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Recent advances in data acquisition and various monitoring
modalities have resulted in generating and collecting a grow-
ing volume of biological and medical data at unprecedented
speed and scale [1]. These accumulated data can be utilized
for a more effective delivery of care and enhanced clinical
decision-making [2]. However, analysis of these tremendous
amounts of data—collected from electronic health records
or monitoring devices—to extract useful information for a
more broad-based health-care delivery is one of the main
challenges of today’s medicine [3].

Medical decision support systems help clinicians to
best exploit these overwhelming amount of data by pro-
viding a computerized platform for integrating evidence-
based knowledge and patient-specific information into an
enhanced and cost-effective health care [4]. Over the last
decade, various pattern recognition techniques have been
applied to biomedical data (including signals and images)
for automatic and machine-based clinical diagnostic and
therapeutic support.The development of novel pattern recog-
nition methods and algorithms with high performances, in
terms of accuracy and/or time complexity, improves the
health-care outcome by allowing clinicians to make a better-
informed decision in a timelier manner. This is of vital
importance especially when a rapid clinical decision needs
to be made in a stressful environment such as intensive care
units [5]. Development of predictive computational models
and pattern recognition algorithms with performances and
capabilities matching the complexity of rapidly evolving
clinical measurement and monitoring systems is an ongoing
research area and, thus, it requires continuous update on the
current status of its advances [6].

With that scope in mind, this special issue focuses on
the applications of pattern recognition for clinical decision
support. For this purpose, we selected five research articles
that discussed the design and clinical applications of fea-
ture extraction and/or classification of large-scale or high-
dimensional biomedical data including biomedical signals
and images.

S. Long et al. developed and evaluated an automatic
retinal image processing algorithm to detect hard exudates
(HE). Their algorithm consisted of four main stages: (i)
image preprocessing; (ii) localization of optic disc; (iii)
identification of potentialHE region using dynamic threshold
and fuzzy C-means clustering; and (iv) extraction of texture
features from the HE region being fed into a support vector
machine classifier. The proposed algorithm was trained and
cross-validated on a publicly available e-ophtha EX database,
achieving the overall average sensitivity of 76% and pos-
itive predictive value of 83%. Testing their algorithm on
DIARETDB1 database resulted in better sensitivity (97%) and
specificity (98%).

Z. Luo et al. developed and tested a machine learning
approach to detect hypertension by automatic processing of
radial artery blood pressure signals collected from healthy
and hypertensive subjects by a noninvasive measurement
device designed and built in house. They applied K-means
clustering to exclude the noisy pulses from the data. Then
they identified a subset of features that helped the most in
detecting the hypertensive cases and applied various pattern
classification algorithms such as AdaBoost and random
forest. The authors were able to achieve the highest accuracy
of 86% using AdaBoost.
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K. Y. Win et al. proposed a novel methodology for
the detection of cancer cells in cytological pleural effusion
(CPE) images. Following some image intensity adjustment
and application of median filtering to improve the image
quality, cell nuclei were extracted by a hybrid segmentation
method based on the fusion of simple linear iterative clus-
tering and K-means clustering. Shape and contour concavity
analyses were carried out to detect and split any overlapped
nuclei into individual ones. Then several morphometric,
colorimetric, and texture features were extracted. A novel
hybrid feature selection method was developed using an
artificial neural network to select the most discriminant
and biologically interpretable features. Finally, an ensemble
classifier of bagged decision trees was utilized to classify cells
into being either benign or malignant. The proposed method
achieved sensitivity of 88% and specificity of 99%on a dataset
of 125 images containing more than 10,000 cells.

J. Jaworek-Korjakowska employed analysis of vascular
structures in dermoscopy color images to distinguish benign
and malignant pigmented skin lesions using a segmentation
technique and convolutional neural network. The proposed
method achieved sensitivity of 85% and specificity of 81%.The
author concluded that small size and similarity of vascular
structures to other local structures makes the segmentation
and classification of dermoscopy color images challenging.

H. Tang et al. proposed employment of various features
(from time/frequency domains) of phonocardiogram data
and support vector machine for classifying normal and
abnormal heart sound data. They applied correlation analysis
to quantify discrimination level of the features and used
support vector machine with radial basis kernel function
for classification of phonocardiogram data from publicly
available PhysioNet database. Their methodology achieved
an average sensitivity of 88% and a specificity of 87%.

With upcoming technology upgrades in clinical measure-
ment and monitoring systems, it is reasonable to assume
that the cost of acquiring and storing biomedical data will
decrease dramatically in the near future [1, 7].This substanti-
ates the need to further enhance the existing signal processing
and pattern classification algorithms or develop novel ones
to analyze the resulting complex data and help health-care
providers in a variety of clinical decision-making processes
[3].The papers presented in this special issue outline some of
the recently developed pattern recognition methodologies in
clinical decision systems.
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Background. A multifactorial decision support system (mDSS) is a tool designed to improve the clinical decision-making process,
while using clinical inputs for an individual patient to generate case-specific advice.The study provides an overview of the literature
to analyze current available mDSS focused on prostate cancer (PCa), in order to better understand the availability of decision
support tools as well as where the current literature is lacking.Methods.We performed aMEDLINE literature search in July 2018.We
divided the included studies into different sections: diagnostic, which aids in detection or staging of PCa; treatment, supporting the
decision between treatment modalities; and patient, which focusses on informing the patient. We manually screened and excluded
studies that did not contain an mDSS concerning prostate cancer and study proposals. Results. Our search resulted in twelve
diagnostic mDSS; six treatment mDSS; two patient mDSS; and eight papers that could improve mDSS. Conclusions. Diagnosis
mDSS is well represented in the literature as well as treatment mDSS considering external-beam radiotherapy; however, there is a
lack of mDSS for other treatment modalities. The development of patient decision aids is a new field of research, and few successes
have been made for PCa patients. These tools can improve personalized medicine but need to overcome a number of difficulties to
be successful and require more research.

1. Introduction

Worldwide, prostate cancer (PCa) is the second most occur-
ring type of cancer inmen and themost commonly diagnosed
cancer formen living in developed countries,making it a very
relevant topic for cancer research [1].

A variety of treatment options is available to treat PCa,
such as external-beam radiotherapy (EBRT) and radical
prostatectomy [2–4], which have similar long-term survival
outcomes. Other treatments such as brachytherapy [5–8] are
gaining popularity, and active surveillance is an increasingly
viable option as well [9, 10], due to the slow progression
of some kinds of PCa. Retrospective studies comparing
different treatment modalities tend to be conflicting and
biased. Consensus on the best treatment choices formenwith
PCa remains absent because prospective trials for different

treatments report different toxicities [4, 11, 12]. Due to this,
the treatment choice is largely dependent on both patient
and physician subjective preferences, rather than knowledge-
based decision-making [13]. Additionally, treatment outcome
is dependent on a large number of features, including treat-
ment, patient, tumor, clinical, and genetic features [14].These
factors further complicate the integration of evidence-based
decision-making into clinical practice due to the limitations
of human cognitive capacity, which can only take a relatively
small number of factors into account on which to base a
decision [15, 16]. In order to meet the aspiration of person-
alized medicine, the need for multifactorial decision support
systems (mDSS) is growing [17–23]. An mDSS is a tool
designed to improve the difficult medical decision-making
process. It uses multifactorial inputs (treatment, patient,
tumor, clinical, genetic, etc.) for a given patient to generate
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Search terms:
Patient:
• Prostate
• Cancer, tumour, tumor, carcino 
Outcome:
• Toxicity, ntcp, adevers 
• Outcome, tcp, predict
Design:
• Decision support system, clinical decision

support system or multifactorial decision
support system

Pubmed n = 33
Manual search n = 7

Papers selected for review 
of title and abstract:

40

Papers excluded:
Duplicates n = 1
Poster n = 1
No publication n = 6

Papers selected for review 
of full text:

32

Articles excluded:
Study proposals n = 2
Not an mDSS n = 8
Not prostate n = 1

Articles included:
21

∗

∗

∗

∗

∗or oncol 

or complica 
, survival or failure 

Figure 1: Flowchart of the results of the literature search in PubMed.

case-specific advice for patients, clinicians, or other medical
professionals. Due to the variety of treatment options for
PCa, all equally efficacious for outcome, but having different
secondary effects, this disease is an interesting subject for the
use of mDSS.

In addition to the need for mDSS for treatment selection,
similar systems can be used for the diagnosis of PCa, improv-
ing early detection as well as reducing overdiagnosis and
unnecessary testing. These mDSS can use imaging, clinical,
biological, and other parameters to improve detection and
risk classification of PCa in a minimally invasive method to
maximize individual treatment.

This study provides an overview of the literature to
analyze current available mDSS focused on PCa, in order to
better understand the availability of mDSS as well as noting
where the current literature is lacking. We aim to provide
an update for clinicians about recent advances in mDSS
for personalized PCa oncology, which may improve clinical
decision-making.

2. Materials and Methods

2.1. Search Strategy. In order to identify all mDSS with
relation to treatment for PCa, we performed a MED-
LINE/PubMed literature search in July 2018, restricted to
English. Details of the strategy we used are shown in Figure 1.

2.2. Selection Criteria. Prior to reviewing full texts, we man-
ually checked the abstracts and titles to select papers for this
study. Duplicates, posters, or abstracts that did not include
a published work were excluded. Additionally, we excluded
studies which clearly did not include an mDSS for PCa. After
full text review, we excluded any papers that described study
proposals that did not describe an mDSS in PCa. We selected
appropriate studies by manually screening and considering
the aforementioned criteria.

2.3. Study Characteristics. The studies we included were
divided into sections according to the type of mDSS: diag-
nostic mDSS, which support the staging of PCa or support
the decision for more invasive or expensive diagnostic tests;
treatment mDSS, which support the decision between treat-
mentmodalities or treatment plans; and patientmDSS,which
focus on informing the patient.

Wedescribed each study using the number of patients, the
decision that the system supports, and the system inputs and
outcomes. We also commented on the general applicability,
the reported performance of the system, and the limitations.
In order to assess the reporting quality of the studies, we
tested each paper for its compliance to the TRIPOD (Trans-
parent Reporting of studies on prediction models for Indi-
vidual Prognosis Or Diagnosis) reporting guideline [24]. We
reported this in a percentage calculated using the document:
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Table 1: Overview of diagnosis support systems.

Study N Decision/Diagnose Inputs Outcomes TRIPOD

(Roach et al. 1994)[25] 282 Low or high risk of LN
involvement

PSA,GS, Clinical
stage P LN involvement 79%

(Diaz et al. 1994)[26] 217 Low or high risk of SV
involvement PSA, GS P SV involvement 69%

(D’Amico et al. 1998)[27] 1872 Patient risk group PSA, GS, Clinical
stage 5-year PSA outcome 72%

(Chang et al. 1999)[28] 43 Localized vs Advanced
PCa PSA, GS, TRUS, DRE P advanced PCa and

P localized PCa 65%

(Roach et al. 2000)[29] 895 Extracapsular extension PSA, GS Extracapsular
extension risk 92%∗∗

(Lee et al. 2010)[30] 1077 Biopsy Clinical∗, Imaging∗,
PSA P PCa 86%

(Kim et al. 2011)[31] 532 Advanced PCa TRUS, Clinical, PSA P advanced PCa 79%

(Shah et al. 2012)[32] 31 Location PCa MRI image Cancer probability
map 83%

(Mukai et al. 2013)[33] 30773 PSA test Clinical Recommendation -∗∗∗

(Sadoughi et al.
2014)[34] 360 PCa PSA, Age P PCa 33%

(van Leeuwen et al.
2017)[35] 591 Significant PCa Clinical, PSA,

PIRADS, DRE P significant PCa 97%

(Tosoian, et al. 2017)[36] 4459 Pathological Stage PSA, GS, Clinical
stage

% likelihood of given
stage 83%

Abbreviations. N: number of patients; P: probability; PCa: prostate cancer; PSA: prostate specific antigen; PIRADS: Prostate Imaging Reporting and Data
System; TRUS: transrectal ultrasound scan; LN: lymph node; GS: Gleason score; SV: seminal vesicles; TRIPOD: adherence to the TRIPOD statement; DRE:
digital rectal examination.
∗Clinical, imaging, and tumor parameters.
∗∗Abstract only.
∗∗∗No development or validation of mDSS: no TRIPOD evaluation possible.

“Appendix I: Scoring adherence of prediction model study
reports to the TRIPOD reporting guideline”, available on
http://www.tripod-statement.org/ (available here).

3. Results

3.1. Included Studies

3.1.1. mDSS for Diagnosis and Diagnostic Interventions. The
studies that contained a diagnostic mDSS are listed in Table 1.
Two of the studies we found had the goal of supporting
the use of a diagnostic tool: Lee et al. (2010) and Mukai et
al. (2013). The application tested by Mukai et al. (2013) was
meant to support the use of prostate specific antigen (PSA)
tests for patients. The mDSS was a web-based application
that would aid in the decision to perform PSA tests for
general practitioners (GPs) in Denmark. The study leads to
the conclusion that it was possible to grant GPs in Denmark
easy access to web-based mDSS by replacing certain words in
their medical records by hyperlinks. However it also showed
that this mDSS did not change PSA-testing behavior. Since
this study neither developed nor validated this mDSS, the
compliance to the TRIPOD guidelines could not be tested.

Lee et al. (2010) attempted to support the use of a
biopsy by predicting initial biopsy outcomes through three
different models: support vector machine (SVM), artificial

neural network (ANN), and multiple logistic regression.
The study trained each of the models on 600 patients who
had undergone transrectal ultrasonography (TRUS)-guided
prostate biopsies, tested them on 477, and compared the
model performances. The parameters of the models were
TRUS findings and clinical parameters, including age and
PSA. The area under the receiver operating characteristic
(ROC) curve (AUC) for the use ofmultiple logistic regression
analysis, ANN, and the SVM was 0.768, 0.778, and 0.847,
respectively, and pairwise comparison of the ROC curves
showed that the SVMmodel had superior performance.

Kim et al. (2011), Sadoughi et al. (2014), Shah et al. (2012),
van Leeuwen et al. (2017), and Chang et al. (1999) all aimed to
detect, diagnose, or classify PCa using a variety of methods.
Kim et al. (2011) performed a study similar to Lee et al. (2010),
but with the aim of improving pathological staging, rather
than reducing the number of biopsies. Two models were
developed, SVM and ANN, for the prediction of advanced
PCa and compared based on performance. The models used
TRUS-guided biopsy parameters and were tested on 532
patients divided into training and test groups. The SVM
model performed significantly better (p=0.02) than the ANN
model based on ROC curve, with an AUC of 0.805 while
that of the ANN model was 0.719. This study showed that
these models could improve objective pathological staging
of biopsy-proven PCa patients and could be applied in
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combination with TRUS-guided biopsies once externally
validated.

Another neural networkwas trained on laboratory results
by Sadoughi et al. (2014) who then performed particle swarm
optimization. The specific goal of this study was to aid in
distinguishing between localized PCa and benign hyperplasia
of the prostate. The model was internally validated on 60
patients, and the authors found an accuracy of 98.33%.
The description of the methodology was limited, and the
reporting conformed only to 33% of the TRIPOD guidelines.
The model could potentially improve detection of PCa and
possibly reduce the number of biopsies, but external valida-
tion is necessary.

Notable were Shah et al. (2012), who also used SVM,
but, in contrast to Lee et al. (2011), the model was not
trained on biopsy results, but on pathological regions of a
magnetic resonance imaging (MRI) scan of postprostatec-
tomy prostates. The aim was not only to diagnose PCa, but
to locate it specifically on MRI scans by modeling voxel
specific risk analyses.The sensitivity and the specificity of the
model with optimized SVM parameters were 90%, and the
kappa coefficient was 80%, where the raters were the mDSS
and the ground truth histology. The study only included 24
patients, but since the model was trained on specific regions,
the training was done on 225 cancer and 264 noncancerous
regions.Thismodel could be applied in any hospital with a 3.0
T endorectal multiparametric magnetic resonance imaging
(mpMRI) scanner, although it still requires validation.

Van Leeuwen et al. (2017) developed a nomogram, rather
than a deep learning algorithm, that included a larger num-
ber of parameters to diagnose significant PCa. The nomo-
gram included Prostate Imaging Reporting and Data Sys-
tem (PIRADS), age, PSA, digital rectal examination (DRE),
prostate volume, and prior biopsy. The model performed
with an AUC of 0.864 on an external validation set, and the
paper proposed an optimal strategy to reduce the number of
biopsies needed with minimal risk of underdiagnosis. This
paper conformed to 97% of the TRIPOD guidelines.

Chang et al. (1999) evaluated the usefulness and the
performance of an mDSS, the Prostate Cancer Expert System
(PCES), which was validated on 43 patients with confirmed
PCa. The PCES system, which utilized PSA, Gleason score,
TRUS, and DRE, was used to categorize the patients into
localized or advanced PCa, and the same test was applied
to four attending physicians and four residents. The results
showed that the PCES performed with a higher accuracy
than all residents and physicians, though the difference
was only higher for two physicians. It also showed that
after consultation of the PCES, the staging accuracy of the
residents improved to the level of the attending physicians.

A number of prediction tools are currently being applied
in the clinic to aid in the further diagnosis of the PCa disease,
providing predictions on lymph node (LN) involvement,
organ confinement (OC), seminal vesicle (SV) involvement
and extracapsular extension, and risk of failure after treat-
ment. The Partin tables [37, 38] are a set of nomograms to
predict OC of PCa, initially introduced in 1993 and most
recently updated by Tosoian et al. (2017) [36]. Based on
these nomograms, Roach derived a set of formulas for the

prediction of SV involvement in a paper published by Diaz et
al. (1994) [26]. Roach et al. (1994) [25] also derived formulas
that predicted LN involvement based on PSA and Gleason
score, and Roach et al. (2000) [29] did the same for the
risk of failure following radiotherapy (RT) and extracapsular
extension in patients with localized PCa.

Tosoian et al. (2017) validated and updated the Partin
tables on a cohort of 4459 patients with the goal of predicting
the pathological outcome after radical prostatectomy. The
performance of the model was tested for binary regression
where the AUC was calculated when comparing organ con-
fined (OC) PCa to other pathological outcomes. The model
performed best when predicting OC versus LN involvement
(AUC = 0.918) and versus seminal vesicle (SV) involvement
(AUC = 0.856). The weakest performance was for OC versus
extraprostatic extension (AUC = 0.673).

Diaz et al. (1994) split patients into high risk and low
risk groups of SV involvement using PSA and Gleason score
and tested this on 217 patients. The incidence rate of SV
involvement in the low risk groupwas 7%,while the incidence
rate in the high risk group was 37%, resulting in a chi-square
of 23.17.

Roach et al. (1994) performed a similar study on 282
patients, but divided the patients into low and high risk
groups for LN involvement.This resulted in 6% incidence rate
in the low risk group and a 40% incidence rate in the high risk
group, resulting in a significant split (p <0.001).

Roach et al. (2000) split 895 patients into low, interme-
diate, and high risk groups for extracapsular extension. This
resulted in an incident rate of 17.8%, 46.7%, and 66.7% in low,
intermediate, and high risk groups, respectively, which was a
significant split (p <0.01).

D’Amico et al. (1998) suggested a widely accepted risk
classification for prostate cancer to help predict biochemical
outcome after five years after PCa treatment, stratifying them
into low, intermediate, and high risk PCa [27]. This study
included 1872 patients who underwent radical prostatectomy,
EBRT, or interstitial RT. Cox regression was used to calculate
the relative risk between different groups of patients, based on
risk level and treatment type. No validation was performed in
this paper.

Memorial Sloan Kettering Cancer Center (MSKCC) also
has a publically available set of nomograms that is based on
data from more than 10,000 patients. They have nomograms
available to predict outcome after radical prostatectomy both
before and after treatment as well as after PSA elevation (see
https://www.mskcc.org/nomograms).

3.1.2. mDSS Supporting Treatment Decisions. The studies that
contained treatment mDSS are listed in Table 2. The studies
described by Walsh et al. (2018), Smith et al. (2016), and
van Wijk et al. (2018) compare different RT treatment plans
performed on the same patients and themDSS selects the best
plan with most favorable outcome. This type of personalized
mDSS is very suitable for the comparison of RT modalities,
as the treatment plans are a predictor for the delivered
dose, with consequent treatment outcome.Walsh et al. (2018)
used a combination of existing models for tumor control
probability (TCP) andnormal tissue complication probability
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Table 2: Overview of treatment support systems.

Study N Decision Inputs Outcomes TRIPOD
(Hodges et al. 2012)[43] Model SBRT, IMRT Utility, transitions QALY, Costs, ICER 80%

(Reed et al. 2014)[44] Model ART Risk group
ProsVue slope QALY, Cost, ICER 80%

(Vanneste et al. 2015)[45] Model IMRT+IRS, IMRT Utility, transitions QALY, Cost, ICER 81%
(Smith et al. 2016)[46] Model RT plan DVH, Clinical∗ TCP, NTCP, QALY 87%
(vanWijk et al. 2018)[47] 23 IRS in RT DVH, Clinical TCP, NTCP 84%

(Salem et al. 2018)[48] 200 Follow-up Symptoms, Blood
tests Follow-up suggestion 71%

(Walsh et al. 2018)[49] 25 IMRT, V-mat,
PSPT, IMPT DVH TCP, NTCP,

Robustness, stability 84%

Abbreviations. N: number of patients; IMRT: intensity modulated radiotherapy; V-mat: volumetric-modulated arc therapy; PSPT: passively scattered proton
therapy; IMPT: image modulated proton therapy; TCP: tumor control probability; NTCP: normal tissue complication probability; DVH: dose-volume
histogram; QALY: quality adjusted life year; IRS: implantable rectum spacer; ART: adjuvant radiotherapy; ICER: incremental cost-effectiveness ratio; TRIPOD:
adherence to the TRIPOD statement.
∗Clinical parameters.

(NTCP) to compare different treatment plans with photon
and proton RT for 25 patients. The study included extensive
corrections for displacements during treatment, which aided
in the prediction of delivered dose. As this was a modeling
study, no validation was done. However, the concept could
be used as a basis for RT plan selection between different
modalities and could aid in the optimization of TCP and
NTCP. Smith et al. (2016) utilized an advanced Bayesian net-
work to optimize intensity modulated radiotherapy (IMRT)
treatment plans based on outcome in terms of progression
free survival and toxicity. The models were validated against
independent clinical trials for themetastasis free survival and
overall survival and resulted in uncertainties of 2.5% and 2%,
respectively. This method could potentially be implemented
into any IMRT planning system and has the potential to
improve the quality of treatment plans, resulting in optimized
outcomes.

A device called the implantable rectum spacer (IRS)
has been developed to spare the rectum during IMRT by
increasing the distance between the anterior rectum wall
and the prostate [39, 40]. Van Wijk et al. (2018) made use
of image deformation based on a virtual IRS [41, 42]: she
published models to predict the sparing effect of an IRS
before implanting the IRS.Themodel was tested in a proof of
concept studywith 16 patients, comparing themDSSoutcome
for the virtual IRS to the real IRS in the patients, and the
median discrepancies in outcome were 1.8%. Once validation
has taken place, this DSS could be applied to any RT planning
system and has the potential to personalize treatment choice.

Two studies that supported the decisions involving
follow-up treatment were found. Reed et al. (2014) ana-
lyzed the cost-effectiveness (CE) of the use of a nucleic
acid detection immunoassay (NADiA) ProsVue� to support
the decision for adjuvant radiotherapy (ART). This model
showed that primarily for the intermediate risk patients,
NADiA ProsVue had an incremental cost-effectiveness ratio
(ICER) lower than $50,000 in 83.6% of the simulations. This
analysis in its current state is not applicable outside the
USA. Salem et al. (2018) validated a computer-led decision

support system aimed at giving additional advice in follow-
up treatment strategy. This system uses the clinical profile
of the patient in combination with blood test results to
propose a follow-up strategy. Validation was done on 200
patients by comparing the computer generated strategy to
the advice given by trained urologists. In all cases, the
agreement between the experts and the system was better
than moderate (kappa >0.6). The paper argued that such a
system could significantly reduce costs in follow-up care in
the United Kingdom and believed the system can be used by
any healthcare worker, regardless of urology background.

Hodges et al. (2012) developed a CE model to ana-
lyze the benefit of IMRT with respect to stereotactic body
radiotherapy (SBRT).Though this study compared these two
treatments, this study carried out analysis on cohort level and
not case-specific, as is expected of personalized medicine.
The CE analysis was done solely based on probabilistic
simulations, thus not taking into account variations in cost,
transition rates, or utility values. A sensitivity analysis was
performed, revealing that in 66% of the iterations SBRT was
cost-effective over IMRT.

Vanneste et al. (2015) constructed a CEmodel to compare
IMRT + IRS with IMRT without IRS. He developed a
decision-analytic Markov model to examine the effect of late
rectal toxicity and compare the costs and quality-adjusted life
years (QALYs). An ICER of €55,880 per QALY was gained.
For a ceiling ratio of €80,000, IMRT+S had a 77% probability
of being cost-effective.

3.1.3. mDSS Focusing on Providing Patient Information. This
section describes the studies that attempted to improve
shared decision-making. This type of mDSS fosters patient
involvement in therapeutic decisions and emphasizes the
provision of information needed to make such decisions
(Table 3). Berry et al. (2013) described the testing of a personal
patient-profile (P3P) intervention for PCa patients. P3P is a
web-based program to help men prepare for shared decision-
making about the management of early stage prostate cancer.
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Table 3: Summary of patient support systems.

Study N Decision Inputs Outcomes TRIPOD
(Nguyen et al. 2009)[50] Literature Treatment Various Various 86%

(Berry et al. 2013)[51] 494 Treatment P3P Decision
satisfaction 82%

Abbreviations. N: number of patients; P3P: personal patient-profile for prostate cancer.

Table 4: Overview of excluded studies that described tools to improve mDSS.

Study N Tool Inputs Outcomes
(Daemen et al. 2009)[61] 55 Genetic integration DNA, CNV Cancer outcome
(Kuru et al. 2013)[59] 50 Diagnostics mpMRI PIRADS

(Zumsteg et al. 2013)[55] 1024 Risk stratification Risk factors, Gleason
score, biopsy Risk group

(Beyan et al. 2014) [62] Model Genetic integration SNPs Various
(Kent and Vickers
2015)[60] Model Diagnostics Clinical and tumor

features Life expectancy

(Gnanapragasam et al.
2016)[56] 10139 Risk stratification PSA, stage, Gleason

score Risk group

(Epstein et al. 2016)[57] 26325 Risk stratification PSA, stage Gleason grade

(Gries et al. 2017)[58] 120 Utility values Utility’s 18 health states Utility’s 243 heath
states

Abbreviations. N: Number of patients; CNV: copy number variation; SNP: single nucleotide polymorphism; PSA: prostate specific antigen; mpMRI:
multiparametric magnetic resonance imaging; PIRADS: Prostate Imaging Reporting and Data system.

The study hypothesized that when P3P was used in combina-
tion with a consultation with different clinicians to prepare
for decision-making, patients were more satisfied with their
treatment choice and experienced less regret, but testing did
not result in significant improvement. However, this type of
system has the capability to take into account patient pref-
erences and priorities, while when only using consultations,
these preferences can be misinterpreted by clinicians. The
paper suggested similar studies to be performed in the future
on larger cohorts.

Nguyen et al. (2009) performed an extensive literature
research for predictive outcome models for 15 different
treatment options for PCa, including active surveillance,
combinations of radical prostatectomy, RT, hormonal ther-
apy, and high intensity focused ultrasound. They attempted
to create a comprehensive overview of the different out-
come combinations, such as survival, metastasis, and various
toxicities. This overview was designed to be comprehensive
for patients so that they could use their own priorities and
preferences to make an informed decision. Though they
concluded that there is a great need for additionalmodels, this
paper provided a framework and is a step towards evidence-
based personalized medicine. Additionally, this framework
could be a useful tool for clinical decision-making bymedical
personnel when adapted for these users.

3.2. Excluded Studies. Two studies, Stacey et al. (2016) [52]
and Jayadevappa et al. (2015) [53], were excluded because they
contained study proposals. Both these studies will attempt to
test patient decision aids. Another study, McRae et al. (2016)
[54], was excluded because it was not about prostate cancer.

Eight studies in total were excluded as they did not
describe an mDSS, but instead provided tools that could be
used in the development of an mDSS. Though these studies
can be used to further personalize PCa treatment, these tools
cannot be applied in the clinic in their current form. A short
overview of these papers is given in Table 4.

Two studies, Daemen et al. (2009) and Beyan et al.
(2014), attempted to use genetic information to improve
cancer prediction outcomes. Beyan specifically worked to
incorporate single nucleotide polymorphisms (SNPs) into the
national health information system of Turkey.

Zumsteg et al. (2013) [55], Gnanapragasam et al. (2016)
[56], and Epstein et al. (2016) [57] provided new definitions
for risk group stratification, increasing upon the current
low, intermediate, and high risk groups. They found clear
separation in progression free survival in their new risk
groups, making these a potential tool for diagnostic mDSS.
Gries et al. (2017) [58] provided a method to interpolate the
utility values for all combinations of 18 different health states,
which could be a valuable tool for mDSS to quantify QALYs.
Kuru et al. (2013) [59]showed that a PIRADS score onmpMRI
is prognostic for PCa.

Finally Kent et al. (2015) [60] performed a literature
search and attempted to create a diagnostic tool which would
predict the life expectancy in PCa patients. They concluded
that no existing model was suitable for incorporation into an
mDSS.

4. Discussion

4.1. Primary Findings. In response to the increasing number
of PCa treatment options, the development of mDSS has
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become a growing topic of interest to provide an aid in
difficult medical decisions. Diagnosis and staging mDSS
have also been a growing topic of interest, as well as a
number of tools to improve cancer detection, predictions
of treatment outcome, and outcome stratification. However,
there is still a need for new mDSS in treatment decision
aids and validation of diagnostic mDSS. Additionally, the
field of patient informed decision-making is still in its
infancy, but essential for the growth towards individualized
medicine.

For the diagnostic tools, there are a number of viable
tools available for the diagnosis of local PCa that have been
validated on large cohorts [30, 31, 33, 35, 63]. Additionally,
a study has been performed for detection of PCa on the
voxel level for MRI images [32]. This type of diagnostic
mDSS could additionally assist in treatment planning or
treatment selection.One study explores diagnosis of PCawith
LN metastasis [64], but this field remains largely uncharted,
similar to the computer automated detection of biochemical
failure or treatment failure, also explored in only one study
[48].

For treatmentmDSS, the proportion between the number
of treatment options and the decision support tools remains
somewhat skewed. Nguyen et al. (2009)[50] suggested 15
different combinations of treatment options, and this did
not include the use of rectal displacement devices [65, 66]
or proton therapy. The treatment mDSS that were found by
the current study primarily involved RT, including treatment
plan selection [46], proton compared to photon therapy [49],
SBRT compared to IMRT [43], and the use of an implantable
rectum spacer in EBRT [47]. Nguyen et al. (2009) attempted
to create a general overview of prediction tools to create a
clear overview for patients, and they found most prediction
tools to be focused on RT and radical prostatectomy. Less
prediction tools are available for brachytherapy, which is
a very viable treatment option for PCa. One study, Alitto
et al. (2017) [67], describes an Umbrella Protocol for the
standardized development of newmDSS.This protocol could
help in improving the application of new mDSS in clinics.

Development of patient decision aids is challenging, as
cultural and language barriers are much more present in
this field of research. Nguyen et al. (2009) developed a
comprehensive treatment overview for patients, but found
that the predictive tools available were limited, leaving an
incomplete overview. Berry et al. (2013) [51] hypothesized
that patients satisfaction was increased after treatment when
they were actively involved in the decision-making process
and comorbidities like anxiety, depression, and fatigue were
reduced, and they proceeded to test this using the P3P
intervention. They have found, however, that this method
has not increased self-reported preparation for the interven-
tion.

4.2. mDSS Design. The last decade deep learning algorithms
have gained popularity in the development of mDSS for the
classification of cancers, and the same is true within the
field of PCa. Kim et al. (2011) and Lee et al. (2010) tackled
a similar problem with both an ANN and an SVM, but
the dataset of Kim et al. (2011) was approximately double

in size. This increased patient cohort resulted in a higher
AUCperformance for bothmodels, which confirms that deep
learning algorithms rely heavily on large datasets. Also, no
external validation was done, so currently these models are
not generally applicable. An approach to make these models
both more accurate and more applicable for clinical use
would be to use distributed learning, where the models are
trained on centers all over the world, without the data having
to leave the clinics. Shah et al. (2012) used an SVM for a more
complex problem than just classification by doing voxel based
analyses for the localization of PCa. The drawback of this
model is that for training, a large amount of imaging data
must be available, as well as 3D pathology, but the advantage
is that the usage of subregions in the prostate allows for data
augmentation.

Notable is that a number of nomograms initially devel-
oped more than two decades ago are currently still in
use, though updated using newer datasets. The continued
application of simple, easy to interpret models is something
to keep in mind in the development of new mDSS. Though
artificial intelligence has the potential to improve diagnosis
of PCa, transparency plays a large role in clinical application.
It also shows that predictive parameters for PCa are very
consistent, with persistent usage of Gleason score, PSA,
clinical stage, and age. Any new mDSS being developed
should be tested against the performance of these parameters
to avoid tackling a simple problem using computationally
heavy machine learning.

When looking at the available treatment mDSS, we see
that most of these are focused on RT. This is likely due to the
patient specific treatment planning done in RT, which results
in highly detailed dose maps before the start of treatment.
This is ideal for mDSS, as different treatment plans can
be directly compared, and the different outcomes can be
predicted using dose response curves. Other types of treat-
ment, such as prostatectomy or watchful waiting, rely much
more heavily on clinical parameters and tumor parameters
for predictions of their outcome or on subjective physician
decisions. This makes it harder to compare outcomes of
different treatments for the same patient.The development of
new mDSS comparing completely different treatment types
with each other for the same patient would be very beneficial
for filling this gap in the current literature.

4.3. Study Limitations. This study focused on mDSS in PCa,
and the scope did not include any other cancer types. It is pos-
sible that general mDSS, applicable for more than one cancer
type, were therefore overlooked. The search was also focused
onmDSS and thus did not include any predictivemodels that
could aid in decision-making. The terms describing mDSS
may not have been used in interesting studies that could have
been included in this overview. ‘Patient decision aids’ was
also not a search term, which may be the cause of the limited
number of mDSS for patients included in this overview. The
search performed was only MEDLINE/PubMed linked, so
studies not available on these media were overlooked.

Inherent to literature overviews is that negative findings
are not always reported, so failed attempts at creating mDSS
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are often uncommon in overviews and literature reviews, and
this may cause a biased view on the subject.

We assessed the reporting quality of each included study
using the TRIPOD statement for quantification and compari-
son. Although the TRIPOD statement has been endorsed by a
large number of medical journals and editorial organizations,
it is not a universal gold standard. The checklist used for
the assessment has limitations, such as the severe point
punishment for the lack of specific keywords in title or
abstract. This could reduce the score of a well-written paper.
Additionally, the adherence to the TRIPOD statement was
compressed into a single number, and the specific reporting
issues were not named, such as improper analyses, lack of
validation, or reporting of study specifics. However, it is
a useful tool to show the strength of a report, as when
adherence to the TRIPOD statement was high, the paper
was clearly written, and all proper steps were taken for the
development of quality mDSS tools.

5. Conclusion

A number of mDSS for the primary diagnosis and staging
of localized PCa are available. Treatment mDSS were mostly
focused on EBRT, for which several tools are available.
However, a lack of mDSS for other treatment modalities
suggests that the development of new tools is necessary
to objectively compare different treatment modalities. The
development of patient decision aids is a newfield of research,
and few successes have been made for PCa patients. Though
the idea of informed decision-making by patients is in line
with the goal of personalized medicine, the development of
these tools needs to overcome a number of barriers to be
successful, like comprehensiveness, language barriers, patient
cooperation, and physician cooperation.More research needs
to be performed to better empower clinical decisions in the
diagnosis and treatment process.
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Beta-thalassemia is described as a group of hereditary blood disorders characterized by abnormalities in the synthesis of beta
chains of hemoglobin. These anomalies result in different phenotypes ranging from moderate to severe clinical symptoms to no
symptoms at all. Most of the defects in hemoglobin arise directly from themutations in the structural 𝛽-globin gene (HBB). Recent
advances in computational tools have allowed the study of the relationship between the genotype and phenotype in many diseases
including 𝛽-thalassemia. Due to high prevalence of 𝛽-thalassemia, these analyses have helped to understand the molecular basis
of the disease in a better way. In this direction, a relational database, named HbVar, was developed in 2001 by a collective academic
effort to provide quality and up-to-date information on the genomic variations leading to hemoglobinopathies and thalassemia.The
database recorded details about each variant including the altered sequence, hematological defects, its pathology, and its occurrence
along with references. In the present study, an attempt was made to investigate nondeletion mutations in the HBB picked up from
HbVar and their effects using the in silico approach. Our study investigated 12 nucleotides insertion mutations in six different
altered sequences.These 12 extra nucleotides led to the formation of a loop in the protein structure and did not alter its function. It
appears that these mutations act as ‘silent’ mutations. However, further in vitro studies are required to reach definitive conclusions.

1. Introduction

Hemoglobinopathies are genetic disorders caused by single-
gene variations in the 𝛼-like and 𝛽-like human globin gene
clusters. These are the most common inherited disorders
in humans with nearly 7% of the human population act-
ing as carriers of the mutations in globin genes. Single
nucleotide substitutions in the coding or regulatory regions
of these genes can lead to varying degrees of defects in their
expression [1]. The HBB gene belongs to the 𝛽-globin gene
cluster that encodes 𝛽-globin polypeptide. It is located in the
short arm of chromosome 11 and contains two introns and
three exons. Molecular defects in human HBB may result
in structural defects causing abnormality in hemoglobins,
such as HbS, HbC, and HbD, or may result in absence or

reduced synthesis of 𝛽-globin chains causing 𝛽-thalassemia
[2]. Mutations in theHBBmay involve substitution, deletion,
or insertion of one or multiple nucleotides within the gene
or its flanking regions resulting in anemia and low RBC
production [3]. 𝛽- Thalassemia is inherited as an autosomal
recessive trait and its clinical manifestation can be divided as
thalassemia major, intermedia, and thalassemia minor (trait)
[4]. Somemutations in theHBB lead to complete inactivation
of the gene resulting in the absence of 𝛽-globin chains (𝛽0),
in turn, leading to the most severe form of thalassemia.
Other mutations allow production of 𝛽-globin chains in
varying proportions leading to 𝛽+ thalassemia. This case is
most commonly found in the Middle East, Central Asia,
Mediterranean countries, India, and southern China and in
some parts of Africa and South America [5]. It is one of the
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most common genetic disorders caused by point mutations
in Saudi Arabia causing variable phenotypic effects. These
phenotypic severities may arise from defects in transcription,
RNA processing, or translation of the HBB gene [6]. The
most common mutations in most Arab-populated countries
include IVSI-110(G>A), IVSI-1(G>A), IVSI-6(T>C), IVSII-
1(G>A), IVSI-5(G>C), codon 5(-CT), and codon 39 (C>T)
[7].

Due to the high prevalence of variable phenotypes of tha-
lassemia and striking heterogeneity of its molecular defects,
various strategies were employed to investigate the molecular
mechanisms of this disease. Due to recent advances in
computational tools, in silico analysis has become one of the
chosen methods to investigate links between genomic and
resulting phenotypic characteristics in thalassemia. HbVar
(http://globin.cse.psu.edu/globin/hbvar/) is the oldest and
most appreciated database of hemoglobin variants and tha-
lassemiamutations established in 2001 [8]. It is a locus specific
database, whichwas developed as a combined academic effort
to keep a record of hemoglobin variants, new data entries,
updates, and corrections. It provides high quality and up-
to-date information on the genomic variations, associated
phenotypic and hematological effects, pathology, frequency
of different mutations, ethnic prevalence, and references [9].
HbVar has become a primary resource for the research
community working on globin proteins and for physicians
dealing with patients with hemoglobinopathies, to help them
with making proper diagnoses.

The objective of this study is to investigate the effects
of insertion mutations in the HBB exons using the in silico
approach. We aimed to search the HbVar database to select
sequences with uncharacterized insertion mutations and
study their effects on the structure and function of 𝛽-globin
protein.

2. Methodology

To perform this study, data from the HbVar database
(http://globin.bx.psu.edu/hbvar) were used. Using this data-
base, we identified uncharacterized HBB sequences con-
taining nondeletion mutations and picked them up for in
silico investigation. The sequence of a wild HBB (gene ID
3043) was taken as reference (https://www.ncbi.nlm.nih.gov/
gene/?term=3043). The potential 5’ and 3’ sites in the
gene sequences were identified using the Human Splic-
ing Finder software [10]. These predictions were com-
pared and multiple sequence alignment was performed
using the available web server. An online translation tool
(https://web.expasy.org/translate/) was used to translate the
nucleotide sequences into amino acids, and the types of
mutations as well as their respective positions were noted.
Mutations located in the defined donor and acceptor splice
sites were included here. The relative strength of the sites
obtained from the bioinformatics tool was given values
between 0 to 100. Splice sites with high value were considered
functional. Homology modeling of the wild type and mutant
sequences was performed to compare the 3D structures of the
proteins using the SWISS-MODELER [11].

Table 1: Variation in the protein sequences.

Amino Acids Sequence ID
R31 Seq1, Seq3, Seq 4, Seq5, Seq6
S31 Seq2
L32 Seq1, Seq2, Seq3, Seq6
M32 Seq5
V32 Seq4
V33 Seq1, Seq2, Seq3, Seq 4, Seq5
I33 Seq6

3. Molecular Dynamic Simulation

The molecular dynamic simulation of the wild type and
mutant proteins was performed using the GROMACS soft-
ware [12]. The force field used for simulation was GRO-
MOS96 53A6.The model structures (wild type and mutants)
were solvated with water molecules in an octahedral box.
Sodium ions (Na+) were added for neutralization. The sol-
vated systems were then subjected to 5000 steps of energy
minimization using the steepest descent method to remove
the steric clashes. Convergence was achieved in the energy
minimization when the maximum force was smaller than
1000 kJ mol−1 nm−1. The NPT ensemble was performed for
1000 ps at 300K. The production simulation was executed at
300K for 30 ns for the wild type andmutant proteins. Protein
visualization and superimposition were performed using
PyMOL software (https://pymol.org/2/). Root mean square
deviation was analyzed using the PyMOL align module.

4. Results

Multiple sequence alignment between reference and mutated
gene sequences showed that at least 12 nucleotides have been
inserted in the sequences 1, 2, 3, 4, 5, and 6 from position 93
to 104 as compared to the wild type (Figure 1). The inserted
nucleotides showed maximum variation in the positions 93
and 94. In sequence 1 and sequence 2, adenine and thymine
were inserted at position 93, respectively, whereas guanine
appeared at position 93 in sequences 3, 4, 5, and 6. At position
94, thymine was inserted in sequences 1, 2, and 6, cytosine in
sequence 3, guanine in sequence 4, and adenine in sequence
5. From position 95 to 104, the six sequences presented no
variation among the inserted nucleotides, except for sequence
6 which had adenine inserted at position 97, instead of
guanine like the remaining sequences.

Variations among these inserted nucleotides gave rise
to changes in amino acids in protein sequences. Twelve
nucleotides in total gave rise to four amino acids where
different variants have been identified (Figure 2 and Table 1).

The construction of the 3D structure of the HBB protein
from the given mutated sequences showed that the inserted
amino acids formed a loop structure (secondary structure)
in the protein. The homology modeling of the wild type
and mutant type HBB protein showed that the mutated
segment did not form any well-defined secondary structure.

http://globin.cse.psu.edu/globin/hbvar/
http://globin.bx.psu.edu/hbvar
https://www.ncbi.nlm.nih.gov/gene/?term=3043
https://www.ncbi.nlm.nih.gov/gene/?term=3043
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https://pymol.org/2/
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Figure 1: Multiple sequence alignment of the reference sequence and the multiple sequences, ATC, ATT, ACT, picked up from the HbVar
database (after removing the introns). Twelve nucleotides have been inserted from position 93 to 104 in sequence numbers 1, 2, 3, 4, 5, and 6.
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Figure 2: Protein sequence alignment of wild type and multiple sequences. Insertion of four amino acids has taken place at positions 31 to
34.

The mutated segment formed a loop and connected two 𝛼-
helical chains (Figure 3).

The stability and properties of thewild type and itsmutant
structures were studied by explicit solvent MD stimulation.
Root mean square deviations have been calculated between
different structures to form a complete picture of deviation

in the structures of mutated proteins from the wild type
(Table 2). The root mean square deviation (RMSD) analysis
not only reflects the change of protein backbone versus
simulation time, but also indicates the divergence of two
structures. The RMSD of the homolog became stable at 30ns.
The RMSD value of the wild type was 0.27 nm (Figure 4(a)).



4 BioMed Research International

Insertion
Insertion

site
site mutation

Figure 3: 3D structures of wild type (red color) and mutant type (blue color) of the HBB protein. Insertion sequence has been differentiated
in green in the provided figures.

Table 2: Root mean square deviation (RMSD) between the model structures of the sequences.

Model Model 2 RMS Sec. str. Mutation
WILD Seq1 1.115 Loop Insertion

Seq2 0.690 Loop Insertion
Seq3 1.115 Loop Insertion
Seq4 0.533 Loop Insertion
Seq5 0.534 Loop Insertion
Seq6 1.107 Loop Insertion

Seq2 Seq1 0.246 Loop
Seq3 0.246 Loop
Seq4 0.247 Loop
Seq5 0.256 Loop
Seq6 0.135 Loop

Seq5 Seq4 0.013 Loop

This result indicated that an accepted structure was obtained
by the simulation that was reliable for further analyses. The
root mean square fluctuation (RMSF) reflects the mobility
of a certain residue around its mean position, which is
another tool for studying the dynamics stability of the system.
Although there were some deviations among the trajectories
(especially in the loop region), the present data suggested less
fluctuations, which further highlighted the reliability of the
modeled structure (Figure 4(b)). The RMSF analysis can be
used as a tool to describe local flexibility differences among
residues throughout the MD simulation 62. According to
Figure 4(b), the wild type protein and Seq6 showed an overall
higher degree of flexibility when compared to the mutants. A
difference inRMSF valuewas seen on residues 76-91.Thewild
type and Seq6 proteins showed a fluctuation of 0.32nm, while
the fluctuation at the same position on Seq1 was 0.1nm, thus
indicating a flexibility loss. Whereas residues 54–80 showed

fluctuation values ranging from 0.15nm to 2.0nm in the wild
type, while in the Seq1 and Seq6, these fluctuation values
ranged from 0.09nm to 0.10nm. These results suggested that
Seq1 affected the flexibility of the protein. This flexibility loss
may affect protein function. Surprisingly, these fluctuations
were found in the region away from the insertion ormutation
site. However, Seq6 was found to have some fluctuation at
this site as compared to the wild type and Seq1 (Figure 4(b)).
We also analyzed the radius of gyration (Rg) values in the
simulation. Rg is an indicator of structure compactness and
overall dimension of the protein. It explains how regular
secondary structures are compactly packed into the 3D
structure of a protein. If a protein is folded well, it will likely
maintain a relatively steady value of Rg, whereas it will change
over time for unfolded proteins [13]. We found a stable Rg for
Seq1 as compared to thewild type and Seq6 (Figure 4(c)). Low
value of Rg for Seq1, as compared to the wild type and Seq6,
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Figure 4: Molecular dynamic simulation: (a) root mean square deviation; (b) root mean square fluctuations; (c) radius of gyration of C𝛼
atoms of wild type and mutant proteins; time at 300K.

suggested tight packing of these structures, making them
relatively stable. The conformation of the modeled structure
of Seq1 with different times, from 10ns, 20ns, and 30ns, was
found to be similar. However, a slight difference has been
observed at the insertion site (Figure 5).

5. Discussion

Constructing a relationship between the genotype and phe-
notype experimentally is an important aspect of research
[14], but it can prove to be highly difficult, in particular,
when studying a large number of subjects. The in silico
analysis provides a solution here. It helps researchers analyze
enormous amounts of data in biology to narrow down the
positive leads that can be further analyzed experimentally for
validation. This saves an extensive amount of labor, time, and
costs. In silico analysis of large number of mutations is also
easier and faster to accomplish, as this type of investigation
is performed by comparing and studying alterations in the

nucleotide and/or amino acid sequences with the wild/native
type and then correlating these alterations with the changed
phenotypes [15, 16, 16].

Generally, 𝛽-thalassemia affects the people of the Gulf,
Middle Eastern, and Mediterranean regions [17]. Especially
in Saudi Arabia, 𝛽- thalassemia is prevalent, though there
are variations in the frequency of the gene and in the type
of mutations [18]. Many previous studies have screened and
reported differentmutations in theHBB and their frequencies
in the Saudi population [19–21].

Most of the mutations affecting the expression of the
HBB are linked to the gene physically and form different
alleles of the gene, but some mutations that affect the gene
expression, while also segregating the HBB cluster, have
also been identified [22, 23]. Although the HBB is well
characterized, some mutations in this gene recorded in the
HbVar database are poorly understood and have not been
properly studied before. In this study, we picked up such
mutations and performed in silico analysis to understand
their effect on the protein structure and function.
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Figure 5: Conformation of model structures at 0ns, 10ns, 20ns, and 30ns. Cyan (Seq1), Magenta (Seq2), and Black brown (wild).

The nondeletion forms of defects in the HBB account
for a large number of the 𝛽-thalassemia alleles [24]. These
include small insertions and single nucleotide substitutions
or deletions within the gene or its nearby sequences [23].
Some of the alleles of 𝛽-thalassemia are very mild, in that
carriers (heterozygotes) of such alleles are almost normal
with no apparent signs of the disease, except for imbalanced
synthesis of globin chains [25, 26]. One of the fairly common
‘silent’ mutations in the Mediterranean population is 101
C󳨀→T. It interacts with other more severe mutations of
𝛽-thalassemia to cause milder forms [24]. Other ‘silent’
mutations have been reported in the 5’ UTR region of the
HBB [25, 26].

The present study aimed to understand the nondeletion
mutations using in silico tools. We identified 6 different
sequences carrying insertion mutation of 12 nucleotides
from position 93 to 104 in the gene sequence. Variations
also occurred among the inserted nucleotides among these
6 different sequences. In silico analysis showed that these
inserted nucleotides translated into 4 additional amino acids.
These additional amino acids acquired a loop formation in
the 3D structure of the protein (Figure 3). The difference in
amino acids did not show any variation in the secondary loop
structure acquired by these amino acids, but the molecular
dynamics simulations presented evidence of effects caused
by these mutations on the overall protein flexibility. The
RMSF analysis showed a high degree of flexibility in the
wild type protein and Seq6 in comparison to other mutant
forms (Figure 4(b)). Additionally, significant flexibility loss

was seen in the Seq1 mutant form, especially in residues from
positions 54-80 and 76-91. Though this effect was seen far
from the site of mutation in Seq1, it is quite possible that
insertion of new amino acids may likely disturb the internal
environment of the protein, resulting in a whole new set of
interactions between amino acids, which in turn, might have
affected protein flexibility. This loss in flexibility may result
in the loss of function of the protein. Studies suggest that a
change in protein structure and, consequently, in function
could be because of genetic variation in distal effect, because
of the temporal effect due to folding of the protein sequence
culminating into the final protein structure. This particularly
happens because of the change in the properties related to
the physicochemical, such as hydrophobicity, charge, and
geometry due to the side chain of the amino acid residues. If
such changes occur at critical sites, such as catalytic positions
or important interacting sites called interfaces, then it is likely
the reason for disease causing variations, which further tend
to destabilize various hydrogen bonds and the salt bridge [25–
28]. To further prove the effects of these insertion mutations
on protein structure and function, more in depth analysis is
required.

Furthermore, the studies on radius of gyration of C𝛼
atoms of the wild type and mutant proteins depicted in
the 3D structure of the Seq1 mutant protein, are seen to
be more compact and stable, as compared to the wild type
and Seq6 proteins. This data suggests that the insertion
mutations in HBB protein might be affecting its overall
structure and function as shown in Seq1 and Seq6, but more
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intensive studies are required to fully understand the scope
of these effects. We are yet to determine how, if at all, these
mutations affect the flexibility of HBB protein and whether
this loss affects protein function and to what extent. In vitro
studies will further assess the functional behavior of mutated
proteins.
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Diabetic retinopathy (DR) is one of the most common causes of visual impairment. Automatic detection of hard exudates (HE)
from retinal photographs is an important step for detection of DR. However, most of existing algorithms for HE detection are
complex and inefficient. We have developed and evaluated an automatic retinal image processing algorithm for HE detection
using dynamic threshold and fuzzy C-means clustering (FCM) followed by support vector machine (SVM) for classification. The
proposed algorithm consisted of fourmain stages: (i) imaging preprocessing; (ii) localization of optic disc (OD); (iii) determination
of candidate HE using dynamic threshold in combination with global threshold based on FCM; and (iv) extraction of eight
texture features from the candidate HE region, which were then fed into an SVM classifier for automatic HE classification. The
proposed algorithm was trained and cross-validated (10 fold) on a publicly available e-ophtha EX database (47 images) on pixel-
level, achieving the overall average sensitivity, PPV, and F-score of 76.5%, 82.7%, and 76.7%. It was tested on another independent
DIARETDB1 database (89 images) with the overall average sensitivity, specificity, and accuracy of 97.5%, 97.8%, and 97.7%,
respectively. In summary, the satisfactory evaluation results on both retinal imaging databases demonstrated the effectiveness of
our proposed algorithm for automatic HE detection, by using dynamic threshold and FCM followed by an SVM for classification.

1. Introduction

Diabetic retinopathy (DR) is one of the major complications
of diabetes that can lead to vision loss. The prevalence of DR
is expected to grow exponentially, and the global population
of DR patients is expected to increase to 191.0 million by
2030 [1]. The severity of DR is categorized according to
the number of microaneurysms, hemorrhages, exudates, and
neovascularization.The progress of DR is normally classified
into normal retina, background DR, nonproliferative DR
(NPDR), proliferative DR (PDR), and/or macular edema
(ME) [2]. Regular screening to detect retinopathy can poten-
tially reduce the risk of blindness of patients.

It is known that the occurrence of hard exudates (HE) is
one of the main threats to vision loss especially when they
occur near or on fovea [3]. Figure 1 shows an example of color
retinal fundus image withHE. HE appears at late background
and NPDR stages on the surface of retina as bright yellowish
or white at different locations [4] and with variable shapes
and sizes ranging from a few pixels to thousands of pixels
in the retinal images. It is well accepted that the detection of
HE in color retinal images plays a vital role in DR diagnosis
and monitoring the progress of treatment. HE detection is
therefore the main emphasis of this study.

HE is usually visually graded which is time-consuming
and susceptible to observer errors [5]. The computer-aided
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Figure 1: Example of retinal fundus image with exudates regions
(zoom into the soft exudates region and hard exudates region).

detection of HE would potentially assist in achieving fast
and accurate diagnosis. Many published algorithms have
been developed for automatic HE detection in retinal images
using four main strategies: thresholding, edge detection,
region growing, and classification. Using the global threshold
method and edge detection to achieve exudates detection
automatically and accurately is very challenging due to
the uneven intensity of the exudates, and the low contrast
between exudates and retinal background [6]. Liu et al. [7]
proposed a semiautomatic approach to detect low intensity
exudates using local thresholds, which required the operator
to select the local threshold manually based on the histogram
of subimages. Region growing has also been implemented
[8] to detect the exudates, which suffers from the difficulties
of selecting the seed point and stopping criteria in region
growing due to the wide variety of color distribution and
nonhomogeneous illumination. Recently, different classifi-
cation methods for exudates detection have been proposed
to achieve fully automatic detection. An SVM classifier in
combination with a Gaussian scale space approach has been
used to differentiate between soft exudates, HE and outliers
[9]. Other classificationmethods, including the bootstrapped
decision trees [10], a Naive–Bayes classifier optimized further
by an adaptive boosting technique [11], and random forest
method [12], have also been used. Unfortunately, the clas-
sification results from applying the above methods for HE
detection are not clinically satisfactory enough due to various
qualities of retinal images. This requires a more effective
image segmentation method before classification.

Due to the large variety of the exudates in size, intensity,
shape, and contrast, and the noise or artifacts during the
image acquisition process, segmenting the small proportion
of exudates pixels from the whole retinal images is challeng-
ing, leading to unsatisfactory detection accuracy for clinical
applications. For general color image segmentation, fuzzy C-
means (FCM), an unsupervised fuzzy clustering, has been
widely used [13], where the global threshold is commonly
used. However, using a global threshold may ignore the local
details of the image. Dynamic threshold has been used, but
this is more prone to shadow and man-made boundaries.
It has been approved by Moghaddam and Cheriet [14] that
using dynamic threshold in combination with the global
threshold can significantly improve the effectiveness of seg-
mentation of areas of interest in other fields, such as melasma
image segmentation and cell cluster segmentation for in
situ microscopy [15]. To date, the application of employing

dynamic threshold in combination with global threshold
based on FCM has not been attempted in retinal image
segmentation. In this study, we use this combined approach
for determining candidates of HE from retinal images. After
image segmentation, the segmented regions are normally
classified into two disjoint classes using a neural network
or support vector machines (SVM). Literature suggests that
SVM is more practical than neural networks for small size of
training data [16]. In machine learning, SVM is a supervised
learning model with associated learning algorithms that ana-
lyze data for classification and regression analysis. The SVM
is characterized by the ability to simultaneously minimize
empirical errors and maximize the geometric edge region
[17]. SVM is therefore implemented in this study.

The aim of this study was therefore to develop and
evaluate a HE detection algorithm using dynamic threshold
and FCM in combination with SVM. Specifically, after OD
localization based on the image gray-scale value and retinal
blood vessels distribution, the dynamic threshold matrix will
be obtained using FCM in each subimage, which will be
combinedwith global thresholdmatrix to obtain the exudates
candidate regions, and followed with SVM classification to
achieve automatic HE detection.

2. Methods

2.1. Retinal Image Databases. Our proposed algorithm was
developed and tested on two publicly available databases of
retinal images (the DIARETDB1 [18] and the e-ophtha EX
[12]). DIARETDB1 database contains 89 color fundus images
with 50∘ Field of View (FOV) and the size of 1500 × 1152
pixels, of which only 5 are normal; others contain different
lesions. In this database, the different regions with HE have
beenmanually labelled by four specialists from each image to
determinewhether a retinal image contains exudates. Human
graders marked 571 regions as exudates DIARETDB1. The e-
ophtha EX dataset contains 47 images with exudates regions
and 35 exudates-free images, where only the 47 images with
exudates regions were used in this study. Since the ground
truth in DIARETDB1 is based on image-level and the e-
ophtha EX is the only publicly available database which has
provided pixel-level annotation for exudates segmentation,
the e-ophtha EX was selected to train and cross-validate our
algorithm on pixel-level, and the DIARETDB1 was used for
additional independent test to discriminate whether a retinal
image contains exudates.

2.2. Algorithm Development for Automatic HE Detection.
As shown in Figure 2, our proposed algorithm for HE
detection was composed of four main stages: (i) image
preprocessing, (ii) OD localization, (iii) exudates candidate
regions determination, and (iv) HE features extraction and
classification. Matlab (2016a) was used in the environment of
64 bit Windows 10 operating system with 2.9 GHz Intel Core
i5 CPU and 16GB memory.

2.2.1. Retinal Imaging Preprocessing. The preprocessing stage
is crucial due to the intrinsic characteristics of retinal images.
Retinal images often have poor and varying contrasts due
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Figure 2: Flow chart of our proposed algorithm for automatic detection of HE.

to many factors including the noises introduced during the
imaging acquisition process and the improper reflection
of camera flash and retinal pigmentation. Additionally, the
uneven illumination increases the intensity level nearODand
decreases in regions away from OD. All these factors have
significant impact on HE detection.

In our algorithm, color intensity normalization and con-
trast enhancement of the fundus photographs were operated
with the size of retinal image rescaled to 512 × 512 pixels.

As proposed by Clara et al. [19], color normalization was
performedby enhancing luminance plane ofYIQ colormodel
instead of enhancing each color plane of RGB. The modified
process is as follows:

𝑌𝑚𝑜𝑑 = 𝑎𝑌 − 𝑏𝐼 − 𝑐𝑄 (1)

The modified color model YIQ was then converted back
to RGB color model, as shown in the first three images in
Figure 3.The empirical values of 1.8, 0.9, and 0.9were used for
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Figure 3: Example of retinal fundus image preprocessing. (a) Original retinal image. (b) Color normalized YIQ plane image. (c) Enhanced
RGB plane image. (d) Green channel image after CLAHE (zoom into the blood vessels with brighter strip). (e) Green channel image after
morphological opening. (f) Mean filtering of (e).

parameters a, b, and c, respectively, with which satisfactory
results were achieved when the images were converted back
to RGB color model, producing greater contrast between the
HE and the background for the next step of HE detection.

It has been observed that theOD appearsmost contrasted
in the green channel when compared to red and blue channels
in the RGB retinal images [20]. Additionally, as the red
channel is too saturated and the blue channel is the darkest
color channel that does not contain much information, the
green channel image was only used for the HE detection.
Furthermore, in order to remove some bright strips down
the central length of the blood vessels, the green plane of the
image after contrast limited adaptive histogram equalization
(CLAHE) was filtered by applying a morphological opening
using a three-pixel diameter disc [21]. Next, the illumination
equalization method in [22] was used to correct shade as
follows:

𝐼𝑖𝑒 = 𝐼 − 𝐼𝑏𝑔 + 𝑢 (2)
where a mean filter of size 51 × 51 was applied to the green
channel image I to generate a background image 𝐼𝑏𝑔 which
was then subtracted from the I to correct for shade variations.
Finally, the average intensity u of green channel image I was
added to keep the gray range same as in the I. The example
images during the process are shown in Figure 3.

2.2.2. Optic Disc Detection and Masking. OD localization is
an essential stage in our proposed algorithm because OD
has similar properties as exudates in terms of color and
brightness.The OD is a bright yellow disc in the retina where
retinal blood vessels emerge. Therefore, the disc should be
masked from the fundus image before further HE detection.

OD localization is relatively simple and fast in normal
retinal images because it is where the largest cluster of
brightest pixels is; however, this becomes more challenging
in the images where the area of bright lesions is also large or
OD is obscured by retinal blood vessels, for example, when
there is a large hemorrhage on the disc [6]. In our proposed
algorithm, the information of image brightness and retinal
vasculature features were used for OD localization [23],
which involved three steps: retinal blood vessels extraction,
the center of OD localization, and OD segmentation.

Retinal Blood Vessels Extraction. In general, retinal blood ves-
sels in the green channel fundus images do not have enough
contrast in comparison with the surrounding background.
An enhancement method of CLAHE [24] was applied to
solve this problem. Next, a mean filtering with a 9 × 9 pixel-
kernel was used to blur the image to reduce the noises. The
retinal blood vessels image 𝐼𝑏V󸀠 was obtained by subtracting
the blurred image from the enhanced image by CLAHE,
and the retinal blood vessels image 𝐼𝐵𝑉 was obtained by
thresholding operator [25] applied to 𝐼𝑏V󸀠 . This process is
shown in Figure 4, where two example images with different
illumination conditions are given.

The Center of Optic Disc Localization. Retinal blood vessels
originate fromOD and spread outwards to the retina and the
macular region. The vessels are generally aligned vertically
in the vicinity of OD [26]. In order to obtain retinal blood
vessels position information, a mean filter of size 61 × 61 was
applied to the green channel image I to generate an average
intensity image 𝐼𝐺󸀠 , and the 𝐼𝐵𝑉󸀠 (local average intensity of𝐼𝐵𝑉) was computed from the average intensity of the pixels
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Figure 4: Examples of retinal blood vessels extraction on two retinal images with different illumination conditions. (a)+(d) Green channel
images after CLAHE. (b)+(e) Mean filtering of (a) and (d) respectively. (c)+(f) Extracted retinal blood vessels.

(a) (b)

Figure 5: Illustration of the process for localizing the center of the optic disc. (a) Green channel image. The green boxes indicate the size of
the mean filter. (b) The red boxes show the size of the window used to calculate the local average intensity of 𝐼𝐵𝑉.

within an N × M window as illustrated in Figure 5. In this
study, thewindow sizeN was between 50 and 60 pixels, andM
was between 20 and 25 pixels. Next, in order to combine the
brightness features and blood vessels position information
from the green channel image, each pixel 𝐼𝑂𝐷(𝑟, 𝑐) in the
image was adjusted as follows:

𝐼𝑂𝐷 (𝑟, 𝑐) = 𝐼𝐵𝑉󸀠 (𝑟, 𝑐) − 1.2 ∗ 𝐼𝐺󸀠 (𝑟, 𝑐) (3)

The image 𝐼𝑂𝐷 was then traversed with the minimum point
identified as the center of OD, as shown in Figure 6(a).

Optic Disc Segmentation. To detect the OD boundary, the
size m × n of region of interest (ROI) was defined based
on the localization result of OD center, where m and n
were one-ninth of the respective dimensions of the image
multiplied. Since the OD in the retinal images has circular
boundary shape [27], a circularHough transformwas applied
to segment the OD boundary [23, 28, 29]. The Hough
transform is a widely considered technique in Computer
Vision and Pattern Recognition to detect geometrical features
that can be defined throughparametric equations like straight
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Figure 6: Demonstration of optic disc (OD) localization, segmentation, and masking. (a) Localization of OD center. (b) Segmentation of
OD. (c) Masking OD.

lines and circles. The OD segmentation by applying Hough
transform is shown in Figure 6(b). Lastly, the segmented OD
was masked to avoid the interference to the following HE
detection, as shown in Figure 6(c).

2.2.3. Detection of Hard Exudates. There were two main
procedures. FCM clustering was firstly used to get the
local dynamic threshold of each subimage, which was then
combined with global threshold matrix to segment color
retinal images. Next, an SVM classification was applied to
distinguish exudates and nonexudates regions.

Retinal Image Segmentation Using FCM. The following
describes the image segmentation process using the dynamic
threshold in combination with global threshold based on
FCM clustering:(1) The retinal image was divided into a series of subim-
ages (K subimages), and FCM algorithm was used to assign
pixels in each subimage to different categories by using
fuzzy memberships. FCM is an iterative optimization that
minimized the cost function defined as follows:

𝐽 (𝑈, 𝑉) = 𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝑢𝑘𝑖)𝑚 󵄩󵄩󵄩󵄩𝑥𝑖 − V𝑘
󵄩󵄩󵄩󵄩2 (4)

where 𝑢𝑘𝑖 represents the membership of pixel 𝑥𝑖 in the kth
cluster and V𝑘 represents the clustering center of the kth
cluster. Considering that the gray-scale value was used as
the only feature for clustering, the midpoint of the clustering
center line was used as the threshold in the segmentation
sense, where the mean of the two clustering centers was
obtained as the threshold of the subimage;(2)The entire original retinal image pixels were classified
in a similar way as above to obtain the global threshold and
construct the globalmatrix Swith the same size as the original
image.(3) After the interpolation of the thresholds of the
respective subimages into a dynamic threshold matrix D of
the same size as the entire original image, a mean filter of size
10 × 10 was applied to the matrix D.(4)The final threshold matrix T was constructed as

𝑇 = 𝑘𝑆 + (1 − 𝑘)𝐷 (5)
where the value of k was set to 0.1.

(5) The segmentation result was obtained by comparing
the threshold matrix T with the retinal image.

The size of the subimage affects the retinal imaging
segmentation results. Figure 7 shows the FCM clustering
results for different subimage sizes. Taking both the running
time and accuracy of local threshold into consideration,
the size of 30×40 pixels was selected as the most suitable
subimages size.

Feature Extraction for Hard Exudates Detection. In order
to further segment the exudates regions from the exudates
candidates, some significant features that were commonly
used by eye care practitioners to visually distinguish HE
from other types of lesions were extracted from each region
and used as inputs of SVM. The key features included the
following:

(i) Mean green channel intensity (f1): a mean filter of
size 3×3 was applied to the green channel image. This
feature indicates the gray-scale intensity for all pixels.
Again, only the features from the green channel were
extracted.

(ii) Gray intensity (f2): it was the gray-scale value of each
pixel.

(iii) Mean hue (f3), mean saturation (f4), and mean value
(f5) of retinal image in HSV color model: a mean
filter of size 3×3 was, respectively, applied to the
three channel image 𝐼ℎ, 𝐼𝑠, 𝐼V. Because exudates are the
bright lesions on the surface of retina, the information
about saturation and brightness (f4 and f5) of retinal
image is also important.

(iv) Energy (f6): energy was the sum of intensity squares
of all pixel values in eight-convexity.

(v) Standard deviation (SD) of the green channel image
(f7): the morphological opening operation was
applied to the green channel image to preserve
foreground regions that have a similar shape to the
structuring element or that completely contain the
structuring element, while eliminating all the other
regions of foreground pixels.

(vi) Mean gradient magnitude (f8): it was the magnitude
of the directional change in intensity of edge pixels.
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Figure 7: FCM clustering segmentation with different subimage sizes. (a) Original retinal image. (b) Zooming into the exudates region. (c)
Segmentation result of original image using FCM. (d) Segmentation result with the subimage size of 15×20 pixels. (e) With the subimage size
of 30×40 pixels. (f) With the subimage size of 60×80 pixels. Note: the background is filled with black.
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Figure 8: Flow chart of the SVM classification process.

It helps in distinguishing strong and blurry edges
to differentiate between exudates and other bright
lesions [3].

In comparisonwith other published algorithmswhere dozens
of features were used [3, 9, 11], only eight key features
were extracted in this study to reduce processing time while
maintaining the accuracy of HE extraction.

SVM Classification. The flow chart of the SVM classification
algorithm is shown in Figure 8. Briefly, the features extracted
from the test images were fed into the trained SVM classifier
to output a binary matrix representing the classification
results. In this study, SVM was applied along with kernel
function based on radial basis function (RBF). RBF kernel
function has been widely used with two parameters (C and𝛾) obtained from the grid search method.

For training and cross-validation purposes, a few small
regions (each image is about 1-10 regions, size between 50

and 250 pixels) of each of the 47 ground truth images were
manually selected from the e-ophtha EX dataset as training
samples. These selected regions have been divided into exu-
dates regions and nonexudates regions. Using the e-ophtha
EX dataset, a 10-fold cross-validation was applied to evaluate
the ability of SVM classifier on pixel-level. The database
was randomly split into 10 mutually exclusive subsets (the
folds) 𝐷1, 𝐷2, 𝐷3, . . . , 𝐷10, approximately of equal size. The
classifier was trained on 42 selected training images and
tested the remaining 5 images to output a binary matrix
representing the classification result. This procedure was
repeated 10 times.

For each training image, a certain number of pixels
(ranges from 50 to 250) were manually selected to construct
training vector set. Each pixel constituted a feature vector
from the eight key features. 𝑥𝑖 represents the input sample
feature vector set as follows:

𝑥𝑖 = (𝑓1, 𝑓2, 𝑓3, . . . , 𝑓8) (6)
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The acquired training sample set (𝑥𝑗, 𝑦𝑗) was input to train
the SVM. 𝑦𝑗 is the category flag:

𝑦𝑗 = {{{
−1, 𝑥𝑗 ∈ 𝐴
1, 𝑥𝑗 ∈ 𝐵 (7)

𝑗 ⊂ {1, 2, . . . , . . . ,𝑊}, W is the dimension of the set of
sample feature vectors. A and B, respectively, represent the
HE and non-HE regions. In this study, around 7200 training
vectors (or pixels) from the 42 training images weremanually
selected by an operator (W=7200).

The 10-fold cross-validation procedure was repeated five
times by five different operators to manually select a region
from each training image and then run the above procedure
to evaluate the algorithm reliability.

2.3. Ensemble Evaluation Criteria. The evaluation criteria
for HE identification were presented at two levels: pixel-
level and image-level depending on which database was
used. The pixel-level determination was based on whether
each pixel of the classification result from the e-ophtha EX
dataset has exudates in comparison with precisely labelled
ground truth. The image-level HE detection was based on
the presence or absence of HE in the classification result
to determine whether a retinal image in the DIARETDB1
contains exudates.

2.3.1. Pixel-Level Evaluation on e-Ophtha EX Database. The
evaluation can be classically performed by counting the
number of pixels which were correctly classified. However,
this approach was inappropriate for exudates segmenta-
tion evaluation because the contours of exudates do not
match perfectly between the determinations from different
observers, resulting in weak agreement on exudates determi-
nation. In this study, a hybrid validation method was used,
where a minimal overlap ratio between ground truth and
candidates was required.

Given the segmented exudates connected component set{𝐷1, 𝐷2, . . . , 𝐷𝑁} and the ground truth exudates component
set {𝐺1, 𝐺2, . . . , 𝐺𝑀}, we have the following.

A pixel was considered as a true positive (TP) if it belongs
to

{𝐷 ∩ 𝐺} ∪ {𝐷𝑖 |
󵄨󵄨󵄨󵄨𝐷𝑖 ∩ 𝐺󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷𝑖󵄨󵄨󵄨󵄨 > 𝜎}

∪ {𝐺𝑗 |
󵄨󵄨󵄨󵄨󵄨𝐺𝑗 ∩ 𝐷󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑗󵄨󵄨󵄨󵄨󵄨 > 𝜎}

(8)

where | ⋅ | is the cardinal of a set and 𝜎 is a parameter ranging
from 0 to 1. 𝜎 was set to 0.2 as used by Zhang et al. [12].

A pixel was considered as a false positive (FP) if it belongs
to

{𝐷𝑖 | 𝐷𝑖 ∩ 𝐺 = ⌀} ∪ {𝐷𝑖 ∩ 𝐺 | 󵄨󵄨󵄨󵄨𝐷𝑖 ∩ 𝐺󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷𝑖󵄨󵄨󵄨󵄨 ≤ 𝜎} (9)

or as a false negative (FN) pixel if it belongs to

{𝐺𝑗 | 𝐺𝑗 ∩ 𝐷 = ⌀} ∪ {𝐺𝑗 ∩ 𝐷 |
󵄨󵄨󵄨󵄨󵄨𝐺𝑗 ∩ 𝐷󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝜎} (10)

The remaining pixels were considered as true negative (TN)
pixels.

In this study, the four classes were clearly unbalanced
as TP, FN, and FP were negligible in practice with respect
to TN, computing the specificity, i.e., TN/(FP+TN), and a
receiver operating characteristic (ROC) curve, which is not
appropriate. Sensitivity (𝑆 = T𝑃/(𝑇𝑃 + 𝐹𝑁)), positive
prediction value (𝑃𝑃𝑉 = 𝑇𝑃/(𝑇𝑃+𝐹𝑃)), and F-score ((2×𝑆×𝑃𝑃𝑉)/(𝑆 + 𝑃𝑃𝑉)) were therefore used as the performance of
HE detection.The PPV combined both TP and FP, indicating
the ratio of detected exudates pixels annotated as exudates
pixels by specialists.

2.3.2. Image-Level Evaluation on DIARETDB1 Database.
From clinical point of view, it would also be useful to evaluate
the presence of exudates at the image-level, especially for DR
screening applications. In order to evaluate the robustness
of our algorithm, our algorithm was independently tested
to determine whether the testing image contains exudates
using the 89 images in the DIARETDB1 database, which has
been labelled with ground truth at the image-level. As shown
in Figure 9, each image was labelled by four specialists, if
the ground truth confidence level is greater than or equal to
75%, the image was diagnosed with HE. At the image-level, if
the image according to our algorithm and the ground truth
both contain exudates region, the classification result for this
retinal image was concluded as a TP. Matlab functionality
for computing performance measures is publicly available at
the DIARETDB1 web page [18]. For example, the processed
image as Figure 9(d) was fed as an input into the evaluation
protocol to obtain the evaluation outcomes (TP, TN, FP, FN).
Three different evaluation parameters, including the sensi-
tivity, specificity, and accuracy, were then used to determine
the overall performance of HE detection. Their calculation
formulas are shown as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁 + 𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃
𝑆𝑒𝑛𝑡𝑖V𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁

(11)

2.4. Data Statistical Analysis. For the 10-fold cross-validation
using the e-ophtha EX database, the sensitivity, PPV, and F-
score were calculated for each image, with their mean and
standard deviation (SD) across all the images calculated.
Their SD between the five repeats performed by the five
different operators were also calculated to demonstrate the
reliability of our algorithm. ANOVA analysis was then per-
formed to check the repeatability between the five repeats. For
the independent test on theDIARETDB1 database, the overall
mean sensitivity, specificity, and accuracy were calculated
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Figure 9: Example of one retinal image in DIARETDB1 database. (a) Original image. (b) Exudates regions labelled by four specialists (color
decodes the ground truth confidence). (c) The exudates regions where the ground truth confidence level ≥ 75%. (d) Segmentation result of
our algorithm.

from all the 89 images, which were simply compared with
other published results using the same database.

3. Results

3.1. 10-Fold Cross-Validation Results on the e-Ophtha EX
Database. Statistical analysis showed that there was no sig-
nificant difference between the five repeat measurements
for the evaluation parameters (all p>0.8). As shown in
Figure 10(a), the overall mean and SD of sensitivity, PPV,
and F-score across all the images e-ophtha EX database
were 76.5%±15.1%, 82.6% ±16.7%, and 76.7% ±12.7%. The
measurement repeatability (SD of the five measurements)
of sensitivity, PPV, and F-score for each individual image is
shown in Figure 10(b). It ranged from 0.3%∼16%, indicating
that our algorithm proposed in this study for HE detection is
sufficiently stable.

Table 1 also shows our algorithm achieved a higher score
of PPVvalues in comparisonwith other published results also
using pixel-level evaluation on the same database, indicating
that our method could distinguish HE from other bright
lesions more effectively. To visualize the HE detection from
different retinal images, three example images are provided in
Figure 11. Only the exudates regions (the left three subfigures)
were cropped from the original retinal images. Figure 11(a4,
b4, c4) shows the results of validation results at the pixel-level
with 𝜎 = 0.2, where the green, red, blue, and black pixels are
the TP, FN, FP, and TN pixels, respectively. It can be seen that

Table 1: Overall performance comparison of our proposed algo-
rithm with published studies for HE detection on e-ophtha EX
dataset.

Methods Sensitivity PPV F-score
Zhang et al. (2014) [12] 74% 72% 73%
Welfer et al. (2010) [38] 79% 55% 69%
Imani et al. (2016) [39] 80.32% 77.28% -
Liu et al. (2017) [30] 76% 75% 76%
Kusakunniran et al. (2018) [40] 56.4% - -
Our proposed algorithm 76.5% 82.7% 76.7%

most of the large exudates could be identified successfully.
Some FPs with wrongly detected HEs could be caused by the
presence of other bright lesions, such as cottonwool spots and
drusens. Some small HE pixels were missed by our proposed
algorithms because of their low contrasts.

3.2. Validation Results on DIARETDB1 Database. Table 2
lists the overall evaluation performance of our proposed
algorithm using image-level evaluation in the DIARETDB1
database. The overall mean sensitivity, specificity, and accu-
racy were 97.5%, 97.8%, and 97.7%, respectively, which
compared well with other published results. Some example
images from DIARETDB1 database are shown in Figure 12 to
demonstrate whether an image has been correctly or wrongly
detected with exudates.
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Figure 10: Data statistical analysis. (a) The overall mean and standard deviation of sensitivity, PPV, and F-score for all the images in the
e-ophtha EX database. They are given separately for the five repeat measurements by five different operators. (b) The repeatability (standard
deviation of 5 repeat measurements by 5 operators on each image) of sensitivity, PPV, and F-score of our algorithm on the e-ophtha EX
database.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 11: Example of pixel-level validation from three example images. (a1, b1, c1) Exudates regions cropped from the original retinal fundus
image. (a2, b2, c2) The ground truth images in e-ophtha EX dataset. (a3, b3, c3) The segmented results with our algorithm. (a4, b4, c4) The
results of pixel-level validation. The green, blue, red, and black pixels are the TP, FN, and FP, and TN pixels, respectively.
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Figure 12: Example images showing the results of HE detection in the DIARETDB1 database. (a) HE was correctly detected. (b) Some small
HE was missed in this image. (c) Failed to detect HE correctly.

Table 2: Overall performance comparison of our proposed algo-
rithm with published algorithms for HE detection on DIARETDB1
database.

Methods Sensitivity Specificity Accuracy
Harangi et al. (2014) [11] 92% 68% 82%
Haloi et al. (2015) [9] 96.54% 93.15% -
Imani et al. (2016) [39] 89.01% 99.93% -
Liu et al. (2017) [30] 83% 75% 79%
Rekhi et al. (2017) [31] 91.67% 92.68% 92.13%
Fraz et al. (2017) [10] 92.42% 81.25% 87.72%
Kusakunniran et al. (2018) [40] 89.1% 99.7% 96.2%
Our proposed algorithm 97.5% 97.8% 97.7%

4. Discussion and Conclusion

We have developed and evaluated an automatic retinal image
processing algorithm to detect HEs using dynamic threshold,
FCM and SVM. The color retinal images were segmented
using dynamic threshold in combination with the global
threshold, and the segmented regions were classified into
two disjoint classes (exudates and nonexudates pixels) using
SVM. The algorithm was tested on two publicly available
databases (DIARETDB1 and e-ophtha EX database), and
the evaluation results quantitatively demonstrated that our
proposed algorithm is reliable in terms of repeatability and
also achieved high accuracy for HE detection.

It is known that OD has similar properties with exudates
in terms of color and brightness, masking or removing OD
from the fundus image before further processing for HE
detection is therefore important, which would improve the
HE detection accuracy [10, 30, 31]. This study has presented a
method for OD localization by combining the information
of brightness and retinal vasculature features. Our method
is inspired by Medhi et al. [23] who used a vertical Sobel
mask and considered OD as the region with maximum value
of edge pixels. Unlike other methods with more complicated
process [29, 32], we only need to traverse the entire image
twice to find the pixel with the largest gray-scale value and
the most densely distributed of blood vessels, achieving fast
localization of OD. Rahebi et al.’s [32] study applied the firefly
algorithm and reported a success rate of 94.38% for OD
localization in the DIARETDB1 database. Using the same

database in this study, an accuracy of 89.9% was achieved.
Although our OD detection was slightly less accurate than
theirs, our method was much simpler and faster. More
importantly, our method is very suitable for the application
of HE detection as an intermediate step, and the relatively
high accuracy was comparable with many other complex
algorithms with specific aim for OD detection.

FCM has been implemented in exudates segmentation
algorithms [13, 33]. Sopharak et al. [34] proposed an FCM
based method to determine whether a pixel has exudates
or not, but they only achieved moderately acceptable seg-
mentation result with the sensitivity of 80% on DIARETDB1
database. Global threshold is commonly used for image
segmentation. However, using the global information only
may ignore the details from those small HEs. If the gray-
scale value of background is constant, using global threshold
for segmentationwould achieve satisfactory results.However,
in many cases, because the contrast between the object and
background changes in different regions, the gray-scale value
of background varies, resulting in a poor segmentation out-
come. In other fields, it has been shown that using dynamic
threshold in combination with the global threshold can
significantly improve the segmentation results. For instance,
the combined thresholds have been applied successfully to
distinguish the human skin in color image and melasma
image segmentation, where good segmentation results were
achieved [35, 36].The key advantage of combining the image’s
global information with the local details could overcome the
problems associated with using local threshold alone. After
employing this combined approached, the satisfactory eval-
uation results (97.5% of sensitivity on DIARETDB1 database,
76.5% of sensitivity on e-ophtha EX database) were achieved
in this study. It is noted that only one feature (the gray-
scale value of retinal images) was input into the FCM. More
input features and the FCM clustering combined with the
morphological technique could be also considered in future
to achieve higher accuracy.

SVM classifier was selected in this study to distinguish
true exudates regions from nonexudates regions. One of
the key reasons is that the sample size of retinal image
database used in this paper is not large enough. Using SVM
was expected to have better classification result because
SVM can apply the nonlinear relationship between data
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and features better than other classifiers [16]. Secondly,
SVM can have rapid training phase [17]. Akram et al. [3]
proposed a hybrid classifier as a GMM and SVM for exudates
detection; however, training GMM model and finding the
optimized parameters for GMM were complicated. In this
study, the combined approach using FCM and SVM required
less computational expenses. Only eight key features were
used when compared with other algorithms with dozens
of features [9, 11]. The distinguishing features of HE, in
comparisonwith other lesions as having sharpermargins and
bright yellow color, enabled the most representative of eight
features to be used to achieve more efficient process while
maintaining the accuracy of HE extraction. Jaya et al. [37]
proposed an expert decision-making system designed using
a fuzzy support vector machine (FSVM) classifier to detect
hard exudates. Color and texture features are extracted from
the images as input to the FSVM classifier. However, using
one classifier to detect HE and candidate regions of HE not
extracted in advance, the computational complexity of the
classifier will increase greatly, resulting in low final detection
efficiency.

One limitation of our algorithm is that its performance
depends on the OD detection and retinal blood vessels
removal. Since the applied OD detection was quite simple in
this study, the performance of our method could be further
improved by improving the robustness of OD localization
and blood vessel detection. Secondly, while the retinal image
quality was very poor, such as the whole image is very dark
with large artificial shadow (e.g., image029, image047 in
DIARETDB1 database), and the contrast betweenHE and the
background is not strong enough (e.g., image044, image052
in DIARETDB1 database), the HE detection result was poor.
In addition, some big and bright cotton wool spots have been
wrongly detected as HE and some small HE were ignored. In
future studies, we will improve algorithms to achieve more
effective detection. Furthermore, we suggest more evalua-
tions to be carried out with the proposed algorithms on other
clinically available data. Such tests could contribute to further
improvements on the algorithms, resulting in more robust
and more accurate detection. In summary, the satisfactory
evaluation results on both retinal imaging databases demon-
strated the effectiveness of employing dynamic threshold,
fuzzy C-means and SVM in our proposed automatic HE
detection methods, providing scientific evidence that it has
potential for clinical DR diagnosis.
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Objective. In this study, machine learning was utilized to classify and predict pulse wave of hypertensive group and healthy group
and assess the risk of hypertension by observing the dynamic change of the pulse wave and provide an objective reference for
clinical application of pulse diagnosis in traditionalChinesemedicine (TCM).Method.Thebasic information from450hypertensive
cases and 479 healthy cases was collected by self-developed H20 questionnaires and pulse wave information was acquired by self-
developed pulse diagnostic instrument (PDA-1). H20 questionnaires and pulse wave information were used as input variables to
obtain different machine learning classificationmodels of hypertension.This method was aimed at analyzing the influence of pulse
wave on the accuracy and stability of machine learning model, as well as the feature contribution of hypertension model after
removing noise by K-means. Result. Compared with the classification results before removing noise, the accuracy and the area
under the curve (AUC) had been improved. The accuracy rates of AdaBoost, Gradient Boosting, and Random Forest (RF) were
86.41%, 86.41%, and 85.33%, respectively. AUC were 0.86, 0.86, and 0.85, respectively. The maximum accuracy of SVM increased
from 79.57% to 83.15%, and the AUC stability increased from 0.79 to 0.83. In addition, the features of importance on traditional
statistics and machine learning were consistent. After removing noise, the features with large changes were h1/t1, w1/t, t, w2, h2,
t1, and t5 in AdaBoost and Gradient Boosting (top10). The common variables for machine learning and traditional statistics were
h1/t1, h5, t, Ad, BMI, and t2. Conclusion. Pulse wave-based diagnostic method of hypertension has significant value in reference. In
view of the feasibility of digital-pulse-wave diagnosis and dynamically evaluating hypertension, it provides the research direction
and foundation for Chinese medicine in the dynamic evaluation of modern disease diagnosis and curative effect.

1. Introduction

Hypertension is a clinical syndrome whose principal char-
acteristic is an increase in systemic arterial pressure and
it is the one of the most common cardiovascular diseases
in the world [1–3]. According to 2017 Chinese guidelines
for the management of hypertension [4], the prevalence
of hypertension has been increasing in China for decades,
reaching 23.2%, which has greatly affected the health status
of people. In addition, hypertension and other cardiovascular
diseases, whose prevention cannot be ignored, possess the

characteristics of high incidence, high mortality, and heavy
medical burden.

At present, the data on the classification and prediction of
hypertension mainly come from inpatient electronic medical
records, environmental and genetic factors, and gene expres-
sion data [5]. Zhiyong Pei [6] used support vector machine
(SVM) to classify and predict by inputting environmental
factors, genetic factors variables, and environmental and
genetic factors for 559 hypertensive patients and 641 healthy
people. It was found that the combination of environmental
variables and genetic factors would improve the prediction
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accuracy, reaching 80.1%. Sherif Sakr [7] used cardiorespira-
tory fitness data and combined the differentmachine learning
methods with the SMOTE algorithm to achieve the higher
prediction accuracy of hypertension at 81.69% with AUC of
0.93. In short, there are some achievements on studies in
the classification and prediction of hypertension, but these
researches have some limitations to some extent. On one
hand, they focus on the prediction of a certain stage of
data and the preconditions are relatively numerous. On the
other hand, the subjectivity of the data is relatively strong.
Most of all, data features rarely involve the pulse wave-based
hypertension prediction studies.

As one of the methods of traditional Chinese medicine
(TCM) diagnosis, pulse diagnosis has always played an
important role in clinical diagnosis and treatment and sub-
health recuperation [8]. Since the 1950s, the integration of
biomedicine, mathematics, physics, biomechanics, bioengi-
neering, computer science, and traditional Chinese medicine
has made great progress in the objective study of pulse
diagnosis. The pulse wave reflects the shape of the pulse
beats and pulse graph is used as the objective image for
recording the pulse wave. By combining with the medi-
cal history, lab-test diagnosis, and four-combined Chinese
medicine diagnosis, and analyzing the correlation of pulse
graph with the disease and syndrome, the study gradually
establishes the clinical standard diagnosis of pulse graph,
which further provides the objective diagnostic method for
clinical practice in Chinese medicine. Pearson’s correlation
coefficient and t-test are often applied for analysis of time
domain or frequency domain features, either of which is the
classical analysis method in pulse wave [9]. In addition, Hu
[10] used KNN to undertake the classification prediction of
the pulse wave of the elderly people with different blood
pressure segments, but in this article she did not conduct
the modelling prediction for multiple age groups. The age
of the samples is mostly elderly, and the model has certain
limitations. Zhang [11] used genetic algorithm to screen fea-
tures, and then SVM predicted the time domain information
of pulse wave, which obtained accurate rate and ROC of
76.0% and 0.83, respectively. Many studies have suggested
that pulse waves have strong correlation with hypertension
[12–15].

The research of pulse wave digital processing also has
obtained better results and has been applied to the objectifi-
cation of pulse diagnosis in TCM [16–18]. Based on this, some
machine learning methods such as support vector machine,
neural network, and random forest [19] have been used
in pulse wave recognition or classification. Although some
achievements have been made in pulse wave recognition
and classification, there are still some problems, such as
poor prediction accuracy and model stability, and fuzzy
characteristic contribution in the hypertension model. The
reason for this may be some deficiencies in model building
and the impact of data noise.

Clustering analysis [20] is a classical method of unsuper-
vised learning, and its most representative algorithm is K-
means. We attempt to classify different samples into different
groups based on K-means clustering analysis method and
sort out the contribution of clustering according to the

sample characteristics, and then make further analysis after
removing the low-quality samples. Additionally, cardiovas-
cular monitoring commonly relies on sphygmomanometers
and less on the risk prediction of chronic cardiovascular
disease. The assessment of cardiovascular dynamic risk is
more comprehensive by combining pulse wave and H20 scale
[8, 19, 21] with symptom assessment.

The main purposes of this paper are as follows: (1)
to remove the noise of pulse wave by K-means, so as to
further improve the accuracy and stability of the model;
(2) to identify the feature variable which is of the highest
contribution to hypertension.

2. Materials and Methods

2.1. Subjects. A total of 929 subjects were collected from the
outpatient department and the medical examination center
of Shanghai Shuguang Hospital attached to Shanghai Chinese
Medicine University affiliated to Shanghai University of Tra-
ditional Chinese Medicine. Among them, 450 (356males and
94 females, average age: 44.73 ± 8.73) were diagnosed with
hypertension and 479 (337 males and 142 females, average
age: 44.49 ± 9.18) with no hypertension.

2.2. Inclusion and Exclusion Criteria. Inclusion criteria for
hypertensive group were as follows: patients who met the
diagnosis standards of hypertension [4] with the age ranging
from 18 to 70, male or female.

Inclusion criteria for healthy group were as follows: (1)
the examination results of B-ultrasound, electrocardiogram,
biochemistry, imaging, and other subjects in physical exami-
nation indicate no disease; (2) the age ranged from 20 to 70,
and gender is not limited; (3)H20 score is greater than 80with
no positive items; (4) systolic blood pressure of 90-140mmHg
and diastolic pressure 60-90mmHg.

Exclusion criteria include (1) those diagnosed with other
serious medical conditions, such as cardiovascular and cere-
brovascular diseases, urinary tract diseases, tumors, and
immune and hematological diseases; (2) those who suffered
from mental illness; (3) those who refused to sign the
informed consent; (4) those whose later screening data are
not qualified.

2.3. Pulse Image Collection and Analysis Methods

2.3.1. Collection Instrument. In this study, a pulse diagnosis
instrument (PDA-1) (Figure 1(a)) was developed by “Tradi-
tional Chinese Medicine Diagnosis Information Intelligent
Processing Research Team” in Shanghai University of Tradi-
tional Chinese Medicine (SHUTCM). The device consists of
a pulse wave transducer, an A/D analog-to-digital transducer,
and a computer.Themain technical parameters are sensitivity
(0.5mV/gram force; linear range: 0-250 grams force; output
impedance: 1 K special symbol), AC amplifier loop (input
dynamic range: 0-25mV; full-scale output ±5V), and DC
amplifier loop (input dynamic range: 0-125mV; full-scale
output ±5V).
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(a)

(b)

Figure 1: Collection instrument. (a) Pulse diagnosis instrument (PDA-1). (b) Interface of pulse diagnosis and analysis system.
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Figure 2: The main measurement parameters of pulse wave cycle.

2.3.2. Collection Methods. The pulse diagnosis instrument
(PDA-1) was used to collect the pulse wave of radial artery on
the left hand and the patients were asked to sit still or rest for
at least 5minutes before the acquisition.During the collecting
process, patients were required to sit or stay supine, relax, not

talk, and breathe normally. If the above requirements were
not satisfied, second collection was needed.

In order to obtain the pulse wave parameters, the
Intelligent Information Processing Laboratory of Chinese
Medicine Diagnostics of Shanghai University of TCM has
developed the method into a pulse diagnosis and analysis
system (PDAS) (Figure 1(b)).The systemmenu has “General”
and “Analysis.” “General” includes “Open Port,” “New,” and
“Acquisition.” “Analysis” includes “Generate Report,” “Calcu-
lateCharacteristicValue,” “ExportHValue,” and “BatchAnal-
ysis.” The data view window shows pulse wave information.
The section at the lower right shows the pulse wave of the
patient with hypertension (Figure 1(b)).The software outputs
the information parameters of pulse for subsequent analysis.
Time domain features of the pulse wave [10, 22, 23] including
6 duration features (t, t1, t2, t3, t4, and t5), 5 amplitude features
(h1, h2, h3, h4, h5, h1/t1, h3/h1, and h4/h1), 4 width features
(w1, w2, w1/t, and w2/t), and 2 area features (As, Ad) were
extracted by Shannon energy envelope andHilbert transform
[24]. The meaning of the features is listed in Table 1 and
Figure 2.

2.4. Study Design and Setting. Features such as age, BMI,
pulse wave parameters, and H20 score of the hypertension
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Table 1: TD features.

No. Features Meaning

1 h1 Main wave amplitude. It reflects the compliance of the aorta and the cardiac ejection function of
the left ventricular

2 h2 Main isthmus wave amplitude. Same physiological significance as h3.

3 h3 Heavy wave front wave amplitude. It reflects the elasticity of arterial vessels and its peripheral
resistance.

4 h4 Dicrotic notch amplitude. It reflects the peripheral resistance of arterial vessels and the closure of
aortic valve.

5 h5 Gravity wave amplitude. It reflects the compliance of the aorta and the function of aortic valve.

6 t1 Left ventricular rapid ejection period. The time value from the start point to the crest point of the
main wave on the pulse graph.

7 t2 The duration of the beginning of the tidal wave.
8 t3 The duration of the crest of the tidal wave.

9 t4 Left ventricular systolic duration. The time value from the start point to the dicrotic notch on the
pulse graph.

10 t5 Left ventricular diastolic duration.The time value from the dicrotic notch to the end point on the
pulse graph.

11 t Includes left ventricular systolic and diastolic duration. The time value from the start point to the
end point on the pulse graph.

12 w1 main wave 1/3 height.The duration of maintaining high intravascular pressure.
13 w2 main wave 1/5 height. The duration of maintaining high intravascular pressure.

14 w1/t The ratio of the width of the main wave at its 1/3 height to the entire pulse cycle. It reflects the
proportion of the duration time of continuous high pressure in the aorta in the entire pulse cycle.

15 w2/t The proportion of the duration time of continuous high pressure in the aorta in the entire pulse
cycle.

16 h1/t1 cardiovascular function
17 As Systolic area. The area on the pulse graph is related to cardiac output.
18 Ad Diastolic area.

and healthy groups were inputted as independent variables
in the pretreatment. Subjects were categorized according to
whether they have hypertension (dependent variable). 60%
of the samples were for training examples and 40% were for
testing examples. See flow chart (Figure 3).

2.4.1. Noise Reduction. TheK-means algorithm is a partition-
based clustering algorithm. A dataset is divided into several
groups or classes. Data with higher similarity is in the same
group while dissimilar data is in different group. Cluster
analysis can help to find abnormal data because similarity
and dissimilarity are based on the attribute of data. Similar
or neighboring data are aggregated to form each cluster
set, and those data, outside these cluster sets, are to be
excluded. During the process of data collection, human
factors interfered with the data inevitably. Clustering analysis
is used to cluster the input feature variables to obtain different
levels of clustering results. In a word, cluster analysis is
clustered based on different feature variables, and similar
samples are gathered into one group.

Firstly the K-means algorithm determines the reference
value k and then divides the N data again in the k clusters, so
that clusters with a similar degree in each cluster are classified
into one and clusters with a low degree of similarity are
classified into another. Specific steps: First, any number of k

data in the dataset were found. The original centroid of each
cluster was represented by these data. Second, the remaining
datasets were divided into each cluster according to the
minimization principle, which was based on the distance
between each dataset and its cluster centroid. Finally, the
centroid of each cluster was calculated again. The above
operationwas repeated and the calculationwas stoppedwhen
the value of the objective function was minimum [25].

2.4.2. Feature Normalization. Owing to the differences in the
magnitude of the parameters, it has a negative effect on the
classification and prediction. The range is scaled and mapped
from 0 to 1 (or -1 to 1 if there are negative values).

The formula of MinMaxScaler is

𝑥
𝑖
−min (𝑥)

max (𝑥) −min (𝑥)
(1)

where min(x) is the minimum value, max(x) is the
maximum value, and 𝑥

𝑖
is the value for each feature.

2.4.3. Classifier. Random Forest (RF), Support Vector
Machine (SVM), AdaBoost, Gradient Boosting (GBT), and
K-Neighbor (KNN) are classical machine learning models.
SVM, AdaBoost, and RF are widely used as classification
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predictions. Support vector machine is a sparse kernel
machine, which is a model that only relies on data subset
(support vector) to predict unknown class labels [26, 27].
Based on the support vector machine theory, it is pointed
out that, for a nonlinear separable dataset containing two
classes of points, there are many hyper planes used to
classify the classes. And a common radial basis function
was chosen. SVM is used to classify training samples to
separate and optimize two classes of hyper planes (i.e.,
decision boundaries). The optimal decision boundary
between support vectors is chosen by the distance of the
maximum boundary M [28]. Support vector machines
have good generalization capabilities. In other words, the
decision surface is seen as linear in the high-dimensional
space, while it is considered as nonlinear in low-dimensional
feature space, which means that SVM could be applied to
nonlinear separation data. In addition, in terms of overfitting
problems, support vector machine is of robustness for
high-dimensional data [29]. The main drawback is that it
is more difficult to interpret the generated model and has a
certain sensitivity to appropriate parameter adjustments.

K-nearest neighbor (KNN) is one of the easiest methods
to predict classification in pattern recognition [29]. To obtain
the nearest neighbor for each dataset, KNN uses measure-
ment to calculate the distance between data pairs. In general,
the measurement used is Euclidean distance. Since each new
data point is classified differently, KNN can establish a local
approximation of the objective function [30]. While a test
example is classified, it will use a similarity function based
on the Euclidean distance to find training examples of the
K most recent query points [29]. Since high k results in
overfitting and model instability, the appropriate values must
be specifically chosen [28]. Another advantage of KNN is its

simplicity. In spite of this, the forecasting time is usually very
expensive because all the training data must be reexamined
[30].

Random Forest (RF) uses a majority vote to predict
categories based on data partitions from multiple decision
trees [28]. In each decision tree, data points fall into specific
leaves according to their characteristics and are assigned a
forecast. Then the data points are averaged. The maximum
number of voting categories will provide the final forecast
[26]. The Gini index is used to determine the “best split”
threshold for a given category of input values. Comparedwith
the parent node, the Gini index returns the measure of the
heterogeneity of the child nodes [28].

AdaBoost is a supervised learning algorithm for solving
classification problems [31]. In each sequence, misclassified
instances are given more weight for the next sequence while
correctly classified instances are given lower weight.The final
model is a linear combination of all the models created in
the previous sequence [32]. In addition, GBDT has very
few limitations and assumptions on the input data, so it is
very flexible to deal with complex nonlinear relationships
[33]. In some problems, it is more stable than other learning
algorithms and is less susceptible to be affected by overfitting
problems. Each learning algorithm has its advantages and
tends to be more suitable for certain types of problems than
other types of problems, and there are usually many different
parameters and configurations that need to be adjusted
before achieving the best performance of the dataset [34].
Gradient Boosting could strategically combine some simple
tree models to obtain optimized predictive performance
while the result model could be interpreted by identifying key
variables [33]. The core is that the learning objective of each
subtree is the residual of the previous subtree. The sum of all
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Figure 4: k-means clustering analysis. The x-axis represents the number of clusters while the y-axis represents the variable h1/t1. Red points
include noise pulse wave. Blue points include normal pulse wave.

subtrees can be used as the final result of the model. GBT can
handle different types of predictors and missing data. At the
same time, it does not need to eliminate outliers and perform
previous data transformations [35].

SVM is used mainly to establish a classification hyper
plane as the decision surface andmaximize the isolated edges
of the positive and negative instances and then construct
and solve the optimization problem by selecting appropri-
ate kernel functions and appropriate penalty parameters.
AdaBoost is an iterative algorithm, whose core objective is to
train different classifiers for the same training set (i.e., weak
classifiers) and then combine weak classifiers into a stronger
classifier. Besides, K-Neighbors uses the distance calculation
method. According to the new data calculated by all features
and categorical distance of data point in the dataset, it will
operate classification prediction by sorting them in ascending
order of distance.

2.4.4. Parameters Optimization and Evaluation Criteria. Due
to the different performances of different models, differ-
ent classification models of hypertension were constructed,
respectively. At the same time, different machine learning
was performed by grid search and 10-fold cross-validation
to optimize the parameters. The optimal parameters were
selected to establish the model.

In order to assess the feasibility of the above methods,
analysis was performed using common evaluation criteria
[36], including accuracy rate (ACC), area under the ROC
curve (AUC), sensitivity (ST), and specificity (SP). AUC [37],
an evaluation binary model, is one of the popular methods.
AUC is used in the range from 0 to 1. Moreover, the four
basic statistical definitions which describe the process of
classification are TP (true positive, number of positives),
FP (false positive, number of negatives), TN (true negative,
number of negatives), and FN (false negative, number of
positives).

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
× 100% (2)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (3)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
× 100% (4)

2.5. Development Platform. Statistical analysis was per-
formed using SPSS 22.0 software. The BMI, age, and pulse
wave parameters were analyzed in two groups by an inde-
pendent samples t-test. The data were shown as mean and
standard deviation. P <0.05 indicates a statistical difference.

The data was collected and analyzed by python3.5 and
sklearn [38] to achieve machine learning. Orange3.11 [39]
was used for cluster analysis and removing unqualified pulse
wave.

3. Result

3.1. Noise Reduction. Studies [40, 41] have shown that h1/t1
can reflect the ability of cardiac ejection and aortic com-
pliance; then elasticity and compliance of vascular directly
affect blood pressure. According to the results of the k-means
in Figure 4, the points in the red circle below could be
considered as the group with the most noise, which indicates
that the pulse wave of hypertensive population was better
for noise recognition. After clustering, it was found that one
group contains more noise and the other group contains less
noise. Pulse waves whose noise was removed are classified
into one group and those whose noise was not removed are
in the other group to conduct the comparative analysis. h1/t1
had greater difference in different pulsewaves.Thepulsewave
with greater similarity was gathered into one group, whereas
the pulse wave with the large noise was collected into another
group in the red circle shown in Figure 4.
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Figure 5:TheROC curve in differentmodel. (a)Data without noise reduction. (b) Data with noise reduction.The x-axis denotes false positive
rate.The y-axis is true positive rate. In Figure 5, the dark blue line represents Random Forest (RF). The green line represents support vector
machine (SVM). The red line represents Adaboost. The light blue line represents Gradient Boosting. The purple line represents K-nearest
neighbor (KNN).

3.2. Between Hypertension and Healthy Group of the Pulse
Graph Characteristics. The results of pulse wave parameter
between the healthy group and the hypertension group after
noise reduction are shown in Table 2. Compared with the
healthy group, the hypertension group has higher BMI, h1,
h2, h3, t2, t5, h1/t1, w1/t, and HR and lower h5, t, w2/t, H20
score, and Ad (P<0.05).

3.3. Five Data Mining Algorithms Classification. The study
used RF, SVM, AdaBoost, Gradient Boosting, and K-
Neighbors to establish a hypertension identification model
based on pulse wave features and results were shown in
Table 3. Through the comparison of different machine learn-
ing algorithms, it could be seen that the accuracy of the
four kinds of machine learning models had been improved
in comparison to the result of the pulse wave analysis after
noise removal, and SVM had the largest increase. Although
the accuracy rate of K-Neighbors had also greatly improved,
the accuracy rate of prediction was the lowest. At the same
time, in terms of classifier performance, the biggest increase
in AUC was SVM and AdaBoost. By observing the accuracy
and stability, AdaBoost, Gradient Boosting, and RF had
better result, and K-Neighbors classifier had unsatisfactory
result.

The ROC curve is a graph that describes the performance
of the binary classifier system. In other words, the ROC
curve is plotted based on true positive rate and false positive
rate. Sensitivity is also known as TPR, which means that the
possibility of high blood pressure is truly judged. Specificity
is equal to the true negative rate, which means that there is
no possibility of disease. The area under the ROC curve is

most commonly used as an accurate index. If the sensitivity
and specificity reach 1, the area under the ROC curve
reaches the desired accuracy. The best prediction method
generates a point in the upper left corner (0, 1) of the ROC
space, representing 100% sensitivity (no false negatives) and
100% specificity (no false positives). In this study, sensitivity,
specificity, and ROC (AUC) are used to evaluate the classifier
performance. As shown in Figure 5, the ROC curve in the
figure is a classifier result using a noise reduction and no
noise reduction dataset, respectively. Different colored lines
represented the ROC curve of different machine learning
models. Among them, AdaBoost and Gradient Boosting had
the most significant changes in the noise reduction and non-
noise reduction curves, which indicates that the AdaBoost
and Gradient Boosting classifiers have higher sensitivity and
specificity after noise reduction.

3.4. Feature Importance. Thevariables output by the machine
learning model were compared and analyzed to obtain the
degree of contribution of the model. The results on the three
models are shown in Figure 6.

Compared with the results of classification after reducing
noise, the features of the hypertensive classification model
varied greatly among different machine learning. AdaBoost
and Gradient Boosting had the most significant changes,
and RF had the smallest. After removing the noise in the
AdaBoost and Gradient Boosting models, the importance of
h1/t1, w1/t, t, w2, h2, t1, and t5 variables (top10) had increased.
Among them, AdaBoost had the most prominent changes in
w2, w1/t, t, h1/t1, h2, t5, and Ad. In RF, only BMI, t5, h2, and
h1/t1 variables had increased.
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Figure 6:The importance of the classification variables features. The bar charts (a), (b), and (c) represent the results of feature importance of
AdaBoost, Gradient Boosting, and Random Forest (RF), respectively.The y-axis represents the value of the importance for variables features.
Note that “yes” represents that K-means is used to reduce noise in this model and vice versa.
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Table 2: Comparison of the variables between hypertension group and healthy group (X ± S).

Feature Healthy group hypertension group p value
Age 44.44 ± 9.204 44.7 ± 8.706 0.37

BMI 23.91 ± 2.961 25.55 ± 3.306 0.0 ∗ ∗

w1 0.18 ± 0.035 0.18 ± 0.033 0.55

w2 0.13 ± 0.034 0.14 ± 0.034 0.05

As 0.22 ± 0.029 0.22 ± 0.028 1

Ad 0.11 ± 0.035 0.1 ± 0.036 0.0 ∗ ∗

h1 116.0 ± 35.992 126.11 ± 44.893 0.0 ∗ ∗

h2 84.98 ± 32.215 93.18 ± 40.319 0.02∗

h3 78.02 ± 29.356 85.73 ± 36.019 0.01 ∗ ∗

h4 44.78 ± 15.047 47.55 ± 18.016 0.09

h5 12.8 ± 4.455 12.16 ± 4.056 0.04∗

t1 0.14 ± 0.021 0.14 ± 0.022 0.31

t2 0.24 ± 0.037 0.24 ± 0.041 0.0 ∗ ∗

t3 0.27 ± 0.033 0.27 ± 0.038 0.08

t4 0.36 ± 0.03 0.36 ± 0.034 0.23

t5 0.41 ± 0.023 0.41 ± 0.028 0.0 ∗ ∗

t 0.85 ± 0.119 0.83 ± 0.128 0.01 ∗ ∗

h1/t1 838.82 ± 276.686 919.03 ± 355.812 0.0 ∗ ∗

h3/h1 0.67 ± 0.128 0.68 ± 0.133 0.36

h4/h1 0.39 ± 0.082 0.38 ± 0.082 0.11

w1/t 0.21 ± 0.036 0.22 ± 0.033 0.0 ∗ ∗

w2/t 0.16 ± 0.036 0.16 ± 0.035 0.0 ∗ ∗

HR 77.08 ± 9.613 80.4 ± 11.839 0.0 ∗ ∗

H20 score 85.74 ± 4.868 76.38 ± 10.331 0.0 ∗ ∗

Compared with healthy group. ∗ P <0.05, ∗∗ P <0.01.

Table 3: Results on the classification of machine learning model.

Model ACC AUC SP ST
RF 0.841 0.832 0.936 0.728
RF∗ 0.853 0.848 0.905 0.792
Gradient Boosting 0.852 0.843 0.941 0.746
Gradient Boosting∗ 0.864 0.859 0.920 0.798
SVM 0.796 0.792 0.833 0.752
SVM∗ 0.832 0.828 0.865 0.792
AdaBoost 0.839 0.830 0.921 0.740
AdaBoost∗ 0.864 0.858 0.925 0.792
KNeighbors 0.729 0.716 0.852 0.580
KNeighbors∗ 0.736 0.728 0.830 0.625
Models with an asterisk ∗mean that K-means is applied before using these models.

Furthermore, compared with the features of signifi-
cant difference in traditional statistics, machine learning
AdaBoost and Gradient Boosting had significant difference
in the common feature rankings. Therefore, AdaBoost and
Gradient Boosting were selected to analyze the important
features. The variables of the top 12 are listed in Table 4. In
Figure 7, the common variables among the three are h5, t,
Ad, BMI, h1/t1, and t2, which indicates that hypertension may
play an important role in cardiac output.

4. Discussion

Previous studies showed [12–15] that hypertension and pulse
waves had a strong correlation, and statistical description of
this study also confirmed this phenomenon.The comparative
results of the pulse wave characteristics showed that the
values such as h1/t1, h1, h3, and w1/t were higher than those in
the healthy group.Therefore, the differences of characteristics
in pulse wave between hypertensive and healthy group made
it possible to further classify them using machine learning.



10 BioMed Research International

Adaboost Gradient Boosting

Traditional Statistical

3
(13.6%)

2
(9.1%)

5
(22.7%)

3
(13.6%)

1
(4.5%)

2
(9.1%)

6
(27.3%)

Figure 7: The analysis of the importance on the features of
traditional statistics and machine learning.

Table 4: Selected (top 12) features in model.

model Feature variable Feature importance

Adaboost

t 0.126
BMI 0.109
HR 0.083
h1/t1 0.066
Ad 0.057
w2 0.051
t2 0.049
t3 0.049
w1/t 0.040
h5 0.034

h3/h1 0.034
As 0.034

Gradient Boosting

H20 score 0.128
BMI 0.075
t 0.065

h1/t1 0.055
t3 0.048
h5 0.042
t5 0.042
Ad 0.041
t2 0.041
t1 0.039
h4 0.039
w2/t 0.039

However, in terms of the analysis of raw data, filtering
pulse wave lacks the methods of quality control. At present,
there are human interference factors in the acquisition
process of pulse wave, so it is necessary to reduce the
noise. Taking advantage of pulse waves after noise reduction
as the input variables of the machine learning, the study
suggests that themachine learning accuracy and stability have
significantly improved.

Figure 4 shows clustering analysis of data. Different sam-
ple clustering had found a certain degree of regularity. Pulse

waves with higher heat values were grouped together (typical
hypertension pulse wave); pulse waves within middle-ranged
heat values were collected together (mixed part of hyperten-
sion pulse wave and healthy pulse wave); pulse waves with
low heat values were gathered together. Further observation
revealed that the pulse wave with a lower heat value was
mixed with more noise. This part of the noise was in line
with the pulse wave neither in hypertensive group nor in
healthy group. This noise primarily derives from respiration
and muscle tension. On the one hand, the respiration can
lead to abnormalities in the pulse wave. On the other hand,
subjects who have the high muscle tension are likely to cause
tremor of the pulse wave. Therefore, the elimination of such
pulse wave is necessary.

Table 3 shows the classification results of pulse waves
with noise reduction.The classifications were obtained by the
RF, SVM, AdaBoost, Gradient Boosting, and K-Neighbors
algorithms, respectively. Meanwhile, 10-fold cross-validation
and grid optimization were performed to measure the classi-
fication performance. Evaluation indicators pointed out that,
compared with the results of pulse wave classification without
noise reduction, AdaBoost and Gradient Boosting had the
better classification effect after noise reduction, and SVMhad
the larger increase.

Significant features obtained from traditional statistical
analysis are specific, such as h1, h2, h3, t2, t5, h1/t1, w1/t, h5,
t, w2/t, Ad, H20 score, and BMI, but traditional statistical
analysis is weak in linking nonlinear relationships. Machine
learning methods, however, have advantages in this regard.
Through traditional analysis and machine learning analysis,
the prediction results are relatively satisfactory, but machine
learning cannot see the specific operation mechanism of
“black box.” With the development of technology over the
years, some machine learnings become valuable reference on
practical use. The results showed that there were significant
differences in the importance ranking on features among
three different machine learnings before and after noise
reduction. Among them, AdaBoost and Gradient Boosting
had the better changes in feature importance.The importance
of variables features in t, t1, h2, h1/t1, t5, w1/t, and w2 had
ascended to some extent. Therefore, the result suggests that
the wave of wiry pulse is more obvious after noise reduction
and this is consistent with the theory of traditional Chinese
medicine [10].

The application of the combination of TCM diagnostic
technology and modern information technology is promis-
ing.The development of thewearable Chinesemedicine pulse
wristband represented by the pulsemodernization research is
based on the traditional Chinesemedicine theories combined
with modern information technology, artificial intelligence,
and other technologies. In addition, it also retains the char-
acteristics of pulse diagnosis in TCM, including miniaturiza-
tion, wearable, wireless transmission, and intelligence, and it
can be widely used in Chinese medicine teaching, scientific
research, medical care, health care, and many other fields,
with broad domestic and international market prospects.
Currently, there is a wearable health assessment technology
based on pulse evaluation, which provides a new method for
further disease prevention and evaluation [40]. The effective
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development of wearable Chinese medicine pulse diagnosis
bracelets and the transformation into products will greatly
promote the development and application ofmodernChinese
medical diagnosis and treatment technologies and bring
many positive social and economic benefits. On one hand,
portable pulse acquisition provides objective results and data
indicators for clinical diagnosis and therapeutic evaluation.
On the other hand, it provides technical basis for the modern
clinical research of TCM with Chinese characteristics and
conforms to the connotation of TCM. Finally, pulse diagnosis
is a TCM diagnostic technology information. This study
lays a foundation for further exploration on wearable pulse
diagnostic equipment.

5. Conclusion

Based on the pulse wave, this paper used cluster analysis
to eliminate noise and machine learning to establish a
classification model for hypertension. It shows good classi-
fication effect and indicates that removing noise has great
significance in improving accuracy and stability of model. It
also illustrates that it is feasible to use computer technology to
conduct TCMdiagnosis. Besides, it is also part of establishing
the classification model to identify the factors that affect
hypertensiondiagnosis.The results of traditional analysis and
machine learning imply that the variables of h1/t1, h5, t, Ad,
BMI, and t2 are likely to connect with hypertension.

Through collecting and analyzing the information of
hypertension, this study explores the information and appli-
cation of traditional Chinese medicine and provides a refer-
ence for the design of a more effective classification model
of hypertension. In addition, combined with the symptoms
and signs of the patients and the information of tongue and
pulse diagnosis in Chinese medicine, the development of a
more convenient and wearable pulse diagnostic instrument
provides a more real-time, convenient, and quick method for
further study in the prevention and prediction of hyperten-
sion.
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Cytological screening plays a vital role in the diagnosis of cancer from themicroscope slides of pleural effusion specimens. However,
this manual screening method is subjective and time-intensive and it suffers from inter- and intra-observer variations. In this
study, we propose a novel Computer Aided Diagnosis (CAD) system for the detection of cancer cells in cytological pleural effusion
(CPE) images. Firstly, intensity adjustment and median filtering methods were applied to improve image quality. Cell nuclei were
extracted through a hybrid segmentation method based on the fusion of Simple Linear Iterative Clustering (SLIC) superpixels and
K-Means clustering. A series of morphological operations were utilized to correct segmented nuclei boundaries and eliminate any
false findings. A combination of shape analysis and contour concavity analysis was carried out to detect and split any overlapped
nuclei into individual ones. After the cell nuclei were accurately delineated, we extracted 14 morphometric features, 6 colorimetric
features, and 181 texture features from each nucleus. The texture features were derived from a combination of color components
based first order statistics, gray level cooccurrencematrix and gray level run-lengthmatrix. A novel hybrid feature selectionmethod
based on simulated annealing combined with an artificial neural network (SA-ANN)was developed to select the most discriminant
and biologically interpretable features. An ensemble classifier of bagged decision trees was utilized as the classification model for
differentiating cells into either benign or malignant using the selected features. The experiment was carried out on 125 CPE images
containing more than 10500 cells. The proposed method achieved sensitivity of 87.97%, specificity of 99.40%, accuracy of 98.70%,
and F-score of 87.79%.

1. Introduction

Pleural effusion or pulmonary effusion (PE) is the patho-
logic accumulation of fluid in the pleural cavity, between
the visceral and parietal layers surrounding the lung, as
demonstrated in Figure 1 [1, 2]. Normally, the pleural space
is lined by a thin layer of mesothelial cells and contains
about 5-10 ml of clear fluid for lubrication during respiratory
movement. When cancer cells grow or spread to the pleura,
they cause malignant pleural effusion (MPE). Half of all
cancer patients have a high possibility of developing MPE.
Both primary and metastatic cancers can lead to a diagnosis
of MPE. Mesothelioma, a rare form of cancer, is the primary

cancer of the pleura. Lung cancer and breast cancer are the
most frequent metastatic cancers inmale and female patients,
respectively. Both malignancies are responsible for about 50-
65% of MPE. Lymphoma, tumors of the genitourinary tract,
and gastrointestinal tract are responsible for 25%. Tumors of
unknown primary account for 7-15% of all MPE [3]. From
statistics, as mentioned earlier, MPE is mostly caused by the
invasion of metastatic cancer to the pleura. Metastatic cancer
is the major cause of cancer morbidity and mortality. It is
estimated that metastasis is responsible for about 90% of
cancer deaths. Although cancer in the pleural effusion is seen
in advanced stages ofmalignancy and leads to rapidmortality,
the survival time can be prolonged by earlier diagnosis
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Figure 1: The presence of pleural effusion in the pleural cavity [2].

together with prompt and effective treatment to slow cancer
progress. Currently available tools for detecting the presence
of MPE in the pleura are cytology, cytometry, and imaging
modalities such as X-ray, Ultrasound, Computed Tomog-
raphy (CT), and Magnetic Resonance Imaging (MRI). For
the assessment of malignancy, cytological examinations are
widely used by pathologists because they are simple, cheap,
less invasive, and highly useful tools [4].

In a cytological examination, fluid from the malignant
pleural effusion is collected and smeared on cytological
glass slides using the staining methods. Then, cytologists or
pathologists visually examine for morphology changes and
visual abnormalities in every single cell under a microscope
to determinemalignancy prevalence [5].Manual screening of
cytology slides is tedious and subjective to inter- and intra-
observer bias. Since the presence of MPE implies advanced
malignancy and reduced survival, it is crucial to diagnose
malignancy in MPE as early and speedy as possible. Thanks
to recent improvements in medical technology, automated
image analysis has the potential to allow for earlier and
faster diagnosis with more accurate and objective diagnosis
results. Hence, reliable CAD systems using CPE images are
in high demand. They can serve as an essential tool to
assist cytologists in the assessment of malignancy; however,
complex and unusual cases still require further examination
by cytologists. The benefits of CAD systems are that they
accelerate the diagnosis process, make diagnosis objective,
and reduce any diagnostic divergence resulting fromdifferent
observers. Consequently, they allow for the early and speedy
diagnosis and prognosis of cancer cells and help oncologists
in making effective treatment plans promptly.

Few researchers have researched the analysis of CPE
images for the automatic detection of cancerous cells from
CPE specimens. In 2001, F. Chen et al. [6] proposed the
automated classification of adenocarcinoma and healthy cells
(especiallymesothelial cells and lymphocytes) inCPE images.
Morphology and wavelet features were used as inputs to
a backpropagation neural network to discriminate between
adenocarcinoma and benign cells. Their study was based
on 60 adenocarcinoma cells and many (the number was
not specified numerically) benign cells. Unfortunately, the

authors did not provide a method for segmenting nuclei
nor an evaluation of classification performance. L. Zhang
et al. 2006 [7] introduced a fuzzy recognition method to
classify four types of cells, namely, healthy cells, cancer cells,
mild dyskaryotic cells, and severe dyskaryotic cells. Otsu
thresholding and fuzzy edge detection were used to segment
the cells. Seven morphological features were extracted from
each segmented cell and fed as input into a fuzzy recognition
system to classify those four types of cells. However, there was
a lack of clarity in the evaluation process in [4, 5]. This has
encumbered the reproduction of these methods for practical
use. A.B. Tosun et al. 2015 [8] presented the automated
detection of malignant mesothelioma using nuclei chromatic
distribution. Firstly, the nuclei were extracted using a semi-
automatic approach in which the initial contour of cell nuclei
was manually segmented under the guidance of cytologists,
and level setmethodwas utilized to finalize the contour of cell
nuclei. For each extracted nucleus, its linear optimal transport
(LOT) was computed and subjected to linear discriminant
analysis based on k-nearest neighborhood algorithm classi-
fier to differentiate between mesothelioma and benign cells.
Their experiment was based on 1080 cell nuclei containing
590 mesotheliomas and 490 benign nuclei and obtained
100% accuracy. Unfortunately, their method was not fully
automated since cell segmentation was manually performed.
Moreover, none of the methods mentioned above deals with
the overlapped cell problem. Decomposing overlapped cells
into their constituents would enhance analysis performance
and robustness. As such, the approaches mentioned thus
far focus on detecting specific types of cancer cells such
as adenocarcinoma or mesothelioma cells in CPE images.
Meanwhile, an early and essential task in clinical practice
is to differentiate between benign cells and cancer cells
regardless of specific cancer types.This may then be followed
by classifying cancer cells into the different types (i.e., lung
carcinoma, mesothelioma, breast carcinoma, and so on). In
practice, a tool that can detect malignant cells from all MPE
cases is in high demand. Despite being linked with high rates
ofmorbidity andmortality, research efforts for the automated
analysis ofMPE are still limited compared to other areas such
as cervical cancer, breast cancer, lung cancer, and so on.Thus,
automated analysis of pleural effusion samples remains to be
widely researched.

To advance the utilization of MPE analysis, we propose
a novel CAD system based on the analysis of CPE images
which can classify cells as either benign or malignant. The
main distinction of the proposed method from previous
literature is that it can detect malignancy in all MPE cases.
Our newly designed system is a fully automated system that
addresses the overlapped cell and unbalanced-data problems
which have so far been left unsolved. In addition, the pro-
posed method takes advantage of the selection of dominant
features using a hybrid metaheuristic method. Our system
includes seven main stages: preprocessing, cell nuclei seg-
mentation, postprocessing, overlapped cell nuclei isolation,
feature extraction, feature selection, and classification. The
preprocessing stage aims to improve the quality of the images.
In the segmentation stage, our developed hybrid superpixel-
driven K-Means clusteringmethod, known as SLIC/K-Means
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hybrid, was used to extract cell nuclei regions. Then, a
series ofmorphological operationswere employed to improve
segmented cell nuclei boundaries and eliminate any false
findings. Subsequently, the combination of the shape-based
analysis and concavity analysis was applied to isolate any
overlapping nuclei into individual ones. After the cell nuclei
were segmented, a total of 201 features from morphometric,
colorimetric, and textural features were extracted to create an
initial feature set. Our novel hybrid SA-ANN feature selection
approach was employed to obtain the optimal feature set
that encompasses the most discerning features. The optimal
feature set was fed as input to an ensemble classifier of bagged
decision trees to classify benign and malignant cells.

This paper is divided into five sections. In this section
we have presented an introduction to the diagnosis of
malignancy inPE and outlined relatedworks.Thedescription
of the studied dataset is given in Section 2. Section 3 describes
the methodology used by the proposed CAD system. Sec-
tion 4 discusses the experimental results. Section 5 concludes
and presents the scope for future work.

2. Dataset Description

To date, there is no publicly available dataset of CPE images.
Thus, we prepared the local dataset through the cooperation
with experts from the Department of Pathology, Faculty of
Medicine, Srinakharinwirot University, Thailand. The local
dataset is based on the microscope images captured from
the archival cytology glass slides of pleural effusion samples
from the university mentioned earlier. Firstly, all samples
were stained on the glass slides with a classical Papanicolaou
(Pap) staining method which can provide good cellular
morphology when inspected by the optical microscope [9,
10]. Then, two skilled and certified cytologists captured the
digitized cytology images from the glass slides through a
digital camera mounted to a light microscope with 40x
magnification. Thereafter, they analyzed every single cell
within the collected images and annotated the regions of the
interest (i.e., cancer cells), which were used as the ground
truth. The dataset with associated ground truth consists of
125 CPE images containing benign and malignant cells. The
images have resolutions of 4050 x 2050 pixels and 4080 x 3702
pixels and are stored in 8-bit RGB space.

3. Methodology

The framework of the proposed CAD system is presented
in Figure 2. The method involves seven major stages: (a)
preprocessing, (b) nuclei segmentation, (c) postprocessing,
(d) identification and isolation of overlapped cell nuclei, (e)
feature extraction, (f) feature selection, and (g) classification.

3.1. Preprocessing Stage. During the staining of PE samples
and digitalizing of CPE images, there is usually a degradation
in quality, which includes uneven staining, uneven lighting,
poor contrast, and the presence of additive noise. Therefore,
preprocessing is essential in dealing with image quality prior
to the main analysis. Firstly, the images were resized into

1024 x 1024 pixels in order to achieve image normalization,
standardization, and computation time reduction.Then, each
image was enhanced using an image intensity adjustment
method that increases the contrast between the foreground
(region of interests) and background [11]. In order to reduce
noise without losing cell-edge clarity, R, G, and B compo-
nents were separated from the original RGB image. Then,
a median filter [12] was applied to each color component
independently. Finally, the filtered RGB image was obtained
by combining the filtered R, G, and B components together.
The visual results before and after applying preprocessing to
different images are depicted in Figures 3(a) and 3(b).

3.2. Segmentation of Cell Nuclei Using a Novel Hybrid SLIC/K-
Means Algorithm. Segmentation is one of the most essen-
tial processes in biomedical image analysis. Most of the
image analysis in cytology and histology is focused on
nuclei segmentation since cell nuclei providemore significant
diagnostic value than other cell parts. To determine cell
malignancy, the cell nucleus needs to be segmented from
the background (i.e., cytoplasm, red blood cells). Then,
malignancy is predicted based on certain features extracted
from each nucleus. Since the results of nuclei segmentation
have a high impact on all subsequent analysis, it is crucial that
the nuclei are accurately extracted.

Few researchers have studied the automated segmenta-
tion of cells or nuclei in CPE images. E. Baykal et al. 2017
[13] introduced an active appearancemodel to segment nuclei
from the background in CPE images and compared it with
color thresholding, clustering, and graph-based methods.
They obtained 98.77% accuracy. However, their approach was
designed to segment an image with only one cell. It is hard
to use this in practice since there may be up to a million
cells in one image. In [14], they investigated the detection of
cell nuclei using supervised learning approach.The approach
is based on the combination of Haar filter and AdaBoost
classifier.Three images with a total of 178 nuclei were used for
testing. A True Positive Rate of 89.32% and False Positive Rate
of 5.05% were obtained. Their framework performed well
with an independent cell nucleus; however, it showed limi-
tations when it came to segmenting overlapped cell nuclei.
Moreover, it required extensive prior knowledge to train
the classifier. In our previous works [15], we have proposed
several alternative nuclei segmentation methods such as Otsu
thresholding approach, K-Means clustering approach [16],
and supervised pixel classification using ANN [17] on a small
dataset (24 CPE images). Recently, we collected more images
and built a new dataset containing 35 CPE images. Using
that new dataset, we employed twelve segmentation methods:(1) the Otsu method, (2) an ISODATA thresholding method,(3) a maximum entropy thresholding method, (4) cross-
entropy thresholding, (5) minimum error thresholding, (6)
fuzzy entropy thresholding, (7) adaptive thresholding, (8) K-
Means clustering, (9) fuzzy C-means clustering, (10) mean
shift clustering, (11) Chan-Vese level set, and (12) graph cut
methods to extract the cell nuclei from CPE images, and
we compared the results attained [18]. From the comparison
results, Otsu, K-Means, mean shift clustering, graph cut
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Figure 2: System framework of the proposed CAD system.

method, and a Chan-Vese level set method provided promis-
ing segmentation results. Although Otsu provided promising
results with low computational time, the segmentation accu-
racy of Otsu showed degradation in images with a high level
of noise because Otsu is sensitive to noise. The images in the
studied dataset (124 images) have a great deal of noise. K-
Means, mean shift, Chan-Vese, and graph cut methods were
found to be computationally expensive especiallywith images
containing a high population of cells. For machine learning
based segmentation methods, prior knowledge is required
to train a learning model. Thus, there are still opportunities
for further enhancements in the nuclei segmentation of CPE
images. Reliable nuclei segmentation stays challenging due

to the high population of cells and high diversity of cell
appearance. In this study, we present a hybrid novel SLIC/K-
Means based nuclei segmentation method in which SLIC
superpixels are used as a presegmentation step to minimize
the computational time of K- means clustering.

The first step of the hybrid SLIC/K-Means method is to
perform superpixel segmentation as a presegmentation step.
Superpixels fragment the image into a set of structurally
meaningful segments where the boundaries of each segment
take into the consideration the edge information from the
original image. Superpixels are used in the preprocessing
stage for object recognition andmedical image segmentation.
Among the various superpixel segmentation techniques, we
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Figure 3: Visual results of segmenting cell nuclei from CPE images: (a) original image, (b) preprocessed image, (c) superpixels segmentation
using SLIC, (d) K-Means based unsupervised color segmentation on SLIC superpixels, and (e) postprocessed image (refinement of nuclei
boundary and elimination of false findings).

opted for a SLIC algorithm because SLIC generates compact
superpixels with a more regular shape (R. Achanta et al. [19]).
By breaking the image into regularly shaped superpixels, it
is easier to distinguish between the nuclei and background
depending on the superpixel shape. Moreover, SLIC is simple

to implement. It requires only the number of desired super-
pixels as the input parameter and needs a low computation
time compared to other superpixel techniques [20]. SLIC
generates compact, uniform superpixels by clustering pixels
based on their color similarity and proximity. This is done
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by using a combined 5-dimensional space [labxy], where l,
a, b constitute the pixel color vector in LAB color model
and xy denotes the x and y positional coordinates of the
pixel position (x, y coordinates). SLIC takes as input the
desired number of approximately uniform superpixels. Once
SLIC generated the superpixels, we determined the median
color feature of each superpixel region in the L∗a∗b∗ color
space. K-Means clustering [21] was then utilized to classify
the color feature of each compact superpixel into nuclei or
non-nuclei, rather than having to perform clustering over
the full original image pixels. Since representing the image
as SLIC superpixels can give more accurate boundary infor-
mation than representing the image by pixels, performing
presegmentation using SLIC superpixels before K-Means
clustering allows us to preserve the natural shape of cell
nuclei. Also, it can reduce the complexity of the algorithm
dramatically.This happens because the number of superpixels
is much smaller than the number of pixels. Hence, applying
K-Means clustering on SLIC superpixels, rather than on
pixels, can improve the algorithm efficiency and lead to rapid
computation. The visual results of nuclei segmentation on
different images are illustrated in Figures 3(c) and 3(d).

3.3. Postprocessing Stage (Boundary Refinement of Cell Nuclei
and False Findings Elimination). After the segmentation
stage, spurious regions such as blood cells or artifacts still
existed in the image. It is essential to remove these false
findings for better accuracy and robustness. A series of
morphological operations (MO) were used to eliminate these
false findings as well as to refine the boundaries of the
segmented nuclei. A morphological opening method was
applied to eliminate false findings that were smaller than a
predetermined structuring element (SE). After performing
this opening operation, the boundaries of cell nuclei often
hold an irregular shape. A morphological closing operation
was subsequently utilized to refine the shape or boundary of
the cell nuclei.

An important consideration when applying MO is the
size and shape of SE. SE identifies the pixels in the image
being processed and also designates the neighborhood to
be employed in the processing of each pixel. There are two
parameters (shape and radius) of SE to be specified. In our
algorithm, both opening and closing operations are achieved
by using a disk shape with an SE radius of “n”. The SE
radii “n” should be determined according to the size of
the undesired objects to be removed [22]. However, it is
difficult to set SE radii of “n” that can work well across
all images in a dataset or across different nuclei within
an image. The optimal radius should be closely related to
the size of the false findings that need to be eliminated.
Setting too large structuring element size oversimplifies the
image, while using too small SE undersupplies the images
(blood cells or noise remain). Hence, we applied a multiscale
approach. This means that each image was processed with
different SE radii. For the opening operation, we adapted
the SE radii range to be n {7, 8, . . . . ., 15}, which corresponds
approximately to the expected range of undesired objects in
the pleural effusion cell nuclei. For the closing operation, a

small SE (half the SE radii of the opening operation) size was
adopted. The morphological opening and closing operations
are mathematically formulated as follows:

𝑆𝑒𝑔𝑏𝑖 ⋅ 𝑆𝐸 = (𝑆𝑒𝑔𝑏𝑖 ⊖ 𝑆𝐸) ⊕ 𝑆𝐸 (1)

𝑆𝑒𝑔𝑏𝑖 ⋅ 𝑆𝐸 = (𝑆𝑒𝑔𝑏𝑖 ⊕ 𝑆𝐸) ⊖ 𝑆𝐸 (2)

where 𝑆𝑒𝑔𝑏𝑖 and 𝑆𝐸 denote the binary image and structuring
element, respectively. ⊖ and ⊕ represent erosion and dilation,
respectively.The visual results of this postprocessing are given
in Figure 3(e).

3.4. Identification and Isolation of Overlapped Cell Nuclei.
Most of the pleural effusion images in this study con-
tain nuclei that overlap to different degrees. Isolation of
overlapped cell nuclei is essential for optimal segmentation
performance since the size and shape of cell nuclei need
to be determined accurately for quantitative analysis. To
the best of our knowledge, the isolation of overlapped cell
nuclei in CPE images has only previously been addressed
in our previous works mentioned above. In our previous
studies, we employed watershed variants such as marker-
controlled and distance transform watershed methods to
split overlapped cell nuclei. Unfortunately, these methods
suffered from oversplitting and did not perform well on
images with a great deal of overlapped cells. Existing splitting
methods for overlapped objects can be broadly grouped into
watershed methods and contour concavity analysis. With
these methods, the points to be separated are searched
across all objects in an image, and it is then determined
whether to split them or not. In contrast, we now propose
the integration of shape analysis and concavity analysis to
identify and split overlapped nuclei for better accuracy and
robustness.The proposedmethod contains two substages: the
identification of overlapped cell nuclei and their separation
into individual ones, the details for which are given in
Sections 3.4.1 and 3.4.2. Before any splitting process occurs,
shape analysis is performed to judge whether nuclei are
single or overlapped. If any overlapped nuclei are detected,
a splitting process based on concavity analysis is carried out
only on overlapped cell nuclei rather than on all nuclei in the
image. This process can reduce computation time and also
prevent oversplitting and undersplitting.

3.4.1. Identification of Overlapped Cell Nuclei Using Shape-
Based Analysis. During this step, we aimed to develop a
shape-based predetermination mechanism to identify the
presence of overlapped cell nuclei. Identification of over-
lapped cell nuclei was performed in two consecutive steps:
(i) key features were extracted from cell nuclei and (ii) the
cell nuclei were classified into two classes: single nucleus
or overlapped nuclei. It is our general observation that
shape features are useful in helping to differentiate between
individual and overlapped cell nuclei. Hence, we extracted
a set of shape features, containing solidity, eccentricity,
equivalent diameter,major axis length, andminor axis length.
The formulation of shape-based features is explained and
shown in Figure 4. The extracted key features given in
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Figure 4: Formula of extracted features.

Table 1: Extracted shape based features and their equations.

No. Features Formula

(1) Solidity 𝐴𝑟𝑒𝑎𝐶𝑜𝑛V𝑒𝑥𝐴𝑟𝑒𝑎
(2) Eccentricity 𝐹1𝑎
(3) Equivalent

Diameter √4 ∗ 𝐴𝑟𝑒𝑎𝑝𝑖
(4) Major axis

length 2 ∗ 𝑎
(5) Minor axis

Length 2 ∗ 𝑏

Table 1 were utilized as input to SVM classifier [23] to
classify and discriminate between single and overlapped cell
nuclei. SVM classifier is a supervised learning mechanism
that requires training with prelabeled training data. A trained
SVM classifier was applied to identify overlapped cell nuclei
in the image.

3.4.2. Splitting Overlapped Cell Nuclei Using Concavity Anal-
ysis. When overlapped nuclei were identified via shape
analysis, we separated the overlapped nuclei regions from
the single nucleus regions. Then, contour concavity analy-
sis (CCA), introduced in [24], was utilized to isolate the
overlapped cell nuclei into individual ones. CCA includes
contour evidence extraction and contour estimation. Con-
tour evidence extraction involves two subprocesses: contour
segmentation and grouping. In contour segmentation, canny
edge method was utilized to extract the edge map. Then,
curvature scale space (CSS) method based on curvature
analysis was applied to detect the concave points representing
the corner points of the object boundaries. Once the contour
segments were obtained through the detection of concave
points, the contour segments belonging to the same object
were merged through a grouping process. The grouping
process was performed using the properties of fitted ellipse. It
groups contour segments of objects composed of an elliptical
shape. When contour evidence was acquired, the contour
estimation was carried out using a stable direct least square
fittingmethod.Thevisual result of identification and isolation
of overlapped cell nuclei is illustrated in Figure 5.

3.5. Features Extraction. After the cell nuclei were accurately
delineated, feature extraction was established to extract the
features that reflect the observation of cytologists. In the
literature of cytology and histology image analysis, the

dominant features for the diagnosis of malignancy used by
cytologists are related to morphometric, colorimetric, and
textural features [25–29]. In keeping with other cytological
images, CPE images are also rich in various features like
color, shape, and texture. In this study, 201 features related
to themorphometric, colorimetric, and textural features were
extracted and combined to obtain a robust, information-rich,
and discerning feature set.

3.5.1. Morphometric Features. There are certain differences
in morphology between benign and cancer cell nuclei in
CPE images. For instance, excessive growth of cell nuclei
size and a significant variation of cell nuclei size in an
image are suggestive of malignancy. Moreover, cell nuclei
shape irregularities such as unsmooth nuclei margins occur
in malignant cases. Thus, in this study, 14 morphometric
features were extracted to evaluate nucleus size and shape
irregularity. The description of these features is given in
Table 2 and coded as F1-F14.

3.5.2. Colorimetric Features. The usage of colorimetric fea-
tures has tremendously increased in computer vision tasks
due to their discriminative ability across different types of
objects. Color provides useful information to determine
malignancy. According to the cytological study, if any partic-
ular nuclei are affected by disease, the nucleus region changes
in color. For instance, malignant cell nuclei become darker in
color. In order to capture color features,means of R,G, B,H, S,
and V components were extracted independently from RGB
and HSV models. These features were coded in the range of
F15 to F20.

3.5.3. Textural Features. In cytological pleural effusion
images, malignant and cancer cell nuclei differ heavily in
their distribution of color and chromatin. For instance, the
frequent appearance of a distinct mass in a nucleus may be
suggestive of malignancy. Texture features have been widely
adopted in literature to exploit color and chromatin distribu-
tion. In this study, three statistical textural descriptors: first
order statistics (FOS), gray level occurrence matrix (GLCM),
and gray level run-length matrix (GLRLM)were employed to
extract the textural features.

(1) Color Component Based First Order Statistics (CCFOS).
FOS describes the distribution of pixel intensities within a
nucleus region [30]. In related literature, the combination
of color and FOS features has achieved better accuracy
compared to conventional FOS features [31, 32]. Thus, seven
FOS features for seven color components (namely, gray, R, G,
B, H, S, and V from RGB and HSV model) were extracted
for each nucleus. The extracted features were named by color
component based on FOS (CCFOS) and encoded from F21
to F69. The reason for extracting seven color components
was to obtain FOS textures from the view of different
color components. Different color components describe the
different defined textures as given in Figure 6. The details of
these extracted features are given in Table 3 and coded from
F21 to F69.



8 BioMed Research International

Eccentricity, Solidity,
Equivalent diameter,
Major Axis, Minor
Axis

Overlapped
judgement

Segmented Nuclei

Shape analysis

Single cell nuclei Overlapped nuclei

Edge map Concave points

Contour estimationEllipse fitting

Contour Concavity Analysis

+

Isolated nuclei

YesNo

Figure 5: Visual demonstration of identification and splitting of overlapped cell nuclei.
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Figure 6: Individual color components of RGB and HSV color models in the segmented cell nuclei of CPE images.
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Table 2: List of morphometric features and their associated equations.

Code Feature Name Equation

F1 Area
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑆(𝑖, 𝑗)
F2 Perimeter 𝐸V𝑒𝑛 𝑐𝑜𝑢𝑛𝑡+√2 (𝑜𝑑𝑑𝑐𝑜𝑢𝑛𝑡)
F3 Roundness, circularity 4𝜋 ∗ 𝐴𝑟𝑒𝑎𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
F4 Solidity 𝐴𝑟𝑒𝑎𝐶𝑜𝑛V𝑒𝑥𝐴𝑟𝑒𝑎
F5 Equivalent circular

diameter √4 × 𝐴𝑟𝑒𝑎𝜋
F6 Compactness 𝐴𝑟𝑒𝑎𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
F7 Eccentricity 2 ∗ (√(𝑚𝑎/2)2 − (𝑚𝑖/2)2)

𝑚𝑎
F8 Diameter 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2𝜋
F9 Major axis length (𝑚𝑎) √(𝑥1 − 𝑥2)2 − (𝑦1 − 𝑦2)2
F10 Minor axis length (𝑚𝑖) √(𝑥2 − 𝑥1)2 − (𝑦2 − 𝑦1)2
F11 Elongation ma/perimeter
F12 MaxIntensity max(𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑠)
F13 MinIntensity min(𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑠)
F14 MeanIntensity mean(𝑝𝑖𝑥𝑒𝑙𝑉𝑎𝑙𝑢𝑒𝑠)
𝑆(𝑖, 𝑗) is the segmented image of rows 𝑖 and columns𝑗. 𝑚𝑎 and𝑚𝑖 are the major axis and minor axis of the nucleus, respectively. 𝑥1, 𝑦1 and 𝑥2, 𝑦2 are the end
points of the major axis and minor axis.

Table 3: List of CCFOS features and their associated equations.

Feature Name Equation

Mean (𝜇) 𝐿−1∑
𝑖=0

𝑖𝑝(𝑖)
Standard
deviation(𝜎)

𝐿−1∑
𝑖=0

(𝑖 − 𝜇)2 ∙ 𝑝(𝑖)
Smoothness 1 − (11 + 𝜎2)
Variance

𝐿−1∑
𝑖=0

(𝑖 − 𝜇)2 𝑝(𝑖)
Skewness 𝜎−3 𝐿−1∑

𝑖=0

(𝑖 − 𝜇)3 𝑝(𝑖)
Kurtosis 𝜎−4 𝐿−1∑

𝑖=0

(𝑖 − 𝜇)4 𝑝 (𝑖) − 3
Energy

𝐿−1∑
𝑖=0

𝑝(𝑖)2
𝑝(𝑖) is the number of pixels with gray level 𝑖, and L represents the number of
gray-level bins set for 𝑝.

(2) GLCM and GLRLM. FOS captures features only on
individual pixels. It ignores the spatial relationship between
neighboring pixels. In order to capture texture features that
take into account the spatial relationship between neighbor-
ing pixels, GLCM [33, 34] and GLRLM [35] based higher

order statistic features were considered. GLCM represents
the distribution of cooccurring intensities in a nucleus at
a specific given distance and orientation. When extracting
GLCM features, it is required to define three parameters:
distance (d) and orientations (𝜃) that determine the offset
and angle between adjacent pixels, and the number of gray
levels (NG) in the image. In this study, d and NG were set
to 1 and 8, respectively. 𝜃 was adopted for four orientations
0∘, 45∘, 90∘, 135∘ in order to take into account the rotation
of the image. Thus, 22 GLCM features for four different
orientations were extracted. GLRLM represents the length of
homogeneous runs for each gray level in a definite direction.
Similar to GLCM, GLRLM is constructed at four orientations
and 8 gray levels. 11 GLRLM features in four different
orientations (0∘, 45∘, 90∘, 135∘) were extracted. Tables 4 and
5 describe the lists of GLCM and GLRLM feature and their
associated equations. Finally, a feature vector was generated
by combining 14 features of form morphology and 6 color
features and 181 textural features from CCFOS, GLCM, and
GLRLM.The list of extracted features is given in Table 6. The
class of each nucleus is labeled as either positive or negative
class under the guidance of cytologists.

3.6. Feature Selection. The initial feature set contains 201
features related to morphometry, colorimetry, and texture.
Directly utilizing all candidate features for classification may
cause redundancy and irrelevancy. Redundancy can lengthen
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Table 4: List of GLCM features and their associated equations.

Features Equations

Autocorrelation ∑
𝑖

∑
𝑗

(𝑖 ∙ 𝑗) 𝑝(𝑖, 𝑗)
Contrast ∑

𝑖

∑
𝑗

|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)
Correlation I ∑

𝑖

∑
𝑗

(𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝑝(𝑖, 𝑗)𝜎𝑥𝜎𝑦
Correlation II ∑

𝑖

∑
𝑗

(𝑖 ∙ 𝑗) 𝑝 (𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝜎𝑥𝜎𝑦
Cluster Prominence ∑

𝑖

∑
𝑗

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)4 𝑝(𝑖, 𝑗)
Cluster Shade ∑

𝑖

∑
𝑗

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)3 𝑝(𝑖, 𝑗)
Dissimilarity ∑

𝑖

∑
𝑗

󵄨󵄨󵄨󵄨𝑖 − 𝑗󵄨󵄨󵄨󵄨 ∙ 𝑝(𝑖, 𝑗)
Energy ∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗)2
Entropy −∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗) ∙ log (𝑝 (𝑖, 𝑗))
Homogeneity I ∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗)1 + |𝑖 − 𝑗|
Homogeneity II ∑

𝑖

∑
𝑗

𝑝(𝑖, 𝑗)1 + |𝑖 − 𝑗|2
Maximum Probability 𝑚𝑎𝑥𝑖,𝑗𝑝(𝑖, 𝑗)
Sum of square ∑

𝑖

∑
𝑗

(𝑖 − V)2𝑝(𝑖, 𝑗)
Sum average

2𝐿∑
𝑖=2

𝑖 ∙ 𝑝𝑥+𝑦(𝑖)
Sum energy − 2𝐿∑𝑝𝑥+𝑦(𝑖) ∙ log (𝑝𝑥+𝑦 (𝑖))
Sum variance

2𝐿∑
𝑖=2

(𝑖 − 𝑆𝑢𝑚 𝑒𝑛𝑔𝑒𝑟𝑦)2 ∙ 𝑝𝑥+𝑦(𝑖)
Difference variance

𝐿−1∑
𝑖=0

𝑖2 ∙ 𝑝𝑥−𝑦(𝑖)
Difference entropy −𝐿−1∑

𝑖=0

𝑝𝑥−𝑦(𝑖) ∙ log(𝑝𝑥−𝑦 (𝑖))
Information measure of correlation I

(−∑𝑖 ∑𝑗 𝑝 (𝑖, 𝑗) ⋅ log (𝑝 (𝑖, 𝑗))) − (−∑𝑖∑𝑗 𝑝 (𝑖, 𝑗) ⋅ log (𝑝𝑥 (𝑖) 𝑝𝑦 (𝑗)))
max (−∑𝑖 𝑝𝑥 (𝑖) ⋅ log (𝑝𝑥 (𝑖)) , −∑𝑖 𝑝𝑦 (𝑖) ⋅ log (𝑝𝑦 (𝑖)))

Information measure of correlation II (1 − exp[−2((−∑
𝑖

∑
𝑗

𝑝𝑥 (𝑖) 𝑝𝑦 (𝑗) ⋅ log(𝑝𝑥 (𝑖) 𝑝𝑦 (𝑗))) − (−∑
𝑖

∑
𝑗

𝑝 (𝑖, 𝑗) ⋅ log(𝑝 (𝑖, 𝑗))))])
1/2

Inverse Difference Normalized ∑
𝑖

∑
𝑗

𝑝(𝑖, 𝑗)1 + |𝑖 − 𝑗|2/𝐿
Inverse difference moment normalized ∑

𝑖

∑
𝑖

𝑝(𝑖, 𝑗)
1 + (𝑖 − 𝑗)2/𝐿

𝑝(𝑖, 𝑗) is the (𝑖, 𝑗)𝑡ℎ entry of the cooccurrence probability matrix, and 𝐿 represents the number of gray levels used, while 𝜇𝑥, 𝜇𝑦 and 𝜎𝑥, 𝜎𝑦 are the mean and
standard deviation of the 𝑝.

computation time. In turn, irrelevancy may cause poor pre-
dictive accuracy. To handle these problems, feature selection
was performed in advance of classification. Feature selection
is often applied in computer vision when many features

get extracted. It improves the prediction performance and
generalization capability and provides a faster andmore cost-
effective model. Feature selection is generally divided into
two techniques: filter and wrapper [36]. In filter techniques,
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Table 5: List of GLRLM features and their associated equations.

Features Equations

Short run emphasis (SRE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)𝑗2
Long run emphasis (LRE)

1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑗2

Low gray-level run emphasis (LGRE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)𝑖2
High gray-level run emphasis (HGRE)

1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑖2

Short run low gray-level emphasis (SRLGE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)𝑖2 ∗ 𝑗2
Short run high gray-level emphasis (SRHGE)

1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑖2
𝑗2

Long run Low gray-level emphasis (LRLGE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗) ∗ 𝑗2
𝑖2

Long run high gray-level emphasis (LRHGE)
1𝑛𝑟
𝐺∑
𝑖=1

𝑅∑
𝑗=1

𝑔 (𝑖, 𝑗)∗ 𝑖2 ∗𝑗2

Gray level nonuniformity (GNU) 1𝑛𝑟
𝐺∑
𝑖=1

[ 𝑅∑
𝑗=1

𝑔(𝑖, 𝑗)]
2

Run length nonuniformity (RNU) 1𝑛𝑟
𝑀𝐺∑
𝑗=1

[ 𝑅∑
𝑖=1

𝑔(𝑖, 𝑗)]
2

Run percentage (RP)
𝑛𝑟𝑛𝑝

𝑔(𝑖, 𝑗) denotes the number of runs of pixels of gray level 𝑖 and the run length 𝑗,𝐺 is the number of gray levels in the image, 𝑅 is the number of different run
lengths in the image, 𝑛𝑟 is the total number of runs, and 𝑛𝑝 is the number of pixels in the image.

Table 6: List of various features extracted from each nucleus.

Name of Feature sets Number of Features Ranges
Morphometric Features 14 F1-F14
Colorimetric Features 6 F15-F20
CCFOS (Textural Features) 49 F21-F69
GLCM (Textural Features) 88 F70-F157
GLRLM (Textural Features) 44 F158-201
Combined Feature Set 201 F1-F201

the features are chosen depending on their relevance ability
with respect to the target. Filter methods are computationally
fast and easy to implement.However, there is a possibility that
the chosen features might contain redundant information
since the selection process is carried out on the statistical
measure of each feature. Unlike the filter approach, the
wrapper approach depends on learning methods. It utilizes
the estimated accuracy of the learning method as a perfor-
mance measure to evaluate the usefulness of a feature. As
an extension of the wrapper approach, the hybrid approach,
which combines metaheuristics methods and supervised
learning methods as integral components of feature selection,
has been widely utilized in medical image analysis [37–
39]. Experiments have found that hybrid methods are more

efficient in finding optimal solutions compared to filter and
wrapper methods. The main benefit of the hybrid methods
is the ability to avoid being stuck in the local optima. In
this study, a novel hybrid feature selection method based on
hybridizing simulated annealing, one of the metaheuristics
methods, with an artificial neural network, one of the popular
machine learning methods, was developed to select the most
relevant and informative features. The proposed method is
known as a hybrid simulated annealing coupling artificial
neural network (SA-ANN) feature selection. The details of
SA-ANN are given in the subsection below.

3.6.1. Hybrid SA-ANNFeature Selection. Simulated annealing
is a global optimization algorithm that is inspired by the
natural annealing process inmetallurgy. Itmodels the anneal-
ing process of heating material and then gradually cooling
it by lowering the temperature at a controlled rate, thus
minimizing system energy [40]. It is typically used to search
for the global minimum in a high-dimensional data space.
The main advantage of SA is that it allows up-hill moves in
the iteration to avoid being stuck at a local minimum. SA
has been widely used as a supervised or unsupervised feature
subset selectionmethod in datamining techniques, especially
for microarray gene classification in biomedical data analysis
[41–43]. Inspired by those works, in this study, we developed
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Input: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑡,𝑀𝑎𝑥𝐼𝑡, 𝑇𝑒𝑚𝑝, 𝑎𝑙𝑝ℎ𝑎
Output: 𝑆𝑏𝑒𝑠𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑢𝑏𝑠𝑒𝑡 ←󳨀 𝐶𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑡)𝐶𝑜𝑠𝑡(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ←󳨀 𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑁𝑁(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑢𝑏𝑠𝑒𝑡)𝑆𝑏𝑒𝑠𝑡 ←󳨀 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐹𝑜𝑟 (𝑖 = 1 : 𝑀𝑎𝑥𝐼𝑡)𝑁𝑒𝑤𝑠𝑢𝑏𝑠𝑒𝑡 ←󳨀 𝐶𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝐶𝑜𝑠𝑡(𝑆𝑖), 𝑆𝑖 ←󳨀 𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑁𝑁(𝑁𝑒𝑤𝑠𝑢𝑏𝑠𝑒𝑡)
𝑖𝑓 (𝐶𝑜𝑠𝑡(𝑆𝑖) ≤ 𝐶𝑜𝑠𝑡(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ←󳨀 𝑆𝑖
𝑒𝑙𝑠𝑒𝑖𝑓(𝐸𝑥𝑝(𝐶𝑜𝑠𝑡𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐶𝑜𝑠𝑡𝑆𝑖𝑇𝑒𝑚𝑝 ) > 𝑅𝑎𝑛𝑑 ())

𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ←󳨀 𝑆𝑖
𝐸𝑛𝑑𝑖𝑓 (𝐶𝑜𝑠𝑡(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 𝐶𝑜𝑠𝑡(𝑆𝑏𝑒𝑠𝑡)𝑆𝑏𝑒𝑠𝑡 ←󳨀 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑑𝑇𝑒𝑚𝑝 = 𝑇𝑒𝑚𝑝 ∗ 𝑎𝑙𝑝ℎ𝑎

𝐸𝑛𝑑𝑅𝑒𝑡𝑢𝑟𝑛(𝑆𝑏𝑒𝑠𝑡)
Algorithm 1: The main loop of hybrid SA-ANN based feature
selection.

a novel hybrid feature selection method by hybridizing SA
with an artificial neural network (ANN). ANN is a machine
learning algorithm that mimics the structure of the biological
brain. During feature selection via hybrid SA-ANN, the cost
value of SA based search space was computed depending on
the number of samples correctly predicted by ANN. Firstly,
the random initial feature subsets were created.These subsets
were assessed using a 3-layer ANN trained by a Levenberg-
Marquardt (LM) backpropagation algorithm [44] containing
a fixed number of hidden neurons. The features with the
most minimal cost were initialized as the best feature set. At
each iteration of SA, the neighboring subset was randomly
generated by implementing a neighborhood function. Then,
in a similar manner to the first stage, a 3-layer ANN trained
by LM backpropagation algorithm was used to evaluate the
cost of the neighboring subset. If the neighboring subset had
a lower cost than the initial subset, we would then change
the initial subset to its neighboring subset. Alternatively, if
the neighboring subset had a higher cost, then the individual
would move to that subset only if the acceptance probability
condition was fulfilled. Otherwise, the individual remained
in the initial subset. By accepting individuals that increase the
cost, the algorithm avoids getting stuck by a local minimum
in early iterations and explores globally for better solutions.
As the algorithm progresses, the temperature is reduced
causing individuals to converge towards the subset with a
minimum cost and hence an optimal point. Hybrid SA-ANN
feature selection can be summarized using the pseudocode
in Algorithm 1, wherein feature set, MaxIt, Temp, and
alpha are the candidate features, maximum numbers of
iteration, initial temperature, and the temperature reduction
rate, respectively. S best is the output that represents the
corresponding optimal feature set.The selected features in the
optimal feature set were utilized for training and testing the

classifier. The code implementation of proposed hybrid SA-
ANN feature selection is based on theMatlab implementation
available in [45] and modified as necessary.

3.7. Classification. The selected features were utilized as input
to the classifier to differentiate between benign andmalignant
cells. In cytology and histology image analysis, classification
models revolve around Support Vector Machine (SVM)
[26, 27], Naı̈ve Bayes (NB) [27], artificial neural network
(ANN) [28], K-nearest neighborhood (KNN) [8, 27], Logistic
Regression (LR) [29], Linear Discriminant Analysis (LDA)
[8], Decision Tree (DT) [46], and Ensemble Classifier (EC)
[31].The selection of a classification model for medical image
analysis depends on the type and size of the dataset to be
classified. Our dataset of cell nuclei was large and highly
unbalanced wherein the class of cancer nuclei was limited
while the class of benign nuclei was abundant. Ensemble
classification has yielded preferable results for classification
of skewed data [47, 48]. Thus, to deal with the unbalanced-
data distribution, we adopted an ensemble classifier that
employs bootstrap aggregation (bagging) decision trees and
is termed as ECBDT [49, 50]. The core idea of using ECBDT
was to develop multiple bootstrap data-samples and to build
multiple base classifiers for each bootstrapped sample. One
hundred decision trees were used as the base classifiers. The
final prediction of ECBDT was obtained through major vot-
ing. The block diagram of the ECBDT classifier is depicted in
Figure 7. The classifier was trained in 5-fold cross-validation.

4. Experiments

4.1. Experimental Setup. The proposed CAD system pre-
sented here was developed in a Matlab environment using
a PC with Intel� Core i7, CPU@3.40 GHz, RAM@16.0
GB. The study was based on 125 cytology pleural effusion
images containing around 10500 cells. The studied dataset
was randomly partitioned into training and testing sets in an
80-20% ratio. 80% of the images were allocated to the training
dataset to train the classifier and 20% to the testing dataset
to validate the trained classifier. Training and testing datasets
were disjointed (i.e., the same image was not assigned to
represent both training and testing datasets). It is noteworthy
that all the experiments carried out in this study are based on
the same experimental setting and environment.

4.2. Experimental Results and Discussion. To obtain a com-
prehensive discussion, the experimental results are discussed
in two phases. The first phase is the segmentation phase,
which encompasses preprocessing, the segmentation of cell
nuclei, postprocessing, and the isolation of cell nuclei. The
second phase is the classification phase, which comprises
feature extraction, feature selection, and classification.

4.2.1. Segmentation Phase. Intensity adjustment and median
filter methods were employed to enhance image contrast
and suppress the noises, respectively. Then, a novel hybrid
SLIC/K-Means segmentation method was developed to seg-
ment the cell nuclei from the entire image. In SLIC/K-Means,
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Figure 7: Block diagram of ensemble classifier of bagged decision trees (ECBDT) used in this study.

Table 7: Comparison of time complexity in segmentation methods
using testing images.

Segmentation methods Average processing time
Classical K Means 66.6 seconds
Proposed Method 5.8 seconds

the SLICmethod is firstly performed to presegment the image
into the small compact superpixels.Then,K-Means clustering
is carried out to cluster each superpixel into two groups
by using the extracted features from superpixels. Features
extracted over the uniform and compact SLIC superpixels
tend to be more discriminative, helping K-Means to produce
better segmentation. Good adherence to the image bound-
aries exhibited by SLIC superpixels results in smoother and
more accurate segmentation.UtilizingK-Means clustering on
superpixels can shorten computation because the number of
superpixels is significantly lower than the number of pixels. It
scales up linearly in computational cost and memory usage.
The proposed segmentation method extracts cell nuclei at a
lower computational cost and preserves the natural shape of
the cell nuclei while achieving excellent segmentation results.
In the hybrid SLIC/K-Means segmentation method, we need
to specify two parameters: the number of superpixels for
SLIC and the k clusters for K-Means. The desired number
of superpixels was set to 500. According to our previous
work, k was set at 2 because cell nuclei are segmented in
a straightforward way when k is 2. False findings such as
artifacts or blood cells may present obstacles to accurate
segmentation. These undesired regions were filtered out
with a series of morphological operations. Subsequently,
the boundaries of cell nuclei were furthered refined. The
visual results of the proposed SLIC/K-Means n and classical

Table 8: Comparison of time complexity in splitting methods using
testing images.

Splitting methods Average processing time
Concavity analysis 10.2 seconds
Proposed method 6.8 seconds

K-Means, supplemented by the same preprocessing and
postprocessing approaches, are demonstrated in Figure 8.
Compared to classical K-Means clustering based segmenta-
tion, the proposed method performs better in preserving the
natural shape of the cell nuclei. Moreover, it is significantly
faster than classical K-Means in computation, as given in
Table 7.

Almost all the images in the studied dataset possessed
an overlapped cell nucleus to different degrees. Separating
them into individual ones was hence essential. In almost
all related literature, cell splitting is applied directly on the
entire segmented image.Thismeans that the splitting method
is processed not only on overlapped regions but also on
single cell nuclei regions. Such an attempt can lengthen
computation time. In contrast, we propose a sequential
combination of shape-based analysis and concavity analysis
to identify overlapped areas and isolate them into individual
ones. First, shape-based analysis was performed to determine
the overlapped cell nuclei and separate them from single
cell nuclei regions. Then, contour concavity analysis based
splitting is applied only on the identified overlapped nuclei,
rather than on all nuclei in the image. By identifying over-
lapped regions before applying the splitting method, one can
not only prevent over- and undersplitting but also shorten
computation time, as tabulated in Table 8. The visual results
of splitting overlapped cell nuclei are illustrated in Figure 9.



14 BioMed Research International

(a) (b) (c)

Figure 8: Comparison results of nuclei segmentationmethods: (a) original image, (b) proposed method (SLIC +K-Means), and (c) K-Means
clustering based segmentation.

(a) (b) (c)

Figure 9: Comparison results of overlapped nuclei splitting methods: (a) segmented nuclei (input), (b) proposed splitting method based on
the combination of shape analysis and concavity analysis, and (c) contour concavity analysis (note that the yellow rectangular box indicates
the over- and undersplitting).

Figure 9(a) shows the segmented nuclei image. Figure 9(b)
represents the resulting images from our proposed splitting
methods (i.e., the combination of shape analysis and contour
concavity analysis) and Figure 9(c) depicts the resulting
images from classical contour concavity analysis. As shown
in Figure 9(b), employing a splitting method only on the
identified overlapped region can prevent the single cell
nuclei from oversplitting and overlapped cell nuclei from
undersplitting. This happens because the splitting method is
focused solely on the overlapped area. The yellow shading

box in Figure 9(c) is illustrated to highlight the over- and
undersplitting which result from using the classical concavity
analysis based splitting method.

4.2.2. Classification Phase. Once the nuclei were accurately
delineated, 201 features representing the morphometric, col-
orimetric, and textural features were extracted from each
nucleus. In order to avoid redundancy and irrelevancy, hybrid
SA-ANN feature selection was developed to choose the most
discerning and informative features. Promising features that
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Figure 10: Correlation matrix for the selected features using hybrid SA-ANN feature selection (note that correlation =1 (white) means the
highest correlation, -0 (black) no correlation).

Table 9: Description of selected features through hybrid SA-ANN feature selection.

No. Feature Code Feature Name Feature Set
(1) F37 Smoothness of B component CCFOS
(2) F163 Short run high gray-level emphasis GLRLM0
(3) F 51 Smoothness of S component CCFOS
(4) F 82 Sum of square GLCM0
(5) F 96 Cluster Prominence GLCM45
(6) F 55 Energy of S component CCFOS
(7) F 146 Homogeneity II GLCM 135
(8) F 19 Mean color of S component Colorimetric
(9) F 25 Skewness of R component CCFOS
(10) F 187 Long run high gray-level emphasis GLRLM 90
(11) F 88 Information Measure of Correlation GLCM0
(12) F 132 Difference Entropy GLCM 90
(13) F 2 Perimeter Morphometric
(14) F 12 MaxIntensity Morphometric
(15) F 183 High gray-level run emphasis GLRLM 90
(16) F4 Solidity Morphometric
(17) F 70 Autocorrelation GLCM 0
(18) F 28 Mean from G component CCFOS
(19) F 168 Run percentage GLRLM0
(20) F 128 Sum Entropy GLCM0

correctly map to the target are identified by supervised
ANN and used in the annealing process. The SA-ANN
algorithm was iterated 50 times with an initial temperature
(temp=10) and temperature reduction rate (alpha=0.99).The
algorithm was adapted to select a different desired number
of features (nf) such as 15, 20, 25, 30, 35, and 40. Based
on the experimental results obtained, it was deduced that

selecting more than 20 features resulted in slightly decreased
classification accuracy. Thus, the SA-ANN algorithm was
fixed to select 20 features out of 201 features. The list of
selected features and their correlation matrix are described in
Table 9 and Figure 10, respectively. By analyzing the selected
features, it was revealed that they included one or more
representative features from each group of features given in
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Section 3.5. Among 20 selected features, 16 features were
textural features. Thus, it is reasonable to conclude that tex-
tural features supply more diagnostic information than other
features. Moreover, the correlation matrix demonstrates that
proposed hybrid SA-ANN feature selection selected the most
significant features with less redundant information. The
selected features were used as input to the classification
model to predict malignancy. Classification model choice
depends on the size and the type of data to be predicted.
Our data is highly skewed, wherein the cell nuclei, belonging
to malignant (positive), were limited, and the cell nuclei

belonging to benign (negative) were abundant. Thus, we
adopted ensemble classification which provides preferable
results to the classification of unbalanced data. As mentioned
in Section 3.6, the dataset was firstly bootstrapped randomly,
and 100 decision trees were used as the base classifiers to
classify the bagged datasets. The final classification result was
obtained throughmajor voting. To evaluate classification per-
formance, we compared the ground truth and classification
results with respect to four performance metrics: sensitivity,
specificity, F-score, and accuracy. These four performance
measures are formulated in (3)-(8).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒) (3)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒(𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒) (4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒) (5)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 (6)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (7)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒)
(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖V𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖V𝑒) (8)

To make a fair and objective comparison, a common
public dataset is required. By far, we are not aware of
any common publicly available dataset. Also, the diagnosis
schemes of CPE images in related literature are different
from the proposed diagnosis scheme.Thus, we built our own
experimental setup wherein the impact of using different
feature selection methods and different classification models
on classification performance was observed. In the first
three experimental scenarios, we compared the classifica-
tion accuracy achieved with and without features using
the proposed classifier (i.e., ECBDT). In the first scenario,
we compared the results between our proposed SA-ANN
approach and an “all features” approach (i.e., without feature
selection). Secondly, the result of the SA-ANN approach
was compared with the results of the SA approach. In the
third scenario, we established a comparison between the SA-
ANN approach and other robust hybrid feature selection
methods: PSO-ANN and GA-ANN approach. Furthermore,
in the fourth experimental scenario, we employed seven
alternative classifiers, namely, SVM [23], ANN [51], NB [52],
KNN [53], LR [52], LDA [54], and DT [55] classifiers, and
coupled them with the feature selection approaches. The
result achieved by the proposed synergy between SA-ANN
feature selection and ECBDT classification was compared
with the results obtained through various pairings.Therefore,
for each feature selection approach, the experimental results
are presented with respect to four performance measures and
eight classification models (including ECBDT). The results

from four experimental scenarios are shown in Table 10.
We clarify that hybrid SA-ANN coupling with an ECBDT
classifier (shaded in bold) is our proposed method. As
reported in Table 10, utilizing the feature selection methods
(i.e., SA-ANN, SA, PSO-ANN, GA-ANN, or SA) provided
better accuracy compared to the all features approaches (i.e.,
without feature selection) for all classifiers. The results also
demonstrate that, with the exception of coupling with SVM,
KNN, and LR classifiers, the proposed SA-ANN selection
marginally improves accuracy compared to the SA based
approach and yields better accuracy compared to PSO-ANN
and GA-ANN approaches when coupling with ANN, NB,
LD, DT, and proposed ECBDT classifiers. When coupling
with an SVM classifier, the PSO-ANN approach yields better
results compared to other selection approaches. Similarly, the
GA-ANN approach yields better accuracy compared to other
feature selectionmethodswhen couplingwithKNNclassifier.
Likewise, the SA approach yields better accuracy compared to
other feature selection methods when coupling with LR. The
superior feature selection method for each classifier is shown
in italic. It was observed that different classifiers perform
differently for different selected features. However, regardless
of the feature selection methods utilized, ECBDT (ensemble
classifier) consistently provided better accuracy compared to
other single classifiers. From the experimental results, it is
inferred that the synergy of hybrid SA-ANN coupling with
an ECBDT classifier outperformed other pairs of feature
selection approaches and classification models described
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Table 10: Comparison of classification performance achieved by different synergy between feature selection methods and classification
models.

Feature Selection (FS) Performance Metrics Classifiers
SVM ANN NB KNN LR LDA DT Proposed ECBDT

All features (No FS)

Sensitivity 72.18% 75.19% 66.17% 72.93% 71.43% 75.19% 71.43% 74.48%
Specificity 95.47% 94.48% 93.41% 95.51% 94.82% 95.12% 94.10% 96.11%
F-score 57.31% 55.25% 46.93% 57.91% 54.44% 57.64% 51.91% 61.73%
Accuracy 94.21% 93.44% 91.95% 94.29% 93.57% 94.05% 92.88% 94.98%

PSO-ANN

Sensitivity 73.65% 70.91% 69.16% 74.29% 69.23% 69.16% 71.83% 76.47%
Specificity 96.64% 96.11% 95.67% 96.72% 96.11% 95.67% 96.32% 97.09%
F-score 76.29% 77.33% 74.30% 75.96% 69.96% 74.30% 80.42% 80.28%
Accuracy 97.21% 97.25% 96.64% 97.21% 97.29% 96.64% 97.73% 97.73%

GA-ANN

Sensitivity 87.97% 86.47% 64.66% 87.97% 87.22% 64.66% 86.47% 86.47%
Specificity 97.22% 97.09% 99.44% 98.20% 97.31% 99.44% 98.63% 98.93%
F-score 74.29% 72.78% 74.14% 80.14% 74.36% 74.14% 82.14% 84.25%
Accuracy 96.72% 96.52% 97.57% 97.65% 96.76% 97.57% 97.98% 98.26%

SA

Sensitivity 85.71% 86.47% 90.23% 84.21% 84.96% 90.23% 84.21% 87.22%
Specificity 97.22% 97.73% 97.60% 97.52% 98.37% 97.60% 99.14% 99.27%
F-score 73.08% 76.41% 77.67% 73.93% 79.58% 77.67% 84.53% 87.22%
Accuracy 96.60% 97.13% 97.21% 96.80% 97.65% 97.21% 98.34% 98.62%

Proposed SA-ANN

Sensitivity 85.71% 72.93% 72.93% 84.21% 79.70% 72.93% 86.47% 87.97%
Specificity 97.22% 99.70% 99.66% 97.52% 98.16% 99.66% 99.27% 99.40%
F-score 73.08% 81.86% 81.51% 73.93% 75.18% 81.51% 86.79% 87.79%
Accuracy 96.60% 98.26% 98.22% 96.80% 97.17% 98.22% 98.58% 98.70%
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Figure 11: Comparison of accuracy using different pairs of feature selection methods and classifiers.

above in terms of classifying cells in CPE images. To get
clear comparison results, we further plotted the comparison
of accuracy and F-score as illustrated in Figures 11 and 12,
respectively. Moreover, a Receiver Operating Characteristics
(ROC) curve for different classifiers coupling with SA-ANN
feature selection is depicted in Figure 13. It shows that
the ROC curve of the proposed method is on the left
upper corner and has higher classification rate stability when
compared to other methods in the study. The visual results
of detected malignant nuclei (both correct and failed cases)
are depicted in Figure 14. Figure 14(a) shows annotated
malignant cell nuclei labeled by two experts inwhich blue and
green represent the two experts. Figure 14(b) describes the

diagnostic results of the proposed CAD system wherein the
red bounding boxes represent the detected malignant cells.
Even though the proposed method yields promising results,
there are still some failures especially when the malignant
characteristics of a cell occur in the cytoplasm. Therefore, it
remains for future work to detect for malignancy based on
the combined analysis of cell nuclei and cytoplasm.

5. Conclusion

In this study, we presented a novel CAD system to detect
cancer cells on CPE images. Firstly, intensity adjustment
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Figure 13: ROC curve for the performance of SA-ANN feature selection by blending with eight different classifiers.

and median filter methods were employed to enhance image
contrast and suppress noise, respectively. Then, the cell nuclei
were extracted using a novel hybrid SLIC/K-Means seg-
mentation method followed by postprocessing. Overlapped
nuclei regions were then identified through shape-based
analysis. Subsequently, concavity analysis was utilized to
isolate the detected overlapping regions into individual ones.
After the cell nuclei were accurately delineated, 201 features
that comprise the morphometric, colorimetric, and textural
features were extracted fromeach nucleus. A feature selection
framework based on a hybrid SA-ANN was developed to
select the most significant and informative features from the
initial feature set containing those 201 features. The chosen
features were used as input into ECBDT classifier to predict
for malignancy. The proposed method can achieve 87.97%
sensitivity, 99.40% specificity, 98.70% accuracy, and 87.80%
F-score. The results achieved were compared with the results
gained through an “all features”, SA, PSO-ANN, and GA-
ANN approaches by coupling with eight different classifiers,
namely, ECBDT, SVM, ANN, NB, KNN, LR, LDA, and DT.

The comparison results demonstrated that the hybrid SA-
ANN approach significantly improves accuracy compared to
the “all features” approach for all classifiers. It marginally
improves accuracy compared to the PSO-ANN, GA-ANN,
and SA methods for most classifiers. Furthermore, the
ECBDT classifier consistently improves classification perfor-
mance compared to other individual classifiers: SVM, ANN,
NB, KNN, LR, LDA, and DT. The proposed CAD system
based on the synergy between SA-ANN feature selection and
an ensemble classifier outperformed all other combinations
conducted in this study. Nevertheless, there were still some
failures, especially when the malignant characteristics of a
cell occur in the cytoplasm. Hence, the future work of this
research is to extend the combined analysis of cytoplasm and
nuclei and further classify the detected malignant cells into
different types, such as lung carcinoma, breast carcinoma,
mesothelioma, and lymphoma. There is also a potential of
adapting the proposed CAD system to the same kind of
cytopathology images captured from other body fluid types
such as the peritoneal, cerebrospinal, and synovial fluid.
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(a) (b)

Figure 14: Visual demonstration of diagnostic results using the proposed CAD system to detect malignant cells in CPE images: (a) the
original image with ground truthmalignant cells annotated by two experts (blue and green circles represent the two experts) and (b) detected
malignant cells through the proposed CAD system.
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Background. Atypical vascular pattern is one of the most important features by differentiating between benign and malignant
pigmented skin lesions. Detection and analysis of vascular structures is a necessary initial step for skin mole assessment; it is a
prerequisite step to provide an accurate outcome for thewidely used 7-point checklist diagnostic algorithm.Methods. In this research
we present a fully automatedmachine learning approach for segmenting vascular structures in dermoscopy colour images. The U-
Net architecture is based on convolutional networks and designed for fast and precise segmentation of images. After preprocessing
the images are randomly divided into 146516 patches of 64 × 64 pixels each. Results. On the independent validation dataset
including 74 images our implemented method showed high segmentation accuracy. For the U-Net convolutional neural network,
an average DSC of 0.84, sensitivity 0.85, and specificity 0.81 has been achieved. Conclusion. Vascular structures due to small size
and similarity to other local structures create enormous difficulties during the segmentation and assessment process. The use of
advanced segmentation methods like deep learning, especially convolutional neural networks, has the potential to improve the
accuracy of advanced local structure detection.

1. Introduction

Melanoma is the deadliest form of skin cancer which devel-
ops when skin cells multiply rapidly as a consequence of
mutations in their DNA caused by the sun’s ultraviolet (UV)
radiation (Figure 1). Melanoma is a cancer that starts in the
melanocytes which are cells that make a brown pigment
called melanin, which gives the skin its tan or brown colour
[1]. Other names for this cancer includemalignant melanoma
and cutaneous melanoma. Most melanoma cells still make
melanin, so melanoma tumours are usually brown or black
but can appear pink, tan, or even white [1]. The introduction
of dermoscopy has improved the accuracy of diagnosis of
melanoma.

According to the World Health Organization about
132,000 new cases of malignant melanoma are diagnosed
worldwide each year. In some parts of the world, especially
in New Zealand and Australia, melanoma is becoming more
common every year and has more than doubled in the past
30 years [2]. For 2018 it is predicted that 14,320 new cases of

melanoma skin cancer will be diagnosed in Australia which
is estimated to be 10,4% of all new diagnosed cancer cases [3].

One of the main goals in prevention of malignant
melanoma is awareness, early diagnosis and surgical excision.
The introduction of dermoscopy has improved the accuracy
of diagnosis of melanoma. Digital dermoscopy is currently
the most used technology, although novel methods, such
as confocal microscopy, show promising result. Nowadays,
dermatologists work in order to define the different skin
lesion types based ondermatoscopic features to improve early
detection (Figure 2) [4].

1.1. Motivation. Recently, the most commonly used diagnos-
tic method is the 7-point checklist algorithm. The 7-point
checklist is a diagnostic method that requires the identifica-
tion of only 7 dermoscopic criteria, thus enabling even less
experienced clinicians to perform the skinmole examination.
One of the most important dermoscopic criteria is the
atypical vascular pattern which has the second highest odds
ratio of 7.42 and is among the 3 most important features that
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Figure 1: Melanocytic lesion analysis is one of the most difficult areas in modern dermatology. The challenges fall into two broad categories,
namely, the recognition of rare but characteristic entities and the much more common problem of where to place an unusual lesion on the
spectrum of melanocytic lesions. Examples of melanocytic lesions: (a) melanoma in situ, (b) dermal nevus, Unna type, and (c) early invasive
melanoma.

DERMOSCOPY

Figure 2: Examination of pigmentmole with a dermatoscope.Diag-
nostic instrument commonly used for dermoscopic examination is a
hand-held dermatoscope.Dermoscopy is a noninvasivemethod that
allows evaluation of colours and microstructures of the epidermis,
the dermoepidermal junction, and the papillary dermis not visible
to the naked eye.

indicate the malignancy of the skin mole. Atypical vascular
pattern appears as linear-irregular or dotted vessels not
clearly combined with regression structures and associated
with other local structures [6, 7]. Dermoscopy images show
only the horizontal inspection of the skin lesion. Vascular
structures that are located in parallel to the skin’s surface
will appear as a line, while those located vertically to the
skin’s surface will become visible as dots and nodes. In this
respect, we observe a strong connection between the vascular
structure and tumour progression and volume. Flat and
superficial amelanotic/hypomelanotic melanoma and basal
cell carcinoma will display different vascular structures than
those of their thick or nodular counterparts (Figure 3) [8].

Based on the information above exact detection and
classification of vascular structures is a crucial step in early
and accurate diagnosis of malignant melanoma. In this paper
we present a new and of the first approaches to the detection
of vessels in dermoscopic colour images. In this study, deep
learning methods (CNNs) have been used to fully automati-
cally localize and segment vascular structure. To evaluate the
performance of deep learning segmentation, we compared
the outcome with the manual segmentation. Deep learning
technologies have the potential to improve the accuracy and
speed up the diagnosis of skin structure in clinical settings.

1.2. Related Works. To the best of our knowledge only few
attempts have been made to detect vascular structures in
dermoscopic colour images. Recently, Kharazmi et al. inwork
[9] proposed a data-driven feature learning framework based

on stacked sparse autoencoders (SSAE) for comprehensive
detection of cutaneous vessels. The proposed framework
demonstrated performance of 95.4% detection accuracy over
a variety of vessel patterns. Betta et al. in work [10] presented
a method for the identification of atypical vessels. Due to
the difficulty to obtain a relevant number of epilumines-
cence microscopy (ELM) images with the occurrence of this
local structure, the training set was constituted by pixels
selected as vascular pattern in a set of images containing
occurrences of this criterion. The Hue, Saturation, and
Luminance components were evaluated and the frequency
histograms corresponding to the three colour planes were
determined. The pixel classification depended on the value
of the particular HSL component. However, the authors
warned that in some cases the algorithm misclassified the
area, evidencing a low specificity [4, 11]. In 2014, Fabbrocini
et al. proposed an automatic detection algorithm combin-
ing colour segmentation and structural analysis [12]. The
skin lesion area was matched with the texture descriptors
(entropy, inverse difference moment, and correlation) based
on the gray level cooccurrence matrix in order to exclude
texture areas. Then, a statistical analysis of the segments
was performed. The system has been tested on 200 medical
images and achieved 80% sensitivity, and 78% specificity.
More recently Kharazmi et al. [13] proposed a new approach
to vessel segmentation. Authors firstly decompose the image
using independent component analysis into melanin and
hemoglobin.Using k-means clustering, the hemoglobin com-
ponent is clustered and a vessel mask is generated as a result
of global thresholding. The segmentation sensitivity and
specificity of 90% and 86% were achieved on a set of 500 000
manually segmented pixels provided by an expert. Recently,
advances have been observed in retinal vessel segmentation,
which is another medical area, where vessel segmentation is
crucial for accurate diagnosis and early treatment. In [14]
authors present the implementation of the neural network
structure derived from the U-Net architecture.The algorithm
obtained an AUC-ROC accuracy of 0.98.

2. Material and Methods

Artificial intelligence research has been around formore than
half a century but in recent years a huge progress is observed
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Figure 3: Examples of vascular patterns that can be identified in melanocytic lesions: (a) polymorphous vessels: different vascular
morphologies in the same mole, (b) dotted vessels: small, reddish vessels that resemble a pinhead, and (c) arborizing vessels: large vessels
that branch into finer, small vessels [5].

in widely understood machine learning [15]. Advanced sta-
tistical techniques, known as deep learning models, have
been exploited with impressive results. Convolutional neural
networks applied in this research learn feature representation
automatically from the training data [16]. Deep learning in
general and convolutional neural networks in particular have
been used in variety of pattern recognition problems like
retinal vessel segmentation, lung area detection, or breast
cancer classification [17].

2.1. Overview. As illustrated in Figure 4 the implemented
application is divided into four stages: preprocessing (image
enhancement), patch extraction, training, and valida-
tion.

In this research we use the U-Net convolutional network
architecture introduced by Ronneberger et al. in 2015 [18].
This method was chosen because it is one of the most
promising for the addressed problem, especially, advanced
image segmentation. In this section, the preprocessing step
is described shortly, based on previous works, while the net-
work architecture and training phase are presented in detail.
The preprocessing and patch extraction stages have been
implemented in Matlab 2017a while the neural architecture
and classification process has been performed in Python
using U-Net implementation as proposed by Ronneberger et
al. and developed with TensorFlow [18, 19].

2.2. Image Preprocessing. The first step in every medical
image processing system is the image acquisition, which aims
at obtaining an image of the highest quality. After dermo-
scopic image is acquired, it may not have the expected quality
to perform the diagnostic analysis. Dermoscopic images
are inhomogeneous and complex and furthermore include
extraneous artifacts, such as skin lines, air bubbles, and hairs,
which appear in virtually every image. The preprocessing
stage consists of two parts. The first step is the removal
of black frame that is introduced during the digitization

process. The second step is a hair-removal algorithm which
comprises two parts: hair detection and inpainting. These
steps have been precisely described in our previous works
[20, 21].

2.3. Patches Extraction. After preprocessing we extract 𝑁
small patches 𝑥𝑚,𝑛 of size 64×64 from the dermoscopy image𝐼 and the corresponding annotation 𝐺 at the same position.
The so-called ground-truth mask contains zeros and ones,
where (𝑥𝑖, 𝑦𝑗) = 1 informs that there is a vessel area at this
location. Patch extraction can be performed in few different
ways: nonoverlapping, overlapping, and randomly extracted.
Each of these solutions has its advantages and disadvantages.
To avoid the problem of class imbalance, patches have been
extracted randomly around pixels pointing to vessel area both
from dermoscopy image as well as from the accompanying
masks. For 74 dermoscopy images with different resolution
we have obtained 146516 patches. The size of the patches has
been chosen experimentally and concatenated with the U-
Net architecture. Larger patches require more max-pooling
layers that reduce the localization accuracy, while small
patches allow the network to see only little context [18].

2.4. Network Architecture. U-Net convolutional network is
a popular architecture in the class of encoder-decoders,
where the encoder reduces the spatial dimension of objects
with pooling layers while decoder recovers the object details
with upsampling layers. U-Net is a modified and extended
version of fully convolutional network. Figure 5 presents the
overview of a U-Net architecture.

U-Net consists of contracting path (left side) and an
expansive path (right side). U-Net is like a combination of
convolutional and deconvolution layers. Contracting path
structurally repeats a typical 3 × 3 convolutional layer
(unpadded convolutions) followed by a Rectified Linear Unit
and a 2 × 2 max-pooling operation with stride 2 for down-
sampling.On the expansive path, information ismerged from
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Concat
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Figure 4: Illustration of the proposed system. (a) Image preprocessing involves black frame, hair and air bubble detection, removal or
inpainting, and furthermore image normalization. (b) Patch extraction is carried out in a randomly sliding window with some overlap.
(c) U-Net architecture construction and neural network training.

layers of contracting path of appropriate resolution and layers
of expansive path of lower resolution, so that awhole network
recognizes patterns at several scales. The final layer of a 1 ×1 convolution is used to map each 64-component feature
vectors to the desired number of classes [18]. Input image
is firstly passed through a convolutional layer with Rectified
Liner Unit (ReLu) activation function:

𝑓 (𝑥) = max (0, 𝑥) (1)
The rectifier is an activation function defined as the positive
part of its argument where 𝑥 is the input to a neuron. Our
first layer has 64-feature map. Afterwards the max-pooling
operation is applied. The convolutional layers downsample
the spatial dimension from 64 × 64 to 8 × 8. The expansive
path consists of an upsampling of the feature map followed
by upconvolutional and convolution layerswithReLU [17]. As
we have only 2 classes (present or absent) we use the softmax
classifier that calculates the cross-entropy loss for every single
example:

𝐿 𝑖 = − log( 𝑒𝑓𝑦𝑖∑𝑗 𝑒𝑓𝑗) (2)

The encoder and decoder comprise five layers with (64 - 128
- 256 - 512 - 1024) and (1024 - 512 - 256 - 128 - 64) filters of

size (3 𝑥 3) pixels, respectively. We have chosen the Adam
optimization algorithm that is an extension to stochastic
gradient descent that has recently seen broader adoption for
deep learning applications in computer vision and natural
language processing.

3. Results

3.1. Image Database. The proposed segmentation method
based on the U-Net neural network architecture has been
tested on colour dermoscopic images from a widely used
Interactive Atlas of Dermoscopy [6]. Images for this repos-
itory have been provided by two university hospitals (Uni-
versity of Naples, Italy, and University of Graz, Austria)
and stored on a CD-ROM in the JPEG format. The docu-
mentation of each dermoscopic image was performed using
a Dermaphot apparatus (Heine, Optotechnik, Herrsching,
Germany) and a photo camera (Nikon F3) mounted on a
stereomicroscope (Wild M650, Heerbrugg AG, Switzerland)
in order to produce digitized ELM images of skin lesions. All
the images have been assessed manually by a dermoscopic
expert with an extensive clinical experience. Additionally,
colour images have been used from the 𝑃𝐻2 database [22],
and images available in online libraries [23, 24].The database
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Figure 5: Original layers of U-Net: an encoder-decoder architecture. Each box corresponds to a multichannel feature map. The horizontal
arrow denotes transfer residual information form early stage to later stage.
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Figure 6: Database examples.

included 74 cases with different types of vascular pattern
including linear, dotted, comma, hairpin, and polymorphous.
Dermoscopy colour images have different resolutions, rang-
ing from 0.033 to 0.5mm/pixels. Figure 6 presents samples
from our database.

3.2. Deep Network (CNN) Training. The database set was
divided into training set (80%) and test set (20%). The
training set was used for train the U-Net, while the test
set was used to analyse the training versus test error in
case of overfitting. In the training stage the input image
(patch) and the corresponding ground-truth mask are used
to train the implemented U-Net network. The softmax layer

at the end of the network creates a probabilistic two-channel
output, just like a binary segmentation problem. However,
the ground truth here is a probabilistic map, not a binary
segmentation map. Training is performed for 100 epochs.
As training continuous (seen by epoch) we can see that the
generated mask becomes more precise (Figure 7). Grayscale
images in Figure 7 present predictions as a grayscale map,
where light colours display values near 1, while dark colours
display values near 0.

For the U-Net architecture the patch-size, the batch-size,
and the weighted pixel-wise cross entropy were proved to be
of high importance.The patch-size proved to be best at 64×64
pixels with a large batch-size. When the batch-size is too low,
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Figure 7: Visualization of segmentation precision over 100 epochs. Colour vascular structures in training patch slices (left), accompanying
ground-truth masks (middle), and the predictions (right): (a) 10 epochs, (b) 76 epochs, and (c) 95 epochs.

Figure 8: Examples of the incorrect segmentation of vascular structures. Different unmarked vascular patterns are still visible.

it might be unable to learn, thus negatively impacting total
computation time. The predictions were thresholded at 0.5
and are displayed as a binary masks (Figure 8).

3.3. Analysis of CNN SegmentationMethod. Theperformance
of the U-Net neural network vascular structure segmentation
approach can be assessed based on the analysis of Sørensen
index also known as dice similarity coefficient which is a
statistic used for comparing the similarity of two samples
[25].

Given two binary sets, 𝑋 and 𝑌, the Sørensen’s formula is
defined as

𝐷𝑆𝐶 = 2 |𝑋 ∩ 𝑌||𝑋| + |𝑌| (3)

Using the definition of true positive (TP), false positive (FP),
and false negative (FN), it can be written as

𝐷𝑆𝐶 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (4)

where TP denotes vascular structure pixels, FP denotes vas-
cular structure pixels not detected, FP denotes background
pixels classified as vascular structures.

TheDSC is a statistical measure that calculates the degree
of overlapping between the experimental segmentation and
the manual segmentation and is frequently used to compare
segmentations.

Furthermore, sensitivity and specificity are calculated
using following equation:

𝑆𝐸 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (5)

𝑆𝑃 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (6)

The proposed algorithm achieved an average DSC of 0.84,
sensitivity 0.85, and specificity 0.81. Possible values of DSC
range from 0.0 to 1.0. A perfect classifier or segmentation
model achieves a DSC of 1.0. The mean DSC scored 0.84
in range of 0.54-0.92. Taking into account the fact that
the vascular structures have been segmented manually for
the ground-truth mask the achieved DSC score is very
promising. We observed that the algorithm misclassified
areas which were on the boarder between skin lesion and
vascular structures as well as the red surrounding between
skin mole and healthy skin (Figure 8).

Figure 9 presents few segmentation results with corre-
sponding ground-truth masks and the predictions of the pre-
viously unseen test data. The figure contains three columns.
From the left to the right, each one represents the original
image, the ground-truth, and the segmentation result using
the generated map, respectively. Ground-truth masks and
predictions have been inverted, where white represents vessel
tissue and black nonvessel tissue.

Section Related Works presented the state of the art of
previous studies concerning the segmentation of vascular
patterns in dermoscopy images. In paper [13] authors pre-
sented a method that achieved sensitivity and specificity of
90% and 86%. However, it is difficult to compare these results
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Figure 9: Example of dermoscopy images, accompanying segmentation masks and the predictions.

because our method has been tested on a much broader
database withmore complex images. For the evaluation of the
advantages and correctness of the implemented algorithm,
we present several outcomes with segmented structures
(Figure 9).

4. Conclusions

In this research we have obtained accurate and compre-
hensive results showing that the applying of U-Net neural
networks for local structure detection in dermoscopy colour
images brings a valuable alternative to vascular structure
detection. We believe that this solution can be implemented
as part of a vascular pattern classification algorithm or
furthermore a computer-aided diagnostic system for early
detection of melanoma. Our technique shows a clear advan-
tage over other implemented and stated in the related works
section algorithms including detection accuracy, insensitive
to different dermoscopy image acquisition methods.

4.1. Discussion. Starting from the described framework, fur-
ther research efforts will be firstly addressed to compare and

integrate the very promising approaches reported in the most
recent literature, in order to improve the neural network
and optimize layers and parameters. We will also conduct
a follow-up study after collecting more data with different
vascular patterns. Future research will concentrate on the
possibility of vascular structure classification.

Data Availability

Previously reported dermoscopy imageswere used to support
this study and are available at 10.1016/j.jaad.2003.07.029.These
prior studies (and datasets) are cited at relevant places within
the text as [6].
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This paper proposes amethod usingmultidomain features and support vectormachine (SVM) for classifying normal and abnormal
heart sound recordings. The database was provided by the PhysioNet/CinC Challenge 2016. A total of 515 features are extracted
from nine feature domains, i.e., time interval, frequency spectrum of states, state amplitude, energy, frequency spectrum of
records, cepstrum, cyclostationarity, high-order statistics, and entropy. Correlation analysis is conducted to quantify the feature
discrimination abilities, and the results show that “frequency spectrum of state”, “energy”, and “entropy” are top domains to
contribute effective features. A SVM with radial basis kernel function was trained for signal quality estimation and classification.
The SVM classifier is independently trained and tested bymany groups of top features. It shows the average of sensitivity, specificity,
and overall score are high up to 0.88, 0.87, and 0.88, respectively, when top 400 features are used. This score is competitive to the
best previous scores. The classifier has very good performance with even small number of top features for training and it has stable
output regardless of randomly selected features for training. These simulations demonstrate that the proposed features and SVM
classifier are jointly powerful for classifying heart sound recordings.

1. Introduction

Heart sounds are a series of mechanical vibrations produced
by the interplay between blood flow and heart chambers,
valves, great vessels, etc. [1–3]. Heart sounds provide impor-
tant initial clues in heart disease evaluation for further diag-
nostic examination [4]. Listening to heart sounds plays an
important role in early detection for cardiovascular diseases.
It is practically attractive to develop computer-based heart
sound analysis. Automatic classification of pathology in heart
sounds is one of the hot problems in the past 50 years. But
accurate classification is still an open challenge question. To
the authors’ knowledge, Gerbarg et al. were the first to publish
automatic classification of pathology in heart sounds [5].

Automatic classification of PCG recording in clinical
application typically consists of four steps: preprocessing,
segmentation, feature extraction, and classification. Over the
past decades, features and methods for the classification
have been widely studied. In summary, features may be

wavelet features, time-domain features, frequency domain
features, complexity-based features, and joint time-frequency
domain features. Methods available for classification may
be artificial neural network [6–10], support vector machine
[11, 12], and clustering [13–16]. Unfortunately, comparisons
between previous methods have been hindered by the lack
of standardized database of heart sound recordings collected
from a variety of healthy and pathological conditions. The
organizers of the PhysioNet/CinC Challenge 2016 set up a
large collection of recordings from various research groups in
the world. In the conference, many methods were proposed
for this discrimination purpose, like deep learning methods
[17–19], tensor based methods [20], support vector machine
based methods [21, 22], and others [23–27]. Generally, time
and/or frequency domain features were used in these papers.
The reported top overall scores were 89.2% by [27], 86.2%
by [28], 85.9% by [29], and 85.2% by [30]. In this paper, the
authors extend their previous study [31] and extracted a total
of 515 features for normal/abnormal PCG classification. The
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Figure 1: Flow diagram of the proposed classification.

difference of the proposed method to the existing methods
is that these features are from multidomains, such as time
interval, state amplitude, energy, high-order statistics, cep-
strum, frequency spectrum, cyclostationarity, and entropy.
To the authors’ knowledge, the proposed method in this
paper perhaps uses the most number of features. Correlation
analysis shows the contribution of each feature. A SVM
classifier is used to discriminate abnormal/uncertain/normal
types. Cross validation shows that the proposed features
have excellent generation ability. The mean overall score
based on 20% data training is up to 0.84. It rises to 0.87
based on 50% data training and rises to 0.88 based on 90%
data training. The results demonstrate that the method is
competitive comparison to previous approaches.

2. Methods

2.1. Database. The database used in this paper is provided
by the international competition PhysioNet/CinC Challenge
2016, which can be freely downloaded from the website
[32]. The database includes both PCG recordings of healthy
subjects and pathological patients collected in either clinical
or nonclinical environments. There are a total of 3,153 heart
sound recordings, given as “∗.wav” format, from 764 sub-
jects/patients, lasting from 5 s to 120 s. The recordings were
divided into two classes: normal and abnormal records with
a confirmed cardiac diagnosis. Label “1” was used to present
abnormal (665 recordings) and “-1” to present normal cases
(2488 recordings). A skilled cardiologist was also invited to
evaluate the signal quality for each recording. As he believed
that a recording had good signal quality, it was labeled “1”.
Otherwise, it was labeled “0”.There are 279 recordings which
were labeled as bad signal quality and the rest of 2874 were
labeled as good quality. Details about the database can be
found in [33].

2.2. Flow Diagram of the ProposedMethod. Theflow diagram
of the proposed method to classify PCG recordings is shown
in Figure 1. Each step will be described in the following
subsections.

2.3. Preprocessing. Each PCG recording is high-pass filtered
with a cut-off frequency of 10Hz to remove baseline drift.The

spike removal algorithm is applied to the filtered recording
[34].Then, the recording is normalized to zeromean and unit
standard deviation.

2.4. Heart Sound Segmentation by Springer’s Algorithm.
Springer’s hidden semi-Markov model (HSMM) segmenta-
tion method [35] is used to segment a PCG recording into
four states, i.e., S1, systole, S2, and diastole. Figure 2 shows an
example of this segmentation. Hence, the following signals
can be defined and further used for feature extraction. 𝑥(𝑛)
is a digital PCG recording where 𝑛 is the discrete time
index. 𝑠1𝑖(𝑛) and 𝑠2𝑖(𝑛) are S1 and S2 signals occurring in
the ith cardiac cycle, respectively. 𝑠𝑦𝑠𝑖(𝑛) and 𝑑𝑖𝑎𝑖(𝑛) are
the signals of systolic interval and diastole interval in the
ith cardiac cycle, respectively. 𝑐𝑖(𝑛) is the signal of the ith
cardiac cycle. Hence, 𝑐𝑖(𝑛) consists of the digital sequence of
[𝑠1𝑖(𝑛)𝑠𝑦𝑠𝑖(𝑛)𝑠2𝑖(𝑛)𝑑𝑖𝑎𝑖(𝑛)].

2.5. Features Extracted in Multidomains

2.5.1. Time-Domain Features (20 Features). After the segmen-
tation operation, a PCG recording is divided into many states
in the order of S1, systole, S2, and diastole. The time interval
of each state can be measured by the time difference between
the beginning and the end. The cardiac cycle period can
be measured by the time difference between the beginnings
of two adjacent S1s. Since the intervals have physiological
meanings in view point of heart physiology, Liu et al. [33]
proposed 16 features from the intervals as shown in Table 1.
Another 4 features from time-domain intervals are added in
this paper.

2.5.2. Frequency Domain Features for States (77×4=308 Fea-
tures). Frequency spectrum is estimated for the S1 state of
each cardiac cycle using a Gaussian window and discrete
Fourier transform.Themean frequency spectrum over cycles
can be further computed. The spectrum magnitudes from 30
Hz to 790 Hz with 10 Hz interval are taken as features. The
maximum frequency 790 Hz is considered to adapt possible
murmurs. So, 77 features for S1 state are obtained. Similar
operation is done to S2, systole, and diastole state. So, the
total number of features obtained from frequency domain for
states is 77 features × 4 = 308 features.
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Table 1: Summary of time-domain features.

Feature index Feature name Physical meaning
1 m RR mean value of RR intervals
2 sd RR standard deviation (SD) of RR intervals
3 m IntS1 mean value of S1 intervals
4 sd IntS1 SD of S1 intervals
5 m IntS2 mean value of S2 intervals
6 sd IntS2 SD of S2 intervals
7 m IntSys mean value of systolic intervals
8 sd IntSys SD of systolic intervals
9 m IntDia mean value of diastolic intervals
10 sd IntDia SD of diastolic intervals
11 m Ratio SysRR mean value of the ratio of systolic interval to RR interval of each heart beat
12 sd Ratio SysRR SD of the ratio of systolic interval to RR interval of each heart beat
13 m Ratio DiaRR mean value of the ratio of diastolic interval to RR interval of each heart beat
14 sd Ratio DiaRR SD of the ratio of diastolic interval to RR interval of each heart beat
15 m Ratio SysDia mean value of the ratio of systolic to diastolic interval of each heart beat
16 sd Ratio SysDia SD of the ratio of systolic to diastolic interval of each heart beat
17 m Ratio S1RR∗ mean value of the ratio of S1 interval to RR interval of each heart beat
18 sd Ratio S1RR∗ SD of the ratio of S1 interval to RR interval of each heart beat
19 m Ratio S2RR∗ mean value of the ratio of S2 interval to RR interval of each heart beat
20 sd Ratio S2RR∗ SD of the ratio of S2 interval to RR interval of each heart beat
Note: ∗means the new added features in this study.
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Figure 2: Illustration of the HSMM segmentation.

2.5.3. Normalized Amplitude Features (12 Features). Previous
physiological findings in amplitude of heart sound [1–3] dis-
closed that the amplitude is related to heart hemodynamics.
So, it is reasonable to extract features from amplitude of heart
sounds. To eliminate the difference between subjects and
records, no absolute amplitude is considered. Relative ratios
of amplitude between states are extracted as given in Table 2.

2.5.4. Energy-Domain Features (47 Features). The features in
energy domain consist of two parts: the energy ratio of a

band-pass signal to the original one and the energy ratio of
one state to another.

For the first part, various frequency bands are considered
with initial value of 10 Hz and increment bandwidth of 30
Hz; i.e., the 27 frequency bands are [10 40] Hz, [40 70] Hz,
[70 100]Hz, . . ., and [790 820]Hz, respectively.Theprevious
studies disclosed that murmurs’ frequency is hardly higher
than 800 Hz. In order to reflect murmurs’ properties, the
maximum frequency considered in this domain is 820 Hz. In
this paper, each band-pass filter is designed by a five-order
Butterworth filter. The output of the ith filter is y𝑖:

y𝑖 = filter (b𝑖, a𝑖, x) , 𝑖 = 1, . . . , 27, (1)

where b𝑖 (numerator) and a𝑖 (denominator) are the Butter-
worth IIR filter coefficient vectors. Hence, the energy ratio is
defined as

𝑅𝑎𝑡𝑖𝑜 𝑏𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦𝑖 =
∑ 󵄨󵄨󵄨󵄨y𝑖

󵄨󵄨󵄨󵄨
2

∑ |x|2
, 𝑖 = 1, . . . , 27. (2)

It is known that a normal heart sound signal generally has a
frequency band blow 200 Hz. However, the frequency band
may extend to 800 Hz if it contains murmurs. So, the energy
ratio reflects signal energy distribution along frequency band.
These features are helpful to discriminate a PCG records with
murmurs or not.
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Table 2: Summary of normalized amplitude features.

Feature index Feature name Physical meaning

1 m Amp SysS1 mean value of the ratio of the mean absolute amplitude during systole to that during
S1 in each heart beat

2 sd Amp SysS1 SD of m Amp SysS1

3 m Amp DiaS2 mean value of the ratio of the mean absolute amplitude during diastole to that
during S2 in each heart beat

4 sd Amp DiaS2 SD of m Amp DiaS2

5 m Amp S1S2 mean value of the ratio of the mean absolute amplitude during S1 to that during S2
in each heart beat

6 sd Amp S1S2 SD of m Amp S1S2

7 m Amp S1Dia mean value of the ratio of the mean absolute amplitude during S1 to that during
diastole in each heart beat

8 sd Amp S1Dia SD of m Amp S1Dia

9 m Amp SysDia mean value of the ratio of the mean absolute amplitude during systole to that during
diastole in each heart beat

10 sd Amp SysDia SD of m Amp SysDia

11 m Amp S2Sys mean value of the ratio of the mean absolute amplitude during S2 to that during
systole in each heart beat

12 sd Amp S2Sys SD of m Amp S2Sys

For the second part, the relative energy ratio is investi-
gated between any two states, resulting in another 20 features.
The energy ratio of S1 to the cycle period is defined as

𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 =
∑𝑛

󵄨󵄨󵄨󵄨𝑠1𝑖 (𝑛)
󵄨󵄨󵄨󵄨
2

∑𝑛
󵄨󵄨󵄨󵄨𝑐𝑖 (𝑛)

󵄨󵄨󵄨󵄨
2
,

𝑖 = 1, . . . , 𝑁,

(3)

where N is the number of cycles in a PCG recording and
𝑛 is the discrete time index. The authors consider aver-
age of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 and standard deviation of
𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 as two features. Similarly, another
18 features can be obtained from the averages and the
standard deviations.The 47 proposed features in this domain
are listed in Table 3.

2.5.5. Spectrum-Domain for Records Features (27 Features).
As is mentioned in Section 2.5.4, the frequency band is
divided into 27 bands with start from 10 Hz to 30 Hz
increment. Fast Fourier transform is performed for every
record. The ratio of spectrum magnitude sum in a band to
spectrummagnitude sum in whole band is taken as a feature.
So, 27 features can be produced for a record. These features
can discriminate murmurs because murmurs generally have
higher frequency than those of normal heart sounds.

2.5.6. Cepstrum-Domain Features (13 Features × 5 = 65
Features). The cepstrum of a PCG recording is calculated
and the first 13 cepstral coefficients are taken as features [36].
Additionally, all S1 states from a PCG recording are joined
together to create a new digital sequence.Then, the cepstrum
can be calculated and the first 13 cepstral coefficients are taken
as features. Similarly, the sameoperation is done to S2, systole,
and diastole states. So, another 13 features × 3 = 39 features

are obtained. The cepstrum of a signal 𝑝(𝑛) is computed as
follows:

𝑃 (𝑘) = 𝐷𝐹𝑇 [𝑝 (𝑛)] , (4)

𝑃̂ (𝑘) = log [𝑃 (𝑘)] , (5)

𝑝 (𝑛) = 󵄨󵄨󵄨󵄨󵄨𝐼𝐷𝐹𝑇 [𝑃̂ (𝑘)]󵄨󵄨󵄨󵄨󵄨 , (6)

where the operator DFT[.] is the discrete Fourier transform,
IDFT[.] is the inverseDFT, log[.] is the natural logarithm, and
|.| is the absolute operation. It is known that the cepstrum
coefficient decays quickly. So, it is reasonable to select the first
13 coefficients as features. The cepstrum-domain features are
listed in Table 4.

2.5.7. Cyclostationary Features (4 Features). (1) m cyclosta-
tionarity 1 is mean value of the degree of cyclostationarity.
The definition of “degree of cyclostationarity” can be found
in [37].This feature indicates the degree of a signal repetition.
It will be infinite if the events which occurred in heart beating
were exactly periodic. However, it will be a small number if
the events are randomly alike. Let us assume 𝛾(𝛼) is the cycle
frequency spectral density (CFSD) of a heart sound signal at
cycle frequency𝛼, as shown in Figure 3.This feature is defined
as

𝑑 (𝜂) =
𝛾 (𝜂)

∫𝛽
0
𝛾 (𝛼) d𝛼

, (7)

where 𝛽 is the maximum cycle frequency considered and
𝜂 is the basic cycle frequency indicated by the main peak
location of 𝛾(𝛼). A heart sound signal is equally divided
into subsequences. The feature can be estimated for each
subsequence; then themean value and standard deviation can
be obtained.



BioMed Research International 5

Table 3: Summary of energy-domain features.

Feature index Feature name Physical meaning
1-27 𝑅𝑎𝑡𝑖𝑜 𝑏𝑎𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦𝑖 Ratio of a given band energy to the total energy
28 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒
29 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑐𝑦𝑐𝑙𝑒
30 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒
31 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑐𝑦𝑐𝑙𝑒
32 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒
33 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑠𝑦𝑠 𝑐𝑦𝑐𝑙𝑒
34 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒
35 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒
36 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2
37 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑆2
38 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠
39 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑠𝑦𝑠
40 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎
41 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆1 𝑑𝑖𝑎
42 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠
43 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑠𝑦𝑠
44 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎
45 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑆2 𝑑𝑖𝑎
46 𝑚 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠 Mean of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠
47 𝑆𝐷 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠 standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑠𝑦𝑠

Table 4: Summary of cepstrum-domain features.

Feature index Feature name Physical meaning
1-13 Cepstrum coefficients Cepstrum coefficients of a PCG recording
14-26 Cepstrum coefficients Cepstrum coefficients of jointed S1 state
27-39 Cepstrum coefficients Cepstrum coefficients of jointed systolic state
40-52 Cepstrum coefficients Cepstrum coefficients of jointed S2 state
53-65 Cepstrum coefficients Cepstrum coefficients of jointed diastole state
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Figure 3: An example of cycle frequency spectral density. (a) A subsequence of a PCG recording and (b) cycle frequency spectral density of
the subsequence.

(2) sd cyclostationarity 1 is SD of the degree of cyclosta-
tionarity.

(3) m cyclostationarity 2 is mean value of the sharpness
measure. The definition of this indicator is the sharpness of
the peak of cycle frequency spectral density. It is

peak sharpness =
max (𝛾 (𝛼))

median (𝛾 (𝛼))
. (8)

The operators max(.) and median(.) are the maximum and
median magnitude of the cycle frequency spectral density.
It is obvious that the sharper the peak is, the greater the
feature is. Similarly, the feature can be calculated for each
subsequence of the heart sound signal and then get the mean
value and SD.

(4) sd cyclostationarity 2 is SD of the sharpness measure.
The four features are listed in Table 5.
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Table 5: Summary of cyclostationary features.

Feature index Feature name Physical Meaning
1 m cyclostationarity 1 mean value of the degree of cyclostationarity
2 sd cyclostationarity 1 SD of the degree of cyclostationarity
3 m cyclostationarity 2 mean value of the sharpness measure
4 sd cyclostationarity 2 SD of the sharpness measure

Table 6: Summary of high-order statistics features.

Feature index Feature name Physical Meaning
1 m S1 skewness mean value of the skewness of S1
2 sd S1 skewness SD of the skewness of S1
3 m S1 kurtosis mean value of the kurtosis of S1
4 sd S1 kurtosis SD of the kurtosis of S1
5 m S2 skewness mean value of the skewness of S2
6 sd S2 skewness SD of the skewness of S2
7 m S2 kurtosis mean value of the kurtosis of S2
8 sd S2 kurtosis SD of the kurtosis of S2
9 m sys skewness mean value of the skewness of systole
10 sd sys skewness SD of the skewness of systole
11 m sys kurtosis mean value of the kurtosis of systole
12 sd sys kurtosis SD of the kurtosis of systole
13 m dia skewness mean value of the skewness of diastole
14 sd dia skewness SD of the skewness of diastole
15 m dia kurtosis mean value of the kurtosis of diastole
16 sd dia kurtosis SD of the kurtosis of diastole

2.5.8. High-Order Statistics Features (16 Features). In proba-
bility theory and statistics, skewness is ameasure of the asym-
metry of the probability distribution of real-valued random
numbers about its mean. It is a three-order statistics. Kurtosis
is a measure of “tailedness” of the probability distribution of
real-valued random numbers. It is a four-order statistics. The
skewness and kurtosis of each state are considered here.There
are sixteen related features, as listed in Table 6.

2.5.9. Entropy Features (16 Features). Sample entropy (Sam-
pEn) and fuzzy measure entropy (FuzzyMEn) have the
ability to measure the complexity of a random sequence
[38, 39]. Sample entropy and fuzzy measure entropy are
both computed to measure the complexity of every state
segmented by Springer’s algorithm. Then, the average and
standard deviation are used as the features. The detailed
algorithm to calculate sample entropy and fuzzy measure
entropy can be found in [38, 39]. So, 16 features in entropy
are listed in Table 7.

2.5.10. Summary. This paper considers 515 features in nine
domains. They are listed in Table 8 for reference. To the
authors’ knowledge, the features extracted from entropy and
cyclostationarity are new for heart sound classification. On
the other hand, the combination of the features in the nine

domains is novel for this classification. Seldomprevious study
has considered so many features simultaneously.

2.6. SVM-Based Model for Signal Quality Estimation and
Classification. The signal quality classification is typically
two-category classification problem in this study. The SVM-
based model has yielded excellent results in many two-class
classification situations. Given a training sample set {x𝑖, 𝑦𝑖},
𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾, where x𝑖 is the feature vector x𝑖 ∈ 𝑅𝑑, 𝑦𝑖
is the label. So, SVM-based model is applicable for both
signal quality estimation and classification. For the quality
estimation, the label is 𝑦𝑖 ∈ {1, 0}, which means good quality
and bad quality. For the classification, the label is 𝑦𝑖 ∈
{1, −1}, which means abnormal and normal cases. The aim of
SVM classifier is to develop optimal hyperplane between two
classes besides distinguishing them. The optimal hyperplane
can also be constructed by calculating the following optimiza-
tion problem.

min 𝜙 (w) = 1
2
(w𝑇w) + 𝐶

𝐾

∑
𝑖=1

𝜉𝑖

subject to 𝑦𝑖 ((w
𝑇𝜑 (x𝑖)) + 𝑏) ≥ 1, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾.

(9)

Here 𝜉𝑖 is a relaxation variable and 𝜉𝑖 ≥ 0,𝐶 is a penalty factor,
and w is the coefficient vector. 𝜑(x𝑖) is introduced to get a
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Table 7: Summary of entropy features.

Feature index Feature name Physical meaning
1 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆1 Mean value of SampEn of S1 state
2 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆1 SD value of SampEn of S1 state
3 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆2 Mean value of SampEn of S2 state
4 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑆2 SD value of SampEn of S2 state
5 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑠𝑦𝑠 Mean value of SampEn of systolic state
6 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑠𝑦𝑠 SD value of SampEn of systolic state
7 𝑚 𝑆𝑎𝑚𝑝𝐸𝑛 𝑑𝑖𝑎 Mean value of SampEn of diastolic state
8 𝑆𝐷 𝑆𝑎𝑚𝑝𝐸𝑛 𝑑𝑖𝑎 SD value of SampEn of diastolic state
9 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆1 Mean value of FuzzyMEn of S1 state
10 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆1 SD value of FuzzyMEn of S1 state
11 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆2 Mean value of FuzzyMEn of S2 state
12 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑆2 SD value of FuzzyMEn of S2 state
13 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑠𝑦𝑠 Mean value of FuzzyMEn of systolic state
14 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑠𝑦𝑠 SD value of FuzzyMEn of systolic state
15 𝑚 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑑𝑖𝑎 Mean value of FuzzyMEn of diastolic state
16 𝑆𝐷 𝐹𝑢𝑧𝑧𝑦𝑀𝐸𝑛 𝑑𝑖𝑎 SD value of FuzzyMEn of diastolic state

Table 8: Summary of the proposed features.

Index Domain Num. of features Motivation
1 Time interval 20 The time interval of each state has physiological meaning based on heart physiology.
2 Frequency spectrum of state 308 To reflect the frequency spectrum within state.
3 State amplitude 12 The amplitude is related to the heart hemodynamics.
4 Energy 47 To reflect energy distribution with respect to frequency band
5 Frequency spectrum of records 27 To reflect frequency spectrum within records
6 Cepstrum 65 To reflect the acoustic properties.
7 Cyclostationary 4 To reflect the degree of signal repetition.
8 High-order statistics 16 To reflect the skewness and kurtosis of each signal state.
9 Entropy 16 To reflect the PCG signal inherent complexity.
Total -- 515 --

nonlinear support vectormachine.Theoptimization problem
can be equally transformed into

max 𝐿 (𝛼) =
𝐾

∑
𝑖=1

𝛼𝑖 −
1
2

𝐾

∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜅 (x𝑖, x𝑗)

subject to
𝐾

∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾

(10)

where 𝜅(x𝑖, 𝑦𝑖) is a kernel function. The authors use RBF
kernel function in this paper. And the parameter sigma is
empirically set as 14. The discussions about the selection of
kernel function and the influence of sigma are given in the
Section 4.3.

2.7. Scoring. Theoverall score is computed based on the num-
ber of records classified as normal, uncertain, or abnormal, in
each of the reference categories. These numbers are denoted
by𝑁𝑛𝑘,𝑁𝑞𝑘,𝑁𝑎𝑘, 𝐴𝑛𝑘, 𝐴𝑞𝑘, and 𝐴𝑎𝑘 in Table 9.

Weights for the various categories are defined as follows
(based on the distribution of the complete test set):

𝑤𝑎1 =
𝑐𝑙𝑒𝑎𝑛 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

, (11)

𝑤𝑎2 =
𝑛𝑜𝑖𝑠𝑦 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

. (12)

𝑤𝑛1 =
𝑐𝑙𝑒𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

, (13)

𝑤𝑛2 =
𝑛𝑜𝑖𝑠𝑦 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

. (14)

The modified sensitivity and specificity are defined as (based
on a subset of the test set)

𝑆𝑒 = 𝑤𝑎1
𝐴𝑎1

𝐴𝑎1 + 𝐴𝑞1 + 𝐴𝑛1
+ 𝑤𝑎2

𝐴𝑎2 + 𝐴𝑞2
𝐴𝑎2 + 𝐴𝑞2 + 𝐴𝑛2

, (15)
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Table 9: Variables to evaluate the classification.

Classification Results
Normal (-1) Uncertain (0) Abnormal (1)

Reference label

Normal, clean 𝑁𝑛1 𝑁𝑞1 𝑁𝑎1
Normal, noisy 𝑁𝑛2 𝑁𝑞2 𝑁𝑎2
Abnormal, clean 𝐴𝑛1 𝐴𝑞1 𝐴𝑎1
Abnormal, noisy 𝐴𝑛2 𝐴𝑞2 𝐴𝑎2

Table 10: Summary of the correlation coefficients.

No. Feature domain Max. absolute CC Physical meaning
1 Time interval 0.286 sd IntSys
2 State amplitude -0.159 sd Amp S2Sys
3 Energy 0.345 Standard deviation of 𝑅𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑒 𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑖𝑎 𝑐𝑦𝑐𝑙𝑒
4 High-order statistics 0.185 sd S1 kurtosis
5 Cepstrum 0.216 The seventh cepstrum coefficient of S2 state
6 Frequency spectrum of state 0.417 Spectrum value of 30 Hz of S2 state
7 cyclostationarity -0.240 Sharpness of the peak of cycle frequency spectral density
8 Entropy -0.374 Average value of sample entropy of diastolic state
9 Frequency spectrum of records -0.272 Ratio of spectrum magnitude sum in [90 120]Hz

𝑆𝑝 = 𝑤𝑛1
𝑁𝑛1

𝑁𝑎1 + 𝑁𝑞1 + 𝑁𝑛1

+ 𝑤𝑛2
𝑁𝑛2 + 𝑁𝑞2

𝑁𝑎2 + 𝑁𝑞2 + 𝑁𝑛2
.

(16)

The overall score is then the average of these two values:

Overall score =
(𝑆𝑒 + 𝑆𝑝)

2
. (17)

3. Results

3.1. Correlation Analysis between the Features and the Target
Label. In this paper, a total of 515 features are extracted from
a single recording. A question arises about how to evaluate
the contribution of a feature for classification. To answer
the question, correlation analysis is performed between the
features and the target label. The correlation coefficients are
plotted in the nine domains in Figure 4. The statistics of
the coefficients are listed in Table 10. The top coefficient is
0.417 which is from “frequency spectrum of state” at 30 Hz
of S2 state. This feature is called “top feature”. The statistics
of top features are listed in Table 11. It is shown that 4 in the
top 10 features are from “frequency spectrum of state”. So,
this domain is ranked the first. Both “energy” and “entropy”
contribute 3 in top 10. But “energy” contributes 12 in top
100 which is greater than “entropy” who contributes 8 in top
100. Therefore, “energy” is ranked the 2nd and “entropy” is
ranked the 3rd. Following similar logics, the nine domains
are ranked as shown in Table 11. It concludes that the domain
“frequency spectrum of state” contributes themost. “Energy”
and “entropy” are the second and third place to contribute.

3.2. Signal Quality Estimation by SVM. The SVM model
in (9) is used to discriminate signal quality. The reference

labels for clean and noisy PCG recordings are “1” and “0”,
respectively. The input to the model is the proposed 515
features.The performance is tested by various input, as shown
in Table 12. Firstly, 10% of randomly selected data are used
for training and the other 90% of data are used for testing
without any overlap. Then the percent of train data increases
by 10% and repeats. The performance summary for signal
quality estimation is listed in Table 12. The manual reference
indicates that there are 2874 clean recordings and 279 noisy
recordings. So, the numbers of the two quality groups have
great unbalance which has bad effect on network training.
It is shown that the performance for good signal quality has
excellent sensitivity from 96% to 98% no matter how much
the percent of data for training varies from 10% to 90%.
However, the performance for bad signal quality is poor. The
specificity is around 50%; even the training data varies from
10% to 90%. Fortunately, this performance has little influence
on the final classification, shown in the next subsection.

3.3. Classification of Normal/Abnormal by SVM. The classifi-
cation of normal/abnormal is carried out by the SVM model
as given in (9). The 515-feature vector is used as input to the
SVMnetwork and the label is used as output.The SVMmodel
is firstly trained by a part of data and then tested by the other.
To test the generation ability of the model, it is widely tested
in following two cases.

Case 1. All data (3153 recordings) are used to train the model
and all data (3153 recordings) are to test the model. So, the
training data and the testing data are fully overlapped.

Case 2. 10% of the normal recordings and 10% of the abnor-
mal recordings are randomly selected to train the model, and
the other 90% are to test the model. The training data and
the testing data are exclusively nonoverlapped. This program
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Table 11: Rank order of the nine domains based on contribution.

Rank order Feature domain (Total
num. of features)

Num. of top 10
features

Num. of top 100
features

Num. of top 200
features

Num. of top 300
features

1 Frequency spectrum
of state (308) 4 39 115 183

2 Energy (47) 3 12 16 24
3 Entropy (16) 3 8 10 11
4 Cepstrum (65) 0 14 28 40
5 Time interval (20) 0 14 17 17

6 Frequency spectrum
of records (27) 0 5 5 10

7 High-order statistics
(16) 0 4 4 7

8 Cyclostationarity (4) 0 2 3 4
9 State amplitude (12) 0 2 2 4
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Figure 4: Correlation coefficient (CC) between features and the target label. (a) Time interval, (b) state amplitude, (c) energy, (d) high-order
statistics, (e) cepstrum, (f) frequency spectrum of state, (g) cyclostationarity, (h) entropy, and (i) frequency spectrum of records.
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Table 12: Performance of signal quality classification.

Percent data to
train

Percent data to
test

Estimation results for
Reference, clean

Estimation results for
Reference, noisy Sensitivity Specificity

Clean Noisy Clean Noisy
10% 90% 2421 166 104 146 0.96 0.47
20% 80% 2143 154 75 149 0.97 0.49
30% 70% 1869 143 59 136 0.97 0.49
40% 60% 1601 125 44 122 0.97 0.49
50% 50% 1332 104 36 104 0.97 0.50
60% 40% 1064 84 28 84 0.97 0.50
70% 30% 799 63 19 64 0.97 0.50
80% 20% 530 44 12 45 0.98 0.50
90% 10% 265 21 6 22 0.98 0.50

Table 13: Performance of the classification.

Case Percent of data
to train

Percent of data
to test Repeat times

Training and
test data
division

Sensitivity Specificity Overall score

Case 1 100% 100% 1 No 0.99 0.91 0.95

Case 2

10% 90% 200 Yes 0.68±0.06 0.87±0.03 0.77±0.02
20% 80% 200 Yes 0.76±0.05 0.86±0.02 0.81±0.02
30% 70% 200 Yes 0.80±0.04 0.87±0.02 0.83±0.02
40% 60% 200 Yes 0.82±0.04 0.87±0.01 0.85±0.02
50% 50% 200 Yes 0.84±0.03 0.87±0.01 0.85±0.01
60% 40% 200 Yes 0.85±0.04 0.87±0.01 0.86±0.01
70% 30% 200 Yes 0.86±0.04 0.87±0.01 0.87±0.02
80% 20% 200 Yes 0.87±0.04 0.87±0.02 0.87±0.02
90% 10% 200 Yes 0.88±0.04 0.87±0.02 0.88±0.02

Note: the number is presented as mean±SD.

independently repeats 200 times to evaluate the stability.
Sensitivity and specificity are calculated in “mean±SD” to
indicate the classification performance. Then, the percent
of training data increases by 10%, the percent of test data
decreases by 10%, and the evaluation process is repeated until
the percent of training data reaches 90%.

The performance of the proposed classification is listed
in Table 13. The overall score of Case 1 is up to 0.95. It proves
that the proposed features are effective for this classification.
In Case 2, it can be found that, with the increasing percent
of data for training, both sensitivity and specificity increase.
The standard deviation is not greater than 0.02. So, the score
variation is very small; even the classifier independently runs
200 times. This simulation proves that the proposed features
and the model have excellent generation ability and stability
and are effective in discriminating the PCG recordings.

4. Discussions

4.1. Effect of the Number of Top Features. This paper pro-
poses 515 features from multidomains. However, correlation
analysis shows that each feature has different degree of

correlationwith the target label.The performancewill change
with the number of selected features. To evaluate the effect
of selected features, the authors conduct simulations under
condition of varying the top number of features. The mean
overall score changing with respect to the number of top
features is illustrated in Figure 5, where Figure 5(a) shows
the performance with top 1 to top 5 features, Figure 5(b) is
with top 10 to top 50 features, and Figure 5(c) is with top 100
to top 515 features. It can be seen that there are two factors
to influence SVM classifier’s generalization ability. One is the
percent of data for training; the other is the number of top
features. An overall look shows that both the two factors have
positive effect on the classification performance. Roughly
speaking, if any one of them increases, the performance
will get improvement. However, it is not always true. A
closer look at Figure 5(a) indicates the performance has
little change as the percent increases. But the performance
gets much improvement as the percent increases, shown in
Figures 5(b) and 5(c), where the number of top features is
much greater than that in Figure 5(a). A careful look at
Figure 5(c) discloses that the case that all the features (515)
are involved does not result in the best performance. It can
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Figure 5: Classification performance with respect to the number of top features and percent of data for training. (a) Overall scores obtained
by top 1, top 2, top 3, top 4, and top 5 features. (b) Overall scores obtained by top 10, top 20, top 30, top 40, and top 50 features. (c) Overall
scores obtained by top 100, top 200, top 300, top 400, and top 515 features.

be found that there is an “edge effect” on the selection of top
feature number. That is, much improvement can be obtained
via increasing top feature number as the number is small.
However, the improvement becomes little when the number
is up to some degree. The best performance is obtained with
top 400 features in this paper.The performance will get worse
if the number continues to increase.

The proposed classification has very good performance
even if the number of features is small. For example, it can
be noted in Figure 5(a) that the overall score is up to 0.71 as
only the top 1 feature is used and the score increases to 0.81
when the top 10 features are used. This is one of attractive
advantages of the proposed classification.

Another advantage is that the proposed SVM classifier
has very stable output. Even if the SVM classifier is trained
independently by randomly selected features, the overall
score has very low variations (standard variance is approxi-
mately lower than 0.02). That is to say, the proposed features
and SVM classifier are adaptable to the classification.

4.2. Classification Performance Based on Features in Speci-
fied Domain. Table 13 and Figure 5 show the classification
performance based on mixed features from multidomains.
It is interesting to test the performance based on features
of a separated domain. This test would be evidence to
show the power of combined features for classification. So,
the SVM classifier and 10-fold validation are used for this
purpose. The results are listed in Table 14. It is seen that,

the highest score, 0.85, is produced if only the features in
“frequency spectrum of state” are used. Other high scores
are obtained based on features in domain of “entropy”,
“energy”, and “cepstrum”. It can be found that these results
are almost coincident with those of correlation analysis
given in Section 3.1 where “frequency spectrum of state”,
“energy”, “entropy”, and “cepstrum” are the top domains to
contribute effective features. This simulation indicates that
it is reasonable to improve classification performance by
combining multidomain features.

4.3. Selection of Kernel Function and Influence of the Gaussian
Kernel Function. Typically, the kernel functions for a SVM
have several selections, such as linear kernel, polynomial
kernel, sigmoid kernel, and Gaussian radial basis function.
Given an arbitrary dataset, one does not know which kernel
may work best. Generally, one can start with the simplest
hypothesis space first and then work a way up towards
a more complex hypothesis space. The authors followed
this lesson summarized by the previous researchers. A bad
performance was produced by the SVM classifier using a
linear kernel since 515 features in this study were complex
and they were not linearly separable, as well as using a
polynomial kernel. The authors actually tried out all possible
kernels and found that the RBF kernel produced the best
performance.The authors believed that the best performance
should be attributed to the RBF kernel’s advantages. The first
is translation invariance. Let the RBF kernel be 𝐾(x𝑖, x𝑗) =
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Table 14: Classification performance based on features in specified domain.

Rank Domain (# features) Mean of overall score Standard deviation
1 Frequency spectrum of state (308) 0.85 0.021
2 Entropy (16) 0.82 0.028
3 Energy (47) 0.78 0.020
4 Cepstrum (65) 0.75 0.027
5 High-order statistics (16) 0.73 0.029
6 Frequency spectrum of records (27) 0.71 0.025
7 Time interval (20) 0.70 0.025
8 Cyclostationarity (4) 0.65 0.042
9 State amplitude (12) 0.61 0.025
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Figure 6: The mean overall score with respect to rate of data for
training and value of sigma. The diamond shows the peak position.

exp(−‖x𝑖 − x𝑗‖/𝛾); then𝐾(x𝑖, x𝑗) = 𝐾(x𝑖 + ^, x𝑗 + ^)where ^ is
any arbitrary vector. It is known that the kernel is effectively
a similarity measure. The invariance is useful to measure the
similarity between the proposed features. The second is that
the similarity is measured by Euclidean distance. RBF kernel
is a function of the Euclidean distance between the features.
In this study, the Euclidean distance is a preferred similarity
metric.The authors selected the RBF kernel function because
the advantages match the classification purpose and features.

One difficulty with the Gaussian RBF kernel function is
the parameter sigma governing the kernel width. A general
conclusion about sigma has been summarized by previous
researchers. A large value of sigma may lead to an over
smoothing hyperplane and a washing out of structure that
might otherwise be extracted from the feature space. A
reducing value of sigma may lead to a noisy hyperplane
elsewhere in the feature space where the feature density is
smaller. There is a trade-off between sensitivity to noise at
small value and over smoothing at large value. To select
appropriate value for sigma, the authors did grid search in
a specified range, as seen in Figure 6. This figure shows
the mean overall score, based on 50 independent runs, with
respect to rate of data for training and value of sigma where
the value of sigma increases from 4 to 35 by step of 1 and the
rate of data for training increases from 0.1 to 0.9 by step of 0.1.
It is found that the peak of the overall score occurs at sigma
14 as indicated by the diamond.

5. Conclusions

In this paper, 515 features are extracted from multiple
domains, i.e., time interval, state amplitude, energy, high-
order statistics, cepstrum, frequency spectrum, cyclostation-
arity, and entropy. Correlation analysis between the features
and the target label shows that the features from frequency
spectrum contribute the most to the classification. The
features and the SVM classifier jointly show the powerful
classification performance.The results show the overall score
reaches 0.88±0.02 based on 200 independent simulations,
which is competitive to the previous best classification meth-
ods.Moreover, the SVM classifier has very good performance
with even small number of features for training and has stable
output regardless of randomly selected features for training.
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