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Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.
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Remaining useful life (RUL) estimation is one of the main objectives of prognostics and health management (PHM) frameworks.
For the past decade, researchers have explored the application of deep learning (DL) regression algorithms to predict the system’s
health state behavior based on sensor readings from the monitoring system. Although the state-of-art results have been achieved
in benchmark problems, most DL-PHM algorithms are treated as black-box functions, giving little-to-no control over data
interpretation. 'is becomes an issue when the models unknowingly break the governing laws of physics when no constraints are
imposed. 'e latest research efforts have focused on applying complex DL models to achieve low prediction errors rather than
studying how they interpret the data’s behavior and the system itself. 'is paper proposes an open-box approach using a deep
neural network framework to explore the physics of a complex system’s degradation through partial differential equations (PDEs).
'is proposed framework is an attempt to bridge the gap between statistic-based PHM and physics-based PHM. 'e framework
has three stages, and it aims to discover the health state of the system through a latent variable while still providing a RUL
estimation. Results show that the latent variable can capture the failure modes of the system. A latent space representation can also
be used as a health state estimator through a random forest classifier with up to a 90% performance on new unseen data.

1. Introduction

As the evolution of traditional condition-based maintenance
(CBM) techniques, prognostics and health management
(PHM) frameworks seek to study and predict the evolution
of a system’s health state based on data collected from sensor
readings. 'is data is expected to contain critical informa-
tion related to the system’s past and current health state [1].
'e main goal of a PHM framework is to estimate the
remaining useful life (RUL) of the system, which is later used
as a metric for decision-making during the optimization of
maintenance policies and health management [1, 2].
Obtaining accurate RUL estimations from sensor data re-
quires a precise knowledge and understanding of the system
and, depending on the available information, three main

approaches can be implemented for the RUL estimation:
physics-based models (PBMs) [3], data-driven approaches
(DDAs) [4], and hybrid methods [5]. In this context, we
present a deep learning framework to uncover the physics of
complex systems’ degradation.'e framework is inspired by
physics-informed neural networks and can be considered a
hybrid method for the health state assessment and RUL
estimation.

Hybrid methods combine PBMs and DDAs to overcome
their weaknesses and combine their strengths [5, 6]. On the
one hand, PBMs rely on a mathematical representation to
describe the degradation physics governing the system.
'ese methods require a few data points for the training
process and yield results directly interpretable by the user.
Although PBMs are highly accurate and reliable, they are
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system-dependent models and cannot be easily scaled and
adapted from one system to another. 'is is why PBMs
reliability prognostics studies are usually limited to local
crack propagation and corrosion [3], making their direct
application to complex systems a challenging task.

On the other hand, machine learning [7] and deep
learning (DL) [8] have become the preferred application of
DDAs to PHM. 'ese techniques provide an alternative to
analyze complex systems when the physics behind the
degradation process is unknown. 'ese can extract abstract
information and features from massive datasets while
building and discovering complex functional and temporal
relationships from the data [9]. Deep learning approaches
have been implemented in a great variety of systems for
prognostics purposes, such as lithium-ion batteries state of
health (SOH) and state of charge (SOC) estimation, [10–13],
RUL estimation in rolling bearings [14–16], and turbofan
engines [17–20].

Although great advances have been made in DL applica-
tions to PHM, there are still many challenges to face before
implementing these models in the industry [2, 9]. One of these
challenges is model interpretability, as DL applications create
explainable models that cannot be directly interpreted by the
end-user. 'is has had a detrimental effect on the engineers’
trust to implement DL models in real-life systems [21].
Without interpretability, one can only rely on performance
metrics to select a model. 'is can bias the user to choose
models with a low error on their training and validation data,
regardless of the model’s true representation of the system
under study. In this regard, third-party software and packages
have been developed, providing information on feature rele-
vance for models’ predictions [22, 23]. For instance, in [21], the
authors presented an algorithm called Local Interpretable
Model-Agnostic Explanations (LIME) that provides insight
into the relevance that input features have on an ML classi-
ficationmodel’s prediction. A similar frameworkwas presented
by Lundberg and Lee [22] called Shapley Additive explanations
(SHAP) for deep learning models. 'is framework assigns
weight values to the input features as importance measures of
their effect on the DL model’s output. 'ese third-party al-
gorithms provide valuable information for the models’ inter-
pretability: nevertheless, they primarily address classification
models focusing on natural language or image processing and
cannot be implemented within the model itself. Such algo-
rithms can be used as preprocessing or postprocessing tech-
niques. However, they do not influence the model’s
performance as feature relevance does not have any influence
on the models’ learning process.

In the context of DL-PHM models, two elements
heighten the barriers for model interpretability that are yet
to be addressed: the use of time as an explicit variable and the
explicit relationship between the physics of the system and
the input variables of the model. Indeed, most of the DL-
PHM models do not explicitly consider time as a variable in
their calculations. Works that apply recurrent neural net-
works (RNN) and its long-short term memory (LSTM)
variation [24–26] use input data with time implicitly em-
bedded through consecutive feature logs, which are then
interpreted by the model. Here, the network is trained with a

sequence of data points to understand the time scale rep-
resented in the data. 'us, the network is given the addi-
tional task of interpreting the time relationship among its
features. However, new unseen data logs might have dif-
ferent temporal behavior in their log sequences. Likewise,
embedding the physics of degradation of a system to a DL
framework is a challenging task. Although advances have
been made in this area [27, 28], solutions heavily rely on the
availability of an empirically based mathematical model (i.e.,
crack propagation and corrosion, resp.) to describe the
damage propagation or future behavior of the system
degradation.

'e latest advances in DL algorithms have shown that it
is possible to embed partial differential equations (PDEs) to
DL models. Raissi et al. [29] presented a physics-informed
neural network (PINN) framework to solve PDEs by in-
corporating them as a penalization term to the cost function
during the neural network (NN) training process. 'e
framework also allows us to discover PDEs embedded in the
data when an explicit equation is not available. 'is opens
the door to create a dynamic relationship between the sensor
data and the degradation process in complex systems using
DL models in PHM. In this paper, we present a deep neural
network (DNN) framework for RUL prognostics that maps
the monitoring data and time to a latent variable repre-
sentation linked to the system’s degradation dynamics
through a PDE-like penalization function. Once the model is
trained, the latent space representation works as a system
health estimator quantitatively and qualitatively. In other
words, this framework resembles a PDE, where, given initial
feature values (i.e., initial conditions), the algorithm can
estimate a RUL value through the PDE solution for a given
time after the given initial conditions.

Up to date, most DL applications to PHM focus on either
diagnostics or prognostics. Very few research works have
provided frameworks that can perform these two tasks si-
multaneously. For instance, Kim and Sohn [30] presented a
multitask deep CNN with double outputs, one for prognostics
and another for diagnostics. 'is requires manually hand-
crafting labels and significantly increases the number of
trainable parameters. 'e training of RNN models requires
input data shaped as timewindows, which can be impractical to
create when sensor data is not sampled at a constant rate or
contains missing data points, which is common in real case
scenarios. Time windows can also be a source of overfitting if
the preprocessing of the data is not carefully done. Further,
none of the aforementioned frameworks provide interpretation
or visualization of their results. As such, the contributions of
this paper are the following:

(1) We present a framework that aims to bridge the gap
between statistics-based and physics-based PHM
applications.

(2) Inspired in PINN, the proposed framework uses a
dynamic PDE-like penalization function that ex-
plicitly binds the monitoring data and time to the
system’s degradation process. 'is is the first ap-
plication of PINN to DL-PHM frameworks to the
authors’ best knowledge.
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(3) By using time explicitly, the framework is able to
capture the temporal behavior of the data directly.
'is differs from other commonly used DL algo-
rithms in PHM frameworks such as convolutional
neural networks (CNNs) and long short-term
memory (LSTM) neural networks which infer these
relationships from the data structure instead.

(4) 'e framework delivers a combined diagnostics and
prognostics analysis of a system by providing a RUL
estimation along with a health classifier between the
system’s healthy and degraded states.

(5) 'e proposed framework also provides interpret-
ability of the system’s health state through the visual
representation of a latent variable.

'e remainder of this paper is structured as follows: Section
2 presents the background behind PDEs applied to DL. Section
3 discusses the proposed DL framework, which is trained with
the dataset presented in Section 4. 'e obtained results and
their discussion are presented in Section 5. Section 6 outlines
the main conclusions and remarks of this study.

2. Physics-Informed Deep Learning

Most DL algorithms’ applications are implemented as black-
box functions in which the extraction of abstract relation-
ships in the data is left for the machine to find. In this regard,
efforts have been made to provide both interpretation and
constraints to these techniques from a physics perspective.
Raissi et al. [29] proposed a physics-informed neural net-
work framework that integrates and solves PDEs given a set
of initial and boundary conditions. In this work, the authors
show that a PINN framework can also be used to recover or
create PDEs from the data itself without any prior under-
lying knowledge on the physics governing the system under
study. To understand how this algorithm works, it is nec-
essary to quickly review the architecture behind DL models
as function representations and the principles of PDEs.

'e main structure in DL is deep neural networks. Here, an
input value is evaluated through sequential combinations of
nonlinear functions to yield the desired output value. Hence, one
can represent the output y of a NN as a function in the form of

􏽢y � f(X, W), (1)

where f(X, W) is the NN, X are the input values, and W is a
tensor of parameters called weights, which defines the
function. Two key components compose a NN: layers and
hidden units (also known as neurons). A layer is a nonlinear
function of an input value, commonly represented as

hi � σ W
T
i hi−1 + bi􏼐 􏼑, (2)

where hi is the hidden layer i, represented by its weight
matrix Wi and bias vector bi. Notice that the relationship
among hi, Wi, and X is a simple linear regression. 'is is
then evaluated in a nonlinear function σ, also referred to as
activation function. 'e dimensions of the weight matrix for
a NN layer are determined by the number of neurons from
the previous layer and its number of neurons. As it can be

observed in equation (2), a layer takes as input the output of
the previous layer, and it yields an output, which then goes
on into the next hidden layer, and so on until the output
layer is reached. For instance, equation (3) shows a two-layer
NN of input X, output 􏽢y, and activation function σ:

􏽢y � σ W
T
2 σ W

T
1 X + b1􏼐 􏼑 + b2􏼐 􏼑 � f(X, W). (3)

'us, for a given dataset (X, y), the parameters defining
the NN in equation (3) are optimized to minimize the av-
erage of the squared errors, which is the so-called loss
function described in equation (4). Given a set of data points
(often referred to as dataset), equation (4) can be optimized
using gradient descent [31] and backpropagation [32]:

loss �
1
N

􏽘

N

i�1
yi − yi( 􏼁

2
. (4)

On the other hand, PDEs model the behavior of a
function of interest based on the relationship between its
partial derivatives with respect to its input variables. For
instance, let u(z, t) be a two-dimensional function of space
and time. 'en, a PDE for u(z, t) can be represented as

ut � F z, u, uz, . . .( 􏼁, (5)

where subindexes indicate partial derivatives of the function
u(z, t), for example, uz � zu(z, t)/zz. 'e right-hand side of
equation (5) is represented by a function F with input variables
related to the space variable. In their proposedmethodology for
PINNs, Raissi et al. took advantage of automatic differentiation
[33] to formulate a PDE-like penalization function by con-
sidering the target variable of interest by u(z, t) (e.g., velocity
field, temperature) as the output of a NN that takes z and t as
input variables. As such, one can use automatic differentiation
to calculate the exact derivative of the NN representing u with
respect to any of its input variables (e.g., uz, ut). 'is allows the
creation of a PDE in the form of equation (5), where ut is the
time derivative of the output variable. 'e function F on the
right-hand side is represented by a second NN, which takes the
spatial variables and their corresponding u derivatives as input
variables. Equation (5) can be written as a cost function in terms
of a function f described in equation (6). Adding f as a pe-
nalization term to the training cost function of the DL model
would then bind the behavior of the parameters representing
the NNs of u(z, t) and F through the PDE. Note that if the
right-hand side function F(z, u, uz, . . .) in equation (5) is
known, we can directly implement it to the training cost
function. Hence, the optimization cost function of the neural
network can be written as shown in equation (7), as the sum of
the loss function in equation (4), and the square off in equation
(6). Here, λ is the weight value for the penalization function, and
M is the number of points to be tested in the PDE.'ese can be
collocation points, initial conditions, or boundary conditions:

fut − NN z, u, uz, . . .( 􏼁 � 0. (6)

Cost �
1
N

􏽘

N

i�1
yi − yi( 􏼁

2
+ λ

1
M

􏽘

M

j�1
f
2
. (7)
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One of the first implementations of NNs to approximate
PDEs was presented in [34], focused on the numerical chal-
lenges presented by nonlinear PDEs on continuous mechanical
systems. Here, the output of a DNN was used as an approxi-
mation for the solution of the PDE (i.e., u), and an uncon-
strained optimization function was enforced at specific layers
and neurons of the network. 'is architecture is used to solve a
linear Poisson equation and thermal conduction with a non-
linear heat generation problem. Later research showed appli-
cations of DNNs to solve general coupled PDEs based on
Dirichlet and Newman boundary conditions [35]. 'ese first
studies mostly focused on the computational efficiency of using
NNs to solve PDEs when compared to traditional methods such
as finite-element analysis. However, at the time, studies were
limited by computational hardware capabilities. Given the na-
ture of their definition, PINNs have mostly been applied in the
fluid dynamic research community.'e case study presented by
Raissi et al. [29] uses Burger’s equation for three possible ap-
plications: (1) solve a known PDE given initial and boundary
conditions, (2) find parameters that govern a known PDE based
on data from the objective space, and (3) find and solve an
unknown PDE solely based on data from the objective space.

'ere are currently no PINN applications to PHM
frameworks in the reliability community. 'is is mainly due
to the lack of equations that can link a complex system’s
degradation dynamics with its condition monitoring sensor
readings. Nevertheless, most DL-PHM frameworks seek to
relate the monitoring variables with the system’s diagnosis
and prognosis. As such, the PINN approach proposed in
[29] presents an opportunity to seek and find possible
unknown PDEs that can relate sensor measurements to the
system’s degradation process.

3. Proposed Framework

Obtaining models that simultaneously yield an interpretable
health estimator and traditional prognostics metrics is an
ongoing challenge in DL-PHMmodels [2, 9]. An interpretable
model allows the user to trust its prediction, which is critical for
implementing DL-PHMmodels for the health management of
real systems. Training a DNN to represent the degradation
process in a complex system is difficult due to the lack of
mathematical models to describe its physics of degradation.
Moreover, most DL models applied to PHM do not consider
time as an input variable of the network. 'us, information
regarding the degradation dynamics of the system is lost during
the training process if not explicitly stated (as in PBMs). In the
case of RUL estimation, another challenge is presented when
creating labels for supervised models. Here, it is common to
define a point at which the degradation process starts. 'is can
be either at a fixed time before failure [34] or when a specific
performance variable surpasses a predefined threshold value
[35]. Both approaches impose a strict constraint to the RUL
labels by assuming that the machinery under study will con-
tinue to operate in the same condition until its failure. A DL
model trained with these labels will inevitably be biased to-
wards this behavior, making it susceptible to errors when tested
with new data. Nevertheless, we can overcome this uncertainty
by giving interpretability to our model.

Since there are no available equations to directly map the
health state of a complex system to its operational conditions, we
propose a DNN framework to explore the degradation physics of
a system through a latent space representation. 'e supervised
framework is aimed at PHM prediction tasks, where operational
data is available from themonitoring of a system.'e framework
establishes a relationship between a latent variable and a prognosis
output variable through a PDE-like penalization function
(equation (8)). By training the DNN to understand the dynamics
of the degradation process, it is expected that the model will
improve its generalization capabilities. Indeed, adding a PDE-like
penalization to the loss function of the model creates a rela-
tionship between the input features of the model and the de-
rivatives of the output value with respect to its independent
variables.'is effect can be boosted if the framework is given time
as an input feature, rather than implicitly extracting it from a
sequence. For metrics such as the RUL, the penalization function
adds information on the degradation rate by considering tem-
poral derivatives.

Figure 1 illustrates the proposed DNN framework. It yields
RUL estimations through three stages, represented by three
different NNs. 'e first stage maps the operational conditions
(OCs) and the time t to a (possibly multidimensional) latent
variable x. A second NN then takes both t and x to yield the
RUL estimation of the system. A third NN is used to model the
right-hand side of equation (5) F(z, u, uz, . . .), which models
the RUL’s time derivative through a NN. 'is is the so-called
dynamics of the PDE. 'e NN for each stage of the proposed
framework is structured as follows:

(1) x-NN: the network takes the OCs and time as input
variables and it outputs the latent variable x. It is
comprised of 5 hidden layers of 3 units each and two
units as an output layer. 'is accounts for 104
trainable parameters. Hyperbolic tangent (tanh) is
used as the activation function. 'e dimensionality
of the latent variable is a hyperparameter that needs
to be tuned according to the system under study.

(2) RUL-NN: it takes both the latent variable x and time
as input values and outputs the RUL of the system. It
comprises of 5 hidden layers of 10 units each to yield
one output unit with tanh as the activation function.
'e network encompasses 481 trainable parameters.

(3) Dynamics-NN: it takes the latent variable x and the
derivatives dx/dt and dRUL/dx as input values. It
outputs a function N that represents the dynamics of
the system. 'is goes into the PDE-like penalization
function. 'e network is comprised of 5 hidden layers
of 10 units each. One output unit and a rectified linear
unit (ReLU) as the activation function are used. 'is
network also contains 481 trainable parameters.

With automatic differentiation, we can take the time
derivative from the first and second stage of NNs. 'ese are
then combined to form a PDE-like penalization term, as
shown in Figure 1. 'e penalization includes the time de-
rivative from the RUL, which is related to the Dynamics-NN
in a PDE-like form as shown in equation (8), where
d(RUL)/dt is the time derivative of the second stage NN, and
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N is the output from the third stage NN. 'e training cost
function is then defined as shown in equation (9), where
RULi and RULi are the objective and predicted RUL values,
respectively:

f:
d(RUL)

dt
− N x,

dx

dt
,
d(RUL)

dx
􏼠 􏼡, (8)

Cost �
1
N

􏽘

N

i�1
RULi − RULi( 􏼁

2
+ λ

1
N

􏽘

N

j�1
f
2
. (9)

'e penalization function f thus creates a dynamical
relationship between the RUL and the latent variable x,
which in turn is related to the initial operating conditions
and the time at which the RUL is evaluated. 'e framework
is comprised of 1,066 trainable parameters, which is a low
number when compared to other significantly more com-
plex DL architectures for RUL estimation [36]. Having a
model with fewer parameters to train prevents overfitting
and reduces the training time, which can eventually facilitate
its online implementation without the need for specialized
hardware.

'e proposed framework addresses many of the draw-
backs mentioned above in DL applications for PHM. First,
the network takes time as an input variable, along with the
operational conditions of the system. 'e OCs represent the
initial conditions for a PDE, and t corresponds to the point
in the future at which it is desired to obtain the RUL value. In
other words, for t � 0, the network behaves as most DL
methods. 'at is, RUL is predicted based on the current
OCs. Secondly, the use of a latent variable provides multiple
advantages for both the training of the model and the later
interpretation of its results:

(1) Dimensionality reduction: the usage of a latent
variable helps capture and highlight important in-
formation related to the degradation process from
the OCs. 'e dimensions of the latent variable
dictate the number of dimensions that we can use for
visualization purposes. In turn, visualizing a latent
space provides additional tools to make an informed
decision based on the model’s output.

(2) Input variables for Dynamic-NN: the right-hand side
function in equation (6) could take every possible

derivative from the input OC values. 'e use of a
latent variable reduces the number of derivatives fed
into the Dynamics-NN, thus reducing the number of
parameters of the network and its training time.

(3) Eliminate redundancy and noise from the data: due
to the potentially high correlation among monitor-
ing variables, it is common to observe that a lower-
dimensional space can represent a system.'is is the
basic concept behind every data-driven approach for
regression in PHM. Further, DNNs are known to
remove noise levels in the input signals.

Note that out of the three stages, only the RUL-NN
requires labels for the training process, since the latent
variable x comes as a secondary outcome from the back-
propagation training of the RUL-NN. On the other hand, the
Dynamics-NN is trained solely from the penalization PDE
term, which does not require any labels. Furthermore, if a
degradation equation is available, for example, Paris’ Law for
crack propagation, it can be directly replaced for the Dy-
namics-NN, giving our proposed model flexibility according
to the available information on the system under study.

To train models based on the proposed framework, the
following steps must be followed:

(1) Preprocess the dataset. 'e input data to the
framework has two essential elements: sensor mea-
surements and prediction time horizon. Details on
the dataset preparation are presented in Section 4.
Given that this is a supervised framework, objective
labels associated with the input values must also be
provided.

(2) Define and set up the framework (Figure 1) according
to the available data and information on the system
under study. If available, a PBM (e.g., Paris’ Law) can be
included in the penalization function, replacing the
Dynamic-NN. Otherwise, the Dynamic-NN is used to
discover the system’s degradation dynamics. Other
hyperparameters such as the dimensionality of the
latent variable x, the number of neurons and layers of
each NN, and the penalty weight λ need to be selected
as discussed in Section 5.

(3) Train the model based on the chosen framework with
the preprocessed dataset. All NN stages within the

x NN Dynamics
NN

Outputs

Inputs
Framework stages

Derivatives

x RUL N

t

OC

RUL NN

dx/dt d (RUL)/dx

d (RUL)/dt – N = 0

d (RUL)/dt

Figure 1: Proposed deep learning framework using a latent variable and a PDE-like penalization function.
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framework are trained simultaneously according to
equation (9).

(4) Once the model is trained and depending on the
selected dimensionality of the latent variable x, re-
sults can be visualized by evaluating new input values
and plotting each dimension of x on a different axis.
Here, the output values of the model (e.g., RUL) are
used as a color map.'is visualization allows directly
assessing the relationship between the trained latent
variable and the objective function. As discussed in
Section 5, the latent variable can be used as a health
estimator in the PHM context through a ML
classifier.

4. Case Study: Dataset and Hardware

'e proposed framework is tested using the benchmark
dataset C-MAPSS due to the multiple research reports that
have applied DL networks for its RUL estimation
[6, 20, 24, 37, 38]. A detailed description of this dataset and
its processing can be found in [39, 40]. 'is study’s objective
is not to improve the state-of-the-art results on this dataset
regarding RUL estimation precision, but rather to introduce
a new tool for PHM-DL models. Hence, only the FD001 and
FD004 subdatasets from the C-MAPSS will be covered in
detail. 'e dataset consists of 27 sensor variables for sim-
ulated engine runs. 'e FD001 dataset presents one failure
mode and one operational condition. FD004 on the other
hand presents two different failure modes, and it operates at
six different conditions. 'e information on which failure
mode caused the failure of the engine run is not provided
with the dataset, nor are the conditions at which they were
operating before the failure. Operational sensor readings are
recorded for each cycle during an engine run. Each engine
run starts at a random initial degradation level from which
the engine operates until its failure.

As has been shown in past studies [40], only 14 out of the
27 sensors are statistically significant to model the RUL of
the system, and thus these are the ones used for this study.
Since the proposed framework is based on vanilla DNNs,
there is no need to create time windows for the input data.
However, we need to create a temporal dimension (i.e.,
feature) in order to train the proposed model. As such, the
original dataset needs the following additional processing
steps:

(1) Select all data logs for one engine run, from its initial
starting point until its failure.

(2) For each operational cycle, add a column with an
integer time t from 0 to 30 cycles.

(3) Create a label for the above operation data and time,
which corresponds to the RUL value at time t since
the initial point.

For instance, let us consider Engine 1, which contains a
total of 192 log entries. If cycle number 100 is selected as the
initial point, then, for t � 0, its corresponding label is
RUL � 92; then, for t � 1, its label is RUL � 91; and so on
until t � 30 is reached or until RUL � 1 (i.e., the engine

fails). 'is process is repeated for each log entry of each
engine, which increases the size of the original dataset. For
instance, the FD001 subdataset size increases from 20,631 to
593,061 points. 'e input values are normalized using a
MinMax scaler, which is a common practice when training
DNNs [41]. Models are trained on Python 3.6 with the use of
Tensorflow 2.0 and Keras. Windows is used as the operating
system.'e computer hardware consists of an Intel i7-9700k
CPU, 32GB of RAMmemory, and a 24GB Titan RTX GPU.
'e average training time in this machine is 140 seconds,
while the evaluation time for new data entries is 0.01
seconds.

'e value range of the newly added time feature column
is an additional hyperparameter of the proposed framework.
'is will depend on the specific system under study, and in
this case, it was selected based on the following reasoning.
'e time horizon for RUL estimation needs to be realistic. In
this regard, if a system begins operating from an almost
perfect health state, there would not be an indication of the
degradation process within the monitoring data. Hence, it
would be optimistic to expect the model to accurately es-
timate future RUL values at times close to the end of the
system’s life based on this data. As such, we should not train
the model to yield RUL predictions at times exceeding the
training RUL labels values. Since the RUL labels for the
C-MAPSS range from 1 to 125 cycles, the time dimension
should at most range from 0 to 125 cycles. Based on this
reasoning, we tested the framework with prediction horizons
from 0 to 100 cycles. We observed that the model’s per-
formance decreases significantly for horizons greater than 30
cycles. 'us, we chose this as the upper time limit, which
accounts for almost one-quarter of the training label range.

5. Results and Discussion

We train the proposed framework for the FD001 and FD004
subdataset from C-MAPSS. Models are trained using 75% of
the data randomly selected from the training set, with the
remaining 25% left as a validation set. 'e test sets are
provided separately [40]. NAdam optimizer [42] is used for
the training process. 'e proposed framework comprises
multiple hyperparameters; three of these have the most sig-
nificant impact on the model’s performance after training: the
latent variable dimensionality, the penalty weight λ assigned
to the PDE regularization function, and the number of
training epochs. Figures 2 and 3 illustrate the results for the
sensibility analysis of these three hyperparameters. For each
combination of hyperparameters, 10-fold cross-validation
was performed with random initial parameters. We compare
the average cost function value on the training and validation
set from the cross-validation process in these figures. 'e
minimum cost is indicated with a red dashed horizontal line
for each case.

Figure 2 shows the joint sensibility analysis for the
number of training epochs and the latent variable dimen-
sion. On one hand, most cost values decrease with a higher
number of training epochs for both the training and the
validation set as expected. 'is behavior is shown by both
subdatasets, independent of their complexity. On the other
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hand, we can see that the best results are achieved with a
two-dimensional latent variable on the FD001 set, while the
FD004 set performs better with a three-dimensional latent
variable. 'ese results are consistent with the complexity
difference between the datasets since the FD004 set contains
six operational conditions and two failure modes. 'us, the
model requires a higher latent variable dimensionality to
represent the degradation process. Further, the results
shown in Figure 2 for the FD001 set indicate that models
have similar performance for a latent variable with more
than two dimensions. In the case of the FD004 set, a similar
performance is obtained for two and three dimensions.

Figure 3 presents the joint sensibility analysis for the
PDE penalization weight value and latent variable dimen-
sion. 'e penalization function improves the generalization
capabilities of the model, resulting in similar cost perfor-
mance when evaluating the training and validation sets.
However, the specific value of the weight penalization is the
most difficult hyperparameter to analyze. A higher penal-
ization value results in a more constrained model, and thus,
its performance worsens when evaluating the training set.

For instance, we can observe that, with a low penalization
value, the model presents underfitting (i.e., the validation
cost value is lower than the training) on the FD001 set
regardless of the latent variable dimensionality. Neverthe-
less, a higher penalty value during the training process
would give higher importance to the connection between
the latent variable representation and the RUL of the sys-
tem. 'is would explain the more consistent behavior be-
tween the training and validation set for the more complex
FD004 set. Both datasets have a consistent cost value with
higher penalization weights in the case of a two-dimension
latent variable, particularly the FD004 set, where there is
neither significant underfitting nor overfitting. Hence, a
two-dimensional latent variable is better when considering
the PDE penalization function.

From this hyperparameter analysis, a two-dimensional
latent variable is selected due to its more consistent results.
'is is also a good choice for visualization purposes, given
that one will be able to map all the dimensions in a two-
dimensional latent space representation once the model is
trained. Moreover, models are trained for 150 epochs and a
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Figure 2: Sensibility analysis of the cost function by the number of training epochs. (a) FD001. (b) FD004.
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penalty weight value of 100. Ten different models are trained
for each dataset, each starting from random initial weights
for the three NN stages.

Table 1 presents the results for the average root mean
squared error (RMSE) obtained with the trained models for
each dataset. FD001 models average an RMSE value of 17.14
cycles for its test set, whilemodels for FD004 yield an average of
25.58 cycles. Figure 4 illustrates the training and validation cost
throughout the training process. Here, it can be observed that
both curves present an identical behavior. Also, these converge
to the same cost value and, thus, the trained models have good
generalization capabilities.We can attribute this behavior to the
PDE penalization function added to the model. 'e dynamical
relationship built between the latent variable and the RUL, as
well as the inclusion of the time dimension, provides extra
information on the degradation dynamics to the model. In
turn, themodel can yield consistent predictions for new unseen
data. 'e behavior of the cost function during the training
process is also consistent with the hyperparameters effects
studied in Figures 2 and 3.

Although the obtained RMSE values for the test sets are
not as low as those obtained through other far more complex
architectures, these are within the acceptable range for this
case study [20]. Such complex architectures involve a high
number of trainable parameters without providing inter-
pretability tools for the end-user. For instance, a deep
convolutional neural network (DCNN) for RUL estimation
with over 180k trainable parameters was presented in [20].
'is number increases further when additional layers of
analysis are added to CNNs, such asmultiscale blocks [43] or
bidirectional LSTMs [44]. 'ey require more preprocessing
for their training data and can present overfitting while
requiring specialized hardware for a fast training process.
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Figure 3: Sensibility analysis of the cost function by PDE penalty weight value λ. (a) FD001. (b) FD004.

Table 1: Training and testing RUL RMSE values for models trained
based on the proposed framework.

Training RMSE Test RMSE
FD001 21.96 17.14
FD004 24.72 25.58
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Additionally, the more trainable parameters a model has, the
more training data is needed to prevent overfitting.

'e proposed framework’s most important output is the
latent space representation of the trained models. Indeed,
Figure 5 illustrates the predicted RUL values mapped to their
corresponding estimated latent variable space for both the
training and test sets. Both dimensions from the latent
variable x (i.e., x1, x2) are plotted with their corresponding
RUL values represented as a color map. Figure 5 shows three
different RUL mappings for each subdataset. On the left, the
RUL training labels are mapped to their corresponding
latent space representation. At the center, RUL values
predicted by the trained model evaluated with the training
set (i.e., same input data as the previous case) are mapped to
their corresponding latent space. On the right, similar to the
first figure, an RUL colormap is presented for the latent
space representation of the test set labels.

Results presented in Figure 5 for the training set show
that the trained model smooths the RUL value represen-
tation to the latent space. 'is creates a continuous rela-
tionship between the operational conditions and the RUL of
the system. Given the linear relationship between the RUL
and time, a health index related to the RUL is analogous to
an indicator of the temporal evolution of the system’s
degradation process. Hence, we can consider the latent space
representation in Figure 5 as a health state indicator related
to the system’s underlying degradation process. Moreover,
Figure 5 shows that both subdatasets present different shapes
on their latent space representation. 'is is expected since
both datasets present a different number of failure modes.
Indeed, given that the FD001 set has only one failure mode, a
latent space domain following a straight-line path from low
to high RUL values makes us think this is a good repre-
sentation of the degradation process of this particular sys-
tem. 'is degradation path is also simpler than its FD004
counterpart. In the latter, we see that, from a healthy state
(i.e., high RUL values), the latent space presents a bifurcation
into two degradation paths. Since this dataset comes from a
system with two different failure modes, we believe these

degradation paths can be the model’s interpretation of the
failure modes. Unfortunately, information on which failure
mode caused the system’s failures is not available to confirm
this observation.

In the case of the test set representation from each
subdataset in Figure 5(a), we observe that both the RUL
mapping and the shape of the latent space representation of
the test set are consistent with those obtained for the training
set (center images). 'is reinforces the generalization ca-
pabilities of the models discussed in Figure 4, where we
observe that the training and validation cost curves were
almost identical throughout the training process. 'ese
results from the test sets indicate that the latent space can
indeed be used as an indicator of the system’s health state.
'is interpretability is why including time as an input
variable becomes crucial to our proposed framework. By
including time, it is possible to obtain the temporal deriv-
ative of the RUL (i.e., the RUL dynamics), which defines the
PDE penalization function.'is, as Figure 5 shows, allows us
to embed the degradation process to the evolution of the
RUL values along with the latent space representation. In
both subdatasets, by considering the transition from high
RUL values into lower ones as a temporal evolution of a
health index, we can use the latent space to determine the
health state of the system if it were to be separated by an RUL
threshold.

Indeed, using the training dataset, we define a “start of
degradation” threshold to separate the health state of the
system as either “healthy” or “degraded.” Having two dif-
ferent classes allows us to train machine learning classifi-
cation models based on the results obtained for the latent
space representation. 'is threshold (TH) value needs to be
optimized to provide an accurate classifier and ensure that
the degradation detection occurs with enough anticipation
of the failure. For instance, a TH of 20 cycles considers all
points with RUL ≤ 20 cycles as degraded, while for
RUL > 20 cycles, the system is considered as healthy.
However, 20 cycles before failure would not be reasonable
since it is too close to the failure event. A TH value of 120, on
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Figure 4: Training and validation cost value per number of epochs during the training process for the FD001 (a) and FD004 (b) subdatasets.
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the other hand, would not be informative since all the RUL
labels from the C-MAPSS dataset are commonly defined as
lower or equal to 125 cycles. As such, a sensibility analysis to
select the TH value is needed for different classifiers. Here,
we will focus on six of the most common classifiers in ML
approaches. 'e classifier and TH selection would depend
on the accuracy of the model on both the training and
validation sets, as well as on the specific system under study.

Figure 6 shows the results for the TH and ML classifier
sensibility analysis. All classifiers are trained using the de-
fault parameters provided in the sci-kit learn package for
Python [45].'e analysis is performed over both subdatasets
individually, and results are reported for the training and
validation sets. It can be observed that the classification
performance decreases with higher TH values for the
training and validation sets.

As discussed above, setting a small TH value for the
classifier can be impractical from a PHM perspective.
Hence, we select 50-cycle TH value for being the longest
horizon where classifiers present a 90% accuracy per-
formance while still accounting for 40% of the RUL label
range. Tables 2 and 3 detail the performance metrics for all
classifiers at TH � 50. Here, the best training performance
is obtained with a Nearest Neighbors classifier, which has
the lowest validation accuracy and overfits the training
set. All remaining classifiers present a similar perfor-
mance on the training and validation sets with no over-
fitting. 'is behavior was also observed in Figure 6.
Random forest (RF) stands out among these classifiers due
to its low training time and false positive metric. RF is also
known for providing good visualization representation
that allows us to separate classes visually. As such, we
select RF as the classifier for the health state estimator
through the latent space representation.

Table 4 presents the results after training ten RF clas-
sifiers for each subdataset. Results show a high accuracy for
both subdatasets, with all false negatives and false positives
below 10%.'e FD001 set presents a slight underfitting of its
results, which can be associated with the great number of
training points generated to include the time dimension
during the training process, as discussed in Section 4.

Figure 7 illustrates the trained RF classifier results for
both the training and test sets mapped to the latent space
representation. Observe the classifier clearly separates a
healthy zone (blue) and a degraded zone (red). 'is classifier
is fairly conservative, especially for the FD004 subdataset,
mainly due to the selected threshold. It is important to note
that, for both subdatasets, the mapping of the test set is
consistent with the trained classifier and the RF classifier
provides a transition zone (white) which works as a sepa-
ration boundary between the two defined health states. 'e
trained classifier is not limited to only two classes, and more
health states could be added if they are available or needed.
'ese results show that the latent space representation can
indeed be used as a health indicator and, as such, can work as
a decision variable when planning maintenance policies.

As shown in Figure 5, the shape of the latent variable
representation changes from one subset to another. It is then
logical that if the proposed framework were to be tested for
another system, the visualization and RUL mapping would
also be different from the case study discussed. As such,
training the selected classifier and setting the corresponding
threshold value would vary from system to system. Also,
depending on the PHM framework and implementation,
setting an optimal threshold value may also depend on other
metrics rather than just the models’ efficiency. For instance,
an optimized TH with a classifier accuracy of 90% might be
worth more than having a small TH value (e.g., 5 cycles
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Figure 6: 'reshold sensibility analysis for six machine learning classifiers for the health state of the system based on the trained latent
variable x. (a) FD001. (b) FD004.

Table 2: Machine learning classifiers performance with TH� 50 for the FD001 subdataset.

ML classifier Set Accuracy False negative False positive F1-score Recall Training time

Nearest neighbors Train 93.0 4.6 2.4 86.3 82.7 3.57Validation 88.7 6.7 4.6 78.1 75.0

Linear SVM Train 90.6 6.2 3.2 81.3 76.8 69.37Validation 90.7 6.1 3.2 81.6 77.2

Random forest Train 90.7 6.7 2.6 81.1 74.9 0.81Validation 90.6 6.7 2.7 81.0 75.1

Neural network Train 90.6 6.1 3.3 81.3 77.1 10.43Validation 90.7 6.0 3.3 81.7 77.5

AdaBoost Train 90.6 6.5 3.0 81.0 75.7 3.80Validation 90.5 6.5 3.0 81.1 75.9

Logistic regression Train 90.5 6.0 3.5 81.3 77.6 1.44Validation 90.6 5.9 3.5 81.6 77.9
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Table 3: Machine learning classifiers performance with TH� 50 for the FD004 subdataset.

ML classifier Set Accuracy False negative False positive F1-score (%) Recall (%) Training time (s)

Nearest neighbors Train 92.4 4.9 2.7 81.9 77.8 4.02Validation 87.8 7.2 5.0 71.2 67.7

Linear SVM Train 89.0 8.3 2.7 71.3 62.3 94.96Validation 89.1 8.2 2.6 72.1 63.0

Random forest Train 89.1 7.9 3.0 72.1 64.0 0.98Validation 89.2 7.9 2.8 72.8 64.5

Neural network Train 89.0 7.5 3.5 72.6 66.0 9.31Validation 89.2 7.5 3.3 73.3 66.5

AdaBoost Train 88.8 7.8 3.5 71.7 64.7 4.82Validation 88.9 7.8 3.3 72.4 65.1

Logistic regression Train 89.0 8.0 2.9 71.7 63.4 1.53Validation 89.2 8.0 2.8 72.6 64.1

Table 4: Classification metrics for random forest models with a 95% confidence interval.

Accuracy (%) False negative (%) False positive (%) F1 score (%) Recall score (%)

FD001 Train 90.7 ± 0.0 6.6 ± 0.2 2.6 ± 0.2 81.1 ± 0.1 74.9 ± 0.8
Test 92.9 ± 91.2 3.1 ± 0.6 4.0 ± 0.6 89.4 ± 1.8 90.6 ± 1.8

FD004 Train 89.1 ± 0.2 7.8 ± 0.2 2.9 ± 0.2 72.3 ± 0.3 64.3 ± 0.9
Test 86.7 ± 0.3 9.1 ± 0.3 4.1 ± 0.4 77.5 ± 0.5 71.5 ± 0.9
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Figure 7: Continued.
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before failure) with a 99% classifier accuracy. An online
implementation of the model, along with the classifier,
would allow a real-time evaluation of the system’s opera-
tional conditions. 'is classifier can be further com-
plemented with the remaining stages of the framework
presented in Figure 1, that is, the PDE dynamics N and the
RUL estimation. 'ese additional outputs provide infor-
mation on the system and can be used to create new metrics,
rather than just base the results on an RUL value. 'us, this
framework creates the opportunity to make better-informed
decisions for the maintenance scheduling of complex
systems.

Recent DL research works using the C-MAPSS dataset as
a case study have focused on feature extraction to improve
models’ performance, supervised health state estimation,
and optimal RMSE values. For instance, Berghout [46] used
a denoising autoencoder as a feature extractor coupled with
an update selection strategy to determine the training se-
quences used in an extreme learning machine (ELM)
prognosis model. Here, only the FD001 subdataset was
trained. Due to the feature extraction process and the ELM
prognosis model, this framework contains a high number of
trainable parameters and its good performance is likely to be
case specific. 'is model does not provide classification nor
visual interpretation. Another example is presented by [30]
where a multitask deep CNN is proposed for simultaneous
health state and RUL estimation. 'is model requires
manually creating health state labels, which introduces bias
to the model, and it does not provide any interpretation of
the model. 'e dual estimation also increases the number of
trainable parameters significantly. Results for these config-
urations and other traditional DL applications to PHM are
compared in Table 5. Up to date, there are no frameworks
that can provide prediction, classification, and visual rep-
resentation at the same time. 'e lower performance on
RUL estimation could then be viewed as a tradeoff between

prognosis and interpretability of the model. Furthermore,
the fewer parameters of our proposed model avoid over-
fitting problems and, as it was discussed, adapting the
framework to other case studies is straightforward. Here, it is
important to remark that the proposed framework can be
adapted to consider a PBM, when available.

6. Conclusions

'is paper presented a framework with the first application
of PINN applied to PHM in complex systems. 'e proposed
framework allows the interpretation of the degradation
dynamics through a latent space representation and, thus, it
is a promising alternative for physics-informed model ap-
plications for complex systems. 'e framework comprises
deep neural networks with a total of 1,066 parameters, which
is considerably smaller than more complex architectures by
at least two orders of magnitude. 'is contributes to low
training and evaluation times while preventing overfitting
and makes it a suitable approach to be deployed both online
and on mobile devices. 'is framework establishes a rela-
tionship between the time and sensor variables with the
degradation of a PDE-like penalization function. We have
shown that the obtained two-dimensional latent space acts
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Figure 7: Latent variable classifier decision zones based on a trained random forest model for the FD001 and FD004 subdatasets: degraded
state (red) and healthy state (blue). (a) FD001 train. (b) FD001 test. (c) FD004 train. (d) FD004test.

Table 5: Comparison with the state-of-the-art results for RUL
RMSE values and state of health classification accuracy for the
FD001 and FD004 test sets.

FD001 FD004
Model RMSE Accuracy RMSE Accuracy
ANN 19.62 — 24.35 —
RNN 13.36 — 24.06 —
DOS-ELM [46] 12.29 — — —
MT-CNN [30] 12.48 0.71 19.98 0.84
PDE-PHM 17.14 0.92 25.58 0.86
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as a health indicator of the degradation process of the
system, which also can be visually interpreted for engi-
neering purposes as well as a health state classifier through
an ML model. Additionally, the proposed framework ad-
dresses two major challenges in DL techniques applied to
PHM, namely, the use of time as an input variable and the
interpretation of the operational conditions from an engi-
neering point of view. 'is paper takes a step towards
bridging the gap between statistic-based PHM and physics-
based PHM by providing models that do not need ad hoc
and third-party software to interpret its results and it is
directly linked to the degradation process of the system. 'e
presented framework is flexible because it can integrate
available degradation processes into the training process if
these are available. 'e framework opens many doors to
applying these algorithms to real complex systems, especially
on maintenance and preventive assessments.

Data Availability

For this study, the C-MAPSS dataset was used.'e dataset is
publicly available at https://ti.arc.nasa.gov/tech/dash/
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M. Benbouzid, “Aircraft engines remaining useful life pre-
diction with an adaptive denoising online sequential extreme
learning machine,” Engineering Applications of Artificial In-
telligence, vol. 96, Article ID 103936, 2020.

Shock and Vibration 15

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767


Retraction
Retracted: Research on Optimizing Selection and Optimizing
Matching Technologies of Aeroengine Fan Rotor Blades

Shock and Vibration

Received 23 January 2024; Accepted 23 January 2024; Published 24 January 2024

Copyright © 2024 Shock and Vibration. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] L. Li, K. Chen, J. Gao, Z. Gao, and J. Liu, “Research on Op-
timizing Selection and Optimizing Matching Technologies of
Aeroengine Fan Rotor Blades,” Shock and Vibration, vol. 2021,
Article ID 5595535, 17 pages, 2021.

Hindawi
Shock and Vibration
Volume 2024, Article ID 9874938, 1 page
https://doi.org/10.1155/2024/9874938

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9874938


RE
TR
AC
TE
DResearch Article

Research on Optimizing Selection and Optimizing Matching
Technologies of Aeroengine Fan Rotor Blades

Lili Li , Kun Chen , Jianmin Gao, Zhiyong Gao, and Junkong Liu

State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiao Tong University, Xi’an 710049, China

Correspondence should be addressed to Kun Chen; chenkun@mail.xjtu.edu.cn

Received 2 March 2021; Revised 17 March 2021; Accepted 7 April 2021; Published 29 April 2021

Academic Editor: Tangbin Xia

Copyright © 2021 Lili Li et al. )is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at the problem of low resources utilization of rotating blades in the selection process of aeroengine fan rotor blades, this
paper takes the first-order bending dispersion, first-order torque dispersion, and gravitational moment difference of rotor blades
as the selection criteria and takes the minimum remaining blades as the optimization goal. An intelligent selection algorithm of
blades based on the collocation degree of blades is proposed and achieves the efficient selection and full utilization of rotating
blades. Aiming at the problem ofmultiple installations andmultiple adjustments and low assembly success rate of fan rotor blades,
this paper takes the gravity moment difference of the two blades at the diagonal position of 180° as the constraint and takes the
minimum residual unbalance as the optimization objective, adopts the improved simulated annealing algorithm to optimize the
assembly sequence of rotating blades, and greatly reduces the residual unbalance of blades, which is beneficial to reduce the
number of assembly adjustments of blades. )e optimizing selection and optimizing matching methods of rotating blades realize
the full utilization and efficient assembly of blades and lays a foundation for the reliability and robustness of the assembly quality
and service performance of blades.

1. Introduction

In order to improve the balance quality of the aeroengine fan
rotor, rotating blades need to be selected and matched
according to the natural frequency and the gravitational
moment before installation. )e selection matching work
before assembly of rotor blades mainly includes two parts:①
select rotating blades from the blade database according to
the natural frequency dispersion and the gravity moment
difference. )e goal of selecting blades is to realize the ef-
ficient selection and full utilization of rotor blades;② when
the selection of the blade is completed, the assembly se-
quence of rotating blades must be planned with the goal of
the smallest remaining unbalance according to the gravi-
tational moment of rotating blades. )e selection-matching
work of rotor blades of the aeroengine fan directly deter-
mines the balance quality of the product and affects the
service performance of the product. Efficient rotating blades
selection-matching technology can improve the resources
utilization rate of rotating blades and the reliability of the

balance quality, increase the success rate of rotating blades
assembly, and reduce the number of installation and ad-
justment of rotating blades.

)e constraint of rotor blade optimization-selection is
not to exceed the given natural frequency dispersion and
gravitational moment difference. )e optimization goal is to
minimize the number of remaining blades in the candidate
library. )erefore, the optimization-selection process of
rotating blades is actually an optimization process with
constraints. )ere are not many researches on the optimi-
zation-selection of rotating blades, but the problem of rotor
blade optimization-selection is essentially an engineering
optimization problem. Practical engineering optimization
problems often have many characteristics such as com-
plexity, nonlinearity, constraints, and difficulty in modeling.
Traditional optimization methods (such as simplex method,
Newton method, etc.) need to traverse the entire search
space and cannot complete the search in a short time, and it
is easy to produce “combination explosion” of searching [1].
)erefore, seeking efficient optimization methods has
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become one of the main research contents to solve engi-
neering optimization problems. A lot of progress has been
made in the research of optimization methods for optimi-
zation problems. It mainly includes genetic algorithm that
imitates the biological evolution mechanism of nature [2],
differential evolution algorithm that optimizes the search
through cooperation and competition between individuals
in a group [3], immunity algorithm that simulates the
learning and cognitive function of biological immunity
system [4], ant colony algorithm that simulates the collective
path-finding behavior of ants [5], particle swarm algorithm
that simulates the swarm behavior of birds and fish groups
[6], simulated annealing algorithm [7] derived from the
annealing process of solid matter, tabu search algorithm that
simulates the memory process of human intelligence [8],
neural network algorithm that simulates the behavioral
characteristics of animal neural network [9], etc. [10]. )ese
algorithms are developed by simulating or revealing certain
natural phenomena, processes, or intelligent behaviors of
biological groups. )ese optimization algorithms have the
advantages of being simple, versatile, and convenient for
parallel processing [11] and provide reference for the so-
lution of the optimization-selection of rotating blades.

)e assembly sequence planning of rotating blades is a
nonnegligible part of the selection-matching work of ro-
tating blades and directly determines the static balance
quality of the rotor. However, the assembly sequence
planning problem has NP-hard characteristics. In order to
search for all feasible assembly sequence schemes and find
the optimal assembly sequence, the complexity of searching
for the optimal sequence will increase toward the direction
of exhaustive search, and it is difficult to obtain a relatively
optimal assembly sequence in a short time; this challenge has
become one of the important driving forces to encourage the
research of computerized assembly sequence planning [12].
In order to solve the ASP (Assembly Sequence Planning)
problem, researchers used a variety of optimization algo-
rithms to optimize the ASP problem, such as Ant colony
optimization algorithm (ACO) [13], genetic algorithm (GA)
[14, 15], immune algorithm (IA) [16], neural networks (NN)
[17], scatter search algorithm (SSA) [18], and other heuristic
methods [19–21]. At present, researchers have made re-
markable progress in solving ASP optimization problems,
but there are still some problems that need to be solved
urgently. One of the most important problems is that it is
difficult to obtain a relatively optimal assembly sequence in a
short time. )is problem has prompted researchers to in-
troduce or improve various algorithms to improve the
solving accuracy, robustness, and efficiency of the ASP
problem.

)e above research results provide a reference for the
optimization-selection and optimization-matching of rotor
blades. )e rotor blade is the core component of the aer-
oengine fan rotor, and its balance quality is the main cri-
terion for the assembly quality of rotating blades [22]. )e
“selection” and “matching” of rotating blades before as-
sembly directly determine the “installation” and “adjust-
ment” during the assembly process of rotor blades, as well as
the balance quality and service performance of the rotor after

the assembly is completed. )erefore, in order to achieve the
optimizing selection and optimizing matching of aeroengine
fan rotor blades, this paper proposes an intelligent selection
algorithm based on the collocation degree of blades to realize
efficient selection and full utilization of rotor blades. )e
improved simulated annealing algorithm is used to optimize
the assembly sequence of rotor blades, so that the residual
unbalance of rotor blades can be as small as possible, and the
success rate of one-time assembly of the rotor blades can be
improved, and the number of installation and adjustment of
rotor blades can be reduced. Finally, ensure that the goals of
optimizing selection and optimizing matching of rotor
blades before assembly, optimized assembly sequence and
less adjustment during assembly, and reliable and stable
balance quality after assembly are achieved.

2. Analysis of the Problem of Selection-
Matching of Rotor Blades of the
Aeroengine Fan

In order to ensure the robustness and reliability of the
balance quality and service performance of the aeroengine
fan rotor, the company currently guarantees it mainly from
the following two aspects:

(1) “Selection” and “matching” before assembly of
aeroengine fan rotor blades. Aeroengines are mass-
produced, and the blade database often contains
hundreds of thousands of blades. If the blades are not
selected, and the blades required by the fan rotor will
be taken out randomly from the blade database, the
first-order bending dispersion, first-order torque
dispersion, and gravitational moment difference of
the blades will lose control, which will not only be
difficult to guarantee the remaining unbalance of
rotating blades but also increase the difficulty of
dynamic balancing of rotor blades. )erefore, before
assembling rotating blades, blades must be selected
according to certain selection criteria. )e more the
number of blades selected from the blade database,
the remaining blades in the blade database will be
fewer, and the utilization rate of blade resources will
be higher. )e blade selection is based on the dis-
persion of the first-order bending and the first-order
torque, and the gravitational moment difference of
the largest blade and the smallest blade of the rotor.
)e purpose is to ensure that the selected blades are
as uniform as possible, and the characteristic gap
between each other cannot be too big, laying the
foundation for subsequent blade assembly sequence
planning and the assurance of balance quality.
“Matching” is to plan the assembly sequence of
rotating blades andmake the remaining unbalance of
the rotor as small as possible. However, the
remaining unbalance of rotating blades achieved by
the current assembly sequence planning technology
of the enterprise is generally too large, which causes
rotor to be out of tolerance due to the assembly
process error.
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(2) “Installation” and “adjustment” in the assembly
process of aeroengine fan rotors. “Installation” is to
complete the actual assembly of rotating blades
according to the assembly sequence planned before
assembly. “Adjustment” means that in the process of
assembly, once the static unbalance of the rotor oc-
curs, the assembly of rotating blades can reach the
static balance quality by adjusting installation position
and angle of the blades. At present, the success rate of
one-time assembly of fan rotor blades in enterprises is
not high, and the problem of multiple installations
and multiple adjustments is obvious. One of the
reasons is that although the residual unbalance ob-
tained by the enterprise is within the design range, it is
generally too large, which results in excessive residual
unbalance due to assembly process errors. In order to
compensate the excessive residual unbalance, the
adjustment of rotating blades has to be carried out.

3. IdeasofOptimizingSelectionandOptimizing
Matching of Rotating Blades

Efficient selection and full utilization of blades are the two
most critical goals for blade selection. )e company initially
relied on manual selection, which was inefficient and relied
on workers’ experience. Moreover, manual selection of
rotating blades could only ensure that 37%–46% of rotating
blades were picked out, and more than half of the rotating
blades were left in the blade database and were imported into
the next batch of new blades. )e accumulation of the
remaining rotating blades over time has eventually led to
more and more blades becoming “nail households” in the
blade database, causing idle and waste of blade resources.
Later, the company introduced new technologies to select
rotor blades, which greatly improved the efficiency of blade
selection. However, the current blade selection technology of
the enterprise can only achieve a utilization rate of 65%–74%
of blade resources, and about 30% of remaining blades still
are like “snowballs”; batches of backlogs of rotating blades
are accumulated in the blade database, causing idle and
waste of blade resources. )erefore, based on the actual
engineering needs of the enterprise, this article proposes an
intelligent and efficient blade selection algorithm.

After the blade selection is completed, the assembly
sequence of selected blades must be planned. Although the
remaining unbalance of rotor blades obtained by the

company’s current assembly sequence planning technology
does not exceed the design value, the overall remaining
unbalance is generally too large. In actual assembly, the static
balance of the rotor is difficult to meet the tolerance because
of assembly errors, which leads to the problem of multiple
installation and multiple adjustment in the process of as-
sembly of rotor blades. )erefore, this paper adopts the
improved simulated annealing algorithm to provide opti-
mized assembly sequence for the rotating blades.

Aiming at the problem of low resource utilization of
rotating blades in the selection process of blades, this paper
proposes an intelligent optimization algorithm for selecting
rotating blades based on the collocation degree. Aiming at
the problem that the assembly sequence currently planned
by the enterprise is prone to static unbalance because of
assembly process errors, resulting in multiple installations
and multiple adjustments of rotating blades, this paper
adopts the improved simulated annealing algorithm to plan
the assembly sequence of rotating blades. )e framework of
optimizing selection and optimizing matching of rotating
blades is shown in Figure 1; b1, b2, . . ., b302 represent
blade1, blade2, . . ., blade302.

4. Solution and Analysis of the Optimizing
Selection Problem of Aeroengine Fan
Rotor Blades

4.1. 'e Establishment and Solution of the Intelligent Opti-
mization Algorithm for Selecting Rotating Blades Based on the
Collocation Degree of Rotating Blades. )e aeroengine fan
rotor has three-stage blades; the research in this paper takes
the selection of the first-stage blades as an example.)e first-
stage blade database with related data of a total of 302 blades
obtained from the enterprise is shown in Table 1. A rotor
requires 28 first-stage blades; there are 302 blades in the first-
stage blade database in this article, and a maximum of 280
blades are picked out and assembled to form 10 rotors. )e
rules of selecting blades are shown in Table 2, and the
calculation methods of dispersion and gravitational moment
difference are shown in formulas (1)–(3). )e goal of
selecting blades is that the fewer remaining blades, the better,
and the more fan rotors that can be assembled with the
selected blades, the better. )e calculation method of
remaining blades is shown in equation (4); N represents the
number of rotors assembled by selected blades.

the first − order bending dispersion �
max(the first − order bending) − min(the first − order bending)

min(the first − order bending)
≤ 0.06, (1)

the first − order torque dispersion �
max(the first − order torque) − min(the first − order torque)

min(the first − order torque)
≤ 0.08, (2)

gravitationalmoment difference � max(gravitationalmoment) − min(gravitationalmoment)≤ 6000, (3)

the remaining blades � 302 − 28∗N. (4)
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)e collocation of rotating blades: if the first-order bending
dispersion, the first-order torque dispersion, and the gravitational
moment difference of two rotating blades meet in formulas
(1)–(3), we call these two blades collocation. )e number of
collocations of a rotating blade: there are 302 blades in the blade
database in this article, and each blade can form 301 pairs of
blades with the rest. Take No.i blade as an example, if among the
301 pairs of blades, there are ni pairs of blades satisfying formulas
(1)–(3), we call the number of collocation of the No.i blade as ni.
By analogy, these 302 blades, each of which has its own number
of collocation, are recorded as n1, n2, n3, . . . , ni, . . . , n302. Before
calculating the collocation degree of each blade, we must first
calculate the number of collocation of each blade:
n1, n2, n3, . . . , ni, . . . , n302. )en, we must calculate the collo-
cation degree of each blade according to the number of

collocation of each blade: P1 � n1/􏽐
302
a�1na, P2 � n2/􏽐

302
a�1na,

P3 � n3/􏽐
302
a�1na, . . . , Pi � n1/􏽐

302
a�1na, . . . , P302 � n302/􏽐

302
a�1na.

)e collocation degree of each blade is the probability of each
blade being selected, which reflects the ability of a blade
matching other blades; the more the number of blades that can
be matched with the blade, the higher the collocation degree of
the blade. Otherwise, the fewer the number of blades that can be
matched with the blade, the lower the collocation degree of the
blade. In the blade selection process, the blade with the higher
collocation degree has a greater probability of being selected, and
the bladewith the lower collocation degreemay become the final
remaining blade.

At present, the company’s blade selection technology can
only achieve a utilization rate of 65%–74% of blade re-
sources, and there will still be about 30% remaining rotating

Blade
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Figure 1: )e framework of optimizing selection and optimizing matching of rotating blades.

Table 1: )e rotating blade database of the first-stage fan rotor.

No. First-order bending First-order torque Gravitational
moment (g∗mm) No. First-order

bending First-order torque Gravitational
moment (g∗mm)

1 127 616 276180 11 122 670 275320
2 128 603 275040 12 133 655 273820
3 130 613 276560 13 127 665 270440
4 129 624 281520 14 137 644 278460
5 136 616 275280 15 125 680 276120
6 129 624 280900 16 136 679 273660
7 124 661 272900 . . .... . . .... . . .... . . ....
8 121 666 275820 300 134 670 276340
9 121 688 278380 301 136 656 276000
10 125 652 272860 302 128 664 277020

Table 2: )e selection rules of the first-stage rotor blades.

)e number of blades of the
first-stage rotor

)e first-order
bending dispersion

)e first-order torque
dispersion

Gravitational moment
difference

28 blades/group ≤ 0.06 ≤ 0.08 6000g∗mm
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blades, which are backlogged in the blade database. )ese
remaining blades will be like “snowballs,” creating a backlog,
batch by batch, in the blade database, causing idle and waste
of blade resources. Based on the actual engineering needs of
the enterprise, this paper establishes an intelligent algorithm
for selecting blades, takes the fewest remaining blades
(which means that the most fan rotors can be assembled by
the selected blades) as the optimization goal, and takes the
efficiency of blade selection into account. In order to realize
the intelligent selection of rotating blades, there are two ideas
for programming the optimization algorithm of selecting
blades, as shown in Figure 2. Idea one is based on the
random selection method to select rotating blades. Each
blade in the blade database has the same probability of being
selected. For each new blade selected, the constraint con-
ditions must be calculated and verified. If it is satisfied, the
new blade will be picked out successfully; otherwise, ran-
domly select a blade from the candidate library again until
the constraint conditions are met. )e disadvantage of this
method is that it is not sure howmany times the No. N blade
is selected before it can be successfully selected, causing the
selection of rotating blades to be random and unstable. )e
second idea selects rotor blades based on the collocation
degree of rotating blades. Each blade has a different prob-
ability of being picked out, blades with a higher collocation
degree are more likely to be picked out first, and those blades
with a lower collocation degree are more likely to become
final remaining blades. All the blades in the blade database
will be combined into pairs to form many pairs of blades in
idea 2, and these blades’ collocation degree will be calculated
before being selected. If the pair of blades meets the con-
straint conditions, the pair of blades can be matched and
recorded as “1”; otherwise, it is recorded as “0”. )e col-
location matrix formed by these pairs of blades is a sym-
metric matrix, as shown in Figure 2(c), and the diagonal “1”
is not considered because the blade cannot form a pair with
itself in actual application. Every time a new blade is selected,
there is no need to repeat the calculation in idea 2; it is only
necessary to determine whether all the pairs of blades
composed by the new blade and the selected blades are
matched. If they are all matched, the new blade is suc-
cessfully picked out; for example, when selecting the No. 4
blade of the rotor, if all the three pairs of blades 4–3, 4–2, 4–1
meet the constraint conditions, which means all the three
pairs of blades are matched, then the No. 4 blade is suc-
cessfully picked out. )e advantage of the second idea is that
it can complete the calculation of the collocation degree
matrix of blades before selecting blades, and when selecting
the blades, it is only necessary to judge whether the pairs of
blades formed by the new blade and the selected blades are
all matched; there is no repeated calculation, idea 2 has a
certain selection law, and the probability of each blade being
selected is different. Compared with the first idea, the blade
selection method based on the second idea is more reliable
and robust.

Compile two optimization algorithms of selecting ro-
tating blades according to idea 1 and idea 2, respectively, and
run the two algorithms multiple times and compare the
solution results (as shown in Figure 3). )e optimization

algorithm based on the collocation degree of rotating blades
can pick out more blades and cost less time than the op-
timization algorithm of selecting blades based on idea 1; the
solution effects of the later optimization algorithm of
selecting blades are unstable, especially the solution time,
which is very volatile, and the robustness is obviously in-
ferior to the optimization algorithm based on the collocation
degree of blades. )erefore, this paper adopts the optimi-
zation algorithm based on the collocation degree of rotating
blades to select rotating blades.

)e flowchart of the optimization algorithm of selecting
rotating blades based on the collocation degree of blades is
shown in Figure 4. )e specific process of the optimization
algorithm is shown as follows:

Step (1): combine 302 blades in pairs to form
302× 301÷ 2� 45451 pairs of blades, and judge whether
the first-order bending dispersion, first-order torque
dispersion, and gravitational moment difference of
these 45451 pairs of blades meet the blade selection
rules; if the selection rules are met, the pair of blades is
marked as “1”; otherwise, it is recorded as “0”. )e
collocation matrix formed by these pairs of blades is a
symmetric matrix, as shown in of Figure 2(c); the di-
agonal “1” is not considered because the blade cannot
form a pair with itself in actual application.

Step (2): establish a candidate library and a finished
product library of rotating blades.)e candidate library
stores 302 blades waiting to be selected, and the finished
product library stores blades that meet selection rules
and have been picked out. For example, if you can pick
out rotating blades needed by 5 rotors from 302 blades,
the finished product library will store these rotating
blades needed by 5 rotors.

Step (3): among the 302 blades in the blade database,
each blade can form 301 pairs of blades with the
remaining blades. Take the No. i blade as an example,
assume that the No. i blade and the remaining blades
are composed of 301 pairs of blades, )ere are ni pairs
of blades marked as 1, the No. i blade is marked as ni,
which means that it can combine with the other blades
into ni pairs of blades marked as 1, and its number of
collocations is ni. By analogy, count the number of
collocations of each rotating blade and record them as
n1, n2, n3, . . . , ni, . . . , n302, then the probability of the
No. i is Pi � ni/􏽐

302
a�1na; by analogy, get the probability

of each blade, respectively, recorded as P1, P2, P3, . . . ,

Pi, . . . , P302. )e probability of each blade obtained in
this step is the collocation degree of each blade,
reflecting the ability of a blade to combine with other
blades to form pairs of blades that meets selection rules.

Step (4): use the roulette method to select the first blade
of the first rotor according to the collocation degree
(probability) of each blade calculated in step (3). )en,
continue to use the roulette method to select the second
blade of the rotor, check whether the pair of blades
formed by the second blade and the first blade is
marked as 1 in step (1). If it is marked as 1, the second
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blade is picked out successfully, and then pick out the
third blade in the same way, check whether the two
pairs of blades (No. 3 blade and No. 2 blade, No. 3 blade
and No. 1 blade) formed by the third blade and the first
two selected blades are all marked as 1. If yes, the
selection of the third blade is finished; otherwise, use
the roulette method, and according to the probability of
each blade, reselect the third blade. )at is to say, when
selecting the No. N blade, check whether the n− 1 pairs
of blades formed by it and the n− 1 selected blades
before are all marked as 1 in step (1). If they are all
marked as 1, the No. N blade is picked out successfully;
otherwise, reselect the No. N blade, and so on, until all
the blades of the first rotor are picked out successfully.
)en, continue to select blades of the second rotor.
When selecting blades, every time a blade is picked out,
the blade will be put into the finished product library in
time. When 28 blades of a rotor are picked out from the
candidate library, the collocation degree of the
remaining blades in the candidate library must be
recalculated. )en, use the same method of selecting
blades to pick out blades of the next rotor.

Step (5): when the blade selection process reaches a
certain degree, the process of blade selection in step (4)
will encounter a “bottleneck”, which means it is no
longer possible to pick out new blades by the method of
selecting blades in step (4). At this time, it is assumed
that blades of n rotors have been picked out and put
into the finished product library, which are, respec-
tively, recorded as T1, T2, . . . , Tn. Randomly select a
blade from the blades of No. Tn Rotor, and record it as
No. M blade, and use the roulette method to select a
blade from the candidate library; check whether the
blade can replace the No. M blade of No. Tn rotor of the
finished product library. If it can, replace the No. M
blade with the blade of the candidate library and put it
in the finished product library. At the same time, put
the No. M blade into the candidate library; otherwise,
continue to select the blade that can replace the No. M
blade from the candidate library. After completing the
replacement of the No. M blade, proceed to step (4) to
select blades of the next rotor.
Step (6): when the process of blade selection encounters
the “bottleneck” again, and the new blade cannot be

(c) The collocation matrix
of rotating blades

(a) The first idea of blade
selection optimization

(b) The second idea of blade
selection optimization
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Figure 2: Two ideas of establishing blade optimization-selection algorithm and the collocation matrix of blades.
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picked out according to the method of selecting blades
in step (4), the algorithm goes to step (5), and step (5) is
used to solve the problem of the “bottleneck”.

Step (7): the number of selected blades and the cor-
responding blade information are output. )e number
of rotors that assembled by the selected blades and the
corresponding blades of each rotor are output.

)e optimization algorithm of selecting rotor blades
based on the collocation degree of rotating blades can pick
out 10 groups of blades that meet the selection rules; these 10
groups of rotor blades correspond to 10 rotors, and the
assembly of these 10 rotors can be completed by these 10
groups of rotor blades.)e optimization-selection results are
shown in Table 3. )ere are a total of 302 blades in the
rotating blade database of the first-stage rotor; 28 blades are
a group of rotor blades corresponding to a rotor, and 302
blades can select 10 groups of rotor blades at most and can
assemble 10 rotors. )e optimization algorithm picked out
280 blades, and the remaining blades are the fewest, which is

22 blades; blade utilization has reached the theoretical
maximum: 280/302∗100%.)e distributions of the number
of collocations of all the blades before selection and the
remaining blades after selection are counted, respectively, as
shown in Figure 5; the number of blade collocations refer to
the number of pairs that each blade can match with in the
remaining 301 blades, as can be known from Figure 5. )e
number of collocations of most remaining blades is relatively
low; only a few remaining blades have a slightly higher
number of collocations. )erefore, Figure 5 further explains
that blades with a higher collocation degree are more likely
to be picked out, while blades with a lower collocation degree
tend to become the remaining blades. )e higher the
number of collocations of the blade, the higher the collo-
cation degree of the blade.

)e optimization algorithm of selecting rotor blades
based on the collocation degree of rotating blades can pick
out 10 groups of blades that meet the selection rules; in
order to verify the 10 groups of blades corresponding to 10
rotors, the dispersion and gravitational moment

Output the optimal solution

Establish a candidate library and a finished product library of rotating blades.

According to the mark of each pair of blades, calculate the probability
(collocation degree) of each blade.

Use the roulette method to select rotating blades according to the probability
(collocation degree) of each blade.

Meet the termination conditions?
No

No

Yes

All the blades to be selected are combined in pairs, and each pair of blades is
marked as "1" or "0" according to the selection criteria.

Starting

When blade selection encounters a bottleneck, it is impossible to select new
blade, use the roulette method to select a suitable blade from the blade candidate
library and replace the randomly selected blade of the finished product library.

The selected right blade exchanges positions with the randomly selected blade of
the finished product library, and the randomly selected blade of the finished

product library enters the candidate library.

Yes

Every time complete the selection of the blades of a rotor, the probability
(collocation degree) of the remaining blades of the candidate library must

be recalculated.

Use roulette method to select rotating blades according to the probability
(collocation degree) of the remaining blades.

Can the roulette method find the right blade?

Figure 4: )e flowchart of the optimization algorithm of selecting rotating blades based on the collocation degree of blades.
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difference of the selected 10 groups of blades are verified,
respectively. )e verification results are shown in Table 4.
)e verification results show that the dispersion and
gravitational moment difference of the selected 10 groups
of blades are within the specified range, which means that
the selected 10 groups of blades by the intelligent

optimization algorithm based on the collocation degree of
rotating blades meet the requirements of selecting blades.
)erefore, the intelligent optimization algorithm has
reached the optimal selection goal, and the number of the
remaining blades has reached the fewest, and the blade
resources are utilized to the greatest extent. )e running

Table 3: Ten groups of rotating blades (280 blades) selected from the blade database.

No. Blade no. First-order
bending

First-order
torque

Gravitational
oment (g∗mm) No. Blade no. First-order

bending
First-order
torque

Gravitational
moment (g∗mm)

1 222 134 674 281280 . . . . . . . . . . . . . . .

2 50 131 661 278100 254 194 129 662 280920
3 293 135 675 276160 255 287 136 662 279360
4 115 132 669 275700 256 252 135 658 281140
5 96 135 664 281080 257 298 132 695 277460
6 143 134 677 276440 258 57 135 676 278620
7 221 134 675 280220 259 214 129 663 281260
8 203 130 679 278560 260 177 136 678 280620
9 158 134 643 276460 261 167 133 670 278520
10 120 134 667 277300 262 189 130 661 277000
11 178 132 661 278760 263 201 134 675 281200
12 237 135 662 281120 264 140 135 679 278300
13 238 129 676 276840 265 186 129 674 276800
14 174 134 662 278820 266 233 134 676 281080
15 265 129 660 276520 267 225 134 676 280760
16 171 131 667 276080 268 157 130 662 276080
17 213 131 671 281600 269 296 129 644 279540
18 142 136 676 278640 270 147 134 663 277120
19 262 129 662 278140 271 51 131 661 278440
20 44 134 676 277056 272 85 132 661 278040
21 185 134 653 279280 273 289 132 690 277620
22 52 135 661 277100 274 279 130 677 275520
23 285 136 661 276600 275 183 129 663 277460
24 93 130 673 277700 276 235 133 662 275460
25 195 129 673 277360 277 263 136 673 277880
26 116 134 677 275980 278 256 132 645 275680
27 149 130 677 275760 279 133 134 679 276660
28 234 135 659 279840 280 137 131 673 278600
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time of the optimization algorithm of selecting blades and
the robustness of the results are also two important in-
dicators to measure the quality of the algorithm; therefore,
run the optimization algorithm for 20 times, and the
running time and optimization results of the optimization
algorithm are counted. )e statistical results are shown in
Table 5. As can be seen form Table 5, the optimization
results are very impressive; the minimum running time of
the algorithm is 7.7 seconds, the maximum is 28.7 sec-
onds, and the solution efficiency is very high. )erefore,
compared with the 65%–74% blade utilization rate cur-
rently achieved in the enterprise, the optimization algo-
rithm established in this paper can reach 83%–93% blade
utilization rate. Moreover, the solution time of the op-
timization algorithm based on the collocation degree of
blades is very short, which is very convenient for pro-
motion and application in enterprises.

4.2. Comparison and Analysis of the Solution Effect of the
Intelligent Optimization Algorithm Based on the Collocation
Degree of Rotating Blades and Other Intelligent Optimization
Algorithms. )e basic idea of the greedy algorithm is to
only make the best choice at the moment, the greedy al-
gorithm does not consider the overall optimality, and the
choice it makes is only a local optimal choice in a certain
sense [23].)e solution of each step of the greedy algorithm
is feasible and meets the corresponding constraints; the
solution of each step is a local optimal solution and the best
solution of all the current feasible solutions. )e most
obvious disadvantage of the greedy algorithm is that it
cannot guarantee that the result obtained is the global
optimal solution. However, the greedy algorithm usually
does not take up too much time and manpower in the
specific solution process. Starting from the purpose of
business operation, although the greedy algorithm cannot
obtain the global optimal solution, it can find a feasible
solution close to the global optimal solution in a short time.
)erefore, the solution is close to the global optimal so-
lution sought by the greedy algorithm and can also be
accepted by related companies.

)e core idea of the simulated annealing algorithm
(Simulated Annealing, SA) is derived from the principle of
solid annealing. Because of the similarity between the

physical annealing process and the combinatorial optimi-
zation problem, it was introduced into the field of combi-
natorial optimization in 1983 [24]. )e simulated annealing
algorithm selects new solutions according to Metropolis
criteria; it not only accepts optimized solutions with ex-
cellent performance but also accepts deteriorating solutions
with poor performance as a certain probability, prompting
the algorithm to jump out of the “trap” of local optimal
solutions, thereby ensuring that it can search for the global
optimal solution or near optimal solution [25].

In addition to the intelligent optimization algorithm of
selecting blades proposed in this paper, this paper also uses
the greedy algorithm and the simulated annealing algorithm
for selecting blades. )e comparison of the solution results
and solution efficiency of the three algorithms are shown in
Figures 6 and 7 , respectively. )e intelligent optimization
algorithm of selecting blades based on the collocation degree
of blades picks out 9 groups of blades (only 3 times), which
can complete the assembly of 9 rotors, but the algorithm
picked out 10 groups of blades in the remaining 17 times;
therefore, the intelligent optimization algorithm based on
the collocation degree of blades has the optimal optimization
effect. )e solution effect of the greedy algorithm is more
stable than that of simulated annealing, but it can only select
9 groups of blades at most, which cannot reach the global
optimal solution of 10 groups of blades. )is is related to the
inherent properties of the greedy algorithm; it cannot find
the global optimal solution, but it can obtain a feasible
solution close to the global optimal solution in a short time.
As shown in Figure 7, the greedy algorithm has the most
stable and shortest solution time. It can be seen from Fig-
ure 6 that simulated annealing can find the global optimal
solution, but the solution result of simulated annealing is the
most unstable; it can pick out 10 groups of blades at most,
but the smallest is only 1 group of blades being selected.
Because the simulated annealing algorithm is based on the
Metropolis criterion to select new solutions, it can not only
accept the optimized solution with good performance but
also accept the deteriorating solution as a certain probability.
)e advantage of the Metropolis criterion is to promote the
algorithm to jump out of the “trap” of the local optimal
solution, so as to ensure that it can search for the global
optimal solution. But, at the same time, precisely because of
accepting the inferior solution as a certain probability during

Table 4: Ten groups of rotating blades picked out by the algorithm based on the collocation degree of blades.

First-order bending
dispersion

First-order torque
dispersion

Gravitational moment
difference (g∗mm)

Design requirements (blade selection rules) 0.06 0.08 6000
)e blade group of the first rotor 0.054 0.056 5900
)e blade group of the second rotor 0.054 0.040 6000
)e blade group of the third rotor 0.055 0.047 5780
)e blade group of the fourth rotor 0.055 0.059 5640
)e blade group of the fifth rotor 0.054 0.078 5400
)e blade group of the sixth rotor 0.054 0.059 5980
)e blade group of the seventh rotor 0.054 0.059 5820
)e blade group of the eighth rotor 0.056 0.074 5940
)e blade group of the ninth rotor 0.053 0.064 5980
)e blade group of the tenth rotor 0.054 0.079 5800
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the search process, the algorithm may miss the current
encountered optimal solution, that is, the optimal solution
may be discarded when the simulated annealing algorithm
accepts the inferior solution probabilistically, resulting in the
final result of simulated annealing algorithm, which is not
always the optimal solution.

Step (4) of the intelligent optimization algorithm
based on the collocation degree of blades ensures that the
algorithm will not destroy the number of groups of blades
that have been selected when the algorithm encounters the

“bottleneck”, which means that when blades are selected
by the algorithm, the number of groups of blades already
selected and put in the finished product library may in-
crease or maintain the current number, but will not de-
crease, which is similar to the greedy algorithm; however,
the greedy algorithm cannot find the global optimal so-
lution. )e simulated annealing algorithm can achieve the
global optimal solution by the Metropolis criterion, but at
the same time, when it accepts inferior solutions proba-
bilistically, the number of groups of blades that have been

Table 5: Statistic table of solution time and selection results of rotating blades optimization-selection algorithm based on the collocation
degree of blades.

Serial number Number of groups of blades Solution time (unit: s) Serial number Number of groups of blades Solution time (unit: s)
1 10 9.6 11 10 8.2
2 10 10.0 12 10 11.1
3 10 7.7 13 9 23.7
4 10 12.3 14 10 8.6
5 10 10.5 15 9 28.7
6 10 7.9 16 10 8.9
7 10 8.5 17 10 11.1
8 9 23.8 18 10 9.0
9 10 8.7 19 10 9.5
10 10 11.2 20 10 8.7
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selected and put in the finished product library will de-
crease, which results in the final solution result of sim-
ulated annealing not always being the global optimal
solution.

In terms of the solution time, the solution time of all the
above three algorithms is not long, and the longest is no
more than 30 seconds, which is acceptable in the actual
application of enterprises. )e termination conditions of
the three algorithms set in this paper are: ① when picking
out 10 groups of blades (280 blades), terminate the running
of the algorithm; ② when the number of iterations is
reached, the algorithm terminates. As can be known from
Figure 6, when the intelligent optimization algorithm based
on the collocation degree of blades picks out 9 groups of
blades, the termination conditions of picking out 10 groups
of blades is not met; therefore, the algorithm continues to
select blades until the number of iterations is reached; as a
result, it costs more time. In the other 17 times of running
algorithm, when 10 groups of blades are selected, the al-
gorithm will terminate, even if the number of iterations is
not used up, so it costs less time. Since the greedy algorithm
cannot find the global optimal solution, it terminates only
when its number of iterations is used up every time, so the
solution time of the greedy algorithm is more stable than
the other two algorithms. )e solution time of the opti-
mization algorithm based on the collocation degree of
blades is not as robust as the other two algorithms, but its
solution results are significantly better than the greedy
algorithm and the simulated annealing algorithm. In
general, within the solution time range acceptable by the
enterprise, the optimization algorithm based on the col-
location degree of blades has the best solution effect, which
can realize efficient selection and full utilization of rotating
blades.

5. The Solution and Analysis of Optimizing
Matching Problem of Rotor Blades of
Aeroengine Fan

5.1. Assembly Sequence Planning of FanRotor Blades Based on
Simulated Annealing Algorithm. “Optimizing matching” is
to plan the assembly sequence of rotating blades and
make the remaining unbalance of the rotor as small as
possible. After the blade selection is completed, the as-
sembly sequence of the selected rotor blades should be
planned. )e goal of the assembly sequence planning is to
ensure that the remaining unbalance does not exceed the
design value to ensure that the rotor static balance meets
the design requirements after the rotor blades are as-
sembled according to the planned assembly sequence.
Although the remaining unbalance achieved by the
current assembly sequence planning technology of the
enterprise does not exceed the design value, it is generally
too large, as shown in Table 6. Take the first-stage blades
of the fan rotor as an example; Table 6 is the comparison
result of the remaining unbalance obtained by the 6 kinds
of blade sorting methods of the enterprise and design
value.

For the n blades of the first-stage fan rotor, the calcu-
lation method of the remaining unbalance is shown in
formulas (5)–(8).

Mx � 􏽘
n

i�1
Mi cos θi, (5)

My � 􏽘
n

i�1
Mi sin θi, (6)

Mleft �

��������

M
2
x + M

2
y

􏽱

, (7)

α � arctan
My

Mx

. (8)

Mx and My are the components of the sum of gravi-
tational moments in the x and y directions, respectively; Mi

is the gravitational moment of the No. I blade; θi is the angle
between the gravitational moment vector of the No. I blade
and the x-axis; Mleft is the residual unbalance; and α is the
angle of the residual unbalance.

Although the current assembly sequence planning
methods of the enterprise can make the remaining unbal-
ance of the rotor blade within the design range, if the
remaining unbalance is too large, the remaining unbalance
of the rotor will exceed the design value due to errors during
the assembly process. )erefore, this article takes the as-
sembly sequence planning of the first-stage blades of the fan
rotor as an example, takes the minimum residual unbalance
as the goal, and takes the gravitational moment difference of
the two blades at the diagonal position of 180°, which does
not exceed 1500 g∗mm as the constraint (the constraint is
specified by the enterprise); the simulated annealing algo-
rithm is used to plan the assembly sequence of the blades,
and the obtained residual unbalance by simulated annealing
can reach 0.52 g∗mm, and the corresponding assembly
sequence is shown in Table 7. )e running time of SA al-
gorithm is 7.8 seconds. )e residual unbalance comparison
results of the current assembly sequence planning methods
of the enterprise and the assembly sequence planning
method based on SA are shown in Table 6. )e results show
that the assembly sequence planning method based on the
simulated annealing algorithm has the advantages of high
efficiency and high precision. )e flow of the simulated
annealing algorithm is shown in Figure 8. )e assembly
sequence diagram of blades obtained by simulated annealing
is shown in Figure 9. )e small arrow at the center of
Figure 9 indicates the location of the heavy point of the
blades. In order to better ensure the static balance of the
rotor, when assembling the rotating blades, the location of
the heavy point of the rotating blades should be assembled
with the location of the light point of the rotor disk edge.

Figure 10 is a statistical chart of the solution accuracy
and solution time of running the simulated annealing al-
gorithm for multiple times. As can be seen from Figure 10,
the residual unbalance obtained by the simulated annealing
algorithm does not exceed 8 g∗mm, which is significantly
better than the value of 32–83 g∗mm (see Table 6)

Shock and Vibration 11



RE
TR
AC
TE
D

Ta
bl

e
6:

)
e
co
m
pa
ri
so
n
of

th
e
re
m
ai
ni
ng

un
ba
la
nc
e
ob

ta
in
ed

by
6
ki
nd

s
of

bl
ad
e
so
rt
in
g
m
et
ho

ds
of

th
e
en
te
rp
ri
se

an
d
de
sig

n
va
lu
e.

M
et
ho

d
1
2-
sin

gl
e

be
am

h/
l

M
et
ho

d
2
3-
do

ub
le

be
am

h/
l

M
et
ho

d
3
4-
qu

ad
r

be
am

h/
l

M
et
ho

d
4
5-
qu

ad
r
be
am

h/
l

M
et
ho

d
5
6-
tr
ip
le

be
am

h/
l

M
et
ho

d
6
7-
se
qu

en
ce

be
am

h/
l

SA
al
go
ri
th
m

in
te
lli
ge
nt

so
rt
in
g

D
es
ig
n
va
lu
e

(g
∗
m
m
)

48
32

40
52

37
83

0.
52

10
0

12 Shock and Vibration



RE
TR
AC
TE
D

obtained by the enterprise, and is also far less than the
design value of 100 g∗mm given by the design department.
Besides, the running time of the simulated annealing al-
gorithm is between 6 and 12 seconds, and its solution
efficiency is very high. )erefore, compared with the
current solution methods of the enterprise, the assembly
sequence planning technology based on the simulated
annealing algorithm not only provides the optimized as-
sembly sequence for the enterprise but also its solution
efficiency is very high.

5.2. Assembly Sequence Optimization of the Fan Rotor Blades
Based on the Improved Simulated Annealing Algorithm.
)e simulated annealing (SA) algorithm realizes the global
search by accepting inferior solutions probabilistically, so as
to achieve the global optimization solution. However, at the
same time, precisely because of accepting inferior solutions
probabilistically in the search process, the algorithm may
miss the current superior solution, and the current superior
solution may be the optimal solution of the algorithm, which
means the optimal solution may be discarded, and the

Table 7: )e assembly sequence planned by simulated annealing algorithm (gravitational moment: g∗mm).

Assembly
sequence

Blade
number

Gravitational
moment

Assembly
sequence

Blade
number

Gravitational
moment

Assembly
sequence

Blade
number

Gravitational
moment

1 22 272860 11 3 276260 21 21 274840
2 2 274780 12 8 275140 22 5 276100
3 6 276120 13 11 275300 23 17 275760
4 13 275840 14 25 273760 24 28 274120
5 23 276460 15 1 273380 25 14 276180
6 24 275080 16 12 274300 26 19 275180
7 9 274960 17 20 276120 27 10 275420
8 18 275880 18 16 275760 28 26 273580
9 7 275660 19 27 276460
10 15 274100 20 4 275040

Output optimal solution

Given initial temperature and initial
solution

Generate a new solution based on the
current temperature 

Calculate the increment of the objective
function ΔE

ΔE < 0?

Exp (–ΔE/T) > rand?

Full search at this temperature?

Meet the termination conditions?

Accept new
solution 

Temperature
decay 

Yes

Yes

No

No

No

Yes

No

Yes

28 rotating blades are sorted in ascending
order, adjacent blades in the increasing

sequence are paired into 14 pairs

Starting

Figure 8: )e flowchart of simulated annealing algorithm.
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optimal solution finally output by the algorithm may not be
the true optimal solution. f � Mleft �

��������
M2

x + M2
y

􏽱
, when

ΔE � f(new) − f(old)< 0, f(new) is the superior solution,
and the inferior solution f(old) will be discarded directly;
when ΔE � f(new) − f(old)> 0, f(new) is the inferior
solution; at this time, turn to the link of accepting inferior
solutions probabilistically; if the inferior f(new) is accepted,
the superior solution f(old) will be discarded; otherwise, the
inferior f(new) will be discarded. In every contest between
the superior solution and the inferior solution, there is al-
ways a solution discarded; most of the time, the discarded
solution is the inferior solution, but at the link of accepting
the inferior solution probabilistically, the superior solution
may also be discarded. )erefore, the link of accepting the
inferior solution probabilistically may cause the algorithm to
miss the optimal solution currently encountered. In order to
avoid this situation, the SA algorithm is improved and
optimized by adding amemory unit to the SA algorithm, and

put the discarded old solutions (old solutions include the
superior solutions and the inferior solutions) into the
memory unit. Finally, an optimal solution will be generated
in the memory unit, denoted as MS. Compare the optimal
solution MS and the optimal solution (denoted as SAS)
obtained by SA algorithm without the memory unit; if
MS< SAS, the optimal solution output by the improved
simulated annealing algorithm is MS; otherwise, the output
is SAS. )e flowchart of the improved simulated annealing
algorithm is shown in Figure 11.

)e comparison results of the solution accuracy and the
solution time of the traditional and improved SA algorithms
are shown in Figure 12.)e solution accuracy is significantly
better than the SA algorithm without improvement, but the
solution time is slightly slower than the traditional SA al-
gorithm. Running the traditional and improved SA algo-
rithms for 20 times, respectively, and the comparison results
of the mean and standard deviation of the solution accuracy
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and the solution time are shown in Table 8. )e mean and
standard deviation of the solution accuracy of the developed
algorithm are significantly better than the traditional SA
algorithm, but the solution time is a little slower than the
traditional SA algorithm.)erefore, the improved simulated
annealing algorithm can obtain better solution results,
avoiding the situation wherein the algorithm misses the
current optimal solution because of accepting the inferior
solution probabilistically during the solution process.

Moreover, after the algorithm is improved, its average
running time is increased only by 2 seconds. )erefore, after
the algorithm is improved and optimized, the algorithm’s
solution accuracy and robustness are improved significantly.
Besides, the algorithm’s solution efficiency is still very high,
which indicates that the improvement and optimization of
the simulated annealing not only maintains its efficient
solution efficiency but also significantly improves its solu-
tion accuracy and robustness.

Given initial temperature and initial
solution

Starting

Generate a new solution based on the
current temperature

Calculate the increment of the objective
function ∆E = f (new) – f (old)

∆E < 0?

Exp (–∆E/T) > rand?

Full search at this temperature?

Meet the termination conditions?

Accept the new solution and
discard the old solution

Yes

Yes

No

No

Yes

No

Yes

Store the discarded old solution
into the memory unit

Temperature
decay

No

Obtain the optimal solution
from the memory unit and

record it as MS

Take the current solution as the optimal
solution and record it as SAS

MS is output as the optimal solution

MS ≤ SAS?

Yes

SAS is output as the
optimal solution

No

28 rotating blades are sorted in ascending
order, adjacent blades in the increasing

sequence are paired into 14 pairs

Figure 11: )e flowchart of the improved simulated annealing algorithm.
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6. Conclusions

(1) )is paper established the optimization algorithm of
selecting blades based on the collocation degree of
blades and realized efficient selection and full utili-
zation of rotating blades before assembly. )e blade
resource utilization rate is increased from 65%–74%
currently achieved by the enterprise to 83%–93% by
the algorithm. )e statistic results of the algorithm
running 20 times show that the minimum solution
time is 7.7 seconds, the maximum is 28.7 seconds,
and the solution efficiency is very high. Moreover,
the solution results of the optimization algorithm
based on the collocation degree of blades are far
ahead of the greedy algorithm and simulated
annealing algorithm. Consequently, the algorithm of
selecting blades based on the collocation degree of
blades realizes the efficient selection and full utili-
zation of blades.
)e optimization algorithm of selecting rotating
blades based on the collocation degree of blades has
two highlights: ① the collocation degree of blades
prompts the algorithm to select more blades faster,
which ensures the efficient selection of blades;② the
“bottleneck” processing method of the algorithm
determines that when the algorithm selects blades, it
will not destroy the number of blades that have
already been selected, which means the number of
blades that have been picked out and put in the
finished product library may increase, may maintain
the current number, but not decrease, and this
highlight ensures that the algorithm can make full
use of blade resources.

(2) )is paper uses simulated annealing algorithm to
plan the assembly sequence of blades, and the

residual unbalance obtained by SA algorithm can
reach 0.52 g∗mm, which is far less than the given
design value of 100 g ∗mm, and 0.52 g∗mm is also
far smaller than the remaining unbalance (between
30 g∗mm and 100 g∗mm) achieved by the com-
pany’s current assembly sequence planning tech-
nology. )erefore, the assembly sequence planning
method of blades based on simulated annealing al-
gorithm greatly improves the static balance reliability
of rotors.
)e improved simulated annealing algorithm not
only maintains the characteristic of efficient solution
but also improves the solution accuracy and solution
robustness significantly. Consequently, the im-
proved simulated annealing algorithm provides
optimized assembly sequence and efficient solution
method for the assembly of rotor blades.
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Figure 12: Comparison of solution accuracy and solution time of the traditional SA algorithm and improved SA algorithm.

Table 8: )e comparison results of the solution effect of the traditional SA and improved SA.

Solution accuracy of
traditional SA

Solution accuracy of
improved SA

Solution time of
traditional SA

Solution time of
improved SA

Mean 3.4682 g∗mm 0.6950 g∗mm 8.2 s 10.1 s
Standard deviation 1.7538 0.4412 0.6546 0.6641
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For the maintenance problem of intelligent series system with buffer stock, a preventive maintenance model based on the
threestage time delay theory is proposed. Firstly, the intelligent series system is decomposed into n− 1 virtual series systems by
using approximate decomposition method. .e impact factor is introduced to establish the failure rate and maintenance rate
model of each virtual machine. Secondly, a preventive maintenance model based on the three-stage time delay theory is proposed
for each virtual series system. .e machine state from normal operation to failure stage is divided into three steps: initial defect,
serious defect, and fault, and different distribution functions are defined in different stages to simulate the degradation process of
the machine. Based on the three-stage time delay theory, the machine cost ratio model was established by taking the machine
monitoring time and buffer stock as decision variables and the minimum unit time cost rate as objective function. Finally, the
rationality and validity of the model are verified by an example analysis, which provides a basis for the maintenance of the
intelligent series system.

1. Introduction

Intelligent series system is an important part of modern
industrial manufacturing system. Due to the variety of
machines and complex layout and structure, any failure may
lead to the shutdown of the entire production line and cause
huge economic losses for enterprises. For the continuous
series production line, the preventive maintenance can also
cause downtime.

Reasonably adding buffer between two machines can
improve the flexibility of the production line, reduce the
production dependence between upstream and downstream
machine, and reduce the impact on the stability of series
system due to machine downtime. .e performance of the
intelligent series system is closely related to its preventive
maintenance plan and buffer setting. Preventive mainte-
nance is related to the buffer stock allocation. In order to
improve the production line stability and reduce the cost, it

is very necessary to jointly optimize the series system buffer
stock allocation and maintenance plan of machines.

Machines in the intelligent series system are closely
connected, and the failure of one machine will lead to the
shutdown of the entire intelligent series system. Recently,
there are many literature works on the optimal preventive
maintenance strategy of the series system. Wu et al. [1]
established an optimized maintenance cost model and de-
termined the optimal condition monitoring interval and the
degradation level after imperfect preventive maintenance.
.e authors in [2] developed a dynamic maintenance
strategy joint optimization problem that integrates pro-
duction and opportunity maintenance. Rooeinfar et al. [3]
studied the scheduling problem of uncertain flexible pipeline
with finite buffer. Zhang et al. [4] investigated the incor-
poration of balance and preventive maintenance in
U-shaped assembly line. Two metaheuristic algorithms in-
cluding elitist nondominated sorting genetic algorithm and
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multiobjective simulated annealing algorithm were designed
to solve this problem. .e authors in [5] studied the inte-
grated control of dynamic maintenance and production in a
deteriorating manufacturing system and proposed a dy-
namic maintenance strategy that included corrective, pre-
ventive, and opportunistic maintenance. Bouslah et al. [6]
discussed the integrated production, quality, and mainte-
nance control of the production line. Motlagh et al. [7]
developed an expert system for the unreliable unbalanced
production line in reality, in which all time-based param-
eters were random. Considering a series production system
with random degradation, Wang et al. [8] proposed a
predictive maintenance strategy based on the predicted
failure probability of each machine and a production control
strategy based on the target service level, so as to meet the
dynamic stochastic demand in each period. Wang et al. [9]
proposed two maintenance strategies for the series pro-
duction line. .e first was based on the cost rate of the
machine under long-term operation, and the second was
based on the single-piece machine maintenance strategy
considered in the production line. .e authors in [10]
proposed an alternative scheduling model for railway pro-
duction lines and proposed a time-based flexible displace-
ment (FTBR) method in combination with the artificial bee
colony (ABC) algorithm. Based on the concept of “energy-
saving opportunity window,” [11] modeled the continuous
deterioration process of each machine and regarded the
energy-saving opportunity window of the production sys-
tem as the opportunity window of preventive maintenance.
However, the above literature only proposes preventive
maintenance strategies for series system not combined with
buffer zones.

Buffers have been used in maintenance of machines for a
long time. .e authors in [12] first proposed buffer stock,
considering the impact of the interstage buffer on pro-
duction at different production speeds, different failure rates,
and different repair rates. .e method of using regeneration
point for analysis and treatment was given. Currently, a large
number of scholars study the optimal allocation of buffer.
.e authors in [13] presents a model to determine the
optimal length of continuous production periods between
maintenance actions and the optimal buffer inventory to
satisfy demand during preventive maintenance or repair of a
manufacturing facility. On the basis of this model, the au-
thors in[14] considers that the opportunities for the fabri-
cation of the buffer inventory and opportunities to carry out
a maintenance action to the production facility are random.
.e authors in [15] proposed a multiobjective mathematical
formula and hybrid method, which can simultaneously solve
the buffer size and machine allocation problems on unre-
liable production lines and assembly lines with general
distributed time-varying parameters. .e authors in [16]
proposed a tabu search algorithm to find the optimal buffer
allocation plan for a serial production line composed of
unreliable machines. .e authors in [17] considered an
imperfect production system with preventive maintenance
activities in order to obtain the optimal buffer stock and
minimum warranty inspection policy for sold products. .e
production system has the probability of changing from the

normal state to the out-of-control state at any time. Under
the normal state and out-of-control state, the production
system will produce a certain proportion of defect items..e
authors in [18] developed a method to analyze the complex
tradeoff between the preventive maintenance and the
buffer’s contribution to system performance, considering a
two-machine continuous manufacturing system with a finite
capacity buffer. .e authors in [19] analyzed the tradeoff
between buffer capacity, spare parts inventory, and
throughput for a two-stage production system with buffers
and established a discrete-time Markov chain for two dif-
ferent situations. .e numerical examples showed that the
effect of a spare part on the efficiency of a transfer line was
much greater than the effect of additional buffer places. All
of the above research is aimed at two-stage system and does
not combine buffer with intelligent series system.

.ere are few studies on the combination of mainte-
nance and buffer with series system. Nahas [20] considered
an unreliable serial production line. .e target was to
minimize the total cost of the system through finding the
optimal preventive maintenance strategy and optimal buffer
size at a given level of the system throughput. Extend the
flood algorithm was put forward in order to solve this
problem. .e decomposition approximation method was
used to estimate the production capacity of production line.
Zandieh et al. [21] studied buffer and preventive mainte-
nance cycle allocation issues. .e model was built with three
objective functions: the maximization of production rate, the
minimization of buffer size, and the total number of defect
units. Finally, a synthetic simulation method and a meta-
heuristic algorithm were used to solve the model. Lopes [22]
minimized the total cost of each product while considering
product quality testing for production lines with buffers.
According to the machine degradation stage and buffer level,
Kang and Ju [23] used Markov decision model to obtain the
optimal maintenance strategy of the machine in the pro-
duction line. Alfieri et al. [24] used the approximated
mathematical programming formulation of the Buffer Al-
location Problem (BAP) simulation-optimization based on
the time buffer concept. However, in these studies, the
preventive maintenance strategy of the series system is
considered as a whole, and it is not disassembled to study
each machine in the production line. Preventive mainte-
nance strategy may not be adapted to each machine in the
production line.

In this paper, the buffer is added to the intelligent series
system to jointly optimize the buffer stock and the optimal
preventive maintenance cycle. .e approximate decompo-
sition method is used in this paper to decompose the in-
telligent series system into several virtual series systems with
two machines and a buffer.

.e approximate decomposition method is used to study
the problem of production line preventive maintenance,
which was first proposed by [25]. After that, it was widely
used. Based on the approximate decomposition method, [26]
presented an efficient method to evaluate performance of
tree-structured assembly/disassembly (AD) systems with fi-
nite buffer capacity. For mixed-model flexible transfer lines,
[27] proposed a general simulation model. Compared with
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the approximate decomposition method, the numerical re-
sults show that the proposed method is robust for predicting
the throughput of transmission lines. Li et al. [28] proposed a
common model that unifies several approximate methods for
the analysis of tandem queueing systems with blocking. Xia
et al. [29] proposed an efficient decomposition method based
on a generalized exponential distribution to analyze the
homogeneous transfer lines with unreliable buffers. .e au-
thors in [30] developed three heuristic approaches to solve the
formulated combinatorial optimization problem. To estimate
the production line throughput, an approximate decompo-
sition method was used. Xia et al. [31] decomposed the
original long line into several small decoupled subsystems and
added relation condition variables between the subsystems.
Bai et al. [32] proposed a new aggregation-based iterative
algorithm to calculate the performance metrics of a multi-
machine serial line by representing it using a group of virtual
two machine lines. In this paper, based on the approximate
decomposition method, the influence factors are introduced
according to the importance of different machines in the
series system to obtain the optimal maintenance strategy for
each machine.

Another innovation of this paper is to introduce the time
delay theory into the maintenance model. Many studies have
presented the preventive maintenance strategies by con-
sidering buffer stock. However, the machine’s degradation is
not considered in this area. In this paper, the preventive
maintenance strategy can be developed by introducing the
time delay theory to simulate the degradation process.

.e time delay theory is often used to simulate the ma-
chine degradation process..e time delay model proposed by
Christer and Waller [33] is the first time to extend the time
delay theory to the maintenance of industrial plants..e basic
model of inspection and maintenance and some change
models observed in practice are presented. Later, a large
number of scholars applied the time delay theory to the field
of establishing the correlation between machine maintenance
cost and preventive maintenance inspection interval cycle.
Wang [34] proposed such a model for a serviceable one-
component system to jointly model the effect of RS and
inspection with replacement on the basis of the delay-time
concept. Zhao et al. [35] developed a model to evaluate the
reliability and optimized the inspection schedule for a mul-
tidefect component. Gomes da Silva and Lopes [36] simulated
the preventive maintenance model based on the nonhomo-
geneous Poisson distribution. Mahmoudi et al. [37] studied
the occurrence process of machine defects presented as ho-
mogeneous Poisson distribution, and then solved the optimal
maintenance cycle of preventive maintenance strategy. Based
on the traditional time delay theory, Wang et al. [38] in-
troduces a two-level inspection policy model for a single
component plant system based on a three-stage failure
process. .ey divided the machine failure into three states:
original defect, serious defect, and fault, so as to simulate the
fault random process. By applying the three-stage time delay
theory to the simulation of machine degradation and renewal
process, the clustering summary of different kinds of faults or
defects that may occur in the machine can be performed in a
more precise and quantitative manner.

In this paper, first, the intelligent series system is
decomposed into n− 1 virtual series systems by approximate
decomposition method, and one virtual series system in-
cludes two virtual machines. .e aim is to find the rela-
tionship between machines and present the cost ratio and
maintenance ratio model by considering an influence factor.
.en, for each two virtual machines, the buffer stock and
machine monitoring time can be described as decision
variables, and the total cost rate can be minimized as the
objective function. A novel maintenance model based on
three-stage time delay is developed to obtain the optimal
preventive maintenance strategy and the buffer stock. .e
proposed model can be divided into four types, and it
contains the whole process of machine degradation based on
different machines status and monitoring time. Finally, the
proposed model is compared with the maintenance model
based on two-stage time delay by a case study. .e overall
optimal maintenance strategy and buffer stock are obtained.
In the case study, this paper analyzes an intelligent series
system of Shanghai Pangyuan Machinery Co.

.e remainder of the paper is as follows. In Section 2, a
description of general problem is presented. In Section 3,
the notation and assumption are presented. .e mainte-
nance rate and cost ratio model of virtual machine and the
preventive maintenance model based on the three-stage
time delay theory are introduced in Section 4. In Section 5,
solving method is introduced. In Section 6, numerical
examples are presented and analyzed. Finally, the most
important results and future work are summarized in
Section 7.

2. Problem Description

.e intelligent series system L includes nmachines and n− 1
buffers. It is shown in Figure 1. We assume that M1 is never
starved and the supply of raw materials needed by M1 is
continuous. Mn is never blocked, and the final product
produced by Mn does not have a backlog state. .e failure
rate λi and maintenance rate μi of each unit are known and
defined as known conditions. .e approximate decompo-
sitionmethod is used to decompose L into n− 1 virtual series
systems, and each virtual series system includes two ma-
chines and one buffer.

After L is decomposed, n− 1 virtual series systems are
formed. Mu and Md are virtual machines of one virtual
series system after decomposition. Mu is the upstream
machine, and semifinished product m1 from Mu is input
into downstream machine Md at the production rate β
through the intermediate buffer B. Md uses m1 as the raw
material to produce product m2 at β. B needs to be accu-
mulated before maintenance actions adopted by Mu to
ensure continuity of production process of the virtual series
system.

.e traditional time delaymodel divides the health status
into defect state and fault state. .e three-stage time delay
model divides the health status into normal state, original
defect state, serious defect state, and fault state, as shown in
Figure 2. .us, the degradation process can be divided into
original defect time, serious defect time, and failure time.
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After the upstream machine runs a certain period, B can
be added by the replenishment rate α until it reaches buffer
stock level S. .en, status monitoring can be executed on the
upstream machine. If the monitoring result shows that it is
in initial defect state or serious defect state, preventive
maintenance needs to be adopted immediately. If it is
stopped due to failure before monitoring, then fault repair
can be performed.

3. Notation and Assumption

3.1. Notation

Mi: i
th machine of intelligent series system L

λi: failure rate of Mi

μi: maintenance rate of Mi

Mu(i): upstream machine after decomposition
λu(i): failure rate of Mu(i)

μu(i): maintenance rate of Mu(i)

Md(i): downstream machine after decomposition
λd(i): failure rate of Md(i)

μd(i): maintenance rate of Md(i)

tu(i): maintenance time of Mu(i)

ru(i): remaining maintenance time of Mu(i)

α: replenishment rate of buffer
β: production rate of L
X: machine normal operation phase
Y: machine original defect operation phase
Z: machine serious defect operation phase
fx(x): probability density function from initial state of
one machine to occurrence of original defect
fy(y): probability density function from original de-
fect state of one machine to the occurrence of serious
defect
fz(z): probability density function from serious defect
state of one machine to the occurrence of failure

Fx(x): distribution function from initial state of one
machine to the occurrence of original defect
Fy(y): distribution function from original defect state
of one machine to the occurrence of serious defect
Fz(z): distribution function from serious defect state of
one machine to the occurrence of failure
h: buffer stock holding cost per unit
ρ: shortage cost per unit
Cr: monitoring cost of each time
Cx: maintenance cost of one time for machine in an
original defect state
Cy: maintenance cost of one time for machine in a
serious defect state
Cz: maintenance cost of one time for machine in a fault
state
Cm(T): maintenance costs in a cycle
Ch(S): holding cost in a cycle
Cs(S, T): shortage cost in a cycle
S: buffer stock level
T: machine monitoring time from the end of a
maintenance action to the start of the status monitoring
EC(T): expected length of a cycle for operational time
T

C(S, T): total cost in a cycle
TCR (S, T): cost rate in a cycle
Wi (i � 1, 2, 3): random variable, maintenance time of
themachine by original defect state, serious defect state,
and fault state, respectively
gi(t): probability density function of Wi, i � 1, 2, 3
Gi(t): distribution function of Wi, i � 1, 2, 3

3.2. Assumptions

(1) .e machine status needs to be monitored after T,
and monitoring time can be ignored.

M1 B1 Mi Bi Mn–1

μn–1

λn–1 λn

Sn–1 μn

Bn–1 Mn

L

μ1

λ1

μi Si
λi

S1

· · · · · ·

Figure 1: Intelligent series system L.

Original defect time Fault time

TimeNormal state Serious 
defect state

Serious defect time

Original 
defect state

Figure 2: .ree stages of failure.
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(2) All the states can be accurately monitored. .e
corresponding maintenance actions can be adopted
immediately after monitoring. Production can be
resumed immediately after completing maintenance.

(3) Extra production capacity is always available in order
to produce buffer stock.

(4) If there is buffer stock after completing maintenance,
the next production cycle firstly consumes buffer stock.

4. The Model

4.1. Decomposing Production Line. L is decomposed into
n− 1 virtual series systems by approximate decomposition
method, as shown in Figure 3. Each virtual series system has
only two virtual machines and a buffer (where Mu is never
starved and Md is never blocked). Buffer in Line 1 corre-
sponds to B1, and buffer in Line n− 1 corresponds to Bn−1.
For Line i, failure rates λu(i), λd(i) and maintenance rates
μu(i), μd(i) are unknown. .us, the next step is to solve the
failure rate and maintenance rate of virtual machine.

4.2. Failure Rate and Maintenance Rate Model of Virtual
Machine. Mi in L is decomposed into virtual machine
Md(i − 1) and Mu(i), Mu(i), where Mu(i) is upstream
machine of Line i and Md(i − 1) is downstream machine of
Line i− 1. Maintenance strategy of Mu(i) is the same as Mi

in L. .e starvation of Mi represents starvation of Md(i − 1),
and failure represents failure of Mu(i). .us, λu and μu of
Mu(i) are required, and its maintenance strategy is for-
mulated. Mu(i) is a virtual machine decomposed from Mi.
.e failure of Mu(i) represents failure or starvation of Mi,
Mi, and the starvation ofMi is caused by failure or starvation
of Mi−1. Failure or starvation of Mi−1 represents failure of
Mu(i − 1). .us, the failure Mu(i) is jointly determined by
failure of Mi and failure of Mu(i − 1).

.e failure of Mu(i) is related to failure of Mu(i − 1) and
failure of Mi. .us, the impact factor a can be introduced.
.e proportion is a when the failure of Mu(i) is from
Mu(i − 1)fault, and the proportion is 1 − a when the failure
of Mu(i) is from Mi fault. .e relationship is as follows:

λu(i) � aλu(i − 1) +(1 − a)λi, (1)

tu(i) � aru(i − 1) +(1 − a)ti, (2)

where tu(i) and ti are the average maintenance time of Mu(i)

and Mi respectively. ru(i − 1) is the average remaining
maintenance time of Mu(i − 1) when Mi is starved. It is the
maintenance time after consuming inventory in Bi−1.

4.3. Cost Ratio Model. For each cycle, the machine can be
monitored immediately after completing buffer stock re-
plenishment. Different maintenance strategies can be
adopted based on machine monitoring status. .e possible
occurrence time of original defect state, serious defect state,
and fault state is Tx, Ty, Tz, respectively. .ere are four
different situations for adopting preventive maintenance
based on monitoring status, T and S.

4.3.1. 0<T<Tx. .e state monitoring time of machine
occurs before the original defect time. Machine status is in a
nondefective state, and it is unnecessary to execute any
maintenance action. After that, in order to prevent the
failure and to detect the defect in time, it is necessary to
execute a state monitoring every day until the original defect
is detected. Buffer stock has been replenished from first
status monitoring. Buffer stock level change during a run-
ning cycle is shown in Figure 4 and preventive maintenance
of machine is executed under the original defect state.

(1) .e probability of Twithin [0, Tx]:

P 0<T<Tx( 􏼁 � P
1

� 􏽚
∞

T
fx(x)dx. (3)

(2) Operation cycle of machine for 0<T<Tx

.e operational cycle of machine includes moni-
toring time and maintenance time. One cycle is from
the end of the above maintenance to the end of the
next maintenance. For this situation, operational
time is Tx, and maintenance time is W1. .en,

EC1
(T) � E W1( 􏼁 + E TX( 􏼁. (4)

.e total cost includes inventory holding cost,
shortage cost, and maintenance cost within a cycle.

(3) Inventory holding cost for 0<T<Tx

.e inventory holding cost can be generated from
beginning to produce buffer stocks, and it can be
increased with the increasing of buffer stock. From
the beginning of buffer stock replenishment to the
end of maintenance actions, buffer is always occu-
pied. .us,

C
1
h(S) � h

S
2

2
α + β
αβ

􏼠 􏼡 +(x − T)S􏼢 􏼣. (5)

(4) Shortage cost for 0<T<Tx

A shortage occurs when buffer stocks are depleted
and maintenance actions have not ended. .erefore,
there will be a shortage of cost. .e shortage time is
from the end of buffer stock depletion to the end of
maintenance action. .en,

C
1
s (S, T) � ρβ􏽚

∞

S/β
G1(w)dw. (6)

(5) Maintenance cost for 0<T<Tx

Maintenance cost includes the expected cost of pre-
ventive maintenance and all testing costs. In this case,
preventive maintenance of the original defect state is carried
out. x − T + 1 tests were conducted before the maintenance
activity. .us, maintenance cost in a cycle is

C
1
m(T) � Cx +(x − T + 1)Cr. (7)

.e expected cost in a cycle for 0<T<Tx is the sum-
mation of inventory holding cost, shortage cost, and
maintenance cost. .e expected cost C1(S, T)is obtained:
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C
1
(S, T) � C

1
h(S) + C

1
s (S, T) + C

1
m(T)

� h
S
2

2
α + β
αβ

􏼠 􏼡 +(x − T)S􏼢 􏼣 + ρβ􏽚
∞

S/β
G1(w)dw + Cx +(x − T + 1)Cr.

(8)

4.3.2. Tx <T<Ty. .e state monitoring time of machine
occurs after the original defect time and before the serious
defect time. Machine status is in an original defect op-
eration state, and it needs to execute preventive

maintenance of the original defect state. After the buffer
stock is replenished, machine status is monitored im-
mediately. Buffer stock level change during a running
cycle is shown in Figure 5.

M1 M2

S2S1

S1

μ1

λ1 λ2 λi λi+1 λn λn+1

Mi

Mu (1)

Mu (i)

μu (i)

λu (i)

Md(i)

μd(i)

λd(i)

μu (1)

λu (1)

μd (1)

λd (1)

Md (1)

Mu
(n – 1)

μu (n – 1)

λu (n – 1)

Md
(n – 1)

μd (n – 1)

λd (n – 1)

Mi+1 Mn+1

μn+1μi+1μi μnSi

Mn Bn

Sn

B1

B1

S1

B1

Bn–1

Sn–1

BiL

Line 1

Line i

Line n – 1

Figure 3: n− 1 virtual series systems after decomposition.

Tx Ty Tz Time

Buffer

T

S

Figure 4: Buffer stock change diagram in a cycle for 0<T<Tx.
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(1) .e probability of T within [Tx, Ty]

P Tx <T<Ty􏼐 􏼑 � P
2

� 􏽚
T

0
􏽚
∞

T−x
fx(x)fy(y)dxdy � 􏽚

T

0
fx(x) 1 − Fy(T − x)􏼐 􏼑dx. (9)

(2) Operation cycle of machine for Tx <T<Ty

.e operational cycle of machine includes opera-
tional time and maintenance time. One cycle is from
the end of the above maintenance to the end of the
next maintenance. For this situation, operational
time of machine is T, and maintenance time is W1.
.en,

EC2
(T) � E W1( 􏼁 + T. (10)

(3) Inventory holding cost for Tx <T<Ty

.e inventory holding cost can be generated from
beginning to produce buffer stocks, and it can be
increased with the increasing of buffer stock. From
the beginning of buffer stock replenishment to the
end of maintenance actions, buffer is always occu-
pied. .us,

C
2
h(S) � h

S
2

2
α + β
αβ

􏼠 􏼡􏼢 􏼣. (11)

(4) Shortage cost for Tx <T<Ty

.e shortage cost in one cycle is the same as in
Section 4.3.1.

C
2
s (S, T) � ρβ􏽚

∞

S/β
G1(w)dw. (12)

(5) Maintenance cost for Tx <T<Ty

In this case, the machine makes one state monitoring
process. .e test result is the original defect state, so

the preventive maintenance of the original defect
state is executed. .us, maintenance cost in a cycle is

C
2
m(T) � Cx + Cr. (13)

.e expected cost C2(S, T) in a cycle for Tx <T<Ty is
obtained as

C
2
(S, T) � C

2
h(S) + C

2
s (S, T) + C

2
m(T)

� h
S
2

2
α + β
αβ

􏼠 􏼡􏼢 􏼣 + ρβ􏽚
∞

S/β
G1(w)dw + Cx + Cr.

(14)

4.3.3. Ty <T<Tz. .e state monitoring time of machine
occurs after the serious defect time and before the failure
time. Machine status is in a serious defect operation state,
and it needs to execute preventive maintenance of the se-
rious defect state. After the buffer stock is replenished, the
machine status is monitored immediately. Buffer stock level
change during a running cycle is shown in Figure 6.

(1) .e probability of Twithin [Ty, Tz]

P Ty <T<Tz􏼐 􏼑 � P
3

� 􏽚
T

0
􏽚

T−x

0
􏽚
∞

T−x−y
fx(x)fy(y)fz(z)dxdy

� 􏽚
T

0
􏽚

T−x

0
fx(x)fy(y) 1 − Fz(T − x − y)( 􏼁dxdy.

(15)

Time

Buffer

T

S

Tx Ty Tz

Figure 5: Buffer stock change diagram in a cycle for Tx <T<Ty.
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(2) Operation cycle of machine for Ty <T<Tz

For this situation, operational time of machine is T,
and maintenance time is W2. .en,

EC3
(T) � E W2( 􏼁 + T. (16)

(3) Inventory holding cost for Ty <T<Tz

For this situation, from the beginning of buffer stock
replenishment to the end of maintenance activities,
there will be inventory occupation. .erefore, the
inventory holding cost is as follows:

C
3
h(S) � h

S
2

2
α + β
αβ

􏼠 􏼡􏼢 􏼣. (17)

(4) Shortage cost for Ty <T<Tz

In this case, preventive maintenance of machine in
the serious defect state is required..us, the shortage
cost in a cycle is

C
3
s (S, T) � ρβ􏽚

∞

S/β
G2(w)dw. (18)

(5) Maintenance cost for Ty <T<Tz

In this case, the machine makes one state monitoring
process. .e test result is the serious defect state, so the
preventive maintenance of the serious defect state is carried
out. .us, maintenance cost in a cycle is

C
3
m(T) � Cy + Cr. (19)

.e expected cost C3(S, T) in a cycle for Ty <T<Tz is
obtained.

C
3
(S, T) � C

3
h(S) + C

3
s (S, T) + C

3
m(T)

� h
S
2

2
α + β
αβ

􏼠 􏼡􏼢 􏼣 + ρβ􏽚
∞

S/β
G2(w)dw + Cy + Cr.

(20)

4.3.4. T>Tz. In this case, the machine fails before the state
detection is carried out. .e planned state detection takes
place after the failure of machine. At this time, the corrective
maintenance action is executed. Buffer stock has not been
replenished, or the production of buffer stock has not started
before the failure shutdown. .us, the buffer stock change
during a running cycle is shown in Figure 7.

(1) .e probability of T within [Tz,∞]

P T>Tz( 􏼁 � P
4

� 􏽚
T

0
􏽚

T−x

0
􏽚

T−x−y

0
fx(x)fy(y)fz(z)dxdydz

� 􏽚
T

0
􏽚

T−x

0
fx(x)fy(y)Fz(T − x − y)dxdy.

(21)

(2) Operation cycle of machine for T>Tz

For this situation, before machine status is moni-
tored, the failure has already occurred. Operational
time of machine is Tz, and maintenance time is W3.
.en,

EC4
(T) � E W3( 􏼁 + E Tz( 􏼁. (22)

(3) Inventory holding cost for T>Tz

In this case, from the beginning of buffer stock re-
plenishment to the failure occurrence, there will be
inventory occupation. .en,

Time

Buffer

S

T

Tx Ty Tz

Figure 6: Buffer stock change diagram in a cycle for Ty <T<Tz.
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C
4
h(S) �

h

2
S − α T − E Tz( 􏼁( 􏼁􏼂 􏼃

(α + β)S

αβ
−

α + β
β

􏼠 􏼡 T − E Tz( 􏼁( 􏼁􏼢 􏼣.

(23)

(4) Shortage cost for T>Tz

In this case, the machine fails before the buffer stock
is replenished. .e machine breaks down, so cor-
rectivemaintenance is carried out..us, the shortage
cost in a cycle is

C
4
s (S, T) � ρβ􏽚

∞

S−α T−E Tz( )( )( )/β
G3(w)dw. (24)

(5) Maintenance cost for T>Tz

In this case, the status of the machine has not been
detected, and the machine breaks down. .erefore, cor-
rective maintenance is executed. .us, the maintenance cost
of machine in a cycle is the maintenance cost under the state
of failure, and there is no detection cost. .en,

C
4
m(T) � Cz. (25)

.e expected cost C4(S, T) in a cycle for T>Tz is
obtained:

C
4
(S, T) � C

4
h(S) + C

4
s (S, T) + C

4
m(T)

�
h

2
S − α T − E Tz( 􏼁( 􏼁􏼂 􏼃

(α + β)S

αβ
−

α + β
β

􏼠 􏼡 T − E Tz( 􏼁( 􏼁􏼢 􏼣

+ ρβ􏽚
∞

S−α T−E Tz( )( )( )/β
G3(w)dw + Cz.

(26)

4.3.5. Cost Ratio Model. .e cost rate in a cycle is expressed
as the total cost within a cycle divided by the cycle time.
.en,

TCR (S, T) �
C(S, T)

EC(T)
�

P
1
C
1
(S, T) + P

2
C
2
(S, T) + P

3
C
3
(S, T) + P

4
C
4
(S, T)

P
1EC1

(T) + P
2EC2

(T) + P
3EC3

(T) + P
4EC4

(T)

�

P
1

C
1
h(S) + C

1
s (S, T) + C

1
m(T)􏼐 􏼑 + P

2
C
2
h(S) + C

2
s (S, T) + C

2
m(T)􏼐 􏼑

+P
3

C
3
h(S) + C

3
s (S, T) + C

3
m(T)􏼐 􏼑 + P

4
C
4
h(S) + C

4
s (S, T) + C

4
m(T)􏼐 􏼑

P
1EC1

(T) + P
2EC2

(T) + P
3EC3

(T) + P
4EC4

(T)
.

(27)

.us, the maintenance cost ratio model is

min TCR (S, T){ },

S, T ∈ N
∗
; S, T> 0.

􏼨 (28)

5. Model Solving

5.1. Calculate the Failure Rate λu andMaintenance Rate μu of
Virtual Machine. Equation (1) is solved by mathematical
induction:

Time

Buffer

T

S

Tx Ty Tz

Figure 7: Buffer stock change diagram in a cycle for T>Tz.
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λu(i) � aλu(i − 1) +(1 − a)λi

λu(i − 1) � aλu(i − 2) +(1 − a)λi−1

⋮

λu(2) � aλu(1) +(1 − a)λ2.

(29)

λu(1) is equal to λ1.
Similarly, (2) is solved by mathematical induction:

tu(i) � aru(i − 1) +(1 − a)ti

tu(i − 1) � aru(i − 2) +(1 − a)ti−1

⋮

tu(2) � aru(1) +(1 − a)t2.

(30)

Get the average maintenance time of virtual machine
Mu(i), and then get its maintenance rate μu(i).

5.2. Solving the Optimal Maintenance Cycle and Buffer Stock.
In this paper, discrete iterative algorithm is used to solve the
optimal solution. .e specific steps are as follows:

Step 1. To assign S � Smin

Step 1.1. T � Tmin.
Step 1.2. To solve TCR (T, S), assign TCR (T∗, S)

� TCR (T, S).
Step 1.3. T � T + ΔT, to solve TCR (T, S).
Step 1.4. To judge if T<Tmax. If so, it goes to Step 1.5;
otherwise, go to Step 1.6.
Step 1.5. To judge if TCR (T∗, S)>TCR (T, S). If so,
assign TCR (T∗, S) � TCR (T, S), T∗ � T, T∗ � T; it
goes to Step 1.3; otherwise, to record TCR (T∗, S), T∗,
go to Step 1.5.
Step 1.6. To assign S � S + ΔS, to judge if S< Smax. If
so, it goes to Step 1.1; otherwise, the program ends.

Step 2. .rough Step 1, we can obtain the optimal
operating cycle T∗ under different stock allocation
amounts S, as well as all the cost rates TCR (T∗, S).
Record all the TCR (T∗, S) that we get. After sorting, it
is easy to find the system’s minimum average cost
rateTCR (T∗, S∗) � minSmin ≤ S≤ Smax

TCR (T∗, S){ } and
the most joint strategy (T∗, S∗).

.e flow chart of discrete iteration algorithm is shown in
Figure 8.

6. Case Study

In this numerical example, the specific parameters and data
of the intelligent series system were obtained from Shanghai
Pangyuan Machinery Co.. .e workshop has a lathe pro-
duction line consisting of four machines and three buffers.
By monitoring the equipment history fault record, the
equipment fault parameters are summarized as follows. .e
original defect stage, serious defect stage, and failure stage of
machine Mi are subject to exponential distribution inde-
pendently. fx(x), fy(y), fz(z) are used to represent the
probability density functions of machine deterioration in

each stage, respectively. .e definition of the exponential
distribution function is given as follows:

f(x) � λe
− λx

. (31)

λi1, λi2, λi3 are used to represent the parameters in the
exponential distribution of the fx(x), fy(y), fz(z) which
are shown in Table 1.

.e productivity of production line β is 30000 units per
year. .e buffer replenishment rate α is 6000 units per year.
Shortage cost ρ � $200 per unit. .e cost of each machine
monitoring process is $800..e unit cost of corrective repair
is $15000, the unit cost of serious defect repair is $7000, and
the unit cost of original defect repair is $4000. .e main-
tenance time of each machine in the original defect state is
supposed to be uniformly distributed between 0.5 and 1 day.
.e maintenance time of each machine in the serious defect
state is supposed to be uniformly distributed between 2 and 5
days. .e maintenance time of corrective maintenance is
supposed to be uniformly distributed from 3 to 7 days. S

varies from 0 to 211 units. T ranges from 0 to 105 days.
Using approximate decomposition method, the original

production line is decomposed into three virtual series systems
with two machines and one buffer. In the specific solution, a �

0.2, a � 0.5, a � 0.8 are, respectively, taken into the solution.
Since the maintenance rate of each machine is the same, the
maintenance rate of the decomposed virtual machine is the
same as that of the original machine, so only the failure rate of
the decomposed virtual machine needs to be solved.

In the case of a � 0.2, the failure rate λu(i) of the virtual
machine Mu(i) solved is shown in Table 2.

In order to simplify the difficulty of solving and relate to
the actual situation, only the case where period T and buffer
stock S are integers is considered in this paper. .e cost ratio
model is a double integer parameter nonlinear programming
problem. One discrete iteration algorithm is used to solve
the model. .e optimal monitoring time T1, T2, T3 of the
machines Mu(1), Mu(2), Mu(3) is 29, 27, 27 days. .e
optimal stock allocation amounts S1, S2, S3 of buffers
B1, B2, B3 are 79, 80, 79 units. Figure 9 shows the change of
the cost rate of machines Mu(1), Mu(2), Mu(3) with S, T.

When a � 0.2, the operating cycle of eachmachine in the
intelligent series system, the buffer stock allocation amount,
and the corresponding lowest cost rate are shown in Table 3.

Similarly, in the case of a � 0.5, the failure rate λu(i) of
the virtual machine Mu(i) solved is shown in Table 4.When
a � 0.5, the operating cycle of each machine in the pro-
duction line, the buffer stock allocation amount, and the
corresponding lowest cost rate are shown in Table 5.

Similarly, in the case of a � 0.5, the failure rate λu(i) of
the virtual machine Mu(i) solved is shown in Table 6.When
a � 0.8, the monitoring time of each machine in the intel-
ligent series system, the buffer stock allocation amount, and
the corresponding lowest cost rate are shown in Table 7.

6.1. Result Analysis. For different influence factors a, the
monitoring time and buffer stock allocation are obtained.
Table 8 is a comparison of the optimal monitoring time for
each machine under different a. Table 9 is a comparison of
the best stocks for each buffer under different a.
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As can be seen from Table 8, with the increase of a, the
operational cycle of the same machine gradually increases,
and the inventory of the same buffer gradually decreases.
Considering the actual situation, the smaller the a is, the

higher the importance of machine Mi will be. .erefore, the
shorter the operation cycle is, the shorter the monitoring
time is, the higher the maintenance frequency is, and the
higher the inventory allocated by the corresponding buffer
will be..erefore, enterprises can choose the value of impact
factor a according to the importance of the machine in the
production line, so as to obtain more accurate preventive
maintenance strategy and buffer stock allocation strategy.

a � 0.2 is fixed. For machine M1, the optimal inventory
and minimum cost rate under different monitoring time T

and the optimal monitoring time and minimum cost rate
under different inventory S were obtained by solving the
problem, as shown in Table 9. As can be seen from Table 9,
the increase or decrease of T and the increase or decrease of S

will lead to the increase of the cost rate. If T is too small, the
number of monitoring and maintenance processes will in-
crease, which will lead to the increase of maintenance cost
and the frequent shutdown of the machine. On the contrary,
if T is too large, the possibility of machine failure shutdown
will be greater, and the shortage cost will also increase. If S is

AssignTCR (T∗, S) = TCR (T, S), T∗ = T

Solve TCR (T, S), assign TCR (T∗, S) = TCR (T, S)

End

n

S < Smax
Y

S = S + ∆S

Record TCR (T∗, S), T∗

TCR (T∗, S) > TCR (T, S)

N

Y

Y

N
T < Tmax

T = T + ∆T, Solve TCR (T, S)

Assign T = Tmin

S = Smin

Start

Figure 8: Flow chart of discrete iteration algorithm.

Table 1: Related parameters of failure rate distribution, unit:
1/year.

M1 M2 M3

λi1 λ11 � 1.0 λ21 � 1.4 λ31 � 1.2
λi2 λ12 � 1.2 λ22 � 1.6 λ32 � 1.5
λi3 λ13 � 1.5 λ23 � 1.8 λ33 � 1.8

Table 2: Failure rate of virtual machine Mu(i) for a � 0.2, unit:
1/year.

a � 0.2 Mu(1) Mu(2) Mu(3)

λu(i1) λu(11) � 1.0 λu(21) � 1.32 λu(31) � 1.224
λu(i2) λu(12) � 1.2 λu(22) � 1.52 λu(32) � 1.504
λu(i3) λu(13) � 1.5 λu(23) � 1.74 λu(33) � 1.788
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Figure 9: Diagram of the cost rate (in $/year) of machinesMu(1), Mu(2), Mu(3) with the monitoring timeT(in days) and buffer stock S (in
units).

Table 3: .e lowest cost rate with the optimal monitoring time of the machine of the intelligent series system and the optimal buffer stock
for a � 0.2

a � 0.2 i � 1 i � 2 i � 3
Ti of machine Mi (in days) 29 27 27
Si of buffer Bi (in units) 79 80 79
Cost rateTCR (S, T)(in $/year) 282137.8 280065.2 281066.7

Table 4: Failure rate of virtual machineMu(i) for a � 0.5, unit: 1/year.

a � 0.5 Mu(1) Mu(2) Mu(3)

λu(i1) λu(11) � 1.0 λu(21) � 1.2 λu(31) � 1.2
λu(i2) λu(12) � 1.2 λu(22) � 1.4 λu(32) � 1.45
λu(i3) λu(13) � 1.5 λu(23) � 1.65 λu(33) � 1.725

Table 5: .e lowest cost rate with the optimal monitoring time of the machine of the intelligent series system and the optimal buffer stock
for a � 0.5.

a � 0.5 i � 1 i � 2 i � 3
Ti of machine Mi (in days) 29 28 27
Si of buffer Bi (in units) 79 79 79
Cost rateTCR (S, T)(in $/year) 282137.8 280804.5 281065.1
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too small, it will be more likely to be out of stock, which will
lead to the increase of shortage cost. If S is too large, it will
inevitably lead to an increase in inventory cost.

From a practical point of view, the model results are
consistent with the reality. If the monitoring time is 9
days, this means that if the detection is carried out every 9
days, the maintenance cost will be too high. On the other
hand, if the buffer stock is replenished to 200 pieces, the
inventory cost is high. .e cost rates are highest in these
extremes.

6.2. Result Comparison. .e maintenance cost rate model
established in this paper is combined with the three-stage
time delay theory. According to the concept of three-stage
fault process, the states of the system include normal,
original defect, serious defect, and fault state. Compared
with the traditional two-stage time delay theory, if the
machine failure can be detected in the original defect state,
not only the money cost but also the time cost can be saved.
In this section, a � 0.2 is fixed. For machine M1, the
maintenance strategy proposed in this paper is compared

with the maintenance strategy without buffer stock and the
maintenance strategy based on two-stage time delay.

6.2.1. Comparison with a Maintenance Strategy without
Buffer Stock. Buffer was added to the maintenance system in
this paper. In order to illustrate the effectiveness of the
model, and Table 10 compares the optimal monitoring time
and the minimum cost rate of machines M1, M2, M3 with
and without buffer stock in the case of
a � 0.2, a � 0.5, a � 0.8. Not taking buffer stock into account
means that the buffer stock is 0. Table 10 shows that the cost
ratio is smaller when buffer stock is taken into account than
when buffer stock is not taken into account. It shows that the
preventive maintenance strategy considering buffer stock is
optimal, feasible, and effective.

6.2.2. Comparison with the Maintenance Strategy Based on
the Two-Stage Time Delay ;eory. According to the tradi-
tional time delay theory, there are three states of a machine:
normal, defect, and failure. .e defect state and fault state

Table 6: Failure rate of virtual machine Mu(i) for a � 0.8, unit: 1/year.

a � 0.8 Mu(1) Mu(2) Mu(3)

λu(i1) λu(11) � 1.0 λu(21) � 1.08 λu(31) � 1.104
λu(i2) λu(12) � 1.2 λu(22) � 1.28 λu(32) � 1.324
λu(i3) λu(13) � 1.5 λu(23) � 1.56 λu(33) � 1.608

Table 7: .e lowest cost rate with the optimal monitoring time of the machine of the intelligent series system and the optimal buffer stock
with different a.

a � 0.8 i � 1 i � 2 i � 3
Ti of machine Mi (in days) 29 28 28
Si of buffer Bi (in units) 79 79 79
Cost rateTCR (S, T)(in $/year) 282137.8 281588.8 281531.0

Table 8: .e optimal monitoring time T and the optimal stock S of each machine in the intelligent series system with different a.

a � 0.2 a � 0.5 a � 0.8
T1/S1 of machine M1 (in days/units) 29/79 29/79 29/79
T2/S2 of machine M2 (in days/units) 27/80 28/79 28/79
T3/S3 of machine M3 (in days/units) 27/79 27/79 28/79

Table 9: .e optimal inventory S and the minimum cost ratio under different T and the optimal monitoring time T and the minimum cost
rate under different S.

Machine M1 Machine M1

T S∗ TCR∗(S, T) S T∗ TCR∗(S, T)

9 78 290802.0 19 29 291379.6
19 78 284631.7 39 29 286215.1
29 79 282137.8 59 29 283134.5
39 79 285132.4 79 29 283137.8
49 79 295151.5 99 29 283225.1
59 78 313425.6 119 29 286396.3
69 77 340867.0 139 29 291651.4
79 76 778048.1 159 28 298989.5
89 75 425204.7 179 28 308394.0
99 74 482245.5 199 28 319878.2
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occurred in Ty and Tz. .ere are three different situations
for adopting preventive maintenance based on monitoring
status, machine monitoring time T, and buffer stock S.

(1) 0<T<Ty. .e state monitoring time of the machine
occurs before the defect time. Machine status is in a non-
defective state, and it is unnecessary to execute any main-
tenance action. After that, in order to prevent the failure to
detect the defect in time, it is necessary to execute a state
monitoring process on the machine every day until the
original defect is detected. Buffer stock level change during a
running cycle is shown in Figure 10. Preventive maintenance
of machine is executed under the defect state.

.e probability of Twithin [10, Ty]:

P 0<T<Ty􏼐 􏼑 � P1 � 􏽚
∞

T
fy(y)dy. (32)

Operation cycle of machine for 0<T<Ty:

EC1(T) � E W2( 􏼁 + E Ty􏼐 􏼑. (33)

Inventory holding cost in a cycle:

Ch1(S) � h
S
2

2
α + β
αβ

􏼠 􏼡 +(y − T)S􏼢 􏼣. (34)

Shortage cost in a cycle:

Cs1(S, T) � ρβ􏽚
∞

S/β
G2(w)dw. (35)

Maintenance cost in a cycle:

Cm1(T) � Cy +(y − T + 1)Cr. (36)

.e expected cost in a cycle for 0<T<Ty is the sum of
inventory holding cost, shortage cost, and maintenance cost.
.e expected cost C1(S, T) is obtained as

C1(S, T) � Ch1(S) + Cs1(S, T) + Cm1(T)

� h
S
2

2
α + β
αβ

􏼠 􏼡 +(y − T)S􏼢 􏼣 + ρβ􏽚
∞

S/β
G2(w)dw + Cy +(y − T + 1)Cr.

(37)

(2) Ty<T<Tz. .e state monitoring time of the machine
occurs after the defect time and before the breakdown time.
Machine status is in a defect operation state, and it is
necessary to execute preventive maintenance of the defect

state. After the buffer stock is replenished, the machine
status is monitored immediately. Buffer stock level change
during a running cycle is shown in Figure 11.

.e probability of T within [Ty, Tz]:

P Ty <T<Tz􏼐 􏼑 � P2 � 􏽚
T

0
􏽚
∞

T−y
fy(y)fz(z)dxdy � 􏽚

T

0
fy(y) 1 − Fz(T − y)( 􏼁dy. (38)

Table 10: Comparison of two maintenance strategies for a � 0.2, a � 0.5, and a � 0.8.

a � 0.2 S1 T∗1 TCR∗(S, T)

Machine M1
79 29 282137.8
0 28 298210.2

Machine M2
80 27 280065.2
0 26 302058.2

Machine M3
79 27 281066.7
0 26 301232.9

a � 0.5 S1 T∗1 TCR∗(S, T)

Machine M1
79 29 282137.8
0 28 298210.2

Machine M2
79 28 280804.5
0 27 300807.4

Machine M3
79 27 281066.7
0 27 300559.5

a � 0.8 S1 T∗1 TCR∗(S, T)

Machine M1
79 29 282137.8
0 28 298210.2

Machine M2
79 28 281588.8
0 28 299125.3

Machine M3
79 28 281531.0
0 27 299209.3
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Operating cycle of the machine for Ty <T<Tz:

EC2(T) � E W2( 􏼁 + T. (39)

Inventory holding cost in a cycle:

Ch2(S) � h
S
2

2
α + β
αβ

􏼠 􏼡􏼢 􏼣. (40)

Shortage cost in a cycle:

Cs2(S, T) � ρβ􏽚
∞

S/β
G2(w)dw. (41)

Maintenance cost in a cycle:

Cm2(T) � Cy + Cr. (42)

.e expected cost in a cycle for Ty <T<Tz is the sum of
inventory holding cost, shortage cost, and maintenance cost.
.e expected cost C2(S, T) is obtained as

C2(S, T) � Ch2(S) + Cs2(S, T) + Cm2(T) � h
S
2

2
α + β
αβ

􏼠 􏼡􏼢 􏼣 + ρβ􏽚
∞

S/β
G2(w)dw + Cy + Cr. (43)

(3) T>Tz. In this case, the machine fails before the state
detection is carried out. .e planned state detection takes place
after the failure of the machine. At this time, the corrective
maintenance action is executed. .e planned state detection

takes place after the failure of the machine. Buffer stock has not
been replenished, or the production of buffer stock has not
started before the failure shutdown. .us, the buffer stock
change during a running cycle is shown in Figure 12.

Time

Buffer

T

S

Ty Tz

Figure 10: Buffer stock change diagram in a cycle for 0<T<Ty.

Time

Buffer

S

T

Ty Tz

Figure 11: Buffer stock change diagram in a cycle for Ty <T<Tz.
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.e probability of T within [Tz,∞]:

P T>Tz( 􏼁 � P3 � 􏽚
T

0
􏽚

T−Y

0
fy(y)fz(z)dydz � 􏽚

T

0
fy(y)Fz(T − y)dy.

(44)

Operating cycle of the machine for T>Tz:

EC3(T) � E W3( 􏼁 + E Tz( 􏼁. (45)

Inventory holding cost in a cycle:

Ch3(S) �
h

2
S − α T − E Tz( 􏼁( 􏼁􏼂 􏼃

(α + β)S

αβ
−

α + β
β

􏼠 􏼡 T − E Tz( 􏼁( 􏼁􏼢 􏼣.

(46)

Shortage cost in a cycle:

Cs3(S, T) � ρβ􏽚
∞

S−α T−E Tz( )( )( )/β
G3(w)dw. (47)

Maintenance cost in a cycle:

Cm3(T) � Cz. (48)

.e expected cost in a cycle for T>Tz is the sum of
inventory holding cost, shortage cost, and maintenance cost.
.e expected cost C3(S, T) is obtained as

C3(S, T) � Ch3(S) + Cs3(S, T) + Cm3(T)

�
h

2
S − α T − E Tz( 􏼁( 􏼁􏼂 􏼃

(α + β)S

αβ
−

α + β
β

􏼠 􏼡 T − E Tz( 􏼁( 􏼁􏼢 􏼣

+ρβ􏽚
∞

S−α T−E Tz( )( )/β
G3(w)dw + Cz.

(49)

.e cost rate in a cycle is expressed as follows:

TCR (S, T) �
C (S, T)

EC (T)
�

P1C1 (S, T) + P2C2(S, T) + P3C3 (S, T)

P1EC1(T) + P2EC2 (T) + P3EC3 (T)
.

(50)

Based on the traditional two-stage time delay theory, the
machine preventive maintenance model considering buffer
stock is established as follows:

min TCR (S, T),{ }

S, T ∈ N
∗
; S, T> 0.

􏼨 (51)

.e a � 0.2 is fixed. For M1, all parameters in the
solution remained unchanged, and the model was solved.
.e optimal monitoring time of machine M1 is 3 days, the
optimal stock of buffer is 211 units, and the minimum
maintenance cost of machine in one year is $318378.7, as
shown on the left of Figure 12. Considering that the buffer
stock has reached the upper limit previously given, the
value of S is adjusted, and 0< S< 400 is set to solve the
problem. .e optimal monitoring time T of machine M1 is
3 days, the optimal stock S of buffer is 387 units, and the
minimum maintenance cost of machine in one year is
$304570.2, as shown on the right of Figure 13. As can be
seen from the results, based on the traditional two-stage
time delay model, the monitoring time is short and the
buffer stock is high. .is is because there is no distinction
between the original defects and the serious defects of the
machine, and the machine status cannot be accurately
detected. In order to prevent the machine from being shut
down, it is necessary to carry out regular monitoring, which
is consistent with the actual situation. .e maintenance
strategy based on three-stage time delay theory can save
$22432.4 per year compared with the maintenance strategy
based on two-stage time delay theory. .e specific com-
parison is shown in Table 11.

Time

Buffer

T

S

Ty Tz

Figure 12: Buffer stock change diagram in a cycle for T>Tz.
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7. Conclusion

In this paper, a newmethod is proposed to solve the preventive
maintenance problem of intelligent series system with buffer
stock. For the intelligent series system with inventory buffer,
the series system is decomposed into several virtual series
systems with two machines and one buffer by approximate
decomposition method. .e failure rate and maintenance rate
of the decomposed virtual machine are calculated by mathe-
matical induction. .e influence factor is introduced here, and
the enterprise can determine the value of the influence factor
according to the importance of different machines in the series
system. For each virtual series system, a preventive mainte-
nance model was built with the lowest cost rate as the objective
function and the monitoring time and buffer stock as inde-
pendent variables. .e preventive maintenance model is
combined with the three-stage time delay theory to better
simulate the equipment degradation process. Finally, a case is
used to verify the validity of the model.

.emaintenance strategy in this paper is comparedwith the
maintenance strategy without buffer stock and themaintenance
strategy based on the two-stage time delay. It is proved that the
proposed maintenance strategy based on the three-stage time
delay theory is optimal. Taking the impact factor a � 0.2 as an
example, compared with no buffer stock maintenance strategy,
the annual maintenance cost of machine M1 can save $16072.4.
Compared with the traditional two-stage time delay mainte-
nance strategy, the annualmaintenance cost ofmachineM1 can
save $22432.4..erefore, the maintenance strategy proposed in
this paper can be well used in the maintenance of the series
system, which can save a lot of money for enterprises

.e value of impact factor a should be determined
according to the importance of the machine on the pro-
duction line. On the basis of the research in this study, the
effective method can be adopted in following research, and
the most accurate influence factor can be obtained for
different machines in the series system.
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Actually, it is difficult to obtain a large number of sample data due to equipment failure, and small sample data may also be
missing. 0is paper proposes a novel small sample data missing filling method based on support vector regression (SVR) and
genetic algorithm (GA) to improve equipment health diagnosis effect. First, the genetic algorithm is used to optimize support
vector regression, and a new method GA-SVR can be proposed. 0e GA-SVR model is trained by using other data of the variable
to which the missing data belongs, and the single-variable prediction method can be obtained. 0e correlation analysis is used to
reconstruct the training set, and the GA-SVR is trained by using the data of the variables related to the missing data to obtain the
multivariate predictionmethod.0en, the dynamic weight is presented to combine the single-variable predictionmethod with the
multiple-variable prediction method based on certain principles, and the missing data are filled with the combined prediction
methods. 0e filled data are used as input of GA-SVM to diagnose equipment failure. Finally, a case study is given to verify the
applicability and effectiveness of the proposed method.

1. Introduction

For equipment health diagnosis, complete monitoring data
is the premise and foundation for an accurate diagnosis.
However, in the actual engineering application, many
monitoring sample data are incomplete, including small
sample, unbalanced sample, and sample data missing. In the
collection of sample data, equipment may not be able to
operate normally due to fault, or it can be affected by the
environment, and the effective monitoring data collected is
less, resulting in less failure sample data. 0e sample data
may also be missing due to abnormal data transmission,
sensor repair and replacement, or human factors. 0is paper
importantly considers the condition of small sample data
missing.

Recently, with the rapid development of technology,
equipment health diagnosis has been widely concerned by a
large number of experts and scholars. 0e intelligent

diagnosis methods applied to equipment health diagnosis
mainly include expert system (ES), neural networks (NNs),
and support vector machine (SVM).

For the expert system, Husain [1] expanded the fault
diagnosis of the power transformer, proposed a fuzzy logic
expert system for early fault diagnosis of the transformer,
and improved the shortcomings of traditional transformer
fault diagnosis methods. Berredjem and Benidir [2] pro-
posed a fuzzy expert system based on an improved range
overlap method and similarity division method to solve the
problem of high noise in bearing fault data. 0e system was
used to realize accurate bearing fault diagnosis, and the
feasibility of the model was verified by an example analysis.
Cheriet et al. [3] proposed an expert system based on fuzzy
logic, which used stator current signal pair for fault diag-
nosis, and verified the feasibility of the expert system for
fault diagnosis of doubly fed wind turbines through simu-
lation experiments. Xu et al. [4] carried out a series of
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researches on the fault diagnosis of marine diesel engines,
proposed a diagnosis expert system based on belief rules, and
applied the proposed method to the abnormal wear de-
tection of marine diesel engines, indicating that the method
had good accuracy and stability. Equipment health diagnosis
method based on the expert system can acquire knowledge
from diagnosis examples, but this method does not have the
ability to automatically acquire new knowledge, and the fault
tolerance is relatively poor. 0us, the fault diagnosis method
based on the expert system has great limitations in practical
application.

For neural networks, Xing et al. [5] constructed an
automatic fault diagnosis method for reciprocating com-
pressors based on information entropy and radial basis
function neural networks. 0e test results showed that the
fault diagnosis method can effectively improve the accuracy
of automatic fault diagnosis and the practicability of the
condition monitoring system. Yang et al. [6] analyzed the
fault diagnosis of rotating machinery, proposed an intelli-
gent diagnosis method based on long-term and short-term
memory recurrent neural network, and detected and clas-
sified the fault with the help of the correlation between time
and space. Gunerkar et al. [7] established a rolling bearing
fault diagnosis model based on an artificial neural network
(ANN) and applied wavelet transform to preprocess the
original signal to extract fault features. ANN and the
k-nearest neighbor were used for fault classification of
rolling bearing, and the validity of the model was verified by
test. In order to solve the problem of end-to-end fault di-
agnosis of rotating machinery, Wu et al. [8] constructed a
one-dimensional CNN model which can directly learn
features from the original signal, applied it to the fault di-
agnosis of the fixed gearbox and planetary gearbox, and
showed that the model had high diagnostic accuracy. Han
et al. [9] proposed a method for fault diagnosis of the
planetary gearbox by using an expanded neural network,
which expanded the receiving domain by two times, so as to
enhance the learning ability of fault features and improve the
diagnosis accuracy. 0e fault diagnosis method based on an
artificial neural network often needs a large number of fault
samples to train the neural network, but it is difficult to
obtain enough fault data in practical engineering applica-
tions. In addition, the neural network has the disadvantages
of slow convergence, overfitting, and ease to fall into the
local optimal value, which will have a negative impact on the
diagnostic accuracy of the equipment.

For the support vector machine, Huang and Fei et al.
[10, 11] used the SVM model for equipment fault diagnosis
and verified that the model has high accuracy and good
generalization ability. Yang et al. [12] established an SVM
fault classification model using an ant colony algorithm and
verified the effectiveness of the model. Zhang et al. [13]
combined SVM with an improved imperialist competitive
algorithm and applied it to fault diagnosis of the oil-im-
mersed transformer.0e results showed that themethod was
feasible and effective. Yan and Jia [14] proposed a fault
recognition algorithm based on optimized multidomain
feature SVM. 0e feature vectors of fault samples were
extracted from the time domain, frequency domain, and

time-frequency domain. And Laplace fractional algorithm
was introduced to filter fault features. Zhong et al. [15]
established a diagnosis model based on convolutional neural
network transmission learning and SVM and verified the
effectiveness of the model through an example. For the
accuracy of transformer fault diagnosis, Huang et al. [16]
proposed a diagnosis method based on an improved gray
wolf algorithm and SVM. 0e differential evolution
mechanism was introduced into the gray wolf optimization
algorithm to improve its performance, and then the SVM
optimized by the improved gray wolf algorithm was used for
fault diagnosis of the transformer.

Equipment fault diagnosis under the condition of in-
complete data also has certain research and development.
Zhang and Dong [17] proposed an online nonimputation
reasoning method based on mixed Gaussian output for fault
detection and identification and proved that the method can
accurately identify the fault. Mao et al. [18] studied the
bearing fault diagnosis with unbalanced data and con-
structed an online fault prediction method based on an
extreme learning machine. 0e simulation experiment
showed that the method can obtain high fault diagnosis
accuracy. Liu et al. [19] proposed a Bayesian network pa-
rameter learning method based on BPNN and maximum
likelihood estimation to solve the problem of solar-assisted
heat pump fault diagnosis under the condition of lack of
small sample data and lack of expert knowledge. BP neural
network was used to predict and fill in the missing sample
data, and the effectiveness of the method was verified by
simulation. Chen et al. [20] constructed a fault diagnosis
model of missing data based on transfer learning for the fault
diagnosis problem with too small complete sample size, an
appropriate migration learning mechanism was established
to improve the accuracy of fault diagnosis, and the effec-
tiveness of this method was verified by data. Zhao et al. [21]
constructed a rolling bearing fault diagnosis model based on
normalized CNN under unbalanced data and eliminated the
difference of feature distribution by batch normalization.
0e experimental results showed that the model has a good
diagnosis effect and robustness for rolling bearing fault
diagnosis under unbalanced data. Qian and Li [22] estab-
lished a kind of unbalance robust network for bearing fault
diagnosis, which was used to solve the class imbalance
problem in the feature extraction stage and classification
stage, and the method was verified by simulation analysis.
Zhang et al. [23] proposed to use the deep learning method
to solve the problem of fault diagnosis when the data was
unbalanced and established a deep generated countermea-
sure network to generate false samples to balance the sample
data. Simulation experiments showed that the proposed
method has a better effect on fault diagnosis under unbal-
anced data.

Collecting sample data in the field of fault diagnosis, a
large number of fault sample data cannot be obtained be-
cause equipment may not operate normally due to the ex-
istence of faults. Presently, most of the research on
equipment fault diagnosis is based on complete data set, the
research on equipment fault diagnosis under incomplete
data is less, and there are some problems such as complex
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diagnosis process, long diagnosis time, and unsatisfactory
accuracy.

Small sample data missing can not only increase the
difficulty of data analysis but also greatly affect the accuracy
of the equipment failure diagnosis. For most of equipment
failure diagnosis under data missing, it needs a large number
of failure sample data to obtain more accurate diagnosis
results. Actually, due to equipment aging or human error, a
large number of sample data cannot be collected, and there is
sample data missing. 0us, the objective of this paper is to
propose a novel small sample data missing filling method
based on GA-SVR to improve the equipment failure diag-
nosis effect.

For equipment fault diagnosis, ANN needs a large number
of failure samples to train the neural network, but it is difficult
to obtain enough failure data in practical application. Addi-
tionally, the neural network has the disadvantages of slow
convergence, overfitting, and ease to fall into the local optimal
value. 0ese will have an adverse impact on the diagnostic
accuracy of equipment. Actually, equipment may not operate
normally due to failure. And it is unable to obtain a large
number of failure sample data. SVR needs less training samples
and has high model accuracy.0us, it is suitable for equipment
fault diagnosis in the case of small samples. 0e advantages of
GA lie in its fast optimization speed, good effect, and strong
global search ability, and it is not easy to fall into the local
optimal solution. 0us, it is used to optimize the key pa-
rameters of SVR. In this paper, first, the GA-SVR model is
trained by using other data of the variable to which the missing
data belongs, and the single-variable prediction method can be
obtained. 0e correlation analysis is used to reconstruct the
training set, and the GA-SVR is trained by using the data of the
variables related to the missing data to obtain the multivariate
prediction method. 0en, the dynamic weight is presented to
combine the single-variable prediction method with the
multiple-variable prediction method based on certain princi-
ples, and the missing data are filled with the combined pre-
diction methods. 0e filled data are used as input of GA-SVM
to diagnose equipment failure. Finally, a case study is given to
verify the applicability and effectiveness of the proposed
method.

0is paper aims to develop a new method for equipment
health diagnosis. 0e paper is organized as follows. In
section 2, the basic theories of SVR and GA are introduced.
Section 3 develops a novel GA-SVR. In Section 4, a case
study for equipment health diagnosis with small sample data
missing is analyzed and discussed. Finally, conclusions are
drawn in Section 5.

2. Theoretical Background

2.1. Support Vector Regression. For the support vector re-
gression (SVR), it is to use the given sample data to fit a
continuous function which can reflect the relationship be-
tween input and output. In the case that the sample is linear
and inseparable, SVR uses a nonlinear transformation to
map the data set to a high-dimensional space and carries out
regression fitting in this space to establish the continuous
function with the minimum loss function.

0e key parameters of SVR include insensitive loss
function ε, radial basis function parameter σ, and penalty
factor C. ε represents the insensitive region width and plays a
decisive role in the number of support vectors and the
generalization ability of the model. σ determines the com-
plexity of samplemapping space.0e larger σmeans that it is
difficult to obtain high regression accuracy. 0e smaller σ
means that the regression accuracy is high and the gener-
alization ability is poor. C represents the penalty degree for
samples with an error greater than ε. 0e larger C indicates
that the penalty for samples is large. Although the training
accuracy can be improved, the generalization ability of the
model is poor. 0e smaller C shows that the penalty for
samples is very small, and it will cause a large training error.
0ese three key parameters determine the performance of
SVR; thus, it is necessary to optimize these parameters to
improve the prediction effect of SVR.

2.2. Genetic Algorithm. Genetic algorithm (GA) is a kind of
heuristic optimization technology. GA searches from the
initial population generated randomly, and the individuals
in the population evolve through selection, crossover, and
mutation based on the fitness function until the iteration
termination condition is met, and the optimal solution is
output.

0e advantages of GA include fast optimization speed
and strong global searchability, and it is not easy to fall into
the local optimal solution. It is widely used in various op-
timization problems such as parameter optimization and
path optimization.

0e basic procedure of GA is as follows:

Step 1. 0e chromosome needs to be coded to deter-
mine the initial population
Step 2. 0e fitness function is described to evaluate the
fitness value of individuals
Step 3.0e new species group is generated by selection,
crossover, and mutation
Step 4. 0e individuals satisfied the termination iter-
ation condition that can be retained
Step 5. 0e decoding outputs the global optimal
solution

In this paper, for the problem of equipment health di-
agnosis, SVR is used to predict and fill the missing data. But
the values of kernel function parameter σ, penalty factor C,
and insensitive loss function ε in SVR are particularly im-
portant. 0us, the set of key parameters (C, σ, ε) of SVR can
be regarded as a population, and the key parameters of SVR
can be optimized by GA to improve the prediction per-
formance of SVR.

3. Equipment Health Diagnosis Based on GA-
SVR

3.1. Support Vector Regression Optimized by Genetic
Algorithm. SVR is obtained by introducing insensitive loss
function into SVM. It is usually used to solve regression
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fitting problems and seek a regression function representing
the relationship between input and output.

For the given data set xi, yi􏼈 􏼉, i � 1, 2, . . . , N, where
xi ∈ Rn is the input sample, and yi ∈ R is the output expected
value. Assume that SVR maps samples to a high-dimen-
sional space by nonlinear transformation ϕ(∗ ) to establish
the regression function, and it is as follows:

f(x) � w · ϕ(x) + b, (1)

where w and b are regression function coefficients. And
insensitive loss function ε is introduced and defined as

Lε(f(x), y) �
|y − f(x)| − ε, |y − f(x)|≥ ε

0, other
􏼨 (2)

0us, the objective function can be defined as
min(1/2)‖w‖2, and the constraints are

yi − w · xi − b≤ ε,

w · xi + b − yi ≤ ε,
􏼨 i � 1, . . . , N. (3)

0e relaxation factors ξi and ξ
∗
i are introduced under the

condition of allowing the fitting error; then, the objective
function is

min
1
2
‖w‖

2
+ C 􏽘

N

i�1
ξi + ξ∗i( 􏼁⎛⎝ ⎞⎠,

S.T.

yi − w · xi − b≤ ε + ξi,

w · xi + b − yi ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where C> 0 is the penalty factor, and it is used to control the
punishment for errors exceeding ε. By introducing the
Lagrange multiplier αi and α∗i , then the above problem is
transformed into its dual problem.

max 􏽘
N

i�1
α∗i − αi( 􏼁yi − 􏽘

N

i�1
α∗i + αi( 􏼁ε −

1
2

􏽘

N

i�1
􏽘

N

j�1
α∗i − αi( 􏼁 α∗j − αj􏼐 􏼑K xi, xj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

S.T. 􏽘

N

i�1
α∗i − αi( 􏼁 � 0, 0≤ αi ≤C, 0≤ αi ≤C, i � 1, 2, . . . , N,

⎧⎨

⎩

(5)

where K(xi, xj) � ϕ(xi)ϕ(xj) is the kernel function. By
solving equation (5), the regression fitting function can be
obtained as follows:

f(x) � 􏽘
N

i�1
αi − α∗i( 􏼁K xi, xj􏼐 􏼑 + b. (6)

For the selection of the SVR kernel function, the RBF
kernel function is used in this paper, and its parameter σ > 0
is the kernel function width factor. It has an important
influence on the regression prediction effect of SVR.

0e small sample data missing has a great influence on
the equipment diagnosis results; thus, this paper uses SVR to
execute regression fitting for the missing data. However, the
key parameters C, σ, and ε have a great influence on the
regression prediction accuracy of SVR. GA is used to op-
timize C, σ, and ε to improve the prediction performance of
SVR for missing data.

0e optimization process of C, σ, and ε by GA can be
shown in Figure 1, and the specific operation steps are as
follows:

Step 1. Parameter initialization: initialize GA param-
eters and C, σ, and ε; any group (C, σ, ε) represents an
individual in GA.
Step 2. Fitness value calculation: in order to evaluate the
advantages and disadvantages of GA in selecting SVR
parameters, the K-fold cross-validation method is used

to take the mean value of K-th root mean square error
as the fitness value of an individual, and the calculation
of fitness value is as follows:

F �
1
K

􏽘

K

i�1

�����������

􏽐
n
j�1 (y − 􏽢y)

2

n

􏽳

. (7)

Step 3. Terminating iteration: if the condition of ter-
minating iteration has not been reached, the selection,
crossover, and mutation will be carried out to generate
a new group; then, go back to Step 2 to continue
iteration.
Step 4. Output optimal values: the optimal values of C,
σ, and ε are output after completing iteration and
obtain the GA-SVR model.

3.2. Combination Prediction Filling Based on GA-SVR

3.2.1. Single-Variable Prediction Filling Based on GA-SVR.
0e monitoring data of equipment operation status is
mostly time series. It is a series of monitoring values X

q
t

obtained by multiple sensors in a time sequence where
t(t � 1, 2, . . . , n) represents t-th time point,
q(q � 1, 2, . . . , m) denotes the q-th sensor, and X

q
t means

the monitoring data value corresponding to the q-th
sensor at the t-th time point.
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Using GA-SVR to predict the single variable of missing
data is to train GA-SVR by using other data of variables with
missing data as input to predict the value of missing data.

First, let the length of the missing data segment be l, and
determine the variable q of the missing data. 0e n-l-1 data
values in the q-th variable dimension are selected as the
input of GA-SVR, and the remaining data value is used as the
output to train GA-SVR.0en, the trained GA-SVRmodel is
used to predict missing data, and the single-variable pre-
diction results can be obtained.

3.2.2. Multiple-Variable Prediction Filling Based on GA-SVR.
0is paper uses GA-SVR to predict the missing data. 0e
data related to the variable dimension containing missing
data is used as input to train the GA-SVR model and predict
the value of missing data.

First, the correlation analysis is used to find the other
variables related to the variable q to form the training set
X1,· · ·, Xi, · · ·, Xk. Xt represents the monitoring value at t-th
time point. 0e correlation coefficient R is used to evaluate
the correlation among the variables. If the correlation co-
efficient R≥ 0.8, it indicates that the two variables are
strongly correlated. 0e correlation coefficient R is calcu-
lated as follows:

R �
􏽐

n
i�1 xi − x( 􏼁 yi − y( 􏼁

������������������������

􏽐
n
i�1 xi − x( 􏼁

2
􏽐

n
i�1 yi − y( 􏼁

2
􏽱 . (8)

0e monitoring data from 1-st to k-th time point can be
used to execute correlation analysis. And the GA-SVR is
trained with the monitoring data values at remaining n-k
time points as the input and the data values at a time point
where the missing data belongs to as the output. 0en, the
trained GA-SVR model is used to predict the missing data
and obtain the multivariable prediction results.

3.2.3. Dynamic Weight Combination Prediction Filling Based
on GA-SVR. In order to improve the accuracy of missing
data prediction, reduce the deviation between the predicted
value and the actual value, and improve the effectiveness of
equipment fault diagnosis, a dynamic weight combination
prediction method based on GA-SVR is established to fill the
missing data. GA-SVR is used to make a single-variable
prediction and multiple-variable predictions, respectively,
and then the dynamic weight combination of single-variable
prediction and multiple-variable prediction results is ob-
tained.0e combined prediction results are used to fill in the
missing data to obtain complete data set.

Root mean square error (RMSE) can describe the de-
viation between the predicted value and the actual value.
0us, RMSE is used to evaluate the quality of the prediction
results. 0e smaller RMSE represents the better prediction
effect of missing data. 0e root mean square error is
expressed as follows:

RMSE �

������������

􏽐
n
j�1 yi − 􏽢yi( 􏼁

2

n

􏽳

, (9)

where yi is the actual value, 􏽢yi is the predicted value, and n is
the prediction times.

0e weight value of single-variable prediction results and
multiple-variable prediction results in combination fore-
casting depends on their root mean square error difference.
0e root mean square error is smaller, and the weight is
greater. Based on equation (10), the prediction result of
missing data can be obtained and it is followed as equation
(11).

w1 �
k

R1
,

w2 �
k

R2
,

w1 + w2 � 1,

y
∗
i � w1􏽢y1i + w2􏽢y2i,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

y
∗
i �

R2

R1 + R2
􏽢y1i +

R1

R1 + R2
􏽢y2i, (11)

where 􏽢y1i and 􏽢y2i denote single-variable prediction results
and multiple-variable prediction results, respectively. R1 and
R2 are the RMSE values corresponding to single-variable
prediction and multiple-variable prediction, respectively. y∗i
is the final missing data filling values.

0e chart of combination prediction based on GA-SVR
can be seen in Figure 2.

3.3. Equipment Failure Diagnosis Procedure. For the prob-
lem of equipment fault diagnosis under the condition of
small sample data missing, GA-SVR is used to fill the
missing data, and the complete data after filling is used as the
input of SVM to realize the fault diagnosis of equipment.0e

Begin

Initialize GA parameters
and (C, σ, ε)

Calculate fitness value

Selection, crossover,
and variation

Multiple variables
prediction filling

Generate new
population

Obtain optimal
parameters of SVR

GA-SVR model

End

Satisfy
conditions?

Y

N

Figure 1: 0e flow chart of SVR parameters optimized by GA.
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fault diagnosis flow chart based on SVR under the condition
of small sample data missing can be shown in Figure 3, and
the specific fault diagnosis scheme can be shown as follows:

Step 1. 0e other data of the variable to which the
missing data belongs is used to train the GA-SVR
model to obtain the single-variable prediction filling
result that can be obtained.
Step 2. Find out the variables related to the variables of
missing data by correlation analysis, and the data of
these variables can be used to train the GA-SVRmodel.
0e multiple-variable prediction filling results can be
obtained.
Step 3. Based on equation (11), the single-variable
prediction results and the multivariate prediction re-
sults are combined to obtain the combined prediction
results, and the missing data are filled to obtain the
complete data.
Step 4. 0e complete data is divided into training
sample data set and test sample data set, and SVM is
trained and tested, respectively, to obtain the fault
diagnosis results of equipment.

4. Case Study

4.1.Experimental SetupandDataAcquisition. To validate the
proposed methods, a real-world case is studied. In this case
study, the long-term wear test experiments were conducted
at a research laboratory facility. In the test experiments, three
pumps (A, B, and C) were worn by running them using oil
containing dust. Each pump experienced four states:
Baseline state, Degradation state, Degradation state, and
Failure state. 0e degradation stages in this hydraulic pump
wear test case study correspond to different stages of flow

loss in the pumps. As the flow rate of a pump clearly in-
dicates the pump’s health state, the degradation stages
corresponding to different degrees of flow loss in a pump
were defined as the health states of the pump in the test
[24, 25].

0e vibration signals were collected from pump accel-
erometers that were positioned parallel to the axis of the

Variable X of missing
data segment

Reconstructing data set X2, … ,Xk,
based on correlation analysis

Training GA-SVR

Multiple-variable prediction filling

Data of other (k–1) variables as
input

Remaining data values of
X as input

Training GA-SVR

Single-variable prediction
filling

Dynamic weight combination
prediction filling

Complete data

Figure 2: 0e flow chart of combination prediction based on GA-SVR.

Begin

Sample with missing data

GA-SVR model

Single-variable 
prediction filling

Multiple-variable
prediction filling

Dynamic weight combination
prediction filling

Complete sample data

SVM diagnosis

End

Figure 3: Equipment fault diagnosis scheme based on GA-SVR
with small sample data missing.
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swash plate swivel axis and data was continuously sampled.
Figure 4 shows the schematic diagram of the experimental
setup. 0e pump used for testing in the experiments was a
Back Hoe Loader: a 74 cc/rev variable displacement pump.
0e data was collected at a sample rate of 60 kHz with
antialiasing filters from accelerometers designed to have a
usable range of 10 kHz. In many cases, the most distin-
guished information is hidden in the frequency content of
signals. So, the time-frequency representation of signals is
needed. In this case study, the signals were processed using a
wavelet packet with Daubechies wavelet 10 (db10), and five
decomposition levels as the db10 wavelet provide the most
effective way to capture the fault information in the pump
vibration data. 0e coefficients obtained by the wavelet
packet decomposition were used as the inputs.

0ere are 80 groups of experimental data for Pumps A, B,
and C, respectively. Each group of data contains 32 variables
(32 sensors). In this paper, the monitoring data of the 3-th
sensor is taken as the experimental object, and the moni-
toring data from the 75-th to 80-th time point is deleted to
simulate the missing situation of small sample data. 0e
single-variable prediction, multiple-variable prediction, and
dynamic weight combination prediction based on GA-SVR
are used to fill the missing data, and the filling effect and the
diagnosis effect after filling are compared.

4.2. Reconstruction Training Set. 0e multiple-variable
prediction model selects monitoring data from sensors
having a strong correlation with Sensor 3 as the training set
to predict the missing data value. Based on equation (8), the
correlation coefficients between Sensor 3 and other sensors
are calculated in Pumps A, B, and C, respectively. If the
correlation coefficient R ≥0.8, then the sensor and Sensor 3
have a strong correlation; thus, the training set can be
reconstructed, as shown in Tables 1–3. 0e reconstructed
training sample is only 6-dimensional. It can reflect the
characteristics of the original data, reduce the amount of
calculation, and shorten the prediction time.

4.3. Result Analysis of Missing Data Filling. In order to
evaluate the filling effect of the proposed dynamic weight
combination prediction method based on GA-SVR, the
missing values in Pumps A, B, and C are predicted by single-
variable prediction, multiple-variable prediction, and dy-
namic weight combination prediction by using GA-SVR,
respectively. And the filling effects are compared.

0e parameters of GA are set as follows: the population
size is 20, and themaximum iteration number is 100.0e key
parameters of SVR are 0.1≤C≤ 1000, 0.01≤ σ ≤ 100, and
0.01≤ ε≤ 1. 0e root mean square error (RMSE) and mean
absolute percentage error (MAPE) are used as the evaluation
indexes for the filling effect of missing data. MAPE is as
follows:

MAPE � 􏽘
n

i�1

􏽢yi − yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
×
100%

n
, (12)

where yi is the actual value and 􏽢yi is the predicted value.

Tables 4–6 show the predicted filling values of missing
data of Pumps A, B, and C based on GA-SVR, respectively.
Figures 5–7 show the missing data fitting curves of three
prediction methods based on GA-SVR for Pumps A, B, and
C, respectively.

From Figures 5–7, it can be intuitively seen that the
simulation results of the three data sets are basically con-
sistent. 0e fitting curve of dynamic weight combination
prediction is more consistent with the actual value curve
than that of single-variable prediction and multiple-variable
prediction. It indicates that the effect of the dynamic weight
combination prediction method is better than that of single-
variable prediction and multiple-variable prediction.

In order to evaluate the effect of equipment fault di-
agnosis under the small sample data missing based on the
proposed GA-SVR, the proposed GA-SVR prediction model
is compared with the standard SVR predictionmodel and BP
neural network prediction model (BPNN). 0e key pa-
rameters of SVR are selected by grid search cross-validation
method, 0.1≤C≤ 1000, 0.01≤ σ ≤ 100, and 0.01≤ ε≤ 0 1. For
the single-variable prediction of missing data, the input layer
of BPNN is 1, the output layer is 1, and the number of hidden
layers is 3. For the multiple-variable prediction of missing
data, the input layer of BPNN is 6, the output layer is 1, and
the number of hidden layers is 5. 0e maximum iteration
times are set to 100, the error accuracy is 0.002, the learning
rate is 0.1, and the activation function is a sigmoid type
function.

Tables 7–9 show the filling effect of missing data of
Pumps A, B, and C for three different prediction models,
respectively. It can be seen from Tables 7–9 that the RMSE
and MAPE values of dynamic weight combination predic-
tion are the smallest compared with single-variable pre-
diction and multiple-variable prediction for different
prediction modes of the same prediction model. For the
same prediction mode of different prediction models, the
RMSE andMAPE values of the proposed GA-SVRmodel are
the minimum. 0us, the proposed dynamic weight com-
bination prediction of missing data based on GA-SVR has
the best filling effect on missing data.

4.4. Result Analysis of Equipment Failure Diagnosis. In order
to compare the effects of different missing data prediction
models and prediction modes on equipment fault diagnosis,
the complete data filled with missing data is used for
equipment fault diagnosis. 50 groups of Pumps A, B, and C
data sets are randomly selected as training samples, and the
remaining 30 groups are used as test samples.

Tables 10–12 show the influence of three different
missing data filling models of GA-SVR, SVR, and BPNN and
three prediction filling modes on the fault diagnosis effect of
Pumps A, B, and C, respectively. It can be seen from
Tables 10–12 that the dynamic weight combination pre-
diction filling mode has the highest diagnosis accuracy rate
and shorter time compared with single-variable prediction
filling mode and multiple-variable prediction filling mode
under the same prediction model. For the same prediction
mode, the fault diagnosis rate based on GA-SVR is the
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highest compared with SVR and BPNN, and the diagnosis
time is shorter than that of BPNN. And the diagnosis time is
longer than SVR, but the difference is not significant.

Generally, the missing data filling method of dynamic
weight combination prediction based on GA-SVR can ob-
tain the best fault diagnosis effect. It can be concluded that
the proposed failure diagnosis method based on GA-SVR
under the condition of small sample missing data is effective
for Pumps A, B, and C and has certain universality.

Table 1: Sensors having a strong correlation with Sensor 3 in
hydraulic Pump A.

CH2 CH5 CH7 CH13 CH16 CH32
R 0.826 0.872 0.908 0.911 0.956 0.858

16.55
16.60
16.65
16.70
16.75
16.80
16.85
16.90
16.95
17.00
17.05

75 76 77 78 79 80

Actual value
Single-variable predicted value
Multiple-variable predicted value
Dynamic weight combination predicted value

Figure 5: 0e fitting curve of missing data based on GA-SVR for
Pump A.

Signal processing and fault
feature extraction

Fault classification

Data acquisitionPump accelerometer

Flow discharge case

Magnetic mediaHardwired connection

Lab test stand On site Desktop

Figure 4: Schematic diagram of the experimental setup.

Table 2: Sensors having a strong correlation with Sensor 3 in
hydraulic Pump B.

CH2 CH5 CH7 CH13 CH16 CH32
R 0.819 0.863 0.895 0.902 0.938 0.838

Table 3: Sensors having a strong correlation with Sensor 3 in
hydraulic Pump C.

CH2 CH5 CH7 CH13 CH16 CH32
R 0.821 0.867 0.901 0.907 0.944 0.843

Table 4: Prediction results of missing data based on GA-SVR for
Pump A.

Actual
value

Single-variable
predicted
value

Multiple-
variable

predicted value

Dynamic weight
combination

predicted value
16.9640 16.9023 17.0052 16.9502
16.8942 16.8425 16.9732 16.9033
16.7349 16.7745 16.6997 16.7397
16.6608 16.7177 16.6369 16.6801
16.6291 16.6791 16.6002 16.6424
16.7138 16.7330 16.7265 16.7300

Table 5: Prediction results of missing data based on GA-SVR for
Pump B.

Actual
value

Single-variable
predicted
value

Multiple-
variable

predicted value

Dynamic weight
combination

predicted value
15.1519 15.3855 14.9987 15.2222
14.2496 13.7533 14.4974 14.0675
12.8249 12.5942 13.0492 12.7863
12.9940 12.5854 13.1238 12.8128
12.3819 12.5935 11.9923 12.3396
12.4991 12.8678 12.2324 12.5995

Table 6: Prediction results of missing data based on GA-SVR for
Pump C.

Actual
value

Single-variable
predicted
value

Multiple-
variable

predicted value

Dynamic weight
combination

predicted value
9.4516 9.3048 9.5537 9.4079
9.3964 9.3058 9.4623 9.3706
9.7349 9.6812 9.7615 9.7145
9.1048 9.1879 9.0531 9.1321
9.5237 9.5981 9.4552 9.5389
9.6634 9.6289 9.6801 9.6501
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11.50
12.00
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13.50
14.00
14.50
15.00
15.50
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Single-variable predicted value
Multiple-variable predicted value
Dynamic weight combination predicted value

Figure 6: 0e fitting curve of missing data based on GA-SVR for Pump B.

9.00
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9.50
9.60
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9.80

75 76 77 78 79 80

Actual value
Single-variable predicted value
Multiple-variable predicted value
Dynamic weight combination predicted value

Figure 7: 0e fitting curve of missing data based on GA-SVR for Pump C.

Table 7: Prediction effect of missing data of Pump A for three different prediction models.

Single-variable prediction Multiple-variable
prediction

Dynamic weight
combination prediction

RMSE MAPE RMSE MAPE RMSE MAPE
GA-SVR 0.0486 0.28 0.0423 0.22 0.0138 0.08
SVR 0.0737 0.40 0.0500 0.25 0.0303 0.16
BPNN 0.0920 0.52 0.0644 0.36 0.0547 0.28

Table 8: Prediction effect of missing data of Pump B for three different prediction models.

Single-variable prediction Multiple-variable
prediction

Dynamic weight
combination prediction

RMSE MAPE RMSE MAPE RMSE MAPE
GA-SVR 0.3420 2.44 0.2500 1.80 0.1185 0.76
SVR 0.6547 2.90 0.3989 2.13 0.2158 1.12
BPNN 0.8832 3.28 0.5150 2.82 0.2990 1.98
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5. Conclusion

In this paper, for the problem that small sample data missing
will affect the effect of equipment failure diagnosis, a novel
missing data filling method based on GA-SVR is proposed to
improve the effect of the equipment failure diagnosis. First,
the single-variable prediction is carried out for the missing
data. And the training set is reconstructed by correlation
analysis. Meanwhile, the multiple-variable prediction is
carried out based on GA-SVR. 0en, the dynamic weight is
presented to combine the single-variable prediction results
and the multiple-variable prediction results to fill in the
missing data. Finally, the complete data obtained by filling
missing data is used as input, and GA-SVM is used to di-
agnose the equipment failure.

By the case study, the proposed GA-SVR model is
compared with SVR and BPNN to predict the filling effect of
missing data of Pumps A, B, and C, respectively. And the
failure diagnosis effect based on the complete data after the
filling is compared. It can be shown that the proposed
dynamic weight combination prediction method based on
GA-SVR has the best missing data filling effect and failure

diagnosis effect. And the effectiveness and universality of
this proposed method under the condition of small sample
data missing can be verified.
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Table 9: Prediction effect of missing data of Pump C for three different prediction models.

Single-variable prediction Multiple-variable
prediction

Dynamic weight combination
prediction

RMSE MAPE RMSE MAPE RMSE MAPE (%)
GA-SVR 0.0878 0.85 0.0621 0.59 0.0263 0.26
SVR 0.1439 1.69 0.1219 1.33 0.0498 0.73
BPNN 0.2293 2.12 0.1580 1.83 0.0724 1.20

Table 10: Failure diagnosis effect of different missing data filling models for Pump A.

Single-variable prediction filling
mode

Multiple-variable prediction
filling mode

Dynamic weight combination
prediction filling mode

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
GA-SVR 83.33 20.84 90.00 41.20 96.67 41.64
SVR 80.00 21.33 83.33 39.86 90.00 41.50
BPNN 76.67 50.8 90.00 87.23 93.33 88.92

Table 11: Failure diagnosis effect of different missing data filling models for Pump B.

Single-variable prediction filling
mode

Multiple-variable prediction
filling mode

Dynamic weight combination
prediction filling mode

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
GA-SVR 86.67 16.43 93.33 23.45 100.00 24.29
SVR 83.33 14.50 90.00 22.76 96.67 23.40
BPNN 76.67 31.80 86.67 59.80 93.33 61.02

Table 12: Failure diagnosis effect of different missing data filling models for Pump C.

Single-variable prediction
filling mode

Multiple-variable prediction
filling mode

Dynamic weight combination
prediction filling mode

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
GA-SVR 86.67 9.43 93.33 13.45 96.67 14.23
SVR 83.33 8.55 86.67 10.98 93.33 11.45
BPNN 80.00 15.78 83.33 21.50 90.00 23.27
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To deal with the problem of weak prediction and performance evaluation capabilities of traditional prediction and evaluation methods, a
method of health state prediction and performance evaluation of belt conveyor based on Dynamic Bayesian Network (DBN) is proposed.
First, the belt conveyor sensor monitoring data are preprocessed to obtain the feature data set with labels. At the same time, qualitative and
quantitative analyses and interval discretization are carried out from belt conveyor fault-causing elements to construct the DBN network.
+en, the sample data are applied to the DBN network for training, and the DBN-based prediction and performance evaluation model is
established. Finally, taking the real-time monitoring data of a belt conveyor in an underground mine as an example, a DBN-based belt
conveyor health prediction and evaluation model is constructed to evaluate and predict the health of the equipment.+e results show that
the model could identify different operating conditions and failure modes and further improves the prediction accuracy.

1. Introduction

As a key transport equipment in coal production, the belt
conveyor is widely used in underground coal mine and main
transport roadway on the ground [1, 2]. +e working envi-
ronment of belt conveyor in underground mines is often
complex and hazardous, which cause belt faults such as
conveyor deviation, sliding, broken belt, spreader, and re-
ducer shaft. +e health status condition of the belt conveyor
directly affects the workload of the working face and the life
safety of the coal mine site operators [3-5].+erefore, accurate
prediction and performance evaluation of belt conveyor
health status is the necessary and prerequisite for health
management of critical equipment in coal mines [6-8].

Most techniques used for equipment health state prediction
and performance evaluation fall into twomain categories [9, 10],
which are model-based approaches [11, 12] and data-driven
approaches [13, 14]. Most model-based approaches require the
identification of accurate physical or mathematical models to

describe the process of device health state changes. Data-driven
model prediction and performance evaluation methods have
become an important approach of prediction and performance
assessment for complex equipment for its difficulty to determine
a specific health state [15–17]. +e data-based prediction ap-
proaches are mainly based on data fusion and feature extraction
of sensor history data of the system or component to obtain a
mapping relationship between data and health states [18, 19].
+e method is not combined with the a priori knowledge of the
device itself and is a more practical method for prediction and
evaluation operations based on the existing collected data and
mining the implicit correlation information in the data through
various analytical processing methods [20-22]. In general, most
of the existing studies focus on prediction and assessment under
a single health state and failuremode, ignoring a certain extent of
influence of environmental and operational conditions [23–25].
In practical engineering applications, traditional prediction and
evaluationmethods fall short inmassivemonitoring data, which
in turn affects the effectiveness of prediction [26–28].
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Based on this, a method was proposed for health state
prediction and performance evaluation of belt conveyor
based on DBN, carries out quantitative evaluation on the
health state of belt conveyor, and predicts the change in the
health state of the belt conveyor in the future time slice. First,
the historical monitoring data and patrol statistical data on
the belt conveyor sensor of the coal mine monitoring system
are collected, and the health state prediction and perfor-
mance evaluation indexes of the belt conveyor are mined.
+e indexes are discretized to reduce the influence of time
parameters on the training results. +en, it analyses the
process of DBN network learning and reasoning. Finally, the
preprocessed data are input to DBN network for training,
and a DBN model for health state prediction and perfor-
mance evaluation of belt conveyor is established. Experi-
ments show that the proposed approach could effectively
solve the shortcoming of traditional methods in data pro-
cessing, and it has strong feasibility and practicability which
could improve the equipment performance in engineering
application.

2. Data-Driven DBN Prediction and
Performance Evaluation Method

In this section, the basic principles of DBNs which include
basic assumptions, structure learning, parameter learning,
inference, and prediction are introduced. Based on this, a
DBN prediction and performance evaluation method is
proposed.

2.1. Basic Assumptions of DBN. Bayesian network (BN) is a
system model at a given time, which is used to model a
system in some states of equilibrium [28]. A Bayesian
network can be defined as

BN � (G, θ), (1)

where G is the directed acyclic graph of the joint probability
distribution over nodeZ and θ is a parameter in the network,
and the joint probability distribution of Z is as follows:

P Z1, Z2, . . . , Zn( 􏼁 � 􏽙
n

i�1
P Zi|Pa Zi( 􏼁( 􏼁. (2)

DBN is a dynamic Bayesian network that simulate the
effects of changes in the network over time, reflecting
changes in the health of the system at different times. To
describe this specific process, some assumptions need to be
made as follows:

(1) Steady-state assumption: the conditional probability
of a network node is the same for all time slices t, and
the transfer probability of any two neighbouring
time slices is the same.

(2) +e first-order Markovian hypothesis: the current
state depends only on the state of the previous
moment, independent of the state of the previous
moment, i.e.,

P Z
t
|Z

0
, Z

1
, . . . , Z

t− 1
􏼐 􏼑 � P Z

t
|Z

t− 1
􏼐 􏼑. (3)

2.2. Structural Learning of DBN. Based on the above as-
sumptions, a DBN can be defined as (B0, B⟶ ), where B0
is the joint probability distribution specifying the initial state
Z[0] of the variable and B⟶ refers to the transfer
probability P(Zt|Zt− 1) (which holds for all t) on variables
Z[0]and Z[1].+e Bayesian network formula for two
neighbouring time slices is shown in the following equation:

P Zt|Zt−1( 􏼁 � 􏽙

N

i�1
P Z

i
t|Pa Z

i
t􏼐 􏼑􏼐 􏼑, (4)

where Zi
t is the value of the i-th variable, moment t, and

Pa(Zi
t) is the parent of Zi

t.
+e process in the DBN is fixed and the structure is

repeated after the second time slice, and the variable
t � 2, 3, . . . , Tin the slice DBN is kept constant, so that the
system can be expressed by only two adjacent slices (i.e., the
first and second time slice) and a finite number of pa-
rameters can be used to simulate the unbounded sequence
length. +e probability distribution of the time slice se-
quences obtained by expanding the 2TBN network is shown
as follows:

P Z1: T( 􏼁 � 􏽙
T

t�1
􏽙

N

i�1
P Z

i
t|Pa Z

i
t􏼐 􏼑􏼐 􏼑. (5)

DBN is often seen as a generalization of other devel-
opments in temporal reasoning, such as the Hidden Markov
Model (HMM) and the Kalman Filter Model (KFM). +ese
models can be expressed in a compact form and are popular
because of their fast learning and rapid inference techniques.
A network example of DBN is shown in Figure 1.

In Figure 1, (a) represents the initial distribution B0, (b)
represents the conditional distributionB⟶, and (c) repre-
sents a network segment formed by the initial network and
the transfer network.

2.3. Parameter Learning for Dynamic Bayesian Networks.
Based on the above DBN structure, it is necessary to learn
the DBN network parameters, i.e., the conditional
probability table reflecting the strength of the correlation
between the network nodes from a large amount of data,
including observation probabilitiesP(Z0), P(Z1), and
P(Z2) and transfer probabilities PZt+1

0 |Zt
0, PZt+1

1 |Zt
1, and

PZt+1
2 |Zt

2. +e higher the similarity log(P(E|θ)) between
parameter θ in the conditional probability table in the
DBN and the training data set E, the more realistic the
results of parameter learning will be. In this paper, the
method of maximum release probability is chosen to solve
the conditional probability table parameter 1, and the
following maximum release probability equation is
constructed:

log(P(E|θ))
� log􏽑

n

i�1􏽑
qi

j�1􏽑
pi

i�1 θ
nijk

ijk
, (6)
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where i is all the nodes in the DBN, j is all the parents of Zi, k
is the state of Zi, and nijk is the number of samples of the
state k of the i-th node Zi when its parent is the j-th
combination:

Max logP(E|θ)

S.T. gij(θ) � 􏽘

ri

k�1
θijk − 1 � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

+e process of solving for the maximum probability of
likelihood from equation (7) yieldsθijk � (nijk/􏽐knijk).+e
sample data for parameter learning are preprocessed his-
torical health status monitoring data, and experiments can
be performed by some software such as GeNIe or MATLAB
toolbox to complete the DBN parameter learning process.

2.4. DBN Inference Prediction and Evaluation. DBN infer-
ential prediction and evaluation is a key step in the big data-
based prediction and performance evaluation of DBN belt
conveyor health status, and DBN inferential prediction and
evaluation is a mathematical method to obtain a posterior

distribution by updating the prior distribution of parameter
values θ. After determining the DBN structure and pa-
rameter learning, it is necessary to analyse each variable in
the network and make inferential predictions on the results
of specific variables or events. In underground mine
transportation system operation, when the belt conveyor
health state changes, the monitoring data are entered into
the DBN as evidence, and the dynamic Bayesian network
could be updated to make inference prediction and evalu-
ation. Finally, through inference calculations, the perfor-
mance evaluation results of the equipment health state at the
observation point at time t, and the prediction results of the
trend of the belt conveyor health state from time t to time
t + h can be obtained.

Assuming that the group of observable
nodesY � [y11, . . . , y1m, . . . , yT1, . . . , yTm] satisfy an inde-
pendent identically distribution and the group of unknown
network nodes are Z � [z11, . . . , z1n, . . . , zT1, . . . , zTn], the
dynamic Bayesian network inference rule for m known
network nodes when a time slice contains n unknown
network nodes is as follows:

P(Z|Y) � 􏽘
y11 ,y12 ,...,yTm

􏽑ijP yij|Pa Yij􏼐 􏼑􏼐 􏼑􏽑ikP zik|Pa Zik( 􏼁( 􏼁􏽑ijP Yijm � yij􏼐 􏼑

􏽐z11 ,...,z1n,...,zT1 ,...,zTn
􏽑ij P yij|Pa Yij􏼐 􏼑􏼐 􏼑􏽑ikP zik|Pa Zik( 􏼁( 􏼁,

(8)

where P(z11, . . . , z1n, . . . , zT1, . . . , zTn|y11, . . . , y1m, . . . ,

yT1, . . . , yTm) represents the conditional probability density
of the variable z11, . . . , z1n, . . . , zT1, . . . , zTn with respect to
y11, . . . , y1m, . . . , yT1, . . . , yTm, i ranges fromi ∈ [1, T], j

ranges from j ∈ [1, m], k ranges fromk ∈ [1, n], Zik is the
value of the unknown network node zik,Yijis the value of the
observable nodeyij, andPa(Yij) is the parent node of yij.

+e performance evaluation process is based on his-
torical monitoring data to evaluate the current condition
values, and the inference prediction process is based on
historical monitoring data to predict the changes in the
health status of the equipment. +e DBN performance
evaluation and inference prediction formulas are shown in
the following equations:

P Zt|y1: t−1( 􏼁 � 􏽘
zt−1

P Zt|zt−1( 􏼁P zt−1|y1: t−1( 􏼁, (9)

where y1: t−1 is the evidence value of each condition
indicator of belt conveyor health at moments 1 to t − 1 and
Zt is the probability of occurrence of belt conveyor health at
moment t. P(Zt|y1: t−1) is the probability of evaluating the
occurrence of belt conveyor health at moment t given that
the evidence value of each health indicator at moments 1 to
t − 1 is known:

P Zt|y1: t( 􏼁 � P yt|Zt( 􏼁 􏽘
zt−1

P Zt|zt−1( 􏼁P zt−1|y1: t−1( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦,

(10)

where y1: t is the evidence value for each of the health
state indicators of the belt conveyor at moment t and
P(Zt|zt−1) is the probability of inferentially predicting the
occurrence of the health state of the belt conveyor from
moment t to moment t, given that the evidence value for

Z 0 2

Z 0 1

Z 0 0

(a)

Z 1 2

Z 1 1

Z 1 0

Z 2 2

Z 2 1

Z 2 0

(b)

Z 1 2

Z 1 1

Z 1 0

Z 2 2

Z 2 1

Z 2 0

Z 0 2

Z 0 1

Z 0 0

(c)

Figure 1: Example of a dynamic Bayesian network. (a) B0: P(Z0). (b) B⟶: P(Z1|Z2). (c) B0⟶ B⟶: (Z0)⟶ P(Z1|Z2)
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each of the health state indicators from 1 to moment t is
known.

2.5. Data-Driven DBN Prediction and Evaluation Methods.
With the development of Internet of things in underground
coal mine, more and more belt conveyor state data could be
obtained by different kind sensor on it. +erefore, it is more
feasible than ever before to precisely predict the health state
and evaluate the performance of belt conveyor. As shown in
Figure 2, the steps for data-driven DBN prediction and
evaluation are as follows:

Step 1. Collect belt conveyor health status system
monitoring data and preprocess to get a labelled feature
data set
Step 2. Construct the DBN Topology
Step 3. Dynamic Bayesian network parameter learning
Step 4. Identifying observational evidence, dynamic
Bayesian network evaluation, and inferential prediction

For underground mine belt conveyor health state pre-
diction and performance evaluation, the above proposed
method is mainly based on machine learning approaches.
With the data obtained from the sensor or monitoring
system, feature engineering is needed in the early stage
where raw data should be processed and the key features
should be selected to reduce the dimensionality of the
training problem. Based on the DBN model, the perfor-
mance evaluation and health state prediction could be
conducted by inference.

3. Condition Prediction and Performance
Evaluation of DBN Model

As a key equipment in coal mines, the actual performance of
the belt conveyor will decrease over time due to various
factors, leading to an increase in the probability of machine
failure. To avoid economic losses and casualties due to
sudden belt conveyor failure, it is necessary to provide
enough time for maintenance, make a reasonable assessment
of its current operating state, and make reasonable pre-
dictions of future changes in its operating state. A data-
driven DBN belt conveyor health status prediction and
performance evaluation method are proposed by combining
real-time big data of belt conveyor health monitoring system
and the advantages of deep learning. +e flowchart of the
method is shown in Figure 3, after which the specific steps
model application are as follows:

(1) DBN network model construction: first, the belt
conveyor health status historical data are processed,
and the data are discretized to obtain the belt con-
veyor health status samples. +en, an initial DBN
network model is constructed by using the experi-
ence of experts, and the training set data are pa-
rameterized to obtain a data-driven DBN belt
conveyor health status prediction and performance
evaluation model.

(2) Belt conveyor health status prediction and perfor-
mance evaluation: the values of belt conveyor health
status parameters obtained from the belt conveyor
health status monitoring system are entered into the
DBN network model as evidence, and the DBN
model is used to evaluate future belt conveyor health
status, predict future belt conveyor health status
changes, and propose safety maintenance decisions.

4. Case Study

4.1. Data Sources. +e data used in this case are all from the
actual data collected on-site by a new system of Internet of
+ings (IOT) in a coal mine in Shanxi province. From 2012,
the coal mining company carried out a national demon-
stration project of the Internet of +ings and introduced a
new system of mine Internet of +ings consisting of sensors,
cloud platforms, and software systems. +e enterprise has
achieved certain results in data analysis after the develop-
ment of two stages of the perceptual mine and the current
development of intelligent mines. +e big data provided by
the mine IOTs are highly accessible and can realize real-time
automatic collection of information, high-speed network
transmission, standardized integration, three-dimensional
visualization simulation, automatic operation, and intelli-
gent decision-making. +e real-time monitoring system of
belt conveyor operation status can obtain eight types of
typical belt conveyor health status, specifically involving belt
stacking, belt fumes, belt overload, belt longitudinal tear, belt
runaway, belt slip, belt breakage, normal system functions as
shown in Figure 4. In this paper, the health status of a belt
conveyor located in the main transport belt system of the
mine’s lean production platform is selected for the pre-
diction and performance evaluation study.

+e health status of a belt conveyor can be represented by
a series of parameters that reflect its status. +ere are two
ways to obtain health parameters, one is through the sensor
in real time, and the other is from the periodic inspection
statistics. +e real-time monitoring data obtained from the
sensors in the monitoring system include characteristic

Belt conveyor health condition monitoring 
system data

Construct dynamic bayesian network 
topologies

Preprocess sample data

Dynamic bayesian network parameter learning Add time slice

Designated evidence

DBN performance evaluation, inference 
prediction

Figure 2: Dynamic bayesian network modeling flowchart.
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Figure 3: Mode application flow chart.
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Figure 4: Belt conveyor health condition monitoring system functions.
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parameters that can accurately reflect the operating status of
the equipment and are easy to measure, specifically power,
temperature, speed, offset, smoke concentration, conveyor
belt tension, vibration, voltage, current, flow pressure, etc.
+e health parameters can be obtained from the sensors in
real time, and the health parameters have different timeliness
in predicting the health status. In this paper, only the health
parameters collected by the coal mine belt conveyor oper-
ating status real-time monitoring system over a period are
selected for analysis, and the sample data are shown in
Table 1.

+e above characteristic parameters constitute the set of
variables of the dynamic Bayesian network and are denoted
as Z � Z1, Z2, . . . , Z14􏼈 􏼉,whereZ1 ∼ Z13represents main
motor power, motor temperature, belt temperature, fuel
tank temperature, two-stage right tail runout, two-stage left
tail runout, two-stage right head runout, two-stage head
runout, smoke concentration, belt speed, belt tension, and
fan air volume, inverter voltage, andZ14 is the belt conveyor
health, respectively. Status levels, corresponding to dis-
cretization values, represent the belt conveyor health status
of very good, good, fair, poor, and very poor. Since the values
of some of the characterization parameters are continuous,
the variables are discretized as discontinuous. Based on
expert experience and the statistical eigenvalues of the
different variables, the continuous intervals are divided to
obtain the discretization results shown in Table 2, where the
corresponding discretization values are the risk level of each
variable.

Due to the lack of sample data on the health status of belt
conveyors, this paper collects the abnormal operation data
from belt maintenance personnel and compiles the sample
data containing abnormal operation data and real-time
monitoring data of the normal operation of the system. +e
sampling frequency of the system real-time monitoring data
was recorded every 10 seconds, and the recording frequency
of manual statistical data was recorded once a week. +e
17280 historical monitoring data within 48 hours were taken
according to the time series, the time step of the dynamic
Bayesian network was set to 2, and the first 17200 data and
the last 80 data were selected as the training set of the model,
respectively.

4.2. BeltHealthPredictionandPerformanceEvaluationModel
for Main Belt Conveyors

4.2.1. Determination of the DBN Structure and Parameter.
After identifying the nodes of a dynamic Bayesian network
and determining the node values, it is necessary to construct
the relationships between the nodes. In this paper, the expert
knowledge method is chosen to construct the node rela-
tionships, and the set of relationships is established se-
quentially as follows:

A � Z14⟶ Zi􏼈 􏼉, (11)

where i takes the range of i ∈ (1, 2, 3, . . . , 13). +e initial
dynamic Bayesian network through the set of relations is
shown in Figure 5.

After the initial dynamic Bayesian network structure is
determined, the DBN parameters are learned from a sample
of belt health data from the main conveyor section of the
belt. +e learning process is dynamic and the learned DBN
parameters become more and more accurate as the oper-
ating time of the belt conveyor changes.

4.2.2. DBN Prediction and Performance Evaluation. +e
evidence and posterior probability distributions in the DBN
network model are distributed according to time, and this
paper selects the test set data in the data set to verify the
contribution of the model in belt conveyor health status
prediction and performance evaluation. First, we set up the
time evidence and divide the test set of belt conveyor health
monitoring data into 40 test set groups, and the eigenvalues
at the moment t� 0 of each group are entered into the belt
health prediction model to evaluate the performance of belt
conveyor health in the first ten seconds and predict the belt
conveyor health at the moment t� 1 as evidence. +e evi-
dence data of test set 1 is shown in Table 3.

Taking the test set 1 as an example, the belt conveyor
health status data at t� 0 is input into the model as evidence
assignment, and the belt conveyor health status evaluation at
t� 0 and the belt conveyor health status prediction at t� 1
can be obtained, respectively, as shown in Figure 6. +e
probability distribution of each network node can be clearly
seen from the bar graph of each node in the figure, and each
health state has a different conditional probability table at
different network nodes. +e probability of belt conveyor
health condition at t� 0 and t� 1 changes, and the proba-
bility of belt coal stacking increases significantly, and belt
safety managers should take corresponding measures to
manage the belt coal stacking phenomenon. Comparing the
prediction and performance evaluation results of test set 1
with the actual situation, it can be found that there is in-
consistency between the prediction data in test set 1 and the
actual data, in which the prediction result of node X11
deviates greatly from the actual. +e historical data of belt
conveyor health condition and belt tension of belt conveyor
has been in a relatively safe range for the past seven days, so it
is judged that the excessive belt tension on that day is an
emergency, while other inconsistent prediction results are in
a small error range. +e model is more accurate for belt
conveyor health condition prediction and performance
evaluation, which meets the basic requirements of actual belt
conveyor health condition prediction and performance
evaluation.

Set the experimental step to 10 to get the trend of the
health state of the belt conveyor, as shown in Figure 7.

In Figure 7, “BCS”, “BS”, “LTFB”, “BD”, and “BSL”,
“BB”, “BO”, and “N” represent the eight types of belt
conveyor health, respectively. “BCS” is the belt stacker, “BS”
is the belt fume, “LTFB” is the belt slitting, “BD” for the belt
runout, “BSL” for the belt slip, “BB” for the belt breakage,
and “BO” for the belt overload. “N” is the normal condition.
+e eight belt conveyor health states have changed over time,
with the probability of a belt coal stacking condition in-
creasing significantly. At this point, the belt safety manager
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is required to deal with the failure condition in a timely
manner to prevent more serious damage.

4.3. Results and Discussion. With the development of IOT
application in underground mine, more and more data are
obtained. Meanwhile, more machine learning method could
be used to fill the gap between data and useful information.
To apply a dynamic Bayesian network-based model for

equipment health prediction and performance evaluation,
there are 2 issues need to be addressed:

(1) Compared with other prediction methods, DBN
construction can combine both expert knowledge
and machine equipment operating condition data to
reduce model construction difficulty and use prob-
ability distribution tables and graphical structure to
represent the uncertainty relationship between
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Figure 5: Initial dynamic bayesian network model.

Table 1: Health characteristics of coal mine belt conveyors in operating condition.

Characterization Belt stacker Belt fume Belt slitting Belt runout Belt slippage Belt break Belt overload Normal
Main motor Power (KW) 345.23 345.65 284.51 283.29 206.45 286.9 348.25 248.55
Motor temperature (°C) 35.2 34.6 36.7 34.8 82.1 86.5 36.3 34.9
Belt temperature (°C) 55.8 55.5 56.5 55.7 88.3 86.5 55.6 55.6
Fuel tank temperature (°C) 56.4 55.6 56.2 56.1 55.9 58.9 56.3 55.9
Two-stage right tail runout (cm) 7 0 −53 5 0 −3 0 0
Two-stage left tail runout (cm) −7 0 53 −5 0 3 0 0
Two-stage right head runout (cm) 0 0 −5 24 0 −63 13 0
Two-stage head runout (cm) 0 0 5 −24 0 63 −13 0
Smoke concentration（mg∙m-2） 0.26 0.52 0.13 0.14 0.13 0.16 0.19 0.14
Belt speed (m∙s-1) 2.45 3.51 2.55 3.53 3.51 0 2.62 3.51
Belt tension (kg) 82.3 82.1 86.5 87.4 77.1 89.6 92.4 80.0
Fan air volume (m∙s-1) 6.15 6.19 6.13 6.12 6.13 6.15 6.15 6.14
Inverter voltage (v) 20.5 20.1 19.6 19.5 19.4 19.6 20.5 19.4

Table 2: Variable interval discretization classification.

Variables Variable intervals Corresponding discretized values
Main motor power (KW) [0,248], [248, -] 1,2
Motor temperature (°C) [0,70], [70,75], [75,80], [80, -] 1,2,3,4
Belt temperature(°C) [0,55], [55,85], [85,90], [90, -] 1,2,3,4
Fuel tank temperature(°C) [0,85], [85,90], [90,95], [95, -] 1,2,3,4
Two-stage right tail runout (cm) 0 1,2
Two-stage left tail runout (cm) [1], [0] 1,2
Two-stage right head runout (cm) [1], [0] 1,2
Two-stage head runout (cm) [1], [0] 1,2
Smoke concentration (mg·m−2) [1], [0] 1,2
Belt speed (m·s−1) [0,3.15], [3.15,3.5], [3.5,4], [4, -] 1,2,3,4
Belt tension (kg) [1], [0] 1,2
Fan air volume (m·s−1) [0.25,6], [6,8,8,10,10,15] 1,2,3,4
Inverter voltage (v) [0,20], [20,25], [25, -] 1,2,3
Health status levels [0,0.2], [0.2,0.4], [0.4,0.6] [0.6,0.8], [0.8,1] 1,2,3,4,5
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Figure 7: Trend of belt conveyor health status.

Table 3: Test set 1 node evidence data table.

Characterization
parameters

t� 0 moment
eigenvalues

t� 0 moment corresponds to the
value of the discretization

t� 1 moment
eigenvalue

t� 0 moment corresponds to the
value of the discretization

Main motor Power (kW) 283.29 2 345.23 2
Motor temperature (°C) 34.8 1 35.2 1
Belt temperature (°C) 55.7 2 55.8 2
Fuel tank temperature
(°C) 56.1 1 56.4 1

Two-stage right tail
runout (cm) 0 2 0 2

Two-stage left tail runout
(cm) 0 2 0 2

Two-stage right head
runout (cm) 1 1 0 2

Two-stage head runout
(cm) 0 2 0 2

Smoke concentration
(mg∙m.s−1)) 0 2 0 2

Belt speed (m∙s−1) 3.53 2 2.46 2
Belt tension (kg) 87.5 2 104.2 2
Fan air volume (m∙s−1) 6.12 2 6.16 2
Inverter voltage (v) 19.6 1 20.6 1
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Figure 6: DBN prediction and performance evaluation results of belt conveyor.
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variables in a temporal context, which is basically in
line with the need of mining uncertainty relationship
between equipment health condition and charac-
teristic parameters. At the same time, the prediction
method can update the evidence using real-time
updated data from machine equipment, thus re-
ducing errors in prediction and performance
evaluation.

(2) Among the 40 test sets, some of them have more than
5 deviations from the prediction, and the prediction
effect is not so ideal, while the better-performing test
sets have more conformity between the predicted
and actual conditions. Analysing these test sets with
unsatisfactory prediction results, the following
possibilities can be suggested: ① +e possibility of
contingency: the possibility of contingency is men-
tioned in the analysis of the Z11 node in test set 1.
+is refers to a situation that has been stable for the
current time, but the current state is less likely to
occur. A contingency does not mean a situation that
should not happen but rather a situation that hap-
pens with a small probability. +is is a possibility of
error because it is a common occurrence in real
problems. ② Changes in influencing factors: since
the data used in this paper are for a 48-hour period,
the time span of the data is small, and during this
period, there may be factors related to the im-
provement of belt conveyor maintenance technol-
ogy, etc., which may have some impact on the health
status. For example, if there is a defect in the main
motor, the indicator is at a high safety level for the
first 5 hours, but after the 5th hour, up to the 48th
hour, the level of risk is often high, but in general, it
has been significantly reduced and the trend of the
risk level is stable. +erefore, this is a possible sce-
nario for error generation.

5. Conclusions

+e fault of belt conveyor in underground mine is analyzed
and fault feature are selected from the monitoring Indica-
tors. Based on data preprocessing, a dynamic Bayesian
network is constructed after which the parameter is obtained
by learning algorithm. It is proved that the proposed method
is effective to assess and predicted the health performance of
the conveyor belt. +e main conclusions are as follows:

(1) +e prediction and performance evaluation method
proposed in this paper is based on a real-time data-
driven dynamic Bayesian network model, and the
accuracy of the results is 92% and 80% compared
with the actual situation. +e model could predict
and evaluate the health status of belt conveyors and
improve the accuracy of prediction and performance
evaluation.

(2) Based on the analysis of the results, it is recom-
mended that the data volume of the belt conveyor
performance monitoring system should be increased
to improve the prediction and warning efficiency of

the belt conveyor from the source and avoid acci-
dents caused by unstable belt health status.

(3) +e belt conveyor health state prediction and per-
formance evaluation are meaningful to promote the
solution of coal mine machinery reliability problems
and thus improve the reliability of the coal mine
machinery system and ensure the normal imple-
mentation of coal mine safety management. In actual
production, the mine machinery system is mostly a
linked multidevice joint production system. +ere-
fore, the method can be applied to the prediction of
equipment health status and performance evaluation
of multiple machines.
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Bearing is one of the most critical mechanical components in rotating machinery. To identify the running status of bearing
effectively, a variety of possible fault vibration signals are recorded under multiple speeds. However, the acquired vibration signals
have different characteristics under different speeds and environment interference, which may lead to different diagnosis results.
In order to improve the fault diagnosis reliability, a multidomain feature fusion for varying speed bearing diagnosis using broad
learning system is proposed. First, a multidomain feature fusion is adopted to realize the unified form of vibration characteristics
at different speeds. Time-domain and frequency-domain features are extracted from the different speeds vibration signals. +en,
the broad learning system is employed with the fused features for classification. Our experimental results suggest that, compared
with other machine learning models, the proposed broad learning system model, which makes full use of the fused feature, can
improve the diagnosis performance significantly in terms of both accuracy and robustness analysis.

1. Introduction

Rolling elements bearings are important machine elements
that are widely used in railway wheels, wind turbines,
gearboxes, pumps, and helicopter transmissions [1]. +e
running state of axle bearings, as the core component of
high-speed trains, plays an important role in the safe and
stable operation of the high-speed rail [2]. +e railway axle
bearings can support rotatingmachine elements and transfer
loads of machine components under the fast-running state
of a train. As the speed increases, the rolling bearings are
operated under harsh conditions like heavy loads, long-term
alternating stresses, and natural wear [3]. +e axle bearings
operating under these circumstances are prone to failures
such as pitting, spalls, and axle burn-off [4]. If these bearing
faults are ignored, this may lead to equipment damage and
even cause serious safety accidents [5]. +us, it is necessary
to detect the bearing fault and give early warning before

affecting daily operations. Effective fault diagnosis of
bearings can prevent potential accidents and reduce unex-
pected economic loss [4]. It has been found that bearing
faults are often accompanied by abnormal vibration signals,
such as outer ring inner surface faults, cage faults, roller
faults, and the compound faults [6]. +erefore, analyzing
and mining diagnostic information from vibration data have
important scientific significance and high application value.

At present, it is impossible to identify the faults from the
vibration signal directly.+e vibration signal is vulnerable to
the operating environment and unknown factors, such as the
track impact, speed change, and the vehicle body vibration
[7]. It is necessary to eliminate the interference and extract
useful information that can reflect the health of the bearing.
Feature extraction is a key step to solve this problem. It can
transform the original vibration signals onto the statistical
parameters reflecting diverse symptoms of bearing defects
[8]. Many methods have been developed, such as Fourier
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transform (FT), short-time Fourier transform (STFT),
wavelet transform (WT), and wavelet packet decomposition
(WPD) [9–15]. Bouzida et al. [16] employed discrete wavelet
transform to obtain information about the health state of a
system from stator signal over a wide range of frequencies. Li
et al. [17] proposed a feature extraction and evaluation
method based on statistical features. Zhang et al. [18]
proposed an ant colony algorithm for synchronous feature
selection in intelligent fault diagnosis of rotating machinery.
Cong et al. [19] used the slip matrix construction method to
extract features. However, the characteristics of vibration
signal of bearing under different rotating speeds are rarely
discussed. Some researchers have developed several fault
diagnosis methods according to different speeds, respec-
tively [2, 20]. +is method seems to work well dealing with
different speeds, but it lacks convenience in practice. In
addition, the characteristics of the vibration signal across
different speeds have not been studied.

+e vibration signal can be regarded as an expression of a
moving process in time domain and frequency domain [3].
Operating speed of the bearings will also impact the moving
process [21]. +erefore, the inherent characteristic of vibra-
tion signal of variable speed should be extracted from the time
and frequency domain together to achieve better fault di-
agnosis performance [22]. +us, a unified description of
multidomain fusion for varying speed should be studied [21].
+e accuracy of detection mainly depends on the quality of
features extracted from the vibration data. +erefore, a
multidomain features fusion is proposed to present the in-
herent characteristics of the vibration signal for varying speed
comprehensively. +e common time and frequency features
[20] involve mean value, variance, maximum, root mean
square, etc. +ey can capture intrinsic information about
bearing defects. For example, mean value in time domain
represents central trend, and the variance in frequency do-
main conveys message of signal changes. We chose STFT to
extract time domain features for its compatible imple-
mentation in the fast Fourier transform. Meanwhile, WPD
was one of themost widely used and advanced technologies to
analyze signal data in frequency domain. +ese two methods
were combined to extract time and frequency features.

In recent years, machine learning algorithms, such as
broad learning system (BLS), artificial neural network (ANN),
extreme learning machine (ELM), support vector machine
(SVM), and logistic regression (LR) have been applied suc-
cessfully in fault diagnosis of roller bearings [23–26]. Sobie
et al. [21] proposed a novel application of dynamic time
warping (DTW) to bearing fault classification. Toma et al. [27]
used KNN, decision tree, and random forest to evaluate the
bearing faults. Zhang et al. [28] proposed a novel hybridmodel
using permutation entropy (PE), ensemble empirical mode
decomposition (EEMD), and support vector machine (SVM)
to detect roller bearing faults. Recently, BLS has received a lot
of attention due to its outstanding performance in fault di-
agnosis. Zhao et al. [2] employed BLS as classifier to detect the
bearing faults. Zhao et al. [29] proposed semisupervised broad
learning system for fault diagnosis. However, these studies
either directly use BLS without considering the inherent
characteristics of the data or only consider the frequency-

domain characteristics of the signal. It seems that the present
work cannot make full use of BLS in fault diagnosis.

In this paper, we propose a multidomain feature fusion
for varying speed bearing diagnosis using BLS. +e diag-
nostic power of the method is attributable to two features:
First, we extract the intrinsic vibration characteristics at
multiple speeds. A multidomain fusion is adopted to realize
the unified form of vibration characteristics; second, the
kernel-based broad learning system has short computing
time and good generalization ability. Different from pre-
vious studies, the original vibration data at different speeds
are converted into unified time-domain and frequency-
domain data. As far as we know, few studies have adopted
this method to extract diagnostic information from different
speeds at one time. Obviously, with multidomain fusion, the
vibration data of different speeds can be explored thoroughly
under a unified framework to obtain more dynamic fault
information. +e experiment results illustrate that the
proposed method is significantly superior to some other
machine learning models. Meanwhile, the diagnostic power
of BLS with varying speed data is stronger than that with one
speed, which may provide solid evidence that varying speed
data are of great significance to fault diagnosis.

+e remainder of this paper is organized as follows.
Section 2 introduces the framework of the proposed diag-
nosis method.+e proposedmultidomain feature fusion and
BLS are provided in Section 2.+e empirical study is given in
Section 3. Finally, Section 4 offers concluding work and
implications for further research.

2. Methodology

2.1. Analytical Framework. +e general scheme of applying
the multidomain feature fusion for varying speed bearing
diagnosis is shown in Figure 1. +e proposed method in-
cludes three major steps:

(1) Obtain the Vibration Signals under Different Rotating
Speeds. +e raw data were collected from the sensors
and segmented into training dataset and testing
dataset.

(2) Multidomain Feature Fusion. +e acquired vibration
data were preprocessed with time-domain and fre-
quency-domain transformation. +e time statistical
characteristics and the frequency spectra of the vi-
bration signals provide potentially valuable fault
information.

(3) Fault Diagnosis Using BLS. +e obtained fused fea-
tures were utilized to train the BLS and other ma-
chine learning classification models. +en the testing
dataset is used to validate their performance.

2.2. Multidomain Feature Fusion for Varying Speed.
Feature extraction plays an important role in fault diagnosis.
In a condition monitoring system, the bearing is often
running under different speeds. +ese vibration signals of
varying speed contain a variety of possible fault information.
In particular, the dynamic characteristics of different speeds
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should be considered together. +e purpose of multidomain
fusion is to produce more reliable and more accurate in-
formation from varying speed.

In order to capture the diagnostic information, a total of
50 features are extracted from each speed vibration signal, 18
time-domain features, and 32 frequency-domain features as
listed in Tables 1 and 2, respectively. Table 1 presents the
description of 18 time-domain features, including mean
value, mean square, peak-to-peak value, impulse factor, and
crest factor. Table 2 presents the definition of 32 frequency-
domain features, including frequency center and RMS fre-
quency. Among them, p1 and p16 − p18 denote the ampli-
tude and energy of time-domain features. p7 and p11 − p12
reflect the time series distribution. p19 is the energy of
frequency-domain features. p21 − p24, p26, and p30 − p33 are
the spectrum power. p25 and p27 − p29 show the different
positions of the main frequencies. +e remaining features
are extracted by wavelet packet analysis and expressed as
equations p34 − p50.

2.3. Broad Learning System. Broad learning system (BLS)
was proposed by Professor Chen [30]. It is an incremental
learning algorithm based on the random vector function link
neural network (RVFLNN). For this method, firstly, the
original data are projected in the feature space using a linear

function and transformed into features notes of the BLS.
+en enhancement notes are generated by feature notes
randomly through a nonlinear activation function. Next, all
feature nodes and enhancement nodes are directly con-
nected to the output coefficients, which can be obtained by
the ridge regression. Finally, the structure of BLS is con-
structed after the output weight is obtained. Compared with
other deep networks, the structure of BLS is simple. +e BLS
establishes a flat network structure consisting of feature
nodes, enhancement nodes, and output coefficient matrix. It
can quickly extract features from new data and reduce
retraining time. +erefore, the flat network of BLS can be
more effective and efficient in classification and regression
problems without deep architecture [29]. +e BLS structure
is shown in Figure 2 [30].

(1) For the input data X, the linear transformation
function mapping is used to project data, which
become the ith mapped features Zi.

Zi � ∅i XWei + βei( 􏼁, (1)

where Wei and βei are the random weights with the
proper dimensions. Denote Zi ≡ [Z1, . . . , Zn], which
is the concatenation of all the first i groups of
mapping features and n is the number of groups of
feature nodes; i � 1, . . . , n.

Signal data

Feature extraction

Classifier

Short-time Fourier transform

Wavelet packet decomposition

Acquire vibration signals

Data segmentation

Data preprocessing

Time-domain features

Frequency-domain features

Energy
Amplitude

Time series distribution

Energy
Spectrum power

The different position

Speed (km/h): 30, 50, 100

Varying speed

Unified expression

Machine learning

Broad learning system
Artificial neural network

Extreme learning machine
Support vector machine

Logistic regression

Figure 1: +e framework of the proposed method.
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(2) Similarly, the jth group of enhancement nodes Hj

can be generated using the nonlinear function
transformation

Hj � ξi ZnWhj + βhj􏼐 􏼑, (2)

where Whj and βhj are random weight coefficients
with appropriate dimensions. +e concatenation of
all the first j groups of enhancement nodes is
denoted as Hm ≡ [H1, . . . , Hm]. m is the total
number of enhancement nodes; j � 1, . . . , m.
Hence, the BLS can be represented as the equation of
the form
Y � Z1, . . . , Zn | ξ ZnWh1

+ βh1
􏼐 􏼑, . . . , ξ ZnWhm

+ βhm
􏼐 􏼑􏽨 􏽩W

m

� Z1, . . . , Zn | H1, . . . , Hm􏼂 􏼃W
m

� Z
n

| H
m

􏼂 􏼃W
m

,

(3)

where Wm � [Zn|Hm]+Y. Wm are the connecting
weights coefficients and can be easily computed
using the ridge regression.

3. Experiment and Analysis

3.1. Experiment Data and Environment. In order to verify
the effectiveness of the proposed method, the experiments
were carried out on a rotary machine experimental platform,
as shown in Figure 3. +e platform can simulate various
operating conditions of trains with infinite long rail through
double-wheel reverse scrolling. +e test rig can simulate
various operating conditions of trains. +e fault states of
train can be imitated through artificially seeded defects in
bench experiments. Experiments were designed with three
faulty bearings and one normal bearing. Under each type of
fault defects, the bearing was running at the speeds of 30 km/
h, 50 km/h, and 100 km/h for 2 minutes, respectively, and
the 10 seconds’ vibration data were collected with the
sampling frequency of 10 kHz. For each bearing defect in
certain speed, 10,000 pieces of data were sampled. +e fault
types and speeds are shown in Table 3. According to the
sampling frequency and rotating speed, the number of
sampling points included in a cycle during the bearing
rotation is calculated. +erefore, the original data were

Mapped 
feature 1

Mapped
feature 2

Mapped
feature n

Enhancement nodes

X

Wm

Y

ϕ (XWei + βei), i = 1, ..., n. ξ ([Z1, Z2, ..., Zn]Whj + βhj), j = 1, ..., m

Z1 Z2 Zn H1 Zm

Figure 2: +e BLS structure.

Table 1: Time-domain features.
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N
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i�1 (xi − p1)

2 p5 �
��
p4

√
p6 � ((1/N) 􏽐

N
i�1 x2

i )1/2
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N
i�1 |xi| p8 � (1/N)􏽐

N
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3
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Note: xi denotes a signal data for i � 1, 2, . . . , N. N indicates the number of signal points.

Table 2: Frequency-domain features.
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Note: si shows a spectrum for i � 1, 2, . . . , K. K describes the number of spectrum lines. fi is the frequency value of the kth spectrum line.

4 Shock and Vibration



divided into smaller datasets according to different faults
and speeds.

In order to capture the dynamic diagnostic information,
there are 18 time-domain features and 32 frequency-domain
features extracted from each vibration signal, as listed in
Tables 1 and 2. +ese features are fused to form the mul-
tidomain features. +e obtained fused features can be uti-
lized to train the BLS for fault diagnosis.

3.2. Fault Classification. To further verify the effectiveness of
the proposed method, the multidomain fusion features are
used to train the BLS, ANN, SVM, ELM, and LR as the
classification model. +e SVM classifier is a margin-based
supervised machine learning method. SVM model can be
effectively applied in nonlinearly separable data. +e radial
basis function was used in SVM model. ELM is a single
hidden layer neural network algorithm and has been widely
used in many fields because of simple mathematical de-
scription, lower computational burden, and faster learning
speed [31]. ANN was inspired by biological nervous systems
function of the man brain. It is suitable for complex natural
systems by establishing relationships among highly anoma-
lous nonlinear variables and producing sophisticated, accu-
rate, and reliable results [32]. In this study, the number of
hidden neurons of ELM and ANNmodels was determined by

trial-and-error testing. LR is capable of bearing fault diagnosis
for its high accuracy in the nearly linearly separable data.

+e accuracy of each fault is used to evaluate the per-
formance of these classifiers. +e fault diagnosis perfor-
mances of these models are shown in Table 4. +e
comparison results of accuracy of each fault and average
accuracy are provided. +e proposed BLS model has the
highest average accuracy in testing compared to other
machine learning methods. Furthermore, BLS constantly
outperforms other methods for each fault, followed by SVM,
ANN, and ELM, whereas LR ranks last.

+e robustness of the proposed method is also assessed.
Due to the random variables in BLS model, we ran the ex-
periment ten times to obtain the average performance of BLS
and analyzed its robustness according to standard deviation of
accuracy. +e results are provided in Figure 4. +e standard
deviations of accuracy are as follows: 0.009 (ZC1), 0.007 (ZC2),
0.012 (ZC3), 0.005 (ZC4), and 0.002 (Average). Generally, the
performance of the BLS is stable, since the standard deviations
from the accuracy of each fault are small. +e standard de-
viation from average accuracy is smaller than others.

To further examine the effectiveness of the multidomain
fusion for varying speed, the training data are classified into
three types: “30 km/h,” “50 km/h,” and “100 km/h.” +ese
are vibration data under different speeds. When one dataset
is used to train the BLS, the other two datasets are tested. For

Table 3: Description of bearing dataset.

Name Fault type Speed (km/h) Fault classification
ZC1 Outer race defects 30, 50, 100 1
ZC2 Cage defect 30, 50, 100 2
ZC3 Pin roller defect 30, 50, 100 3
ZC4 Normal 30, 50, 100 4

Figure 3: Experimental setup.

Table 4: Comparison of classification accuracy.

Models ZC1 ZC2 ZC3 ZC4 Average accuracy (%)
BLS 96.23 97.60 94.49 98.74 96.2
ANN 87.28 83.17 86.59 89.68 86.68
ELM 73.47 92.15 84.21 88.92 84.69
SVM 92.99 94.34 97.97 88.86 93.54
LR 74.13 88.65 82.82 89.32 83.73
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comparison with the BLS, we conducted other experiments
using SVM, ANN, ELM, and LR to test the effectiveness of
different combinations. +e experimental results are

recorded in Table 5. Generally, the performance of the five
models with different combinations is not good. BLS is more
accurate, followed by SVM, ANN, LR, and ELM. When the
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Figure 4: Results of 10 trials using BLS.

Table 5: Classification comparison of different combinations.

Models Training dataset (km/h) Testing dataset (km/h) Average accuracy (%)

BLS

30 50 94.12
30 100 79.24
50 30 98.03
50 100 85.63
100 30 74.94
100 50 91.32

ANN

30 50 87.33
30 100 72.44
50 30 80.02
50 100 71.16
100 30 79.46
100 50 90.68

ELM

30 50 82.64
30 100 68.65
50 30 95.25
50 100 81.46
100 30 78.12
100 50 70.18

SVM

30 50 78.91
30 100 80.14
50 30 94.33
50 100 94.42
100 30 80.95
100 50 91.70

LR

30 50 83.05
30 100 64.28
50 30 95.51
50 100 87.98
100 30 63.35
100 50 83.37
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speed of training dataset is higher than that of the testing
dataset, the accuracy of the model seems better. For example,
when the training dataset is “50 km/h” and testing dataset is
“30 km/h,” the classification accuracy of five models is good.
In general, we can get some evidence that (1) there are
declines in diagnosis accuracy; (2) the training and testing
data with a large speed difference make the diagnosis more
difficult; (3) different speeds contain different dynamic
characteristics for fault diagnosis. It has been revealed that
the classifier developed on one speed data may not be ca-
pable of good diagnosis on other speed data On the contrary,
the method proposed in this paper has good performance of
fault diagnosis under multispeed with one classifier.

4. Conclusion

In this paper, we proposed a diagnosis framework using
multidomain feature fusion and machine learning to detect
faults from vibration data at different speeds. +e study
considers the dynamic characteristics of multiple speeds
together to obtain more comprehensive fault diagnosis in-
formation. Features extracted from time and frequency
domains are combined into one vector to present the
characteristics of multiple speeds. +en BLS is developed on
these fused features for fault diagnosis. +e experimental
results suggest that the proposed BLS models with multi-
domain features can significantly improve the forecasting
performance compared with other machine learning
methods. Beside the accuracy, the robustness of the pro-
posed BLS is also analyzed. Moreover, it is also verified that
the classifier developed on one speed data may not be able to
perform well on other speed data. However, this study does
have some limitations, mainly because we only solved this
problem at a certain level.+ere are still some problems to be
investigated. +e relationship between the vibration data of
different speeds is still unknown. How to develop a diag-
nostic model for all speeds is also a problem Furthermore,
the model could deal with multiple domain data such as
multiple sensors and speeds. +ese questions should be
studied in the future.
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Data are available upon request to the corresponding author
by e-mail.
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We investigate parallel-machine scheduling with past-sequence-dependent (p-s-d) delivery times, DeJong’s learning effect, rate-
modifying activity, and resource allocation. Each machine has a rate-modifying activity. We consider two versions of the problem
to minimize the sum of the total completion times, the total absolute deviation of job completion times, and the total resource
allocation and the sum of the total waiting times, the total absolute deviation of job waiting times, and the total resource allocation,
respectively. +e problems under our present model can be solved in polynomial time.

1. Introduction

In practice, a finite amount of resource usually is allocated to
a job to control its actual processing, which is the so-called
scheduling problem with controllable processing times.
Researchers in this case have to make two decisions−job
sequence and resource allocation simultaneously−which is
different from common scheduling problems.+ese kinds of
scheduling problems have attracted a great deal of attention
in the last three decades since Vickson. Vickson [1] initiated
this field. +e resource allocation function usually has two
forms including a linear function and a convex function. Liu
and Feng [2] address two-machine flowshop scheduling
problems in which the processing time of a job is a function
of its position in the sequence and its resource allocation.
Zhu et al. [3]investigate scheduling problems with a dete-
riorating and resource-dependent maintenance activity.
+ey show that all the considered problems are polynomially
solvable. Liu et al. [4] consider a parallel-machine scheduling
problem to minimize the sum of resource consumption and
outsourcing cost. Liu et al. [5] consider single-machine
scheduling problems which determine the optimal job
schedule, due-window location, and resource allocation
simultaneously.

In industrial production, machine unavailability pe-
riods are very common which is first studied by Lee and
Leon. [6]. Motivated by this phenomenon, scheduling
with a rate-modifying activity becomes a popular topic in
the last decade. Zhu et al. [7] addresses a single-machine
scheduling problem with resource allocation and a rate-
modifying activity simultaneously. Ji et al. [8] consider
single-machine scheduling with a common due-window
and a deteriorating rate-modifying activity. Polynomial-
time solution algorithms are provided for the corre-
sponding problems. Yang and Yang [9] investigate par-
allel-machine scheduling problems with multiple rate-
modifying activities. Zhu et al. [3] study single-machine
scheduling problems with a deteriorating and resource-
dependent maintenance activity. Luo [10] addresses a
single-machine scheduling problem with a deteriorating
rate-modifying activity to minimize the number of tardy
jobs. He proposed an optimal polynomial time algorithm.
Yu [11] considers an optimal single-machine scheduling
with linear deterioration rate and rate-modifying
activities.

In modern industry, the manufacturing environment
has a great impact on jobs′ processing times. Such an extra
time for eliminating the adverse effects between the main

Hindawi
Shock and Vibration
Volume 2021, Article ID 6687525, 10 pages
https://doi.org/10.1155/2021/6687525

mailto:wub@sdju.edu.cn
https://orcid.org/0000-0001-6040-7572
https://orcid.org/0000-0003-1132-2665
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6687525


RE
TR
AC
TE
D

processing and the delivery of a job is viewed as a past-
sequence-dependent (p-s-d) delivery time. Koulamas and
Kyparisis [12] first introduced p-s-d delivery time into
scheduling problem. Liu et al. [13] considered the problem of
single-machine scheduling with p-s-d delivery times, which
was introduced in Koulamas and Kyparisis [12]. Liu [14]
introduced identical parallel-machine scheduling with p-s-d
delivery times and the learning effect. Shen and Wu [15]
studied single-machine scheduling with p-s-d delivery times
and general learning effects.

+e workers can acquire experience and improve the
production efficiency continuously, and this phenomen-
on−first discussed by Wright [16]−is called the learning effect
in the literature [17]. Wu et al. [18] study some single-machine
scheduling problems with elapsed-time-based and position-
based learning and forgetting effects. More recent papers that
consider scheduling with learning effect include Rostami et al.
[19], Zhang et al. [20], Yin et al. [21], Zhang and Wang [22],
Toksari and Arik [23], Jiang et al. [24], Cheng et al. [25], Pei
et al. [26], Mustu and Eren [27], and Liu and Feng. [2]. +e
above scheduling model with the position-based learning effect
suffers a drawback that job’s actual processing time is close to
zero when the job’s position is sufficiently large in a schedule.
Scheduling problem with DeJong’s learning effect is proposed,
which overcomes the shortcomings in Wright’s learning
model. Okoowski and Gawiejnowicz [28] consider a parallel-
machine scheduling problem with DeJong’s learning effect and
makespan objective. Ji et al. [29] consider a learning model in
scheduling based on DeJong’s learning effect. Ji et al. [30]
consider parallel-machine scheduling with deteriorating jobs
and DeJong’s learning effect. +ey show minimizing the total
completion time is polynomially solvable and minimizing the
makespan is NP-hard. +roughout the paper, we will consider
parallel-machine scheduling problem with DeJong’s learning
effect.

Scheduling problems concerning multimachine pro-
duction environments are encountered in many modern
manufacturing processes. To the best of our knowledge,
scheduling with p-s-d delivery times, DeJong’s learning
effect, rate-modifying activity, and resource allocation has
not been studied in the literature. In this paper, we study two
versions of such problems under linear and convex resource
consumption and show the problems are polynomially
solvable. +e remaining part of this paper is organized as
follows. In Section 2, we formulate the problem and present
some notation and one lemma. We introduce two versions
of the problem to minimize the sum of the total completion
times, the total absolute deviation of job completion times,
and the total resource allocation and the sum of the total
waiting times, the total absolute deviation of job waiting
times, and the total resource allocation in Section 3. In
Section 4, we conclude the paper.

2. Problem Formulation

+ere are a set of n independent and non-pre-emptive jobs
simultaneously available for processing and m identical
parallel machines. Each machine can handle one job at a
time. With the assumption that m< n throughout the paper,

since the problem is trivial, if m≥ n, let pij(pA
ij) be the

normal (actual) processing time of job Jij and pi[r](pA
i[r]) be

the normal (actual) processing time of job Ji[r] if it is
scheduled in the rth position on machine Mi in a sequence.
In view of the study of DeJong’s learning model for
scheduling, we adopt it in our paper as follows:
pA

i[r] � pi[r](M + (1 − M)rai[r] ), where ai[r] is a nonpositive
learning index and ai[r] < 0. It is easy to know that if M � 0,
the model reduces to the classical learning model.

In this paper, we will consider the situation of repairing or
upgrading the machine that one rate-modifying activity is
allowed on each machine throughout the scheduling to im-
prove the machines production efficiency which is denoted by
RMA. A rate-modifying activity (RMA) can be applied to the
machine so as to change (usually to decrease) the normal
processing times of the jobs.+e time pij of processing job Jij

changes after the RMA to λijpij. +emachine will revert to its
initial condition, and the learning effect will start anew after
the rate-modifying activity. Suppose ni is the number of jobs
located on machine Mi and ki is the position of the rate-
modifying activity on machine Mi. In this paper, we consider
two resource consumption functions.

A linear resource consumption function:

p
A
i[r] � pi[r] M +(1 − M)r

ai[r]( 􏼁 − bi[r]ui[r], (1)

before rate-modifying activity and

p
A
i[r] � λi[r]pi[r] M +(1 − M) r − ki( 􏼁

ai[r]( 􏼁 − bi[r]ui[r], (2)

after rate-modifying activity, where λi[r] is the modifying
rate to job Ji[r] with 0< λi[r] ≤ 1, ui[r] is the amount of the
resource allocated to job Ji[r] with 0≤ ui[r] ≤ ui[r] <
((λi[r]pi[r])/(bi[r])), and bi[r] is the positive compression rate
of job Ji[r].

A convex resource consumption function:

p
A
i[r] �

pi[r] M +(1 − M)rai[r]( )

ui[r]

􏼠 􏼡

v

, (3)

before rate-modifying activity and

p
A
i[r] �

λi[r]pi[r] M +(1 − M) r − ki( 􏼁
ai[r]( 􏼁

ui[r]

􏼠 􏼡

v

, (4)

after rate-modifying activity, where v is a positive constant.
+e rate-modifying activity duration is a linear function of
its starting time which is represented by f(t) � β + σt,
where β> 0 is the basic rate-modifying activity time, σ > 0 is
a rate-modifying activity factor, and t is the starting time of
the rate-modifying activity operation. +e starting time of
the rate-modifying activity is not known in advance, and it
can be scheduled immediately after completing the pro-
cessing of any job.

As in [12], the processing of job Ji[r] must be followed by
the p-s-d delivery time qi[r], which can be calculated as

qi[1] � 0,

qi[r] � cWi[r] � c 􏽘
r−1

l�1
p

A
i[l],

(5)
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before rate-modifying activity and

qi[r] � cWi[r] � c 􏽘
r−1

l�1
p

A
i[l] + f(t)⎛⎝ ⎞⎠, (6)

after rate-modifying activity, where c≥ 0 is a normalizing
constant and Wi[r] denotes the waiting time of job Ji[r]. As
usual, the postprocessing operation of any job Ji[l] modelled
by its delivery time qi[l] is performed off-line. Hence, it is not
affected by the availability of the machine, and it can be
implemented immediately upon completion of the main
operation, and we have

Ci[1] � pi[1],

Ci[j] � Wi[j] + p
A
i[j] + qi[j] � (1 + c)Wi[j] + p

A
i[j],

(7)

where Ci[j] denotes the completion time of job Ji[j].
Let denote the p-s-d delivery time by qpsd. In addition, we

denote TADCi the total absolute deviation of job completion
times and TADWi the total absolute deviation of job waiting
times on machine Mi, i.e., TADCi � 􏽐

ni

l�1 􏽐
ni

k�l |Ci[l] − Ci[k]|

and TADWi � 􏽐
ni

l�1 􏽐
ni

k�l |Wi[l] − Wi[k]|. Let TCi indicates the
job’s total processing times on machine Mi and TWi in-
dicates the job’s total waiting times on machine Mi, i.e.,
TCi � 􏽐

ni

r�l Ci[r] and TWi � 􏽐
ni

r�l Wi[r]. We will try to find the
optimal job sequence, the optimal RMA, and the optimal
resource consumption such that the following cost functions
are minimized:

Z1 � α1 􏽘

m

i�1
TCi + δ1 􏽘

m

i�1
TADCi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij,

Z2 � α2 􏽘

m

i�1
TWi + δ2 􏽘

m

i�1
TADWi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij,

(8)

where α1, α2, δ1, δ2 > 0 represent the per unit time contri-
bution for the total processing time, the total waiting time,
the total absolute deviation of job completion times, and the
total absolute deviation of job waiting times on machine Mi

with α1 > 0, α2 > 0, δ1 > 0, and δ2 > 0. Gij is the per unit time
cost associated with resource allocation. Let DJLR denote
DeJong’s learning effect and linear resource consumption
and DJCR denote DeJong’s learning effect and convex re-
source consumption. Using the three-field notation intro-
duced by Graham et al., for scheduling problems, we denote
the two versions of the problems as

Pm qpsd,DJLR,RMA
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Z,

Pm qpsd,DJCR, RMA
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Z,

Z ∈ Z1, Z2􏼈 􏼉.

(9)

We first present some notation and one lemma before
the main results. On machine Mi, if the number of jobs ni

and the position of the job preceding the rate-modifying
activity ki are known in advance, then the job’s completion
times and the job’s waiting times on machine Mi are as
follows:

Wi[1] � 0,

Ci[1] � p
A
i[1],

. . . ,

Wi ki[ ] � p
A
i[1] + · · · + p

A
i ki−1[ ],

Ci ki[ ] � (1 + c) p
A
i[1] + p

A
i[2] + · · · + p

A
i ki−1[ ]􏼒 􏼓 + p

A
i ki[ ],

f(t) � β + σ p
A
i[1] + p

A
i[2] + · · · + p

A
i ki[ ]􏼒 􏼓,

Wi ki+1[ ] � β +(1 + σ) p
A
i[1] + · · · + p

A
i ki[ ]􏼒 􏼓,

Ci ki+1[ ] � (1 + c) β +(1 + σ) p
A
i[1] + · · · + p

A
i ki[ ]􏼒 􏼓􏼒 􏼓

+ p
A
i ki+1[ ],

. . . ,

Wi ni[ ] � β +(1 + σ) p
A
i[1] + · · · + p

A
i ki[ ]􏼒 􏼓 + p

A
i ki+1[ ] . . .

+ p
A
i ni−1[ ],

Ci ni[ ] � (1 + c) β +(1 + σ) p
A
i[1] + · · · + p

A
i ki[ ]􏼒 􏼓􏼒

+ p
A
i ki+1[ ] + · · · + p

A
i ni−1[ ]􏼓 + p

A
i ni[ ].

(10)

For the linear case,

p
A
i[r] � pi[r] M +(1 − M)r

ai[r]( 􏼁 − bi[r]ui[r], if r≤ ki,

p
A
i[r] � λi[r]pi[r] M +(1 − M) r − ki( 􏼁

ai[r]( 􏼁 − bi[r]ui[r], if r≥ ki.

(11)

For the convex case,

p
A
i[r] �

pi[r] M +(1 − M)rai[r]( )

ui[r]

􏼠 􏼡

v

, if r≤ ki,

p
A
i[r] �

λi[r]pi[r] M +(1 − M) r − ki( 􏼁
ai[r]( 􏼁

ui[r]

􏼠 􏼡

v

, if r≥ ki.

(12)

Let P(n, m, k) � (n1, n2, . . . , nm; k1, k2, . . . , km) denote
an allocation vector. We provide a lemma concerning an
upper bound on the number of P(n, m, k) vectors.

Lemma 1. (e number of P(n, m, k) vectors is bounded from
above by ((n + 1)2m− 1)/m!.

Proof. See the work of Ma et al. [31].
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3. Cases with Linear Resource
Consumption Function

3.1.(e Problem Pm|qpsd,DJLR,RMA|Z1. In this section, we
introduce the problem to minimize the sum of total com-
pletion times and total absolute deviation of job completion

times with resource consumption on all the machines. For
machine Mi, from the above analysis, we calculate the total
completion times and the total absolute deviation of job
completion times on this machine as follows:

TCi � ni − ki( 􏼁(1 + c)β + 􏽘

ki

h�1
1 + ki − h( 􏼁(1 + c) + ni − ki( 􏼁(1 + c)(1 + σ)( 􏼁p

A
i[h] + 􏽘

ni

h�ki+1
1 + ni − h( 􏼁(1 + c)( 􏼁p

A
i[h],

TADCi � 􏽘

ni

h�ki+1
2h − 1 − ni( 􏼁(1 + c)β + 􏽘

ki

h�1
2h − 1 − ni( 􏼁 + 􏽘

ki

l�h+1
2l − 1 − ni( 􏼁(1 + c) + 􏽘

ni

l�ki+1
2l − 1 − ni( 􏼁(1 + c)(1 + σ)⎛⎝ ⎞⎠p

A
i[h]

+ 􏽘

ni−1

h�ki+1
2h − 1 − ni( 􏼁 + 􏽘

ni

l�h+1
2l − 1 − ni( 􏼁(1 + c)⎛⎝ ⎞⎠p

A
i[h] + ni − 1( 􏼁p

A
i ni[ ].

(13)

Hence, the sum of total completion times and total
absolute deviation of job completion times with resource
consumption on all the machines is

α1 􏽘

m

i�1
TCi + δ1 􏽘

m

i�1
TADCi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij

� ( 1 + c )β 􏽘
m

i�1
α1( ni − ki ) + 􏽘

m

i�1
􏽘

ni

h�ki+1
δ1( 2h − 1 − ni )⎛⎝ ⎞⎠ + 􏽘

m

i�1
􏽘

ki

h�1
( α1

· 1 +( ki − h )( 1 + c ) +( ni − ki )( 1 + c )( 1 + σ )( 􏼁

+ δ1 ( 2h − 1 − ni ) + 􏽘

ki

l�h+1
2l − 1 − ni )( 1 + c( 􏼁 + 􏽘

ni

l�ki+1
2l − 1 − ni )( 1 + c )( 1 + σ( 􏼁⎛⎝ ⎞⎠⎞⎠p

A
i[ h ]

+ 􏽘
m

i�1
􏽘

ni

h�ki+1
α1 1 +( 1 + c )( ni − h )( 􏼁 + δ1 ( 2h − 1 − ni ) + 􏽘

ni

l�h+1
2l − 1 − ni )( 1 + c( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠p

A
i[ h ]

+ 􏽘
m

i�1
( α1 +( ni − 1 )δ1 )p

A
i[ ni ] + 􏽘

m

i�1
􏽘

ni

h�1
Gi[ h ]ui[ h ].

(14)

Let
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A1 � (1 + c)β 􏽘

m

i�1
α1 ni − ki( 􏼁 + 􏽘

m

i�1
􏽘

ni

h�ki+1
δ1 2h − 1 − ni( 􏼁⎛⎝ ⎞⎠,

wi[h] �

α1 1 + ki − h( 􏼁(1 + c) + ni − ki( 􏼁(1 + c)(1 + σ)( 􏼁 + δ1( 2h − 1 − ni( 􏼁

+ 􏽘

ki

l�h+1
2l − 1 − ni( 􏼁(1 + c) + 􏽘

ni

l�ki+1
2l − 1 − ni( 􏼁(1 + c)(1 + σ) ),

i � 1, 2, . . . , m, h � 1, 2, . . . , ki,

α1 1 +(1 + c) ni − h( 􏼁( 􏼁 + δ1( 2h − 1 − ni( 􏼁

+ 􏽘

ni

l�h+1
2l − 1 − ni( 􏼁(1 + c) ),

i � 1, 2, . . . , m, h � ki + 1, ki + 2, . . . , ni − 1,

α1 + ni − 1( 􏼁δ1

i � 1, 2, . . . , m, h � ni.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

+us,

α1 􏽘

m

i�1
TCi + δ1 􏽘

m

i�1
TADCi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij

� A1 + 􏽘

m

i�1
􏽘

ki

h�1
wi[h]pi[h] M +(1 − M)h

ai[h]( 􏼁

+ 􏽘
m

i�1
􏽘

ni

h�ki+1
wi[h]λi[h]pi[h] M +(1 − M) h − ki( 􏼁

ai[h]( 􏼁

+ 􏽘
m

i�1
􏽘

ni

h�1
Gi[h] − wi[h]bi[h]􏼐 􏼑ui[h].

(16)

From the above equation, for any job sequence, the
optimal resource allocation for a job depends on the sign of
Gi[h] − wi[h]bi[h]. If Gi[h] − wi[h]bi[h] is negative, the maxi-
mum feasible amount of the resource should be allocated to
job Ji[h], if Gi[h] − wi[h]bi[h] is positive, no resource should be
allocated to job Ji[h], and if Gi[h] − wi[h]bi[h] is equal to zero,
any of value of resource consumption will not affect the total
cost. Let u∗i[h] denote the optimal resource allocation for job
Ji[h], where

ui[ h ] �

ui[ h ], if Gi[ h ] − wi[ h ]bi[ h ] < 0,

u0 ∈ [ 0, ui[ h ] ], if Gi[ h ] − wi[ h ]bi[ h ] � 0,

0, if Gi[ h ] − wi[ h ]bi[ h ] > 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

From (17), we can obtain the optimal resource allocation
for any given optimal sequence.

Since A1 is a constant, when ni and ki is given, we can
express the problem as the following assignment problem:

F1 � A1 + min􏽘

m

i�1
􏽘

n

j�1
􏽘

ni

h�1
θij[h]xijh,

AP1( 􏼁 s.t. 􏽘

n

j�1
xijh � 1, i � 1, 2, . . . , m, h � 1, 2, . . . , ni,

􏽘

m

i�1
􏽘

ni

h�1
xijh � 1, j � 1, 2, . . . , n,

xijh � 0 or 1, i � 1, 2, . . . , m, h � 1, 2, . . . , ni, j � 1, 2, . . . , n,

(18)

where

θij[ h ] �
wi[ h ]pij[ h ] +( Gij − wi[ h ]bij )uij, if Gij − wi[ h ]bij < 0,

wi[ h ]pij[ h ], if Gij − wi[ h ]bij ≥ 0,

⎧⎪⎨

⎪⎩

pij[ h ] �
pij( M +( 1 − M )h

aij ), i � 1, 2, . . . , m, j � 1, 2, . . . , n, h � 1, 2, . . . , ki,

λijpij( M +( 1 − M ) h − ki( 􏼁
aij ), i � 1, 2, . . . , m, j � 1, 2, . . . , n, h � ki + 1, ki + 2, . . . , ni.

⎧⎪⎨

⎪⎩

(19)

Consequently, when P(n, m, k) vector is given, optimal
job scheduling and optimal resource allocation are given by
Algorithm 1.

Since the P(n, m, k) vector is given, we know that the
problem can be solved in O(n3) time. Together with Lemma
1, it is easy to obtain the following theorem.
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solved in O(n2m+2) time.

3.2.(e ProblemPm|qpsd,DJLR,RMA|Z2. In this section, we
study the problem to minimize the sum of total waiting

times and total absolute deviation of job waiting times with
resource consumption on all the machines. For machine Mi,
we compute the total waiting times and the total absolute
deviation of job waiting times on this machine as follows:

TWi � ni − ki( 􏼁β + 􏽘

ki

h�1
ni − ki( 􏼁(1 + σ) + ki − h( 􏼁p

A
i[h] + 􏽘

ni

h�ki+1
ni − h( 􏼁p

A
i[h],

TADWi � ( ki − 1 )( ni − ki )β + 􏽘

ki

h�1
( ki − h )( ni − ki )σ +( h − 1 )( ki − h +( ni − ki )( 1 + σ( 􏼁 )p

A
i[h] + 􏽘

ni

h�ki+1
ki( ni − h )p

A
i[h].

(20)

Hence, the sum of total waiting times and total absolute
deviation of job waiting times with resource consumption on
all the machines is

α2 􏽘

m

i�1
TWi + δ2 􏽘

m

i�1
TADWi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij

� 􏽘
m

i�1
α2 + ki − 1( 􏼁δ2( 􏼁 ni − ki( 􏼁β

+ 􏽘
m

i�1
􏽘

ki

h�1
α2 ni − ki( 􏼁(1 + σ) + ki − h( 􏼁(

+ δ2 ki − h( 􏼁 ni − ki( 􏼁σ +(h − 1)(

· ki − h + ni − ki( 􏼁(1 + σ)( 􏼁􏼁􏼁p
A
i[h]

+ 􏽘
m

i�1
􏽘

ni

h�ki+1
α2 + kiδ2( 􏼁 ni − h( 􏼁p

A
i[h] + 􏽘

m

i�1
􏽘

ni

h�1
Gi[h]ui[h].

(21)

Let

A2 � 􏽘
m

i�1
( α2 +( ki − 1 )δ2 )( ni − ki )β,

φi[ h ] �

α2 ( ni − ki )( 1 + σ ) + ki − h( 􏼁 + δ2( ( ki − h )( ni − ki )σ

+ ( h − 1 )( ki − h +( ni − ki )( 1 + σ ) ) ),

i � 1, 2, . . . , m, h � 1, 2, . . . , ki,

( α2 + kiδ2 )( ni − h ),

i � 1, 2, . . . , m, h � ki + 1, ki + 2, . . . , ni.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

+us,

α2 􏽘

m

i�1
TWi + δ2 􏽘

m

i�1
TADWi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij

� A2 + 􏽘
m

i�1
􏽘

ki

h�1
φi[h]pi[h] M +(1 − M)h

ai[h]( 􏼁

+ 􏽘
m

i�1
􏽘

ni

h�ki+1
λi[h]φi[h]pi[h] M +(1 − M) h − ki( 􏼁

ai[h]( 􏼁

+ 􏽘
m

i�1
􏽘

ni

h�1
Gi[h] − φi[h]bi[h]􏼐 􏼑ui[h].

(23)

For any job sequence, the optimal resource allocation for
a job depends on the sign of Gi[h] − φi[h]bi[h]. Let u∗i[h] denote
the optimal resource allocation for job Ji[h], where

ui[ h ] �

ui[ h ], if Gi[ h ] − φi[ h ]bi[ h ] < 0,

u0 ∈ [ 0, ui[ h ] ], if Gi[ h ] − φi[ h ]bi[ h ] � 0,

0, if Gi[ h ] − φi[ h ]bi[ h ] > 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

From (24), we can get the optimal resource allocation for
any given optimal sequence.

Accordingly, when ni and ki is given, we can indicate the
problem as the following assignment problem:

Step 1: jobs are scheduled by (AP1)

Step 2: optimal job resource allocation is calculated by formula (17)

ALGORITHM 1: Algorithm to solve the problem of minimizing the sum of total completion times and total absolute deviation of job
completion times with linear resource consumption.
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m

i�1
􏽘

n

j�1
􏽘

ni

h�1
ρij[h]yijh,

AP2( 􏼁 s.t. 􏽘
n

j�1
yijh � 1, i � 1, 2, . . . , m, h � 1, 2, . . . , ni,

􏽘

m

i�1
􏽘

ni

h�1
yijh � 1, j � 1, 2, . . . , n, yijh � 0

or 1, i � 1, 2, . . . , m, h � 1, 2, . . . , ni, j � 1, 2, . . . , n,

(25)

where

ρij[h] �
φi[h]pij[h] + Gij − φi[h]bij􏼐 􏼑uij, if Gij − φi[h]bij < 0,

φi[h]pij[h], if Gij − φi[h]bij ≥ 0,

⎧⎨

⎩

pij[h] �

pij M +(1 − M)h
aij( 􏼁, i � 1, 2, . . . , m,

j � 1, 2, . . . , n, h � 1, 2, . . . , ki,

λijpij M +(1 − M) h − ki( 􏼁
aij( 􏼁,

i � 1, 2, . . . , m, j � 1, 2, . . . , n, h � ki + 1, ki + 2, . . . , ni.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

Hence, when P(n, m, k) vector is given, optimal job
scheduling and optimal resource allocation are given by
Algorithm 2.

+us, when the P(n, m, k) vector is given, the problem
can be solved in O(n3) time. Together with Lemma 1, we
have the following theorem.

Theorem 2. (e problem Pm|qpsd,DJLR,RMA|Z2 can be
solved in O(n2m+2) time.

4. Cases with Convex Resource
Consumption Function

In this section, we will consider the problems under convex
resource consumption function, i.e.,

Pm qpsd,DJCR,RMA
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Z, Z ∈ Z1, Z2􏼈 􏼉. (27)

Let

pi[h] �
pi[h](M +(1 − M)h)

ai[h] , i � 1, 2, . . . , m, h � 1, 2, . . . , ki,

λi[h]pi[h] M +(1 − M) h − ki( 􏼁
ai[h]( 􏼁, i � 1, 2, . . . , m, h � ki + 1, ki + 2, . . . , ni.

⎧⎨

⎩ (28)

Similar to the analysis of problem
Pm|qpsd,DJLR,RMA|Z1, if ni and ki is given, we calculate the
problem to minimize the sum of total completion times and
total absolute deviation of job completion times with convex
resource consumption as follows:

H1 � α1 􏽘

m

i�1
TCi + δ1 􏽘

m

i�1
TADCi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij

� A1 + 􏽘
m

i�1
􏽘

ni

h�1
wi[h]

pi[h]

ui[h]

􏼠 􏼡

v

+ 􏽘
m

i�1
􏽘

ni

h�1
Gi[h]ui[h],

(29)

where

A1 � ( 1 + c )β 􏽘

m

i�1
α1( ni − ki ) + 􏽘

m

i�1
􏽘

ni

h�ki+1
δ1( 2h − 1 − ni )⎛⎝ ⎞⎠,

wi[ h ] �

α1 1 +( ki − h )( 1 + c ) +( ni − ki )( 1 + c )( 1 + σ )( 􏼁 + δ1( 2h − 1 − ni( 􏼁

+ 􏽘

ki

l�h+1
2l − 1 − ni )( 1 + c( 􏼁 + 􏽘

ni

l�ki+1
2l − 1 − ni )( 1 + c )( 1 + σ( 􏼁 ),

i � 1, 2, . . . , m, h � 1, 2, . . . , ki,

α1 1 +( 1 + c )( ni − h )( 􏼁 + δ1( 2h − 1 − ni( 􏼁 + 􏽘

ni

l�h+1
2l − 1 − ni )( 1 + c( 􏼁 ), i � 1, 2, . . . , m, h � ki + 1, ki + 2, . . . , ni − 1,

α1 +( ni − 1 )δ1, i � 1, 2, . . . , m, h � ni.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Step 1: jobs are scheduled by (AP2)

Step 2: optimal job resource allocation is calculated by formula (24)

ALGORITHM 2: Algorithm to solve the problem ofminimizing the sum of total waiting times and total absolute deviation of job waiting times
with linear resource consumption.
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i � 1, 2, . . . , m and h � 1, 2, . . . , ni, equating the result to
zero, and solving it for ui[h], we can obtain the optimal
resource allocation (denoted by u∗i[h]):

zH1

zui[h]

� −vwi[h] pi[h]􏼐 􏼑
v
u

−v−1
i[h] + Gi[h] � 0,

u
∗
i[h] �

vwi[h]

Gi[h]

􏼠 􏼡

1/(v+1)

pi[h]􏼐 􏼑
v/(v+1)

.

(31)

By substituting u∗i[h] into the objective function H1, we
obtain a new unified expression as follows:

H1 � A1 + 􏽘

m

i�1
􏽐
ni

h�1
v

− v/(v+1)
+ v

1/(v+1)
􏼐 􏼑w

1/(v+1)
i[h] Gi[h]pi[h]􏼐 􏼑

v/(v+1)
.

(32)

+erefore, we can formulate the minimum problem as
the following assignment problem:

H1 � A1 + min􏽘
m

i�1
􏽘

n

j�1
􏽘

ni

h�1
ξij[h]xijh,

AP3( 􏼁 s.t. 􏽘
n

j�1
xijh � 1, i � 1, 2, . . . , m, h � 1, 2, . . . , ni,

􏽘

m

i�1
􏽘

ni

h�1
xijh � 1, j � 1, 2, . . . , n, xijh � 0 or 1,

i � 1, 2, . . . , m, h � 1, 2, . . . , ni, j � 1, 2, . . . , n,

(33)

where

ξij[h] �
v

− v/(v+1)
+ v

1/(v+1)
􏼐 􏼑w

1/(v+1)
i[h] Gijpij M +(1 − M)h

aij( 􏼁􏼐 􏼑
v/(v+1)

, i � 1, 2, . . . , m, j � 1, 2, . . . , n, h � 1, 2, . . . , ki,

( v
− v/(v+1)

+ v
1/(v+1)

)w
1/(v+1)
i[h] ( Gijλijpij M +(1 − M) h − ki( 􏼁

aij( 􏼁
v/(v+1)

, i � 1, 2, . . . , m, j � 1, 2, . . . , n, h � ki + 1, ki + 2, . . . , ni.

⎧⎪⎨

⎪⎩

(34)

Consequently, when P(n, m, k) vector is given, optimal
job scheduling and optimal resource allocation are given by
Algorithm 3.

Together with Lemma 1, we have the following theorem.

Theorem 3. (e problem Pm|qpsd,DJCR,RMA|Z1 can be
solved in O(n2m+2) time.

Similar to the analysis of problem
Pm|qpsd,DJLR,RMA|α2 􏽐

m
i�1 TWi+ δ2 􏽐

m
i�1 TADWi + 􏽐

m
i�1

􏽐
ni

j�1 Gijuij, if ni and ki is given, we calculate the problem to

minimize the sum of total waiting times and total absolute
deviation of job waiting times with convex resource con-
sumption as follows:

H2 � α2 􏽘

m

i�1
TWi + δ2 􏽘

m

i�1
TADWi + 􏽘

m

i�1
􏽘

ni

j�1
Gijuij

� A2 + 􏽘

m

i�1
􏽘

ni

h�1
φi[h]

pi[h]

ui[h]

􏼠 􏼡

v

+ 􏽘

m

i�1
􏽘

ni

h�1
Gi[h]ui[h],

(35)

where

A2 � 􏽘
m

i�1
( α2 +( ki − 1 )δ2 )( ni − ki )β,

φi[h] �

α2 ( ni − ki )( 1 + σ ) + ki − h( 􏼁 + δ2( ( ki − h )( ni − ki )σ

+( h − 1 )( ki − h +( ni − ki )( 1 + σ ) ) ),
i � 1, 2, . . . , m, h � 1, 2, . . . , ki,

( α2 + kiδ2 )( ni − h ), i � 1, 2, . . . , m, h � ki + 1, ki + 2, . . . , ni,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

pi[h] �
pi[ h ](M +( 1 − M )h)

ai[ h ] , i � 1, 2, . . . , m, h � 1, 2, . . . , ki,

λi[ h ]pi[ h ]( M +( 1 − M ) h − ki( 􏼁
ai[ h ] ), i � 1, 2, . . . , m, h � ki + 1, ki + 2, . . . , ni.

⎧⎪⎨

⎪⎩

(36)

Step 1: jobs are scheduled by (AP3)

Step 2: optimal job resource allocation is calculated by formula (31)

ALGORITHM 3: Algorithm to solve the problem of minimizing the sum of total completion times and total absolute deviation of job
completion times with convex resource consumption.
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ui[h], i � 1, 2, . . . , m and h � 1, 2, . . . , ni, equating the result
to zero, and solving it for ui[h], we can obtain the optimal
resource allocation (denoted by u∗i[h]):

zH2

zui[h]

� −vφi[h] pi[h]􏼐 􏼑
v
u

−v−1
i[h] + Gi[h] � 0,

u
∗
i[h] �

vφi[h]

Gi[h]

􏼠 􏼡

1/(v+1)

pi[h]􏼐 􏼑
v/(v+1)

.

(37)

By substituting u∗i[h] into the objective function H2, we
obtain a new unified expression as follows:

H2 � A2 + 􏽘

m

i�1
􏽐
ni

h�1
v

− v/(v+1)
+ v

1/(v+1)
􏼐 􏼑φ1/(v+1)

i[h] Gi[h]pi[h]􏼐 􏼑
v/(v+1)

.

(38)

+erefore, we can formulate the minimum problem as
the following assignment problem:

H2 � A2 + min􏽘

m

i�1
􏽘

n

j�1
􏽘

ni

h�1
ηij[h]yijh,

AP4( 􏼁 s.t. 􏽘
n

j�1
yijh � 1, i � 1, 2, . . . , m, h � 1, 2, . . . , ni,

􏽘

m

i�1
􏽘

ni

h�1
yijh � 1, j � 1, 2, . . . , n, yijh � 0 or 1,

i � 1, 2, . . . , m, h � 1, 2, . . . , ni, j � 1, 2, . . . , n,

(39)

where

ηij[h] �
v

− v/(v+1)
+ v

1/(v+1)
􏼐 􏼑φ1/(v+1)

i[h] Gijpij M +(1 − M)h
aij( 􏼁􏼐 􏼑

v/(v+1)
, i � 1, 2, . . . , m, j � 1, 2, . . . , n, h � 1, 2, . . . , ki,

( v
− v/(v+1)

+ v
1/(v+1)

)φ1/(v+1)
i[h] ( Gijλijpij M +(1 − M) h − ki( 􏼁

aij( 􏼁
v/(v+1)

, i � 1, 2, . . . , m, j � 1, 2, . . . , n, h � ki + 1, ki + 2, . . . , ni.

⎧⎪⎨

⎪⎩

(40)

+erefore, when P(n, m, k) vector is given, optimal job
scheduling and optimal resource allocation are given by
Algorithm 4.

From the above analysis and Lemma 1, we have the
following theorem.

Theorem 4. (e problem Pm|qpsd,DJCR,RMA|Z2 can be
solved in O(n2m+2) time.

5. Conclusions

In this paper, two versions of parallel-machine sched-
uling problems to minimize the sum of the total com-
pletion times, the total absolute deviation of job
completion times, and the total resource allocation and
the sum of the total waiting times, the total absolute
deviation of job waiting times, and the total resource
allocation are considered, respectively. We present the
problems in this research can be solved polynomially.
Future research will be worth extending to multiple rate-
modifying activity or other objective scheduling
problems.
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In intelligent manufacturing, an intelligent control method of welding process is an important process of intelligent welding
manufacturing technology (IWMT). Metal transfer is a key factor to control the welding process. Metal transfer and droplet
spreading are of vital importance for welding formation. A new theoretical model of cold metal transfer (CMT) in short-circuit
transfer mode is proposed in this paper. In this model, the CMTwelding process is regarded as a continuous process of arc heating,
mass transfer, short-circuit, and spreading, and the relations between these processes are analyzed.)e calculation equations used
by the model can analyze the welding formation clearly and simplify the complex welding process into continuous physical
behavior.)e predicted welding width shows good agreement with the measurement results.)emechanism of increased welding
width is also comprehensively analyzed. Results have a certain guiding effect on aluminum alloy welding process control.

1. Introduction

In intelligent manufacturing, a weld controller is a typical
system of the intelligent welding manufacturing system [1].
Intelligent control of welding dynamic process is one of
main problems of intelligent welding technology. One of
problems in intelligent control of welding dynamic process
is welding pool dynamic process [2]. )e short-circuit
transfer in the metal transition is controlled through tra-
ditional MIG (metal inert gas)/MAG (metal active gas)
welding to control the heat input and reduce the welding
defects. Cold metal transfer (CMT) is an improvement of
short-circuit transfer in GMAW (gas-metal arc welding)
process, which has the characteristics of low splash and low-
heat input. CMT allows a better microstructure to be ob-
tained than MIG. Feng et al. [3] carried out experiments
through CMT technology to weld a 1mm thick pure alu-
minum alloy with minimal deflection. Lei et al. [4] welded a
1mm thick AA6061-T6 by using three welding arc modes of
standard, pulsed, and CMT.)ey found that CMT arc mode
produced the fewest welding defects. Cao et al. [5, 6] joined
1.0mm thick AA6061-T6 to 1.0mm thick galvanized mild
steel using the cold metal transfer method, and the welded

joint strength can meet the requirements. )ese studies
confirm that CMT is superior to MIG/MAG in thin-plate
welding and dissimilar metal welding. CMT can effectively
control the heat affected zone (HAZ) and enhance the
weldability of thin metal plates and dissimilar metals.

To ensure the formation of welding, scholars have fo-
cused on optimization of CMT welding parameters. Wang
et al. [7] studied the influences of parameters such as boost
current, arcing current, breaking current, boosting voltage,
and wire moving speed in CMT welding on the CMT
boosting phase, arcing phase, and short-circuit phase. Chen
et al. [8] analyzed the effects of CMT current waveform on
welding formation. Kumar [9] investigated the effect of
welding current and welding speed on welding formation,
dilution, and contact angle during cold metal transfer
(CMT) process )ese studies investigated the control of the
welding formation through experiments, but the reasons for
the changes in the welding formation were not explained
theoretically.

Metal droplet behavior has been a largely underexplored
domain. Few theoretical models can describe the relation-
ship between metal droplet behavior and welding formation
in the CMT process. Most studies on welding formation
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model are based on traditional welding methods, such as
GMAW. Murphy et al. [10] modeled the arc plasma and
weld pool of MIG welding, and predicted the weld depth and
shape. Komen et al. [11] simulated the weld pool and the
bead formation of GMAW. )e simulation realized the
droplet transfer into the molten pool, but the model is only
used for the prediction of free-flight transfer. )e metal
droplet detachment from the wire electrode is affected by
various forces. Wu et al. [12] developed a metal transfer
model of GMAW, which considered droplet oscillation and
detachment. Doodman Tipi et al. [13] studied the detach-
ment of GMAW welding and proposed a method for
control of the detachment frequency in automatic GMAW
process. Chapuis et al. [14] investigated the metal deposition
of GMAW and found the law of the metal spreading. Che
et al. [15] simulated the evolution of metal spreading. )e
model assumes that droplets drip freely from a certain
height. )ese studies use simulation to analyze the effect of
droplet transfer on the formation of welding, which is a lot of
work, and it is difficult to analyze the relationship between
physical behaviors.

Wire melting, droplet oscillation, droplet transfer,
molten pool cooling, and droplet solidification are impor-
tant factors that influence the welding process. Droplet
transfer is a significant part of welding formation. Some
researchers have studied the metal transfer behavior of
welding. Bless [16] performed a physical analysis of the
short-circuit transition behavior during the welding process.
Ersoy et al. [17] studied the drop oscillation and detachment
of droplets on GMA by using a mass spring damping system.
Kang et al. [18] proposed a dynamic model that describes the
growth and separation of droplets for GMAW, considering
the effect of electrode melting to form a tapered electrode.
)ese methods enable us to consider all physical
phenomena.

Sufficient attention to current and weld metal surface
tension can lead to reduced spatter and improved process
control. Scotti et al. [19] studied metal transfer in solid wire
GMAWwelding and classified metal transfer modes. Huang
et al. [20] studied the influence of bypass current on metal
transfer. Planckaert et al. [21] proposed a hybrid model to
investigate MIG/MAG welding process in short-circuit
transfer. )e three classes of metal transfer modes are nature
metal transfer, controlled metal transfer, and interchange-
able metal transfer. )ese studies have investigated the effect
of droplet transfer on weld formation during the GMAW
process but did not consider the effect of wire feeding on
droplet transition, so they cannot explain welding formation
of CMT.

In this study, a new CMT droplet model considering the
wire electrode movement of short-circuit mode is proposed.
)is model combines two continuously physical phenom-
ena, namely, metal transfer and metal spreading. In this
model, the relations between each stage are analyzed, in-
cluding droplet growth and short-circuit. )e model pre-
dicts the formation of droplets at the wire electrode and their
transfer into the molten pool in CMTprocess. )e model is
validated using experimental measuredmetal transfer as well
as metal spreading. )is model allows us to better

understand the relationship between welding parameters
and weld formation. Results provide a theoretical basis for
the control of metal transfer, and solve the main problem of
intelligent welding technology.)e work helps to control the
welding dynamic process in intelligent welding
manufacturing.

2. Experimental Procedure

To study the behavior of the droplet and verify the con-
sistency of the theory, we carried out a series of experiments.

From the aspect of droplet transfer, the theory analyzes
the change in the wire feed speed of a single cycle CMT that
affects the droplet transfer and the weld width. Based on the
model of the welding geometry, the CMT welding experi-
ments were carried out, and results were recorded by a high-
speed camera. )e diagram of experimental equipment is
shown in Figure 1. )e experimental data were compared
with the model to analyze the effect of droplet transfer on the
increase in the melt width.

)e experimental setup is shown in Figure 2. )e ex-
perimental materials were AA6061-T6 aluminum. )e size
of the test pieces was 150mm 150mm 2mm, and the butt
joints were used in experiments.

In the experiment, the high-speed camera was Optronis’
CP80-3-M, and the recorded videos were used to accurately
observe the dynamic droplet transfer behavior during
welding. )e frame capture rate of the high-speed camera
was 4000 frames per second. )e images in the high-speed
camera were image-extracted and collected, and a total of
10000 images were obtained. )e camera also recorded the
welding of CMT in different parameters.

)e welding equipment used in the study includes
Fronius’ TPS4000CMT. )e welding wire was made of
1.2mm ER4043 as the filling material, and the shielding gas
was argon with a purity of 99.995%. )e welding schematic
is shown in Figure 1. During the welding process, the
welding torch was always perpendicular to the aluminum
plate. To reduce the influence of other factors, the test piece
was precleaned before welding. More details of the welding
parameters are listed in Table 1.

)ewelding speed of all experiments was set as 0.48m/min,
and the arc correction was −10%. It is to ensure that the droplet
deposition is not affected by welding speed and arc correction.
In this study, when the wire feed speed is 5.0m/min, the
welding current used in the experiment obtained through the
monitoring board is 118A.

3. Analytical Modeling of Metal
Transfer in CMT

3.1. Controlled Short-Circuit Transfer. Arc welding can be
seen as a cycle of arc stage and metal transfer stage. In arc
stage, with the ignition of the arc, the temperature rises
rapidly, which causes the wire melting to form a liquid
droplet on the electrode. As the wire gradually melts, metal
transfer occurs and thus the mass flows into droplet. When
the droplet does not attach on the electrode, it begins to
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separate from the electrode, then drip into the molten pool,
and finally solidify to form a weld to join the metals together.

In the GAMW process, different metal transfer modes
can be controlled by current and are affected by wire ma-
terials, shielding gas, and process parameters. In the natural
state, metal transfer modes can be classified into contact
transfer and free-flight transfer. In the free-flight transfer,
the droplet is affected by external force and naturally sep-
arated from the wire electrode. In this case, arc welding can
be divided into the following stages according to the metal
transfer behavior: droplet growth stage, droplet separation
stage, and droplet spreading stage. In short-circuit transfer,
the metal droplet is expanded to the molten pool before
separation, and the metal droplet comes in contact with the
liquid molten pool. )e metal behavior is mainly in the
following four stages: droplet growth stage, short-circuit
stage, droplet separation stage, and droplet spreading stage.

For some special welding requirements, droplet transfer
can be controlled. For example, thin-plate welding and
dissimilar metal welding need low-heat input. During the
short-circuit transfer mode, droplet slash and heat input
become easier to control due to physical contact between the
metal droplet and the molten pool. )erefore, some con-
trolled short-circuit transfer technologies have been

developed based on short-circuit transfer technology, as
reported by Norrish et al. [22].

CMT is related to controlled metal transfer. CMT is
based on short-circuit transfer and controls the movement
of the wire electrode. )e CMTdroplet transfer is shown in
Figure 3. )e transfer of droplet occurs during the short-
circuit stage of the welding process cycle, and the movement
of the wire helps the droplet transfer into the molten pool. In
the necking stage, the movement of the wire is used to assist
the separation of the droplet from the wire electrode. In
CMT, the controlled short-circuit transfer can reduce the
current heat input and the droplet shock, as reported by
Pang et al. [23].

3.2. #e Growth of Droplet. Welding parameters on CMT
mainly affect welding wire melting and droplet transfer. )e
adjustment of parameters will affect the growth and sepa-
ration of droplets. In the CMT welding process, the behavior
of the metal transfer is influenced by current. In the droplet
growth phase, the arc ignites the wire electrode, which is
affected by arc heat and Joule heat.)e welding wire melts to
form droplets at the electrode.

Joule heat can be calculated by

QJ � 􏽚
V
ρ(T)I

2dV � ρALI
2
, (1)

where ρ is the average electrical resistivity, L is the electrode
extension, and A is the cross sectional area of the electrode.
Arc heat can be obtained by

QA �
3
2

kTa

e
+ Va +Φ􏼠 􏼡I, (2)

where k is the Boltzmann constant, e is the elementary
charge, Va is the voltage value that characterizes the wire
heating by the arc, Ta is the average arc temperature, and Φ
is the work function of the electrode material.

Assuming that all heat input is used to melt the wire, the
melting rate is the total heat input by the system divided by
the heat required to melt the unit mass of the materials, as
reported by Planckaert et al. [21]:

dmR

dt
�
ρALI

2
+ (3/2)(kT/e) + Va +Φ( 􏼁I

􏽒
T2

T1
CpdT + ΔHT + ΔHM

, (3)

where ΔHT is the heat of crystalline transition and ΔHM is
the heat of fusion. TW is the wire temperature. )e melting
rate can be further simplified as a function of welding
current, as reported by Modenesi et al. [24]:

dmR

dt
� _mR � MR � αI + βlsI

2
,

mR �
4
3
πR

3ρ,

(4)

where MR is the wire melting rate, α is the arc heat coef-
ficient, β is the Joule heat coefficient, mR is the droplet mass,
R is the droplet radius, and ρ is the mass density of metal

Wire feeder

Wire feeder controller

High-speed camera

High-speed camera
controller

Figure 1: Welding schematic.

300mm

150mm

15
0m

m

150mm

2mm

2mm

Figure 2: )e size of workpiece.
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droplet. )ese values of physical parameters are listed in
Table 2.

)e wire feed speed is not completely equal to the
melting caused by the welding current. )e wire feed system
controls the wire feed speed. When the wire feed speed
increases, it feeds downward, and when it decreases, it draws
back:

dls

dt
� vwfd −

dm

πρr
2dt

, (5)

where r is the electrode radius, and vwfd is the wire feed
speed. When the electrode wire feeding is higher than the
wire melting rate, the droplet grows and the wire electrode
feed motion helps droplets contact the weld pool.

)e growth and separation of droplets can be described
by establishing a dynamic model of CMT. )e state of the
droplets during the transition can be studied using a dy-
namic model to investigate analyze the influence of the
movement of droplet transfer on the melting width of the
molten pool.

Assuming that the droplets formed by the welding are
spherical droplets, the molten material from the electrodes
enters the droplets at a velocity. During the growth phase of
the droplet, according to the conservation of momentum,
the mass of the droplet changes from m1 to m1 + dm, and the
speed of the droplet relative to the system changes from v1 to
v1 + dv, as shown in Figure 4, where u1 is the speed of the
fluid mass change relative to the droplet, that is, the speed at
which the molten wire flows into the droplet.

)e growth stage of the droplet can be regarded as a
variable mass system. )e system meets the momentum
theorem. According to the momentum theorem, the liquid
metal melted flows into the droplet, and the mass of the
droplet increases. )e droplet is affected to an external force,
and the system momentum changes:

dp � p2 − p1. (6)

)e impulse of the combined external force on an object
is equal to the increase in its momentum, and the equation
can be written as

Table 1: Experimental parameters used in CMT welding.

Test code Wire feed speed (m/min) Welding speed (m/min) Shielding gas (vol.% Ar)
1 3.0 0.48 99.995
2 3.5 0.48 99.995
3 4.0 0.48 99.995
4 4.5 0.48 99.995
5 5.0 0.48 99.995

(a) (b) (c) (d) (e) (f )

Figure 3: Short-circuit transfer in CMT.

Table 2: Physical parameter values used for calculations.

Properties (units) Values
ρ Density (kg·m−3) 2700
A Area of the electrode (mm2) 1.44
Va Arc voltage (V) 18
α Arc heating parameter (kg/As) 7.992×10−11

β Joule heating parameter (kg/mA2s) 1.252×10−11

c Surface tension (N/m) 1.2

Metal
droplet Metal

droplet

ElectrodeElectrode

I (t) I (t)

dm

u1

m1

m1 + dm

Fe

v1

v1 + dvFe

Figure 4: Variable mass system of droplet growth.

4 Shock and Vibration



RE
TR
AC
TE
D

Fedt � m1 + dm( 􏼁 v1 + dv( 􏼁 − m1v1 + u1dm( 􏼁,

Fedt � m1v1 + v1dm + m1dv + dmdv

− v1dm − u1dm − m1v1,

Fedt � m1dv + dmdv − u1dm,

Fedt + u1dm � m1 + dm( 􏼁dv.

(7)

)e conservation of momentum for the metal droplet
can be written as

m(t)
dv

dt
� Fe + u1

dm

dt
, (8)

where m(t) � mR � 􏽒 MRdt, Fe is the external forces, and
u1 � (MR/4πρr2).

)e external forces that affect droplets are Lorentz force,
surface tension, and gravitational force, as reported by Ersoy
et al. [17]. In the CMT process, the electrode feed force also
needs to be considered, as shown in Figure 5. In the short-
circuit stage, the wire feeding system controls the wire
drawing to assist the liquid bridge break and metal transfer
to the molten pool:

Fem �
μ0
4π

I
2
P,

Fs � 2πRc,

Fg �
4
3
πR

3ρg,

P � ln
R sin θz

r
􏼢 −

1
4

−
1

1 − cos θz

+
2

1 − cos θz( 􏼁
2 ln

2
1 + cos θz

􏼣,

(9)

where c is the surface tension coefficient, Fem is the Lorentz
force, Fs is the surface tension, Fg is the gravitational force,
Ff is the electrode feed force, μ0 is the permeability of free
space, R is the droplet radius, r is the electrode radius, and θz

is the conduction zone radius.
In this model, the droplet displacement caused by the

increase in the droplet mass is small, so the liquid bridge
shrinkage is ignored in the growth stage. In this case, the
liquid bridge radius is equal to the wire radius. In the droplet
growth stage, the wire feed force is 0; when the current level
is high, external forces will change the droplet transfer mode,
which becomes a combination of short-circuit transitions
and other transitional forms.

When droplet transfer occurs, the droplet transfer is
mainly realized by electrode feeding, as shown in Figure 6. In
thin-plate welding, less current is required, the external
forces are smaller, the droplets are always attached to the
wire electrode, and the transition of the droplet to the
molten pool requires electrode movement.

Short-circuit transfer is affected by wire feed and droplet
size. As shown in Figure 7, d is the initial distance between
the welding wire and the molten pool, the wire electrode
length is lw, Δlw is the amount of change in wire length, the
arc length is la, the distance between the droplet and the wire
electrode is dw, and the displacement of the droplet is D(t):

D(t) � R(t) + dw + Δlw. (10)

When the value of D(t) increases to be equal to the value
of d, a short-circuit transfer occurs, and the condition of
short-circuit is

D(t) � d. (11)

In the short-circuit stage, the wire feeds and contacts the
molten pool, and the arc length is 0.)e radius of the droplet
when a short-circuit transition occurs is recorded as Ri,
which is used for subsequent calculations.

Equations (8) and (10) can be combined to obtain the
radius of droplet and the displacement of electrode. )e
calculation results are shown in Figure 8, from which the
motion of the droplet can be analyzed.

3.3. Separation of Electrode and Metal Droplet. When the
wire is pumped back, the CMT process enters into the
necking stage. As shown in Figure 9, when the droplet starts
to contact the surface of the base material, the meniscus
liquid surface is formed. In this stage, the electrode and the
molten pool are connected by a metal liquid bridge.

As the wire is pumped back, the liquid bridge begins to
shrink. According to the research of Planckaert, the pressure
of the liquid bridge is calculated by

PB �
μ0I

2

8π2R2
1

+ c
1

R1
+

1
R2

􏼠 􏼡. (12)

When the value of PB is greater than 0, the liquid bridge
is broken, where c is the surface tension of the liquid bridge.
According to the momentum theorem of the variable mass
system, the residual mass remaining on the wire electrode
can be obtained, which will not be further discussed in this
paper.

)e flow velocity of the metal bridge flowing into the
molten pool surface is calculated by

υ �

�����������
2
ρ

PB + ρgh( 􏼁

􏽳

, (13)

where h is the distance from the center of liquid bridge to the
surface of molten pool, which is affected by the wire
extension.

3.4. #e Spreading of Metal Droplet on the Surface of the
Workpiece. )edroplet that transitions into the molten pool
will deform quickly, and in this stage, the motion of the
droplet can be simplified as droplet spreading, as reported by
Sivakumar et al. [25].

)e droplet has an initial velocity that strikes the
workpiece. In the CMT process, the droplet is always at-
tached to the wire electrode when impacting the workpiece.
Due to the influence of short-circuit transfer, the droplet is
not affected by the acceleration of gravity before contacting
the workpiece surface. )e initial velocity of the droplet is
equal to the wire feed speed.

Shock and Vibration 5



RE
TR
AC
TE
D

In CMT, the free surface deformation of molten pool is
small, the contact interface between droplet and basemetal is
assumed to be liquid-solid. )e metal droplet is difficult to
infiltrate the surface of the workpiece, the droplet cannot
spread completely over the workpiece and will gradually

spread to equilibrium, and the contact angle gradually
changes from θi to θe, as shown in Figure 10.

According to the research by Suli et al. [26], when the
droplet impacts with velocity V, the radius of the droplet can
be written as

RB

Ri

􏼠 􏼡

2

�
(We + 12)

3(1 − cos θ) + 4(We/
���
Ry

􏽰
)
, (14)

where We � (ρRV2/c), Ry � (ρRV/μ), V is the initial ve-
locity of the droplet when it contacts the surface of the
molten pool, Ri is the initial radius of the droplet when it
comes into contact with the surface of the base material, RB
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is the base radius of droplet in spreading process, c is the
surface tension coefficient, and μ is the viscosity coefficient.

Contact angle is expressed as a function of the cosine of
the contact angle and time, and is used to describe spreading
in reaction-limited wetting:

cos θe − cos θ � cos θe − cos θi( 􏼁exp(−λt), (15)

where θi is the initial contact angle, θe is the contact angle in
equilibrium, and λ is the kinetic constant, assuming that the

kinetic constant does not change with temperature. )ese
values are shown in Table 3.

Equations (14) and (15) lead to the following expression:

RB � R0

���������������������������������������������
(We + 12)

3 1 + cos θe − cos θi( 􏼁exp(−λt) − cos θe( 􏼁 + 4(We/
���
Ry

􏽰
)

􏽳

.

(16)

When the droplet spreads to the equilibrium state, the
radius after solidification is the weld width because the
droplet solidification time is longer than the spread time.

4. Results and Discussion

During the entire CMTwelding cycle, the droplet is formed
during the arcing phase, the ends of the wire are melted to
form droplets, and the droplet forms a small bridge when in
contact with the molten pool. At the same time, the CMT
welding obtains a short-circuit signal, then cuts off the
current, and the wire is pumped back to help the droplet
separate from the electrode.

As shown in Figure 11, the generation of the arc and the
growth of the droplet correspond to the arcing phase of the
CMT, and the droplet radius increases rapidly. )is stage is
defined as diffusion. )e initial rapid diffusion of droplet is
affected by the initial velocity of droplet and the direct heating of
arc. )is kind of direct arc heating contributes to the rapid
diffusion of droplet. At the beginning of the short-circuit
transition, the formed droplets are in contact with the electrodes
to the surface of the base metal, and are forced to diffuse under
the action of inertial forces. )is diffusion is affected by surface
tension and viscous resistance, and finally reaches equilibrium.
When the wire feed speed increases, the welding wire will start
to move from a higher distance to the metal surface, the du-
ration of the droplet growth process increases slightly, and the
amount of wire metal melted at the end of the wire increases.

)e droplet motion is recorded by a high-speed camera,
and the contour of the droplet is extracted. )e metal
transfer and spreading of droplets recorded by the high-
speed camera are shown in Figure 12.

Measurements of droplet dimensions are conducted
using MATLAB (up to 10,000 frames a test). )e program
extracts the values of several geometrical characteristics by
turning the original image into a binary image. )e program
is also used to find the edge and calculate the base droplet
radius, as shown in Figure 13.

)e comparison of the droplet spreading motion with the
model calculations shows a better agreement, as shown in
Figure 14. )e base radius changes very rapidly at the be-
ginning of the spreading. )e initial velocity of the droplet
transfer to the surface of the sheet is affected by the feed of the
wire. After this rapid change, the spreading of the large droplets
becomes smoother, and the welding heat is not directly heated
by the arc but is conducted through the heat affect zone.
According to the spreading dynamics theory, the average ex-
pansion speed of metal droplets is lower than the initial phase.

)e changes in the base radius at different wire feeding
speeds are shown in Figure 15. For thin-plate welding, the
change in parameters causes the external force of the droplet
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to change. At the same time, the increase in the current level
will change the melting rate of the wire, ensuring that the
short-circuit transfer occurs smoothly at a large wire feed
speed.

When the wire feeding speed is increased, the molten
pool will be affected by the wire movement, thereby in-
creasing the penetration depth and the welding width.

)erefore, in the CMT process, the welding formation is
mainly controlled by the movement of the electrode. )e
droplet transfer is mainly achieved in the form of a short-
circuit transition.

)e experiment also studied the movement of the
droplet under different parameters to verify the versatility
and guidance of the theoretical model.

Metal droplet

Substrate

R

(a)

θ

Ri

(b)

θequ

Requ

(c)

Figure 10: Metal droplet deformation.

Table 3: Physical parameter values used for calculations.

Properties (units) Values
θi Initial contact angle (°) 40
θe Contact angle in equilibrium (°) 160
λ Kinetic constant 20
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growth

Boost Transfer

Direction

Contact

0ms 1ms 2.5ms 12.5msSC

(a)

Arc ignition

Droplet
growth

Boost Transfer

Direction
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0ms 2ms 15.5ms9ms SC

(b)

Figure 11: Arc shape and droplet transfer at different process levels: (a) wire feed speed is 3.0m/min; (b) wire feed speed is 5.0m/min.

Figure 12: Droplet spreading process (wire feed speed is 5.0m/min). Figure 13: Binary image of the droplet radius (wire feed speed is
5.0m/min).
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)e model is used to calculate the welding width after
droplet spreading and solidification. Figure 16 shows the
welding formations in different wire feed speeds. )e
welding width increases with increasing wire feed speed, and
the theoretical calculations show good agreement with the

experimental results. In this study, the droplet spreading is
considered for the base material with smooth surface, so
errors between theoretical calculations and experimental
results may exist.

5. Conclusions

A theoretical model of CMT is developed and used to study
geometry formation of a droplet during its transfer.

According to the working mechanism of CMT, the
influence of CMT pumping motion on wire feeding speed
control is analyzed, and the influence of the balance between
wire feeding speed and wire melting speed on wire drawing
is investigated. Based on wire melting, droplet transfer, and
droplet spreading, the droplet movement in CMT welding is
analyzed.

Based on the analysis of CMT working mechanism and
droplet transfer, the relationship between CMT pumping
motion and wire melting rate is considered, the droplet
growth and transition model in the CMT working envi-
ronment is established. Considering the influence of the
contact angle on the spreading has been considered, a
spreading model of the droplet is established.
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)e proposedmodel can effectively predict the motion of
droplet in CMT welding and calculate the melting width of
the droplet solidified on the base metal.

)e theoretical model and the experimental results show
a high degree of consistency and can predict the geometry of
the weld. )is theory allows us to study the motion of this
macroscopic droplet in the CMT process.

Abbreviations

k: Boltzmann constant
L: Electrode extension
A: Area of the electrode
QJ: Joule heat
QA: Arc heat
Va: Arc voltage
Φ: Work function of material
MR: Wire melting rate
α: Arc heating parameter
β: Joule heating parameter
I: Welding current
ls: Electrode extension
vwfd: Wire feed speed
mR: Droplet mass
m(t): Droplet mass during droplet transfer period
R: Droplet radius in transfer process
Ri: Initial radius of the droplet when it contacts the

surface of base material
RB: Base radius of droplet in spreading process
Re: Base radius when the droplet is spread to equilibrium
r: Electrode radius
hm: Height of meniscus liquid surface
ρ: Mass density
Fe: External forces
μ0: Permeability of free space
θz: Conduction zone radius
d: Initial distance between the welding wire and the

molten pool
D(t): Displacement of the droplet
lw: Wire electrode length
dw: Distance between the droplet and the wire electrode
la: Arc length
θi: Initial contact angle
θe: Contact angle in equilibrium
We: Weber number
Ry: Reynolds number
c: Surface tension coefficient
μ: Viscosity coefficient.
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Aiming at the problems of the lack of abnormal instances and the lag of quality anomaly discovery in quality database, this paper
proposed the method of recognizing quality anomaly from the quality control chart data by probabilistic neural network (PNN)
optimized by improved genetic algorithm, which made up deficiencies of SPC control charts in practical application. Principal
component analysis (PCA) reduced the dimension and extracted the feature of the original data of a control chart, which reduced
the training time of PNN. PNN recognized successfully both single pattern and mixed pattern of control charts because of its
simple network structure and excellent recognition effect. In order to eliminate the defect of experience value, the key parameter of
PNN was optimized by the improved (SGA) single-target optimization genetic algorithm, which made PNN achieve a higher rate
of recognition accuracy than PNN optimized by standard genetic algorithm. Finally, the above method was validated by a
simulation experiment and proved to be the most effective method compared with traditional BP neural network, single PNN,
PCA-PNN without parameters optimized, and SVM optimized by particle swarm optimization algorithm.

1. Introduction

)e core of quality control lies in the full utilization and
analysis of quality-related data. )e goal of quality control is
to identify quality problems early and take appropriate
measures to solve them so that the production system can
remain stable for a long time. )erefore, how to effectively
organize and utilize quality data has become a problem
which is widely studied and focused on by enterprises and
scholars. SPC (statistical process control) is the most widely
used quality control method at present. Control chart was
first proposed by W. A. Shewhart of the United States, and
the state of a series of distribution of points, which is drawn
on the control chart according to certain processing
methods, is used to determine whether the production
process is in a stable and controlled state. Based on the
principle of saliency statistics, the control chart divides
fluctuations of the production system into system fluctua-
tions and abnormal fluctuations and considers that system
fluctuation always exists and cannot be eliminated; however,

abnormal fluctuations will show certain rules on the control
chart and can be eliminated by certain control means [1].

Since the control chart can monitor the running state of
production system and predict possible quality problems,
consequently, the identification for quality anomaly is
mainly about recognizing the anomaly pattern of SPC
control chart. Early anomaly pattern recognition mainly
adopted the rule-based ES for anomaly patterns determi-
nation [2]. In fact, the utilization of rules in ESs based on
statistical properties has the difficulty that similar statistical
properties may result from different patterns, and this could
create problems of incorrect recognition [3]. Besides, this
recognition method of anomaly pattern by establishing the
expert system based on rules needs to establish a large
number of determination rules, which could cause the
problem of rule combination explosion; moreover, the rate
of recognition accuracy was greatly affected for the existence
of random factors [4]. )e ANNs are capable of learning and
self-organizing and hence are widely adopted in the field of
control chart pattern recognition (CCPR). Aiming at the
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common difficulty in existing control chart pattern recog-
nition approaches of discrimination between different types
of patterns, which share similar features, Guh et al. proposed
an artificial neural network for online control chart pattern
detection and discrimination [5]. Spoerre and Perry pro-
posed the method of control chart pattern recognition using
a backpropagation neural network, and the results indicated
that the performance of the backpropagation neural network
was very accurate in identifying control chart patterns [6].
El-Midany et al. proposed a framework for the pattern
recognition of control chart in a multivariate process using
artificial neural networks [7]. Wu and Wu investigated the
method of wavelet neural network-based control chart
patterns recognition [8]. Ebrahimzadeh et al. presented a
novel hybrid intelligentmethod (HIM) for recognition of the
common types of control chart pattern (CCP) using
K-MICA clustering and neural networks [9]. Addeh et al.
proposed a method of pattern recognition of control chart
using RBF neural network with new training algorithm and
practical features [10]. Since late 1990s, until the year of
2010, feature-based and wavelet-denoise input representa-
tion techniques have been studied for boosting the recog-
nition performance of ANNs. )e most significant works
include wavelet-ANN [11], shape features-ANN [12], and
statistical features-ANN [13].

Most of the previous works used raw process data as
the input vector for CCPR [14]. In recent years, main
research contents are concentrated on feature extraction
and classification algorithm improvement. Recognizing
and diagnosing abnormalities based on original data di-
rectly may lead to algorithms’ training time too long
because the dimension of input data is too high. Con-
sequently, some studies first extracted these features of
control chart [15] and then identified patterns of the
control chart. Zhang and Cheng integrated shape and
statistical features with principal component analysis
(PCA) to reduce features dimensions [16]. Gauri and
Chakraborty first extracted seven features of control chart
based on the CART regression tree and then used the
artificial neural network ANN to recognize patterns,
which achieved good results [17]. Gauri and Chakraborty
investigated feature-based pattern recognition of the
control chart and found that the feature-based ANN
recognizers could achieve better recognition performance
than the feature-based heuristic recognizers [18]. Gauri
and Chakraborty studied the recognition of control chart
patterns by improved selection of features [17]. Ebra-
himzadeh and Ranaee researched on the method of
control chart pattern recognition using an optimized
neural network and efficient features, and the entropies of
the wavelet packets are applied for the first time in the
feature extraction module [19]. Cheng et al. studied the
recognition method of control chart patterns using a
neural network-based pattern recognizer with features
extracted from correlation analysis, and the superior
performance of the feature-based recognizer over the raw
data-based one is demonstrated using synthetic pattern
data [20]. Xanthopoulos and Razzaghi completed pattern
recognition of control chart based on the combination of

statistical feature extraction and weighted support vector
machine [21]. Kao et al. proposed a multistage pattern
recognition scheme of control chart based on independent
component analysis and support vector machine and
achieved accurate and stable recognition results [22].
Zhao et al. researched the recognition of control chart
pattern using improved supervised locally linear em-
bedding and support vector machine, which effectively
eliminated redundant features in the feature set and re-
duced the complexity of the classification model [23]. Liu
and Zhou first extracted the mean characteristics of data
and then divided the anomaly patterns into three cate-
gories through a layer of ANN, and the second layer
realized specific classification of anomalies through three
SVM classifiers with their key parameters optimized by
PSO (particle swarm optimization) algorithm [24]. Zan
et al. proposed a method of control chart pattern rec-
ognition based on the convolution neural network, and
the feasibility and effectiveness were verified through
Monte Carlo simulation [25]. Besides, some new neural
networks such as Elman network [26] and spiking neural
network (SNN) [27] were also applied to the identification
of anomaly patterns. As can be seen from the above review
that most of the scholars adopted ANNs in the field of
CCPR because of their significant advantages, however,
one disadvantage with ANN is the difficulty in selecting
the topology and architecture of the ANN model, and the
network architecture and training parameters of ANN are
quite hard to determine too. In view of this problem, Guh
proposed the genetic algorithm (GA) to evolve the con-
figuration and the training parameter set of the ANN
model in solving the online CCPR problem [28]. Addeh
et al. investigated the design of an accurate system for the
control chart patterns (CCPs) recognition, and the cuckoo
optimization algorithm (COA) was applied to find the
optimal parameters of the radial basis function neural
network (RBFNN) [29].

In recent years, with the successful application and in-
depth investigation of many machine learning techniques
(e.g., artificial neural networks (ANNs) and support vector
machines (SVMs)) in the field of CCPR, there are a few
scholars paying attention to the identification of concurrent
CCPs (two or more basic CCPs occurring simultaneously).
Yang et al. finished the identification and quantification of
concurrent control chart patterns using extreme-point
symmetric mode decomposition and extreme learning
machines [30]. Zhang et al. investigated the recognition of
mixture control chart patterns based on fusion feature re-
duction and fireworks algorithm-optimized MSVM [31].
However, the current study about the identification of
concurrent CCPs is not far enough and needs to be studied
further.

Although all the above studies provided very critical
references for the sequent research work, all these methods
currently have certain defects.)e topology and architecture
of the ANN model are very difficult to select, and the
network architecture and training parameters of ANN are
quite hard to determine too. SVM is a two classifier, which is
not enough efficient in the problem of multiclassification
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identification of abnormal patterns. In addition, in most
cases, there are always several kinds of abnormal patterns
appearing simultaneously in actual production, and current
research mostly focuses on the identification of single
anomalies. Consequently, the research on CCPR needs to be
further expanded.

Based on the above explanation, this paper proposes a
kind of quality anomaly recognition method based on a
probabilistic neural network optimized by improved genetic
algorithm, which finished the recognition of mixed anomaly
patterns. As can be seen from the simulation experiment, the
proposed method has certain advantages in the accuracy of
anomaly recognition, the speed of network training, and the
ease of method.

2. Quality Abnormal Patterns and Description

In 1958, Western Electric Company first proposed the
problem of control chart pattern recognition and sum-
marized abnormal patterns of the control chart [32], and
accordingly, later scholars made in-depth research on
abnormal pattern of the control chart and identification
problem. With the development of artificial intelligence
technology, using artificial intelligence technology to
recognize and determinate the control chart abnormal
pattern has become one of the important research con-
tents in the field of quality diagnosis. )ere are six basic
modes of the control chart, as shown in Figure 1. )e
combination of different anomaly modes and abnormal
modes reflects different states and unstable factors of
production process. Starting from the abnormal mode of
the control chart, it can discover hidden quality dangers in
the current production process and then take corre-
sponding solutions timely.

)e production process can be expressed by the fol-
lowing formula:

x(t) � μ + d(t) + r(t), (1)

where t represents the sampling moment of production data,
x(t) represents the observation value of production process,
μ is the mean of quality characteristics when production is
stable, d(t) is the abnormal fluctuations caused by special
factors, and different d(t) leads to different abnormal pat-
terns in the production process. Under normal circum-
stances, d(t) is 0; r(t) is normal fluctuations caused by
random factors, which obey normal distribution with a
mean of 0 and a variance of σ2.

Under normal circumstances, d(t) � 0, the control chart
is in a normal mode, and the above points are randomly
distributed; d(t) � A × sin(2πt/T) is in the periodic mode,
and A and T are amplitude and period, respectively; in the up
(down) trend mode d(t) � ± k × t, in which k is the slope of
the trend, positive when up and negative when down; in the
up (down) step mode d(t) � ± 1(t − t0) × s, in which t0 is
the moment when the step mode occurs and s is step am-
plitude; when t≥ t0, 1(t − t0) � 1 and otherwise 0. For the
mixed anomaly mode, it can be described as the addition of
abnormal fluctuation d(t) of basic anomaly mode.

3. Quality Anomaly Recognition Model
Based on Optimized PNN

)e model of quality anomaly recognition based on opti-
mized probabilistic neural network (PNN) was established
and is shown in Figure 2, including the three stages: feature
extraction, pattern classification, and parameter optimiza-
tion. In the stage of feature extraction, the dimension of
original sample data is reduced to certain dimension by
PCA, and 85% information of the original data is retained.
)e PNN is used to identify the control pattern, including
basic pattern and mixed pattern recognition. )e improved
single-objective optimization genetic algorithm SGA is used
to optimize main parameters of the PNN network, and the
recognition accuracy of training samples is used as the
fitness function of the SGA.

)e detailed steps of the model are as follows:

Step 1: the generation of sample data. )e Monte Carlo
method simulated and generated sample data of six
basic modes and the eight mixed modes.
Step 2: feature extraction. As the input of PNN, the
sample data were decreased to certain dimension by
PCA.
Step 3: establishment of PNN network. Determine the
network structure and set parameters range for sub-
sequent pattern recognition and algorithm
optimization.
Step 4: optimization of parameters. )e improved SGA
was used to optimize parameters. Recognition accuracy
of PNN is taken as the fitness function to find the
optimal smoothing coefficient σ.
Step 5: classification.)e PNN network after parameter
optimization realized the recognition of control pattern
abnormal mode.

3.1. Feature Extraction and Dimensionality Reduction of
Control Chart Based on PCA. In this paper, the feature
extraction method based on PCA is a new feasible data
processing method of the control graph mode in addition to
the calculation of shape and statistical features and wavelet
transform. PCA eliminates the complexity of calculating
multiple features and also does not need to select the ap-
propriate number of decomposition layers and wavelet levels
as the wavelet transform. It is certificated by experiments
that the same processing effect can be achieved.

Principal component analysis (PCA) is the most com-
monly used method of feature dimension reduction in data
processing. It can extract the main components from
complex multidimensional data and greatly improve the
training speed of model without losing too much model
quality [33]. )e main method of PCA is to find a set of
mutually orthogonal coordinate axes from the distribution
space of original data. )e first new coordinate axis is the
direction with the largest variance in the original data, and
the second new coordinate axis is the direction with the
largest variance in orthogonal plane with the first coordinate
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axis, and so on; a series of such axes can be obtained. In these
axes, the first few axes containing most of the variances are
used to achieve dimensionality reduction of data features.

Figures 3–6 show the two-dimensional and three-di-
mensional scatter plots of original data and PCA processed
data, respectively. It can be clearly seen from figures that data
of different anomaly types are obviously distinguished after
PCA principal component analysis, which is convenient for
subsequent classification identification of PNN.

3.2. Anomaly Recognition Method Based on PNN.
Probabilistic neural network (PNN) is one kind of radial
basis neural network, and it replaces the commonly used S-

shaped activation function in neural networks with expo-
nential function to calculate the nonlinearity discrimination
boundary, which is close to the Bayesian optimal decision
surface [34]. PNN is a kind of nonparametric estimation
method based on the Bayesian optimal classification deci-
sion theory and probability density function in statistics
[35], unlike the backpropagation algorithm used by tradi-
tional neural networks, and PNN is a kind of forward
propagation algorithm without feedback. )e structure of a
typical probabilistic neural network is shown in Figure 7.

PNN is composed of the input layer, the sample layer, the
summation layer, and the output layer (the competition
layer). )e number of neurons in the input layer is the
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Figure 1: Basic quality anomaly modes: (a) normal mode; (b) cycle mode; (c) upward trend mode; (d) downward trend mode; (e) upward
step mode; (f ) downward step mode.
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number of dimensions of the feature vector, which is the
data dimension after PCA processing, and the input layer
calculates the distance between the input vector and all the
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Figure 6: 3D scatter plot of data after PCA processing.
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training sample vectors. )e sample layer includes all the
training samples, the number of neurons is the number of all
training samples, and the activation function is a Gaussian
function. )e number of neurons in the summation layer is
the number of categories, and the output of sample layer is
added by classification. )e output layer is also called
competition layer, which has only one neuron, and the kind
of output with the highest probability value is 1.

In this paper, the input layer of PNN network for
anomaly recognition is the control graph data after PCA
processing. )e number of neurons in the input layer is
determined by the result of PCA processing. )e number of
neurons in the sample layer is the number of training
samples. )e number of neurons in the summation layer is
10, which is 10 categories representing anomalies, including
six basic modes and four mixed modes. Compared to the
traditional BP neural network and RBF neural network, the
learning process of PNN network is simple, its learning
speed is fast, classification is more accurate, and its tolerance
for errors and noise is also high without local minimum
value problem; when the number of representative training
samples increases large enough, the classifier must be able to
achieve Bayesian optimality.

3.3. Optimization of PNN Network Parameters Based on
Genetic Algorithm. In the PNN neural network model, the
only parameter that needs to be adjusted is σ, which is also
called the smoothing parameter. When σ is too small, it only
acts as an isolation for individually trained samples, and it is
essentially the nearest neighbor classifier; when σ is too large,
it cannot distinguish the details completely and may not
achieve the ideal classification effect for different categories
with inconspicuous boundaries, and the effect is close to the
linear classifier.

Genetic algorithm (GA) [36] is a computational model
that simulates natural selection of Darwin’s biological
evolution theory and biological evolution process of genetic
mechanisms. It is a method to search optimal solutions by
simulating natural evolutionary processes. Based on the
principle of biological evolution, genetic algorithm generates

new groups by selection, crossover, and mutation contin-
uously according to individual fitness value in each gener-
ation group, which enables the population to evolve
continuously. At the same time, the global parallel search
technology is used to search and optimize optimal indi-
viduals for finding approximate optimal solution for the
problems. )e genetic algorithm is not limited to the
continuity and differential of functions, and the result is
globally optimal. )erefore, genetic algorithm is used to
optimize smoothing coefficient of the PNN probabilistic
neural network for finding optimal parameters. )e specific
process is as follows:

(1) )e range of smoothing factor σ is set, and the initial
population σ1, σ2, σ3, . . . , σM􏼈 􏼉 is randomly gener-
ated, where M is the scale of population and current
number of generation t � 1.

(2) According to the smoothing factor obtained by
chromosome, the PNN network is constructed, the
number of correct classifications and the accuracy
rate is calculated, and the fitness function of the
chromosome is calculated accordingly.

(3) Winners are selected, and operations such as
crossover and mutation are performed to obtain the
next generation population.

(4) Current generations t � t + 1 are updated.
(5) It is checked whether termination condition is met;

that is, the given number of iterations is reached. If
the end condition is met, the algorithm stops run-
ning; otherwise, it returns to step 2.

(6) )e individual with the best fitness value is used as
the result of algorithm optimization and input PNN
network for obtaining the final recognition model.

4. Simulation Experiment Analysis

4.1. Data Simulation and Parameter Setting. )e Monte
Carlo method is used to generate 1000 samples, respectively,
for six basic patterns and four mixed patterns, which is a
total of 10,000 samples of control pattern. 70% of samples as
a training set were chosen and 30% as a test set. Each of the
control chart samples includes 25 data points, which are set
according to the control chart standard of the SPCmanual in
TS16949 series quality technology standard of American
Automotive Industry Action Group (AIAG). )e parame-
ters values of each abnormal mode are shown in Table 1.

4.2. Feature Extraction and Dimensionality Reduction.
Using PCA to reduce dimensionality and extract feature for
original data, generally take the dimension of the former
85% of original data, which is exactly the sum of data of the
former nine dimensions. )erefore, take the principal
component with 85% variance contribution rates as the data
after reducing dimension. Figure 8 shows the principal
components with cumulative variance contribution rate of
85% and their respective proportions.

According to the results of principal component analysis
(PCA), the original data in 25 dimensions are reduced to
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only 9 dimensions of data. )e 9 principal components are
used as the dimension-reduced data and input PNN network
for learning training of pattern recognition, which can
greatly reduce the training time of the model and increase
the accuracy of recognition result.

4.3. Algorithm Parameters Optimization. Use the improved
single-objective optimization genetic algorithm (SGA) in-
stead of standard genetic algorithm flow to generate off-
spring by crossover and mutation at first, then the two
generations of father and child are merged, and finally, select
and retain elite population from merged population, which
can avoid that the best individual will be destroyed by the
hybridization operation.

)e optimization algorithm has 100 individuals in per
generation population and evolves 200 generations in total.
When SGA is running, a set of smoothing parameters are
randomly generated, generating the offspring by crossover
and mutation, and then the parents and the progeny are
combined and select individuals with high fitness to survive.
)e final optimization results of improved SGA are shown in
Figure 9; blue curve represents the rate of average training
accuracy of each generation population, and orange curve

represents the optimal rate of recognition accuracy of each
generation population. When the algorithm runs to the 11th
generation, the rate of training accuracy of the best indi-
vidual in the population reaches the highest with the optimal
smoothing parameter of 1.7385 and the optimal objective
function value of 95.10%, which is also the rate of training
accuracy. However, the optimal smoothing parameter is
0.8161 when PNN is optimized by traditional standard
genetic algorithm, and the rate of recognition accuracy of
PNN is only 81.69%; the optimization results of PNN op-
timized by standard genetic algorithm is shown in Figure 10.
Consequently, PNN optimized by the improved SGA has a
higher rate of recognition accuracy than that of standard
genetic algorithm.

4.4. Model Test Result. Put optimized parameters into the
model and input test sample data, and then, the final rec-
ognition results are shown in Table 2.

It can be seen from the model test results that the
proposed method in this paper has a higher recognition
accuracy for the basic model, most recognition accuracy is
above 97%, and the average recognition rate for the mixed
mode is also more than 90%. However, it also found that, in

Table 1: Parameter settings for various abnormal conditions.

Control chart mode Mode parameters Parameters values
Normal mode (NOR) Mean value μ, standard deviation σ μ � 0, σ � 1
Cycle mode (CYC) Cycle T, amplitude A T ∼ U(8, 16), A ∼ U(1.5, 2.5)

Upward (downward) trend mode (IT) Slope k k ∼ U(0.05, 0.10)

Upward (downward) step mode (US) Step amplitude s, time of occurrence t0 s ∼ U(1.5, 2.5), t0 � 2
Cycle + trend mode (CT) T, A, k Value is the same as above
Cycle + step mode (CS) T, A, s, t0 Value is the same as above
Trend + step mode (TS) k, s, t0 Value is the same as above
Cycle + trend + step mode (CTS) A, T, k, s, t0 Value is the same as above
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the cyclic step mode, the cyclic trend step mode, and the
cyclic trend mode, where the recognition accuracy is rela-
tively low, a considerable part of modes is recognized as
other modes, which indicates that the distinction of modes
for trend components and steps components of control chart
needs to be further improved. In the future, it may be
considered to take other measures to classify and recognize
these two modes, such as taking different smoothing pa-
rameters for different modes, which can make the model
achieve a better recognition effect.

4.5. Comparison with Other Methods. In order to compare
with the PCA-SGA-PNNmethod proposed in this paper, the
BP, PNN, and PCA-PNN control chart recognition models
are established, respectively. Among them, (1) the number of
input layer neurons of BP neural network is 25 and the
number of hidden layers is 3. (2) Use PNN network for
pattern recognition without data processing. (3) )e data
after PCA dimensionality reduction is input into the PNN

network for identification, and no parameter optimization is
performed. (4) )e PNN parameter is optimized by the
improved SGA method, and then, PNN is used to identify
the control chart model, which is the method proposed in
this paper. (5) A recognition model is established by SVM
optimized by particle swarm optimization algorithm. )e
comparison results of several methods are shown in Table 3.

From the analysis of the results in the table, the following
conclusions can be drawn:

(1) )e recognition accuracy of a single BP neural
network or PNN network is relatively low, and the
recognition accuracy of the model with PCA analysis
and dimensionality reduction is obviously improved,
indicating that feature extraction is beneficial to the
recognition of basic modes and mixed modes of
control graphs.

(2) )e recognition accuracy of the model after opti-
mizing PNN network parameters by SGA is further
improved. )rough parameters optimization, the
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Figure 9: Improved genetic algorithm optimization results.
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blindness of relying on the empirical value is avoi-
ded, and a better recognition rate is obtained.

(3) Compared with SVM optimized by particle
swarm optimization, the recognition accuracy of
this method proposed in this paper is higher,
which indicates that PNN network has certain
advantages in the pattern recognition of the
control graph; it is a feasible and effective iden-
tification method.

5. Conclusions

)is paper proposes the method of quality anomaly pattern
recognition based on probabilistic neural network optimized
by improved single-target optimization genetic algorithm.

(1) In order to reduce the training time of the model,
PCA (principal component analysis) was adopted in
this paper and reduced the dimensionality of the
original data of the control chart.

(2) PNN completed the recognition of single mode and
mixed mode of control chart because of its merits of
simple structure and good recognition effect. )e
smoothing parameter of PNN was optimized by the
improved (SGA) single-target optimization genetic
algorithm, which eliminated the deficiency of ex-
perience value. )e improved SGA got the optimal
smoothing parameter of 1.7385, which made PNN
achieve the optimal objective function value of
95.10%, which is also the rate of recognition accu-
racy. )e rate of recognition accuracy was only
81.69% when compared with PNN optimized by
traditional genetic algorithm. )erefore, PNN op-
timized by improved SGA could achieve a higher

recognition accuracy than that of traditional genetic
algorithm.

(3) )e above research content was verified by sim-
ulation experiments, and compared with the tra-
ditional BP neural network, single PNN, PCA-
PNN model without parameter optimization, and
the SVM model optimized by particle swarm
optimization (PSO) algorithm, the PNN optimized
by improved SGA achieved the best recognition
effectiveness. Consequently, the method proposed
in this paper has certain positive significance for
promoting the application of control charts in
actual production and helping enterprises to find
out the quality anomalies timely in the production
process.
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