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Low-permeability reservoirs, especially ultralow-permeability reservoirs, usually show a problem of ineffective water injection
which leads to low pressure with high injection-production ratio. It is urgent to determine the direction and proportion of
ineffective water injection, so as to guide the adjustment of water injection development. Based on the theory of percolation
mechanics and combined with the modern well test analysis method, the determination method of effective water injection ratio
was established. This method can not only judge the direction of injected water but also determine the proportion of invalid
injected water. This method was applied on typical oil reservoirs; the evaluation results showed that extremely low permeability
and ultralow permeability usually exist the situation of water holding around the injected well which is almost 20% of the
injected water. Some areas existed the water channeling; the evaluation results showed that the water channeling was closely
related with sedimentary microfacies rather than microfractures, and the invalid injection accounts are about 45% of the
injected water. The method is simple and feasible, which can provide technical reference for the development strategy
adjustment of water drive development in low-permeability reservoir.

1. Introduction

At present, low-permeability reservoirs, especially ultralow
permeability, generally have the following two characteristics
in water development. (1) High injection-production ratio,
low reservoir pressure, and low water content. As shown in
Figure 1, the reservoirs of Xifeng, Wangyao, Jilin 119, Jilin
228, Santanghu, Z8, and other reservoirs all showed the
above problems. For ultralow-permeability reservoirs, the
injection-production ratio is around 4, but the formation
pressure is still decreasing. Where did the injected water
go? (2) Medium and high injection-production ratio, good
pressure maintenance level, and high water cut. Generally,
this kind of reservoir has strong heterogeneity which is diffi-
cult to determine by traditional methods.

In this research, an evaluation method of water injection
efficiency in low-permeability reservoir is established which

is based on the percolation mechanics and modern well test
analysis method.

2. Evaluation Method of Water Flow Direction
and Injection Water Utilization Rate in Low-
Permeability Reservoir

2.1. Evaluation Methods of Injection Water Utilization in
Reservoirs with High Injection-Production Ratio, Low
Formation Pressure, and Low Water Cut. The well test
interpretation model of low-permeability reservoir is estab-
lished. It combined with development parameters to deter-
mine the direction of injected water and the injection water
utilization rate.

2.1.1. Establishment and Solution of Well Test Interpretation
Model for Low-Permeability Reservoir. On the basis of the
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conventional well test model, a seepage mathematical model
of low-permeability reservoir is established by considering
stress sensitivity and complex fracture network. The solution
of the model is achieved through perturbation transform and
Laplace transform [1–5].

Mathematical model of seepage flow considering com-
plex fracture network and stress sensitivity is shown as fol-
lows.

1
r
∂
∂r
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Mathematical model of seepage flow with fracture net-
work is shown as follows.
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Perturbation transform and Laplace transform were used
to solve the above model to obtain the expression formula of
bottom hole pressure [6–9].

pD = −
1
αD

ln 1 − αDζDð Þ: ð3Þ

Among them,

ζD = ζD0 + αDζD1 + α2DζD2 + o α2D
� �

: ð4Þ

2.1.2. Analysis of Injection Dynamic Characteristics. Taking a
typical oil injection well in Changqing Oilfield as an example,
the well test curves at different times are shown in Figures 2
and 3. In the middle stage of development, the well test curve
had a character of finite diversion curve (Figure 2). But the
current well test curve had a character of composite reservoir
(Figure 3). Almost 70% injection well had above characteris-
tics in this reservoir. Meanwhile, in the period of pressure
drop test, the downhole pressure drop is small.

The injection data and production data proved that this
type of well existed the situation of water holding around
the injected well.

Based on the above analysis, it can be concluded that
when the injection well meets the following characteristics:
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Figure 1: Injection-production ratio and pressure retention levels in typical reservoirs.
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Figure 2: Characteristics of the well test curve in the middle stage of
development.
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(1) When injection is stopped, the pressure drop is small
which indicated that the pressure diffusion of injected water
is weak. (2) The injection pressure of the injection well is high
and the injection volume drops which indicates the difficulty
of water flow. (3) The well test curve shows the characteristics
of the composite reservoir. When the above three rules are
met, it can be determined that the injection water is not effec-
tively swept and it is held around the injection well.

2.1.3. EvaluationMethod of HoldingWater Volume. Based on
the above understanding, the well test interpretation model
can be established to obtain wellbore, reservoir, and other
parameters. The radius of the inner zone is the radius of
holding water near the injection well which can be calculated
by using the volumetric method.

The calculation formula of water storage capacity around
the injected well is as follows:

V = π ∗ r2 ∗ h ∗ φ ∗ y, ð5Þ

where V is the water storage capacity around the injected
well, r is the radius of injection water gathering area, h is
the effective formation thickness, φ is the porosity, and γ is
the dispersion coefficient.

Taking a typical well as an example (Figure 4), the well
test interpretation model for low-permeability reservoir is
adopted to interpret the well. The radius of holding water is
35m; combined with the reservoir physical parameters, the
containment water of the well can be calculated by volumet-
ric method as 23,000m3.

2.2. Evaluation Method of Water Injection Direction and
Water Injection Utilization Ratio in High-Water-Content
Reservoir. Based on the well test theory [10–15], the deriva-
tive curve characteristics of the oil-water ratio can be
obtained. According to the characteristics, the direction of
the injected water flow direction and the water injection uti-
lization ratio can be judged.

During development and production, a large number of
production dynamic data of injection-production wells can
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Figure 4: Fitting analysis of well test curves of typical wells.
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Figure 5: Water cut and its derivative curve with dimensionless
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be obtained, such as injection amount and water cut. In order
to facilitate the research, dimensionless time tD is introduced.

tD = qit
Aϕh

, ð6Þ

where qi is the injection well injection rate, m3/d; t is the
injection well accumulates injection time, d; A is the reser-
voir area, m2; h is the average reservoir thickness, m.

Dimensionless time tD is obtained by T , which not only
introduces time T but also considers the injection amount
and reservoir volume of the injection well. Then, derivative
of water cut can be obtained. The definition of derivative of
water cut of production well is as follows:

f w′ tDð Þ = df w
dtD

, ð7Þ

where f w is the water cut of production well, tD is the dimen-
sional time, and f w′ ðtDÞ is the derivative of water cut of pro-
duction well with respect to dimensionless time.

When there is no interference between injection and pro-
duction wells, the dimensionless derivative curve of water cut
is characterized by a single peak; when there is interference
between injection and production wells, the dimensionless
derivative curve of water cut is characterized by a double
peak, as shown in Figures 5 and 6. According to this feature,
it is possible to judge whether there is channeling between
injection-production wells and determine the water flow
direction.

3. Application Instance

Taking a reservoir in Changqing as an example, the average
permeability of this reservoir is 0.8mD, which is an
ultralow-permeability reservoir. The current injection-
production ratio is 5, and the average reservoir pressure
remains at the same level as the original formation pressure,
which indicated that 80% of the injected water is not effective,
so it is urgent to determine the direction of water injection
and guide the adjustment of water injection development.

3.1. Analysis of Water Injection Flow Direction and Water
Injection Utilization Ratio. This area is a reservoir with high
water cut and low permeability. The formation pressure is
maintained at a high level. It is necessary to determine the
direction of water flow. The established identification
method was used to evaluate the area, and the results are
shown in Figure 7. In order to verify the reliability of the eval-
uation results, the tracer method was used for monitoring.
The tracer test results were very consistent with the evalua-
tion results which indicate that the evaluation method had
good reliability.

The above methods are used to analyze the current inter-
facial flow direction and flow rate of the injected water in this
area. The evaluation results show that 45% of the injected
water has interfacial flow. The direction of the injected water
interfacial flow in this area has a good corresponding charac-
teristic with the sedimentary microfacies. The sedimentary
characteristics of this area are the main inducement of the
interfacial flow in this area, rather than the microfracture
previously believed, as shown in Figure 8.

3.2. The Evaluation of HoldingWater Volume.At present, the
cumulative injection-production ratio in the West 34 well
area and the West 25 well area is 4.38, and the actual average
formation pressure remains at 100%, that is, about 70% of the
injected water is not effectively utilized. 75% of injection wells
(Figures 9 and 10) in this area are characterized by a compos-
ite reservoir and meet the following rules: (1) The average
pressure drop test time is about 15 days, but the pressure
drop is about 2MPa and the pressure drop is small. (2)
Before the test, the average wellhead oil pressure was
18MPa, the formation injection pressure was above
38MPa, and the injection pressure was very high, but the
injection volume decreased. (3) Well test curve shows the
characteristics of composite reservoir. According to the pre-
vious understanding, we can judge the characteristics of
water holding in wells in this area.

According to the data collected, the average cumulative
injection volume per well in this area is 116,400m3, and
about 20% of the injected water is not effectively swept. If a
well is drained at a rate of 100m3/d, it will drain for 200 days.

4. Conclusion

(1) For the high-water-cut reservoirs, the evaluation
method of water injection destination and water
injection utilization rate was established. The reliabil-
ity of the method was verified by comparing with the
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Figure 9: Pressure drop curve characteristics of typical well test,
well A.
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well B.
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tracer test results. This method only needs to produce
dynamic data to judge the direction of channeling
and the proportion of channeling

(2) For reservoirs with high injection-production ratio
and low formation pressure maintenance level, a well
test interpretation model based on well testing is
established, and the judgment standard for water
holding is determined. Well test analysis method
can be used to determine the holding volume of the
injected water

(3) By using the above methods on a typical reservoir, the
injected water flow direction and the holding water
showed that about 45% of the injected water had
channeling and the water injection was ineffective.
In the water holding area, about 20% of the injected
water is held near the bottom of the well. The above
results can provide data reference for the adjustment
of water flooding in this reservoir
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Study shows that decline exponents of gas wells in Sulige Tight Gas Field vary during their life cycle. However, decline analysis
methods with variable decline exponent have not been developed so far. To address this problem, a simple-yet-effective method
is proposed. In this method, the fracture linear flow regime and the channel linear flow regime, which appear two straight lines
on the coordinate axis (1/q vs.

ffiffi
t

p
), respectively, are used to carry out the decline analysis. Each regime has a different slope and

intercept (in the form of 1/q vs.
ffiffi
t

p
), which leads to a useful graphical technique for predicting gas rate. The graphical technique

is verified by matching actual gas rate and predicting future gas rate trend. Theoretically, the influence of the two slopes and
intercepts in the graphical technique on the rate decline is also studied. Aiming at decline analysis for tight gas wells with
variable decline exponents, this paper proposes a novel method using linear flow characteristics, which ingeniously avoids the
establishment of an empirical method to deal with variable decline exponent. The method in this study can help for better
understanding of decline analysis of tight gas wells in a theoretical manner.

1. Introduction

Asweall know,Arpsdecline-curvemethod [1] is not applicable
for tight gas reservoir. The main reasons are that its assump-
tions are violated in tight gas wells. For example, tight gas wells
rarely reach boundary-dominated flow even after several years
of production, while Arps decline-curve method demands
boundary-dominated flow. Moreover, Kupchenko [2] proved
that decline exponent is variable for fractured tight gas wells.
In linear flow regimes, decline exponent will be bigger than
1, until flow regime enters into boundary-dominated flow.
For gaswells in some extreme low-permeability gas reservoirs,
the decline exponent will be bigger than 1 in their life cycle.

To deal with the new problem, new methods are pro-
posed. Duong [3] introduced an empirically decline model
based on long-term linear flow for tight gas reservoirs. ILK
et al. [4] proposed a method named Power law Exponential
Decline to predict the reserves of unconventional reservoirs.
For A. N. Duong method and ILK method, there are many

parameters to be determined in the fitting process, so multi-
ple solutions are inevitable. Matter et al. [5] proposed modi-
fied power law exponential decline. In 2009, Valko [6]
proposed stretched exponential production decline method
for shale gas. Joshi et al. [7] proposed a method which com-
bined Duong model with hyperbolic decline model. Yu [8]
presented a new improved methodology to determine a more
accurate b to be used in the Arps decline curve analysis for
tight gas reservoirs by developing relationship between
Qcum, Qcum, t-∞, qt, and t. In general, the above method-
ologies are mainly empirical. Neal and Mian [9] presented a
predictive technique by introducing linear flow equation.
Dought and Moridis [10] developed a simple, Excel-based
tool for the analysis of the complex problem of gas produc-
tion from a hydraulically fractured tight/shale gas reservoir,
based on curve fitting a semianalytical solution to production
decline data. In Alem et al.’s [11] opinions, the traditional
hyperbolic decline equation can be used to predict recovery
from tight gas plays by selecting the right decline exponent
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in correspondence with flow regime. Mienzan and Asumadu
[12] present a new set of rate-decline type curves to analyze
and predict gas well performance. The rate-decline type
curves have been developed based on a semianalytical model.
However, the method they proposed whether is applicable to
tight gas is not mentioned.

Unlike the approaches mentioned above, this paper
developed a new approach to handle rate decline with vari-
able decline exponent by utilizing fracture linear flow equa-
tion and channel flow equation, rather than establishing
empirical equations.

In this paper, firstly, the field characteristic is presented.
Then, we employ a numerical model to investigate gas rate
and decline exponents in Sulige gas field. Third, the theory
basis to draw the novel approach in this paper is elaborated.
Forth, practical production data is used to validate the
approach. Fifth, sensitivity analysis of slope(m) and inter-
cept(s) is performed. Finally, a discussion about the novel
approach is presented.

2. Field Characteristic

Sulige gas field is a large lithologic gas reservoir, characterized
by braided river development. The effective reservoir forma-
tions are mainly isolated and stripped, with strong heteroge-
neity. Average formation thickness is 6~7m, porosity is
7.4~8.3%, and average permeability is 0.036md. Reservoir
depth ranges from 3450 to 3730m; average formation pres-
sure is 30MPa, and formation temperature is 110°C.

3. Decline Exponent Investigation

For the purpose of investigating decline exponents for tight
gas wells in Sulige gas field, we commence our study by using
numerical simulation method. According to reservoir char-
acterization and fracturing treatment of Sulige tight gas field,
reservoir model can be simplified into rectangle reservoir
models centered a fracture for the convenience of analysis
(shown in Figure 1). Physical properties used in the reservoir
model present in field characteristic. Gas wells produce at
constant bottom flowing pressure.

Three cases are simulated at different formation perme-
ability, with certain fracture half-length, fracture conductiv-
ity, and drainage area. Simulated gas rate data are shown in
Figure 2. By using Equation (1) [13], decline exponent can
be obtained by calculating simulated gas rate data (shown
in Figure 3).

b = 1/Dð Þ − 1/Dið Þð Þ
t

: ð1Þ

As Figure 3 shows, for permeability less than 0.01md,
decline exponents will be bigger than 1 for a long time; while
for permeability between 0.01md and 0.1md, decline expo-
nents will be bigger than 1 in initial phase of production,
smaller than 1 in late phase of production. However, decline
exponents for traditional Arps decline method are between 0
and 1. Therefore, traditional Arps decline method will not
be applicable.

4. Theory Basis

As the invalidation of Arps model, we turned to find new
method. According to relevant reservoir knowledge, for nar-
row and striped tight formations, flow regime can be divided
into three regimes, which are linear flow regime, elliptical
flow regime, and pseudoradial flow, boundary-dominated
flow. Here, linear flow is of importance for the new method.

Theoretically, there may be three kinds of linear flow,
fracture-related linear flow [14], channel-related linear flow
[15], Watterbargen linear flow [16], equations show in
Table 1. Owing to the fracture length always smaller than
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Figure 1: The rectangle reservoir model.
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channel width, fracture linear flow and channel linear flow
will appear in most tight gas wells in Sulige tight gas field.
Therefore, in this paper, we mainly highlight fracture linear
flow and channel linear flow. From Table 1, we can see, any
kind of linear flow, the inverse dimensionless rate vs. dimen-
sionless square time is linear in coordinate system. Hence, it
is possible to utilize the relationship to perform decline anal-
ysis. The following is detailed information.

4.1. Fracture Linear Flow. For fracture linear flow, dimen-
sionless qD for constant pressure will be given:

qD = ψDffiffiffiffiffiffiffiffi
πtD

p : ð2Þ

According to the definition of dimensionless variables,
Equation (1) can be simplified to

1
qg

=m1
ffiffi
t

p
+ s, ð3Þ

where

m1 =
PscT

ffiffiffi
π

p

2TscΔψ
ffiffiffiffiffiffiffiffi
μCt

p ffiffiffiffiffi
kϕ

p
hxf

: ð4Þ

4.2. Channel Linear Flow. For channel linear flow, dimen-
sionless qD for constant pressure will be given:

1
qD

=
ffiffiffiffiffiffiffiffi
πtD

p
: ð5Þ

Through dimensioning, Equation (5) can be simplified to

1
qg

=m2
ffiffi
t

p
+ s, ð6Þ

where

m2 =
PscT

ffiffiffi
π

p

2hLTscΔψ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kϕμCt

p : ð7Þ

Equation (3) and Equation (6) show that 1/qg and t1/2 are
linearly related during the fracture and channel linear flow.

The total volume produced from t1 to t2 can be found by
integrating Equation (6):

Q = 2
m2 m

ffiffiffiffi
t1

p
−

ffiffiffiffi
t2

p� �
+ s ln s +m

ffiffiffiffi
t1

p� �
− ln s +m

ffiffiffiffi
t2

p� �h in o
:

ð8Þ

Looking at Equation (7), for channel flow, the slope m
can be rewritten as

m = AB
1

hL
ffiffiffiffiffi
kϕ

p
 !

, ð9Þ

where A and B are, respectively, defined as:

A = Psc
ffiffiffi
π

p
2Tsc

, ð10Þ

B = T

Δψ
ffiffiffiffiffiffiffiffi
μCt

p : ð11Þ

A can be treated as a constant independent of a particular
well and independent of a particular reservoir, and B is inde-
pendent of particular well but dependent on its pressure dif-
ference, which impose minor effect on the linear relationship
between 1/qg and t1/2. Therefore, the variation in m among
different wells in the same field would be attributable to
changes in permeability, thickness, and channel width. For
a given tight gas reservoir, porosity varies little compared
with permeability and thickness and can be treated as a con-
stant. As a result, the differences in observed slopes m for
wells in a particular area can often be primarily attributed
to variations in the term 1/ðhL ffiffiffiffiffi

kϕ
p Þ.

Equations (3) and (6) both embodies linear relationship in
the form of 1/qg vs. t1/2 theoretically. Simulated production
performance for long stripped formation verified that relation-
ship. Figure 4 clearly displays these two linear relationships.

5. Practical Application

In order to validate the theory established, practical applica-
tion is essential. Equations (6) and (8) were applied to predict
and match gas well production performance from Sulige
tight gas field. Well information is provided in Table 2. By
plotting rate/time production data 1/qg vs. t1/2, determining
the m and s, then utilizes m and s to match rate/time in a
coordinate system. Plots (1/qg vs. t1/2) for well A, well B, well
C, well D, are presented in Figures 5–8, which exhibit
straight-line behavior. Aided by straight-line, matching
curves (qg vs. t) for well A, well B, well C, and well D are pre-
sented in Figures 9–12. Figures 5–8 suggest that linear flow
was dominant for well A, well B, and well C. In addition, tak-
ing D well for example, launching prediction for well per-
formance in the future during linear flow is also plausible.
For D well, linear relationship was generated only by year
1 and year 2, and year 3 production data is projected in
Figures 8 and 12.

Table 1: Working equation for different linear flow.

Linear flow Working equation

Fracture linear flow 1/qD =
ffiffiffiffiffiffiffiffi
πtD

p
/ψD

Channel linear flow 1/qD =
ffiffiffiffiffiffiffiffi
πtD

p
Wattenbarger linear flow 1/qD = π/2ð Þ

ffiffiffiffiffiffiffiffi
πtD

p
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6. Sensitivity Analysis of m and s

Equation (8) can be employed to describe each gas well’s
production performance during channel linear flow. Slope
m and intercept s dominate gas rate decline tendency. To
examine the effect of these two variables on production
decline, a sensitivity analysis was performed. Figures 13~16
show the results. Figure 13 shows the 1/qg vs. t1/2 curves
where m is varied but s is constant, Figure 14 corresponds
qg vs. t curves. Figure 15 shows the 1/qg vs. t1/2 curves where
s is varied butm is constant; Figure 16 is corresponding qg vs.
t curves. Figure 13 shows that m is indicative of the strength
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Figure 4: Cases with varied slope same intercept.

Table 2: Reservoir and rock data.

Well name Pi (MPa) T (°C) K (mD) h (m) φ (%) Sw (%)

Well A 31.2 110 0.021 5.4 6.2 55

Well B 30.9 112.3 0.058 12.5 7.2 57

Well C 31.2 115.1 0.079 15.8 6.8 54

Well D 31.8 112.4 0.046 16.8 6.4 56.5
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Figure 5: 1/qg vs. t1/2 matching plot for A well.
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of well; a small m predicts a better production performance.
Figure 15 shows that intercept s is only an indication of
near-wellbore conditions.

7. Discussion

In this paper, we focus on taking advantage of linear behav-
iors in tight gas wells to predict well performance, and the
results show well-suited. It is smart to bypass establishing a
model considering variable decline exponent. Also, utilizing
linear flow model to promote decline analysis is more con-
vincing than empirical methods. However, the idea does
not involve the circumstance when some gas wells enter into
boundary-dominated flow. Combining the approach devel-
oped in this paper with Arps model will be a good idea.
Besides, given the point of this paper is decline analysis, so
distinguishing channel linear flow from Watterbarger linear
flow is not discussed in detail. The reason we highlight chan-
nel linear flow in this paper is that the fracture length for
most gas wells in Sulige tight gas field is smaller than the
drainage boundary. Hence, Watterbarger linear flow can be

excluded in most cases. The only possibility for long-term
linear flow would be channel linear flow.

8. Summary and Conclusions

(1) An effective novel approach for predicting future gas
rate and EUR has been developed for tight gas wells
by using linear flow

(2) The inverse of rate vs. the square of time is observed
to fit a straight line in Sulige tight gas field and same
gas field, which can forecast well performance accu-
rately before pseudoradial flow

(3) The slope m obtained from fitting can be used to
indicate the quality of gas formation

(4) It is possible to match the entire production history
for tight gas wells by combining the approach devel-
oped in this paper with Arps model

Nomenclature

b: Decline exponent, dimensionless
D: Decline rate, %
Di: Initial decline rate, %
A: Defined in Equation (10)
B: Defined in Equation (11)
Ct: Total system compressibility, Pa-1

Q: Cumulative gas produced
h: Formation thickness, m
k: Formation permeability, md
m: Slope of inverse rate vs square root of time
Δψ: Real gas pseud pressure change, Pa/s
Psc: Standard pressure, Pa
qg: Flow rate, measured at standard conditions
qD: Dimensionless rate, qD = ðqgPscTÞ/ð2khTscψiÞ (when

fracture linear flow), qD = ðqgPscTÞ/ð2khTscΔψÞ (when
channel linear flow)

s: Inverse rate change caused by skin effects
t: Time, s or day
tD: Dimensionless time, tD = kt/ðϕμctxf 2Þ (when fracture

linear flow), tD = kt/ðϕμctL2Þ (when channel linear
flow)

T : Reservoir temperature, K
Tsc: Standard temperature, K
xf : Fracture half-length, m
L: Channel width, m
μ: Gas viscosity, pa·s
Pi: Initial Pressure, MPa
φ: Effective Porosity, %
Sw: Initial Gas Saturation, %.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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The CO2 huff-n-puff is an effective substitute technology to further improve oil recovery of natural fractured tight oil reservoirs
after water flooding, for its high displacement efficiency and superior injectivity. The CO2 huff-n-puff process is influenced by
many factors, such as miscible degree, complex fracture networks, and production schemes. What is worse, those influence facts
affect each other making the process more complex. Many researchers concentrated on mechanisms and single sensitivity
analysis of CO2 huff-n-puff process, whereas few optimized this process with the consideration of all influence factors and
multiobjective to get favorable performance. We built multiobjective consisted of miscible degree, oil recovery, and gas replacing
oil rate considering the aspects of CO2 flooding special characteristic, technical effectiveness, and economic feasibility,
respectively. We have taken Yuan 284 tight oil block as a case, firstly investigated sensitivity analysis, and then optimized CO2
huff-n-puff process using orthogonal experiment design with multifactors and multiobjectives. The optimization results show
CO2 huff-n-puff can significantly improve oil recovery by 8.87% original oil in place (OOIP) compared with water flooding,
which offers guidelines for field operations.

1. Introduction

For tight oil reservoirs with natural fractures, the develop-
ment performance varies due to the influence of natural
fractures. Water flooding becomes feasible for natural frac-
tures to provide a high permeability flow path [1]. How-
ever, the nature fracture also brings adverse effects at later
development stage. The injected water flows along natural
fractures and breaks through early, reducing the sweep effi-
ciency of water flooding severely. The more injected water
becomes invalid, and the more oil in matrix is left without
effective recovery. Vertical wells were used instead of mul-
tiple fractured horizontal wells (MFHWs), because once
MFHWs suffer water breakthrough, it is hard to conduct
water plugging [2].

To further improve oil recovery after water flooding, CO2
huff-n-puff is proposed. This is because CO2 huff-n-puff can
take the advantages of natural fractures and avoid their bad
effects. CO2 huff-n-puff fully uses the enormous areas pro-
vided by nature fractures to get contact with oil, and only
extracts oil around injection wells unlike CO2 continuous
flooding suffers gas breakthrough [3]. The studied Yuan
284 block is rich in natural fractures [4, 5]; based on these
aforementioned facts, CO2 huff-n-puff is proposed as a sub-
stitute technology after water flooding to further improve
oil recovery.

The oil recovery of CO2 huff-n-pull is affected by many
factors; what is worse, multifactors affect each other making
the process more complex. Both good and bad results were
obtained on site, and the process optimization has become
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an imperative issue needed to be settled. Many researchers
have investigated the mechanisms and single sensitivity anal-
ysis of CO2 huff-n-puff process in the literature.

Fracture density and fracture geometry influence huff-n-
puff performance significantly, because fractures provide
CO2 with high conductive flow paths and enormous contact
areas with oil [6–8]. Fractures also impair CO2 and oil
miscible degree by influencing pressure maintenance [9,
10]. Miscible degree promotes oil recovery by improving
displacement efficiency, so injection pressure higher than
minimum miscible pressure (MMP) is needed [11]. CO2
molecular diffusion plays an important role in enhancing
oil recovery during CO2 soaking time and promotes the
mixture of CO2 with matric oil swelling oil volume and
reducing oil viscosity [9]. CO2 molecular diffusion needs
enough soaking time to fully act its role, but soaking time
is not the longer the better, and there is an optimal point
[12, 13]. The reopen production bottom hole pressure
affects oil recovery significantly by influencing drive mecha-
nisms. It was found that CO2 solution drive due to low bot-
tom hole pressure plays a more important role than CO2
miscible driver with high bottom hole pressure [14]. Other
researchers also investigated the interaction of multifactors
and found that primary depletion time, CO2 injection time,
and reopen production time have obvious influence on each
other [15].

Unfortunately, few optimized the CO2 huff-n-puff pro-
cess considering multiple factors effects and the interactions
between them. In this research, Yuan 284 block of Changq-
ing oil field was taken as a case, and firstly single factor sen-
sitivity analysis was conducted to investigate the influence
rule on huff-n-puff performance. Then, multiobjective goal
consisted of miscible degree, oil recovery, and gas replacing
oil rate was built. It fully considered CO2 flooding special
characteristic, technical effectiveness, and economic feasibil-
ity. Orthogonal experimental design is a widely used multi-
factor optimal method, for it can select the optimal project
without calculating all possible schemes, reducing the calcu-
lated scheme number and computational cost [16, 17]. Based
on the orthogonal experimental design method, the CO2
huff-n-puff process with multifactors influence and multiob-
jective goal was optimized, which provides guidelines for
treatments on site.

2. Reservoir Model Description

In this section, the pilot test reservoir model of Yuan 284
block was described, including geometry model, fluid model,
relative permeability curve, and history match. It provided
the basic simulation model for further sensitivity analysis
and multiobjective optimization.

The average permeability and porosity of Yuan 284
block are 0.41mD and 11.08%, and it belongs to tight oil res-
ervoirs. The target reservoir bury depth is 2100m, and reser-
voir temperature and initial pressure are 70.6°C and
15.1MPa. The target reservoir has four well groups, and they
are all inverted nine-point diamond-shaped patterns. The
bubble map of production rates and water injection rates
in August 2012 were shown in Figure 1. It indicates that

the reservoir has serious heterogeneity for water cut of sev-
eral wells are extremely higher than the others. The CO2
huff-n-pull was proposed to further improve oil recovery.
The water injection well in the center of each well group as
before and the other production wells as CO2 huff-n-pull
wells are considering reservoir pressure maintenance and
remaining oil distribution.

For this target reservoir with natural fractures, the simula-
tion of natural fractures is very important, and we used high
permeability channels to mimic natural fractures. The high
permeability channels were determined by history match, that
is, we modified the high permeability channels until the his-
tory data and calculated data achieve good match, and their
distributions before and after history match are different as
shown in Figure 2. The oil and water production total
achieved good match with the real data after history match
as shown in Figure 3, because natural fractures were appro-
priately simulated by changed high permeability channels.

We used the compositional fluid model to describe the
complex interaction of CO2 and crude oil. To improve com-
putational efficiency, we grouped all compositions of CO2
and oil fluid system into 9 pseudocomponents in Table 1,
according to the composition’s properties and expert experi-
ence. We used RP3-EOS to describe the phase behavior of
CO2 and oil system, and the parameters of EOS were deter-
mined for further fluid simulation. We turned and deter-
mined the RP3-EOS parameters by fitting the simulation
results and experimental results. The determined EOS
parameters were shown in Table 1. What is more, the
MMP was also determined by slim-tube experiment, when
the pressure is higher than the MMP 16.8MPa, the miscible
condition is achieved and the process gets a favorable dis-
placement efficiency.

Relative permeability curves accounting for dynamic
interaction of reservoir fluids and rock media were measured
by core flooding experiments according to Darcy’s law as
Figure 4 shows. The residual oil saturation of water flooding
is 0.31, and the ideal displacement efficiency of water flood-
ing is only 44.7% OOIP, which is far below CO2 flooding dis-
placement efficiency, and this is the main reason why CO2
flooding is proposed as the substantial EOR technology after
water flooding.

y297-54
y298-54

y299-54
y300-54y301-54

y301-53
y300-53y299-53

y298-53y297-53

y297-52
y298-52

y299-52
y300-521

y300-51y299-51

y299-50
y300-50

y301-50

y298-51y297-51

y297-50
y298-50

y301-521
y301-51

Water (m3)
Oil (m3)
Volume (m3)

Figure 1: Bubble map of production and injection rates in
August 2012.
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3. Sensitivity Analysis

We investigated the effects of CO2 injection volume, injec-
tion time, soaking time, production bottom hole pressure,
reopen production time, and huff-n-puff cycle number on

the oil recovery. The parameters of the basic model were
as follows: one cycle CO2 huff-n-puff process consists of
10 days CO2 injection time, 5 days soaking time and 200
days reopen production time. The one cycle CO2 injection
volume is 988.5 t, the production bottom hole pressure is
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Figure 2: Permeability distribution before and after history match.
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Figure 3: Oil and water production total before and after history match.

Table 1: Pseudocomponents and EOS parameters.

Component
mol Critical pressure Critical temperature

Omega A Omega B Acentric factor Critical volume Critical Z factor
(%) (MP) (K)

CO2 0.08 7.39 304.7 0.457 0.078 0.225 0.09 0.27

N2C1 27.49 4.57 188.8 0.416 0.063 0.014 0.10 0.29

C2 8.16 4.88 305.4 0.367 0.024 0.099 0.15 0.29

C3 8.53 4.19 513.3 0.657 0.064 0.155 0.20 0.20

C4 6.65 3.34 496.2 0.611 0.058 0.135 0.26 0.21

C5 4.61 1.61 291.3 0.573 0.083 0.082 0.31 0.21

C6 3.32 8.59 496.7 0.818 0.034 0.269 0.35 0.73

C7-C10 14.64 5.61 641.9 0.178 0.049 0.363 0.45 0.47

C11+ 26.52 2.67 726.9 0.704 0.109 0.424 0.83 0.37
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7MPa, and the total cycle number is 5. When we studied the
effect of a single factor on oil recovery, the other factors
were kept the same as the basic model set.

We first investigated the effect of CO2 injection volume
on oil recovery. As Figure 5(a) shows the oil recovery
increases with the increased injection volume from 197.7 t
to 988.5 t, the increased CO2 injection volume increases the
amount of CO2 dissolved in the matrix oil, and more oil
swells and easily flows out for decreased viscosity. What is
more, the increased CO2 volume increases the pressure
around injection wells, which improves CO2 and oil miscible
degree and displacement efficiency obviously. However, after
a point, the oil recovery stops increasing from 988.5 t to
1383.9 t and even decreases with the increased injection vol-
ume from 1383.9 t to 1779.3 t, because the excessive injected
CO2 is not fully utilized and even expels the oil away from
the well, which impairs the reopen production performance.

Figure 5(b) shows the oil recovery increases with the
increased CO2 injection time, indicating that slow CO2 injec-
tion rate is favorable to oil recovery. This is because the
injected CO2 with a lower injection rate has more time to
propagate forward and mix with oil, which increases the con-
tacted oil amount and gets more favorable mixing effect.

Figure 6(a) shows the oil recovery increases with the
increased soaking time, but after a point slightly decreases
with the increased soaking time. This is because due to the
extremely low permeability of a tight oil reservoir, CO2
molecular diffusion needs a certain time to mix with matric
oil and achieve better performance. However, too long soak-
ing time leads to the gravity separation of CO2 and oil in frac-
tures, which results in the slightly decreased oil recovery.

Figure 6(b) shows the oil recovery significantly increases
with the decreased bottom hole pressure. The decreased bot-
tom hole pressure increases the potential of dissolved CO2
releases from oil and increases the CO2 solution driver pro-
portion. However, it decreases CO2 and oil miscible degree
and displacement efficiency, and CO2 miscible drive propor-
tion decreases. It illustrates that for CO2 huff-n-puff process,
the CO2 solution drive contributes more on oil recovery than
CO2 miscible drive.

Figure 7(a) shows the oil recovery significantly increases
with the increased reopen production time from 7.75%OOIP
to 14.63% OOIP. This illustrates that increasing reopen pro-
duction time leads to favorable oil recovery, for it fully mines
the potential of the injected CO2 during the huff process.

Figure 7(b) shows the oil recovery increases with the
increased huff-n-puff number, while the gas replacing oil
rate decreases as the cycle number increases. This is because
more oil around the huff-n-puff well was extracted by
injected CO2 with the increased cycle number, so the oil
recovery increases. However, the oil saturation around the
huff-n-puff well decreases with the increased cycle number,
and the injected CO2 efficiency decreases resulting in the
decreased gas replacing oil rate.

4. Multiobjective Optimization

For CO2 huff-n-puff process optimization, the optimization
objective determination is very important. The optimization
objective should comprehensively consider the aspects of
CO2 flooding special characteristic, technical effectiveness,
and economic feasibility. In this research, multiobjectives
consisted of miscible degree, oil recovery, and gas replacing
oil rate were used to describe these aspects comprehensively.
Since the miscible degree is significantly affected by pressure,
the average pressure was used to describe the miscible degree
for convenience. What is more, we adopted the orthogonal
experimental design method to optimize the CO2 huff-n-
puff process considering multifactor influences and multiob-
jective goals.

In Section 3, we investigated the effect of a single factor
on oil recovery. However, the optimization design process
cannot be determined by sensitivity analysis, because the oil
recovery is simultaneously influenced by many factors. We
selected CO2 injection volume, injection time, soaking time,
production bottom hole pressure, reopen production time,
and cycle number as influencing factors, and each influenc-
ing factor has 5 levels. If we use the full experimental design
method, all possible schemes 7776 are needed to test for opti-
mization, and the computational cost is very high. To avoid
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this drawback, the orthogonal experimental design was pro-
posed for it only selects certain representative samples from
all possible schemes and, obviously, reduces experimental
design amounts to 25 schemes. The concrete design indices
and simulation results were shown in Table 2.

Multiobjective optimization designs were conducted, and
the three objective indices were transformed into one com-
prehensive objective to facilitate evaluation. The comprehen-
sive objective scores were calculated by formula (1). The
multiplied weights were determined by expert experience
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and study goals. The comprehensive objective scores calcu-
lation results were shown in Table 2. It shows that the 7th
scheme gets the maximum score of 57 and is the optimal
design.

COS = 2 × OR + 1 × GRO + 1 × Pavg, ð1Þ

where COS is the comprehensive objective scores, OR is
the oil recovery, GRO is the gas replacing oil rate, and Pavg is
the reservoir average pressure.

The range of average scores represents the influence
degree of factors on target goal, and it can be concluded that
the influence degree ranking of multifactors is the following:
reopen production time, cycle number, injection time, bot-
tom hole pressure, injection volume, and soaking time. The

reopen production time has the most obvious effect on the
comprehensive objective. The soaking time affects oil recov-
ery by CO2 molecular diffusion mechanism during the well
shut period, but the effect of it is the least compared with
other factors during the whole production period.

The optimal scheme was determined based on these
aforementioned investigations, and the optimal factor com-
bination of Yuan 284 block is that one cycle CO2 injection
volume is 197.70 t, the CO2 injection time is 6 days, the soak-
ing time is 15days, the reopen production time is 400 days,
the production bottom hole pressure is 6MPa, the cycle
number is 7, and the total production time is about 8 years.

The selected optimal scheme was calculated, and the
average reservoir pressure and oil production rate of the
CO2 huff-n-puff process were shown in Figure 8. For the
optimal CO2 huff-n-puff process, the average reservoir

Table 2: Orthogonal experimental design indices and evaluation results.

No.
Multifactors Multiobjectives

COS
F1 F2 F3 F4 F5 F6 O1 O2 O3

1 98.85 2 5 150 3 6 13.98 7.07 10.85 39

2 98.85 6 10 200 4 7 14.12 8.22 6.74 37

3 98.85 10 15 300 5 8 14.16 9.41 6.73 40

4 98.85 14 20 400 6 9 14.61 12.45 8.47 48

5 98.85 18 25 500 7 10 14.85 14.48 8.9 53

6 197.7 2 10 300 6 10 14.66 13.18 6.77 48

7 197.7 6 15 400 7 6 14.08 18.26 6.12 57

8 197.7 10 20 500 3 7 13.89 13.02 9.02 49

9 197.7 14 25 150 4 8 14.52 8.99 3.91 36

10 197.7 18 5 200 5 9 14.64 10.61 4.05 40

11 593.1 2 15 500 4 9 14.21 14.34 10.06 53

12 593.1 6 20 150 5 10 15.15 8.58 1.07 33

13 593.1 10 25 200 6 6 14.09 11.89 1.4 39

14 593.1 14 5 300 7 7 14.28 15.04 1.59 46

15 593.1 18 10 400 3 8 14.31 11.04 2.39 39

16 988.5 2 20 200 7 8 14.37 12.16 4.16 43

17 988.5 6 25 300 3 9 14.55 9.4 1.49 35

18 988.5 10 5 400 4 10 14.83 12.01 1.32 40

19 988.5 14 10 500 5 6 14.24 18.19 1.8 52

20 988.5 18 15 150 6 8 14.92 10.12 0.63 36

21 1383.9 2 25 400 5 7 13.8 15.24 9.53 54

22 1383.9 6 5 500 6 8 14.63 19.58 1.98 56

23 1383.9 10 10 150 7 9 15.17 10.89 0.49 37

24 1383.9 14 15 200 3 10 15.35 8.01 0.64 32

25 1383.9 18 20 300 4 6 14.19 11.96 0.9 39

A1 43.4 47.4 44.2 36.2 38.8 45.2

A2 46.0 43.6 42.6 38.2 41.0 46.5

A3 42.0 41.0 43.6 41.6 43.8 41.67

A4 41.2 42.8 42.4 47.6 45.4 42.6

A5 43.6 41.4 43.4 52.6 47.2 41.2

R 4.8 6.4 1.8 16.4 8.4 5.3

F1, F2, F3, F4, F5, and F6 are injection volume, t; injection time, day; soaking time, day; reopen production time, day; cycle number and bottom hole pressure,
MPa, respectively. O1, O2, and O3 are average pressure, MPa; oil recovery, %; and gas replacing oil rate, t/t, respectively. COS is comprehensive objective scores;
Ai is the ith index average scores; R is range of average scores.
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pressure and the oil production rate were maintained at a
high level. The average pressure and the oil production rate
have the same change trend during each cycle and gradually
decrease with the increased cycle number. The 8 years oil
recovery of CO2 huff-n-puff and water flooding were
19.07% OOIP and 10.20% OOIP, respectively. The optimal
CO2 huff-n-puff can significantly improve oil recovery by
8.87% compared with water flooding.

The selected optimal scheme was calculated, and the
average reservoir pressure and oil production rate of CO2
huff-n-puff process were shown in Figure 8. For the optimal
CO2 huff-n-puff process, the average reservoir pressure and
the oil production rate were maintained at a high level. The
average pressure and the oil production rate have the same
change trend during each cycle and gradually decrease with
the increased cycle number. The 8 years oil recovery of CO2
huff-n-puff and water flooding were 19.07% OOIP and
10.20% OOIP, respectively. The optimal CO2 huff-n-puff
can significantly improve oil recovery by 8.87% compared
with water flooding.

Figure 9 shows the remaining oil saturation distributions
before and after CO2 huff-n-puff and water flooding. Com-
paring the remaining oil saturations before and after taking
measurements, the remaining oil saturation after CO2 huff-
n-puff is much less than that after water flooding. This obvi-
ously indicates that the displacement efficiency of CO2 huff-
n-puff is superior to water flooding, which is the main reason
why the CO2 huff-n-puff process is taken.

The CO2 huff-n-puff process also achieved good sweep
efficiency, which also attributes to the good performance
of this process. We used CO2 saturation distributions to
approximately illustrate the sweep efficiency degree as
shown in Figure 10. With the increase of the CO2 huff-n-
puff cycle, the CO2 saturation increases but the increase
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Figure 8: Production performance of the optimal CO2 huff-n-puff scheme.
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degree decreases. However, the CO2 only centralized distrib-
utes around the huff-n-puff production well and decreases
dramatically away from the production well. This indicates
that the CO2 huff-n-puff process achieves good sweep effi-
ciency only around the production well, where the remain-
ing oil is rich. Thanks to the superior sweep efficiency of
the CO2 huff-n-puff process, the remaining oil around the
production well achieves high oil recovery.

5. Conclusions

Sensitivity analysis and multiobjective optimization of CO2
huff-n-puff process were conducted in this research, and
the following conclusions can be drawn:

Single factor sensitivity analyses were conducted, and the
influence rules were achieved. The decreased bottom hole
pressure results in the increased oil recovery. It indicates that
CO2 solution drive with low bottom hole pressure contrib-
utes more on oil recovery than miscible drive with high bot-
tom hole pressure for CO2 huff-n-puff process.

The single factor influence degree ranking is determined
based on the range scores: reopen production time, cycle
number, CO2 injection time, bottom hole pressure, CO2
injection volume, and soaking time. The contribution degree
of soaking time is the least during the whole production
period compared with other factors, though it increases oil
recovery by CO2 molecular diffusion mechanism during well
shut period obviously.

The optimal CO2 huff-n-puff scheme was determined
using orthogonal experimental design with multifactor influ-
ences and multiobjective goals, and it can significantly
improve oil recovery by 8.87% OOIP compared with water
flooding.
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An appropriate well spacing plan is critical for the economic development of shale gas reservoirs. The biggest challenge for well
spacing optimization is interpreting the subsurface uncertainties associated with hydraulic and natural fractures. Another
challenge is the existence of complex natural fractures. This work applied an integrated well spacing optimization workflow in
shale gas reservoirs of the Sichuan Basin in China with both hydraulic and natural fractures. The workflow consists of five
components: data preparation, reservoir simulation, estimated ultimate recovery (EUR) analysis, economic calculation, and well
spacing optimization. Firstly, the multiple realizations of thirteen uncertain parameters of matrix and fractures, including matrix
permeability and porosity, three relative permeability parameters, hydraulic fracture height, half-length, width, conductivity,
water saturation, and natural fracture number, length, and conductivity, were captured by the assisted history matching (AHM).
The fractures were modeled by the embedded discrete fracture model (EDFM) accurately and efficiently. Then, 84 AHM
solutions combining with five well spacing scenarios from 517 ft to 1550 ft would generate 420 simulation cases. After reservoir
simulation of these 420 cases, we forecasted the long-term gas production for each well spacing scenario. Gas EUR degradation
and well interference would imply the critical well spacing. The net present value (NPV) for all scenarios would be calculated
and trained by K-nearest neighbors (KNN) proxy to better understand the relationship between well spacing and NPV. In this
study, the optimum well spacing was determined as 793 ft, corresponding with a maximum NPV of 18 million USD, with the
contribution of hydraulic fractures and natural fractures.

1. Introduction

There is no doubt that the development of unconventional
reservoirs has changed the oil and gas industry. However,
many challenges, such as heterogeneity, nanopore, proppant
distribution, multiphase flow, and complex fractures, have
existed in unconventional reservoirs [1–3]. Reservoir simula-
tion is a rigorous method applied in unconventional reser-
voirs. Among the worldwide unconventional resources,
shale gas and oil are the main components. Optimum well

spacing is one of the key parameters for shale reservoir devel-
opment. It is essential to find a well spacing that can balance
the recovery and economics. Many studies have focused on
this area both numerically and analytically [4, 5]. Some of
them have investigated the controlling factors for the well
spacing determination, such as fracture half-length, reservoir
permeability, rock properties, and natural fractures [6–8].
However, due to shale reservoirs’ complexity, it is still chal-
lenging to quantify the subsurface uncertainty-associated
hydraulic and natural fractures [9, 10]. Several methods,
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including the microseismic method, well test method, and
rate-transient analysis (RTA) method, have applied to cap-
ture the uncertain parameters [11–14]. Nevertheless, the high
data requirement of these methods makes it not easy to be
performed in new wells.

Another method widely used in calibrating uncertainties
is history matching, which is an efficient and inexpensive
approach. Many authors have performed single history
matching to obtain one solution of shale reservoir and
fractures [15–19]. However, the nonuniqueness of history
matching should be considered. Therefore, multiple history
matching was applied. Cao et al. [20] determined the optimal
well spacing for Delaware Basin by multiple history match-
ing. What is more, they did not take the uncertainty of natu-
ral fractures into account, which is another challenge for the
well spacing optimization in shale reservoirs.

Several researchers have investigated that natural frac-
tures could impact the fracture’s propagation during hydrau-
lic fracturing by microseismic event patterns and complex
fracture propagation models [21–24]. [2] modeled the com-
plex natural fractures by the embedded discrete fracture

model (EDFM), a modeling method with accuracy and effi-
ciency. They indicated that the two-set natural fractures
could increase the gas recovery by 23.2% after 30 years.

In this study, we applied an integrated AHM and EDFM
workflow for well spacing optimization in shale gas reservoirs
of Sichuan Basin in China with complex natural fractures.
The hydraulic fractures and natural fractures were modeled
by the EDFM method [2]. According to 84 AHM solutions
for a shale gas well in this reservoir, the multiple realizations
of thirteen uncertain matrix and fracture parameters can be
calibrated. It is worth pointing out that the uncertain param-
eters of natural fractures include the number, the length, and
the conductivity of natural fractures. We also considered
three uncertainties about relative permeability. Then, we
compared the gas EUR in the long-term from the reservoir
simulation results for five well spacing scenarios associated
with these 84 solutions. The well spacing scenarios are
distributed from 517 ft to 1550 ft, corresponding to 6 wells
to 2 wells. The critical well spacing can be determined by
analyzing the gas EUR degradation to minimize well interfer-
ence. Then net present values (NPVs) of all cases can be

Assisted history matching Well spacing scenarios

Hydraulic fractureNatural fracture

Reservoir simulator Gas EUR Net present value

Optimum
well

spacing

EDFM

Figure 1: An integrated AHM and EDFM workflow for well spacing optimization in shale gas reservoirs with complex natural fractures.
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Figure 2: A field-scale reservoir model for five well spacing schemes used in this study: (a) a 2-well placement scenario with a spacing of
1550 ft and (b) a 6-well placement scenario with a spacing of 517 ft.
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evaluated and predicted by K-nearest neighbors (KNN)
proxy to identify the optimum well spacing for this shale res-
ervoir with natural fractures.

2. Well Spacing Optimization Workflow

The integrated well spacing optimization workflow consists
of five components: data preparation, reservoir simulation,
EUR analysis, economic calculation, and well spacing opti-
mization. The framework is shown in Figure 1. First, we need
to prepare the input data for the reservoir simulation. There
are two main things we need to decide. One is which uncer-
tain parameters of matrix and fractures are essential to the
shale gas reservoir. According to the short-term production
data, we apply AHM to calibrate the distribution of these
uncertain parameters and screen the results of AHM solu-
tions with the lowest global error. Another is to design the
minimal and maximum numbers of well placed into the
reservoir to figure out the optimum well spacing. If the well
spacing is too small, the well interference will reduce the
gas production per well; if the well spacing is too large, the
recovery may not satisfy. Therefore, it is essential to deter-
mine the range of well spacing and design several well
spacing scenarios. The input of simulation cases can then
be generated by integrating the AHM solutions and well
spacing scenarios and modeled by EDFM considering
hydraulic and natural fractures.

Subsequently, the reservoir simulation is performed for
all cases to forecast the long-term gas production. Cumula-
tive gas production and gas EUR of each case can be calcu-
lated and analyzed in a lognormal probability plot. By
comparing gas EUR degradation, the influence of well inter-
ference is observed, and the corresponding critical well spac-
ing minimizing well interference can be obtained. Next, we
evaluate the NPV for all the cases and plotted them into a
boxplot. The equation of NPV is discussed in our previous
work [25]. The P50 NPV for each well spacing scenario can
be obtained directly. Besides, to better understand the rela-
tionship between NPV and well spacing, we predict the
NPV for more well spacing using the KNN proxy method.
The calculated NPV is considered as a predictor, and the cor-
responding well spacing is added into the prediction features.
Finally, we can identify the optimum well spacing, which
leads to the maximum NPV.

3. Field Application

3.1. Reservoir Model. Our integrated AHM and EDFM work-
flow is applied to a shale gas reservoir in the Sichuan Basin in
China with complex natural fractures to determine the opti-
mum well spacing for hydraulic-fractured wells. First, it is
essential to build a field-scale model to represent the shale
gas reservoir. The schemes of the model are shown in
Figure 2. The model is 5840 ft long in the x-direction and
3100 ft long in the y-direction. The thickness is 65 ft in the
z-direction. The red lines are the horizontal wells with a con-
stant length of 4921 ft. We set 2 to 6 wells in the model to
illustrate the different well spacings. Figure 2(a) represents
the well spacing of 1550 ft at two wells per section, while

Figure 2(b) shows the well spacing of 517 ft at six wells per
section. The blue lines distributed in the wells represent the
54 hydraulic fractures. They were separated into 18 stages,
which are 145 ft away from each other. And each stage con-
tains 3 clusters with cluster spacing of 67 ft. The green lines
are the natural fractures distributed at 45° or 135°. Although
there are other degrees of fracture growth azimuth existing,

Table 2: Summary of ranges of 13 uncertain parameters used in this
study [26].

Uncertain parameters Unit Min value Max value

Matrix permeability md 0.00001 0.0001

Fracture height ft 25 65

Fracture half-length ft 200 780

Fracture conductivity md-ft 10 200

Fracture water saturation — 0.5 0.9

Fracture width ft 0.1 4

Porosity — 0.038 0.083

Exponent of krg — 1 4

Endpoint of krw — 0.5 1

Exponent of krw — 1 4

Number of natural fractures — 200 1200

Natural fracture length ft 100 500

Natural fracture conductivity md-ft 1 10

Table 1: Summary of reservoir and fracture properties used in this
study.

Reservoir description Value Unit

Model dimension (x × y × z) 5480 × 3100 × 65 ft

Number of grid blocks (x × y × z) 137 × 31 × 1 —

Grid block dimension (x × y × z) 40 × 100 × 65 ft

Initial reservoir pressure 8847.3 psi

Reservoir temperature 215 °F

Residual water saturation 20% —

Residual gas saturation 10% —

Matrix water saturation 39% —

Total compressibility 3 × 10−6 psi-1

Reservoir depth 10499 ft

Well length 4921 ft

Number of stages 18 —

Stage spacing 145 ft

Clusters per stage 3 —

Cluster spacing 67 ft

Number of natural fracture set 2 —

Natural fracture height 65 ft

Natural fracture theta NF1 45; NF2 135 Degree

Natural fracture dip angle 90 Degree

Natural fracture width 0.1 ft

Total simulated time 20 Year
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we would only consider the ideal condition to simplify the
method. One of the biggest reasons is lacking fracture diag-
nostic data. In this study, we assume the natural fractures
have a constant height of 65 ft and a width of 0.1 ft. And
the dip angle of natural fractures is 90°. All fractures were
modeled by EDFM. It is worth noting that the model is ideal,
and the heterogeneity of the reservoir is not considered.
Other properties of our reservoir model are listed in Table 1.

After demonstrating all the certain parameters, we need
to calibrate the uncertain parameters of matrix and fractures
for the shale gas reservoirs by history matching. The first step
is to determine the critical parameters and their range based
on prior expert experience. This study chose 13 parameters as
uncertainties: matrix permeability, porosity, exponent of rel-
ative permeability for gas, exponent, and endpoint of relative
permeability for water, hydraulic fracture height, half-length,
conductivity, water saturation, and width, natural fracture
number, length, and conductivity. These three parameters
of natural fractures reflect the ability of fluid transport within
the complex natural fractures. We limited the number of nat-
ural fractures from 200 to 1200 in this reservoir. Moreover,

the natural fracture length is between 100 ft to 500 ft, while
the hydraulic fracture half-length is between 200 ft and
780 ft. Other parameters’ ranges are listed in Table 2. The
assisted history matching was then performed to capture
the multiple realizations of these parameters. Details of
AHM workflow are discussed Tripopoom et al. [26]. For this
reservoir, there are a total 84 assisted history solutions.
Figures 3(a)–3(d) show the AHM results compared with
short-term production data [26]. It is observed that the
bottomehole pressure (BHP) and gas flow rate can match
with the field production data properly. The water flow rate
and water-gas ratio (WGR) match the production data over-
all, except for 50 days to 250 days, but we can find the water
flow rate from production data during this period changes
without the similar trend with BHP, which can be ignored
for the overall results. Therefore, the history matching solu-
tions are accurate enough for the following well spacing
optimization.

The multiple realizations of uncertain parameters from
AHM solutions are shown in Figure 4. Figures 4(a)–4(m)
represent the posterior distribution of matrix permeability,
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Figure 3: Comparison between 84 history matching solutions and field data [26]: (a) bottomhole pressure, (b) gas flow rate, (c) water-gas
ratio, and (d) water flow rate.
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Figure 4: Continued.
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fracture height, fracture half-length, fracture water satura-
tion, fracture width, fracture conductivity, matrix porosity,
three components of relative permeability, number of natural
fractures, nature fracture length, and nature fracture con-
ductivity, respectively. Each plot’s x-axis reflects the range
of this uncertain parameter, and the range is divided into
ten bins. The y-axis is the probability of each bin. We
combined the AHM solutions with well spacing scenarios,
which would generate 420 cases. One dot represents one
possible case. It can be easily observed the highest proba-
bility of uncertain parameters with most points in a spe-
cific bin. The distribution of natural fracture number is
shown in Figure 4(k), which implies that more than half

of the points distribute between 200 and 500. Moreover,
the bin of 400 to 500 has most points compared with
other bins. Therefore, the possible value of the number
of natural fractures would be 200 to 500, especially in
the range of 400 to 500. Similarly, we can find that the
possible natural fracture length is about 100 ft to 140 ft,
and the possible natural fracture conductivity is 6.8md-ft
to 7.2md-ft. Compared with hydraulic fracture half-length,
concentrating on 316 ft to 374 ft, the natural fractures are
much shorter. And the hydraulic fracture conductivity is
about 67md-ft to 105md-ft, which is larger than that of
natural fractures. It indicates that hydraulic fractures would
contribute more to gas production than natural fractures.
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Figure 4: Histogram of posterior vs. prior distributions of 13 uncertain parameters: (a) matrix permeability, (b) fracture height, (c) fracture
half-length, (d) fracture water saturation, (e) fracture width, (f) fracture conductivity, (g) matrix porosity, (h) the endpoint of water relative
permeability, (i) the exponent of gas relative permeability, (j) the exponent of water relative permeability, (k) number of natural fracture,
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The probability distribution of other uncertainties can be
analyzed in the same way.

To have an intuitive embodiment of natural fractures’
properties, we built the fracture model using EDFM for
different natural fracture numbers and lengths. Figure 5
illustrates the minimal, average, and maximum number
of natural fractures: 211, 453, and 1196. All other proper-
ties are the same. Moreover, Figure 6 shows minimal,
average, and maximum length of natural fractures: 102 ft,
1855 ft, and 456 ft. The more and the longer natural frac-

tures, the better communication through the fracture
system.

In addition, we need to consider the relative permeability
of different realizations. The relative permeability of water
and gas can be obtained using the following equations:

Krw = Ko
rwS

NWwn , ð1Þ

Krg = 1 − Swnð ÞNg , ð2Þ

(a) (b)

(c)

Figure 5: Different numbers of natural fractures under the constant length considered in the well spacing optimization: (a) minimal number,
(b) P50 number, and (c) maximum number.

(a) (b)

(c)

Figure 6: Different lengths of natural fractures under the constant number considered in the well spacing optimization: (a) minimal length,
(b) P50 length, and (c) maximum length.
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where Krw is the water relative permeability, and Krg is the
gas relative permeability. Ko

rw is the endpoint of water relative
permeability, Nw is the water exponent, and Ng is the gas
exponent.

Swn =
Sw − Swir

1 − Swir − Sgrw
, ð3Þ

where Swn is the normalized water saturation, Sw is water sat-
uration, Swir is irreducible or residual saturation of water, and
Sgrw is residual saturation of gas for a water/gas displacement.

The distribution of endpoint of water relative permeabil-
ity and the exponent of relative permeability to gas and water
is reflected in Figures 5(h)–5(j). The relative permeability
curves related to water saturation of 84 solutions are plotted
in Figure 7. Red solid lines represent gas relative permeabil-
ity, and blue lines represent water relative permeability. It is
reflected that water relative permeability distributes wider
than that of gas, which is corresponding with the greater
number of uncertain parameters used in the calculation
equations.

After history matching, we captured the pressure distri-
bution in 2 years based on the 690-day production data.
The initial pressure is 8000psi used in the reservoir simula-
tion. It drops to 1000 psi dramatically in 2 years. Then, the
pressure remains constant at 1000 psi in the following 18
years. It implies that most gas will be produced in the first five
years, especially in the first two years. It is also worth pointing
out that the pressure drawdown rate decreases slightly after
100 days compared to that within 100 days.

3.2. Production Analysis.After preparing the reservoir model,
we generated the 420 input cases by integrating the 84 history
matching solutions with five well spacing scenarios. Then, we
performed reservoir simulation for the long-term production
simulation of all cases.

Firstly, the gas flow rate and water flow rate change of all
cases in 20 years can be obtained, as shown in Figure 8. Dif-
ferent cases of the same well spacing scenario were plotted
with the same color. During the production, the gas flow rate

decreases first due to the pressure drop. Then, it increases a
bit. It is because the pressure decrease becomes slower than
the beginning, shown in Figure 9. It would lead to a larger
pressure difference between the reservoir and the wellbore.
Therefore, more gas and water would be produced. If the
pressure drawdown rate did not change, the flow rate would
decrease continuously. After two years, the gas flow rate
reaches a peak and turns to decrease, which means the
bottomhole pressure drops to the target pressure of
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history matching solutions.
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Figure 8: Gas and water flow rates for different well scenarios: (a)
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1000 psi. The water flow rate has the same trend. This is the
result of the pressure change. Moreover, it is observed that
the six-well scenario with well spacing of 517 ft has the largest
gas flow rate and water flow rate at the beginning. The gas
flow rate drops to 0.2 MMscf per day averagely for the six-
well scenario, which is the lowest among all scenarios. It
implies the existence of well interference for the small well
spacing.

The cumulative gas production and cumulative water
production in 20 years can be obtained and plotted in
Figure 10. The cumulative gas production increases dramat-
ically in the first two years. Finally, the cumulative gas pro-

duction is in the range of 10 billion cubic feet (Bcf) to
20Bcf. The cumulative water production increases from
200MSTB to 400MSTB averagely with the well number
increases. In addition, cumulative gas production is more
concentrating than cumulative water production. It reflects
the uncertainty of water and gas relative permeability.

To figure out how well spacing influences gas production,
gas EUR per well for each well spacing scenario is calculated
and plotted in the lognormal cumulative probability plot, as
shown in Figure 11. The y-axis is the lognormal cumulative
probability, and the x-axis shows the gas EUR per well. Five
well spacing scenarios are represented in different colors.
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Figure 10: Cumulative gas and water productions for different well scenarios: (a) cumulative gas production and (b) cumulative water
production (Bcf represents billion cubic feet).
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More dots falling on the corresponding dashed fitting line
indicate a higher possibility of the gas EUR distributes in
the lognormal format. What is more, the larger the well spac-
ing, the larger the gas EUR per well. We can find the P50 gas
EUR for each scenario, listed in Table 3.

Then, the P50 gas EUR degradation related to well spac-
ing is calculated and plotted in Figure 12. It implies that when
the well spacing is smaller than 775 ft, the gas EUR degrades
significantly up to 37%. This means there is a strong well
interference under this well spacing. Then, the well interfer-
ence becomes smaller and smaller when then well spacing
increases from 775 ft to 1033 ft. When the well spacing is
larger than 1033 ft, the degradation curve changes is little,
which means the well interference could be ignored. There-
fore, we need to make sure the well spacing is larger than
775 ft to reduce the influence of well interference.

3.3. Well Spacing Optimization. Next, we calculated the net
present value (NPV) to determine the optimal well spacing.
The values of NPV calculation inputs are listed in Table 4.
The operation cost is 4.5 million USD per well, and the gas
price is 1.8 USD/MScf. Other values can be seen in the table.

The result of NPV is plotted in the boxplot, as shown in
Figure 13. The x-axis represents the NPV while the y-axis
represents the well spacing. The NPV result of each scenario
is drawn in one box. The three lines of the box from higher to
lower are the P25, P50, and P75 NPV of each scenario. The
highest line outside the box means the maximum NPV, and
the lowest line outside the box represents the minimum
NPV. There exists a maximum NPV along with the well
spacing. Therefore, the optimum well spacing is 775 ft at

where the NPV reaches the highest. The highest P50 NPV
is about 18 million USD.

Then, we applied the KNN proxy model to train the data
and predict the NPV relationship with well spacing. Each
point in Figure 14 represents one prediction result and is
regressed on one polynomial curve, shown as a blue line. It
is observed that the optimal well spacing is 793 ft with 18 mil-
lion USD. Also, this well spacing can satisfy the requirement
of critical well spacing. It is worth pointing out that this result
is similar to the boxplot result, but this curve is smoother
with more points. Therefore, the KNN proxy method could

Table 3: P10, P50, and P90 of gas EUR of five different well spacing
scenarios.

Well spacing scenario Gas EUR P50 (Bscf/well)

2 wells, 1550 ft apart 4.94

3 wells, 1033 ft apart 4.60

4 wells, 775 ft apart 4.05

5 wells, 620 ft apart 3.49

6 wells, 517 ft apart 3.07
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Figure 12: Gas EUR degradation of P50 with varying well spacing.

Table 4: Summary of economic input variables used in this study.

NPV calculation inputs Value Unit

Well cost 4.5 Million USD/well

Gas price 1.8 USD/MScf

Water disposal cost 1.35 USD/bbl

Gas tax rate 9.0 %

Other tax rates 5.00 %

Annual discount rate 15 %

Total simulation time 20 Year
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Figure 13: Economic uncertainty distribution with different well
spacing scenarios.
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provide a more reliable result for the optimum well spacing
decision.

3.4. Pressure Distribution Visualization. Finally, we com-
bined the optimal well spacing of 793 ft with the lowest global
error AHM solution to perform the reservoir simulation and
predict the pressure distribution in the long time. The matrix
permeability is 202Nd, and porosity is 0.04. The water expo-
nent, the gas exponent, and the endpoint of relative water
permeability are 2.46, 3.91, and 0.55, respectively. Fracture

height, fracture half-length, fracture conductivity, fracture
water saturation, and fracture width are 44 ft, 289 ft,
194md-ft, 0.82, and 0.5 ft, respectively. The number of natu-
ral fractures is 418, and its length is 270 ft with a conductivity
of 8.09md-ft. Next, we modeled the fractures by EDFM.
After the reservoir simulation, the pressure distribution in
the matrix is shown in Figure 15. The pressure drops signif-
icantly in the first five years, which implies that most gas
would be produced in the first 5 years. However, we would
like to perform long-term EUR prediction. Therefore, we
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Figure 15: Pressure distributions in the matrix for the optimal well spacing scenario: (a) after 1 year, (b) after 5 years, and (c) after 20 years.
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would predict the 20-year production in this study. Figure 16.
shows the pressure distributions in the fracture. We can find
that the pressure drop is faster of the hydraulic fractures than
natural fractures far away from the well. It drops from
8000 psi to 3000 psi. This implies that hydraulic fractures
would play a more critical role in the gas production process
in the early time. In addition, the hydraulic fracture pressure
drops to low pressure in the first five years. And the pressure
of the natural fractures far from the wellbores drops more
than that of hydraulic fracture after five years, which implies
natural fractures contribute more after five years. The drain-
age volume is illustrated intuitively in Figure 17, clearly
showing the strong well interference after five years of
production.

4. Conclusions

This study applied the well spacing optimization workflow
for shale gas reservoirs with hydraulic and complex natural
fractures in the Sichuan Basin by integrating AHM and
EDFM. A total of 84 AHM solutions and five well spacing
scenarios were used to predict gas EUR and NPV in 20 years.
Then, the optimum well spacing was identified. We summa-
rize the following conclusions from the study:

(1) The maximum NPV is around 18 million USD,
whether directly calculated or predicted by the
KNN proxy model. The corresponding optimum well
spacing is 775 ft and 793 ft, respectively, for the two
methods. Moreover, the optimum well spacing from
KNN proxy is more accurate as considering more
well spacing scenarios

(2) The gas EUR degradation reaches to 35% when the
well spacing is 517 ft, which shows substantial well

interference. And when the well spacing is more
extensive than 775 ft, the degradation rate starts
becoming slow. It indicates that the influence of well
interference turns to small

(3) The critical well spacing to avoid the influence of well
interference is 775 ft. Therefore, optimum well spac-
ing obtained from the two methods is satisfied with
this critical spacing

(4) The pressure drop of hydraulic fractures is faster than
natural fractures, which implies that hydraulic frac-
tures are more important for early time shale gas pro-
duction. Then, for a longer time, the natural fractures
contribute more to the gas production

Acronyms

AHM: Assisted history matching
BHP: Bottomhole pressure
EUR: Estimated ultimate recovery
EDFM: Embedded discrete fracture model
HM: History matching
KNN: K-nearest neighbor
LGR: Local grid refinement
NPV: Net present value.

Nomenclature

Cfixed: Fixed well maintenance cost
Ci: Total cost of a specific month
Cwater: Water disposal cost
Cwell: Total individual well cost
dNNC: Distance associated with this connection.
Ii: Gross income of a specific month
KNNC: Permeability
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Figure 17: Drainage volume for the optimal well spacing scenario: (a) after 1 year, (b) after 5 years, and (c) after 20 years.
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Nwell: Number of wells
NPVn: Net present value of a specific scenario
Pgas: Gas price (dollars per million standard cubic feet)
q: volume flow rate between two cells in a NNC pair
R: Annual discount rate
Tex: Miscellaneous tax rate
Tg: Gas tax rate
TNNC: Transmissibility factors in each of NNC pair
Vgas,i: Gas production in a specific month (million stan-

dard cubic feet)
Vwater,i: Water production in a specific month (barrels)
λ: Relative mobility.

SI Metric Conversion Factors

ft×3.048e-01=m:
ft3×2.832e-02=m3:
psi×6.895e+00=kPa:
md×1e-15e+00=m2:

Unit Abbreviation Table

Bcf: Billion standard cubic feet
MMscf: Million standard cubic feet
MSTB: Thousand stock tank barrel
md: Millidarcy
nd: Nanodarcy.

Data Availability

Data are available upon request.

Additional Points

Highlights. (1) Optimum well spacing for shale gas reservoirs
was obtained. (2) Both the influences of natural fractures and
hydraulic fractures were considered. (3) AHM calibrated
thirteen uncertainty parameters of fractures and matrix.
(4) EDFM was performed to establish fracture models.
(5) Maximum NPV predicted from the KNN model deter-
mined the optimum well spacing.
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The shale of the Lower Silurian Longmaxi Formation is an important gas-producing layer for shale gas development in southern
China. This set of shale reservoir characteristics and shale gas development potential provide an important foundation for shale
gas development. This study takes wellblock XN111 in the Sichuan Basin, China, as an example and uses X-ray diffraction
(XRD), scanning electron microscopy (SEM), isothermal adsorption, and other techniques to analyze the shale reservoir
characteristics of the Lower Silurian Longmaxi Formation. The results show that the Lower Silurian Longmaxi Formation was
deposited in a deep-water shelf environment. During this period, carbonaceous shale and siliceous shale characterized by a high
brittle mineral content (quartz > 40wt:%, carbonatemineral > 10wt:%) and a low clay mineral content (<30wt.%, mainly illite)
were widely deposited throughout the region. The total organic carbon (TOC) content reaches up to 6.07wt.%, with an average
of 2.66wt.%. The vitrinite reflectance is 1.6–2.28%, with an average of 2.05%. The methane adsorption capacity is 0.84–
4.69m3/t, with an average of 2.92m3/t. Pores and fractures are developed in the shale reservoirs. The main reservoir space is
composed of connected mesopores with an average porosity of 4.78%. The characteristics and development potential of the
shale reservoirs in the Lower Silurian Longmaxi Formation are controlled by the following factors: (1) the widespread deep-
water shelf deposition in wellblock XN111 was a favorable environment for the development of high-quality shale reservoirs
with a cumulative thickness of up to 50m; (2) the high TOC content enabled the shale reservoir to have a high free gas content
and a high adsorptive gas storage capacity; and (3) the shale’s high maturity or over maturity is conducive to the development
of pores and fractures in the organic matter, which effectively improves the storage capacity of the shale reservoirs. The reservoir
characteristic index was constructed using the high-quality shale’s thickness, gas content, TOC, fracture density, and clay
content. Using production data from shale gas wells in adjacent blocks, a mathematical relationship was established between the
Estimated Ultimate Recovery (EUR) of a single well and the Reservoir Characteristics Index (Rci). The EUR of a single well in
wellblock XN111 was estimated.

1. Introduction

As an important supplement of and replacement for conven-
tional natural gas resources, shale gas has become a hot spot
in global natural gas exploration and development [1–3].
Shale gas is a type of unconventional natural gas, which
occurs in shale reservoirs that are rich in organic matter

[4, 5]. Such reservoirs have the characteristics of self-
generated self-storage, low porosity, and low permeability [6].

Several sets of organic-rich shales were developed in the
Paleozoic and Mesozoic in the Upper Yangtze region of
southern China [7]. The shale reservoirs of the Lower Cam-
brian Niutetang Formation and the Lower Silurian Longmaxi
Formation are the most well developed [8, 9], and their shale
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gas resources have great potential. Among them, the evalu-
ation and exploration of shale gas resources in the Sichuan
Basin and its surrounding areas have achieved remarkable
results and an excellent understanding [10, 11]. By the
end of 2019, the cumulative proven shale gas reserves of
the Upper Ordovician Wufeng Formation and the Lower
Silurian Longmaxi Formation had exceeded 1:8 × 108 m3

[12]. The commercial development of shale gas in Fuling,
Changning, Weiyuan, Zhaotong, Yongchuan, and other
areas indicates that China’s shale gas has entered a stage
of industrial-scale exploitation [13], which is of far-
reaching significance to China’s unconventional gas devel-
opment and energy structure optimization. The Longmaxi
Formation shale is widely distributed in the Sichuan Basin
and its periphery [14], and it is the key strata of marine
shale gas exploration and development in China. Shale
gas reservoirs are controlled by their sedimentary environ-
ments [15], tectonic movement [16], diagenesis, and pres-
sure evolution [17, 18]. Shale gas reservoirs’ characteristics
are significantly different under different geological condi-
tions [19], which determine the development characteristics
and distribution of the high-quality shale gas reservoirs in
the Longmaxi Formation. The characteristics of shale reser-
voirs [20] and their development potential [21] are the
most critical factors limiting shale gas development. Some
studies have examined nanopores of shale reservoirs by a
field emission scanning microscope-focused ion beam
[22–24]; some work have studied on the gas flow behavior
of shale gas [25, 26]; and others have proposed criteria for
identifying high-quality shale reservoirs [27, 28]. Some
studies have evaluated the potential of shale reservoirs;
most of them focus on static resource potential and devel-
opment potential. For example, Guo et al. (2020) has pro-
posed a method to evaluate the resource potential of shale
reservoir, which takes the heterogeneity of shale reservoir
into account and could correct the TOC difference [29].
Viet and Hyundon [30] analyze the production potential
and economic feasibility in a shale gas reservoir by using
an economic indicator. Since shale gas is mainly concen-
trated in micronanoscale pores [31, 32], it is of great signif-
icance to explore the factors influencing the development of
shale reservoirs and to determine the resource scale that
determines the development potential of shale gas in order
to clarify the development mechanism of high-quality shale
reservoirs and the efficient development mechanism of
shale gas.

Taking the wellblock XN111 in the Sichuan Basin as an
example, the shale’s geochemical and mineralogical charac-
teristics were obtained using X-ray diffraction, scanning
electron microscopy, isothermal adsorption, and other tech-
niques. The structure, reservoir space, and reservoir fluid
parameters of the shale reservoir in the Longmaxi Formation
in well XN111 were identified. The main factors affecting the
shale gas accumulation in this area were investigated. The
shale gas reserves were estimated using the volume method.
In addition, the calculation of the single well shale gas devel-
opment potential provides theoretical support for shale gas
exploration in the Sichuan Basin and in similar basins in
the future.

2. Regional Geologic Setting

From the Late Sinian, the Upper Yangtze Basin gradually
entered a stable thermal subsidence stage, with the Upper
Yangtze Platform sandwiched between the South China and
Qinling oceans [33, 34]. In the Late Caledonian, the Upper
Yangtze Platform area formed a craton depression basin in
the Early-Middle Silurian due to the collision and compres-
sion between the Cathaysia Plate and the Yangtze Plate [35]
when the South China Ocean was closed. The Late
Ordovician-Early Silurian was a period of intense compres-
sion in southern China [36]. Under the continuous subduc-
tion of the Gutethys Ocean, the scope of the uplifted
subcratonic basin where the Sichuan Basin was located was
further reduced [37], and in the Early-Middle Ordovician,
the sea area with broad sea characteristics was transformed
into a sea area restricted by underwater uplift (Figure 1).
With the further uplift of the paleo-uplift in the basin, marine
shale with a wide distribution [38], a large thickness, and a
low deposition rate were formed in an anoxic deep-water
shelf environment at medium depths.

The Longmaxi Formation was stable in the Sichuan Basin
in the Early Silurian. In the Upper Yangtze region, the Early
Silurian Longmaxi Formation inherited the scale of the trans-
gression in the Middle-Late Ordovician [39]. Due to the con-
tinuous and stable subsidence of the crust, the transgression
scale was large, the environment was stable, and the lithologic
combination was relatively stable [40]. It was rich in lithol-
ogy, radiolarians, and sponge containing bone spicules,
which were distributed throughout the basin, representing a
group of offshore continental shelf strata deposited under
reducing conditions [41]. Well XN111 is located in the
southwestern part of the Upper Yangtze Platform, which is
on the western margin of the Sichuan Basin. The Longmaxi
Formation in well XN111 consists of five types of petrofacies:
ordinary shale, siliceous shale, carbonaceous shale, silty shale,
and calcareous shale. The lower part of the shale of the Long-
maxi Formation in well XN111 is composed of black carbo-
naceous mudstone, which is rich in graphitization stone,
rich in organic matter, and stable in distribution. The upper
lithology is mainly gray black, black thin-middle-layered car-
bonaceous shale, and siltstone with banded and lensed argil-
laceous micritic limestone.

3. Database and Methodology

This study is based on 168m of cores, 108 thin sections,
X-ray diffraction (XRD) data for 24 samples, source rock
data for 29 samples (vitrinite reflectance, total organic car-
bon (TOC) content, and macerals), and scanning electron
microscope (SEM) observations of 47 samples from well-
block XN111.

The XRD analyses were conducted using a BRUKER D8
ADVANCE diffraction tester. The test conditions were as fol-
lows: Cu target, K radiation, 40 kV tube voltage, and 30mA
tube current. After the test, a corresponding analysis was car-
ried out using the material standard powder diffraction data.
Before the TOC analysis, the samples were dried and ground
to 80 mesh. The determination was completed using a CS-
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344 analyzer. The vitrinite reflectance (Ro) was determined
using a Zeiss MPV-SP photometer. The carbon dioxide/ni-
trogen isothermal adsorption experiment was performed
using an Autosorb IQ3 automatic specific surface and pore
size distribution analyzer produced by Kantar. The shale
samples were broken into 60–80 samples and dried in an
oven at 110°C for 12 h. Then, the Autosorb-IQ3 automatic
specific surface and pore size distribution analyzer was
placed under vacuum conditions at 110°C for 12 h before
degassing. After the analyses, the carbon dioxide adsorption
data and nitrogen adsorption data were interpreted using
the density functional theory (DFT) model to obtain relevant
information, such as the pore volume and specific surface
area. The macropore volume and specific surface area were
obtained by subtracting the micropore and mesopore vol-
umes and the specific surface area from the total pore volume
and specific surface area of the nitrogen adsorption data,
respectively.

An argon ion polishing-field emission scanning electron
microscope (SEM) was used for the observation. The images
were obtained using an S-4700 cold field emission scanning
electron microscope (SEM), and then, the images were uni-
formly binarized and parameterized.

4. Results

4.1. Mineralogy. The X-ray diffraction analysis of the rock
samples revealed that the minerals in the shale include quartz,
feldspar, calcite, dolomite, pyrite, and clay (Figure 2), among
which the clay minerals are mainly illite, an I/milled layer,
and chlorite. The quartz content of the high-quality shale in
the Longmaxi Formation is high, accounting for 42.3% on
average. This is followed by calcite and dolomite, with aver-
age contents of 13.5% and 12.9%, respectively, and small
amounts of feldspar and pyrite. The clay mineral content is
generally low, ranging from 5.1% to 58.2%, with an average
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of 23.8%. It is mainly composed of illite and does not contain
montmorillonite.

4.2. Fractures. Tectonic fractures, bedding fractures, and dia-
genetic shrinkage fractures are the most common types of
fractures in the Longmaxi Formation shale (Figure 3). The
fractures are unevenly distributed. The structural fractures
are usually divided into filled and unfilled types. High-angle
structural fractures can be seen in the siliceous shale of the
lower Longmaxi Formation. Obvious specular and scratches
are usually visible on the structural fracture surfaces. The
structural fractures in the individual strata are particularly
well developed. The image logging data show that there are
27 high-resistance structural fractures in the 2443m deep
section of the Longmaxi Formation in well XN111, and the
strike direction is 70–80° NE. The size of the structural frac-
tures is usually several millimeters, making them the domi-
nant channel for natural gas migration and seepage.

The foliation is generally horizontal and patchy, and it
was observed in both outcrops and the core samples, which
is a unique feature of the shale. In the quiet and stable
deep-water depositional environment, due to the low deposi-
tion rate, the sediments developed laminar accumulation fea-
tures. However, due to the high organic matter content,
under diagenetic compaction, the organic matter and clay
minerals contracted strongly and formed bedding joints
between the thin bedding. They are basically several microns
in size and generally formed in the carbonaceous shale. Dia-
genetic shrinkage cracks are microcracks formed by dehydra-
tion due to the evaporation of water during diagenesis.
Mineral particles are often distributed, and some of them
can be broken into fragments. The width of the fractures is
small and irregular.

In addition to macrofractures that can be resolved using
the core samples and the image logging data, a large number
of microfractures were also observed in the Longmaxi For-

mation. The microfractures generally include filling frac-
tures, dissolution fractures, interlayer fractures between clay
minerals, edge fractures between mineral particles, and
microfractures from organic hydrocarbon generation. The
causes of microcracks are varied. During diagenesis, changes
in the mineral facies will cause the formation of microfrac-
tures, such as the dehydration of clay minerals. As the depth
of the formation increases, the compaction leads to fracture
caused by particle fracturing. Interstitial carbonate material
is easily dissolved to form dissolution fractures. In the pro-
cess of hydrocarbon generation, as the hydrocarbon genera-
tion increases, when the breakthrough pressure is reached,
a large number of microfractures will be formed. Tectonic
activity produces stress, resulting in microfractures between
flaky clay minerals and clastic particles. Microfractures can
also be formed within and between debris particles under
the action of external forces.

4.3. Organic Geochemical Characteristics

4.3.1. TOC. The TOC content of the Longmaxi shale reaches
a maximum of 6.07wt.%, with an average of 2.66wt.%
(Figure 4). The TOC content varies with the lithology, and
the siliceous shale and clay shale contents are the highest.
In the lower part of the Longmaxi shale, the TOC content
gradually decreases upward.

4.3.2. Thermal Maturity. The Longmaxi shale is at a highly
mature stage [42], and the equivalent vitrinite reflectance is
1.6–2.28%, with an average of 2.05%. The Ro value indicates
that the source rock has reached the hot gas window.

4.3.3. Gas Content. The gas-bearing property of the shale is
strongly heterogeneous, and the gas-bearing properties of
the different strata are significantly different. The methane
adsorption capacity of the shale is usually related to the
organic carbon content, the degree of thermal evolution,
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Figure 2: Mineral composition of the shale reservoir in the Longmaxi Formation.
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the reservoir temperature, the formation pressure, the water
saturation, and the composition of the natural gas [43]. For
well XN111, the methane gas adsorption capacities of 22
samples ranged from 0.84 to 4.69m3/t, with an average of
2.92m3/t. The amount of gas adsorption and the TOC are
positively correlated. That is, the greater the TOC, the greater
the amount of gas adsorption. Organic matter has a strong
gas adsorption potential, which can explain this phenome-
non. A large amount of shale gas is adsorbed onto the sur-
faces of the kerogen in the shale, and the high TOC content
indicates the large volume and adsorption capacity of the
shale gas. The field measurements of the gas content reveal
that the gas content of the lower shale of the Longmaxi For-
mation in well XN111 is greater than 3.0m3/t, and the overall
adsorption capacity and gas content of the lower shale of the
Longmaxi Formation are relatively large. For example, the
isothermal adsorption data for the upper and lower shale
reservoirs (samples 48409-4B and 48409-3B, respectively)
in the Longmaxi Formation were compared. The methane

(a) (b)

(c) (d)

(e) (f)

Figure 3: Characteristics of the shale fractures in the Longmaxi Formation. (a) High-angle fractures filled with calcite; (b) high-angle fractures
filled with calcite; (c) unfilled high-angle fractures; (d) lamellation; (e) diagenetic shrinkage fractures; and (f) diagenetic shrinkage fractures.
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Figure 4: Histogram of the TOC distribution of the Longmaxi
Formation.
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adsorption capacity of upper sample 48409-4B was 2.55m3/t,
while that of lower sample 48409-3B was 3.2m3/t. The meth-
ane adsorption capacity of the lower shale reservoir was
25.5% higher than that of the upper shale reservoir (Figure 5).

4.4. Reservoir Storage Space. The morphology, quantity, and
distribution of the shale micropores were qualitatively
observed using focused ion beam scanning electron micro-
scope (FIB-SEM). According to the relationship between
the pore development and rock particles, they can be divided
into matrix pores (organic pores, clay mineral interlayer
pores, berry pyrite intercrystalline pores, grain mineral edge
pores, and secondary dissolution pores) and microfractures
(Figure 6). The interbedded pores in the organic matter and
clay minerals are the most well developed and are important
components of the reservoir space.

The organic matter pores are secondary pores formed
inside kerogen during diagenetic evolution from solid kero-
gen to hydrocarbon fluid [44, 45]. They are mostly round,
elliptical, and irregular polygons, and they are generally 10–
150nm in size. The dispersed organic matter is commonly
associated with berry pyrite and clay minerals, and organic
matter nanopores are developed in the pyrite grains and clay
minerals. In the early deep-water continental shelf sedimen-
tary environment of the Longmaxi Formation, a large
amount of red algae was produced [46], and a large number
of organic pores easily developed.

During the diagenetic evolution, the montmorillonite
transformed into illite through the Aemon mixed layer.
Intrapores were generated between the filamentous or curly
illite, which were arranged in parallel with each other and
had good connectivity. A berry pyrite micropellet formed in
an anoxic environment, consisting of many small pyrite
grains. The intercrystalline interP pores are nanopores. Cal-
cite, feldspar, and other soluble minerals easily produce sec-
ondary dissolution pores through acid etching, which have
a more irregular shape, are relatively isolated, and have poor
connectivity. Micropores are easily developed on the edge of

quartz and other rigid granular minerals. Their morphology
is controlled by the original porosity and diagenesis [47, 48],
and they are mostly triangular or irregular, with poor con-
nectivity. The microfractures are more well developed, and
most of them are serrated or curvilinear. Their extension
length is large, and their widths are generally 50–100 nm.
They can provide storage space for free gas and can be help-
ful when analyzing the adsorbed gas. They are an important
channel for gas seepage.

4.5. Reservoir Properties. The porosity of the Longmaxi shale
is 0.86% to 8.44% (average 4.78%). The permeability is very
low, ranging from 0.0026D to 0.0328D, with a mean of
0.0116D. The analysis shows that the specific surface area
ranges from 3.263m2/g to 38.767m2/g, with average of
18.76m2/g. The specific surface area provided by the micro-
pores is 2.712–21.69m2/g, with an average of 8.57m2/g,
accounting for 45.68% of the specific surface area. The mean
throat radius is 4 nm to 16.1 nm, with a mean of 7.2 nm. The
total pore volume of the Longmaxi shale is 11 × 10−4 ml/g to
321 × 10−4 ml/g, with an average of 109 × 10−4 ml/g. The pore
volume provided by the micropores (<2nm) is 2:5 × 10−4
ml/g to 22:3 × 10−4 ml/g, with an average of 10:3 × 10−4 ml/
g, accounting for an average of 9.45% of the total pore vol-
ume. The mesopore volume (2 nm to 50nm) ranges from
31:4 × 10−4 ml/g to 278 × 10−4 ml/g, with an average of 86 ×
10−4 ml/g. The macropores (>50nm) account for 11.65% of
the total pore volume, indicating that the mesopores are
dominant in the Longmaxi shale.

5. Discussion

5.1. Main Factors Affecting Shale Gas Enrichment

5.1.1. Stable Anoxic Deep-Water Sedimentary Environment.
The stable anoxic deep-water sedimentary environment
resulted in the widely distributed shale reservoir in wellblock
XN111.
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Figure 5: Isothermal adsorption curve for the Longmaxi Formation in well XN111.
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A quiet and stable deep-water reducing environment is
the best environment for the formation, development, and
preservation of organic rich marine sediments. The early
stage of the deposition of the Longmaxi Formation in well
XN111 inherited the sedimentary characteristics of the
Wufeng Formation. The main body of the sediment included
deep-water continental shelf and semiconfined shallow sea
facies [49]. In this period, the deposition rate was low, and
the deposition time was more than half that of the Longmaxi
period [50]. The deposition thickness was about 100–135m,
accounting for only 30–45% of the thickness of the entire
Longmaxi Formation. Black carbonaceous siliceous shale
and black shale were developed. In this period, the semicon-
fined deep-water shelf was relatively deep, quiet, and stable
[51]. The sedimentary thickness was large and the organic
matter was rich (graptolite development). The organic matter
type was primarily I type, which indicates a high degree of
thermal evolution. This was the main period for the develop-
ment of effective source rocks in the Longmaxi Formation.

In the late period of the Longmaxi Formation, dark gray
shale, gray mudstone, and silty mudstone assemblages were
mainly deposited. The main body was deposited in a shallow
water shelf environment. The deposition rate was signifi-
cantly higher than that in the early period, and the deposition
thickness was about 150–165m (Figure 7). During this
period, the water body was relatively shallow, the organic
matter was relatively undeveloped, and the graptolite content
decreased significantly.

Shale thickness is a prerequisite for commercial shale gas
accumulation. Successful experiences in the United States
have shown that the minimum thickness of black shale
required for exploration and development of shale gas is
30m. The effective thickness of the Longmaxi Formation in
well XN111 is relatively large. The thickness of the lower
shale of the Longmaxi Formation increases from northwest
to southeast with a thickness of about 120m. Over 50m of
fine black shale is present.

5.1.2. High TOC Content, Appropriate Organic Matter Type,
and Thermal Maturity. Organic pores are the main storage

space for shale gas. The TOC is an important factor in reser-
voir properties and shale gas accumulation. The formation of
organic pores is related to the content of transformed organic
carbon, which is controlled by the type of organic matter. The
organic matter in the Longmaxi shale is mainly Type I kero-
gen, which is conducive to shale gas accumulation. Studies
have shown that the TOC content is positively correlated
with the shale gas adsorption and pore volume [52]. Shale
gas accumulation requires a TOC of at least 0.5%. The TOC
content of the Longmaxi shale in the study area is high, with
an average value of 2.66%, which is far higher than the lower
TOC limit, indicating that the shale gas reserves have a great
potential.

Appropriate thermal maturity is very important for shale
gas [53]. The vitrinite reflectance can reflect the thermal
maturity and affect the shale gas concentration and the reser-
voir’s physical properties. The average vitrinite reflectance of
the Longmaxi shale is 2.05%, which is suitable for the pro-
duction and accumulation of natural gas. During the thermal
evolution of organic matter, a series of physical and chemical
reactions occur, including the transformation of organic car-
bon, the decomposition of organic matter, and the generation
of hydrocarbons. Moreover, a large number of nanopores are
generated in the source rocks, which can provide storage
space for shale gas.

5.1.3. An Assemblage of Rocks and Minerals Prone to
Fracturing. The rock mechanics data show that the Young’s
modulus of wellblock XN111 is 29,000 to 36,000MPa, the
Poisson’s ratio is 0.16 to 0.18, and the brittleness index can
reach more than 65%. This is due to the low content of clay
minerals and the high content of brittle minerals (mainly sili-
ceous minerals and carbonate minerals) in wellblock XN111,
which makes the Longmaxi Formation shale easy to fracture
and produce.

5.1.4. Widely Distributed Natural Fractures. Fractures pro-
vide important reservoirs for shale gas and can act as seepage
channels for methane molecules. The image logging and core
data show that the fracture width of the Longmaxi Formation
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Figure 6: FE-SEM images of the shale samples from wellblock XN111. (a) OM pores, pyrite, and interP pores at the edges of mineral grains;
(b) large OM particle with irregular and elliptical OM pores; (c) intercrystalline interP pores in pyrite framboids; (d) microfractures; (e) intraP
pores with calcite grains; (f) OM pores and interP pores at the edge of a calcite grains; (g) interP pores at the edges of mineral grains, OM
pores, and intercrystalline interP pores in clay particles; (h) fluid inclusion intraP pores within brittle minerals and OM pores in OM
grains; (i) cleavage-sheet intraP pores within clay particles and OM pores; (j) intercrystalline interP pores in pyrite framboids,
microfractures and OM particle with irregular and elliptical OM pores; (k) OM pores and interP pores at the edges of mineral grains; (l)
porous OM particles.
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is 0.5 to 1mm, and the fracture density of most of the wells is
0.4/m to 4/m. These widely developed macroscopic fractures
are important factors controlling the shale gas enrichment in
the Longmaxi Formation. Due to the extremely low perme-
ability of the shale system, a certain scale of structural frac-
tures is conducive to improving the permeability of the
shale reservoir and forming a dominant seepage channel,
which is the key factor for high yield shale gas wells. The
image logging data show that 87 high-resistance fractures
are developed in the lower Longmaxi Formation in well
XN111, with an azimuth of 340–350° NE, a strike of 70–80°

NNE, and an inclination of 20–80° (Figure 8). Similarly, shale
fractures and diagenetic shrinkage fractures are also benefi-
cial to improving the conductivity of shale reservoirs.

Microfractures form a bridge connecting the macro-
scopic fractures and microscopic pores. They play an impor-
tant role in shale gas seepage. The microfractures in the
Longmaxi Formation are well developed because the organic
particles, brittle minerals, and clay minerals can develop
microfractures. These large-scale microfractures are con-

nected with other pores, forming a fracture network-pore
system, which provides effective storage and seepage space
for the natural gas trapped in the shale.

5.2. The Development Potential of the Longmaxi Shale Gas.
The area of shale gas in well XN111 is about 390 km2. Thus
far, several horizontal fracturing wells have been drilled,
and good results have been achieved. The total shale thickness
of the Longmaxi Formation in well XN111 is 30–210m.
Among them, the lower part of the Longmaxi Formation has
an effective shale thickness of 33.9m. The total porosity is 3–
6%, fractures are developed, and it is a high-quality source
rock and reservoir (high TOC content, relatively high Ro con-
tent). The gas content is 3.82m3/t, and the pressure coefficient
is 1.80. According to the volume method, the Longmaxi shale
gas resources in wellblock XN111 can reach 1393:7 × 108 m3,
and the reserve abundance is 3:57 × 108 m3/km2.

The maximum principal stress direction in this area is
NW (300–310°), and the natural fracture direction is NNE
(30°). Both the fracturing effect and the drilling safety should
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Figure 7: Sedimentary characteristics of the shale reservoir in the Longmaxi Formation, well XN111, Sichuan Basin.
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be considered when designing the horizontal well orienta-
tion. The horizontal trajectory orientation of the horizontal
well group is selected at a certain angle with respect to the
direction of the minimum principal stress and the natural
fractures, comprehensively taking the natural fractures,
structural morphology, and other factors into consideration.
The best horizontal well trajectory directions for this area
were determined to be NE20° and SW200°. Since the high-
pressure dry gas shale reservoir in the Longmaxi Formation
in the well XN111 area is mainly driven by elasticity, the

exploitation of natural energy depletion was adopted in the
early stage. When the wellhead pressure dropped to the pipe-
line pressure, pressurization was used for the mining. The
production capacity was mainly maintained by means of
interwell replacement.

Sensitivity analysis of the reservoir parameters affecting
the shale production in the adjacent Longmaxi Formation
was carried out. Five parameters, including the shale thick-
ness, gas content, TOC, fracture density, and clay content,
were selected. Among them, the high-quality shale thickness,
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gas content, TOC, and fracture density are positively corre-
lated with gas well production, while clay content is nega-
tively correlated with gas well production. The reservoir
characteristic index was constructed, which is a comprehen-
sive mathematical index that affects the production of shale
gas wells. The mathematical relationship between the Esti-
mated Ultimate Recovery (EUR) of a single well and the Res-
ervoir Characteristic Index (Rci) (Figure 9) was established
using the production data for the gas wells for which the pro-
duction conditions are close to waste in the adjacent well
area:

EUR = 3035:7e0:6032Rci: ð1Þ

Based on the relationships between the single-well EUR,
the initial production, and the comprehensive classification
coefficient in the adjacent block, it was predicted that the
single-well index in wellblock XN111 is 9666 × 104 m3. Fac-
tors controlling shale reservoirs were analyzed to clarify geo-
chemical and mineralogical characteristics, which also
provide the structure, reservoir space, and reservoir fluid
parameters. The model of Estimated Ultimate Recovery
(EUR) is comprehensive when considered all the most influ-
ential parameters: high-quality shale thickness, gas content,
TOC, fracture density, and clay content. The model is effi-
cient and convenient to use for various reservoir characteris-
tics scenarios.

6. Conclusions

In this study, the characteristics and development potential
of the shale reservoirs in the Lower Silurian Longmaxi For-
mation were analyzed by taking wellblock XN111 in the
Sichuan Basin, southern China, as an example. Several
important findings are summarized as follows.

(1) The widespread deep-water shelf deposition was a
favorable environment for the development of
high-quality shale hydrocarbon source rocks with
a cumulative thickness of up to 50m. The high
TOC content results in the shale reservoir having
high free gas and adsorption gas storage capacity.
The high maturity to over maturity of the shale is
conducive to the formation of organic pores, and the
pore space is dominated by mesopores (2–50nm).
The development of fractures further effectively
improves the reservoir and the seepage capacity of
the shale reservoirs

(2) The reservoir characteristic index was constructed
using five parameters: high-quality shale thickness,
gas content, TOC, fracture density, and clay content.
The mathematical relationship between the Esti-
mated Ultimate Recovery (EUR) of a single well and
the Reservoir Characteristic Index (Rci) was estab-
lished. It was predicted that the EUR of a single well
in the well XN111 area is 9666 × 104 m3
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Carbonate reservoirs are mainly fractured-caved reservoirs with very well-developed dissolved pores, fractures, and caves. They
have strong heterogeneity with various types of reservoir pore spaces. Using seismic inversion and reservoir static
characterization, the result shows that the fractured-caved carbonate rocks in China are mainly caves with poor connectivity and
complex oil-water distribution. Large-scale dissolved caves are mostly discrete and isolated, while the fractures are complex and
various. The fracture features are observed either as a single large fractures or as a local fracture network. The characteristics of
fluid flow in fracture-caved reservoirs vary as a result of the different combinations of fractures and caves. Currently, the static
characterization technology of fractured-caved reservoirs is influenced by the limited resolution of seismic data, leading to large
interpretation errors. In contrast, the dynamic method is a more reliable and effective method to determine reservoir
parameters. However, traditional seepage equations cannot accurately characterize the flow pattern of fractured-caved carbonate
reservoirs. In the case of a single large-scale dissolved fractured-caved reservoir, oil wells are usually connected to large caves
through large fractures or directly drilled into large dissolved caves. In this study, the large-scale dissolved caved reservoir is
simplified into two cases: (1) a single-cave and single-fracture series model composed of a single-cave and a single-fracture and
(2) a composite model of dissolved caves and surrounding fracture networks. Note that the flow in a large cave is considered as
free flow due to its large scale. The flow in a large fracture connected to the cave is considered as flow through porous media,
and the flow in the reservoir surrounding the fracture network is considered as multiple-porosity model seepage flow. The
corresponding seepage-free flow coupling mathematical model of different fractured-caved reservoirs has been established on
this basis. We also obtained the rate transient analysis type curves of the oil well, conducted sensitivity analysis of each
parameter, constructed the corresponding rate transient analysis curves, analyzed sensitivities of each parameter, and finally
designed a dynamic evaluation method of well and reservoir parameters for different types of fractured-caved carbonate
reservoirs. This study extensively applies this method in the Halahatang Oilfield of China and evaluates parameters such as
reservoir reserves and physical properties to provide rational guidance for developing fractured-caved carbonate reservoirs.

1. Introduction

The fractured-caved reservoir is a vital type of carbonate res-
ervoirs, characterized by strong heterogeneity, various types,
complex connectivity, complex fluid flow mechanisms, and
complicated gas-water contacts [1–3]. The reservoir is dom-

inated by fractures, dissolved caves, and dissolved pores.
Most of the dissolved caves are discretely distributed and iso-
lated, and the fractures are highly heterogeneous, either with
a single large fracture or a local fracture network [4]. Due to
their very low porosity and permeability, matrix pores have
minimal seepage and storage capacity. Therefore, they have
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little influence on the fluid flow of the entire reservoir. Gen-
erally, the influence of the matrix does not need to be taken
into consideration in the fluid flow of fractured-caved reser-
voirs [5]. Fractures have significant permeability and are the
main seepage channels. Nevertheless, their storage capacity is
lower than that of large dissolved caves, so the fracture is gen-
erally considered to be a unit with low storage and high seep-
age and is the primary fluid flow channel [6–10]. Large-scale
dissolved caves are units with high storage capacity and high
permeability. However, due to the large scale of the caves,
their fluid flow is considered to be free flow and no longer
Darcy seepage flow [11–13]. The variable scale of fractured-
caved reservoir pores determines the variable rates of fluid
flow in the reservoir. The fluid flow of the reservoir presents
different characteristics due to the different combinations of
fractures and caves [14–16].

For this type of fractured-caved reservoir, the mathemati-
cal characterization of continuum models such as dual-
porosity model, triple-porosity model, multiple-porosity
model, and their composite models proposed by previous
researchers will no longer be applicable. The characterization
method based on the discrete medium model can describe
the details of the flow in different fractured caves, but this
comes with modeling challenges and large computation limits
when applied to well-testing and dynamic analysis theory [17,
18]. Other studies have used the pipe flow and percolation-
pipe flow coupling model [19, 20] and conducted their
research based on alternative theories for large fractured-
caved reservoirs, but these studies were not comprehensive.
Other researchers have conducted only qualitative research.
They have not conducted quantitative research on reservoir
parameters and oil well parameters of large fractured-caved
reservoirs. As a result, there is no systematic dynamic evalua-
tion method for reservoir parameter evaluation for the
fractured-caved reservoirs [17, 18, 21]. Therefore, this study
establishes a simplified model which mainly considers large
dissolved caves, by simplifying an extensive dissolved caved
reservoir. Specifically, there are two large models: a single cave

connected to a large fracture and a composite model consist-
ing of a single cave and surrounding reservoirs. A mathe-
matical model of fluid flow, considering seepage-free flow
couplings under different combinations, is established. The
model is finally adjusted to obtain the corresponding typical
curve after rate transient analysis of the oil well. Using this
process and the fractured-caved parameter matching method,
we can evaluate the dynamic parameter of production wells.
What is more, the connectivity of fracture-caved reservoirs
can be properly understood through dynamic inversion of
fractured-caved reservoirs with large-scale dissolved caves
and by obtaining the necessary parameters. These results are
of great significance for the proper understanding and devel-
opment of such fractured-caved reservoirs.

2. Simplified Discrete Mathematical Model and
Rate Transient Analysis Type Curves

There are various types of connections between fractures and
caves within fractured-caved carbonate reservoirs. Also, the
relationship between dissolved caves and fractures is com-
plex. However, most fractured-caved carbonate reservoirs
are characterized by “bead-shaped” seismic reflection, gener-
ally indicating large caves (Figure 1). The existence of these
“bead-shaped” fractured-caved reservoirs suggests that this
is one of the most common forms of connectivity [19, 20].
In cases where large-scale dissolved caves have been devel-
oped in carbonate reservoirs, the caves are connected to the
wellbore through large fractures, or vertical wells are drilled
directly on large caves; the capacity and permeability of the
matrix cannot be taken into consideration in the reservoir
and the reservoir can be described mathematically utilizing
a simplified discrete model with seepage-free flow coupling.
The following assumptions can be made for the simplified
discrete large-scale fracture-cave model: (1) oil wells produce
at a stable rate; (2) oil reservoir is a depletion drive reservoir;
(3) the fluid is single phase and weakly compressible, and its
compression coefficient and volume coefficient are constant;

(a) (b)

Fractures
Cave

GR RT

(c)

Figure 1: Seismic characteristics, inversion results, and development models of fractured-caved carbonate reservoirs: (a) seismic reflection
characteristics of fractured-caved reservoirs; (b) seismic inversion results of fracture-cavity reservoirs; (c) fractured-caved reservoir
development schematic diagram.
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(4) large caves are weakly compressible, and their compress-
ibility is constant; (5) large caves are unfilled or semifilled, as
spheres or cylinders with radius R, and flow is considered as
free flow; (6) the large fracture is flat and the fluid flow in the
fracture follows Darcy’s law, and the fluid flow in the sur-
rounding multimedium reservoir also follows Darcy’s law;
and (7) gravity acceleration, wellbore storage effect, and skin
effect are ignored.

2.1. Single-Cave and Single-Fracture Series Model. When oil
wells are drilled through a large fracture, and the fracture is
connected to a large-scale cave (i.e., the large fracture and
the cave form a single-cave and single-fracture series model),
fluid production ultimately depends on the elastic energy of
the large cave, the fracture, and the fluid. Large caves are
the main reservoir space, and fractures are the effective sec-
ondary reservoir space and the main seepage channel. Large
caves cannot supply fluid directly to the wellbore but can
indirectly supply fluid through fractures.

2.1.1. Physical Model. Figure 2 shows the single-cave and
single-fracture series physical model. Where the cave’s cen-
tral point is the origin O, the intersection point of the cave,
and the fracture is x1, and the connection point of the frac-
ture and the wellbore is x2. It can be seen that the cave radius
is R = x1, the fracture length is L1 = x2 − x1, the fracture
height is L2, the fracture length isW, and the wellbore radius
is rw. The oil well is directly connected to the fractures, and
the dissolved caves produce fluid through the fractures.
Figure 3 is a schematic diagram of the seepage flow of a
single-cave and single-fracture series connection model.

2.1.2. Establishment and Solution of the Mathematical Model.
Large caves are the main reservoir spaces, and fractures are
the effective reservoir and seepage spaces. The fluid flow
capacity in a large cave is robust, and it is considered as free
flow, i.e., the fluid flowing in caves results in very little pres-
sure drop. Then, the dimensionless partial differential equa-
tion describing fluid flow in the reservoir is:

∂2pFD
∂x2D

= ωF
∂pFD
∂tD

,  x1D ≤ xD ≤ x2Dð Þ,

∂pFD
∂xD

����
xD=x1D

= ωVRD
3

L2DWD

dpVD
dtD

,

∂pFD
∂xD

����
xD=x2D

= 1
L2DWD

,

pFDjxD=x1D = pVD,
pFDjxD=x2D = pwD,
pFDjtD=0 = pVDjtD=0 = pwDjtD=0 = 0:

ð1Þ

In the above equations, dimensionless quantities are
defined as follows:

xD = x
rw

,

x1,2D = x1,2
rw

,

pF,V,wD = 86:4kFrw
qμB

pi − pF,V,w
� �

,

ωF,V = ϕF,VCtF,tV
ϕVCtV + ϕFCtF

,

tD = 3:6kFt
μ ϕVCtV + ϕFCtFð Þr2w

,

RD = π

18
� �1/3 R

rw
,

L2D = L2
rw

,

WD = W
rW

:

ð2Þ

Employing the Laplace transform, the dimensionless
Laplace solution can be obtained:

~pwD = a3a1 + a3a4a2
a4a2 − a1

, ð3Þ

where a1 =
ffiffiffiffiffiffiffi
wFs

p − ðwVR
3
D/L2DWDÞs, a2 =

ffiffiffiffiffiffiffi
wFs

p + ðwVR
3
D/

L2DWDÞs, a3 = 1/L2DWDs
ffiffiffiffiffiffiffi
ωFs

p
, and a4 = e−2

ffiffiffiffiffi
wFs

p x1D+2 ffiffiffiffiffi
wFs

p x2D .

Large‑scale cave V 

Fracture system F

Wellhole

Figure 3: Schematic diagram of single-cave and single-fracture
series seepage flow model.

O x1
x2
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Wellhole

x
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Figure 2: Schematic diagram of single-cave and single-fracture
series physical model.
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Using the Duhamel principle, the Laplace solution of the
dimensionless bottomhole rate is

~qD sð Þ = 1
s2~pwD sð Þ : ð4Þ

2.1.3. Analysis of the Rate Transient Analysis Typical Curves
and Influencing Factors. Numerical inversion is performed
for the above-mentioned Laplace solutions. The logarithm
of dimensionless production qD, dimensionless rate integral
qDi, and dimensionless rate integral derivative qDid are con-
sidered as the ordinate, and the logarithm of dimensionless
time tD is taken as the abscissa to draw the rate transient
analysis curves of the oil well, as shown in Figure 4.

It can be seen from Figure 4 that the oil well rate transient
analysis curves of the single-cave and single-fracture model
can be divided into three stages. (I) The fracture linear flow
stage, which is before the pressure wave reaches the cave, is
mainly affected by the fracture’s characteristic parameters.
The dimensionless rate integral curve is parallel to the rate
integral derivative curve, and the slope is -1/2. (II) The cave’s
response stage. This stage is mainly affected by the dissolved
cave properties. The dimensionless integral curve tends to be
horizontal, and the dimensionless integral derivative curve
tends to “concave.” The concave show the fluid supplementa-
tion from dissolved caves to fractures. (III) The boundary
control flow stage. The dimensionless rate integral curve
and the rate integral derivative curve overlap, showing a
straight line with a slope of -1.

The sensitivity analysis of the factors affecting the vertical
well rate transient analysis curves with the single-cave and
single-fracture model is as follows. Figure 5(a) shows the
influence of dimensionless caves radius RD on the rate tran-
sient analysis curves of the oil well. With the larger RD, the
“concave” will be deeper and wider, and the cave’s response
stage will last longer. In addition, the boundary response
stage will be later, i.e., the cave’s storage capacity will be more
significant, and the stable production capacity of the well will

be better. Figure 5(b) shows the influence of fracture length
L1D on the rate transient analysis curves of the oil well. L1D
affects the duration of the fracture linear flow phase. With
the longer L1D, the parallel sections of the dimensionless rate
integral and rate integral derivative curves are longer, the
fracture linear flow stage lasts longer, and the cave response
stage starts later. Figures 5(c) and 5(d) show the influence
of fracture widthWD and fracture height L2D on the well rate
transient analysis curve.WD, L2D, and their products mainly
affect fracture permeability and storage capacity. With a
higher value, the fracture seepage performance is better,
and the fluid will consume less energy. When the dimension-
less curve in the fracture linear flow stage trends upward, the
product of WD and L2D becomes more significant, which
weakens the influence of caves, and then the corresponding
concave is relatively shallower and narrower. Figure 5(e)
shows the influence of fracture storage capacity ratio ωf on
the rate transient analysis curve. With the increase of ωF, the
fracture storage capacity will be better, and the rate transient
analysis curve closer to upward. And as the corresponding
ωV decreases, the concave becomes shallower and narrower.

2.1.4. Rate Transient Analysis Typical Curve of Simplified
Model. If the fracture length L1D = 0, the single-cave and
single-fracture model can be simplified to the single-cave
model. In this case, the oil well is directly drilled in the
large-scale cave, and the storage capacity and permeability
of the surrounding matrix is negligible. The single-cave phys-
ical model is shown in Figure 6, and the single-cave seepage
model is shown in Figure 7.

Figure 8 is the vertical well rate transient analysis curve of
the single-cave model. We found that the oil well rate tran-
sient analysis curve of the single-cave model can be divided
into two stages. (I) The cave response stage. In the cave
response stage, the dimensionless rate integral curve and
the rate integral derivative curve overlap and form a line with
a slope of -1. The wellbore is then directly drilled in the dis-
solved cave, which is equivalent to an enlarged wellbore
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Figure 4: Vertical well rate transient analysis curve of single-cave and single-fracture model.
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Figure 5: Continued.
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and consistent with the wellbore storage effect. (II) The
boundary control flow stage. For the free flow of large iso-
lated caves, the pressure wave will quickly propagate to the
boundary. The dimensionless rate integral curve coincides
with the rate integral derivative curve and is also a straight
line with a slope of -1.

2.2. Single-Cave and Multiporosity Composite Model. When
large-scale caves are developed in carbonate reservoirs and
small-scale dissolved pores and fracture systems are evenly
distributed around the caves, then the permeability and stor-
age capacity of the matrix pores and fracture network around
the caves must be taken into consideration. In this case, the
simplified large-scale cave and multiple-porosity composite
model can be used for reservoir characterization.

2.2.1. Physical Model. Figure 9 shows the composite physical
model of single cave and multiple porosity. The oil well is
directly drilled in large-scale dissolved caves. The area
around the dissolved caves can be modeled as a single
medium, double medium, or multiple medium model
according to the characteristics of the small-scale pores, vugs
and fractures. The fractured-caved reservoir is considered as
a three-dimensional cylindrical composite model, in which
the large-scale dissolved caves are internal cylinders. The cyl-

inder height is h, the radius is RV, and the outside is multime-
dium and concentric with the cylinder. The fluid flow in
large-scale dissolved cave is considered to be free flow, while
that in the surrounded multiple-porosity model is considered
to be seepage flow. Figure 10 is a fluid flow schematic. The
surrounded improved matrix forms because of the develop-
ment of small-scale caves.

2.2.2. Establishment and Solution of the Mathematical Model.
The fluid flow capacity in large caves is extraordinarily strong
and therefore considered to be free flow, i.e., the fluid flow in
the caves produces truly little pressure drawdown. The
dimensionless partial differential equation describing the
composite model composed of large-scale caves and sur-
rounding formation is as follows (considering improved
matrix that develops small-scale caves):

∂2pfD
∂rD2 + 1

rD

∂pfD
∂rD

� 	
+ λim pimD − pfDð Þ = ωf

∂pfD
∂tD

,

ωim
∂pimD
∂tD

+ λim pimD − pfDð Þ = 0,

1 + RD
∂pfD
∂rD

����
rD=RD

= RD
2ωV

∂pfD
∂tD

����
rD=RD

,

qD
qDi
qDid

1E−2

1E+0

1E+2

1E+4

I

II

1E+6

1E+8

1E−4 1E−3 1E−2 1E−1 1E+0 1E+1
tD

q
D

, q
D

i, q
D

id

RD = 10 L1D = 0  WD = 0  L2D = 0 𝜔V = 1

Figure 8: Vertical well rate transient analysis curve of single-cave model.
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Figure 9: Single-cave and multimedium composite model.
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Figure 10: Single-cave and multimedium composite model.
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pfD rD=RD

�� = pwD = pvD,

∂pfD
∂rD

����
rD=reD

= 0,

pimDjt=0 = pfDjt=0 = pVDjt=0 = 0: ð5Þ

In the above equations, dimensionless quantities are
defined as follows:

pf ,im,VD rD, tDð Þ = kfh

1:842 × 10−3Bqμ pi − pf ,im,V r, tð Þ
 �
,

rD = r
rw

, reD = re
rw

, RD = R
rw

,

tD = 3:6kf t
ϕfCtf + ϕimCtimð Þμr2w

, ωf ,im,V = ϕf ,im,VCtf ,tim,tV
ϕfCtf + ϕimCtim + ϕVCtV

,

λim,v =
αimkim
kf

r2w: ð6Þ

The dimensionless Laplace space solution expression can
be written as Equation (7) by combining the above equations
and the Laplace transformation.

~pwD = Y1I0 RDσð Þ + K0 RDσð Þ
s Y3 − Y1Y2ð Þ , ð7Þ

where

Y1 =
K1 reDσð Þ
I1 reDσð Þ , Y2 = RDσI1 RDσð Þ − R2

DωVsI0 RDσð Þ,

Y3 = RDσK1 RDσð Þ + R2
DωVsK0 RDσð Þ,

σ =
ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s ωf +

λimωim
ωims + λim

� 	s
:

ð8Þ

Using the Duhamel principle, the Laplace solution of the
dimensionless bottomhole rate can be expressed as

~qD sð Þ = 1
s2~pwD sð Þ : ð9Þ

2.2.3. Analysis of Rate Transient Analysis Typical Curves and
the Influencing Factors. Similarly, we perform a numerical
inversion on the Laplace solution above. The dimensionless
oil well rate transient analysis curves form, as shown in
Figure 11.

As shown in Figure 11, the characteristic curve of the
composite model of a large-scale cave and multiple-porosity
model can be divided into six stages. (I) The large-scale dis-
solved cave response stage is equivalent to an enlarged “well-
bore,” showing the wellbore storage effect. The dimensionless
rate integral and rate integral derivative curves overlap into a
straight line with a slope of -1: (II) the fractured peripheral
multiple-porosity model linear flow and radial flow response
stages, mainly related to the fracture properties of the
multiple-porosity model; (III) the fluid flow from improved
matrix to fractures in the surrounding multiple media, the
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Figure 11: Oil well rate transient analysis curves of single-cave and multiple-porosity composite model.
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dimensionless rate integral derivative curve firstly appears
“concave”; (IV) the radial flow stage of the model; and (V)
the boundary control flow stage. The rate integral curve
and the rate integral derivative curve overlap in a line with
a slope of -1 for a closed boundary.

The sensitivity analysis of the influencing factors on the oil
well rate transient analysis curve of the single-cave and dual-
porosity composite model is carried out as shown in Figure 12.

As shown in Figure 12(a), with the larger radius RD of the
large central cave, the intersecting line of the dimensionless

rate integral and the rate integral derivative curve is close to
upward. The stage’s duration reflects the fact that the well-
bore storage effect is longer. Figure 12(b) shows that the effect
of ωV on the curve is similar to that of RD, but the effect of ωV
is relatively small.

If ωV = 0 and ωf = 0:8, the single-cave and dual-porosity
composite model can be simplified to a single-cave and
single-medium composite model. Figure 13 shows the oil
well rate transient analysis curves with a single cave and sin-
gle medium composite model.
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Figure 12: The influence of different parameters on the rate transient analysis curves: (a) the influence of RD on the rate transient analysis
curves; (b) the influence of ωV on the rate transient analysis curves; (c) the influence of reD on the rate transient analysis curves.
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3. Application of Type Curves and the
Evaluation Processes of Dynamic Parameters

3.1. Dynamic Evaluation Method and Processes. For the
above discretized simplified models of different fractured-
caved reservoirs developed in a large-scale single cave, the
specific evaluation method and dynamic matching process
of oil well and reservoir parameters are as follows:

(1) Obtain the oil well actual production data and calcu-
late the normalized production rate, rate integral, and
rate integral derivative curves [22, 23]. The specific
calculation method adopts Equations (10)–(13)

The equation for calculating the material balance pseudo-
time of the oil well:

td =
Np
q
: ð10Þ

The equation for calculating the normalized production
rate of the oil well:

qd =
q
Δp

= q
pi − pwf

: ð11Þ

Yes

Start

Model selection based on field cave characterized 

geological model and curve characteristics

The initial matching of the field curve 

and the selected model type curves

Redetermine the dimensionless parameters and

recalculate the matching type curves. Then, match the

actual curves again based on the present matching

No
Match well?

Calculate the dimension value of each 

parameter based on the formulae

Calculate parameters such as original oil in place based on 
the corresponding cave parameters, fracture parameters, and 

multiporosity parameters

End

Figure 14: Flow chart of large-scale simplified model diagram
matching.
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Figure 15: W well production dynamic curve: (a) daily oil
production; (b) bottomhole pressure.

Table 1: Basic data of W oil well.

Initial formation pressure (MPa) 64

Formation temperature (K) 424.45

Effective formation thickness (m) 19

Irreducible water saturation (%) 20

Porosity (%) 40

Well radius (m) 0.086

Rock compressibility (10−4MPa−1) 1.16

Crude oil density (kg/m3) 783.7

Crude oil saturation pressure (MPa) 14.6

Crude oil viscosity (mPa·s) 1.5345

Crude oil volume factor (m3/m3) 1.176

Crude oil compression factor (10-4MPa-1) 7.39
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The equation for calculating the integral of normalized
production rate for an oil well:

qdi =
1
td

ðtd
0
qddτ: ð12Þ

The equation for calculating the integral derivative of
normalized oil well production rate:

qdid = td
dqdi
dtd

: ð13Þ

(2) In accordance with the initial static reservoir charac-
terization model and the characteristics of the actual
oil well production curve, a reasonable single-cave
simplified model was initially selected

(3) In accordance with the initial static reservoir charac-
terization model and the known dynamic and static
description data, preliminary dimensionless parame-
ters, such as large-scale dissolved caves and large
fractures were assigned, and the dimensionless curves
were initially matched with the field normalized
curves

(4) We adjust the dimensionless parameters of large-
scale dissolved caves, large fractures, or multiple
porosity according to the initial matching and the

analysis of the influence of various factors on the
curve. We also recalculate the dimensionless curves.
In addition, the normalized production rate curve is
moved to fit the well actual curve and to record the
given dimensionless cave parameters, fracture
parameters, or multiple-porosity model parameters.
We obtain the actual reservoir parameters through
the following specific equations

kF =
μB

86:4rw
qd
qD

� 	
M

,

rwa =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:6kF
μ ϕFCtF + ϕVCtVð Þ

td
tD

� 	
M

s
,

LF = LDrwa,
re = reDrwa,

R = RDrwa
π/18ð Þ1/3 :

ð14Þ

For the series model:

N = 4
3πR

3ϕV 1 − Swcð Þ + LFLF2WFϕF 1 − Swcð Þ: ð15Þ

For the composite model:

N = 1
Ct

td
tDd

� 	
qd
qDd

� 	
+ πR2hϕV 1 − Swcð Þ: ð16Þ

Since we did not normalize the boundary control flow for
the oil well rate transient analysis chart of the simplified dis-
crete multiscale model (where seepage-free flow coupling is
considered), we therefore have to comprehensively evaluate
the initial static characterization model of the fractured-
caved reservoir (i.e., basic oil well-setting data, seismic data,
well logging data, and other dynamic and static data) to
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Figure 16: Matching results.

Table 2: Basic data of W oil well.

Fracture conductivity (mD·cm) 1427.3

Cave radius (m) 90

Oil well dynamic reserves (106m3) 1.12

Fracture storativity ratio 0.2

Dissolved cave storativity ratio 0.8

Fracture length (m) 100
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obtain more accurate reservoir parameters and oil well
parameters in the final fitting.

3.2. Programming of Dynamic Evaluation Method. We use
C# to compile a program to evaluate the corresponding res-
ervoir parameters and oil well parameters in the discrete,
simplified, and large-scale dissolved caved reservoir. The
program includes four modules: crude oil and formation
water physical parameter definition module, oil well produc-
tion data input and analysis module, fitting model selection
module, and specific matching module. The fitting model
selection module can determine the number of large-scale
fractures and caves and the contact relationship according
to the known parameters. Then, the appropriate fitting
model can be selected (Figure 14).

4. The Application of Conventional Type
Curves in Simplified Large-Scale Discrete
Fracture-Cave Model

We perform the dynamic evaluation of reservoir parameters
using the W oil well of a fractured-caved reservoir in the
Halahatang fractured-caved carbonate oilfield in Tarim
Basin as a case study. Figure 15 shows the production curve
of well W with high oil pressure, stable pressure, and stable
production.

Based on the regular curve and static characterization
model of well W, we can conclude that the well is indirectly
connected to large caves through fractures. It is located on
the west slope of a low uplift to the south of the uplift in
the north of Tarim Basin. The productive zone is Ordovician
and lies at a vertical depth of 6579m. According to the cur-
rent analysis, it can be simplified as a series model with a sin-
gle cave and a single fracture, and this model can be used for
fitting. Table 1 shows the basic data of the W well. The final
matching results are shown in Figure 16, and the parameters
obtained by matching are shown in Table 2.

The dynamic controlled reserves of this well calculated by
the material balance method are 1:14 × 106 m3, and the gap
between this result and the result calculated by the method
proposed in this article is relatively small. The type curve
matching method can also accurately determine other caved
parameters, large fracture parameters, and multiple sur-
rounding porosity model parameters. If we consider the free
flow of the cave, the result is more accurate. Through charac-
terization of all wells in the Halahatang fractured-caved car-
bonate oilfield, we found that the single well dynamic
reserves are mostly around 0:1 × 106 m3~1 × 106 m3, the per-
meability is mostly around 1mD~100mD (Figure 17), and

the skin factor is mostly less than 0 (Figure 18). An accurate
understanding of the scale of reserves and of reservoir
parameters can further guide reservoir development.

5. Conclusion

(1) For fractured-caved reservoirs with large-scale single
dissolved cave, we propose simplified models for two
large-cave models—a beaded model composed of
caves and large fractures and a composite model
composed of caves and surrounding reservoirs

(2) The large-scale discrete fractured-caved reservoir is
simplified. According to the static fractured-caved
characterization, the scale of fractures and caves
and the contact connection relationship can be
obtained. Then, the reservoir can be simplified into
different single-cave combinations. Free flow is con-
sidered in large-scale dissolved caves, and seepage is
considered in large fractures and surrounding reser-
voirs. The corresponding simplified model is estab-
lished, and the mathematical model considering the
coupling of seepage and free flow is solved analyti-
cally. The rate transient analysis typical curves of
the oil well are obtained. A systematic theory and
method are formed for the dynamic evaluation of res-
ervoir parameters and oil well parameters

(3) By matching the oil well actual dynamic production
data in a fractured-caved reservoir with the typical
rate transient analysis type curves, parameters such
as equivalent radius, fracture permeability, and the
multiple-porosity model storage capacity ratio of
each cave can be calculated. Finally, the dynamic con-
trolled reserves of the different single-cave reservoirs
can be determined. These results provide parameters
for rational development of the fractured-caved
reservoir
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Figure 17: Histogram of single-well permeability evaluation results in Halahatang Oilfield.
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Nomenclature

x1,2: Distance to the coordinate origin (m)
x: Distance from an arbitrary point to the coor-

dinate origin (m)
R: Karst cave radius
L1: Fracture length (m)
W: Fracture width (m)
L2: Fracture height (m)
rw: Well radius (m)
pF : Formation pressure in the large scale fracture

at a specific time (MPa)
pV : Formation pressure in karst cave at a specific

time (MPa)
ωF : Elastic storativity ratio of the large scale

fracture
t: Production time (h)
ωV : Elastic storativity ratio of karst cave
pw: Bottomhole pressure (MPa)
kF : Large scale fracture permeability (μm2)
q: Well production rate (m3/d)
B: Oil formation volume factor (m3/m3)
μ: Oil viscosity (mPa·s)
ϕF : Large scale fracture porosity (decimal)
ϕV : Karst cave porosity (decimal)
CtF : Total compressibility coefficient of large scale

fractures (MPa−1)
CtV : Total compressibility coefficient of karst caves

(MPa−1)
pf : Formation pressure in the surrounded frac-

ture at a specific time (MPa)
λim: Interporosity flow coefficient from improved

matrix to fractures (decimal)
pim: Formation pressure in the surrounded

improved matrix at a specific time (MPa)
ωf : Elastic storability ratio of the surrounded

fracture
ωim: Elastic storability ratio of the surrounded

improved matrix
re: Drainage radius (m)
kf : Fracture permeability (μm2)
h: Thickness of the reservoir (m)
pi: Initial reservoir pressure (MPa)
ϕf : Fracture porosity (decimal)
Ctf : Total compressibility coefficient of fractures

(MPa−1)
ϕim: Improved matrix porosity (decimal)
Ctim: Total compressibility coefficient of improved

matrix (MPa−1)
αim: Interflow shape factor (decimal)
kim: Improved matrix permeability (μm2)
s: Laplace variable
I0, K0, I1, K1: Bessel function
qD: Normalized production rate (m3/d/MPa)
qDi: Normalized production rate integral

(m3/d/MPa)
qDid: Normalized production rate integral deriva-

tive (m3/d/MPa)
td: Material balance pseudotime (d)

pwf : Well field bottomhole pressure (MPa)
Np: Well cumulative production (m3)
rwa: Efficient well radius (m)
N : Well dynamic controlled reserves (m3)
Swc: Irreducible water saturation (decimal).

Subscript

D: Dimensionless
V: Large scale caves
F: Large scale fractures
im: Improved matrix
f: Homogeneous fractures.
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Classical decline methods, such as Arps yield decline curve analysis, have advantages of simple principles and convenient
applications, and they are widely used for yield decline analysis. However, for carbonate reservoirs with high initial production,
rapid decline, and large production fluctuations, with most wells having no stable production period, the adaptability of
traditional decline methods is inadequate. Hence, there is an urgent need to develop a new decline analysis method. Although
machine learning methods based on multiple regression and deep learning have been applied to unconventional oil reservoirs in
recent years, their application effects have been unsatisfactory. For example, prediction errors based on multiple regression
machine learning methods are relatively large, and deep learning sample requirements and the actual conditions of reservoir
management do not match. In this study, a new equal probability gene expression programming (EP-GEP) method was
developed to overcome the shortcomings of the conventional Arps decline model in the production decline analysis of
carbonate reservoirs. Through model validation and comparative analysis of prediction effects, it was proven that the EP-GEP
model exhibited good prediction accuracy, and the average relative error was significantly smaller than those of the traditional
Arps model and existing machine learning methods. The successful application of the proposed method in the production
decline analysis of carbonate reservoirs is expected to provide a new decline analysis tool for field reservoir engineers.

1. Introduction

There are three main stages in the complete production
cycle of oil and gas wells: production rise, stability, and
decline. During the production decline stage, the selection
of the decline model has a significant impact on the pre-
diction of production dynamics and the evaluation of the
final recovery factor [1, 2]. The advantages of classical
methods, such as the Arps production decline curve anal-
ysis, are that their principle is simple and easy to apply,
and various explicit expressions can be derived. The
derived expressions can predict future dynamic produc-
tion and recoverable reserves of oil and gas reservoirs
in a pseudo-steady state. The disadvantage of the tradi-
tional methods [3–8] is that the selection of the decline
model depends on experience; the dependent variable is

single, and it is difficult to describe the nonlinear rela-
tionship of the production change precisely. For example,
the storage and control model of carbonate reservoirs is
different from that of clastic rocks. Reservoirs have devel-
oped matrix, fractures, caverns, and other storage spaces,
poor connectivity, strong heterogeneity, high initial pro-
duction wells, rapid decline, and large production fluctu-
ations. Most reservoir wells have no stable production
period and need to be evaluated to determine a set of
production prediction methods suitable for carbonate res-
ervoirs. Therefore, new modeling methods need to be
developed and applied to predict the production of car-
bonate reservoirs accurately. Currently, machine learning
is increasingly applied in several industries, and some
exploratory application cases in the petroleum industry
have been investigated [9–11].
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In recent years, the production decline methods based on
multiple regression machine learning, such as artificial neural
networks, support vector regression, random forests, and
gradient enhancement, are gradually replacing traditional
data analysis methods [12–17]. However, existing machine
learning methods based on multiple regression produce large
prediction errors in oil well production decline analysis.

In addition, deep learning methods, such as recurrent
neural networks, have been applied for production decline
analysis [18, 19]. However, the deep learning method is most
suitable for high-frequency (such as daily) production data,
owing to the characteristics of its network structure. This sig-
nificantly limits the application of the deep learning method
because most production data exist in the form of monthly
records. Although deep learning methods can be designed
to process monthly data, they also require complex network
structures for processing temporal and nontemporal data.
Compared to regression-based machine learning methods,
reservoir engineers have difficulty using deep learning
methods [20]. Because of the problems mentioned above
and the lack of application of machine learning in the analy-
sis of carbonate reservoir decline, the machine learning
method of gene expression programming (GEP) was used
in this study to analyze the production decline of carbonate
reservoirs.

GEP is based on the genetic algorithm (GA) and genetic
programming (GP). It exhibits excellent performance in
knowledge mining, function discovery, optimization, and
prediction [21]. GEP is a machine learning modeling tool
that can be used to establish an explicit model with a simple
structure and high prediction accuracy through evolution
without knowing the structure and parameters of the model
in advance and without having to have the domain back-
ground knowledge and thus avoids the mechanism analysis
of the system. There is difficulty in establishing a predictive
model and the preset model structure based on regression
methods, and the subjectivity of parameters is then deter-
mined using statistical methods [22]. The GEP method has
been successfully applied in many disciplines and fields
[23–26]. However, the use of GEP to predict the production
of carbonate reservoirs has not been reported. Therefore, it
is necessary to model the GEP machine learning method
and predictive effects to conduct more in-depth research.

2. Equal Probability GEP Algorithm

GEP combines the advantages of GA and GP. In terms of
expression, it inherits the simple and rapid characteristics
of the fixed-length linear coding of GA, and in terms of gene
expression (semantic expression), it inherits the flexible tree
structure of GP. The change characteristics, i.e., simple cod-
ing to solve complex problems, are 2–4 times faster than tra-
ditional machine learning evolutionary algorithms [22].

However, the knowledge mining process of GEP is pas-
sive and can easily fall into a local optimum. Undirected evo-
lution and premature convergence reduce the efficiency and
quality of the solution. Hence, it is necessary to guide the evo-
lution process of the gene population and adopt specific
methods to prevent the solution process from falling into

the local optimum. The equal probability GEP (EP-GEP)
method developed in this study can effectively solve the prob-
lem of evolutionary undirected and premature local conver-
gence and improve the convergence efficiency and solution
quality of the algorithm.

The EP-GEP optimization calculation process is per-
formed as follows. Randomly generate a specific number
of chromosomal individuals to form the initial population.
Produce the candidate set from the outstanding individ-
uals in the initial population. Select the best adaptation
for the individuals in the population according to the
decline analysis of the carbonate oil well production. Next,
based on the fitness function, evaluate the responsiveness
of each individual in the population. Select, mutate, insert,
recombine, and perform other genetic operations on the
individuals in the population to produce new offspring
and form a new population. The newly generated popula-
tion continues to enter the next round of the optimization
process. If premature local convergence occurs in this pro-
cess summary, enter the calculation process of the equal
probability gene expression optimization and perform
genetic operations, such as equal probability selection,
mutation, string insertion, and recombination, on individ-
uals in the population (the three with equal probability in
Figure 1, for example). New offspring are produced to
form a new population, and the newly generated popula-
tion and candidate set continue to enter the next round
of optimization calculations. Subsequently, repeat the opti-
mization calculation process until the iteration termination
condition is satisfied. A flowchart of the optimization pro-
cess is depicted in Figure 1.

Because the EP-GEP algorithm is based on traditional
GEP, the gene structure, genetic operator, and fitness func-
tion are the same as those of the GEP algorithm described
in Sections 2.1–2.3.

2.1. Gene Structure. The object of EP-GEP processing is a
chromosome (genome) composed of a single gene or mul-
tiple genes. The gene in EP-GEP is based on a simplifica-
tion of the principle of genes in biology. It consists of a
linear, fixed-length string of symbols. Although the chro-
mosome length is fixed, expression trees (ETs) of different
sizes and shapes can be expressed to generate diverse indi-
viduals. An example is the following algebraic expression:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + bð Þ × c + dð Þ

p
: ð1Þ

The corresponding expression tree, i.e., the individual’s
phenotype, is shown in Figure 2, where Q is the square
root function. From top to bottom and from left to right,
the expression tree can be traversed to obtain the corre-
sponding K expression.

From Figure 2, the K expression expressed in equation
(2) can be obtained, which is the genotype in GEP.

0 1 2 3 4 5 6 7
q ∗ + + a b c d

: ð2Þ
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EP-GEP divides genes into the head and the tail. The
gene head can be composed of variables or functions, but
the gene tail can only be composed of variables. The head
length and tail length t satisfy the following equation:

t = h × n − 1ð Þ + 1, ð3Þ

where n denotes all functions in the function set.

2.2. Genetic Operator. EP-GEP creates an initial population
in the algorithm, and each chromosome in the population
represents a solution to the problem. Subsequently, a series
of genetic operations are performed to generate new indi-
viduals with high adaptability to obtain a better solution.
The basic genetic operators of GEP include nine types,
i.e., selection, mutation, inverted string, string insertion,
root string insertion, gene transformation, single-point

recombination, two-point recombination, and gene recom-
bination [21].

2.3. Fitness Function. The environmental adaptability of
newly generated chromosomes should be evaluated to
obtain the best solution. Similar to other machine learn-
ing evolutionary algorithms, the size of the fitness func-
tion value (i.e., fitness) is used in EP-GEP to evaluate
chromosome quality. Sometimes, a suitable fitness func-
tion can be customized according to the problem to be
solved.

The selection of the fitness function must be combined
with specific practical problems. Choosing different fitness
functions may cause the range of fitness functions such as
variance, standard deviation, and root mean square error
(RMSE) to vary significantly.

Combined with the problem of analysis of production
decline in carbonate oil wells, the aim of the analysis is to
solve sign regression. Fitness functions widely used to solve
this problem are the mean square error, RMSE, and mean
absolute error [27]. A minimum value was required. When
the difference between the predicted and actual values is zero,
then the ideal minimum value is zero [18]. In this study, the
RMSE was obtained using the fitness function expressed in
the following equation:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
〠
m

j=1
yj − ŷ j

� �vuut : ð4Þ

Initialization population

Initialize candidate set

Expression chromosome

Perform the chromosome
program 

Evaluation of fitness

Meet
termination
conditions ?

End

Premature
convergence ?

Evolution of next generation
population

Recombination

Transposition

Variation

Choice

Evolutionary population

Recombination

Transposition

Variation

Choice

Variation Variation

Evolutionary candidate set

Transposition Transposition

Recombination Recombination

Iteration
restart 

Y

N

Y

N

Equal
probability
genetic
operation and
evolution

Figure 1: Flowchart of EP-GEP.

Q

⁎ 

+ +

a b c d

Figure 2: Expression tree corresponding to expression (1).

3Geofluids



2.4. Decline Analysis Data Set. The North Akar Oilfield in
Kazakhstan is a carbonate oil reservoir with reservoir spaces,
such as matrix, fractures, and karst caves. The reservoirs have

weak connectivity and strong heterogeneity. Production
wells rely on natural energy extraction and exhibit high
initial production, rapid decline, and large production

Table 1: Experimental parameters of EP-GEP.

Parameter Value Parameter Value

Population size 50 Length of head 8

Gene number 5 Mutation rate 0.00546

Recombination rate 0.00277 One-point recombination rate 0.00277

Two-point recombination rate 0.00277 Transposition rate 0.00277

Root insertion sequence (RIS) transposition rate 0.00546 Insertion sequence (IS) transposition rate 0.00546

Link function Avg2 Fitness function RMSE
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Figure 4: Comparison of actual oil production and EP-GEP fitting value.
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fluctuations, and most wells have no stable production
period. In this study, Well A2 with typical production
characteristics was selected for the GEP method adaptabil-
ity analysis.

3. Results and Analysis

3.1. EP-GEP Time Series Model Training. The first 175 data
sets from 284 sets of Well A2 were used for the EP-GEP time
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Figure 5: Phenotype frame diagram after training optimization.
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series training. The experimental parameters are listed in
Table 1. Groups 176–284 were used as verification and pre-
diction data sets.

The R2 value of the model after training was 0.9084
(Figure 3). After the EP-GEP model training, a comparison
between the fitted values and the actual oil production values
was performed (Figure 4).

The optimized phenotype frame is composed of five sub-
ETs (Figure 5).

3.2. EP-GEP Model Verification and Prediction. The trained
EP-GEP model was used to predict the verification/predic-
tion data set. The model was compared with other decline
methods, such as hyperbolic decline, exponential decline,
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harmonic decline, and modified hyperbolic decline, to ana-
lyze the decline of the Well A2 production curve. The decline
equation was used to predict the verification/prediction data
set. In addition, the forecasting results obtained using other
time series forecasting methods, e.g., the autoregressive mov-
ing average (ARMA), autoregressive integrated moving aver-
age (ARIMA), and those using neural network machine
learning methods, e.g., the recurrent neural network
(RNN), were compared.

Among the four Arps declining prediction models, the
harmonic declining model showed the largest error, followed
by the exponential and modified hyperbolic declining models
(Figure 6). The hyperbolic declining model had the smallest
error, but there was a large error with the verification/predic-
tion data set.

The R2 value after the ARMA model training was
0.8910 (Figure 7), which was more consistent with the
change in the actual production data from 175 to 230
months. The trend continued from 230 to 280 months
but was slightly different from the verification/prediction
data set. The R2 value after the ARIMA model training
was 0.8963, but the prediction result did not exhibit a sig-
nificant upward or downward trend, and the error with
the verification/prediction data set was also large. The
RNN model showed a good training effect on the training
set; its R2 value was 0.9081, but the prediction result
showed a large error, indicating that the method had poor
adaptability to small sample data sets.

Overall, the model established using the EP-GEP method
performed better than the traditional decline analysis,
ARMA/ARIMA time series, RNN, and other neural network
machine learning models. The average error of the EP-GEP
prediction model was 3.69%.

3.3. Verification of EP-GEP Machine Learning Validity. The
description above only showed the validity of the EP-GEP
model for the analysis of oil well production decline. The
validity of the EP-GEP algorithm was verified for the other
five wells in the study area (Table 2). The results showed that
the overall prediction effect of the EP-GEP algorithm was
better than that of other time series machine learning
methods.

4. Conclusion

(1) In this study, GEP methods were developed to
address the shortcomings of conventional Arps

decline models in analyzing the production decline
of carbonate reservoirs. The comparative analysis of
model validity and prediction demonstrated that the
EP-GEP model exhibited good prediction accuracy,
and the average relative error was smaller than those
of the traditional Arps models

(2) The results of multiple oil well production decline
analyses showed that the EP-GEP machine learning
algorithm yielded higher prediction accuracy and
provided better stability than those of other time
series machine learning methods. The proposed algo-
rithm can provide on-site reservoir engineers with
new reservoir management analysis tools

Nomenclature

Avg2: Average of two inputs, avgðx, yÞ
Max2: Maximum of two inputs, max ðx, yÞ
Min2: Minimum of two inputs, min ðx, yÞ
Neg: Negative value of one input, −x
3Rt: Cube root of one input, x1/3

Ln: Natural logarithm of one input, ln ðxÞ
Sqrt: Square root of one input, sqrtðxÞ.
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Gas injection processes are among the effective methods for enhanced oil recovery. Miscible and/or near miscible gas injection
processes are among the most widely used enhanced oil recovery techniques. The successful design and implementation of a
miscible gas injection project are dependent upon the accurate determination of minimum miscibility pressure (MMP), the
pressure above which the displacement process becomes multiple-contact miscible. This paper presents a method to get the
characteristic curve of multiple-contact. The curve can illustrate the character in the miscible and/or near miscible gas injection
processes. Based on the curve, we suggest a new model to make an accurate prediction for CO2-oil MMP. Unlike the method of
characteristic (MOC) theory and the mixing-cell method, which have to find the key tie lines, our method removes the need to
locate the key tie lines that in many cases is hard to find a unique set. Moreover, unlike the traditional correlation, our method
considers the influence of multiple-contact. The new model combines the multiple-contact process with the main factors
(reservoir temperature, oil composition) affecting CO2-oil MMP. This makes it is more practical than the MOC and mixing-cell
method, and more accurate than traditional correlation. The method proposed in this paper is used to predict CO2-oil MMP of
5 samples of crude oil in China. The samples come from different oil fields, and the injected gas is pure CO2. The prediction
results show that, compared with the slim-tube experiment method, the prediction error of this method for CO2-oil MMP is
within 2%.

1. Introduction

Gas injection processes are among the effective methods for
enhanced oil recovery [1–5]. In recent years, CO2 injection
has attracted the most attention because it not only reduces
the greenhouse effect caused by CO2 emissions but also
greatly improves oil recovery. This is a win-win approach
[5, 6]. A key parameter in the design of the CO2 injection
project is the MMP, whereas local displacement efficiency
from the gas injection is highly dependent on the MMP [7,
8]. There are many different methods to determined MMP
[9]. The commonly used prediction methods of MMP can
be divided into empirical formula methods, experiment
methods, and calculation methods [4, 10].

The usual empirical formulas are the NPCmethod, John-
son and Pollin correlation, and Yelling and Metcalfe correla-
tion [11–13]. There is almost no need for calculation

resources when applying empirical formulas, which is quite
convenient for the initial evaluation of oil reservoirs. How-
ever, due to the limited scope of application of the empirical
formula, it is necessary to carefully select the appropriate for-
mula for different reservoir conditions.

At present, the main experimental methods include the
bubble rising method, surface tension method, and slim-
tube experiment [14–16]. During the experiment methods,
the method that best accords with the field practice is to
perform slim-tube displacement. Slim-tube test is the indus-
try standard for measuring the MMP [17]; a key disadvan-
tage is that there is no standard designed for the
experimental set-up or operation, and difference may exist
in experimental set-up or operation from one laboratory
to next slim-tube test. Besides, the significant disadvantage
of the thin tube experiment is that it is time-consuming.
For practical reservoir suitability evaluation, it is impractical
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to carry out slim-tube tests on all oil samples. Therefore, it
is necessary to carry out calculation and simulation
methods to predict MMP.

As for the calculation methods, more and more methods
have been proposed in recent years to calculate MMP for real
systems. There are mainly the following ways: methods-
based correlation [18–20], compositional simulation,
mixing-cell models and analytical models [17, 21–23], and
artificial neural network method [10, 24, 25]. Each of these
methods, however, has advantages and disadvantages. Fine-
grid compositional simulations can suffer from numerical
dispersion effects, and in compositional simulations, the
number of pseudocomponents is usually much less than the
crude oil, which can lead to the difference of phase behaviors.
Analytical method of characteristic (MOC) considers the
process of multiple-contact, and the approach for calculating
MMP has been demonstrated clearly by Yun and Ahmadi
[18, 26]. The validity of the model has been confirmed
repeatedly. However, equations of crossover tie lines are a
set of nonlinear equations and possible converged to a wrong
set of tie lines. One method has been suggested to simplify
the method of finding the key crossover tie lines for a
dispersion-free displacement using the method of character-
istic theory (MOC) [9]. But the system of equations is under-
determined because the number of unknowns exceeds the
number of equations [9], which can also easily lead to a
wrong set of tie lines. For the multiple mixing-cell methods
[26], calculated for each cell the slope of the tie-line length
as the function of cell number, a key line is developed when
three successive cells have a slope of zero. However, when
using this method, we found in many cases that the related

The first contact GAS +OIL

The second contact GAS +X1 Y1 + OIL

The third contact GAS+ X21 Y21+ X22 Y22+ OIL

The fourth contact GAS+ X31 Y31+ X32 Y32+ X33 Y33+ OIL

GAS+ X Y+ X Y +X Y +X Y+ OIL

GAS+ X Y +X Y +X Y +X Y +X Y+ OIL

GAS+ X Y +X Y +X Y +X Y +X Y +X Y +OIL

N´s contact……

Figure 1: Mixing-cell processes.
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Figure 2: Equilibrium composition of N contact.
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Figure 3: Characteristic curve of multiple-contact. The injection gas
is 1%CO2+99%CH4.
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Figure 4: Characteristic curve of multiple-contact. The injection gas
is 5%CO2+95%CH4.
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cells which satisfied these conditions cannot be obtained, and
so the key tie lines cannot be found and the MMP cannot be
determined. For the neural network method, the calculation
speed is fast, and the reservoir can be screened on a large
scale. However, due to the limitation of insufficient experi-
mental data, the trained neural network is prone to overfit-
ting, leading to insufficient generalization ability, and the
error in actual use is often too large.

This paper suggests a new correlation for CO2-oil MMP.
Unlike most of the traditional correlation, the model just
considers some key factors (such as reservoir temperature,
oil composition) affecting CO2-oil MMP. Besides, the model
also considers the influence of the multiple-contact process.
Based on multiple mixing-cell methods [26], we do not have
to find the key tie lines (which in many cases cannot be
found). We just use the minimum value of the characteristic
curve of multiple-contact, after which a correlation from the
change of the minimum value is obtained, and thus, the
MMP is determined. This makes our new model to have both
the advantage of correlation and multiple-contact so that
more stable and accurate results can be obtained.

2. Method

2.1. Characteristic Curve of Multiple-Contact. To get the
characteristic curve of multiple-contact, we still use the fol-
lowing mixing-cell processes [26] (see Figure 1).

At a fixed temperature and pressure, the injection GAS
and OIL are mixed in a mole fraction, such as 1 : 1; this is

the first contact. Thus, a flash can be performed, and this
results in two equilibrium compositions, one for liquid X1
and one for vapor Y1. For the second contact, GAS and X1
are mixed. Meanwhile, Y1 and OIL are mixed. Each of them
can perform a flash and result in X21, Y21, X22, and Y22. For
the third contact, analogously, GAS and X21, Y21 and X22, Y22,
and OIL are mixed.

According to the process, when the N contact (see
Figure 2) will result in N × 2 equilibrium composition, the
equilibrium composition can be described as Xn, Yn. The n
is from 1 to N .

For the equilibrium composition Xn, Yn, if the crude oil
has been divided into K components, then the liquid phase
mole fraction of component can be described as Xn

kðk = 1
⋯ KÞ. The vapor phase mole fraction of component can be
described as Yn

kðk = 1⋯ KÞ. Next, we calculate f ðnÞ accord-
ing to Equation (1).

f nð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〠
K

1
XK
n

� �2 − YK
n

� �2
� �

s

, ð1Þ

where Xk
n is the vapor phase mole fraction. Yn

k is the liquid
phase mole fraction.

Then we draw a f ðnÞ-n curve (n = 1⋯N); here, we
defined this curve as the characteristic curve of multiple-
contact.

2.2. Character of Characteristic Curve of Multiple-Contact.
Here, we use the following example to illustrate how our
characteristic curve of multiple-contact reflects the influence
of injection gas.

For a sample of crude oil, at a given pressure and temper-
ature, the injection gas is 1%CO2+99%CH4, and the charac-
teristic curve of multiple-contact is shown in Figure 3.
Figure 3 shows that the minimum value is located on the
right side of the curve, and the change of the curve between
the minimum value and the right endpoint is gentle.
Although the left side of the curve decreases as the increase
of n, it is always higher than the right side of the curve. This
reflects that MMP is determined by the composition of the
oil, and the miscibility is more likely a vaporizing drive
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Figure 5: Characteristic curve of multiple-contact. The injection gas
is 9%CO2+91%CH4.
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Figure 6: Characteristic curve of multiple-contact. The injection gas
is 20%CO2+80%CH4.
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Figure 7: Characteristic curve of multiple-contact. The injection gas
is 30%CO2+70%CH4.
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process. From the point of MOC, in this case, MMP is deter-
mined by the initial tie line.

By increasing CO2 concentration in the injected gas
(changing the inject gas to 5%CO2+95%CH4), the character-
istic curve of multiple-contact is shown in Figure 4, in which
the curve is closed in Figure 3. The miscibility is still a vapor-

izing drive process, and MMP is still determined by the com-
position of the oil.

By changing the inject gas to 9%CO2+91%CH4, we can
see a significant change in the characteristic curve of
multiple-contact (Figure 5). This means the increase of CO2
produces an obvious influence on the MMP. The miscibility
has become a combined condensing and vaporizing displace-
ment. From the point of MOC, in this case, the MMP is
determined by crossover tie lines.

By changing the inject gas to 20%CO2+80%CH4, the char-
acteristic curve of multiple-contact is shown in Figure 6. The
miscibility is still a combined condensing and vaporizing dis-
placement, the minimum value moves leftward, this means

0.0
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Figure 8: Characteristic curve of multiple-contact under different injection gas conditions.

Table 1: Fluid character of oil A.

Components Mole fraction (%) Pc (atm) Tc (K) ω

CO2 0.343 72.8 304.2 0.225

N2 1.971 33.5 126.2 0.04

C1 16.739 45.4 190.6 0.008

C2 5.901 48.2 305.4 0.098

C3 3.843 41.9 369.8 0.152

IC4 20.401 36 408.1 0.176

NC4 1.295 37.5 425.2 0.193

IC5 1.769 33.4 460.4 0.227

NC5 0.604 33.3 469.6 0.251

C6 1.576 30.473 546.686 0.296

C7+ 45.56 24.2231 637.54 0.414698
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Figure 9: Characteristic curve of multiple-contact.
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Figure 10: Minimum value decreases as the pressure increases.

Table 2: The predicted results of five samples.

Oil
Minimum value of
character curve

Prediction of minimum
value by Equation (2)

Predicted
MMP

A 0.195136 0.201558 22.3

B 0.1867 0.190520 21.9

C 0.2129 0.206915 28

D 0.2038 0.206915 20.1

E 0.1341 0.136969 19.55
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the inject gas caused more influence to the MMP, and in all
this case, the MMP is determined by crossover tie lines.

By changing the inject gas to 30%CO2+70%CH4, the char-
acteristic curve of multiple-contact is shown in Figure 7. The
minimum value continues to decrease, but the number of con-
tacts does not change significantly.

Then the mole percentage of CO2 continues to
increase to 100%, and the curve does not change much.

But the minimum value becomes lower as CO2 increases,
as shown in Figure 8. This shows that MMP becomes
lower as CO2 increases.

2.3. MMP Predicted Method-Based Characteristic Curve of
Multiple-Contact. In our paper, MMP prediction can be
completed by the following method: Specify the reservoir
temperature and pressure that is well below the MMP, get
the characteristic curve of multiple-contact by the method
described in the last, and find the minimum value, normally
the value is above zero. Increase the pressure by a step, find
the minimum value, repeat the step, and we can see the
decrease of minimum value as the increase of pressure. From
our calculation, and compared to the result of slim-tube, we
find for most of the case, as the pressure reaches MMP, the
minimum value of characteristic curve is below 0.23, and
there is a change in a small scope (0.23-0.13). In fact, from
the definition of f ðnÞ, we can see it has a similar meaning
as the tie line, so, naturally, the minimum value of f ðnÞ will
decrease as the pressure increases. However, it does not
reach zero. This can also be shown in multiple mixing-cell
methods [26], only by power-law extrapolation, a zero-
length tie line can be acquired, the minimum value is just
near zero, and the extrapolation can also lead to the error
of prediction. We find the main factor affecting the mini-
mum value resembles the factor for the MMP, which is res-
ervoir temperature and oil composition. By comparing with
the result of slim-tube, we get a correlation, which is shown
in Equation (2).

Vmin = −0:0017ð Þ × T + 0:0057ð Þ × C7−15 + −0:0174ð Þ
× C16−26 + 0:0405ð Þ × C27+,

where Vmin is the minimum value. T is reservoir tempera-
ture. C7−15 is mole fraction. C16−26 is mole fraction. C27+ is
mole fraction.

Using Equation (2), we predict the minimum value of the
characteristic curve of multiple-contact. If the value is below
0.23, we think the components system can become miscible,
and then we calculate the characteristic curve of multiple-
contact. When we increase the pressure, the minimum value
will decrease, as it becomes smaller than the value calculating
by Equation (2), the tolerance should be in 0.01, and then the
related pressure is MMP.

3. Case Study

3.1. Example for MMP Predicted. The fluid character of oil
A is shown in Table 1. When the inject gas is pure CO2,
at temperature 98.9°C, pressure 10MPa, after 50 numbers

Table 3: The molar composition of oil samples A-E.

Sample A Sample B Sample C Sample D Sample E

CO2 0.34 0.83 0.00 0.02 0.25

N2 1.97 0.76 0.36 1.33 3.71

C1 16.74 30.12 30.27 10.79 53.52

C2 5.90 5.94 2.39 3.39 3.11

C3 3.84 2.32 0.74 2.53 0.72

IC4 20.40 0.88 0.08 1.02 0.28

NC4 1.30 0.74 0.26 0.96 0.22

IC5 1.77 2.77 2.09 3.43 0.12

NC5 0.60 1.97 1.54 2.44 1.36

C6 1.58 3.56 3.49 4.71 2.07

C7 0.13 5.13 5.28 7.19 3.50

C8 0.06 5.76 6.25 7.74 4.20

C9 1.32 4.75 5.23 6.55 3.75

C10 2.24 4.04 4.52 5.43 3.82

C11 2.50 3.03 3.36 3.97 2.12

C12 4.18 4.17 4.71 5.53 2.98

C13 3.07 2.91 3.20 3.65 1.98

C14 3.07 2.69 3.09 3.43 1.78

C15 2.18 1.94 2.18 2.36 1.24

C16 2.59 2.35 2.88 3.17 1.56

C17 2.38 1.95 2.39 2.61 1.29

C18 1.95 1.20 1.57 1.54 0.80

C19 1.59 0.86 1.18 1.04 0.64

C20 1.37 0.73 1.03 0.89 0.48

C21 1.31 0.73 1.00 0.93 0.48

C22 1.16 0.62 0.88 0.81 0.41

C23 1.11 0.57 0.81 0.74 0.37

C24 0.95 0.47 0.69 0.62 0.30

C25 0.93 0.43 0.65 0.59 0.29

C26 0.86 0.40 0.61 0.57 0.25

C27 0.89 0.41 0.66 0.61 0.25

C28 0.84 0.38 0.66 0.55 0.22

C29 0.82 0.34 0.64 0.48 0.19

C30 0.64 0.23 0.46 0.31 0.14

C31 0.52 0.17 0.34 0.22 0.10

C32 0.42 0.13 0.28 0.16 0.07

C33 0.40 0.12 0.26 0.15 0.06

C34 0.37 0.12 0.25 0.17 0.07

C35 0.43 0.15 0.31 0.24 0.09

C36+ 5.27 3.30 3.39 7.12 1.17

T/°C 98.9 97.3 108.4 76 71.56

Table 4: Comparison of MMP prediction results by different
methods.

MMP\sample A B C D E

Our method 22.3 21.9 28 20.1 19.55

Slim-tube 22.0 22.1 27.9 19.8 19.5

Numerical simulation 22.4 21.2 26.6 20.3 18.9
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of contact, the characteristic curve of multiple-contact is
shown in Figure 9.

Using Equation (2), we make prediction that when the
pressure reaches MMP, the minimum value is 0.201558,
which is less than 0.23. This shows that the component sys-
tem can become miscible. Increasing the pressure at a step,
we can see the minimum value decreases as shown in
Figure 10. When the minimum value is smaller than
0.201558, and the tolerance is in 0.01, the related pressure
is 22.3MPa, which is the prediction of MMP. This result is
closed to the MMP from slim-tube (22.0MPa). The mini-
mum value of the characteristic curve at MMP from the
slim-tube is 0.195136.

We use this method to predict 5 samples of crude oil in
China. These samples come from different oil fields, and
the injected gas is pure CO2. The molar composition of these
crude oil samples is shown in Appendix A. The predicted
results are shown in Tables 2 and 3.

3.2. Comparison of Different Prediction Methods. The
methods in this paper, numerical simulation, and slim-
tube experiment were used to predict the CO2-oil MMP
of 5 crude oils A, B, C, D, and E. The results are shown
in Table 4. In the numerical simulation, by fitting the data
of the constant composition expansion (CCE) experiment
and differential liberation (DL) experiment to ensure the
accuracy of the fluid model, a one-dimensional numerical
simulation model with the same size as the slim-tube
experiment was established to simulate the process of the
slim-tube experiment.

Taking sample 1 as an example, the results of the numer-
ical simulation experiment on the slim-tube are presented
below. Figure 11 shows the change of interfacial tension with
displacement pressure after CO2 injection of 1.2PV. It can be
seen that the interfacial tension decreases significantly with
the increase of pressure. When the pressure increases from
20MPa to 25MPa, the interfacial tension changes suddenly
to around 0, and there is no significant change in the interfa-
cial tension after further increase in pressure. This shows that
the minimum miscible pressure is between 20MPa and
25MPa. Based on these 6 sets of numerical experiments,
the recovery factor versus pressure is drawn. As shown in
Figure 12, it can be determined that the minimum miscible
pressure is 22.4MPa.

Compared with the slim-tube experiment, the average
relative error of MMP predicted in this paper is 0.88%.
For the numerical simulation method, the average relative
error of predicting the MMP is 3.4% compared with the
experimental method. The numerical simulation method
can accurately simulate the experimental process of the
slim-tube, but this is based on a good fitting of the PVT
properties of the fluid. The method in this paper considers
the influence of temperature and crude oil composition on
MMP and the influence of the multiple-contact process. In
addition, it also combines the advantages of correlation,
which finally makes the prediction results accurate, and
the calculation speed is faster. As shown in Table 5, the
slim-tube experiment needs an average of 5.4 days, the
numerical simulation needs an average calculation of 3.6
minutes, and the calculation time of the method in this
paper is only 7.8 seconds on average.
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Figure 11: Change of interfacial tension with displacement pressure.
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Figure 12: Change of recovery factor with displacement pressure.

Table 5: Comparison of the time consumption of different methods
for MMP prediction.

Time\sample A B C D E

Our method 10 s 7 s 13 s 5 s 4 s

Slim-tube 5 d 5 d 7 d 5 d 5 d

Numerical simulation 3.5m 3m 6m 2.5m 3m
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4. Discussion

Wemake a comparison between our method of characteristic
curve and the MOC method of characteristics [27]. MOC
methods determine the MMP by the pressure at which one
of the key tie-line becomes a line of zero length. From
MOC, we can see a component missing sequence according
to the K-value from big to small. And in our method of char-
acteristic curve, from the equilibrium composition Xn, Yn of
f ðnÞ, when the n change from 1 to N , we can also get a com-
ponent missing sequence, which is the same as the sequence
of MOC. The results show these two methods agree with
each other to some extent. But the values of equilibrium
composition are different, so in these two methods, differ-
ences still exist.

In our method, the mix fraction of oil and gas will not
influence the MMP prediction, which also shows that the
MMP is independent of the fraction flow.

5. Conclusion

(1) This paper illustrates a method to get a curve that
shows the characteristics of multiple-contact. From
the change of characteristic curve of multiple-con-
tact, we can know the type of displacement, and the
influence of injection gas (CO2) to the MMP. We
found as the pressure reaches MMP the minimum
value of characteristic curve of multiple-contact
changes in a very small scope near zero (0.23-0.13),
and the main factors (reservoir temperature, oil com-
position) affecting the minimum value are similar to
the factors for MMP. From these reasons, we get a
correlation to predict the minimum value. Then,
based on the process of multiple-contact, we
increased the pressure, as the minimum value of the
characteristic curve reaches the value predicted by
our correlation, the MMP is determined; compared
to the result of the slim-tube experiment, the error
is in 0.3MPa

(2) MOC and mixing-cell models consider the process of
multiple-contact. But for the MOC, equations of
crossover tie lines are a set of nonlinear equations,
and it is difficult to find a unique set of key tie lines
for crude oil since there are many numbers of com-
ponents. For mixing-cell models, the key tie lines also
need to be found, which in many cases may not exist.
But this problem does not exist in our method of
characteristic curve, and we just find the minimum
value of characteristic curve and do not have to find
the key tie lines, so the MMP can get easier than
MOC and mixing-cell models, more accurate than
traditional correlation. We combined the process
of multiple-contact with the main factor affecting
(reservoir temperature, oil composition), which
makes our correlation more accurate. Finally, test-
ing on actual oil samples shows that the method
in this paper has higher accuracy and faster calcula-
tion speed
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The reconstruction of porous media is widely used in the study of fluid flows and engineering sciences. Some traditional
reconstruction methods for porous media use the features extracted from real natural porous media and copy them to realize
reconstructions. Currently, as one of the important branches of machine learning methods, the deep transfer learning (DTL)
method has shown good performance in extracting features and transferring them to the predicted objects, which can be used
for the reconstruction of porous media. Hence, a method for reconstructing porous media is presented by applying DTL to
extract features from a training image (TI) of porous media to replace the process of scanning a TI for different patterns as in
multiple-point statistical methods. The deep neural network is practically used to extract the complex features from the TI of
porous media, and then, a reconstructed result can be obtained by transfer learning through copying these features. The
proposed method was evaluated on shale and sandstone samples by comparing multiple-point connectivity functions, variogram
curves, permeability, porosity, etc. The experimental results show that the proposed method is of high efficiency while
preserving similar features with the target image, shortening reconstruction time, and reducing the burdens on CPU.

1. Introduction

The reconstruction of porous media plays a key role in many
engineering disciplines. A model of porous media can be
used to quantitatively study the effects of various microscopic
factors (e.g., pore structures, wettability, and aqueous films)
on the macroscopic properties of oil and gas reservoirs,
showing its great significance for the study of the seepage
mechanisms of oil and gas [1–3].

Different approaches are used to model the internal
structures and features of porous media such as geological
facies and petrophysical properties. Some typical physical
experimental methods including the Serial Sections Tomog-
raphy Method (SSTM) and the X-ray Computer Tomogra-
phy Scanning Method (XRCTSM) [4–7] use experimental
instruments to scan a sample of porous media to obtain a
large number of two-dimensional cross-section images and

then superimpose these images by a modeling program or
software to form three-dimensional digital porous media.
The SSTM is quite time-consuming, and the connectivity
between slices sometimes is not satisfactory. The XRCTSM
has the advantage of being fast and precise, but the experi-
ments are very expensive. Generally speaking, physical
methods (e.g., SSTM and XRCTSM) can obtain high-
resolution real images of porous media but are constrained
by high costs of equipment or experimental difficulties.

Different from physical experimental methods, numerical
reconstruction methods such as the cross-correlation-based
simulation (CCSIM) [8], the Sequential Indicator Simulation
Method (SISM) [9], and the process-based method [10] are
often based on a small number of two- or three-dimensional
real images and reconstruct the three-dimensional porous
media by stochastic simulation or sedimentary process simu-
lation. Compared with physical experimental methods,
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numerical methods are cost-effective and can reconstruct
many kinds of porous media, but some of them are still quite
time-consuming and cannot do well in the reconstruction of
porous media with complex inner structures like shale [3].

Multiple-point statistics (MPS) [11, 12] is also considered
a typical numerical method for the reconstruction of porous
media, calculating the conditional cumulative probability
function by replacing the variogram with the training images
(TIs) using a sequential simulation process. However, the
whole simulation is quite slow and memory-demanding,
and every time, the probabilistic information from TIs will
be scanned over repeatedly for a new simulation because
the probabilistic information is stored in memory instead of
a file, leading to a great waste of both time and hardware
resources, e.g., single normal equation simulation (SNESIM)
[12], pattern-based simulation (SIMPAT) [13], filter-based
simulation (FILTERSIM) [14], distance-based pattern simu-
lation (DISPAT) [15], and direct sampling [16, 17].

Currently, it is possible to find some new solutions from
flourishing machine learning especially deep learning and
transfer learning to achieve better reconstruction of porous
media for efficiency and quality. Deep learning is an algo-
rithm that extracts complex features by performing multiple
nonlinear transformations on data through multiple layers
and neural networks [18]. Neural networks originated in
the 1950s, which were called perceptron at that time. A neu-
ral network has altogether three layers: an input layer, an out-
put layer, and a hidden layer. The input feature vectors
connect the output layer through the hidden layer, and the
result is obtained at the output layer. The single-layer percep-
tron is based on the linear combination of the input vectors,
and the result is calculated by a nonlinear function. As shown
in Figure 1, the first layer of a perceptron is regarded as a lin-
ear combination of input vectors x = ðx1, x2,⋯, xkÞ. The out-
put a can be used as the input of the next-level network after
a nonlinear transformation by an activation function f ð·Þ.
Define the weight w = ðw1,w2,⋯,wkÞ and the bias b. If there
are multiple single-layer perceptrons connected as multiple
layers, a fully connected and discrete network called an arti-
ficial neural network (ANN) is obtained.

In 2006, Hinton and Salakhutdinov [18] proposed an effec-
tive way of using the restricted Boltzmannmachines (RBMs) to
learn features from datasets, establishing the framework of deep
learning. As an algorithm based on learning data and character-
izing inner features, deep learning uses many simple nonlinear
features to transform raw data into more complex, higher-level,
andmore abstract representations [19]. Compared with the tra-
ditional ANN, deep learning has more hierarchical layers, so it
has a stronger ability to abstract complex features.

Deep learning has also developed into a number of related
branches, such as Convolutional Neural Networks (CNNs) [20,
21] and Generative Adversarial Networks (GANs) [22]. A
CNN is a multilayer perceptron specially designed to recognize
two-dimensional shapes. It uses spatial relationships to reduce
the number of parameters that need to be learned to improve
the general training performance of the back propagation
(BP) algorithm. A GAN trains two deep networks (generators
and discriminators) and then lets them perform adversarial

learning, improving the capabilities of the generators and dis-
criminators in continuous adversarial learning. GANs have
been used for the reconstruction of porous media by using a
discriminator to learn the TIs and a generator to reconstruct
a new image of porous media [2].

In many machine learning algorithms, an important
assumption is that the current training data and future train-
ing data must be in the same feature space and have the same
distribution. However, in many realistic cases, this assump-
tion may fail. Transfer learning is proposed to address this
problem by using different transformations to bring the dis-
tances of different data distribution closer, extracting infor-
mation from one or more source tasks, and then applying it
to the target task. It is not necessary to retrain the TIs for
every new reconstruction or simulation when using transfer
learning, so it can save much time and reduce the necessary
amount of training data [23].

Many different transfer learning methods have been
developed. The distribution adaptation methods including
Transfer Component Analysis (TCA) [24] and Deep Domain
Confusion (DDC) [25] are typical transfer learning methods.
The joint distribution adaptation method [26] improves
transfer learning by reducing the distance between the joint
probability distribution of the source and the target domains.
Deep transfer learning (DTL) [27, 28] is based on transfer
learning and currently is one of the most important technol-
ogies in deep learning, which can quickly transfer well-
trained models from one dataset to another [29]. The
network of DTL can simulate a new dataset well by borrow-
ing the features from previously trained datasets [30].

This paper proposes a reconstruction method of porous
media based on DTL, which uses deep learning to learn the
features of porous media and then copies the learned features
into the reconstructed results by transfer learning. Specifi-
cally, the method designs a deep learning model to learn
the features of TIs and then to reconstruct porous media by
transferring the features learned from TIs through a deep
neural network (DNN). The reconstructed results have sim-
ilar features (e.g., pore structures, connectivity, and perme-
ability) hidden in the TIs.

There are two important tasks in the proposed method.
The first one is to determine the proper parameters to learn
TIs when training DNNs to achieve high accuracy. The sec-
ond one is to transfer the features learned by DNNs into a
new reconstruction. For the first task, the appropriate net-
work structures (e.g., hidden layers and neural cells) and
the optimization methods (e.g., the activation function and
gradient descend algorithms) as well as some ways of tuning
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Input
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Figure 1: The structure of a perceptron.
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for them will be considered. The second one can be solved by
improving DTL and choosing appropriate transfer conditions.

The processing time of the proposed method can be
largely shortened due to the GPU acceleration and optimiza-
tion algorithms for deep learning compared to traditional
simulation methods such as MPS. Experiments show that
DTL can reconstruct the similar structures of porous media
with the target images. Meanwhile, once the parameters for
the reconstruction can be determined, they are stored after
training and can be quickly used for new reconstructions,
displaying the effectiveness of the proposed method in recon-
struction quality, speed, and memory demands.

2. The Main Idea of the Proposed Method

In the proposed method, deep learning is used to learn the
complex features of porous media, and then, these features
are transferred into reconstruction by transfer learning, so
the details for the reconstruction of porous media will be dis-
cussed in two sections: Deep Learning Phase and Transfer
Learning Phase.

2.1. Deep Learning Phase. In the training process of deep
learning, the errors or distances between the output and the
expectation can often be obtained by calculating an objective
function. These errors are reduced by modifying the internal
tunable parameters of the model, which are often referred to
as weights. In a typical deep learning system, there are mil-
lions of samples and weights for training a model. In order
to adjust the weight vectors correctly, it is necessary to calcu-
late the gradient vector of each weight and then adjust the
weight vectors in the opposite direction of the gradient vector
so that the overall errors are reduced to a reasonable interval.
In practical applications, the gradient descent algorithm is
used to iterate over the above process, which provides input
vector samples, outputs, and errors by calculating the average
gradient of these samples and then adjusting the weights [31].
This process is repeated by continuously inputting samples to
train the network until the objective function is optimal. In
contrast to other optimization techniques, the speed of
gradient descent is faster and the generalization ability is
stronger [23].

A typical DNN in deep learning is shown in Figure 2, in
which a neuron, expressed as “○,” is the basic node unit
and the neurons constitute the hidden layers. ðx1, x2,⋯, xiÞ
represents the input feature vectors, and “y” is the predicted
output value of the output layer. Excluding the input layer
and the output layer, the neural network has n layers.
“l ð= 1, 2,⋯, nÞ” represents the serial number of the lth layer
in a neural network. Eq. (1) is the output of each hidden
layer, and Eq. (2) means the output activated by an activation
function:

z l½ � =w l½ �a l−1½ � + b l½ �, ð1Þ

a l½ � = f z l½ �
� �

, ð2Þ

where z is the output of each hidden layer; a is the output of
the activation function taking z as the only parameter; w and

b are, respectively, the weight and the bias; and f ð·Þ is the
activation function which has several options including the
sigmoid (Eq. (3)), tanh (Eq. (4)), and ReLu (Eq. (5)):

f xð Þ = sigmoid xð Þ = 1
1 + e−x

, ð3Þ

f xð Þ = tanh xð Þ = ex − e−x

ex + e−x
, ð4Þ

f xð Þ = ReLu xð Þ =
0, if x ≤ 0,
x, if x > 0:

(
ð5Þ

In the training process, as the layer number of the neural
network increases, the gradient of the training parameters
will become smaller. It is a common issue called “gradient
disappearance,” which will prevent the parameters from
changing their values and even break the training process.
The ReLu can solve the problem of “gradient disappearance,”
so it is better than the sigmoid and the tanh functions [32,
33]. Hence, the ReLu is used in the proposed method as the
activation function.

In DNNs, the loss function measures the quality of simu-
lation in a single training sample. For all the training samples,
a cost function Jðw, bÞ and a loss function Lðyi, yipreÞ need to
be defined:

J w, bð Þ = 1
m
L yi, y

pre
i

� �
, ð6Þ

L yi, y
pre
i

� �
= 〠

n

i=1
yi − yprei

� �2, ð7Þ

where m, w, and b are the number of input samples, weights,
and bias of neurons, respectively, and yi and yi

pre, respec-
tively, represent the real and predicted values of the output.

The neural network is trained to iterate over parameters
by forward propagation [34] and backward propagation
[35]. As shown in Eqs. (1) and (2), forward propagation cal-
culates the output z and a of each hidden layer from the
input, the total output y, and the cost function Jðw, bÞ [36].

x1

x2

xi-1

xi

y

Input 
layer

Hidden layers

Output
layer

l = 0 l = 1 l = 2 l = n-2 l = n-1 l = n l = n+1

Figure 2: A typical DNN.
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Meanwhile, as shown in Eqs. (8) and (9), backward propaga-
tion calculates dw½l� and db½l� by the chain derivation rule [37]
and then updates w, b in every forward propagation and
backward propagation:

dw l½ � = ∂ J w, bð Þð Þ
∂w l½ � , wherew l½ � =w l½ � − α · dw l½ �, ð8Þ

db l½ � = ∂ J w, bð Þð Þ
∂b l½ � , where b l½ � = b l½ � − α · db l½ �, ð9Þ

where α is the learning rate. The purpose of training is to find
the appropriate w and b to minimize the total cost Jðw, bÞ,
which is calculated by forward propagation and backward
propagation. The parameters (e.g., w, b) are derived through
the chain derivation rule and updated in the whole network
in the above computation.

When training and learning complex features, it is not
necessary to have many nodes in each layer, but the number
of layers is more important. For all these hidden layers, the
first few layers can learn some lower-level simple features
while the latter ones can combine them into more complex
features.

2.2. Transfer Learning Phase. DTL needs to transfer some
features into a new network, leading to a separation of these
layers (an input layer, an output layer, and some hidden
layers) into two categories: fixed layers and transfer layers,
as shown in Figure 3. In transfer learning, the fixed layers will
not change the parameters but the transfer layers will update
the parameters, so it is very important to determine which
layers should be transferred or fixed in DTL.

As mentioned above, fixed layers in DTL will not be
changed and only learn simple features from raw data. On
the contrary, transfer layers are changeable and learn com-
plex features. The number of transfer layers is adjustable
and determined according to the total number of layers in a
DNN. A typical transfer learning method named Finetune
[29, 30] is introduced in the proposed method, which has
the following characteristics: (1) saving much time since it
does not need to start a new task from the very beginning
when learning and training data; (2) easily appending pre-
trained models to current datasets to extend training data;
(3) simple implementation; and (4) permitting the distribu-
tions of training data and test data not necessarily to be
completely identical.

In the structure of a neural network, Finetune can change
the last layer (i.e., the output layer) and then perform a round
of new training by inputting new data. For some more com-
plex models, Finetune can be expanded to include several
hidden layers before the output layer for better accuracy.
However, Finetune has a poor effect when the distributions
of training data and test data are quite different. There is a
solution to address the issue by adding an adaptation layer
into the layers of DTL, ensuring the accuracy of a transfer
learning model. When using the adaptation method, there
are two key points to be determined: (i) the layers that are
added to the adaptation layer and (ii) the adaptative method.
The first one determines the quality of the whole transfer
learning, and the second one determines the generalization
ability of the network.

Input

Output

Fixed 
layers

Transfer
layers

Layer 1 

Layer 2 

Layer 3 

Layer n-i 

Layer n

Layer n-(i-1)

Layer n-1 

Figure 3: The structure of DTL.
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Figure 4: The structure of DTL using the AdaBN method.
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When adding an adaptive layer in DTL, there are alto-
gether three steps: (1) determining the layers that are suitable
for adaption, (2) adding an adaptive layer between the trans-
fer layers and the fixed layers, and (3) using the data from the
target domain to train the network by Finetune. The follow-
ing loss function is defined in DTL:

l = lc Ds, ysð Þ + λ · lA Ds,Dtð Þ, ð10Þ

whereDs andDt are, respectively, the input of the source dataset
(i.e., TIs) and the target dataset (e.g., known conditioning data),
ys is the output of the source dataset, l is the total loss of the net-
work, lcðDs, ysÞ is the loss of the network and lAðDs,DtÞ is the
adaptive loss of the network, and λ is the weight of the dataset.

The learning quality of DTL can be well improved by
adding an adaptive layer, but the computational complexity
is additionally increased, and the adaptive layer is also diffi-
cult to select. In order to simplify the deep network adapta-

tion, the adaptive layer is replaced by a BatchNorm (BN)
layer [38] for normalization to incorporate the adaptation
of statistical features, which is called an Adaptive Batch Nor-
malization (AdaBN) method. The structure of DTL using the
AdaBN method is shown in Figure 4.

As shown in Figure 4, transfer layers consist of some
hidden layers and the BN layer. The latter can reduce the dif-
ferences of distribution from the source dataset and the target
dataset. The goal of data normalization for each layer in
AdaBN is to make each layer receive data from a similar dis-
tribution to mitigate the problem of dataset shift. AdaBN
normalizes samples from the source dataset to a zero-mean
and the same variance. The BN layer is defined in Eq. (11)
for the jth neuron:

yj =wj

xj − μtj

� �
σtj

+ bj, ð11Þ

Design the deep learning structure and
initialize all parameters

Has the cost function reached the
condition of stop looping?

Add the BN layer

Input the training images

Save all network parameters Input conditioning data

Load the deep learning model

Fix the fixed layers and initialize the transfer 
layers

Finetune the transfer layers to update the 
parameters

Output the reconstructed image 

No

Yes

Use the gradient descent to update 
parameters

Export all parameters and neural network model

Figure 5: The procedures of the proposed method.
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where xj and yj are the input and output of the jth neuron;wj

and bj are, respectively, the weight and the bias; μj and σj are
the mean and standard deviation; and t means the tth
iteration.

For the input of m samples at the nth iteration, suppose
the input mean and input variance are μ and σ2, respectively.
The calculated mean μj and the variance σ2 j for the jth neu-
ron can be updated as follows:

d = μ − μj,

μj ⟵ μj +
dm
nj

,

σ2j ⟵
σ2
j nj

nj +m
+ σ2m
nj +m

+
d2njm

nj +m
� �2 ,

nj ⟵ nj +m,

ð12Þ

where d is the difference between the input mean μ at the nth
iteration and the calculated mean μj at the ðn − 1Þth iteration
and nj is the sum of all the samples of the previous n − 1 iter-
ations, i.e., the cumulative number of samples. The variables
on the left of the operator “⟵” are updated at each iteration.
At the first iteration, μj and σ2

j are initialized to 0 and 1,
respectively.

2.3. Hyperparameters in DTL. In DTL, some parameters
called hyperparameters can be set artificially before training.
Hyperparameters do not need to be adjusted and are often

divided into three categories: network parameters, optimiza-
tion parameters, and regularization parameters.

Network parameters include the interaction mode (addi-
tion, multiplication, concatenation, etc.) between network
layers, the number of network layers (also called depth),
and the activation functions. Optimization parameters
include the learning rate, batch sizes, parameters of different
optimizers, and adjustable parameters of some loss functions.
Regularization parameters include the coefficient of weight
attenuation and dropout.

At the beginning of the training process, a large learning
rate can speed up training. Learning rate α is defined as

α = kffiffi
t

p · α0, ð13Þ

where α0 is the initial learning rate, k is the number of rounds
of gradient descent, and t is the training time. With the
growth of training times, the learning rate will gradually
decrease, ensuring that Eq. (13) converges. Since the DTL
model is complex and possibly prone to overfitting in calibra-
tion and underfitting in validation, the generalization ability
of the model should be considered. As for overfitting prob-
lems, a regularization method can be used to reduce overfit-
ting by adding a regular term Ω to the loss function [39]:

Ω = λ〠 wk k2, ð14Þ

L yi, y
pre
i

� �
= 〠

n

i=1
yi − yprei

� �2 +Ω, ð15Þ

where λ is the weight of regularization and Ω reduces the
number of feature vectors and complexity of the model to
prevent overfitting.

Dropout is another regularization method for overfitting
[40], which discards the values of some neuron nodes during
each round of training by randomly setting some points to 0
(i.e., these neural cells are considered “dropped out”),
improving the generalization ability of the model. The
method of adding a regular term and dropout are both used
in the proposed method to prevent overfitting. For underfit-
ting in validation, choosing an appropriate network, adjust-
ing hyperparameters, and training more times should be
used, which will be discussed with some other hyperpara-
meters such as the number of hidden layers and the BN layer
in Section 4.4.

3. Procedures of the Proposed Method

As shown in Figure 5, the procedures of the proposed
method are as follows.

Step 1. Design the deep learning structure (number of layers,
activation functions, etc.) and add the BN layer into the hid-
den layers.

Input

Output

Fixed
layers 

Transfer
layers 

Layer 1

Layer 2

Layer 3 

Layer 5

Layer 8

Layer 7: BatchNorm layer

Layer 4 

Layer 6

Figure 6: Architecture of the DTL network used in our tests.
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(a) #1 shale image (b) #2 shale image

(c) #3 shale image (d) #1 sandstone image

(e) #2 sandstone image (f) #3 sandstone image

Figure 7: Some shale and sandstone cross-section images from real volume data.

(a) (b)

Grain

Pore space

(c)

Figure 8: The TI (training image) of shale: (a) exterior; (b) cross-section (X = 40, Y = 40, and Z = 40); (c) pore space.

(a) (b)

Grain

Pore space

(c)

Figure 9: The target image of shale: (a) exterior; (b) cross-section (X = 40, Y = 40, and Z = 40); (c) pore space.
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Step 2. Input 2D or 3D TIs of porous media, then use the gra-
dient descent to update the parameters and set the adaptive
learning rate.

Step 3. Save all the network parameters (w, b, the layer num-
ber, and the number of neurons in the layer) and hyperpara-
meters (e.g., learning rate α and the activation function).

Step 4. Load the model and parameters and then take the
conditioning data from the new dataset as input.

Step 5. Set the fixed layers and initialize the transfer layers,
then update the parameters of transfer layers using Finetune.

Step 6. Export the neural network model including the struc-
ture and corresponding parameters to a file.

Step 7. Output 2D or 3D images of porous media using the
above model and parameters.

Multiple source datasets (i.e., TIs) can be used in the pro-
posed method. Besides, reconstructing porous media with
any different sizes of 2D or 3D images can be realized accord-
ing to the features extracted from TIs. Since TIs are real 3D
images, the reconstruction retains the features of porous
media in the real world.

4. Experimental Results and Analyses

Since DTL can be run by using a tensorflow-gpu framework
[41] accelerated by GPU, the following tests were performed
based on a tensorflow-gpu framework with a CPU of Intel
Core i7-8700 (3.2GHz), a memory of 8GB, and a GPU of
GeForce GTX 1070 (6GB memory). As mentioned previ-
ously, the proposed method uses deep learning to extract all
features from TIs and then save the trained model and corre-
sponding parameters. The number of layers often can be
determined according to some trials and experiences. Gener-
ally, the more complicated the porous media are, the more

(a) (b)

Grain

Pore space

(c)

Figure 10: The TI of sandstone: (a) exterior; (b) cross-section (X = 40, Y = 40, and Z = 40); (c) pore space.

(a) (b)

Grain

Pore space

(c)

Figure 11: The target image of sandstone: (a) exterior; (b) cross-section (X = 40, Y = 40, and Z = 40); (c) pore space.

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Va
rio

gr
am

 (
X

 d
ire

ct
io

n)

Distance

(a)

Va
rio

gr
am

 (
Y

 d
ire

ct
io

n)

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Distance

(b)

Va
rio

gr
am

 (
Z

 d
ire

ct
io

n)

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Distance

(c)

Figure 12: Variogram curves of original volume data (shale) in three directions: (a) X direction; (b) Y direction; (c) Z direction.

8 Geofluids



hidden layers should be applied. In the practical tests, the
reconstruction of porous media is based on the model dis-
played in Figure 6, in which the network has 8 hidden layers
using the ReLu function as the activation function [33]. The
details about the architecture shown in Figure 6 will be dis-
cussed in Section 4.4.

4.1. Training Data and the Representative Elementary
Volume. To evaluate the effects and applicability of the pro-
posed method in the reconstruction of porous media, the real
shale volume data with the resolution of 64 nanometers
obtained by nano-CT and the real sandstone volume data with
the resolution of 10.9 micrometers obtained by micro-CT
were used as the test data for the following tests. Figure 7
shows some cross-sections of the volume data of shale and
sandstone with two facies: grains (white) and pores (black).

4.1.1. 3D Experimental Shale Images. Before applying any
reconstruction methods, two 3D cubes with 80 × 80 × 80
voxels were extracted from different parts of the original

shale volume data: one is used as a TI and the other is a target
image. A target image can be a judge for comparing the recon-
structed results when extracting the features from a TI and then
reproducing them using the proposed method conditioned to
some conditioning data from the target image. Figures 8(a)–
8(c) are the exterior (80 × 80 × 80 voxels), cross-sections
(X = 40, Y = 40, and Z = 40), and pore spaces of the TI
(porosity = 0:1860). Similarly, the exterior (80 × 80 × 80 vox-
els), cross-sections (X = 40, Y = 40, and Z = 40), and pore
spaces of the target image (porosity = 0:2812) are shown in
Figures 9(a)–9(c).

4.1.2. 3D Experimental Sandstone Images. Similarly, two 3D
sandstone cubes with 80 × 80 × 80 voxels were, respectively,
used as a TI and a target image. Figures 10(a)–10(c) are the
exterior (80 × 80 × 80 voxels), cross-sections (X = 40, Y = 40,
and Z = 40), and pore spaces of the TI (porosity = 0:1705).
Figures 11(a)–11(c) display the exterior (80 × 80 × 80 voxels),
cross-sections (X = 40, Y = 40, and Z = 40), and pore spaces of
the target image (porosity = 0:1121). The porosity values of

Va
rio

gr
am

 (
X

 d
ire

ct
io

n)

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Distance

(a)

Va
rio

gr
am

 (
Y

 d
ire

ct
io

n)

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Distance

(b)

Va
rio

gr
am

 (
Z

 d
ire

ct
io

n)

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Distance

(c)

Figure 13: Variogram curves of original volume data (sandstone) in three directions: (a) X direction; (b) Y direction; (c) Z direction.

(a) (b)

(c) (d)

Figure 14: Reconstructed pore spaces of shale using (a) DTL; (b) SNESIM; (c) FILTERSIM; (d) DISPAT.
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the target images and TIs for both shale and sandstone are
deliberately quite different to test the applicability of the pro-
posed method.

4.1.3. Representative Elementary Volume of Samples. Before
performing the tests, the representative elementary volume
(REV) [42, 43] of the training data should be determined
first. It is important to observe the influence which the scale

of the studied sample exerts when reconstructing porous
media, i.e., a key point is to determine the minimum size of
a studied sample in which the features tend to be substan-
tially stable and can be independent of the size of the sample.
When the size of the sample is less than an REV, the features
possibly will change easily with the different sizes of the sam-
ple, showing obvious fluctuations in the features. On the con-
trary, when the samples are bigger than the REV, they have

(a) (b)

(c) (d)

Figure 15: Reconstructed pore spaces of sandstone using (a) DTL; (b) SNESIM; (c) FILTERSIM; (d) DISPAT.

Table 1: Porosity of the TIs, the target images, and the reconstructed images using DTL, SNESIM, FILTERSIM, and DISPAT.

TI Target image DTL SNESIM FILTERSIM DISPAT

Shale 0.1860 0.2812 0.2734 0.2932 0.2495 0.2652

Sandstone 0.1705 0.1121 0.1082 0.1302 0.0953 0.0971

Table 2: Porosity of 10 reconstructed shale and sandstone images using SNESIM, FILTERSIM, DISPAT, and DTL.

Reconstruction
SNESIM FILTERSIM DISPAT DTL

Shale Sandstone Shale Sandstone Shale Sandstone Shale Sandstone

#1 0.2989 0.1243 0.2407 0.0897 0.2732 0.0947 0.2797 0.1033

#2 0.3056 0.1358 0.2721 0.1003 0.2608 0.0976 0.2701 0.1002

#3 0.3098 0.1196 0.2487 0.1215 0.2559 0.1107 0.2711 0.1137

#4 0.2754 0.1332 0.3011 0.0941 0.2717 0.1023 0.2675 0.1089

#5 0.2921 0.1265 0.2316 0.0956 0.2649 0.1142 0.2508 0.1074

#6 0.2646 0.0945 0.2724 0.0975 0.3012 0.1013 0.2721 0.1113

#7 0.3006 0.1101 0.2679 0.1132 0.2601 0.1045 0.2801 0.1069

#8 0.2946 0.1403 0.2433 0.1088 0.2590 0.0989 0.2721 0.1109

#9 0.3026 0.0921 0.2518 0.1102 0.2543 0.1012 0.2739 0.1026

#10 0.2886 0.1285 0.2298 0.0875 0.2772 0.0991 0.2766 0.1152

Average 0.2933 0.1205 0.2559 0.1018 0.2678 0.1025 0.2714 0.1080

10 Geofluids



almost the same features no matter where they are located in
the original data.

According to the definition of an REV, all the samples of
porous media bigger than an REV have the same statistical
distribution as long as they are taken from the original data.
The influence of different locations in the original data does
not need to be considered. The REV actually conforms to
the concepts of ergodicity and stationarity in statistics
because a sample bigger than an REV has fixed statistical dis-
tribution, meaning the experimental samples bigger than an

REV also have ergodicity and stationarity when they meet
the REV requirements.

There are two major methods for determining an REV.
The first one is porosity widely used in soil science and mate-
rial science, regardless of the macroscale parameters; the sec-
ond one determines an REV based on some macroscale
parameters without considering the microscale parameters
of a sample, often used in engineering mechanics [44, 45].
For homogeneous porous media, the method of using poros-
ity for REV may be effective, but it will not work for

(a) (b)

(c)
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Figure 16: Averages of 10 reconstructed shale images using (a) SNESIM; (b) DTL; (c) FILTERSIM; (d) DISPAT.
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Figure 17: Averages of 10 reconstructed sandstone images using (a) SNESIM; (b) DTL; (c) FILTERSIM; (d) DISPAT.
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heterogeneous porous media since porosity tends to vary
largely with different sizes. Therefore, some other methods
should be considered to determine an REV for heterogeneous
porous media to ensure that their features will not change
largely with different sizes. In our tests, the size of REV was
determined by the variogram γðhÞ, which is often used to
represent the correlation and variability of spatial structural
changes in a certain direction and defined in

γ hð Þ = 1
2 E Z x + hð Þ − Z xð Þ½ �2� �

, ð16Þ

where E means the mathematical expectation, ZðxÞ is a vari-
able value at the location x, and h is the lag between two loca-
tions x and x + h.

The specific procedure of determining an REV is the fol-
lowing: firstly, the variogram curves of pores in the X, Y , and
Z directions are plotted, respectively; secondly, when the var-
iogram curves at all three directions begin to become stable,
the corresponding size of porous media is an REV. The var-
iogram curves computed from the original volume data of
shale and sandstone in three directions (X, Y , and Z) are
shown in Figures 12 and 13. The abscissa indicates the spatial
distance h (unit: voxel), and the ordinate indicates the value
of the variogram. In Figure 12, the variogram curves in three
directions tend to be stable at distance = 20, 31, and 19 vox-
els, respectively (indicated with red dashed lines), so the

REV can be at least 20 ∗ 31 ∗ 19 voxels for shale; similarly,
the REV can be at least 20 ∗ 20 ∗ 26 voxels for sandstone
inferred from Figure 13. Since the TIs and the target images
of shale and sandstone in our tests are 80 × 80 × 80 voxels,
their sizes are bigger than the REV and meet the experimen-
tal requirements.

4.2. Reconstructions and Comparisons with Other Methods.
Some sample points extracted from the target images of shale
and sandstone were, respectively, used as conditioning data
of shale and sandstone reconstruction, accounting for 1% of
total voxels of the target images, in which the pore voxels
and the grain voxels have the same number (meaning the
pore and grain voxels, respectively, account for 50% in the
conditioning data). The proportion of conditioning data is
deliberately quite different from the porosity of the target
image to prove the applicability of the proposed method.
Suppose the pore value is 1 and the grain value is 0. For con-
venience, the proposed method is called DTL hereafter.
Reconstructions of porous media (shale and sandstone) were
performed using DTL and some typical MPS methods
(SNESIM, FILTERSIM, and DISPAT) with conditioning data
and TIs.

4.2.1. Reconstructed Pore Spaces of Shale. Figure 14 is the
reconstructed 3D pore spaces of shale, respectively, using
DTL, SNESIM, FILTERSIM, and DISPAT. It is seen that all

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Va
rio

gr
am

 (
X

 d
ire

ct
io

n)

Distance

Training image
Target image
DTL

SNESIM
FILTERSIM
DISPAT

(a) X direction

Va
rio

gr
am

 (
Y

 d
ire

ct
io

n)

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Distance

(b) Y direction

Va
rio

gr
am

 (
Z

 d
ire

ct
io

n)

0 10 20 30 40 50 60 70 80
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Distance

(c) Z direction

Figure 18: Variogram curves of shale images from the TI, the target image, and reconstructed images using SNESIM, FILTERSIM, DISPAT,
and DTL in three directions.
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the reconstructed pore spaces by the four methods have sim-
ilar structures with the target image (Figure 9(c)), and the
long connectivity of the pore spaces is well reproduced.

4.2.2. Reconstructed Pore Spaces of Sandstone. Figure 15 is the
reconstructed 3D pore spaces of sandstone, respectively,
using DTL, SNESIM, FILTERSIM, and DISPAT. The recon-
structed images by the four methods also have similar struc-
tures with the target image (Figure 11(c)), and the long
connectivity of pore spaces is well reproduced, too.

4.2.3. Averages of Reconstructions. For convenience, the
porosity values of shale and sandstone reconstructions are
put together. The porosity values of TIs, the target images,
and the reconstructed images are shown in Table 1.

To get the average performance, another 10 shale and
sandstone reconstructions using SNESIM, FILTERSIM,
DISPAT, and DTL were performed, as shown in Table 2.
All the reconstructed images are cubes with the same size
of 80 × 80 × 80 voxels. Since each voxel within the cube
has its fixed location and value, the average values of these
ten reconstructions can be computed and constitute an
“average cube” with the size of 80 × 80 × 80 voxels for each
method (SNESIM, FILTERSIM, DISPAT, and DTL), as
shown in Figures 16 and 17. The attribute values of each voxel
in the “average cube” are the average of the voxel at the same
location in reconstructed images. It seems that the recon-

structed shale image using DTL has a clearer distinction
between the pore spaces and grains, showing that DTL has rel-
atively fixed reconstructed results compared with the other
three methods.

4.2.4. Variogram and Multiple-Point Connectivity. Vario-
gram depends on the independent variable h, and vario-
gram curves can represent the spatial variability of two
points in one direction. In the reconstruction of porous
media, a variogram is also used for evaluation. The vario-
gram curves of the TIs, the target images, and the recon-
structions of SNESIM, FILTERSIM, DISPAT, and DTL
were computed in the directions of X, Y , and Z, as shown
in Figures 18 and 19. It is seen that the variogram curves
of the DTL method, in all three directions, are quite close
to those of the target images.

Multiple-point connectivity (MPC) [12, 46] can measure
the joint connectivity between multiple points in one direc-
tion, which is defined as

MPC nð Þ = E S uð Þ · S u + 1ð Þ ·⋯ · S u + n − 1ð Þ · hð Þf g

= E
Yn−1
i=0

S u + i · hð Þ
( )

,
ð17Þ

where SðuÞ is the attribute value at the position u, h is the
lag distance, n is the number of nodes or points in one
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Figure 19: Variogram curves of sandstone images from the TI, the target image, and reconstructed images using SNESIM, FILTERSIM,
DISPAT, and DTL in three directions.

13Geofluids



0 10 20 30 40 50 60 70 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Distance

M
PC

 (X
 d

ire
ct

io
n)

Training image
Target image
DTL

SNESIM
FILTERSIM
DISPAT

(a) X direction

0 10 20 30 40 50 60 70 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Distance

M
PC

 (Y
 d

ire
ct

io
n)

(b) Y direction

0 10 20 30 40 50 60 70 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Distance

M
PC

 (Z
 d

ire
ct

io
n)

(c) Z direction

Figure 20: MPC curves (shale) of the TI, the target image, and reconstructed images using SNESIM, FILTERSIM, DISPAT, and DTL.
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Figure 21: MPC curves (sandstone) of the TI, the target image, and reconstructed images using SNESIM, FILTERSIM, DISPAT, and DTL.

Table 3: Permeability (shale) of the TI, the target image, and average permeability of ten reconstructed images in three directions using DTL,
SNESIM, FILTERSIM, and DISPAT.

Direction
Permeability (10-3 μm2)

Train image Target image DTL SNESIM FILTERSIM DISPAT

X 7.011 7.350 7.037 6.956 7.681 6.842

Y 6.904 7.656 7.165 7.241 7.312 6.775

Z 5.713 6.421 6.758 5.976 7.014 6.041
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direction, and E is the mathematical expectation. Suppose
SðuÞ = 1 when u corresponds to pore space; otherwise, Sð
uÞ = 0. As shown in Figures 20 and 21, the MPC curves
of the TIs, the target images, and reconstructions are very

similar in X and Y directions, but in the Z direction
(especially in Figure 20), DTL shows better performance
since their curves are much closer to those of the target
images.

Table 4: Permeability (sandstone) of the TI, the target image, and average permeability of ten reconstructed images in three directions using
DTL, SNESIM, FILTERSIM, and DISPAT.

Direction
Permeability (10-3 μm2)

Train image Target image DTL SNESIM FILTERSIM DISPAT

X 2.404 2.132 2.331 2.517 2.297 2.770

Y 2.497 2.319 2.746 2.638 2.261 2.466

Z 2.051 1.815 1.969 2.021 1.973 2.034

Table 5: The average numbers of pores in the TIs, the target images, and 10 reconstructed images using FILTERSIM, SNESIM, DISPAT, and
DTL.

Train image Target image FILTERSIM SNESIM DISPAT DTL

Shale 326 480 513 445 498 507

Sandstone 265 217 250 199 259 205

Table 6: The average pore diameters (shale) in the TI, the target image, and the reconstructed images of SNESIM, FILTERSIM, DISPAT, and
DTL.

TI Target image SNESIM FILTERSIM DISPAT DTL

Average diameter (voxel) 4.88 5.77 6.02 5.92 5.93 5.98

Maximum diameter (voxel) 19.21 22.51 22.10 20.26 22.56 21.16

Minimum diameter (voxel) 1.65 2.45 1.52 2.16 1.27 2.84

Table 7: The average pore diameters (sandstone) in the TI, the target image, and the reconstructed images of SNESIM, FILTERSIM, DISPAT,
and DTL.

TI Target image SNESIM FILTERSIM DISPAT DTL

Average diameter (voxel) 9.85 9.30 8.07 9.12 7.93 9.51

Maximum diameter (voxel) 23.69 19.20 18.65 17.56 19.26 19.15

Minimum diameter (voxel) 1.97 3.56 1.10 1.51 2.59 3.95
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Figure 22: The distributions of pore diameters of the TIs, the target images, and the reconstructed images of DTL, SNESIM, FILTERSIM, and
DISPAT.

15Geofluids



4.2.5. Permeability Estimation Using the Lattice Boltzmann
Method. Permeability means the ability to allow fluid to pass
through porous media and often is related to porosity, geom-
etry of pores in the direction of liquid penetration, and other
factors [47]. The permeability of reconstructed porous media

is computed using the Lattice Boltzmann Method (LBM) [3,
48]. The evolution equation is defined as follows:

f i x + Δx, t + Δtð Þ = f i x, tð Þ − 1
τ

f i x, tð Þ − f eqi x, tð Þ� �
, ð18Þ

Table 8: The average memory usage, CPU/GPU utilization, and running time of SNESIM, FILTERSIM, DISPAT, and DTL for 10
reconstructions (shale).

SNESIM FILTERSIM DISPAT DTL

Average memory usage 92% 90% 90% 35.5%

Average CPU utilization 93% 92% 90% 22%

Average GPU utilization None None None 90%

First-round running time 11612 sec 12530 sec 13780 sec 1160 sec

Average running time (excluding the first running time) 8656 sec 9630 sec 9520 sec 496 sec

Table 9: The average memory usage, CPU/GPU utilization, and running time of SNESIM, FILTERSIM, DISPAT, and DTL for 10
reconstructions (sandstone).

SNESIM FILTERSIM DISPAT DTL

Average memory usage 90% 90% 90% 41%

Average CPU utilization 91% 90% 90% 25%

Average GPU utilization None None None 90%

First-round running time 8820 sec 10100 sec 9860 sec 1310 sec

Average running time (excluding the first running time) 5060 sec 7300 sec 6700 sec 456 sec
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Figure 23: Variogram curves of reconstructed sandstone images by 5% conditioning data using SNESIM, FILTERSIM, DISPAT, and DTL in
three directions.
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where τ is the dimensionless relaxation time, f iðx, tÞ is the
density distribution function in the ith velocity direction at
the lattice location x and the time t, and Δt and Δx are,
respectively, increments of time and space. The equilibrium
distribution function is

f eqi x, tð Þ =wiρ 1 + 3 ei ⋅ u
c2

+ 4:5 ei ⋅ uð Þ2
c4

− 1:5 u
2

c2

" #
, ð19Þ

where c = Δx/Δt is the lattice speed and u is the fluid velocity.
wi means the weights whose values are wi = 1/3 ði = 0Þ,
wi = 1/18 ði = 1, 2,⋯, 6Þ, andwi = 1/36 ði = 7,⋯, 18Þ, respec-
tively. ei is the discrete velocities:

ei =
0, 0, 0ð Þ, i = 0,
±1, 0, 0ð Þ, 0,±1, 0ð Þ, 0, 0,±1ð Þ, i = 1,⋯, 6,
±1,±1, 0ð Þ, 0,±1,±1ð Þ, ±1, 0,±1ð Þ, i = 7,⋯, 18:

8>><
>>: ð20Þ

The density of the momentum ρu and the fluid ρ are

ρ =〠
i

f i x, tð Þ, ð21Þ

ρu =〠
i

f i x, tð Þei: ð22Þ

Since the internal structures of reconstructed systems are
very complicated, the bounce-back scheme is used to obtain
no-slip velocity conditions. The inlet and outlet of models are
computed by using pressure conditions. The data of the TIs,
the target images, and the reconstructed images were, respec-
tively, used as the input files of LBM simulation to calculate
the permeability of those models with the size of 80 × 80 × 80
voxels. Some parameters in LBM are defined as follows: Δx =
Δt = 1, τ = 1. Two faces of the reconstructed model, which
are perpendicular to the flow direction, are left open while all
other four faces are sealed with the matrix phase. When con-
vergence is reached, the permeability along this flow direction
can be computed according to Darcy’s law.

As shown in Tables 3 and 4, the permeability of the TIs,
the target images, and the average permeability of ten recon-
structed images using DTL, SNESIM, FILTERSIM, and DIS-
PAT in three directions were computed by LBM. The
permeability values (especially in the Z direction) of the
reconstructed images using DTL are quite close to those of
the target images, displaying good reconstruction quality of
DTL.

4.2.6. Distribution and Numbers of Pores. Analyses of pore
structures were performed by the software Avizo [49]
through importing the TIs, the target images, and the recon-
structed images of DTL, SNESIM, FILTERSIM, and DISPAT.
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Figure 24: MPC curves of reconstructed sandstone images by 5% conditioning data using SNESIM, FILTERSIM, DISPAT, and DTL in three
directions.
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The pore structures including the number of pores, the pore
sizes, and the diameters of each pore were calculated. The
diameter of pores is approximately defined as

Diameter =
ffiffiffiffiffiffi
6V
π

3

r
, ð23Þ

where V is the volume of each pore.
Table 5 shows the average numbers of pores in the TIs,

the target images, and 10 reconstructed images using FIL-
TERSIM, SNESIM, DISPAT, and DTL. The diameters of
pores in the TIs, the target images, and the reconstructed
images of SNESIM, FILTERSIM, DISPAT, and DTL are dis-
played in Table 6 (shale) and Table 7 (sandstone). Figure 22
shows the distributions of pore diameters of the TIs, the tar-
get images, and the reconstructed images of SNESIM, FIL-
TERSIM, DISPAT, and DTL. DTL is not the best in all
individual items, but it has shown good quality in the overall
performance, judged from Tables 5–7 and Figure 22.

The average memory usage, CPU/GPU utilization, and
running time of SNESIM, DISPAT, FILTERSIM, and DTL
of ten reconstructions (shale and sandstone) are shown in
Tables 8 and 9. The reason for splitting the “first-round run-
ning time” from the overall running time is that all four
methods cost more time in their first-round running: SNE-
SIM, DISPAT, and FILTERSIM scan all points or patterns

in TIs, and DTL needs to use deep learning to train a basic
model to learn all the structural features in TIs. However,
after the “first-round running time,” the time consumption
of all four methods will be largely reduced because the train-
ing or learning processes have finished in the first round. It is
seen that DTL is much better than other methods in the
reconstruction time and memory demands due to the use
of GPU.

4.3. Comparisons Using Different Conditioning Data. The
results using four methods with 1% conditioning data (i.e.,
accounting for 1% of total voxels of the target image) are
compared in Section 4.2. Since the porosity values of the tar-
get image and the training image are quite different, more
conditioning data extracted from the target image can prove
the applicability of the proposed method better. Hence, 5%
conditioning data (i.e., accounting for 5% of total voxels of
the target image) extracted from the target image for recon-
struction were used to demonstrate the applicability of the
proposed method. The pore voxels and grain voxels in the
conditioning data have the same number. Variogram and
MPC curves (average of ten reconstructions) of sandstone
and shale using the conditioning data (5% of the total voxels)
are shown in Figures 23–26.

It is seen that when there are more conditioning data (5%
of total voxels), the variogram and MPC curves of the
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Figure 25: Variogram curves of reconstructed shale images by 5% conditioning data using SNESIM, FILTERSIM, DISPAT, and DTL in three
directions.
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reconstructed DTL images are closer to those of the target
image, proving the applicability of the proposed method.

4.4. Parameters Used for DTL. The practically used DTL net-
work and some parameters will be discussed in this section.
When using the DTL method, the network structure needs
to be designed, including the number of hidden layers, the
number of neural cells in the hidden layers, the optimization
method, the activation function, and some other parameters,
which will largely affect the training time, learning ability,
accuracy, generalization ability, etc.

When designing the structure of DTL, the number of hid-
den layers can be determined by the learning effect, which is
measured by the accuracy during the deep learning phase.
The accuracy is calculated by comparing voxel values of the
results from the training model with those of the TI during
the deep learning phase. The accuracy (range is from 0 to
100%) is actually the similarity between the results in the
deep learning phase with the TI, measuring whether the net-
work structure can learn the structural features of training
data quickly and accurately. High accuracy in the deep learn-
ing phase means that the network learns the features of train-
ing data well. However, high accuracy has little effect on the
generalization ability of DTL and does not mean overfitting
of the reconstruction because during the transfer phase con-
ditioning data will be added for the constraints and the model
will be trained again. The effect of overfitting on the whole
DTL is small during the deep learning phase, but condition-

ing data have a significant impact on the generalization
ability of DTL during the transfer learning phase. Therefore,
the principle of selecting network parameters is to choose a
network with a simple structure while ensuring accuracy.

As shown in Figure 27 and Table 10, more hidden layers
and neural cells make the accuracy higher but need more
training time. In our real experiments, the number of hidden
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Figure 26: MPC curves of reconstructed shale images by 5% conditioning data using SNESIM, FILTERSIM, DISPAT, and DTL in three
directions.
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layers is 8 and the number of neural cells is 500 to balance the
training time and accuracy.

A BN layer will be inserted in transfer layers, but the spe-
cific location should be determined by experiments. A BN
layer was inserted in the different locations of a DTL network
to, respectively, form a 6-, 7-, 8-, 9-, and 10-layer network for
a test. The accuracy during the deep learning phase is also,
respectively, calculated. As shown in Figure 28, the abscissa
ranging from 1 to 6 means the number of layers from the
location of the inserted BN layer to the last layer, considered
the “distance” (unit: layer) from the currently inserted BN
layer to the last layer of the DTL network. For example, the
accuracy is 80% when the inserted BN layer is next to the last
layer (distance = 1) for a 6-layer DTL network in Figure 28;
the accuracy is 98% when distance = 2 for an 8-layer DTL
network. Since the number of hidden layers was 8 in the real
experiments (see discussions about Figure 27 and Table 10)
and the accuracy was close to 100% when distance = 2,
the BN layer was added to the penultimate layer (i.e.,
distance = 2).

As for the optimization algorithm, the Adam-gradient
descent method was used [40], which has faster convergence

speed and more effective learning effect in practical applica-
tions. The weight w and the bias b should be randomly
initialized. Learning rate α can be set to 0.5 at the beginning
and will be adjusted to a smaller level after some training pro-
cesses. The loss function in our experiments is the cross-
entropy loss function for speeding up the training process
and improving accuracy [13], which is defined as

L yi, y
pre
i

� �
= −yi · log y

pre
i − 1 − yið Þ · log 1 − yprei

� �
: ð24Þ

5. Conclusions

Statistical methods represented by MPS and some other
methods are widely used for the reconstruction of high-
resolution 3D porous media. However, the applicability of
these methods is limited due to their large CPU cost and
memory requirements. Meantime, the models established
by them are not deterministic but a series of stochastic imple-
mentations with equal probabilities, so it is necessary to
reconstruct models many times to obtain an average result.

Due to the rapid development of various machine learn-
ing technologies, it has become feasible to use deep learning
to solve the problem in the reconstruction of 3D porous
media. In this paper, a reconstruction method based on
DTL is proposed, which is considered a combination of deep
learning and transfer learning. Deep learning is used to learn
the structural features of porous media, and then, transfer
learning reproduces the features in new reconstructions.

Instead of reconstructing the unknown regions pixel by
pixel or pattern by pattern, the proposed method learns the
features and relationships between TIs and conditioning data
first. The modeling process of the neural networks is a pro-
cess of iterative optimization, making the errors gradually
smaller and the results more certain rather than a series of
equal probability results, which is also the reason that DTL
has more stable results. This method has lower CPU costs
and memory demands than the traditional MPS-like
methods. The experiments of reconstructing the shale and
sandstone images have proved the advantages of the pro-
posed method in reconstruction quality, time consumption,
and CPU utilization.
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Table 10: The training time using different numbers of hidden
layers and neural cells.

Number of hidden
layers

3 4 5 6 7 8 9 10
Average training
time (sec)
Number of neural
cells

100 70 102 187 412 595 1106 2150 4010

500 76 126 198 468 650 1160 2695 4221

1000 82 139 229 512 786 1380 2960 4613

2000 91 151 312 566 960 1645 3319 4950
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The poor impermeability of fractured rock induced by excavation and construction is improved through the application of
microbial-induced calcite precipitation (MICP), but it is difficult to monitor and evaluate the permeability reduction under a
confining pressure and fracture aperture. For this, the grouting ratio, permeability, and electrochemical impedance of fractured
rock with MICP grouting were experimented with, considering the effects of fracture aperture and confining pressure. The
equivalent circuit model of grouting-fractured rock is presented, and the corresponding ratio of the electrical resistivity and
cross-sectional area of the grouted fracture (ρ/S) is indicated by an electrochemical impedance spectroscope (EIS). The
relationships of the permeability coefficient, the ρ/S, and the grouting ratio are analysed. The experimental results show that the
Darcy permeability coefficient of fractured rock with MICP grouting is reduced by an order of magnitude of 3 to 4. As fracture
aperture ranged from 1.28 to 2.56mm and grouting rate was 0.003ml/s, the Darcy permeability coefficient decreased with an
increase in confining pressure. The grouting ratio and fracture aperture also decreased with a reduction in ρ/S. The results also
showed that the permeability reduction of MICP correspondingly increased in these conditions. What is more, the Darcy
permeability coefficient of fractured rock grouted by MICP and its permeability reduction may be well predicted by confining
pressure and ρ/S. This study provides a new EIS method for predicting the reduction in permeability of MICP grouting-
fractured rock and further enriches the application of MICP and EIS techniques in impermeable rock engineering.

1. Introduction

The poor impermeability performance of fractured rock
induced by excavation and construction seriously influences
the safety of underground engineering projects such as sub-
ways and tunnels [1]. Poor impermeability performance is
effectively improved by traditional cement-based grouting
[2, 3] and polymer grouting [4, 5]. Microbial-induced calcite
precipitation (MICP) was elucidated by Mitchell and Santa-
maria in the 1990s [6] and is a new microbial grouting tech-
nique. The MICP technique was applied to the cementation
of sands, to enhance bearing capacity and liquefaction resis-

tance, the sequestration of carbon, soil erosion control,
groundwater flow control, and the remediation of soil and
groundwater impacted by metals [7]. The mechanics of
MICP is expressed as follows:

CO NH2ð Þ2 + 2H2O + Ca2+ → urease2NH+
4 + CaCO3: ð1Þ

Formula (1) shows that the urease secreted by urease-
producing bacteria decomposes dissolved urea into carbon-
ate ions, and then cemented calcium carbonate precipitates
from the solution, along with carbonate ions and calcium
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ions. The permeability coefficients of in situ fractured rock
and fabricated rock, grouted by MICP, were reduced by
35% and three orders of magnitude, respectively [8–14].
Compared with traditional methods, MICP has low viscosity
and grouting pressure, and enables fluid transportation over
a longer distance with intrusion into smaller cracks [15, 16].
MICP also has some advantages for environmental protec-
tion, such as a moderate pH, small shrinkage, and no release
of heavy ions or toxic ions [17, 18].

The reduction in permeability and electrical impedance
of MICP grouting-fractured rock can be theoretically deter-
mined by its pore structure, and they are affected by factors
such as injection rate, bacterial concentration, confining
pressure, fracture roughness, and fracture aperture [19–23].
The lower the injection rate, the easier the calcium carbonate
precipitation adheres to the fracture surface and the lower the
permeability coefficient [24]. The electrical impedance of
rock comprises its resistance, capacity, and reactance, and
the corresponding electrical impedance spectrum (EIS) tech-
nique is a nondestructive method for measuring a rock’s
water content, porosity, and permeability coefficient [25–
30]. However, the reduction in permeability and electric
impedance of fractured rock grouted by MICP is affected
by confining pressure and fracture aperture, and this is not
widely reported.

Therefore, in this paper, the permeability coefficients of
prefabricated fractured rocks (before and after MICP grout-
ing) are investigated, as well as their EIS responses. The
reduction in permeability caused by confining pressures
and fracture apertures is analysed, and the relationships
between permeability coefficient, permeability reduction,
grouting ratio, and EIS are discussed. The results of this
research can further improve MICP application in perme-
ability reduction in underground rock engineering.

2. Experimental Procedures

2.1. Samples and MICP Grouting Solutions. Three cylindrical
samples of red sandstone (50mm diameter and 100mm
height) were selected. Then, three thoroughly fractured rock
samples were prefabricated using the Brazilian splitting test,
and each fracture aperture was fixed by gluing the split sam-
ple to a plexiglass strip, with sizes ranging from 1.0mm to

2.5mm (see Figure 1). The physical parameters of the sam-
ples (e.g., length (L) and diameter (D0)) are listed in Table 1.

Bacillus Sporocarsina pasteurii and cementing solution,
mixed with 1mol/l calcium chloride and 1mol/l urea, were
chosen as MICP grouting solutions. The bacillus Sporocar-
sina pasteurii species was inoculated by 5% in a pH7.3 fluid
nutrient medium, containing urea (20 g/l), soy protein
(5 g/l), casein (15 g/l), and sodium chloride (5 g/l). The inoc-
ulated bacterial suspension was then cultured in a rotatory
shaker at 30°C and 170 rpm for approximately 24h, until its
OD600 and conductivity were 2.4 and 19.5, respectively.

2.2. Experimental Setup. The experimental setup was com-
posed of a self-made seepage device, a MICP grouting device,
a rock EIS measuring device, and a triaxial fluid-solid
coupled loading system; see Figure 2.

The self-made seepage device was used to test the Darcy
permeability coefficients of fractured rock samples without
MICP at a constant water head of 17.5 cm [31]. This device
was a cylindrical vessel with a diameter of 200mm and a
height of 500mm that flowed through a 50mm diameter
water outlet connected to the rock sample above the water
collector and electronic balance.

The MICP grouting device was used to cement and fill
the fractured rock samples. The device had a plexiglass grout-
ing pedestal below the rock sample followed by a plexiglass
grouting upper cover with a 3mm diameter grouting hole
linking the bacterial suspension and cementing solution by
two rubber grouting pipes of the peristaltic pump WT3000-
1JA. The grouting pedestal also had a 3mm hole to discharge
any redundant solution to a waste solution tank.

D

C

A

B

(a) (b) (c)

Figure 1: Display of experiment samples. (a) Schematic diagram of sample fracture. (b) Picture of samples. (c) The plexiglass strip.

Table 1: Physical parameters of each sample (unit: 10-3m).

Number AB BC CD DA L D0 ba
1-40 48.88 101.14 49.03 101.02 101.08 48.96 1.28

1-32 48.70 100.72 49.12 100.17 100.45 48.91 2.12

1-48 49.12 100.63 49.01 100.24 100.44 49.07 2.56

Note.L is the height of the sample: LðAD + BCÞ/2; w is the crack length
perpendicular to seepage direction: wðAD + CDÞ/2; ba is the fracture
aperture.

2 Geofluids



The EIS measuring device was used to measure the elec-
tronic impedances of the samples with MICP. The device is
comprised of two fixed 8mm steel columns on a basal steel
plate underneath the rock sample, with a dielectric plexiglass
upper cover and a movable steel plate pedestal. At the ends of
the rock sample, two conductive copper films (with a radius
of 30mm and a thickness of 0.5mm) were set to connect to
the electrochemical workstation (PARSTAT 3000A-DX) by
four electrodes.

The triaxial fluid-solid coupled loading system was used
to test the Darcy permeability coefficients of fractured rock
samples with MICP at constant triaxial loads. This system
is a triaxial pressure chamber, applying axial pressure via a
SANS 2000 kN servo testing machine. Confining pressure is
applied by a servo oil cylinder with a range from 0.01MPa
to 60MPa; water pressure is applied by a servo water cylinder
with a range from 0.01MPa to 18MPa.

2.3. Testing Processes. Table 2 lists the cases in this experi-
ment. Firstly, before MICP grouting, the prefabricated, frac-
tured rock samples were weighed and saturated in water for
48 h. Each saturated sample was then horizontally connected
to the water outlet of the self-made seepage device at the
same height by a wrapped, 55mm diameter, heat-
shrinkable tube, to prevent seepage flowing from the fracture
in a longitudinal direction. Continuously adding water into
the cylinder vessel kept the water head at 17.5 cm and the

seepage was recorded in real time. The Darcy permeability
coefficient of each sample was measured without MICP.

Then, each sample was carefully placed between the
upper cover and the pedestal of the MICP grouting device,
to cause a fracture just below the grouting hole on the upper
cover. The peristaltic pump pumped the bacterial suspension

Triaxial fluid-solid coupling load system

Oil pump

Triaxial room

SANS 2000 kN
servo testing

machine

Water pump

Peristaltic pump
Grouting upper cover

Grouting pedestal

Liquid waste tank

MICP grouting setup

Water inlet

Overflow
opening

3
17.5 cm

Self-made seepage deviceRock impedance spectrum measurement

Computer Sample

Fixture

Electrochemical
workstation Electronic balance

Cementing
solution

Bacteria
suspension

Computer

Automatic data collection

2

1

Figure 2: Experimental setup flow chart.

Table 2: Load processes for measuring the permeability coefficient
of fractured rock with MICP.

Number
Axial pressure

(MPa)
Confining pressure

(MPa)
Water pressure

(MPa)

1-40 5.0 0.2,0.3,0.4 0.02

1-32 5.0 0.2,0.3,0.4 0.06

1-48 5.0 0.2,0.3,0.4 0.16

Table 3: Microbial quantity of dry samples with and without MICP
grouting.

Number
The quantity of sample (g)

m (g) γ (%)Without MICP
grouting

With MICP
grouting

1-40 455.82 460.28 4.46 28.16

1-32 465.60 475.03 9.42 36.22

1-48 458.27 480.85 22.58 71.58
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and cementing solution into the fracture until the fracture
was full of calcite precipitation, at a given injection rate.
The injection rate is important because too slow a rate would
greatly increase injection time while too fast a rate would
wash away calcium carbonate precipitation in the fracture.
Therefore, an injection rate of 0.003ml/s (corresponding to
3.0 rpm of peristaltic pump speed) was selected. After MICP
grouting, each sample was placed in a 70°C drying box for
48 h to stabilise the calcite precipitation, and then weighed
again; the grouting ratio of the fractured rock with MICP
was calculated.

Next, the Darcy permeability coefficient of each sample
with MICP was measured by the triaxial fluid-solid coupled
loading system. Before loading, the sample was, again, soaked
for 48h. The sample with the steel upper cover and pedestal
on its two ends was wrapped with a 55mm diameter
heat-shrinkable tube to protect the rock sample from oil
in the triaxial pressure chamber. The wrapped rock sample
was put into the triaxial pressure chamber, and the air in
the triaxial chamber and pressure pipes of the loading sys-
tem was eliminated to reduce testing pressure fluctuation.
After this, an axial pressure of 5.0MPa, a confining pres-
sure of 0.2MPa, and a water pressure of 0.02MPa were
applied to the sample, in turn, at the given loading rate.
The seepage quantity and time were recorded with a fre-
quency of 10Hz, at the same time. The loading process
was repeated for other confining pressures and water pres-
sures (see Table 2).

Afterwards, the electronic impedance of each dry, frac-
tured rock sample with MICP grouting was measured under
a 10mV voltage alternating current (AC) at a frequency
range of 10-1-105Hz. The sample was fixed and connected
to the top and bottom copper films, being clamped by the ref-

erence electrode and the counter electrode, and by the work-
ing electrode and the sense electrode, respectively. After
setting the start-up program, the real part and imaginary part
of the sample impedance were measured and plotted as a
Nyquist diagram fitted with ZView software.

Finally, the relationships among the permeability coeffi-
cient, permeability reduction, grouting ratio, and electronic
impedance of the fractured rock sample with MICP grouting
were analysed.

3. Test Results

3.1. Grouting Ratio of Fractured Rock with MICP. The grout-
ing ratio γ is the ratio of grouting volume to fracture volume
of a sample and is calculated by

γ = m
ρgLwba

, ð2Þ

where ba is the fracture aperture (10-3m), m is the grouted
filling quantity (g), and ρg is the density of the grouted filling,

ρg = 2:5 g/cm3. The calculated grouting ratios of each sample
with MICP are listed in Table 3.

3.2. Permeability Coefficient and Permeability Reduction of
Fractured Rock. Seepage quantity vs. time is plotted in
Figure 3. It shows that the seepage quantities of fractured
rocks with and without MICP linearly increase with increas-
ing time. So, the seepage flow rates were constant under the
constant water pressures and confining pressures listed in
Table 2. Therefore, it can be deduced that the seepage of frac-
tured rock samples in this experiment conform to Darcy’s
law. Darcy’s law and the cubic law of seepage can be

100

500

900

1300

1700

2100

3 7 11 15 19 23

Se
ep

ag
e q

ua
nt

ity
 (m

l)

Time (s)

1-48
1-32
1-40

(a)

0.0

1.4

2.8

4.2

5.6

7.0

5 10 15 20 25 30

Se
ep

ag
e q

ua
nt

ity
 (m

l)

Time (s)

1-48 (0.2 MPa)
1-32 (0.2 MPa)
1-40 (0.2 MPa)
1-48 (0.3 MPa)
1-32 (0.3 MPa)

1-40 (0.3 MPa)
1-48 (0.4 MPa)
1-32 (0.4 MPa)
1-40 (0.4 MPa)

(b)

Figure 3: Seepage volume-time relation lines of samples: (a) without MICP and (b) with MICP.
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presented as follows:

Q = 1
6 × 104

dV
dt

,

Q
D0b

= K
ΔP
ρgL

,

K = gb2

12u ,

ð3Þ

where Q is the seepage flow rate (m3/s), and V and t are the
seepage quantity (10-3 m3) and time (s), respectively. K is the
Darcy permeability coefficient (m/s) of fractured rock sam-
ples with MICP and is denoted as K0 for the sample without
MICP grouting, b is the hydraulic aperture of fracture (m),
ΔP is water pressure (see Table 2), and u and g are the kine-
matic viscosity coefficient of water and gravity acceleration,
respectively (with magnitudes of 1:0 × 10−6 m2/s and
10m/s2).

Substituting equation (3), the hydraulic aperture and the
Darcy permeability coefficient of fractured rock without
MICP and with MICP become

b = 0:2289
ffiffiffiffiffiffiffiffiffiffiffi

QL
D0ΔP

3

s

,

K = 438:59
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QL
D0ΔP

� �2
3

s

:

ð4Þ

The calculated K and K0 are listed in Table 4, and the perme-
ability reduction (K/K0) is defined as the ratio of K and K0.

3.3. Impedance of Fractured Rock with MICP. Figure 4 pre-
sents the Nyquist graph for the fractured rock sample
grouted by MICP. The imaginary part (Zim) is plotted
against the real part (Zre) of the fractured rock impedance
(Z).

This shows that a tiny arc usually appears in the Nyquist
graph at high frequency AC and is followed by a linear seg-
ment in the Nyquist graph at low frequency AC. Considering
the sample with MICP grouting and its grouting material, the
equivalent circuit model of fractured rock with MICP is pre-
sented in Figure 5.

The corresponding impedance (Z) is written as follows:

Z ωð Þ = Zre ωð Þ − jZim ωð Þ = Rs + Rp
1 + jωCRp ,

1
Rp = 1

Rp0
+ 1
Rp1

+ 1
Rp2

,
ð5Þ

where j is an imaginary unit, j2 = −1; ω is angular frequency;
Rs represents the electrolyte resistance; C represents the elec-
trical double-layer capacitor; and Rp represents the tested
resistance. Rp1 and Rp2 represent the resistances of two
half-fractured rocks and Rp0 represents the resistance of the
sample fracture grouted by MICP.

Based on Figure 5 and equation (5), the Rp, Rs, and C of
the fractured rock sample with MICP were well fitted by
ZView 2.0 software and are shown in Table 5. In Table 5, ρ
/S is the ratio of electrical resistivity of the MICP-filled frac-
ture (ρ) and the area of the cross-section of the fracture (S);
it is calculated by:

ρ

S
= Rp0

L
, ð6Þ

4. Analyses and Discussion

4.1. Effect of Confining Pressure on Seepage Permeability
Coefficient and Permeability Reduction. Figure 6 shows the
Darcy permeability coefficient of fractured rock without

Table 4: The Darcy permeability coefficients of samples without
and with MICP.

Number
K0 without

MICP (10-3m/s)
K with MICP (10-3m/s)

0.0MPa 0.2MPa 0.3MPa 0.4MPa

1-40 727.35 2.26 1.98 1.76

1-32 922.47 1.03 0.94 0.91

1-48 1051.61 0.67 0.60 0.54
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Figure 4: Nyquist graph of samples with MICP.
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Figure 5: Equivalent circuit model diagram.
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MICP (K0) and with MICP (K) versus confining pressure.
When the confining pressure increased from 0.2MPa to
0.4MPa (at increments of 0.1MPa), the Darcy permeability
coefficient of three samples linearly declined. This indicates
that confining pressure obviously reduces the permeability
coefficient of MICP for fractured rock.

Figure 7 plots the permeability reduction (K/K0) versus
confining pressure. The Darcy permeability coefficient
decreased by three to four orders of magnitude due to MICP.
The permeability reduction also decreased, with increasing
confining pressure. It was concluded that the increase of con-
fining pressure increased permeability reduction of MICP.
Therefore, the existence of confining pressure, ranging from
0.2MPa to 0.4MPa, benefited the MICP technique in achiev-
ing a better permeability reduction for fractured rock. Ma
et al. [20] analysed the seepage properties of fractured rocks
under different confining pressures. When confining pres-
sure was below 10-12MPa, the permeability coefficient
decreased exponentially, as confining pressure gradually
increased and then decreased in a slow drop under higher
confining pressure. Moreover, the analysis of experimental data
in this paper was consistent with [20]; it was concluded that
increasing confining pressure within the test range (low confin-
ing pressure environment) effectively enhanced the imperme-
ability performance effect of fractured rock with MICP.

4.2. Effect of Fracture Aperture on Grouting Ratio,
Permeability Coefficient, and Permeability Reduction. The
MICP grouting ratio (γ) of the samples vs. the fracture aper-

ture (ba) is shown in Figure 8. When the fracture apertures of
three samples ranged from 1.28mm to 2.56mm, the grouting
ratios increased with an increase in fracture aperture. This is
because the increase in fracture aperture reduced bioclogging
in the fracture and then promoted calcite precipitation in
fractures.

Figure 8(b) shows the effect of fracture aperture on the
Darcy permeability coefficient for fractured rock. Before

Table 5: Parameters after curve fitting of an equivalent circuit model.

Number Rs C Rp1 Rp0 Rp2 ρ ρ/S
1-40 1964 3:25E − 11 239960 131111.5 258910 81288.09 1297.11

1-32 1855 3:21E − 11 176850 85313.22 213540 88064.31 849.31

1-48 2684 4:66E − 11 141510 46498.77 149820 58155.49 462.95
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Figure 6: Effect of confining pressure on the permeability coefficient of fractured rock.
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MICP grouting, K0 increased linearly with the increase in
fracture aperture. However, after MICP grouting, K
decreased linearly with the increase in fracture aperture.
The higher the confining pressure, the smaller the Darcy per-
meability coefficient.

Figure 8(c) plots the effect of fracture aperture on the per-
meability reduction of MICP. In Figure 8(c), the permeability
reduction increased with an increase in fracture aperture,
ranging from 1.28mm to 2.56mm. However, more experi-
mental studies will be needed when other fracture apertures
and grouting strategies are chosen. Wanniarachchia et al.
[17] and Wang et al. [18] studied the seepage characteristics
of fractured rock with different fracture apertures numeri-
cally. With an increase in fracture aperture, the permeability
was gradually reduced. It is essential to consider the hydrau-
lic aperture of fractures in flow calculations, as well as frac-
ture apertures. These conclusions were verified by the

analyses in this paper. As fracture apertures (ba) increased,
the permeability coefficient of fractured rock without MICP
increased. However, the permeability coefficient decreased
in the fractured rock with MICP. The hydraulic aperture is
closely related to permeability coefficient.

4.3. Relationships between EIS Response, Grouting Ratio, and
Permeability Coefficient of MICP Grouted Fractured Rock.
Figure 9(a) plots the relationship between ρ/S and MICP
grouting ratio. Obviously, the MICP grouting ratios
decreased with an increase in ρ/S. This was because a large
grouting ratio resulted in uniform and dense calcium carbon-
ate precipitation in the sample fractures and induced good
conductivity. For example, when the grouting ratio was more
than zero, the resistivity of calcite in the fracture was about
1 ~ 9 × 103 Ω/m; however, when the grouting ratio was zero,
the resistivity of the fracture was that of the air in the fracture,
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with a magnitude of 3 × 1013 Ω/m. So, it could be deduced
that the equivalent circuit model of fractured rock with
MICP presented, could depict the characteristics of fractured
rock structure. The variance of the calculated parameters of
an equivalent circuit model (ρ/S) could well characterise the
effect of MICP on fractured rock.

The relationship between ρ/S and the Darcy perme-
ability coefficient of fractured rock with MICP is shown
in Figure 9(b). The Darcy permeability coefficient
increased with an increase in ρ/S. Based on Figure 9(a),
the increase in ρ/S meant a decrease of calcium carbonate
precipitation in the fracture and the decrease of precipita-
tion induced an increase in the permeability of the frac-
tured rock sample.

Figure 9(c) shows the relationship betweenMICP grouting
ratio and the Darcy permeability coefficient with MICP.
According to Figure 9(c), as the grouting ratio increased, the
permeability coefficient decreased. The slope of the permeabil-

ity coefficient also decreased with increasing grouting ratio.
When the grouting ratio reached 60%, the increase of grouting
ratio was not obviously decreasing the permeability coefficient.
On the other hand, the permeability coefficient decreased with
an increase in confining pressure, at constant ρ/S.

4.4. Relationship between Permeability Reduction, EIS, and
Grouting Ratio. The relationship between permeability
reduction (K/K0) and the grouting ratio is shown in
Figure 10(a). This strongly demonstrates that the permeabil-
ity reduction of MICP increased with the grouting ratio. This
is due to the fact that increasing grouting ratios increased the
uniformity and density of calcium carbonate in fractures,
reducing the Darcy permeability coefficients of grout-
fractured rocks and thus increasing permeability reduction
of MICP.

Figure 10(b) shows the relationship between the perme-
ability reduction and ρ/S of fractured rock samples. The
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permeability reduction increased with a decrease in ρ/S.
According to Figure 9, with a decrease in ρ/S, the Darcy per-
meability coefficient decreased, which meant an increase in
permeability reduction.

In the study by [13], they also showed that the permeabil-
ity reduction (along both the surface flow and channel flow)
was reduced, with an increase of grouting ratio of MICP.
Therefore, the accuracy of the above analysis can be reason-
ably guaranteed. EIS has been used in the measurement of
concrete crack width, and electrical conductivity was
observed to increase with an increase in crack width [32].
This showed that a relationship can be established between
electrical conductivity and the physical characteristics of
fractured rock. The relationship between electrochemical
properties and permeability established in this paper was a
novel application of EIS.

4.5. K and K/K0 Fitting with Confining Pressure and EIS. For
the samples with MICP, the Darcy permeability coeffi-
cient K and the permeability reduction (K/K0) were fitted
with ρ/S and confining pressure, and can be presented as
follows:

K = −0:95 + 3:2ρ/S − 2:13 ρ/Sð Þ2 + 0:09X1 − 0:08X2
1

1 − 9:28ρ/S + 0:113X1
,  R = 0:94ð Þ,

K
K0

= 7:66ρ/S − 0:0026X1 + 0:0035X2
1

1 + 0:0108ρ/S − 7:559 ρ/Sð Þ2 + 4:186X1
,  R = 0:99ð Þ,

ð7Þ

where X1 is the confining pressure, with a range from
0.2MPa to 0.4MPa, and R is the correlation coefficient.

Therefore, for the fractured rock with MICP, the K and
K/K0 could be predicted by the electrical resistivity, cross-
section area of fracture, and confining pressure, with correla-
tion coefficients of 0.94 and 0.99, respectively. Considering
that the measurement of electrical resistivity of fractured

rock was easier than that of permeability, this paper provides
a new method of predicting the permeability reduction in
MICP grout-fractured rock by the EIS technique, under con-
ditions of confining pressure.

Only the permeability was considered in the present
study. However, mechanical properties of MICP-grouted
rock should be analysed in order to evaluate the engineering
application value of MICP. The shear strength parameters of
fractured rock with MICP will be studied in future research.

5. Conclusions

The permeability reduction and electronic impedance of
fractured rock, grouted by MICP, were investigated, consid-
ering the effect of confining pressure and fracture aperture.
An equivalent circuit model of fractured rock with MICP
was presented. The relationships of the Darcy permeability
coefficients, permeability reduction, EIS response (ρ/S), and
grouting ratios of fractured rocks were discussed. The con-
clusions are drawn as follows:

(1) The MICP reduced the Darcy permeability coeffi-
cient of fractured rock by orders of magnitude of
three to four, and increasing confining pressure from
0.2MPa to 0.4MPa also reduces permeability.

(2) The presented equivalent circuit model of fractured
rock with MICP explained the characteristics of the
fractured rock structure and can be used to character-
ise the effect of MICP on fractured rock.

(3) The permeability reduction in fractured rock,
grouted by MICP, decreased with an increase in ρ/S
, confining pressure, grouting ratio, and fracture
aperture ranging from 1.28 to 2.56mm under a
grouting rate of 0.003ml/s; the corresponding per-
meability reduction increased.
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(4) The permeability reduction and the Darcy perme-
ability coefficient of fractured rock grouted by MICP
were closely related to and well predicted by confin-
ing pressure and ρ/S.
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The principle purpose of this work is to formulate an accurate mathematical model to evaluate the transient pressure behavior of a
well intercepted by a partially penetrating vertical fracture (PPVF) with non-Darcy flow effect. Fracture conductivity is taken into
account by coupling the three-dimensional flow in reservoir and the two-dimensional flow within fracture; the Barree-Conway
model is incorporated into the model to analyze non-Darcy flow behavior in fracture, which leads to the nonlinearity of the
governing equations. A high-effective iterative algorithm using a combined technique of fracture-panel discretization and
dimension transform is developed to render the nonlinear equations amenable to analytical linear treatment. On the basis of the
solutions, the pressure response and its derivative type curves were generated to identify the evolution of flow regimes with time.
Furthermore, the influences of fracture conductivity, penetration ratio, and non-Darcy characteristic parameters on pressure
response are investigated. The results show that PPVF exhibits five typical flow regimes, and analytical solutions for each flow
regime are similar to that for a fully penetrating vertical fracture (FPVF) that can be correlated with the penetration ratio and
apparent conductivity. The non-Darcy flow effect is found to have more significant effect on the low and moderate conductivity,
especially in early-stage flow regimes. When the penetration ratio is smaller than 0.5, the pressure behavior exhibit a more
remarkable variation with penetration ratio. This study provides a better insight into understanding the influence of non-Darcy
flow on flow regime identification.

1. Introduction

Fracturing stimulation has been widely applied in the devel-
opment of tight hydrocarbon formations. Hydrocarbons are
efficiently extracted from low-permeability formation into
the wellbore throughout hydraulic fractures. It has been
established that the inclination of the overall plane of a
hydraulic fracture is determined by the axis of the least prin-
cipal stress. If the axis is in the vertical or horizontal direc-
tion, the created fracture would be horizontal or vertical,
respectively; otherwise, the fracture would be inclined [1].
In addition to those time-consuming numerical simulations,
numerous works using various analytical or semianalytical
methods have been published for study the flow behavior of
vertical fracture [2–5], horizontal fracture [6–8], and inclined

fracture [9–13]. These solutions serve as a theoretical basis of
the pressure-transient and rate-transient analysis for hydrau-
lically fractured well.

At depths deeper than approximately 2000 ft in the
unconventional reservoir, the direction of the least principal
stress is generally parallel to the formation plane [14], and
as a result, the hydraulic fractures are generated principally
in the vertical direction. Although the intention was for oil
companies to create fully penetrating hydraulic fractures,
the actual measurement shows that hydraulic fracture may
not extend throughout the entire vertical extent of the forma-
tion thickness [15, 16]. Only the effective height of the frac-
ture that is propped open contributes to the production,
and the three-dimensional flow pattern occurs in the reser-
voir. Alternatively, the flow in vertical direction should be
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considered. From the viewpoint of reservoir engineering,
fracture dimensions (fracture length, width, and height) are
all of much influence on the production performance. How-
ever, few studies have dealt with the effects of partially pene-
trating fracture. Raghavan et al. [17] presented a pioneering
work of investigating the effect of fracture height of a single,
vertical fracture. A uniform flux across the fracture plane was
assumed, and an approximate analytical solution for the case
of infinite conductivity was obtained by evaluating the
uniform-flux solution at a special position. Rodriguez et al.
[18] investigated the effect of the partial penetration of PPVF
with infinite conductivity by discretizing the fracture into a
set of uniform-flux planes and ignoring the pressure drop
within fracture. Rodriguez et al. [19] further considered the
pressure drop within finite conductivity fracture by establish-
ing a Poisson’s type differential equation in fracture. Igbokoyi
and Tiab [20] used the elliptical flow model in Laplace
domain to obtain the solution for PPVF with infinite conduc-
tivity in naturally fractured reservoirs. Al-Rbeawi and Tiab
successively used the type-curve matching technique and
Tiab’s direct synthesis technique to analyze the pressure
behavior of a horizontal well with multiple vertical partially
hydraulic fractures [11, 12].

Meanwhile, the non-Darcy flow effect should be consid-
ered because it usually happens due to the high-velocity flow
within hydraulic fracture. As we know, non-Darcy flow
within fracture has more important influence on transient
pressure responses than non-Darcy flow in the reservoir
[21, 22]. It is well demonstrated that non-Darcy effects
account for a 35% decrease in productivity in a hydraulically
fractured high-rate oil well, a larger productivity decrease for
gas well [23]. It is well accepted that the fracture length and
conductivity might be underestimated in the presence of
non-Darcy flow. Umnuayponwiwat et al. [24] found that
the errors of the estimation of fracture conductivity and
fracture length would be up to 78% and 54% if neglecting
non-Darcy flow effect for gas well. Therefore, it is of much
practical importance to accurately evaluate the performance
of appropriate conductivity fractured well with non-Darcy
behavior. Forchheimer’s equation was widely used to analyze
the flow behavior of finite conductivity FPVF with consider-
ing non-Darcy flow in many semianalytical approaches such
as the work presented by Guppy et al. [25, 26]. Zeng and
Zhao [27] used the Forchheimer number to quantify the
effect of non-Darcy flow in the reservoir on the transient
pressure behavior of vertical well through regarding it as
rate-dependent skin factor. Valko and Amini [28] applied
the 3D method of distributed volumetric sources to predict
production from a horizontal well intersected by multiple
transverse fractures with non-Darcy flow effect. Considered
the fact that Forchheimer’s equation leads to an error at both
low and high velocities [29, 30], and Zhang and Yang [31]
incorporated the versatile Barree-Conway model to describe
non-Darcy flow behavior in hydraulically fractured wells
and developed an equation to correlate the Forchheimer
equation and the Barree-Conway model. Jiang et al. [32]
further applied it to quantify the non-Darcy flow effect
in a hydraulically fracture horizontal well in a naturally
fractured reservoir.

These previous literatures demonstrated that there was a
large reduction in the fracture conductivity when non-Darcy
flow effect occurring in the FPVF was included. However,
uncertainty still remains regarding whether the reduction
becomes more significant as for the PPVF or not. It is neces-
sary to emphasize that Zhang and Yang [33] used a novel slab
source function to accurately quantify non-Darcy effect and
penetrating ratio with consideration of the appropriate frac-
ture dimension and its conductivity. The assumption of
one-dimensional flow pattern in the finite conductivity frac-
ture is proposed to simulate approximately the actual two-
dimensional flow, which contributes to inaccurate results
for the pressure-transient analysis of low/moderate-conduc-
tivity fracture.

In this work, we develop an efficient and effective
approach that provides accurate pressure-transient response
of PPVF with non-Darcy flow effect during drawdown
testing. Flux variations along the horizontal and vertical
directions in the fracture are physically described by use of
two-dimensional flow pattern. Different from the solutions
using the Greens function method [11–13, 25, 31–33], a com-
putational package based on Laplace solutions are derived to
accelerate the calculation speed with high precision, and the
technique using dimension transform is presented to elimi-
nate the nonlinearity caused by non-Darcy effect. Subse-
quently, we identify the flow regimes and perform the
sensitivity analysis of influence factors. In addition, a field
case is used to illustrate the application of this model for
accurate interpretation of well testing data.

2. Model Development

2.1. Model Illustrations. In this study, Figure 1 shows the
physical model of a vertical well intersected by a partially
penetrating vertical fracture. There are several fundamental
assumptions:

(i) The formation is infinite in the lateral direction (x-
and y-direction), and the boundaries on the top
(z = h) and bottom (z = 0) are impermeable. The for-
mation is assumed to be homogeneous with constant
porosity (φ), compressibility (ct), and permeability
(km). The vertical permeability is set to be kmz

(ii) The fracture plane has a rectangular shape, and the
compressibility of fracture is ignored

(iii) The length, width, height, and orientation angle of
vertical fracture are denoted by Lf , wf , hf , and θ,
respectively. The starting coordinate is denoted by
ðxofD, yofD, zofDÞ.

(iv) The fluid is assumed to be single phase, isothermal,
and slightly compressible

(v) The fluid flow is considered as Darcy’s law in the
matrix, and the flow is described by non-Darcy flow
in the fracture. Here, the non-Darcy flow is
described with the Barree-Conway model [34]

(vi) The well produces at a constant-rate condition
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Here, it is necessary to clarify the reason that we select
the Barree-Conway model. First, the Forchheimer equation
describes the laminar flow with inertia effect, which is
given by

−∇p = μv
1
kfD|{z}

laminar

+ β
ρv
μ|ffl{zffl}

inertia

0BBB@
1CCCA = μv

1
kf app

 !
, ð1Þ

where β is non-Darcy flow coefficient, kfD represents the
Darcy permeability, and kf app represents the apparent
permeability caused by non-Darcy flow effect. However,
numerous studies demonstrate that 1/kf app does not
reduce to the inverse of the Darcy permeability 1/kfD
when velocity approximates to zero, and kf app approaches
a value of zero at high velocities, rather than a limited
value [29, 35]. This is inconsistent with Eq. (1), which
indicates that Forchheimer’s equation may not be univer-
sal and only applicable in a limited range of velocities.
Alternatively, the beta factor β is dependent on velocity,
not a constant, and the kapp would deviate from the linear
Forchheimer’s correlation at low and high velocities.

The equation suggested by Barree and Conway [34] is
introduced to recast the non-Darcy effect in the entire range
of velocities. According to the Barree-Conway model, the
ratio of apparent permeability to Darcy’s permeability is
rewritten as follows:

kf app
kfD

= kmr +
1 − kmr
1 + ρv/μτ = kmr +

1 − kmr

1 + FND qcf D
��� ��� , ð2Þ

where kmr is relative minimum permeability, τ is the charac-
teristic length, and v is the fluid superficial velocity. In the

form of dimensionless variables, the Reynolds number and
the cross-sectional rate are defined, respectively, by

FND = ρ

μτ
× qref
wf h

,

qcf D = h
hf

×
qcf
qref

:

ð3Þ

The Reynolds number is a constant, independent of frac-
ture height. It is only determined by production rate and
fracture width. Note that the fracture width is fixed in this
study. Fracture conductivity is determined by changing the
value of fracture permeability.

2.2. Mathematical Formulation. The fracture is represented by
a rectangular porous medium of dimensions Lf × hf ×wf . The
flow parallel to the axis of fracture width can be ignored
because of tiny fracture width, which signifies that the flux dis-
tribution can be assumed to be uniform in this direction [19].
After the non-Darcy effect is taken into account, according to
the principle of mass balance, the fracture flow is described
by the following partially differential equation in dimensionless
form (dimensionless definitions are seen in Appendix A):

∇
kf app
kfD

∇pfD

 !
−

2π
CfDi

qf D xf D, zf D
� �

+ 2π
CfDi

δ xfD − xwfD

� �ðhfD

0
qwfD zfD′

� �
δ zfD − zf D′
� �

dzfD′ = 0:

ð4Þ

Laplace operator is written as ∇ðÞ = ∂/∂xf + ∂/∂zf .

x

z

hf
yh

Lf

Vertical wellbore

Impermeable boundary

(xof, yof)

zof

𝜃

Figure 1: Schematic of a vertical well intersected by a partially penetrating fracture.
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Initial dimensionless conductivity with regard to the
Darcy permeability, which is a constant value, is defined by

CfDi =
kfDwf

� �
kmLrefð Þ : ð5Þ

In Eq. (4), xwf is the wellbore location within fracture,
qf is the flux-density function of spatial variables which
represents the flux entering the fracture from the reservoir
throughout the fracture surface. qwf is a source term
representing the fluid extracted throughout the vertical
wellbore within fracture, and it is parallel to the fracture
height. In addition, the boundary conditions can be writ-
ten as follows:

∂pfD
∂xfD

�����
xfD=xofD

=
∂pfD
∂xfD

�����
xfD=xofD+LfD

= 0,

∂pfD
∂zfD

�����
z f D=zofD

=
∂pfD
∂zfD

�����
z fD=zofD+hfD

= 0:
ð6Þ

In the vertical axis, the fracture plate is divided into a
set of linear panels. Each panel is separated by red lines in
Figure 2. We eliminate the spatial dependence in zfD
direction by integrating with respect to zfD varying from
0 to hfD:

1
hfD

ðhfD

0
∇

kapp
kD

∇pfD

� 	
dzfD −

2π
CfDihfD

ðhfD

0
qfD xfD, zfD
� �

dzfD

= −
2π

CfDihfD
δ xfD − xwfD

� �ðhfD

0

ðhfD

0
qwfD zfD′

� �
δ zfD − zfD′
� �

dzfD′ dzfD:

ð7Þ

According to the studies provided by Al-Kobaisi et al.
[36], the flow parallel to the fracture length dominates
compared to the other direction. Therefore, the flux
exchange between adjacent panels is ignored to some
extent, i.e.,

∂pfDn
∂zfD

�����
z fD=zof Dn

=
∂pfDn
∂zfD

�����
z f D=zofDn+hfDn

= 0: ð8Þ

As a result, the nth fracture panel forms the equation
with regard to the weighted average of panel height hfDn,
which is given by

∂
∂xfDn

kapp
kD

∂�pfDn
∂xfDn

 !
−

2π
CfDi

�qfDn xfDn
� �

+ 2π
CfDin

�qwfDnδ xfDn − xwfD

� �
= 0:

ð9Þ

Equation (9) is an approximate treatment which con-
verts the partially different equation for two-dimensional
flow pattern into a system of ordinary-differential equa-
tions that is independent of zf -directional spatial variable.
At a given position of xfD, the values of pressure in differ-
ent panels might be different, which leads to a pressure
difference contributing to the flux exchange in zf -direc-
tion. In fact, the approximation given in Eq. (9) has some
inconsistencies, but it is close to the exact solution for the
cases of interest; therefore, the equations could still be
used for practical purposes. This approach is similar to
the approximate analytical solution for the composite
five-region model presented by Stalgorova and Mattar
[37], and the following calculation results also verify our
approximate approach.

The solution for matrix system could be directly obtained
by using the fundamental point-source solution in Laplace-
transformed domain [38], which is given by

~pD xD, yD, zDð Þ = 〠
N f

n=1

ðhfDn

0

ðLfDn

0
~qDn ξD, ζDð ÞK0

ffiffi
s

p
rDn

� �
dξDdζD

+ 2〠
N f

n=1
〠
∞

m=1

ðzofDn+hfDn

zofDn

ðLfDn

0
~qDn ξD, ζDð Þ cos βmzDð Þ cos βmζDð ÞK0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s + β2

m

h2D

s
rDn

" #
dξDdζD,

ð10Þ

where Nf is the number of fracture panels, βm =mπ, and the
plane distance between the spatial point in the reservoir ðxD,
yDÞ and the spatial point on the fracture panel ðxofD + ξD cos
θf , yofD + ξD sin θf Þ is expressed as

rDn = xD − xofD − ξD cos θf
� �2 + yD − yofD − ξD sin θf

� �2h i0:5
:

ð11Þ

Although the Laplace-transformed solutions have great
advantage in calculating the convolution, they usually pose com-
putational problem. K0 is a zero-modified Bessel function of the
second type. The case of rDn = 0 leads to a singularity, and it is
difficult to use numerical integration. Besides, since the integrals
of Bessel functions appear in the terms of the infinite series [i.e.,
the second term on the right hand side of Eq. (10)], it is impor-
tant to ensure the convergent and vanishing components of the
infinite series. Some alterative solutions must be developed to
accelerate the speed of the computations and improved the accu-
racy. An accurate computation package is provided in Appendix
B, which is an important novelty of this work.

2.3. Semianalytical Solution. Although the two-dimensional
equation is simplified into a system of one-dimensional
equations, the governing equation for fracture panel
described by Eq. (9) still has a strong nonlinearity nature
because the term of kapp/kfD is a function of velocity with
regard to temporal and spatial variables. We introduced
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the technique of dimension transformation presented by
Luo and Tang [39] to render the nonlinear equation ame-
nable to linear analytical treatment. Here, the definition of
transformed dimension is given by

ξDn xfDn
� �

= Ĉ f Dn,app ⋅
ðxfDn
0

dxD
CfDn,app xDð Þ ,

Ĉ f Dn,app = LfDn/
ðLfDn

0

dxD
CfDn,app xDð Þ ,

ð12Þ

and an apparent conductivity considering non-Darcy flow
effect is defined as

Ĉ f Dn,app =
LfDnÐ LfDn

0 1/CfDn,app xDð Þ� �
dxD

: ð13Þ

Based on Eq. (2) and Eq. (5), the relation between
apparent and initial dimensionless conductivity satisfies

CfDn,app xfDn, qcf Dn
� �

= CfDi kmr +
1 − kmr

1 + FND qcf Dn
��� ���

0B@
1CA:

ð14Þ

In this work, the conductivity based on the non-Darcy
model is denoted as apparent conductivity, while the con-
ductivity based on the Darcy model is denoted as (initial)
conductivity. The apparent conductivity equals to the ini-
tial conductivity in the absence of non-Darcy flow
(kmr = 1 or FND = 0), and it will be smaller than the initial
in the condition of non-Darcy flow (other cases).

After substituting Eq. (12) into Eq. (9) and using Laplace
transformation, a system of linear equations is obtained,
which is

∂2e�pfDn
∂ξ2Dn

−
2π

Ĉ f Dn,app
e�qfDn ξDnð Þ + 2π

Ĉ f Dn,app
e�qwfDnδ ξf Dn − ξwfD

� �
= 0:

ð15Þ

Eq. (15) is the well-known Fredholm integral equation.
Integrating Eq. (15) with regard to ξDn from 0 to ξDn would
yield the closed-form pressure solution and auxiliary solution
(i.e., cross-sectional velocity), which are expressed, respec-
tively, as follows:

e�pwD − e�pfDn ξDnð Þ = 2π
Ĉ f Dn,app

e�qwfDG ξDn − ξwfDn

� �
−

2π
Ĉ f Dn,app

ðξDn
ξwfDn

dς
ðς
0
e�qfDn ζð Þdζ

e�qcf Dn ξDnð Þ =
ðξDn
0
e�qfDn ζð Þdζ − e�qwfDnH ξDn − ξwfDn

� �
8>>>><>>>>:

:

ð16Þ

Noting that according to the Darcy law in the trans-
formed dimension, the dimensionless cross-sectional flow
rate is defined as e�qcf Dn = hfDnðĈ f Dn,app/2πÞð∂e�pfDn/∂ξDnÞ.

To obtain the unknowns, a semianalytical method is used
to further discretize each panel into Ni segments with uni-
form flux (denoted by blue lines in Figure 2). According to
the constant-rate condition, the constraint condition can be
written as follows:

〠
N f

n=1
e�qwfDn = 〠

N f

n=1
〠
Ni

i=1
e�qfDn,iΔξDn,i = 1

s
: ð17Þ

In addition, the pressure and flow rate are continuous at
the interface between the matrix and fracture. Here,

e�pfD ξDn xfDn,i
� �� �

= ~pD xof D + xfDn,i cos θ, yof D + xfDn,i sin θ, zof Dn
�

+ 0:5hfDn
�
:

ð18Þ

Because the solution of the fracture is derived from the
new dimension, flux cannot be directly equalized at the inter-
face. It is correlated as

e�qfDn,i = ~qDn,i ×
ΔxfDn,i
ΔξDn,i

: ð19Þ

On the basis of the continuity condition and constraint
condition, the matrix and fracture systems are coupled to

𝛥Lf

Lf

1 2 NiNi-1… …

hf

1

2

Nf-1

Nf

…

q
fm,i

…

m

… …i

Wellborexwf

z

x

𝛥hf

Figure 2: Discretization of PPVF along both the horizontal axis and the vertical axis.
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generate closed-form equations. The unknown variables are
listed as

(i) N i ×Nf uniform-flux rate of each segment, qfDn,i,
i = 1, 2,⋯,Ni, n = 1, 2,⋯,Nf

(ii) Nf flow rate of each panel, qwfDn, n = 1, 2,⋯,Nf

(iii) The wellbore pressure, pwD

The total unknown variables are Ni ×Nf +Nf + 1, which
are presented in a vector form:

XT = e�qfD1,1,e�qfD1,2,⋯, e�qfD1,Ni
,⋯,e�qfDN f ,Ni|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ni×N f

,e�qwfD1, e�qwfD2,⋯,e�qwfDN f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N f

, e�pwD
0BB@

1CCA:

ð20Þ

The structure of coefficient matrix and the known vector
refers to our previous work [5].

In each time step, an explicit iterative method is applied
here to solve the nonlinear equations. Thus, Eq. (16) is writ-
ten as

e�pwD − e�p κ+1h i
f Dn ξ

κh i
Dn

� �
= 2π
Ĉ

κh i
f Dn,app

e�q κ+1h i
wfD G ξ

κh i
Dn − ξ

κh i
wfDn

� �
−

2π
Ĉ

κh i
f Dn,app

ðξ κh i
Dn

ξ
κh i
wfDn

dς
ðς
0
e�q κ+1h i
f Dn ζð Þdζ

e�q κ+1h i
cf Dn ξ

κh i
Dn

� �
=
ðξ κh i

Dn

0
e�q κ+1h i
f Dn ζð Þdζ − e�q κ+1h i

wfDnH ξ
κh i
Dn − ξ

κh i
wfDn

� �
8>>>>><>>>>>:

:

ð21Þ

The detailed process is illustrated as follows:

(1) Model inputs: reservoir parameters, fracture dimen-
sions, and non-Darcy characteristic parameters

(2) Initialization: with κ = 0, the apparent conductivity

Chκi
f Dn,app is assumed to be the initial conductivity

CfDi. The e�qhκif Dn and e�qhκicf Dn are obtained by Gaussian
elimination method and Stehfest numerical inversion

(3) Iterative process

(a) Calculating apparent conductivity Chκi
f Dn,app and

Ĉ
hκi
f Dn,app and transforming xfDn into ξhκiDn according

to Eq. (12)

(b) Solving the explicit linear equations of Eq. (21) by
Gaussian elimination method and Stehfest numerical

inversion and obtaining the updated e�qhκ+1if Dn , e�qhκ+1icf Dn ,

and e�qhκ+1iwfD

(c) If je�phκ+1iwD −e�phκiwDj < εð= 10−5Þ, then terminate the

iterative process; otherwise, updating e�qhκif Dn =e�qhκ+1if Dn

and e�qhκicf Dn =e�qhκ+1icf Dn with κ = κ + 1 and return step (a)
until convergence

3. Results and Discussions

3.1. Model Validation. Before conducting the validation, a
sensitivity analysis was first conducted to determine the
number of fracture panels (Nf ) and the number of fracture
segments (Ni) needed to yield accurate results. As we know,
both the number of fracture segment and the number of frac-
ture panels increase with the decrease of conductivity. The
following dimensionless fracture and reservoir data are used
in this model: hD = 2h/Lf = 1, hfD = hf /h = 1, km/kmz = 1,
CfDi = π, kmr = 0:1, and FND = 100, which indicate the case
of low conductivity and strong non-Darcy effect. Figure 3
shows the dimensionless pressure from small to large time
scope under different number of fracture panels. This indi-
cates that the pressure drop approximate a stable and accu-
rate result when the number of panels and segments is
more than 1000 (10 × 100); therefore, the number of fracture
panels of Nf = 10 and the number of fracture segments
Ni = 100 are used in the following studies.

In this section, existing solutions are used to verify our
model. First, the results for finite-conductivity PPVF without
non-Darcy flow effect were compared against results
previously presented by Rodriguez et al. [19], where we set
kmr = 1 and FND = 0 that assume the Darcy flow within frac-
ture. Second, the results for finite-conductivity FPVF with
non-Darcy flow effect using the Forchheimer equation were
compared against the results presented by Guppy et al. [25]
and Luo and Tang [39]; here, the Barree-Conway equation
is simplified to the Forchheimer equation when kmr = 0 and
ðqDNDÞf = FND. Noting that fully penetrated fracture is the

limiting case of our model. As seen in Figure 4, the calculated
results from our model agree well with those published calcu-
lations for times of interest. The validations indicate that the
proposed semianalytical model is reliable in simulating pres-
sure transient response of finite-conductivity PPVF with
non-Darcy effect.

In addition, the speed of the computations of two models
is compared using the identical hardware platform. For the
above simulations, the computation times using the improved
algorithm in this paper and the previous algorithm are, respec-
tively, 19.5 s and 28.8 s.

3.2. Transient-Flow Behavior. Figure 5 shows the dimension-
less pressure and derivative responses of the PPVF with a
moderate conductivity (CfDi = 100π) and a small penetration
ratio (hfD = 0:1) under a weak non-Darcy flow effect
(kmr = 0:5, FND = 100). For the sake of comparison and
description, the corresponding pressure responses caused
by the Darcy flow are also presented. The black lines repre-
sent the non-Darcy case, while the red lines represent the
Darcy case.

As analyzed in Figure 5, the flow regimes are clearly dis-
tinguished by identifying the slopes on log-log curve of
pressure-derivative in the Darcy condition. Five typical flow

6 Geofluids



10–7 10–6 10–5 10–4 10–3 10–2 10–1 100 101 102

10–2

10–1

100

101

hD = 1, hfD = 1, km/kmz = 1, zwD = 0.5, CfDi = 𝜋, kmr = 0.1, FND = 100 

p
w
D

tD

Accurate
Nf = 10

Nf = 5
Nf = 3

Figure 3: Effect of the number of fracture panels on the calculation accuracy.
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Figure 4: Comparison between the dimensionless pressures calculated by our solution and the alternative results proposed by (a) Guppy et al.
[25] and (b) Luo and Tang [39].
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Figure 5: Pressure and pressure derivative responses for PPVF with and without the non-Darcy flow effect.
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regimes are exhibited in sequence: (1) bilinear-flow period
characterized by a 1/4-slope straight line, (2) formation-
linear flow period identified by a 1/2-slope straight line, (3)
early-radial flow regime, (4) compound-linear flow regime,
and (5) pseudoradial flow regime. A detailed illustration
was presented.

3.2.1. Bilinear flow. The fluids beyond the fracture face in ver-
tical direction are not developed as show in Figure 6(a). An
explicit solution for a FPVF was provided by Cinco-Ley
and Samaniego [40] during bilinear flow:

pwD tDð Þ = π

Γ 5/4ð Þ ffiffiffiffiffiffiffiffiffiffiffi2CfDi
p t1/4D : ð22Þ

For PPVF with non-Darcy flow effect, the fracture
behaves like FPVF with the same height (hf ) during this
period, so the solution is corrected as follows:

hfDpwD tDð Þ = 2πkmhf pi − pwð Þ
qrefμ

= π

Γ 5/4ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2CfD,app
p t1/4D ,

ð23Þ

where CfD,app is a correlation for the apparent fracture
conductivity, which is the function of initial conductivity
(CfDi), the Reynolds number (FND), and the minipermeability

plateau (kmr). After simulating numerous cases, the relation-
ship between apparent and initial (true) conductivities that is
suitable for the special case using the parameters seen in
Figure 5 is achieved, which is

CfD,app
CfDi

= kmr +
1 − kmr

1 + 2:51FND
: ð24Þ

3.2.2. Formation-linear flow. During this period as shown in
Figure 6(a), formation fluid enters the fracture in a direction
perpendicular to the fracture surface, but the pressure
response within fracture is not considered again. Note that
the flow pattern in the fracture exhibits line-shaped during
bilinear and linear flow regimes, which is confirmed in
Figure 7(a). Based on the analytical solution for FPVF pre-
sented by Gil et al. [41], both penetration ratio and non-
Darcy effect are further taken into account in this work.
Similar to the derivation of bilinear-flow solution, we recast
analytical solution for formation-linear-flow period as follows:

hfDpwD tDð Þ =
ffiffiffiffiffiffiffiffi
πtD

p
+ α

CfD,app
, ð25Þ

where α is a constant given by the following: α = π/3 for
CfD ≥ 25, α = 0:944 for 10 ≤ CfD < 25, and α = 0:902 for
5 ≤ CfD < 10 [41].

z

y

x

(a) Bilinear and linear flow

z

y

x

(b) Early-radial flow

z

y

x

(c) Compound-linear flow

Figure 6: Schematic of some special flow regimes occurring during the production for a PPVF.
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3.2.3. Early-radial (ER) flow. If penetration ratio is small
enough, hfD should be smaller than 0.5 suggested by Al-
Rbeawi and Tiab [11]; an ER flow regime is developed around
and along the fracture length in YZ plane. The ER flow regime
is identified by a horizontal line on pressure derivative plot with

tD × pwD′
� �

ER
= 0:5: ð26Þ

During this period, fracture behaves like a finite-
conductivity horizontal well with axis along the formation
boundary, and the reservoir fluids flow radially in YZ plane
towards fracture as seen in Figure 6(b). The effective penetra-
tion length becomes fracture length rather than formation
thickness or fracture height, which is given by

pwD,ER =
pwD
2hD

=
2πkmLf pi − pwð Þ

qrefμ
: ð27Þ

The corresponding horizontal line on derivative curve is
corrected as follows:

tD × pwD,ER′
� �

ER
= 0:5
2hD

: ð28Þ

Note that the flow pattern deviates from the line shaped,
becoming the radial shaped as shown in Figure 7(b).

3.2.4. Compound-linear (CL) flow. CL flow often occurs after
ER flow when both upper and bottom impermeable bound-
aries are felt. The fluid flow is predominantly perpendicular
to the fracture face in XY plane, and the response does not
reach the region beyond fracture tip. The PFVF behaves like
a FFVF during this period, as shown in Figure 6(c). The char-
acteristic of this flow behavior is very similar to the com-
pound linear flow for multistage-fractured horizontal well
presented by Chen and Raghavan [4] and fractured inclined
well presented by Dinh and Tiab [10], which is identified
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Figure 7: Pressure fields within two-dimensional fracture at (a) tD = 10−6 and (b) tD = 10−2.
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by an approximated 1/2-slope straight line on log-log plot of
pressure derivative.

3.2.5. Pseudoradial (PR) flow. During this period, the reser-
voir flow begins to converge radially to the partial fracture.
The flow in XY plane dominates compared with YZ plane;
alternatively, the flow in z-direction can be ignored. The PR
flow is characterized with tD × p’wD = 0:5 on the log-log plot.

Depending on the reservoir, fracture, and non-Darcy
flow parameters used in a single test, the duration of some
flow regime might elongate or shorten, even disappear. The
non-Darcy flow effect leads to extra pressure drop, but can-
not alter the characterization of flow regimes identified by
the Darcy behavior.

3.3. Sensitivity Analysis. According to Eq. (2), the effect of
non-Darcy flow is determined by two dimensionless param-
eters (i.e., kmr and FND) with the Barree-Conway model. It is
assumed that the formation thickness, fracture length, and
initial conductivity are given, i.e., hD = 1, hfD = 0:1, and
CfDi = 100π. To highlight the improvement of this work,
the effect of dimensionless parameters with the Barree-
Conway model and the penetration ratio of fracture are
mainly discussed here because effects of dimensionless
thickness, fracture conductivity, fracture location, and asym-
metrical wellbore have been extensively investigated and
analyzed [17, 25].

Figure 8 shows the influence of non-Darcy flow effect on
transient pressure behavior of PFVF. Figure 8(a) displays the
pressure and derivative curves for FND = 0:1, 1, 10, and 100 at
kmr = 0:1. The Reynolds number (FND) is proportional to
production rate according to Eq. (3). Increasing FND repre-
sents the increase of production rate. Besides, the case that
FND = 0 or kmr = 1 indicates Darcy’s flow equation. The lim-
iting Darcy cases are introduced, which are denoted by blue
dashed lines. Case 5 indicates the pressure responses for the
initial conductivity in the Darcy flow condition, while case
6 indicates the minimum conductivity in the Darcy flow con-
dition (CfD min = CfDi × kmr). For case 1~4, non-Darcy effect
causes a significant reduction in fracture conductivity in sim-
ulated cases. As a result, an extra pressure drop is caused by
non-Darcy effect. Case 4 exhibits a whole sequence of flow
regimes similar to the initial case (case 5) due to a weak
non-Darcy effect. The increasing of FND shortens the dura-
tion of formation-linear flow regime until disappears (i.e.,
case 1 and case 2). Meanwhile, the pressure drop and deriva-
tive curves also increase and approach the minimum case
(case 6) because of strong non-Darcy effect. As a result, the
curves of pressure responses with non-Darcy effect (i.e., case
1~case 4) are distributed within the range between the initial
case (case 5) and the minimum case (case 6). Note that case 1
is almost overlapped with the minimum case for times
of interest.

The flux distribution stabilizes and remain unchanged
when pseudoradial flow is established, which is shown in
Figure 8(b). Note that the flux distribution indicates the
arithmetic average value of flux distribution among fracture
panels. The integral with regard to xfD represents the volume

of fluids entering the fracture. In case 6, most of the flow
occurs from the half of fracture away from the wellbore. With
the FND increasing, the characterization of fluid flow is
approaching the unified case (case 6): the flow from the tips
decreases, and more fluid comes from the half of fracture
closer to the wellbore.

Figure 9(a) plots the curves of pressure responses for
kmr = 0:1, 0.2, 0.5, and 0.9 at FND = 10. Different values of
kmr represent different minimum cases under Darcy flow,
which are denoted by blue dashed lines. The initial case is
denoted by green dashed line. Solid lines indicate the cases
with non-Darcy effect. The non-Darcy cases are located
within the range between the initial case and the minimum
case. As seen in Figure 9(a), as the value of kmr decreases,
the pressure drop and its derivative would deviate from the
initial case and approach the corresponding minimum case
due to intense non-Darcy effect. When the value of kmr
approaches unity, such as case 4, the pressure response of
the minimum Darcy case is similar to the initial Darcy case.
The apparent conductivity for case 4 is always in the order
of magnitude for infinite conductivity during the process of
conductivity degradation. As a result, the effect of non-
Darcy flow tends to disappear. When the value of kmr is rel-
atively smaller, the non-Darcy effect becomes significant.
Figure 9(b) shows the stabilized average flux distribution
along fracture. As the value of kmr decreases with a strong
non-Darcy effect, the apparent conductivity decreases, and
more fluid comes from the half of fracture away from the
wellbore. This is different from the phenomenon described
in Figure 8(b), because the minimum conductivity is differ-
ent, not a unified value.

As analyze from Figures 8 and 9, the dimensionless
parameters of larger FND and small kmr make the non-
Darcy effect more significant. With the consideration of
non-Darcy effect, the apparent fracture conductivity exhibits
different conductivities in the Darcy flow condition when it
actually has only one true value. Figure 10 further investi-
gates the effect of penetration ratio in different conditions
of initial conductivity. The value of FND and kmr is still the
same as that in Figure 10, and the transient pressure and its
derivative show a similar trend. For smaller conductivity
(CfDi = 10π) as shown in Figure 10(a), the pressure drop is
always lower than the minimum Darcy case but higher
than the initial Darcy case all the time in the condition of
hfD = 0:1. However, the non-Darcy case would overlap with
the initial Darcy case in the late-time period in the condi-
tion of hfD = 1. As a comparison, a higher conductivity is
considered as shown in Figure 10(b). The pressure response
of non-Darcy case deviates from the initial Darcy case, but
would overlap with the initial case on the onset of ER flow
regime in the condition of hfD = 0:1. The pressure response
of non-Darcy case might overlap with the initial case on
advance in the condition of hfD = 1.

In summary, the effect of non-Darcy flow has a more sig-
nificant influence on the condition of smaller penetration
and lower initial conductivity. Alternatively, the effect of
non-Darcy flow has a more significant influence on the con-
dition of small penetration.
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3.4. Application to Field Case. The case presents a pressure
drawdown test in an oil well in the Tahe oil field of Xinjiang,
China. The vertical well is hydraulically fractured, and the
fracture is recognized as a partial penetrating vertical fracture

according to the results of microseismic monitoring. The
basic parameters used in this case are summarized in Table 1.

Figure 11 provides the pressure drawdown and its deriv-
ative data on log-log plot. According to the flow regime

10–7 10–6 10–5 10–4 10–3 10–2 10–1 100 101 102
10–3

10–2

10–1

100

101

hD = 1, hfD = 0.1, CfDi = 100𝜋,
 km/kmz = 1, zwD = 0.5 

p
w
D

 &
 d
p
w
D

/d
ln
t D

t
D

Case 6
Case 1
Case 2
Case 3
Case 4
Case 5

Case 1: kmr = 0.1, FND = 100
Case 2: kmr = 0.1, FND = 10
Case 3: kmr = 0.1, FND = 1
Case 4: kmr = 0.1, FND = 0.1
Case 5: Darcy (CfDi = 100𝜋)
Case 6: Darcy (CfDi = 10𝜋)

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
3
4
5
6
7
8
9

10
11
12
13
14
15

q f
D

av
g

x
fD

Case 1: kmr = 0.1, FND = 100
Case 2: kmr = 0.1, FND = 10
Case 3: kmr = 0.1, FND = 1
Case 4: kmr = 0.1, FND = 0.1
Case 5: Darcy (CfDi = 100𝜋)
Case 6: Darcy (CfDi = 10𝜋)

(b)

Figure 8: Effect of the Reynolds number on (a) pressure response and (b) stabilized flux distribution.

Blue dashed line 
Case 1: CfDi = 10𝜋 (minimum)
Case 2: CfDi = 20𝜋 (minimum)
Case 3: CfDi = 50𝜋 (minimum)
Case 4: CfDi = 90𝜋 (minimum) 

Case 1
Case 2
Case 3
Case 4
Case 5

Solid line

Green dashed line
Case 5: CfDi = 100𝜋 (initial)

hD = 1, hfD = 0.1, CfDi = 100𝜋, km/kmz = 1, zwD = 0.5 

p
w
D

 &
 d
p
w
D

/d
ln
t D

10–7 10–6 10–5 10–4 10–3 10–2 10–1 100 101 102
10–3

10–2

10–1

100

101

tD

Case 1: FND = 10, kmr = 0.1
Case 2: FND = 10, kmr = 0.2
Case 3: FND = 10, kmr = 0.5
Case 4: FND = 10, kmr = 0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
3

4

5

6

7

8

9

10

q f
D

av
g

x
fD

Case 1: FND = 10, kmr = 0.1
Case 2: FND = 10, kmr = 0.2
Case 3: FND = 10, kmr = 0.5
Case 4: FND = 10, kmr = 0.9
Case 5: Darcy (CfDi = 100𝜋)

(b)

Figure 9: Effect of the relative minimum permeability on (a) pressure response and (b) stabilized flux distribution.
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identification in Section 3.2, it is shown from the deriva-
tive curve that a wellbore-storage effect is firstly recog-
nized with a unity slope. As a result, the bilinear flow
regime is masked by the wellbore-storage period. Then,
the formation-linear flow regime appears, followed by a

significant ER flow regime. The slope of ER flow is a
negative value not zero, and the value of tD × p’wD is
approximately 0.25. According to Eq. (28), the penetra-
tion ratio is about 1/4, so the fracture height is about
8.125m height. Meanwhile, the negative slope for ER flow
regime satisfies the characteristic of low and moderate con-
ductivity of PPVF as presented in Figure 10(a). Eventually,
the compound-linear flow and pseudoradial flow are found
successively.

To match the entire drawdown data, the effects of
wellbore storage capacity and fracture damage should be
incorporated into our model. Because we use Laplace-domain
solution, the solution accounting for these effects can be flexibly
written as follows:

~powD = s~pwD + Sd
s + CDs2 s~pwD + Sdð Þ : ð29Þ
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Figure 10: Effect of the penetration ratio on pressure response in the condition of (a) low and (b) high conductivity.

Table 1: Reservoir and fluid properties for the well.

Parameter Value Unit

Formation thickness, h 32.5 m

Volume factor, B 1.05

Formation porosity, φ 19.8

Fluid viscosity, μ 2.0 mPa•s

Wellbore radius, rw 0.1 m

Total compressibility, ct 4:7 × 10−4 MPa-1

Production rate, qw 10.0 m3/d
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Through constantly calculating the unknown variables,
Figure 11(b) presents the measured and final simulated pres-
sure drawdown data, and an excellent agreement exists
between the measured and simulated pressure for drawdown
test. This case uses the responses of several different flow
regimes at the same flow rate, instead of the responses of single
flow regimes at two different rates as presented by Guppy et al.
[25]. Nevertheless, the non-Darcy flow responses can be still
matched with the Darcy flow response for a lower conductivity
because of the nonuniqueness problem. If non-Darcy effect is
not considered in the matching denoted by dashed lines, the
dimensionless conductivity (CfDi) is calculated as 125.56.

If non-Darcy effect is considered denoted by solid lines, the
dimensionless initial conductivity (CfDi) is calculated as 204.29
with kmr = 0:187, and FND = 71:56 all the time. The resulting
matching parameters are given in Table 2. Considered that
the production rate of this well is relatively high, the fracture
might be subject to the effects of non-Darcy flow. The tradi-
tional analysis method would result in nearly 40% error in
the estimation of conductivity. The type curves based on the
Darcy model would yield an underestimated conductivity.

4. Conclusions

Based on this work, a semianalytical solution was proposed
for the pressure drawdown analysis of a well with partially
penetrating vertical fracture. From the results of the investi-
gation, several important conclusions need to be emphasized
as follows:

(1) PPVF exhibited five typical flow regimes, including
bilinear flow, formation-linear flow, early-radial flow,
compound-linear flow, and pseudoradial flow. The
corresponding analytical solutions can be presented
by correlating with the penetration ratio and appar-
ent conductivity

(2) The effect of non-Darcy flow makes the fracture con-
ductivity behave lower than its true value. When the
value of kmr approaches unity or when the value of
FND approaches zero, the effect of non-Darcy flow
becomes weak, and the pressure transient responses
approach the initial-Darcy case
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Figure 11: Pressure transient analysis for (a) flow regime identification and (b) type-curve matching of the pressure drawdown data.

Table 2: Type-curve matching results for the drawdown test.

Without non-Darcy effect With non-Darcy effect
Parameter Value Unit Parameter Value Unit

Wellbore storage, C 0.0012 m3/MPa Wellbore storage, C 0.0024 m3/MPa

Skin factor, Sd 0 Skin factor, Sd 0

Fracture conductivity, kf wf 65.99 D•m Fracture conductivity, kf wf 284.86 D•m

Fracture length, Lf 58.4 m Fracture length, Lf 66.4 m

Formation permeability, km 0.018 D Formation permeability, km 0.042 D
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(3) The non-Darcy flow has a more significant influence
in the condition of smaller fracture penetration and
lower initial conductivity. When the penetration
ratio is smaller than 0.5, the pressure behavior exhibit
a more remarkable variation with penetration ratio

(4) The type-curve matching of non-Darcy-flow
responses with type curves without non-Darcy effect
would yield lower estimate of true value of dimension-
less fracture conductivity. As a result, fracture conduc-
tivity and fracture length would be underestimated

Appendix

A. Dimensionless Definitions of Variables

For the sake of simplicity, dimensionless variables in the
model are used. The dimensionless pressures and the dimen-
sionless time are given:

pζD =
2πkmh pi − pξ

� �
qrefμ

, ðA:1Þ

where ξ = f ,m,w:

tD = kmt

φmμcL
2
ref

: ðA:2Þ

The spatial variable in XY plane is defined with regard to
Lref , while spatial variable in z-direction is defined with
regard to formation thickness h:

ζD = ζ

Lref
, ðA:3Þ

where ζ = x, y, Lf , xf , xof , yof :

ςD = ς

h
, ðA:4Þ

where ς = z, zf , zof :
The dimensionless thickness and fracture penetration

ratio are given by

hD = h
Lref

ffiffiffiffiffiffiffi
km
kmz

s
, hfD =

hf
h
: ðA:5Þ

The dimensionless flux density on fracture face, the flux
density along wellbore, and production rate are given, respec-
tively, by

qfD =
qf hLref
qref

,

qwfD =
qwf Lref
qref

,

qwD = qw
qref

:

ðA:6Þ

The relationship satisfies as follows:ðhfD

0

ðLfD

0
qfD xD′ , zD′
� �

dxD′dzD′ =
ðhfD

0
qwfD zD′

� �
dzD′ = qwD:

ðA:7Þ

In this study, we define the reference length and the ref-
erence rate as

Lref =
Lf

2 , qref = qw: ðA:8Þ

B. Computational Consideration for Eq. (10)

Although the Laplace-transformed solutions have great advan-
tage in calculating the convolution, they usually pose computa-
tional problem. Some alterative solutions must be developed to
accelerate the speed of the computations and improved the
accuracy. When yD − yofD = tan ðθf Þ × ðxD − xofDÞ, the inte-
grals of Bessel functions appear in the terms of the infinite
series, this is

Ki1 xð Þ =
ð∞
x
K0 x′
� �

dx′: ðB:1Þ

The term could converge quickly in the infinite series.
When x = 0, K i1 = π/2, There would be an infinite series con-
taining constant term, which is

〠
∞

m=1

ðzofDn+hfDn

zofDn

cos mπzDð Þ cos mπαð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s +m2π2/h2D

q dα: ðB:2Þ

The convergence of the series in Eq. (B.2) is slow. From a
computational viewpoint, a more tractable formulation might
be developed if we recast Eq. (B.2). In other words, it is impor-
tant to ensure the convergent and vanishing components of the
infinite series. Equation (B.2) should be recast as the following
expression:

Eq: B2ð Þ = hD
2π 〠

2

k=1

ðzofDn+hfDn

zofDn

K0
ffiffi
s

p
εk

� �
dα

(

+ 〠
4

k=1
〠
∞

m=1

ðzofDn+hfDn

zofDn

K0
ffiffi
s

p
εk,m

� �
dα

)
−
hfDn
2 ffiffi

s
p :

ðB:3Þ
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Here, the terms of εk and εk,m are given, respectively

ε1 = zD − αj jhD
ε2 = zD + αj jhD

(
,

ε1,m = zD − α − 2mj jhD
ε2,m = zD + α − 2mj jhD
ε3,m = zD − α + 2mj jhD
ε4,m = zD + α + 2mj jhD

8>>>>><>>>>>:
:

ðB:4Þ

The series on the right side of Eq. (B.3) could converge rap-
idly since K0ðxÞ approaches zero rapidly as x becomes large.

Equation (B.3) would be further recast into the following
form:

lim
s→0

〠
∞

n=1

ðzofDm+hfDm

zofDm

cos nπzDð Þ cos nπαð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s + n2π2/h2D

q dα

= −
hD
4π

ðzofDm+hfDm

zofDm

ln 2 − 2 cos πzD ± παð Þ½ �dα,
ðB:5Þ

which is the well-known Lobachevsky function. The refor-
mulation of Eq. (B.2) noted in Eq. (B.3) to Eq. (B.5) is the
important step of efficient algorithm.

Nomenclature

Field Variables

ct : Compressibility, Pa-1

C: Wellbore storage, m3/Pa
CfD: Dimensionless conductivity
CfDi: Initial dimensionless conductivity in the Darcy

condition
CfD,app: Apparent dimensionless conductivity in the non-

Darcy condition
FND: Reynolds number, dimensionless
G(): Integral of stepwise function
H(): Stepwise function
h: Formation thickness, m
K0(): Zero-modified Bessel function of the second type
k: Permeability, m2

kmr: Dimensionless relative minimum permeability
L: Length, m
Nf : Number of fracture panel, dimensionless
Ni: Number of fracture segment, dimensionless
p: Pressure, Pa
pow: Wellbore pressure considering wellbore storage and

skin, Pa
pw: Wellbore pressure, Pa
pu: Pressure drop under unit-rate condition, Pa
q: Flux density along fracture in reservoir system, m2/s
qf : Flux density along fracture in fracture system, m2/s
qwf : Production rate of fracture, m3/s
qcf : Cross-section rate within fracture, m3/s

s: Laplace variable, dimensionless
Sd : Skin factor, dimensionless
t: Time, s
v: Velocity, m/s
wf : Fracture width, m
x: x-direction coordinate of reservoir system, m
xf : x-direction coordinate of fracture system, m
y: y-direction coordinate of reservoir system, m
z: z-direction coordinate of reservoir system, m
zf : z-direction coordinate of fracture system, m
α: The Biot coefficient, dimensionless
β: Non-Darcy flow coefficient, Pa·s2/g
κ: Number of iterative, dimensionless
ρ: Fluid density, g/m3

φ: Porosity, dimensionless
ξ: Transformed dimension, m
τ: Characteristic length, m
μ: Viscosity, Pa·s
Γ(): Gamma function.

Subscripts

app: Apparent
D: Dimensionless
f : Fracture
f D: Fracture and Darcy
m: Matrix
w: Well
ref: Reference
i: Initial
of: Endpoint
m,n: Count number of fracture panel
i,j: Count number of fracture segment.
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The present study compares flow paths in reservoirs with natural fractures, solved with Complex Analysis Methods (CAM), to
those solved with Embedded Discrete Fracture Models (EDFM). One aim is to define scaling rules for the strength (flux) of the
discrete natural fractures used in CAM models, which was previously theoretically defined based on the expected flow
distortion. A major hurdle for quantitative benchmarks of CAM with EDFM results is that each of the two methods accounts
for natural fractures with different assumptions and input parameters. For example, EDFM scales the permeability of the natural
fractures based on a cubic equation, while CAM uses a flux strength. The results from CAM and EDFM are used to scale the
flux strength of the natural fractures and improve the equivalent permeability contrast estimation for CAM. The permeability
contrast for CAM is calculated from the ratio of the enhanced velocity inside natural fractures to the unperturbed matrix fluid
velocity. A significant advantage of flow and pressure models based on CAM is the high resolution without complex gridding.
Particle tracking results are presented for fractures with different hydraulic conductivity ranging from highly permeable to
impervious.

1. Introduction

The flow of fluids in naturally fractured reservoirs is highly
influenced by the permeability, porosity, density, orientation,
and several other features of discrete natural fractures. When
such natural fractures have an enhanced permeability, they
become highly conductive. The highly conductive natural
fractures may alter the flow path of fluids by altering the local
state of pressure and flow rates in the reservoir. The perme-
ability contrast of natural fractures with the matrix also
changes the shape of the drained rock volume by providing
preferential flow paths to the trapped oil and gas fluids fur-
ther away from a well [1, 2]. Natural fractures may also be
reactivated during hydraulic fracturing, as predicted by frac-
ture propagation models [3, 4] and microseismic events [5],

thereby distorting the flow path. Unlike hydraulic fractures,
natural fracture networks do not directly drain the reservoir
as there is no pressure sink [6]. Nonetheless, prior studies
have also shown that natural fractures may enhance pressure
communication and flow interference between adjoining
wells [1, 5].

In the present study, we compare the results of CAMwith
EDFM for natural fractures oriented at different directions
with respect to the principal direction of fluid flow. The
three-term CAM algorithm [7] developed to trace the parti-
cle path deflection by natural fractures oriented at any angle
with respect to the far-field flow is used. The outline of this
paper is as follows. Section 2 provides a brief review of flow
modeling tools for fractured porous media. Section 3 pre-
sents a background on the flux strength variable used in
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CAM, which relates to the hydraulic conductivity of natural
fractures (Section 3.1). Section 3 also shows the scaling of
the strength variable by comparing the pressure contour
plots for natural fractures with different flux strengths, using
CAM (Section 3.2), with EDFM results (Section 3.3). Section
4 shows CAM results (pressure contours and particle path
solutions) for flow in naturally fractured reservoirs with
arbitrary single fractures (Section 4.1). The CAM code can
equally well account for impervious fractures that do not
attract but impede fluid flow (Section 4.2). Section 5 high-
lights the fast computation time of CAM models (Section
5.1) and presents the results from a first attempt to compare
CAM and EDFM models for flow across a reservoir section
with multiple randomly oriented fractures (Section 5.2). A
discussion follows in Section 6, and conclusions are given
in Section 7.

2. Review of Flow Models for Naturally
Fractured Reservoirs

Accurate simulation of fluid flow in naturally fractured
porous media is a major challenge in subsurface reservoir
engineering. The dimensions of the natural fractures are sev-
eral orders of magnitude smaller than the dimensions of the
reservoir, which adds to the complexity of accurately repre-
senting the natural fractures. We briefly summarize some of
the approaches for modeling natural fractures below.

2.1. Prior Approaches

2.1.1. Dual ContinuumModels.Naturally fractured reservoirs
were first modeled using a dual continuum approach formu-
lation [8, 9]. In a dual-porosity model, natural fractures are
represented by homogeneous and isotropic matrix blocks
separated by orthogonal uniform natural fractures. The
dual-porosity model assumes that the flow of fluid stored in
a noncommunicating matrix occurs through the fractures.
The dual-porosity model was later modified [10, 11] to
account for other complex behavior seen in naturally frac-
tured reservoirs. Dual-porosity models are still used today
to model naturally fractured reservoirs. The merits are its rel-
ative simplicity and computational efficiency as compared to
other discrete fracture and fracture network models.

However, the dual-porosity model is not accurate for
cases where the fracture geometry is complex and asymmet-
ric, as is the case for hydraulically and naturally fractured
unconventional reservoirs [12]. Modifications such as multi-
ple interacting continua [13], time-dependent shape factors
[14], and explicit parameterization of time-dependent
transfer functions [15, 16] have been proposed to tackle the
shortcomings of the multiporosity model. Despite these
modifications, multiporosity models cannot explicitly
account for the density and orientations of the natural frac-
tures, which leads to unrealistic results. The shape factor
and transfer function may not fully capture the complex flow
behavior due to detailed pressure and fluid saturation gradi-
ents in naturally fractured reservoirs [17]. Multicontinuum
models do not make any explicit geometric distinction
among matrix, fractures, and fracture intersection. Implicit

representation of fractures and matrix in such models needs
the flow to be represented by upscaled quantities [12].

In contrast to multiporosity/multicontinuummodels, the
explicit numerical modeling of fractures in discrete fracture
models is computationally intensive but conceptually simpler
than the implicit (multicontinuum) models. The discrete
representation of fractures can be broadly categorized into
four principal groups, (1) Discrete Fracture Network (DFN),
(2) Discrete Fracture-Matrix (DFM) model, (3) EDFM, and
(4) other gridded solution methods [12]. They are briefly
reviewed below.

2.1.2. DFN. In a DFN model, the matrix is assumed to be
impermeable, and the flow is expected to occur only through
the discrete fracture networks. DFN models consider fluid
flow and transport processes in a fractured rock through a
system of connected natural fractures. The DFN method is
useful for studying fluid flow and mass transport in the frac-
tured rocks for which an equivalent continuum model is
difficult to establish or not applicable. It can also be used to
derive the equivalent continuum flow and transport proper-
ties in the fractured rock for subsequent use in faster,
upscaled (but implicit) reservoir models [18, 19]. In a DFN
model, the storage and flow of fluids occur only through
the fracture networks, which is suitable for modeling low-
permeability and low-porosity fractured media. For a low-
porosity/low-permeability system with many dominant
natural fractures, the continuum approximation may not be
entirely valid as the flow through the matrix is assumed to
be negligible compared to the fractures. The DFN models
may also be used to perform large-scale simulations where
the fractured reservoir properties need to be approximated
through upscaling and homogenization into equivalent
permeability tensors [20].

2.1.3. DFM. In a DFM model, the fractures are modeled as
lower-dimensional interfaces embedded in the rock matrix.
The DFM model reduces the loss of accuracy due to upscal-
ing by introducing realistic geometrical complexities. In a
DFM model, the fluid resides in both porous matrix and
explicit fractures, but the smaller fractures are integrated into
the matrix with appropriate upscaling. The DFM model is
suitable for reservoirs with several natural fractures where
only a few dominant fractures contribute to fluid storage
and flow. The upscaling of matrix permeability to account
for nondominant fractures reduces the complexity and
computational cost during meshing without foregoing the
accuracy. The selection of nondominant fractures integrated
into the matrix is usually based on the dimensions of the
fractures [21].

2.1.4. EDFM. EDFM uses nonconforming grids with respect
to fracture-matrix connections (introduced by [22]) and is
an extension of the classical DFM model. EDFM uses a
hybrid approach, where the dual-porosity model is used for
the smaller and medium fractures, and DFN is used to model
the larger fractures [22]. Flows within the matrix and the
fractures are proportionated by the pressure difference
between them and are discretized separately [23]. EDFM
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allows for complex fractures to be implemented in conven-
tionally structured matrix grids without the need for local
grid refinement (LGR) in the vicinity of the fractures
[19]. Other models, such as projection-based EDFM
(pEDFM), have also been proposed to improve the tradi-
tional EDFM [24, 25].

2.1.5. Other Gridded Methods. Other methods such as the
extended finite-element method or XFEM [26, 27] and con-
forming mesh using triangles and Voronoi grids [28, 29]
can also be used to discretize naturally fractured reservoirs.
These advanced discretization techniques capture the discon-
tinuity of pressures across the fracture surface while preserv-
ing acceptable resolution of the near-fracture dynamics [26].

All of the concurrent numerical methods (multiconti-
nuum, DFN, DFM, EDFM, and XFEM) use discretization
or meshing as a pivotal step to simulate the flow of fluids
through the naturally fractured reservoirs. The discretization
may require refinements of the gridding to account for the
heterogeneities, interaction of the fracture/matrix system,
and flow within the fractures/matrix [30]. Multicontinuum
models are discretized by using finite difference where several
values for physical parameters are assigned to each medium.
For discrete fracture models, finite-element methods are
primarily utilized to model the discrete fractures. However,
a significant drawback of such advanced discretization
schemes is the computational complexity and difficulty in
accurately representing the prototype with a finite number
of grid blocks [12, 26, 31].

Efficient meshing/gridding is the biggest bottleneck to
reduce the computation time of discrete numerical methods
due to the inherent geometric complexity of fracture net-
works [12]. In addition, some models, such as EDFM, are
only valid for high-permeability fractures and cannot model
impervious or low-permeability fractures (for example, due
to cementation or clay decay in fracture zones) [25].
Recently, analytically solvable models using Green’s function
for gas flow in complex fracture networks have been pre-
sented by Marder et al. [32], which was also numerically
tested with Barnett shale reservoir properties by Eftekhari
et al. [33]. The existing numerical and analytical models are
powerful tools with several strengths and weaknesses.

2.2. New Approach with Semianalytical CAM Models. In this
study, we present an alternative method (CAM), with a low
computational load that can accurately model and visualize
the flow in various kinds of naturally fractured reservoirs.
Traditionally, CAM uses potential and stream functions to
describe the physical transport of particles in basic flow fields
[34]. The basic flows can be combined or superposed with
each other to describe complex flows that occur in ground-
water and oil reservoirs. Increasingly complex flows can be
combined such that solutions satisfy the Cauchy-Riemann
differential equation. The functions (complex potentials)
which satisfy the Cauchy-Riemann differential equation
define the two-dimensional flow of incompressible and
irrotational fluids. The basic algorithms for potential theory
have been extensively described in our earlier publications
[4, 34, 35] and fluid-mechanics literature [35–38]. Models

based on CAM have been previously used to model fluid flow
in hydraulically fractured reservoirs [39–41]. This paper
applies various complex potentials based on areal doublets
to model the flow of fluids in natural fractures [7, 17].

A significant strength of models based on CAM is the
ability to solve for the flow equations without any gridding.
Discrete fracture models rely on the application of unstruc-
tured grids, which increases the computational complexity
and makes the real-field applications challenging [25].
CAM algorithms do not require extensive gridding or mesh-
ing, which enables the modeling of heterogeneous reservoirs
with numerous discrete fractures. Consequently, CAM algo-
rithms are computationally efficient and offer high resolu-
tion, which is especially beneficial for modeling flow in
unconventional oil and gas reservoirs that involve many
hydraulic and natural fractures. CAM models of flow in res-
ervoirs involving multiple wells, hydraulic fractures acting as
pressure sinks, and impermeable fractures and faults have
been validated as producing accurate results [42, 43]. CAM
particle paths closely matched with those obtained by inde-
pendent methods (e.g., Eclipse) [42, 43].

CAM models applied to naturally fractured reservoirs
have been presented elsewhere [1, 2, 17, 41], but no bench-
marks of results against other methods have been presented
yet. The present study is aimed at filling (at least a part of)
that gap. A previous study has already pointed out that
hydraulic fractures (connected to a wellbore) act as pressure
sinks and behave differently from natural fractures [6],
assuming the natural fractures of concern are not connected
to a wellbore or a hydraulic fracture. Connected natural frac-
tures behave like an extension of the hydraulic fracture
network.

The key algorithm used to model natural fractures in
CAMwas first derived by superposing areal doublet solutions
[17], which are accurate for flow through fractures aligned
with a far-field flow and can model multiple fractures with
different flux strengths. The natural fracture element [17]
was recently augmented [7] to accommodate the particle
paths for fractures oriented at a large angle to the far-field
flow. As the algorithms based on CAM are multivalued in
certain branch-cut locations [44], the augmented solution
[7] also needed to circumvent the branch cuts to avoid
discontinuity in pressure (potential function) plots. The
solution was augmented by gradually superposing two areal
doublets with transformed coordinates, based on the angle
with the far-field flow. The rotated fracture element results
in the correct particle paths, even when the fractures occur
perpendicular to the principal flow direction. For the inter-
mediate cases, when the angles between the direction of flow
and the areal doublet range between 0° and 90°, the particle
paths are solved by the superposition of the original element
and the rotated element [7]. The key algorithms used in this
study are summarized in Section 3 and Appendix A.

3. Scaling of CAM Fracture Strength to
Permeability with EDFM

This study presents a comparison and scaling rules for
models based on complex analysis methods (CAM) with
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EDFM models. For CAM-based algorithms, the flow inten-
sity is scaled by the strength variable. The units of the
strength depend on the complex potential of the flow ele-
ment. For example, the strength of a vertical well has units
of m2/s, the strength of a hydraulic fracture has units of
m3/s, and the strength of an areal doublet/natural fracture
element has units of m4/s. The strength variable can be pos-
itive (e.g., injectors) or negative (e.g., producers). This section
discusses the scaling of the strength variable, which is a key
input parameter for models based on CAM.

The permeability of a reservoir is one of the most impor-
tant variables that determine the productivity and deliver-
ability a well. Fundamentally, the permeability of a porous
medium is the proportionality constant in Darcy’s law,
which defines the relationship between the pressure gradient
and the fluid flux (flow rate per unit area). Reservoir perme-
ability is an intrinsic property of the porous medium.
Although for any particular rock type a higher permeability
generally correlates with higher porosity [45], these parame-
ters affect the time of flight (TOF) of migrating fluids in
opposite directions [42]. The time of flight decreases when
the permeability increases and slows down when the perme-
ability decreases. For permeability, the opposite occurs: flow
speeds up when the porosity decreases (thus shortens TOF),
and flow slows down when the porosity increases (thus
lengthens TOF).

Permeability for a reservoir can be estimated from well
logs, using empirical models such as the Carman-Kozeny
equation [45]. Advanced logging tools such as nuclear mag-
netic resonance (NMR) are also used to calculate the forma-
tion permeability applying the Timur-Coates model [46] and
the Schlumberger-Doll-Research model [47], especially in
reservoirs where the Carman-Kozeny model does not work
well. Where production data and limited reservoir character-
istics are available, history matching can estimate the reser-
voir permeability [40]. For a naturally fractured reservoir,
permeability can be broadly divided into matrix and fracture
permeability, which are both measured in Darcy. Unconven-
tional reservoirs are characterized by heterogeneous geology
where each feature, including the fracture and matrix perme-
ability, is significantly different from one region to another.
As the characterization of each of the fractures is difficult,
flow is simulated by using the upscaled permeability for
single and multicontinuum models. For discrete models,
the permeability for each individual fracture is assigned
based on applicable statistical distributions [48].

3.1. CAM Strength Scaling of Natural Fractures. From
Darcy’s law, time-dependent flow rate, V f , across a natural
fracture of length L, due to the time-dependent pressure
gradient ΔPf ðtÞ is defined as follows [17]:

V f tð Þ = −
kf
μ

ΔPf tð Þ
L

,  m ⋅ s−1
� �

, ð1Þ

where kf /μ is the ratio of fracture permeability to fluid vis-
cosity. Similarly, the time-dependent flow rate, Vm, across
a section of the matrix with the same length due to the

time-dependent pressure gradient ΔPmðtÞ is defined as
follows [17]:

Vm tð Þ = −
km
μ

ΔPm tð Þ
L

,  m ⋅ s−1
� �

: ð2Þ

Assuming that the pressure gradient across the natu-
ral fracture and adjoining matrix is equal (i.e., ΔPmðtÞ =
ΔPf ðtÞ), from equations (1) and (2), the permeability ratio
kf : km = Rk can be calculated as follows [17]:

V f

Vm
=

kf
km

= Rk: ð3Þ

According to equation (3), the fluid velocity can be
used to scale the fracture permeability based on the known
matrix permeability, and vice versa. When both fracture
and matrix permeability are unknown, the permeability
contrast Rk of the matrix and the natural fracture can be
calculated from the ratio of the respective fluid velocities.

In our previous study, the permeability ratio Rk was
linked to the primary input parameters of CAM [6], which
are modified here to account for the superposition of V f

being the result of Vm and the superposed flux. Our prior
study [6] computed the fracture strength (υf ) as υf = RkVm

HfWf Lf , where Vm is the far-field velocity in the matrix,
and Hf , Wf , and Lf are the height, width, and length of
the natural fracture element, respectively. However, the
velocity in the fracture, V f , is due to a preexisting Vm plus
an additional velocity component V flux, superposed due to
the fracture flux:

V f =Vm +V flux: ð4Þ

Substituting now the modified fracture strength
υf′ =V fluxHfWf Lf into equation (4) and using Rk yields the
following:

Rk − 1ð Þ = υf′
VmHfWf Lf

: ð5Þ

The strength of the natural fracture and the far-field
velocity in the matrix are denoted by υf′ and Vm, respec-
tively. Thus, if the defined permeability contrast is known,
the strength of the natural fracture element to be used for
a discrete natural fracture in CAM can be calculated as
follows:

υf′ = Rk − 1ð ÞVmHfWf Lf : ð6Þ

In the following section, the permeability contrasts for
CAM fractures are calculated from equation (3) by taking
the ratio of the maximum velocity due to the natural fracture
and the original far-field velocity. However, as seen later
in Section 3.3, the permeability contrast (Rk) calculated
from equation (3) underestimates the permeability contrast
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calculated from the traditional models, and a correction
factor is required. A correction factor, ξ, is introduced in
Section 3.3 (see equation (7)) to scale a required permeabil-
ity contrast (kf /km) with a corresponding natural fracture

strength (υf′) for CAM, using the pressure contours gener-
ated from EDFM to calibrate the correction factor empiri-
cally. In what follows, we simply use υf , in lieu of υf′, by
dropping the apostrophe.

3.2. Determination of Permeability Contrast with Matrix and
Fracture Using CAM. In this section, a reservoir space is con-
sidered with an arbitrary, uniform far-field flow velocity of
1:117 × 10−7 m/s (3.5m/year) from left to right. Figure 1
shows the pressure (Pa) field for the reservoir due to the
far-field flow, where the pressure contours are perpendicular
to the flow direction of the fluid. The reservoir is assumed to
have permeability and porosity of 10mD and 10%, respec-
tively. The porosity scales the far-field flow rate up to a net
effective velocity of 1:117 × 10−6 m/s. In the remainder of this
study, the effective strength and the effective velocity are
reported, accounting for the porosity of the reservoir.

Next, consider a reservoir model (Figure 2) with a solitary
natural fracture located centrally in the flow space. The reser-
voir and fluid properties for the naturally fractured reservoir
are summarized in Table 1.

Figures 2(a) and 2(b) show the pressure contours and the
velocity field for the naturally fractured reservoir using the
conditions of Table 1. The pressure contours (Figure 2(a))
are only mildly perturbed (compared to Figure 1), mainly
near the natural fracture tips. Figure 2(b) shows that the
velocity increases locally inside the natural fracture and
slightly around the tips of the natural fracture. A small sec-
tion of the natural fracture, marked by the square box in
Figure 2(b), is maximized to closely examine the velocity in
and near the fracture. The maximized portion (Figure 2(c))
shows that the maximum velocity at the center of the natural
fracture is almost six times the original effective far-field
velocity. Figure 2(c) also indicates that the increase in veloc-
ity outside of the natural fracture is negligible. The perme-
ability contrast (Rk) between the matrix and the fracture is
calculated to be 5.97 (equation (3)).

The localized velocity changes across a natural fracture
are further highlighted in Figure 2(d), where the implied per-
meability contrast across the y -axis at x = 4:5 is plotted. The
cross-section (Figure 2(d)) shows that the natural fracture
increases the velocity only within the natural fracture itself,
with a negligible impact on the matrix velocity. The presence
of a single natural fracture will have a negligible impact on
the average or upscaled equivalent permeability of the reser-
voir. However, if the natural fracture density is high due to
the presence of numerous natural fractures, the upscaled
permeability for a reservoir may significantly increase (see
upscaling in [6, 48]).

This fluid velocity increase inside the natural fractures
(Figure 2(d)) is the primary reason for preferential flow paths
and flow channeling due to fracture networks [49–52]. Mul-
tiple tracer transport studies on core samples of different
length scales have shown that flow inside a fractured reser-

voir is highly heterogeneous [52–55]. Natural fractures may
also result in fracture/well communication; thus, they need
to be adequately accounted for while designing the infill wells
and hydraulic fractures [1, 2]. The presence of natural
fractures may alter the flow paths shifting the drained rock
volume due to the local increase in fluid velocity (as shown
in Figure 2(d)). For completeness, we refer to an earlier study,
where the flow inside natural fractures was studied with a
higher resolution than used in Figure 2(d). Although CAM
is gridless, the plotting procedure is grid based and may
falsely suggest a triangular-shaped flow profile in a narrow
fracture if the solution grid chosen is overly coarse (for
improved computational speed). When solved with suffi-
ciently tight grid spacing, CAM-based velocity profiles inside
natural fractures will be U-shaped [6].

Figure 3 varies the effective natural fracture strength to
show the effect on pressure contours, using multipliers of
10, 20, and 30, as summarized in Table 2. Figure 3 shows
that the increase in the effective strength of natural fractures
is reflected in the enhanced curvature of the pressure con-
tours near the fracture tips. For each of the sensitivity cases,
the velocity profiles (not shown) resemble Figure 2(c). The
maximum velocity occurs inside the natural fractures, and
the velocity elsewhere in the reservoir is unaffected.
Table 2 (second row) includes the maximum velocity con-
trast for each of the cases in Figure 3. Figures 3(b) and 3(c)
have significantly higher effective natural fracture strengths
compared to the base case of Figure 2, which results in the
branch cuts around the fracture tips becoming more pro-
nounced [44]. The increasing impact of branch cuts when
the effective fracture strength increases is further illustrated
in Appendix B.

3.3. Scaling Natural Fracture Strength to Permeability Using
Embedded Discrete Fracture Model (EDFM). In this section,
EDFM is used to scale the natural fracture strength to the
units of permeability (mD). A simple fracture model based
on the inputs in Table 3 (and Figure 4) is used to generate
the pressure contours for both the CAM and EDFM models.
The results are visually inspected and iterated to generate
closely matching pressure contours. Based on the comparison

9
Pressure

8
7
6
5
4
3
2
1
0

0 2 4 6 8
0
1
2
3
4
5
6
7
8
9

×105 Pa

Figure 1: Pressure contour (Pa) for a reservoir with far-field flow
with a net effective velocity of 35m/year from left to right. Initial
reservoir pressure is zero. Scale of pressure change is relative to
the right-end boundary of frame viewed.
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between the results from the two models, the strength for
CAM is determined and scaled to generate the same pressure
contours using EDFM for various permeability contrasts.

EDFM is a special form of a discrete fracture model
(DFM) model (see Section 2.1), introduced [22] to reduce

the high computational cost associated with traditional
DFM methods. EDFM defines fractures explicitly, as major
fluid pathways, and benefits from independent definitions
of the fracture and matrix grid. Thus, EDFM does not require
a conforming mesh for the discrete fractures, which reduces
the gridding complexity. Several authors have recently pre-
sented EDFM as a promising alternative to DFN and other
upscaled single/multicontinuum models [25, 52, 53].

Figure 4 considers a single-phase flow in a 9 × 9m2

homogeneous domain where the matrix contains 225 × 225
grid cells, and one fracture occurs at the center of the domain.
The natural fracture has a length and an aperture of 5m and
0.04m, respectively, and contains 50 grid cells with an
average size of 0.1m2. The flux for each (matrix-matrix and
fracture-fracture) grid interface is defined by using the two-
point-flux approximation (TPFA). The fracture cells are
introduced into discrete systems through nonneighboring
connections (NNC). The flow simulations are performed
using MATLAB Reservoir Simulation Toolbox (MRST), a
full-physics reservoir simulator, with EDFM or the hierarchi-
cal fracture model (HFM) [30]. The governing equations,
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Figure 2: (a) Pressure contours (in Pa) for a reservoir with far-field flow and a single natural fracture. The effective far-field flow velocity is
1:12 × 10−6 m/s from left to right, and effective fracture strength is 1:12 × 10−6 m4/s. (b) Velocity magnitude for the reservoir in (a). The
maximum velocity of 6:7 × 10−6 m/s is observed at the center of the fracture. (c) The portion of the natural fracture zoomed in (marked by a
square in (b)) to examine the velocity around the natural fracture. The effect of the natural fracture on velocity changes is limited to areas
extremely close to the natural fracture. (d) The corresponding permeability contrast (Rk) along the y-axis at x = 4:5, calculated using equation (3).

Table 1: Attributes for a model reservoir simulated with CAM.

Natural fracture attributes Symbol Value

Natural fracture width (m) W 0.04

Natural fracture length (m) L 5

Natural fracture height (m) H 1

Natural fracture angle to far-field flow α 0

Porosity n 0.1

Effective far-field flow rate (m/s) Vx 1:117 × 10−6

Effective natural fracture strength (m4/s) υf 1:117 × 10−6

Matrix permeability (mD) k 10

Viscosity (cP) μ 1
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formulations, and modeling techniques using EDFM in
MRST are discussed in the literature [56–59].

The flow in Figure 4 is driven by the Dirichlet boundary
conditions of 107 Pa and 0Pa at the right and left faces of the
flow domain, respectively. The matrix permeability is 0.01D,
and the fluid viscosity is 1 cP. The fracture permeability is set
to the values of 0.5D, 1D, and 1.5D representing the perme-
ability contrast (Rk) of 50, 100, and 150, respectively. Table 3
summarizes the reservoir attributes, and Figure 4 shows the
pressure contours for the flow domain for all the three cases.

The pressure contours from EDFM (Figure 4) show curv-
ing similar to the results from CAM (Figure 3). Several more
pressure contour plots were generated using CAM, in addi-
tion to the results in Figure 3, to compare the results in
Figure 4. Figures 5(a), 5(b), and 5(c) show the pressure
contours from CAM for V f /Vm values of 20, 40, and 60,
respectively (shown in Figures 5(d), 5(e), and 5(f)).

The CAM pressure contours in Figures 5(a), 5(b), and
5(c) show a better match with the pressure contours in
Figure 4 (generated from EDFM). However, the permeability
contrast for CAM (Figures 5(d), 5(e), and 5(f)), calculated
from equation (3), which uses strength as the proxy for
permeability, would be lower than the actual permeability
contrast used in the EDFM model (Figure 4) by a factor of
approximately 2.5. For instance, the Rk for the model gener-
ated from EDFM (Figure 4(a)) is 50, whereas the Rk for
CAM is 20 (Figure 5(d)). Hence, an empirical correction
factor ξ is introduced to scale the Rk calculated as the ratio
of fracture and matrix permeability and to calculate the
strength of the fractures υf , by using the modification of
equation (6) as follows:

υf =
Rk − 1ð Þ
ξ

VmHfWf Lf , ð7Þ

where Rk is the permeability contrast calculated from the
ratio of fracture and matrix permeability in Darcy.

Equation (7) facilitates flow modeling in naturally frac-
tured porous media with CAM when the permeability con-
trast between the matrix and the fracture is known. The
natural fracture strength, which is analogous to permeability,
can be scaled using equation (7).

4. Application of the Augmented Solution

An augmented CAM solution for the areal doublet was
proposed to more accurately account for the refraction of
particle paths across fractures not aligned with the far-field
flow [7]. The augmented CAM solution was obtained by
superposing two different complex potentials. The first
complex potential which is superposed is the original areal
doublet proposed by van Harmelen and Weijermars [17].
The second complex potential superposed to obtain the aug-
mented solution is obtained by rotating the vertices of the
first areal doublet [7]. The contribution of the two elements
is tuned by the Sine function. Figures 6(a) and 6(b) show
the particle paths (blue) and the time-of-flight contours
(TOFCs, red) obtained from the original solution [17] and
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Figure 3: Pressure contours (in Pa) for a naturally fractured reservoir and a single natural fracture with a strength of (a) 1:12 × 10−5,
(b) 2:23 × 10−5, and (c) 3:35 × 10−5 m4/s. The effective far-field velocity is 1:12 × 10−6 m/s from left to right.

Table 2: Inputs for the sensitivity of natural fracture strength.

Quantity Figure 3(a) Figure 3(b) Figure 3(c)

υf (m
4/s) 1:12 × 10−5 2:23 × 10−5 3:35 × 10−5

V f /Vm 50.7 100 150

Table 3: Natural fracture attributes for the simplified synthetic
model (EDFM and CAM).

Natural fracture attributes Symbol Value

Natural fracture width (m) W 0.04

Natural fracture length (m) L 5

Natural fracture height (m) H 1

Natural fracture angle to
far-field flow

α 0°

Boundary conditions (Pa) Left: 107; right: 0

Fracture permeability (D) (a) 0.5; (b) 1; (c) 1.5

Matrix permeability (D) k 0.01

Viscosity (cP) μ 1
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the augmented solution [7], respectively. For both cases, the
far-field flow with an effective velocity of 3:12 × 10−8 m/s
flows from bottom to top. An areal doublet element with an
effective strength of 3:12 × 10−6 m4/s is assumed to be present
at the center of the flow domain. The natural fracture is
assumed to be 10m long and 1m wide. The fluid particles
at the bottom of the flow domain are tracked for 30 years
by using the Eulerian particle tracking method. The areal
doublet from the original solution (Figure 6(a)) accelerates
most of the fluid towards the left opening of the channel,

even when the far-field flow is flowing from a different direc-
tion. However, Figure 6(b) shows that for the augmented
solution, the fluid velocity is increased, but the refraction of
the particle paths stays symmetrical to the far-field flow as
expected.

In the remainder of this section, the augmented solution
[7] is used to generate pressure contours for flow channels
(i.e., the natural fractures) with different fracture apertures
and permeability contrast. Section 4.1 presents the pressure
contours for highly conductive fractures with different
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Figure 4: Pressure contours (in Pa) generated from EDFM. The flow is driven by the Dirichlet boundary conditions of 107 Pa and 0 Pa at the
right and left faces, respectively. The matrix permeability is 10mD, and the permeability contrasts (kf /km) are (a) 50, (b) 100, and (c) 150.
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Figure 5: (a, b, and c) Pressure contours (in Pa) generated from CAM. The far-field flow moves from left to right with an effective velocity of
1:12 × 10−6 m/s. (d, e, and f) The respective ratio of fracture velocity (V f ) to matrix velocity (Vm) for fractures in (a), (b), and (c). The velocity
contrast V f /Vm is (a) 20, (b) 40, and (c) 60. The effective strength of the fractures for each case is (a) 1:12 × 10−5, (b) 2:23 × 10−5, and
(c) 3:35 × 10−5 m4/s, calculated from equation (7), where ξ = 2:5.
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aperture sizes. Section 4.2 presents the pressure contours for
natural fractures with reduced permeability relative to the
ambient matrix rock in the reservoir.

4.1. Pressure Contour Sensitivity to Fracture Aperture. Accu-
rate representation of natural fracture dimensions and prop-
erties is essential to generate precise continuum and discrete
fracture models [21, 60]. The fracture aperture or width is one
such parameter that governs the fracture porosity and perme-
ability and are constrained by fracture surface topography,
shear displacement, and confining stress [61, 62]. The distri-
bution of open fracture apertures in the subsurface is highly
variable, which depends on fracture type, host lithology,
degree of mineral fill/dissolution, and the in situ stress regime
[63, 64]. Apertures are usually estimated by using different
probability distribution functions, such as log-normal,
power-law distribution function, and uniform distribution,
due to the lack of available subsurface data [63–65]. In this sec-
tion, we investigate the effect of fracture width and orientation
on pressure contour patterns using a single natural fracture.

Figure 7 shows the pressure contours generated with the
augmented CAM model for natural fractures with different
apertures oriented at various angles. The fracture aperture
for Case A (Figure 7(a)A, C, E) and Case B (Figure 7(b)B,
D, F) is 0.04m and 1m, respectively. Other fracture attributes
used for the CAM simulations of Figure 7 are summarized
in Table 4.

The pressure contour patterns for both Cases A and B are
distorted near the fracture tips (Figures 7(a)A, C, E and
7(b)B, D, F). The pressure contours for the fractures, which
are not parallel to the direction of fluid flow (Figures 7(a)C,
E and 7(b)D, F), show pressure jumps due to the integral
effects of locally non-single-valued functions, which create
branch cuts [44]. The branch cuts may have a significant
effect on the pressure contours, especially towards the
fracture tips, as shown by Figure 8 in Appendix B, where
the fracture strength was increased further as compared to
Figure 7(a).

Figure 9 shows the particle paths for Cases A and B cor-
responding to the model conditions of Figures 7(a) and 7(b).
The particle paths represent the progressive movement of
fluid over 30 years. The particle paths (blue) and the time-
of-flight contours (TOFCs, red, spaced at 3 years) show that
the fluid moves further in fractures with smaller apertures,
which are otherwise identical to each other. Thus, a smaller
aperture may promote flow channeling. However, if we were
to use a scaling of the fracture strength according to equation
(7) and keep Rk constant but adjust the flux strength υf in
proportion to the fracture width Wf , then both Cases A
and B would have the same time of flight (TOF). Henceforth,
it can be misleading to simply state that a smaller fracture
aperture promotes flow channeling. Flow channeling is fore-
most an effect due to the permeability contrast between the
matrix and the fracture, as expressed in Rk. A larger Rk will
promote fracture channeling and lead to a shorter TOFC.
When Rk < 1, the fracture becomes progressively impervious,
leading to a longer TOFC for fluid traveling via the fracture.
Also, when Rk = 1, the fracture may physically exist, but its
presence will not affect the flow paths.

4.2. Pressure Contours for Impervious Fractures.Natural frac-
tures may either be highly conductive or poorly conductive
relative to the matrix, depending on the mineralization of
the pore structure in the fracture zone [66]. For example,
even cemented or blocked fractures can still be critical to
the fracture network and may promote preferential flow
channeling [67]. The degree of cementation in natural frac-
tures depends on the burial conditions; original fracture
aperture; and the geochemical environment, reactivity, and
composition of the fracture wall rocks [68]. Most natural
fractures in shale formations such as the Barnett are observed
to be filled with calcite or quartz cement [68]. The cemented
natural fractures also interact with hydraulic fractures to
impede and divert the fracture propagation path [69, 70].

In this section, we use CAM to generate the pressure con-
tours for cemented or blocking fractures, where we revisit the
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Figure 6: Particle path (blue) and TOFC (red) for (a) the original areal doublet solution [17] and (b) the augmented areal doublet solution [7].
Models in (a) and (b) both have a fracture strength of 3:12 × 10−6 m4/s. Despite the high incidence angle, the particle paths for the augmented
solution in (b) stay mostly aligned with the far-field flow, even inside the fracture zone (except near the fracture tips).
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natural fracture in Case A (Figure 7(a)) with a small fracture
aperture of 0.04m. All the reservoir and flow properties are
kept constant, except for the strength of the natural fracture.
The effective strength of the natural fracture is set to −9:6 ×
10−7 m4/s. The negative sign opposes the far-field flow to
mimic the action of a blocking/cemented fracture. Figure 10
shows the pressure contours (Figures 10(a), 10(b), and 10(c))
and the particle paths (Figures 10(c), 10(d), and 10(e)) for a

simple blocking—but still permeable—fracture. The pres-
sure contours for such a permeable, blocking fracture
(Figures 10(a), 10(b), and 10(c)) show the opposite behavior
to the highly conductive fracture (Figure 7(a)A, B, C). In both
cases, the pressure contours are distorted near the fracture
tips. The particle paths (blue) and the TOFCs (red) in
Figures 10(c), 10(d), and 10(e) are generated by tracking a
limited number of fluid particles originally, at the bottom
of the plot, for 30 years. Each TOFC shows the movement
of the far-field flow after three years, for a total flow time
of 30 years. The particle paths show that the blocking frac-
ture (but still slightly pervious) slows down the fluid parti-
cles in its path. The TOFCs around the natural fracture are
pulled back by approximately 2.5m in each case. Figure 11
in Appendix B shows the effect of increasing the flow resis-
tance by further reducing the strength of the fracture by a
factor of 2.

5. Comparison of CAM and EDFM Results

In the approach below, we attempt a first benchmark of
CAM-based solutions for flow in naturally fractured porous
media with EDFM. There are several differences in the model
design parameters of CAM and EDFM that may impede a
direct comparison of model results, as explained here. For
example, for modeling purposes, a fractured porous medium
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Figure 7: Pressure contours (in Pa) for fracture properties listed in Table 4. Case A (a): fracture width is 0.04m. Case B (b): fracture width
increased to 1m. The far-field flow with a net effective velocity of 3:12 × 10−7 m/s flows from bottom to top. The effective strength of the
natural fracture is 2:38 × 10−6 m4/s. The natural fracture is oriented at angles of (A and B) 0°, (C and D) 45°, and (E and F) 90°, with
respect to far-field flow direction.

Table 4: Fracture and reservoir attributes for fractures oriented at
different angles.

Fracture/reservoir attributes Symbol Value

Natural fracture width (m) W
CaseA = 0:04
Case B = 1

Natural fracture length (m) L 10

Natural fracture height (m) H 1

Natural fracture angle to far-field flow α 90°

Porosity n 0.1

Effective far-field flow rate (m/s) Vx 3:12 × 10−7

Effective natural fracture strength (m4/s) υf 2:38 × 10−6

Matrix permeability (mD) k 10

Viscosity (cP) μ 1
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may be represented by a primary permeability due to con-
nected pores and a secondary permeability due to the fracture
conduits [70]. In numerical models, the secondary perme-
ability is commonly an open fracture with a pseudoperme-
ability assigned, which is a value based on the fracture
aperture using a cubic equation. Such open fractures are

likely to have an assigned permeability, being several orders
of magnitude larger than the primary permeability, which
will have a major impact on the upscaled equivalent (or effec-
tive) permeability of a representative elementary volume [6].
In CAM, fractures are assigned a strength that scales the per-
meability contrast with the matrix. Despite these significant
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Figure 8: Pressure contours (in Pa) for fractures with the same properties as Case A (Figure 7(a)) but with doubled effective fracture strength
of 4:76 × 10−6 m4/s.
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Figure 9: Particle paths (blue) and time-of-flight contours, spaced at 3 years (red) for cases shown in Figure 7.
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differences, we present a first attempt to benchmark the
results from CAM as compared to EDFM (Section 5.1),
followed by a demonstration of runtime results for CAM
using different time steps (Section 5.2).

5.1. Model Description and Results. The model design and
particle paths from the EDFM reference solutions of Shah

et al. [56] were used as a starting point for comparison with
CAM results (Figures 12(a) and 12(b)). The EDFM repre-
sentation originated from a dual continuum model based
on a square of unit dimensions transected by fractures
with unstated apertures, and geometry as portrayed in
Figure 12(a). The fracture-matrix permeability ratio Rk = kf /
km which is constant for all fractures is 104. Figure 12(b) shows
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Figure 11: Pressure contours (in Pa) for cemented fractures with the same properties as Figure 11 but with effective fracture strength reduced
by a factor of 2 to a value of −1:90 × 10−6 m4/s.
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Figure 10: (a, b, and c) Pressure contours (in Pa) for cemented fractures with the same properties as Case A (Figure 7(a), Table 4) except for
effective fracture strength, which has a value of −9:6 × 10−7 m4/s. The natural fractures are oriented at an angle of (a) 0°, (b) 45°, and (c) 90°,
with respect to the far-field flow. (c, d, and e) Particle paths and TOFCs for the corresponding cases in (a), (b), and (c).
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the flow paths generated from EDFM based on the boundary
conditions in [56]. The boundary conditions in the bench-
mark of Figure 12(b) are a combination of two Neumann’s
conditions (namely no-flow boundaries, such that the direc-
tional derivative vanishes) and two Dirichlet’s conditions
(with directional derivatives normal to the left and right
boundary being due to uniform pressures). Essentially, no-
flow boundaries are imposed at the upper and lower bound-
aries of the 2D flow area studied, and constant, uniform
pressures are maintained at the left and right boundaries.

In our CAMmodel, a no-flow upper boundary and lower
boundary can be simulated by a fracture channel, but this
would require Schwarz-Christoffel’s and Schottky-Kleine’s
prime function boundary mapping as was used in our models
of bounded reservoirs [71]. However, CAM is most user-
friendly when applied to unbound flow domains, which is
why we assume a uniform flux entering the flow space of
the unit square from the left boundary (akin to a uniform
pressure) (Figure 12(b)). The fracture lengths and orienta-
tions are extracted from Figure 12(a). The width of the
fractures is not given [56] and is assumed to be 0.2mm
(0.0002m). Although the available field data for the width
(or aperture) of a natural fracture are limited from subsurface
observations, values of 0.01 to 10mm are reported in the
literature [64]. The permeability ratios are determined by
scaling the fracture flow strengths following the procedure
outlined in equation (7). Other fracture and flow attributes
are summarized in Table 5.

The results for the particle paths and pressure contours
generated by the CAM fracture model are given in
Figures 13(a) and 13(b), respectively. The particle paths from
CAM (Figure 13(a)) show acceptable, visual similarity to
those generated with EDFM (Figure 12(b)). It should be
emphasized that Shah et al. [56] evidently introduced new
particle seeds for flow tracking behind certain fractures,
which explains the increased density of streamlines in the
right-hand half of the simulation area of Figure 12(b).
Although we could introduce new particle seeds in CAM in
any location, we have not done so in Figure 13(a). Any fur-

ther differences between the flow paths of Figures 12(b) and
13(a) may be attributed to different boundary conditions at
the top and bottom of the flow space. Additionally, some
assumed variables such as fracture aperture may account
for the local difference in the assigned permeability contrast
(from equation (7)). Figure 13(b) shows the pressure con-
tours (in Pa) generated from the CAM code.

Also, trying to match permeability ratio scaling with
numbers from the numerical, dual-porosity model (EDFM)
may be misleading because the permeability ratio (Rk) stated
as 104 in Shah et al. [56] may in fact be somewhat of a mixed
input number. The permeability of the matrix is based on
estimations conforming to Darcy’s law, but the permeability
in the (nonporous) open fractures is based on a cubic equa-
tion (fracture width3) to obtain the right dimensions for the
flux calculation in the open fracture. Therefore, our CAM
model is fundamentally different from EDFM because we
scale the permeability of the fracture based on an extension

(a) (b)

Figure 12: Benchmark model, with (a) fracture geometry. Permeability ratios are Rk = 104. (b) Flow paths generated with EDFM and uniform
pressure at the left-hand boundary is normalized with the right-hand boundary held at zero pressure. After [56].

Table 5: CAM model inputs.

Fracture/reservoir attributes Symbol Value

Natural fracture width (m) W 0.0002

Natural fracture length (m) L Given below∗

Natural fracture height (m) H 1

Natural fracture angle to
far-field flow

α 0°

Porosity n 0.1

Effective far-field flow rate (m/s) Vx 1:25 × 10−7

Effective natural fracture strength (m4/s) υf
Scaled from

equation (7)∗∗

Matrix permeability (mD) k 10

Viscosity (cP) μ 1
∗Fracture lengths = ð15, 26, 30, 33, 35, 51, 64, 69 – 71, 76Þm. ∗∗Effective
natural fracture strength = ð3:8, 8:9, 1:9, 8:7, 3:3, 8:1, 9:6, 4:2, 6:5, 4:4, 3:8, 9:0,
5:1Þ × 10−5 m4/s.
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of the Darcy flow assumption, rather than using a cubic law
(as for the open space fractures in EDFM).

5.2. CAM Runtimes. The steady-state pressure, velocity, and
streamline contours can be computed instantaneously in
CAM. However, the particle paths in CAM are generated
from Eulerian particle tracking, which may be computation-
ally intensive. The generalized Eulerian particle tracking
algorithm is given by equation (8) [34]:

zn+1 t1ð Þ ≈ zn t0ð Þ +V zn t0ð Þð ÞΔt, ð8Þ

where zn is the initial position of a particle at time t0 with
the velocity of VðznÞ . The particle paths are generated by
first choosing an initial position z0 at time t0 = 0 and cal-
culating the initial instantaneous velocity. By choosing an
appropriate timestep, Δt, the position zjðt jÞ of the tracer
at time t j is:

zj t j
� �

≈ zj−1 t j−1
� �

+V zj−1 t j−1
� �� �

Δt: ð9Þ

The runtimes (tcpu) for an Eulerian particle tracking
scheme depend on the time step chosen for the simulation
(Δt), the number of natural fractures present (Nf ), the
number of flow particles tracked (np), and the duration
of simulated flow (tTotal) as summarized in equation (10).

tcpu = f Δt,Nf , np, tTotal
� �

: ð10Þ

The velocity (v) is assumed to be constant for Δt,
which is a valid assumption for slow-moving fluids. The
smaller time steps increase the accuracy of this discrete
time approximation. When Δt is not small enough, the
particles will overshoot the actual path to an adjoining
path, closer or further from the original path [6]. The Δt
must be selected by a trial and error approach, where a
time step of unit time (e.g., 1 day) is initially chosen and
then is reduced if particle paths are not smooth. The Δt

needs to be reduced for stronger fractures to generate
smooth particle paths. The next variable that affects the
runtime of Eulerian particle tracking is the number of
natural fractures (Nf ) simulated. When the number of
natural fractures increases, the velocity of the additional
natural fracture needs to be superimposed, leading to a
longer runtime. Next, the number of particles tracked also
increases the runtime of the Eulerian particle tracking. The
time-of-flight contours (TOFCs), which can be used to cal-
culate the drained rock volume (DRV), are computed by
connecting all the particle positions after a certain time
period since the onset of flow. A densely seeded number
of particles may be required, depending on the distance
and strength of the individual natural fractures, to gener-
ate smooth TOFCs. Finally, the total run time depends
on the duration of the flow simulation (tTotal), which
determines the number of timesteps needed to complete
the simulation.

All the variables involved in Eulerian particle tracking
need to be carefully selected on a case-to-case basis to opti-
mize the speed and accuracy of the simulation. We investi-
gated various Δt for the model in Figure 13(a) to calculate
the runtimes (tcpu), which is presented in Table 6 (MATLAB
2018b code on a Quad-core 3.4GHz Intel i5-4670K).

6. Discussion

The current study provides an improved scaling rule (equa-
tion (7)) to model the natural fracture strength in CAM
models when the permeability contrast is known. This study
also includes a comparison of CAM model results with
EDFM to complement our earlier validation [43]. Modern
model efforts have exclusively employed finite-element
methods due to certain perceived limitations of closed-form
solutions. We claim that this narrow focus is unwarranted.
The development of appropriately tailored closed-form
solutions based on complex analysis methods (CAM) offers
a number of unique strengths. These strengths include
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Figure 13: a) Particle paths for the model in Figure 12 using CAM based on the inputs from Table 5. (b) Pressure contours (in Pa) for the
model in (a) from CAM.
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(1) highly compact formulation, (2) infinite resolution, and
(3) ultrafast computation time (see Section 5.2). The infi-
nite resolution is due to the lack of any gridding. Minor
drift or dispersion may occur when the time-of-flight
option is used, due to finite time-stepping increments.
However, small timesteps will make any drift negligible.
For the instantaneous pressure field and streamline solu-
tions using the integral method, such effects do not occur.

Some key differences in model design and associated
input parameters of CAM and EDFM have come to the fore-
ground in our study, which merits an in-depth discussion in
Section 6.1. A brief discussion about the fundamental
assumption of irrotational flow, which should not be equated
to a requirement of inviscid fluid flow, is given in Section 6.2.
The potential merits of merging gridless solutions for flow
and fracture propagation, when studying fractured porous
media, are highlighted in Section 6.3.

6.1. Key Differences in Model Design and Parameters of CAM
and EDFM. This article made a first attempt to compare
CAM models for naturally fractured reservoirs with the
results of EDFM. Several fundamental differences in model
method design, which also reflect on input parameters, make
a straightforward quantitative benchmark challenging. What
we have offered in the present study is a qualitative compar-
ison. The critical issues we run into when comparing CAM
and EDFM are as follows.

(1) Natural fractures in CAM models are scaled in a
fundamentally different way from those in EDFM

(2) EDFM is based on a dual continuum model assump-
tion, which assumes that the fractures are open
spaces with a pseudopermeability assigned with a
value based on the fracture aperture using a cubic
equation. Such open fractures are likely to have
assigned permeability, being several orders of magni-
tude larger than the primary permeability

(3) CAM models scale the permeability of the fracture
based on an extension of the Darcy flow assumption
using a flux strength. The flux strength controls the
amount of fluid that travels via the natural fractures,
which can be varied also with the fracture aperture,
but in CAM is not governed by a cubic law as in the
EDFM model approach

(4) EDFM models commonly impose the Dirichlet
boundary conditions with constant pressure, which

in CAM is challenging to maintain, because the
method works with a certain velocity and flux inputs
with pressure being a consequence rather than a
primary input parameter

(5) When natural fractures occur sufficiently remote
from the Dirichlet boundaries, such as in Figures 10
(EDFM) and Figure 13 (CAM), then the constant
pressure and constant flux at the boundaries are nearly
equivalent boundary conditions. Nonetheless, some
differences exist, which only diminish when the flow
distortions due to natural fracture systems are placed
very remotely from the Dirichlet boundaries

The above observations explain why a quantitative
benchmark of CAM models with natural fractures with
independent discrete element-based methods (EDFM),
involving differences in fundamental model assumptions
(cubic law for fractures, finite boundaries, and others), will
remain challenging. The present study is a first attempt to
identify those challenges, such that future studies can refer
to those differences and possibly come up with mitigating
solutions.

6.2. Inviscid versus Viscous Flow. Fundamental arguments
about why the application of potential theory should not be
restricted to inviscid fluids have been highlighted by
Weijermars [34]. The potential theory is also valid for viscous
fluids (in addition to inviscid fluids) when the boundary-
layer effects are minimal [34]. The analytical description of
boundary-layer effects during the flow of fluids has been
highlighted by Wang [72]. CAM models have been used to
study the flow of terrestrial lava flows [34], with arguments
given for relaxation of the inviscid constraint. However,
many more arguments for potential theory not being limited
strictly to inviscid flows were given by Joseph et al. [73]: “It is
never necessary and typically not useful to put the viscosity of
fluids in potential (irrotational) flow to zero.” This is cited to
demonstrate the applicability of the potential theory to
describe viscous flow, which is also supported by many
detailed studies cited in [73].

6.3. Merging Gridless Solutions for Flow and Fracture
Propagation. Recent efforts have shown that fracture propa-
gation in elastic and poroelastic media can be modeled with-
out resorting to finite difference or finite-element methods
[74–76]. The development of the so-called time-stepped lin-
ear superposition method (TLSM) was motivated by the
same gains underpinning CAM solutions for fluid flow:

Table 6: Computational time (tcpu) for several test cases.

Timestep
Δt dayð Þð Þ

Number of fractures
Nf

� � Number of particles tracked
np
� � Duration of simulation

tTotal yearsð Þð Þ
Total run time

tcpu sð Þ� �

1 13 601 30 42.6

0.5 13 601 30 81.2

0.05 13 601 30 710

0.02 13 601 30 1820.6
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skipping of tedious gridding to achieve faster computation
times, while preserving infinite resolution. TLSM allows the
determination of nonplanar fracture propagation paths for
multiple hydraulic fractures growing from the perforations
during fracture treatment [74–76]. The proprietary, gridless,
fracture propagation simulator (TLSM) can be coupled with
the gridless simulator for fluid flow in fractured porous
media (CAM). The fundamental theory and key algorithms
for both types of simulators have been published in leading
applied mathematics journals [17, 77–79].

7. Conclusions

In this study, we presented a correction factor for scaling
the permeability contrast of discrete natural fracture ele-
ments in CAM models, when the permeability contrast
for a naturally fractured reservoir is known. Previously,
the ratio of the maximum fluid velocity in natural fractures
relative to the unperturbed far-field velocity was under-
stood to be a proxy for permeability contrast in CAM
models. A comparison with a numerical model showed that
the ratio of fluid velocity underestimated the actual perme-
ability contrast by a factor 2.5 and needs a correction
factor. The particle paths generated from CAM were
compared with similar results from EDFM. In addition to
scaling issues, this study investigated the effect of fracture
aperture and permeability changes on pressure contour
plots. The following conclusions can be drawn from our
study:

(a) CAM can be used to model the flow of fluids in frac-
tured porous media. The natural fractures locally
increase fluid velocity or decrease it according to
the perviousness of the natural fractures. For a con-
ductive fracture, the flow outside of the matrix
remains largely unaffected (Figure 2(b)), although
particle tracking shows that considerable distortion
occurs locally (Figures 6(b) and 9). The impervious
fracture (Figure 10) also distorts the pressure con-
tours and changes the path of fluid flow in the vicin-
ity of the fracture. The TOFCs in the wake of the
cemented fractures are pulled back due to the fluid
particles being slowed down

(b) CAM models allow high-resolution visualization of
particle paths, pressure, and velocity fields without
complex gridding and meshing. The presence of nat-
ural fractures in a reservoir promotes preferential
flow channeling (Figure 13). This can help in faster
transport of fluid from the matrix to the wellbore.
However, it can also increase fracture and well inter-
ference due to pressure communication between the
closely spaced wells and hydraulic fractures

(c) The permeability contrast calculated from the ratio of
matrix and fracture permeability needs a correction
factor of 2.5 to calculate the strength variable for CAM

(d) The particle paths generated from CAM were
compared to the results from EDFM. Despite of dif-

ferences in boundary conditions and other assump-
tions, the results from both models showed a visual
match. Quantitative benchmarks of the CAM model
of naturally fractured reservoirs with EDFM or other
discrete volume methods will remain challenging
because of the fundamental differences in the design
assumptions (explained in Section 6.1)

Appendix

A. Natural Fracture Algorithms for CAM

The complex potential for a generalized areal doublet/dipole
element is [7] as follows:

Ω z, tð Þ = −υ tð Þ ⋅ e−iγ ⋅ eiθ ⋅ eiβ
2π ⋅ h ⋅ n ⋅ L ⋅Weiβ

z − za2ð Þ ⋅ log −e−iγ z − za2ð Þ� ��

− z − za1ð Þ ⋅ log −e−iγ z − za1ð Þ� �
+ z − zb1ð Þ log

� −e−iγ z − zb1ð Þ� �
− z − zb2ð Þ log −e−iγ z − zb2ð Þ� ��

, 
� m2 · s−1
� �

,
ðA1Þ

where υðtÞ (m4·s) is the strength of the natural fracture; L,
W, and h (m) are the length, width, and height of the nat-
ural fracture, respectively; n is porosity; and γ is the tilt
angle of the areal dipole/doublet element. The corner
points of the natural fracture domain are given by za1,
za2, zb1, and zb2. θ and β are the orientation of point dipo-
le/doublet element and tilt angle of the line dipole/doublet
element, respectively. The tilt angle of the areal dipole/-
doublet element is taken as negative (as opposed to posi-
tive for θ and β) in order to maintain consistency with
earlier work [17].

The natural fracture element is a special case of the gen-
eralized areal doublet/dipole element [17], where the orienta-
tion of the point dipole/doublet (θ) is π/2. Substitution of
appropriate angles in equation (A1) yields:

Ω z, tð Þ = −i · υ tð Þ · e−iγ
2π · h · n · L ·W

z − za2ð Þ · log −e−iγ z − za2ð Þ� ��

− z − za1ð Þ · log −e−iγ z − za1ð Þ� �
+ z − zb1ð Þ log

� −e−iγ z − zb1ð Þ� �
− z − zb2ð Þ log −e−iγ z − zb2ð Þ� ��

, 
� m2 · s−1
� �

:

ðA2Þ

The algorithm in equation (A2) is accurate for fractures
aligned with a far-field flow and works well for fractures ori-
ented moderately obliquely with respect to the far-field flow,
but it becomes increasingly inaccurate when the fractures are
perpendicular to or at a large angle to the far-field flow [7].
An augmented solution was proposed where the corner point
coordinates were modified, and the resulting modified areal
doublet element was superposed with the original element
and the far-field flow. The contribution of each superposed
element was scaled based on their angle with the far-field
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flow. Further details are presented in [7]. The augmented
algorithm is as follows:

Ω zð Þ =Ωf zð Þ + 〠
2

n=1
−1ð Þn+1 sin γn ⋅Ωn zð Þ: ðA3Þ

Ωf ðzÞ is the complex potential for the far-field flow given
by [7]:

Ωf zð Þ = u∞ tð Þz: ðA4Þ

ΩnðzÞ is the complex potential for the areal doublet/
dipole element given by [7]:

Ωn zð Þ = −υ tð Þ
2πhn ⋅ Ln ⋅Wn

⋅ e−i γ−θnð Þ ⋅ z + za2nð Þ log�

� −e−iγ z − za2nð Þ� �
− z + za1nð Þ log −e−iγ z − za1nð Þ� �

+ z + zb1nð Þ log −e−iγ z − zb1nð Þ� �
− z + zb2nð Þ log

� −e−iγ z − zb2nð Þ� ��
:

ðA5Þ

The vertices za1n, za2n, zb1n, and zb2n are the vertices for
the areal doublet/dipole element given by

za1n = zc − eiγ ⋅ 0:5Ln + 0:5Wn ⋅ e
iβ

� �
,

za2n = zc − eiγ ⋅ 0:5Ln − 0:5Wn ⋅ e
iβ

� �
,

zb1n = zc − eiγ ⋅ −0:5Ln + 0:5Wn ⋅ e
iβ

� �
,

zb2n = zc − eiγ ⋅ −0:5Ln − 0:5Wn ⋅ e
iβ

� �
:

ðA6Þ

The inputs needed to calculate the vertices given in equa-
tion (A6) are as follows [7]:

θ1 = π/2ð Þ,
θ2 = −θ1,

γ2 = γ1 − π/2ð Þ,
L2 =W1,

W2 = L1:

ðA7Þ

B. The Effect of Increased Fracture Strength on
Branch Cuts

One crucial aspect of CAM models is the occurrence of
mathematical branch cuts when multivalued solutions
appear along certain integral lines [7, 44]. Prior studies have
discussed possible solutions to side-step such branch-cut
effects [7, 44]. When the fracture strength superposed on a
far-field flow is increased, the appearance of pressure jumps
across branch cuts signals that the flow becomes physically
unrealistic. For instance, Figure 8 shows the pressure con-
tours for fractures, where the effective fracture strength is

doubled to 4:76 × 10−6 m4/s (as compared to 2:38 × 10−6 m4

/s in Figure 7(a), main text). The branch-cut effect is nearly
negligible for the case where the fracture is parallel to the
direction of fluid flow (Figure 8(a)). However, the branch
cuts cause a discontinuity in pressure contours even when
the fractures are slanted (Figures 8(b) and 8(c)). CAM is an
analytical model where the fracture strength may be set to
physically unrealistic values.

Figure 11 shows the pressure contours for a blocking
fracture with a reduced effective fracture strength
(−1:92 × 10−6 m4/s). The pressure contours of Figure 11
show the same pattern as for the blocking fracture in
Figure 9 (main text), but the effect of the branch cut is more
apparent when the strength decreases, as shown in Figure 11.
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The lower Silurian Longmaxi Formation hosts a highly productive shale gas play in the Zhaotong region of southern China.
According to core observation, X-ray diffraction analyses, and scanning electron microscopy (SEM) observations, the shale
comprises primarily quartz, carbonate minerals, and clay minerals, with minor amounts of plagioclase, K-feldspar, and pyrite.
The clay mineral content ranges from 15.0% to 46.1%, with an average of 29.3% in the Zhaotong region. Organic geochemical
analyses show that the Longmaxi Formation has good potential for shale gas resources by calculating total organic carbon,
vitrinite reflectance, and gas content. Scanning electron microscope images demonstrate that reservoir pore types in the
Longmaxi shale include organic pores, interparticle pores, intercrystalline pores, intraparticle pores, and fractures. Reservoir
distribution is controlled by lithofacies, mineral composition, and geochemical factors. In addition, we investigated the relationships
between reservoir parameters and production from 15 individual wells in the Zhaotong region by correlation coefficients. As a result,
the brittleness index, total organic carbon (TOC), porosity, and gas content were used to define high-quality reservoirs in the
Longmaxi shale. Based on these criteria, we mapped the thickness and distribution of high-quality reservoirs in the Longmaxi
Formation and selected highlighted several key sites for future exploration and development.

1. Introduction

Shale gas is one of the main forms of unconventional natural
gas. It occurs within certain organic-rich shale and is gener-
ally present in an adsorbed or free state [1–4]. China was
the third country to commercially develop shale gas, after
the United States and Canada [5–7]. The Changning,
Weiyuan, Zhaotong, and Fuling marine shale gas demonstra-
tion zones achieved a combined annual output of 79 × 108m3

in 2017 [8]. China has great potential for additional shale gas
exploration, and the production of shale gas in the country is
forecast to reach 800 – 1000 × 108m3 by 2030 [9].

Despite their production potential, shale gas reservoirs
are often highly heterogeneous [10, 11] and have poor petro-
physical properties [12–14]. Parameters such as shale ther-
mal maturity, organic matter content, net thickness, burial
depth, recoverable area, gas content, and Young’s modulus
are used to describe shale gas reservoirs [15]. Hashmy et al.
define high-quality unconventional gas reservoirs as having

petrophysical properties that are conducive to good flow
[16]. Zou et al. proposed criteria for evaluating unconven-
tional gas reservoirs, including depositional environment,
thermal evolution, pore and fracture development, and tec-
tonic preservation condition [17]. Successful shale gas devel-
opment is dependent on the discovery of high-quality
reservoirs [18].

The shale gas well has low natural productivity in Long-
maxi Formation, so it needs fracturing transformation to
obtain higher production. Evaluation of high-quality reser-
voirs is the key to shale gas development in this area. The
previous evaluation system analyzes the characteristics of
high-quality reservoirs from the perspectives of shale rock
[19], mineral [20], physical property [21], gas bearing [22],
geochemistry [23], and resource potential [24], but the
relationship between reservoir parameters and gas well pro-
duction is rarely discussed. In this paper, we characterized
the Longmaxi Formation’s shale gas reservoirs in the
Zhaotong region of the Sichuan Basin, southern China, by
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core observation, X-ray diffraction analyses, and scanning
electron microscopy (SEM) observations. As a result, we
quantified the reservoir properties of Longmaxi Formation
and selected the best parameters for shale gas reservoir
evaluation. Our results provide a theoretical framework to
support future shale gas exploration and development in
southern China and similar regions elsewhere.

2. Regional Geological Setting

The Sichuan Basin, in southwestern China, contains petroli-
ferous deposits that can be found over an area of approxi-
mately 26 × 104 km2. The Sichuan Basin is bounded by the
Longmenshan Fault to the west, the Chengkou–Fangxian
and Xiangguang faults to the north, and the Shizong-Mile
and Danchi-Du’an faults to the south (Figure 1). The Zhao-
tong region lies to the south of the Chuannan fold belt in
the southern Sichuan Basin [25].

Southern China experienced intense tectonic compres-
sion in the Late Ordovician–Early Silurian [26]. As the
Paleo-Tethys Ocean subducted during the Early–Middle
Ordovician, the northern Yangtze Cratonic Basin shrank
[27]. Moderate bathymetric uplift drove a transition from
marine to restricted marine conditions at this time [28]. In
the Sichuan Basin’s hypoxic deep-water shelf environment,
the moderately uplifted bathymetry, low-energy conditions,
and low-sedimentation rate allowed for the accumulation of
thick, widespread marine shale. This marine shale sequence
includes the black graptolitic shale of the Longmaxi Forma-
tion [29]. Gamma values in the Sichuan Basin shale sequence
peak in the Wufeng Formation (at the Ordovician–Silurian
transition), before gradually decreasing upward. The Long-
maxi shale is an important source rock in the Sichuan Basin
[30, 31], where it is widespread and 55–516m in thickness.
The Longmaxi shale is divided into two parts from bottom
to top: the lower part is rich in organic matter and graptolites,
and is the main gas-producing layer; the upper part is a thick
succession of silty shale, which formed in a shallow-water
sandy shelf environment.

3. Database and Methodology

This study utilized 221.98m of 3 cores, 132 slices of core,
X-ray diffraction data from 52 samples, source rock data
from 91 samples (vitrinite reflectance, TOC, and macerals),
scanning electron microscopy (SEM) observations from 72
samples, and porosity-permeability measurements from
32 samples.

Powdered shale samples were analyzed for TOC content
using a LECO CS-230 carbon-sulfur analyzer at 25°C and
30% humidity. Vitrinite reflectance (Ro) was measured using
a Zeiss mpv-sp microphotometer. An X’Pert Pro X-ray dif-
fractometer was used to determine the mineralogical compo-
sitions and clay fractions. These three tests were conducted at
the State Key Laboratory of Oil and Gas Reservoir Geology
and Exploration at the Southwest Petroleum University in
Chengdu, China.

Twelve samples were selected to investigate the shale pore
types and morphologies. The analyses were conducted using

a FEI Quanta 200F field emission scanning electron micro-
scope (FE-SEM) at the State Key Laboratory of Petroleum
Resources and Prospecting at the China University of Petro-
leum in Beijing. The samples were treated with an argon ion
profile and an ion sputtering coating. Imaging was carried
out at 24°C and 35% humidity. The scanning electron micro-
scope was used to determine the microscopic pore structure
characteristics (morphology, types, and distribution) of the
shale samples [32].

A nitrogen adsorption experiment was carried out
at −196°C using a Quadrasorb SI specific surface analyzer.
Before the experiment, samples were degassed for 20 hours
under vacuum at a temperature of 110°C.

4. Results

4.1. Mineralogy. X-ray diffraction analyses show that the
shale mineralogies include quartz, feldspar, calcite, dolomite,
pyrite, and clay. Quartz is the most abundant mineral, with
an average content of 30.50%. The average contents of calcite
and dolomite are 17.24% and 14.12%, respectively. The clay
mineral content ranges from 15.0% to 46.1%, with an average
of 29.3%. The clay mineral compositions include mainly illite
(49%–73%, with an average of 54.0%) and chlorite (8%–28%,
with an average of 15.4%), followed by illite/montmorillonite
(12%–41%, with an average of 28.8%) (Table 1). The brittle-
ness index is the sum of the quartz and feldspar contents. The
brittleness index of sample ZT1-4 is the highest (0.499), and
the brittleness index of sample ZT1-2 is the lowest (0.139).

4.2. Lithology. The Longmaxi Formation is approximately
50–200m thick in the Zhaotong region. Six main lithofacies
were identified from the 221.98m Longmaxi Formation core:
siliceous shale, carbonaceous shale, calcareous shale, silty
shale, gray mudstone, and muddy siltstone (Figure 2).

The siliceous shale from the Longmaxi core is laminated
and dark in color. A high content of cryptocrystalline silica
makes this facies very hard overall, and the covering area of
graptolite content is generally <30%. The carbonaceous shale
is foliated with a large amount of carbonized organic matter
and a high TOC content. The most abundant minerals are
quartz, clays, feldspar, pyrite, and calcite. The calcareous
shale has well-developed horizontal bedding and a high cal-
cite content. The graptolite coverage area is generally <10%.
The silty shale contains dark, organic-rich clay and lighter par-
ticles of quartz, feldspar, and other detritus. Detrital particles
account for 25%–45% of the total mineralogy. The gray mud-
stone has a light gray color and is composed of clay minerals
with fine silt. The muddy siltstone contains clastic particles
of quartz and feldspar, with horizontal to wavy bedding.

The siliceous and carbonaceous shales formed in a reduc-
ing, deep-water environment. These lithofacies are found in
the lower part of the Longmaxi Formation, where the deep-
water shelf environment was conducive to the deposition of
source rocks. The TOC content of these lithofacies is >2%,
which is favorable for shale gas. Calcareous shale, silty shale,
gray mudstone, and argillaceous siltstone mainly occur in the
upper part of the Longmaxi Formation. The upper part of the
formation was deposited in a shallow shelf environment, and
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it records the gradual transition from anoxic, reducing condi-
tions to oxygen-rich, oxidizing conditions. Preservation
potential for organic matter was poor, so the organic carbon
content of these deposits is <2%.

4.3. Organic Geochemical Characteristics

4.3.1. TOC. The TOC content of the Longmaxi shale reaches
a maximum of 4.79wt.%, with an average of 2.76wt.%. The
TOC content varies according to lithofacies, with siliceous
shale and carbonaceous shale having the highest TOC con-
tents. There is also a gradual upward-decreasing trend in
TOC content in the lower part of the Longmaxi shale.

4.3.2. Thermal Maturity. Vitrinite reflectance (Ro) values for
the Longmaxi shale are between 1.95% and 3.13%, with an

average of 2.48%. The Ro values indicate that the source rock
is highly mature and that it has reached the hot gas window.

4.3.3. Gas Content. Core analyses indicate that the adsorbed
gas content of Longmaxi shale is 1.6–2.1m3 t−1. Previous
studies have shown that the adsorbed gas content of shale is
positively correlated with TOC content [33]. This is due to
the strong adsorption potential of gas on organic compounds
[34]. In shales, large amounts of gas can be adsorbed on the
surface of kerogen, so high TOC contents can indicate large
gas volumes and high adsorption capacity for shale gas. Shale
gas content is also affected by mineral composition, porosity,
and other factors [35].

4.4. Reservoir Storage Space. Pores form the main reservoir
space in shales. Scanning electron microscope images reveal
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Table 1: Mineralogy of shale samples from the Zhaotong region.

Sample ID TOC (%) Ro (%)
Mineral content (%)

Relative content of
clay (%)

Quartz K-feldspar Plagioclase Calcite Dolomite Pyrite Clay I/S I K C

ZT1-1 2.15 2.46 12.1 0.8 1.6 29.3 21.2 1.7 33.3 12 73 2 13

ZT1-2 2.56 2.64 11.5 0.7 1.7 19.8 15.4 4.8 46.1 22 64 2 12

ZT1-3 3.31 2.47 37.2 0.6 4.9 19 17.4 2.4 18.5 41 49 1 9

ZT1-4 4.15 2.51 48.3 0.8 0.8 8.7 15.6 3.5 22.3 41 50 1 8

ZT1-5 4.79 2.59 28.9 0.9 4 13 15.8 6 31.4 28 58 2 12

ZT1-6 2.31 1.95 37.9 1.1 9.5 7.4 4.8 4 35.3 26 51 2 21

ZT1-7 3.13 2.02 29.3 1.6 4.2 9.9 5.9 3.2 45.9 23 52 2 23

ZT1-8 1.17 2.42 34.2 1.3 8.1 12.3 4.5 1.3 38.3 26 51 2 21

ZT1-9 1.88 2.49 30.4 3.1 9.3 16.6 5 3.1 32.5 18 54 2 26

ZT1-10 0.91 2.35 37.9 4.6 6.5 12 3.9 0.6 34.5 20 50 2 28

ZT1-11 3.35 3.13 17.9 0.9 2.3 36.5 23.1 2.7 16.6 32 53 2 13

ZT1-12 0.86 2.41 24.3 0.9 6.1 31.4 21.5 0.8 15 32 52 2 14

ZT1-13 3.17 2.59 41.8 0.8 4.6 16.4 14.9 2 19.5 37 52 1 10

ZT1-14 3.47 2.43 35.1 0.7 5.5 13.7 20.1 2.2 22.7 38 50 2 10

ZT1-15 4.16 2.67 30.7 1.1 1.2 12.6 22.7 4.4 27.3 36 51 2 11

(a) (b)

(c) (d)

(e) (f)

Figure 2: Shale facies of the Longmaxi Formation in the Zhaotong region: (a) carbonaceous shale; (b) siliceous shale, dark in color and hard,
with a high SiO2 content; (c) calcareous shale, contains high angle fractures that are filled with calcite; (d) silty shale, light layers contain
mainly quartz and feldspar, while the dark layers contain high clay and organic matter contents; (e) gray mudstone, light gray in color; (f)
muddy siltstone, displays wavy to horizontal bedding.
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several pore types in the Longmaxi shale samples, including
organic pores, intercrystalline pores, intraparticle (intraP)
pores, and interparticle (interP) pores (Figure 3). The organic
pores are widely developed in the shale and formed during
the later stages of thermal evolution. When source rocks
reach the threshold for hydrocarbon generation, pores form
in the organic matter as hydrocarbons are produced and
expelled. The organic pores generally have laminar, pitted,
ellipsoidal, polygonal, and irregular shapes. Organic pore
sizes are highly variable in the Longmaxi shale, ranging from
10 to 1500 nm. These pore sizes are medium–large and can
develop within both nanoscale and microscale organic mat-
ter (Figures 3(a) and 3(j)). Interparticle pores and intraparti-
cle dissolved pores are both considered intergranular pores
and mainly formed via late diagenetic processes, though
there are a few primary interparticle pores (Figures 3(b),
3(d), 3(e), and 3(i)). Pyrite intercrystalline pores are widely
developed in the shale [36]. When pyrite aggregates are par-
tially dissolved, the resulting pores are filled with organic
matter and newer pyrite crystals [37–42]. The organic matter
in the Longmaxi shale is often coated with pyrite particles.
Calcite and dolomite intraparticle dissolved pores are rela-
tively small and rare (Figures 3(c) and 3(f)) in the Longmaxi
shale. The dissolved pores appear to be complete, and there is
no evidence of extrusion deformation, which indicates that
they formed during burial.

4.5. Reservoir Properties. The Longmaxi shale has porosities
between 0.83% and 6.70%, with an average of 4.70%. The per-
meability is very low, ranging from 0.0028 to 0.0417μD, with
an average of 0.0176μD. The specific surface area is between
1.72 and 29.31m2 g−1, with an average value of 9.88m2 g−1.
The throat radius values range from 3.0 to 19.8 nm, with an
average of 7.5 nm. The total pore volumes of the Longmaxi
shale range from 49 to 388 × 10−4 ml g−1, with an average of
123 × 10−4 ml g−1. The volumes of the pores (<2nm) range
from 15.2 to 37:4 × 10−4ml g−1, with an average of
5:8 × 10−4ml g−1. Mesopore volumes are distributed between
41.4 and 287:0 × 10−4mlg−1, with an average of 110:0 × 10−4

mlg−1. Micropores, mesopores, and macropores (>50nm)
constitute 4.70%, 89.43%, and 5.87% of the total pore volume,
respectively, indicating that mesopores are dominant in the
Longmaxi shale.

5. Discussion

5.1. Selection of Parameters for Reservoir Evaluation.We used
well data from the Zhaotong region to investigate the rela-
tionships between reservoir parameters and gas production
from the Longmaxi Formation. We used open-flow produc-
tivity data from 15 wells, which had each been fractured by
similar amounts prior to measurement. Reservoir parameters
have different effects on gas production from shale, and these
effects can be determined using correlation coefficients.

We used correlation coefficients to determine the impor-
tance and effect of each input and output index. We let the
input index terms be X1, X2,⋯, Xm. The greater the correla-
tion coefficient between the input index Xi and the output
index, the stronger the relationship between Xi and the out-
put index. The correlation coefficient Ri is defined as

Ri =
Cov Xð , YÞ
ffiffiffiffiffiffiffiffiffiffiffi

D Xð Þp ffiffiffiffiffiffiffiffiffiffiffi

D Yð Þp
: ð1Þ

Mud, silica, calcium, organic matter, and kerogen con-
tents, thermal maturity, total porosity, gas saturation, and pore
pressure gradient were selected as input indices, and gas pro-
duction was used as the output index. The parameters that
were used to evaluate reservoir properties were selected using
the correlation coefficient Ri. The controlling geological
parameters will vary between different shale gas reservoirs.

We used logged cores from the Zhaotong region to extract
parameters such as mud content, brittleness index, silica con-
tent, calcium content, TOC, kerogen content, total porosity,
gas saturation, pore pressure gradient, and Ro. The total gas
content is expressed as the actual gas production after fractur-
ing. By studying the correlation coefficients between these
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Figure 3: FE-SEM images of shale samples from the Zhaotong region. (a) Organic matter (OM) pores, pyrites, and interP pores at the edges of
mineral grains (b) OM pores and cleavage-sheet intraP pores in clay particles; (c) OM pores and fluid-inclusion intrapores; (d) OM pores in
OM grains, cleavage-sheet intrapores in clay particles, intrapores with calcite grains, and interpores at the edges of mineral grains; (e) OM
pores, cleavage-sheet intrapores within clay particles, and interpores at the edges of mineral grains; (f) fluid-inclusion intrapores within
brittle minerals and interpores at the edge of a calcite grain; (g) fluid-inclusion intrapores within brittle minerals and intercrystalline
interpores in pyrite framboids; (h) OM pores, intercrystalline pores in pyrite framboids, and interpores at the edges of mineral grains; (i)
cleavage-sheet intrapores within clay particles; (j) large OM particle with irregular and elliptical OM pores; (k) OM particle and
intercrystalline interpores in pyrite framboids; (l) intercrystalline interpores in pyrite framboids and interpores at the edges of mineral grains.

7Geofluids



reservoir parameters and gas production, we found that the
brittleness index, TOC, porosity, and gas content have the
strongest influence on gas production, with correlation
coefficients > 0:35, while Ro, pore pressure gradient, argilla-
ceous content, siliceous content, and calcium content have little
effect on gas production, with correlation coefficients < 0:35.

By analyzing shale gas reservoir parameters in the
Zhaotong area, we determined that the brittleness index,
TOC, porosity, and gas content are the most influential
parameters for gas production (and therefore reservoir qual-
ity). The highest observed correlation coefficients were
between brittleness index and gas production (0.6426),
followed by TOC and gas production (0.5776); correlation
coefficients between porosity and gas production (0.4951)
and gas content and gas production (0.3698) were lower.
The correlation coefficients reveal that the most influential
parameters on gas production are brittleness index>TOC>-
porosity>gas content (Figure 4).

5.2. High-Quality Reservoir Definition and Distribution. The
evaluation criteria for shale reservoirs in the Zhaotong region
include TOC, gas content, porosity, and brittle mineral index.
We have shown that these are the four key parameters that
influence shale gas production. To be considered high-quality,
reservoirs in the Longmaxi Formation should meet the follow-
ing criteria: TOC > 4%, gas content > 4m3 t−1, porosity > 5%,
and brittleness index > 0:45 (Table 2).

The shale in the upper part of Longmaxi Formation was
deposited on a shallow-water sandy shelf. Shale deposition
in this environment was discontinuous, and it is therefore

unlikely that the shale forms effective reservoirs for industrial
exploitation. We mapped the thickness of high-quality reser-
voirs in the lower Longmaxi Formation using the identifica-
tion criteria described above. Our results show that the next
phase of shale gas exploration and development should focus
on the northern and central parts of the study area (Figure 5).

6. Conclusions

In this study, reservoir characteristics of the lower Silurian
Longmaxi shale were analyzed in the Zhaotong region,
southern China. Some important findings are summarized
as follows:

(1) The Longmaxi shale contains six main lithofacies: sili-
ceous shale, carbonaceous shale, calcareous shale, silty
shale, gray mudstone, and muddy siltstone. The con-
centration of brittle minerals is high, which is condu-
cive to the formation of natural and artificial fractures

Table 2: Identification criteria for high-quality reservoirs in the
Zhaotong region.

Key parameters Criteria

TOC >4%
Gas content >4m3 t−1

Porosity >5%
Brittleness index >0.45
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Figure 4: Longmaxi shale gas reservoir parameters and gas production in the Zhaotong region: (a) brittleness index; (b) TOC; (c) porosity; (d)
gas content.
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(2) Geochemical analyses (TOC, Ro, and gas content)
show that the Longmaxi shale has good potential
for shale gas resources. The primary reservoir space
consists of organic pores, intercrystalline pores, intra-
particle pores, and interparticle pores. Most of the
pores are 2–50nm in size (mesopores). Open-flow
production data were used to investigate the relation-
ships between various reservoir index parameters
and gas production from the Longmaxi Formation

(3) Data from fifteen wells in the Zhaotong region were
used, and each had experienced a similar amount of
fracturing. The results show that TOC, gas content,
porosity, and brittleness index are the most influen-
tial parameters for shale gas production from the
Longmaxi Formation. We propose that high-quality
Longmaxi shale gas reservoirs in the Zhaotong region
should be defined using the following criteria: TOC
> 4%, gas content > 4m3 t−1, porosity > 4%, and
brittleness index > 0:45

(4) Our mapping of the high-quality Longmaxi shale gas
reservoirs in the Zhaotong region indicates that the
next phase of exploration and development should
focus on the northern and central parts of the
study area

Abbreviations

Xi: Input index
m: Number of parameters
Ri: Correlation coefficient of single

factor

Covariance of cov ðx, yÞ: x and y
Variance of DðxÞ: x
Variance of DðyÞ: y
Ro: Vitrinite reflectance
R2: Correlation coefficient.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

The findings achieved herein are solely the responsibility of
the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was financially supported by the National Sci-
ence Technology Major Project (No. 2016ZX05015), Petro-
China Innovation Foundation (No. 2019D-5007-0210),
National Natural Science Foundation of China (Grant
No.51904050), Chongqing Natural Science Foundation
Project (Nos. cstc2019jcyj-msxmX0725 and cstc2019jcyj-
msxmX045), and Science and Technology Research Program
of Chongqing Municipal Education Commission (Grant No.
KJQN201901531).

185°00

0 5 km 10 km

Well ZT1-3 Well ZT1-4 Well ZT1-570

150

125

100

185°20 185°40 185°60

31°
10

30°
90

(a)

Well ZT1-3 Well ZT1-4 Well ZT1-5

34
32

30

24

26283032
30

28
26

185°00 185°20 185°40 185°60

31°
10

30°
90

0 5 km 10 km

(b)

Figure 5: Isopach maps for the Zhaotong region: (a) the Longmaxi Formation thickness; (b) high-quality shale gas reservoir thickness in the
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