
Complexity

Epidemic Spreading Dynamics on
Temporal Networks

Guest Editors: Wei Wang, Luxing Yang, and Chenquan Gan

 



Epidemic Spreading Dynamics on Temporal
Networks



Complexity

Epidemic Spreading Dynamics on
Temporal Networks

Guest Editors: Wei Wang, Luxing Yang, and
Chenquan Gan



Copyright © 2023 Hindawi Limited. All rights reserved.

is is a special issue published in “Complexity.” All articles are open access articles distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Chief Editor
Hiroki Sayama  , USA

Associate Editors
Albert Diaz-Guilera  , Spain
Carlos Gershenson  , Mexico
Sergio Gómez  , Spain
Sing Kiong Nguang  , New Zealand
Yongping Pan  , Singapore
Dimitrios Stamovlasis  , Greece
Christos Volos  , Greece
Yong Xu  , China
Xinggang Yan  , United Kingdom

Academic Editors
Andrew Adamatzky, United Kingdom
Marcus Aguiar   , Brazil
Tarek Ahmed-Ali, France
Maia Angelova  , Australia
David Arroyo, Spain
Tomaso Aste  , United Kingdom
Shonak Bansal  , India
George Bassel, United Kingdom
Mohamed Boutayeb, France
Dirk Brockmann, Germany
Seth Bullock, United Kingdom
Diyi Chen  , China
Alan Dorin  , Australia
Guilherme Ferraz de Arruda  , Italy
Harish Garg  , India
Sarangapani Jagannathan  , USA
Mahdi Jalili, Australia
Jeffrey H. Johnson, United Kingdom
Jurgen Kurths, Germany
C. H. Lai  , Singapore
Fredrik Liljeros, Sweden
Naoki Masuda, USA
Jose F. Mendes  , Portugal
Christopher P. Monterola, Philippines
Marcin Mrugalski  , Poland
Vincenzo Nicosia, United Kingdom
Nicola Perra  , United Kingdom
Andrea Rapisarda, Italy
Céline Rozenblat, Switzerland
M. San Miguel, Spain
Enzo Pasquale Scilingo  , Italy
Ana Teixeira de Melo, Portugal

Shahadat Uddin  , Australia
Jose C. Valverde  , Spain
Massimiliano Zanin  , Spain

https://orcid.org/0000-0002-2670-5864
https://orcid.org/0000-0002-3114-0984
https://orcid.org/0000-0003-0193-3067
https://orcid.org/0000-0003-1820-0062
https://orcid.org/0000-0003-4527-0082
https://orcid.org/0000-0002-8587-6065
https://orcid.org/0000-0003-0808-9065
https://orcid.org/0000-0001-8763-7255
https://orcid.org/0000-0002-8407-4650
https://orcid.org/0000-0003-2217-8398
https://orcid.org/0000-0003-1379-7568
https://orcid.org/0000-0002-0931-0916
https://orcid.org/0000-0002-4219-0215
https://orcid.org/0000-0002-6551-6011
https://orcid.org/0000-0002-0609-0129
https://orcid.org/0000-0002-5456-4835
https://orcid.org/0000-0003-1647-5126
https://orcid.org/0000-0001-9099-8422
https://orcid.org/0000-0002-2310-3737
https://orcid.org/0000-0003-3339-669X
https://orcid.org/0000-0002-4707-5945
https://orcid.org/0000-0003-3078-411X
https://orcid.org/0000-0002-5559-3064
https://orcid.org/0000-0003-2588-4917
https://orcid.org/0000-0003-0091-6919
https://orcid.org/0000-0002-3214-9606
https://orcid.org/0000-0002-5839-0393


Contents

Retracted: Information Spreading on Memory Activity-Driven Temporal Networks
Complexity
Retraction (1 page), Article ID 9847180, Volume 2023 (2023)

Retracted: Analysis of Factors Influencing Stock Market Volatility Based on GARCH-MIDAS Model
Complexity
Retraction (1 page), Article ID 9806096, Volume 2023 (2023)

Retracted: A Study on the Topic-Sentiment Evolution and Diffusion in Time Series of Public Opinion
Derived from Emergencies
Complexity
Retraction (1 page), Article ID 9794287, Volume 2023 (2023)

Retracted: Cascading Failure Dynamics against Intentional Attack for Interdependent Industrial
Internet of -ings
Complexity
Retraction (1 page), Article ID 9790451, Volume 2023 (2023)

Retracted: -e Evolution Model of Public Risk Perception Based on Pandemic Spreading -eory
under Perspective of COVID-19
Complexity
Retraction (1 page), Article ID 9781971, Volume 2023 (2023)

Quantitative Analysis of COVID-19 Pandemic Responses Based on an Improved SEIR-SD Model
Yang Liu, Bingrui Liu, Yi Deng, and Jia Liu 

Research Article (18 pages), Article ID 6221181, Volume 2022 (2022)

[Retracted] Analysis of Factors Influencing Stock Market Volatility Based on GARCH-MIDAS Model
Dan Ma  , Tianxing Yang  , Liping Liu  , and Yi He 

Research Article (10 pages), Article ID 6176451, Volume 2022 (2022)

[Retracted] A Study on the Topic-Sentiment Evolution and Diffusion in Time Series of Public Opinion
Derived from Emergencies
Meng Cai  , Han Luo  , and Ying Cui 

Research Article (23 pages), Article ID 2069010, Volume 2021 (2021)

[Retracted] -e Evolution Model of Public Risk Perception Based on Pandemic Spreading -eory
under Perspective of COVID-19
Yi-Cheng Zhang, Zhi Li, Guo-Bing Zhou, Nai-Ru Xu  , and Jia-Bao Liu 

Research Article (10 pages), Article ID 1015049, Volume 2021 (2021)

Analysis of a Tuberculosis Infection Model considering the Influence of Saturated Recovery
(Treatment)
Fatima Sulayman   and Farah Aini Abdullah 

Research Article (16 pages), Article ID 1805651, Volume 2021 (2021)

https://orcid.org/0000-0002-0734-4522
https://orcid.org/0000-0001-7454-4930
https://orcid.org/0000-0002-7611-8457
https://orcid.org/0000-0003-0959-5322
https://orcid.org/0000-0001-8516-8440
https://orcid.org/0000-0001-9387-8717
https://orcid.org/0000-0002-8957-7505
https://orcid.org/0000-0002-5524-7444
https://orcid.org/0000-0001-7413-6216
https://orcid.org/0000-0002-9620-7692
https://orcid.org/0000-0001-6164-414X
https://orcid.org/0000-0002-5215-9617


[Retracted] Cascading Failure Dynamics against Intentional Attack for Interdependent Industrial
Internet of -ings
Hao Peng, Zhen Qian, Zhe Kan, Dandan Zhao  , Juan Yu, and Jianmin Han
Research Article (15 pages), Article ID 7181431, Volume 2021 (2021)

[Retracted] Information Spreading on Memory Activity-Driven Temporal Networks
Linfeng Zhong  , Yu Bai, Changjiang Liu, Juan Du, and Weijun Pan 

Research Article (8 pages), Article ID 8015191, Volume 2021 (2021)

https://orcid.org/0000-0001-9375-2997
https://orcid.org/0000-0001-8277-4277
https://orcid.org/0000-0003-1448-4336


Retraction
Retracted: Information Spreading on Memory Activity-Driven
Temporal Networks

Complexity

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Complexity.Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] L. Zhong, Y. Bai, C. Liu, J. Du, and W. Pan, “Information
Spreading on Memory Activity-Driven Temporal Networks,”
Complexity, vol. 2021, Article ID 8015191, 8 pages, 2021.

Hindawi
Complexity
Volume 2023, Article ID 9847180, 1 page
https://doi.org/10.1155/2023/9847180

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9847180


Retraction
Retracted: Analysis of Factors Influencing StockMarket Volatility
Based on GARCH-MIDAS Model

Complexity

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Complexity.Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] D. Ma, T. Yang, L. Liu, and Y. He, “Analysis of Factors
Infuencing Stock Market Volatility Based on GARCH-MIDAS
Model,” Complexity, vol. 2022, Article ID 6176451, 10 pages,
2022.

Hindawi
Complexity
Volume 2023, Article ID 9806096, 1 page
https://doi.org/10.1155/2023/9806096

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9806096


Retraction
Retracted: A Study on the Topic-Sentiment Evolution and
Diffusion in Time Series of Public Opinion
Derived from Emergencies

Complexity

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Complexity.Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] M. Cai, H. Luo, and Y. Cui, “A Study on the Topic-Sentiment
Evolution and Difusion in Time Series of Public Opinion
Derived from Emergencies,” Complexity, vol. 2021, Article ID
2069010, 23 pages, 2021.

Hindawi
Complexity
Volume 2023, Article ID 9794287, 1 page
https://doi.org/10.1155/2023/9794287

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9794287


Retraction
Retracted: Cascading Failure Dynamics against Intentional
Attack for Interdependent Industrial Internet of Things

Complexity

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Complexity.Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] H. Peng, Z. Qian, Z. Kan, D. Zhao, J. Yu, and J. Han, “Cascading
Failure Dynamics against Intentional Attack for In-
terdependent Industrial Internet of Tings,” Complexity,
vol. 2021, Article ID 7181431, 15 pages, 2021.

Hindawi
Complexity
Volume 2023, Article ID 9790451, 1 page
https://doi.org/10.1155/2023/9790451

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9790451


Retraction
Retracted: The Evolution Model of Public Risk Perception
Based on Pandemic Spreading Theory under
Perspective of COVID-19

Complexity

Received 15 August 2023; Accepted 15 August 2023; Published 16 August 2023

Copyright © 2023 Complexity.Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] Y. Zhang, Z. Li, G. Zhou, N. Xu, and J. Liu, “Te Evolution
Model of Public Risk Perception Based on Pandemic Spreading
Teory under Perspective of COVID-19,” Complexity,
vol. 2021, Article ID 1015049, 10 pages, 2021.

Hindawi
Complexity
Volume 2023, Article ID 9781971, 1 page
https://doi.org/10.1155/2023/9781971

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9781971


Research Article
QuantitativeAnalysis of COVID-19PandemicResponsesBased on
an Improved SEIR-SD Model

Yang Liu,1 Bingrui Liu,2 Yi Deng,2 and Jia Liu 2

1School of Management, Wuhan University of Technology, Wuhan, China
2School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, China

Correspondence should be addressed to Jia Liu; whutrobin@163.com

Received 17 May 2021; Revised 6 August 2021; Accepted 3 January 2022; Published 1 February 2022

Academic Editor: Chenquan Gan

Copyright © 2022 Yang Liu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In late 2019, the COVID-19 pandemic began to spread over the world, causing millions of deaths. In the first few months of the
pandemic, several countries (such as China) prevented the spread of the pandemic successfully. By contrast, the pandemic inmany
other countries was not controlled well. For example, India encountered a second serious outbreak of COVID-19 from April 2021
due to the poor resistancemeasures implemented by the government. To figure out the effective countermeasures to the pandemic,
this research proposes a COVID-19 pandemic and its response system, which consists of the infection subsystem, the quarantine
subsystem, and the medical subsystem. On this basis, an improved SEIR-SD model is established which is utilized to analyze the
response measures to the pandemic quantitatively. *is model successfully simulates the actual epidemic scenarios in Wuhan,
which verifies its effectiveness. Afterward, the impact of hospital administration rate, quarantine rate, average contact number,
and contact infection rate on the cumulative number of infections and deaths are analyzed by simulation. *e results show that
both the medical and administrative efforts, especially in the early stage of the epidemic, are significant in reducing the number of
infections and shortening the epidemic period. In the medical aspect, the more stringent quarantine brings the earlier inflection
point of the epidemic; more importantly, improving the treatment rate significantly reduces the scale of the epidemic. In the
administrative aspect, enforcing individual protection and strict community closure can effectively cut off the transmission of the
virus and curb the spread of the epidemic. Finally, this research proposes several practical suggestions in response to the COVID-
19 pandemic. *e main contribution of this research is that the effects of different response measures on the number of new
infections daily and the cumulative number of deaths of a country or region in the COVID-19 pandemic are estimated
quantitatively based on modeling and simulation.

1. Introduction

*e COVID-19 epidemic was discovered in Wuhan in late
2019 and spread over the world. After the outbreak, the
Chinese national government and Wuhan local government
immediately adopted a series of measures to control the
spread of the virus. *ese measures include but are not
limited to closing communities, enforcing individual pro-
tection, isolating suspected cases, and establishing tempo-
rary treatment centers for mildly infected cases.
Simultaneously, medical staff and supplies from all over
China supported Wuhan rapidly, which greatly reduced the
death rate of confirmed cases in Wuhan. However, the
pandemic in many other countries was not controlled well.

For example, India encountered a second serious outbreak of
COVID-19 from April 2021 due to the poor resistance
measures implemented by the government.

From the perspective of system science, the epidemic of
infectious diseases in the population is a complex diffusion
process. *e analysis and prediction of infectious disease
spread based on models can help understand the epidemic
mechanism and the inherent laws and provide a theoretical
basis for the choice of interventionmeasures.*emodels are
established based on either the micro- or macroperspectives.
*e micromodels focus on the individuals in the crowd.
*ere is a contact network with individuals. *e contact
between the infected cases and the suspected ones leads to
the state change of the suspected ones, forming the
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transmission dynamics process on the network [1].*ere are
two main research fields of network-based micromodel: the
first one is to study the spread of infectious diseases in ideal
networks, such as small-world networks and scale-free
networks, which partially depict the characteristics of real
social networks [2]. *e second one is to study the spread of
infectious diseases on the real network. *e basic method is
to carry out actual investigations and construct a contact
network close to the real one [3]. Macroscopic modeling
regards the population as a whole and focuses on the changes
of its state. *e composite population method considers the
spatial heterogeneity of the population and divides the
population into different groups, which are coupled by the
flow of people, forming a complex dynamic system [4].
Correspondingly, the single group method shows the epi-
demic process of infectious diseases in the number of sus-
ceptible, infectious, and other types of people. *e most
popular single population model is the compartment model.
One of the classic compartment models is the SIR model,
which was proposed by Kermack et al. in 1927 [5]. Based on
the SIR model, the SIS model [6], SIRS model [7], and SEIR
model [8] are developed. *e SEIR model is one of the most
representative mathematical models of infectious disease
dynamics in a fixed population. *e model considers the
incubation period of infectious diseases and is suitable for
large-scale modeling of the COVID-19 epidemic on the
country and city level. *erefore, this paper intends to
analyze the COVID-19 epidemic by the improvement of this
model.

*e system dynamics model [9] was first proposed in
1956 by Forrester of the Massachusetts Institute of Tech-
nology. It has been widely used in industry, agriculture,
economy, management, medicine, transportation, ecology,
environment, energy, military, and many other fields. For
example, Assuncao et al. used system dynamics to establish
an urban sustainable development system considering the
natural factors, physiological feelings, and psychological
feelings [10]. Ekinci et al. utilized the model to assess the
future impact of various air quality factors on environmental
sustainability [11]. As one of the most powerful tools to
study complex systems, system dynamics has a broad
prospect on public health, in which the combination of
system dynamics and the classical models of infectious
diseases is a new field of infectious disease research [12, 13].
Li et al. combined the system dynamics with a multi-
compartment model to predict the development trend of the
COVID-19 epidemic [14]. In this study, the system dy-
namics model is combined with the SEIR model so that the
solution process of the SEIR model can be simulated and
visualized. More importantly, the effect of different variables
on simulation results can be analyzed.

After the outbreak of COVID-19, many scholars engaged
in the study of the epidemic by establishing mathematical
models. Tang and Zhao used the classical SEIR model to fit
the epidemic development trend [15, 16]. Considering
quarantine measures and types of the infected population,
Wei et al. proposed the SEIR+CAQ model to predict the
number of infected cases [17]. In the early stage of COVID-
19, many studies focused on the scale prediction of the

epidemic. For example, British scholar Jonathan et al.
predicted in January 2020 that infected cases in Wuhan
would reach 190,000 on February 4th [18]. Shen et al. es-
timated the basic and effective reproduction times of
COVID-19 [19]. *ey predicted the peak time and scale of
the epidemic based on the existing epidemiological data and
the dynamic model. *ey also estimated that the number of
infected people would ultimately be less than 20000. Wu
et al. calculated the number of infected people in Wuhan by
the number of cases in January 2020 and predicted that the
number of infected cases on January 25 would exceed 6000
[20]. In terms of epidemic prevention and control measures,
Lin et al. proposed a conceptual model of the outbreak of
COVID-19 inWuhan, which was based on the consideration
of such interventions as holiday extension, travel restriction,
hospitalization, and quarantine [21]. Adam et al. estimated
that within two weeks of the restriction, the transmission
volume would decrease by nearly a half. *e Lancet pub-
lished an editorial that China has successfully avoided a large
number of cases of infection and death because of the strong
public countermeasures [22]. *ey also called on the other
countries to learn from China’s experience [23]. To sum up,
the current research of COVID-19 primarily focuses on the
prediction and estimation of epidemic development.*ere is
a lack of modeling and analysis of specific prevention
measures. *erefore, this paper focuses on analyzing the
effectiveness of the measures such as closing communities,
enforcing individual protection, isolating suspected cases,
and establishing temporary treatment centers for mildly
infected cases.

*e dynamic models are utilized to study the effect of
various prevention and control measures in the COVID-19
pandemic (He et al., 2020) [24]. For example, Zhao and
Chen developed a SUQC model to explicitly parameterize
the intervention effects of control measures of the pandemic
[25]. Moran’s spatial statistic with various definitions of
neighbors was used by Kang et al. (2020) to conduct a test to
determine whether a spatial association of the COVID-19
infections existed [26]. Linka et al. (2020) combined a global
network mobility model with a local epidemiology model to
simulate and predict the outbreak dynamics and control of
the pandemic in Europe [27]. On this basis, Jia et al. (2020)
developed a spatiotemporal risk source model, which can
not only forecast the distribution of confirmed cases but also
identify regions that have a high risk of transmission at the
early stage of the pandemic [28].

*is research combines the infectious disease model
(hereinafter referred to as “SEIR”) with the system dynamics
model (hereinafter referred to as “SD”). We analyze the
countermeasures of Wuhan by the combined model, and
finally, propose feasible suggestions for the response to the
epidemic. *e model simulates the situation of a large area
and scale of individuals within an acceptable complexity.
Moreover, the Chinese official data are utilized to fit the
model, while the values of the parameters in this model are
set by the authoritative data. On this basis, the effectiveness
of the model is verified. *e remainder of this paper is
organized as follows: *e second section proposes the
COVID-19 epidemic and its response system. *e third
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section establishes the improved SEIR-SD model for the
system. *e fourth section makes simulations on several
countermeasures according to the real and some hypo-
thetical scenarios in Wuhan. *e fifth section is the con-
clusions and suggestions.

2. COVID-19 Epidemic and Its Response System

*e factors in the COVID-19 epidemic and its response
forms a complex dynamic feedback system that includes the
medical supplies, the hospital beds, the medical staff, the
patients, etc. *e system consists of the following subsys-
tems: the infection subsystem, the quarantine subsystem,
and the medical subsystem.

2.1. InfectionSubsystem. In the infection subsystem, the total
number of people in the city, the average number of contacts
per person daily, and the infection rate have a positive
impact on the number of people who are infected and enter
the incubation period. *e close contacts of patients in the
incubation period are infected due to the lack of protective
measures, resulting in an increase in the number of infected
people daily. After the incubation period, patients begin to
develop symptoms. In addition, the number of infected
people, the average number of close contacts, and susceptible
people were positively correlated with the number of close
contacts of symptomatic people. Among the close contacts,
some are infected and go into the incubation period, while
others are uninfected but still susceptible. *ere are two
important factors to determine whether close contacts are
infected or not. *e first one is the infection rate of close
contacts. *e transmission mode of the virus is diverse. It is
easy to be infected without any protective measures. After
taking measures such as wearing masks and disinfecting, the
infection rate of close contacts is greatly reduced.*e second
one is the quarantine rate. If the infected cases are found
precisely and quarantined in time, the probability of sec-
ondary infection should decrease significantly.

*e causal relationship of the infection subsystem is
shown in Figure 1.

*e meaning of parameters in Figure 1 is shown in
Table 1.

2.2.QuarantineSubsystem. In the quarantine subsystem, the
factors that have a positive impact on the number of
quarantined close contacts one day are the number of close
contacts and the overall proportion of quarantined close
contacts (the quarantined rate). Among these quarantined
close contacts, some are diagnosed as infected and receive
treatment, while others are not infected and released from
quarantine. In addition to the number of quarantined close
contacts on that day, the influencing factors of the number of
these two parts also include the overall proportion of close
contacts who are infected.*e number of newly quarantined
people on that day and the quarantine days positively impact
the cumulative number of quarantined people and the
number of released people on that day, while the number of

released people on that day negatively impacts the cumu-
lative number of quarantined people.

*e causal relationship of the quarantine subsystem is
shown in Figure 2.

*e meaning of parameters in Figure 2 is shown in
Table 2.

2.3. Medical Subsystem. In the medical subsystem, the pa-
tients who are infected in the incubation period have
symptoms after the incubation period, so the number of
patients who have symptoms after the incubation period is
affected by the average incubation period of the disease and
the number of patients who are infected and in the incu-
bation period. Due to the influence of medical supplies and
hospital beds, only a part of the people with symptoms can
be admitted to the hospital. *erefore, the positive influ-
encing factors of the number of people with symptoms
admitted to the hospital one day are the number of people
with symptoms and the overall proportion of people with
symptoms admitted to the hospital. *e number of hospi-
talized patients directly affects the number of cured patients
and the number of deaths. Some of the people who have not
been treated can recover by themselves. *e number of self-
healing people is affected by the average self-healing time,
the proportion of patients treated, and the number of pa-
tients with symptoms.

*e causal relationship of the medical subsystem is
shown in Figure 3.

*e meaning of parameters in Figure 3 is shown in
Table 3.

3. Improved SEIR-SD Model for COVID-19
Epidemic and Its Response

*e classical SEIR epidemic model considers four groups of
people including the susceptible, exposed, infected, and
rehabilitated. It uses a set of differential equations to express
the transmission mechanism of infectious diseases. But the
model does not consider the strong intervention of man-
agement measures. *e Chinese government and the local
government of Wuhan have implemented a series of ef-
fective measures to control the spread of the virus. *ese
measures include but are not limited to closing commu-
nities, enforcing individual protection, isolating suspected
cases, and establishing temporary treatment centers for
mildly infected cases.*e spread of the virus has been largely
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Figure 1: Causal relationship of infection subsystem.
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Table 1: Definition of parameters in Figure 1.

Parameter Definition
IR *e proportion of close contacts infected
QR *e proportion of close contacts found and quarantined (quarantine rate)
ND *e number of uninfected cases in close contact but not quarantined daily
YD *e number of infected cases in close contact but not quarantined daily
CN *e average number of close contacts of infected cases
CD *e number of close contacts of those with symptoms daily
AN *e number of people except for those in quarantine, hospitalization, and death
CC *e cumulative number of close contacts
EC *e cumulative number of infected cases in the incubation period
ED *e number of infected cases going into incubation period daily
NN *e average number of daily contacts per person (average contact number)
PN Cumulative population
ER *e proportion of infections after contacting infected cases (contact infection rate)
SC Susceptible population
IN *e number of initial infected cases
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Figure 2: Causal relationship of quarantine subsystem.

Table 2: Definition of parameters in Figure 2.

Parameter Definition
WD *e number of close contacts released from quarantine daily
AD *e number of infected cases in quarantine daily
QC *e cumulative number of infected cases in close contacts
QD *e number of quarantined close contacts daily
ST Quarantine days
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Figure 3: Causal relationship of the medical subsystem.
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controlled because of the interventions.*is study intends to
improve the classical SEIR model by adding the variables
related to the management measures. Afterward, we com-
bine the improved SEIR model with SD simulation to an-
alyze the influence of management factors, such as the
community closure degree, the personal protection degree,
the hospital treatment rate, and the quarantine rate of close
contacts on the number of confirmed cases and deaths of a
country or region.

Based on the COVID-19 epidemic and its response
system proposed in Section 2. We propose the flowchart of
the infection subsystem (Figure 4), quarantine subsystem

(Figure 5), andmedical subsystem (Figure 6).*ere are three
types of variables in the flowcharts which are the level
variables, rate variables, and auxiliary variables. *e level
variables in the rectangle represent the cumulative effect of
the system over time.*e rate variables in the form of a valve
control the strength of the system change. Auxiliary vari-
ables are used to construct information feedback between
the variables.

In the infection subsystem, CC, EC, and SC are selected
as the level variables, while the rate variables are CD, ED, and
ND. *e functional relationships of the infection subsystem
are shown in the following equations:

dCC

dt
� C D − Y D − N D − Q D, (1)

dEC

dt
� E D + Y D − I D, (2)

dSC

dt
� N D + W D − E D − C D, (3)

AN � PN − KC − HC − QC, (4)

E D �

SC,
(IC + EC) · NN · ER · SC

AN
> SC,

(IC + EC) · NN · ER · SC

AN
,

(IC + EC) · NN · ER · SC

AN
≤ SC,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

N D � C D · (1 − QR) · (1 − IR), (6)

C D �
SC − E D, I D · CN≥ SC − E D,

I D · CN, I D · CN< SC − E D,
􏼨 (7)

Y D � C D · (1 − QR) · IR, (8)

Table 3: Definition of parameters in Figure 3.

Parameter Definition
ET *e average incubation period
ID *e number of new infections daily
IC *e cumulative number of infections
HD *e number of new infections and admitted to the hospital daily
HT Average hospitalization time
RC *e cumulative number of self-healing
HR *e proportion of patients admitted to hospital (hospital admission rate)
DD *e number of cases cured and discharged daily
KD *e number of new deaths daily
RD *e number of self-healing daily
RT Average self-healing time
HC *e cumulative number of cases in hospital
DC *e cumulative number of cases cured and discharged
CR Average cure rate
KC *e cumulative number of deaths
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In the quarantine subsystem, the level variable is QC, while
the rate variables are WD, QD, and AD. Equations (9)-(12)
show the functional relationships of the quarantine subsystem.

dQC

dt
� Q D − W D − A D, (9)

A D �
Q D · IR, time≥ 1,

0, time< 1,
􏼨 (10)

Q D �
C D · QR, time≥ 1,

0, time< 1,
􏼨 (11)

W D �
Q D · (1 − IR), time≥ ST,

0, time< ST,
􏼨 (12)

In the medical subsystem, the level variables are DC, IC,
HC, KC, and RC which are determined by the rate variables
DD, ID, HD, KD, and RD. *e functional relationships
of the medical subsystem are shown in the following
equations:

dDC

dt
� D D , (13)

dIC

dt
� I D − R D − H D, (14)

dHC

dt
� H D + A D − D D − K D, (15)

dKC

dt
� K D, (16)

dRC

dt
� R D, (17)

D D �
H D · CR, time≥HT,

0, time<HT,
􏼨 (18)

H D � I D · HR, (19)

I D �
E D, time≥ET,

0, time<ET,
􏼨 (20)

K D �
H D · (1 − CR), time≥HT,

0, time<HT,
􏼨 (21)

R D �
I D · (1 − HR), time≥RT,

0, time<RT,
􏼨 (22)

*e improved SEIR-SD model is established, of which
the system flowchart is shown in Figure 7 which consists of
three parts, i.e., infection part, quarantine part, and medical
part. *e model considers asymptomatic infection and
subclinical cases. *e assumptions of the model include:
there is only human to human transmission; there is no
specific medicine or vaccine for the virus; other diseases do
not influence the mortality rate and other parameters; there
is no population mobility; deaths occur only in hospital; the
isolated cases are immediately tested for nucleic acid
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Figure 4: Infection subsystem flowchart.
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Figure 5: Quarantine subsystem flowchart.
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Figure 6: Medical subsystem flowchart.
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regardless of the existence of symptoms; the close contacts
are quarantined within one day if the conditions permit. *e
isolated cases are tested for nucleic acid within one day. In
this model, the initial values of the level variables are zero
except SC and EC.*e sum of the initial values of SC and EC
is equal to the cumulative population, and the initial value of
EC is equal to IN.

4. Simulation Results and Analysis

4.1. Simulation of Epidemic Responses in Wuhan

4.1.1. Simulation Parameter Setting. *is section tests the
simulation effect of the model to ensure the validity and
reliability of the model in terms of structure, parameter
settings, and functional relationships using the historical
data of the COVID-19 epidemic in Wuhan. It was not until
February 14th that the number of nucleic acid tests that can
be performed inWuhan every day met the demand. In other
words, the number of confirmed cases was reliable after that.
*erefore, the initial time of the model is set as February
14th, 2020. *e basic parameters of the model are set as
follows: initial time� 1, end time� 100, time step� 1.

*e parameter values of the model are set based on the
official data or authoritative research results that have been
published, as shown in Table 4 [22, 29–33].

We set QR� 0.94, HR� 0.9 based on the data published
by Hubei Provincial Health Committee and Wuhan Mu-
nicipal Health Committee.

According to the official announcement ([16, 34–37]),
the following variable values are determined. In the initial
period of the epidemic, residents can move freely in the city,
so we set NN� 2.7 for this period. Since February 5th
(time� 35), villages, communities, and units have been
closed, so we set NN� 2 for this period. After mid-February
(time� 44), all the residential districts had been strictly
closed, so we set NN� 0.7 for this period. According to the
authoritative news report, in the early stage, there were
insufficient personal protective supplies, such as masks, so
we set ER� 0.06 for this scenario; in late February (time-
� 55), the supplies gradually became sufficient, so we set
ER� 0.03 for this scenario. We set CR� 0.93 based on the
data published on the official website of Wuhan Health and
Health Commission for the scenario in the early stage. In the
later period (time >38), the public places are requisitioned to
build temporary treatment centers and many designated
hospitals are renovated to increase available beds, which
effectively improves the treatment rate and cure rate, so we
set CR� 0.98 for this scenario.

According to the policy and actual situation, the
logical functions of NN, ER, and CR can be established as
follows:
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Figure 7: System flowchart of the improved SEIR-SD model.
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NN � IF THENELSE(Time< � 35, 2.7, IF THENELSE(Time> 35: AND: Time< 44, 2, 0.7)),

ER � IF THENELSE(Time< � 55, 0.06, 0.03),

CR � IF THENELSE(Time< � 38, 0.93, 0.98).

(23)

4.1.2. Simulation Results. *e number of confirmed cases in
Wuhan officially released by the authority cannot reflect the
actual infection number due to the poor nucleic acid testing
ability in the early stage of the epidemic. We select a total of
30 days from February 14th to March 14th for simulation.
*e simulated number of infections daily (ID) and a sim-
ulated cumulative number of deaths (KC) are compared
with the actual data to verify the effectiveness of the model.
*e simulation results are shown in Figure 8.

As shown in Figure 8(a), the number of confirmed cases
has been steadily decreasing since mid-February until a
sharp decline occurred on February 19th. *is is because all
the cases were admitted and all the close contacts were
quarantined compulsorily in Wuhan after February 16th.
Figure 8(b) shows that as the cure rate increases, the cu-
mulative number of deaths shows a slower trend.

From the simulation results, the average deviation and
its variance between the actual and simulated number of
confirmed cases in every single day are −5.24% and 0.0516,
respectively. *e average deviation and its variance between
actual and simulated cumulative deaths are −0.80% and
0.0013, respectively. *erefore, it suggests that the improved
SEIR-SD model proposed in this paper is effective.

During the epidemic, Wuhan has adopted the measures
such as closing communities, enforcing individual protec-
tion, enhancing treatment rate (establishing temporary
treatment centers for mildly infected cases, adding hospital
beds, and adding medical personnel and supplies), and
enhancing quarantine rate (accurate tracking and quick
quarantine of close contacts and suspected cases). To study
the effect of these measures on the stemming and control of
this epidemic, this paper utilizes the improved SEIR-SD
model to make simulations according to the measures.

4.2. Simulation Analysis of the COVID-19 Epidemic Response
Measures

4.2.1. Impact of Hospital Administration Rate. HR is an
important factor affecting the development of the epidemic.
Based on the improved SEIR-SD model proposed in the
previous section, this section studies the trend of ID and KC
with time (T) under different HRs. In this simulation, it is
assumed that residents can move freely (NN� 3) while
taking extremely limited personal protective measures
(ER� 0.06), and other parameter values are the same as those
proposed in Section 4.1. HR and T are regarded as the ex-
perimental variables, while other variables are regarded as

the control variables. *e value of HR is set between 0 and 1,
while T is between 0 and 30 (days).*e simulation results are
shown in Figure 9.

Figure 9(a) shows the trend of ID over time under
different HRs. It can be seen that ID continues to grow with
time, which gives rise to the effect of improving HRs in-
creasingly more obvious. While HR is low, the epidemic
spreads increasingly more rapidly, resulting in a substantial
increase in the number of infected people; in the middle and
late stage of the epidemic, ID has a maximum growth rate
and exceeds 200000; after the majority of residents are in-
fected, the growth rate declines. When HR is close to 1, ID
increases slowly, and the maximum value is only 16071.
Consequently, the growth rate of ID varies greatly under
different HRs.

Figure 9(b) shows the trend of KC over time under
different HRs. Overall, KC shows an exponential upward
trend with time. When HR is lower than 0.5, the number of
patients that can be accommodated in the hospital is small,
and most of the patients who died from infection are not
included in the statistics.*erefore, KC is small in the figure.
When HR exceeds 0.5, KC shown in the figure is the actual
value. It implies that with the increase of HR, the rising trend
of KC gradually decreases.

*erefore, ensuring the adequate supply of medical
materials and medical staff, which improves the hospital
admission rate, can restrain the development of the epidemic
to a great extent. Especially in the early stage of the epidemic,
ensuring a high admission rate can effectively prevent large-
scale outbreaks.

4.2.2. Impact of Quarantine Rate. Close contacts of infected
cases are important carriers of the virus. *erefore, their
quarantine rate directly affects the development of the ep-
idemic. *is section studies the trend of ID and KC with
time (T) under different QRs. *e basic assumptions of this
simulation are as follows: residents can move freely
(NN� 3), the majority of infected cases are admitted to the
hospitals (HR� 90%), and few personal protection measures
are taken (ER� 0.06). QR and T are regarded as the ex-
perimental variables, while other variables are regarded as
the control variables. *e value of QR is set between 0 and 1,
while T is between 0 and 30 (days).*e simulation results are
shown in Figure 10.

Figure 10(a) shows the trend of ID over time under
different QRs. With the passage of time, the number of
infected cases increases gradually, and the effect of measures

Table 4: Model parameter values.

name HT CN ET RT PN Ir In ST
Value 12 2 5.2 9 10000000 0.17 1180 14
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to improve QR is more obvious. When QR is relatively low,
the speed of disease transmission is the fastest. In this case,
ID would reach 202368 on the 30th day. With the gradual
increase of QR, the growth of confirmed cases slows down.
When QR reaches 0.9, the upper limit of ID is only 19872.

*erefore, there are great differences in the growth of ID
under different QRs.

Figure 10(b) shows the trend of KC over time under
different QRs. As is shown in the figure, KC increases ex-
ponentially with time.When QR is low, the upper limit value

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2-
14

2-
15

2-
16

2-
17

2-
18

2-
19

2-
20

2-
21

2-
22

2-
23

2-
24

2-
25

2-
26

2-
27

2-
28

2-
29 3-

1
3-

2
3-

3
3-

4
3-

5
3-

6
3-

7
3-

8
3-

9
3-

10
3-

11
3-

12
3-

13
3-

14

Actual data
Simulated data

(a)

0

500

1000

1500

2000

2500

2-
14

2-
15

2-
16

2-
17

2-
18

2-
19

2-
20

2-
21

2-
22

2-
23

2-
24

2-
25

2-
26

2-
27

2-
28

2-
29 3-

1
3-

2
3-

3
3-

4
3-

5
3-

6
3-

7
3-

8
3-

9
3-

10
3-

11
3-

12
3-

13
3-

14

Actual data
Simulated data

(b)

Figure 8: Comparison of simulated and actual data of the COVID-19 in Wuhan. (a) *e number of confirmed cases in every single day.
(b) *e cumulative number of deaths.

Complexity 9



of KC is 13718. By increasing QR, which inhibits the spread
of the virus, the growth rate of KC decreases continuously.
When QR reaches 0.9, KC should be lower than 3660.
Consequently, with the increase of QR, the rising trend of
KC gradually decreases.

*erefore, improving the quarantine rate by accurate
tracking and rapid quarantine of close contacts of infected
cases can effectively reduce the number of infections and
deaths. In the early stage of the epidemic, the improvement
of the quarantine rate has a more significant impact on the
spreading speed of the epidemic.

4.2.3. Impact of Average Contact Number. *e degree of
community closure directly determines the average contact
number of residents. In this section, we study the trend of ID
and KC with time (T) under different NNs. *e basic as-
sumptions of this simulation are as follows: most infected cases
are admitted to the hospitals (HR� 90%), residents can move
freely (NN� 3), and few personal protectionmeasures are taken
(ER� 0.06). NN and T are regarded as the experimental vari-
ables, while other variables are regarded as the control variables.
*e value of NN is set between 0 and 3, whileT is between 0 and
30. *e simulation results are shown in Figure 11.
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Figure 9: Trend of ID and KC under different HRs.
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Figure 11(a) shows the trend of ID over time under
different NNs. It is not difficult to find that the effect of early
adoption of strict community closure measures is extremely
obvious. In the case of the free flow of people, NN is the
highest, so the epidemic spreads most rapidly. After 30 days,
the value of ID reaches 16097. In the case that the gov-
ernment takes compulsory community closure measures, ID
decreases significantly, and themaximum number is only 24,
which differs significantly from the former case.

Figure 11(b) shows the trend of KC over time with
different NNs. Under the condition of the free flow of

residents, KC increases exponentially over time, reaching the
maximum of 3358 cases. On the contrary, taking the greatest
degree of community closure measures leads to a significant
decline in the number of deaths (the maximum is only 31
cases). Consequently, strict closure measures can effectively
reduce KC.

It implies that the restraint effect of the epidemic should
be very significant if strict community closure measures are
taken in the early stage of the outbreak. Otherwise, the
number of patients would increase exponentially, and the
epidemic should be much more difficult to restrain.
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Figure 10: Trend of ID and KC under different QRs.
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4.2.4. Impact of Contact Infection Rate. In this section, we
analyze the impact of ER on ID and KC. In the simulation,
QR andHR are set to 0.94 and 0.9, respectively.While people
do not take any protective measures, and the contact in-
fection rate is very high. In this case, the maximum value of
ER is set to 0.06. By contrast, in the case that people take the
most stringent personal protection, ER reaches the mini-
mum (0.03). *erefore, the value of ER is set between 0.030
and 0.060. *e simulation results are shown in Figure 12.

Figure 12(a) shows the trend of ID over time under
different ERs. At the same level of ER, ID increases with the
passage of time. While ER is 0.06, the value of ID on the 30th

day of the epidemic can reach four times that at the be-
ginning of the epidemic. At the same time node, the greater
the ER, the more the ID. Additionally, with the increase of
ER, the increase of ID becomes faster. While ER is 0.042, ID
reaches 1000. While ER reaches 0.06, ID could be more than
10000.

Figure 12(b) shows the trend of KC over time under
different ERs. At the same level of ER, KC increases with
time. While ER is 0.06, KC could increase from 382 to 3359
in 30 days. At the same time node, the greater the ER, the
more the KD and KC. By contrast, while the ER is reduced to
0.045, KC would also reduce to less than 1000.
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Figure 11: Trend of ID and KC under different NNs.
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*e simulation results show that when the contact in-
fection rate is high, the number of new infections daily and
the total number of deaths increase exponentially.*erefore,
the measures such as wearing masks to reduce the contact
infection rate are of pivotal importance to restrain the de-
velopment of the epidemic.

4.2.5. Combined Impact of Hospital Admission Rate and
Quarantine Rate. *is section studies the values of IC and
KC on the 30th day under different HRs and QRs. In this
simulation, we assume that residents can move freely

(NN� 3) and take extremely limited personal protection
measures (ER� 0.06). HR and QR are regarded as the ex-
perimental variables, while other variables are regarded as
the control variables. *e value of QR is set between 0 and 1,
while T is between 0 and 30. *e simulation results are
shown in Figure 13.

Figure 13(a) shows the values of IC under different HRs
and QRs. Given a fixed value of QR, with the increase of HR,
IC continues to decline. Specifically, if both QR and HR are
0.1, then IC is 6636770; while HR is increased to 0.9, IC
decreases to 1151102. Additionally, Given a fixed value of
HR, with the increase of QR, IC decreases. Specifically, while
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Figure 12: Trend of ID and KC under different ERs.
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HR is 0.1 and QR is 0.9, IC should be 4282985.When the two
factors (HR and QR) work together, HR plays a decisive role
in the trend of the curve and determines the overall trend of
the epidemic situation. By contrast, the growth of QR makes

the number of infected people and deaths show a relatively
small downward trend.

Figure 13(b) shows the values of KC under different HRs
and QRs. Given a fixed value of QR, while HR is within the

0.03

0.036

0.042

0.048

0.054

0

50000

100000

150000

200000

250000

3 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3

ER

ID

NN

(a)

0.03

0.036

0.042

0.048

0.054

0

500

1000

1500

2000

2500

3000

3 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3

ER

KC

NN

(b)
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interval of [0,0.5], KC increases with HR. At this stage, the
number of infected cases that can be accommodated in the
hospitals is small, and most of the patients who died from
infection are not included in the statistics. While HR is
within the interval of [0.5,1], KC gradually decreases with
HR. Moreover, given a fixed value of HR, KC decreases with
the increase of QR. Specifically, while both HR and QR are
0.1, KC is 10399. By contrast, if QR increases to 0.9, then KC
decreases to 6307 correspondingly.

*erefore, the hospital admission rate is more important
than the quarantine rate in responding to the epidemic. *e
increase of the quarantine rate can only delay the peak of the
epidemic but cannot determine the scale of the epidemic. On
the contrary, enhancing the hospital admission rate (or
treatment rate) can radically restrain the epidemic.

4.2.6. Combined Impact of Average Contact Number and
Contact Infection Rate. *is section studies the values of IC
and KC on the 30th day under different NNs and ERs. In this
simulation, HR and QR are set as 0.9 and 0.94, respectively.
NN and ER were regarded as the experimental variables,
while other variables were regarded as the control variables.
*e value of NN is set between 0 and 3, while ER is between
0.03 and 0.06.*e simulation results are shown in Figure 14.

Figure 14(a) shows the values of IC under different NNs
and ERs. Given a fixed value of NN, IC increases with ER.
Specifically, while NN is 3 and ER drops from 0.057 to 0.03,
IC drops from more than 9000 to 300. Additionally, given a
fixed value of ER, IC increases with NN. Specifically, while
ER is 0.057 and NN increases from 0.3 to 3, IC increase from
23 to more than 9000.

Figure 14(b) shows the values of KC under different NNs
and ERs. At the initial stage of the outbreak, the residents do
not take the necessary protective measures, resulting in a
high ER. With the increase of NN, KC grows rapidly. After
the residents make personal protection, ER decreases and
the growth rate of KC slows down. Similarly, KC increases
with NN, and the growth rate slows down with the decrease
of ER.

It implies the increase of average contact number and
contact infection rate make the cumulative number of in-
fections and the cumulative number of deaths increase
exponentially.*erefore, in the early stage of the epidemic, if
the residents can improve their awareness of self-prevention,
strictly take scientific protective measures, and reduce
outdoor activities, the spread of the epidemic can be re-
strained to a great extent.

5. Conclusions and Suggestions

*is research establishes an improved SEIR-SD model for
the COVID-19 epidemic. *e real scenarios of the epidemic
in Wuhan are simulated successfully by this model, which
proves the effectiveness of the model. Afterward, the impact
of hospital administration rate, quarantine rate, average
contact number, and contact infection rate on the cumu-
lative number of infections and deaths are analyzed by
simulation. *e results show that both the medical and

administrative efforts, especially in the early stage of the
epidemic, are significant in reducing the number of infec-
tions and shortening the epidemic period. In the medical
aspect, the more stringent quarantine brings the earlier
inflection point of the epidemic; more importantly, im-
proving the treatment rate significantly reduces the scale of
the epidemic. In the administrative aspect, enforcing indi-
vidual protection and strict community closure can effec-
tively cut off the transmission of the virus and curb the
spread of the epidemic. In this regard, this research proposes
the following suggestions:

(1) Based on the accurate judgment of the epidemic
situation, the government should implement strict
and effective community closure measures at the
preliminary stage of the epidemic. Specifically, it is
necessary to close factories and schools, stop col-
lective activities or large-scale crowd assemblies, and
take traffic restrictions in villages, communities, and
other areas to reduce close contact among residents.

(2) *e residents must improve their protection, such as
wearing masks and keeping social distance in public
places. *e government should ensure an adequate
supply of protective supplies and sterilize public
places.

(3) *e national or regional medical resources, includ-
ing medical supplies and medical care personnel,
should be allocated reasonably. Establishing tem-
porary treatment centers for mild patients and
expanding the capacity of the existing hospital for
severe patients are important ways to realize the
quarantine and treatment of the patients.

(4) Accurate tracking of the close contacts of confirmed
cases and the suspected cases is of great importance.
It is also necessary to mobilize the social forces and
resources to establish quarantine places and conduct
quarantine on suspected cases and close contacts to
cut off the transmission chain of the virus
fundamentally.

(5) In the early stage of the development of the epidemic,
we should focus on ensuring the hospital admission
rate. On this basis, we should quarantine mild in-
fected cases, which not only reduces the occupation
of important medical resources but also helps to
restrain the epidemic to a certain extent.
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)is paper further extends the existing GARCH-MIDAS model to deal with the effect of microstructure noise in mixed frequency
data. )is paper has two highlights. First, according to the estimation of the long-term volatility components of the GARCH-
MIDASmodel, rAVGRV is adopted to substitute for the RV estimator. rAVGRV uses the rich data sources in tick-by-tick data and
significantly corrects the impact of the microstructure noise on volatility estimation. Second, besides introducing macroeconomic
variables (i.e., macroeconomic consistency index (MCI), deposits in financial institutions (DFI), industrial value-added (IVA),
andM2), Chinese Economic Policy Uncertainty (CEPU) index and Infectious Disease EquityMarket Volatility Tracker (EMV) are
introduced in the long-run volatility component of the GARCH-MIDAS model. As indicated by the results of this paper, the
rAVGRV-based GARCH-MIDAS is slightly better than the RV model-based GARCH-MIDAS. In addition to the common
macroeconomic variables significantly impacting stock market volatility, CEPU also substantially impacts stock market volatility.
Nevertheless, the effect of EMV on the stock market is insignificant.

1. Introduction

Traditional econometric models have been extensively used
to analyze macroeconomic and financial consistent sampling
frequency data. On the whole, the research methods using
such data consist of VAR-type models, GARCH-type
models, cointegration tests, and Granger causality tests.
Most of the mentioned studies complied with low-frequency
data models to examine the correlation between macro-
economics and stock market volatility. Over the past few
years, among the studies on modeling problems of variables
at different sampling frequencies, the Mixed Data Sampling
(MIDAS) proposed by Ghysels et al. [1] has aroused the
biggest attention. Such a model can develop a linear cor-
relation between high-frequency explanatory variables and
low-frequency explanatory variables, and it has been ex-
tensively applied in studies on macroeconomics, stock

market, and crude oil futures for its ability to fully draw
upon available information. Based on the MIDAS regression
model, Engel et al. [2] developed a GARCH-MIDAS model,
decomposing volatility into long-term and short-term
components.)eir model is adopted to study the correlation
between stock market volatility and macroeconomic vari-
ables. Subsequently, Asgharian et al. [3] examined the effect
of U.S. macroeconomic variables on stock market volatility
by adopting the GARCH-MIDAS model.

)e reason why this model outperforms the conven-
tional GARCH-class models is that it can decompose the
total conditional variance of the conventional GARCH
model into two parts, that is, short-term volatility at a high
frequency captured by a GARCH process and long-term
volatility at a low frequency. To calculate the sum of squares
of intraday yield data, Andersen et al. [4] proposed the
GARCH-MIDAS model with a long-run component based
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on realized volatility (RV). For the RV estimator, most
scholars exploited return data with a 5-minute sampling
frequency to determine high-frequency realized volatility
(Wang and Ghysels [5]; Conrad and Kleen [6]). )ough
intraday high-frequency data involves sufficient data in-
formation and can increase the estimation efficiency of stock
volatility, it is difficult to estimate due to considerable data.
Moreover, when high-frequency data are used to estimate
the stock market volatility, prices are sampled at finer in-
tervals, and microstructure issues turn out to be more
pronounced.

RV proposed by Andersen et al. [4] is justified based on
the assumption of a continuous stochastic process to meet
the challenge from market microstructure noise in practical
applications (Aı̈t-Sahalia et al. [7]). Zhang et al. [8] proposed
realized volatility through subsample averaging (rAVGRV)
that exploited the abundant sources in tick-by-tick data; to a
great extent, it could correct the effect of the microstructure
noise on volatility estimation. As indicated by Liu et al. [9],
rAVGRV is a more theoretically and empirically reliable
estimator than RV.

When predicting financial market volatility, macro-
economic indicators are important (Andersen et al. [4];
Conrad and Loch [10]; Dorion [11]). )e GARCH-MIDAS
model has been the most popular model adopted to in-
vestigate the correlations between aggregate financial vol-
atility and macroeconomic or financial variables (Conrad
et al. [12]; Conrad et al. [13]; Pan et al. [14]; Su et al. [15];
Conrad and Kleen [6]; Opschoor et al. [16]; Dominicy and
Vander Elst [17]; Lindblad [18]; Amendola et al. [19];
Conrad et al. [12]; and Borup and Jakobsen [20]).

)e study is different from existing studies, and the long-
run volatility component of the GARCH-MIDAS model is
impacted by realized volatility and other explanatory vari-
ables. )e explanatory variables here included the macro-
economic variables, that is, macroeconomic consistency
index (MCI), deposits in financial institutions (DFI), in-
dustrial value-added (IVA), and M2, as well as Chinese
Economic Policy Uncertainty (CEPU) index and Infectious
Disease Equity Market Volatility Tracker (EMV).)e reason
for selecting CEPU and EMV variables is twofold. On the
one hand, although China’s stock market has been leaping
forward over the past two decades, it is still emerging. It is
not sufficiently mature to require the government to stabilize
it by releasing and implementing necessary policies. )e
government’s policies are overly frequent, and the constant
modifications in policies increase internal and external
uncertainties, thereby increasing stock market volatility. On
the other hand, the coronavirus (COVID-19) outbreak in
December 2019 has significantly affected global macro-
economy and financial markets. Intuitively, stock market
reacts to such a pandemic more promptly and directly than
other sectors in economic and financial system. Accordingly,
the two mentioned variables should be included in this
paper.

)e paper further extends the existing studies, and the
highlights focus on two aspects. (1) In the estimation of the
long-term volatility components of the GARCH-MIDAS
model, rAVGRV is used to replace the RV estimator.

rAVGRV uses the rich sources in tick-by-tick data and to a
great extent corrects the effect of the microstructure noise on
volatility estimation. Accordingly, the rAVGRV-based
GARCH-MIDAS model should be able to characterize the
volatility of the stock market more effectively. As a matter of
fact, the study by Liu et al. [9] confirmed that rAVGRV
exhibited a better performance than RV. (2) Besides in-
troducing macroeconomic variables MCI, IVA, DFI, and
M2, CPEU and EMV were also introduced in the long-run
volatility component of the GARCH-MIDAS model. )e
Chinese government’s policies are too frequent, and the
constant modifications in policies increase internal and
external uncertainties. Moreover, COVID-19 has imposed
great burden on global macroeconomy and financial mar-
kets. For this reason, CEPU and EMV should be introduced.

)e rest of the study is organized as follows. )e second
section elucidates the GARCH-MIDAS model. )e third
section refers to an empirical study that explores the esti-
mation, forecasting the GARCH-MIDAS model built in the
study at several levels. )e fourth section presents the ap-
plication of the model to the portfolio.)e fifth section is the
robustness analysis of this paper. )e last section concludes
the present study.

2. GARCH-MIDAS Model

In accordance with Campbell [21], the correlation between
the variations of unanticipated and expected returns in the
stock market can be set below:
ri,t − Ei−1,t ri,t􏼐 􏼑

� Ei, t − Ei−1,t􏼐 􏼑 􏽘

∞

j�0
ρjΔdi+j,t − Ei, t − Ei−1,t􏼐 􏼑 􏽘

∞

j�1
ρjΔdi+j,t,

(1)

where ri,t denotes the logarithmic stock return on day i of
month t; di,t expresses the logarithmic dividend on day i of
month t; di,t represents the discount factor; Ei−1,t(.) denotes
the conditional expectation for a given set of information
Ii−1,t up to moment i − 1.

Engle and Rangel [22] argued that unanticipated returns
can be determined based on future cash flows or expected
returns:

ri,t − Ei−1,t ri,t􏼐 􏼑 �
�������
τtgi.tεi,t

􏽰
, (2)

where the volatility consists of at least two components, and
the volatility of stock returns falls into short-term gi,t and
long-term τt components, where gi,t represents the volatility
on day i of month t, and τt denotes the volatility at month t.
Moreover, it is assumed that the random perturbation term
εi,t follows with the conditional standard normal distribu-
tion, that is, εi,t|Ii−1,t ∼ N(0, 1).

)us, the conditional variance of stock returns is written
as

σ2i,t � E ri,t − Ei− 1,t ri,t􏼐 􏼑􏼐 􏼑
2

􏼔 􏼕 � τtgi,t. (3)

Assume that Ei−1,t(ri,t) � u, so equation (2) can be
written as
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ri,t � μ +
����
τtgi.t

√
εi,t. (4)

For the short-term volatility component, it follows a
mean-reverting unit-variance GJR-GARCH (1, 1) process:

gi,t � (1 − α − β − 0.5c) + α + cI ri−1,t<0{ }􏼒 􏼓
ri− 1,t − μ􏼐 􏼑

2

τt

+ βgi−1,t,

(5)

where I{} is an indicator function, which means that the
function takes a value of one if the condition is satisfied and
zero otherwise. )e short-run parameters are subject to
α> 0; β≥ 0; c≥ 0; α+ β+ c/2< 1. Parameter c contains the
information of asymmetry.

)e long-term volatility component with a single ex-
planatory variable takes the following form:

log τt( 􏼁 � m + θ 􏽘
K

j�1
∅j ω1,ω2( 􏼁RVt−j,

RVt � 􏽘

Ni

i�1
r
2
i,t,

(6)

where K denotes the number of periods over which the
volatility is smoothed. If t represents a day,RVt denotes daily
realized volatility; if the sampling frequency of intraday
high-frequency data is 5min, the value of Ni is 48; if t
represents a month, the monthly realized volatility is written
as

RVt �
1
22

􏽘

22

i�1
RVi,t. (7)

Compared with daily return data, intraday high-frequency
data containing rich data information and realized volatility
estimation based on high-frequency data can significantly in-
crease the estimation efficiency of volatility, whereas the effect of
market microstructural noise on realized volatility cannot be
ignored. When noise is present, the estimator RV is biased, and
applying it to the GARCH-MIDAS model will adversely affect
the estimation of this model. To address the mentioned
problem, this paper also considered applying the RV via sub-
sample averaging (rAVGRV) proposed by Zhang et al. [8] to the
GARCH-MIDAS model to substitute for the RV estimator.
)us, the single-factor GARCH-MIDAS model is expressed as

log τt( 􏼁 � m + θ 􏽘
K

j�1
∅j ω1,ω2( 􏼁rAVGRVt−j. (8)

)e rAVGRV estimator can effectively eliminate the
effect of noise. rAVGRV is defined as follows.

Assume that, in period t, there are N equispaced returns
ri,t and Δ is set to equal alignPeriod. For i≥Δ, the sub-
sampled Δ-period return is defined as

􏽥ri,t � 􏽘
Δ−1

k�0
ri−k,t. (9)

It is defined that N∗(j) � N/Δ if j � 0; otherwise,
N∗(j) � N/Δ −1 . )e j-th component of the rAVGRV
estimator is expressed by

RV
j
t � 􏽘

N∗(j)

i�1
􏽥r
2
j+i−Δ. (10)

Take the average across the different RV
j
t , j � 0, . . . ,

Δ − 1, and the rAVGRV estimator is defined.
When Yt is theMIDAS term, the long-run component of

the GARCH-MIDAS model is

log τt( 􏼁 � m + θ 􏽘
K

j�1
∅j ω1,ω2( 􏼁Yt−j, (11)

where Y denotes the macroeconomic variable.
In the GARCH-MIDAS model expressed in equations

(8) and (11), ∅j(ω1,ω2) is obtained from the weight
function proposed by Ghysels et al. [1], and the equation is
expressed as

∅j ω1,ω2( 􏼁 �
(j/K)

ω1−1
(1 − j/K)

ω2−1

􏽐
K
i�1 (i/K)

ω1−1
(1 − i/K)

ω2−1. (12)

To ensure that the weights of the lagged variables are in a
decaying form, w1 � 1 is generally fixed. )us, equation (12)
can be defined as

∅j ω2( 􏼁 �
(1 − j/K)

ω2−1

􏽐
K
i�1 (1 − i/K)

ω2−1. (13)

)e single-factor GARCH-MIDAS model presented in
the previous section considers only the rAVGRV volatility
estimator or macroeconomic variable in the MIDAS term.
However, numerous studies have shown that both realized
volatility and macroeconomic variables have a significant
impact on stock market volatility. With Y denoting the
macroeconomic variable, as inspired by Engle et al. [2],
equation (4) can be modified as

ri,t � μ +

��������

τ Yt( 􏼁gi,t

􏽱

εi,t. (14)

As a result, the long-run volatility component expressed
in equations (8) and (11) can be rewritten as

log τt( 􏼁 � m + θ1 􏽘

K

j�1
∅j ω1,R,ω2,R􏼐 􏼑rAVGRVt−j

+ θ2 􏽘

K

j�1
∅j
′ ω1,ω2( 􏼁Yt−j.

(15)

Equations (14) and (15) represent multifactor GARCH-
MIDAS model.

3. Empirical Analysis

3.1. Data

3.1.1. Stock Market Data. )is paper considers daily log-
returns on the SSE Composite Index, calculated as
ri,t � 100∗ (ln(pi,t) − ln(pi,t−1)), for the 2006 :M1 to 2021 :M6
period. To assess the volatility forecasts, this paper employed
daily realized variances RVi,t and rAVGRVi,t, where RVi,t is
calculated from 5min intraday log-returns. )e data can be
obtained from Wind database.
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3.1.2. Explanatory Variables. Explanatory variables consist
of macroeconomic consistency index (MCI), deposits in
financial institutions (DFI), industrial value-added (IVA),
and M2, as well as economic policy uncertainty index
(EPUI) and Infectious Disease Equity Market Volatility
Tracker (EMV). )ey are monthly data.

)e monthly data of the Chinese Economic Policy
Uncertainty (CEPU) index built by Huang et al. [23] are
used. )e index using 10 mainland Chinese newspapers can
capture a wide range of uncertainty timely [24]. )e In-
fectious Disease Equity Market Volatility Tracker (EMV)
was built by Baker et al. [25]. Note that this paper aims to
investigate whether and how infectious disease pandemic
can affect the stock market volatility from a long-term
perspective, instead of focusing on a single public health
emergency, so the data from January 2006 to June 2021 are
selected.

Table 1 reports the descriptive statistics of these time
series. EMV is found with much larger standard deviation
than those of stock indices. All the series have significant
autocorrelation up to 10th lag, and they are not normally
distributed.

)e entire sample falls into two parts (i.e., estimation and
forecast), in which the length of the estimation interval is
from January 2006 to December 2020 (total 3647 days). )e
size of the forecast interval is from January 2021 to June 2021
(total 118 days). Both the daily closing rate data and the
intraday high-frequency data are obtained from the RESSET
database. Notably, when forecasting the volatility of SSE
Composite Index, this paper uses a one-step forward rolling
time window method. In other words, the first estimation
interval t � 1, 2, . . . , 3647 is adopted to estimate the pa-
rameters of the GARCH-MIDAS model to determine the
volatility value of SSE Composite Index, which is used as the
volatility prediction value on day 3648. By keeping the length
of the estimation interval constant, the estimated sample
interval is shifted back one day, and the second estimation
interval is t � 2, 3, . . . , 3648, in which the parameters of the
GARCH-MIDAS model are estimated again, and the vol-
atility of the 3649th day is predicted. Next, the volatility
prediction of the 118th day is conducted.

3.2. In-Sample Performance

3.2.1. Analysis Based on Single-Factor GARCH-MIDAS
Model. In the estimation of the GARCH-MIDASmodel, the
choice of weights w and lags K is of high significance. For the
choice of weights, this paper follows the study by Engle et al.
[2], in which the first weight is taken, and the second weight
is chosen during the estimation of the model to ensure that
the weights decrease with the increase in the number of lags.

K is the number of lags inMIDAS; since we use monthly data
in the MIDAS equation, the lag order K can be taken as 12
according to Engle et al. [2].

)e single-factor GARCH-MIDASmodel considers only
the rAVGRV (RV) estimator or macroeconomic variable in
the MIDAS term. )e estimation results of single-factor
GARCH-MIDAS model are listed in Table 2.

From Table 2, the following conclusions are drawn: (1)
besides macroeconomic variable MCI, macroeconomic
variables IVA, M2, and DFI are significant, thereby dem-
onstrating that they significantly impact the volatility of the
stock market. (2) Chinese Economic Policy Uncertainty
(CEPU) index significantly impacts stock market volatility.
)e government’s policies are overly frequent, and the
constant changes in policies increase internal and external
uncertainties, thereby increasing stock market volatility. (3)
Infectious Disease Equity Market Volatility Tracker (EMV)
does not significantly impact the stock market, probably
because timely actions by the Chinese authorities can reduce
the volatility of their stockmarket, as also verified by Ali et al.
[26] in the recent COVID-19 pandemic. (4) )e coefficients
θ corresponding to RV and rAVGRV are significant and are
taken as positive values, which demonstrates that RV and
rAVGRV can significantly improve the volatility of the
Chinese stockmarket. Moreover, the loss functionsMSE and
QLIKE values of the GARCH-MIDAS (rAVGRV) model are
smaller, which demonstrates that the model can be made
better by using the rAVGRV estimator instead of the RV
estimator in the GARCH-MIDAS model.

3.2.2. Analysis Based on Multifactor GARCH-MIDAS Model.
)e multifactor GARCH-MIDAS model built with equa-
tions (14) and (15) is estimated using data within the sample
interval, and the estimation results are listed in Table 3.

According to Table 3, (1) for all multifactor GARCH-
MIDAS models, the rAVGRV estimator still significantly
improves the Chinese stock market. (2) Consistent with the
results of the single-factor GARCH-MIDASmodel shown in
Table 2, macroeconomic variables IVA, M2, and DFI sig-
nificantly impact the volatility of the stock market. Chinese
Economic Policy Uncertainty (CEPU) index significantly
impacts stock market volatility. Infectious Disease Equity
Market Volatility Tracker (EMV) insignificantly impacts the
stock market.

Figure 1 illustrates the long-term components of stock
market volatility of the GARCH-MIDAS model incorpo-
rating significant macroeconomic variables and CEPU,
basically complying with the overall trend of the total
conditional variance. )us, the GARCH-MIDAS model
incorporating macroeconomic variables and CEPU is sug-
gested to have high goodness of fit.
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3.3. Forecast Comparisons. To assess the predictive perfor-
mance exhibited by different models, the following loss
functions are employed in the study:

MSE �
1
N

􏽘

N

t�1
ht − 􏽢ht􏼐 􏼑

2
,

MAE �
1
N

􏽘

N

t�1
ht − 􏽢ht

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

MSD �
1
N

􏽘

N

t�1

��

ht

􏽱

−

��
􏽢ht

􏽱

􏼒 􏼓
2
,

MAD �
1
N

􏽘

N

t�1

��

ht

􏽱

−

��
􏽢ht

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

QLIKE �
1
N

􏽘

N

t�1

ht

􏽢ht

− log
ht

􏽢ht

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(16)

N in the loss function represents the length of the
prediction interval, with N� 118 days. ht and 􏽢ht denote the
actual and predicted values of stock market volatility, re-
spectively. Since the actual value of stock market volatility is

unobservable, as suggested by Pan et al. [27], an estimate of
RV based on the 5min frequency was used instead of ht. A
minor loss function indicates higher accuracy and better
out-of-sample predictive power of the model. To verify
whether the differences between the different prediction
models are significant, the MCS proposed by Hansen et al.
[28] is introduced for testing. )e first step of the MCS test
takes M � M0, M0 denotes the candidate model, and the
significant level is set to a. If the null hypothesis is rejected,
the worse-performing prediction model will be eliminated.
)e process continues till there is no more rejection of the
null hypothesis to obtain the set of surviving models, which
will be recorded as 􏽢M

∗
a . )e model contained in 􏽢M

∗
a refers to

the optimal prediction model at the 1− a confidence level. A
condition for a model belonging toM is that its p value of the
MCS test exceeds the significant level. In other words, the
larger the p value of the prediction model is, the stronger the
model’s predictive power will be. Table 4 lists the results of
the MCS tests based on different models.

)e benchmark p value of the MCS test is set to 0.1.
Given the principle of the MCS test, if the corresponding p

value of the model is less than 0.10, the out-of-sample
predictive ability of the model will be poor and will be
rejected in theMCS test process. A larger p value reveals that
the out-of-sample predictive ability of the model is better. As

Table 1: Descriptive statistics.

RVt rAVGRVt MCI IVA M2 DFI CEPU EMV

Frequency Monthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly
Mean 2.294 1.999 1.992 0.101 5.974 5.975 2.284 −0.294
Std 0.217 0.074 0.018 0.046 0.257 0.255 0.369 0.491
Skewness 2.582∗∗∗ 2.043∗∗∗ −0.935∗∗∗ 0.532∗∗∗ −0.384∗∗∗ −0.355∗∗∗ 0.194∗∗∗ 2.259∗∗∗
Kurtosis 11.113∗∗∗ 6.930∗∗∗ 4.310∗∗∗ 2.185∗∗∗ 1.894∗∗ 1.887∗∗ 2.210 8.708∗∗∗
JB stat 693.668∗∗∗ 241.078∗∗∗ 39.153∗∗∗ 13.477∗∗∗ 13.593∗∗∗ 13.085∗∗∗ 5.810∗ 397.347∗∗∗
Q (5) 232.73∗∗∗ 226.1∗∗∗ 517.89∗∗∗ 627.17∗∗∗ 814.5∗∗∗ 814.36∗∗∗ 556.5∗∗∗ 398.03∗∗∗
Q (10) 322.64∗∗∗ 324.34∗∗∗ 623.98∗∗∗ 1045.6∗∗∗ 1493∗∗∗ 1494.6∗∗∗ 917.41∗∗∗ 486.07∗∗∗

Notes: the Jarque-Bera statistic test for the null hypothesis of normality in sample returns distribution.Q (n) is the Ljung-Box statistics of the return series for
up to nth order serial correlation. ∗∗∗, ∗∗, and ∗ indicate rejection at the 1%, 5%, and 10% significance level, respectively.

Table 2: Estimation results of single-factor GARCH-MIDAS (K� 12).

α β c m θ w2 MSE QLIKE

GARCH-MIDAS 0.0457∗∗∗ 0.951∗∗∗ 0.006 2.031∗∗∗ 0.434∗∗ 1.328∗∗∗ 42.217 1.632(RV) (≤0.001) (≤0.001) (0.606) (≤0.001) (0.049) (0.002)
GARCH-MIDAS 0.045∗∗∗ 0.951∗∗∗ 0.005 2.013∗∗∗ 0.456∗ 1.558∗∗∗ 41.659 1.601(rAVGRV) (≤0.001) (≤0.001) 0.642 (≤0.001) (0.084) (0.005)
GARCH-MIDAS 0.065 0.933∗∗∗ 0.003 2.061 −16.070 7.553 42.197 1.628(MCI) (0.128) (0.966) (0.966) (0.341) (0.944) (0.973)
GARCH-MIDAS 0.062∗∗∗ 0.933∗∗∗ 0.008 2.147∗∗∗ 9.062∗∗∗ 4.965∗∗∗ 42.087 1.628(IVA) (≤0.001) (≤0.001) (0.655) (≤0.001) (≤0.001) (≤0.001)
GARCH-MIDAS 0.064∗∗ 0.933∗∗∗ 0.005 2.152∗∗∗ 1.296∗ 2.312 42.189 1.629(M2) (0.024) (≤0.001) (0.782) (0.001) (0.095) (0.997)
GARCH-MIDAS 0.063∗∗∗ 0.933∗∗∗ 0.005 2.095∗∗∗ −1.598∗∗∗ 1.928∗∗∗ 42.190 1.629(DFI) (≤0.001) (≤0.001) (0.766) (≤0.001) (≤0.001) (≤0.001)
GARCH-MIDAS 0.060∗∗∗ 0.935∗∗∗ 0.007 2.096∗∗∗ −3.480∗∗ 2.359∗∗∗ 42.206 1.626(CEPU) (≤0.001) (≤0.001) (0.667) (≤0.001) (0.019) (≤0.001)
GARCH-MIDAS 0.064∗∗∗ 0.933∗∗∗ 0.005 2.081∗∗∗ 0.438 2.801∗∗∗ 42.235 1.629(EMV) (≤0.001) (≤0.001) (0.766) (≤0.001) (0.448) (≤0.001)
Notes: the bracketed numbers are the p value of the estimations. ∗∗∗, ∗∗, and ∗ indicate rejection at the 1%, 5%, and 10% significance level, respectively.
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indicated by the above Table, the p value of the GARCH-
MIDAS model based on the rAVGRV statistic is also slightly
larger than the p value of the GARCH-MIDAS model based
on the RV statistic, and the ranking of the model is higher
after a two-by-two comparison. )us, the results above
demonstrate that the GARCH-MIDAS (rAVGRV) model
can be better than the GARCH-MIDAS (RV) model to some
extent, since the rAVGRV statistic removes the effect of
noise in the estimation, and the estimated realized volatility
can be more accurate.

4. Application in the Portfolio

To verify the effectiveness of various types of volatility
forecasting models in practice, they can be applied to a
portfolio. It is assumed that the investor invests his money in
equities and risk-free assets, respectively. In a standard
mean-variance portfolio, the optimal weighting of an in-
vestor’s investment in a stock is determined a priori based on
the predicted variance. A volatility timing strategy popular
in forecasting literature (Campbell and )ompson [29];
Ferreira and Santa-Clara [30]; Neely et al. [31]) is adopted in
this paper. To be specific, at the end of day t, the investor
calculates the optimal weight of the stock index according to
the following equation for the next day t+ 1:

wt �
1
δ

􏽢Rt+1 − Rf,t

􏽢ht+1
. (17)

In the above equation, δ denotes the risk aversion co-
efficient, 􏽢Rt+1 represents the predicted value of stock returns
that exceed the risk-free rate Rf,t, and here this paper se-
lected the benchmark bank 1-year time deposit rate in place
of the risk-free rate. 􏽢ht+1 expresses the predicted value of
stock market volatility. )e weight of an investor’s invest-
ment in equities is expressed aswt, and the remainder weight
1 − wt is assigned to the risk-free asset. Certainly, the op-
timal weight of stock is affected by the value of risk coef-
ficient δ. For robustness check, four different δ’s of 5, 10, 15,
and 20 are adopted.

)en the return of the portfolio is expressed as

Rp,t+1 � wtRt+1 + Rf,t. (18)

To assess the portfolio performance, the measure of
certainty equivalent return (CER) is adopted as follows:

CERp � μp −
1
2
δσ2p, (19)

where μp and σ2p denote the mean and variance of the
portfolio returns, respectively. )e CER values of the
portfolios by using different volatility models are listed in the
tables below.

Tables 5 and 6 list the annualized percentage values. (1)
)e economic value corresponding to the GARCH-MIDAS
model significantly exceeds that of the GARCH model, so
the GARCH-MIDAS model can have high performance in
the portfolio, regardless of the risk aversion coefficient. (2)
GARCH-MIDAS (rAVGRV) model is slightly better than
GARCH-MIDAS (RV) model, and the application of the
GARCH-MIDAS (rAVGRV) model to a portfolio can create
a higher economic value.

5. Robustness Checks

To verify whether it is better to use rAVGRV instead of the
RV estimator in the GARCH-MIDAS model, the GARCH-
MIDAS-X model (Amendola et al. [24]; Engle and Patton
[32]) is applied for further analysis. GARCH-MIDAS-X
models are built for MCI, IVA, DFI, CEPU, EWV, and M2,
respectively. RV or rAVGRV is included as a daily lagged
variable in the short-run component (the so-called “–X”
term). In this paper, the SSE Composite Index data from
January 2006 to December 2020 are still used.)e estimation
results of the GARCH-MIDAS-Xmodel are listed in Table 7.

As indicated by the results in Table 7, (1) for all GARCH-
MIDAS-X models, the corresponding loss functions MSE
and QLIKE are significantly smaller when the X term is the
rAVGRV estimator, which demonstrates that the GARCH-
MIDAS-X model built based on rAVGRV is better. (2)
According to the parameter term z, when the X term is the
rAVGRV estimator, it significantly impacts the Chinese
stock market in most cases.

Table 3: Estimation results of multifactor GARCH-MIDAS model (K� 12).

α β m θ1 θ2 ω1 ω2 LLF

GARCH-MIDAS 0.070∗∗∗ 0.909∗∗∗ −0.017 0.342∗∗∗ 0.142 1.858∗∗∗ 4.433
−5902.481(rAVGRV+MCI) (≤0.001) (≤0.001) (0.998) (≤0.001) (0.971) (≤0.001) (0.917)

GARCH-MIDAS 0.069∗∗∗ 0.898∗∗∗ −0.585∗ 0.325∗∗∗ 7.403∗∗∗ 2.017∗∗∗ 1.001
−5894.395(rAVGRV+ IVA) (0.002) (≤0.001) (0.083) (0.001) (0.006) (0.001) (0.920)

GARCH-MIDAS 0.068∗∗∗ 0.897∗∗∗ 6.035∗ 0.306∗∗∗ −0.972∗ 2.292∗∗∗ 2.037
−5896.277(rAVGRV+M2) (≤0.001) (≤0.001) (0.086) (≤0.001) (0.093) (≤0.001) (0.386)

GARCH-MIDAS 0.067∗∗∗ 0.898∗∗∗ 7.458∗∗ 0.289∗∗∗ −1.207∗∗ 2.182∗∗∗ 1.608
−5895.538(rAVGRV+DFI) (≤0.001) (≤0.001) (0.032) (≤0.001) (0.035) (≤0.001) (0.354)

GARCH-MIDAS 0.067∗∗∗ 0.906∗∗∗ 1.872∗∗∗ 0.332∗∗∗ −0.724∗∗∗ 1.941∗∗∗ 38.808
−5894.433(rAVGRV+CEPU) (≤0.001) (≤0.001) (0.001) (≤0.001) (0.003) (≤0.001) (0.248)

GARCH-MIDAS 0.069∗∗∗ 0.909∗∗∗ 0.282 0.341∗∗∗ 0.084 1.891∗∗∗ 4.151
−5902.443(rAVGRV+EMV) (≤0.001) (≤0.001) (0.528) (≤0.001) (0.748) (≤0.001) (0.763)

Notes: LLF indicates maximum likelihood function value.)e bracketed numbers are the p value of the estimations. ∗∗∗, ∗∗, and ∗indicate rejection at the 1%,
5%, and 10% significance level, respectively.
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To test the robustness of the research results in the
previous section, CSI 300 index is also used as a proxy
variable for the Chinese stock market. )e selected data
estimation interval remains from January 2006 to December
2020. Moreover, the estimation results are listed in Table 8.

According to Table 8, (1) the coefficients θ1 corre-
sponding to rAVGRV are significant and are taken as a
positive value, so rAVGRV estimator can exert a signifi-
cantly positive effect on the volatility of the Chinese stock
market. (2) Variables IVA, M2, DFI, and CEPU still
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Figure 1: Fitting of conditional variance and long-run components of volatility for the multifactor GARCH-MIDAS model incorporating
macroeconomic variables and CEPU. (a) rAVGRV+ IVA. (b) rAVGRV+M2. (c) rAVGRV+DFI. (d) rAVGRV+CEPU.
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Table 4: )e MCS tests of GARCH-MIDAS model.

Loss function MSE MAE MSD MAD QLIKE Rank_M
GARCH-MIDAS (rAVGRV) 1.000 1.000 1.000 1.000 1.000 1
GARCH-MIDAS (RV) 0.845 0.793 0.845 0.762 0.813 2
GARCH-MIDAS (rAVGRV+MCI) 1.000 1.000 1.000 1.000 1.000 1
GARCH-MIDAS (RV+MCI) 0.743 0.803 0.790 0.746 0.802 2
GARCH-MIDAS (rAVGRV+ IVA) 1.000 1.000 1.000 1.000 1.000 1
GARCH-MIDAS (RV+ IVA) 0.751 0.698 0.821 0.792 0.880 2
GARCH-MIDAS (rAVGRV+M2) 1.000 1.000 1.000 1.000 1.000 1
GARCH-MIDAS (RV+M2) 0.797 0.813 0.796 0.808 0.779 2
GARCH-MIDAS (rAVGRV+DFI) 1.000 1.000 1.000 1.000 1.000 1
GARCH-MIDAS (RV+DFI) 0.862 0.787 0.794 0.838 0.745 2
GARCH-MIDAS (rAVGRV+CEPU) 1.000 1.000 1.000 1.000 1.000 1
GARCH-MIDAS (RV+CEPU) 0.812 0.799 0.852 0.884 0.802 2
Notes: numbers in the table indicate the p values of the MCS test based on different loss functions. Rank_M indicates the ranking of the model.

Table 5: Investment performance of different models based on RV.

δ GARCH GARCH-
MIDAS (RV)

GARCH-MIDAS
(RV+MCI)

GARCH-MIDAS
(RV+ IVA)

GARCH-MIDAS
(RV+M2)

GARCH-MIDAS
(RV+DFI)

GARCH-MIDAS
(RV+CEPU)

5 1.545 1.670 1.801 1.790 1.840 1.805 1.796
10 1.329 1.503 1.664 1.595 1.699 1.686 1.599
15 1.260 1.332 1.493 1.320 1.582 1.480 1.436
20 1.065 1.252 1.325 1.295 1.399 1.373 1.311

Table 6: Investment performance of different models based on rAVGRV.

δ GARCH-MIDAS
(rAVGRV)

GARCH-MIDAS
(rAVGRV+MCI)

GARCH-MIDAS
(rAVGRV+ IVA)

GARCH-MIDAS
(rAVGRV+M2)

GARCH-MIDAS
(rAVGRV+DFI)

GARCH-MIDAS
(rAVGRV+CEPU)

5 1.789 1.880 1.822 1.900 1.873 1.815
10 1.585 1.662 1.718 1.826 1.800 1.770
15 1.330 1.465 1.604 1.684 1.612 1.592
20 1.112 1.340 1.482 1.526 1.493 1.391

Table 7: Estimation results of GARCH-MIDAS-X (K� 12).

X β z m θ w2 MSE QLIKE

GARCH-MIDAS-X (MCI) RV 0.800∗∗ 0.081 1.072∗∗∗ −4.976∗∗∗ 2.263 52.488 2.02
rAVGRV 0.928∗∗∗ 0.024∗∗ 1.033∗∗∗ −20.493∗∗∗ 1.618 46.380 1.913

GARCH-MIDAS-X (IVA) RV 0.808∗∗∗ 0.078 1.076∗∗∗ 7.569 9.130∗∗∗ 52.435 2.021
rAVGRV 0.926∗∗∗ 0.027∗∗ 1.040∗∗∗ 8.172∗∗∗ 9.013∗∗∗ 46.800 1.931

GARCH-MIDAS-X (DFI) RV 0.798∗∗∗ 0.081∗ 1.071∗∗∗ 0.264∗∗ 1.967 52.363 2.02
rAVGRV 0.925∗∗∗ 0.025∗ 1.037∗∗∗ 0.825∗∗∗ 2.088 46.322 1.913

GARCH-MIDAS-X (CEPU) RV 0.801∗∗∗ 0.08 1.0740∗∗∗ −0.13 8.928∗∗∗ 52.361 2.021
rAVGRV 0.930∗∗∗ 0.021 1.055∗∗∗ −0.893∗∗ 5.674 45.488 1.878

GARCH-MIDAS-X (EMV) RV 0.801∗∗∗ 0.08 1.068∗∗∗ 0.574 2.025∗∗ 52.189 2.021
rAVGRV 0.930∗∗∗ 0.004∗ 1.462∗∗∗ −0.632∗ 1.001∗∗ 42.907 1.689

GARCH-MIDAS-X (M2) RV 0.797∗∗∗ 0.082 1.071∗∗∗ 1.710∗∗∗ 2.287∗∗∗ 52.759 2.024
rAVGRV 0.927∗∗∗ 0.024∗∗ 0.950∗∗∗ 16.540∗ 18.302∗∗ 46.004 1.896

Notes: ∗∗∗, ∗∗, and ∗indicate rejection at the 1%, 5%, and 10% significance level, respectively. X represents RV or rAVGRV. z represents the coefficients
corresponding to X term. Other parameters are consistent with Table 2.
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significantly impact the volatility of the stock market, and
the impact of EMV on the stock market remains insignif-
icant. In brief, the conclusions drawn from Table 8 comply
with Table 3. )us, the findings of this paper are verified to
be robust.

6. Conclusion

We further extend the existing GARCH-MIDASmodel.)is
paper has two highlights. First, the rAVGRV estimator
considering noise effects is adopted to estimate the long-
term volatility components of the GARCH-MIDAS model.
Second, in the GARCH-MIDAS model, the Infectious
Disease Equity Market Volatility Tracker (EMV) and Chi-
nese Economic Policy Uncertainty (CEPU) index are in-
troduced besides macroeconomic variables to more
comprehensively analyze the factors of Chinese stock market
volatility based on the research in the study. Moreover, the
following conclusions are drawn:

)e GARCH-MIDAS (rAVGRV) model is slightly better
than the GARCH-MIDAS (RV) model, since the effect of
noise on the stock market in high-frequency data cannot be
ignored. rAVGRV statistic removes the effect of noise in the
estimation. As a result, the estimated realized volatility can
be more accurate.

In single-factor GARCH-MIDAS model, the coefficients
θ corresponding to RV and rAVGRV are significant and are
taken as positive values, which demonstrates that RV and
rAVGRV significantly improve the volatility of the Chinese
stock market.

For all GARCH-MIDAS models, macroeconomic vari-
ables IVA, M2, and DFI significantly impact stock market
volatility. Likewise, Chinese Economic Policy Uncertainty
(CEPU) index impacts stock market volatility significantly,
the government’s policies are overly frequent, and the
constant changes in policies cause more internal and ex-
ternal uncertainties, which increases stock market volatility.
Besides, Infectious Disease Equity Market Volatility Tracker
(EMV) insignificantly impacts the stock market, since timely
actions by the Chinese authorities can reduce the volatility of
their stock market, which is also verified by Amendola et al.
[24] in the recent COVID-19 pandemic.

Data Availability

)e stock data used in this article can be obtained from the
Wind database. )e macroeconomic consistency index
(MCI), industrial value-added (IVA), M2, and deposits of
financial institutions (DFI) can be obtained from the official
website of the People’s Bank of China (https://www.pbc.gov.
cn/diaochatongjisi/116219/index.html) or the Oriental
Fortune website (https://data.eastmoney.com/cjsj/xfzxx.
html). )e Chinese Economic Policy Uncertainty (CEPU)
index (https://economicpolicyuncertaintyinchina.weebly.
com/) was constructed by Huang et al. [23]. )e Infec-
tious Disease Equity Market Volatility Tracker (EMV)
(http://www.policyuncertainty.com/infectious_EMV.html)
was constructed by Baker et al. [25]. To save space, we will
not show all the data in this article, but they can be provided
upon request.
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With the development of the Internet, social media has become an important platform for people to deal with emergencies and
share information. When a public health emergency occurs, the public can understand the topics of the event and perceive the
sentiments of others through social media, thus building a cooperative communication network. In this study, we took the public
health emergency as the main research object and the natural disaster, accident, and social security event as the secondary research
object and further revealed the law of the formation and evolution of public opinion through the analysis on temporal networks of
topics and sentiments in social media platforms. Firstly, we identified the derived topics by constructing the topic model and used
the sentiment classification model to divide the text sentiments of the derived topics into two types: positive sentiment and
negative sentiment. (en, the ARIMA time series model was used to fit and predict the evolution and diffusion rules of topics and
sentiments derived from public opinions on temporal networks. It was found that the evolution law of derived public opinions had
similarities and differences in various types of emergencies and was closely related to government measures and media reports.
(e related research provides a foundation for the management of network public opinion and the realization of better
emergency effects.

1. Introduction

With the development of the economy and the deepening of
the social transformation period, social contradictions are
further aggravated, and the frequent occurrence of emer-
gencies has become a severe test faced by social governance
[1]. Based on relevant research, the emergency is defined as
the event that poses a serious threat to human life, health,
property, and safety and is further divided into four types:
natural disaster, accident, public health, and social security
event [2, 3]. For example, the COVID-19 outbreak in 2020 is
a typical public health event, which has brought serious
economic losses and human casualties to all countries in the
world and posed serious challenges to the governance of
social order and the maintenance of social stability. When
public health events or other types of emergencies occur,
people will carry out heated discussions on social media
around the relevant events and try to obtain information

related to the event and understand the situation related to
the event with the convenience of social media, to reduce the
impact brought by the uncertainty [4]. However, the im-
mediacy of emergency makes the response of the govern-
ment and media lag, which cannot meet the explosive
demand of the public for the information related to the
event, often leaving the public in the situation of lack of
information and psychological anxiety. At this time, the
public is vulnerable to the influence of false information and
tends to form negative emotions, which makes emergency
management more complex, weakens social cohesion, im-
pacts social order and social stability, and finally causes
social crisis [5].

In recent years, as an integral part of modern society,
social media has penetrated everyone’s daily life. According
to the statistics of relevant agencies, the global users of social
media have exceeded 4.7 billion in 2021, which means that,
on average, 6 out of 10 people in the world are using social
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media [6]. (rough the social network established in the
social media platform, on one hand, the public can express
their views conveniently, share their experiences and
thoughts, and make comments on the event. On the other
hand, they can also interact with other social media users
through functions such as thumb up, retweet, and comment
[7]. (e advantages of social media in instant communi-
cation and interaction also make it play an increasingly
important role in the emergency management of emer-
gencies [8].(erefore, when an emergency occurs, the public
tends to use social media to collect and disseminate infor-
mation and form a cooperative communication network on
the social media platform through the exchange of pictures,
texts, and other information, to realize information sharing
and the exchange of views [9], which also provides favorable
conditions for rescue and management after the occurrence
of emergencies.

In addition, the occurrence of emergencies is often not
isolated, but there will be further evolution and development
in the context of time and space and under the action of the
environment derive to other related events. When an
emergency occurs, the public’s discussion and concern about
the emergency itself is usually defined as the original public
opinion of the emergency, and the public’s discussion and
concern about the related events evolved in the context of
time and space of the emergency is defined as the derived
public opinion [10]. In short, the communication process of
emergencies on social media is influenced by various ex-
ternal factors and thus forms other interrelated event
contents. Derived public opinions are derived from the
public’s discussion and attention on related events after the
differentiation of emergencies in social networks.(e typical
characteristic of derived public opinion is the transfer of
evaluation object, which is different from the research object
of original public opinion. Compared with the original
public opinion, the derived public opinion of an emergency
is more concealable. In the early stage of an emergency, it
hides in the evolution of the original public opinion and is
difficult to attract public attention. However, when the
original public opinion of the emergency has evolved to a
certain stage, or when the control and treatment measures
for the emergency are ineffective, the derived public opinion
will often break out quickly. On the one hand, it attracts the
attention of the public and becomes a hot topic in society,
further expanding the scope of impact and the degree of
function of the emergency [11]. On the other hand, it will
have an impact on the original public opinion, aggravate and
upgrade the public opinion, increase the difficulty of public
opinion management in the social network, and further
impact the social order and social stability [12]. (erefore,
the relevant analysis of public opinion derived from
emergencies based on public health events is not only
conducive to the prediction and emergency management of
emergencies but also to reducing the negative impact of
online public opinion, which is an important guarantee for
the realization of network security governance and the
maintenance of social order and social stability.

In this study, we take the public opinion derived from
public health emergencies as the main research object and

introduce other types of emergencies such as natural di-
sasters, accidents and disasters, and social security as the
secondary research object. Combined with the time series
analysis method, this study attempts to explore the topic-
sentiment evolution law of public opinions derived from the
public health event on temporal networks and further
compares the commonality and difference of topic-senti-
ment evolution law in different types of emergencies.
(rough the above analysis, this study attempts to answer
the following questions:

(1) What are the characteristics of the topic evolution of
public opinions derived from public health emer-
gencies on temporal networks? Are there any dif-
ferences from other types of emergencies?

(2) What are the characteristics of the emotional evo-
lution of public opinions derived from public health
emergencies on temporal networks? Are there any
differences from other types of emergencies?

(e rest of this paper is structured as follows. In the next
section, the study will review the public opinion derived
from emergencies and the related studies on topic-sentiment
evolution. (e third part introduces the method of this
paper, mainly including the principle and advantages of the
model used in this paper. (e fourth part introduces the
research design of this paper, including data collection and
preprocessing, topic model, sentiment model, and time
series model. (e fifth part shows the research findings of
this paper and reveals the topic and sentiment evolution
rules of derived public opinions on temporal networks. (e
sixth part is the research conclusion of this paper, which
summarizes the foregoing and puts forward the further
direction for the follow-up research.

2. Related Studies

2.1. Research on Public Opinion Derived from Emergencies.
Derivative public opinion is formed in the discussion and
interaction of social media users on related events under the
evolution of emergencies. (ese related events are often
referred to as secondary or derivative events, which evolve
from the original events. Among them, original events
usually refer to the emergent events that first appear and
then evolve and spread, while secondary events and de-
rivative events are a series of related events that evolved from
original events under the action of the spatiotemporal sit-
uation [10]. (e difference between the two is that the
secondary event and the original event are consistent in
terms of type and cause of the occurrence, with continuity
and linkage, while the derivative event is quite different from
the original event in terms of type and cause of occurrence
[11]. In short, the secondary event is triggered by the original
event, acts on the same object as the original event, and is of
the same type as the original event. In addition, the derived
event is also the event caused by the original event, but the
research object has changed and the type is different from
the original event. For example, the governance and pre-
vention events caused by public health events are called
secondary events, but the changes in stock prices caused by
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public health events belong to the derived event. In addition,
from the perspective of the content of related events, some
scholars believe that related events are reflections of original
events from different aspects, and they name related events
as subevents [12, 13]. However, there are few studies on the
definition and feature description of associated events, and
there is a lack of authoritative definition standards and
discriminant framework. (erefore, to facilitate the follow-
up research work, a series of related events evolving in the
context of time and space of emergencies are uniformly
referred to as derivative events.

Online public opinion on emergencies refers to the
synthesis of attitudes, opinions, and sentiments expressed on
social networks around the occurrence and dissemination of
emergencies in a certain time and space with social media
platforms as communication channels [14]. Derived public
opinion refers to the social media users expressing their
views, opinions, and evaluations on the derivative events of
emergencies through the network platform [15]. Existing
related studies that take derived public opinion as the re-
search object mainly focus on the dissemination and pre-
diction of derived public opinion, the evolution mechanism
of derived public opinion, the formation and response of
derived public opinion, and so on. Among them, the dis-
semination and prediction of derived public opinion are
mainly studied. On the one hand, information mining
methods are used to understand the dissemination mech-
anism of derived public opinion; on the other hand, methods
such as machine learning are used to realize the prediction of
derived public opinion. For example, some scholars estab-
lished a digital model to simulate the propagation dynamics
of network rumors in social networks, to identify the
propagation characteristics of network rumors, a special
derivative public opinion, in social networks [16]. In ad-
dition, some scholars established a control model and
explained the propagation mode of derived public opinion
based on the propagation mechanism, to realize the control
of derived public opinion [17]. As for the prediction of the
derived public opinion, on the one hand, recent studies use
machine learning algorithms such as HDP to analyze the text
semantics to realize the classification of the derived public
opinion [18]. On the other hand, deep learning algorithms
such as neural networks are used to realize the prediction of
the derived public opinion through the analysis of social
media data [19].

At present, the research on the evolution mechanism of
derived public opinions mainly adopts the method of case
study and analyzes the evolution of derived public opinions
in social networks by selecting specific emergencies as re-
search objects. Some studies choose a single emergency
event as the research object. For example, based on the
investigation of an emergency accident and disaster event,
the evolution path and internal logic of derived public
opinions are explored from the interaction and game among
the government, media, and the public [20]. (ere are also
studies taking large-scale emergent event data sets as re-
search objects. For example, based on the analysis of 101
emergent event data sets, the changes of online public
opinion in time and space are explored, providing a rich

research basis for the evolution mechanism of derived public
opinion [21]. (e third aspect of related research on de-
rivative public opinion focuses on the formation reasons and
coping strategies of derivative public opinion and provides
theoretical summarization of derivative public opinion from
a multidisciplinary perspective. For example, some scholars
described the propagation mode of derived public opinions
in social networks through the epidemiological model and
explained the reason why expert intervention and govern-
ment action cannot play a role from the perspective of time
delay [22]. From the perspective of competitive diffusion,
some scholars also proposed network interruption strategy
and balance strategy to deal with the spread of derivative
public opinions in social networks, to control the derivative
public opinions, and reduce the damage caused by negative
public opinions such as rumors [23].

To sum up, the emergence of derivative public opinion
has attracted the attention of all sectors of society and be-
come a key topic of research by scholars. However, the
current research on derivative public opinionmainly focuses
on the formation reasons and countermeasures of the de-
rivative public opinion, and there is a lack of sufficient
exploration of the evolution of the derivative public opinion
in the time scale. (erefore, we introduce the time series
model to analyze the evolution law of public opinion derived
from emergencies in social networks from the perspective of
time series, to make contributions to the governance of
public opinion derived from emergencies and the mainte-
nance of network order.

2.2. Topic Research on Network Public Opinion. With the
development of the Internet and information technology,
people have become accustomed to getting information
from social media. However, the complexity and diversity of
information in social media make it more difficult for us to
find the information we want. Using the topic discovery
method to analyze topics from event news can not only help
people better understand the occurrence and evolution of
the event but also analyze the issues of public concern and
understand the public opinion and focus. (erefore, the
analysis method of topic discovery has attracted the atten-
tion of many scholars and has been widely applied in the
related research of online public opinion [24].

At present, the topic research of online public opinion on
emergencies mainly focuses on the topic discovery and
transmission evolution of online public opinion. Among
them, the topic discovery of network public opinion is
mainly aimed at the identification of the unexpected event
topic in social networks, or the improvement and optimi-
zation of the accuracy of the prediction model based on the
original model. Cluster analysis and topic models are usually
adopted in the research. (e former is mainly based on the
clustering assumption that the similarity of documents of the
same class is large and the similarity of documents of dif-
ferent classes is small, and then the text information is
transformed into digital information and processed by the
machine learningmethod. For example, some studies use the
large-scale text data in social media to detect the tweet event
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monitoring system based on subdivision and, based on
considering the frequency distribution and the similarity of
information content, detect the tweet segments of emer-
gency events as event fragments and then cluster the event
fragments into the events to realize the identification of
relevant events [25]. (ere are also studies on the use of
machine learning clustering algorithms to identify topic
trends in social media and provide meaningful analysis to
synthesize accurate descriptions of each topic [26].(e latter
is based on the topic discovery tool widely used in text
mining to automatically find the potential hidden topics and
model them from the large-scale text data. (e most widely
used model is LDA (Latent Dirichlet Allocation) model and
its improved model [27]. For example, the LDA model is
used to detect and classify the evolution of topics in social
networks when public health emergencies occur [28]. Based
on the LDA model, TS-LDA (Trend Sensitive-Latent
Dirichlet Allocation) model is proposed to extract potential
topics from text information more effectively [29].

(e transmission evolution of network public opinion
mainly focuses on the communication mechanism and
evolution law of emergency topics in social networks.
(rough the analysis of large-scale social media data, it tries
to depict the communication path of event topics in social
networks based on the evolution model. Relevant re-
searches focus on establishing the evolution model of the
emergency topic in the social network or realizing it by
dividing the evolution life cycle of the emergency topic in
the social network. For example, based on the OLDA
(Online LDA) topic evolution model, combined with the
correlation between topics in different time segments, the
topic evolution of online public opinion has been effec-
tively tested [30]. Some studies combine the LDA model
with the improved Birch hierarchical clustering method to
propose a new text enhancement strategy, to expand the
content of social media with short text characteristics, and
then extract the topic evolution characteristics of network
public opinions [31]. In addition to the research based on
topic models such as LDA, some scholars had also intro-
duced social network analysis method to construct topic
evolution model based on the network matrix formed by
forwarding relationship and further explored the interac-
tion and evolution mechanism of event topics under the
influence of environment in the communication of public
opinion [32]. In addition, the evolution of the topic of
emergencies in the life cycle has also attracted the attention
of many scholars. For example, based on the amount of
information about the event topic in different periods, the
evolution of online public opinion is divided into four
stages: initial stage, outbreak stage, decline stage, and end
stage [33]. Or based on the nature of the events, such as
choosing a public health emergency as the research object,
the network public opinion is divided into different stages
according to the local evolution of the virus and hot trends
[34]. Some studies also analyze the propagation charac-
teristics of emergencies in different life cycle stages, such as
propagation period, control period, and stable period, by
simulating the time evolution process of multiple emer-
gencies in social networks [21].

To sum up, the topic research of network public opinion
is relatively mature and has achieved good results, but few
studies take the topic of derived public opinion as to the
research object. Given this, we take the derived public
opinion as to the research object, explore the propagation
evolution law of the derived public opinion topic, and
compare and further explore the derived public opinion law
of different types of emergencies.

2.3. SentimentResearchonNetworkPublicOpinion. With the
development of Internet technology, the public has become
accustomed to using social media in their daily life. (rough
the extraction of users’ posts, comments, tweets, blogs,
discussions, and other content in social media, we can
analyze the opinions and attitudes of social media users and
then infer the individual sentimental trends and behavioral
preferences [35]. (is method of analysis is often referred to
as sentiment analysis, sometimes also referred to as view-
point analysis, opinion mining [36]. As a branch of natural
language processing, it is widely used in information re-
trieval, text mining, and other fields [37]. For example, based
on the test set, relevant researchers conduct retrieval eval-
uation by making use of the correlation judgment of in-
formation objects and topics, to verify the validity and
reliability of the information collected by the test set in the
retrieval evaluation [38]. In addition, there are also studies
based on social network analysis methods to conduct sen-
timent analysis on the large-scale text data of emergencies in
social networks, to understand the communication structure
and characteristics of event content [39].

Similar to topic research, transmission evolution is also
the focus of online public opinion sentiment research. (e
sentiment research of network public opinion mainly fo-
cuses on two aspects, namely the influencing factors of
sentiment and the evolution mechanism of sentiment. Based
on the analysis of text information, we can not only un-
derstand what factors will affect sentiments but also un-
derstand the changes of sentiments in different times and
spaces, to realize the analysis and prediction of sentiments.
Among them, in the field of commercial products, the in-
fluence factor analysis of sentiment is most commonly used.
For example, some studies divide the review text of mobile
phone products on Amazon into emotions such as joy,
sadness, trust, and anger, and understand the influencing
factors of consumers’ emotions through the analysis of the
review text, to provide feedback for mobile phone manu-
facturers [40]. According to the content characteristics of
product reviews, some studies are conducted to understand
the influencing factors of user preferences in the reviews, to
improve the effectiveness of user perception information in
the shopping platform, and provide better suggestions for
users in the choice of products [41]. In addition to the re-
search on the influencing factors of emotion, we can also use
the sentiment of users in social media to analyze the evo-
lutionary transmission mechanism of network public
opinion, to realize the prediction of emergencies. For ex-
ample, based on the transference and infectivity of senti-
ment, scholars have used social media data to predict
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national political elections based on sentiment analysis
methods and achieved good results [42, 43]. Some scholars
also used opinion mining and sentiment analysis to predict
stock price indexes and trends based on public comments
and opinions published on social media platforms [44, 45].

Before we can do sentiment analysis, we need to first
categorize the sentiments. (e commonly used research
methods are mainly divided into two categories: sentiment
classification based on sentiment dictionary and sentiment
classification based on machine learning [46]. (e former is
mainly based on the meaning of words and phrases in the
document to mark the sentimental direction of the document,
through manual screening, based on the existing dictionary, or
based on the method of corpus construction. For example,
NRC Sentiment Dictionary is used to calculate the sentimental
performance of news headlines in eight dimensions when an
emergency occurs [47], or taking emergencies as an example,
the method of point mutual information based on existing
sentiment dictionaries is used to construct emoji dictionaries to
calculate text sentiments [48]. (e latter needs to use super-
vised, semisupervised, and unsupervised machine learning
methods, such as support vector machine, Naive Bayes, and
neural network, to classify sentiments based on labeled data as
the training set. For example, SVM is used as a classifier to
classify text data sets by mapping emojis and word vectors into
sentiment space [49], or N-gram is used as the text feature and
Naive Bayes as the classifier to identify the sentimental types of
netizens [50]. With the development of deep learning tech-
nology, more and more studies use deep learning models as a
classifier to replace the traditional machine learning model for
sentiment analysis of short texts. For example, through the
sentimental data analysis framework, the convolutional neural
network is used to realize the recognition of different senti-
mental types on text, video, and other data [51], or based on the
cyclic neural network, the long and short memory model
(CLSTM) is introduced to make the cyclic neural network
better store the sentimental information [52]. (ese studies
have achieved good results, making deep learning one of the
most popular methods in sentiment classification. (e success
of these studies has made deep learning one of the most
popular methods of sentiment classification.

To sum up, the study of online public opinion by using
sentiment analysis has always been a hot topic of research.
However, the difference of sentimental evolution in the
social network by comparing derivative public opinion of
different emergencies with derivative public opinion as the
research object has received less attention from scholars.
Given this, we combine the deep learning method to classify
sentiments and attempt to make further study on the sen-
timental evolution of derived public opinions in social
networks based on time series analysis. In addition, we also
compare and explore the law of public opinion derived from
public health events and other types of emergencies.

3. The Proposed Methodology

In this part, we introduce the research methods used in the
study and mainly build three models, namely, the topic
identification of online public opinion, the sentiment

classification of online public opinion, and the time series
model of online public opinion. In the topic identification
model, the research mainly used the Word2Vec word vector
model to convert text data into word vectors and then used
the clustering method to realize topic identification. In the
sentiment classification model, the biLSTM model was
mainly used to realize the identification of text sentiment
based on the training set, and it was divided into positive and
negative sentiment types. In the time series model, the re-
search mainly used the ARIMA model to make topic-sen-
timent analysis of public opinion derived from emergencies
and further compared different types of emergencies, to
explore the evolutionary commonalities and differences
between the public health event and other types of emer-
gencies on temporal networks. In this section, we will briefly
introduce the principle and advantages of the Word2Vec
word vector model, biLSTM sentiment classification model,
and ARIMA time series model.

3.1. 1e Construction of Topic Identification Model. Social
media provides a convenient channel for people to under-
stand the information related to emergencies. However, the
large scale of network data, the large amount of useless
information, and the existence of noisemake it more difficult
to extract effective information. To timely and accurately
discover important information, the topic identification
method has been widely used in event detection and in-
formation extraction of social media [53]. However, in social
media platforms such as Twitter and Facebook, which are
dominated by short text information, the traditional topic
identification model represented by LDA is not applicable,
and the effectiveness of topic identification cannot be well
guaranteed [54]. As a typical topic model, LDA mainly uses
the soft clustering method to cluster documents and,
through the study of document matrix, realizes topic clus-
tering by using the cooccurrence relationship of words in
documents. However, when the topic model is applied to
short text documents, the problem of sparse data often
occurs. Specifically, on the one hand, the number of words in
short documents is smaller than that in long documents, so it
is difficult for the model to distinguish the document se-
mantics by a small number of words. On the other hand, the
number of contexts in short texts limits the application of the
model, making it difficult for the thematic model to accu-
rately identify the meanings of ambiguous words. To further
improve the accuracy of topic recognition, researchers
proposed a series of topic identification and text mining
methods based on deep learning, among which the most
representative model is Word2vec, which can generate word
vectors and is represented by a shallow and two-layer neural
network structure [55]. Compared with the topic model
represented by LDA, Word2vec is mainly expressed as the
word embedding model with neural network structure. By
learning context-word matrix, words are converted into
word vectors, which shows better results in topic recognition
of short text information.

Word2vec word vector model can be regarded as a
simplified neural network model. Firstly, the text is
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processed by using a shallow neural network, and based on
using a large data set as a training set, the relationship
between words and context is obtained. Secondly, the se-
mantic of the word is mapped to the vector space, and the
word is transformed into a distributed word vector by
representing it as a similar semantic word [56]. Among
them, word vector training of theWord2vec model is mainly
completed by the Skip-Grammodel and Continuous Bag-of-
Words (CBOW) model. (e difference is that the former
mainly realizes the prediction of the context words through
the semantics of the current word, while the latter mainly
realizes the prediction of the current word through the
semantics of the context. Although the Skip-Gram model is
more accurate in obtaining word vectors of all texts after
traversing all texts, the CBOW model has been adopted by
researchers for its higher efficiency and faster speed in the
analysis of large-scale social media data sets [57]. Consid-
ering that this paper adopts a relatively large data set, we use
the CBOW model to carry out topic analysis on the public
opinions derived from emergencies.

As a shallow neural network model, the CBOWmodel is
composed of the input layer, projection layer, and output
layer. It is a word bag model formed based on continuously
distributed word representation methods [58]. (e objective
function of the CBOW model is usually expressed as a
logarithmic likelihood function, as shown in (1), where C

represents the objective function of the model, w is the
central word to be studied, and n is a given sequence of
training words, which means that n words are taken before
and after the central word w.

C � 􏽘
w∈n

p(w|Context(w)). (1)

(e CBOW model is a prediction of the central word
based on the context words with a probability of
p(wi|Context(wi)). Assume that T is the number of training
words in the corpus, and ωw(t) is the t the component value
of vector ω. Based on the context information of the central
word wi, the model combined with softmax function for
normalization calculation and finally generated the vector
value of wi. (e specific calculation is shown in

p wi|Context wi( 􏼁( 􏼁 �
exp ωw(i)􏼐 􏼑

􏽐
T
t�1 exp ωw(t)􏼐 􏼑

. (2)

(e structure of the CBOWmodel is shown in Figure 1.
Firstly, the model enters the context word of the target
word and passes it to the embedding layer initialized with
random weights. Secondly, the model transfers the word
embeddings of the context words to the lambda layer to
obtain the averaged word embeddings. (irdly, we pass the
averaged word vectors to the dense layer and match the
predicted words with the target words based on the pre-
diction of the target words by the softmax function. Finally,
loss calculation and embedding layer updating are
implemented by categorical cross-entropy and back-
propagation, respectively.

3.2. 1e Construction of Sentiment Classification Model.
In recent years, sentiment classification models based on
deep learning have achieved good results in tests and have
been widely applied [59]. Among them, in natural language
processing studies that have requirements on the length of
input variables, recurrent neural networks (RNN) have
become an important tool in the field of sentiment analysis
by the high efficiency of information processing [60]. In this
study, a bidirectional long short-term memory model was
used to realize sentiment classification based on a recurrent
neural network.

(e long short-term memory model, as a variant of the
recurrent neural network, is widely used in sentiment
analysis. On the one hand, it is because the design structure
of the model can capture remote dependencies and solve the
short-term memory problem of traditional recurrent neural
networks. On the other hand, it can not only consider the
order of text data but also save or delete information in the
training process, so it has a great advantage in the processing
of sequential text data.(e realization of the model is mainly
divided into three stages: selective memory, forgetting, and
output stage. Selecting memory is the input stage, selectively
recording input information. (e forgetting stage is the
second extraction of information, forgetting unimportant
information and recording important information, to
achieve the selection of information recording. (e output
phase determines what information is ultimately output into
the current state.

Corresponding to the implementation stage of the
model, the long short-term memory model selects infor-
mation through the “gate” to realize the selective passage of
information. (e structure of the model is composed of an
input gate, forgetting gate, output gate, and memory unit.
(e model mainly realizes the selection of information to be
forgotten through the forgetting gate, and the specific for-
mula is shown in (3). (e symbol of forgetting gate is
represented by ft, σ is the activation function, Wf and bf,
respectively, represent the weight and standard deviation of
forgetting gate, ht−1 represents the hidden state at the
previous moment, and μt represents the input of text in-
formation at the current moment.

ft � σ Wfht−1 + Wfμt + bf􏼐 􏼑. (3)

(e input gate is corresponding to the selected memory
stage of the model, which mainly determines the input of
text information and realizes the preservation of memory
information. (e specific calculation equation is shown
below, where it represents the input gate, 􏽥Ct represents the
temporary memory unit, Wi and bi respectively represent
the weight and standard deviation of the input gate, WC and
bC respectively represent the weight and standard deviation
of the memory unit, and Ct−1 represents the memory unit of
the previous moment.

it � σ Wiht−1 + Wiμt + bi( 􏼁,

􏽥Ct � tanh WCht−1 + WCμt + bC( 􏼁,

Ct � Ct−1ft + 􏽥Ctit.

(4)
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Similar to the input gate, the output gate corresponds to
the output stage of the model and mainly determines the
output of the text information in thememory unit at the next
moment. (e specific calculation equation is as follows,
where the output gate is represented by the symbol ot, the
memory unit is represented by the symbol Ct, Wo and bo

represent the weight and standard deviation of the output
gate, respectively, and ht−1 and ht represent the hidden state
of the memory unit at the previous moment and the current
moment, respectively.

ot � σ Woht−1 + Woμt + bo( 􏼁,

ht � ottanh Ct( 􏼁.
(5)

Long short-term memory model can effectively process
sequential text and solve the short-term memory problem of
recurrent neural networks, which has been recognized by
many scholars. However, the LSTM also has some defects. It
can only process data from the front to the back, ignoring the
backward feature of text information and being unable to
encode information from the back to the front. (erefore, to
further improve the accuracy of the classification effect, we
adopted the bidirectional long short-term memory model to
achieve the sentiment classification work in this paper. (e
bidirectional long- and short-term memory model is
composed of two forward and backward long- and short-
term memory models, including all forward and backward
information. It can complete the learning of sequence data
from both front and back directions and, finally, get the
output results with more accuracy. (e model structure is
shown in Figure 2 below. Firstly, the model inputs text data
in the pretraining embedding layer and transform it into
word vectors. Secondly, the forward and backward LSTM
models are used to obtain the information before and after
the word vectors, and then they are spliced. Finally, the
complete information is input into the softmax function
layer to output the probability distribution of positive and
negative sentiments based on the function prediction.

3.3. 1e Construction of Time Series Model. Time series is a
sequence formed by ordering the observation values of the
same object in the order of time. (e purpose is to use the

existing historical data to predict future data [61]. To realize
the prediction of observations, stochastic and dynamic
models based on time series data have been established.
Common models include Autoregressive (AR), Moving
Averages (MA), and Vector Auto-Regression (VAR), as well
as Auto-Regressive Moving Average (ARMA) and Auto-
Regressive Integrated Moving Average (ARIMA) models
based on AR and MA models. Compared with other models
that directly use the past value to predict the future value, the
ARIMA model first weights the past data and corrects the
error value, showing a better prediction effect, so it is widely
used in time series analysis [62]. Based on existing studies,
this study mainly uses the ARIMA model to realize topic-
sentiment evolution analysis of public opinion derived from
emergencies and then explores the internal formation and
propagation rules of public health emergencies and other
three kinds of emergencies.

ARIMA model is a composite model based on time
series, where AR refers to the autoregressive model, and it
mainly makes regression predictions based on the correla-
tion between lag data and observed data. p is used to
represent the number of autoregressive items. We refer to
Integration and it is expressed as a single integer order. At
the same time, it is also the number of times of making the
time series stationary and making a difference. (e statio-
narity of the time series is maintained by measuring the
observed values in different periods, where the number of
differences for the stationary time series is usually repre-
sented by d. MA refers to the Moving Averages model which
measures the correlation between the observed value and the
residual term, where the number of moving average items is
often expressed by q. (erefore, ARIMA (p, d, q) is also
commonly used in research to represent the autoregressive
differential moving average model [63].

(e basic principle of the ARIMA model is to approx-
imate the data change of the observed object in time through
mathematical methods and realize the prediction of the
future based on the fitting of historical data. (e general p

order Autoregressive (AR) model equation is shown in (6).
Among them, the stationary data series is represented by zt,
the autoregressive coefficient is represented by φn, ωt rep-
resents the random error term of the time series, also known
as the white noise series, and c represents the constant.
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Figure 1: (e structure of the CBOW model.
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zt � c + 􏽘

p

n�1
φnzt−n + ωt. (6)

(eMoving Averages (MA) model equation of order q is
shown in (7), where βn represents the moving average co-
efficient, ωt represents the white noise process of the time
series, and ε represents the expectation of the stationary time
series, which is usually assumed to be equal to 0.

zt � ε + 􏽘

q

n�0
βnωt−n. (7)

ARIMAmodel is obtained by combining AR,MRmodel,
and difference, and the model equation is shown in (8),
where zt

′ represents the data series after difference, to convert
the nonstationary time into a stationary time series. (e
parameter p represents the order of the AR model, the
parameter q represents the order of the MA model, ωt

represents the white noise sequence, and c represents the
constant.

zt
′ � c + 􏽘

p

n�1
φnzt−n + ωt + 􏽘

q

n�0
βnωt−n. (8)

(e use of the ARIMA model to analyze the derivative
public opinion in the time scale mainly involves the fol-
lowing steps. Firstly, the stability test of the derived public
opinion should be carried out. If it is not stable, the non-
stationary sequence should be converted into a stationary
one using differential transformation or other methods. In
this paper, we mainly use the graph method to check the
stationarity of time series data. After the production of the
time sequence map with the release time of microblog as the

abscissa and the number of texts as the ordinate, it can judge
whether the time series data are stable by observing the trend
of the derived public opinions on temporal networks.
Secondly, the form of the model is determined by the au-
tocorrelation coefficient and partial correlation coefficient,
and the parameters of the ARIMA (p, d, q) model are de-
termined according to the fitting degree of the model. Fi-
nally, the white noise test is carried out on the residual
sequence to judge the effect of extracting useful information
from the model, to achieve accurate prediction of derived
public opinion.

4. Research Design

In the study, we first captured the public health event as our
main research object and then captured the microblog data
sets of three different types of emergencies, the natural
disaster, accident, and social security event, for comparative
analysis. In addition, we complete the text preprocessing by
removing stop words, word segmentation, and filtering text
content. Secondly, we use Word2Vec and K-means clus-
tering methods to extract the topics of various types of
emergencies and divide the identified topics into original
topics and derived topics and further obtain the derived
topic data sets of each emergency through calculation.
(irdly, based on the training data set, we combined the
bidirectional long short-term memory model to realize the
sentiment classification of text information and divided it
into two types: positive sentiment and negative sentiment.
Finally, we use the time series analysis method to model the
derived public opinion, explore the topic-sentiment evolu-
tion mechanism of the derived public opinion in public
health events, draw the evolution map, and make a
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Figure 2: (e architecture of the biLSTM model.
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comparison with other three kinds of emergencies to un-
derstand the commonality and difference of the evolution
law. (e research framework is shown in Figure 3.

4.1. Data Collection and Preprocessing. (e research mainly
takes the public health emergency as the main research
object and, through the comparison with other three kinds
of emergencies, reveals the topic-sentiment evolutionary
commonality and difference of public opinion derived from
emergencies on temporal networks. (erefore, we selected
four representative emergencies in recent years as our case
materials and obtained data sources through Sina Weibo.
Among them, we selected the case of “virus cruise ship” (the
large-scale virus infection in Japanese luxury cruise ships) as
our main research object in public health events. (is is
because it not only involves a massive viral transmission in a
confined space, which has captured the world’s attention,
but it is also so typical of its relevance to COVID-19. In
addition, the forest fire, gold mine explosion, and hostage-
taking incident are selected as natural disasters, accidents,
and social security cases, respectively.

Sina Weibo is one of the most representative and in-
fluential information interaction and exchange platforms in
China. Similar to Twitter, Facebook, and other social media
platforms, users share their experiences, express their views
on events, and interact with each other on Weibo, thus
building an information exchange and sharing network.
(rough the method of limited time and searching key-
words, the researchers obtained the event posts and time
information of the four types of emergency cases on the
platform, which provided sufficient data support for our
subsequent research.

Before data analysis, to further improve the efficiency of
model operation and the accuracy of results, some data
preprocessing steps need to be taken. First, we did a pre-
liminary browsing of the data we obtained to remove invalid
posts and filtered the text content through methods such as
regular expressions. Second, we used the Jieba tool for word
segmentation of Chinese text to solve the problem of lack of
space in Chinese text compared with English text. Finally, to
further process the invalid words in the text data, we used the
HIT Chinese stop word table to label the part of speech and
deleted the stop word.

4.2. 1e Design of Topic Identification Model. Before using
the Word2vec model to transform text information into a
word vector, we first extract feature words through the TF-
IDF model to reduce the interference of useless information
and noise in text data. Based on weighted processing, we
extract the 20 most important keywords from each text data
and use them as corpus sets for word vector transformation.
Second, we use the CBOWmodel in Word2vec to transform
the word vector of the data set, convert the text into a word
vector, and use the common text mining method k-means to
cluster the text. Finally, we divide the extracted topics into
different clusters according to the similarity between texts to
realize the recognition of text topics.

After using Word2Vec word vector model and K-means
clustering method to realize topic identification of text data,
we divided the identified topics into original topics and
derived topics according to the judgment criteria of derived
events. In the existing studies, it is very common to detect
derived events based on topic identification based on the
clustering method [64]. Considering that the evaluation
subjects involved in public opinions of emergencies in social
networks are easy to identify, combining with existing
studies, we regard the change of evaluation subjects as the
criterion for the classification of original topics and derived
topics. If the subject of evaluation in the topic has changed,
the topic will be identified as a derived topic, and a data set
containing the derived topic will be further established for
analysis [65].

To analyze the derived public opinion, we need to es-
tablish the derived public opinion data set according to the
identified topics. First of all, we need to give all text data
corresponding topics according to the topic identification
model to distinguish the text data of each event and divide it
into data sets of different topics. Secondly, we use Qm to
represent the topics identified by the topic model and Wmn

to represent the keywords of each topic. (e sequence
number of the topic is m, the sequence number of the
keyword is n, and the topic (keyword) is Qm (Wmn). For
example, the first keyword of the first topic can be expressed
as Q1 (W11), and the first keyword of the third topic can be
expressed as Q3 (W31), etc. (irdly, we use Kmn to represent
the frequency of occurrence of a certain keyword n in topic
m, and m values of Kmn can be obtained from any text data.
Finally, we compare the Kmn value among different text data.
(e higher the value is, the more likely the text data is to
belong to a certain topic, to obtain the data sets of the
original topic and derived topic. After obtaining the data set
of the derived topics, we counted the relationship between
the time of microblog posting and the number of microblog
postings in the derived topic data set, and then obtained the
time-series data that can be analyzed.

4.3. 1e Design of Sentiment Classification Model. In this
paper, we mainly use the bidirectional long- and short-term
memory model to realize sentiment classification, but before
using the deep learning model for sentiment classification of
text data, we need to train and test the sentiment classifi-
cation model based on the test training set data of Weibo.
Combined with the existing research, we use the public data
set of microblog sentiment classification evaluation in 2013
and 2014 of the NLPCC International Conference as our
model data set. We divide sentiments into two types:
“positive sentiment” and “negative sentiment,” among
which positive sentiment includes emotions such as love and
happiness, while negative sentiment includes emotions such
as disgust, fear, anger, and sadness.

(e reason why we choose the NLP&CC data set for
training and testing is that the NLP&CC data set has been
widely used in the training and evaluation of fine-grained
Chinese sentiment classification models in recent years and
has achieved good results [66, 67]. On the other hand, the
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NLP&CC data set comes from the Sina Weibo platform,
which is consistent with our data sources and is suitable for
our sentiment analysis research. At the same time, con-
sidering that some new words that were not originally in-
cluded in the training data set are now widely used, the
corpus may change over time. Before adopting the biLSTM
model to achieve sentiment classification, we randomly

captured and filtered 200,000 microblogs, carried out pre-
training by using the CBOWmethod, and obtained semantic
representation and semantic similarity of words through the
pretrained word embedding model. (erefore, when the
input statement contains a word that does not appear in the
training corpus but appears in the pretraining corpus, the
prediction model can also grasp its sentimental meaning and

Natural disaster Accident Public health Social security

Research object

Original posts Comments when
forwarding the posts

Data collection

Filtering text
content Word segmentation Remove stop

word

Data preprocessing

Topic extraction Word2vec model

Sentiment
classification BiLstm model
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time series
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Data visualization
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Figure 3: Research framework.
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further improve the prediction accuracy and generalization
ability of the model. After the pretraining of the sentiment
classification model, we carried out sentiment recognition
on the microblog data set, divided the microblog posts into
positive and negative sentiment types, and assigned the
corresponding sentiment labels to each text data. (e ac-
curacy of the model was 0.71, which met the needs of our
research.

4.4. 1e Design of Time Series Model. To realize the topic-
sentiment analysis of the derived public opinion on temporal
networks, we used the ARIMA model to analyze the derived
data set. Based on obtaining the data set of derived public
opinion, the research mainly establishes a time graph with
the number of texts as the ordinate and the time scale as the
abscess, to observe the evolution of the topic and sentiment
of derived public opinion in the time scale. Among them, the
steps for obtaining topic-based time series data of derived
public opinion are as follows.

First of all, topic clustering of text data is carried out
through a topic identification model, and corresponding
topic tags are assigned to each microblog. Secondly, we
divide the topics identified by the topic model into original
topics and derived topics and extract the text data containing
all the derived topics according to the calculation method of
the derived topic data set. (irdly, we select a derived topic
that needs to be analyzed, filtered, and extracted in the data
set and establish the derived topic data set. Finally, we set up
a two-dimensional coordinate graph according to the release
time and text quantity of the derived topic data set to carry
out the time series analysis of the derived topic.

(e acquisition method of time series data based on
sentiment-derived public opinion is similar to that of topic
data. Firstly, sentiment classification is carried out on text
data and a corresponding sentiment type is given to each
post. Secondly, all text data containing derived topics are
extracted according to the computation method of the de-
rived topic data set. (irdly, according to the needs of
analyzing a certain sentiment type, the sentiment data set
derived from the event is established by screening and ex-
traction in the data set. Finally, according to the release time
and the number of texts in the data set, the coordinate map is
established to analyze the change of sentiment derived from
public opinion on the time scale.

5. Results and Discussion

5.1. Descriptive Analysis of Data. In this paper, we take
public health emergencies as the main research object and
further explore the evolution mechanism of public opinions
derived from public health events on temporal networks by
comparing public health events with natural disasters, ac-
cidents and disasters, and social security events. We chose
the “Japanese Virus Cruise” as a public health case, which
occurred during the COVID-19 transmission. During the
period of January and February 2020, 712 people of 3,711
crew members and tourists were infected and many died in
an outbreak on a Japanese luxury cruise ship. At the same

time, forest fire (March 30, 2019, to April 10, 2019), gold
mine explosion (January 10, 2021, to February 5, 2021), and
hostage taking (January 22, 2021, to February 10, 2021) were
selected as natural disaster, accident disaster, and social
security event cases. After the occurrence of these events,
they all attracted the general attention of the public on the
Weibo platform. (e public carried out relevant discussions
around the topic and formed a large amount of text data,
which provided abundant analytical materials for our
research.

Under the condition of the specified time, we crawled
relevant data from the Weibo platform by searching key-
words. For example, we crawled posts related to public
health events on Weibo between January 19, 2020, and
February 21, 2020, based on search keywords such as
“COVID-19 virus cruise ship” and “cruise ship outbreak”.
(e posts included users’ comments on the event itself and
interactions with other people’s comments. Finally, the
number of complete and valid posts reached 85,551. (e
number of posts of each emergency is shown in Table 1.

5.2. Derivative Public Opinion Data Set Based on Topic
Identification. In this study, the Word2Vec word vector
model was used to transform text data into vectors, and the
K-means clustering method was used to realize topic
identification. Considering that the main object of the study
is the formation and development of derived public opin-
ions, we only show the clustering results of public health
emergencies in the following Table 2 and realize the iden-
tification of derived topics according to the judgment criteria
of derived events.

According to the difference of K value, the results of K
value clustering will also change greatly. Combined with
data volume and data content, we chose the appropriate K
value to achieve text clustering. (e clustering results are
shown in Table 2. (e text data of the public health
emergency after clustering by the K-means method can be
divided into 9 categories. Considering the limited space in
the paper, we only show part of the keywords in the table.
For example, topics 1 and keywords can be expressed as
Q1 W12, W13, W14, W15, W16, . . . , W1n􏼈 􏼉, namely, the topic
“police arrest sabotage resistance to disease” by {“eliminate,”
“arrest,” “nuisance,” “inspection authority,” “police,” “Jinan
Municipal Party Committee,” “playing mahjong,” “indus-
try”} as keywords.

In the topic clustering of the public health emergency, we
can find that the topics together form the development vein
of public health emergencies. For example, topic 3 “the latest
news about a massive virus outbreak on ships” and topic 6
“cruise ship epidemic prevention and control are ineffective,
becoming a disaster area” were the beginning of our selected
public health events. COVID-19 spreads rapidly in the cruise
ships during this period.(en topic 4 “medical personnel are
on board to help infected people” and topic 9 “the gov-
ernment held a press conference to give details of the virus
outbreak about the ship” represented the government’s
concern and response to this public health event. Topic 5
“people prayed for the safe return of those infected” and
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sponsibility” were not only the public’s care and blessing for
the infected people on the ship, but also the evaluation of the
behavior of government officials in public health emer-
gencies. Topic 1 “the police arrested those who were
obstructing the fight against the epidemic,” topic 2 “people
called for a common fight against the epidemic,” and topic 7
“the news media reported the situation of the epidemic”
were divided into derived topics according to the judgment
criteria of derived events because of the change of evaluation
subjects.

Combined with the acquisition method of derived public
opinion data sets, we can obtain the data sets of various
topics in the public health emergency. For example, there
were 2,308, 4,138, and 7,447 data on the topics of “the police
arrested those who were obstructing the fight against the
epidemic,” “people called for a common fight against the
epidemic,” and “the news media reported the situation of the
epidemic,” respectively. In addition, we could also calculate
the heat of each topic based on the proportion of the topic
data set to the total data set. Among them, there were 85,551
data sets of public health emergencies, and the data quan-
tities and heat ratios of each topic are shown in Table 3.

As can be seen from Table 3, among the topics after the
clustering of the public health emergency, the topic with the
highest popularity was “the latest news about a massive virus
outbreak on ships,” which had aroused the most heated at-
tention and discussion in cyberspace. (e topic with the least
popularity was “cruise ship epidemic prevention and control is
ineffective, becoming a disaster area,” and the data set obtained
was the least. (is phenomenon showed that online public
opinionwas susceptible to the influence of the event itself in the
transmission process, and the initialmajor progress of the event
was easy to attract public attention, but with the passage of time
and the impact of other news it had weakened. Among the
three topics derived from public opinion, the topic “the news
media reported the situation of the epidemic” had the highest
popularity, ranking second among all the topics. (e topic of
“the police arrested those who were obstructing the fight
against the epidemic” and the topic of “people called for a
common fight against the epidemic” had weakened in pop-
ularity, but they also ranked high among all the topics. On the
one hand, this confirmed the importance of derivative public
opinion, which had a broad scope of influence and a large
degree of influence. On the other hand, from the perspective of
content, it was also confirmed that derived topics played an
important role in propaganda and guidance during the
transmission of COVID-19 and lead to the differentiation of
content in the transmission process.

To compare the differences between the spread of the
public health emergency and other types of emergencies on

temporal networks, we conducted topic clustering for dif-
ferent types of emergencies. In addition, we combined the
number of topic data sets in each emergency to calculate the
heat of the topic. (e topic clustering and heat comparison
results of various types of emergencies are shown in Table 4.

According to the transfer of evaluation subjects in the
topics, the identified topics could be divided into original
topics and derived topics. Considering the differences in the
influence of various derived topics on temporal networks, we
selected the two derived topic data sets with the highest topic
popularity from each emergency for further analysis. (e
topic data sets derived from the natural disaster event were
“guard mountains and rivers and guard homeland” and
“salute every hero who carries the burden.” Derived topic
data sets of the accident included “a foreign trade dispute
arose in the mineral trade” and “improve the system to
prevent the recurrence of the tragedy.” (e derived topic
data sets of the public health event were “the news media
reported the situation of the epidemic” and “the public
accused officials of shirking their responsibility.” Derived
topic data sets of the social security event were “protect
fairness and justice and reduce tragedy” and “malignant
incident caused the net friend onlookers.”

5.3. Topic Analysis of Derived Public Opinions Based on Time
Series. After obtaining the derived public opinion data set,
we used the time series analysis method to analyze the
extracted derived public opinions on the time scale. Con-
sidering that the period of all the data sets of public opinion
adopted in the study lasted for about one month, it was not
suitable for slicing with the unit of “day.” In addition, to
further refine the time scale and more intuitively show the
evolution trend of derived public opinions, we finally chose
to slice the time data in the unit of “three hours.” (e re-
lationship between the release date and the number of posts
in the data set was counted, and the analyzable time series
data {time, time_number} were finally constructed.

(e specific steps of time series analysis were as follows.
Firstly, we imported the sliced post publishing time and
number data {time, time_number} into the analysis software
and observed the stationarity through the observation of the
sequence diagram. Secondly, since the acquired data were all
nonstationary series, we used the difference method to carry
out the first-order difference and the second-order differ-
ence respectively to make the data stable. It was found that
the second-order difference is more suitable for the data
obtained by us, and the data after the difference was
transformed into a stationary time series. (irdly, we carried
out autocorrelation and partial correlation tests on the data
after difference and determined the values of coefficient p

and coefficient q in the ARIMA model by combining ACF
autocorrelation diagram and PACF partial correlation di-
agram. Finally, the results of ARIMA models with different
coefficients were compared, and the appropriate coefficients
were selected to draw the formation and evolution graphs of
each derived topic on temporal networks. (e ARIMA
model test results of each derived topic are shown in Table 5.
(e overall fitting effect of the model is represented by

Table 1: (e number of posts of each emergency.

Event types Microblog entries
Natural disaster 99612
Accident 110505
Public health 85551
Social security 101734
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stationary R2, and the range of R2 is 0-1. (e closer the value
is to 1, the better the fitting effect of the model will be. (e
information criterion of the model is represented by BIC,
and the model is selected according to the fit degree of the
model. In addition, the residuals of each model were not
correlated, and the residuals of the time series data con-
formed to the distribution of random series, and there was
no outlier, showing a good fitting effect.

According to the test results of the ARIMAmodel of each
derived topic, as shown in Table 5, we established the mea-
sured and fitting graphs of the formation and evolution of
each derived topic on temporal networks.(e curves of actual
and predicted values for each derived topic are shown in
Figure 4, where the abscissa is the time of posting posts after
slicing and the ordinate is the number of posts. Moreover, the
red curve represents the actual value, the blue curve represents
the predicted value, and the confidence intervals UCL and
LCL are represented by the purple curve and the pink curve,
respectively. In addition, Figures 4(a) and 4(b) respectively
represent the derived topics with the highest and second-
highest popularity among the topics of the natural disaster
emergency. Figures 4(c) and 4(d) respectively represent the
derived topics with the highest and second-highest topic

popularity in the accident event. Figures 4(e) and 4(f) rep-
resent the derived topics with the highest and second-highest
topic popularity among the public health event, respectively.
Figures 4(g) and 4(h) represent the derived topics with the
highest and second-highest topic popularity among the social
security event, respectively.

As can be seen from Figure 4, the two derived topics of
the natural disaster event had an obvious “long tail effect” in
the time series, and the heat of the event had an obvious
outbreak phenomenon at the beginning of its occurrence,
and it gradually flattened out over time. Among them, the
mean value of the derived public opinion data in Figure 4(a)
was about 514.08, the standard deviation was about 717.463,
the maximum value was 3747, the minimum value was 0, the
skewness was 2.440, and the kurtosis was 7.033. (e data
fluctuated violently and had the characteristics of sharp peak
and right bias. (e mean value of the derived public opinion
data in Figure 4(b) was about 42.75, the standard deviation
was 64.142, themaximum value was 394, the minimum value
was 0, the skewness was 3.057, and the kurtosis was 12.358.
(e fluctuation of the data was still relatively severe, but it
was a little gentle compared with Figure 4(a), and it had
more obvious sharp peaks and right-skewed characteristics.

Table 2: Topic clustering of the public health emergency.

No. Topic Keyword

1 (e police arrested those who were obstructing the fight
against the epidemic

Eliminate, arrest, nuisance, inspection authorities, police, Jinan municipal
party committee, playing mahjong, industry

2 People called for a common fight against the epidemic Together voice, power, advice, conviction, total amount, complete, colleges
and universities, having been square, each way

3 Latest news about a massive virus outbreak on ships Latest news, docked, new coronet, passenger, infection, confirmed, risk,
patient, crew, institute

4 Medical personnel are on board to help infected people Unknown, number, critical, patient, CDC, team healing, sea, deterioration,
body

5 People prayed for the safe return of those infected Home country, thanks, family members, science, coping, disaster, crisis,
family, family

6 Cruise ship epidemic prevention and control is
ineffective, becoming a disaster area

Hard-hit areas, rescue teams, living hell, high incidence areas, drugs, find
out, blacklist, suicide note, location

7 (e news media reported the situation of the epidemic huanqiu.com, TV, cases, reports, people’s daily, infected persons, Japan
broadcasting association, health department

8 (e public accused officials of shirking their
responsibility

Shirk responsibility, malpractice, flaunt, show, shine a magic mirror, empty
talk, distinguish, hear, post

9 (e government held a press conference to give details
of the virus outbreak about the ship

Epidemic, media, journalists, proliferation, control, data, acknowledgment,
press release, disclosure, epidemic

Table 3: Comparison of the number of posts and heat on various topics in the public health emergency.

Ranking Topic Microblog
Number

(e heat of the
topic

1 Latest news about a massive virus outbreak on ships 49213 0.575
2 (e news media reported the situation of the epidemic 7447 0.087
3 People prayed for the safe return of those infected 6499 0.076
4 (e public accused officials of shirking their responsibility 6490 0.076

5 (e government held a press conference to give details of the virus outbreak about the
ship 6295 0.074

6 People called for a common fight against the epidemic 4138 0.048
7 (e police arrested those who were obstructing the fight against the epidemic 2308 0.027
8 Medical personnel are on board to help infected people 1711 0.020
9 Cruise ship epidemic prevention and control is ineffective, becoming a disaster area 1450 0.017
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According to the observation of Figures 4(c) and 4(d), it
can be found that the derived topics of the accident
emergency all passed a stable period before the outbreak,
which was also consistent with the development of the event
itself. Combined with the text data, the accident did not
arouse public attention immediately after its occurrence but
took a period of fermentation before it finally aroused public
opinion. Among them, the mean value of the derived public
opinion data in Figure 4(c) was about 73.97, the standard
deviation was about 294.524, the maximum value was 3117,
the minimum value was 0, the skewness was 7.673, and the
kurtosis was 68.851. Moreover, the fluctuation range of the

data was large, and the characteristics of the peak were very
obvious and skewed to the right. In Figure 4(d), the mean
value of the derived public opinion data was 1.60, the
standard deviation was 0.371, the maximum value was 47,
the minimum value was 0, the skewness was 6.505, and the
kurtosis was 49.248, showing obvious characteristics of
sharp peak and right skewness, but the range of data changes
was smaller than that in Figure 4(c).

Based on Figures 4(e) and 4(f), the variation of the
derived topics of the public health event over time scales was
reflected. Compared with other types of emergencies, the
time-series images of the public health event showed unique
characteristics. According to Figures 4(e) and 4(f ), we can
intuitively feel the difference in the propagation of derived
topics. (e former fluctuated more violently and experi-
enced several successive periods of fluctuation, while the
latter erupted more gently and discontinuously. Combining
the textual data, we found that this was due to the nature of
the selected public health event. (e frequent occurrence of
COVID-19 around the world and its great depredation had
attracted more attention and discussion on the derived topic
of “the news media reported the situation of the epidemic,”
and its popularity remained high. (e change in the timing
trend of the topic “the public accused officials of shirking

Table 4: Topic clustering and heat comparison of various types of emergencies.

No. Topic Data Heat Is it derivative?
N-1 (e list of martyrs was announced 47759 0.480 No
2 Guard mountains and rivers, and guard the homeland 39412 0.396 Yes
3 (e forest fire is under control 3816 0.038 No
4 Salute every hero who carries the burden 3424 0.034 Yes
5 Relatives commemorate the martyrs 1833 0.018 No
6 Remember the spirit of serving the motherland 1600 0.016 Yes
7 Internet users have been detained for insulting martyrs 1323 0.013 Yes
8 (e citizens bid a tearful farewell to the martyrs 445 0.004 No
A-1 (e survival of the trapped miners 47553 0.430 No
2 (e public hoped for the safe return of the miners 32346 0.293 No
3 A foreign trade dispute arose in the mineral trade 14782 0.134 Yes
4 (ere was an explosion at the gold mine site 7545 0.068 No
5 (e results of the accident investigation were announced 6342 0.057 No
6 Improve the system to prevent the recurrence of the tragedy 1057 0.010 Yes
7 Carry out the investigation and rectification of risks and hidden dangers 880 0.008 Yes
P-1 Latest news about a massive virus outbreak on ships 49213 0.575 No
2 (e news media reported the situation of the epidemic 7447 0.087 Yes
3 People prayed for the safe return of those infected 6499 0.076 No
4 (e public accused officials of shirking their responsibility 6490 0.076 Yes
5 (e government held a press conference to give details of the virus outbreak about the ship 6295 0.074 No
6 People called for a common fight against the epidemic 4138 0.048 Yes
7 (e police arrested those who were obstructing the fight against the epidemic 2308 0.027 Yes
8 Medical personnel are on board to help infected people 1711 0.020 No
9 Cruise ship epidemic prevention and control is ineffective, becoming a disaster area 1450 0.017 No
S-1 A hostage-taking incident took place in Kunming 47288 0.465 No
2 Protect fairness and justice, and reduce the tragedy 21844 0.215 Yes
3 (e public prayed for the safety of the injured 15358 0.151 No
4 Details of the hijacking were relayed to the authorities 4876 0.048 No
5 (e public discussed the specific circumstances of the hijacking case 4687 0.046 No
6 Malignant incident caused the net friend onlookers 3943 0.039 Yes
7 Formulate policies and improve relevant systems 2991 0.029 Yes
8 Discuss the offender’s motive and condemn the offender 747 0.007 No

Table 5: ARIMA model test results of the topic data set.

Types Model Stationary R2 BIC
N-01 ARIMA (5, 2, 7) 0.712 13.396
N-02 ARIMA (5, 2, 6) 0.686 8.773
A-01 ARIMA (12, 2, 14) 0.778 11.858
A-02 ARIMA (12, 2, 16) 0.819 3.816
P-01 ARIMA (8, 2, 3) 0.684 10.906
P-02 ARIMA (6, 2, 3) 0.682 8.566
S-01 ARIMA (3, 2, 1) 0.651 15.038
S-02 ARIMA (3, 2, 3) 0.475 10.822
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their responsibility” was due to the influence of the press
conference and the improvement of the way to deal with the
epidemic, and the popularity did not last and gradually
faded. In short, the reason why the opinion dissemination of
public health events on temporal networks was different
from other emergencies was mainly related to the charac-
teristics of public health events themselves. Different from
other emergencies, public health events tended to last for a
long time and were prone to drastic changes under the
influence of the external environment. In addition, com-
pared with other events, public health events had a wider
range of regional impacts, and the extent of impacts varied
with the governance measures and environmental differ-
ences in different regions. In Figure 4(e), the mean value was
209.21, the standard deviation was 243.799, the maximum
value was 1811, the minimum value was 0, the skewness was
2.494, and the kurtosis was 10.211. (e data fluctuated
sharply, with a large number of peaks, and had obvious
right-skewness characteristics. In Figure 4(f ), the mean
value was 31.16, the standard deviation was 81.708, the
maximum value was 634, the minimum value was 0, the
skewness was 5.219, and the kurtosis was 31.352. Compared
with Figure 4(e), the mean value was smaller and the
fluctuation was relatively gentle, but the sharp peak and right
skewness were more obvious.

Based on Figures 4(g) and 4(h), we can observe the
changes of the derived topics of the social security event on
temporal networks. Both of them experienced relatively
intense fluctuations at the beginning of the event, and as
time goes on, the heat gradually cooled down and the curve
gradually became flat. In Figure 4(g), the mean value of the
data was 140.55, the standard deviation was 646.252, the
maximum value was 6208, the minimum value was 0, the
skewness was 6.929, and the kurtosis was 55.914. (e
fluctuation of the data was relatively violent, and the feature
of the peak was especially obvious, and it was right-skewed.
In Figure 4(h), the mean value of the data was 7.511, the
standard deviation was 92.606, the maximum value was 703,
the minimum value was 0, the skewness was 5.319, and the

kurtosis was 30.702. Compared with the mean value of
Figure 4(g), the fluctuation of the data was relatively gentle,
and the characteristics of sharp peak and right skewness
were not obvious.

5.4. Sentiment Analysis of Derived Public Opinions Based on
Time Series. After sentiment classification of public opinion
data sets by the biLSTM model, we gave each text data the
corresponding positive sentiment or negative sentiment
label and established a derivative public opinion data set
through data screening. (en, we extracted the positive
sentiment data set and negative sentiment data set from the
derived public opinion data sets respectively and established
the ARIMA model to analyze them on temporal networks.
Among them, the ARIMA model test results of the senti-
ment data set derived from public opinion are shown in
Table 6. In addition, we selected appropriate model coeffi-
cients to draw amap of the evolution of positive and negative
sentiments derived from public opinion in the time series.
(e fitting degree of the selected model was higher than that
of other coefficient values, which achieved better results, and
also met the conditions that the residual sequence was
uncorrelated and the outlier value was 0.

After determining the coefficients of the time series
models of positive and negative sentiments, we drew the
corresponding time series maps of public opinions derived
from emergencies. For example, the evolution trend of
positive sentiment derived from public opinion over time is
shown in Figure 5. (e legend was consistent with the time
series of the topic. (e red and blue curves represent the
actual and predicted values, and the purple and pink curves
represent the upper and lower limits of confidence intervals,
respectively.

It can be seen from Figures 5(a) and 5(b) that the public
opinion derived from the type of the natural disaster event
had a relatively obvious positive sentiment fluctuation at the
initial stage of the event, and it was relatively gentle as time
goes on. Combined with the text material, it mainly came
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Table 6: ARIMA model test results of the sentiment data set.

Types
Positive sentiment Negative sentiment

Model Stationary R2 BIC Model Stationary R2 BIC
N-01 ARIMA (6, 2, 16) 0.677 12.001 ARIMA (5, 2, 10) 0.707 12.862
N-02 ARIMA (6, 2, 3) 0.660 6.588 ARIMA (5, 2, 6) 0.656 8.026
A-01 ARIMA (12, 2, 14) 0.776 11.891 ARIMA (8, 2, 1) 0.707 2.717
A-02 ARIMA (12, 2, 16) 0.805 3.655 ARIMA (4, 2, 1) 0.717 1.086
P-01 ARIMA (10, 2, 8) 0.691 10.900 ARIMA (8, 2, 10) 0.694 6.378
P-02 ARIMA (8, 2, 1) 0.688 8.302 ARIMA (8, 2, 3) 0.676 4.906
S-01 ARIMA (4, 2, 2) 0.711 13.463 ARIMA (3, 2, 2) 0.650 13.907
S-02 ARIMA (3, 2, 1) 0.549 10.362 ARIMA (3, 2, 3) 0.450 7.313
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from the public’s respect and love for the heroes that
emerged at the beginning of the event. Compared with
Figure 5(a), the positive sentiment in Figure 5(b) formed a
wave peak again at the end of time and became the focus of
people’s attention. (is was because the announcement of
the list of heroes suffering in emergencies at this time caused
people to spontaneously form respect and gather positive
sentiment.

According to Figures 5(c) and 5(d), it can be found that
the sentimental evolution of public opinions derived from
the accident was similar to the topic evolution map, both of
which realized rapid outbreak after fermentation. Combined
with the materials, the positive sentiment gathered at this
time was mostly from the recognition of the emergency
management department’s handling speed and handling
methods, as well as the admiration of the disaster victims’
tenacious will to survive.

Based on Figures 5(e) and 5(f ), we can observe the
evolution of positive sentiment of the public health event in
time series. (e former formed a continuous outbreak of
fluctuations in the transmission process, and the sympathy
and encouragement of people around the world for the
victims of the disaster became the mainstream of commu-
nication on social media. (e latter had undergone a period
of fermentation. It was not until the specific ways and ar-
rangements of the event emerged that positive sentiment
emerged from the public, which mainly focused on the
prayers and wishes for the victims.

According to Figures 5(g) and 5(h), we can observe the
evolution process of the positive sentiment of the social
security event in the time series. (e fluctuation trend of the
two was relatively similar, both of which presented inverted
“U” fluctuation at the initial stage of the outbreak of the
event. (e content of the material focused on the hope that
public justice can be protected and the relevant system can
be improved. Meanwhile, it was also the joy of the success of
rescuing hostages and the recognition of rescuers.

When an emergency occurs, the distribution of negative
sentiment derived from various public opinions in the time
series is shown in Figure 6. From Figures 6(a) and 6(b), it can

be found that the negative sentiment change of public
opinion derived from the natural disaster event in the time
series presented an “M” shape and had a long tail effect. (e
burst curve of negative sentiment was similar to that of
positive sentiment, both rising sharply at the onset of the
event, but the difference was that the duration of negative
sentiment was shorter than that of positive sentiment.
Combined with the text, it may be related to the media
propaganda content. At the initial stage of the event, relevant
media publicity focused on the economic losses and human
casualties caused by the natural disaster, but after the out-
break of the event, it focused on paying tribute to the heroes
emerging from the emergency and praising the people’s
spirit of protecting their homes, which gathered more
positive sentiment rather than negative sentiment.

Figures 6(c) and 6(d) show the change of negative
sentiment in the time series of public opinions derived from
the accident, which were similar to positive sentiment. (e
outbreak of negative sentiment was mainly concentrated in
the intermediate stage after the occurrence of the accident,
which was related to the lag of public attention caused by the
accidents. With positive sentiment being different, negative
sentiment also produced intense fluctuation change but far
less than on a change in positive sentiment. (is may be
because, after the event, the rescue workers searched the
relevant locations of the victims in time and made supplies,
which weakened the formation of negative emotions such as
anxiety and fear.

According to Figures 6(e) and 6(f), we can observe the
negative sentiment change of public opinion derived from
the public health event in the time series, and the trend of
curve change was consistent with the positive sentiment.(e
curve of negative sentiment in Figure 6(e) fluctuated up and
down continuously, while the curve of negative sentiment in
Figure 6(f) formed a sharp outbreak trend after passing the
lag period in the initial stage. Combined with the text, this
may be determined by the nature of the study of the public
health emergency. Although COVID-19 had brought heavy
disasters to the people of the world, people were also inspired
by the heroes emerging from the disasters. In addition, the
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continuous overcoming of the epidemic management dif-
ficulties had brought confidence to the people, and positive
sentiment and negative sentiment were accompanied by
each other.

Based on Figures 6(g) and 6(h), it can be found that the
emotional distribution of public opinions derived from the
social security event in the time series was similar to positive
sentiment, both of which showed an inverted “U” shaped
trend. But the evolution curve of negative sentiment was
steeper and more dramatic, and it was also associated with
the rapid changes of social security events, which were less
predictable. When the hostage taker made the corre-
sponding action of threatening the hostage, the negative
sentiment of the public was produced sharply and fluctuated
accordingly.

Combined with the above analysis, we found that the
evolution and distribution of public opinions derived from
different types of events were significantly different in time
series. Based on the topic analysis, it was found that
influenced by the nature of events, the evolution of the
derived topics of the public health event in time series was
more volatile than that of other emergencies and fluctuated
continuously with time. In addition, it also had a certain

continuity. (is was also because the public health event was
dynamic in time and a long-term process of continuous
development. In space, it involved the vast majority of
people and had a broader scope of time and space. From the
sentiment analysis, it was found that the positive and
negative sentiments of the public health event were similar
to those of other emergencies, and both had a certain range
of ups and downs. But more than any other emergencies, the
emotional evolution of the public health event had spiked
and revived rather than leveling off over time. At the same
time, the occurrence curve of positive sentiment and neg-
ative sentiment in the public health event was closer, and the
disasters brought by the epidemic caused people to con-
tinuously form negative sentiment. However, the formation
of negative sentiment was not independent, and the
emergence of heroes in the public health event and the good
news of overcoming difficulties would also promote the
generation of positive sentiment.

5.5. Emotional Distribution of Derived Public Opinion in
Emergencies. To have a deeper understanding of the emo-
tional dynamics of public opinions derived from
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emergencies in social media, we further subdivided senti-
ments into seven emotion types: “like,” “fear,” “sadness,”
“surprise,” “anger,” “happiness,” and “disgust,” and used the
radar chart to describe the distribution of each derived
public opinion on different emotions. (e details are shown
in Figure 7. To facilitate the understanding of the graph, we
took the logarithm of the number of microblogs containing
different emotions.

As can be seen from Figure 7, in the derived public
opinion of various emergencies, the emotion of like occupies
a dominant position. Combined with the text materials, the
emotion of like mainly came from paying tribute to the
heroes who emerged in the emergency. Despite the huge
material losses and casualties caused by all kinds of emer-
gencies, the heroic deeds and the spirit of cooperation that
emerged in the emergencies also brought hope to the public.
Among them, compared with other emergencies, the dis-
tribution of public opinion derived from public health events
was also in the first place. (is may have something to do
with the fact that the public health event was larger in scope
and involved the largest number of people, resulting in the
largest number of heroic acts and acts of resistance. Sec-
ondly, disgust and sadness played an important role in the
derivative public opinion of all kinds of emergencies.
Combined with the text materials, the aversion mainly came
from the resistance of the public to the disaster and the
resistance to some behaviors of seeking personal interests
during the disaster. Much of the sadness came from
mourning the loss of life. (is finding also corresponds to
our previous conclusion that the spread of derived public
opinions in social media was accompanied by the spread of
different emotions, and the distribution of emotions also
helped us to further understand the influence of derived
public opinions.

6. Conclusion

In this paper, the main research object of our study was the
public health emergency, and through the comparison with
the natural disaster, accident, and social security emergency,
we revealed the evolution law of public opinion on temporal
networks. Firstly, we used the topic clustering method to
construct the topic model of emergencies and divided the
identified topics into original topics and derived topics.
Secondly, we extracted the derived topic data set according
to the keywords of the derived topics and used the sentiment
classification model to assign the corresponding sentiment
labels to the text data. Finally, we used the time series model
to analyze the formation and evolution rules of public
opinions derived from emergencies and compared the topic-
sentiment evolution rules of the public health event with
other emergencies in common and different.

It is found that compared with other types of emer-
gencies, the public opinions derived from the public health
event had unique characteristics in the evolution of topics
and sentiments. In the topic analysis, the public opinion
derived from public health events had more obvious dy-
namic characteristics and fluctuated with time. (rough
sentiment analysis, it was found that the public opinion

curve derived from public health events hadmore spikes and
did not gradually stabilize over time, but formed a new
growth curve. But at the same time, combined with the text
materials, it was found that the government’s measures and
media reports would deeply affect the fluctuations of public
opinion derived from emergencies on temporal networks.
(e public not only paid attention to the development of
original events but also paid great attention to the devel-
opment of derivative public opinions. (rough correlation
analysis, we can have a clearer understanding of the
propagation characteristics of derived public opinions on
temporal networks. At the same time, it can also make a
certain contribution to the emergency management of
public opinion, reduce the public’s negative emotions, and
maintain the network order and society.

By using deep learning methods, we can more easily
understand the propagation and evolution of public health
events on temporal networks. However, there is still room
for further development of the relevant research carried out
by the deep learning method in this paper, such as selecting a
more appropriate clustering model and classification model
and selecting larger data sets for training. We will also take
this study as a starting point and carry out further research in
the future.
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After the occurrence of public health emergencies, due to the uncertainty of the evolution of events and the asymmetry of
pandemic information, the public’s risk perception will fluctuate dramatically. Excessive risk perception often causes the public to
overreact to emergencies, resulting in irrational behaviors, which have a negative impact on economic development and social
order. However, low-risk perception will reduce individual awareness of prevention and control, which is not conducive to the
implementation of government pandemic prevention and control measures. ,erefore, it is of great significance to accurately
evaluate public risk perception for improving government risk management. ,is paper took the evolution of public risk
perception based on the COVID-19 region as the research object. First, we analyze the characteristics of infectious diseases in the
evolution of public risk perception of public health emergencies. Second, we analyze the characteristics of risk perception
transmission in social networks.,ird, we establish the dynamic model of public risk perception evolution based on SEIR, and the
evolution mechanism of the public risk perception network is revealed through simulation experiments. Finally, we provide policy
suggestions for government departments to deal with public health emergencies based on the conclusions of this study.

1. Introduction

After the occurrence of public health emergencies, due to the
uncertainty of the evolution of events and the asymmetry of
pandemic information, the public’s risk perception will
fluctuate dramatically. ,e public takes various protective
measures, such as collecting relevant information about the
pandemic, forwarding and spreading information about the
pandemic, producing violent emotional reactions, buying
protective goods, and even leaving the pandemic area [1, 2].
In early March 2020, more than 50,000 people across the
country were surveyed about their psychological stress and
emotional state according to the Shanghai Mental Health
Center; the survey showed: about 35% of the interviewees
suffered from psychological distress and had obvious
emotional stress reaction; about 5.14% of the interviewees
suffered from serious psychological distress. During

COVID-19, there has been frantic buying of face masks and
disinfectants across the country and around the world.
Moreover, public risk perceptions are highly contagious, and
excessive risk perceptions by some members of the public
can lead to irrational behavior by more members of the
public, jeopardizing social harmony and stability. ,erefore,
we should pay attention to the public’s risk perception and
emotional guidance, face up to the psychological needs of the
public to vent their emotions, and reasonably guide the
public’s emotional fluctuations and behavioral reactions.
,ese become an important task of COVID-19 pandemic
prevention and control [3].

Public risk perception refers to the concern or anxiety
expressed by the public about something [4], which reflects
the process of the public’s subjective evaluation of a specific
risk state [5, 6]. When the public is aware of risks, it
stimulates the psychological state of coping with risks and
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further generates the demand for risk-related information
and emergency behavior based on subjective judgment. Too
high risk perception often leads the public to overreact to
risk events, resulting in a variety of irrational and unnec-
essary behaviors, which have an unnecessary impact on
economic development and social stability. However, when
risk perception is too low, the public may give up taking
effective self-protection behaviors. Public risk perception is a
collection, selection, and understanding of the process of
crisis information and response [7, 8]. In the all-media
information age dominated by the network, the public’s
information demand, information channel, and information
content are characterized by diversification and complexity.
It leads to dynamic change and unpredictability of public
risk perception, which further increases the difficulty of
health emergency prevention and control.

,erefore, after the occurrence of major public health
emergencies, the dynamic evolution law of public risk
perception along with the development of the events should
be grasped. It is helpful for the government to adopt active
and effective risk management policies and measures.

2. Literature Review

2.1. Risk Perception. Scholars generally believe that the
public’s risk perception is mainly affected by individual
characteristics, time, event progress, risk information, and
other factors [9]. A questionnaire survey through a psy-
chological scale is the most effective method to study the
influencing factors and differences of risk perception. Pea-
cock et al. take hurricane as the research scenario and ex-
plore the influencing factors of the formation process of
public risk perception from two dimensions of socioeco-
nomic and demographic characteristics [10]. In order to
study the characteristics and influencing factors of public
risk perception, Slovic carried out a series of empirical
studies and summarized 15 different characteristics of risk
perception [11].

In the field of behavioral science and psychology, many
scholars focus on the important role of memory in indi-
vidual behavioral decision-making [12], Most of their re-
search results support that individual memory system has a
decisive influence on behavioral decision-making [13].
Welch et al. believed that the information obtained through
news media and informal communication channels of social
networks all belonged to the information used for behavioral
decision-making in the individual memory system [14]. ,e
same conclusion can also be reached when scholars intro-
duce individual memory to build mathematical models. For
example, Mullainathan took consumers’ memories of pre-
vious products and wages as the basis for purchasing de-
cisions and constructed a consumer memory decision model
[15]. Mehta et al. studied the relationship between con-
sumers’ forgetting rate of brands and purchasing decisions
and believed that when consumers are faced with many
brands, their memory and perception of these brands play an
important role in consumers’ choice [16]. Wei et al. con-
structed an evolution model of individual memory per-
ception and corporate reputation to study the optimal

strategy of CSR activities of enterprises [17]. Wei et al. in-
troduced the recency effect, Lenovo effect, and read-back
effect and built the public risk perception evolution model
based on crisis information flow. ,is model uses the crisis
information growth model, stakeholder influence model,
and stakeholder memory model to measure the process of
crisis information release, information diffusion, and in-
formation perception. ,e diffusion coefficient and forget-
ting coefficient of crisis information are introduced to
explain the transmission mechanism of crisis information in
the population. It is found that there are lag effect, cumu-
lative effect, and jump phenomenon in the evolution of
public risk perception [18].

2.2. Communicable Disease Model Network Public Opinion
Spread. ,e infectious disease model is a mathematical
model that uses an ordinary differential equation to describe
the spread and prevalence of the infectious disease. Consider
the similarity between the spread of information and the
spread of infectious diseases. Daley et al. applied the infectious
disease dynamics model to information transmission, di-
viding individuals into three categories: susceptible, sprayer,
and immune and then constructing the classic DKmodel [19].
Subsequently, some scholars further refined the communi-
cation process and improved the model [20, 21]. However,
with the rapid development of information technology and
the explosion of social networks, the mode of information
transmission has undergone profound changes. ,e classical
infectious disease model can no longer accurately describe the
geometric progression fission propagation process of network
information [22]. One of the important reasons is that the
spread of infectious diseases is unconscious, and the trans-
mission of diseases by infected people is not based on people’s
subjective will. However, the essence of information com-
munication is social communication, and further research
needs to consider the attributes of network information
content, public society, and other factors [23–25].

Shang et al. integrated the social network and communi-
cation dynamics model and proposed a simulation planning
method taking public emergencies as scenarios [26]. Zhu et al.
[27] established an infectious disease model based on the
transmission rules of the Ebola virus. Wang et al. considered
the interdependence of online and offline activities and con-
structed an information transmission model of a two-layer
social network based on complex network theory and com-
munication dynamics [28]. Liu et al. considered the influence
of network dynamic evolution and constructed a dynamic
network diffusion information transmission model of public
emergencies [29]. Wang et al. defined the types of the public
and the role of government intervention, and combined with
the characteristics of emergency information communication,
they constructed a public opinion communication control
model under government intervention [30]. Zhong et al.
considered the relationship between public status transition
and the influence of government intervention, constructed the
SEIRS model of public opinion communication control under
government intervention, and used control factors to realize
effective intervention of online public opinion in emergencies
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[31]. Yin et al. [32] considered that usersmay enter into another
related topic after discussing one topic and proposed a multi-
information susceptibility discussion immunity (M-SDI)
model, effectively predicted the trend of online public opinion
communication of public health emergencies through the
fitting analysis of COVID-19 public opinion data obtained
from China’s Sina Weibo. Wang et al. analyzed the mutual
influence of multiple public opinion communication and the
rule of state transfer among different groups after an emer-
gency occurred and proposed the 3SI3R model [33].

So that’s all, at present, the research on infectious disease
models is relativelymature, andmost of them are applied in the
field of information dissemination and network public opinion
dissemination. However, there are few literature on the evo-
lution of applying the infectious disease model to public risk
perception. ,erefore, in the context of COVID-19, this paper
analyzes the spread characteristics and rules of public risk
perception by using the infectious disease model. Considering
the propagation properties of the social network, such as social
reinforcement effect, containment mechanism, and forgetting
mechanism, we constructed the evolution dynamics model of
public risk perception based on SEIR, which better delineated
the evolution of public risk perception and provided decision-
making suggestions for the government in formulating the risk
management of public health emergencies.

3. Model Construction

3.1.Characteristics of theEvolutionofPublicRiskPerception in
the COVID-19. ,e essence of an infectious disease is that
the carrier of the pathogen transmits its own germs to the
person who comes into contact with it through contact with
other individuals. In the context of COVID-19, the spread of
public risk perception has the characteristics of infectious
disease, and individuals who perceive risk will transmit their
perceived risk to other individuals who communicate with
them through various communication channels. ,e
transmission of infectious diseases between hosts needs to
break a certain threshold, and the spread of the public’s
perceived risk in the context of COVID-19 also needs certain
conditions, as the perceived risk exceeds their own tolerance.
,erefore, in the context of COVID-19, the spread of public
risk perception has the characteristics of risk sources,
transmission media, infectivity, and immunity.

3.1.1. Risk Source. ,e source of risk is the precondition of
risk transmission. If there is no source of risk, there is no risk
transmission. Risk sources are equivalent to pathogens in
infectious diseases. ,e public health emergency caused by
the COVID-19 outbreak in late December 2019 is a risk
source for the spread of public risk perception. As the core of
the process of risk communication, the source of risk causes
public panic and panic buying of medical equipment
depending on the communication media.

3.1.2. Propagation Medium. ,e transmission medium is
the carrier of risk source transmission. After the outbreak of
COVID-19, the media of public risk perception are the

Internet, TV, newspapers, Weibo, and other mass media.
,e pandemic information permeates the entire social cy-
berspace, and the public receives the pandemic information
and transmits the perceived risk incorrectly, thus causing
panic among the general public.

3.1.3. Contagious. Infectivity is the most fundamental
characteristic of infectious diseases. If there are only path-
ogens and infectious media, but pathogens do not have
infectivity, they do not belong to infectious disease. Risk
source of contagion will spread the risk to the environment,
when individuals perceive more risk than they can bear, they
will spread the risk perception to the outside world through
their closely related kinship, work and neighborhood
relationships.

3.1.4. Immunity. Some people are immune to certain in-
fections because they have antibodies or have been vacci-
nated against them. In the process of risk transmission
caused by the outbreak of COVID-19, some individuals
show different immunity based on their psychological
quality and knowledge. For example, individuals with poor
mental health and inadequate knowledge of novel corona-
virus and the spread of the virus have much lower immunity
than individuals with high mental health and abundant
protective behaviors against COVID-19. At the same time,
the individual’s gender, personality, and living environment
will affect their immune ability.

,erefore, in the context of COVID-19, the transmission
process of public risk perception has the characteristics of the
transmission process of infectious diseases. ,e infectious
disease model is used to analyze and simulate the transmission
process of risk perception so as to understand the principle of
risk perception transmission and provide a reference for the
formulation of risk perception control measures.

3.2.Factors Influencing theEvolutionofPublicRiskPerception.
Public risk perception is widely spread through the Internet,
TV, newspapers, Weibo, and other mass media in the social
network space such as the circle of relatives, neighbors, and
friends who are closely related to individuals. ,e dissem-
ination of public risk perception is a complex process, which
is not only affected by individual factors such as interin-
dividual intimacy, knowledge background, and life experi-
ence [34–36] but also affected by social factors such as
information memory effect, social reinforcement effect,
interest attenuation effect, containment mechanism, au-
thority effect, broken window effect, and responsibility
dispersion effect [37–40].,is paper focuses on the influence
of the forgettingmechanism, social reinforcement effect, and
containment mechanism on public risk perception
transmission.

3.2.1. Forgetting Mechanism. German psychologist
Ebbinghaus revealed the nonlinear attenuation of infor-
mation value with the passage of time through the method
of relearning. It reflects the significant impact of
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attenuation characteristics on information dissemination.
Relevant literature call this phenomenon a forgetting
mechanism [41], and it is proved by simulation that this
mechanism can inhibit information diffusion and reduce
the scale of information dissemination [42]. Scholars have
shown that the rate of forgetting has a significant impact on
the density of spreaders and immunizers in rumor-
spreading experiments. ,e higher the forgetting proba-
bility or the faster the forgetting speed, the weaker the
spreading power of rumors [43]. ,en, in major public
health emergencies, the public risk perception transmission
characteristics will be the same.

3.2.2. Social Reinforcement Effect. In the process of infor-
mation transmission, individuals tend to be skeptical of
information, and the probability of transmitting information
after receiving it only once is very limited. However, if the
neighbor repeatedly prompts the same information so that
the individual receives the same information many times,
the probability of the individual believing the information
and spreading it will greatly increase. In social networks,
information is dense, and a lot of information is mixed with
truth and false. It is difficult for ordinary people to make a
reasonable judgment. At this time, most people will use
others’ judgment to form their own opinions. ,erefore, the
social reinforcement effect is very obvious in the information
dissemination of social networks.

Literature [44] constructed a rumor propagation model
with social reinforcement effect and interest attenuation
effect based on the social network and believed that the social
reinforcement effect and interest attenuation effect would
simultaneously act on the propagation state node, which
would be converted into the connected state by interest
attenuation effect, and the connected state would be con-
verted into the propagation state by the social reinforcement
effect. ,erefore, this paper defines the propagation prob-
ability function of public risk perception in the social net-
work caused by the social reinforcement effect as follows:

λ(m) � 1 − (1 − β)e
− b(m− 1)

, (1)

where β is the initial transmission rate, which represents the
probability that an individual will transmit the pandemic
information after receiving it only once; b is the strength-
ening factor; andm is the number of messages received when
m � 1 and λ(1) � β.

Figure 1 shows that under the action of different rein-
forcement coefficient b, the propagation probability of in-
dividual risk perception changes with the change ofm. Initial
value λ(1) � β � 0.5 represents the transmission probability
of risk perception of susceptible individuals receiving in-
formation of an pandemic.

Based on the above considerations, this paper focuses on
the local environment of individuals to describe the for-
getting mechanism, social reinforcement effect, and con-
tainment mechanism of the spread of public risk perception
and analyzes how these factors affect the spread of risk
perception through simulation.

3.3. Dynamic Evolution Model of Public Risk Perception in
COVID-19. ,e individual in the social network is repre-
sented as the node in the network, and the relationship
between individuals is represented by the connection be-
tween nodes, so the social network is represented as a
concrete network structure. ,e individuals in the social
network are represented as nodes in the network, and the
relationships between individuals are represented by the
links between nodes, thus representing the social network as
a specific network structure. In the process of risk perception
propagation, it can only be propagated between neighboring
nodes. When a node propagates risk perception to its
neighboring nodes, if the neighboring nodes choose to
believe and accept the information, then the neighboring
nodes continue to propagate risk perception to its neighbors.
If the neighboring node does not accept the risk perception,
the neighboring node does not propagate it again.

When the risk perception spreads from the risk source
to the whole network, there will be different psychological
states for the same information due to the different in-
terests and knowledge of nodes in the network. ,erefore,
nodes have different attitudes on whether to accept the
spread of risk perception and ultimately lead to different
trends in the spread of risk perception. So that, the nodes
in the social network can be divided into four states: the
susceptible state (S), the latent state (E), the onset state (I),
and the recovering state (R). Among them, the susceptible
state refers to the public who has not received the pan-
demic information. ,e latent status refers to receiving
information but not disseminating risk perception. In
other words, it refers to receiving pandemic information
for the first time and perceiving risk but not breaking one’s
maximum risk tolerance. ,e onset state refers to the state
of panic and anxiety when receiving information, which is
spreading risk perception. ,e recovery status refers to
the public who rationally see the pandemic and do not
spread it.
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Figure 1: Influence of different reinforcement coefficients on
propagation probability.
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,e proportions of these four groups in the total pop-
ulation at time t are, respectively, S(t), E(t), I(t), R(t), and
S(t) + E(t) + I(t) + R(t) � 1.

Considering the social reinforcement effect, forgetting
mechanism, and containment mechanism of public risk
perception, the following risk perception communication
rules are proposed:

(1) When the susceptible individual Si receives the in-
formation transmitted from an infected individual
Ij, the susceptible individual Si may change to the
latent state Ei with probability α ormay change to the
onset state Ii with the initial rate of transmission β
and transmit the pandemic information to other
individuals. ,e state transition can be expressed as
follows:

Si + Ij⟶
α

Ei + Ij, Si + Ij⟶
β

Ii + Ij. (2)

(2) ,e nodes in the latent state are suspicious of the
pandemic information and will receive the infor-
mation transmitted from the nodes in the neigh-
boring pandemic state many times. Under the
influence of the social reinforcement effect, the nodes
in the latent state Ei will be transformed into the
onset state Ii with the probability of transmission λ.
,e latent node Ei that has not been transformed
into the disease state may be transformed into the
recovering state Ri with probability θ. ,e Ei tran-
sition process of the latent state can be expressed as
follows:

Ei⟶
λ

Ii, Ei⟶
θ

Ri. (3)

(3) Since the onset node has already believed the pan-
demic information and spread it, the transmission
state will not be affected by the social strengthening
effect. However, the onset state Ii is affected by the
social containment mechanism, the nodes in the
onset state Ii will be transformed into the recovery
state Ri with the probability of transmission ε. ,e Ii

transition process of the onset state can be expressed
as follows:

Ii⟶
ε

Ri. (4)

(4) With the passage of time, the recovering state Ri was
affected by the amnesia mechanism and changed to
the susceptible state Si with a probability of δ. ,e Ri

transfer process of the healing state can be expressed
as follows:

Ri⟶
δ

Si. (5)

According to the above analysis, the evolution model of
the public risk perception network in COVID-19 is shown in
Figure 2.

In summary, the public risk perception communication
dynamics model is as follows:

dS(t)

dt
� − αS(t)I(t) − βS(t)I(t) + δR(t),

dE(t)

dt
� αS(t)I(t) − λE(t) − θE(t),

dI(t)

dt
� βS(t)I(t) + λE(t) − εI(t),

dR(t)

dt
� θE(t) + εI(t) − δR(t).

(6)

3.4. Analysis of the Basic Reproduction Number of the Model.
In this paper, the next-generation matrix method is used to
calculate the basic reproduction number R0.

States 1, 2, 3, and 4 represent the states of E, I, S, and R,
respectively. ,e density of class 4 node states is denoted by
xi, that is x � (x1, x2, x3, x4)

T. Constructor F(x): Fi(x)

represents the probability of new diseased nodes in state i;
according to the above information, when i � 1, the prob-
ability of new diseased node in latent state E is αSI; when
i � 2, the probability of new diseased node in onset state is
βSI; and when i � 3, 4, there were no new disease nodes in
susceptible nodes and recovered nodes. ,erefore,

F(x) �

F1(x)

F2(x)

F3(x)

F4(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

αSI

βSI

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Constructor V(x): V1(x), V2(x), V3(x), and V4(x),
respectively, represents the probability of change of state
nodes of E, I, S, and R; hypothesis Vi(x) � V−

i (x) − V+
i (x),

where V+
i (x) represents the probability of changing from

another state node to the i state and V−
i (x) represents the

probability of transition from the i state node to another
state; therefore,

V(x) �

V1(x)

V2(x)

V3(x)

V4(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

λE + θE

εI − λE

αSI + βSI − δR

δR − θE − εI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)
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Figure 2: State transition diagram of social network nodes.
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Obviously, when there is no diseased node in the net-
work system, all nodes are susceptible to infection, that is,
E0 � (0, 0, S∗, 0) is the equilibrium point of the system, ,e
derivative of F(x) and V(x) at E0 is as follows:

DF E0( 􏼁 �
F 0

0 0
􏼠 􏼡,

DV E0( 􏼁 �
V 0

J3 J4
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where

F �
0 α

0 β
􏼠 􏼡,

V �
λ + θ 0

− λ ε
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

,erefore, we calculated that

FV
− 1

�

αλ
(λ + θ)ε

α
ε

βλ
(λ + θ)ε

β
ε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

,e spectral radius of FV− 1 is expressed as ρ(FV− 1), that
is, the basic regeneration number R0 is

R0 � ρ FV
− 1

􏼐 􏼑 �
αλ + β(λ + θ)

ε(λ + θ)
. (12)

In the analysis of the network information transmission
process, the basic regeneration number R0 is an important
parameter to measure whether network information can be
spread on a large scale. It represents the average number of
people affected by introducing a disease state node when all
the network space is susceptible to infection without in-
tervention. When R0 < 1, the network information will not
be widely diffused. When R0 > 1, the network information
will present a large-scale diffusion trend.

It can be seen from equation (12) that the basic re-
generation number is closely related to the social effects of
public risk perception, and these social effects have an
important influence on whether the public risk perception
spreads on a large scale. Among them, when other factors
remain unchanged, the initial transmission rate of public
risk perception keeps increasing, so that the basic regen-
eration number R0 gradually changes from a value less than
1 to a value greater than 1, and the public panic gradually
spreads. With the increase of the basic regeneration number
R0, the diffusion scale becomes larger and larger.

4. Numerical Simulation and Analysis

,is part will verify the rationality and stability of the evo-
lutionary model of public risk perception through simulation
experiments and analyze the propagation mechanism of risk
perception. In the simulation experiments, the initial condi-
tions given are: S(0) � 1, E(0) � 0.00, I(0) � 0.00, and
R(0) � 0.00.

4.1. Analysis of the Density of State Nodes in the Network.
Set the initial parameter to α � 0.2, β � 0.5, λ � 0.5,

θ � 0.3, ε � 0.2, δ � 0.1 and substitute into equation (12); the
calculation gives the basic regeneration number R0 as 3.125,
,e theory suggests that public risk perceptions undergomass
diffusion, which is consistent with the results in the figure.

From Figure 3, it can be seen that the node density of the
susceptible state decreases rapidly at the initial stage and
eventually tends to stabilize; the node density of the latent state
increases rapidly to a peak of 0.31, then gradually decreases,
and eventually tends to 0; the node density of the pathogenic
state increases rapidly at the early stage of propagation and
reaches a peak of 0.63, after which the node density gradually
decreases and eventually stabilizes at 0.32; the node density of
the healed state rapidly increases during the propagation
process and eventually reaches a stable at 0.61. ,e density of
nodes in the healed state increased rapidly during propagation
and eventually reached a stable level of 0.61.

4.2. Impact of Initial Propagation Rate on the Evolution of
Public Risk Perception. ,e node density of the morbidity
state represents the active degree of risk perception trans-
mission; the node density of the healing state represents the
degree of risk perception transmission final state. ,erefore,
the impact of public health pandemics on public risk per-
ception is investigated by analyzing the change in node
density of morbidity and healing states with the initial
transmission rate β. Figures 4 and 5 depict how public risk
perceptions vary over time in terms of the density of mor-
bidity status and healing status under the influence of dif-
ferent initial transmission probabilities. Set the initial
parameter α � 0.2, λ � 0.5, θ � 0.3, ε � 0.2, δ � 0.1; take
three casesβ � 0.2, β � 0.5, and β � 0.8; and substitute into
equation (12); the calculation can get the basic regeneration
number R0 as 1.625, 3.125, and 4.625, respectively; theoret-
ically, the public risk perception will carry out large-scale
diffusion, which is consistent with the results in the figure. As
can be seen in Figures 4 and 5, both the onset state and the
healing state R density maxima increase with increasing initial
transmission probability β. ,at is, the greater the initial
probability of transmission, the more the public is inclined to
spread risk perceptions, and the shorter the time it takes to
reach the peak. After the node density of the disease state
reaches its peak, as the government’s emergency work ad-
vances, such as the effective implementation of pandemic
prevention and control measures, some members of the
public believe that the pandemic is temporarily controllable,
and the number of publics spreading information about the
pandemic begins to decrease, and eventually, all change to the
disease state. ,erefore, the greater the initial rate of trans-
mission of public risk perception, the faster the network
transmission that is not only fast but also on a large scale.

4.3. Ae Impact of Social Reinforcement Effects on the
Evolution of PublicRiskPerceptions. Set the initial parameter
to α � 0.2, β � 0.5, θ � 0.3, ε � 0.2, δ � 0.1 and take the three
cases b � 1, m � 1, b � 1, m � 2, and b � 2, m � 2. Figure 6
depicts the change in the density of morbidity status nodes
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over time for different social reinforcement effects on public
risk perception. As can be seen in Figure 6, the greater the
number of times an individual receives information about an
pandemic, the greater the density of morbidity status nodes,
for the same reinforcement factor. Similarly, the higher the
reinforcement factor, the higher the density of onset nodes,
given the same number of times an individual received
information about the pandemic. ,is suggests that the
public is more inclined to disseminate risk perceptions in the
presence of social reinforcement effects.

4.4. Impact of Containment Mechanisms on the Evolution of
Public Risk Perceptions. Set the initial parameter to α �

0.2, β � 0.5, λ � 0.5, θ � 0.3, δ � 0.1 and take the three cases

ε � 0.2, ε � 0.4, and ε � 0.6. Substituting into equation
(12), the corresponding basic regeneration numbers R0 are
3.125, 1.56, and 1.04, respectively, and the nodal densities
of onset states when public risk perception transmission
reaches stability are 0.27, 0.16, and 0.1, respectively. From
Figure 7, it can be seen that the maximum value of the
onset state node density decreases with the increase of the
containment mechanism ε. Since ε represents the strength
of the containment mechanism, this means that the
stronger the containment mechanism, the easier it is for
the onset state nodes to be influenced by other nodes and
stop spreading, the faster the network reaches a stable
state, and the smaller the density of onset state nodes after
the network is stable. ,erefore, the containment
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Figure 6: Effect of reinforcement effects on the density of nodes in
the onset state.
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Figure 3: Trend of state changes of various nodes in the SEIR
model.
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Figure 4: Effect of initial transmission rate on the density of nodes
in the onset state.
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Figure 5: Effect of initial propagation rate on node density in the
healed state.
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mechanism curbs the spread of public risk perception to a
certain extent, reducing the speed and scope of
transmission.

4.5. Ae Impact of Forgetting Mechanisms on the Evolution of
Public Risk Perception. Set the initial parameter to
α � 0.2, β � 0.5, λ � 0.5, θ � 0.3, ε � 0.2; take the three cases
of δ � 0.1, δ � 0.4, and δ � 0.7, and substitute into (12); the
corresponding basic regeneration numbers are all 3.125. ,e
node densities of onset states when network propagation is
stable are 0.28, 0.52, and 0.61, respectively.

As can be seen from Figure 8, the maximum value of the
onset state node density increases with the increase of the
forgetting rate δ. Since δ represents the intensity of for-
getting, this means that the greater the degree of forgetting,
the easier it is for sick state nodes to forget the received
pandemic information and the easier it is for them to be-
come susceptible nodes again to receive pandemic infor-
mation and propagate risk perceptions, making the density
of sick state nodes greater when the network is stable.

5. Research Conclusions and
Policy Recommendations

5.1. Research Conclusions. In this paper, based on COVID-
19, first, we analyzed the infectious characteristics of public
risk perception in public health emergencies. Second,
according to the characteristics of public risk perception
transmission in social networks, we established the evolution
dynamics model of public risk perception and solved the
basic regeneration number. Finally, we revealed the evolu-
tion mechanism of the public risk perception network
through parameter selection and simulation experiments.
,erefore, the significance of this study is reflected in the
following three aspects:

(1) Systematically summarize the characteristics of
public risk perception of infectious diseases in public
health emergencies, including risk sources, trans-
mission media, infectivity, and immunity. It pro-
vides a theoretical basis for the establishment of a
public risk perception model.

(2) Systematically analyze the influencing factors of
public risk perception of public health emergen-
cies. From two dimensions of individual and social
factors, we focused on analyzing the influence of
the forgetting mechanism, social reinforcement
effect, and containment mechanism on the spread
of risk perception and established the evolution
dynamics model of the public risk perception
based on SEIR. ,e stability of the model is proved
theoretically by solving the basic regeneration
number.

(3) ,e infectious disease model is applied to the evo-
lution model of risk perception of public health
emergencies; through simulation experiments, we
revealed the evolution mechanism of public risk
perception network. ,e greater the initial rate of
diffusion, the greater the speed and scope of network
diffusion; the stronger the social reinforcement ef-
fect, the greater the speed and scope of network
diffusion; the stronger the rate of forgetting, the
greater the speed and scope of network diffusion; and
the stronger the rate of containment, the weaker the
speed of network diffusion and the smaller the scale
of network diffusion.

5.2. Policy Recommendations. ,e conclusions of this study
can provide the following suggestions for relevant govern-
ment departments to deal with major public health
emergencies:

δ = 0.1
δ = 0.4
δ = 0.7

200

0.0

0.1

0.3

0.6

40 60

t

80 100

0.2

0.5

0.4

0.7

Figure 8: Effect of forgetting mechanisms on the density of nodes
in the onset state.
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Figure 7: Effect of containmentmechanisms on node density in the
onset state.
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(1) ,e government should immediately launch the
emergency plan to rescue the affected public, shrink
the scope of the emergency, reduce the level of the
emergency, cut down the influence of the emergency,
and weaken the public risk perception so as to reduce
the negative impact of the online public opinion of the
emergency andmaintain social harmony and stability.

(2) ,e government should undertake the responsibility of
supervision, regulation, and management. First, on the
premise of satisfying the public’s right to know,
gradually relax the control on news media, and stan-
dardize the system of information disclosure and
dissemination. In the process of information disclo-
sure, the government should establish two-way com-
munication channels: on the one hand, timely inform
the public of the truth of the incident and, on the other
hand, invite experts to objectively analyze and release
authoritative information. Second, the government has
a responsibility to know the source of the public’s fear
and respect the public’s perception of risk.,e risk that
may be overestimated by the public through various
ways has to be reduced, so as to reduce the public’s risk
perception level and relieve the public’s panic.

(3) News media should abide by professional ethics and
report objectively and fairly, which will help reduce
the risk perception of the public. ,e media is the
reporter of the risk information of public health
emergencies, the interpreter of dynamic informa-
tion, and the guide of the public’s risk perception.
After the occurrence of public health emergencies,
the public relies more on media reports because of
asymmetric information. ,erefore, the media
should report information objectively, accurately
and timely so that the potential risks can be rec-
ognized by the public so as to cut down the public’s
risk perception and panic and ultimately reduce the
change from vulnerable groups to latent groups or
disease groups.

(4) ,e public should maintain a positive and optimistic
attitude, collect emergency information rationally
and objectively, and reduce the overestimated risk
perception because of information insufficient. In-
stead of passively receiving information, the public
should actively acquire and screen information. ,e
analysis must be rational and objective so as to avoid
herd behavior.

In a word, in the face of public health emergencies, the
government should establish an early warning and response
mechanism for public risk perception. ,e media should
report the emergency objectively and fairly in order to guide
public opinion correctly. ,e public should remain positive
and optimistic, enhance the awareness of discrimination,
reduce unnecessary panic, and improve the confidence to
overcome difficulties.
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Tuberculosis (TB) is a serious global health threat that is caused by the bacterium Mycobacterium tuberculosis, is extremely
infectious, and has a high mortality rate. In this paper, we developed a model of TB infection to predict the impact of saturated
recovery. (e existence of equilibrium and its stability has been investigated based on the effective reproduction number RC. (e
model displays interesting dynamics, including backward bifurcation and Hopf bifurcation, which further results in the stable
disease-free and stable endemic equilibria to be coexisting. Bifurcation analysis demonstrates that the saturation parameter is
accountable for the phenomenon of backward bifurcation. We derive a condition that guarantees that the model is globally
asymptotically stable using the Lyapunov function approach to global stability. (e numerical simulation also reveals that the
extent of saturation of TB infection is the mechanism that is fuelling TB disease in the population.

1. Introduction

Modeling and simulation are significant decision tools for
controlling human diseases [1, 2]. Although every disease
demonstrates its own series of biological characteristics, the
models should be adjusted to every case in order to tackle
real-world scenarios [3, 4].

Tuberculosis (TB) kills more people every year than any
other infectious disease, including HIV and malaria, making
it one of the most serious global health challenges [5].
Despite the fact that TB is a curable and preventable disease,
it is still one of the top ten causes of mortality worldwide
[5, 6]. TB is usually caused by the bacteriumMycobacterium
tuberculosis. In 2018, there were 10 million new cases of TB
reported, with 8.6% of those living with HIV [5]. To be
infected with TB, a person just has to inhale a few TB
bacteria [5, 6].(e infectionmay also affect other areas of the
body, like the kidneys, brain, skin, and spine, in some cases.
(e TB infection is not new to the community, yet it has a
long history of presence since antiquity in China, Egypt, and
India [7]. Tuberculosis is transferred from one infected

individual to another by germ-infested air droplets. When a
person with active tuberculosis germs spits, talks, coughs, or
sneezes, the TB germs are propelled into the air [5]. TB can
be contracted effectively from relatives and companions. An
individual becomes contaminated effectively when they
inhale a couple of TB germs. Approximately ten percent of
TB-infected people develop active TB infection, while the
other ninety percent remain latent [5]. TB infection is not
transmitted by people who are latently sick. Individuals with
TB may be identified by skin or blood testing. People with
immunocompromised diseases are more susceptible to TB
(HIV and diabetic patients). A cough that lasts longer than
three weeks, fever, coughing up blood, chest pain, fatigue,
weight loss, exhaustion, and night sweats are all symptoms of
active tuberculosis [5, 8]. TB is a transferable disease, which
can be treated with medication therapy [5, 8].

Treatment is a significant and viable technique that can
be used within a population to control the spread of in-
fectious diseases. In modeling techniques, the role of
treatment function addresses the likelihood of treatment
against the disease at a given time for each infected person.
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In standard epidemic models, the treatment rate is pro-
portional to the infective’s population size; however, in
general, the rate of recovery is determined by medical re-
sources such as medications, vaccinations, hospital beds,
isolation areas, and the effectiveness of the treatments. It is
understood in practice that societies have limited medical
services for the treatment of infections, so offering these
services places considerable pressure on facilities for public
health. It is therefore more realistic to consider treatment
functions of the saturated form, which appear to be large as
the number of infectives increases [9–11]. Wang and Ruan
[12] proposed an SIR model with a constant treatment as
follows:

h(I)
τ, I> 0,

0, I � 0,
􏼨 (1)

that modeled a treatment capacity limit. (e following
piecewise linear treatment function was considered byWang
and Ruan [12]:

h(I)
τI, 0≤ I≤ I0,

τI0, I> I0,
􏼨 (2)

where I0 is the infectious threshold at which the healthcare
system gains capacity; that is, treatment rises linearly with I

until capacity is achieved, and then it takes its maximal
value, τI. (is appears to be more realistic than the standard
linear function. Eckalbar and Eckalbar [13] built the fol-
lowing SIR model using a quadratic treatment function:

T(I) � max τI − gI
2
, 0,􏽮 r, g> 0. (3)

Apart from that, we are aware that delaying treatment for
infective persons has a negative impact on treatment effi-
ciency. Zhang and Liu [9] employed a saturated treatment
function that was both continuous and differentiable,
h(I) � τI/(1 + kI), where τ > 0, τ corresponds to the cure
rate, and the quantity k represents the delay in treatment.

It has been noted that saturation in recovery or treat-
ment function allows multiple endemic equilibria to occur
when R0 changes [9, 10, 14–17]. For R0 < 1, the presence of
backward bifurcation (the existence of endemic equilibrium
along with disease-free equilibrium) implies that only R0 < 1
is insufficient to eradicate the disease from the community
[9, 14, 16, 17].In this situation, an endemic equilibrium is
established along with the stable disease-free equilibrium
(bistability of equilibria when R0 < 1). Moreover, some re-
searchers have observed the presence of limit cycles
alongside the stable disease-free equilibrium when R0 < 1
[16, 17]. Subsequently, if R0 < 1, the occurrence of a stable
endemic equilibrium and oscillations in the infective pop-
ulation indicate that maximum efforts are needed to elim-
inate or monitor the disease [14, 16, 17].

Moreover, when R0 > 1, some different scenarios, for
example, Hopf bifurcation and the occurrence of several
endemic equilibria, also have been observed as a result of
saturated recovery or treatment [12, 14, 15, 17]. For example,
Cui et al. [14] proposed and investigated an SIS model with
saturated recovery rate and discovered the occurrence of

oscillatory behavior in the population via Hopf bifurcation
because of the treatment capacity limitations. Wang and
Ruan [12] presented and analyzed an SIR model with a
constant treatment rate of infective. (ey noticed that when
R0 > 1, the system experiences different bifurcations in-
cluding saddle-node bifurcation and Hopf bifurcation.
Global stability is observed without removal rate, while
oscillatory behavior for constant removal rate was discov-
ered. (e behaviour of SEIR epidemic model with saturated
treatment function is investigated by [18], a backward bi-
furcation that results in bistability emergence, and numerical
result work suggested that they should improve the medical
conditions to control the epidemic [19]. To fully understand
the influence of delayed treatment on transmission of the
dynamics of disease, Zhang et al. [20] considered an SEIR
model approach with saturated incidence and saturated
treatment method. (eir finding recommends that to
eliminate the disease, they should raise the effectiveness and
extend the capacity of treatment. In other words, our
medical technology and contribution of more drugs and
beds provide timely treatment to patients.

In this paper, we incorporated saturated recovery which
was excluded in previous four-dimensional SEIR-like
models with exogenous infection used to study the phe-
nomenon of backward bifurcation (see [21, 22]).

2. Construction of the Model

We examined the transmission dynamics of TB by
employing a nonlinear ODE system of SιEιIιRι type system,
which was developed in [21, 22]. Our aim is to better un-
derstand the interplay between exogenous reinfection and
saturated treatment (recovery) rate in determining the
outbreaks of TB. (e whole population Nι(t) is classified
into four (9) compartments, Sι, Eι, Iι, and Rι, which, re-
spectively, denote susceptible, exposed, infected, and treated
individuals. A normal mass action known as density-de-
pendent incidence form interaction for the TB epidemic is
examined and the population is considered to also be ho-
mogeneously mixed.(e Sι, Eι, Iι, Rι process of TB spreading
is shown in Figure 1.

2.1. (e Model with Saturated Recovery Rate. (e nonlinear
model that is considered in this study consists of a system of
ordinary differential equations (ODEs):

dSι

dt
� Λ − μSι − βSιIι,

dEι

dt
� βSιIι − pβEιIι − (κ + μ)Eι,

dIι

dt
� pβEιIι + κEι − (μ + τ + δ)Iι −

cI

1 + ϖIι
,

dRι

dt
�

cIι

1 + ϖIι
+ τI− μRι,

(4)

with the initial conditions given by the following equation:
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Sι(0) � Sι0 > 0,

Eι(0) � Eι0 > 0,

Iι(0) � Iι > 0,

Rι(0) � Rι0 > 0.

(5)

In this epidemiological system, the susceptible com-
partment is increased by recruiting individuals, either by
immigration or birth, into the population at the constant
rate Λ. (e term μ is the natural death rate. (e exposed
compartment becomes infectious at the rate of κ E and
progresses to actively infected state. Exogenous reinfection
can enable individuals that are already infected to develop
active TB. (is happens when they contract new infection
from infectious individuals at a constant rate pβEI. Infected
individuals are decreased in number because of treatment,
which is given at the rate τI, cI/(1 + ϖI). δ respectively. (e
term cI/(1 + ϖI) is the saturation form of treatment (re-
covery) to the infected populations with the recovery rate c,
and the parameter ϖ determines the magnitude of the
impact of delaying the treatment of infected individuals.

3. Basic Properties of the TB Model with
Saturated Recovery

Following the technique in [23, 24] (and furthermore the
proof in [24]), it is not hard to demonstrate that when all
model parameters remain nonnegative, the state variables
Sι, Eι, Iι, andRι are all positive for all time t given they are
initially positive.

Theorem 1. (e region

Φ � Sι, Eι, Iι, Rι( 􏼁 ∈ R
4
+, Nι ≤

Λ
μ

􏼨 􏼩, (6)

is positively invariant and attracts all nonnegative solutions of
model system (4).

Proof. As mentioned in the study of [23], considering the
nonlinear system of model (4), we take the first equation and
let λ � βIι.

dSι
dt

� Λ − (λ + μ), (7)

that is,

dSι

dt
≥ − (λ + μ)S, (8)

⟹
dSι

Sι
≥ (λ + μ)dt. (9)

Integrating (9) by separation of variables gives

􏽚
dSι

Sι
≥ 􏽚 (λ + μ)dt, (10)

and therefore

Sι(t)≥ S(0)e
− (λ+μ)t ≥ 0. (11)

Similarly, it can also been shown that Eι(t)> 0, Iι(t)> 0,
Rι(t)> 0, for all t> 0.

3.1. Invariant Region

Theorem 2. (e solution of TB model system (4) is enclosed
in the region Φ subset ∈∈R6

+, given by

Φ � Sι, Eι, Iι, Rι( 􏼁 ∈ R
4
+, Nι ≤

Λ
μ

􏼨 􏼩, (12)

for the initial conditions (5) in Φ.

4. Analysis of Disease-Free Equilibrium (DFE),
P0, and Effective Basic Reproduction
Number RC

(e disease-free equilibrium (DFE) state, P0, of system
model (4) is obtained by setting the right-hand side of (4) to
zero which is given by

P0 � Sι, Eι, Iι, Rι( 􏼁
Λ
μ

, 0, 0, 0􏼠 􏼡. (13)

(e basic reproduction number of system model (4) was
calculated using the next generation operator approach (see
[25, 26]), where it is obtained to be

RC �
βκΛ

μ(μ + κ)(μ + δ + τ + c)
, (14)

where RC is the effective reproduction number of system
model (4). (e following outcomes would guaranty the
stability of P0, when the threshold quantity RC < 1 ascertains
that the system will be free from TB infection under a
threshold condition. A significant result is the following
theorem.

S

A

βSI

pβEI

μ μ

μ

μ + δ

κ
E

R

I

τ +
1 + ωI

cI

Figure 1: Schematic diagram showing the dynamics of TB in-
fection with saturated recovery.
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Theorem 3. (e disease-free equilibrium state, P0, of model
system (4) is locally asymptotically stable (LAS) when RC < 1
and unstable if RC > 1.

Proof. Consider model system (4), and the Jacobian of
system (4) at P0 is given by

Σ P0( 􏼁 �

− μ 0
− βΛ
μ

0

0 − (κ + μ)
βΛ
μ

0

0 κ − (μ + δ + τ + c) RC − 1( 􏼁 0

0 0 τ + c − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

(en, the root characteristic equation of Σ(P0) is − μ,
− (κ + μ), − μ, and − (μ + δ + τ + c)(RC − 1). If RC < 1, all the
characteristic roots are negative and thus P0 is locally as-
ymptotically stable and unstable when RC > 1.

4.1. Global Stability ofP0 State. In order to ensure that TB is
independent of the initial size of the subpopulations of
model system (4), it is necessary to show that P0 is globally
asymptotically stable (GAS) [27–30]. Several approaches,
such as the Lyapunov theorem, [27, 29, 31, 32] and global
stability theorem have been used to prove the global stability
of the disease free equilibrium, P0. Here, we shall apply the
method that was introduced in [32].

Theorem 4. (e disease-free equilibrium P0 of model system
(4) is global asymptotically stable in Ω if RC < 1 and con-
ditions (H1) and (H2) are satisfied as given in [32].

Proof. (e two conditions (H1) and (H2) in Castillo-
Chavez global stability theorem must be satisfied for RC < 1
to ascertain the global stability of the P0. Write systemmodel
(4) in the following form:

dX

dt
� F(X, Z),

dZ

dt
� G(X, Z); G(X, Z) � 0.

(16)

Here, the components X � (S∗ι , R∗ι ) and Z � (E∗ι , I∗ι )

where X ∈ R2 denotes uninfected population and Z ∈ R2

denotes the infected population. (e disease-free equilib-
rium is defined by

P0 � X
∗
, 0( 􏼁, (17)

where

X
∗

�
Λ
μ

, 0􏼠 􏼡. (18)

For condition H1 (the global asymptotical stability of
X∗) to be fulfilled, we have

dX

dt
� F(X, 0)

Λ − μS
∗
ι

μR
∗
ι

⎛⎜⎝ ⎞⎟⎠, (19)

written in the form of linear differential equations as follows:

dS
∗
ι

dt
� Λ − μS

∗
ι ,

dR
∗
ι

dt
− μRι.

(20)

Solving linear differential equation (20) yields

S
∗
ι (t) �
Λ
μ

+ S
∗
ι (0)e

− μt
,

R
∗
ι (t) � R

∗
ι (0)e

− (μ)t
.

(21)

Now, clearly R∗ι (t)⟶ 0 and S∗ι (t)⟶ (Λ/μ) as
t⟶∞, regardless of the value of S∗ι (0) and R∗ι (0).

Hence, X∗ � ((Λ/μ), 0) is globally asymptotically stable.
Next, applying second condition of the theorem pro-

posed in [32], that is, G
⌢

(X, Z) � AZ − G(X, Z),
G
⌢

(X, Z)≥ 0, we have

G(X, Z) �

G1(X, Z)

G2(X, Z)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ �

βSιIι − μ + κ + pβIι( 􏼁Eι

κEι − μ + δ + τ +
cIι

1 + ϖ
􏼒 􏼓Iι

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A) �
zG

zZ
X
∗
, 0( 􏼁

− (μ + κ) 0

κ − μ + δ + τ +
c

ϖ
􏼒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

(is is certainly anM- matrix (the off-diagonal elements
of A are nonnegative) [32].

Since

G(X, Z) �

− (μ + κ)E
∗
ι 0

κE
∗

− μ + δ + τ +
c

ϖ
I
∗
ι􏼒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

then,
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􏽢G(X, Z) � AZ − G(X, Z)

�

− (μ + κ) 0

κ − μ + δ + τ +
c

ϖ
􏼒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E
∗
ι

I
∗
ι

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ −

− (μ + κ)E
∗
ι 0

κE
∗
ι − μ + δ + τ +

c

ϖ
I
∗
ι􏼒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− (μ + κ)E
∗
ι 0

κE
∗
ι − μ + δ + τ +

c

ϖ
I
∗
ι􏼒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

− (μ + κ)E
∗
ι 0

κE
∗
ι − μ + δ + τ +

c

ϖ
I
∗
ι􏼒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0

0

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(24)

so that

􏽢G(X, Z) � AZ − G(X, Z) �
0

0
􏼢 􏼣. (25)

Since 􏽢G(X1, X2)≥ 0, we have showed that condition H2
of the theorem proposed in [32, 33] is satisfied by our model.
(is shows that regardless of the initial population of in-
fected, TB still can be controlled.

4.2. Endemic Equilibria and Bifurcation Analysis. To find
endemic equilibrium (S∗ι , E∗ι , I∗ι , R∗ι ) as before, we set the
right-hand side of system model (4) to zero. Solving for S∗ι ,
E∗ι , and R∗ι from first, third, and last equation of (4), re-
spectively, we have

S
∗
ι �
Λ

μ + βI
∗
ι
, (26)

E
∗
ι �

M + c/ 1 + ϖI∗ι( 􏼁( 􏼁( 􏼁I
∗
ι

p∗ βI
∗
ι

, (27)

where M � (μ + τ + δ) and

R
∗
ι �

τ + c/ 1 + ϖI∗ι( 􏼁( 􏼁( 􏼁I
∗
ι

μ
. (28)

By substituting and simplifying equations (26)–(28), we
get the following equation in I∗ι :

F I
∗
ι( 􏼁 � 􏽥AI

3
ι + 􏽥BI

2
ι + 􏽥CIι + 􏽥D � 0, (29)

where

􏽥A � ϖpβ2M,

􏽥B � (p(− ϖΛ + M + c)β + ϖM((p + 1)μ + κ))β,

􏽥C � − pϖΛβ2 +((p + 1)(M + c)μ + κ(− ϖΛ + M + c))β + μϖM(κ + μ)􏼐 􏼑,

􏽥D � (κ + μ)(μ + τ + δ + c) 1 − RC( 􏼁.

(30)

Clearly, 􏽥A> 0. When RC > 1, then 􏽥D< 0 and thus
F(0)< 0. Furthermore, as as Iι⟶∞, F(∞)> 0. Accord-
ingly, from the continuity of F(0), at least one positive Iι
exists, such that F(Iι) � 0, and thus there will be at least one
endemic equilibrium of the model system (4). Notice that if
RC > 1 and 􏽥B, 􏽥C are positive, then model system (4) has a
unique endemic equilibrium defined as P∗ � (S∗ι , E∗ι , I∗ι , R∗ι )

from Descartes’ rule of sign.(e number of possible positive
real roots of the cubic polynomial (29) depends on the signs
of 􏽥B, 􏽥C, and 􏽥D. We, therefore, propose the following results.

Theorem 5. (e TB model system (4) has

(1) A unique endemic equilibrium when RC > 1.

(2) One or more than one endemic equilibrium when
􏽥B< 0, 􏽥C> 0, andRC < 1.

(3) No endemic equilibrium when RC < 1.

Now we will look at the polynomial in (29) to see how it
influences the existence of endemic equilibrium.

Ifϖ � 0, the polynomial (29) reduces to a linear equation
in I∗ι , with a unique solution

I
∗
ι � −

􏽥D

􏽥C
, (31)

which is positive if and only ifRC > 1. As a result, we can now
say that if ϖ � 0, then a unique endemic equilibrium exist if
RC > 1 and there cannot be an endemic equilibrium when
RC < 1. To put it in another way, if the treatment of certain
infected outpatients is not delayed, when the effective re-
production number is smaller than unity, an endemic steady
state solution is not possible, ignoring the possibility of a
backward bifurcation in this scenario.
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4.3. Local Stability of Endemic Equilibrium (P∗). (e Jaco-
bian matrix of (4) at P∗ is given as

Σ P
∗

( 􏼁 �

Υ 0 χ 0

βIι − κ + μ + pβIι( 􏼁 − pβEι + βSι 0

0 pβIι + κ Ψ 0

0 0 Ξ − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (32)

Here

Υ � − μ + βIι,

χ � − βSι,

Ψ � pβEι − M −
c

1 + ϖIι
+

cϖIι
1 + ϖIι( 􏼁

2,

Ξ � τ +
c

1 + ϖIι
−

cϖIι
1 + ϖIι( 􏼁

2.

(33)

We obtain the characteristic equation after some row
and column operations of Σ(P∗) given by

λ4 + A1λ
3

+ A2λ
2

+ A3λ + A4 � 0, (34)

where

A1 � pβIι − Ψ + κ + 2μ − Υ,

A2 � p pEι − Sι( 􏼁Iιβ
2

+ κEι +(μ − Ψ − Υ)( 􏼁pIι − Sικ( 􏼁β

+(μ − Ψ − Υ)κ + μ2 +(− 2Ψ − 2Y)μ + ΨΥ,

A3 � p pEι − Sι( 􏼁μIι + pEι − Sι( 􏼁Υ + χIι􏼁β
2

+ pIιΥ + κEι − ΨIι( 􏼁p − κSι((

+ − κEι + Ψι( 􏼁p + κSι( 􏼁Υ − κχIι􏼁β +(− Υ + Ψ)μ2 +((2Ψ − κ)Υ − κΨ)μ + κΨΥ,

A4 � μ pIι pEι + Sι( 􏼁β2 + PΨIι − κ pEι − Sι( 􏼁( 􏼁β + Ψ(κ + μ)􏼐 􏼑Υ − βχIι pβIι + κ( 􏼁( 􏼁.􏼐

(35)

(us, all the roots of the characteristic equation Σ(P∗)

are with negative real parts if A1 > 0, A3 > 0, A4 > 0, and
A1A2A3 >A2

3 + A2
1A4. (erefore, from Routh–Hurwitz cri-

terion [34], the endemic equilibrium state P∗ is locally as-
ymptotically stable if these conditions are true.(e following
result can be obtained.

Theorem 6. If RC > 1 and 􏽥B and 􏽥D are positive, then the
unique endemic equilibrium P∗ of system model (4) is locally
asymptotically stable provided A3 > 0, A4 > 0, andA1A2
A3 >A2

3 + A2
1A4.

4.4. Analysis of Backward Bifurcation. (e existence and
stability of endemic equilibrium are determined by inves-
tigating the possibility of backward or forward bifurcation
due to the existence of endemic equilibrium. To investigate
the possibility of backward or forward bifurcation of model
system (4), we use the center manifold theory [35, 36]. Let
the bifurcation parameter be β � β∗.

Firstly, we obtained the bifurcation parameter at R0 � 1,
and thus

βκΛ
μ(κ + μ)(μ + δ + τ + c)

� 1, (36)

and therefore

β � β∗ �
μ(κ + μ)(μ + δ + c + c)

Λκ
. (37)

To investigate the use of center manifold theory in [35], it
is convenient to make simplification and transform the
variables on model system (4). (is is done by rewriting our
system model (4).

Let

x1 � Sι,

x2 � Eι,

x3 � Iι,

x4 � Rι.

(38)

Moreover, by using the vector notation V � (x1, x2,

x3, x4)
T, model system (4) can be restated in the form of

(dV/dt) � (f1, f2, f3, x4)
T as follows:
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dx1

dt
� Λ − βx1x3 − μx1 � f1,

dx2

dt
� βx1x3 − pβx2x3 − (κ + μ)x2 � f2,

dx3

dt
� κx2 + pβx2x3 − (μ + δ + τ)x3 −

cx3

1 + ϖx3
� f3,

dx4

dt
� τx3 +

cx3

1 + ϖx3
− μx4 � f4.

(39)

We next show that the Jacobian matrix of (4) at the point
(P0, β

∗) has a simple zero eigenvalue, that is,

Σ P0, β
∗

( 􏼁 �

− μ 0
− β∗Λ
μ

0

0 − (κ + μ)
β∗Λ
μ

0

0 κ − (μ + δ + τ + c) 0

0 0 τ + c − μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

With β � β∗, system model (39) has a simple zero real
part eigenvalue, and all other eigenvalues are negative (i.e.,
has a hyperbolic equilibrium point). (e center manifold
theory [35] can therefore be used to examine the dynamics of
the system (39) close to β � β∗. It is practicable to derive the
right eigenvectors of Σ(P0, β

∗) represented by
ω � (ω1,ω2,ω3,ω4)

T, where

ω1 �
βΛ
μ

(μ + κ),

ω2 �
μ + τ + δ + c

κ
,

ω3 � 1,

ω4 �
τ + c

μ
.

(41)

Conversely, the left eigenvectors represented as
υ � (υ1, υ2, υ3, υ4)

T are easy to obtain, where

υ1 � 0,

υ2 �
κ

2 μκ + τδ + c
,

κ + μ
2 μκ + τδ + c

,

υ4 � 0.

(42)

4.5. Computation of a and b. Hence, associated bifurcation
coefficients are denoted by a and b, respectively; as explained
in [35], when bifurcation coefficients a and b are both
negative, then the system undergoes a backward bifurcation;
otherwise, forward bifurcation will occur.

It is convenient to find both a and b defined by [35]

a � 􏽘
4

k,i,j�1
vkwiwj

z
2
fk

zxizxj

P0, β
∗

( 􏼁, (43)

b � 􏽘
4

k,i�1
vkwi

z
2
fk

zxizβ
P0, β
∗

( 􏼁. (44)

Taking into accountmodel system (39) and examining a and
b only, which are not equal to zero derivatives, for the terms

z
2
fk

zxizxj

􏼠 􏼡 P0, β
∗

( 􏼁,

z
2
fk

zxizβ
∗􏼠 􏼡 P0, β

∗
( 􏼁,

(45)

we get

a � 2υ1ω1wω
z
2
f1

zx1zx4
P0, β
∗

( 􏼁 + 2υ2ω2ω4
z
2
f2

zx2zx4
P0, β
∗

( 􏼁

+ 2υ3ω1ω4
z
2
f3

zx1zx4
P0, β
∗

( 􏼁 + 2υ3ω2ω4
z
2
f3

zx3zx4
P0, β
∗

( 􏼁

+ 2υ3ω3ω4
z
2
f3

zx3zx4
P0, β
∗

( 􏼁 + 2υ4ω3ω4
z
2
f4

zx3zx4
P0, β
∗

( 􏼁,

b � 2υ1υ4
z
2
f1

zx4zβ
P0, β
∗

( 􏼁 + υ3ω2ω4
z
2
f3

zx4zβ
P0, β
∗

( 􏼁.

(46)

Now considering (43) and (44), we obtain

a � 2
2(μ + κ)

2 μ + τ + δ + c
−

(μ + κ)(μ + τ + δ + c)

κΛμ
􏼢

− (μ + τ + δ + c) + cϖ⎤⎦,

b �
κ

2 μ + κ + τ + δ + c

Λ
μ

.

(47)

As indicated by the result shown in [35], our system
experiences backward bifurcation at β � β∗, only when both
a and b are positive at (P0, β

∗). Obviously, b is consistently
positive. Hence, the positivity of a offers the threshold
circumstance for the phenomenon of backward bifurcation.

4.6. Analysis ofHopf Bifurcation. Hopf bifurcation of system
(4) around endemic equilibrium point will be considered in
this section.We employ the criterion that was derived in [37]
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to show that Hopf bifurcation exists. Let P∗∗ � (S∗ι , E∗ι ,

I∗ι , R∗ι ) be an endemic equilibrium of system (4) when RC > 1
and β be a bifurcation parameter for which P∗∗ is locally
stable when β< βo and unstable when β> βo. At β � βo, P∗∗

loses its stability and periodic solutions emerge. (e char-
acteristic equation at endemic equilibrium equivalent to
model system (4) at P∗∗ is given by

X
4

+ A1X
3

+ A2X
2

+ A3X + A4 � 0. (48)

It was also observed that the component of the endemic
equilibrium P∗∗ smoothly relies on β, and the corresponding
characteristic equation is given as

X
4

+ A1(β)X
3

+ A2(β)X
2

+ A3(β)X + A4(β) � 0. (49)

To this place, the coefficient is a smooth function of β.
Following the approach in [38], a Hopf bifurcation occurs
when the following two conditions are satisfied:

(e Jacobian matrix J(P∗∗, βo) has a pair of purely
imaginary eigenvalues and the remaining eigenvalues
have negative real parts.
(d(Re(A))/dβ)|β�βo

≠ 0.

According to [37], the coefficients of the characteristic
equation have to meet the prerequisite for a pair of purely
imaginary eigenvalues, which are

A4 > 0, A4 > 0 and A3A2 − A4A1 > 0.
Δ2 � A3A2A1 − A2

3 − A4A
2
1 � 0.

To complete the discussion, we need to drive the
transversality condition (ii). For this reason, we let ±iα be a
pair of purely imaginary eigenvalues corresponding to βo.
Here, differentiating characteristic equation (48) with re-
spect to β, we get

4X
3

+ 3A1X
2

+ 2A2X + A3􏼐 􏼑
dX

dβ
+ X

3dA1

dβ
+ X

2dA2

dβ

+ X
dA3

dβ
+
dA4

dβ
� 0.

(50)

Further, we get

dX

dβ
􏼠 􏼡

− 1

� −
4X

3
+ 3A1X

2
+ 2A2X + A3

X
3 dA1/dβ( 􏼁 + X

2 dA2/dβ( 􏼁 + X dA3/dβ( 􏼁 + dA4/dβ( 􏼁
. (51)

(e following relation will be used.

sign
d Re(X)( 􏼁

dβ
􏼢 􏼣

X�iα,Δ2�0
� sign Re

dX

dβ
􏼠 􏼡

− 1
⎡⎣ ⎤⎦

X�iα,Δ2�0

� sign Re −
A3 − 3A1α

2
􏼐 􏼑 + 2A2α − 4α3􏼐 􏼑i

dA4/dβ( 􏼁 − dA2/dβ( 􏼁α2􏼐 􏼑 + dA3/dβ( 􏼁α − dA1/dβ( 􏼁α3􏼐 􏼑i
⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦

� sign[Υ].

(52)

Here

Υ � −
A3 − 3A1α

2
􏼐 􏼑 dA4/dβ( 􏼁 − dA2/dβ( 􏼁α2􏼐 􏼑 + 2A2α − 4α3􏼐 􏼑 dA3/dβ( 􏼁α − dA1/dβ( 􏼁α3􏼐 􏼑

dA4/dβ( 􏼁 − dA2/dβ( 􏼁α2􏼐 􏼑
2

+ dA3/dβ( 􏼁α − dA1/dβ( 􏼁α3􏼐 􏼑
2 . (53)
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If (A3 − 3A1α2)((dA4/dβ) − (dA2/dβ)α2) + (2A2α−

4α3)((dA3/dβ)α − (dA1/dβ)α3)< 0, then sign[d(Re(X))/
dβ]βo,α> 0. We then summarize this result in the following
equation:

A3 − 3A1α
2

􏼐 􏼑
dA4

dβ
−
dA2

dβ
α2􏼠 􏼡 + 2A2α − 4α3􏼐 􏼑

dA3

dβ
α −

dA1

dβ
α3􏼠 􏼡< 0.

(54)

(erefore, the transversality condition holds, and the
system undergoes the phenomena of Hopf bifurcation at
βo � α. (us, transmission rate βo crosses its critical value,
βo � α, and individuals start oscillating around endemic
equilibrium point P∗∗. (is ends the proof of the theorem.

4.7. Global Stability of Endemic Equilibrium When RC > 1.
To prove the global stability of endemic equilibrium state
P∗∗ of system model (4), we consider the case when ex-
ogenous reinfection parameter p � 0. We employed the
Lyapunov function method and LaSalle’s invariance prin-
ciples [39, 40]. System model (4) with p � 0 therefore re-
duces to

dSι

dt
� Λ − μSι − βSιIι,

dEι

dt
� βSιIι − l1( 􏼁Eι,

dIι
dt

� κEι − l2( 􏼁Iι − f Iι( 􏼁,

dRι

dt
� f Iι( 􏼁 + τI− μRι,

(55)

with

l1 � μ + κ,

l2 � μ + τ + δ,

f Iι( 􏼁 �
cIι

1 + ϖIι
.

(56)

Furthermore, define

Γo � Sι, Eι, Iι, Rι( 􏼁≥Γ: Eι � Iι � Rι � 0􏼈 􏼉. (57)

(e following result is obtained.

Theorem 7. If RC > 1, then the endemic equilibrium state
P∗∗ given by (55) is GAS in Γ\Γo.

Proof. Consider the model without exogenous reinfection
given by (55), and RC > 1, so that the endemic equilibrium
P∗∗ of the model (55) exists. In addition, consider the
following Lyapunov function method of this type which has
been utilized in the study of epidemiology and ecology, such
as in [29, 41–43], for model system (55) comprising the first
three equations of (55), defined by the following. Define the
Lyapunov function

U Sι, Eι, Iι( 􏼁 � Sι − S
∗∗
ι − S

∗∗
ι ln

S

S
∗∗
ι

􏼠 􏼡

+ Eι − E
∗∗
ι − E

∗∗
ι ln

E

E
∗∗
ι

􏼠 􏼡

+
l1

κ
Iι − I
∗∗
ι − I

∗∗
ι ln

I

I
∗∗
ι

􏼠 􏼡􏼢 􏼣,

(58)

and the derivatives of U are given by

�U � �Sι −
S
∗∗
ι
Sι

�S + �E −
E
∗∗
ι
Eι

�Eι +
l1
κ

I
�

ι −
I
∗∗
ι
Iι

I
�

ι􏼠 􏼡. (59)

Filling in the derivatives and using (55) in U′, we have

� Λ − βSιIι − μSι −
S
∗∗
ι
Sι
Λ − βSιIι − μSι( 􏼁 + βSιIι − l1Eι

−
E
∗∗
ι
Eι

βSιIι − l1Eι( 􏼁 +
l1

κ
κEι − l2Iι −

I
∗∗
ι
Iι

κEι − l2Iι( 􏼁􏼢 􏼣,

(60)

U
�

� Λ 1 −
S
∗∗
ι
Sι

􏼠 􏼡 − μSι 1 −
S
∗∗
ι
Sι

􏼠 􏼡 + βS
∗∗
ι −

l1l2

κ
􏼠 􏼡

−
E
∗∗
ι βSιIι

Eι
+ l1E
∗∗
ι −

l1I
∗∗
ι Eι

Iι
+

l1l2

κ
.

(61)

At the endemic steady state, it can be observed that

βS
∗∗
ι �

(μ + κ)(μ + τ + δ + f)

κ
�

l1l2

κ
. (62)

Using expression (62) in equation (61) yields
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U
�

� Λ 1 −
S
∗∗
ι
Sι

􏼠 􏼡 − μSι 1 −
S
∗∗
ι
Sι

􏼠 􏼡 −
E
∗∗
ι βSιIι

Eι
+ E
∗∗
ι l1 −

l1I
∗∗
ι Eι

Iι
+ βS
∗∗
ι I
∗∗
ι ,

U
�

� βS
∗∗
ι I
∗∗
ι + μS

∗∗
ι( 􏼁 1 −

S
∗∗
ι
Sι

􏼠 􏼡 − μSι 1 −
S
∗∗
ι
Sι

􏼠 􏼡 −
E
∗∗
ι βSιIι

Eι
+ E
∗∗
ι l1 −

l1I
∗∗
ι Eι

Iι
+ βS
∗∗
ι I
∗∗
ι ,

U
�

� μS
∗∗
ι 2 −

S
∗∗
ι
Sι

−
Sι

S
∗∗
ι

􏼠 􏼡 + βS
∗∗
ι I
∗∗
ι −

βS
∗ ∗ 2
ι
Sι

−
βSιIιE

∗∗
ι

Eι
+ l1E
∗∗
ι −

l1I
∗∗
ι Eι

Iι
+ βS
∗∗
ι I
∗∗
ι .

(63)

We also observed from (55) at steady state that

l1E
∗
ι � βS

∗∗
ι I
∗∗
ι . (64)

Using expression (64) in equation (63) gives

U
�

� μS
∗∗
ι 2 −

S
∗∗
ι
Sι

−
Sι

S
∗∗
ι

􏼠 􏼡 + βS
∗∗
ι

I
∗∗
ι 3 −

S
∗∗
ι
Sι

−
SιIιE
∗∗
ι

S
∗∗
ι I
∗∗
ι Eι

−
EI
∗∗
ι

IιE
∗∗
ι

􏼠 􏼡.

(65)

We can simplify the first term in the last equation of (65)
as follows.

2 −
S
∗∗
ι
Sι

−
Sι

S
∗∗
ι

􏼠 􏼡 �
2SιS
∗∗
ι − S

∗∗ 2
ι − S

2
ι

SιS
∗∗
ι

� −
Sι − S

∗∗
ι( 􏼁

2

Sι − S
∗∗
ι
≤ 0.

(66)

Finally, it follows that since the arithmetic mean exceeds
the geometric mean,

3 −
S
∗∗
ι
Sι

−
SιIιE
∗∗
ι

S
∗∗
ι I
∗∗
ι Eι

−
EI
∗∗
ι

IιE
∗∗
ι

􏼠 􏼡≤ 0. (67)

Accordingly, it follows from this that U
�

≤ 0 when RC >
with U

�

� 0 if and only if Sι � S∗∗ι , Eι � E∗∗ι , and Iι � I∗∗ι .
(us, U is a Lyapunov function for system model (55) in
Γ∖Γ0. (us, the largest compact invariant set where U

�

� 0 is
a singleton (Sι, Eι, Iι) � (S∗∗ι , E∗∗ι , I∗∗ι )􏼈 􏼉, and therefore it
follows that by [39], Sι(t)⟶ S∗∗ι , Eι(t)⟶ E∗∗ι , and
Iι(t)⟶ I∗∗ι as t⟶∞.

5. Numerical Simulation and Discussion

To confirm the feasibility of theoretical findings regarding
stability and bifurcation of model system (4), we employed
numerical continuation package XPPAUT [44] to perform
one parameter bifurcation analysis and Matlab to perform
numerical experiment. Motivated by some epidemiological
literature of TB model [21, 45], model system (4) was val-
idated by choosing a set of parameter values as illustrated in
TB relevant literature, and the estimated parameters used are
captured in each respective figure.

Figure 2 demonstrates the population of exposed in-
dividuals as the transmission rate β is varied from 0 to 2.
(e y-axis defines the exposed individuals and x-axis de-
fines the transmission rate beta (β). (e red and black lines
represent stable and unstable steady states, respectively.
(e green (blue, respectively) cycles illustrated the

occurrence of stable and unstable limit cycles in this epi-
demiological system. In general, this epidemiological
system demonstrates rich bifurcation dynamics which are
epidemiologically important. Several dynamical behaviors
of the system are observed as β changes. As demonstrated
in Figure 2, the system is identified by Sub · H,BP,

LP, and LPC, which corresponded to Hopf bifurcation,
transcritical bifurcation, saddle-node bifurcation, and
saddle-node bifurcation of cycles. van Voorn [46] stated
that “when an unstable limit cycle is born, while the
equilibrium becomes stable, we have a subcritical Hopf
bifurcation.” Hence, the bifurcation is subcritical. Indeed,
Figure 2 reveals that for the bifurcation point, the stable
equilibrium (red line) becomes unstable (black line). In
addition, stable and unstable limit cycles also emerge. As
the bifurcation parameter β increases, the unstable limit
cycles collide with stable limit cycles via a saddle-node
bifurcation of cycles LPC.

Figure 3 depicts a codimension-two bifurcation graph as
β and τ are changed. To examine the interaction of sub-
critical Hopf, saddle-node, and transcritical bifurcations, we
conducted a codimension-two bifurcation analysis of TB
model (4) as we varied the transmission rate β and recovery
parameter τ, and the result can be seen in Figure 3. (ere is
indeed a codimension-2 point, black curve with red point,
referring to cycle saddle-node bifurcation. (is kind of bi-
furcation frequently occurs as a result of a collision between
stable limit cycles (green curve) and unstable limit cycles
(blue curve). In general, the codimension-2 bifurcation
point serves as an organizing center, separating the pa-
rameter space into various curves with distinct qualitative
findings: red curve corresponds to saddle-node bifurcation,
blue curve corresponds to Hopf bifurcation, and cyan curve
corresponds to transcritical bifurcation as demonstrated in
previous result (that is, Figure 2, which illustrates the same
qualitative mechanisms as Figure 3).

In Figures 4 and 5, we set the parameter values as Λ � 4,
μ � 0.18, δ � 0.08, κ � 0.03, p � 0.5, c � 0.02, and ϖ � 0.1,
and β is varied around the critical value βo � 1.7. (e
threshold quantity RC � 2.3670> 1, and the eigenvalues are
(− 0.2163698605 + 1.349717265I, − 3.652541848, − 0.21636
98605–1.349717265I) and the model system endemic
equilibrium is given as (2.53865, 3.9028, 0.820965). Here, P∗

is found to be unstable.(e endemic equilibrium P∗ is stable
for β< βo and unstable for β> βo. We discover that the
condition for Hopf bifurcation is fulfilled resulting in the
presence of periodic oscillations around P∗. (e graphs for
the results obtained are given in Figures 4 and 5.
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Figure 2: One-parameter bifurcation diagram of exposed individuals (E) with transmission rate (β) as a bifurcation parameter. (e fixed
parameters are μ � 0.18, Λ � 4, p � 0.5, κ � 0.03, c� 0.02, b� 0.2, δ � 0.08, and τ � 2. (e Hopf bifurcation points occurred at β � 1.035.
Sub · H corresponds to subcritical Hopf bifurcation, LPC corresponds to saddle-node bifurcation of cycles, LP corresponds to saddle-node
bifurcation, BP corresponds to transcritical bifurcation, SLC corresponds to stable limit cycle, and ULC corresponds to unstable limit cycle.
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Figure 3: Two-parameter bifurcation diagram of model system (9) in the (τ, β)-plane. (e fixed parameters are μ � 0.18, Λ � 4, p � 0.5,
κ � 0.03, c� 0.02, b� 0.2, δ � 0.08, and τ � 2. Red curve denotes saddle-node bifurcation, blue curve denotes Hopf bifurcation, cyan curve
denotes transcritical bifurcation, and black curve at (red point) denotes saddle-node bifurcation of cycles.

0
0 200 400

Time (Years)
600 800 1000

2

4

6

8

10

S,
E,

I

Figure 4: (e oscillatory simulation of susceptible individuals (blue colour), exposed individuals (green colour), and infected individuals
(red colour). Parameters are β � 1.7, Λ � 4, μ � 0.18, δ � 0.08, κ � 0.03, p � 0.5, c � 0.02, and ϖ � 0.1 which give RC � 2.3670> 1. (e
oscillatory solution is unstable for some initial conditions. (ose used to produce the figure are S(0)� 2, E(0)� 3, and I(0)� 1.5.
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Figure 5: Phase trajectory for model system (4).(e solution approaches periodic orbit around endemic equilibrium when RC > 1. (a) Phase
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Furthermore, we consider another set of representative
parameters as Λ � 4, μ � 0.18, δ � 0.04, κ � 0.03, p � 2,
c � 0.02, ϖ � 0.1, and β � 1.7. (e threshold quantity
RC � 2.4093> 1, and the equilibrium is (2.11674, 0.997134,
1.0057) while the eigenvalues are given as (− 0.231843,
− 0.231843 ± 5.08514I). We can conclude that P∗ is stable
since all of the eigenvalues are negative or negative real parts
(see Figure 6).

Figure 7 depicts the phase diagram of Sι and Iι planes
with different values of saturated recovery c and with
μ � 0.18, Λ � 4, p � 0.5, κ � 0.03, b� 0.1, and τ � 2. When
c � 0.04, the endemic equilibrium is unstable, and as we
increase the value of c to 0.1, the endemic equilibrium
becomes stable; furthermore, we observed the appearance of
two (5) stable limit cycles. We observed that the stability
endemic equilibrium state changes from stable to unstable,
and this kind of bifurcation is called subcritical Hopf bi-
furcation (see [46, 47]).

Figure 8 illustrates a typical bifurcation graphs of system
model (4). In this diagram, the recruitment rate is changed,
whereas other parameters are kept constant. (e set of
representative parameter values which result in Figure 8 are
μ � 0.18, δ � 0.12, κ � 0.03, β � 1.6, p � 0.12, c � 0.9,
ϖ � 0.11, and 3.5≤Λ≤ 5. Figure 8(a) demonstrates the
scenario of forward bifurcation that when RC < 1, the TB-
free equilibrium is globally asymptotically stable, while if
RC > 1, the TB infection can persist. Conversely, as we ob-
served from Figure 8(b), increasing the value of the pa-
rameter ϖ from 0.1 to 0.25, the TB infection can persist once
defined for the range of RC values below unity which sug-
gests the occurrence of the phenomenon of backward bi-
furcation. (is suggests that diminishing RC below one will
not be fundamentally enough for the eradication of TB
epidemic from the population. When RC is adequately re-
duced such that RC <R∗C, the positive equilibrium does not
exist anymore and TB epidemic will cease to develop and will
gradually fall from its generally high endemic to the TB-free
equilibrium. From Figure 8(b), we observed that when
R∗C <RC < 1, there are stable endemic equilibrium, an un-
stable endemic equilibrium, and a stable TB-free equilib-
rium, whereas when RC < 1, there is just one steady endemic
equilibrium.

Figure 9 illustrates the backward bifurcation diagram of
system model (4) as the effective basic reproduction number
(RC) varies against the infected population (I).
Figures 9(a)–9(d) demonstrate that increasing the value of ϖ
contributes to the extension of the region of bistability, while
reducing the value of ϖ brings about contraction of the
bistability region.(e TB eradication quantity also known as
critical reproduction number shifts from left to the right
when ϖ decreases and vice versa. Here, high value of ϖ
means insufficient treatment for a huge population of TB
infections; therefore, we prefer a scenario where there will be
consistent TB epidemics within the population despite the
fact that RC < 1.

6. Conclusions

Dynamical models of TB infection have been analyzed by
numerous authors [21, 22, 48–50]. However, they all pro-
posed linear recovery function to investigate transmission
dynamic behavior of their model. However, we discovered
that recovery from TB infection depends upon numerous
factors such as antibiotic treatment and the number of
hospital beds. (is leads to nonlinearity in the number of
recoveries. (e nonlinear recovery function rate principle
was then introduced to reveal some insight into the eradi-
cation of TB disease by examining the effect of antibiotic
treatment and the number of hospital beds.

(e main goal of this study is to investigate the quali-
tative dynamics of the TB infection incorporating saturated
recovery (treatment) of the form cIι/(1 + ϖIι) into the
model proposed in [21, 22] which gives a more realistic
model. On the other hand, complicated dynamic behaviors,
including oscillations, can be caused by saturated recovery
[9, 10, 14–17].

Typically in epidemiology, the criterion for the persistence
and extinction of an infection is vital. (e effective repro-
duction number is computed and the conditions for the local
stability of equilibria and the existence of backward bifur-
cation and Hopf bifurcation are determined. Under the
condition of RC < 1, the infection disappears completely from
(eorem 3. But if RC > 1, then according to (eorem 3, there
will be endemic disease. In reality, the epidemic cannot be
eliminated except that the basic reproduction number is
reduced under a lower level to such an extent that R∗C <RC < 1
(see Figure 8(b)). (e mathematical analysis of the TB model
system (1) has shown two important mathematical phe-
nomena: bistability and periodicity (oscillatory), which have
been observed in some other infectious diseases. In the
bistability phenomenon, which usually comes with a con-
versation of backward bifurcation (see [21] and the references
therein), the system exhibits multiple endemic equilibria
despiteRC < 1. In such situation, a stable endemic equilibrium
has been shown to compete with a stable disease-free equi-
librium. From these results, it has been confirmed that de-
creasing RC < 1 cannot control the spread of TB infection in
the population. (e second phenomenon undergoes oscil-
latory behavior under some certain conditions. (e occur-
rence of limit cycles supports the behavior stated in several
studies on the dynamics of some contagious diseases such as
whooping cough, measles, rubella, and so on [51–54]. Nu-
merical findings indicate that ϖ which is the saturation pa-
rameter is accountable for backward bifurcation. Inability to
intervene before TB infection has accumulated in the pop-
ulation will prompt a circumstance where a TB epidemic
exists despite the fact that the RC < 1. Improving existing
medical technologies and channeling adequate resources in
medicines can essentially encourage early intervention by
ensuring that individuals infected with TB get treatment
immediately.
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,e emerging Industrial Internet of ,ings (IIoT) provides industries with an opportunity to collect, aggregate, and analyze data
from sensors, including motion control, machine-to-machine communication, predictive maintenance, smart energy grid, big
data analysis, and other smart connected medical systems. ,e physical systems and the cyber systems are organically integrated,
forming an interdependent IIoT. ,is system provides us with enormous advantages, but at the same time, it also introduces the
main safety challenges in the design and operation phase. To exploit the security threats of IIoTsystems, in this paper, we propose a
novel security-by-design approach for interdependent IIoTenvironments across two different levels, namely, theorymodeling and
runtime simulation. Our method theoretically analyzes the cascading failure dynamics of the intentional attack network. Si-
multaneously, we verified the theoretical results through simulations and gave the risk factors that affect the system’s security to
mitigate potential security attack threats. Besides, we prove its applicability through comparative simulation experiments to study
application environments that rely on IIoT, which shows that our method helps identify risk factors and mitigate IIoT
attacks’ mechanism.

1. Introduction

In recent years, with human society’s progress and the
widespread use of the Internet, many emerging technologies
and industries are booming. Emerging industries such as
artificial intelligence, Internet of things, virtual reality,
blockchain, big data, and cloud computing have accelerated
the development and application of modern high-tech
technologies.

With the rapid development of communication and
sensor technology [1, 2], the Internet of things technology
has attracted extensive attention in the emerging digital
world. ,e goal of the Internet of things is to create a world
of the Internet of things.,e emergence of Internet of things
technology has dramatically changed people’s way of life,
work, and entertainment. It has been everywhere in
transportation, home furnishing, medical treatment,
learning, and logistics. We found that the Internet of things
technology has been embedded in people’s daily life,

intelligently connecting things or objects around us. ,e
industrial Internet of things is the deep integration of the
Internet of things in industrialization and informatization.
In 2011, Germany first proposed the concept of Industry 4.0
[3, 4] and took CPS (cyber-physical system) as the primary
goal of Industry 4.0 development [5]. Industrial Internet of
,ings (IIoT) is a subset of the Internet of ,ings (IoT) [6],
which requires a higher level of security, security, and re-
liable communication [7]. In the industrial field, future
information application scenarios and CPS technology have
high adaptability. CPS provides critical technology for the
ubiquitous industrial Internet of things technology.

According to the US National Science Foundation
(NSF), CPS seamlessly integrates computing and physical
components. As the core architecture of IIoT, the goal of
CPS is to realize the deep integration of information systems
and physical systems [8]. CPS has been applied in many
areas, such as intelligent transportation systems [9, 10],
monitoring, and control [11, 12], national defense weapon
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systems, intelligent aerospace, smart home, and other fields
[13, 14]. CPS’s impact is enormous, and its emergence will
change the way people interact with the physical world [15].
In the modern industrial system [16], we pay special at-
tention to the security of information technology [17]. CPS
provides new opportunities in technology and brings more
and more attention and challenges [18]. If these risks are not
analyzed and handled appropriately, the consequences will
be severe.

Part of the existing research focuses on the design and
evaluation of CPS modeling. Because CPS is widely used in
various industries, and the physical resource network and
computing resource network of each industry are dif-
ferent, it is almost impossible to model CPS as a general
model. Aiming at the information physical production
system (CPPS), Ref. [19] proposes a system architecture
that can adapt to the independent processing line. For the
hierarchical control system, network physical modeling
and network emergency assessment are carried out in Ref.
[20]. In the context of targeted destructive impact, Pav-
lenko and Zegzhda [21] proposed a new network physical
system security evaluation method. Ribeiro and Björkman
[22] critically compare today’s automation solutions with
their potential network physical solutions. Wireless
sensor actuator network is applied in industrial auto-
mation. Lu et al. [23] review the existing technology of
industrial wireless control systems. Ref. [24] models and
evaluates the energy management system of networked
and automated electric vehicles and develops a network
attack analysis method. ,e emergence of CPS attracts
more people’s attention to the physical network world,
which is the opportunity.

However, we know that a general modeling method is
not popular in the network physical world. ,e scale, to-
pology, and connection heterogeneity of networks bring
great challenges. We know that CPS is composed of two
networks, and the two networks are interdependent. In
network physical systems, physical devices such as batteries
and sensors are regarded as physical components. Em-
bedded computer and communication networks are con-
sidered network components. Generally, it is the
interdependent computational-resource network and
physical-resource network that the CPS model as Ref. [25].
In the interconnected system, the destruction of a node
usually affects the whole system and brings essential in-
fluence. ,e interdependence between nodes leads to a
node failure chain reaction called cascading failure [26].
Cascading failures will have a significant impact on CPS.
,erefore, CPS needs to evaluate the risk of the coupled
network.

,is paper makes a significant contribution to the se-
curity of the IIoT system composed of CPS. Traditional fault
analysis methods, such as fault tree analysis [27], are widely
used in the CPS system [28]. However, this method does not
consider the cascading failure of two networks in CPS due to
the coupling relationship. Other scholars [29] have con-
sidered this cascading failure problem, but only under the
deliberate attack strategy. In real life, the attack is often
targeted and deliberate [30, 31]. In this paper, we model the

IIoT system composed of computing resources and physical
resources as two interdependent complex networks and
elaborate the cascading failure dynamics of the cyber-
physical system under the intentional attack strategy. We
define the coupling relationship between physical resource
networks and information resource networks through the
model proposed in this paper. ,e specific contributions are
as follows:

(i) We apply the percolation theory to the cascading
failure of interdependent networks. Percolation
theory is a process of removing network vertices and
edges. We consider that both physical resource
networks and computational resource networks are
scale-free networks, and their degree distribution
obeys power-law distribution. We analyze the ro-
bustness of our model in intentional attack strategy
by calculating the proportion of functional nodes
after cascading failure stops.

(ii) We use a mathematical method to analyze the
cascading failure process of the coupling network in
detail. ,e results show that, given the power-law
exponent and initial attack parameters of the cou-
pled network, there is always a threshold for the
network to collapse and form a steady state. Beyond
this threshold, the network will no longer have
functional nodes. Within the threshold range, there
are still functional nodes in the coupling network
after cascading failure stops.

(iii) We further verify the accuracy of the theoretical and
experimental results through simulation experi-
ments. In addition, we analyze several essential
parameters in the simulation phase, such as power-
law index, attack parameters, etc. We find that the
percolation threshold decreases with the increase of
the power-law exponent of the network, which
improves the robustness of the surface network.
,is work speeds up the understanding of the re-
lationship between the online world and the
physical world.

,e essay proceeds as follows. ,e related work of this
paper is addressed in Section 2. Section 3 presents the
concept of the interdependent network model and the de-
tailed cascading failure dynamics. In Section 4, the whole
cascading failure dynamics is interpreted by the theoretical
method. In Section 5, we solve the theoretical equation in
Section 4 by numerical analysis and get the theoretical so-
lution to give the simulation results. Section 6 summarizes
the relevant conclusions and gives some possible works in
the future.

2. Related Work

,e Industrial Internet of ,ings system, composed of CPS,
has always been the focus of scholars.We will mainly analyze
and study the two critical theories of the security of the
Industrial Internet of ,ings, namely the interdependent
network and percolation theory.
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2.1. Interdependent Networks. ,e scholarly study of the
interdependent network mainly concentrates on the evo-
lutionary dynamics and network structure’s robustness
[32–34]. ,e robustness of the network structure here refers
to the integrity of network topology after some nodes fail.
When a network in the cyber-physical system is attacked, it
will split into a more extensive cluster and smaller groups.
From the research of scholars [33, 35–37], it can be con-
cluded that a node holds its function only if it meets two
conditions as follows:

(i) Nodes in the current network must combine with
those in another network.

(ii) ,e node should be part of the most extensive set of
connected clusters.

,ose who satisfy the conditions mentioned above are
considered as functional nodes and features prominently in
the entire network. When an attack comes, only these can
remain. Once there exist no function nodes, the network
would collapse completely.

In 2010, a “one-to-one correspondence” theoretical
model was put forward by Buldyrev et al. [38] to abstract the
robustness of coupled networks cascading failures into a
model, and they found that the interdependent network
under random attack is more fragile than the single network.
,is brings more scholars’ attention to the coupled net-
works. Huang et al. [31] and others examined and put
forward the interdependent networks’ robustness model
when being deliberately attacked. ,ey transformed the
targeted-attack model into a random attack model. ,ey
found that in an entirely random coupled scale-free network,
even if the attack probability on a large vertex in one of the
networks is reduced, the system is still fragile, which shows
that it is complicated to protect the entirely random coupled
scale-free network. Since then, Dong et al. [30] have also
studied the degree-based attack of partial interdependent
systems.

Parshani et al. [39] used the mathematical research
method proposed by Buldyrev to study the partially inter-
acted network. It was found when the degree of interde-
pendence between the two subnetworks decreased, the
network robustness would be enhanced; that is, the former
first phase transition of network seepage is now transformed
into the second phase transition. In 2014, Danziger studied a
system of partially coupled spatial networks and presented
cascade dynamics measurements. Chattopadhyay and Dai
[40] researched some interdependent networks and estab-
lished mathematical equations. Combining two attack
models, random attack and target attack, we can learn more
regarding the robustness of coupled interdependent
networks.

In 2012, Gao et al. [34] jointly published a network
paper on the interdependent network in the Journal of
Nature Physics. ,ey developed a more general mathe-
matical method based on Buldyrev and others’ mathe-
matical framework, which further opened a new
milestone for individuals to study the interdependence
network.

In 2014, Shao et al. [41] researched the robustness of
interdependent networks with clustering properties and
noticed that the lower the clustering coefficient, the better
the network robustness. In the same year, Zhou et al. [42]
and others conducted an in-depth study on the cascading
failure dynamics and found that a spontaneous second-order
phase transition happened in the first-order phase transition
point.

In recent years, experts and scholars have studied how to
slow down coupled networks’ cascading failure. Tootaghaj
[43] had a comprehensive knowledge of failure location and
focused on recovery strategies after failures. In this way, he
developed two methods to solve the continuous cascading
failure.

2.2. Percolation +eory. ,ere are many theories in the
research process of complex networks, such as game
theory, communication theory, and percolation theory
[42]. In network science, percolation theory becomes a
significant part of the complex network structure’s re-
search evolution [39, 44]. Callaway et al. [45] first pro-
posed the concept of percolation in 1957. Percolation
theory is a method to estimate network reliability. ,ere
are two standard percolation modes: bond percolation
and site percolation. In an n∗ n∗ n mesh, the edges be-
tween nodes are preserved with probability p. Given a
probability p, what is the probability of a path from the
top to the bottom of the grid, called bond percolation
[45]? If the mesh vertex is retained with probability p,
then there is a question concerning the probability of a
path from the top to the bottom of the mesh, called site
percolation [46].

In [35, 38], the seepage theory is used to measure the
coupled network’s characteristics. In a single network,
Cohen et al. [46] used percolation theory [47] to study
network robustness and vulnerability.

In 2010, the percolation theory was used by Buldyrev
et al. [38] to explore the robustness of interdependent
networks. In 2013, Zhou et al. [48] researched the perco-
lation phenomena of similar interdependent networks. In
2015, Dong et al. [49] and others delved into the percolation
problem of the interdependent network with feedback de-
pendent edges and found that in the case of strong coupling,
the system with feedback dependent edges is more
vulnerable.

,e percolation research of interdependent networks
mainly designs the network random evolution rules and the
network seepage application [50, 51]. So far, there are a host
of areas worth studying network seepage.

We will systematically analyze and study the security of
IIoT by using the two methods of interdependent network
theory and seepage theory. Compared with the above work,
this paper’s difference is that it analyzes the interdependent
network’s cascading failure dynamics based on the inten-
tional attack mode, and the network type is closer to reality.
We can better evaluate CPS’s network security performance
and industrial Internet of things through the combination of
theory and simulation.
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3. Proposed Model and Concepts

We propose a new modeling and analysis method of IIoT
environment security from the two aspects of modeling and
simulation. Figure 1 shows the primary process of our
method. At the modeling level, we start with analyzing the
network’s cascading failure dynamics, studying the process
of cascading failure mathematically, and proving when the
network will come to an end. Furthermore, we get the critical
value equation of network collapse. We find this threshold
by image fitting. In the simulation, we build a cyber-physical
network model of coupled networks. We will simulate the
network’s process being attacked deliberately, get the
number of nodes remaining in the most connected group
after the network crash, and find the network’s critical value
by drawing graphs. By analyzing these two levels, the em-
ulation results can be fed back to the modeling results to
analyze further the network security performance of the
industrial Internet of things.

3.1. Modeling Level. In real life, the IIoT system is often
based on CPS architecture, usually composed of a coupled
computational-resource and physical-resource networks.
As shown in Figure 2, these scenarios show the IIoT
system based on CPS architecture. Many research and
empirical data show that the number of nodes in a physical
resource network is less than that in a computing resource
network. ,erefore, at the modeling level, we set the
number of nodes of the two coupled networks to be 3 : 1.
We use S and I to represent the two networks of com-
puting and physical resources. ,e number of nodes is NS

and NI, respectively. We call the connecting edge between
S and I as internetwork connection and the connecting
edge of the nodes in two networks as intranetwork con-
nection. Both intranetwork and inter network connec-
tions are random. Nodes from different networks depend
on each other by connecting edges. Failure of either party
will result in the failure of the other party. It can be found
that only a few nodes are linked to a large number of
nodes, while most nodes are only connected with a small
amount. We usually call the network with this distinct
scale-free network. For the convenience of research, we
consider the two coupled networks as scale-free networks.
,e degree distribution of scale-free networks follows the
power-law distribution. In other words, P(k)∝ k−λ where
P(k) is the probability that a node has k edges and λ is a
power-law exponent.

,e computing and physical resources in IIoT are
composed of many components, such as control devices,
network devices, computers, and batteries. In the whole
system, the damage of some devices has little effect on the
network cascading failure. ,erefore, in this paper, we only
consider the impact of critical nodes on cascading failure of
coupled networks. For example, in a smart grid, the power
control node that provides power for communication
network operation and the communication node that
ensures the regular operation of the power network are the
key nodes.

Some natural factors or emergencies may lead to some
nodes’ failure in the network in real life. However, more
often than not, the network is deliberately attacked due to
human factors. ,erefore, in this paper, we assume that
some computing resource network nodes suffer from in-
tentional destruction. We use a deliberate attack strategy to
delete the number of nodes in the network S, and the ratio is
1 − p. ,e internetwork connection and intranetwork
connection of these deleted nodes will be deleted. Due to
interdependence, some nodes in the network I lose their
connection, leading to dysfunction. As mentioned above,
due to the coupling and interdependence between com-
puting resource networks and physical resource networks,
node failure in one network will affect another network. ,e
node failure in another network will affect this network in
turn, leading to the node failure in the network coupled with
it. ,erefore, it is a cycle process. We call this process a
professional term: cascading failures, as shown in Figure 3.

,e cascading failure dynamics have been described
clearly, and we need to determine when it will stop. When
the nodes in the two networks no longer fail or the coupled
network collapses completely, we think the network has
reached a stable state. At this point, cascading failures stop.
We stipulate that only the nodes that meet the requirements
of maintaining function in at least another network and
belong to the largest connected cluster are called function
nodes. ,erefore, the functional nodes eventually survive.
,e following section will detailedly analyze the cascading
failure dynamics by using mathematical methods.

3.2. Simulation Level. At the simulation level, the experi-
mental data are used to verify the above theoretical results’
accuracy. We will build two scale-free networks that are
coupled and interdependent. ,e number of nodes in the
two networks is set to 3000 and 9000, respectively. We know
that three network nodes S establish a connection rela-
tionship with one network I. ,e nodes of network S and
network I will also be connected randomly. Hence, we can
compare the two networks. According to the targeted-attack
model, intentional attacks between networks are skillfully
transformed into equivalent random attacks. Referring to
the above probability equations, which indicate targeted
attacks, each node’s failure probability is determined, and
then nodes are deleted randomly. Due to the cascading
failure, the nodes in one network are deleted, which will
cause the nodes in another network to be affected and fail. In
each step of the cascading failure dynamics, we will save the
remaining nodes in the current network until there is no
cascading failure in the network. ,e storage of these data
will help us analyze the changes of network nodes. Algo-
rithm 1 shows our simulation steps.

4. Mathematical Analysis of Cascading
Failure Dynamics

In this section, we will use some mathematical methods to
describe the process of cascading failures in coupled net-
works. Since the direct calculation of an intentional attack
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will increase the difficulty, we will use some scientific
methods to convert an intentional attack into a random
attack. After the transformation, we will analyze the process
of network cascading failure step by step. Finally, we get the
expression that the network finally reaches a steady state.
,e related symbols are defined in Table 1.

4.1. Stage 1: Intentional Attack in Network S. Various nodes
in a network have different weights. Some nodes are crucial
in the connectivity of the network.,e criteria for evaluating
node importance are not unique, and here we choose a more
general one. Gallos et al. [36] proposed the influence of the
degree of any vertices on network robustness. In Ref. [36], a
family of functions is defined as follows:

Qα ki( 􏼁 �
k
α
i

􏽐
N
i�0 k

α
i

. (1)

Assign Qα(ki) to each node i with a corresponding
degree of ki, where Qα(ki) implies the likelihood of nodes’
failure caused by being attack.

By observing the function, we can know that when α< 0
and the node degree is 0, the formula will become mean-
ingless. From this, to keep the nodes with node degree 0
from being excluded and make them conform to the situ-
ation of the coupled system in real life, we improve the
function equation and get the following functions:
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Figure 1: Process of the proposed method.
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Figure 2: A conceptual view of industrial Internet of things system based on interdependent CPS architecture.
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When α< 0, it is more vulnerable to fail low degree
nodes, and those with high degrees are better protected.
When α> 0, the nodes with high degrees are more vul-
nerable to failure, and the nodes with a low degree are better
protected. When α� 0, W0 � 1/N, all nodes have the same
probability of failure, which is equivalent to being converted
into a random attack. When α⟶ +∞, the nodes with
degrees from high to low are deleted in turn. On the con-
trary, when α⟶∞, the nodes with degrees from low to
high are deleted in turn.

According to the previous description, our main method
is to construct a network S′, which is equivalent to the original
network S. ,erefore, the intentional attack on network S can
be transformed into a random attack on network S′.
According to Huang et al. [31] method, target attack is
mapped to random attack. In the first step, according to
equation (1), we first remove the (1 − p) scale nodes from the
network. ,e edges between the remaining nodes and the
removed nodes are preserved.,en, the degree distribution of
the remaining nodes Pp(k) is as follows:

S1

S2 S3

S4

(a)

S5

(b)

I2

(c)

I1

(d)

S10

(e)

I3

I4
S8

S12

S11
S6

S9

S7

(f )

Figure 3: ,e process of cascading failure. (a) ,e left and right sides represent a computational-resource network and a physical-resource
network, and the nodes are connected randomly.,e shadow nodes S1 S2 S3 S4 indicate the deliberately damaged nodes of network S. (b),e
damaged nodes are disconnected from network S and network I. ,ose belonging to the largest connected cluster in S will be preserved.
Consequently, the node S1 will be deleted. (c) Because of the node’s failure in the network S, the node I2 in the network I has no interlinks. I2
also fails. (d) It demonstrates that the node I1 does not belong to the giant network I and fails. (e),e nodes’ failure occurs in the network I,
and the interlink is disconnected from S10. ,us, S10 fails. (f ) ,e nodes of both networks do not fail anymore and reach a stable state.

(1) for each i ∈ [0, 1] do
(2) for i � 1 to 50 do
(3) Target attack network S;
(4) Remove the node of the attacked node network S;
(5) int step;
(6) while ,e number of network nodes is still changing do
(7) step++;
(8) if step% � 2 then
(9) Delete the node in network S that has lost its normal function due to the failure of the node in network I;
(10) else
(11) Delete the node in network I that has lost its normal function due to the failure of the node in network S;
(12) end if
(13) end while
(14) end for
(15) Save the number of remaining nodes in the network;
(16) end for

ALGORITHM 1: Network cascading failure against intentional attack simulation.
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DPp(k) �

Qp(k)

pNS

. (3)

We assume Qp(k) describes the number of k-degree
nodes among the resting part.

After deleting another node, Qp(k) will become as
follows:

Q(p−1/N)(k) � Qp(k) −
Pp(k)(k + 1)

α

􏽐kPp(k)(k + 1)
α. (4)

When N⟶∞, equation (4) could be changed into a
derivative of Qp(k) with respect to p:

dQp(k)

dp
� N

Pp(k)(k + 1)
α

􏽐kPp(k)(k + 1)
α. (5)

When N⟶∞ combining equation (3) with equation
(5), it can be seen that

−p
dQp(k)

dp
� Pp(k) −

Pp(k)(k + 1)
α

􏽐kPp(k)(k + 1)
α. (6)

To better find a solution concerning the equation (6), a
new function Gα(x) � 􏽐kP(x)x(k+1)α is defined and
d � G−1

α (p) [39], then we can solve equation (6) to get the
following:

Pp(k) �
1
p

P(k)d
(k+1)α

, (7)

􏽘 Pp(k)(k + 1)
α

�
dGα′(d)

Gα(d)
. (8)

Accordingly, the generating function of Pp(k) is as
follows:

GSb(x) ≡ 􏽘
k

Pp(x)x
k

�
1
p

􏽘
k

P(x)d
(k+1)α

x
k
. (9)

Since network S is randomly connected, the probability
that an edge ends at the remaining nodes is equal to the ratio
of the number of edges sent from the remaining nodes to the
total number of edges from all nodes of the original network:

􏽥p ≡
pN〈k(p)〉

N〈k〉
�

􏽐kP(k)kd
(k+1)α

􏽐kP(k)k
. (10)

Here, we define 〈k〉 as the original network’s average
degree, and set 〈k(p)〉 as the remaining nodes’ average
degree after the network being intentionally attacked. With

the method in Ref. [38], we obtain the remaining nodes’
generating function as follows:

GSc(x) ≡ GSb(1 − 􏽥p + 􏽥px). (11)

Our goal is to transform the target attack on network S

into random attack on network S′. ,rough some theoretical
research, it can be found that the difference between a target
attack and a theoretical attack is only in the first step of
cascading failure.,erefore, as long as we seek out a network
S′, its generating function GSc(x) and 􏽥GS0(x) are equal after
randomly deleting nodes with (1 − p) ratio. ,en, the
random attack analysis of network S′ can replace the in-
tentional attack analysis of network S. Based on the expe-
rience of Ref. [38], we use 􏽥GS0(1 − p + px) � GSc(x) to get
the following formula:

􏽥GS0(x) � GSb 1 +
􏽥p

p
(x − 1)􏼠 􏼡. (12)

Next, we use the random attack analysis process to
continuously analyze the process of cascading failure under
targeted attack, mainly searching the iterative process de-
tailedly with the generation function and percolation theory.
,en, we analyze the ratio of the current network’s func-
tional nodes amounts to the total quantity of nodes in the
original network after each step of failure. ,e generating
function of network S′ has been obtained, as shown in
equation (12). In light of the above generating function of
network S′, the generating function of the underlying
branching process 􏽥GS1(z) is as follows:

􏽥GS1(z) �
􏽥GS0′ (z)

􏽥GS0′ (1)
. (13)

When S′ is randomly attacked to remove the nodes with
the ratio of (1 − p), the remaining nodes’ degree distribution
will change while affecting the corresponding degree dis-
tribution in generating function. ,erefore, the degree
distribution of the remaining nodes in S′ is NS1′ � p∗NS.
,e proportion of function nodes is as follows:

gS(p) � 1 − 􏽥GS0 1 − p 1 − fS( 􏼁􏼂 􏼃, (14)

where we define fS as the function of p, fs meets the
following:

fS � 􏽥GS1 1 − p 1 − fS( 􏼁􏼂 􏼃. (15)

Next, we will analyze the cascading failure dynamics step
by step.

Table 1: Symbol definition.

Symbol Explanation
NS, NI ,e initial nodes of scale-free network S and I.
NSi
′ , NIi
′ Number of nodes that have supporting interlink in the network S and I at stage i and j.

NSi
, NIi

,e giant components that remain functional in NSi
′ and NIi

′ .
μi, μj ,e fraction corresponding to NSi

and NIi
.

μi
′, μj
′ ,e fraction corresponding to NSi

′ and NIi
′

λS, λI Parameters of the degree distribution of network S and I.
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4.2. Stage 2: Equivalent Failure Under Random Attack in
Network S′. In the previous paper, we have analyzed the
process from intentional attack to random attack. ,erefore,
we think that the initial attack is a random attack on network
S′. ,e (1 − p) ratio of node failure. ,e quantity of
remaining nodes is as follows:

NS1′ � p · NS � μ1′ · NS. (16)

From equation (16), we could get μ1′ � p. Based upon the
previous analysis, the quantity of nodes in the giant com-
ponent in NS1′ is as follows:

NS1 � gS μ1′( 􏼁 · NS1′ � μ1′ · gS μ1′( 􏼁 · NS � μ1 · NS. (17)

From equation (17), we obtain the following:

μ1 � μ1′ · gS μ1′( 􏼁. (18)

4.3. Stage3:CascadingFailures inNetwork ICausedbyS-Node
Failures. ,rough the analysis of the CPS system, we know
that the nodes in the coupling network S′ and I′ are in-
terdependent. ,erefore, the failure of nodes in network S′
may lead to the nodes crash in network I′. In our model, one
node in network I′ connects with three nodes of network S′,
and the internetwork connection and intranetwork con-
nection are random. Consequently, the quantity of nodes
remaining in network I′ is as follows:

NI2′ � 1 − 1 − μ1( 􏼁
3

􏽨 􏽩 · NI � μ31 − 3 · μ21 + 3 · μ1􏼐 􏼑 · NI � μ2′ · NI,

(19)

μ2′ � μ31 − 3 · μ21 + 3 · μ1 � μ1′ · gS μ1′( 􏼁 · μ21 − 3 · μ1 + 3􏼐 􏼑.

(20)

Using the same analysis theory before, we can get the
number of nodes in NI2′ that belongs to the huge connec-
tivity component:

NI2 � gI μ2′( 􏼁 · NI2′ � μ2′ · gI μ2′( 􏼁 · NI � μ2 · NI. (21)

From equation (21), we obtain the following:

μ2 � μ2′ · gI μ2′( 􏼁. (22)

4.4. Stage 4: Further Fragment in Network S′. From the
previous theoretical derivation of cascading failure, it is
found that the number of nodes with dependency in those
that remained and belonging to network S′. In the first step
of random failure, it is derived that a node in network I may
have a random connection to one to three nodes in network
S′. In Table 2, we list the proportion of different connections.

According to our previous model, intralinks connection
and interlinks connection are completely independent,
which is a completely random event. Consequently, we get
the quantity of nodes with dependency in S′:

NS3′ � μ2 · NI ·
C
1
3 · μ1 · 1 − μ1( 􏼁

2
· 1 + C

2
3 · μ21 · 1 − μ1( 􏼁 · 2 + μ31 · 3􏽨 􏽩

1 − 1 − μ1( 􏼁
3

􏽨 􏽩
. (23)

So

NS3′ � μ1 · gI μ2′( 􏼁 · NS. (24)

From NS1 to NS3′ , we know that

NS1 − NS3′ � 1 − gI μ2′( 􏼁( 􏼁 · NS1. (25)

Based upon the theory in Ref. [52], the nodes removed in
the initial stage do not belong to NI2, NS1 and NS1′ , so from
the proportion of nodes removed in NS1 has the identical
ratio with those nodes removed from NS1′ . So

NS1 − NS3′ � 1 − gI μ2′( 􏼁( 􏼁 · NS1

� 1 − gI μ2′( 􏼁( 􏼁 · NS1′ .
(26)

,e fraction of the total nodes removed to the original
network S′ is as follows:

1 − μ1′ + 1 − gI μ2′( 􏼁( 􏼁 · μ1′ � 1 − μ1′ · gI μ2′( 􏼁. (27)

From equation (27), we know the following:

μ3′ � μ1′ · gI μ2′( 􏼁. (28)

So, the quantity of nodes in the massive component in
NS3′ is as follows:

NS3 � μ3′ · gI μ3′( 􏼁 · NS � μ3 · NS. (29)

So,

μ3 � μ3′ · gS μ3′( 􏼁. (30)

4.5. Stage 5: Cascading Failures in I Once Again. Because of
the coupled CPS system, the network’s nodes would occur
breakdown caused by the previous failure of relevant nodes
in the network S′. As in the second step, the quantity of
dependent nodes in I is obtained.

NI4′ � 1 − 1 − μ3( 􏼁
3

􏽨 􏽩 · NI � μ33 − 3 · μ23 + 3 · μ3􏼐 􏼑 · NI.

(31)

From NI2 to NI4′ , we can obtain the following:

NI2 − NI4′ �
1 − μ33 − 3 · μ23 + 3 · μ3􏼐 􏼑

μ2
⎡⎣ ⎤⎦ · NI2. (32)

Same as the previous analysis, we get the following:

NI2 − NI4′ �
1 − μ33 − 3 · μ23 + 3 · μ3􏼐 􏼑

μ2
⎡⎣ ⎤⎦ · NI2′ . (33)
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network I is as follows:

1 − μ2′ + μ2′ ·
1 − μ33 − 3 · μ23 + 3 · μ3􏼐 􏼑

μ2
⎡⎣ ⎤⎦ � 1 − μ1′ · μ23 − 3 · μ3 + 3􏼐 􏼑 · gS μ3′( 􏼁. (34)

So,

μ4′ � μ1′ · μ23 − 3 · μ3 + 3􏼐 􏼑 · gS μ3′( 􏼁. (35)

It is found that the quantity of nodes in the largest
component in NI4′ is as follows:

NI4 � μ4′ · gI μ4′( 􏼁 · NI. (36)

So,

μ4 � μ4′ · gI μ4′( 􏼁. (37)

Following the prior conclusions of the cascading failure
dynamics method, we can identify the node size after each
step of the process, which could be expressed by the fol-
lowing equations:

μ2i
′ � μ1′ · μ22i−1 − 3 · μ2i−1 + 3􏼐 􏼑 · gS μ2i−1′( 􏼁,

μ2i+1′ � μ1′ · gI μ2i
′( 􏼁,

⎧⎨

⎩ (38)

where μ1′ � p.
In the next section, we will use numerical simulation and

othermethods to find Eq’s solution (38).,us, we can get the
critical threshold of the coupled network.

5. Performance Analysis

5.1. Formula Calculation. ,rough the analysis in the pre-
vious section, it is clearly known that cascading failures
will not occur again when the nodes in the coupled
network are no longer in failure. Table 3 shows the specific
state equations of the two networks at each stage.
,erefore, in the coupled system, we can obtain the fol-
lowing equations when the cascading failure dynamics
comes to an end:

μ2i
′ � μ2i−2′ � μ2i+2′ ,

μ2i+1′ � μ2i−1′ � μ2i+3′ .

⎧⎨

⎩ (39)

In order to solve the above equations more efficiently, we
define variables x, y:

y � μ2i
′ � μ2i−2′ � μ2i+2′ ,

x � μ2i+1′ � μ2i−1′ � μ2i+3′ .

⎧⎨

⎩ (0≤x, y≤ 1). (40)

Consequently, equation (38) can be shown as follows:

y � p · x · gS(x)( 􏼁
2

− 3 · x · gS(x) + 3􏼐 􏼑 · gS(x),

x � p · gI(y).

⎧⎨

⎩ (41)

Simplify equation (41) to get the following:

x � p · gI p · x · gS(x)( 􏼁
2

− 3 · x · gS(x) + 3􏼐 􏼑 · gS(x)􏽨 􏽩.

(42)

In the process of solving the seepage threshold of a scale-
free network, it is hard to directly replace the degree dis-
tribution of the network into the equation. ,erefore, we
need to rewrite equation (42) into two equations and make
them infinitely approximate by drawing. Let’s rewrite
equation (42) into the following two equations:

z � x,

z � p · gI p · x · gS(x)( 􏼁
2

− 3 · x · gS(x) + 3􏼐 􏼑 · gS(x)􏽨 􏽩.

⎧⎨

⎩

(43)

According to the above equations, we draw the two
equations in the figure. When the curve equation is tangent
to the straight line, the intersection point is the seepage
threshold as shown in Figure 4.

In Figure 4, we can see that when α is 1, the percolation
threshold of the network is 0.5, while α is 2, it is 0.59. So far,
we have solved the seepage threshold of the coupled network
under different conditions. In order to verify the accuracy of
the theoretical results, we will do some simulation
experiments.

5.2. Case Results and Analysis. Simulation experiments in
this section verify the correctness of the theoretical value.
We analyze and verify the correctness of the theoretical data
from several different dimensions. We write a C++ program
to simulate the whole cascading failure process of interde-
pendent networks in order to obtain the proportion of
surviving nodes in the final steady state. Considering the
actual situation, the power-law exponent of a scale-free
network with power-law distribution is not a fixed value. We
set this value between 2.0 and 3.0 to adapt and study different
interdependent network systems. Whether the size of the
network node affects the change of the experimental
threshold is also the focus of our research. We set the
network node size to different values. In addition to attack

Table 2: ,e proportion of different nodes.

0 1 2 3
(1 − μ1)

3 C1
3 · μ1 · (1 − μ1)

2 C2
3 · μ21 · (1 − μ1) μ31
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parameters α, it is also essential to study cascading failure of
coupled networks. We will set α between −1.0 and 2.0.

5.2.1. System Robustness. In Figure 5, we analyze the
remaining nodes’ proportion when the failure comes to an
end in two networks with different p. From these three
graphs, we can find that as p goes from pc + ε to pc− ε, the
value of the ordinate suddenly drops from a nonzero finite
value to 0, where ε is a value tending to 0. ,is shows that
when the value of p is in this range, the remaining nodes’
scale will reduce to an exceedingly small value by deleting
one node in the network. Moreover, we can observe that the
abscissa’s value corresponding to the network’s remaining
nodes’ phase transition corresponds to the theoretical value,
verifying the formula’s theoretical value.

From Figure 5, it is found that with the change of
abscissa, the changing trend of network S and I is the same.
Both networks are generic nodes or crash at the same time.
When p approaches the critical threshold, the maximum
connected component in the network will rise linearly, this
indicates that when p exceeds the critical threshold, some
nodes may exist, or the coupled system may collapse. ,is is
consistent with our theoretical analysis.

In Figures 5(a) and 5(b), we set the attack parameter α to
the same value and change the power-law index λ of a scale-
free network to 2.6 and 2.8, respectively. Comparing the two
graphs, we get that the greater the λ is, the smaller the
percolation threshold is, and the more reliable the network
is. ,e larger the λ of the scale-free network, the higher the
likelihood that a few network nodes have the most con-
nections. ,at is, the network connections are closed. So, the
reliability of the network will be improved. In Figures 5(b)
and 5(c), we change the attack parameter α of the network,
one is set to 1, and the other is set to 2.,e scale-free network
is invariant. By comparison, we find that the larger the α, the
bigger the pc. ,is shows that the reliability of the coupled
network is getting worse. ,e larger the α, the more vul-
nerable the nodes are to attack, so the network reliability is
reduced. ,ese analyses correspond to our previous theo-
retical analysis.

From Figure 5, it can be seen that the blue line repre-
senting the percentage of the nodes that remained in net-
work I is almost invariably above the red one, which
represents that proportion in network S. Due to the initial
attack in network S, every node in network I was linked with
three nodes in network S, the network I receives a certain
degree of protection. ,is has a particular significance for us
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p=0.45
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p=0.55

Numerical validation of theoretical results

(a)

0.0
0.0
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0.4
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0.2

x

0.4 0.6 0.8 1.0
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p=0.65

Numerical validation of theoretical results

(b)

Figure 4: Solving iterative equations. We set the parameter λ of the network to 2.8 and change the value of α. (a) ,e intersection of a curve
and a line stands for the critical threshold of the coupled system in the case of α� 1. (b) ,e intersection of a curve and a line describes the
critical threshold of the coupled system obtained with α� 2.

Table 3: ,e stage of network S and network I.

Network S Network I

Stage 1 μ1′ � p μ1 � μ1′ · gS(μ1′)
Stage 2 μ2′ � μ1′ · gS(μ1′) · (μ21 − 3 · μ1 + 3) μ2 � μ2′ · gI(μ2′)
Stage 3 μ3′ � μ1′ · gI(μ2′) μ3 � μ3′ · gS(μ3′)
Stage 4 μ4′ � μ1′ · gS(μ3′) · (μ23 − 3 · μ3 + 3) μ4 � μ4′ · gI(μ4′)
. . . . . . . . .

Stage 2i μ2i
′ � μ1′ · (μ22i−1 − 3 · μ2i−1 + 3) · gS(μ2i−1′ ) μ2i � μ2i

′ · gI(μ2i
′ )

Stage 2i+ 1 μ2i+1′ � μ1′ · gI(μ2i
′) μ2i+1 � μ2i+1′ · gS(μ2i+1′ )
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in the construction of real-life infrastructure. We can
connect more critical nodes in the coupled system to
multiple dependent sides to improve its security.

5.2.2. Influence of Network Size. In Figure 6(a), various
values of p are selected in the range [0.485, 0.545] near
pc� 0.5, and we conduct 60 experiments at each point to
calculate more accurately the times that the coupled system
has not entirely failed. ,e same method is applied in
Figure 6(b), except that the value of α is changed. By ob-
serving Figure 6, we can see that the curve is steadily

approaching critical importance as nodes’ size increases.
When network nodes’ scale reaches a specific value, the first-
order phase transition occurs near the critical threshold,
distinct from the second-order phase transition of single
networks.

5.2.3. Comparison between Different λ and α. Figure 7
compares the change of percolation threshold under dif-
ferent λ. We keep the other parameters unchanged. ,e
abscissa represents the power-law index λ of the scale-free
network, and the ordinate stands for the critical threshold pc
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Figure 5: ,e fraction of survival nodes in network S and I. Abscissa p represents the proportion of nodes that are not attacked in the
targeted-attack process and 1 − p represents the percentage of the attacked nodes. Ordinate p∞ indicates the proportion of remaining nodes
when cascading failure stops after the coupled network receives a targeted attack. ,e red line represents network S, the blue line represents
network I, and the abscissa corresponding to the black line represents the theoretical value of the critical threshold when the networks fail.
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of the network. It can be found from the figure that the
seepage threshold decreases with the increase of λ. ,is
reduction is relatively small. ,is shows that the power-law
index of scale-free networks is not a factor that significantly
changes coupled networks’ robustness. ,is has an efficient
significance for us to analyze CPS.

In Figure 8, for comparison purposes, we set the rest of
the network’s parameters to the same, only changing the
value of α. ,e λ of the network is 2.8, and the minimum
degree of network is 3. We can see that the critical threshold
pc increases with an increase of α. ,is implies that the
robustness of the network is reduced. ,e greater α is, the
more vulnerable the nodes with high degrees are. Hence, the
network’s robustness decreases. ,is also verifies the pre-
vious theoretical results. We can also find that the perco-
lation threshold pc is not alike when the scale-free network

faces various targeted attacks. ,is is because of the char-
acteristic that the least nodes of the scale-free network have
the most connections, which leads to the difference between
percolation thresholds in the face of different attacks. ,is is
beneficial for us to protect the coupled network in real life.
Correspondingly, we should analyze different situations
according to the actual network structure.

5.3. Engineering Applications. As a typical CPS application,
the smart grid provides us with many conveniences in real
life [53]. Figure 9 shows a vast power grid system with
isolated grids connected by long-distance transmission lines.
A smart grid system is composed of a power grid network
and communication network coupled and interdependent
[35]. ,e power grid is controlled by the communication

NS=3000,NI=1000

NS=6000,NI=2000

NS=9000,NI=3000

NS=12000,NI=4000

λS=λI=2.8,α=2,pc=0.59

0.575
0.0

0.1

0.2

0.3

0.5

0.7

0.9

0.4

pn

0.6

0.8

1.0

0.585

p

0.595 0.605 0.615 0.625 0.635

(a)

NS=18000,NI=6000 NS=6000,NI=2000

NS=9000,NI=3000

λS=λI=2.8,α=1,pc=0.5

0.485
0.0

0.1

0.2

0.3

0.5

0.7

0.9

0.4

pn

0.6

0.8

1.0

0.495

p

0.505 0.515 0.525 0.535 0.545

NS=12000,NI=4000

(b)

Figure 6:,e existence probability of the huge component. We select several groups of points around the critical threshold for comparative
analysis.
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Figure 7: ,e relationship between pc and λ. We compare the
transforming of pc in the case of different power-law indexes λ.
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Figure 8:,e relationship between pc and α. We compare different
α with different critical threshold pc. ,e abscissa represents α, and
the ordinate represents the essential threshold pc.
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network, which also needs power from the power grid [54].
,is interdependence will increase the risk of the power grid,
and the failure of a network node will cause the collapse of
the whole power grid [55, 56].

,e most classic blackout in the United States was in
2003 [45]. A circuit line is entangled with the roots of the
trees growing under it. Due to the lack of timely measures,
nearly 20 high-voltage lines were out of control. ,is led to
more severe consequences. ,e interruption of one line
made other high-voltage lines overburdened, and eventually,
the entire New York State Grid collapsed. As shown in
Figure 10, it can be seen that the power grid collapses in a
large area, and the grid nodes appear red in large areas.
,erefore, it is necessary to study the cascading failure
dynamics of coupled networks.

We can use the network model to abstract the smart grid
system into a system composed of two coupled networks.
We can take the real power grid’s data scale and the average
degree of network nodes to study the cascading failure
dynamics caused by partial node failure. According to the
power grid failure process simulation, we can purposefully
study the critical nodes in the network and study network
nodes’ influence and network size on the cascading failure
dynamics. According to this data, we can improve the ro-
bustness of the smart grid more effectively.

6. Conclusion

,e research work addressed the emerging IIoT concept and
its cybersecurity concerns with probable outcomes. ,e se-
curity risk analysis is not yet developed, and various strategies,
conceptual design, and technical implementations are ex-
pected in this paperwork. ,e cascading failure theory was

suggested for providing risk assessment services at the re-
gional level by improving effectiveness, accessibility, and
expandability. ,e risk analysis scheme proposed for security
service corresponds to the interdependent IIoT application
environment. ,e key risk factor is an essential part of en-
suring IIoT system security; however, the research study
addressed the mathematical mechanism analysis details of the
emerging IIoT systems. We propose a novel risk analysis
scheme for security modeling and analysis of such interde-
pendent IIoT environments in the design. ,is method aims
to support the development of secure IIoT environments at
the modeling and simulation levels framework, and risk
factors were hacked at the basic level itself. ,e methods
utilized resistance and risk alleviation techniques. In the
future, we plan to examine the environment of other complex
application scenarios of our proposed risk analysis method,
such as connected cars and houses, wearable devices, and
smart medical care in intelligent interdependent IIoT appli-
cations. ,is will give us an in-depth understanding of the
risks and challenges faced in these environments. ,ey must
be addressed to protect the security of interdependent dis-
tributed devices and all connected service-related partici-
pants, thereby limiting the risk elements that may affect the
entire interdependent IIoTenvironment. Besides, we also aim
to extend our work by including privacy requirements during
the modeling and the analysis of such systems by including
other risk requirements such as privacy protection and ci-
phertext retrieval in the modeling process. ,rough this
extension, we will be able to protect user data security in
interdependent IIoTsystems and identify key risk factors that
may affect user security requirements, such as anonymity,
interconnectivity, unobservability, and undetectability, etc.
Finally, we plan to introduce artificial intelligence and game
theory methods for comparative analysis to determine the
attacker’s attack path mitigation technology.
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Information spreading dynamics on temporal networks have attracted significant attention in the field of network science.
Extensive real-data analyses revealed that network memory widely exists in the temporal network. +is paper proposes a
mathematical model to describe the information spreading dynamics with the network memory effect. We develop a Markovian
approach to describe the model. Using the Monte Carlo simulation method, we find that network memory may suppress and
promote the information spreading dynamics, which depends on the degree heterogeneity and fraction of bigots. +e network
memory effect suppresses the information spreading for small information transmission probability. +e opposite situation
happens for large value of information transmission probability. Moreover, network memory effect may benefit the information
spreading, which depends on the degree heterogeneity of the activity-driven network. Our results presented in this paper help us
understand the spreading dynamics on temporal networks.

1. Introduction

Extensive real-data analyses revealed that social network
exhibits strong temporal properties [1–3], i.e., the edges and
nodes do not always exist at any time, and may vary with
time. For instance, in scientist collaborative networks, two
researchers may collaborate to publish a paper but rarely
collaborate at every time step [4–9]. Besides, two researchers
may build their first collaboration. Another example is that
in the transportation network, two cities may build ex-
pressways and high-speed trains. +us, a new edge is added.
+e emergence and disappearance of edges and nodes widely
exist for the online social network due to the login or log out
of the online platforms. +erefore, the temporal network is a
widely used method to describe the social network, in which
nodes represent individuals and edges stand for their
relationships.

For the information spreading on temporal networks,
researchers from different disciplines made great contri-
butions [10–19]. In what follows, we first review the progress

of information spreading on social network. Different from
the static networks, i.e., the network topology does not
change with time, researchers found some important results
[15, 20–23]. When the information is spreading on the static
networks, scholars found that the existence of some hubs
may eliminate the threshold point [24, 25]. Specifically, any
values of information transmission probability can trigger
the information spreading on social networks. Based on
these results, we can understand why information can always
spread on social platforms. Researchers further revealed that
the network community, clustering, and degree-degree
correlations could alter the spreading dynamics of infor-
mation [26, 27]. In reality, sharing a piece of information is
risky, and thus affirming its reality and reliability is fatal.
Researchers used the threshold-based model to include this
factor in the spreading dynamics, such as the Watts
threshold model and other generalized models. For that
threshold-based information spreading model, the phase
transition of the dynamical system is always discontinuous,
i.e., first-order phase transition [28]. Wang et al. [29, 30]
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proposed nonredundant information spreading dynamics
and revealed a transition between the continuous and dis-
continuous transition in the system.

When researchers studied the information spreading
dynamics on temporal networks, scholars found that net-
work temporality can suppress or promote the information
spreading [1, 20, 21, 31–37]. Xue et al. proposed a mathe-
matical model to describe a heterogeneous population,
where a fraction of nodes adopts a complex contagion. +ey
used a Markovian approach to describe the spreading dy-
namics.+ey found that the promotion or suppression of the
network temporality is determined by the heterogeneities of
population and degree distribution. Scholtes et al. [38] found
that the non-Markovian temporal network may speed up or
slow down the information spreading. Wang et al. [39]
proposed a heuristic immunization strategy for information
spreading and demonstrated the effectiveness of this strategy
in real-world data.

For the temporal network, an essential factor is the
network memory [38, 40–42], which means that edges that
existed in the current time step may already occur in pre-
vious time steps. Sun et al. [43] revealed that network
memory inhibits the spreading process for SIR models, in
which the epidemic threshold is enlarged while the
spreading size decreases. How memory affects the infor-
mation spreading dynamics is an important question. To
address this, we propose a mathematical model on temporal
networks with memory. +en, we develop a Markovian
theory for the dynamical model. +rough extensive Monte
Carlo simulations, we systematically investigate the dy-
namics. Finally, we conclude.

2. Information Spreading Model

In this section, we introduce the information spreading
dynamics on temporal networks with network memory.

2.1. Activity-Driven Network with Memory. Mathematically,
the temporal network G can be described as
G � (G1, . . . ,Gtmax

), where Gt represents the temporal
network at time step t. For network Gt, we use the temporal
adjacency matrix At to represent the topology of Gt. If
At(i, j) � 1, there is an edge between nodes i and j at time t.
Otherwise, At(i, j) � 0.

To build the activity-driven network with memory effect,
we generalize the activity-drivenmodel proposed in [44–46].
We build memory activity-driven network as follows.

(i) Assign value for network size N and potential ac-
tivity xi according to a given distribution f(x). In
this paper, we assume f(x) follows a power-law
distribution. +at is to say, f(x) � εx−c, where c is
the potential activity distribution exponent,
ε � 1/􏽐

xmax
xmin

x−c, xmin � 10−3, and xmax � 0.99.
Mathematically, the larger the value of c, the more
homogeneous the degree distribution of the tem-
poral network. +erefore, we can change c to in-
vestigate the degree heterogeneity of the temporal
network.

(ii) Generating temporal network Gt: for each node i,
there are two possible ways to build edges. If node i

becomes active with probability ai � ηxi, where η is
a parameter, node i forwardly connects to m ran-
domly selected nodes. If node i is inactive, it can
only receive the connections from other active
nodes.

(iii) At the end of the time step t, we delete every edge
with probability 1 − ξ. +erefore, the memory effect
is induced. +e higher the value of ξ, the more
substantial the memory effect of the temporal
network. For the case of ξ � 0, the temporal network
is memoryless. When ξ � 1, the network is static.

According to the above steps, we know that the average
degree of network Gt is 〈kt〉 � 2mηϵ(c − 1/c − 2).

2.2. Information Spreading Model. We here adopt the in-
formation spreading model proposed in [47]. +is model
uses a generalized susceptible-infected-susceptible (SIS)
model to describe the dynamics of information spreading.
+e susceptible nodes mean that they do not receive any
information but may receive the information. +e infected
nodes represent that they have obtained the information and
willing to share it with neighbors. In this model, we assume
that there are two types of nodes, i.e., activists and bigots.
+e activists are willing to share the information with
friends. +us, we assume that they have a smaller adoption
threshold θa � 1. +e bigots are less likely to accept the
information. +erefore, we set those bigots with a higher
adoption threshold θb > 1. In this model, we randomly select
a fraction of ω nodes as the bigots and the remaining 1 − ω
nodes as activists.

+e information spreading dynamics evolve as follows:

(i) Randomly selecting ρ0 fraction of nodes to receive
the information and setting the rest as susceptible
nodes.

(ii) At every time step, every infected node i tries to
transmit the information to its very susceptible
neighbor j with probability λ. If node j succeeds in
receiving a piece of information, it would be rep-
resented by the mark +1 and the like. In this sit-
uation, we consider the state of node j. If node j is
an activist, it becomes infected. If node j is a bigot, it
becomes infected only when its received informa-
tion is larger than θb.

(iii) Every infected node becomes a susceptible state with
probability cr.

When the infected nodes no longer exist or the spreading
dynamics has run 10000 times, the dynamics ends.

3. Theoretical Analyses

To obtain mathematical analysis results on the spreading
dynamics, we use a generalized discrete Markovian ap-
proach, which is inspired by Refs. [39, 48–50]. In theory, we
assume that there are no dynamical correlations among the
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state of neighbors. +at is to say, the infection probabilities
of a susceptible node from informed neighbors are de-
pendent. At any time step t, node i can only be susceptible or
infected state. Define xi(t) � 1 when node i is in the infected
state and xi(t) � 0 when in susceptible state. +e probability
of node i in the susceptible and infected states is Pr[xi(t) �

0] and Pr[xi(t) � 1], respectively. For the sake of simplicity,
we denote Pr[xi(t) � 0] and Pr[xi(t) � 1] as si(t) and pi(t),
respectively.

For the evolution of pi(t), we should consider two
situations: the evolutions of bigots and activists, which are
denoted as pa

i (t) and pb
i (t), respectively. +erefore, we have

pi(t) � p
a
i (t) + p

b
i (t). (1)

In the following, we study the evolutions of pa
i (t) and

pb
i (t). For an activist, such as node i, the evolution of pa

i (t)

includes two situations. On the one hand, node i is in the
infected state at time step t and does not recover to sus-
ceptible state with probability (1 − c)pi(t). On the other
hand, node i is susceptible at time step t and gets infected by
neighbors at this time step with probability (1 − pi(t))

(1 − q0i (t)), where

q
0
i (t) � 􏽙

N

j�1
1 − λAij(t)pj(t)􏼐 􏼑, (2)

represents the probability of node i remaining susceptible at
time step t. +e evolution of pa

i (t) is

p
a
i (t + 1) � (1 − ω) (1 − c)pi(t) + 1 − pi(t)( 􏼁 1 − q

0
i (t)􏼐 􏼑􏽨 􏽩.

(3)

For the bigots, the evolution of pb
i (t) is more complex.

+e bigots will only be infected if the information received is
greater than the threshold θb. +erefore, we should first
compute the number of information received by node i and
denote qn

i (t) as n pieces of information received by node i at
time step t. Using the results presented in Ref. [47], we have

q
n
i (t) � 􏽘

θ⊆zi,|θ|�n

􏽙
j∈θ

λpj(t) 􏽙
j∈zi\θ

1 − λpj(t)􏼐 􏼑.
(4)

Until now, we have presented the expression of the
evolution equations of the information spreading dynamics.
In the steady state, i.e., t⟶∞, we have pi(t + 1) � pi(t).
We denote the fraction of nodes in the infected state in the
steady state as ρ, which can be computed as

ρ �
1
N

􏽘

N

i�1
pi. (5)

We use ρ as the order parameter of the system in the
following numerical studies.

4. Results

In this section, we use the Monte Carlo method to study the
information spreading dynamics on temporal network with
memory effect. When generating the temporal network, we
set the average degree of every temporal network Gt with

average degree 〈kt〉 � 10. In the dynamical system, we set
the order parameter ρ as

ρ �
1

1000
􏽘

tmax+1000

t�tmax

ρ(t), (6)

where tmax � 5000 and ρ(t) � 1/N 􏽐
N
i�1 ρi(t). We set θb � 2.

To numerically locate the steady state of the dynamical
system, we compute the average values of ρ(t). When the
average value of variance ρ(t) is smaller than 10−5, the steady
state of the system is reached.

In Figure 1, we first investigate the information
spreading dynamics without bigots (i.e., ξ � 0). For dif-
ferent strengths of the memory effect, we find two distinct
regions. When the information transmission probability λ
is small, a strong memory effect suppresses the information
spreading dynamics (see ξ � 0 and ξ � 1). +at is to say, the
temporal network is not beneficial in information trans-
mission. However, for larger values of λ, the temporal
network is beneficial for information spreading. For static
networks, the network topology does change with time.+e
information can be accessed by more susceptible nodes for
small values of λ since the giant connected cluster is larger.
However, more different nodes will be connected to the
temporal giant connected cluster for temporal networks
and promote the information spreading for larger λ. Once
the network memory effect is not strong enough, compared
with the information spreading on static and temporal
networks, the information is suppressed regardless of the
information transmission probability. +us, we know that
the middle memory effect can suppress the information
spreading.

We further investigate the information spreading on a
given strength of memory effect for different values of bigots
in Figure 2. We note that both the fraction of bigots and
memory affect the information spreading. For a given net-
work topology, we find that ρ increases with ω since bigots are
not beneficial in transmitting the information. Besides, we
note that the increase pattern of ρ versus λ is different for
distinct values of ω. When ω � 0, ρ increases continuously
with λ. However, ρ discontinuously increases with λwhenω is
large (e.g., ω � 1.0 in Figures 2(b)–2(d) and 2(f)).

+e network memory effect may benefit the information
spreading, which depends on the degree heterogeneity of the
activity-driven network.When the potential exponent is c � 2.1
and 3.5, the network memory effect suppresses the information
spreading (Figures 2(a), 2(c), 2(d), and 2(f)).However, when the
potential exponent is c � 3.0, the network memory effect
promotes the information spreading, as shown in Figures 2(b)
and 2(e).

Finally, we investigate the phase transition of the system
with different initial seed sizes in Figure 3. Generally
speaking, the phenomena are the same as those stated in
Figure 2.We find that the system always has a hysteresis loop
no matter what value ω and c is assigned. In more detail, the
final information spreading size ρ depends on ρ0. +e larger
ρ0, the higher ρ in the hysteresis loop region. We also note
that the larger ω, the smaller ρ. +at is to say, the bigots
hinder the information spreading dynamics.
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Figure 1: Information spreading on activity-driven networks. +e final information spreading size ρ versus information transmission
probability λ with c � 2.1 (a), c � 3.0 (b), and c � 3.5 (c). We set the fraction of seeds as ρ0 � 0.1 and the average degree as 〈kt〉 � 10, and
there are no bigots (i.e., ω � 0.0).
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Figure 2: Continued.
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Figure 2: Information spreading on activity-driven networks. +e final information spreading size ρ versus information transmission
probability λ with c � 2.1 (a), c � 3.0 (b), and c � 3.5 (c) for ξ � 0.5. ρ versus λ with c � 2.1 (d), c � 3.0 (e), and c � 3.5 (f) for ξ � 0. We set
ρ0 � 0.1 and 〈kt〉 � 10.
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Figure 3: Continued.
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5. Conclusions

In this paper, we proposed a mathematical model to in-
vestigate the effects of network memory on the information
spreading dynamics on temporal networks. We first pro-
posed a dynamical model in which the temporal network
has a memory effect. Specifically, the current temporal
network can remember the previous interconnections.
Furthermore, an information diffusion model is developed
on this type of temporal network. +en, we used a Mar-
kovian approach to describe the information spreading
dynamics. Finally, we used the Monte Carlo simulation
method to study the information spreading model nu-
merically and found that network memory may promote
and suppress the dynamics. +e effects depend on the
heterogeneous degree distribution and the fraction of
bigots in the populations.

+e results presented in this paper may shed some light
into investigating the dynamics of information on temporal
networks. On the one hand, the Markovian theory may be
used to study other dynamics on temporal networks. On the
other hand, the memory effect of temporal network should
be included when studying other dynamics. Finally, some
further studies about memory of temporal network should
be investigated, for instance, developing more accurate
theory and designing more realistic models to describe the
spreading dynamics.
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