes very uneven. As a result, in some parts of the
mountain, there will be more rainfall, and the duration of the
rainfall will also be prolonged. )ese effects are called the
orographic effect of increasing rainfall [28]. Although the
movement of weather systems with water vapor to moun-
tains areas is an important factor in rainfall, the Mesoscale
Alpine Project (MAP) in 1999 showed that change of
orography on airflow was a crucial factor affecting the
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location, intensity, and duration of orographic rainfall [29].
MAP studied how complex alpine orography affects moist
stratified airflow to generate rainfall, primarily by deter-
mining the location and rate of vertical airflowmovement and
microphysical processes associated with enhanced local
rainfall. )e MAP has greatly improved the understanding of
orographic rainfall [30, 31]. In specific rainstorm cases, such

as the “7·20 Heavy rainstorm in Zhengzhou” event in 2021,
the center of the rainstorm was mainly concentrated on the
east and south sides of the mountain. On the windward slope,
with the increase of orographic height to the east, the change
of rainfall was gradually obvious. Finally, the blocking,
convergence, and upward movement of airflow generated by
the Funiu Mountain caused the rainfall (Figure 4) [32].
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Figure 1: Section of a table showing the hand-digitized orography of Western Hemisphere at a resolution of five degrees latitude and
longitude from [8].
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)e orography not only has a great influence on rainfall,
but also has a great influence on other weather systems and
meteorological elements. For example, Renault et al. [33]
found that the vortex stretching and the surface drag related
to turbulent momentum flux divergence caused by orog-
raphy enhanced the drag coefficient on land and caused a
significant decrease in wind speed. Obermann-Hellhund
and Ahrens [34] simulated Mistral and tramontane using
orography of different resolutions and also found that the
reduction of orographic details (low-resolution orography)
would lead to a change in wind pattern change and a re-
duction in wind speed. Huang andWu [35] studied the effect
of ideal orography on upstream tropical cyclone track. It was
found that when the tropical cyclone was still far away from

the orography, the changes in the background flow caused
by the orography firstly caused large-scale steering current to
push the tropical cyclone to the southward. When the
tropical cyclone approached the ideal orography, the role of
inner-core dynamics became very important and the
channel effect generated by orography caused tropical cy-
clone to deflect further south. In addition, the subgrid scale
orography also has a great influence on various weather
processes and climate. It is discussed in detail in Section 4 of
the article. )e steepness of the orography is also very
sensitive to different meteorological models and vertical
coordinates. Yudin [36] applied two nonhydrostatic nu-
merical models, a finite-difference model and a finite-ele-
ment model, to predict gravity wave propagation. )e finite-
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Figure 3: )e spatial distribution of heavy rainfall. (a) )e global average annual heavy rainfall over land from 1991 to 2000 (units:
mm·10a−1) [27]. (b) Average number of days with heavy rain in eastern China (daily rainfall ≥100mm) [28].
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difference model is suitable for smooth orography, and the
finite-element model is suitable for steep orography. Gallus
[37] used the National Center for Environmental Prediction
(NCEP) regional Eta model, and used the Eta vertical co-
ordinate and stepwise treatment of orography to replace the
terrain-following sigma vertical coordinate, to study the
influence of the stepped orography on the flow near the
mountains. It was found that the stepped orography caused a
significantly underestimate of wind speeds at leeward side of
mountains during the storm and stepped orography caused
weaker mountain waves than generated when the sigma
vertical coordinate was used.

Most of these studies use sensitivity experiments to study
the impact of orography on the weather. By changing the
orographic conditions in NWP models, people can better
understand its impact and improve the accuracy of NWP.
Sensitivity tests can clearly explain the influence of orog-
raphy on weather and provide a quantitative measure of the
impact of orography, and this has become a research hot-
spot. However, sensitivity tests have primarily been confined
to specific phenomena, specific parts of the world, or to
specific parameterization schemes. )is has no universal
practicality to the regional NWP and does not improve the
accuracy of operational NWPmodels. As a result, we should
develop quantitative methods in future studies to improve
the practicality and universality.

3. Orographic Representation in NWP Models

With the wide application of various NWP models, the
accuracy of weather prediction results has greatly improved
[38, 39]. However, if in a complex orographic area, the
prediction of the value of meteorological elements, such as
precipitation and wind, would still be inaccurate. )is is
primarily because of the uncertainty of the orography
representation and orographic drag parametrization [39].
Chapter 3 will mainly discuss the representation of orog-
raphy, and the parameterization of orographic drag will be
discussed in Chapter 4. To ensure the accuracy of NWP
results, we need not only to understand the general influence
of a regional orography on weather, but also to choose a set
of orographic data and orography processing schemes
suitable for NWP. )is would be of great benefit to improve
and optimize future NWP operations.

3.1. What Kind of Orographic Data Is Better? )e main
challenge of NWP models in complex orographic areas is
that it is difficult to accurately represent the orography. In
NWP models, when orographic height is represented by the
discrete numerical grid, the value of each grid point rep-
resents the average orographic height in this grid, but it
cannot represent the change of orographic height within the
unit grid. )erefore, at a certain resolution of the NWP
model, the grid values of the model implicitly smooth the
orographic height, which reduces the actual orographic
height, causing the model to underestimate the blocking
effect of mountains [40]. When the NWP model uses a
higher resolution, the numerical grid area of the model will

be smaller, which means that the representation of oro-
graphic height may be more accurate. )en, does a higher
resolution lead to a better result?

For orographic dataset, the orographic resolution in-
cludes the resolution of the original orographic data and the
resolution of the orographic data after interpolation. Some
scholars have noted that high-resolution orographic data in
climate models are essential to improve the accuracy of
precipitation prediction results inmountainous regions [24].
Gao et al. [41] used the regional climate model, RegCM2, to
predict the precipitation of East Asia. )ey used “actual
orography” made by the National Center for Atmospheric
Research (NCAR). )is means that the orographic height
was the original data and had not been interpolated and
processed, and they used very smooth model orography that
refers to the original orographic data after processing. )en,
they interpolated these two orographic data into different
resolutions. Finally, they compared the simulated precipi-
tation results. )ey found that the prediction accuracy of
rainfall in East Asia depended on the resolution of the
orographic data. )e higher the resolution, the better the
accuracy. However, if the resolution was the same, the
simulation of the “actual orographic” data was better than
that of using the smoothed orographic data. For the high-
resolution orographic data with a resolution of 30m pro-
duced by the Chinese Academy of Sciences and Global 30″
orographic data produced by the United States Geological
Survey (USGS) in the Black River Basin, Liu et al. [16] used
these two datasets to predict the meteorological fields by the
Mesoscale Model 5 (MM5) in the Black River Basin. )e
results showed that the higher-resolution data had a better
capability to predict temperature and wind than the USGS
data, but the improvement in the precipitation prediction
was not obvious. )is was different from the results of Gao
et al. [41] who believed that the resolution of orography can
greatly affect precipitation predictions.)is might have been
caused by the fact that the precipitation prediction is not
only affected by orography, but also by many other factors
including the performance of NWP models, differences in
research areas, divergence of the orographic data, and other
factors.

)e SRTM and ASTER GDEM orography data have
been widely used in weather prediction research because of
its high resolution. Many scholars have conducted different
studies on what is the best orographic dataset. For example,
Zhang and Yin [12] predicted and compared the charac-
teristics of meteorological features of atmospheric boundary
layer in Huangshan and the surrounding areas of Anhui
Province by replacing GTOPO30 (approximately 1 km
resolution) orographic data produced by USGS with SRTM3
(approximately 90m resolution) orographic data produced
by the National Aeronautics and Space Administration
(NASA) into the model WRF. )is was combined with four
boundary layer parametrization schemes. It was found that
when the SRTM3 orographic data were used, the meteo-
rological fields of the atmospheric boundary layer predicted
from various boundary layer schemes were better than those
from GTOPO30. In a word, the SRTM3 orographic data
were better than GTOPO30 in the WRF. Caccamo et al. [5]
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used the ASTER GDEM V2 orographic data (an approxi-
mate 1 arcsec resolution) produced by the Japanese Ministry
of Economy, Trade and Industry (METI) and the NASA to
replace the GTOPO30 orographic data (an approximate 30
arcsec resolution) produced by the USGS. Finally, they di-
rectly compared the observation data and the model pre-
diction results and found that using the higher original
resolution orographic data was key factors for accurate
model prediction, especially for complex orography. Kir-
thiga and Patel [4] used SRTM orographic data to update the
surface information and simulated micrometeorological and
near-surface weather by the WRF model. In the modified
run, it was found that the model better simulated the
temporal changes in surface temperature, surface pressure,
solar radiation, wind speed, and relative humidity. For these
near-surface weather variables, the improvement in 24-hour
forecast ranges from 15% to 30%. De Meij and Vinuesa [13]
and De Meij et al. [14] simulated the effects of TOPO30 and
SRTM orographic data on the 2 m temperature, the 10 m
wind speed and rainfall by the WRF model and found that
the result with SRTM orographic data was closer to reality.
In addition, the prediction accuracy of the precipitation
event was also increased. )ese studies showed that orog-
raphy with high-resolution data, such as SRTM, could
improve the accuracy of prediction results compared with
the low-resolution data. )e possible reason is that higher-
resolution orographic data can reflect more realistic oro-
graphic conditions and represent smaller-scale orographic
effect. )erefore, orography can be more resolved by NWP
model, and the negative impact caused by the uncertainty of
orographic representation is reduced.

3.2. )e Processing of Orographic Data. Sometimes intro-
ducing high-resolution orographic data to a model may
cause false disturbances, such as sudden abnormal increases
or decreases in the value of meteorological elements, es-
pecially excessive wind speeds at some grid points. )ese
problems have a significant impact on the performance and
robustness of NWP models. Zhu et al. [42] studied the effect
of high-resolution orographic data in a new-generation
Global/Regional Assimilation Prediction System (GRAPES),
developed by the China Meteorological Administration for
the prediction of near-ground features (e.g., temperature
and wind) in southern China. )ey found the 2 m tem-
perature at 06Z to be a false oscillation; that is, its value had a
sudden change that was possibly due to a lack of smooth
orographic height in the model. Although high-resolution
orographic data can improve NWP models accuracy, it
should be recognized that a large number of experiments are
still needed to study which orographic processing tech-
nology reduces the impact of high-resolution orographic
“noise” on the dynamic calculation process to improve the
stability and accuracy of NWP models. )ese studies show
that filtering and smoothing the orographic field is effective
to solve these problems.

Orographic processing began to appear and develop a
long time ago. Davies and Brown [43] argued that an
orographic filtering scheme should be used in grid point

models under neutral and stable stratified flow regimes
within the context of the nonlinear three-dimensional
Blasius model [44, 45]. Research results show that oro-
graphic features with a length of more than or equal to six
grid lengths were fully resolved, and orographic features less
than two grid lengths could not be resolved but often ac-
tually harm the overall fidelity of NWP models. )erefore,
an orographic smoothing scheme was needed here. )ese
researches provided helpful information to later scholars.
Webster et al. [46] applied the filter given by Raymond [47]
to the UM as a scheme to filter orographic data. It was found
that this filter can improve or eliminate excessive wind speed
at some grid points. Later, Rutt et al. [48] proposed a novel,
very flexible variational approach to orographic smoothing
and studied its effects in the numerical model. It was found
that new orographic smoothing scheme could reproduce the
results of the schemes of Raymond [47] and Webster et al.
[46]. Tu et al. [49] and He et al. [50] studied the impact of
high-resolution orographic smoothing schemes on ground
fields, such as the precipitation, in the GRAPES and WRF
models using the Chebyshev polynomial filtering method.
)e results showed that the smoothed orographic data had a
positive effect on the precipitation prediction under the
complex orographic conditions on the eastern side of the
plateau. Chen et al. [51] studied the effect of different
orographic smoothing methods on precipitation forecasts
using theWRFmodel. It was found that different orographic
smoothing schemes could have different effects on the
precipitation intensity and spatial distribution, and orog-
raphy should not only be close to the actual orography as
much as possible, but also reach a certain degree of
smoothness. )ese studies have shown that that it is im-
portant to select better orographic smoothing schemes when
using high-resolution orographic data.

4. The Orography-Related
Drag Parameterization

As we all know, it is extremely important and necessary to
represent orographic effects as accurately as possible in
NWP models. However, due to the limitation of model
resolution, small-scale orography cannot be resolved by
models. )e unresolved orography is called subgrid orog-
raphy. When the orography is complex, current models
cannot describe some features of small-scale orography well,
such as slope and ridge direction. But subgrid orography
plays an extremely important role in the model atmosphere
in both the heat and motion aspects. In addition, it is usually
difficult for model dynamics to deal with this problem with
reasonable mathematical methods at current NWP models’
resolution because the wavelength of the gravity wave ex-
cited by the subgrid orography is too small. )erefore,
parametrization scheme to describe the effect of orographic
drag on the weather system is currently a good method.

)e orography-related drag parameterizations mainly
include turbulent orographic form drag (TOFD) and oro-
graphic gravity wave drag (OGWD). In most NWP models,
the orographic gravity wave drag parameterization scheme
includes two parts, one is the orographic gravity wave drag,
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and the other is the low-level blocking drag. )e orographic
workshop of the European Center for Medium-Range
Weather Forecasts (ECMWF) made a suggestion that the
orographic gravity wave and low-level blocking are pa-
rameterized at subgrid scales above 5 km, and the TOFD are
parameterized at scales below 5 km [52]. Since it is generally
believed that on smaller horizontal scales, vertical propa-
gation of orographic gravity waves becomes less likely and
5 km is considered to be a reasonable limit. Of course, 5 km
is not an exact value, but an approximate number. Davoli
[53] considered this limit value to be 6 km.

4.1. Turbulent Orographic Form Drag (TOFD). In the last
century, Fiedler and Panofsky [54] proposed the concept of
effective roughness length. )ey defined the effective
roughness length. )e effective roughness length of the
complex orographic area is equal to the roughness length of
the area with uniform orography, the same surface stress.
For a long time thereafter, the effective roughness method
was used in NWPmodels to consider the effects of turbulent
orographic drag and performance of NWP models had also
been effectively improved [55–58].)is method believes that
under neutral conditions of the atmosphere, when turbulent
air flows through undulating orography, it still follows the
logarithmic law within a certain vertical range. Numerical
experiments [45, 59] and a series of observations [60–62]
found and confirmed that above a certain altitude in the
undulating orography, the wind profile approximately fol-
lows the logarithmic law.

Although the effective roughness method greatly im-
proves the performance of NWP models, it also has some
shortcomings. For example, it causes the effective roughness
to be overestimated in the region where the orographic
height varies greatly, resulting in greater surface stress and
thus falsely low wind speeds near the ground. Given these
shortcomings, Wood et al. [63] represented drag of tur-
bulent orography by a well-defined stress profile. However,
this scheme did not address the characterization of complex
orographic areas involving multiple scales, which is crucial
for large-scale NWP models. Based on Wood et al. [63],
Beljaars et al. [64] developed a turbulent orographic drag
parameterization scheme for large-scale models. To obtain
the contributions of all scales of orography, it integrated over
the orographic spectrum and it took the wind forcing layer
as part of the orographic wavenumber spectrum integration
to solve the convergence problem. )is parameterization
scheme made turbulent orographic drag parameterization a
big step forward from the traditional effective roughness
concept and was applied to the ECMWF. Xue et al. [65]
compared the effective roughness method of turbulent
orography with the direct parameterization method. It is
found that the direct parameterization method could drag
the wind on the vertical ridge and deflected the wind in the
direction parallel to the ridge with a certain vertical atten-
uation thickness. )e direct parameterization method
treated turbulent orographic drag as a single item, which
made the application and improvement of the scheme ex-
tremely convenient, and the physical meaning was clearer.

Richter et al. [66] and Lindvall et al. [67] also added
turbulent orographic form drag parameterization into the
Community Atmosphere Model (CAM5). CAM5 cut off all
turbulence at high stabilities and instead used a strong
orographic surface stress parameterization, which was re-
ferred to here as turbulent mountain stress (TMS). TMS
increased the surface stress based on the effective roughness
lengthmethod. It was only used for the atmospheric part and
not the land model where the vegetation roughness length
was used instead. TMS was mostly good for the large-scale
circulation because it can improve sea level pressure, zonal
wind speeds, and zonal anomalies of the 500 hPa stream
function, but its beneficial effects on boundary layer flow
were not always obvious [68]. )e TMS surface stress τ is
calculated as

τ � ρCd|V|V, (1)

where ρ and V are the air density and the wind vector at the
lowest model level and Cd is a drag coefficient given by

Cd �
f Ri( 􏼁k

2

ln2 z + z0( 􏼁/z0􏼂 􏼃
, (2)

where Ri is the Richardson number and f(Ri) is the
function of it, as follows:

f Ri( 􏼁 � 1 if Ri < 0,

f Ri( 􏼁 � 0 if Ri > 1,

f Ri( 􏼁 � 1 − Ri if 0<Ri < 0,

(3)

where k� 0.4 is the Von Kàrmàn constant, z is the altitude of
the model mean orography, and z0 is an effective roughness
length, representing the idealized size of the perturbing
(turbulent-eddies-generating) surface elements due to the
unresolved orography. In fact,

Z0 � min(tms z0fac∗ σ, 100m), (4)

where σ is the standard deviation of unresolved orography
(measured in meters) on scales smaller than 6 km and as-
suming that the maximum vertical extent of the unresolved
orographic roughness elements is order of 100m. tms_z0fac
is a numerical parameter affecting the minimum roughness
length seen by the model, and its value is generally 0.075.

Under the background of increasing model horizontal
resolution, Davoli et al. [53] believe that it is necessary to
retune some physical parameters of the atmospheric model
to reduce model bias. After repeated tuning, they tuned the
parameter value of tms_z0fac in formula (4) from 0.075 to
0.1875. )e results show a significant improvement com-
pared to before the adjustment, especially in the European
atmospheric circulation in winter. However, this work
painted an only partial picture of the effects of such a partial
model physics retuning effort and therefore suffered from a
number of shortcomings and limitations. In order to more
accurately represent the orographic drag effect, it is nec-
essary to carry out a large number of NWP experiments and
perform fine-scale simulations of different complex oro-
graphic areas to calibrate parameters in NWP models.
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4.2. Orographic Gravity Wave Drag (OGWD). )e study of
orographic waves began a long time ago, and the devel-
opment of mathematical theories has explained many as-
pects of the generation and evolution of orographic waves
[69]. )ese works have contributed to the development of
parameterization scheme for orographic gravity wave drag.
When a stably stratified flow crosses a mountain, the subgrid
orography may excite orographic gravity waves, and these
can transmit horizontal momentum to areas where fluctu-
ations are absorbed or dissipated. )e dissipation of this
fluctuating flux is called orographic gravity wave drag. )e
gravity wave drag can affect not only high-altitude winds,
but also clouds and precipitation. It plays a very important
role in maintaining the conservation of atmospheric cir-
culation energy [70]. In the 1970s and 1980s, NWP systems
could only resolve Rossby waves and some midlatitude
cyclones. With improvements in the spatial resolution, the
predicted motion became too strong, and later scholars
found that the predicted wind speed deviation was primarily
due to the lack of a clear simulation of the subgrid gravity
wave drag [71–73]. In 1984, Boer et al. [74] considered the
subgrid orographic gravity wave drag in the Canadian
Climate Center atmospheric general circulation model.)ey
introduced the climatology of this model and compared it
with the observations. In atmosphere climatology, they
found that the model was generally successful in repro-
ducing the mean observations, such as the tropospheric
circulation. In 1986, based on Lindzen’s saturation hy-
pothesis theory [72], Palmer et al. [75] developed a gravity
wave drag parametrization scheme. )is scheme primarily
considered the effect of wave fragmentation in the low-level
stratosphere on the gravity wave drag. )e results showed
that the problem of a strong westerly jet in the troposphere
was reduced by the use of the parametrization scheme. In
1987, Mcfarlane [70] added the parametrization scheme of
the gravity wave drag to the climate model and found that
the momentum sank due to the breaking of gravity waves
that were excited by orography and played a decisive role in
the structure of the flow between the troposphere and the
lower stratosphere. So far, the first-generation OGWD pa-
rameterization methods for the large-scale NWP models
with relatively low model tops were developed had been
basically formed. Shortly thereafter, Wu [76] explained the
orographic gravity wave drag parametrization systemati-
cally, further enhancing people’s understanding of oro-
graphic drag. )ese schemes reduced the overall size of jets
to separate the stratospheric jet from the tropospheric jet
and produced a large easterly wind shear in the upper
troposphere.)ey have a great influence on the stratospheric
drag at mid-latitudes, directly affecting the jet in the
stratospheric and indirectly affecting the westerly winds on
the surface through the secondary circulation caused by
stratospheric drag.)is indirect effect can improve cold pole
problems and decrease westerly bias.

During the same period, the NWP community con-
ducted research on “severe downslope windstorms” found in
the lower reaches of mountains, such as the Boulder storm in
the lower Rocky Mountains [77–79]. However, there was
some debate about the exact physical mechanism of this

phenomenon, but most agreed that the orographic gravity
wave drag associated with mountain storms may be ex-
cessive [78, 80, 81]. While these phenomena did not occur all
the time, the drag generated each time may be greater than
the drag created by breakup of stratospheric orographic
wave. In the boundary layer, similar resonance breaking and
drag may also be important [82]. )erefore, these processes
may play a large role in the break-even of large-scale at-
mospheric momentum.

)ese studies promoted the continuous development of
OGWD parameterization. )ere was an increasing need to
increase low-level drag in the model. Some scholars have
begun to express these orographic effects by enhancing
OGWD in the lower troposphere [83]. Iwasaki et al. [84]
studied “linearly trapped” nonhydrostatic waves in the lower
reaches of mountains and parameterized its effect in a special
way and found that improved prediction results. Kim and
Arakawa [85] studied the influence of “nonlinear trapped”
waves due to wave breaking in the lower troposphere. )ey
systematically parameterized its effect to enhance low-level
drag in lower reaches regions where nonlinearities are
strong, but not in weak nonlinear regions. Later, this pa-
rameterization scheme was introduced into NWP models
and improved the performance of models [81]. )is way of
enhancing low-level drag separates the lower reaches’ wave
breaking zone from the upstream blocking zone. )ey are
respectively related to the strength and weakness of the
vertical divergence of the horizontal momentum flux. In
1997, Lott and Miller [86] proposed a new OGWD pa-
rametrization scheme to develop and improve these and
other low-level drag and orographic specifications. )is
parametrization scheme could deal explicitly with the low-
level flow that was “blocked” when height of the subgrid
scale orography was sufficiently high. )e prediction results
of the new subgrid scale orographic gravity wave drag pa-
rametrization scheme were closer to actual observations.
Soon after, this orographic gravity drag scheme was applied
to ECMWF. )e basic principles of the orographic gravity
wave drag scheme are as follows:

Hn �
NH

|V|
, (5)

where Hn is the dimensionless height of the mountain.N,H,
and V are the Brunt–Väisälä frequency, maximum height of
the obstacle, and velocity. When Hn is small, all airflow
currents can climb over mountains and gravity wave is
excited by vertical movement of airflow. Assuming that the
mountain is oval, the surface stress generated by the gravity
wave is

τw � ρ0bGB(c)NUH
2
, (6)

where ρ0, b, and G are low-level density, tuning coefficient,
and mountain shape function. B(c) is the function of
mountain anisotropy. When Hn is large, vertical movement
is restricted. Part of the low-level airflow will be blocked or
form a bypass.

Zb � H
Hn − Hnc( 􏼁

Hn

, (7)
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where Hnc is a critical value. Zb is the height of airflow can
climb over the mountain. Airflow below this height will
bypass this mountain. At this time, all drag is

τ ≈ τw 1 +
πCd

2GB(c)

Hn − Hnc

H
2
n

􏼠 􏼡, (8)

where Cd is the drag coefficient.
In 2003, Webster et al. [46] improved orographic rep-

resentation in the UM and used a new orographic gravity
wave drag scheme based on [86]. )ey considered the
friction and rotation of the airflow in the new scheme and
divided the total drag into two parts: the blocking flow and
the gravity wave drag. )e results showed that the intro-
duction of the new scheme obviously improved the pre-
diction results for the northern hemisphere and tropical
regions. Gao and Ran [87] made improvements to Mcfar-
lane’s scheme [70] that did not consider the problem of the
gravity wave breaking and obtained a more complete pa-
rametrization scheme that described the drag impact of
stationary gravity wave breaking on the zonal mean at-
mospheric circulation. )is scheme not only considered the
drag effect of the remaining momentum on zonal mean
atmospheric circulation after the gravity wave is broken, but
also considered the impact of momentum loss caused by the
dissipation of the broken gravity wave on the zonal mean
atmospheric circulation. In 2007, Andrew [88] modified
orographic gravity drag scheme based on [86] and con-
sidered the blocked flow drag. He modified the subgrid
orography height to the effective orographic height, which is
the maximum height that the blocked layer depth can reach
minus the blocking layer height. )at is, modify H in for-
mula (6) to Heff.

Heff � 3μ − Zb, (9)

where μ is the standard deviation of the subgrid orographic
height. Finally, the modified scheme was evaluated, and it
was found that when calculating the gravity wave drag, it
could reduce the excessive deceleration of motion in areas
with complex orography.

Since then, orographic gravity wave drags parametri-
zation schemes had been applied to various numerical
models, and predictive capabilities of various NWP models
have been improved and optimized. For example, Xu et al.
[89] introduced the OGWD parametrization scheme of
ECMWF based on [86] into the GRAPES model, filling the
gap in the description of this type of physical processes in the
GRAPES global medium-term numerical prediction system.
)e results indicated that with the introduction of the
OGWD process, the distribution of the predicted fields was
closer to that of the real atmosphere. Liu et al. [90] studied
the occurrence mechanism of heavy rain in southern China
by WRF model with the OGWD parametrization scheme
based on Kim and Arakawa [85]; it was found that the
parametrization scheme could predict the central position
and the intensity of the heavy rain well. In addition, it was
found that the gravity wave could strengthen the vertical
upward motion. In 2017, Wang and Xi [91] introduced the
OGWD scheme of the WRF model in the GRAPES-MESO

model (GRAPES-MESO is the regional system version of
GRAPES) and combined with the low-level airflow blocking
parametrization proposed by Lott and Miller [86]. )ey
divided the subgrid orographic drag into the OGWD and
blocking drag to study the distribution of OGWD in the
Qinghai-Tibet Plateau. Finally, it was found that the model
had a more accurate description for low-level and high-level
orographic gravity wave breaking.

)e convoluted interaction between different processes
related to orography is a difficult problem in NWP [21].
However, in recent years, there are few studies on the in-
teraction between resolved orographic drag and parame-
terized orographic drag. Vosper et al. [92] described the
resolved and unresolved orographic drag by predicting the
flow of South Georgia and New Zealand Island. )ey found
that the parametrized orographic drags increased when the
model grid length decreased. When the characteristic island
wavelength was about eight grid lengths, the resolved and
parametrized orographic drag were approximately the same
size. When wavelengths were shorter than 8–10 grid lengths,
the parametrized orographic drag was very large. However,
when the island scale changes, the resolved part of the
orographic drag and the parameterized part of the oro-
graphic drag cannot be completely balanced. Van Niekerk
et al. [93] studied the resolved and parametrized orographic
drag in eleven different modes from eight major operational
modeling centers, such as ECMWF’s Integrated Forecasting
System (IFS), Met Office’s UM model, and Global Spectral
Model 1705 (GSM1705) of Japan Meteorological Agency
(JMA). )ey found that the parametrized gravity wave drag
in most of NWP models was underestimated to varying
degrees. Hence, the parametrized orographic drag intro-
duced was slightly larger, and this may improve the results of
the NWP prediction. Some studies have also found that the
resolved orographic drag changes were not precisely bal-
anced by the parameterized orographic drag changes in the
numerical models [1, 92, 94, 95], so it cannot ensure that
NWP models remain robust between different resolutions.
)is reveals that there are still some problems in the han-
dling of orographic drag in NWP models, and more re-
searches are needed to solve the division of orographic drag
in the model dynamics and physical parameterization and
division between different physical parameterization
schemes.

5. Conclusion and Discussion

)is paper reviewed recent developments from several as-
pects, including the influences of orography on weather, the
influence of orographic representation on prediction ac-
curacy, and the parametrization of orography-related drag
in NWP models. )e primary conclusions are shown as
follows:

(1) Sensitivity analysis tests were used to study the in-
fluence of orography on weather. It was found that
orography has a great influence on different scale
systems and meteorological elements, such as near-
surface wind, temperature, rainfall and heavy rain
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systems, long-term droughts, mesoscale wind fields,
tropical cyclones, and so on.

(2) In general, the higher the resolution of the oro-
graphic data in NWP models, the more accurate the
model forecast results, and this is primarily reflected
in elements such as precipitation and wind. In ad-
dition, it is important to process the original oro-
graphic dataset prior to application, including
performing filtering, smoothing, and other schemes,
to make prediction results nearer to the actual
weather, and to ensure the accuracy of the NWP
model prediction.

(3) )e introduction of the orographic drag parame-
terization scheme greatly improves the prediction
performance of NWPmodels. However, the intricate
interaction between different parameterization
schemes and between parameterization and resolved
orographic drag also bring uncertainty to the nu-
merical model, so lots of researches are still needed.

Finding an appropriate resolution, suitable orographic
data, and the optimal orographic processing scheme to
obtain a better orography representation requires great
many numerical experiments, and the amount of calculation
is very high. Hence, we must select a model with high ac-
curacy and good stability. Because today’s computers do not
have enough computing power to deal with small enough
space and time resolution problems, the parametrization of
the subgrid scale orographic drag in NWP models will be
necessary. However, parametrization relies heavily on
simplified assumptions that are primarily based on linear
theory and ideal peaks, and it does not describe the non-
linear effects imposed on complex orography well. As a
result, parametrization becomes a source of uncertainty and
deviations. How numerical models are designed to cross
areas where models cannot identify to reduce or eliminate
these uncertainties and deviations is critical for applications
of NWP, wind resource prediction, and numerical model
modeling in complex orography [40]. With the improve-
ment of computer performance, the NWP model resolution
is getting finer and finer. Can the NWP model dynamics
completely resolve orographic drag and eliminate the pa-
rameterization schemes? )is is an open topic and there is
no definite answer. In 2006, Smith et al. [96] utilized seven
examples to explore the sensitivity of the horizontal reso-
lution of numerical model to OGWD. )e result indicated
that in most cases, even if the horizontal resolution were
raised to finer than 4 km, the impact of the gravity wave drag
in the model still could not be fully resolved. Kim et al. [97]
predicted the model resolution needed to eliminate gravity
wave drag parametrization and found that the horizontal
resolution required to achieve this goal was still much higher
than the highest resolution achieved up to now. Probably in
the recent period, parameterized schemes are still mainly
used to represent effect of unresolved orographic drag in
NWP models. However, with the rapid development of
artificial intelligence, machine learning algorithms that are
automatically improved through data learning and do not

require explicit programming provide great opportunities
for NWP. )ere are already some scholars doing this work.
For example, Matsuoka et al. [98] proposed a deep learning
method to predict the gravity wave drag. After training and
testing, the model produced better estimates of the fine-scale
momentum flux distribution of the gravity waves. It can be
seen that in future research, there is great potential to use the
parameterization schemes based on machine learning al-
gorithms to couple into a higher-precision NWP model to
extract key features of the data with higher efficiency and
make accurate predictions.
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In this article, we propose a light detection and ranging (LiDAR) data denoising scheme for wind profile observation as a part of
quality control procedure for wind velocity monitoring and windshear detection. +e proposed denoising scheme consists of
several components. (i) It selects LiDAR observations according to their SNR values so that serious noisy data can be removed. (ii)
A polar-based total variation smoothing term is employed to regularize LiDAR observations. (iii) +e regularization parameters
are automatically determined to balance the data-fitting term and the total variation smoothing term. Numerical results for
LiDAR data collected at the Hong Kong International Airport are reported to demonstrate that the denoising performance of the
proposed method is better than that of the testing LiDAR data denoising schemes in the literature.

1. Introduction

Light detection and ranging (LiDAR) technique [1, 2] is a
remote sensing tool that plays a significant role in envi-
ronmental monitoring sciences. It is widely used in mete-
orological data observing. Generally, LiDAR emits a beam of
light to the observation region. Some of this light would be
backscattered towards the LiDAR receiver since it interacts
with the medium or particles under observation [3]. +e
backscattered light captured by the LiDAR receiver is used to
determine the characteristics of the observation area, e.g., the
velocity of wind. Due to the impact of measurement envi-
ronments and some other reasons, there would be some
observation errors and very noisy observations in the ob-
servational LiDAR data as the range of observation increases
[4]. It can have a serious effect in different LiDAR data
applications such as windshear detection. +erefore, it is
indispensable to develop an effective denoising method as a
part of quality control for LiDAR observational data to
improve the data quality and remove bad observations.

Several denoising methods have been developed to
improve the quality of LiDAR data. +ere are mainly two
different types of methods for LiDAR data denoising. One

is for the time-varying but location-fixed LiDAR data. For
example, a stationary wavelet domain spatial filtering-
based denoising method was proposed by Yin et al. [5].
+e method can effectively remove noise and detect the
sudden change of LiDAR signal. Hassanpour [6, 7] pro-
posed a singular value decomposition-based Savitzky-
Golay approach for signal denoising. Similarly, Azad-
bakht et al. [8] employed the Savitzky-Golay method for
full-waveform LiDAR data denoising. +e second one is
for the time-varying and distance-varying LiDAR data.
For instance, Wu et al. [9] proposed a biorthogonal
discrete wavelet transform (DWT) with a distance-de-
pendent threshold algorithm to do the line-of-sight wind
velocity denoising. In [10], Wu et al. studied the empirical
mode decomposition (EMD) method [11] to analyze Li-
DAR data. Liu et al. applied the EMDmethod to a Doppler
wind LiDAR acquisition system and got much better
denoising results than the original method in [12]. In [13],
Zhang et al. combined the EMD method with the
Savitzky-Golay filtering algorithm, which can retain more
features of LiDAR signal. Li et al. proposed a LiDAR
denoising method based on ensemble empirical mode
decomposition in [14]. +is method can overcome the
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mode mixing phenomenon that occurs with the EMD
method. Also Tian et al. improved the EMD method for
range and frequency analysis in LiDAR data and proposed
an automatic EMD denoising method in [15]. In [16], the
EMD-CIITmethod [17] was applied to reduce the noise of
large-scale LiDAR data.

However, the abovementioned methods cannot remove
the bad observations in LiDAR data. To address this issue,
several methods including bad data removal were used in the
LiDAR data applications. +e most commonly used
methods are based on the signal-to-noise ratio (SNR). For
example, Baranov et al. [18] filtered the bad observations in
LiDAR data by the threshold level of SNR and then applied a
smoothing algorithm to improve the data quality. In [19],
Newsom et al. removed the bad observations based on an
SNR threshold level. +e Hong Kong Observatory (HKO)
currently used a SNR-based quality control method to
preprocess the LiDAR data collected at the Hong Kong
International Airport (HKIA) for windshear detection (refer
to Algorithm 3 for more detailed description). However, the
SNR threshold level the above methods used is really em-
pirical that requires numerous tests based on the observa-
tional data. Moreover, we remark that all the
abovementionedmethods do not consider LiDAR data at the
other azimuth angles together in the data processing
procedure.

In this article, we aim to investigate a mathematical
denoising scheme that can not only reduce the noise level
for a whole scan but also remove the bad observations in
LiDAR data adaptively based on the corresponding SNR
values. By analysis of the LiDAR data collected at the
Hong Kong International Airport (see Section 2 for more
details), we propose a LiDAR data denoising method
based on the minimization of an objective function
containing (i) the data-fitting term between the observed
LiDAR data and the denoised data; (ii) the polar-based
total variation regularization term that is used to smooth
LiDAR observations; and (iii) the weighting term of Li-
DAR observations that is employed to control whether
LiDAR observations are used in the denoising procedure
based on their SNR values and neighborhood observa-
tions. In the optimization scheme, we also propose an
L-curve selection method for several regularization pa-
rameters to be used for balancing the contribution of the
above three terms in the objective function. +e whole
scan data are used in the proposed scheme by the polar
total variation method instead of the only data at the same
azimuth angle used by the other methods given in [9, 16,
18, 19]. +e SNR-based weighting term makes it possible
to remove the very bad observations more flexibly instead
of just relying on a fixed empirical threshold. Numerical
results demonstrate the usefulness of the proposed
denoising scheme compared with testing LiDAR data
denoising schemes in the literature.

+is paper is organized as follows. In Section 2, we
introduce our proposed denoising scheme and the param-
eter selection method. In Section 3, results and discussions
are presented. Finally, some concluding remarks are given in
Section 4.

2. Methods

In this section, the information about LiDAR data we in-
vestigate in this paper is given in Subsection 2.1. Next, we
introduce the proposed model in Subsection 2.2. Also, the
algorithm and parameter selection method are given in
Subsections 2.3 and 2.4, respectively.

2.1. Data Sets. +e Hong Kong International Airport (HKIA)
is located at the place lying to the north of Lantau Island that is
quite mountainous with heights ranging from 300m to 900m.
Due to the complex terrain near the airport, it is necessary to
collect LiDAR data of wind velocities and observe any
windshear phenomena appearing over the flight paths of the
airport. To provide timely windshear alerting, the Hong Kong
Observatory devised a Doppler LiDAR system (see [20, 21] for
more details). Due to the highly cluttered environment around
HKIA such as vehicles, derricks, barges, windmills, and cable
cars, there are lots of noise and bad observations in the ob-
servational LiDAR data. For example, we show in Figure 1(a)
the LiDAR radial velocity data of conical scan, where the radius
and the polar angle of the scan refer to the slant range and the
azimuth angle of LiDAR beam, respectively. In Figure 1(b), we
show the signal-to-noise ratio (SNR) of the measured wind
velocities corresponding to Figure 1(a). It is obvious that there
are noise and some outliers whose SNR values are from − 10 to
− 60 in the observational data. +erefore, it is significant to
develop an efficient data denoising method to remove bad
observations and improve the quality of observational LiDAR
data.

+e set of data used in this study was collected at HKIA
from 1 March to 31 March 2015, including the 147 wind-
shear cases that reported in the pilot report and several
nonwindshear cases. Each scan of windshear cases took
yi ∈ Rn about 25 seconds (see one example in Figure 1).

2.2.�e ProposedModel. Let be the LiDAR data observed at
azimuth angle θi. For simplicity, we assume that there are m
azimuth angles (θ1 < θ2 < · · · < θm) to be recorded in be-
tween 0° and 359°, and also there are n range values to be
recorded, i.e.,

yi � yi,1, yi,2, . . . , yi,n􏽨 􏽩, 1≤ i≤m. (1)

Note that the locations of such range values are not
necessary to be uniform, and the distance between the Li-
DAR centre and the observed value yi,j is equal to rj. We are
interested to compute the denoising LiDAR data as follows:

xi � xi,1, xi,2, . . . , xi,n􏽨 􏽩, 1≤ i≤m, (2)

according to the given SNR values:

si � si,1, si,2, . . . , si,n􏽨 􏽩, 1≤ i≤m, (3)

from the observed LiDAR data. When yi,j is a missing Li-
DAR observation, the corresponding si,j can be set to be − ∞.
In total, there are nm observations and SNR values and nm

unknowns covered in the conical scan in a two-dimensional
plane. In the proposed minimization model, there are three
components in the objective function.
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(i) +e first term is the data-fitting term between the
observed LiDAR data yi and the denoised data xi

(1≤ i≤m). In order to determine whether yi,j at the
azimuth angle θi and range value rj to be used in the
model, we incorporate a nonnegative weight wi,j for
yi,j. When the value of wi,j is equal to zero, the
LiDAR observation yi,j is not used. +e resulting
data-fitting term is given by

1
2

􏽘

m

i�1
􏽘

n

j�1
wi,j yi,j − xi,j􏼐 􏼑

2
. (4)

It is clear that when the LiDAR data observation is
removed (wi,j � 0), the corresponding data-fitting
term does not appear.

(ii) In the model, we would like to smooth LiDAR
observations over all possible range and azimuth
values together. In image processing, total variation
regularization techniques based on rectangular
pixel-based form were shown to be a very useful
denoising method (see, for instance, [23–25]). Here,
the polar-based total variation regularization term is
proposed and employed as follows:

TV xi,j􏼐 􏼑 �
xi,j − xi,j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

d xi,j, xi,j− 1􏼐 􏼑
+

xi,j − xi− 1,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

d xi,j, xi− 1,j􏼐 􏼑
, (5)

where d(xi,j, xi,j− 1) refers to the distance between the
two observed range values at the same azimuth
angle, i.e.,

d xi,j, xi,j− 1􏼐 􏼑 � rj − rj− 1, (6)

and d(xi,j, xi,j− 1) refers to the distance between the
same observed range value at the two adjacent
azimuth angles θi and θi− 1, i.e.,

d xi,j, xi− 1,j􏼐 􏼑 � 2rj sin
θi − θi− 1

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (7)

In (7), the first and the second terms are the one-
dimensional total variation regularization. However,
we apply the one-dimensional total variation regu-
larization to the polar-based LiDAR data observa-
tions by using their actual distances in the formula.
+e combined total variation regularization term is
given as follows:

􏽘
m

i�1
􏽘

n

j�1
wi,jTV xi,j􏼐 􏼑. (8)

We see from (7) and (8) that the denoised values xi,j

are coupled into the regularization formula, and
therefore the denoising procedure is adapted to the
whole polar-based LiDAR data observations instead
of observations in range values only such as the
methods we introduce in Section 1.

(ii) In the model, we should include SNR values si,j to
determine whether the LiDAR observation yi,j is
used in the denoising procedure. Here, we propose
the following term in the model:

λ1 􏽘

m

i�1
􏽘

n

j�1
exp − si,j􏼐 􏼑w

2
i,j

+ λ2 􏽘

m

i�1
􏽘

n

j�1
exp si,j􏼐 􏼑 wi,j − 1􏼐 􏼑

2
,

(9)

where λ1 and λ2 are the positive numbers to control the
balance between the two terms in (9). We note in (9) that
when si,j is too small (a negative number), the LiDAR ob-
servation is very noisy, and therefore exp(− si,j) is large and
exp(si,j) is small. +e optimization process drives wi,j to be
zero. Similarly, when si,j is not small (the LiDAR observation
is not noisy), exp(− si,j) is small and exp(si,j) is large and
therefore the optimization process drives wi,j to be one.
Finally, we also incorporate nonnegativity constraint on wi,j

in the optimization model:
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Figure 1: An example of the LiDAR data on 5 March 2015 from 04 :16 : 02 to 04 :16 : 25. (a) Wind velocities and (b) signal-to-noise ratio of
LiDAR observations. +e observations were collected at the Hong Kong International Airport under LiDAR system by Hong Kong
Observatory [21, 22].
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wi,j ≥ 0, 1≤ i≤m, 1≤ j≤ n. (10) For the ease of presentation, we denote x � xi,j􏽮 􏽯 and
w � wi,j􏽮 􏽯. According to (4), (6), (9), and (10), the combined
optimization model is given as follows:

(x,w) � argmin
(x,w)

1
2

􏽘

m

i�1
􏽘

n

j�1
wi,j yi,j − xi,j􏼐 􏼑

2
+ α􏽘

m

i�1
􏽘

n

j�1
wi,jTV xi,j􏼐 􏼑 + χ(w)

⎧⎪⎨

⎪⎩

+λ1 􏽘

m

i�1
􏽘

n

j�1
exp − si,j􏼐 􏼑w

2
i,j + λ2 􏽘

m

i�1
􏽘

n

j�1
exp si,j􏼐 􏼑 wi,j − 1􏼐 􏼑

2
⎫⎪⎬

⎪⎭
,

(11)

where α is a positive number to balance the contribution of
the total variation regularization term and the other terms
and χW(w) is the characteristic function of the non-
negativity constraint set W � w: wi,j ≥ 0, 1≤ i≤m, 1≤􏽮

j≤ n}

χW(w) �
0, w ∈W,

+∞, otherwise.
􏼨 (12)

2.3.�e Algorithm. In this subsection, we will introduce the
algorithm for the proposed model. Since both d(xi,j, xi− 1,j)

and d(xi,j, xi− 1,j) are fixed in LiDAR observations, for
simplicity, we use τi,j and μi,j to represent them, respectively,
in the following discussion. Let pi,j � xi,j − xi,j− 1, qi,j

� xi,j − xi− 1,j. We can rewrite (11) as follows:

(x,w, p, q) � argmin
(x,w,p,q)

1
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􏽘

m
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n
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m

i�1
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n

j�1
exp si,j􏼐 􏼑 wi,j − 1􏼐 􏼑

2
⎫⎪⎬

⎪⎭
,

s.t. pi,j � xi,j − xi,j− 1, qi,j � xi,j − xi− 1,j.

(13)

+e augmented Lagrangian of the above-constrained
optimization problem is given as follows:

Lc1 ,c2
(x,w, p, q;Λ, Γ) �

1
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m

i�1
􏽘

n

j�1
exp − si,j􏼐 􏼑w

2
i,j

+ λ2 􏽘

m

i�1
􏽘

n

j�1
exp si,j􏼐 􏼑 wi,j − 1􏼐 􏼑

2
+ 􏽘

m

i�1
􏽘

n

j�1
Λi,j pi,j − xi,j − xi,j− 1􏼐 􏼑􏽨 􏽩

+ 􏽘
m

i�1
􏽘

n

j�1
Γi,j qi,j − xi,j − xi− 1,j􏼐 􏼑􏽨 􏽩 +

c1

2
􏽘

m

i�1
􏽘

n

j�1
pi,j − xi,j − xi,j− 1􏼐 􏼑􏽨 􏽩

2

+
c2

2
􏽘

m

i�1
􏽘

n

j�1
qi,j − xi,j − xi− 1,j􏼐 􏼑􏽨 􏽩

2
,

(14)
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where c1, c2 > 0 are penalization parameters and Λ and Γ are
Lagrange multipliers.

With an initial guess of (x0,w0,p0, q0;Λ0, Γ0), the iter-
ations of the alternating direction method of multipliers [26]
are given as follows:

xk+1
� argmin

x
Lc1,c2

x,wk
, pk

, qk
;Λk

, Γk􏼐 􏼑,

wk+1
� argmin

w
Lc1,c2

xk+1
,w, pk

, qk
;Λk

, Γk􏼐 􏼑,

pk+1
� argmin

p
Lc1,c2

xk+1
,wk+1

, p, qk
;Λk

, Γk􏼐 􏼑,

qk+1
� argmin

q
Lc1 ,c2

xk+1
,wk+1

, pk+1
, q;Λk

, Γk􏼐 􏼑,

Λk+1
i,j � Λk

i,j + c1 p
k+1
i,j − x

k+1
i,j − x

k+1
i,j− 1􏼐 􏼑􏽨 􏽩,

Γk+1
i,j � Γki,j + c2 q

k+1
i,j − x

k+1
i,j − x

k+1
i− 1,j􏼐 􏼑􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Next, we demonstrate how to solve the abovementioned
subproblems (15) with respect to (x,w, p, q).

Let us consider the x-subproblem in (15):

xk+1
� argmin

x

1
2

􏽘

m

i�1
􏽘

n

j�1
wi,j yi,j − xi,j􏼐 􏼑

2
+

c1

2
􏽘

m

i�1
􏽘

n

j�1
p

k
i,j +
Λk

i,j

c1
− xi,j − xi,j− 1􏼐 􏼑⎡⎣ ⎤⎦

2⎧⎪⎨

⎪⎩

+
c2

2
􏽘

m

i�1
􏽘

n

j�1
q

k
i,j +
Γki,j
c2

− xi,j − xi− 1,j􏼐 􏼑⎡⎣ ⎤⎦

2⎫⎪⎬

⎪⎭
.

(16)

Noting that the data-fitting term will vanish if there is no
observation data yi,j. +e optimality condition of x-sub-
problem is given by

w
k
i,j + 2c1 + 2c2􏼐 􏼑xi,j − c1 xi,j+1 + xi,j− 1􏼐 􏼑 − c2 xi− 1,j + xi+1,j􏼐 􏼑

� w
k
i,jyi,j + c1 p

k
i,j − p

k
i,j+1􏼐 􏼑 + c2 q

k
i,j − q

k
i+1,j􏼐 􏼑 + Λk

i,j − Λk
i,j+1 + Γki,j − Γki+1,j,

if yi,j exists,

2 c1 + c2( 􏼁xi,j − c1 xi,j+1 + xi,j− 1􏼐 􏼑 − c2 xi− 1,j + xi+1,j􏼐 􏼑

� c1 p
k
i,j − p

k
i,j+1􏼐 􏼑 + c2 q

k
i,j − q

k
i+1,j􏼐 􏼑 + Λk

i,j − Λk
i,j+1 + Γki,j − Γki+1,j,

otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

We can solve the above set of equations by using the
conjugate gradient (CG) method [27, 28].

For w-subproblem, we have

wk+1
� argmin

w≥0

1
2

􏽘

m

i�1
􏽘

n

j�1
wi,j yi,j − x

k+1
i,j􏼐 􏼑

2
+ α􏽘

m

i�1
􏽘

n

j�1
wi,j

p
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

τi,j

⎧⎪⎨

⎪⎩

+ α􏽘
m

i�1
􏽘

n

j�1
wi,j

q
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

μi,j

+ λ1 􏽘

m

i�1
􏽘

n

j�1
exp − si,j􏼐 􏼑w

2
i,j

+ λ2 􏽘

m

i�1
􏽘

n

j�1
exp si,j􏼐 􏼑 wi,j − 1􏼐 􏼑

2
⎫⎪⎬

⎪⎭
.

(18)

Wenote thatwi,j are decoupled, and we only need to deal
with scalar optimization problems. More precisely, if yi,j

exists, the scalar optimization problem is given by

w
k+1
i,j � argmin

w≥0

1
2
wi,j yi,j − x

k+1
i,j􏼐 􏼑

2
+ αwi,j

p
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

τi,j

⎧⎪⎨

⎪⎩

+ αwi,j

q
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

μi,j

+ λ1 exp − si,j􏼐 􏼑w
2
i,j

+ λ2 exp si,j􏼐 􏼑 wi,j − 1􏼐 􏼑
2⎫⎬

⎭.

(19)

If yi,j does not exist, it is equal to
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w
k+1
i,j � argmin

w≥0
αwi,j

p
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

τi,j

+ αwi,j

q
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

μi,j

⎧⎪⎨

⎪⎩

+ λ1 exp − si,j􏼐 􏼑w
2
i,j + λ2 exp si,j􏼐 􏼑 wi,j − 1􏼐 􏼑

2⎫⎬

⎭.

(20)

Both the above two scalar optimization problems are
convex. And one can readily get that

wk+1
� max wk+1

, 0􏽮 􏽯, (21)

where

w
k+1
i,j �

2λ2 exp si,j􏼐 􏼑 − 1/2 yi,j − x
k+1
i,j􏼐 􏼑

2
− α p

k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/τi,j − α p
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/μi,j

2λ1 exp − si,j􏼐 􏼑 + 2λ2 exp si,j􏼐 􏼑
, if yi,j exists,

2λ2 exp si,j􏼐 􏼑 − α p
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/τi,j − α q
k
i,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/μi,j

2λ1 exp − si,j􏼐 􏼑 + 2λ2 exp si,j􏼐 􏼑
, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

For p-subproblem and q-subproblem, they are given by

pk+1
� argmin

p
α􏽘

m

i�1
􏽘

n

j�1
wi,j

pi,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

τi,j

+
c1

2
􏽘

m

i�1
􏽘

n

j�1
pi,j +
Λk

i,j

c1
− x

k+1
i,j − x

k+1
i,j− 1􏼐 􏼑⎡⎣ ⎤⎦

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (23)

and

qk+1
� argmin

q
α􏽘

m

i�1
􏽘

n

j�1
wi,j

qi,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

μi,j

+
c2

2
􏽘

m

i�1
􏽘

n

j�1
qi,j +
Γki,j
c2

− x
k+1
i,j − x

k+1
i− 1,j􏼐 􏼑⎡⎣ ⎤⎦

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (24)

respectively. +ese two subproblems can be solved by using
the soft-thresholding technique [29], and their solutions are
given by

p
k+1
i,j � max x

k+1
i,j − x

k+1
i,j− 1􏼐 􏼑 −
Λk

i,j

c1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−
αw

k+1
i,j

c1τi,j

, 0⎛⎝ ⎞⎠sign x
k+1
i,j − x

k+1
i,j− 1􏼐 􏼑 −
Λk

i,j

c1

⎛⎝ ⎞⎠,

q
k+1
i,j � max x

k+1
i,j − x

k+1
i− 1,j􏼐 􏼑 −
Γki,j
c2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−
αw

k+1
i,j

c2μi,j

, 0⎛⎝ ⎞⎠sign x
k+1
i,j − x

k+1
i− 1,j􏼐 􏼑 −
Γki,j
c2

⎛⎝ ⎞⎠,

(25)

where sign(p) ≔ o/|p|.
Finally, the overall algorithm is summarized in

Algorithm 1.

2.4. �e Calculation of Parameters. In the proposed
denoising scheme, there are several parameters to be de-
termined. In this subsection, we incorporate the L-curve

method to determine the values of parameters. +e L-curve
is a tradeoff curve between two quantities that both need to
be controlled and balanced [30, 31]. It is widely used in the
engineering and applied mathematics field.

First, the regularization parameter α in (14) is crucial in
our proposed method since it controls the ratio between the
data-fitting term and the total variation regularization term.
When the value of α is large (small), the importance of the
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total variation regularization term is large (small) and the
denoising results are more (less) regularized. Moreover,
there are two parameters λ1 and λ2 in (14), and they can
affect the values of wi,j according to the SNR values of
LiDAR observations. When the ratio λ1/λ2 is large (i.e., λ1 is
larger than λ2), the term λ1 􏽐

m
i�1 􏽐

m
j�1 exp(− si,j)w

2
i,j is more

important than the term λ2 􏽐
m
i�1 􏽐

m
j�1 exp(− si,j)(wi,j − 1)2. It

follows that when LiDAR observations have small SNR

values, there would be more zero values of wi,j in the op-
timization procedure. In contrast, when the ratio λ1/λ2 is
small and LiDAR observations have large SNR values, there
would be more values of wi,j to be one in the optimization
procedure.

In the L-curve method, we consider the following two
quantities:

D x α, λ1, λ2( 􏼁,w α, λ1, λ2( 􏼁( 􏼁 ≔ − log10
􏽐

m
i�1 􏽐

n
j�1 wi,j α, λ1, λ2( 􏼁 yi,j − xi,j α, λ1, λ2( 􏼁􏼐 􏼑

2

􏽐
m
i�1 􏽐

n
j�1 wi,j α, λ1, λ2( 􏼁

⎛⎝ ⎞⎠, (26)

and

S x α, λ1, λ2( 􏼁,w α, λ1, λ2( 􏼁( 􏼁 ≔ − log10
􏽐

m
i�1 􏽐

n
j�1 wi,j α, λ1, λ2( 􏼁TV xi,j α, λ1, λ2( 􏼁􏼐 􏼑

􏽐
m
i�1 􏽐

n
j�1 wi,j α, λ1, λ2( 􏼁

⎛⎝ ⎞⎠. (27)

+e first quantity D(x(α, λ1, λ2),w(α, λ1, λ2)) refers to
the degree of data fitting when x and w are computed by
Algorithm 1 for fixed α, λ1, and λ2. Similarly, the second
quantity S(x(α, λ1, λ2),w(α, λ1, λ2)) refers to the degree of
smoothness in the regularization for the computed x and w.
In order to compare the degrees of data fitting and
smoothness with respect to different numbers of denoising
values wi,j across different values of λ1 and λ2, the weighted
average of data fitting and smoothness are accounted in the
two quantities. +e main idea of the L-curve method is to
select the suitable values of α, λ1, and λ2 such that both
D(x(α, λ1, λ2),w(α, λ1, λ2)) and S(x(α, λ1, λ2),w(α, λ1, λ2))
are balanced.

As an illustration, we apply Algorithm 1 to the LiDAR
observations in Figure 1 for different values of α, λ1, and λ2.
More precisely, in Figure 2(a), we fix λ1 (100) and λ2
(0.5, 5, 50, 500) and compute x and w for different values of α
(0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1, 5). In Figure 2(a), we plot
D(x(α, λ1, λ2),w(α, λ1, λ2)) and S(x(α, λ1, λ2),w(α, λ1, λ2)).
+e lines of points of D and S with respect to α are generated
for each fixed λ1 and λ2. In total, there are four lines of points

in Figure 2(a). We observe in each line that when α is small, D
is large and S is small, and thus the points appear in the left
hand side of the line.When α is large, D is small and S is large,
and thus the points appear in the right hand side of the line.
We find that there are several corner points in the line, and
they refer to several large rates of change of data fitting with
respect to the change of smoothness. Here, we can pick up the
corner point with the largest rate of change and employ the
corresponding value of α for regularization. Next, we select
the values of λ1 and λ2 by comparing the selected corner
points of different lines. Here, we can pick up the selected
corner point with the largest D (the data fitting is good) and
the largest S (the smoothness is large). According to the plot in
Figure 2(a), we select α∗ � 0.5, λ∗1 � 100,and λ∗2 � 500.

Based on the above idea, we summarize our L-curve
method with automatic selection of α, λ1, and λ2 in
Algorithm 2.

From Figure 2, it is obvious that the model is very
sensitive for different values of the regularization parameter
α due to its balance effect for data fitting and smoothing.
However, from Figure 2(a), for fixed values of parameters α

Input: Noisy data y, SNR data s, and parameters α, λ1, λ2, c1, c2.
Initialization: x0 � y,w0 � 1,p0 � 0, q0 � 0,Λ0 � 0, Γ0 � 0, k � 0.
(1) while Stopping criteria is not satisfied do
(2) Solve xk+1 by using CG for (17)
(3) Solve wk+1 by (21)
(4) Find pk+1 by (24)
(5) Find qk+1 by (25)
(6) Update the multipliers by Λk+1

i,j � Λk
i,j + c1[pk+1

i,j − (xk+1
i,j − xk+1

i,j− 1)] and Γ
k+1
i,j � Γki,j + c2[qk+1

i,j − (xk+1
i,j − xk+1

i− 1,j)]

(7) k←k + 1
(8) end while

ALGORITHM 1
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and λ1, the changes of D and S for different values of λ2 are
small (less than 1), which means that the model is pretty
robust for parameter λ2. To evaluate the robustness of pa-
rameter λ1, we plot the four L-curves with respect to α
(0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1, 5) for fixed λ2 in Figure 2(b),
where λ2 � 100, λ1 varies in 0.5, 5, 50, 500{ } for different
curves. Similar to the results of parameter λ2, one can readily
find that the proposed model is quite robust for parameter
λ1.

3. Results and Discussion

In this section, to illustrate the effectiveness of the proposed
scheme (denoted as the “TV” method), we will show some
denoising results by this scheme and compare them with the
results generated by other denoising methods for the LiDAR
data collected at HKIA. Clearly, the LiDAR data we study in
this paper are time-varying and distance-varying, so that we
compare the results by the DWTmethod [9] and the EMD-
CIITmethod [16]. +ey are denoted as “DWT” and “EMD-
CIIT.” Moreover, we consider the method used by Baranov
et al. [18] (denoted as “Baranov” in the rest of this article)
and Newsom et al. [19] (denoted as “Newsom” in the rest of
this article) as well as the method used by Hong Kong
Observatory (denoted as the HKO method in the rest of this
article) (see Algorithm 3 for more detailed description).
Since Baranov et al. did not give an exact SNR threshold level
in [18], we set the SNR threshold level as − 5, which is used by

Hong Kong Observatory for the LiDAR data observed at
HKIA. +e effects of averaging smoothing algorithm and
median smoothing algorithm are shown to be about the
same in [18], so that we apply a five-point-based averaging
smoothing algorithm to the data selected by the SNR
threshold level. Refer to Algorithm 4 for more detailed
description.

3.1. Comparison Results with the “DWT” and “EMD-CIIT”
Methods. Figures 3 and 4 show the results of the “DWT”
method, the “EMD-CIIT” method, and the proposed TV
method for LiDAR data collected on 5 March 2015 from 04 :
16 : 02 to 04 :16 : 25 with a fixed azimuth angle 224.0° and 4
March 2015 from 21 : 26 :16 to 21 : 46 : 39 with a fixed azi-
muth angle 314.0°, respectively. According to the record
from Hong Kong International Airport, these two wind
profiles from LiDAR data correspond to two windshear
cases. According to Figures 3 and 4, one can readily find that

(1) +e “DWT” method and the “EMD-CIIT” method
cannot remove very noisy observations, but our
proposed scheme can remove noisy observations
with very low SNR values effectively.
For example, there is a high peak appearing at the
range of around 8200m in the LiDAR data obser-
vation in Figure 3. +e DWT denoising method
(xDWT) and the EMD-CIIT denoising method
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Figure 2: L-curves of different parameters α, λ1, and λ2.

Input: +e set of parameters values α, λ1, λ2.
Initialization: Corner point c0 � (0, 0)

(1) while the set of parameter values is not empty do
(2) Select (λ1, λ2) from the parameter set
(3) Find the corner point c∗ of the generated lines of points D(x(α, λ1, λ2),w(α, λ1, λ2)), S((x(α, λ1, λ2),w(α, λ1, λ2))) from a set

of α values, and record the corresponding 􏽥α.
(4) If the position of c∗ is higher than the position of c0 in the D-S plot, set c0 � c∗, α∗ � 􏽥α, λ∗1 � λ1, λ

∗
2 � λ2

(5) end while

ALGORITHM 2: L-curve Method.
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Input: LiDAR observations yi,j and their SNR values si,j for 1≤ i≤m and 1≤ j≤ n

(1) i � 1 (for each azimuth angle)
(2) for j � 1 to n (along each range) do
(3) If si,j < � − 5, then yi,j � NA

(4) end for
(5) xi,1 � yi,1
(6) for j � 2 to n do
(7) If |x

(HKO)
i,j− 1 − yi,j|> 16, then x

(HKO)
i,j � x

(HKO)
i,j− 1 × 0.95 + yi,j × 0.05

(8) If x
(HKO)
i,j− 1 � NA and yi,j+1 � NA, then x

(HKO)
i,j � NA

(9) end for
(10) Set i � i + 1 and Goto Step 2

ALGORITHM 3: +e Denoising Method used by Hong Kong Observatory.

Input: LiDAR observations yi,j and their SNR values si,j for 1≤ i≤m and 1≤ j≤ n

(1) Set i � 1 (for each azimuth angle)
(2) for j � 1 to n (along each range) do
(3) If si,j < � − 5, then yi,j � NA

(4) end for
(5) xBaranov

i,1 � yi,1
(6) xBaranov

i,2 � yi,1 + yi,2/2
(7) for j � 3 to n − 2 do
(8) xBaranov

i,j � yi,j− 2 + yi,j− 1 + yi,j + yi,j+1 + yi,j+2/5
(9) end for
(10) xBaranov

i,n− 1 � yi,n− 3 + yi,n− 2 + yi,n− 1 + yi,n/4
(11) xBaranov

i,n � yi,n− 2 + yi,n− 1 + yi,n/3
(12) Set i � i + 1 and Goto Step 2

ALGORITHM 4: +e Denoising Method used by Baranov et al.
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Figure 3: +e denoising results by the “DWT” (a), “EMD-CIIT” (b), and our proposed scheme (c) for the LiDAR data collected on 5 March
2015 from 04 :16 : 02 to 04 :16 : 25 with a fixed azimuth angle (224.0°).+e SNR values of the corresponding observed LiDAR data are shown
in (d).
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(xEMD− CIIT) cannot remove this very noisy obser-
vation. We see from Figure 3(d) that the corre-
sponding SNR value is about − 8 at the range of
around 8200m. Indeed, it is quite acceptable to
remove such noisy observation compared with
neighborhood observations. Similarly, in Figure 4,
there is a rock bottom appearing at the range of
around 5000m in the LiDAR data observation. From
Figure 4(d), one can readily get that the corre-
sponding SNR value is about − 7 at the range of
around 5000m, which indicates the high noise in-
tensity at this slant range. We see from Figures 4(a)
and 4(b) that the “DWT” method and the “EMD-
CIIT” method cannot remove such noisy observa-
tions. However, the proposed scheme (Figures 3 and
4(c)), according to the corresponding SNR values,
filters both the high peak and rock bottom as well as
the noisy data around them out.

(2) +e method can over-smooth the input LiDAR data,
and some LiDAR observations may be lost. As
comparison, the denoising results of the proposed
scheme are smooth but not distorted.

3.2. Comparison Results with the “Baranov” Method.
Figures 5(a) and 5(c) show the results by the “Baranov”
method and the proposed scheme for LiDAR data collected
on 4 March 2015 from 21 : 26 :16 to 21 : 46 : 39 with a fixed
azimuth angle 314° and 5 March 2015 from 04 :16 : 02 to 04 :
16 : 25 with a fixed azimuth angle 277°, respectively.
According to Figures 5(a) and 5(c), we can easily find that

(1 )+e Baranov method might restore few missing
points as well as some data points that are removed
by the SNR threshold level by the averaging smooth
algorithm. However, the values of them seem to be
quite the same as the previous observed one, which
play a tiny role in the following data applications
such like windshear detection.

For example, in Figure 5(a), there is a rock bottom
appearing at the range of around 5000m in the
LiDAR data observation. From Figure 5(b), the
corresponding SNR value is about − 7, which indi-
cates the data point is removed by the SNR threshold
level. However, this data point is restored by the
averaging smoothing algorithm in the results by the
“Baranov” method (xBaranov). It is obvious that the
velocity values of data points between the range of
4800m and 5800m are quite the same in xBaranov.
Similarly, there are some missing values at the range
of around 9000m and 10800m. Some missing data
points are restored with almost same values in
xBaranov.

(2) Due to the effect of the averaging smoothing algo-
rithm, the “Baranov” method might mis-shift the
velocities of some data points.

For example, there are some mis-shifted data points
in the result by the “Baranov” method at the range of
around 4500m in Figure 5(a). From 5(b), the SNR
values around 4500m are around 0, which are still
acceptable. Similarly, the SNR values of data points at
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Figure 4: +e denoising results by the “DWT” (a), “EMD-CIIT” (b), and our proposed scheme (c) for the LiDAR data collected on 4 March
2015 from 21 : 26 :16 to 21 : 46 : 39 with a fixed azimuth angle (314.0°).+e SNR values of the corresponding observed LiDAR data are shown
in the (d).
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the range of around 5500m are also acceptable, but
the velocity values are mis-shifted.

(3) In comparison, the results by the proposed method
(xTV) remove the bad observations properly and
provide less useless information.

3.3. Comparison Results with HKO Method. In Figures 6(a)
and 6(c), we consider LiDAR data collected on 4 March 2015
from 21 : 26 :16 to 21 : 46 : 39 with a fixed azimuth angle 124°
and 5 March 2015 from 04 :16 : 02 to 04 :16 : 25 with a fixed
azimuth angle 139°, respectively. +e denoising results xHKO
of LiDAR data by the HKO method are shown in
Figures 6(a) and 6(c). We have the following observations.

(1) +ere are somemis-shifted results at the range values
around 4000m-4200m in Figure 6(a) and around
4700m-5000m in Figure 6(c). For reference, the SNR
values corresponding to LiDAR data in Figures 6(a)
and 6(c) are given in Figures 6(b) and 6(d), re-
spectively. We note in Figure 6(b) that the SNR
values at 4000m-4200m are 2–10. Similarly, the SNR
values at 4700m− 5000m are 13–18 in Figure 6(d). In
these two cases, SNR values can still be in an ac-
ceptable range. However, the method by Hong Kong
observatory cannot provide a reasonable denoising
results in these two range values, and the detected
wind profiles may be affected.

(2) In comparison, we show the denoising results xTV of
LiDAR data by the proposed method in Figures 6(a)
and 6(c). We find that the proposed method fits the
LiDAR data quite well with as much smoothness as
possible based on the SNR values of the given
observations.

3.4. Comparison Results with the “Newsom” Method. Note
that the “Newsom” method just removes the bad observa-
tions based on the SNR values (the SNR threshold level is set
to be 0.02 in [19]) without any other operations for LiDAR
data, so that there are no value differences between the data
after processing and the observed data. For LiDAR data in
Figure 3, all the observed data after the range 4400m are
removed because their SNR values are less than 0.02. It
seems that it is not reasonable to remove all these observed
data points. In Figure 4, the observed data points near the
rock bottom are removed. In Figures 5 and 6, the processed
data by the “Newsom” method are about the same as the
original observed data.

3.5. Comparison Results in Conical Scans. In Figures 7 and 8,
we plot the conical scans of LiDAR data collected on 4March
2015 from 21 : 26 :16 to 21 : 46 : 39 and 5 March 2015 from
04 :16 : 02 to 04 :16 : 25 and the results by the “DWT”
method, the “EMD-CIIT” method, the“Newsom” method,
the “Baranov” method, the HKO method, and the proposed
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Figure 5:+e denoising results by the proposed method xTV and the “Baranov” method xBaranov. (a)+e LiDAR data were on 4 March 2015
from 21 : 26 :16 to 21 : 46 : 39 with a fixed azimuth angle 314° and the denoising results. (b)+e SNR values of the LiDAR data in the 1st row.
(c) +e LiDAR data were on 5 March 2015 from 04 :16 : 02 to 04 :16 : 25 with a fixed azimuth angle 277° and the denoising results. (d) +e
SNR values of the LiDAR data in the 3rd row.
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method. +e computational time for these methods is also
given. From these figures, we can readily find that

(1) +ere are some spikes in the denoising results of the
“DWT” method and the “EMD-CIIT” method. For
example, in Figures 7(e) and 7(f), there are some
spikes in the range of azimuth angles from 206° to
250°.

(2) +e over-smoothness of the “EMD-CIIT” method is
also overcome by the proposed scheme.

(3) +ere are some outliers that provide little infor-
mation of the wind profile in the denoising results
generated by the “Baranov” method. In comparison,
the denoising results of our proposed method are
much clear.

We note that Figures 7 and 8 correspond to two
windshear cases in March 2015. Although the exis-
tence of outliers does not have an effect on visual
judgement for windshear analysis, it can have a
strong effect on machine learning methods in
windshear detection. For instance, the wind profile
features suggested by the machine learning method
in [32] are calculated based on the maximal differ-
ence in wind velocities within a range of azimuth
angles, and it is clear that the outliers can change the
resulting wind profile features.

(4) Since the SNR threshold level (SNR >0.02) used by
“Newsom” method is high, there are only few data
points retined in the results. And the proposed
method, without any fixed SNR threshold level,
retained more data points which contain useful in-
formation of wind profiles.

(5) Comparing with the results by HKO method, the
results of our proposed scheme is much smoother.

(6) +e proposed scheme is faster than the EMD-CIIT
method, but it is slower than the other methods.

For example, there are some fluctuations in the range of
azimuth angles from 257° to 359° in Figure 8(g), but the data
are much smoother in Figure 8(h).

To further evaluate the performance of the proposed
method, we show a nonwindshear case in Figure 9. In the
figure, we plot the conical scans of the LiDAR data and the
denoising results by the abovementioned six methods. +e
LiDAR data were collected on 4 March 2015 from 00 : 00 :16
to 00 : 00 : 39. Similarly, the denoising results given by the
proposed scheme do not contain any outliers and retain
more data points with good smooth effect.

3.6. Comparison Results in Noisy Observations Removal.
Finally, we would like to demonstrate the capability of the
proposed method in removing noisy observations compared
with the “Newsom” method,the “Baranov” method, as well as
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Figure 6: +e denoising results by the proposed method xTV and the HKO method xHKO. (a) +e LiDAR data were collected on 4 March
2015 from 21 : 26 :16 to 21 : 46 : 39 with a fixed azimuth angle 124° and the denoising results. (b)+e SNR values of the LiDAR data in the 1st
row. (c) +e LiDAR data were collected on 5 March 2015 from 04 :16 : 02 to 04 :16 : 25 with a fixed azimuth angle 139° and the denoising
results. (d) +e SNR values of the LiDAR data in the 3rd row.
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the HKO method. As a matter of fact, when SNR values are
too small, the LiDAR observations may not be suitable for
data analysis usage. In Table 1, we show the noisy observation
removal results for a set of LiDAR observations for windshear
cases at Hong Kong International Airport. +e set of ob-
servations was collected from 1 March to 31 March 2015.
+ere were 147 windshear cases reported in the pilot report.
Each scan of windshear cases took about 25 seconds (see the
two examples in Figures 7 and 8). We see from Table 1 that

(1) Since the SNR threshold level of the“Newsom”
method is 0.02, all the noisy observations are

removed in the results of the “Newsom” method, but
the number of the retained data points are really
small.

(2) +e number 􏽐
m
i�1 􏽐

n
j�1 wi,j of denoising values by the

proposed method is about the same as the number of
original observations yi,j and the number of
denoising values x

(Baranov)
i,j by the “Baranov” method

and the number of denoising values x
(HKO)
i,j by HKO

method in the slant range values from 359m to
3509m. Note that the SNR values of LiDAR ob-
servations in the slant range values from 359m to
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Figure 7: (a) +e LiDAR data and (b) SNR values collected on 4 March 2015 from 21 : 26 :16 to 21 : 46 : 39. +e denoising results by (c) the
“DWT” method, (d) the “EMD-CIIT” method, (e) the “Newsom” method, (f ) the “Baranov” method, (g) the HKO method, and (h) the
proposed scheme (denoted by TV).

Advances in Meteorology 13



3509m are usually high, which means LiDAR ob-
servations are quite accurate.

(3) +ere are usually more noisy observations in large
slant range values. We see from Table 1 that there are
only 281927 LiDAR observations in the slant ranges
from 6659m to 9809m and 793282 LiDAR obser-
vations in the slant ranges from 3509m to 6659m
compared with 1033268 LiDAR observations in the
slant ranges from 359m to 3509m.

(4) +e number 􏽐
m
i�1 􏽐

n
j�1 wi,j of denoising values by the

proposed method is less than the number of original
observations yi,j and the number of denoising values
x

(Baranov)
i,j by the “Baranov”method and the number of

denoising values x
(HKO)
i,j by the HKO method when

there are many noisy observations in the slant ranges
from 6659m to 9809m. However, the proposed
method preserves more data points with high SNR
values in the slant ranges from 6659m to 9809m.
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Figure 8: (a) +e LiDAR data and (b) SNR values collected on 5 March 2015 from 04 :16 : 02 to 04 :16 : 25. +e denoising results by (c) the
“DWT” method, (d) the “EMD-CIIT” method, (e) the “Newsom” method, (f ) the “Baranov” method, (g) the HKO method, and (h) the
proposed scheme (denoted by TV).
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Figure 9: (a) +e LiDAR data and (b) SNR values collected on 4 March 2015 from 00 : 00 :16 to 00 : 00 : 39. +e denoising results by
(c) “DWT” method, (d) “EMD-CIIT” method, (e) “Newsom” method, (f ) “Baranov” method, (g) HKO method, and (h) the proposed
scheme (denoted by TV).

Table 1: +e comparison of noisy observations removal by the “Newsom” method, “Baranov” method, HKO method, and proposed
method.

Range Data SNR > � − 5 SNR > � − 3 SNR > � 0

359m–3509m (total number: 1036067)

LiDAR observations 1033268 1032885 1031484
Denoising values by the “Newsom” method 1031472 1031472 1031472
Denoising values by the “Baranov” method 1033268 1032885 1031484
Denoising values by the HKO method 1033212 1032874 1031484

Denosing values by the proposed method 1032987 1032793 1031394
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4. Conclusion

In this article, we have proposed a LiDAR data denoising
scheme for wind profile observations to improve data quality
and remove bad observations. By introducing a weight in
each observation, the scheme can filter out very noisy ob-
servations according to their SNR values and neighborhood
observations. Combining with the data-fitting term and the
polar-based total variation smoothing term, a global-based
denoisingmodel is built.+e alternating directionmethod of
multipliers is applied to find a solution of the proposed
model. To find suitable regularization parameters of the
proposed scheme, we consider an L-curve based parameter
selection method that can select parameters automatically
via the balance between the data-fitting term and the polar-
based total variation regularization term. By applying the
proposed scheme to the LiDAR data collected at the Hong
Kong International Airport, we find that (i) our proposed
scheme performs better than the denoising methods such as
DWTand EMD-CIIT, where they cannot handle very noisy
observations and they can conduct a denoising procedure
along each slant range; (ii) our proposed method can handle
noisy observations quite well, and its performance is better
than that of HKO method and “Newsom” method as well as
“Baranov” method; (iii) our proposed scheme can balance
the data-fitting and the smoothing regularization via suitable
parameter selection. However, the proposed scheme is
slower than the comparing methods except the EMD-CIIT
method. As a future research work, we will investigate a
much faster algorithm for the proposed model. And we also
need to consider an online denoising scheme such that it can
handle LiDAR data sets in a continuous-time manner and
study three-dimensional LiDAR data observations for
denoising.
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