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The concept of the compactness appears very frequently in
explicit or implicit form in many branches of mathematics.
Particulary, it plays a fundamental role in mathematical
analysis and topology and creates the basis of several inves-
tigations conducted in nonlinear analysis and the theories of
functional, differential, and integral equations. In view of the
wide applicability of the mentioned branches, the concept of
the compactness is one of the most useful in several topics
of applied mathematics, engineering, mathematical physics,
numerical analysis, and so on.

Reasoning based on concepts and tools associated with
the concept of the compactness is very often used in fixed
point theory and its applications to the theories of functional,
differential, and integral equations of various types. More-
over, that concept is also applied in general operator theory. It
is worthwhile mentioning several types of operators defined
with help of the compactness, both in strong and in weak
topology.

This special issue is devoted to discussing some aspects
of the above presented topics. We focus here mainly on the
presentation of papers being the outcome of research and
study associated with existence results concerning nonlinear
differential, integral or functional differential, and functional
integral equations. We describe roughly the results contained
in the papers covering this special issue.

One of those results, contained in the paper ofQ. Li andY.
Li, is concerned with the existence of positive periodic solu-
tions of a second-order functional differential equation with

multiple delay. The investigations concerning that equation
are located in the space of real functions defined, continuous
and periodic (with a fixed period) on the real line. The main
tool used in the proofs is the fixed point index theory in cones.

The paper of C. Lizama and J. C. Pozo presents also
existence results and is devoted to proving the existence of
mild solutions of a semilinear integrodifferential equation in
a Banach space. The arguments used in the study are based
on theory of semigroups and the technique of measures of
noncompactness.

The paper by Z. Liu et al., which we are going to describe
briefly, discusses existence results for an integral equation of
Volterra type. The authors of that paper used some special
measure of noncompactness and the fixed point theorem of
Darbo type to obtain a result on the existence of asymptotic
stable solutions of the equation in question.

A review article concerning infinite systems of differential
equations in the so-called BK spaces presents a brief survey
of existence results concerning those systems.The authors,M.
Mursaleen and A. Alotaibi, present results obtained with help
of the technique of measures of noncompactness.

In this special issue two research articles concerning
the existence of solutions of nonlinear fractional differential
equations with boundary value problems are included. The
paper authored by Y. Zhao et al. discusses a result on
the existence of positive solutions of a nonlinear fractional
integrodifferential equation with multipoint boundary value
problem. The investigations are conducted in an ordered
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Banach space. The main tools used in argumentations are
related to a fixed point theorem for operators which are
strictly condensing with respect to the Kuratowski measure
of noncompactness. The research article of H. Ergören and
A. Kiliçman deals with existence of solutions of impulsive
fractional differential equations with closed boundary con-
ditions. The results of that paper are obtained with help of a
Burton-Kirk fixed point theorem for the sum of a contraction
and a completely continuous operator.

The technique of measures of noncompactness also cre-
ates the main tool utilized in the paper of S. Xie devoted to
the existence of mild solutions of nonlinear mixed type inte-
grodifferential functional evolution equations with nonlocal
conditions. Apart of the existence, the controllability of the
mentioned solutions is also shown.

The issue contains also three papers being only loosely
related to compactness conditions. The paper by H. Eltayeb
and A. Kiliçman discusses approximate solutions of a non-
linear system of partial differential equations with help
of Sumudu decomposition technique and with the use of
Adomian decomposition method. The second paper of the
mentioned kind, written by M. Masjed-Jamei et al., discusses
some new estimates for the error of the Simpson integration
rule. That study is conducted in the classical Lebesgue spaces
𝐿
1
[𝑎, 𝑏] and 𝐿∞[𝑎, 𝑏]. Finally, the paper of A. Kiliçman and

R. Abazari is dedicated to discussing exact solutions of the
Schrödinger-Boussinesq system. The authors of that paper
construct solutions of the system in question in the form of
hyperbolic or trigonometric functions.

This issue includes also a review paper by J. Banaś and
K. Sadarangani presenting an overview of several meth-
ods involving compactness conditions. Those methods are
mainly related to some fixed point theorems (Schauder,
Krasnosel’skii-Burton, and Schaefer) and to the technique
associatedwithmeasures of noncompactness. Examples illus-
trating the applicability of those methods are also included.

Acknowledgments

The guest editors of this special issue would like to express
their gratitude to the authors who have submitted papers for
consideration. We believe that the results presented in this
issue will be a source of inspiration for researchers working
in nonlinear analysis and related areas of mathematics.
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We discuss some existence results for various types of functional, differential, and integral equations which can be obtained with
the help of argumentations based on compactness conditions. We restrict ourselves to some classical compactness conditions
appearing in fixed point theorems due to Schauder, Krasnosel’skii-Burton, and Schaefer. We present also the technique associated
withmeasures of noncompactness and we illustrate its applicability in proving the solvability of some functional integral equations.
Apart from this, we discuss the application of the mentioned technique to the theory of ordinary differential equations in Banach
spaces.

1. Introduction

The concept of the compactness plays a fundamental role in
several branches of mathematics such as topology, mathe-
matical analysis, functional analysis, optimization theory, and
nonlinear analysis [1–5]. Numerous mathematical reasoning
processes depend on the application of the concept of com-
pactness or relative compactness. Let us indicate only such
fundamental and classical theorems as the Weierstrass the-
orem on attaining supremum by a continuous function on a
compact set, the Fredholm theory of linear integral equations,
and its generalization involving compact operators as well
as a lot of fixed point theorems depending on compactness
argumentations [6, 7]. It is also worthwhile mentioning such
an important property saying that a continuous mapping
transforms a compact set onto compact one.

Let us pay a special attention to the fact that several
reasoning processes and constructions applied in nonlinear
analysis depend on the use of the concept of the compactness
[6]. Since theorems and argumentations of nonlinear anal-
ysis are used very frequently in the theories of functional,
differential, and integral equations, we focus in this paper
on the presentation of some results located in these theories

which can be obtained with the help of various compactness
conditions.

We restrict ourselves to present and describe some results
obtained in the last four decades which are related to
some problems considered in the theories of differential,
integral, and functional integral equations. Several results
using compactness conditions were obtained with the help
of the theory of measures of noncompactness. Therefore, we
devote one section of the paper to present briefly some basic
background of that theory.

Nevertheless, there are also successfully used argumen-
tations not depending of the concept of a measure on
noncompactness such as Schauder fixed point principle,
Krasnosel’skii-Burton fixed point theorem, and Schaefer fixed
point theorem.

Let us notice that our presentation is far to be complete.
The reader is advised to follow the most expository mono-
graphs in which numerous topics connected with compact-
ness conditions are broadly discussed [6, 8–10].

Finally, let us mention that the presented paper has a
review form. It discusses some results described in details in
the papers which will be cited in due course.
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2. Selected Results of Nonlinear Analysis
Involving Compactness Conditions

In order to solve an equation having the form

𝑥 = 𝐹𝑥, (1)

where 𝐹 is an operator being a self-mapping of a Banach
space 𝐸, we apply frequently an approach through fixed
point theorems. Such an approach is rather natural and, in
general, very efficient. Obviously, there exists a huge number
of miscellaneous fixed point theorems [6, 7, 11] depending
both on order, metric, and topological argumentations.

The most efficient and useful theorems seem to be
fixed point theorems involving topological argumentations,
especially those based on the concept of compactness. The
reader can make an acquaintance with the large theory of
fixed point-theorems involving compactness conditions in
the above, mentionedmonographs, but it seems that themost
important and expository fixed point theorem in this fashion
is the famous Schauder fixed point principle [12]. Obviously,
that theorem was generalized in several directions but till
now it is very frequently used in application to the theories
of differential, integral, and functional equations.

At the beginning of our considerations we recall two
well-known versions of the mentioned Schauder fixed point
principle (cf. [13]). To this end assume that (𝐸, || ⋅ ||) is a given
Banach space.

Theorem 1. LetΩ be a nonempty, bounded, closed, and convex
subset of 𝐸 and let 𝐹 : Ω → Ω be a completely continuous
operator (i.e., 𝐹 is continuous and the image 𝐹Ω is relatively
compact). Then 𝐹 has at least one fixed point in the set Ω (this
means that the equation 𝑥 = 𝐹𝑥 has at least one solution in the
set Ω).

Theorem 2. IfΩ is a nonempty, convex, and compact subset of
𝐸 and𝐹 : Ω → Ω is continuous on the setΩ, then the operator
𝐹 has at least one fixed point in the set Ω.

Observe thatTheorem 1 can be treated as a particular case
of Theorem 2 if we apply the well-known Mazur theorem
asserting that the closed convex hull of a compact subset of
a Banach space 𝐸 is compact [14]. The basic problem arising
in applying the Schauder theorem in the version presented
in Theorem 2 depends on finding a convex and compact
subset of 𝐸 which is transformed into itself by operator 𝐹

corresponding to an investigated operator equation.
In numerous situations, we are able to overcome the

above-indicated difficulty and to obtain an interesting result
on the existence of solutions of the investigated equations
(cf. [7, 15–17]). Below we provide an example justifying our
opinion [18].

To do this, let us denote by R the real line and put R
+
=

[0, +∞). Further, let Δ = {(𝑡, 𝑠) ∈ R2 : 0 ≤ 𝑠 ≤ 𝑡}.
Next, fix a function 𝑝 = 𝑝(𝑡) defined and continuous on

R
+
with positive real values. Denote by 𝐶

𝑝
= 𝐶(R

+
, 𝑝(𝑡)) the

space consisting of all real functions defined and continuous
on R

+
and such that

sup {|𝑥 (𝑡)| 𝑝 (𝑡) : 𝑡 ≥ 0} < ∞. (2)

It can be shown that 𝐶
𝑝
forms the Banach space with respect

to the norm

‖𝑥‖ = sup {|𝑥 (𝑡)| 𝑝 (𝑡) : 𝑡 ≥ 0} . (3)

For our further purposes, we recall the following criterion for
relative compactness in the space 𝐶

𝑝
[10, 15].

Theorem 3. Let 𝑋 be a bounded set in the space 𝐶
𝑝
. If all

functions belonging to 𝑋 are locally equicontinuous on the
interval R

+
and if lim

𝑇→∞
{sup{|𝑥(𝑡)|𝑝(𝑡) : 𝑡 ≥ 𝑇}} = 0

uniformly with respect to𝑋, then𝑋 is relatively compact in𝐶
𝑝
.

In what follows, if 𝑥 is an arbitrarily fixed function from
the space𝐶

𝑝
and if 𝑇 > 0 is a fixed number, we will denote by

𝜈
𝑇
(𝑥, 𝜀) the modulus of continuity of 𝑥 on the interval [0, 𝑇];

that is,

𝜈
𝑇
(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀} .

(4)

Further on, we will investigate the solvability of the
nonlinear Volterra integral equation with deviated argument
having the form

𝑥 (𝑡) = 𝑑 (𝑡) + ∫

𝑡

0

𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠))) 𝑑𝑠, (5)

where 𝑡 ∈ R
+
. Equation (5) will be investigated under the

following formulated assumptions.

(i) 𝑣 : Δ × R → R is a continuous function and there
exist continuous functions 𝑛 : Δ → R

+
, 𝑎 : R

+
→

(0,∞), 𝑏 : R
+
→ R
+
such that

|𝑣 (𝑡, 𝑠, 𝑥)| ≤ 𝑛 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠) |𝑥| (6)

for all (𝑡, 𝑠) ∈ Δ and 𝑥 ∈ R.

In order to formulate other assumptions, let us put

𝐿 (𝑡) = ∫

𝑡

0

𝑎 (𝑠) 𝑏 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (7)

Next, take an arbitrary number 𝑀 > 0 and consider the
space 𝐶

𝑝
, where 𝑝(𝑡) = [𝑎(𝑡) exp(𝑀𝐿(𝑡) + 𝑡)]

−1. Then, we can
present other assumptions.

(ii) The function 𝑑 : R
+

→ R is continuous and there
exists a nonnegative constant 𝐷 such that |𝑑(𝑡)| ≤

𝐷𝑎(𝑡) exp(𝑀𝐿(𝑡)) for 𝑡 ≥ 0.

(iii) There exists a constant𝑁 ≥ 0 such that

∫

𝑡

0

𝑛 (𝑡, 𝑠) 𝑑𝑠 ≤ 𝑁𝑎 (𝑡) exp (𝑀𝐿 (𝑡)) (8)

for 𝑡 ≥ 0.
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(iv) 𝜑 : R
+
→ R
+
is a continuous function satisfying the

condition

𝐿 (𝜑 (𝑡)) − 𝐿 (𝑡) ≤ 𝐾 (9)

for 𝑡 ∈ R
+
, where 𝐾 ≥ 0 is a constant.

(v) 𝐷+𝑁 < 1 and 𝑎(𝜑(𝑡))/𝑎(𝑡) ≤ 𝑀(1−𝐷−𝑁) exp(−𝑀𝐾)

for all 𝑡 ≥ 0.

Now, we can formulate the announced result.

Theorem 4. Under assumptions (i)–(v), (5) has at least one
solution 𝑥 in the space 𝐶

𝑝
such that |𝑥(𝑡)| ≤ 𝑎(𝑡) exp(𝑀𝐿(𝑡))

for 𝑡 ∈ R
+
.

Wegive the sketch of the proof (cf. [18]). First, let us define
the transformation 𝐹 on the space 𝐶

𝑝
by putting

(𝐹𝑥) (𝑡) = 𝑑 (𝑡) + ∫

𝑡

0

𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠))) 𝑑𝑠, 𝑡 ≥ 0. (10)

In view of our assumptions, the function (𝐹𝑥)(𝑡) is continu-
ous on R

+
.

Further, consider the subset 𝐺 of the space 𝐶
𝑝
consisting

of all functions 𝑥 such that |𝑥(𝑡)| ≤ 𝑎(𝑡) exp(𝑀𝐿(𝑡)) for 𝑡 ∈

R
+
. Obviously, 𝐺 is nonempty, bounded, closed, and convex

in the space 𝐶
𝑝
. Taking into account our assumptions, for an

arbitrary fixed 𝑥 ∈ 𝐺 and 𝑡 ∈ R
+
, we get

|(𝐹𝑥) (𝑡)| ≤ |𝑑 (𝑡)| + ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠)))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝐷𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ ∫

𝑡

𝑜

[𝑛 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠)
󵄨󵄨󵄨󵄨𝑥 (𝜑 (𝑠))

󵄨󵄨󵄨󵄨] 𝑑𝑠

≤ 𝐷𝑎 (𝑡) exp (𝑀𝐿 (𝑡)) + 𝑁𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ 𝑎 (𝑡) ∫

𝑡

0

𝑏 (𝑠) 𝑎 (𝜑 (𝑠)) exp (𝑀𝐿 (𝜑 (𝑠))) 𝑑𝑠

≤ (𝐷 + 𝑁) 𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ (1 − 𝐷 − 𝑁) 𝑎 (𝑡) ∫

𝑡

0

𝑀𝑎 (𝑠) 𝑏 (𝑠)

× exp (𝑀𝐿 (𝑠)) exp (−𝑀𝐾) exp (𝑀𝐾) 𝑑𝑠

≤ (𝐷 + 𝑁) 𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

+ (1 − 𝐷 − 𝑁) 𝑎 (𝑡) exp (𝑀𝐿 (𝑡))

= 𝑎 (𝑡) exp (𝑀𝐿 (𝑡)) .

(11)

This shows that 𝐹 transforms the set 𝐺 into itself.
Next we show that 𝐹 is continuous on the set 𝐺.
To this end, fix 𝜀 > 0 and take 𝑥, 𝑦 ∈ 𝐺 such that ||𝑥 −

𝑦|| ≤ 𝜀. Next, choose arbitrary 𝑇 > 0. Using the fact that the
function 𝑣(𝑡, 𝑠, 𝑥) is uniformly continuous on the set [0, 𝑇]2 ×

[−𝛼(𝑇), 𝛼(𝑇)], where 𝛼(𝑇) = max{𝑎(𝜑(𝑡)) exp(𝑀𝐿(𝜑(𝑡))) :

𝑡 ∈ [0, 𝑇]}, for 𝑡 ∈ [0, 𝑇], we obtain
󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑣 (𝑡, 𝑠, 𝑥 (𝜑 (𝑠))) − 𝑣 (𝑡, 𝑠, 𝑦 (𝜑 (𝑠)))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝛽 (𝜀) ,

(12)

where 𝛽(𝜀) is a continuous function with the property
lim
𝜀→0

𝛽(𝜀) = 0.
Now, take 𝑡 ≥ 𝑇. Then we get

󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)
󵄨󵄨󵄨󵄨 [𝑎 (𝑡) exp (𝑀𝐿 (𝑡) + 𝑡)]

−1

≤ {|(𝐹𝑥) (𝑡)| +
󵄨󵄨󵄨󵄨(𝐹𝑦) (𝑡)

󵄨󵄨󵄨󵄨}

× [𝑎 (𝑡) exp (𝑀𝐿 (𝑡))]
−1

⋅ 𝑒
−𝑡

≤ 2𝑒
−𝑡
.

(13)

Hence, for 𝑇 sufficiently large, we have
󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

󵄨󵄨󵄨󵄨 𝑝 (𝑡) ≤ 𝜀 (14)

for 𝑡 ≥ 𝑇. Linking (12) and (14), we deduce that 𝐹 is
continuous on the set 𝐺.

The next essential step in our proof which enables us to
apply the Schauder fixed point theorem (Theorem 1) is to
show that the set 𝐹𝐺 is relatively compact in the space 𝐶

𝑝
.

To this end let us first observe that the inclusion 𝐹𝐺 ⊂ 𝐺 and
the description of 𝐺 imply the following estimate:

|(𝐹𝑥) (𝑡)| 𝑝 (𝑡) ≤ 𝑒
−𝑡
. (15)

This yields that

lim
𝑇→∞

{sup {|(𝐹𝑥) (𝑡)| 𝑝 (𝑡) : 𝑡 ≥ 𝑇}} = 0 (16)

uniformly with respect to the set 𝐺.
On the other hand, for fixed 𝜀 > 0, 𝑇 > 0 and for 𝑡, 𝑠 ∈

[0, 𝑇] such that |𝑡 − 𝑠| ≤ 𝜀, in view of our assumptions, for
𝑥 ∈ 𝐺, we derive the following estimate:

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)|

≤ |𝑑 (𝑡) − 𝑑 (𝑠)|

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑣 (𝑡, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏 − ∫

𝑠

0

𝑣 (𝑡, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑠

0

𝑣 (𝑡, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏 − ∫

𝑠

0

𝑣 (𝑠, 𝜏, 𝑥 (𝜑 (𝜏))) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜈
𝑇
(𝑑, 𝜀) + 𝜀max {𝑛 (𝑡, 𝜏) + 𝑎 (𝜏) 𝑏 (𝜏)

×𝑝 (𝜑 (𝜏)) : 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇}

+ 𝑇𝜈
𝑇
(𝑣 (𝜀, 𝑇, 𝛼 (𝑇))) ,

(17)

where we denoted
𝜈
𝑇
(𝑣 (𝜀, 𝑇, 𝛼 (𝑇)))

= sup {|𝑣 (𝑡, 𝑢, 𝑣) − 𝑣 (𝑠, 𝑢, 𝑣)| : 𝑡, 𝑠 ∈ [0, 𝑇] ,

|𝑡 − 𝑠| ≤ 𝜀, 𝑢 ∈ [0, 𝑇] , |𝑣| ≤ 𝛼 (𝑇)} .

(18)
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Taking into account the fact that lim
𝜀→0

𝜈
𝑇
(𝑑, 𝜀) =

lim
𝜀→0

𝜈
𝑇
(𝑣(𝜀, 𝑇, 𝛼(𝑇))) = 0, we infer that functions belong-

ing to the set 𝐹𝐺 are equicontinuous on each interval [0, 𝑇].
Combining this fact with (16), in view of Theorem 3, we
conclude that the set 𝐹𝐺 is relatively compact. Applying
Theorem 1, we complete the proof.

Another very useful fixed point theorem using the com-
pactness conditions is the well-known Krasnosel’skii fixed
point theorem [19].That theoremwas frequently modified by
researchers working in the fixed point theory (cf. [6, 7, 20]),
but it seems that the version due to Burton [21] is the most
appropriate to be used in applications.

Below we formulate that version.

Theorem 5. Let 𝑆 be a nonempty, closed, convex, and bounded
subset of the Banach space𝑋 and let𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝑆 →

𝑋 be two operators such that

(a) 𝐴 is a contraction, that is, there exists a constant 𝑘 ∈

[0, 1) such that ||𝐴𝑥 − 𝐴𝑦|| ≤ 𝑘||𝑥 − 𝑦|| for 𝑥, 𝑦 ∈ 𝑋,
(b) 𝐵 is completely continuous,
(c) 𝑥 = 𝐴𝑥 + 𝐵𝑦 ⇒ 𝑥 ∈ 𝑆 for all 𝑦 ∈ 𝑆.

Then the equation 𝐴𝑥 + 𝐵𝑥 = 𝑥 has a solution in 𝑆.

In order to show the applicability of Theorem 5, we will
consider the following nonlinear functional integral equation
[22]:

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , . . . , 𝑥 (𝛼

𝑛
(𝑡)))

+ ∫

𝛽(𝑡)

0

𝑔 (𝑡, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠))) 𝑑𝑠,

(19)

where 𝑡 ∈ R
+
. Here we assume that 𝑓 and 𝑔 are given

functions.
The above equation will be studied in the space 𝐵𝐶(R

+
)

consisting of all real functions defined, continuous, and
bounded on the interval R

+
and equipped with the usual

supremum norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ∈ R
+
} . (20)

Observe that the space 𝐵𝐶(R
+
) is a special case of the

previously considered space 𝐶
𝑝
with 𝑝(𝑡) = 1 for 𝑡 ∈

R
+
. This fact enables us to adapt the relative compactness

criterion contained inTheorem 3 for our further purposes.
In what follows we will impose the following require-

ments concerning the components involved in (19):

(i) The function 𝑓 : R
+
× R𝑛 → R is continuous and

there exist constants 𝑘
𝑖
∈ [0, 1) (𝑖 = 1, 2, . . . , 𝑛) such

that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) − 𝑓 (𝑡, 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)
󵄨󵄨󵄨󵄨 ≤

𝑛

∑

𝑖=1

𝑘
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑦
𝑖

󵄨󵄨󵄨󵄨

(21)

for all 𝑡 ∈ R
+
and for all (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), (𝑦
1
, 𝑦
2
,

. . . , 𝑦
𝑛
) ∈ R𝑛.

(ii) The function 𝑡 → 𝑓(𝑡, 0, . . . , 0) is bounded on R
+

with 𝐹
0
= sup{|𝑓(𝑡, 0, . . . , 0)| : 𝑡 ∈ R

+
}.

(iii) The functions 𝛼
𝑖
, 𝛾
𝑗

: R
+

→ R
+
are continuous

and 𝛼
𝑖
(𝑡) → ∞ as 𝑡 → ∞ (𝑖 = 1, 2, . . . , 𝑛; 𝑗 =

1, 2, . . . , 𝑚).
(iv) The function 𝛽 : R

+
→ R
+
is continuous.

(v) The function 𝑔 : R2
+
× R𝑚 → R is continuous and

there exist continuous functions 𝑞 : R2
+

→ R
+
and

𝑎, 𝑏 : R
+
→ R
+
such that

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥
1
, . . . , 𝑥

𝑚
)
󵄨󵄨󵄨󵄨 ≤ 𝑞 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 (22)

for all 𝑡, 𝑠 ∈ R
+
and (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
) ∈ R𝑚. Moreover,

we assume that

lim
𝑡→∞

∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠 = 0, lim
𝑡→∞

𝑎 (𝑡) ∫

𝛽(𝑡)

0

𝑏 (𝑠) 𝑑𝑠 = 0.

(23)

Now, let us observe that based on assumption (v), we
conclude that the functions 𝑣

1
, 𝑣
2
: R
+

→ R
+
defined by

the formulas

𝑣
1
(𝑡) = ∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠, 𝑣
2
(𝑡) = 𝑎 (𝑡) ∫

𝛽(𝑡)

0

𝑏 (𝑠) 𝑑𝑠 (24)

are continuous and bounded on R
+
. Obviously this implies

that the constants𝑀
1
,𝑀
2
defined as:

𝑀
𝑖
= sup {𝑣

𝑖
(𝑡) : 𝑡 ∈ R

+
} (𝑖 = 1, 2) (25)

are finite.
In order to formulate our last assumption, let us denote

𝑘 = ∑
𝑛

𝑖=1
𝑘
𝑖
, where the constants 𝑘

𝑖
(𝑖 = 1, 2, . . . , 𝑛) appear in

assumption (i).

(vi) 𝑘 + 𝑚𝑀
2
< 1.

Then we have the following result [22] which was announced
above.

Theorem 6. Under assumptions (i)–(vi), (19) has at least one
solution in the space 𝐵𝐶(R

+
). Moreover, solutions of (19) are

globally attractive.

Remark 7. In order to recall the concept of the global attrac-
tivitymentioned in the above theorem (cf. [22]), suppose that
Ω is a nonempty subset of the space 𝐵𝐶(R

+
) and 𝑄 : Ω →

𝐵𝐶(R
+
) is an operator. Consider the operator equation

𝑥 (𝑡) = (𝑄𝑥) (𝑡) , 𝑡 ∈ R
+
. (26)

We say that solutions of (26) are globally attractive if for
arbitrary solutions 𝑥, 𝑦 of this equation, we have that

lim
𝑡→∞

(𝑥 (𝑡) − 𝑦 (𝑡)) = 0. (27)

Let us mention that the above-defined concept was intro-
duced in [23, 24].
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Proof of Theorem 6. We provide only the sketch of the proof.
Consider the ball 𝐵

𝑟
in the space𝑋 = 𝐵𝐶(R

+
) centered at the

zero function 𝜃 andwith radius 𝑟 = (𝐹
0
+𝑀
1
)/[1−(𝑘+𝑚𝑀

2
)].

Next, define two mappings 𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝐵
𝑟
→ 𝑋 by

putting

(𝐴𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝛼
1
(𝑡)) , . . . , 𝑥 (𝛼

𝑛
(𝑡))) ,

(𝐵𝑥) (𝑡) = ∫

𝛽(𝑡)

0

𝑔 (𝑡, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠))) 𝑑𝑠,

(28)

for 𝑡 ∈ R
+
. Then (19) can be written in the form

𝑥 (𝑡) = (𝐴𝑥) (𝑡) + (𝐵𝑥) (𝑡) , 𝑡 ∈ R
+
. (29)

Notice that in view of assumptions (i)–(iii), the mapping
𝐴 is well defined, and for arbitrarily fixed function 𝑥 ∈ 𝑋,
the function 𝐴𝑥 is continuous and bounded on R

+
. Thus

𝐴 transforms 𝑋 into itself. Similarly, applying assumptions
(iii)–(v), we deduce that the function 𝐵𝑥 is continuous and
bounded onR

+
.Thismeans that𝐵 transforms the ball𝐵

𝑟
into

𝑋.
Now, we check that operators𝐴 and𝐵 satisfy assumptions

imposed in Theorem 5. To this end take 𝑥, 𝑦 ∈ 𝑋. Then, in
view of assumption (i), for a fixed 𝑡 ∈ R

+
, we get

󵄨󵄨󵄨󵄨(𝐴𝑥) (𝑡) − (𝐴𝑦) (𝑡)
󵄨󵄨󵄨󵄨 ≤

𝑛

∑

𝑖=1

𝑘
𝑖

󵄨󵄨󵄨󵄨𝑥 (𝛼
𝑖
(𝑡)) − 𝑦 (𝛼

𝑖
(𝑡))

󵄨󵄨󵄨󵄨

≤ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(30)

This implies that ||𝐴𝑥 − 𝐴𝑦|| ≤ 𝑘||𝑥 − 𝑦||, and in view of
assumption (vi), we infer that 𝐴 is a contraction on𝑋.

Next, we prove that𝐵 is completely continuous on the ball
𝐵
𝑟
. In order to show the indicated property of 𝐵, we fix 𝜀 > 0

and we take 𝑥, 𝑦 ∈ 𝐵
𝑟
with ||𝑥 − 𝑦|| ≤ 𝜀. Then, taking into

account our assumptions, we obtain

󵄨󵄨󵄨󵄨(𝐵𝑥) (𝑡) − (𝐵𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤ ∫

𝛽(𝑡)

0

[
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥 (𝛾

1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑦 (𝛾

1
(𝑠)) , . . . , 𝑦 (𝛾

𝑚
(𝑠)))

󵄨󵄨󵄨󵄨] 𝑑𝑠

≤ 2 (𝑣
1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡)) .

(31)

Hence, keeping inmind assumption (v), we deduce that there
exists 𝑇 > 0 such that 𝑣

1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡) ≤ 𝜀/2 for 𝑡 ≥ 𝑇.

Combining this fact with (31), we get
󵄨󵄨󵄨󵄨(𝐵𝑥) (𝑡) − (𝐵𝑦) (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝜀 (32)

for 𝑡 ≥ 𝑇.
Further, for an arbitrary 𝑡 ∈ [0, 𝑇], in the similar way, we

obtain

󵄨󵄨󵄨󵄨(𝐵𝑥) (𝑡) − (𝐵𝑦) (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

𝛽(𝑡)

0

𝜔
𝑇

𝑟
(𝑔, 𝜀) 𝑑𝑠 ≤ 𝛽

𝑇
𝜔
𝑇

𝑟
(𝑔, 𝜀) ,

(33)

where we denoted 𝛽
𝑇
= sup{𝛽(𝑡) : 𝑡 ∈ [0, 𝑇]} and

𝜔
𝑇

𝑟
(𝑔, 𝜀) = sup {󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)

−𝑔 (𝑡, 𝑠, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
)
󵄨󵄨󵄨󵄨 : 𝑡 ∈ [0, 𝑇] ,

𝑠 ∈ [0, 𝛽
𝑇
] , 𝑥
𝑖
, 𝑦
𝑖
∈ [−𝑟, 𝑟] ,

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑦
𝑖

󵄨󵄨󵄨󵄨 ≤ 𝜀 (𝑖 = 1, 2, . . . , 𝑚)} .

(34)

Keeping in mind the uniform continuity of the function 𝑔 on
the set [0, 𝑇]×[0, 𝛽

𝑇
]×[−𝑟, 𝑟]

𝑚, we deduce that𝜔𝑇
𝑟
(𝑔, 𝜀) → 0

as 𝜀 → 0. Hence, in view of (32) and (33), we conclude that
the operator 𝐵 is continuous on the ball 𝐵

𝑟
.

The boundedness of the operator 𝐵 is a consequence of
the inequality

|(𝐵𝑥) (𝑡)| ≤ 𝑣
1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡) (35)

for 𝑡 ∈ R
+
. To verify that the operator 𝐵 satisfies assumptions

of Theorem 3 adapted to the case of the space 𝐵𝐶(R
+
), fix

arbitrarily 𝜀 > 0. In view of assumption (v), we can choose
𝑇 > 0 such that 𝑣

1
(𝑡) + 𝑟𝑚𝑣

2
(𝑡) ≤ 𝜀 for 𝑡 ≥ 𝑇. Further, take

an arbitrary function 𝑥 ∈ 𝐵
𝑟
. Then, keeping in mind (35), for

𝑡 ≥ 𝑇, we infer that

|(𝐵𝑥) (𝑡)| ≤ 𝜀. (36)

Next, take arbitrary numbers 𝑡, 𝜏 ∈ [0, 𝑇] with |𝑡 − 𝜏| ≤ 𝜀.
Then we obtain the following estimate:

|(𝐵𝑥) (𝑡) − (𝐵𝑥) (𝜏)|

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

󵄨󵄨󵄨󵄨 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∫

𝛽(𝜏)

0

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

−𝑔 (𝜏, 𝑠, 𝑥 (𝛾
1
(𝑠)) , . . . , 𝑥 (𝛾

𝑚
(𝑠)))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

[𝑞 (𝑡, 𝑠) + 𝑎 (𝑡) 𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥 (𝛾
𝑖
(𝑠))

󵄨󵄨󵄨󵄨] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∫

𝛽(𝜏)

0

𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) 𝑑𝑠

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

𝑞 (𝑡, 𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑎 (𝑡)𝑚𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝛽(𝑡)

𝛽(𝜏)

𝑏 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝛽
𝑇
𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) ,

(37)

where we denoted

𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) = sup {󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑠, 𝑥

1
, . . . , 𝑥

𝑚
)

−𝑔 (𝜏, 𝑠, 𝑥
1
, . . . , 𝑥

𝑚
)
󵄨󵄨󵄨󵄨 : 𝑡, 𝜏 ∈ [0, 𝑇] ,

|𝑡 − 𝑠| ≤ 𝜀, 𝑠 ∈ [0, 𝛽
𝑇
] ,

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ≤ 𝑟, . . . ,

󵄨󵄨󵄨󵄨𝑥𝑚
󵄨󵄨󵄨󵄨 ≤ 𝑟} .

(38)
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From estimate (37), we get

|(𝐵𝑥) (𝑡) − (𝐵𝑥) (𝜏)|

≤ 𝑞
𝑇
𝜈
𝑇
(𝛽, 𝜀) + 𝑟𝑚𝑎

𝑇
𝑏
𝑇
𝜈
𝑇
(𝛽, 𝜀) + 𝛽

𝑇
𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) ,

(39)

where 𝑞
𝑇

= max{𝑞(𝑡, 𝑠) : 𝑡 ∈ [0, 𝑇], 𝑠 ∈ [0, 𝛽
𝑇
]}, 𝑎
𝑇

=

max{𝑎(𝑡) : 𝑡 ∈ [0, 𝑇]}, 𝑏
𝑇

= max{𝑏(𝑡) : 𝑡 ∈ [0, 𝛽
𝑇
]},

and 𝜈
𝑇
(𝛽, 𝜀) denotes the usual modulus of continuity of the

function 𝛽 on the interval [0, 𝑇].
Now, let us observe that in view of the standard properties

of the functions 𝛽 = 𝛽(𝑡), 𝑔 = 𝑔(𝑡, 𝑠, 𝑥
1
, . . . , 𝑥

𝑚
), we infer

that 𝜈𝑇(𝛽, 𝜀) → 0 and 𝜔
𝑇

1
(𝑔, 𝜀; 𝑟) → 0 as 𝜀 → 0. Hence,

taking into account the boundedness of the image 𝐵𝐵
𝑟
and

estimates (36) and (39), in view of Theorem 3, we conclude
that the set 𝐵𝐵

𝑟
is relatively compact in the space 𝐵𝐶(R

+
);

that is, 𝐵 is completely continuous on the ball 𝐵
𝑟
.

In what follows fix arbitrary 𝑥 ∈ 𝐵𝐶(R
+
) and assume

that the equality 𝑥 = 𝐴𝑥 + 𝐵𝑦 holds for some 𝑦 ∈ 𝐵
𝑟
. Then,

utilizing our assumptions, for a fixed 𝑡 ∈ R
+
, we get

|𝑥 (𝑡)| ≤ |(𝐴𝑥) (𝑡)| +
󵄨󵄨󵄨󵄨(𝐵𝑦) (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝛼

1
(𝑡)) , . . . , 𝑥 (𝛼

𝑛
(𝑡))) − 𝑓 (𝑡, 0, . . . , 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0, . . . , 0)

󵄨󵄨󵄨󵄨

+ ∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠 + 𝑚
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 𝑎 (𝑡) ∫

𝛽(𝑡)

0

𝑏 (𝑠) 𝑑𝑠

≤ 𝑘 ‖𝑥‖ + 𝐹
0
+𝑀
1
+ 𝑚𝑟𝑀

2
.

(40)

Hence we obtain

‖𝑥‖ ≤
𝐹
0
+𝑀
1
+ 𝑚𝑟𝑀

2

1 − 𝑘
. (41)

On the other hand, we have that 𝑟 = (𝐹
0
+𝑀
1
+ 𝑚𝑟𝑀

2
)/(1 −

𝑘). Thus ||𝑥|| ≤ 𝑟 or, equivalently, 𝑥 ∈ 𝐵
𝑟
. This shows that

assumption (c) of Theorem 5 is satisfied.
Finally, combining all of the above-established facts and

applying Theorem 5, we infer that there exists at least one
solution 𝑥 = 𝑥(𝑡) of (19).

The proof of the global attractivity of solutions of (19) is a
consequence of the estimate

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑖=1

𝑘
𝑖
max {󵄨󵄨󵄨󵄨𝑥 (𝛼

𝑖
(𝑡)) − 𝑦 (𝛼

𝑖
(𝑡))

󵄨󵄨󵄨󵄨 : 𝑖 = 1, 2, . . . , 𝑛}

+ 2∫

𝛽(𝑡)

0

𝑞 (𝑡, 𝑠) 𝑑𝑠

+ 𝑎 (𝑡) ∫

𝛽(𝑡)

0

(𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥 (𝛾
𝑖
(𝑠))

󵄨󵄨󵄨󵄨) 𝑑𝑠

+ 𝑎 (𝑡) ∫

𝛽(𝑡)

0

(𝑏 (𝑠)

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦 (𝛾
𝑖
(𝑠))

󵄨󵄨󵄨󵄨) 𝑑𝑠

≤ 𝑘max {󵄨󵄨󵄨󵄨𝑥 (𝛼
𝑖
(𝑡)) − 𝑦 (𝛼

𝑖
(𝑡))

󵄨󵄨󵄨󵄨 : 𝑖 = 1, 2, . . . , 𝑛}

+ 2𝑣
1
(𝑡) + 𝑚 (‖𝑥‖ +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) 𝑣2 (𝑡) ,

(42)

which is satisfied for arbitrary solutions 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) of
(19).

Hence we get

lim sup
𝑡→∞

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

≤ 𝑘max
1≤𝑖≤𝑛

{lim sup
𝑡→∞

󵄨󵄨󵄨󵄨𝑥 (𝛼
𝑖
(𝑡) − 𝑦 (𝛼

𝑖
(𝑡)))

󵄨󵄨󵄨󵄨}

+ 2lim sup
𝑡→∞

𝑣
1
(𝑡) + 𝑚 (‖𝑥‖ +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) lim sup
𝑡→∞

𝑣
2
(𝑡)

= 𝑘lim sup
𝑡→∞

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

(43)

which implies that lim sup
𝑡→∞

|𝑥(𝑡) − 𝑦(𝑡)| = lim
𝑡→∞

|𝑥(𝑡) −

𝑦(𝑡)| = 0. This means that the solutions of (19) are globally
attractive (cf. Remark 7).

It is worthwhile mentioning that in the literature one can
encounter other formulations of the Krasnosel’skii-Burton
fixed point theorem (cf. [6, 7, 20, 21]). In some of those
formulations and generalizations, there is used the concept
of a measure of noncompactness (both in strong and in weak
sense) and, simultaneously, the requirement of continuity
is replaced by the assumption of weak continuity or weak
sequential continuity of operators involved (cf. [6, 20], for
instance).

In what follows we pay our attention to another fixed
point theorem which uses the compactness argumentation.
Namely, that theorem was obtained by Schaefer in [25].

Subsequently that theorem was formulated in other ways
and we are going here to present two versions of that theorem
(cf. [11, 26]).

Theorem8. Let (𝐸, ||⋅||) be a normed space and let𝑇 : 𝐸 → 𝐸

be a continuous mapping which transforms bounded subsets of
𝐸 onto relatively compact ones. Then either

(i) the equation 𝑥 = 𝑇𝑥 has a solution

or

(ii) the set⋃
0≤𝜆≤1

{𝑥 ∈ 𝐸 : 𝑥 = 𝜆𝑇𝑥} is unbounded.

The below presented version of Schaefer fixed point
theorem seems to be more convenient in applications.

Theorem 9. Let 𝐸, || ⋅ || be a Banach space and let 𝑇 : 𝐸 → 𝐸

be a continuous compact mapping (i.e., 𝑇 is continuous and
𝑇 maps bounded subsets of 𝐸 onto relatively compact ones).
Moreover, one assumes that the set

⋃

0≤𝜆≤1

{𝑥 ∈ 𝐸 : 𝑥 = 𝜆𝑇𝑥} (44)

is bounded. Then 𝑇 has a fixed point.
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It is easily seen that Theorem 9 is a particular case of
Theorem 8.

Observe additionally, that Schaefer fixed point theorem
seems to be less convenient in applications than Schauder
fixed point theorem (cf. Theorems 1 and 2). Indeed, Schaefer
theorem requires a priori bound on utterly unknown solu-
tions of the operator equation 𝑥 = 𝜆𝑇𝑥 for 𝜆 ∈ [0, 1]. On the
other hand, the proof of Schaefer theorem requires the use of
the Schauder fixed point principle (cf. [27], for details).

It is worthwhile mentioning that an interesting result on
the existence of periodic solutions of an integral equation,
based on a generalization of Schaefer fixed point theorem,
may be found in [26].

3. Measures of Noncompactness and
Their Applications

Let us observe that in order to apply the fundamental fixed
point theorem based on compactness conditions, that is, the
Schauder fixed point theorem, say, the version of Theorem 2,
we are forced to find a convex and compact subset of a Banach
space 𝐸 which is transformed into itself by an operator 𝐹.
In general, it is a hard task to encounter a set of such a type
[16, 28]. On the other hand, if we apply Schauder fixed point
theorem formulated as Theorem 1, we have to prove that an
operator 𝐹 is completely continuous. This causes, in general,
that we have to impose rather strong assumptions on terms
involved in a considered operator equation.

In view of the above-mentioned difficulties starting from
seventies of the past century mathematicians working on
fixed point theory created the concept of the so-called
measure of noncompactness which allowed to overcome the
above-indicated troubles. Moreover, it turned out that the
use of the technique of measures of noncompactness allows
us also to obtain a certain characterization of solutions of
the investigated operator equations (functional, differential,
integral, etc.). Such a characterization is possible provided we
use the concept of a measure of noncompactness defined in
an appropriate axiomatic way.

It is worthwhile noticing that up to now there have
appeared a lot of various axiomatic definitions of the concept
of a measure of noncompactness. Some of those definitions
are very general and not convenient in practice. More
precisely, in order to apply such a definition, we are often
forced to impose some additional conditions on a measure
of noncompactness involved (cf. [8, 29]).

By these reasons it seems that the axiomatic definition of
the concept of a measure of noncompactness should be not
very general and should require satisfying such conditions
which enable the convenience of their use in concrete
applications.

Below we present axiomatics which seems to satisfy the
above-indicated requirements. That axiomatics was intro-
duced by Banaś and Goebel in 1980 [10].

In order to recall that axiomatics, let us denote by M
𝐸

the family of all nonempty and bounded subsets of a Banach
space 𝐸 and by N

𝐸
its subfamily consisting of relatively

compact sets. Moreover, let 𝐵(𝑥, 𝑟) stand for the ball with the

center at 𝑥 and with radius 𝑟. We write 𝐵
𝑟
to denote the ball

𝐵(𝜃, 𝑟), where 𝜃 is the zero element in 𝐸. If 𝑋 is a subset of
𝐸, we write 𝑋, Conv𝑋 to denote the closure and the convex
closure of 𝑋, respectively. The standard algebraic operations
on sets will be denoted by𝑋 + 𝑌 and 𝜆𝑋, for 𝜆 ∈ R.

As we announced above, we accept the following defini-
tion of the concept of a measure of noncompactness [10].

Definition 10. A function 𝜇 : M
𝐸

→ R
+
= [0,∞) is said to

be ameasure of noncompactness in the space𝐸 if the following
conditions are satisfied.

(1
𝑜
) The family ker 𝜇 = {𝑋 ∈ M

𝐸
: 𝜇(𝑋) = 0} is nonempty

and ker 𝜇 ⊂ N.

(2
𝑜
) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).

(3
𝑜
) 𝜇(𝑋) = 𝜇(Conv𝑋) = 𝜇(𝑋).

(4
𝑜
) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+(1−𝜆)𝜇(𝑋) for 𝜆 ∈ [0, 1].

(5
𝑜
) If (𝑋

𝑛
) is a sequence of closed sets fromM

𝐸
such that

𝑋
𝑛+1

⊂ 𝑋
𝑛
for 𝑛 = 1, 2, . . . and if lim

𝑛→∞
𝜇(𝑋
𝑛
) = 0,

then the set𝑋
∞

= ⋂
∞

𝑛=1
𝑋
𝑛
is nonempty.

Let us pay attention to the fact that from axiom (5
𝑜
)

we infer that 𝜇(𝑋
∞
) ≤ 𝜇(𝑋

𝑛
) for any 𝑛 = 1, 2, . . .. This

implies that 𝜇(𝑋
∞
) = 0. Thus𝑋

∞
belongs to the family ker 𝜇

described in axiom (1
𝑜
). The family ker 𝜇 is called the kernel

of the measure of noncompactness 𝜇.
The property of the measure of noncompactness 𝜇 men-

tioned above plays a very important role in applications.
With the help of the concept of a measure of noncom-

pactness, we can formulate the following useful fixed point
theorem [10] which is called the fixed point theoremofDarbo
type.

Theorem 11. Let Ω be a nonempty, bounded, closed, and
convex subset of a Banach space 𝐸 and let 𝐹 : Ω → Ω be
a continuous operator which is a contraction with respect to a
measure of noncompactness 𝜇; that is, there exists a constant 𝑘,
𝑘 ∈ [0, 1), such that 𝜇(𝐹𝑋) ≤ 𝑘𝜇(𝑋) for any nonempty subset
𝑋 of the setΩ. Then the operator 𝐹 has at least one fixed point
in the set Ω.

In the sequel we show an example of the applicability
of the technique of measures of noncompactness expressed
by Theorem 11 in proving the existence of solutions of the
operator equations.

Namely, we will work on the Banach space 𝐶[𝑎, 𝑏]

consisting of real functions defined and continuous on the
interval [𝑎, 𝑏] and equipped with the standard maximum
norm. For sake of simplicity, we will assume that [𝑎, 𝑏] =

[0, 1] = 𝐼, so the space on question can be denoted by 𝐶(𝐼).
One of the most important and handy measures of

noncompactness in the space 𝐶(𝐼) can be defined in the way
presented below [10].

In order to present this definition, take an arbitrary set
𝑋 ∈ M

𝐶(𝐼)
. For 𝑥 ∈ 𝑋 and for a given 𝜀 > 0, let us put

𝜔 (𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ 𝐼, |𝑡 − 𝑠| ≤ 𝜀} . (45)
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Next, let us define

𝜔 (𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
0
(𝑋) = lim

𝜀→0

𝜔 (𝑋, 𝜀) .
(46)

It may be shown that the function 𝜔
0
(𝑋) is the measure of

noncompactness in the space 𝐶(𝐼) (cf. [10]). This measure
has also some additional properties. For example, 𝜔

0
(𝜆𝑋) =

|𝜆|𝜔
0
(𝑋) and 𝜔

0
(𝑋 + 𝑌) ≤ 𝜔

0
(𝑋) + 𝜔

0
(𝑌) provided 𝑋,𝑌 ∈

M
𝐶(𝐼)

and 𝜆 ∈ R [10].
In what follows we will consider the nonlinear Volterra

singular integral equation having the form

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑎 (𝑡))) + (𝐺𝑥) (𝑡) ∫

𝑡

0

𝑓
2
(𝑡, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠,

(47)

where 𝑡 ∈ 𝐼 = [0, 1], 𝑎 : 𝐼 → 𝐼 is a continuous function, and
𝐺, 𝑄 are operators acting continuously from the space 𝐶(𝐼)

into itself. Apart from this, we assume that the function 𝑓
2

has the form

𝑓
2
(𝑡, 𝑠) = 𝑘 (𝑡, 𝑠) 𝑔 (𝑡, 𝑠) , (48)

where 𝑘 : Δ → R is continuous and 𝑔 is monotonic with
respect to the first variable and may be discontinuous on the
triangle Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1}.

Equation (47) will be considered in the space 𝐶(𝐼) under
the following assumptions (cf. [30]).

(i) 𝑎 : 𝐼 → 𝐼 is a continuous function.
(ii) The function 𝑓

1
: 𝐼 ×R ×R → R is continuous and

there exists a nonnegative constant 𝑝 such that

󵄨󵄨󵄨󵄨𝑓1 (𝑡, 𝑥1, 𝑦1) − 𝑓
1
(𝑡, 𝑥
2
, 𝑦
2
)
󵄨󵄨󵄨󵄨 ≤ 𝑝max {󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨}

(49)

for any 𝑡 ∈ 𝐼 and for all 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R.

(iii) The operator 𝐺 transforms continuously the space
𝐶(𝐼) into itself and there exists a nonnegative constant
𝑞 such that 𝜔

0
(𝐺𝑋) ≤ 𝑞𝜔

0
(𝑋) for any set 𝑋 ∈ M

𝐶(𝐼)
,

where 𝜔
0
is the measure of noncompactness defined

by (46).
(iv) There exists a nondecreasing function 𝜑 : R

+
→ R
+

such that ||𝐺𝑥|| ≤ 𝜑(||𝑥||) for any 𝑥 ∈ 𝐶(𝐼).
(v) The operator𝑄 acts continuously from the space𝐶(𝐼)

into itself and there exists a nondecreasing function
Ψ : R

+
→ R

+
such that ||𝑄𝑥|| ≤ Ψ(||𝑥||) for any

𝑥 ∈ 𝐶(𝐼).
(vi) 𝑓

2
: Δ → R has the form (48), where the function

𝑘 : Δ → R is continuous.
(vii) The function 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R

+
occurring in

the decomposition (48) is monotonic with respect to
𝑡 (on the interval [𝑠, 1]), and for any fixed 𝑡 ∈ 𝐼, the
function 𝑠 → 𝑔(𝑡, 𝑠) is Lebesgue integrable over the
interval [0, 𝑡]. Moreover, for every 𝜀 > 0, there exists

𝛿 > 0 such that for all 𝑡
1
, 𝑡
2
∈ 𝐼 with 𝑡

1
< 𝑡
2
and

𝑡
2
− 𝑡
1
≤ 𝛿 the following inequalities are satisfied:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀,

∫

𝑡
2

𝑡
1

𝑔 (𝑡
2
, 𝑠) 𝑑𝑠 ≤ 𝜀.

(50)

The main result concerning (47), which we are going to
present now, will be preceded by a few remarks and lemmas
(cf. [30]). In order to present these remarks and lemmas, let
us consider the function ℎ : 𝐼 → R

+
defined by the formula

ℎ (𝑡) = ∫

𝑡

0

𝑔 (𝑡, 𝑠) 𝑑𝑠. (51)

In view of assumption (vii), this function is well defined.

Lemma 12. Under assumption (vii), the function ℎ is continu-
ous on the interval 𝐼.

For proof, we refer to [30].
In order to present the last assumptions needed further

on, let us define the constants 𝑘, 𝑓
1
, ℎ by putting

𝑘 = sup {|𝑘 (𝑡, 𝑠)| : (𝑡, 𝑠) ∈ Δ} ,

𝑓
1
= sup {󵄨󵄨󵄨󵄨𝑓1 (𝑡, 0, 0)

󵄨󵄨󵄨󵄨 : 𝑡 ∈ 𝐼} ,

ℎ = sup {ℎ (𝑡) : 𝑡 ∈ 𝐼} .

(52)

The constants 𝑘 and 𝑓
1
are finite in view of assumptions (vi)

and (ii), while the fact that ℎ < ∞ is a consequence of
assumption (vii) and Lemma 12.

Now, we formulate the announced assumption.

(viii) There exists a positive solution 𝑟
0
of the inequality

𝑝𝑟 + 𝑓
1
+ 𝑘ℎ𝜑 (𝑟)Ψ (𝑟) ≤ 𝑟 (53)

such that 𝑝 + 𝑘ℎ𝑞Ψ(𝑟
0
) < 1.

For further purposes, we definite operators correspond-
ing to (47) and defined on the space𝐶(𝐼) in the followingway:

(𝐹
1
𝑥) (𝑡) = 𝑓

1
(𝑡, 𝑥 (𝑡) , 𝑥 (𝛼 (𝑡))) ,

(𝐹
2
𝑥) (𝑡) = ∫

𝑡

0

𝑓
2
(𝑡, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠,

(𝐹𝑥) (𝑡) = (𝐹
1
𝑥) (𝑡) + (𝐺𝑥) (𝑡) (𝐹

2
𝑥) (𝑡) ,

(54)
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for 𝑡 ∈ 𝐼. Apart from this, we introduce two functions𝑀 and
𝑁 defined on R

+
by the formulas

𝑀(𝜀) = sup{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑔)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

: 𝑡
1
, 𝑡
2
∈ 𝐼,

𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} ,

(55)

𝑁(𝜀) = sup{∫
𝑡
2

𝑡
1

𝑔 (𝑡
2
, 𝑠) 𝑑𝑠 : 𝑡

1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} .

(56)

Notice that in view of assumption (vii), we have that𝑀(𝜀) →

0 and𝑁(𝜀) → 0 as 𝜀 → 0.
Now, we can state the following result.

Lemma 13. Under assumptions (i)–(vii), the operator 𝐹 trans-
forms continuously the space 𝐶(𝐼) into itself.

Proof. Fix a function 𝑥 ∈ 𝐶(𝐼). Then 𝐹
1
𝑥 ∈ 𝐶(𝐼), which is a

consequence of the properties of the so-called superposition
operator [9]. Further, for arbitrary functions 𝑥, 𝑦 ∈ 𝐶(𝐼), in
virtue of assumption (ii), for a fixed 𝑡 ∈ 𝐼, we obtain

󵄨󵄨󵄨󵄨(𝐹1𝑥) (𝑡) − (𝐹
1
𝑦) (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑝max {󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥 (𝑎 (𝑡)) − 𝑦 (𝑎 (𝑡))

󵄨󵄨󵄨󵄨} .

(57)

This estimate in combination with assumption (i) yields

󵄩󵄩󵄩󵄩𝐹1𝑥 − 𝐹
1
𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑝

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (58)

Hence we conclude that 𝐹
1
acts continuously from the space

𝐶(𝐼) into itself.
Next, fix 𝑥 ∈ 𝐶(𝐼) and 𝜀 > 0. Take 𝑡

1
, 𝑡
2
∈ 𝐼 such that

|𝑡
2
− 𝑡
1
| ≤ 𝜀. Without loss of generality, we may assume that

𝑡
1
≤ 𝑡
2
. Then, based on the imposed assumptions, we derive

the following estimate:

󵄨󵄨󵄨󵄨(𝐹2𝑥) (𝑡2) − (𝐹
2
𝑥) (𝑡
1
)
󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
2

0

𝑘 (𝑡
2
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

−∫

𝑡
1

0

𝑘 (𝑡
2
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

0

𝑘 (𝑡
2
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

−∫

𝑡
1

0

𝑘 (𝑡
1
, 𝑠) 𝑔 (𝑡

2
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

0

𝑘 (𝑡
1
, 𝑠) 𝑔 (𝑡

2
, s) (𝑄𝑥) (𝑠) 𝑑𝑠

−∫

𝑡
1

0

𝑘 (𝑡
1
, 𝑠) 𝑔 (𝑡

1
, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨𝑘 (𝑡2, 𝑠)
󵄨󵄨󵄨󵄨 𝑔 (𝑡
2
, 𝑠) |(𝑄𝑥) (𝑠)| 𝑑𝑠

+ ∫

𝑡
1

0

󵄨󵄨󵄨󵄨𝑘 (𝑡2, 𝑠) − 𝑘 (𝑡
1
, 𝑠)

󵄨󵄨󵄨󵄨 𝑔 (𝑡
2
, 𝑠) |(𝑄𝑥) (𝑠)| 𝑑𝑠

+ ∫

𝑡
1

0

󵄨󵄨󵄨󵄨𝑘 (𝑡1, 𝑠)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)

󵄨󵄨󵄨󵄨 |(𝑄𝑥) (𝑠)| 𝑑𝑠

≤ 𝑘Ψ (‖𝑥‖)𝑁 (𝜀) + 𝜔
1
(𝑘, 𝜀) Ψ (‖𝑥‖) ∫

𝑡
2

0

𝑔 (𝑡
2
, 𝑠) 𝑑𝑠

+ 𝑘Ψ (‖𝑥‖) ∫

𝑡
1

0

󵄨󵄨󵄨󵄨𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠,

(59)

where we denoted

𝜔
1
(𝑘, 𝜀) = sup {󵄨󵄨󵄨󵄨𝑘 (𝑡2, 𝑠) − 𝑘 (𝑡

1
, 𝑠)

󵄨󵄨󵄨󵄨 :

(𝑡
1
, 𝑠) , (𝑡

2
, 𝑠) ∈ Δ,

󵄨󵄨󵄨󵄨𝑡2 − 𝑡
1

󵄨󵄨󵄨󵄨 ≤ 𝜀} .

(60)

Since the function 𝑡 → 𝑔(𝑡, 𝑠) is assumed to be monotonic,
by assumption (vii) we get

∫

𝑡
1

0

󵄨󵄨󵄨󵄨𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(61)

This fact in conjunction with the above-obtained estimate
yields

𝜔 (𝐹
2
𝑥, 𝜀) ≤ 𝑘Ψ (‖𝑥‖)𝑁 (𝜀) + ℎΨ (‖𝑥‖) 𝜔

1
(𝑘, 𝜀)

+ 𝑘Ψ (‖𝑥‖)𝑀 (𝜀) ,

(62)

where the symbol 𝜔(𝑦, 𝜀) denotes the modulus of continuity
of a function 𝑦 ∈ 𝐶(𝐼).

Further observe that 𝜔
1
(𝑘, 𝜀) → 0 as 𝜀 → 0, which is

an immediate consequence of the uniform continuity of the
function 𝑘 on the triangle Δ. Combining this fact with the
properties of the functions 𝑀(𝜀) and 𝑁(𝜀) and taking into
account (62), we infer that𝐹

2
𝑥 ∈ 𝐶(𝐼). Consequently, keeping

in mind that 𝐹
1

: 𝐶(𝐼) → 𝐶(𝐼) and assumption (iii), we
conclude that the operator 𝐹 is a self-mapping of the space
𝐶(𝐼).

In order to show that 𝐹 is continuous on 𝐶(𝐼), fix
arbitrarily 𝑥

0
∈ 𝐶(𝐼) and 𝜀 > 0. Next, take 𝑥 ∈ 𝐶(𝐼) such

that ||𝑥 − 𝑥
0
|| ≤ 𝜀. Then, for a fixed 𝑡 ∈ 𝐼, we get

󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡) − (𝐹𝑥
0
) (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨(𝐹1𝑥) (𝑡) − (𝐹

1
𝑥
0
) (𝑡)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝐺𝑥) (𝑡) (𝐹2𝑥) (𝑡) − (𝐺𝑥

0
) (𝑡) (𝐹

2
𝑥
0
) (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝐹1𝑥 − 𝐹

1
𝑥
0

󵄩󵄩󵄩󵄩 + ‖𝐺𝑥‖
󵄨󵄨󵄨󵄨(𝐹2𝑥) (𝑡) − (𝐹

2
𝑥
0
) (𝑡)

󵄨󵄨󵄨󵄨

+
󵄩󵄩󵄩󵄩𝐹2𝑥0

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐺𝑥 − 𝐺𝑥
0

󵄩󵄩󵄩󵄩 .

(63)
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On the other hand, we have the following estimate:
󵄨󵄨󵄨󵄨(𝐹2𝑥) (𝑡) − (𝐹

2
𝑥
0
) (𝑡)

󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

|𝑘 (𝑡, 𝑠)| 𝑔 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨(𝑄𝑥) (𝑠) − (𝑄𝑥

0
) (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑘 (∫

𝑡

0

𝑔 (𝑡, 𝑠) 𝑑𝑠)
󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑥

0

󵄩󵄩󵄩󵄩

≤ 𝑘ℎ
󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑥

0

󵄩󵄩󵄩󵄩 .

(64)

Similarly, we obtain

󵄨󵄨󵄨󵄨(𝐹2𝑥0) (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑘 (∫

𝑡

0

𝑔 (𝑡, 𝑠) 𝑑𝑠)
󵄩󵄩󵄩󵄩𝑄𝑥
0

󵄩󵄩󵄩󵄩 ≤ 𝑘ℎ
󵄩󵄩󵄩󵄩𝑄𝑥
0

󵄩󵄩󵄩󵄩 ,
(65)

and consequently

󵄩󵄩󵄩󵄩𝐹2𝑥0
󵄩󵄩󵄩󵄩 ≤ 𝑘ℎ

󵄩󵄩󵄩󵄩𝑄𝑥
0

󵄩󵄩󵄩󵄩 .
(66)

Next, linking (63)–(66) and (58), we obtain the following
estimate:

󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑥
0

󵄩󵄩󵄩󵄩 ≤ 𝑝
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩 + ‖𝐺𝑥‖ 𝑘ℎ
󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑥

0

󵄩󵄩󵄩󵄩

+ 𝑘ℎ
󵄩󵄩󵄩󵄩𝐺𝑥 − 𝐺𝑥

0

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥
0

󵄩󵄩󵄩󵄩 .

(67)

Further, taking into account assumptions (iv) and (v), we
derive the following inequality

󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑥
0

󵄩󵄩󵄩󵄩 ≤ 𝑝𝜀 + 𝜑 (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝜀) 𝑘ℎ
󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑥

0

󵄩󵄩󵄩󵄩

+ 𝑘ℎΨ (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝐺𝑥 − 𝐺𝑥

0

󵄩󵄩󵄩󵄩 .

(68)

Finally, in view of the continuity of the operators 𝐺 and 𝑄

(cf. assumptions (iii) and (v)), we deduce that operator 𝐹 is
continuous on the space 𝐶(𝐼). The proof is complete.

Now, we can formulate the last result concerning (47) (cf.
[30]).

Theorem 14. Under assumptions (i)–(viii), (47) has at least
one solution in the space 𝐶(𝐼).

Proof. Fix 𝑥 ∈ 𝐶(𝐼) and 𝑡 ∈ 𝐼. Then, evaluating similarly as in
the proof of Lemma 13, we get

|(𝐹𝑥) (𝑡)| ≤
󵄨󵄨󵄨󵄨𝑓1 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑎 (𝑡))) − 𝑓

1
(𝑡, 0, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓1 (𝑡, 0, 0)

󵄨󵄨󵄨󵄨

+ |𝐺𝑥 (𝑡)|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑔 (𝑡, 𝑠) (𝑄𝑥) (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑓
1
+ 𝑝 ‖𝑥‖ + 𝑘ℎ𝜑 (‖𝑥‖)Ψ (‖𝑥‖) .

(69)

Hence, we obtain

‖𝐹𝑥‖ ≤ 𝑓
1
+ 𝑝 ‖𝑥‖ + 𝑘ℎ𝜑 (‖𝑥‖)Ψ (‖𝑥‖) . (70)

From the above inequality and assumption (viii), we infer that
there exists a number 𝑟

0
> 0 such that the operator 𝐹 maps

the ball 𝐵
𝑟
0

into itself and 𝑝 + 𝑘ℎ𝑞Ψ(𝑟
0
) < 1. Moreover, by

Lemma 13, we have that 𝐹 is continuous on the ball 𝐵
𝑟
0

.
Further on, take a nonempty subset𝑋 of the ball𝐵

𝑟
0

and a
number 𝜀 > 0.Then, for an arbitrary 𝑥 ∈ 𝑋 and 𝑡

1
, 𝑡
2
∈ 𝐼with

|𝑡
2
−𝑡
1
| ≤ 𝜀, in view of (66) and the imposed assumptions, we

obtain
󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡2) − (𝐹𝑥) (𝑡

1
)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓1 (𝑡2, 𝑥 (𝑡

2
) , 𝑥 (𝑎 (𝑡

2
)))

−𝑓
1
(𝑡
1
, 𝑥 (𝑡
2
) , 𝑥 (𝑎 (𝑡

2
)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓1 (𝑡1, 𝑥 (𝑡

2
) , 𝑥 (𝑎 (𝑡

2
)))

−𝑓
1
(𝑡
1
, 𝑥 (𝑡
1
) , 𝑥 (𝑎 (𝑡

1
)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝐹2𝑥) (𝑡2)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨(𝐺𝑥) (𝑡2) − (𝐺𝑥) (𝑡
1
)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝐺𝑥) (𝑡1)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨(𝐹2𝑥) (𝑡2) − (𝐹
2
𝑥) (𝑡
1
)
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑟
0

(𝑓
1
, 𝜀) + 𝑝max {󵄨󵄨󵄨󵄨𝑥 (𝑡

2
) − 𝑥 (𝑡

1
)
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑥 (𝑎 (𝑡
2
)) − 𝑥 (𝑎 (𝑡

1
))
󵄨󵄨󵄨󵄨}

+ 𝑘ℎΨ (𝑟
0
) 𝜔 (𝐺𝑥, 𝜀) + 𝜑 (𝑟

0
) 𝜔 (𝐹

2
𝑥, 𝜀) ,

(71)

where we denoted

𝜔
𝑟
0

(𝑓
1
, 𝜀) = sup {󵄨󵄨󵄨󵄨𝑓1 (𝑡2, 𝑥, 𝑦) − 𝑓

1
(𝑡
1
, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨 : 𝑡1, 𝑡2 ∈ 𝐼,

󵄨󵄨󵄨󵄨𝑡2 − 𝑡
1

󵄨󵄨󵄨󵄨 ≤ 𝜀, 𝑥, 𝑦 ∈ [−𝑟
0
, 𝑟
0
]} .

(72)

Hence, in virtue of (62), we deduce the estimate

𝜔 (𝐹𝑥, 𝜀) ≤ 𝜔
𝑟
0

(𝑓
1
, 𝜀) + 𝑝max {𝜔 (𝑥, 𝜀) , 𝜔 (𝑥, 𝜔 (𝑎, 𝜀))}

+ 𝑘ℎΨ (𝑟
0
) 𝜔 (𝐺𝑥, 𝜀)

+ 𝜑 (𝑟
0
) Ψ (𝑟
0
) [𝑘𝑁 (𝜀) + ℎ𝜔

1
(𝑘, 𝜀) + 𝑘𝑀 (𝜀)] .

(73)

Finally, taking into account the uniform continuity of the
function 𝑓

1
on the set 𝐼 × [−𝑟

0
, 𝑟
0
]
2 and the properties of the

functions 𝑘(𝑡, 𝑠), 𝑎(𝑡), 𝑀(𝜀), and 𝑁(𝜀) and keeping in mind
(46), we obtain

𝜔
0
(𝐹𝑋) ≤ 𝑝𝜔

0
(𝑋) + 𝑘ℎΨ (𝑟

0
) 𝜔
0
(𝐺𝑋) . (74)

Linking this estimate with assumption (iii), we get

𝜔
0
(𝐹𝑋) ≤ (𝑝 + 𝑘ℎ𝑞Ψ (𝑟

0
)) 𝜔
0
(𝑋) . (75)

The use of Theorem 11 completes the proof.

4. Existence Results Concerning the Theory of
Differential Equations in Banach Spaces

In this section, we are going to present some classical results
concerning the theory of ordinary differential equations in
Banach space. We focus on this part of that theory in a which
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the technique associated with measures of noncompactness
is used as the main tool in proving results on the existence of
solutions of the initial value problems for ordinary differential
equations.Our presentation is basedmainly on the papers [31,
32] and the monograph [33].

The theory of ordinary differential equations in Banach
spaces was initiated by the famous example of Dieudonné
[34], who showed that in an infinite-dimensional Banach
space, the classical Peano existence theorem is no longer true.
More precisely, Dieudonné showed that if we consider the
ordinary differential equation

𝑥
󸀠
= 𝑓 (𝑡, 𝑥) (76)

with the initial condition

𝑥 (0) = 𝑥
0
, (77)

where 𝑓 : [0, 𝑇] × 𝐵(𝑥
0
, 𝑟) → 𝐸 and 𝐸 is an infinite-dimen-

sional Banach space, then the continuity of 𝑓 (and even
uniform continuity) does not guarantee the existence of
solutions of problem (76)-(77).

In light of the example of Dieudonné, it is clear that in
order to ensure the existence of solutions of (76)-(77), it is
necessary to add some extra conditions. The first results in
this direction were obtained by Kisyński [35], Olech [36], and
Wa ̇zewski [37] in the years 1959-1960. In order to formulate
those results, we need to introduce the concept of the so-
called Kamke comparison function (cf. [38, 39]).

To this end, assume that 𝑇 is a fixed number and denote
𝐽 = [0, 𝑇], 𝐽

0
= (0, 𝑇]. Further, assume that Ω is a nonempty

open subset of R𝑛 and 𝑥
0
is a fixed element of Ω. Let 𝑓 : 𝐽 ×

Ω → R𝑛 be a given function.

Definition 15. A function 𝑤 : 𝐽 × R
+

→ R
+
(or 𝑤 : 𝐽

0
×

R
+

→ R
+
) is called a Kamke comparison function provided

the inequality
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝑤 (𝑡,
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) (78)

for 𝑥, 𝑦 ∈ Ω and 𝑡 ∈ 𝐽 (or 𝑡 ∈ 𝐽
0
), together with some

additional assumptions concerning the function 𝑤, guaran-
tees that problem (76)-(77) has at most one local solution.

In the literature, one can encounter miscellaneous classes
of Kamke comparison functions (cf. [33, 39]). We will not
describe those classes, but let us only mention that they are
mostly associated with the differential equation 𝑢

󸀠
= 𝑤(𝑡, 𝑢)

with initial condition 𝑢(0) = 0 or the integral inequality
𝑢(𝑡) ≤ ∫

𝑡

0
𝑤(𝑠, 𝑢(𝑠))𝑑𝑠 for 𝑡 ∈ 𝐽

0
with initial condition

lim
𝑡→0

𝑢(𝑡)/𝑡 = lim
𝑡→0

𝑢(𝑡) = 0. It is also worthwhile
recalling that the classical Lipschitz or Nagumo conditions
may serve as Kamke comparison functions [39].

The above-mentioned results due to Kisyński et al. [35–
37] assert that if 𝑓 : 𝐽 × 𝐵(𝑥

0
, 𝑟) → 𝐸 is a continuous

function satisfying condition (78) with an appropriate Kamke
comparison function, then problem (76)-(77) has exactly one
local solution.

Observe that the natural translation of inequality (78) in
terms of measures of noncompactness has the form

𝜇 (𝑓 (𝑡, 𝑋)) ≤ 𝑤 (𝑡, 𝜇 (𝑋)) , (79)

where 𝑋 denotes an arbitrary nonempty subset of the ball
𝐵(𝑥
0
, 𝑟). The first result with the use of condition (79) for

𝑤(𝑡, 𝑢) = 𝐶𝑢 (𝐶 is a constant) was obtained by Ambrosetti
[40]. After the result of Ambrosetti, there have appeared a
lot of papers containing existence results concerning problem
(76)-(77) (cf. [41–44]) with the use of condition (79) and
involving various types of Kamke comparison functions. It
turned out that generalizations of existence results concern-
ing problem (76)-(77) with the use of more and more general
Kamke comparison functions are, in fact, only apparent gen-
eralizations [45], since the so-called Bompiani comparison
function is sufficient to give the most general result in the
mentioned direction.

On the other hand, we can generalize existence results
involving a condition like (79) taking general measures of
noncompactness [31, 32]. Below we present a result coming
from [32] which seems to be the most general with respect to
taking the most general measure of noncompactness.

In the beginning, let us assume that 𝜇 is a measure of
noncompactness defined on a Banach space 𝐸. Denote by 𝐸

𝜇

the set defined by the equality

𝐸
𝜇
= {𝑥 ∈ 𝐸 : {𝑥} ∈ ker 𝜇} . (80)

The set 𝐸
𝜇
will be called the kernel set of a measure 𝜇. Taking

into account Definition 10 and some properties of a measure
of noncompactness (cf. [10]), it is easily seen that𝐸

𝜇
is a closed

and convex subset of the space 𝐸.
In the case when we consider the so-called sublinear

measure of noncompactness [10], that is, a measure of non-
compactness 𝜇 which additionally satisfies the following two
conditions:

(6
𝑜
) 𝜇(𝑋 + 𝑌) ≤ 𝜇(𝑋) + 𝜇(𝑌),

(7
𝑜
) 𝜇(𝜆𝑋) = |𝜆|𝜇(𝑋) for 𝜆 ∈ R,

then the kernel set 𝐸
𝜇
forms a closed linear subspace of the

space 𝐸.
Further on, assume that 𝜇 is an arbitrary measure of

noncompactness in the Banach space 𝐸. Let 𝑟 > 0 be a
fixed number and let us fix 𝑥

0
∈ 𝐸
𝜇
. Next, assume that

𝑓 : 𝐽 × 𝐵(𝑥
0
, 𝑟) → 𝐸 (where 𝐽 = [0, 𝑇]) is a given uniformly

continuous and bounded function; say, ||𝑓(𝑡, 𝑥)|| ≤ 𝐴.
Moreover, assume that 𝑓 satisfies the following compari-

son condition of Kamke type:

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋)) ≤ 𝑤 (𝑡, 𝜇 (𝑋)) (81)

for any nonempty subset𝑋 of the ball 𝐵(𝑥
0
, 𝑟) and for almost

all 𝑡 ∈ 𝐽.
Here we will assume that the function 𝑤(𝑡, 𝑢) = 𝑤 :

𝐽
0
× R
+

→ R
+
(𝐽
0
= (0, 𝑇]) is continuous with respect to

𝑢 for any 𝑡 and measurable with respect to 𝑡 for each 𝑢. Apart
from this, 𝑤(𝑡, 0) = 0 and the unique solution of the integral
inequality

𝑢 (𝑡) ≤ ∫

𝑡

0

𝑤 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 (𝑡 ∈ 𝐽
0
) (82)

such that lim
𝑡→0

𝑢(𝑡)/𝑡 = lim
𝑡→0

𝑢(𝑡) = 0, is 𝑢 ≡ 0.
The following formulated result comes from [32].
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Theorem 16. Under the above assumptions, if additionally
sup{𝑡+𝑎(𝑡) : 𝑡 ∈ 𝐽} ≤ 1, where 𝑎(𝑡) = sup{||𝑓(0, 𝑥

0
)−𝑓(𝑠, 𝑥)|| :

𝑠 ≤ 𝑡, ||𝑥 − 𝑥
0
|| ≤ 𝐴𝑠} and 𝐴 is a positive constant such that

𝐴𝑇 ≤ 𝑟, the initial value problem (76)-(77) has at least one
local solution 𝑥 = 𝑥(𝑡) such that 𝑥(𝑡) ∈ 𝐸

𝜇
for 𝑡 ∈ 𝐽.

The proof of the above theorem is very involved and is
therefore omitted (cf. [32, 33]). We restrict ourselves to give a
few remarks.

At first, let us notice that in the case when 𝜇 is a sublinear
measure of noncompactness, condition (81) is reduced to the
classical one expressed by (79) provided we assume that 𝑥

0
∈

𝐸
𝜇
. In such a case, Theorem 16 was proved in [10].
The most frequently used type of a comparison function

𝑤 is this having the form 𝑤(𝑡, 𝑢) = 𝑝(𝑡)𝑢, where 𝑝(𝑡) is
assumed to be Lebesgue integrable over the interval 𝐽. In such
a case comparison, condition (81) has the form

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋)) ≤ 𝑝 (𝑡) 𝜇 (𝑋) . (83)

An example illustratingTheorem 16 under condition (83) will
be given later.

Further, observe that in the case when 𝜇 is a sublinear
measure of noncompactness such that 𝑥

0
∈ 𝐸
𝜇
, condition

(83) can be written in the form

𝜇 (𝑓 (𝑡, 𝑋)) ≤ 𝑝 (𝑡) 𝜇 (𝑋) . (84)

Condition (84) under additional assumption ||𝑓(𝑡, 𝑥)|| ≤ 𝑃+

𝑄||𝑥||, with some nonnegative constants 𝑃 and 𝑄, is used
frequently in considerations associated with infinite systems
of ordinary differential equations [46–48].

Now, we present the above-announced example coming
from [33].

Example 17. Consider the infinite system of differential equa-
tions having the form

𝑥
󸀠

𝑛
= 𝑎
𝑛
(𝑡) 𝑥
𝑛
+ 𝑓
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .) , (85)

where 𝑛 = 1, 2, . . . and 𝑡 ∈ 𝐽 = [0, 𝑇]. System (85) will be
considered together with the system of initial conditions

𝑥
𝑛
(0) = 𝑥

𝑛

0
(86)

for 𝑛 = 1, 2, . . .. We will assume that there exists the limit
lim
𝑛→∞

𝑥
𝑛

0
= 𝑎(𝑎 ∈ R).

Problem (85)-(86) will be considered under the following
conditions.

(i) 𝑎
𝑛
: 𝐽 → R (𝑛 = 1, 2, . . .) are continuous functions

such that the sequence (𝑎
𝑛
(𝑡)) converges uniformly

on the interval 𝐽 to the function which vanishes
identically on 𝐽.

(ii) There exists a sequence of real nonnegative numbers
(𝛼
𝑛
) such that lim

𝑛→∞
𝛼
𝑛
= 0 and |𝑓

𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .)| ≤

𝛼
𝑛
for 𝑛 = 1, 2, . . . and for all 𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
, . . .) ∈ 𝑙

∞.
(iii) The function 𝑓 = (𝑓

1
, 𝑓
2
, 𝑓
3
, . . .) transforms the space

𝑙
∞ into itself and is uniformly continuous.

Let usmention that the symbol 𝑙∞ used above denotes the
classical Banach sequence space consisting of all real bounded
sequences (𝑥

𝑛
) with the supremum norm; that is, ||(𝑥

𝑛
)|| =

sup{|𝑥
𝑛
| : 𝑛 = 1, 2, . . .}.

Under the above hypotheses, the initial value problem
(85)-(86) has at least one solution 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡), . . .)

such that 𝑥(𝑡) ∈ 𝑙
∞ for 𝑡 ∈ 𝐽 and lim

𝑛→∞
𝑥
𝑛
(𝑡) = 𝑎 uniformly

with respect to 𝑡 ∈ 𝐽, provided 𝑇 ≤ 1(𝐽 = [0, 𝑇]).
As a proof, let us take into account the measure of

noncompactness in the space 𝑙∞ defined in the followingway:

𝜇 (𝑋) = lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨󵄨󵄨󵄨𝑥𝑛 − 𝑎
󵄨󵄨󵄨󵄨} (87)

for 𝑋 ∈ M
𝑙
∞ (cf. [10]). The kernel ker𝜇 of this measure is

the family of all bounded subsets of the space 𝑙∞ consisting
of sequences converging to the limit equal to 𝑎 with the same
rate.

Further, take an arbitrary set𝑋 ∈ M
𝑙
∞ . Then we have

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋))

= lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨󵄨󵄨󵄨𝑥
𝑛

0
+ 𝑎
𝑛
(𝑡) 𝑥
𝑛

+𝑓
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

, . . .) − 𝑎
󵄨󵄨󵄨󵄨 }

≤ lim sup
𝑛→∞

{sup
𝑥∈𝑋

[
󵄨󵄨󵄨󵄨𝑎𝑛 (𝑡)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥𝑛, 𝑥𝑛+1, . . .) + 𝑥

𝑛

0
− 𝑎

󵄨󵄨󵄨󵄨] }

≤ lim sup
𝑛→∞

{sup
𝑥∈𝑋

𝑝 (𝑡)
󵄨󵄨󵄨󵄨𝑥𝑛 − 𝑎

󵄨󵄨󵄨󵄨}

+ lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨󵄨󵄨󵄨𝑎𝑛 (𝑡)
󵄨󵄨󵄨󵄨 |𝑎|}

+ lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥𝑛, 𝑥𝑛+1, . . .)
󵄨󵄨󵄨󵄨}

+ lim sup
𝑛→∞

{sup
𝑥∈𝑋

󵄨󵄨󵄨󵄨𝑥
𝑛

0
− 𝑎

󵄨󵄨󵄨󵄨} ,

(88)

where we denoted 𝑝(𝑡) = sup{|𝑎
𝑛
(𝑡)| : 𝑛 = 1, 2, . . .} for 𝑡 ∈ 𝐽.

Hence we get

𝜇 (𝑥
0
+ 𝑓 (𝑡, 𝑋)) ≤ 𝑝 (𝑡) 𝜇 (𝑋) , (89)

which means that the condition (84) is satisfied.
Combining this fact with assumption (iii) and taking into

account Theorem 16, we complete the proof.
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[25] H. Schaefer, “Über die Methode der a priori-Schranken,”
Mathematische Annalen, vol. 129, pp. 415–416, 1955.

[26] T. A. Burton and C. Kirk, “A fixed point theorem of
Krasnoselskii-Schaefer type,” Mathematische Nachrichten, vol.
189, pp. 23–31, 1998.

[27] P. Kumlin, A Note on Fixed Point Theory, Mathematics,
Chalmers and GU, 2003/2004.
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[33] J. Banaś, “Applications of measures of noncompactness to
various problems,” Zeszyty Naukowe Politechniki Rzeszowskiej,
no. 5, p. 115, 1987.
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Using Hausdorff measure of noncompactness and a fixed-point argument we prove the existence
of mild solutions for the semilinear integrodifferential equation subject to nonlocal initial condi-
tions u′(t) = Au(t) +

∫ t
0 B(t− s)u(s)ds+ f(t, u(t)), t ∈ [0, 1], u(0) = g(u), whereA : D(A) ⊆ X → X,

and for every t ∈ [0, 1] the maps B(t) : D(B(t)) ⊆ X → X are linear closed operators defined in
a Banach space X. We assume further that D(A) ⊆ D(B(t)) for every t ∈ [0, 1], and the functions
f : [0, 1] × X → X and g : C([0, 1];X) → X are X-valued functions which satisfy appropriate
conditions.

1. Introduction

The concept of nonlocal initial condition has been introduced to extend the study of classical
initial value problems. This notion is more precise for describing nature phenomena than the
classical notion because additional information is taken into account. For the importance of
nonlocal conditions in different fields, the reader is referred to [1–3] and the references cited
therein.

The earliest works related with problems submitted to nonlocal initial conditions were
made by Byszewski [4–7]. In these works, using methods of semigroup theory and the
Banach fixed point theorem the author has proved the existence of mild and strong solutions
for the first order Cauchy problem

u′(t) = Au(t) + f(t, u(t)), t ∈ [0, 1],

u(0) = g(u),
(1.1)



2 Abstract and Applied Analysis

where A is an operator defined in a Banach space X which generates a semigroup {T(t)}t�0,
and the maps f and g are suitable X-valued functions.

Henceforth, (1.1) has been extensively studied by many authors. We just mention a
few of these works. Byszewski and Lakshmikantham [8] have studied the existence and
uniqueness of mild solutions whenever f and g satisfy Lipschitz-type conditions. Ntouyas
and Tsamatos [9, 10] have studied this problem under conditions of compactness for the semi-
group generated by A and the function g. Recently, Zhu et al. [11], have investigated this
problemwithout conditions of compactness on the semigroup generated byA, or the function
f .

On the other hand, the study of abstract integrodifferential equations has been an
active topic of research in recent years because it has many applications in different areas.
In consequence, there exists an extensive literature about integrodifferential equations with
nonlocal initial conditions, (cf., e.g., [12–25]). Our work is a contribution to this theory.
Indeed, this paper is devoted to study the existence of mild solutions for the following
semilinear integrodifferential evolution equation:

u′(t) = Au(t) +
∫ t

0
B(t − s)u(s)ds + f(t, u(t)), t ∈ [0, 1],

u(0) = g(u),

(1.2)

where A : D(A) ⊆ X → X and for every t ∈ [0, 1] the mappings B(t) : D(B(t)) ⊆ X → X are
linear closed operators defined in a Banach space X. We assume further thatD(A) ⊆ D(B(t))
for every t ∈ [0, 1], and the functions f : [0, 1] × X → X and g : C([0, 1];X) → X are X-
valued functions that satisfy appropriate conditions which we will describe later. In order to
abbreviate the text of this paper, henceforth wewill denote by I the interval [0, 1], andC(I;X)
is the space of all continuous functions from I to X endowed with the uniform convergence
norm.

The classical initial value version of (1.2), that is, u(0) = u0 for some u0 ∈ X, has
been extensively studied by many researchers because it has many important applications in
different fields of natural sciences such as thermodynamics, electrodynamics, heat conduc-
tion in materials with memory, continuummechanics and population biology, among others.
For more information, see [26–28]. For this reason the study of existence and other properties
of the solutions for (1.2) is a very important problem. However, to the best of our knowledge,
the existence of mild solutions for the nonlocal initial value problem (1.2) has not been
addressed in the existing literature. Most of the authors obtain the existence of solutions and
well-posedness for (1.2) by establishing the existence of a resolvent operator {R(t)}t∈I and a
variation of parameters formula (see, [29, 30]). Using adaptation of the methods described
in [11], we are able to prove the existence of mild solutions of (1.2) under conditions of
compactness of the function g and continuity of the function t �→ R(t) for t > 0. Furthermore,
in the particular case B(t) = b(t)A for all t ∈ [0, 1], where the operator A is the infinitesimal
generator of a C0-semigroup defined in a Hilbert space H, and the kernel b is a scalar
map which satisfies appropriate hypotheses, we are able to give sufficient conditions for
the existence of mild solutions only in terms of spectral properties of the operator A and
regularity properties of the kernel b. We show that our abstract results can be applied to
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concrete situations. Indeed, we consider an example with a particular choice of the function
b and the operator A is defined by

(Aw)(t, ξ) = a1(ξ)
∂2

∂ξ2
w(t, ξ) + b1(ξ)

∂

∂ξ
w(t, ξ) + c(ξ)w(t, ξ), (1.3)

where the given coefficients a1, b1, c satisfy the usual uniform ellipticity conditions.

2. Preliminaries

Most of the notations used throughout this paper are standard. So, N, Z, R, and C denote the
set of natural integers and real and complex numbers, respectively, N0 = N ∪ {0}, R

+ = (0,∞)
and R

+
0 = [0,∞).
In this work X and Y always are complex Banach spaces with norms ‖ · ‖X and ‖ · ‖Y ;

the subscript will be dropped when there is no danger of confusion. We denote the space of
all bounded linear operators from X to Y by L(X,Y ). In the case X = Y , we will write briefly
L(X). Let A be an operator defined in X. We will denote its domain by D(A), its domain
endowed with the graph norm by [D(A)], its resolvent set by ρ(A), and its spectrum by
σ(A) = C \ ρ(A).

As we have already mentioned C(I;X) is the vector space of all continuous functions
f : I → X. This space is a Banach space endowed with the norm

∥∥f
∥∥
∞ = sup

t∈I

∥∥f(t)
∥∥
X. (2.1)

In the same manner, for n ∈ N we write Cn(I;X) for denoting the space of all functions
from I to X which are n-times differentiable. Further, C∞(I;X) represents the space of all
infinitely differentiable functions from I to X.

We denote by L1(I;X) the space of all (equivalent classes of) Bochner-measurable
functions f : I �→ X such that ‖f(t)‖X is integrable for t ∈ I. It is well known that this
space is a Banach space with the norm

∥∥f
∥∥
L1(I;X) =

∫

I

∥∥f(s)
∥∥
Xds. (2.2)

We next include some preliminaries concerning the theory of resolvent operator
{R(t)}t∈I for (1.2).

Definition 2.1. Let X be a complex Banach space. A family {R(t)}t∈I of bounded linear
operators defined in X is called a resolvent operator for (1.2) if the following conditions are
fulfilled.

(R1)For each x ∈ X, R(0)x = x and R(·)x ∈ C(I;X).

(R2)The map R : I → L([D(A)]) is strongly continuous.
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(R3) For each y ∈ D(A), the function t �→ R(t)y is continuously differentiable and

d

dt
R(t)y = AR(t)y +

∫ t

0
B(t − s)R(s)yds

= R(t)Ay +
∫ t

0
R(t − s)B(s)yds, t ∈ I.

(2.3)

In what follows we assume that there exists a resolvent operator {R(t)}t∈I for (1.2)
satisfying the following property.

(P) The function t �→ R(t) is continuous from (0, 1] to L(X) endowed with the
uniform operator norm ‖ · ‖L(X).

Note that property (P) is also named in different ways in the existing literature on the
subject, mainly the theory of C0-semigroups, namely, norm continuity for t > 0, eventually
norm continuity, or equicontinuity.

The existence of solutions of the linear problem

u′(t) = Au(t) +
∫ t

0
B(t − s)u(s)ds + f(t), t � 0,

u(0) = u0 ∈ X
(2.4)

has been studied by many authors. Assuming that f : [0,+∞) → X is locally integrable, it
follows from [29] that the function u given by

u(t) = R(t)u0 +
∫ t

0
R(t − s)f(s)ds, for t � 0, (2.5)

is a mild solution of the problem (2.4). Motivated by this result, we adopt the following con-
cept of solution.

Definition 2.2. A continuous function u ∈ C(I;X) is called a mild solution of (1.2) if the
equation

u(t) = R(t)g(u) +
∫ t

0
R(t − s)f(s, u(s))ds, t ∈ I, (2.6)

is verified.

Themain results of this paper are based on the concept of measure of noncompactness.
For general information the reader can see [31]. In this paper, we use the notion of Hausdorff
measure of noncompactness. For this reason we recall a few properties related with this
concept.
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Definition 2.3. Let S be a bounded subset of a normed space Y . The Hausdorff measure of
noncompactness of S is defined by

η(S) = inf
{
ε > 0 : S has a finite cover by balls of radius ε

}
. (2.7)

Remark 2.4. Let S1, S2 be bounded sets of a normed space Y . The Hausdorff measure of
noncompactness has the following properties.

(i) If S1 ⊆ S2, then η(S1) � η(S2).

(ii) η(S1) = η(S1), where S1 denotes the closure of A.

(iii) η(S1) = 0 if and only if S1 is totally bounded.

(iv) η(λS1) = |λ|η(S1)with λ ∈ R.

(v) η(S1 ∪ S2) = max{η(S1), η(S2)}.
(vi) η(S1 + S2) � η(S1) + η(S2), where S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.
(vii) η(S1) = η(co(S1)), where co(S1) is the closed convex hull of S1.

We next collect some specific properties of the Hausdorff measure of noncompactness
which are needed to establish our results. Henceforth, when we need to compare the mea-
sures of noncompactness in X and C(I;X), we will use ζ to denote the Hausdorffmeasure of
noncompactness defined in X and γ to denote the Hausdorffmeasure of noncompactness on
C(I;X). Moreover, we will use η for the Hausdorff measure of noncompactness for general
Banach spaces Y .

Lemma 2.5. LetW ⊆ C(I;X) be a subset of continuous functions. IfW is bounded and equicontin-
uous, then the set co(W) is also bounded and equicontinuous.

For the rest of the paper we will use the following notation. LetW be a set of functions
from I to X and t ∈ I fixed, and we denoteW(t) = {w(t) : w ∈ W}. The proof of Lemma 2.6
can be found in [31].

Lemma 2.6. LetW ⊆ C(I;X) be a bounded set. Then ζ(W(t)) � γ(W) for all t ∈ I. Furthermore, if
W is equicontinuous on I, then ζ(W(t)) is continuous on I, and

γ(W) = sup{ζ(W(t)) : t ∈ I}. (2.8)

A set of functions W ⊆ L1(I;X) is said to be uniformly integrable if there exists a
positive function κ ∈ L1(I;R+) such that ‖w(t)‖ � κ(t) a.e. for all w ∈W .

The next property has been studied by several authors; the reader can see [32] for more
details.

Lemma 2.7. If {un}n∈N
⊆ L1(I;X) is uniformly integrable, then for each n ∈ N the function t �→

ζ({un(t)}n∈N
) is measurable and

ζ

({∫ t

0
un(s)ds

}∞

n=1

)

� 2
∫ t

0
ζ({un(s)}∞n=1)ds. (2.9)

The next result is crucial for our work, the reader can see its proof in [33, Theorem 2].
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Lemma 2.8. Let Y be a Banach space. IfW ⊆ Y is a bounded subset, then for each ε > 0, there exists
a sequence {un}n∈N

⊆W such that

η(W) � 2η({un}∞n=1) + ε. (2.10)

The following lemma is essential for the proof of Theorem 3.2, which is the main result
of this paper. For more details of its proof, see [34, Theorem 3.1].

Lemma 2.9. For all 0 � m � n, denote Cn
m = ( nm ). If 0 < ε < 1 and h > 0 and let

Sn = εn + Cn
1ε

n−1h + Cn
2ε

n−2h
2

2!
+ · · · + hn

n!
, n ∈ N, (2.11)

then limn→∞Sn = 0.

Clearly, a manner for proving the existence of mild solutions for (1.2) is using fixed-
point arguments. The fixed-point theorem which we will apply has been established in [34,
Lemma 2.4].

Lemma 2.10. Let S be a closed and convex subset of a complex Banach space Y , and let F : S → S
be a continuous operator such that F(S) is a bounded set. Define

F1(S) = F(S), Fn(S) = F
(
co
(
Fn−1(S)

))
, n = 2, 3, . . . . (2.12)

If there exist a constant 0 � r < 1 and n0 ∈ N such that

η(Fn0(S)) � rη(S), (2.13)

then F has a fixed point in the set S.

3. Main Results

In this section we will present our main results. Henceforth, we assume that the following
assertions hold.

(H1)There exists a resolvent operator {R(t)}t∈I for (1.2) having the property (P).

(H2)The function g : C(I;X) → X is a compact map.

(H3)The function f : I × X → X satisfies the Carathéodory type conditions; that
is, f(·, x) is measurable for all x ∈ X and f(t, ·) is continuous for almost all t ∈ I.
(H4)There exist a functionm ∈ L1(I;R+) and a nondecreasing continuous function
Φ : R

+ → R
+ such that

∥∥f(t, x)
∥∥ � m(t)Φ(‖x‖) (3.1)

for all x ∈ X and almost all t ∈ I.
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(H5)There exists a functionH ∈ L1(I;R+) such that for any bounded S ⊆ X

ζ
(
f(t, S)

)
� H(t)ζ(S) (3.2)

for almost all t ∈ I.

Remark 3.1. Assuming that the function g satisfies the hypothesis (H2), it is clear that g takes
bounded set into bounded sets. For this reason, for each R � 0 we will denote by gR the
number gR = sup{‖g(u)‖ : ‖u‖∞ � R}.

The following theorem is the main result of this paper.

Theorem 3.2. If the hypotheses (H1)–(H5) are satisfied and there exists a constant R � 0 such that

KgR +KΦ(R)
∫1

0
m(s)ds � R, (3.3)

where K = sup{‖R(t)‖ : t ∈ I}, then the problem (1.2) has at least one mild solution.

Proof. Define F : C(I;X) → C(I;X) by

(Fu)(t) = R(t)g(u) +
∫ t

0
R(t − s)f(s, u(s))ds, t ∈ I, (3.4)

for all u ∈ C(I;X).
We begin showing that F is a continuous map. Let {un}n∈N

⊆ C(I;X) such that un → u
as n → ∞ (in the norm of C(I;X)). Note that

‖F(un) − F(u)‖ � K
∥∥g(un) − g(u)

∥∥ +K
∫1

0

∥∥f(s, un(s)) − f(s, u(s))
∥∥ds, (3.5)

by hypotheses (H2) and (H3) and by the dominated convergence theorem we have that
‖F(un) − F(u)‖ → 0 when n → ∞.

Let R � 0 and denote BR = {u ∈ C(I;X) : ‖u(t)‖ � R ∀t ∈ I} and note that for any
u ∈ BR we have

‖(Fu)(t)‖ �
∥∥R(t)g(u)

∥∥ +

∥∥∥∥∥

∫ t

0
R(t − s)f(s, u(s))ds

∥∥∥∥∥

� KgR +KΦ(R)
∫1

0
m(s)ds � R.

(3.6)

Therefore F : BR → BR and F(BR) is a bounded set. Moreover, by continuity of the
function t �→ R(t) on (0, 1], we have that the set F(BR) is an equicontinuous set of functions.

Define B = co(F(BR)). It follows from Lemma 2.5 that the set B is equicontinuous. In
addition, the operator F : B → B is continuous and F(B) is a bounded set of functions.
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Let ε > 0. Since the function g is a compact map, by Lemma 2.8 there exists a sequence
{vn}n∈N

⊂ F(B) such that

ζ(F(B)(t)) � 2ζ({vn(t)}∞n=1) + ε � 2ζ

(∫ t

0

{
R(t − s)f(s, un(s))

}∞
n=1ds

)

+ ε. (3.7)

By the hypothesis (H4), for each t ∈ I we have ‖R(t − s)f(s, un(s))‖ � KΦ(R)m(s).
Therefore, by the condition (H5) we have

ζ(F(B)(t)) � 4K
∫ t

0
ζ
({
f(s, un(s))

}∞
n=1ds + ε

� 4K
∫ t

0
H(s)ζ({un(s)}n∈N

) ds + ε

� 4Kγ(B)
∫ t

0
H(s)ds + ε.

(3.8)

Since the functionH ∈ L1(I;R+), for α < 1/4K there exists ϕ ∈ C(I;R+) satisfying
∫1
0 |H(s) −

ϕ(s)|ds < α. Hence,

ζ(F(B)(t)) � 4Kγ(B)
[∫ t

0

∣∣H(s) − ϕ(s)∣∣ds +
∫ t

0
ϕ(s)ds

]

+ ε

� 4Kγ(B)[α +Nt] + ε,

(3.9)

whereN = ‖ϕ‖∞. Since ε > 0 is arbitrary, we have

ζ(F(B)(t)) � (a + bt)γ(B), where a = 4αK, b = 4KN. (3.10)

Let ε > 0. Since the function g is a compact map and applying the Lemma 2.8 there exists a
sequence {wn}n∈N

⊆ co(F(B)) such that

ζ
(
F2(B)(t)

)
� 2ζ

(∫ t

0

{
R(t − s)f(s,wn(s))

}∞
n=1ds

)

+ ε

� 4K
∫ t

0
ζ
{
f(s,wn(s))

}∞
n=1ds + ε

� 4K
∫ t

0
H(s)ζ

(
co
(
F1(B)(s)

))
+ ε = 4K

∫ t

0
H(s)ζ

(
F1(B)(s)

)
+ ε.

(3.11)
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Using the inequality (3.10)we have that

ζ
(
F2(B)(t)

)
� 4K

∫ t

0

[∣∣H(s) − ϕ(s)∣∣ + ∣
∣ϕ(s)

∣
∣](a + bs)γ(B)ds + ε

� 4K(a + bt)γ(B)
∫ t

0

∣
∣H(s) − ϕ(s)∣∣ds + 4KNγ(B)

(

at +
bt2

2

)

+ ε

� a(a + bt) + b

(

at +
bt2

2

)

+ ε �
(

a2 + 2bt +
(bt)2

2

)

γ(B) + ε.

(3.12)

Since ε > 0 is arbitrary, we have

ζ
(
F2(B)(t)

)
�

(

a2 + 2bt +
(bt)2

2

)

γ(B). (3.13)

By an inductive process, for all n ∈ N, it holds

ζ(Fn(B)(t)) �
(

an + Cn
1a

n−1bt + Cn
2a

n−2 (bt)
2

2!
+ · · · + (bt)n

n!

)

γ(B), (3.14)

where, for 0 � m � n, the symbol Cn
m denotes the binomial coefficient ( nm ).

In addition, for all n ∈ N the set Fn(B) is an equicontinuous set of functions. Therefore,
using the Lemma 2.6 we conclude that

γ(Fn(B)) �
(

an + Cn
1a

n−1b + Cn
2a

n−2 b
2

2!
+ · · · + bn

n!

)

γ(B). (3.15)

Since 0 � a < 1 and b > 0, it follows from Lemma 2.7 that there exists n0 ∈ N such that

(

an0 + Cn0
1 a

n0−1b + Cn0
2 a

n0−2 b
2

2!
+ · · · + bn0

n0!

)

= r < 1. (3.16)

Consequently, γ(Fn0(B)) � rγ(B). It follows from Lemma 2.9 that F has a fixed point
in B, and this fixed point is a mild solution of (1.2).

Our next result is relatedwith a particular case of (1.2). Consider the following Volterra
equation of convolution type:

u′(t) = Au(t) +
∫ t

0
b(t − s)Au(s)ds + f(t, u(t)), t ∈ I,

u(0) = g(u),

(3.17)
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where A is a closed linear operator defined on a Hilbert space H, the kernel b ∈ L1
loc(R

+;R),
and the function f is an appropriateH-valued map.

Since (3.17) is a convolution type equation, it is natural to employ the Laplace
transform for its study.

Let X be a Banach space and a ∈ L1
loc(R

+;R). We say that the function a is Laplace
transformable if there is ω ∈ R such that

∫∞
0 e−ωt|a(t)|dt < ∞. In addition, we denote by

â(λ) =
∫∞
0 e−λta(t)dt, for Re λ > ω, the Laplace transform of the function a.
We need the following definitions for proving the existence of a resolvent operator for

(3.17). These concepts have been introduced by Prüss in [28].

Definition 3.3. Let a ∈ L1
loc(R

+;R) be Laplace transformable and k ∈ N. We say that the
function a is k-regular if there exists a constant C > 0 such that

∣
∣
∣λnâ(n)(λ)

∣
∣
∣ � C|â(λ)| (3.18)

for all Re λ � ω and 0 < n � k.

Convolutions of k-regular functions are again k-regular. Moreover, integration and differen-
tiation are operations which preserve k-regularity as well. See [28, page 70].

Definition 3.4. Let f ∈ C∞(R+;R). We say that f is a completely monotone function if and
only if (−1)nf (n)(λ) � 0 for all λ > 0 and n ∈ N.

Definition 3.5. Let a ∈ L1
loc(R

+;R) such that a is Laplace transformable. We say that a is
completely positive function if and only if

1
λâ(λ)

,
−â′(λ)
(â(λ))2

(3.19)

are completely monotone functions.

Finally, we recall that a one-parameter family {T(t)}t�0 of bounded and linear operat-
ors is said to be exponentially bounded of type (M,ω) if there are constantsM � 1 andω ∈ R

such that

‖T(t)‖ � Meωt, ∀t � 0. (3.20)

The next proposition guarantees the existence of a resolvent operator for (3.17)
satisfying the property (P). With this purpose we will introduce the conditions (C1) and
(C2).

(C1) The kernel a defined by a(t) = 1 +
∫ t
0 b(s)ds, for all t � 0, is 2-regular and

completely positive.
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(C2) The operatorA is the generator of a semigroup of type (M,ω) and there exists
μ0 > ω such that

lim
|μ|→∞

∥
∥
∥
∥
∥
∥

1

b̂
(
μ0 + iμ

)
+ 1

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

−A
)−1∥∥

∥
∥
∥
∥
= 0. (3.21)

Proposition 3.6. Suppose thatA is the generator of aC0-semigroup of type (M,ω) in a Hilbert space
H. If the conditions (C1)-(C2)are satisfied, then there exists a resolvent operator {R(t)}t∈I for (3.17)
having the property (P).

Proof. Integrating in time (3.17)we get

u(t) =
∫ t

0
a(t − s)Au(s)ds +

∫ t

0
f(s, u(s)) + g(u). (3.22)

Since the scalar kernel a is completely positive and A generates a C0-semigroup, it follows
from [28, Theorem 4.2] that there exists a family of operators {R(t)}t∈I strongly continuous,
exponentially bounded which commutes with A, satisfying

R(t)x = x +
∫ t

0
a(t − s)AR(s)xds, ∀x ∈ D(A). (3.23)

On the other hand, using the condition (C2) and since the scalar kernel a is 2-regular, it
follows from [35, Theorem 2.2] that the function t �→ R(t) is continuous for t > 0. Further,
since a ∈ C1(R+;R), it follows from (3.23) that for all x ∈ D(A) the map R(·)x is differentiable
for all t � 0 and satisfies

d

dt
R(t)x = AR(t)x +

∫ t

0
b(t − s)AR(s)x ds, t ∈ I. (3.24)

From the quality (3.24), we conclude that {R(t)}t∈I is a resolvent operator for (3.17) having
the property (P).

Corollary 3.7. Suppose that A generates a C0-semigroup of type (M,ω) in a Hilbert space H.
Assume further that the conditions (C1)-(C2) are fulfilled. If the hypotheses (H2)–(H5) are satisfied
and there exists R � 0 such that

KgR +KΦ(R)
∫1

0
m(s)ds � R, where K = sup{‖R(t)‖ : t ∈ I}, (3.25)

then (3.17) has at least one mild solution.

Proof. It follows from Proposition 3.6 that there exists a resolvent operator {R(t)}t∈I for the
equation and this resolvent operator has the property (P). Since the hypotheses (H2)–(H5)
are satisfied, we apply Theorem 3.2 and conclude that (3.17) has at least one mild solution.



12 Abstract and Applied Analysis

4. Applications

In this section we apply the abstract results which we have obtained in the preceding section
to study the existence of solutions for a partial differential equation submitted to nonlocal
initial conditions. This type of equations arises in the study of heat conduction in materials
with memory (see [26, 27]). Specifically, we will study the following problem:

∂w(t, ξ)
∂t

= Aw(t, ξ) +
∫ t

0
βe−α(t−s)Aw(s, ξ)ds + p1(t)p2(w(t, ξ)), t ∈ I,

w(t, 0) = w(t, 2π), for t ∈ I,

w(0, ξ) =
∫1

0

∫ ξ

0
qk(s, ξ)w

(
s, y

)
dsdy, 0 � ξ � 2π,

(4.1)

where k : I × [0, 2π] → R
+ is a continuous function such that k(t, 2π) = 0 for all t ∈ I, the

constant q ∈ R
+ and the constants α, β satisfy the relation −α � β � 0 � α. The operator A is

defined by

(Aw)(t, ξ) = a1(ξ)
∂2

∂ξ2
w(t, ξ) + b1(ξ)

∂

∂ξ
w(t, ξ) + c(ξ)w(t, ξ), (4.2)

where the coefficients a1, b1, c satisfy the usual uniformly ellipticity conditions, and D(A) =
{v ∈ L2([0, 2π];R) : v′′L2([0, 2π];R)}. The functions p1 : I → R

+ and p2 : R → R satisfy
appropriate conditions which will be specified later.

Identifying u(t) = w(t, ·) we model this problem in the space X = L2(T;R), where the
group T is defined as the quotient R/2πZ. We will use the identification between functions
on T and 2π-periodic functions on R. Specifically, in what follows we denote by L2(T;R) the
space of 2π-periodic and square integrable functions from R into R. Consequently, (4.1) is
rewritten as

u′(t) = Au(t) +
∫ t

0
b(t − s)Au(s)ds + f(t, u(t)), t ∈ I,

u(0) = g(u),

(4.3)

where the function g : C(I;X) → X is defined by g(w)(ξ) =
∫1
0

∫ ξ
0 qk(s, ξ)w(s, y)dsdy, and

f(t, u(t)) = p1(t)p2(u(t)), where p1 is integrable on I, and p2 is a bounded function satisfying
a Lipschitz type condition with Lipschitz constant L.

We will prove that there exists q > 0 sufficiently small such that (4.3) has a mild
solution on L2(T;R).

With this purpose, we begin noting that ‖g‖ � q(2π)1/2(
∫2π
0

∫1
0 k(s, ξ)

2dsdξ)
1/2

.
Moreover, it is a well-known fact that the g is a compact map.

Further, the function f satisfies ‖f(t, u(t))‖ � p1(t)Φ(‖u(t)‖), with Φ(‖u(t)‖) ≡ ‖p2‖
and ‖f(t, u1(t)) − f(t, u2(t))‖ � Lp1(t)‖u1 − u2‖. Thus, the conditions (H2)–(H5) are fulfilled.
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Define a(t) = 1 +
∫ t
0 βe

−αsds, for all t ∈ R
+
0 . Since the kernel b defined by b(t) = βe−αt is

2-regular, it follows that a is 2-regular. Furthermore, we claim that a is completely positive.
In fact, we have

â(λ) =
λ + α + β
λ(λ + α)

. (4.4)

Define the functions f1 and f2 by f1(λ) = 1/(λâ(λ)) and f2(λ) = −â′(λ)/[â(λ)]2, respectively.
In other words

f1(λ) =
λ + α

λ + α + β
, f2(λ) =

λ2 + 2
(
α + β

)
λ + αβ + α2

(
λ + α + β

)2 . (4.5)

A direct calculation shows that

f
(n)
1 (λ) =

(−1)n+1β(n + 1)!
(
λ + α + β

)n+1 , f
(n)
2 (λ) =

(−1)n+1β(α + β
)
(n + 1)!

(
λ + α + β

)n+2 for n ∈ N. (4.6)

Since −α � β � 0 � α, we have that f1 and f2 are completely monotone. Thus, the kernel a is
completely positive.

On the other hand, it follows from [36] that A generates an analytic, noncompact
semigroup {T(t)}t�0 on L

2(T;R). In addition, there exists a constantM > 0 such that

M = sup{‖T(t)‖ : t � 0} < +∞. (4.7)

It follows from the preceding fact and the Hille-Yosida theorem that z ∈ ρ(A) for all z ∈ C

such that Re(z) > 0. Let z = μ0 + iμ. By direct computation we have

Re

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

)

=
μ3
0 + μ

2
0α + μ2

0

(
α + β

)
+ μ0α

(
α + β

)
+ μ0μ

2 − μ2β
(
α + β

)2 + 2μ0
(
α + β

)
+ μ2

0 + μ
2

. (4.8)

Hence, Re((μ0 + iμ)/(b̃(μ0 + iμ) + 1)) > 0 for all z = μ0 + iμ, such that μ0 > 0. This implies that

(
μ0 + iμ

b̃
(
μ0 + iμ

)
+ 1

−A
)−1

∈ L(X), ∀μ0 > 0. (4.9)

Since the semigroup generated by A is an analytic semigroup we have

∥∥∥∥∥∥

1

b̂
(
μ0 + iμ

)
+ 1

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

−A
)−1∥∥∥∥∥∥

�
∥∥∥∥

M

μ0 + iμ

∥∥∥∥. (4.10)



14 Abstract and Applied Analysis

Therefore,

lim
|μ|→∞

∥
∥
∥
∥
∥
∥

1

b̂
(
μ0 + iμ

)
+ 1

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

−A
)−1∥∥

∥
∥
∥
∥
= 0. (4.11)

It follows from Proposition 3.6 that (4.3) admits a resolvent operator {R(t)}t∈I satisfying
property (P).

Let K = sup{‖R(t)‖ : t ∈ I} and c = (2π)1/2(
∫2π
0

∫1
0 k(s, ξ)

2dsdξ)
1/2

.
A direct computation shows that for each R � 0 the number gR is equal to gR = qcR.
Therefore the expression (KgR +KΦ(R)

∫1
0 m(s)ds) is equivalent to (qcKR+ ‖p1‖1LK).

Since there exists q > 0 such that qcK < 1, then there exists R � 0 such that

qcKR +
∥
∥p1

∥
∥
1LK � R. (4.12)

From Corollary 3.7 we conclude that there exists a mild solution of (4.1).
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The existence results of positive ω-periodic solutions are obtained for the second-order functional
differential equation with multiple delays u′′(t) + a(t)u(t) = f(t, u(t), u(t − τ1(t)), . . . , u(t − τn(t))),
where a(t) ∈ C(R) is a positive ω-periodic function, f : R × [0,+∞)n+1 → [0,+∞) is a continuous
function which is ω-periodic in t, and τ1(t), . . . , τn(t) ∈ C(R, [0,+∞)) are ω-periodic functions.
The existence conditions concern the first eigenvalue of the associated linear periodic boundary
problem. Our discussion is based on the fixed-point index theory in cones.

1. Introduction

In this paper, we deal with the existence of positive periodic solution of the second-order
functional differential equation with multiple delays

u
′′
(t) + a(t)u(t) = f(t, u(t), u(t − τ1(t)), . . . , u(t − τn(t))), t ∈ R, (1.1)

where a(t) ∈ C(R) is a positive ω-periodic function, f : R × [0,+∞)n+1 → [0,+∞) is a
continuous functionwhich isω-periodic in t, and τ1(t),. . .,τn(t) ∈ C(R, [0,+∞)) areω-periodic
functions ω > 0 is a constant.

In recent years, the existence of periodic solutions for second-order functional
differential equations has been researched by many authors see [1–8] and references therein.
In some practice models, only positive periodic solutions are significant. In [4–8], the
authors obtained the existence of positive periodic solutions for some second-order functional
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differential equations by using fixed-point theorems of cone mapping. Especially in [5], Wu
considered the second-order functional differential equation

u
′′
(t) + a(t)u(t) = λf(t, u(t − τ1(t)), . . . , u(t − τn(t))), t ∈ R, (1.2)

and obtained the existence results of positive periodic solutions by using the Krasnoselskii
fixed-point theorem of cone mapping when the coefficient a(t) satisfies the condition that
0 < a(t) < π2/ω2 for every t ∈ R. And in [8], Li obtained the existence results of positive
ω-periodic solutions for the second-order differential equation with constant delays

−u′′
(t) + a(t)u(t) = f(t, u(t − τ1), . . . , u(t − τn)), t ∈ R, (1.3)

by employing the fixed-point index theory in cones. For the second-order differential
equations without delay, the existence of positive periodic solutions has been discussed by
more authors, see [9–14].

Motivated by the paper mentioned above, we research the existence of positive
periodic solutions of (1.1). We aim to obtain the essential conditions on the existence of
positive periodic solution of (1.1) by constructing a special cone and applying the fixed-point
index theory in cones.

In this paper, we assume the following conditions:

(H1) a ∈ C(R, (0,+∞)) is ω-periodic function and there exists a constant 1 ≤ p ≤ +∞
such that

‖a‖p ≤ K
(
2p∗
)
, (1.4)

where ‖a‖p is the p-norm of a in Lp[0, ω], p∗ is the conjugate exponent of p defined
by (1/p) + (1/p∗) = 1, and the function K(q) is defined by

K
(
q
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2π
qω1+2/q

(
2

2 + q

)1−2/q( Γ
(
1/q
)

Γ
(
1/2 + 1/q

)

)2

, if 1 ≤ q < +∞,

4
ω
, if q = +∞

(1.5)

in which Γ is the Gamma function.

(H2) f ∈ C(R × [0,+∞)n+1, [0,+∞)) and f(t, x0, x1, . . . , xn) is ω-periodic in t.

(H3) τ1(t), . . . , τn(t) ∈ C(R, [0,∞)) are ω-periodic functions.

In Assumption (H1), if p = +∞, since K(2) = π2/ω2, then (1.4) implies that a satisfies
the condition

0 < a(t) ≤ π2

ω2
, t ∈ [0, ω]. (1.6)

This condition includes the case discussed in [5].
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The techniques used in this paper are completely different from those in [5]. Our
results are more general than those in [5] in two aspects. Firstly, we relax the conditions
of the coefficient a(t) appeared in an equation in [5] and expand the range of its values.
Secondly, by constructing a special cone and applying the fixed-point index theory in cones,
we obtain the essential conditions on the existence of positive periodic solutions of (1.1). The
conditions concern the first eigenvalue of the associated linear periodic boundary problem,
which improve and optimize the results in [5]. To our knowledge, there are very few works
on the existence of positive periodic solutions for the above functional differential equations
under the conditions concerning the first eigenvalue of the corresponding linear equation.

Our main results are presented and proved in Section 3. Some preliminaries to discuss
(1.1) are presented in Section 2.

2. Preliminaries

In order to discuss (1.1), we consider the existence of ω-periodic solution of the
corresponding linear differential equation

u
′′
+ a(t)u = h(t), t ∈ R, (2.1)

where h ∈ C(R) is a ω-periodic function. It is obvious that finding an ω-periodic solution of
(2.1) is equivalent to finding a solution of the linear periodic boundary value problem

u
′′
+ a(t)u = h(t), t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω).
(2.2)

In [14], Torres show the following existence resulted.

Lemma 2.1. Assume that (H1 ) holds, then for every h ∈ C[0, ω], the linear periodic boundary
problem (2.2) has a unique solution expressed by

u(t) =
∫ω

0
G(t, s)h(s)ds, t ∈ [0, ω], (2.3)

whereG(t, s) ∈ C([0, ω]×[0, ω]) is the Green function of the linear periodic boundary problem (2.2),
which satisfies the positivity: G(t, s) > 0 for every (t, s) ∈ [0, ω] × [0, ω].

For the details, see [14, Theorem 2.1 and Corollary 2.3].
Form ∈ N, we useCm

ω (R) to denote themth-order continuous differentiableω-periodic
functions space. Let X = Cω(R) be the Banach space of all continuous ω-periodic functions
equipped the norm ‖u‖ = max0≤t≤ω|u(t)|.

Let

K0 = {u ∈ X | u(t) ≥ 0, t ∈ R} (2.4)
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be the cone of all nonnegative functions in X. Then X is an ordered Banach space by the cone
K0. K0 has a nonempty interior

int(K0) = {u ∈ X | u(t) > 0, t ∈ R}. (2.5)

Let

G = min
0≤t,s≤ω

G(t, s), G = max
0≤t,s≤ω

G(t, s); σ = G/G. (2.6)

Lemma 2.2. Assume that (H1) holds, then for every h ∈ X, (2.1) has a unique ω-periodic solution
u. Let T : h 
→ u, then T : X → X is a completely continuous linear operator, and when h ∈ K0, Th
has the positivity estimate

Th(t) ≥ σ‖Th‖, ∀t ∈ R. (2.7)

Proof. Let h ∈ X. By Lemma 2.1, the linear periodic boundary problem (2.2) has a unique
solution u ∈ C2[0, ω] given by (2.3). We extend u to a ω-periodic function, which is still
denoted by u, then u := Th ∈ C2

ω(R) is a unique ω-periodic solution of (2.1). By (2.3),

Th(t) =
∫ω

0
G(t, s)h(s)ds, t ∈ [0, ω]. (2.8)

From this we see that T maps every bounded set in X to a bounded equicontinuous set of X.
Hence, by the Ascoli-Arzelà theorem, T : X → X is completely continuous.

Let h ∈ K0. For every t ∈ [0, ω], from (2.8) it follows that

Th(t) =
∫ω

0
G(t, s)h(s)ds ≤ G

∫ω

0
h(s)ds, (2.9)

and therefore,

‖Th‖ ≤ G
∫ω

0
h(s)ds. (2.10)

Using (2.8) and this inequality, we have that

Th(t) =
∫ω

0
G(t, s)h(s)ds ≥ G

∫ω

0
h(s)ds

=
(
G/G

)
·G
∫ω

0
h(s)ds

≥ σ‖Th‖.

(2.11)

Hence, by the periodicity of u, (2.7) holds for every t ∈ R.
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From (2.7)we easily see that T(K0) ⊂ int(K0); namely, T : X → X is a strongly positive
linear operator. By the well-known Krein-Rutman theorem, the spectral radius r(T) > 0 is a
simple eigenvalue of T , and T has a corresponding positive eigenfunction φ ∈ K0; that is,

Tφ = r(T)φ. (2.12)

Since φ can be replaced by cφ, where c > 0 is a constant, we can choose φ ∈ K0 such that

∫ω

0
φ(t)dt = 1. (2.13)

Set λ1 = 1/r(T), then φ = T(λ1φ). By Lemma 2.2 and the definition of T , φ ∈ C2
ω(R) satisfies

the differential equation

φ
′′
(t) + a(t)φ(t) = λ1φ(t), t ∈ R. (2.14)

Thus, λ1 is the minimum positive real eigenvalue of the linear equation (2.1) under the ω-
periodic condition. Summarizing these facts, we have the following lemma.

Lemma 2.3. Assume that (H1) holds, then there exist φ ∈ K0 ∩ C2
ω(R) such that (2.13) and (2.14)

hold.

Let f : R × [0,∞)n+1 → [0,∞) satisfy the assumption (H2). For every u ∈ X, set

F(u)(t) := f(t, u(t), u(t − τ1), . . . , u(t − τn)), t ∈ R. (2.15)

Then F : K0 → K0 is continuous. Define a mapping A : K0 → X by

A = T ◦ F. (2.16)

By the definition of operator T , theω-periodic solution of (1.1) is equivalent to the fixed point
of A. Choose a subcone of K0 by

K = {u ∈ K0 | u(t) ≥ σ‖u‖C, t ∈ R}. (2.17)

By the strong positivity (2.7) of T and the definition of A, we easily obtain the following.

Lemma 2.4. Assume that (H1) holds, then A(K0) ⊂ K and A : K → K is completely continuous.

Hence, the positive ω-periodic solution of (1.1) is equivalent to the nontrivial fixed
point ofA. We will find the nonzero fixed point ofA by using the fixed-point index theory in
cones.

We recall some concepts and conclusions on the fixed-point index in [15, 16]. Let X
be a Banach space and K ⊂ X a closed convex cone in X. Assume that Ω is a bounded open
subset ofX with boundary ∂Ω, andK∩Ω/= ∅. LetA : K∩Ω → K be a completely continuous
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mapping. IfAu/=u for any u ∈ K∩∂Ω, then the fixed-point index i(A,K∩Ω, K) has definition.
One important fact is that if i(A,K∩Ω, K)/= 0, thenA has a fixed point inK∩Ω. The following
two lemmas in [16] are needed in our argument.

Lemma 2.5. Let Ω be a bounded open subset of X with θ ∈ Ω, and A : K ∩ Ω → K a completely
continuous mapping. If μAu/=u for every u ∈ K ∩ ∂Ω and 0 < μ ≤ 1, then i(A,K ∩Ω, K) = 1.

Lemma 2.6. Let Ω be a bounded open subset of X and A : K ∩ Ω → K a completely continuous
mapping. If there exists an e ∈ K \ {θ} such that u −Au/=μe for every u ∈ K ∩ ∂Ω and μ ≥ 0, then
i(A,K ∩Ω, K) = 0.

3. Main Results

We consider the existence of positive ω-periodic solutions of (1.1). Assume that f : R ×
[0,∞)n+1 → [0,∞) satisfy (H2). To be convenient, we introduce the notations

f0 = lim inf
x→ 0+

min
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

f0 = lim sup
x→ 0+

max
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

f∞ = lim inf
x→+∞

min
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

f∞ = lim sup
x→+∞

max
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

(3.1)

where x = max{x0, x1, . . . , xn} and x = min{x0, x1, . . . , xn}. Our main results are as follows.

Theorem 3.1. Suppose that (H1)–(H3) hold. If f satisfies the condition

(H4) f0 < λ1 < f∞,

then (1.1) has at least one positive ω-periodic solution.

Theorem 3.2. Suppose that (H1)–(H3) hold. If f satisfies the condition

(H5) f∞ < λ1 < f0,

then (1.1) has at least one positive ω-periodic solution.

In Theorem 3.1, the condition (H4) allows f(t, x0, x1, . . . , xn) to be superlinear growth
on x0, x1, . . . , xn. For example,

f(t, x0, x1, . . . , xn) = b0(t)x2
0 + b1(t)x

2
1 + · · · + bn(t)x2

n (3.2)

satisfies (H4) with f0 = 0 and f∞ = +∞, where b0, b1, . . . , bn ∈ Cω(R) are positive ω-periodic
functions.
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In Theorem 3.2, the condition (H5) allows f(t, x0, x1, . . . , xn) to be sublinear growth on
x0, x1, . . . , xn. For example,

f(t, x0, x1, . . . , xn) = c0(t)
√
|x0| + c1(t)

√
|x1| + · · · + cn(t)

√
|xn| (3.3)

satisfies (H5) with f0 = +∞ and f∞ = 0, where c0, c1, . . . , cn ∈ Cω(R) are positive ω-periodic
solution.

Applying Theorems 3.1 and 3.2 to (1.2), we have the following.

Corollary 3.3. Suppose that (H1)–(H3) hold. If the parameter λ satisfies one of the following
conditions

(1) λ1/f∞ < λ < λ1/f
0,

(2) λ1/f0 < λ < λ1/f∞,

then (1.2) has at least one positive ω-periodic solution.

This result improves and extends [5, Theorem 1.3].

Proof of Theorem 3.1. Let K ⊂ X be the cone defined by (2.17) and A : K → K the operator
defined by (2.16). Then the positiveω-periodic solution of (1.1) is equivalent to the nontrivial
fixed point of A. Let 0 < r < R < +∞ and set

Ω1 = {u ∈ X | ‖u‖ < r}, Ω2 = {u ∈ X | ‖u‖ < R}. (3.4)

We show that the operator A has a fixed point in K ∩ (Ω2 \Ω1) when r is small enough and
R large enough.

Since f0 < λ1, by the definition of f0, there exist ε ∈ (0, λ1) and δ > 0, such that

f(t, x0, x1, . . . , xn) ≤ (λ1 − ε)x, t ∈ [0, ω], x ∈ (0, δ), (3.5)

where x = max{x0, x1, . . . , xn} and x = min{x0, x1, . . . , xn}. Choosing r ∈ (0, δ), we prove that
A satisfies the condition of Lemma 2.5 in K ∩ ∂Ω1; namely, μAu/=u for every u ∈ K ∩ ∂Ω1

and 0 < μ ≤ 1. In fact, if there exist u0 ∈ K ∩ ∂Ω1 and 0 < μ0 ≤ 1 such that μ0Au0 = u0 and
since u0 = T(μ0F(u0)), by definition of T and Lemma 2.2, u0 ∈ C2

ω(R) satisfies the differential
equation

u′′0(t) + a(t)u0(t) = μ0F(u0)(t), t ∈ R, (3.6)

where F(u) is defined by (2.15). Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

0 < σ ‖u0‖ ≤ u0(τ) ≤ ‖u0‖ = r < δ, ∀τ ∈ R. (3.7)

This implies that

0 < max{u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t))} < δ, t ∈ R. (3.8)
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From this and (3.5), it follows that

F(u0)(t) = f(t, u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t)))
≤ (λ1 − ε) ·min{u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t))}
≤ (λ1 − ε)u0(t), t ∈ R.

(3.9)

By this inequality and (3.6), we have

u′′0(t) + a(t)u0(t) = μ0F(u0)(t) ≤ (λ1 − ε)u0(t), t ∈ R. (3.10)

Let φ ∈ K ∩ C2
ω(R) be the function given in Lemma 2.4. Multiplying the inequality (3.10) by

φ(t) and integrating on [0, ω], we have

∫ω

0

[
u′′0(t) + a(t)u0(t)

]
φ(t)dt ≤ (λ1 − ε)

∫ω

0
u0(t)φ(t)dt. (3.11)

For the left side of the above inequality using integration by parts, then using the periodicity
of u0 and φ and (2.14), we have

∫ω

0

[
u′′0(t) + a(t)u0(t)

]
φ(t)dt =

∫ω

0
u0(t)

[
φ′′(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u0(x)φ(t)dt.

(3.12)

Consequently, we obtain that

λ1

∫ω

0
u0(x)φ(t)dt ≤ (λ1 − ε)

∫ω

0
u0(x)φ(t)dt. (3.13)

Since u0 ∈ K ∩ ∂Ω1, by the definition of K and (2.13),

∫ω

0
u0(x)φ(t)dt ≥ σ‖u0‖

∫ω

0
φ(t)dt = σ‖u0‖ > 0. (3.14)

From this and (3.13), we conclude that λ1 ≤ λ1−ε , which is a contradiction. Hence,A satisfies
the condition of Lemma 2.5 in K ∩ ∂Ω1. By Lemma 2.5, we have

i(A,K ∩Ω1, K) = 1. (3.15)

On the other hand, since f∞ > λ1, by the definition of f∞, there exist ε1 > 0 andH > 0
such that

f(t, x0, x1, . . . , xn) ≥ (λ1 + ε1) x, t ∈ [0, ω], x > H, (3.16)
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where x = max{x0, x1, . . . , xn} and x = min{x0, x1, . . . , xn}. Choose R > max{H/σ, δ} and
e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show thatA satisfies the condition of Lemma 2.6 inK ∩∂Ω2;
namely, u −Au/=μφ for every u ∈ K ∩ ∂Ω2 and μ ≥ 0. In fact, if there exist u1 ∈ K ∩ ∂Ω2 and
μ1 ≥ 0 such that u1 − Au1 = μ1e, since u1 − μ1e = Au1 = T(F(u1)), by the definition of T and
Lemma 2.2, u1 ∈ C 2

ω(R) satisfies the differential equation

u
′′
1(t) + a(t)

(
u1(t) − μ1

)
= F(u1)(t), t ∈ R. (3.17)

Since u1 ∈ K ∩ ∂Ω2, by the definitions of K and Ω2, we have

u1(τ) ≥ σ‖u1‖ = σR > H, ∀τ ∈ R. (3.18)

This means that

min{u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t))} > H, t ∈ R. (3.19)

Combining this with (3.16), we have that

F(u1)(t) = f(t, u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t)))
≥ (λ1 + ε1) ·max{u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t))}
≥ (λ1 + ε1)u1(t), t ∈ R.

(3.20)

From this inequality and (3.17), it follows that

u
′′
1(t) + a(t)u1(t) = μ1a(t) + F(u1)(t) ≥ (λ1 + ε1)u1(t), t ∈ R. (3.21)

Multiplying this inequality by φ(t) and integrating on [0, ω], we have

∫ω

0

[
u

′′
1(t) + a(t)u1(t)

]
φ(t)dt ≥ (λ1 + ε1)

∫ω

0
u1(t)φ(t)dt. (3.22)

For the left side of the above inequality using integration by parts and (2.14), we have

∫ω

0

[
u′′1(t) + a(t)u1(t)

]
φ(t)dt =

∫ω

0
u1(t)

[
φ′′(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u1(x)φ(t)dt.

(3.23)

From this and (3.22), it follows that

λ1

∫ω

0
u1(x)φ(t)dt ≥ (λ1 + ε1)

∫ω

0
u1(x)φ(t)dt. (3.24)
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Since u1 ∈ K ∩ ∂Ω2, by the definition of K and (2.13), we have

∫ω

0
u1(x)φ(t)dt ≥ σ‖u1‖

∫ω

0
φ(t)dt = σ‖u1‖ > 0. (3.25)

Hence, from (3.24) it follows that λ1 ≥ λ1 + ε1, which is a contradiction. Therefore, A satisfies
the condition of Lemma 2.6 in K ∩ ∂Ω2. By Lemma 2.6, we have

i(A,K ∩Ω2, K) = 0. (3.26)

Now by the additivity of the fixed-point index (3.15), and (3.26), we have

i
(
A,K ∩

(
Ω2 \Ω1

)
, K
)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = −1. (3.27)

HenceA has a fixed point inK∩(Ω2\Ω1), which is a positiveω-periodic solution of (1.1).

Proof of Theorem 3.2. LetΩ1,Ω2 ⊂ X be defined by (3.4). We prove that the operatorA defined
by (2.16) has a fixed point in K ∩ (Ω2 \Ω1) if r is small enough and R is large enough.

By f0 > λ1 and the definition of f0, there exist ε > 0 and δ > 0, such that

f(t, x0, x1, . . . , xn) ≥ (λ1 + ε)x, t ∈ [0, ω], x ∈ (0, δ), (3.28)

where x = max{x0, x1, . . . , xn}. Let r ∈ (0, δ) and e(t) ≡ 1. We prove that A satisfies the
condition of Lemma 2.6 in K ∩ ∂Ω1; namely, u −Au/=μe for every u ∈ K ∩ ∂Ω1 and μ ≥ 0. In
fact, if there exist u0 ∈ K∩∂Ω1 and μ0 ≥ 0 such that u0 −Au0 = μ0e and since u0 −μ0e = Au0 =
T(F(u0)), by the definition of T and Lemma 2.2, u0 ∈ C2

ω(R) satisfies the differential equation

u
′′
0(t) + a(t)

(
u0(t) − μ0

)
= F(u0)(t), t ∈ R. (3.29)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, u0 satisfies (3.7), and hence (3.8) holds.
From (3.8) and (3.28), it follows that

F(u0)(t) = f(t, u0(t), u0(0 − τ1(t)), . . . , u0(t − τn(t)))
≥ (λ1 + ε) ·max{u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t))}
≥ (λ1 + ε)u0(t), t ∈ R.

(3.30)

By this and (3.29), we obtain that

u
′′
0(t) + a(t)u0(t) = μ0a(t) + F(u0)(t) ≥ (λ1 + ε)u0(t), t ∈ R. (3.31)

Multiplying this inequality by φ(t) and integrating on [0, ω], we have

∫ω

0

[
u

′′
0(t) + a(t)u0(t)

]
φ(t)dt ≥ (λ1 + ε)

∫ω

0
u0(t)φ(t)dt. (3.32)
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For the left side of this inequality using integration by parts and (2.14), we have

∫ω

0

[
u

′′
0(t) + a(t)u0(t)

]
φ(t)dt =

∫ω

0
u0(t)

[
φ′′(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u0(x)φ(t)dt.

(3.33)

From this and (3.32), it follows that

λ1

∫ω

0
u1(x)φ(t)dt ≥ (λ1 + ε1)

∫ω

0
u1(x)φ(t)dt. (3.34)

Since u0 ∈ K ∩ ∂Ω1, from the definition of K and (2.13) it follows that (3.14) holds. By (3.14)
and (3.34), we see that λ1 ≥ λ1 + ε, which is a contradiction. Hence, A satisfies the condition
of Lemma 2.6 in K ∩ ∂Ω1. By Lemma 2.6, we have

i(A,K ∩Ω1, K) = 0. (3.35)

Since f∞ < λ1, by the definition of f∞, there exist ε1 ∈ (0, λ1) andH > 0 such that

f(t, x0, x1, . . . , xn) ≤ (λ1 − ε1)x, t ∈ [0, ω], x > H, (3.36)

where x = min{x0, x1, . . . , xn}. Choosing R > max{H/σ, δ}, we show that A satisfies the
condition of Lemma 2.5 in K ∩ ∂Ω2; namely, μAu/=u for every u ∈ K ∩ ∂Ω2 and 0 < μ ≤ 1. In
fact, if there exist u1 ∈ K ∩ ∂Ω2 and 0 < μ1 ≤ 1 such that μ1Au1 = u1, since u1 = T(μ1F(u1)),
by the definition of T and Lemma 2.2, u1 ∈ C2

ω(Ω) satisfies the differential equation

u
′′
1(t) + a(t)u1(t) = μ1F(u1)(t), t ∈ R. (3.37)

Since u1 ∈ K ∩ ∂Ω2, by the definitions ofK andΩ2, u1 satisfies (3.18), and hence (3.19) holds.
By (3.19) and (3.36), we have

F(u1)(t) = f(t, u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t)))
≤ (λ1 − ε1) ·min{u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t))}
≤ (λ1 − ε1)u1(t), t ∈ R.

(3.38)

From this inequality and (3.37), it follows that

u
′′
1(t) + a(t)u1(t) = μ1F(u1)(t) ≤ (λ1 − ε1)u1(t), t ∈ R. (3.39)

Multiplying this inequality by φ(t) and integrating on [0, ω], we have

∫ω

0

[
u

′′
1(t) + a(t)u1(t)

]
φ(t)dt ≤ (λ1 − ε1)

∫ω

0
u1(t)φ(t)dt. (3.40)
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For the left side of this inequality using integration by parts and (2.14), we have

∫ω

0

[
u

′′
1(t) + a(t)u1(t)

]
φ(t)dt =

∫ω

0
u1(t)

[
φ

′′
(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u1(x)φ(t)dt.

(3.41)

Consequently, we obtain that

λ1

∫ω

0
u1(x)φ(t)dt ≤ (λ1 − ε1)

∫ω

0
u1(x)φ(t)dt. (3.42)

Since u1 ∈ K ∩ ∂Ω2, by the definition of K and (2.13) we see that (3.25) holds. From (3.25)
and (3.42), we see that λ1 ≤ λ1 − ε1 , which is a contradiction. Hence,A satisfies the condition
of Lemma 2.5 in K ∩ ∂Ω2. By Lemma 2.5 we have

i(A,K ∩Ω2, K) = 1. (3.43)

Now, from (3.35) and (3.43) it follows that

i
(
A,K ∩

(
Ω2 \Ω1

)
, K
)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = 1. (3.44)

Hence,A has a fixed point inK∩(Ω2\Ω1), which is a positiveω-periodic solution of (1.1).
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This paper deals with the existence of continuous bounded solutions for a rather general nonlinear
integral equation of Volterra type and discusses also the existence and asymptotic stability of
continuous bounded solutions for another nonlinear integral equation of Volterra type. The
main tools used in the proofs are some techniques in analysis and the Darbo fixed point
theorem via measures of noncompactness. The results obtained in this paper extend and improve
essentially some known results in the recent literature. Two nontrivial examples that explain the
generalizations and applications of our results are also included.

1. Introduction

It is well known that the theory of nonlinear integral equations and inclusions has become
important in some mathematical models of real processes and phenomena studied in math-
ematical physics, elasticity, engineering, biology, queuing theory economics, and so on (see,
[1–3]). In the last decade, the existence, asymptotical stability, and global asymptotical sta-
bility of solutions for various Volterra integral equations have received much attention, see,
for instance, [1, 4–22] and the references therein.

In this paper, we are interested in the following nonlinear integral equations of Volterra
type:

x(t) = f

(

t, x(a(t)), (Hx)(b(t)),
∫α(t)

0
u(t, s, x(c(s)))ds

)

, ∀t ∈ R+, (1.1)

x(t) = h

(

t, x(t),
∫α(t)

0
u(t, s, x(c(s)))ds

)

, ∀t ∈ R+, (1.2)
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where the functions f, h, u, a, b, c, α and the operator H appearing in (1.1) are given while
x = x(t) is an unknown function.

To the best of our knowledge, the papers dealing with (1.1) and (1.2) are few. But
some special cases of (1.1) and (1.2) have been investigated by a lot of authors. For example,
Arias et al. [4] studied the existence, uniqueness, and attractive behaviour of solutions for the
nonlinear Volterra integral equation with nonconvolution kernels

x(t) =
∫ t

0
k(t, s)g(x(s))ds, ∀t ∈ R+. (1.3)

Using the monotone iterative technique, Constantin [13] got a sufficient condition which
ensures the existence of positive solutions of the nonlinear integral equation

x(t) = L(t) +
∫ t

0

[
M(t, s)x(s) +K(t, s)g(x(s))

]
ds, ∀t ∈ R+. (1.4)

Roberts [21] examined the below nonlinear Volterra integral equation

x(t) =
∫ t

0
k(t − s)G((x(s), s))ds, ∀t ∈ R+, (1.5)

which arose from certain models of a diffusive medium that can experience explosive
behavior; utilizing the Darbo fixed point theorem and the measure of noncompactness in [7],
Banaś and Dhage [6], Banaś et al. [8], Banaś and Rzepka [9, 10], Hu and Yan [16] and Liu and
Kang [19] investigated the existence and/or asymptotic stability and/or global asymptotic
stability of solutions for the below class of integral equations of Volterra type:

x(t) = (Tx)(t)
∫ t

0
u(t, s, x(s))ds, ∀t ∈ R+, (1.6)

x(t) = f(t, x(t)) +
∫ t

0
u(t, s, x(s))ds, ∀t ∈ R+, (1.7)

x(t) = f(t, x(t))
∫ t

0
u(t, s, x(s))ds, ∀t ∈ R+, (1.8)

x(t) = g(t, x(t)) + x(t)
∫ t

0
u(t, s, x(s))ds, ∀t ∈ R+, (1.9)

x(t) = f(t, x(t)) + g(t, x(t))
∫ t

0
u(t, s, x(s))ds, ∀t ∈ R+, (1.10)

x(t) = f(t, x(α(t))) +
∫β(t)

0
g
(
t, s, x

(
γ(s)
))
ds, ∀t ∈ R+, (1.11)

respectively. By means of the Schauder fixed point theorem and the measure of noncompact-
ness in [7], Banaś and Rzepka [11] studied the existence of solutions for the below nonlinear
quadratic Volterra integral equation:

x(t) = p(t) + f(t, x(t))
∫ t

0
v(t, s, x(s))ds, ∀t ∈ R+. (1.12)
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Banaś and Chlebowicz [5] got the solvability of the following functional integral equation

x(t) = f1

(

t,

∫ t

0
k(t, s)f2(s, x(s))ds

)

, ∀t ∈ R+ (1.13)

in the space of Lebesgue integrable functions on R+. El-Sayed [15] studied a differential equa-
tion of neutral type with deviated argument, which is equivalent to the functional-integral
equation

x(t) = f

(

t,

∫H(t)

0
x(s)ds, x(h(t))

)

, ∀t ∈ R+ (1.14)

by the technique linking measures of noncompactness with the classical Schauder fixed point
principle. Using an improvement of the Krasnosel’skii type fixed point theorem, Taoudi [22]
discussed the existence of integrable solutions of a generalized functional-integral equation

x(t) = g(t, x(t)) + f1

(

t,

∫ t

0
k(t, s)f2(s, x(s))ds

)

, ∀t ∈ R+. (1.15)

Dhage [14] used the classical hybrid fixed point theorem to establish the uniform local
asymptotic stability of solutions for the nonlinear quadratic functional integral equation of
mixed type

x(t) = f(t, x(α(t)))

(

q(t) +
∫β(t)

0
u
(
t, s, x

(
γ(s)
))
ds

)

, ∀t ∈ R+. (1.16)

The purpose of this paper is to prove the existence of continuous bounded solutions for
(1.1) and to discuss the existence and asymptotic stability of continuous bounded solutions
for (1.2). The main tool used in our considerations is the technique of measures of noncom-
pactness [7] and the famous fixed point theorem of Darbo [23]. The results presented in this
paper extend proper the corresponding results in [6, 9, 10, 15, 16, 19]. Two nontrivial examples
which show the importance and the applicability of our results are also included.

This paper is organized as follows. In the second section, we recall some definitions
and preliminary results and prove a few lemmas, which will be used in our investigations. In
the third section, we state and prove our main results involving the existence and asymptotic
stability of solutions for (1.1) and (1.2). In the final section, we construct two nontrivial exam-
ples for explaining our results, from which one can see that the results obtained in this paper
extend proper several ones obtained earlier in a lot of papers.

2. Preliminaries

In this section, we give a collection of auxiliary facts which will be needed further on. Let
R = (−∞,∞) and R+ = [0,∞). Assume that (E, ‖ · ‖) is an infinite dimensional Banach space
with zero element θ and Br stands for the closed ball centered at θ and with radius r. Let B(E)
denote the family of all nonempty bounded subsets of E.
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Definition 2.1. LetD be a nonempty bounded closed convex subset of the space E. A operator
f : D → E is said to be a Darbo operator if it is continuous and satisfies that μ(fA) ≤ kμ(A)
for each nonempty subset A of D, where k ∈ [0, 1) is a constant and μ is a measure of
noncompactness on B(E).

The Darbo fixed point theorem is as follows.

Lemma 2.2 (see [23]). Let D be a nonempty bounded closed convex subset of the space E and let
f : D → D be a Darbo operator. Then f has at least one fixed point in D.

Let BC(R+) denote the Banach space of all bounded and continuous functions x :
R+ → R equipped with the standard norm

‖x‖ = sup{|x(t)| : t ∈ R+}. (2.1)

For any nonempty bounded subset X of BC(R+), x ∈ X, t ∈ R+, T > 0 and ε ≥ 0, define

ωT (x, ε) = sup
{∣∣x
(
p
) − x(q)∣∣ : p, q ∈ [0, T] with

∣∣p − q∣∣ ≤ ε},

ωT (X, ε) = sup
{
ωT (x, ε) : x ∈ X

}
, ωT

0 (X) = lim
ε→ 0

ωT (X, ε),

ω0(X) = lim
T→+∞

ωT
0 (X), X(t) = {x(t) : x ∈ X},

diam X(t) = sup
{∣∣x(t) − y(t)∣∣ : x, y ∈ X},

μ(X) = ω0(X) + lim sup
t→+∞

diam X(t).

(2.2)

It can be shown that the mapping μ is a measure of noncompactness in the space BC(R+) [4].

Definition 2.3. Solutions of an integral equation are said to be asymptotically stable if there exists
a ball Br in the space BC(R+) such that for any ε > 0, there exists T > 0 with

∣∣x(t) − y(t)∣∣ ≤ ε (2.3)

for all solutions x(t), y(t) ∈ Br of the integral equation and any t ≥ T .
It is clear that the concept of asymptotic stability of solutions is equivalent to the con-

cept of uniform local attractivity [9].

Lemma 2.4. Let ϕ and ψ : R+ → R+ be functions with

lim
t→+∞

ψ(t) = +∞, lim sup
t→+∞

ϕ(t) < +∞. (2.4)

Then

lim sup
t→+∞

ϕ
(
ψ(t)
)
= lim sup

t→+∞
ϕ(t). (2.5)
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Proof. Let lim supt→+∞ ϕ(t) = A. It follows that for each ε > 0, there exists T > 0 such that

ϕ(t) < A + ε, ∀t ≥ T. (2.6)

Equation (2.4)means that there exists C > 0 satisfying

ψ(t) ≥ T, ∀t ≥ C. (2.7)

Using (2.6) and (2.7), we infer that

ϕ
(
ψ(t)
)
< A + ε, ∀t ≥ C, (2.8)

that is, (2.5) holds. This completes the proof.

Lemma 2.5. Let a : R+ → R+ be a differential function. If for each T > 0, there exists a positive num-
ber aT satisfying

0 ≤ a′(t) ≤ aT , ∀t ∈ [0, T], (2.9)

then

ωT (x ◦ a, ε) ≤ ωa(T)(x, aTε), ∀(x, ε) ∈ BC(R+) × (0,+∞). (2.10)

Proof. Let T > 0. It is clear that (2.9) yields that the function a is nondecreasing in [0, T] and
for any t, s ∈ [0, T], there exists ξ ∈ (0, T) satisfying

|a(t) − a(s)| = a′(ξ)|t − s| ≤ aT |t − s| (2.11)

by the mean value theorem. Notice that (2.9) means that a(t) ∈ [a(0), a(T)] ⊆ [0, a(T)] for
each t ∈ [0, T], which together with (2.11) gives that

ωT (x ◦ a, ε) = sup{|x(a(t)) − x(a(s))| : t, s ∈ [0, T], |t − s| ≤ ε}
≤ sup

{∣∣x
(
p
) − x(q)∣∣ : p, q ∈ [a(0), a(T)],

∣∣p − q∣∣ ≤ aTε
}

≤ ωa(T)(x, aTε), ∀(x, ε) ∈ BC(R+) × (0,+∞),

(2.12)

which yields that (2.10) holds. This completes the proof.

Lemma 2.6. Let ϕ : R+ → R+ be a function with limt→+∞ ϕ(t) = +∞ and X be a nonempty
bounded subset of BC(R+). Then

ω0(X) = lim
T→+∞

ω
ϕ(T)
0 (X). (2.13)
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Proof. Since X is a nonempty bounded subset of BC(R+), it follows that ω0(X) =
limT→+∞ωT

0 (X). That is, for given ε > 0, there existsM > 0 satisfying

∣
∣
∣ωT

0 (X) −ω0(X)
∣
∣
∣ < ε, ∀T > M. (2.14)

It follows from limt→+∞ ϕ(t) = +∞ that there exists L > 0 satisfying

ϕ(T) > M, ∀T > L. (2.15)

By means of (2.14) and (2.15), we get that

∣
∣
∣ω

ϕ(T)
0 (X) −ω0(X)

∣
∣
∣ < ε, ∀T > L, (2.16)

which yields (2.13). This completes the proof.

3. Main Results

Now we formulate the assumptions under which (1.1)will be investigated.

(H1) f : R+ ×R
3 → R is continuous with f(t, 0, 0, 0) ∈ BC(R+) and f = sup{|f(t, 0, 0, 0)| :

t ∈ R+};
(H2) a, b, c, α : R+ → R+ satisfy that a and b have nonnegative and bounded derivative

in the interval [0, T] for each T > 0, c and α are continuous and α is nondecreasing
and

lim
t→+∞

a(t) = lim
t→+∞

b(t) = +∞; (3.1)

(H3) u : R
2
+ × R → R is continuous;

(H4) there exist five positive constants r, M, M0, M1, andM2 and four continuous fun-
ctionsm1,m2, m3,g : R+ → R+ such that g is nondecreasing and

∣∣f(t, v,w, z) − f(t, p, q, y)∣∣ ≤ m1(t)
∣∣v − p∣∣ +m2(t)

∣∣w − q∣∣ +m3(t)
∣∣z − y∣∣,

∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−g(r), g(r)], z, y ∈ [−M,M],
(3.2)

lim
t→+∞

sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br

}

= 0, (3.3)

sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br

}

≤M0, (3.4)

sup

{∫α(t)

0
|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br

}

≤M, (3.5)
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sup{mi(t) : t ∈ R+} ≤Mi, i ∈ {1, 2}, (3.6)

M1r +M2g(r) +M0 + f ≤ r, M1 +QM2 < 1; (3.7)

(H5) H : BC(R+) → BC(R+) satisfies that H : Br → BC(R+) is a Darbo operator with
respect to the measure of noncompactness of μ with a constant Q and

|(Hx)(b(t))| ≤ g(|x(b(t))|), ∀(x, t) ∈ Br × R+. (3.8)

Theorem 3.1. Under Assumptions (H1)–(H5), (1.1) has at least one solution x = x(t) ∈ Br .

Proof. Let x ∈ Br and define

(Fx)(t) = f

(

t, x(a(t)), (Hx)(b(t)),
∫α(t)

0
u(t, s, x(c(s)))ds

)

, ∀t ∈ R+. (3.9)

It follows from (3.9) and Assumptions (H1)–(H5) that Fx is continuous on R+ and that

|(Fx)(t)| ≤
∣∣∣∣∣
f

(

t, x(a(t)), (Hx)(b(t)),
∫α(t)

0
u(t, s, x(c(s)))ds

)

− f(t, 0, 0, 0)
∣∣∣∣∣
+
∣∣f(t, 0, 0, 0)

∣∣

≤ m1(t)|x(a(t))| +m2(t)|(Hx)(b(t))| +m3(t)

∣∣∣∣∣

∫α(t)

0
u(t, s, x(c(s)))ds

∣∣∣∣∣
+ f

≤M1r +M2g(r) +M0 + f

≤ r, ∀t ∈ R+,

(3.10)

which means that Fx is bounded on R+ and F(Br) ⊆ Br .
We now prove that

μ(FX) ≤ (M1 +M2Q)μ(X), ∀X ⊆ Br. (3.11)

Let X be a nonempty subset of Br . Using (3.2), (3.6), and (3.9), we conclude that

∣∣(Fx)(t) − (Fy)(t)∣∣

=

∣∣∣∣∣
f

(

t, x(a(t)), (Hx)(b(t)),
∫α(t)

0
u(t, s, x(c(s)))ds

)

−f
(

t, y(a(t)),
(
Hy
)
(b(t)),

∫α(t)

0
u
(
t, s, y(c(s))

)
ds

)∣∣∣∣∣
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≤ m1(t)
∣
∣x(a(t)) − y(a(t))∣∣ +m2(t)

∣
∣(Hx)(b(t)) − (Hy

)
(b(t))

∣
∣

+m3(t)
∫α(t)

0

∣
∣u(t, s, x(c(s))) − u(t, s, y(c(s)))∣∣ds

≤M1
∣
∣x(a(t)) − y(a(t))∣∣ +M2

∣
∣(Hx)(b(t)) − (Hy

)
(b(t))

∣
∣

+ sup

{

m3(t)
∫α(t)

0
|u(t, s,w(c(s))) − u(t, s, z(c(s)))|ds : w, z ∈ Br

}

, ∀x, y ∈ X, t ∈ R+,

(3.12)

which yields that

diam(FX)(t) ≤M1 diamX(a(t)) +M2 diam(HX)(b(t))

+ sup

{

m3(t)
∫α(t)

0
|u(t, s,w(c(s))) − u(t, s, z(c(s)))|ds : w, z ∈ Br

}

,

∀t ∈ R+,

(3.13)

which together with (3.3), Assumption (H2) and Lemma 2.4 ensures that

lim sup
t→+∞

diam(FX)(t)

≤M1 lim sup
t→+∞

diamX(a(t)) +M2 lim sup
t→+∞

diam(HX)(b(t))

+ lim sup
t→+∞

sup

{

m3(t)
∫α(t)

0
|u(t, s,w(c(s))) − u(t, s, z(c(s)))|ds : w, z ∈ Br

}

=M1 lim sup
t→+∞

diamX(t) +M2 lim sup
t→+∞

diam(HX)(t),

(3.14)

that is,

lim sup
t→+∞

diam(FX)(t) ≤M1 lim sup
t→+∞

diamX(t) +M2 lim sup
t→+∞

diam(HX)(t). (3.15)

For each T > 0 and ε > 0, put

M3T = sup
{
m3
(
p
)
: p ∈ [0, T]

}
,

uTr = sup
{∣∣u
(
p, q, v

)∣∣ : p ∈ [0, T], q ∈ [0, α(T)], v ∈ [−r, r]},
ωT
r (u, ε) = sup

{∣∣u
(
p, τ, v

) − u(q, τ, v)∣∣ : p, q ∈ [0, T],
∣∣p − q∣∣ ≤ ε, τ ∈ [0, α(T)], v ∈ [−r, r]},

ωT (u, ε, r)=sup
{∣∣u
(
p, q, v

) − u(p, q,w)∣∣ :p ∈ [0, T], q ∈ [0, α(T)], v,w ∈ [−r, r], |v−w| ≤ ε},

ωT
r

(
f, ε, g(r)

)
= sup

{∣∣f
(
p, v,w, z

) − f(q, v,w, z)∣∣ : p, q ∈ [0, T],
∣∣p − q∣∣ ≤ ε,

v ∈ [−r, r], w ∈ [−g(r), g(r)], z ∈ [−M,M]
}
.

(3.16)
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Let T > 0, ε > 0, x ∈ X and t, s ∈ [0, T] with |t − s| ≤ ε. It follows from (H2) that there exist
aT and bT satisfying

0 ≤ a′(t) ≤ aT , 0 ≤ b′(t) ≤ bT , ∀t ∈ [0, T]. (3.17)

In light of (3.2), (3.6), (3.9), (3.16), (3.17), and Lemma 2.5, we get that

|(Fx)(t) − (Fx)(s)|

≤
∣
∣
∣
∣
∣
f

(

t, x(a(t)), (Hx)(b(t)),
∫α(t)

0
u(t, τ, x(c(τ)))dτ

)

−f
(

t, x(a(s)), (Hx)(b(s)),
∫α(s)

0
u(s, τ, x(c(τ)))dτ

)∣∣
∣
∣∣

+

∣∣∣∣∣
f

(

t, x(a(s)), (Hx)(b(s)),
∫α(s)

0
u(s, τ, x(c(τ)))dτ

)

−f
(

s, x(a(s)), (Hx)(b(s)),
∫α(s)

0
u(s, τ, x(c(τ)))dτ

)∣∣∣∣∣

≤ m1(t)|x(a(t)) − x(a(s))| +m2(t)|(Hx)(b(t)) − (Hx)(b(s))|

+m3(t)

[∣∣∣∣∣

∫α(t)

α(s)
|u(t, τ, x(c(τ)))|dτ

∣∣∣∣∣
+
∫α(s)

0
|u(t, τ, x(c(τ))) − u(s, τ, x(c(τ)))|dτ

]

+ sup
{∣∣f
(
p, v,w, z

) − f(q, v,w, z)∣∣ : p, q ∈ [0, T],
∣∣p − q∣∣ ≤ ε,

v ∈ [−r, r], w ∈ [−g(r), g(r)], z ∈ [−M,M]
}

≤M1ω
T (x ◦ a, ε) +M2ω

T ((Hx) ◦ b, ε)
+M3T |α(t) − α(s)| sup

{∣∣u
(
p, τ, v

)∣∣ : p ∈ [0, T], τ ∈ [0, α(T)], v ∈ [−r, r]}

+M3Tα(T) sup
{∣∣u
(
p, τ, v

)−u(q, τ, v)∣∣ :p, q ∈ [0, T],
∣∣p−q∣∣≤ε, τ ∈ [0, α(T)], v∈[−r, r]}

+ωT
r

(
f, ε, g(r)

)

≤M1ω
a(T)(x, aTε) +M2ω

b(T)
(
Hx, bTε

)
+M3Tω

T (α, ε)uTr

+M3Tα(T)ωT
r (u, ε) +ω

T
r

(
f, ε, g(r)

)
,

(3.18)

which implies that

ωT (Fx, ε) ≤M1ω
a(T)(x, aTε) +M2ω

b(T)
(
Hx, bTε

)
+M3Tω

T (α, ε)uTr

+M3Tα(T)ωT
r (u, ε) +ω

T
r

(
f, ε, g(r)

)
, ∀T > 0, ε > 0, x ∈ X.

(3.19)



10 Abstract and Applied Analysis

Notice that Assumptions (H1)–(H3) imply that the functions α = α(t), f = f(t, p, q, v) and
u = u(t, y, z) are uniformly continuous on the sets [0, T],[0, T] × [−r, r] × [−g(r), g(r)] ×
[−M,M] and [0, T] × [0, α(T)] × [−r, r], respectively. It follows that

lim
ε→ 0

ωT (α, ε) = lim
ε→ 0

ωT
r (u, ε) = lim

ε→ 0
ωT
r

(
f, ε, g(r)

)
= 0. (3.20)

In terms of (3.19) and (3.20), we have

ωT
0 (FX) ≤M1ω

a(T)
0 (X) +M2ω

b(T)
0 (HX), (3.21)

letting T → +∞ in the above inequality, by Assumption (H2) and Lemma 2.6, we infer that

ω0(FX) ≤M1ω0(X) +M2ω0(HX). (3.22)

By means of (3.15), (3.22), and Assumption (H5), we conclude immediately that

μ(FX) = ω0(FX) + lim sup
t→+∞

diam(FX)(t)

≤M1ω0(X) +M2ω0(HX) +M1 lim sup
t→+∞

diamX(t) +M2 lim sup
t→+∞

diam(HX)(t)

=M1μ(X) +M2

(
ω0(HX) + lim sup

t→+∞
diam(HX)(t)

)

≤ (M1 +M2Q)μ(X),
(3.23)

that is, (3.11) holds.
Next we prove that F is continuous on the ball Br . Let x ∈ Br and {xn}n≥1 ⊂ Br with

limn→∞ xn = x. It follows from (3.3) that for given ε > 0, there exists a positive constant T
such that

sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br

}

<
ε

3
, ∀t > T. (3.24)

Since u = u(t, s, v) is uniformly continuous in [0, T] × [0, α(T)] × [−r, r], it follows from (3.16)
that there exists δ0 > 0 satisfying

ωT (u, δ, r) <
ε

1 + 3M3Tα(T)
, ∀δ ∈ (0, δ0). (3.25)

By Assumption (H5) and limn→∞ xn = x, we know that there exists a positive integerN such
that

(1 +M1)‖xn − x‖ +M2‖Hxn −Hx‖ < 1
2
min{ε, δ0}, ∀n > N. (3.26)



Abstract and Applied Analysis 11

In view of (3.2), (3.6), (3.9), (3.24)–(3.26), and Assumption (H2), we gain that for any n > N
and t ∈ R+

|(Fxn)(t) − (Fx)(t)|

=

∣
∣
∣
∣
∣
f

(

t, xn(a(t)), (Hxn)(b(t)),
∫α(t)

0
u(t, s, xn(c(s)))ds

)

−f
(

t, x(a(t)), (Hx)(b(t)),
∫α(t)

0
u(t, s, x(c(s)))ds

)∣∣
∣
∣
∣

≤ m1(t)|xn(a(t)) − x(a(t))| +m2(t)|(Hxn)(b(t)) − (Hx)(b(t))|

+m3(t)
∫α(t)

0
|u(t, s, xn(c(s))) − u(t, s, x(c(s)))|ds

≤M1‖xn − x‖ +M2‖Hxn −Hx‖

+max

{

sup
τ>T

sup

{

m3(τ)
∫α(τ)

0

∣∣u(τ, s, z(c(s))) − u(τ, s, y(c(s)))∣∣ds : z, y ∈ Br
}

,

sup
τ∈[0,T]

sup

{

m3(τ)
∫α(τ)

0

∣∣u(τ, s, z(c(s))) − u(τ, s, y(c(s)))∣∣ds : z,

y ∈ Br,
∥∥z − y∥∥ ≤ δ0

2

}}

<
ε

2
+max

{
ε

3
, sup
τ∈[0,T]

{

m3(τ)
∫α(τ)

0
ωT

(
u,
δ0
2
, r

)
ds

}}

<
ε

2
+max

{
ε

3
,

M3Tα(T)ε
1 + 3M3Tα(T)

}

=
5ε
6
,

(3.27)

which yields that

‖Fxn − Fx‖ < ε, ∀n > N, (3.28)

that is, F is continuous at each point x ∈ Br .
Thus Lemma 2.2 ensures that F has at least one fixed point x = x(t) ∈ Br . Hence (1.1)

has at least one solution x = x(t) ∈ Br . This completes the proof.

Now we discuss (1.2) under below hypotheses:

(H6) h : R+ × R
2 → R is continuous with h(t, 0, 0) ∈ BC(R+) and h = sup{|h(t, 0, 0)| : t ∈

R+};
(H7) c, α : R+ → R+ are continuous and α is nondecreasing;
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(H8) there exist two continuous functionsm1, m3 : R+ → R+ and four positive constants
r,M,M0 andM1 satisfying (3.3)–(3.5),

∣
∣h(t, v,w) − h(t, p, q)∣∣ ≤ m1(t)

∣
∣v − p∣∣ +m3(t)

∣
∣w − q∣∣,

∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−M,M],
(3.29)

sup{m1(t) : t ∈ R+} ≤M1, (3.30)

M0 + h ≤ r(1 −M1). (3.31)

Theorem 3.2. Under Assumptions (H3) and (H6)–(H8), (1.2) has at least one solution x = x(t) ∈
Br . Moreover, solutions of (1.2) are asymptotically stable.

Proof. As in the proof of Theorem 3.1, we conclude that (1.2) possesses at least one solution
in Br .

Now we claim that solutions of (1.2) are asymptotically stable. Note that r,M0, and
M1 are positive numbers and h ≥ 0, it follows from (3.31) thatM1 < 1. In terms of (3.3), we
infer that for given ε > 0, there exists T > 0 such that

sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br

}

< ε(1 −M1), ∀t ≥ T.
(3.32)

Let z = z(t), y = y(t) be two arbitrarily solutions of (1.2) in Br . According to (3.29)–(3.32), we
deduce that

∣∣z(t) − y(t)∣∣

=

∣∣∣∣∣
h

(

t, z(t),
∫α(t)

0
u(t, τ, z(c(τ)))dτ

)

− h
(

t, y(t),
∫α(t)

0
u
(
t, τ, y(c(τ))

)
dτ

)∣∣∣∣∣

≤ m1(t)
∣∣z(t) − y(t)∣∣ +m3(t)

∫α(t)

0

∣∣u(t, τ, z(c(τ))) − u(t, τ, y(c(τ)))∣∣dτ

≤M1
∣∣z(t) − y(t)∣∣ + sup

{

m3(t)
∫α(t)

0
|u(t, τ, v(c(τ))) − u(t, τ,w(c(τ)))|dτ : v,w ∈ Br

}

< M1
∣∣z(t) − y(t)∣∣ + ε(1 −M1), ∀t ≥ T,

(3.33)

which means that

∣∣z(t) − y(t)∣∣ < ε (3.34)

whenever z, y are solutions of (1.2) in Br and t ≥ T . Hence solutions of (1.2) are asympto-
tically stable. This completes the proof.
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Remark 3.3. Theorems 3.1 and 3.2 generalize Theorem 3.1 in [6], Theorem 2 in [9], Theorem 3
in [10], Theorem 1 in [15], Theorem 2 in [16], and Theorem 3.1 in [19]. Examples 4.1 and 4.2
in the fourth section show that Theorems 3.1 and 3.2 substantially extend the corresponding
results in [6, 9, 10, 15, 16, 19].

4. Examples

In this section, we construct two nontrivial examples to support our results.

Example 4.1. Consider the following nonlinear integral equation of Volterra type:

x(t) =
1

10 + ln3(1 + t3)
+
tx2(1 + 3t2

)

200(1 + t)
+

1

10
√
3 + 20t + 3|x(t3)|

+
1

9 +
√
1 + t

⎛

⎜
⎝

∫ t2

0

s2x(4s) sin
(√

1 + t3s5 − (t − s)4x3(4s)
)

1 + t12 +
∣∣∣stx3(4s) − 3s3 + 7(t − 2s)2

∣∣∣ x2(4s)
ds

⎞

⎟
⎠

3

, ∀t ∈ R+.

(4.1)

Put

f(t, v,w, z) =
1

10 + ln3(1 + t3)
+

tv2

200(1 + t)
+

1

10
√
3 + 20t + |w|

+
z3

9 +
√
1 + t

,

u
(
t, s, p

)
=

s2p sin
(√

1 + t3s5 − (t − s)4p3
)

1 + t12 +
∣∣∣stp3 − 3s3 + 7(t − 2s)2

∣∣∣p2
,

a(t) = 1 + 3t2, b(t) = t3, c(t) = 4t, α(t) = t2, ∀t, s ∈ R+, v,w, z, p ∈ R.

(4.2)

Let

r∈
[
9 − √

51
2

,
9 +

√
51

2

]

, M=3, M0=
9r
10
, M1=

r

100
, M2=

1
300

, f =
1
10
,

Q = 3, m1(t) =
rt

100(1 + t)
, m2(t) =

1
(
10
√
3 + 20t

)2 , m3(t) =
3M2

9 +
√
1 + t

,

(
Hy
)
(t) = 3y(t), g(t) = 3t, ∀t ∈ R+, y ∈ BC(R+).

(4.3)

It is easy to verify that (3.6) and Assumptions (H1)–(H3) and (H5) are satisfied. Notice that

M1r +M2g(r) +M0 + f ≤ r ⇐⇒ r ∈
[
9 − √

51
2

,
9 +

√
51

2

]

,

∣∣f(t, v,w, z) − f(t, p, q, y)∣∣
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≤ t

200(1 + t)

∣
∣
∣v2 − p2

∣
∣
∣ +

∣
∣
∣
∣
∣

1

10
√
3 + 20t + |w|

− 1

10
√
3 + 20t +

∣
∣q
∣
∣

∣
∣
∣
∣
∣

+
1

9 +
√
1 + t

∣
∣
∣z3 − y3

∣
∣
∣ ≤ m1(t)

∣
∣v − p∣∣ +m2(t)

∣
∣w − q∣∣ +m3(t)

∣
∣z − y∣∣,

∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−g(r), g(r)], z, y ∈ [−M,M],

sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : v,w ∈ Br

}

= sup

⎧
⎪⎨

⎪⎩

3M2

9 +
√
1 + t

∫ t2

0

∣
∣
∣
∣
∣
∣
∣

s2v(4s) sin
(√

1 + t3s5 − (t − s)4v3(4s)
)

1 + t12 +
∣
∣
∣stv3(4s) − 3s3 + 7(t − 2s)2

∣
∣
∣v2(4s)

−
s2w(4s) sin

(√
1 + t3s5 − (t − s)4w3(4s)

)

1 + t12 +
∣∣∣stw3(4s) − 3s3 + 7(t − 2s)2

∣∣∣w2(4s)

∣∣
∣∣∣∣∣
ds : v,w ∈ Br

⎫
⎪⎬

⎪⎭

≤ 3M2

9 +
√
1 + t

∫ t2

0

2s2
(
1 + t12

)2

[
r
(
1 + t12

)
+ r3
(
r3t3 + 3r6 + 7

(
t + 2t2

)2)]
ds

≤ 2M2t6
(
9 +

√
1 + t
)(

1 + t12
)2

{
r
(
1 + t12

)
+ r3
[
r3t3 + 3r6 + 7

(
t + 2t2

)2]} −→ 0 as t −→ +∞,

sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br

}

= sup

⎧
⎪⎨

⎪⎩

3M2

9 +
√
1 + t

∫ t2

0

∣∣∣∣∣∣∣

s2v(4s) sin
(√

1 + t3s5 − (t − s)4v3(4s)
)

1 + t12 +
∣∣∣stv3(4s) − 3s3 + 7(t − 2s)2

∣∣∣v2(4s)

∣∣∣∣∣∣∣
ds : t ∈ R+, v ∈ Br

⎫
⎪⎬

⎪⎭

≤ sup

{
3M2

10

∫ t

0

s2ds

1 + t12
: t ∈ R

+

}

=
rM2

20
< M0,

sup

{∫α(t)

0
|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br

}

= sup

⎧
⎪⎨

⎪⎩

3M2

9 +
√
1 + t

∫ t2

0

∣∣∣∣∣∣∣

s2v(4s) sin
(√

1 + t3s5 − (t − s)4v3(4s)
)

1 + t12 +
∣∣∣stv3(4s) − 3s3 + 7(t − 2s)2

∣∣∣v2(4s)

∣∣∣∣∣∣∣
ds : t ∈ R+, v ∈ Br

⎫
⎪⎬

⎪⎭

≤ sup

{
3M2

10

∫ t

0

s2ds

1 + t12
: t ∈ R

+

}

=
r

6
≤M,

(4.4)
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that is, (3.2)–(3.5) and (3.7) hold. Hence all Assumptions of Theorem 3.1 are fulfilled.
Consequently, Theorem 3.1 ensures that (4.1) has at least one solution x = x(t) ∈ Br . However
Theorem 3.1 in [6], Theorem 2 in [9],Theorem 3 in [10], Theorem 1 in [15], Theorem 2 in [16],
and Theorem 3.1 in [19] are unapplicable for (4.1).

Example 4.2. Consider the following nonlinear integral equation of Volterra type:

x(t) =
3 + sin4

(√
1 + t2

)

16
+
x2(t)
8 + t2

+
1

1 + t

(∫√
t

0

sx3(1 + s2
)

1 + t2 + s cos2(1 + t3s7x2(1 + s2))
ds

)2

, ∀t ∈ R+.

(4.5)

Put

h(t, v,w) =
3 + sin4

(√
1 + t2

)

16
+

v2

8 + t2
+

w2

1 + t
,

u
(
t, s, p

)
=

sp3

1 + t2 + s cos2
(
1 + t3s7p2

) ,

α(t) =
√
t, c(t) = 1 + t2, m1(t) =

1
8 + t2

, m3(t) =
4

1 + t
, ∀t, s ∈ R+, v,w, p ∈ R,

r =
1
2
, M = 2, M0 =M1 =

1
8
, h =

1
4
.

(4.6)

It is easy to verify that (3.30), (3.31) and Assumptions (H6) and (H7) are satisfied. Notice that

∣∣h(t, v,w) − h(t, p, q)∣∣

≤ 1
8 + t2

∣
∣∣v2 − p2

∣
∣∣ +

1
1 + t

∣
∣∣w2 − q2

∣
∣∣

≤ m1(t)
∣∣v − p∣∣ +m3(t)

∣∣z − y∣∣, ∀t ∈ R+, v, p ∈ [−r, r], w, q ∈ [−M,M],

sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s))) − u(t, s,w(c(s)))|ds : x, y ∈ Br

}

= sup

{
4

1 + t

∫√
t

0

∣∣∣∣∣
sv3(1 + s2

)

1 + t2 + s cos2(1 + t3s7v2(1 + s2))

− sw3(1 + s2
)

1 + t2 + s cos2(1 + t3s7w2(1 + s2))
ds

∣∣∣∣∣
ds : v, w ∈ Br

}

≤
4r3t
(
1 +

√
t + t2

)

(1 + t)(1 + t2)2
−→ 0 as t −→ +∞,
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sup

{

m3(t)
∫α(t)

0
|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br

}

= sup

{
4

1 + t

∫√
t

0

∣
∣
∣
∣
∣

sv3(1 + s2
)

1 + t2 + s cos2(1 + t3s7v2(1 + s2))
ds

∣
∣
∣
∣
∣
: t ∈ R+, v ∈ Br

}

≤ sup

{
4r3

1 + t

∫√
t

0

s

1 + t2
ds : t ∈ R

+

}

≤ sup
{

t

4(1 + t)(1 + t2)
: t ∈ R

+
}

≤ 1
8
=M1,

sup

{∫α(t)

0
|u(t, s, v(c(s)))|ds : t ∈ R+, v ∈ Br

}

= sup

{∫√
t

0

∣∣∣∣∣
sv3(1 + s2

)

1 + t2 + s cos2(1 + t3s7v2(1 + s2))
ds

∣∣∣∣∣
: t ∈ R+, v ∈ Br

}

≤ sup

{

r3
∫√

t

0

s

1 + t2
ds : t ∈ R

+

}

=
1
32

< M,

(4.7)

which yield (3.3)–(3.5). That is, all Assumptions of Theorem 3.2 are fulfilled. Therefore,
Theorem 3.2 guarantees that (4.5) has at least one solution x = x(t) ∈ Br . Moreover, solutions
of (4.5) are asymptotically stable. But Theorem 2 in [9], Theorem 3 in [10], Theorem 1 in [15],
Theorem 2 in [16], and Theorem 3.1 in [19] are invalid for (4.5).
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[7] J. Banaś and K. Goebel, “Measures of noncompactness in banach spaces,” in Lecture Notes in Pure and
Applied Mathematics, vol. 60, Marcel Dekker, New York, NY, USA, 1980.
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By means of the fixed-point theorem in the cone of strict-set-contraction operators, we consider
the existence of a nonlinear multi-point boundary value problem of fractional integro-differential
equation in a Banach space. In addition, an example to illustrate the main results is given.

1. Introduction

The purpose of this paper is to establish the existence results of positive solution to nonlinear
fractional boundary value problem

D
q

0+u(t) + f
(
t, u, u′, . . . , u(n−2), Tu, Su

)
= θ, 0 < t < 1, n − 1 < q ≤ n,

u(0) = u′(0) = · · · = u(n−2)(0) = θ, u(n−2)(1) =
m−2∑

i=1

aiu
(n−2)(ηi

) (1.1)

in a Banach space E, where θ is the zero element of E, and n ≥ 2, 0 < η1 < · · · < ηm−2 < 1, ai >
0 (i = 1, 2, . . . , m − 2), Dα

0+ is Riemann-Liouville fractional derivative, and

Tu(t) =
∫ t

0
K(t, s)u(s)ds, Su(t) =

∫1

0
H(t, s)u(s)ds, (1.2)
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where K ∈ C[B,R+], B = {(t, s) ∈ I × I : t ≥ s}, H ∈ C[I × I, R+], I = [0, 1], and R+ denotes
the set of all nonnegative numbers.

Fractional differential equations have gained importance due to their numerous
applications in many fields of science and engineering including fluid flow, rheology,
diffusive transport akin to diffusion, electrical networks, and probability. For details see [1–3]
and the references therein. In recent years, there are some papers dealing with the existence
of the solutions of initial value problems or linear boundary value problems for fractional
differential equations by means of techniques of nonlinear analysis (fixed-point theorems,
Leray-Schauder theory, lower and upper solutions method, and so forth), see for example,
[4–23].

In [8], by means of the fixed-point theorem for the mixed monotone operator, the
authors considers unique existence of positive to singular boundary value problems for
fractional differential equation

D
q

0+u(t) + a(t)f
(
t, u, u′, . . . , u(n−2)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
(1.3)

where Dq

0+ is Riemann-Liouville fractional derivative of order n − 1 < q ≤ n, n ≥ 2.
In [11], El-Shahed and Nieto study the existence of nontrivial solutions for a multi-

point boundary value problem for fractional differential equations

D
q

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n − 1 < q ≤ n, n ∈N,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑

i=1

aiu
(
ηi
)
,

(1.4)

where n ≥ 2, ηi ∈ (0, 1), ai > 0 (i = 1, 2, . . . , m − 2), and D
q

0+ is Riemann-Liouville fractional
derivative. Under certain growth conditions on the nonlinearity, several sufficient conditions
for the existence of nontrivial solution are obtained by using Leray-Schauder nonlinear
alternative. And then, Goodrich [24] was concerned with a partial extension of the problem
(1.3)

D
q

0+u(t) = f(t, u(t)), 0 < t < 1, n − n < q ≤ n − 2,

u(i)(0) = 0, 0 ≤ i ≤ n − 2, D
p

0+u(1) = 0, 1 ≤ p ≤ n − 2,
(1.5)

and the authors derived the Green function for the problem (1.5) and showed that it satisfies
certain properties.

By the contraction mapping principle and the Krasnoselskii’s fixed-point theorem,
Zhou andChu [13] discussed the existence and uniqueness results for the following fractional
differential equation with multi-point boundary conditions:

CD
q

0+u(t) + f(t, u,Ku, Su) = 0, 0 < t < 1, 1 < q < 2,

a1u(0) − b1u′(0) = d1u
(
η1
)
, a2u(1) − b2u′(1) = d2u

(
η2
)
,

(1.6)
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where CD
q

0+ is the Caputo’s fractional derivative, a1, a2, b1, b2, d1, and d2 are real numbers,
0 < η1, and η2 < 1.

In [20], Stanĕk has discussed the existence of positive solutions for the singular frac-
tional boundary value problem

Dqu(t) + f
(
t, u, u′, Dpu

)
= 0, 2 < q < 3, 0 < p < 1,

u(0) = 0, u′(0) = u′(1) = 0.
(1.7)

However, to the best of the author’s knowledge, a few papers can be found in the
literature dealing with the existence of solutions to boundary value problems of fractional
differential equations in Banach spaces. In [25], Salem investigated the existence of Pseudo
solutions for the following nonlinearm-point boundary value problem of fractional type

D
q

0+u(t) + a(t)f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑

i=1

ζiu
(
ηi
) (1.8)

in a reflexive Banach space E, whereDq

0+ is the Pseudo fractional differential operator of order
n − 1 < q ≤ n, n ≥ 2.

In [26], by the monotone iterative technique and mönch fixed-point theorem, Lv
et al. investigated the existence of solution to the following Cauchy problems for differential
equation with fractional order in a real Banach space E

CDqu(t) = f(t, u(t)), u(0) = u0, (1.9)

where CD
q
u(t) is the Caputo’s derivative order, 0 < q < 1.

By means of Darbo’s fixed-point theorem, Su [27] has established the existence result
of solutions to the following boundary value problem of fractional differential equation on
unbounded domain [0,+∞)

D
q

0+u(t) = f(t, u(t)), t ∈ [0,+∞), 1 < q ≤ 2,

u(0) = θ, D
q−1
0+ u(∞) = u∞

(1.10)

in a Banach space E. Dq

0+ is the Riemann-Liouville fractional derivative.
Motivated by the above mentioned papers [8, 13, 24, 25, 27, 28] but taking a quite

different method from that in [26–29]. By using fixed-point theorem for strict-set-contraction
operators and introducing a new cone Ω, we obtain the existence of at least two positive
solutions for the BVP (1.1) under certain conditions on the nonlinear term in Banach spaces.
Our results are different from those of [8, 13, 24, 25, 28, 30]. Note that the nonlinear term f
depends on u and its derivatives u′, u′′, . . . , u(n−2).
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2. Preliminaries and Lemmas

Let the real Banach space Ewith norm ‖ · ‖ be partially ordered by a cone P of E; that is, u ≤ v
if and only if v − u ∈ P ; and P is said to be normal if there exists a positive constantN such
that θ ≤ u ≤ v implies ‖u‖ ≤ N‖v‖, where the smallestN is called the normal constant of P .
For details on cone theory, see [31].

The basic space used in this paper is C[I, E]. For any u ∈ C[I, E], evidently, (C[I, E], ‖ ·
‖C) is a Banach space with norm ‖u‖C = supt∈I |u(t)|, and P = {u ∈ C[I, E] : u(t) ≥ θ for t ∈ I}
is a cone of the Banach space C[I, E].

Definition 2.1 (see [31]). Let V be a bounded set in a real Banach space E, and α(V ) = inf{δ >
0 : V = ∪mi=1Vi, all the diameters of Vi ≤ δ}. Clearly, 0 ≤ α(V ) < ∞. α(V ) is called the
Kuratovski measure of noncompactness.

We use α, αC to denote the Kuratowski noncompactness measure of bounded sets in
the spaces E, C(I, E), respectively.

Definition 2.2 (see [31]). Let E1, E2 be real Banach spaces, S ⊂ E1. T : S → E2 is a continuous
and bounded operator. If there exists a constant k, such that α(T(S)) ≤ kα(S), then T is called
a k-set contraction operator. When k < 1, T is called a strict-set-contraction operator.

Lemma 2.3 (see [31]). If D ⊂ C[I, E] is bounded and equicontinuous, then α(D(t)) is continuous
on I and

αC(D) = max
t∈I

α(D(t)), α

({∫

I

u(t)dt : u ∈ D
})

≤
∫

I

α(D(t))dt, (2.1)

where D(t) = {u(t) : u ∈ D, t ∈ I}.

Definition 2.4 (see [2, 3]). The left-sided Riemann-Liouville fractional integral of order q > 0
of a function y : R0

+ → R is given by

I
q

0+y(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1y(s)ds. (2.2)

Definition 2.5 (see [2, 3]). The fractional derivative of order q > 0 of a function y : R0
+ → R is

given by

D
q

0+y(t) =
1

Γ
(
n − q)

(
d

dt

)n ∫ t

0
(t − s)n−q−1y(s)ds, (2.3)

where n = [q] + 1, [q] denotes the integer part of number q, provided that the right side is
pointwise defined on R0

+.

Lemma 2.6 (see [2, 3]). Let q > 0. Then the fractional differential equation

D
q

0+y(t) = 0 (2.4)

has a unique solution y(t) = c1tq−1 + c2tq−2 + · · · + cntq−n, ci ∈ R, i = 1, 2, . . . , n; here n − 1 < q ≤ n.
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Lemma 2.7 (see [2, 3]). Let q > 0. Then the following equality holds for y ∈ L(0, 1), Dq

0+y ∈
L(0, 1),

I
q

0+D
q

0+y(t) = y(t) + c1t
q−1 + c2tq−2 + · · · + cNtq−N (2.5)

for some ci ∈ R, i = 1, 2, . . . ,N; hereN is the smallest integer greater than or equal to q.

Lemma 2.8 (see [31]). Let K be a cone in a Banach space E. Assume that Ω1,Ω2 are open subsets
of E with 0 ∈ Ω1, Ω1 ⊂ Ω2. If T : K ∩ (Ω2 \Ω1) → K is a strict-set-contraction operator such that
either:

(i) ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω2, or

(ii) ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω1, and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω2,

then T has a fixed point in K ∩ (Ω2 \Ω1).

3. Main Results

For convenience, we list some following assumptions.

(H1) There exist a ∈ C[I, R+] and h ∈ C[Rn+1
+ , R+] such that

∥∥f(t, u1, . . . , un+1)
∥∥ ≤ a(t)h(‖u1‖, . . . , ‖un+1‖), ∀t ∈ I, uk ∈ P, k = 1, . . . , n + 1. (3.1)

(H2) f : I × Pn+1r → P , for any r > 0, f is uniformly continuous on I × Pn+1r and there
exist nonnegative constants Lk, k = 1, . . . , n + 1, with

2
Γ
(
q − n + 2

)
η∗

(
n−2∑

k=1

Lk
(n − 2 − k)! + Ln−1 +

a∗

(n − 3)!
Ln +

b∗

(n − 3)!
Ln+1

)

< 1 (3.2)

such that

α
(
f(t,D1, D2, . . . , Dn+1)

) ≤
n+1∑

k=1

Lkα(Dk), ∀t ∈ I, bounded sets Dk ∈ Pr, (3.3)

where a∗ = max{K(t, s) : (t, s) ∈ B}, b∗ = max{H(t, s) : (t, s) ∈ I × I}, Pr = {u ∈ P : ‖u‖ ≤
r}, η∗ = 1 −∑m−2

i=1 aiη
q−n+1
i .

Lemma 3.1. Given y ∈ C[I, E] and 1 −∑m−2
i=1 aiη

q−n+1
i /= 0 hold. Then the unique solution of

D
q−n+2
0+ x(t) + y(t) = 0, 0 < t < 1, n − 1 < q ≤ n, n ≥ 2,

x(0) = 0, x(1) =
m−2∑

i=1

aix
(
ηi
)
,

(3.4)
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is

x(t) =
∫1

0
G(t, s)y(s)ds, (3.5)

where

G(t, s) = g(t, s) +
∑m−2

i=1 aig
(
ηi, s
)

η∗
tq−n+1, (3.6)

g(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t(1 − s))q−n+1 − (t − s)q−n+1
Γ
(
q − n + 2

) , s ≤ t,
(t(1 − s))q−n+1
Γ
(
q − n + 2

) , t ≤ s.
(3.7)

Proof. Deduced from Lemma 2.7, we have

x(t) = −Iq−n+20+ y(t) + c1tq−n+1 + c2tq−n (3.8)

for some c1, c2 ∈ R. Consequently, the general solution of (3.4) is

x(t) = −
∫ t

0

(t − s)q−n+1
Γ
(
q − n + 2

)y(s)ds + c1tq−n+1 + c2tq−n. (3.9)

By boundary value conditions x(0) = 0, x(1) =
∑m−2

i=1 aix(ηi), there is c2 = 0, and

c1 =
1

1 −∑m−2
i=1 aiη

q−n+1
i

∫1

0

(1 − s)q−n+1
Γ
(
q − n + 2

)y(s)ds −
∑m−2

i=1 ai

1 −∑m−2
i=1 aiη

q−n+1
i

∫ηi

0

(
ηi − s

)q−n+1

Γ
(
q − n + 2

)y(s)ds.

(3.10)

Therefore, the solution of problem (3.4) is

x(t) = −
∫ t

0

(t − s)q−n+1
Γ
(
q − n + 2

)y(s)ds +
tq−n+1

1 −∑m−2
i=1 aiηiq−n+1

∫1

0

(1 − s)q−n+1
Γ
(
q − n + 2

)y(s)ds

−
∑m−2

i=1 ait
q−n+1

1 −∑m−2
i=1 aiη

q−n+1
i

∫ηi

0

(
ηi − s

)q−n+1

Γ
(
q − n + 2

)y(s)ds

=
∫1

0
G(t, s)y(s)ds.

(3.11)

The proof is complete.

Moreover, there is one paper [8] in which the following statement has been shown.
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Lemma 3.2. The function g(t, s) defined in (3.7) satisfying the following properties:

(1) g(t, s) ≥ 0 is continuous on [0, 1] × [0, 1], and g(t, s) ≤ tq−n+1/Γ(q − n + 2), g(t, s) ≤
g(s, s) for all 0 ≤ t, s ≤ 1;

(2) there exists a positive function ρ0 ∈ C(0, 1) such that minγ≤t≤δ g(t, s) ≥ ρ0(s)g(t, s), s ∈
(0, 1), where 0 < γ < δ < 1 and

ρ0(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(δ(1 − s))q−n+1 − (δ − s)q−n+1
(s(1 − s))q−n+1

, s ∈ (0, ξ],

(
γ

s

)q−n+1
, s ∈ [ξ, 1),

(3.12)

where γ < ξ < δ is the solution of

(δ(1 − ξ))q−n+1 − (δ − ξ)q−n+1 = (γ(1 − ξ))q−n+1. (3.13)

For our purpose, one assumes that

(H3) η∗ = 1 −∑m−2
i=1 aiη

q−n+1
i > 0 and 0 < γ ≤ min{2δ − 1, δ/2}, 2/3 ≤ δ < 1, where γ , δ are

the constants in (2) of Lemma 3.2.

Remark 3.3. We note that if (H3) holds, then the function G(t, s) defined in (3.4) is satisfying
the following properties:

(i) G(t, s) ≥ 0 is continuous on [0, 1] × [0, 1], and G(t, s) ≤ Δtq−n+1, for all 0 ≤ t, s ≤ 1,
where Δ−1 = η∗Γ(q − n + 2);

(ii) G(t, s) ≤ G(s) for all 0 ≤ t, s ≤ 1, where

G(s) = g(s, s) +
∑m−2

i=1 aig
(
ηi, s
)

η∗
. (3.14)

Indeed, it is obvious from (1) of Lemma 3.2 and (3.6) that

G(t, s) ≤ g(s, s) + 1
η∗

m−2∑

i=1

aig
(
ηi, s
)
= G(s)

≤ tq−n+1

Γ
(
q − n + 2

) +
∑m−2

i=1 aiη
q−n+1
i

η∗Γ
(
q − n + 2

) tq−n+1 ≤ Δtq−n+1.

(3.15)

Lemma 3.4. Let u(t) = In−20+ x(t), x ∈ C[I, E]. Then the problem (1.1) can be transformed into the
following modified problem:

D
q−n+2
0+ x(t) + f

(
s, In−20+ x(s), . . . , I10+x(s), x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))
= θ,

x(0) = θ, x(1) =
m−2∑

i=1

aix
(
ηi
)
,

(3.16)
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where 0 < t < 1, n − 1 < q ≤ n, n ≥ 2. Moreover, if x ∈ C[I, E] is a solutions of problem (3.16), then
the function u(t) = In−20+ x(t) is a solution of (1.1).

The proof follows by routine calculations.
To obtain a positive solution, we construct a cone Ω by

Ω =
{
x(t) ∈ P : x(t) ≥ λ

3
x(s), t ∈ I∗, s ∈ I

}
, (3.17)

where P = {x ∈ C[I, E], x(t) ≥ θ, t ∈ I}, λ = min{minγ≤t≤δρ(t), γq−n+1}, I∗ = [γ, δ].
Let

(Ax)(t) =
∫1

0
G(t, s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))
ds, 0 ≤ t ≤ 1. (3.18)

Lemma 3.5. Assume that (H1)–(H3) hold. Then A : Ω → Ω is a strict-set-contraction operator.

Proof. Let x ∈ Ω. Then, it follows from Remark 3.3. that

(Ax)(t) ≤
∫1

0
G(s)f

(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

=

(∫ γ

0
+
∫δ

γ

+
∫1

δ

)

G(s)f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≤ 3
∫δ

γ

G(s)f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds,

(3.19)

here, by (H3), we know that γ < δ − γ and δ − γ > 1 − δ.
From (3.6) and (3.18), we obtain

min
t∈[γ, δ]

(Ax)(t) = min
t∈[γ, δ]

∫1

0
G(t, s)f

(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≥
∫δ

γ

(

g(t, s) +
tq−n+1

η∗

m−2∑

i=1

aig
(
ηi, s
)
)

× f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds
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≥
∫δ

γ

(

ρ0(s)g(s, s) +
γq−n+1

η∗

m−2∑

i=1

aig
(
ηi, s
)
)

× f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≥ λ

∫δ

γ

G(s)f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))
ds

≥ λ

3
(Ax)

(
t′
)
, t′ ∈ I,

(3.20)

which implies that (Ax)(t) ∈ Ω; that is, A(Ω) ⊂ Ω.
Next, we prove that A is continuous on Ω. Let {xj}, {x} ⊂ Ω, and ‖xj − x‖Ω → 0 (j →

∞). Hence {xj} is a bounded subset ofΩ. Thus, there exists r > 0 such that r = supj‖xj‖Ω <∞
and ‖x‖Ω ≤ r. It is clear that

∥∥(Axj
)
(t) − (Ax)(t)

∥∥ =
∫1

0
G(t, s)

∥∥∥f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))

−f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))∥∥∥ds

≤ Δtq−n+1
∥∥∥f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))

−f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))∥∥∥ds.

(3.21)

According to the properties of f , for all ε > 0, there exists J > 0 such that

∥∥∥f
(
s, In−20+ xj(s), . . . , xj(s), T

(
In−20+ xj(s)

)
, S
(
In−20+ xj(s)

))

−f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))∥∥∥ <
ε

Δ
,

(3.22)

for j ≥ J , for all t ∈ I.
Therefore, for all ε > 0, for any t ∈ I and j ≥ J , we get

∥∥(Axj
)
(t) − (Ax)(t)

∥∥ < tq−n+1ε ≤ ε. (3.23)

This implies that A is continuous on Ω.
By the properties of continuous of G(t, s), it is easy to see that A is equicontinuous

on I.
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Finally, we are going to show that A is a strict-set-contraction operator. Let D ⊂ Ω be
bounded. Then by condition (H1), Lemma 3.1 implies that αC(AD) = maxt∈I α((AD)(t)). It
follows from (3.18) that

α((AD)(t)) ≤ α
(
co
{
G(t, s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))

: s ∈ [0, t], t ∈ I, x ∈ D
})

≤ Δ · α
({
f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x(s)

)
, S
(
In−20+ x(s)

))

: s ∈ [0, t], t ∈ I, x ∈ D
})

≤ Δ · α
(
f
(
I ×
(
In−20+ D

)
(I) × · · · ×D(I) × T

(
In−20+ D

)
(I) × S

(
In−20+ D

)
(I)
))

≤ Δ ·
{
n−2∑

k=1

Lkα
((
In−1−k0+ D

)
(I)
)
+ Ln−1α(D(I)) + a∗Lnα

(
T
(
In−20+ D

)
(I)
)

+b∗Ln+1α
(
S
(
In−20+ D

)
(I)
)}

,

(3.24)

which implies

αC(AD) ≤ Δ ·
{
n−2∑

k=1

Lkα
((
In−1−k0+ D

)
(I)
)
+ Ln−1α(D(I))

+a∗Lnα
(
T
(
In−20+ D

)
(I)
)
+ b∗Ln+1α

(
S
(
In−20+ D

)
(I)
)}

.

(3.25)

Obviously,

α
(
In−1−k0+ D

)
(I) = α

({∫ s

0

(s − τ)n−2−k
(n − 2 − k)!x(τ)dτ : τ ∈ [0, s], s ∈ I, k = 1, . . . , n − 2

})

≤ 1
(n − 2 − k)!α(D(I)),

(3.26)

α
(
T
(
In−20+ D

))
(I) = α

({∫ t

0
K(t, s)

(∫s

0

(s − τ)n−2
(n − 3)!

u(τ)dτ

)

ds : u ∈ D, t ∈ I
})

≤ a∗

(n − 3)!
α({u(t) : t ∈ I, u ∈ D}) ≤ a∗

(n − 3)!
α(D(I)),

(3.27)

α
(
S
(
In−20+ D

))
(I) = α

({∫1

0
H(t, s)

(∫ s

0

(s − τ)n−2
(n − 3)!

u(τ)dτ

)

ds : u ∈ D, t ∈ I
})

≤ b∗

(n − 3)!
α({u(t) : t ∈ I, u ∈ D}) ≤ b∗

(n − 3)!
α(D(I)).

(3.28)
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Using a similar method as in the proof of Theorem 2.1.1 in [31], we have

α(D(I)) ≤ 2αC(D). (3.29)

Therefore, it follows from (3.26)–(3.29) that

αC(AD) ≤ 2Δ ·
(

n−2∑

k=1

Lk
(n − 2 − k)! + Ln−1 +

a∗Ln
(n − 3)!

+
b∗Ln+1
(n − 3)!

)

αC(D). (3.30)

Noticing that (3.3), we obtain that T is a strict-set-contraction operator. The proof is complete.

Theorem 3.6. Let cone P be normal and conditions (H1)∼(H3) hold. In addition, assume that the
following conditions are satisfied.

(H4) There exist u∗ ∈ P \ {θ}, c1 ∈ C[I∗, R+] and h1 ∈ C[Pn+1, R+] such that

f(t, u1, . . . , un+1) ≥ c1(t)h1(u1, . . . , un−1)u∗, ∀t ∈ I∗, uk ∈ P,

h1(u1, . . . , un−1)
∑n−1

k=1‖uk‖
−→ ∞, as

n−1∑

k=1

‖uk‖ −→ ∞, uk ∈ P.
(3.31)

(H5) There exist u∗ ∈ P \ {θ}, c2 ∈ C[I∗, R+], and h2 ∈ C[Pn−1, R+] such that

f(t, u1, . . . , un+1) ≥ c2(t)h2(u1, . . . , un−1)u∗, ∀t ∈ I∗, uk ∈ P,

h2(u1, . . . , un−1)
∑n−1

k=1‖ui‖
−→ ∞, as

n−1∑

k=1

‖uk‖ −→ 0, uk ∈ P.
(3.32)

(H6) There exists a β > 0 such that

NMβ

∫1

0
G(s)a(s)ds < β, (3.33)

whereMβ = maxuk∈Pβ{h(‖u1‖, . . . , ‖un+1‖)}. Then problem (1.1) has at least two positive solutions.

Proof. Consider condition (H4), there exists an r1 > 0, such that

h1(u1, . . . , un−1) ≥
3N2∑n−1

k=1‖uk‖
λ2
∫δ
γ G(s)c1(s)ds · ‖u∗‖

, ∀uk ∈ P,
n−1∑

k=1

‖uk‖ ≥ r1. (3.34)



12 Abstract and Applied Analysis

Therefore,

f(t, u1, ·, un+1) ≥
3N2∑n−1

k=1‖uk‖
λ2
∫δ
γ G(s)c1(s)ds · ‖u∗‖

· c1(t)u∗, ∀uk ∈ P,
n−1∑

k=1

‖uk‖ ≥ r1. (3.35)

Take

r0 > max
{
3Nλ−1r1, β

}
. (3.36)

Then for t ∈ [γ, δ], ‖x‖Ω = r0, we have, by (3.18),

‖x(t)‖ ≥ λ

3N
‖x‖Ω ≥ λ

3N
r0 > r1. (3.37)

Hence,

(Ax)(t) ≥
∫δ

γ

G(t, s)f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds

≥ 3N2

λ
∫δ
γ G(s)c1(s)ds · ‖u∗‖

∫δ

γ

G(s)

(
n−2∑

k=1

∥∥∥In−1−k0+ x(s)
∥∥∥ + ‖x(s)‖

)

c1(s)ds · u∗

≥ 3N2

λ
∫δ
γ G(s)c1(s)ds · ‖u∗‖

∫δ

γ

G(s)c1(s)‖x(s)‖ds · u∗

≥ N
∫δ
γ G(s)c1(s)ds · ‖u∗‖

‖x‖Ω
(∫δ

γ

G(s)c1(s)ds

)

· u∗

=
1

∫δ
γ G(s)c1(s)ds · ‖u∗‖

(∫δ

γ

G(s)c1(s)ds‖u∗‖
)

· N‖x‖Ω
‖u∗‖ u∗

≥ N‖x‖Ω
‖u∗‖ · u∗,

(3.38)

and consequently,

‖Ax‖Ω ≥ ‖x‖Ω, ∀x ∈ Ω, ‖x‖Ω = r0. (3.39)

Similarly, by condition (H5), there exists r2 > 0, such that

h2(u1, . . . , un−1) ≥
3N2∑n−1

k=1‖uk‖
λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

, ∀uk ∈ P, 0 <
n−1∑

k=1

‖uk‖ ≤ r2, (3.40)
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where ξ is given in (2) of Lemma 3.2. Therefore,

f(t, u1, . . . , un+1) ≥
3N2∑n−1

k=1‖uk‖
λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

· c2(t)u∗, ∀uk ∈ P, 0 <
n−1∑

k=1

‖uk‖ ≤ r2. (3.41)

Choose

0 < r < min

⎧
⎨

⎩

(
n−2∑

k=0

1
k!

)−1
r2, β

⎫
⎬

⎭
. (3.42)

Then for t ∈ [γ, δ], x ∈ Ω, ‖x‖Ω = r, we have

(Ax)(ξ) =
∫1

0
G(ξ, s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds

≥
∫δ

γ

G(ξ, s)f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds

≥ 3N2

λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

∫δ

γ

G(ξ, s)

(
n−2∑

k=1

∥∥∥In−1−k0+ x(s)
∥∥∥ + ‖x(s)‖

)

c2(s)ds · u∗

≥ 3N2

λ
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

∫δ

γ

G(ξ, s)‖x(s)‖c2(s)ds · u∗

≥ N
∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

‖x(s)‖Ω
∫δ

γ

G(ξ, s)c2(s)ds · u∗

=
1

∫δ
γ G(ξ, s)c2(s)ds · ‖u∗‖

‖x(s)‖Ω
(∫δ

γ

G(ξ, s)c2(s)ds‖u∗‖
)

· N‖x(s)‖Ω
‖u∗‖ u∗

≥ N‖x(s)‖Ω
‖u∗‖ · u∗,

(3.43)

which implies

‖(Ax)(ξ)‖Ω ≥ ‖x(s)‖Ω, ∀x ∈ Ω, ‖x‖Ω = r, (3.44)

that is,

‖Ax‖Ω ≥ ‖x(s)‖Ω, ∀x ∈ Ω, ‖x‖Ω = r. (3.45)
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On the other hand, according to (ii) of Remark 3.3 and (3.18), we get

(Ax)(t) ≤
∫1

0
G(s)f

(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)
ds. (3.46)

By condition (H1), for t ∈ I, x ∈ Ω, ‖x‖Ω = β, we have

∥
∥f(t, u1, . . . , un+1)

∥
∥ ≤ a(t)h(‖u1‖, . . . , ‖un+1‖) ≤Mβa(t). (3.47)

Therefore,

‖(Ax)(t)‖Ω ≤NMβ ·
∫1

0
G(s)a(s)ds < β = ‖x‖Ω. (3.48)

Applying Lemma 2.7 to (3.39), (3.45), and (3.48) yields that T has a fixed-point x∗ ∈
Ωr,β, r ≤ ‖x∗‖ ≤ β, and a fixed-point x∗∗ ∈ Ωβ,r0 , β ≤ ‖x∗∗‖ ≤ r0. Noticing (3.48), we get
‖x∗‖/= β and ‖x∗∗‖/= β. This and Lemma 3.4 complete the proof.

Theorem 3.7. Let cone P be normal and conditions (H1)∼(H4) hold. In addition, assume that the
following condition is satisfied:

(H7)

h(‖u1‖, . . . , ‖un+1‖)
∑n+1

k=1‖uk‖
−→ 0, as uk ∈ P,

n+1∑

k=1

‖uk‖ −→ 0+. (3.49)

Then problem (1.1) has at least one positive solution.

Proof. By (H4), we can choose r0 > 3Nλ−1r1. As in the proof of Theorem 3.6, it is easy to see
that (3.39) holds. On the other hand, considering (3.49), there exists r3 > 0 such that

h(‖u1‖, . . . , ‖un+1‖) ≤ ε0
n+1∑

k=1

‖uk‖, for t ∈ I, uk ∈ P, 0 <
n+1∑

k=1

‖uk‖ ≤ r3, (3.50)

where ε0 > 0 satisfies

ε0 =

(

N

{
n−1∑

k=1

1
k!

+
a∗ + b∗

(n − 3)!

}∫1

0
G(s)a(s)ds

)−1
. (3.51)
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Choose 0 < r∗ < min{(∑n−1
k=1(1/k!)+(a

∗+b∗)/(n−3)!)−1r3, r0}. Then for t ∈ I, x ∈ Ω, ‖x‖Ω = r∗,
it follows from (3.46) that

‖(Ax)(t)‖ ≤N
∫1

0
G(s)
∥
∥
∥f
(
s, In−20+ x(s), . . . , x(s), T

(
In−20+ x

)
(s), S

(
In−20+ x

)
(s)
)∥∥
∥ds

≤N
∫1

0
G(s)a(s)h

(∥∥
∥In−20+ x(s)

∥
∥
∥, . . . , ‖x(s)‖,

∥
∥
∥T
(
In−20+ x

)
(s)
∥
∥
∥,
∥
∥
∥S
(
In−20+ x

)
(s)
∥
∥
∥
)
ds

≤Nε0

∫1

0
G(s)a(s)

(
n−1∑

k=1

∥
∥∥In−1−k0+ x(s)

∥
∥∥ +
∥
∥∥T
(
In−20+ x

)
(s)
∥
∥∥ +
∥
∥∥S
(
In−20+ x

)
(s)
∥
∥∥

)

ds

≤Nε0

(
n−1∑

k=1

1
k!

+
a∗ + b∗

(n − 3)!

)

r∗
∫1

0
G(s)a(s)ds = r∗

(3.52)

and consequently,

‖(Ax)(t)‖Ω ≤ ‖x‖Ω, ∀x ∈ Ω, ‖x‖Ω ≤ r∗. (3.53)

Since 0 < r∗ < r0, applying Lemma 2.7 to (3.39) and (3.53) yield that T has a fixed-point
x∗ ∈ Ωr∗,r0 , r

∗ ≤ ‖x∗‖ ≤ r0. This and Lemma 3.4 complete the proof.

4. An Example

Consider the following system of scalar differential equations of fractional order

−D5/2uk(t) =
(1 + t)3

960k3

⎧
⎪⎨

⎪⎩

⎡

⎣u2k(t) + u′3k(t) +
∞∑

j=1

u2j(t) +
∞∑

j=1

u′j(t)

⎤

⎦

3

+

⎛

⎝3uk(t) + 3u′k+1(t) +
∞∑

j=1

uj(t) +
∞∑

j=1

u′2j(t)

⎞

⎠

1/2
⎫
⎪⎬

⎪⎭

+
1 + t3

36k5

(∫ t

0
e−(1+t)suk(s)ds

)2/3

+
1 + t2

24k4

(∫1

0
e−ssin2(t − s)πu2k(s)ds

)

, t ∈ I,

uk(0) = u′k(0) = 0, u′k(1) =
1
8
u′k

(
1
4

)
+
1
2
u′k

(
4
9

)
, k = 1, 2, 3, . . . .

(4.1)

Conclusion. The problem (4.1) has at least two positive solutions.
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Proof. Let E = l1 = {u = (u1, u2, . . . , uk, . . .) :
∑∞

k=1 |uk| < ∞} with the norm ‖u‖ =
∑∞

k=1 |uk|,
and P = {(u1, . . . , uk, . . .) : uk ≥ 0, k = 1, 2, 3, . . .}. Then P is a normal cone in E with normal
constant N = 1, and system (4.1) can be regarded as a boundary value problem of the form
(1.1). In this situation, q = 5/2, n = 3, a1 = 1/8, a2 = 1/2, η1 = 1/4, η2 = 4/9, η∗ =
29/48, K(t, s) = e−(1+t)s, H(t, s) = e−ssin2(t− s)π, u = (u1, . . . , uk, . . .), f = (f1, f2, . . . , fk, . . .),
in which

fk
(
t, u, v, x, y

)
=

(1 + t)3

960k3

⎧
⎪⎨

⎪⎩

⎛

⎝u2k + v3k +
∞∑

j=1

u2j +
∞∑

j=1

vj

⎞

⎠

3

+

⎛

⎝3uk + 3vk+1 +
∞∑

j=1

uj +
∞∑

j=1

v2j

⎞

⎠

1/2
⎫
⎪⎬

⎪⎭
+
1 + t3

36k5
x1/5
k

+
1 + t2

24k4
y2k.

(4.2)

Observing the inequality
∑∞

k=1(1/k
3) < 3/2, we get, by (4.2),

∥∥f
(
t, u, v, x, y

)∥∥ =
∞∑

k=1

∣∣fk
(
t, u, v, x, y

)∣∣

≤ (1 + t)3

2

(
1
40

(‖u‖ + ‖v‖)3 + 1
160

(‖u‖ + ‖v‖)1/2 + 1
12

‖x‖1/5 + 1
8
∥∥y
∥∥
)
.

(4.3)

Hence (H1) is satisfied for a(t) = (1 + t)3/2 and

h
(
u, v, x, y

)
=

1
40

(u + v)3 +
1
160

(u + v)1/2 +
1
12
x1/5 +

1
8
y. (4.4)

Now, we check condition (H2). Obviously, f : I × P 4
r → P , for any r > 0, and f is

uniformly continuous on I × P 4
r . Let f = f (1) + f (2), where f (1) = (f (1)

1 , . . . , f
(1)
k , . . .) and f (2) =

(f (2)
1 , . . . , f

(2)
k , . . .), in which

f
(1)
k

(
t, u, v, x, y

)
=

(1 + t)3

960k3

⎧
⎪⎨

⎪⎩

⎛

⎝u2k + v3k +
∞∑

j=1

u2j +
∞∑

j=1

vj

⎞

⎠

3

+

⎛

⎝3uk + 3vk+1 +
∞∑

j=1

uj +
∞∑

j=1

v2j

⎞

⎠

1/2
⎫
⎪⎬

⎪⎭

+
1 + t3

36k5
x1/5
k
, (k = 1, 2, 3, . . .),

f
(2)
k

(
t, u, v, x, y

)
=

1 + t2

24k4
y2k, (k = 1, 2, 3, . . .).

(4.5)
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For any t ∈ I and bounded subsets Di ⊂ E, i = 1, 2, 3, 4, from (4.5) and by the diagonal
method, we have

α
(
f (1)(t,D1, D2, D3, D4)

)
= 0, ∀t ∈ I, bounded sets Di ⊂ E, i = 1, 2, 3, 4,

α
(
f (2)(I,D1, D2, D3, D4)

)
≤ 1

12
α(D4), ∀t ∈ I,Di ⊂ E, i = 1, 2, 3, 4.

(4.6)

It follows from (4.6) that

α
(
f(I,D1, D2, D3, D4)

) ≤ 1
12
α(D4), ∀t ∈ I,Di ⊂ E, i = 1, 2, 3, 4,

2
Γ
(
q − n + 2

)
η∗

(
n−2∑

k=1

Lk
(n − 2 − k)! + Ln−1 +

a∗

(n − 3)!
Ln +

b∗

(n − 3)!
Ln+1

)

≈ 0.1565 < 1.
(4.7)

that is, condition (H2) holds for L1 = L2 = L3 = 0, L4 = 1/12.
On the other hand, take γ = 1/4, δ = 3/4. Then 1/4 = γ ≤ min{δ/2, 2δ − 1} =

3/8, 2/3 < δ, which implies that condition (H3) holds. By (4.2), we have

fk
(
t, u, v, x, y

) ≥ (1 + t)3

960k3
(‖u‖ + ‖v‖)3, ∀t ∈ I∗, u, v, x, y ∈ P, (k = 1, 2, 3, . . .),

fk
(
t, u, v, x, y

) ≥ (1 + t)3

960k3

√
‖u‖ + ‖v‖, ∀t ∈ I∗, u, v, x, y ∈ P, (k = 1, 2, 3, . . .).

(4.8)

Hence condition (H4) is satisfied for

c1(t) =
(1 + t)3

960
, h1, k(u, v) = (‖u‖ + ‖v‖)3, u∗ =

(
1, . . . ,

1
k3
, . . .

)
, (4.9)

in this situation,

h1, k = lim
‖u‖+‖v‖→∞

(‖u‖ + ‖v‖)3
‖u‖ + ‖v‖ = ∞. (4.10)

And condition (H5) is also satisfied for

c2(t) =
(1 + t)3

960
, h2, k(u, v) =

√
‖u‖ + ‖v‖, u∗ =

(
1, . . . ,

1
k3
, . . .

)
, (4.11)

in this situation,

h2,k = lim
‖u‖+‖v‖→ 0

√
‖u‖ + ‖v‖
‖u‖ + ‖v‖ = ∞. (4.12)
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Finally, choose β = 1, it is easy to check that condition (H6) is satisfied. In this case, Mβ ≈
0.4162, and so

NMβ

∫1

0
G(s)a(s)ds ≈ 0.7287 < β = 1. (4.13)

Hence, our conclusion follows from Theorem 3.6.
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We develop a method to obtain approximate solutions of nonlinear system of partial differential
equations with the help of Sumudu decomposition method (SDM). The technique is based on the
application of Sumudu transform to nonlinear coupled partial differential equations. The nonlinear
term can easily be handled with the help of Adomian polynomials. We illustrate this technique
with the help of three examples, and results of the present technique have close agreement with
approximate solutions obtained with the help of Adomian decomposition method (ADM).

1. Introduction

Most of phenomena in nature are described by nonlinear differential equations. So scientists
in different branches of science try to solve them. But because of nonlinear part of these
groups of equations, finding an exact solution is not easy. Different analytical methods have
been applied to find a solution to them. For example, Adomian has presented and developed
a so-called decomposition method for solving algebraic, differential, integrodifferential,
differential-delay and partial differential equations. In the nonlinear case for ordinary
differential equations and partial differential equations, the method has the advantage of
dealing directly with the problem [1, 2]. These equations are solved without transforming
them to more simple ones. The method avoids linearization, perturbation, discretization, or
any unrealistic assumptions [3, 4]. It was suggested in [5] that the noise terms appears always
for inhomogeneous equations. Most recently, Wazwaz [6] established a necessary condition
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that is essentially needed to ensure the appearance of “noise terms” in the inhomogeneous
equations. In the present paper, the intimate connection between the Sumudu transform
theory and decomposition method arises in the solution of nonlinear partial differential
equations is demonstrated.

The Sumudu transform is defined over the set of the functions

A =
{
f(t) : ∃M,τ1, τ2 > 0,

∣
∣f(t)

∣
∣ < Met/τj , if t ∈ (−1)j × [0,∞)

}
(1.1)

by the following formula:

G(u) = S
[
f(t);u

]

=
∫∞

0
f(ut)e−tdt, u ∈ (−τ1, τ2).

(1.2)

The existence and the uniqueness were discussed in [7], for further details and
properties of the Sumudu transform and its derivatives we refer to [8]. In [9], some
fundamental properties of the Sumudu transform were established.

In [10], this new transform was applied to the one-dimensional neutron transport
equation. In fact one can easily show that there is a strong relationship between double
Sumudu and double Laplace transforms, see [7].

Further in [11], the Sumudu transform was extended to the distributions and some of
their properties were also studied in [12]. Recently Kılıçman et al. applied this transform to
solve the system of differential equations, see [13].

A very interesting fact about Sumudu transform is that the original function and its
Sumudu transform have the same Taylor coefficients except a factor n!. Thus if

f(t) =
∞∑

n=0

ant
n (1.3)

then

F(u) =
∞∑

n=0

n!antn, (1.4)

see [14].
Similarly, the Sumudu transform sends combinations, C(m,n), into permutations,

P(m,n) and hence it will be useful in the discrete systems. Further

S(H(t)) = £(δ(t)) = 1,

£(H(t)) = S(δ(t)) =
1
u
.

(1.5)

Thus we further note that since many practical engineering problems involve
mechanical or electrical systems where action is defined by discontinuous or impulsive
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forcing terms. Then the Sumudu transform can be effectively used to solve ordinary
differential equations as well as partial differential equations and engineering problems.
Recently, the Sumudu transform was introduced as a new integral transform on a time
scale T to solve a system of dynamic equations, see [15]. Then the results were applied on
ordinary differential equations when T = R, difference equations when T = N0, but also, for
q-difference equations when T = qN0 , where qN0 := {qt : t ∈ N0 for q > 1} or T = qZ := qZ ∪ {0}
for q > 1 which has important applications in quantum theory and on different types of time
scales like T = hN0, T = N

2
0, and T = Tn the space of the harmonic numbers. During this study

we use the following Sumudu transform of derivatives.

Theorem 1.1. Let f(t) be in A, and let Gn(u) denote the Sumudu transform of the nth derivative,
fn(t) of f(t), then for n ≥ 1

Gn(u) =
G(u)
un

−
n−1∑

k=0

f (k)(0)
un−k

. (1.6)

For more details, see [16].

We consider the general inhomogeneous nonlinear equation with initial conditions
given below:

LU + RU +NU = h(x, t), (1.7)

where L is the highest order derivative which is assumed to be easily invertible, R is a linear
differential operator of order less than L,NU represents the nonlinear terms and h(x, t) is the
source term. First we explain themain idea of SDM: themethod consists of applying Sumudu
transform

S[LU] + S[RU] + S[NU] = S[h(x, t)]. (1.8)

Using the differential property of Laplace transform and initial conditions we get

1
un
S[U(x, t)] − 1

un
U(x, 0) − 1

un−1
U′(x, 0) − · · · − Un−1(x, 0)

u
+ S[RU] + S[NU] = S[h(x, t)].

(1.9)

By arrangement we have

S[U(x, t)] = U(x, 0) + uU′(x, 0) + · · · + un−1Un−1(x, 0) − unS[RU] − unS[NU] + unS[h(x, t)].
(1.10)

The second step in Sumudu decomposition method is that we represent solution as an
infinite series:

U(x, t) =
∞∑

i=0

Ui(x, t) (1.11)
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and the nonlinear term can be decomposed as

NU(x, t) =
∞∑

i=0

Ai, (1.12)

where Ai are Adomian polynomials [6] of U0, U1, U2, . . ., Un and it can be calculated by
formula

Ai =
1
i!
di

dλi

[

N
∞∑

i=0

λiUi

]

λ=0

, i = 0, 1, 2, . . . . (1.13)

Substitution of (1.11) and (1.12) into (1.10) yields

S

[ ∞∑

i=0

Ui(x, t)

]

= U(x, 0) + uU′(x, 0) + · · · + un−1Un−1(x, 0) − unS[RU(x, t)]

− unS
[ ∞∑

i=0

Ai

]

+ unS[h(x, t)].

(1.14)

On comparing both sides of (1.14) and by using standard ADM we have:

S[U0(x, t)] = U(x, 0) + uU′(x, 0) + · · · + un−1Un−1(x, 0) + unS[h(x, t)] = Y (x, u) (1.15)

then it follows that

S[U1(x, t)] = −unS[RU0(x, t)] − unS[A0],

S[U2(x, t)] = −unS[RU1(x, t)] − unS[A1].
(1.16)

In more general, we have

S[Ui+1(x, t)] = −unS[RUi(x, t)] − unS[Ai], i ≥ 0. (1.17)

On applying the inverse Sumudu transform to (1.15) and (1.17), we get

U0(x, t) = K(x, t),

Ui+1(x, t) = −S−1[unS[RUi(x, t)] + unS[Ai]], i ≥ 0,
(1.18)

where K(x, t) represents the term that is arising from source term and prescribed initial
conditions. On using the inverse Sumudu transform to h(x, t) and using the given condition
we get

Ψ = Φ + S−1[h(x, t)], (1.19)
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where the function Ψ, obtained from a term by using the initial condition is given by

Ψ = Ψ0 + Ψ1 + Ψ2 + Ψ3 + · · · + Ψn, (1.20)

the termsΨ0,Ψ1,Ψ2,Ψ3, . . . ,Ψn appears while applying the inverse Sumudu transform on the
source term h(x, t) and using the given conditions. We define

U0 = Ψk + · · · + Ψk+r , (1.21)

where k = 0, 1, . . . , n, r = 0, 1, . . . , n − k. Then we verify that U0 satisfies the original equation
(1.7). We now consider the particular form of inhomogeneous nonlinear partial differential
equations:

LU + RU +NU = h(x, t) (1.22)

with the initial condition

U(x, 0) = f(x), Ut(x, 0) = g(x), (1.23)

where L = ∂2/∂t2 is second-order differential operator, NU represents a general non-linear
differential operator where as h(x, t) is source term. The methodology consists of applying
Sumudu transform first on both sides of (1.10) and (1.23),

S[U(x, t)] = f(x) + ug(x) − u2S[RU] − u2S[NU] + u2S[h(x, t)]. (1.24)

Then by the second step in Sumudu decomposition method and inverse transform as
in the previous we have

U(x, t) = f(x) + tg(t) − S−1
[
u2S[RU] − u2S[NU]

]
+ S−1

[
u2S[h(x, t)]

]
. (1.25)

2. Applications

Now in order to illustrate STDM we consider some examples. Consider a nonlinear partial
differential equation

Utt +U2 −U 2
x = 0, t > 0 (2.1)

with initial conditions

U(x, 0) = 0,

Ut(x, 0) = ex.
(2.2)
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By taking Sumudu transform for (2.1) and (2.2)we obtain

S[U(x, t)] = uex + u2S
[
U2
x −U2

]
. (2.3)

By applying the inverse Sumudu transform for (2.3), we get

[U(x, t)] = tex + S−1
[
u2S

[
U2
x −U2

]]
(2.4)

which assumes a series solution of the function U(x, t) and is given by

U(x, t) =
∞∑

i=0

Ui(x, t). (2.5)

Using (2.4) into (2.5)we get

∞∑

i=0

Ui(x, t) = tex + S−1
[

u2S

[ ∞∑

i=0

Ai(U) −
∞∑

i=0

Bi(U)

]]

. (2.6)

In (2.6) Ai(u) and Bi(u) are Adomian polynomials that represents nonlinear terms. So
Adomian polynomials are given as follows:

∞∑

i=0

Ai(U) = U2
x,

∞∑

i=0

Ai(U) = U2.

(2.7)

The few components of the Adomian polynomials are given as follows:

A0(U) = U2
0x, A1(U) = 2U0xU1x, Ai(U) =

i∑

r=0

UrxUi−rx,

B0(U) = U2
0, B1(U) = 2U0U1, Bi(U)

i∑

r=0

UrUi−r .

(2.8)

From the above equations we obtain

U0(x, t) = tex,

Ui+1(x, t) = S−1
[

S

[ ∞∑

i=0

Ai(U) −
∞∑

i=0

Bi(U)

]]

, n ≥ 0.
(2.9)
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Then the first few terms ofUi(x, t) follow immediately upon setting

U1(x, t) = S−1
[

u2S

[ ∞∑

i=0

A0(U) −
∞∑

i=0

B0(U)

]]

= S−1
[
u2S

[
U2

0x −U2
0

]]
= S−1

[
u2S

[
t2e2x − t2e2x

]]

= S−1
[
u2S[0]

]
= 0.

(2.10)

Therefore the solution obtained by LDM is given as follows:

U(x, t) =
∞∑

i=0

Ui(x, t) = tex. (2.11)

Example 2.1. Consider the system of nonlinear coupled partial differential equation

Ut

(
x, y, t

) − VxWy = 1,

Vt
(
x, y, t

) −WxUy = 5,

Wt

(
x, y, t

) −UxVy = 5

(2.12)

with initial conditions

U
(
x, y, 0

)
= x + 2y,

V
(
x, y, 0

)
= x − 2y,

W
(
x, y, 0

)
= −x + 2y.

(2.13)

Applying the Sumudu transform (denoted by S)we have

U
(
x, y, u

)
= x + 2y + u + uS

[
VxWy

]
,

V
(
x, y, u

)
= x − 2y + 5u + uS

[
WxUy

]
,

W
(
x, y, u

)
= −x + 2y + 5u + uS

[
UxVy

]
.

(2.14)

On using inverse Sumudu transform in (2.14), our required recursive relation is given
by

U
(
x, y, t

)
= x + 2y + t + S−1[uS

[
VxWy

]]
,

V
(
x, y, t

)
= x − 2y + 5t + S−1[uS

[
WxUy

]]
,

U
(
x, y, t

)
= −x + 2y + 5t + S−1[uS

[
UxVy

]]
.

(2.15)
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The recursive relations are

U0
(
x, y, t

)
= t + x + 2y,

Ui+1
(
x, y, t

)
= S−1

[

uS

[ ∞∑

i=0

Ci(V,W)

]]

, i ≥ 0,

V0
(
x, y, t

)
= 5t + x − 2y,

Vi+1
(
x, y, t

)
= S−1

[

uS

[ ∞∑

i=0

Di(U,W)

]]

, i ≥ 0,

W0
(
x, y, t

)
= 5t − x + 2y,

Wi+1
(
x, y, t

)
= S−1

[

uS

[ ∞∑

i=0

Ei(U,V )

]]

, i ≥ 0,

(2.16)

where Ci(V,W), Di(U,W), and Ei(U,V ) are Adomian polynomials representing the nonlin-
ear terms [1] in above equations. The few components of Adomian polynomials are given as
follows

C0(V,W) = V0xW0y,

C1(V,W) = V1xW0y + V0xW1y,

...

Ci(V,W) =
i∑

r=0

VrxWi−ry,

D0(U,W) = U0yW0x,

D1(U,W) = U1yW0x +W1xU0y,

...

Di(U,W) =
i∑

r=0

WrxUi−ry,

E0(U,V ) = U0xV0y,

E1(U,V ) = U1xV0y +U0xV1y,

...

Ei(V,W) =
i∑

r=0

UrxVi−ry.

(2.17)
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By this recursive relation we can find other components of the solution

U1
(
x, y, t

)
= S−1[uS[C0(V,W)]] = S−1[uS

[
V0xW0y

]]
= S−1[uS[(1)(2)]] = 2t,

V1
(
x, y, t

)
= S−1[uS[D0(U,W)]] = S−1[uS

[
W0xU0y

]]
= S−1[uS[(−1)(2)]] = −2t,

W1
(
x, y, t

)
= S−1[uS[E0(U,V )]] = S−1[uS

[
U0xV0y

]]
= S−1[uS[(1)(−2)]] = −2t,

U2
(
x, y, t

)
= S−1[uS[C1(V,W)]] = S−1[uS

[
V1xW0y + V0xW1y

]]
= 0,

V2
(
x, y, t

)
= S−1[uS[D1(U,W)]] = S−1[uS

[
U0yW1x +U1yW0x

]]
= 0,

W2
(
x, y, t

)
= S−1[uS[D1(U,V )]] = S−1[uS

[
U1xV0y +U0xV1y

]]
= 0.

(2.18)

The solution of above system is given by

U
(
x, y, t

)
=

∞∑

i=0

Ui

(
x, y, t

)
= x + 2y + 3t,

V
(
x, y, t

)
=

∞∑

i=0

Vi
(
x, y, t

)
= x − 2y + 3t,

W
(
x, y, t

)
=

∞∑

i=0

Wi

(
x, y, t

)
= −x + 2y + 3t.

(2.19)

Example 2.2. Consider the following homogeneous linear system of PDEs:

Ut(x, t) − Vx(x, t) − (U − V ) = 2,

Vt(x, t) +Ux(x, t) − (U − V ) = 2,
(2.20)

with initial conditions

U(x, 0) = 1 + ex, V (x, 0) = −1 + ex. (2.21)

Taking the Sumudu transform on both sides of (2.20), then by using the differentiation
property of Sumudu transform and initial conditions, (2.21) gives

S[U(x, t)] = 1 + ex − 2u + uS[Vx] + uS[U − V ],

S[V (x, t)] = −1 + ex − 2u − uS[Ux] + uS[U − V ],
(2.22)

Ux(x, t) =
∞∑

i=0

Uxi(x, t), Vx(x, t) =
∞∑

i=0

Vxi(x, t). (2.23)
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Using the decomposition series (2.23) for the linear terms U(x, t), V (x, t) and Ux, Vx,
we obtain

S

[ ∞∑

i=0

Ui(x, t)

]

= 1 + ex − 2u + uS

[ ∞∑

i=0

Vix

]

+ uS

[ ∞∑

i=0

Ui −
∞∑

i=0

Vi

]

,

S

[ ∞∑

i=0

Vi(x, t)

]

= −1 + ex − 2u − uS
[ ∞∑

i=0

Uix

]

+ uS

[ ∞∑

i=0

Ui −
∞∑

i=0

Vi

]

.

(2.24)

The SADM presents the recursive relations

S[U0(x, t)] = 1 + ex − 2u,

S[V0(x, t)] = −1 + ex − 2u,

S[Ui+1] = uS[Vix] + uS[Ui − Vi], i ≥ 0,

S[Vi+1] = −uS[Uix] + uS[Ui − Vi], i ≥ 0.

(2.25)

Taking the inverse Sumudu transform of both sides of (2.25) we have

U0(x, t) = 1 + ex − 2t,

V0(x, t) = −1 + ex − 2t,

U1 = S−1[uS[V0x] + uS[U0 − V0]] = S−1[uex + 2u] = tex + 2t,

V1 = S−1[−uS[U0x] + uS[U0 − V0]] = S−1[−uex + 2u] = −tex + 2t,

U2 = S−1
[
u2ex

]
=
t2

2!
ex,

V2 = S−1
[
u2ex

]
=
t2

2!
ex,

(2.26)

and so on for other components. Using (1.11), the series solutions are given by

U(x, t) = 1 + ex
(

1 + t +
t2

2!
+
t3

3!
· · ·

)

,

V (x, t) = −1 + ex
(

1 − t + t2

2!
− t3

3!
· · ·

)

.

(2.27)

Then the solutions follows

U(x, t) = 1 + ex+t,

V (x, t) = −1 + ex−t.
(2.28)
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Example 2.3. Consider the system of nonlinear partial differential equations

Ut + VUx +U = 1,

Vt −UVx − V = 1
(2.29)

with initial conditions

U(x, 0) = ex, V (x, 0) = e−x. (2.30)

On using Sumudu transform on both sides of (2.29), and by taking Sumudu transform
for the initial conditions of (2.30)we get

S[U(x, t)] = ex + u − uS[VUx] − uS[U],

S[V (x, t)] = ex + u + uS[UVx] + uS[V ].
(2.31)

Similar to the previous example, we rewrite U(x, t) and V (x, t) by the infinite series
(1.11), then inserting these series into both sides of (2.31) yields

S

[ ∞∑

i=0

Ui(x, t)

]

= ex + u − uS
[ ∞∑

i=0

Ai

]

− uS
[ ∞∑

i=0

Ui

]

,

S

[ ∞∑

i=0

Vi(x, t)

]

= e−x + u + uS

[ ∞∑

i=0

Bi

]

− uS
[ ∞∑

i=0

Vi

]

,

(2.32)

where the terms Ai and Bi are handled with the help of Adomian polynomials by (1.12)
that represent the nonlinear terms VUx and UVx, respectively. We have a few terms of the
Adomian polynomials for VUx andUVx which are given by

A0 = U0xV0, A1 = U0xV1 +U1xV0,

A2 = U0xV2 +U1xV1 +U2xV0,

...

B0 = V0xU0, B1 = V0xU1 + V1xU0,

B2 = V0xU2 + V1xU1 + V2xU0,

...

(2.33)
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By taking the inverse Sumudu transform we have

U0 = ex + t,

V0 = e−x + t,
(2.34)

Ui+1 = S−1[u] − S−1[uS[Ai]] − S−1[uS[Ui]],

Vi+1 = S−1[u] + S−1[uS[Bi]] + S−1[uS[Vi]].
(2.35)

Using the inverse Sumudu transform on (2.35)we have

U1 = −t − t2

2!
− tex − t2

2!
ex,

V1 = −t − t2

2!
+ te−x − t2

2!
e−x,

U2 =
t2

2!
+
t2

2!
ex · · · ,

V2 =
t2

2!
+
t2

2!
e−x · · · .

(2.36)

The rest terms can be determined in the same way. Therefore, the series solutions are
given by

U(x, t) = ex
(

1 − t + t2

2!
− t3

3!
· · ·

)

,

V (x, t) = e−x
(

1 + t +
t2

2!
+
t3

3!
· · ·

)

.

(2.37)

Then the solution for the above system is as follows:

U(x, t) = ex−t, V (x, t) = e−x+t. (2.38)

3. Conclusion

The Sumudu transform-Adomian decomposition method has been applied to linear and
nonlinear systems of partial differential equations. Three examples have been presented, this
method shows that it is very useful and reliable for any nonlinear partial differential equation
systems. Therefore, this method can be applied to many complicated linear and nonlinear
PDEs.
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The first measure of noncompactness was defined by Kuratowski in 1930 and later the Hausdorff
measure of noncompactness was introduced in 1957 by Goldenštein et al. These measures of
noncompactness have various applications in several areas of analysis, for example, in operator
theory, fixed point theory, and in differential and integral equations. In particular, the Hausdorff
measure of noncompactness has been extensively used in the characterizations of compact
operators between the infinite-dimensional Banach spaces. In this paper, we present a brief survey
on the applications of measures of noncompactness to the theory of infinite system of differential
equations in some BK spaces c0, c, �p(1 ≤ p ≤ ∞) and n(φ).

1. FK and BK Spaces

In this section, we give some basic definitions and notations about FK and BK spaces for
which we refer to [1–3].

We will write w for the set of all complex sequences x = (xk)
∞
k=0. Let ϕ, �∞, c and c0

denote the sets of all finite, bounded, convergent, and null sequences, respectively, and cs be
the set of all convergent series. We write �p := {x ∈ w :

∑∞
k=0 |xk|p < ∞} for 1 ≤ p < ∞. By e

and e(n) (n ∈ N), we denote the sequences such that ek = 1 for k = 0, 1, . . ., and e
(n)
n = 1 and

e
(n)
k = 0 (k /=n). For any sequence x = (xk)

∞
k=0, let x

[n] =
∑n

k=0 xke
(k) be its n-section.

Note that �∞, c and c0 are Banach spaces with the norm ‖x‖∞ = supk≥0|xk|, and �p(1 ≤
p <∞) are Banach spaces with the norm ‖x‖p = (

∑∞
k=0 |xk|p)1/p.

A sequence (b(n))∞n=0 in a linear metric spaceX is called Schauder basis if for every x ∈ X,
there is a unique sequence (λn)

∞
n=0 of scalars such that x =

∑∞
n=0 λnb

(n). A sequence space X
with a linear topology is called aKspace if each of the maps pi : X → C defined by pi(x) = xi
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is continuous for all i ∈ N. A K space is called an FK space if X is complete linear metric
space; a BK space is a normed FK space. An FK space X ⊃ ϕ is said to have AK if every
sequence x = (xk)

∞
k=0 ∈ X has a unique representation x =

∑∞
k=0 xke

(k), that is, x = limn→∞x[n].
A linear space X equipped with a translation invariant metric d is called a linear metric

space if the algebraic operations on X are continuous functions with respect to d. A complete
linear metric space is called a Fréchet space. If X and Y are linear metric spaces over the same
field, then we write B(X,Y ) for the class of all continuous linear operators from X to Y .
Further, ifX and Y are normed spaces thenB(X,Y ) consists of all bounded linear operators L :
X → Y , which is a normed space with the operator norm given by ‖L‖ = supx∈SX‖L(x)‖Y for
all L ∈ B(X,Y ), where SX denotes the unit sphere in X, that is, SX := {x ∈ X : ‖x‖ = 1}. Also,
we write BX := {x ∈ X : ‖x‖ ≤ 1} for the closed unit ball in a normed space X. In particular,
if Y = C then we write X∗ for the set of all continuous linear functionals on X with the norm
‖f‖ = supx∈SX |f(x)|.

The theory of FK spaces is the most powerful and widely used tool in the
characterization of matrix mappings between sequence spaces, and the most important result
was that matrix mappings between FK spaces are continuous.

A sequence space X is called an FK space if it is a locally convex Fréchet space with
continuous coordinates pn : X → C(n ∈ N), where C denotes the complex field and pn(x) =
xn for all x = (xk) ∈ X and every n ∈ N. A normed FK space is called a BK space, that is, a
BK space is a Banach sequence space with continuous coordinates.

The famous example of an FK space which is not a BK space is the space (w,dw),
where

dw
(
x, y

)
=

∞∑

k=0

1
2k

( ∣∣xk − yk
∣∣

1 +
∣∣xk − yk

∣∣

)

;
(
x, y ∈ w)

. (1.1)

On the other hand, the classical sequence spaces are BK spaces with their natural
norms. More precisely, the spaces �∞, c, and c0 are BK spaces with the sup-norm given by
‖x‖�∞ = supk|xk|. Also, the space �p (1 ≤ p <∞) is a BK space with the usual �p-norm defined
by ‖x‖�p = (

∑
k |xk|p)1/p. Further, the spaces bs, cs, and cs0 are BK spaces with the same norm

given by ‖x‖bs = supn
∑n

k=0 |xk|, and bv is a BK space with ‖x‖bv =
∑

k |xk − xk−1|.
An FK space X ⊃ φ is said to have AK if every sequence x = (xk) ∈ X has a unique

representation x =
∑∞

k=0 xke
(k), that is, limn→∞(

∑n
k=0 xke

(k)) = x. This means that (e(k))∞k=0 is
a Schauder basis for any FK space with AK such that every sequence, in an FK space with
AK, coincides with its sequence of coefficients with respect to this basis.

Although the space �∞ has no Schauder basis, the spaces w, c0, c, and �p all have
Schauder bases. Moreover, the spaces w, c0, and �p have AK, where 1 ≤ p <∞.

There are following BK spaces which are closely related to the spaces �p (1 ≤ p ≤ ∞).
Let C denote the space whose elements are finite sets of distinct positive integers.

Given any element σ of C, we denote by c(σ) the sequence {cn(σ)} such that cn(σ) = 1 for
n ∈ σ, and cn(σ) = 0 otherwise. Further

Cs =
{

σ ∈ C :
∞∑

n=1

cn(σ) ≤ s
}

, (1.2)
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that is, Cs is the set of those σ whose support has cardinality at most s, and define

Φ =
{
φ =

(
φk

) ∈ w : 0 < φ1 ≤ φn ≤ φn+1, (n + 1)φn ≥ nφn+1
}
. (1.3)

For φ ∈ Φ, the following sequence spaces were introduced by Sargent [4] and further
studied in [5–8]:

m
(
φ
)
=

{

x = (xk) ∈ w : ‖x‖m(φ) = sup
s≥1

sup
σ∈Cs

(
1
φs

∑

k∈σ
|xk|

)

<∞
}

,

n
(
φ
)
=

{

x = (xk) ∈ w : ‖x‖n(φ) = sup
u∈S(x)

( ∞∑

k=1

|uk|Δφk
)

<∞
}

,

(1.4)

where S(x) denotes the set of all sequences that are rearrangements of x.

Remark 1.1. (i) The spacesm(φ) and n(φ) are BK spaces with their respective norms.
(ii) If φn = 1 for all n ∈ N, then m(φ) = l1, n(φ) = l∞, and if φn = n for all n ∈ N, then

m(φ) = l∞, n(φ) = l1.
(iii) l1 ⊆ m(φ) ⊆ l∞[l∞ ⊇ n(φ) ⊇ l1] for all φ of Φ.

2. Measures of Noncompactness

The first measure of noncompactness was defined and studied by Kuratowski [9] in 1930. The
Hausdorffmeasure of noncompactness was introduced by Goldenštein et al. [10] in 1957, and
later studied by Goldenštein and Markus [11] in 1965.

Here, we shall only consider the Hausdorffmeasure of noncompactness; it is the most
suitable one for our purposes. The basic properties of measures of noncompactness can be
found in [12–14].

Let S andM be subsets of a metric space (X, d) and let ε > 0. Then S is called an ε-net
of M in X if for every x ∈ M there exists s ∈ S such that d(x, s) < ε. Further, if the set S is
finite, then the ε-net S ofM is called a finite ε-net ofM, and we say thatM has a finite ε-net in
X. A subsetM of a metric space X is said to be totally bounded if it has a finite ε-net for every
ε > 0 and is said to be relatively compact if its closure M is a compact set. Moreover, if the
metric space X is complete, thenM is totally bounded if and only ifM is relatively compact.

Throughout, we shall write MX for the collection of all bounded subsets of a metric
space (X, d). IfQ ∈ MX , then the Hausdorff measure of noncompactness of the setQ, denoted by
χ(Q), is defined to be the infimum of the set of all reals ε > 0 such that Q can be covered by
a finite number of balls of radii < ε and centers in X. This can equivalently be redefined as
follows:

χ(Q) = inf{ε > 0 : Q has a finite ε-net}. (2.1)

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness.
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If Q, Q1, and Q2 are bounded subsets of a metric space X, then we have

χ(Q) = 0 if and only ifQ is totally bounded,

Q1 ⊂ Q2 impliesχ(Q1) ≤ χ(Q2).
(2.2)

Further, if X is a normed space, then the function χ has some additional properties
connected with the linear structure, for example,

χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),

χ(αQ) = |α| χ(Q), ∀α ∈ C.
(2.3)

Let X and Y be Banach spaces and χ1 and χ2 be the Hausdorff measures of
noncompactness on X and Y , respectively. An operator L : X → Y is said to be (χ1,χ2)-
bounded if L(Q) ∈ MY for all Q ∈ MX and there exist a constant C ≥ 0 such that
χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX . If an operator L is (χ1,χ2)-bounded then the number
‖L‖(χ1,χ2) := inf{C ≥ 0 : χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX} is called the (χ1,χ2)-measure of
noncompactness of L. If χ1 = χ2 = χ, then we write ‖L‖(χ1,χ2) = ‖L‖χ.

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows: let X and Y be Banach spaces and L ∈ B(X,Y ). Then, the Hausdorff
measure of noncompactness of L, denoted by ‖L‖χ, can be determined by

‖L‖χ = χ(L(SX)), (2.4)

and we have that L is compact if and only if

‖L‖χ = 0. (2.5)

Furthermore, the function χ is more applicable whenX is a Banach space. In fact, there
are many formulae which are useful to evaluate the Hausdorff measures of noncompactness
of bounded sets in some particular Banach spaces. For example, we have the following result
of Goldenštein et al. [10, Theorem 1] which gives an estimate for the Hausdorff measure
of noncompactness in Banach spaces with Schauder bases. Before that, let us recall that if
(bk)

∞
k=0 is a Schauder basis for a Banach space X, then every element x ∈ X has a unique

representation x =
∑∞

k=0 φk(x)bk, where φk (k ∈ N) are called the basis functionals. Moreover,
the operator Pr : X → X, defined for each r ∈ N by Pr(x) =

∑r
k=0 φk(x)bk(x ∈ X), is called

the projector onto the linear span of {b0, b1, . . . , br}. Besides, all operators Pr and I − Pr are
equibounded, where I denotes the identity operator on X.
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Theorem 2.1. Let X be a Banach space with a Schauder basis (bk)
∞
k=0, E ∈ MX and Pn : X →

X(n ∈ N) be the projector onto the linear span of {b0, b1, . . . , bn}. Then, one has

1
a
· lim sup

n→∞

(

sup
x∈Q

‖(I − Pn)(x)‖
)

≤ χ(E) ≤ lim sup
n→∞

(

sup
x∈Q

‖(I − Pn)(x)‖
)

, (2.6)

where a = lim supn→∞‖I − Pn‖.

In particular, the following result shows how to compute the Hausdorff measure of
noncompactness in the spaces c0 and �p (1 ≤ p <∞)which are BK spaces with AK.

Theorem 2.2. Let E be a bounded subset of the normed space X, where X is �p for 1 ≤ p < ∞ or
c0. If Pn : X → X(n ∈ N) is the operator defined by Pn(x) = x[n] = (x0, x1, . . . , xn, 0, 0, . . .) for all
x = (xk)

∞
k=0 ∈ X, then one has

χ(E) = lim
n→∞

(

sup
x∈Q

‖(I − Pn)(x)‖
)

. (2.7)

It is easy to see that for E ∈ M�p

χ(E) = lim
n→∞

(

sup
x∈Q

∑

k≥n
|xk|p

)

. (2.8)

Also, it is known that (e, e(0), e(1), . . .) is a Schauder basis for the space c and every
sequence z = (zn)

∞
n=0 ∈ c has a unique representation z = ze +

∑∞
n=0(zn − z)e(n), where

z = limn→∞zn. Thus, we define the projector Pr : c → c (r ∈ N), onto the linear span of
{e, e(0), e(1), . . . , e(r)}, by

Pr(z) = ze +
r∑

n=0
(zn − z)e(n); (r ∈ N), (2.9)

for all z = (zn) ∈ c with z = limn→∞zn. In this situation, we have the following.

Theorem 2.3. Let Q ∈ Mc and Pr : c → c (r ∈ N) be the projector onto the linear span of
{e, e(0), e(1), . . . , e(r)}. Then, one has

1
2
· lim
r→∞

(

sup
x∈Q

‖(I − Pr)(x)‖�∞
)

≤ χ(Q) ≤ lim
r→∞

(

sup
x∈Q

‖(I − Pr)(x)‖�∞
)

, (2.10)

where I is the identity operator on c.

Theorem 2.4. Let Q be a bounded subset of n(φ). Then

χ(Q) = lim
k→∞

sup
x∈Q

(

sup
u∈S(x)

( ∞∑

n=k

|un|Δφn
))

. (2.11)
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The idea of compact operators between Banach spaces is closely related to the Hausdorff
measure of noncompactness, and it can be given as follows.

Let X and Y be complex Banach spaces. Then, a linear operator L : X → Y is said to
be compact if the domain of L is all of X, that is, D(L) = X, and for every bounded sequence
(xn) in X, the sequence (L(xn)) has a convergent subsequence in Y . Equivalently, we say that
L is compact if its domain is all of X and L(Q) is relatively compact in Y for every Q ∈ MX .

Further, we write C(X,Y ) for the class of all compact operators from X to Y . Let us
remark that every compact operator in C(X,Y ) is bounded, that is, C(X,Y ) ⊂ B(X,Y ). More
precisely, the class C(X,Y ) is a closed subspace of the Banach space B(X,Y )with the operator
norm.

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows.

The most effective way in the characterization of compact operators between the
Banach spaces is by applying the Hausdorff measure of noncompactness. This can be
achieved as follows.

Let X and Y be Banach spaces and L ∈ B(X;Y ). Then, the Hausdorff measure of
noncompactness of L, denoted by ‖L‖χ, can be given by

‖L‖χ = χ(L(SX)), (2.12)

and we have

L is compact if and only if ‖L‖χ = 0. (2.13)

Since matrix mappings between BK spaces define bounded linear operators between
these spaces which are Banach spaces, it is natural to use the Hausdorff measure of
noncompactness to obtain necessary and sufficient conditions for matrix operators between
BK spaces to be compact operators. This technique has recently been used by several authors
in many research papers (see, for instance, [5, 6, 15–32]).

3. Applications to Infinite Systems of Differential Equations

This section is mainly based on the work of Banaś and Lecko [33], Mursaleen and
Mohiuddine [26], and Mursaleen [32]. In this section, we apply the technique of measures
of noncompactness to the theory of infinite systems of differential equations in some Banach
sequence spaces c0, c, �p(1 ≤ p <∞), and n(φ).

Infinite systems of ordinary differential equations describe numerous world real
problems which can be encountered in the theory of branching processes, the theory of
neural nets, the theory of dissociation of polymers, and so on (cf. [34–38], e.g.). Let us
also mention that several problems investigated in mechanics lead to infinite systems of
differential equations [39–41]. Moreover, infinite systems of differential equations can be
also used in solving some problems for parabolic differential equations investigated via
semidiscretization [42, 43]. The theory of infinite systems of ordinary differential equation
seems not to be developed satisfactorily up to now. Indeed, the existence results concerning
systems of such a kind were formulated mostly by imposing the Lipschitz condition on
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right-hand sides of those systems (cf. [10, 11, 39, 40, 44–50]). Obviously, the assumptions
formulated in terms of the Lipschitz condition are rather restrictive and not very useful in
applications. On the other hand, the infinite systems of ordinary differential equations can be
considered as a particular case of ordinary differential equations in Banach spaces. Until now
several existence results have been obtained concerning the Cauchy problem for ordinary
differential equations in Banach spaces [33, 35, 51–53]. A considerable number of those results
were formulated in terms of measures of noncompactness. The results of such a type have
a concise form and give the possibility to formulate more general assumptions than those
requiring the Lipschitz continuity. But in general those results are not immediately applicable
in concrete situations, especially in the theory of infinite systems of ordinary differential
equations.

In this section, we adopt the technique of measures of noncompactness to the theory of
infinite systems of differential equations. Particularly, we are going to present a few existence
results for infinite systems of differential equations formulated with the help of convenient
and handy conditions.

Consider the ordinary differential equation

x′ = f(t, x), (3.1)

with the initial condition

x(0) = x0. (3.2)

Then the following result for the existence of the Cauchy problem (3.1)-(3.2)was given
in [34]which is a slight modification of the result proved in [33].

Assume that X is a real Banach space with the norm ‖ · ‖. Let us take an interval
I = [0, T], T > 0 and B(x0, r) the closed ball in X centered at x0 with radius r.

Theorem A (see [34]). Assume that f(t, x) is a function defined on I × X with values in X such
that

∥∥f(t, x)
∥∥ ≤ Q + R‖x‖, (3.3)

for any x ∈ X, where Q and R are nonnegative constants. Further, let f be uniformly continuous on
the set I1 ×B(x0, r), where r = (QT1 +RT1‖x0‖)/(1−RT1) and I1 = [0, T1] ⊂ I, RT1 < 1. Moreover,
assume that for any nonempty set Y ⊂ B(x0, s) and for almost all t ∈ I the following inequality holds:

μ
(
f(t, Y )

) ≤ q(t)μ(Y ), (3.4)

with a sublinear measure of noncompactness μ such that {x0} ∈ kerμ. Then problem (3.1)-(3.2)
has a solution x such that {x(t)} ∈ kerμ for t ∈ I1, where q(t) is an integrable function on I, and
kerμ = {E ∈ MX : μ(E) = 0} is the kernel of the measure μ.

Remark 3.1. In the case when μ = χ (the Hausdorff measure of noncompactness), the
assumption of the uniform continuity on f can be replaced by the weaker one requiring only
the continuity of f .
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Results of Sections 3.1 and 3.2 are from [33], Section 3.3 from [26], and Section 3.4 from
[32].

3.1. Infinite Systems of Differential Equations in the Space c0

From now on, our discussion is exactly same as in Section 3 of [33].
In this section, we study the solvability of the infinite systems of differential equations

in the Banach sequence space c0. It is known that in the space c0 the Hausdorff measure of
noncompactness can be expressed by the following formula [33]:

χ(E) = lim
n→∞

(

sup
x∈E

{

sup
k≥n

|xk|
})

, (3.5)

where E ∈ Mc0 .
We will be interested in the existence of solutions x(t) = (xi(t)) of the infinite systems

of differential equations

x′
i = fi(t, x0, x1, x2, . . .), (3.6)

with the initial condition

xi(0) = x0
i , (3.7)

(i = 0, 1, 2, . . .) which are defined on the interval I = [0, T] and such that x(t) ∈ c0 for each
t ∈ I.

An existence theorem for problem (3.6)-(3.7) in the space c0 can be formulated by
making the following assumptions.

Assume that the functions fi (i = 1, 2, . . .) are defined on the set I × R
∞ and take real

values. Moreover, we assume the following hypotheses:

(i) x0 = (x0
i ) ∈ c0,

(ii) the map f = (f1, f2, . . .) acts from the set I × c0 into c0 and is continuous,

(iii) there exists an increasing sequence (kn) of natural numbers (obviously kn → ∞
as n → ∞) such that for any t ∈ I, x = (xi) ∈ c0 and n = 1, 2, . . . the following
inequality holds:

∣∣fn(t, x1, x2, . . .)
∣∣ ≤ pn(t) + qn(t)

(

sup
i≥kn

|xi|
)

, (3.8)

where (pi(t)) and (qi(t)) are real functions defined and continuous on I such that
the sequence (pi(t)) converges uniformly on I to the function vanishing identically
and the sequence (qi(t)) is equibounded on I.
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Now, let us denote

q(t) = sup
n≥1

qn(t),

Q = sup
t∈I

q(t),

P = sup
{
pn(t) : t ∈ I, n = 1, 2, . . .

}
.

(3.9)

Then we have the following result.

Theorem 3.2 (see [33]). Under the assumptions (i)–(iii), initial value problem (3.6)-(3.7) has at
least one solution x = x(t) = (xi(t)) defined on the interval I1 = [0, T1] whenever T1 < T and
QT1 < 1. Moreover, x(t) ∈ c0 for any t ∈ I1.

Proof. Let x = (xi) be any arbitrary sequence in c0. Then, by (i)–(iii), for any t ∈ I and for a
fixed n ∈ N we obtain

∣∣fn(t, x)
∣∣ =

∣∣fn(t, x1, x2, . . .)
∣∣ ≤ pn(t) + qn(t)

(

sup
i≥kn

|xi|
)

≤ P +Q sup
i≥kn

|xi| ≤ P +Q‖x‖∞.
(3.10)

Hence, we get

∥∥f(t, x)
∥∥ ≤ P +Q‖x‖∞. (3.11)

In what follows, let us take the ball B(x0, r), where r is chosen according to Theorem
A. Then, for a subset Y of B(x0, r) and for t ∈ I1, we obtain

χ
(
f(t, Y )

)
= lim

n→∞
sup
x∈Y

(

sup
i≥n

∣∣fi(t, x)
∣∣
)

,

χ
(
f(t, Y )

)
= lim

n→∞
sup
x∈Y

(

sup
i≥n

∣∣fi(t, x1, x2, . . .)
∣∣
)

≤ lim
n→∞

sup
x∈Y

(

sup
i≥n

{

pi(t) + qi(t)sup
j≥kn

∣∣xj
∣∣
})

≤ lim
n→∞

sup
i≥n

pi(t) + q(t) lim
n→∞

{

sup
x∈Y

(

sup
i≥n

{

sup
j≥kn

∣∣xj
∣∣
})}

.

(3.12)

Hence, by assumptions, we get

χ
(
f(t, Y )

) ≤ q(t)χ(Y ). (3.13)
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Now, using our assumptions and inequalities (3.11) and (3.13), in view of Theorem A and
Remark 3.1 we deduce that there exists a solution x = x(t) of the Cauchy problem (3.6)-(3.7)
such that x(t) ∈ c0 for any t ∈ I1.

This completes the proof of the theorem.

We illustrate the above result by the following examples.

Example 3.3 (see [33]). Let {kn} be an increasing sequence of natural numbers. Consider the
infinite system of differential equations of the form

x′
i = fi(t, x1, x2, . . .) +

∞∑

j=ki+1

aij(t)xj , (3.14)

with the initial condition

xi(0) = x0
i , (3.15)

(i = 1, 2, . . . ; t ∈ I = [0, T]).
We will investigate problem (3.14)-(3.15) under the following assumptions:

(i) x0 = (x0) ∈ c0,
(ii) the functions fi : I × R

ki → R (i = 1, 2, . . .) are uniformly equicontinuous and there
exists a function sequence (pi(t)) such that pi(t) is continuous on I for any i ∈ N and
(pi(t)) converges uniformly on I to the function vanishing identically. Moreover, the
following inequality holds:

∣∣fi(t, x1, x2, . . . xki)
∣∣ ≤ pi(t), (3.16)

for t ∈ I,(x1, x2, . . . xki) ∈ R
ki and i ∈ N,

(iii) the functions aij(t) are defined and continuous on I and the function series∑∞
j=ki+1 aij(t) converges absolutely and uniformly on I (to a function ai(t)) for any

i = 1, 2, . . .,

(iv) the sequence (ai(t)) is equibounded on I,

(v) QT < 1, where Q = sup{ai(t) : i = 1, 2, . . . ; t ∈ I}.
It can be easily seen that the assumptions of Theorem 3.2 are satisfied under

assumptions (i)–(v). This implies that problem (3.14)-(3.15) has a solution x(t) = (xi(t)) on
the interval I belonging to the space c0 for any fixed t ∈ I.

As mentioned in [33], problem (3.14)-(3.15) considered above contains as a special
case the infinite system of differential equations occurring in the theory of dissociation
of polymers [35]. That system was investigated in [37] in the sequence space �∞ under
very strong assumptions. The existing result proved in [35] requires also rather restrictive
assumptions. Thus, the above result is more general than those quoted above.

Moreover, the choice of the space c0 for the study of the problem (3.14)-(3.15) enables
us to obtain partial characterization of solutions of this problem since we have that xn(t) → 0
when n → ∞, for any fixed t ∈ [0, T].
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On the other hand, let us observe that in the study of the heat conduction problem via
the method of semidiscretization we can obtain the infinite systems of form (3.14) (see [42]
for details).

Example 3.4 (see [33]). In this example, we will consider some special cases of problem (3.14)-
(3.15). Namely, assume that ki = i for i = 1, 2, . . . and aij ≡ 0 on I for all i, j. Then system (3.14)
has the form

x′
1 = f1(t, x1), x′

2 = f2(t, x1, x2), . . . ,

x′
i = fi(t, x1, x2, . . . , xi), . . . ,

(3.17)

and is called a row-finite system [35].
Suppose that there are satisfied assumptions from Example 3.3, that is, x0 = (x0

i ) ∈ c0
and the functions fi act from I × R

i into R (i = 1, 2, . . .) and are uniformly equicontinuous on
their domains. Moreover, there exist continuous functions pi(t) (t ∈ I) such that

∣∣fi(t, x1, x2, . . . xki)
∣∣ ≤ pi(t), (3.18)

for t ∈ I and x1, x2, . . . , xi ∈ R (i = 1, 2, . . .). We assume also that the sequence pi(t) converges
uniformly on I to the function vanishing identically.

Further, let | · |i denote the maximum norm in R
i(i = 1, 2, . . .). Take fi = (f1, f2, . . . , fi).

Then we have

∣∣∣fi(t, x)
∣∣∣
i
= max

{∣∣f1(t, x1)
∣∣,
∣∣f2(t, x1, x2)

∣∣, . . . ,
∣∣fi(t, x1, x2, . . . , xi)

∣∣}

≤ max
{
p1(t), p2(t), . . . , pi(t)

}
.

(3.19)

Taking Pi(t) = max{p1(t),p2(t), . . . , pi(t)}, then the above estimate can be written in the form

∣∣∣fi(t, x)
∣∣∣
i
≤ Pi(t). (3.20)

Observe that from our assumptions it follows that the initial value problem u′ =
Pi(t), u(0) = x0

i has a unique solution on the interval I. Hence, applying a result from [33], we
infer that Cauchy problem (3.17)-(3.15) has a solution on the interval I. Obviously from the
result contained in Theorem 3.2 and Example 3.3, we deduce additionally that the mentioned
solution belongs to the space c0.

Finally, it is noticed [33] that the result described above for row-finite systems of the
type (3.17) can be obtained under more general assumptions.

In fact, instead of inequality (3.18), we may assume that the following estimate holds
to be true:

∣∣fi(t, x1, x2, . . . , xi)
∣∣ ≤ pi(t) + qi(t)max{|x1|, |x2|, . . . , |xi|}, (3.21)

where the functions pi(t) and qi(t) (i = 1, 2, . . .) satisfy the hypotheses analogous to those
assumed in Theorem 3.2.
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Remark 3.5 (see [33]). Note that in the birth process one can obtain a special case of the infinite
system (3.17) which is lower diagonal linear infinite system [35, 43]. Thus, the result proved
above generalizes that from [35, 37].

3.2. Infinite Systems of Differential Equations in the Space c

Now, we will study the solvability of the following perturbed diagonal system of differential
equations

x′
i = ai(t)xi + gi(t, x1, x2, . . .), (3.22)

with the initial condition

xi(0) = x0
i , (3.23)

(i = 1, 2, . . .), where t ∈ I = [0, T].
From now, we are going exactly the same as in Section 4 of [33].
We consider the following measures μ of noncompactness in c which is more

convenient, regular, and even equivalent to the Hausdorff measure of noncompactness [33].
For E ∈ Mc

μ(E) = lim
p→∞

{

sup
x∈E

{

sup
n,m≥p

|xn − xm|
}}

,

χ(E) = lim
n→∞

(

sup
x∈Q

{

sup
k≥n

|xk|
})

.

(3.24)

Let us formulate the hypotheses under which the solvability of problem (3.22)-(3.23)
will be investigated in the space c. Assume that the following conditions are satisfied.

Assume that the functions fi (i = 1, 2, . . .) are defined on the set I × R
∞ and take real

values. Moreover, we assume the following hypotheses:

(i) x0 = (x0
i ) ∈ c,

(ii) the map g = (g1, g2, . . .) acts from the set I × c into c and is uniformly continuous
on I × c,

(iii) there exists sequence (bi) ∈ c0 such that for any t ∈ I, x = (xi) ∈ c and n = 1, 2, . . .
the following inequality holds:

∣∣gn(t, x1, x2, . . .)
∣∣ ≤ bi, (3.25)

(iv) the functions ai(t) are continuous on I such that the sequence (ai(t)) converges
uniformly on I.
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Further, let us denote

a(t) = sup
i≥1

ai(t),

Q = sup
t∈I

a(t).
(3.26)

Observe that in view of our assumptions, it follows that the function a(t) is continuous
on I. Hence, Q <∞.

Then we have the following result which is more general than Theorem 3.2.

Theorem 3.6 (see [33]). Let assumptions (i)–(iv) be satisfied. If QT < 1, then the initial value
problem (3.12)-(3.13) has a solution x(t) = (xi(t)) on the interval I such that x(t) ∈ c for each t ∈ I.

Proof. Let t ∈ I and x = (xi) ∈ c and

fi(t, x) = ai(t)xi + gi(t;x),

f(t, x) =
(
f1(t, x), f2(t;x), . . .

)
=
(
fi(t, x)

)
.

(3.27)

Then, for arbitrarily fixed natural numbers n,mwe get

∣∣fn(t, x) − fm(t, x)
∣∣ =

∣∣an(t)xn + gn(t;x) − am(t)xm − gm(t;x)
∣∣

≤ ∣∣an(t)xn + gn(t;x)
∣∣ − ∣∣am(t)xm + gm(t;x)

∣∣

≤ |an(t)xn − an(t)xm| + |an(t)xm − am(t)xm| + bn + bm
≤ |an(t)||xn − xm| + |an(t) − am(t)||xm| + bn + bm
≤ |an(t)||xn − xm| + ‖x‖∞|an(t) − am(t)| bn + bm.

(3.28)

By assumptions (iii) and (iv), from the above estimate we deduce that (fi(t, x)) is a real
Cauchy sequence. This implies that (fi(t, x)) ∈ c.

Also we obtain the following estimate:

∣∣fi(t, x)
∣∣ ≤ |ai(t)||xi| +

∣∣gi(t, x)
∣∣

≤ Q|xi| + bi ≤ Q‖x‖∞ + B,
(3.29)

where B = supi≥1bi. Hence,

∥∥f(t, x)
∥∥ ≤ Q‖x‖∞ + B. (3.30)

In what follows, let us consider the mapping f(t, x) on the set I × B(x0, r), where r is
taken according to the assumptions of Theorem A, that is, r = (BT + QT‖x0‖∞)/(1 − QT).
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Further, fix arbitrarily t, s ∈ I and x, y ∈ B(x0, r). Then, by our assumptions, for a fixed i, we
obtain

∣
∣fi(t, x) − fi

(
s, y

)∣∣ =
∣
∣ai(t)xi + gi(t, x) − ai(s)yi − gi

(
s, y

)∣∣

≤ ∣
∣ai(t)xi − ai(s)yi

∣
∣ +

∣
∣gi(t, x) − gi

(
s, y

)∣∣

≤ |ai(t) − ai(s)||xi| + |ai(s)|
∣
∣xi − yi

∣
∣ +

∣
∣gi(t, x) − gi

(
s, y

)∣∣.

(3.31)

Then,

∥
∥f(t, x) − f(s, y)∥∥ = sup

i≥1

∣
∣fi(t, x) − fi

(
s, y

)∣∣

≤ (r + ‖x0‖∞) · sup
i≥1

|ai(t) − ai(s)|

+Q
∥∥x − y∥∥∞ +

∥∥g(t, x) − g(s, y)∥∥.

(3.32)

Hence, taking into account that the sequence (ai(t)) is equicontinuous on the interval I
and g is uniformly continuous on I × c, we conclude that the operator f(t, x) is uniformly
continuous on the set I × B(x0, r).

In the sequel, let us take a nonempty subset E of the ball B(x0, r) and fix t ∈ I, x ∈ X.
Then, for arbitrarily fixed natural numbers n,m we have

∣∣fn(t, x) − fm(t, x)
∣∣ ≤ |an(t)||xn − xm| + |xm||an(t) − am(t)| +

∣∣gn(t, x)
∣∣ +

∣∣gm(t, x)
∣∣

≤ a(t)|xn − xm| + (r + ‖x0‖∞)|an(t) − am(t)| + bn + bm.
(3.33)

Hence, we infer the following inequality:

μ
(
f(t, E)

) ≤ a(t)μ(E). (3.34)

Finally, combining (3.30), (3.34) and the fact (proved above) that f is uniformly
continuous on I × B(x0, r), in view of Theorem A, we infer that problem (3.22)-(3.23) is
solvable in the space c.

This completes the proof of the theorem.

Remark 3.7 (see [33, Remark 4]). The infinite systems of differential equations (3.22)-(3.23)
considered above contain as special cases the systems studied in the theory of neural sets (cf.
[35, pages 86-87] and [37], e.g.). It is easy to notice that the existence results proved in [35, 37]
are obtained under stronger and more restrictive assumptions than our one.

3.3. Infinite Systems of Differential Equations in the Space �p

In this section, we study the solvability of the infinite systems of differential equations (3.6)-
(3.7) in the Banach sequence space �p (1 ≤ p <∞) such that x(t) ∈ �p for each t ∈ I.
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An existence theorem for problem (3.6)-(3.7) in the space �p can be formulated by
making the following assumptions:

(i) x0 = (x0
i ) ∈ �p,

(ii) fi : I × R
∞ → R (i = 0, 1, 2, . . .)maps continuously the set I × �p into �p,

(iii) there exist nonnegative functions qi(t) and ri(t) defined on I such that

∣
∣fi(t, x)

∣
∣p =

∣
∣fi(t, x0, x1, x2, . . .)

∣
∣p ≤ qi(t) + ri(t)|xi|p, (3.35)

for t ∈ I;x = (xi) ∈ �p and i = 0, 1, 2, . . .,

(iv) the functions qi(t) are continuous on I and the function series
∑∞

i=0 qi(t) converges
uniformly on I,

(v) the sequence (ri(t)) is equibounded on the interval I and the function r(t) =
lim supi→∞ri(t) is integrable on I.

Now, we prove the following result.

Theorem 3.8 (see [26]). Under the assumptions (i)–(v), problem (3.6)-(3.7) has a solution x(t) =
(xi(t)) defined on the interval I = [0, T] whenever RT < 1, where R is defined as the number

R = sup{ri(t) : t ∈ I, i = 0, 1, 2, . . .}. (3.36)

Moreover, x(t) ∈ �p for any t ∈ I.

Proof. For any x(t) ∈ �p and t ∈ I, under the above assumptions, we have

∥∥f(t, x)
∥∥p
p =

∞∑

i=0

∣∣fi(t, x)
∣∣p

≤
∞∑

i=0

[
qi(t) + ri(t)|xi|p

]

≤
∞∑

i=0

qi(t) +

(

sup
i≥0

ri(t)

)( ∞∑

i=0
|xi|p

)

≤ Q + R‖x‖pp,

(3.37)

where Q = supt∈I(
∑∞

i=0 qi(t)).
Now, choose the number s = (QT + RT‖x0‖pp)/(1 − RT) as defined in Theorem A.

Consider the operator f = (fi) on the set I ×B(x0; s). Let us take a set Y ∈ M�p . Then by using
(2.8), we get

χ
(
f(t, Y )

)
= lim

n→∞
sup
x∈Y

(
∑

i≥n

∣∣fi(t, x1, x2, . . .)
∣∣p
)

≤ lim
n→∞

(
∑

i≥n
qi(t) +

(

sup
i≥n

ri(t)

)(
∑

i≥n
|xi|p

) )

.

(3.38)
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Hence, by assumptions (iv)-(v), we get

χ
(
f(t, Y )

) ≤ r(t)χ(Y ), (3.39)

that is, the operator f satisfies condition (3.4) of Theorem A. Hence, by Theorem A and
Remark 3.1 we conclude that there exists a solution x = x(t) of problem (3.6)-(3.7) such that
x(t) ∈ �p for any t ∈ I.

This completes the proof of the theorem.

Remark 3.9. (I) For p = 1, we get Theorem 5 of [33].

(II) It is easy to notice that the existence results proved in [44] are obtained under
stronger and more restrictive assumptions than our one.

(III) We observe that the above theorem can be applied to the perturbed diagonal infinite
system of differential equations of the form

x′
i = ai(t)xi + gi(t, x0, x1, x2, . . .), (3.40)

with the initial condition

xi(0) = x0
i , (3.41)

(i = 0, 1, 2, . . .) where t ∈ I.
An existence theorem for problem (3.6)-(3.7) in the space �p can be formulated by

making the following assumptions:

(i) x0 = (x0
i ) ∈ �p,

(ii) the sequence (|ai(t)|) is defined and equibounded on the interval I = [0, T].
Moreover, the function a(t) = lim supi→∞ sup |ai(t)| is integrable on I,

(iii) the mapping g = (gi) maps continuously the set I × �p into �p,
(iv) there exist nonnegative functions bi(t) such that

∣∣fi(t, x0, x1, x2, . . .)
∣∣p ≤ bi(t), (3.42)

for t ∈ I;x = (xi) ∈ �p and i = 0, 1, 2, . . .,

(v) the functions bi(t) are continuous on I and the function series
∑∞

i=0 bi(t) converges
uniformly on I.

3.4. Infinite Systems of Differential Equations in the Space n(φ)

An existence theorem for problem (3.6)-(3.7) in the space n(φ) can be formulated by making
the following assumptions:

(i) x0 = (x0
i ) ∈ n(φ),
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(ii) fi : I × R
∞ → R (i = 1, 2, . . .)maps continuously the set I × n(φ) into n(φ),

(iii) there exist nonnegative functions pi(t) and qi(t) defined on I such that

∣
∣fi(t, u)

∣
∣ =

∣
∣fi(t, u1, u2, . . .)

∣
∣ ≤ pi(t) + qi(t)|ui|, (3.43)

for t ∈ I;x = (xi) ∈ n(φ) and i = 1, 2, . . ., where u = (ui) is a sequence of
rearrangement of x = (xi),

(iv) the functions pi(t) are continuous on I and the function series
∑∞

i=1 pi(t)Δφi
converges uniformly on I,

(v) the sequence (qi(t)) is equibounded on the interval I and the function q(t) =
lim supi→∞qi(t) is integrable on I.

Now, we prove the following result.

Theorem 3.10 (see [32]). Under the assumptions (i)–(v), problem (3.6)-(3.7) has a solution x(t) =
(xi(t)) defined on the interval I = [0, T] whenever QT < 1, where Q is defined as the number

Q = sup
{
qi(t) : t ∈ I, i = 1, 2, . . .

}
. (3.44)

Moreover, x(t) ∈ n(φ) for any t ∈ I.

Proof. For any x(t) ∈ n(φ) and t ∈ I, under the above assumptions, we have

∥∥f(t, x)
∥∥
n(φ) = sup

u∈S(x)

∞∑

i=1

∣∣fi(t, u)
∣∣Δφi

≤ sup
u∈S(x)

∞∑

i=1

[
pi(t) + qi(t)|ui|

]
Δφi

≤
∞∑

i=1

pi(t)Δφi +

(

sup
i

qi(t)

)(

sup
u∈S(x)

∞∑

i=1

|ui|Δφi
)

≤ P +Q‖x‖n(φ),

(3.45)

where P = supt∈I
∑∞

i=1 pi(t)Δφi.
Now, choose the number r defined according to Theorem A, that is, r = (PT +

QT‖x0‖n(φ))/(1 − QT). Consider the operator f = (fi) on the set I × B(x0; r). Let us take a
set X ∈ M n(φ) . Then by using Theorem 2.4, we get

χ
(
f(t, X)

)
= lim

k→∞
sup
x∈X

(

sup
u∈S(x)

( ∞∑

n=k

∣∣fn(t, u1, u2, . . .)
∣∣Δφn

))

≤ lim
k→∞

( ∞∑

n=k

pn(t)Δφn +

(

sup
n≥k

qn(t)

)(

sup
u∈S(x)

∞∑

n=k

|un|Δφn
))

.

(3.46)
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Hence, by assumptions (iv)-(v), we get

χ
(
f(t, X)

) ≤ q(t)χ(X), (3.47)

that is, the operator f satisfies condition (3.4) of Theorem A. Hence, the problem (3.6)-(3.7)
has a solution x(t) = (xi(t)).

This completes the proof of the theorem.

Remark 3.11. Similarly, we can establish such type of result for the spacem(φ).
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operators on some difference sequence spaces of weighted means,” Computers & Mathematics with
Applications, vol. 62, no. 2, pp. 814–820, 2011.

[25] M.Mursaleen and A. Latif, “Applications of measure of noncompactness in matrix operators on some
sequence spaces,” Abstract and Applied Analysis, vol. 2012, Article ID 378250, 10 pages, 2012.

[26] M. Mursaleen and S. A. Mohiuddine, “Applications of measures of noncompactness to the infinite
system of differential equations in �p spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol.
75, no. 4, pp. 2111–2115, 2012.

[27] M. Mursaleen and A. K. Noman, “Compactness by the Hausdorff measure of noncompactness,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 8, pp. 2541–2557, 2010.

[28] M.Mursaleen and A. K. Noman, “Applications of the Hausdorffmeasure of noncompactness in some
sequence spaces of weighted means,” Computers & Mathematics with Applications, vol. 60, no. 5, pp.
1245–1258, 2010.

[29] M. Mursaleen and A. K. Noman, “The Hausdorffmeasure of noncompactness of matrix operators on
some BK spaces,” Operators and Matrices, vol. 5, no. 3, pp. 473–486, 2011.

[30] M. Mursaleen and A. K. Noman, “On σ-conservative matrices and compact operators on the space
Vσ ,” Applied Mathematics Letters, vol. 24, no. 9, pp. 1554–1560, 2011.

[31] M.Mursaleen and A. K. Noman, “Compactness of matrix operators on some new difference sequence
spaces,” Linear Algebra and Its Applications, vol. 436, no. 1, pp. 41–52, 2012.

[32] M. Mursaleen, “Application of measure of noncompactness to infinite systems of differentialequa-
tions,” Canadian Mathematical Bulletin. In press.
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We investigate some existence results for the solutions to impulsive fractional differential
equations having closed boundary conditions. Our results are based on contracting mapping
principle and Burton-Kirk fixed point theorem.

1. Introduction

This paper considers the existence and uniqueness of the solutions to the closed boundary
value problem (BVP), for the following impulsive fractional differential equation:

CDαx(t) = f(t, x(t)), t ∈ J := [0, T], t /= tk, 1 < α ≤ 2,

Δx(tk) = Ik
(
x
(
t−k
))
, Δx′(tk) = I∗k

(
x
(
t−k
))
, k = 1, 2, . . . , p,

x(T) = ax(0) + bTx′(0), Tx′(T) = cx(0) + dTx′(0),

(1.1)

where CD
α is Caputo fractional derivative, f ∈ C(J × R,R), Ik, I∗k ∈ C(R,R),

Δx(tk) = x
(
t+k
) − x(t−k

)
, (1.2)
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with

x
(
t+k
)
= lim

h→ 0+
x(tk + h), x

(
t−k
)
= lim

h→ 0−
x(tk + h), (1.3)

and Δx′(tk) has a similar meaning for x′(t), where

0 = t0 < t1 < t2 < · · · < tp < tp+1 = T, (1.4)

a, b, c, and d are real constants with Δ := c(1 − b) + (1 − a)(1 − d)/= 0.
The boundary value problems for nonlinear fractional differential equations have been

addressed by several researchers during last decades. That is why, the fractional derivatives
serve an excellent tool for the description of hereditary properties of various materials and
processes. Actually, fractional differential equations arise in many engineering and scientific
disciplines such as, physics, chemistry, biology, electrochemistry, electromagnetic, control
theory, economics, signal and image processing, aerodynamics, and porous media (see [1–
7]). For some recent development, see, for example, [8–14].

On the other hand, theory of impulsive differential equations for integer order
has become important and found its extensive applications in mathematical modeling of
phenomena and practical situations in both physical and social sciences in recent years. One
can see a noticeable development in impulsive theory. For instance, for the general theory
and applications of impulsive differential equations we refer the readers to [15–17].

Moreover, boundary value problems for impulsive fractional differential equations
have been studied by some authors (see [18–20] and references therein). However, to the
best of our knowledge, there is no study considering closed boundary value problems for
impulsive fractional differential equations.

Here, we notice that the closed boundary conditions in (1.1) include quasi-periodic
boundary conditions (b = c = 0) and interpolate between periodic (a = d = 1, b = c = 0) and
antiperiodic (a = d = −1, b = c = 0) boundary conditions.

Motivated by the mentioned recent work above, in this study, we investigate the
existence and uniqueness of solutions to the closed boundary value problem for impulsive
fractional differential equation (1.1). Throughout this paper, in Section 2, we present some
notations and preliminary results about fractional calculus and differential equations to be
used in the following sections. In Section 3, we discuss some existence and uniqueness results
for solutions of BVP (1.1), that is, the first one is based on Banach’s fixed point theorem,
the second one is based on the Burton-Kirk fixed point theorem. At the end, we give an
illustrative example for our results.

2. Preliminaries

Let us set J0 = [0, t1], J1 = (t1, t2], . . . , Jk−1 = (tk−1, tk], Jk = (tk, tk+1], J ′ := [0, T] \ {t1, t2, . . . , tp}
and introduce the set of functions:

PC(J, R) = {x : J → R : x ∈ C((tk, tk+1], R), k = 0, 1, 2, . . . , p and there exist x(t+k) and
x(t−k), k = 1, 2, . . . , p with x(t−k) = x(tk)} and

PC1(J, R) = {x ∈ PC(J, R), x′ ∈ C((tk, tk+1], R), k = 0, 1, 2, . . . , p and there exist x′(t+
k
)

and x′(t−k), k = 1, 2, . . . , p with x′(t−k) = x′(tk)} which is a Banach space with the norm ‖x‖ =
supt∈J{‖x‖PC, ‖x′‖PC}where ‖x‖PC := sup{|x(t)| : t ∈ J}.

The following definitions and lemmas were given in [4].
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Definition 2.1. The fractional (arbitrary) order integral of the function h ∈ L1(J, R+) of order
α ∈ R+ is defined by

Iα0h(t) =
1

Γ(α)

∫ t

0
(t − s)α−1h(s)ds, (2.1)

where Γ(·) is the Euler gamma function.

Definition 2.2. For a function h given on the interval J , Caputo fractional derivative of order
α > 0 is defined by

CD
α
0+h(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1h(n)(s)ds, n = [α] + 1, (2.2)

where the function h(t) has absolutely continuous derivatives up to order (n − 1).

Lemma 2.3. Let α > 0, then the differential equation

CDαh(t) = 0 (2.3)

has solutions

h(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [α] + 1. (2.4)

The following lemma was given in [4, 10].

Lemma 2.4. Let α > 0, then

IαCD
α
h(t) = h(t) + c0 + c1t + c2t2 + · · · + cn−1tn−1, (2.5)

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [α] + 1.

The following theorem is known as Burton-Kirk fixed point theorem and proved in
[21].

Theorem 2.5. Let X be a Banach space and A, D : X → X two operators satisfying:

(a) A is a contraction, and

(b) D is completely continuous.

Then either

(i) the operator equation x = A(x) +D(x) has a solution, or
(ii) the set ε = {x ∈ X : x = λA(x/λ) + λD(x)} is unbounded for λ ∈ (0, 1).

Theorem 2.6 (see [22], Banach’s fixed point theorem). Let S be a nonempty closed subset of a
Banach space X, then any contraction mapping T of S into itself has a unique fixed point.
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Next we prove the following lemma.

Lemma 2.7. Let 1 < α ≤ 2 and let h : J → R be continuous. A function x(t) is a solution of the
fractional integral equation:

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

(t − s)α−1
Γ(α)

h(s)ds + Ω1(t)Λ1 + Ω2(t)Λ2, t ∈ J0
∫ t

tk

(t − s)α−1
Γ(α)

h(s)ds + [1 + Ω1(t)]
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

h(s)ds

+[(T − tk)Ω1(t) + Ω2(t) + (t − tk)]
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds

+[1 + Ω1(t)]
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds + Ω1(t)
∫T

tk

(T − s)α−1
Γ(α)

h(s)ds

+Ω2(t)
∫T

tk

(T − s)α−2
Γ(α − 1)

h(s)ds + [1 + Ω1(t)]

[
k∑

i=1

Ii
(
x
(
t−i
))

+ I∗k
(
x
(
t−k
))
]

+Ω1(t)
k−1∑

i=1

(T − ti)I∗i
(
x
(
t−i
))

+ Ω2(t)
k−1∑

i=1

I∗i
(
x
(
t−i
))

+
k−1∑

i=1

(t − ti)I∗i
(
x
(
t−i
))
, t ∈ Jk, k = 1, 2, . . . , p

(2.6)

if and only if x(t) is a solution of the fractional BVP

CDαx(t) = h(t), t ∈ J ′,
Δx(tk) = Ik

(
x
(
t−k
))
, Δx′(tk) = I∗k

(
x
(
t−k
))
,

x(T) = ax(0) + bTx′(0), Tx′(T) = cx(0) + dTx′(0),

(2.7)

where

Λ1 :=
∫T

tk

(T − s)α−1
Γ(α)

h(s)ds+
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

h(s)ds

+
k∑

i=1

(T − tk)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds+
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds

+
k∑

i=1

Ii
(
x
(
t−i
))
+

k−1∑

i=1

(T − ti)I∗i
(
x
(
t−i
))

+ I∗k
(
x
(
t−k
))
,
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Λ2 :=
∫T

tk

(T − s)α−2
Γ(α − 1)

h(s)ds+
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds+
k−1∑

i=1

I∗i
(
x
(
t−i
))
,

Ω1(t) := − (1 − d)
Δ

− ct

TΔ
,

Ω2(t) :=
(1 − b)T

Δ
− (1 − a)t

Δ
.

(2.8)

Proof. Let x be the solution of (2.7). If t ∈ J0, then Lemma 2.4 implies that

x(t) = Iαh(t) − c0 − c1t =
∫ t

0

(t − s)α−1
Γ(α)

h(s)ds − c0 − c1t,

x′(t) =
∫ t

0

(t − s)α−2
Γ(α − 1)

h(s)ds − c1,
(2.9)

for some c0, c1 ∈ R.
If t ∈ J1, then Lemma 2.4 implies that

x(t) =
∫ t

t1

(t − s)α−1
Γ(α)

h(s)ds − d0 − d1(t − t1),

x′(t) =
∫ t

t1

(t − s)α−2
Γ(α − 1)

h(s)ds − d1,
(2.10)

for some d0, d1 ∈ R. Thus we have

x
(
t−1
)
=
∫ t1

t0

(t1 − s)α−1
Γ(α)

h(s)ds − c0 − c1t1, x
(
t+1
)
= −d0,

x′(t−1
)
=
∫ t1

t0

(t1 − s)α−2
Γ(α − 1)

h(s)ds − c1, x′(t+1
)
= −d1.

(2.11)

Observing that

Δx(t1) = x
(
t+1
) − x(t−1

)
= I1
(
x
(
t−1
))
, Δx′(t1) = x′(t+1

) − x′(t−1
)
= I∗1
(
x
(
t−1
))
, (2.12)
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then we have

−d0 =
∫ t1

t0

(t1 − s)α−1
Γ(α)

h(s)ds − c0 − c1t1 + I1
(
x
(
t−1
))
,

−d1 =
∫ t1

t0

(t1 − s)α−2
Γ(α − 1)

h(s)ds − c1 + I∗1
(
x
(
t−1
))
,

(2.13)

hence, for t ∈ (t1, t2],

x(t) =
∫ t

t1

(t − s)α−1
Γ(α)

h(s)ds +
∫ t1

t0

(t1 − s)α−1
Γ(α)

h(s)ds

+ (t − t1)
∫ t1

t0

(t1 − s)α−2
Γ(α − 1)

h(s)ds + I1
(
x
(
t−1
))

+ (t − t1)I∗1
(
x
(
t−1
)) − c0 − c1t,

x′(t) =
∫ t

t1

(t − s)α−2
Γ(α − 1)

h(s)ds +
∫ t1

t0

(t1 − s)α−2
Γ(α − 1)

h(s)ds + I∗1
(
x
(
t−1
)) − c1.

(2.14)

If t ∈ J2, then Lemma 2.4 implies that

x(t) =
∫ t

t2

(t − s)α−1
Γ(α)

h(s)ds − e0 − e1(t − t2),

x′(t) =
∫ t

t2

(t − s)α−2
Γ(α − 1)

h(s)ds − e1,
(2.15)

for some e0, e1 ∈ R. Thus we have

x
(
t−2
)
=
∫ t2

t1

(t2 − s)α−1
Γ(α)

h(s)ds +
∫ t1

t0

(t1 − s)α−1
Γ(α)

h(s)ds

+ (t2 − t1)
∫ t1

t0

(t1 − s)α−2
Γ(α − 1)

h(s)ds + I1
(
x
(
t−1
))

+ (t2 − t1)I∗1
(
x
(
t−1
)) − c0 − c1t2,

x
(
t+2
)
= − e0,

x′(t−2
)
=
∫ t2

t1

(t2 − s)α−2
Γ(α − 1)

h(s)ds +
∫ t1

t0

(t1 − s)α−2
Γ(α − 1)

h(s)ds + I∗1
(
x
(
t−1
)) − c1,

x′(t+2
)
= − e1.

(2.16)

Similarly we observe that

Δx(t2) = x
(
t+2
) − x(t−2

)
= I2
(
x
(
t−2
))
, Δx′(t2) = x′(t+2

) − x′(t−2
)
= I∗2
(
x
(
t−2
))
, (2.17)
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thus we have

−e0 = x
(
t−2
)
+ I2
(
x
(
t−2
))
,

−e1 = x′(t−2
)
+ I∗2
(
x
(
t−2
))
.

(2.18)

Hence, for t ∈ (t2, t3],

x(t) =
∫ t

t2

(t − s)α−1
Γ(α)

h(s)ds +
∫ t1

t0

(t1 − s)α−1
Γ(α)

h(s)ds +
∫ t2

t1

(t2 − s)α−1
Γ(α)

h(s)ds

+ (t2 − t1)
∫ t1

t0

(t1 − s)α−2
Γ(α − 1)

h(s)ds

+ (t − t2)
[∫ t1

t0

(t1 − s)α−1
Γ(α − 1)

h(s)ds +
∫ t2

t1

(t2 − s)α−1
Γ(α − 1)

h(s)ds

]

+ I1
(
x
(
t−1
))

+ I2
(
x
(
t−2
))

+ (t − t1)I∗1
(
x
(
t−1
))

+ I∗2
(
x
(
t−2
)) − c0 − c1t.

(2.19)

By a similar process, if t ∈ Jk, then again from Lemma 2.4 we get

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

tk

(t − s)α−1
Γ(α)

h(s)ds+
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

h(s)ds

+
k∑

i=1

(t − tk)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds+
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds

+
k∑

i=1

Ii
(
x
(
t−i
))
+

k−1∑

i=1

(t − ti)I∗i
(
x
(
t−i
))

+ I∗k
(
x
(
t−k
)) − c0 − c1t,

x′(t) =

{∫ t

tk

(t − s)α−2
Γ(α − 1)

h(s)ds+
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

h(s)ds+
k−1∑

i=1

I∗i
(
x
(
t−i
)) − c1.

(2.20)

Now if we apply the conditions:

x(T) = ax(0) + bTx′(0), Tx′(T) = cx(0) + dTx′(0), (2.21)

we have

Λ1 = (1 − a)c0 + T(1 − b)c1,

Λ2 = − c
T
c0 + (1 − d)c1,

−c0 = − (1 − d)Λ1

Δ
+
(1 − b)TΛ2

Δ
,

−c1 = −cΛ1

TΔ
− (1 − a)Λ2

Δ
.

(2.22)
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In view of the relations (2.8), when the values of −c0 and −c1 are replaced in (2.9) and (2.20),
the integral equation (2.7) is obtained.

Conversely, assume that x satisfies the impulsive fractional integral equation (2.6),
then by direct computation, it can be seen that the solution given by (2.6) satisfies (2.7). The
proof is complete.

3. Main Results

Definition 3.1. A function x ∈ PC1(J, R) with its α-derivative existing on J ′ is said to be
a solution of (1.1), if x satisfies the equation CD

α
x(t) = f(t, x(t)) on J ′ and satisfies the

conditions:

Δx(tk) = Ik
(
x
(
t−k
))
, Δx′(tk) = I∗k

(
x
(
t−k
))
,

x(T) = ax(0) + bTx′(0), Tx′(T) = cx(0) + dTx′(0).
(3.1)

For the sake of convenience, we define

Ω∗
1 = sup

t∈J
|Ω1(t)|, Ω∗

2 = sup
t∈J

|Ω2(t)|, Ω∗∗
1 = sup

t∈J

∣∣Ω′
1(t)
∣∣, Ω∗∗

2 = sup
t∈J

∣∣Ω′
2(t)
∣∣. (3.2)

The followings are main results of this paper.

Theorem 3.2. Assume that

(A1) the function f : J × R → R is continuous and there exists a constant L1 > 0 such that
‖f(t, u) − f(t, v)‖ ≤ L1‖u − v‖, for all t ∈ J , and u, v ∈ R,

(A2) Ik, I∗k : R → R are continuous, and there exist constants L2 > 0 and L3 > 0 such
that ‖Ik(u) − Ik(v)‖ ≤ L2‖u − v‖, ‖I∗

k
(u) − I∗

k
(v)‖ ≤ L3‖u − v‖ for each u, v ∈ R and

k = 1, 2, . . . , p.

Moreover, consider the following:

[
L1T

α

Γ(α + 1)
(
1 + Ω∗

1

)(
1 + p + 2pα

)
+
L1T

α−1

Γ(α)
Ω∗

2
(
1 + p

)

+
(
1 + Ω∗

1

)(
pL2 + L3

)
+
(
Ω∗

1T + Ω∗
2 + T

)
pL3

]

< 1.

(3.3)

Then, BVP (1.1) has a unique solution on J .

Proof. Define an operator F : PC1(J, R) → PC1(J, R) by

(Fx)(t) =
∫ t

tk

(t − s)α−1
Γ(α)

f(s, x(s))ds + [1 + Ω1(t)]
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

f(s, x(s))ds

+ [(T − tk)Ω1(t) + Ω2(t) + (t − tk)]
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

f(s, x(s))ds
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+ [1 + Ω1(t)]
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

f(s, x(s))ds

+ Ω1(t)
∫T

tk

(T − s)α−1
Γ(α)

f(s, x(s))ds

+ Ω2(t)
∫T

tk

(T − s)α−2
Γ(α − 1)

f(s, x(s))ds + [1 + Ω1(t)]

[
k∑

i=1

Ii
(
x
(
t−i
))

+ I∗k
(
x
(
t−k
))
]

+ Ω1(t)
k−1∑

i=1

(T − ti)I∗i
(
x
(
t−i
))

+ Ω2(t)
k−1∑

i=1

I∗i
(
x
(
t−i
))
+

k−1∑

i=1

(t − ti)I∗i
(
x
(
t−i
))
.

(3.4)

Now, for x, y ∈ PC(J, R) and for each t ∈ J , we obtain

∣∣(Fx)(t) − (Fy)(t)∣∣ ≤
∫ t

tk

(t − s)α−1
Γ(α)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+ |1 + Ω1(t)|
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+ |(T − tk)Ω1(t) + Ω2(t) + (t − tk)|

×
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+ |1 + Ω1(t)|
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+ |Ω1(t)|
∫T

tk

(T − s)α−1
Γ(α)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+ |Ω2(t)|
∫T

tk

(T − s)α−2
Γ(α − 1)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+ |1 + Ω1(t)|
[

k∑

i=1

∣∣Ii
(
x
(
t−i
)) − Ii

(
y
(
t−i
))∣∣ +

∣∣I∗k
(
x
(
t−k
)) − I∗k

(
y
(
t−k
))∣∣
]

+ |Ω1(t)|
k−1∑

i=1

(T − ti)
∣∣I∗i
(
x
(
t−i
)) − I∗i

(
y
(
t−i
))∣∣

+ |Ω2(t)|
k−1∑

i=1

∣∣I∗i
(
x
(
t−i
)) − I∗i

(
y
(
t−i
))∣∣

+
k−1∑

i=1

|t − ti|
∣∣I∗i
(
x
(
t−i
)) − I∗i

(
y
(
t−i
))∣∣,
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∥
∥(Fx)(t) − (Fy)(t)∥∥ ≤

[
L1T

α

Γ(α + 1)
(
1 + Ω∗

1

)(
1 + p + 2pα

)
+
L1T

α−1

Γ(α)
Ω∗

2
(
1 + p

)

+
(
1 + Ω∗

1

)(
pL2 + L3

)
+
(
Ω∗

1T + Ω∗
2 + T

)
pL3

]
∥
∥x(s) − y(s)∥∥.

(3.5)

Therefore, by (3.3), the operator F is a contraction mapping. In a consequence of Banach’s
fixed theorem, the BVP (1.1) has a unique solution. Now, our second result relies on the
Burton-Kirk fixed point theorem.

Theorem 3.3. Assume that (A1)-(A2) hold, and

(A3) there exist constantsM1 > 0,M2 > 0,M3 > 0 such that ‖f(t, u)‖ ≤ M1, ‖Ik(u)‖ ≤ M2,
‖I∗

k
(u)‖ ≤M3 for each u, v ∈ R and k = 1, 2, . . . , p.

Then the BVP (1.1) has at least one solution on J .

Proof. We define the operators A,D : PC1(J, R) → PC1(J, R) by

(Ax)(t) = [1 + Ω1(t)]

[
k∑

i=1

Ii
(
x
(
t−i
))

+ I∗k
(
x
(
t−k
))
]

+ Ω1(t)
k−1∑

i=1

(T − ti)I∗i
(
x
(
t−i
))

+ Ω2(t)
k−1∑

i=1

I∗i
(
x
(
t−i
))
+

k−1∑

i=1

(t − ti)I∗i
(
x
(
t−i
))
,

(Dx)(t) =
∫ t

tk

(t − s)α−1
Γ(α)

f(s, x(s))ds + [1 + Ω1(t)]
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

f(s, x(s))ds

+ [(T − tk)Ω1(t) + Ω2(t) + (t − tk)]
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

f(s, x(s))ds

+ [1 + Ω1(t)]
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

f(s, x(s))ds

+ Ω1(t)
∫T

tk

(T − s)α−1
Γ(α)

f(s, x(s))ds + Ω2(t)
∫T

tk

(T − s)α−2
Γ(α − 1)

f(s, x(s))ds.

(3.6)

It is obvious that A is contraction mapping for

(
1 + Ω∗

1

)(
pL2 + L3

)
+
(
Ω∗

1T + Ω∗
2 + T

)
pL3 < 1. (3.7)

Now, in order to check that D is completely continuous, let us follow the sequence of the
following steps.
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Step 1 (D is continuous). Let {xn} be a sequence such that xn → x in PC(J, R). Then for t ∈ J ,
we have

|(Dxn)(t) − (Dx)(t)| ≤
∫ t

tk

(t − s)α−1
Γ(α)

∣
∣f(s, xn(s)) − f(s, x(s))

∣
∣ds

+ |1 + Ω1(t)|
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

∣
∣f(s, xn(s)) − f(s, x(s))

∣
∣ds

+ |(T − tk)Ω1(t) + Ω2(t) + (t − tk)|

×
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣
∣f(s, xn(s)) − f(s, x(s))

∣
∣ds

+ |1 + Ω1(t)|
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣∣f(s, xn(s)) − f(s, x(s))
∣∣ds

+ |Ω1(t)|
∫T

tk

(T − s)α−1
Γ(α)

∣∣f(s, xn(s)) − f(s, x(s))
∣∣ds

+ |Ω2(t)|
∫T

tk

(T − s)α−2
Γ(α − 1)

∣∣f(s, xn(s)) − f(s, x(s))
∣∣ds.

(3.8)

Since f is continuous function, we get

‖(Dxn)(t) − (Dx)(t)‖ −→ 0 as n −→ ∞. (3.9)

Step 2 (D maps bounded sets into bounded sets in PC(J, R)). Indeed, it is enough to show
that for any r > 0, there exists a positive constant l such that for each x ∈ Br = {x ∈ PC(J, R) :
‖x‖ ≤ r}, we have ‖D(x)‖ ≤ l. By (A3), we have for each t ∈ J ,

|(Dx)(t)| ≤
∫ t

tk

(t − s)α−1
Γ(α)

∣∣f(s, x(s))
∣∣ds

+ |1 + Ω1(t)|
k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

∣∣f(s, x(s))
∣∣ds

+ |(T − tk)Ω1(t) + Ω2(t) + (t − tk)|
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣∣f(s, x(s))
∣∣ds

+ |1 + Ω1(t)|
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣∣f(s, x(s))
∣∣ds
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+ |Ω1(t)|
∫T

tk

(T − s)α−1
Γ(α)

∣
∣f(s, x(s))

∣
∣ds + |Ω2(t)|

∫T

tk

(T − s)α−2
Γ(α − 1)

∣
∣f(s, x(s))

∣
∣ds,

‖D(x)‖ ≤ M1T
α

Γ(α + 1)
(
1 + Ω∗

1

)(
1 + p + 2pα

)
+
M1T

α−1

Γ(α)
Ω∗

2
(
1 + p

)
:= l.

(3.10)

Step 3 (D maps bounded sets into equicontinuous sets in PC1(J, R)). Let τ1, τ2 ∈ Jk, 0 ≤ k ≤ p
with τ1 < τ2 and let Br be a bounded set of PC1(J, R) as in Step 2, and let x ∈ Br . Then

∣
∣(Dy

)
(τ2) − (D)(τ1)

∣
∣ ≤
∫ τ2

τ1

∣
∣
∣
(
Dy
)′(s)

∣
∣
∣ds ≤ L(τ2 − τ1), (3.11)

where

∣∣(Dx)′(t)
∣∣ ≤
∫ t

tk

(t − s)α−2
Γ(α − 1)

∣∣f(s, x(s))
∣∣ds +

∣∣Ω′
1(t)
∣∣

k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

∣∣f(s, x(s))
∣∣ds

+
∣∣(T − tk)Ω′

1(t) + Ω′
2(t) + 1

∣∣
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣∣f(s, x(s))
∣∣ds

+
∣∣Ω′

1(t)
∣∣
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣∣f(s, x(s))
∣∣ds

+
∣∣Ω′

1(t)
∣∣
∫T

tk

(T − s)α−1
Γ(α)

∣∣f(s, x(s))
∣∣ds +

∣∣Ω′
2(t)
∣∣
∫T

tk

(T − s)α−2
Γ(α − 1)

∣∣f(s, x(s))
∣∣ds,

≤ M1T
α

Γ(α + 1)
Ω∗

1

(
1 + p + 2pα

)
+
M1T

α−1

Γ(α)
(
1 + Ω∗

2
)(
1 + p

)
:= L.

(3.12)

This implies that A is equicontinuous on all the subintervals Jk, k = 0, 1, 2, . . . , p. Therefore,
by the Arzela-Ascoli Theorem, the operator D : PC1(J, R) → PC1(J, R) is completely
continuous.

To conclude the existence of a fixed point of the operator A + D, it remains to show
that the set

ε =
{
x ∈ X : x = λA

(x
λ

)
+ λD(x) for some λ ∈ (0, 1)

}
(3.13)

is bounded.
Let x ∈ ε, for each t ∈ J ,

x(t) = λD(x)(t) + λA
(x
λ

)
(t). (3.14)
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Hence, from (A3), we have

|x(t)| ≤ λ

∫ t

tk

(t − s)α−1
Γ(α)

∣
∣f(s, x(s))

∣
∣ds + λ|1 + Ω1(t)|

k∑

i=1

∫ ti

ti−1

(ti − s)α−1
Γ(α)

∣
∣f(s, x(s))

∣
∣ds

+ λ|(T − tk)Ω1(t) + Ω2(t) + (t − tk)|
k∑

i=1

∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣
∣f(s, x(s))

∣
∣ds

+ λ|1 + Ω1(t)|
k−1∑

i=1

(tk − ti)
∫ ti

ti−1

(ti − s)α−2
Γ(α − 1)

∣
∣f(s, x(s))

∣
∣ds

+ λ|Ω1(t)|
∫T

tk

(T − s)α−1
Γ(α)

∣
∣f(s, x(s))

∣
∣ds + λ|Ω2(t)|

∫T

tk

(T − s)α−2
Γ(α − 1)

∣
∣f(s, x(s))

∣
∣ds

+ λ|1 + Ω1(t)|
[

k∑

i=1

∣∣∣∣∣
Ii

(
x
(
t−i
)

λ

)∣∣∣∣∣
+

∣∣∣∣∣
I∗k

(
x
(
t−
k

)

λ

)∣∣∣∣∣

]

+ λ|Ω1(t)|
k−1∑

i=1

(T − ti)
∣∣∣∣∣
I∗i

(
x
(
t−i
)

λ

)∣∣∣∣∣

+ λ|Ω2(t)|
k−1∑

i=1

∣∣∣∣∣
I∗i

(
x
(
t−i
)

λ

)∣∣∣∣∣
+ λ

k−1∑

i=1

(t − ti)
∣∣∣∣∣
I∗i

(
x
(
t−i
)

λ

)∣∣∣∣∣
,

‖x(t)‖ ≤
[
M1T

α

Γ(α + 1)
(
1 + Ω∗

1

)(
1 + p + 2pα

)
+
M1T

α−1

Γ(α)
Ω∗

2
(
1 + p

)

+
(
1 + Ω∗

1

)(
pM2 +M3

)
+
(
Ω∗

1T + Ω∗
2 + T

)
pM3

]

.

(3.15)

Consequently, we conclude the result of our theorem based on the Burton-Kirk fixed point
theorem.

4. An Example

Consider the following impulsive fractional boundary value problem:

CD
3/2
x(t) =

sin 2t|x(t)|
(t + 5)2(1 + |x(t)|)

, t ∈ [0, 1], t /=
1
3
,

Δx
(
1
3

)
=

|x(1−/3)|
15 + |x(1−/3)| , Δx′

(
1
3

)
=

|x′(1−/3)|
10 + |x′(1−/3)| ,

x(1) = 5x(0) − 2x′(0), x′(1) = x(0) + 4x′(0).

(4.1)
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Here, a = 5, b = −2, c = 1, d = 4, α = 3/2, T = 1, p = 1. Obviously, L1 = 1/25, L2 = 1/15,
L3 = 1/10, Ω∗

1 = 4/15, Ω∗
2 = 7/15. Further,

[
L1T

α

Γ(α + 1)
(
1 + Ω∗

1

)(
1 + p(1 + L2) + 2pα + L3

)
+
L1T

α−1

Γ(α)
Ω∗

2
(
1 + p

)
+
(
Ω∗

1T + Ω∗
2 + T

)
pL3

]

=
464

1125
√
π

+
173
450

< 1.

(4.2)

Since the assumptions of Theorem 3.2 are satisfied, the closed boundary value problem (4.1)
has a unique solution on [0, 1]. Moreover, it is easy to check the conclusion of Theorem 3.3.
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We obtain some new estimates for the error of Simpson integration rule, which develop available
results in the literature. Indeed, we introduce three main estimates for the residue of Simpson
integration rule in L1[a, b] and L∞[a, b] spaces where the compactness of the interval [a, b] plays
a crucial role.

1. Introduction

A general (n + 1)-point-weighted quadrature formula is denoted by

∫b

a

w(x)f(x)dx =
n∑

k=0

wkf(xk) + Rn+1
[
f
]
, (1.1)

where w(x) is a positive weight function on [a, b], {xk}nk=0 and {wk}nk=0 are, respectively,
nodes and weight coefficients, and Rn+1[f] is the corresponding error [1].

LetΠd be the set of algebraic polynomials of degree at most d. The quadrature formula
(1.1) has degree of exactness d if for every p ∈ Πd we have Rn+1[p] = 0. In addition, if
Rn+1[p]/= 0 for some Πd+1, formula (1.1) has precise degree of exactness d.

The convergence order of quadrature rule (1.1) depends on the smoothness of the
function f as well as on its degree of exactness. It is well known that for given n + 1 mutually
different nodes {xk}nk=0 we can always achieve a degree of exactness d = n by interpolating
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at these nodes and integrating the interpolated polynomial instead of f . Namely, taking the
node polynomia

Ψn+1(x) =
n∏

k=0

(x − xk), (1.2)

by integrating the Lagrange interpolation formula

f(x) =
n∑

k=0

f(xk)L(x;xk) + rn+1
(
f ;x
)
, (1.3)

where

L(x;xk) =
Ψn+1(x)

Ψ′
n+1(xk)(x − xk)

(k = 0, 1, . . . , n), (1.4)

we obtain (1.1), with

wk =
1

Ψ′
n+1(xk)

∫b

a

Ψn+1(x)w(x)
x − xk dx (k = 0, 1, . . . , n),

Rn+1
[
f
]
=
∫b

a

rn+1
(
f ;x
)
w(x)dx.

(1.5)

Note that for each f ∈ Πn we have rn+1(f ;x) = 0, and therefore Rn+1[f] = 0.
Quadrature formulae obtained in this way are known as interpolatory. Usually the

simplest interpolatory quadrature formula of type (1.1)with predetermined nodes {xk}nk=0 ∈
[a, b] is called a weighted Newton-Cotes formula. For w(x) = 1 and the equidistant nodes
{xk}nk=0 = {a + kh}nk=0 with h = (b − a)/n, the classical Newton-Cotes formulas are derived.
One of the important cases of the classical Newton-Cotes formulas is the well-known
Simpson’s rule:

∫b

a

f(t)dt =
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
+ E
(
f
)
. (1.6)

In this direction, Simpson inequality [2–7] gives an error bound for the above quadrature
rule. There are few known ways to estimate the residue value in (1.6). The main aim of this
paper is to give three new estimations for E(f) in L1[a, b] and L∞[a, b] spaces.

Let Lp[a, b] (1 ≤ p <∞) denote the space of p-power integrable functions on the inter-
val [a, b]with the standard norm

∥∥f
∥∥
p =

(∫b

a

∣∣f(t)
∣∣pdt

)1/p

, (1.7)

and L∞[a, b] the space of all essentially bounded functions on [a, b]with the norm
∥∥f
∥∥
∞ = ess sup

x∈[a,b]

∣∣f(x)
∣∣. (1.8)
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If f ∈ L1[a, b] and g ∈ L∞[a, b], then the following inequality is well known:

∣
∣
∣
∣
∣

∫b

a

f(x)g(x)dx

∣
∣
∣
∣
∣
≤ ∥∥f∥∥1

∥
∥g
∥
∥
∞. (1.9)

Recently in [8], a main inequality has been introduced, which can estimate the error of
Simpson quadrature rule too.

Theorem A. Let f : I → R, where I is an interval, be a differentiable function in the interior I0of I,
and let [a, b] ⊂ I0. If α0, β0 are two real constants such that α0 ≤ f ′(t) ≤ β0 for all t ∈ [a, b], then for
any λ ∈ [1/2, 1] and all x ∈ [(a + (2λ − 1)b)/2λ, (b + (2λ − 1)a)/2λ] ⊆ [a, b] we have

∣∣∣∣∣
f(x) − 1

λ(b − a)
∫b

a

f(t)dt − f(b) − f(a)
b − a x +

(2λ − 1)a + b
2λ(b − a) f(b) − a + (2λ − 1)b

2λ(b − a) f(a)

∣∣∣∣∣

≤ β0 − α0
4(b − a)

λ2 + (1 − λ)2
λ

(
(x − a)2 + (b − x)2

)
.

(1.10)

As is observed, replacing x = (a + b)/2 and λ = 2/3 in (1.10) gives an error bound for the
Simpson rule as

∣∣∣∣∣

∫b

a

f(t)dt − b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)∣∣∣∣∣
≤ 5

72
(b − a)2(β0 − α0

)
. (1.11)

To introduce three new error bounds for the Simpson quadrature rule in L1[a, b] and L∞[a, b]
spaces we first consider the following kernel on [a, b]:

K(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − 5a + b
6

, t ∈
[
a,
a + b
2

]
,

t − a + 5b
6

, t ∈
(
a + b
2

, b

]
.

(1.12)

After some calculations, it can be directly concluded that

∫b

a

f ′(t)K(t)dt =
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt, (1.13)

max
t∈[a,b]

|K(t)| = 1
3
(b − a). (1.14)
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2. Main Results

Theorem 2.1. Let f : I → R, where I is an interval, be a function differentiable in the interior I0of I,
and let [a, b] ⊂ I0. If α(x) ≤ f ′(x) ≤ β(x) for any α, β ∈ C[a, b] and x ∈ [a, b], then the following
inequality holds:

m1 =
∫ (5a+b)/6

a

(
t − 5a + b

6

)
β(t)dt +

∫ (a+b)/2

(5a+b)/6

(
t − 5a + b

6

)
α(t)dt

+
∫ (a+5b)/6

(a+b)/2

(
t − a + 5b

6

)
β(t)dt +

∫b

(a+5b)/6

(
t − a + 5b

6

)
α(t)dt

≤ b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt ≤

M1 =
∫ (5a+b)/6

a

(
t − 5a + b

6

)
α(t)dt +

∫ (a+b)/2

(5a+b)/6

(
t − 5a + b

6

)
β(t)dt

+
∫ (a+5b)/6

(a+b)/2

(
t − a + 5b

6

)
α(t)dt +

∫b

(a+5b)/6

(
t − a + 5b

6

)
β(t)dt.

(2.1)

Proof. By referring to the kernel (1.12) and identity (1.13)we first have

∫b

a

K(t)
(
f ′(t) − α(t) + β(t)

2

)
dt

=
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt − 1
2

(∫b

a

K(t)
(
α(t) + β(t)

)
dt

)

=
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt

− 1
2

(∫ (a+b)/2

a

(
t − 5a + b

6

)
(
α(t) + β(t)

)
dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
(
α(t) + β(t)

)
dt

)

.

(2.2)

On the other hand, the given assumption α(t) ≤ f ′(t) ≤ β(t) results in

∣∣∣∣f
′(t) − α(t) + β(t)

2

∣∣∣∣ ≤
β(t) − α(t)

2
. (2.3)
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Therefore, one can conclude from (2.2) and (2.3) that

∣
∣
∣
∣
∣
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt

− 1
2

(∫ (a+b)/2

a

(
t − 5a + b

6

)
(
α(t) + β(t)

)
dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
(
α(t) + β(t)

)
dt

)∣∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫b

a

K(t)
(
f ′(t) − α(t) + β(t)

2

)
dt

∣
∣
∣
∣
∣
≤
∫b

a

|K(t)| β(t) − α(t)
2

dt

=
1
2

(∫ (a+b)/2

a

∣
∣
∣
∣ t −

5a + b
6

∣
∣
∣
∣
(
β(t) − α(t))dt +

∫b

(a+b)/2

∣
∣
∣
∣ t −

a + 5b
6

∣
∣
∣
∣
(
β(t) − α(t))dt

)

.

(2.4)

After rearranging (2.4) we obtain

m1 =
∫ (a+b)/2

a

((
t − 5a + b

6
−
∣∣∣∣ t −

5a + b
6

∣∣∣∣

)
β(t)
2

+
(
t − 5a + b

6
+
∣∣∣∣ t −

5a + b
6

∣∣∣∣

)
α(t)
2

)
dt

+
∫b

(a+b)/2

((
t − a + 5b

6
−
∣∣∣∣ t −

a + 5b
6

∣∣∣∣

)
β(t)
2

+
(
t − a + 5b

6
+
∣∣∣∣ t −

a + 5b
6

∣∣∣∣

)
α(t)
2

)
dt

=
∫ (5a+b)/6

a

(
x − 5a + b

6

)
β(x)dx +

∫ (a+b)/2

(5a+b)/6

(
x − 5a + b

6

)
α(x)dx

+
∫ (a+5b)/6

(a+b)/2

(
x − a + 5b

6

)
β(x)dx +

∫b

(a+5b)/6

(
x − a + 5b

6

)
α(x)dx,

M1 =
∫ (a+b)/2

a

((
t − 5a + b

6
−
∣∣∣∣t −

5a + b
6

∣∣∣∣

)
α(t)
2

+
(
t − 5a + b

6
+
∣∣∣∣t −

5a + b
6

∣∣∣∣

)
β(t)
2

)
dt

+
∫b

(a+b)/2

((
t − a + 5b

6
−
∣∣∣∣t −

a + 5b
6

∣∣∣∣

)
α(t)
2

+
(
t − a + 5b

6
+
∣∣∣∣t −

a + 5b
6

∣∣∣∣

)
β(t)
2

)
dt

=
∫ (5a+b)/6

a

(
x − 5a + b

6

)
α(x)dx +

∫ (a+b)/2

(5a+b)/6

(
x − 5a + b

6

)
β(x)dx

+
∫ (a+5b)/6

(a+b)/2

(
x − a + 5b

6

)
α(x)dx +

∫b

(a+5b)/6

(
x − a + 5b

6

)
β(x)dx.

(2.5)

The advantage of Theorem 2.1 is that necessary computations in bounds m1 and M1

are just in terms of the preassigned functions α(t), β(t) (not f ′).
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Special Case 1

Substituting α(x) = α1x + α0 /= 0 and β(x) = β1x + β0 /= 0 in (2.1) gives

∣
∣
∣
∣
∣

∫b

a

f(t)dt − b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)∣∣
∣
∣
∣
≤ 5(b − a)2

144
((
β1 − α1

)
(a + b) + 2

(
β0 − α0

))
.

(2.6)

In particular, replacing α1 = β1 = 0 in above inequality leads to one of the results of [9] as

∣
∣
∣
∣
∣

∫b

a

f(t)dt − b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)∣∣
∣
∣
∣
≤ 5

72
(b − a)2(β0 − α0

)
. (2.7)

Remark 2.2. Although α(x) ≤ f ′(x) ≤ β(x) is a straightforward condition in Theorem 2.1,
however, sometimes one might not be able to easily obtain both bounds of α(x) and β(x) for
f ′. In this case, we can make use of two analogue theorems. The first one would be helpful
when f ′ is unbounded from above and the second one would be helpful when f ′ is unbound-
ed from below.

Theorem 2.3. Let f : I → R, where I is an interval, be a function differentiable in the interior I0 of
I, and let [a, b] ⊂ I0. If α(x) ≤ f ′(x) for any α ∈ C[a, b] and x ∈ [a, b] then

∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt − b − a

3

(

f(b) − f(a) −
∫b

a

α(t)dt

)

≤ b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t) dt

≤
∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt

+
b − a
3

(

f(b) − f(a) −
∫b

a

α(t)dt

)

.

(2.8)

Proof. Since

∫b

a

K(t)
(
f ′(t) − α(t))dt = b − a

6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt −
(∫b

a

K(t)α(t)dt

)

=
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt

)

,

(2.9)
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so we have

∣
∣
∣
∣∣
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

(
t − 5a + b

6

)
α(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
α(t)dt

)∣∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫b

a

K(t)
(
f ′(t) − α(t))dt

∣
∣
∣
∣
∣
≤
∫b

a

|K(t)|(f ′(t) − α(t))dt

≤ max
t∈[a,b]

|K(t)|
∫b

a

(
f ′(t) − α(t))dt = b − a

3

(

f(b) − f(a) −
∫b

a

α(t)dt

)

.

(2.10)

After rearranging (2.10), the main inequality (2.8)will be derived.

Special Case 2

If α(x) = α1x + α0 /= 0, then (2.8) becomes

∣∣∣∣∣

∫b

a

f(t)dt − b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)∣∣∣∣∣
≤ (b − a)2

3

(
f(b) − f(a)

b − a −
(
α0 +

a + b
2

α1

))

(2.11)

if and only if α1x + α0 ≤ f ′(x) for all x ∈ [a, b]. In particular, replacing α1 = 0 in above
inequality leads to [10, Theorem 1, relation (4)] as follows:

∣∣∣∣∣

∫b

a

f(t)dt − b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)∣∣∣∣∣
≤ (b − a)2

3

(
f(b) − f(a)

b − a − α0
)
. (2.12)

Theorem 2.4. Let f : I → R, where I is an interval, be a function differentiable in the interior I0 of
I, and let [a, b] ⊂ I0. If f ′(x) ≤ β(x) for any β ∈ C[a, b] and x ∈ [a, b] then

∫ (a+b)/2

a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt − b − a

3

(∫b

a

β(t)dt − f(b) + f(a)
)

≤ b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt

≤
∫ (a+b)/2

a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt +

b − a
3

(∫b

a

β(t)dt − f(b) + f(a)
)

.

(2.13)
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Proof. Since

∫b

a

K(t)
(
f ′(t) − β(t))dt

=
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt −
(∫b

a

K(t)β(t)dt

)

=
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt

)

,

(2.14)

so we have

∣∣∣∣∣
b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)
−
∫b

a

f(t)dt

−
(∫ (a+b)/2

a

∫

a

(
t − 5a + b

6

)
β(t)dt +

∫b

(a+b)/2

(
t − a + 5b

6

)
β(t)dt

)∣∣∣∣∣

=

∣∣∣∣∣

∫b

a

K(t)
(
f ′(t) − β(t))dt

∣∣∣∣∣
≤
∫b

a

|K(t)|(β(t) − f ′(t)
)
dt

≤ max
t∈[a,b]

|K(t)|
∫b

a

(
β(t) − f ′(t)

)
dt =

b − a
3

(∫ b

a

β(t)dt − f(b) + f(a)
)

.

(2.15)

After rearranging (2.15), the main inequality (2.13) will be derived.

Special Case 3

If β(x) = β1x + β0 /= 0 in (2.13), then

∣∣∣∣∣

∫b

a

f(t) dt − b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

) ∣∣∣∣∣
≤ (b − a)2

3

(
β0 +

a + b
2

β1 −
f(b) − f(a)

b − a
)

(2.16)

if and only if f ′(x) ≤ β1x + β0, for all x ∈ [a, b]. In particular, replacing β1 = 0 in above
inequality leads to [10, Theorem 1, relation (5)] as follows:

∣∣∣∣∣

∫b

a

f(t)dt − b − a
6

(
f(a) + 4f

(
a + b
2

)
+ f(b)

)∣∣∣∣∣
≤ (b − a)2

3

(
β0 −

f(b) − f(a)
b − a

)
. (2.17)
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We establish exact solutions for the Schrödinger-Boussinesq System iut + uxx − auv = 0, vtt − vxx +
vxxxx − b(|u|2)xx = 0, where a and b are real constants. The (G′/G)-expansion method is used to
construct exact periodic and soliton solutions of this equation. Our work is motivated by the fact
that the (G′/G)-expansion method provides not only more general forms of solutions but also
periodic and solitary waves. As a result, hyperbolic function solutions and trigonometric function
solutions with parameters are obtained. These solutions may be important and of significance for
the explanation of some practical physical problems.

1. Introduction

It is well known that the nonlinear Schrödinger (NLS) equation models a wide range
of physical phenomena including self-focusing of optical beams in nonlinear media, the
modulation of monochromatic waves, propagation of Langmuir waves in plasmas, and so
forth. The nonlinear Schrödinger equations play an important role in many areas of applied
physics, such as nonrelativistic quantum mechanics, laser beam propagation, Bose-Einstein
condensates, and so on (see [1]). Some properties of solutions for the nonlinear Schrödinger
equations on R

n have been extensively studied in the last two decades (e.g., see [2]).
The Boussinesq-type equations are essentially a class of models appearing in physics

and fluidmechanics. The so-called Boussinesq equationwas originally derived by Boussinesq
[3] to describe two-dimensional irrotational flows of an inviscid liquid in a uniform
rectangular channel. It also arises in a large range of physical phenomena including the
propagation of ion-sound waves in a plasma and nonlinear lattice waves. The study on the
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soliton solutions for various generalizations of the Boussinesq equation has recently attracted
considerable attention frommanymathematicians and physicists (see [4]). We should remark
that it was the first equation proposed in the literature to describe this kind of physical
phenomena. This equation was also used by Zakharov [5] as a model of nonlinear string
and by Falk et al. [6] in their study of shape-memory alloys.

In the laser and plasma physics, the Schrödinger-Boussinesq system (hereafter referred
to as the SB-system) has been raised. Consider the SB-system

iut + uxx − auv = 0,

vtt − vxx + vxxxx − b
(
|u|2
)

xx
= 0,

(1.1)

where t > 0, x ∈ [0, L], for some L > 0, and a, b are real constants. Here u and v are,
respectively, a complex-valued and a real-valued function defined in space-time [0, L] × R.
The SB-system is considered as a model of interactions between short and intermediate
long waves, which is derived in describing the dynamics of Langmuir soliton formation
and interaction in a plasma [7] and diatomic lattice system [8]. The short wave term
u(x, t) : [0, L] × R → C is described by a Schrödinger type equation with a potential
v(x, t) : [0, L] × R → R satisfying some sort of Boussinesq equation and representing the
intermediate long wave. The SB-system also appears in the study of interaction of solitons
in optics. The solitary wave solutions and integrability of nonlinear SB-system has been
considered by several authors (see [7, 8]) and the references therein.

In the literature, there is a wide variety of approaches to nonlinear problems for
constructing travelling wave solutions, such as the inverse scattering method [9], Bcklund
transformation [10], Hirota bilinear method [11], Painlevé expansion methods [12], and the
Wronskian determinant technique [13].

With the help of the computer software, most of mentionedmethods are improved and
many other algebraic method, proposed, such as the tanh/cothmethod [14], the Exp-function
method [15], and first integral method [16]. But, most of the methods may sometimes fail or
can only lead to a kind of special solution and the solution procedures become very complex
as the degree of nonlinearity increases.

Recently, the (G′/G)-expansion method, firstly introduced by Wang et al. [17], has
become widely used to search for various exact solutions of NLEEs [17–19].

The main idea of this method is that the traveling wave solutions of nonlinear
equations can be expressed by a polynomial in (G′/G), where G = G(ξ) satisfies the second
order linear ordinary differential equation G′′(ξ) + λG′(ξ) + μG(ξ) = 0, where ξ = kx +ωt and
k, ω are arbitrary constants. The degree of this polynomial can be determined by considering
the homogeneous balance between the highest order derivatives and the non-linear terms
appearing in the given non-linear equations.

Our first interest in the present work is in implementing the (G′/G)-expansionmethod
to stress its power in handling nonlinear equations, so that one can apply it to models of
various types of nonlinearity. The next interest is in the determination of exact traveling wave
solutions for the SB-system (1.1).
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2. Description of the (G′/G)-Expansion Method

The objective of this section is to outline the use of the (G′/G)-expansion method for solving
certain nonlinear partial differential equations (PDEs). Suppose that a nonlinear equation,
say in two independent variables x and t, is given by

P(u, ux, ut, uxx, ux,t, utt, . . .) = 0, (2.1)

where u(x, t) is an unknown function, P is a polynomial in u(x, t) and its various partial
derivatives, in which the highest order derivatives and nonlinear terms are involved. The
main steps of the (G′/G)-expansion method are the following:

Step 1. Combining the independent variables x and t into one variable ξ = kx+ωt, we suppose
that

u(x, t) = U(ξ), ξ = kx +ωt. (2.2)

The travelling wave variable (2.2) permits us to reduce (2.1) to an ODE for u(x, t) = U(ξ),
namely,

P
(
U, kU′, ωU′, k2U′′, kωU′′, ω2U′′, . . .

)
= 0, (2.3)

where prime denotes derivative with respect to ξ.

Step 2. We assume that the solution of (2.3) can be expressed by a polynomial in (G′/G) as
follows:

U(ξ) =
m∑

i=1

αi

(
G′

G

)i
+ α0, αm /= 0, (2.4)

where m is called the balance number, α0, and αi, are constants to be determined later, G(ξ)
satisfies a second order linear ordinary differential equation (LODE):

d2G(ξ)
dξ2

+ λ
dG(ξ)
dξ

+ μG(ξ) = 0, (2.5)

where λ and μ are arbitrary constants. The positive integer m can be determined by
considering the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in ODE (2.3).

Step 3. By substituting (2.4) into (2.3) and using the second order linear ODE (2.5), collecting
all terms with the same order of (G′/G) together, the left-hand side of (2.3) is converted into
another polynomial in (G′/G). Equating each coefficient of this polynomial to zero yields a
set of algebraic equations for k,ω, λ, μ, α0, α1, . . . , αm.
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Step 4. Assuming that the constants k,ω, λ, μ, α0, α1, ..., αm can be obtained by solving the
algebraic equations in Step 3, since the general solutions of the second order linear ODE (2.5)
is well known for us, then substituting k,ω, λ, μ, α0, ..., αm and the general solutions of (2.5)
into (2.4)we have more travelling wave solutions of the nonlinear evolution (2.1).

In the subsequent section, we will illustrate the validity and reliability of this method
in detail with complex model of Schrödinger-Boussinesq System (1.1).

3. Application

To look for the traveling wave solution of the Schrödinger-Boussinesq System (1.1), we use
the gauge transformation:

u(x, t) = U(ξ)eiη,

v(x, t) = V (ξ),
(3.1)

where ξ = kx +ωt, η = px + qt, and p, q, ω are constants and i =
√−1. We substitute (3.1) into

(1.1) to obtain nonlinear ordinary differential equation

k2U′′ − i(2kp +ω)U′ − aUV −
(
p2 + q

)
U = 0, (3.2)

(
ω2 − k2

)
V ′′ + k4V (4) − bk2

(
U2
)′′

= 0. (3.3)

In order to simplify, integrating (3.3) twice and taking integration constant to zero, the system
(3.2)-(3.3) reduces to the following system:

k2U′′ − i(2kp +ω)U′ − aUV −
(
p2 + q

)
U = 0,

(
ω2 − k2

)
V + k4V ′′ − bk2U2 = 0.

(3.4)

Suppose that the solution of the nonlinear ordinary differential system (3.4) can be expressed
by a polynomial in (G′/G) as follows:

U(ξ) =
m∑

i=1

αi

(
G′

G

)i
+ α0, αm /= 0,

V (ξ) =
n∑

i=1

βi

(
G′

G

)i
+ β0, βn /= 0,

(3.5)

where m, n are called the balance number, αi, (i = 0, 1, . . . , m) and βj , (j = 0, 1, . . . , n) are
constants to be determined later, G(ξ) satisfies a second order linear ordinary differential
equation (2.5). The integersm, n can be determined by considering the homogeneous balance
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between the highest order derivatives and nonlinear terms appearing in nonlinear ordinary
differential system (3.4) as follow:

m + n = m + 2,

2m = n + 2,
(3.6)

so thatm = n = 2. We then suppose that (3.4) has the following formal solutions:

U(ξ) = α2
(
G′

G

)2

+ α1
(
G′

G

)
+ α0, α2 /= 0,

V (ξ) = β2
(
G′

G

)2

+ β1
(
G′

G

)
+ β0, β2 /= 0.

(3.7)

Substituting (3.7) along with (2.5) into (3.4) and collecting all the terms with the same power
of (G′/G) together, equating each coefficient to zero, yields a set of simultaneous algebraic
equations for k, ω, λ, μ, αj , and βj , (j = 0, 1, 2), as follows:

2k2α2μ2 + iωα1μ + k2α1λμ − aα0β0 − p2α0 − qα0 + 2ikpα1μ = 0,

ω2β0 + 2k4β2μ2 − k2
(
−μλβ1k2 + bα02 + β0

)
= 0,

k2α1λ
2 − p2α1 +

(
4ikα2μ + 2ikα1λ

)
p +
(
2iα2μ + iα1λ

)
ω − qα1

− aα0β1 + 2k2α1μ − aα1β0 + 6k2α2λμ = 0,

ω2β1 + 6k4β2λμ − k2
(
−k2λ2β1 − 2k2μβ1 + β1 + 2bα1α0

)
= 0,

(4ikα2λ + 2ikα1)p + (2iα2λ + iα1)ω − p2α2 +
(
4λ2k2 − q − aβ0 + 8μk2

)
α2

+ 3k2α1λ − aα1β1 − aα0β2 = 0,

ω2β2 + k2
(
4λ2k2 + 8μk2 − 1

)
β2 − k2

(
2bα2α0 + bα12 − 3λβ1k2

)
= 0,

4ikpα2 + 2iωα2 +
(
10λk2 − aβ1

)
α2 − α1

(
−2k2 + aβ2

)
= 0,

10k4β2λ − 2k2
(
−k2β1 + bα2α1

)
= 0,

(
6k2 − aβ2

)
α2 = 0,

6k4β2 − bk2α22 = 0.

(3.8)

Then, explicit and exact wave solutions can be constructed through our ansatz (3.7) via the
associated solutions of (2.5).

In the process of constructing exact solutions to the Schrödinger-Boussinesq system
(1.1), (2.5) is often viewed as a key auxiliary equation, and the types of its solutions determine
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the solutions for the original system (1.1) indirectly. In order to seek more new solutions to
(1.1), we here combine the solutions to (2.5) which were listed in [18, 19]. Our computation
results show that this combination is an efficient way to obtain more diverse families of
explicit exact solutions.

Solving (3.8) by use of Maple, we get the following reliable results:

{

λ = ±1
3

√
3ω2 − 3k2

k2
, μ =

1
6
k2 −ω2

k4
, p = −1

2
ω

k
,

q =
1
24

24k4 + 30ω4 − 54k2ω2

k2(k2 −ω2)
, α0 = 0,

α1 = ±2
√

1
ab

√
3ω2 − 3k2, α2 = 6k2

√
1
ab
,

β0 = 0, β1 = ±2
√
3ω2 − 3k2

a
, β2 =

6k2

a

}

,

(3.9)

where k and ω are free constant parameters and k /= ±ω. Therefore, substitute the above case
in (3.7), we get

U(ξ) = 6k2
√

1
ab

(
G′

G

)2

± 2

√
1
ab

√
3ω2 − 3k2

(
G′

G

)
,

V (ξ) =
6k2

a

(
G′

G

)2

± 2

√
3ω2 − 3k2

a

(
G′

G

)
.

(3.10)

Substituting the general solutions of ordinary differential equation (2.5) into (3.10), we obtain
two types of traveling wave solutions of (1.1) in view of the positive and negative of λ2 − 4μ.

WhenD = λ2−4μ = (ω2−k2)/k4 > 0, using the general solutions of ordinary differential
equation (2.5) and relationships (3.10), we obtain hyperbolic function solutions uH(x, t) and
vH(x, t) of the Schrödinger-Boussinesq system (1.1) as follows:

uH(x, t) = 2

√
1
ab

⎡

⎢
⎣3k2

⎛

⎜
⎝

√
D
2

⎛

⎜
⎝
C1 sinh

((√
D/2

)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞

⎟
⎠

∓1
6

√
3ω2 − 3k2

k2

⎞

⎟
⎠

2
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±
√
3ω2 − 3k2

⎛

⎜
⎝

√
D
2

⎛

⎜
⎝
C1 sinh

((√
D/2

)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞

⎟
⎠

∓1
6

√
3ω2 − 3k2

k2

⎞

⎟
⎠

⎤

⎥
⎦eiη,

vH(x, t) =
6k2

a

⎛

⎜
⎝

√
D
2

⎛

⎜
⎝
C1 sinh

((√
D/2

)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞

⎟
⎠ ∓ 1

6

√
3ω2 − 3k2

k2

⎞

⎟
⎠

2

± 2

√
3ω2 − 3k2

a

⎛

⎜
⎝

√
D
2

⎛

⎜
⎝
C1 sinh

((√
D/2

)
ξ
)
+ C2 cosh

((√
D/2

)
ξ
)

C1 cosh
((√

D/2
)
ξ
)
+ C2 sinh

((√
D/2

)
ξ
)

⎞

⎟
⎠

∓1
6

√
3ω2 − 3k2

k2

⎞

⎟
⎠,

(3.11)

where D = (ω2 − k2)/k4 > 0, ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 −
54k2ω2)/k2(k2 −ω2))t, and k,ω,C1, and C2 are arbitrary constants and k /= ±ω.

It is easy to see that the hyperbolic solutions (3.11) can be rewritten at C2
1 > C2

2, as
follows:

uH(x, t) =
1
2

√
1
ab

ω2 − k2
k2

⎛

⎝3tanh2

⎛

⎝1
2

√
ω2 − k2
k4

ξ + ρH

⎞

⎠ − 1

⎞

⎠eiη, (3.12a)

vH(x, t) =
1
2
ω2 − k2
ak2

⎛

⎝3tanh2

⎛

⎝1
2

√
ω2 − k2
k4

ξ + ρH

⎞

⎠ − 1

⎞

⎠, (3.12b)

while at C2
1 < C

2
2, one can obtain

uH(x, t) =
1
2

√
1
ab

ω2 − k2
k2

⎛

⎝3coth2

⎛

⎝1
2

√
ω2 − k2
k4

ξ + ρH

⎞

⎠ − 1

⎞

⎠eiη, (3.12c)

vH(x, t) =
1
2
ω2 − k2
ak2

⎛

⎝3coth2

⎛

⎝1
2

√
ω2 − k2
k4

ξ + ρH

⎞

⎠ − 1

⎞

⎠, (3.12d)

where ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 − 54k2ω2)/k2(k2 − ω2))t, ρH =
tanh−1(C1/C2), and k,ω are arbitrary constants.
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Now, whenD = λ2 −4μ = (ω2 −k2)/k4 < 0, we obtain trigonometric function solutions
uT and vT of Schrödinger-Boussinesq system (1.1) as follows:

uT(x, t) = 2

√
1
ab

⎡

⎢
⎣3k2

⎛

⎜
⎝

√
−D
2

⎛

⎜
⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
−D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞

⎟
⎠

∓1
6

√
3ω2 − 3k2

k2

⎞

⎟
⎠

2

±
√
3ω2 − 3k2

⎛

⎜
⎝

√
−D
2

⎛

⎜
⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞

⎟
⎠

∓1
6

√
3ω2 − 3k2

k2

⎞

⎟
⎠

⎤

⎥
⎦eiη,

vT(x, t) =
6k2

a

⎛

⎜
⎝

√
−D
2

⎛

⎜
⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
−D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞

⎟
⎠ ∓ 1

6

√
3ω2 − 3k2

k2

⎞

⎟
⎠

2

± 2

√
3ω2 − 3k2

a

⎛

⎜
⎝

√
−D
2

⎛

⎜
⎝

−C1 sin
((√

−D/2
)
ξ
)
+ C2 cos

((√
−D/2

)
ξ
)

C1 cos
((√

−D/2
)
ξ
)
+ C2 sin

((√
−D/2

)
ξ
)

⎞

⎟
⎠

∓1
6

√
3ω2 − 3k2

k2

⎞

⎟
⎠,

(3.13)

where D = (ω2 − k2)/k4 < 0, ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 −
54k2ω2)/k2(k2 − ω2))t, and k, ω, C1, and C2 are arbitrary constants and k /= ± ω. Similarity,
the trigonometric solutions (3.13) can be rewritten at C2

1 > C
2
2, and C

2
1 < C

2
2, as follows:

uT(x, t) =
1
2

√
1
ab

k2 −ω2

k2

⎛

⎝3tan2

⎛

⎝1
2

√
k2 −ω2

k4
ξ + ρT

⎞

⎠ + 1

⎞

⎠eiη, (3.14a)

vT(x, t) =
1
2
k2 −ω2

ak2

⎛

⎝3tan2

⎛

⎝1
2

√
k2 −ω2

k4
ξ + ρT

⎞

⎠ + 1

⎞

⎠, (3.14b)
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t
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0

−0.5
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−4 −4
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0

2
4

Figure 1: Soliton solution |uH(x, t)| of the Schrödinger-Boussinesq system, (3.12a), for α = 1, β = 16, k =
1, ω = −2, and ρH = tanh−1(1/4).
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0.6

0.8

t
x

4
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0
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−4 −4
−2

0
2

4

|u H
|2

Figure 2: Soliton solution |uH(x, t)|2 of the Schrödinger-Boussinesq system, (3.12a), for α = 1, β = 16, k =
1, ω = −2, and ρH = tanh−1(1/4).

uT(x, t) =
1
2

√
1
ab

k2 −ω2

k2

⎛

⎝3cot2
⎛

⎝1
2

√
k2 −ω2

k4
ξ + ρT

⎞

⎠ + 1

⎞

⎠eiη, (3.14c)

vT(x, t) =
1
2
k2 −ω2

ak2

⎛

⎝3cot2
⎛

⎝1
2

√
k2 −ω2

k4
ξ + ρT

⎞

⎠ + 1

⎞

⎠, (3.14d)

where ξ = kx + ωt, η = −(1/2)(ωx/k) + (1/24)((24k4 + 30ω4 − 54k2ω2)/k2(k2 − ω2))t, ρT =
tan−1(C1/C2), and k, ω are arbitrary constants.
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Figure 3: Soliton solution |vH(x, t)| of the Schrödinger-Boussinesq system, (3.12b), for α = 1, β = 16, k =
1, ω = −2, and ρH = tanh−1(1/4).

4. Conclusions

This study shows that the (G′/G)-expansion method is quite efficient and practically well
suited for use in finding exact solutions for the Schrödinger-Boussinesq system. With the
aid of Maple, we have assured the correctness of the obtained solutions by putting them back
into the original equation. To illustrate the obtained solutions, the hyperbolic type of obtained
solutions, (3.12a) and (3.12b), are attached as Figures 1, 2, and 3. We hope that they will be
useful for further studies in applied sciences.
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[3] J. Boussinesq, “Théorie des ondes et des remous qui se propagent le long dun canal rectangulaire
horizontal, en communiquant au liquide continu dans 21 ce canal des vitesses sensiblement pareilles
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Using Mönch fixed point theorem, this paper proves the existence and controllability of mild solu-
tions for nonlinear mixed type integrodifferential functional evolution equations with nonlocal
conditions in Banach spaces, some restricted conditions on a priori estimation andmeasure of non-
compactness estimation have been deleted, our results extend and improve many known results.
As an application, we have given a controllability result of the system.

1. Introduction

This paper related to the existence and controllability of mild solutions for the following non-
linear mixed type integrodifferential functional evolution equations with nonlocal conditions
in Banach space X:

x′(t) = A(t)x(t) + f

(

t, xt,

∫ t

0
K(t, s, xs)ds,

∫b

0
H(t, s, xs)ds

)

, t ∈ J,

x0 = φ + g(x), t ∈ [−q, 0],
(1.1)

where q > 0, J = [0, b], A(t) is closed linear operator on X with a dense domain D(A) which
is independent of t, x0 ∈ X, and xt : [−q, 0] → X defined by xt(θ) = x(t+θ) for θ ∈ [−q, 0] and
x ∈ C(J,X), f : J ×C([−q, 0], X)×X ×X → X,K : Δ×C([−q, 0], X) → X, Δ = {(t, s) ∈ J × J :
s ≤ t}, H : J × J × C([−q, 0], X) → X, g : C([0, b], X) → C([−q, 0], X), φ : [−q, 0] → X are
given functions.
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For the existence and controllability of solutions of nonlinear integrodifferential func-
tional evolution equations in abstract spaces, there are many research results, see [1–13] and
their references. However, in order to obtain existence and controllability of mild solutions in
these study papers, usually, some restricted conditions on a priori estimation and compact-
ness conditions of evolution operator are used. Recently, Xu [6] studied existence of mild
solutions of the following nonlinear integrodifferential evolution systemwith equicontinuous
semigroup:

(Ex(t))′ +Ax(t) = f

(

t, x(σ1(t)),
∫ t

0
k(t, s)h(s, x(σ2(s))ds)

)

, t ∈ [0, b],

x(0) + g(x) = x0.

(1.2)

Some restricted conditions on a priori estimation andmeasure of noncompactness estimation:

(
1 − αβMc

)
N

αβM(d + ‖x0‖) + αM‖θ1‖L1Ω1(N +K‖θ2‖L1Ω2(N))
> 1,

2α‖θ1‖L1M(1 + 2K‖θ2‖L1) < 1

(1.3)

are used, and some similar restricted conditions are used in [14, 15]. But estimations (3.15)
and (3.21) in [15] seem to be incorrect. Since spectral radius σ(B) = 0 of linear Volterra
integral operator (Bx)(t) =

∫ t
0 k(t, s)x(s)ds, in order to obtain the existence of solutions for

nonlinear Volterra integrodifferential equations in abstract spaces by using fixed point theory,
usually, some restricted conditions on a priori estimation and measure of noncompactness
estimation will not be used even if the infinitesimal generator A = 0.

In this paper, using Mönch fixed point theorem, we investigate the existence and con-
trollability of mild solution of nonlinear Volterra-Fredholm integrodifferential system (1.1),
some restricted conditions on a priori estimation and measure of noncompactness estima-
tion have been deleted, our results extend and improve the corresponding results in papers
[2–20].

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space and let C([a, b], X) be a Banach space of all continuous
X-valued functions defined on [a, b]with norm ‖x‖[a,b] = supt∈[a,b]‖x(t)‖ for x ∈ C([a, b], X).
B(X) denotes the Banach space of bounded linear operators from X into itself.

Definition 2.1. The family of linear bounded operators {R(t, s) : 0 ≤ s ≤ t < +∞} on X is said
an evolution system, if the following properties are satisfied:

(i) R(t, t) = I, where I is the identity operator in X;

(ii) R(t, s)R(s, τ) = R(t, τ) for 0 ≤ s ≤ t < +∞;

(iii) R(t, s) ∈ B(X) the space of bounded linear operator on X, where for every (t, s) ∈
{(t, s) : 0 ≤ s ≤ t < +∞} and for each x ∈ X, the mapping (t, s) → R(t, s)x is contin-
uous.
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The evolution system R(t, s) is said to be equicontinuous if for all bounded set Q ⊂ X,
{s → R(t, s)x : x ∈ Q} is equicontinuous for t > 0. x ∈ C([−q, b], X) is said to be a mild solu-
tion of the nonlocal problem (1.1), if x(t) = φ(t) + g(x)(t) for t ∈ [−q, 0], and, for t ∈ J , it satis-
fies the following integral equation:

x(t) = R(t, 0)
[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)f

(

s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)

ds.

(2.1)

The following lemma is obvious.

Lemma 2.2. Let the evolution system R(t, s) be equicontinuous. If there exists a ρ ∈ L1[J,R+] such
that ‖x(t)‖ ≤ ρ(t) for a.e. t ∈ J , then the set {∫ t0 R(t, s)x(s)ds} is equicontinuous.

Lemma 2.3 (see [21]). Let V = {xn} ⊂ L1([a, b], X). If there exists σ ∈ L1([a, b],R+) such that
‖xn(t)‖ ≤ σ(t) for any xn ∈ V and a.e. t ∈ [a, b], then α(V (t)) ∈ L1([a, b],R+) and

α

({∫ t

0
xn(s)ds : n ∈ N

})

≤ 2
∫ t

0
α(V (s))ds, t ∈ [a, b]. (2.2)

Lemma 2.4 (see [22]). Let V ⊂ C([a, b], X) be an equicontinuous bounded subset. Then α(V (t)) ∈
C([a, b],R+) (R+ = [0,∞)), α(V ) = maxt∈[a,b]α(V (t)).

Lemma 2.5 (see [23]). LetX be a Banach space,Ω a closed convex subset inX, and y0 ∈ Ω. Suppose
that the operator F : Ω → Ω is continuous and has the following property:

V ⊂ Ω countable, V ⊂ co
({
y0
} ∪ F(V )

)
=⇒ V is relatively compact. (2.3)

Then F has a fixed point in Ω.

Let V (t) = {x(t) : x ∈ C([−q, b], X)} ⊂ X (t ∈ J), Vt = {xt : x ∈ C([−q, b], X)} ⊂
C([−q, 0], X), α(·) and αC(·) denote the Kuratowski measure of noncompactness in X and
C([−q, b], X), respectively. For details on properties of noncompact measure, see [22].

3. Existence Result

We make the following hypotheses for convenience.

(H1) g : C([0, b], X) → C([−q, 0], X) is continuous, compact and there exists a constant
N such that ‖g(x)‖[−q,0] ≤N.

(H2) (1)f : J × C([−q, 0], X) × X × X → X satisfies the Carathodory conditions, that is,
f(·, x, y, z) is measurable for each x ∈ C([−q, b], X), y, z ∈ X, f(t, ·, ·, ·) is continuous
for a.e. t ∈ J .
(2) There is a bounded measure function p : J → R

+ such that

∥∥f
(
t, x, y, z

)∥∥ ≤ p(t)
(
‖x‖[−q,0] +

∥∥y
∥∥ + ‖z‖

)
, a.e. t ∈ J, x ∈ C([−q, 0], X), y, z ∈ X. (3.1)
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(H3) (1) For each x ∈ C([−q, 0], X), K(·, ·, x),H(·, ·, x) : J × J → X are measurable and
K(t, s, ·),H(t, s, ·) : C([−q, 0], X) → X is continuous for a.e. t, s ∈ J .
(2) For each t ∈ (0, b], there are nonnegative measure functions k(t, ·), h(t, ·) on [0, b]
such that

‖K(t, s, x)‖ ≤ k(t, s)‖x‖[−q,0], (t, s) ∈ Δ, x ∈ C([−q, 0], X),

‖H(t, s, x)‖ ≤ h(t, s)‖x‖[−q,0], t, s ∈ J, x ∈ C([−q, 0], X),
(3.2)

and
∫ t
0 k(t, s)ds,

∫b
0 h(t, s)ds are bounded on [0, b].

(H4) For any bounded set V1 ⊂ C([−q, 0], X), V2, V3 ⊂ X, there is bounded measure
function li ∈ C[J,R+] (i = 1, 2, 3) such that

α
(
f(t, V1, V2, V3) ≤ l1(t) sup

−q≤θ≤0
α(V1(θ)) + l2(t)α(V2) + l3(t)α(V3), a.e. t ∈ J,

α

(∫ t

0
K(t, s, V1)ds

)

≤ k(t, s) sup
−q≤θ≤0

α(V1(θ)), t ∈ J,

α

(∫b

0
H(t, s, V1)ds

)

≤ h(t, s) sup
−q≤θ≤0

α(V1(θ)), t ∈ J.

(3.3)

(H5) The resolvent operator R(t, s) is equicontinuous and there are positive numbers
M ≥ 1 and

w = max
{
Mp0(1 + k0 + h0) + 1, 2M

(
l01 + 2l02k0 + 2l03h0

)
+ 1
}
, (3.4)

such that ‖R(t, s)‖ ≤ Me−w(t−s), 0 ≤ s ≤ t ≤ b, where k0 = sup(t,s)∈Δ
∫ t
0 k(t, s)ds, h0 =

supt,s∈J
∫b
0 h(t, s)ds, p0 = supt∈Jp(t), l

0
i = supt∈J li(t) (i = 1, 2, 3).

Theorem 3.1. Let conditions (H1)–(H5) be satisfied. Then the nonlocal problem (1.1) has at least one
mild solution.

Proof. Define an operator F : C([−q, b], X) → C([−q, b], X) by

(Fx)(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t∈[−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]

+
∫ t

0
R(t, s)f

(

s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)

ds, t ∈ [0, b].

(3.5)
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We have by (H1)–(H3) and (H5),

‖(Fx)(t)‖ ≤ ∥∥φ∥∥[−q,0] +N ≤M
(∥
∥φ
∥
∥
[−q,0] +N

)
=: L, t ∈ [−q, 0],

‖(Fx)(t)‖ ≤ L +M
∫ t

0
ew(s−t)

∥
∥
∥
∥
∥
f

(

s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)∥∥
∥
∥
∥
ds

≤ L +M
∫ t

0
ew(s−t)p(s)

(

‖xs‖[−q,0] +
∫s

0
‖K(s, r, xr)‖dr +

∫b

0
‖H(s, r, xr)‖dr

)

ds

≤ L +Mp0

∫ t

0
ew(s−t)

(

‖xs‖[−q,0] +
∫ s

0
k(s, r)‖xr‖[−q,0]dr +

∫b

0
h(s, r)‖xr‖[−q,0]dr

)

ds

≤ L +Mp0(1 + k0 + h0)w−1‖x‖[−q,b], t ∈ [0, b].
(3.6)

Consequently,

‖(Fx)(t)‖ ≤ L +Mp0(1 + k0 + h0)w−1‖x‖[−q,b] = L + η‖x‖[−q,b], t ∈ [−q, b], (3.7)

where 0 < η =Mp0(1 + k0 + h0)w−1 < 1. Taking R > L(1 − η)−1, let

BR =
{
x ∈ C([−q, b], X) : ‖x‖[−q,b] ≤ R

}
. (3.8)

Then BR is a closed convex subset in C([−q, b], X), 0 ∈ BR and F : BR → BR. Similar to the
proof in [14, 24], it is easy to verify that F is a continuous operator from BR into BR. For
x ∈ BR, s ∈ [0, b], (H2) and (H3) imply

∥∥∥∥∥
f

(

s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)∥∥∥∥∥
≤ p(s)(1 + k0 + h0)R. (3.9)

We can show that from (H5), (3.9) and Lemma 2.2 that F(BR) is an equicontinuous in
C([−q, b], X).

Let V ⊂ BR be a countable set and

V ⊂ co({0} ∪ (FV )). (3.10)
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From equicontinuity of F(BR) and (3.10), we know that V is an equicontinuous subset in
C([−q, b], X). By (H1), it is easy to see that α((FV )(t)) = 0, t ∈ [−q, 0]. By properties of non-
compact measure, (H4) and Lemma 2.3, we have

α((FV )(t)) ≤ 2
∫ t

0
‖R(t − s)‖α

(

f

(

s, Vs,

∫ s

0
K(s, r, Vr)dr,

∫b

0
H(s, r, Vr)dr

))

ds

≤ 2M
∫ t

0
ew(s−t)

[

l1(s) sup
−q≤θ≤0

α(Vs(θ)) + l2(s)α
(∫s

0
K(s, r, Vr)dr

)

+l3(s)α

(∫b

0
H(s, r, Vr)dr

)]

ds

≤ 2M
∫ t

0
ew(s−t)

[

l01 sup
−q≤θ≤0

α(V (s + θ)) + 2l02

∫ s

0
k(s, r) sup

−q≤θ≤0
α(V (r + θ))dr

+2l03

∫b

0
h(s, r) sup

−q≤θ≤0
α(V (r + θ))dr

]

ds

≤ 2M
(
l01 + 2l02k0 + 2l03h0

)∫ t

0
ew(s−t)ds sup

−q≤τ≤b
α(V (τ))

≤ 2M
(
l01 + 2l02k0 + 2l03h0

)
w−1α C(V ), t ∈ [0, b].

(3.11)

Consequently,

αC(FV ) = sup
−q≤t≤b

α((FV )(t)) ≤ 2M
(
l01 + 2l02k0 + 2l03h0

)
w−1αC(V ). (3.12)

Equations (3.10), (3.12), and Lemma 2.4 imply

αC(V ) ≤ αC(FV ) ≤ δαC(V ), (3.13)

where δ = 2M(l01 + 2l02k0 + 2l03h0)w
−1 < 1. Hence αC(V ) = 0 and V is relative compact in

C([−q, b], X). Lemma 2.5 implies that F has a fixed point in C([−q, b], X), then the system
(1.1), (1.2) has at least one mild solution. The proof is completed.

4. An Example

In this section, we give an example to illustrate Theorem 3.1.
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Let X = L2([0, π],R). Consider the following functional integrodifferential equation
with nonlocal condition:

ut
(
t, y
)
= a1

(
t, y
)
uyy
(
t, y
)

+ a2(t)

[

sinu
(
t + θ, y

)
ds +

∫ t

0

∫s

−q
a3(s + τ)

u
(
τ, y
)
dτds

(1 + t)
+
∫b

0

u
(
s + θ, y

)
ds

(1 + t)(1 + s)2

]

,

0 ≤ t ≤ b,

u
(
t, y
)
= φ
(
t, y
)
+
∫π

0

∫b

0
F
(
r, y
)
log
(
1 + |u(r, s)|1/2

)
dr ds, −q ≤ t ≤ 0, 0 ≤ y ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ b,
(4.1)

where functions a1(t, y) is continuous on [0, b] × [0, π] and uniformly Hölder continuous in
t, a2(t) is bounded measure on [0, b], φ : [−q, 0] × [0, π], a3 : [−q, b], and F : [0, b] × [0, π] are
continuous, respectively. Taking u(t, y) = u(t)(y), φ(t, y) = φ(t)(y),

f

(

t, ut,

∫ t

0
K(t, s, us)ds,

∫b

0
H(t, s, us)ds

)
(
y
)

= a2(t)

[

sinu
(
t + θ, y

)
+
∫ t

0

∫s

−q
a3(s + τ)

u
(
τ, y
)
dτds

(1 + t)
+
∫b

0

u
(
s + θ, y

)
ds

(1 + t)(1 + s)2

]

,

K(t, s, us)
(
y
)
=
∫s

−q
a3(s + τ)

u
(
τ, y
)
dτ

(1 + t)
, H(t, s, us)

(
y
)
=

u
(
s + θ, y

)

(1 + t)(1 + s)2
,

g(u)
(
y
)
=
∫π

0

∫b

0
F
(
r, y
)
log
(
1 + |u(r, s)|1/2

)
dr ds.

(4.2)

The operator A defined by A(t)w = a1(t, y)w′′ with the domain

D(A) =
{
w ∈ X : w,w′ are absolutely continuous, w′′ ∈ X, w(0) = w(π) = 0

}
. (4.3)

Then A(t) generates an evolution system, and R(t, s) can be deduced from the evolution sys-
tems so that R(t, s) is equicontinuous and ‖R(t, s)‖ ≤ Meβ(t−s) for some constants M and β
(see [24, 25]). The system (4.1) can be regarded as a form of the system (1.1), (1.2). We have
by (4.2)

∥∥f(t, u, v, z)
∥∥ ≤ |a2(t)|

(
‖u‖[−q,0] + ‖v‖ + ‖z‖

)
,

‖K(t, s, u)‖ ≤
∫s

−q
|a3(s + τ)|dτ

‖u‖[−q,0]
(1 + t)

, ‖H(t, s, u)‖ ≤
‖u‖[−q,0]

(1 + t)(1 + s)

(4.4)
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for u ∈ C([−q, 0], X), v, z ∈ X,

∥
∥g(u)

∥
∥
[−q,0] ≤ bπ max

(r,y)∈[0,b]×[0,π]

∣
∣F
(
r, y
)∣∣
(
‖u‖[0,b] +

√
π
)
, (4.5)

and g : C([0, b], X) → C([−q, b], X) is continuous and compact (see the example in [7]).
w > 0 andM ≥ 1 can be chosen such that ‖R(t, s)‖ ≤ Mew(t−s), 0 ≤ s ≤ t ≤ b. In addition, for
any bounded set V1 ⊂ C([−q, 0], X), V2, V3 ⊂ X, we can show that by the diagonal method

α
(
f(t, V1, V2, V3)

) ≤ |a2(t)|
(

sup
−q≤θ≤0

α(V1(θ)) + α(V2) + α(V3)

)

, t ∈ J,

α(K(t, s, V1)) ≤ 1
1 + t

sup
−q≤θ≤0

α(V1(θ)), t, s ∈ Δ,

α(H(t, s, V1)) ≤ 1

(1 + t)(1 + s)2
sup

−q≤θ≤0
α(V1(θ)), t, s ∈ [0, b].

(4.6)

It is easy to verify that all conditions of Theorem 3.1 are satisfied, so the system (5.1) has at
least one mild solution.

5. An Application

As an application of Theorem 3.1, we shall consider the following system with control para-
meter:

x′(t) = A(t)x(t) + f

(

t, xt,

∫ t

0
K(t, s, xs)ds,

∫b

0
H(t, s, xs)ds

)

, t ∈ J,

x0 = φ + g(x), t ∈ [−q, 0],
(5.1)

where C is a bounded linear operator from a Banach spaceU to X and v ∈ L2(J,U). Then the
mild solution of systems (5.1) is given by

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t ∈ [−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)(Cv)(s)ds

+
∫ t

0
R(t, s)f

(

s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)

ds, t ∈ [0, b],

(5.2)

where the resolvent operator R(t, s) ∈ B(X), f,K,H, g, and φ satisfy the conditions stated in
Section 3.

Definition 5.1. The system (5.2) is said to be controllable on J = [0, b], if for every initial func-
tion φ ∈ C([−q, 0], X) and x1 ∈ X there is a control v ∈ L2(J,U) such that the mild solution
x(t) of the system (5.1) satisfies x(b) = x1.
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To obtain the controllability result, we need the following additional hypotheses.

(H′
5) The resolvent operator R(t, s) is equicontinuous and ‖R(t, s)‖ ≤ Me−w(t−s), 0 ≤ s ≤
t ≤ b, forM ≥ 1 and positive number

w = max
{
Mp0(1 + k0 + h0)(1 +MM1b) + 1, 2M

(
l01 + 2l02k0 + 2l03h0

)
(1 +MM1b) + 1

}
, (5.3)

where k0, h0, p0, l0i (i = 1, 2, 3) are as before.

(H6) The linear operatorW from L2(J,U) into X, defined by

Wv =
∫b

0
R(b, s)(Cv)(s)ds, (5.4)

has an inverse operatorW−1, which takes values in L2(J,U)/kerW and there exists a positive
constantM1 such that ‖CW−1‖ ≤M1.

Theorem 5.2. Let the conditions (H1)–(H4), (H′
5) and (H6) be satisfied. Then the nonlocal problem

(1.1), (1.2) is controllable.

Proof. Using hypothesis (H6), for an arbitrary x(·), define the control

v(t) =W−1
(

x1 − R(b, 0)
[
φ(0) + g(x)(0)

]

+
∫b

0
R(b, s)f

(

s, xs,

∫s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)

ds

)

(t), t ∈ [0, b].

(5.5)

Define the operator T : C([−q, b], X) → C([−q, b], X) by

(Tx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t ∈ [−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)(Cv)(s)ds

+
∫ t

0
R(t, s)f

(

s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)

ds, t ∈ [0, b].

(5.6)

Now we show that, when using this control, T has a fixed point. Then this fixed point is a
solution of the system (5.1). Substituting v(t) in (5.6), we get

(Tx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) + g(x)(t), t∈[−q, 0],
R(t, 0)

[
φ(0) + g(x)(0)

]
+
∫ t

0
R(t, s)CW−1(x1 − R(b, 0)

[
φ(0) + g(x)(0)

]

+
∫b

0
R(b, τ)f

(

τ, xτ ,

∫ τ

0
K(τ, r, xr)dr,

∫b

0
H(τ, r, xr)dr

)

dτ

)

(s)ds

+
∫ t

0
R(t, s)f

(

s, xs,

∫ s

0
K(s, r, xr)dr,

∫b

0
H(s, r, xr)dr

)

ds, t ∈ [0, b].

(5.7)
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Clearly, (Tx)(b) = x1, which means that the control v steers the system (5.1) from the given
initial function φ to the origin in time b, provided we can obtain a fixed point of nonlinear
operator T . The remaining part of the proof is similar to Theorem 3.1, we omit it.

Remark 5.3. Since the spectral radius of linear Fredholm type integral operator may be greater
than 1, in order to obtain the existence of solutions for nonlinear Volterra-Fredholm type
integrodifferential equations in abstract spaces by using fixed point theory, some restricted
conditions on a priori estimation andmeasure of noncompactness estimation will not be used
even if the generator A = 0. But, these restrictive conditions are not being used in Theorems
3.1 and 5.2.
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