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An important aspect of the perception system for intelligent vehicles is the detection and signal measurement of vehicle taillights.
In this work, we present a novel vision-based measurement (VBM) system, using an event-based neuromorphic vision sensor,
which is able to detect and measure the vehicle taillight signal robustly. To the best of our knowledge, it is for the first time the
neuromorphic vision sensor is paid attention to for utilizing in the field of vehicle taillight signal measurement. The event-
based neuromorphic vision sensor is a bioinspired sensor that records pixel-level intensity changes, called events, as well as the
whole picture of the scene. The events naturally respond to illumination changes (such as the ON and OFF state of taillights)
in the scene with very low latency. Moreover, the property of a higher dynamic range increases the sensor sensitivity and
performance in poor lighting conditions. In this paper, we consider an event-driven solution to measure vehicle taillight
signals. In contrast to most existing work that relies purely on standard frame-based cameras for the taillight signal
measurement, the presented mixed event/frame system extracts the frequency domain features from the spatial and temporal
signal of each taillight region and measures the taillight signal by combining the active-pixel sensor (APS) frames and dynamic
vision sensor (DVS) events. A thresholding algorithm and a learned classifier are proposed to jointly achieve the brake-light
and turn-light signal measurement. Experiments with real traffic scenes demonstrate the performance of measuring taillight
signals under different traffic conditions with a single event-based neuromorphic vision sensor. The results show the high
potential of the event-based neuromorphic vision sensor being used for optical signal measurement applications, especially in
dynamic environments.

1. Introduction

Vehicle safety technology is playing a more and more impor-
tant role in intelligent vehicles [1]. Advanced driver assistance
systems have been developed to assist in driving and avoid
potential hazards by warning drivers based on environmental
perception [2–7]. During driving, vehicle deceleration is possi-
ble to cause rear-end collisions, especially when drivers are

distracted. For human drivers, taillights are critical warning
signals of the deceleration of former vehicles. Therefore, tail-
light signal measurement is a promising approach to collision
avoidance and mitigation. Currently, taillight signal measure-
ment algorithms are based on a standard frame-based camera.
Images acquired from the standard frame-based cameras
always produce poor quality with low resolution and motion
blur when confronted with rapid movements. The standard
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frame-based camera also has trouble measuring taillight sig-
nals when there are sudden changes in light, like when you
enter a tunnel, or when there is a strong light source, like the
sun.

The event-based neuromorphic vision sensors, such as
the dynamic vision sensor (DVS) [8–10], can overcome the
above-mentioned limitations of the standard frame-based
cameras. Different from the standard frame-based cameras,
in which measurements arrive at fixed time intervals, the
event-based sensors can generate data according to the rela-
tive light intensity changes asynchronously. By registering
these changes on the order of tens of microseconds, the
event-based sensors have almost instant feedback, with a
high temporal resolution and much less motion blur.
Another important feature of the event-based sensors is
their much higher dynamic range (120 dB), while the
dynamic range of the standard frame-based cameras is usu-
ally about 60 dB. These features make the event-based sen-
sors particularly suitable for daytime taillight signal
measurement under different light conditions [11], e.g., at
noontime or dusk, in different traffic scenes. As shown in
Figure 1, standard frame-based cameras sample their envi-
ronment with a fixed frequency and produce a series of
frames, which lose all the information between two adjacent
frames. In contrast to standard frame-based cameras, event-
based sensors asynchronously respond to pixel-level bright-
ness changes with microsecond latency and do not report
anything when everything is at rest. In the taillight signal
measurement system, we assume that the vision sensor and
the detected vehicle are relatively stationary. Therefore, the
event stream is generated only when the taillight state
changes, i.e., ON → OFF or OFF → ON. From the point
of view of event generation, the density change of the event
stream closely follows the transition of the taillight state.
Specifically, it corresponds to a large number of dense event
streams when the state changes and a small number of
sparse event streams when the state remains unchanged.
Therefore, the event-based sensors are suitable for taillight
signal measurements.

However, events do not provide absolute brightness
values and contain no RGB information. Thus, it presents
difficulties in performing robust and long-term taillight sig-
nal measurement. Considering the advantageous features
and drawbacks, in this paper, we propose a robust taillight
signal measurement system based on a novel event-based
neuromorphic vision sensor named the dynamic active-
pixel vision sensor (DAVIS) [12–14]. The DAVIS contains
an active-pixel sensor and a dynamic vision sensor in the
same pixel array, which generates fixed frame-rate APS
frames and asynchronous DVS events. It inherits the advan-
tages of the event-based sensor while ensuring consistency
with the standard frame-based camera.

Figure 2 illustrates the proposed taillight signal measure-
ment system. We define all the five states of the preceding
vehicle taillights as braking-on, braking-off, turning-off,
turning-right-on, and turning-left-on. The following vehicle
installs a single DAVIS sensor with a resolution of 346 × 260
pixels to capture APS frames and DVS events while follow-
ing the preceding vehicles. The taillight signal measurement

system first locates the taillight regions of the preceding
vehicles based on the APS frame. Then, the frequency
domain features of each taillight region are extracted from
the corresponding DVS events, which are used for taillight
signal measurement. As the first attempt to use event-
based sensors in the taillight signal measurement system,
we believe that even-based sensors can be of interest for
many vision-based measurement system research efforts.
The contributions of this work are summarized as follows:

(1) We present a novel taillight signal measurement sys-
tem that combines APS frames with DVS events by
using a single event-based neuromorphic vision
sensor.

(2) We extract the frequency domain features from the
spatial and temporal signals of each taillight region
based on DVS events, thus restraining the influences
of low-frequency backgrounds.

(3) A thresholding algorithm and a learned AdaBoost
classifier are proposed to jointly achieve brake-light
and turn-light signal measurement.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a review of the traditional frame-based vehi-
cle taillight signal measurement system and describes the
event-based neuromorphic vision sensor. Section 3 specifies
the details of the proposed taillight signal measurement sys-
tem. Section 4 discusses the experimental results and analy-
sis. Section 5 presents the conclusions drawn from this
paper.

2. Related Work

2.1. Frame-Based Vehicle Taillight Signal Measurement.
Existing works of the frame-based vehicle taillight signal
measurement can be classified into three categories based
on the information used.

2.1.1. Temporal Information-Based Methods. The time-
dependent information is often used for the tracking of the
taillights [15–18]. [15] applies a detection-tracking model
and uses a trained WaldBoost detector to obtain the new
tracker. Then, the tracking is performed by a flock of
trackers. [16] proposes a perceptive algorithm to track can-
didate vehicles, and the turn signals are detected by analyz-
ing the continuous intensity variation of the vehicle box
sequences. [19–22] focus on extracting the invariant features
from the tracked regions of taillight lights in the frequency
domain. [19, 20] train an AdaBoost classifier for turn signal
detection. [21, 22] use a measure function where the current
frame value is normalized by the value of the current frame
and last frame for brake signal measurement.

2.1.2. Color Information-Based Methods. The color
information-based methods often extract features via mor-
phology [23, 24] and color/intensity thresholds [25–27]. Dif-
ferent color spaces are used, such as RGB [28], HSV [29],
YCbCr [27], YUV [30], and Lab [31]. [25] introduces a lamp
response function for rear lamp detection and a high-pass
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mask for rear lamp signal measurement. Based on the
Nakagami-m distribution, [26] adopts color thresholds to
detect turn signals at night by scattering modeling of tail-
lights. It utilizes a contrast of reflectance to describe the
direction. [27] uses YCrCb color space as feature space to
detect brake behavior.

2.1.3. Mixed Information-Based Methods. Other methods
combine advantages from the above two categories to
increase their reliability and efficiency by combining tempo-
ral and color information for detecting and tracking vehicle
taillights [17, 32–34]. [34] utilizes both luminance and radial
symmetry features for brake-light state determination, in

which a detection refinement process using temporal infor-
mation is employed for miss recovery. Most of the above
methods make use of the color/brightness information and
the symmetric information of vehicle taillights for object
localization, combined with a trained classifier for object
confirmation. Recently, deep learning approaches have also
been applied to learn features for vehicle taillight detection.
[35] firstly uses Fast-RCNN to detect vehicles, and then seg-
ments the vehicle taillight regions using FCN to extract fea-
tures and detect the brake lights using an SVM classifier.
[36] uses the brake-light patterns learned from the vehicle
taillights appearance by a fine-tuning AlexNet model to
measure brake-light signal. [37] uses a brake-light classifier

Neuromorphic vision sensor

Frame-based camera

Output

Output

A rotating disk
with a black dot 

Frame

Event (t,x,y,p)
Time

Time

Figure 1: Comparison of the output of a standard frame-based and an event-based sensor when facing a rotating disk with a black dot. The
standard camera outputs frames at a fixed rate, thus sending redundant information when no motion is present in the scene. Standard
cameras also suffer from motion blur during rapid motion and lost all the information between two adjacent frames. Event-based
sensors instead respond to pixel-level brightness changes with microsecond latency. Therefore, they do not suffer from motion blur and
do not report anything when everything is at rest. This figure is cited from [66].

Following vehicle

DVS
APS

DAVIS camera

ROI

Preceding vehicles:

Taillight detection Measure taillight signals
Turning-right-on Braking-on

Extract the frequency
domain features of
each taillight region

Taillight region:

DVS eventsAPS frames

Preceding vehicle

Figure 2: Illustration of the taillight signal measurement system.
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based on chromatic and CNN features. [38, 39] propose a
CNN-LSTM framework paired with a spatiotemporal atten-
tion model for taillight signal measurement, where the net-
works for brake and turn signals are trained separately.

Although frame-based sensors provide rich RGB infor-
mation, which is beneficial for taillight signal measurement,
a low temporal resolution and limited dynamic range reduce
the sensor performance in challenging environments, e.g.,
motion blur in fast moving scenes, or poor image quality
under the condition of a sudden change of light. To meet
requirements for taillight signal measurement in different
traffic conditions and fast grasping applications, it is essen-
tial to consider a sensor with a higher sampling rate and sen-
sitivity while maintaining rich RGB information.

2.2. Event-Based Neuromorphic Vision Sensor

2.2.1. Dynamic Vision Sensor. The standard frame-based
cameras output visual information in the form of frames at
a constant rate. In contrast, event-based neuromorphic
vision sensors, such as the dynamic vision sensor (DVS)
[8], exhibit a far more efficient encoding manner. Each inde-
pendent pixel in a DVS only outputs data in response to the
log-intensity brightness changes [40–42]. Given a static
scene, these pixels will not produce any output, and there-
fore, the data rate from the device is dependent on the activ-
ity in the scene. Each pixel emits an AER (address event
representation) [43] event e = fx, y, t, pg containing the
physical location of the pixel in the array ðx, yÞ, and gener-
ally a single bit of information to indicate whether the illu-
mination on the pixel increased or decreased at time t. The
direction of the change in illumination is encoded as p ∈ f
−1, 1g, in which p = 1 is conventionally referred to as an
ON event, representing an increase in illumination, and p
= −1 correspondingly representing an OFF event in which
a decrease in illumination occurs. The temporal resolution
is limited by the rate at which events can be read from the
physical hardware (usually on the order of microseconds).
Unlike the standard frame-based cameras, there is no con-
cept of frames for the event-based sensors, as the data arrives
entirely asynchronously. In summary, the event-based sen-
sors offer multiple advantages over the standard frame-
based cameras, mainly (1) high temporal resolution, which
allows the capture of multiple events in microseconds; (2)
high dynamic range, which allows the information capture
in difficult lighting environments, such as night or very
bright scenarios; and (3) low power and bandwidth
requirements.

In this work, a specific event-based sensor named the
dynamic and active-pixel vision (DAVIS) [12] is used, which
implements a standard frame-based camera and an event-
based sensor in the same array of pixels. Therefore, the out-
put consists of a stream of asynchronous high-rate events
together with a stream of synchronous color frames (APS
frames) acquired at a low rate. An example of the output
of the DAVIS sensor is shown in Figure 2. It is important
to note that the notion of frames is absent from the event-
based sensor acquisition process. Event frames can be recon-
structed, when needed, by buffering the events generated

over a given period. As can be seen from Figure 3(b), for rep-
resentation, the DVS events are collected every 20ms to
form the accumulated event frame.

2.2.2. Algorithms for Event Processing. Since the output of an
event-based sensor is an asynchronous stream of events,
existing computer vision techniques that are designed for
standard frame-based cameras cannot be directly applied
to process events. Consequently, many algorithms have been
specifically tailored to leverage events, either by processing
the event stream in an event-by-event fashion or by building
intermediate, “image-like” representations from event data
[44]. The former methods can achieve minimal latency but
are sensitive to parameter tuning and are computationally
intensive because they all perform an update step for each
event. In contrast, methods operating on event images
trade-off latency for computational efficiency and perfor-
mance [45]. Despite their differences, both paradigms have
been successfully applied to recognition tasks [46–50]. [46]
describes a real-time hand gesture recognition system based
on a stereo pair of DVSs and an event-driven processing
technique based on LIF neurons. [47, 48] introduce novel
event-based feature representation, a hierarchy of time sur-
faces (HOTS) [47] and histogram of average time surfaces
(HATS) [48] for object recognition. Instead of [47, 48],
where pure event counts are measured and summed for each
pixel and polarity to generate an event count image, [49, 50]
use event timestamp to construct the surface of active events
(SAE) for each pixel and polarity.

The event-based sensors mentioned above mainly focus
on computer vision tasks. They also are used for vision-
based measurement (VBM) systems. Event-based neuro-
morphic vision sensors have become significantly popular
recently and introduce a paradigm in computer vision appli-
cations for (VBM) systems [11, 51–56]. Thanks to the low
latency and low power consumption of the event-based sen-
sor, an event-based frame approach is proposed to measure
the contact force in grasping applications by attaching the
event-based sensor to an elastic material in [11, 51] and
[53, 56] for incipient slip detection. [11, 54, 55] use the
event-based sensor for force estimation. The results show
the high potential of the event-based sensor used for manip-
ulation applications, especially in a dynamic environment.
Different from tactile sensing, in this paper, we propose a
VBM approach to measure the frequency characteristics of
each taillight region for the taillight signal measurement
using an event-based sensor mounted on the following vehi-
cle, where APS frames and DVS events are captured by the
camera.

3. Method

3.1. System Architecture. The overview architecture of the
proposed system is illustrated in Figure 4, and it consists of
four stages: vehicle detection, taillight localization, feature
extraction, and signal measurement.

Due to the DVS events that can provide dense temporal
information about the changes in scenes, a simple but effec-
tive vehicle taillight signal measurement method becomes
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achievable in the wild. In this work, we explore and study
how to use the event-based neuromorphic sensor in a vehicle
taillight signal measurement task. Specifically, building on
the DVS events triggered by per-pixel brightness changes
in the scene asynchronously, we measure the taillight signals
based on the frequency characteristics of the sequential
events within the taillight regions. The DVS event density
changes drastically when the taillight state changes, espe-
cially within the taillight regions; i.e., the number of DVS
events increases when a preceding vehicle changes its tail-
light state from braking-off to braking-on. Otherwise, the
number of DVS events fluctuates within some range in the
holding phase. The trend in the number of DVS events is
consistent with the changes in the brightness of the taillight
accordingly. Thus, we can utilize the frequency characteris-
tics of the number of DVS events within one taillight region
to measure the vehicle taillight signals. In the end, a simple
but effective preceding vehicle taillight signal measurement
method can be achieved, with fewer computation require-
ments compared to conventional vision-based techniques
where only APS frames are used [39].

3.2. Vehicle Detection. The proposed preceding vehicle tail-
light signal measurement system mainly pays attention to
vehicles in front of the DAVIS sensor. Therefore, we reduce
the processing area for vehicle detection by presetting a ROI
on the APS frame. The ROI is the centered two-thirds area at

the bottom of an APS frame, and the vehicles outside the
ROI are ignored. It not only greatly reduces computation
consumption but also avoids unnecessary disturbances from
the taillights of nearby vehicles.

Vehicle detection can be said to be a very mature tech-
nology. A lot of work has been done in the field of vehicle
detection [57], and different studies in object detection clas-
sification [58] have also attempted to automatically detect
and classify different classes of vehicles. For vehicle detec-
tion, in this paper, we adopt a multistage object detection
architecture, the Cascade R-CNN [59]. With a simple and
effective detection architecture and the released source code,
Cascade R-CNN is suitable for the taillight measurement
system requiring lightweight and rapidity. Specifically, this
architecture is composed of a sequence of detectors trained
with increasing intersection-over-union (IOU) thresholds
for minimizing overfitting and eliminating quality mis-
matches at inference. It shows good performance in general
object detection tasks. We build the Cascade R-CNN on the
FPN framework and utilize ResNet-101 as a backbone. A
sample result for preceding vehicle detection is shown in
Figure 5(a). Then, the bounding boxes of the detected vehi-
cles are grouped into tracks via a simple IOU tracker [60].
The IOU tracker relies on the coincidence area between
adjacent frame targets for tracking. With fast tracking speed
and low computational cost, it is suitable for use in the pro-
posed taillight signal measurement system. Because robust

(a) (b)

Figure 3: DAVIS camera output. (a) APS frame. (b) Accumulated event frame.

Frequency domain features of each taillight
region are extracted from DVS events

Frequency featuresDVS
events

APS
frames

Detected

Taillight position

vehicles

Vehicle detection
from a preset ROI

through APS frames

A thresholding
algorithm is utilized
for the brake-light

signal measurement

An AdaBoost classifier is
learned for the turn-light

signal measurement

Taillight localization
using a subwindow
search method

Figure 4: Schematic flowchart of the proposed system.
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vehicle detection and tracking results are the basis for the
following steps, we compute the average recall rate of the
detected vehicles in the ROI. Our result shows that the aver-
age recall rate is close to 100%. The vehicle detection method
is not the main focus of this work. Considering that Cascade
R-CNN has achieved satisfactory detection results in this
work, we do not set up a special comparative experiment
to analyze the impact of different vehicle detection methods
on the experimental performance.

It is important to note that the success of our method
depends on the fact that the taillight region is unique and
that different signals share a pair of taillights (refer to Section
3.3.1). However, trucks and buses violate these facts, where
different signals correspond to different taillight regions.
Therefore, in this work, we only measure the taillight signal
of the car and do not focus on the measurement for other
vehicle types, such as trucks and buses. To achieve this, we
have made two efforts: (1) we focus on the acquisition of
the taillight signal of the car in the experimental data acqui-
sition. (2) After “vehicle detection,” we only select vehicles
labeled “car” by Cascade R-CNN for subsequent steps. On

the other hand, in order to apply the proposed measurement
system to trucks and buses, we first need to establish a
unique correspondence between signal-taillight region pairs
before the “taillight localization” step. Considering that the
establishment of uniqueness between signal-taillight region
pairs is related to the position and setting of the taillights,
it is beyond the scope of this study. Hence, in this work,
we do not discuss this establishment in detail.

3.3. Taillight Localization.We introduce a subwindow search
method to locate the taillight position. The subwindow
search method uses lamp response (LR) [25] as a quality
function to perform clustering and IOU searching opera-
tions to finally achieve taillight localization.

3.3.1. Lamp Response. The LR is defined in [25]. It measures
the relative intensity of the red component compared to the
blue and green components of a pixel in an APS frame,
which can be described by the following equation:

LR pð Þ = Rp − Gp

� �
+ Rp − Bp

� �
− 2 Gp − Bp

�� ��, ð1Þ

(a) (b)

(c)

Figure 5: Illustration for vehicle detection. (a) Vehicle detection result. (b) Vehicle detected in an APS frame. (c) LR of the detected vehicle
in (b).
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where Rp, Gp, and Bp are the RGB color values of pixel p.
The taillight is displayed in high red chromaticity. The red
component is larger than the green and blue components
when the blue and green components are close to each other
[25]. Based on the above characteristics of the taillight, we
use LR to isolate pixels with large red components in an
APS frame for taillight localization. Figures 5(b) and 5(c),
respectively, show the APS frame of a detected vehicle and
its LR isolation results. As shown in Figure 5(c), pixels with
large red components are highlighted when other pixels are
suppressed. It can be seen that most of the highlighted
regions correspond to the taillight regions of the detected
vehicle in Figure 5(b).

3.3.2. Subwindow Search. Based on the LR defined in Equa-
tion (1), we formulate taillight localization as a clustering
search problem. Specifically, we introduce a subwindow
search method (see Figure 6) to find the taillight position.
This method is divided into three main steps. First, the
bounding box of the detected vehicle is traversed by a rect-
angle of fixed width and height in each dimension of an
APS frame using a sliding window algorithm. Overlapping
blocks are set between adjacent sliding windows. Then, a
quality function (Equation (8)) is defined to measure the
intensity of each rectangular subregion (subwindow) on
the APS frame. Second, the intensity values of all the sub-
windows in each dimension are fed into a K-means cluster-
ing algorithm to merge these subwindows. Finally, an IOU
searching operation is followed to find the taillight position.
The process of the subwindow searchmethod is illustrated in
Figure 6, and the details are described below.

3.3.3. Subwindow Selection.We first divide the bounding box
of the detected vehicle into five equal horizontal stripes.
Because the taillights tend to appear in the middle of the
vehicle, we only use the middle three horizontal stripes as
the searching space (SS) for the taillight position to reduce
the computational cost. Then, we generate candidate sub-
windows S (S = fS1, S2,⋯, Si,⋯, Sng, where n is the number
of the subwindows) with overlapping blocks in each dimen-
sion of the SS using a sliding window algorithm. These sub-
windows have a fixed width and height. Suppose the size of
the subwindow Si is w × h. For subwindows in the horizontal
direction, w is one-tenth of the width of SS, and h is the
same as the height of SS. And similar settings are also
applied to subwindows in the vertical direction. For subwin-
dows in the vertical direction, w is the same as the width of
SS, and h is one-tenth of the height of SS. The quality func-
tion RSi

of the subwindow Si is defined as

RSi
=
∑p∈SiLR pð Þ

N
, ð2Þ

where N is the number of pixels within the subwindow Si.

3.3.4. Clustering. Based on the intensity value RSi
defined in

Equation (2), we aggregate the subwindows in each direction
into k clusters through a K-means clustering algorithm. k is
the number of clusters expected to be generated. The input

of the K-means is the intensity value RS
ðRS = fRS1

, RS2
,⋯, RSi

,⋯, RSn
gÞ of all subwindows. The out-

put of the K-means is k subwindow clusters. The subwin-
dows that belong to the cluster with the lowest intensity
value usually relate to the background. We filter out back-
ground interference by removing subwindows in the lowest
cluster. After that, the adjacent subwindows in the rest are
merged into a group Gj. The quality function RGj

of the

group Gj is expressed as RGj
:

RGj
=
∑Si∈Gj

RSi

M
, ð3Þ

where M is the number of subwindows within the group Gj.

3.3.5. IOU Searching. The best taillight position is found by
calculating the intersection area between the best matching
groups in both directions (horizontal and vertical). Consid-
ering that vehicle taillights are usually located on the left-
hand and right-hand sides of the vehicle, the largest group
region in the vertical direction is searched, and the first
two largest group regions in the horizontal direction are
searched.

3.4. Feature Extraction. After locating the taillight position,
another challenging task is to measure their ON or OFF sig-
nals. Different from existing methods where APS frames are
used for vehicle taillight signal measurement, we use DVS
events to perform the signal measurement task. To extract
the features of the brake-light signal and the turn-light sig-
nal, we first convert the DVS events of each taillight region
into an event frame. Furthermore, we extract the spatial
and temporal characteristics of the signal of each taillight
region and transform them into the frequency domain for
feature extraction.

3.4.1. Events to Frame Conversion. In order to convert asyn-
chronous DVS events into a synchronous event frame, we
accumulate DVS events in a time interval T in a pixel-wise
manner to generate a 2D event frame IE. Similar to [61],
we simply use the number of events triggered at pixel loca-
tion ðxi, yiÞ as the intensity value of the pixel, which is
expressed as follows:

IE x, yð Þ = 〠
N

i=1,ti∈T
δ xi, xð Þδ yi, yð Þ, ð4Þ

where δ is the Kronecker delta function (the function is 1 if
the variables are equal, and 0 otherwise). N is the total num-
ber of events triggered at pixel location ðxi, yiÞ within time
interval T . Because the event-based sensors naturally
respond to illumination changes and moving edges, the
raw events of the event-based sensor output are maps encod-
ing changes in taillight brightness and relative motion
between the sensor and the vehicle. They cannot be proc-
essed directly for feature extraction by using prevalent algo-
rithms. Thus, before generating the event frame, we execute
a thresholding algorithm on the event counts to filter out
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Figure 6: Overview of the proposed subwindow search method. First, we narrow down the searching space (SS) of the taillight position to
the middle three-fifths area of an APS frame. Then, candidate subwindows S are generated with overlapping blocks in each dimension of SS
through a sliding window algorithm. Second, we aggregate the subwindows in each direction into k subwindow clusters. Furthermore, we
remove these subwindows in the lowest cluster to filter out background interference and merge the adjacent subwindows in the rest into
a group Gj. Finally, an IOU searching operation is followed to find the taillight position. Considering that vehicle taillights are usually
located at the left-hand and right-hand sides of the vehicle, the largest group region in the vertical direction is searched, and the first two
largest group regions in the horizontal direction are searched.

(a)

Figure 7: Continued.
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(b)

Figure 7: Continued.
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disturbances from events caused by motion. The events-to-
frame conversion process mainly consists of the following
two steps:

(1) Event Accumulation. The DVS events are synthesized at a
constant time interval of 20ms. Accurate synchronization
between DVS events and the APS frame only occurs near

the timestamp of the corresponding APS frame. For a given
APS frame timestamp t, we generate the synchronized event
frame from the DVS events in period ½t − 10ms, t + 10ms�.
Besides, the event frame alleviates the noise impact for a
high signal-to-noise ratio (SNR).

(2) Filtering. To generate motion-corrected event frames to
establish reliable taillight features, outliers in the distribution
of event counts are removed by clipping values of less than
three. Figure 7 shows an example of an APS frame and the
corresponding synchronized event frame.

3.4.2. Feature Extraction for Brake-Light Signal. According
to [21, 22], the brake-light signal can be measured in the fre-
quency domain based on the fact that the activated brake-

(c)

Figure 7: The APS frame of a detected vehicle and the corresponding synchronized event frame. The top row indicates that the taillight is
ON, and the bottom row indicates that the taillight is OFF. (a) APS frame of a detected vehicle. (b) Synchronized event frame from raw DVS
events of the vehicle in (a). (c) Synchronized event frame from filtered DVS events of the vehicle in (a).

Table 1: Setting of parameter values used in the experiment.

Parameters k T σ

Value 3 20ms 0.3

k: the number of clusters generated by the K-means clustering algorithm. T :
the time interval size for generating synchronized event frames. σ: the
threshold for measuring the brake-light signal.
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light possesses a higher frequency property than the nonac-
tivated one. In the DVS frame, the size of the pixel value
depends on the number of events. The number of events
depends on the level of change in the brightness of the tail-
light. The brake lights spread wider and brighter, which
means that different levels of event streams can be generated
in this region. In other words, the DVS frame successfully
encodes the scattering of the taillight as a gradient change
in pixel values using the number of events. Figure 7(c) dem-
onstrates this statement, where different levels of events are
generated at different locations in the taillight region. There-
fore, we propose to use the DVS frame instead of the APS
frame to extract domain features for brake-light signal mea-
surement. Specifically, we extract the spatial characteristics
of the signal of each taillight region and transform them into
the frequency domain for the brake-light signal measure-
ment. Because of the computational effectiveness for online
implementation, fast Fourier transform (FFT) is a technique
often used for frequency analysis [62]. Moreover, FFT has
some important properties, such as separability, translation
invariant, and rotation invariant. Hence, we adopt a 2D-
FFT algorithm to get the high-frequency components of
the event frame. Assuming that the event frame IE is of size
M ×N , it is transformed into the frequency domain using
the 2D-FFT as follows:

Ω u, vð Þ = 1
MN

〠
M−1

x=0
〠
N−1

y=0
IE x, yð Þe−j2π ux/Mð Þ+ vy/Nð Þð Þ, ð5Þ

where u = 0, 1, 2,⋯,M − 1 and v = 0, 1, 2,⋯,N − 1. Ωð
u, vÞ represents the frequency domain value of the event
frame IEðx, yÞ. After transformation, the real and complex

parts are combined by

Ω u, vð Þ = R u, vð Þ + I u, vð Þ,

Ωc u, vð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 u, vð Þ + I2 u, vð Þ

q
:

ð6Þ

Then, we find the maximum value Ωc,max of Ωcðu, vÞ for
the following brake-light signal measurement task.

3.4.3. Feature Extraction for Turn-Light Signal. We take into
account the frequency of changes in the brightness of the
taillight for the turn-light signal measurement. According
to [20], the frequency of the turn-light signal is 1:5 ± 0:5
Hz. To be both fast and robust, we calculate the temporal
characteristics of the taillight signal within the 2 s time win-
dow to extract features. It includes two steps, i.e., feature
extraction and feature transformation.

(1) Feature Extraction. The temporal characteristics of the
signal of each taillight region are used for feature extraction.
Specifically, first, the average of all pixel values for each
frame of all frames in the past 2 s is calculated. Here, the
frame means the event frame IE generated in Section 3.4.1.
Then, we connect all the averages into one feature vector.
With a frame rate of 20 fps, the size of the feature vector is
40, and we represent it as VðtÞ = fVt 0, Vt 1,⋯, Vt i,⋯,
Vt n−1g. In this representation, Vt i refers to the average of
the last ith frame.

(2) Feature Transformation. We transform the feature vector
V into the frequency domain by using a 1D-FFT algorithm.
The frequency domain features are used for the subsequent
turn-light signal measurement task. The 1D-FFT is defined
as

f k = 〠
n−1

i=0
e−j2πki/n · Vt i, ð7Þ

where k = 0, 1,⋯, n − 1. The transformed feature vector
is f ðtÞ = f f0, f1,⋯, f i,⋯, f n−1g.
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Figure 8: The curve ofΩc,max for a testing sequence. The horizontal axis is the frame number and the vertical axis denotes the value ofΩc,max
.

Table 2: Brake-light signal measurement results.

Real state (column) Braking-off Braking-on

Braking-off 99.7% 0.3%

Braking-on 12.8% 87.2%
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3.5. Signal Measurement

3.5.1. Brake-Light Signal Measurement. We utilize a thresh-
olding algorithm for the brake-light signal measurement. It
captures the taillight state based on a threshold σ as follows:

state
braking − on, Ωc,max > σ,

braking − off , otherwise:

(
ð8Þ

The measured taillight signal state is braking-on when
Ωc,max > σ, vice versa the measured taillight signal state is
braking-off. Ideally, the threshold σ is close to 0. As shown
in the top row of Figure 7(c), there is almost no gradient
change in pixel values of the DVS frame when the brake-
light state is OFF, i.e., Ωc,max ≈ 0. However, in real traffic sce-
narios, some environmental factors, such as noise, vehicle
speed, and the distance between sensor and vehicle, will
affect the measure of Ωc,max. Therefore, we reset the σ value
based on the real data analysis to attenuate these effects. It is
worth noting that a fixed value of σ can meet the measure-
ment requirements of most scenarios since the event stream
of DVS can automatically filter out the effect of nontarget
regions on frequency. The exception is in extreme scenarios,
such as in fog or snow, where fog or snow can severely inter-
fere with the event-based sensor response to changes in the
brightness of the brake light. These extreme scenarios are
beyond the applicable scope of the proposed system. To
improve the brake-light signal measurement accuracy, we
combine the measured states of a pair of taillights. Only both
the taillight signals on the left and the right are measured as

braking-on states; then, the final returned state is braking-
on.

3.5.2. Turn-Light Signal Measurement. The transformed fea-
ture vectors in Section 3.4.3 are learned by an AdaBoost clas-
sifier for the turn-light signal measurement. The AdaBoost
classifier linearly combines a ∈m different weak classifiers
ca into a single strong one H as follows:

H fð Þ = 〠
a=1,⋯,m

wa · ca fð Þ, ð9Þ

where wa is the weight of the weak classifier ca. In our case, a
weak classifier ca is a simple threshold from the feature vec-
tors to split the feature space into two disjunct sets. The state
of the vehicle’s taillights is identified by integrating the mea-
surement results of a pair of taillights. If and only if one of
the taillight pairs is measured as the turning-on state, the
final returned state is turning-on. Besides, a flashing turn-
light signal is measured after 2 s, because the feature extrac-
tion of the turn-light signal is based on a 2s time window.

4. Experimental Results and Discussions

In this section, we conduct experiments to evaluate the per-
formance of the proposed system and discuss its general
validity. The experimental data are captured using a front-
mounted event-based neuromorphic vision sensor named
Color-DAVIS346 in different traffic environments with var-
ious light conditions. The recordings contain both APS
frames and DVS events. Specifically, the recordings contain
open roads and driving scenarios, ranging from urban,
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Figure 9: The features extracted from APS frames and DVS events on a testing sequence. In this testing sequence, a preceding vehicle
changes its taillight state twice. The first time is the transition from braking-off state to braking-on state, and the second time is the
transition from braking-on state to braking-off state. The Y-axis represents the feature intensity level, which is the relative values
compared to the largest feature obtained in the experiment. The actual taillight state of the preceding vehicle is marked in the red line
(ground truth), which has no relationship with the intensity values. (a) The features extracted from APS frames. The blue (left_aps) and
green (right_aps) lines represent the features levels of the left and right taillights, respectively. (b) The features extracted from DVS
events. The olive (left_dvs) and Indian red (right_dvs) lines represent the feature levels of the left and right taillights, respectively. The
purple line (detected brake) is the measured signal state by our method.
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Figure 10: Continued.
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Figure 10: The qualitative measurement results of the testing sequence in Figure 9. (a) Measurement results. (b) The preceding vehicle
detected. (c) The position of the vehicle’s taillights located. (d) DVS events for each taillight region.
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highway, and suburbs, as well as different illumination con-
ditions, including morning, afternoon, and dusk. All annota-
tions are done on APS frames. Manual bounding box
annotations of cars and taillights contained in the recordings
are provided at a frequency of 20Hz. We annotated a total of
60 sequences with 26,614 car examples, where 20 sequences
are labeled for brake-light signal measurement, while the
remaining 40 sequences are labeled for turn-light signal
measurement. Each sequence lasts approximately 20 s. For
brake-light signal measurement, all 20 sequences are used
as the test set. For turn-light signal measurement, we divide
40 sequences into training and test sets based on 7 : 3. The
values of these parameters used in the experiment are listed
in Table 1. All these parameters are set based on experience
and experiments. The performance of the measurement is
evaluated using the accuracy metric shown below:

Accuracy = TP + TN
TP + FP + TN + FN

, ð10Þ

where TP and TN are the number of true positives and true
negatives, respectively. FP and FN are the number of false
positives and false negatives, respectively.

4.1. Brake-Light Measurement Results. For the brake-light
signal measurement, the spatial characteristics of the signal
of each taillight region are extracted and transformed into
the frequency domain, and the maximum value Ωc,max in

the frequency domain is found as the extracted feature.
Figure 8 shows the variation of Ωc,max in a testing sequence.
Obviously, there are two dominant levels for Ωc,max in this
sequence. Although Ωc,max vibrates significantly due to
noises, we can still correctly measure the brake-light signal
based on Equation (8) by setting the threshold σ to 0.3
(the red line in Figure 8). As shown in Figure 8, the
braking-on state occurs at the 71th frame (the green line in
Figure 8), where the first Ωc,max greater than the threshold
σ appears. Table 2 lists the brake-light signal measurement
results of the proposed system on all testing sequences. Each
row in the matrix represents the measurement accuracy rate
of each state, and the true positives are in italics. As indi-
cated in Table 2, the brake-light signal can be measured with
an accuracy higher than 93.4%.

To verify our statement, we analyze the measurement
results of a testing sequence. In this testing sequence, a pre-
ceding vehicle changes its taillight state twice. The first time
is the transition from braking-off state to braking-on state,
and the second time is the transition from braking-on state
to braking-off state. In this testing experiment, we separately
record the feature intensity variations of the two taillights
(left and right taillights) extracted from APS frames and
DVS events, as shown in Figure 9. Figure 9(a) is the features
extracted from APS frames. The blue (left_aps) and green
(right_aps) lines indicate the feature levels of the left and
right taillights, respectively. Figure 9(b) is the features
extracted from DVS events. The olive line (left_dvs) and
Indian red (right_dvs) lines indicate the feature levels of
the left and right taillights, respectively. Figure 9 also pre-
sents the actual state of the vehicle’s taillights, which is rep-
resented by the red line (ground truth), and the measured
signal state using the proposed system is indicated by the
purple line (detected brake). As we can see from
Figure 9(b), the brake-light is activated within 0.7 s to 6.3 s,
and the measured signal state is similar to this. However, if
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Figure 11: The features of the turn-light signal extracted from APS frames and DVS events in 2 s time interval. The top row is the feature of
before the transformation. The bottom row is feature after the transformation, and the DC component is set to zero in order to simplify the
visualization. (a) The feature extracted from APS frames. (b) The feature extracted from DVS events.

Table 3: Turn-light signal measurement results.

Real state (column) Turning-off Turning-on

Turning-off 89.7% 10.3%

Turning-on 2.3% 97.7%

Turning-on: turning-right-on state or turning-left-on state.
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Figure 12: Measurement results from a preceding vehicle. The preceding vehicle switches its taillight state from turning-off state (the top
row) to turning-right-on (the bottom row). (a) Measurement results. (b) The preceding vehicle detected. (c) The position of the vehicle’s
taillights located. (d) DVS events for each taillight region.
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we use the features extracted from APS frames (blue and
green lines in Figure 9(a)) for the brake-light signal measure-
ment, it is hard to select a suitable threshold. Because the
event-based sensor naturally responds to changes in the
brightness of a vehicle’s taillights, the features extracted from
DVS events can more directly reflect the characteristics of
the brake-light signal than the features extracted from APS
frames.

Figure 10 shows the qualitative measurement results of
the above testing sequence. The top row represents the
beginning of the testing sequence, and the vehicle’s brake
lights are not activated. The middle two rows indicate that
the vehicle’s brake lights are first activated and last activated,
respectively. The bottom row is the end of the testing
sequence, and the vehicle’s brake lights are not activated.
Figure 10(a) is the final measurement results of the vehicle
taillights. Figures 10(b)–10(d) show the intermediate pro-
cessing procedures. Figure 10(b) shows the preceding vehicle
detected. Figure 10(c) shows the position of the taillights
located. Figure 10(d) shows the DVS events for each taillight
region. The regions labeled by green bounding boxes are the
ROI. The red ones represent the detected preceding vehicle.
The yellow ones mean that these regions are the position of
the taillights. From the middle two rows of Figure 10(a), we
see that the brake lights are activated and measured cor-
rectly. From Figure 10(d), we observe a higher event density
when the brake lights are activated than when they are not.
Comparing the top and the bottom rows of Figure 10(d)
and the second and the third rows, we observe that the event
density attenuates as the vehicle moves away from the sen-
sor. The attenuation will affect the quality of the brake-
light signal features and result in false alarms. Therefore,
we mainly measure the brake-light signals of vehicles in
the forward direction.

4.2. Turn-Light Measurement Results. For the turn-light sig-
nal measurement, the temporal characteristics of the signal
of each taillight region are extracted and transformed for
feature extraction. Figure 11 shows the features of the
turn-light signal extracted from APS frames and DVS events.
The top row represents the feature before the transformation,
and the bottom row represents the feature after the transfor-
mation. Figure 11(a) is the features extracted from APS
frames, and Figure 11(b) is the features extracted from DVS
events. As can be seen from Figure 11(b), three peaks within
a 2 s time window (the top row) correspond to the 1.5Hz (3
times within 2 s) maximum frequency value (the bottom
row) for the feature extracted from DVS events. However,
there is no clear frequency characteristic for the feature
extracted from APS frames (see Figure 11(a)). This indicates
that the transformed feature from DVS events can provide
more effective information for the turn-light signal measure-
ment than the feature from synchronous APS frames. There-
fore, we use the transformed feature from DVS events for
the turn-light signal measurement. Table 3 presents the mea-
surement results by using an AdaBoost classifier. Tuning-on
in Table 3 means turning-right-on state or turning-left-on
state. As indicated in Table 3, we can measure the turn-light
signal after 2 s since it starts to flash, and the accuracy is 93.7%.

For qualitative evaluation, the measurement results of a
testing sequence are shown in Figure 12. In this testing
sequence, a preceding vehicle switches its taillight state from
turning-off (the top row) to turning-right-on (the bottom
row). Each column in Figures 10 and 12 has the same mean-
ing. From the bottom row of Figure 12(d), we clearly see that
event density in the right taillight region is higher than that
in the left taillight region. After analyzing the measurement
results of all the testing sequences, we find that the measure-
ment accuracy rate is low when the frequency value of the
turn-light signal is less than 1Hz. Because the feature extrac-
tion of the turn-light signal depends on the dynamic charac-
teristics of the brightness of the turn-light signal in 2 s, the
number of flashes plays an important role in the accuracy
of measurement.

4.3. Discussion for General Validity. Integrating APS frame-
based taillight localization and DVS event-based feature
extraction (the frequency characteristics of the number of
DVS events within one taillight region) based on a neuro-
morphic vision sensor DAVIS, daytime preceding vehicle
taillight measurement in the real environment is targeted,
as shown in the experiment results. It is mainly due to the
property of event-based sensors that events naturally
respond to illumination changes asynchronously, which bet-
ter reveals the brightness changes of the taillight. Moreover,
since the event-based sensor has the advantages of low-
motion blur and high dynamic range, the proposed method
can guarantee good performance under complicated driving
scenarios, e.g., highway or tunnel exit or entrance, and dif-
ferent light conditions, e.g., noontime or dusk. In these
scenes, the event-based sensor can effectively capture tail-
light brightness changes when the standard frame-based
camera may fail. On the other hand, due to microsecond
temporal resolution for events, some noises, such as mea-
surement distance, camera vibrations, and relative motion,
may lead to measuring uncertainty. We alleviate these noise
impacts by a presetting measurement ROI, event filtering,
and accumulating event frames. Although these techniques
reduce the measurement uncertainty to a certain extent,
other uncertainty factors (i.e., ambient light) are not paid
attention to in this work, which will be one of the key
research questions in our next work.

Although the advantages of event sensors have been
explored for taillight signal measurement, low spatial resolu-
tion, such as the DAVIS346 with a resolution of 346 × 260, is
certainly a limitation for its application. From the point of
view of the measurement distance that the system can be
adapted to, the low spatial resolution (346 × 260 used in this
work) limits the measurement performance to some extent.
However, from the point of view of vision-based measure-
ment system research, a low resolution does not limit the
use of the event-based neuromorphic vision sensor in auton-
omous vehicles. The competitiveness of event-based sensors
in autonomous vehicles lies in their main features, not high
image quality [63]. These main features include low power
and bandwidth consumption and the ability to respond to
dynamically changing scenarios. This is also the purpose of
this paper, to explore how to use these features of event-
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based sensors to measure vehicle taillight signals instead of
focusing only on high measurement performance. Taking a
broader perspective, event-driven measurement represents
an exciting opportunity to enable power-efficient intelligent
robots. On the other hand, the trend toward increased spa-
tial resolution on event-based sensors [64, 65] also offers
the potential to further improve the measurement perfor-
mance of the proposed system.

5. Conclusion

In this paper, we propose a novel vision-based autonomous
measurement system that can measure the daytime preced-
ing vehicle taillight signal using an event-based neuro-
morphic vision sensor by analyzing signals in the
frequency domain. Unlike traditional approaches that only
employ APS frames, we focus on combining APS frames
with DVS events. We explore the potential capacity of the
event-based neuromorphic vision sensor for the vehicle tail-
light signal measurement task. Experiments with real traffic
scenes demonstrate the performance of the system. The
accuracy of the brake-light signal and turn-light signal mea-
surements is 93.4% and 93.7%, respectively, which verifies its
feasibility in real-world environments. The results suggest
that the event-driven paradigm is a promising line of
enquiry. From a research perspective, this paper is more
focused on exploring how to leverage and amplify the
advantages of event sensors to address the possible limita-
tions, i.e., low dynamic range, interframe information loss,
and motion blur, of standard frame-based cameras, while
the state-of-the-art performance is a secondary concern.
We hope this work can spur researchers to explore more
applications of the event-based sensor in the VBM system,
such as optical signal measurement for optical communica-
tion applications. At the same time, we hope that this work
will encourage researchers to add more technologies for
visual perception to VBM systems.
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Automatic valet parking (AVP) is the autonomous driving function that may take the lead in mass production. AVP is usually
needed in an underground parking lot, where the light is dim, the parking space is narrow, and the GPS signal is denied. (e
traditional visual-based simultaneous location and mapping (SLAM) algorithm suffers from localization loss because of inac-
curate mapping results. A new robust semantic SLAM system is designed mainly for the dynamic low-texture underground
parking lot to solve the problem mentioned. In this system, a 16-channel Lidar is used to help the visual system build an accurate
semantic map. Four fisheye cameras mounted at the front, back, left, and right of the vehicle are also used to produce the bird’s eye
view picture of the vehicle by joint calibration. (e vehicle can localize itself and navigate to the target parking lot with the
semantic segmented picture and the preobtained semantic map. Based on the experiment result, the proposed AVP-SLAM
solution is robust in the underground parking lot.

1. Introduction

(e public traffic jam situation worsens with the increasing
number of automobiles. Researchers in the automobile field
are now devoting their effort to automatic driving systems
to ease traffic pressure and present a safe way for driving. As
one of the most promising and meaningful functions in
automatic driving, the automatic valet parking (AVP)
system has become the focus of scholars because it can
provide drivers, particularly the new ones, an achievable
and safe way to park vehicles under crowded parking
conditions. (is function can be achieved by providing
vehicles with a high-definition (HD) map for vehicle path
planning. (us, the AVP function is achievable if the HD
map and the global positioning system-inertial measure-
ment unit (GPS-IMU) camera-based localization method
can be used to locate a vehicle at a preknown place.
However, a vehicle cannot possibly acquire environmental
knowledge when this vehicle is located in an unknown
place. A vehicle must locate itself and build an environment
map while moving by itself to overcome the difficulty

mentioned. (erefore, the SLAM problem was proposed in
1986 [1].

SLAM technology can be divided into two categories,
namely, Lidar and Vision, depending on the sensors used.
Lidar-based SLAM schemes are extensively analyzed by
researchers [2]. Lidar can measure the angle and distance of
obstacle points with higher accuracy, which is convenient for
positioning and navigation. Lidar-based SLAM has high
accuracy and no cumulative error when building maps.
Excellent performance and dense point clouds can be ob-
tained using the 3D Lidar. However, the 3D Lidar with 64
channels is expensive for commercialization [3]. (e cor-
ridor of the underground parking lot is long and straight,
with smooth walls on both sides, and it is easy to lose
positioning only by relying on Lidar-based SLAM. (ere-
fore, the vision-SLAM system receives attention from re-
searchers worldwide because of its high perception ability
and low cost.

In addition to vision-SLAM, other traditional feature
methods and road-based feature methods are available. In
traditional feature methods, sparse points, lines, and dense
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planes in a real environment are taken as geometrical fea-
tures, which can be used for vehicle localization [4]. Fur-
thermore, corner features are widely used for visual mileage
calculation [5–7]. (e pose of the camera and feature po-
sitions can be estimated with these methods. Moreover, SIFT
[8], SURF [9], BRIEF [10], and ORB [11] descriptors are
widely used by researchers in describing the features to make
these features unique. ORB-SLAM [12, 13] is a represen-
tative SLAM framework based on nonlinear optimization.
(e ORB features are used as tracking feature points while
driving.

For the methods based on road features, lane lines, curbs,
and traffic signs are widely used as landmarks, which can be
used to localize the camera pose by comparing the land-
marks with previously established maps. Compared with the
traditional-feature-based method, road-feature-based
methods use these landmarks, which are robust even the
illumination conditions change. Yan [14] proposed a non-
linear optimization problem to localize a 6-DOF camera
pose in terms of localization. In this method, the geometry of
road markings and the odometry and epipolar geometry
constraints of the vehicle were considered. (e experiment
results showed that submeter localization error is achieved
on the road with sufficient road markings. Schreiber et al.
[15] came up with a novel approach to establish precise and
robust localization by using a stereo camera system and a
highly accurate map with curbs and road markings. In this
method, global navigation satellite systems are used only to
obtain the initial location, and they are not used during a
50 km test. Ranganathan et al. [16] presented a new scheme
for precise localization. In this scheme, the signs marked on
the road were used to localize the automobile in a global
coordinate. Furthermore, the mechanism combining road-
mark-based map and sparse-feature-based map was adopted
to obtain a high localization accuracy. In addition to loca-
tion, many studies focus on mapping. Rehder et al. [17]
proposed a novel approach to generate the local grid map by
detecting the lane on the image taken by a camera. A globally
consistent map can be constructed with the help of the local
grid map. Jeong et al. [18] proposed a road-SLAM algorithm
by considering the road markings obtained from images
taken by a camera. In this algorithm, the random forest
method was used to improve thematching accuracy by using
a submap containing road information. Based on the ex-
periment results, the accuracy of this mapping method can
be improved to 1.098m over 4.7 km of the path length. (is
result was validated by comparing the obtained data with the
data from RTK-GPS.

In addition to pure vision odometer, vision-aided in-
ertial navigation algorithm is becoming increasingly popular
in the autonomous driving field. In this scheme, IMU is
added into a vision-based scheme to improve localization
precision. Mourikis et al. [19] proposed an extended Kalman
filter-based algorithm for real-time vision-aided inertial
navigation. (e result showed that a very accurate pose
estimation can be conducted with this sensor-fusing algo-
rithm. Leutenegger et al. [6] came up with a keyframe-based
visual-inertial odometry scheme. Although this scheme
demands considerable computation resources, superior

accuracy performance was obtained. (e monocular visual-
inertial system is the most commonly used VIO algorithm at
present [6, 12]. In this scheme, a camera and a low-cost IMU
are used to obtain high-accuracy localization.

Semantic segmentation is a new image clustering task at
the pixel level, and it is widely applied in perception in the
automatic driving domain and medical image diagnosis
[20–23]. In recent years, deep convolution neural network
has been widely used in semantic segmentation tasks [24],
and the majority of the networks are based on various
convolution network structures. Among them, U-Net
[20, 25] is widely accepted and improved as the basic net-
work that can be trained with pictures taken by a camera and
could classify pixels of the pictures into parking lines and
signs. (e basic framework of U-Net is shown in Figure 1.
(ese classified results are critical data for building maps or
localizing automobiles. (e residual network [26] can
achieve good results to adapt to highly complex segmen-
tation scenarios through a very deep layer depth and a large
number of parameters. However, lightweight networks, such
as ERF-Net [27], consider the real-time performance and
accuracy with the method of distillation [28] to be deployed
to edge computing devices, such as onboard computers.

Automotive valet parking is a complex function that can
be equipped on vehicles and help drivers, particularly new
drivers, park their cars in a carport. However, the light
conditions in underground parking lots are usually very dim,
and smooth walls, floors, and columns can be found inside.
All these conditions complicate the parking task. Moreover,
traditional vision equipment is influenced and becomes unfit
in this scenario. In order to solve the above problems, we
first build a vehicle platform with a 16-channel Lidar and
four surrounding cameras. (e robot operating system
(ROS) is adopted to call both the camera and Lidar for
collecting data. Also, a method consisting of image semantic
segmentation, lidar supplemental mapping, semantic
mapping, and localization is proposed. (e rest of this paper
is organized as follows. (e detailed system architecture is
introduced in Chapter 2. (en, the methodology proposed
in this study is described in chapter 3. Finally, the experi-
ment results are presented to show the robustness of the
proposed AVP-SLAM solution in chapter 4, and our con-
clusion is drawn in chapter 5.

2. System Architecture

Four surround-view cameras and a 16-channel Lidar are
applied in the proposed mapping and localization system, as
shown in Figure 2.(e framework for this system consists of
two parts. One is offline mapping, and the other is for lo-
calization. For the offline mapping system, the 16-channel
Lidar is used to provide the odometry and build the point
cloud map. (e semantic information is added to this map
by keyframe matching. We select Lidar keyframes at 0.2
seconds intervals. We use ROS to call both the camera and
Lidar for collecting data, so we have their own time stamps in
the header of themessage. Based on the time stamp, we select
the semantic map corresponding to the Lidar to overlay the
semantic map according to the position and posture of the
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Lidar frames. We drive a data collection vehicle across the
road in an underground parking lot, select 3707 point cloud
keyframes, and then select the corresponding image in the
simultaneously recorded image data. (e ORB features are
extracted from the global map to build the visual semantic
dataset and obtain the initial pose for localization.(e global
map is divided into several zones, and the dataset is
established based on the number of character types. Fur-
thermore, the dictionary can be built by zones. (e initial
pose can be determined with ORB features of the semantic
image. (en, the localization can be done with the pose data
in the last frame and the obtained real-time semantic data.

3. Semantic Mapping and
Localization Methodology

3.1. Image Processing. Four surround-view cameras are used
in this project. (e position and visual angle of each camera
should be adjusted to have a good surrounding picture of the
vehicle, as shown in Figure 3. (e four purple points on the
vehicle are cameras with the fish lens that looks downward.
(e dashed line is the field of view for each camera. Figure 3

shows that four overlapping areas exist between every two
adjacent cameras. (us, the camera should be calibrated
offline, and the weight of each camera should be appro-
priately set to integrate four separate pictures into one
picture. (e well-calibrated result can be seen in Figure 4(a).
(e synthesized picture taken by the camera during driving
in the underground parking lot is shown in Figure 4(b). (e
results shown in Figure 4 indicate that the cameras are well-
calibrated to provide enough visual information that can be
used to localize the vehicle.

3.2. Image Semantic Segmentation. After theoretical explo-
ration and practical verification, this study adopts U-Net
with attention mechanism [29] to perform semantic seg-
mentation tasks, which can make the network sensitive to
the characteristics of specific locations. Data enhancement
method is also used in increasing the training samples to
overcome the disadvantages caused by the size limitation of
the dataset. Attention coefficient α ∈ [0, 1] preserves the
activation for specific tasks by identifying remarkable image
regions and simplifying feature responses. (e output of the

Origin U-Net
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Figure 1: Basic framework of U-Net.
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unit is the multiplication of the characteristic graph input
and the attention coefficient. Each input pixel matrix is
xi ∈ RFL , which has a corresponding single-scale feature,
and FL presents the number of feature maps at layer
L. Feature-map xL is obtained at the output of layer L by
sequentially applying a linear transformation. For multiple
segmentation classes, multidimensional attention coeffi-
cients can be used to learn a classified subset of objects in
each dimension. A gate vector gi ∈ RFg can be used to
determine the high-attention area by acting on each pixel I.
Gate coefficient can be obtained using the additional at-
tention, which can be expressed as follows [27, 28]:

q
l
att � ψT σ1 W

T
xx

L
i + W

T
ggi + bg􏼐 􏼑􏼐 􏼑 + bψ ,

αL
i � σ2 q

L
att x

L
i , gi;Θatt􏼐 􏼑􏼐 􏼑.

(1)

σ2(xi, c) � (1/1 + e− xi,c ) represents sigmoid activation
function. (e attention unit is defined by the parameter set
Θatt, including linear transformation Wx ∈ RFL×Fint ,
Wg ∈ RFg×Fint , ψ ∈ R(̂Fint × 1), and offset bψ ∈ R, bg ∈ RFint .

(e structure of the attention unit is shown in Figure 5. (e

structure of the attention unit added U-Net (ATT U-Net) is
shown in Figure 6. (e convolution parameter updating the
rules of L-1 layer is as follows.(e function f(xL;ΦL) � xL+1

applied in convolution layer L is characterised by trainable
kernel parameters ΦL.
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(2)

(e first gradient term αL
i on the right is scaled. In the

multidimensional attention unit, αL
i corresponds to a vector

containing each grid scale. In each subattention unit,
supplementary information is extracted and fused to define
the output of the residual connection. In order to reduce the
number of training parameters and the computational
complexity of attention units, the linear transformation
(1 × 1 × 1) without any spatial support is implemented, and

ψ: 1 × 1 × 1

Wi: 1 × 1 × 1

ReLU Sigmoid Resampler α

Attention Unit

Output xo

gate gi

Input xi

Wg: 1 × 1 × 1

Figure 5: Schematic diagram of attention unit.
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Figure 6: Structure of ATT-U-Net.
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the input characteristic map is downsampled to the same
resolution as the gated signal. (e relevant linear trans-
formation couples the feature diagrams and rearranges them
to the low dimensional space to implement the gating op-
eration. Low-dimensional feature maps, such as the first
residual connection, do not perform a gating function,
because they cannot represent input data in high-dimen-
sional space. We use depth supervision to force the medium
feature map to be semantically recognizable at each image
scale, which ensures that the attention unit has the ability to
affect the response of a wide range of image foreground
content at different scales.

A performance comparison between ATTU-Net and the
original U-Net is shown in Figure 7. As shown in Figure 7,
the decrease of loss and the IoU performance when ATT-U-
Net is used are faster and better than those when traditional
U-Net is used. Cross-entropy loss was used here.

3.3.LidarSupplementalMapping. In this study, a 16-channel
Lidar is used to build the segmentation map supplemen-
tarily. (e SC-LeGO-LOAM framework [30–32] is used to
assist in building the map. ROS/C++ is selected as the code
framework. An image-based segmentation method [33]
divides the distance map made by Lidar into multiple groups
of clusters, and classes with less than 30 points are discarded
as environmental noise to improve the efficiency of pro-
cessing and the accuracy of feature extraction. (e mark
(ground point or segmentation point), coordinates in the
distance graph, and the distance to the sensor for each point
can be obtained by segmentation. (ese characters of the
ground and segmentation points are used for character

extraction. In the loop detection of Lidar-based SLAM, the
scan context descriptor encodes the radar point cloud and
scores the similarity of loop detection. (e established Lidar
point cloud map after a series of optimization is shown in
Figure 8, providing pose information for the construction of
the semantic map.

3.4. Semantic Mapping. After obtaining the point cloud
map, we can obtain the pose information of every frame with
high accuracy. (e semantic map and Lidar map with the
same timestamp are combined based on the pose infor-
mation of every Lidar frame. After being matched, the pose
transformation between keyframes is used to accumulate the
semantic map and obtain pose transformation frames. (e
established semantic maps obtain the overlapped parts be-
cause of the pose data error for point cloud and matching
error. (e iterative closest point (ICP) algorithm is used in

(a) (b)

Figure 11: (a) Area map with the highest ORB matching scores. (b) Local map made by ICP method.

Figure 12: Global view of the matched area map within the local
map.

Figure 10: ORB feature detection result.
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calculating the best fusion transformation for the overlapped
parts between two maps to solve the problem mentioned.
(e optimized global map is shown in Figure 9.

3.5. Semantic Localization. (e ORB features are extracted
from the global map and used to make a visual semantic
word bag to determine the initial position and posture. (e

global map is divided into regions. (e word bags and
dictionaries are established based on the number of the
feature points and regions, respectively. (en, the ORB
features are extracted from the initial semantic image input,
and a word bag is built. (is word bag is used to score the
similarity in the dictionary, and the area where the vehicle is
located is determined by the score. (e ORB feature de-
tection is shown in Figure 10. After the vehicle localization

Table 1: (e IoU result.

Lane line Parking line Speed bump Traffic signs Average IoU
0.78 0.68 0.84 0.78 0.77

Original Image Lane Line Parking Line Speed Bump Traffic Signs

(a)

(b)

(c)

(d)

(e)

(f)

Figure 13: Semantic segmentation result.
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area is obtained using ORB feature matching, the ICP
method is used to overlay several continuous semantic maps
into a new one. (e local map localization process is shown
in Figures 11 and 12.(e purple marks are the matched pixel
points, whereas the green points and the white points in
Figure 12 are the pixel points for the local map and the area
map, respectively. After the location of the local map is
obtained, the semantic map of the current frame is used to
match with the local map and obtain the vehicle posture and
location. (e new local map from the global map can be
chosen to be used for the matching and localization in the
next step with the help of the current vehicle posture.

4. Results and Discussion

Several experiments were performed to validate the pro-
posed AVP-SLAM system. All the presented data were taken
from the vehicle platform. Four cameras mounted at the front,
rear, left, and right sides of the vehicle with fish lens were used
in this SLAM system. Furthermore, a 16-channel Lidar was
used to help build the map. A Neousys computer with 32G
RAM size and 11G video memory was used for good system
efficiency. (e front image was taken by the front camera at
30Hz with a resolution of 1920 × 1080 pixels.(e images taken
by the rear, left, and right cameras were recorded at 20Hz with
a resolution of 640 × 480 pixels. After image stitching opti-
mization and synchronization, an image with a resolution of
1090× 860 pixels was output by the system at 18Hz.

4.1. Real Semantic Segmentation Experiment Result. (e
experiments were performed with several harsh external
conditions to test the robustness performance of the proposed
AVP-SLAM algorithm.(ere is no open-source dataset of the
underground parking lot with semantic segmentation for
bird’s eye view. We have made an AVP dataset, and it is a
single underground parking lot dataset for bird’s eye view.
Please refer to the link of supplementary materials for the data
set. (e performance of network ATT U-Net in the 520th
epoch verification set is the highest, and the loss value is 0.38.
(e loss value decreases in the subsequent training process,
but its performance in the verification set decreases, and the
network is overfitted. Finally, the ATT U-Net parameters of
the 520th epoch are used for the subsequent segmentation
process.(e IoU result is shown in Table 1.(e final semantic
segmentation result with ATT U-Net is shown in Figure 13.
Although the parking line is blocked by the car, the parking
line can still be clearly seen in Figure 13(a). Figure 13(b) has
various marks in the same figure, but they are accurately
identified. Although the reflected light overlaps with the white
traffic signs, the traffic signs are segmented correctly, as shown
in Figure 13(c). (is case is the same as the speed bumps and
traffic signs, which are shielded by other parked automobiles,
as shown in Figures 13(d) and 13(e). Based on the result
shown in Figure 13(f), the semantic segmentation result was
not affected by the relatively dim light in the parking lot. (e
result of the U-Net segmentation mechanism on the un-
derground parking lot is very good. In our system, the se-
mantic is visualized and output, and the type of map is also a

pixel map. (e output of the system is 10fps-12fps, which can
meet the real-time positioning requirements of low-speed
vehicles. In summary, every specific feature was segmented
precisely under different environments.

4.2. Mapping and Localization. (e experiment was per-
formed in a dim underground parking lot. We used an
additional Lidar in this system because the semantic map
precision was easily affected by the initial values because
of the relatively large error during matching between
frames and the semantic map. (us, we adopted
Lidar, which is used for building maps. (e SC-LeGO-
LOAM framework was used to build the map, and the
ROS/C++ was used as the code framework. Furthermore,
the loop detection with scene context algorithm was used
to optimize the mapping precision. (e semantic map
could be built with the posture data in the established
Lidar map by matching the corresponding semantic
image. Finally, the global optimized semantic map is
shown in Figure 14.

Localization precision is more important than map-
ping precision because the automobile can localize and
drive itself to the correct destination position even with
an imprecise semantic map. In our experiment, the lo-
calization experiment was performed with the previously
established and optimized semantic map. (e initial
position of the automobile is regarded as known data.
(ese data are usually saved in NVM when the vehicle
was parked the last time.

(e final localization result is shown in Figure 15. (e
red line is used to show the motion trail for the experimental
vehicle. During the experiment, the vehicle could constantly
localize itself from start to end. (e detailed localization
result can be found in the video material.

4.3. Real Application: Autonomous Valet Parking. (e pro-
posed AVP-SLAM system was used under real autonomous
valet parking cases in the underground parking lot. (e
preestablished semantic map was used by the vehicle to
localize itself in this parking lot and guide itself to the
prechosen parking lot automatically, as shown in Figure 16.
Additional detailed experiment results can also be found in
the shared video materials. In conclusion, a good SLAM
result can be provided with the proposed AVP-SLAM
system.

Figure 14: Global optimized semantic map.
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5. Conclusions

In this study, a camera-Lidar combined with the SLAM
solution was proposed. In this scheme, a 16-channel Lidar
was used in assisting the visual system, that is, four sur-
rounding-view cameras with fish lens, to build the map.
Moreover, the semantic features, lane lines, parking lines,
speed bumps, traffic signs, and other visual features could be
detected using ATT U-Net even under harsh situations.
(us, a complete semantic map was built based on the
detected features. With the preobtained map, the vehicle
could localize itself during driving.

Furthermore, a real AVP experiment was performed to
validate the proposed SLAM solution. (e result showed
that the vehicle can park itself in a correct parking lot au-
tonomously in a dim underground parking lot. (us far, the
proposed SLAM solution is only effective with the AVP
scenario. We will continue to develop this solution in the
application field in a much more difficult environment.
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+e periodic change of intersection signals in urban road systems is the leading cause of uncertain delays. +erefore, aiming to
minimize the travel time on the road segments and the expected delay at the intersections, a hyperpath search method based on
intersection signal timing is proposed. +e expanded network representation is used to capture the different turning delays at
intersections. According to the intersection signal timing, the maximum waiting time of each turn and the turning movement
ratio is obtained. A “recommendation priority passable phase” guidance strategy is proposed for the cooperative vehicle-in-
frastructure system (CVIS) based on the optimal hyperpath. +e simulation experiments show that the vehicles can shift the
driving route in the hyperpath set according to the guidance strategy, which effectively reduces the actual delay at intersections,
and further realize an optimized distribution of traffic flows in the road network.

1. Introduction

+e intelligent transportation system, along with the driv-
erless technology and the cooperative vehicle-infrastructure
system (CVIS), has played a pivotal role in improving ef-
ficiency and reducing travel delays on the road network [1].
+e route search algorithm is the key technology that makes
for vehicle route guidance and traffic distribution optimi-
zation. Expressed more formally, in connection with the
need to realize reliable route guidance, the intelligent
transportation system mostly uses the Dijkstra algorithm
and its improved algorithms (such as the A∗ algorithm
considered heuristic information) to solve the shortest path
problem [2]. However, the simple-path algorithm cannot
consider the several uncertain resources in the trans-
portation networks such as traffic congestion, weather
conditions, and vehicle accidents. In this way, traffic is easily
guided to the same route, leading to overload along the way,
then reducing the navigation system’s practicability and
credibility [3].

Lee [4] found that the test results indicated that the
multiple path routing strategy performed better than the

commonly used shortest path routing strategy using traffic
simulation. Hence, shortest path methods have been ex-
tended to generate alternative routes, perhaps to avoid sites
of congestion or specified areas.

Chen et al. [5] reviewed methods for generating multiple
paths in the context of route guidance. Traditionally, al-
ternati2ve paths could be calculated by two categories of the
algorithm in graph theory, namely, (1) the k-shortest path
(KSP) algorithms proposed by Eppstein [6], Martins [7], and
Jimenez and Marzal [8] and (2) the totally disjoint path
algorithms proposed by Dinic [9] and Torrieri [10].

However, these algorithms have some drawbacks for
route guidance. For the k-shortest path algorithms, the
searched k edges have considerable overlap, reducing choice
diversity. For the disjoint path algorithms, the primary
shortest path of the network may not be included, or the
length of alternative paths may be unacceptable.

Intersections are the bottleneck in urban traffic net-
works, and the drivers’ turning movement at signalized
intersections can impact the traffic distribution on the road
network. It may often be observed, apparently indeed in the
great majority of experienced drivers, that they will change
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lanes early to cross the intersection instead of waiting. Based
on the above, all paths, which can reduce the drivers’ waiting
time at signalized intersections, are defined as the hyperpath
set on the road networks. Our numerical results show that
the hyperpath algorithm performs better in reducing delays,
rather than both the shortest path algorithms and the
multiple path algorithms.

At last, this article applies the hyperpath algorithm to
vehicle navigation with the CVIS. Under the “recommend
priority passable phase” rule, the cooperative vehicle-in-
frastructure system is introduced to improve the vehicle
guidance system based on the hyperpath algorithm. Under
the information interaction, the driver can change the lane
in advance by voice, text, picture, and video so that the driver
can shift their routes in the hyperpath subset. In fact, the
traffic distribution will be optimized, reducing the total time
and improving the network performance.

+e outline of this article is given as follows: Section 2
reviews the literature on multiple path algorithms and
discusses the shortcomings of the existing path planning
algorithms. +en, we describe the origin of the hyperpath
from the transit assignment. Section 3 develops the
hyperpath algorithm incorporated with the signal timing
and then gives the constraints and the proofs. In Section 4,
the hyperpath algorithm is tested on randomly generated
road networks to demonstrate the advantages of the pro-
posed algorithm. Section 5 introduces the CVIs to realize the
vehicle route guidance. Section 6 presents the conclusions
thus far and suggestions for future work.

2. Literature Review

+e k-shortest path (KSP) problems involve finding the
shortest path, the second shortest path, and so on to the kth
shortest path between a given origin and a destination
(O–D) pair [11]. KSPs are usually provided in route guid-
ance systems to satisfy various preferences that different
users have for path choices [12]. Chen et al. introduced the
A∗ technique to improve KSPs finding performance in
stochastic networks under travel time uncertainty [13]. Some
scholars proposed the improved KSPs that can find different
shortest paths with a reasonable degree of similarity and
close travel time, and the numerical result is satisfactory
[14–16]. Recently, an efficient deviation path algorithm has
been proposed for finding exactly the k-shortest simple paths
without loops in road networks, which performs signifi-
cantly better than the state-of-the-art algorithms [17]. A
considerable amount of research has been devoted to de-
veloping KSP algorithms with better performance on the
algorithm speed and ability to consider uncertainties.
However, existing improved KSP algorithms do not change
the nature, so that the k-shortest simple paths overlap each
other and lack accessibility.+e k-shortest simple paths have
different optimal targets, which cannot be achieved when the
drivers shift their routes.

+e total disjoint path algorithm offers a major reduction
in computation time for large networks. [10]. Here, “dis-
jointness” can be considered in terms of either nodes or links
[18]. A link-disjoint path-pair is a pair of paths between
these nodes with no common links, but they still might share
common nodes [19]. Accordingly, a node-disjoint path-pair
is a pair of link-disjoint paths between these nodes with no
common nodes [20]. Recently, scholars have taken into
account the total disjoint path algorithm’s vital feature to
provide reliable service on the network, which guarantees to
survive any single link failure [21]. As referred to earlier, the
disjoint paths may not be shortest, but they are more suitable
to uncertain traffic conditions.

Conventionally, path selection in the road network in the
time-dependent vehicle routing problem is denoted as
flexibility [22–24]. However, not all alternative paths have
flexibility, but the ones with the same constraint conditions
can have it. For instance, the k-shortest paths with different
objective functions lack flexibility and are the same as the
pair of the disjoint paths. +e drivers cannot avoid the
uncertain delay via shifting their routes among the results of
multipaths. Consequently, there is an urgent need to realize
path flexibility, which can reduce delays at intersections.

Indeed, empirical studies have shown that travel time
variations significantly influence travelers’ route-choice
behavior [25]. Unlike previous algorithms, the driver can
flexibly shift their routes to avoid delay in the hyperpath set.
So the hyperpath algorithm has accessibility. Spiess and
Florian [26] employed the hyperpath to solve passenger flow
distribution on bus lines. In the public transportation model,
the hyperpath that includes all the bus lines set between the
origin and destination is interpreted as an optimal riding
strategy. Bell [27] further considered the uncertainties of
travel time on each link in the road network and applied
Spiess and Florian’s transit hyperpath to the road network.
Bell pointed out that the hyperpath search algorithm was a
special multipath algorithm that takes the minimum ex-
pected travel time as the goal. +e hyperpath algorithm
searches all paths that will be possible to become the shortest
one between the origin and destination and incorporates
them into the hyperpath subnet. Based on Bell’s research, Ma
et al. [28] proposed an improved method to speed up the
hyperpath algorithm. However, the current hyperpath al-
gorithms do not consider the impact of intersection delays
on the expected travel time.

Moreover, we consider the delays at signalized inter-
sections, which significantly contribute to the uncertainty of
travel times, particularly in urban transportation networks
[29–32]. In contrast, existing hyperpath studies about the
road network have rarely addressed delays at signalized
intersections due to the fact that signalized intersections can
largely increase the complexity of the algorithm.

We aim to develop an efficient hyperpath searching
algorithm typically applied to signalized road networks. +e
proposed algorithm conquers the inaccessibility of the most
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existing multiple path algorithms (e.g., KSP). Table 1
summarizes the differences of our proposed algorithm
from the relevant studies. +e contributions of this study are
presented as follows:

(i) We propose a hyperpath-based vehicle routing
method to realize the accessibility among the
multiple paths, reducing the delay at intersections,
which is more efficient and performs better than the
existing multiple path algorithms

(ii) We propose a hyperpath algorithm that considers
the uncertain delay at signalized intersections in the
road networks

(iii) We introduce the CVIS to realize vehicle navigation
under the optimal hyperpath

3. Models

3.1. Hyperpath-Based Choice Strategy. +e concept of the
hyperpath, i.e., a set of paths any one of which may be
optimal, comes from the field of transit assignment and is
associated with the common-line issue. We assume that the
passenger arrives at bus stop A, whose destination is bus stop
D. Assume that three attractive bus lines given the headways
arrive randomly in Figure 1. +e passenger taking the bus
line depends on which one happens to arrive next. +e lines
that are attractive at a given stop hence constitute the
common lines, namely, hyperpath. Under the ‘‘take
whichever attractive line arrives next” rule, the hyperpath
may be found by minimizing the expected travel time and
that the resulting problem is a linear program.

(i) We assume that there is only bus line 1 from stop A
to stop D, with a headway of 6 minutes. Hence, the
expected waiting time of passengers is T� 6min.

(ii) We assume that three bus lines are attractive, which
is referred to earlier. It will become evident that the
expected waiting time of passengers is
T � 1/(1/6 + 1/3) � 2min.

Since the applicability of the transit assignment model is
satisfying, some researchers have introduced this concept
into the road network.

Bell noted the parallel between link frequency and link
delay and then extended the Spiess and Florian algorithm by
adding node potentials into the link selection step, yielding
an algorithm that resembles the Astar algorithm, but which
generates a hyperpath.

Consider a road network with eight links and seven
nodes, shown in Figure 2. In Bell’s paper [27], each link delay
is equal to a random number R. For simplicity, the delay at
the intersection is not considered. In this case, it can be seen
in Figure 2, as all the links are unreliable, the hyperpath
contains two paths, and whichever path of the set of
hyperpath will become the shortest one.

Since the delay at signalized intersections is the main
component of travel time, we significantly emphasize its
influence on the performance of the hyperpath algorithm.

+is study improves the original hyperpath search al-
gorithm by expanding the signalized intersection. Aiming to
minimize the travel time on the road segments and the
expected delay at the intersections, we get a hyperpath set
between the origin and destination.

We discuss the relationship of the turning movement,
signal timing, and delay, as shown in Figure 3. Take one
entrance lane as an example, where it consists of a left-turn
movement and a through movement, corresponding to
different signal phases. Assuming that the delay at the in-
tersection is entirely controlled by the signal timing, the
turning delay varies with the turning movement. In this way,
this article refers to the signal timing delay at intersections to
the waiting time in the transit network and then proposes
the equation of the delay at intersections in the road
network.

+e original hyperpath algorithm only considers un-
certain delays on the road segment, which is the delays of
leaving their upstream nodes. +e turning delay will depend
on the turning movement that vehicle passes through the
intersection. As shown in Figure 4(a), the delays caused by
signal timing vary in different entrances and exits. +is
article expands the intersection with signal control in the
road network so that the hyperpath algorithm overcomes the
original shortcomings that cannot capture the turning delay
at intersections. Each turn is described as a virtual link. Link
weight is used to represent the turning delay at intersections.
Take Figure 4 as an example, and there are four types of turns
and four virtual links at one-way intersections; for the two-
way, there are twelve types of turns and twelve virtual links.

+is approach is to expand each intersection in the
network. +us, taking the one-way intersection as an ex-
ample, the label rule is shown in Figure 5. +e node j is
expanded to four nodes.+e travel time between nodes i and
j is cij, and the travel time on the virtual link is the turning
delay. dijk denotes the turning delay from road segment (i, j)
to road segment (j, k).

3.2. Hyperpath Model. In the extended road network, the
optimal hyperpath problem is described as a mathematical
optimization model that takes the minimum travel time on
the road segment and the expected delay at intersections as
the objective function.

Define the following sets and variables:

G(V, A): A directed graph
V: A set of vertices
A: A set of edges
I: Node
J: Downstream node of the node i
K: Downstream node of the node j
L: Set of links
H: Set of links of the hyperpath
Γ+(i): +e set of edges leaving the node i
Γ−(i): +e set of edges entering the node i
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ui: Minimum travel time from node i to the destination
yi: Probability of node i being selected
dijk: Turning delay from node i through node j to node
k
cij: Travel time of on (i, j)

wj: Expected delay time at node j
pij: Probability of (i, j) being selected

fijk: Service frequency of turning movement dijk, is
1/dijk

fj: Combined service frequency of node j

+e hyperpath is identified by the following linear
program:

minp,w 􏽘
(i,j)∈A

cijpij + 􏽘
i∈V

wi, (1)

Table 1: +e most relevant existing studies on hyperpath.

Literature Path flexibility Travel time reliability Delays at intersections
Chen et al., 2016 ✕ ✔ ✔
Shen et al., 2020 ✕ ✔ ✔
Bell, 2008 ✔ ✔ ✕
Ma et al., 2013 ✔ ✔ ✕
+is article ✔ ✔ ✔

BUS
LINE 1

Headway : 6min

Headway : 3min

Headway : 3min

ABus Stop B
C

D

BUS
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Figure 1: +e hyperpath for the transit assignment model.
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1
2

ø1

ø2

90600 25 30 55 85
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s.t.

􏽘
(j,k)∈A+

j

pjk − 􏽘
(i,j)∈A−

j

pij � gj,∀j ∈ V,
(2)

pij ∈ [0, 1], (3)

dijk ≥ cjk · pjk,∀(j, k) ∈ A
+
j , i ∈ Γ− (j). (4)

In (1), the expected travel time is shown. Note that
expected delay is interpreted as what would be expected by a
pessimistic driver, namely, its exposure to maximum link
delay. +e travel time cij is a state of the free flow; i.e., the
travel time does not change with increased traffic.

In (2), gi is the origin and destination identification.
When the node is the starting point r, gi � 1. When the node
is the endpoint s, gi � −1; otherwise, gi � 0. During the trip,
there can be detours, but it is not allowed to arrive at a place
twice. In (2), for the origin, its value is 1, which means the
path starts from the origin. For the destination, the value is
−1, which means that the trip stops at this point and ends the
trip. Otherwise, its value is 0, which means that the path
passes through the node with a certain probability. +at is, it
leaves after reaching the node.

In (3), the choice probability ranges from 0 to 1. +e
maximum probability of the link selected is 1. If not, the
probability is 0.

Equation (4) indicates that the vehicle chooses to detour
instead of waiting at the current intersection because the
current turning delay is greater than the product of the travel
time and the probability of being selected.

For the extended network, the virtual road segment
corresponds to the turning movement at intersections, and
the maximum delay dijk is caused by the periodic change of
the signal light. +is article assumes that the vehicle arrives
randomly at the intersection and defines the intersection
service frequency frj

(frj
� 1/drj

) of the turning rj. In the
hyperpath set, for node j, there may be multiple available
turning rj , and Rj (e.g., Rj � {dijk, dijn, dmjk, dmjn}) is the set
of all available turns at this node. Further, we define the
intersection service frequency fj � 􏽐rj∈Rj

frj
; then at

the intersection, the expected waiting time wj is as follows:

wj � α/ 􏽘
rj∈Rj

frj
.

(5)

3.3. Optimal Hyperpath Algorithm

3.3.1. Initialization. Specify the origin r and the destination
s; create a set L of links and add all links in the road network
to the set L; create a setH of the hyperpath so that the setH is
initially an empty set. Initialize the variables as follows:

us � 0, ui �∞,∀i≠ s,

yr � 1, yi � 0,∀i≠ r,

∀i≠V, fi � 0, dijk � 0,

∀(i, j) ∈ A, pij � 0, fijk � 0.

(6)

3.3.2. Main Steps

Step 1: find the shortest link in the set L, take (uj + cij)

as the current link, and remove it from the set L.
Step 2: if the current link meets the conditions:
ui ≥ uj + cij, go to Step 3; otherwise, go back to Step 1.
Step 3: update the data.

West East

North

South

Left

Straight

Right
Straight

(a) (b)

Figure 4: +e expanded road at intersections. (a) +e one-way intersections. (b) +e two-way intersections.
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Figure 5: +e label at the expanded network.
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If i � r, fijk � 1,

ui �
β + uj + cij􏼐 􏼑fijk

fi + fijk

, fi � fi + fijk. (7)

If ui �∞ or fi � 0,

β � 1; (8)

otherwise,

β � uifi. (9)

Step 4: add the current link (i, j) to the set H. At this
time, if the condition L � ∅ or ui + cij ≥ ur is satisfied,
go to Step 5; otherwise, go back to Step 2.
Step 5: get the link and node choice probability: from
largest to smallest, sort all links (i, j) in the network

according to the value of ui + cij and traverse all the
links according to the sorted order; if the link (i, j) ∈ H,
access the database to obtain the probability of selected
for each turn.

Starting from the origin r, trace back the hyperpath to the
destination s and output it for route guidance strategy.

3.4. Algorithm Validation. +e algorithm validation is as
follows.

Proposition 1. Assumption of maximum pessimistic ex-
pectation implies that cjk · pjk � dijk > 0 if pjk > 0 and cjk > 0
for (j, k) ∈ A+

j and i ∈ Γ−(j).

Proof 1. +e Lagrangian function for equations (1)–(4)is as
follows:

Lp,w,μ,λ � 􏽘
(i,j)∈A

cijpij + 􏽘
i∈V

wi + 􏽘
i∈V

μj 􏽘
(j,k)∈A+

j

pjk − 􏽘
(i,j)∈A−

j

pij − gj
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ 􏽘
i∈Γ− (j)

􏽘
(j,k)∈A+

j

λi cjk · pjk − dijk􏼐 􏼑,

(10)

where μ and λ are the Lagrange multipliers concerning μ≥ 0
and λ≥ 0.+e optimal solution of the Lagrange function is as
follows:

zLp,w,μ,λ

zwi

� 1 − 􏽘
i∈Γ− (j)

􏽘
(j,k)∈A+

j

λi

zdijk

zwi

� 0. (11)

According to (5), zdijk/zwi ≤ 1; then from (11), we can
know that 1 − 􏽐

i∈Γ−(j)

􏽐
(j,k)∈A+

j

λizdijk/zwi ≤ 1 − 􏽐
i∈Γ−(j)

λi⇒ 􏽐
i∈Γ−(j)

λi ≤ 1. At the solution, because wi is equal to 0 or over. If λi

equals 0, pjk could be reduced to 0 at the solution, violating
the assumption that pjk > 0. So, by the complementary
slackness conditions, λi > 0 implies that cjk · pjk � dijk > 0
for (j, k) ∈ A+

j and i ∈ Γ−(j).

Proposition 2. At the point at which (i, j) is selected, uj has
been reduced to its final value.

Proof 2. See the Bell [27].

Proposition 3. If, at the point at which (i, j) is selected,
cij + uj > ur, the algorithm should terminate.

Proof 3. See the Bell [27].

Proposition 4. If dijk � 0 for all links (j, k) ∈ A+
j and all

nodes i ∈ Γ−(j) then the Hyperstar algorithm finds only the
path(s) with least undelayed travel time.

Proof 4. See the Bell [27].

4. Illustrative Example

To demonstrate the Hyperstar algorithm, we use a grid-type
transportation network, as shown in Figure 6, with node r
as the origin and node s as the destination. All arcs can be
traveled in both directions, leading to 62 directional links.
Except for the nodes 5 and 16, the other nodes are con-
trolled by signal timing. +e network is expanded to virtual
links referred to earlier coded in C# language. Figure 7
shows the signal timing at each intersection with signal
control. Table 2 presents the travel time of links. Note that
every link is two-way, but we just list one case when the
travel time of two links, whose upstream and downstream
nodes interchange, is the same. Table 3 lists the turning
delays at intersections.

Based on the assumption of maximum pessimistic ex-
pectation, taking the T-shaped intersection two shown in
Figure 6 as an example, the calculation of the turning delays
will be described. When the forward intersection number of
the path is origin r, and the backward intersection number is
three, the vehicle needs to go through intersection two.
According to the signal timing of Figure 7, going through the
intersection, two corresponds to the first phase, and
the green time of the first phase in one cycle time is 25 s, the
yellow time is 5 s, and the red time is the 60 s. Since
the vehicle stops during the yellow time and the red time, it is
determined that the turning delay is 65 s. According to it, the
turning delays at intersections in Figure 6 are derived in
Table 3.

According to the algorithm flow, this algorithm is coded
in C#. Each link is marked with its choice probability of the
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Figure 6: A grid-type network.

85600 3530 55 80

90600 25 30 55 85

120115

Figure 7: Intersection signal timing.

Table 2: Travel time of links.

Upstream node i Downstream node j Travel time (s) Upstream node i Downstream node j Travel time (s)
R 2 60 19 S 40
2 3 60 r 6 30
3 4 40 6 11 20
4 5 30 11 16 40
6 7 6 2 7 60
7 8 70 7 12 30
8 9 30 12 17 60
9 10 20 3 8 20
11 12 50 8 13 30
12 13 70 4 9 20
13 14 60 9 14 40
13 18 30 14 19 30
14 15 30 5 10 50
16 17 70 10 15 60
17 18 60 15 S 70
18 19 30
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Table 3: Turning delays at intersections.

Forward
intersection
number

Intersection
number

Backward
intersection
number

Turning
delays (s)

Forward
intersection
number

Intersection
number

Backward
intersection
number

Turning
delays (s)

R 2 3 65 6 11 12 65
R 2 7 0 6 11 16 65
3 2 r 65 12 11 6 0
3 2 7 65 16 11 6 65
7 2 3 0 12 11 16 65
7 2 r 65 16 11 12 0
2 3 4 65 11 12 13 90
2 3 8 0 11 12 17 0
8 3 2 65 11 12 7 100
8 3 4 0 7 12 13 100
4 3 2 65 7 12 17 90
4 3 8 65 7 12 11 0
3 4 5 65 13 12 11 90
3 4 9 0 13 12 7 0
9 4 3 65 13 12 17 100
9 4 5 0 17 12 7 90
5 4 3 65 17 12 11 100
5 4 9 65 17 12 13 0
4 5 10 0 12 13 14 90
10 5 4 0 12 13 18 0
R 6 7 65 12 13 8 100
R 6 11 65 8 13 14 100
7 6 r 0 8 13 18 90
11 6 r 65 8 13 12 0
7 6 11 65 14 13 12 90
11 6 7 0 14 13 8 0
6 7 8 90 14 13 18 100
6 7 12 0 18 13 8 90
6 7 2 100 18 13 12 100
2 7 8 100 18 13 14 0
2 7 12 90 13 14 15 90
2 7 6 0 13 14 19 0
8 7 6 90 13 14 9 100
8 7 2 0 9 14 15 100
8 7 12 100 9 14 19 90
12 7 2 90 9 14 13 0
12 7 6 100 15 14 13 90
12 7 8 0 15 14 9 0
3 8 13 90 15 14 19 100
3 8 9 100 19 14 9 90
3 8 7 0 19 14 13 100
9 8 7 90 19 14 15 0
9 8 3 0 14 15 s 0
9 8 13 100 14 15 10 65
7 8 9 90 10 15 s 65
7 8 13 0 10 15 10 0
7 8 3 100 s 15 10 65
13 8 3 90 s 15 14 65
13 8 7 100 11 16 17 0
13 8 9 0 17 16 11 0
4 9 14 90 16 17 18 65
4 9 10 100 16 17 12 65
4 9 8 0 12 17 16 0
10 9 8 90 12 17 18 65
10 9 4 0 18 17 16 65
10 9 14 100 18 17 12 0
8 9 10 90 17 18 19 65
8 9 14 0 17 18 13 65
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driver with the algorithm output. +e probability is also the
traffic distribution, as shown in Figure 8.

According to the link probability, there are nine possible
shortest paths. +e path choice probability is shown in
Table 4.

5. The Cooperative Vehicle-
Infrastructure System

5.1. Work Process of CVIs. Based on the hyperpath, this
section introduces the CVIs to realize route guidance. +e
CVIs consist of four parts: intelligent traffic management
system, intelligent communication system, intelligent ve-
hicle system, and intelligent roadside system. +e intelligent
traffic management system processes the information ob-
tained by both the intelligent vehicle system and the in-
telligent roadside system and then calculates the turning
delay included in the hyperpath set, which is specifically
divided into the following two situations:

Case 1. According to the transmitted information, when the
turn encounters the green light, the intelligent traffic
management system obtains the remaining green light time
t1 and the vehicle’s distance l from the current position to the
turn-stop line. After that, the intelligent traffic management
system calculates the number of vehicles Q2 that can pass
during the remaining green time. If Q2 ≥Q1, the time when
the vehicle arrives at the stop line is t � l/v1, if Q2 <Q1. +e
signal cycle time is T, which is obtained by the database. +e
number of vehicles is Q3 that can be passed during one signal
cycle. +e dissipation speed of the vehicles is v2. +e number
of vehicles that need to wait is n � 􏼄(Q1 − Q2)/Q3􏼅 during a
signal cycle. +e time to arrive at the stop line is
t � t1 + nT + (Q1 − Q2 − nQ3)/v2. +e number of vehicles in
front of the induced vehicle is Q1, the symbol ⌊⌋ indicates
rounding down and Q2 � q · t1.

Case 2. When the turn encounters the red light, the intel-
ligent traffic management system obtains the remaining red
time t3 from the current phase. If the turn encounters the

yellow light, the intelligent traffic management system
should obtain the remaining yellow time plus red time.
According to the database, the signal cycle time is T. +e
number of vehicles that can pass during one signal cycle is
Q3.+e dissipation speed of the vehicles is v2.+e number of
the vehicles that need to wait is n � 􏼄Q1/Q3􏼅. +e time to
arrive at the stop line is t � t3 + nT + (Q1 − nQ3)/v2.

+e intelligent traffic management system determines
the turning movement with the shortest time and recom-
mends it to the driver. +at ensures that vehicles always
choose the passable priority phase at the intersection to

Table 3: Continued.

Forward
intersection
number

Intersection
number

Backward
intersection
number

Turning
delays (s)

Forward
intersection
number

Intersection
number

Backward
intersection
number

Turning
delays (s)

8 9 4 100 13 18 17 0
14 9 4 90 13 18 19 65
14 9 8 100 19 18 17 65
14 9 10 0 19 18 13 0
9 10 15 0 18 19 s 65
9 10 5 65 18 19 14 65
5 10 15 65 14 19 18 0
5 10 9 0 14 19 s 65
15 10 5 65 s 19 18 65
15 10 9 65 s 19 14 0

r 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 s

1 1

0.854

0.146

0.125

0.729

0.146

0.106

0.623

0.623

0.192

0.079

0.079

0.202

0.096

0.175

0.825

Figure 8: Link choice probability.

Table 4: Path choice probability.

Route Choice probability
r-2-3-4-9-14-19-s 0.050
r-2-3-4-9-14-15-s 0.036
r-2-3-4-9-10-15-s 0.061
r-2-3-8-13-18-19-s 0.290
r-2-3-8-13-14-19-s 0.177
r-2-3-8-13-14-15-s 0.030
r-2-3-8-9-14-19-s 0.177
r-2-3-8-9-14-15-s 0.127
r-2-3-8-9-10-15-s 0.052
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minimize waiting delays. Figure 9 shows the CVIs, and
Figure 10 represents the information interaction principle of
the vehicle route guidance system under the CVIs.

5.2. Numerical Experiment. Suppose a total of 1,000 drivers
travel from the start point r to the end point s in a certain
period. Travel along the nine paths was selected by the

Intelligent Traffic Management System

Process
Information

Design Traffic
Control Instruction

Intelligent Vehicle System

Interactive
Module

Display
Module

Intelligent Roadside System

Vehicle
Positioning

Module

Perception
Module

Communication
Module

Process Data
Module

Intelligent Communication System

5G Optical
Fiber

C-V2X

Figure 9: +e cooperative vehicle-infrastructure system.

Intelligent
Vehicle System

Intelligent Roadside
System

Intersection

V2X

Communication
Range at Left

Entrance

Intelligent Management System

5G

Optical Fiber

Calculate the
Turning

Waiting Time

Detect
Intersection
Information

Record driving data
and display route
recommendations

Figure 10: +e information interaction on the cooperative vehicle-infrastructure system.
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hyperpath algorithm (shown in Figure 9) and the only path
with the shortest time. Calculate the delays of vehicles at the
intersection, as shown in Table 5.

+e results in Table 5 show that compared with the
shortest path, applying the hyperpath guidance system in the
road network can reduce the delays by 5.8% and travel times
by 9.2%. It can be seen that the adoption of the hyperpath
guidance strategy can realize the reasonable distribution of
traffic in the network, reduce the delay at intersections, and
achieve the shortest travel time in the network.

6. The Hyperpath in Nanjing Local
Road Network

In order to validate our solution approach in a realistic
context, we built our hyperpath network based on the
local road network obtained from the center of Nanjing.
By taking an investigation, there are 49 intersections and

37 out of them are controlled by traffic signals. Also, 29
road segments are involved, and some of them are one-
way roads. +ree road types (i.e., the arterial street,
subarterial road, and branch road) are associated with
different design speeds. +e network is illustrated in
Figure 11.

According to the output of the algorithm in Section 3.3,
the optimal hyperpath is marked in Figure 12. Note that
node 37 is the origin, and node 1 is the destination.

If we employ the Dijkstra algorithm on this network, the
shortest path is 37-32-26-25-47-43-18-17-14-10-9-7-38-1,
and the shortest travel time is 1,142 s. However, from the
optimal hyperpath algorithm, the expected travel time is
1,093.88 s. Compared with the shortest path, the expected
travel time of the optimal hyperpath is reduced by 4.2%.+is
result clearly showed the application of the hyperpath al-
gorithm compared to the Dijkstra algorithm in terms of
delays and travel time.

Table 5: Hyperpath and single-path delay time comparison.

Hyperpath guidance under independence assumption

Label Route Number of vehicles
allocated

Expected vehicle delay
time (s/pcu)

Total delay time
(s/pcu)

Expected vehicle travel
time (s/pcu)

Total travel time
(s/pcu)

(1) r-2-3-4-9-14-
19-s 50

193.144 193,144 476.534 476,534

(2) r-2-3-4-9-14-
15-s 36

(3) r-2-3-4-9-10-
15-s 61

(4) r-2-3-8-13-
18-19-s 290

(5) r-2-3-8-13-
14-19-s 177

(6) r-2-3-8-13-
14-15-s 30

(7) r-2-3-8-9-14-
19-s 177

(8) r-2-3-8-9-14-
15-s 127

(9) r-2-3-8-9-10-
15-s 52

Shortest path guidance

Label Route Number of vehicles
allocated

Simple vehicle delay time
(s/pcu)

Total delay time
(s/pcu)

Simple vehicle travel time
(s/pcu)

Total travel time
(s/pcu)

(9) r-2-3-8-9-10-
15-s 1,000 205 205,000 525 525,000

Delays reduced by 5.8%
Travel times reduced by 9.2%
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Figure 11: Local road network in Nanjing.
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7. Conclusions

+is article offers an efficient way to generate the optimal
hyperpath set based on the signal timing and the CVIs for
use in vehicle route guidance systems. Under the maximum
pessimistic expectation assumption, this article generates the
maximum waiting time for each turn at the intersection.
Further, we find out the expected waiting time for linear
combination, which avoids processing a large amount of
data and accelerates the algorithm speed in the route
guidance system. +ere is a “recommendation priority
passable phase” strategy for the cooperative vehicle-infra-
structure system, leading to a real-time and exact vehicle
route guidance system.

For individuals, the driver can shift the driving route in
the hyperpath subnet for the use of the route guidance

system to avoid delays at intersections. As far as the overall
network, this can be proven that using a hyperpath algo-
rithm in the network will give a reasonable traffic distri-
bution. +us, the total travel time is reduced, and the
transportation network’s performance is improved, which
will produce substantial economic benefits. In order to meet
the increased demand for personalized travel, the hyperpath
guidance system can introduce corresponding demand
factors to change the objective function to improve network
performance and further achieve personalized guidance to
drivers. Meanwhile, it is vital to take into account the co-
operative vehicle-infrastructure system when vehicles are
guided. +e tests concluded that compared with the shortest
path, applying the hyperpath guidance system in the road
network can reduce the delays by 5.8% and travel times by
9.2%. Such properties make the hyperpath algorithm a
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Figure 12: +e optimal hyperpath from origin node 37 to destination node 1.
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promising solution for use in intelligent transportation
systems, which was confirmed by an experimental study
comparing the travel time and delay time with the shortest
path algorithms.

+ere are two assumptions about calculating the waiting
time of vehicles at intersections based on signal timing. One
is the assumption of maximum pessimistic expectations.+e
waiting time for each turn of the vehicle at the intersection is
red time plus yellow time. +e other is the independent
hypothesis, assuming that the vehicle’s phases are inde-
pendent of each other when calculating the expected waiting
time at the intersection. +ese two assumptions are ideal,
leading to a specific deviation from the actual situation.
Future research will further improve the mentioned as-
sumptions to make the hyperpath algorithm more suitable
for actual road network conditions.
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*e development of connected and automated vehicle (CAV) techniques brings an upcoming revolution to traffic management.
*e control of CAVs in potential conflict areas such as on-ramps and intersections will be complex to traffic management when
considering their deployment. *ere is still a lack of a general framework for dispatching CAVs in these bottlenecks, which is
expected to ensure safety, traffic efficiency, and energy consumption in real time. *is study aimed to fill the technique gap, and a
comprehensive cooperative intelligent driving framework is put forward to study the problem, which can be used in both on-ramp
and intersection scenarios. Based on a multi-objective evolutionary algorithm, CAVs are denoted as a sequence to be searched in
solution space, while a multitask learning neural network with adaptive loss function is implemented for optimization target
feedback to surrogate the simulation test procedure. *e simulation results show that the proposed framework can get satisfying
performance with low time and energy consumption. It can reduce time consumption by up to 16.51% for the on-ramp scenario
and 9.8% for the intersection scenario, while reducing energy consumption by up to 16.39% and 11.39% for the two scenarios.
Meanwhile, an analysis of computation time is carried out, illuminating the flexibility and controllability of the new strategy.

1. Introduction

Connected and automated vehicles are considered to play an
important role in improving traffic efficiency and saving energy
[1]. *e fickle driving behaviors can easily lead to a series of
problems, including traffic congestion, energy consumption,
and accident [2–4], but transport systems consisting of intel-
ligent vehicles canmake a difference using vehicle-to-everything
(V2X) communication and advanced control techniques [5–7].

*e development of connected and automated vehi-
cles (CAVs) brings both opportunities and challenges to
traffic management. As the bottlenecks in traffic orga-
nization, intersection and on-ramp become the research
hot spots in the domain [8–10]. Conventionally, the
vehicles must adhere to the traffic signals in urban

scenarios, and corresponding studies are proposed to
optimize the trajectory of vehicles in this case [1, 11, 12].
Considering the traffic environment composed of CAVs,
traffic signals can be eliminated because the information
on the road can be fully obtained [13], while the vehicles
on the road can be fully controlled. It is possible to
implement cooperative control for CAVs through V2X
communication [14]. *us, the design of a cooperative
driving strategy through the use of real-time traffic in-
formation becomes particularly important. Ann and
Colombo [15] pointed out that an effective cooperative
driving framework can work in different traffic scenarios
such as intersections, merging roadways, and round-
abouts. On account of the significance of cooperative
driving, the researchers proposed many theoretical
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methods to solve the problem for different scenarios.
Grand cooperative driving challenges were also organized
to promote its development in practice [16].

Some of the existing studies belong to the optimization-
based method. Yan et al. [17] proposed a dynamic pro-
gramming algorithm to evacuate vehicles at the intersection
as soon as possible. Zhu and Ukkusuri [18] put forward a
linear programming model to dispatch vehicles at autono-
mous intersections in order to minimize total travel time.
Besides, mixed-integer linear programming (MILP) is
widely used to obtain solutions [19–21]. However, Li and
Wang [13] proposed a framework based on the optimization
principle, which utilized a tree search algorithm to achieve
the same purpose. All of the listed studies focus on searching
for optimal solutions based on different prior hypotheses.

Relevant studies pointed out that the key to solving the
problem is determining the right-of-way for CAVs
approaching the merging area [22–24]. In other words, the
vehicles can be formulated as a passing sequence in the form
of arrays, and the performance of the schedule strategy
hinges on the way to generate the best passing order among a
large number of possible solutions.

In terms of generating passing orders, the existing
studies can be classified into two categories. One is the rule-
based strategy, which uses some heuristic rules to determine
the passing order of vehicles. Dresner and Stone [25, 26]
proposed a reservation-based system and assigned right-of-
way to vehicles on a first-come-first-served (FCFS) basis.
Although the effectiveness of the FCFS method can be
proved [26, 27], its rule-based nature always leads to feasible
but not optimal solutions. Moreover, the reservation-based
strategy cannot outperform traditional signal control in
some cases [28, 29]. While the rule-based strategies cannot
always perform very well, the other approach to generate
passing orders is introduced, called “planning-based strat-
egy” [13]. Meng et al. demonstrated that the planning-based
strategy could consistently outperform the FCFS method in
intersection scenarios by comprehensive simulations [30].
Actually, the planning-based strategy is a framework that
can search for optimal solutions in a huge solution space.
*e strategy is essentially a traversal problem with intol-
erable computational complexity. *erefore, consequent
studies focused on the reduction in computing time. Xu et al.
[31] proposed a grouping-based strategy, which groups
CAVs to reduce the count of possible solutions. In their
other study, a Monte Carlo tree is built to keep the trade-off
between coordination performance and computation time
[32]. Meanwhile, Zhang et al. [33] reported a framework that
utilized a neural network to surrogate the simulation test
process with the intent to reduce computation time.
However, the only optimization target they considered is
about traffic efficiency indexes such as passing time or total
delay, while the value of other targets such as energy con-
sumption or queue length is difficult to acquire. *is is
caused by the weakness of the trajectory interpretation al-
gorithm in their studies.

*erefore, there is still a lack of a real-time, multi-ob-
jective cooperative driving strategy that can be maneuver-
able and reliable. To this end, we design a multi-objective

discrete evolutionary algorithm (MODEA) to search for
(near) optimal passing orders, which combines the non-
dominated sorting method [34] and state transition algo-
rithm [35]. A multitask learning model is proposed to be a
regressor, which can give feedback of objective values to
MODEA. *e scenario is simulated by Simulation of Urban
MObility (SUMO) [36]. *e simulation results indicate that
the framework can be applied to different scenarios, per-
forming well even under a high concurrency environment.

*e rest of the study is arranged as follows: Section
“Problem Statement” gives the general form of cooperative
driving problems and traffic scenarios the paper studied.
Section “Methodology” presents the framework we pro-
posed, including the MODEA and multitask learning
method in detail. Section “Simulation and Analysis” pro-
vides the simulation results of a series of experiments. Fi-
nally, conclusions are given in Section “Conclusion.”

2. Problem Statement

Highway on-ramps and urban unsignalized intersections are
two typical scenarios for cooperative driving (see Figure 1).
Rios-Torres and Malikopoulos [37] pointed out that the two
mainstream frameworks in the cooperative driving field are
centralized coordination and decentralized coordination,
respectively, while the method proposed in this study be-
longs to the former. *e centralized frameworks rely on a
central controller responsible for computing and sending
control commands. *e controller has a communication
range (CR) that defines the boundary of communication and
control. *is article denotes the CR as a circle, which is
widely adopted in previous studies [30, 33, 38]. Only vehicles
within the CR will communicate with the controller and be
controlled.

Some followed assumptions are listed to make the
analysis and implementation easier:

(i) Lane-changing behaviors are prohibited in CR for
safety consideration.

(ii) *e system has no interference from pedestrians
and non-motor vehicles.

(iii) All CAVs can transmit id, position, speed, and other
precise information to the controller spontaneously.

(iv) *e vehicles are homogeneous pure electric CAVs
for estimating energy consumption. *e energy
model can be found in [39].

*e general form of the objective function in cooperative
driving can be defined as follows:

min
x

F(x) , (1)

where F is the function that represents queue length, energy
consumption, or traffic delay, and x is the independent
variable that will give rise to the optimization target. In this
study, two objects are considered: (a) the minimization of
time consumption to evacuate all CAVs in CR and (b)
electricity consumption for CAVs in the process of a
scheduling scheme.
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*e input of the function x denotes a passing sequence,
which can be denoted as follows:

x � CAV1,CAV2, . . . ,CAVn􏼂 􏼃 , (2)

where n is the number of vehicles in CR. Let f1 be the time
consumption to evacuate all CAVs in CR, and f2 be the
corresponding electricity consumption, and (1) can be
transformed to as follows:

min
x

f1(x), f2(x)􏼂 􏼃, (3)

Here, f1(x) can be denoted as follows:

f1(x) � te CAVn( 􏼁, (4)

where te represents the time when the vehicle CAVn exits
from CR. f2(x) can be denoted as follows:

f2(x) � 􏽘
n

i�1
􏽚

te CAVi( )

0
e CAVi( 􏼁, i ∈ (1, n), (5)

where e represents the energy consumption of CAVi in
discrete time, and readers can refer to [39] for the stepwise
energy consumption model.

3. Methodology

Figure 2 illustrates the procedure of the framework this study
proposed. *e framework uses MODEA with non-dominated
sorting and multitask neural network to reduce computation
time and implement multi-objective optimization. A pop-
ulation-based evolutionary algorithm is used to search solutions
in solution space, while the fitness value of every individual can
be obtained from a neural network, which plays the role of
target regressor. *en, the framework will be introduced in
detail.

3.1. Multitask Learning Model. It is found that carrying out
learning for tasks jointly can improve the performance
compared with conducting them individually [40]. *us, in
this study, a multitask deep learning model is trained to
target the evolutionary algorithm’s feedback. *erefore, the
task of the model is learning for target yield in each traffic
state. Here, we consider the time consumption and elec-
tricity consumption as the targets defined in equations (4)
and (5).

For performing the regression task, the input should be
appropriately expressed. As in equation (2), a passing se-
quence can be denoted as an array including CAV ids. We
define the encoding of a single CAV as follows:

Ei � pi, vi, ai, encode lanei( 􏼁( 􏼁, (6)

where pi is the position of CAVi from the beginning of the
lane, and vi is the speed, while ai represents the acceleration of
CAVi, andpi, vi, ai will be normalized for input into themodel.

In addition, encode(lanei) is the encoding of the lane
that the driving vehicle belongs to. *e encoding method is
different according to the different traffic scenarios. For the
on-ramp scenario shown in Figure 1(a), the one-hot
encoding is applied. However, in the intersection scenario,
considering the spatial relationship, we combine with ap-
proach direction and driving direction. Figure 3 shows the
encoding process that takes the scenarios in Figure 1 as an
example. For instance, vehicle D is coming from the west
approach, and it will turn left at the intersection, so the
encoding of its lane is (1, 0, 0, 0, 0, 1). Finally, a passing
sequence can be formulated as the concatenation of
encodings of CAVs.

When the vectorized representations of passing se-
quences are constructed, a neural network model can be
built to take the vectors as input. Similar to TextCNN
[41], we also use the convolutional neural network (CNN)
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Figure 1: Two typical cooperative driving scenarios in general road networks. (a) *e on-ramp in highway and (b) the unsignalized
intersection in urban road.
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to carry out the learning process, whereas CNN can
extract the features from original data automatically [42].
*e structure of the CNN-based multitask learning model
is shown in Figure 4. *e backbone part takes sequence
vectors consisting of several CAV encodings as inputs
and extracts latent feature representations for them; then,
the specific task part takes the feature representations as
input and output time consumption and energy con-
sumption of the sequences in a specific traffic scenario. In
the backbone part, one-dimensional convolution layers
with different scales of kernel size are applied to extract
features.

After determining the basic structure of the neural
network, the loss function should be specified to train the
learning model towards the optimization goals. Here,
considering the training process of two targets in two single-
task models, the loss functions are considered as mean
squared error (MSE), which is as follows:

MSE1 �
1
n

􏽘

n

i�1

􏽢f1 xi( 􏼁 − f1 xi( 􏼁􏼐 􏼑
2
,

MSE2 �
1
n

􏽘

n

i�1

􏽢f2 xi( 􏼁 − f2 xi( 􏼁􏼐 􏼑
2
,

(7)

where n is the count of test samples. 􏽢f1 and 􏽢f2 are predicting
values, while f1 and f2 are ground truth. Generally, the loss
function in the multitask learning model can be defined as
the naive weighted sum of losses, which is as follows:

L � ω1MSE1 + ω2MSE2, (8)

where the loss weights ω1 and ω2 are uniform or manually
tuned. *e performance of the model highly depends on the
settings of the weight parameters. Cipolla et al. pointed out
that the loss function can be calculated based on maximizing
the Gaussian likelihood with homoscedastic uncertainty
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Figure 2: Flowchart of the proposed framework.
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[43]. As a result, let fW(x) be the outputs of neural network
with weights W, and the likelihood as a Gaussian can be
defined as follows:

p fj(x)|f
W

(x)􏼐 􏼑 � Ν f
W

(x), σ2􏼐 􏼑(j � 1, 2) , (9)

where σ is a scalar that represents observation noise. Let
􏽢fj(x) be the sufficient statistics; then, the multitask likeli-
hood can be derived from the following:

p f1(x), f2(x)|f
W

(x)􏼐 􏼑 � p f1(x)|f
W

(x)􏼐 􏼑 · p f2(x)|f
W

(x)􏼐 􏼑

� Ν f1(x); f
W

(x), σ21􏼐 􏼑Ν

· f2(x); f
W

(x), σ22􏼐 􏼑.

(10)

Taking logarithmic form, the new loss function can be
defined as follows:

−log p f1(x), f2(x)|f
W

(x)􏼐 􏼑∝
1
2σ21

f1(x) − f
W

(x)
2

+
1
2σ22

f2(x) − f
W

(x)
2

+ log σ1σ2 �
1
2σ21

MSE1 +
1
2σ22

MSE2 + log σ1σ2.

(11)

Notice that σ1 and σ2 are the denominators in equation
(11). To avoid division by zero errors, the logarithmic form is
used for the actual training process:

ςj � logσ2j(j � 1, 2) . (12)

Finally, the loss function is given in equation (13), which
can be adaptive during the training process.

L �
1
2

e
− ς1MSE1 + e

− ς2MSE2 + ς1 + ς2( 􏼁 . (13)

4. Multi-Objective Discrete
Evolutionary Algorithm

Generally, the average count of possible passing sequences in
cooperative driving grows almost exponentially with the
increase in numbers of CAVs in CR [30].*us, searching for

the best solution is hard when the number of CAVs is large,
so this study proposes a population-based evolutionary al-
gorithm to obtain (near) optimal passing order from this
perspective.

In multi-objective optimization problems, the Pareto
optimal solution is used to select according to the practical
problem [44]. *e conception of the Pareto optimal solution
set is introduced as below. First, in this minimization
problem, solution x0 Pareto dominates x1 only if:

fj x
0

􏼐 􏼑≤fj x
1

􏼐 􏼑, ∀j � 1, 2

fj x
0

􏼐 􏼑<fj x
1

􏼐 􏼑, ∃j � 1, 2.
(14)

We use the corresponding symbol to denote the dom-
ination relationship:

x
0≻x1

, (15)

which represents that x0 dominates x1. If there is not any
solution that dominates x0, then x0 will be called the non-
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Figure 4: Structure of the proposed neural network. *e backbone layer is for feature extracting, and the specific task layer is for different
regression tasks.
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dominated solution. Accordingly, the Pareto optimal solu-
tion set Ps can be defined as the set consisting of all the non-
dominated solutions. *erefore, the primary purpose of the
algorithm is to search corresponding Pareto optimal solu-
tions. If there is more than one element in the Pareto optimal
solution set, two kinds of heuristic strategies can be used:

(i) Delay-first strategy (DFS): always choose the solu-
tion with minimal time consumption from Ps.

(ii) Energy-first strategy (EFS): always choose the so-
lution with minimal energy consumption from Ps.

*e form of the candidate solutions in the algorithm is
denoted as equation (2), while the initialization operation is
generating n different integers with ranges from 1 to n. *e
feasible solutions make up a population in the evolutionary
algorithm. Considering that lane-changing behavior is
prohibited in CR, some solutions will be illegal. For example,
in Figure 1(a), the passing order [C, A, B] cannot be ac-
cepted as candidate solution because A is supposed to be in
front of C. Hence, a repair operation is applied to repair
illegal sequence, which is defined as follows:

_x � Mrx, (16)

where _x represents a passing sequence that can be a can-
didate, and Mr is a matrix that carries out the repair op-
eration. *e matrix is constructed according to the order of
vehicles on the lanes. For unfeasible sequence [3, 1, 2], which
represents “C-A-B” in Figure 1(a), Mr is as follows:

Mr �

0 1 0

1 0 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (17)

*en, [3, 1, 2] will be transformed to [1, 3, 2], which
represents “A-C-B,” and it will be legal.

*e proposed algorithm uses selection operation,
crossover operation, state transition with swap operation,
shift operation, and symmetry operation for population
evolution. Corresponding operations can be described as
follows.

4.1. Selection Operation. Non-dominated sorting tech-
nique is used for layering individuals. Algorithm 1 shows
the process of non-dominated sorting. In the algorithm, c

is the non-dominated level, and XN is the set of all the
non-dominated solutions in P; fitness represents the
virtual value of individuals, which is used for selection
operation. Eventually, the roulette wheel method is ap-
plied to choose individuals in the population; then, the
crossover operation can be carried out. In the roulette
wheel method, the selection probability of individual i is
defined as follows:

Pr(i) �
cf − fitness(i)

􏽐
cf−1
j�1 j

, (18)

where cf is the value of c after iterations in Algorithm 1.

4.2.CrossoverOperation. Tie-breaking crossover is introduced
in this study [45]. *is operation can prevent two identical
orders from appearing in a sequence, and the procedure is
indicated in Figure 5. *e start positions and length of sub-
sequences are generated randomly, so the results after crossover
could be with duplicated items. A crossover map will also be
generated, and the crossover map is actually a random order of
integers 0, 1, . . . , n − 1. Accordingly, the new sequences after
exchange can be transformed by multiplying the length of the
sequence and adding the crossover map. Finally, as shown in
Figure 5, offspring can be produced by sorting operation
according to phase 3.

4.3. State Transition. *e state transition procedure is
probabilistic in the light of predefined probability value p.
In this study, the value of p is set to 0.2 to keep the trade-
off between exploration and exploitation. *e state
transition operations include swap, shift, and symmetry
[35]. Swap transformation is used for randomly ex-
changing subsequences in passing sequences; shift
transformation is used for subsequence translation, and
symmetry transformation means two subsequences
symmetrical about a selected central point exchange their
values. *ese operations can be implemented by several
matrixes, which can be denoted as follows:

xk+1 � Msymmetry Mshift Mswapxk􏼐 􏼑􏼐 􏼑, (19)

where xk+1 is a passing sequence after k iterations.
Msymmetry, Mshift, and Mswap represent the matrix, which
implements symmetry operation, shift operation, and
swap operation, respectively. Figure 6 illustrates the three
transformations. *e length of subsequences is a
hyperparameter for swap transformation and shift
transformation. *e values of these two operations are
generated randomly according to the number of CAVs.
While for symmetry operation, the length of subse-
quences and the position of the symmetry center can be
generated randomly. Note that the boundary condition
will be processed here when the indexes of elements may
be out of bounds.

5. Vehicle Control

When a passing order is determined, CAVs can move in the
light of the sequence. First of all, themotion of vehicles needs
to be constrained by the speed limit and acceleration ability:

0≤ vi ≤ vmax,

dmax ≤ ai ≤ amax,
(20)

where vmax denotes the maximum speed limit on the road,
and dmax is the maximum deceleration, while amax is the
maximum acceleration constraint by vehicle dynamics.

*e virtual vehicle mapping method is used in the
framework to ensure safety [46, 47]. Taking the case in
Figure 1(a) as an example, if the passing order is “A-C-B,”
then C will be mapped into lane1−1. CAV B will then follow
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a virtual vehicle mapped by CAV C, which means the
mode of motion of CAVs will be divided into two cases:
free driving and car following, respectively. *e control
process of the CAVs in sequences can be given by Al-
gorithm 2. Accordingly, Conflict is a function to judge
whether there are potential conflicts between x[i] and
x[j]. Carfollowing is a function to guide vehicle x[i] to
follow vehicle x[k]. *e equation of Carfollowing can be
denoted as follows:

min􏽚
t1

t�t0

pk − pi − Δs
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dt, (21)

where t0 is the start time and t1 is the time when x[i]

arrives at the conflict zone or stop line. In addition, Δs is
the value of the safe gap between two consecutive CAVs.
*e gap here represents the distance from the front of the
following vehicle to the rear of the leading vehicle. If x[k]

is a real CAV, the value is set to €Δs, and if x[k] is a virtual
vehicle, a correction factor should be added to it, which
can be denoted as follows:

Δs � €Δs + b × L
M
i , (22)

where b is a bool variable, if x[k] is virtual, the value of b will
be 1, and LM will be the distance for x[i] to cross the conflict
zone.

Using Algorithm 2, the first CAV in sequence drives
freely, and a CAV with a minimal relative distance with the
first CAV in the rest of the sequence is chosen as car fol-
lowing target.

Finally, if a passing sequence is determined, it will not be
altered unless the set of CAVs in CR changes.

6. Simulation and Analysis

6.1. Simulation Platform and CNN Training. *is study uses
the microscopic traffic simulation software SUMO to study
the cooperative driving strategy in two traffic scenarios in
Figure 1. Under the premise of comprehensive consideration
of reality, the simulation settings are given in Table 1. *e
simulation step is set to 0.2 s for smoother time-continuous
control. *e radius of CR in the on-ramp scenario is set to
1000m by considering the communication capability [38].
Meanwhile, we set the radius parameter to 200m in the
urban intersection scenario because the speed of vehicles in
this case is slow, while 200m is enough for vehicle braking.

First of all, more than 50000 records were collected in
SUMO for each traffic scenario to serve as the training data.
*e records include encoding of passing sequence and the
combination of two regression targets. We use message-
digest algorithm 5 (MD5) to delete duplicated data to ensure
the uniqueness of the records. Because the length of CAV
encoding in the two scenarios is 5 and 9, respectively, the
convolution kernel sizes are set to [2, 3, 4] and [2, 5, 7] to
extract different scales of features. *e Adam optimizer is
used to optimize the weights and biases for the network, and
a step decay schedule for learning rate is implemented in the
training process for better performance. Accordingly, the
rest of the hyperparameters (e.g., batch size, the initial
learning rate, and the scales of dense layers) were tuned
automatically by applying tree-structured Parzen estimator
(TPE), which can search significantly better results com-
pared with random search methods [48].

Input: Init population P

(1) : c⟵ 1
(2) : while length (P)> 0
(3) : B⟵XN

(4) : for each b ∈ B

(5) : fitness (b)⟵ c

(6) : end
(7) : c⟵ c + 1
(8) : Delete B from P

(9) : end

ALGORITHM 1: Non-dominated sorting.

Phase1: exchange

Phase2: generate
crossover map randomly

Phase3: multiplication
and addition

Phase4: sorting according
to result in phase3

original individuals
5 3 1 4 2

1 2 4 5 3

5 3 4 5 2

1 2 1 4 3

4 1 0 3 2

29 16 20 28 12

9 11 5 23 17

5 2 3 4 1

2 3 1 5 4

Figure 5: Procedure of tie-breaking crossover.
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6.2. Simulation Results. To evaluate the proposed strategy
comprehensively, we carried out two kinds of simulations
based on the pre-trained CNN model. One is a discrete
simulation, which is used for observing the performance of
the framework under different static numbers of vehicles to
be scheduled. *e other is a continuous simulation, which
is served to evaluate the framework in different traffic de-
mand levels using the trace data exported from SUMO.

We choose the FCFS strategy as a baseline, whereas it is
generally used in the domain. *e iteration step and pop-
ulation size inMODEA are set to 30 and 40, respectively. We
generate different numbers of CAVs distributed in lanes
randomly for the two scenarios, and the results of the
discrete simulation are shown in Figure 7. Obviously, the
proposed method always has a better performance than the
FCFS method. While in the on-ramp scenario, the gap
between the two methods becomes more significant with the
increase in CAVs.*us, the capability of global optimization
of MODEA can be verified, while the rule-based FCFS
method is regarded as weak to get satisfying solutions.

Meanwhile, when there is more than one solution in the
Pareto front, the final sequence can be chosen manually
according to specific requirements.

As for continuous simulation, different arrival rates of
CAVs are deployed for 2000 simulation steps, and the trace
data are exported per 4 times steps. *e trace datasets in-
clude the information of CAVs such as position, speed, and
acceleration, and then, we reload these data in SUMO and
carry out simulations. In other words, the same trace data are
used for result comparison so that the randomness can be
eliminated.

All results presented are averaged over 10 independent
runs, when the best results are shown in bold in Table 2.
According to Table 2, there is no significant difference be-
tween DFS and EFS, which may be caused by the regression
error of the neural network. However, with the increase in
CAV arrival rate, the difference in results between FCFS and
the proposed framework gets more remarkable. It demon-
strates that the MODEA can optimize the two objectives
jointly.

swap

shift

symmetry

symmetry
center 

5 3 1 4 2

5 3 1 4 2

5 3 1 4 2

5 3 2 4 1

5 3 4 2 1

5 4 1 3 2

Figure 6: Sketch of swap operation, shift operation, and symmetry operation. *e length of subsequences in this figure is 1.

Input: *e passing sequence x

(1) : for i ∈ 1: length(x)

(2) : if i � 1
(3) : ai � (vi − vmax)&&amax
(4) else
(5) : k⟵ 1, rp1 � p1 − pj − Δs
(6) : for j ∈ 2: i

(7) : rpj � pi − pj − Δs
(8) : if Conflict(x[i], x[j])&& rpj < rp1
(9) : k⟵ j

(10) : end
(11) : Carfollowing(x[i], x[k])

(12) : end
(13) : end
(14) : end

ALGORITHM 2: Simple sequence control.
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Table 1: Parameter configuration in simulation.

Item Value Unit
Generic settings
Maximum acceleration of CAVs 2.6 m/s2
Maximum deceleration of CAVs 4.5 m/s2
Length of single lane 1000.0 m
Size of single simulation step 0.2 s
Safe gap €Δs 2.5 m
For on-ramp scenario
Road speed limit 120.0 km/h
Radius of CR 1000.0 m
For intersection scenario
Road speed limit 60.0 km/h
Radius of CR 200.0 m
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Figure 7: Continued.
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7. Discussion about Computation Time

In cooperative driving tasks, the computation time of al-
gorithms is vital to ensure safety and efficiency. We focus on
the time performance of the proposed framework in this
part, and we only consider the on-ramp scenario for eval-
uating computation time because the time complexity of the
algorithm in the two scenarios is equal. All experiments were
conducted using Julia programming language on Windows
10 operating system with Intel CORE i7-10750H CPU.
Meanwhile, BenchmarkTools.jl package is used to precisely
evaluate the computation time performance [49].

As Figure 8 shows, the computation time of the proposed
method mainly depends on the population size of MODEA,
while the number of CAVs in CR has little effect on the
computation complexity, which means that we can control
the computation time flexibly by setting the population size
of the algorithm manually.

Meanwhile, the influence of computation time on the
traffic system should be discussed. First, safety is always the
most primary goal to be achieved. *e impact of computing
time on safety considerations will be reflected in the safe gap
€Δs. *e €Δs can be roughly revised with the time con-
sumption td:
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Figure 7: Performance of the proposed framework compared with FCFS strategy under different CAV number circumstances. (a) For
on-ramp scenario and (b) for intersection scenario.
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Δs’ � €Δs + td × vmax, (23)

where vmax is used for ensuring safety under any circum-
stance, so that Δs will be changed in simulations in terms of
equation (22).

*en, we carry out a series of simulations using the
same trace data exported from SUMO to compare the
performance of the control framework under different
computation delays. In the test, the delay caused by

computation varies from 0.1 s to 0.4 s, while DFS is
chosen to get solutions. Figures 9(a) and 9(b) show the
time consumption and energy consumption under dif-
ferent circumstances. On average, the FCFS rule will
outperform the proposed framework in the time con-
sumption aspect when the computation delay reaches
0.3 s, and it will have almost identical performance in the
electricity consumption aspect when the computation
delay reaches 0.4 s.

Table 2: Simulation result comparison.

FCFS MODEA-DFS MODEA-EFS Optimization
Rate (%)

Time cost (s) Energy cost (Wh) Time cost
(s)

Energy cost
(Wh) Time cost (s) Energy cost (Wh) Time Energy

On-ramp scenario
400 veh/(lane · h) 71.5 ± 9.2 302.9 ± 88.0 71.1 ± 9.1 302.2 ± 88.8 71.1 ± 9.2 298.8 ± 86.8 0.56% 1.35%
600 veh/(lane · h) 75.4 ± 7.7 488.8 ± 132.4 74.6 ± 7.9 479.0 ± 129.5 75.0 ± 7.6 475.3 ± 128.0 1.06% 2.76%
800 veh/(lane · h) 80.5 ± 6.8 679.8 ± 172.8 79.0 ± 7.0 658.9 ± 168.7 79.9 ± 7.2 653.0 ± 167.2 1.86% 3.94%
1000 veh/(lane · h) 90.1 ± 7.9 933.5 ± 239.2 82.8 ± 6.6 833.3 ± 220.0 83.2 ± 6.9 831.7 ± 210.5 8.10% 10.91%
1200 veh/(lane · h) 106.6 ± 10.5 1276.3 ± 324.1 89.0 ± 8.4 1070.9 ± 277.6 90.0 ± 8.1 1067.1 ± 274.9 16.51% 16.39%
Intersection scenario
400 veh/(lane · h) 41.4 ± 12.7 140.2 ± 49.5 41.0 ± 12.9 137.8 ± 48.3 41.7 ± 12.8 140.0 ± 49.4 0.10% 1.71%
600 veh/(lane · h) 58.6 ± 15.6 293.5 ± 150.5 56.7 ± 14.4 287.3 ± 141.3 57.1 ± 14.5 288.9 ± 142.9 3.24% 2.11%
800 veh/(lane · h) 106.5 ± 44.2 951.5 ± 661.3 98.2 ± 37.4 861.9 ± 574.0 98.6 ± 38.5 861.4 ± 572.1 7.79% 9.47%
1000 veh/(lane · h) 141.8 ± 60.9 1468.5 ± 829.0 127.9 ± 35.9 1323.5 ± 639.4 130.4 ± 38.5 1301.3 ± 610.2 9.80% 11.39%
1200 veh/(lane · h) 197.4 ± 44.9 2572.5 ± 812.1 182.3 ± 42.9 2384.1 ± 780.9 186.7 ± 57.8 2352.6 ± 779.8 7.65% 8.55%
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Figure 8: Average computation time of the proposed framework based on the different number of CAVs and population size in MODEA.
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8. Conclusions

Over the last few years, many methods have been put
forward in the cooperative driving field, but the con-
trollability of optimization objectives and the efficiency of
algorithms are still difficult to deal with. Based on the
combination of evolutionary algorithm and machine
learning technique, this study proposes an intelligent
framework that considers both the delay and the energy
consumption of vehicles. An encoding approach of CAVs
is implemented, and a passing sequence of CAVs is ap-
proximately regarded as a sentence in natural language so
that the TextCNN can be applied to extract features.
Compared with other frameworks, it has some significant
advantages:

(i) Controllability and flexibility: the optimization ob-
jectives and computation time can be adjusted
manually, and it can be instrumental under different
design requirements.

(ii) General applicability: similar to FCFS protocol, the
framework can be applied in different cooperative
driving scenarios such as intersection and on-ramps.

In future research, a more concrete vehicle control method
is supposed to be studied for practicability.Moreover, the neural
network this study implements can only deal with a finite
number of cases because the input length for the network is

fixed. *erefore, the maximum number of CAVs must be
assigned, and the zero paddings will be used if the number of
CAVs is less than the predefined maximum length. Hence, the
form of the neural network and CAV encodings can be further
studied for better performance; for example, the encoder-de-
coder structure can be applied to study the cases of different
numbers of CAVs. Finally, the lane-changing behavior of ve-
hicles and pedestrian crossing rules can be considered in the
system.However, amore complex butmore realistic systemwill
be put before us to study.
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Aiming at the traffic flow prediction problem of the traffic network, this paper proposes a multistep traffic flow prediction model
based on attention-based spatial-temporal-graph neural network-long short-term memory neural network (AST-GCN-LSTM).
+e model can capture the complex spatial dependence of road nodes on the road network and use LSGC (local spectrogram
convolution) to capture spatial correlation features from the K-order local neighbors of the road segment nodes in the road
network. It is more accurate to extract the information of neighbor nodes by replacing the single-hop neighborhood matrix with
K-order local neighborhoods to expand the receptive field of graph convolution. +e high-order neighborhood of road nodes is
also fully considered instead of only extracting features from first-order neighbor nodes. In addition, an external attribute
enhancement unit is designed to extract external factors (weather, point of interest, time, etc.) that affect traffic flow in order to
improve the accuracy of the model’s traffic flow prediction. +e experimental results show that when considering the static,
dynamic, and static and dynamic combination, the model has excellent performance: RMSE (4.0406, 4.0362, 4.0234), MAE
(2.7184, 2.7044, 2.7030), accuracy (0.7132, 0.7190, 0.7223).

1. Introduction

Traffic forecasting is an important field in the research of
intelligent transportation [1], and effective traffic flow
forecasting can alleviate traffic congestion, travel planning,
and traffic management for individual drivers and decision-
makers [2, 3].+e complex temporal and spatial correlations
between traffic flows will show huge differences affected by
external emergencies [4], dynamic factors, and static factors.
Ahmed [5] and others proposed an autoregressive integrated
moving average model (ARIMA) model that can only deal
with nonstationary time series data. It is difficult to explore
connections between dynamic data and is no longer suitable
for current application scenarios. In addition, though tra-
ditional linear methods such as a series of Kalman filtering
methods proposed and improved by Stephanedes [6], Xie
(2007) [7], Ojeda (2013) [8], Guo [9] have improved the
accuracy of traffic prediction in some aspects, its ability to fit

nonlinear traffic flow data is still poor, and it increases the
prediction time [10–12].

With the development of computer capabilities, typical
machine learning methods, such as support vector regres-
sion (SVR) [13, 14], k-nearest neighbor algorithm [15, 16]
K-NN (K-NearestNeighbor), and decision tree models
[17–19], can dig out the essential laws and rich information
hidden in traffic flow from massive data [20], and better
promote the development process of traffic flow forecasting.

+e emergence of deep neural network models has
enabled the development of the potential of artificial in-
telligence in traffic prediction. Although some simple net-
work structures can improve the accuracy of model traffic
prediction [21], there are problems such as slow conver-
gence, prone to over-fitting, and prone to error values [22].
Compared with the traditional neural network model, re-
current neural network (RNN) [23], long short-term
memory network (LSTM) [24], and gate recurrent unit
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(GRU) [25] can effectively use the self-loop system and learn
time series features to improve the effectiveness of predic-
tion. +erefore, it is used as a component of each model to
predict traffic speed, travel time, traffic flow, etc.

In order to capture the spatial dependencies in the traffic
road network, researchers [26] extract spatial features
combined with convolutional neural networks (CNN) from
two-dimensional spatiotemporal traffic data. +e descrip-
tion of the traffic structure using two-dimensional spatio-
temporal data is not accurate and does not conform to the
complex road network conditions in real life so some
scholars [27] have begun to try to convert the structure of the
traffic network into images and use CNN to learn the traffic
images in order to capture the spatial characteristics.
However, there is more or less noise in the images converted
by the traffic network structure, and the existence of noise
will inevitably cause CNN to capture false spatial relation-
ships. Traditional methods based on CNN cannot essentially
deal with the topological structure and physical properties of
the traffic network. Recent studies [28, 29] also tried to
convert the traffic state data into a three-dimensional (3D)
matrix and use 3D convolutional networks to extract
characteristics in deeper levels. Researchers [30] learned the
traffic network as a graph and extract features from the graph
structure of the traffic network using convolution operators
based on graphs, which effectively learns the changes in
traffic flow under the temporal and spatial attributes and
achieves great forecast results.

After considering the dynamic change characteristics of
the traffic network, this paper proposes the AST-GCN-
LSTM model, which can predict the future traffic state
according to historical traffic flow information on roads and
external auxiliary information. Since traffic flow is affected
by a variety of external factors (actual factors) such as
weather, holiday, and time, in this article, we predict the
traffic speed in the future based on the traffic speed in the
past period of time and the external factors that affect the
traffic flow.+is is of great significance for realizing dynamic
traffic signal optimization, dynamic traffic management
planning, and traffic management decision [31].

2. Method

2.1. +e Introduction of Basic Algorithms

2.1.1. Graph Neural Network (GCN). +e transportation
network can be regarded as a graph composed of nodes and
edges, so the transportation network as a graph structure has
been used for dynamic shortest path routing [32], traffic
congestion analysis [33], and dynamic traffic allocation [34].

+e most commonly used method for our research on
graph networks is to introduce a spectrum frame in the
spectrum domain [35] and obtain the spectrogram convo-
lution model by designing the spectrum convolution based
on the graph Laplacian matrix. In order to reduce the
number of parameters and save the amount of calculation,
we use the local spectrogram convolution with polynomial
filter, but the Laplacian matrix power operation still requires
a lot of calculation and high complexity, and to reduce the

complexity, the Chebyshev polynomial is introduced to
calculate the K-order local convolution, which can reduce
the computational time complexity from the square level to
the linear level.

As shown in Figure 1, the spectrogram convolution
model using Chebyshev polynomial approximation can
capture features from the K-order local neighbors of the
vertices in the graph, fully taking into account the high-order
neighborhood of the node instead of extracting features
from the single-hop neighborhood only. +is chapter ex-
pands the receptive field of graph convolution by replacing
the single-hop neighborhood matrix with the K-order local
neighborhood, which can extract the information of
neighbor nodes more accurately.

2.1.2. GCN-LSTM Structure. To capture the complex spatial
correlation and dynamic time correlation of traffic data in
the real world, we have added a long- and short-term
memory neural network LSTM. LSTM is an improved re-
current neural network (RNN), and LSTM has better per-
formance than ARIMA when the training time series is long
enough [36, 37]. +e basic unit of the hidden layer of LSTM
is a special cell unit, not a traditional neuron node. It is this
special memory unit that enables LSTM to successfully solve
the defect of RNN gradient explosion and also capture the
temporal correlation of traffic flow. +e overall structure of
the GCN-LSTM structure is shown in Figure 2. In order to
capture the complex spatial correlation and dynamic time
correlation of traffic data in the real world, we combine the
GCN with LSTMmodels. +e function of the GCN model is
to generate a graph of the traffic information of the road
segment based on a given graph structure. It learns the
representation of the road segment by integrating the
characteristics of the local neighbors of the node and cap-
tures the spatial dependence of these road segments in the
road network at each timestamp. +en, these time-varying
feature representations are input into the LSTM model to
capture the time dependence [38, 39].

2.2. AST-GCN-LSTM Spatiotemporal Graph Convolution
Model

2.2.1. Attribute Augmentation Unit. On the basis of the
GCN-LSTM traffic flow model introduced in Section 2.1.2,
we have added an attribute augmentation unit. As shown in
Figure 3, static external attribute features and dynamic
external attribute features expand the dimensions of the
original traffic feature matrix through attribute augmenta-
tion units.

At time t, traffic information matrix Xt is extracted from
the historical feature matrix X � (X1, . . . , Xt), and
{Lt− w, Lt} is the set of dynamic attribute features of w+ 1
time windows. In different timestamps, the static attribute
feature set of H is always unchanged. L and H are merged to
generate an augmented matrix Pt. +e problem of multistep
traffic flow prediction can be expressed as

􏽢y � f(A, X, P). (1)
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Figure 1: K-hop neighbors of graph convolution.
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+e model learns the complex spatial dependence, dy-
namic time dependence, and external dependence in traffic
data. In this model, the gate structure and hidden state in
LSTM are unchanged, but the input is replaced by the graph
convolution feature. At time t, the input gate, output gate,
forget gate, and input unit are defined as formulas (2) to (7):

ft�σ Wf · gc pt, A( 􏼁, ht−1􏼂 􏼃 + bf􏼐 􏼑, (2)

it � σ Wi · gc Pt, A( 􏼁, ht−1􏼂 􏼃 + bi( 􏼁, (3)

􏽥ct � tanh Wc · gc Pt, A( 􏼁, ht−1􏼂 􏼃 + bc( 􏼁, (4)

ct � ft ∘ ct−1 + it ∘􏽥c, (5)

ot � σ W∘ · gc Pt, A( 􏼁, ht−1􏼂 􏼃 + b∘( 􏼁, (6)

ht � ot ∘ tanh ct( 􏼁. (7)

+e sign “∙” is a matrix multiplication operator, Wf, Wi,
Wc, and Wo are weight matrices that map the input to the
states of three gates and input units, and bf, bi, bc, and bo

are four deviation vectors. s is the activation function of
the gate, which is usually the sigmoid function. Tanh is
the hyperbolic tangent function, and gc(·) represents
the graph convolution operation (Chebyshev polynomial
approximation).

2.2.2. Loss Function. In the process of model training, loss is
chosen as the training target to optimize the error of
multistep prediction and make the prediction result close to
the real traffic state. +erefore, the loss function used in
multistep traffic prediction AST-GCN-LSTM can be
expressed as follows:

Loss � L yT, 􏽢yT( 􏼁 � yT − 􏽢yT

����
���� + ρLreg. (8)

L (∙) is a function to calculate the error between the
predicted 􏽢yT value and the true value yT. Here, Lreg rep-
resents a regular term avoiding over-fitting of themodel, and
ρ is a hyperparameter that is learnable in the network.

2.2.3. AST-GCN-LSTM Spatiotemporal Graph Convolution
Model. +e GCN-LSTM traffic flow model introduced in
Section 2.1.2 is combined with the attribute expansion unit
in Section 2.2.1. A multistep traffic flow prediction model
(AST-GCN-LSTM) that considers external factors is also
proposed. +is model fully takes the external attribute
characteristics that affect the traffic flow into account.
Figure 4 shows the overall framework of the model, which is
mainly composed of data preprocessing, attribute expan-
sion, and spatiotemporal graph convolutional layers. In the
model, we set the number of neural units in all hidden layers
to 64, the batch size to 64, the learning rate to 0.001, the order
of the Chebyshev polynomial to 3, and the maximum
number of training iterations to 3000. +e Adam optimizer
is used to train the model. +e data set is divided into two
parts, 80% of the data are used for training, and 20% of the

data are used for testing. After dividing the data set into two
parts, we generate sequence samples through a time window
whose width is T+T′.

2.3.DataSet. +e traffic speed data set of the real-world road
network is used in this article to evaluate the model per-
formance. +is public data set contains the taxi trajectory
data of every 15 minutes setting on 156 roads from January 1
to January 31, 2015. +e data sampling location is Luohu
District, Shenzhen, Guangdong Province. +e data mainly
include the following 4 parts:

(1) Adjacency matrix: the data set selects 156 roads, so
the size of the adjacency matrix A is 156 ∗ 156. +e
adjacency matrix represents the connectivity be-
tween segments. Each row of the matrix represents a
road. If there are links connecting nodes i and j, then
the element in the adjacency matrix Ai,j � 1. If there
are no links connecting nodes i and j, the element in
the adjacency matrix Ai,j � 0.

(2) Feature matrix: the feature matrix size of the data set
is 2976 ∗ 156. +e feature matrix is the speed value
of 156 roads in 31 days. Each column represents a
road, and each row represents the traffic speed value
of 156 roads at a certain time τ. Speed information is
collected every 15 minutes.

(3) Static attribute characteristic matrix: the point-
of-interest (POI) information on 156 roads is
provided in the data set. POI categories include
the following nine types: catering, business,
shopping, transportation, education, life, medical
care, accommodation, and others. When
determining the POI category of each road, the
POI distribution on each road is calculated firstly,
and then, proportions of the various categories of
POIs are calculated. After comparing the pro-
portions of the various categories of POIs, the POI
with the largest proportion is used as the static
feature of the road. +e size of the static attribute
feature matrix is 156 ∗ 1.

(4) Dynamic attribute feature matrix: weather con-
ditions of every 15 minutes in January are provided
by the data set, which can be divided into five
categories: light rain, heavy rain, cloudy, foggy,
and sunny. Time information includes the time of
day, weekdays, and weekends. Because they will
have a significant impact on the traffic state, this
section also takes it into consideration. +e size of
the three types of external attribute feature ma-
trices is 2976 ∗ 156.

2.4. Evaluation Index. +ree commonly used traffic fore-
casting indicators are as follows: mean absolute error
(MAE), accuracy, and root mean square error (RMSE)
[31] are used to evaluate the performance of the proposed
model and the comparison model. +e formula is from (9)
to (11):
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MAE �
1
n

􏽘

n

i�1
yT − yT

∧
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (9)

accuracy � 1 −
yT − yT

∧
������

������F

yT

����
����F

, (10)

RMSE �

��������������

1
n

􏽘

n

i�1
yT − yT

∧
􏼒 􏼓

2

􏽶
􏽴

. (11)

where n is the total number of test sets and yT and 􏽢yT

represent the true and predicted values of the flow.

3. Analysis of Experimental Results

3.1. Analysis of Static Attribute. In order to evaluate the
overall performance of our proposed AST-GCN-LSTM
model, we compare it with other traditional and common
models. +ese models are as follows:

(1) Historical average model (HA): HA models the
traffic flow as a seasonal cyclical process and uses the
average value of the previous seasons (for example,
the flow value of the same time period in the previous
days) as the predictive value

(2) Autoregressive integrated moving average model
(ARIMA): the autoregressive integrated moving

average model (ARIMA) with Kalman filter is widely
used in time series forecasting. It predicts the series
by fitting time series data.

(3) Support vector regression (SVR): linear support
vector machine is used to predict the regression task
of traffic flow sequence

(4) Diffusion convolution recurrent neural network
(DCRNN): diffusion convolution recurrent neural
network formulates the diffusion process in graph
convolution and uses a two-way random walk to
capture the spatial correlation of the traffic flow in
graphs. An encoder-decoder is used to capture the
temporal correlation of the traffic flow, and the
diffusion convolution GCN is combined with the
recursive model in prediction.

(5) GCN-LSTM: the combination of LSGC and LSTM
model using Chebyshev polynomial approximation
is introduced in Section 2.1.1.

Among them, HA, ARIMA, and SVR are traditional
nonneural network models, DCRNN is a deep learning
model that can capture spatial features, and GCN-LSTM
is a deep learning model that comprehensively considers
the spatial features and dynamic correlation of traffic
data.

Table 1 shows the overall prediction performance of the
AST-GCN-LSTM model and five representative methods.
+ree indicators, root mean square error (RMSE), mean
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absolute error (MAE), and accuracy (accuracy) evaluation,
are used in the comparison of performances.

According to Table 1, it can be concluded that, from the
results of the 15-minute prediction window, compared with
the traditional models, HA, ARIMA, and SVR, the RMSE
value of the AST-GCN-LSTM model decreases by 3.07%,
44.43%, and 2.95%. Compared with the HA model and the
SVR model, the accuracy value is increased by 14.69% and
1.56%, respectively. +is shows that HA, ARIMA, and SVR
cannot compete with other methods because the data have
complex spatiotemporal correlation and high-dimensional
features, and nonneural network methods are not suitable
for such network-wide prediction tasks Accounting for
external attribute features, the RMSE value of the AST-
GCN-LSTM model that takes all external attributes into
account is 10.59% and 2.33% lower than that of the DCRNN
model and GCN-LSTM model. +e value of MAE is lower
than that of the DCRNNmodel and GCN-LSTMmodel and
reduces by 14.73% and 2.42%. According to Table 1,
compared with traditional methods and other methods
based on deep learning, the model proposed by this article
has achieved significant improvements proving the effec-
tiveness of the model.

3.2. Analysis of the External Attribute. In order to verify the
influence of external attribute characteristics in traffic flow
prediction, corresponding comparative experiments are
done. +e experimental settings are divided into four kinds
as follows: adding static attribute characteristics only, adding
dynamic attribute characteristics only, adding dynamic and
static external attribute characteristics at the same time, and
not adding external attributes characteristics. +e results are
shown in Figure 5. Yellow is the result of adding static
attribute characteristics. Gray is the result of adding dynamic
attribute features. Blue is the result of adding dynamic and
static external attributes at the same time.

It can be seen from Figure 5 that when only dynamic
attribute features are considered, the value of AST-GCN-LSTM
(dynamic) RMSE is 10.31% and 2.02% lower than that of
DCRNN and GCN-LSTM models. +e value of MAE is lower
than that of DCRNN and GCN-LSTMmodels and reduced by
14.69% and 2.37%. When only static attributes are considered,

the value of AST-GCN-LSTM (static) RMSE is reduced by
10.21% and 1.91% compared with DCRNN and GCN-LSTM
models, and the value of MAE is reduced by 14.25% and 1.87%
compared with DCRNN andGCN-LSTMmodels.When static
factors and dynamic factors are considered at the same time,
the RMSE value of the AST-GCN-LSTM model is reduced by
10.59% and 2.33% compared with the DCRNNmodel and the
GCN-LSTM model, and the value of MAE is reduced by
14.73% and 2.42% compared with the DCRNNmodel and the
GCN-LSTM model.

It can be seen from Figure 5 that the model per-
formance when only dynamic attribute features are
considered is better than the model performance when
only static attribute features are considered. +is also
indirectly illustrates the importance of considering dy-
namic external attribute features, and we also observed
that when static and dynamic factors are considered at
the same time, the performance of the model is optimal.

Table 1: Performance comparison of different methods.

T (min) Metrics HA ARIMA SVR DCRNN GCN-LSTM AST-GCN-LSTM

15
RMSE 4.2951 7.2406 4.1455 4.5000 4.1193 4.0234
MAE 2.7815 4.9824 2.6233 3.1700 2.7701 2.7030

Accuracy 0.7008 0.4463 0.7112 0.2913 0.7129 0.7223

30
RMSE 4.2951 6.7899 4.1628 4.5600 4.1207 4.0508
MAE 2.7815 4.6765 2.6875 3.2300 2.7739 2.7244

Accuracy 0.7008 0.3845 0.7100 0.2970 0.7126 0.7196

45
RMSE 4.2951 6.7852 4.1885 4.6000 4.1252 4.0587
MAE 2.7815 4.6734 2.7359 3.2700 2.7753 2.7346

Accuracy 0.7008 0.3847 0.7082 0.3021 0.7123 0.7172

60
RMSE 4.2951 6.7708 4.2156 4.6400 4.1262 4.0689
MAE 2.7815 4.6655 2.7751 3.3100 2.7811 2.7403

Accuracy 0.7008 0.3851 0.7063 0.3069 0.7119 0.7165
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Figure 5: Experiments under different conditions.
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In summary, considering the external information has a
good effect on the prediction of the model under actual
conditions.

3.3.Performance inDifferentForecastPeriods. All tests of this
model use 60 minutes as the historical time window, which
means four observation data points are used to predict the
traffic conditions in the future 15, 30, 45, and 60 minutes
(H� 1, 2, 3, 4). Figure 6 shows the visualization results of 15-,
30-, 45-, and 60-minute forecast windows. Each graph is the
prediction result from January 26, 2015, to January 31, 2015.

It can be seen from Table 2 that when the traffic flow
prediction window is 15 minutes, the RMSE value of the
AST-GCN-LSTM model is reduced by 10.59% and 2.33%
compared with the DCRNN model and the GCN-LSTM

Table 2: Performance comparison of different prediction
durations.

T (min) Metric DCRNN GCN-LSTM AST-GCN-LSTM

15
RMSE 4.5000 4.1193 4.0234
MAE 3.1700 2.7701 2.7030

Accuracy 0.2913 0.7129 0.7223

30
RMSE 4.5600 4.1207 4.0508
MAE 3.2300 2.7739 2.7244

Accuracy 0.2970 0.7126 0.7196

45
RMSE 4.6000 4.1252 4.0587
MAE 3.2700 2.7753 2.7346

Accuracy 0.3021 0.7123 0.7172

60
RMSE 4.6400 4.1262 4.0689
MAE 3.3100 2.7811 2.7403

Accuracy 0.3069 0.7119 0.7165
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model. Comparedwith theDCRNNmodel and theGCN-LSTM
model, the value ofMAE is reduced by 14.73% and 2.42%.When
the traffic flowpredictionwindow is 30minutes, the RMSEvalue
of the AST-GCN-LSTM model is decreased by 11.17% and
1.70% compared with the DCRNNmodel and the GCN-LSTM
model. +e MAE value is decreased by 15.65% and 1.78%
compared with the DCRNNmodel and the GCN-LSTMmodel.
When the traffic flow prediction window is 45 minutes, the
RMSE value of the AST-GCN-LSTM model is 11.77% and
1.61% lower than the DCRNN model and the GCN-LSTM
model, and the MAE value is 16.37% and 1.47% lower than the
DCRNN model and the GCN-LSTM model.

When the traffic flow prediction window is 60 minutes,
the RMSE value of the AST-GCN-LSTM model is decreased
by 12.31% and 1.39% compared with the DCRNNmodel and
the GCN-LSTM model. +e MAE value is decreased by
17.21% and 1.47% compared with the DCRNN model and
the GCN-LSTM model. +e above conclusions show the
robustness and stability of our proposed model in long-term
prediction.

For different prediction times, the AST-GCN-LSTM
model proposed in this paper can predict traffic speed well.
+e results show that this model can capture the changing
trend of traffic speed very well, which also verifies the ef-
fectiveness of our model in multistep traffic flow prediction.

Comparing the prediction values of the 15-minute and
60-minute prediction windows, we can see that the pre-
diction effect of the 15-minute window in the short-term

prediction is closer to the true value, which also shows that
the model can better capture short-term dependence.

In order to test the effectiveness of adding static and
dynamic external attribute features, we visualized the model
prediction results. Figure 7 shows a comparison of pre-
diction results between models with static external attri-
butes, dynamic external attributes, and models without
external attributes.

From the visualization results in Figure 7, it can be found
that the deviation between the predicted result of AST-
GCN-LSTM and the real speed value is smaller than that of
AST-GCN-LSTM (static attribute) and AST-GCN-LSTM
(dynamic attribute), which indicates that the diversity of
external information can better promote prediction.

4. Conclusions

+is paper uses the proposed AST-GCN-LSTM model to
obtain dynamic attribute features by adding the attribute
augmentation unit structure of external factors. After the
feature matrix is augmented, the Chebyshev polynomial
approximation spectrogram convolution model is used for
feature extraction. +is model can capture the spatial
characteristics of traffic flow from the K-order local
neighbors of the vertices in the graph. +e K-order local
neighborhood can replace the single-hop neighborhood
matrix to expand the receptive field of the graph convolu-
tion, which can more accurately extract the information of
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neighbor nodes. After the information is extracted, the
characteristic representation of the information that changes
over time is input into the LSTM model to capture the time
dependence. By analyzing the performance of the proposed
model, including the performance analysis of external at-
tribute characteristics and the performance analysis of dif-
ferent prediction windows, and comparing with different
baseline models to verify the effectiveness of the proposed
model, it solves the inability of the previous traffic prediction
models. +e external factors affecting traffic flow are fully
considered.

Results show that the AST-GCN-LSTM model can not
only fully consider the spatial relationship of road nodes but
also capture the time dependence of traffic flow and effec-
tively improve the accuracy of traffic prediction. In addition,
the AST-GCN-LSTM model is suitable for both road net-
work traffic flow prediction and midterm and long-term
traffic flow prediction and multistep prediction.
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+e unreasonable actuation of electric vehicle’s motor drive system usually results in a lot of unwanted energy consumption on a
slope road.+is paper proposes an eco-cruise control (ECC) scheme based on the driving condition estimation to decrease electric
vehicle’s energy consumption in the constant-speed cruise control mode. +e eco-cruise control scheme is realized by reducing
the unreasonable actuation of the motor drive system. +e vehicle’s total mass and pitch angle are estimated in real time by using
an improved base-vector-based cross iteration estimator (BVCIE). Based on the estimated results, the required torque is predicted.
Combining the speed deviation between the desired speed and the real speed, and the torque deviation between the required
torque and the real torque, a three-power nonlinear controller of the ECC scheme is designed. +e ECC scheme is validated on a
slope road with different cruise speeds on a cosimulation platform, and the results indicate that the proposed strategy enjoys a
better speed maintenance ability and energy efficiency compared with the benchmarked cruise control.

1. Introduction

In the last decades, the lane changing/lane keeping system
[1, 2], antilock braking system [3], cruise control system
(CCS) [4], advanced vehicle motion control systems [5–7],
etc. have been widely implemented on the intelligent ve-
hicles. Cruise control system is one of the first intelligent
systems implemented on a vehicle, and it has been vastly
applied to different types of ground vehicles. In the constant-
speed cruise control mode, the driver can be disengaged
from the control tasks of accelerator pedal and brake pedal,
which helps to decrease driver’s driving load so as to reduce
traffic accidents. However, in the constant-speed cruise
control mode, when a vehicle is moving on a complex road,
such as on a slope road, the driving torque provided by the
motor does not often meet the required torque, which is the
unreasonable actuation phenomenon. +e unreasonable
actuation of the motor drive system usually causes the ve-
hicle to consume a lot of unwanted energy. +e unwanted

energy consumption will undeniably decrease the vehicle’s
driving range, and this is one of the main factors hindering
the spread and popularization of electric vehicles [8].
+erefore, improving energy efficiency is an urgent issue in
the field of electric vehicles.

+e past research on CCS mainly involves collision
avoidance, constant-speed control, improvement of cruise
system’s fault tolerance, and other intelligent functions.

To address the collision problem, an intelligent cruise
system is designed to force the vehicle acceleration to
converge to the desired acceleration by using the on-board
radar information [9]. In addition, [10, 11] propose ad-
vanced algorithms to address the problems of control
strategy, scheduling, and real-time constraints simulta-
neously. Literature [12] initiates the longitudinal stop-
and-go cruise control system of heavy-duty trucks, and the
test results show that the method not only meets the
desired dynamic response, but also enjoys good robust-
ness. In the parameters optimization aspect, [13, 14]
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propose different methods to select PID controller’s pa-
rameters to improve the controller’s performance with
constant-speed control. +e simulation results of the
methods in [13, 14] show a good performance in vehicle’s
stability. To maintain the constant time headway with
respect to the front vehicle, a neuro-fuzzy controller is
proposed for intelligent cruise control of semiautonomous
vehicles, and this method demonstrates better perfor-
mance compared with the conventional PID controller
[15]. In order to improve the fault tolerance of CCS, a
prototype tool is designed in [16], and a fault recovery
technique is proposed in [17] to improve the fault toler-
ance and robustness of CCS; these methods demonstrate a
good performance in guaranteeing the normal work of
CCS. In addition, to enable the driver to fully disengage
himself/herself from the driving task, the new research on
CCS is advancing in more intelligent directions, such as
adaptive cruise control [18, 19] and cooperative adaptive
cruise control [20–25].

Obviously, the aforementioned intelligent technologies
and methods contribute to the development of the auton-
omous vehicles. However, most of the research has not
considered the energy efficiency problem. In the last de-
cades, energy consumption in the transportation field has
sharply increased and has become one of the most serious
challenges. In reality, the driving conditions greatly affect the
vehicle’s energy consumption [26].

Usually, the vehicle moving under traffic signs condition
with cruise mode will increase energy consumption level due
to the unreasonable start, stop, acceleration, and decelera-
tion. To reduce the idle time at a red light and decrease
energy consumption, a predictive cruise control [27] that
uses the information of upcoming traffic lights is proposed
to judge a predictive manner. By this means, it contributes to
the improvement of the energy efficiency of the vehicle’s
powertrain. According to the traffic information, the energy-
efficient cruise control systems [28, 29] are designed to
optimize the acceleration profile so as to minimize energy
consumption. Similarly, [30] designs an adaptive cruise
control system based on the upcoming traffic signal infor-
mation to reduce the idle time at stop lights and fuel
consumption. To decrease the energy consumption due to
the queue effects at a signalized intersection, [31] proposes
an eco-cooperative adaptive cruise control to improve the
vehicle’s fuel efficiency, and the simulation result demon-
strates that the overall fuel consumption could be saved up to
40%.

+e latest research indicates that driving conditions such
as the road slope, the vehicle’s pitch angle, and the vehicle’s
mass are seriously affecting the energy consumption and
proposes many excellent strategies to improve the energy
efficiency [32–36]. However, these methods obtain the road
profile from digital maps or from global positioning system
(GPS) [32–34], and this will have poor performance in case
of shelter conditions. In addition, most of the research
mainly focuses on the fuel vehicles [34–36]. Compared with
the fuel vehicles, the electric vehicles call for more urgent
need to address the energy efficiency problem because of the
limits of the driving range.

+erefore, in this paper, we specifically concentrate on
the improvement of the electric vehicle’s energy efficiency in
constant-speed cruise control mode on slope road. Different
from the prevailing methods, in this paper, a novel ECC
scheme is proposed without using the digital map’s infor-
mation or the GPS information. To guarantee that the
electric vehicle has good speed maintenance ability and
energy efficiency performance in constant-speed cruise
control mode, the ECC scheme is realized by considering the
deviation in vehicle speed and the deviation in the required
torque. With the ECC scheme, the driving torque and the
braking torque are optimized so as to reduce the unrea-
sonable actuation of the motor drive system. In summary,
the major innovations and significance of this paper are as
follows:

(1) +ere is methodological innovation in decreasing
electric vehicle’s energy consumption in the con-
stant-speed cruise control mode on slope road. In
this paper, an ECC strategy is proposed to improve
the speed maintenance ability and energy efficiency
performance. With the ECC strategy, the average
driving efficiency and the average regenerative
braking efficiency of the motor drive system can be
improved.

(2) An improved BVCIE is proposed to estimate the
vehicle’s driving load factors (total mass and pitch
angle). In the framework of the improved BVCIE, a
new sliding-model-based strategy is designed to
improve the robustness of the estimator. With the
sliding-model-based strategy, the phenomenon of
signal distortion and data loss can be compensated
for.

(3) A new three-power nonlinear controller is designed
based on the estimated driving load factors to avoid
the unreasonable actuation of the motor’s torque
caused by the slope road condition. +e controller
enables themotor drive system to provide reasonable
driving torque and braking torque according to the
deviations in the vehicle speed and the desired
torque. +erefore, the unwanted actuation can be
avoided.

+e rest of this paper is organized as follows. In Section 2,
the vehicle dynamics is analyzed, and the required torque
is presented. In Section 3, the vehicle’s total mass and the
pitch angle are estimated by an improved BVCIE. In
Section 4, a novel ECC scheme is proposed. In the ECC
scheme, a new controller is designed, and its stability is
proved. In Section 5, the simulation platform is intro-
duced, and the estimation results of vehicle’s mass and
pinch angle are presented. In Section 6, the cruise control
performances by the proposed ECC scheme and by the
benchmarked cruise control are analyzed in detail. In
Section 7, the energy consumption and the energy saving
performance of the proposed ECC and the benchmarked
cruise control are analyzed at different cruise speeds. Fi-
nally, we conclude this paper with its main novelties and
contributions in Section 8.
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2. Vehicle Dynamics

When an electric vehicle is moving on a slope road in the
constant-speed cruise control mode, the required torque in
the longitudinal motion is a real-time variable due to the
variation of the driving conditions, such as the vehicle’s
pitch angle and the longitudinal speed. +erefore, to
maintain the vehicle at the desired cruise speed, the CCS
needs to control the driving torque and the braking torque
according to the driving conditions. In vehicle’s moving
process, the factors affecting the vehicle’s performance in-
clude the rolling resistance, the equivalent aerodynamic drag
resistance, the slope resistance, and the acceleration resis-
tance, as shown in Figure 1.

Assuming the vehicle’s total mass is m and the longi-
tudinal acceleration is _v, the longitudinal dynamics model
can be expressed as

F � Frol + Faero + Fslope + m _v, (1)

where F represents a resultant force of the driving force and
the braking force, Frol refers to the rolling resistance, Faero
refers to the equivalent aerodynamic drag resistance, and
Fslope refers to the slope resistance. In (1), the rolling re-
sistance depends on the road condition and the vehicle’s
total mass, which can be expressed as follows:

Frol � mgμ cos θ, (2)

where g is the acceleration due to gravity, µ refers to the
rolling resistance coefficient, and θ refers to the vehicle’s
pitch angle.

+e slope resistance in (1) is affected by the factors of the
vehicle’s total mass and the pitch angle, and this relationship
can be expressed as follows:

Fslope � mg sin θ. (3)

+e equivalent aerodynamic drag resistance in (1) can be
expressed as

Faero �
1
2

ACdρv
2
, (4)

where A is the frontal area of the vehicle, Cd is the aero-
dynamic drag coefficient, ρ is the density of air, and v is the
vehicle speed. Assuming the wheel’s radius is r, the resultant
torque T in the longitudinal motion can be expressed as

T � Fr. (5)

In (5), the resultant torque is from the electric motor
(EM). +e relation between the resultant torque and the
motor’s torque can be depicted as

Tm �
T

igηg

, (6)

where ig refers to the gear ratio, ηg refers to the efficiency of
the mechanical system, and Tm is the motor’s torque.

When a vehicle is moving in the constant-speed cruise
control mode, the ideal condition is the vehicle moving at
the desired cruise speed and the acceleration equal to zero. In

addition, in the real condition, the vehicle’s total mass is
affected by the passenger number and the payload state, and
the pitch angle is determined by the real-time road condi-
tion. +erefore, the vehicle’s total mass is an unknown
parameter in the moving process, and the pitch angle is a
variable in the moving process. Assuming the total mass can
be estimated with 􏽢m in real time and the vehicle’s pitch angle
can be estimated with 􏽢θ in real time, the required resultant
force at the sampling instance tk can be expressed as

Fr tk( 􏼁 � Frol tk( 􏼁 + Faero tk( 􏼁 + Fslope tk( 􏼁

� 􏽢m tk( 􏼁gμ cos 􏽢θ tk( 􏼁􏼐 􏼑 + 􏽢m tk( 􏼁g sin 􏽢θ tk( 􏼁􏼐 􏼑 + 0.5ACdρv
2
r

� 􏽢m tk( 􏼁g

�����

1 + μ2
􏽱

sin 􏽢θ tk( 􏼁 + θμ􏼐 􏼑 + 0.5ACdρv
2
r .

(7)

In (7), Fr represents the desired resultant force, vr

represents the desired cruise speed in the constant-speed
cruise control mode, and θμ can be calculated by
θμ � arctanμ.

According to (5) and (7), the required torque Tr under
the condition that the acceleration is equal to zero can be
expressed as

Tr tk( 􏼁 � Fr tk( 􏼁r. (8)

3. Estimation of the Total Mass and Pitch Angle

3.1. Estimator Design. +e real-time vehicle speed in con-
stant-speed cruise control mode is affected by the driving
condition, and consequently when calculating the real-time
required torque, it needs to obtain the real-time variables of
the vehicle’s total mass and the vehicle’s pitch angle. To
address this problem, in this paper, we adopt a BVCIE
because it does not need to reconstruct a state space
equation. More importantly, compared with Kalman filter
(KF), recursive least square (RLS) method, etc., the BVCIE
enjoys a higher estimation accuracy. In addition, compared
with the neural network method, the BVCIE does not need
to train the model through a large amount of data. To
construct the BVCIE, we define y� _v, φ1 �T/r− 0.5ρACdv2,
φ2 � − g(1 + μ2)1/2; the vehicle longitudinal dynamics (1) can
be rewritten with a linear formula:

y � ϕx. (9)

In (9), x is the vector which needs be estimated, x� [x1,
x2]T ∈R, which can be written as follows:

F

Fslope

Frol

Faero

Faero = (1/2)ACdρv2

Fslope = mg sin θ
Frol = mg μ cos θ

Figure 1: +e diagram of vehicle longitudinal dynamics.
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x1 �
1
m

,

x2 � sin θ + θμ􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

Assuming the vector of x can be estimated with 􏽢x(k/
k − 1), where k and k − 1 are the indexes of the discrete
sampling instants, we can easily obtain the system’s esti-
mated output according to (9), and it can be expressed as
follows:

􏽢y(k) � ϕ(k)􏽢x
k

k − 1
􏼠 􏼡, (11)

where 􏽢x(k/k − 1) represents the estimated vector by a cross
iteration strategy and 􏽢y is the estimated output. Based on (9)
and (11), we can design the estimator with the following
formulation:

􏽢x(k) � 􏽢x
k

k − 1
􏼠 􏼡 + ϕ− 1

(k)(y(k) − 􏽢y(k)). (12)

According to (9) and (10), the 􏽢x1(k/k − 1) can be for-
mulated by a cross iteration strategy:

􏽢x1
k

k − 1
􏼠 􏼡 � f1(k) + g1(k)􏽢x2

k

k − 1
􏼠 􏼡, (13)

where f1(k) � _v(k)/((T(k)/r) − ((1/2)ρACdv2(k))), g1(k)

� (g
�����
1 + μ2

􏽰
)/((T(k)/r) − ((1/2)ρACdv2(k))).

In vehicle’s moving process, the total mass of the vehicle
can be deemed as a constant; thus, we can formulate the
following equation:

􏽢x1
k

k − 1
􏼠 􏼡 � 􏽢x1

k − 1
k − 2

􏼠 􏼡 � 􏽢x1(k − 1). (14)

Assuming 􏽢x1(k − 1) can be known in advance, 􏽢x2(k/k − 1)
can be formulated using a cross iteration strategy:

􏽢x2
k

k − 1
􏼠 􏼡 � f2(k) + g2(k)􏽢x1

k

k − 1
􏼠 􏼡

� f2(k) + g2(k)􏽢x1
k − 1
k − 2

􏼠 􏼡

� f2(k) + g2(k)􏽢x1(k − 1),

(15)

where f2(k) � − ( _v(k)/(g
�����
1 + μ2

􏽰
)), g2(k) � ((T(k)/r) −

((1/2)ρACdv2(k)))/(g
�����
1 + μ2

􏽰
).

For the proof of its convergence, please refer to [37] for
the details. Now, the vehicle’s total mass and the vehicle’s
pitch angle can be estimated by the above estimator. In the
above estimator, the inputs of the estimator are the resultant
torque, the vehicle speed, and the acceleration. +e outputs
of the estimator are the estimated vehicle’s total mass and the
estimated vehicle’s pitch angle, as shown in Figure 2.

3.2. Sliding-Mode-Based Strategy. Actually, the input signals
of the estimator are bounded by a physical constraint, and
this constraint can be described as

T ∈ Tmin, Tmax􏼂 􏼃,

v ∈ vmin, vmax􏼂 􏼃,

_v ∈ amin, amax􏼂 􏼃,

⎧⎪⎪⎨

⎪⎪⎩
(16)

where min and max refer to the minimum value and
maximum value, respectively. In the vehicle system, the
disturbances due to the internal and external factors and the
vehicle vibration could result in the input signals’ distortion
and even the measurement data’s loss [38], shown as region
1 in Figures 3(a) and 3(b) and region 2 in Figure 3(c), re-
spectively. +ese cases will seriously affect the estimation
results and even result in the wind-up of the estimator. To fix
this problem, a sliding-mode-based strategy for processing
the input signals is proposed.

+e sliding-mode-based strategy includes a look-back-
ward method and a double-threshold method. When data
get lost in an input signal, the look-backward method is put
into action to fill in the lost data, as shown in the flow
diagrams in Figures 3(e) and 3(g). In the look-backward
method, a batch of the input data sequence can be defined as

ℓ � ℓ tk− 2( 􏼁 ℓ tk− 1( 􏼁 ℓ tk( 􏼁􏼂 􏼃. (17)

When the input data get lost at the sampling instance tk,
the filling value with the look-backward method can be
expressed as

ℓ tk( 􏼁 � ℓ tk− 1( 􏼁 + Δℓ tk− 1( 􏼁

� ℓ tk− 1( 􏼁 + ℓ tk− 1( 􏼁 − ℓ tk− 2( 􏼁( 􏼁

� 2ℓ tk− 1( 􏼁 − ℓ tk− 2( 􏼁.

(18)

Furthermore, when the input signals are greater than its
maximum thresholds or smaller than its minimum
thresholds, the double-threshold method is applied to
process the input signals, as in the flow diagrams shown in
Figures 3(d) and 3(f). +e double-threshold method can be
expressed as follows:

ℓ �
ℓmax, ℓ ≥ ℓmax,

ℓmin, ℓ ≤ ℓmin.
􏼨 (19)

With the above signal processing strategy, the robustness
of the estimator can be enhanced.

Estimator
v· (k)

v (k)

T (k)

θ̂  (k)

m̂ (k)

Figure 2: +e estimator’s diagram for estimating vehicle’s total
mass and pitch angle.
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4. Eco-Cruise Control

4.1. Control Scheme. +e required torque in (8) in Section 2
represents the torque in the condition that the vehicle
maintains the desired constant speed. However, when the
vehicle is moving on a slope road, the vehicle speed usually
shows fluctuations. In this condition, the CCS needs to
regulate the driving torque and the braking torque so as to
guarantee that the speed maintains the required value. On
the sloping road, the driving load is a variable because the
road slope is a variable. +us, in the vehicle speed regulation
process, unreasonable actuation conditions in the driving
torque and braking torque may occur due to the slope road
condition, which will result in a lot of unwanted energy
consumption. For this problem, this section proposes an
ECC scheme to reduce the unreasonable actuations of the
driving torque and braking torque. In order to clearly de-
scribe the ECC scheme, the traditional cruise control scheme
and the ECC scheme are shown in Figure 4.

Figure 4(a) shows the traditional cruise control scheme.
+is scheme only considers the deviation in the speed (e) and
does not consider the desired driving torque. For the cruise
control scheme in Figure 4(a), a state-of-the-art method is
model predictive control (MPC). For the MPC-based cruise
control, please refer to [23, 28, 39, 40] for details. Figure 4(b)
shows the ECC-based cruise control scheme. As shown in
Figure 4(b), the controller has two inputs: one is the devi-
ation in the speed (e), and the other is the deviation in the
required torque (ΔT). Hence, the ECC scheme can not only
guarantee that the speed maintains the desired value, but
also keep the driving torque and the braking torque away
from the unreasonable actuation.

4.2. Controller Design and Stability Analysis. In order to
design a controller for the ECC scheme, the control system
of the electric vehicle in Section 2 can be depicted as

_x � αx2 + u − b,

y � x,

⎧⎨

⎩ (20)

where x� v, u�T/(m·r), α� − 0.5ρACd/m,
b� g(sin θ+ μ cos θ). To depict the output deviation of the
control system (20), the tracking error in the output (eo) can
be defined as

eo � yr − y. (21)

In addition, for the control system (20), the tracking
error in the input (ei) can be depicted as

ei � ur − u. (22)

In (22), ur�Tr/(m·r), and Tr can be obtained by (8).
According to (21) and (22), when considering the errors in
the input and output, a three-power nonlinear controller can
be designed as in the following formulation:

u � Koe
3
o + Kiei, (23)

where Ko refers to the gain of the output y, and Ki refers to
the gain of the required input u.

Theorem 1. For the control system (20), if there existKo∈ [0, ξ1]
and Ki∈ [0, ξ2], and they satisfy the following condition:

3Koe
2
o _eo + Ki _ei − _b � €y − 2α _xyr, (24)

then the output ywill converge to yr by the control strategy (23).

Proof. If the output y converges to yr, (21) should satisfy
eo⟶ 0 by the control strategy (23). Equation (20) can be
differentiated as

€x � 2αx _x + _u − _b
� 2αx _x + 3Koe

2
o _eo + Ki _ei − _b.

(25)

Substituting (25) into (21) yields

eo � yr −
(€x + _b)

2α _x
−

3Koe
2
o _e + Ki _ei􏼐 􏼑

2α _x
. (26)

According to condition (24), €y can be expressed as

€y � 3Koe
2
o _eo + Ki _ei − _b + 2α _xyr. (27)

Following the output equation in (20), one can obtain

€y � €x . (28)

+us, (26) can be rewritten as

€x � 3Koe
2
o _e + Ki _ei − _b + 2α _xyr. (29)

Substituting (29) into (26) yields eo � 0. □
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5. Simulation Environment and
Estimation Results

+is section first presents the test vehicle and the driving
environment; then, the state estimation results and the
control performance are presented with detailed analysis.

5.1.EeTestVehicle and theTest Road. In this work, the ECC
is validated on a cosimulation platform with CarSim and
Matlab/Simulink. +e vehicle simulator combining CarSim
with Matlab is a high-fidelity platform for validating the
vehicle dynamics and control methods. +e vehicle’s model
in CarSim is close to the real-world vehicle. More impor-
tantly, the validation through CarSim and Matlab can ef-
fectively avoid the influence from the traffic condition and
driver’s behavior. For the cosimulation platform in this
paper, the version of theMatlab is R2007a, and the version of
the CarSim is 2016.0.+e parameters of the vehicle body and
road information are set in CarSim, and the electric pow-
ertrain, the proposed ECC, and the benchmarked method
are built in Matlab/Simulink. +e cosimulation platform is
validated on personal computer with Windows 10 64-bit
operating system, 16G memory, i7-10510U CPU, 2.30GHz.

+e simulated vehicle is a front wheel drive electric
vehicle, as shown in Figure 5(a). +e motor drive system of
this vehicle is shown in Figure 5(b). In driving mode, the
battery provides power for the EM, and the EM drives the
front wheels. +e EM is a direct-current motor, and the
gearbox has single variable speed ratio. In the driving mode,
the battery provides energy to the electric powertrain, and in
the braking mode, the regenerative braking energy is fed
back to the battery. An asphalt road is selected as the test
road, which is shown in Figure 5(c).+e profile of the road is
from the real world. +e length of the test road is about 275
meters, the maximum height of the test road is about 4.173
meters, and the test road includes uphill parts and downhill
parts.+e profile of the test road is shown in Figure 5(d).+e
driving environment, the designed parameters, and the
specification of the test vehicle are shown in Table 1.

In order to analyze the efficiency of the motor, the ef-
ficiency map of the motor should be built. +e accurate
motor’s efficiency map is related to motor’s torque and
speed. However, as the efficiencies are similar within a
relative large range of motor rotational speeds, a simplified

efficiency map can be fitted by only considering the motor’s
torque, and this simplified efficiency map has been suc-
cessfully used in [41]. For this reason, in this paper, we
regard the motor efficiency as a function of torque. +e
driving efficiency and regenerative braking efficiency of the
EM can be fitted by the least square method. Assume that the
curve function of the driving efficiency and regenerative
braking efficiency can be expressed as

y � a4x
4

+ a3x
3

+ a2x
2

+ a1x
1

+ a0. (30)

To identify the parameters a0, a1, a2, a3, a4 based on the
least square method, we need to measure several groups’
data of the motor’s torque and motor efficiency. Since the
motor’s torque, the motor’s rotational speed, and the input/
output power of the battery in driving mode and braking
mode can be easily collected, the motor efficiency (in-
cluding the driving efficiency and the regenerative braking
efficiency) can be calculated with the following equation:
where ηo refers to the driving efficiency, ηi refers to the
regenerative braking efficiency, ω is the motor’s rotational
speed, and Pi/Po refers to the input/output power of battery.

In order to derive the motor efficiency map, we calcu-
lated 11 groups of the driving efficiencies and 11 groups of
the regenerative braking efficiencies based on (31). +us, the
curves of the driving efficiency and the regenerative braking
efficiency can be fitted. For the fitted driving efficiency curve,
a0 � 0.1311, a1 � 0.0224, a2 � –2.3647×10–4, a3 � 9.8593×

10–7, a4 � –1.4736×10–9. For the fitted braking efficiency
curve, a0 � –8.697×10–4, a1 � 0.0125, a2 � –8.685×10–5,
a3 � 2.5372×10–7, a4 � –2.6187×10–10. +e calculated driv-
ing efficiency, the regenerative braking efficiency, and the
fitted curves are shown in Figure 6. +e discrete red points
are the calculated driving efficiency, and the dashed green
curve refers to the fitted driving efficiency. +e discrete blue
points refer to the calculated regenerative braking efficiency,
and the solid magenta curve refers to the fitted braking
regenerative efficiency. In the braking mode, part of the
mechanical energy will be converted to the thermal energy
and get lost. In addition, the efficiency of the power con-
version circuit is unlikely to reach 100%. Moreover, during
the braking process, part of the regenerative electric energy
will get lost. For these reasons, in Figure 6, the regenerative
braking efficiency is lower than the driving efficiency under
the same torque condition.
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Figure 4: Cruise control scheme. (a) Traditional cruise control scheme. (b) Eco-cruise control scheme.
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Table 1: Parameters and specification of the test vehicle.

Name Symbol Values Unit
Vehicle mass m 1450 kg
Air density ρ 1.206 N·s2/m4

Maximum road elevation h 4.173 m
Vehicle front area A 2.2 m2

Wheel radius r 0.353 m
Roll inertia Ixx 536.6 kg·m2

Pitch inertia Iyy 1536.7 kg·m2

Yaw inertia Izz 1536.7 kg·m2

Road distance l 275 m
Battery voltage Vbat 335 V
Battery capacity Ebat 61 kwh
EM’s maximum torque Tm-max 320 Nm
EM’s maximum power Pm-max 160 kw
Gear ratio ig 7.6 —
Drag coefficient Cd 0.28 —
Rolling friction coefficient μ 0.012 —
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ηo �
Tmω
Po

,

ηi �
Pi

Tmω
,

(31)

To analyze the proposed ECC scheme, the state-of-the-
art method of MPC-based cruise control is selected as a
benchmark. +e scheme of the benchmarked method is
introduced in Figure 4(a) in Section 4.1. For the MPC in
Figure 4(a), assuming P is the predictive horizon, M is the
control horizon, and M≤P, the predictive output sequence
is 􏽢Y(k+ 1/k) and the future control sequence ΔU(k) at
sample time k can be formulated as follows:

􏽢Y
k + 1

k
􏼠 􏼡 � 􏽢y(k + 1) 􏽢y(k + 2) · · · 􏽢y(k + P)􏼂 􏼃

T
1×P,

ΔU(k) � Δu(k) Δu(k + 1) · · · Δu(k + m − 1)􏼂 􏼃
T
1×M.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

In addition, the cost function J can be constructed as

J � 􏽘
P

j�1
[􏽢y(k + j) − y(k + j)]

2
+ 􏽘

M

j�1
λ(j)[Δu(k + j − 1)]

2
,

(33)

where λ is the weighting coefficient.+e controller of MPC is
used to make the cost function minimal. To obtain the
optimum control sequence, we can make the derivative of
the cost function equal to zero:

zJ

zΔU
� 0. (34)

+en, the solution of ΔU(k) can be obtained. Moreover,
by referring to the method in [23] and using the trial-and-
error method, the prediction horizon length M and the
control horizon length P are specified to be 10. +e
benchmarked cruise control and the proposed ECC are
validated on the cosimulation platform of CarSim and
Matlab/Simulink. With the cosimulation environment, the
ECC and the benchmarked method are tested with different
cruise speeds.

5.2. Results of Vehicle State Estimation. To analyze the
performance of the improved BVCIE in Section 3, the test on
the vehicle moving at 40 km/h is presented. In addition, the
recursive least square method with multiple forgetting
factors (RLS-MFF), the extended Kalman filter (EKF), and
the original method, i.e., BVCIE, are adopted for
comparison.

For the original BVCIE, RLS-MFF, and EKF and the
improved BVCIE, the initial values of the estimated vehicle
total mass and pinch angle are set to 0. +e estimated total
mass and the estimated pitch angle by the RLS-MFF, the
EKF, the original BVCIE, and the improved BVCIE are

shown in Figures 7 and 8, respectively. In Figure 7, the blue
curves represent the real value, the dotted black curves
represent the estimated value by RLS-MFF, the dash-dotted
green curves represent the estimated value by EKF, and the
dashed orange curves represent the estimated value by the
original BVCIE. From the results in Figure 7, especially the
zoom-in curves in Figure 7, it can be found that the original
BVCIE outperforms RLS-MFF and EKF in estimation ac-
curacy. However, in case of the input data loss, the esti-
mation results by RLS-MFF, EKF, and original BVCIE have a
sharp wind-up. Figure 8 depicts the estimated results by the
improved BVCIE. +e blue curves represent the real value,
and the dashed magenta curves represent the estimated
value. From the results in Figure 8, we can find that the
estimated values have good performances and can accurately
reflect the real values. In addition, the wind-up phenomenon
can be eliminated when the input data are lost. From the
local zoom-in curves in Figures 8(a) and 8(b), we know that
there exists a little error between the estimated value and the
real value. To analyze the deviation, the estimation errors in
total mass and in pitch angle by the improved BVCIE are
shown in Figures 9(a) and 9(b). Compared with the esti-
mated values in Figures 8(a) and 8(b), the estimation errors
are very small. In this condition, the vehicle’s state estimated
by the method in Section 3 can be applied to the proposed
ECC scheme in Section 4.

6. Control Performances of ECC Scheme

6.1. Control Performance at 40 km/h. To analyze the control
performances of the proposed ECC and the benchmarked
cruise control, the vehicle speed, the motor’s torque (in-
cluding the driving torque and the braking torque), and the
motor’s efficiency are analyzed in detail at 40 km/h when
moving on the test road.+e results are shown in Figure 10.
+e blue curve and the red curve in Figure 10(a), re-
spectively, reflect the vehicle speed by the benchmarked
cruise control and ECC. +e vehicle speed has a little
perturbation when moving on the test road. On uphill part,
the vehicle speed decreases less by ECC than by the
benchmarked cruise control, and on downhill part, the
vehicle speed increases less by ECC than by the bench-
marked cruise control. +erefore, it can be obviously ob-
served that ECC is better than the benchmarked cruise
control in speed maintenance ability. From Figure 10(b),
one can know that the motor’s torques vary by different
methods. Combining the speed profiles in Figure 10(a), we
can find that the cruise speed by ECC has less fluctuation
compared with that by the benchmarked cruise control,
and most of the working points of the motor’s torque by
ECC are in the small value interval. +erefore, the motor’s
torque by ECC has less unreasonable actuation condition
compared with that by the benchmarked cruise control.
Figure 10(c) demonstrates the driving efficiency and the
regenerative braking efficiency. According to the results in
Figure 10(c), we can observe that at some sampling in-
stances the motor’s efficiency by ECC is greater than that by
the benchmarked cruise control, but at other sampling
instances, the motor’s efficiency by ECC is lower than that
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Figure 7: Estimation results by RLS-MFF, EKF, and BVCIE at 40 km/h on asphalt road. (a) Estimated total mass. (b) Estimated pitch angle.
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by the benchmarked cruise control. +e reason for this
phenomenon is that the motor drive system works in
unreasonable actuation conditions at some sampling in-
stances by the benchmarked cruise control. When the
driving torque provided by the motor is smaller than the
torque demands, the energy consumption by the bench-
marked cruise control is less than that by ECC, but when
the driving torque provided by the motor is greater than the
torque demands, the energy consumption by the bench-
marked cruise control is greater than that by ECC. In this
condition, it is difficult to judge which method is better
according to Figure 10(c). By referring to the analysis
method in [41], the average driving efficiency and the
average regenerative braking efficiency are introduced to
compare the ECC and the benchmarked cruise control.

In addition, by referring to the analysis method in [42],
the ride comfort can be assessed by vehicle’s jerk (J), which is
the second derivative of the vehicle’s longitudinal velocity. In
the moving process, the jerk values include positive values
and negative values. For this reason, we adopt the average
absolute jerk to compare the ride comfort of ECC and the
benchmarked cruise control. +e smaller the average ab-
solute jerk, the better the ride comfort. +e average absolute
jerk is defined as

|J| �
1
N

􏽘

N

k�1
|€v(k)| . (35)

+e average driving efficiency, the average regenerative
braking efficiency, and the average absolute jerk are shown
in Table 2.

According to the results in Table 2, in the driving mode,
the average driving efficiency by the benchmarked cruise
control is significantly lower than that by ECC. In the
braking mode, the average driving efficiency by ECC is
similar to that by the benchmarked cruise control. +us,
ECC reasonably adjusts the motor’s toque so that the motor
works in the high efficiency range. In addition, the average
absolute jerk by ECC is smaller than that by the bench-
marked cruise control. From the results in Table 2, we can
conclude that the motor’s efficiency and the ride comfort by
ECC outperform those by the benchmarked cruise control in
the driving mode and braking mode.

6.2. Control Performance at 80 km/h. To demonstrate the
performance of the proposed ECC at high cruise speed, the
cruise speed of 80 km/h is investigated in this part. +e
vehicle speed, the motor’s torque, and the motor’s efficiency
are presented in Figure 11. In Figure 11(a), it is obvious that
the speed maintenance ability by ECC is still more excellent
than that by the benchmarked cruise control. Figures 11(b)
and 11(c), respectively, demonstrate the motor’s torque and
the motor’s efficiency. Similar to the results in Figures 11(b)
and 11(c), it is still difficult to distinguish which method is
better.+at is because sometimes the motor’s torque and the
motor’s efficiency by ECC are greater than those by the
benchmarked cruise control, but sometimes the motor’s
torque and the motor’s efficiency by ECC are lower than

those by the benchmarked cruise control. +erefore, we also
calculate the average driving efficiency, the average regen-
erative braking efficiency, and the average absolute jerk, and
they are shown in Table 3.

From Table 3, it can be found that in the driving mode,
the driving efficiency by ECC is higher than that by the
benchmarked cruise control. More importantly, the re-
generative braking efficiency by ECC is also higher than that
by the benchmarked cruise control. In addition, the average
absolute jerk by ECC is still smaller than that by the
benchmarked cruise control. +erefore, it can be concluded
that ECC is better than the benchmarked cruise control at
high cruise speed.

7. Energy Saving Performance Analysis

To demonstrate vehicle’s energy saving performance of the
proposed ECC, the energy consumption of the two scenarios
in Sections 6.1 and 6.2 is analyzed in detail. +e energy
consumption in the driving mode and the energy feedback
in the braking mode are calculated as follows:

Eo � 􏽚
tf

0
Po(t)dt,

Ei � 􏽚
tf

0
P(t)dti,

(36)

where Eo refers to the energy consumption in the driving
mode, Ei refers to the energy feedback in the braking mode,
and tf refers to the termination time.

+e energy consumption and energy feedback of the two
scenarios in Sections 6.1 and 6.2 are shown in Figures 12(a)
and 12(b), respectively. When the test vehicle is moving at
40 km/h, the energy consumption by the ECC and that by
the benchmarked cruise control are 0.2033 kwh and
0.1956 kwh, respectively. +e energy feedback by ECC and
the benchmarked cruise control is 0.0424 kwh and
0.0496 kwh, respectively. Obviously, it can be found that the
vehicle consumes less energy by ECC when moving at
40 km/h compared with that by the benchmarked cruise
control. For the high cruise speed of 80 km/h, the energy
consumption by the ECC and by the benchmarked cruise
control is 0.1709 kwh and 0.1583 kwh, respectively. In ad-
dition, the energy feedback by the ECC and by the
benchmarked cruise control is 0.0472 kwh and 0.0483 kwh.
+e results in Figure 12(b) show the advantage of ECC
because the vehicle not only consumes less energy in the
driving mode, but also regenerates more energy in the
braking mode.

For the two scenarios, the real energy consumption (E)
in the whole process can be calculated as

Table 2: Motor’s average efficiency and ride comfort by the
benchmarked cruise control and the proposed ECC (40 km/h).

Control performances Benchmark ECC
Driving efficiency 0.5827 0.6468 × 100%
Regenerative braking efficiency 0.2790 0.2900 × 100%
Average absolute jerk 1.3964 1.1930 km/s2
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E � Eo − Ei. (37)

To analyze the real energy consumption on the test road in
detail, the cruise speeds of 40km/h, 50km/h, 60 km/h, 70km/h,
80km/h, 90km/h, 100km/h, and 110km/h are selected to

investigate ECC performance, and the proposed ECC is de-
tailedly compared with the benchmarked cruise control. +e
total energy consumption on the test road at 40km/h, 50km/h,
60km/h, 70km/h, 80km/h, 90km/h, 100km/h, and 110km/h
is shown in Figure 13. It is obvious that the test vehicle
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Figure 11: Control performances and comparison of ECC and benchmarked cruise control. (a) Vehicle speed. (b) Motor’s torque.
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Table 3: Motor’s average efficiency and ride comfort by the benchmarked cruise control and the proposed ECC (80 km/h).

Control performances Benchmark ECC
Driving efficiency 0.6103 0.6775 × 100%
Regenerative braking efficiency 0.2973 0.3057 × 100%
Average absolute jerk 1.4265 1.2646 km/s2
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Figure 12: Results of energy consumption and feedback (kwh). (a) At 40 km/h. (b) At 80 km/h.
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consumes less energy in all cruise speeds by ECC compared
with that by the benchmarked cruise control. +e results in
Figure 13 effectively prove that the proposed ECC has better
performances in decreasing the energy consumption.

Furthermore, to compare the energy saving performance
of the proposed ECC and the benchmarked cruise control, the
state of charge (SOC) of the battery is adopted. Before
implementing the simulation, the battery SOC is 100%. After
the simulation, the battery SOC at 40 km/h, 50 km/h, 60 km/h,
70 km/h, 80 km/h, 90 km/h, 100 km/h, and 110 km/h is shown
in Figure 14. +e dotted blue line refers to the battery SOC by
the benchmarked cruise control, and the solid red line refers
to the battery SOC by the proposed ECC. It can be easily
found that the battery SOC by the proposed method is higher
than that by the benchmarked cruise control. +erefore, the
proposed ECC outperforms the benchmarked cruise control
in energy saving performance.

8. Conclusion

Motivated by the driving range limits of electric vehicles, this
paper proposes an ECC to improve the energy utilization
efficiency of electric vehicles. Different from the prevailing
research, this paper focuses on the condition that the electric
vehicle is moving on the slope road without using the digital
map’s information and the GPS information. Additionally,
energy saving is realized by reducing the unreasonable actu-
ation of the motor’s torque. Compared with the benchmarked
cruise control, the proposed ECCnot only improves the electric
vehicle’s speed maintenance ability and ride comfort, but also
improves the energy efficiency. Moreover, different cruise
speed tests indicate that the proposed ECC can obviously
decrease the energy consumption, and the statistical results of
the battery SOC show that the proposed ECC can improve the
energy saving performance.+e research in this paper provides
a novel method to improve electric vehicles’ energy efficiency.
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Vehicle automation is among the best possible solutions for traffic issues, including traffic accidents, traffic jams, and energy
consumption. However, the user acceptance of automated vehicles is critical and is affected by riding comfort. In addition, human
factors in automated vehicle control should be clear. (is study evaluates the effect of different courses on driving comfort in
automated vehicles using field experiments with 25 subjects. (is study focused on lateral motion, but speed control was not
targeted. Further, generating a path for obstacle avoidance and lane keeping, which have several constraining conditions, was also
not targeted. Rendering a comfortable path is beneficial for developing an acceptable system as a car developer and for building
new curves for automated or driving assistance systems from the perspective of construction. (e automated vehicle drove at a
speed of 30 km/h on four courses, namely, clothoid, two types of spline curves, and arc, based on the real intersection. Each
participant sat on both the driver and passenger seat and answered a questionnaire. (e experimental data indicated the clothoid
course to be the most comfortable, while the arc was most uncomfortable for a significance level of 1%. (ese tendencies are
applicable to driver and passenger seats, all genders, and experiences and will be beneficial for human factor research in automated
vehicle control.

1. Introduction

An increase in urban traffic has led to increased traffic jams,
traffic accidents, and air pollution, resulting in serious
damage. Automated vehicles are expected to be a solution
worldwide [1–3]. Automated vehicles can change the entire
traffic system by making it more efficient and can contribute
to the safety and reduction of CO2 emissions [4–6]. Fur-
thermore, the introduction of automated vehicles could
provide new services, such as autonomous riding shuttles,
autonomous delivery, and autonomous valet parking. Many
types of technologies for the introduction of completely
automated vehicles have been developed, including position
estimation, vehicle control, environmental recognition,
public acceptance, human factors, infrastructure for auto-
mated vehicles, and laws [7–11].

(e present study only considered lateral motion while
speed control, generating a path for obstacle avoidance, and
lane keeping, which have several constraining conditions,
were not targeted. Safety is among the most important
factors in the introduction of automated vehicles. Our au-
tomated vehicle employs the function of obstacle detection
and avoidance, and when an obstacle is detected on the
desired course, the priority of the control is to ensure safety
to avoid the obstacle. In the experiments, there were no
obstacles to the desired course. (us, the obstacle avoidance
function was inactive. In this study, we focused on comfort
while ensuring safety. For the path for automated vehicle
control, the clothoid curve has been extensively used
according to several studies and the result of minimizing the
maximum acceleration. Consequently, our hypothesis was
that the clothoid curve was the most comfortable. However,
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research on automated driving for driving comfort is scarce.
Further, the studies related to the human factor have mostly
been evaluated using a simulator owing to the ease of setting
up experimental conditions. However, evaluating our hy-
pothesis in a simulation study was difficult, and thus, we
decided to perform the experiments using a real vehicle to
prove the hypothesis with persuasive results.

(e present study evaluates the effect of several methods
of constructing curves with the same turning radius on
riding comfort. A real automated vehicle on test tracks was
used, and riding comfort was evaluated by analyzing filled
questionnaires. Although there exist several methods for
constructing curves, and our experiments, four curves were
constructed. (e experimental vehicle, method of designing
curves, experimental scenario, experimental results, and
discussion have been explained in the following sections.

2. Related Works

Extensive research has been undertaken regarding driver
human factors for automated vehicles.

Among the several human factors and the control of
automated vehicles, comfort on control is critical for the
introduction of automated vehicles [12].

Two types of controls for automated vehicles exist:
longitudinal control [13–15] and lateral control. Du pro-
posed a set of comfort-based velocity (longitudinal) control
strategies based on driving safety. (ey insisted that the
proposed strategy can potentially be applied to automated
vehicles to improve the perceived quality of automated
driving using field tests [13]. Reschka investigated the
manner in which an autonomous vehicle can adapt its
longitudinal control to changing road and weather condi-
tions by calculating the proposed value and further provided
an outlook on the way this parameter affected whole vehicle
guidance [14]. Sohn proposed a longitudinal speed control
strategy, which was called pulse and glide, and proved the
improvement of driver satisfaction as well as fuel saving
using the proposed method [15].

(e present study focused on lateral control of riding
comfort. (e objective of lateral control is to allow the
vehicle to travel on the desired course precisely. Researchers
have proposed excellent lateral control algorithms [16–21],
and using algorithms with optimal parameters, the vehicle
can travel on the desired course with high accuracy. Park
proposed a lateral control algorithm for automated vehicles
using a proportional-integral-derivative (PID) controller
[16] and validated the effectiveness of the proposed path at a
curved path except at a low curvature path. Lee proposed a
longitudinal control algorithm for a platoon of autonomous
vehicles [17], which was evaluated using both simulators and
real road experiments, proving its effectiveness. Chen pro-
posed a path-following steering controller for an automated
lane change system considering adaptive preview time.
Further, using a simulator they validated that the proposed
algorithm can effectively reduce the path-following error
while reducing the lateral acceleration and jerk for a more
comfortable lane change maneuver [18]. Yamakado focused
on both longitudinal and lateral control of expert drivers

while considering jerk information, and they confirmed that
the model can emulate certain respect of the expert driver’s
control strategy for the trade-off between longitudinal and
lateral acceleration [19]. Further, Alleyne performed a
simulation and experimental study on automatic steering
control and clarified that the steering actuator of the vehicle
is a significant factor for model reference and PI-based
control design [20]. Hingwe explained the design and ex-
perimental evaluation of a vehicle lateral controller for
automated highway systems based on sliding mode control
via experiments using a real passenger vehicle [21]. Except
for lane-changing or obstacle avoidance, automated vehicles
travel on the desired course. Hence, the driving comfort of
traveling on the desired course depends on the course shape.

Several researchers have investigated human factors,
particularly automated vehicles. Wang used a haptic in-
terface for a driving assistance system for steering [22]. (ey
concluded that the drivers tended to rely on haptic guidance
to achieve better steering performance when visual feedback
was limited via a simulation study [22]. Sentouh proposed a
driver-automation cooperation-oriented approach, which is
shared control between automated steering control and
human driver on lane keeping. (eir idea is based on a
control design based on a human-in-the-loop vehicle system
to reduce the conflict between the human driver and the
system [23]. (ey proved the effectiveness of their proposed
system experiments with real subjects.

Driving comfort has been investigated by several re-
searchers. Chen investigated the human comfort of electrical
vehicles and proposed a comfortable acceleration model
[24]. Zuska experimented on the vibrational comfort of two
passenger cars, wherein a defined and variable unbalance of
a front wheel was set. (ey concluded that vibrational
comfort was evaluated using the root mean square coeffi-
cient [25]. Butakov insisted on the importance of the per-
sonalization feature for automation and demonstrated the
manner in which the methodology can be applied consid-
ering an example of adaptive cruise control and automatic
lane-changing personalization [12]. Bae investigated the
comfort experience lane-changing maneuver using the
Bezier curve [26]. Xie proposed a personalized curve model
for automated vehicles, insisting on the importance of the
personalized curve for automated vehicles, and further
evaluated the proposedmodel in a simulation study [27]. Lee
researched the comfort zone for cyclists at different speeds
and steering angles in field experiments [28]. To describe the
importance of comfortable AV driving style, describing the
importance of acceptance of AV is desirable, and it was
found that those who did not prefer using AV preferred their
own driving style. Oliveira reported user information on
trust and acceptance of automated vehicles and insisted on
the importance of improving trust and acceptance [29]. In
addition, regarding the motion comfort of acceleration
during driving, several studies insist that vibration is among
the most important key factors for riding comfort. Mrad
proposed a measurement technology to perform vibration
analysis of a vehicle and a method that considered vibration
with the suspension system. In addition, the best combi-
nation of rubber mounting, spring, and shock absorbers
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focusing on the user’s well-being was proposed [30]. Sezgin
investigated the effect of vehicle vibrations on passengers
using the ISO 2631 standard [31], which sets the standard for
mechanical vibration and shock—evaluation of human
exposure to whole-body vibration. Further, several studies
have been conducted on motion sickness [32]. Htike re-
ported an effective control algorithm for motion sickness in
automated vehicles [33], and Li evaluated motion sickness in
automated vehicles using simulations and experiments [34].
However, motion sickness was not considered as the par-
ticipants did not indicate any signs of it. Further, considering
these results, in this study, the effect of vibration was not
considered because the experimental course was completely
flat and the difference among the four courses was not found
in the experiment.

Regarding the method for creating the curvature using
the features of a clothoid, it should be noted that the clothoid
curve is familiar to the steering control. Sedighi proposed an
algorithm for generating a parking path and confirmed the
validity of the algorithm [35]. Lima proposed predictive
control for autonomous vehicles using the features of a
clothoid in a simulation study [36]. Berglund proposed a
smooth path using the B-spline curve instead of an arc for
automated mining vehicles, which can be effective in
avoiding obstacles [37]. Further, De-rong used a spline curve
to smoothly fit traffic road accidents. (e feature of the
spline curve, which is easy to calculate, was applied [38].
Wang studied optimizing trajectories in the intersection for
automated vehicles, focusing on the trajectory choices for
safety, energy savings, and comfort [39]. (e present study
focuses on human factors, wherein types of curvatures are
most appropriate in automated vehicles for human drivers,
and factors affecting the results were clarified in real-world
experiments. (us, based on the results of previous studies
and results, it is proposed that driving comfort is among the
most important issues in the introduction of automated
vehicles.

3. Experiments

3.1. Experimental Vehicle. (e experimental vehicle used in
the experiments (Figure 1) is described in this section. (is
vehicle was modified from a conventional hybrid vehicle and
the system configuration of the experimental vehicle is
shown in Figure 1. It can be controlled via a PC through a
control area network, and the system can obtain vehicle
status information through an OBD-II port. Furthermore,
two RTK-GPS sensors (Novatel OEM628), a gyro sensor
(Tamagawaseiki TA7265), and five laser scanner sensors
(ibeo LUX) for environmental recognition were installed.

3.2. Conditions of Experiments. (e experiments were
conducted on a test track at the National Institute of Ad-
vanced Industrial Science and Technology in Tsukuba, Ja-
pan. To prevent other undesirable effects, no other vehicles
were present on the test track during the experiment. (e
experiments were conducted during the day, in sunny
conditions to maintain consistent conditions.

3.3. Scenario of Experiments. Twenty-five subjects partici-
pated in the study. To eliminate age bias, five subjects from
each age group (20s, 30s, 40s, 50s, and 60s) were chosen, and
the average age of the drivers was 44.9. (e experimental
flow is illustrated in Figure 2.

First, the subjects received an explanation of the ex-
periments and questionnaires regarding automated driving.
(e questionnaire regarding the characteristics of the sub-
jects was constructed considering the following factors:

(1) Personal characteristics (age, gender, and history of
driving and traffic accidents)

(2) Driving frequency, vehicle type for usual driving,
and motion sickness

(3) Comments on automated driving systems

After completing the questionnaires, experiments with
automated driving were conducted. In the experiments, one
subject was asked to sit in the passenger seat, while another
subject sat in the driver’s seat or in the second-row passenger
seat in the vehicle. All the subjects experienced both the
driver and passenger seats. Half of the subjects sat in the
driver’s seat first and then the passenger’s seat and vice versa.
(e velocity of the vehicle was maintained at approximately
8.3m/s (30.0 km/h). (e effects of the varying speeds were
clarified. In fact, preliminary experiments were performed
with a small number of subjects before the experiments in
this study by using the same experimental vehicle to evaluate
the effect of speed. (e preliminary experiments were
performed under the same scenario at 20 km/h and 40 km/h,
and it was found that the tendency of the result was the same
as the result at 30 km/h. Before the experiment, we explained
the experimental process (including how to stop and steer
the vehicle in an emergency) in detail to all subjects, suf-
ficient time was devoted to preparing the experiments be-
cause we ensured a safe experimental environment for the
automated vehicles. Consequently, the necessary time for the
explanations to the subjects before conducting the experi-
ments was long. In addition, because the budget was limited,
employing the subjects was not possible. Moreover, owing to
the course limitation, the experiments could not be per-
formed at high speeds. (us, we concentrated on a constant
speed. Consequently, as employing more subjects was not
possible, we determined the relationship results statistically;
therefore, in this study, it is assumed that the number of
participants was sufficient.

(e control algorithms, including control parameters,
are different among car companies and developers of au-
tomated vehicles, and they are classified. However, the
original objective of the control algorithm was to travel the
desired course without deviation, which was assumed as
such. However, as we set the parameters of our control
algorithm through preliminary experiments, the effect of the
control algorithm was removed when evaluating the tra-
jectory of the vehicle. (e objective of this study is to
evaluate the comfort of the trajectory, not the control al-
gorithm; thus, it was considered that our experimental
evaluation was complete for meeting the objective. However,
the control algorithm should also be evaluated, particularly
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for other situations, wherein the experimental vehicle cannot
travel the desired course without deviation due to certain
conditions (weather, vehicle, etc.). We plan to conduct an
evaluation in this respect in a future study.

Each subject experienced four course patterns. In the
experiments, the order of the four courses was set randomly
and introduced as courses 1, 2, 3, and 4 to the subjects. (us,
the subjects could not recognize which path corresponded to
each of the four path patterns. (e course patterns were an
arc, clothoid curve, B-spline curve 1, and B-spline curve 2
(explanations have been provided in the next section). (e
automated vehicle traveled along the target course autono-
mously, and four patterns in each set were obtained. (e
subjects experienced two sets in each seat; thus, they per-
formed 16 rides in both seats. For safety, two staff members
sat in the first-row passenger seat (next to the driver’s seat)
and the second-row passenger seat, and every subject com-
pleted a training course to prepare for possible emergencies.
Furthermore, each subject was asked to control the experi-
mental vehicle for possible emergencies, implying that each
subject was responsible when sitting in the driver’s seat.(ere
were no accidental situations during the experiment.
According to the SAE international definition, the level of the
automated vehicle was set to two in our experiments when the
subject sat in the driver’s seat and four when the subject sat in
the passenger’s seat [40]. (is automated vehicle experiment
was performed at an SAE level of 2. Although we did not ask
subjects to watch the road, they were responsible for their
vehicles; thus, they watched the road.

After one set of experiments, the subjects completed
questionnaires regarding the experiments. (us, the subjects
were asked to complete these questionnaires four times in
both seats.(e questionnaire for each set asked the following
questions:

Q1: Which path is comfortable? (multiple selections
possible)
Q2: Which path is the most comfortable?
Q3: Why did you choose that path?
Q4: Which path is uncomfortable? (multiple selections
possible)
Q5: Which path is the most uncomfortable?
Q6: Why did you choose that path?
Q7: Any comments on the experiments?

3.4. Four Patterns of Target Courses. In this experiment, four
target course patterns were used. Each course consisted of
straight lines and two curves (Figure 3). (e differences in
the four course patterns were in the shape of the curves. (e
curves were an arc, clothoid, B-spline 1, and B-spline 2,
hereafter referred to as R50, CL50, BSP1, and BSP2, re-
spectively. All curves were based on a 50m radius and the
real crossing in Hiroshima, Japan (Figure 4). Regarding the
clothoid curve, clothoid equations can be defined starting
from the condition of the linear relation between the radius
(R) and length (L) of the path (equation (1)) as

Gyro sensor

RTK-GPS
sensor × 2

EUC

PC PC

Microcomputer GPS

Laser scanner
sensor × 5

Figure 1: Picture and system configuration of the experimental vehicle.

1. Explanation to the subject about the experiments
that are to be performed

2. Questionnaires about subject, automated vehicle,
driving style

3. Experiments with automated driving in driver’s seat
or passenger’s seat

4. Questionnaires about the experiments

6. Questionnaires about the experiments

5. Experiments with automated driving in passenger’s
seat or driver’s seat

Figure 2: Experimental flow.
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R∗L � A
2
, (1)

where R is the radius of curvature, L is the length measured
along the spiral curve from its initial position, and A is the
flatness or homothetic parameter of the clothoid.

In the present study, R and A were set to 50 and 35,
respectively.

We employed a clothoid because the enables smooth
steering control as indicated in several studies [41–44].
Consequently, we considered one hypothesis regarding
comfort, which is that the clothoid curve is better for driving
comfort. We conducted preliminary experiments with a few
subjects and considering the results, we decided to prove our
hypothesis with more subjects using real experimental ve-
hicles. We believe that our experimental results validate our
hypothesis.

BSP1 was prepared using the control points of the
polyline (Figure 5(a)). Polylines were extracted along the

channels (dots of the lane marker). Because spline con-
version was performed to smoothen the polylines, the size of
the BSP1 wobbles depends on the size of the original polyline
rattle.

Further, BSP2 was made to pass three points: the initial
point, midpoint, and terminal point of the clothoid curve
(Figure 5(b)). Although BSP2 appears looser than the clo-
thoid, on the initial and terminal points of the curve, there a
sudden change from straight to curve and vice versa occurs.
Typically, BSP2 requires higher transformation costs than
BSP1 because the initial and terminal points of the clothoid
must be recognized for generating BPS2.

Before performing the experiments with real subjects,
preliminary experiments were performed for an objective
evaluation. (e experimental course for these experiments
was set as shown in Figure 6. Each course consisted of
straight lines and one curve. In the objective evaluation,
evaluation of both left and right turns was not considered as

Figure 4: Sample used in Hiroshima, Japan.

-350 -300 -250 -200 -150 -100 -50 0
0

50

100

150
Straight line Straight lineR=50

curve
R=50
curve

Figure 3: Experimental course of R50 (the arrow shows the direction of the vehicle).
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necessary; thus, we employed a simple course. (e lateral
acceleration was evaluated, which was measured via an IMU
440 sensor, developed by Sumisei Sangyo. (e scale factor
accuracy of the sensor was 1%. Figure 7 shows the result of
the lateral acceleration of each course, and the result when
traveling on the curvature. From the left, the results of
clothoid, R50, BSP1, and BSP2 are shown. (e maximum
value of lateral acceleration with CL50 was the lowest among
the four courses. In addition, the absolute peak of jerk was
calculated to evaluate riding comfort, as shown in Table 1,
wherein CL50 is shown to have the smallest value. However,
the difference between them is very small. Several papers
have proposed the relationship between the jerk value and
riding comfort [45–47]. Considering this result, CL50 was
assumed to be the most comfortable.

4. Experimental Results and Discussion

(e results of Q1: “Which path is comfortable?” (multiple
selections possible) of the questionnaire are shown in
Figure 8(a). (e maximum number of each value is 100;
hence, as evident, approximately 70% of the subjects chose
CL50, while approximately 60% chose BSP2. (e results of
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Transit
point2
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Figure 5: Method of forming B-spline curves. (a) B-spline 1 and (b) B-spline 2.

-150 -100 -50 0
0

50

100

150

Straight
line

Straight
line

R=50
curve

Figure 6: Experimental simple course for objective evaluations on the preliminary experiment.

Table 1: Result of peak jerk on lateral acceleration on the pre-
liminary experiment.

Course CL50 R50 BSP1 BSP2
Peak absolute jerk on lateral
acceleration 1.11 1.16 1.14 1.70
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Figure 7: Experimental result for objective evaluation on the
preliminary experiment (lateral acceleration).
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the difference in the subject’s seat position are shown in
Figure 8(c). Further, a comparison of the driver’s seat and
second-row passenger’s seat results demonstrated that the
latter tended not to choose R50.

Questionnaire results of Q2: “Which path is the most
comfortable?” are shown in Figures 9(a)–9(c). It indicates
that more than 50% of the subjects chose CL50 as the most
comfortable path and that the clothoid curve was appro-
priate for a comfortable path. (e questionnaire results for
the riding positions are also shown in Figures 9. (e CL50
was the most answered choice in both the driver and pas-
senger seat positions, and subjects in the driver’s seat tended
to choose CL50 more than in the passenger seat. Regarding
the first and second trials, the questionnaire results from the
experience of tests are also shown in Figures 9(d) and 9(e).
As explained in the experimental section, two tests were
performed in each scenario. (e “1st” and “2nd” are the
orders of experiments. (is result has the same tendency as
the other results. Further, regarding gender, the question-
naire results by gender are also shown in Figures 9(f) and
9(g). (e difference between this result and the others is that
the score of BSP1 is larger than that of BSP2, but the largest
score is for CL50, the same as the others. In addition, the
questionnaire results for nonelderly and elderly individuals
are also shown in Figures 9(h) and 9(i). Elderly subjects
chose different answers because they had different feelings.
To evaluate the results statistically, we employed the chi-
squared test. (e chi-squared test is commonly used in
academic papers [48–50]. (e formulation of the chi-
squared test is as follows:

X
2
c � 􏽘

Oi − Ei( 􏼁
2

Ei

, (2)

where Oi is the observed numbers and Ei is the expected
numbers.

(e results of the chi-squared test for Q2 are presented in
Table 2. All questionnaire results for Q2 were satisfied with a
1% significance level. Further, subjects can identify four types of
courses and decide which is the most comfortable. (e

questionnaire result of Q3: “Why did you choose that path?” is
shown in Figure 10.(e subjects provided reasons for choosing
the path. Most subjects chose smooth control or less shaking.
As clothoid is familiar with steering control [26] resulting in a
small jerk, it is presumed that the subjects felt comfortable.

(e questionnaire results of Q4: “Which path is un-
comfortable? (multiple selections possible)” are shown in
Figure 11. (e maximum number of each value is 100;
therefore, approximately 70% of the subjects chose R50, while
approximately 60% chose BSP1. Regarding the driving po-
sition, subjects in the driver’s seat chose BSP1 more than R50;
although, the difference was small. It is presumed that subjects
in the driver’s seat can observe the shaking of the steering
angle directly because the steering angle is subjected tominute
shaking when traveling on BSP by the feature of BSP1.

(e questionnaire results of Q5: “Which path is the most
uncomfortable?” are shown in Figure 12. (ese results show
that more than 50% of the subjects chose R50 as the most
uncomfortable path. (e results of the chi-squared test for
Q5 are shown in Table 3. From these results, all question-
naire results of Q5, except for the driver seat, were satisfied
with a 1% significance level.

(us, the result indicates that R50 should not be applied
as a comfortable path. Furthermore, subjects can identify the
four types of courses and decide which is the most un-
comfortable. (e questionnaire results based on riding
positions are also shown in Figures 12(a)–12(c). (e choice
of R50 is the maximum in both the driver and passenger seat
positions, but in the former, the result of the chi-squared test
is not satisfied with a 5% significance level. It is presumed
that the subjects in the driver’s seat could observe the
steering angle directly (Figure 11). Further, the maximum
number of R50 choices is the same as that of the others.
Regarding the first and second trials, the questionnaire
results from the experience of tests are shown in
Figures 12(d) and 12(e). No differences were observed in the
order of these results, which have the same tendency as the
other results. (e questionnaire’s results by gender are also
shown in Figures 12(f ) and 12(g). Furthermore, these results
show no differences between genders and have the same
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Figure 8: Questionnaire Result 1 (Q1: “Which path is comfortable? (multiple selections possible)”). CL50: clothoid, R50: arc, BSP1: B-spline
1, and BSP2: B-spline 2.
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Figure 9: Questionnaire Result 2 (Q2: “Which path is the most comfortable?”). CL50: clothoid, R50: arc, BSP1: B-spline 1, and BSP2:
B-spline 2.
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tendency as the other results. Regarding age, the ques-
tionnaire results for the nonelderly and elderly are also
shown in Figures 12(h) and 12(i). (ese results exhibit the
same tendency as in Figure 11, showing a less statistical
difference between the answers. However, the introduction
of an automated driving system for elderly drivers should be
considered from other perspectives.(e questionnaire result
of Q6: “Why did you choose that path?” is shown in Fig-
ure 13. (e subjects also provided reasons for choosing the
path. (e reasons were primarily not smooth and shaking,
which are not as complicated to comprehend as Q3. From
this result and the chi-squared test results, it is presumed
that it is easier to decide on a comfortable path than on an
uncomfortable path.

(e comments regarding the experiments are presented
in Figure 14. (e maximum number of comments was
related to the number of repetitions. As shown in the results
of the chi-squared test in Table 2, the value of the 2nd was
larger than that of the 1st. After one trial, the subjects ex-
perienced the automated vehicle and understood the dif-
ference better. Further, from the results regarding the riding
position in Table 3, Figure 11, and Figure 14, it is presumed
that observing the movement of the turning steering wheel
could affect comfort; therefore, a human-machine interface
for passengers should be installed to improve acceptability.

In addition, with respect to the feeling of safety, the
results of this experiment included the feeling of safety,
because if subjects felt unsafe on the course, they opted not

Table 2: Chi-squared test result of Q2: “Which path is the most comfortable?”.

(Which is the most comfortable?) degree of freedom� 3
All Ds Rs 1st 2nd Female Male Nonelderly Elderly

X2 (7.82 ≤, p< 0.05, 11.34 ≤, p< 0.01) 52.75 24.08 20.33 18.16 36.96 39.5 19.5 60.2 5.2
Ds: driver’s seat; Rs: second-row passenger’s seat.

Similar control
Less shaking

Relief
Smooth steering

10

1

4

9

Figure 10: Questionnaire Result 3 (Q3: “Why did you choose that path?”).
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Figure 11: Questionnaire Result 4 (Q4: “Which path is the most uncomfortable (multiple selections possible)”). CL50: clothoid, R50: arc,
BSP1: B-spline 1, and BSP2: B-spline 2.
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Figure 12: Questionnaire Result 5 (Q5: “Which path is the most uncomfortable?”). CL50: clothoid, R50: arc, BSP1: B-spline 1, and
BSP2: B-spline 2.
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to choose the course. (us, it is presumed that the results
show that clothoid provides the best feeling of safety among
the four courses. Hence, in future studies, the feeling of
safety should be considered along with the function of
obstacle avoidance. We also enquired about motion sickness
in the questionnaire because the human factor of motion
sickness might affect the results in our hypothesis. However,
we could not find any relationship between the results and
the factor of motion sickness as no subject reported the
occurrence of motion sickness.

As explained in the scenario of experiments section, the
level of automation of the experiments was set to two [40]. In
the future, levels 3, 4, or 5 automated vehicles may be

introduced [40]. A driver who rides on level 3, 4, or 5 au-
tomated vehicles can perform eyes-off road driving and
nondriving tasks because the driver is not responsible for
driving. In contrast, the driver who drives the level 2 au-
tomated vehicle is responsible for the vehicle. In Japan, only
two types of vehicles with level 3 functions are produced.
Level 4 and 5 automated vehicles have not yet been allowed
by the government. Given the current situation in Japan, as
level 3 automated vehicles are not yet well known, it is
difficult for subjects to imagine level 3 automated vehicles. In
Japan, several experiments related to level 2 automated
vehicles and level 2 assistance systems are well known. In our
experiments, we explained to the subjects that the level of

Table 3: Chi-squared test result of Q5: “Which path is the most uncomfortable?”.

(Which is the most uncomfortable?) degree of freedom� 3
All Ds Rs 1st 2nd Female Male Nonelderly Elderly

X2 (7.82 ≤, p< 0.05, 11.34 ≤, p< 0.01) 47.70 6.70 53.34 24.06 23.89 23.33 18.16 59.56 1.84
Ds: driver’s seat; Rs: second-row passenger’s seat.

Shaking
Unsmooth steering

12

17

Figure 13: Questionnaire Result 6 (Q6: “Why did you choose that path?”).

0 2 4 6 8
Increase of number of times led to relief

Large difference in feeling between driver’s and passenger’s seats

Riding for longer period of time will be difficult

The greater the shaking, the greater the fear

Velocity of more than 30 km/h will increase fear

Felt safe

Greater fear on passenger seat

The difference in feeling is due to the difference in steering

Human drivers are better on steering

Smooth steering is necessary

It could be better understood on passenger’s seat than on driver’s seat

It was difficult to understand the difference

Figure 14: Questionnaire Result 7 (Q7: “Any comments on the experiments?”).
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automated vehicles was level 2, and the responsibility was
with the driver. In addition, for developing level 3 vehicles,
the process of providing all explanations before using the
vehicles is necessary, which results in requiring more time to
prepare the experiments in real vehicles rather than in the
simulator. (us, in this study, it was difficult to perform the
experiments with level 3, 4, or 5 automated vehicles.
However, if the experimental vehicle is a level 3, 4, or 5
automated vehicle, the experimental result may be different,
and performing experiments related to the eyes-off situation
and nondriving task would be possible.

5. Conclusions

(e present study investigated several courses to determine
the most comfortable course for further introduction of
automated vehicles. (e conditions for the different curves
based on real situations were assumed. (is study evaluated
the effect of different courses on driver comfort in auto-
mated vehicles through field experiments with 25 subjects.
(e automated vehicle drove at 30 km/h on four different
courses (clothoid, two types of spline curves, and arc). (e
experimental data indicated that the most comfortable
course was clothoid, and the most uncomfortable course was
an arc when the significance level was set at 1%. (e reasons
for this were primarily smoothness while driving. (us, the
experimental results show that, for driving comfort, paths
for automated vehicles should be clothoid and not arc.(ese
tendencies were effective for driver and passenger seats,
gender, and experience (number of times).

In the future, we plan to conduct more experiments with
automated vehicles other conditions, including more paths
and more scenarios. In addition, we plan to expand the
number of subjects and evaluate other human factors, in-
cluding occupation.
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Pedestrian detection has always been a research hotspot in the Advanced Driving Assistance System (ADAS) with great progress
in recent years. However, for the ADAS, we not only need to detect the behavior of pedestrians in front of the vehicle but also
predict future action and the motion trajectory. -erefore, in this paper, we propose a human key point combined optical flow
network (KPOF-Net) in the vehicle ADAS for the occlusion situation in the actual scene. When the vehicle encounters a blocked
pedestrian at a traffic intersection, we used self-flow to estimate the global optical flow in the image sequence and then proposed a
White Edge Cutting (WEC) algorithm to remove obstructions and simply modified the generative adversarial network to initialize
pedestrians behind the obstructions. Next, we extracted pedestrian optical flow information and human joint point information in
parallel, among which we trained four human key point models suitable for traffic intersections. At last, KPOF-GPDM fusion was
proposed to predict the future status and walking trajectories of pedestrians, which combined optical flow information with
human key point information. In the experiment, we did not merely compare our method with other four representative
approaches in the same scene sequences. We also verified the accuracy of the pedestrian motion state and motion trajectory
prediction of the system after fusion of human joint points and optical flow information. Taking into account the real-time
performance of the system, in the low-speed and barrier-free environment, the comparative analysis only uses optical flow
information, human joint point information, and KPOF-Net three prediction models. -e results show that (1) in the same traffic
environment, our proposed KPOF-Net can predict the change of pedestrian motion state about 5 frames (about 0.26 s) ahead of
other excellent systems; (2) at the same time, our system predicts the trajectory of the pedestrian more accurately than the other
four systems, which can achieve more stable minimum error ±0.04m; (3) in a low-speed, barrier-free experimental environment,
our proposed trajectory prediction model that integrates human joint points and optical flow information has higher prediction
accuracy and smaller fluctuations than a single-information prediction model, and it can be well applied to automobiles’ ADAS.

1. Introduction

In the automatic driving scene, efficient detection of vehicles
and pedestrians around the vehicle has become the basic
ability of autonomous vehicles [1]. Recently, some re-
searchers focused their attention on the understanding of
pedestrians’ behaviors and intentions in front of the car and
conducted simulation experiments in the Atlanta world
assumption [2]. If the collision between pedestrians and
vehicles can be predicted in advance, many unnecessary
traffic accidents can be averted. For example, in the ADAS of
Mercedes-Benz E-class and S-class car models [3], a

pedestrian prediction algorithm based on stereo vision is
introduced, which is applied in emergency braking in
dangerous scenarios. In complex scenarios, such as inter-
sections and crosswalks, it is necessary to accurately estimate
the current and future positions of pedestrians relative to the
moving vehicle. In the process of pedestrian trajectory
prediction, we need to consider several influencing factors.
First of all, for pedestrians showing more random during
walking on the road, such as the interaction between people,
a particular pedestrian trajectory is affected by the position
of other pedestrians. In addition, people with social attri-
butes will also have an impact on the final trajectory, and the
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quantification of these indicators is a cumbersome process.
Secondly, the pedestrian movement in the eyes of the ADAS
is regarded as the common result of pedestrian movement
and vehicle movement. -erefore, the prediction range of
the active pedestrian prediction system is very short with
even a small improvement eliciting a significantly improved
performance. -is article focuses on the prediction of pe-
destrian positions at intersections and crosswalks. With the
method of fusion of optical flow information and joint point
models, the paper first predicts whether the pedestrian’s
state in the future is standing or stopping, and then forecasts
the pedestrian’s trajectory and position in the future.

With auxiliary information provided for the ADAS, it
discusses the status and location information of pedestrians in
the future, adjusts the speed in advance to avoid traffic ac-
cidents due to proximity between the car and the pedestrian.

In summary, we highlight our main contributions as
follows:

(i) We propose KPOF-Net, a novel framework of pe-
destrian trajectory prediction algorithm, which
combines optical flow information and pedestrian
joint models to collaboratively predict the state and
trajectory of pedestrians in the future.

(ii) By evaluating the complexity of the application
scene, we propose using an optical flow estimation
module to estimate the optical flow of pedestrians
with occlusion through the self-flow network, and
then design a WEC algorithm based on Canny to
remove occluded objects, and finally modify
UCTGAN slightly to generate complete pedestrian
optical flow information.

(iii) -rough a large number of observations and re-
searches on pedestrian motion status at intersec-
tions and crosswalks, we used the posture change
information when pedestrian motion status changes
to train four human joint point models of standing,
stopping, standing tendency, and stopping ten-
dency. -e human joint point model trained at this
time can more accurately predict the motion state
and motion trajectory of pedestrians in the future.

(iv) Considering that a single optical flow cannot obtain
detailed information of the pedestrian’s posture at a
traffic intersection, it can only roughly predict the
pedestrian’s motion state and trajectory in the future.
-e KPOF-GPDM prediction algorithm is proposed,
which integrates optical flow and human joint point
information, and it combines the movements of the
upper and lower limbs of pedestrians in different
traffic situations to predict the movement state and
trajectory of pedestrians in the future, providing
more efficient and active safety data for the ADAS.

(v) We propose ADE and FDE evaluation methods
based on Euclidean distance, and compare and an-
alyze the effect of KPOF-Net fusion of optical flow
information and joint point model in improving the
accuracy of pedestrian trajectory prediction in an
unobstructed experimental environment.

2. Related Work

In this section, we provide a review of the optical flow and
key point prediction approaches for pedestrian trajectory
prediction under occlusion. We focus on learning related
research to solve the problem of pedestrian trajectory pre-
diction at intersections and sidewalks.

2.1. Optical Flow. Optical flow estimation is mainly divided
into three categories: Supervised Learning of Optical Flow,
Unsupervised Learning of Optical Flow, and Self-Supervised
Learning. FlowNet [4] is the first end-to-end optical flow
learning framework, which takes continuous images as input
and dense optical flow graphs as output. SpyNet [5] uses a
pyramid network with a compact space structure to scale the
image to deal with the large-scale displacement of the object.
LiteFlowNet [6] achieves lightweight by distorting the fea-
ture objects extracted by CNNs [4, 6, 7]. However, this type
of method needs to use the rules [4, 8] to pretrain multiple
synthetic datasets, which consumes a lot of time, and it
involves low-speed, offline operation, and not real time.
Moreover, the result is too dependent on the pretraining
results of the synthetic dataset, and its optical flow accuracy
does not meet our scenario requirements. -e unsupervised
learning method mainly uses the principle of constant
brightness [9] and spatial smoothness [10], by measuring the
pixel difference between the initial image and the test image,
which can handle optical flow estimation with obstructions.
Janai et al. [11] use multiple frames of images to jointly
derive optical flow images. However, the detection accuracy
of this scheme needs to be improved. DDFlow [12] proposes
an optical flow data distillation method to learn the optical
flow of occluded objects, but this type of method has lim-
itations, which means it can only handle occluded objects
under specific circumstances and cannot be applied to all
scenes. Self-supervised learning adopts the data itself as a
supervised signal, which is widely used to learn features from
unlabeled data [13], and is often used to deal with image
restoration [14], image coloring [15], and stitching problems
[16]. Doersch and Zisserman [17] combine feature learning
based on low-level motion cues. -e study in [18] proposes
S4L-Rotation and S4L-Exemplar algorithms to deal with the
classification loss problem. However, the linear classifier
obtained by this method is very dependent on the adjust-
ment strategy of the learning rate and has uncertainty. Self-
flow [19] takes reliable predictions of nonoccluded pixels as
the self-supervision signal to guide our optical flow learning
of occluded pixels. -e network not only has a simple
structure but also changes the image pyramid to a feature
pyramid and uses a multiframe input method, which in-
creases the information input of the network, and has good
effects in terms of progress and real-time performance. In
the scene of intersection and sidewalk, considering the
comprehensive robustness of the automotive ADAS, the
self-flow network is used to extract the optical flow infor-
mation of pedestrians, and at the same time, when pedes-
trians are blocked by obstructions, a WEC algorithm based
on Canny [20] was proposed on the basis of self-flow by
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comprehensively considering the complexity and timeliness
of the optical flow system as well as the accuracy of trajectory
tracking in the presence of obstacles. To obtain smooth
pedestrian optical flow, an UCTGAN network [21] was also
used to jointly recover pedestrian optical flow in blocked
scenes.

2.2. Key Point Prediction. In the past few decades, human
pose estimation [22] and pedestrian trajectory prediction
[23] have made rapid development. In the KF [24], the
current state of a dynamic system can be propagated to the
future by means of the underlying linear dynamical model
without the incorporation of new measurements. IMM KF
[24] introduces a similar method to predict pedestrian
trajectories in a multithreaded dynamic model. Choi and
Savarese [25] propose a framework that can track multiple
objects, recognize the atomic activities performed by indi-
viduals, such as walking or standing, identify interactions
between pairs of individuals (i.e., interactive activities), and
understand the activities of groups of individuals. However,
this method could appear to be biased in assigning inter-
action labels. In the research process, Hu et al., respectively,
proposed an improved Bernoulli heatmap [26] and a new
convolutional recurrent network model [27] to estimate the
joint point information of various parts of the human body.
Although these methods can quickly and accurately con-
struct a human head joint point model, the performance
needs to be improved when processing large-angle samples.
Karasev et al. [28] proposed to use the Jump-Markov process
to model the pedestrian’s movement and infer the state of
the pedestrian through the Rao-Blackwellized filter. How-
ever, the predictable change event types of this scheme are
limited, and it cannot be widely used in various traffic
scenarios. Anca Marginean et al. [29] proposed a set of pose-
based and recursive framework-based algorithms to deal
with imbalances in pedestrian estimation. When our scene is
set at intersections and sidewalks, Keller and Gavrila [30]
used the Gaussian dynamics model and probabilistic hier-
archical trajectories based on dense optical flow to obtain
pedestrian characteristics. Goldhammer et al. [31] proposed
the use of polynomial least squares approximation and
multilayer perceptron (MLP) to predict the trajectory of
pedestrians in the next 2.5 s. However, the accuracy of pe-
destrian trajectories predicted by this method needs to be
improved. -e study in [32] also used a similar method to
predict the trajectory of pedestrians riding bicycles. Alahi
et al. [33] proposed an algorithm based on LSTM to predict
the trajectory of pedestrians by considering the interde-
pendence of pedestrians. Urtasun et al. [34] used a GPDM to
track a small number of 3-D body points that have been
derived using an image-based tracker and the system is
trained with one gait cycle from six subjects and is able to
handle several frames of occlusions. However, the exported
3D body points are limited, and the occlusion processing
effect is not good. Minguez et al. [35] used balanced GPDMs
for intention detection and trajectory forecasting of pe-
destrians based on 3D poses, through training four types of
postures, namely, starting, stopping, standing, and walking,

to predict pedestrian trajectory movements. However, this
method only considers the situation that the pedestrian is
always in the same motion state, and ignores the detailed
information of the body when the motion state of the pe-
destrian changes. Kress et al. [36] proposed the use of 3D
human poses for trajectory forecasting of vulnerable road
users (VRUs), such as pedestrians and cyclists, in road
traffic.-e 3D poses represent that the entire body posture of
the VRUs can provide important posture information for
pedestrian trajectory prediction. -e above methods can
predict the trajectory and movement classification of pe-
destrians at intersections and crosswalks, but there is still
room for improvement in accuracy. Based on B-GPDMs
[35], this paper trains a human joint point model with
walking and stopping trends, and then couples optical flow
information and joint point information to predict the pose
information and movement classification of future pedes-
trians. Although all the above schemes can predict the
motion behavior and motion trajectory of pedestrians, the
accuracy of the prediction of the motion state and motion
trajectory of pedestrians at traffic intersections is limited.

In summary, the optical flow information prediction
model can also predict the movement state and trajectory of
pedestrians at traffic intersections. But, the optical flow
information lacks detailed information about pedestrians in
the process of movement, which makes it impossible to
accurately predict the spatial position of pedestrians in the
future. -erefore, under the premise of considering ob-
structions, this paper combines optical flow information and
human body joint point information to propose a KPOF-Net
prediction model to collaboratively predict the motion state
and trajectory of pedestrians in the future.

3. Overview of KPOF-Net

3.1. Main Network. Figure 1 summarizes the main frame-
work of KPOF-Net, composed of three main parts of oc-
clusion object removal, pedestrians’ state estimation, and
trajectory prediction. In occlusion object removal, we use
self-supervised learning method of self-flow [19] to detect
the optical flow information of pedestrians at intersections
and crosswalks, and then propose a Canny-based White
Edge Cutting (WEC) algorithm to remove obstructions, and
restore the pedestrian posture behind the obstructions by
modifying the UCTGAN network. In pedestrians’ state
estimation, we use Carnegie Mellon University (CMU) [37]
to train pedestrians’ key point station, e.g., stopping,
walking, stopping tendency, and walking tendency. In tra-
jectory prediction, we propose the KPOF-GPDM method,
which combines pedestrians’ key point and optical flow
information to predict pedestrians’ future trajectory.

3.2. Pedestrian in Painting behind Occlusion. In actual
scenes, pedestrians may be obscured by luggage, handbags,
trash cans, stone pillars, animals, and other objects at in-
tersections and crosswalks. In the process of extracting
optical flow information, the pedestrian mask cannot be
completely obtained. It has great influence on the pedestrian
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trajectory prediction at the back end, and an accurate tra-
jectory route cannot be obtained. -erefore, we introduce
the self-flow network to extract the optical flow information
of the pedestrians at the intersection, integrate the WEC to
remove the contour information of the obstruction, and then
initialize the pedestrian optical flow information after the
obstruction through the modified confrontation generation
network.

3.2.1. Self-Supervised Learning Method, Self-Flow.
Self-flow net is an excellent method to get the objects’ optical
flow information behind the occlusion. It builds on PWC-
Net [38] and extends it to multiframe optical flow estima-
tion. PFC-Net uses pyramid processing to improve the
resolution from coarse to thin, and uses feature distortion,
cost volume constructs to estimate the optical flow of each
layer. Based on these principles, it has achieved state-of-the-
art performance with a compact model size.

As shown in Figure 2, the reason why we chose the self-
flow network can be seen. First, it uses three images as input
to generate multi-frame optical flow estimation of three
feature representations of Ft− 1, Ft, and Ft+1. -en, self-flow
uses the initial backward flow and backward cost volume
information for the previous frame. It− 1 can provide effective
information about the occlusion, especially the area that is
occluded in It+1 but not occluded in It− 1, and self-flow
combines this information to get a more accurate optical
flow estimation.

At the same time, the self-flow network uses five frames
of images as input to perform consistency checks when
estimating the optical flow between two frames, thereby
inferring the occlusion map between two consecutive im-
ages. For the forward-backward consistency check, when the
mismatch between the forward flow and the reverse forward
flow is too large, the self-flow network considers a pixel to be
occluded. A pixel is considered occluded whenever it violates
the following constraint:
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when α1 � 0.01 and α2 � 0.05, we get accurate optical flow
information of pedestrians and obstructions.

3.2.2. Removal of Occlusion Region. In the video sequence at
intersections and crosswalks, obstruction objects can be
divided into two categories as static occlusion (such as stone
pillars, trash cans, railings) and dynamic occlusion (such as
suitcases, luggage bags, animals). In self-flow network, static
occlusion will not generate optical flow for no motion be-
tween frames. -e dynamic occlusion will produce striking
interference optical flow, which is difficult to eliminate.
-en, in this part, we only consider the situation when
pedestrians are blocked by dynamic objects. A White Edge
Cutting (WEC) algorithm is based on Canny, which removes
the optical flow information in the occluded area:
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In formulas (2) and (3), Hij represents the Gaussian
convolution kernel, (i, j) represents the pixel coordinates, k

is the dimension of the convolution kernel, G represents the
gradient descent value, Gx and Gy represent the bias value in
the (x, y) direction, and θ represents the gradient descent
direction.

-e pixels in the optical flow image are filtered by
Gaussian filter (2) to calculate the wave recorder core to
obtain the pixel threshold with weight, then (3) is used to
calculate the gradient value and gradient direction, and fi-
nally theWEC algorithm is considered to remove the optical
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Figure 1: KPOF-Net is composed of an optical flow module and a joint point module. On the one hand, the optical flow extraction of
pedestrians and obstructions is completed through self-flow, WEC is proposed to remove obstructions, and then the UCTGAN network is
used to generate a complete pedestrian optical flow diagram. On the other hand, it is based on B-GPDM training four types of joint models
of walking, stopping, walking tendency, and stopping tendency. Finally, the pedestrian optical flow information is combined with the joint
point model to predict the pedestrian’s posture and trajectory.
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flow in the obstructed area information, as the result shown
in Figure 3.

In the process of detecting WEC, we take a small portion
of the optical flow into the pixel level. In the field of 3× 3, we
can find that at the junction of two objects, the optical flow
information will be close to white or white, so we use the
principle to connect the pixel values that tend to be white at
the boundary to obtain the exact boundary between the
pedestrian and the dynamic object, and remove this part of
the area:

difference �
SWEC − Sorigin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Sorigin
∗ 100%. (4)

We use formula (4) to calculate the percentage of the
area difference before and after the occlusion segmentation
to show the performance of the WEC segmentation oc-
clusion. In the formula, SWEC represents the area of the
occlusion after division, and Sorigin represents the area of the
occlusion before division. From Table 1, it is found that the
WEC method can control the area difference within 5%.
Although the area difference increases when facing small
obstructions, it can still separate different types of ob-
structions from pedestrians.

3.2.3. Pedestrians Inpainting according to the UCTGAN
Network. When pedestrians at the intersections and
crosswalks are blocked by static objects, they get incomplete
optical flow information. When they are occluded by a
dynamic target, the WEC algorithm is used to remove the
occluded area to get the pedestrian optical flow map of the
incomplete area. In view of the above situation, this paper
integrates the GAN network to generate a complete pe-
destrian optical flow image, as shown in Figure 4.

We simply modified the network based on UCTGAN,
and deleted the multi-scale scheme of the original network

according to the actual needs of the experiment. -e image
area of size 256× 256 is directly extracted from the external
square center of the occlusion area and input to the network.
In this way, multiple calculations on different scales of the
network can be avoided and the operation efficiency of the
network is greatly improved.

-e UCTGAN network is trained in an end-to-end
fashion, which consists of two branches. -e UCTCAN
framework mainly includes three network modules:
manifold projection module E1, conditional encoder
module E2, and generation module G. -e primary branch
consists of a manifold projection module E1 and a gen-
eration module G, which is responsible for learning one-
to-one image mapping between two spaces in an unsu-
pervised way by projecting instance image space Si and
conditional completion image space Si into one common
latent manifold space Sm. -e second branch consists of a
conditional encoder module E2, which acts as conditional
constraint similar to the conditional label. -e UCTGAN
framework could maximize the conditional log-likelihood
of the training instances, which involves a variational
lower bound:

log p Ic|Im( 􏼁≥ − KL fφ Zc|Ii, Im( 􏼁 ‖ fϕ Zc|Im( 􏼁􏼐 􏼑

+ EZc ∼ fφ Zc|Ii,Im( ) log gθ Ic|Zc, Im( 􏼁􏼂 􏼃,
(5)

where Ic, Im, and Ii are instance image, masked image, and
the repaired image, respectively. Zc is the latent vector of Ii

in space Sm. fφ, fϕ, and gθ are the posterior sampling
function, conditional prior, and likelihood, respectively,
where φ, ϕ , and ϑ are the corresponding deep network
parameters.

One of the reasons why we choose the UCTGAN net-
work is its series of training loss, including Lccl Condition
Constraint Loss, LKL KL Divergence Loss, Lrec
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Reconstruction Loss, and Ladv Adversarial Loss. -e total
loss function Ltotal of UCTGAN consists of four groups of
component losses, as shown in formula (6). Among them

λrec, λccl, λadv, and λKL are the hyperparameters corre-
sponding to the constraints, which play a relatively im-
portant role in each constraint:

Table 1: -e area value ratio before and after the occluder is moved by WEC.

Object Trunk (%) Animal (%) Handbag (%) Motorcycle (%) Bicycle (%)
Difference 2.37 4.32 3.21 3.56 4.77

Input

Occlusion removal

Optical flow estimation

World coordinate system

Y

X0

Figure 4: Pedestrian movement spectrogram. In the spatiotemporal sequence, pedestrians with obstructions obtain the initialized pe-
destrian optical flow diagram through three steps, which include picture input, optical flow estimation, and occlusion removal.
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Figure 3: In theWEC detection process, a small part of the optical flow is taken and enlarged to the pixel level. In the 3∗ 3 pixel matrix, there
is a transition zone that is close to white at the intersection of the obstruction and the pedestrian in the light flow. Based on this, WEC
determines four types of symbols: left/avertence, up/down, left/right, and right/avertence.-eN in the figure indicates that the value signs of
the corresponding two points are different. When the four pairs of values are opposite in sign and the absolute value of the difference is less
than a certain threshold, W is recorded as the WEC boundary. All W points are mapped to the original image to obtain the boundary of the
occlusion in the input image.
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(6)

-e condition constraint losses La
ccl and L

f

ccl encourage
consistency and integrity between completion contents and
known contents, reconstruction losses L

g
rec, Ll

rec, and Ll
rec

encourage one-to-one mapping between the instance image
and the repaired image, and avoid falling into mode collapse,
and adversarial loss Ladv makes repaired images fit in with
the distribution of the training dataset. -e loss of all these
prompted us to get excellent pedestrian optical information.
If you are interested in the specific details of how to
inpainting pedestrian optical flow information after pro-
posing dynamic objects in this article, you can do intensive
reading UCTGAN network [21].

3.3. Pedestrians’ Key Point Model Establishment. In actual
scenes, at intersections and crosswalks, pedestrians will
produce corresponding stance based on the current status of
traffic lights, traffic flow, and their own consciousness. -is
posture information can help us predict the state of pe-
destrians in the future. -erefore, in this paper, we extract
human joint point information based on the hidden Markov
joint point recognition model in Minguez et al. [35], and
then train a joint point model that adapts to the human
posture in the intersection and crosswalk scenes, including
stopping, walking, stopping tendency, and walking
tendency.

3.3.1. Data Set Description. In this section, our main goal
was to train accurate models with different pedestrian dy-
namics. For this, we used high-frequency, low-noise datasets
released by Carnegie Mellon University (CMU) [39]. On the
one side, the high frequency of the dataset helps the algo-
rithms to properly learn the dynamics of different activities
and increases the probability of finding a similar test ob-
servation in the trained data without missing intermediate
observations. On the other side, low-noise models improve
the prediction when working with noisy test samples. -e
pedestrian motion simulation dataset contains a typical
pedestrian motion sequence package. Among this, we collect
the three-dimensional coordinates of 41 joints along the
body with a frequency of 120Hz. However, according to the
actual situation of intersections and crosswalks, we focused
on using part of the joint point information of the legs and
the body. At the same time, according to our actual needs, we
selected four categories from the CMU dataset that meets
stopping, walking, stopping tendency, and walking tendency
sequence; a total of 200 sequences were extracted, which
consisted of 143,207 pedestrian poses from 25 different
subjects. See Table 2 for details.

Pedestrian skeleton estimation algorithm, based on point
clouds extracted from a stereo pair and geometrical con-
straints, was implemented to test the proposed method with
noisy observations. -e algorithm is based on references
[40, 41], and the specific details can be learned from the
literature [42].

3.3.2. Learning Pedestrians’ Key Point Model. After
extracting the human body joint point information, we need
to identify the human body joint point model of the cor-
responding joint point state in the intersection and cross-
walk scenes. In this part, we use the B-GPDMsmethod in the
literature [35] to identify the joint points of pedestrians.

Mı́nguez et al. just trained four models suitable for their
experimental needs, including walking, starting, stopping,
and standing. However, these four models are only limited to
the joint point model in which the pedestrian has been in an
upcoming motion state, and did not consider the detailed
information of the joint point when the pedestrian’s motion
state changes, resulting in the system being unable to predict
accurate pedestrian trajectory information. So, we use the
B-GPDMs algorithm to train four types of joint point
models: standing, walking, stopping tendency, and walking
tendency. -is is because when pedestrians pass crosswalks
and intersections, their movement is not restricted to only
two states of walking and stopping alone, as they will
constantly judge the current traffic situation to change their
own motion state. When there is a vehicle in front, pe-
destrians in the walking state will collect forward environ-
ment information in real time by leaning their upper limbs
forward, and the distance between the lower limbs will
continue to shrink. When the front is passable, the upper
limbs also lean forward to collect the front environmental
information in real time, while the distance between the
lower limbs is increasing.

In the process of learning all the sequences contained in
the CMU dataset, since the coordinate system of these se-
quences is affected by the sensor, we deleted the 3D data of
each observation and obtained the coordinate system with
the pedestrian as the origin, which allows us to deal with
pedestrians in any location. -en, by subtracting the mean
and dividing each mean by the standard deviation to scale, it
is more convenient to obtain zero mean and unit variance
data. Since B-GPDM needs to use the smallest posterior
function to iterate, we give appropriate initialization po-
tential positions, hyperparameters, and constants according
to the literature [30]. We initialize the potential coordinates
through PCA [43], the kernel parameters and the corre-
sponding values in the constants, and finally used the dataset
in Table 2 to learn the four types of human joint point
models suitable for intersections and crosswalks in Figure 5.

3.4. Pedestrian Path Prediction by KPOF-GPDM.
Pedestrians are prone to wandering at intersections. At
crosswalks, they may also stand or walk due to the status of
traffic lights and vehicle driving on the road. However, the
use of optical flow information alone can lead to the loss of
some posture information of the walking or stopping state.
-erefore, we introduce the human joint point information
into the optical flow information prediction algorithm to
form the KPOF-GPDM algorithm in this article. -e al-
gorithm supplements the detailed information of the pe-
destrian’s posture during the movement and can more
accurately predict the pedestrian’s movement state and
movement trajectory in the future.
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Table 2: Pedestrian data sequences.

Sequence
Orientation Stopping Walking Stopping tendency Walking tendency Total
Left to right 18 15 32 36 101
Right to left 15 17 37 30 99
Total 33 32 69 66 200
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Figure 5: Four types of human joint point models are shown. When the pedestrian is in the stopping state, the whole body is in a vertical
posture, and the direct distance between the legs is 0–30 cm. When the pedestrian is in the walking state, the whole body is basically in a
vertical posture, and the distance between the feet is 50–70 cm. When a pedestrian has a change in the state of motion, the upper limbs will
lean forward, but the distance between the pedestrian’s legs in (c) is 40–60 cm, and the distance between the legs in (d) is about 0–30 cm. (a)
Stopping. (b) Walking. (c) Stopping tendency. (d) Walking tendency.
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KPOF-GPDM integrates pedestrian optical flow char-
acteristics and joint point information to predict the pe-
destrian’s lateral motion state at crosswalks and intersections
and the motion trajectory in world coordinates. Firstly, we
construct the pedestrian’s lateral attitude information in the
world coordinate system.-en in the same world coordinate
system, the pedestrian’s movement state at the intersection
and crosswalk, the detailed information of the upper and
lower limbs are extracted, and the pedestrian optical flow
information and the joint point information are merged.
Secondly, the underlying spatial dynamic model GPDM is
used to reduce the dimension of the feature information.
Finally, trajectory prediction and motion feature recon-
struction are performed in low dimensional space.

3.4.1. ;e Lateral Position of Pedestrians in World
Coordinates. We need pedestrian distance information
when we establish the mapping between pedestrian dynamic
optical flow features and real pedestrian speed. Inmonocular
ranging model, we assume that the road surface is flat and
pedestrians walk upright. In this process, we need to cali-
brate the camera’s internal and external parameters. -e
camera’s internal parameters are fixed. -e camera’s height
and pitch angle will remain unchanged once the camera is
fixed on the vehicle. Based on the above premises, the world
coordinate system can be established. -e projection of the
camera’s optical axis on the ground is the center, the di-
rection of the vehicle is X axis, and Y axis is perpendicular to
the ground.

We regard the center of the pedestrian’s projection on
the ground as the ranging point. Correspondingly, we use
the projection of the pedestrian’s abdominal transverse
center on the bottom of the pedestrian mask to calculate the
ranging points p(u, v). Among them, u is the maximum
value in the Y direction of the mask area, and ] is the average
value of the x-axis in the mask area:

u � max ymask( 􏼁,

v � mean xmask( 􏼁.
(7)

According to reference [44], the focal length of the
camera isf and the ranging point is p(u, v). -en, the world
coordinates of pedestrians can be obtained as follows:

Y �
H

tan α − arctan v − v0( 􏼁/fy􏼐 􏼑􏼐 􏼑
,

X �
u − u0( 􏼁 × H

������������

f
2
x + v − v0( 􏼁

2
􏽱

× sin α − arctan v − v0( 􏼁/fy􏼐 􏼑􏼐 􏼑

.

(8)

With the angle between the optical axis and the hori-
zontal road surface α, the height between the camera and the
ground is H. fy � f/dy; fx � f/dx; and dx and dy represent
the pixels distance in image coordinates u and v. -en, the
distance between pedestrians and vehicle is computed using
D(P) �

�������
X2 + Y2

√
.

3.4.2. Key Point Feature Fuse. In the fusion module of
optical flow information and connection point model, firstly,
pedestrian horizontal optical flow is the transverse com-
ponent of dynamic optical flow. -e pedestrian mask area
obtained by self-flow can locate the pedestrian position and
obtain more accurate optical flow characteristics. At the
same time, complete pedestrian mask can be repaired
through the UCTGAN network. Simultaneously, the pe-
destrian connection point model we trained in Section 3.3 is
used to identify the pedestrian connection points in the
image sequence. Finally, in the same world coordinate
system, pedestrian optical flow information and human
body node information are fused; the specific process is
shown in Figure 6.

When only using optical flow information to predict
pedestrian trajectories, the predicted pedestrian optical flow
velocity Vof can help the ADAS to predict the motion
trajectory of the behavior in the future to a certain extent.
But, at this time, Vof reflects the overall speed of a pedes-
trian, while the detailed information of the upper and lower
limbs of the pedestrian in the process of walking and parking
is lost, and the pedestrian track with higher accuracy cannot
be obtained in the future. -erefore, this article introduces
the human body joint point information to form a trajectory
prediction model that combines optical flow information
with human optical nodes. When pedestrians pass through
an intersection or crosswalk, they will not only collect
current traffic information in real time by leaning forward
but also adjust the movements of their upper and lower
limbs to reflect changes in their own movement status. For
example, when there are vehicles ahead, the upper limbs of
the pedestrian in the walking state will lean forward to judge
the forward traffic situation, the lateral velocity VTkpi

of the
joint points of the upper limb of the human body will
gradually slow down. -e lateral spacing between the joint
points of the lower limbs gradually decreases, the lateral
velocity VDk pi

gradually decreases. At this time, the pe-
destrianmovement status changes fromwalking to stopping.
When the front traffic condition is good, the upper limbs of
pedestrians will also lean forward to judge the current traffic
situation, and the lateral velocity VTkpi

of the joint points of
the upper limbs will increase positively. -e distance be-
tween the joint points of the lower limbs and the lateral
velocity are also gradually increasing. At this time, the pe-
destrian motion state shows a trend of gradually changing
from the stopping state to the walking state.

In the traditional optical flow trajectory prediction, the
car’s ADAS only uses Vof in equation (9) to calculate the
pedestrian’s speed on road, and then roughly predicts the
pedestrian’s motion state and trajectory in a Gaussian low-
dimensional space, unable to provide effective anti-collision
data. After introducing the information of human joints, the
ADAS uses the detailed information of the joints of the
upper and lower limbs of the human body to estimate the
trend of pedestrian movement in the future. It also uses
formula (10) to calculate the speed of the upper and lower
limbs of the pedestrian, which reflects the detailed infor-
mation of the pedestrian when facing different traffic con-
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ditions, and provides more accurate data input for the back-
end motion state and trajectory prediction. At this time, the
three calculation data of VTkpi

, VDk pi
, and VX(p) are used to

predict the pedestrian’s motion state, and the trajectory
prediction can better reflect the real pedestrian state and
provide more effective active safety data for the car’s ADAS.

With the pedestrian’s lateral optical flow Vof, lateral
velocity of key point VTkpi

and VDk pi
, (VTkpi

, VDk pi
∈ Vkpi

),
and the camera interval of each frame Δt, the pedestrians’
walking speed VX(p) and Xt can be calculated by the fol-
lowing formula:

VX(p) �
τ · Vof(p)

D · Δt
, (9)

VT/Dk pi
�
1
n

·
τ · 􏽐

n
i�0 Vkpi

􏼐 􏼑

D · Δt
, (10)

VX(p) �
1

(n + 1)

τ · Vof(p) + 􏽐
n
i�0 Vkpi

􏼐 􏼑􏼐 􏼑

D · Δt
, (11)

where VX(p) is the velocity of pedestrians, the function D

represents pedestrian distance, and τ is a constant. -e
average value of velocity optical flow in pedestrian upper
body can be regarded as the average speed of the pedestrian
v. We resize VX(p) to 32×16 pixel. We construct a feature
vector yt ∈ RD, (D � 515) that includes position, average
speed, and velocity optical flow.

3.4.3. Gaussian Model. GPDM is a latent variable model. It
established the mapping relation from a latent space xt to
observation space yt and a latent dynamical model which
account for the temporal dependence on pedestrian motion
features [39].

-e observation space Y � [y1, y2, . . . , yN]T is N frames
motion feature vector. X � [x1, x2, . . . , xN]T is the dynamic
mapping on latent positions. -e mapping relation can be
described:

p(Y|X, β, W) �
|W|

N

�������������

(2π)
N×16

KY

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
16

􏽱 exp −
1
2
Tr K

− 1
Y YW

2
Y

T
􏼐 􏼑􏼒 􏼓,

(12)

where KY is a kernel matrix of size N × N constructed by
the kernel function κY. -e parameter of the kernel matrix
is β � β1, β2, β3􏼈 􏼉. For our data, we use the RBF (radial
basis function) kernel κY(x, x′) � β1 exp(− (β2/2)‖x − x′‖2)+
β− 1
3 δx,x′ ; W is a D × D diagonal matrix that represents the

weight of different dimensions of yt. Assuming that the
dynamics of the data in the latent space xt satisfies the first-
order Markov model, the dynamics of the time series data is
incorporated using

p(X|α) �
p x1( 􏼁

��������������

(2π)
(N− 1)×d

KX

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
d

􏽱 exp −
1
2

Tr K
− 1
X X2: NX

T
2: N􏼐 􏼑􏼒 􏼓,

(13)

where X2: N � [x2, . . . , xN]T, the kernel matrix KX is (N −

1) × (N − 1) that is constructed from X1: N− 1 � [x1, . . . ,

xN− 1]
T and defined by a kernel function κX(x, x′). We use

RBF and a linear kernel in the kernel function with kernel
hyperparameters α � α1, α2, α3, α4􏼈 􏼉:

κX x, x′( 􏼁 � α1 exp −
α2
2

x − x′
����

����
2

􏼒 􏼓 + α3x
T
x′α− 1

4 δx,x′ . (14)

Latent mapping and latent dynamics model combined
with time series observations:

p(X, Y, α, β, W) � p(Y|X, β, W)p(X|α)p(α)p(β)p(W).

(15)

-e process of GPDM inference is finding hidden space
variables X and kernel parameters α, β􏽮 􏽯 by minimizing the
negative logarithm joint posterior − ln p(X, α, β|Y). It can be
optimized by the scaled conjugate gradient (SCD) algorithm.
-e dimension of latent space d � 3. Figure 7 illustrates this

Scenes flow velocity

Top point velocity

Down point velocity

Pedestrian
velocity (m/s)

Key point module Key pointPedestrian mask

Distance
normalization

Optical flow module
Pedestrian flow 

lateral component
Fuse

Figure 6: -e fusion process of optical flow information and node model can improve the accuracy of pedestrian trajectory prediction
through the fusion of pedestrian nodes with different motion states and different postures.
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mean prediction of a point for several frames on the low-
dimensional space.

-e motion state of the pedestrian at time t is described
by ϕt � [xt, Xt], where xt ∈ R

d is a point in the low-di-
mensional space and Xt is the horizontal position of the
pedestrian in practice. Given an observed motion feature yt

and observed lateral position Yt, the probability of a pe-
destrian state ϕt is computed by

p ϕt|yt, Yt( 􏼁 � ηp yt, Yt|ϕt( 􏼁 􏽚 p ϕt|ϕt− 1( 􏼁p ϕt− 1|yt− 1, Yt− 1( 􏼁dϕt− 1
,

(16)

with normalization constant η. -e probability p(ϕt|ϕt− 1) of
observing a future state is computed from the GPDM latent
space mean prediction.

3.4.4. Motion Feature Reconstruction. KPOF-GPDM can be
obtained by Bayesian law which can generate new obser-
vation sequences. With the trained model
Γ � Y, X, α, β, W􏽮 􏽯, a new observation sequence and the
joint conditional distribution of the scene stream feature
corresponding to the hidden space feature sequence is
expressed as

p Y
∗
, X
∗
|Γ( 􏼁 � p Y

∗
|X
∗
, Γ( 􏼁p X

∗
|Γ( 􏼁. (17)

-e new latent variable sequence x∗ can be predicted by
maximizing the formula (16). -e process of predicting a
new sequence by the first latent variable X1 requires two
steps:

(a) A new latent space variable is predicted based on the
data at the previous time.

μX x
∗

( 􏼁 � kX xt− 1( 􏼁
T
K

− 1
X X2: N, (18)

where the vector kX(x) is containing kX(x, xi) in the
ith entry, and xi is the ith training vector.

(b) -e new data in the observation space is constructed
using

μY x
∗

( 􏼁 � kY x
∗

( 􏼁
Τ
K

− 1
Y Y. (19)

Figure 8 shows the reconstructed scene flow when
pedestrians cross the road, and Figure 9 shows the
pedestrian velocity in the future.

4. Experiment

We deploy our system on PX2 mobile devices, using its
TensorRT neural network inference engine and cuDNN
deep neural network library to improve its real-time
performance. During the experiment, on the one hand,
our system and four excellent pedestrian trajectory pre-
diction systems (KF, IMM-KF, HoM/Traj [3], and
SFlowX/GPDM [30]) are placed in the same video se-
quence to compare their pedestrian trajectory position
prediction accuracy and pedestrian action classification
probability accuracy. On the other hand, our fusion model
is compared with the prediction model using only one
piece of information to verify the improvement in our
system performance. In this section, we use a monocular
camera (baseline 33 cm, 30 fps) mounted on the inside of
the windshield and behind the rearview mirror to collect
video data at a busy intersection in the campus. Video data
are divided into two scenarios, both of which are pedes-
trians crossing the road on the crosswalk without being
covered. In the first scene, Figure 10(a), when pedestrians
stop at the side of the road, they observe the traffic flow on
the road and decide whether to stay in place or walk
through the crosswalk for the next stage of action. In the
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Figure 7: (a)-e hidden space 3D trajectory obtained by walking data training and (b) hidden space 3D trajectory obtained by stopping data
training. -e green lines represent the trajectories of pedestrian walking and stopping features under hidden space projection, respectively,
and red represents the average predicted trajectory learned by KPOF-GPDM.
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second scene, Figure 10(b), when pedestrians pass the
crosswalk, they judge the traffic situation in real time and
change their own motion state.

In order to evaluate the performance of the pedestrian
trajectory prediction and action classification in this paper,
we first evaluate the performance of the pedestrian motion

t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

t = 2 t = 4 t = 6 t = 8 t = 10 t = 12

Figure 8: (Top row) Reconstructed optical flow based on current state (t� 0) and state predictions (t� 2, . . . , 12) in low-dimensional latent
space. (Bottom row) Optical flow that is (will be) actually measured at the corresponding time steps.
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Figure 9: -e comparison between using only optical flow and using the fusion model to predict pedestrian speed and the true value shows
that KPOF-Net can predict pedestrian speeds that are closer to the true value.
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Figure 10: Campus experiment scene. (a) Pedestrians stand by the roadside. (b) Pedestrians pass the crosswalk.
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classification model through experiments. -rough manual
annotation of pedestrians in the images of the shape, we
obtained the coordinates of the ground truth (GT) of pe-
destrians in the world coordinate system. Since pedestrian
basically walk upright, set the pedestrian’s standing point as
the center origin instead of the pedestrian’s center of gravity,
so that we can obtain the horizontal and vertical coordinates
of the pedestrian on the ground in order to obtain more
reliable basic data. Due to the displacement, it is not reliable
to show an action classification based on starting and
stopping (with displacement of starting and stopping), and
we use the key information to get body posture. At the
beginning, the legs are in a separate position, and at the stop,
the legs shift from closed to walking, and the arms and legs
swing alternately. By combining posture and displacement,
we can better classify movement types. In the experiment,
the tester must choose to stop or cross the road, and the
probability of pedestrian action classification is expressed by
the values of [0,1], and the probability value is calculated by
formula (16). In terms of alignment along the time axis, for
each trajectory in which the pedestrian is stopping, the
moment of the last placement of the foot is labeled as the
stopping moment. -e time-to-stop (TTS) value is used to
count the number of frames before the event, meaning that
the TTS value for the frames before the stop event is positive
and the TTS value for the frames after the stop event is
negative. In sequences in which the pedestrian continues
walking, the closest point to the curbstone (with closed legs)
is labeled. Analogous to the TTS definition, the latter is
called the time-to-curb (TTC) value. We assume that
TTC� 0 represents the time when pedestrians change from
walking to stopping; when the TTC is bigger than 0, it
represents the previous frames of stopping, and when the
TTC is less than 0, it represents the frames after stopping.

4.1. Pedestrian Action Classification. We compare the pre-
dicted probabilities of the system with three excellent sys-
tems in the same video sequence set for its action
classification, and judge whether pedestrians will stop or
walk in a short time in the future. When pedestrians are at
intersections or crosswalks, they will choose to stand or walk
because of the current status of traffic lights, road traffic, and
their own decision-making awareness. Figure 11 shows the
predicted probabilities of whether the five systems are
walking or stopping in the future in the same sequence set.

In order to fully test the performance of the five systems
for pedestrian motion classification, we tested multiple video
datasets on campus. Pedestrians wandered at intersections
and choose to stop at the crosswalk due to road traffic
conditions. When the current safe traffic environment is
determined, they resumed walking and other movements.
For each test sequence, we used a slider between 0 and 1 to
provide probability (confidence), which is displayed in the
most intuitive way.

In Figure 11, we can see that when the car is in motion, it
has an impact on the predicted probability of our state
change. When the pedestrian state is about to change, the
prediction probability of the pedestrian state change in the

dynamic scene of the vehicle is lower than that in the static
scene, and the prediction ability is reduced. However, our
system has the least decline range and the least impact. At
the same time, regardless of whether the car is in a stopping
or moving state, when the pedestrian state changes (from
walking state to stopping state or from stopping state to
walking), each system starts with a low probability, and
predicts the probability gradually as the pedestrian state
changes increase. However, whether the car is in motion or
stopped, it can be clearly seen that our system is more
sensitive than other systems, reacts more quickly, and can
keenly grasp the characteristics of the human body when the
pedestrian’s state changes, so as to predict the change of the
pedestrian’s state more quickly.

In the classification and discrimination of pedestrian
movement, since our system has learned four types of hu-
man joint point models in Section 3.3, it not only includes
two basic models of standing and walking but also two
pedestrian joint point models of standing tendency and
walking tendency. When pedestrians are about to stop or
walk at intersections or crosswalks, they will judge the traffic
situation ahead by leaning forward to prepare for changes in
their own state. As a result, we can capture more human
body posture information, prompting our system to achieve
better prediction results than other systems in experiments.

At each moment of the input trajectory, we determine
the category membership degree by estimating the stopping
probability through the threshold, adjusted the parameters
through experiments, and set the appropriate threshold.
When the probability of our state change is greater than the
threshold, we determine that our pedestrian state is walking
or stopping. In our experimental results, when the car is in a
stopped state, there is a probability of 0.402 to predict the
future state of the pedestrian 7 frames before the state
change.

4.2. Pedestrian Trajectory Prediction. We also attach im-
portance to the system’s ability to predict the accuracy of
pedestrian location. Accurate location information can es-
tablish an excellent pedestrian prediction model and provide
auxiliary information for ADAS functions. During the test,
we considered that the state of the car’s movement also
affects the ADAS’s prediction of the change of the pedes-
trian’s movement state. -erefore, in Table 3, we collected
video sequences of the car in different states of movement.
We compared the positioning accuracy between systems by
the average value and standard deviation of the RMSE of
each video sequence. -e range of pedestrian frames is [− 20,
15], when frame 0 means the manually labeled TTS/TTC
moment. -e position between [0,15] is predicted by the
system, which represents the comparison between our po-
sitioning accuracy. It can be seen from Table 4 that when the
pedestrian is in motion, all systems can capture enough
pedestrian posture information, and obtain a smaller pos-
ture prediction error compared to the pedestrian stopped
state. At the same time, no matter whether the pedestrian is
walking or stopping, our system can extract more pedestrian
pose information by fusing optical flow information and
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Figure 11: (a) Prediction probability of pedestrian walk. (b) Prediction probability of pedestrian stop. (c) Prediction probability of
pedestrian walk. (d) Prediction probability of pedestrian stop. (a, b) -e car is in a stopped state and is stopped in front of the sidewalk, and
the probability of the state change at the pedestrian intersection and sidewalk is measured. (c, d)-e car is in a state of motion, and when it is
gradually approaching the sidewalk, we predict the probability of the pedestrian’s state change.

Table 3: Data source method.

Sequence Vehicle standing Vehicle moving Vehicle standing +moving
Ped. Stopping 11 5 16
Ped. Walking 9 4 13

Table 4: Pedestrian lateral trajectory prediction error.

Systems
State

Walking Stopping
0 15 0 15

KF Mean 0.28 0.62 0.43 1.27
±Std 0.05 0.25 0.09 0.24

IMM-KF Mean 0.34 0.58 0.62 1.15
±Std 0.06 0.34 0.15 0.31

HoM/Traj Mean 0.22 0.43 0.31 0.82
±Std 0.03 0.13 0.09 0.24

SFlow/GPDM Mean 0.17 0.51 0.37 0.54
±Std 0.06 0.27 0.08 0.18

KPOF-Net Mean 0.15 0.38 0.27 0.42
0± Std 0.04 0.13 0.05 0.14
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joint point information, which enables us to predict the
position of pedestrians more accurately. Also, it can be
found from Figure 12 that when pedestrians are always in the
same state of motion, KPOF-Net shows better prediction
performance than other excellent systems, and can always
maintain a low pedestrian position prediction error. When
the pedestrian motion status changes, with a strong anti-

interference ability, our KPOF-Net can suppress the increase
in pedestrian position prediction error caused by the motion
status change, which is faster than other systems.

4.3. Pedestrian Prediction Model. After removing dynamic
object occlusions and fusing the repaired optical flow in-
formation with the human joint point model, our system has
improved pedestrian action classification and pedestrian
trajectory prediction compared with several other excellent
systems with excellent experimental results. At the same
time, in order to verify the performance improvement of the
prediction model that integrates optical flow information
and joint point information, we run the KPOF-Net model,
single optical flow information prediction model, and joint
point prediction model in pedestrian unobstructed video
sequences. In this experiment, consider the system’s real-
time performance and trajectory prediction accuracy on
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Figure 12: (a) Graph shows the performance of KPOF-Net’s pedestrian trajectory prediction accuracy. (b) Curve shows that KPOF-Net is
better than others when the state changes. (a, b) -e cars are slowly approaching the crosswalk. An excellent system has a faster response
speed and can handle the trajectory prediction error caused by the state change in time.
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20m
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Figure 13: -e trajectory prediction model at 0.25 s and 0.5 s when traveling without occlusion.

Table 5: Euclidean distance error analysis.

Metric Datasets Point Flow Point＋
flow

Average displacement
error (m)

Video 1 0.1832 0.2418 0.1047
Video 2 0.2463 0.1716 0.0781
Video 3 0.2314 0.2159 0.0948

Final displacement error
(m)

Video 1 0.1657 0.2314 0.1164
Video 2 0.2591 0.1843 0.0841
Video 3 0.2534 0.2317 0.0973
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common hardware devices. On the one hand, the judgment
logic we set in the algorithm will skip the WEC link directly
when the pedestrian is in an unobstructed state. On the other
hand, the experiment in this section is carried out at a low
vehicle speed of 15 km/h. And, we propose Average Dis-
placement Error (ADE) and Final Displacement Error
(FDE) evaluation rules to verify the performance im-
provement of our system.

-e results of prediction experiments are shown in
Figure 13, in which the blue optical flow is the predicted
pedestrian position after 0.25 s and the red optical flow is the
predicted pedestrian position after 0.5 s.

Next, we make path prediction and select the most
accurate activity model to estimate the future state of pe-
destrians, and two error indexes are used to evaluate the
overall position prediction. -e comparison results are
shown in Table 5:

(1) Average displacement error (ADE): the average
Euclidean distance between the predicted location
and the actual location over time.

(2) Final displacement error (FDE): the Euclidean dis-
tance between the Final predicted location and the
real point on the ground.

By comparing the ADE and FDE of the three model
systems in multiple video sequences, we can find that when
only the optical flow information and joint point infor-
mation are used to predict the pedestrian trajectory, the ADE
and FDE values fluctuate around 0.2m. -ere is still a large
deviation between the position information predicted by
using only the optical flow information or optical node
information and the actual position of the pedestrian. -e
prediction accuracy of KPOF-Net can be set to reach 0.1m,
which can effectively predict the trajectory of pedestrians in
the future.

5. Conclusion

At intersections and crosswalks, in the optical flow module,
we use the self-flow network to obtain pedestrian optical
flow information containing obstructed objects, and then
propose the WEC algorithm to segment the obstructed
objects from pedestrians, and finally use the UCTGAN
Network to restore the pedestrian optical flow image. In the
human body joint point module, four human body joint
point models are trained: standing, stopping, walking ten-
dency, and stopping tendency. After completing the optical
flow module and the human optical node module, we merge
the two modules to form a KPOF-Net network for pedes-
trian trajectory prediction. -e network supplements the
detailed information of the body movement of pedestrians
when passing intersections and crosswalks in the optical flow
information of the human body. At the same time, we
compare the KPOF-Net system with KF, IMM-KF, HoM/
Traj, and SFlowX/GPDM, four excellent pedestrian trajec-
tory prediction systems. Experiments show that after our
KPOF-Net system integrates optical flow information and
human body joint point information, both the probability of
pedestrian state prediction and the accuracy of pedestrian

trajectory are improved. Even in the time when the pe-
destrian state changes, the prediction accuracy of pedestrian
estimation fluctuates greatly, and it can respond quickly,
restrain the increase of the error, and restore the accuracy to
a normal value. It can be found from the full text that the
KPOF-Net prediction model after fusion of human joint
point information could provide accurate auxiliary infor-
mation for our advanced driving assistance system.

Data Availability

Some relevant data are available on the website https://
github.com/604627144/KPOF-GPDM, wherein some
codes, pedestrian data, and experimental results will be
presented.
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