
Complexity

Complexity, Dynamics, Control,
and Applications of Nonlinear
Systems with Multistability 2021

Lead Guest Editor: Viet-Thanh Pham
Guest Editors: Sundarapandian Vaidyanathan, Jesus Manuel Muñoz-
Pacheco, and Ahmad Taher Azar

 



Complexity, Dynamics, Control, and
Applications of Nonlinear Systems with
Multistability 2021



Complexity

Complexity, Dynamics, Control, and
Applications of Nonlinear Systems with
Multistability 2021

Lead Guest Editor: Viet-anh Pham
Guest Editors: Sundarapandian Vaidyanathan, Jesus
Manuel Muñoz-Pacheco, and Ahmad Taher Azar



Copyright © 2023 Hindawi Limited. All rights reserved.

is is a special issue published in “Complexity.” All articles are open access articles distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Chief Editor
Hiroki Sayama  , USA

Associate Editors
Albert Diaz-Guilera  , Spain
Carlos Gershenson  , Mexico
Sergio Gómez  , Spain
Sing Kiong Nguang  , New Zealand
Yongping Pan  , Singapore
Dimitrios Stamovlasis  , Greece
Christos Volos  , Greece
Yong Xu  , China
Xinggang Yan  , United Kingdom

Academic Editors
Andrew Adamatzky, United Kingdom
Marcus Aguiar   , Brazil
Tarek Ahmed-Ali, France
Maia Angelova  , Australia
David Arroyo, Spain
Tomaso Aste  , United Kingdom
Shonak Bansal  , India
George Bassel, United Kingdom
Mohamed Boutayeb, France
Dirk Brockmann, Germany
Seth Bullock, United Kingdom
Diyi Chen  , China
Alan Dorin  , Australia
Guilherme Ferraz de Arruda  , Italy
Harish Garg  , India
Sarangapani Jagannathan  , USA
Mahdi Jalili, Australia
Jeffrey H. Johnson, United Kingdom
Jurgen Kurths, Germany
C. H. Lai  , Singapore
Fredrik Liljeros, Sweden
Naoki Masuda, USA
Jose F. Mendes  , Portugal
Christopher P. Monterola, Philippines
Marcin Mrugalski  , Poland
Vincenzo Nicosia, United Kingdom
Nicola Perra  , United Kingdom
Andrea Rapisarda, Italy
Céline Rozenblat, Switzerland
M. San Miguel, Spain
Enzo Pasquale Scilingo  , Italy
Ana Teixeira de Melo, Portugal

Shahadat Uddin  , Australia
Jose C. Valverde  , Spain
Massimiliano Zanin  , Spain

https://orcid.org/0000-0002-2670-5864
https://orcid.org/0000-0002-3114-0984
https://orcid.org/0000-0003-0193-3067
https://orcid.org/0000-0003-1820-0062
https://orcid.org/0000-0003-4527-0082
https://orcid.org/0000-0002-8587-6065
https://orcid.org/0000-0003-0808-9065
https://orcid.org/0000-0001-8763-7255
https://orcid.org/0000-0002-8407-4650
https://orcid.org/0000-0003-2217-8398
https://orcid.org/0000-0003-1379-7568
https://orcid.org/0000-0002-0931-0916
https://orcid.org/0000-0002-4219-0215
https://orcid.org/0000-0002-6551-6011
https://orcid.org/0000-0002-0609-0129
https://orcid.org/0000-0002-5456-4835
https://orcid.org/0000-0003-1647-5126
https://orcid.org/0000-0001-9099-8422
https://orcid.org/0000-0002-2310-3737
https://orcid.org/0000-0003-3339-669X
https://orcid.org/0000-0002-4707-5945
https://orcid.org/0000-0003-3078-411X
https://orcid.org/0000-0002-5559-3064
https://orcid.org/0000-0003-2588-4917
https://orcid.org/0000-0003-0091-6919
https://orcid.org/0000-0002-3214-9606
https://orcid.org/0000-0002-5839-0393


Contents

Synchronization of a New Chaotic System Using Adaptive Control: Design and Experimental
Implementation
Alfredo Roldán-Caballero  , J. Humberto Pérez-Cruz  , Eduardo Hernández-Márquez  , José Rafael
García-Sánchez  , Mario Ponce-Silva  , Jose de Jesus Rubio  , Miguel Gabriel Villarreal-Cervantes  ,
Jesús Martínez-Martínez  , Enrique García-Trinidad  , and Alejandro Mendoza-Chegue 

Research Article (22 pages), Article ID 2881192, Volume 2023 (2023)

Analytical Solution for the Cubic-Quintic Duffing Oscillator Equation with Physics Applications
Alvaro H. Salas  , Lorenzo J. Martínez H, and David L. Ocampo R 

Research Article (14 pages), Article ID 9269957, Volume 2022 (2022)

Identities on Changhee Polynomials Arising from -Sheffer Sequences
Byung Moon Kim, Taekyun Kim  , Jin-Woo Park  , and Taha Ali Radwan
Research Article (16 pages), Article ID 5868689, Volume 2022 (2022)

New Periodic and Localized Traveling Wave Solutions to a Kawahara-Type Equation: Applications to
Plasma Physics
Haifa A. Alyousef  , Alvaro H. Salas  , M. R. Alharthi  , and S. A. El-Tantawy 

Research Article (15 pages), Article ID 9942267, Volume 2022 (2022)

Stability Analysis for Differential Equations of the General Conformable Type
Abdellatif Ben Makhlouf  , El-Sayed El-Hady  , Salah Boulaaras  , and Mohamed Ali Hammami 

Research Article (6 pages), Article ID 7283252, Volume 2022 (2022)

Chaotic Behaviors and Coexisting Attractors in a New Nonlinear Dissipative Parametric Chemical
Oscillator
Y. J. F. Kpomahou  , A. Adomou, J. A. Adéchinan  , A. E. Yamadjako  , and I. V. Madogni
Research Article (16 pages), Article ID 9350516, Volume 2022 (2022)

Synchronous Reluctance Motor: Dynamical Analysis, Chaos Suppression, and Electronic
Implementation
Balamurali Ramakrishnan  , Andre Chéagé Chamgoué  , Hayder Natiq  , Jules Metsebo  , and Alex
Stephane Kemnang Tsafack 

Research Article (11 pages), Article ID 8080048, Volume 2022 (2022)

A Unified Power Quality Conditioner for Feeder Reconfiguration and Setting to Minimize the Power
Loss and Improve Voltage Profile
Zhigao Huang  , Farid Shahbaazy, and Afshin Davarpanah 

Research Article (8 pages), Article ID 5742846, Volume 2022 (2022)

On the Rejection of Random Perturbations and the Tracking of Random References in a Quadrotor
Jesus Alberto Meda-Campaña  , Jonathan Omega Escobedo-Alva  , José de Jesús Rubio  , Carlos
Aguilar-Ibañez  , Jose Humberto Perez-Cruz  , Guillermo Obregon-Pulido  , Ricardo Tapia-
Herrera  , Eduardo Orozco, Daniel Andres Cordova, and Marco Antonio Islas 

Research Article (16 pages), Article ID 3981340, Volume 2022 (2022)

https://orcid.org/0000-0003-0495-5894
https://orcid.org/0000-0002-2049-2116
https://orcid.org/0000-0002-6590-1075
https://orcid.org/0000-0001-7036-0990
https://orcid.org/0000-0002-4236-6903
https://orcid.org/0000-0002-2005-5979
https://orcid.org/0000-0002-7565-8128
https://orcid.org/0000-0002-1438-6384
https://orcid.org/0000-0003-2875-0500
https://orcid.org/0009-0008-6145-490X
https://orcid.org/0000-0001-9343-6062
https://orcid.org/0000-0001-9698-6887
https://orcid.org/0000-0002-3731-7023
https://orcid.org/0000-0003-0268-6926
https://orcid.org/0000-0003-1727-0958
https://orcid.org/0000-0001-9343-6062
https://orcid.org/0000-0002-8205-1287
https://orcid.org/0000-0002-6724-7361
https://orcid.org/0000-0003-1534-4271
https://orcid.org/0000-0002-4955-0842
https://orcid.org/0000-0003-1308-2159
https://orcid.org/0000-0002-9347-4525
https://orcid.org/0000-0003-4496-818X
https://orcid.org/0000-0002-2106-4586
https://orcid.org/0000-0003-0142-7703
https://orcid.org/0000-0001-8412-9466
https://orcid.org/0000-0002-7422-8839
https://orcid.org/0000-0003-1303-9089
https://orcid.org/0000-0002-4312-6856
https://orcid.org/0000-0002-4602-9293
https://orcid.org/0000-0001-9839-2097
https://orcid.org/0000-0002-3697-1808
https://orcid.org/0000-0001-6557-2745
https://orcid.org/0000-0001-8429-0591
https://orcid.org/0000-0002-2005-5979
https://orcid.org/0000-0003-3925-2435
https://orcid.org/0000-0002-2049-2116
https://orcid.org/0000-0002-9127-9312
https://orcid.org/0000-0003-0674-9082
https://orcid.org/0000-0002-2545-9278


New Stabilization Properties of Pendulum Models Applying a Large Parameter
A. I. Ismail   and Hamza A. Ghulman
Research Article (12 pages), Article ID 2704012, Volume 2022 (2022)

A New Chaotic System with Only Nonhyperbolic Equilibrium Points: Dynamics and Its Engineering
Application
Maryam Zolfaghari-Nejad  , Mostafa Charmi  , and Hossein Hassanpoor 

Research Article (16 pages), Article ID 4488971, Volume 2022 (2022)

Some Real-Life Applications of a Newly Designed Algorithm for Nonlinear Equations and Its Dynamics
via Computer Tools
Amir Naseem  , M. A. Rehman  , and Jihad Younis 

Research Article (9 pages), Article ID 9234932, Volume 2021 (2021)

Dissipative Filter Design for Nonlinear Time-Varying-Delay Singular Systems against Deception Attacks
Guobao Liu  , Shibin Shen  , and Xianglei Jia 

Research Article (15 pages), Article ID 2260753, Volume 2021 (2021)

Blow-Up of Solutions for a Coupled Nonlinear Viscoelastic Equation with Degenerate Damping Terms:
Without Kirchhoff Term
Salah Mahmoud Boulaaras  , Abdelbaki Choucha, Mohamed Abdalla  , Karthikeyan Rajagopal  , and
Sahar Ahmed Idris
Research Article (9 pages), Article ID 6820219, Volume 2021 (2021)

Delayed Feedback Control of Hidden Chaos in the Unified Chaotic System between the Sprott C System
and Yang System
Huijian Zhu and Lijie Li 

Research Article (12 pages), Article ID 7066074, Volume 2021 (2021)

New Properties on Degenerate Bell Polynomials
Taekyun Kim  , Dae San Kim  , Hyunseok Lee  , Seongho Park  , and Jongkyum Kwon 

Research Article (12 pages), Article ID 7648994, Volume 2021 (2021)

https://orcid.org/0000-0003-2073-6237
https://orcid.org/0000-0002-9521-7020
https://orcid.org/0000-0002-5166-1779
https://orcid.org/0000-0003-2183-1340
https://orcid.org/0000-0001-7010-6810
https://orcid.org/0000-0002-8042-1619
https://orcid.org/0000-0001-7116-3251
https://orcid.org/0000-0002-8553-6167
https://orcid.org/0000-0002-7899-4733
https://orcid.org/0000-0001-7972-5415
https://orcid.org/0000-0003-1308-2159
https://orcid.org/0000-0002-0165-4992
https://orcid.org/0000-0003-2993-7182
https://orcid.org/0000-0001-8740-0768
https://orcid.org/0000-0002-3731-7023
https://orcid.org/0000-0001-9599-7015
https://orcid.org/0000-0001-9729-4540
https://orcid.org/0000-0001-9971-609X
https://orcid.org/0000-0002-3470-5020


Research Article
Synchronization of aNewChaotic SystemUsingAdaptiveControl:
Design and Experimental Implementation

Alfredo Roldán-Caballero ,1 J. Humberto Pérez-Cruz ,2
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Jesús Martı́nez-Martı́nez ,4 Enrique Garcı́a-Trinidad ,4

and Alejandro Mendoza-Chegue 2
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Tis paper presents the design of an adaptive controller that solves the synchronization control problem of two identical
Nwachioma chaotic systems in a master-slave confguration. Te closed-loop stability is guaranteed by means of a Lyapunov-like
analysis. With the aim of verifying the feasibility and performance of the proposed approach, a comparison with an active control
algorithm is developed at the numerical simulation level. Based on such results, the master-slave Nwachioma chaotic system in
closed-loop with adaptive control is now being experimentally tested by using two personal computers and two low-cost Arduino
UNO boards. Te experimental results not only show the good performance of the adaptive control but also that Arduino UNO
boards are an excellent option for the experimental setup.

1. Introduction

It is well known that complex chaotic systems are nonlinear
dynamic systems characterized by being nonperiodic os-
cillators with high sensitivity to initial conditions and whose
solution can be hardly predictable in the long term [1, 2].
Despite the latter, these kind of systems are deterministic,
meaning that suitable control algorithms can be designed for
them [3, 4]. In this regard, the frst chaotic system was

presented by Lorenz in [5]. From that moment on, several
applications associated with chaotic systems have emerged.
Some of those are in the areas of neurosystems [6, 7],
chemical reactions [8, 9], secure communications [10–18],
turbines [19, 20], robotics [21–24], cryptosystems [25–29],
medicine [30–33], lasers [25, 34], among others.

When control strategies for complex chaotic systems are
designed, the tasks to be solved can be divided into the fol-
lowing: (1) chaos suppression and (2) synchronization. Te
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present paper is focused on the second control task. Hence, the
following state-of-the-art review describes some relevant
contributions related to the synchronization of chaotic systems.

1.1. Related Works. Te purpose of synchronization in
chaotic systems is to achieve that one or more systems, with
similar or diferent dynamics, converge to the same pre-
scribed trajectory. Such a synchronization is generally carried
out by means of a master-slave confguration. In this di-
rection, the pioneer paper of Pecora and Carroll [35] de-
scribed, for the frst time, the synchronization of the Lorenz
and the Rossler chaotic systems. Based on Pecora and Car-
roll’s contribution, the research related to the design of
controllers for synchronization of chaotic systems has been
intensively studied during the last four decades [36–89]. Te
proposed control strategies reported in those works can be
classifed as active control [36–42], nonlinear control [43–57],
linear feedback control [58–65], sliding modes [66–72], and
adaptive control [73–89]. Such a literature is described below.

1.1.1. Active Control. Based on the literature, the active
control approach was one of the frst control methods for
solving the synchronization problem. In this sense, Bai and
Lonngren in [36, 37] demonstrated that coupled Lorenz sys-
tems can be synchronized by active control theory. Te syn-
chronization was verifed at the simulation level. Meanwhile,
Tang et al. [38] introduced a control strength matrix in the
active control. With this extendedmethod, the authors showed
that the chaos complete synchronization can be achieved more
easily. Numerical simulations on Rossler, Liu’s four-scroll, and
Chen systems confrmed the latter. Also, Yassen [39] presented
simulation results of synchronizations between two diferent
chaotic systems: the Lorenz and Lü systems, the Chen and Lü
systems, and the Lorenz and Chen systems. On the other hand,
Pérez-Cruz et al. [40] investigated the synchronization of a new
three-dimensional chaotic system and, by means of Lyapunov
analysis, a nonlinear controller was designed in such a way that
the exponential convergence of the synchronization error was
guaranteed and the results of the numeric simulation verifed
the good performance of this controller. In [41] Varan and
Akful synchronized a hyperchaotic system and by using
a Lyapunov function, achieved global asymptotic stability;
numerical analysis was used to check the efectiveness of the
proposed active control design. Lastly, Zhu and Du in [42]
solved the antisynchronization of systems by using the active
control, and the feasibility of control was verifed via numerical
simulations.

1.1.2. Nonlinear Control. Related to the design of nonlinear
controllers for solving the synchronization problem, Suna et al.
[43] proposed a nonlinear control strategy for synchronizing
fve chaotic systems, where the performance of the proposed
approach was verifed by numerical simulations. Zheng
designed a nonlinear control in [44] to study multi-switching
combination synchronization of three diferent chaotic sys-
tems, i.e., two drive chaotic systems and a controlled response
chaotic system; simulation results depicted good performance

of the system in closed-loop. Likewise, Hettiarachchi et al.
presented a nonlinear control algorithm for solving the syn-
chronization problem over two time-delay coupled Hind-
marsh–Rose neurons [45], whose efectiveness of the proposed
approach was investigated through numerical simulations.
Additionally, Yadav et al. [46] developed a nonlinear control
method for combination-combination phase synchronization
in fractional-order nonidentical complex chaotic systems.
Simulation results were obtained, by using the
Adams–Bashforth–Moulton method, with the aim of showing
the performance of the system in closed-loop. Also, Yadav et al.
[47] analyzed a nonlinear control for the triple compound
synchronization among eight chaotic systems with external
disturbances, and the feasibility of the proposed control was
depicted through numerical simulations by using the Run-
ge–Kutta method. Ouannas et al. [48] used a nonlinear control
algorithm for the synchronization of a fractional hyperchaotic
Rabinovich master-slave pair and numerical simulations
demonstrated the validity and convergence of the proposed
synchronization scheme. Whereas, Abdurahman and Jiang
[49] introduced a nonlinear control strategy to investigate the
general decay projective synchronization (GDPS) problem of
a type of delayed memristor-based BAM neural networks;
numerical results were obtained and the efectiveness of the
proposed control was verifed. On the other hand, Al-Hayali
and Al-Azzawi [50] addressed the problem of synchronizing
4D identical Rabinovich hyperchaotic systems by using two
strategies: active and nonlinear control; the good performance
of the hyperchaotic systems in closed-loop was verifed via
simulation results. Another research was conducted by Al-
Obeidi and Al-Azzawi [51], where they reported a nonlinear
control strategy for chaos synchronization by using a 6D
hyperchaotic system and numerical simulations were carried
out to validate the efectiveness of the proposed control
technique. Subsequently, Al-Azzawi and Al-Obeidi [52] pro-
vided a nonlinear control for a new 6D hyperchaotic system
with real variables and a self-excited attractor. Te proposed
control allowed fnding the stability of error dynamics and its
performance was tested through numerical simulations. Also,
Trikha et al. [53] introduced a novel 3D fractional chaotic
system with two quadratic terms and designed a nonlinear
control strategy for solving the synchronization problem; the
simulations results demonstrated the efectiveness of the
proposed strategy. Lin et al. [54] addressed the issue of global
exponential synchronization for delayed impulsive and time-
varying delayed inertial memristor-based quaternion-valued
neural networks and the closed-loop system was verifed via
numerical simulations. Additionally, Jahanzaib et al. [55]
elaborated a nonlinear control scheme for a novel fractional-
order chaotic model with the aim of achieving the synchro-
nization of the system; simulations were obtained and the good
performance of the closed-loop system was demonstrated.
Another work was developed by Ouannas et al. [48], where
linear and nonlinear feedback controls were investigated and
both force the slave system to follow the trajectory set by the
master given diferent initial states; numerical simulations
validated the synchronization schemes. Also, Ouannas et al.
[56] developed two nonlinear control schemes to achieve as-
ymptotic convergence with the aim of solving the
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synchronization problem; experimental and simulation results
supported the proposed theory. Later, Mesdoui et al. [57]
designed nonlinear controls for solving the synchronization
problem in a nonlinear bacterial cultures reaction-difusion
model and the efectiveness of the proposed control was
verifed via simulation results.

1.1.3. Linear Feedback Control. Regarding this kind of
control, Wu [58] investigated the synchronization of the
general master-slave identical generalized Lorenz systems,
and the developed theory was validated via numerical sim-
ulations. Also, Yan and Yun [59] studied the synchronization
of an LC chaotic system via three types of state feedback
controls: (i) linear feedback control; (ii) adaptive feedback
control; and (iii) a combination of linear feedback and
adaptive feedback controls, where numerical simulations
demonstrated the obtained theoretical results. Whereas,
Rafkov and Balthazar in [60] formulated linear feedback
controllers for the control and synchronization of chaos
through an application of optimal control and Lyapunov
stability theories to guarantee the global stability of the
nonlinear error system; numerical simulations were provided
in order to demonstrate the efectiveness of this control
approach by achieving the synchronization of the hyper-
chaotic Rössler system. Later, Chen et al. [61] proposed the
global synchronization criteria for a class of third-order
nonautonomous chaotic systems consisting of cubic and
(or) intersecting nonlinearity terms under the master-slave
linear state error feedback control, whose efectiveness was
verifed through a numerical example. Likewise, Mobayen
and Tchier [62] studied the chaos synchronization problem
for a class of uncertain chaotic systems with Lipschitz non-
linearity conditions using an LMI-based state feedback sta-
bilization control method and simulation results were given
to show the efciency of the control scheme. On the other
hand, Zhao et al. addressesH∞ synchronization for uncertain
chaotic systems with one-sided Lipschitz nonlinearity under
the output and intrinsic state delays [63], where numerical
simulations proved the efectiveness of the proposed meth-
odology by achieving the synchronization of Chua’s circuit
chaotic systems. Moreover, Mahmoud et al. [64] designed
a single-state feedback track synchronization control algo-
rithm and the efectiveness of the proposed algorithm is well
illustrated via an exhaustive numerical simulation. Lastly,
Azar et al. [65] explored the stabilization and synchronization
of a chaotic system by means of a state feedback control that
moves the eigenvalues of the linearized chaotic system to
a point where the state variables reach equilibrium; numerical
experiments and simulation results were reported with the
aim of showing the efectiveness of the proposed approach.

1.1.4. Sliding Mode Control. Another control technique used
for synchronization of chaotic systems is the sliding mode.
For example, Siddique and Rehman [66] presented an
adaptive integral sliding mode control design method for
parameter identifcation and hybrid synchronization of
chaotic systems connected in ring topology, where the ef-
fectiveness of the proposed technique was validated through

numerical examples. Also, Mufti et al. [67] developed the
control design method for the transmission projective syn-
chronization of multiple nonidentical coupled chaotic sys-
tems, whose performance in closed-loop was checked via
numerical simulations. Another work was realized by Mufti
et al. [68], where the synchronization and antisynchroniza-
tion between the Chua and modifed Chua oscillators were
obtained and the efectiveness of the control strategies was
validated via numerical simulations. Based on the Lyapunov
stability theory and fractional-order integral sliding surface,
a novel active sliding mode controller to synchronize
fractional-order complex chaotic systems was proposed by
Nian et al. [69] and was verifed through numerical simu-
lations. Another work was developed by Song et al. [70],
where they focused on the robust synchronization issue for
drive-response fractional-order chaotic systems applying the
sliding mode control scheme; practical examples to illustrate
the feasibility of the theoretical results are developed. In [71],
Wan et al. proposed a discrete sliding mode controller to
ensure the synchronization of chaotic systems and experi-
mental results were given to demonstrate the performance of
the proposed cryptosystems. Te synchronization problem of
chaotic systems using the integral-type sliding mode control
for hyper-chaotic systems is considered in [72], where sim-
ulation results confrm the success of the designed control.

1.1.5. Adaptive Control. Tis approach is used when the
parameters of the chaotic system are unknown. For example,
Wu et al. [73] showed how adaptive controllers can be used to
adjust the parameters of two Chua’s oscillators to synchronize
them via simulations. Whereas, based on the Lyapunov sta-
bility theory, Liao developed an adaptive control law [74] for
synchronizing two Lorenz systems; the simulation results
validated the proposed approach. In [75], Behinfaraz et al.
developed a new fractional-order chaotic system where the
parameter’s adaption laws were obtained to design adaptive
controllers using the Lyapunov stability theory and numerical
examples were carried out to verify the performance of the
controllers. By means of the Lyapunov theory, Wang et al. [76]
proposed a nonlinear adaptive system to ensure the syn-
chronization of two Hindmarsh–Rose neuron models and its
simulation results verifed the feasibility and efectiveness of the
designed controller. Also, Pérez-Cruz [77] added a robustifying
term to the adaptive control law for the stabilization and
synchronization of an uncertain Zhang system; the perfor-
mance of this robust approach was verifed through numerical
simulations. In [78], Khennaoui et al. proposed a one-
dimensional adaptive control strategy that forces the states
of discrete-time chaotic systems to tend asymptotically to zero;
numerical results were presented to confrm the success of
these synchronization schemes. Later, Luo et al. [79] proposed
an adaptive synchronization scheme, which combines the best
of the Chebyshev neural network, extended state tracking
diferentiator, and adaptive backstepping for the fractional-
order chaotic arch microelectro-mechanical system; the ef-
fectiveness of the proposed adaptive synchronization scheme
was demonstrated through simulation results. On the other
hand, Xu et al. in [80] investigated an adaptive event-triggered
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transmission strategy for the exponential synchronization of
chaotic Lur’e systems; the designed control schemewas verifed
through numerical examples. Based on the complex-variable
inequality and stability theory for the fractional-order
complex-valued system, Zhang et al. presented [81] a new
scheme for adaptive synchronization of fractional-order
complex-variable chaotic systems with unknown complex
parameters, where simulation results proved the efectiveness
of the synchronization scheme. Liu et al. [82] developed the
fractional Mittag–Lefer stability theory, that is, an adaptive,
large-scale, and asymptotic synchronization control method
for the synchronization of two diferent fractional-order
chaotic systems under the conditions of determined param-
eters and uncertain parameters; the simulation results proved
the good reliability of the controller. Another work was re-
ported by Singh and Roy in [83] developed three diferent well-
known control techniques: nonlinear active control, sliding
mode control, and adaptive control, which are used for syn-
chronization between various pairs of chaotic systems; simu-
lation results are presented, which refect the successful
achievement of the objectives. In [84], Gao et al. proposed the
cluster synchronization of a class of nonlinearly coupled Lur’e
networks through a novel adaptive pinning control strategy,
whose performance was depicted through numerical simula-
tions. Another work was reported by Azar and Serrano in [85],
where the design of an adaptive terminal sliding mode control
for the stabilization of chaotic systems was proposed and
experimental results were introduced for validating the control
scheme. Javan et al. [86] showed a synchronization scheme
using a robust-adaptive control procedure with the help of the
Lyapunov stability theorem and the experimental results
revealed the capability and fexibility of this method in syn-
chronization of chaotic systems. Later, Javan et al. [87] de-
veloped an adaptive control method, and the defnition of
appropriate Lyapunov function was used for synchronization
for chaotic systems; the results showed the efectiveness of the
proposed synchronization technique in the medical images
encryption for telemedicine application. One more piece of
research was introduced by Wang and Rongwei [88], where
they applied the adaptive control method to investigate the
design of a universal controller to achieve the hybrid syn-
chronization of a class of chaotic systems; numerical examples
verify and validate the efectiveness of the proposed theoretical
results. In addition, Khennaoui et al. [89] proposed adaptive
control laws for solving the synchronization problem in three
diferent types of chaotic systems, the Stefanski, Rossler, and
Wang systems where the performance of the systems in closed-
loop was verifed by simulation results.

1.2. Discussion of Related Work, Motivation, and
Contribution. Te literature shows that several types of
complex chaotic systems have been proposed with the aim
of solving the synchronization control problem. Te
control strategies, usually developed, are active control
[36–42], nonlinear control [43–57], linear feedback control
[58–65], sliding modes [66–72], and adaptive control
[73–89]. Also, on the one hand, it was observed that exper-
imental results about synchronization of chaotic systems are

very scarce [90–97]. On the other hand, recently a new 3D
chaotic system with four nonlinearities was proposed in [98].
Surprisingly, a control algorithm for solving the synchroni-
zation control problem for this system has not been yet
proposed.

Motivated by the aforementioned and by the fact that
complex chaotic systems can be applied in a wide range of
felds, the contribution of this paper is to solve the syn-
chronization for the chaotic system [98] by means of pro-
posing an adaptive control. Moreover, with the purpose of
enhancing this contribution, a comparison between an ac-
tive control scheme and the adaptive control algorithm
developed in this research is presented. Later, the experi-
mental implementation of the adaptive control on the
Nwachioma chaotic system is carried out through a novel
experimental realization. For this latter, a low-cost testbed
composed of two personal computers and two Arduino
UNO boards along with MATLAB-Simulink are used.

Te rest of the paper is structured as follows: in Section 2,
the mathematical model of the new Nwachioma chaotic
system in the master-slave confguration is presented and
the adaptive control for solving the synchronization control
problem is developed. Te comparison between an active
control and the adaptive control proposed here along with
its experimental implementation is presented in Section 3.
Finally, conclusions related to this research and future work
are described in Section 4.

2. Materials and Methods

Tis section presents the generalities of the Nwachioma
chaotic system and the master-slave confguration to be used
throughout this paper. Also, the design of the adaptive
control that achieves the synchronization of the master-slave
confguration is introduced.

2.1. Nwachioma Chaotic System and Master-Slave
Confguration. Te Nwachioma chaotic system was pro-
posed in [98]. Te mathematical model describing its be-
havior is given by the following equations:

_x1 � a1x1 + a2x1x3 + a3x2x3,

_x2 � a4x2 + a5x1x3 + a6,

_x3 � a7x3 + a8x
2
1x2 + a9,

(1)

where ai (for i � 1, 2, . . . , 9) are constants and a8x
2
1x2 as-

sures the boundedness of the system [98]. As can be ob-
served in the previous equations, the Nwachioma system is
autonomous, i.e., the system does not have inputs that
modify its dynamics. On the other hand, the behavior of
such a system is purely chaotic when the following constant
values are considered in (1):

a1 � −0.1, a2 � 0.15, a3 � 0.18, a4 � 3.9,

a5 � −1.5, a6 � −4, a7 � −4.9, a8 � 2.5, a9 � 0,
(2)

and also when the initial conditions are set to x1(0) � 1,
x2(0) � 3, and x3(0) � 8 (see Figure 1).
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As can be observed in Figure 1, the planes and phase
portraits of system (1) show the self-excited attractor,
meaning that the states of the system are bounded over
a specifc region. It is worth mentioning that the system is
very sensitive to initial conditions due to the chaoticity of its
dynamics. Tis can be confrmed through the simulation
results depicted in Figure 2. Such results show the behavior
of the Nwachioma system when two sets of initial conditions
are used. Te frst set of initial conditions were reported in
[98] and were defned as x1(0) � 1, x2(0) � 3, and
x3(0) � 8, whereas the second set are those proposed in this
paper and are prescribed to be x1b(0) � 1, x2b(0) � 3.002,
and x3b(0) � 8.

Te master-slave Nwachioma chaotic system is com-
posed of two subsystems: a master Nwachioma system and
a slave Nwachioma-alike system. Te frst one is defned by
the following autonomous dynamics:

_x1m � a1x1m + a2x1mx3m + a3x2mx3m,

_x2m � a4x2m + a5x1mx3m + a6,

_x3m � a7x3m + a8x
2
1mx2m + a9,

(3)

and it is identifed through the subscript m. On the other
hand, the slave system is denoted with the subscript s and,
compared with the master, it is not an autonomous system,
since it is commanded through inputs u1, u2, and u3. Te
dynamics of the slave is defned as follows:

_x1s � a1x1s + a2x1sx3s + a3x2sx3s + u1,

_x2s � a4x2s + a5x1sx3s + a6 + u2,

_x3s � a7x3s + a8x
2
1sx2s + a9 + u3,

(4)

where constants ai are equal in both systems. However,
when the adaptive control is designed such constants are
considered to be unknown.

2.2. Adaptive Synchronization. Te objective of the adaptive
synchronization control proposed in this section is to
achieve that (x1s, x2s, x3s)⟶ (x1m, x2m, x3m). For such an
aim, the following synchronization errors are defned:

e1 � xs1 − xm1,

e2 � xs2 − xm2,

e3 � xs3 − xm3.

(5)

Tus, from (5), the error dynamics is given by

_e1 � _xs1 − _xm1,

_e2 � _xs2 − _xm2,

_e3 � _xs3 − _xm3.

(6)

After replacing the dynamics (3) and (4) in (6), the
following error dynamics in open-loop is obtained:

_e1 � a1xs1 + a2xs1xs3 + a3xs2xs3 + u1 − a1xm1 + a2xm1xm3 + a3xm2xm3( 􏼁,

_e2 � a4xm2 + a5xs1xs3 + a6 + u2 − a4xm2 + a5xm1xm3 + a6( 􏼁,

_e3 � a7xs3 + a8x
2
s1xs2 + a9 + u3 − a7xm3 + a8x

2
m1xm2 + a9􏼐 􏼑.

(7)
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Figure 1: Planes and phase portraits of the Nwachioma chaotic system, where the self-attractor of the system can be observed. Te initial
conditions considered for the plane and the phase portrait are x1(0) � 1, x2(0) � 3, and x3(0) � 8.
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Lastly, by considering (5) into (7), the error dynamics in
open-loop can be expressed in terms of the master dynamics
and the synchronization errors as follows:

_e1 � a1e1 + a2 e1e3 + xm3e1 + xm1e3( 􏼁 + a3 e2e3 + xm2e3 + xm3e2( 􏼁 + u1,

_e2 � a4e2 + a5 e1e3 + xm1e3 + xm3e1( 􏼁 + u2,

_e3 � a7e3 + a8 e
2
1e2 + 2xm1e1 + x

2
m1e2 + xm2e

2
1 + 2xm1xm2e1􏼐 􏼑 + u3.

(8)
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Figure 2: Simulation results showing the sensitivity of the Nwachioma chaotic system when small variations are considered in the initial
conditions. Te initial conditions considered in this simulation are x1(0) � 1, x2(0) � 3, x3(0) � 8, x1b(0) � 1, x2b(0) � 3.002, and
x3b(0) � 8.
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2.2.1. Adaptive Control Design. With the intention of
achieving that the slave subsystem tracks the master

subsystem, i.e., (x1s, x2s, x3s)⟶ (x1m, x2m, x3m), the fol-
lowing adaptive inputs u1, u2, and u3 are designed:

u1 � −􏽢a1e1 − 􏽢a2 e1e3 + xm3e1 + xm1e3( 􏼁 − 􏽢a3 e2e3 + xm2e3 + xm3e2( 􏼁 − k1e1,

u2 � −􏽢a4e2 − 􏽢a5 e1e3 + xm1e3 + xm3e1( 􏼁 − k2e2,

u3 � −􏽢a7e3 − 􏽢a8 e
2
1e2 + 2xm1e1 + x

2
m1e2 + xm2e

2
1 + 2xm1xm2e1􏼐 􏼑 − k3e3.

(9)

where 􏽢ai (for i � 1, 2, 3, 4, 5, 7, 8) are the estimated param-
eters and gains ki (for i � 1, 2, 3) are greater than zero. When
replacing (9) in (8), and after defning the error in the

unknown parameters as 􏽥ai � 􏽢ai − ai (for i � 1, 2, 3, 4, 5, 7, 8),
then the following error dynamics in closed-loop is obtained:

_e1 � −􏽥a1e1 − 􏽥a2 e1e3 + xm3e1 + xm1e3( 􏼁 − 􏽥a3 e2e3 + xm2e3 + xm3e2( 􏼁 − k1e1,

_e2 � −􏽥a4e2 − 􏽥a5 e1e3 + xm1e3 + xm3e1( 􏼁 − k2e2,

_e3 � −􏽥a7e3 − 􏽥a8 e
2
1e2 + 2xm1e1 + x

2
m1e2 + xm2e

2
1 + 2xm1xm2e1􏼐 􏼑 − k3e3.

(10)

2.2.2. Stability Proof and Learning law. For demonstrating
the stability of the closed-loop system (10) by means of the
Lyapunov theory, the frst step is to propose and analyze an
energy candidate function defned in terms of states ei (for
i � 1, 2, 3) and parameters 􏽥ai. Tus, the following function is
proposed:

V(t) �
1
2

􏽘

3

i�1
e
2
i + 􏽘

5

i�1
􏽥a
2
i + 􏽘

8

i�7
􏽥a
2
i

⎛⎝ ⎞⎠. (11)

With the aim of verifying the stability of the closed-loop
system (10), the time-derivative of (11) along with (10) must
be analyzed [99]; that is,

_V(t) � 􏽥a1
_􏽢a1 − e

2
1􏽨 􏽩 + 􏽥a2

_􏽢a2 − e
2
1e3 + xm3e

2
1 + xm1e1e3􏼐 􏼑􏽨 􏽩

+ 􏽥a3
_􏽢a3 − e1e2e3 + xm2e1e3 + xm3e1e2( 􏼁􏽨 􏽩 − k1e

2
1 + 􏽥a4

_􏽢a4 − e
2
2􏽨 􏽩

+ 􏽥a5
_􏽢a5 − e1e2e3 + xm1e2e3 + xm3e1e2( 􏼁􏽨 􏽩 − k2e

2
2 + 􏽥a7

_􏽢a7 − e
2
3􏽨 􏽩

+ 􏽥a8
_􏽢a8 − e

2
1e2e3 + 2xm1e1e3 + x

2
m1e2e3 + xm2e

2
1e3 + 2xm1xm2e1e3􏼐 􏼑] − k3e

2
3.􏽨

(12)

Now, it is easily observed that a suitable learning law for
parameter estimation is the following:

_􏽢a1 � e
2
1,

_􏽢a2 � e
2
1e3 + xm3e

2
1 + xm1e1e3,

_􏽢a3 � e1e2e3 + xm2e1e3 + xm3e1e2,

_􏽢a4 � e
2
2,

_􏽢a5 � e1e2e3 + xm1e2e3 + xm3e1e2,

_􏽢a7 � e
2
3,

_􏽢a8 � e
2
1e2e3 + 2xm1e1e3 + x

2
m1e2e3 + xm2e

2
1e3 + 2xm1xm2e1e3.

(13)

After replacing (13) in (12), the following is obtained:

_V(t) � −k1e
2
1 − k2e

2
2 − k3e

2
3. (14)

Notice that (14) is negative semidefnite, i.e., _V(t)≤ 0.
Hence, system (10) is stable in the sense of Lyapunov [99].

However, with the aim of demonstrating the asymptotic
stability of (10) the Barbalat’s lemma needs to be invoked
[100].

Lemma 1 (Barbalat’s Lemma). If e(t): R+⟶ R+ is uni-
formly continuous for t≥ 0 and if

lim
t⟶∞

􏽚
t

0
‖e(τ)‖dτ ≤ ϵ, (15)

for ϵ ∈ R+, then

lim
t⟶∞

e(t) � 0. (16)

Corollary 1. If e(t) ∈ L2 ∩ L∞ and _e(t) ∈ L∞, then

lim
t⟶∞

e(t) � 0. (17)

From Corollary 1 and when replacing
k � min k1, k2, k3􏼈 􏼉 in (14), the following is obtained:
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_V≤ − k e
2
1 + e

2
2 + e

2
3􏼐 􏼑. (18)

Now, after integrating from 0 to t both sides of (18),

􏽚
t

0
e
2
1 + e

2
2 + e

2
3􏼐 􏼑dτ ≤

V(0) − V(t)

k
, (19)

and since V(t)> 0, it means thatV(0) − V(t)<V(0). Hence,

V(0) − V(t)

k
<

V(0)

k
. (20)

When replacing the latter expression in (19) and after
fnding lim when t⟶∞, then

lim
t⟶∞

􏽚
t

0
e
2
1 + e

2
2 + e

2
3􏼐 􏼑dτ ≤

V(0)

k
. (21)

Tus, it is concluded that

ei ∈ L2. (22)

In the following, the rest of conditions related to Cor-
ollary 1 are verifed. By considering that _V(t)≤ 0 and after
integrating such an expression from 0 to t, it is found that
V(t)≤V(0). Also, it is observed that V(t) is bounded since
V(t)> 0. Tus, from (11) ei and 􏽥ai are also bounded and,
consequently,

ei ∈ L∞. (23)

On the other hand, since ei, 􏽥ai, and the master system (3)
are bounded (it is worth remembering that the vector state of
a chaotic system is bounded), then _ei in (10) is also bounded.
Tus,

_ei ∈ L∞. (24)

Lastly, after considering (22), (23), and (24), it is easily
observed that Lemma 1 guarantees that

lim
t⟶∞

ei(t) � 0. (25)

Remark 1. Note that the estimation errors 􏽥ai are bounded
but not tend to zero; however, the errors ei does tend to zero
when the time is large enough, as will be shown in the next
section.

Remark 2. It is important to mention that according to the
previous proof, from a strictly theoretical point of view, the
synchronization can be achieved for any value of the system

constant parameters ai whenever the control gains are k1 > 0,
k2 > 0, and k3 > 0.

3. Results

In order to enhance the contribution of this paper, in this
section, a comparison between an active control scheme and
the adaptive control algorithm previously developed in
Section 2 is presented. Such a comparison is executed via
simulation results with the aim of verifying the performance
in closed-loop of the Nwachioma chaotic system, in master-
slave confguration, with both controls. Later, the experi-
mental implementation of the adaptive control on the
Nwachioma chaotic system is carried out through a novel
experimental realization.

3.1. Comparison with respect to Active Control. Although
active control was one of the frst methods proposed for
solving the synchronization problem, currently, is still fre-
quently used [101–105]. Tis method can be considered
a kind of feedback linearization one. Active control com-
prises two stages: one for compensation of nonlinearities and
another one for decoupling. In this regard, and with the
purpose of executing the comparison with the adaptive
control developed in this paper; in the following, an active
control is designed for solving the synchronization problem
associated with the Nwachioma chaotic system.

3.1.1. Design of the Active Control. With the intention of
avoiding any kind of confusion regarding both control al-
gorithms, i.e. the adaptive control and the active control,
new variables are defned for the design of the active control.
Now the slave system, where the active control is applied, has
the following dynamics:

_xa1s � a1xa1s + a2xa1sxa3s + a3xa2sxa3s + ua1,

_xa2s � a4xa2s + a5xa1sxa3s + a6 + ua2,

_xa3s � a7xa3s + a8x
2
a1sxa2s + a9 + ua3,

(26)

whereas the tracking error is given by

ea1 � xa1s − xm1,

ea2 � xa2s − xm2.,

ea3 � xa3s − xm3.

(27)

By considering (26) and (27), the following error dy-
namics in open-loop is obtained:

_ea1 � a1ea1 + a2 ea1ea3 + xm3ea1 + xm1ea3( 􏼁 + a3 ea2ea3 + xm2ea3 + xm3ea2( 􏼁 + ua1,

_ea2 � a4e2 + a5 ea1ea3 + xm1ea3 + xm3ea1( 􏼁 + ua2,

_ea3 � a7ea3 + a8 e
2
a1ea2 + 2xm1ea1 + x

2
m1ea2 + xm2e

2
a1 + 2xm1xm2ea1􏼐 􏼑 + ua3.

(28)

In (28), note the nonlinearities and the coupling of the
variables. Hence, the following active control is proposed:
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ua1 � −a1ea1 − a2 ea1ea3 + xm3ea1 + xm1ea3( 􏼁 − a3 ea2ea3 + xm2e3 + xm3ea2( 􏼁 − k1ea1,

ua2 � −a4ea2 − a5 ea1ea3 + xm1ea3 + xm3ea1( 􏼁 − k2ea2,

ua3 � −a7ea3 − a8 e
2
a1ea2 + 2xm1ea1 + x

2
m1ea2 + xm2e

2
a1 + 2xm1xm2ea1􏼐 􏼑 − k3ea3.

(29)

After replacing the proposed control (29) in the error
dynamics (28), the following error dynamics in closed-loop
is obtained:

_ea1 � −k1ea1,

_ea2 � −k2ea2,

_ea3 � −k3ea3.

(30)

It is easily observed that the dynamics (30) is linear and
the time-varying error variables are decoupled. Additionally,
if k1 > 0, k2 > 0, and k3 > 0, then (ea1, ea2, ea3)⟶ (0, 0, 0).

3.1.2. Simulation Results. On the one hand, the efciency of
both controls, the adaptive one and the active one, is vali-
dated by using the criterion of the quadratic error integral as
an index performance. For the adaptive control, the index
performance is defned as

ϕ(t) � 􏽚
t

0
e
2
1 + e

2
2 + e

2
3􏼐 􏼑 dξ, (31)

whereas the index performance for the active control is
defned as

ϕa(t) � 􏽚
t

0
e
2
a1 + e

2
a2 + e

2
a3􏼐 􏼑 dξ. (32)

By using these indexes it is possible to obtain a measure,
for comparative purposes, between both controls. Such
a measure allows to observe graphically the sum of both
errors, the transient one and the stable one (if exists). On the
other hand, with the intention of comparing the perfor-
mance of the adaptive control and the active control, four
simulations are carried out when the parameters ai defned
in (2) of the master-slave Nwachioma chaotic system are
changed according to the values specifed in Table 1.

Te rest of parameters for the active control (29) were
defned previously in (2) and were given as

a1 � −0.1, a2 � 0.15, a3 � 0.18, a4 � 3.9,

a5 � −1.5, a6 � −4, a7 � −4.9, a8 � 2.5, a9 � 0.
(33)

Te gains of both controls were chosen as
(k1, k2, k3) � (1, 1, 1), while the initial conditions for the
master system were defned as (x1m(0), x2m(0), x3m(0)) �

(1, 3, 8), the initial conditions for the slave system when
using the adaptive control were selected as (x1s(0), x2s

(0), x3s(0)) � (0, 0, 0), and those for the same slave system
when using the active control were selected as (x1as(0),

x2as(0), x3as(0)) � (0, 0, 0). All simulations were executed in
MATLAB-Simulink with the variable-step solver ode23s.

(a) Numerical simulation 1: Te results presented in
Figure 3 show that both control algorithms solved

the synchronization control task. Tis is accom-
plished because the parameters of the Nwachiona
chaotic system, in the master-salve confguration,
and those of the active control were the same.

(b) Numerical simulation 2: Figure 4 depicts the per-
formance of the Nwachioma chaotic system in
closed-loop with both controls, the adaptive one and
the active one. Although the synchronization control
task is achieved, the transient response of the slave
system due to the active control is greater than the
one obtained in the previous simulation.

(c) Numerical simulation 3: As can be observed in
Figure 5, the synchronization control task is solved
for the master-slave Nwachioma chaotic system in
closed-loop with the adaptive control. However,
such a task is not solved for the active control.

(d) Numerical simulation 4: Similar to the previous
simulation results, those presented in Figure 6 show
that the chaotic system in closed-loop with the
adaptive control solved the synchronization control
problem. But when using the active control the
synchronization is not achieved. It is worth men-
tioning that this numerical simulation was executed
only for 4 s, since xa2s⟶∞ and ϕa(t)⟶∞
when t⟶∞, as can be observed in Figure 6.

3.1.3. Comments on the Numerical Simulations. As can be
noted in Figures 3–6, the adaptive control exhibits a better
performance compared with the performance achieved by
the active control. Such a superior behavior on the closed-
loop Nwachioma system, in the master-slave confguration,
with the adaptive control is observed through the perfor-
mance indexes of the quadratic error integral calculated for
both controls. Te results associated with the indexes ϕ(t)

and ϕa(t), for each numerical simulation, are shown in
Table 2.

3.2. Experimental Implementation. With the aim of high-
lighting the efectiveness of the adaptive control (9)
developed in this paper, a novel and easy to understand
implementation in closed-loop of the proposed approach
with the Nwachioma chaotic system, in the master-slave
confguration, is presented in this section. Te experi-
mental realization of the adaptive control is carried out by
using MATLAB-Simulink and two computers, one for the
master system and a second one for the slave system. Te
testbed is depicted in Figure 7, where the connections
diagram between the master computer and the slave
computer along with their corresponding Arduino UNO
boards are shown.
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Temaster system and the slave system are implemented
by programming their mathematical models (3) and (4),
respectively, in MATLAB-Simulink by using the numeric
method ode4 with sampling step of 1ms. Both the com-
puters are interconnected via the serial communication
protocol RS-232 along with two Arduino UNO development
boards [106]. It is worth mentioning that using MATLAB-
Simulink along with the RS-232 serial protocol and the

Arduino UNO board is, indeed, a low-cost implementation
of the approach presented in this paper. In fact, the syn-
chronization problem in chaotic systems is tremendously
afordable when using these kind of computational tools.

3.2.1. Synchronization of the Master-Slave Nwachioma
Chaotic System. Te synchronization of the master-slave
Nwachioma chaotic system is realized through the

Table 1: Changes in parameters ai for comparison purposes between the adaptive control and the active control via numerical simulations.

a1 a2 a3 a4 a5 a6 a7 a8 a9

Numerical simulation 1 −0.10 0.15 0.180 3.90 −1.5 −4 −4.90 2.5 0
Numerical simulation 2 −0.14 0.21 0.252 5.46 −2.1 −5.6 −6.86 3.5 0
Numerical simulation 3 −0.18 0.27 0.324 7.02 −2.7 −7.2 −8.82 4.5 0
Numerical simulation 4 −0.22 0.33 0.396 8.58 3.3 −8.8 −10.78 5.5 0
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Figure 3: Numerical simulation 1. Comparison between the adaptive control and the active control in closed-loop with the Nwachioma
chaotic system. Te used parameters are in accordance with those specifed on the frst line in Table 1. Te indexes obtained for this
simulation are ϕ(10  s) � 11.11 and ϕa(10  s) � 97.48.
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connections shown in Figure 7, whereas the fowchart shown
in Figure 8 depicts the process to be followed for achieving
the communication between the master system and the slave
system.

It is worth noticing that for achieving the synchroni-
zation of the chaotic system, the Arduino UNO boards and
the computers must be confgured. In this regard, the
Arduino UNO boards are interconnected to each other by
using a virtual serial port. Te code shown in the Listing 1
commands both Arduino UNO boards and establishes the
fow of information, i.e., master computer-board-board-
slave computer. Te virtual port directs the communication
between both Arduino boards. Te data are received from
the virtual (or the physical) serial port and are saved and sent
via the variable InData to the remaining serial port,
respectively.

On the one hand, Computer 1 is interconnected to the
Arduino UNO 1 board via a USB cable, where the Arduino
driver is used so that the connection is viewed as a serial port.
On the other hand, both Arduino UNO boards are inter-
connected through pins RX and TX, as can be observed in
the code presented in the Listing 1. Tis is the RX pin of the
frst board, which is connected to the TX pin and vice versa.
Lastly, the Arduino UNO 2 board is connected to Computer
2 in the same way as computer 1 is connected to its cor-
responding Arduino board.

Once the connections have been made, the next step is
the implementation of dynamics associated with the master
system (3) and the slave system (4) in computer 1 and
computer 2, respectively. Figure 9 depicts the block diagram
programmed in MATLAB-Simulink with the intention of
acquiring the response of master system (3) and send it to

-40

-20

0

20

40

60

0

200

400

600

800

1000

-9

-6

-3

0

3

6

-20

-10

0

10

20

30

2 4 6 8 100
t (s)

2 4 6 8 100
t (s)

2 4 6 8 100
t (s)

2 4 6 8 100
t (s)

x1s
xa1s
x1m

x2s
xa2s
x2m

x3s
xa3s
x3m

ϕ (t)
ϕa (t)

Figure 4: Numerical simulation 2. Results of the adaptive control and the active control in closed-loop with the Nwachioma chaotic system.
Te used parameters are in accordance with those specifed on the second line in Table 1. Te indexes obtained for this simulation are
ϕ(10  s) � 14.76 and ϕa(10  s) � 899.7.
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computer 2. Since the two Nwachioma systems of the
master-slave confguration are equal, the parameters (2) are
programmed in both systems for implementation purposes.
However, such parameters are considered to be unknown
and, consequently, are not used by the adaptive control (9).

In the following, the block diagram of Figure 9 is
described.

(i) Nwachioma master system: Tis block is composed
of the blocks ai,Master, and Integrator.Te block ai

contains this constant parameters of the system (3),
considered to be unknown. However, for imple-
mentation purposes, the parameters ai given by (2)
are programmed instead. Te equations (3) are
programmed in Master block, whose output is the
time-derivative of the vector state. Lastly, block
Integrator generates the vector state, i.e., the vector

whose elements are x1m, x2m, x3m along with its
corresponding initial conditions.

(ii) Sampling and scaling: With the aim of sending the
vector state of the master system, a Zero-Order Hold
is required for sampling the response of the system.
Additionally, since the data are sent in 1 byte
packages, a scaling factor is implemented through
the Scale block so that the elements of the vector
state are mapped into the interval [0, 255].

(iii) Data sending: All parameters for establishing the
serial communication, such as velocity trans-
mission, COM port, etc., are specifed in the Serial
Confguration block, whereas the Conversion block
transforms double type data into uint8 type
(equivalent to 1 byte). Lastly, data are sent through
the COM port specifed in the Serial Send block.
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Figure 5: Numerical simulation 3. Comparison between the adaptive control and the active control in closed-loop with the Nwachioma
chaotic system. Te used parameters are in accordance with those specifed on the third line in Table 1. Te indexes obtained for this
simulation are ϕ(10  s) � 18.57 and ϕa(10  s) � 4490.
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On the other hand, the block diagram programmed in
MATLAB-Simulink for implementing the slave system is
presented in Figure 10 and is divided into the following
parts:

(i) Data receiving: In this block, the Serial Confgura-
tion is used again with the purpose of selecting the
communication parameters. Te Serial Receive ac-
quires the uint8 data of the slave system, which are

×1011
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Figure 6: Numerical simulation 4. Results of the adaptive control and the active control in closed-loop with the Nwachioma chaotic system.
Te used parameters are in accordance with those specifed on the fourth line in Table 1. Te indexes obtained for this simulation are
ϕ(10  s) � 21.86 and ϕa(10  s) � 9.3 × 1011.

Table 2: Performance indexes of the quadratic error integral for the numerical simulations.

ϕ(t) ϕa(t) t (s)

Numerical simulation 1 11.11 97.48 10
Numerical simulation 2 14.76 899.70 10
Numerical simulation 3 18.57 4490 10
Numerical simulation 4 21.86 9.3 × 1011 4
Te index ϕ(t) represents the performance of the adaptive control, whereas the index ϕa(t) shows the performance of the active control.
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mapped in the scale [0, 255], and by using the
Conversion block the data are converted into type
double. Later, the block Scale recovers the original
scaling factor of the state vector.

(ii) Nwachioma slave system: It comprises the block of
parameters ai, where constants (2) are programmed
again for implementation purposes. Te block Slave

is where the equations (4) are programmed with the
aim of obtaining the time-derivatives _x1s, _x2s, and
_x3s. Te states x1s, x2s, and x3s are obtained by
considering the initial conditions of the slave system
through the block Integrator2.

(iii) Learning law: Equations (13) are programmed into
the blockUpdate lawwith the intention of obtaining

Computer 1

Computer 2

Arduino Uno
Board 2

Arduino Uno
Board 1

Figure 7: Experimental implementation of the Nwachioma chaotic system in the master-slave confguration. Te master system and the
slave system are implemented independently in two computers. Te communication between both systems is realized through the protocol
RS-232 via two Arduino UNO boards.
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Serial port available?
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Figure 8: Flowchart for implementing the adaptive control on the Nwachioma chaotic system, in the master-slave confguration, through
two computers and two Arduino UNO boards.
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# include <SoftwareSerial.h>
# defne rxPin 2
# defne txPin 3
SoftwareSerial VirtualSerial � SoftwareSerial(rxPin, txPin);
void setup()
{

Serial.begin(9600);
VirtualSerial.begin(9600);

}
void loop()
{

byte InData;
if (Serial.available())
{
InData� Serial.read();
VirtualSerial.write(InData);

}
if(VirtualSerial.available())
{
InData�VirtualSerial.read();
Serial.write(InData);

}
}

LISTING 1: Arduino code programming language for implementing the RS-232 serial communication.

Master
Integrator

Nwachioma Master System

Zero-Order
Hold Scale

Sampling and Scaling

COM8
9600

8, none, 1

uint8 Data COM8

Serial SendConversion

Data Sent

Serial Configuration

a a
1
s

xmsxm

xm

fcnfcn
xm
•

Figure 9: Block diagram programmed inMATLAB-Simulink for computer 1.With this program, the master system is implemented and the
corresponding data associated with the states are sent via the communication protocol RS-232 to the slave system.
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_􏽢ai. It is easily observed that after using the block
Integrator1, over the time-derivatives previously
mentioned, the corresponding signals 􏽢ai are ob-
tained (after considering initial conditions equal to
zero) and now can be used into the proposed
adaptive control.

(iv) Adaptive control: Tis block generates the corre-
sponding inputs u1, u2, and u3 through (9) and by
taking into account, as parameters, the signals e1, e2,
e3, the estimated ones 􏽢ai, and the states x1m, x2m,
and x3m.

3.2.2. Experimental Results. Te master system (3) is ex-
perimentally implemented in computer 1, where the pa-
rameters given in (2) and the initial conditions (x1m(0) � 1,
x2m(0) � 3, and x3m(0) � 8 retaken from [98]) for the
Nwachioma system, are specifed. On the other hand, the
slave system (4) is implemented in computer 2 and the
parameters given in (2) are used again.Te initial conditions
for the slave system are considered to be x1s(0) � 0,

x2s(0) � 0, and x3s(0) � 0, whereas for the learning law, and
the initial condition of the time-derivative of the estimated
values, _􏽢ai � 0.Te gains of the proposed adaptive control are
chosen to be k1 � 5, k2 � 7, and k3 � 5. With all these values,
the system in closed-loop achieves the synchronization
objective, i.e., (x1s, x2s, x3s)⟶ (x1m, x2m, x3m), as can be
observed in Figure 11.

Figure 12(a) shows that (e1, e2, e3)⟶ (0, 0, 0) even when
the initial conditions of both systems are not equal, whereas
Figure 12(b) depicts the control inputs of the slave system,
whose behavior not only allows that (e1, e2, e3)⟶ (0, 0, 0)

but also that (u1, u2, u3)⟶ (0, 0, 0).

3.2.3. Comments on the Experimental Results. As was pre-
viously mentioned, chaotic systems are very sensitive to
initial conditions (this phenomenon can be observed in
Figure 2). Notice that, in Figures 11 and 12, although such
initial conditions are diferent in both, the master and the
slave systems, the synchronization problem is solved. Also,
despite the master-slave communication is low-cost and
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Serial Receive

double
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Update law

Integrator1 Update law Add1

[Error]
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xms xm
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Figure 10: Block diagram programmed inMATLAB-Simulink for computer 2.With this program, the slave system is implemented, the data
associated with the master system are acquired via the communication protocol RS-232, and the adaptive control is executed.
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with communication delays, the synchronization is achieved
in a short period of time. As depicted in Figure 13, although
􏽢ai⟶ ai is not true, the errors 􏽥ai � 􏽢ai − ai are bounded.

4. Conclusions and Future Work

For the frst time in literature, an adaptive control algorithm for
solving the synchronization task on the Nwachioma master-
slave chaotic system was presented in this paper.Te feasibility
and performance of the closed-loop systemwere demonstrated
in two senses. Te frst one was by comparing via numerical
simulations the adaptive control with an active control by
implementing them in closed-loop on the master-slave
Nwachioma chaotic system via MATLAB-Simulink. Te
simulation results showed that the performance of the adaptive
control is superior to the one obtained with the active control,
i.e., (x1s, x2s, x3s)⟶ (x1m, x2m, x3m), and was verifed
through the performance indexes of the quadratic error integral
associated with both controls in closed-loop. In all simulations,
the parameters ai of the master system and those of the slave
system were diferent for both control algorithms. Te second
one was by executing the experimental implementation of the
adaptive control on a testbed of the master-slave Nwachioma
chaotic system. Te experimental implementation of the
master system was carried out on a computer via MATLAB-
Simulink. Tis computer sent the states x1m, x2m, and x3m

through the Arduino UNO board and the RS-232 serial
protocol. Ten, the computer associated with the slave system
received such states and executed the corresponding learning
law and the adaptive control, also viaMATLAB-Simulink, with
the aim of solving the synchronization task. Te experimental
results showed that the proposed adaptive control achieves in
fnite time that (x1s, x2s, x3s)⟶ (x1m, x2m, x3m).

As a future work, the current results will be generalized to
several slave systems synchronized only to one master system
[107]. Also, a potential extension of the results presented in this
paper could include external disturbances [108] on the Nwa-
chioma chaotic system in the master-slave confguration.
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,e nonlinear differential equation governing the periodic motion of the one-dimensional, undamped, and unforced cubic-
quintic Duffing oscillator is solved exactly by obtaining the period and the solution. ,e period is given in terms of the complete
elliptic integral of the first kind and the solution involves Jacobian elliptic functions. We solve the cubic-quintic Duffing equation
under arbitrary initial conditions. Physical applications are provided. ,e solution to the mixed parity Duffing oscillator is also
formally derived. We illustrate the obtained results with concrete examples. We give high accurate trigonometric approximations
to the Jacobian function cn.

1. Introduction

It is well known that many engineering problems are not
linear and their analytical solutions are not easy to obtain.
Disturbance methods are among the known methods for
solving nonlinear problems, which are based on the existence
of small/large parameters, the so-called disturbance param-
eters. Our approach is different from known solutions to this
problem [1–5]. On the contrary, here, we express the solutions
without imaginary quantities: both frequency and modulus
are real numbers. ,e quintic term appearing in the cubic-
quintic Duffing equation makes this nonlinear oscillator not
only more complex but also more interesting to study.

2. The Analytical Solution to the Cubic-Quintic
Duffing Equation

Let p, q, r, y0, and _y0 be arbitrary real numbers. We will
solve the initial value problem:

y′′(t) + py(t) + qy(t)
3

+ ry(t)
5

� 0 given thaty(0)

� y0 andy′(0)

� _y0.

(1)

We will assume that y2
0 + _y2

0 > 0. Multiplying (1) by y′(t)

and integrating it with respect to t gives
1
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Let

y(t) �
c0cn

��
ω

√
t + c1|m( 􏼁

��������������������������������������

1 + λ · cn
��
ω

√
t + c1|m( 􏼁

2
+ μ · cn

��
ω

√
t + c1|m( 􏼁

4
􏽱 , (3)

where the parameter values c0, c1, m, ω, λ, and μ are to be
determined. If the solution in (3) is periodic, it will have the
same period as the function cn (

��
ω

√
t + c1|m) and this period

may be evaluated by means of the formula

T �
4
��
ω

√ K(m). (4)

In the case, when − 1≤m≤ 1/2, we may approximate the
value of K(m) using the formula

K(m) ≈
π(m(409m − 3984) + 4864)

50m(41m − 208) + 9728
. (5)

,e error for this approximation is given by
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Error � max
− 1≤m≤1/2

|K(m) − K(m)| < 0.000314. (6)

On the contrary, we may obtain approximate trigono-
metric solution making use of the following approximation
formula:

cn(t, m) ≈ cos m(t)

�

����
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√
cos (

����
1 + κ

√
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����
1 + κ

√
cos2 (

����
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, where κ

�
1
14

��������������

m
2

− 144m + 144
􏽱

− (m + 12)􏼠 􏼡.

(7)

See Table 1, for the error�max− 2K(m)≤t≤2K(m) | cos m(t)−

cn(t, m)|.
A more accurate trigonometric approximation may be

obtained using the formula

cn(t, m) ≈ cosm (t) ≔
�������
1 + ρ + κ

􏽰
cos(

��
w

√
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����������������������������
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��
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􏽱 , (8)

being

w �
(κ − 1)(m − 2)

κ + 2
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(κ − 7)κ − (κ − 1)
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See Table 2, for the error�max− 2K(m)≤t≤2K(m) |cosm(t) −

cn(t, m)|.
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Introduce the notation:

cn � cn(
��
ω

√
t|m) and cn �

�
ζ

􏽰
. (11)

Definition 1. ,e discriminant to the i.v.p. (1) is defined as
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2.1. First Case: Δ> 0. We define μ � 0. Inserting the ansatz
(3) into (10), we obtain
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. (13)

Equating to zero the coefficients of ζj
(j � 0, 1, 2, 3) in

the numerator of the last expression gives an algebraic
system. Solving it, we obtain

2 Complexity



m �
3λω − p + ω
(3λ + 2)ω

.ω

�
(3λ + 2) 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑

6c
2
0

− p.

(14)

For these choices, we obtain the following system:

− 18py
2
0 − 9qy

4
0 − 6ry

6
0 − 18 _y

2
0􏼐 􏼑λ2

+ 12c
2
0p − 18py

2
0 − 9qy

4
0 − 6ry

6
0 − 18 _y

2
0􏼐 􏼑λ

+ 6c
2
0p + 3c

4
0q − 6py

2
0 − 3qy

4
0 − 2ry

6
0 − 6 _y

2
0􏼐 􏼑 � 0.

− 6py
2
0 − 3qy

4
0 − 2ry

6
0 − 6 _y

2
0􏼐 􏼑λ3

+ 6c
2
0pλ

2
+ 3c

4
0qλ + 2c

6
0r � 0.

(15)

Table 2: Error of approximating the Jacobian cn function by means of the cosine function (8) with T� 4K(m).

m Error m Error
− 1 0.000074 0 0
− 0.95 0.000063 0.05 2.002e − 9
− 0.9 0.000054 0.1 3.52e − 8
− 0.85 0.0000452 0.15 1.98e − 7
− 0.8 0.0000378 0.2 6.93e − 7
− 0.75 0.00003 0.25 1.89e − 6
− 0.7 0.000025 0.3 4.40e − 6
− 0.65 0.000012 0.35 9.22e − 6
− 0.6 0.000015 0.4 0.000018
− 0.55 0.000011 0.45 0.000033
− 0.5 8.37e − 6 0.5 0.00006
− 0.45 5.88e − 6 0.55 0.0000991
− 0.4 3.94e − 6 0.6 0.00017
− 0.35 2.48e − 6 0.65 0.00023
− 0.3 1.44e − 6 0.7 0.00045
− 0.25 7.5e − 7 0.75 0.00074
− 0.2 3.322e − 7 0.8 0.0012
− 0.15 1.145e − 7 0.85 0.0021
− 0.1 2.44e − 8 0.9 0.0036
− 0.05 1.67e − 9 0.95 0.015

Table 1: Error of approximating the Jacobian cn function by means of the cosine function (7) with T� 4K(m).

m Error m Error
− 1 0.0068 0 0
− 0.95 0.00624 0.05 0.0000332
− 0.9 0.005742 0.1 0.00014
− 0.85 0.0053 0.15 0.00033
− 0.8 0.0045 0.2 0.00061
− 0.75 0.0043 0.25 0.0010
− 0.7 0.0039 0.3 0.00153
− 0.65 0.00344 0.35 0.00212
− 0.6 0.00301 0.4 0.003
− 0.55 0.00261 0.45 0.0041
− 0.5 0.00222 0.5 0.0054
− 0.45 0.00186 0.55 0.007
− 0.4 0.001517 0.6 0.009
− 0.35 0.0012 0.65 0.0116
− 0.3 0.0009 0.7 0.0145
− 0.25 0.00066 0.75 0.0188
− 0.2 0.00044 0.8 0.0241
− 0.15 0.00025 0.85 0.0314
− 0.1 0.00012 0.9 0.042
− 0.05 0.000031 0.95 0.059
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Eliminating c0 from system (15) gives the sextic

d0 + d1λ + d2λ
2

+ d3λ
3

+ d4λ
4

+ d5λ
5

+ d6λ
6

� 0, (16)

where

d0 � 4r
2 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑

2
,

d1 � 36r 6py
2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑 pq + 6pry

2
0 + 3qry

4
0 + 2r

2
y
6
0 + 6r _y

2
0􏼐 􏼑,

d2 � 9
48p

3
r + 240p

2
qry

2
0 + 576p

2
r
2
y
4
0 − 18pq

3
y
2
0 + 120pq

2
ry

4
0 + 656pqr

2
y
6
0+

240pqr _y
2
0 + 384pr

3
y
8
0 + 1152pr

2
_y
2
0y

2
0 − 9q

4
y
4
0 − 6q

3
ry

6
0 − 18q

3
_y
2
0+

144q
2
r
2
y
8
0 + 192qr

3
y
10
0 + 576qr

2
_y
2
0y

4
0 + 64r

4
y
12
0 + 384r

3
_y
2
0y

6
0 + 576r

2
_y
4
0
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d3 � 162
16p

3
r − 2p

2
q
2

+ 48p
2
qry

2
0 + 72p

2
r
2
y
4
0 − 6pq

3
y
2
0 + 24pq

2
ry

4
0 + 88pqr

2
y
6
0+

48pqr _y
2
0 + 48pr

3
y
8
0 + 144pr

2
_y
2
0y

2
0 − 3q

4
y
4
0 − 2q

3
ry

6
0 − 6q

3
_y
2
0+

18q
2
r
2
y
8
0 + 24qr

3
y
10
0 + 72qr

2
_y
2
0y

4
0 + 8r

4
y
12
0 + 48r

3
_y
2
0y

6
0 + 72r

2
_y
4
0
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d4 � 27
208p

3
r − 36p

2
q
2

+ 504p
2
qry

2
0 + 576p

2
r
2
y
4
0 − 78pq

3
y
2
0 + 252pq

2
ry

4
0 + 744pqr

2
y
6
0+

504pqr _y
2
0 + 384pr

3
y
8
0 + 1152pr

2
_y
2
0y

2
0 − 39q

4
y
4
0 − 26q

3
ry

6
0 − 78q

3
_y
2
0+

144q
2
r
2
y
8
0 + 192qr

3
y
10
0 + 576qr

2
_y
2
0y

4
0 + 64r

4
y
12
0 + 384r

3
_y
2
0y

6
0 + 576r

2
_y
4
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

d5 � 324
16p

3
r − 3p

2
q
2

+ 36p
2
qry

2
0 + 36p

2
r
2
y
4
0 − 6pq

3
y
2
0+

18pq
2
ry

4
0 + 48pqr

2
y
6
0 + 36pqr _y

2
0 + 24pr

3
y
8
0 + 72pr

2
_y
2
0y

2
0 − 3q

4
y
4
0−

2q
3
ry

6
0 − 6q

3
_y
2
0 + 9q

2
r
2
y
8
0 + 12qr

3
y
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0 + 36qr

2
_y
2
0y

4
0 + 4r

4
y
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0 + 24r

3
_y
2
0y

6
0 + 36r

2
_y
4
0
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d6 � 108
16p

3
r − 3p

2
q
2

+ 36p
2
qry

2
0 + 36p

2
r
2
y
4
0 − 6pq

3
y
2
0 + 18pq

2
ry

4
0 + 48pqr

2
y
6
0+

36pqr _y
2
0 + 24pr

3
y
8
0 + 72pr

2
_y
2
0y

2
0 − 3q

4
y
4
0 − 2q

3
ry

6
0 − 6q

3
_y
2
0+

9q
2
r
2
y
8
0 + 12qr

3
y
10
0 + 36qr

2
_y
2
0y

4
0 + 4r

4
y
12
0 + 24r

3
_y
2
0y

6
0 + 36r

2
_y
4
0
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(17)

Sextic (16) is solvable by radicals. Indeed, let

λ �
�
z

√
−
1
2
. (18)

,en,

s0 + s1z + s2z
2

+ s3z
3

� 0, (19)

where

s0 � 9pq + 6pry
2
0 + 3qry

4
0 + 2r

2
y
6
0 + 6r _y

2
0􏼐 􏼑

2
,

s1 � 9

48p
3
r − 27p

2
q
2

− 12p
2
qry

2
0 + 36p

2
r
2
y
4
0−

18pq
3
y
2
0 − 6pq

2
ry

4
0 + 32pqr

2
y
6
0 − 12pqr _y

2
0+

24pr
3
y
8
0 + 72pr

2
_y
2
0y

2
0 − 9q

4
y
4
0 − 6q

3
ry

6
0−

18q
3

_y
2
0 + 9q

2
r
2
y
8
0 + 12qr

3
y
10
0 + 36qr

2
_y
2
0y

4
0+

4r
4
y
12
0 + 24r

3
_y
2
0y

6
0 + 36r

2
_y
4
0
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,

s2 � − 27

32p
3
r − 9p

2
q
2

+ 36p
2
qry

2
0 − 36p

2
r
2
y
4
0−

12pq
3
y
2
0 + 18pq

2
ry

4
0 − 24pqr

2
y
6
0 + 36pqr _y

2
0 − 24pr

3
y
8
0−

72pr
2

_y
2
0y

2
0 − 6q

4
y
4
0 − 4q

3
ry

6
0 − 12q

3
_y
2
0 − 9q

2
r
2
y
8
0 − 12qr

3
y
10
0 −

36qr
2

_y
2
0y

4
0 − 4r

4
y
12
0 − 24r

3
_y
2
0y

6
0 − 36r

2
_y
4
0
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,

s3 � 27
16p

3
r − 3p

2
q
2

+ 36p
2
qry

2
0 + 36p

2
r
2
y
4
0 − 6pq

3
y
2
0 + 18pq

2
ry

4
0 + 48pqr

2
y
6
0+

36pqr _y
2
0 + 24pr

3
y
8
0 + 72pr

2
_y
2
0y

2
0 − 3q

4
y
4
0 − 2q

3
ry

6
0 − 6q

3
_y
2
0+

9q
2
r
2
y
8
0 + 12qr

3
y
10
0 + 36qr

2
_y
2
0y

4
0 + 4r

4
y
12
0 + 24r

3
_y
2
0y

6
0 + 36r

2
_y
4
0
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(20)
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,e discriminant to cubic (19) is

δcubic � 20639121408r
2 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑

2

16p
3
r + 6pq

3
y
2
0 + 3q

4
y
4
0 + 2q

3
ry

6
0 + 6q

3
_y
2
0􏼐 􏼑

2
Δ> 0.

(21)

Cubic (19) has three real roots and at least one of them
must be positive. Indeed, let z1, z2, and z3 be the roots to this
cubic. ,en,

z1z2z3 � −
s0

s3

�
9pq + 6pry

2
0 + 3qry

4
0 + 2r

2
y
6
0 + 6r _y

2
0􏼐 􏼑

2

1728Δ
> 0.

(22)

Since z1z2z3 > 0, at least one of the numbers z1, z2, and
z3 must be positive. We choose the closest to 1/4 positive
root to cubic (19) so that, in view of (17), the number λ will
be the closest to zero real root to the sextic in (15). Observe
also that the condition Δ> 0 implies that q2 − 4pr> 0. ,us,
if q2 − 4pr≤ 0, then Δ≤ 0. Moreover, the discriminant to the
cubic (17) and Δ have the same sign.

,e numbers c0 and c1 are determined from the initial
conditions:

c1 � cn− 1 ±
y0�������

c
2
0 − λy

2
0

􏽱 |m⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (23)

,e number c0 is a solution to the sextic:

λ(λ + 1)(2λ + 1)y
2
0 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑

+
− 24λ2py

2
0 − 24λpy

2
0 − 6py

2
0 − 9λ2qy

4
0 − 9λqy

4
0−

3qy
4
0 − 6λ2ry

6
0 − 6λry

6
0 − 2ry

6
0 − 18λ2 _y

2
0 − 18λ _y

2
0 − 6 _y

2
0

⎛⎜⎜⎝ ⎞⎟⎟⎠c
2
0

+ 6(2λ + 1)pc
4
0 + 3q + 2ry

2
0􏼐 􏼑c

6
0 � 0.

(24)

Example 1. Let

p � 1,

q � 5,

r � 1,

y0 � 1 and

_y0 � 1.

(25)

Sextic (15) reads

213084λ6 + 639252λ5 + 598887λ4 + 132354λ3

− 75861λ2 − 35496λ − 3364 � 0.
(26)

,e roots to this sextic are

λ1 � − 1.39266,

λ2 � − 0.855911,

λ3 � − 0.626144.

λ4 � − 0.373856,

λ5 � − 0.144089,

λ6 � 0.392663.

(27)

We choose the value λ � λ5 � − 0.144089. ,e values of
c0 and c1 are determined from the initial conditions. ,ey
read

c0 � 0.985102 and

c1 � − 0.327845.
(28)

,e exact solution to the i.v.p.,

y′′(t) + y(t) + 5y(t)
3

+ y(t)
5

� 0 given thaty(0)

� 1 andy′(0)

� 1,

(29)

reads

y(t) �
0.985102cn(2.60927t − 0.327845, 0.268447)

����������������������������������������

1 − 0.144089cn(2.60927t − 0.327845, 0.268447)
2

􏽱 . (30)

,e solution is periodic with period
T � 4K(m)/

��
ω

√
� 2.5997790766024407. ,e approximate

trigonometric solution is given by

ytrigo(t) �
3.41275 cos (2.41528(t − 0.125818))

�����������������������������������

14 − 3.72995 cos2 (2.41528(t − 0.125818))

􏽱 .

(31)

,e error of this trigonometric approximant compared
with the exact solution on 0≤ t≤T equals 0.00352816, see
Figure 1.

2.2. Second Case: Δ< 0. Let μ≠ 0. Inserting the ansatz (3)
into (10), we obtain

1.0

0.5

-0.5

-1.0

-4 -2 2 4

y (t)

t

Figure 1: Comparison between the exact and the approximate
numerical solution.
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12ζ6μ3 + 36ζ5λμ2 + 12ζ4 3λ2μ + 3μ2􏼐 􏼑 + 12ζ3 λ3 + 6λμ􏼐 􏼑 + 12ζ2 3λ2 + 3μ􏼐 􏼑 + 36ζλ + 12􏼐 􏼑R(t) �

− 6c
2
0mω + 6c

2
0ω − 6py

2
0 − 3qy

4
0 − 2ry

6
0 − 6 _y

2
0

+ 3

4c
2
0μω − 4c

2
0μmω + 2c

2
0mω − 4c

2
0λp − c

4
0q+

6λ2py
2
0 + 6μpy

2
0 + 3λ2qy

4
0 + 3μqy

4
0+

2λ2ry
6
0 + 2μry

6
0 + 6λ2 _y

2
0 + 6μ _y

2
0
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ζ2

+ 3ζ 4c
2
0mω + 2c

2
0p − 2c

2
0ω − 6λpy

2
0 − 3λqy

4
0 − 2λry

6
0 − 6λ _y

2
0􏼐 􏼑

−

12c
2
0μω − 24c

2
0μmω + 6c

2
0λ

2
p + 12c

2
0μp + 3c

4
0λq+

2c
6
0r − 6λ3py

2
0 − 36λμpy

2
0 − 3λ3qy

4
0 − 18λμqy

4
0−

2λ3ry
6
0 − 12λμry

6
0 − 6λ3 _y

2
0 − 36λμ _y

2
0
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ζ3

− 3μ

− 2c
2
0μω + 2c

2
0μmω − 4c

2
0mω − 4c

2
0λp−

c
4
0q + 6λ2py

2
0 + 6μpy

2
0 + 3λ2qy

4
0 + 3μqy

4
0+

2λ2ry
6
0 + 2μry

6
0 + 6λ2 _y

2
0 + 6μ _y

2
0
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ζ4

+ 3μ2 4c
2
0mω + 2c

2
0p − 2c

2
0ω − 6λpy

2
0 − 3λqy

4
0 − 2λry

6
0 − 6λ _y

2
0􏼐 􏼑ζ5

− μ2 6c
2
0mω + 6μpy

2
0 + 3μqy

4
0 + 2μry

6
0 + 6μ _y

2
0􏼐 􏼑ζ6.

(32)

Equating to zero the coefficients of ζj

(j � 0, 1, 2, 3, 4, 5, 6) gives an algebraic system. Solving it
gives

ω �
(3λ + 2) 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑

6c
2
0

− p,

m �
μ

μ − 1
,

μ �
6c

2
0p

6py
2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0

− 3λ − 1.

(33)

,e system reduces to

− 24pc
2
0 + 3qc

4
0 + 24py

2
0 + 12qy

4
0 + 8ry

6
0 + 24 _y

2
0􏼐 􏼑

+ 12λ pc
2
0 + 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑 − 3λ2 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑 � 0,

2c
2
0

72p
2
c
2
0 − 72p

2
y
2
0 + 6prc

4
0y

2
0 − 36pqy

4
0 + 3qrc

4
0y

4
0 − 24pry

6
0+

2r
2
c
4
0y

6
0 − 72p _y

2
0 + 6rc

4
0 _y

2
0
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− 3 48pc
2
0 − qc

4
0 − 24py

2
0 − 12qy

4
0 − 8ry

6
0 − 24 _y

2
0􏼐 􏼑 6py

2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑λ

+ 6 6py
2
0 + 3qy

4
0 + 2ry

6
0 + 6 _y

2
0􏼐 􏼑 pc

2
0 + 36py

2
0 + 18qy
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Eliminating c0 from this system gives the sextic

D0 + D1λ + D2λ
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+ D3λ
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+ D4λ
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+ D5λ
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+ D6λ
6

� 0, (35)
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Sextic (34) has at least one real root. Indeed, let zj

(j � 1, 2, 3, 4, 5, 6) be its roots. ,en,
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2
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27Δ
< 0.

(37)

We will choose the closest to zero real root to sextic (34).
,e values for c0 and c1 are determined from the initial
conditions:

c1 � cn− 1

��������������������������

c
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0 ±

���������������

c
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4
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􏽲
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􏽶
􏽴
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,e number c0 is found from the algebraic equation:

6λy
6
0 − 15λy

4
0 + 15λy

2
0 + 3λ _y

2
0 + 2y

6
0 − 5y

4
0 + 5y

2
0 + _y

2
0 − 5c

2
0􏼐 􏼑

2y
6
0 − 5y

4
0 + _y

2
0􏼐 􏼑c

2
0 + 4λy

8
0 − 10λy

6
0 + 10λy

4
0 + 2λ _y

2
0y

2
0􏼐 􏼑

2y
6
0 − 5y

4
0 + 5y

2
0 + _y

2
0􏼐 􏼑c

4
0+

− 4λy
8
0 + 10λy

6
0 − 10λy

4
0 − 2λ _y

2
0y

2
0 − 20y

4
0􏼐 􏼑c

2
0+

2λ2y10
0 − 5λ2y8

0 + 5λ2y6
0 + λ2 _y

2
0y

4
0 + 24λy

10
0 − 60λy

8
0+

60λy
6
0 + 12λ _y

2
0y

4
0 + 8y

10
0 − 20y

8
0 + 20y

6
0 + 4 _y

2
0y

4
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

(39)

Example 2. Let p � q � r � y0 � _y0 � 1. ,e i.v.p. problem
to be solved is

y′′(t) + y(t) + y(t)
3

+ y(t)
5

� 0 given thaty(0)

� 1 andy′(0)

� 1.

(40)

,is problem has a negative discriminant Δ � − 387.
Sextic (35) reads

177633λ6 − 1825416λ5 + 5060232λ4 − 12568608λ3

− 16971120λ2 − 6469632λ − 735488 � 0.
(41)

,e roots are

λ1 � − 0.404933 − 0.145779i,

λ2 � − 0.404933 + 0.145779i,

λ3 � − 0.208601,

λ4 � 1.63821 − 3.26816i,

λ5 � 1.63821 + 3.26816i,

λ6 � 8.01838.

(42)

We choose λ � λ3 � − 0.208601. ,e values for c0 and c1
are

c0 − 0.993235, c1 � 2.72596. (43)

,e exact solution is given by

y(t) � −
0.993235cn(1.71662t + 2.72596|0.0253557)

�������������������������������������������������������������������������������

− 0.0260153cn(1.71662t + 2.72596|0.0253557)
4

− 0.208601cn(1.71662t + 2.72596|0.0253557)
2

+ 1
􏽱 . (44)

See Figure 2, for a comparison with the numerical
solution.

2.3.3ird Case:Δ � 0. In this case, we have two roots to the
cubic:
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and
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(45)
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t

Figure 2: Comparison between the numerical and the exact so-
lution for the i.v.p. (40).
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At least one of these two numbers must be positive. So,
we proceed the same way as we did for a positive
discriminant.

2.4. Two Particular Cases

2.4.1. First Particular Case: _y0 � 0. Let

y′′(t) + py(t) + qy(t)
3

+ ry(t)
5

� 0 given thaty(0)

� y0 andy′(0)

� 0.

(46)

,e discriminant to the i.v.p. (46) equals

Δ1 � p + qy
2
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4
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2
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2
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2
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2
y
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If Δ1 > 0, then the exact solution is given by

y(t) �

����
λ + 1

√
y0cn(t

��
ω

√
|m)

���������������

1 + λcn(t
��
ω

√
|m)

2
􏽱 , (48)

where

m �
2λ(3λ + 2)p +(λ + 1)(3λ + 1)qy0
(λ + 1) (6λ + 2)p +(3λ + 2)qy0( 􏼁

,

ω �
(λ + 1) (6λ + 2)p +(3λ + 2)qy0( 􏼁

6λ(λ + 1) + 2
,

λ � −
y0 3q + 6ry0 ±

�
3

√ ����������������������

3q
2

− 16pr − 4qry0 − 4r
2y0

􏽱

􏼒 􏼓

12 p + qy0 + ry0( 􏼁
.

(49)

Assume now a negative discriminant. ,e exact solution
reads

ω �
2p(λ(3λ + 4) − 5μ + 1) +(3λ + 2)qy20(λ + μ + 1)

6λ(λ + 1) + 10μ + 2
,

m �
2p(λ(3λ + 2) − 5μ) +(3λ + 1)qy20(λ + μ + 1)

2p(λ(3λ + 4) − 5μ + 1) +(3λ + 2)qy20(λ + μ + 1)
,

λ �
2 3q + 2ry

2
0􏼐 􏼑 − 2

�
6

√
Δ2 + 12p + 9qy

2
0 + 6ry

4
0􏼐 􏼑

3y
2
0 16pr − 3q

2
+ 4ry

2
0 q + ry

2
0􏼐 􏼑􏼐 􏼑

,

μ �
− 96p

2
+ 16p

�
6

√
Δ2 − 9qy

2
0 − 7ry

4
0􏼐 􏼑 + y

2
0 3q + 2ry

2
0􏼐 􏼑 4

�
6

√
Δ2 − 17qy

2
0 − 14ry

4
0􏼐 􏼑

y
4
0 16pr − 3q

2
+ 4ry

2
0 q + ry

2
0􏼐 􏼑􏼐 􏼑

,

where

Δ2 �

�����������������������������

p + qy
2
0 + ry

4
0􏼐 􏼑 6p + 3qy

2
0 + 2ry

4
0􏼐 􏼑

􏽱

.

(50)

We claim that Δ2 > 0. Indeed, let

δ � 3q
2

− 4qry
2
0 − 4r

2
y
4
0 − 16pr. (51)

,en, δ < 0. However,

Δ2 �
3 q + 2ry

2
0􏼐 􏼑

2
− δ􏼒 􏼓 3q + 2ry

2
0􏼐 􏼑

2
− 3δ􏼒 􏼓

128r
2 .

(52)

From the last identity, it is clear that Δ2 > 0.
Assume now that Δ1 � 0. In this case, we have the

following solutions:
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y(t) �
y0

��������

3q + 2ry
2
0

􏽱

cos 1/4
��������������������

q + 2ry
2
0􏼐 􏼑 3q + 2ry

2
0􏼐 􏼑/r

􏽱

t􏼒 􏼓
��������������������������������������������

3q + 4ry
2
0 − 2ry

2
0 cos 1/4

��������������������

q + 2ry
2
0􏼐 􏼑 3q + 2ry

2
0􏼐 􏼑/r

􏽱

t􏼒 􏼓

􏽲 for
q + 2ry

2
0􏼐 􏼑 3q + 2ry

2
0􏼐 􏼑

r
> 0,

y(t) �
y0

��������

3q + 2ry
2
0

􏽱

cosh 1/4
���������������������

− q + 2ry
2
0􏼐 􏼑 3q + 2ry

2
0􏼐 􏼑/r

􏽱

t􏼒 􏼓
����������������������������������������������

3q + 4ry
2
0 − 2ry

2
0cosh 1/4

���������������������

− q + 2ry
2
0􏼐 􏼑 3q + 2ry

2
0􏼐 􏼑/r

􏽱

t􏼒 􏼓

􏽲 for
q + 2ry

2
0􏼐 􏼑 3q + 2ry

2
0􏼐 􏼑

r
< 0.

(53)

Solutions (53) are called solitons. ,ey arise in soliton
theory.

2.4.2. Second Particular Case: y0 � 0. Let

y′′(t) + py(t) + qy(t)
3

+ ry(t)
5

� 0 given thaty(0)

� 0 andy′(0)

� _v0.

(54)

,e solution has the form

y(t) �
_v0

��������

λ + μ + 1
􏽱

· sn(x

���������������������

− p(λ + μ + 1)/2λ + 4μ − 1
􏽱

|μ/λ + μ + 1)

���������������������
− p(λ + μ + 1)/2λ + 4μ − 1

􏽰
��������������������������������������������������������������������������������������

1 + μ · cn(x

����������������������

− p(λ + μ + 1)/2λ + 4μ − 1
􏽱

|μ/λ + μ + 1)
4

+ λ · cn(x

����������������������

− p(λ + μ + 1)/2λ + 4μ − 1
􏽱

|μ/λ + μ + 1)
2

􏽲 .

(55)

,e values of λ and μ are obtained by solving the two
sextics:

P(λ) � 0 andQ(μ)

� 0,
(56)

where

P(λ) � _v
2
0 9q

3
− 48pqr − 64r

2
_v
2
0􏼐 􏼑 + 12 − 3p

2
q
2

+ 16p
3
r − 3q

3
_v
2
0 + 20pqr _v

2
0 + 16r

2
_v
4
0􏼐 􏼑λ

+ 6 − 3p
2
q
2

+ 16p
3
r + 3q

3
_v
2
0 − 12pqr _v

2
0 − 16r

2
_v
4
0􏼐 􏼑λ2 + 4 _v

2
0 9q

3
− 48pqr − 32r

2
_v
2
0􏼐 􏼑λ3

+ 3 _v
2
0 3q

3
− 16pqr + 16r

2
_v
2
0􏼐 􏼑λ4 + 48r

2
_v
4
0λ

5
+ 8r

2
_v
4
0λ

6
,

(57)

and

Q(μ) � 3 _v
4
0 3p

2
q
2

− 16p
3
r + 6q

3
_v
2
0 − 36pqr _v

2
0 − 36r

2
_v
4
0􏼐 􏼑

− 144 4p
6

+ 17p
4
q _v

2
0 + 21p

2
q
2

_v
4
0 + 14p

3
r _v

4
0 + 6q

3
_v
6
0 + 27pqr _v

6
0 + 18r

2
_v
8
0􏼐 􏼑μ

+ 96 6p
6

+ 48p
4
q _v

2
0 + 129p

2
q
2

_v
4
0 − 124p

3
r _v

4
0 + 114q

3
_v
6
0 − 252pqr _v

6
0 − 198r

2
_v
8
0􏼐 􏼑μ2

− 768 _v
2
0 3p

4
q + 15p

2
q
2

_v
2
0 − 10p

3
r _v

2
0 + 18q

3
_v
4
0 − 18pqr _v

4
0 + 36r

2
_v
6
0􏼐 􏼑μ3

+ 768 _v
4
0 3p

2
q
2

+ 8p
3
r + 6q

3
_v
2
0 + 28pqr _v

2
0 + 132r

2
_v
4
0􏼐 􏼑μ4 − 12288r _v

6
0 pq + 6r _v

2
0􏼐 􏼑μ5 + 16384r

2
_v
8
0μ

6
.

(58)
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3. Applications

,e cubic-quintic Duffing oscillator has many interesting
applications in soliton theory, optics, nonlinear circuits,
plasma physics, and other areas of science and engineering.

3.1. Nonlinear Odd Parity Oscillators. Let us consider the
nonlinear oscillator:

u′′(t) + f(u(t)) � 0 subjected to u(0)

� u0 and u′(0)

� 0,

(59)

where f(x) is and odd function:

f(− x) � − f(x). (60)

Wemay approximate the functionf � f(x) bymeans of
a Chebyshev polynomial on some interval [− A, A] (A> 0) as
follows:

f(x) ≈ px + qx
3

+ rx
5
, (61)

where

p �
f(− A

�
2

√
/2) − f(A

�
2

√
/2) − (5 + 3

�
3

√
)f(− 1/2

������
2 −

�
3

√􏽰
A) +(5 + 3

�
3

√
)f(1/2

������
2 −

�
3

√􏽰
A) +(5 − 3

�
3

√
)(f(− 1/2

������
2 +

�
3

√􏽰
A) − f(1/2

������
2 +

�
3

√􏽰
A))

3
�
2

√
A

,

q �

�
2

√
(− 8f(− A

�
2

√
/2) + 8f(A

�
2

√
/2) +(7 + 5

�
3

√
)f(− 1/2

������
2 −

�
3

√􏽰
A) − (7 + 5

�
3

√
)f(1/2

������
2 −

�
3

√􏽰
A) +(5

�
3

√
− 7)(f(− 1/2

������
2 +

�
3

√􏽰
A) − f(1/2

������
2 +

�
3

√􏽰
A)))

3A
3 ,

r �
4

�
2

√
(1 +

�
3

√
)((

�
3

√
− 1)f(− A

�
2

√
/2) − (

�
3

√
− 1)f(A

�
2

√
/2) − f(− 1/2

������
2 −

�
3

√􏽰
A) + f(1/2

������
2 −

�
3

√􏽰
A) +(

�
3

√
− 2)(f(− 1/2

������
2 +

�
3

√􏽰
A) − f(1/2

������
2 +

�
3

√􏽰
A)))

3A
5 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

,en, we may obtain an approximated analytic solution
to oscillator (59) by solving the cubic-quintic Duffing
oscillator:

y′′(t) + py(t) + qy(t)
3

+ ry(t)
5

� 0 subjected toy(0)

� u0 andy′(0)

� 0.

(63)

Example 3. Let us obtain an approximate analytical solution
to the pendulum equation:

θ′′(t) + k
2 sin(θ(t)) � 0 subjected to θ(0)

� θ0 and θ′(0)

� 0,

(64)

having the analytical solution [9]

θ(t) � 2 tan− 1 tan
θ0
2

􏼠 􏼡cn k · t | sin2
θ0
2

􏼠 􏼡􏼠 􏼡􏼠 􏼡. (65)

,e Chebyshev approximant P(x) of f(x) � sin x on
[− π/2, π/2] reads

P(x) � 16
�
2

√
sin

π
�
2

√􏼠 􏼡 −
�
3

√
sin

1
2

�
3
2

􏽲

π􏼠 􏼡cos
π

2
�
2

√􏼠 􏼡 + sin
π

2
�
2

√􏼠 􏼡cos
1
2

�
3
2

􏽲

π􏼠 􏼡􏼠 􏼡 − 3π5x5

+ 4
�
2

√
4 sin

π
�
2

√􏼠 􏼡 − 5
�
3

√
sin

1
2

�
3
2

􏽲

π􏼠 􏼡cos
π

2
�
2

√􏼠 􏼡 + 7 sin
π

2
�
2

√􏼠 􏼡cos
1
2

�
3
2

􏽲

π􏼠 􏼡􏼠 􏼡3π3x3

−
�
2

√
x sin

π
�
2

√􏼠 􏼡 − 6
�
3

√
sin

1
2

�
3
2

􏽲

π􏼠 􏼡cos
π

2
�
2

√􏼠 􏼡 + 10 sin
π

2
�
2

√􏼠 􏼡cos
1
2

�
3
2

􏽲

π􏼠 􏼡􏼠 􏼡3π.

(66)

We may rationalize this expression up to 10− 7 to obtain P(x) �
17x

5

2926
−
2461x

3

15601
+
1641x

1649
. (67)
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,e square mean error is
����������������

􏽚
π

− π
(sin x − P(x))

2

􏽳

� 0.0141773. (68)

,us, our aim is to solve the cubic-quintic Duffing
oscillator:

y′′(t) +
1641k

2

1649
y(t) −

2461k
2

15601
y
3
(t) +

17k
2

2926
y
5
(t) � 0 subjected toy(0)

� θ0 andy′(0)

� 0.

(69)

Let k � 1 and θ0 � 5π/6. For these data, we have a
positive discriminant and the solution to the initial value
problem,

y′′(t) +
1641
1649

y(t) −
2461
15601

y
3
(t) +

17
2926

y
5
(t) � 0 subjected toy(0)

�
5π
6
andy′(0)

� 0,

(70)

may be obtained making use of formula (48).

3.2. 3e Duffing–Helmholtz Oscillator. Let us consider the
i.v.p.:

x′′(t) + αx(t) + βx
2
(t) + cx

3
(t) � 0 given that x(0)

� x0 andx′(0)

� _x0.

(71)

Suppose that the function y � y(t) is the solution to the
cubic-quintic Duffing equation:

y′′(t) +
1
4

α + 2Aβ + 3A
2

c􏼐 􏼑y(t)

−
1
3

A − x0( 􏼁(β + 3Ac)y(t)
3

+
3
8

A − x0( 􏼁
2
cy(t)

5

given that

y(0)

� 1 andy′(0)

�
_x0

2 x0 − A( 􏼁
.

(72)

,en, the function,

x(t) � A + x0 − A( 􏼁y
2
(t), (73)

is the solution to the i.v.p. (71) provided that A is a solution
to the quartic:

3cA
4

+ 4βA
3

+ 6αA
2

− 6αx
2
0 − 4βx

3
0 − 3cx

4
0 − 6 _x

2
0 � 0. (74)

3.3. Nonlinear Conservative Oscillators. Suppose we are
given to sole the i.v.p.:

u′′(t) + g(u(t)) � 0 subjected to u(0)

� u0 and u′(0)

� _u0.

(75)

Assume that |u|≤A. We approximate the function g �

g(u) by means of a cubic polynomial on − A≤ u≤A using
Chebyshev approach so that

g(u) ≈ a0 + a1u + a2u
2

+ a3u
3
, − A≤ u≤A, (76)

where

a0 �
cos2(π/8)(g(− A sin(π/8)) + g(A sin(π/8))) − sin2(π/8)(g(− A cos(π/8)) + g(A cos(π/8)))

�
2

√ ,

a1 �
(

�
2

√
− 1) 8 sec(π/8)(g(− A cos(π/8)) − g(A cos(π/8))) + csc5(π/8)(g(A sin(π/8)) − g(− A sin(π/8)))􏼐 􏼑

32A
,

a2 �
− g(− A sin(π/8)) − g(A sin(π/8)) + g(− A cos(π/8)) + g(A cos(π/8))

�
2

√
A
2 ,

a3 �
(

�
2

√
− 1)csc2(π/8)sec(π/8)(− g(− A cos(π/8)) + g(A cos(π/8)) + cot(π/8)(g(− A sin(π/8)) − g(A sin(π/8))))

4A
3 .

(77)

We now replace the i.v.p. (75) with the i.v.p.:
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u′′(t) + a0 + a1u(t) + a2u
2
(t) + a3u

3
(t) � 0 subjected to u(0)

� u0 and u′(0)

� _u0.

(78)

Let

u(t) � ρ + x(t), where a0 + a1ρ + a2ρ
2

+ aρ3. (79)

,e problem reduces to the i.v.p.:

x′′(t) + a1 + 2ρa2 + 3ρ2a3􏼐 􏼑x(t)

+ a2 + 3ρa3( 􏼁x
2
(t) + a3x

3
(t) � 0 given that x(0)

� u0 − ρ andx′(0)

� _u0.

(80)

,is is a Duffing–Helmholtz oscillator (71) with

α � a1 + 2ρa2 + 3ρ2a3, β

� a2 + 3ρa3 and c

� a3.

(81)

4. Analysis and Discussion

We have solved the cubic-quintic Duffing oscillator equation
for any given arbitrary initial conditions. In [1], authors
considered the particular case:

d
2
x

dt
2 + a1x + a3x

3
+ a5x

5
� 0 given thatx(0)

� A> 0 and
dx

dt
(0)

� 0,

(82)

under the restrictions,

a1 ≥ 0, a3 ≥ 0 and a5 ≥ 0. (83)

,ese conditions, however, are too restrictive. In [6],
author considered the ansatz:

y
2
(t) �

1
a + bcn2 ωt + ϕ, k

2
􏼐 􏼑

. (84)

,is approach does not allow to determine the sign of
y(t). On the contrary, this ansatz sometimes gives complex
values for ω or k, which makes it difficult to interpret the
obtained solution physically. Our approach avoids obtaining
such complex values.

Other authors solved this equation using perturbative
methods [2, 4, 7–9]. In [5], author studied the stability
analysis to a cubic-quintic Duffing equation. ,ere are other
numerical and analytical methods that allow to solve this
oscillator equation.

,e cubic-quintic Duffing oscillator may also be solved
making use of perturbative methods. One of them is the
famous Krylov–Bogoliubov–Mitropolsky method (KBM).
For example, let us consider the following oscillator:

y′′(t) + ω2
0y(t) + αy(t)

3
+ βy(t)

5
� 0 given thaty(0)

� y0 andy′(0)

� _y0.

(85)

Using the Krylov–Bogoliubov–Mitropolsky method
gives the following approximate analytical solution:

y(t) � A cos(ω) −
123αA

4β + 63α2A2
− 96αω2

0 + 55A
6β2 − 120A

2βω2
0

3072ω4
0

A
3 cos(3ω)

+
9α2 + 5A

4β2 + 9αA
2β + 24βω2

0

9216ω4
0

A
5 cos(5ω) +

β 72α + 95A
2β􏼐 􏼑

294912ω4
0

A
7 cos(7ω) +

β2

98304ω4
0
A
9 cos(9ω),

(86)

where

ω � ω(t)

� ω0 +
3α
8ω0

A
2

−
5 3α2 − 16βω2

0􏼐 􏼑

256ω3
0

A
4

−
5αβ
64ω3

0
A

6
−

55β2

3072ω3
0
A
8⎡⎣ ⎤⎦t + B.

(87)

For the damped oscillator,

y′′(t) + 2εy′(t) + ω2
0y(t) + qy(t)

3
+ ry(t)

5
� 0 given thaty(0)

� y0 andy′(0)

� _y0.

(88)

,e KBM gives
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y(t) � a(t)cos(ψ(t)) +
4q + 5ra(t)

2

128ω2
0

a(t)
3 cos(3ψ(t))

+
r

384ω2
0

a(t)
5 cos(5ψ(t)),

(89)

where

a(t) � A exp(− εt) andψ(t)

� ω0t + B +
3 1 − e

− 2tε
􏼐 􏼑

16εω0
qA

2
+
5 1 − e

− 4tε
􏼐 􏼑

64εω0
rA

4
.

(90)

,e constants A and B are determined from the initial
conditions. ,ese results are also valid for the cubic Duffing
oscillator (r � 0):

y″(t) + 2εy′(t) + ω2
0y(t) + qy(t)

3
� 0 given thaty(0)

� y0 andy′(0)

� _y0.

(91)

5. Conclusions

,e cubic-quintic Duffing oscillator has been solved exactly
for arbitrary initial conditions. ,e obtained results may be
applied to solve strongly nonlinear conservative oscillators
like the pendulum oscillator equation. We may go further by
considering a damped oscillator of the form
€x + 2ε _x + F(x) � 0. In the case when F(− x) � − F(x), we
may approximate the function F(x) by means of some
cubic-quintic polynomial using Chebyshev approximation
formulas. ,e solution is then assumed in the form
x(t) � exp(− ρt)y(t), where ρ is some parameter having a
value near ρ � ε and y � y(t) is the exact solution to some
cubic-quintic Duffing oscillator equation.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

References

[1] A. Beléndez, T. Beléndez, F. J. Mart́ınez, C. Pascual,
M. L. Alvarez, and E. Arribas, “Exact solution for the unforced
Duffing oscillator with cubic and quintic nonlinearities,”
Nonlinear Dynamics, vol. 86, no. 3, pp. 1687–1700, 2016.

[2] D. D. Ganji, M. Gorji, S. Soleimani, and M. Esmaeilpour,
“Solution of nonlinear cubic-quintic Duffing oscillators using
He’s Energy Balance Method,” Journal of Zhejiang University -
Science, vol. 10, no. 9, pp. 1263–1268, 2009.

[3] A. I. Maı̆mistov, “Propagation of an ultimately short electro-
magnetic pulse in a nonlinear medium described by the fifth-
order Duffing model,” Optics and Spectroscopy, vol. 94, no. 2,
pp. 251–257, 2003.

[4] A. H. Salas and S. C. Trujillo, “A new approach for solving the
complex cubic-quintic duffing oscillator equation for given
arbitrary initial conditions,” Mathematical Problems in Engi-
neering, vol. 2020, Article ID 3985975, 8 pages, 2020.

[5] M. O. Oyesanya and J. I. Nwamba, “Stability analysis of
damped cubic-quintic duffing oscillator,” World Journal of
Mechanics, vol. 03, no. 01, pp. 43–57, 2013.
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In this paper, authors found a new and interesting identity between Changhee polynomials and some degenerate polynomials
such as degenerate Bernoulli polynomials of the first and second kind, degenerate Euler polynomials, degenerate Daehee
polynomials, degenerate Bell polynomials, degenerate Lah–Bell polynomials, and degenerate Frobenius–Euler polynomials and
Mittag–Leffer polynomials by using λ-Sheffer sequences and λ-differential operators to find the coefficient polynomial when
expressing the n-th Changhee polynomials as a linear combination of those degenerate polynomials. In addition, authors derive
the inversion formulas of these identities.

1. Introduction

Umbral calculus from 1850 to 1970 consisted primarily of
symbolic techniques for sequence manipulation, and its
mathematical rigor left little room for demands. In the
1970s, Gian-Carlo Rota began building a completely rigid
foundation for theories based on relatively modern ideas of
linear functions, linear operators, and adjacency functions
(see [1–4]). Umbral calculus contributed to the general-
ization of Lagrange inversion formula and has been applied
in many fields such as combinatorial counting with linear
recurrences and lattice path counting, graph theory using
chromatic polynomials, probability theory, link invariant
theory, statistics, topology, and physics (see [3]). It is being
actively applied in various fields by researchers (see [1–16]).

In the past few years, many distinct umbral calculus
types have begun to be studied (see [2, 4, 6, 10]). In par-
ticular, Kim–Kim defined the degenerate Sheffer sequences,

λ-Sheffer sequence, a family of λ-linear functionals, and
λ-differential operators as follows (see [2]).

Let C be the field of complex numbers:

F � f(t) � 􏽘
∞

n�0
ak

t
n

n!

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ak ∈ C

⎧⎨

⎩

⎫⎬

⎭, (1)

and let

P � C[x] � 􏽘
∞

k�0
alx

k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ak ∈ Cwith ak

⎧⎨

⎩

� 0 for all but finite number of k
⎫⎬

⎭.

(2)

Let P∗ be the vector space of all linear functionals on P.
/en, each real number λ gives rise to the linear func-

tional f(t)
􏼌􏼌􏼌􏼌·􏽄 􏽅λ on P, called λ-linear functional given by

f(t), which is defined by (see [2])
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f(t)|(x)n,λ􏽄 􏽅λ � an, (n≥ 0), (3)

and by linear extension where (x)0,λ � 1, (x)n,λ � x(x − λ)

· · · (x − (n − 1)λ), (n≥ 1). From (3), we have

t
k
|(x)n,λ􏽄 􏽅λ � n!δn,k, (n, k≥ 0), (4)

where δn,k is Kronecker’s symbol (see [2]).
For each real number λ and each positive integer k, Kim

and Kim defined the differential operator on P in [2] as
follows:

t
k

􏼐 􏼑λ(x)n,λ �
(n)k(x)n− k,λ, if k≤ n,

0, if k> n,
􏼨 (5)

and for any f(t) � 􏽐
∞
k�0 ak(tk/k!) ∈F,

(f(t))λ(x)n,λ � 􏽘
n

k�0

n

k
􏼠 􏼡ak(x)n− k,λ. (6)

In addition, they showed that for f(t), g(t) ∈ F and
p(x) ∈ P,

f(t)g(t)|p(x)􏼊 􏼋λ � g(t)|(f(t))λp(x)􏼊 􏼋λ

� f(t)|(g(t))λp(x)􏼊 􏼋λ.
(7)

/e order o(f(t)) of f(t) ∈ F − 0{ } is the smallest
integer k for which the coefficient of tk does not vanish. If
o(f(t)) � 0, then f(t) is called invertible and such series has
a multiplicative inverse 1/f(t) of f(t). If o(f(t)) � 1, then
f(t) is called delta series and it has a compositional inverse
f(t) of f(t) with f(f(t)) � f(f(t)) � t (see [1, 2, 12, 16]).

Let f(t) be a delta series and let g(t) be an invertible
series. /en, there exists a unique sequence Sn,λ(x)

(degSn,λ(x) � n) of polynomials satisfying the orthogonality
conditions (see [2])

g(t)(f(t))
k
|Sn,λ(x)􏽄 􏽅λ � n!δn,k, (n, k≥ 0). (8)

Here, Sn,λ(x) is called the λ-Sheffer sequence for
(g(t), f(t)), which is denoted by Sn,λ(x) ∼ (g(t), f(t))λ.
/e sequence Sn,λ(x) is the λ-Sheffer sequence for
(g(t), f(t)) if and only if

1
g(f(t))

e
y

λ(f(t)) � 􏽘
∞

n�0
Sn,λ(y)

t
n

n!
, (9)

for all y ∈ C, where f(t) is the compositional inverse of f(t)

such that f(f(t)) � f(f(t)) � t (see [1, 2, 12, 16]).
Let Sn,λ(x) ∼ (g(t), f(t))λ and let h(x) �

􏽐
n
l�0 alSl,λ(x) ∈ P. /en, by (8), we have

g(t)(f(t))
k
|h(x)􏽄 􏽅λ � 􏽘

n

l�0
al g(t)(f(t))

k
|Sl,λ(x)􏽄 􏽅λ

� k!ak,

(10)

and thus we know that

ak �
1
k!

g(t)(f(t))
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
h(x)􏼪 􏼫

λ
. (11)

/e following theorem is proved by Kim and Kim [2]
and is a very useful tool for researching degenerate versions
of special polynomials and numbers.

Theorem 1. Let sn,λ ∼ (g(t), f(t))λ, rn,λ � (h(t), l(t))λ.
6en, we have

sn,λ � 􏽘
n

k�0
cn,krk,λ, (12)

where

cn,k �
1
k!

h(f(t))

g(f(t))
(l(f(t)))

k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

λ
. (13)

For n≥ 0, the Stirling numbers of the first kind n

k
􏼢 􏼣 and

Stirling numbers of the second kind n

k
􏼨 􏼩, respectively, are

given by the following (see [11, 12, 17–20]):

(x)n � 􏽘
n

k�0

n

k
􏼢 􏼣x

k andx
n

� 􏽘
n

k�0

n

k
􏼨 􏼩(x)k. (14)

For each positive integer k, it is well known that (see
[11, 12, 17–20])

1
k!

(log(1 + t))
k

� 􏽘
∞

n�k

n

k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
t
n

n!
,
1
k!

e
t

− 1􏼐 􏼑
k

� 􏽘
∞

n�k

n

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

t
n

n!
.

(15)

For any nonzero real number λ, the degenerate expo-
nential function is defined by (see [1, 21–27])

e
x
λ(t) � (1 + λt)

x/λ
, eλ(t) � (1 + λt)

1/λ
, (16)

Note that
eλ(t) + 1

2
� 1 +

1
2

􏽘

∞

n�1
(1)n,λ

t
n

n!
. (17)

A study of degenerate versions of some special numbers
and polynomials was initiated by Carlitz who found inter-
esting relationships connected with important numbers in
combinatorics, Bernoulli polynomials, and Eulerian poly-
nomials (see [28]). In the past decades, the study of de-
generate versions of various special polynomials or numbers
has been studied by many researchers (see
[1, 2, 21–27, 29–32]).

By using (16), the higher-order degenerate Bernoulli
polynomials are defined as follows (see [1, 10, 12, 30, 33, 34]):

􏽘
∞

n�0
B

(r)
n,λ(x)

t
n

n!
�

t

eλ(t) − 1
􏼠 􏼡

r

e
x
λ(t). (18)

When x � 0, B
(r)
n,λ(0) � B

(r)
n,λ are called the higher-order

degenerate Bernoulli numbers. In addition, when r � 1, we
denote B

(1)
n,λ(x) � Bn,λ(x).

On the other hand, Kim and Kim defined logλ(t) called
the degenerate logarithm function as the compositional
inverse function of eλ(t) satisfying logλ(eλ(t)) � t. /en, we
have (see [1, 10, 22, 24, 32])
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logλ(1 + t) � 􏽘
∞

n�1
λn− 1

(1)n,1/λ
t
n

n!
. (19)

By using (19), the degenerate Bernoulli polynomials of
the second kind are defined by the generating function to be
(see [16])

􏽘

∞

n�0
βn,λ(x)

t
n

n!
�

t

logλ(1 + t)
e

x
λ logλ(1 + t)( 􏼁. (20)

In the special case x � 0, βn,λ � βn,λ(0) are called the
Bernoulli numbers of the second kind.

As degenerate version of the Stirling numbers of the first
and second kind in (14), the degenerate Stirling numbers of

the first kind n

k
􏼢 􏼣

λ
and the degenerate Stirling numbers of

the second kind n

k
􏼨 􏼩

λ
are, respectively, introduced by

Kim–Kim (see [1, 2, 21, 22, 24, 26–30, 35, 36]) as follows:

1
k!

logλ(1 + t)( 􏼁
k

� 􏽘
∞

n�k

n

k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

λ

t
n

n!
and

1
k!

eλ(t) − 1( 􏼁
k

� 􏽘
∞

n�k

n

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

t
n

n!
.

(21)

Let (x)n � 􏽐
n
k�0 cn,k(x)k,λ. Since

(x)k,λn ∼ 1, eλ(t) − 1( 􏼁λ,

(x)n,λ ∼ (1, t)λ,
(22)

by /eorem 1, we obtain

cn,k �
1
k!

logλ(1 + t)( 􏼁
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

λ

� 􏽘
∞

l�k

S1,λ(l, k)
1
l!

t
l

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

λ

�

n

k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

λ

,

(23)

and thus, we know that

(x)n � 􏽘
n

k�0

n

k
􏼢 􏼣

λ
(x)k,λ, (24)

where (x)0 � 1, (x)n � x(x − 1) . . . (x − n + 1), (n≥ 1) is
the falling factorial sequences. In the similar way, we also
know that

(x)n,λ � 􏽘
n

k�0

n

k
􏼨 􏼩

λ
(x)k. (25)

/e aim of this paper is to find some new and interesting
identities related to the Changhee polynomials and some

special polynomials by using λ-Sheffer sequences and
λ-differential operators. In more detail, we find the coeffi-
cients which are also polynomials or numbers when the n-th
Changhee polynomial is expressed as a linear combination
of some degenerate special polynomials by using the
λ-Sheffer sequences and λ-differential operators (see /e-
orems 2–10), and by using the λ-Sheffer sequences and the
linear combinations of those polynomials (see/eorems 5–8
and 10), and derive the inversion formulas of these
identities.

2. Changhee Polynomials Arising from
λ-Sheffer Sequences

In this section, we find some relationships between the
Changhee polynomials and some special polynomials arising
from λ-Sheffer sequences.

/e Changhee polynomials are given by

􏽘

∞

n�0
Chn(x)

t
n

n!
�

2
2 + t

(1 + t)
x
. (26)

By (24) and (26), we obtain

􏽘

∞

n�0
Chn(x)

t
n

n!
� 􏽘
∞

n�0
Chn

t
n

n!
⎛⎝ ⎞⎠ 􏽘

∞

n�0
(x)n

t
n

n!
⎛⎝ ⎞⎠

� 􏽘
∞

n�0
􏽘

n

m�0

n

m

⎛⎝ ⎞⎠Chn− m(x)m
⎛⎝ ⎞⎠

t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0
􏽘

m

k�0

n

m

⎛⎝ ⎞⎠
m

k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

λ

Chn− m(x)k,λ
⎛⎝ ⎞⎠

t
n

n!
,

(27)

and, by (27), we have

Chn(x) � 􏽘
n

m�0
􏽘

m

k�0

n

m
􏼠 􏼡

m

k
􏼢 􏼣

λ
Chn− m(x)k,λ, (n≥ 0). (28)

By (28), we compute the first few Changhee polynomials
as follows:

Ch0(x) � 1,

Ch1(x) � x −
1
2
,

Ch2(x) � x
2

− 2x +
1
2
,

Ch3(x) � − x
3

+
9
2
x
2

− 5x +
3
4
,

Ch4(x) � x
4

− 8x
3

+ 20x
2

− 16x +
3
2
,

Ch5(x) � − x
5

+
25
2

x
4

− 55x
3

+ 100x
2

− 64x +
15
4

.

(29)

In addition, graphs for some Changhee polynomials are
shown in Figure 1.
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Note that

1
(t + 2)

k
� (t + 2)

− k
� 􏽘

∞

l�0

− k

l

⎛⎝ ⎞⎠t
l2− k− l

� 􏽘
∞

l�0

k〈 〉l(− 1)
l

2l+k

t
l

l!
,

(30)

where x〈 〉0 � 1, x〈 〉n � x(x + 1)(x + 2) . . . (x + (n − 1)),
(n≥ 1).

Theorem 2. For each nonnegative integer n, we have

Chn(x) � 􏽘
n

k�0
􏽘

n

l�k

n

l
􏼠 􏼡

l

k
􏼢 􏼣

λ
Chn− l

⎛⎝ ⎞⎠(x)k,λ. (31)

As the inversion formula of (31), we have

(x)n,λ � 􏽘

n

k�0

n

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

+
1
2

􏽘

n− k

m�1
(1)m,λ

n

m

⎛⎝ ⎞⎠
n − m

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

⎛⎜⎝ ⎞⎟⎠Chk(x).

(32)

Proof. Let Chn(x) � 􏽐
n
k�0 cn,k(x)k,λ. Since

Chn(x) ∼
eλ(t) + 1

2
, eλ(t) − 1􏼠 􏼡

λ
,

(x)n,λ ∼ (1, t)λ,

(33)

by /eorem 1 and (30), we have

cn,k �
1
k!

1
((t + 2)/2)

logλ(1 + t)( 􏼁
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

λ

�
2

t + 2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
k!

logλ(1 + t)( 􏼁
k

􏼒 􏼓
λ
(x)n,λ􏼪 􏼫

λ

� 􏽘
n

l�k

n

l

⎛⎝ ⎞⎠
l

k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

λ

2
t + 2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n− l,λ􏼪 􏼫

λ

� 􏽘
n

l�k

n

l

⎛⎝ ⎞⎠
l

k

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

λ

Chn− l.

(34)

Conversely, we assume that (x)n,λ � 􏽐
n
k�0 dn,kChk(x). By

(6) and (17), we obtain

dn,k �
1
k!

eλ(t) + 1
2

eλ(t) − 1( 􏼁
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

λ

�
1
k!

eλ(t) − 1( 􏼁
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

eλ(t) + 1
2

􏼠 􏼡
λ
(x)n,λ􏼪 􏼫

λ

�
1
k!

eλ(t) − 1( 􏼁
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
1 +

1
2

􏽘

∞

m�1
(1)m,λ

tm

m!
⎛⎝ ⎞⎠

λ

(x)n,λ􏼪 􏼫

λ

� 􏽘
∞

l�k

l

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

tl

l!

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

λ

+
1
2

􏽘

n

m�1

n

m

⎛⎝ ⎞⎠(1)m,λ 􏽘

∞

l�k

l

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

tl

l!

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n− m,λ􏼪 􏼫

λ

�
n

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

+
1
2

􏽘

n− k

m�1

n

m

⎛⎝ ⎞⎠(1)m,λ

n − m

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

.

(35)
□

Since

􏽘

∞

n�0
B

(r)
n,λ(x)

t
n

n!
�

t

eλ(t) − 1
􏼠 􏼡

r

e
x
λ(t)

� 􏽘
∞

n�0
B

(r)
n,λ

t
n

n!
⎛⎝ ⎞⎠ 􏽘

∞

n�0
(x)n,λ

t
n

n!
⎛⎝ ⎞⎠

� 􏽘
∞

n�0
􏽘

n

m�0

n

m

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠B
(r)
n− m,λ(x)m,λ

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
t
n

n
,

(36)

and thus we know that

B
(r)
n,λ(x) � 􏽘

n

m�0

n

m
􏼠 􏼡B

(r)
n− m,λ(x)m,λ. (37)

Ch2 (x)

Ch1 (x)

Ch0 (x)

Ch4 (x)

Ch5 (x)

Ch3 (x)
x

x

Figure 1: /e shapes of Changhee polynomials Chn(x).
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On the other hand, by /eorem 1, we have

dn,k �
1
k!

eλ(t) + 1/2
eλ(t) − 1/t

eλ(t) − 1( 􏼁
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

λ

�
1
k!

t

eλ(t) − 1
eλ(t) − 1( 􏼁

k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

eλ(t) + 1
2

􏼠 􏼡
λ
(x)n,λ􏼪 􏼫

λ

�
1
k!

t

eλ(t) − 1
eλ(t) − 1( 􏼁

k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n,λ􏼪 􏼫

+
1
2

􏽘
n

l�1

n

l

⎛⎝ ⎞⎠(1)l,λ
1
k!

t

et
λ − 1

e
t
λ − 1􏼐 􏼑

k
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n− l,λ􏼪 􏼫

λ

�
t

eλ(t) − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
k!

eλ(t) − 1( 􏼁
k

􏼒 􏼓
λ
(x)n,λ􏼪 􏼫

λ

+
1
2

􏽘
n

l�1

n

l

⎛⎝ ⎞⎠(1)l,λ
t

eλ(t) − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
k!

eλ(t) − 1( 􏼁
k

􏼒 􏼓
λ
(x)n− l,λ􏼪 􏼫

λ

� 􏽘
n

m�k

n

m

⎛⎝ ⎞⎠
m

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

t

eλ(t) − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n− m,λ􏼪 􏼫

λ

+
1
2

􏽘
n

l�1
􏽘
n− l

m�k

n

l

⎛⎝ ⎞⎠
n − l

m

⎛⎝ ⎞⎠(1)l,λ

m

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

t

eλ(t) − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)n− l− m􏼪 􏼫

λ

� 􏽘
n

m�k

n

m

⎛⎝ ⎞⎠
m

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Bn− m,λ

+
1
2

􏽘
n

l�1
􏽘
n− l

m�k

n

l

⎛⎝ ⎞⎠
n − l

m

⎛⎝ ⎞⎠(1)l,λ

m

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Bn− l− m,λ,

(43)

and hence our proofs are completed.
/e degenerate Euler polynomials are defined by the

generating function to be (see [28])
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When x � 0, En,λ � En,λ(0) are called the degenerate
Euler numbers.
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On the other hand, by (11) and (46), we obtain

dn,k �
1
k!

eλ(t) + 1
2

eλ(t) − 1( 􏼁
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
En,λ(x)􏼪 􏼫

λ

� 􏽘
n

m�0

n

m

⎛⎝ ⎞⎠En− m,λ
eλ(t) + 1

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
k!

eλ(t) − 1( 􏼁
k

􏼒 􏼓
λ
(x)m,λ􏼪 􏼫

λ

� 􏽘
n

m�0
􏽘
m

l�k

n

m

⎛⎝ ⎞⎠
m

l

⎛⎝ ⎞⎠
l

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

En− m,λ
eλ(t) + 1

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)m− l,λ􏼪 􏼫

λ

� 􏽘
n

m�0
􏽘
m

l�k

n

m

⎛⎝ ⎞⎠
m

l

⎛⎝ ⎞⎠
l

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

En− m,λ 1 +
1
2

􏽘
∞

a�1
(1)a,λ

ta

a!

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)m− l,λ􏼪 􏼫

λ

� 􏽘
n

m�0
􏽘
m

l�k

n

m

⎛⎝ ⎞⎠
m

l

⎛⎝ ⎞⎠
l

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

En− m,λ

× 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)m− l,λ􏼪 􏼫

λ
+
1
2

􏽘
∞

a�1

(1)a,λ

a!
t
a

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x)m− l,λ􏼪 􏼫

λ

⎛⎝ ⎞⎠

� 􏽘
n

m�k

n

m

⎛⎝ ⎞⎠
m

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

En− m,λ

+
1
2

􏽘

n

m�k+1
􏽘
m− 1

l�k

n

m

⎛⎝ ⎞⎠
m

l

⎛⎝ ⎞⎠
l

k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
λ

En− m,λ(1)m− l,λ,

(52)

and so our proofs are completed.
By (46), we compute the first few degenerate Euler

polynomials as follows:
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/e degenerate Daehee polynomials are defined by the
generating function to be
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In the special case of x � 0, Dn,λ � Dn,λ(0) are called the
degenerate Daehee numbers (see [32, 37]).
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by /eorem 1, we have
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(60)

On the other hand, by (11) and (28), we obtain

є2, λ (x)

є1, λ (x)

є0, λ (x)

x

Ch2 (x)

Figure 2: /e shapes of Ch2(x), E0,λ(x), E1,λ(x), and E2,λ(x)

when λ � 0.5.
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Conversely, we assume that Dn,λ(x) � 􏽐
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/e degenerate Bell polynomials are defined by the
generating function to be (see [1, 23])
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and thus
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In addition, we know that
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Theorem 6. For each nonnegative integer n, we have
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(72)

Conversely, we assume that Beln,λ(x) � 􏽐
n
k�0 dn,kChk(x).

By (68), we obtain
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(73)

On the other hand, by (11) and (66), we have
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(74)

and thus our proofs are completed.
/e unsigned Lah number L(n, k) counts the number of

ways a set of n elements can be partitioned into k nonempty
linearly ordered subsets and has the explicit formula (see
[1, 20, 23, 38, 39])

L(n, k) �

n − 1

k − 1
⎛⎝ ⎞⎠

n!

k!
. (75)

By (75), we can derive the generating function of L(n, k)

to be (see [1, 20, 23, 38, 39])

1
k!

t
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􏼒 􏼓

k

� 􏽘
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n�k

L(n, k)
t
n

n!
, (k≥ 0). (76)

Recently, Kim–Kim introduced the degenerate Lah–Bell
polynomials as follows (see [1, 20]):

e
x
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1
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− 1􏼒 􏼓 � 􏽘
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L
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t
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n!
. (77)

In the special case of x � 1, BL
n � BL

n(1) are called
Lah–Bell numbers. Note that n-th Lah–Bell number BL

n

(n≥ 0) is the number of ways a set of n elements can be
partitioned into nonempty linearly ordered subsets. By (77),
we can derive the following:
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and thus, we obtain

B
L
n,λ(x) � 􏽘
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□

Theorem 7. For each nonnegative integer n, we have
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As the inversion formula of (80), we have
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Proof. Let Chn(x) � 􏽐
n
k�0 cn,kBL

k(x). Since
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by (11) and (28), we obtain
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Conversely, we assume that BL
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On the other hand, by (11) and (79), we obtain
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and so our proofs are completed.
By the definition of the degenerate Bernoulli polyno-

mials of the second kind, we note that
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and thus, we obtain
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Theorem 8. For each n≥ 0, we have
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As the inversion formula of (88), we have
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by /eorem 1, we obtain
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Conversely, we assume that βn,λ(x) � 􏽐
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On the other hand, by (11) and (87), we obtain
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and thus our proofs are completed.
/e Mittag–Leffler polynomials are defined by the

generating function to be see ([14, 34, 36])
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by /eorem 1 and (30), we obtain
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Conversely, we assume that Mn(x) � 􏽐
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and so our proofs are completed.
/e degenerate Frobenius–Euler polynomials of order α

are defined by the generating function to be (see
[1, 2, 31, 40])
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and thus we have
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Theorem 10. For each nonnegative integer n, we have
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As the inversion formula of (104), we have
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Proof. Let Chn(x) � 􏽐
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by /eorem 1, we obtain
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Conversely, we assume that h
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In addition, by (11) and (102), we obtain
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□

3. Conclusion

In this paper, we studied the Changhee polynomials related
to the lambda falling factorial (/eorem 2), the degenerate
Bernoulli polynomials (/eorem 3), the degenerate Euler
polynomials (/eorem 4), the degenerate Daehee polyno-
mials (/eorem 5), the degenerate Bell polynomials (/e-
orem 6), the degenerate Lah–Bell polynomials (/eorem 7),
the degenerate Bernoulli polynomials of the second kind
(/eorem 8), the Mittag–Leffler polynomials (/eorem 9),
and the degenerate Frobenius–Euler polynomials (/eorem
10) by finding the coefficients which are also polynomials or
numbers when the n-th Changhee polynomial is expressed
as a linear combination of those degenerate special poly-
nomials by using the λ-Sheffer sequences and λ-differential
operators. In addition, we derive the inversion formulas of
these identities.

Umbral calculus has been applied in many fields such as
combinatorial counting with linear recurrences and lattice
path counting, graph theory using chromatic polynomials,
probability theory, link invariant theory, statistics, topology,
and physics. It is being actively applied in various fields by
researchers. As one of our future projects, we would like to
continue to study degenerate versions of certain special
polynomials and numbers by using λ-Umbral calculus. [41].
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In this study, some new hypotheses and techniques are presented to obtain some new analytical solutions (localized and periodic
solutions) to the generalized Kawahara equation (gKE). As a particular case, some traveling wave solutions to both Kawahara equation
(KE) and modified Kawahara equation (mKE) are derived in detail. Periodic and soliton solutions to this family are obtained. *e
periodic solutions are expressed in terms of Weierstrass elliptic functions (WSEFs) and Jacobian elliptic functions (JEFs). For KE, some
direct and indirect approaches are carried out to derive the periodic and localized solutions. For mKE, two different hypotheses in the
form ofWSEFs are used to derive the periodic and localized solutions. Also, the cnoidal wave solutions in the form of JEFs are obtained.
As a realistic physical application, the solutions obtained can be dedicated to studying many nonlinear waves that propagate in plasma.

1. Introduction

Both ordinary and partial differential equations succeed in
modelling and describing many complex nonlinear sys-
tems that are widely used in various fields of science such
as optical fiber, fluid mechanics, nonlinear optics, biology,
ecology, astronomy, oceans, economics, and plasma
physics [1–10]. Due to the importance of these applica-
tions, the great success has achieved by differential
equations in clarifying and interpreting the ambiguity of
many complex systems, which prompted many authors to
look for different analytical and numerical methods in
solving such models [5–11]. In recent years, many new
analytical and numerical methods have been discovered,
and some improvements have been made to many of the

existing methods in order to either obtain real solutions
related to realistic problems or to obtain more accurate
solutions to many integrable and nonintegrable differ-
ential equations [12–16]. In particular, there are a large
number of partial differential equations (PDEs) that have
been used for modelling a lot of nonlinear phenomena
such as solitary waves, shock waves, cnoidal waves,
peakons, and compactons that arise in different plasma
models [5–11]. One of the most important of these
equations and the most famous due to its great success not
only in the field of fluid mechanics and plasma physics but
also in various fields of science is Korteweg–de Vries
(KdV) equation [5]:

ztu(x, t) + α1u(x, t)zxu(x, t) + βz
3
xu(x, t) � 0, (1)
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where (α1, β) are the real coefficients which are related to the
physical model under study. *is equation and its one-di-
mensional family including a modified KdV (mKdV)
equation [5, 10], a Gardner equation, KdV–Burger’s equa-
tion [5], damped KdV/mKdV equation [11], and so on have
been widely used until this day in interpreting the mecha-
nism and properties of many nonlinear phenomena that can
propagate in plasma physics. *is family is characterized by
the third-order dispersion, but there is another family
characterized by the fifth-order dispersion which is called
the family of Kawahara equation (KE) [17].

RKE ≡ ztu(x, t) + α1u(x, t)zxu(x, t)

+ βz
3
xu(x, t) − cz

5
xu(x, t) � 0.

(2)

*is is a nonlinear dispersive equation which gener-
alizes the well-known KdV equation. Kawahara equation
(2), sometimes referred to as the fifth-order KdV/or super
KdV equation [18], is a model that describes solitary waves,
cnoidal waves, and periodic waves propagating in non-
linear and high-dispersive media. *is equation and many
related equations with fifth-order dispersion have been
extensively studied in literature [19]. It has important
applications in the theory of magnetoacoustic waves in
plasma and in the theory of shallow water waves with
surface tension [17, 18, 20–30]. However, equation (2) fails
to explain the nonlinear waves at some critical values of the
plasma compositions due to the disappearance of the
nonlinear term, i.e., α1 � 0. Accordingly, modified Kawa-
hara equation (mKE) with higher-order nonlinearity was
derived to describe some nonlinear phenomena at the
critical plasma compositions:

RmKE ≡ ztu(x, t) + α2u
2
(x, t)zxu(x, t)

+ βz
3
xu(x, t) − cz

5
xu(x, t) � 0.

(3)

Both KE equation (2) and mKE equation (3) are inte-
grable Hamiltonian systems which are due to the many
applications related to this family; manymethodologies have
been applied for analyzing it [17, 18, 20–24, 27–30]. *ere
remain many secrets about the solutions of this family that
appear and become clear day after day as a result of using
new analytical and numerical methods for solving this
family. *is is one of our motives for obtaining a new
generation of solutions to this family, which can contribute
in understanding the mysterious of many phenomena in
plasma physics and other fields related to this family. *us,
our aim is to provide new traveling wave (localized and
periodic) solutions to the following generalized KE [29]
using several new hypotheses and techniques:

ztu(x, t) + αpu
P
(x, t)zxu(x, t) + βz

3
xu(x, t) − cz

5
xu(x, t) � 0,

(4)

where p is a real number. Note that KE equation (2) can be
obtained for p � 1, while for p � 2, mKE equation (3) is
recovered.

2. General Analytical Solutions to the
Generalized KE

To find a general analytic solution to the evolution equation
(4), we suppose

u � v
(1/p)

,

v ≡ v(ξ) ξ � x + λt,

⎧⎨

⎩ (5)

where λ represents the frame velocity.
Inserting ansatz equations (5) into (4) gives the non-

linear ODE:

αp
4
v
5
v′ + p

4
v
4 βv

(3)
+ λv′ − cv

(5)
􏼐 􏼑

+(p − 1)p
3
v
3 5cv

(4)
v′ + 10cv

(3)
v′′ − 3βv′v′′􏼐 􏼑

+(p − 1)p
2
(2p − 1)v

2
v′ − 15c v′′( 􏼁

2
􏼐

+ β v′( 􏼁
2

− 10cv
(3)

v′􏼑

− c(p − 1)(2p − 1)(3p − 1)(4p − 1) v′( 􏼁
5

+ 10c(p − 1)p(2p − 1)(3p − 1)v v′( 􏼁
3
v′′ � 0,

(6)

where v′ ≡ zξv, v′′ ≡ z2ξv, v(3) ≡ z3ξv, v(4) ≡ z4ξv, and
v(5) ≡ z5ξv.

In the following subsections, two important particular
cases (p � 1 and p � 2), i.e., KE equation (2) and mKE
equation (3)are analyzed.

2.1. Solutions of the Planar Kawahara Equation. In the fol-
lowing sections, we try to find some new solutions including
the periodic wave solutions, cnoidal wave solutions, and
solitary wave solutions to the planar KE equation (2)
(p � 1).

2.1.1. Periodic and Solitary Wave Solutions. For planar KE
equation (2), ODE equation (6) reduces to

− cv
(5)

+ βv
(3)

+ αvv′ + λv′ � 0. (7)

Integrating equation (7) once over ξ gives us

c0 − cv
(4)

+ βv′′ +
1
2
αv

2
+ λv � 0, (8)

where c0 is the integration constant.
Multiplying equation (8) by v′ and then integrating it

again, we get

c0v + c1 +
1
2

c v′′( 􏼁
2

+
1
2
β v′( 􏼁

2
− cv

(3)
v′ +

1
6
αv

3
+
1
2
λv

2
� 0,

(9)

where c1 the new constant of integration. *e solution of
equation (2) via several approaches is discussed as follows.

We seek a solution in the ansatz form:

v � 􏽘
N

k�0
djφ

j
, (10)
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where φ ≡ φ(ξ) is a solution to the following Helmholtz
equation [31].

φ′′ + Aφ + Bφ2
� 0,

φ′( 􏼁
2

� − Aφ2
−
2
3

Bφ3
+ 2c2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

Balancing the highest linear and nonlinear terms in
equation (11) gives N � 2, so that

v � d0 + d1φ + d2φ
2
. (12)

Inserting ansatz equation (12) into equation (9), we
obtain

􏽘

6

j�0
Fjφ

j
� 0, (13)

where the values of Fj(j � 0, 1, · · · 6) are defined in Ap-
pendix A, and by solving the following system,

Fj � 0, (14)

we get

c0 �
− 1

57122αc
2 4598321A

4
c
4

− 54418A
2β2c2

+ 1457β4 − 28561c
2λ2􏼐 􏼑,

c1 �
− 1

28960854α2c3

19394118562A
6
c
6

− 183532986A
4β2c4

+ 2331348747A
4
c
5λ

+134862A
2β4c2

− 27589926A
2β2c3λ + 94922β6 + 738699β4cλ − 4826809c

3λ3
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠,

c2 �
(13Ac + β)

263640B
2
c
3 1690A

2
c
2

− 403Aβc + 31β2􏼐 􏼑,

d0 �
− 1

507αc
1183A

2
c
2

− 910Aβc + 31β2 + 507cλ􏼐 􏼑,

d1 �
140B(13Ac + β)

39α
,

d2 �
140B

2
c

3α
.

(15)

Equation (11) has many formulas for its general solu-
tions such as

φ � −
A

2B
−
6
B
℘ ξ + e0; A

2/12, g3􏼐 􏼑, (16)

where ℘ ≡ ℘(ξ + e0; A2/12, g3) indicates the Weierstrass
elliptic function (WSEF) and the values of e0 and g3 are
undetermined parameters which can be obtained from the
initial conditions.

Also, the general solution to equation (11) can be
expressed by

φ � e1 −
6e1 A + Be1( 􏼁

A + 2Be1 + 12℘ ξ + e0; A
2/12, 1/216 A

3
− 6B

2
e
2
1A − 4B

3
e
3
1􏼐 􏼑􏼐 􏼑

,

(17)

where the values of e0 and e1 are determined from the initial
conditions.

*us, a periodic solution to KE equation (2) according to
the values of parameters given in system equation (15) and
the value of φ given in equation (16) is obtained as

u �
910βAc − 7098A

2
c
2

− 910Aβc − 31β2 − 507cλ
507αc

−
280β
13α
℘ x + λt + ξ0; A

2/12, g3􏼐 􏼑

+
1680c

α
℘2 x + λt + ξ0; A

2/12, g3􏼐 􏼑.

(18)

*e constants A, B, λ, and ξ0 are the arbitraries.
Using relation equation (9) with of the parameters given

in system equation (15) and the value of φ given in equation
(17), the solution to KE equation (2) can be expressed by
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u �
− 31β2 − 13c 39λ − 70Aβ + 91A

2
c􏼐 􏼑 + 1820Bce0 β + 13Ac + 13Bce0( 􏼁

507αc

−
280Be0 A + Be0( 􏼁 β + 13Ac + 26Bce0( 􏼁

13α A + 2Be0 + 12℘ x + λt + ξ0; A
2/12, 1/216 A

3
− 2B

2
e
2
0 3A + 2Be0( 􏼁􏼐 􏼑􏼐 􏼑􏽨 􏽩

+
1680B

2
ce

2
0 A + Be0( 􏼁

2

α A + 2Be0 + 12℘2 x + λt + ξ0; A
2/12, 1/216 A

3
− 2B

2
e
2
0 3A + 2Be0( 􏼁􏼐 􏼑􏼐 􏼑􏽨 􏽩

,

(19)

where the constants A, B, λ, and e0 are the arbitraries.
From the periodic solution equation (18), the soliton

solutions can be obtained using the following hypotheses:

cg2 � A
2/12 �

4
3
,

g3 �
β 3549A

2
c
2

− 31β2􏼐 􏼑

4745520c
3 �

8
27

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

which lead to (A, β) � (4, 52c), and by rearrange solution
(18), the following soliton solution is obtained:

� −
1168c + 3λ

3α
−
1120c

α
℘ x + λt;

4
3
, −

8
27

􏼒 􏼓,

+
1680c

α
℘ x + λt;

4
3
, −

8
27

􏼒 􏼓
2
.

(21)

Moreover, the solitary wave solution can be obtained by

g2 � A
2/12 � 1/12,

g3 �
β 3549A

2
c
2

− 31β2􏼐 􏼑

4745520c
3 � − 1/216,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

which leads to (A, β) � (1, 13c); then, the periodic solution
(18) reduces to the following soliton solution:

� −
73c + 3λ

3α
−
280c℘ x + λt + ξ0; 1/12, − 1/216( 􏼁

α

+
1680c℘ x + λt + ξ0; 1/12, − 1/216( 􏼁

2

α
.

(23)

Also, the periodic solution to KE (2) can be derived
directly in terms of WSEF ℘ ≡ ℘(x + λt + ξ0; g2, g3) by
inserting the following ansatz in (9).

u � a0 + a1℘ + a2℘
2
, (24)

which leads to

􏽘

6

j�0
Sjφ

j
� 0, (25)

where the values of Sj(j � 0, 1, · · ·) are defined in
Appendix B , and by solving the following system,

Sj � 0, (26)

we have

a1 � −
280βk

2

13α
, a2 �

1680ck
4

α
,

c1 � −
1

14394744αc
2
k

11661αa0ck 507αa0ck + 1014cλ + 146β2k􏼐 􏼑

− 1285245c
2λ2 + 449159β4k2

+ 1702506β2ckλ

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

c2 �
1

21894405624α2c3
k

1521αa0c

507αa0ck 6929αa0ck + 9126cλ + 2189β2k􏼐 􏼑

+5 277β2k − 507cλ􏼐 􏼑 507cλ + 73β2k􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

− 7 128781549β2c2λ2 + 9635389β6k2
+ 75627162β4ckλ􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g2 � −
507αa0ck + 507cλ + 31β2k

85176c
2
k
5 ,

g3 � −
β 169αa0ck + 169cλ + 31β2k􏼐 􏼑

3163680c
3
k
7 .

(27)
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Collecting both equations (24) and (27), we finally get

u � a0 −
280βk

2

13α
℘ kx + tλ + ξ0; −

31kβ2 + 507cλ + 507kαca0

85176k
5
c
2 , −

β 31kβ2 + 169cλ + 169kαca0􏼐 􏼑

3163680k
7
c
3

⎛⎝ ⎞⎠

+
1680ck

4

α
℘ kx + tλ + ξ0; −

31kβ2 + 507cλ + 507kαca0

85176k5c2 , −
β 31kβ2 + 169cλ + 169kαca0􏼐 􏼑

3163680k7c3
⎛⎝ ⎞⎠

2

.

(28)

Solution equation (28) satisfies KE equation (2).

2.1.2. Cnoidal and Solitary Wave Solutions. We look for a
solution to KE equation (2) in the ansatz form

u(x, t) � v(ξ) � 􏽘
N

j�0
djcn

j
(ξ), (29)

where ξ �
��
ω

√
(x + λt) and N is an integer and positive

number. From the balance between the highest-order linear
(N + 4) and nonlinear (2N) terms of equation (8), we have
N � 4. Substituting ansatz equation (29) into equation (6)
gives a very complicated system. By solving this system using
Mathematica package, we found that the coefficients of the
odd power in ansatz equation (29) vanish.*us, the solution
of KE equation (2) could be written in the following ansatz:

u � A + Bcn
2
(ξ, m) + Ccn

4
(ξ, m). (30)

Inserting ansatz equation (30) into KE equation (2), we
get

RKE � 􏽘
3

j�0
Wjcn

2j
� 0, (31)

the values of Wj(j � 0, 1, · · · 3) are given in Appendix C, and
by solving the system,

Wj � 0, (32)

we have

A �
1

507αc

− 31β2 + 3640βc(1 − 2m)ω

+169c 112c(14(m − 1)m − 1)ω2
− 3λ􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

B �
− 280mω
13α

(52c(2m − 1)ω − β), C �
1680cm

2ω2

α
,

(33)

where ω is a solution to the following cubic equation:

31β3 − 56784βc
2

m
2

− m + 1􏼐 􏼑ω2

+ 703040c
3
(m − 2)(m + 1)(2m − 1)ω3

� 0.
(34)

Finally, the cnoidal wave solutions to KE equation (2) are
obtained as

�
− 31β2 + 3640βc(1 − 2m)ω + 169c 112c(14(m − 1)m − 1)ω2

− 3λ􏼐 􏼑

507αc
,

−
280mω(52c(2m − 1)ω − β)

13α
cn

2
(ξ, m) +

1680cm
2ω2

α
cn

4
(ξ, m),

(35)

where λ is the arbitrary constant, ξ �
��
ω

√
(x + λt), and ω is a

root to equation (34).
*e cnoidal wave solution equation (35) can be directly

reduced to the soliton solution for m⟶ 1 as

u � −
36β2 + 169cλ

169αc
+
105β2

169αc
sec h

4 1
2

���
β
13c

􏽳

(x + λt)⎡⎣ ⎤⎦. (36)

Moreover, solution equation (36) coincides with the
obtained one by means of the tanh method:

u �
105β2

169αc
sec h

4 1
2

���
β
13c

􏽳

x −
36β2

169c
t􏼠 􏼡⎡⎣ ⎤⎦. (37)

*eobtained solutions can be employed for investigating
the propagation of nonlinear structures in different plasma
models. For instance, we can apply these solutions to study
cnoidal and solitary waves in the ultracold neutral plasma
(UCNP) which is composed of strongly coupled positive
ions and non-Maxwellian electron distributions [32–35].
Based on this model and forMaxwellian electrons, the values
of the coefficients (α, β) are given by (to prevent stuffing and
repetition, all the details can be found [32])

α � λphandβ �
1

2λph

, (38)

and the phase velocity λph of the ion-acoustic waves (IAWs)
reads

λ �
�����
1 + σ∗

􏽰
, (39a)

where σ∗ ≡ σ∗(Te, Ti) represents the effective temperature
ratio which is a function of electron and ion temperatures
(Te, Ti) [32–35]. For (Te, Ti) � (25K, 1K), we get
σ∗ � 0.401169, and for (Te, Ti) � (900K, 1K), we obtain
σ∗ � 0.0120837 [32–35]. With respect to the coefficient of
the fifth-order dispersion c, in general, it has a small value
0< c≪ 1.*e impact of effective temperature ratio σ∗ on the
profile of the cnoidal wave solution equation (35) and the
solitary wave solution equation (36) for (c, λ) � (0.1, 0.1) is
shown in Figures 1 and 2, respectively. It is observed that
increasing the electron temperature, i.e., decreasing σ∗, leads
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to the enhancement (reduction) of the amplitude (width) of
both localized and periodic waves.

2.2. Solutions of Planar Modified Kawahara Equation.
*e generalized KE equation (4) can reduce the planar mKE
equation (3) for p � 2. Making the traveling wave trans-
formation u � v(ξ), where ξ � x + λt + ξ0, we get

λv′ + αv
2
v′ + βv

(3)
− cv

(5)
� 0, (40)

and integrating equation (40) twice over ξ, we obtain

R ≡ c0v + c1 − cv
(3)

v′ + 1/12αv
4

+
1
2
λv

2

+
1
2
β v′( 􏼁

2
+
1
2

c v′′( 􏼁
2

� 0.

(41)

Some new localized and periodic solutions to equation
(41) are discussed using different approaches in the fol-
lowing sections.

2.2.1. First Ansatz in Terms of WSEFs. *e following ansatz
is introduced to find a periodic wave solution to equation
(41) in terms of WSEFs:

v � A + B℘, (42)

where ℘ ≡ ℘(ξ + ξ0; g2, g3), g2 and g3 denote the elliptic
invariants, while the other parameters A, B, g2, and g3 are
the constants and will be determined later.

Inserting the ansatz equations (42) into (40), we obtain

A
2α + 18cg2 + λ􏼐 􏼑 +(2AαB + 12β)℘ + αB

2
− 360c􏼐 􏼑℘2 � 0.

(43)

10
t
0

–10

0.2
0.0
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Figure 1: *e profile of the periodic wave solution equation (35) to KE equation (2) plotted in (x, t) plane.
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Figure 2: *e profile of the solitary wave solution equation (36) to KE equation (2) is plotted in (x, t) plane.

6 Complexity



Equating the coefficients of ℘0, ℘, and ℘2 to zero and
solving the obtained system, we have

A � ±
β

����
10αc

􏽰 , B � ∓6
���
10c

α

􏽲

, andg2 �
− β2 − 10cλ

180c
2 . (44)

Note that g3 is an arbitrary constant. Using the initial
condition v(0) � v0, we can get

A + B℘ ξ0; g2, g3( 􏼁 � v0, (45)

which leads to

ξ0 � ℘− 1 v0 − A

B
; g2, g3􏼒 􏼓. (46)

By substituting the values of (A, B, g2) given in equation
(44) into the ansatz equation (42), we finally obtain the
solutions of cnoidal wave as

u1,2(x, t) � ±
β

����
10αc

􏽰 ∓6
���
10c

α

􏽲

℘ x + λt + ξ0;
− β2 − 10cλ

180c
2 , g3􏼠 􏼡,

(47)

and these solutions satisfy the evolution equation (3).
For the following choice,

g2 �
4
3
andg3 � −

8
27

, (48)

the solitary wave solutions are recovered:

u1,2(x, t) � ±
β

����
10αc

􏽰 ∓6
���
10c

α

􏽲

℘ x + λt + ξ0;
4
3
, −

8
27

􏼒 􏼓. (49)

2.2.2. Second Ansatz in Terms of WSEFs. *e following
rational hypothesis/ansatz is assumed to find some analytical
solution to equation (41):

v(ξ) � A +
B

1 + C℘
, (50)

where A, B, and C are the undetermined constants and
℘ ≡ ℘(ξ + ξ0; g2, g3).

Inserting the ansatz equations (50) into (41), we have

􏽘

6

j�0
Zj℘

j
� 0, (51)

where the coefficients Zj(j � 0, 1, . . . , 6) are defined in
Appendix D, and by solving the following system,

Z0 � 0, Z1 � 0, . . . , Z6 � 0, (52)

we obtain the nontrivial solution:

A �
60c + βC

����
10αc

􏽰
C

,

λ � −
β2

10c
−

6
5C

2 (
����
10αc

􏽰
BC + 180c),

c0 �
c

− (3/2)
����
10/α

√
86400c

3
+ β3C3

− 2160βc
2
C􏼐 􏼑 − 120BC(βC − 60c)

150C
3 ,

c1 �
1

400αc
2
C
4 − 800c

3 αB
2
C
2

+ 36
����
10αc

􏽰
BC + 3240c􏼐 􏼑􏽨

+ 56β2c3/2
C
2
(

���
10α

√
BC + 180

�
c

√
) + 2880βc

5/2
C(

���
10α

√
BC + 120

�
c

√
) + β4 − C

4
􏼐 􏼑􏽩,

g2 �

�������
(10α/c)

􏽰
BC + 180

15C
2 ,

g3 �
BC

15C
3 (

�������

(10α/c)

􏽱

+ 120).

(53)

*us, the traveling wave solutions to mKE equation (3)
are expressed by

u �
60c + βC

����
10αc

􏽰
C

+
B

1 + C℘ x − β2/10c + 6(
����
10αc

􏽰
BC + 180c)/5C

2
􏼐 􏼑t + ξ0;

�����
10α/c

􏽰
BC + 180/15C

2
􏼐 􏼑,

�����
10α/c

􏽰
+ 120/15C

3
􏼐 􏼑BC􏼐 􏼑

. (54)
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*e values of the constants B and C are arbitrary.
*e solitary wave solutions can be obtained from the

periodic solution equation (54) according to the following
choices:

g2 � 1/12, g3 � − 1/216,

g2 �
4
3
, g3 � −

8
27

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(55)

For the choices equation (55), the soliton solutions are
obtained:

u �
β

����
10αc

􏽰 +
1
2

���
5c

2α

􏽲

4 −
9

1 + 6℘ x − β2 + 15c
2/10c􏼐 􏼑t + ξ0; (1/12), − (1/216)􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦, (56)

u �
β

����
10αc

􏽰 +

���
10c

α

􏽲

1 −
18

2 + 3℘ x − β2 + 15c
2/10c􏼐 􏼑t + ξ0; (4/3), − (8/27)􏼐 􏼑

⎛⎝ ⎞⎠. (57)

2.2.3. Dird Ansatz in Terms of JEFs. Using the following
ansatz in equation (41),

v(ξ) � A + B cn2, (58)

we have

2
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Figure 3: *e profile of the cnoidal wave solution equation (47) to mKE equation (3) is plotted in (x, t) plane.
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􏽘

2n

j�0
Yjcn

j
� 0, (59)

where the coefficients Yj(j � 0, 2, 4, 6) are defined in Ap-
pendix E, and by solving the following system,

Yj � 0, (60)

we get

A � −
− β − 20cω + 40cmω

��
10

√ ��
α

√ �
c

√ , B �
6

��
10

√ �
c

√
mω

��
α

√ ,

λ � −
β2 + 240c

2ω2
+ 240c

2
m

2ω2
− 240c

2
mω2

10c
,

c0 �
1

15
��
10

√ ��
α

√
c
3/2

− 240βc
2ω2

+ 3200c
3ω3

+3200c
3
m

3ω3
− 240βc

2
m

2ω2

− 4800c
3
m

2ω3
+ 240βc

2
mω2

− 4800c
3
mω3

+ β3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

c1 � −
1

400αc
2

β4 − 1120β2c2ω2
− 12800βc

3ω3

+32000c
4ω4

+ 32000c
4
m

4ω4

− 12800βc
3
m

3ω3
− 64000c

4
m

3ω4

− 1120β2c2
m

2ω2
+ 19200βc

3
m

2ω3

+96000c
4
m

2ω4
+ 1120β2c2

mω2

+19200βc
3
mω3

− 64000c
4
mω4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(61)

cn ≡ cn(ξ, m) and ξ � x + λt + ξ0. Using equation (61), the following cnoidal wave solution
is obtained:

�
β + 20cω − 40cmω

��
10

√ ��
α

√ �
c

√

+
6

��
10

√ �
c

√
mω

��
α

√ cn
2 ��

ω
√

x −
t β2 + 240m

2
c
2ω2

− 240mc
2ω2

+ 240c
2ω2

􏼐 􏼑

10c
⎛⎝ ⎞⎠|m⎡⎢⎢⎣ ⎤⎥⎥⎦.

(62)

For letting m⟶ 1, solution equation (62) can recover
the soliton solution as

u �
β − 20cω
��
10

√ ��
α

√ �
c

√ +
6

��
10

√ �
c

√ ω
��
α

√

sec h
2 ��

ω
√

x −
t β2 + 240c

2ω2
􏼐 􏼑

10c
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(63)
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Furthermore, solution equation (54) can be reduced to
the following cnoidal wave solution using the relation

between WSEFs and JEFs [36] (more details are inserted in
Appendix F):

�
60c + βC + βCm − 120cm

����
10αc

􏽰
C(m + 1)

+

18
���
10c

􏽰
m

��
α

√
C(m + 1)

cn
2

��������
3

C(m + 1)

􏽳

x −
β2

10c
−
216 m

2
− m + 1􏼐 􏼑c

C
2
(m + 1)

2
⎛⎝ ⎞⎠t⎛⎝ ⎞⎠ + ξ0, m⎛⎝ ⎞⎠.

(64)

Also, the soliton solution can be obtained from solution
equation (64) for letting m⟶ 1:

u �
2βC − 60c

2
����
10αc

􏽰
C

+
9
C

���
10c

α

􏽲

sec h
2

���
3
2C

􏽲

x −
β2C2

− 540c
2

10cC
2 t􏼠 􏼡 + ξ0􏼠 􏼡.

(65)

*e propagation of higher-order ion-acoustic structures
in a collisionless and unmagnetized plasma consisting of
inertialess nonextensive electrons and positrons and inertial
warm ions and nonextensive electrons as well as positrons
[10]is investigated. El-Tantawy[10] derived both two-cou-
pled KdV equations and two-coupled modified KdV
(mKdV) equations for studying the KdV andmKdV solitons
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Figure 4: *e profile of the solitary wave solution equation (49) to mKE equation (3) is plotted in (x, t) plane.
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collisions. For some external perturbation or at some certain
conditions, the derivatives fifth-order should be taken into
consideration which leads to both KE equation (2) and mKE
(3). Now, to analyze the obtained solutions, we can use the
same values of the coefficients of mKdV equation (26) in
[10]. Based on this plasma model (α2 � α, β) �

(2.14663, 0.698771) at q � 0.6 and (α2 � α, β) �

(0.269511, 0.957799) at q � 1.2, where q indicates the
nonextensive parameter, the profile of the periodic solution
equation (47) is illustrated as shown in Figure 3 for the
parameter values (c, λ, g3, ξ0, v0) � (0.1, − 0.1, 5, 0, 0).
Moreover, the profiles of the solitary wave solutions equa-
tion (48) are shown in Figure 4 using the same parameters
used in Figure 3 replacing (g2, g3) � (4/3, − 8/27). It is clear
that the two solutions have opposite polarity, i.e., positive
and negative potential. Furthermore, it is noticed that both
amplitude and width increase with the increase of the
nonextensive parameter q.

3. Conclusions

New localized and periodic traveling wave solutions to the
generalized KE have been derived in detail using different
new approaches and ansatz. As a particular case, several
traveling wave solutions to both KE and mKE have been
obtained using (in)direct methods. For the indirect method,
KE has been solved with the help of Helmholtz equation.
After that, we can use any solution to the Helmholtz
equation in order to express the solution of the planar KE.
We used two different formulas for WSEFs to get some
periodic solutions to KE. In the direct method, a new ansatz
in the terms of WSEFs has been introduced for getting a
cnoidal solution to KE. In all cases and at certain conditions,
the periodic solutions have been reduced to the localized
solitary wave solutions. In the third (direct) method, the
periodic and solitary wave solutions have been derived in the
form of JEFs, and it was found that the obtained solutions
coincide with that obtained by means of the tanh method.
*e obtained solutions have been used for interpreting
several nonlinear structures that propagate in different
plasma models. Furthermore, two new hypotheses in terms
of WSEFs have been proposed to find some periodic so-
lutions to mKE. Also, the conditions for reducing the pe-
riodic solutions of mKE to the localized solitary waves have
been presented. *e obtained solutions have been employed
for investigating many nonlinear structures in different
plasma models.

Appendix

A.

*e values of the coefficients Fj(j � 0, 1, · · · 6) are given by

F0 � c1 + c0d0 +
λd

2
0

2
+
αd

3
0

6
+ βc2d

2
1 + 2Acc2d

2
1 + 8cc

2
2d

2
2,

F1 �
1
2
d1 2c0 + 2λd0 + αd

2
0 + 8Bcc2d1 + 8βc2d2 + 32Acc2d2􏼐 􏼑,

F2 � −
1
2

Aβd
2
1 + A

2
cd

2
1 − λd

2
1 − αd0d

2
1 − 2c0d2 − 2λd0d2

− αd
2
0d2 − 48Bcc2d1d2 − 8βc2d

2
2 − 32Acc2d

2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

F3 � −
1
6

2Bβd
2
1 + 10ABcd

2
1 − αd

3
1 + 12Aβd1d2 + 36A

2
cd1d2

− 6λd1d2 − 6αd0d1d2 − 160Bcc2d
2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

F4 � −
1
6

5B
2
cd

2
1 + 8Bβd1d2 + 80ABcd1d2 − 3αd

2
1d2

+12Aβd
2
2 + 48A

2
cd

2
2 − 3λd

2
2 − 3αd0d

2
2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

F5 � −
1
6
d2 36B

2
cd1 + 8Bβd2 + 104ABcd2 − 3αd1d2􏼐 􏼑,

F6 � −
1
18

d
2
2 140B

2
c − 3αd2􏼐 􏼑.

(A.1)

B

*e values of the coefficients Sj(j � 0, 1, · · · 6) are given by

S0 �
1
24

24a0c1 − 12a
2
1βg3k

3
+ 3a

2
1cg

2
2k

5
+ 48a

2
2cg

2
3k

5

− 48a1a2cg2g3k
5

+ 4αa
3
0k + 12a

2
0λ + 24c2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S1 �
1
2
a1

− a1βg2k
3

− 4a2βg3k
3

− 3a2cg
2
2k

5
+ 24a1cg3k

5

+αa
2
0k + 2a0λ + 2c1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S2 �
1
2

2a2c1 − 4a1a2βg2k
3

− 4a
2
2βg3k

3
− 3a

2
2cg

2
2k

5
+ 18a

2
1cg2k

5

+144a1a2cg3k
5

+ αa0a
2
1k + αa

2
0a2k + a

2
1λ + 2a0a2λ

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S3 �
1
6

− 12a
2
2βg2k

3
+ 408a1a2cg2k

5
+ 480a

2
2cg3k

5

+12a
2
1βk

3
+ αa

3
1k + 6αa0a1a2k + 6a1a2λ

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

S4 �
1
2

168a
2
2cg2k

5
+ 16a1a2βk

3
− 60a

2
1ck

5
+ αa0a

2
2k + αa

2
1a2k + a

2
2λ􏼐 􏼑,

S5 � −
1
2
a2k − αa1a2 − 16a2βk

2
+ 432a1ck

4
􏼐 􏼑,

S6 � −
1
6
a
2
2k 1680ck

4
− αa2􏼐 􏼑.

(B.1)

C

*e values of the coefficients Wj(j � 0, 1, 2, 3) are given by
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W3 � 2sn(ξ, m)cn(ξ, m)dn(ξ, m)
��
ω

√
− 2C Cα − 1680m

2
cω2

􏼐 􏼑􏼐

W2 � − 3
BCα − 20Cmβω − 1040Cmcω2

− 120Bm
2
cω2

+ 2080Cm
2
cω2

⎛⎜⎝ ⎞⎟⎠

W1 �

− B
2α − 2ACα − 2Cλ + 32Cβω + 12Bmβω

− 64Cmβω + 512Ccω2
+ 240Bmcω2

− 3392Cmcω2

− 480Bm
2
cω2

+ 3392Cm
2
cω2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W0 �

− ABα − Bλ + 4Bβω − 12Cβω − 8Bmβω

+12Cmβω + 16Bcω2
− 240Ccω2

− 136Bmcω2

+720Cmcω2
+ 136Bm

2
cω2

− 480Cm
2
cω2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(C.1)

D

*e values of the coefficients Zj (j � 0, 1, 2 · · · 6) are given by

Z0 � 8αAB
3

+ 24ABλ + 24Ac0 + 2αB
4

− 96B
2
cC

4
g
2
3 + 48B

2
cC

3
g2g3 − 12βB

2
C
2
g3

+ 3B
2
cC

2
g
2
2 + 12B

2λ + 24Bc0 + 24c1 + 2αA
4

+ 8αA
3
B + 12αA

2
B
2

+ 12A
2λ

Z1 � 2C

6αA
4

+ 20αA
3
B + 24αA

2
B
2

+ 36A
2λ + 12αAB

3
+ 60ABλ+

72Ac0 + 2αB
4

− 72B
2
cC

3
g2g3 − 12βB

2
C
2
g3 + 27B

2
cC

2
g
2
2−

6βB
2
Cg2 + 144B

2
cCg3 + 24B

2λ + 60Bc0 + 72c1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z2 � C
2

30αA
4

+ 80αA
3
B + 72αA

2
B
2

+ 180A
2λ + 24αAB

3
+ 240ABλ+

360Ac0 + 2αB
4

− 12βB
2
C
2
g3 − 45B

2
cC

2
g
2
2−

24βB
2
Cg2 + 216B

2
cg2 + 72B

2λ + 240Bc0 + 360c1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z3 � 4C
2

10αA
4
C + 20αA

3
BC + 12αA

2
B
2
C + 60A

2
Cλ + 2αAB

3
C+

60ABCλ + 120Ac0C + 12βB
2

− 3βB
2
C
2
g2 + 120B

2
cC

2
g3−

84B
2
cCg2 + 12B

2
Cλ + 60Bc0C + 120c1C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z4 � 2C
2

15αA
4
C
2

+ 20αA
3
BC

2
+ 6αA

2
B
2
C
2

+ 90A
2
C
2λ+

60ABC
2λ + 180Ac0C

2
− 360B

2
c + 108B

2
cC

2
g2+

6B
2
C
2λ + 48βB

2
C + 60Bc0C

2
+ 180c1C

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Z5 � 4C
3

3αA
4
C
2

+ 2αA
3
BC

2
+ 18A

2
C
2λ + 6ABC

2λ + 36Ac0C
2
+

216B
2
c + 12βB

2
C + 6Bc0C

2
+ 36c1C

2
⎛⎜⎝ ⎞⎟⎠,

Z6 � 2C
4 αA

4
C
2

+ 6A
2
C
2λ + 12Ac0C

2
+ 24B

2
c + 12c1C

2
􏼐 􏼑.

(D.1)
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E

*e values of the coefficients Yj (j � 0, 2, 4, 6, 8) are given by

Y0 � 1/12
αA

4
+ 6A

2λ + 12Ac0 + 24B
2
cω2

+24B
2
cm

2ω2
− 48B

2
cmω2

+ 12c1

⎛⎝ ⎞⎠,

Y2 � 1/12
4αA

3
B + 12ABλ + 24βB

2ω + 96B
2
cω2

+

192B
2
cm

2ω2
− 24βB

2
mω − 288B

2
cmω2

+ 12Bc0

⎛⎝ ⎞⎠,

Y4 � 1/12
6αA

2
B
2

− 24βB
2ω − 96B

2
cω2

+ 6B
2λ−

816B
2
cm

2ω2
+ 48βB

2
mω + 816B

2
cmω2

⎛⎝ ⎞⎠,

Y6 � 1/12 4αAB
3

+ 960B
2
cm

2ω2
− 24βB

2
mω − 480B

2
cmω2

􏼐 􏼑,

Y8 � 1/12 αB
4

− 360B
2
cm

2ω2
􏼐 􏼑.

(E.1)

F

Relation between the Jacobian cn elliptic function and the
Weierstrass elliptic function.

It is known that

℘′( 􏼁
2

� 4℘3 − g2℘ − g3, ℘ ≡ ℘ t; g2, g3( 􏼁. (F.1)

On the other hand, if v(t) � cn(
��
ω

√
t, m), we get

1
2

_v
2

− (1 − m)ω +(1 − 2m)ωv
2
(t) + mωv

4
(t) � 0. (F.2)

Define

w(t) � 1 +
B

1 + C℘ t; g2, g3( 􏼁
, (F.3)

then,
1
2

_w
2

− (1 − m)ω +(1 − 2m)ωw
2
(t) + mωw

4
(t)

�
B

(1 + C℘)4

B
3
mω + 4B

2
mω − BC

2
g3 + 4Bmω + Bω + 2ω+

C 4B
2
mω − BCg2 + 8Bmω + 2Bω + 6ω􏼐 􏼑℘+

+Cω(4Bm + B + 6)℘2 + 2C
2
(2B + Cω)℘3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(F.4)

Equating to zero the coefficients of ℘j(j � 0, 1, 2, 3) gives
an algebraic system, and by solving this system, we finally
have

B � −
6

4m + 1
,

C �
12

(4m + 1)ω
,

g2 � 1/12 16m
2

− 16m + 1􏼐 􏼑ω2
,

g3 � 1/216(2m − 1) 32m
2

− 32m − 1􏼐 􏼑ω3
.

(F.5)

*en,

cn(
��
ω

√
t, m)

� 1 −
6

(4m + 1) 1 + 12/(4m + 1)ω℘ t; (1/12) 16m
2

− 16m + 1􏼐 􏼑ω2
, (1/216)(2m − 1) 32m

2
− 32m − 1􏼐 􏼑ω3

􏼐 􏼑􏼐 􏼑
.

(F.6)

*is identity shows that the function cn is expressible
trough the function ℘. Now, if we know the function ℘, we
want to write it in terms of cn. To this end, we must write ω
and m in terms of g2 and g3. *is is not too easy. Define

z � 16m
2

− 16m + 1. (F.7)

Now, we eliminate ω and m from the system,

g2 � 1/12 16m
2

− 16m + 1􏼐 􏼑ω2
,

g3 � 1/216(2m − 1) 32m
2

− 32m − 1􏼐 􏼑ω3
,

z � 16m
2

− 16m + 1,

(F.8)

to obtain

27g
3
2 − 27g

3
2z + 4 g

3
2 − 27g

2
3􏼐 􏼑z

3
� 0. (F.9)

*is cubic is solvable by means of Tartaglia formula
which leads to

m �
1
4

(2 ±
�����
z + 3

√
),ω � 2

���
3g2

z

􏽲

. (F.10)

Finally, we solve the following equation for ℘(t; g2, g3):

1 +
B

1 + C℘ t; g2, g3( 􏼁
� cn(

��
ω

√
t, m). (F.11)

*e desired expression reads

℘ t; g2, g3( 􏼁 � −
ω
12

1 + 4m −
6

1 − cn(
��
ω

√
t|m)

􏼠 􏼡. (F.12)

In conclusion, if some ODE or some PDE have a solution
that is expressible in terms of the Jacobian cn function, then
such solution may also be written in terms of theWeierstrass
℘ function and vice versa. So, cnoidal waves and ℘ solutions
have the same meaning. Observe also that the last formula
allows us to obtain the main period of the Weierstrass
function in the form
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T �
4K(m)

��
ω

√ . (F.13)

Data Availability

*e data generated or analyzed during this study are in-
cluded within the article and available from the corre-
sponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally and approved the final
manuscript.

Acknowledgments

*e authors express their gratitude to Princess Nourah bint
Abdulrahman University Researchers Supporting Project
(Grant No. PNURSP2022R17), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia. Taif Uni-
versity Researchers supporting project number (TURSP-
2020/275), Taif University, Taif, Saudi Arabia.

References

[1] Y.-Y. Fan, J. Manafian, Z. Syed Maqsood, Dinh Tran Ngoc
Huy, and Le Trung-Hieu, “Analytical treatment of the gen-
eralized hirota-satsuma-ito equation Arising in shallow water
wave,” Adv. Math. Phys.vol. 2021, p. 1164838, 2021.

[2] J. Manafian, “Novel solitary wave solutions for the (3+1)-
dimensional extended Jimbo-Miwa equations,” Computers &
Mathematics with Applications, vol. 76, no. 5, pp. 1246–1260,
2018.

[3] J. Manafian, “.An optimal Galerkin-homotopy asymptotic
method applied to the nonlinear second-order BVPs,” Pro-
ceedings of the Institute of Mathematics and Mechanics, Na-
tional Academy of Sciences of Azerbaijan, vol. 47, p. 156, 2021.

[4] “An analytical analysis to solve the fractional differential
equations,” Advanced Mathematical Models & Applications,
vol. 6, no. 2, p. 128, 2021.

[5] A.-M. Wazwaz, Partial Differential Equations and Solitary
Waves Deory, Higher Education Press, Beijing, USA, 2009.

[6] A.-M. Wazwaz, Partial Differential Equations :Methods and
Applications, Balkema, cop, Lisse, 2002.

[7] B. S. Kashkari, S. A. El-Tantawy, A. H. Salas, and L. S. El-
Sherif, “Homotopy perturbation method for studying dissi-
pative nonplanar solitons in an electronegative complex
plasma,” Chaos, Solitons & Fractals, vol. 130, Article ID
109457, 2020.

[8] J.-W. Xia, Yi-W. Zhao, and L. ü Xing, “Predictability, Fast
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Fractional calculus is nowadays an efficient tool in modelling many interesting nonlinear phenomena.(is study investigates, in a
novel way, the Ulam–Hyers (HU) and Ulam–Hyers–Rassias (HUR) stability of differential equations with general conformable
derivative (GCD). In our analysis, we employ some version of Banach fixed-point theory (FPT). In this way, we generalize several
earlier interesting results. Two examples are given at the end to illustrate our results.

1. Introduction

(e stability issue gained a considerable attention in various
research fields through applications.(ere are many kinds of
stability, among them is the stability introduced by S. M.
Ulam, in his famous talk at a conference held in Wisconsin
University in 1940. Since then, it is known as HU stability or
simply Ulam stability. Its applications for various types of
differential equations have been investigated by many re-
searchers. (e readers can see the interesting results in 1–7,
for more details. (e stability problem of Ulam can be re-
written in the following form.

Consider a group G∗ and a metric group (G∗∗, χ1). Is it
true that given ε> 0, there exist δ > 0 such that if
Λ: G∗ ⟶ G∗∗ satisfies

χ1 Λ x1x2( 􏼁,Λ x1( 􏼁Λ x2( 􏼁( 􏼁< δ. (1)

For all x1, x2 ∈ G∗, then a homomorphism
Ξ: G∗ ⟶ G∗∗ exists such that

χ1 Λ x1( 􏼁,Ξ x1( 􏼁( 􏼁< ε, (2)

for every x1 ∈ G∗?

(e problem of Ulam has been extended in many di-
rections for various interesting settings. In particular, Ras-
sias (see [8]) generalized Ulam’s result for Banach spaces.

Initial and boundary value problems with fractional-
order derivatives are natural generalization of the classical
initial and boundary value problems. It is much more
complicated to investigate stability issues of fractional-order
problems than their classical analogues; this is because of the
singularity and nonlocality in the kernel of fractional dif-
ferential operators. Fractional derivatives, in general, play
negligible roles in a number of fields of science and engi-
neering (see, e.g., [9–13] and the references there in).

In particular, during the last few decades, the area of
fractional calculus has been investigated qualitatively by using
different tools of functional analysis. (ese tools include but are
not limited to Gronwall Lemma, see, e.g., [14], Pachpatte’s in-
equality, see, e.g., [15], Schaefer’s FPT, see, e.g., [16], Schauder’s
FPT, see, e.g., [17], Banach FPT, see, e.g., [18], and Picard op-
erator, see, e.g., [15]. Various approaches have been used to
define fractional derivatives (see, e.g., 19–28, for more details).
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It should be remarked that generalized conformable
derivative plays an essential role in many applications. For
instance, the authors in [29] utilized it to examine some
nonlinear evolution equations. Generalized conformable
derivative also has been used in [30] to investigate some
nonlinear evolution equations. A new generalized version of
conformable derivative is given and in [31] with some ap-
plications in biological population. In the present study, we
generalize several recent interesting works as follows.We use
(eorem 2 to generalize the interesting results in [32, 33] by
dropping some of the basic assumptions that have been used
there. We also use (eorem 3 to generalize the work in [34].

(e organization of the study is as follows. In Section 2,
we present some preliminaries and some basic definitions. In
Section 3, we introduce our stability results in the sense of
HU and HUR. In Section 4, two examples are written to
show the validity of our results, and in Section 5, we con-
clude our work.

2. Preliminaries

In this section, some definitions, lemmas, and theorems are
given [35–39].

Definition 1. Let us consider a function ϕ defined on [c, d);
then, the GCD starting from the real c of a function ϕ is
defined by

T
υ,ψc

c ϕ(z) � lim
σ⟶0

ϕ z + σψc(z, υ)( 􏼁 − ϕ(z)

σ
. (3)

For all z> c, υ ∈ (0, 1) and ψc(z, υ) is a nonnegative
continuous function that satisfies

ψc(z, 1) � 1,

ψc ., υ1( 􏼁≠ψc ., υ2( 􏼁,where υ1 ≠ υ2 and υ1, υ2 ∈ (0, 1].

(4)

If T
υ,ψc
c ϕ(z) exists, for every z ∈ (c, a); for some a> c,

limt⟶c+ T
υ,ψc
c ϕ(z) exists; then, by definition,

T
υ,ψc

c ϕ(c) � lim
t⟶c+

T
υ,ψc

c ϕ(z). (5)

Remark 1. To further study the properties of GCD, we
suppose that ψc(z, υ)> 0, for all z> c, and 1/ψc(., υ) is locally
integrable.

Definition 2. Let 0< υ< 1. (e conformable fractional in-
tegral starting from c of a function ϕ is defined by

I
υ,ψc

c ϕ(z) � 􏽚
z

c

ϕ(x)

ψc(x, υ)
dx . (6)

Lemma 1. Suppose that ϕ ∈ C([c, d]). <us,

T
υ,ψ
c I

υ,ψc

c ϕ(z) � ϕ(z), ∀z≥ c. (7)

Lemma 2. Suppose that ϕ ∈ AC1([c, d]). <us,

I
υ,ψc

c T
υ,ψ
c ϕ(z) � ϕ(z) − ϕ(c), ∀z≥ c. (8)

Remark 2. Assume that ϑ ∈ R∗. If

g(z): � Eψc
υ (ϑ, z, c) � e

ϑ􏽒
z

c
1/ψc(x,υ)dx, then

T
υ,ψc
c g(z) � ϑg(z) and I

υ,ψc
c g(z) � 1/ϑ(g(z) − 1).

(e following is the notion of a generalized metric on
some set S1.

Definition 3 (see 40). Consider a mapping
ϱ: S1 × S1⟶ [0,∞]. (e mapping ϱ is called a general-
ized metric on set S1 iff ϱ satisfies:

M1 ϱ(o1, o2) � 0 if and only if o1 � o2

M2 ϱ(o1, o2) � ϱ(o2, o1), for all o1, o2 ∈ S1

M3 ϱ(o1, o3)≤ ϱ(o1, o2) + ϱ(o2, o3), for all
oi ∈ S1, i � 1, 2, 3

(e following theorem (see [40]) represents one of the
interesting results of FPT.(is theorem plays a fundamental
role in our study.

Theorem 1. Suppose that (Q, F) is a metric space that is
generalized complete. Let B: Q⟶ Q be a strictly contractive
operator. If there is an integer t≥ 0 with F(Γt+1c, Γtc)<∞ for
some c ∈ Q, thus

(a) lims⟶+∞Bsc � c∗, where c∗ is the unique fixed point
of Γ in Q∗: � c1 ∈ Q: F(Btc, c1)<∞􏼈 􏼉

(b) If c1 ∈ Q∗, then F(c1, c∗)≤ 1/1 − LF(Bc1, c1)

Define the space X as X: � C(I,R), with I � [a, a + T]

(a is some real number).

Lemma 3. Define a metric η: X × X⟶ [0,∞] in such a
way that

η β1, β2( 􏼁 � inf A ∈ [0,∞]:
β1(z) − β2(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ (ϑ, z, a)
≤Aλ(z), z ∈ I􏼨 􏼩,

(9)

where ϑ> 0, θ ∈ (0, 1), and λ is positive and continuous.<us,
(X, η) is a generalized complete metric space.

(e goal of this study is to investigate the stability of the
following initial value problem:

T
θ,ψa

a y(z) � ξ(z, y(z)), y(a) � ya, (10)

in the sense of HU and HUR. Notice that the solution of the
initial value problem (10) is the solution of

y(z) � 􏽚
z

a

ξ(p, y(p))

ψa(p, θ)
dp + ya, z ∈ I. (11)

3. Ulam–Hyers–Rassias Stability Results

We use this section to present our main results. (e theorem
below represents the stability of (10) in the sense of HU.
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Theorem 2. Suppose ξ is continuous and satisfies

|ξ z, c1( 􏼁 − ξ z, c2( 􏼁|≤P|c1 − c2|, ∀z ∈ I, ci ∈ R, i � 1, 2.

(12)

If an absolutely continuous function x: I⟶ R satisfies

|T
θ,ψa

a x(z) − ξ(z, x(z))|≤ ϵ, (13)

for some ϵ> 0, therefore, there is a unique solution x∗ of (10)
with

|x(z) − x
∗
(z)|≤ ϵ

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a), (14)

for every z ∈ I, where ϱ is any positive constant and
M � sups∈[a,a+T](I

θ,ψa
a (1)(s)/Eψa

θ ((P + ϱ), s, a)).

Proof. For any B1, B2 ∈ X, we define the metric d in this way:

d B1, B2( 􏼁 � inf V ∈ [0,∞]:
B1(z) − B2(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤V, z ∈ I􏼨 􏼩.

(15)

Define the operator G: X⟶ X such that

(Gy)(z): � x(a) + 􏽚
z

a

ξ(s, y(s))

ψa(s, θ)
ds , ∀y ∈ X. (16)

Since

Gy0( 􏼁(z) − y0(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
<∞, ∀y0 ∈ X, z ∈ I, (17)

so that it is clear that d(Gy0, y0)<∞, in addition, we get
y ∈ X: d(y0, y)<∞􏼈 􏼉 � X.

Now, we prove that G is strictly contractive:

Gy1( 􏼁(z) − Gy2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
z

a

ξ s, y1(s)( 􏼁 − ξ s, y2(s)( 􏼁( 􏼁

ψa(s, θ)
ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
z

a

ξ s, y1(s)( 􏼁 − ξ s, y2(s)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

ψa(s, θ)
ds

≤P 􏽚
z

a

y1(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

ψa(s, θ)
ds

≤P 􏽚
z

a

1
ψa(s, θ)

y1(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), s, a)
E
ψa

θ ((P + ϱ), s, a)ds

≤
P d y1, y2( 􏼁

P + ϱ
E
ψa

θ ((P + ϱ), z, a) − 1􏼐 􏼑

≤
P d y1, y2( 􏼁

P + ϱ
E
ψa

θ ((P + ϱ), z, a)for all z ∈ I.

(18)

So, it is clear that

Gy1( 􏼁(z) − Gy2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤

P

P + ϱ
d y1, y2( 􏼁, (19)

which implies that

d Gy1,Gy2( 􏼁≤
P

P + ϱ
d y1, y2( 􏼁, (20)

which prove that the operatorG is a strictly contractive one.
We get, from (27),

|x(z) − Gx(z)|≤ ϵ􏽚
t

a

1
ψa(s, θ)

ds ≤ ϵIθ,ψa

a (1)(z). (21)

(erefore,

d(x,Gx)≤ ϵM. (22)

Now, according to (eorem 1, there is some solution x∗

of (10) satisfying

d x, x
∗

( 􏼁≤ ϵ
P + ϱ
ϱ

M, (23)

so that

x(z) − x
∗
(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤ ϵ

P + ϱ
ϱ

M, (24)

which implies that

|x(z) − x
∗
(z)|≤ ϵ

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a). (25)
□

Remark 3. It is clear that our findings in the sense of HU are
some generalized version of the results obtained in [32, 33]
as follows. In our analysis, we do not impose any constrains
on P unlike equation 5 in (eorem 2 in [32]. In [33], the
authors assumed conditions on the function φ which is not
the case in our study.

(e following theorem represents the stability of (10) in
HUR sense.

Theorem 3. Suppose ξ is continuous and satisfies

|ξ z, c1( 􏼁 − ξ z, c2( 􏼁|≤P|c1 − c2|, ∀z ∈ I, ci ∈ R, i � 1, 2.

(26)

If an absolutely continuous function x: I⟶ R satisfies

|T
θ,ψa

a x(z) − ξ(z, x(z))|≤ κ(z), (27)

where κ(z) is a nondecreasing, continuous function,
therefore, there is a unique solution x∗ of (10) with

|x(z) − x
∗
(z)|≤

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a)κ(z), (28)

for every z ∈ I, where ϱ is any positive constant and
M � sups∈[a,a+T](I

θ,ψa
a (1)(s)/Eψa

θ ((P + ϱ), s, a)).

Proof. For any B1, B2 ∈ X, we define the metric d as follows:

d B1, B2( 􏼁 � inf V ∈ [0,∞]:
B1(z) − B2(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

E
ψa

θ ((P + ϱ), z, a)
≤Vκ(z), z ∈ I􏼨 􏼩.

(29)
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Define the operator G: X⟶ X such that

(Gy)(z): � x(a) + 􏽚
z

a

ξ(s, y(s))

ψa(s, θ)
ds , ∀y ∈ X. (30)

We have d(Gy0, y0)<∞, for all y0. In addition, we get
y ∈ X: d(y0, y)<∞􏼈 􏼉 � X.

Now, we prove that G is strictly contractive:

Gy1( 􏼁(z) − Gy2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
z

a

ξ s, y1(s)( 􏼁 − ξ s, y2(s)( 􏼁( 􏼁

ψa(s, θ)
ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤P 􏽚
z

a

y1(s) − y2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

ψa(s, θ)
ds

≤P d y1, y2( 􏼁κ(z) 􏽚
z

a

E
ψa

θ ((P + ϱ), s, a)

ψa(s, θ)
ds

≤
P d y1, y2( 􏼁

P + ϱ
E
ψa

θ ((P + ϱ), z, a)κ(z)for all z ∈ I.

(31)

So,

d Gy1,Gy2( 􏼁≤
P

P + ϱ
d y1, y2( 􏼁, (32)

which prove that the operator G is a strictly contractive one.
We get, from (13),

|x(z) − Gx(z)|≤ 􏽚
t

a

κ(s)

ψa(s, θ)
ds ≤ κ(z)I

θ,ψa

a (1)(z). (33)

Hence,

d(x,Gx)≤M. (34)

Using (eorem 1, there is a solution x∗ of (10) with

d x, x
∗

( 􏼁≤
P + ϱ
ϱ

M. (35)

(us,

|x(z) − x
∗
(z)|≤

P + ϱ
ϱ

ME
ψa

θ ((P + ϱ), a + T, a)κ(z). (36)
□

Remark 4. Notice that the authors in [34] used conformable
fractional Laplace transform to study the HUR stability of
several kinds of differential equations. (ey had to assume
some specific conditions, see, e.g., condition 12 in (eorem
3.6 is given in [34].

Remark 5. (e authors in [41] obtained stability results for
differential equations with integer-order derivatives ψa � 1,
while in our study it is for GCD. In this sense, we introduce a
generalized version of the interesting results [41].

4. Examples

(is section uses two examples to show the validity of
results.

Example 1. Consider equation (10) for
ψa(z, θ) � (z − a)1− θ, a � 0, θ � 0.6, T � 2, and
ξ(z, ]) � z4 sin(]).

We have

|z
4 sin ]1( 􏼁 − z

4 sin ]2( 􏼁|≤ 16|]1 − ]2|, ∀z ∈ [0, 9], ]1, ]2 ∈ R.

(37)

(en, L � 16.
Suppose that ] satisfies

|T
0.6,ψ0
0 ](z) − ξ(z, ](z))|≤ 0.01, (38)

for all z ∈ [0, 2].
Here, ϵ � 0.01. Using (eorem 2, there is ]∗ and M> 0

such that

|](z) − ]∗(z)|≤ 0.01M, ∀z ∈ [0, 2]. (39)

Example 2. Consider equation (10) for
ψa(z, θ) � (z − a)1− θ, a � 3, θ � 0.3, T � 3, and
ξ(z, ]) � z cos(]).

We have

|z cos ]1( 􏼁 − z cos ]2( 􏼁|≤ 6|]1 − ]2|, ∀z ∈ [3, 6], ]1, ]2 ∈ R.

(40)

(en, L � 6.
Suppose that ] satisfies

|T
0.3,ψ3
3 ](z) − ξ(z, ](z))|≤ (z + 2), (41)

for all z ∈ [3, 6].
Here, κ(z) � z + 2. Using (eorem 3, there is ]∗ and

M> 0 such that

|](z) − ]∗(z)|≤M(z + 2), ∀z ∈ [0, 2]. (42)

5. Conclusion

We managed to utilize a version of Banach FPT to present
stability results in the sense of HU and HUR for some
differential equations involving GCDs. In our analysis, we
generalized some interesting results by dropping some of the
basic assumptions that have been used in recent known
investigations. We used two examples to show the validity of
our main findings. We believe that the methodology used in
this study can be further applied to many other fractional
differential equations.
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In this study, complex dynamics of Briggs–Rauscher reaction system is investigated analytically and numerically. First, the
Briggs–Rauscher reaction system is reduced into a new nonlinear parametric oscillator. .e Melnikov method is used to
derive the condition of the appearance of horseshoe chaos in the cases ω � Ω and ω≠Ω. .e performed numerical
simulations confirm the obtained analytical predictions. Second, the prediction of coexisting attractors is investigated by
solving numerically the new nonlinear parametric ordinary differential equation via the fourth-order Runge–Kutta al-
gorithm. As results, it is found that the new nonlinear chemical system displays various coexisting behaviors of symmetric
and asymmetric attractors. In addition, the system presents a rich variety of bifurcations phenomena such as symmetry
breaking, symmetry restoring, period doubling, reverse period doubling, period-m bubbles, reverse period-m bubbles,
intermittency, and antimonotonicity. On the contrary, emerging chaotic band attractors and period-1, period-3, period-9,
and period-m bubbles routes to chaos occur in this system.

1. Introduction

Nonlinear oscillations remain up to now an attractive topic
of research due to their applications to physics, biology,
chemistry, and engineering [1–4]. To that end, various
analytical methods and numerical tools have been proposed
and successfully used in study of nonlinear dynamics of
oscillatory systems [4–10]. Recently, nonlinear chemical
oscillations have received attention of many researchers
from theoretical and experimental point of view [11–27].
.is is due to dynamic complexities that can exhibit the new
nonlinear chemical oscillators and their potential applica-
tions in engineering. For example, Cassani et al. [19] studied
the nonlinear behavior of Belousov–Zhabotinsky-type re-
actions focusing on modeling under different operating
conditions, from the simplest to the most widely applicable

models. .e stability analysis of simplified models as a
function of bifurcation parameter has been studied.
Adéchinan et al. [20] studied the dynamics and active
control of chemical oscillations governed by a forced gen-
eralized Rayleigh oscillator. .e condition of the appearance
of chaos has been derived using the Melnikov method. .e
control efficiency has been shown through the control gain
parameter on the behavior of the system. Monwanou et al.
[21] investigated the effect of an amplitude modulated ex-
citation on the nonlinear dynamics of reactions between four
molecules. .e stability analysis of the autonomous system
has been made in detail. .e dynamics of the nonautono-
mous chemical system showed various routes to chaos.
Olabodé et al. [22] used the Melnikov method and derived
analytically the domains boundaries where horseshoe chaos
appears in chemical oscillations. .ey afterward controlled
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chaotic oscillations by subjecting the nonlinear chemical
system to fluctuation hydrodynamic drag forces. On the
contrary, the effects of passive hydrodynamics force on
harmonic and chaotic oscillations in nonlinear chemical
oscillations governed by a forced modified Van der
pol–Duffing oscillator have been analyzed by Olabodé et al.
[23]. Recently, Ghosh and Ray [24] showed that a class of
arbitrary, autonomous kinetic equations in two variables,
describing chemical and biochemical oscillations, can be
reduced to the form of a Liénard oscillator. Binous and
Bellagi [25] studied various important aspects of nonlinear
dynamics such as limit cycles, quasi-periodic and chaotic
behaviors, time series and phase portraits, power spectra, the
time-delay reconstruction diagrams, Hopf bifurcation, bi-
furcation diagrams, steady-state multiplicity of four prob-
lems drawn from the chemical, and biochemical engineering
field of study. Shabunin et al. [26] modeled chemical re-
actions by the forced limit-cycle oscillator and studied
synchronization phenomena and transition to chaos.

.e most theoretical studies on nonlinear dissipative
chemical systems in general and on Briggs–Rauscher re-
action system in particular have been performed with pe-
riodically external excitation [20, 22, 23, 27]. However, the
aspects of nonlinear dynamics of Briggs–Rauscher reaction
system under the influence of the parametric and two ex-
ternal periodic excitations have not been yet studied. Such a
study will be important to perform since it is well known that
the dynamics of a nonlinear system subjected to parametric
and external excitations exhibits complex and rich dy-
namical behaviors [9, 28–30]. .us, the problem of interest
is to show that the Briggs–Rauscher reaction system can be
modeled by the following new nonlinear parametric
oscillator:

x + μ 1 + x
2

+ pc cosωt􏼐 􏼑 _x

+(1 + p cosωt) α1x + α3x
3

􏼐 􏼑

� −α0(1 + p cosωt) + f cosΩt,

(1)

where the dots indicate differentiation with respect to time t

and μ, p, αi f, ω, and Ω are real system parameters.
.e originality of this work is brought by the parameter

p which controls the presence of the parametric and external
excitations of frequency ω. It is important to point out that
Si-yu and Jin-yan [29] considered a particular case of this
strong nonlinear parametric equation in the study of the
parameter stability and global bifurcations. It is now easy to
see through this equation that when p � 0, the classical
nonautonomous Van der Pol–Duffing oscillator is obtained.
.is classical driven oscillator has been widely studied in the
context of various physical, chemical, and engineering
problems. Some theoretical and numerical results for some
particular cases of the strong nonlinear parametric system
(1) have been found in the open literature. .erefore, the
dynamics study of system (1) is of a crucial importance in
nonlinear chemical oscillations for a better understanding of
the dynamical behaviors of the system. In addition, the

investigation of nonlinear phenomena in dynamical system
(1) is even significance in practical applications.

In order to predict the chaotic behavior in a driven
nonlinear system, the Melnikov theory is often used
[9, 27, 42]. From this theory, the condition for the existence
of homoclinic bifurcation to occur in the case where the
potential is an asymmetric or symmetric double well exists in
the open literature for p � 0. However, for p≠ 0, the pre-
diction of horseshoe chaos in a new nonlinear parametric
system (1) under two periodic external excitations has not
been investigated up to now. .us, the presence of the
parameter p would contribute to nonlinear dynamics of
Briggs–Rauscher reaction system modeled by equation (1).

.e coexisting attractors exist in many natural and ar-
tificial systems. .is phenomenon has received the attention
of many investigators in nonlinear dynamics fields
[13, 20, 21, 31]..is is due to the fact that it provides multiple
optional steady states for the system to respond to different
needs. To that end, various studies on some driven nonlinear
systems have shown the existence of multiple coexisting
attractors [32–39]. In nonlinear chemical dynamics, the
coexistence of two or more stable dynamical states (steady
state, periodic oscillation, and chaos) of a system, under the
same set of external constraints-input concentration of re-
actants, temperature, pressure, and so on, is one of the most
interesting and significant phenomena. Although the co-
existence of attractors offers important advantages to sys-
tems to respond to different solicitations, it also affects the
performance of the system to some extent. For this reason,
its prediction is become a necessity for the scientific com-
munity in recent years. .erefore, the study of coexisting of
symmetric and asymmetric attractors in a new parametric
chemical oscillator described by (1) is of fundamental and
even practical interest. Furthermore, the prediction of
coexisting attractors in a Briggs–Rauscher reaction system
modeled by a strong nonlinear oscillator with damping and
stiffness time-varying described by (1) has not yet been
studied. So, the second problem that attracts our attention in
this work is the prediction of chaos and coexisting attractors
in a new nonlinear parametric chemical system governed by
equation of motion (1).

In order to attain our objective, we firstly show that the
Briggs–Rauscher kinetic equations can be reduced to a new
nonlinear parametric oscillator given by equation (1), and we
apply the Melnikov method for deriving the condition of the
appearance of horseshoe chaos (Section 2). Second, we
investigate the existence of coexisting of attractors by solving
numerically the equation of motion (1) via the fourth-order
Runge–Kutta algorithm (Section 3). Finally, we end with a
conclusion (Section 4).

2. Mathematical Model and Melnikov Analysis

2.1. Mathematical Model. We consider in this work the
Briggs–Rauscher reaction system [40] which represents a
simple model for designing a chemical oscillator. Such a
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reaction was proposed by Boissonade and de Kepper [41].
.e governing equations are defined as follows:

_u � −u
3

+ μ0u − kv − λ,

_v �
1
s

(u − v),

(2)

where μ0 and k are the positive parameters, s is the char-
acteristic evolution time of the feedback −kv, and λ is here
considered as constant negative feedback for the system. In
theoretical studies performed up to now, system (2) has been
transformed into a Liénard-type oscillator by considering s

as a constant parameter [20, 22–24, 27]. .e novelty of this
work constitutes to express the characteristic evolution time
s under the following form:

s
−1

� s
−1
0 (1 + p cosωt). (3)

By differencing the first equation of system (2) and
taking into account its second equation and equation (3), we
obtain after some mathematical manipulations the following
equation:

x + μ 1 + x
2

+ pc cosωt􏼐 􏼑 _x

+(1 + p cosωt) α1x + α3x
3

􏼐 􏼑

� −α0(1 + p cosωt),

(4)

where μ � (1/s0) − μ0, α0 � (λ/s0)
�����
(3/μ)

􏽰
, α1 � (k − μ0)/s0,

α3 � (μ/3s0), c � 1/s0μ, A �
������������
3s0/(μ0s0 − 1)

􏽰
, and

u � (1/A)x.
Now, taking into account the influence of the external

excitation of the form g cosΩ t, we finally obtain the desired
equation of motion (1). It is easy to see that when p � 0, a
similar equation (1) has been used to describe the nonlinear
chemical oscillations of Briggs–Rauscher reaction system
[22, 27]. After establishment of the equation of motion (1),
we use in the next section the Melnikov method for deriving
the condition of the appearance of horseshoe chaos in the
cases, where ω � Ω and ω≠Ω.

2.2. Melnikov Analysis. .e Melnikov method is a powerful
analytical tool widely used to predict the existence of
horseshoe chaos in a nonautonomous system [9, 27, 42]. In
order to perform such a prediction, we rewrite (1) under the
form of a first ordinary differential equation, that is,

_x � y,

_y � −α0 − α1x − α3x
3

− εμ 1 + x
2

+ pc cosωt􏼐 􏼑y

− εp α0 + α1x + α3x
3

􏼐 􏼑cosωt + εf cosΩt,

(5)

where ε is a small perturbation quantity, that is, 0< ε< 1.
From the system of (5), the unperturbated system obtained
with ε � 0 becomes

_x � y,

_y � −α0 − α1x − α3x
3
.

(6)

System (6) is Hamiltonian, and the potential function
and associated Hamiltonian are

V(x) � α0x +
1
2
α1x

2
+
1
4
α3x

4
,

H(x, y) �
1
2
y
2

+ V(x),

(7)

respectively. .e homoclinic orbits corresponding to system
(6) are given by the following expressions [27]:

xh � x0 +

�
2

√
σ2

α3 x0 ± δ cosh στ( 􏼁
,

yh � ∓
�
2

√
δσ3sinh(στ)

α3 x0 ± δ cosh(στ)( 􏼁
2,

(8)

where x0 � α0/2α1
�������
−3α3/α1

􏽰
, δ2 � −α1/α3 − 1/2x2

0,
σ2 � −α1 − 3/2α3x2

0, τ � t − t0, and t0 is the cross-section
time of the Poincaré and can be considered as the initial time
of the forcing time. When ε≠ 0, the Melnikov method can be
applied. .us, the Melnikov integral function is defined as
follows:

M t0( 􏼁 � −μ 􏽚
+∞

−∞
y
2
hdτ + 􏽚

+∞

−∞
x
2
hy

2
hdτ􏼒 􏼓

−
p

s0
􏽚

+∞

−∞
y
2
h cos(ωt)dτ − pα1 􏽚

+∞

−∞
xhyh cos(ωt)dτ

− pα3 􏽚
+∞

−∞
x
3
hyh cos(ωt)dτ − pα0 􏽚

+∞

−∞
yh cos(ωt)dτ

+ f 􏽚
+∞

−∞
yh cos(Ωt)dτ.

(9)

Taking into consideration the expressions of the quan-
tities xh and yh given by (8) and using the standard integral
table [43], the Melnikov integral function (9) yields after
some mathematical manipulations to the following
equation:

M t0( 􏼁�K0+pK1 cos ωt0( 􏼁+pK2 sin ωt0( 􏼁+fK3 sin Ωt0( 􏼁.

(10)

Assuming that Ω � ω, the Melnikov function (10)
becomes

M t0( 􏼁 � K0 + pK1 cos ωt0( 􏼁 + pK2 + fK3( 􏼁sin ωt0( 􏼁, (11)

where the expression of Ki, i � 0, 3, are given in Appendix. It
is easy to remark that (11) can be rewritten as follows:

M t0( 􏼁 � K0 +

������������������

K
2
1p

2
+ K2p + K3f( 􏼁

2
􏽱

cos ωt0 − ϕ( 􏼁, (12)
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Figure 1: Phase portraits and its corresponding Poincaré maps showing the validation of the proposed analytical prediction of horseshoe
chaos in the case ω � Ω.
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Figure 2: Basins of attraction of the new parametric chemical system (1) with the parameters of Figure 1 for three different values of f:
(a) f � 0.03, (b) f � 2, and (c) f � 3.
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with ϕ � arctan(K2p + K3f/K1p).
To determine the Melnikov criterion for appearance of

horseshoe chaos in our new nonlinear dissipative parametric
oscillator, it is necessary to let M (t0) � 0 with M′(t0)≠ 0.
.us, M (t0) � 0 leads to

cos ωt0 − ϕ( 􏼁 � −
K0������������������

K
2
1p

2
+ K2p + K3f( 􏼁

2
􏽱 . (13)

Since
M′(t0) � −ω

������������������

K2
1p

2 + (K2p + K3f)2
􏽱

sin(ωt0 − ϕ)≠ 0 im-
plies sin(ωt0 − ϕ)≠ 0, then cos(ωt0 − ϕ)≠ 0. .us,
|cos(ωt0 − ϕ)|< 1. .erefore, the condition for the existence
of chaos is obtained if

M1 �
K0������������������

K
2
1p

2
+ K2p + K3f( 􏼁

2
􏽱

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

< 1. (14)
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Figure 3: Melnikov threshold curves for homoclinic chaos in the (f,Ω) plane with ω � (
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other parameters of Figure 1 are kept constant.
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From this analytical result, the following theorem can be
formulated.

Theorem 1. If condition (14) is verified, then a homoclinic
bifurcation occurs and the new parametric chemical system
(1) may exhibit chaotic behavior.

Using the following system parameters k � 25.361,
μ0 � 25.41, s0 � 0.0392, λ � −0.0025, ω � Ω � 1.0, and
p � 0.001, we obtain M1 > 1 for f � 0.03 and M1 < 1 for
f � 3..erefore, the desired system given by (1) may display
periodic motion for f � 0.03. However, whenf � 3, the new
chemical system (1) may exhibit chaotic behavior. .e
numerical simulations realized in Figure 1 under initial
conditions x (0) � 0.5 and _x (0) � 0.5 confirm the analytical
prediction. To test again the validity of the proposed ana-
lytical prediction, we have plotted in Figure 2, the basins of
attraction of the new nonlinear chemical system (1) which
represent a best tool to study numerically the regularity or

irregularity of the attractors. .ese basins of attraction are
obtained by solving numerically the equation of motion (1)
and collecting the initial conditions for which the dynamics
of the new chemical system is sensitive. From Figure 2(a), we
obtain that the new parametric chemical oscillator show a
regular behavior when f � 0.03. However, the erosion of the
basin of attraction appears and becomes more and more
visible for f � 2 and f � 3. .us, we can conclude that the
analytical and numerical results are in good agreement.

Now, in the case where ω≠Ω, the Melnikov function
(10) becomes

M t0( 􏼁 � K0 + p

�������

K
2
1 + K

2
2

􏽱

sin ωt0 + ψ( 􏼁 + fK3 sinΩt0,

(15)

with tanψ � K1/K2. For p≠ 0 and ω≠Ω, the condition of a
zero of this Melnikov function is obtained from |sin(ωt0 +

ψ)|< 1 and |sin(Ωt0)|< 1. .erefore, a sufficient condition
for the onset of Melnikov chaos in our new chemical system
(1) can be expressed from [44, 45] as follows:
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Figure 5: Bifurcation diagrams and its corresponding Lyapunov exponents vs. f exhibiting the effect of p with the parameters of Figure 1.
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f≥
p

�������

K
2
1 + K

2
2

􏽱

− K0

K3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (16)

From (16), the following theorem can be formulated.

Theorem 2. If condition (16) is satisfied, then a homoclinic
bifurcation occurs and the new chemical system (1) may
display chaotic motion.

Figure 3 shows the dependence of the amplitude f of the
periodic external excitation on the frequencyΩ for three different
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values of p. .rough this figure, we notice that the horseshoe
chaos region decreases when p increases. .is observation is
confirmed by the basins of attraction shown in Figure 4.

3. Coexisting Attractors

.e aim of this section is to investigate the coexisting be-
haviors of attractors and the eventual transitions to chaos
that can arise in the Biggs–Rauscher (BR) reaction system

governed by equation of motion (1) when the parameter p

varies. For this, we solve numerically the equation of motion
(1) by using the fourth-order Runge–Kutta algorithm with
the following system parameters: k � 25.361, μ0 � 25.41,
s0 � 0.0392, and λ � −0.0025. .e initial conditions and the
calculation step used to realize the numerical simulations are
(0.5, 0.5) (blue color), (−0.5, −0.5) (red color), (−0.8, 0.0)
(green color), (0.2, 0.2) (yellow color), and h � 0.005,
respectively.
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Figure 7: Phase portraits showing the coexistence of three different chaotic attractors for f � 7.9 under three initial conditions:
(a) (0.5, 0.5), (b) (−0.5, − 0.5), and (c) (−0.8, 0).
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Figure 5 shows the influence of p on the bifurcation
diagrams of Biggs–Rauscher (BR) reaction system de-
scribed by equation (1). .rough this figure, we notice that

this parameter accentuates the symmetry breaking phe-
nomenon and removes the symmetry restoring phe-
nomenon. Moreover, the coexistence of attractors
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remains in the system under the study when p≠ 0. Figure 6
illustrates the coexisting behaviors of attractors for several
different values of f for p � 0.001. From this figure, we

clearly see that the new nonlinear dissipative parametric
chemical system presents multiple coexisting attractors.
For example, when f � 5.8, the left period-2 orbit coexists
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Figure 13: Effect of p on the bifurcation diagram of Figure 11 of the new chemical system obtained under initial conditions (0.5, 0.5).
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with the right period-2 orbit. For f � 6.7, asymmetric
period-6 and period-8 orbits coexist. As f � 6.8, the left
period-6 orbit coexists with the right chaotic attractor.
When f � 7, two chaotic asymmetric attractors of dif-
ferent topologies coexist. On the contrary, chaotic sym-
metric attractors of different complexities coexist when
f � 7.7 and f � 7.9. In addition, we found that, for
f � 7.9, the new parametric chemical system (1) displays
with three different initial conditions and chaotic be-
haviors of different topologies (see Figure 7).

We have afterward analyzed the influence of the pa-
rameter p on the bifurcation diagrams of the chemical re-
action system under consideration when ω≠Ω. .us, by
keeping constant the other parameters and taking
ω � (

�
5

√
− 1)/2 andΩ � 1, the obtained results are shown in

Figure 8. From this figure, we notice that the presence of the
parameter p provokes always a symmetry breaking. In
addition, the geometrical shape of attractors is modified, and
we note the disappearance of the symmetry restoring crisis
phenomenon. For p � 1.0 and p � 1.1, the bifurcation
structures have completely changed, as shown in Figure 9. In
addition, we clearly see through this figure that the am-
plitude of oscillations becomes important. In order to have
an idea about the new chemical system behavior as predicted
by these bifurcation diagrams, two phase portraits and its
corresponding Poincaré maps are plotted in Figure 10 for
two values of f. .rough this figure, we notice that the new
parametric chemical system (1) exhibits for these chosen
system parameters and chaotic behaviors which are con-
firmed by the Poincaré maps. When ω/Ω is rational, that is,
ω � 1 and Ω � 3, the new parametric chemical system (1)
displays bistability phenomenon, symmetric coexisting
attractors, and asymmetric coexisting attractors (see Fig-
ure 11)..e coexisting behaviors of asymmetric attractors of

different topologies are illustrated in Figure 12. We also
notice that, for f � 2.6, two chaotic symmetric attractors of
different complexities coexist with a period-1 orbit. More-
over, when f � 8.75, two asymmetric quasi-periodic orbits
coexist with a period-3 orbit of large oscillation amplitude.
We have also investigated, in this case of oscillation, the
effect of p on the bifurcation diagram of Figure 11 obtained
with initial conditions (0.5, 0.5). .e obtained numerical
results are shown in Figure 13. From this figure, we observe
that the new chemical system (1) exhibits various bifurca-
tions such as period-doubling and reverse period-doubling
bifurcations, period windows, period-m bubbles and reverse
period-m bubbles, antimonotonicity, intermittency, sym-
metry breaking, and symmetry restoring. In addition, pe-
riod-9 orbit route to chaos and period-m bubbles route to
chaos occur in the system. On the contrary, we also observe
merging of chaotic regions between the forward and reverse
period-doubling sequences.

When we use the external excitation frequency,Ω, as the
control parameter, with f � 1.8, p � 0.005, and
α0 � −0.0193, the new nonlinear chemical oscillator under
the study displays a period-3 route to chaos, period-1 route
to chaos, periodic windows, reverse period doubling, sym-
metry breaking and symmetry restoring, bistable chaotic
oscillations, and various coexisting behaviors of symmetric
and asymmetric attractors (see Figure 14). Figure 15 illus-
trates the different attractors predicted by bifurcation dia-
grams of Figure 14 for several different values ofΩ. .rough
this figure, we notice that our new chemical model presents
several bistable symmetric and asymmetric attractors of
different topologies and remarkable routes to chaos. We can
conclude that the new nonlinear parametric oscillator under
consideration displays a rich variety of dynamical behaviors
with unusual transitions to chaos.
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Figure 14: Bifurcation diagrams and its corresponding Lyapunov exponents vs. Ω with f � 1.8, α0 � −0.0193, and p � 0.005 .e other
parameters are kept constant.
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4. Conclusions

.is study deals with nonlinear dynamics of
Briggs–Rauscher reaction system modeled by a new non-
linear parametric oscillator. .eMelnikov method is used to
derive the condition of the appearance of horseshoe chaos in
a new nonlinear parametric chemical oscillator in the cases,
where Ω � ω and Ω≠ω. .e numerical simulations realized
confirm the obtained analytical predictions. On the contrary,
the complex dynamics of the new nonlinear parametric
chemical oscillator (1) is investigated numerically by using
the fourth-order Runge–Kutta algorithm. .e obtained
results show that the parametric parameter p also induces in
the new chemical parametric system and the symmetry
breaking phenomenon and removes the symmetry restoring
crisis phenomenon when p increases. Note that the new
nonlinear parametric chemical system presents bistability
phenomenon and coexisting behaviors of asymmetric
attractors in the case Ω � ω. Moreover, it is found that three
chaotic attractors of different topologies coexist for f � 7.9.
As ω/Ω is irrational, the geometrical shape of attractors has
completely changed. In addition, the symmetry restoring
crisis phenomenon disappears in the new chemical system
under the study. .e dynamical behavior of our new
chemical system becomes rich when ω/Ω is rational. In this

case, the coexisting behavior of symmetric and asymmetric
attractor appears in the system as well as the bistability
phenomenon. Furthermore, for f � 2.6 and f � 8.75,
multiple coexisting attractors take place in the system. As p
varies in this case of oscillation, the new chemical parametric
system (1) exhibits various bifurcations such as symmetry
breaking and symmetry restoring, period doubling and
reverse period doubling, period windows, intermittency,
period-m bubbles and reverse period-m bubbles, intermit-
tency, and antimonotonicity. In addition, period-9 orbit
route chaos and period-m bubbles transition to chaos occur
in the system as well as remerging chaotic band attractors.
When Ω is used as control parameter, the new nonlinear
chemical oscillator displays also various symmetric and
asymmetric bistable attractors. Moreover, symmetry
breaking, symmetry restoring, reverse period doubling,
period-3 orbit route to chaos, and period-1 motion leading
to chaos are obtained.

Appendix

A. Expression of Ki∈ 0,1,2,3{ }
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with
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Dynamical analysis, chaos suppression and electronic implementation of the synchronous reluctance motor (SynRM) without
external inputs are investigated in this paper. -e different dynamical behaviors (including monostable periodic behaviors,
bistable periodic behaviors, monostable chaotic behaviors, and bistable chaotic behaviors) found in the SynRM without external
inputs are illustrated in the two parameters largest Lyapunov exponent (LLE) diagrams, one parameter bifurcation diagram, and
phase portraits. -e three single controllers are designed to suppress the chaotic behaviors found in SynRM without external
inputs. -e three proposed single controllers are simple and easy to implement. Numerical simulation results show that the three
proposed single controllers are effective. Finally, the dynamical behaviors found in the SynRM without external inputs and the
physical feasibility of the three proposed single controllers are validated through circuit implementation on OrCAD-
PSpice software.

1. Introduction

An electrical motor converts electrical energy into me-
chanical energy thank to the discovery by Michael Faraday
in the 19th century. He stated that a current carrying coil
within a magnetic field will experience a force. Electrical
motors can be found in steel rolling mills, drilling ma-
chines, railway traction, industrial robots, and in most
household items and office equipment [1–6]. Today, there
are several variants of electric motors including the in-
duction motor [7,8], permanent-magnet brushless motor
[9–12], and variable-reluctance motor. -e variable-re-
luctance motor class takes the advantages of a simple and

rugged structure, good compatibility with the power
converter, and high recyclability for the core and winding
[13]. -e variable-reluctance motor is divided into the
switched reluctance motor [14,15] and synchronous re-
luctance motor (SynRM). -e SynRM uses a distributed
winding and sinusoidal wave which can essentially elimi-
nate the torque pulsation and acoustic noise problems. It is
broadly used in the field of transportation, industrial and
agricultural production, commercial and household ap-
pliances, medical appliances and equipment, and so on
[16–20]. Because of its advantage over other types of
electrical motors in simple mechanical construction, there
were no slip ring and no permanent magnet and over other
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servomotors in high efficiency, high power density, and low
manufacturing cost [21].

For industrial automationmanufacturing, the secure and
stable operation of the SynRM is an essential requirement
because chaotic behaviors can extremely destabilize the
SynRM and even cause the drive system to fail [20]. Hopf
Bifurcation and chaos have been found in the SynRM [13].
In this paper, it is demonstrated that the SynRM can exhibit
monostable periodic behaviors, bistable periodic behaviors,
monostable chaotic behaviors, and bistable chaotic behav-
iors. -e chaotic behaviors found in the SynRM induces
instability in this motor and shortens its service time [9].
-ereafter, a variety of methods to control chaos have been
used to suppress the chaotic behavior in SynRM. A passive
adaptive controller [21], a nonlinear feedback controller
[22], a controller based on tridiagonal structure matrix
stability theory [23], a vector controller [24–26], a sliding
mode controller [27], and an adaptive sliding mode con-
troller [28] were used for the control of chaotic behavior in
SynRM. Most of the existing techniques for the control of
chaotic behavior in SynRM use a nonlinear and complicated
controller.

To the best of authors’ knowledge, no study on the chaos
suppression in SynRMwithout external inputs has been carried
out with the single state feedback controller. -e single state
feedback control method is simple, concise, and easy to im-
plement. -erefore, the main contribution of this paper is to
investigate the dynamical analysis of SynRM without external
inputs and to design three single and simple controllers to
suppress chaos in SynRM. -e dynamical analysis and chaos
suppression via a single controller of SynRM without external
inputs are analytically, numerically, and electronically analysed
in this paper. -e dynamical analysis of SynRM without ex-
ternal inputs is investigated in Section 2. In Section 3, three
proposed single controllers are employed to achieve the sup-
pression of chaos in SynRM without external inputs. Section 4
presents the electronic implementation in order to check the
existence of dynamical behaviors found in SynRM and the
effectiveness of the three proposed single controllers. Finally,
conclusions are given in Section 5.

2. Dynamical Analysis of SynRM without
External Inputs

-e SynRM can be described by the following rate equations
[1, 2, 13]:

d􏽥id
d􏽥t

�
􏽥ud − Rs

􏽥id + ωeLq
􏽥iq􏼐 􏼑

Ld

, (1a)

d􏽥iq
d􏽥t

�
− Rs

􏽥iq − ωeLd
􏽥id + kp 􏽥ω − ωref( 􏼁􏽨 􏽩

Lq

, (1b)

d􏽥ω
d􏽥t

�
3P Ld − Lq􏼐 􏼑􏽥id

􏽥iq/4 − B􏽥ω + 􏽥TL􏽨 􏽩

J
, (1c)

where 􏽥id,􏽥iq are the d (direct)- and q (quadrature)-axis
stator currents, 􏽥ω is the mechanical rotor speed, ωe is the

electrical rotor speed, 􏽥ud is the stator voltage on d axis, Rs

is the stator resistance per phase, kp is the feedback co-
efficient, and ωref is the reference rotor speed, Ld, Lq are
the d- and q-axis stator inductors, P is the number of
poles, J, 􏽥TL, and B are the inertia constant of the motor
and load, load torque, and viscous friction coefficient,
respectively. -e normalization of equations (1a)–(1c)
leads to the following dimensionless form of the math-
ematical model of SynRM:

dx

dt
� ud − bx + yz, (2a)

dy

dt
� − y − xz + c z − zref( 􏼁, (2b)

dz

dt
� xy − az + TL, (2c)

with the following rescaling variables and parameters:
τ � Lq/Rs,􏽥t � τt, a � BLq/(JRs), b � Lq/Ld,

k �
�����������������������
8J/[3bP2(Ld − Lq)(Lq/Rs)

2]
􏽱

, ωref � τzref , x � [1/
(bk)]􏽥id, y � (1/k􏽥iq), z � (Lq/Rs)􏽥ω, c � 2kd/(kPLq), ud � 􏽥ud/
(kRs), TL � Pτ2􏽥TL/(2J). -e external inputs are removed
(ud � zref � TL � 0), and System (2a)–(2c) becomes

dx

dt
� − bx + yz, (3a)

dy

dt
� − y − xz + cz, (3b)

dz

dt
� xy − az. (3c)

System (3a)–(3c) is invariant under the transformation:
(x, y, z)⇔(x, − y, − z) and dissipative if ∇V � (z(dx/dt)/
zx) + (z(dy/dt)/zy)+ (z(dz/dt)/zz) � − (a + b + 1)< 0. It
has only one equilibrium point O(0, 0, 0) if Δ � c2 − 4a< 0,
three equilibrium points O(0, 0, 0), E1,2(c/2, ±

��
ab

√
, ± c���

b/a
√

/2) if Δ � 0, and five equilibrium points O(0, 0, 0),
E11,21((c +

��
Δ

√
)/2, ±

��
ab

√
, ± (c +

��
Δ

√
)

���
b/a

√
/2), E11,21((c

−
��
Δ

√
)/2, ±

��
ab

√
, ± (c −

��
Δ

√
)

���
b/a

√
/2) if Δ> 0 [13]. -e

linear stability analysis of system (2) revealed that the
equilibrium points displayed Hopf bifurcation [13]. When
the parameters a, b, c are varied, SynRM without external
inputs can be expected to exhibit steady state, periodic, and
chaotic behaviors. In order to identify the dynamical be-
haviors of SynRM without external inputs, two parameters
LLE diagrams are constructed in Figure 1.

From Figure 1, periodic or steady state regions are
characterized as a combination of light blue-light blue-green
colors, and chaotic regions are characterized by yellow and
red colors. For b � 0.2 and c � 22, the bifurcation diagrams
and LLE of SynRM without external inputs as a function of
the parameter a are plotted in Figure 2.

Figure 2 shows that the SynRM without external inputs
exhibits monostable period-3 oscillations, bistable period-3
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oscillations followed to period tripling to bistable chaos and
monostable chaos interspersed with bistable andmonostable
periodic regions.-e dynamical behaviors shown in Figure 2
are illustrated in Figure 3 for a specific value of a.

-e SynRM without external inputs exhibits monostable
periodic attractors in Figure 3(a), bistable periodic attractors

in Figure 3(b), bistable one-scroll chaotic attractors in
Figure 3(c), and monostable double-scroll chaotic attractors
in Figure 3(d). -e bifurcation diagrams of SynRM without
external inputs obtained numerically by the parameters b

and c reveal monostable chaos and bistable chaos inter-
spersed with monostable and bistable periodic regions
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followed by monostable period-3-oscillations, but the results
have not presented here for brevity.

3. Chaos Suppression in SynRM without
External Inputs Using Single Controller

In this section, three single controllers are mathematically
designed by using the principle of Lyapunov’s method for
asymptotic global stability to suppress the chaotic behavior
found in SynRM without external inputs [29].

3.1. Proposed Controller 1. System (3a)–(3c) with the first
single controller u1 � − yz is described by

dx

dt
� − bx + yz + u1, (4a)

dy

dt
� − y − xz + cz, (4b)

dz

dt
� xy − az. (4c)

-e controlled system (4a)–(4c) can be rewritten as

dx

dt
� − bx, (5a)

dy

dt
� − y − xz + cz, (5b)

dz

dt
� xy − az. (5c)

-e solution of equation (5a) is x(t) � x(0)e− bt. -at is,
yield limt⟶∞x(t) � 0. So, system (5a)–(5c) can be reduced
as follows:

dy

dt
� − y + cz, (6a)

dz

dt
� − az. (6b)

-e solution of equation (6b) is z(t) � z(0)e− at. -at is,
yield limt⟶∞z(t) � 0. So, system (6a) and (6b) can be
rewritten as follows

dy

dt
� − y. (7)

-e solution of equation (7) is y(t) � y(0)e− t. -at is,
yield limt⟶∞y(t) � 0. -erefore, the chaotic behavior
found in the SynRM without external inputs can be con-
trolled using the controller u1 � − yz. -e curves of the state
responses and the output of the controller 1 are shown in
Figure 4.

-e results of Figure 4 show the efficiency of the con-
troller u1.

3.2. Proposed Controller 2. System (3a)–(3c) with the second
single controller u2 � z(x − c) is described by

dx

dt
� − bx + yz, (8a)

dy

dt
� − y − xz + cz + u2, (8b)

dz

dt
� xy − az. (8c)

-e controller u2 into the controlled system (8a)–(8c)
can be rewritten as

dx

dt
� − bx + yz, (9a)

dy

dt
� − y, (9b)

dz

dt
� xy − az. (9c)

-e solution of equation (9b) is y(t) � y(0)e− t. -at is,
yield limt⟶∞y(t) � 0. -us, the system (9a)–(9c) can be
reduced as follows:

dx

dt
� − bx, (10a)

dz

dt
� − az. (10b)

-e solution of system (10a) and (10b) is given by
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Figure 3: Phase planes of SynRMwithout external inputs for a specific value of parameter a: (a) a � 1.5, (b) a � 1.8, (c) a � 2, and (d) a � 3.
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x(t) � x(0)e
− bt

, (11a)

z(t) � z(0)e
− at

. (11b)

-at is, yield limt⟶∞y(t) � 0 and limt⟶∞z(t) � 0.
-erefore, the chaotic behavior found in the SynRMwithout
external inputs can be controlled using the controller
u2 � z(x − c). -e curves of the state responses and the
output of the controller are shown in Figure 5.

-e results of Figure 4 reveal the efficiency of the
controller u2.

3.3. Proposed Controller 3. System (3a)–(3c) with the third
single controller u3 � − xy is described by

dx

dt
� − bx + yz, (12a)

dy

dt
� − y − xz + cz, (12b)

dz

dt
� xy − az + u3. (12c)

Substituting the expression of the controller u3 into the
controlled system (12a)–(12c) becomes

dx

dt
� − bx + yz, (13a)

dy

dt
� − y − xz + cz, (13b)

dz

dt
� − az. (13c)

-e solution of equation (13c) is z(t) � z(0)e− at. -at, is
yield limt⟶∞z(t) � 0. -us, system (13a)–(13c) can be
reduced as follows:

dx

dt
� − bx, (14a)

dy

dt
� − y. (14b)

-e solution of system (14a) and (14b) can be rewritten
as follows:

x(t) � x(0)e
− bt

, (15a)

y(t) � y(0)e
− t

. (15b)

-at is, yield limt⟶∞x(t) � 0 and limt⟶∞y(t) � 0.
-erefore, the chaotic behavior found in SynRM without
external inputs can be controlled using the controller
u3 � − xy.-e curves of the state responses and the output of
the single controller 3 are shown in Figure 6.
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-e results of Figure 6 show the efficiency of the con-
troller u3. From practical realization point of view, the single
controllers 1 and 3 are preferred because of the inclusion of
two states variables (i.e. y and z or x and z) in a single
expression signifying a lesser requirement of sensing devices
during their fabrication. Hence, this making the system to
become cheap.

4. Circuit Implementation of SynRM without
External Inputs and Chaos Suppression in
SynRM without External Inputs

-e electronic implementation of system (3a)–(3c) is
depicted in Figure 7.

-e electronic circuit of Figure 7 is made of three ca-
pacitors, thirteen resistors, six TL081 operational amplifiers,
and three analog devices AD633 multipliers. Based on the
circuit diagram of Figure 7, the phase portraits of dynamical
behaviors found in SynRM without external inputs are il-
lustrated in Figure 8 for specific values of capacitors and
resistors.

-e good qualitative agreement between the Pspice
results of Figure 8 and the numerical simulations results
of Figure 3 confirms the existence of the dynamical be-
havior found in SynRM without external inputs. -e
electronic implementations of the controlled systems
(5a)–(5c), (9a)–(9c), and (13a)–(13c) are deduced from
the electronic implementation of system (5a)–(5c) in
Figure 7 (not shown). -e time series of the state re-
sponses and the output of the single controller 1 gen-
erated from the circuit diagram of the controlled system
(5a)–(5c) are shown in Figure 9.

-e good qualitative agreement between the Pspice re-
sults of Figure 9 and the numerical simulations results of
Figure 5 confirms the efficiency of proposed single controller
3.-e time series of the state responses and the output of the
single controller 2 generated from the circuit diagram of the
controlled system (9a)–(9c) are shown in Figure 10.

-e good qualitative agreement between the Pspice
results of Figure 10 and the numerical simulations results
of Figure 5 confirms the efficiency of proposed single
controller 2. -e time series of the state responses and the
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output of the single controller 3 generated from the
circuit diagram of the controlled system (13a)–(13c) are
shown in Figure 11.

-e good qualitative agreement between the Pspice results
of Figure 11 and the numerical simulations results of Figure 6
confirms the efficiency of proposed single controller 3.
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Figure 9: Time series of chaos suppression in SynRM without external inputs generated from the Pspice oscilloscope for the capacitors and
resistors: C1 � C2 � C3 � 10 nF, R3 � R8 � R9 � R10 � R11 � R12 � R13 � 10 kΩ, R5 � 454.55 kΩ, R1 � 50 kΩ, R2 � R4 � R7 � 1 kΩ,
R6 � 3.33 kΩ.
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5. Conclusion

-is paper is dealt with the dynamical analysis, chaos
suppression, and electronic implementation of synchronous
reluctance motor without external inputs. -e numerical
analysis of synchronous reluctance motor without external

inputs was revealed as monostable periodic attractors,
bistable periodic attractors, monostable double-scroll cha-
otic attractors, and bistable one-scroll chaotic attractors.
-anks to the principle of Lyapunov’s method for asymp-
totic global stability, three single controllers were designed
to suppress chaotic behavior found in synchronous
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Time Time

Time Time

Figure 10: Time series of chaos suppression in SynRMwithout external inputs generated from the Pspice oscilloscope for the capacitors and
resistors: C1 � C2 � C3 � 10 nF, R3 � R8 � R9 � R10 � R11 � R12 � R13 � 10 kΩ, R5 � 454.55 kΩ, R1 � 50 kΩ, R2 � R4 � R7 � 1 kΩ,
R6 � 3.33 kΩ.
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Figure 11: Time series of chaos suppression in SynRMwithout external inputs generated from the Pspice oscilloscope for the capacitors and
resistors: C1 � C2 � C3 � 10 nF, R3 � R8 � R9 � R10 � R11 � R12 � R13 � 10 kΩ, R5 � 454.55 kΩ, R1 � 50 kΩ, R2 � R4 � R7 � 1 kΩ,
R6 � 3.33 kΩ.

Complexity 9



reluctance motor without external inputs, and it was
revealed that they were simple and easy to implement. -e
single controllers 1 and 3 could be a preferable choice be-
cause of the use of two states variables (i.e. y and z or x and z)
in a single expression. Numerical simulations results were
provided to demonstrate the efficiency of three proposed
single controllers. To access the physical feasibility of three
designed single controllers and the existence of the dy-
namical behaviors found in synchronous reluctance motor
without external inputs, electronic circuits were imple-
mented and validated on OrCAD-PSpice software. In the
future works, it will be interesting to study the synchronous
reluctance motor with external inputs such as the load
torque and the stator voltage.
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Using devices such as unified power quality conditioners (UPQCs) in distribution networks seems essential for higher electricity quality.
Moreover, distribution network reconfiguration is a suitable model for improving network characteristics, including loss reduction and
voltage increase for distribution networks, and is widely used in this era. Here, the study discusses the rechanging of distribution
networks for UPQC via proposing an appropriate model for it. In addition to the optimum structure of distribution networks, the most
appropriate branch where UPQCmust be located and the most appropriate reactive power size with which series and shunt filters must
be injected into the grid are determined.,e simulations have been applied on two 69- and 84-standard-bus networks.,e results of the
simulations indicate much power loss reduction and much voltage increase in the presence of UPQC compensators.

1. Introduction

,e important goal of companies for electric effectiveness is
providing the sinusoidal voltage continuously and stable
voltage to all customers. In previous studies, parameters of
PQ including the harmonics power, voltage cell, frequency,
power factor, and reactive power are examined by using the
infusion generators. ,e problem of power eminence is
yielded in separation of customer equipment by using some
problems in current, deviation of frequency, and voltage.
,e subjects of PQ have engrossed high consideration from
companies and clients because of utilization of various types
of susceptible electronic devices. ,e differences of PQ re-
garding load switching are obtained through short circuits,
voltage decrease, gleam and relief, and distortions of har-
monics. ,e electrical misses have happened via burst in
electrical cycles, sudden loads, firelight, and radiated fre-
quency. ,e various types of disturbances of PQ are oc-
curring in the outline of electrical power. ,e evaluation of

proficiency from PQ indicated that 50 percent of troubles of
PQ are related to bonds of the ground, voltage neutral to the
ground, and more ground-related problems. Distribution
network reconfiguration is an effective way of reducing
losses among the existing loss reduction methods in dis-
tribution networks. As distribution networks are designed in
ring or mesh but are exploited in radial distribution, two
customarily opened and normally closed switches exist.
Reconfiguration represents selecting the open or closed state
of these switches. However, the aim of reconfiguration may
not be only to reduce losses. Previously, there have been
several successful methods developed and employed. Im-
proving voltage profile, balancing the load, and service
restoration are some of the objectives mentioned in
reconfiguration studies. In previous works, the heuristic
model is proposed to obtain minimum loss configuration
[1]. In [2], an innovative approach is provided for reducing
losses and improving voltage profiles. In [3], a method is
suggested to balance feeder load and reduce losses for
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unbalanced distribution networks. In [4], models to provide
network reconfiguration are proposed. Regardless of the aim
of reconfiguration, reconfiguration studies can be catego-
rized as far as the presence of different compensator devices
is concerned.

1.1. In the Presence of a Capacitor. Capacitors have various
advantages in distribution networks, such as voltage regu-
lation, power factor improvement, and losses reduction.
Multiple studies have investigated reconfiguration and ca-
pacitors simultaneously. For instance, reconfiguration and
capacitor control are investigated simultaneously using the
simulated annealing method [5]. An algorithm is presented
in a study [6] by considering different load levels based on
MINLP for performing reconfiguration and capacitor
allocation.

1.2. In the Presence of Distributed Generations (DGs).
DGs have many economic and operational advantages [7].
Various articles have investigated the distribution reconfi-
guration. For instance, distribution reconfiguration is used
for DG via the genetic algorithm [8]. A study [9] has
considered DG’s active power generation cost in reconfi-
guration. Other objective functions that PSO optimize in this
article include the operational power generation cost of
distribution networks, the number of switches functions,
and bus voltage deviation. A model is presented in a study
[10] based on MINLP for distribution reconfiguration for
DGs.

1.3. In the Presence of DSTATCOM. Some advantages of
DSTATCOM include voltage flicker reduction, harmonic
reduction in-network, improving bus voltage, reducing
losses, and continuous control of reactive power [11].
Distribution network reconfiguration and DSTATCOM
placement are investigated simultaneously in a study [12].
,e present study aims to reduce losses and improve voltage
levels via DEA.

Today, the need for high power quality is felt more than
ever. In general, it can be stated that low power quality
causes additional costs for producers and consumers. For
instance, an equipment malfunction, more network losses,
consumer dissatisfaction, and life loss of equipment are
examples of some extra charges imposed on producers and
consumers due to low power quality. However, electricity
distribution networks may not have high quality due to
nonlinear loads, single-phase consumers, power electronics
loads, etc. As a result, the use of devices that guarantee the
power quality of distribution networks is essential. UPQC
is one of the best devices which can improve power quality
effectively [13]. UPQC has a series and a shunt filter that are
connected back to back. ,e active series filter is respon-
sible for damping feeding disturbance, and the active shunt
filter damps the current quality generated by consumers
[14].

In [15, 16], a model to assess the technical efficiency of
PQ change strategy via FACTS devices is reported. In [17],

the control strategy is reported using UPQC. In [18], the flow
pattern is recommended for feeder reconfiguration to
obtain the best start in search models. In [19], a model is
reported to optimize the NR problems in PDS to decrease
VP in advance. In previous studies, NR was used to in-
crease the VP and decrease power loss. In [20], a UPQC
with two CAMCs in back-to-back connection is proposed.
,e hybrid modulation technique used in the CAMC
made the implementation of the control objectives easier.
Due to the applicability of power electronic devices in
improving the FACTS performances, the expectancy of
using various kinds of controllers for efficient shunt are
increased. ,e devices of FACTS are answered to alter in-
network positions. ,e implication of FACTS devices in
transmission and analogous systems is implemented
properly in distribution systems. ,e devices of distri-
bution-FACTS are utilized to recover the problems of
power in systems of distribution [1, 2] that happen at a
measure of milliseconds. In the mentioned time,
D-FACTS has injected the active power and reactive
power in the system to recover sensitive loads [9]. ,e
DSTATCOM as a converter of the voltage source is used
to recover the problems of power quality [13–19]. ,e
DVR as an important converter is utilized to recover the
problems of power quality. In [7], ANFIS, which is related
to a controller of hysteresis, is suggested to obtain the
efficiency of power quality. ,e novel works were pro-
duced by the incorporation of fuzzy and neural networks.
,e suggested models of D-FACTS are used in systems of
two bus distributions including the sensitive load and
source. ,e D-FACTS effects on recovery of the problem
of power quality are examined. But, the D-FACTS effects
on the system of large distribution are not examined. Also,
the D-FACTS impacts are investigated for a short dura-
tion but not examined for a long term.

Considering the importance of reconfiguration and
the increasing importance of UPQC, this work investi-
gates distribution reconfiguration for UPQC. In this
paper, first, a model will be extracted for UPQC load flow.
,en, based on this model and with the aid of a genetic
algorithm, reconfiguration of distribution networks will
be carried out in the presence of UPQC. Reducing losses
and improving voltage profile are the objective functions
based on the network form, by which the best UPQC
location and the most appropriate injected power will be
determined. To combine loss reduction and voltage im-
provement as one objective function, these objective
functions should be normalized. In this study, Utopia
Point and Nadir Point methods are used for normalizing
objective functions.

2. The Problem’s Objective Functions

As mentioned above, the present study aims to decrease the
losses and increase voltage for networks. Objective functions
considered for optimization purposes are total active losses,
voltage deviation average, and the sum of the normalized
values of these two objective functions. ,ese objective
functions can be formalized as follows [1–3]:
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where Ptotal,loss is total power losses (W) and Vi is the
voltage magnitude of bus i. Also, f1 and f2 are the nor-
malized values of the first and second objective functions,
respectively. n indicates the number of buses. NL shows the
number of lines. P (MW) and Q (Var) are active and re-
active power, respectively. ,e constraints which should be
considered in this optimization are as follows (constraints 1
and 2 must be regarded for common reconfiguration and
constraints 3 and 4 for reconfiguration in the presence of
UPQC):

(1) Bus voltage must not exceed the permitted limits:

Vmin <Vi <Vmax. (4)

(2) ,e branch’s current must not exceed the permitted
limits:

Ii

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< Ii,max. (5)

(3) ,e sum of UPQC injected series and shunt reactive
power size is lower than reactive load power:

􏽘
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I�1
Q

series
i + Q

shunt
i ≤QTotal,Load􏼐 􏼑. (6)

(4) ,e branch that the optimization algorithm proposes
for opening must not be the same as UPQC’s
location.

In these equations, Qseries
i and Qshant

i are injected re-
active power by compensator i and NUPQC is the total
number of existing UPQCs in the network. Vmin and Vmax
(V) are network voltage constraints, and Ii and Imax (A) are
the branch current i and the maximum branch current i,
respectively. Vmin and Vmax are lower and upper bounds of
voltage, respectively. QTotal,Load is the total reactive power
for the consumer. NUPQC is the number of UPQC devices
[20].

,e sum of two different objective functions is con-
sidered one objective function for simultaneous optimiza-
tion; it is necessary to normalize them because each function
is in different units. In this study, Utopia Point and Nadir
Point methods are used for normalizing objective functions
[21]. If x∗i is the best response for optimizing the single
objective function i, then the normalized objective function i
f1 will be defined as follows [21]:
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i is the Utopia Point and is defined as follows:
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Utopia Point fU is obtained from the best data of Pareto
solution, and a Utopia Point is computed as a result of
optimization of n single criteria in time serving.

And, fN
i is the Nadir Point that is defined as follows:

f
N
i � max fi x

∗
1( 􏼁fi x

∗
2( 􏼁 . . . fi x

∗
n( 􏼁􏼂 􏼃. (9)

Nadir Point fN is obtained from the worst data of the
Pareto solution, and finding a Nadir Point is difficult when
the problems have three and more criteria. ,e given points
via the user, Utopia Point fU, and Nadir Point fN, define the
piecewise function u.

3. UPQC Modeling

UPQC can inject active and reactive power and is used to
increase sag and unbalance voltages [20, 22]. A very com-
plicated PV model is presented in a study for modeling
UPQC in a distribution network within which only the series
part is controllable. In the present paper, a simpler and more
appropriate model is presented for the placement of UPQC
in the network by evolution algorithms. UPQC compen-
sators can inject power. Figure 1 shows a general view of a
UPQC installed between buses i and j, with its series and
shunt parts specified.

,e series for UPQCs operates entirely between each
other for injecting power, and it has enough the power for
reactive load of bus j for modeling shunt injected reactive
power. ,e shunt injected reactive power is intended as a
negative load for bus j as in Figure 2 [20].,e reactive load of
bus j after modeling the shunt part of UPQC is changed, and
in this equation, Qshunt is the injected power for UPQC.

,e series injected power to the line will be simulated
after modeling the shunt part separately and as a reactive
negative load. ,e single line diagram of Figure 2 is changed
by voltage (Figure 3).

If the network’s Norton equivalent circuit is achieved
from the points of i and j, the ,evenin’s circuit will be
converted to Norton circuit as in Figure 4. In this situation, we
can model the injected series power as loads of i and j buses:

Is �
Vs

Zs

. (10)

,e Vs, Is, and Zs are voltage, current, and impedance for
buses, and these parameters are formulated as follows:

Vs � Vsm∠δVs,

Is � Ism∠δIs,
(11)

where δVs and δIs are the angle of voltage and current,
respectively. Vsm and Ism are the maximum values of voltage
and current, respectively. Equal power is needed in the load
flow.,erefore, the current source will be replaced with it by
using equivalent power equations, and Figure 4 will be
converted to Figure 5 subsequently.

,e active power is obtained via [21]
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Sseries,i � Vi ∗ −I
∗
s( 􏼁, (12)

Pseries,i � real Sseries,i􏽮 􏽯, (13)

Qseries,i � Im Sseries,i􏽮 􏽯, (14)

where Sseries,i (VA), Pseries,i (W), and Qseries,i (Var) are
complex, active, and reactive power in series lines, respec-
tively. ,e exact process will be conducted in bus j. ,ese
operations will be performed in each of the load flow it-
erations. Operational management cannot be used to inject
and it is [21–23] as follows:

Pseries,i � real Sseries,i􏽮 􏽯 � 0. (15)

,e current angle of Is will be calculated in the following
way:

δIs �
∠Vi + π

2
. (16)

Before calculating equations (12)–(14), first, the source
current in each iteration is calculated with the aid of the
following equation:

Is �
Vsm

Zm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
∠

Vi + π
2

. (17)

Since Is a constant amount, only its angle will be
changed in each iteration to adjust to the injected reactive
power. After completing the load flow iterations, the
injected series voltage angle will be calculated using the
following equation:

δVs � ∠
Is

Zs

􏼠 􏼡. (18)

4. Performing Reconfiguration and UPQC
Placement in a Distribution Network

,e switch types are available in distribution networks, and each
ring includes one typically opened switch. Performing
rechanging by using intelligent algorithms can be simulated in
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two ways: (a) all the switches should be considered open in the
initial state and then by closing some of the switches, a network
structure will be obtained that, in addition to being radial, must
reduce the objective function to its minimize amount; (b) in the
initial state of the problem, all switches should be considered
closed and then by opening a specific number of switches, the
radial limitation andminimization of the objective function will
be met.,e number of normally closed switches in distribution
networks ismuchmore than the number of customarily opened
ones. Hence, if we perform the reconfiguration according to the
second method, the problem will be less complicated.

,e following states can be considered for performing
reconfiguration concerning UPQC placement:

(1) First, reconfiguration and then UPQC placement
(2) First, UPQC placement and then reconfiguration
(3) Distribution network reconfiguration and UPQC

placement simultaneously

,e third method can have the characteristics of the
other two ways at the same time. Here, the algorithm is used
for optimization. In the first step of the genetic algorithm,
the initial populations (chromosomes) are generated. For
distribution network reconfiguration, concerning UPQC
placement, each chromosome can be considered a structure
as shown in Figure 6.

Step 1: the genes of this part represent the typically
opened switch number. According to Graph’s theory, the
number of these genes or usually opened switches will be
calculated by the following equation:

N � L − n + 1. (19)

Here, N is the number of customarily opened switches, L
is the branch number, and n is the network bus number.

Step 2: the genes in this part of the chromosome indicate
the branches in which UPQC will be located.

Step 3: the genes in this part of the chromosome indicate
the shunt injected reactive power of all UPQCs.

Step 4: the genes in this part of the chromosome indicate
the series injected reactive power of all UPQCs.

For instance, for a 69-bus network with 73 branches with
five typically opened switches and one UPQC, each chro-
mosome has eight genes. Five of these genes are network
switches that must be opened. ,e sixth gene indicates the
branch in which UPQC will be located. ,e seventh gene
indicates the shunt injected reactive power, and the eighth
gene indicates the series injected reactive power of UPQC.

Once the initial population is generated randomly, the
objective functions will be evaluated. After evaluating the
objective function, genetic operators (usually three operators
of selection, crossover, and mutation) will be applied in the
initial population. ,e generated chromosomes will be
reevaluated, and this process continues until the stopping
conditions are met.

5. Simulation Results

In this paper, two 69- and 84-bus networks are considered
for simulation. Data are compared by the following:

(1) ,e primary state of the network
(2) Network reconfiguration without the presence of

UPQC
(3) Reconfiguration and UPQC to optimum the losses
(4) Reconfiguration and UPQC to improve the voltage

level
(5) Reconfiguration and UPQC to decrease losses and to

increase voltage levels simultaneously

5.1. 69-Bus Network. In this study, a system with 12.66 kV,
69-bus, 8-lateral radial distribution according to modern
node counting with some corrections in demands of active
power and reactive power is remarked as another test sys-
tem. ,e whole load of the studied system is obtained as
(4.0951 +j2.8630) MVA. ,e obtained results of the studied
system are calculated from [22]. ,is distribution network
has 69 buses and 73 branches. ,e total load over its feeders
is 3.801MW and 2.6944 MVAR. Data of this network are
taken from [23].,e population size is assumed to be 50, and
the iteration number is 200 for simulation. Based on
equation (6), the amount of UPQC series and shunt injected
power must not exceed 2.6944 MVAR (total reactive power
of this network). Data of simultaneous network reconfi-
guration and UPQC placement are demonstrated in Table 1.
,e suitable effect of reconfiguration and UPQC placement
can be observed clearly in this table. As can be observed, in
optimizing the first objective function (f1), the network
losses have been reduced significantly and have decreased
from 224.92 to 73.10 kW.,erefore, the objective function is
improved by about 66% which is very considerable. In this
state, switches 14, 58, 63, 69, and 70 are suggested to be open,
and UPQC is located in line 60, and the shunt and series
injected power are 1.1 and 0.91 MVAR, respectively. In
optimizing the second objective function (f2), a significant
improvement is observed in the voltage level enhancement.
As Table 1 shows, this function has decreased from 0.0265
PU to 0.0045 PU. ,e voltage means reached the ideal
amount of 0.9955 PU that is rather suitable and noticeable.
In this state, the opened switches are 10, 12, 18, 58, and 61,
and the UPQC location is line 73, and its series and shunt
injected power are 1.03 and 1.49 MVAR, respectively. For
optimizing the fifth case or optimizing the third objective
function, the amounts of fU and fN should be determined
concerning the third and fourth cases:

f
N

� [150.72KW0.0112PU],

f
U

� [73.1KW0.0044PU].
(20)

,us, considering these obtained amounts and equations
(3) and (7), the third objective function is as follows:

Section 1 Section 2 Section 3 Section 4

Figure 6: Chromosome structure for reconfiguration and UPQC
setting optimization.
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,is function is optimized as an objective function by a
genetic algorithm; the first and second objective functions
have the same importance from the optimizing algorithm
perspective. According to Table 1, the optimizing algorithm
suggested a response between the third and fourth cases in
the fifth case, and a relative balance is established between
these two functions. In this state, the loss is 84.85 kW and the
average voltage of the network is 0.9917 PU. It should be
noted that in (20), the f1 (losses) must be in kW and the f2
(voltage deviation) must be in the PU unit.

,e voltage profile for all buses in different cases is
presented in Figure 7. Following the figure, the voltage in the
primary structure is not in an appropriate state. Still, after
reconfiguration and UPQC placement for improving voltage
levels (fourth case), it reaches the best state compared to
other mentioned cases. Especially in the range of buses 1 to
50, the voltage levels are improved more than in other cases
and it can be stated that the voltage is around one PU. But, in
this state, the net loss is 150 kW. According to the figure, in
the fifth case, where the voltage levels and network losses are
optimized simultaneously, failures are more satisfying than
in the fourth case. In bus 61, a considerable load is available
which is the cause of voltage sag in this area. In the fifth case,
voltage sag is compensated appropriately due to the
placement of a compensator on this bus. When the effects of
installation of D-FACTS devices in two states are investi-
gated, it can be concluded that in the studied systems, the
performances and effectiveness of D-FACTS devices are
similar.

5.2. 84-Bus Network with 96 Branches. ,e loads on this
network are 28.35MW and 20.70 MVAR, and lines 96–84
are open in the initial state. ,e operational losses and
average voltage deviation in this network are 532.61 KW and
0.03078 PU, respectively. For more information, please refer
to [23]. For this large network, two UPQCs are considered
with 13 typically opened switches (tie switch) and consid-
ering two UPQCs, each chromosome has 19 genes. Due to
the extent of each chromosome, more population and it-
eration numbers are considered compared to a 69-bus
network. ,e population and iteration numbers are 50 and

250, respectively. ,e UPQC characteristics and simulation
results in different cases are shown in Tables 2 and 3. In
addition to the proposed structure, the optimization of
objective function f1 proposes the locations of two UPQCs at
lines 79 and 7; this condition could reduce the network losses
to 407.43KW and increase over 20%. In f2 and the new
proposed structure, lines 7 and 78 are designated for the
placement of UPQCs. ,e voltage reached 0.0129 PU. ,e
intermediate voltages reached 0.9888 PU, which is a satis-
factory result. ,e line losses are too high and cannot be
accepted (624.58KW). As the previous network, for opti-
mizing the third objective function, firstly, the fU and fN will
be defined concerning the third and fourth cases in Table 3:

f
U

� [407.43KW0.0129PU],

f
N

� [624.58KW0.0199PU].
(22)

,en, considering these obtained amounts and equa-
tions (3) and (7), we will receive

f3 �
f1 − f

U
1

f
N
1 − f

U
1

+
f2 − f

U
2

f
N
2 − f

U
2

�
f1 − 407.43

217.15
+

f2 − 0.0129
0.007

.

(23)

As the 69-bus network, in this case, the structure and
location of UPQC are suggested precisely. ,ese indicate the
appropriate performance of normalization by Utopia Point

Table 1: ,e results of UPQC placement and reconfiguration simultaneously in 69-bus network.

Tie switches
UPQC characteristics

Total losses
(KW)

Voltage
deviation

Vmin
(PU) Vave (PU)Line Shunt power

(MVAR)
Series power
(MVAR)

Case 1 69, 70, 71, 72, 73 - - - 224.92 0.0265 0.9091 0.9734
Case 2 12, 13, 58, 61, 69 - - - 99.88 0.0135 0.9427 0.9865
Case 3 14, 58, 63, 69, 70 60 1.1 0.91 73.10 0.0112 0.9654 0.9887
Case 4 10, 12, 18, 58, 61 73 1.49 1.031 150.72 0.0044 0.9688 0.9956
Case 5 14, 58, 64, 69, 70 61 1.78 0.384 84.85 0.0082 0.9719 0.9917
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Figure 7: Voltage for cases of the 69-bus network.
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and Nadir Point methods. Although in this case, the voltage
levels are less than those of the fourth case, the losses are not
considered and the amount of network losses is acceptable
(459.32KW) compared to the initial state.

,e voltage profile of all buses in different cases is
presented in Figure 8. ,e voltage profile in the primary
structure does not have an appropriate state. Still, after
reconfiguration and placement, it is in the best state com-
pared to the other mentioned cases.

To make a comparison with other methods, we have
selected an 84-bus network in mode 1. ,e evolutionary
algorithm optimization methods, linearized mathematical
method, and simulated annealing algorithm have been
considered. Accordingly, the obtained results from losses are
538.32 kW for the evolutionary algorithm, 541.43 kW for the
mathematical linearization method, and 536.76 kW for the
simulated refrigeration algorithm. From the obtained re-
sults, our method has received the best answer in com-
parison to other mentionedmethods, that is, 1.2%, 1.7%, and
0.8%, respectively.

6. Conclusion

In this paper, the reconfiguration of the distribution network
and the placement of UPQC were studied. A simple load
flow model was proposed for the placement of UPQCs. In
general, the location and size of UPQC and typically opened
switch numbers were investigated for different purposes.
,erefore, three objective functions were studied: losses,
voltage deviation, and the combination of these two. It was
found that the simultaneous combination of reconfiguration
and UPQC placement reduces the active power losses to
more than 50% of the primary structure and significantly
improves the voltage characteristics. ,e sum of loss ob-
jective function and the voltage deviation objective function
were considered as objective functions so that the optimi-
zation algorithm could optimize these two objective func-
tions simultaneously.,e normalizationmethod was used to
scale these objective functions, and the results obtained were
quite desirable and logical. With careful consideration of the
simulations, the improvement in voltage level and reduction
in losses are obvious in the presence of UPQC.
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In this note, the problem of tracking random references and rejecting random perturbations in a quadrotor, both generated by an
auxiliary system named exosystem, is solved by extending the deterministic tracking problem to the area of stochastic processes.
Besides, it is considered that only a part of the state vector of the quadrotor is available through measurements. As a consequence,
the state vector of the plant must be estimated in order to close the control loop. On this basis, a controller to track random
references and to reject random perturbations is developed by combining a Kalman filter to estimate the references and per-
turbations of an exosystem and an observer to estimate the states of a quadrotor. Besides, to obtain a more practical controller, the
analysis is carried out in discrete time. Numerical simulations are used in a quadrotor to confirm the validity and effectiveness of
the proposed control.

1. Introduction

In the control field, the problem of imposing random ref-
erences on some outputs of unmanned aerial vehicles is a
very recurrent problem. (is is because such scenarios
appear in many disciplines of science and technology, and
among them, aeronautics is one of those areas. Besides, the
study of a quadrotor is gaining great interest because of their
wide range of applications and low cost [1]. For instance, the
chaotic approach [2–4], the chaotic attractors [5–7], the
adaptive technique [8–10], the sliding mode strategy

[11–13], the robust technique [14–16], the learning strategy
[17–19], and the structure method [20, 21] are used for the
tracking of quadrotors. As can be expected, the bibliography
related to the control of quadrotors is vast and it goes on and
on.

In other orders of ideas, the tracking theory is a well-
posed frame of work providing the tools to ensure as-
ymptotic stability while references are tracked and pertur-
bations are rejected. Roughly speaking, the solution for the
tracking problem is provided by a control vector achieving
two goals: (1) the asymptotic stabilization of the equilibrium
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of the quadrotor and (2) the tracking of random references
and the rejecting of random perturbations, both produced
by an auxiliary system named exosystem [22].

For the linear problem, the solution has been presented
by [23]. (ere, the author showed that the existence of the
desired control coincides with the existence of the solution
of some simultaneous equations, which can be represented
in a matrix form and they are named Francis equations.
Afterward, the nonlinear tracking problemwas analyzed and
it was concluded that the linear result is a particular case of
the nonlinear problem. However, some nonlinear partial
differential equations need to be solved in order to obtain the
nonlinear control. Unfortunately, in many cases, the solu-
tion of such nonlinear partial differential equations is very
difficult to obtain [22]. (us, the avoiding of such nonlinear
partial differential equations has been also studied. For
instance, Takagi-Sugeno fuzzy systems and neural networks
have been successfully used to extrapolate the linear control
to the nonlinear field, without involving nonlinear partial
differential equations [24].

On the other hand, most of the references and pertur-
bations in nature are not perfectly harmonic. For instance,
the flight of butterflies, the behavior of the heart, brain,
human march, among others, include a little bit of ran-
domness, to say the least. To estimate these kinds of ref-
erences and perturbations, the Kalman filter [25] has been
and still is a very good alternative. In this sense, in [26], the
Kalman filter is used for the quadrotors parameters iden-
tification, and in [27, 28], the Kalman filter is used for the
quadrotors states estimation.

With all this in mind, the problem to be studied in
current work can be stated as the problem of ensuring that
the output of a quadrotor behaves as an external random
perturbation while the stability property is maintained.
Roughly speaking, the main contribution of this paper is the
extension of the deterministic references tracking and de-
terministic perturbations rejection to the stochastic field, by
assuming that the generator of references and perturbations
is subject to random uncertainties.

Besides, in order to make the problemmore realistic, it is
assumed that only a part of the state is available. (e novelty
of the proposed approach is the combination of the Kalman
filtering and the regulation theory to solve the references
tracking and perturbations rejection; this problem cannot be
solved by the Kalman filter or the regulation theory by
themselves. In this sense, the desired controller must achieve
two goals which are very similar to those considered in the
tracking problem: (1) to stabilize the quadrotor around an
operation point when the exosystem is affecting it and (2) to
minimize the tracking error when the quadrotor is influ-
enced by external perturbations. On the basis of the observer
and Kalman filter, some random references will be imposed
on the quadrotor, while some random perturbations are
rejected as well.

(e rest of the work is arranged in the following way:
Brief reminders of the tracking and Kalman filter are given in
Section 2. Besides, the numerical model of the quadrotor and
the definition of the problem are also included there. Section
3 is devoted to obtaining the main results. (e numerical

simulations of a quadrotor are analyzed in Section 4, while
some conclusions are given in Section 5.

2. Problem Setup

In this section, the control problem is defined. But before
that, the control, the Kalman filter, and the quadrotor are
briefly introduced.

2.1. 6e Control for Deterministic Plants. Let the plant be

_x(t) � Ax(t) + Bu(t) + Pw(t), z(t)

� Czx(t),
(1)

where x(t) ∈ Rn is the state of the plant, u(t) ∈ Rp is the
control input, z(t) ∈ Rmz is the output, and w(t) ∈ Rℓ is the
solution of the exosystem:

_w(t) � Aexow(t), zref(t) � Cexow(t). (2)

With zref(t) ∈ Rmz as the references to be tracked and
Pw(t) as the perturbations to be rejected, system (1) and (2)
corresponds to the regulation problem in continuous time,
where (1) is the plant to be regulated, while (2) is an auxiliary
system used to model the references/perturbations signals.

Clearly, it is possible to construct a block diagonal matrix
Aexo, such that each block on the diagonal describes the
behavior of the references or perturbations to be generated
by (2). So, Cexo and P can be viewed as output matrices for
such an exosystem.

(e tracking error is e(t) � z(t) − zref(t), and the
control u(t) must achieve

lim
t⟶∞

e(t) � 0. (3)

In [22, 23], it has been shown that the control u(t) which
solves the control problem is

u(t) � K(x(t) −Πw(t)) + Γw(t), (4)

where the steady-state xss(t) � Πw(t) is invariant through
uss(t) � Γw(t), where Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ solve the
Francis equations, defined as

AΠ + BΓ + P � ΠAexo, CzΠ − Cexo � 0. (5)

Notice that equations (5) are a set of (n × ℓ) + (mz × ℓ)
simultaneous equations with (n × ℓ) + (p × ℓ) unknowns.
(ese equations can be readily solved. (ese equations can
be solved analytically or with the help of numerical tools, in
general, when p≥mz. (e following theorem summarizes
the previous analysis.

Theorem 1. Assuming that the exosystem is given by (2) and
H1: 6ere exists a matrix K which stabilizes the pair (A , B)
and H2:6ere exists a solution for Francis equations (5) given
by Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ, then, the tracking problem de-
scribed by (1) and (2) can be solved by (4).

Proof. Consider ess(t) � x(t) −Πw(t) as the steady-state
error. Now, its first-order derivative is
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_ess(t) � _x(t) − Π _w(t),⇒ _ess(t)

� Ax(t) + Bu(t) + Pw(t) − ΠAexow(t).
(6)

At this point, it is easy to obtain

_ess(t) � (A + BK)ess(t) + AΠw(t) + BΓw(t) + Pw(t) −ΠAexow(t). (7)

From (7), it is clear that ess(t) is zeroed as t⟶∞ if (1)
A + BK is Hurwitz (Assumption H1), and (2)
AΠ + BΓ + P � ΠAexo, which coincides with (5). Observe
that (5) involves n × ℓ equations with n × ℓ + p × ℓ
unknowns.

But, the tracking error is rewritten as

e(t) � Cz ess(t) + Πw(t)( 􏼁 − Cexow(t). (8)

(e missing equations are obtained. Notice that (8)
coincides with (5), in steady-state, i.e., when ess(t) � 0. To
conclude, notice that if mz � p, then equation (5) may have a
unique solution; if p>mz, then an infinite of solutions may
exist. And, if p<mz, then (5) may not have solution, in
general [23]. □

2.2. Kalman Filter (KF). (e Kalman filter is an iterative
process based on the least square method, which is able to
estimate the states of a plant in an optimal way [25].

Consider the following discrete-time plant:

xk+1 � Axk + Buk + Mξk, yk

� Cxk + Nηk,
(9)

where, as usual, the discrete time is represented by k, and
xk ∈ R

n, uk ∈ R
p, and yk ∈ R

m are the state, input, and
output vectors, respectively. (e dynamic noise is ξk ∈ R

q

with normal distribution, zero mean, and variance
Q ∈ Rq×q, while the measurement noise is ηk ∈ R

r with
normal distribution, zero mean, and variance R ∈ Rr×r. It is
important to mention that matrices A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rm×n, M ∈ Rn×q, and N ∈ Rm×r are obtained by line-
arizing the discrete-time quadrotor plant around a suitable
operation point. On this basis, the Kalman filter (KF) is
defined by

􏽢xk|k−1 � A􏽢xk−1|k−1 + Buk−1,

Pk|k−1 � APk−1|k−1A
T

+ MQMT
,

Gk � Pk|k−1C
T

CPk|k−1C
T

+ R􏼐 􏼑
− 1

,

􏽢xk|k � 􏽢xk|k−1 + Gk yk − C􏽢xk|k−1􏼐 􏼑,

Pk|k � I − GkC( 􏼁Pk|k−1,

(10)

where 􏽢xk−1|k−1 and Pk−1|k−1 are the estimations for the state
xk−1 and error variance at iteration k − 1, respectively, while
􏽢xk|k−1 and Pk|k−1 are the predictions for state xk and variance
at iteration k, respectively. And, 􏽢xk|k and Pk|k are the updated

estimations, through the Kalman gain Gk, for state xk and
error variance at iteration k, respectively [25].

Evidently, the Kalman filter can be extended to the
nonlinear domain by linearizing the quadrotor plant at every
discrete instant and by applying the previous equations it-
eratively. Such a result is known as the extended Kalman
filter (EKF).

2.3. 6e Mathematical Model of the Quadrotor. (e pro-
posed controller will be tested on a quadrotor with suffi-
ciently complex behavior; the quadrotor can be considered
as an aerial robot. (e free-body diagram of the quadrotor is
given in Figure 1, while its mathematical model is [29]

_x(t) � f(x(t), u(t), w(t)), y(t)

� h(x(t)).
(11)

With x(t) � [x1(t) . . . x12(t)]T, u(t) � [u1(t) . . .

u4(t)]T,

f(x, u) �

x2(t),

f1(x(t), u(t)),

x4(t),

f2(x(t), u(t)),

x6(t),

−g + cos x9(t)( 􏼁( cos x7(t)( 􏼁
β1
m

,

x8(t),

x10(t)x12(t)
Iyy − Izz

Ixx

−
Jtp

Ixx

x10(t)ω +
lβ2
Ixx

,

x10(t),

x8(t)x12(t)
Izz − Ixx

Iyy

+
Jtp

Iyy

x8(t)ω +
lβ3
Iyy

,

x12(t),

x8(t)x10(t)
Ixx − Iyy

Izz

+
β4
Izz

.
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.

(12)

With
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f1(x(t), u(t)) � sin x11(t)( 􏼁sin x7(t)( 􏼁 + cos x11(t)( 􏼁sin x9(t)( 􏼁cos x7(t)( 􏼁􏼂 􏼃
β1
m

,

f2(x(t), u(t)) � −cos x11(t)( 􏼁sin x7(t)( 􏼁 + sin x11(t)( 􏼁sin x9(t)( 􏼁cos x7(t)( 􏼁􏼂 􏼃
β1
m

,

β1 � b u1(t)
2

+ u2(t)
2

+ u3(t)
2

+ u4(t)
2

􏽨 􏽩,

β2 � b u
2
4 + u

2
3 − u

2
1 − u

2
2􏽨 􏽩,

β3 � b u2(t)
2

+ u3(t)
2

− u1(t)
2

− u4(t)
2

􏽨 􏽩,

β4 � d u1(t)
2

+ u3(t)
2

− u2(t)
2

− u4(t)
2

􏽨 􏽩,

Ω � u1(t) − u2(t) + u3(t) − u4(t),

h(x(t)) � Cx(t),

(13)

where C is chosen,

h(x(t)) � x1(t)x3(t)x5(t)x7(t)x9(t)x11(t)􏼂 􏼃
T
. (14)

t is the continuous time.(e frequencies of rotors 1, 2, 3,
and 4, which are in fact the effective controls, are described
by u1(t), u2(t), u3(t), and u4(t), respectively, and they are
given in radians per second. (e states x1(t), x3(t), and
x5(t) are given in meters and they describe the linear
movements along the Earth fixed axes Xe, Ye, and Ze, re-
spectively. On the other hand, states x7(t), x9(t), and x11(t)

are given in radians representing angular movements
around the body-fixed axes Xb, Yb, and Zb, respectively.
And, the even states can be easily identified as the velocities
of abovementioned states.

(e value of the parameters are as follows [29]: b �

54.2 × 10− 6 N · s2 is the thrust coefficient, d � 1.1 × 10− 6 N ·

m · s2 is the drag coefficient, l � 0.24m is measured from the
quadrotor’s center to the rotors’ middle point, m � 1 kg is
the mass of the quadrotor, g � 9.81m/s2 is the gravity
constant, Jtp � 104 × 10− 6N · m · s2 is the rotors’ momen-
tum, and Ixx � 8.1 × 10− 3 N · m · s2, Iyy � 8.1 × 10− 3

N · m · s2, and Izz � 14.2 × 10− 3 N · m · s2 are the

momentum respect to Xe, Ye, and Ze, respectively. With
these values, the quadrotor can be maintained in hovering
when uo1 � uo2 � uo3 � uo4 ≈ 212.7183rad/s, where u1 . . . u4
are the static controls needed to keep the quadrotor in a
static floating position.

(e discrete-time approximation for equation (11) can
be derived by means of the Euler discretization method
[25]:

_x(t) ≈
x(t + T) − x(t)

T
, (15)

where T is the sampling time and it is sufficiently small such
that the main features of the continuous-time system are
preserved, while the controllability property is not affected.
(us,

x(t + T) ≈ x(t) + T _x(t). (16)

Consequently, the discrete-time approximation for (11)
is

xk+1 � xk + Tf xk, uk, wk( 􏼁,

yk � h xk, wk( 􏼁,
(17)

x5

x1

x11

x3

Ze

Zb

Xb

Yb
x9

Ω3

Ω4

Ω1

Ω2

x7

Xe

Ye

Figure 1: Quadrotor free-body diagram.
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with f(·, ·, ·) as in (12), with T � (1/40)s.
On the other hand, in order to produce the random

references and random perturbations, the following sto-
chastic exosystem is considered:

wk+1 � Aexowk + qMkξk,

zref ,k � Cexowk + rNkηk,
(18)

where for this case Aexo ∈ R
5×5, Mk � I5×5, Cexo ∈ R

3×5, and
Nk � I3×3, while the dynamic and measurement noises are
characterized by their standard deviations q and r, re-
spectively, such that Q � q2Mk and R � r2Nk. Equation (18)
is the Euler discretization of the nonlinear model of the
quadrotor, and equation (19) is the stochastic exosystem
generating the references to be tracked and the perturbations
to be rejected. In the following section, the dimensions of
Aexo and Cexo are clarified.

2.4. 6e Problem of Tracking Random References in the
Presence of Random Perturbations. In this work, it is sup-
posed that only six from the twelve states of the quadrotor
are available for measurement, namely, x1, x3, x5, x7, x9, and
x11; i.e., only the linear and angular displacements in the axes
Xe, Ye, Ze, Xb, Yb, and Zb are available. To overcome this
problem, a full-state observer will be considered during the
stabilization of the quadrotor.

Under such conditions, one random reference will be
imposed on x1, another on x3, and the last one on x5.
Besides, a random perturbation will affect x2.

Both the references and perturbations are generated by a
set of equations similar to (9) and (19):

wk+1 � Aexowk + Mkξk,

zref ,k � Cexowk + Nkηk.
(19)

For the definition of structure of the exosystem, it is
important to mention that the references and perturbations
to be imposed on x1, x3 are pseudoperiodic with frequency
of πrad/s, the reference to be imposed on x5 is random with
zero mean, and the perturbations affecting the state x2 are
also pseudo periodic of (π/2)(rad/s). (erefore, by con-
sidering the dimensions of system (11), one way of gener-
ating such references and perturbations is through (20) with
matrices Aexo � aexo,ij􏽮 􏽯 ∈ R5×5, Cexo � cexo,ij􏽮 􏽯 ∈ R3×5, and
P � pij􏽮 􏽯 ∈ R12×5, where aexo,11 � aexo,22 � 0.997,
aexo,12 � −aexo,21 � 0.078, aexo,44 � aexo,55 � 0.999, and
aexo,45 � −aexo,54 � 0.039, the other terms of Aexo have a
value of 0, cexo,11 � cexo,22 � cexo,33 � 1, the other terms of
Cexo have a value of 0, p25 � 1, and the other terms of P have
a value of 0. At this point, the perturbations can be defined as
Pwk.

(us, as mentioned before, in order to track the random
references and to reject the random perturbations, they will
be estimated online by means of a Kalman filter. In the
following section, the structure of the matrices involved in
the estimation of the references and perturbations is thor-
oughly analyzed.

3. Main Result

To estimate the random references and random perturba-
tions by means of the Kalman filter, it must be recalled that
both matrices Cexo and P can be viewed as output matrices
for the exosystem, and because of their dimension, they can
be used to construct an overall output matrix for the exo-
system, namely, CTot � [CT

exoPT]T, with CTot ∈ R
15×5.

With this in mind, and by considering the expressions
for the exosystem, i.e., (20), the estimation problem for the
references and perturbations can be solved by a Kalman
iterative process like the one defined through equations (9)
and (10), where A � Aexo, B � 0, and C � CTot, for all k≥ 0.

On the other hand, an observer capable of estimating the
full state of a plant from the available outputs when it is subject
to random perturbations must be designed. So, for system (21),
a quasi-solution for the observability problem is given next.

Theorem 2. Consider a plant in the form of

xk+1 � Axk + Buk + Pwk,

zk � Czxk,

yk � Cxk.

(20)

yk is considered as the vector of available output and zk

as the set of output where the references are to be imposed.
As before, xk ∈ R

n, uk ∈ R
p, yk ∈ R

m, zk ∈ R
mz , and

wk ∈ R
ℓ as the solution of the exosystem

wk+1 � Aexowk,

zref ,k � Cexowk.
(21)

zref ,k ∈ R
mz are considered as the vector of references to

be tracked.(en, the state xk can be taken to a neighborhood
around its equilibrium if the pair (A, B) is stabilizable, the
pair (A, C) is detectable, and there exists an estimation for
perturbation pk � Pwk. Moreover, the quasi-stabilizer is
given by the dynamic system:

xo,k+1 � Axo,k + Buk + p
⌢

k + L yk − yo,k􏼐 􏼑, yo,k

� Axo,k, uk

� Kxo,k,

(22)

where xo,k is the state of the observer.

Proof. Let the observer for (21) be (23) and eo � xk − xo,k

with uk as in (22) for both (21) and (23). (us eo,k+1 can be
written as

eo,k+1 � Aeo,k + ep,k + LCeo,k, (23)

where ep,k � pk − 􏽢pk. (us, by continuity, if the system (21) is
detectable and if ep,k is sufficiently small, then gain L exists
because ep,k could be disregarded. Besides, if (21) is stabilizable
the gain K also exists and both state vectors xk and xo,k tend to
a neighborhood around the equilibrium by means of (22).

Notice that, previously, it has been supposed that pk can
be estimated by the Kalman filter.
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uk = K (xo,k – Пwk) + Гwk

xo,k

wk

wk

pk

Pwk
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zref,k = Cexowk

yk = Cxk

Figure 2: Control scheme.
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Figure 3: Tracking and available outputs when minimum randomness is considered.
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Now, the regulation problem presented in Section 2.1
must be extended to the field of the discrete-time systems,
but considering that the states and output of the exosystem
are influenced by noise. To this end, consider the discrete-
time plant (21) and the exosystem (20).

(us, by mimicking the procedure in Section 2.1, the
tracking error is given by ek � zk − zref ,k, and the tracking
problem for discrete time is solved by a control vector uk

such that

lim
k⟶∞

ek � 0. (24)

As above, it will be considered that the tracking problem
for discrete-time plants is solved by

uk � K xo,k − Π􏽢wk􏼐 􏼑 + Γ􏽢wk, (25)

where xo,k is the observed state of the plant, 􏽢wk is the Kalman
estimation for wk, the manifold of steady-state is
xss,k � Π􏽢wk, and the steady-state input is uss,k � Γ􏽢wk, with
Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ as the solution of

AΠ + BΓ + P � ΠAexo, CΠ − Cexo � 0. (26)

At this point, the following result naturally arises. □

Theorem 3. Considering the tracking problem defined by
(20) and (21), and assuming H1: 6ere exists a matrix K
which stabilizes (A, B), H2: 6ere exists a matrix L, such that
the pair (A, C) is detectable, and H3:6ere exists a solution for
Francis equation (26) given by Π ∈ Rn×ℓ and Γ ∈ Rp×ℓ, then,

the tracking problem for the discrete-time system defined by
(20) and (21) is solved by (25).

Proof. Let the steady-state error be ess,k � xo,k − Π􏽢wk. (us,

ess,k+1 � xo,k+1 − Π􏽢wk+1,

⇒ess,k+1 � Axo,k + Buk + Pwk − ΠAexo 􏽢wk.
(27)

By the definition of ess,k and by substituting (26) in (27),
one gets

ess,k+1 � (A + BK)ess,k + AΠ􏽢wk + BΓ􏽢wk + P􏽢wk − ΠAexo 􏽢wk. (28)

From (28), it is obvious that ess,k dissipates when (1)
matrices A + BK and A − LC have their eigenvalues inside
the unit circle [30] (Assumptions H1 and H2), and (2)
AΠ + BΓ + P � ΠAexo, which coincides with (26). As in
(eorem 1, by considering the tracking error ek � zk − zref ,k
in steady-state, the missing equations are obtained from

ek � Cz ess,k + Π􏽢wk􏼐 􏼑 − Cexo 􏽢wk. (29)

In steady-state it coincides with (26). As above, this
analysis entirely relies on the fact that the Kalman estimation
􏽢wk is sufficiently close to wk. (e rest of the proof follows the
same path as in (eorem 1. □

Remark 1. (eorems 1 and 2 correspond to results in
continuous time and discrete time, where no uncertainties
were considered. However, (eorem 3 states the conditions

2 8 1210 18
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Figure 4: Tracking errors with minimum randomness.
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under which that regulation problem can be solved, even if
the exosystem is subject to uncertainties.

Remark 2. (e proposed approach entirely relies on the
estimation of the Kalman filter. For that reason, the pro-
posed exosystem complies with the requirements established
by the Kalman theory, and Aexo must be known. Future
works may be oriented to estimate the elements of Aexo when
such matrix is unknown, but that problem exceeds the scope
of the present work.

(e control scheme is graphically described in the block
diagram of Figure 2.

4. Numerical Simulations

Please refer to Appendix where a detailed description of the
matrices considered to construct the control is given.

(e numerical simulations are carried out considering a
linearization of (17) around the origin, because the ground
effect is not considered in the mathematical model. Con-
sequently, the observer (23) is construct from the matrices
A � aij􏽮 􏽯 ∈ R12×12, B � bij􏽮 􏽯 ∈ R12×4, C � cij􏽮 􏽯 ∈ R6×12,
and L � lij􏽮 􏽯 ∈ R12×6, and L has been computed by con-
sidering the set of desired eigenvalues:

λ �
0.435 0.44 0.445 0.45 0.455 0.46

0.465 0.47 0.475 0.48 0.485 0.49
􏼨 􏼩. (30)

(e control (26) is formed from the matrix
K � kij􏽮 􏽯 ∈ R12×4. K has been computed by the dlqr al-
gorithm with Q � 103I12, and R � 10− 3I4 with Ij as the
identity matrix of dimension j, and the solution for (27) is
given by Π � πij􏽮 􏽯 ∈ R12×5 and Γ � cij􏽮 􏽯 ∈ R4×5, Aexo, Cexo,
and P are given in Section 2.4.

Remark 3. (e design of the controller has been performed
on the linear model of the quadrotor, although the results
presented correspond to the response of the nonlinear
system under the action of the designed controller.

With all of the basis stated in previous sections, the
results are given next.

Example 1. Minimum randomness with the proposed
method.

At first, the simulations are carried out with very small
randomness in order to validate the approach in the quasi-
deterministic case. As mentioned before Mk � I5×5,
Nk � I3×3, while the dynamic and measurement noises are
characterized by their standard deviations q and r, re-
spectively, such thatQ � q2Mk andR � r2Nk.(e results are
given in Figures 2 to 6.

So, for this example, the standard deviation values are
q � 1 × 10− 6 and r � 1 × 10− 6. (e initial conditions for the
nonlinear model of the quadrotor (18) are
x0 � [0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]T, while the initial state for
the observer is xo, 0 � [0, 1 + ε1, 0, 0, 2 + ε2, 0, 0, 0, 0, 0, 0, 0]T,
where ε1 and ε2 are random numbers with zero mean and
standard deviation q. On the other hand, the references and
perturbations are generated by the exosystem (19) with
initial conditions w0 � [0, 1, 3, 0, 0]T, while the initial state
for the Kalman filter is 􏽢w0 � w0 + [η1, η2, η3, η4, η5]

T, where
η1 . . . η5 are random numbers with zero mean and standard
deviation r. Under these conditions, the obtained results are
depicted from Figures 3 to 7.

In Figure 3 are shown the tracking outputs against the
corresponding reference. It can be observed how the proposed
controller achieves the desired goals. Besides, in the same
figure, the available outputs are depicted also. Figure 4might be
more helpful to determine the efficacy of the controller by
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Figure 9: Tracking errors for random references considering the structure method.
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showing the tracking errors under the mentioned conditions.
Please, note that the oscillations presented in such a figure are
due to the fact that a controller is applied to a quadrotor. In
other words, persistent oscillations can be reduced or even
eliminated by means of a nonlinear controller; however, such
analysis exceeds the scope of the present work.

(e estimation of the references and the perturbations
can be viewed in Figure 5. From there, it can be concluded
that the estimates provided by the Kalman filter are ac-
ceptable, at least in this case.

(us, the 3D behavior of the quadrotor is shown in
Figure 6 and the rotors’ frequencies appear in Figure 7. It is
worth mentioning that the frequencies of the rotors remain
positive, all of them. (is is an important feature of the
quadrotor that must be kept all the time because the rotors of
such system rotate in one and only one direction.

Notice also that the frequencies of the rotors are not the
same. (is is due to the fact that the quadrotor is describing
circles during its operation.

Example 2. Stochastic problem with the structure method.
Now, a more interesting case is simulated with bigger

values for q and r; i.e., the randomness of the problem is now
notably increased. In this case q � 0.05 and r � 0.5. (e rest
of the parameters remain as those considered in Example 1.
(e results are given in Figures 8 to 9.

(e simulation considers the same situation presented in
the previous example, but the structure method of [20, 21] is
used in which the Kalman estimating is omitted and it is
assumed that the structuremethod is sufficient to describe both
the references and the perturbation even when they are, in fact,
random. (e results are given in Figures 8 and 9. Notice now
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Figure 10: Tracking random references and available outputs.
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that the references are much more complex due to the random
nature of the exosystem provoked by the values of q and r.

In this case, the boundedness of the tracking errors can
not be ensured, which totally justifies the use of the proposed
method of the next example.

Example 3. Stochastic problem with the proposed method.
(is numerical experiment considers the same situation

presented in Example 2; i.e., q � 0.05 and r � 0.5. However,
in this case the Kalman estimation is considered. (e rest of
the parameters remain as those considered in Example 1.
(e results are given in Figures 10 to 14.

In Figure 10 are depicted the tracking outputs against
their respective references. (e tracking errors are shown in
Figure 11. Observe how, in this case, the errors are smaller
than those obtained in Example 2.

(e performance of the Kalman filter can be assessed
through the results given in Figure 12. From there, one can
conclude that the estimations of the references and the
perturbation are acceptable again despite the randomness
introduced in the exosystem, corroborating in this way, that
the main issue of the tracking problem, in this case, is the
nature of the linear control.

Finally, the 3D behavior of the quadrotor is shown in
Figure 13 and the rotors’ frequencies appear in Figure 14.
Observe that the random reference is changing so abruptly
that the quadrotor is unable to track it exactly because of its

own physical restrictions. However, the quadrotor is kept in
a neighborhood around the reference, meaning that the
tracking errors are bounded. Again, the frequencies are all
positives, which implies that the controller is imposing
normal behavior in the rotors. Obviously, the strange be-
havior of the quadrotor is due to complex response of the
rotors.

Comparison of Examples 1–3:
Finally, the mean squared error (MSE) between the

tracking states of the quadrotor and the corresponding
states of the exosystem for Examples 1–3 is depicted in
Table 1.

Clearly, the inclusion of the Kalman filter for estimating
the states of the stochastic exosystem drastically reduces the
MSEs. (erefore, its use cannot be neglected when the
reference or perturbation is not fully known.

Remark 4. Example 3 should be compared with Example 2
because the same big noises with standard deviation values
of q � 0.05 and r � 0.5 are used in Examples 2 and 3; the
difference of this comparison is that the Kalman estimating
is omitted in Example 2, while the Kalman estimating is used
in Example 3. Example 1 should not be compared with
Examples 2 and 3 because small noises with standard de-
viation values of q � 1 × 10− 6 and r � 1 × 10− 6 are used in
Example 1, and the Kalman estimating is omitted in Ex-
ample 1.
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5. Conclusion

On the basis of the observer and Kalman filter, an approach
to track random references while random perturbations are
rejected has been proposed. (e control scheme analyzed in
this work can be viewed as an extension of the deterministic
tracking problem to the area of stochastic processes. It has
been shown that the estimation of the references and per-
turbation makes a great difference because, in general, the
controller is constructed on the basis that the same matrices
need to solve the deterministic case. (e validity of the
approach has been illustrated by several numerical simu-
lations considering the mathematical model of a quadrotor.
In the future work, for the case where the quadrotor includes
random dynamics, then the observer will be substituted for
an unscented Kalman filter, an extended Kalman filter, or
another estimator as the James-Stein filter.

Appendix

(e terms of the matrix A � aij􏽮 􏽯 ∈ R12×12 are
a11 � a22 � a33 � a44 � a55 � a66 � 1, a77 � a88 � a99 �

a10,10 � a11,11 � a12,12 � 1, a12 � a34 � a56 � a78 � a9,10 �

a11,12 � α1, a29 � α2, a47 � −α2, α1 � 0.025, α2 � 0.24525,
and the other terms of A have a value of 0.

(e terms of the matrix B � bij􏽮 􏽯 ∈ R12×4 are
b61 � b62 � b63 � b64 � β1, b81 � b82 � b83 � b84 � β2, b10,1 �

b10,2 � b10,3 � b10,4 � β2, b12,1 � b12,2 � b12,3 � b12,4 � β3,
β1 � 0.00057, β2 � 0.01708, β3 � 0.00082, and the other
terms of B have a value of 0.

(e terms of the matrix C � cij􏽮 􏽯 ∈ R6×12 are
c11 � c23 � c35 � c47 � c59 � c6,11 � 1, the rest of the terms of
C are equal to zero.

(e terms of the matrix L � lij􏽮 􏽯 ∈ R12×6 are l11 � 1.045,
l12 � −0.004849, l13 � −0.00187, l14 � 0.004604, l15 �

−3.917 × 10− 5, l16 � 0.0001877, l21 � 10.91, l22 � −0.1019,
l23 � −0.03905, l24 � 0.09537, l25 � 0.2462, l26 � 0.003895,
l31 � −0.004303, l32 � 1.047, l33 � −0.001568, l34 � 0.006485,
l35 � −0.01585, l36 � 0.000152, l41 � −0.09043, l42 � 10.97,
l43 � −0.03272, l44 � −0.1107, l45 � −0.3324, l46 � 0.003145,
l51 � −0.0002392, l52 � −0.0002246, l53 � 1.101,
l54 � 0.0001867, l55 � −0.0001424, l56 � 0.02143, l61 �

−0.005185, l62 � −0.004869, l63 � 12.12, l64 � 0.004052,
l65 � −0.003096, l66 � 0.4646, l71 � 0.003847, l72 � 0.004632,
l73 � 0.001292, l74 � 1.044, l75 � 0.007422, l76 � −0.0001401,
l81 � 0.07979, l82 � 0.09622, l83 � 0.02687, l84 � 10.89,
l85 � 0.1542, l86 � −0.002901, l91 � −6.892 × 10− 5,
l92 � −0.001195, l93 � −8.156 × 10− 5, l94 � 0.0007677, l95 �

1.104, l96 � 9.086 × 10− 6, l10,1 � −0.001524, l10,2 � −0.0264,
l10,3 � −0.001802, l10,4 � 0.01696, l10,5 � 12.19, l10,6 �

0.0002007, l11,1 � 4.419 × 10− 5, l11,2 � 4.014 × 10− 5, l11,3 �

0.001739, l11,4 � −4.137 × 10− 5, l11,5 � 3.991 × 10− 5, l11,6 �

1.109, l12,1 � 0.0009928, l12,2 � 0.0009018, l12,3 � 0.0389,
l12,4 � −0.0009294, l12,5 � 0.0008965, l12,6 � 12.29.

(e terms of the matrix K � kij􏽮 􏽯 ∈ R12×4 are
k11 � k14 � k33 � k34 � −0.4646,
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Figure 14: Rotors frequencies for random tracking.

Table 1: MSEs for Examples 1–3.

xk,1 vs zref ,k,1 xk,3 vs zref ,k,2 xk,5 vs zref ,k,3

1 0.01832414 0.1837935 0.2471288
2 1835.705 0.7743019 1.995679
3 26.1942 0.5449 0.5347
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k12 � k13 � k31 � k32 � 0.4646, k21 � k24 � k43 � k44 �

−0.8851, k22 � k23 � k41 � k42 � 0.8851, k71 � k72 � k91 �

k94 � −5.884, k73 � k74 � k92 � k93 � 5.884, k81 � k82 �

k10, 1 � k10, 4 � −2.143, k83 � k84 � k10, 2 � k10, 3 � 2.143,
k51 � k52 � k53 � k54 � 0.4981, k61 � k62 � k63 � k64 � 3.33,
k11,1 � k11,3 � 0.4977, k11,2 � k11,4 � −0.4977, k12,1 � k12,3 �

2.799, k12,2 � k12,4 � −2.799.
(e terms of the matrix Π � πij􏽮 􏽯 ∈ R12×5 are

π11 � π33 � π55 � 1, π21 � π42 � −0.1233, π71 � π92 �

−0.0789, π81 � π10, 2 � −3.136, π22 � 3.138, π41 � −3.138,
π72 � 1.002, π91 � −1.002, π82 � −0.3712, π10, 1 � 0.3712,
π95 � −4.077, π10,4 � 6.403, π10,5 � 0.1257, π11,1 � 0.04455,
π11,2 � 0.05216, π11,5 � 0.1967, π12,1 � −0.1692,
π12,2 � 0.1334, π14,4 � −0.3089, π12,5 � −0.006065, and the
other terms of Π have a value of 0.

(e terms of the matrix Γ � cij􏽮 􏽯 ∈ R4×5 are
c11 � c32 � −7.17, c12 � −1.136, c31 � 1.136, c14 � 0.289,
c24 � −0.289, c15 � −7.356, c25 � 7.356, c21 � 6.034,
c22 � 8.306, and the other terms of Γ have a value of 0.
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In the present paper, we introduce new models of pendulum motions for two cases: the first model consists of a pendulum with
massMmoving at the end of a string with a suspended point moving on an ellipse and the second one consists of a pendulumwith
massMmoving at the end of a spring with a suspended point on an ellipse. In both models, we use the Lagrangian functions for
deriving the equations of motions. %e derived equations are reduced to a quasilinear system of the second order. We use a new
mathematical technique named a large parameter method for solving both models’ systems. %e analytical solutions are obtained
in terms of the generalized coordinates.We use the numerical techniques represented by the fourth-order Runge–Kutta method to
solve the autonomous system for both cases. %e stabilities of the obtained solutions are studied using the phase diagram
procedure. %e obtained numerical solutions and analytical ones are compared to examine the accuracy of the mathematical and
numerical techniques. %e large parameter technique gives us the advantage to obtain the solutions at infinity in opposite with the
famous Poincare’s (small parameters) method which was used by many outstanding scientists in the last two centuries.

1. Introduction

%e pendulum motions are considered as one of the im-
portant problems in theoretical mechanics. %ese problems
are studied by many authors in [1–5]. %e authors used the
small parameter technique for solving their problems. In [6],
the author studied the properties of the relative periodic
motions of a coherent object suspended by a flexible wire at a
regular rotating vertical plane. He used Lagrange’s equations
to obtain the motion equations while neglecting nonlinear
boundaries. He found periodic solutions to equations using
the small parameter method. In [7], the movement of a
variable-length pendulum was studied and perturbation
analysis [8] was used to determine the properties of the
movement. In [9], the authors studied a simple pendulum
revolving around an axis that has a double linear torque and
is subject to periodic movements. %e researchers showed
that this natural system becomes an effective way to

determine the change in the median resonance (parametric).
In [10], the author concluded solutions for a simple pen-
dulum in the presence of excitation in the polar direction.

Nobody thought about using another technique espe-
cially the large parameter method although this technique
allows us to give the problem new conditions that cannot be
assumed previously. Also, this technique gives us the chance
to study the problems in a new domain of the problem (at
infinity). %e applied work has many applications in the
rotary planet motions around the Sun and the rotary mo-
tions of bodies around the Earth. Also, there are many
applications in satellite motions, antennas, and navigations.
In the first problem, the angular velocity ω is the one for the
point Q instead of point A in the previous works (see
Figure 1). Also, the angle ωt is the angle between the line OQ
and the fixed vertical downward x-axis in the plane xy in-
stead of the angle between the line OA and the x-axis.
However, in the second problem, we take a rigid body M

Hindawi
Complexity
Volume 2022, Article ID 2704012, 12 pages
https://doi.org/10.1155/2022/2704012

mailto:aiismail@uqu.edu.sa
https://orcid.org/0000-0003-2073-6237
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2704012


instead of a particle in the first one and spring instead of a
string in the first. So, the second problem takes a compli-
cated study and procedure for obtaining the solutions in
terms of three generalized coordinates instead of one in the
first problem. We take into consideration the mentioned
descriptions above for studying the following two models
and constructing the equations of motions using the La-
grangian function. We achieve the solutions by the large
parameter method instead of the small one. %is method is
considered as a new procedure [11] which gives new con-
siderations for these problems.

2. The First Pendulum Model

In this section, we study a pendulum of mass M and string
length ℓ with suspended point A moving on an ellipse (see
Figure 1). For this case, we take a point Q on the auxiliary
circle of radius a to correspond the point A on the ellipse. Let
O be the common center of both the ellipse and the circle
such that the line AQ is perpendicular on the major axis of
the ellipse. When point A moves on the ellipse, the point Q
moves on the circle with angular velocity ω in the plane xy.
Let A begin the motion at the initial moment t � 0 in an
anticlockwise direction. After a time t, the coordinates of the
point A becomes (xA, yA) such that

ωt � cos− 1 xA

a
􏼒 􏼓 � sin− 1 yA

b
􏼒 􏼓, (1)

where 2a and 2b are the major and the minor axes of the
ellipse, respectively.%e coordinates (X, Y) ofm are obtained
as

ωt � cos− 1 (X − ℓ cosΦ)

a
􏼢 􏼣 � sin− 1 (Y − ℓ sinΦ)

b
􏼢 􏼣, (2)

whereΦ is the angle between the string and the vertical axis.
Assume the following parameters [12],

μ �
b

ℓ
≻≻1,

a � b],

(3)

where μ is a large parameter, that is, ℓ << b.
Also, we assume the variables

ℓω2
n � g,

ωΩ � ωn,

Φ � μ− 1 φ,

τ
ω

� t,

(4)

where g is the gravity of acceleration, ωn is the normal
angular velocity, and φ is the generalized coordinate for the
problem.

2.1. Equation of Motion. Using Lagrange’s equation, we get
the equation of motion of the pendulum in the form as
follows:

d
dτ

z(T − V)

zφ′
􏼢 􏼣 −

z(T − V)

zφ
􏼢 􏼣 � 0, (5)

where T is the kinetic energy and V is the potential one.
Substituting (2), (3), and (4) into (5), we get

φ″ +Ω2φ � sin τ − μ− 1]φ cos τ − 0.5μ− 2φ2 sin τ

+ 0.17μ− 3]φ3 cos τ.
(6)

%e solution of this equation means that we obtain φ in
terms of the large parameter and the time.

2.2. Approximate Periodic Solution. Now, we will find the
approximated periodic solutions for the nonresonance case
[12]; that is Ω is irrational value. However, here we use the
large parameter technique instead of the small one which
was used previously. %e solutions of (6) are obtained in the
form of power series expansions of powers of 1/μ as follows:

φ(τ, μ) � φ0(τ) + μ− 1φ1(τ) + μ− 2φ2(τ) + μ− 3φ3(τ) + . . . .

(7)

Substituting from (7) into (6) and equating coefficients
of like powers of (1/μ) of both sides, we get a system of
differential equations containing φi, i � 1, 2, 3, . . ., which is
solved to obtain the following:

ℓ

ΦA Q

X

y

x Y

a
Ob

a

ωt

Figure 1: %e pendulum motion on an ellipse.
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Ω2 − 1􏼐 􏼑φ(τ, μ) � sin τ − μ− 1 ]
Ω2 − 4􏼐 􏼑

sin τ cos τ

+ μ− 2 2]2 Ω2 − 1􏼐 􏼑 − 3 Ω2 − 4􏼐 􏼑

8 Ω2 − 1􏼐 􏼑
2
Ω2 − 4􏼐 􏼑

sin τ +
2]2 Ω2 − 1􏼐 􏼑 + Ω2 − 4􏼐 􏼑

8 Ω2 − 1􏼐 􏼑 Ω2 − 4􏼐 􏼑 Ω2 − 9􏼐 􏼑
sin 3 τ⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+ ] sin 2 τμ− 3

5Ω4 − 62Ω2 + 123􏼐 􏼑 − 3]2 Ω2 − 1􏼐 􏼑 Ω2 − 5􏼐 􏼑

12 Ω2 − 1􏼐 􏼑
2
Ω2 − 4􏼐 􏼑

2
Ω2 − 9􏼐 􏼑

−
5Ω4 − 44Ω2 + 51􏼐 􏼑 + 3]2 Ω2 − 1􏼐 􏼑

2

12 Ω2 − 1􏼐 􏼑
2
Ω2 − 4􏼐 􏼑 Ω2 − 9􏼐 􏼑 Ω2 − 16􏼐 􏼑

cos 2 τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ · · · ·

(8)

3. The Second Pendulum Model

In this section, we consider a rigid body pendulum of mass
M suspended with a massless spring with a length ρ(t) which
is suspended at a point O1 on the ellipse [3]. According to
[3], the point Q moves on the auxiliary circle with constant
angular velocity ω and corresponds to point O1 on the el-
lipse. Consider that the circle has radius b and the angle
between the line OQ and the horizontal axis depends on t
only. Consider the motion in the plane xy. From [3], the
point O1 moves from t � 0, θ � 0, andφ � 0 in the coun-
terclockwise direction.

3.1. Determining of Lagrangian Function. After a while t, the
point O1 will create an angle (ωt) with the horizontal axis,
that is:

ωt � cos− 1 xO1

a
􏼒 􏼓 � sin− 1 yO1

b
􏼒 􏼓, (9)

where 2a and 2b are the minor and major diagonal of the
ellipse, respectively.

Consider that the coordinates of the center of mass of the
body are given by

Xc � a cosωt + ρ sin θ + h sinφ, (10)

Yc � b sinωt + ρ cos θ + h cosφ. (11)

We calculate the velocity of the center c by differentiating
(9) and (10). Consider the following parameters and vari-
ables [3]:

μ �
h

d
≻≻1,

ρ(t) � d + β(t),

ω2
n �

K

Mω2,

Jσ2 � Mh
g

ω2 + c􏼠 􏼡,

(12)

cω2
�

K(d − l)

M − g
,

θ � μ− 1 Θ, (θφ),

(13)

where d is the spring length at relative equilibrium, J denotes
the principal moment of inertia for the axis cζ, l is the free
length of the spring, μ is a large parameter, K is the force
constant of the spring, and β,Θ, andΦ are the generalized
coordinates. Use (9), (10), (11), and (13) to find the kinetic
energy and potential one and then construct the Lagran-
gian� kinetic energy–potential one in terms of the gener-
alized coordinates as follows:

Complexity 3



2L

ω2 � M

β′2 +(d + β)
2μ− 2Θ′2 + h

2μ− 2Φ′2 + a
2sin2 τ + b

2cos2 τ

+2hβ′μ− 2Φ′

Θ −
1
6
μ− 2Θ3 −

1
2
μ− 2ΘΦ2 +

1
12
μ− 4Θ3Φ2 −Φ +

1
2
μ− 2Θ2Φ

+
1
6
μ− 2Φ3 −

1
12
μ− 4Θ2Φ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+2(d + β)hμ− 2Θ′Φ′

1 −
1
2
μ− 2Θ2 −

1
2
μ− 2Φ2

+
1
4
μ− 4Θ2Φ2 + μ− 2ΘΦ −

1
6
μ− 4Θ3Φ −

1
6
μ− 4ΘΦ3 +

1
36
μ− 6Θ3Φ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−2β′μ− 1
aΘ sin τ −

1
6
μ− 2

aΘ3 sin τ − μb cos τ +
1
2
μ− 1

bΘ2 cos τ􏼒 􏼓

−2(d + β)μ− 1Θ′ a sin τ −
1
2
μ− 2

aΘ2 sin τ + μ− 1
bΘ cos τ −

1
6
μ− 3

bΘ3 cos τ􏼒 􏼓

−2hμ− 1Φ′ a sin τ −
1
2
μ− 2

aΦ2 sin τ + μbΦ cos τ −
1
6
μ− 3

bΦ3 cos τ􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ Jμ− 2Φ′2 + Mg/ω2
(d + β) 2 − μ− 2Θ2􏼐 􏼑 + h 2 − μ− 2Φ2􏼐 􏼑􏽨 􏽩 −

K(d + β − ℓ)2

ω2 .

(14)

3.2. Equations of Motion. Making use of Lagrange’s equa-
tions (14), (11), and (13), we get the equations of motion as
follows:

β″ + ωn
2β � b sin τ − c + μ− 1

aΘ cos τ + hΘ′2􏼔 􏼕

+ μ− 2
h Φ″Φ −Φ″Θ +Φ′2􏼒 􏼓 + βΘ′2 + 0.5Θ2

g

ω2 − b sin τ􏼠 􏼡􏼢 􏼣,

(15)

hΘ″ � a cos τ − μ− 1 2β′Θ′ + Θ b sin τ +
g

ω2􏼠 􏼡 + hΦ″􏼢 􏼣 − 0.5aμ− 2Θ2 cos τ, (16)

μ− 1
h +

J

Mh
􏼒 􏼓Φ″ +

g

ω2Φ􏼢 􏼣 � a cos τ − hΘ″ + μ− 1
−2β′Θ′ − βΘ″ + β″Φ − bΦ sin τ􏼂 􏼃

+ μ− 2
−
1
2

aΦ2 cos τ +
1
2

hΘ″ Θ2 +Φ2􏼐 􏼑 − h Θ″ΘΦ − ΘΘ′2 + Θ′2Φ􏼐 􏼑􏼔 􏼕

+ μ− 3
(Θ −Φ)

2 β′Θ′ +
1
2
βΘ″􏼒 􏼓 + βΘ′2(Θ −Φ) +

1
6
β″(Θ −Φ)

3
+
1
6

bΦ3 sin τ􏼔 􏼕.

(17)

Substituting (15) and (16) into (17), we get
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Φ″ + σ2Φ􏼐 􏼑J � Mh

Θ g/ω2
+ b sin τ􏼐 􏼑 − ωn

2βΦ + μ− 1
Φ aΘ cos τ + hΘ′2􏼐 􏼑

+0.5a cos τ Θ2 −Φ2􏼐 􏼑 + 0.5hΘ″(Θ −Φ)
2

+ hΘ′2(Θ −Φ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ μ− 2

hΦΦ″(Φ −Θ) +Φ hΦ′2 + bΘΘ′ cos τ􏼐 􏼑 − 0.5bΦ sin τ Θ2 + 0.33Φ2􏼐 􏼑

+
g

ω2Θ
2Φ + β′Θ′(Θ −Φ)

2
+ 0.5βΘ″(Θ −Φ)

2
+ βΘΘ′2 + 0.17β″(Θ −Φ)

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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. (18)

Equations (15),(16), and (18) are a quasilinear system of
the second order which describes the pendulum equations
for this model. We aim to solve this system by a new
procedure named the large parameter method [11] to get the
approximated periodic solutions.

3.3. Approximate Periodic Solutions. In this section, we
search the approximated periodic solutions for the case of
nonresonance using the large parameter technique. As-
suming the solutions for (15–18), the following is obtained:

β(τ, μ) � β0 + μ− 1β1 + μ− 2β2 + . . . , (19)

Θ(τ, μ) � Θ0 + μ− 1Θ1 + μ− 2Θ2 + . . . , (20)

Φ(τ, μ) � Φ0 + μ− 1Φ1 + μ− 2Φ2 + . . . . (21)

Substituting (18), (19), and (20) into (15), (16), and (18)
and equating coefficients of same powers of μ in both sides,

we get a system of nine equations which give the following
solutions [3]:

β(τ, μ) �
b

ω2
n − 1

sin τ −
c

ω2
n

− μ− 1 a
2

h ω2
n − 4􏼐 􏼑

cos 2 τ + . . . ,

Θ(τ, μ) � −
a

h
cos τ + μ− 1

(a sin 2 τ − Γ cos τ) + . . . ,

Φ(τ, μ) � −
Ma

J
􏼠 􏼡

g

ω2 σ2 − 1􏼐 􏼑
cos τ −

b

2 ω2
n − 1􏼐 􏼑 σ2 − 4􏼐 􏼑

sin 2 τ⎡⎢⎣ ⎤⎥⎦ + . . . .

(22)

%e force of the spring will be

F � k d − l +
c

ω2
n

􏼠 􏼡 +
b

ω2
n − 1

sin τ − μ
a
2

h ω2
n − 4􏼐 􏼑

cos 2 τ + . . .⎡⎢⎣ ⎤⎥⎦.

(23)

4. Numerical Considerations

In this section, we treat the previously mentioned models by
nine programs for obtaining both the analytical and the
numerical solutions for different cases of the motions. We
use the fourth-order Runge–Kutta method for obtaining the
numerical solutions for systems of motions of the different
problems. So, we obtain five tables of results and 33 figures
for a description of the motions at different values of the

pendulum parameters. %ese tables and figures describe the
behavior of the motion and the influence of the different
parameters on the solutions.

4.1. >e Numerical Considerations of the First Model. In this
section, we discuss the analytical and numerical solutions for
the first model mentioned above. We compare these solu-
tions, and we will discuss the maximum value of the angleΦ.
We divide the problem into the following cases.

4.1.1.>e First Case (] � 0 and μ � 5000). Since ] � a/b � 0,
then a � 0, that is, the pendulum moves horizontally on a
straight line of length 2b [13]. From Table 1, we note that the
amplitude of the vibrations and the angular velocity decrease
whenΩ increases. Also, we note from the table that for every
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value ofΩ there is a great value for Φ (the angle between the
pendulum rib and the vertical axis). %is case is represented
(see Figure 2).

At the initial moment (τ � 0), the pendulum is sus-
pended at point O and its rib is represented by the vector
OB , i.e., (Φ � 0). %e angle Φ increases counterclockwise
until it reaches the maximum value when the suspension
point is at A(τ � π/2). At τ � π the suspension, the point
returns to the initial position O. %en, the angle Φ increases
in a clockwise direction until it reaches its maximum value at
the point A′(τ � 3π/2). %e suspension point will then be
directed towards the point O until it reaches the initial
position (τ � 2π). In this case, the graphical representations
of analytical and numerical solutions appear (see Figures 3
and 4).

4.1.2.>e Second Case (] � 1 and μ � 5000). In this case, ] �

a/b � 1 and then a� b; this means that the point of sus-
pension of the pendulum moves on a circle of radius a. It is
obvious from Table 2 that when the value ofΩ increases, the
angular velocity decreases and the amplitude of the vibra-
tions decreases. %e movement of the suspension point on
the circumference of a circle can be illustrated (see Figure 5).
At the initial moment (τ � 0), the point of suspension of the
pendulum is at S and its rib is represented by the vector SB ,
i.e., (Φ � 0). %en, the pendulum’s suspension point moves
counterclockwise towards point A. %e angle Φ increases
counterclockwise until it reaches the maximum value when
the suspension point is at A(τ � π/2). When the suspension
point reaches the point S′(τ � π), the angle Φ becomes zero
and the pendulum rib becomes vertical again. %en, the
angle Φ increases until it reaches its maximum value at the
point A′(τ � 3π/2). After that, the suspended point will be
directed towards point S until it reaches the primary position
(τ � 2π) and completes the period. As for this case, the
graphical representations for both analytical and numerical
solutions appear (see Figures 6 and 7).

Table 1: φmax of the first case (] � 0, μ � 5000).

Ω φmax
analytical φmax

numerical

2.1 0.2933488 0.2930785
2.3 0.2331735 0.2331879
2.5 0.1905422 0.1905665
2.7 0.1590564 0.1590581
2.8 0.146291 0.1463126
3.1 0.1160335 0.1161796
3.3 0.1010852 0.1011365
3.5 0.08887673 0.08893137
3.7 0.07879558 0.07887411
4.1 0.06324854 0.06334555
4.3 0.0571738 0.05724992
4.5 0.05194685 0.05202674
4.7 0.04741498 0.0474991
5.2 0.03840205 0.03847147
5.4 0.03551105 0.03557474

b AA′

B

ℓ

O b

B

ℓ

B

ℓ ΦmaxΦmax

Figure 2: Description of the pendulum motion for case (i) in
Section 4.1.

0 100 200 300
τ

-0.4
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0
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φ

Ω = 2.1
Ω = 2.3

Figure 3: %e analytical solutions for case (i) in Section 4.1.
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Figure 4: %e numerical solutions for case (i) in Section 4.1.
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4.1.3. >e >ird Case (] � 1.5 and μ � 5000). It is clear
from Table 3 that the amplitude of the vibrations de-
creases when the value of Ω increases and thus the an-
gular velocity decreases. %e graphical representations of
the analytical and numerical solutions are shown (see
Figures 8 and 9).

4.1.4. >e Fourth Case (Ω � 1.5 and μ � 1250). Table 4
shows the analytical and numerical solutions of different
values of ] belonging to the period [0, 1]. From Table 4, we
conclude that the higher the value μ makes the smaller the
amplitude of the vibrations. %e graphical representations
for this case are obtained (see Figures 10 and 11).

4.1.5. >e Fifth Case (Ω � 2.5 and μ � 1250). Table 5 gives
the analytical and numerical solutions for different values of
] belonging to the period [0, 1]. We conclude that the higher

Table 2: φmax of the second case (] � 1, μ � 5000).

Ω φmax
analytical φmax

numerical

2.1 0.3213152 0.3233396
2.3 0.2336605 0.2339807
2.5 0.19085 0.1909746
2.7 0.159339 0.1591531
2.8 0.1466192 0.1466426
3.1 0.1156941 0.1158647
3.3 0.1010075 0.1010626
3.5 0.08884358 0.0889034
3.7 0.07877824 0.07885911
4.1 0.06324223 0.06336687
4.3 0.05716965 0.0572462
4.5 0.05194401 0.05202422
4.7 0.04741298 0.0474967
5.2 0.03840113 0.03846995
5.4 0.03551035 0.03557364

S

S′

B

ℓ

b AA′

ΦmaxΦmax
B B

ℓℓ

ℓ

O b

Figure 5: Description of the pendulum motion for case (ii) in
Section 4.1.
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φ
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Figure 6: %e analytical solutions for case (ii) in Section 4.1.
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φ
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Figure 7: %e numerical solutions for case (ii) in Section 4.1.

Table 3: φmax of the third case (] � 1.5, μ � 5000).

Ω φmax
analytical φmax

numerical

2.1 0.3433021 0.3466265
2.3 0.2382122 0.2389854
2.5 0.1912348 0.1914796
2.7 0.1596922 0.1597867
2.8 0.1470294 0.1470511
3.1 0.1152698 0.1154751
3.3 0.1009105 0.1009705
3.5 0.08880214 0.08886883
3.7 0.07875657 0.07884256
4.1 0.06323432 0.06333476
4.3 0.05716445 0.0572428
4.5 0.05194046 0.05202207
4.7 0.04741048 0.04749489
5.2 0.03839997 0.03846891
5.4 0.03550947 0.03557289

0 100 200 300
τ

-0.15
-0.1

-0.05
0

0.05
0.1

0.15

φ

Ω = 2.8
Ω = 3.1

Figure 8: %e analytical solutions for case (iii) in Section 4.1.
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the value ], the slower the amplitude of the vibrations will
increase. From Table 5, we find that the difference between
numerical and analytical results is very small and can be
neglected. Moreover, the graphic representations of this case
are shown (see Figures 12 and 13).

4.2. >e Numerical Considerations of the Second Model.
%is section will be devoted to verifying the accuracy of the
analytical solutions resulting in the secondmodel mentioned
above by using computer programs. %ese solutions will be
represented graphically in several cases as follows.

4.2.1. >e First Case (b � 0 and μ � 2500). Since b � 0, this
means that the movement of the pendulum is horizontal
along its longitude 2a. %is is evident from the graphical
representations of the analytical solutions shown through
the graphs (see Figures 14–16). In this case, we note the
stability of the solutions that we obtained as evidence (see
Figures 17–19).

4.2.2. >e Second Case (a � b and μ � 2500). In this case,
the point of suspension of the pendulum moves over a circle
of radius a. We obtain the graphic representations of the
analytical solutions in a suitable manner of the case (i) (see
Figures 20–22).We note the stability of solutions in this case,
as evidenced (see Figures 23–25).

0 100 200 300
τ

-0.15
-0.1

-0.05
0

0.05
0.1

0.15

φ

Ω = 2.8
Ω = 3.1

Figure 9: %e numerical solutions for case (iii) in Section 4.1.

Table 4: φmax of the fourth case (Ω � 1.5, μ � 1250).

] φmax
analytical φmax

numerical

0 0.8000296 0.8000393
0.1 0.8000292 0.800032
0.2 0.800028 0.8000173
0.3 0.8000258 0.7998232
0.4 0.8000228 0.7998127
0.5 0.8000191 0.799799
0.6 0.8000144 0.799782
0.7 0.8000089 0.7997616
0.8 0.8000026 0.7997379
0.9 0.7999954 0.7997114
1 0.7999873 0.7996807

0 100 200 300
τ

-0.1

-0.05

0

0.05

0.1

φ

v = 0
v = 1

Figure 10: %e analytical solutions for case (iv) in Section 4.1.
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τ

-0.1

-0.05
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φ

v = 0
v = 1

Figure 11: %e numerical solutions for case (iv) in Section 4.1.

Table 5: φmax of the fifth case (Ω � 2.5, μ � 1250).

] φmax
analytical φmax

numerical

0 0.1904803 0.190602
0.1 0.1904805 0.1906011
0.2 0.1904811 0.1906013
0.3 0.1904821 0.1906015
0.4 0.1904834 0.1906024
0.5 0.1904851 0.1906038
0.6 0.1904873 0.1906058
0.7 0.1904897 0.1906083
0.8 0.1904926 0.1906113
0.9 0.1904959 0.1906149
1 0.1904996 0.1906189

0 100 200 300
τ

-0.06
-0.04
-0.02

0
0.02
0.04
0.06

φ

v = 0
v = 1

Figure 12: %e analytical solutions for case (v) in Section 4.1.
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Figure 14: %e analytical solution β for case (i) in Section 4.1.
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Figure 13: %e numerical solutions for case (v) in Section 4.1.
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Figure 15: %e analytical solution Θ for case (i) in Section 4.2.
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Figure 16: %e analytical solution Φ for case (i) in Section 4.2.
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Figure 17: %e stability phrase β′ and β for case (i) in Section 4.2.
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Figure 18: %e stability phrase Θ′ andΘ for case (i) in Section 4.2.
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Figure 19: %e stability phrase Φ′ andΦ for case (i) in Section 4.2.

14685

14690

14695

14700

14705

14710

β

100 200 3000
τ

Figure 20: %e analytical solution β for case (ii) in Section 4.2.
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Figure 22: %e analytical solution Φ for case (ii) in Section 4.2.
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Figure 21: %e analytical solution Θ for case (ii) in Section 4.2.
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Figure 23: %e stability phrase β′ and β for case (ii) in Section 4.2.
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Figure 24: %e stability phrase Θ′ andΘ for case (ii) in Section 4.2.
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Figure 25: %e stability phraseΦ′ andΦ for case (ii) in Section 4.2.
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Figure 27: %e analytical solution Θ for case (iii) in Section 4.2.
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Figure 28: %e analytical solution Φ for case (iii) in Section 4.2.
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Figure 26: %e analytical solution β for case (iii) in Section 4.2.
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4.2.3.>e>ird Case (b � 2a and μ � 2500). In this case, the
pendulum’s suspension point moves on the ellipse of its
largest and minimum axial as a and b, respectively. Con-
cerning this case, the graphic representations of the ana-
lytical solutions appear suitably for case (i) (see

Figures 26–28).We note the stability of solutions in this case,
as evidenced (see Figures 29–31).

4.2.4. >e Fourth Case (a � 0). %e pendulum, in this case,
moves vertically along a vertical line along its length, and the
graphic representations of the analytical solutions are rep-
resented (see Figure 32). In this case, we note the stability of
the solutions as shown (see Figure 33). In this case, we
deduce that Θ(τ) � Φ(τ) � 0.

5. Conclusions

Two new models have been introduced for the movement of
the pendulum in the presence of new primary conditions
that are not previously defined. Poincare’s method fails to
solve these problems in the presence of the new condition so
we must search for a new technique that matches these
changes. A large parameter was defined to achieve a large
parameter method for solving this problem under the new
assumptions. %e equations for the motility of the models
are deduced and solved using the large parameter method
for obtaining the solutions analytically. %e fourth-order
Ronge–Kutta numerical method is presented for solving the
system of equations numerically through computer pro-
grams. Also, numerical and analytical solutions were
compared by 5 tables and 33 graphs. It turned out that the
analytical solutions conform to the numerical solutions,
which proves the validity of the serious methods used in the
solutions. %e solutions stabilities are given by the phase
diagrams procedure. %is paper is a generalization of many
previous works.%e twomodels are classified into nine cases
depending on the parameters of the motion. From this, we
conclude that the cases studied were implemented in re-
search [6, 7, 10, 13]. %ere are generalized cases of the
pendulum movement because of introducing the coherent
body instead of the particle as well as the movement on an
ellipse instead of moving on a circle and taking a flexible wire
instead of a string. %e previous solutions are obtained as
special cases of solutions in this paper. We also conclude the
following points:

(1) %e approximate periodic solutions are obtained
using the large parameter method because Poincare’s
technique is failed in this case
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-80000 -60000 -40000 -20000 0 20000 40000 60000 80000
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Figure 30:%e stability phraseΘ′ andΘ for case (iii) in Section 4.2.
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Figure 29: %e stability phrase β′ and β for case (iii) in Section 4.2.
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Figure 31:%e stability phraseΦ′ andΦ for case (iii) in Section 4.2.
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Figure 32: %e analytical solution β for case (iv) in Section 4.2.
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Figure 33: %e stability phrase β′ and β for case (iv) in Section 4.2.
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(2) %e amount of angular velocity in the case of
nonresonant vibrations must take no integer values
to avoid the singularity in the solution

(3) %e approximate periodic solutions were obtained in
terms of periodic functions.
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In this work, we introduce a new non-Shilnikov chaotic system with an infinite number of nonhyperbolic equilibrium points. )e
proposed system does not have any linear term, and it is worth noting that the new system has one equilibrium point with triple
zero eigenvalues at the origin. Also, the novel system has an infinite number of equilibrium points with double zero eigenvalues
that are located on the z-axis. Numerical analysis of the system reveals many strong dynamics. )e new system exhibits
multistability and antimonotonicity. Multistability implies the coexistence of many periodic, limit cycle, and chaotic attractors
under different initial values. Also, bifurcation analysis of the system shows interesting phenomena such as periodic window,
period-doubling route to chaos, and inverse period-doubling bifurcations. Moreover, the complexity of the system is analyzed by
computing spectral entropy. )e spectral entropy distribution under different initial values is very scattered and shows that the
new system has numerous multiple attractors. Finally, chaos-based encoding/decoding algorithms for secure data transmission
are developed by designing a state chain diagram, which indicates the applicability of the new chaotic system.

1. Introduction

In recent decades, particular attention has been paid to the
chaos that arises in nonlinear dynamic systems. )is is due to
various potential applications of chaotic systems in science and
engineering fields. With special attention accorded to chaotic
dynamics, many researchers strive to develop new chaotic
systems with interesting properties and complex behaviors
SPROTT [1]. Recently, some chaotic systems are reported with
different characteristics of equilibrium points Sprott [2], with
no equilibria Zhang et al. [3], only stable equilibrium point
Deng et al. [4], with different shapes of equilibria Pham et al.
[5], and with a line equilibrium Jafari and Sprott [6].

)e equilibrium point of the system is defined as the
simplest possible solution of its differential equation
_x(t) � f((x)) � 0. )e equilibrium points could be hyper-
bolic or nonhyperbolic. If all eigenvalues of the corresponding
Jacobian matrix have nonzero real parts, the equilibrium of
the system is hyperbolic. In these systems, the existence of

chaos is proved by using the Shilnikov theorem Lawande and
Maiti [11]. According to the Shilnikov theorem, a system
must have at least one equilibrium point of saddle-focus type
with three eigenvalues c, δ ± iω that should satisfy cδ < 1,
|c|> |δ|> 0, and ω≠ 0. Suppose that there are homoclinic/
heteroclinic orbits; then, chaos can be shown to exist (Kingni
et al. [12]; Leonov [13]). In contrast, if at least one of the real
parts of the corresponding eigenvalues is zero, the equilib-
rium is nonhyperbolic Izhikevich [14]. So far, a few chaotic
systems with nonhyperbolic equilibrium points, namely, non-
Shilnikov chaotic systems, are formulated and studied (Li and
Xiong [10]; Cai et al. [8]; Singh and Roy [15]). For example, a
new Lorenz-like chaotic system with two nonhyperbolic
equilibrium points of the type double zero eigenvalues is
introduced in KamdemKuate et al. [7]. Also, a gridmultiwing
chaotic system with nonhyperbolic equilibria is investigated
in Zhang et al. [3]. In Chen et al. [9], a 3D chaotic system with
only one equilibrium point at the origin is proposed that has
three zero eigenvalues. )e reported non-Shilnikov chaotic
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systems with various nature of equilibrium points and several
types of nonlinearities are given in Table 1. To the best of our
knowledge, there has been little research on nonhyperbolic
equilibria with triple or double zero eigenvalues in dynamical
systems.

In the investigation of chaos theory, it is important to
design new chaotic systems with some interesting phenomena
such as period-subtracting phenomenon by Zolfaghari-Nejad
et al. [16], multistability Dong et al. [17], antimonotonicity Liu
and Iu [18]; the phenomena of asymmetric bistability by Li
et al. [19]; hidden chaotic attractor by Jahanshahi et al. [20];
and some features related to their equilibria. A system is called
multistable if there are different coexisting attractors in the
constant parameters and various initial conditions by Jafari
and Kapitaniak [21]. It is generally believed that the system
with coexisting attractors has better flexibility and plasticity in
performance (Lai et al. [22]). In Li and Sprott [23], Pisarchik
and Grebogi [24], and Li et al. [25], the authors gave a
comprehensive analysis of the coexisting attractors in Lorenz
systems. In Lai et al. [22], the authors consider creating a new
autonomous chaotic system with many coexisting attractors.
)e system in Lai et al. [22] generates multiple coexisting
attractors by increasing the number of equilibrium points, but
no application is mentioned for them. It is well recognized
from different works that multiple coexisting attractors de-
pend on the number of equilibrium points. As a result, some
periodic functions like sine can be used to design chaotic
systems with multiple coexisting attractors such as Lai et al.
[26] and Li et al. [25].

)e phenomenon of antimonotonicity is observed in
various nonlinear systems such as Kengne et al. [27], Kingni
et al. [28], and Signing et al. [29]. In this phenomenon,
periodic orbits can be yielded from period-doubling bi-
furcation and then annihilated via reverse period-doubling
as a control parameter is slowly altered.

In general, chaotic systems have a linear term in addition
to a nonlinear one Kengne et al. [30]. Chaotic systems
without linear terms have rarely been investigated in the
literature Zhang et al. [31], Xu and Wang [32], Pham et al.
[33], and Vaidyanathan [34]. A simple chaotic system
without linear terms is proposed in Pham et al. [35]. Fur-
thermore, a chaotic system with only quadratic and constant
terms is introduced in Mobayen et al. [36].

A chaotic system is used in many engineering applica-
tions in Guanrong [37]. )e most valuable application is
secure communication. During the past few years, many
chaotic substitution boxes (S-box) have been proposed such
as Çavuşoğlu et al. [38], Wang et al. [39], Garćıa-Guerrero
et al. [40], and Ullah et al. [41]. S-box is the most basic unit in
encryption algorithms (Mobayen et al. [42]). On the other
hand, some applications have used chaotic systems to
achieve secure data transmission as in Gan et al. [43],
Tirandaz and Karami-Mollaee [44], Dhall et al. [45], and
Nesa et al. [46] and image encryption as in Shaukat et al.
[47]. Data confidentiality is obligatory during transmission,
especially in the military, medical, and financial applications
(Noura et al. [48]). In this work, we propose chaos-based
encoding/decoding algorithms for a secure data transmis-
sion scheme using the novel chaotic system.

In this paper, a new three-dimensional chaotic systemwith
only nonhyperbolic equilibrium points is introduced. )e
main characteristics of the system can be summarized as
follows: (i) the novel system has triple zero eigenvalues at the
origin; (ii) the system has many equilibria with double zero
eigenvalues; (iii) the chaotic system does not have any linear
term; (iv) the new system has no reflection symmetry property
about any axis; (v) the phenomenon of infinite coexistence of
multiple periodic, limit cycle, and chaotic attractors is ob-
served; (vi) this system can exhibit antimonotonicity phe-
nomena such as chaotic bubbles and period-2 bubbles; (v) it
has very scattered spectral entropy (SE) distribution under
different initial values. Furthermore, we address chaos-based
encoding and decoding algorithms for a secure data trans-
mission scheme by designing a state chain (SC) diagram,
which indicates the applicability of the new chaotic system.

)e rest of this paper is organized as follows. In Section 2,
we describe the chaotic mathematical model and analyze the
equilibrium points. In Section 3, we will show the nonlinear
characteristics of the system in terms of bifurcation diagrams,
Lyapunov exponents (LEs) spectrum, phase portrait, and
spectral entropy (SE) distributions. In Section 4, we describe
the details of the engineering application of the proposed
system comprising chaos-based encoding/decoding algorithms
for a secure data transmission scheme.)e performance of this
scheme is analyzed in Section 5. Finally, the conclusion of the
current research work is summarized in Section 6.

2. Description and Analysis of the
Proposed System

2.1..e SystemModel. )e structure of the proposed system
is as follows:

_x � −p1x
3

+ p2y
3

+ p3xz
2
,

_y � p4 sin(xy − z) − p5x
3
,

_z � p6 sin(xyz) + p7 sin(x),

(1)

where (x, y, z) are state variables and pi (i � 1, 2, . . . , 7) are
(real) positive parameters of the system. System (1) is a third-
order autonomous with seven nonlinearity terms. Notice
that the nonlinearity terms are either sine or cubic. It is
clearly seen the chaotic system does not have any linear or
constant term. System (1) has no reflection symmetry
property about any axis, which indicates the system could
not have bistability or symmetric attractors.

When the parameters are set to (p1, p2, p3, p4,

p5, p6, p7) � (3.964, 7, 7, 5, 4.5, 2.9, 1) and the initial value is
set as (x0, y0, z0) � (−1, −1, −1), the proposed system gen-
erates a chaotic attractor. In this case, the three Lyapunov
exponents are calculated as LE1 � 0.2603, LE2 � 0.002, and
LE3 � −5.491 (by using ode45 numerical solver and the
simulation time T � 1000 s). At this initial value, the frac-
tional Kaplan-York dimension is DKY � 2 + ((LE1 + LE2))/
(|LE3|) � 2.0478, which confirms the chaotic behavior
(DKY > 2). Figure 1 shows the corresponding phase portraits
of this strange attractor in x-y, x-z, and y-z planes, from left
to right, respectively.
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2.2. Analysis of Equilibrium Points. Suppose that
P(x∗, y∗, z∗) is the equilibrium point of the system (1); then,

−p1 x∗( 􏼁
3

+ p2 y∗( 􏼁
3

+ p3x∗ z∗( 􏼁
2

� 0,

p4 sin x∗y∗ − z∗( 􏼁 − p5 x∗( 􏼁
3

� 0,

p6 sin x∗y∗z∗( 􏼁 + p7 sin x∗( 􏼁 � 0.

(2)

We have a system with nonlinear equations and three
unknowns. Nonlinear equations cannot be solved analyti-
cally in general. We used Newton’s method for solving this
system, which involves using the Jacobian matrix. Newton’s
method is one of the most popular numerical methods and is
referred to in Courtney [49]. By solving equation (2), we
have x∗ � y∗ � 0 and z∗ � kπ (k � 0, ±1, ±2, ±3, ±4, . . .). It is
clear that one equilibrium point is located at the origin, and
the others are located on the z-axis. )e Jacobian matrix is
obtained by the linearizing system (1) at P(x∗, y∗, z∗) as

J �

p3z
2
∗ 0 0

0 0 −p4 cos z∗( 􏼁

p7 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

)e characteristic equation of J is

λ3 − p3 z∗( 􏼁
2λ2 � 0, (4)

Equation (4) has triple zero eigenvalues in its equilib-
rium point at the origin. )is equilibrium point is non-
hyperbolic and characterized by a 3D center manifold. Also,
the corresponding eigenspace gives rise to a slow manifold.
In Jiang et al. [50], Gamero et al. [51], and Freire et al. [52],
some methods have been suggested to derive the normal
forms on the center manifold, which can be used to study the
dynamics near triple zero eigenvalues. )e stability of this

equilibrium point cannot be determined under the Shilnikov
criteria. So, the stability of this case is investigated nu-
merically by tracking the final state of the system with initial
values around the equilibrium point (Faghani et al. [53]).
)e result of this investigation shows that the origin is
unstable.

)e characteristic equation (4) indicates that the Jaco-
bian matrix (3) has double zero eigenvalues (λ1,2 � 0) and
one nonzero eigenvalue λ3 � p3k

2π2 for the other equilib-
rium points. λ3 is always positive since p3 is a positive real
parameter. So, these equilibria (P(0, 0, kπ), k ∈ Z and k≠ 0)
are nonhyperbolic and characterized by a 2D center man-
ifold and 1D stable manifold. )e numerical investigations
show that all equilibrium points are unstable. An equilib-
rium point is stable when trajectories starting in its prox-
imity remain close or converge toward it.

3. Numerical Analysis of the New System

In this section, we will show the dynamical behaviors of
system (1). )e use of well-known tools such as bifurcation
diagram, Lyapunov Exponents (LEs) spectrum, phase por-
trait, and SE complexity helps us to demonstrate the chaotic
behavior of the proposed system. )e largest LE is an im-
portant tool for detecting chaos. SE algorithm is a powerful
measure of the chaotic characteristics of the system Liu et al.
[54]. Here, all the simulations are made by using numerical
tools based on an ode45 solver with a time step fixed at
Δt � 0.001 s.

3.1. Bifurcation Behavior. In this subsection, the bifurcation
diagrams and the corresponding LE spectrums with respect
to the control parameters such as p1, p5, p6, and p7 have
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Figure 1: Phase portraits of the system with (p1, p2, p3, p4, p5, p6, p7) � (3.964, 7, 7, 5, 4.5, 2.9, 1) and initial value (−1, −1, −1) projected on
(a)x-y plane, (b)x-z plane, and (c)y-z plane.

Table 1: Type of nonlinearities in non-Shilnikov chaotic systems with various nature of their equilibria.

Reference of papers Type of nonlinearities Nature/number of equilibrium points
Kamdem Kuate et al. [7] Absolute value and signum Double zero eigenvalues/2
Cai et al. [8] Quadratic and absolute value One pair of pure-imaginary eigenvalues/Infinite
Chen et al. [9] Quadratic Triple zero eigenvalues/1
Li and Xiong [10] Quadratic and exponential One pair of pure-imaginary eigenvalues/2
)is work Sine and cubic Double and triple zero eigenvalues/Infinite
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been investigated in detail. At first, to reveal the dynamic
behaviors of system (1), we consider the parameter
p1 ∈ [3.92, 4.1]. For the parameters (p2, p3, p4,

p5, p6, p7) � (7, 7, 5, 4.5, 2.9, 1) and initial value (−1, −1, −1),
the bifurcation diagram and the corresponding LE spectrum
with respect to p1 are shown in Figure 2. When the system
parameter p1 is increased from 3.92 to 4.1, Figure 2(a) shows
that the system changes from chaotic state to periodic state,
alternatively. )ere exists a periodic window in p1 � 3.929,
and we observe a periodic motion with order-5 when
p1 � 3.93. Also, chaotic bubbles are presented in Figure 2(a)
(for p1 ∈ [4.03, 4.1]) that exhibit a complex behavior of the
nonlinear system. In addition, the spectrum of LEs in
Figure 2(b) well matches the bifurcation diagram. As it is
known, when LE1 > 0, LE2 � 0, and LE3 < 0, the proposed
system is in a chaotic state.

When p5 varies from 4.2 to 5.3, the bifurcation diagram
and corresponding Ls spectrum with initial values
(−1, −1, −1) are plotted in Figures 3(a) and 3(c), respectively.
Figure 3(a) shows that the system is alternately changing
from a nonchaotic state to a chaotic state. For some values of
p5, the system has a small positive maximum LE, and the
system is in a weak chaotic state. As shown in Figure 3(c),
there are large fluctuations in the curve, which indicates the
change has a great impact on the dynamical behavior of
system (1).

Also, the bifurcation diagram and LEs spectrum versus
the parameter p6 ∈ [3.94, 4.05] are presented in Figures 3(b)
and 3(d). )e bifurcation diagram in Figure 3(b) shows that
the local maxima of the coordinate z directly illustrate an
important phenomenon. )is phenomenon is period-add-
ing bifurcation, and we observe two sequences that overlap
with each other. In this phenomenon, the oscillation period
successively increases in different sequences by system pa-
rameter alteration.

Let the system parameters be (p1, p2, p3, p4, p5,
p6)� (4.4, 7, 7, 5, 4.5, 2.9) and initial value (−1, −1, −1). )e
bifurcation diagram versus p7 ∈ [0.25, 1.3] is plotted in
Figure 4(a). As it can be seen from this diagram, there are
disconnected chaotic and periodic areas. For more details
and revealing more interesting phenomena, the red frames
of the bifurcation diagram of Figure 4(a) are magnified in
Figure 5 and Figures 4(b) and 4(c), respectively. In the next
subsection, we address the period-2 bubbles that are ob-
served on the left side of the graph in Figure 4. Chaotic
motions, periodic windows, and period-doubling bifurca-
tion are also seen in Figure 4(b). )e intermittent transition
from period-1 motion to chaotic motion occurred in p7 �

0.9881 (In Figure 4(c)). Also, the period-3 window occurs
near p7 � 1.02 after reverse period-doubling. Moreover, the
route to chaos via period-doubling bifurcation is strongly
visible in Figure 4(c).

3.2. Antimonotonicity. )e phenomenon of anti-
monotonicity has been found in many dynamical systems
including 3D autonomous systems without linear terms in
Kengne et al. [30]. In this phenomenon, periodic orbits can
be created and then destroyed via reverse period-doubling

bifurcation as a control parameter is varied (Zolfaghari-
Nejad et al. [16]). In order to demonstrate this phenomenon
in system (1), we have illustrated some bifurcation diagrams
as the parameter p7 is varied in the range 0.52<p7 < 0.75 for
some discrete values of the control parameter p6. Sample
results are shown in Figure 5. In Figure 5(a), four period-2
bubbles are observed in p6 � 2.9 (the left red frame in
Figure 4(a)). Also, we have stable period-4 bubbles at
p6 � 2.97 (Figure 5(b)). Similarly, more bubbles are created
for p6 � 3.01 (Figure 5(c)), and an infinite tree finally occurs
at p6 � 3.15 (full Feigenbaum remerging tree in Figure 5(d)).

3.3. Multistability. In order to uncover the coexisting
characteristic, we select the system parameters as (p1, p2, p3,
p4, p5, p6, p7)� (4, 7, 7, 5, 4.785, 4, 1), and let the initial value
be (−1, −1, z0). Figure 6 presents the phase portraits of eight
coexisting attractors of system (1). However, they are
samples of an infinite number of attractors which form along
the z-axis in phase space and could be detected with other
initial values.

)e coexistence of multiple periodic, limit cycle, and
chaotic attractors with different topologies is one of the most
attractive properties considered in this work. )e corre-
sponding bifurcation diagram versus z0 as a control pa-
rameter is provided in Figure 6(a), which can be observed as
multistability in system (1). When z0 � −1, we can observe a
strange attractor in Figure 6(c). For the initial value
z0 � −1.1, the existence of the order-3 period is proven in
Figure 6(d). In Figures 6(e) and 6(f ), order-1 period, limit
cycle, and chaotic attractors coexist together for selected
initial values, and they are asymmetric.

3.4. Spectral Entropy Analysis. Spectral entropy has been
used to determine the unpredictability of time-series Kengne
et al. [30]. Spectral entropy is defined as

SE(N) � − 􏽘
N

k�1
Pk ln Pk, (5)

where Pk is given by

Pk �
λk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽐i λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2. (6)

Here, |λk|2 is the Fourier power spectrum of a time-series
at frequency λk Legendre and Legendre [55].

For the purpose of revealing the effect of the two pa-
rameters p1 and p6 on the chaotic behavior of system (1), we
plot the spectrum of SE complexity as Figure 7(a). Fixing
(p2, p3, p4, p5, p7)� (7, 7, 5, 5.005, 1), the initial value (−1,
−1, −1), and varying p1 and p6 from 3 to 5, SE distribution of
the system is obtained as Figure 7(a). )e darker areas are
separated by a curved line. Also, a curved line is observed in
lighter areas where around it the more chaotic state and
nonchaotic state are repeated alternatively. We use the SE
complexity algorithm in parameter selection for the novel
system in real applications.
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Figure 2: Bifurcation diagram and LEs spectrum of system (1) with the initial value (−1, −1, −1) and
(p1, p2, p3, p4, p5, p6, p7) � (p1 ∈ [3.92, 4.1], 7, 7, 5, 4.5, 2.9, 1). (a) Bifurcation diagram; (b) LEs spectrum.
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Figure 3: Bifurcation diagrams and LEs spectrum of system (1) with the initial value (−1, −1, −1) and
(p1, p2, p3, p4, p5, p6, p7) � (4, 7, 7, 5, 1). (a) Bifurcation diagram with respect to p5 (p5 ∈ [4.2, 5.3], p6 � 2.9). (b)Bifurcation diagram with
respect to p6 (p5 � 4.5, p6 ∈ [2.94, 4.05]). (c) )e corresponding LE spectrum with (a). (d) )e corresponding LE spectrum with (b).
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Figure 6: Sample phase portraits of system (1) under (p1, p2, p3, p4, p5, p6, p7) � (4, 7, 7, 5, 4.785, 4, 1), x0 � −1, y0 � −1 showing the
occurrence of multiple attractors. (a) Bifurcation diagram of the system versus z0, (b) period-1 cycle, (c) spiral chaotic attractor, (d) period-3
cycle, (e, f ) period-1 cycle with different topologies, (g) limit cycle, (h) period-1 cycle, and (i) limit cycle.
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We can see the SE distribution of system (1) in y0 − z0
plane in Figure 7(b). Here, the system parameters remain
unchanged and p1 � 4, p6 � 4, and x0 � −1. )e SE com-
plexity is computed when z0 ∈ [−1.5, −0.25] and
y0 ∈ [0, 1.25]. Figure 7(b) reflects the SE distribution under
different initial values of y0 and z0. )e color distribution in
y0 − z0 plane is very scattered which demonstrates that the
novel system is very sensitive to the initial values. Other than
small areas with lighter colors at the top of the plane, in the
entire area, numerous small black spots are diffused.
Moreover, this figure illustrates that different initial values
have a great impact on the complexity of system (1). Also, we
observe that the system has multiple coexisting attractors.

4. A Secure Data Transmission Scheme Using
the Proposed Chaotic System

In this section, we give a complete description of the pro-
posed secure data transmission scheme. Chaotic systems are
used as one of the potential alternative encoding techniques
in secure data transmissions. Chaos-based encoding/
decoding algorithms offer high flexibility in secure data
transmission schemes due to numerous numbers of chaotic
systems and many possible secret keys. However, chaotic
systems are often applied in designing pseudorandom
number generators (PRNGs) with a high degree of ran-
domness as the most basic unit in secure transmission
schemes. In this work, the proposed chaotic system has been
used to design a new encoding/decoding algorithm with an
evolutionary approach.

Deterministic secure data transmission schemes have
predictable behavior because there is always only one output
for each constant data. So, these schemes can never amount
to the level of high security. In contrast, a probabilistic
scheme produces different outputs at different times even
when the algorithm is applied with the same key to the same
input data. As a result, probabilistic secure transmission
schemes possess resistance against chosen-plaintext and
ciphertext-only attacks (Dhall et al. [45]). In this section, we
propose a new inherently probabilistic scheme that provides
high security and has unpredictable behavior.

4.1. Problem Formulation. Figure 8 summarizes the secure
data transmission setup. Suppose Alice wants to send an l-bit
message m � (mi)

l
i�1 ∈ 0, 1{ }l through the public channel to

Bob. She first encodes the message by a chaos-based
encoding algorithm and produces a set of codewords. While
encoding a message, she utilizes the preagreed secret key
which may drive the encoding step when producing code-
words. Codewords c � c0, . . . , cs􏼈 􏼉 are sent through the
channel and inspected by Eve. Suppose Eve wants to un-
derstand the confidential message between Alice and Bob;
however, she does not have the secret key. If codewords are
delivered to Bob, he extracted the message by inverting the
encoding operation via a chaos-based decoding algorithm.

In this work, chaos-based encoding/decoding algorithms
are realized by applying a designed SC diagram using dif-
ferent steady states. )ere are several possible final steady

states for a set of parameters in chaotic systems withmultiple
coexisting attractors. )e final state depends on the initial
values of the system and is determined by an evolutionary
rule that the system goes from the current state to which
state. In these systems, the SE distribution of the system
under different initial values is very dispersive (see
Figure 7(b)). Our main idea for encoding a message is also
the use of SE complexity distribution.

)e SC diagram determines the relationship between the
steady states of the system andmessage bits. Figure 9 shows a
simple designed SC diagram. In this structure, three final
states A, B, and C are considered. Each edge is labeled with
qi ∈ 0, 1{ }, where it shows one bit of message m. For each bit
of the message, the sender generates the corresponding
codeword, so that the chaotic system evolves into a final
steady state in the receiver. Also, it should be noted that
when assigning qi, to (from) each state, at least one “0” and
one “1” should be entered (be exited). )e assignment
process of qi to edges is pseudorandom and can be con-
sidered as a part of the secret key. We have different paths
through the SC diagram that lead all paths toward a specified
message. )is is due to the existence of several possible final
steady states and many different initial values for the evo-
lution of the system. )e number of paths varies depending
on the length of the message, the number of considered
states, and the number of initial values for the realization of
each state.

)e final steady states A, B, and C can be obtained under
different initial values. For instance, Figure 10 indicates three
different states obtained by y0 ∈ [−1.5, −0.25] and
z0 ∈ [0, 1.25], which reflects the SE distribution of system
(1). )e system parameters and x0 are fixed as shown in
Section 3.4. Figure 10(a) shows the dispersion of SE≤ 0.55
with black dots (state A). )e state B is defined as
0.55< SE< 0.7 (Figure 10(b)), and state C is obtained by
SE≥ 0.7 as shown in Figure 10(c). As is shown in these
figures, there are many initial values for the realization of
each state. Also, the distribution of these initial values in
each state is random and unpredictable.

4.2. Algorithm Description. )e proposed algorithms for the
encoding and decoding procedure are described in Figure 11
using pseudocode and based on the SC diagram of Figure 9. For
the decoding procedure, we need to knowhow to label the edges
in the SC diagram (qi).)erefore, we are able to reconstruct the
paths of the SC diagram in the receiver. As mentioned, the
process of assigning the labels is considered as a part of the
secret key shared between the sender and the receiver.

In this construction, the length of codewords can be
n ∈ 4, 8, 16, . . .{ } according to the SC diagram. )e code-
words refer to the initial value that creates a determined
state. )e set of codewords c � c0, . . . , cs􏼈 􏼉 generated for
each message can be represented as a path through the SC
diagram. So, different sets of codewords can be sent each
time for a fixed message. In this section, we first describe the
encoding/decoding algorithms in their general form, and
later, in Section 4.2.1, we give two simple examples for better
understanding.
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In Algorithm 1 of Figure 11 (Encoding procedure), the
SE complexity of the chaotic system (1) under different
initial values is first computed, and then one codeword will
be assigned to each initial value. Also, the states A, B, and C
are set based on computed spectral entropy. In general, the
message m is divided into equal blocks b � b1, . . . , bs􏼈 􏼉. In
fact, the encoding process is done in block form. Based on
the SC diagram in Figure 9, there are three steady states. So,
the length of each block is equal to one, and each block
represents one bit of the message (l � s).

In the following, one state is randomly selected named as
the current state. Depending on the current state, one
codeword is randomly selected (c0). As we explain this
procedure, the reader is advised to inspect Algorithm 1 of
Figure 11. According to the SC diagram, the current state,
and the first block of m (b1), the next state is determined.)e
edge between the current state and the next state is labeled
with qi � bj. )en, another codeword is randomly selected
according to the next state (cj). In the following, the next
state replaces the current state, and the process is repeated.

State A with SE ≤ 0.5004
(black colors)
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Figure 10: Dispersion of spectral entropy in the y0 − z0 plane, (a) SE≤ 0.55, (b) 0.55< SE< 0.7, and (c) SE≥ 0.7.
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Figure 8: Model of secure data transmission scheme.
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)is algorithm continues until all message blocks are
mapped to the corresponding codewords.

In the encoding procedure, whenever the state C is
repeated twice times in succession, the algorithm resets.
)erefore, depending on the current block of m, the system
parameters are changed. )en, the SE complexity of system
(1) under initial values is recomputed. )is process causes a
more complicated algorithm. As a result, the proposed al-
gorithm becomes more resistant to eavesdropping attacks.
Finally, a generated set of codewords c � c0, . . . , cs􏼈 􏼉 is sent
to the receiver.

)e decoding procedure (Algorithm 2 of Figure 11)
starts with the first transmitted codeword (c0), and the initial
value (x00, y00, z00) is determined based on it. )en, the SE
complexity of system (1) is calculated by knowing the initial
value and system parameters extracted from the secret key.
SE0 determines the current state. In the same way, the next
codeword specifies the next state. In the SC diagram, the
edge that connects the current state with the next state is
labeled qiand assigns the first block of the message m (b1).
)e next state replaces the current state, and the second
codeword (c1) determines the initial value (x01, y01, z01). By
calculating the SE complexity of the system, the next state is
specified, and the second block of m (b2) is obtained. )e
decoding procedure continues until all blocks of m are
specified. Finally, the blocks b � b1, . . . , bs􏼈 􏼉 concatenates,
and the confidential message is restored.

4.2.1. Two Examples of the Proposed Algorithm. In this
subsection, the algorithm for secure data transmission is
explained with two small examples. Let the labels as-
signment of the edges in the SC diagram of Figure 9 be as
in Figure 12(a). We assume l/s � 1 and thus qi represent
one bit of message m. In the first example, suppose that the

message is m1 � (0, 1, 1, 0). As shown in Figure 12(b), the
encoding algorithm starts with a random selection of one
of the states (A, B, C). Suppose state B is selected.
Depending on state B, one codeword is randomly selected
(c10). )is codeword refers to the initial value which causes
system (1) to evolve to the state B. Two edges are exited
from this state that is labeled “0” (m11). )e first edge
connects state B to state C, and the second edge connects B
to itself. We select one of the states C or B, randomly.
Suppose that state B is selected again as the next state. So,
the second codeword randomly picks up from state B (c11).
Depending on the second bit of m1, one edge is exited
from this state that is labeled “1”. )en, the next state is A,
and c12 is determined. )e state A has two exited edges
labeled “1” that equals to m13. )ese edges connect state A
to the states B and C. With random selection between B
and C, c13 is also determined. If the state C is selected, the
final state will be A, because just one exited edge from C is
labeled “0” (according to the last bit of m1 ). So, c14 is
randomly selected from state A. )e codewords
c � c10, c11, c12, c13, c14􏼈 􏼉 are sent through the public
channel and are delivered in the receiver.

In the receiver, m1 is restored using the secret key by
running Algorithm 2 of Figure 11. In the first step,
(x00, y00, z00) is determined based on the codeword c10, and
then SE0 is calculated for this initial value. Also, based on
SE0, the current state is determined. )e second initial value
(x01, y01, z01) is determined by the codeword c11, and the
corresponding SE of system (1) is computed. Indeed, SE1
specifies the next state. )e edge between the current state
and the next state labeled qi corresponds to the first bit of the
message m1. So, the next state replaces the current state, and
the third initial value resulting from c12 determines the next
state. )is procedure continues until the last bit of m1 has
been extracted.

Figure 11: Pseudocode of the encoding and decoding procedures.
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In the second example, suppose the message is
m2 � (1, 0, 1, 1, 0, 1, 0). Figure 12(c) represents the selected
path through the SC diagram of Figure 12(a) for this ex-
ample. Suppose state C is randomly selected first as the
current state. Depending on state C, one codeword is ran-
domly selected. Two edges that connect state C with itself
and state B are labeled “1” (according to m21). Suppose state
B is selected as the next state. So, the next codeword is
randomly determined based on state B. In this step, state B
replaces the current state, and the second bit m2 (m22)
determines the next state. )en, the next state is B or C.
Suppose the state C is selected, and the third codeword is
randomly chosen from state C. Similarly, m23 determines the
next state. Suppose the next state is state C, again. )erefore,
state C is repeated twice times in succession, and the
encoding algorithm resets. Depending on the current bit of
m2, we change the system parameters based on the preshared
agreement between the sender and the receiver. So, we
recompute SE complexity of system (1) under initial values.
)en, the codeword c3 is randomly chosen from new state C.
)is algorithm continues to encode the other message bits.
At the receiver, depending on the received codewords, the
initial values are extracted, and the system evolves to the
desired states based on the SC diagram. As a result, we can
extract the message m2 correctly on the receiver side.

4.2.2. Extended State Chain Diagram. )e SC diagram in
Figure 9 is an example of a simple model, in which each state
represents the final steady state of the chaotic system (1)
based on the SE complexity. In this model, the length of each
block of m is one, and each edge is labeled with qi equal to
one bit of the message. As a result, the number of trans-
mitted codewords is equal to the number of message bits.
When the message length is short, the number of generated

codewords is low enough. However, by increasing the
message length, the number of codewords is increased. We
can design an extended SC diagram with more states to
improve the efficiency of the proposed secure transmission
scheme. For example, the extended SC diagram in Figure 13
has nine states. )ese states can be obtained by dividing the
SE distribution of Figure 7(b) into nine parts. Each edge is
labeled with ri ∈ 000, 001, 010, 011, 100, 101, 110, 111{ }

which represents different modes for each block of m.
)erefore, one codeword is generated for one block of the
message with a length of three bits. As a result, the number of
generated codewords is decreased than before.

5. Performance Analysis and
Experimental Results

In this section, experimental observations are given to
demonstrate the performance and validity of the proposed
scheme. In Section 4, we described the details of the pro-
posed chaos-based encoding/decoding algorithms for a se-
cure data transmission scheme. As mentioned, the
transferred data through the public channel is a set of
codewords in the form of c ∈ 0, 1{ }n. Each codeword refers to
the initial value which causes system (1) to evolve to the
desired state. At the receiver, with the dynamic evolution of
the chaotic system, the original data is restored based on the
SC diagram. )e proposed scheme is independent of data
type, and we can send any type of confidential digital data
such as image, text, and numeric data. Also, this scheme is
capable of sending data in different paths through the SC
diagram. As a result, the proposed scheme is inherently
probabilistic and provides high security. For the evaluation
of the proposed scheme, we used the extended SC diagram in
Figure 13.
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0reset,
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0 1 1 0
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B A C A
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C
1 0 1 1

B C C C
0

A
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Figure 12: (a) )e state chain diagram with assignments. (b) Selected path through the SC diagram of (a) for m1 � (0, 1, 1, 0). (c) Selected
path through the SC diagram of (a) for m2 � (1, 0, 1, 1, 0, 1, 0).
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5.1. SecurityAnalysis. At first, common security analyses are
evaluated including keyspace and sensitivity to mismatched
keys. )en, statistical analyses are examined.

(1) Keyspace. For the evolution of the dynamical system,
we need to know the parameters of the system. Also, how to
label the edges with qi (or ri) in the SC diagram is required.
)e proposed scheme uses 17 parameters as keys, and these
keys are coded with 17 × 16 bits. )en. the total keyspace is
equal to 2272. )e keyspace of this framework is greater than
2100 and is considered secure (Alvarez and Li [56]). So, the
proposed scheme is infallible against brute force attacks. (2)
Sensitivity to Mismatched Secret Key. We tested the sensi-
tivity of the proposed scheme to the mismatched secret key.
)e dynamical system is very sensitive to small changes in
the value of the parameters. )us, even one wrong bit in the
secret key results in a completely different message at the
receiver. Figure 14 shows the original image and the
extracted image at the receiver with one wrong bit in the
secret key. In this case, one bit of the secret key is randomly
selected and is flipped. (3) Dissimilarity Matrix for a Con-
stant Message. )e proposed chaos-based encoding algo-
rithm is capable of sending data in different paths. Since
there are many initial values for each state, the proposed
algorithm corresponding to the SC diagram has different
paths for data transmission. We consider the message in
general form m � (mi)

l
i�1 ∈ 0, 1{ }l, and a constant secret key

is used. Figure 15 illustrates the dissimilarity matrix for a
constant message with the length of 25, 100, 1000, and 10
000 bytes. For each constant message, the proposed
encoding algorithm is run 100 times. Each time different
codewords are generated. Cosine similarity in Kornar-
opoulos and Efstathopoulos [57] is used to estimate the
similarity between two vectors of codewords. As you see, for
all cases, the Cosine similarity is less than 0.5. (4) Histogram
Analysis. Figures 16(a) and 16(b) show the histogram dis-
tribution graphs of a random plaintext with 3000 bytes and
transmitted data, respectively. As can be seen from

Figure 16(b), the transmitted data has a balanced histogram
distribution and includes all codeword values (0 to 255).
)erefore, the proposed method is robust against frequency
attack.

5.2. Information Entropy. Information entropy exhibits the
discrete probability of random events and can be used to
measure system confusion. )e ideal value for information
entropy should be 8 (Tong et al. [58]). )e system infor-
mation entropy is calculated according to (7), where P(ci) is
the probability of each codeword in the output:

H(c) � 􏽘
c

P ci( 􏼁log2
1

P ci( 􏼁
. (7)

)e information entropy for a given sample message
with the lengths of 5000 bytes is 7.997 2. So, the proposed
chaos-based encoding algorithm has high performance,
because the value of information entropy is close to 8. Also,
the information entropy is more close to eight, if the length
of data increases. For example, if the message length in-
creases to 100 000 bytes, the information entropy is obtained
equal to 7.9991. Furthermore, for a given message with all
zero bits, information entropy equals 7.793 4 (message
length� 5000 bytes). If all bits of the given message are one,
entropy is 7.892 3. )e information entropy of codewords in
these cases is close to 8. As a result, the proposed scheme
generates a set of codewords with more confusion and can
resist information entropy attacks well.

)e results obtained from observations prove the
strength of the scheme against data eavesdropping attacks.
Also, the system parameters change adaptively to the
message content during running the algorithm, which in-
creases the data security by reducing the time available for
statistical attacks on the transmitted codewords. On the
other hand, there are about 6000 different sets of codewords
to send only one byte of constant data corresponding to the
extended SC diagram in Figure 13 (using the same key).
Also, there are many different sets of codewords for data
with more than six bytes length. As a result, the proposed
scheme for secure data transmission is inherently proba-
bilistic and provides high security.

5.3. Comparision. In this section, the proposed scheme is
compared with the existing secure data transmission
methods in recent years. )e comparison is made from four
main perspectives: application of chaos in secure data
transmission, probabilistic scheme, data type, and keyspace
of scheme, as illustrated in Table 2. Chaos-based PRNG is the
most common application of chaotic systems in secure data
transmission. In Nesa et al. [46], a PRNG is proposed that is
based on a logarithmic chaotic map and has been utilized in
encrypting sensor data. )e authors in Nesa et al. [46]
proposed a new deterministic encryption algorithm that
generates the same ciphertext for the same plaintext with the
same key. As a result, it does not provide a high level of
security. In Dhall et al. [45], a random bit insertion phase is
employed, which contributes to the probabilistic nature of
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Figure 13: Extended state chain diagram (ri ∈ 000, 001, . . . , 111{ }).

12 Complexity



the encryption scheme. )e proposed scheme in Dhall et al.
[45] uses chaos for generating keystream which is utilized to
perform permutation and substitution operations. )is
probabilistic scheme is suitable for encrypting images. In
Srich and San-Um [59], a data encryption scheme is

proposed using the chaotic map in order to generate the
chaotic matrix. )e proposed scheme in Srich and San-Um
[59] can also be applied to any data type such as image, text,
and excel files. However, it has a deterministic approach and
is vulnerable to a chosen-plaintext attack. In this work, we

(a) (b)

Figure 14: (a) Original image and (b) extracted image in the receiver with one wrong bit in the secret key.
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Figure 15: Dissimilarity matrix for a constant message: (a) message length� 25 bytes; (b) message length� 100 bytes; (c) message
length� 1000; (d) message length� 10 ,000.
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proposed a new approach for secure data transmission using
chaotic systems with multiple coexisting attractors. )e
proposed chaos-based encoding/decoding algorithms make
an evolutionary approach to transmitting confidential data.
)ese algorithms are realized by applying an SC diagram
using different steady states. Also, the proposed scheme is
inherently probabilistic. )e data transmission scheme is
flexible since it could be applied to a different type of digital
data. )e keyspace is large enough to make the attack in-
feasible in all schemes.

6. Conclusions

In this paper, a new non-Shilnikov chaotic system with an
infinite number of nonhyperbolic equilibrium points is
introduced and analyzed. )e novel system has one equi-
librium point with triple zero eigenvalues at the origin and
many equilibrium points with double zero eigenvalues. Such
chaotic systems are very rare in the literature. Also, all
equilibrium points are unstable and are located on the
z-axis. By numerical analysis of the new chaotic system in
terms of the phase portrait, bifurcation diagram, Lyapunov
exponents, and spectral entropy distribution, a wide variety
of dynamics are revealed. )e phenomenon of anti-
monotonicity such as chaotic bubbles and period-2 bubbles
is observed in bifurcation diagrams. Also, it is shown that the
novel system can exhibit the phenomenon of the infinitely
coexistence of multiple periodic, limit cycle, and chaotic
attractors. So, the novel chaotic system is multistable.
Moreover, the complexity of the system is analyzed by SE.

)e SE distribution under different initial values of y0 and z0
is very scattered, which indicates the coexistence of multiple
attractors. Finally, we developed chaos-based encoding/
decoding algorithms for a secure data transmission scheme
using the proposed chaotic system. For this purpose, an SC
diagram with different steady states is designed. )ese states
are determined by computing the SE complexity of the novel
system under different initial values. )e proposed secure
data transmission scheme is inherently probabilistic and
provides high security against different attacks.

As a future task, system (1) will be more investigated by
using various functions instead of sin(xy − z). In a nutshell,
the proposed system will be extended and enriched by some
proper nonlinearities. More work on constructing many
coexisting attractors with non-Shilnikov chaotic systemswill be
addressed in future research. From an engineering application
point of view, we continue to forward the research about secure
data transmission schemes via constructing chaotic systems
with infinitely equilibrium points. Also, an interesting future
direction could be designing the new SC diagrams to improve
the efficiency of the secure data transmission scheme.

Data Availability

In fact, there is not any specific data used in the research
work. )e authors have solved differential equations in
MATLAB. Furthermore, a chaos-based encoding/decoding
scheme was applied to the Cameraman image which is well
known and could be found everywhere. Overall, there is no
data to share with the research community.
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Figure 16: Histogram distribution graph of (a) the plaintext and (b) transmitted data.

Table 2: Comparison between the proposed secure data transmission scheme and the other works.

Scheme Application of chaos Probabilistic Data type Keyspace

Nesa et al. [46] Chaos-based PRNG No Numeric sensor
data 2148

Dhall et al. [45] Chaos-based permutation and
substitution

Probabilistic with random bits
insertion Image 2256

Srich and San-Um
[59] Chaotic matrix construction No Image/Text/Excel

files
2(w+3)1036 (w: a
parameter)

Proposed scheme Chaos-based encoding/decoding
algorithms Inherently probabilistic Any type of digital

data 2272
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In this article, we design a novel fourth-order and derivative free root-finding algorithm. We construct this algorithm by applying
the finite difference scheme on the well-known Ostrowski’s method. *e convergence analysis shows that the newly designed
algorithm possesses fourth-order convergence. To demonstrate the applicability of the designed algorithm, we consider five real-
life engineering problems in the form of nonlinear scalar functions and then solve them via computer tools. *e numerical results
show that the new algorithm outperforms the other fourth-order comparable algorithms in the literature in terms of performance,
applicability, and efficiency. Finally, we present the dynamics of the designed algorithm via computer tools by examining certain
complex polynomials that depict the convergence and other graphical features of the designed algorithm.

1. Introduction

*e role of computers in the fields of applied Mathematics
cannot be denied in the modern age. Using different computer
programs such as Mathematica, Matlab, and Maple, a plethora
of different types of complex problems can be solved easily. In
recent years, mathematicians employed the excessive use of
computers in different branches of Mathematics especially in
the determination of approximated roots of the transcendental
and nonlinear algebraic equations which have played an im-
portant role in different branches of computational and applied
mathematics. Inmany engineering disciplines, a lot of problems
exist which can be easily converted into nonlinear forms by
employing different mathematical techniques. Analytical
methods cannot find the solution needed for these problems,
and therefore, we need iterative algorithms for solving out these
problems. To execute an iterative algorithm, we always need a
starting point (initial guess) which is refined after every itera-
tion, and we find the approximated root up to the required
accuracy after some finite iterations. *e convergence rate and
convergence order of an iterative algorithm are relied upon the
selection of that starting point. Some of the most popular and
ancient iterative algorithms are given in [1–8] and the references

are cited therein. In the 15th century, Newton [1, 2] introduced a
quadratic-order root-finding algorithm which has been used
successfully for many years. Over the time, many experts
worked on iterative algorithms and brought several modified
versions of Newton’s algorithm with higher-order convergence
which involve predictor and corrector steps and are often re-
ferred to as multistep iterative algorithms. For more infor-
mation, one can see [9–20] and the references are cited therein.
In general, the convergence order of a multistep algorithm is
higher because of predictor and corrector steps, but it results in a
higher computational cost which is the downside of these al-
gorithms. It is really difficult to handle the cost of computing
and the convergence rate of an algorithm because these two
terms are inversely proportional to each other.

Over the past few years, mathematicians have focused on
the aforementioned issues and have tried to design some new
iterative algorithms with higher convergence and low cost of
computing by employing several mathematical methods. In
[21], the authors introduced a new two-step Halley’s method
with sixth order convergence and then replaced its second
derivative for reducing computing cost and proposed a new
fifth order second derivative free algorithm. In [22], Hafiz and
Al-Goria established a novel family of optimal eighth order

Hindawi
Complexity
Volume 2021, Article ID 9234932, 9 pages
https://doi.org/10.1155/2021/9234932

mailto:amir.kasuri89@gmail.com
mailto:jihadalsaqqaf@gmail.com
https://orcid.org/0000-0001-7010-6810
https://orcid.org/0000-0002-8042-1619
https://orcid.org/0000-0001-7116-3251
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9234932


iterative algorithms and then studied their dynamics. In [23],
the authors introduced seventh and ninth orders novel it-
erative algorithms with the help of the predictor-corrector
technique and Simpson quadrature formulae. By employing
the Newton interpolation technique along with weight
functions, Salimi et al. [24] introduced a new family of eighth
order optimal root-finding algorithms. In [25], the authors
constructed some novel optimal iterative algorithms with
higher convergence and demonstrated the applicability of the
suggested methods by solving some engineering problems.
Recently, Chu et al. [26] proposed a novel family iteration
scheme and discussed the dynamics of the presented methods
with the help of computer tools.

In the present research article, we introduce a new fourth-
order and derivative free algorithm for solving engineering
problems in the form of scalar nonlinear functions. *e
construction of this algorithm is based upon the finite dif-
ference scheme on Ostrowski’s method. We also certify that
the designed algorithm has fourth-order convergence. *e
designed algorithm is then applied to some real-world en-
gineering problems for certifying its better performance and
applicability among the other fourth-order algorithms in the
literature. *e dynamical comparison of the designed algo-
rithmwith the other comparable ones has been also presented
via the computer program Mathematica 12.0.

2. Main Results

Consider the nonlinear problem of the following form:

ψ(u) � 0, (1)

where ψ is a real-valued function with an open interval
domain.

Suppose that α is a root of (1) with u0 as an initial guess
near to the exact root α, then the implication of Taylor’s
series around u0 for (1) gives us

ψ u0( 􏼁 − u − u0( 􏼁ψ′ u0( 􏼁 +
u − u0( 􏼁

2ψ′′ u0( 􏼁

2!
+ · · · � 0.

(2)

If ψ′(u0) is nonzero, then the above expression implies

ui+1 � ui −
ψ ui( 􏼁

ψ′ ui( 􏼁
, (3)

which is Newton’s root-finding algorithm [1, 2] for scalar
nonlinear functions.

By taking it as a predictor, Ostrowski designed the
following two-step iterative algorithm:

vi � ui −
ψ ui( 􏼁

ψ′ ui( 􏼁
,

ui+1 � vi −
ψ vi( 􏼁ψ ui( 􏼁

ψ′ ui( 􏼁 ψ ui( 􏼁 − 2ψ vi( 􏼁􏼂 􏼃
,

(4)

which is well-known Ostrowski’s root-finding algorithm
[11] for scalar nonlinear functions.

By including Newton’s algorithm, the above two-step
method may be converted to three-step in the following form:

vi � ui −
ψ ui( 􏼁

ψ′ ui( 􏼁
,

wi � vi −
ψ vi( 􏼁

ψ′ vi( 􏼁
,

ui+1 � wi −
ψ wi( 􏼁ψ vi( 􏼁

ψ′ vi( 􏼁 ψ vi( 􏼁 − 2ψ wi( 􏼁􏼂 􏼃
,

(5)

which is a three-step iteration scheme for calculating zeros of
nonlinear scalar equations. *e main drawback of the above
algorithm is its high computational cost per iteration as it
requires six evaluations for its execution. To lower its
computational cost make it more effective, we approximate
its first derivatives and make it derivative free, so that it can
be easily applied on those nonlinear scalar functions whose
first derivative becomes infinite or does not exist. To ap-
proximate ψ′(u) in the predictor step, we employ the for-
ward difference approximation as

ψ′ ui( 􏼁 �
ψ ui + ψ ui( 􏼁( 􏼁

ψ ui( 􏼁
� g ui( 􏼁. (6)

To approximate ψ′(v), we utilize the finite difference
scheme as

ψ′ vi( 􏼁 �
ψ vi( 􏼁 − ψ ui( 􏼁

vi − ui

� h ui, vi( 􏼁. (7)

Using (6) and (7) in (5), we can write Algorithm 1.

Algorithm 1. For a given u0, compute the approximate
solution ui+1 by the following iterative schemes

vi � ui − ψ(ui)/g(ui), i � 0, 1, 2, . . . ,

wi � vi − ψ(vi)/h(ui, vi),

ui+1 � wi − ψ(wi)ψ(vi)/h(ui, vi)[ψ(vi) − 2ψ(wi)]

Algorithm 1 is a new iteration scheme for calculating the
approximated roots of scalar nonlinear equations and needs
only four evaluations per iteration. *e main characteristic
of the suggested algorithm is that it is derivative free and
easily applicable to all those scalar functions whose deriv-
atives become undefined within the domain. In this sense,
the proposed algorithm’s computing cost is minimal which
results in a higher efficiency index.

3. Convergence Analysis

In the present section, we shall discuss the convergence
criterion of the newly designed algorithm, i.e., Algorithm 1.

Theorem 1. Suppose that α is the root of the equation
ψ(u) � 0. If ψ(u) is sufficiently smooth in the neighborhood of
α, then the order of convergence of Algorithm 1 is at least four.
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Proof. To analyze the convergence criterion of the iteration
scheme (1), we assume that α is a root of equation ψ(u) � 0

and ei be the error at ith iteration; then, ei � ui − α, and by
using Taylor’s series expansion, we have

ψ ui( 􏼁 � ψ′(α)ei +
1
2!
ψ″(α)e

2
i +

1
3!
ψ″′(α)e

3
i +

1
4!
ψ(iv)

(α)e
4
i + O e

5
i􏼐 􏼑,

ψ ui( 􏼁 � ψ′(α) ei + d2e
2
i + d3e

3
i + d4e

4
i + O e

5
i􏼐 􏼑􏽨 􏽩,

(8)

where

di �
1
i!

ψ(i)
(α)

ψ′(α)
,

g ui( 􏼁 � ψ′(α) 1 + 3d2ei + 7d3 + d
2
2􏼐 􏼑e

2
i + 6d2d3 + 15d

4
2􏼐 􏼑e

3
i + 18d2d4 + 31d5 + d3d

2
2 + 5d

2
3􏼐 􏼑e

4
i + O e

5
i􏼐 􏼑􏽨 􏽩.

(9)

With the help of equations (8) and (9), we get

vi � α + 2d2e
2
i + 6d3 − 5d

2
2􏼐 􏼑e

3
i + 14d4 − 26d3d2 + 13d

3
2􏼐 􏼑e

4
i + O e

5
i􏼐 􏼑, (10)

ψ vi( 􏼁 � ψ′(α) 2d2e
2
i + 6d3 − 5d

2
2􏼐 􏼑e

3
i + 14d4 − 26d3d2 + 13d

3
2􏼐 􏼑e

4
i + O e

5
i􏼐 􏼑􏽨 􏽩, (11)

h ui, vi( 􏼁 � ψ′(α) 1 + d2ei + d3 + d
2
2􏼐 􏼑e

2
i + 8d2d3 − 5d

3
2 + d4􏼐 􏼑e

3
i + 13d

4
2 − 27d3d

2
2 + 16d4d2 + +d5 + 6d

2
3􏼐 􏼑e

4
i + O e

5
i􏼐 􏼑􏽨 􏽩, (12)

wi � α + 2d2e
3
i + 8d2d3 − 7d

3
2􏼐 􏼑e

4
i + O e

5
i􏼐 􏼑, (13)

ψ wi( 􏼁 � ψ′(α) 2d2e
3
i + 8d2d3 − 7d

3
2􏼐 􏼑e

4
i + O e

5
i􏼐 􏼑􏽨 􏽩. (14)

Using equations (8)–(14) in Algorithm 1 gives us the
following equality:

ui+1 � α − 2d
3
2e

4
i + O e

5
􏼐 􏼑, (15)

which implies that

ei+1 � −2d
3
2e

4
i + O e

5
􏼐 􏼑. (16)

*e above equation shows that the designed algorithm is
of fourth-order convergence. □

4. Real-Life Applications

In this section, we take five real-world problems in the form
of scalar nonlinear functions to exhibit the applicability,
validity, and efficiency of the newly designed fourth-order
algorithm. We compare it with other well-known fourth-
order algorithms, namely, Ostrowski’s method (OM) [11],
Traub’s method (TM) [12], and Zhanlav method (ZM) [27].

Example 1. Fluid permeability problem:
*e hydraulic permeability is actually the measurement

of the flow resistance. It relates the pressure gradient to fluid

Table 1: Comparison among different fourth-order algorithms.

Methods IT ui+1 |ψ(ui+1)| σ � |ui+1 − ui| η

OM 04 0.3426482058114499 9.186801e−17 2.728697e−05 4
TM 05 0.3426482058114499 4.236557e−23 1.848727e−14 4
ZM 05 0.3426482058114499 7.675869e−25 1.516654e−07 4
Algorithm 1 04 0.3426482058114499 5.362719e−18 1.131404e−06 4
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velocity and may be expressed as

κ �
reu

3

20(1 − u)
2,

reu
3

− 20k(1 − u)
2

� 0,

(17)

where κ denotes the specific hydraulic permeability, re

stands for the radius, and 0≤ u≤ 1 is the porosity. For
further details see [28] and the reference cited therein. By
taking the values of re � 100 and κ � 0.4655 in (14), we
obtain the above problem in the following nonlinear
function:

ψ1(u) � 100u
3

− 9.31(1 − u)
2
. (18)

To solve ψ1, the initial guess has been chosen as u0 � 2.0
for starting the iteration process, and the results are given in
Table 1.

Example 2. Blood rheology model.
Blood rheology is a branch of science that works to study

the physical and flow properties of blood [29]. Blood is
actually a non-Newtonian fluid and treated as Caisson fluid.
*e model of Caisson fluid shows that the flow of simple
fluids in a tube is such a way that the center core of the fluids
will move as a plug with little deformation and velocity
gradient occurs near the wall.

To study the plug flow of Caisson fluids flow, we consider
the following function in the form of nonlinear equation as

H � 1 −
16
7

��
u

√
+
4
3

u −
1
21

u
4
, (19)

where flow rate reduction is computed by H. UsingH � 0.40
in (19), we have

ψ2(u) �
1
441

u
8

−
8
63

u
5

− 0.05714285714u
4

+
16
9

u
2

− 3.624489796u + 0. 3. (20)

To solve ψ2, the initial guess has been chosen as u0 � 0.9
for starting the iteration process, and the results are given in
Table 2.

Example 3. Van Der Wall’s equation.
*e well-known equation for examining the behaviour

of real and ideal gas was introduced by Van Der Wall’s [30],
with the following expression:

P +
C1n

2

V
2􏼠 􏼡 V − nC2( 􏼁 � iRT. (21)

Equation (21) may be easily transformed into the fol-
lowing nonlinear function by taking the particular values of
the parameters:

ψ3(u) � 0.986u
3

− 5.181u
2

+ 9.067u − 5.289, (22)

where u is the gas volume that may be easily determined by
solving ψ2. Because the polynomial’s degree is three, it must
have three roots. *ere is only one positive real root
1.9298462428 among these which is physically possible since
the gas volume can never be negative. To solve ψ3, the initial
guess has been chosen as u0 � 1.0 for starting the iteration
process, and the results are given in Table 3.

Example 4. Plank’s radiation law.
*e energy density within the black isothermal body is

calculated using Planck’s radiation law [31] given as follows:

φ(c) �
8π Pc

c
5

e
Pc/cTk

− 1􏼐 􏼑
. (23)

Suppose we want to calculate wavelength c1 for the peak
value of the energy density φ(c1). To transform (23) in

nonlinear form, we assume u � Pc/cTk and obtain the
following nonlinear expression:

ψ4(u) � −1 +
u

5
+ e

− u
. (24)

One of the estimated roots of ψ4 is
−0.0000000000000000 which represents the maximum
amount of the wavelength of the radiation. To solve ψ4, the
initial point has been chosen as u0 � −2.0 for starting the
iteration process, and the results are given in Table 4.

Example 5. *e problem of beam designing.
In Physics and Engineering sciences, the beam designing

problem [32] regarding the embedment u of a sheet pile wall
in the form of scalar nonlinear function is expressed as

ψ5(u) �
u
3

+ 2.87u
2

− 4.62u − 10.28
4.62

. (25)

To solve ψ5, the initial guess has been chosen as u0 � 3.0 for
starting the iteration process, and the results are given in Table 5.

Here, we choose the accuracy ε � 10− 15 in the following
stopping criterion of the computer program:

ui+1 − ui

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< ε. (26)

We used the computer application Maple 13 to solve all
numerical problems.

Tables 1–5 exhibit the numerical comparison of the
designed fourth-order algorithm with Ostrowski’s method
(OM), Traub’s method (TM), and Zhanlav’s method (ZM).
In the columns of the above tables, ITstands for the number
of iterations, |ψ(u)| indicates the positive value of the
function ψ(u), ui+1indicates the estimated root, σ indicates
the absolute difference of the consecutive estimations ui+1,
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and ui and η represent the approximated computational
order of convergence given as

η ≈
In ui+1 − α

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/ ui − α

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

ln ui − α
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌/ ui−1 − α
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
, (27)

which was introduced by Weerakoon and Fernando [33].

5. Dynamical Analysis via
Computer Technology

In this section, we give a detailed graphical comparison of
the newly designed fourth-order algorithm with the other
fourth-order algorithms via computer technology by con-
sidering some complex polynomials in the form of poly-
nomiographs. A polynomiograph is a graphical object
generated in a process known as polynomiography, intro-
duced by Dr. Bahman Kalantri in 2005 [34]. It is defined as
“the algorithmic visualization of polynomial equations by
employing different iterative techniques” [35].

To draw dynamics by employing computer technology
using various iterative algorithms, an initial rectangle R

which includes the root of the investigated complex
polynomial has been chosen. *en, for every point w0 in
R, we perform the process of iteration. *e image’s
quality is usually correlated with the discretization ofR,
i.e., if the rectangle R has been discretized into a 2000 ×

2000 grid, then the quality of the produced image will be
better.

Typically, the colors of produced polynomiographs are
fully associated with the number of iterations required to
find the approximated roots with a given precision and a
selected iterative algorithm. *e main algorithm for the
production of a polynomiograph is given in Algorithm 1.

A stopping criterion is always required for an iterative
algorithm that includes the repetition of steps, since it informs
us about the convergence or divergence of the investigated
iterative algorithm. Such a criterion is commonly referred to as
a convergence test with the following mathematical expression:

wi+1 − wi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< ε, (28)

Table 2: Comparison among different fourth-order algorithms.

Methods IT ui+1 |ψ(ui+1)| σ � |ui+1 − ui| η

OM 03 0.0864335580522918 2.960661e−18 4.952936e−05 4
TM 03 0.0864335580522916 3.697508e−16 1.642942e−04 4
ZM 12 0.0864335580522918 1.957052e−25 5.571776e−07 4
Algorithm 1 03 0.0864335580522917 1.940272e−17 3.210544e−06 4

Table 3: Comparison among different fourth-order algorithms.

Methods IT ui+1 |ψ(ui+1)| σ � |ui+1 − ui| η

OM 09 1.9298462428478622 1.626245e−22 1.858593e−06 4
TM 10 1.9298462428478622 4.578052e−27 1.235520e−07 4
ZM 44 1.9298462428478622 1.365062e−19 6.456152e−06 4
Algorithm 1 06 1.9298462428478622 1.335843e−29 3.841021e−10 4

Table 4: Comparison among different fourth-order algorithms.

Methods IT ui+1 |ψ(ui+1)| σ � |ui+1 − ui| η

OM 04 −0.0000000000000000 1.030994e−51 3.261218e−13 4
TM 04 −0.0000000000000000 1.706136e−36 1.719178e−09 4
ZM 04 −0.0000000000000000 1.383001e−20 1.153483e−05 4
Algorithm 1 04 −0.0000000000000000 2.759067e−45 6.858899e−14 4

Table 5: Comparison of different fourth-order algorithms.

Methods IT ui+1 |ψ(ui+1)| σ � |ui+1 − ui| η

OM 03 2.0021187789538273 1.247083e−31 2.494230e−08 4
TM 03 2.0021187789538273 1.271632e−29 7.400791e−08 4
ZM 03 2.0021187789538273 1.334997e−21 5.297174e−06 4
Algorithm 1 03 2.0021187789538273 1.760330e−28 1.073092e−09 4
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where wi+1 and wi denote the successive iterations, and ε >0
stands for the accuracy in the stopping criterion. *e
convergence test (wi+1, wi, ε) is considered TRUE if the it-
erative algorithm under consideration is converged and
FALSE if it is diverged. *e abovementioned stopping cri-
terion (28) is also used in this study. *e variety of poly-
nomiographs’ colors is correlated with the performed
iterations to find out the root with given precision ε. Using
various iterative algorithms, a variety of aesthetically
pleasant polynomiographs can be produced by altering the
parameterK, whereK specifies the upper limit of the number
of iterations. For further information regarding poly-
nomiography along with its applications in different fields,
one can see [36–44] and the references cited therein.

For drawing polynomiographs through different itera-
tive algorithms, we consider the following four complex
polynomials:

q1(w) � w
3

− 1,

q2(w) � w
3

− 1􏼐 􏼑
2
,

q3(w) � w
4

− 1,

q4(w) � w
4

− 1􏼐 􏼑
2
.

(29)

*e colormap used for the coloring of iterations in the
generation of polynomiographs is shown in Figure 1:

Example 6. Polynomiographs for the polynomial q1 through
different fourth-order algorithms.

In the first example, we consider a cubic-degree poly-
nomial q1(w) � w3 − 1, having three distinct roots
1, − 1/2 +

�
3

√
/2i, and −1/2 −

�
3

√
/2i.We used a computer

program to run all the methods to get the simple roots of the
under consideration polynomial q1, and the results are
shown in Figure 2.

Example 7. Polynomiographs for the polynomial q2 through
different fourth-order algorithms.

In the second example, we take a sextic-degree poly-
nomial q2(w) � (w3 − 1)2, which has three unique roots
1, − 1/2 +

�
3

√
/2i, and −1/2 −

�
3

√
/2i with multiplicity two.

We perform the process of iteration for all iterative algo-
rithms for drawing polynomiographs, and the results are
shown in Figure 3.

Example 8. Polynomiographs for the polynomial q3 through
different fourth-order algorithms.

In the third example, we consider a quartic-degree
polynomial q3(w) � w4 − 1, which has four unique roots
1, − 1, i, and − i. We created the graphical objects by exe-
cuting all iterative algorithms, and the results are shown in
Figure 4.

Example 9. Polynomiographs for the polynomial q4 through
different fourth-order algorithms.

In the fourth example we take an eighth-degree complex
polynomial q4(w) � (w4 − 1)2 with four unique roots 1, −

1, i, and − i of multiplicity two. We used a computer pro-
gram to run all methods for drawing polynomiographs, and
the results in the form of visually attractive pictures are
shown in Figure 5.

In above examples, we compared the developed algo-
rithm to various fourth-order iterative algorithms using a
computer program by taking into account different degrees
complex polynomials. Two key features may be identified
from the produced graphics. *e first is the iteration
scheme’s speed of convergence, and the second feature is the
iteration scheme’s dynamics. Low dynamics are seen in
places with little color variation, and high dynamics are
found in areas with a lot of color variety. *e black coloring
in the graphics denotes areas where the solution cannot be
reached in the specified number of iterations. *e darker
zone in the above-presented pictures indicates that the it-
erative algorithm under consideration requires fewer iter-
ations for finding the solution of the given problem. *e
same-colored regions in the graphical objects represent the
same number of iterations necessary to find the required
solution with the given accuracy. Note that the poly-
nomiographs created using our proposed iterative algorithm
have considerably brighter and darker regions and no black
areas as compared to other similar order algorithms in the
literature. Furthermore, the polynomiographs of the pro-
posed iterative algorithm show larger convergence areas
than the other comparable techniques which demonstrate
the better efficiency of the suggested algorithm.

We drew all graphical objects with the computer
program Mathematica 12.0 by using the values of pa-
rameters as ε � 0.001 and K � 20, where ε and K indicate
the accuracy and the upper bound of the number of it-
erations, respectively.

Input: q ∈ C—polynomial, A ⊂ C—area, K—maximum No. of iterations, I—iterative algorithm, ε—accuracy, colormap
[0 . . . C − 1]—colormap with C colors
Output: polynomiograph for the complex polynomial q in the area A

for w0 ∈ A, do
i � 0
while i≤K do

wi+1 � I(wi)

if |wi+1 − wi|<∈, then
break

i � i + 1
color w0 via colormap

ALGORITHM 1: Polynomiograph’s generation.
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(a) (b) (c) (d)

Figure 3: Polynomiographs related to the complex polynomial q2. (a) Ostrowski’s method. (b) Traub’s method. (c) Zhanlav’s method.
(d) Algorithm 1.

(a) (b) (c) (d)

Figure 4: Polynomiographs related to the complex polynomial q3. (a) Ostrowski’s method. (b) Traub’s method. (c) Zhanlav’s method.
(d) Algorithm 1.

(a) (b) (c) (d)

Figure 2: Polynomiographs related to the complex polynomial q1. (a) Ostrowski’s method. (b) Traub’s method. (c) Zhanlav’s method.
(d) Algorithm 1.

Figure 1: *e colormap used for generating polynomiographs.
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6. Conclusion

By employing the finite difference scheme on Ostrowski’s
method, we designed a new derivative free algorithm for
calculating the approximate zeros of nonlinear scalar
equations that possesses the fourth-order convergence. To
analyze the applicability of the designed algorithm, we took
some real-life engineering problems and solved them via
computer tools. *e numerical results given in Tables 1–5
proved the better performance and applicability of the
designed algorithm against the other fourth-order algo-
rithms.We have also presented the dynamics of the designed
algorithm and gave a detailed comparison with the other
comparable fourth-order algorithms in the literature via
computer tools that revealed the convergence and other
graphical characteristics of the designed algorithm. A new
family of derivative free root-finding algorithms can be
constructed by applying the finite difference scheme to the
existing methods in the literature.
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)is paper applies a T-S fuzzy model to depict a class of nonlinear time-varying-delay singular systems and investigates the
dissipative filtering problem for these systems under deception attacks.)emeasurement output is assumed to encounter random
deception attacks during signal transmission, and a Bernoulli distribution is used to describe this random phenomena. In this case,
the filtering error systemmodeled by a stochastic singular T-S fuzzy system is established and stochastic admissibility for this kind
of system is defined firstly. )en, by combining some integral inequalities and using the Lyapunov–Krasovskii functional
approach, sufficient delay-dependent conditions are presented based on linear matrix inequality techniques, where the system of
filtering error can be stochastically admissible and strictly (Q,S,R)-dissipative against randomly occurring deception attacks.
Moreover, parameters of the desired filter can be obtained via the solutions of the established conditions. )e validity of our work
is illustrated through a mostly used example of the nonlinear system.

1. Introduction

In order to study various actual systems, such as large-scale
systems, circuit systems, and biological systems, scholars have
widely used the singular system model to describe these sys-
tems. In contrast with ordinary state space systems, singular
systems can describe the performance characteristics of
physical systems better [1]. On the other hand, time delay is a
major factor that leads to system instability and performance
degradation. Because of the coupling of the delay term and the
functional equation, the study of singular time-delay systems is
much more difficult than that of the standard time-delay
systems [2]. Not only stability but also regularity and absence of
impulse (or causality) are involved in the admissible analysis
problem for singular time-delay systems. Up to now, various
results for studying singular time-delay systems have been
published. Reachable set estimation for continuous-time sin-
gular delay systems [3–5], sliding mode control for discrete-
time singular delay systems [6–8], and H∞ control for singular
time-delay systems with Markovian jump parameters [9–11]
are just a few examples of so many research works.

In the past decade, control researchers discovered that
in practical or industrial applications, nonlinearities in
system dynamics behavior can be fairly accurately de-
scribed as a set of locally linear models mixed together
with fuzzy membership functions. )us, any complex
nonlinear systems can be fuzzified and effectively ap-
proximated as a set of linear models by using the T-S fuzzy
model approach [12]. In this case, a similar way to linear
systems can be extended to analyze and synthesize non-
linear systems and lots of fruitful studies on the fields of
stability theories, adaptive tracking control, H∞ filter
design, etc., have been achieved for T-S fuzzy systems
[13–18]. Recently, using the T-S fuzzy model to approx-
imate singular nonlinear systems has also been published
in many literature studies. To mention a few, the problems
of admissibility analysis and controller design for singular
T-S fuzzy systems with mismatched membership func-
tions were investigated in [19,20]; the problems of
adaptive sliding mode controller design for T-S fuzzy
singular systems were considered in [21,22]; and asyn-
chronous filtering problems for T-S fuzzy singular
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systems with Markovian jump parameters were investi-
gated in [23,24].

On another active research frontier, cyber-attacks have
become more and more important factors to threaten
network security in the network control system since they
could lead to the leakage of a large amount of confidential
information. So far, denial-of-service attacks and deception
attacks are twomain kinds of cyber-attacks widely studied by
scholars [25–29]. Especially, deception attacks are more
secluded and harder to detect which import mendacious
data in the process of signal transmission and lead to per-
formance damage of the target system. )erefore, it is very
important to design a security filter for the system with
deception attacks. For example, the topics include distrib-
uted recursive filtering for discrete time-delayed stochastic
systems subject to both uniform quantization and deception
attacks, recursive filtering for stochastic nonlinear time-
varying complex networks with deception attacks, and
event-triggered filter design for T-S fuzzy systems with
deception attacks had been investigated in [30–32], re-
spectively. As far as we know, control and filtering problems
for T-S fuzzy singular systems with time-varying delays
against deception attacks have not been fully investigated,
not mention to dissipative filter design. Dissipativity, in
simple terms, generally indicates that the increase in a
system’s internal energy storage does not exceed the external
energy supply of the system. )e dissipativity has been
analysed for large amounts of nonlinear systems and widely
used in control theory and practice [33–35]. All the afore-
mentioned facts motivate our research.

)e main contribution of this paper is centered on
dealing with the problem of dissipative filtering for T-S fuzzy
singular systems with time-varying delays subject to de-
ception attacks, where the measurement output is assumed
to encounter random deception attacks based on a Bernoulli
distribution during signal transmission. In this case, the
filtering error system modeled by a stochastic singular T-S
fuzzy system is established and the stochastic admissibility
for this kind of system is defined. By using the Lyapu-
nov–Krasovskii functional (LKF) approach and based on
linear matrix inequality (LMI) techniques, sufficient delay-
dependent conditions are established to guarantee the sto-
chastic admissibility and strictly (Q,S,R)-dissipativity of
the filtering error with randomly occurring deception at-
tacks. Furthermore, based on these feasible conditions,
parameters of the desired filter can be obtained. At last, we
give an example of the nonlinear system to show the ef-
fectiveness of our result.

Notations. In this work, the dimensions of all the ma-
trices are generally considered to be compatible. Rn denotes
the Euclidean space with n dimension; Rn×m represents the
real matrices with n × m dimension; I represents an identity
matrix, and 0 denotes a zero matrix with appropriate di-
mension; ‖ · ‖ denotes the Euclidean norm of a vector and its
induced norm of a matrix; A + AT is described by sym(A);
L2[0,∞) is the space of integral vector over [0,∞); for any
real function x, y ∈L2[0,∞) and real matrix M, we define
〈x, My〉d � 􏽒

d

0 xT(t)My(t)dt; the mathematical expecta-
tion operator is denoted as E ·{ }.

2. Problem Formulation

For the description of an interval time-varying-delay non-
linear singular system, a delayed T-S fuzzy model is adopted
in terms of r plant rules as follows.

Rule 1. If θ1(t) is μi1, and . . ., and θp(t) is μip, then

E _x(t) � Aix(t) + Adix(t − d(t)) + Biω(t),

y(t) � Cix(t) + Cdix(t − d(t)) + Diω(t),

z(t) � Lix(t),

x(t) � ϕ(t), ∀t ∈ − d2, 0􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x(t) ∈ Rn, y(t) ∈ Rm, and ω(t) ∈ Rl stand for the
state vector, the measurement output, and the disturbance
input, respectively; z(t) ∈ Rq is the signal to be estimated;
ϕ(t) is the initial condition; the premise variable vector is
described by θ(t) � [θ1(t), θ2(t), . . . , θp(t)], and the fuzzy
sets are μij(i � 1, . . . , r, j � 1, . . . , p); the time-varying delay
d(t) satisfies the conditions of 0≤d1 ≤d(t)≤d2, _d(t)≤ϖ,
and d1, d2, and 0≤ϖ< 1 are constant scalars; E ∈ Rn×n may
be a singular matrix with rank(E) � g≤ n; andAi,Adi, Bi,Ci,
Cdi, Di, and Li are known real constant matrices with ap-
propriate dimensions.

)en, we can generate the model of the T-S fuzzy sin-
gular systems when time-varying delay is considered:

E _x(t) � 􏽘
r

i�1
hi(θ(t)) Aix(t) + Adix(t − d(t)) + Biω(t)􏼂 􏼃,

y(t) � 􏽘
r

i�1
hi(θ(t)) Cix(t) + Cdix(t − d(t)) + Diω(t)􏼂 􏼃,

z(t) � 􏽘
r

i�1
hi(θ(t))Lix(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where

hi(θ(t)) �
􏽑

p

j�1 μij θj(t)􏼐 􏼑

􏽐
r
i�1􏽑

p
j�1 μij θj(t)􏼐 􏼑

(3)

and μij(θj(t)) stand for the grade of membership for θj(t) in
μij. It is easy to verify that

hi(θ(t)) ≥ 0, 􏽘
r

i�1
hi(θ(t)) � 1. (4)

In this paper, for calculating the signal z(t), a fuzzy filter
is derived as

E _xf(t) � 􏽘
r

i�1
hi(θ(t)) Afixf(t) + Bfiya(t)􏽨 􏽩,

zf(t) � 􏽘
r

i�1
hi(θ(t))Cfixf(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where xf(t) ∈ Rn and zf(t) ∈ Rq represent the filter state
and the filter output, respectively. ya(t) is the sensor
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measurement under randomly occurring deception attacks
which can be given as

ya(t) � y(t) + α(t)(− y(t) + σ(t)). (6)

σ(t) defines the deception signal imported into the
output which is assumed to satisfy ‖σ(t)‖≤ ‖Wy(t)‖, and W

is considered to be an appropriate dimension matrix; α(t) is
a Bernoulli-distributed variable and we have the following
assumptions on α(t):

Prob α(t) � 1{ } � E α(t){ } � α,

Prob α(t) � 0{ } � 1 − α.
(7)

Remark 1. )emodel of deception attacks considered in this
paper is established in (6). A Bernoulli distribution is applied

to describe the random property of deception attacks. It is
easy to say that α(t) � 1 or α(t) � 0 means sensor mea-
surement is under deception attacks or not, respectively.
Furthermore, the deception attacks are supposed to be norm
bounded in (6), since there usually exists an upper bound for
the attack signals to avoid detection.

We define the initial condition of system (5) as
xf(0) � xf0, and for any t ∈ [− d2, 0], assume that
xf(t) � xf0. Afi, Bfi, and Cfi are filter gains to be
determined.

)en, define ef(t) � z(t) − zf(t) and
η(t) � xT(t) xT

f(t)􏽨 􏽩
T
. By combining systems (2) and (5),

we can obtain the following filtering error system:

E
∧

_η(t) � 􏽘

r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t)) A

∧
ij − α
∧
(t)B
∧

f1ij􏼒 􏼓η(t) + A
∧

di j − α
∧
(t)B
∧

f2ij􏼒 􏼓η(t − d(t))􏼢

+ B
∧

ij − α
∧
(t)B
∧

f3ij􏼒 􏼓ω(t) + αB
∧

f4jσ(t) + α
∧
(t)B
∧

f4jσ(t)􏼕,

ef(t) � 􏽘
r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t))L

∧
ijη(t),

η(t) � ϕ
∧
(t) � ϕT(t) xT

f0􏽨 􏽩
T
, ∀t ∈ − d2, 0􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where

E
∧

�
E 0
0 E

􏼢 􏼣,

A
∧

ij �
Ai 0

(1 − α)BfjCi Afj

⎡⎣ ⎤⎦,

A
∧

di j �
Adi 0

(1 − α)BfjCdi 0
⎡⎣ ⎤⎦,

B
∧

ij �
Bi

(1 − α)BfjDi

⎡⎣ ⎤⎦,

B
∧

f1ij �
0 0

BfjCi 0
⎡⎣ ⎤⎦,

B
∧

f2ij �
0 0

BfjCdi 0
⎡⎣ ⎤⎦,

B
∧

f3ij �
0

BfjDi

⎡⎣ ⎤⎦,

B
∧

f4j �
0

Bfj

⎡⎣ ⎤⎦,

L
∧

ij � Li − Cfj􏽨 􏽩,

α
∧
(t) � α(t) − α.

(9)

Denoting

A
∧

(t) � 􏽘
r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t)) A

∧
ij − α
∧
(t)B
∧

f1ij􏼒 􏼓,

A
∧

d(t) � 􏽘
r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t)) A

∧
di j − α

∧
(t)B
∧

f2ij􏼒 􏼓,

B
∧

(t) � 􏽘
r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t)) B

∧
ij − α
∧
(t)B
∧

f3ij􏼒 􏼓,

B
∧
1(t) � 􏽘

r

j�1
hj(θ(t)) αB

∧
f4j + α
∧
(t)B
∧

f4j􏼒 􏼓,

L
∧
(t) � 􏽘

r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t))L

∧
ij,

(10)

system (8) can be given as

E
∧

_η(t) � A
∧

(t)η(t) + A
∧

d(t)η(t − d(t)) + B
∧

(t)ω(t) + B
∧
1(t)σ(t),

ef(t) � L
∧
(t)η(t).

⎧⎪⎪⎨

⎪⎪⎩

(11)

Remark 2. Due to a stochastic variable of Bernoulli distri-
bution, filtering error system (11) is established as a sto-
chastic T-S fuzzy singular system. In this condition, the
definition of admissibility in [19] does not work for the
stochastic T-S fuzzy singular system in (11) anymore.
Motivated by the stochastic admissibility defined in [36] of
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the discrete time case, we can generalize the definition of
admissibility in [19] naturally and have the following defi-
nition of stochastic admissibility for system (11).

Definition 1 (see [36]).
(1) System (11) is said to be stochastically regular if

det(E sE
∧

− A
∧

(t)􏼚 􏼛)is not identically zero
(2) System (11) is said to be stochastically impulse-free if

deg(det(E sE
∧

− A
∧

(t)􏼚 􏼛)) � rank(E
∧

)

(3) System (11) with ω(t) � 0 is said to be stochastically
stable if there exists a scalar M> 0 such that

lim
t⟶∞

E 􏽚
t

0
ηT

(s, ϕ
∧
(t))η(s, ϕ

∧
(t))ds􏼨 􏼩≤M, (12)

where η(s, ϕ
∧
(t)) represents the system solution

(4) System (11) with ω(t) � 0 is said to be stochastically
admissible if it is stochastically regular, impulse-free,
and stable

Definition 2 (see [33]). Give real symmetric matrices Q and
R and matrix S. For a scalar c> 0, if the equation

E 〈ef,Qef〉t∗􏽮 􏽯 + 2E 〈ef,Sω〉t∗􏽮 􏽯

+ E 〈ω,Rω〉t∗
􏽮 􏽯≥ cE 〈ω,ω〉t∗

􏽮 􏽯
(13)

holds under zero initial state with t∗ > 0, system (11) is said
to be strictly (Q,S,R)-c-dissipative. Furthermore, we
suppose Q≤ 0 and − Q � QT

− Q− for some Q− .

Before discussing the main results, we present a few
lemmas that we need to use.

Lemma 1 (see [37]). For a matrix Z> 0, the following in-
equality holds:

− k2 − k1( 􏼁 􏽚
k2

k1

_x
T
(s)Z _x(s)ds ≤ − ΠTdiag(Z, 3Z, 5Z)Π, (14)

where Π �

x(k2) − x(k1)

x(k2) + x(k1) − 2/k2 − k1 􏽚
k2

k1

x(s)ds

x(k2) − x(k1) − 6/k2 − k1 􏽚
k2

k1

ςk1 ,k2
(s)x(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and ςk1 ,k2
(s) � 2(s − k1/k2 − k1) − 1.

Lemma 2 (see [38]). Given a real scalar β ∈ (0, 1), matrices
Z1 > 0 and Z2 > 0, and any matrices W1 and W2, the
inequality

1
β

Z1 0

0
1

1 − β
Z2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥
Z1 +(1 − β)T1 (1 − β)W1 + βW2

å Z2 + βT2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

(15)

holds, where T1 � Z1 − W2Z
− 1
2 WT

2 and
T2 � Z2 − WT

1 Z− 1
1 W1.

Lemma 3 (see [13]). If

Ξii < 0, i � 1, 2, . . . , r,

2
r − 1
Ξii + Ξij + Ξji < 0, i≠ j, i, j � 1, 2, . . . , r,

(16)

then 􏽐
r
i�1 􏽐

r
j�1 hi(θ(t))hj(θ(t))Ξij < 0, where hi(θ(t)),

i � 1, 2, . . . , r, satisfy (3) and (4).

3. Main Results

In this section, we will design a dissipative filter for system
(1) with randomly occurring deception attacks. First, we give
some notations in order to simplify the presentation:

ς1(s) � 2
s + d1

d1
− 1,

ς2(s) � 2
s + d(t)

d(t) − d1
− 1,

ς3(s) � 2
s + d2

d2 − d(t)
− 1,

ς4(s) � 2
s + d2

d2 − d1
− 1,
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ζ(t) � ηT
(t)E
∧T

􏽚
t

t− d1

ηT
(s)E
∧T

ds 􏽚
t

t− d1

ς1(s)ηT
(s)E
∧T

ds 􏽚
t− d1

t− d2

ηT
(s)E
∧T

ds􏼢

d2 − d1( 􏼁 􏽚
t− d1

t− d2

ς4(s)ηT
(s)E
∧T

ds 􏼣

T

,

ξ1(t) � ηT(t) _ηT(t)E
∧T

ηT t − d1( 􏼁 ηT(t − d(t)) ηT t − d2( 􏼁􏼔 􏼕
T

,

ξ2(t) �
1
d1

􏽚
t

t− d1

ηT
(s)E
∧T

ds 􏽚
t

t− d1

ς1(s)ηT
(s)E
∧T

ds􏼢 􏼣

T

,

ξ3(t) �
1

d(t) − d1
􏽚

t− d1

t− d(t)
ηT

(s)E
∧T

ds 􏽚
t− d1

t− d(t)
ς2(s)ηT

(s)E
∧T

ds􏼢 􏼣

T

,

ξ4(t) �
1

d2 − d(t)
􏽚

t− d(t)

t− d2

ηT
(s)E
∧T

ds 􏽚
t− d(t)

t− d2

ς3(s)ηT
(s)E
∧T

ds􏼢 􏼣

T

,

ξ5(t) � d(t) − d1( 􏼁ξ3(t),

ξ6(t) � d2 − d(t)( 􏼁ξ4(t),

ξ(t) � ξT
1 (t) ξT

2 (t) ξT
3 (t) ξT

4 (t) ξT
5 (t) ξT

6 (t) σT(t) ωT(t)􏽨 􏽩
T
,

Π1 �
Ψ3
Ψ4

􏼢 􏼣

T 2􏽥R2 W1

å 􏽥R2
􏼢 􏼣

Ψ3
Ψ4

􏼢 􏼣,

Π2 � ΨT
3W2

􏽥R
− 1
2 W

T
2Ψ3,

Π3 �
Ψ3
Ψ4

􏼢 􏼣

T 􏽥R2 W2

å 2􏽥R2
􏼢 􏼣

Ψ3
Ψ4

􏼢 􏼣,

Π4 � ΨT
4W

T
1

􏽥R
− 1
2 W1Ψ4,

Ψ1(d(t)) � IT
1 E
∧T

d1I
T
6 d1I

T
7 IT

12 + IT
14 d2 − d(t)( 􏼁 IT

12 + IT
15􏼐 􏼑 + d(t) − d1( 􏼁 IT

13 − IT
14􏼐 􏼑􏼔 􏼕

T

,

Ψ2 � I
T
2 I

T
1 − I

T
3􏼐 􏼑E
∧T

I
T
1 + I

T
3􏼐 􏼑E
∧T

− 2IT
6 I

T
3 − I

T
5􏼐 􏼑E
∧T

􏼔

d2 − d1( 􏼁 IT
3 + IT

5􏼐 􏼑E
∧T

− 2 IT
12 + IT

14􏼐 􏼑 􏼕
T

,

Ψ3 � IT
3 − IT

4􏼐 􏼑E
∧T

IT
3 + IT

4􏼐 􏼑E
∧T

− 2IT
8 IT

3 − IT
4􏼐 􏼑E
∧T

− 6IT
9

􏼔 􏼕
T

,

Ψ4 � IT
4 − IT

5􏼐 􏼑E
∧T

IT
4 + IT

5􏼐 􏼑E
∧T

− 2IT
10 IT

4 − IT
5􏼐 􏼑E
∧T

− 6IT
11

􏼔 􏼕
T

,

f1(d(t)) � d(t) − d1( 􏼁
I8

I9
􏼢 􏼣 −

I12

I13
􏼢 􏼣,

f2(d(t)) � d2 − d(t)( 􏼁
I10

I11
􏼢 􏼣 −

I14

I15
􏼢 􏼣,

Ii � 02n×(i− 1)2n I2n 02n×(15− i)2n 02n×(m+l)􏽨 􏽩, i � 1, . . . , 15,

I16 � 0m×30n Im 0m×l􏼂 􏼃,

I17 � 0l×(30n+m) Il􏽨 􏽩,

I18 � In 0n×(29n+m+l)􏽨 􏽩,

I19 � 0n×6n In 0n×(23n+m+l)􏽨 􏽩,

􏽥R2 � diag R2, 3R2, 5R2􏼈 􏼉. (17)
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Theorem 1. For given scalars α, c> 0, 0≤d1 <d2, and
0≤ϖ< 1, matrices W and S, symmetric matrices Q and R

with Q≤ 0, and full column rank matrix Γ with E
∧ T

Γ � 0,
system (11) is said to be stochastically admissible and strictly
(Q,S,R)-c-dissipative, if there exist matrices P �

P11 P12 P13 P14 P15
∗ P22 P23 P24 P25
∗ ∗ P33 P34 P35
∗ ∗ ∗ P44 P45
∗ ∗ ∗ ∗ P55

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0,

R2 > 0, Υ, U1, U2, W1, W2, T1, and T2 such that the
following matrix inequalities hold:

Ω d1( 􏼁 − Π1 +Π2 < 0, (18)

Ω d2( 􏼁 − Π3 +Π4 < 0, (19)

where

Ω(d(t)) � sym ΨT
1 (d(t))PΨ2 + I

T
1ΥΓ

T
I2 + U1f1(d(t)) + U2f2(d(t)) + I

T
1T1 + I

T
2T2􏼐 􏼑Φ − L

∧
(t)I1􏼒 􏼓

T

SI17􏼠 􏼡

+ α C(t)I18 + Cd(t)I19 + D(t)I17( 􏼁
T
W

T
W C(t)I18 + Cd(t)I19 + D(t)I17( 􏼁 − αIT

16I16

− L
∧
(t)I1􏼒 􏼓

T

Q L
∧
(t)I1􏼒 􏼓 − I

T
17(R − cI)I17 + I

T
1 Q1 + Q2 + Q3( 􏼁I1 − I

T
3 Q1I3

− (1 − ϖ)IT
4 Q2I4 − I

T
5 Q3I5 + I

T
2 d

2
1R1 + d2 − d1( 􏼁

2
R2􏼐 􏼑I2 − I1 − I3( 􏼁

T
E
∧T

R1E
∧

I1 − I3( 􏼁

− 3 E
∧
I1 + E

∧
I3 − 2I6􏼒 􏼓

T

R1 E
∧
I1 + E

∧
I3 − 2I6􏼒 􏼓 − 5 E

∧
I1 − E

∧
I3 − 6I7􏼒 􏼓

T

R1 E
∧
I1 − E

∧
I3 − 6I7􏼒 􏼓,

Φ � 􏽥A(t) − I2n 02n
􏽥Ad(t) 02n×22n

􏽥B1(t) 􏽥B(t)􏽨 􏽩,

􏽥A(t) � 􏽘
r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t))A

∧
ij,

􏽥Ad(t) � 􏽘
r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t))A

∧
di j,

􏽥B1(t) � 􏽘

r

j�1
hj(θ(t)) αB

∧
f4j􏼒 􏼓,

􏽥B(t) � 􏽘
r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t))B

∧
ij,

C(t) � 􏽘
r

i�1
hi(θ(t))Ci,

Cd(t) � 􏽘
r

i�1
hi(θ(t))Cdi, D(t) � 􏽘

r

i�1
hi(θ(t))Di.

(20)

Proof. First, we will show the stochastic admissibility for
system (11) with ω(t) � 0. It can be obtained from (18) and
(19) that

M11 − L
∧
(t)

T
QL
∧
(t) + Q1 + Q2 + Q3 M12 ♯1
å M22 + d

2
1R1 + d2 − d1( 􏼁

2
R2 ♯2

å å ♯3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (21)
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where

M11 � sym T1
􏽥A(t) + E

∧T

P12E
∧

+ E
∧T

P13E
∧

􏼠 􏼡

− E
∧T

R1E
∧

− 3E
∧T

R1E
∧

− 5E
∧T

R1E
∧

,

M12 � E
∧T

P11 + ΥΓT − T1 + 􏽥A(t)
T
T

T
2 , M22 � − T2 + T

T
2􏼐 􏼑.

(22)

♯1, ♯2, and ♯3 represent matrices which have compatible
dimensions and will not be used in the following discussion.
Since Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 > 0, and − Q≥ 0, we
have

M11 M12

å M22
􏼢 􏼣< 0. (23)

Premultiplying and postmultiplying (23) by [I 􏽥A(t)T]

and [I 􏽥A(t)T]T, we can obtain

sym E
∧T

P11 + ΥΓT􏼠 􏼡􏽥A(t) + E
∧T

P12E
∧

+ E
∧T

P13E
∧

􏼠 􏼡

− E
∧T

R1E
∧

− 3E
∧T

R1E
∧

− 5E
∧T

R1E
∧
< 0.

(24)

According to)eorem 10.1 of [1] and from (24), we have
that the pair (E

∧
, 􏽥A(t)) is regular and impulse-free. It should

be noted that

det(E sE
∧

− A
∧

(t)􏼚 􏼛) � det( sE
∧

− 􏽥A(t)􏼚 􏼛),

deg(det(E sE
∧

− A
∧

(t)􏼚 􏼛)) � deg(det( sE
∧

− 􏽥A(t)􏼚 􏼛)).

(25)

By Definition 1, we can conclude system (11) is sto-
chastically regular and impulse-free. Choose the LKF as
follows:

V ηt( 􏼁 � ζT
(t)Pζ(t) + 􏽚

t

t− d1

ηT
(s)Q1η(s)ds + 􏽚

t

t− d(t)
ηT

(s)Q2η(s)ds + 􏽚
t

t− d2

ηT
(s)Q3η(s)ds

+ d1 􏽚
0

− d1

􏽚
t

t+θ
_ηT

(s)E
∧T

R1E
∧

_η(s)dsdθ + d2 − d1( 􏼁 􏽚
− d1

− d2

􏽚
t

t+θ
_ηT

(s)E
∧T

R2E
∧

_η(s)dsdθ.

(26)

Set

ξ
∧
(t) � ξT

1 (t) ξT
2 (t) ξT

3 (t) ξT
4 (t) ξT

5 (t) ξT
6 (t)􏽨 􏽩

T
,

I
∧

i � 02n×(i− 1)2n I2n 02n×(15− i)2n􏽨 􏽩, i � 1, . . . , 15,

I
∧
16 � 0m×30n Im􏼂 􏼃,

I
∧
18 � In 0n×(29n+m)􏽨 􏽩,

I
∧
19 � 0n×6n In 0n×(23n+m)􏽨 􏽩,

Ψ
∧
1(d(t)) � I

∧ T

1 E
∧T

d1I
∧ T

6 d1I
∧ T

7 I
∧ T

12 + I
∧ T

14 d2 − d(t)( 􏼁 I
∧ T

12 + I
∧ T

15􏼠 􏼡 + d(t) − d1( 􏼁 I
∧ T

13 − I
∧ T

14􏼠 􏼡􏼢 􏼣

T

,

Ψ
∧
2 � I

∧ T

2 I
∧ T

1 − I
∧ T

3􏼠 􏼡E
∧T

I
∧ T

1 + I
∧ T

3􏼠 􏼡E
∧T

− 2I
∧ T

6 I
∧ T

3 − I
∧ T

5􏼠 􏼡E
∧T

􏼢

d2 − d1( 􏼁 I
∧ T

3 + I
∧ T

5􏼠 􏼡E
∧T

− 2 I
∧ T

12 + I
∧ T

14􏼠 􏼡 􏼣

T

,

Ψ
∧
3 � I

∧ T

3 − I
∧ T

4􏼠 􏼡E
∧T

I
∧ T

3 + I
∧ T

4􏼠 􏼡E
∧T

− 2I
∧ T

8 I
∧ T

3 − I
∧ T

4􏼠 􏼡E
∧T

− 6I
∧ T

9􏼢 􏼣

T

,

Ψ
∧
4 � I

∧ T

4 − I
∧ T

5􏼠 􏼡E
∧T

I
∧ T

4 + I
∧ T

5􏼠 􏼡E
∧T

− 2I
∧ T

10 I
∧ T

4 − I
∧ T

5􏼠 􏼡E
∧T

− 6I
∧ T

11􏼢 􏼣

T

,

f
∧

1(d(t)) � d(t) − d1( 􏼁
I
∧
8

I
∧
9

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ −

I
∧
12

I
∧
13

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

f
∧

2(d(t)) � d2 − d(t)( 􏼁
I
∧
10

I
∧
11

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ −

I
∧
14

I
∧
15

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,
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Φ
∧

� 􏽥A(t) − I2n 02n
􏽥Ad(t) 02n×22n

􏽥B1(t)􏽨 􏽩,

Π
∧
1 �
Ψ
∧
3

Ψ
∧
4

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

T

2􏽥R2 W1
å 􏽥R2

􏼢 􏼣
Ψ
∧
3

Ψ
∧
4

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

Π
∧
2 � Ψ
∧ T

3W2
􏽥R

− 1
2 W

T
2Ψ
∧
3,

Π
∧
3 �
Ψ
∧
3

Ψ
∧
4

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

T

􏽥R2 W2
å 2􏽥R2

􏼢 􏼣
Ψ
∧
3

Ψ
∧
4

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

Π
∧
4 � Ψ
∧ T

4W
T
1

􏽥R
− 1
2 W1Ψ

∧
4.

(27)

Define the infinitesimal L as LV(ηt) �

limΔ⟶0+1/Δ E V(ηt+Δ|ηt)􏼈 􏼉 − V(ηt)􏼈 􏼉. Along the trajectory
of (11) with ω(t) � 0, we have

E LV ηt( 􏼁􏼈 􏼉≤ ξ
∧T

(t) sym Ψ
∧ T

1 (d(t))PΨ
∧
2􏼠 􏼡 + I

∧ T

1 Q1 + Q2 + Q3( 􏼁I
∧
1 − I
∧ T

3 Q1I
∧
3􏼠

− (1 − ϖ)I
∧ T

4 Q2I
∧
4 − I
∧ T

5 Q3I
∧
5 + I
∧ T

2 d
2
1R1 + d2 − d1( 􏼁

2
R2􏼐 􏼑I
∧
2􏼡ξ
∧
(t)

− d1 􏽚
t

t− d1

_ηT
(s)E
∧T

R1E
∧

_η(s)ds − d2 − d1( 􏼁 􏽚
t− d1

t− d2

_ηT
(s)E
∧T

R2E
∧

_η(s)ds.

(28)

Using Lemma 1, it can be generated that

− d1 􏽚
t

t− d1

_ηT
(s)E
∧T

R1E
∧

_η(s)ds≤ − ξ
∧T

(t) I
∧
1 − I
∧
3􏼠 􏼡

T

E
∧T

R1E
∧

I
∧
1 − I
∧
3􏼠 􏼡⎛⎝

+ 3 E
∧
I
∧
1 + E
∧
I
∧
3 − 2I
∧
6􏼠 􏼡

T

R1 E
∧
I
∧
1 + E
∧
I
∧
3 − 2I
∧
6􏼠 􏼡

+5 E
∧
I
∧
1 − E
∧
I
∧
3 − 6I
∧
7􏼠 􏼡

T

R1 E
∧
I
∧
1 − E
∧
I
∧
3 − 6I
∧
7􏼠 􏼡⎞⎠ξ
∧
(t),

(29)

− d2 − d1( 􏼁 􏽚
t− d1

t− d2

_ηT
(s)E
∧T

R2E
∧

_η(s)ds

� − d2 − d1( 􏼁 􏽚
t− d1

t− d(t)
_ηT

(s)E
∧T

R2E
∧

_η(s)ds + 􏽚
t− d(t)

t− d2

_ηT
(s)E
∧T

R2E
∧

_η(s)ds􏼨 􏼩

≤ − ξ
∧T

(t)
d2 − d1

d(t) − d1
Ψ
∧ T

3
􏽥R2Ψ
∧
3 +

d2 − d1

d2 − d(t)
Ψ
∧ T

4
􏽥R2Ψ
∧
4􏼠 􏼡ξ
∧
(t).

(30)

)en, by Lemma 2, we can obtain

− d2 − d1( 􏼁 􏽚
t− d1

t− d2

_ηT
(s)E
∧T

R2E
∧

_η(s)ds≤ −
d2 − d(t)

d2 − d1
ξ
∧T

(t) Π
∧
1 − Π
∧
2􏼒 􏼓ξ
∧
(t)

−
d(t) − d1

d2 − d1
ξ
∧T

(t) Π
∧
3 − Π
∧
4􏼒 􏼓ξ
∧
(t).

(31)
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Note that ξ
∧

5(t) � (d(t) − d1)ξ
∧

3(t) and
ξ
∧

6(t) � (d2 − d(t))ξ
∧

4(t). )us, it is easy to see that for
matrices U1 and U2,

2ξ
∧T

(t) U1f
∧

1(d(t)) + U2f
∧

2(d(t))􏼠 􏼡ξ
∧
(t) � 0. (32)

Given matrices T1 and T2 from (11), we have

2E ηT
(t)T1 +(E

∧
_η(t))

T
T2􏼔 􏼕 − E

∧
_η(t) + A

∧
(t)η(t) + A

∧
d(t)η(t − d(t)) + B

∧
1(t)σ(t)􏼢 􏼣􏼨 􏼩 � 0. (33)

It is easy to obtain from (33) that

2ξ
∧T

(t) I
∧ T

1T1 + I
∧ T

2T2􏼠 􏼡Φ
∧
ξ
∧
(t) � 0. (34)

Noticing E
∧T

Γ � 0, we can obtain that for matrix Υ with
appropriate dimension,

2ξ
∧T

(t)I
∧ T

1ΥΓ
T
I
∧
2ξ
∧
(t) � 0. (35)

Considering the definition of deception attacks, it is easy
to obtain

y
T
(t)W

T
Wy(t) − σT

(t)σ(t)≥ 0, (36)

which means

ξ
∧T

(t) α C(t)I
∧
18 + Cd(t)I

∧
19􏼠 􏼡

T

W
T
W C(t)I

∧
18 + Cd(t)I

∧
19􏼠 􏼡 − αI

∧ T

16I
∧
16

⎛⎝ ⎞⎠ξ
∧
(t)≥ 0. (37)

From (28)–(37), it can be verified that

E LV ηt( 􏼁􏼈 􏼉≤ ξ
∧T

(t) Ω
∧

(d(t)) −
d2 − d(t)

d2 − d1
Π
∧
1 − Π
∧
2􏼒 􏼓 −

d(t) − d1

d2 − d1
Π
∧
3 − Π
∧
4􏼒 􏼓􏼠 􏼡ξ
∧
(t), (38)

where

Ω
∧

(d(t)) � sym Ψ
∧ T

1 (d(t))PΨ
∧
2 + I
∧ T

1ΥΓ
T
I
∧
2 + U1f

∧

1(d(t)) + U2f
∧

2(d(t)) + I
∧ T

1T1 + I
∧ T

2T2􏼠 􏼡Φ
∧

􏼠 􏼡 − I
∧ T

3 Q1I
∧
3

+ α C(t)I
∧
18 + Cd(t)I

∧
19􏼠 􏼡

T

W
T
W C(t)I

∧
18 + Cd(t)I

∧
19􏼠 􏼡 − αI

∧ T

16I
∧
16 + I
∧ T

1 Q1 + Q2 + Q3( 􏼁I
∧
1

− (1 − ϖ)I
∧ T

4 Q2I
∧
4 − I
∧ T

5 Q3I
∧
5 + I
∧ T

2 d
2
1R1 + d2 − d1( 􏼁

2
R2􏼐 􏼑I
∧
2 − I
∧
1 − I
∧
3􏼠 􏼡

T

E
∧T

R1E
∧

I
∧
1 − I
∧
3􏼠 􏼡

− 3 E
∧
I
∧
1 + E
∧
I
∧
3 − 2I
∧
6􏼠 􏼡

T

R1 E
∧
I
∧
1 + E
∧
I
∧
3 − 2I
∧
6􏼠 􏼡 − 5 E

∧
I
∧
1 − E
∧
I
∧
3 − 6I
∧
7􏼠 􏼡

T

R1 E
∧
I
∧
1 − E
∧
I
∧
3 − 6I
∧
7􏼠 􏼡.

(39)

We can obtain from (18) and (19) that E LV(ηt)􏼈 􏼉< 0.
Hence, we can find a scalar β> 0 so that
E LV(ηt)􏼈 􏼉≤ − β‖η(t)‖2. Using Dynkin’s formula, it can be
derived that

E V ηt( 􏼁􏼈 􏼉 − E V η0( 􏼁􏼈 􏼉≤ − βE 􏽚
t

0
‖η(s)‖

2ds􏼨 􏼩, (40)

which implies

E 􏽚
t

0
‖η(s)‖

2ds􏼨 􏼩≤ β− 1
E V η0( 􏼁􏼈 􏼉. (41)

From Definition 1, it can be concluded that system (11)
in the condition of ω(t) � 0 is considered to be stochastically
stable.
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To verify the dissipativity for system (11), by (18), (19),
and (25), it can be derived that

LV ηt( 􏼁 − e
T
f(t)Qef(t) − 2e

T
f(t)Sω(t) − ωT

(t)(R − cI)ω(t)

� ξT
(t) Ω(d(t)) −

d2 − d(t)

d2 − d1
Π1 − Π2( 􏼁 −

d(t) − d1

d2 − d1
Π3 − Π4( 􏼁􏼠 􏼡ξ(t)< 0.

(42)

)us, for any t∗ ≥ 0, it is easy to see that

E V ηt∗
􏼐 􏼑 − V η0( 􏼁 − 􏽚

t∗

0
e

T
f(t)Qef(t)dt − 􏽚

t∗

0
2e

T
f(t)Sω(t)dt􏼨

− 􏽚
t∗

0
ωT

(t)(R − cI)ω(t)dt􏼩< 0.

(43)

Considering E V(ηt∗
)􏽮 􏽯≥ 0 and V(η0) � 0 under zero

initial condition, by (43), we can obtain that (13) holds,
which shows that system (11) is strictly
(Q,S,R) − c− dissipative. □

Theorem 2. For given scalars α, c> 0, 0≤d1 <d2, and
0≤ϖ< 1, matrices W and S, symmetric matrices Q and R

with Q≤ 0 and − Q � QT
− Q− , and full column rank matrix Γ

with E
∧T

Γ � 0, if there are matrices P �

P11 P12 P13 P14 P15
∗ P22 P23 P24 P25
∗ ∗ P33 P34 P35
∗ ∗ ∗ P44 P45
∗ ∗ ∗ ∗ P55

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0,

and R2 > 0, an invertible matrix Y, matrices Υ, U1, U2, W1,
W2, Y1, Y2, Y3, Y4, Afj, Bfj, and Cfj, j � 1, 2, . . . , r, such
that the following linear matrix inequalities hold:

Ξii dk( 􏼁< 0, i � 1, 2, . . . , r, k � 1, 2, (44)

Ξij dk( 􏼁 + Ξji dk( 􏼁< 0, i< j, i � 1, 2, . . . , r, k � 1, 2, (45)

where

Ξij d1( 􏼁 �

Ωij d1( 􏼁 − Π1 Ψ
T
3W2 Lije1􏼐 􏼑

T
Q−

å − 􏽥R2 0

å å − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ξij d2( 􏼁 �

Ωij d2( 􏼁 − Π3 Ψ
T
4W

T
1 Lije1􏼐 􏼑

T
Q−

å − 􏽥R2 0

å å − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ωij(d(t)) � sym ΨT
1 (d(t))PΨ2 + I

T
1ΥΓ

T
I2 + U1f1(d(t)) + U2f2(d(t)) + I

T
1Θij + I

T
2Θ

⌣

ij − LijI1􏼐 􏼑
T
SI17􏼒 􏼓

− I
T
17(R − cI)I17 + α CiI18 + CdiI19 + DiI17( 􏼁

T
W

T
W CiI18 + CdiI19 + DiI17( 􏼁 − αIT

16I16

+ I
T
1 Q1 + Q2 + Q3( 􏼁I1 − I

T
3 Q1I3 − (1 − ϖ)IT

4 Q2I4 − I
T
5 Q3I5 + I

T
2 d

2
1R1 + d2 − d1( 􏼁

2
R2􏼐 􏼑I2

− I1 − I3( 􏼁
T
E
∧T

R1E
∧

I1 − I3( 􏼁 − 3 E
∧
I1 + E

∧
I3 − 2I6􏼒 􏼓

T

R1 E
∧
I1 + E

∧
I3 − 2I6􏼒 􏼓

− 5 E
∧
I1 − E

∧
I3 − 6I7􏼒 􏼓

T

R1 E
∧
I1 − E

∧
I3 − 6I7􏼒 􏼓,

Θij � Aij − T1 02n Adi j 02n×22n B1j Bij􏽨 􏽩,

Θ
⌣

ij � A
⌣

ij − T2 02n A
⌣

di j 02n×22n B
⌣

1j B
⌣

ij
􏼔 􏼕,

Aij �
Y1Ai +(1 − α)BfjCi Afj

Y2Ai +(1 − α)BfjCi Afj

⎡⎢⎢⎣ ⎤⎥⎥⎦,

A
⌣

ij �
Y3Ai +(1 − α)BfjCi Afj

Y4Ai +(1 − α)BfjCi Afj

⎡⎢⎢⎣ ⎤⎥⎥⎦,
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Adi j �
Y1Adi +(1 − α)BfjCdi 0

Y2Adi +(1 − α)BfjCdi 0
⎡⎢⎣ ⎤⎥⎦,

A
⌣

di j �
Y3Adi +(1 − α)BfjCdi 0

Y4Adi +(1 − α)BfjCdi 0
⎡⎢⎣ ⎤⎥⎦,

B1j � B
⌣

1j

Bij �
Y1Bi +(1 − α)BfjDi

Y2Bi +(1 − α)BfjDi

⎡⎢⎣ ⎤⎥⎦,

B
⌣

ij �
Y3Bi +(1 − α)BfjDi

Y4Bi +(1 − α)BfjDi

⎡⎢⎣ ⎤⎥⎦,

Lij � Li − Cfj􏽨 􏽩,

T1 �
Y1 Y

Y2 Y
􏼢 􏼣,

T2 �
Y3 Y

Y4 Y
􏼢 􏼣.

(46)

Den, fuzzy filter (5) can guarantee system (11) to be sto-
chastically admissible and strictly (Q,S,R)-c-dissipative.
Furthermore, from LMIs (44) and (45), the parameters of
fuzzy filter (5) can be obtained by

Afj � Y
− 1

Afj,

Bfj � Y
− 1

Bfj,

Cfj � Cfj.

(47)

Proof. Using Lemma 3 and from (44) and (45), it can be
verified that

􏽘

r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t)) Ωij d1( 􏼁 − LijI1􏼐 􏼑

T
Q LijI1􏼐 􏼑 − Π1 +Π2􏼒 􏼓< 0, (48)

􏽘

r

i�1
􏽘

r

j�1
hi(θ(t))hj(θ(t)) Ωij d2( 􏼁 − LijI1􏼐 􏼑

T
Q LijI1􏼐 􏼑 − Π3 + Π4􏼒 􏼓< 0. (49)

By substituting the filter parameters in (44) into (45) and
(46), from )eorem 1, we can proof that )eorem 2
holds. □

Remark 3. From)eorem 1 and)eorem 2, we can find that
fuzzy filter (5) is designed successfully for a class of time-
varying-delay T-S fuzzy singular systems subject to ran-
domly occurring deception attacks based on the LKF ap-
proach and LMI techniques. According to Definitions 1 and
2, the filtering error system is guaranteed to be stochastically

admissible and satisfy strictly (Q,S,R)-c-dissipativity by
conditions (44) and (45). Furthermore, Lemmas 1 and 2 are
applied in (29)–(31) to lessen the estimation gaps of (47),
which have been shown to reduce the conservatism in
dealing with time delays in [37,38], respectively.

4. Numerical Example

Consider a time-delay nonlinear system which is borrowed
from [39]:

(1 + a cos φ(t))€φ(t) � − b _φ3
(t) + cφ(t) + cdφ(t − d(t)) + fω(t), (50)
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where _φ(t) is supposed to satisfy | _φ(t)|<ψ. Choose ψ � 2,
a � − 0.01, b � 0.5, c � − 0.5, cd � − 0.05, f � − 0.2, and
d(t) � 0.3 + 0.2 sin 0.5 t. Set x1(t) � φ(t), x2(t) � _φ(t), and
x3(t) � €φ(t). Introduce a new variable
x(t) � [xT

1 (t) xT
2 (t) xT

3 (t)]T, and the nonlinear system in
(31) can be exactly modeled as

E _x(t) � 􏽘
3

i�1
hi Aix(t) + Adix(t − d(t)) + Biω(t)􏼂 􏼃,

y(t) � 􏽘
r

i�3
hi Cix(t) + Cdix(t − d(t)) + Diω(t)􏼂 􏼃,

z(t) � 􏽘
r

i�3
hi Lix(t)􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

)e parameters are given as

h1 �
x
2
2(t)

ψ2
+ 2

,

h2 �
1 + cos x1(t)

ψ2
+ 2

,

h3 �
ψ2

− x
2
2(t) + 1 − cos x1(t)

ψ2
+ 2

,

E �

1 0 0

0 1 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A1 �

0 1 0

0 0 1

c − b ψ2
+ 2􏼐 􏼑 a − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

0 1 0

0 0 1

c 0 − a − 1 − aψ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A3 �

0 1 0

0 0 1

c 0 a − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ad1 � Ad2 � Ad3 �

0 0 0

0 0 0

cd 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 � B2 � B3 �

0

0

f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C1 � 0 1 0􏼂 􏼃,

C2 � 0.6 0 − 0.4􏼂 􏼃,

C3 � − 0.2 0.1 0.55􏼂 􏼃,

Cd1 � − 0.25 0.3 0􏼂 􏼃,

Cd2 � 0.12 − 0.6 0􏼂 􏼃,

Cd3 � 0 0.8 0􏼂 􏼃,

L1 � 0.1 − 0.5 1􏼂 􏼃,

L2 � 1 0.5 − 0.5􏼂 􏼃,

L3 � − 1 0 2􏼂 􏼃,

D1 � − 0.36,

D2 � 2.5,

D3 � 1,

W � 0.09,

α � 0.2,

Q � − 0.01,

S � − 1.1, R
(52)

For c � 0.5, we can obtain from conditions (44)–(47) in
)eorem 2 that the desired filter parameters are

Af1 �

− 0.2502 0.5137 − 0.0001

0.5429 − 1.8529 1.0002

− 0.2868 0.4149 − 0.9900

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Af2 �

− 0.2839 − 0.1028 0.0290

0.3353 − 0.2848 0.9769

− 0.3028 − 0.0022 − 1.0297

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Af3 �

− 0.3269 − 0.1942 0.3735

0.3252 − 0.3790 0.9439

− 0.2717 0.1739 − 1.0781

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Bf1 �

0.1762

− 1.6414

0.3855

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Bf2 �

− 0.0724

0.0577

0.0994

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Bf3 �

0.6792

− 0.1021

− 0.1602

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Cf1 � − 0.2313 0.8816 − 1.0000􏼂 􏼃,

Cf2 � − 2.3880 2.7310 0.5015􏼂 􏼃,

Cf3 � 0.2935 1.2410 − 2.0008􏼂 􏼃.

(53)

12 Complexity



Next, we will provide the simulation results to dem-
onstrate the effectiveness of our filter design method against
randomly occurring deception attacks. Let the initial con-
dition be [− 0.1 0.1 0]T and the disturbance be
ω(t) � 0.1e− 0.5t sin t. Figure 1 shows the system state

response x(t). )e deception attack function is given as
σ(t) � − tanh(0.09y(t)). )e sensor measurement ya(t)

under randomly occurring deception attack is given in
Figure 2. Figure 3 is the filtering error ef(t). From
Figures 1–3, we can find that our results are effective.
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5. Conclusions

In this work, a method for dealing with the problem of
dissipative filtering associated with T-S fuzzy singular sys-
tems with time-varying delays subject to deception attacks
has been developed. Since the measurement output is
supposed to encounter random deception attacks based on a
Bernoulli distribution during signal transmission, the fil-
tering error system is modeled by a stochastic singular T-S
fuzzy system and the definition of stochastic admissibility for
this kind of system has been presented. By using the LKF
approach and LMI techniques, sufficient delay-dependent
results have been generated, where the filtering error system
can be stochastically admissible and strictly (Q,S,R)-dis-
sipative against randomly occurring deception attacks. Be-
sides, the desired filter parameters can be obtained by these
solvable conditions. Finally, a frequently used example of the
nonlinear system has been given to show the effectiveness of
our work.
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In this work, we consider a quasilinear system of viscoelastic equations with degenerate damping and source terms without the
Kirchhoff term. Under suitable hypothesis, we study the blow-up of solutions.

1. Introduction

In this paper, we consider the following problem:

ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
utt − Δu + 􏽚

t

0
h1(t − s)Δu(s)ds + |u|

k
+|v|

l
􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j− 1

ut

� f1(u, v), (x, t) ∈ Ω ×(0, T),

vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
vtt − Δv + 􏽚

t

0
h2(t − s)Δv(s)ds + |v|

θ
+

|u|〉
􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s− 1

vt

� f2(u, v), (x, t) ∈ Ω ×(0, T),

u(x, t) � v(x, t) � 0, (x, t) ∈zΩ ×(0, T),

u(x, 0) � u0(x), ut(x, 0) � u1(x), x ∈ Ω,

v(x, 0) � v0(x), vt(x, 0) � v1(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where k, l, θ, ϱ ≥ 0; j, s≥ 1 for N � 1, 2, and 0≤ j, s≤ (N +

2/N − 2) for N≥ 3; and η≥ 0 for N � 1, 2, and
0< η≤ (2/N − 2) for N≥ 3; and hi(.): R+⟶ R+

(i � 1, 2) are positive relaxation functions which will be
specified later. (|(.)|a + |(.)|b)|(.)t|

τ− 1(.)t is the degenerate
damping term, and

f1(u, v) � a1|u + v|
2(p+1)

(u + v) + b1|u|
p
.u.|v|

p+2
,

f2(u, v) � a1|u + v|
2(p+1)

(u + v) + b1|v|
p
.v.|u|

p+2
.

⎧⎨

⎩ (2)

(e motivation of our problem firstly is by the initial
boundary value problem for the quasilinear equation of the
form

ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
utt − Δu + 􏽚

t

0
h(t − s)Δu(s)ds + g u, ut( 􏼁 � f(u).

(3)
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(is type of problem is frequently found in some
mathematical models in applied sciences, especially in the
theory of viscoelasticity. Problem (3) has been studied by
various authors, and several results concerning asymptotic
behavior and blow-up have been studied (case η≥ 0). For
example, in the case (g(u, ut) � 0), problem (3) has been
investigated in [1] and the author proved the blow-up result.
In the case (g(u, ut) � 0) of boundary value problem and in
the presence of the dispersion term (− Δutt), Liu [2] studied a
general decay of solutions. And, in [3], the authors applied
the potential well method to indicate the global existence
and uniform decay of solutions (g(u; ut))� 0 instead of
Δut). Furthermore, the authors obtained a blow-up result. In
the case (g(u, ut) � |ut|

mut), in [4], Wu studied a general
decay of solution. Later, the same author in [5] considered
the same problem but (g(u, ut) � ut) and discussed the
decay rate of solution. Recently, in [6], the authors proved
the existence of global solution and a general stability result.

(ere are several works in case (η � 0), where the au-
thors have studied the blow-up of solutions of problem (3)
(for example, see [3, 7–12]).

For a coupled system, He [13] considered the following
problem:

ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
utt − Δu + 􏽚

t

0
h1(t − s)Δu(s)ds − Δutt + g1 u, ut( 􏼁

� f1(u, v),

vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
vtt − Δv + 􏽚

t

0
h2(t − s)Δv(s)ds − Δvtt + g2 v, vt( 􏼁

� f2(u, v),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where η> 0; j, s≥ 2; and g1(u, ut) � |ut|
j− 2ut

andg2(v, vt) � |vt|
s− 2vt. (e author proved general and

optimal decay of solutions. (en, in [14], the author in-
vestigated the same problem without damping term and
established a general decay of solutions. Furthermore, the
author obtained a blow-up of solutions. In addition, in
problem (1) with η � 0, in [15], Wu proved a general decay
of solutions. Later, in [16], Piskin and Ekinci established a
general decay and blow-up of solutions with nonpositive
initial energy for problem (1) case (Kirchhoff type). In
recent years, some other authors investigate the hyperbolic
type system with degenerate damping terms (see [17–20]).
Very recently, in the presence of the dispersion term
(− Δutt), our problem (1) has been studied in [21]. Under
some restrictions on the initial datum and standard con-
ditions on relaxation functions, the authors have estab-
lished the global existence and proved the general decay of
solutions.

Based on all of the abovementioned discussion, we
believe that the combination of these terms of damping
(memory term, degenerate damping, and source terms)
constitutes a new problem worthy of study and research,
different from the above that we will try to shed light on,
especially the blow-up of solutions.

Our paper is divided into several sections: In Section 2,
we lay down the hypotheses, concepts, and lemmas we need.

In Section 3, we prove our main result. Finally, we give some
concluding remarks in the last section.

2. Preliminaries

We prove the blow-up result under the following suitable
assumptions:

(A1) hi: R+⟶ R+ are differentiable and decreasing
functions such that

hi(t)≥ 0, 1 − 􏽚
∞

0
hi(s)ds � li > 0, i � 1, 2. (5)

(A2) (ere exist a constants ξ1, ξ2 > 0 such that

hi
′(t)≤ − ξihi(t), t≥ 0, i � 1, 2. (6)

Lemma 1. :ere exists a function F(u, v) such that

F(u, v) �
1

2(p + 2)
uf1(u, v) + vf2(u, v)􏼂 􏼃,

1
2(p + 2)

a1|u + v|
2(p+2)

+ 2b1|uv|
p+2

􏽨 􏽩≥ 0,

(7)

where

zF

zu
� f1(u, v),

zF

zv
� f2(u, v).

(8)

We take a1 � b1 � 1 for convenience.

Lemma 2 (see [18]). :ere exist two positive constants c0 and
c1 such that

c0

2(p + 2)
|u|

2(p+2)
+|v|

2(p+2)
􏼐 􏼑≤F(u, v)

≤
c1

2(p + 2)
|u|

2(p+2)
+|v|

2(p+2)
􏼐 􏼑.

(9)

Now, we state the local existence theorem that can be
established by combining arguments of [13, 16].

Theorem 1. Assume (5) and (6) hold. Let

− 1<p<
4 − n

n − 2
, n≥ 3,

p≥ − 1, n � 1, 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

:en, for any initial datum,

u0, u1, v0, v1( 􏼁 ∈H. (11)

Problem (1) has a unique solution, for some T> 0:
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u, v ∈ C [0, T]; H
2
(Ω)∩H

1
0(Ω)􏼐 􏼑,

ut ∈ C [0, T]; H
1
0(Ω)􏼐 􏼑∩ L

j+1
(Ω),

vt ∈ C [0, T]; H
1
0(Ω)􏼐 􏼑∩ L

s+1
(Ω),

(12)

where

H � H
1
0(Ω) × L

2
(Ω) × H

1
0(Ω) × L

2
(Ω). (13)

Now, we define the energy functional.

Lemma 3. Assume (5), (6), and (10) hold; let (u, v) be a
solution of (1); then, E(t) is nonincreasing, that is,

E(t) �
1

η + 2
ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼔 􏼕,

+
1
2

1 − 􏽚
t

0
h1(s)ds􏼠 􏼡‖∇u‖

2
2􏼢

+ 1 − 􏽚
t

0
h2(s)ds􏼠 􏼡‖∇u‖

2
2􏼣,

+
1
2

h1o∇u( 􏼁(t) + h2o∇u( 􏼁(t)􏼂 􏼃 − 􏽚
Ω

F(u, v)dx,

(14)

which satisfies

E′(t)≤
1
2

h1′o∇u( 􏼁(t) + h2′o∇u( 􏼁􏼂 􏼃(t)

−
1
2

h1(t)‖∇u‖
2
2 + h2(t)‖∇u‖

2
2􏽨 􏽩,

− 􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx − 􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx ,

≤ 0.

(15)

Proof. By multiplying the first and second equations in (1)
by ut, vt and integrating over Ω, we get

d

dt

1
η + 2

ut

����
����
η+2
η+2 +

1
η + 2

vt

����
����
η+2
η+2􏼨 +

1
2

− 1􏽚
t

0
h1(s)ds􏼠 􏼡‖∇u‖

2
2 +

1
2

− 1􏽚
t

0
h2(s)ds􏼠 􏼡‖∇u‖

2
2 +

1
2

h1o∇u( 􏼁(t)

+
1
2

h2o∇u( 􏼁(t) − 􏽚
Ω

F(u, v)dx􏼛,

� − 􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx − 􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx +
1
2

h1′o∇u( 􏼁 −
1
2
h1(t)‖∇u‖

2
2 +

1
2

h2′o∇u( 􏼁 −
1
2
h2(t)‖∇u‖

2
2.

(16)

We obtain (14) and (15). □

3. Blow-Up

In this section, we prove the blow-up result of solution of
problem (1).

First, we define the functional as

H(t) � − E(t) � −
1

η + 2
ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼔 􏼕 −

1
2

1 − 􏽚
t

0
h1(s)ds􏼠 􏼡‖∇u‖

2
2 +

1
2

1 − 􏽚
t

0
h2(s)ds􏼠 􏼡‖∇v‖

2
2

−
1
2

h1o∇u( 􏼁(t) + h2o∇u( 􏼁(t)􏼂 􏼃

+
1

2(p + 2)
‖u + v‖

2(p+2)

2(p+2) +‖uv‖
2(p+2)

2(p+2)􏼔 􏼕.

(17)
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Theorem 4. Assume that (5), (6), and (10) hold, and suppose
that E(0)< 0 and

2(p + 2)>max k + j + 1; l + j + 1; θ + s + 1; ϱ + s + 1􏼈 􏼉.

(18)

:en, the solution of problem (1) blows up in finite time.

Proof. From (14), we have

E(t)≤E(0)≤ 0. (19)

(erefore,

H′(t) � − E′(t)≥􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx

+ 􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx .

(20)

Hence,

H′(t)≥􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx ≥ 0,

H′(t)≥􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx ≥ 0.

(21)

By (9) and (17), we have

0≤H(0)≤H(t)≤
1

2(p + 2)
‖u + v‖

2(p+2)

2(p+2) + 2‖uv‖
2(p+2)

2(p+2)􏼔 􏼕,

≤
c1

2(p + 2)
ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼔 􏼕.

(22)

We set

K(t) � H
1− α

+
ε

η + 1
􏽚
Ω

u ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
ut + v vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
vt􏽨 􏽩dx , (23)

where ε> 0 is to be assigned later and

0< α<min 1 −
1

2(p + 2)
−

1
η + 2

􏼠 􏼡,
2p + 3 − (k + j)

2j(p + 2)
,
2p + 3 − (l + j)

2j(p + 2)
,
2p + 3 − (θ + s)

2s(p + 2)
,
2p + 3 − (ϱ + s)

2s(p + 2)
􏼨 􏼩< 1. (24)

By multiplying the first and second equations in (1) by
u, v and with a derivative of (23), we get

K′(t) � (1 − α)H
− α
H′(t) +

ε
η + 1

ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼒 􏼓 + ε􏽚

Ω
∇u 􏽚

t

0
g(t − s)∇u(s)ds dx

􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽
J1

+ ε􏽚
Ω
∇v 􏽚

t

0
h(t − s)∇u(s)ds dx

􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽
J2

− ε􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j− 1

ut.u dx
􏽼√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√􏽽

J3

− ε􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s− 1

vt.v dx
􏽼√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√􏽽

J4

− ε ‖∇u‖
2
2 +‖∇v‖

2
2􏼐 􏼑 + ε ‖u + v‖

2(p+2)

2(p+2) + 2‖uv‖
2(p+2)

2(p+2)􏼔 􏼕
􏽼√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√􏽽

J5

,

(25)

where we have

J1 � ε􏽚
t

0
h1(t − s)ds􏽚

Ω
∇u.(∇u(s) − ∇u(t))dx ds

+ ε􏽚
t

0
h1(s)ds ‖∇u‖

2
2,

≥
ε
2

􏽚
t

0
h1(s)ds ‖∇u‖

2
2 −

ε
2

h1o∇u( 􏼁,

(26)

J2 � ε􏽚
t

0
h2(t − s)ds􏽚

Ω
∇u.(∇u(s) − ∇u(t))dx ds

+ ε􏽚
t

0
h2(s)ds ‖∇u‖

2
2,

≥
ε
2

􏽚
t

0
h2(s)ds ‖∇u‖

2
2 −

ε
2

h2o∇u( 􏼁.

(27)

From (25), we find that

K′(t)≥ (1 − α)H
− α
H′(t) +

ε
η + 1

ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼒 􏼓

− ε 1 −
1
2

􏽚
t

0
h1(s)ds􏼠 􏼡‖∇u‖

2
2􏼢

+ 1 −
1
2

􏽚
t

0
h2(s)ds􏼠 􏼡‖∇v‖

2
2􏼣

−
ε
2

h1o∇u( 􏼁 −
ε
2

h2o∇u( 􏼁 − J3 − J4 + J5.

(28)

At this point, we use Young’s inequality; for δ > 0,

XY≤
δαX

α

α
+
δ− β

X
β

β
, α, β> 0,

1
α

+
1
β

� 1, (29)

We get that for δ1, δ2 > 0,
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u ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j− 1

ut

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
δj+1
1

j + 1
ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

+
j

j + 1
δ− (j+1/j)
1 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

,

v vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s− 1

vt

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
δs+1
2

s + 1
vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

+
s

s + 1
δ− (s+1/s)
2 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

.

(30)

Hence, we have

J3 ≤ ε
δj+1
1

j + 1
􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx

+ ε
jδ− (j+1/j)

1
j + 1

􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx dx,

J4 ≤ ε
δs+1
2

s + 1
􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx

+ ε
sδ− (s+1/s)

2
s + 1

􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx .

(31)

(erefore, using (21) and by setting δ1, δ2 so that

jδ− (j+1/j)
1
j + 1

�
κH− α

(t)

2
,

sδ− (s+1/s)
2
s + 1

�
κH− α

(t)

2
,

(32)

and substituting in (28), we get

K′(t)≥ [(1 − α) − εκ]H
− α
H′(t) +

ε
η + 1

ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼒 􏼓 − ε 1 −

1
2

􏽚
t

0
h1(s)ds􏼠 􏼡‖∇u‖

2
2 + 1 −

1
2

􏽚
t

0
h2(s)ds􏼠 􏼡‖∇v‖

2
2􏼢 􏼣

−
ε
2

h1o∇u( 􏼁 −
ε
2

h2o∇u( 􏼁 − εC1(κ)H
αj

(t)􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx − εC2(κ)H
αj

(t)􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

+ J5,

(33)

where

C1(κ): �
2j

κ(j + 1)
􏼠 􏼡

j+1 1
j + 1

,

C2(κ): �
2s

κ(s + 1)
􏼠 􏼡

s+1 1
s + 1

.

(34)

We have

􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx � ‖u‖
k+j+1
k+j+1 + 􏽚

Ω
|v|

l
|u|

j+1
dx ,

􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx � ‖v‖
θ+s+1
θ+s+1 + 􏽚

Ω
|u|
ϱ
|v|

s+1
dx .

(35)

By Young’s inequality, we find that for δ3, δ4 > 0,

􏽚
Ω

|v|
l
|u|

j+1
dx ≤

l

l + j + 1
δ(l+j+1/l)
3 ‖v‖

l+j+1
l+j+1

+
j + 1

l + j + 1
δ− (l+j+1/l)
3 ‖u‖

l+j+1
l+j+1,

􏽚
Ω

|u|
ϱ
|v|

s+1
dx ≤

ϱ
ϱ + s + 1

δ(ϱ+s+1/ϱ)
4 ‖u‖

ϱ+s+1
ϱ+s+1

+
s + 1
ϱ + s + 1

δ− ((ϱ+s+1/ϱ))
4 ‖v‖

ϱ+s+1
ϱ+s+1.

(36)

Hence,

H
αj

(t)􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx ≤Hαj
(t)‖u‖

k+j+1
k+j+1 +

lH
αj

(t)

l + j + 1
δ(l+j+1/l)
3 ‖v‖

l+j+1
l+j+1 +

(j + 1)H
αj

(t)

l + j + 1
δ− ((l+j+1/l))
3 ‖u‖

l+j+1
l+j+1,

H
αj

(t)􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx ≤Hαs
(t)‖v‖

θ+s+1
θ+s+1 +
ϱHαs

(t)

ϱ + s + 1
δ(ϱ+s+1/ϱ)
4 ‖u‖

ϱ+s+1
ϱ+s+1 +

(s + 1)H
αs

(t)

ϱ + s + 1
δ− ((ϱ+s+1/ϱ))
4 ‖v‖

ϱ+s+1
ϱ+s+1.

(37)

Since (10) holds, we obtain the following by using (22)
and (24):
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H
αj

(t)‖u‖
k+j+1
k+j+1 ≤ c1 ‖u‖

2αj(p+2)+k+j+1
2(p+2) +‖v‖

2αj(p+2)

2(p+2) ‖u‖
k+j+1
k+j+1􏼒 􏼓,

H
αj

(t)‖v‖
k+j+1
k+j+1 ≤ c2 ‖v‖

2αj(p+2)+k+j+1
2(p+2) +‖u‖

2αj(p+2)

2(p+2) ‖v‖
k+j+1
k+j+1􏼒 􏼓,

H
αs

(t)‖v‖
θ+s+1
θ+s+1 ≤ c3 ‖v‖

2αs(p+2)+θ+s+1
2(p+2) +‖u‖

2αs(p+2)

2(p+2) ‖v‖
θ+s+1
θ+s+1􏼒 􏼓,

H
αs

(t)‖u‖
θ+s+1
θ+s+1 ≤ c4 ‖u‖

2αs(p+2)+θ+s+1
2(p+2) +‖v‖

2αs(p+2)

2(p+2) ‖u‖
θ+s+1
θ+s+1􏼒 􏼓,

(38)

for some positive constants ci, i � 1, ..4. By using (24) and the
algebraic inequality

B
ς ≤ (B + 1)≤ 1 +

1
b

􏼒 􏼓(B + b),∀B> 0, 0< ς< 1, b> 0,

(39)

we have, ∀t> 0,

‖u‖
2αj(p+2)+k+j+1
2(p+2) ≤ d ‖u‖

2(p+2)

2(p+2) + H(0)􏼒 􏼓≤ d ‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

‖v‖
2αj(p+2)+k+j+1
2(p+2) ≤ d ‖v‖

2(p+2)

2(p+2) + H(0)􏼒 􏼓≤d ‖v‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

‖v‖
2αs(p+2)+θ+s+1
2(p+2) ≤ d ‖v‖

2(p+2)

2(p+2) + H(0)􏼒 􏼓≤d ‖v‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

‖u‖
2αs(p+2)+θ+s+1
2(p+2) ≤ d ‖u‖

2(p+2)

2(p+2) + H(0)􏼒 􏼓≤ d ‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

(40)

where d � 1 + (1/H(0)). Also, since

(X + Y)
c ≤C X

c
+ Y

c
( 􏼁, X, Y> 0, c> 0, (41)

we conclude that

‖v‖
2αj(p+2)

2(p+2) ‖u‖
k+j+1
k+j+1 ≤ c5 ‖v‖

2(p+2)

2(p+2) +‖u‖
2(p+2)

2(p+2)􏼒 􏼓,

‖u‖
2αj(p+2)

2(p+2) ‖v‖
k+j+1
k+j+1 ≤ c6 ‖u‖

2(p+2)

2(p+2) +‖v‖
2(p+2)

2(p+2)􏼒 􏼓,

‖u‖
2αs(p+2)

2(p+2) ‖v‖
θ+s+1
θ+s+1 ≤ c7 ‖v‖

2(p+2)

2(p+2) +‖u‖
2(p+2)

2(p+2)􏼒 􏼓,

‖v‖
2αs(p+2)

2(p+2) ‖u‖
θ+s+1
θ+s+1 ≤ c8 ‖v‖

2(p+2)

2(p+2) +‖u‖
2(p+2)

2(p+2)􏼒 􏼓.

(42)

Substituting (40) and (42) in (38), we get

H
αj

(t)‖u‖
k+j+1
k+j+1 ≤ c9 ‖v‖

2(p+2)

2(p+2)􏼒 􏼓 + ‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

H
αj

(t)‖v‖
k+j+1
k+j+1 ≤ c10 ‖v‖

2(p+2)

2(p+2)􏼒 􏼓 + ‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

H
αj

(t)‖v‖
k+j+1
k+j+1 ≤ c11 ‖v‖

2(p+2)

2(p+2)􏼒 􏼓 + ‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

H
αj

(t)‖u‖
k+j+1
k+j+1 ≤ c12 ‖v‖

2(p+2)

2(p+2)􏼒 􏼓 + ‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓.

(43)

Hence, by fixing δ3, δ4 > 0, we get

H
αj

(t)􏽚
Ω

|u|
k

+|v|
l

􏼐 􏼑 ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
j+1

dx ≤M1 1 +
lδ(l+j+1/l)

3
l + j + 1

+
(j + 1)δ− (l+j+1/l)

3
l + j + 1

⎛⎝ ⎞⎠ ‖v‖
2(p+2)

2(p+2) +‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

H
αs

(t)􏽚
Ω

|v|
θ

+|u|
ϱ

􏼐 􏼑 vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
s+1

dx ≤M2 1 +
ϱδ(ϱ+s+1/ϱ)

4
ϱ + s + 1

+
(s + 1)δ− (ϱ+s+1/ϱ)

4
ϱ + s + 1

⎛⎝ ⎞⎠ ‖v‖
2(p+2)

2(p+2) +‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

(44)

for some constants M1, M2 > 0. Now, for 0< a< 1, from (17),

J5 � ε ‖u + v‖
2(p+2)

2(p+2) + 2‖uv‖
p+2
p+2􏼔 􏼕 � εa ‖u + v‖

2(p+2)

2(p+2) + 2‖uv‖
p+2
p+2􏼔 􏼕 +

2ε(p + 2)(1 − a)

η + 2
ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼒 􏼓

+ ε(p + 2)(1 − a) 1 − 􏽚
t

0
g(s)ds􏼠 􏼡‖∇u‖

2
2 + ε(p + 2)(1 − a) 1 − 􏽚

t

0
h(s)ds􏼠 􏼡‖∇v‖

2
2

− ε(p + 2)(1 − a) h1o∇u( 􏼁 + h2o∇u( 􏼁( 􏼁 + ε2(p + 2)(1 − a)H(t).

(45)

Substituting in (33) and by using (9), we get
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K′(t)≥ (1 − a) − εκ{ }H
− α
H′(t) + ε

2ε(p + 2)(1 − a)

η + 2
+

1
η + 1

􏼨 􏼩 ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2􏼒 􏼓,

+ ε (p + 2)(1 − a) 1 − 􏽚
t

0
h1(s)ds􏼠 􏼡 − 1 −

1
2

􏽚
t

0
h1(s)ds􏼠 􏼡􏼨 􏼩‖∇u‖

2
2

+ ε (p + 2)(1 − a) 1 − 􏽚
t

0
h2(s)ds􏼠 􏼡 − 1 −

1
2

􏽚
t

0
h2(s)ds􏼠 􏼡􏼨 􏼩‖∇v‖

2
2

+ ε (p + 2)(1 − a) −
1
2

􏼚 􏼛 h1o∇u + h2o∇v( 􏼁 + ε c0a − M3C1(κ) + M4C2(κ)( 􏼁􏼈 􏼉 ‖u‖
2(p+2)

2(p+2) +‖v‖
2(p+2)

2(p+2)􏼒 􏼓

+ ε 2(p + 2)(1 − a) − M3C1(κ) + M4C2(κ)( 􏼁􏼈 􏼉H(t),

(46)

where

M3: � M1 1 +
lδ(l+j+1/l)

3
l + j + 1

+
(j + 1)δ− (l+j+1/l)

3
l + j + 1

⎛⎝ ⎞⎠> 0,

M4: � M2 1 +
ϱδ(ϱ+s+1/ϱ)

4
ϱ + s + 1

+
(s + 1)δ− (ϱ+s+1/ϱ)

4
ϱ + s + 1

⎛⎝ ⎞⎠> 0.

(47)

In this stage, we take a> 0 small enough so that

λ1 � (p + 2)(1 − a) − 1> 0, (48)

and we assume that

max 􏽚
∞

0
h1(s)ds , 􏽚

∞

0
h2(s)ds􏼚 􏼛<

(p + 2)(1 − a) − 1
((p + 2)(1 − a) − (1/2))

�
2λ1

2λ1 + 1
(49)

gives

λ2 � ((p + 2)(1 − a) − 1) − 􏽚
t

0
h1(s)ds (p + 2)(1 − a) −

1
2

􏼒 􏼓􏼨 􏼩> 0,

λ3 � (p + 2)(1 − a) − 1) − 􏽚
t

0
h2(s)ds (p + 2)(1 − a)) −

1
2

􏼒􏼠 􏼡􏼨 􏼩> 0.

(50)

(en, we choose κ so large such that

λ4 � ac0 − M3C1(κ) + M4C2(κ)( 􏼁> 0,

λ5 � 2(p + 2)(1 − a) − M3C1(κ) + M4C2(κ)( 􏼁> 0.
(51)

Finally, we fix κ and a and we appoint ε small enough so
that

λ6 � (1 − α) − εκ> 0. (52)

(us, for some β> 0, estimate (46) becomes

K′(t)≥ β H(t) + ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2 +‖∇u‖

2
2 +‖∇v‖

2
2 + h1o∇u( 􏼁 + h2o∇v( 􏼁 +‖u‖

2(p+2)

2(p+2) +‖u‖
2(p+2)

2(p+2)􏼚 􏼛. (53)

By (9), for some β1 > 0, we obtain

K′(t)≥ β1 H(t) + ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2 +‖∇u‖

2
2 +‖∇v‖

2
2 + h1o∇u( 􏼁 + h2o∇v( 􏼁 +‖u + v‖

2(p+2)

2(p+2) + 2‖uv‖
(p+2)

(p+2)􏼚 􏼛 (54)

and

K(t)≥K(0)> 0, t> 0. (55)

Next, using Hölder’s and Young’s inequalities, we have

􏽚
Ω

u ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
ut + v vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
vt􏼐 􏼑dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(1/1− α)

≤C ‖u‖
(θ/1− α)
2(p+2) + ut

����
����

(μ/1− α)

η+2 +‖v‖
(θ/1− α)
2(p+2) + vt

����
����

(μ/1− α)

η+2􏼔 􏼕,

(56)
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where (1/μ) + (1/θ) � 1.
We take μ � (η + 2)(1 − α), to get

θ
1 − α

�
η + 2

(1 − α)(η + 2) − 1
≤ 2(p + 2). (57)

Subsequently, by using (24), (22), and (39), we obtain

‖u‖
(η+2/(1− α)(η+2)− 1)

2(p+2) ≤ d ‖u‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,

‖v‖
(η+2/(1− α)(η+2)− 1)

2(p+2) ≤ d ‖v‖
2(p+2)

2(p+2) + H(t)􏼒 􏼓,∀t≥ 0.

(58)

(erefore,

􏽚
Ω

u ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
ut + v vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
vt􏼐 􏼑dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(1/1− α)

≤ c13 ‖u‖
2(p+2)

2(p+2) +‖v‖
2(p+2)

2(p+2) + ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2 + H(t)􏼔 􏼕.

(59)

Hence, by substituting (59) into (23), we get

K
(1/1− α)

(t) � H
1− α

+
ε

η + 1
􏽚
Ω

u ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
ut + v vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
vt􏼐 􏼑dx􏼠 􏼡

(1/1− α)

,

≤ c H(t) + 􏽚
Ω

u ut

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
ut + v vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
vt􏼐 􏼑dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(1/1− α)

􏼠 􏼡,

≤ c H(t) + ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2 +‖u‖

2(p+2)

2(p+2) +‖v‖
2(p+2)

2(p+2)􏼒 􏼓,

≤ c H(t) + ut

����
����
η+2
η+2 + vt

����
����
η+2
η+2 +‖∇u‖

2
2 +‖∇v‖

2
2 + h1o∇u( 􏼁 + h2o∇v( 􏼁 +‖u‖

2(p+2)

2(p+2) +‖v‖
2(p+2)

2(p+2)􏼒 􏼓.

(60)

From (53) and (60), we get

K′(t)≥ λK(1/1− α)
(t), (61)

where λ> 0, and this depends only on β and c.
By integration of (61), we obtain

K
(α/1− α)

(t)≥
1

K
(− α/1− α)

(0) − λ(α/1 − α)t
. (62)

Hence, K(t) blows up in time

T≤T
∗

�
1 − α

λαK(α/1− α)
(0)

. (63)

(en, the proof is completed. □

4. Conclusion

(e objective of this work is the study of the blow-up of
solutions for a quasilinear viscoelastic system with degen-
erate damping. (is type of problem is frequently found in
some mathematical models in applied sciences, especially in
the theory of viscoelasticity. What interests us in this current
work is the combination of these terms of damping (memory
term, degenerate damping, and source terms), which dic-
tates the emergence of these terms in the system.

In the next work, we will try using the same method with
the same problem in addition to other damping terms
(dispersion term, Balakrishnan–Taylor damping, and delay
term).
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In this paper, the influence of delayed feedback on the unified chaotic system from the Sprott C system and Yang system is studied.
'e Hopf bifurcation and dynamic behavior of the system are fully studied by using the central manifold theorem and bifurcation
theory. 'e explicit formula, bifurcation direction, and stability of the periodic solution of bifurcation are given correspondingly.
'e Hopf bifurcation diagram and chaotic phenomenon are also analyzed by numerical simulation to prove the correctness of the
theory. It shows that this delay control can only be applied to the hidden chaos with two stable equilibria.

1. Introduction

Since Lorentz inadvertently discovered chaos in a three-
dimensional autonomous system [1] in 1963, more andmore
scholars began to study the chaos of various systems. Sprott
[2–4] found nineteen simple chaotic systems, which may
have no equilibra, one equilibrium, or two equilibra. Some
classical three-dimensional autonomous chaotic systems,
such as Lorentz system [1] and Chen system [5], have a
saddle point and two unstable saddle foci. Other three-di-
mensional chaotic systems [6] have two unstable saddle foci.
A chaotic system with one saddle and two stable node foci
was discovered by Yang and Chen [7]. Some current studies
on these systems including theoretical proof and numerical
simulation can be found in the literature [8–19].

In 2000, Yang, Wei, and Chen [20] introduced a new
three-dimensional chaotic system that is very similar to
Lorentz system and Chen system, but it has only two stable
node foci. 'e related types of chaotic systems have been
analyzed and numerically studied in detail [21–24]. It has
become very important to study the local and global
properties of systems with chaotic phenomena. As it is
known, hidden attractors are known as the kind of attractors
whose domain of attraction is outside the equilibrium

points; meanwhile, the domain of attraction in self-excited
attractors is related to the unstable equilibrium points
[25–27]. Finding hidden attractors in complex variable
chaotic systems is even more difficult than finding their real
variable counterparts. In recent years, an increasing number
of scholars have paid attention to the control and utilization
of chaos [28–31] for stabilizing the system with chaotic
behaviors. It is also worth noting that theories and methods
of controlling hidden chaos in continuous dynamical sys-
tems have been developed. 'is paper mainly studies the
following unified chaotic system from [2, 20, 24]:

_x � a(y − x)

_y � −cy − xz + k(y(t − τ) − y)

_z � −b + k1xy + k2y
2
,

⎧⎪⎪⎨

⎪⎪⎩
, (1)

where a, b, and c are the positive real parameters,
k, k1, and k2 are the control parameters, and τ is the delay
parameter. For parameter values
(a, b, c, k, k1, k2) � (1, 1, 0, 0, 0, 1), system (1) becomes the
Sprott C system. For parameter values (k, k1, k2) � (0, 1, 0),
system (1) is a general expression for the Yang system.
Moreover, for parameter values (a, b, c, k, k1, k2) �

(10, 100, 9.8, 0, 0.08, 0.01), system (1) without delay has two
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stable equilibria, whose three characteristic values are λ1 �

−19.3894 and λ2,3 � −0.2053 ± 10.1542i. Figures 1(a) and
1(b), respectively, show time series and the projection of
chaotic attractors on the y − z plane. 'erefore, system (1)
has a hidden attractor coexisting with two stable node foci
for initial values (0.98, −1.82, 0.49). 'erefore, we want to
consider the stability of system (1) with direct delay feedback
from theoretical analysis and numerical study. At the same
time, when all equilibria are stable, we want to show the
results that system (1) will turn to chaotic attractor from
Hopf bifurcation [32].

'e organization of this paper is as follows: In Section 2,
the bifurcation conditions of Hopf bifurcation in delayed
system (1) are discussed. In Section 3, based on the central
manifold theorem and bifurcation theory, the direction and
stability of Hopf bifurcation are analyzed in detail. In Section
4, numerical simulations illustrate our theoretical results.
Finally, the conclusion is given in Section 5.

2. Existence of Hopf Bifurcation in System (1)

If k1 + k2 > 0, system (1) possesses two equilibria E1,2
(±

�
b

√
/

������
k1 + k2

􏽰
, ±

�
b

√
/

������
k1 + k2

􏽰
, −c). Because of the sym-

metry of E1 and E2, it is sufficient to analyze the properties of
only one of them. So, the rest of the discussion is going to be
about E1. By the following linear transformation to shift E1
to the origin,

x1 � x −

�
b

√

������
k1 + k2

􏽰 ,

y1 � y −

�
b

√

������
k1 + k2

􏽰 ,

z1 � x + c,

(2)

the controlled system (1) is

_x1 � a y1 − x1( 􏼁,

_y1 � c x1 − y1( 􏼁 −

�
b

√

������
k1 + k2

􏽰 z1 − x1z1 + k y1(t − τ) − y1􏼂 􏼃,

_z1 �

�
b

√
k1������

k1 + k2
􏽰 x1 +

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 y1 + k1x1y1 + k2y
2
1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

'e characteristic equation corresponding to the linear
matrix of equation (3) is

λ3 +(a + c + k)λ2 +
k1 + 2k2

k1 + k2
b + ak􏼠 􏼡λ + 2ab

− λ2 + aλ􏼐 􏼑ke
− λτ

� 0.

(4)

When τ � 0, equation (4) becomes

λ3 +(a + c)λ2 +
k1 + 2k2

k1 + k2
bλ + 2ab � 0. (5)

According to the Routh–Hurwitz criterion, in equation
(5), under the following conditions, there are three roots in
the negative real part:

k2 >max −k1, −
1
2

(c − a)k1􏼚 􏼛. (6)

'e classification conditions of reference equilibrium
point, E1, and E2 are local stable nodes or focal points.

For the sake of analysis, let us reduce equation (4) to

λ3 + a2λ
2

+ a1λ + a0 + b2λ
2

+ b1λ􏼐 􏼑e
− λτ

� 0, (7)

where a2 � a + c + k, a1 � (k1 + 2k2)/ (k1 + k2)b + ak, a0
� 2ab, b2 � −k, and b1 � −ak.

Since Hopf bifurcations must have a pair of pure
imaginary roots at the system equilibrium point, we might as
well establish system (1) having a pair of pure imaginary
roots, that is, iρ, so we can substitute the roots into equation
(4):

− ρ3i − a2ρ
2

+ a1ρi + a0 + −b2ρ
2

+ b1ρi􏼐 􏼑

· [cos(ρτ) − i sin(ρτ)] � 0,
(8)

where we separate the real part from the imaginary part:

ρ3 − a1ρ � b2ρ
2 sin(ρτ) + b1ρ cos(ρτ),

a2ρ
2

− a0 � b1ρ sin(ρτ) − b2ρ
2 cos(ρτ),

⎧⎨

⎩ (9)

which leads to

ρ6 + a
2
2 − b

2
2 − 2a1􏼐 􏼑ρ4 + a

2
1 − 2a0a2 − b

2
1􏼐 􏼑ρ2 + a

2
0 � 0.

(10)

Let s � ρ2 and let us denote
p � a2

2 − b22 − 2a1, q � a2
1 − 2a0a2 − b21, and r � a2

0; then,
equation (10) becomes

s
3

+ ps
2

+ qs + r � 0. (11)

Let

h(s) � s
3

+ ps
2

+ qs + r. (12)

From equation (11), we have

h′(s) � 3s
2

+ 2ps + q. (13)

Denote Δ � p2 − 3q. When Δ> 0 and r> 0, we can solve
for two real roots of equation h′(s) � 0 as follows:

s
∗
1 �

−p +
��
Δ

√

3
,

s
∗
2 �

−p −
��
Δ

√

3
.

(14)

Noticing that r � a2
0 > 0 and lims⟶+∞h(s) � +∞, we

can get results similar to [9].

Lemma 1. -e following results hold:

(1) Equation (11) does not have positive real roots if
Δ � p2 − 3q≤ 0
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(2) Otherwise, if and only if s∗1 � (−p +
��
Δ

√
)/3> 0 and

h(s∗1 )≤ 0, equation (11) has positive roots

From the second point of Lemma 1, we can make an
assumption to obtain the two positive roots of equation (11),
and when s1 < s2, then h′(s1)< 0 and h′(s2)> 0:

Δ � p
2

− 3q> 0,

s
∗
1 �

−p +
��
Δ

√

3
> 0,

h s
∗
1( 􏼁< 0.

(15)

Substituting ρk �
�
k

√
(k � 1, 2) into equation (9), we

have

τj

k �

1
ρk

[arccos(P) + 2jπ], Q≥ 0,

1
ρk

[2π − arccos(P) + 2jπ], Q< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where

P �
b1ρ

2
k − a1b1 + a0b2 − a2b2ρ

2
k

b
2
2ρ

2
k + b

2
1

,

Q �
b2ρ

4
k − a1b2ρ

2
k + a2b1ρ

2
k − a0b1

ρk b
2
2ρ

2
k + b

2
1􏼐 􏼑

,

(17)

and j � 0, 1, . . .. 'e following lemma comes naturally.

Lemma 2. If Lemma 2 holds, when
τ � τj

k(k � 1, 2; j � 0, 1, 2, . . .), the root of a system (7)
consists of a number of pure imaginary roots and nonzero real
parts.

By substituting λ(τ) into equation (7) and taking the
derivative of τ, we can obtain

d(Reλ)

dτ
􏼢 􏼣

−1

τ�τj

k

� Re
3λ2 + 2a2λ + a1

λ b2λ
2 + b1λ􏼐 􏼑e−λτ

⎡⎢⎣ ⎤⎥⎦

τ�τj

k

+ Re
2b2λ + b1

λ b2λ
2 + b1λ􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦

τ�τj

k

� Re
3λ2 + 2a2λ + a1

−ρ2k b1 + ib2ρk( 􏼁
cos ρkτ

j

k􏼐 􏼑 + i sin ρkτ
j

k􏼐 􏼑􏼐 􏼑􏼢 􏼣

+ Re
2b2λ + b1

−ρ2k b1 + ib2ρk( 􏼁
􏼢 􏼣

�
sk

Λ
3ρ4k + 2 a

2
2 − b

2
2 − 2a1􏼐 􏼑ρ2k + a

2
1 − 2a0a2 − b

2
1􏽨 􏽩

�
sk

Λ
h′ sk( 􏼁,

(18)

where Λ � ρ4k(b21 + b22ρ
2
k). Since sk > 0, we conclude that

[d(Reλ)/dτ]−1
τ�τj

k

and h′(sk) have the same sign. Note that
h′(s1)< 0 and h′(s2)> 0.

'us, the following crucial lemma can be obtained.
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Figure 1: For parameter values (a, b, c, k, k1, k2) � (10, 100, 9.8, 0, 0.08, 0.01), system (1) without delay has two stable equilibria: (a) system
(1) without delay tends to stable equilibrium when IC � (30, 30, −9); (b) system (1) without delay has a chaotic attractor when
IC � (0.98, −1.82, 0.01).
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Lemma 3. If (15) holds, then the transversality condition of
Hopf bifurcation holds: [d(Reλ)/dτ]−1

τ�τj

1
< 0, [d(Reλ)/dτ]−1

τ�τj

2> 0, where j � 0, 1, . . ..

'e results discussed above and the basic conditions for
Hopf bifurcation (transversality and nondegradation) are
also applicable to differential equations with time delay, and
the important theorem in this section holds [33].

Theorem 1. Suppose that (6) and (15) are satisfied, then
system (1) undergoes a Hopf bifurcation at the equilibria E1,2
when τ � τj

k(k � 1, 2; j � 0, 1, 2, . . .). Moreover, if τ01 > τ02,
then there exists m ∈ N such that τ02 < τ01 < τ12 < τ11 <
· · ·< τm

2 < τm
1 < τm+1

2 < τm+2
2 < τm+1

1 and equilibria E1,2 of sys-
tem (1) are asymptotically stable for τ ∈ [0, τ02)⋃(τ01, τ

1
2)

⋃ · · ·⋃(τm−1
1 , τm

2 )⋃(τm
1 , τm+1

2 ) and unstable for τ ∈ [τ02, τ01)
⋃(τ12, τ11)⋃ · · ·⋃(τm

2 , τm
1 )⋃(τm+1

2 , +∞). Furthermore, sys-
tem (1) undergoes a Hopf bifurcation at the equilibria E1,2
when τ � τj

k(k � 1, 2; j � 0, 1, . . .).

Remark. 'eorem 3 shows that when the delay passes a
certain critical value, the chaotic attractor generated by
system (1) with only two stable node foci can be transformed

into stable and unstable periodic orbits or another chaotic
attractor. 'us, the chaos generated by system (1) is
controllable.

3. Direction and Stability of Hopf Bifurcation

'e Hopf bifurcation theory of the smooth autonomous
system has been very advanced [33–35]. In this section, we
use bifurcation theory to study Hopf bifurcation of system
(1), determine the bifurcation direction and stability, and
obtain the corresponding parameter conditions through
detailed calculation. Due to the symmetry of the equilibrium
point, we only study the Hopf bifurcation of E1 at τ � τk.

Let m1 � x − x0, m2 � y − y0, m3 � z − z0, mi(t) �

mi(τt), and τ � ω + τk; for convenience, we are dropping
the bars. Nonlinear system (1) can be transformed into an
FDE in C ∈ C([−1, 0], R3) as

_m(t) � Lω mt( 􏼁 + g ω, mt( 􏼁, (19)

where m(t) � (m1(t), m2(t), m3(t))T ∈ R3 and Lω: C⟶
R3 and g: R × C⟶ R are given, respectively, by

Lω(ϕ) � ω + τk( 􏼁

−a a 0

c −k − c −
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ω + τk( 􏼁

0 0 0

0 k 0

0 0 0
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,

g ω, mt( 􏼁 � ω + τk( 􏼁

0

−ϕ1(0)ϕ3(0)

k1ϕ1(0)ϕ2(0) + k2ϕ
2
2(0)
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.

(20)

Based on the Reese representation theorem in functional
analysis,

Lω(ϕ) � 􏽚
0

−1
dμ(ε,ω)ϕ(ε), forϕ ∈ C. (21)

where μ(ε,ω) is a bounded variation function in ε ∈ [−1, 0]

and can be selected as

μ(ε,ω) � ω + τk( 􏼁

−a a 0
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δ(ε) − ω + τk( 􏼁

0 0 0

0 k 0

0 0 0
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δ(ε + 1), (22)
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where δ(·) is a Dirac function.
Let us define A(ω)ϕ and R(ω)ϕ on ϕ ∈ C([−1, 0], R3),

and let mt(ε) � m(t + ε), ε ∈ [−1, 0]. Rewrite the system as
equation (31):

A(ω)ϕ �

dϕ(ε)
dε

, ε ∈ [−1, 0),

􏽚
0

−1
dμ(ε, s)ϕ(s), ε � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

and

R(ω)ϕ �
0, ε ∈ [−1, 0),

g(ω, ϕ), ε � 0,
􏼨

_m(t) � A(ω)mt + R(ω)mt.

(24)

For ψ ∈ C1([0, 1], (R3)∗), we can define A∗ψ(θ); when
θ � 0, A∗ψ(θ) � 􏽒

0
−1 dμT(t, 0)ψ(−t); Otherwise, when

θ ∈ (0, 1], A∗ψ(θ) � −dψ(θ)/dθ and we get a bilinear inner
product

〈ψ, ϕ〉 � ψ(0)ϕ(0) − 􏽚
0

−1
􏽚
ε

ξ�0
ψ(ξ − ε)dμ(ε)ϕ(ξ)dξ,

(25)

where μ(ε) � μ(ε, 0).
According to the properties of matrix eigenvalues, we

can get that the eigenvalues of A∗ are the same as those of
A(0). 'erefore, the eigenvalue of A(0) is ±iρkτk. We need
to calculate the iρkτk and −iρkτk corresponding to the ei-
genvectors of A(0) and A∗. Let A(0)q(ε) � iρkτkq(ε), i.e.,
q(ε) � eiερkτk (1, α, β)T, be the eigenvectors of A(0); then, we
have

iρk + a −a 0

−c iρk + k + c − ke
− iρkτk

�
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−
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0

0

0
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(26)

'rough calculation, there are

q(0) � (1, α, β)
T

� 1,
a + iρk

a
,

�
b

√
−2ia k1 + k2( 􏼁 + k1 + 2k2( 􏼁wk( 􏼁

a
������
k1 + k2

􏽰
wk

􏼠 􏼡

T

.

(27)

Similarly, we can assume that q∗(θ) � eiθρkτk D(1, α∗, β∗)
is the eigenvector of A∗ corresponding to −iρkτk, that is,
A∗q∗(θ) � −iρkτkq∗(θ), and we have

q
∗
(θ) � D 1, α∗, β∗( 􏼁e

iθρkτk

� D 1,
k1 + k2( 􏼁 a − iρk( 􏼁ρk

−ibk1 + c k1 + k2( 􏼁ρk

,

���������
b k1 + k2( 􏼁

􏽱
a − iρk( 􏼁

bk1 + ic k1 + k2( 􏼁ρk

⎛⎜⎜⎝ ⎞⎟⎟⎠e
iθρkτk .

(28)

By (25), we can replace ψ and ϕ with q(0) and q∗(θ). At
this time, <q∗(θ), q(ε)> � 1, so we can calculate D, shown
as follows:

〈q∗(θ), q(ε)〉 � D 1 + αα∗ + ββ∗ + kτkαα
∗
e

− iρkτk􏽮 􏽯 � 1.

(29)

'erefore, we can obtain

D �
1

1 + αα∗ + ββ∗ + kτkαα
∗
e

− iρkτk􏽮 􏽯
. (30)

'e central manifold C0 must be calculated at ω � 0. We
can make mt the solution of (29) when ω � 0. Define

z(t) �〈q∗, mt〉, G(t, ε) � mt(ε) − 2Re z(t)q(ε)􏼈 􏼉. (31)

'en,

G(t, ε) � G(z(t), z(t), ε) � G20(ε)
z
2

2
+ G11(ε)zz

+ G02(ε)
z
2

2
+ G30(ε)

z
3

6
+ · · · ,

(32)

where z and z are the local coordinates for the center
manifold C0 in the directions of q∗ and q∗. Note that since
mt is real, then G is also real, so we only deal with real
solutions. For solution mt ∈ C0, since ω � 0, we have

_z(t) � iρkτkz +〈q∗(ε), f(0, G(z(t), tzn(t)), ε + t2nReq z(t)q(ε)􏼈 􏼉)〉

� iρkτkz + q
∗
(0)f(0, G(z(t), z(t), 0) + 2Re z(t)q(0)􏼈 􏼉).

(33)

Let g(0, G(z(t), z(t), 0) + 2Re z(t)q(0)􏼈 􏼉) � g0(z, z);
then,

_z(t) � iρkτkz + q
∗
(0)g0(z, z). (34)

Now, we consider

_z(t) � iρkτkz + f(z, z), (35)

where

f(z, z) � f20
z
2

2
+ f11zz + f02

z
2

2
+ f21

z
2
z

2
+ · · · . (36)

Complexity 5



Since q(ε) � (1, α, β)Teiερkτk and mt(ε) � (m1t

(ε), m2t(ε), m3t(ε)) � G(t, ε) + z(t)q(ε) + z(t)q(ε), we have

m1t(0) � z + z + G
(1)
20

z
2

2
+ G

(1)
11 zz + G

(1)
02

z
2

2
+ · · · ,

m2t(0) � αz + αz + G
(2)
20

z
2

2
+ G

(2)
11 zz + G

(2)
02

z
2

2
+ · · · ,

m3t(0) � βz + βz + G
(3)
20

z
2

2
+ G

(3)
11 zz + G

(3)
02

z
2

2
+ · · · .

(37)

From (36), we have

f(z, z) � q
∗
(0)g0(z, z)

� Dτk 1, α∗, β∗( 􏼁

0

−m1t(0)m3t(0)

k1m1t(0)m2t(0) + k2m
2
2t(0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Dτk −α∗ z + z + G
(1)
20

z
2

2
+ G

(1)
11 zz + G

(1)
02

z
2

2
+ · · ·􏼠 􏼡 βz + βz + G

(3)
20

z
2

2
+ G

(3)
11 zz + G

(3)
02

z
2

2
+ · · ·􏼠 􏼡􏼢

+ k1β
∗

z + z + G
(1)
20

z
2

2
+ G

(1)
11 zz + G

(1)
02

z
2

2
+ · · ·􏼠 􏼡 αz + αz + G

(2)
20

z
2

2
+ G

(2)
11 zz + G

(2)
02

z
2

2
+ · · ·􏼠 􏼡

+k2β
∗ αz + αz + G

(2)
20

z2

2
+ G

(2)
11 zz + G

(2)
02

z2

2
+ · · ·􏼠 􏼡

2
⎤⎦.

(38)

Comparing the coefficients with (36), we have

f20 � 2Dτk k1αβ
∗

− βα∗ + k2α
2β∗􏼐 􏼑,

f11 � Dτk 2k1β
∗Re α{ } − 2α∗Re β􏼈 􏼉 + 2k2β

∗αα􏼐 􏼑,

f02 � 2Dτk k1β
∗α − α∗β + k2α

2
􏼐 􏼑,

f21 � −Dτkα
∗ 2G

(3)
11 (0) + G

(3)
20 (0) + 2βG

(1)
11 (0) + βG

(1)
20 (0)􏽨 􏽩

+ k1Dτkβ
∗ 2G

(2)
11 (0) + G

(2)
20 (0) + 2αG

(1)
11 (0) + αG

(1)
20 (0)􏽨 􏽩

+ 2k2Dτkβ
∗ αG

(2)
20 (0) + 2αG

(2)
11 (0)􏽨 􏽩.

(39)

'en, we need to compute G20(ε) and G11(ε). From (24)
and (31), we have

_G � _mt − _zq − _zq �
A(0)G − 2Re q

∗
(0)g0q(ε)􏽮 􏽯, ε ∈ [−1, 0)

A(0)G − 2Re q
∗
(0)g0q(ε)􏽮 􏽯 + g0, ε � 0.

⎧⎪⎨

⎪⎩

(40)

Let

M(z, z, ε) �
2Re q

∗
(0)g0q(ε)􏽮 􏽯, ε ∈ [−1, 0)

2Re q
∗
(0)g0q(ε)􏽮 􏽯 + g0, ε � 0.

⎧⎪⎨

⎪⎩
(41)

We can rewrite (40) as
_G � A(0)G + M(z, z, ε), (42)

where

M(z, z, ε) � M20(ε)
z
2

2
+ M11(ε)zz + M02(ε)

z
2

2
+ · · · .

(43)

According to the definition of (40) and (43) and G, using
the series expansion and comparison of coefficients, we have

A(0) − 2iρkτk( 􏼁G20(ε) � −M20(ε), A(0)G11(ε) � −M11(ε), . . . .

(44)

From (40), we know that for ε ∈ [−1, 0),

M(z, z, ε) � −q
∗
(0)g0q(ε) − q

∗
(0)g0q(ε)

� −f(z, z)q(ε) − f(z, z)q(ε).
(45)

6 Complexity



Comparing the coefficients of equation (45) with those of
equation (43), we have

M20(ε) � −f20q(ε) − f02q(ε),

M11(ε) � −f11q(ε) − f11q(ε).
(46)

'erefore, the following equation can be obtained:

G20
.

� 2iρkτkG20(ε) + f20q(ε) + f02q(ε). (47)
From q(ε) � (1, α, β)Teiεωkτk , we can calculate the solu-

tion of the previous equation:

G20(ε) �
if20

ρkτk

q(0)e
iερkτk +

if02

3ρkτk

q(0)e
− iερkτk + W1e

2iερkτk

(48)

and, similarly,

G11(ε) �
if11

ρkτk

q(0)e
iερkτk +

if11

ρkτk

q(0)e
− iερkτk + W2, (49)

where W1 � (W
(1)
1 , W

(2)
1 , W

(3)
1 )T ∈ R3 and

W2 � (W
(1)
2 , W

(2)
2 , W

(3)
2 )T ∈ R3 are the constant vectors

corresponding to the initial conditions.
We find the values of W1 and W2 now. For (44), we have

_G20(ε) � 􏽚
0

−1
dμ(ε)G20(ε) � 2iερkτkG20(0) − M20(0)

(50)

and

_G11(ε) � 􏽚
0

−1
dμ(ε)G11(ε) � −M11(0), (51)

where μ(ε) � μ(ε, 0). From equation (40), we have

M20(0) � −f20q(0) − f02q(0) + 2τk 0, −β, k1α + k2α
2

􏼐 􏼑
T

(52)

and

M11(0) � −f11q(0) − f11q(0)

+ 2τk 0, −Re β􏼈 􏼉, k1Re α{ } + k2αα( 􏼁
T

.
(53)

'e eigenvector corresponding to eigenvalue iρkτk by
A(0) is q(0). We obtain

iρkτk − 􏽚
0

−1
e

iερkτk dμ(f)􏼠 􏼡q(0)

� 0, −iρkτk − 􏽚
0

−1
e

− iερkτk dμ(f)􏼠 􏼡q(0) � 0.

(54)

Substituting equations (48) and (52) into equation (50),
we obtain

2iρkτkI − 􏽚
0

−1
e
2iερkτk dμ(f)􏼠 􏼡E1 � 2τk 0, −β, k1α + k2α

2
􏼐 􏼑

T
.

(55)

'at is,

2iρk + a −a 0

−c 2iρk + k + c − ke
− iρkτk

�
b

√

������
k1 + k2

􏽰

−

�
b

√
k1������

k1 + k2
􏽰 −

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 2iρk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

� 2

0

−β

k1α + k2α
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(56)

It follows that

W
(1)
1 �
Δ11
Δ1

,

W
(2)
1 �
Δ12
Δ1

,

W
(3)
1 �
Δ13
Δ1

,

(57)

where
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Δ11 � 2

0 −a 0

−β 2iρk + k + c − ke
− iρkτk

�
b

√

������
k1 + k2

􏽰

k1α + k2α
2

−

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 2iρk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

Δ12 � 2

2iρk + a 0 0

−c −β
�
b

√

������
k1 + k2

􏽰

−

�
b

√
k1������

k1 + k2
􏽰 k1α + k2α

2 2iρk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

Δ13 � 2

2iρk + a −a 0

−c 2iρk + k + c − ke
− iρkτk −β

−

�
b

√
k1������

k1 + k2
􏽰 −

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 k1α + k2α
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

Δ1 �

2iρk + a −a 0

−c 2iρk + k + c − ke
− iρkτk

�
b

√

������
k1 + k2

􏽰

−

�
b

√
k1������

k1 + k2
􏽰 −

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 2iρk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(58)

Similarly, substituting equations (49) and (53) into
equation (51), we have

a −a 0

−c c

�
b

√

������
k1 + k2

􏽰

−

�
b

√
k1������

k1 + k2
􏽰 −

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

� 2

0

−Re β􏼈 􏼉

k1Re α{ } + k2αα

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(59)

It follows that

W
(1)
2 �
Δ21
Δ2

,

W
(2)
2 �
Δ22
Δ2

,

W
(3)
2 �
Δ23
Δ2

,

(60)

where

Δ21 � 2

0 −a 0

−Re β􏼈 􏼉 c

�
b

√

������
k1 + k2

􏽰

k1Re α{ } + k2αα −

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

Δ22 � 2

a 0 0

−c −Re β􏼈 􏼉

�
b

√

������
k1 + k2

􏽰

−

�
b

√
k1������

k1 + k2
􏽰 k1Re α{ } + k2αα 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

Δ23 � 2

a −a 0

−c c −Re β􏼈 􏼉

−

�
b

√
k1������

k1 + k2
􏽰 −

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 k1Re α{ } + k2αα

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

Δ2 �

a −a 0

−c c

�
b

√

������
k1 + k2

􏽰

−

�
b

√
k1������

k1 + k2
􏽰 −

�
b

√
k1 + 2k2( 􏼁
������
k1 + k2

􏽰 0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(61)

We can determine G20(0) and G11(0), and therefore, all
fij can be determined by (39).

In summary, the properties of Hopf bifurcation are
determined by the following parameters: ω2 determines the
direction of Hopf bifurcation, β2 determines the stability of
bifurcation periodic solutions, and T2 determines the period
of bifurcation periodic solutions, and the specific values are
shown as follows. 'e main theories and methods are from
[34,35]:

8 Complexity



-20

-10

0

10

20

30

40

Ti
m

e s
er

ie
s

system (1) with delay

t
x (t)
y (t)
z (t)

0 10 20 30 40 50 60 70 80

Figure 2: For system (1) with parameter values (a, b, c, k, k1, k2) � (10, 100, 9.8, −0.5, 0.08, 0.01) and initial values (30, 30, −9) when
τ � 0.16, the equilibrium E1 is asymptotically stable.

38

36

34

32

28
38

36
34

32
30

30

-12
-11

-10
-9

-8
-7

y 
(t)

x (t)
z (t)

(a)

-20

-10

0

10

20

30

40

Ti
m

e s
er

ie
s

t
x (t)
y (t)
z (t)

0 10 20 30 40 50 60 70 80

(b)

Figure 3: A bifurcation diagram for system (1) with parameter values (a, b, c, k, k1, k2) � (10, 100, 9.8, −0.5, 0.08, 0.01) and initial values
(30, 30, −9) when τ � 0.2095< τ02 is close to τ02: (a) phase portrait; (b) time series of z(t).
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C1(0) �
i

2ρkτk

f20f11 − 2 f11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

−
1
3

f02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼒 􏼓 +
f21

2
,

ω2 � −
Re C1(0)􏼈 􏼉

Re dλ τk( 􏼁/dτ􏼈 􏼉
,

T2 � −
ImC1(0) + ω2Im dλ τk( 􏼁/dτ􏼈 􏼉

ρkτk

,

β2 � 2Re C1(0)􏼈 􏼉.

(62)

'erefore, the following main results are obtained in this
section.

Theorem 2. In equation (62), when τ > τk or τ < τk, system
(1) has Hopf bifurcations with the following properties: if
ω2 > 0(ω2 < 0), the Hopf bifurcation is supercritical (sub-
critical); if β2 < 0(β2 > 0), the orbit is stable (unstable); if
T2 > 0(T2 < 0), then the period increases (decreases).

4. Numerical Results

In the previous two sections, we have proved the parameter
conditions for Hopf bifurcation in system (1) and analyzed
the bifurcation direction and bifurcation stability. In this
section, we select appropriate parameters and use the
MATLAB toolkit for numerical simulation to verify our
theoretical analysis. When the parameter values are
a � 10, c � 9.8, and b � 100, the two equilibria are
E1(100/3, 100/3, −9.8) and E2(−100/3, −100/3, −9.8).

_x � 10(y − x),

_y � −9.8y − xz + k[y(t − τ) − y]

_z � −100 + xy.

⎧⎪⎪⎨

⎪⎪⎩
, (63)

'rough the previous analysis and numerical simulation
from the finite difference method (FDM), as shown in
Figure 1, the equilibrium points E1,2 of system (63) are
asymptotically stable when τ � 0 and a chaotic attractor
appears. If we choose the parameter k � −0.5, we can get that
equation (10) has two positive roots ρ1 � 10.0521 and
ρ2 � 10.3648. 'erefore, there are, respectively,

τj
1 � 0.467983 + 0.625063j,

τj
2 � 0.211299 + 0.606205j,

(64)

where j � 0, 1, 2, . . .. From formula (62), it follows that
τ02 � 0.211299, C1(0) � 0.000588642 + 0.000658409i, ω2 �

−0.000362443, T2 � −0.000204142, and β2 � 0.00117728.
'erefore, as shown by computer simulation, when
0< τ < τ02, the equilibria E1,2 are stable (see Figure 2). E1 loses
its stability and Hopf bifurcation occurs as τ crosses the
critical value τ02. According to the properties of Hopf bi-
furcation, Hopf bifurcation is subcritical and the bifurcation
direction is τ < τ02, when ω2 < 0 and β2 > 0. At this time, an
unstable bifurcation periodic solution appears, as shown in
Figures 3(a) and 3(b).

Otherwise, as shown in Figures 4(a) and 4(b), numerical
simulation shows that when τ reaches the region τ > τ02, Hopf
bifurcation periodic solution disappears and chaos occurs.

5. Conclusion

In previous studies, few scholars have analyzed the time-
delay feedback chaotic system with two stable node foci
coexisting. In this paper, a unified chaotic system control
model is established by using the delay feedback control law.
'e corresponding parameter range is obtained according to
the conditions of Hopf bifurcation. Central manifold theory
and normal form method are the most classical methods to
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Figure 4: When τ is closer to τ02, τ � 0.23> τ02 is taken and system (1) is chaotic at the initial values (30, 30, −9): (a) the chaotic attractor of
system (1); (b) the time series of z(t).
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study the properties of Hopf bifurcation.'is paper also uses
this method to study the direction of Hopf bifurcation and
the stability of bifurcation periodic solution of system (1).
'eoretical results and numerical simulation show that
chaos can be controlled using a delay system (1). Numerical
simulation shows that the periodic solution is transformed
into a chaotic attractor with further increase in delay. It is
worth noting that the results obtained in this paper are of
great significance for controlling chaos in systems with only
two stable node foci. 'e dynamic behavior of the new
system is still rich and complex, and its topology needs to be
thoroughly studied and developed. In future studies, we will
provide more credible theoretical analysis and data results.
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[28] K. Pyragas and A. Tamaševičius, “Experimental control of
chaos by delayed self-controlling feedback,” Physics Letters A,
vol. 180, no. 1-2, pp. 99–102, 1993.

[29] Z.Wei, A. Yousefpour, H. Jahanshahi, U. Erkin Kocamaz, and
I. Moroz, “Hopf bifurcation and synchronization of a five-
dimensional self-exciting homopolar disc dynamo using a
new fuzzy disturbance-observer-based terminal sliding mode
control,” Journal of the Franklin Institute, vol. 358, no. 1,
pp. 814–833, 2021.

[30] Z. Wang, X. Xi, L. Kong, and Z. Wei, “Infinity dynamics and
DDF control for a chaotic system with one stable equilib-
rium,” -e European Physical Journal—Special Topics,
vol. 229, no. 6, pp. 1319–1333, 2020.

[31] Z. Wang, W. Sun, Z. Wei, and S. Zhang, “Dynamics and
delayed feedback control for a 3D jerk system with hidden
attractor,” Nonlinear Dynamics, vol. 82, no. 1, pp. 577–588,
2015.

[32] C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, and S. Yuan, “Fractional-
order bidirectional associate memory (BAM) neural networks
with multiple delays: the case of Hopf bifurcation,” Mathe-
matics and Computers in Simulation, vol. 182, pp. 471–494,
2021.

[33] J. Hale, -eory of Functional Differential Equations, Springer,
New York, NY, USA, 1977.

[34] B. Hassard, N. Kazarinoff, and Y. Wan, -eory and Appli-
cation of Hopf Bifurcation, Cambridge University Press,
Cambridge, UK, 1981.

[35] Y. Song and J. Wei, “Bifurcation analysis for Chen’s system
with delayed feedback and its application to control of
chaos☆,”Chaos, Solitons and Fractals, vol. 22, no. 1, pp. 75–91,
2004.

12 Complexity



Research Article
New Properties on Degenerate Bell Polynomials

Taekyun Kim ,1 Dae San Kim ,2 Hyunseok Lee ,3 Seongho Park ,1

and Jongkyum Kwon 1

1Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
2Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
3Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Republic of Korea

Correspondence should be addressed to Jongkyum Kwon; mathkjk26@gnu.ac.kr

Received 9 September 2021; Revised 9 October 2021; Accepted 15 October 2021; Published 29 October 2021

Academic Editor: Viet-+anh Pham

Copyright © 2021 Taekyun Kim et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+e aim of this paper is to study the degenerate Bell numbers and polynomials which are degenerate versions of the Bell numbers
and polynomials. We derive some new identities and properties of those numbers and polynomials that are associated with the
degenerate Stirling numbers of both kinds.

1. Introduction

+eBell number Beln counts the number of partitions of a set
with n elements into disjoint nonempty subsets. +e Bell
polynomials Beln(x), also called Touchard or exponential
polynomials, are natural extensions of Bell numbers. +e
partial and complete Bell polynomials, which are multi-
variate generalizations of the Bell polynomials, have diverse
applications not only in mathematics but also in physics and
engineering as well (see [1]).

For instance, the following formula, due to Faà di Bruno
formula:

d
n

dt
n f ° g(t) � 􏽘

n

k�0
f

(k)
(g(t))Bn,k

g′(t), g′′(t), . . . , g
(n− k+1)

(t)􏼐 􏼑,

(1)

gives an explicit formula for higher derivatives of composite
functions. Here, the partial Bell polynomials Bn,k(x1, x2, . . . ,

xn− k+1) are defined by

Bn,k x1, x2, . . . , xn− k+1( 􏼁

� 􏽘
n!

􏽑
n− k+1
l�1 il! 􏽙

n− k+1

l�1

xl

l!
􏼒 􏼓

il
, (n≥ k≥ 0),

(2)

where the sum runs over all nonnegative integers
i1, i2, . . . , in− k+1, satisfying i1 + i2 + · · · + in− k+1 � k and i1 +

2i2 + · · · (n − k + 1)in− k+1 � n (see [1], p. 133). +en, the
complete Bell polynomials are given by Bn(x|x1, . . . , xn) �

􏽐
n
k�1 Bn,k(x1, x2, . . . , xn− k+1)x

k, (n≥ 1), and Bn(x|1, 1,

. . . , 1) � 􏽐
n
k�1 Bn,k(1, 1, . . . , 1)xk � Bel(x), (n≥ 1).

As a degenerate version of those Bell polynomials and
numbers, the degenerate Bell polynomials Beln,λ(x) and
numbers Beln,λ (see (17)) are introduced and studied under
the different names of the partially degenerate Bell poly-
nomials and numbers in [2]. Some interesting identities for
them were obtained in connection with Stirling numbers of
the first and second kinds [2].We hope that we will be able to
find many interesting applications of these polynomials and
numbers in near future.
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In [3], Carlitz initiated the exploration of degenerate
Bernoulli and Euler polynomials, which are degenerate
versions of the ordinary Bernoulli and Euler polynomials.
Along the same line as Carlitz’s pioneering work, intensive
studies have been done for degenerate versions of quite a few
special polynomials and numbers (see [2–10] and the ref-
erences therein). It is worthwhile to mention that these
studies of degenerate versions have been done not only for
some special numbers and polynomials but also for tran-
scendental functions like gamma functions (see [8]). +e
studies have been carried out by various means like com-
binatorial methods, generating functions, differential
equations, umbral calculus techniques, p-adic analysis, and
probability theory.

+e aim of this paper is to further investigate the de-
generate Bell polynomials and numbers by means of gen-
erating functions. In more detail, we derive several
properties and identities of those numbers and polynomials
which include recurrence relations for degenerate Bell
polynomials (see +eorems 1, 3, 4, and 8), and expressions
for them that can be derived from repeated applications of
certain operators to the exponential functions (see +eorem
2, Proposition 1), the derivatives of them (Corollary 1), the
antiderivatives of them (see+eorem 6), and some identities
involving them (see +eorems 5, 9). For the rest of this
section, we recall some necessary facts that are needed
throughout this paper.

For any λ ∈ R, the degenerate exponential functions are
defined by

e
x
λ(t) � 􏽘

∞

k�0

(x)k,λ

k!
t
k
, (3)

(see [9]), where

(x)0,λ � 1, (x)n,λ � x(x − λ) · · · (x − (n − 1)λ), (n≥ 1).

(4)

When x � 1, we see use the notation eλ(t) � e1λ(t).
In [3], Carlitz introduced the degenerate Bernoulli

numbers given by

t

eλ(t) − 1
� 􏽘
∞

n�0
βn,λ

t
n

n!
. (5)

Note that limλ⟶0βn,λ � Bn, where Bn are the ordinary
Bernoulli numbers given by

t

e
t

− 1
� 􏽘
∞

n�0
Bn

t
n

n!
, (6)

(see [1–14]).
From (5), we deduce that

β0,λ � 1, 􏽘
n− 1

l�0

n

l
􏼠 􏼡(1)n− l,λβl,λ � 0, (n≥ 2), (7)

from which we compute the first few values of βn,λ as follows:

β0,λ � 1, β1,λ �
1
2
λ −

1
2
, β2,λ � −

1
6
λ2 +

1
6
,

β3,λ �
1
4
λ3 −

1
4
λ, β4,λ � −

19
30
λ4 +

2
3
λ2 −

1
30

,

β5,λ �
9
4
λ5 −

5
2
λ3 +

1
4
λ, β6,λ � −

863
84

λ6 + 12λ4 −
7
4
λ2 +

1
42

,

β7,λ �
1375
24

λ7 − 70λ5 +
105
8
λ3 −

5
12

λ,

β8,λ � −
33953
90

λ8 + 480λ6 −
1624
15

λ4 +
50
9
λ2 −

1
30

.

(8)

It is well known that the Stirling numbers of the first kind
are defined by

(x)n � 􏽘
n

k�0
S1(n, k)x

k
,
1
k!

(log(1 + t))
k

� 􏽘
∞

n�k

S1(n, k)
t
n

n!
,

(9)

(see [14]), where (x)0 � 1, (x)n � x(x − 1) · · · (x − n+

1), (n≥ 1).
As the inversion formula of (9), the Stirling numbers of

the second kind are given by

x
n

� 􏽘
n

k�0
S2(n, k)(x)k,

1
k!

e
t

− 1􏼐 􏼑
k

� 􏽘
∞

n�k

S2(n, k)
t
n

n!
, (10)

(see [14]).
+e degenerate Stirling numbers of the first kind are

defined by

(x)n � 􏽘
n

k�0
S1,λ(n, k)(x)k,λ,

1
k!

logλ(1 + t)( 􏼁
k

� 􏽘
∞

n�k

S1,λ(n, k)
t
n

n!
,

(11)

(see [5]), and the degenerate Stirling numbers of the second
kind are given by

(x)n,λ � 􏽘
n

k�0
S2,λ(n, k)(x)k,

1
k!

eλ(t) − 1( 􏼁
k

� 􏽘
∞

n�k

S2,λ(n, k)
t
n

n!
,

(12)

(see [5, 7]).
Here, logλ(1 + t) is the degenerate logarithm given by

(18).
We also recall the degenerate absolute Stirling numbers

of the first kind that are defined by

〈x〉n � 􏽘
n

k�0

n

k
􏼢 􏼣

λ
〈x〉k,λ, (13)

(see [10]), where
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〈x〉0 � 1, 〈x〉n � x(x + 1) · · · (x + n − 1), (n≥ 1),

〈x〉0,λ � 1, 〈x〉n,λ � x(x + λ)(x + 2λ) · · · (x +(n − 1)λ),

(n≥ 1).

(14)

It is well known that the Bell polynomials are defined by

e
x et− 1( ) � 􏽘

∞

n�0
Beln(x)

t
n

n!
, (15)

(see [12, 13]).
When x � 1, Beln � Beln(1) are called the Bell numbers.
From (12), we note that

Beln(x) � 􏽘
n

k�0
S2(n, k)x

k
, (16)

(see [12, 13]).
In [2], the degenerate Bell polynomials are defined by

e
x eλ(t)− 1( ) � 􏽘

∞

n�0
Beln,λ(x)

t
n

n!
. (17)

Note that limλ⟶0Beln,λ(x) � Beln(x). For x � 1, Beln,λ �

Beln,λ(1) are called the degenerate Bell numbers.

+e compositional inverse of eλ(t) is given by logλ(t),
namely, eλ(logλ(t)) � t � logλ(eλ(t)), where

logλ(1 + t) �
1
λ

(1 + t)
λ

− 1􏼐 􏼑 � 􏽘
∞

n�1
λn− 1

(1)
n,
1
λ

t
n

n!
, (18)

(see [5]).
Note that limλ⟶0logλ(1 + t) � log(1 + t).
From (17), we note that

Beln,λ(x) � e
− x

􏽘

∞

k�0

(k)n,λ

k!
x

k
� 􏽘

n

k�0
S2,λ(n, k)x

k
, (19)

(see [2]).
From (12), we can deduce the recurrence relation given

by

S2,λ(n + 1, k) � S2,λ(n, k − 1) +(k − nλ)S2,λ(n, k),

(n≥ k≥ 1),
(20)

and the values

S2,λ(n, 0) � 0, (n≥ 1), S2,λ(n, n) � 1, (n≥ 0), (21)

Now, we compute from (19), (3), and (21) the first few
degenerate Bell polynomials as follows:

Bel0,λ(x) � 1, Bel1,λ(x) � x, Bel2,λ(x) � (− x)λ + x
2

+ x􏼐 􏼑,

Bel3,λ(x) � (2x)λ2 + − 3x
2

− 3x􏼐 􏼑λ + x
3

+ 3x
2

+ x􏼐 􏼑,

Bel4,λ(x) � (− 6x)λ3 + 11x
2

+ 12x􏼐 􏼑λ2 + − 6x
3

− 18x
2

− 7x􏼐 􏼑λ + x
4

+ 6x
3

+ 7x
2

+ x􏼐 􏼑,

Bel5,λ(x) � (24x)λ4 + − 50x
2

− 60x􏼐 􏼑λ3 + 35x
3

+ 110x
2

+ 50x􏼐 􏼑λ2 + − 10x
4

− 60x
3

− 75x
2

− 15x􏼐 􏼑λ

+ x
5

+ 10x
4

+ 25x
3

+ 15x
2

+ x􏼐 􏼑,

Bel6,λ(x) � (− 120x)λ5 + 274x
2

+ 274x􏼐 􏼑λ4 + − 225x
3

− 675x
2

− 225x􏼐 􏼑λ3

+ 85x
4

+ 510x
3

+ 595x
2

+ 85x􏼐 􏼑λ2 + − 15x
5

− 150x
4

− 375x
3

− 225x
2

− 15x􏼐 􏼑λ

+ x
6

+ 15x
5

+ 65x
4

+ 90x
3

+ 31x
2

+ x􏼐 􏼑,

Bel7,λ(x) � (720x)λ6 + − 1764x
2

− 1764x􏼐 􏼑λ5 + 1624x
3

+ 4872x
2

+ 1624x􏼐 􏼑λ4

+ − 735x
4

− 4410x
3

− 5145x
2

− 735x􏼐 􏼑λ3 + 175x
5

+ 1750x
4

+ 4375x
3

+ 2625x
2

+ 175x􏼐 􏼑λ2

+ − 21x
6

− 315x
5

− 1365x
4

− 1890x
3

− 651x
2

− 21x􏼐 􏼑λ + x
7

+ 21x
6

+ 140x
5

+ 350x
4

+ 301x
3

+ 63x
2

+ x􏼐 􏼑,

Bel8,λ(x) � (− 5040x)λ7 + 13068x
2

+ 13068x􏼐 􏼑λ6 + − 13132x
3

− 39396x
2

− 13132x􏼐 􏼑λ5

+ 6769x
4

+ 40614x
3

+ 47383x
2

+ 6769x􏼐 􏼑λ4 + − 1960x
5

− 19600x
4

− 49000x
3

− 29400x
2

− 1960x􏼐 􏼑λ3

+ 332x
6

+ 4830x
5

+ 20930x
4

+ 28980x
3

+ 9982x
2

+ 322x􏼐 􏼑λ2

+ − 28x
7

− 588x
6

− 3920x
5

− 9800x
4

− 8428x
3

− 1764x
2

− 28x􏼐 􏼑λ

+ x
8

+ 28x
7

+ 266x
6

+ 1050x
5

+ 1701x
4

+ 966x
3

+ 127x
2

+ x􏼐 􏼑.

(22)
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In Figure 1, we plot the shapes of Bell polynomial Belk,λ(x).
+e upper-left graph looks different from the others. However,
of course they all go to infinity as x tends to infinity.

2. Some New Properties on Degenerate
Bell Polynomials

Let a be a nonzero constant. First, we observe that

d
n

dt
ne

a eλ(t)( ) �
d

n

dt
n 􏽘

∞

k�0

a
k

k!
e

k
λ(t) � 􏽘

∞

k�0

a
k

k!
(k)n,λe

k− nλ
λ (t)

� 􏽘
∞

k�0

(k)n,λ

k!
a

k
e

k
λ(t)

1
(1 + λt)

n

� 􏽘
∞

k�0

(k)n,λ

k!
aeλ(t)( 􏼁

k
e

− aeλ(t)⎛⎝ ⎞⎠e
aeλ(t) 1

(1 + λt)
n

�
1

(1 + λt)
nBeln,λ aeλ(t)( 􏼁e

aeλ(t)
.

(23)

+erefore, by (23), we obtain the following lemma.

Lemma 1. For n≥ 0, the nth derivative of ea(eλ(t)) is given by

d
n

dt
ne

a eλ(t)( ) �
1

(1 + λt)
nBeln,λ aeλ(t)( 􏼁e

aeλ(t)
. (24)

Let x � eλ(t) in (23). +en, we have

d

dt
�
dx

dt

d

dx
�

1
1 + λt

eλ(t)
d

dx
� x

1− λ d

dx
. (25)

By Lemma 1 and (25), we get

x
1− λ d

dx
􏼠 􏼡

n

e
ax

� x
− nλBeln,λ(ax)e

ax
, (n≥ 0). (26)

Let

Sn,λ � 􏽘

∞

k�0

(k)n,λ

k!
, n � 0, 1, 2, . . . . (27)

+en, we note from (19) that we have

eBeln,λ � Sn,λ. (28)

+e generating function of Sn,λ is given by
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Figure 1: +e shapes of Bell polynomials Belk,λ(x).
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e
eλ(t)

� 􏽘
∞

n�0
Sn,λ

t
n

n!
. (29)

Indeed, this can be seen from the following:

􏽘

∞

n�0
Sn,λ

t
n

n!
� e 􏽘

∞

n�0
Beln,λ(1)

t
n

n!
� ee

eλ(t)− 1
� e

eλ(t)
. (30)

Taking the derivative with respect to t on both sides of
(30), we have

􏽘

∞

n�0
Sn+1,λ

t
n

n!
�

d

dt
e

eλ(t)
� e

1− λ
λ (t)e

eλ(t)

� 􏽘
∞

l�0
(1 − λ)l,λ

t
l

l!
􏽘

∞

m�0
Sm,λ

t
m

m!

� 􏽘
∞

n�0
􏽘

n

m�0

n

m

⎛⎝ ⎞⎠Sm,λ(1 − λ)n− m,λ
⎛⎝ ⎞⎠

t
n

n!

� 􏽘
∞

n�0
􏽘

n

m�0

n

m

⎛⎝ ⎞⎠Sm,λ(1)n− m+1,λ
⎛⎝ ⎞⎠

t
n

n!
.

(31)

+us, by comparing the coefficients on both sides of (31)
and from (28), we obtain the following theorem.

Theorem 1. For n≥ 0, the following recurrence relation
holds:

Beln+1,λ � 􏽘
n

m�0

n

m
􏼠 􏼡Belm,λ(1)n− m+1,λ. (32)

Assume that the following identity holds:

x
1− λ d

dx
􏼠 􏼡

n

e
x

� 􏽘
∞

k�0

(k)n,λ

k!
x

k− nλ
. (33)

+en, we have

x
1− λ d

dx
􏼠 􏼡

n+1

e
x

� x
1− λ d

dx
􏽘

∞

k�0

(k)n,λ

k!
x

k− nλ

� x
1− λ

􏽘

∞

k�0

(k)n,λ

k!
(k − nλ)x

k− nλ− 1

� 􏽘
∞

k�0

(k)n+1,λ

k!
x

k− (n+1)λ
.

(34)

+is together with (26) gives the next result.

Theorem 2. For n≥ 0, the following relations hold true:

x
1− λ d

dx
􏼠 􏼡

n

e
x

� 􏽘
∞

k�0

(k)n,λ

k!
x

k− nλ
� x

− nλBeln,λ(x)e
x
. (35)

From the first equality in (35) and (27), we see that we
have

Sn,λ � x
1− λ d

dx
􏼠 􏼡

n

e
x
|x�1. (36)

Clearly, S0,λ � S1,λ � e. We can check that

x
1− λ d

dx
􏼠 􏼡

2

e
x

� (1 − λ)x
1− 2λ

e
x

+ x
2− 2λ

e
x
,

x
1− λ d

dx
􏼠 􏼡

3

e
x

� x
1− 3λ

e
x

(1 − λ)2,λ +(1 − λ)x􏼐 􏼑

+ x
2− 3λ

e
x
(2 − 2λ + x).

(37)

From (36) and (37), we have S2,λ � (2 − λ)e,

S3,λ � (2λ2 − 6λ + 5)e.
By taking x(d/dx) in the second equality of (35), on the

one hand, we have

x
d

dx
x

− nλBeln,λ(x)e
x

􏼐 􏼑 � 􏽘
∞

k�0

(k)n+1,λ

k!
x

k− nλ
. (38)

On the other hand, we also have

x
d

dx
x

− nλBeln,λ(x)e
x

􏼐 􏼑 � xx
− nλ Beln,λ′ (x) + Beln,λ(x)􏼐 􏼑e

x

− nλx
− nλBeln,λ(x)e

x
,

(39)

where Beln,λ′ (x) � (d/dx)Beln,λ(x).
From (38) and (39) and +eorem 2, we note that

􏽘

∞

k�0

(k)n+1,λ

k!
x

k
� 􏽘
∞

k�0

(k)n+1,λ

k!
x

k
e

− x⎛⎝ ⎞⎠e
x

� Beln+1,λ(x)e
x

� x Beln,λ′(x) + Beln,λ(x)􏼐 􏼑e
x

− nλBeln,λ(x)e
x
.

(40)

+erefore, by (40) and +eorem 2, we obtain the fol-
lowing theorem.

Theorem 3. For n≥ 0, the following identity holds:

Beln+1,λ(x) � x Beln,λ′ (x) + Beln,λ(x)􏼐 􏼑 − nλBeln,λ(x),

(41)

where Beln,λ′ (x) � (d/dx)Beln,λ(x).

From (17), we note that
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􏽘

∞

n�0

d

dx
Beln,λ(x)

t
n

n!
�

z

zx
e

x eλ(t)− 1( ) � eλ(t) − 1( 􏼁e
x eλ(t)− 1( )

� 􏽘
∞

l�0
(1)l,λ

t
l

l!
− 1⎛⎝ ⎞⎠ 􏽘

∞

m�0
Belm,λ(x)

t
m

m!

� 􏽘
∞

n�0
􏽘

n

m�0

n

m

⎛⎝ ⎞⎠Belm,λ(x)(1)n− m,λ − Beln,λ(x)⎛⎝ ⎞⎠
t
n

n!

� 􏽘
∞

n�0
􏽘

n− 1

m�0

n

m

⎛⎝ ⎞⎠Belm,λ(x)(1)n− m,λ
⎛⎝ ⎞⎠

t
n

n!
.

(42)

+us, by comparing the coefficients on both sides of (42),
we get

d

dx
Beln,λ(x) � Beln,λ′ (x) � 􏽘

n− 1

m�0

n

m

⎛⎝ ⎞⎠Belm,λ(x)(1)n− m,λ,

(n≥ 1).

(43)

Taking the derivative with respect to t on both sides of
(17), we have

d

dt
e

x eλ(t)− 1( ) � 􏽘
∞

n�0
Beln+1,λ(x)

t
n

n!
. (44)

On the other hand,

d

dt
e

x eλ(t)− 1( ) � xe
1− λ
λ (t)e

x eλ(t)− 1( )

� x 􏽘
∞

l�0
(1 − λ)l,λ

t
l

l!
􏽘

∞

m�0
Belm,λ(x)

t
m

m!

� x 􏽘
∞

n�0
􏽘

n

m�0

n

m

⎛⎝ ⎞⎠Beln,λ(x)(1 − λ)n− m,λ
⎛⎝ ⎞⎠

t
n

n!

� 􏽘
∞

n�0
x 􏽘

n

m�0

n

m

⎛⎝ ⎞⎠Belm,λ(x)(1)n− m+1,λ
⎛⎝ ⎞⎠

t
n

n!
.

(45)

+erefore, by (44) and (45), we obtain the following
theorem.

Theorem 4. . For n≥ 0, the following recurrence relation is
valid:

Beln+1,λ(x) � x 􏽘
n

m�0

n

m
􏼠 􏼡Belm,λ(x)(1)n− m+1,λ. (46)

Remark 1. +eorems 3 and 4 and (43) give us the following:

Beln+1,λ(x) � x 􏽘
n

m�0

n

m

⎛⎝ ⎞⎠Belm,λ(x)(1)n− m,λ − nλBeln,λ(x)

� x 􏽘
n

m�0

n

m

⎛⎝ ⎞⎠Belm,λ(x)(1)n− m,λ(1 − (n − m)λ).

(47)

+is implies that the following identity must hold true:

nBeln,λ(x) � x 􏽘
n

m�0

n

m
􏼠 􏼡(n − m)Belm,λ(x)(1)n− m,λ, (48)

the validity of which follows from +eorem 4.

From +eorem 3, we note that

xBeln,λ′ (x) � x
d

dx
Beln,λ(x) � Beln+1,λ(x) − xBeln,λ(x)

+ nλBeln,λ(x)

� Beln+1,λ(x) − (x − nλ)Beln,λ(x)

� x 􏽘
n− 1

m�0

n

m

⎛⎜⎜⎝ ⎞⎟⎟⎠Belm,λ(x)(1)n+1− m,λ + nλBeln,λ(x).

(49)

+erefore, by (49), we obtain the following corollary.

Corollary 1. For n≥ 1, we have the following identity:

x
d

dx
Beln,λ(x) � x 􏽘

n− 1

m�0

n

m

⎛⎝ ⎞⎠Belm,λ(x)(1)n+1− m,λ + nλBeln,λ(x).

(50)

We observe that
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x
1− λ d

dx
x

− nλBeln,λ(x)e
x

􏼐 􏼑 � x
1− λ d

dx
x

− nλ
􏽘

∞

k�0

(k)n,λ

k!
x

k⎛⎝ ⎞⎠

� 􏽘
∞

k�0

(k)n+1,λ

k!
x

k− (n+1)λ

� x
− (n+1)λ

􏽘

∞

k�0

(k)n+1,λ

k!
x

k
e

− x⎛⎝ ⎞⎠e
x

� x
− (n+1)λBeln+1,λ(x)e

x
, (n≥ 0).

(51)

+us, by (51), we get

x
1− λ d

dx
x

− nλBeln,λ(x)e
x

􏼐 􏼑 � x
− (n+1)λBeln+1,λ(x)e

x
, (n≥ 0).

(52)

From (17), we have

􏽘

∞

n�0
Beln,λ(x + y)

t
n

n!
� e

(x+y) eλ(t)− 1( ) � e
x eλ(t)− 1( ) · e

y eλ(t)− 1( )

� 􏽘
∞

l�0
Bell,λ(x)

t
l

l!
􏽘

∞

m�0
Belm,λ(x)

t
m

m!

� 􏽘
∞

n�0
􏽘

n

l�0

n

l

⎛⎝ ⎞⎠Bell,λ(x)Beln− l,λ(y)⎛⎝ ⎞⎠
t
n

n!
.

(53)

+erefore, by comparing the coefficients on both sides of
(53), we obtain the following theorem.

Theorem 5. For n≥ 0, the following binomial identity holds:

Beln,λ(x + y) � 􏽘
n

l�0

n

l
􏼠 􏼡Bell,λ(x)Beln− l,λ(y). (54)

From (17), we note that

􏽘

∞

n�0
􏽚

x

0
Beln,λ(x)dx

t
n

n!
� 􏽚

x

0
e

x eλ(t)− 1( )dx. (55)

On the other hand, we also have

􏽚
x

0
e

x eλ(t)− 1( )dx �
1

eλ(t) − 1
e

x eλ(t)− 1( )􏼔 􏼕
x

0

�
1

eλ(t) − 1
e

x eλ(t)− 1( ) − 1􏼒 􏼓 �
1

eλ(t) − 1
􏽘

∞

k�1
Belk,λ(x)

t
k

k!

�
t

eλ(t) − 1
􏽘

∞

k�0

Belk+1,λ(x)

k + 1
t
k

k!
� 􏽘
∞

l�0
βl,λ

t
l

l!
􏽘

∞

k�0

Belk+1,λ(x)

k + 1
t
k

k!

� 􏽘
∞

n�0
􏽘

n

k�0

n

k

⎛⎜⎜⎝ ⎞⎟⎟⎠
Belk+1,λ(x)

k + 1
βn− k,λ

⎛⎜⎜⎝ ⎞⎟⎟⎠
t
n

n!

� 􏽘
∞

n�0

1
n + 1

􏽘

n

k�0

n + 1

k + 1

⎛⎜⎜⎝ ⎞⎟⎟⎠Belk+1,λ(x)βn− k,λ
⎛⎜⎜⎝ ⎞⎟⎟⎠

t
n

n!

� 􏽘
∞

n�0

1
n + 1

􏽘

n+1

k�1

n + 1

k

⎛⎜⎜⎝ ⎞⎟⎟⎠Belk,λ(x)βn+1− k,λ
⎛⎜⎜⎝ ⎞⎟⎟⎠

t
n

n!
.

(56)

Complexity 7



+erefore, by (55) and (56), we obtain the following
theorem.

Theorem 6. For n≥ 0, the antiderivative of Beln,λ(x) is given
by

􏽚
x

0
Beln,λ(x)dx �

1
n + 1

􏽘

n+1

k�1

n + 1

k

⎛⎝ ⎞⎠βn+1− k,λBelk,λ(x),

(57)

where βn,λ are Carlitz’s degenerate Bernoulli numbers given by
(t/(eλ(t) − 1)) � 􏽐

∞
n�0 βn,λ(tn/n!).

For k≥ 0, by (12), we get

􏽘

∞

n�k

S2,λ(n, k)
t
n

n!
�

1
k!

eλ(t) − 1( 􏼁
k

�
1
k!

􏽘

k

j�0
(− 1)

k− j
e

j

λ(t)

k

j

⎛⎝ ⎞⎠

� 􏽘
∞

n�0

1
k!

􏽘

k

j�0

k

j

⎛⎝ ⎞⎠(− 1)
k− j

(j)n,λ
⎛⎝ ⎞⎠

t
n

n!
.

(58)

By comparing the coefficients on both sides of (58), we
have

1
k!

􏽘

k

j�0

k

j

⎛⎝ ⎞⎠(− 1)
k− j

(j)n,λ �
S2,λ(n, k), if n≥ k,

0, if $0≤ n≤ k − 1$.

⎧⎨

⎩

(59)

Let D � (d/dx), and let y � xp. As x1− λD �

py1− (λ/p)(d/dy), we have

x
1− λ

D􏼐 􏼑
n
e

axp

� py
1− (λ/p) d

dy
􏼠 􏼡

n

e
ay

� p
n

y
1− (λ/p) d

dy
􏼠 􏼡

n

e
ay

� p
n
y

− (nλ/p)Beln,(λ/p)(ay)e
ay

� p
n
x

− nλBeln,(λ/p) ax
p

( 􏼁e
axp

.

(60)

+us, we have

x
1− λ

D􏼐 􏼑
n
e

axp

� p
n
x

− nλBeln,(λ/p) ax
p

( 􏼁e
axp

, (n≥ 0).

(61)

+erefore, by (61), we obtain the following proposition.

Proposition 1. For n≥ 0, we have the following operational
formula:

x
nλ

x
1− λ

D􏼐 􏼑
n
e

axp

� p
nBeln,(λ/p) ax

p
( 􏼁e

axp

, (62)

where D � (d/dx).

From (12), we note that

􏽘

n+1

k�0
S2,λ(n + 1, k)(x)k � (x)n+1,λ � (x − nλ)(x)n,λ

� (x − nλ) 􏽘
n

k�0
S2,λ(n, k)(x)k � 􏽘

n

k�0
S2,λ(n, k)(x − k + k − nλ)(x)k

� 􏽘
n

k�0
S2,λ(n, k)(x)k+1 + 􏽘

n

k�0
S2,λ(n, k)(k − nλ)(x)k

� 􏽘
n+1

k�1
S2,λ(n, k − 1)(x)k + 􏽘

n

k�0
S2,λ(n, k)(k − nλ)(x)k

� 􏽘

n+1

k�0
S2,λ(n, k − 1) + S2,λ(n, k)(k − nλ)􏼐 􏼑(x)k.

(63)
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By (63), we get

S2,λ(n + 1, k) � S2,λ(n, k − 1) +(k − nλ)S2,λ(n, k), (64)

where 0≤ k≤ n + 1.
We prove the next theorem by induction on n.

Theorem 7. Assume that f is an infinitely differentiable
function. :en, for n≥ 0, the following operational formula
holds:

x
1− λ

D􏼐 􏼑
n
f � 􏽘

n

k�0
S2,λ(n, k)x

k− nλ
D

k
f, (65)

where D � (d/dx).

Proof. +e statement is obviously true for n � 0. Assume
that it is true for n, (n≥ 0).

x
1− λ

D􏼐 􏼑
n+1

f(x) � x
1− λ

D􏼐 􏼑 􏽘

n

k�0
S2,λ(n, k)x

k− nλ
D

k
f(x)

� x
1− λ

􏽘

n

k�0
S2,λ(n, k) (k − nλ)x

k− 1− nλ
D

k
f(x) + x

k− nλ
D

k+1
f(x)􏽮 􏽯

� 􏽘
n

k�0
S2,λ(n, k) (k − nλ)x

k− (n+1)λ
D

k
f(x) + x

k+1− (n+1)λ
D

k+1
f(x)􏽮 􏽯

� 􏽘

n+1

k�0
S2,λ(n, k)(k − nλ)x

k− (n+1)λ
D

k
f(x) + 􏽘

n+1

k�0
S2,λ(n, k − 1)x

k− (n+1)λ
D

k
f(x)

� 􏽘
n+1

k�0
S2,λ(n, k)(k − nλ) + S2,λ(n, k − 1)􏽮 􏽯x

k− (n+1)λ
D

k
f(x)

� 􏽘
n+1

k�0
S2,λ(n + 1, k)x

k− (n+1)λ
D

k
f(x).

(66)

Let f(x) � ex. +en, we have

x
nλ

x
1− λ

D􏼐 􏼑
n
e

x
� 􏽘

n

k�0
S2,λ(n, k)x

k⎛⎝ ⎞⎠e
x

� Beln,λ(x)e
x
.

(67)

Observe that, for any α, we have

x
1− λ

D􏼐 􏼑
n
x
α

� (α)n,λx
α− nλ

. (68)

By the Leibniz rule, we get

x
1− λ

D􏼐 􏼑
n
(fg) � 􏽘

n

l�0

n

l
􏼠 􏼡 x

1− λ
D􏼐 􏼑

n− l
f􏼔 􏼕 x

1− λ
D􏼐 􏼑

l
g􏼔 􏼕.

(69)

From +eorem 2, we note that

x
− (n+m)λ

e
xBeln+m,λ(x) � x

1− λ
D􏼐 􏼑

n+m
e

x
� x

1− λ
D􏼐 􏼑

n
x
1− λ

D􏼐 􏼑
m

e
x

� x
1− λ

D􏼐 􏼑
n

x
− mλBelm,λ(x)e

x
􏼐 􏼑.

(70)

By (69) and (70), we get

x
− (n+m)λ

e
xBeln+m,λ(x) � x

1− λ
D􏼐 􏼑

n
x

− mλBelm,λe
x

􏼐 􏼑

� 􏽘
n

k�0

n

k
􏼠 􏼡 x

1− λ
D􏼐 􏼑

n− k
x

− mλBelm,λ(x)􏼐 􏼑􏼔 􏼕 x
1− λ

D􏼐 􏼑
k
e

x
􏼔 􏼕

� 􏽘
n

k�0

n

k
􏼠 􏼡x

− kλBelk,λ(x)e
x

x
1− λ

D􏼐 􏼑
n− k

x
− mλBelm,λ(x)􏼐 􏼑􏼔 􏼕.

(71)

On the other hand,

x
1− λ

D􏼐 􏼑
n− k

x
− mλBelm,λ(x)􏼐 􏼑 � 􏽘

m

j�0
S2,λ(m, j) x

1− λ
D􏼐 􏼑

n− k
x

j− mλ
􏼔 􏼕

� 􏽘
m

j�0
S2,λ(m, j)(j − mλ)n− k,λx

j− mλ− (n− k)λ
� 􏽘

m

j�0
S2,λ(m, j)(j − mλ)n− k,λx

j− (m+n)λ+kλ

� 􏽘
m

j�0
S2,λ(m, j)

(j)m+n− k,λ

(j)m,λ
x

j− (m+n)λ+kλ
.

(72)
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By (71) and (72), we get

x
− (n+m)λ

e
xBeln+m,λ(x)

� 􏽘
n

k�0

n

k

⎛⎝ ⎞⎠x
− kλBelk,λ(x)e

x
􏽘

m

j�0
S2,λ(m, j)

(j)m+n− k,λ

(j)m,λ
x

j− (m+n)λ+kλ

� x
− (m+n)λ

e
x

􏽘

n

k�0
􏽘

m

j�0

n

k

⎛⎝ ⎞⎠S2,λ(m, j)Belk,λ(x)
(j)m+n− k,λ

(j)m,λ
x

j
.

(73)

+erefore, by comparing the coefficients on both sides of
(73), we obtain the following theorem. □

Theorem 8. For m, n≥ 0, we have the following expression:

Beln+m,λ(x) � 􏽘
n

k�0
􏽘

m

j�0

n

k

⎛⎝ ⎞⎠S2,λ(m, j)Belk,λ(x)
(j)m+n− k,λ

(j)m,λ
x

j
.

(74)

Taking x � 1 in (74), we have

Beln+m,λ � 􏽘

n

k�0
􏽘

m

j�0

n

k

⎛⎝ ⎞⎠S2,j(m, j)Belk,λ
(j)n+m− k,λ

(j)m,λ
. (75)

From (19) and (68), we note that

x
1− λ

D􏼐 􏼑
n
Belm,λ(x) � x

1− λ
D􏼐 􏼑

n
􏽘

m

k�0
S2,λ(m, k)x

k

� 􏽘
m

k�0
S2,λ(m, k)(k)n,λx

k− nλ
.

(76)

On the other hand, by Leibniz rule (69) and +eorem 2,
we get

x
1− λ

D􏼐 􏼑
n
Belm,λ(x) � x

1− λ
D􏼐 􏼑

n
e

− x
x

mλ
􏼐 􏼑 Belm,λ(x)e

x
x

− mλ
􏼐 􏼑􏽨 􏽩

� 􏽘
n

k�0

n

k

⎛⎝ ⎞⎠ x
1− λ

D􏼐 􏼑
n− k

x
mλ

e
− x

􏼐 􏼑􏼔 􏼕 x
1− λ

D􏼐 􏼑
k
Belm,λ(x)e

x
x

− mλ
􏼐 􏼑􏼔 􏼕

� 􏽘
n

k�0

n

k

⎛⎝ ⎞⎠ x
1− λ

D􏼐 􏼑
n− k

x
mλ

e
− x

􏼐 􏼑􏼔 􏼕 x
1− λ

D􏼐 􏼑
m+k

e
x

􏼔 􏼕

� 􏽘
n

k�0

n

k

⎛⎝ ⎞⎠ x
1− λ

D􏼐 􏼑
n− k

x
mλ

e
− x

􏼐 􏼑􏼔 􏼕x
− (m+k)λBelm+k,λ(x)e

x
.

(77)

By (68) and (69) and +eorem 2, we easily get

x
1− λ

D􏼐 􏼑
n− k

x
mλ

e
− x

􏼐 􏼑 � 􏽘
n− k

j�0

n − k

j

⎛⎝ ⎞⎠ x
1− λ

D􏼐 􏼑
j
x

mλ
􏼔 􏼕 x

1− λ
D􏼐 􏼑

n− k− j
e

− x
􏼔 􏼕

� 􏽘
n− k

j�0

n − k

j

⎛⎝ ⎞⎠(mλ)j,λx
mλ− jλ

e
− xBeln+k− j,λ(− x)x

− (n− k− j)λ

� 􏽘
n− k

j�0

n − k

j

⎛⎝ ⎞⎠(mλ)j,λx
mλ− nλ+kλBeln− k− j,λ(− x)e

− x
.

(78)
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From (77) and (78), we have

x
1− λ

D􏼐 􏼑
n
Belm,λ(x)

� 􏽘
n

k�0

n

k
􏼠 􏼡x

− mλ− kλBelm+k,λ(x)e
x

􏽘

n− k

j�0

n − k

j
􏼠 􏼡(mλ)j,λx

mλ− nλ+kλBeln− k− j,λ(− x)e
− x

� 􏽘
n

k�0
􏽘

n− k

j�0

n

k
􏼠 􏼡

n − k

j
􏼠 􏼡Belm+k,λ(x)Beln− k− j,λ(− x)(mλ)j,λx

− nλ
.

(79)

+erefore, by (76) and (79), we obtain the following
theorem.

Theorem 9. For m, n≥ 0, the following identity holds true.

􏽘

m

k�0
S2,λ(m, k)(k)n,λx

k

� 􏽘
n

k�0
􏽘

n− k

j�0

n

k
􏼠 􏼡

n − k

j
􏼠 􏼡Belm+k,λ(x)Beln− k− j,λ(− x)(mλ)j,λ.

(80)

By (11) and (13), we easily get

(− 1)
n− k

S1,λ(n, k) �
n

k
􏼢 􏼣

λ
, (0≤ k≤ n). (81)

Indeed,

􏽘

∞

n�0
〈x〉n

t
n

n!
�

1
1 − t

􏼒 􏼓
x

� e
− x
λ logλ(1 − t)( 􏼁

� 􏽘
∞

k�0
(− x)k,λ

1
k!

logλ(1 − t)( 􏼁
k

� 􏽘
∞

k�0
(− 1)

k
〈x〉k,λ 􏽘

∞

n�k

S1,λ(n, k)
(− t)

n

n!

� 􏽘
∞

n�0
􏽘

n

k�0
(− 1)

n− k
S1,λ(n, k)〈x〉k,λ

⎛⎝ ⎞⎠
t
n

n!
.

(82)

+erefore, by (82), we get

〈x〉n � 􏽘
n

k�0
(− 1)

n− k
S1,λ(n, k)〈x〉k,λ. (83)

Replacing t by logλ(1 + t) in (17), we get

e
xt

� 􏽘
∞

k�0
Belk,λ(x)

1
k!

logλ(1 + t)( 􏼁
k

� 􏽘
∞

k�0
Belk,λ(x) 􏽘

∞

n�k

S1,λ(n, k)
t
n

n!

� 􏽘

∞

n�0
􏽘

n

k�0
Belk,λ(x)S1,λ(n, k)⎛⎝ ⎞⎠

t
n

n!
.

(84)

+us, from (81) and (84), we get

x
n

� 􏽘
n

k�0
Belk,λ(x)(− 1)

n− k
n

k
􏼢 􏼣

λ
. (85)

From (13), we note that

􏽘

n+1

k�0

n + 1

k
􏼢 􏼣

λ
〈x〉k,λ � 〈x〉n+1 � (x + n)〈x〉n

� (x + n) 􏽘

n

k�0

n

k
􏼢 􏼣

λ
〈x〉k,λ

� 􏽘

n

k�0

n

k
􏼢 􏼣

λ
(x + kλ + n − kλ)〈x〉k,λ

� 􏽘

n

k�0

n

k
􏼢 􏼣

λ
〈x〉k+1,λ + 􏽘

n

k�0
(n − kλ)

n

k
􏼢 􏼣

λ
〈x〉k,λ

� 􏽘

n+1

k�0

n

k − 1
􏼢 􏼣

λ
〈x〉k,λ + 􏽘

n+1

k�0
(n − kλ)

n

k
􏼢 􏼣

λ
〈x〉k,λ

� 􏽘
n+1

k�0

n

k − 1
􏼢 􏼣

λ
+(n − kλ)

n

k
􏼢 􏼣

λ
􏼠 􏼡〈x〉k,λ.

(86)

+us, by comparing the coefficients on both sides of (86),
we get

n + 1

k
􏼢 􏼣

λ
�

n

k − 1
􏼢 􏼣

λ
+(n − kλ)

n

k
􏼢 􏼣

λ
, (0≤ k≤ n + 1).

(87)

3. Conclusion

Here, we studied by means of generating functions the
degenerate Bell polynomials which are degenerate versions
of the Bell polynomials. In more detail, we derived recur-
rence relations for degenerate Bell polynomials (see +eo-
rems 1, 3, 4, and 8), and expressions for them that can be
derived from repeated applications of certain operators to
the exponential functions (see +eorem 2 and Proposition
1), the derivatives of them (Corollary 1), the antiderivatives
of them (see+eorem 6), and some identities involving them
(see +eorems 5 and 9).

As one of our future projects, we would like to continue
to study degenerate versions of certain special polynomials
and numbers and their applications to physics, science, and
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engineering as well as to mathematics. An earlier version of
this paper has been presented as preprint in [15].
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