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Variable speed limit (VSL) control dynamically adjusts the displayed speed limit to harmonize traffic speed, prevent congestions,
and reduce crash risks based on prevailing traffic stream and weather conditions. Previous research studies examine the impacts of
VSL control on reducing corridor-level crash risks and improving bottleneck throughput. However, less attention focuses on
utilizing real-world data to see how compliant the drivers are under different VSL values and how the aggregated driving behavior
changes. This study aims to fill the gap. With the high-resolution lane-by-lane traffic big data collected from a European
motorway, this study performs statistical analysis to measure the difference in driving behavior under different VSL values and
analyze the safety impacts of VSL controls on aggregate driving behaviors (mean speed, average speed difference, and the
percentage of small space headway). The data analytics show that VSL control can effectively decrease the mean speed, the speed
difference, and the percentage of small space headways. The safety impacts of VSL control on aggregated driving behavior are also
discussed. The aggregated driving behavior variables follow a trend of first decreasing and then increasing with the continuous
decrease in VSL values, indicating that potential traffic safety benefits can be achieved by adopting suitable VSL values that match

with prevailing traffic conditions.

1. Introduction

Variable speed limit (VSL) control dynamically adjusts
the displayed speed limit on the variable message signs to
harmonize traffic speed, prevent congestions, and reduce
crash risks based on prevailing traffic stream and weather
conditions, which is an essential control strategy for Active
Traffic Management (ATM) system. Germany was among
the earliest countries that implemented the VSL system in
the mid-1960s [1]. Nowadays, VSL control has been widely
adopted by countries including Germany, America, the
Netherlands, United Kingdom, and China for real-time
operation of motorway traffic to improve traffic safety and
mitigate congestions [2].

To evaluate the safety benefits of the VSL control, many
approaches have been taken. Questionnaire surveys are used
to evaluate the safety benefits of VSL [3, 4]. Their results
showed that around 95% of drivers believe that VSL can
effectively improve driving safety. The driving simulator is
another way to examine the impact of VSL on driving be-
havior. A previous study shows that VSL can improve traffic
safety by reducing speed differences between vehicles [5].
However, both questionnaire surveys and driving simulators
are biased towards respondents’ subjective factors, which
might lead to the overestimation of VSL systems’ safety
benefits. Traffic simulation methods have been widely used
to examine both the operation and safety benefits of different
ATM control strategies [6-9]. To better reproduce the real-
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world effect of VSL control, different traffic simulation
methods have also been applied to evaluated VSL benefits by
simulating different driver groups’ behavioral responses to
the VSL [7-9]. Some researchers integrated a real-time crash
potential prediction model that utilizes the output of the
microscopic simulation [10-13]. They found that VSL could
achieve safety benefits, especially in reducing the risk of rear-
end collisions. The simulation-based studies are able to
quantitatively evaluate VSL safety impacts; however, the
driving behavior is heterogeneous between different driver
groups. For instance, aggressive drivers tend to drive with a
higher desired speed compared to conservative drivers [14].
The microscopic simulation models simply apply the
compliance rate to the driver group and universally set the
compliant drivers’ desired speed equalling to VSL values,
which had not been proven correct by any empirical
observations.

Empirical data, e.g., the loop detector data, has been
widely used to analyze different aspects of motorway traffic
[15, 16]. With the support of these high-resolution data,
driving behaviors under VSL control have also been well
studied [17-23]. The consensus emerging from these studies
is that VSL control can improve safety by decreasing the
mean speed, the speed difference, and the percentage of
small-time headway and increase the mean time headway.
Studies using empirical traffic data as inputs can objectively
analyze the impacts of VSL on driving behaviors and derive
credible conclusions. However, with the constraint of pre-
defined VSL control strategies, the majority of these studies
only have access to data from a limited range of traffic
conditions and limited VSL values. Therefore, most of these
studies merely performed qualitative comparisons between
driving behavior parameters with and without VSL controls,
while missing the quantitative examination of the rela-
tionship between traffic variables and VSL values. In the real-
world implementation, VSL values vary in accordance with
the prevailing traffic conditions and weather. Therefore, such
studies were not able to evaluate the potential outcomes of
each VSL value with a limited amount of data. In the
meantime, few studies have controlled traffic states when
examining VSL impacts; therefore, it is difficult to determine
whether the obtained results are caused by VSL control or by
the difference in traffic states within the collected empirical
data.

According to the literature, the understanding of VSL
control’s mechanisms leading to efficiency and safety is still
not fully explored and understood by researchers. Efforts
devoted to investigating the impacts of VSL on driving
behaviors have been insufficient, especially for quantitative
research studies on VSL. To the best knowledge of the
authors, few have examined the impact of VSL control on
the aggregated driving behaviors with different VSL values
[24].

To fill the gap, this study utilized high-resolution lane-
by-lane traffic big data from a European motorway under
different VSL values. Then a broad range of traffic states, i.e.,
traffic density, is categorized and investigated under various
VSL values. With controlling the traffic state, the relation-
ships between aggregated driving behaviors and VSL values
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within different traffic density intervals have been quantified.
Based on the quantitative analysis results, this study mea-
sures the difference in driving behavior under different VSL
values and discusses the safety impacts of VSL control on
aggregated driving behaviors and potential improvement on
the motorway rear-end collisions. The results of this study
revealed the mechanism leading to the safety benefits of VSL
control and provided more realistic assumptions for mod-
eling traffic flow operations under VSL control. Further-
more, we also discussed the invaluable insights into
developing effective VSL control strategies to improve traffic

safety.

2. Analyzing Aggregated Driving Behavior with
Traffic Big Data

2.1. Traffic Big Data. The high-resolution lane-by-lane traffic
big data is collected from a two-direction European mo-
torway segment with three lanes in each direction. Inductive
loop detectors are placed every 500-meter on the motorway
collecting traffic stream speed, headway, vehicle length, and
other traffic flow characteristics. The motorway segment
experiences a wide variety of traffic conditions (including
recurrent and nonrecurrent congestions). A VSL control
system is deployed along the motorway with the control
objective of alleviating roadway congestions and improving
traffic safety. A wide variety of speed limits including 50 km/
h, 60 km/h, 80km/h, 100 km/h, and 120km/h are imple-
mented in the system.

This study uses traffic flow data and corresponding VSL
control speeds data from 7:00 am to 6:00 pm for two weeks at
a no weaving area site. The data only in good weather
condition (no rain or fog) and visibility conditions (at
daytime) is selected to avoid external interference. Missing
and wrong data was removed. Besides, in order to eliminate
drivers’ adjustments immediately after the VSL control is
triggered, the traffic flow data within 3 minutes after the
implementation of VSL control is removed. Finally, the
dataset including 4266 minutes data records with 355,599
vehicles was established, including 128,998 vehicles, 136,301
vehicles, and 90,300 vehicles on the left lane, middle lane,
and right lane, respectively.

2.2. Traffic States. The investigation of the VSL impacts on
driving behavior must control the traffic states. Under
various traffic states, the driving behavior will be differently
affected by the VSL control system. Therefore, the classifi-
cation of the samples according to traffic states is indeed
critical to this study. In this study, traffic density is chosen as
a critical indicator to measure traffic congestion. The
samples are further classified into different traffic density
intervals to evaluate the impact of VSL control under re-
spective traffic states. And the samples in the same density
interval with and without VSL controls are also compared to
investigate the effect of VSL control on driving behavior.
Furthermore, traffic data needs to be aggregated for the
density parameter of every sample. The traffic volume, the
mean speed, and the density of every sample are calculated
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using one minute as the statistical time interval. The traffic
flow data within different density intervals under different
VSL control speeds on different lanes are classified by five
vehicles per kilometer per lane density intervals. Meanwhile,
to ensure there are enough samples to perform statistical
analysis, the density intervals under each VSL value whose
sample size is too low should be ignored. Through trial and
error, fifteen is selected as the lower limit of the sample size.
The number of samples within different density intervals
under different speed limits on different lanes is listed in
Table 1 (“—” indicates that the number of samples is less
than 15 within the associated density interval). Samples with
high traffic density (larger than 30 veh/km) are removed
because, under high traffic density, the reduction of traffic
speed is mainly caused by traffic congestions and stop-and-
go waves, thus making it hard to quantify the actual impact
of VSL on the aggregated driving behavior.

2.3. Aggregated Driving Behavior Variables. In this study, we
defined three variables to represent the aggregated driving
behavior: mean speed, average speed difference, and the
percentage of small space headway. These three variables are
calculated using the traffic big data and are further used to
measure the safety impact of the VSL control. Definition and
calculation for these three aggregated driving behavior
variables are shown below.

2.3.1. Mean Speed. The two most frequently used mean
speeds in traffic studies are the time mean speed and the
space mean speed. This study selected the space mean speed
as one of the analysis variables. It is the arithmetic mean
speed value of vehicles within a certain section at a moment,
which equals the harmonic mean of spot speed observed.

n

T M

m=1 m

<|

where v,, represents the instantaneous velocities of the
vehicle m; n represents the number of vehicles passing the
roadway segment.

2.3.2. Average Speed Difference (ASD). The average speed
difference of two neighboring vehicles was selected to
measure the speed difference. It is the mean value of speed
difference between the neighboring vehicles passing a given
point in a specified time interval [25].

Z?;11|Vi ~ Vil (2)

ASD =Av = ,
n—1

where v; represents the speed of the i vehicle passing the
fixed point; n represents the number of vehicles passing a
given point.

2.3.3. The Percentage of Small Space Headway. Space
headway is a measurement of the minimum possible dis-
tance between vehicles without a reduction in the speed of
the following vehicles. A small disturbance might still lead to

instability conditions on motorways when a platoon of
vehicles is operating with small headways [26]. Therefore,
the distribution of headway, particularly the percentage of
small headways, has some influence on the stability and
safety of traffic stream operations. The percentage of less
than 100 meters of space headway was used as one of the
analysis variables.

3. Results

The impact of VSL control on aggregated driving be-
havior is measured based on the mean speed, the variation of
speeds, and headways in this study as introduced before.

3.1. VSL Impacts on Mean Speed. In order to compare the
effect of different VSL values on the mean speed, the
arithmetic average of all the sample’s mean speed within
different density intervals is calculated under different speed
limits on different lanes. The results are summarized in
Table 2. The two-sample Student’s t-test is used to compare
the mean speeds’ difference with and without VSL controls,
and the associated p values for t-tests are also provided in
parenthesis to infer the impact significance of the VSL
control. The null hypothesis (Hy) is that the index is the same
for the conditions with and without control. If the t-test
value is less than 0.05, we accept the hypothesis, if not, we
reject it. The t-statistics is calculated using the formula
shown below:

X — %)
’ 3
\/S?/Vll + sg/n2 3)

where X, X, respectively, represent sample means of the two
groups, si,s; represent the sample variances, and n,,n,
represent the sample sizes.

The results in Table 2 reveal that the mean speeds are
lower under VSL controls regardless of the traffic density
interval or lane locations. Under noncongested traffic
density conditions (5-20 veh/km), the speed limit of 120 km/
h only provides a marginal reduction in mean speeds on the
left lane and the middle lane, yet the t-test results show that
these speed differences are still statistically significant;
meanwhile, other lower VSL speed values (lower than
120 km/h) are significantly reducing the mean speeds, and
the t-test results for these speeds are also statistically sig-
nificant. Under congested conditions (25-30 veh/km on the
left and the middle lane, 20-25 veh/km on the right lane), the
t-test results reveal that the speed limit of 120 km/h is not
significantly changing the mean traffic stream speed when
compared to conditions without VSL control; for other
lower VSL values, obvious mean speed reductions are
achieved, and these mean speed differences are all statisti-
cally significant.

To evaluate the impact of different VSL values for each
lane under the same traffic state, enough samples need to be
obtained under each VSL value for a given traffic density
interval. Given the sample size information shown in Ta-
ble 1, only the traffic density interval 20-25veh/km has
enough sample size under all VSL values. Therefore,

t=
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TaBLE 1: Number of samples within different density intervals under different speed limits (“—” means the sample size is less than 15).
. Number of samples under different speed limits (km/h)
Lane Density (veh/km)
No VSL 120km/h 100 km/h 80km/h 60 km/h 50 km/h
0-5 217 28 18 — — —
5-10 621 147 83 — — —
Left lane 10-15 496 178 103 18 — —
15-20 317 395 94 30 16 —
20-25 221 687 54 48 45 15
25-30 101 315 19 — — —
5-10 97 21 — — — —
10-15 476 194 79 — — —
Middle lane 15-20 1020 804 219 60 15 —
20-25 345 637 66 18 30 16
25-30 50 119 — — — —
5-10 325 175 31 — — —
Right lan 10-15 1220 875 242 49 — —
gt fane 15-20 412 626 99 31 38 15
20-25 37 91 — — — —

TaBLE 2: The arithmetic average and ¢-test results of mean speed within different density intervals under different speed limits on different

lanes (“—” means the sample size is less than 15).
. The arithmetic average of mean speed under different speed limits (km/h)
Lane Density (veh/km)
No VSL 120 km/h 100 km/h 80 km/h 60 km/h 50 km/h
0-5 129.6 125.7(0.00) 111.4(0.00) — — —
5-10 126.1 124.8(0.00) 109.9(0.00) — — —
Left lane 10-15 122.5 121.4(0.00) 106.3(0.00) 98.0(0.00) — —
15-20 117.6 113.2(0.00) 102.1(0.00) 91.3(0.00) 91.4(0.00) —
20-25 111.6 106.3(0.00) 96.4(0.00) 86.5(0.00) 86.4(0.00) 90.6(0.00)
25-30 100.6 99.6(0.56) 85.2(0.00) — — —
5-10 116.9 110.2(0.00) — — — —
10-15 115.1 111.3(0.00) 98.5(0.00) — — —
Middle lane 15-20 111.8 104.3(0.00) 96.7(0.00) 84.4(0.00) 82.0(0.00) —
20-25 105.1 97.8(0.00) 91.8(0.00) 84.0(0.00) 80.6(0.00) 87.0(0.00)
25-30 85.7 88.9(0.18) — — — —
5-10 98.8 92.5(0.00) 88.8(0.00) — — —
Right lane 10-15 97.6 90.7(0.00) 88.6(0.00) 78.4(0.00) — —
15-20 92.6 85.9(0.00) 86.0(0.00) 78.1(0.00) 72.7(0.00) 77.0(0.00)
20-25 80.4 81.3(0.67) — — — —

20-25 veh/km was selected for the left lane and middle lane,
and 15-20 veh/km was selected for the right lane to dem-
onstrate the change trends in the mean speed under different
speed limits. As shown in Figure 1, it can be observed that,
after the 60 km/h speed limit, the mean speeds increase with
the speed limits reduction. The reason might be that some
drivers might challenge the rationality of VSL controls when
a low-speed limit is implemented, whereby the reduced VSL
compliance rate leads to the phenomenon of higher mean
speeds under lower VSL values.

3.2. VSL Impacts on ASD. In order to compare the effects of
different speed limits on the ASD, the arithmetic average of
all the sample’s ASD within different density intervals is
calculated under different speed limits on different lanes.
Table 3 summarizes the results. Again, Student’s f-test is
used to compare the ASDs’ difference between VSL control

groups and No VSL groups, and the associated p values are
also provided in parenthesis.

It can be observed from Table 3 that, for all the lanes
within the same density intervals, the ASDs are always lower
under VSL controls. In addition, the -test results show that
the difference in ASDs is statistically significant for the
majority of conditions except for speed limits of 120 km/h
on the left and middle lane within low-density intervals and
speed limits of 60 km/h on the left lane within the 15-20 veh/
km density interval.

Figure 2 describes the change trends in ASD under
different speed limits on the left and middle lane within the
20-25veh/km density interval and on the right lane within
the 15-20 veh/km density interval. It is clear that ASDs first
decrease and then increase with the reduction in speed
limits. A possible explanation for this phenomenon is that
when VSL speed values are low, those aggressive drivers
might choose to retain their speeds or only adopt a small
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TasLE 3: The arithmetic average and ¢-test results of ASD within different density intervals under different speed limits on different lanes

(“—” means the sample size is less than 15).
. The arithmetic average of ASD under different speed limits (km/h)
Lane Density (veh/km)
No VSL 120 km/h 100 km/h 80 km/h 60 km/h 50 km/h
0-5 8.89 7.01(0.01) 6.85(0.02) — — —
5-10 6.54 6.23(0.08) 5.88(0.00) — — —
Left lane 10-15 5.13 4.97(0.14) 4.53(0.00) 4.41(0.03) — —
15-20 4.20 3.90(0.00) 3.53(0.00) 3.62(0.00) 4.11(0.73) —
20-25 3.61 3.24(0.00) 3.12(0.00) 2.95(0.00) 3.15(0.00) 3.19(0.03)
25-30 3.10 2.87(0.00) 2.90(0.03) — — —
5-10 7.80 7.78(0.97) — — — —
10-15 6.35 5.92(0.00) 4.55(0.00) — — —
Middle lane 15-20 537 4.69(0.00) 3.82(0.00) 3.44(0.00) 5.03(0.00) —
20-25 443 3.62(0.00) 3.19(0.00) 3.38(0.00) 3.26(0.00) 3.67(0.01)
25-30 3.32 2.86(0.00) — — — —
5-10 10.19 8.75(0.01) 5.63(0.00) — — —
Right lane 10-15 7.91 6.33(0.00) 4.57(0.00) 3.47(0.00) — —
15-20 6.02 4.48(0.00) 3.55(0.00) 3.10(0.00) 3.64(0.00) 4.15(0.01)
20-25 4.21 3.58(0.01) — — — —

speed reduction, while those conservative drivers will follow
the speed limits and apply a large speed reduction. Such
behavioral differences lead to a more discrete distribution
for drivers’ desired speeds, whereby resulting in higher ASD

values in the traffic flow.

3.3. VSL Impacts on Space Headway. In order to quantify the
effects of different VSL values on the space headway, the
percentage of small headways within different density in-
tervals is calculated under different speed limits on different
lanes. Table 4 summarizes the percentage of vehicles with
smaller than 100 m space headway under all combinations of

density intervals and speed limits on the left, the middle, and
the right lane (“—” indicates that less than 300 vehicles are
observed within the associated density interval).

It can be observed from the above table that the majority
of percentage (of less than 100 m headway) results on the left
and middle lane are smaller for VSL control groups when
compared to No VSL groups. However, most percentage
results on the right lane with VSL control are similar to the
results of No VSL controls except for the speed limit of
100 km/h. The speed limit of 60km/h on the right lane
increases the percentage of less than 100 m headway. In
general, the percentages of less than 100 m headway first
decrease and then increase for all lane locations within the
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same density intervals with the lowest rate achieved at the
speed limit of 100 km/h. Further reduction in speed limits
beyond 100 km/h will not further reduce the percentage of
small-time headways.

3.4. VSL Impacts on Motorway Rear-End Collisions. This
section focuses on understanding the impacts of VSL on
rear-end collisions because rear-end collision is the most
frequent accident type on the motorway. Although some
rear-end collisions have resulted from inappropriate driver
behaviors, vehicle failure, and so on, most collisions are
closely related to the vehicle speed, the car following dis-
tance, and the speed difference between consecutive vehicles.

It is assumed that two vehicles are running in the same
lane on a motorway. As shown in Figure 3, the leading
vehicle is running at the speed of V;, and the following one at
the speed of V, with the distance of d from the former. If an
emergency happened ahead forcing the leading vehicle
driver to brake immediately and adjust its speed to V at the
deceleration rate of a, the following driver also needs to
brake to avoid a collision and needs to adjust its speed to at
most V. The following vehicle’s deceleration is assumed to
be the same as the leading vehicle, and the drivers’ reaction
times are ignored.

The distance of the leading vehicle traveled:
2 2
s, =Vo= Vi (4)
2a

The distance of the following vehicle traveled:

2 2
S, = % (5)
a

For avoiding a rear-end collision between the consec-
utive vehicles, the following condition shall be met:

_ Vi-V; _ (Vi-Vy)(Vy + Vz). (6)

d>Ss,-S
2 ! 2a 2a
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A rear-end collision would not happen if the speed of the
following vehicle V, is smaller than that of the leading one
V. However, when the speed relationship is reversed,
whether the collision would occur will depend on the dis-
tance d, the speed difference between the consecutive two
vehicles V, —V;, the sum of the speed of two vehicles
V, +V,, and the deceleration rate a. The results in the
previous section showed that suitable VSL control can de-
crease the mean speed, the ASD, and the percentage of
relatively small space headway (which means most drivers
prefer to keep a large space headway). As a result, under
reasonable VSL controls, the speed difference between the
two consecutive vehicles V,-V; and the sum of the two
vehicles’ speeds both become smaller in the right part of (5).
Meanwhile, the possibility of space headway d in the left part
of (5) is also small. Therefore, it can be inferred that ap-
propriate VSL controls can decrease the risk of rear-end
collisions.

3.5. Driver’s Compliance under VSL. This section focuses on
understanding the driver’s compliance under VSL because
the driver’s compliance determines the efficiency of the VSL.
Based on our analysis, it can be observed that a lower VSL
value does not guarantee a higher impact on driving be-
havior. For instance, under the low VSL values, the mean
speed, average speed difference, and the percentage of small
headways are greater than the same measurements under
high VSL values. The reason for this phenomenon is the
change in the driver’s compliance with the variable speed
limit control [8].

Whether or not the driver complies with the VSL is a
process of measuring the greater of the benefits and the
losses. From the driver’s perspective, the benefits that may be
gained from complying with the VSL include improved
driving safety and no risk of penalties for speeding; the
corresponding losses include reduced vehicle speed and
increased travel time. On the contrary, if drivers fail to
comply with the VSL, the possible benefits are efficiency
benefits from higher driving speeds, etc.; the corresponding
losses include reduced driving safety and the risk of penalties
for speeding. Only when the driver judges that the benefits of
the VSL are greater than the losses, they will choose to
comply. When the VSL value is too low, that is, when the
speed limit is significantly different from the driver’s ex-
pected speed, the driver may question the rationality of the
VSL. Under this situation, the driver’s awareness of
expecting to reach the destination as soon as possible defeats
the awareness of complying with VSL limits to obtain safety
benefits. At this time the driver will choose not to comply
with the VSL.

Although the driver will choose not to follow the low
VSL values, this does not mean that the driving behavior
under low VSL values is the same as that without VSL. Our
analysis finds that when the VSL values are too low, although
no driver will choose a speed slower than the variable speed
limit value, the mean speed is still significantly lower than
the uncontrolled state. For example, under 60 km/h VSL, the
speed of almost all vehicles is higher than 60 km/h, and the
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TABLE 4: Percentages of smaller than 100 m headway within different density intervals under different speed limits (“—” means less than 300
vehicles are observed).
. Percentage of less than 100-m headway under different speed limits (%)
Lane Density (veh/km)
No VSL (%) 120 km/h (%) 100 km/h 80 km/h 60 km/h 50 km/h
5-10 23 21 15% — — —
10-15 32 28 19% 17% — —
Left lane 15-20 35 26 15% 18% 14% —
20-25 38 27 18% 23% 28% 24%
25-30 42 33 33% 38% 42% —
5-10 9 6 — — — —
10-15 15 11 8% — — —
Middle lane 15-20 22 17 13% 17% — —
20-25 28 22 19% 23% 35% 21%
25-30 34 30 29% — — —
5-10 4 4 — — — —
. 10-15 9 9 8% 9% — —
Right lane 15-20 16 18 12% 14% 22% —
20-25 29 27 — — — —

Vo

FIGURE 3: Schematic diagram of rear-end collisions.

mean speed is around 85km/h, while the average speed in
the uncontrolled state under the same density condition is
around 110 km/h.

In the real world, each driver has an expected speed
that considers safety and efficiency under any conditions.
Drivers will drive as fast as possible based on ensuring
driving safety and complying with traffic laws. The VSL is
to change the driver’s expected speed by changing the
driver’s safety expectations and the expectations of
complying with traffic laws. Therefore, by popularizing the
safety benefits of VSL and strengthening law enforcement
for speeding violations, compliance with VSL can be ef-
fectively improved, thus improving the overall safety
impacts of VSL.

4. Conclusions and Discussion

With the high-resolution lane-by-lane traffic big data
collected from a European motorway, this study quantita-
tively measures the difference in driving behavior under
different VSL values and analyzes the safety impacts of VSL
controls on aggregate driving behaviors (described by mean
speed, ASD, and the percentage of small space headway).
Also, the potential improvement of VSL on rear-end col-
lisions and the driver’s compliance under VSL was discussed
to prove that appropriate VSL controls could have provided
additional traffic safety benefits. The main findings of this
study are summarized as follows:

(1) Under medium and lower traffic density conditions,
different VSL values can always reduce the mean
traffic speeds. But the changes in the mean speed
followed the first decreases and then increases trend
with the reduction in speed limits. The result also
indicated that, under low VSL values, drivers are
more likely to challenge the rationality of the VSL
system.

(2) Under similar traffic conditions, most VSL values
reduced the speed differences between consecutive
vehicles, thereby reducing the speed discretions in
the traffic stream. Again, the first decreases and then
increases trend with the reduction in speed limits in
ASD showed that low VSL values may increase the
ASD.

In general, VSL can reduce the mean speed, the speed
difference, and the percentage of small headway. Reason-
able VSL control strategies can effectively reduce the risk of
rear-end collisions on the motorway. However, the first
decreases and then increases trend with the reduction of
speed limits illustrated that, under low VSL values, drivers
are more likely to challenge the rationality of the VSL
system. Therefore, the overly low VSL values cannot
provide a higher safety benefit or even caused more traffic
accidents. Thus, the implementation of the VSL control
system should closely be related to the real-time traffic flow
congestion level.

One limitation of this study is that it only considers the
impact of VSL on the three aggregated driving behaviors
under the same traffic density interval. On the other hand,
VSL may have an impact on density under the same traffic
demand. Future research is suggested to consider how
VSL will impact the traffic density with the same traffic
demand. In addition, the data used in this study does not
include any lane-changing information. Since the lane-
changing rate is another vital index for traffic stability and
safety, the impact of VSL on the lane-changing rate is also



encouraged to be analyzed with more detailed data
collected.

Data Availability

The basic data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was supported by the National Key R&D
Program in China (Grant no. 2018YFB1600600), the MOE
(Ministry of Education in China) Project of Humanities and
Social Sciences (Project no. 20YJAZHO083), and the National
Natural Science Foundation of China (Grant no. 51878161).

References

[1] M. Papageorgiou, Applications of Automatic Control Concepts
to Traffic Flow Modeling and Control, Springer, Berlin, Ger-
many, 1983.

[2] B. Khondaker and L. Kattan, “Variable speed limit: an
overview,” Transportation Letters, vol. 7, no. 5, pp. 264-278,
2015.

[3] P. Rdmé and J. Luoma, “Driver acceptance of weather-con-
trolled road signs and displays,” in Transportation Research
Record: Journal of the Transportation Research Board,
No.1573, pp. 72-75, Transportation Research Board of the
National Academies, Washington, D.C., USA, 1997.

[4] P. Rimd, “Effects of weather-controlled variable speed limit
and warning signs on driver behavior,” in Transportation
Research Record: Journal of the Transportation Research
Board, No.1689, pp. 53-59, Transportation Research Board of
the National Academies, Washington, D.C., USA, 1999.

[5] C.Leeand M. Abdel-Aty, “Testing effects of warning messages
and variable speed limit on driver behavior using driving
simulator,” in Transportation Research Record: Journal of the
Transportation Research Board, No.2069, pp. 55-64, Trans-
portation Research Board of the National Academies,
Washington, D.C., USA, 2008.

[6] M. Yang, Z. Li, Z. Ke, and M. Li, “A deep reinforcement
learning-based ramp metering control framework for im-
proving traffic operation at freeway weaving sections,” in
Proceedings of The 98th Annual Meeting of the Transportation
Research Board, Washington, D.C., USA, January 2019.

[7] W.Zhou, M. Yang, M. Lee, and L. Zhang, “A Q-learning based
coordinated variable speed limit and hard shoulder running
control strategy to reduce travel time at freeway corridor,”
Transportation research record: Journal of the Transportation
Research Board, vol. 2674, p. 915, 2020.

[8] X. Qu, L. Li, Z. Yi, P. Mao, and M. Yang, “Traffic flow
modeling of freeway variable speed limit control based on the
big data of driving behavior,” Journal of Advanced Trans-
portation, vol. 2020, Article ID 8859494, 11 pages, 2020.

[9] J. R. D. Frejo, 1. Papamichail, M. Papageorgiou, and
B. D. Schutter, “Macroscopic modeling of variable speed
limits on freeways,” Transportation Research Part C: Emerging
Technologies, vol. 100, pp. 15-33, 2019.

Journal of Advanced Transportation

[10] C. Lee, B. Hellinga, and F. Saccomanno, “Assessing safety
benefits of variable speed limit,” in Transportation Research
Record: Journal of the Transportation Research Board,
No.1897, pp. 183-190, Transportation Research Board of the
National Academies, Washington, D.C., USA, 2004.

[11] M. Abdel-Aty, R. Cunningham, V. Gayah, and L. Hsia,
“Dynamic variable speed limit strategies for real-time crash
risk reduction on freeways,” in Transportation Research Re-
cord: Journal of the Transportation Research Board, No.2078,
pp- 108-116, Transportation Research Board of the National
Academies, Washington, D.C., USA, 2008.

[12] E. Grumert, X. Ma, and A. Tapani, “Analysis of a cooperative
variable speed limit system using microscopic traffic simu-
lation,” Transportation Research Part C: Emerging Technolo-
gies, vol. 52, pp. 173-186, 2015.

[13] X. Qu, W. Wang, W.-f. Wang, and P. Liu, “Real-time rear-end
crash potential prediction on freeways,” Journal of Central
South University, vol. 24, no. 11, pp. 2664-2673, 2017.

[14] X. Qu, M. Yang, F. Yang, B. Ran, and L. Li, “An improved
single-lane cellular automaton model considering driver’s
radical feature,” Journal of Advanced Transportation,
vol. 2018, no. 10, Article ID 3791820, 2018.

[15] C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia,
“Freeway performance measurement system: mining loop
detector data,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 1748, no. 1, pp. 96-102,
2001.

[16] M. Yang, J. Xie, P. Mao, C. Wang, and Z. Ye, “Application of
the ARIMAX model on forecasting freeway traffic flow,” in
CICTP 2017: Transportation Reform and Change—Equity,
Inclusiveness, Sharing, and Innovation, pp. 593-602, Ameri-
can Society of Civil Engineers, Reston, VA, USA, 2018.

[17] H. Zackor, “Self-sufficient control of speed on freeways,” in
Proceedings of International Symposium on Traffic Control
Systems, pp. 226-249, University of California, Berkeley, CF,
USA, December 1979.

[18] S. Smulders, “Control of freeway traffic flow by variable speed
signs,” Transportation Research Part B: Methodological,
vol. 24, no. 2, pp. 111-132, 1990.

[19] E. Van den Hoogen and S. Smulders, Control by Variable
Speed Signs: Results of the Dutch Experiment, IET, in Pro-
ceedings of Seventh International Conference on Road Traffic
Monitoring and Control, pp. ppl45-149, IET, London, UK,
April 1994.

[20] T. Ha, J. Kang, and J. Park, The Effects of Automated Speed
Enforcement Systems onTraffic-Flow Characteristics and
Crashes in Korea, pp. 28-31, Institute of Transportation
Engineers, Washington, DC, USA, 2003.

[21] P. Borrough, Variable Speed Limit Reduce Crashes Signifi-
cantly in the UK, The Urban Transportation Monitor, 1997.

[22] Y. Pilli-Sivola, State of the Art in Finland Concerning RWIS
and Variable Message Signs, Finnish National Road Ad-
ministration, Helsinki, Finland, 2000.

[23] M. Papageorgiou, E. Kosmatopoulos, and I. Papamichail,
“Effects of variable speed limit on motorway traffic flow,” in
Transportation Research Record: Journal of the Transportation
Research Board, No. 2047, pp. 37-48, Transportation Research
Board of the National Academies, Washington, D.C., USA,
2008.

[24] F. Soriguera, 1. Martinez, M. Sala, and M. Menéndez, “Effects
of low speed limits on freeway traffic flow,” Transportation
Research Part C: Emerging Technologies, vol. 77, pp. 257-274,
2017.



Journal of Advanced Transportation

[25] H. Wang, W. Wang, X. Chen, J. Chen, and J. Li, “Experimental
features and characteristics of speed dispersion in urban
freeway traffic,” in Transportation Research Record: Journal of
the Transportation Research Board, No.1999, pp. 150-160,
Transportation Research Board of the National Academies,
Washington, D.C., USA, 2007.

[26] U. Kohler, “Stability of vehicle platoons,” Transportation and
Traffic Theory, vol. 6, pp. 39-55, 1974.



Hindawi

Journal of Advanced Transportation
Volume 2020, Article ID 8831521, 17 pages
https://doi.org/10.1155/2020/8831521

Research Article

WILEY

Hindawi

Traffic Status Prediction of Arterial Roads Based on the Deep

Recurrent Q-Learning

Wei Hao (,! Donglei Rong,l Kefu Yi®,2 Qiang Zeng ,3 Zhibo Gao ©,* Wenguang Wu (),
Chongfeng Wei,” and Biljana Scepanovic®

2

'Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems,
Changsha University of Science and Technology, Changsha, Hunan 410205, China
2School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
3School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
*Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao’an Road,

Shanghai, China

*Mechanical and Construction Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NEI 8ST, UK
®Faculty of Civil Engineering, University of Montenegro, 81000 Podgorica, Montenegro

Correspondence should be addressed to Kefu Yi; corfyi@csust.edu.cn, Qiang Zeng; zengqiang@scut.edu.cn,
Zhibo Gao; gaozhibo@tongji.edu.cn, and Wenguang Wu; wwglq@csust.edu.cn

Received 27 May 2020; Revised 13 July 2020; Accepted 7 September 2020; Published 19 September 2020

Academic Editor: Yanyong Guo

Copyright © 2020 Wei Hao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the exponential growth of traffic data and the complexity of traffic conditions, in order to effectively store and analyse data to
feed back valid information, this paper proposed an urban road traffic status prediction model based on the optimized deep
recurrent Q-Learning method. The model is based on the optimized Long Short-Term Memory (LSTM) algorithm to handle the
explosive growth of Q-table data, which not only avoids the gradient explosion and disappearance but also has the efficient storage
and analysis. The continuous training and memory storage of the training sets are used to improve the system sensitivity, and then,
the test sets are predicted based on the accumulated experience pool to obtain high-precision prediction results. The traffic flow
data from Wanjiali Road to Shuangtang Road in Changsha City are tested as a case. The research results show that the prediction of
the traffic delay index is within a reasonable interval, and it is significantly better than traditional prediction methods such as the
LSTM, K-Nearest Neighbor (KNN), Support Vector Machines (SVM), exponential smoothing method, and Back Propagation

(BP) neural network, which shows that the model proposed in this paper has the feasibility of application.

1. Introduction

With the development of urbanization, there is a prominent
contradiction between the transportation infrastructure and
the vehicle population, and the problem of traffic congestion
has become more serious, which inevitably leads to the
increasing of travel time, intensified environmental pollu-
tion, and economic loss [1]. Prevention is the first way to
control traffic congestion. According to the existing traffic
states, the changing trend in a short time is predicted, and
then, the information platform is used to issue an early
warning to divert the traffic to avoid or ease congestion

[2-4]. Therefore, how to establish a long-term model for
timely warning of traffic congestion is the research focus of
urban intelligent transportation system optimization [5-7].

A variety of methods, including the time series, machine
learning, and artificial neural networks, have been proposed
for traffic congestion prediction. Since the time-series
characteristics of traffic flow data were discovered [8], some
scholars used autoregressive differential moving average
models [9] to predict the traffic flow on expressway [10, 11].
Because the temporal distribution of traffic flow data is
interrelated, some scholars used nonparametric regression
methods to build macrotraffic models and found that the
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prediction result is better than time-series algorithms
[12-14]. However, these methods based on statistics and
traffic models require a large amount of historical data and
construct many assumptions, so they are difficult to apply to
nonlinear traffic flow [15-18].

In recent years, machine learning algorithms, such as the
back propagation neural network [19, 20], have gradually
been used in traffic prediction with the advantage to handle
the nonlinearity problems. Because of the long training time
of the back propagation neural network and the tendency to
fall into the local optimum, some scholars also used the
Support Vector Machine (SVM) [21-23] and K-Nearest
Neighbor (KNN) [24-26] to predict the traffic status.
Moreover, some scholars found that the time series of short-
term traffic flow has chaotic characteristics. To deal with the
abovementioned issues, many methods, such as combined
vector machine-based [27] and phase space reconstruction-
based [28], have been proposed to achieve better results.
However, most of these machine learning-based methods
lack robustness to catch the huge data, resulting in the model
generally lacking long-term effectiveness and scalability
[29-31].

Facing on the lots of traffic flow data, scholars have
gradually turned to use the deep learning method, a learning
algorithm that can simulate the multilayered perceptual
structure of the human brain to recognize the data patterns.
At present, breakthroughs have been made in many fields
such as computer vision, speech recognition, and natural
language processing. Deep learning has gradually been
adopted by Stanford University, Google, Baidu Research
Institute, and other authoritative organizations with the
strategic direction for the development of data mining and
artificial intelligence [32, 33]. Kuremoto et al. [34] combined
the restricted Boltzmann machine with the time-series laws
to obtain a prediction model, which fits the sample data with
the minimum model energy. Lv et al. [35] proposed a deep
learning model to predict traffic flow based on an automatic
coding network using compression coding in the input data.
Zhao et al. [36] proposed a traffic congestion prediction
model based on the improved SVM, which can learn the
characteristics of traffic flow parameters through the deep
structure by digitizing different environmental and human
factors. The abovementioned methods speed up data pro-
cessing by applying the deep learning models but do not take
into account the dimensional disaster caused by the high-
dimensional states of traffic flow parameters. To address the
abovementioned problems, some scholars used data com-
pression technology based on the LSTM, Principal Com-
ponent Analysis (PCA) [37], CUR matrix decomposition
algorithm [38], and Discrete Cosine Transform (DCT)
method [39] to perform data dimension reduction.

Q-Learning can efficiently store and extract data to
provide support for traffic prediction. The LSTM network
reduces the frequency of gradient explosion and disap-
pearance, so it is suitable for capturing the spatiotemporal
evolution of traffic state parameters [40-43]. In this paper,
considering the time sequence of traffic flow parameters and
the continuity of traffic congestion effects, the recurrent
neural network model is used to train the extracted features
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and to obtain low-dimensional vectors of historical infor-
mation, and then, the resulting vectors are stitched to
achieve classification training. Finally, an urban road traffic
state prediction model based on the optimized deep re-
current Q-Learning method is established. The model
proposed in this paper has the following contributions:

(1) The model effectively solves the problem of gradient
explosion and gradient disappearance in the pre-
diction process of LSTM

(2) The model effectively extracts the associated features
of the traffic data, so it has better prediction efficiency
and accuracy

(3) The model will provide a feasible prediction method
for the construction of an intelligent transportation
system due to its efficiency and feasibility

The rest of this paper is organized as follows. Section 2
points out the problems to be solved and the corresponding
methods in this paper. Then, Sections 3 and 4 lead to the
principles and steps of the Q-Learning and the LSTM. After
that, the deep recurrent Q-Learning network model is
constructed in Section 5. Besides, the example analysis in
Section 6 proves the stability and feasibility of the method.
Finally, Section 7 concludes the paper.

2. Specific Problems and Solutions

2.1. Specific Problems. The problems with urban traffic data
are high repeatability, high loss rate, and poor correlation.
The existing prediction methods mainly discuss the results of
independent analysis and whether they meet the needs of
further verification. Therefore, the following problems exist
in data preprocessing and optimization prediction.

Regarding the problem of data relevance: the relation-
ship between the states at the previous moment and the next
moment lacks effective connection. Therefore, the infor-
mation at different states is disconnected, and the timeliness
of the data cannot be fully exerted. As a result, the prediction
results are not sufficiently correlated with the data at the
previous moment and lack of persuasiveness.

Speaking of the problem of data storage: based on the
existing analysis methods, the storage capacity of the da-
tabase will quickly reach the threshold, which is not con-
ducive to long-term and durable prediction. Besides,
repeated analysis steps will increase the feedback delay and
cannot fulfill the requirements of low-latency traffic
prediction.

Concerning the problem of comprehensive data analysis:
the existing analysis focuses on fixed types of data, and the
traffic environment is an integrated system. Therefore, even
if the prediction results are accurate, they cannot reflect the
objective situation.

2.2. Solutions. For the abovementioned three research
problems, this paper will propose the corresponding
solutions:

For the problem of data relevance: based on the opti-
mized LSTM model, the effective correlation and
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information accumulation of different data types are
strengthened, and the correlation degree of data at different
moments is strengthened.

For the problem of data storage: the Q-Learning func-
tionalizes the data information, and each data cell can be
realized by the expression of functions. This method not only
reduces the pressure of data storage but also improves
analysis efficiency and accuracy.

For the problem of comprehensive data analysis: the
traffic conditions are affected by multiple factors. Therefore,
when selecting the characteristic data types, in addition to
the basic parameters of traffic flow, climate and temperature
are also considered. That is to establish a multidimensional
data analysis system, making the prediction results more
accurate and objective.

3. Q-Learning Principle and Application Steps

The steps of the Q-Learning are listed as follows: the state of
the agent in the environment E is S, and the actions taken by
the agent constitute the action space A. It takes different
actions to transfer between states, and the reward function
obtained is R. To achieve the optimal strategy, the
Q-Learning estimates the value of each action choice in each
state. The Q-Learning uses Q (S, A) to represent the value
function of state-to-action and continuously updates the
value of Q (S, A) according to the state transition. Finally, the
Q-Learning obtains the optimal strategy based on Q (S, A).

The value function Q (S, A) of the traffic state is updated
as follows: assuming the state of the agent at time ¢ is s, the
action is a,. Then, the state transitions to time ¢ + 1, the state
is s;,;,» and the reward is r,. Finally, the agent updates the
value of Q (s, a) according to all records (s, a,, t;, s;,;) to find
the optimal strategy. The corresponding update function is
shown in the following equation:

Q(spa,) ——Q(spa,) +af 1y + /\maaXQ(Stﬂ’“) -Q(spa) |,
(1)

where Q(s,, a,) is the current Q-table, « is the learning rate,
7,.1 is the benefit at the next moment, A is the greed co-
efficient, and max,Q (s,,, a,) is the best benefit in memory.

The deep Q-Learning network combines deep learning
and Q-Learning. The network uses the perceptive ability of
the deep learning to transform the state to high dimensions
and uses the decision-making ability of Q-Learning to map
the high-dimensional state representation to the low-di-
mensional action space [44, 45]. In the Q-Learning algo-
rithm, the table is used to store the value of Q (s, a). In the
deep Q-Learning, the state dimension of the agent is high,
and the table obviously cannot meet the demand. This
problem is solved by using f (s, a) to approximate Q (s, a)
[46, 47]. Therefore, based on the corresponding value
function neural network model, approximate values can be
obtained, thereby reducing the storage pressure of the Q-
table and providing ideas and methods for Q-Learning to be
applied to traffic state prediction. Finally, the network ob-
tains the action value of congestion and dissipation
according to the accumulated experience pool. Figure 1

shows a schematic diagram of the principle of approxi-
mating the value of “state-action” through the neural
network.

The network helps solve the problems of processing huge
data volumes. Due to the strong time series of traffic data, the
application of this network will make the analysis results
more reliable. Further demonstrations and experiments will
be discussed in the following sections.

4. Recurrent Neural Network LSTM Algorithm

4.1. Overview of the Recurrent Neural Network. The recurrent
neural network is one of the optimized variants of deep
neural networks. It is characterized by the output of the
neurons at a certain moment as part of the input of the next
moment, and the neural network has the function of
memorizing the information of the previous moment which
can realize the persistence of the information. As shown in
Figure 2, the neural network reads the input x, of the current
time t and obtains the output h,. At the same time, the
information status is returned to the neural network as one
of the inputs at the next time point. In order to show the
execution action more intuitively, we express it by

h, = f(ht—1>xt)' (2)

The output A, at each moment is related to the input h,_,
at the previous moment. The recurrent neural network is the
most natural structure for processing sequence data which is
exactly what we need to handle historical data and real-time
data in this paper.

X, the
X =[x 0o X 1 Xps Xpyps - -
sequence.

input at time t,
Lxp]l is  the input

s,: the state of the hidden layer at time ¢, also known as
the memory unit of the recurrent neural network.

h,: the output at time t,
H=1[h,....h_,h,hyy,...,hy] is  the output
sequence.

U: the weight parameter matrix of input sequence
information X to hidden layer state S.

W: the weight parameter matrix between the hidden
layer states S.

V: the weight parameter matrix of hidden layer state S
to output sequence information H.

4.2. Recurrent Neural Network LSTM. If the dependency
interval between sequences is long, the gradient disap-
pearance of traffic data will happen in ordinary RNN which
is difficult to retain the information at earlier times. The
LSTM network remembers long-term historical information
through the design of the network structure where the
output of the network at time ¢ + 1 is applied to itself at time ¢
to avoid the gradient disappearance. Its network expands
along the time axis. The schematic diagram and the detailed
diagram of the three-layer gate are shown in Figures 3 and 4.
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It can be seen from Figure 3 that the LSTM defines the
key concept of cell state with the horizontal line. There is less
information interaction in the cell with the purpose of
memorizing long-term information achieved through cell
transmission. For Figure 4, it is made by three-gate layers
with the first one is the forget gate. This gate is determined
based on the input of the current moment and the output of
the previous moment and, then, passes through a Sigmoid
layer to obtain the results. It determines how much of the cell
states from the previous moment is retained to the current
moment. The expression function of the forget gate is shown
in the following equation:

fi= U(Wf‘ (15 x,] +bf)) (3)

where f, represents the output of the forget gate and o
represents the Sigmoid function. W and b, represent the
weight matrix and the bias term, respectively. [h,_;,x,]
represents the connection of two vectors into a longer vector.

The second one is the input gate, which determines how
much of the network input is saved to the cell state at the
current moment. The expression functions of the input gate
are shown in the following equations:

iy =o(W,- [h_,x]+b) (4)

¢, =tanh (W, [h_y,x,] +b,), (5)

where ¢, is calculated by multiplying the last element state
¢,_; by the element forget gate f,, then multiplying the
element state ¢, by element by the input gate i,, and finally,
adding the two products.

The cell information can be updated based on the results
of forget gate and output gate. It is listed as follows:

¢ =fr €y +i-Cp (6)

The last one is the output gate, which controls how many
cell states output to the current output value of the LSTM.
From Figure 4, the output gate is composed of two parts, one
is the state of the cells processed by tank, and the other is the
input information processed by Sigmoid. The functions of
the output gate are listed in the following equations:

0y = U(Wo : [ht—l’xt] + bo)’ (7)

h, = o, tanh(c,), (8)

where o, represents the output of the output gate. W, and b,
represent the weights and offsets, respectively.

5. Deep Recurrent Q-Learning Network

5.1. State Space. 1f the amount of acquired data is not large,
the Q-Learning can perform data storage and processing
efficiently. If the data is large, Q-Learning cannot traverse all
states, and there is no such large space to install the Q-value
table in memory. Therefore, this paper uses the LSTM model
to generalize the states and uses the recurrent neural net-
work to learn the state function. Through continuous deep

reinforcement learning, the model obtains features to de-
scribe the current state, while accumulating experience pool.
In constructing the state space, it is divided into two steps:
state discretization and value evaluation.

Step 1: what the neural network wants to output is the
training value under each state, which represents the
measure of the pros and cons of developing from this
state. The characteristics of the current state S are speed
v, delay time d, travel time m, temperature t, and
precipitation probability p. If the characteristics of the
next state S’ are speed v/, delay time d', travel time m’,
temperature t', and precipitation probability p’, then
the corresponding selection behavior of reward accu-
mulation is [speed v, delay time d, travel time m,
temperature ¢, precipitation probability p] minus
[speed v, delay time d’, travel time m', temperature ¢/,
precipitation probability p']. The resulting values for
each position are positive 1 and negative 0 to discretize
the behavior (the range is 0 ~2°, and the selected
behavior discretization vector [0, 1, 0, ...] is trans-
formed into an integer which represents the dimension
of the output vector). Based on the results of the
abovementioned rewards, the traffic information with
better benefits is accumulated to form an experienced
pool with high benefit values, which makes the pre-
diction results more accurate.

Step 2: due to the influence of the traffic states before
and after the training, it is necessary to determine
whether the action can get excellent feedback before
execution. The action a is performed according to the
strategy p, and the cumulative return is calculated, after
the strategy is executed. The state value function ex-
pression is listed as follows:

V() =D P (55)(Rpo (5:5) + 9V, (), 9)

where V , (s) represents the degree of return according to the
strategy p under state s. p (s, s') represents the probability of
state transition. R (s, s') represents the reward obtained from
s —> ', and y is a function coefficient.

5.2. Reward Actions. The reward after training in the
previous state s is represented by the difference in delay
time. The neural network function uses s as input. Q (g,
n_features) is the storage table, and n_features presents the
number of input neurons. Therefore, the output vector
dimension is 2"-featwres = 33 The memory storage pool
structure after the reward is [n_features, a, r, n_features].

During the process of predicting the future situation,
inputting the current state and outputting the Q-value are
studied under various possibilities with the largest one being
selected. As the reward level continued to deepen, the target
results gradually approach the actual situation in which the
Q-value here refers to the traffic delay index.



5.3. Training Method. Based on the construction of the
abovementioned state space and reward actions, we will
train the datasets from Wanjiali Road to Shuangtang Road
on the elevated Wanjiali Road in Changsha. The main steps
of training methods are listed as follows:

Step 1: the preprocessing of traffic data and weather
data (culling abnormal data, Lagrange interpolation,
and normalization).

Step 2: the selection of training sets and test sets (the
time interval of training sets is from 0:00 on May 17,
2019, to 24:00 on May 24, 2019. The time interval of test
sets is from 0:00 on May 25, 2019, to 12:00 on May 25,
2019).

Step 3: determining the input and output of the vari-
ables and the number of network layers (the input
variables are speed, delay time, travel time, tempera-
ture, and precipitation probability. The output variable
is the delay index, the number of hidden neurons in the
interval [4, 13], and 3 layers of network layers).

Step 4: determining the initial weights, thresholds,
learning rate, activation function, and training function
(the interval of initial weight and threshold is [0, 1]. The
learning rate is 0.01, the activation function uses the
Sigmoid function, and the training function uses
Adam).

Step 5: training the neural network model and stopping
the network training when the feedback reaches the
optimal state of the Q-value table. If it is not satisfied,
modification and adjustment of the parameter values
are required (learning rate and training function).

Step 6: adjusting the parameter to achieve the best
prediction results which could be obtained from the
prediction and input test set data.

Step 7: analyzing the prediction results to get the final
experimental results.

In this paper, the LSTM forgetting, input, and output
threshold activation functions are all Sigmoid functions. The
return interval [0, 1] is consistent with human thinking. The
pseudocode to build a deep recurrent Q-Learning network is
shown in Algorithm 1.

6. Case Analysis

6.1. Data Description. This paper selected a part of the ar-
terial road in Changsha, starting from Wanjiali Road to
Shuangtang Road from north to south, as the research case.
A crawler script written in Python 3.7 was used to capture
the real-time traffic information from the big data platform
of Gaode Map. The data were collected from 0:00 on May 17,
2019, to 12:00 on May 25, 2019, with a 5-min sampling
interval. The collected data types include actual time, speed,
delay time, travel time, temperature, probability of precip-
itation, and delay index. The data set sample is shown in
Table 1.

The data of this case is divided into training sets and test
sets after preprocessing. The time interval of the training sets
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is from 0:00 on May 17, 2019, to 24:00 on May 24, 2019, and
the time interval of the test sets is from 0:00 to 12:00 on May
15, 2019.

6.2. Data Preprocessing. Data preprocessing includes three
steps: culling abnormal data, Lagrange interpolation, and
normalization. The detailed information is shown in
Figure 5.

The first step is to cull abnormal data. The abnormal data
mentioned in this step refers to the data that deviates sig-
nificantly from the normal interval. By deleting such kind of
data, the experimental data are more realistic and the
analysis results are more reasonable. Some samples of ab-
normal data are shown in Table 2.

The second step is the Lagran