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At present, the development of deep forgery technology has brought new challenges to media content forensics, and the use of
deep forgery identifcation methods to identify forged audio and video has become a signifcant focus of research and difculty.
Deep forgery technology and forensic technology play a mutual game and promote each other’s development.Tis paper proposes
a spatiotemporal local feature abstraction (STLFA) framework for facial forgery identifcation to solve the media industry
challenges of deep forgery technology. To adequately utilize local facial features, we combine facial key points, key point
movement, and facial corner points to detect forgery content. Tis paper establishes a spatiotemporal relation, which realizes face
forgery detection by identifying abnormalities of facial keypoints and corner points for interframe judgments. Meanwhile, we
utilize RNNs to predict the sequences from facial key point movement abnormalities and corner points for interframe. Ex-
perimental results show that our method achieves better performance than some existing methods and good anticompression
forgery face detection performance on FF++.

1. Introduction

Media content forgery has brought some security problems
to society. Especially with the development of autoencoders
(AEs) [1] and generative adversarial networks (GANs) [2],
media content forgery has become easy to achieve through
deep forgery techniques. Te techniques usually utilize deep
learning methods to alter a person’s identity in a video to
synthesize a piece of media content that does not exist. Deep
forgery identifcation techniques include both image-level
detection and video-level detection.

Forgery detection of images or video frames is mostly the
detection of forged video content, including color in-
consistencies and semantic inconsistencies. Image forgery
detection can be divided into detecting the image as a whole
and detecting the facial area, according to the detection
dimension. Forgery detection of the image as a whole is
mainly to detect the physical properties of the image, such as
the direction of the image’s light source[3], the saturated
pixel frequency [4], and the spectral sensitivity [4]. It is

classifed by judging the diference between forged and
authentic images. Forgery detection for facial regions in-
cludes inconsistent iris color, missing tooth gaps, and in-
consistent eye refexes, including detection of facial artifacts
using light estimation, global consistency and geometric
estimation [5], corneal highlight region consistency de-
tection [6], and facial artifact detection [7].

Te detection of video sequences is mainly performed by
combining optical fow anomalies, motion incoherence, or
anomalies between video frames. Forgery detection based on
optical fow mainly calculates the optical fow feld of the
target in the video and detects the inconsistency of the
optical fow feld [8]. Some authors utilize eye blinks [9],
abnormal head movements [10], and facial distortions [11]
to detect incoherent motion or abnormal behaviors in
consecutive frames.

However, the early works were mainly focused on global
features. Specifcally, we notice that forgery detection fea-
tures are particularly evident in key facial organs such as the
eyes, nose, and mouth [5, 6, 12]. For example, Xue et al. [12]
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found that only using facial organs such as the nose, lips,
eyes, eyebrows, and chin can detect deep forgery very well.

Based on this, we frst consider constructing the facial
organs’ relation. Tese organs can be abstracted to local
features and represented by sequential vectors. We then
adopt recurrent neural networks (RNNs) to capture their
internal properties or diferences to obtain instructive
guidance that describes whether the face is falsifed. For
comprehensive detection, we realize face forgery detection
for key facial local regions such as the lips, eyes, nose,
eyebrows, and chin, thus achieving impressive performance.
Te contributions of our work are summarized as follows:

(1) We propose a spatiotemporal local feature abstrac-
tion (STLFA) framework for facial forgery identif-
cation, which establishes local features’ relation via
an organ-specifc method.

(2) In STLFA, we combine abnormal facial movement
detection and facial landmark time discontinuity
detection to analyze the facial key point and corner
point features frame by frame. Meanwhile, we judge
video sequences’ key point movement and corner
point number transformation to achieve forgery
identifcation of images and videos.

(3) Tis paper demonstrates the efectiveness and ro-
bustness of the proposed method and discusses and
analyzes the advantages and disadvantages of
STLFA.

2. Related Works

2.1. Deep Forgery Discrimination Based on Image or Video
Frames. Currently, most forgery detection of images or
video frames is performed by detecting manual features for
forgery identifcation. Te detection subject can be divided
into two categories: image detection and inconsistency
detection only for human faces.

Image forgery detection mainly detects the inconsistent
lighting conditions and color inconsistencies in images.
Chen et al. [13] proposed a robust dual-stream network by
integrating dual-color spaces RGB and YCbCr using an
improved Xception model, which considers both the lu-
minance and chrominance components of dual-color spaces
(RGB and YCbCr) to enhance the robustness. Johnson and
Farid [3] proposed a method to detect lighting in-
consistencies by estimating the direction of point light
sources in a single image to estimate the consistency of light
sources for the whole image. McCloskey and Albright [4]
analyzed the structure of the popular GAN network. Tey
found that the image generated by the GAN network difers
from the captured image in color processing. Tey propose
a method for forgery classifcation by saturated pixel fre-
quency detection and spectral sensitivity detection.

Te forgery detection of inconsistencies in the person’s
face focuses on the incomplete consideration of semantics in
the content generation process by the deep forgery method,
resulting in the generation of a person with inconsistent iris
colors in the left and right eyes, inconsistent refections, and
uneven gaps in the teeth. Matern et al. [5] detected facial

artifacts based on detecting intraframe image artifacts using
light estimation, global consistency, and geometric esti-
mation. Hu et al. [6] proposed a scheme to study whether the
highlight patterns on the corneas of two eyes are consistent
to determine whether they are fake. Li and Lyu [7] de-
termined the forgery traces by detecting artifacts traced from
the afne transformation during face forgery.

In order to integrate the features of facial regions, some
authors proposed novel approaches. Wang et al. [14] pro-
posed amethod that fused facial region feature descriptor for
forgery determination by extracting feature points of
a person’s face. Xue et al. [12] built a transformer model for
a deepfake-detection method by organs to obtain the
deepfake features. Yang et al. [15] proposed a method for
detecting diferences in face textures by amplifying the
texture diferences between genuine and fake images and
using a bootstrap flter to enhance postprocessing-induced
texture artifacts and display the underlying features of the
artifacts.

2.2. Deep Forgery Discrimination Based on Video Sequences.
Te video sequence-based deep forgery approaches have
more detection items than the image-based deep forgery
approach. Te forged video generation process is frame-by-
frame leading to optical fow inconsistencies between the
preceding and following frames and motion anomalies.

In terms of forgery identifcation based on optical fow
detection, Amerini et al. [8] proposed a forgery detection
method based on optical fow anomalies between diferent
frames by extracting the correlation of the optical fow feld
and using a CNN classifer for classifcation. Trinh et al. [16]
proposed a forgery detection framework by superimposing
optical fow felds on RGB images for forgery detection.
Caldelli et al. [17] proposed a CNN-based classifcation
method to distinguish motion dissimilarities in the temporal
structure of video sequences by using optical fow felds.

In terms of forgery identifcation based on abnormal
motion detection, Li et al. [9] proposed a GAN-based model
that could not represent blinking in fake synthetic videos,
enabling the detection of blink inconsistencies. Yang et al.
[10] proposed a detection method based on the in-
consistency of 3D head pose estimation by extracting the
coordinates of facial key points and calculating the direction
vector diference between the center of the face and the
coordinates of peripheral key points to achieve deep forgery
detection. Sun et al. [11] proposed a geometric feature
calibration module to determine the accuracy of interframe
geometric features to determine the abnormal facial
movements of characters.

3. Methods

3.1. Framework. In this section, we provide a detailed il-
lustration of our proposed method. Figure 1 illustrates the
architecture of STLFA. We used facial preprocessing
modules to crop the eight facial organ regions, including the
left eyebrow, right eyebrow, left eye, right eye, nose, mouth,
inner mouth, and chin. We built a sequence group by facial
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key points, key point movement, number of corner points,
and number of variations. Meanwhile, RNN models are
trained for each region until they have the detection ability.
After that, we integrate the results from the RNNs and
obtain the fnal prediction.

3.2. Facial Preprocessing. Te facial preprocessing module
mainly contains three steps: face detection, face landmark
detection, and landmark alignment. Following [11], we use
tracking and denoising methods to match the key points
between video sequences to obtain the complete facial key
point coordinates and coordinate movement. We utilized
the Lucas–Kanade (LK) operation in the tracking method to
track the coordinate points and forward-backward processes
to eliminate inaccurate predictions. Meanwhile, the
denoising method is used to solve the noise caused by the LK
operation and to ensure the stability of the landmark, using
the Kalman flter to integrate the prediction information.

3.3. Facial Key Points Extraction

3.3.1. Facial Key Points Coordinates Extraction. Te facial
key point coordinate detection method requires cropping
the preprocessed image. After that, we detect 68 facial key
points representing the facial shape, as shown in Figure 2(a).
We select the key point frame to extract eight facial key
organ regions based on the 68 key points, as demonstrated in
Figure 2(b). We create vector vp for each key organ region.

vp � vp1
, vp2

, . . . , vp8
 . (1)

Each region can be expressed as vpi
:

vpi
� x

1
i , y

1
i , x

2
i , y

2
i , . . . , x

n
i , y

n
i , (2)

where x1
i is the horizontal coordinate of the frst key point in

region i and y1
i is the vertical coordinate of region i.

3.3.2. Corner Extraction

(1) Motivation for Using FAST Feature Points. Te FAST
algorithm is a corner detection algorithm mainly used to
extract the feature points in the image. Based on the feature
point information, the translation, distortion, and rotation
objects in the dynamic process are associated with realizing
the target tracking in a series of images of dynamic imaging
and positioning. Wang et al. [14] found that although the
fake video face was highly similar to the original video face, it
still lost many fne details used to determine the FAST
feature points and found that the phenomenon was more
evident in the local area of the face. Based on this obser-
vation, we design a FAST feature descriptor to extract the
phenomenon of the occasional failure of face-changing in
the local area of the fake video and further complete the face
forgery detection.

(2) Extraction Algorithm Feature Point of FAST. Features
from accelerated segment test (FAST) [19] is an efcient
corner point detection method mainly used for feature
extraction of image corner points. Te FASTmethod builds
up the intensity of a pixel point Ip, sets the threshold value to
t, and creates a Bresenham circle for 16-pixel points around
p, as shown in Figure 3(a).

Designating pixel point p as a corner point if there is a set
of n consecutive pixels in the circle that are all brighter than
Ip + t or darker than Ip − t.

In order to speed up the operation, the pixel points
compared with Ip can be simplifed and set to 1, 5, 9, and 13,
as shown in Figure 3(b). Tis paper focuses on establishing
FAST corner point detection for eight regions extracted,
such as the eyes, nose, lips, and eyebrows, and establishing
corner point comparisons between frames, as shown in
Figure 3(c).

We defne pixel p as a corner when the circle in Fig-
ure 3(a) has a group of consecutive pixel points. Meanwhile,

Local Feature
Extraction

Frame i Facial
Preprocessing

Facial Key Points
Coordinates (vp1)

RNN

Corner Coordinates
(FD1, έ FD1)

...

True or False?

...

...

Facial Key Points
Coordinates Movement

(vm1)Facial Key Points
Coordinates Sequence

Corner Coordinates
Sequence

Sequence Group

...

RNN

RNN

...

...

...

...

...

Facial Key
Points 

Corner Detection 

Figure 1: Te framework of STLFA. Te face image in this fgure comes from the FF++ dataset [18] obtained from open access.
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the points are brighter than Ip + t or darker than Ip − t. In
order to speed up the operation, the points can be simplifed
and only use points 1, 5, 9, and 13 to calculate, as shown in
Figure 3(b). We focus on establishing FAST corner point
detection for eight regions, as shown in Figure 3(c), and
setting corner point comparisons between frames.

3.4. Abnormal Facial Movement Detection

3.4.1. Facial Shape Movement Abnormal Detection.
Facial shape movement detection is based on the extraction
of 68 feature points of facial feature extraction; the facial area
is divided into 8 areas, and the temporal movement pattern
of the feature points in each area is established for each area
to realize facial shape movement abnormal detection. We
analyze the movement of key points in each region and build
a key points coordinate vector vi

lk
.

v
i
lk

� x
i
1, y

i
1, x

i
2, y

i
2, . . . , x

i
68, y

i
68 . (3)

Te key point coordinate vector of the eight regions
collection in frame i can be expressed as vi

l:

v
i
l � v

i
l1

, v
i
l2

, . . . , v
i
l8

 , (4)

where vi
l1
∼ vi

l8
represents the respective vectors of the eight

regions in frame i and the corresponding key points are as

follows: 6∼10 represent the chin, 17∼21 points represent the
left eyebrow, 22∼26 represent the right eyebrow, 36∼41
represent the left eye, 42∼47 represent the right eye, 27∼35
represent the nose, 48∼60 represent the mouth, and 61∼67
stands for the inner mouth.

Ten, we use vi
l1
∼ vi

l8
, extracted frame by frame, to

provide clues for subsequent temporal discontinuity de-
tection of facial motion morphology.

3.4.2. Facial Corner Abnormal Detection. Following [14], we
use FAST to obtain feature points with a descriptor des of
32 dimensions. We assume that the number of corner points
FDk

i of the focus organ region k is in frame i, then FDk
i can

be expressed as follows:

FD
i
k � 

ki

des[x], x ∈ [1, 32].
(5)

In this way, a feature vector FDi can be created for the
eight regions:

FD
i

� FD
i
1, FD

i
2, . . . , FD

i
8 , (6)

where FDi
k is a statistical vector based on corner points in

region i, containing the number of corner points in region k

at frame i. We create time series based on FDi
k to detect clues

of alternating authentic and forgery faces in forgery videos.

(a) (b)

Figure 2: Facial key point coordinate detection: (a) 68 key points of facial contour. Te face image is from FF++ [18]. (b) Te key region
cropped. Te face image is from FF++ [18].
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Figure 3: FASTfeature point extraction algorithm: (a) p is the selected corner point, and a Bresenham circle is established around the point
p. Te face image is from FF++ [18]. (b) Simplifed corner operations. Te face image is from FF++ [18]. (c) Fast corner points detection in
eight regions. Te face image is from FF++ [18].
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3.5. Facial Landmark Time Discontinuity Detection

3.5.1. Facial Key Points Time Discontinuity Detection.
We detect the temporal discontinuity of facial key point
displacement between frames based on the displacement
information of facial key points between consecutive frames.
We analyze the movement of key points in each region and
build a key point coordinate movement vector vi

mk
; each

region can be expressed as follows:

v
i
mk

� ∆x
1
i ,∆y

1
i ,∆x

2
i ,∆y

2
i , . . . ,∆x

n
i ,∆y

n
i . (7)

Te key point coordinate movement vector of the eight
regions collection in frame i can be expressed as vi

m:

v
i
m � v

i
m1

, v
i
m2

, . . . , v
i
m8

 , (8)

where ∆x1
i is the adjacent frames variation in the horizontal co-

ordinates; we can calculate∆x1
i using |x1

i+1 − x1
i |, the same as∆y1

i .

3.5.2. FAST Feature Time Discontinuity Detection. Te FDi
k

in Section 3.4.2 is the corner number vector of the described
local region, and we use this vector to build the corner number
diference vector ∆FDk

i between consecutive frames:

∆FD
i
k � FD

2
k − FD

1
k, FD

3
k − FD

2
k, . . . , FD

i
k − FD

i−1
k .

(9)

∆FDi
k is the diference between the number of corners in

region k in frame i and the number in region k in frame i − 1.
Te statistical vector∆FDi of the diference in the number of the
corners in the whole facial region can be expressed as follows:

∆FD
i

� FD
i
1, FD

i
2, . . . , FD

i
8 . (10)

We use ∆FDi to detect nonsmooth facial corner number
changes in the video.

3.6. Facial Forgery Prediction

3.6.1. Facial Feature Vector Association. Based on vi
lk
, vi

mk
,

FDi
k, and ∆FDi

k obtained in Sections 3.4 and 3.5, the local
facial feature fusion vector vi

fk
is formed by concatenating

the four types of feature vector sequences:

v
i
fk

� v
i
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, v
i
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, FD
i
k,∆FD

i
k . (11)

Ten, the local facial feature fusion vector for region k of
the entire video can be expressed as follows:

vfk
� v

1
fk

, v
2
fk

, . . . , v
n
fk

 . (12)

We utilize a series of the local facial feature fusion vectors
vf1

∼ vf8
to represent the facial fusion features. After that, we use

the connected feature vector vfk
to train a dual-stream RNN

model for each of the eight regions to classify the forgery videos.

3.6.2. RNN-Based Deep Forgery Detection. We utilize RNNs
to model local facial feature sequences. In order to ensure an
identical input dimension of the RNN and to achieve deep
forgery detection at the video level, each video sample used

as input is cut into a fxed length, and a fxed number of key
frames are extracted. Based on the extraction results, the
RNN parameters are selected for training to achieve deep
forgery detection of the overall video.

Trough the embedding process, the RNNs are adopted to
model the feature sequences of each local region, learning the
shape movement pattern, landmark diference pattern,
and FAST feature point variation pattern. Ten, the fully
connected (FC) network is connected to each RNN output
layer. Furthermore, calculate 8 FC layers output average result
as the fnal prediction to achieve deep forgery detection based
on the local regions of the face. We utilize F to represent this
process:

F R1 vf1
 , R2 vf2

 , . . . , R8 vf8
  . (13)

4. Experiments

4.1. Datasets

(1) FaceForensics++ (FF++) [18]: FF++ is one of the
benchmark datasets for large-scale deep forgery
detection, with a total of over 1,000 segments, more
than 1.5 million frames in total, and over 1.5 TB of
video data in the original video format. Meanwhile,
a face detector is used to flter the video footage to
ensure that there are three video qualities in the
FF++ dataset, Raw, c23, and c40, characterized by
many forged video segments, and a variety of deep
forgery methods are considered.

(2) Celeb-DF [20]: Te Celeb-DF (v2) dataset is a large-
scale deepfake forensic dataset that addresses the
shortcomings of poor forged video quality, apparent
forgery traces, and fickering video faces. Te Celeb-
DF (v2) dataset improves the deep forgery genera-
tion method and the face key point localization
method to obtain stable fake video content quality.
Te dataset contains 590 raw videos collected from
YouTube with categories of diferent ages, races, and
genders. 5639 HD deepfake videos are the same
quality as the online broadcast videos.

(3) DFDC preview dataset [21]: Tis dataset comes from
Te Deepfake Detection Challenge hosted by Face-
book. It is the preliminary dataset for the compe-
tition. It consists of 5,214 videos, of which the ratio of
true and false content is 1 : 0.28, and forgery data
contain data generated by two deep forgery methods.
Each video is a clip of about 15 s.

4.2. Experiment Settings. During preprocessing, DLIB was
used for face cropping and face landmark detection, and
FAST detector and BRIEF descriptors were used for corner
point detection and description. In the classifcation process,
a bidirectional recurrent neural network connects to the
feature sequences in the respective regions. Each RNN in the
detection framework consists of a GRU (gated recurrent
unit) with a hidden layer feature output dimension of 64. A
dropout layer is set between the input and the RNN, using
a fully connected network to connect to the output of the
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RNN layer. Using two dr � 0.5 dropout layers separated
between the RNN layer and the fully connected layer and
inside, these experimental parameter settings partly refer to
existing research results [22].

In the experimental dataset section, the ratio of training
data to test data was 7 : 3, with 120 frames drawn from each
video. Te model was optimized using the Adam optimizer
for the specifc training process. We initialize the learning
rate at 0.005, set the batch size to 1024, and the maximum
number of iterations Epoch was 800 rounds. Te experi-
ments in this paper use AUC (area under curve) to evaluate
the performance of the deep forgery detection model, and
the AUC is calculated as follows:

AUC �
 predpos > predneg

positiveNum∗negativeNum
, (14)

where predpos is the predicted probability of getting a pos-
itive sample, predneg is the predicted probability of getting
a negative sample, positiveNum is the number of positive
samples, negativeNum is the number of negative samples,
and AUC is the number of samples where the predicted
probability of a positive sample is greater than the predicted
probability of a negative sample in the
positiveNum∗ negativeNum sample.

4.3. Experiments

4.3.1. Partial Organ Comparison. In this paper, experi-
ments are conducted on the FF++ dataset to compare each
organ region module’s detection efect to verify each
organ’s region detection efect on deep forgery. In this
paper, following the idea of [14], eight key regions such as
the left eyebrow, right eyebrow, left eye, right eye, nose,
mouth, inner mouth, and chin were set up and compared,
as shown in Table 1. Te “Points” results are obtained
using facial key point coordinate detection and facial key
point coordinate movement detection, “Coordinate” in-
dicates the detection result using only the facial key point
coordinates, and “Movement” indicates the detection
result using only the facial key point movement co-
ordinates. “C +M” indicates the result obtained by
combining the key point coordinate detection and the
facial key point coordinate movement detection. “Cor-
ners” is the result obtained using FAST corner number
detection and corner number change detection. “All”
means that the results of “Points” and “Corners” are
combined with the experimental results of FAST features,
and the RNNs of each segment are trained separately.

From Table 1, all local organs can be used individually in
the FF++ dataset to detect whether the images contain
forgeries. Tis paper observes that among the eight organ
regions, the eyebrows, eyes, and mouth have the highest
accuracy rate, while the nose and chin have a low accuracy
rate. Also, in the “Points” detection group, where three
experiments were set up, it was seen that “Coordinate” could
perform a single-frame detection task with an average de-
tection rate of 87.2%. “Movement” is the detection method
combined with video sequences, with an average detection

rate of 82.6%. Te combination of “Coordinate” and
“Movement” enables the combination of abnormal facial
movement detection and facial landmark time discontinuity
detection, allowing for more efective acquisition of key
facial features with an accuracy rate of 91.1%.

4.3.2. Ablation Study. In this paper, we use the frame-level
AUC to verify the efectiveness of face key point and corner
point detection on deep forgery detection, respectively, to
validate the proposed method. Te models in the experi-
ments are trained on FF++ (raw) and tested on three
datasets: FF++, DFDC Preview, and Celeb-DF. Te results
are shown in Table 2.

Te experimental results show that “Points” and “Cor-
ners” have similar detection results in terms of AUC, with an
average of 71.3% and 74.1%, respectively, and all the best
detection was achieved by “All,” with an AUC of 75.9%.
Meanwhile, in the FF++, DFDC Preview, and Celeb-DF
datasets, the AUC values of “All” were higher than those of
“Points” and “Corners” and “All” has a higher AUC than
“Points” and “Corners.” Tis proves that the method pro-
posed in this paper, which combines facial key point and
corner point detection, is reasonable and efective.

4.3.3. Comparison Experiments. In this paper, using frame-
level AUC evaluation, we selected mainstream deep forgery
detection methods based on full-frame face region forgery
detection [18], fake face edge fusion region detection [23],
facial landmark feature enhancement forgery and detection
[11], visual distortion detection [24], and capsule network
forgery detection [25]. Tests were carried out on datasets
such as FF++, DFDC Preview, and Celeb-DF.We refer to the
detection results of [11, 14], as shown in Table 3. In the FF++
dataset, “raw” represents the uncompressed data and “c40”
represents the compressed LQ data.

As can be seen from Table 3, the AUC results of the
proposed method on FF++ are better than those of main-
stream methods such as Xception [18], Face X-ray [23],
LRNet [11], DSP-FWA [24], and Capsule [25]. In particular,
in the experimental group of “c40,” the proposed method
has better robustness for low-quality forged video identif-
cation, with a 1.7% improvement over LRNet [11] and
a 35.8% improvement over Face X-ray [23].

In anticompression forgery face detection, our work
shows a good forgery face detection performance. Te
method in this paper extracts the geometric features of the
local facial region by combining the local facial key points
and the corner. Te extracted features have more robust and
lower cost characteristics and have high sensitivity in
detecting changes in the number of the corner. Te strategy
designed in this paper for face forgery detection through 8
local facial regions improves the accuracy of overall face
forgery detection by reducing the detection error of a single
region. Te efectiveness of our strategy is also verifed on
FF++ (Raw, c40).

Te low-complexity and high-performance geometric
feature extraction method designed in this paper can ef-
fectively reduce the impact of image compression on the face
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forgery detection task, and the experimental results further
demonstrate this. We compared this method’s training and
testing results and other methods on the FF++ (Raw, c40)
dataset in Table 3.Te results show that our method achieves
better performance than some existing methods, with
a diference of 0.4% in AUC compared to the Single
XceptionNet [26] method on FF++ (c40), and has better
anticompression forgery face detection performance. Te
detection performance sufers less interference on c40 data.

4.3.4. Cross-Dataset Experiments. Our method can tolerate
the local area detection, such as eyes, nose, and other organs,
which is suitable for detecting the forgery videos with stain
and shelter. To further demonstrate the robustness of our
method, themodels trained on FF++ (raw) were selected and
tested on the DFDC Preview and Celeb-DF datasets. Te
results of training and testing on FF++ (raw, c40) in Table 4
sets cross-dataset experiments in individual organs and
organ combinations.

Te experimental results show that our method is in-
novative and can only use individual organs to detect forgery
videos with deflement and stain. Meanwhile, using all organ
regions has higher average accuracy. To further verify the
ability of our method, we set up cross-dataset experiments to
compare with the state-of-arts in Table 5.

Te test results are shown in Table 5, Xception [18],
LRNet [11], DSP-FWA [24], Capsule [25], Single Xcep-
tionNet [26], FWA [7], LipForensics [31], STIL [33],
ADDNet-3D [34], and ours are compared. Te method has
certain advantages in the existing DFDC Preview cross-
dataset test results, but the efect still needs to be further
improved in the cross-dataset test results. Te specifc
reasons are analyzed as follows: the framework of this paper
utilizes the spatial and temporal features such as the spatial
position of facial feature points and the statistical number of
FAST corner points and shows good performance on the
FF++ dataset. Tis paper strengthens the description and
distinguishing capabilities of forgery faces to a certain extent
by using geometric features and uses the RNN to model the

Table 1: Comparison table of local organs (Acc (%)).

Region attribute Left eyebrow Right eyebrow Left eye Right eye Nose Mouth Inner mouth Chin Avg

Points
Coordinate 92.5 90.8 90.6 91.5 85.1 88.2 74.7 83.8 87.2
Movement 83.4 82.7 84.5 83.2 80.2 84.3 82.4 79.8 82.6
C +M 93.4 91.3 91.6 92.7 87.2 90.1 94.7 87.8 91.1

Corners 94.2 92.1 92.3 92.5 84.7 93.4 88.6 83.4 90.2
All 97. 97.7 98.8 98.3 96.4 98.6 95.1 94.3 97.0
Te bold values are used to highlight the results of the experiments conducted for this study. Specifcally, they represent the performance of the proposed
method in each experimental group.

Table 2: Ablation experiments (AUC (%)).

Datasets FF++ (6284) DFDC Preview (5214) Celeb-DF (6819) Avg
Points 99.2 56.2 58.4 71.8
Corners 96.7 62.7 63.1 74.5
All 99.9 63.5 64.3 76.3
Te bold values are used to indicate the experimental records where the proposedmethod, discussed in this paper, demonstrated the most favorable outcomes
within each experimental group. By highlighting these values in bold, we aim to emphasize the superior performance achieved by our method in those specifc
experimental conditions.

Table 3: AUC (%) results of the proposed method and mainstream methods on the FF++ dataset.

Methods
FF++

Raw c40
Xception [18] 99.7 86.5
Face X-ray [23] 99.1 61.6
LRNet [11] 99.9 95.7
DSP-FWA [24] 93.0 —
Capsule [25] 96.6 —
Single XceptionNet [26] — 97.8
Chen et al. [27] 99.92 95.2
SPSL [28] — 82.8
PCL+ I2G [29] 99.79 —
FTCN [30] 99.7 —
Lip forensics [31] 98.9 94.2
FDFL [32] 99.7 92.4
Ours 99.9 97.6
Te bold values are used to highlight the experimental records that represent the most optimal performance within each experimental group. Specifcally, the
bold values labeled as “Ours” indicate the results obtained from the experiments conducted using our proposed method.
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time series of features to complete fake face detection, which
verifes the efectiveness of the framework. Applying geo-
metric features improves the sensitivity to detecting facial
feature point motion patterns and diferential changes to
a certain extent. Still, in the face of forging changes in the
scene around the face of diferent datasets, the feature ex-
traction method in this framework needs to be further
optimized. Obtaining more efective forgery face features is
the further optimization direction of this framework.

4.4.Discussion. Although the proposedmethod utilizes RNNs
to model local facial feature sequences, it achieves deepfake
discrimination through abnormal facial movement detection
and facial landmark time discontinuity detection and exhibits
good detection performance and compression resistance. Our
method mainly mines the detection performance of each local
face region for deep forgery and can efectively learn andmodel

local face regions’ forgery features and patterns. However, since
the sample distribution of the FF++ dataset cannot represent all
deep forgery techniques, the generalization of this method
under the new data distribution is not explicitly guaranteed,
which may lead to the degradation of performance in cross-
database testing. Research on the generalization problem will
be our future goal.

5. Conclusion

Te development of deep forgery technology has brought new
challenges to the authenticity of media content. Te mutual
promotion of deep forgery technology and forensics tech-
nology is prominent in addressing the challenges brought by
deep forgery technology to themedia industry.We focus on the
consistency of facial key points and corner points’ coordinates
and propose a spatiotemporal local feature abstraction
(STLFA) framework for facial forgery identifcation, which
establishes local features’ relation via an organ-specifc method,
which combines abnormal facial movement detection and
facial landmark time discontinuity detection to analyze the
facial key point, and corner point features frame by frame. It is
mainly to detect the consistency of the movement of facial key
point coordinates and the facial corner point number varia-
tions. At the same time, the method utilizes the bidirectional
RNN to establish the sequence in eight local facial regions to
model the facial shape pattern, the key point movement pat-
tern, and the corner point number variations.

Experimental results show that our method performs
better than some existing methods and achieves good
anticompression forgery face detection performance on
FF++. At the same time, for the detection of face forgery, the
generalization ability under cross-dataset testing is also
important. Terefore, a robust method with strong gener-
alization ability is the goal of our future work.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Table 4: Te detection accuracy in cross-dataset experiments only uses local organs and organ combinations (Acc (%)).

Region attribute FF++ CelebDF DFDC Preview

Single attribute

Left eyebrow 97.2 63.9 61.2
Right eyebrow 97.7 64.3 63.1

Left eye 98.8 66.7 67.8
Right eye 98.3 66.2 63.7
Nose 96.4 61.8 60.3
Mouth 98.6 66.4 64.1

Inner mouth 95.1 59.3 57.9
Chin 94.3 58.7 55.6

Multiattribute

Eyes 98.9 64.2 62.7
Eyes + eyebrows 99.1 65.1 63.1
Eyes +mouth 99.2 64.8 62.9

Mouth + inner mouth 97.4 63.2 62.2
Nose +mouth + inner mouth 97.8 63.9 62.4
Mouth + inner mouth + chin 96.1 60.1 59.8

All 99.4 65.8 63.7

Table 5: Cross-dataset experiments (AUC (%)).

Methods Celeb-DF DFDC Preview
Train on FF++ (raw)
Xception [18] 48.2 49.9
LRNet [11] 56.9 —
DSP-FWA [24] 64.6 —
Capsule [25] 57.5 53.3
FWA [7] 56.9
Ours (raw) 64.8 63.5
Train on FF++ (c23)
FWA [7] 53.9
LipForensics [31] 8 .4 —
Ours (c23) 65.1 64.1
Train on FF++ (c40)
STIL [33] 75.58 —
ADDNet-3D [34] 60.85
Ours (c40) 64.7 63.8
Te bold values are used to highlight the experimental records that rep-
resent the most optimal performance within each experimental group.
Specifcally, the bold values labeled as “Ours” indicate the results obtained
from the experiments conducted using our proposed method.
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With the progress of face manipulation techniques, synthesized faces are spreading on the Internet, which raises concerns about
potential threats. To prevent these techniques’ abuse, various detection algorithms have been proposed. In this paper, we consider
the image’s frequency information, then propose an adaptive filtering algorithm named spatial and adaptive filtering (SAF)
Network. SAF is a dual-stream network that considers spatial and frequency domains. In the frequency domain, wavelet transform
is used to divide the image into different frequency bands, then an adaptive filter is introduced, which aims to capture more
decisive information by giving different weights to different frequencies. To fuse spatial and frequency features, spatial pyramid
pooling fusion (SPPF) is proposed, which solves the mismatch of feature maps, and considers the relationship between different
patches by attention mechanism. Experiment results show that the performance of SAF is better than the comparison algorithm.

1. Introduction

With the rapid development of Deepfakes technology, a large
number of manipulated faces have emerged on the Internet.
Similiar to text semantics [1], images also have semantic
information, so the content of images may be modified. From
the forgery results, the tamperingmethods can be divided into
two categories: tampering with some specific character at-
tributes [2, 3] or generating an entire face [4].

In order to detect tampered faces, many forensics algo-
rithms have been proposed. *ese algorithm can be roughly
divided into three categories. First, detection based on bio-
metrics [5, 6]. Second, detection based on spatial domain [7, 8].
*ird, detection based on frequency domain [9–11]. Although
the existing algorithm has achieved good detection results on
public datasets, there are still some problems to be solved. On
the one hand, new face manipulation methods are proposed
constantly, and the quality of generated faces is higher and
higher, which increases the difficulty of detection. *erefore,
the detection ability of the previous algorithmmay be reduced.
On the other hand, the problem of detecting forged faces
training and testing in the same dataset is already reasonably
solved, so the real challenge is to train on one dataset but test on
another with totally different methods.

*e current detection algorithms basically focus on
deep learning. Most of them use Convolutional neural
network (CNN) [12, 13] to detect directly in the spatial
domain. *ey regard deepfake detection as an image
classification problem and use CNN to extract features.
However, some image post-processing methods will re-
duce the performance [9, 14, 15] in the RGB domain, such
as Gaussian noise, JPEG compression, and median fil-
tering. In the frequency domain, previous work has used
filters to preprocess the images. For example, Stuchi et al.
[16] designed multiple frequency band filters to operate
on the image and manually set the parameters based on
experience. However, this method of manually designing
filters is inappropriate in some situations because it is
difficult for filters with fixed parameters to adaptively
capture information of different frequencies.

*is paper proposes an adaptive filter to solve the dis-
advantage of manual filters. Every color component of
images is split into different frequencies, and then they are
concentrated together to get a multi-channel input, so each
channel represents a specific frequency band of a color
component. Squeeze-and-Excitation Networks (SENet) [17]
can assign weights to different channels to achieve an
adaptive filter.
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*is paper designs a dual-stream network, with one
branch used to extract spatial features and the other branch
used to extract frequency features adaptively. In extracting
the frequency features, we use wavelet transform. According
to the properties of the wavelet transform, the image size will
be reduced by half after the wavelet transform. So even if the
same network is used for both branches, the size of the
extracted features in the spatial and frequency domains will
be different. If different networks are used, it is more
challenging to ensure the consistency of the shape of the
feature map.

Spatial pyramid pooling can solve the inconsistency
problem of input images and get a fixed size output no
matter how large the input image size is. In order to fuse the
features extracted from the two branches, we propose spatial
pyramid pooling fusion (SPPF). After SPPF, the spatial
features and frequency features are fused, and finally, the
fused features are passed through the fully connected layer to
discriminate the results, real or fake.

2. Related Work

2.1.ManipulatedFacesGeneration. As for manipulated faces
generation, there has been extensive research. Face2Face
[18] is known as face reenactment, which modifies the facial
expression of the target face. In Face2Face, an actor animates
the facial expressions of the target video, and then a ma-
nipulated output video is generated. Neural Textures [19]
also modifies the facial expression of the source actor.
Featuremaps are trained as part of the scene capture process,
and the training process is end-to-end. StyleGAN [4] can
learn high-level attributes automatically, which allows it
finely control face properties. ICface [3] proposes a face
animator, a data-driven system. It is implemented as a two-
stage neural networks, which can mix information from
multiple sources. Li et al. [20] introduced a deepfake-based
method that solved some problems.

Manipulated faces datasets are the significant bench-
mark for detecting algorithms. Some popular datasets are
listed here. FaceForensics++ (FF++) [21], Celeb-DF [20],
Google DFD [22], DFFD [23], Deeperforensics-1.0 (DF-1.0)
[24] and DFDC [25]. Examples are shown in Figure 1.

2.2. Manipulated Faces Detection. In order to detect tam-
pered faces, many forensics algorithms have been proposed.
*e simplest way is to start with biological features and look
for defects in visual effects [5, 6, 26]. Li et al. [5] detected
manipulated faces by blink. *is method combines Con-
volutional Neural Network (CNN) and Recurrent Neural
Network (RNN), which can capture the feature of the human
eye blinking in videos. Because eyes in training pictures are
generally open, the blinking frequency of the actors in the
obtained video will be lower than that of normal people. In
addition, people’s blinking mainly includes the eye-closing
stage and eye-opening stage. *ese two stages are a gradual
process, which is easily ignored in video generation. Li et al.
[6] Detected the false face boundary. For the face change
performed by deepfake, the edge area of the replacement face

will leave traces.*erefore, the authenticity of the face can be
judged by detecting the area around the face. Haliassos et al.
[26] used high-level semantic irregularities in mouth
movement as a feature, which are common in manipulated
videos.

*e current detection algorithms basically focus on deep
learning. Most of them use CNN to detect directly in the
spatial domain. Li et al. [7] found a more noticeable dif-
ference between the real image and the manipulated image
in the YCrCb domain compared with the RGB domain. In
this method, the residuals of the YCrCb domain are used as
input, and a classifier is trained by CNN. Liu et al. [8]
proposed Gram-Net, which used the global texture features.
It has strong robustness and generalization ability. CNN is
good at classification tasks. For example, Wang et al. [15]
directly used the Resnet50 pre-trained on the Imagenet as
the backbone, achieving good detection performance.
Gowda et al. [27] compared three neural net models and
showed that the ensemble method works better.

Some algorithms also use frequency information for
detection [9, 11, 16, 28]. Frank et al. [28] comprehensively
investigated the characteristics of different GAN structures
in the frequency domain. *ey found that noticeable grid
artifacts will be introduced due to the upsampling. Qian et al.
[9] extracted two kinds of frequency features, frequency
aware decomposition (FAD) and local frequency statistics
(LFS), then proposed the F 3-Net. Stuchi et al. [16] designed
multiple frequency band filters to operate on the image and
manually set the parameters based on experience. However,
this method of manually designing filters is inappropriate in
some situations because it is difficult for filters with fixed
parameters to adaptively capture information of different
frequencies.

3. Proposed Method

3.1. Framework. *e framework of the proposed algorithm
is shown in Figure 2, which fuses spatial and frequency
features. *e whole process consists of four parts. (1) Pre-
processing. *e spatial domain image is wavelet trans-
formed, and each color component is decomposed into
approximation (LL), horizontal (LH), vertical (HL), and
diagonal (HH), a total of 12 feature inputs. After the wavelet
transform, the size of the image is halved.*at is, if the input
image size is w × h, then the size of the wavelet image is
w/2 × h/2. (2) Feature extraction. *e original spatial do-
main image is fed into the pre-trained Resnet50 network to
extract the spatial features, and the wavelet transformed
frequency domain image is fed into the pre-trained SE_R-
esnet to extract the frequency domain features. (3) Fusion.
Since the size of the input frequency domain image is half of
the spatial domain image, the size of the feature map ob-
tained after feature extraction should also be halved. In order
to make the feature map size consistent, spatial pyramid
pooling (SPP) [29] is adapted. During the process of feature
fusion, attention mechanism [30] is used here. (4) Classi-
fication. *e fusion feature is flattened, then binary classi-
fication is performed by a fully connected layer. Finally, the
detection result will be given.
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3.2. Frequency Analysis. *e natural image consists of three
color components: R, G and B. But for the original image
format inside the camera, each position has only one com-
ponent. *ese colors are arranged in Bayer format [31].
Figure 3 shows the color matrix. Because the human eye is
most sensitive to green light, the green component is the sum
of the blue and red components. In order to convert the Bayer
format to a natural image, CFA interpolation algorithm [31] is
adopted. According to the principle of interpolation, the
high-frequency information of the three components is
similar. Given an image, wavelet transform is carried out.
Figure 4 shows the scatter diagram of wavelet detail coeffi-
cients in HH.*e three coordinate axes represent R,G, and B,
respectively. *e scatter diagram is distributed in a straight
line, and the vector direction is (1, 1, 1), which means that the
high-frequency components are approximately equal.

For an image, each color component can be decomposed
into high-frequency and low-frequency information (1)

C � C
l
+ C

h
. (1)

Because of the similarity of high-frequency components,
the difference channel C1-C2 can be represented by
Equation (2). *erefore, for real images, the high-frequency
component is filtered out. However, for manipulated faces,
an interpolation algorithm is not adopted so that some high-
frequency information will be left.

C1 − C2 � C
l
1 + C

h
1 − C

l
2 − C

h
2 ≈ C

l
1 − C

l
2. (2)

3.3. Adaptive Filter. *e image has low and high-frequency
contents. Although manipulated faces already have sound
visual effects, the details are still lacking, so the difference
between real and manipulated faces is more evident in high-
frequency. Based on this premise, we studied the imaging
process of the camera and found that the high-frequency

(a) (b) (c) (d) (e) (f )

Figure 1: Examples of manipulated faces (a) Celeb-DF[20] (b) FF++[21] (c) DFD[22] (d) DFFD[23] (e) DF-1.0[24] (f ) DFDC[25].
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Figure 2: Framework of the proposed SAF. *e input is a face to be detected. Spatial and frequency information is extracted by CNN, then
they are fused by SPPF. *e output is the result (real or fake).

Security and Communication Networks 3



components of different channels in natural images have a
strong correlation, while this property is relatively weak in
forged images. *erefore, the difference in high-frequency
information is the key to our algorithm. Although the low-
frequency information of the natural and forged images are
relatively similar, it contains the central semantics of the
images. For some manipulated faces with poor visual effects,
they can be distinguished clearly with human eyes. So low-
frequency information is also taken into account.

Section 1 shows that most previous works [16] design
filters manually. *is paper gives an adaptive filter. First,
color components are split into R, G, and B. *en, high and
low-frequency information from three channels is divided.
Each color component is transformed into LL, LH, HL, and
HH. LL is low-frequency information, while LH, HL, and
HH are high-frequency information. To simplify the
problem, the Haar wavelet is operated only once, so there
will be a 12 channels image, and each channel represents a
different frequency and color. SENet [17] considers the
relationship between channels, which gives different weights
to different channels. *erefore, an adaptive filter is
achieved.

3.4. Spatial Pyramid Pooling Fusion. *e process of spatial
pyramid pooling fusion (SPPF) is shown in Figure 5. After it,
the features of the two branches are fused. Even if the output
sizes are inconsistent, the method can also realize the fusion.
For Figure 5, several explanations are given here. (1) After
feature extraction, there will be two feature maps. Here, it is

assumed that the dimensions are M×M× Ch1 and N×N×

Ch2. Figure 5 shows that Ch1 is equal to 3 and Ch2 is equal
to 2, which is only an example. (2) Spatial pyramid pooling
[29] ignores the input size and compresses each channel into
a vector whose length is L. For example, the length shown in
Figure 5 is 4. (3) Using attention [30] to capture the global
information and calculate the relationship between various
regions. (4) two branches are mixed by multiplying each
other, then stacked.

SPPF has two obvious advantages: (1) It solves the in-
consistency of feature maps to realize fusion. (2) Since each
element of SPP corresponds to a patch in the original map,
the relationship between different patches can be reflected
when using the attention mechanism, and the size of patches
does not need to be the same.

Features of spatial (IS) and frequency (IF) are extracted
by networks. For IS, Resnet50 is adopted here, shown in
Equation (3). For IF, channels are divided firstly, then
perform wavelet transform on them. Next, SE_Resnet50 is
used to extract frequency information, shown in Equation
(4) and (5).

ISM×M×Ch1 � Resnet50 InputR,G,B , (3)

IW � Wavelet InputR( ,Wavelet InputG( ,

Wavelet InputB( ,
(4)

ISN×N×Ch2 � SE Resnet50(IW).

(5)

Due to their different shapes, the extracted features need
to be fused.When it comes to frequency features, the wavelet
changes the size of the input image in half, so the size of the
feature map of frequency is also half compared with spatial’s.
In addition, SPP levels (set to 4 in this paper) determine the
times of pooling, and pooling type represents pooling mode
(max-pooling is adopted). Here, the attention mechanism is
used to capture the correlation between patches. After
crossing the information of IS and IF, Fusion1 and Fusion2
have the same columns, so they can be concentrated to get
the fusion feature (FF). *e specific process is shown in
Algorithm 1.

4. Experiment Analysis

4.1. Setup

4.1.1. Dataset. Manipulated image datasets are important
benchmarks to evaluate the effect of the detection algorithm.
In this paper, Celeb-DF [20], FaceForensics++ (FF++) [21]
are selected.

(i) Celeb-DF [20]: *e second-generation Deepfakes
dataset, containing 590 real and 5639 Deepfakes
videos.

(ii) FF++ [21]: FF++ is the most widely studied, which
includes 1k real and 4k fake videos generated by
four methods (Deepfakes (https://github.com/
deepfakes/faceswap), Face2Face [18], FaceSwap

B G B G

G R G R

B G B G
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Figure 3: Bayer color filter array pattern.
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Figure 4: Scatter plots of detail wavelet coefficients.
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(https://github.com/MarekKowalski/FaceSwap/) and
Neural Textures [19]). All videos in FF++ have three
resolutions: raw quality (c0), high-quality (c23), and
low quality (c40).

(iii) DFD: Google DFD [22] is the supplement of FF++,
with 363 real and 3068 fake videos. *ey are gen-
erated by publicly available methods (https://ai.
googleblog.com/2019/09/contributing-data-to-deepfake-
detection.html)

4.1.2. Evaluation Metrics. *e receiver operating charac-
teristic curve can easily find out the recognition ability of a
classifier to samples at a certain threshold. In this paper, *e
area under the curve (AUC) values are taken as an evaluation
metric, which is widely used in manipulated face detection
[9, 10, 32].

4.1.3. Implementation Details. Resnet50 is used as the spatial
backbone in the experiments to extract features and is loaded
with the imagenet pre-training model. For the adaptive
frequency filter, to reuse Resnet50, the SE layer is added on
top of Resnet50 to get SE_Resnet50, and the imagenet pre-
training model is loaded. *e learning rate is set as 5e-5 of
Adam optimizer. In this paper, the image input size is 224 ×

224, so for the spatial domain, the feature map shape is 7 × 7,
while the image size after wavelet transform is halved to 112
× 112, so for the frequency branch, the featuremap shape is 4
× 4. Haar is selected as the wavelet basis, and the order is 1.
*e detailed output shape of every layer is listed in Table 1.

4.2. Intra-dataset Emperiments. To prove the effectiveness of
SAF, intra-dataset experiments are conducted. FF++ and
Celeb-DF are selected as the test database.

4.2.1. Evaluation on FF++. FF++ is the most widely used
dataset. *erefore, the proposed method is compared with
the previous algorithm. Our experiments are conducted on
high-quality (c23) videos, and all four types are used. Each
methods provides 10k images, and the ratio of traing set to
testing set is 4 :1. In the experiment, the positive and
negative samples are balanced, that is, the ratio of real image
to forged image is 1 :1. Several recent works are compared
with our method, including: i.e., (i) Face X-ray [33], which
detects manipulated faces across blending boundaries, (ii)
F3-Net [9], which uses frequency features as clues, (iii) Two
Branch [34], which proposes a two-branch structure:
original and frequency information, (iv) SPSL [10], which
combines spatial image and phase spectrum to capture the
upsampling artifacts, (v) EfficientNet-B4 (Eff-B4) [35],
which is popular in the DeepFake Detection Challenge due
to its performance, (vi) Capsule [36], which uses capsule
network to detect spoofs, such as replay attacks and deep-
fakes, (vii)Xception [21], which has good performance in
manipulated faces detection and can significantly reduce the
number of parameters, (viii) MaDD [32], which captures
artifacts by multiple attentional map.

(i) Input: spatial feature IS (M ×M× Ch1);
(ii) frequency feature IF (N × N × Ch2);
(iii) SPP levels L;
(iv) pooling type T
(v) Output: fusion feature FF
(1) cnt� 0;
(2) S� [];
(3) F� [];
(4) while cnt< L do
(5) Cnt +� 1;
(6) Kernel_S � (M/cnt, M/cnt);
(7) Kernel_F� (N/cnt, N/cnt);
(8) S� [S, Pooling(IS, T, Kernel_S)];
(9) F� [F, Pooling(IF, T, Kernel_F)];
(10) end
(11) Attention_S� S· ST;
(12) Attention_F� F· FT;
(13) Fusion1�Attention_S· FT;
(14) Fusion2�Attention_F· ST;
(15) FF� [Fusion1, Fusion2]

ALGORITHM 1: Spatial Pyramid Pooling Fusion.
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Figure 5: Process of spatial pyramid pool fusion.
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*e results are shown in Table 2 and data are cited
directly from [10, 32, 38]. *e AUC of the proposed method
achieves 99.4%, whose performance is better than the
comparison algorithm. *e AUC of Face X-ray is only
87.4%, and the proposed method is 12% higher than it.
Xception [21] performs best in comparison methods, whose
AUC is 99.7%. *e proposed method can also reach it.

4.2.2. Evaluation on Celeb-DF. Compared with FF++, the
forged videos in Celeb-DF have a better visual effect. So we
conduct experiments on it. Due to the data imbalance, 60
and 8 are set as the sampling rates for real and manipulated
faces respectively, which are set according to SE_EDNet [14].
Table 3 gives the comparison with previous methods.
Capsule [36] has been introduced in the last section. I3D [33]
is a spatiotemporal network whose convolution and pooling
kernels are 3D. Triplet [39] uses a triplet network archi-
tecture to detect Deepfakes. SE_EDNet [14] use Euclidean
distance to reflect the similarity between vectors, and a new
calculation method of attention mechanism is proposed.
EfficientNet-B4 (Eff-B4) [35] is popular in the DeepFake
Detection Challenge due to its performance. Compared with
these methods, the AUC of the proposed algorithm performs
better, which achieves 99.9%.

4.3. Cross-Dataset Emperiments. Although the proposed
method outperforms the comparison algorithm, we have
only made some slight improvements. As seen from section
3.2, the problem of detecting Deepfakes training and testing
in the same dataset is already reasonably solved. *e real
challenge is to train on one dataset and test on another. *e
detection algorithm does not know the manipulated
methods in the actual scene, so it is necessary to evaluate
generalization. 16k images are sampled from Celeb-DF [20]
(8k for real and 8k for forged), and the DFD [22] is same as
it.

4.3.1. Cross-Dataset Evaluation on Celeb-DF. *is section
analyses the generalization ability of SAF on unseen data and
gives the comparison results. *e model is trained on FF++
(all four methods) but evaluated on Celeb-DF. *e exper-
imental results are shown in Table 4. Results of previous
methods are directly cited from MaDD [32] or original
papers. As demonstrated in Table 2, the proposed algorithm
performs best in intra-dataset experiments compared to
several published methods, whose AUC reaches 99.7%.
Although the AUC score of Xception is equal to ours (shown
in Table 2), it performs slightly worse than the proposed
algorithm when testing on Celeb-DF. *at is, the proposed
algorithm has stronger transferability.

4.3.2. Cross-Dataset Evaluation on DFD. Besides Celeb-DF,
we also conduct experiments on DFD [22]. *e results are
shown in Table 5, which are cited from [41]. FD2 Net [41] use
facial detail as the clue, which is the combination of light and
identity texture. Table 5 indicates that the AUC of the proposed
method reaches 84.8%, which outperforms previous algorithms.
*e previous algorithm with the strongest detection perfor-
mance is FD2Net [41], but its AUC is still 5.7% lower than ours.

4.4. Ablation Study. Four sets of ablation experiments are
conducted to analyze the effectiveness of wavelet adaptive
filter and SPPF. Experiments results are shown in Table 6,
and△ refers to the difference in AUC score between Spatial.

(i) Spatial. Spatial information (original image) is used
as input and is sent to Resnet50 directly, which is the
baseline.

(ii) Wavelet. Wavelet image is used as input, which is
sent to SE_Resnet50.

(iii) Mixing +Cat. mixing wavelet and spatial informa-
tion by cat, which simply combines the channels of
dual-stream outputs.

(iv) Mixing + SPPF. the input is same as Mixing +Cat,
but SPPF is introduced to replace cat.

*ree conclusions can be drawn from the results in
Table 6: (1) proposed wavelet adaptive filter can detect
manipulated faces well. When only using wavelet, although
AUC (98.4%) is lower than Spatial (99.5%), it outperforms
some previous methods in Table 2, such as Capsule [36] and
I3D [33]. (2) Mixing spatial and wavelet information is
helpful. It performs better than pure wavelet and pure
spatial. (3) Proposed SPPF does better in fusing features than
combining features directly by Cat.

Table 1: Network structure.

Layer Output size
Input 224 ×224× 3 (spatial) 112 ×112× 12 (frequence)
Backbone 7 ×7× 2048 (Resnet50) 4 ×4× 2048 (SE_Resnet50)
SPPF 4096 × 30
Flatten + FC 2

Table 2: Evaluation on FF++.

Method AUC score (%)
Face X-ray [37] 87.4
F3-net [9] 98.1
Two branch [34] 98.7
SPSL [10] 95.3
Eff-B4 [35] 99.2
Capsule [36] 96.6
Xception [21] 99.7
MaDD [32] 99.3
Ours 99.7

Table 3: Evaluation on Celeb-DF.

Method AUC score (%)
Capsule [36] 93.2
I3D [33] 97.6
Triplet [39] 99.2
SE_EDNet [14] 99.7
Eff-B4 [35] 99.8
Ours 99.9
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5. Conclusion

*is paper proposes a manipulated faces detection algo-
rithm (SAF), which considers both spatial and frequency
information. In the frequency domain, different fre-
quencies are arranged into different channels, and then
the channel weighting function of SENet is used for the
adaptive filter. In addition, SPPF is proposed to fuse
spatial and frequency features, which solves the problem
of feature fusion of different shapes. Extensive experi-
ments show the good detection and generalization ability
of SAF.
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With the continuous development of deep learning techniques, it is now easy for anyone to swap faces in videos. Researchers find that
the abuse of these techniques threatens cyberspace security; thus, face forgery detection is a popular research topic. However, current
detection methods do not fully use the semantic features of deepfake videos. Most previous work has only divided the semantic
features, the importance of which may be unequal, by experimental experience. To solve this problem, we propose a new framework,
which is the multisemantic pathway network (MSPNN) for fake face detection. .is method comprehensively captures forged
information from the dimensions of microscopic, mesoscopic, and macroscopic features. .ese three kinds of semantic information
are given learnable weights. .e artifacts of deepfake images are more difficult to observe in a compressed video. .erefore,
preprocessing is proposed to detect low-quality deepfake videos, including multiscale detail enhancement and channel information
screening based on the compression principle. Center loss and cross-entropy loss are combined to further reduce intraclass spacing.
Experimental results show that MSPNN is superior to contrast methods, especially low-quality deepfake video detection.

1. Introduction

Automated video editing techniques have made great strides
in the past few years with the development of deep learning.
In particular, people have shown great interest in face
manipulation. It is now easy to transfer facial expressions
from one video to another based on generative adversarial
networks (GANs) and autoencoders [1]. Even those who do
not know deep learning can easily change one person’s face
to another in a few minutes [2], and a fake face is difficult for
human eyes to distinguish. It is easy to change who the
speaker is or what is said. While deepfake techniques bring
benefits, there are hidden dangers.

.ese techniques open a new window for film and
television. For example, dead movie stars can reappear
through face manipulation, and people who do not exist
in the real world can be created through GANs. More-
over, malicious attacks and revenge porn are a small part
of malicious face manipulation. .is also influences
politics, such as by tampering with speech content and
spreading fake news [3]. As a result, deepfake videos have
attracted the interest of researchers, and methods to

detect whether a face has been manipulated have become
paramount.

Deepfake videos can have at least three levels of forgery
characteristics: microscopic, mesoscopic, and macroscopic.
Microscopic features correspond to unseen differences, such
as anomalies in small regions. Macroscopic or semantic
features refer to the whole image semantics that the human
eyes can feel. Mesoscopic features are seen in between.
Afchar et al. [4] designed MesoNet to detect mesoscopic
features. Current deepfake video detection methods do not
take full advantage of these three levels of features. Usually,
authenticity discrimination has been based only on high
semantic features, and the performance needs improvement.
It is possible to design a network that can integrate the three
levels for deepfake detection. However, semantic segmen-
tationmethods that can ensure the improvement of accuracy
have not yet been proposed. Similar work was based on the
practical experience of feature hierarchy division. In addi-
tion, it is uncertain whether the weights of the three hier-
archical features are the same.

Deepfake video detection methods have achieved ac-
curacy of nearly 100% for high-quality videos, but their
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accuracy for low-quality videos with high-compression rates
needs to be improved [5]. For example, the accuracy of
Xception [6] was 99.26% for the uncompressed Face-
Forensics++ dataset [7], but 72.93% at the C40 compression
rate without pretraining. .e high-compression rate makes
the video very blurry and the forgery trace becomes unclear
and not obvious, thereby becoming more difficult to dis-
tinguish the real video from the fake. Most videos on the
Internet are compressed due to upload size limitations; thus,
low-quality video forgery detection is significant. For this
kind of video, we studied the commonly used H.264 video
compression format, which includes inter and intraframe
compression [8]. If only the original adjacent frames are
removed through interframe compression, the accuracy will
indeed be improved in theory. However, this will lead to
inconsistencies with the creation requirements of bench-
mark datasets such as FaceForensics++, so we only use
intraframe compression, which preserves the Y channel
information on the YCrCb space and compresses the CbCr
information as much as possible. Figure 1 shows the changes
of different channels in an image at different compression
rates. After comparative experimental analysis, we find that
when the Y channel of the image is used as the input, the
accuracy is higher than that when other channels are used. In
addition, to highlight the high-frequency information of
low-quality videos, multiscale detail enhancement was
performed on images before channel separation. Based on
the above two findings, we propose a deepfake detection
method integrating different semantics in the network. We
find no standard for semantic division from the aspect of
channel level, but division from the aspect of the receptive
field of the convolution kernel is reasonable.

When considering semantic level importance, instead of
assigning weights manually, we use channel-spatial attention to
assign them automatically. .erefore, a multichannel network
with different receptive fields is proposed to integrate the
features at different levels to capture forgery features. In
constructing the neural network, the essential information is
extracted through preprocessing and input to the network. We
connect the feature maps of multiple pathways or semantics
and automatically assign the weights to the three semantics
through the channel-spatial attention module, perform feature
fusion, and classify. We train and test our model on Face-
Forensics++ and DeepFake-TIMIT [9] and perform cross-
validation on Celeb-DFv2 [10]. Experimental results show that
our network has better accuracy than current methods, es-
pecially in low-quality deepfake video encoding.

.is work makes the following contributions:

(1) A multiscale detail enhancement method is intro-
duced in deepfake detection. Fuzzy features are
extracted from three Gaussian kernels, the residuals
are calculated with the original image, and the de-
tailed texture features of the forged image are
highlighted;

(2) Based on the study of video compression methods,
the extraction of significant channel information
assists in the detection of forged images with high-
compression rates;

(3) A multipath network for multisemantic information
fusion is proposed. .e three kinds of semantic
information are automatically assigned weights by a
channel-spatial attention module, and low, medium,
and high semantic information of forged images can
be effectively divided and interpreted;

(4) Our method is evaluated on manipulated videos
datasets. It performs well on the DeepFake-TIMIT
and FaceForensics++ datasets and generalizes sat-
isfactorily on Celeb-DFv2. .e proposed pre-
processing method can improve the detection of
low-quality counterfeit videos, and the network can
comprehensively capture different semantic infor-
mation of images.

2. Related Work

We summarize current fake video generation methods,
analyze deepfake detection methods, and introduce our
method.

2.1. Deepfake Image Generation. Image generation tech-
niques have developed rapidly over the past two decades,
and methods such as StyleGAN [11] can produce fake
images or videos that are credible to the eye. It is especially
difficult to see traces of forgery after a video is compressed.
Juefei-Xu et al. [12] produced a comprehensive report on
counterfeiting generation and detection. Deep learning
generation techniques of deepfake videos include autoen-
coders and GANs. Forgery methods can be categorized by
the generated results as entire face synthesis, attribute
manipulation, identity swap, and expression swap, as shown
in Figure 2. Entire face synthesis generates a face that does
not exist in the world. .e input of these networks is a
random vector, and the output is a realistic fake face image.
Many models can be used, such as WGAN [13], StyleGAN,
and PGGAN [14]. Attribute manipulation can modify the
attributes of a person’s head, including simple attributes
such as expression, hair color, and baldness and complex
attributes such as gender, age, and the wearing of glasses.
Classic examples are StarGAN [15] and STGAN [16].
Identity swapping, which replaces a face in a source image
with a target’s face, has attracted much interest in recent
years. Apps such as Zao [17] allow one to swap identities
with a favorite star. Moreover, there are malicious attacks.
Examples of identity swapping methods include FaceSwap
[18] and CycleGAN [19]. Also known as face reconstruction,
face-swapping is somewhat similar to identity swapping,
replacing the source image’s facial expression with that of
the target image’s facial expression, which include Face2Face
[1] and A2V [20].

Methods of forgery generation include AAMS [21] for
style transfer, SC-FEGAN [22] for image repair, and SAN
[23] for super-resolution, but most of these methods are not
the focus of face manipulation detection. According to the
risk rank, identity swapping entails the most risk, followed
by expression swap. Entire face synthesis and attribute
manipulation are not very dangerous.
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2.2. Deepfake Image Detection. Methods to detect deepfake
features are based on spatial or image pixels, the frequency
domain, or biological signals. Spatial-based methods use
either conventional feature forensics or deep learning.

Conventional image forensics relies on specific manipula-
tion evidence [24], using frequency domain and statistical
features such as local noise analysis, illumination, and device
fingerprints to distinguish deepfakes. Nataraj et al. [25]

Real

Real

Target

Target

Fake

Fake

Real

Fake Fake

Real

Identity
Swap

Expresision
Swap

Entire
Face

Synthesis

Attribute
Manipulation

High Risk

Medium Risk

Low Risk

Figure 2: Samples of four forgery categories. Colors at lower-right indicate risk level.

(a) (b) (c) (d) (e)

Figure 1: Changes in YCrCb channels of images with three compression ratios (declining video quality): (a) the image under the RGB
channel; (b) the result of conversion to YCrCb channels; (c), (d), and (e) Y, Cr, and Cb images, respectively. Changes of Cr and Cb channel
information are most apparent.
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extracted co-occurrence matrices on three color channels in
the pixel field and conducted classification training
according to these features. Although the conventional fo-
rensics technique is mature, several shortcomings are
present in dealing with deepfake videos because it pays more
attention to abnormal features of local images. Deepfake
videos are usually processed to avoid detection, such as by
compression methods, compression rates, and condensa-
tion..erefore, the conventional feature forensics technique
cannot be directly applied to detect deepfake videos.

Methods based on or combined with deep learning have
recently gained attention [26–29]. Sabir et al. [30] used
recurrent neural networks to capture temporal differences in
fake videos. Liu et al. [31] conducted an empirical study on
real and fake faces and obtained some important findings.
One of these findings is that the texture of a fake face is
fundamentally different from that of a real face. Deep
learning techniques and large datasets make it easier to catch
the features associated with forgery [32]. .is method can
judge the authenticity of a single-frame image and detect
video frames by a combined strategy, but it has limitations.
Most learning models rely on the same dataset with the same
data distribution for both training and testing and are weak
in the face of unknown tampering types [33]. At the same
time, the ability of deep learning models to detect highly
compressed video frames is greatly reduced.

.e method based on the frequency domain analyzes the
differences of deepfake images such as through a Fourier or
wavelet transform [34]. Durall et al. [35] proved that
standard upsampling methods lead the forged images
generated by these models to fail and to correctly reproduce
the spectral distribution of natural training data. Most
methods calculate feature maps with the differences between
true and fake images in the frequency domain, and combine
deep learning such as the support vector machine (SVM) for
classification. Because the available spectrum of high-reso-
lution images is much smaller than that of high-resolution
photos, it is challenging to identify compressed videos.

Biometric authentication techniques have developed in
recent years [36]. Detection methods based on biological
signals cannot reproduce natural physiological character-
istics by using fake videos, and the physiological charac-
teristics of fake faces are inconsistent with those of real faces.
[37]. .erefore, biological signal detection-based methods
are constantly being developed by researchers. For example,
by monitoring minimal periodic changes in skin color, Qi
et al. [38] speculated that the normal heartbeat rhythm
would be interrupted by deepfakes and proposed a dual
temporal attention network. Although detection methods
based on physiological signal characteristics can effectively
make use of the defects of deepfake techniques, these
methods gradually become invalid with the continuous
improvement of generation methods, such as the addition of
physiological characteristics (e.g., blink frequency). Besides,
methods based on hard-to-find biological signals, such as
heart rate, would be far less accurate due to video com-
pression and other processing [39].

Because conventional forensic techniques are easily
avoided by new deepfake techniques, frequency domain

feature-based statistical methods are not strong at detecting
low-resolution forged videos, and biological signal-based
methods are weak in improving generation technique. Most
current work still adopts data-driven deep learningmethods.
As far as we know, current deep learning methods do not
fully use the three semantics of images. For example,
Mesonet only used mesoscopic semantics, while later net-
works used macroscopic semantics for judgment, such as
Xception [7], FDFtnet [40], and AMTEN [41]. Zhao et al.
[42] used microscopic and macroscopic semantics. Al-
though some previous work mentioned semantics, they
could not explain the relationship between network depth
and the three types of semantics. Our work developed a
targeted solution to this problem; specifically, the three
semantics are set according to the width of the network,
which has better interpretability. Moreover, ablation ex-
periments show that the proposed method is effective and
can surpass current methods at detecting forged images,
especially in low-resolution videos. In addition, according to
the compression principle, we propose a preprocessing
method for low-resolution video.

3. Proposed Method

Based on the above analysis, we design a multisemantic path
neural network (MSPNN) for deepfake detection to capture
deepfake features under different semantics, as shown in
Figure 3.

3.1. Multiscale Detail Enhancement. We use a multiscale
approach to enhance the details of the source image. We first
define three Gaussian filters:

G1 �

0.0030 0.0133 0.0219 0.0133 0.0030

0.0133 0.0596 0.0983 0.0596 0.0133

0.0219 0.0983 0.1621 0.0983 0.0219

0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2 � g2 ∗g
T
2 ,

(1)

where g2 � [0.02760.06630.12380.18020.20420.18020.

12380.06630.0276] and

G3 � g3 ∗g
T
3 , (2)

where g3 � [0.00810.01370.02200.03300.04650.06160.

07660.09000.10150.09000.07660.06160.04650.04650.

03300.02200.01370.0081].
.en, we obtain three fuzzy images using Gaussian

image filters

B1 � G1 ⊗ Iin,

B2 � G2 ⊗ Iin,

B3 � G3 ⊗ Iin,

(3)

where G1, G2, and G3 are Gaussian kernels with respective
kernel sizes of 5 × 5, 9 × 9, and 19 × 19 and standard
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deviations σ1 � 1.0, σ2 � 2.0, and σ3 � 4.0; ⊗ represents
convolution; and B1, B2, and B3 are the three filtered images.
.e fine, intermediate, and coarse details are, respectively,
extracted as

D1 � Iin − B1,

D2 � B1 − B2,

D3 � B2 − B3.

(4)

We combine the three layers to generate a detailed image
of the whole:

D
∗

� 1 − w1 × sgn D1( (  × D1 + w2 × D2 + w3 × D3 + Iin.

(5)

According to experience, ω1, ω2, and ω3 are fixed as 0.5,
0.5, and 0.25, respectively. Figure 4 shows the process of
image detail enhancement. Figure 5 shows the effect of
multiscale detail enhancement. Faces at the top in Figure 5
are slightly blurred, while at the bottom, detail enhancement
makes the visual perception of local details clearer, which
aids in the detection of forged images with high
compression.

3.2. CompressedVideos Analysis. According to our research,
the detection accuracy of high- and medium-quality deep-
fake videos, i.e., uncompressed and medium-compressed,
respectively, is close to 100%, while that of high-compression
videos is much worse, especially for some videos with more
realistic tampering effects. .erefore, research on high-
compression forged video must be improved. Since human
eyes are not sensitive to the chromaticity of an image but are
sensitive to its brightness, during image compression, it is
desirable to retain as much chromaticity information as
possible and compress brightness information to save
storage space. Since the chrominance information of the
compressed video hardly changes, the definition of the video
does not change significantly. Since compression is carried
out in YCrCb color space and our datasets are RGB images,
spatial conversion is first required, given as follows:

Y

Cr

Cb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0.299 0.578 0.114

0.500 −0.4187 −0.0813

−0.1687 −0.3313 0.500

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×

R

G

B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

0

128

128

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(6)

where R, G, and B are the gray values of the three com-
ponents of RGB.

Figure 1 shows images with different compression rates.
.e compression rate increases gradually from the first to
the third row. .e first line is the original image, and the
image that is almost visually lossless in the second row is
slightly compressed. .e third row is a low-quality image.
Column (a) shows images in RGB color space, and column
(b) shows images under the YCrCb channels. Column c,
column d, and column e show separate images using the
YCrCb channels, such as the Y channel, the Cr channel, and
the Cb channel, respectively. .e change in the Y channel is
the least obvious, and the change in the Cr and Cb channels
is the most obvious. Inspired by the above observations, we
extract the image information of the RGB channel into two
types of luminance information and one type of chromi-
nance information, i.e., the YCrCb channel. .en, we
conducted four experiments using the Y channel, the Cr
channel, the Cr channel, and the original image separately to
verify our idea. Experimental results show that using only Y
channel information can improve the accuracy of highly
compressed video and has little effect on slightly compressed
video.

3.3. Multisemantic Path. MSPNN can output feature maps
with multiple semantics through different receptive fields
and network depths..e features of these different layers are
finally connected, and a learnable weight is added to the
three feature layers for fusion classification. .e final clas-
sification relies on the deep feature map and considers the
shallow and middle feature maps. .e overall framework is
shown in Figure 3.

.e network has three parts. First is simple image
preprocessing to generate 32 feature maps. Different feature
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Figure 3: Cropped images of faces are used as input. After multiscale image detail enhancement preprocessing, Ie is obtained, and YCrCb
channel separation is performed. .e Y channel image I is taken as input. Preliminary feature F is extracted and put into the microscopic,
mesoscopic, and macroscopic semantic channels. Fmi, Fme, and Fma are obtained by feature extraction of the three channels. .ese are
fused into the channel and spatial attention modules, and the weight of the three semantic feature maps is allocated. Results are input to the
discriminator for classification.
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maps are generated through three semantic channels. .e
network details are shown in Figure 6. Since low semantics
can be understood as microscopic images, all filters in the
semantic channel adopt a 3× 3 window. .e high semantics
are the macroscopic features of the image, and the corre-
sponding receptive field is more extensive, so the filter size of
the semantic channel is 7× 7. Inspired by Inception [43], we
replace a 7× 7 convolutional kernel with three 3× 3 con-
volutional kernels, which can reduce computation without
reducing the receptive field and can have more nonlinear
transformations, as shown in Figure 6. Mesoscopic se-
mantics is between mesoscopic and macro semantics. .e
receptive field of this channel is 5× 5, and we use two 3× 3
convolution kernels. Considering the influence of network
depth semantics, the three semantic depths are also
increased.

3.4. Semantic Integration. Although the microscopic,
mesoscopic, and macroscopic semantics of images are
juxtaposed, their importance is not the same. Hence, we
apply a weight to each of the semantics instead of feeding
back directly to the discriminator. In our model, these
weights are learnable, which we accomplish through a
channel-attention module to combine space and channels;
this can achieve better results than SENet [44], which only
pays attention to the channel. .e first one is the channel-
attention module of the image given as follows:

Mc(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

� σ W1 W0 F
c
avg   + W1 W0 F

c
max( (  ,

(7)

where σ denotes the sigmoid function, W0 ∈ RC/r×C and
W1 ∈ RC/r×C. Note that MLP weights W0 and W1 are shared
for both inputs, and ReLU activation is followed by W0.
.en the spatial attention is

Ms(F) � σ f
7×7

([AvgPool(F); MaxPool(F)]) 

� σ f
7×7

F
s
avg; F

s
max   ,

(8)

where f7×7 represents convolution with a 7 × 7 filter, and
AvgPool() and MaxPool() are average and maximum
pooling, respectively..e fused feature map is fed to the final
classifier.

3.5. Loss Function. According to our investigation, the
center loss function, while used in many face recognition
tasks [45], does not improve performance in tasks such as
handwritten number recognition. We conclude that the
center loss function is more suitable for fine-grained clas-
sification tasks. To this end, we introduce a center loss
function to our model as

Lc �
1
2



m

i�1
xi − cyi

�����

�����
2

2
, (9)

where cyi
∈ Rd represents the distribution center of yi

category data; that is, the feature center of true or fake faces,

xi represents the feature before the full connection layer, and
m is the batch size. We use this loss to continually decrease
the sum of squares of the distance between the feature maps
of each sample and the feature, i.e., to make the in-class
distance as small as possible.

Normally, cyi
should be updated as the depth features

change. .e choice of feature centers should consider the
entire training set and average the features of each class in
each iteration. Specifically, cyi

is updated in small batches,
and the centers are calculated by averaging the character-
istics of the corresponding classes in each iteration. Second,
to avoid large disturbances caused by a small number of
mislabeled samples, we use the scalar α, which is limited to
the range [0, 1], to control the learning rate of the center..e
updated equation of cyi

is

Δcj �


m
i�1 δ yi � j(  · cj − xi 

1 + 
m
i�1 δ yi � j( 

, (10)

where if yi � j is satisfied, then δ(yi � j) � 1; otherwise,
δ(yi � j) � 0; that is, when the tags yi and Cj are of different
categories j, then Cj does not require updating. We use a
cross-entropy loss function and central loss joint supervision
to train the network to learn true and fake features. .e
equation of the final loss function is given as follows:

L � LS + λLC. (11)

We first consider Ls and Lc of equation (11) equally
important, so we set λ as 1. Values can have different effects
on the result, and we believe that multiple attempts can find
a more suitable value. We compute

Ls � −
1
N



N

i�1
yilog S yi( (  + log 1 − yi( log 1 − S yi( (  ,

(12)

where yi is the score of the i-th face, and yi ∈ 0, 1 is the
related face label, where the label 0 is associated with faces
from real, original videos, and 1 is associated with fake
videos. N is the total number of faces used to train each
batch, and S(·) is the sigmoid function.

4. Experimental Results and Analysis

We describe popular datasets, video segmentation methods,
and their implementation, describe pretreatment ablation
experiments and comparative experiments with other
methods, and discuss verification of generalization.

4.1. Datasets. Our experiments use the FaceForensics++,
DeepFake-TIMIT, and Celeb-DFv2 datasets. Face-
Forensics++ is one of the largest and most diverse deepfake
datasets. It is a prominent face forgery dataset widely used in
deepfake detection, with 1,000 YouTube videos. .e authors
of FaceForensics++ used four types of face tampering to
create fake videos, including FaceSwap, DeepFakes, Face2-
Face, and NeuralTextures. A total of 1000 deepfake videos
are generated with each tampering method, including videos
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compressed with the original compression rate (C0), videos
compressed with the micro compression rate (C23), and
low-quality videos (C40). FaceForensics++ datasets have
1000 fake videos and 1000 real videos for each compression
rate. When detecting forged videos, we divided the datasets
into training, validation, and test sets according to the
standard of FaceForensics++. .ere are 720 training sets,
140 validation sets, and 140 test sets.

DeepFake-TIMIT is generated by the face exchange al-
gorithm based on the VidTIMIT dataset, which was de-
veloped using the faceswap-GAN method. Furthermore,
Deepfake-TIMIT is the first deepfake dataset generated by
GAN. .e 640 generated fake videos are available in high
(128 × 128) and low (64 × 64) quality. .e production
quality is better than that of Faceforensic++, but the video
resolution is not high. We divided the dataset according to
the settings of FaceForensics++. .ere are 320 videos of the
two qualities, 230 training sets, 45 verification sets, and 45
test sets.

Celeb-DFv2 is a challenging deepfake video dataset that
improves upon some weaknesses of other datasets. For
example, UADFV, Faceforensic++, and Deepfake-TIMIT
have low image resolution, poor quality of synthesized
videos, rough tampering traces, and excessive flicker of video
faces. .e dataset consists of 590 real videos and 5,639

deepfake videos. Real videos from YouTube show celebrities
of different genders, ages, and races.

For a fair comparison, we processed the video according
to the clipping of FaceForensics++. All videos were framed,
and dlib [46] was used to extract the feature points of each
frame of the face to help locate and clip the face area, which
was expanded by 1.3 times. Each video of the cropped face
was taken in 30 frames. For data preparation of frame-level
streams, we used OpenCV to extract frames. Since the
datasets only operate on the faces in the video, not all frame
information is helpful for deepfake detection from this
perspective [7]. We focused our analysis on the area of the
subject’s face, and therefore on human faces, using dlib for
face detection, which further reduced the amount of data
processing. When extracting a face, dlib sometimes fails to
recognize the face in a video frame, in whose case we skipped
the frame and kept a constant number of faces captured in
each video.

Figure7 shows the input image samples and output
feature maps in the three experiments. .e first line uses the
low-compressed DeepFakes datasets in FF++ for training
and testing. .e generation method of forged image in the
second line is the same as in the first line, with a higher
compression rate. .e third line uses the DeepFakes datasets
with low compression in FF++ for training and Celeb-DFv2
for testing so as to verify the generalization performance.
.e output feature maps are the result of the fusion of the
three paths. It can be seen from Figure 7 that the real image
with higher brightness is concentrated in the center of the
featuremap, while the forged image with higher brightness is
concentrated in the lower part.

4.2. Implementation. All experiments were performed on
RTX 3090. .e baseline [7] has a high accuracy in
uncompressed datasets, and we only evaluated our model on
low- and high-compressed data. We implemented MSPNN
using the PyTorch deep learning library. For more details, we
selected cross-entropy as the loss function in the training
phase. .e output of the network was distributed between 0
and 1, and we adopted the autoadaptive algorithm Adam in
the optimization process. .e initial learning rate was 1e-4,
and the policies of cosine annealing LR were both used. .e
center loss function used the SGD optimizer. Batch nor-
malization was used in each convolution to reduce the
impact of overfitting. Dropout was introduced in the final
full connection, with a ratio of 0.5..e batch size of the input
data was 32. We trained our models with 100 epochs. .e
graph of the learning rate with each epoch was similar to a
cosine function. .e rest of the model settings were default
values, the random seed was 43, and the input image was
224× 224.

4.3. Preprocessing Analysis. Preprocessing had two steps.
Multiscale detail enhancement highlights face textures, es-
pecially low-quality images, which are so blurred that it is
difficult to see forged traces. In this process, three filters of
different sizes,G1,G2, andG3, were used to filter the image to
obtain fuzzy images B1, B2, and B3. .e original image was

Iin

D1=Iin−B1 D2=B1−B2 D3=B2−B3

B1 B2 B3

D*1 - ω1 * sgn (D1) 

Iin

Figure 4: B1, B2, and B3 are results of the three Gaussian filters. D1,
D2, and D3 are details of calculation of the original image and
filtered results. .e final image D∗ is enhanced by incorporating
details in the original image.
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Figure 5: Effect of multiscale detail enhancement. .e top part shows the original images and the bottom part shows images with clear
texture after multiscale detail enhancement.
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Figure 6: Network details of MSPNN. All receptive fields in micro semantic pathway are 3 × 3. Superposition of two 3 × 3 convolution
kernels replaces 5 × 5 receptive fields in the mesoscopic semantic path, and skip connection is used in the second block. Two 5 × 5
convolution kernels replace 7 × 7 receptive fields in the macroscopic semantic path. In the third and fourth blocks, skip connections reduce
loss of information. Finally, the output of each path is aligned with other semantic feature maps through downsampling.
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subtracted from B1 to obtain detail image D1. .e detail
image D2 was obtained by combining detail image D1 and
fuzzy image B2, and the detail image D3 was obtained by
combining detail image D2 and fuzzy image B3. .e three
detail images were fused with the original image to enhance
the detail images. .e improved results are shown in Fig-
ure 5. Ablation experiments were performed on the datasets
of FaceForensics++ with compression rates C23 and C40, as
shown in Table 1, from which we can see that the detection
performance of the high-compression dataset was effectively
improved compared with the low-compression dataset,
which shows the effectiveness of the proposed preprocessing
method for low-quality datasets. It is worth noting that the
proposed detection was improved at any compression rate
on the most challenging NeuralTextures dataset. .e pro-
posed method only modifies the facial expression corre-
sponding to the mouth, leaving the eye area unchanged, and
requiring more subtle detection methods.

.e second preprocessing step was channel separation for
high-compression images with low detection accuracy. We
investigated the video compression standard H.264 and found
that the measure keeps the information of the Y channel as
much as possible while compressing the other two channels. In
Figure 1, we can see the changes in the knowledge of the three
channels after compression. So we converted the RGB image to
a YCrCb image, and the images of Y, Cr, and Cb channels were
taken out for training.We found that the accuracy of the image

containing the brightness information channel is much higher
than that containing the chroma information channel. .e
accuracy of the chromaticity information channel is much
lower than of that of the ordinary RGB channel, as shown in
Table 2, according to which most subset accuracy can be
improved by using only Y channel information on the Face-
Forensics++ dataset, especially on the highly compressed C40
dataset. .e experimental effect on some datasets becomes
worse, but this change is not very large. We believe that the
forged image with a low compression rate is close to the
original image, so the effect is not apparent.

4.4. ExperimentalResults. Most detection methods are based
on macroscopic semantics, i.e., the final feature maps of the
network. .e difference between a natural face and a fake is
often subtle and occurs in the local area. Minor artifacts
caused by the deepfake method are usually stored in the
shallow characteristic of texture information. We believe
that the microscopic semantic or superficial semantic fea-
tures cannot be ignored. Focusing only on details is also
flawed. A microscopic analysis based on image noise cannot
be applied to the compressed video environment, where the
image noise is strongly reduced. It is difficult for the human
eye to distinguish the forged images at the same higher
semantic level, especially in fine-grained analyzes, such as
face discrimination. .erefore, our work takes into account
the three kinds of semantic information, which receptive

Training Datasets Test Datasets Test Feature MapsTraining Feature Maps

FF- Real (C23) FF- Real (C23)FF- Fake (C23)FF- Real (C23) FF- Real (C23)FF- Fake (C23) FF- Fake (C23) FF- Fake (C23)

FF- Real (C40) FF- Real (C40)FF- Fake (C40) FF- Fake (C40) FF- Real (C40) FF- Fake (C40) FF- Real (C40) FF- Fake (C40)

FF- Real (C23) FF- Fake (C23) FF- Real (C23) FF- Fake (C23) Celeb- Real Celeb- Fake Celeb- Real Celeb- Fake

Train 1: FF-DF (C23)
Test 1: FF-DF (C23)

Train 2: FF-DF (C40)
Test 2: FF-DF (C40)

Train 3: FF-DF (C23)
Test 3: Celeb-DFv2

Figure 7: Training set, test set, and output feature maps. Red boxes indicate differences between real and fake images. It can be seen that the
real image with higher brightness is concentrated in the center of the feature map, while the forged image with higher brightness is
concentrated in the lower part of the feature map.

Table 1: Accuracy comparison of multiscale detail enhancement methods for datasets with different compression rates before and after
introduction.

Acc (%) on FF++(HQ) Acc (%) on FF++(LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

Without detail enhancement 99.73 99.09 99.17 91.2 93.83 91.15 92.47 74.41
With detail enhancement 99.54 98.92 98.86 91.3 94.25 91.25 91.74 74.52
.e bold values indicate the better results in the two experiments.
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fields of various sizes can also capture, and which are more
explanatory, as shown in Figure 8.

Gradient-weighted class activation mapping is used to
visually display the details of the attention of the three
pathways, and it is evident that the microscopic semantic
pathway pays more attention to details and the mesoscopic
semantic path to multiple blocks. Macro semantics focus
more on areas that are difficult to forge, such as the eyes,
nose, and mouth because these are the most difficult to
reproduce during the generation of forged images. In ad-
dition, small convolution kernels are used to map large
convolution kernels, which reduces the computation of

convolution, while increasing multiple nonlinear activa-
tions, and the receptive field is unchanged. We add residual
blocks to the mesoscopic and macroscopic semantic path-
ways to ensure that information is not lost when the network
depth increases. In Table 3, we can observe that much of the
accuracy of the datasets is improved under the three
pathways. .ey have a poor effect on some datasets, in
particular the NeuralTextures dataset, which only tampers
with parts of the images, whereas our microscopic semantic
pathway captures much information that is not helpful to the
detection of these datasets. Our addition of preprocessing
makes up for this problem, as shown in Table 1. We also

3*3 Receptive Field

Microscopic Semantic Path

Low Semantic
Activation Map

Mesoscopic Semantic Path

2*3*3 Receptive Field
replace 5*5 Receptive Field 

Middle Semantic
Activation Map

2*5*5 Receptive Field
replace 7*7 Receptive Field 

Macro Semantic Path

High Semantic
Activation Map

Figure 8: Receptive field description maps of different semantic paths and generated results.

Table 2: Y, Cr, Cb, and RGB channels used as input for training and test results for C23 and C40 datasets.

Acc (%) on FF++(HQ) Acc (%) on FF++(LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

RGB 99.73 99.09 99.17 91.2 93.83 91.15 92.47 74.41
Cr channel 84.46 85.58 79.04 83.35 79.67 75.73 75.32 63.32
Cb channel 87.19 85.17 77.08 80.11 80.45 72.91 69.65 59.83
Y channel 99.57 99.21 99.34 91.08 94.35 91.01 92.55 74.92
Bold values indicate the best results for four different channels.
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conducted experiments to verify the effectiveness of our
proposed channel and spatial attention modules. It is valid
for most datasets, as shown in Table 4. In particular, we find
that NeuralTextures and Face2Face can have satisfactory
effects in the most complex datasets of FaceForensics++.

Our overall accuracy on FaceForensics++ datasets ex-
ceeds that of many other previous methods, as shown in
Table 5. Most of the work on the TIMIT dataset uses the

AUC indicator. To evaluate the overall detection perfor-
mance, we calculated the area under the curve (AUC), which
is the area under the receiver operating characteristic (ROC)
curve, whose maximum value is 1 and displays the results in
Table 5. .e AUC of our proposed method is higher than
that of other methods, indicating better performance on
compressed deepfake video detection.

4.5. Validation of Generalization on Celeb-DFv2.
Cross-dataset validation was carried out to evaluate the
generalization ability of the proposed method. .e model
was trained on FaceForensics++ and tested on Celeb-DFv2.
We followed the setup of Celeb-DFv2 [10] to divide the test
set and displayed the experimental index AUC scores in
Table 6. It can be seen from the results that this method has a
better generalization effect than most methods. Masi’s [55]
generalization on Celeb-DFv2 is better than ours, but the
AUC score in the original dataset is far behind. Our ap-
proach has limitations, but it has always been a challenge to
balance accuracy and generalization.

5. Conclusion

Although methods for deepfake detection of videos and
images have made much progress, few methods consider
multiple aspects of semantic information. .is work

Table 3: Comprehensive precision comparison of three semantic pathways on FF++ dataset, and comprehensive precision comparison of
three semantic pathways and multiple semantic pathway networks on neuraltextures, deepfakes, FACE2FACE, faceswap, and
neuraltextures.

Acc (%) on FF++ (HQ) Acc (%) on FF++ (LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

Microscopic path 99.05 98.57 98.39 90.05 91.26 89.72 90.01 73.4
Mesoscopic path 99.2 99.17 98.86 91.01 92.32 88.92 88.20 73.52
Macroscopic path 99.32 99.21 98.77 91.52 94.4 91.04 92.41 75.09
Multipath 99.73 99.24 99.17 91.30 93.83 91.15 92.47 74.41
Results in bold indicate the best results of the four ablation experiments.

Table 4: Ablation experiment on assigning weight to different semantics by adding attention module (ACC %).

Acc (%) on FF++(HQ) Acc (%) on FF++(LQ)
DeepFakes Face2Face FaceSwap NeuralTextures DeepFakes Face2Face FaceSwap NeuralTextures

Without attention 99.73 99.09 99.17 91.2 93.83 91.15 92.47 74.41
With attention 99.49 99.35 99.06 91.31 94.87 91.26 91.13 74.75
Bold values indicate higher results in two experiments.

Table 5: Quantitative detection results of ACC (%) using FF++ dataset on high quality (C23 light compression) and low quality (C40 heavy
compression) videos and AUC on TIMIT datasets. Bold font indicates the best result.

Acc on FF++(HQ) Acc on FF++(LQ) AUC on TIMIT(HQ) AUC on TIMIT(LQ)
Bayar and stamm [47] 88.68 61.6 86.50 88.33
InMesonet [4] 57.81 69.75 81.15 82.63
Rahmouni et al. [48] — 58.10 — —
Mesonet [4] 54.91 50.28 63.68 77.44
Zhou et al. [49] — — 73.5 83.5
Chollet [6] 91.87 72.93 93.64 88.24
Nirkin et al. [50] — 75.00 — —
Ours 94.21 76.31 99.12 99.52

Table 6: Face cross test results, using frame-level AUC (%) to
compare our method with others on both benchmarks.

Method FF-DF Celeb-DFv2
Two-stream [49] 70.1 53.8
Meso4 [4] 84.7 54.8
MesoInception4 [4] 83.0 53.6
HeadPose [51] 47.3 54.6
FWA [52] 80.1 56.9
DSP-FWA [52] 93.0 64.0
VA-MLP [53] 66.4 55.0
VA-LogReg [53] 78.0 55.1
Xception [6] 93.65 64.52
Multitask [54] 76.3 54.3
Two branch [55] 93.18 73.41
Capsule [56] 96.6 57.5
Ours 96.7 66.7
Bold values indicate higher results in two experiments.
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proposes a new face forgery detection method, MSPNN,
which can simultaneously capture micro, mesoscopic, and
macro semantics to comprehensively distinguish forged
images, with weights assigned automatically to the three
semantics. .e neural network can comprehensively capture
different semantic information of an image. In view of the
challenges of face tampering in a small-range, high-com-
pression dataset, and cross-dataset, the proposed framework
can effectively capture minor forged artifacts and macro
forged traces, which can further improve the detection of
high-compression forged images. .is framework has good
generalization as well. Furthermore, the proposed pre-
processing method can improve the detection ability of our
framework for low-quality counterfeit videos. Our future
work will consider the combination of frequency domain
information and brightness information at the separation
point to integrate the corresponding features for deepfake
detection.
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Using image segmentation techniques to assist physicians in brain tumor diagnosis is a hot issue in computer technology
research. Although most brain tumor segmentation networks to date have been based on U-Net, the prediction results are
depending on which are not well generalized and need to be further improved. As the depth of the network increases, the
gradients of the network vanish together with the decrease of the accuracy; meanwhile, the large number of parameters in the
network will cause data redundancy. Moreover, a single modality of MRI images cannot adequately segment tumor details.
*erefore, a segmentation network with an improved U-Net model is proposed in this paper, which combines Dilated
Convolution-Dense Block-Transformation Convolution-Unet (hereafter referred to as DRT-Unet). *e network adopts the
combination of dilated convolution, dense residual block, and transposed convolution. In the coding process, a dilated
convolution block and a local feature residual for fusing dense block are adopted to replace the 3 × 3 convolution layers on each
layer in U-Net, and a transition layer is used for down-sampling. In the decoding process, a local feature residual is adopted for
fusing dense blocks; meanwhile, a deconvolution structure with up-pooling and transposed convolution cascade is used. By
connecting the decoded output features with the encoded low-level visual features, the information on transition layer loss is
obtained. *e experiments in this paper are carried out on BraTs2018 and BraTs2019 datasets; as a result, the DRT-Unet
network can effectively segment tumor lesion regions.

1. Introduction

Brain tumors are a general term for tumors of the nervous
system that grow inside the skull, second only to tumors of
the lung, stomach, uterus, and breast, accounting for ap-
proximately 5% of systemic tumors, 70% of childhood tu-
mors [1], and more than 2.4% of deaths [2]. Magnetic
resonance imaging (MRI) is one of the most commonly used
diagnostic techniques in clinical care, which is particularly
important in the diagnosis of brain tumors. It is noninvasive,
accurately providing the shape, size, and location of the
brain tumors without the patients receiving high ionizing
radiation, as well as having good soft tissue contrast [3].
Accurate segmentation of brain tumors is of essential im-
portance for disease diagnosis, pathological research, and
later surgical plan determination.

Although accurate segmentation of brain tumors is re-
quired in clinical research, it is usually filled with challenges,
mainly including image artifacts, noise, and low contrast, as
well as considerable variations in tumor shape, size, and
location from case to case. What is more, the segmentation
of brain tumors is more challenging since the boundaries
between the structures of brain tumors are fuzzy and the
internal structures are similar. Manual segmentation of the
brain tumors, which depends on the doctor’s expertise and
experience, is quite cumbersome. *erefore, the study of a
method that can automatically, accurately, and effectively
segment brain tumors is of great significance for clinical
diagnosis and surgery.

In recent years, deep learning has achieved a series of
successes in many fields such as image, audio, and natural
language. Among them, convolutional neural networks
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(CNNs) have important references in computer vision tasks
[4–9], and significant progress has been made in semantic
image segmentation [10, 11]. CNNs learn visual and se-
mantic features in images during the training process, re-
ducing the complexity of the network model and making it
possible to train networks in depth. In summary, deep CNNs
have a wide range of applications in medical image pro-
cessing [12–14]. According to the different input and output
methods, the image segmentation method based on deep
learning can be divided into block segmentation and end-to-
end segmentation, and the latter is mainly realized through
the encoder-decoder structure.*e complete image or image
block is input, and the type probability of each pixel in the
output image is decoded, so as to achieve the purpose of
tumor region segmentation. *e relevant model of this
method is mainly based on the U-Net network, which
proposes a symmetric structure with jump connections to
retain image details, becoming the mainstream framework
for most image segmentation tasks. Although the improved
method based on U-Net improves the segmentation per-
formance, there is still room for improvement in network
depth and generalization. In recent years, the concept of
identity mapping has been introduced to balance the depth
and performance of the network. However, the use of re-
sidual blocks to adjust the number of channels makes the
number of channels increase dramatically, resulting in data
redundancy. Unimodal MRI images cannot complete the
full segmentation of tumor-related areas and details, and the
use of multimodal brain tumor images can make up for the
above weaknesses.

In this paper, the characteristics and performance of
each model are combined and a multimodal brain tumor
segmentation method is proposed for the DRT-Unet net-
work, which is similar to U-Net in the overall framework.
*e exact contributions of this paper are as follows:

(1) *e ordinary convolution with dilated convolution is
combined to expand the sensory field and optimize
the feature extraction capability. While introducing
two mapping methods, 3× 3 ordinary convolution
and dilated convolution in parallel can obtain a
sensory field larger than 9 frames, with a greater
sensory field and better feature extraction capability.
Each pixel in the output feature map can respond to a
larger area in the image.

(2) *e dense block used in this paper consists of a dense
layer and a residual fusion of local features. *e
“jump connection” of ResNets is introduced in the
down-sampling process, which is combined with the
dense block to preserve and propagate the rich low-
level visual features [15], such as brain tumor
brightness, color, texture, and other features that
directly stimulate vision.

(3) In the decoding process, dense blocks are fused by
using local feature residuals to form a cascaded
deconvolution structure, so that the output image
has the same dimension as the input image, while in
the decoding process, low-level visual features from

the encoding process are connected with the same
dimension and channels; meanwhile, features are
fused to obtain the missing information after the
transition layer in the encoding path.

2. Related Work

Currently, most deep CNNs used for brain tumor seg-
mentation networks are end-to-end. End-to-end brain tu-
mor segmentation networks use an encoding-decoding
approach where the input is the whole image or image block.
*e features are extracted by encoding in the convolutional
layer, which is then decoded to obtain the class probability of
each pixel point in the whole image or image block finally.
Such a segmentation method is mainly based on FCN [16]
and U-Net networks [17]. Raza et al. [18] proposed a hybrid
model based on a deep residual network and U-Net, which
takes the residual network as the encoder to deal with the
problem of gradient disappearance, as well as uses low-level
and high-level features to predict. Nevertheless, this method
ignores the context information, resulting in high compu-
tational costs. Zhang et al. [19] proposed a multi-scale mesh
aggregation network. By introducing an improved inception
module to replace the standard convolution, effective in-
formation is extracted and aggregated from different re-
ceptive fields, and the network aggregation strategy is
adopted to gradually refine shallow features. However, the
number of network parameters is large, accompanied by low
segmentation efficiency. Chen et al. [20] proposed a sym-
metric network based on a deep convolution neural network,
which expanded the functional mapping between low-level
and high-level features by adding symmetric masks in
multiple layers, and combined the prior knowledge of
symmetry with brain tumor segmentation; however, the
effect of low-contrast tumor segmentation was poor. Wang
et al. [21] proposed a segmentation network based on a
segmented attention module, which extracted useful in-
formation in connected features through different attention
mechanisms and discarded redundant information to realize
selective aggregation of features. What is more, Wang et al.
[22] proposed extracting multi-scale image features by using
a spatial module composed of multiple parallel dilated
convolution layers and deepening the network structure by
using a residual module. Shen et al. [23] proposed a multi-
task full convolutional network for the automatic segmen-
tation of brain tumors. Based on the hierarchical relation-
ship between tumor substructures, the network takes
multimodal MRI images and their symmetric differential
images as inputs to extract multi-level background infor-
mation. Experiments showed that the proposed multi-task
FCN outperformed single-task FCN for all subtasks.
However, there were limitations in the FCN-based approach
for predicting low-resolution images [24]. Based on U-Net
network, Hao et al. [25] proposed a new network for brain
tumor segmentation. *ey used a comprehensive data en-
hancement scheme to preprocess the data and conducted the
experiments with BraTs2015 dataset. *e DSC values ob-
tained in the intact tumor region, the core tumor region, and
the enhanced tumor region were 0.86, 0.86, and 0.65,
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respectively. Although the performance of the network can
be improved as more layers are added to the network,
degradation and gradient disappearance can occur with the
deepening of the network.*e ResNets proposed by He et al.
[26] in 2015 cope with this problem by introducing the
concept of residual blocks. ResNets perform well in a range
of image recognition, localization, and detection tasks, such
as ImageNet and COCO object detection. *e literature [24]
proposes RefineNet, a generalized multi-path optimization
network whose components are connected by using resid-
uals according to the idea of identity mapping, so as to
achieve efficient end-to-end training. Experimentally, the
method proved to improve the performance of the seg-
mentation. However, the addition of a multi-path refine-
ment network on ResNets increased the parameters of that
network as well.

DenseNet [27], as the best paper of CVPR2017, does not
take deepening and widening the network as the two ways to
improve the performance of the network, but considers the
feature perspective, greatly reducing the number of pa-
rameters as well as alleviating the problem of gradient
disappearance through feature reuse and bypass settings.
*e authors in the literature [28] proposed a fully con-
volutional network for semantic segmentation, i.e., FC-
DenseNet, by fusing dense blocks in DenseNet with jump
connections of ResNets. Kaku et al. [29] proposed a brain
tumor segmentation network named DenseUnet by incor-
porating the dense block structure into U-Net and con-
ducted experiments in Mindboggle-101 and New York
University (NYU) artificial correction dataset. *e best Dice
values of 0.819± 0.011 and 0.800± 0.012 were obtained,
respectively, which were better than the segmentation
performance of U-Net.

3. Network Model

On the basis of the advantages and disadvantages of FCN,
U-Net, ResNets, and DenseNet and the computational
principles of CNNs, this paper proposes a segmentation
network of DRT-Unet, whose network structure is shown in
Figure 1. *e DRT-Unet network is similar to U-Net in the
overall framework; meanwhile, a dense fusion of dilated
convolution blocks, as well as local feature residuals, is used
in the encoding process. In the coding process, the dilated
convolution block and the local feature residual fusion dense
block are used instead of two repetitive 3× 3 convolution
layers in U-Net: the dilated convolution block consists of
dilated convolution and normal convolution, which can
expand the perceptual field without losing local information.
An X×X convolution layer can make the value of each pixel
feel an area of X2 size; for example, a 3× 3 convolution layer
can obtain the receptive field of 9 lattice size, but the parallel
connection of ordinary convolution and dilated convolution
can not only obtain receptive fields larger than 9 lattices, but
also introduce two mapping methods at the same time.
*erefore, the combined hole-convolutional block has larger
receptive fields and better feature extraction ability. *e
dense block in this paper is composed of a dense layer and
residual fusion of local features, and the identity mapping of

ResNet is connected to the dense block and the coding
process, so as to retain and spread more low-level visual
features. *e transition layer is used for down-sampling in
the coding process. *e decoding process is implemented by
using a deconvolution structure with local feature residual
fusion dense blocks and up-pooling and transposed con-
volution cascades, while the decoding process connects with
the lower-level visual characteristics in the encoding process
with the same dimension and number of channels, and the
features with high-level semantic information are then fused
to generate new features to obtain the missing information
after the transition layer in the encoding path. (Since then,
the deconvolution in the following refers to the cascading
operation of up-pooling and transposed convolution in the
decoding network).

It is required that the feature maps remain the same size
in the same dense block, so only a transition layer between
different dense blocks is implemented for down-sampling.
To further decrease the network parameters, a 1× 1 con-
volution operation is inserted between every two dense
blocks. *e transition layer is the TD (transition down)
module in Figure 1, whose specific structure is BN+Conv
(1× 1) + 2× 2 max-pooling. *e number of layers in the
down-sampling part of the network is set according to the
number of layers in the first four dense blocks in FC-
DenseNet.

3.1. Dilated Convolution Block. Deep CNNs usually use
down-sampling or convolutional layers to enhance the
perceptual field of the network, which, however, will reduce
the spatial resolution. In order to be able to balance both
resolution and perceptual field, the literature [30] proposes
dilated convolution, also known as dilated convolution.
*erefore, in this paper, the coding process of the network
uses the dilated convolution at each layer instead of the twice
repeated 3× 3 convolution used in the U-Net network.

*e computational effort of the dilated convolution is
comparable to that of the conventional convolution, except
that the sampling density of data is changed. However, in
the results of a layer obtained by using the dilated con-
volution, the neighboring pixels are obtained from the
convolution of independent subsets. *ere is a lack of
correlation between them as well as a problem of local
information loss, while the network model in this paper
adopts the dilated convolution and normal convolution in
parallel to obtain this information and solve the problem of
lack of correlation between the convolution results. Input
image or image block, a 3× 3 dilated convolution layer, and
a 3 × 3 ordinary convolution layer are used to extract
features under different receptive fields, and the feature
extraction results under two different mapping methods
are obtained. Two different feature extraction result ma-
trices are spliced, and the combined hole convolution block
output results are obtained through the activation function.
Compared with 3× 3 ordinary convolution, the result has a
larger receptive field and richer contextual information.
*e structure of the dilated convolution block used in this
paper is shown in Figure 2.
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3.2. Dense Residual Block. Recent research has shown that
CNNs can be trained more deeply, accurately, and efficiently
if shorter connections are used between their input and
output layers. Based on this conclusion, the literature [27]
proposed DenseNets, which consist of dense blocks that
connect each layer with all previous layers. *e features on
the input of each of these layers are the outputs of all
previous layers, and the features on the output of each layer
will be used as the input of all subsequent layers. *is dense
connection now makes a direct connection on the input and
loss at each layer, so the dense network can mitigate the
problem of gradient disappearance. Given the above ad-
vantages of dense blocks, the dense block of local feature
residual fusion from the literature [15] is cited in this paper,
which consists of two parts, i.e., a densely connected block
and a local feature residual block fusion.

3.3. Deconvolutional Network. *e DRT-Unet network uses
local feature residuals to fuse dense blocks and up-pooling
and transposed convolutional cascade with a deconvolution

structure to realize the decoding process of feature map size
scaling. *e information generated by the dense block
during the encoding process is lost after the transition layer,
but this lost information can be obtained in the decoding
path by making a jump connection to the encoding path.
*us, the feature map after the up-pooling operation is
jump-connected with the features of the same layer in the
coding network to form the input of the next dense block. In
order to reduce the spatial dimension, the input of the dense
block in the deconvolution-decoding network is not cas-
caded with its output. As shown in Figure 1, the coding
network in the upper half is a feature extractor that extracts
feature descriptions from the input image, while the
decoding network in the lower half is a shape generator used
to generate segmentation targets from the extracted feature
maps. It can be seen that the deconvolution-decoding
network is almost a mirror result of the convolution-
encoding network.

*e feature map recovered by up-pooling becomes a
sparse feature map due to the presence of a large number of 0
elements. *e transposed convolution refers to the
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Figure 2: Structure of the dilated convolution block.
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transposition of the convolution kernel learned in the
process of convolution. Compared with the sparse feature
map obtained after up-pooling, this sparse feature map is
used to form a dense feature map so as to correspond
multiple feature maps to one feature map. In order to
maintain the same size as the feature map obtained from the
up-pooling, the obtained dense feature map needs to be
cropped accordingly. Using the convolution kernel learned
by transposed convolution and up-pooling, the shape of the
target object based on the reconstruction is obtained in the
deconvolution network. By applying the structure of up-
pooling and transposed convolutional cascades in the
decoding path and combining jump connections to com-
pensate for the missing information, a deeper dense block
network is constructed without generating a feature map
explosion.

4. Experimental Results and Analysis

4.1. Dataset and Preprocessing. *e datasets used in this
paper were derived from BraTs2018 and BraTs2019, in which
each case has four modalities, namely, T1-weighted imaging,
T2-weighted imaging, contrast-enhanced T1ce, and liquid-
attenuated inversion recovery column Flair [31], with dif-
ferent imaging modalities providing different information
about brain tumors (each modality represents a different
response to different tumor tissues) [32]. Although MRI
images can quickly and effectively detect changes in water
content in the sensing region and provide rich diagnostic
information, a singleMRImodality image cannot adequately
subdivide the tumor in the region of interest and therefore
cannot solve the problem of precise regional segmentation.
Besides, using different MRI modalities can compensate for
the above weaknesses. Hence, the slices of four modalities
are used in this paper as the input of the segmentation
network.

In this paper, BraTs2018 is selected as the training set,
which contains 285 cases. Among them, 210 cases of HGG
and 75 cases of LGG are included [33]. BraTs2019 has added
49 cases of HGG and 1 case of LGG based on BraTs2018, the
new addition of which is used as the validation set. *e
dimension of each MRI image in the dataset is
155× 240× 240. MRI images are represented as stereoscopic
pixels in NIFTI format, and a series of preprocessing op-
erations are required to fit the 2D network in this paper. A
dichotomous segmentation was used to cut the brain tumor
cases from the cross-sectional plane and obtain 2D images. A
z-score approach is then used to normalize each modal
image [34]. To alleviate the inter-category imbalance
problem, slices without lesions in the image are discarded.
To enhance the performance of model segmentation, the
original 2D images are cropped from width and height
dimensions of 240mm to 160mm in this paper, and the
linear features and corresponding distribution relations of
the image distribution are not changed during cropping.
After the above steps, the images were divided into 4
channels and saved as an array of formats for data training
and validation. Finally, the training set contains 17,925 slices
and the validation set contains 7,750 slices.

4.2. Evaluation Indicators. In order to measure the effect of
DRT-Unet network on brain tumor segmentation in a
comprehensive and multi-faceted way, this paper adopts
Dice [35], positive predictive value (PPV), sensitivity, in-
tersection over union (IoU) ratio [36], and Hausdorff dis-
tance (95% HD) [37] as evaluation indexes, and the
prediction results are compared with the real labeled data to
show the segmentation effect from a visual perspective.

Dice is used to measure the resemblance between the
segmentation result and the true value.*e value of Dice is 1
when the segmentation result is best, and 0 when it is worst,
which is defined by the following formula:

Dice〈A,B〉 � 2 ×
|A∩B|

(|A| + |B|)
�

2TP
FP + 2TP + FN

. (1)

PPV indicates the proportion of samples with positive
predictions that are correctly predicted, and it is defined by
the following formula:

PPV �
TP

TP + FP
. (2)

Sensitivity indicates the proportion of samples predicted
to be positive to the total positive samples (true-positive
rate), which is defined by the following formula:

Sensitivity �
TP

TP + FN
. (3)

IoU is a measure of the accuracy of the detection object,
which is defined by the following formula:

IoU �
TP

FP + TP + FN
. (4)

*eHausdorff distance (95% HD) is sensitive to contour
information. *e more this value tends to 0, the more ac-
curate the predicted value is. In order to exclude the in-
stability and unreasonableness of the segmented data caused
by a few outliers, the parameter 95% was chosen as the
maximum distance quartile, which is defined as follows:

95%HD � max dXY, dYX{ }

� max
maxmin

x ∈ Xy ∈ Y

maxmin

y ∈ Yx ∈ X
  ,

(5)

where A and B are the actual expert data values and model
prediction values, respectively. TP indicates a positive
sample with a positive model prediction, TN indicates a
negative sample with a negative model prediction, FP
represents a negative sample with a positive model pre-
diction, and FN denotes a positive sample with a negative
model prediction.

4.3. Experimental Parameter Settings. In this paper, PyTorch
library is adopted to build DRT-Unet network, while Adam
optimizer is used to train themethod, with the training batch
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being 20 and the training round being 400. *e initial
learning rate is set to 2 × 10−4, with the weight decay co-
efficient set to 0.0002. k in the dense block is an indicator of
the number of feature map output per layer in each dense
block, which is set differently in this paper. Since Dice is
more commonly used than the other three evaluation
metrics, only the average value of Dice over the three seg-
mentation regions is used as the reference standard in the
stage of determining the parameter k. *e results of model
segmentation under different k are shown in Table 1, where
the optimal data are in bold.

*e best segmentation results are obtained when the
value of k is 16. *e experimental results show that the
smaller the k is, the better the segmentation effect is;
meanwhile, the network can be avoided to become too wide.

4.4. Experimental Results and Discussion. In order to verify
the impact of each module in DRT-Unet network on the
segmentation performance, this paper takes the U-Net
network model as the basis, then adds the local feature
residual fusion dense block and the dilated convolution in
turn, respectively, to improve it, and finally, compares the
obtained experimental results with DRT-Unet. As shown in
Table 2, the experimental results in the table are mean values,
where the optimal data are in bold.

U-Net, as the reference basic framework in this paper,
obtained Dice coefficient of 0.810, precision of 0.822, recall
of 0.919, and 95% HD of 1.157. After replacing the two 3× 3
convolutions on each layer in the U-Net coding process with
a dense block of local feature residual fusion, all four metrics
are improved, with precision improved by 2.8% over the
U-Net network, which indicates that the dense block of local
feature residual fusion can effectively propagate and retain
low-level visual features, and can reduce the information loss
in deep network training through the fusion of local features.
When the dilated convolution block is added to the encoding
process, precision and recall are improved by 1.7% and 1.6%,
respectively, based on the previous step, indicating that the
fusion of normal convolution and dilated convolution can
expand the perceptual field, obtain richer features, and
provide more detailed information. As can be seen from the
data in Table 2, the values of Dice and 95% HD have sig-
nificantly changed, increasing by 2.2% and decreasing by
2.9%, respectively, compared with the previous method,
which indicates that the combination of up-pooling and
transposed convolution can effectively capture the global
features and detailed features, and recover the extracted
features well to the original pixels. Finally, the Dice value of
DRT-Unet is 0.861, the precision value is 0.881, the recall
value is 0.948, and the 95% HD value is 1.112. Compared
with the U-Net network, these four metrics are improved by
5.1%, 5.9%, 2.9%, and 5.3%, respectively, which fully
demonstrates the effectiveness of the proposed method in
this paper.

In order to further prove the segmentation performance
of this method, the classical deep learning segmentation
networks FCN8s, U-Net, and the methods in literature [29]
(DenseUnet), literature [38] (DeepResUnet), literature [39]

(H 2 NF-Net), as well as literature [40] (MCA-ResUNet) are
compared with DRT-Unet network, and all experiments use
multimodal images of the same dataset as the input to the
network. *e goal of this paper is to segment three regions,
WT, TC, and ET. WT is the intact tumor, which represents a
blue region in the figure. Preoperative MRI images showing
the extent and volume of the edema of the intact tumor can
achieve high-precision localization of the tumor. TC is the
core tumor, which corresponds to the white region in the
figure and is a malignant tumor evolving from glial cells in
the brain. *e red region belongs to ET, which is the tumor-
enhancing necrotic region, and is composed of necrotic cells.
In this paper, the Flair sequence with the most obvious
bright contrast is selected as the original contrast image from
four modalities, T1, T2, Flair, and T1ce. *ree cases with
different characteristics are selected for doing visual effect
comparison, the results of which are shown in Figures 3–5.
In the figures, (a) is the original Flair sequence image, (b) is
the manual segmentation label, and (c), (d), (e), (f ), (g), (h),
and (i) are the segmentation results of FCN8s, U-Net,
DenseUnet, DeepResUnet, H 2 NF-Net, MCA-ResUNet,
and DRT-Unet, respectively.

From the experimental results of the above three cases,
the segmentation results of FCN8s are relatively rough.
Figures 3 and 4 clearly reveal that the segmentation at the
edge of the tumor is unclear, and the TC and ET regions
cannot be finely segmented, with the poor overall effect.
DenseUnet uses dense blocks to compensate for the detailed
information of U-Net, which substantially improves the
segmentation effect. However, by observing Figure 3, we find
that the segmentation of WTedge region appears hollow. In
Figure 5, we find that the segmented edge branching region
is broken, and the contour is incoherently connected.
DeepResUnet uses residual blocks to fuse multidimensional
features. Although the segmentation results are generally
better, the generalization ability is poor and there are many
fragmented points at the boundary of WTregion. Compared
with U-Net segmentation results, DRT-Unet segmentation
in WT area is more accurate, and the false segmentation
region is smaller. It is obviously shown in Figure 4 that
U-Net is unable to perform fine segmentation for areas with
irregular edges, while the outline of DRT-Unet is closer to
manual labels, showing that the dilated convolution block

Table 1: Dice coefficient values at different k.

k Dice coefficient value
16 0.861
32 0.796
48 0.789

Table 2: Comparison of different segmentation network models in
each index.

Network model Dice Precision Recall 95% HD
U-net 0.810 0.822 0.919 1.157
L-DB+U-Net 0.823 0.850 0.929 1.146
Dilated conv + L-DB+U-Net 0.839 0.867 0.945 1.133
DRT-Unet 0.861 0.881 0.948 1.104
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can obtain more abundant features; in addition, the com-
bination of up-pooling and transposed convolution can
effectively capture detailed features. DRT-Unet segmenta-
tion in each region is more complete compared with the
above methods, the contrast between the core tumor region
and the intact tumor region is clearer, and the contour line
segmentation also performs better in detail than the existing
algorithms.

Meanwhile, the IoU curves and loss function curves of
the proposed methods in this paper are compared with those
of FCN8s, FCN16s, FCN32s, U-Net, DenseUnet, and
DeepResUnet, as shown in Figures 6 and 7. From these two
figures, it can be seen that the IoU value of DRT-Unet is
significantly higher than that of other methods, while the
final loss function value is the lowest.

To better reflect the segmentation effect, the segmen-
tation results of WT, TC, and ET were further and quan-
titatively analyzed by four assessment metrics, namely, Dice,
precision, recall, and 95% HD, respectively. *e whole tu-
mor (WT) category includes all visible labels (a union of
blue, yellow, and red labels), while the tumor core (TC)
category is a union of red and yellow. Different from the two
mentioned above, the enhancing tumor (ET) core category is
only yellow (a hyperactive tumor part). *e comparison
results between DRT-Unet and other networks are shown in
Tables 3–6, where the optimal data are shown in bold. As can

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4: Case 2: tumor spread and metastasis can reflect seg-
mentation effects on multiple regions. (a) Original image. (b)
Handmade labels. (c) FCN8s. (d) U-Net. (e) DenseNet. (f )
DeepResUnet. (g) H 2 NF-Net. (h) MCA-ResUNet. (i) DRT-Unet.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 5: Case 3: the image is characterized by complex edges and
many contour bifurcations, which can reflect the segmentation of
contour details. (a) Original image. (b) Handmade labels. (c)
FCN8s. (d) U-Net. (e) DenseNet. (f ) DeepResUnet. (g) H 2NF-Net.
(h) MCA-ResUNet. (i) DRT-Unet.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Case 1: weak contrast between light and dark inside the
image, and difficulty in further fine segmentation of heterogeneous
regions. (a) Original image. (b) Handmade labels. (c) FCN8s. (d) U-
Net. (e) DenseNet. (f ) DeepResUnet. (g) H 2 NF-Net. (h) MCA-
ResUNet. (i) DRT-Unet.
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be seen from the table, the best data of DRT-Unet on these
four evaluation indicators can reach 0.918, 0.93, 0.968, and
0.748, respectively. Besides, the values of each index on TC

are higher than those onWTand ETregions, which indicates
that the TC region is relatively well segmented. Although the
precision and Dice of DRT-Unet are slightly worse than
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DenseUnet in the TC region, all the metrics of WT and ET
are improved to various degrees compared with other
methods, and the mean values of all the metrics of the
proposed method are the highest in all three regions, in-
dicating that DRT-Unet can segmentWT, TC, and ET better
and achieve more satisfactory segmentation results.

5. Conclusion

At present, the majority of brain tumor segmentation
methods are based on two networks, FCN and U-Net, but
the network connection based on FCN is not fine-grained
and ignores the relationship between different pixel points.
*e U-Net model is experimentally proven to be slightly
improved compared with FCN, but the overall general-
ization of prediction results is not strong and needs to be
improved to a certain depth. To address these problems,
this paper proposes a DRT-Unet network for the accurate
segmentation of brain tumors, where four MRI modality
images are used as input, and a dilated convolution block is
used to expand the perceptual field in the coding process, so
that the network can obtain richer and more detailed

feature information. Meanwhile, a dense block of local
feature residual fusion is used in the coding process to
propagate and preserve low-level visual features, reducing
the information loss in deep network training through the
fusion of local features. *e DRT-Unet network adopts a
dense block of local feature residual fusion and a decon-
volution structure of up-pooling and transposed convo-
lution cascade to achieve the decoding process of feature
map size enlargement. *e up-pooling and transposed
convolution play a key role in recovering the global features
and detailed features of the image. It can be seen from the
experiments in this paper and the comparison with other
methods that the DRT-Unet method can achieve effective
segmentation of brain tumor lesions. Moreover, compared
with the other four segmentation methods, the proposed
network in this paper has better performance in visual
effects and objective indexes.

Data Availability

*e datasets used in this paper were derived from BraTs2018
and BraTs2019, and these are open-access data.

Table 3: Dice coefficient values under different networks.

Dice
Network

FCN8s FCN16s FCN32s U-Net DenseUnet DeepResUnet H2 NF-net MCA-ResUNet DRT-Unet
WT 0.564 0.539 0.418 0.769 0.792 0.799 0.913 0.849 0.842
TC 0.897 0.898 0.872 0.917 0.921 0.92 0.849 0.865 0.918
ET 0.531 0.495 0.351 0.743 0.765 0.765 0.79 0.784 0.823
Average 0.664 0.644 0.547 0.81 0.826 0.828 0.85 0.833 0.861

Table 4: Precision values under different networks.

Precision
Network

FCN8s FCN16s FCN32s U-Net DenseUnet DeepResUnet H2 NF-Net MCA-ResUNet DRT-Unet
WT 0.564 0.536 0.414 0.783 0.809 0.812 0.83 0.868 0.842
TC 0.911 0.905 0.897 0.935 0.932 0.926 0.912 0.89 0.918
ET 0.526 0.485 0.357 0.76 0.782 0.791 0.788 0.805 0.823
Average 0.667 0.642 0.556 0.826 0.841 0.843 0.854 0.854 0.861

Table 5: Recall values under different networks.

Recall
Network

FCN8s FCN16s FCN32s U-Net DenseUnet DeepResUnet H2 NF-Net MCA-ResUNet DRT-Unet
WT 0.94 0.913 0.91 0.925 0.928 0.94 0.923 0.86 0.95
TC 0.918 0.926 0.922 0.935 0.966 0.966 0.9 0.845 0.968
ET 0.908 0.879 0.853 0.909 0.914 0.915 0.894 0.917 0.923
Average 0.922 0.906 0.895 0.923 0.936 0.942 0.915 0.874 0.947

Table 6: 95% HD values under different networks.

95% HD
Network

FCN8s FCN16s FCN32s U-Net DenseUnet DeepResUnet H2 NF-Net MCA-ResUNet DRT-Unet
WT 1.809 2.211 2.598 1.334 1.42 1.345 1.1 2.592 1.252
TC 0.788 0.829 0.913 0.711 0.698 0.749 1.14 1.595 0.748
ET 2.114 2.27 2.738 1.417 1.476 1.407 2.61 2.739 1.315
Average 1.579 1.77 2.083 1.154 1.198 1.167 1.617 2.31 1.105
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In recent years, deep learning-based watermarking algorithms have received extensive attention. However, the existing algorithms
mainly use the autoencoder to insert watermark automatically and ignore using the prior knowledge to guide the watermark
embedding. In this paper, an end-to-end framework based on embedding guidance is proposed for robust image watermarking. It
contains four modules, i.e., prior knowledge extractor, encoder, attacking simulator, and decoder. To guide the watermark
embedding, the prior knowledge extractor providing chrominance and edge information of cover images is used to modify cover
images before inserting the watermark by the encoder. To enhance the robustness of watermark extraction, the attacking simulator
applying various differentiable attacks on the encoded images is introduced before extracting the watermark by the decoder.
Experimental results show that the proposed algorithm achieves a good balance between invisibility and robustness and is superior
to state-of-the-art algorithms.

1. Introduction

(e unauthorized distribution of copies has become a threat
to sharing of multimedia products. Hence, how to declare
the ownership of the products is an urgent problem to be
solved [1]. Digital watermarking technologies are widely
used in copyright protection by embedding copyright in-
formation into digital products [2], such as digital literature,
music, film, photography, and face portrait. Robustness
against different attacks is significant for the practical ap-
plication of digital watermarking. Traditionally, water-
marking algorithms mainly rely on hand-crafted features to
improve the robustness, such as applying various transforms
[3–5] or using perceptual masking [6, 7]. (e drawback to
these hand-crafted algorithms is that they are not simul-
taneously robust to some types of distortions because dif-
ferent types of distortions often require different techniques
[8]. Consequently, some deep learning-based algorithms

have been presented [9–23]. (ey usually utilize convolu-
tional neural network (CNN) to design end-to-end archi-
tecture with an encoder and a decoder. In order to further
improve robustness, some improvement measures are
proposed. (ese improvements can be categorized into two
classes, i.e., attacking simulation and model architecture
design [10]. (e summary of different watermarking algo-
rithms is listed in Table 1.

1.1. Attacking Simulation. Zhu et al. [11] were the first to
propose a robust watermarking network HiDDeN with an
attacking simulator. (e attacking simulator was inserted
into the network to satisfy the end-to-end training. How-
ever, HiDDeN can only be robust to a single attack, such as
JPEG, Gaussian blur, crop, and dropout. (en, Mellimi et al.
[12] and Ahmadi et al. [13] improved the attacking simulator
to resist combined attacks. Since JPEG compression attack is
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nondifferentiable, some works [14–16] focused on JPEG
compression simulation and improved the JPEG simulator
by various differentiable methods to enhance the robustness
against JPEG compression.

1.2. Model Architecture Design. Dhaya et al. [17] proposed a
lightweight convolution neural network (LW-CNN) for the
digital watermarking scheme, which had more resilience
than other standard approaches. Fang et al. [18] exploited a
template-based approach combined with U-Net to achieve
better robustness. Cun et al. [19] used SplitNet and Refi-
neNet to smooth watermarked regions for a better quality of
watermarked images. Mun et al. [20] introduced attention
mechanism into the watermarking field to achieve good
performance in robustness against attacks. In addition, some
notable algorithms with adversarial training [21–23] have
greatly improved the perceptual quality of the watermarked
images.

However, these existing CNN-based robust water-
marking algorithms focus on attacking simulation and
model architecture design before the watermark extraction.
(ey do not consider prior knowledge to guide the water-
mark embedding. To further balance between invisibility
and robustness, motivated by the traditional algorithms,
some prior knowledge, such as the chrominance and edge
saliency of cover images, is considered before the watermark
embedding. (e major contributions are as follows.

(1) We propose a prior knowledge extractor to obtain
the chrominance and edge saliency of cover images
for guiding watermark embedding.

(2) We propose an embedding guided end-to-end
framework for robust watermarking based on the
proposed prior knowledge extractor and attacking
simulator.

(3) We conduct a lot of empirical experiments to
evaluate the performance of the proposed algorithm
in terms of invisibility and robustness. Experimental
results demonstrate that our algorithm achieves a
good balance between invisibility and robustness and
performs better than state-of-the-art algorithms.

2. Methods

In this section, the proposed framework is described in
detail. (e overall architecture and loss functions are pre-
sented in subsection 2.1. (en, each module is explained in
subsections 2.2–2.6 one by one, i.e., prior knowledge ex-
tractor, encoder, attacking simulator, decoder, and
discriminator.

2.1.ModelArchitecture. (emain framework is presented in
Figure 1. As shown in Figure 1, the proposed model is based
on autoencoder structure, which consists of four modules: a
prior knowledge extractor, an encoder, an attacking simu-
lator, and a decoder. (e prior knowledge extractor obtains
prior knowledge to modify cover images for guiding wa-
termark insertion. After that, the encoder hides the water-
mark into the modified cover image. (en, the attacking
simulator performs various simulated attacks on encoded
images as a network layer. Finally, the decoder extracts the
watermark from attacked (or unattacked) encoded images.
(ese modules achieve their objectives through the fol-
lowing loss functions.

(e encoder aims to insert the watermark into the cover
image invisibly. So, the distortion loss is used to limit the
distortion of the encoded image by

LD Ico, Ien(  � Ico − Ien
����

����
2
2, (1)

Table 1: Review of different deep learning-based watermarking algorithms.

Improvements References Techniques Attacks Capacity

Attacking simulation

Zhu [11] (e first work to simulate attacks by inserting the
noise layers

Crop, Gaussian, dropout, and
JPEG 90 bits

Mellimi [12] Simulation of noise layers against agnostic attacks JPEG, noise, and noise 1024 bits
Ahmadi
[13] Simulation of noise layers to resist mixture attacks Crop, Gaussian, resize, and

JPEG 1024 bits

Chen [14] Simulation of differentiable JPEG quantization JPEG 1024 bits

Jia [15] Combination of simulated and real JPEG in noise
layer JPEG, crop, and Gaussian 1024 bits

Ying [16] Training a network to simulate JPEG compression JPEG, scaling, and Gaussian A whole
image

Model architecture
design

Dhaya [17] Lightweight CNN scheme JPEG, Gaussian, and median 512 bits
Fang [18] U-net architecture Transparency, JPEG, and crop 128 bits

Cun [19] Combination of SplitNet and RefineNet Crop and color A whole
image

Mun [20] Attention mechanism JPEG, crop, filtering, and noise 512 bits

Yu [21] Generative adversarial network with attention
mask Noise, crop, and shift A whole

image

Hao [22] Generative adversarial network with a high-pass
filter Crop, Gaussian, and flip 30 bits

Li [23] Generative adversarial network with perceptual
losses Noise, filtering, and sharpen 1024 bits
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where Ico and Ien represent the cover image and encoded
image, respectively.

(e decoder wants to extract the watermark from the
encoded images as much as possible. So, the reconstruction
loss is adopted to improve the quality of the extracted
watermark by

LR M, Mout(  � M − Mout
����

����
2
2, (2)

whereM andMout are the original watermark and extracted
watermark, respectively.

(e discriminator is used to judge whether the generated
images are similar enough to the cover images. (e dis-
criminator and encoder compete with each other. So, the
adversarial loss is considered to optimize the visual quality of
the encoded image by

LA � Ico, Ien(  � log 1 − D Ico( (  + log D Ien( ( , (3)

where D represents the discriminator.
(erefore, the total loss for the proposed framework is

Ltotal � αLD Ico, Ien(  + βLR M, Mout(  + cLA Ico, Ien( , (4)

where α, β, and c are three hyper-parameters.

2.2. Prior Knowledge Extractor Module. Most existing deep
learning-based algorithms mainly use the autoencoder to
insert watermark automatically and ignore using the prior
knowledge to guide the watermark embedding. According to
the human visual system (HVS), people are less sensitive to
modification in regions with rich chrominance and edge
information [24–29]. So, the chrominance and edge saliency
proposed in [30] are considered prior knowledge in this
paper. (e cover image is modified before watermark in-
sertion to make the watermarking robust. Figure 2 depicts
the flow diagram of our proposed prior knowledge extractor.

In order to obtain the chrominance information of the
cover images, first, the cover image is converted into YCbCr
color space by

Y � 0.299R + 0.587G + 0.114B,

Cb � 0.564(B − Y),

Cr � 0.713(R − Y),

(5)

where Y represents the luminance component and Cb and Cr
represent chrominance components.

(en, the chrominance saliency SC(x) of a point x is
obtained by

SC(x) � 1 − exp −
f
2
b(x) + f

2
c(x)

δ2
 , (6)

where fb(x) and fc(x) are the normalization mappings of the
Cb and Cr components, respectively, δ is a parameter set as
0.25 in this paper.

In order to obtain the edge information of cover images,
the canny operator [31] is used to extract edge information.
(e edge saliency SE(x) of a point x is computed by

SE(x) � exp −
Canny(x) + 1

τ
 , (7)

where Canny(x) represents the result calculated by the canny
operator for a given point x and τ is a threshold set as 2 in
this paper.

Finally, as is known to all, the stronger the chrominance
and edge saliency are, the less sensitive the human eye is. So,
the cover image is modified by

Iin � Ico − 1 −
SC(x) + SE(x)

2
 , (8)

where Ico is the original cover image after normalization and
Iin is its modified one. According to (8), the greater the
chrominance and edge saliency is, the smaller the modifi-
cation of the cover pixel is, consequently, the relatively
greater the change of cover pixel is in the watermark
insertion.

2.3. Encoder Module. (e architecture of the encoder net-
work is illustrated in Figure 3. As shown in Figure 3, the
encoder network has two parallel branches corresponding to
the cover image and watermark image, respectively. One
branch uses some convolutional layers to extract shallow
detail features and deep semantic features of input nor-
malized watermark images. (e other branch uses a se-
quence of convolutional layers to extract features of the
input cover image for merging with the features extracted
from the watermark image. Specifically, in order to embed

Watermarked?
Adversarial loss LA

Encoder Decoder

Discriminator

Gaussian blur

Crop

Dropout

JPEG compression

Attacking
Simulator

Prior knowledge extractor
Ien

Distortion loss LD

Ico

Mout

Reconstruction loss LR

Iin

Prior
Knowledge

M

Normalization

Normalization

Figure 1: Overall architecture of the proposed model.
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watermark images into cover images, the encoder concat-
enates the features map extracted from each alternate layer
of the watermark branch to the corresponding output fea-
tures of the cover branch. Like [32], this concatenating
process is repeated four times. Finally, the cover image and
watermark are entirely fused as encoded images.

2.4. Attacking Simulator Module. In order to be robust
against a variety of image distortions, as shown in Figure 1,
an attacking simulator is inserted between the encoder and
decoder to simulate various attacks by differentiable
methods. Its parameters do not require to be updated during
the entire network training process. Note that each iteration
randomly selects one type of attack with equal probability.
Specifically,[33], as shown in Figure 4, our attacking sim-
ulator includes four types of attacks: Gaussian blur, crop,
JPEG compression, and dropout.

2.4.1. Gaussian Blur. Gaussian blur is also called Gaussian
smoothing. It blurs the encoded images by performing a
convolution operation with a Gaussian kernel.(e larger the
size of the convolution kernel, the stronger the blur attack.

2.4.2. Crop. Crop operation is simulated by randomly
cropping out a small rectangle from the encoded images,
namely, by replacing all the pixel values in this rectangle with
zero. Specifically, the attack is simulated by multiplying with
a 0–1 mask of the same size as the encoded image. In this
mask, the region with pixel value 0 represents the cropped
region, while the region with pixel value 1 represents the
remaining region.

2.4.3. JPEG Compression. (e steps of JPEG compression
are composed of color space transformation, discrete cosine
transform, quantization, and entropy coding. (e sampling
and discrete cosine transform steps are modeled by the max-
pooling layer and convolution layer, respectively. Especially,
as shown in Figure 5, the nondifferentiable quantization step
is approximately simulated by performing JPEG-mask on
the feature maps [11].

2.4.4. Dropout. Dropout attack is a common noise in image
processing. It is implemented by arbitrarily replacing a
certain ratio of pixels with zero. (e detailed processing is
similar to crop attack by multiplying with a 0–1 mask. (e

Iin

3/16

3/32 3/32 3/163/16

M 

Ien

3/16

3/16 3/32 3/32

concat concat concat concat

3/16 3/16 3/16 3/16 3/16

3/64 3/128 3/64 3/32 3/16 3/3

normalization

Figure 3: Architecture of the encoder. (e numbers in the form m/n represent the kernel size (m) and the number of kernels (n) in each
convolution layer.

Normalization

Chrominance information

Edge information

average

Graying Edge saliency 
computation

YCbCr color space
conversion

Chromonance saiency
computation

Ico

Iin

Figure 2: Flow diagram of the proposed prior knowledge extractor.
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difference is that the pixel values 0 and 1 are randomly
distributed in the mask.

2.5. Decoder Module. In the end-to-end training, the de-
coder carries out the decoding procedure after encoding or
attacking. (e structure of the decoder is shown in Figure 6.
(e decoder takes the encoded or attacked image as input
and extracts the watermark image. It uses seven Conv-BN-
ReLU blocks to extract the watermark image from the input
image. In this process, the function of convolutional op-
eration is to extract features, and batch normalization (BN)
speeds up the calculation while ReLU activation plays the
filtering role.(e final convolutional layer with a 3× 3 kernel
outputs watermark images.

2.6. Discriminator Module. (e primary role of the dis-
criminator is to improve the visual similarity between the
encoded and cover images by adversarial training. (e ar-
chitecture of the discriminator is presented in Figure 7. It is
similar to that of the decoder. (e difference is that the

discriminator outputs binary classification results to judge
whether the image contains the watermark or not.(erefore,
the discriminator is built with five Conv-BN-ReLU blocks,
an adaptive average pooling layer, a linear layer with a single
output unit, and a Sigmoid activation layer.

3. Experimental Results and Analysis

In this section, experiments are carried out to prove the
effectiveness and robustness of the proposed algorithm. (e
training datasets and experimental details are described in
subsection 3.1. (en, the ablation experiments in subsection
3.2 are performed to demonstrate the improvements in the
proposed algorithm. Finally, the robustness of the model for
different types of attacks is tested in subsection 3.3.

3.1. Experimental Datasets, Implementation Details, and
Evaluation Metrics

3.1.1. Experimental Datasets. 5,000 images randomly se-
lected from the COCO dataset [34] are used as cover images.

(a) Gaussian blur (b) Crop (c) JPEG compression (d) Dropout

Figure 4: Samples of various attacks: (a)Gaussian blur; (b)crop; (c)JPEG compression; (d)dropout.
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(ree types of images are taken as watermark images for
experiments. (ey are 5,000 logo images randomly selected
from logo-2k + [35], 5,000 digital number images from
MNIST [36], and 5,000 general images from ImageNet [37].
(ese watermarks are converted into grayscale images be-
fore embedding. 5,000 cover images and each 5,000 wa-
termark images are regarded as 5,000 pairs for the following
experiments. (en, the cover images and watermark images
are, respectively, divided into training/validation/testing sets
according to the ratio of 8 :1:1 and resized to 128×128.

3.1.2. Implementation Details. (e proposed watermarking
model is trained iteratively using the ADAM optimizer [38]
with an initial learning rate of 1.0e-3. (e batch size is set as
16. (e weights in the loss function shown in (4) are set as
α� 0.3, β� 0.7, and c � 0.001. In addition, all simulated
attacks have a hyperparameter governing the strengths: the
kernel width ω of Gaussian blur is 3; quality factor QF of
JPEG compression is 90; and ratios p of crop and dropout are
0.1 and 0.15, respectively.

3.1.3. Evaluation Metrics. (e image visual quality is
commonly evaluated by peak signal-to-noise ratio (PSNR)
and structural similarity index metric (SSIM) metrics. (eir
definitions are given in the following.

Given two images U and V, the PSNR can be defined as

PSNR(U, V) � 10log10
L
2

MSE(U, V)
 , (9)

where L is the maximum pixel value, which is usually set as
255, MSE is mean squared error defined as

MSE �

����

1
n



n

i�1




Ui − Vi( 
2

, (10)

where n is the number of pixels.
(e SSIM between two images U and V is defined as

SSIM(U, V) �
2μUμV + C1(  2σUV + C2( 

μ2Uμ
2
V + C1  σ2Uσ

2
V + C2 

, (11)

where μU and μV are the means, σU and σV are the standard
deviations, σUV is the cross-covariance of U and V, and C1
and C2 are two constants used to avoid a null denominator.

3.2. Ablation Experiments. Here, some ablation experiments
are conducted to validate the proposed model. All the ex-
periments are performed under the combined attacks with
all four different types of attacks.

Firstly, we begin by analyzing what the prior knowledge
extractor can do. Table 2 shows the average PSNR and SSIM
values of 5,000 encoded images and 5,000 extracted wa-
termarks with/without the extractor. As the results are
shown, the visual quality of both the encoded images and
extracted watermarks is improved after introducing the
prior knowledge extractor. (is is because the extractor
obtains prior knowledge to find more suitable locations for
watermark embedding.

(en, we verify the effectiveness of the attacking sim-
ulator. So, we compared the proposed models without and
with the attacking simulator in the training stage.(e results
are shown in Table 2. As shown in Table 3, when the
attacking simulator is considered, although the quality of the
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encoded images is sacrificed a little bit and the quality of
extracted watermarks improves significantly. (e PSNR
values of the extracted watermarks increase from 24.12 dB to
38.19 dB and SSIM from 0.7824 to 0.9722.

(e experimental results in Tables 2 and 3 show that
either the prior knowledge extractor or attacking simulator
is significant to the robust watermarking.

3.3. Comparison Experiments with Other Algorithms. In
order to further evaluate the performance of the proposed
algorithm, our algorithm is compared with some existing
deep learning-based algorithms [39–41] in terms of both
invisibility and robustness.

3.3.1. Invisibility. (e challenge for digital watermarking is
to improve robustness while keeping invisibility. Figure 8
shows the visual comparison of different watermarking al-
gorithms. In addition, Table 4 presents their corresponding
numerical results by PSNR and SSIM. It can be observed
from Figure 8 and Table 4 that the watermarks are invisible
in the encoded images for the proposed algorithm with high
PSNR and SSIM values, while it is not the case for the other
three algorithms who suffer from a little color bias. (is is
due to the use of prior knowledge for guiding watermark
insertion in our algorithm.

3.3.2. Robustness. In order to test the robustness, the
encoded images are carried out in five different types of
attacks. Table 5 presents the average PSNR and SSIM values
of 5,000 encoded images and 5,000 watermark images for
four compared algorithms. In addition, Figure 9 shows some
visual samples of the extracted watermarks. It can be ob-
served from Table 5 and Figure 9 that the proposed algo-
rithm achieves the best performance for all five types of
attacks in both numerical and visual aspects, especially for
the combined attack. Although the encoded images are
distorted under various attacks, our algorithm can preserve
watermark fidelity to a great extent with few errors. How-
ever, it is not the case for the other three algorithms, whose
extracted watermarks suffer from some errors with some
noise in vision. (is is attributable to the watermarking
guidance of prior knowledge and the consideration of

Table 3: Performance comparison between the proposed model without and with an attacking simulator.

Attacking simulator
Encoded image Extracted watermark

PSNR SSIM PSNR SSIM
Without 41.02 0.9913 24.12 0.7824
With 40.69 0.9904 38.19 0.9722

Table 2: Performance comparison between the proposed model without and with the prior knowledge extractor.

Prior knowledge extractor
Encoded image Extracted watermark

PSNR SSIM PSNR SSIM
Without 37.56 0.9626 35.29 0.9595
With 40.69 0.9904 38.19 0.9722

Cover

Encoded

Luo[39] Ding[40] Baluja[41] Ours Luo[39] Ding[40] Baluja[41] Ours Luo[39] Ding[40] Baluja[41] Ours

Diff x 5

Figure 8: Some examples of the cover images (landscape, sportsman, and cat) and their corresponding encoded images, as well as their five
times magnified differential images.

Table 4: PSNR and SSIM values of three encoded images in
Figure 8 for different algorithms.

Algorithms
Landscape Sportsman Cat

PSNR SSIM PSNR SSIM PSNR SSIM
Luo [39] 30.19 0.883 31.34 0.896 30.46 0.886
Ding [40] 30.53 0.892 32.78 0.912 31.89 0.905
Baluja [41] 31.42 0.9012 33.97 0.924 32.75 0.917
Ours 36.71 0.957 38.12 0.963 36.92 0.959
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attacking simulator in our algorithm. Regarding three dif-
ferent types of watermark images, all the compared algo-
rithms perform best on the MNIST watermarks. (e main
reason is that the other two types of watermark images are
more complex and contain more semantic information,
which results in more difficulty in the watermark extraction.

In addition, we evaluate the generalization performance
of different watermarking algorithms against attacks dif-
ferent from those in the training stage in two aspects, i.e.,
different attack levels and different attack types.

3.3.3. Different Attack Levels. Figure 10 shows the average
PSNR values of the extracted watermark images under
different attack levels. As shown in Figure 10, our algorithm
still performs better than the other three algorithms when
being attacked by different levels of various attacks. In
addition, the performance of all four compared algorithms
decreases with the increase in attack levels.

Different attack types. To evaluate the performance in
resisting the attacks that were not considered during the
training stage, we select four kinds of black-box image

Table 5: Comparison of robustness against different types of attacks.

Attacks Algorithms
Encoded image Extracted watermark

PSNR SSIM
Logo MNIST ImageNet

PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian blur (ω� 9)

Luo [39] 33.79 0.9213 31.49 0.9109 32.76 0.9267 30.38 0.9015
Ding [40] 32.56 0.9146 30.24 0.8937 31.95 0.9086 28.89 0.8812
Baluja [41] 34.24 0.9322 32.62 0.9148 33.97 0.9275 31.04 0.9068

Ours 41.11 0.9751 36.24 0.9641 37.87 0.9753 34.92 0.9549

JPEG compression (QF� 60)

Luo [39] 33.08 0.9225 30.37 0.9021 31.43 0.9078 29.12 0.8994
Ding [40] 32.67 0.9114 29.73 0.8864 30.82 0.9026 28.23 0.8801
Baluja [41] 34.49 0.9511 31.39 0.9115 32.74 0.9248 30.59 0.9082

Ours 38.35 0.9657 34.17 0.9512 35.86 0.9573 33.11 0.9448

Crop (p� 0.4)

Luo [39] 32.93 0.9325 31.37 0.9121 32.66 0.9264 30.25 0.9027
Ding [40] 32.20 0.9007 30.88 0.8964 32.05 0.9128 30.08 0.8901
Baluja [41] 34.36 0.9461 32.59 0.9323 33.74 0.9456 31.23 0.9119

Ours 39.45 0.9727 37.06 0.9605 38.85 0.9773 36.39 0.9597

Dropout (p� 0.45)

Luo [39] 34.16 0.9321 32.45 0.9409 33.76 0.9487 31.07 0.9339
Ding [40] 32.64 0.9145 30.36 0.9047 31.83 0.9102 29.99 0.8995
Baluja [41] 33.97 0.9343 32.82 0.9222 33.75 0.9298 32.01 0.9186

Ours 39.18 0.9710 35.64 0.9586 36.83 0.9642 34.75 0.9503

Combined

Luo [39] 32.17 0.9189 30.01 0.8832 30.95 0.9045 28.67 0.8974
Ding [40] 31.01 0.9013 28.47 0.8813 31.08 0.8942 27.84 0.8757
Baluja [41] 33.12 0.9387 30.96 0.9102 31.89 0.9211 30.22 0.9032

Ours 37.64 0.9724 34.11 0.9505 35.79 0.9568 34.68 0.9501

Gaussian
blur

JPEG
compression

Dropout

Crop

(a) Luo[39] (b) Ding[40] (c) Baluja[41] (d) Ours (e) Luo[39] (f) Ding[40] (g) Baluja[41] (h) Ours (i) Luo[39] (j) Ding[40] (k) Baluja[41] (l) Ours

Combined

Figure 9: Visual comparison of robustness against different kinds of attacks. Samples (a)–(d) are from Logo-2k, (e)–(h) from MNIST, and
(i)–(l) from ImageNet.
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attacks (resizing, medium blur, salt and pepper noise, and
Gaussian noise) to test the model. (e levels of these attacks
are as follows: the scaling factor T of resizing is 2; kernel
width ω of medium blur is 3; ratio p of salt and pepper noise
is 0.2; and standard deviation σ of Gaussian noise is 1.0.
Table 6 shows the average PSNR values of the extracted
watermark images of different algorithms. As can be seen
from Tables 5 and 6, the proposed algorithm still maintains
higher PSNR values than the other three algorithms, though
its performance decreases when facing attacks different from
the training stage.

4. Conclusion

In this paper, we propose an embedding guided end-to-end
framework for robust image watermarking. In this algo-
rithm, a prior knowledge extractor and attacking simulator
are introduced to guide watermarking embedding and en-
hance the robustness of watermark extraction, respectively.
(e experiment results demonstrate that, compared to the
existing algorithms, the proposed algorithm performs better
in both invisibility and robustness. However, the proposed

algorithm does not consider other common attacks in
practical application, such as printing, screen photography,
and geometric transformation. (erefore, in the future, we
will focus on the simulation of these attacks and study the
deep learning-based watermarking algorithms against these
attacks.
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Ours 32.87 33.91 34.02 33.52
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Image manipulation methods, such as the copy-move, splicing, and removal methods, have become increasingly mature and
changed the common perception of “seeing is believing.” -e credibility of digital media has been seriously damaged with the
development of image manipulation methods. Most image manipulation detection methods detect traces of tampering pixel by
pixel. As a result, the detected manipulation areas are separated, which results in insufficient consideration of content ma-
nipulation at the object level. In this paper, the detection of image manipulation areas based on forgery object detection and pixel
discrimination is proposed. Specifically, the pixel-level detection branch resamples features and uses an LSTM to detect ma-
nipulations, such as resampling, rotation, and cropping. -e goal of the forgery object detection branch, which is based on Faster
R-CNN, is to extract the regions of interest and analyze the regions with high contrast as well as the forgery objects of the image.
Furthermore, the fused heatmaps of the two branches are integrated with the object detection results. -e noise in the heatmaps is
shielded based on the forgery object information of the region proposal network. Experimental results on multiple standard
forgery datasets have demonstrated the superiority of our proposed method compared with the state-of-the-art methods.

1. Introduction

With the rapid evolution of digital image manipulation,
digital images can be tampered with or forged through
various methods, i.e., the splicing, copy-move, and image
removal methods. When splicing is implemented, a portion
of the source image splits into the target image to form a new
image, as shown in Figure 1(a). -e copy-move method is
used to paste an area of an image into the same image, as
shown in Figure 1(b). In the removal method, an area in the
image is removed and the area restored, as shown in
Figure 1(c).

Early image manipulation detection methods employed
deep neural networks to determine the type of manipulation
in advance. A detection method can only solve one kind of
manipulation problem. -is kind of method, which is re-
ferred to as known manipulation-based detection, uses the

Daubechies wavelet features to detect image patches [1] and
edge reinforcement methods to build a multitask detection
task [2]. Chen et al. [3] propose a parallel deep neural
network scheme BusterNet for image copy-move forgery
localization. With the development of manipulation
methods, it has become easy to superimpose multiple image
manipulations. -erefore, it is increasingly challenging to
detect manipulated images based on unknownmanipulation
types.

-e first line is splicing, the second line is copy-move,
and the third line is removal.

Unknown manipulation-based detection has more sig-
nificant applications than the above approach. Most existing
detection approaches [4, 5] combine resampling and deep
learning features to detect manipulated regions. Park et al.
[6] utilized double JPEG compression features, which were
merged with the additional information in the quantization
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table, to determine whether the image contains manipulated
areas and locate them. Zhou et al. [7] proposed a framework
that effectively combined a region proposal network (RPN)
to localize the synthesis region at the object level and carry
out a two-stream fine-grained bilinear pooling operation.
Xiao et al. [8] proposed an approach that combines a coarse
convolutional neural network (C-CNN) and a refined CNN
(R-CNN) to learn the differences in the image properties to
catch manipulated images. Chen et al. [9] utilize the dual-
color spaces and improve the Xception architecture to detect
GAN-generated faces. However, most of these approaches
are pixel-level oriented. We find that image manipulation is
more likely to occur at the object level. -e image manip-
ulation regions can be detected at the pixel level and object
level to simultaneously contribute to improving the detec-
tion accuracy.

We have developed an approach, whose architecture is
shown in Figure 2, which combines both pixel-level and
object-level information. Our method consists of four parts,
i.e., a forgery object-level branch, a pixel-level detection
branch, a feature fusion module, and an integrated fusion
module. First, the forgery object-level branch is used to
extract the image features using CNNs and feed the features
into the feature fusion module. -en, the ROIs are obtained
based on Faster R-CNN [10]. Inspired by Bappy et al. [5], the
pixel-level detection branch is designed to divide the image
into 8×8 patches and resample them one by one.

Meanwhile, the LSTM learns to establish the temporal
correlations between patches. Equipped with the outputs of
two branches combined, the feature fusion module uses a
decoder to reconstruct the features, and the heatmaps of the
manipulation area are generated. -e manipulation areas
from the pixel-level branch are used to fine-tune the forgery
object-level branch to achieve accurate forgery area labeling.
-e contributions of our work are summarized as follows:

(1) We propose a novel two-branch image manipulation
detection framework consisting of a forgery object-
level branch and a pixel-level branch. -e image
manipulation region is refined by two fusion

modules, making our work significantly different
from other state-of-the-art methods.

(2) We employ the region of interest in the forgery
object-level branch to optimize the heatmap in the
feature fusion module. -e noise in the heatmap is
masked by bounding boxes to decrease the error
caused by the pixel-level detection branch and im-
prove the detection precision of the manipulated
image regions.

(3) Extensive experiments on four benchmarks have
demonstrated the effectiveness of our proposed
method.

-e rest of this paper is organized as follows. In Section
2, we summarize the current image manipulation detection
technologies. In Section 3, we elaborate on the details of our
proposed method. -e conducted experiments and analysis
are presented in Section 4. Finally, in Section 5, we conclude
the paper.

2. Related Work

Researches on detecting unknownmanipulation type images
consist of various approaches. Some earlier approaches
[4, 6, 11] are based on manually designed features. Wu et al.
[11] propose a method to divide the image into blocks and
extract the resampling features for each block. A deep neural
network is utilized to construct a classifier and a Gaussian
conditional random field model to create a thermodynamic
diagram. Meanwhile, they use the random walk method to
locate the synthetic region.

Some approaches that are based on adaptive feature
extraction are proposed to reduce the limitations of manual
design features and improve the method’s adaptability.
Bappy et al. [5] construct a two-branch manipulation image
detection architecture by combining the resampling feature,
LSTM, and encoder-decoder architecture. A resampling
detection model is utilized to extract the resampling feature
of the image from each patch, and the LSTM establishes the

Source image Manipulated image Ground-truth

(a)

Source image Manipulated image Ground-truth

(b)

Source image Manipulated image Ground-truth

(c)

Figure 1: Image manipulation detection method. (a) Splicing. (b) Copy-move. (c) Removal.
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correlation between patches. �e encoder is used to capture
the spatial information of the image. After fusing the fre-
quency and spatial features, the decoder is used to enlarge
the feature to obtain the synthetic region located at the pixel
level.

Mohammed et al. [12] use the CNN to obtain the ab-
normal image boundary features and the LSTM to establish
the connection between image patches. A separate detection
model is used to obtain more accurate detection results to
enhance the detection eect of the copy-move manipulation
image. Mazumdar et al. [13] present a two-stream encoder-
decoder network.�e �rst stream extracts the noise residuals
to learn the low-level features through the encoder of the
high-pass �lter. �e second stream extracts high-level fea-
tures from the RGB values of the input image. �e feature
maps of both streams generated pixel-level predictions.
Some other typical methods also detect pixel modi�cations
such as resampling, copy-move, and removal.

By summarizing the above work, forgers mainly perform
manipulation on objects, such as a car and sofa. �erefore,
the forgery detection is based on object-level to explore the
semantic information. Meanwhile, pixel-level detection is
more accurate, especially at detecting edges of fake ones. It is
necessary to combine both object- and pixel-level infor-
mation to detect forgeries. Based on this, we present a novel
framework to eectively detect the manipulation region, in
which both object- and pixel-level features contribute to the
detection results.

3. Network Architecture Overview

�e purpose of the proposed framework is to detect image
manipulations. A multitask framework is employed to
model both object-level and pixel-level structures and
consists of a forgery object-level branch and a pixel-level
branch. A feature fusion module is further used to fuse both

forgery object-level and pixel-level features. �e generated
heatmaps are merged with the forgery object information of
the manipulated areas through an integrated fusion module
to detect the manipulated areas.

3.1. Forgery Object-Level Detection Branch. We utilize Faster
R-CNN in the forgery object-level branch to detect ma-
nipulation areas. A convolutional network is used to learn
manipulation features, and the RPN is utilized to generate
ROIs for bounding box regression.

3.1.1. Feature Extraction Network. It is essential in image
manipulation detection to extract features using convolu-
tional neural networks and ensure that the classi�er can
learn to discriminate the manipulated areas. In our work, we
employ ResNet-101 to extract image features. Speci�cally, we
utilize dierent convolution kernels to locate the manipu-
lated area. In the �rst layer, the image is taken as input with
dimensions of 256× 256× 3. �e network contains multiple
convolutions, pooling layers, and activation functions. �e
residual module utilizes a parameter-free shortcut connec-
tion to optimize the residual mapping and model training.

Following [5], we utilize a convolution kernel size of 3×3
to generate 32, 64, 128, and 256 feature maps. Each residual
unit in the network generates a set of feature maps nor-
malized by batch processing in the convolutional layer. �e
recti�ed linear unit (ReLU) function is utilized as an acti-
vation function followed by amax-pooling layer with a stride
of two at the end of each residual unit.

3.1.2. Region Proposal Network. �e RPN in Faster R-CNN
is used to extract the proposed regions. Compared with the
selective search method, RPN is more e�cient and easier to
combine with Faster R-CNN. As the anchor is the center

64 (8*8) Extracted
Patches

(8,8,Nh)

LSTM Network
2 Stacked Layers

(8,8,Nt) Decoder Heat Map

Input Image

Encoder
(Conv Layer)

RPN

Manipulated Mask

Feature Maps

Pixel-level Branch

Forgery Object-level Branch

Feature Fusion Module Integrated Fusion Module

Bounding Box
ROI Pooling

L

Figure 2:�e overall architecture of our method. Forgery object-level branch: the features are extracted from the whole image using several
convolutional layers. �e forgery object information is extracted using encoder to form the feature maps to RPN. Pixel-level branch: the
image is divided into 8× 8 image patches, and the resampling features are extracted for each patch, combined with LSTM to build a temporal
relationship. Feature fusion module: the forgery object-level features in the upper branch and the pixel-level features in the lower branch are
integrated to produce the heat maps using a decoder. Integrated fusion module: according to the forgery object information of the RPN
network, the noises in the heat maps are masked.
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point of the sliding window in the original pixel space, we
use the anchor as the center point to generate the proposed
regions.

We first map the ROIs to the corresponding area on the
feature map and shape the different ROIs to a fixed size. We
take the maximum pixel value of each divided region. -en,
each ROI will have a fixed size.

-e loss of the forgery object-level branch is composed of
two items, i.e., classification loss and regression loss, which
are based on the RPN in Faster R-CNN.-e i-th anchor can
be represented as

L pi , ti (  �
1

Ncls


i

Lcls pi, p
∗
i(  + λ

1
Nreg


i

p
∗
i Lreg ti, t

∗
i( ,

(1)

where p is denoted as the probability of a manipulation area,
p∗ represents the ground-truth label, t is the 4-dimensional
bounding box, Ncls and Nreg represent the RPN network
batch and the number of anchors at each location, re-
spectively, Lcls is the standard cross-entropy loss for the RPN
network, Lreg is the smooth L1 regression loss for the pro-
posal bounding boxes, and the hyperparameter λ is utilized
to balance the two loss items with a value of 10.-e output of
the forgery object-level branch is ZObject, as shown in
Figure 3.

3.2. Pixel-Level Detection Branch. -e pixel-level detection
branch is used to detect the natural statistics of copy-move,
splicing, and removal, consisting of a resampling feature
extraction network and an LSTM network. Following [5], we
utilize the pixel-level features as the input of the feature
fusion module.

3.2.1. Resampling Feature Extraction Network. Mahdian
et al. [14] proposed a resampling detection approach using
the Radon transform. -ey employed the Laplacian filter to
resample each patch after the Radon transform. Bappy et al.
[5] utilized the Radon transform to detect manipulations
such as copy-move, splicing, and removal. -ey detected the
tampered regions by distorting the natural statistics at the
boundary. -e Radon transform was proven to be effective
in distinguishing manipulated and nonmanipulated patches.

Following [5], we set the size of the input image to
256× 256× 3 and extracted 64 nonoverlapping patches from
the images. -e size of each block is 32× 32× 3. -en, we
utilize the square root of the 3×3 Laplacian filter to generate
a linear prediction error for each patch. To prevent the
periodic correlation of resampling features in linear pre-
diction loss, the Radon transform is used to accelerate the
gradient descent along with ten angles of projection. Ulti-
mately, the fast Fourier transform (FFT) is applied to obtain
the periodic signal. We balance the size of the patch and
resize it to 32×32 to capture the resampling features of
additional information.

3.2.2. LSTM Networks. -e LSTM networks are utilized to
establish the relationship between patches to analyze

manipulations in the overall image. Following [5], we use a
Hilbert curve to convert the multidimensional problem into
a single dimension to capture the correlation between
patches and guarantee the local spatial positioning for
patches.

From Figure 4(a), we find the results of the Hilbert curve
on the image. All the patches are connected in order. -e
Hilbert curve includes “cups” and “joins.” A square with one
open side represents a “cup.” -e vector connections of two
“cups” are called “joins.” Every cup has an entry point and an
exit point. In Figure 4(b), a cup is marked with a dashed box
from Figure 4(a). -e curve starts at the entry point (red)
and ends at the exit point (green). Meanwhile, the curve
traverses four adjacent squares connected to the next cup
through a dotted line. As a result, the order of the input that
is fed into the LSTM network is established.

-e LSTM network takes the patches associated with the
Hilbert curve one by one as input and learns the relationship
between adjacent patches by calculating the logarithmic
interval. In our work, we employ 64 steps in the LSTM
network, where each step represents a patch, and a 64-di-
mensional feature vector is obtained in the last layer of the
LSTM. First, we denote the n-th feature of the LSTM as Fn

(FnϵR1×Nh) and the feature map as Nt. -e next feature from
the LSTM network can be represented as

Fn
′ � Fn · Wn + Bn. (2)

where Wn ∈ RNh×Nt is a matrix and Bn ∈ R1×Nt is the bias.
Following [5], we choose Nh � 128 and Nt � 64 in our

experiment, and each patch can obtain the feature matrix of
64 × Nt and is reshaped to 8 × 8 × Nt. We set the cross-
entropy loss as

L(z) � −
1
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Here, M represents the number of pixels, N represents
the number of classes, y represents the input pixel, and φ(.)

is an indicator function. If m � n, the loss equals 1; other-
wise, it equals 0.

3.3. Feature FusionModule. -e feature fusion module aims
to synthesize forgery object and pixel features, as shown in
Figure 2. Following [15], we utilize a decoder to reconstruct
the fusion features and divide the manipulation area to re-
place the fully connected layer. We utilize multichannel filters
to generate heatmaps for manipulating images for the con-
volutional operation. Each decoder upsamples the feature
maps discovered in the previous layer and performs con-
volution and batch normalization operations. We employ a
3 × 3 size kernel [5] for the decoder and obtain 64 and 16
feature maps in the first and second layers, respectively. -e
output of the feature fusion module is a heatmap ZFusion 1
containing manipulation areas, as shown in Figure 3.

3.4. Integrated Fusion Module. -e heatmaps generated by
the pixel-level detection branch may contain many noisy
areas, such as the blue circles in Figure 3. Generally, there are
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two typical fusion methods when fusing ZObject and ZFusion 1
to ZFusion 2, i.e., the AND operation and OR operation.

ZFusion 2 � ZFusion 1ⓁZObject. (4)

For the AND operation, we keep the heatmap in the
bounding box from ZFusion 1. Meanwhile, the heatmap areas
that are out of the bounding box are ignored, as shown in
Figure 5(a). In the OR operation, we preserve all the areas in
the bounding box and the heatmaps, as shown in Figure 5(b).

We devise a multiresolution fusion (MRF) strategy based
on the bounding box from both the pixel and object levels, as
shown in Figure 5(c). We follow the AND operation if the
bounding box in the forgery object detection branch en-
compasses the pixel-level detection results. Meanwhile, we
take all the areas in the bounding box if there are no pixel-
level detection results, as described in Algorithm 1.

4. Experiments

4.1. Experimental Datasets and Evaluation Metrics.
Implementation Details. We implement our proposed ap-
proach in TensorFlow.We utilize two NVIDIAQuadro RTX

5000 GPUs to expedite our computational load. We set the
batch size to 16. �e learning rate is set to 0.00003 in pixel
level. We set 0.001 as the initial value in object level and then
reduce it to 0.0001 after 40k steps.

Datasets: we compared our method with current state-
of-the-art methods on NIST Nimble 2016 (NIST′16) [16],
CASIA [17, 18], Coverage [19], and Columbia [20].

(1) NIST′16 dataset was released in 2016, and it is a
standard dataset for image manipulation detection.
It covers the three types of manipulations: splicing,
copy-move, and removal.

(2) CASIA dataset was released in 2013, and it covers
two types of manipulations: splicing and copy-move.
Some postprocessing is used in manipulation re-
gions, like �ltering and blurring, to improve the
di�culty of detection.

(3) Coverage dataset was released in 2016, and it covers
six types of copy-move manipulation, such as copy
only and shape change. �e dataset includes the
source andmask images and has a similarity measure
for manipulating images.

(4) Columbia dataset focuses on splicing based on
uncompressed images.

Evaluation metric: we utilize the F1 score in pixel- and
object-level under the area under curve (AUC) as our
evaluation metrics for performance comparison.

(1) F1 score is a pixel-level evaluation index for image
manipulation detection, and it is used to estimate the
similarity between predicted results and actual value.

(2) AUC is the area under the ROC curve, an essential
indicator for measuring detection accuracy. Based on
the intersections between ROC curves, we can
evaluate the consequence of the model.

Source image Manipulated image

�e detection results 
of forgery object-

level branch
ZObject

Pixel detection with
feature fusion module

ZFusion1

Two branches with 
integrated fusion 

module
ZFusion2

Ground-truth

Figure 3: �e outputs of our approach. �e �rst row indicates the
source image, the manipulated images, and the ground truth. �e
second row demonstrates the detection result of forgery object-
level branch (ZObject), the pixel-level branch with the feature fusion
module (ZFusion 1), and the two branches with the integrated fusion
module (ZFusion 2).

(a) (b)

Figure 4: How the Hilbert curve works in an image.

ZObject

ZFusion1

ZFusion2 (AND) = ZObject ∩ ZFusion1

(a)

ZFusion2 (OR) = ZObject ∪ ZFusion1
(b)

ZFusion2 - MRF
(c)

Figure 5: Using integrated fusion method to choose the manip-
ulation area.
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Baseline models: we compare our approach with dif-
ferent baseline models.

(1) ELA [21]: this approach detects quality loss caused by
JPEG compression by calculating the error between
the actual and manipulation areas.

(2) NOI1 [22]: this approach simulates local noise
through wavelet coefficients and utilizes the incon-
sistency of the noise to detect the manipulation area.

(3) CFA1 [23]: this approach is based on the CFA es-
timation method. It employs adjacent pixels to
simulate the filter array image from the camera and
calculate the manipulation probability for each pixel.

(4) MFCN [2]: this approach is based on an edge-en-
hanced multitask complete convolutional network.
Moreover, it is used to detect manipulation by
predicting the area edge.

(5) J-LSTM [24]: this approach is based on the LSTM
network, which judges the pixel-level manipulations
by separating the image into blocks.

(6) RGB-N [7]: this approach is based on Faster R-CNN
to establish a model for RGB and noise streams.

(7) LSTM-Encoder [5]: this approach employs a hybrid
CNN-LSTM model to detect manipulation regions.

(8) C2RNet [8]: this approach includes C-CNN and
R-CNN to distinguish the genuine and manipulation
images.

Pretrained model: we train the forgery object-level and
pixel-level branch separately. -e forgery object-level
branch, which needs to set the bounding box as the object
label by the frame around the pixel-level ground truth, is
trained first. -en, we train the pixel branch and employ the
features extracted by the forgery object encoder to train the
feature fusion module. Finally, we combine the results in an
integrated fusion module using logical operations in Section
3.4.

We utilize the synthetic dataset created by Bappy et al.
[5] in the pixel-level branch using the DRESDEN, COCO,
and NIST′16 datasets. We follow [7] to set up the forgery
object-level branch. Moreover, we utilize ResNet-101 in

Faster R-CNN, which is pretrained on ImageNet, to extract
the features. We train the pixel branch by using 90% of the
images for training and 10% for validation.

4.2. Experimental Analysis. Experiment preparation: we test
our proposed method on four datasets, NIST′16 [16], CASIA
[17, 18], Coverage [19], and Columbia. Table 1 shows the
comparison results of the pixel-level F1 score and AUC. We
compare four sets of experiments. -e first column and the
second column are the results of the single pixel-level branch
and single forgery object-level branch. -e third column is
the result of the double branch, which includes the AND
operation, OR operation, and the MRF proposed in Section
3.4.

-e MRF has a better performance, as shown in Table 1.
-erefore, we choose theMRF as the follow-up experimental
approach and set 0.2 as the manipulated threshold in the
heatmap.

Result analysis: Table 2 lists the F1 score comparison
between our method and the baselines. Table 3 provides the
AUC comparison. We utilize the experimental results from
[7, 13] and [5].

As shown in Table 2, the F1 score is a classification
accuracy metric that combines precision and recall, which
means the larger the F1 score is, the more robust the model
is. -e CASIA dataset has postprocessing methods, which
affect our forgery object-level branch in detected forged
objects. In comparison to our method, the LSTM-encoder
[5] approach utilizes pixel-level detection and focuses on
spatial cues. As a result, the LSTM-encoder [5] approach’s F1
score is 0.3% higher than ours on CASIA. However, our
approach combines both object- and pixel-level branches.
Using our model, the F1 score on the other datasets is
improved and the detection of postprocessing methods is
considered. As a result, our approach performs better than
other methods on the NIST′16 [16], Coverage [19], and
Columbia [20] datasets.

Our approach outperforms the baselines on the CASIA,
Coverage, and Columbia datasets for the pixel-level AUC
comparison. Especially on the Coverage dataset, our ap-
proach has 1.1% improvement compared to the second-best

Input: Bounding boxes in the forgery object detection branch: Bi, i � 1, 2, . . . , N. N: -e number of bounding boxes. Pixel-level
detection results in pixel-level detection branch: Pj, j � 1, 2, . . . , M. M: -e number of results.
Output: forgery areas: Fp, p � 1, 2, . . . , N

assign Intersectionij to Bi AND Pj

for each Bi do
if Intersectionij is not null:
assign Intersectionij to Fp

else
assign Bi to Fp

return Fp

ALGORITHM 1: -e preprocessing of the multi-resolution fusion (MRF) strategy.
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result. Moreover, RGB-N [7] outperforms our approach on
the NIST′16 dataset. -is is mainly because the forged image
quality is low in NIST′16. -e pixel-level branch has inac-
curate pixel classification, leading to poor boundary box
regression. However, RGN-N only uses forgery object-level
information and performs better on NIST′16. -erefore, the
manipulation of object detection at different scales is the
next point of study.

Visualization results: we illustrate some visualization
results in Figures 6 and 7 in comparison with the pixel-level,
forgery object-level, and the dual branch (MRF). Images are
selected from Coverage and NIST′16. We illustrate better
results in Figure 6. As we can see, our approach can detect
image manipulation accurately. -e two branches can
correct for each other. -e pixel-level branch can segment
the forged objects from the bounding box detected by the
forgery object-level branch, which makes the results finer-

grained, such as Line 1 in Figure 6. Meanwhile, the forgery
object-level branch shields the noise points of the pixel-level
branch and obtains better performance, such as Line 4 in
Figure 6.

Meanwhile, in Figure 7, we select a few poor cases, in
which the pixel branch causes the result in the first row, and
the forgery object-level branch causes the result in the
second row. Similar to Line 1 in Figure 7, the forgery object-
level branch detects the manipulated region precisely, but
the pixel-level branch does not detect the whole manipulated
region, which causes the poor result. Similarly, in Line 2, the
pixel-level branch successfully detects part of the image
manipulation area, but the forgery object-level branch does
not detect the bounding box. Both situations lead to de-
tection failures. We will balance the detection results of the
two branches as much as possible in future work to obtain
better experimental results.

Table 1: -e pixel-level F1 score/AUC comparison on four standard datasets.

Pixel-level Forgery object-
level

Dual branch
“AND” “OR” “MRF”

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
NIST′16 [16] 0.780 0.796 0.717 0.912 0.739 0.854 0.828 0.892 0.807 0.929
CASIA [17, 18] 0.751 0.713 0.688 0.844 0.744 0.743 0.742 0.851 0.789 0.862
Coverage [19] 0.551 0.723 0.433 0.802 0.531 0.808 0.561 0.828 0.563 0.828
Columbia [20] 0.831 0.641 0.398 0.756 0.529 0.809 0.776 0.803 0.833 0.801

Table 2: -e pixel-level F1 score comparison on the standard datasets.

NIST′16 [16] CASIA [17, 18] Coverage [19] Columbia [20]
ELA [21] 0.236 0.470 0.222 0.214
NOI1 [22] 0.285 0.574 0.269 0.263
CFA1 [23] 0.174 0.467 0.190 0.207
MFCN [2] 0.571 0.612 - 0.541
RGB-N [7] 0.722 0.697 0.437 0.408
LSTM-encoder [5] 0.789 0.792 — 0.823
C2RNet [8] 0.55 0.676 — 0.695
Ours 0.807 0.789 0.563 0.833

Table 3: -e pixel-level AUC comparison on the standard datasets.

NIST′16 [16] CASIA [17, 18] Coverage [19] Columbia [20]
ELA [21] 0.429 0.581 0.583 0.613
NOI1 [22] 0.487 0.546 0.578 0.612
CFA1 [23] 0.501 0.720 0.485 0.522
J-LSTM [24] 0.764 — 0.614 —
RGB-N [7] 0.937 0.858 0.817 0.795
LSTM-encoder [5] 0.794 — 0.712 —
Ours 0.929 0.862 0.828 0.801
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Figure 6: Visualization results from our approach.
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Figure 7: Poor visualization results from our approach.
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5. Conclusion

We present a framework for image manipulation detection
that combines a forgery object-level branch, a pixel-level
branch, and two fusion modules. We utilize Faster R-CNN
to detect manipulation areas on the forgery object-level
branch. Meanwhile, we extract the resampling feature for
each patch and utilize the Hilbert curve and LSTM network
to detect the manipulated regions in the pixel-level branch.
We fuse the two branches with the fusion modules and
obtain a binary map of the manipulation regions. Experi-
mental results show superior performance compared with
the state-of-the-art methods. However, we also find that the
two branches can affect each other when the manipulated
object is of low quality. We will balance the two branches as
much as possible in future work to obtain better experi-
mental results.
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Recent studies have demonstrated that neural networks exhibit excellent performance in information hiding and image domain
transfer. Considering the tremendous progress that deep learning has made in image recognition, we explore whether neural
networks can recognize the imperceptible image in the transferred domain. Our target is to transfer natural images into images that
belong to a different domain, while at the same time, the attribute of natural images can be recognized on domain transferred images
directly. To address this issue, we proposed domain transferred image recognition to achieve image recognition directly on the
transferred images without the original images. In our proposed system, a generator is designed for the domain transfer and a
recognizer is responsible for image recognition. To be flexible for the natural image restoration in some cases, we also incorporate an
additional generator in our method. In addition, a discriminator will play an indispensable role in the image domain transfer. Finally,
we demonstrate that our method can successfully identify the natural images on transferred images without access to original images.

1. Introduction

Recently, there have emerged numerous methods for privacy
protection-awareness [1–3]. At the same time, deep learning
has made great breakthroughs in speech, image, and text
recognition [4–6]. However, training these networks requires
a large amount of data, which makes some giant companies
such as Google, Microsoft, and Amazon or personalized
customization organizations which try every means to collect
personal data of their users for training deep models [7].
Despite of great performance of these well-trained deep
networks, they bring huge privacy risks [8, 9].

Most of small businesses or individuals use the cloud
services provided by giant companies for deep learning tasks
since they are limited to the local storage capacity and GPU
resources. However, the data collected by these organiza-
tions can be reused repeatedly, making users difficult to
delete. Besides, these sensitive data may contain unique
personal identical information such as faces and voices,
which inevitably bring risks when stolen by malicious at-
tackers and used for illegal benefits [10, 11].

To securely perform image recognition, information
hiding, which conceals important secret information in the

carrier (image, video, audio, etc.), can solve the issue of
privacy leakage elegantly and flexibly [12, 13]. However,
information hiding mainly focuses on protecting secret
information from being leaked during transmission. As
shown in Figure 1, when image recognition is required, it has
to restore the secret images, which increases the risk of
information leakage. Moreover, to hide abundant secret
information, it is necessary to select an appropriate carrier
with large redundant room, which is time-consuming and
will inevitably increase the risk of information leakage once
the carrier is intercepted. To this end, we propose a method
that can achieve image recognition in the transferred do-
main directly, which can recognize the attributes of secret
images on transferred images.

Specially, our detailed application scenario for real world is
shown in Figure 2; a giant company deploys an image rec-
ognition service in the cloud for profits. To avoid data leakage
of users, we train a series of models ahead to reach this goal. In
the real service deployment, the service provider owns/deploys
only the well-trained recognizer in its cloud, and the domain
transfer generator is deployed in a trustworthy party.

+erefore, a user uploads a secret image to the trust-
worthy party to transfer his/her image into another image
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which has different content/style and then delivers the
transferred image to the cloud for image recognition.

To perform image recognition in the transferred domain,
we designed a transfer generator to accomplish the process
of domain transfer. Same as the classic generative adversarial

networks, an indispensable discriminator aids the generator
to generate a high-quality image. Besides, a classifier is
responsible for the image recognition task. Although our
system is able to recognize the attributes of the original
images through the transferred images directly, to facilitate
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Container image Restored image

Transferred image
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id
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g

Recognition

Recognition

Others 
(carrier based)

Ours 
(domain transfer based)

Figure 1: +e comparison of application processes. For a system that requires image recognition in the cloud server, to protect the image
content privacy, other methods based on information hiding will first select a textured carrier/cover image and then apply a special
embedding algorithm to hide the secret image in a carrier image and send it to the cloud end. +e receiver will apply the corresponding
extracting method to obtain the secret image for recognition. Differently, our method is free from carrier image by transferring the secret
image to another domain and the recognition process can be performed on the transferred domain directly.
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Figure 2: +e conception of our system. +e models are trained under supervision, where the domain transfer generator is used to protect
the content privacy of the user’s secret images and a recognizer network which is used to classify secret images in the transferred domain. In
the cloud recognition application scenario, the domain transfer generator is handed over to a trusted party, and the recognizer is controlled
by an organization which is deployed on a cloud service.
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the original image restoration in some cases, we also in-
corporate an additional restore generator to recover the
secret image in our method. In summary, our contributions
are three-fold:

(i) To achieve image recognition as well as avoid pri-
vate information leakage issue, we proposed a
framework to perform image recognition directly
on domain transferred images

(ii) Our image recognition method is performed on the
transferred domain, which decreases the exposure
risk of the source image and omits the process of
carrier selection

(iii) Experiments demonstrate the availability of our
method in terms of classification accuracy and vi-
sual effect of the transferred images

2. Related Work

In this section, we will first review some secure inference and
visual information protection strategies.

2.1. Encryption. Encryption technique is used for data
privacy protection. Its basic target is to hide the content of
the data, which encrypts the raw data into the ciphertext data
and decrypts it back to the original version with the cor-
responding decryption algorithm.

Homomorphic encryption proposed by Craig [14] can
support arbitrary computations on the encrypted data and
the final calculation result can be obtained after decryption.
However, this technique, which is calculated in the
encrypted domain, is computationally expensive compared
to plaintext calculation. For example, recently, Sanyal [15]
proposed a homomorphic encryption-based image classi-
fication algorithm to protect image privacy. However, it
takes nearly 2 hours to classify encrypted MNIST images on
a 16-core workstation, which is impractical in reality.
Moreover, the encrypted images can raise the awareness of
attackers due to its unreasonable ciphertext.

Secure multiparty computation is an important branch
of cryptography, which aims to solve the problem of col-
laborative computing that protects privacy among a group of
untrusted parties. Implementations of predicting encrypted
data based on secure multiparty computing have flourished
[16, 17]. However, these methods require the data owner to
encrypt the inputs and constantly interact and communicate
with each other. Besides, as mentioned in [18], most of the
existing multiparty computation-based secure inferences
rely on customized protocols that are highly optimized for
particular activation functions. For example, XONN [19] is
currently the most efficient solution for 2-party protocol, but
XONN only works with Sign as the activation function.
Implementing exponential function (Sigmoid) or max
function (ReLU) requires heavy computations and com-
munications in SMPC-based solutions.

2.2. Information Hiding. Information hiding is one of the
most important ways to protect secret data, which has been

well researched in the past decades [20–22]. +is technique
can be roughly classified into two categories: digital
watermarking and steganography. Recently, many deep
learning algorithms related to information hiding have been
developed. Usually, digital watermarking technology hides a
particular bit string in inconspicuous places to protect the
copyright of images, models, etc. Uchida et al. [23] embed a
watermark in model parameters using a regularizer to
protect the intellectual property of trained models, with the
performance of trained model hardly affected. Rouhani et al.
[24] embed watermarking in the weight distribution of
convolutional layers in trained models to protect deep
learning models. Baluja [25] successfully hides a full-size
color image into another image of the same size based on a
deep image encoder and decoder network to realize image
steganography. However, these methods focus on protecting
the security of hidden information during transmission.
+ese methods have to go through the process of extracting
hidden secret information when using these information,
which may lead to hidden secret information leakage after
restoration.

2.3. ImageDomainTransfer. Image domain transfer refers to
the process of generating another image according to one
image, that is, transfer one image from one domain to
another. Pix2pix proposed by Isola et al. [26] provides a
concise and elegant general framework for solving a series of
image domain transfer tasks, and the author proves that the
method has good performance in tasks such as segmentation
map to street view map, grayscale map to color map, and
clothing outline sketch to color map. In addition to su-
pervised image domain tasks (with paired training samples),
for unsupervised image domain transfer tasks without
paired images as training samples, Zhu et al. [27] designed
CycleGAN to complete the image domain transfer process
from one dataset to another dataset. Moreover, StarGAN
[28] proposed by Choi et al. can complete various attribute
conversions of face images, such as gender, age, skin color,
and emotions, and Tang et al. [29] proposed a method that
can transfer an image from a source to a target domain
guided by controllable structures. However, these GAN-
based image domain transfer methods simply focus on
approximating the distribution of generated images with the
distribution of the target domain. Inspired by the success of
deep learning in multitasking [30, 31], we turn our attention
to the image recognition task in the transferred domain that
is free from image content exposure.

3. Domain Transferred Image Recognition

In order to transfer the secret image from the source domain
to a target domain, an image generator is indispensable.
Besides, a necessary classifier/recognizer will be responsible
for image recognition in the transferred domain. As men-
tioned before, the domain transfer will alter the distribution
of source images, in which way the privacy of images can be
protected. However, changes in the distribution of data will
hamper the image recognition task. +erefore, the generator
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and classifier modules will be trained in turn, just as the way
of training a generative adversarial network. Besides, an
alternative restore generator can also be incorporated to
restore the secret image in some cases. +erefore, as shown
in Figure 3, our whole framework mainly contains four
modules: two generators, one discriminator, and one
recognizer.

In order to describe the proposed method more clearly,
we define the relevant concepts and variables as follows. +e
secret image dataset/domain is denoted asXnatural, where the
image in it is represented by Ise. Similarly, the target dataset/
domain is defined asXtarget, where the image in it is denoted
as Ita. Itr and Ire respectively indicate the transferred images
output by the domain transfer generator and the restored
images output by the restore generator. Gt and Gr represent
the generator for the domain transfer and the generator for
original secret image restoration, respectively. +e dis-
criminator is denoted by D, and the recognizer R can
identify secret image attributes on the transferred domain
images Itr.

3.1. Domain Transfer Generator. Given a secret image Ise

from the datasetXnatural to be identified, the domain transfer
generator (corresponding to Gt in Figure 3) aims to transfer
the secret image into an image in the target domain with a
different style such as a cartoon face style and an animal face
style. In other words, the transfer generatorGt should extract
the feature of the secret image as much as possible and
transform this feature into an image that conforms to the
distribution of the target domain. Besides, the transferred
image must fool the discriminator to make it fail to tell
whether this image is generated by Gt or comes fromXtarget.
When the whole system is fully trained, the generator Gt can

be used as an independent module to perform image transfer
from Xnatural domain to Xtarget domain.

+e domain transfer process can be written as

Itr � Gt Ise( . (1)

As for the design of our domain transfer generator, given
that the convolutional neural network is experimentally
proven to have excellent feature learning and extraction
abilities for images and that a large amount of autoencoders
have shown extraordinary performance in image generation,
we adopt the combination of convolutional neural network
and autoencoder and design the generator Gt with a ResNet
[32] structure. Specifically, as shown in Figure 4, we first
stack 3 sets of convolutional layers, instance normalization
layers, and ReLU activation, followed by 9 residual blocks,
with each residual block containing two convolutional
layers, two instance normalization layers, and one ReLU
activation.+e input of each residual block and the output of
the latter instance normalization will be added as the output
of each residual block. Finally, 2 sets of deconvolution layers,
ReLU activation layers, and instance normalization layers
are followed to make the size of the final generated image
consistent with that of the original image. By the way, the last
activation layer will be tanh to cover the full pixel range.

3.2. Discriminator. For deep models based on generative
adversarial networks, the discriminator D is indispensable
in ensuring the quality of the generated images. +e dis-
criminator is expected to learn features that can distinguish
the image Ita in the target domain from the generated image
Itr in the transferred domain. When the input image is from
the target domainXtarget, the discriminator should identify it
as a “real” image, and when the input image is generated by

Fake
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Secret images: Ise

Restored
images : Ire

Target domain
images : Ita

Transferred images : Itr 

Generators Classifiers

Gt: Domaintransfer 
generator

Gr: Restore generator

Real
Fake

D: Discriminator

R: Recognizer
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Figure 3: +e schematic structure of our proposed system. For a secret image, it is firstly transferred to another image with a different style
using the domain transfer generator. +e transferred image serves as the input of the discriminator, recognizer, and restore generator. +e
recognizer can identify the attributes of the secret images on the transferred images. +e restore generator is responsible for reconstructing
the secret images based on transferred images. +e discriminator aims to distinguish images in the target domain from images generated by
the transfer generator.
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the generator Gt, the discriminator should identify it as a
“fake” image, which can be mathematically expressed as

t � D Iin( , (2)

where t represents the output of discriminatorD, t ∈ {“real”:
image from target domain, “fake”: image generated by Gt},
and Iin represents the input image of D.

As an auxiliary module of the generator Gt, for each
input image, the discriminatorD needs to judge whether it
is “true” or “false.” But, unlike generators which have to
perform complex image generation tasks, the discriminator
only makes a binary decision. +erefore, our framework
only contains one discriminator, a very “shallow” network.
+e specific structure is shown in Figure 5(a). First, we
stack a convolutional layer and a ReLU activation layer and
then go through 3 convolutional blocks, each of which
contains one convolutional layer, one instance normali-
zation layer, and one ReLU activation layer, finally
appending one convolutional layer as the end of the
discriminator.

3.3. Recognizer. For the recognition network R, its main
task is to be able to identify the attribute information of the
original secret image Ise from the image Itr generated by the
domain transfer generator Gt, that is,

l � R Itr( , (3)

where l is the predicted result.
+rough the combination of several proposed modules,

for a secret image Ise, the generator Gt firstly transforms the
secret image to the target domainXtarget and retains features
that can characterize its attributes. +en, the recognizerR is
able to extract this feature from the generated image and
maps it to the attribute label representing the secret image.
+is process can be expressed as

R: Gt: Ise⟶ Xtarget ⟶ l. (4)

+ere are currently some popular network structures that
perform very well in image recognition tasks, such as VGG
[33] and ResNet [32].+erefore, without loss of generality, we
adopt ResNet structure as backbone for the recognizer in our
framework and design different model heads according to the
specific recognition task. Specifically, we take ResNet50 [32]
as the backbone of our recognizer and replace the fully
connected layer at the end of the model. +e final number of
output logits of the recognizer equals to the number of
categories. +e specific structure of the network is shown in
Figure 5(b). After the input image passes through the
backbone of ResNet50, the obtained features are flattened,
passed through a fully connected layer, and activated by the
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Figure 4: Structure of domain transfer generator Gt and restore generator Gr.
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“softmax” function. Finally, the predicted label corresponds to
the category label with the highest confidence.

3.4.RestoreGenerator. +e recognizer designed in this paper
can already recognize images, but in some scenarios that
require more flexible authority certification or image pro-
cessing operation, it may be necessary to recover the original
secret image. +erefore, in addition to the recognizer for
image recognition/authority certification, we also provide an
additional restore generator Gt for image restoration. +e
restore generator receives the image generated by the do-
main transfer generator Gt as input and outputs an image as
identical to the original secret image as possible. Since the
task of the restore generator Gr is also to generate images, in
order to reduce the complexity of the whole system, we set
the structure of the restore generator Gr the same as the
domain transfer generator Gt, which is shown in Figure 4.

3.5. Objective Loss Function. For a given secret image
Ise ∈ Xnatural and its label and an image in the target domain
Ist ∈ Xtarget, the designed network will be trained using the
following adversarial loss.

For the discriminatorD, its input is the image Itr generated
by the generator or the image Ita in the target domain Xtarget,
and its task is to be able to distinguish between these two kinds
of images, which is a binary classification problem. In our
framework, the images generated by the domain transfer
generator are regarded as negative samples, and the images
from the target domain are regarded as positive samples.
+erefore, the discriminator will generate the following loss:

Ldis � EIst
logD Ist(   + EIse

log 1 − D G Ise( ( (   . (5)

For the recognizerR, its purpose is to predict the attribute
label of the secret image. +erefore, the cross-entropy loss
function, most frequently used in image recognition, urges the
recognizer to make correct prediction to the target label:

Lcls � − 
K

i�1
yilog R Itr( ( , (6)

where K is the number of image categories, y is the image
label, and R(Itr) is the predicted probability of the rec-
ognition model on the domain transferred image Itr.

At the same time, the proposed framework also provides
the function of restoring the original secret image. +at is to
say, the output of the restore generator Gr should be as same
as possible to the secret image. To this end, the following loss
function controls the similarity between Ise and Ire:

Lres � Ise − Ire

����
����2. (7)

Finally, we will obtain a total loss as follows:

L Gr, Gt, G,R(  � Ldis + Lcls + Lres. (8)

4. Experiments

In this section, we will first introduce our datasets and
evaluation metrics and experimental details. +en, we will

demonstrate the effectiveness of our method on varied
datasets.

4.1. Dataset. Since the proposed method is to transform
images in one dataset/domain to another dataset/domain,
for a complete domain transfer, two datasets are required,
namely, the secret image dataset/domain Xnatural and the
target dataset/domain Xtarget. We select face images in-
dicating strong privacy as our source dataset/domain, and
we adopt CelebA [34] and Pubfig [35] dataset in the
experiment.

CelebA [34] is a large-scale face image database con-
taining 202,599 images with 40 categories collected from the
Internet by the Chinese University of Hong Kong. Each of
these images has 40 binary attributes, such as gender, at-
tractive or not, and young or not. Without loss of generality,
we use the attribute “gender” as our prediction attribute, and
all the images will be resized to resolution of 256 × 256. +e
first 10K images and the subsequent 2K images are re-
spectively used as the training dataset and the test dataset in
the experiment.

Pubfig [35] is a face image dataset with 58,797 images of
200 categories collected from the Internet. Each category has
an average of 300 face images of one person. However, due to
the copyright and privacy issue, most of the image links
provided by the paper [35] are invalid now. As an alternative,
we use the version published by other user on the Kaggle
platform [36] including only 11,640 images with 150 cate-
gories. Specifically, we randomly choose 80% images as
training dataset and the remain 20% images as testing
dataset.

For the target dataset/domain Xtarget, we mainly use
Bitmoji-style cartoon face images.+e Bitmoji [37] dataset is
a cartoon style face downloaded directly from the mobile
app. +e Bitmoji [37] dataset contains 4085 faces with the
resolution of 384 × 384. In the experiments, all the Bitmoji
images are resized to the same size as the source domain
Xnatural, with the resolution of 256 × 256. Figure 6 illustrates
some examples of the Bitmoji dataset.

4.2. Evaluation. Since our framework is to perform image
recognition in the transferred domain, the accuracy of image
recognition is one of our goals. At the same time, we also
provide a restore generator Gr to recover the original secret
image. +erefore, the PSNR and SSIM metrics, which are
most commonly used in digital image processing, are used to
measure the quality of the recovered image. Given a ref-
erence image I and a test image K, both with size m × n, the
PSNR between I and K is defined as

PSNR � 10 · log10
L
2

MSE
 , (9)

where L is the dynamic range of allowable image pixel
intensities (usually takes 255). For our 3-channel color
image, we first calculate the MSE value of each
channel and then calculate the average to get the MSE in
equation (9).
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MSE �
1

mn


m−1

i�0


n−1

j�0
[I(i, j) −K(i, j)}

2
. (10)

+e SSIM is given by

SSIM �
2μIμK + c1(  2σΙΚ + c2( 

μ2Ι + μ2Κ + c1  σ2Ι + σ2Κ + c1 
, (11)

where μI and μK are the local means, σΙ and σΚ are the
standard deviations and σΙΚ is the cross-covariance for
images I and K sequentially, and c1 and c2 are 6.50 and 58.5,
respectively, by default.

4.3. Implementation Details. +e implementation is based
on Keras with TensorFlow as the backend. In our experi-
ments, we use Adam [38] optimizer with a learning rate of
0.001 and linearly decay it to 0 after 50 training epochs. Our
training batch size is set 4 and it takes our 4 days for training
about 200 epochs on one single NVIDIA RTX 1080 Ti GPU.

4.4.ExperimentalResults. We first take the CelebA dataset as
the domain Xnatural, the Bitmoji dataset as the domain
Xtarget, and the “gender” attribute in the CelebA dataset as
the recognized attribute. After sufficient training, the ob-
tained domain transferred images and the restored images
are shown in Figure 7, where images in the first row belong
to the CelebA dataset, images in the second row are
transferred by the domain transfer generator Gt, and images
in the last row are the recovered images. Visually, the
transferred face image is similar to the cartoon face image in
the Bitmoji dataset, which are all centered, frontal, and
surrounded by white space. It is difficult to distinguish
between these two kinds of images visually.

In order to verify the generalization of our method, we
also use Pubfig dataset and the Bitmoji dataset asXnatural and
Xtarget respectively for training, where the identity of Pubfig
images is used as the prediction label. +e results are shown
in Figure 8.

4.4.1. Comparison of Other Methods. Table 1 shows the
comparison of our method with other related works from
various aspects. Tao et al. [39] and Baluja [25] focus on the
secure secret message communication but failed in image
recognition. +e domain transfer methods [40–42] are free
from carrier selection but none of them take secure image
recognition into consideration. Our method can not only
support secret image recovery and direct image recognition
but also is free from carrier selection. Besides, the difference

between our secret images and transferred images is enough
(middle degree) to prevent the adversary from inferring the
image content.

4.4.2. Visualization of Domain Transfer. Since the proposed
model needs to transfer the image from one domain to
another domain for “camouflage,” the features of images
obtained by domain transfer should be as close to the target
domain Xtarget as possible. In the field of machine learning,
there are some classic feature compression/dimension re-
duction methods, such as PCA [43], t-SNE [44], and LLE
[45]. In order to explicitly portray the domain transfer
process of our method, we visualize the feature distribution
of the dataset Xnatural before and after domain transfer and
the feature distribution of target datasetXtarget using t-SNE.
Specifically, we first flatten all the CelebA and Bitmoji images
from 256 × 256 to 1 × 256∗ 256∗ 3 and then directly apply
the t-SNE function in the Sklearn [46] library to compress
them into 1 × 2 and characterize these images on a 2D plane.
+e visualization of the dataset is shown in Figure 9. From
Figure 9(a), we can see that the boundary between CelebA
and Bitmoji is very obvious. But after transferring images in
CelebA, the distribution of transferred CelebA and Bitmoji
datasets is very similar, shown by the overlapping between
the red dots and blue dots in Figure 9(b).

4.4.3. Recognition of Domain Transferred Image. In our
proposed framework, after the original secret face image is
transformed by the domain transfer generator Gt, the corre-
sponding recognizer R should be able to directly identify the
original secret image according to the transferred image. To
examine the performance of the trained recognizerR, we also
train a recognition network directly on the original natural face
as the best recognizer for comparison. Experiments are shown
in Table 2. From the table, we can see that even if the image is
transferred into other domains, our image recognition accu-
racy hardly decreases compared to the highest untransferred
image recognition accuracy. For CelebA images, the recog-
nition accuracy drops from 92.4%⟶ 92.1% and Pubfig
images drop from 89.7%⟶ 88.4%.

4.4.4. Recognition of Reconstructed Images. As mentioned
before, in order to use our proposed method more flexibly in
some scenarios where the original secret image needs to be
recovered, we also include a restore generator Gr for re-
covering the original secret image, and the usage of the
restored image should not be affected. In order to test the
effect of domain transfer on secret images, we test the image
recognition performance of restored images. Specifically, we

Figure 6: Examples of Bitmoji images. +e Bitmoji images contain cartoon faces of different genders, different hair colors, etc., all of which
are centered and surrounded by white space.
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train several recognizers on natural face images with dif-
ferent kinds of attributes and use these trained recognizers to
test the image recognition accuracy on restored images.
Without loss of generality, we select four attributes of
“Male,” “Bald,” “Heavy_Makeup,” and “Attractive” on the
CelebA dataset to test the recognition performance of
reconstructed images.+e experimental results are shown in
Table 3.

As can be seen from Table 3, when the network is trained
directly with the original CelebA dataset, the recognition

accuracies of “Male,” “Bald,” “Heavy_Makeup,” and “At-
tractive” attributes are 92.4%, 98.2%, 90.0%, and 80.2%,
respectively. Even if the original image has gone through the
domain transfer, the recognition accuracy of the restored
image is hardly affected, with the accuracy of “Male,” “Bald,”
“Heavy_Makeup,” and “Attractive” attributes being 92.2%,
98.2%, 87.7.0%, and 79.7%, respectively. Compared with the
highest recognition accuracy of plaintext/baseline, the av-
erage value of the recognition accuracy has only dropped by
less than one point (90.2% ⟶ 89.5%), indicating that the

Source 
images

Transferred 
images

Restored 
images

Figure 7: Visualization of domain transferred CelebA images and the corresponding restored images. From top to last row are original
secret images Ise, domain transferred images Itr, and recovered secret images Ire, respectively.

Source 
images

Transferred 
images

Restored 
images

Figure 8: Visualization of domain transferred Pubfig images and the corresponding restored images. From top to last row are original secret
images Ise, domain transferred images Itr, and recovered secret images Ire, respectively.

Table 1: Comparison of relevant studies from different aspects. Difference means the difference between the secret image and the stego/
generated/transferred image. STC means syndrome trellis coding; CNN and GAN mean convolutional neural network and generative
adversarial networks, respectively.

Ref. Carrier required Difference Technology adopted Support secret images recovery Support direct image recognition
Tao et al. [39] Yes Large STC Yes No
Baluja [25] Yes Large CNN Yes No
Kim et al. [40] No Middle GAN Yes No
Chen et al. [41] No Middle GAN Yes No
Liu et al. [42] No Small GAN No No
Ours No Middle GAN Yes Yes
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image reconstructed in our method can still be used with
little performance penalty.

4.4.5. Visual Quality of Reconstructed Images. From the
perspective of secret information transfer, the process of
recovering the original secret image in our method can also
be used for secret communication. +e method of hiding
images within images mentioned in [25] is an advanced
method based on neural networks for large capacity in-
formation hiding, where the author pointed out that if the
natural image is directly fed into the proposed neural net-
work, the hidden image will be exposed in the residual
image. To eliminate the traces of hidden image content in
residual images between cover images and stego images, a
simple way is to permute the pixels of hidden images before

they are passed to the preparation network. Following [25],
we retrained our whole network to hide images without the
spatial coherence of natural images. As shown in Table 4,
although the average values of PSNR and SSIM of the re-
stored images are slightly inferior to the shuffled version, the
recognition of restored images will be little affected. One
thing that needs to noted is that we are only sacrificing a little
bit of image quality to enable image recognition while
preserving privacy. Besides, our method is free from cover
image selection hence decreasing the complexity of the
system during the usage/inference phase.

5. Conclusion

In this paper, we proposed a technique for image recognition
while protecting the privacy of image content. First, we point
out that our method is free from not only complex com-
putation such as encryption algorithms but also carrier
selection like information hiding-based method. Second, we
designed and trained a combined network containing two
generators, one recognizer, and one discriminator, where
these two generators are responsible for domain transfer and
image reconstruction, respectively, and the recognizer for
image recognition on domain transferred images. Experi-
ments are conducted on several standard datasets and the
results have validated the effectiveness of our proposed
method.

celebA & Bitmoji distribution visualization celebATransferred & Bitmoji distribution visualization

Figure 9: Visualization of the dataset after reducing the images to 2 dimensions using the t-SNE [44] algorithm. (a) +e distribution of the
CelebA dataset and Bitmoji dataset. +e red dot means images in the CelebA dataset, and the blue dot means images in the Bitmoji dataset.
(b) +e distribution of the domain transferred CelebA dataset and Bitmoji dataset.

Table 2: Recognition accuracy comparison. +e ACC in the
“CelebA” column and “Pubfig” column means the top accuracy
obtained by recognizers trained by natural, unaltered face images.
+e ACC in the “CelebA-T” column and “Pubfig-T” columnmeans
recognition accuracy obtained on transferred images.

Dataset CelebA CelebA-T Pubfig Pubfig-T
ACC (%) 92.4 92.1 89.7 88.4

Table 3: +e recognition accuracy of CelebA and reconstructed
CelebA images. ACC(Base) means the best accuracy obtained by
the model trained on natural images. ACC(Res) means the rec-
ognition accuracy obtained on the restored images.

Attributes Male Bald Heavy_Makeup Attractive Average
ACC(Base) 92.4 98.2 90.0 80.2 90.2
ACC(Res) 92.2 98.2 87.7 79.7 89.5

Table 4: Quantitative visual quality of recovered images.

Method Baluja [25] Baluja (shuffled) [25] Ours
PSNR 34.2 31.6 26.4
SSIM 0.962 0.943 0.948

Security and Communication Networks 9



Data Availability

+e CelebA data used to support the findings of this study
are from previously reported studies and datasets, which
have been cited.+e Pubfig and Bitmoji data used to support
the findings of this study were supplied by Kaggle under
license, which can be downloaded by hyperlinks provided in
references [36] and [37], respectively.
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In recent years, deep convolutional neural networks (DCNN) have been widely used in the field of video action recognition.
Attention mechanisms are also increasingly utilized in action recognition tasks. In this paper, we want to combine temporal and
spatial attention for better video action recognition. Specifically, we learn a set of sparse attention by computing class response
maps for finding the most informative region in a video frame. Each video frame is resampled with this information to form two
new frames, one focusing on the most discriminative regions of the image and the other on the complementary regions of the
image. After computing sparse attention all the newly generated video frames are rearranged in the order of the original video to
form two new videos.*ese two videos are then fed into a CNN as new inputs to reinforce the learning of discriminative regions in
the images (spatial attention). And the CNN we used is a network with a frame selection strategy that allows the network to focus
on only some of the frames to complete the classification task (temporal attention). Finally, we combine the three video (original,
discriminative, and complementary) classification results to get the final result together. Our experiments on the datasets UCF101
and HMDB51 show that our approach outperforms the best available methods.

1. Introduction

As an important communication medium, video contains a
wealth of information. But this information used to be extracted
and used manually, which is time-consuming and laborious.
With the development of deep learning, attempts have been
made to allow computers to extract information from videos.
Many video-based deep learning tasks have emerged, such as
video action localization [1], video captioning [2], and video
question-answering [3]. *e video action recognition task is to
derive the behavior of a person in a video by analyzing the video
content. *is task is essentially a classification task where the
input is a video and the output is action labels. *is task has a
wide range of application scenarios; most typically, it can detect
violent action in surveillance videos and help police investigate
and collect evidence [4].

With the development of deep learning, many excellent
methods for video action recognition have emerged. Video is

composed of many frames, so the understanding of video
should include the relationship between frames in addition
to the image frames themselves. *erefore, the classical two-
stream network [5] divided the video into two parts: spatial
and temporal. Spatial part is the information of video frame,
for which there are many excellent 2D CNN structures
available, such as ResNet [6] and Inception [7], while the
temporal information comes from the association between
frames, and this part was obtained by optical flow. Finally the
temporal and spatial information were integrated together to
classify the video. Temporality is an important feature of
video; many researchers spend their efforts on how to better
capture the relationship between videos in the temporal
dimension [8]. In addition to the temporal dimension, the
information extraction of video frames itself is also an
important part. So researchers also gradually put their efforts
back to the images themselves in recent years. SlowFast [9]
sampled the original video at different frame rates. *e slow
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path learned spatial information with few frames and the fast
path learned temporal information with a large number of
frames and then combined it with nonlocal network to
model the relationship between frames from a global per-
spective. Video transformer [10] used transformer instead of
convolution to compute the internal relationship of the
whole video. But it was too computationally intensive to
compute both temporal and spatial attention for each patch
of each frame. So they proposed another architecture that
temporal attention and spatial attention are separately ap-
plied one after the other. *ey found that the latter one not
only reduced the computational effort significantly, but also
had a higher accuracy in the end.

We find that previous attention methods tend to favor
only one of temporal or spatial attention or treat all video
frames with the same attention strategy, like the different
frame rates of SlowFast [9], the transformer used by [10].
Inspired by previous approaches [11], we find that temporal
and spatial attention can complement each other to improve
the final classification. So in this paper, we first propose a
spatial attention mechanism that extracts discriminative
regions in video frames and resamples them into two new
videos. *ese two videos are like a data augmentation of the
original video. We then feed these two videos together with
the original video into a temporal attention network with a
frame selection strategy to filter out the most useful frames
for classification task. Finally our network learns the most
discriminative regions in these most useful frames, resulting
in a more accurate result. At the same time, since the
network where we extract spatial attention and the network
that finally completes the classification task are the same, our
extraction of discriminative regions in image frames is also
getting accurate as well as the final classification accuracy. A
positive beneficial cycle is formed to continuously improve
our classification results.

*emain innovations and contributions of this paper are
as follows: (1) We propose a novel sparse attention mech-
anism for extracting important regions from video frames,
and the method extracts discriminative regions while pre-
serving contextual information. We leverage this proposed
method as spatial attention. (2) We combine the spatial
attention with our previously proposed frame selection
strategy [12] to jointly form a novel network structure
containing both temporal and spatial attention. (3) Exper-
iments on two datasets commonly used for video action
recognition, UCF101 and HMDB51, show that our approach
outperforms the best available methods.

In Section 2, the structure of the proposed network, loss
function, and other related contents will be introduced. In
Section 3, the experimental results of our method and the
implement details will be introduced. *e advantages of our
scheme will be summarized in Section 4.

2. Proposed Method

Inspired by [13], we find that the class peak responses typically
correspond to strong visual cues residing inside regions of
interest. As shown in Figure 1, we first feed the original video
into a pretrained CNN with temporal attention (T-CNN) to

extract features (Features in Green). *is part of features is sent
to the spatial attention network to activate class response maps
that allows the network to focus on the important part of the
video frames. Based on the peaks of class response map each
frame of the video is resampled into two new video frames. One
of these two video frames focuses on the discriminative region
of the image (the orange frame which enlarges the barbell part
of the original frame) and the other focuses on the comple-
mentary part (the blue frame which enlarges the human body).
*ese two branches then rearrange the video frames into two
new videos in the same order as the original video. *ese two
videos will also be fed into the T-CNN as new inputs. Each of
these three branches is optimized by a cross-entropy loss
function. Finally, the three video branches are jointly optimized
to obtain a more accurate classification result.

2.1. Obtaining Class Peak Response Point. We first feed the
video into T-CNN (whichwill be introduced in Section 2.3) that
has been trained to extract the feature maps X ∈ RT×C×H×W,
where T represents the number of frames, H×W is the size of
the featuremaps, andC is the number of channels.*enwe feed
the feature map into a global average pooling (GAP) layer and
then go through a fully connected (FC) layer to get the clas-
sification score x ∈ RS, where S is the number of categories in the
dataset.We expand the featuremaps along time dimension into
Tmaps, each with dimensionY ∈ RC×H×W.*enwe let each of
these maps go through a GAP and FC layer to get the classi-
fication score y ∈ RS for each frame. With the weight matrix of
the FC layer Wfc ∈ RC× S, we can compute the class response
map Ms as

MS � 
C

c�1
Wfc

c,s × Yc. (1)

*e class peak response of class c is defined as a local
maximum of the corresponding class response mapMc. *e
class peak point can be written as Pc � {(x0, y0), (x1, y1), . . .,
(xNs, yNs)}, whereNs is the number of valid peak points in the
s-th class. We use these peak points to locate regions that are
more important for the classification task and estimate a set
of sparse attentions.

Experiments show that peaks in top-1 class response map
tend not to cover all discriminative regions, while peaks in top-5
tend to contain the noise points. To seek a balance between these
two methods of choosing peak points, we first calculate their
entropy to determine the confidence of network predictions. If
the confidence is high, we use peaks from the top-1 class re-
sponse map, and if it is lower, we bring together the top-5 five
class response maps to find the peak points. We denote the
predicted probability of all S classes as Prob� softmax(y) ∈ RS
and use Prob ∈ R5 to denote the probability value of the top-5
classes. We compute the entropy as

H � − 
5

i�1
pilog pi, pi ∈ Prob. (2)

We construct a response map Rmap with the following
strategy:
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Rmap �

M1, if H< δ,



5

k�1
Mk, if H> δ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where M ∈ R5×H×W is the class response maps corre-
sponding to Prob . *en we use Min-Max Normalize to map
the values of Rmap to [0, 1].

Rmap �
Rmap − min Rmap 

max Rmap  − min Rmap 
. (4)

We denote their positions as P� {(x1, y1), (x2, y2), . . .,
(xNp, yNp)}, where Np is the number of peaks we detected by
the above procedure.

2.2. Computing Sparse Attention and Resampling.
Reference [14] found that, in fine-grained image classifi-
cation task, the obtained class peak points can be divided
into two sets. One set is the discriminative region and the
other is the complementary region, and learning these two
sets separately is better than learning all class peak points
together directly. Inspired by them, we preset a random
number φ(x,y) from the uniform distribution between 0 and
1. We compare the response value Rmap of the peak point
with this random number φ and group all points with re-
sponse values greater than φ into one set Pdis and those less
than into another set Pcom.

Pdis � (x, y)|(x, y) ∈ P ifRmap(x,y)
≥φ ,

Pcom � (x, y)|(x, y) ∈ P ifRmap(x,y)
＜φ .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

*e left part of Figure 2 is the original video frame, where
the orange dot is the center point of the attention map
(middle). As shown in Figure 2(a), points with high response
values tend to correspond to discriminative regions, such as
bow and arrow, and these peak points are generally grouped
into the Pdis set. *e points with low response values are
usually localized at complementary regions as illustrated in
Figure 2(b), that is, usually people in the video or the subject
of the action, and these peak points will be grouped into the
Pcom set.

For each peak set, we compute a set of sparse attentionA
∈ RNp×H×W using Gaussian kernel.

Ai,x,y �

Rxi,yi
e

− x− xi( )
2
+ y− yi( )

2/Rxi,yi
β21 , if xi, yi(  ∈ Pdis,

1
Rxi,yi

e
− x− xi( )

2
+ y− yi( )

2/Rxi,yi
β22 , if xi, yi(  ∈ Pcom.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Both β1 and β2 are learnable parameters.
With the previously obtained sparse attention, we can

resample the discriminative regions from the original video
frames while also preserving the contextual information
around the image regions. After the above series of oper-
ations, each video frame can be resampled to obtain two new
frames, and we use Qdis to denote the feature map of the
extracted discriminative branch and Qcom to correspond to
the feature map of the complementary branch.

Qdis � Ai, if xi, yi(  ∈ Pdis,

Qcom � Ai, if xi, yi(  ∈ Pcom.

⎧⎪⎨

⎪⎩
(7)
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Figure 1: Network structure of our method.
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*e resampling process is implemented using convo-
lution following the method of [15] and can be embedded
into the end-to-end training. So both β1 and β2 can be
updated by the classification loss function. *e input video
has multiple frames and each frame of video can produce
two frames according to the above method; we then line up
all the discriminative and complementary branch images in
the order of the original video input to form two new videos
Vcom and Vdis.

2.3. Network Structure and Loss Function. Essentially, the
sparse attention we propose is for spatial attention of video
images. Our input is an original video Vo and the output is
two videos Vcom and Vdis. *e video frames of Vdis focus
more on discriminative regions, while Vcom focuses on
regions that are complementary.

As we mentioned before, in order to obtain the two new
videos, we first feed the original video into a pretrained CNN
with temporal attention (T-CNN) to extract features. Table 1
shows the network structure of T-CNN; “Dilation Conv(4)”
means a dilation convolution with a dilation of 4 is used in
the temporal dimension. T-CNN comes from a network
structure that we obtained previously using neural archi-
tecture search [12]. In this work we explored how many
frames are needed in each stage of the network. In fact, it is
about allowing the network to focus on only the appropriate
number of video frames to complete the final classification
task. After we get the two new videos, Vcom and Vdis, we will
refeed them to T-CNN as new data to learn. *ese two new
videos are equivalent to a data augmentation of our original
input. So our method does not significantly improve the

number of model parameters, although the computational
complexity increases.

Our loss function is a cross-entropy loss. Each input
video will produce three predictions, which we denote as Fo,
Fcom, and Fdis. *ese three predictions come from the
original video Vo, the discriminative video Vdis, and the
complementary video Vcom, respectively. Comparing them
with the classification labels will produce three losses. We
will also concatenate the features of the three videos together
and pass them through a FC layer to obtain the fourth
prediction Ftotal. So our final loss function consists of four
components, which can be written as

L(X) � 
i∈ O,C,D{ }

Lcls Fi,F
∗

(  + Lcls Ftotal,F
∗

( , (8)

where Lcls denotes the cross-entropy loss and F∗ is the
ground-truth label vector.

3. Experimental Results and Discussions

3.1. Datasets and Implementation Details. To evaluate the
effectiveness of our proposed method, we have done ex-
periments on two common datasets for video action rec-
ognition, UCF101 and HMDB51.

*e UCF101 dataset [16] has 13,320 videos from 101
action categories. Each of these categories can be divided
into 25 groups, each containing 4–7 action videos. *is
dataset is highly diverse in terms of motion and varies greatly
in terms of camera movement, object appearance and pose,
object scale, point of view, cluttered backgrounds, lighting
conditions, etc.

(a)

(b)

Figure 2: Visualization of discriminative and complementary branches: (a) discriminative branch; (b) complementary branch.
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*e HMDB51 dataset [17] contains 51 action categories,
a total of 6849 videos, and each action contains at least 51
videos. *e action categories can be divided into four major
categories: (1) general facial actions (laughing, chewing); (2)
facial and object actions (smoking, eating); (3) human body
actions (hugging, inversion); (4) interactive actions with
objects (horse riding, archery).

For both video datasets, during training, we sample 16
consecutive frames from each video, and each frame is
converted to 256× 342 resolution by preprocessing. And
then we randomly crop 224× 224 pixels from the frame and

feed them into the network. To make a fair comparison with
other methods, we follow the common reference method
[18]. We divide each video into 10 clips equally, with each
clip including 16 video frames, resize the short edge of each
image to 224 pixels, and cut three 224× 224 crops from the
left, middle, and right of the image. Each crop of each clip is
called a “view,” so we have 30 views, and the final prediction
result of each video is obtained by averaging the softmax
scores of these 30 views.

*e whole model is trained for 150 epochs with a batch
size of 16. We use SGD optimizer with 0.9 momentum and
4×10−5 weight decay. *e learning rate strategy uses cosine
annealing learning rate schedule [19]. *e initial learning
rate was 0.1 and the lowest was 1× 10−4. *e dropout
probability is 0.5 after the final GAP layer. Finally, it is sent to
the linear layer to classify according to the number of classes
of each dataset.

3.2. Comparison with SOTA. On the two commonly used
datasets, UCF101 and HMDB51, we compare the proposed
method with the SOTA methods. Since our method uses
only RGB images as input, when comparing with other
methods that have multiple input modalities like I3D, we
only compare with their results obtained with RGB mo-
dality. From the results of the comparisons in Tables 2 and 3,
we can see that the classification accuracy of our method on
both datasets exceeds the best available methods.

*e advantage of our method comes first from our
spatial attention. From the results, the network of T-CNN
with only temporal attention has lower accuracy than TSM
and I3D RGB on both datasets. In particular, for I3D RGB,
T-CNN is 0.3% lower than it on UCF101 and 1.5% lower
than it on HMDB51. When the spatial attention proposed in
this paper is added, our method achieves a reversal on both
datasets.*is effect is related to these two datasets, which are
more sensitive to spatial information, so the increase of
attention to spatial information will produce such a huge
improvement (1.4% for UCF101 and 1.9% for HMDB51).
*en there is the fact that the spatial attention in this paper is
finally externalized to two new data inputs, which actually
has the effect of data augmentation. *is is very important
because both UCF101 and HMDB51 are easy to overfit. Data
augmentation helps to improve generalization ability and
reduce the occurrence of overfitting.

*e second advantage of our approach comes from the
fact that we integrate spatial and temporal attention,
allowing them to complement each other and improve the
final classification accuracy. Not all video frames have
positive implications for classification. As shown in Figure 3,
this image is difficult to classify based on the original picture
and spatial attention. It is easy to be classified as “holding
something” rather than “shooting an arrow.” At this point,
we can rely on temporal attention in the frame selection
strategy to reduce our chances of picking this image frame,
thus reducing the number of misleading cases.

*ere are also shortcomings in our method. From the
last column in Tables 2 and 3, we can see that the com-
putational complexity of our method has increased several

Table 1: Network structure of T-CNN.
Input: 3×16× 224× 224

Stage 1 Conv 3–32 +BN+ReLU
Conv 32–32 +BN+ReLU

Stage 2 Conv 32–64 +BN+ReLU
Conv 64–64 +BN+ReLU

Stage 3 Conv 64–96 +BN+ReLU
Conv 96–96 +BN+ReLU

Stage 4

Conv 96–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU
Conv 160–160 +BN+ReLU

Dilation Conv(4) 160–160 +BN+ReLU

Stage 5

Conv 160–224 +BN+ReLU
Conv 224–224 +BN+ReLU
Conv 224–224 +BN+ReLU

Dilation Conv(2) 224–224 +BN+ReLU
Conv 224–224 +BN+ReLU

Dilation Conv(4) 224–224 +BN+ReLU
Conv 224–224 +BN+ReLU

Dilation Conv(4) 224–224 +BN+ReLU

Stage 6

Conv 224–288 +BN+ReLU
Conv 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Dilation Conv(2) 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Dilation Conv(2) 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Dilation Conv(2) 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU
Conv 288–288 +BN+ReLU

Stage 7

Conv 288–512 +BN+ReLU
Conv 512–512 +BN+ReLU
Conv 512–512 +BN+ReLU

Dilation Conv(2) 512–512 +BN+ReLU
Global average pooling
Fully connected layer

Softmax
Classification result
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times compared to T-CNN. *e T-CNN has the lowest
computational complexity among existing methods (15.78
GFLOPs), but with the addition of the spatial attention part,
the computational complexity comes directly to the back
half of the list. *is is mainly due to the fact that our spatial
attention resamples two new videos into the network, which
equates to one video input that needs to be computed 3 times
through the network, plus the fact that we need to compute
the class response maps and sparse attentions for each frame
and resample them. All of them add to the computational
complexity.

3.3. Effects of Different Extraction Branches. To verify the
effects of each branch, we tried to omit one or more branches
and observe their effects on the final classification results.
From Table 4, we can draw the following conclusions. (1)
Both O+Dmode and O+Cmode are improved for the final
classification accuracy. It indicates that both complement
and discriminative regions are helpful for classification, and
it also verifies that the spatial attention extraction method in
this paper is effective. (2) In the absence of the comple-
mentary branch, our overall accuracy decreases the least
(from 96.7 to 96.3), indicating that the complementary

Table 2: Comparisons with other methods on UCF101 dataset.

Model Pretraining dataset Accuracy (%) GFLOPs
C3D [20] Sports-1M 82.3 38.57
TRN [21] — 83.5 83.83
Res3D [22] Sports-1M 85.8 —
P3D [23] Imagenet + Sports-1M 88.6 18.51
T3D [24] Kinetics-400 90.3 —
TSN [8] Imagenet +Kinetics-400 91.1 80
R(2 + 1)D [25] Sports-1M 93.6 41.69
TSM [26] Kinetics-400 95.5 32.88
I3D RGB [27] Imagenet +Kinetics-400 95.6 108
T-CNN [12] Kinetics-400 95.3 15.78
T-CNN+ spatial Kinetics-400 96.7 52.3

Table 3: Comparisons with other methods on HMDB51 dataset.

Model Pretraining dataset Accuracy (%) GFLOPs
Res3D [22] Sports-1M 54.9 —
T3D [24] Kinetics-400 59.2 —
R(2 + 1)D [25] Sports-1M 66.6 41.69
TSM [26] Kinetics-400 73.6 32.88
I3D RGB [27] Imagenet +Kinetics-400 74.8 108
T-CNN [12] Kinetics-400 73.3 15.78
T-CNN+ spatial Kinetics-400 75.2 52.3

(a) (b)

Figure 3: An example of classification error based only on spatial attention. (a) original frame. (b) Spatial attention.
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branch is indeed the region containing the least discrimi-
native information compared to the other branches. How-
ever, the accuracy of the classification still decreases when
this part is missing, suggesting that sometimes the subject of
the action can also play a crucial role in the classification
task.

4. Conclusions

In this paper we integrate temporal and spatial attention to
construct a network structure. We learn a set of sparse
attention by computing class response maps. It selectively
collects visual evidence of dynamic information areas based
on image content and surrounding context. Based on these
regions obtained by spatial attention we resampled two new
videos. *ese new videos are fed into the network as
completely new data, enhancing the generalization ability of
our network structure. We then feed these two videos with
the spatial attention together with the original video into a
temporal attention network. So our network learns the most
discriminative regions in these most useful frames, resulting
in a more accurate result. And the network where we extract
spatial attention is the same as the network that finally
completes the classification task. So our extraction of dis-
criminative regions in image frames is also getting accurate
as well as the final classification accuracy. A positive cycle is
formed to continuously improve the classification results.
Integrating attention in temporal and spatial is actually
consistent with human vision. We also recognize the other
person’s action by observing key object information in
consecutive actions. Extensive experimental results on some
benchmark datasets illustrate the promising performance of
the proposed scheme.
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In this paper, a reversible data-hiding scheme in encrypted, vector quantization (VQ) encoded images is proposed. During image
encryption, VQ-encoded image, including codebook and index table, is encrypted by content owner with stream-cipher and
permutation to protect the privacy of image contents. As for additional-data embedding, a baseline method is first proposed and
its corresponding optimized method is then given. By grouping one high-occurrence index with one or multiple low-occurrence
indices, a series of index groups are constructed.'us, by modifying the high-occurrence index to the corresponding index within
the same group according to the current to-be-embedded bits, data embedding can be realized. 'e optimal hiding capacity is
obtained by optimizing the coefficient vector for different types of index groups. Separable operations of data extraction, image
decryption, and recovery can be achieved on the receiver side based on the availability of the encryption and data-hiding keys.
Experimental results show that our scheme can achieve high hiding capacity and satisfactory directly decrypted image quality and
guarantee security and reversibility simultaneously.

1. Introduction

With the rapid development of digital communication and
signal processing, a large amount of multimedia data, such as
image, video, and audio, are transmitted on networks.
However, secure management for multimedia data with
privacy protection is an inevitable issue and also is one
meaningful research topic. Reversible data-hiding (RDH) is
an emerging technique which has greatly attracted re-
searchers’ interests in recent years [1–4]. As for the RDH
technique, data hider can embed additional data into cover
image reversibly, which means the original cover image can
be completely recovered after extracting the embedded data.
Some representative RDH schemes, such as difference ex-
pansion (DE) [1], histogram shifting (HS) [2], and

prediction-error expansion (PEE) [3], have been proposed in
the past few years. In addition to the RDH schemes for gray
scale images, there are a lot of RDH schemes developed for
color images [5], compressed images [6], and halftone
images [7].

Vector quantization (VQ) is an effective image encoding
method, which can be utilized for image compression [8].
During the process of VQ encoding, the original uncom-
pressed image Io is first divided into a series of nonover-
lapping blocks. For each image block, Euclidean distances
between the block with the L code words in the trained
codebook C are calculated, and the index of the code word
with the minimum Euclidean distance is recorded into the
index table T as the encoded result for the current block.
During VQ decoding, according to the indices in the index
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table T, all image blocks can be easily decoded as the cor-
responding code words in the codebook C to form the VQ-
decoded image I. Figure 1 illustrates an example of VQ-
encoded image, in which a gray scale image with the size of
M×N is compressed to an index table sized M/n×N/n,
where n× n is the size of divided blocks. Each value in the
index table, corresponding to one n× n block, can be rep-
resented with log2L bits. 'us, for the whole image, the
compression ratio can be calculated as 8× n2/log2L. Gen-
erally speaking, a codebook with more code words, i.e.,
larger L, can lead to better visual quality of VQ-decoded
image.

In recent years, a number of RDH schemes have been
developed for VQ-encoded images in the plaintext form
[9–16]. Chang et al. proposed a RDH scheme in VQ-
encoded images based on a de-clustering strategy [9], in
which two de-clustering methods were used with the
minimum-spanning-tree and a short-spanning-path. Lee
et al. modified VQ-encoded images by the side-matched
VQ (SMVQ) technique to form a transformed image, and
exploited the distribution of this transformed image to
achieve high hiding capacity and low bit rate [10]. Kieu
and Ramroach utilized the joint neighboring coding
method to realize reversible steganographic scheme for
VQ indices [12], in which the differences between the
current index; the left, upper, and top-left neighboring
indices; and their combinations were used to hide addi-
tional bits. In Ref. [15], two RDH schemes for VQ-
encoded images were proposed based on switching-tree
coding and dynamic-tree coding. 'ese two schemes
performed data embedding by choosing one of the pos-
sible index encoding ways when multiple ways were
available to encode the index, and the outputted codes can
be decoded to original VQ index table with the conven-
tional decoder. Pan and Wang proposed a RDH scheme
for two-stage VQ-encoded image based on search-order
coding (SOC) in Ref. [16]. SOC can employ the correlation
of indices to obtain better compression ratio, thus, the
combination of SOC and data hiding in this scheme can
achieve both high performances for compression ratio
and hiding capacity.

Due to the current prosperity of cloud storing and
computing, a vast amount of personal data are stored and
processed on the cloud to alleviate computation burden on
user clients [17, 18]. But, in order to protect user privacy, it is
better to first encrypt user data before uploading onto cloud.
'ereby, for the convenience of data management and re-
trieval, RDH in encrypted images (RDHEI) has attracted
extensive interest in the field of multimedia security.
According to when the space for accommodating additional
data was created, i.e., before or after image encryption,
embedding mechanisms of most RDHEI schemes can be
categorized into two types: vacating room after encryption
(VRAE) [19–28] and reserving room before encryption
(RRBE) [29–34]. In addition, some researchers introduced
homomorphic encryption (HE) into RDHEI [35–38], which
can realize the operations of data embedding directly in
encrypted domain. A brief review of the related works on
RDHEI is given in Section 2.

In this work, we focus on RDH in encrypted, VQ-
encoded image. An encryption method for VQ-encoded
image is first designed for the codebook and the index table,
respectively. Before conducting additional-data embedding
in the encrypted index table, all VQ indices are sorted
according to their occurrence numbers. A baseline method
of data embedding is proposed based on constructing index
groups for one high-occurrence index and one low-occur-
rence index each time, and then we improve the baseline
method through generalized index grouping for multiple
low-occurrence indices. By modifying the high-occurrence
index to the corresponding index within the same group
according to the current to-be-embedded bits, additional-
data embedding can be achieved, and the optimal hiding
capacity is obtained by optimizing coefficient vector for
different types of index groups. Separable operations of data
extraction, image decryption, and recovery can be realized
on the receiver side based on the availability of the en-
cryption and data-hiding keys. 'e proposed scheme can
achieve satisfactory performances of hiding capacity and
directly decrypted image quality and guarantee security and
reversibility simultaneously.

'e remaining parts of the paper are organized as fol-
lows. Section 2 gives a brief review of related works about
RDHEI. Section 3 introduces the baseline of the proposed
scheme, including image encryption, additional-data em-
bedding, data extraction, and image recovery. Section 4 gives
performance optimization for additional-data embedding
procedure of the baseline method in Section 3, which
consists of generalized index grouping, multiple-bits em-
bedding, and hiding capacity optimization. Section 5
presents experimental results and analysis. Conclusions are
drawn in Section 6.

2. Related Works

An effective RDHEI framework can be described as: the
content-owner encrypts the original image with encryption
key and then sends the encrypted image to the data hider; the
data hider embeds additional data into the encrypted image
with data-hiding key to produce the marked, encrypted
image; and the authorized receiver implements data ex-
traction, image decryption, and image recovery on the
marked, encrypted image according to encryption key and
data-hiding key. In the following, three main categories of
RDHEI schemes are briefly reviewed.

2.1. VRAE-Based Schemes. In Ref. [19], the encrypted image
with stream cipher was segmented into a number of non-
overlapping blocks, and by flipping the three LSBs of dif-
ferent parts of pixels, one bit of additional data can be
embedded into each block. 'e receiver can achieve data
extraction and image recovery through estimation with a
fluctuation function. Hong et al. improved the order of data
extraction and block recovery and introduced a side-match
strategy to increase the accuracy of the extracted data and
recovered image [20]. Liao and Shu utilized the absolute
mean difference of neighboring pixels to measure the
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recovery accuracy of image blocks after decryption [21].
Different from Refs. [19–21] that data extraction must be
conducted after image decryption, a separable RDHEI
scheme was proposed in Ref. [22], which means that the
operations of image decryption and data extraction can be
realized on the receiver side independently. A public key
modulationmechanismwas employed in Ref. [23] to achieve
data embedding without accessing the secret encryption key.
In addition, a powerful two-class SVM classifier was pre-
sented to differentiate the encrypted and nonencrypted
patches, leading to recovering the embedded data and
original image correctly. Huang et al. proposed to encrypt
the original image in a blockwise manner [24], which can
retain the correlation within the pixels of each encrypted
block. 'en, traditional RDH methods in plaintext images
can be used in encrypted image for data hiding. In Ref. [25],
a RDHEI scheme with an adaptive encoding strategy was
presented, which adaptively compressed the MSB layers of
embeddable blocks according to occurrence frequency of
MSB and then embedded additional data together with
reversed Huffman codewords and auxiliary data. Yi and
Zhou first presented a parametric binary tree labeling
(PBTL) algorithm to label pixels in two different types, and
then, they proposed a PBTL-RDHEI scheme in encrypted
images, which can achieve data embedding by pixel labeling
and bit replacement effectively [28].

2.2. RRBE-Based Schemes. In order to avoid the errors on
data extraction or image recovery, Ma et al. proposed a
scheme by reserving room before encryption with a tradi-
tional RDH method in Ref. [29], which can acquire the
complete reversibility. In Ref. [30], some pixels in the
original plaintext image were first predicted before en-
cryption, thus, additional data can then be embedded in the

prediction errors. A benchmark encryption algorithm was
applied to the rest pixels and a specific encryption algorithm
was designed to encrypt prediction errors. Cao et al. con-
sidered that an image patch can be linearly represented by
some atoms in an over-complete dictionary through sparse
coding [31], and the residual errors can be encoded and self-
embedded in the original image. 'ereby, a large extra room
can be created before image encryption, and the data hider
can embed more additional data into the encrypted image
based on this strategy of patch-level sparse representation.
Puteaux et al. proposed a new reversible method with most
significant bit (MSB) prediction [32], which can achieve a
high hiding capacity. During the preprocessing, a location
map was produced by detecting prediction errors. 'rough
MSB substitution, additional data can be embedded and the
embedding rate was close to 1 bpp. Yin et al. proposed a
RDHEI scheme based on multi-MSB prediction and Huff-
man coding [33]. Before image encryption with a stream
cipher, multi-MSB of each pixel was predicted and marked
with Huffman coding in the original image as the pre-
processing. 'us, additional data can be embedded into the
encrypted image through multi-MSB substitution.

2.3.HE-Based Schemes. Chen et al. proposed a RDH scheme
for encrypted signals based on Paillier public key encryption,
and applied it on digital images [35], in which each pixel
value was divided into two parts encrypted, respectively.
'en, two encrypted LSBs of each pixel pair were modified to
hide one bit with the help of homomorphism. In Wu et al.’s
scheme [36], each unit in the original image was segmented
into three components with energy transfer equation, and
each component was encrypted by Paillier homomorphic
encryption. 'e data hider can embed additional bits into
the encrypted image by using the properties of Paillier
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homomorphism. A separable RDHEI scheme based on
additive homomorphism and pixel value ordering (PVO)
was given in Ref. [37]. Additive homomorphism applied in
this scheme can guarantee that the performance of em-
bedding rate for PVO in an encrypted domain can ap-
proximate to that in plaintext domain without involving data
expansion. In Ref. [38], Xiang and Luo proposed to form
mirroring ciphertext groups (MCGs) by replacing encrypted
host pixels with encrypted reference pixels in the same
group. In an MCG, the reference ciphertext pixel remained
unchanged as a reference while the data hider can embed
additional data into the LSBs of host encrypted pixels with
homomorphic multiplication.

'e abovementioned RDHEI schemes mainly focused
on the encrypted, uncompressed gray scale image. In ad-
dition, some schemes have also been designed for other
kinds of cover data, such as JPEG-encoded image [39–41],
palette image [42], 2D vector graphic [43], and 3D mesh
model [44], in the encrypted domain. However, to the best of
our knowledge, there are few reported works about RDHEI
of VQ-encoded images currently.

3. Baseline of the Proposed Scheme

Figure 2 presents the framework of the proposed scheme for
RDH in encrypted VQ-encoded images. As shown in
Figure 2(a), on the content-owner side, with encryption key
Ke � {K(1)

e , K(2)
e }, encryption for VQ-encoded image can be

divided into two steps: codebook encryption and index table
encryption, respectively. 'en, after receiving the encrypted,
VQ-encoded image, through index grouping and data-
hiding key Kh, additional data can be embedded on the data-
hider side, see Figure 2(b). On the receiver side, we can
extract additional data and restore the VQ-encoded image. It
can be seen from Figure 2(c) that additional data can be
extracted with data-hiding key Kh; receiver can obtain a
decrypted image which is similar to the original image with
encryption key Ke; when the receiver has both encryption
key Ke and data-hiding key Kh, the embedded data can be
successfully extracted and the VQ-encoded image can also
be perfectly recovered. Details of our baseline scheme are
introduced as follows.

3.1. VQ-Encoded Image Encryption. As we know, a VQ-
encoded image consists of one codebook C and an index
table T. Hence, in order to guarantee the security, VQ-
encoded image encryption can be divided into two parts, i.e.,
codebook encryption and index table encryption.

Suppose VQ codebook C contains L code words, and in
each code word, there are n2 decimal values. Denote Pi,j as
the jth value of the ith code word in the codebook C, where
i� 1, 2, . . ., L, j� 1, 2, . . ., n2, and the value of Pi,j can be
represented as eight binary bits:

Pi,j,k �
Pi,j

2k−1 mod2, k � 1, 2, . . . , 8, (1)

where Pi,j,k denotes the kth bit of Pi,j. A sequence of pseudo-
random bits Si,j,k (i� 1, 2, . . ., L, j� 1, 2, . . ., n2, k� 1, 2, . . ., 8)

is generated with encryption key K(1)
e . 'e operation of

bitwise exclusive-or (XOR) is performed on all L code words
for codebook encryption:

P
(e)
i,j,k � Pi,j,k⊕Si,j,k,

P
(e)
i,j � 

8

k�1
P

(e)
i,j,k · 2k−1

,
(2)

where Pi,j(e) denotes the jth encrypted value in the ith code
word after stream-cipher encryption. After all code words in
the codebook C are encrypted, the encrypted codebook Ce is
obtained.

As for the index table T sized M/n×N/n, all the index
values in T are permuted with the encryption key K(2)

e .

Te � perm T, K
(2)
e , (3)

where perm(·) denotes the permutation function, and Te is
the encrypted index table. 'e security can be guaranteed
because the codebook C is encrypted by the stream cipher
while permuting the index table T. 'e key space of index
table permutation can be calculated as (M/n ×N/n)! As
for an original uncompressed image sized 512 × 512
(M �N � 512), when block size is chosen as 4 × 4 (n � 4),
the whole key space of index table permutation is:
[(512/4) × (512/4)]! � 16384! 'e codebook encryption
based on stream cipher can be considered to further
strengthen the security of encryption, even when the per-
mutation key K(2)

e is leaked or cracked. After the VQ-
encoded image encryption for codebook and index table, Ce
and Te are transmitted to the data-hider side together for
additional-data embedding.

3.2. Additional-Data Embedding. In our scheme, after re-
ceiving Ce and Te, data hider first counts the occurrence
numbers of VQ indices in the encrypted index table Te.
Initially, the occurrence numbers of indices corresponding
to all L code words in the encrypted codebook Ce are set as
zero. When a VQ index is scanned in Te, its occurrence
number is increased by one. 'at is to say, for the VQ index
k, its occurrence number ck (k� 1, 2, . . ., L) can be calculated
as:

ck � 
M/n

x�1


N/n

y�1
ϕ k, Tx,y , (4)

where Tx, y denotes the index value at coordinate (x, y) in
the index table Te, and φ(·) is a counting function
returning 1 or 0. When the current VQ index Tx, y is equal
to k, φ returns 1; otherwise, φ returns 0. Generally, oc-
currence numbers of VQ indices in the index table are not
uniform for a natural image. Figure 3 shows the distri-
bution of occurrence numbers of VQ indices (L � 128) for
image Lena, in which X axis and Y axis denote the index
values and their corresponding occurrence numbers,
respectively. We can observe from Figure 3 that some VQ
indices occur frequently while some VQ indices are not
used at all.
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After scanning the whole index table Te, the L different
kinds of VQ indices are sorted according to their corre-
sponding occurrence numbers ck (k� 1, 2, . . ., L) in the
descending order. In the proposed scheme, VQ indices with
higher and lower occurrence numbers are utilized to achieve
additional-data embedding. Note that the distribution of VQ
indices is not changed before and after VQ-encoded image

encryption in our scheme. 'e procedure of additional-data
embedding includes two stages: (1) index grouping and (2)
data embedding, which are described in detail as follows.

3.2.1. A Index Grouping. Denote the sorted L VQ indices as
c1, c2, . . ., cL, and their corresponding occurrence numbers
are c1, c2, . . ., cL. We define the index set {cα, cα + 1, . . ., cL}
with lower occurrence numbers asΦ, where α is a threshold
satisfying cα≤ σ, and σ is a pre-determined parameter, which
is discussed in Section 5. 'e relationship between α and σ
can be represented as:

α � argmin
i

ci ≤ σ. (5)

In addition to the VQ indices in Φ, the VQ indices with
higher occurrence numbers are selected as another set
Θ� {c1, c2, . . ., cβ}, and their corresponding index occur-
rence numbers are c1, c2, . . ., cβ, where β is set to L− α+ 1.
'e remaining indices are formed as the set Ω� {cβ+1, cβ+2,
. . ., cα−1}.

In the following, VQ indices from the two sets Φ and Θ
are exploited to construct β index groups through an iter-
ative strategy. In detail, the β index groups are emptied
initially. 'en, the index with the highest occurrence
number, denoted as c

(j)
g , in the current set Θ and the index

with the lowest occurrence number, denoted as c
(j)
s , in the
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current setΦ are selected to form one index group {c(j)
g , c(j)

s },
j� 1, 2, . . ., β, and the two indices, c

(j)
g and c

(j)
s , are removed

from Θ and Φ, respectively. According to the above way, β
index groups can be constructed iteratively until the two sets
Θ and Φ become empty.

3.2.2. Data Embedding. In order to guarantee the revers-
ibility of original VQ-encoded image on the receiver side,
side information should be recorded for the indices in Φ
whose occurrence numbers are not zero, i.e., ci ∈ Φ and ci ≠
0, i ∈ {α, α + 1, . . ., L}. In detail, for the jth index group {c(j)

g ,
c

(j)
s }, j� 1, 2, . . ., β, we first utilize log2(MN/n2) bits to se-
quentially represent the occurrence number of the index c

(j)
s

in Te; if the occurrence number of the index c
(j)
s in Te, i.e., ci

corresponding to ci ∈Φ, does not equal 0, we should further
utilize ci·log2(MN/n2) bits to record the position informa-
tion of the ci indices in Te. 'us, the length of side infor-
mation is:

ρ � β + 
L

i�α
ci

⎛⎝ ⎞⎠ · log2
MN

n
2 . (6)

We compress the side information by run-length coding
and concatenate the compressed side information with the
additional data w to be embedded together as w′ after
scrambling with the data-hiding key Kh. During data em-
bedding, for each index group {c(j)

g , c
(j)
s }, if the occurrence

number of the index c
(j)
s in Te is not equal to 0, data hider

should replace all the index values c
(j)
s in Te with the indices

cm that can be randomly selected from the set Ω, and the
modified index table is denoted as Te

′. 'en, each VQ index
in Te
′ that is equal to the index c

(j)
g with higher occurrence

number in one of the β index groups, i.e., {c(j)
g , c

(j)
s }, can be

embedded with one binary bit. In detail, data hider scans the
VQ indices in Te

′ with the raster-scanning order, and if the
current scanning index Tx, y is equal to c

(j)
g in the jth index

group (j� 1, 2, . . ., β), one binary bit wi from w′ can be
embedded by:

Tx,y
′ �

c
(j)
g , if wi � 0,

c
(j)
s , if wi � 1,

⎧⎪⎨

⎪⎩
(7)

where Tx,y
′ denotes the marked VQ index. In other words,

for the current scanning index Tx, y belonging to the set Θ, if
the to-be-embedded bit is 0, Tx, y remains unchanged,
otherwise, Tx, y is changed to its corresponding index with
lower occurrence number in the same index group.

After all VQ indices, belonging to Θ, in Te
′ finish the

above procedure, we can obtain a marked, encrypted index
tableTew.'en,Tew andCe are transmitted to the receiver for
data extraction and image recovery. Note that the β index
groups should also be sent to the receiver as auxiliary dataR.

3.3. Data Extraction and Image Recovery. When the receiver
obtains the marked, encrypted index tableTew, the encrypted
codebook Ce and the auxiliary data R, data extraction and
image recovery can be conducted. 'ere are three scenarios:

(1) if the receiver only has the data-hiding key Kh, the ad-
ditional data w can be extracted correctly; (2) if the receiver
only has the encryption key Ke, a directly decrypted index
table Td, which is similar to the original index table T can be
obtained; and (3) if the receiver has both Ke and Kh, ad-
ditional data w and original index table T can both be re-
covered with no error. Details are presented as follows.

3.3.1. Data Extraction. First, the two index sets Θ and Φ
corresponding to higher and lower occurrence numbers can
be easily obtained based on the auxiliary dataR representing
the β index groups. 'en, during scanning the index table
Tew in the raster-scanning order, according to the current
scanning index Tx,y

′ belonging to Θ or Φ, the embedded bit
wi
′ can be extracted sequentially, see equation (8).

wi
′ �

0, if Tx,y
′ ∈ Θ,

1, if Tx,y
′ ∈ Φ,

no data extracted, other wise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Concatenating all extracted bits wi
′, the embedded data

w′ can be obtained correctly. 'en, the receiver inversely
scrambles w′ through the data-hiding key Kh, and parses the
ρ-bits side information from w′, thus, the remaining part is
the extracted additional data w.

3.3.2. Image Decryption. If the receiver only has the en-
cryption key Ke � {K(1)

e , K(2)
e }, he/she can first generate the

sequence of pseudo-random bits Si,j,k (i� 1, 2, . . ., L, j� 1, 2,
. . ., n2, k� 1, 2, . . ., 8) by K(1)

e , which is the same with the one
on the content-owner side. 'rough decrypting based on
XOR operation, the decrypted codebookCd can be obtained,
which is exactly the same as the original codebook C.

On the other hand, the receiver scans the marked,
encrypted index table Tew, and if the current scanning index
Tx,y
′ is equal to c

(j)
s in one of the β index groups (j� 1, 2, . . .,

β), Tx,y
′ is modified as the corresponding c

(j)
g in the same

group. After all indices in Tew are performed, a new index
table Te
′ can be produced.'en, through decrypting Te

′ based
on permutation with K(2)

e , a directly decrypted index table
Td, which is similar to the original index table T, can be
obtained. If required, a directly decrypted image Id can also
be acquired through decoding the index table Td by the VQ
codebook C.

As we know, the side information records the numbers
and the positions for the indices in Φ with nonzero oc-
currence numbers, and these indices are replaced by cm
randomly selected in Ω during data embedding. 'erefore,
due to the unavailability of the data-hiding key Kh, the side
information cannot be parsed from w′, which means these
recorded indices cannot be recovered from cm inΩ to c

(j)
s in

Φ. In other words, without Kh, Te
′ cannot be recovered to Te

perfectly, and Td is not exactly the same with T.

3.3.3. Image Recovery. If both encryption key Ke and data-
hiding key Kh are available, the receiver can obtain the index
table Te

′ and can also parse the ρ-bits side information and
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the additional data w from the extracted data w′ with Kh.
According to the parsed side information, the receiver can
know the detailed numbers and positions for the indices in
Φ with nonzero occurrence numbers, which are replaced by
cm randomly selected in Ω during data embedding. 'us,
through scanning the index table Te

′, the indices at the
positions indicated in the side information can be restored
from cm to the corresponding index c

(j)
s (whose occurrence

number is not zero) in the index group{c(j)
g , c

(j)
s }. As a result,

the index table Te
′ is recovered to Te perfectly, and after

decrypting Te based on permutation with K(2)
e , the original

index table T can be recovered reversibly. As described
previously, the original codebookC can be obtained through
decryptingCd with K(1)

e based on XOR operation.'erefore,
the additional data w, original index table T, and original
codebook C can all be acquired when both Ke and Kh are
available. If required, the original VQ-decoded image I can
also be acquired through decoding T by C.

4. Performance Optimization

'e proposed scheme described in Section 3 can be con-
sidered as the baseline, which can be further optimized on
the performance of hiding capacity during additional-data
embedding. 'e optimization mainly focuses on adaptively
adjusting the number of indices with lower occurrence
numbers in index groups. Note that encryption operation on
the content-owner side is unchanged. Details are given as
follows.

4.1. Generalized Index Grouping. In the optimized scheme,
during index grouping on the data-hider side, we define that,
in each group, the number of indices with higher occurrence
numbers is fixed as 1, while the number of indices with lower
occurrence numbers should be 2] –1, where ] is a variable
integer satisfying:

] ∈ 1, 2, . . . , ⌊log2(L − α + 1)⌋ . (9)

'us, one index c
(j)
g with higher occurrence numbers

selected from Θ� {c1, c2, . . ., cβ} and 2] –1 indices,
c

(j,1)
s , c

(j,2)
s , . . . , c

(j,2v−1)
s , with lower occurrence numbers

selected fromΦ� {cα, cα + 1, . . ., cL} can be constructed as one
index group, i.e., {c(j)

g , c
(j,1)
s , c

(j,2)
s , . . . , c

(j,2v−1)
s

)}. Note that if
] is a constant equaling 1 for all groups, the optimized
scheme is just the baseline proposed in Section 3. In ad-
dition, different from the baseline scheme in Section 3, in the
optimized scheme, the number β of the indices with higher
occurrence numbers in Θ� {c1, c2, . . ., cβ} may not be equal
to the number (L− α+ 1) of the indices with lower occur-
rence numbers in Φ� {cα, cα + 1, . . ., cL}.

We consider the index groups including the same
number 2] –1 of lower occurrence indices as the same (i.e.,
the ]th) type of index groups, and a coefficient μ] is defined
to represent the number of index groups belonging to the ]th
type, ]� 1, 2, . . ., log2(L− α+ 1). A coefficient vector μ can be
given for different types of index groups, see equation (10).
Table 1 lists the detailed information for different types of
index groups.

μ � μ1, μ2, . . . , μ⌊log2(L−α+1)⌋ . (10)

'e generalized index grouping should satisfy the fol-
lowing two relationships:

L − α + 1 � 

⌊log2(L−α+1)⌋

]�1
μ] · 2] − 1( , (11)

β � 

⌊log2(L−α+1)⌋

]�1
μ]. (12)

Equation (11) implies that μ]·(2] –1) represents the
number of indices fromΦ belonging to the ]th type of index
group, and in all log2(L− α+ 1) types of index groups, the
total number of indices from Φ should be equal to L− α+ 1.
On the other hand, Equation (12) guarantees that each index
group has one index from Θ.

For intuitive description, we present an example of
generalized index grouping in Figure 4. Figure 4(a) shows
the sorted indices and their corresponding code words
(L� 128), which are sorted in the descending order
according to occurrence numbers of indices within index
table Te. Here, we set the parameter σ in equation (4) to 1,
thereby, α can be derived as 116. 'us, we can obtain 128 −

116 + 1� 13 indices with lower occurrence numbers in Φ,
i.e., {c116, c117, . . ., c128}. 'en, as shown in Figure 4(b), after
generalized index grouping, there are three types of index
groups (including five index groups totally), corresponding
to ]� 3 (μ3 �1), ]� 2 (μ2 �1), ]� 1 (μ1 � 3), respectively. 'e
value of β can also be obtained as 1 + 1 + 3� 5 through
equation (12), which means that five indices with higher
occurrence numbers are included inΘ, i.e., {c1, c2, . . ., c5}. In
detail, {c1, c122, c123, c124, c125, c126, c127, c128} belongs to the
third type of index group (]� 3, μ3 �1); {c2, c119, c120, c121}
belongs to the second type of index group (]� 2, μ2 �1); {c3,
c118}, {c4, c117}, and {c5, c116} belong to the first type of index
groups (]�1, μ1 � 3). 'e coefficient vector μ is equal to
[1, 1, 3]. Table 2 summarizes the index grouping information
for the example in Figure 4.

4.2. Multiple-Bits Embedding. Similar with the baseline
scheme described in Section 3, we also need to sequentially
record the occurrence numbers of the indices belonging toΦ
and their positions (if existing) in Te as the ρ-bits side in-
formation, see equation (6). 'en, side information can be
compressed through run-length coding and be concatenated
with the additional data w as w′ after scrambling with the
data-hiding keyKh. During data embedding, for any index in
Φ whose occurrence number is not equal to 0, data hider
should replace this index value in Te with the index cm that

Table 1: Details of different types of existing index groups.

Group type ]� log2(L− α+ 1) . . . ]� 2 ]� 1
'e number of cg in group 1 . . . 1 1
'e number of cs in group 2] –1 . . . 22–1 21–1
Group coefficient μ] . . . μ2 μ1
Embedding ability (bits) log2(L− α+ 1) . . . 2 1
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can be randomly selected from the set Ω, and the modified
index table is also denoted as Te

′. 'en, each VQ index in Te
′

that is equal to the index c
(j)
g with higher occurrence number

in the generalized index group, i.e., {c(j)
g ,

c
(j,1)
s , c

(j,2)
s , . . . , c

(j,2v−1)
s

)}, can be embedded with ] binary bits
(j� 1, 2, . . ., β). In detail, data hider scans the VQ indices in
Te
′ with the raster-scanning order, and if the current

scanning index Tx, y is equal to c
(j)
g in the jth index group,

multiple bits, wi, wi+1, . . . ,wi+v-1 , from w′ can be em-
bedded by:

Tx,y
′ �

c
(j)
g , if τi � 0,

c
(j,1)
s , if τi � 1,

· · · · · ·

c
j,2]−1( )

s , if τi � 2] − 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)

where τi denotes the decimal value of the current ] bits
wi, wi+1, . . . ,wi+v-1  for embedding, and Tx,y

′ denotes the
marked VQ index embedded with the ] bits. Equation (13)
means that, for the current scanning index Tx, y belonging to
the set Θ, if the decimal value τi of the current to-be-em-
bedded ] bits is 0, Tx, y remains unchanged, otherwise, Tx, y is
changed to the τith corresponding index with a lower oc-
currence number in the same index group. After all VQ
indices, belonging to Θ, in Te

′ are scanned and performed
with above operations orderly, the procedure of multiple-
bits embedding is finished and the marked, encrypted index
table Tew can be acquired.

Continuing the example in Figure 4, since {c1, c122, c123,
c124, c125, c126, c127, c128} belongs to the third type of index
group (]� 3), three binary bits can be embedded when the
current scanning index is c1; since {c2, c119, c120, c121} belongs
to the second type of index group (]� 2), two binary bits can
be embedded when the current scanning index is c2; since
{c3, c118}, {c4, c117} and {c5, c116} belong to the first type of
index group (]�1), one binary bit can be embedded when
the current scanning index is c3, c4, or c5. It can be inferred

that, after data embedding, the occurrence numbers of c1, c2,
c3, c4 and c5 in the index table are decreased because a
portion of them are changed to the indices with lower oc-
currence number in their corresponding index groups.

Obviously, if index groups are determined, the hiding
capacity ζ of the optimized scheme can be calculated. 'e
occurrence numbers for the VQ indices with higher oc-
currence numbers, {c1, c2, . . ., cβ}, inΘ are denoted as f� [c1,
c2, . . ., cβ]. According to the coefficient vector μ in equation
(10), the occurrence number vector f can be transformed to a
1× log2(L− α+ 1) vector η� [η1, η2, . . ., ηlog2(L − α + 1)]:

η] �

0, μ] � 0,



κ]+μ]

i�κ]+1
ci, μ] ≠ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, ] � 1, 2, . . . , ⌊log2(L − α + 1)⌋, (14)

κ] �

0, ] � ⌊log2(L − α + 1)⌋,



⌊log2(L−α+1)⌋

j�]+1
μj, ]<⌊log2(L − α + 1)⌋,

⎧⎪⎪⎨

⎪⎪⎩
(15)

where η] denotes the number of indices with higher oc-
currence numbers belonging to the ]th type of index group,
]� 1, 2, . . ., log2(L− α+ 1). Note that, the lengths of the two
vectors μ and η are equal. An example of transform pro-
cedure from f to η is given in Figure 5. Assume that the
occurrence number vector is f� [1299, 964, 960, 891, 775,
755, 711] and the coefficient vector is μ� [1, 2, 3, 0, 1],
respectively. With the assistance of μ, the vector η can be
obtained as [711, 775 + 755, 964 + 960+891, 0, 1299]� [711,
1530, 2815, 0, 1299].

'erefore, based on the above descriptions, the hiding
capacity ζ of the proposed scheme can be obtained as:

ζ � 

⌊log2(L−α+1)⌋

]�1
] · η], (16)

'e operations on the receiver side, including data ex-
traction, image decryption, and recovery after receiving the
marked, encrypted index table Tew, the encrypted codebook
Ce , and the auxiliary data R of the β index group, have
minor differences with those described in Section 3. As for
data extraction, Tew is first scanned in the raster-scanning
order, and if the current scanning index Tx,y

′ is equal to one
of the indices in an index group, i.e., {c(j)

g ,
c

(j,1)
s , c

(j,2)
s , . . . , c

(j,2v−1)
s

)}, j� 1, 2, . . ., β, ] binary bits can be

112 68 34 60 1
c1 c2 c115 c116 c117 c118 c128

γ115 = 2 γ116 = 1 γ117 = 1 γ118 = 1 γ128 = 0

5 128Index Values

(a)

c1

c3 c4 c5

c2c128

c118 c117 c116

c127 c126 c125 c124 c123 c122 c121 c120 c119

(b)

Figure 4: An example of generalized index grouping. (a) 'e sorted indices, (b) A result of index grouping.

Table 2: Index grouping information for the example in Figure 4.

Group Type ]� 3 ]� 2 ]� 1
'e number of cg in group 1 1 1
'e number of cs in group 7 3 1
Group coefficient 1 1 3
Embedding ability (bits) 3 2 1
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extracted according to equation (13), and then, the side
information and additional data can be parsed with Kh. As
for image decryption, Tx,y

′ is modified as corresponding to
the high-occurrence index c

(j)
g in the same group, thus,Tew is

changed as Te
′ after all indices in Tew are scanned. 'en, the

original VQ codebook C and the directly decrypted index
table Td are produced through decrypting Ce and Te

′ with
K(1)

e and K(2)
e , respectively. 'e directly decrypted image Id

can be obtained by decoding Td by C. As for image recovery,
the index table Te

′ should be first recovered to Te with the
assistance of side information. As we know, side information
sequentially records the occurrence numbers and the po-
sitions (if existing) for the L− α+ 1 indices belonging to Φ
with lower occurrence numbers in Te, among which those
indices with nonzero occurrence numbers are replaced by cm
randomly selected in Ω during data embedding. 'erefore,
with the parsed side information, the receiver can sequen-
tially restore cm back to the corresponding index with
nonzero, lower occurrence numbers in {cα, cα + 1, . . ., cL}. As
a result, Te

′ can be recovered to Te perfectly, and after
decrypting Te, original index table Tcan be obtained. Finally,
original VQ-decoded image I can also be acquired through
decoding T by C.

4.3. Hiding Capacity Optimization. It should be noticed that
there possibly exist multiple coefficient vectors μ that can
satisfy the two relationships in equations (11) and (12), and
different coefficient vectors μ may lead to different hiding
capacities. 'erefore, by finding the optimal coefficient
vector, hiding capacity of the proposed scheme can be
further optimized.

Suppose that there are λ different coefficient vectors, μ(1),
μ(2), . . ., μ(λ), satisfying equations (11) and (12), which can be
represented by a matrix U sized λ× log2(L− α+ 1):

U �

μ(1)

μ(2)

⋮

μ(λ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

μ(1)
1 μ(1)

2 · · · μ(1)
⌊log2(L−α+1)⌋

μ(2)
1 μ(2)

2 · · · μ(2)
⌊log2(L−α+1)⌋

⋮ ⋮ · · · ⋮

μ(λ)
1 μ(λ)

2 · · · μ(λ)
⌊log2(L−α+1)⌋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where μ(i) � [μ(i)
1 , μ(i)

2 , . . . , μ(i)
⌊log2(L−α+1)⌋], i� 1, 2, . . ., λ.

According to equations (14) and (15), we can know that each
row in the matrix U, i.e., μ(i), corresponds to a vector η(i)
based on the occurrence number vector f� [c1, c2, . . ., cβ].
'us, the λ vectors, η(1), η(2), . . ., η(λ), can form a matrix Γ
that has the same size with U:

Γ �

η(1)

η(2)

⋮

η(λ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

η(1)
1 η(1)

2 · · · η(1)
⌊log2(L−α+1)⌋

η(2)
1 η(2)

2 · · · η(2)
⌊log2(L−α+1)⌋

⋮ ⋮ · · · ⋮

η(λ)
1 η(λ)

2 · · · η(λ)
⌊log2(L−α+1)⌋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where η(i) � [η(i)
1 , η(i)

2 , . . . , η(i)
⌊log2(L−α+1)⌋], i� 1, 2, . . ., λ. 'en,

based on equation (16), we can obtain λ values, ζ (1), ζ (2), . . .,
ζ (λ), of the hiding capacity:

ζ(i)
� r · η(i)

 
T
, (19)

where r denotes the row vector [1, 2, . . ., log2(L− α+ 1)], and
ζ (i) is the hiding capacity corresponding to the coefficient
vector μ(i) for index groups, i� 1, 2, . . ., λ. With equation
(20), the optimal coefficient vector can be found as μ(i∗) by
dynamic programming, which means that the optimal result
of generalized index grouping is determined. Finally, the
largest hiding capacity of the proposed scheme after opti-
mization can be acquired as ζ (i∗).

i
∗

� argmax
i

ζ(i)
,

subject to i ∈ 1, 2, . . . , λ{ }.

(20)

5. Experimental Results and Analysis

In order to demonstrate the effectiveness and superiority of
our scheme, experiments were conducted on a large number
of VQ-encoded images, and the environment of our ex-
periments was based on a personal computer with a
3.20GHz Intel i5 processor, 4.00GB memory, Windows 10
operating system, and Matlab R2016a. In the following,
results of the proposed scheme, including the reversibility,
hiding capacity ζ , and visual quality of directly decrypted
image Id, are first given. 'en, the influences of parameter σ
on the performances are analyzed. Finally, comparisons with
state-of-the-art schemes are discussed.

5.1. Results of the Proposed Scheme

5.1.1. Reversibility. Figure 6(a) shows an original VQ-
decoded image I for Lena sized 512× 512, the length L of
corresponding VQ codebook C is 256. In this experiment,
the parameter σ in equation (6) was set as 1, and α was equal
to 226 accordingly. 'e VQ-decoded, encrypted image with
index permutation and codebook encryption is shown in
Figure 6(b), which is the result through decoding Te with Ce.
It can be observed that the contents of the original VQ-
decoded image I are effectively masked after encryption.
Figure 6(c) shows the VQ decoded, encrypted image after
data embedding, which is the result through decoding Tew
with Ce. 'e hiding capacity ζ was 12954 bits. Figure 6(d) is
the directly decrypted image Id for Figure 6(c), which is the
result through decoding Td with C. PSNR of the directly
decrypted result Id in Figure 6(d) is 41.80 dB with respect to
the original VQ-decoded image I in Figure 6(a). Recovered
image, i.e., the result through decoding T with C, is exactly

1299 964 960 891 775 755 711

1299 0 2815 1530 711 μ = [1, 2, 3, 0, 1]

γ1 γ2 γ3 γ4 γ5 γ6 γ7

η5 η4 η3 η2 η1

Figure 5: An example of transform procedure from f to η.

Security and Communication Networks 9



the same as I, i.e., PSNR�+∞, which demonstrates the
reversibility of our scheme.

5.1.2. Hiding Capacity. Figure 7 shows four standard test
images sized 512× 512, including Airplane, Baboon, Lena,
and Peppers. VQ compression was conducted for these four
images, and the sizes L of the adopted codebooks can be 128,
256, 512, and 1024. Figure 8 shows hiding capacities ζ of our
scheme for the four VQ-encoded images after encryption
(σ �1), in which (a)–(d) corresponds to the VQ codebook
sizes L� 128, 256, 512, and 1024, respectively. Note that the
abscissa denotes the different coefficient vectors μ and the
ordinate denotes corresponding hiding capacities ζ (bits). It
can be observed that the codebook with larger size L can
generally obtain greater hiding capacity ζ than the codebook
with smaller size, since a large-size codebook can lead to
more index groups for data embedding based on more VQ
indices with lower occurrence numbers.

Besides the four images in Figure 7, Table 3 lists the
largest hiding capacities with the optimal coefficient vectors

μ(i∗) of our scheme for more images. Actually, for different
images, the hiding capacity of our scheme is mainly related
with two aspects: (1) the value of (L− α+ (1) under a given
parameter σ, i.e., the number of the low-occurrence indices
{cα, cα + 1, . . ., cL} and (2) the occurrence number vector f�

[c1, c2, . . ., cβ], i.e., occurrence numbers of high-occurrence
indices {c1, c2, . . ., cβ} in Te, see equations (14)–(16). Figure 9
shows the histograms of VQ indices that are sorted in the
descending order according to occurrence numbers for the
two images Airplane and Baboon (L� 512). We can clearly
observe that the index histogram distribution of Airplane is
more concentrated than that of Baboon, which means that
the number of low-occurrence indices {cα, cα + 1, . . ., cL} and
the occurrence numbers of high-occurrence indices {c1, c2,
. . ., cβ} for Airplane are greater than those of Baboon.
Correspondingly, it can be found from Table 3 that the
hiding capacity for Airplane is significantly greater than that
of Baboon. In addition, we also conducted experiments on
the UCID image database [45], which consists of 1338
distinct images with the sizes of 512× 384 and 384× 512, see
the last row of Table 3. For color images in the UCID

(a) (b)

(c) (d)

Figure 6: Results of the proposed scheme for image Lena. (a) Original VQ-image with decoding (T) by C. (b) Encrypted VQ-image with
decoding Te by Ce. (c) Marked, encrypted VQ-image with decoding Tew by Ce (ζ �12954 bits). (d) Directly decrypted VQ-image with
decoding Td by (C) (PSNR� 41.80 dB).
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database, the luminance components were applied for test,
and the average hiding capacities are 6328 bits, 14649 bits,
21819 bits, and 29643 bits, when L is equal to 128, 256, 512,
and 1024, respectively.

5.1.3. Visual Quality of Directly-Decrypted Image. As de-
scribed previously, on the receiver side, the marked,
encrypted index table Tew, is scanned in raster-scanning
order, and if the current scanning index Tx,y

′ is equal to one
of low-occurrence indices in an index group, i.e.,
{c(j,1)

s , c
(j,2)
s , . . . , c

(j,2v−1)
s }, is equal to one of low-occurrence is

modified as the corresponding the high-occurrence index
c

(j)
g in the same group, j� 1, 2, . . ., β. After all indices in Tew
are performed, Tew is changed as Te

′. 'en, after decrypting
Te
′, a directly-decrypted index table Td is generated, and the

directly-decrypted image Id is obtained with decoding Td by
VQ codebook C.

Visual quality of directly-decrypted image Id for the
proposed scheme is given in Table 4. As it reveals, PSNR
values of directly-decrypted images decrease when the size L
of VQ codebook increases. When the codebook size L in-
creases, there may appear more VQ indices whose

occurrence numbers are low (≤ σ) but non-zeros in the index
table Te. 'ese indices should be replaced with the index cm
randomly selected from the set Ω before data embedding,
however, these indices cannot be recovered during image
decryption, which causes the distortions in the directly-
decrypted image Id with respect to the original VQ-decoded
image I. 'at is to say, larger codebook size L leads to more
indices with non-zero, lower occurrence numbers that
cannot be recovered after image decryption, thereby, lower
PSNR of Id.

5.2. Performance Influence of Parameter σ. 'e parameter σ
in equation (6) determines how many indices with lower
occurrence numbers can be utilized in index grouping and
data embedding; hence, the parameter σ affects the per-
formance of hiding capacity and PSNR for the directly
decrypted image, which are demonstrated in Figures 10
and 11, respectively. We can find that, with the increase of
σ, the hiding capacity of our scheme increases, while the
PSNR of directly decrypted image decreases. Because
larger σ involves more indices with lower occurrence
numbers for index grouping and data embedding, the

(a) (b)

(c) (d)

Figure 7: Four standard test images. (a) Airplane. (b) Baboon. (c) Lena. (d) Peppers.
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Figure 8: Hiding capacities with respect to different coefficient vectors μ under four kinds of codebook sizes L (σ �1). (a) L� 128.
(b) L� 256. (c) L� 512. (d) L� 1024.

Table 3: 'e largest hiding capacities with the optimal coefficient vectors and σ � 1 (bits).

Images L� 128 L� 256 L� 512 L� 1024
Aerial 4902 18004 24984 32209
Baboon 6835 7360 7571 8800
Barbara 3324 10439 12566 16765
Crowd 7614 21558 24359 31859
Peppers 4738 18990 24287 32834
Airplane 13855 26876 34424 45128
Lena 4889 12954 17624 23171
UCID 6328 14649 21819 29643
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hiding capability becomes greater with the increase of
parameter σ, see Figure 10. On the other hand, when σ is
equal to 0, the occurrence numbers of the L − α+ 1 indices
{cα, cα + 1, . . ., cL} are all zeros and no indices are required
to be changed as cm before data embedding; thus, after
image decryption, original index table T can be obtained
since Te

′ is equal to Te, and the directly decrypted image Id

is exactly the same as I, i.e., PSNR � inf. However, with the
increase of σ, the value of α decreases, and more indices
with nonzero occurrence numbers may be included in Φ,
which are required to be changed as cm before data em-
bedding and cannot be recovered after image decryption,
thereby, leading to lower PSNR of directly decrypted
image Id, see Figure 11.
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Figure 9: Histograms of sorted VQ indices (L� 512). (a) Airplane, (b) Baboon.

Table 4: PSNR of directly-decrypted image Id (dB).

Images L� 128 L� 256 L� 512 L� 1024
Aerial 45.20 38.10 32.00 28.10
Baboon 50.40 42.80 39.50 37.00
Barbara 45.90 45.00 38.50 35.40
Crowd 62.60 43.10 38.40 33.00
Peppers 53.60 42.70 38.20 33.20
Airplane 43.90 40.30 36.80 30.50
Lena 49.10 41.80 38.60 31.60
UCID 44.91 40.73 35.36 30.13
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Figure 10: Hiding capacity under different values of parameter σ (bits). (a) L� 128. (b) L� 256. (c) L� 512.
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5.3. Comparison with State-of-the-Art Schemes. Since there
are few RDHEI schemes for VQ-encoded images, we chose
the other five typical RDHEI schemes, i.e., Zhang’s scheme
[22], Qian and Zhang’s scheme [26], Yin et al.’s scheme [40],
Qian et al.’s scheme [41], and Wu et al.’s scheme [42], for
comparing the performance of embedding rate. In detail, the
RDHEI schemes [22, 26] focused on uncompressed gray
scale images, the schemes [40, 41] were designed for JPEG-
encoded images, and the scheme [42] was applied in palette
color images. As for the proposed scheme, we utilized four
kinds of VQ codebooks with sizes of 128, 256, 512, and 1024,
and the parameter σ was set to 0 and 1. It was worth noting
that we used the unit of bpi (bits per index) to represent the
embedding rate for our RDHEI scheme of VQ-encoded
images and the unit of bpp (bits per pixel) for other schemes.
Comparison results for the four standard images are given in
Table 5. It can be observed from the results that our scheme
generally has a competitive performance of embedding rate
compared with the schemes in Refs. [22, 26, 40–42].

6. Conclusions

Reversible data hiding can be used in many scenarios like
security and forensics. In this work, we focus on separable
reversible data hiding in encrypted VQ-encoded images,
which can achieve high hiding capacity and satisfactory

image quality simultaneously. In order to protect the privacy
of image contents, content-owner encrypts VQ codebook
and index table with stream-cipher and permutation, re-
spectively, and then sends the encrypted, VQ-encoded image
to the data hider. In our baseline data-embedding method,
the data-hider constructs index groups by grouping one
high-occurrence index with one low-occurrence index;
while in our optimized method, one high-occurrence index
can be grouped with multiple low-occurrence indices to
achieve greater hiding capacity. 'rough further optimizing
the coefficient vector for different types of index groups, the
optimal hiding capacity can be obtained by modifying the
high-occurrence index into the corresponding indices in the
same group according to the current to-be-embedded bits.
Overall, more concentrated histogram of VQ indices leads to
greater hiding capacity, and larger codebook leads to greater
hiding capacity but lower directly decrypted image quality.
Separable operations of data extraction, image decryption,
and image recovery can be realized on the receiver side based
on the availability of the encryption and data-hiding keys.
Experimental results demonstrate the reversibility, security,
hiding capacity, and parameter influence of our scheme, and
the superiority compared with some state-of-the-art
schemes. In the future work, we will further investigate the
RDH for other types of encrypted data, such as video and
audio.
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Figure 11: PSNR of directly decrypted image (I)d under different values of parameter σ (dB). (a) L� 128. (b) L� 256. (c) L� 512.

Table 5: Comparisons of embedding rate between the proposed scheme with Refs. [22, 26, 40–42].

Schemes Airplane Baboon Lena Peppers
Zhang’s scheme [22] 0.0500 0.0500 0.0500 0.0500
Qian and Zhang’s scheme [26] 0.2952 0.2952 0.2952 0.2952
Yin et al.’s scheme [40] 0.1647 0.8767 0.2919 0.3060
Qian et al.’s scheme [41] 0.0565 0.1151 0.0559 0.0649
Wu et al.’s scheme [42] 0.0555 0.5730 0.0204 0.3420
Proposed scheme (L� 128, σ � 0) 0.6091 0.3713 0.1381 0.2388
Proposed scheme (L� 128, σ � 1) 0.8456 0.4171 0.2984 0.2891
Proposed scheme (L� 256, σ � 0) 1.3919 0.3536 0.5909 0.7957
Proposed scheme (L� 256, σ � 1) 1.6403 0.4492 0.7906 1.1590
Proposed scheme (L� 512, σ � 0) 1.8227 0.3710 0.8048 1.1459
Proposed scheme (L� 512, σ � 1) 2.1010 0.4620 1.0756 1.4823
Proposed scheme (L� 1024, σ � 0) 2.4225 0.4358 1.1024 1.6953
Proposed scheme (L� 1024, σ � 1) 2.7544 0.5371 1.4142 2.0040
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Computer-generated (CG) images have become indistinguishable from natural images due to powerful image rendering
technology. Fake CG images have brought huge troubles to news media, judicial forensics, and other fields. How to detect CG
image has become a key point to solve the problems mentioned above. +e image classification method based on deep learning,
due to its strong self-learning ability, can automatically determine the differences in the image features between CG images and
natural images and can be used to detect CG images. However, deep learning often requires a large amount of labeled data, which
is usually a tedious and complex task. +is paper proposes an improved self-training strategy with fine-tuning teacher/student
exchange (FTTSE) to solve the problem of missing labeled datasets. Our method is actually a strategy based on semisupervised
learning to train the teacher model through labeled data and to predict the unlabeled data by the teacher model to generate pseudo
labels.+e student model is obtained by continuous training on the mixed dataset composed of labeled and pseudo-labeled data. A
teacher/student exchange strategy is designed for iterative training; i.e., the identities of the teacher model and the student model
are exchanged at the beginning of each round of iteration. And then the new teacher model is used to predict pseudo labels, and
the new student model exchanged from teacher model in the previous round of iteration is fine-tuned and retrained by the mixed
dataset with new pseudo labels. Furthermore, we introduced malicious image attacks to perturb the mixed dataset to improve the
robustness of the student model. +e experimental results show that the improved self-training model we proposed can stably
maintain the image classification ability even if the testing images are maliciously attacked. After iterative training, the CG image
detection accuracy of the final model increases by 5.18%. +e robustness against 100% malicious attacks is also improved, where
the final trained model has an accuracy improvement of 7.63% higher than the initial model. +e self-training model with FTTSE
strategy proposed in this paper can effectively enhance the detection ability of the existing model and can greatly improve the
robustness of the model with iterative training.

1. Introduction

With the advancement of computer image rendering
technology, a computer-generated (CG) image has become
an important visual information carrier. Because of their
unique artistry and strong sense of reality, CG images have
been widely used in people’s daily life and entertainment,
e.g., games, virtual reality, and 3D animation. With the
advancement of powerful hardware-supported rendering
technology and generative adversarial network (GAN)
technology, the generation for CG images has been greatly
simplified, and the generated image has become more and
more realistic. It is hard to distinguish the CG images from

natural images by using both human perception and
computer detection. +is means there are opportunities for
malicious attackers to deceive facial recognition systems to
impersonate others by using CG images and to create fake
news to gain illegal profits, damage others’ reputations, or
maliciously create chaos. All the projects, such as the Digital
Emily Project in 2010 [1], the Face2Face Project in 2016 [2],
and the Synthesizing Obama Project in 2017 [3], prove that
performing a spoofing attack has been greatly simplified, and
the illegible CG images have created a focus of security
concerns in the fields of news media and judiciary.

In order to solve the above mentioned problems, there
are two kinds of methods proposed for CG images and
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natural images classification. One is based on handcrafted
features [4–10] and the other is based on convolutional
neural network (CNN) [11–15]. +e former usually uses
feature extractors for classification. +e statistical properties
can be obtained from transformed images by wavelet
transform or other differential operators. Now the methods
based on manual statistical feature has been widely used to
distinguish CG images from natural images. Rahmouni et al.
[11] prove the statistical-feature-based methods perform
well in image classification. CNN-based methods map the
images to their corresponding labels with a function to
distinguish the CG images and natural images in an end-to-
end manner. Compared with the methods based on manual
statistical feature, CNN-based methods have strong learning
ability and can automatically learn image features. +ere-
fore, CNN-based methods usually achieve better perfor-
mance and can significantly improve the accuracy of
classification. +e current state-of-the-art CG image de-
tection models are trained based on supervised learning.
However, a large amount of image labels are required for
training these models, which cost a lot of time for collecting
correct labels. If the unlabeled images can either be used for
training, the problem of insufficient labels can be effectively
solved.

Current state-of-the-art CG image detection models are
not as robust to changes in distribution as humans. How to
quickly adapt to such changes with few labeled examples for
learning is the central issue to study. As proposed by Zhu
et al. [16], domain adaption is a focused research trend for
transfer learning to deal with the problem. +e self-training
strategy proposed by Xie et al. [13] also belongs to transfer
learning methods. In [16], their main contribution is to
improve the adversarial robustness by using unlabeled data,
and the experimental result achieves a higher accuracy with a
smaller ratio between labeled and unlabeled batch size (1 :14
and 1 : 28). +e self-training strategy proposed in [13] is
based on semisupervised learning (SSL). +e basic idea is to
find a way to use unlabeled datasets to expand labeled
datasets. +ey firstly train the teacher model using the
standard cross entropy loss with labeled data. +en the
pseudo labels are generated for unlabeled images by the
teacher model. +e equal-or-larger student model is trained
with the combined data (labeled and pseudo-labeled data)
and injected noise. +e student model then is used as a new
teacher model for iterative training until fitting. In this self-
training strategy, the model trained based on labeled data is
essentially the teacher model, and the model trained based
on mixed data is essentially the student model. However,
there are two main drawbacks of the self-training strategy
proposed in [13]. Firstly, the teacher model is directly dis-
carded after generating the pseudo labels, which not only
wastes the computing resources but also wastes a lot of
internal prior knowledge of prior model training. Secondly,
the student model is directly trained with mixed labels,
which results in the inability to improve the model
robustness.

In order to overcome the drawbacks mentioned above,
we propose an improved self-training strategy with fine-
tuning teacher/student exchange (FTTSE) to distinguish CG

images from natural images. Our contributions are sum-
marized as follows.

(1) +e FTTSE strategy is designed by fine-tuning a
previous round of the teacher model to train the
subsequent student model. +e main difference
between our proposed strategy and [13] is the
teacher/student exchange strategy. +e teacher
model is not directly discarded after generating the
pseudo labels in our work. Except for the initial-
trained teacher and student models before iteration,
the previous round of teacher model is fine-tuned
with learning rate decay and then it exchanges the
teacher/student identity for subsequent student
model training. +e subsequent student models are
retrained on basis of the prior knowledge learned by
the previous round of teacher model.

(2) A “Local-to-Global” strategy for pseudo-label con-
struction is designed to reduce the interference of
noisy labels in student model training. +e improved
pseudo-label construction strategy has strong flexi-
bility for making classification decision no matter if
by one-time prediction of the whole image or
multiple-times predictions of the image blocks.

(3) Malicious attacks are added to the mixed labeled
image dataset for training student model to enhance
its robustness.

(4) A learning rate decay strategy is applied in FTTSE to
prevent the model from falling into a local optimum.

+e rest of this paper is organized as follows. Section 2
discusses existing related works, including the methods
based on handcrafted feature, deep learning, and SSL.
Section 3 illustrates the details of our proposed improved
self-training strategy with FTTSE for CG image classifica-
tion. In Section 4, we design a series of test experiments to
verify the improved capability of the proposed strategy. +is
is followed by conclusion and future work in Section 5.

2. Related Works

+ere are two main categories of methods currently used to
distinguish CG images from natural images. One is the
method based on handcrafted features, which usually re-
quires features extracted from spatial and transformed
domain and uses support vector machine (SVM) as training
classifier. +e other is the method based on deep learning.
For the handcrafted-feature-based method, Li et al. [17]
proposed a multiresolution method to distinguish CG im-
ages and natural images by directly using the local binary
pattern features of the image and the SVM classifier. Ng et al.
[4] proposed a model based on physics-motivated features to
assist in the recognition of CG images by statistically ana-
lyzing the differences between the image generation process
in three aspects: object model difference, light transport
difference, and image acquisition difference. In the paper,
the physical characteristics, including the gamma correction
in natural images and sharp structures in CG images, are
described by means of the fractal geometry at the finest scale
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and the differential geometry at the intermediate scale. +e
geometry-based SVM classifier achieved good performance
in terms of both speed and accuracy. Wu et al. [18] explored
the image histogram directly as the main feature for clas-
sification. +e several highest bins of different image his-
tograms are extracted as classification features to identify CG
images. Although the histogram features are simple, the
classifier works well in terms of detection accuracy. Lyu and
Farid [19] proposed a statistical model based on the features
extracted from first-order and higher-order wavelet statistics
to distinguish CG images from natural images. However, the
design of handcrafted features is often complex and has to be
self-created for making fine distinctions. +ese methods
generally perform well on simple dataset with images col-
lected from limited sources, whereas they often show per-
formance limitations when the training process is
encountered with a complex dataset with images collected
from many sources. To consider both global visual features
and finer differences for CG image forensic, Bai et al. [20]
contributed a large-scale CG images benchmark (LSCGB)
with large-scale images which contain CG images with four
different scenes generated by various rendering techniques
and are collected with small bias on the distributions of
color, brightness, tone, and saturation. +ey also proposed
an effective texture-aware network based on the texture
difference between CG and natural images to improve fo-
rensic accuracy and to exhibit the feasibility of LSCGB.

Besides the handcrafted-feature-based method, the
deep-learning-based method, especially the CNN-based
method, has also become a popular classification technology
and has been researched with more outstanding achieve-
ments. CNN-based model is usually in an end-to-end
manner, which automatically learns appropriate feature
representations from superficial layer to deeper layer by
existing data information. Compared with the traditional
methods based on handcrafted feature which are designed
and extracted from prior knowledge and assumptions, the
CNN-based methods are more suitable for classification of
images collected from complex source scenarios because of
the powerful self-learning ability for abstraction of data
features. In our work, we propose an improved teacher/
student self-training strategy to detect CG images, which is
essentially a semisupervised and deep-learning method. In
the following subsections, the research works for image
classification will be further studied in aspects of deep
learning and SSL strategies, respectively.

2.1. Methods Based on Deep Learning. Benefiting from the
powerful learning ability of deep learning neural network,
there are many methods based on deep learning proposed to
solve the problem of CG image detection. Gando et al. [21]
proposed a deep convolutional neural network (DCNN)
model based on fine-tuning, which includes a custom CNN-
based model trained from scratch and a traditional model
using handcrafted features. +e fine-tuned DCNN model
can automatically distinguish aggregating illustrations from
photographs with detection accuracy of 96.8%. Rahmouni
et al. [11] designed a special pooling layer to extract feature

statistics from complex images, which optimized the “end-
to-end” CNN framework and enhanced the performance of
distinguishing CG images and natural images. Yao et al. [22]
proposed a CG image detection method based on sensor
pattern noise and deep learning. In [22], the input images
were filtered by three high-pass filters to remove low-fre-
quency information, so as to eliminate the interference to the
recognition accuracy. He et al. [23] combined CNN and
recurrent neural network (RNN) to classify CG images and
natural images. +e authors design a dual-path neural
network architecture using preprocessing operations of
color space transformation and Schmid filter bank to extract
image color and texture features. Exploiting the image color
and texture features, the joint feature representations of local
patches are learned to extract global artifact through a di-
rected acyclic graph RNN. Capsule network was proposed in
[24] and was extended in [25] to detect forged image and
video for capsule-forensics applications. Tarianga et al. [26]
proposed a deep convolutional recurrent model based on
efficient attention.

Recently, Zhang et al. [27] used channel and pixel
correlation information to reveal different features between
CG images and natural images. In [27], a self-coding module
was designed at the beginning of CNN and was utilized to
deeply explore the correlation between the three color image
channels. A new end-to-end CNN architecture called self-
coding network (ScNet) was constructed with introducing
hybrid correlation module and combining with existing
CNN model to enhance the discrimination ability and ap-
plication generality. Quan et al. [28] pointed out that the
problem of blind detection of CG images is ignored in
existing CNN-basedmethods, i.e., it is unknownwhether the
training images is generated by computer rendering tools or
not for detection training. In order to improve the gener-
alization ability of the model, a dual-branch neural network
was designed to capture diverse features. After the normal
training, the gradient information based on the CNN model
is used to generate harder negative samples and then con-
duct enhanced training using both the original training
samples and the generated negative samples. Huang et al.
[29] proposed a method for effectively identifying three
different kinds of digital image origin based on CNN and
used a local-to-global framework to reduce training com-
plexity. In their work, the raw pixels are used as input to
CNNwithout the aid of “residual map.”+emethod behaves
robustly against several common postprocessing operations.

In the latest research study, Meena and Tyagi [30]
proposed a two-stream convolutional neural network to
distinguish CG and photographic images. +e first stream
branch in the network focuses on learning different features
of RGB images, while the second stream branch focuses on
learning the noise features. Finally, the outcomes of two
streams are merged using ensemble learning model. +e
experimental results show that the method maintains good
performance even if the test image is processed with
Gaussian noise. +ere are still some research works to ex-
pand the forensic functions in some special CG image ap-
plication scenarios. In [31], the deep neural network was
applied for image copy-move forgery localization. In [32], an
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improved Xception model was applied for realistic fake face
images detection. +e fake face images are generated by
GAN, and the experimental results show a detection ac-
curacy improvement with the designed robust dual-stream
network.

In this paper, we focus on the image classification in the
application scenario of distinguishing CG images and
photographic images. +e network of ScNet proposed by
Zhang et al. [27] adopts a distinctive mixed-channel cor-
relation module and has strong discriminative ability and
generality. +erefore, we choose ScNet as the base model
for our experiments to verify the performance improve-
ment of our proposed self-training model with FTTSE
strategy.

2.2.MethodsBased onSSL. Deep neural network is the state-
of-the-art technology in various image classification appli-
cations, which has also obtained remarkable achievement in
the research field of distinguishing CG images from natural
images. However, the challenge in this research field is how
to overcome the lack of labeled data to train the complex
network. It is an expensive and time-consuming work to
obtain a large amount of labeled data for different image
classification tasks. Meanwhile, it is not feasible to manually
label the data on a large scale because of the data privacy and
access restrictions.

+e network based on SSL proposed in [33] is one of the
effective methods to solve the above problems by utilizing
some labeled data and a large amount of unlabeled data for
training. Mukherjee and Awadallah [34] propose an im-
proved self-training approach that combines Bayesian deep
learning and uncertainty estimation from the underlying
neural network. Generally speaking, this method is a
learning mechanism that uses Monte Carlo dropout as an
acquisition function, selects instances from an unlabeled
data pool, and uses model confidence for self-training. +is
method achieves excellent performance on large-scale pre-
trained language models. Xie et al. [13] proposed a self-
training model based on standard SSL strategy. +is method
firstly trains an efficient network model as teacher model on
labeled images and generates pseudo labels on unlabeled
images. +en it trains a higher efficient network as student
model on a collection of labeled and pseudo-labeled images.
+e classification ability of student model is enhanced
through iterative training by putting itself into the teacher
model position. Compared with other SSL based models,
this method improves the detection accuracy by 2.0% for
ImageNet classification. Zou et al. [35] considered the noisy
problem caused by the predicted pseudo labels that may
result in overconfidence and wrongly placing labels on their
classification in the process of self-training. In iterative
training, this error bias may also propagate with iterations.
To solve the problem, a self-training framework with con-
fidence regularization was proposed. Chen et al. [36] studied
an SSL model in a class-imbalanced data environment, using
SSL for generating high-precision pseudo labels on minority
classes. In [36], a class rebalance self-training (CReST)
framework was proposed to improve existing SSL-based

methods for handling class-imbalanced data.+e framework
iteratively retrains the baseline SSL model to expand the
sample labels by adding sample pseudo labels from the
unlabeled dataset, where pseudo-labeled samples from the
minority class are selected according to the estimated class
distribution. +ey also proposed a new distribution align-
ment to adaptively adjust the rebalance strength, which had
an outperformance comparing with other rebalancing
methods based on SSL.

3. The Proposed Algorithm for CG
Image Detection

A self-training strategy proposed by Xie et al. [13] is a
method based on SSL to augment labeled datasets with
unlabeled datasets. But in this method, the trained teacher
model is only used to generate pseudo labels in each round of
iteration and then is discarded in the next round of iteration.
+is results in abandoning a large amount of prior
knowledge learned within the teacher model. And the
computing resources consumed for training the teacher
model are also wasted. In this paper, we propose an im-
proved teacher/student exchange self-training strategy with
FTTSE. +e design process of the algorithm is presented in
Algorithm 1. In our improved strategy, all the subsequent
models are fine-tuned on the basis of the model trained in
the previous round of iteration except the initial-trained
teacher and student models. We design a pseudo-label
construction strategy for predicting unknown image sam-
ples. In order to improve the robustness of our model,
malicious attacks are applied to the images in the mixed
dataset. A learning rate decay strategy is also adopted to
speed up the model fitting while avoiding model falling into
local optimum. Figure 1 presents the flowchart of the im-
proved self-training model with FTTSE strategy for CG
image detection.

3.1. Strategy of Teacher/Student Exchange. In this paper, we
have improved the self-training strategy with teacher/
student iterative training proposed by Xie et al. [13]. In
the following, our proposed self-training model with
FTTSE strategy will be introduced with more design
details.

Before teacher/student exchange iteration, the initial
teacher model θ0 is trained from labeled data D. +e teacher
model θ0 is used to predict the pseudo label yi on unlabeled
dataset D and then combine the pseudo-labeled dataset and
original labeled dataset together to generate a mixed dataset
D′.+e student model θ1 is trained on Da

′which is generated
from D′ with adding malicious attacks. Until now, the initial
teacher model θ0 and initial student model θ1 are obtained
by the first TWICE training.

+en the teacher/student exchange iteration begins. Take
the first round of iteration as example. +e teacher and
student models firstly exchanged their identities; that is, (1)
θ1 will be used as the teacher model to generate new pseudo-
label dataset; (2) θ0 will be regarded as student model and
fine-tuned for training a new student model θ2 with new
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attackedmixed dataset. At the end of each round of iteration,
the learning rate will be reduced by our learning rate decay
strategy. As the model θk continues to self-train in backward
kth round of iteration, the identities of teachers and students
are exchanged for pseudo-label prediction and model
retraining over and over again.

+e improved teacher/student exchange strategy can
retain the weights of the teacher model trained from the

previous round of iteration and convert them into a student
model with fine-tuning to learn new image contents and
distribution features. +e main improvement of the pro-
posed teacher/student exchange strategy is reflected in the
generalization ability of the model. Our approach actually
draws on the idea of transfer learning, which is helpful to
avoid wasting of computing resources and prior knowledge
and greatly speed up model training.

Pseudo-
Labeled
Dataset

Labeled
Dataset

Mixed
Dataset

Training
Process

Teacher
Model

Prediction of
Pseudo-Label

Unlabeled
Dataset

Learning Rate Decay & Fine-Tuning
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Student
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Figure 1: Improved self-training model with FTTSE for CG image detection.
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(6) while neural network unfitting do
(7) Last student model θk is regarded as the kth teacher model to predict pseudo label yi and generate a new attacked mixed

dataset Da
′

θk ⟶ predict D⟶ combineD′ ⟶ attackDa
′

(8) θk ⟶ predict D⟶ combineD′ ⟶ attackDa
′. Last teacher model trained from previous round of iteration: θk−1 is fine-tuned and

used for retraining student model θk+1 with dataset Da
′.

θk+1 � f(θk−1, Da
′)

(9) θk+1 � f(θk−1, Da
′). Implement the learning rate decay strategy to reduce the learning rate value as follows:

lrk+1 � (1/10)lrk

(10) lrk+1 � (1/10)lrk.k + +

(11) end while

ALGORITHM 1: Improved self-training algorithm with FTTSE.
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3.2. Strategy of Pseudo-Label Construction. In our proposed
method, the pseudo label predicted by the teacher model is
one kind of hard labels that conforms to a one-hot distri-
bution. For an image x, the predicted value with teacher
model θ can be obtained by function y � P(x, θ) � (i, i − 1),
where i ∈ [0, 1]. In the binary classification tasks, the value of
i � 0.5 is usually used as the cutoff, which means the image is
classified as the first class when i> 0.5i> 0.5; otherwise, it is
classified as the second class. In our task, i is the confidence
of predicting that the image is a CG image. When i> 0.5, the
image is predicted as a CG image, and a pseudo label is
combined with the predicted image. Otherwise, the image is
predicted as a natural image.

In our teacher/student training strategy, it is required for
the student model to learn the prior knowledge from the
teacher model, while the student model requires to surpass
the teacher model in detection accuracy. When the teacher
model predicts unlabeled data, there must be some pre-
diction errors, which lead to the emergence of noisy labels.
+erefore, we introduce the “Local-to-Global” strategy for
pseudo-label construction. In the “Local-to-Global” strategy,
the image x is randomly divided into n blocks xj, j ∈ [1, n],
and then the teacher model is used to predict the small-sized
image blocks xj; finally the pseudo label for image x will be
decided by majority voting according to the n predicted
values of xj. +e “Local-to-Global” strategy has strong
flexibility for making classification decision no matter if by
one-time prediction of the whole image or multiple-times
predictions of the image blocks.

3.3. Malicious Attacks. In order to enhance the general-
ization ability and robustness of the model, kinds of mali-
cious attacks are applied to D′ to obtain a noisy dataset Da

′.
Figure 2 shows an original image sample with its processed
samples after seven kinds of malicious attacks, which include
the following:

(1) Noise attack: to add salt and pepper noise or
Gaussian noise with SNR ∈ (0.9, 1.0).

(2) Translation: to move the image in a random given
direction with the distance D ∈ (0, 50).

(3) Uniform scaling: to enlarge or shrink an image,
where the scaling ratio is r ∈ (0.75, 1.25).

(4) Partial content blocking: a square area with size of
5 × 5 is randomly selected in the image to change the
color to be black.

(5) Color channel change: to convert the original RGB
image to a grayscale image.

(6) Affine transformation: a geometric transformation to
transform the original vector space into another
vector space by performing a linear mapping method
on it.

(7) Blurring attack: to blur the image by a Gaussian low-
pass filter with kernel size [3, 3] and standard de-
viation σ � 0.

In our strategy, after pseudo-label dataset generation by
using teacher model, malicious attacks will be randomly

selected with a random parameter setting in the predefined
range and be applied to partial images which are randomly
selected from the mixed dataset D′ with a certain proba-
bility. Here in our experimental tests, the probability of
attacked image is set to be 30%.+e number of images in the
dataset before and after attacks remains constant, but the
image content and data distribution information are ex-
panded to enhance the generalization ability and robustness
of model training.

3.4. Learning Rate Decay Strategy. Learning rate is an im-
portant hyperparameter in neural network training, which
can control both the magnitude for model weights updating
and the training speed. If the learning rate is too large, the
weights learning will fluctuate greatly, and it is hard to get
the optimal solution. If the learning rate is too small, it will
result in a long training process. +erefore, learning rate
setting or adjustment is crucial to neural network training.
In our FTTSE strategy, a learning rate decay strategy is
implemented while iterative training. Before iteration, a
larger learning rate is used to speed up the initial model
fitting.+en the learning rate is gradually reduced to prevent
the model from falling into a local optimum in training
iterations.+is operation for learning rate decay is expressed
mathematically as

lrk �
1
10

lrk−1, (1)

where lrk is the learning rate of kth is the round of training
iteration.

4. Experimental Results and Analysis

4.1. Details of Experimental Settings. In our experiment, we
collected three image datasets for network training and
testing, including Columbia dataset [5], DSTok dataset [37],
and SPL2018 dataset [23], which are mainstream experi-
mental datasets for current research work on CG image
detection. Table 1 compares the three datasets in aspects of
the number of natural images, the number of CG image, and
the image size range. Besides, we will introduce the sources
of image collecting in these datasets and make a simple
analysis of the detection difficulty of each dataset.

+e full name of Columbia dataset [5] is called Columbia
Photographic Images (PIM) and Photorealistic Computer
Graphics (PRCG) Dataset, which is collected by Ng et al. and
is the earliest public dataset for CG image detection. +e
dataset contains 800 PRCG images collected from the In-
ternet, 800 photographed PRCG images recaptured with
cameras, 800 PIMs from personal collection, and 800 PIMs
from Google image search. Because the image dataset has
diverse image sources and the number of images for each
image type is relatively small, the image classification of this
dataset is relatively difficult.

DSTok dataset [37] is constructed by Tokuda et al. which
contains 4850 natural images and 4850 computer-generated
images. All images are collected from the Internet, including
natural images with indoor and outdoor landscapes
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captured by various devices, and CG images collected with
more content subjects, such as characters, architectures, and
landscapes. DSTok dataset has a large number of images with
comprehensive content categories, and it is an important
dataset for CG image detection research.

SPL2018 dataset [23] is constructed by He et al. with
6800 CG images and 6800 natural images. Besides the images
collected from the Internet, there are some CG images
generated by more than 50 rendering software, e.g., 3DS Max

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 2: Original image sample and processed samples after different attacks. (a) No attack. (b) Noise. (c) Translation. (d) Scaling. (e)
Partial content blocking. (f ) Color channel change. (g) Affine transformation. (h) Blurring.

Table 1: Comparison of three datasets implemented in our
experiment.

Dataset
Natural
image
number

CG
image
number

Image size

Columbia [5] 1600 1600 276 ∗ 421∼1398 ∗1404
DSTok [37] 4850 4850 609 ∗ 603∼3507 ∗ 2737
SPL2018 [23] 6800 6800 266 ∗199∼2048 ∗ 3200
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and Maya. Natural images are photos captured by different
types of cameras in various scenes. Besides the diverse image
content subjects, the SPL2018 dataset contains images with
different resolutions, especially the low-resolution images,
which is more suitable to test the classification performance
with more experimental scenarios requirements.

In our experiments, we use a convolutional-neural-
network based model named ScNet proposed by Zhang et al.
[27]. +e key part of ScNet is a network structure called the
self-coding module, which is efficient for deep learning of
the correlation among three color channels and pixel-related
features. Figure 3 shows the network structure diagram of
ScNet. In our experiments, we compare the stability, gen-
erality, and robustness of the ScNet model before and after
using our proposed FTTSE training strategy.

+ere are three kinds of dataset constructed for teacher
and student model training in our work, including labeled
dataset, unlabeled dataset, and testing dataset. For labeled
data, we selected all images from the DSTok dataset, which is
one of the most used with critical image quality in the field of
CG image detection. For unlabeled dataset, we randomly
selected 5000 CG images and 5000 natural images from the
SPL2018 dataset and removed their labels. +en the
remaining 3600 images in SPL2018 dataset and 3200 images
in Columbia dataset are selected for testing dataset to verify
the detection performance of the model. Figure 4 shows the
dataset division process in our experiment.

For the preprocessing of image samples in the dataset, we
randomly crop 20 image batches with size 224 × 224 for each
sample and then randomly divide these cropped image
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batches into training set, validation set, and testing set with a
ratio of 8: 8: 1. In iterative training, we use a batch size of 32,
including 16 CG images and 16 natural images. During
training, the CNN parameters are optimized by stochastic
gradient descent. +e initial learning rate is set as 0.001, and
the order of the training set is randomly shuffled after each
epoch.+ere are four models obtained by network training at
different stages of our self-training process. +e first teacher
model (M0) is obtained by the first initialization training in
the labeled dataset. +e training process ofM0 stops after 120
epochs. +e first student model (M1) is obtained by student
initialization training in the mixed dataset, which contains the
labeled and the pseudo-labeled image samples. +e pseudo
labels are predicted byM0. After generatingM0 andM1, there
are two rounds of iteration for retraining student model: M2
andM3 with attackedmixed dataset.+e training processes of
M2 and M3 carry out the FTTSE strategy with learning rate
decay and stop after 60 epochs.

For these four models mentioned above, we designed
four experiments to evaluate the model stability, benchmark
the four models, validate the model generality, and evaluate
the model robustness, respectively. In order to fully reflect
the classification ability of the testing model, there are three
experimental indicators calculated for model evaluation in
terms of detection accuracy, precision, and recall. Due to the
randomness of the detection results of ScNet model, our
FTTSE self-training experiment was repeated for three
times, and the average results were finally calculated to verify
the network performance. All experiments are implemented
on a GeForce GTX 1080Ti using the deep learning frame-
work PyTorch0.4.1.

4.2. Stability of Training Model. In the self-training process,
the model M0 is actually similar as the model proposed by
Zhang et al. [27] only with small changes in our desired
experimental condition settings. Compared with the model
of [27], we use the same ScNet network but under a different
image dataset with larger size of image scene and smaller
epochs of training. Following the training settings men-
tioned in Section 4.1, the self-training process is repeated
three times in DSToK dataset to validate the network sta-
bility. For each time, the four models are evaluated by
calculating their detection rates of accuracy, precision, and
recall. Tables 2–4 show the experimental results of the three-
times repeated self-training process, respectively. +e av-
erage detection results are calculated and shown in Table 5.

As shown in Tables 2–5, the experimental results of M0
are basically consistent with the simulation results in [27]. In
our experiment, the average detection accuracy of M0 ap-
proximately reaches 94.79%. +is proves the validation of
ScNet for CG image detection. In addition, the experimental
results of M1, M2, and M3 in the three times experiments
keep a stable performance even if the training image samples
are maliciously attacked. +e four trained models shown in
Table 3 has the best performance results among the three-
times repeated experiments. Compared with M0, the detec-
tion accuracy of M2 is improved by 0.58%, whereas the
detection accuracy of M3 compared with M1 is improved by

0.37%. In the whole self-training process, the final training
model M3 is improved compared with the initial training
model M0 with an accuracy rate that increased by 0.88%,
precision rate increased by 0.97%, and recall rate increased by
0.80%. +e experimental results in Tables 2–5 reveal the
stability of the model trained by our proposed FTTSE strategy
and the performance improvement in CG image detection.

4.3. BenchmarkingTest. Here we use the four models trained
by the second experiment with the best performance as
shown in Section 4.2 for benchmarking test. +e remaining
3600 image samples in SPL2018 dataset with their labels,
which are not used for training models, will be used as the
testing set to benchmark the four models. +e test results of
initial training teacher model M0 is used as the baseline for
benchmarking, since there is no image sample in SPL2018
used forM0 training. +e detection accuracy, precision, and
recall of the four models on remaining SPL2018 image
samples are compared in Table 6. As can be seen in Table 6,
the final training model M3 performs stably higher even if
there are malicious attacks applied to the training images.
Due to the prior knowledge of M0, M1, and M2, the final
model M3 has ability of quickly learning the diagnostic
features for CG image detection. Compared with the initial
training teacher model M0, the detection accuracy of M3 is

Table 2: Results of stability test experiment I.

Model Accuracy (%) Precision (%) Recall (%)
M0 94.85 93.91 95.83
M1 94.51 93.14 95.90
M2 94.45 94.34 95.26
M3 94.54 94.15 95.01

Table 3: Results of stability test experiment II.

Model Accuracy (%) Precision (%) Recall (%)
M0 94.36 92.79 95.96
M1 94.87 93.20 95.56
M2 94.94 93.42 96.48
M3 95.24 93.76 96.76

Table 4: Results of stability test experiment III.

Model Accuracy (%) Precision (%) Recall (%)
M0 95.16 94.39 96.37
M1 95.29 93.57 97.41
M2 95.07 93.43 97.13
M3 95.48 93.94 97.40

Table 5: Average results of three experiments.

Model Accuracy (%) Precision (%) Recall (%)
M0 94.79 93.70 96.05
M1 94.89 93.57 96.29
M2 94.82 93.30 96.29
M3 95.09 93.95 96.39
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improved by 5.18%. +e detection ability of the four models
shows an upward trend in all terms of accuracy, precision,
and recall. +e good verification results shown in Table 6
illustrate the model improvement using FTTSE strategy.

4.4. Generality Evaluation Test. For validating the model
generality, the image samples in Columbia dataset are used
as unknown samples for testing detection accuracy, which
were not used in any model training process. In this ex-
periment, both 1600 natural images and 1600 CG images in
the Columbia dataset are used to validate the generality of
the four models to distinguish CG images from natural
images.

+e detection accuracy, precision, and recall of the four
models on Columbia dataset are compared in Table 7. All the
experimental results are visualized by bar-chart as shown in
Figure 5. According to the experimental results, with the
iteration of FTTSE training, the retrained model M1 com-
pared with its prior fine-tuned teacher model M0 is im-
proved in all terms of detection accuracy, precision, and
recall. Likewise, the retrained model M3 is improved
compared with its prior fine-tuned teacher model M1. +e
experimental results shown in Table 7 and Figure 5 validate
the generalization ability of the four models, while it is also
proved that the FTTSE self-training strategy can effectively
strengthen the generality of model by iterative training.

4.5. RobustnessTest. Since the malicious attacks are added in
our iterative training process as introduced in Section 3.3,
the model after implementing our teacher/student exchange
strategy already has a certain robustness against various
attacks. In order to sufficiently evaluate the robustness of the
network model, here we enhance the attack strength or
expand the subcategories of attack in our experiment. +e
seven kinds of malicious attack applied for robustness
evaluation are reset as follows.

(1) Noise attack with SNR ∈ (0.8, 1.0)

(2) Translation with moving distance D ∈ (0, 100)

(3) Uniform scaling with scaling ratio r ∈ (0.5, 1.5)

(4) Partial content blocking with the blocking area size
of 10 × 10

(5) Color channel change with adding HSV color space
processing

(6) Affine transformation same as before
(7) Blurring attack with adding media filtering with

kernel size [3, 3]

Here we still use the four models trained from the second
experiment to evaluate their robustness against strengthened
attacks on the remaining 3600 image samples in SPL2018
dataset. For the testing images, we design two experiments
where the strengthened attacks are randomly selected and
applied to 50% and 100% of images, respectively. +e ex-
perimental results are shown in Tables 8 and 9, which are
visualized in Figures 6 and 7.

As shown in Tables 8 and 9, the detection accuracy of the
initial training teacher model M0 only achieves 71.93% and
73.72% with 50% and 100% attacks, respectively. +e de-
tection performance ofM0 rapidly decreased compared with
the benchmark experimental results in Section 4.3 without
image attacks. By introducing malicious attacks in our
training strategy, the models M1, M2, and M3 generally
perform an upward trend in the three indicators of detection
accuracy, precision, and recall as shown in Figures 6 and 7.
In Table 9, the final modelM3, compared withM0, performs
a higher detection rate with an increase of 7.63%, 6.18%, and
7.04% in terms of detection accuracy, precision, and recall.
By analyzing the experimental results above, the improve-
ment indicates our proposed FTTSE strategy can effectively
enhance the robustness of the model.

4.6. Analysis of Different Dataset-Combination Settings.
In the previous experimental initialization settings, our
dataset-combination setting is to select all images from the
DSTok dataset as labeled data, randomly select 5000 CG
images and 5000 natural images from the SPL2018 dataset as
unlabeled data, and select the remaining 3600 images in
SPL2018 dataset and 3200 images in Columbia dataset as
testing dataset. Under this dataset-combination setting, the
proposed method presents good performance in our ex-
periments as shown in Sections 4.2–4.5. In order to verify the
stability of our improved FTTSE strategy with different
dataset-combination settings, we will further analyze the CG
image detection accuracy of the models trained by different
dataset-combination settings in this section. Here the pre-
vious dataset-combination setting is marked as “Comb1.”
Besides, we add two different dataset-combination settings
marked as “Comb2” and “Comb3,” respectively. In the
experiment of Comb2, all the images in Columbia dataset are
selected as the labeled data, 5000 CG images and 5000
natural images are randomly selected from the SPL2018
dataset as the unlabeled data, and the remaining 3600 images
in SPL2018 dataset and all the images in DSTok dataset are
selected as the testing dataset. In the experiment of Comb3,
5000 CG images and 5000 natural images in SPL2018 dataset
are selected as the labeled data, all the images in DSTok
dataset are selected as the unlabeled data, and the remaining

Table 6: Benchmark test results.

Model Accuracy (%) Precision (%) Recall (%)
M0 83.42 87.76 80.74
M1 87.83 90.91 85.62
M2 88.54 91.30 86.51
M3 88.60 91.62 86.39

Table 7: Generality evaluation test results.

Model Accuracy (%) Precision (%) Recall (%)
M0 71.09 76.76 68.95
M1 73.15 83.31 69.24
M2 72.55 80.15 69.58
M3 74.17 84.98 69.87
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Figure 5: Generality evaluation test results.

Table 8: Robustness test results (with attack probability 50%).

Model Accuracy (%) Precision (%) Recall (%)
M0 71.93 86.40 66.99
M1 84.40 91.00 80.38
M2 84.85 90.09 81.53
M3 85.12 90.84 81.51

Table 9: Robustness test results (with attack probability 100%).

Model Accuracy (%) Precision (%) Recall (%)
M0 73.72 83.39 69.87
M1 80.98 91.02 75.78
M2 81.29 89.02 77.09
M3 81.35 89.57 76.91

Accuracy CGPrecision CGRecall
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M3
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Figure 6: Robustness test results (with attack probability 50%).
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3600 images in SPL2018 dataset and all the images in Co-
lumbia dataset are selected as the testing dataset.

In each dataset-combination setting, four models are
trained by the FTTSE strategy, and the detection ability of
each model is benchmarked on the images in the testing
dataset without any attack, with 50% malicious attack and
100% malicious attack, respectively. +e attack setting is the
same as introduced in Section 4.5, and the detection ability is
calculated in terms of accuracy, precision, and recall,

respectively. All the experimental results for different
dataset-combination settings are shown in Tables 10–12.

As shown in Table 10, the detection accuracy rates for
Comb1 and Comb2 settings without any attacks are both
improved from 83.42% and 81.36% to 88.60% and 88.27%.
As the labeled training images and the testing images are
both selected from SPL2018 in Comb3 setting, the detection
accuracy performs significantly superior than that of Comb1
and Comb2 settings, and all the detection accuracy rates of
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Figure 7: Robustness test results (with attack probability 100%).

Table 10: Test results for different dataset-combination settings without any attacks to the testing dataset.

Model
Accuracy (%) Precision (%) Recall (%)

Comb1 Comb2 Comb3 Comb1 Comb2 Comb3 Comb1 Comb2 Comb3
M0 83.42 81.36 95.40 87.76 79.04 94.75 80.74 82.86 96.00
M1 87.83 85.92 95.18 90.91 84.37 94.64 85.62 87.11 95.67
M2 88.54 87.85 95.16 91.30 87.33 94.91 86.51 88.24 95.39
M3 88.60 88.27 95.10 91.62 87.64 94.47 86.39 88.74 95.65

Table 11: Test results for different dataset-combination settings with attacks to 50% of the testing dataset.

Model
Accuracy (%) Precision (%) Recall (%)

Comb1 Comb2 Comb3 Comb1 Comb2 Comb3 Comb1 Comb2 Comb3
M0 71.93 75.44 82.13 86.40 77.44 96.54 66.99 74.45 74.93
M1 84.40 82.65 91.73 91.00 83.56 94.83 80.38 82.05 89.28
M2 84.85 85.04 91.25 90.09 86.44 94.96 81.53 84.08 88.39
M3 85.12 84.22 91.64 90.84 83.85 94.60 81.51 84.46 89.30

Table 12: Test results for different dataset-combination settings with attacks to 100% of the testing dataset.

Model
Accuracy (%) Precision (%) Recall (%)

Comb1 Comb2 Comb3 Comb1 Comb2 Comb3 Comb1 Comb2 Comb3
M0 73.72 70.62 70.97 83.39 76.72 97.57 69.87 67.99 63.68
M1 80.98 79.82 88.06 91.02 83.43 94.82 75.78 77.80 83.52
M2 81.29 82.34 87.19 89.02 86.03 94.92 77.09 80.10 82.20
M3 81.35 80.75 88.16 89.57 81.40 94.75 76.91 80.34 83.71

12 Security and Communication Networks



the four models keep higher than 95%. For the robustness
test shown in Tables 11 and 12, it can be seen that the
detection accuracy of the initial training teacher modelM0 is
decreased significantly with 50% and 100% attacks, which is
one of the difficult problems faced by deep learning. After
the teacher/student iterative training by our FTTSE strategy,
the detection accuracy of M3 achieves 8%∼13% higher than
M0 with 50% attack for testing images and 7%∼17% higher
than M0 with 100% attack.

By briefly glancing at Tables 10–12, it can be seen that
(1) our proposed FTTSE strategy can maintain good de-
tection performance facing with different dataset-combi-
nation settings and (2) the proposed FTTSE strategy can
enhance the robustness of the model with a significant
effect in detection accuracy. In addition, it is noteworthy
that in Comb2 dataset-combination setting, the number of
labeled images in Columbia dataset is relatively small, but
the detection capability and robustness performance with
the same number of unlabeled image and the same pseudo-
label construction strategy for model training can still keep
stable improvement in the experiment, which further
proves that our method is an effective solution to the
problem of lack of labeled training samples in deep
learning.

5. Conclusion

+is paper proposes an improved self-training model with
FTTSE strategy to distinguish CG images from naturally
captured images. We improve the CG image detection ac-
curacy of existing model through designing the new teacher/
student exchange strategy, pseudo-label construction
strategy, malicious-attack strategy, and learning rate decay
strategy. Our experimental results show that (1) the stability
of the trained model using our proposed FTTSE strategy
keeps a good performance for image classification; (2) the
detection accuracy of the proposed model is improved by
5.18% after iterative training; (3) the robustness of the model
is improved; i.e., even if the testing image set is faced with
various malicious attacks, the self-training model can still
show good detection accuracy which is improved by 7.63%
after iterative training.

However, during the iterative training in the experi-
ments, the mixed training dataset will be constructed with
wrong pseudo labels due to the prediction errors. +e errors
will be propagated and amplified with the iterative training.
+is causes the label distribution in mixed dataset extremely
uneven in the subsequent rounds of iterative training, and
the CG image detection accuracy is declining continuously.
In the future work, the methods about how to overcome the
imbalanced training samples in the self-training strategy and
how to further improve the image classification ability will
be further studied.
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)e coverless steganography based on video has become a research hot spot recently. However, the existing schemes usually hide
secret information based on the single-frame feature of video and do not take advantage of other rich features. In this work, we
propose a novel coverless steganography, which makes full use of the audio and frame image features of the video. First, three
features are extracted to obtain hash bit sequences, which include DWT (discrete wavelet transform) coefficients and short-term
energy of audio and the SIFT (scale-invariant feature transformation) feature of frame images. )en, we build a retrieval database
according to the relationship between the generated bit sequences and three features of the corresponding videos. )e sender
divides the secret information into segments and sends the corresponding retrieval information and carrier videos to the receiver.
)e receiver can use the retrieval information to recover the secret information from the carrier videos correspondingly. )e
experimental results show that the proposed method can achieve larger capacity, less time cost, higher hiding success rate, and
stronger robustness compared with the existing coverless steganography schemes based on the video.

1. Introduction

In today’s era with frequent information leakage and theft, the
safe transmission of confidential information is extremely
significant. Information hiding technologies can help to solve
the problem of secure transmission and effective recovery of
secret information. Traditional steganography schemes
mainly embed secret information by changing the specific
features of the carrier [1–4]. However, due to themodification
of carriers, this kind of algorithms has the risk of being
detected by steganalysis. )e coverless steganography sets up
a specific mapping relationship with the characteristics of
carriers to hide secret information. It has better concealment
performance than traditional information hiding algorithms
since its carrier has not been changed.

)e existing coverless steganography schemes are mainly
divided into two categories: coverless steganography based
on text [5–8] and coverless steganography based on image
[9–12]. )e coverless text steganography usually uses the
unique features of text (such as word frequency and key-
words) to hide secret information, which was first proposed

by Chen et al. [13]. )ey vectorized and segmented the
Chinese secret information and obtained the retrieval in-
formation corresponding to the secret information from the
Chinese text retrieval database to hide secret information. By
using statistical features of text, Zhang et al. [14] selected the
normal texts containing the secret information retrieved
from the text database to hide secret information. Different
from the aforementioned methods, Wang et al. [15] used the
data characteristics of nonrepetitive and diverse lyrics
generated by GAN to hide secret information, which had
good perceptibility and embedding rate.)e coverless image
steganography was first proposed by Zhou in 2015 [16]. )e
key point of this kind of algorithms is to extract the specific
features of the image, such as the texture, colour, and shape,
to establish a specific mapping relationship to hide the secret
information. Zhou et al. [16] divided the secret information
into bit sequences and then sent the specific carrier images
and auxiliary information matched with the bit sequences to
the receiver. Zheng et al. [9] divided the carrier images into
blocks and used the direction information of feature points
of scale-invariant feature transform (SIFT) to hide the
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segmented secret bit sequences. Similarly, Zhou et al. [10]
used the directional gradient histogram (HOG) of non-
overlapping image blocks to hide the secret bit sequences.
Due to the powerful ability of deep neural network to extract
features [17], some researchers introduced it to coverless
steganography. Liu et al. [18] used DWTto transform images
and the DenseNet network to recommend carrier images.
Luo et al. [19] used the labels of the object in the carrier
image to generate hash bit sequences and hid secret in-
formation by sending the carrier image containing multiple
objects. )e receiver used Faster RCNN [20] to extract the
labels of the objects in the carrier images to recover the secret
information. In addition to using the features of the image to
map hash bits, some researches hid secret information based
on image generation. Wu et al. [11] set up a mapping re-
lationship between secret information and texture image and
used the synthesis process of texture image to hide secret
information. Chen et al. [12] divided the natural images into
multiple image blocks, every one of which can represent 1-
bit secret information, and retrieved the corresponding
image blocks to synthesize the carrier image according to the
secret information. )e generative adversarial networks had
caused many technological changes in the field of computer
vision [21], and its ability to generate real natural images had
been widely recognized. Li et al. [22] used the encoder to
extract the content vector of the secret image and input it
into the generative model to generate a real and natural
carrier image under the penalty mechanism. Yu et al. [23]
used the vectorized secret information to directly control the
generative model to generate the carrier image and intro-
duced the attention mechanism to correct the image dis-
tortion and background anomaly, so as to improve the
concealment. However, when more secret information bits
need to be hidden, the coverless steganography based on
image or text needs to transmit a large number of carriers,
which will undoubtedly arouse suspicion by external at-
tackers and increase the risk of secret information being
attacked.

Compared with image and text, there are more features
that could be extracted from video to hide secret infor-
mation, such as the frame image features, the temporal
features between frames, and the audio features. )erefore,
coverless steganography based on the video does not need to
transmit too many carriers when more secret information
bits need to be hidden. At the same time, due to the wide use
of portable multimedia devices such as smart phones, the
number of short videos is large enough on the Internet. )e
daily spread of video makes it an ideal covert communi-
cation carrier. )ese advantages provide a basis for the
development of coverless steganography based on the video.
However, there are a few coverless steganography methods
based on the video. Tan et al. [24] calculated the directional
optical flow feature of the adjacent frame images and ob-
tained the robust histograms of oriented optical flow
(RHOOF), then mapped the hash bits according to the
discrimination relationship of each component of the his-
togram. )e optical flow information of the adjacent frame
images in this scheme is sensitive to random noise, so its
robustness needs to be improved. Pan et al. [25] first

performed framing processing on the video to extract valid
frame images and then used the semantic information
extracted from the frame images by MobilenetV2 [26] to
generate hash sequences. However, this method only used a
single-frame image feature of video, and its hiding capacity
and hidden success rate were relatively low. At the same
time, this method took a long time to train the MobilenetV2
network and the trained model also took a long time to
generate a byte, which undoubtedly weakened the practi-
cability of this scheme. Zou et al. [27] used deep neural
network to extract the hash codes of frame images and set up
mapping rules to improve the capacity of the scheme.
However, the hash codes of the frame images were directly
generated by the neural network, and the robustness of this
network was poor, resulting in the weak anti-interference
ability to noise.

In order to make more effective use of the features of
carrier video and improve the hiding capacity and robustness,
a coverless video steganography scheme based on audio and
frame features is proposed in this work. First, the frame
images and audio components of the carrier video are
extracted. )en, three features of the two components are
mapped into bit sequences, and the retrieval database is
established according to themapping relationship.)e sender
divides the secret information into bit sequences of equal
length and then searches the retrieval information and carrier
videos in the retrieval database.)e retrieval information and
carrier videos will be sent to the receiver. )en, the receiver
can recover the secret information according to the mapping
rules. )e contributions of this paper are as follows:

(1) A novel coverless video steganography scheme is
proposed based on audio and frame features, which
makes full use of the features of frame images and
audios of the carrier videos.

(2) )e feasibility of audio features for coverless steg-
anography is investigated, which has not been fully
studied in existing researches. )e short-term energy
and DWTcoefficient of audio are used to hide secret
information. )e experimental results show good
performance.

(3) )e robustness, capacity, cost time, and hiding
success rate are analysed and tested. )e proposed
method achieves good improvements compared
with the existing video-based coverless steganog-
raphy schemes.

)e rest of the paper is arranged as follows. Preliminaries
are shown in Section 2. )e proposed coverless video
steganography is described in Section 3. )e experimental
results and analysis are shown in Section 4. Finally, con-
clusions are drawn in Section 5.

2. Preliminaries

2.1. Short-TermEnergy ofAudio Signal. Since the continuous
change of the audio signal with time can be characterized by
a nonstationary random process and has short-term cor-
relation, short-term analysis is generally used for audio
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signal processing. )e signal is divided into frames first to
ensure the local stability. )en, windows are added to keep
the signal continuous, as shown in Figure 1.

Assuming the audio signal is X(n), the i-th frame of
signal is obtained after windowing by

Yi(n) � w(n) × X (i − 1) × inc + n( , 1≤ n≤ Lf, 1≤ i≤fn,

(1)

where w(·) is the window function with the width of wlen, fn

is the total number of frames, Lf is the frame length, inc is the
frameshift length, and Yi(n) represents the n-th signal value
of the i-th frame of the audio signal. )e short-term energy
can reflect the strength of the audio signal, which can be
obtained by

E(i) � 
L−1

n�0
Y
2
i (n), 1≤ i≤fn, (2)

where L represents the length of the audio signal.

2.2. DiscreteWavelet Transform. Discrete wavelet transform
(DWT) [18] is a transform method whose process is as
follows:

ψm,n(t) �
1
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0
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 , (3)

Wf(m, n) � 
+∞

−∞
f(t)ψ∗m,n(t)dt. (4)

Equation (3) is the discrete wavelet function of DWT,
andm and n are integers; a0 is a constant greater than 1, and
b0 is a constant greater than 0; the different values of a and b
are affected by m, n, a0, and b0, and the difference of these
two parameters is related to the selection of discrete wavelet
function ψm,n(t). Equation (4) represents the process of
DWT. f(t) represents the audio signal in time domain, t
represents time, and ∗ represents complex conjugate value
of discrete wavelet function ψm,n(t).

After DWT, the audio signal can output low-frequency
and high-frequency components. )e low-frequency com-
ponent contains themost energy of the audio signal, whereas
the high-frequency component mainly contains detailed
information of speech signal such as the impact of noise. As
shown in Figure 2, after each DWT, the length of low-
frequency information is halved, and the contour is more
obvious and stable.)erefore, the low-frequency component
of DWT has good stability and robustness, which can be
used for information hiding.

2.3. Scale-Invariant Feature Transformation.
Scale-invariant feature transformation (SIFT) has the feature
of scale invariance, which is not affected by the variation of
light, noise, and visual angle. Because of its excellent stability
and robustness, it can be applied to information hiding [12].
)e steps of SIFT feature detection are as follows:

(1) Detect the extremum of scale space. Gaussian dif-
ference function is used to search for potential
feature points with constant scale and direction for
all images in scale space.

(2) Locate the feature points. Based on the stability
principle, a fine model is fitted to determine the
position of the final feature points accurately.

(3) Determine the directions of the feature points. Each
feature point is assigned one or more directions
based on the gradient direction of the local image.
Because the image data are converted to the set
direction, position, and scale features on which the
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subsequent operation is also based, it provides in-
variance for SIFT features.

(4) Describe the feature points. )e gradient of the local
image in the domain of each feature point is
transformed into another representation, which
could help resist a certain degree of image local
distortion and illumination change.

3. Our Proposed Method

In this paper, we propose a coverless video steganography
based on audio and frame features whose framework is
shown in Figure 3. In our method, we first process video to
get the audio and image components. )en, three features of
these two components are extracted: SIFT feature, short-
term energy feature, and DWTcoefficient feature are used to
generate hash bit sequences by different robust mapping
methods. After that, the retrieval database is built according
to the position information. At the sender, the secret in-
formation is divided into bit sequences, which are used to
search corresponding retrieval information and videos in the
retrieval database. )e retrieval information and videos are
sent to the receiver. After receiving the retrieval information
and videos, the bit sequences are obtained by calculating the
corresponding features in the video according to the re-
trieval information, such that the secret information can be
recovered by these bit sequences.

3.1. Mapping of Bit Sequence. )e mapping method of bit
sequence is related to the robustness and accuracy of cov-
erless steganography, so it is the core part of the algorithm.
Our method includes three features, which are extracted
from audio and image, respectively. )ree mapping schemes
of bit sequence are described as follows.

3.1.1. Mapping Based on Short-Term Energy of the Audio.
)e mapping based on short-term energy of audio is as
follows:

(1) Process the audio signal X(n). According to equa-
tion (1), the audio signal X(n) could be divided into
frames and windowed to get fn frames of the audio
signal Yi(m). Here, we set the frame length wlen �

200 and the frameshift inc � 80. )en, we calculate
the short-term energy of each frame audio signal
according to equation (2).

(2) Segment the energy of the audio signal. According to
the principle that L0 � 180 frames of total energy is
used to map 1-bit information, the short-term en-
ergy E(i) is segmented to get h0 segments of short-
term energy En(h) according to equation (5), the
first 8 × N0 segments of which is used to map to
generate bit sequences.

En(h) � 

L0

i�1
E(i),h0 � floor

fn

L0
 N0 � floor

h0

8
 , 1≤ h≤ h0.

(5)

(3) Generate the hash sequences. )e 8 slices of short-
term energy segments are selected from En(h) in
sequence, and the mean value is taken as the
threshold K. According to the relationship between
the short-term energy and the threshold value K, we
obtain the bit sequence B1, as shown in Figure 4. We
obtain the hash sequence B1 by bit reversal.

B1(j) �
1, if En(j) ≥K K �


8
m�1 En(j) 

8

0, if En(j) <K 1≤ j≤ 8

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

3.1.2. Mapping Based on DWT Coefficients of the Audio.
We use the stable low-frequency information obtained by
DWT to generate robust bit sequences as follows:

(1) Perform DWT on the audio signal. We perform
DWT on the audio signal X(n) continuously three
times and output the absolute value of the low-
frequency information U whose length is l.

(2) Process the coefficient of low-frequency information
U. We use L1 � 2750 values of low-frequency in-
formation U to map 1-bit information, and we can
get h1 � floor(l/L1) low-frequency coefficients Zc.

Zc(j) � 

j×L1

i�(j−1)×L1+1
U(i),1≤ j≤ h1. (7)

(3) Generate the hash sequences. By comparing the
numerical relation of the adjacent DWT coefficients
Zc, we obtain the bit sequence H of length h1 − 1:

H(j) �
1, if Zc(j)>Zc(j + 1)

0, if Zc(j)≤Zc(j + 1)
 1≤ j≤ h1 − 1. (8)

(4) Output the bit sequences in bytes. In this bit se-
quenceH, the byte sequence B2 is output byte by byte
in sequence, as shown in Figure 5.We obtain the byte
sequence B2 by bit inverting B2.

(5) Repeat step 4 h times to output 2 × h byte sequences.

h � floor
h0 − 1( 

8
 . (9)

3.1.3. Mapping Based on SIFT Feature of Frame Images.
After extracting the frame images I(m) from the video, the
SIFT feature is used to generate a hash bit sequence from
each frame image. Different from Zheng’s method [12], we
map the bit sequence by counting the number of SIFT
feature points of image subblocks. Particularly, we use the
frame image feature mapping to generate a bit sequence
and then reverse it by bit to get a new bit sequence to
further increase the capacity. )e mapping steps are as
follows:

4 Security and Communication Networks



Receiver

Sender

Build

Hash 
sequences

00 … 00

00 … 01

11 … 10

11 … 11

…

Separate Extract

Map

Frame
images

Audio

Different
components

SIFT

Short-term
energy

DWT

Different
features

MatchSegment
Secret

information

Video
dataset

…

Transmit

Secret
information

Connect

Index
information

Videos

Recover

Bit
sequences

Bit
sequences

Mapping of
features

Index
information

Videos

Mapping of features

Index
database

Figure 3: )e framework of the proposed coverless video steganography scheme.

0100 1001

Hash sequence

488 872 437 303 542 392 357 544
Compare with K

Short-term energy En

Figure 4: Generation of hash sequence B1.

110000 111

767 798 677 206 730 1300 606 661 538 412…

…

106

Low-frequency coefficients Zc

Bit sequence H

Figure 5: Generation of hash sequence B2.

Security and Communication Networks 5



(1) Process the frame image. For a frame image, we
transform it to greyscale first, uniform its size for 512
× 512, and divide it into 3 × 3 blocks.

(2) Generate and count SIFTfeature points. We perform
SFIT transformation on this frame image to obtain
the location information of SIFT feature points.
)en, we count the number of SIFT feature points
S(i) of image subblocks, 1≤ i≤ 9.

(3) Generate the hash sequences. By comparing the
number of SFIT feature points of different image
subblocks, we obtain the hash bit sequence B3, as
shown in Figure 6. And then, we could obtain the
hash bit sequence B3 by bit inverting B3.

B3(i) �
1, if S(i)< S(i + 1)

0, otherwise
 , 1≤ i≤ 8. (10)

(4) Repeat steps 1, 2, and 3 until the bit sequences of all
images are generated.

3.2. Establishment of Retrieval Database. )e retrieval da-
tabase could help sender search the carriers corresponding
to the secret information, so that it is an important part of
algorithm. )e establishment process is as follows:

(1) Extract two components of the video. We use Arabic
numerals to mark the position of this video, which
will be used to mark the video ID of the subsequent
hash sequences, and then extract the frame images
I(m) and audio X(n) from it.

(2) Extract different features. We extract the SIFT fea-
tures of the frame images I(m) and mark their
feature ID with 0. )en, the short-term energy
features and DWT coefficient features of the audios
X(n) are extracted, and the feature ID is marked as 1
and 2, respectively.

(3) Generate hash sequences and update the retrieval
information. We obtain hash sequences using three
mapping ways mentioned above. At the same time,
we append 0 at the end of the feature ID if the hash
sequence is generated by feature mapping directly,
otherwise 1.

(4) Repeat steps 1 to 3 until 256 types of different byte
sequences are mapped, and the retrieval database is
established, as shown in Figure 7. )e algorithm of
the establishment of the retrieval database is de-
scribed in Algorithm 1.

It can be seen from Figure 7 that a byte sequence may
have multiple corresponding retrieval information. )ere-
fore, the sender can randomly select one of the multiple
retrieval information of the byte sequence as the corre-
sponding retrieval information, so that the same byte se-
quence of secret information has multiple different mapping
items. It can make the auxiliary information transmitted by
the sender, have more variability, increase the cracking
difficulty of external attackers, and enhance the complexity
of our method.

3.3. Transmission of Secret Information. )e specific process
of secret information transmission is as follows:

(1) Construct retrieval database of videos and obtain the
carrier videos V.

(2) For the secret information S of length Ls, segment
every 8 bits (1 byte) and fills the tail with some
auxiliary information to get the byte sequence
P � P1, P2, . . . . . . , PLP

 :

LP �

floor
Ls

8
  + 1, if mod Ls, 8(  � 0,

floor
Ls

8
  + 2, if mod Ls, 8( ≠ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

If mod(Ls, 8)≠ 0, we pad 0 to the end of S to form a
byte sequence and add 1 byte at the same time, which
represents the number of 0 padded; if
mod(Ls, 8) � 0, the sender pads a byte 0000 0000 to
indicate that the original secret information has not
been padded.

(3) Get the retrieval information Ci according to Pi from
the retrieval database.

(4) Repeat step 3 until all the bytes in P have been
matched to get the retrieval information
C � C1, C2, . . . . . . , CLP

 .
(5) Send the retrieval information C and carrier videosV

to the receiver. If both sides of the communication

Hash sequenceStatistics of SIFT points
of each block

5 0 227

228

556605

225259

445

0110 1110

Figure 6: Generation of hash sequence B3.
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Figure 7: Retrieval database of videos.
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have an encryption protocol, the retrieval informa-
tion C can be encrypted. )e algorithm of trans-
mission of secret information is described in
Algorithm 2.

3.4. Recovery of Secret Information. )e specific process of
secret information at receiver is as follows:

(1) )e receiver can recover the bit sequence Pi

according to the retrieval information Ci and the
mapping method described in Section 3.2.

(2) Repeat step 1 until all the remaining search infor-
mation of C has been matched to obtain the byte
sequence P� P1, P2, . . . , PLP

 .
(3) Recover secret information S according to P. If the

last byte of P is 0000 0000, the last byte is directly
removed to recover the secret information S. If the
last byte is not 0000 0000, then according to its
corresponding decimal value, the padded “0s” of the
last two bytes are removed to get the original secret
information S. )e algorithm of secret information
recovery is described in Algorithm 3.

4. Experimental Results and Analysis

)e experimental environment is as follows: AMD Ryzen 5
3600 6-Core Processor CPU at 3.59GHz, 16Gb RAM, and
NVIDIA GeForce RTX 2070 (mobile) 8G, whose driver
version is 27.21.14.5671. )e test software is MATLAB
2020a.

As far as we know, Pan et al. [25] proposed the first
coverless video steganography method in 2020. )erefore,
we will conduct performance comparison experiments with
Pan’s scheme on the same data set, containing some public
videos we obtained from the Internet using crawler tech-
nology. )e video data set consists of 240 short videos in the
format of MP4. Most of these are standard definition videos,
and a few are high-definition videos. Among them, the
longest duration of video is about 5 minutes. )e themes of
this video data set include news brief, music videos, en-
tertainment broadcast, video clip, and documentary clip. In
the test of audio features, we extract the audio components
of video, in which the sampling rate Fs is 44100, and remove
the weak signal values—signals with an absolute value less
than at the beginning and the end of the audio components
to reduce noise influences. In the test experiment of the
frame image features, we select some videos in the video data
set for experimental testing of frame images. )e partial data
sets are shown in Figure 8.

Tan et al. [24] proposed a coverless steganography scheme
based on optical flow analysis of video in 2021. In order to
compare the latest scheme, we select the public data set UCF101
used in the paper [24] for robustness experiment comparison.
UCF101 is a public video data set, the content of which is various
actions and scenes. According to Tan’s settings, we randomly
select videos of different actions and scenes.)e size of these files
is about 200∼800kb and the duration of these videos is about
2∼10 seconds, as shown in Figure 9.

4.1. Capacity. )e hidden capacity is an important indicator
of the information hiding algorithm. A coverless steg-
anography algorithm with a large capacity can help reduce
the number of carriers needed for transmission. Our scheme
uses the frame image and audio components of video to
establish the mapping relationship with the secret infor-
mation, so the hiding capacity of our algorithm should be
discussed in combination with the frame image and audio.

4.1.1. Capacity of the Audio. In this paper, we segment the
audio signal and use the feature mapping of each segment of
the audio signal to generate bytes. In the short-term energy
feature, we first divide the audio signal into frames, then use
8 × 180 frames of the audio signal to map 1-byte sequence
and use bit inversion to get another byte sequence.
According to equation (1), the 1-second audio signal can be
divided into fn frames when the sampling rate is Fs and we
can obtain

200 × fn − 80 fn − 1(  � Fs. (12)

)en, equation (12) is transformed as

fn �
Fs − 80
120

. (13)

)erefore, a x-second video can be mapped to C1 bytes.

C1 � 2 × floor
x × fn

8 × 180
  � 2 × floor

x ×(Fs − 80)

172800
 . (14)

We set n1 � (Fs − 80)/172800, and then, we can simplify
C1.

C1 � 2 × floor x × n1( . (15)

In the feature of DWTcoefficient, we perform four times
of DWT on the audio signal to get stable low-frequency
information. )e length of the audio becomes 1/24 of the
original audio, and the value of the 1-second audio signal
also changed from Fs to Fs/24 after four times of DWT
transform. We use 8 × 2750 DWTcoefficients to map 1 byte,
so a video of x seconds can be mapped to generate C2 bytes.

C1 � 2 × floor
x × Fs

16 × 8 × 2750
  � 2 × floor

x × Fs
352000

 . (16)

We set n2 � Fs/352000, and then, we can simplify C2.

C2 � 2 × floor x × n2( . (17)

)erefore, the hidden capacity of the x-second audio is
C1 + C2 bytes when the audio sampling rate is Fs. It can be
seen from the above that the size of the audio feature ca-
pacity is related to the audio duration x, the sampling rate Fs,
and the parameters L0 and L1. In fact, in order to balance the
robustness and capacity of the scheme, we conduct ro-
bustness tests on the values of L0 and L1 in Section 4.2.1 and
finally determined the values of these two parameters.

4.1.2. Capacity of the Video. For a frame image, our algo-
rithm uses frame image feature mapping and bit inversion

Security and Communication Networks 7



operations to generate 2 bytes, whereas Pan’s method can
only map 1 byte when the robustness is optimal, but Tan’s
method can map 4 bytes.

For a x-second video, whose audio sampling rate is Fs

and the frame images that can be extracted areM, we use the

total number of bits mapped on a certain carrier to measure
the hidden capacity. )e results are shown in Table 1.

It can be seen that the number of bits generated per
frame image in our scheme is consistent with that of Zou’s
scheme, twice that of Pan’s scheme, but half that of Tan’s

Input: Video database v � v1, v2, . . . , va 

Output: Retrieval database R � R1, R2, . . . , R256  , Carrier videos V � V1, V2, . . . , Vb 

(1) For i� 1 to a
(2) Obtain the video ID : IDS � i
(3) Extract frame images from video vi: I(m) �ExtracImg (vi)
(4) For j� 1 to Length (I(m))
(5) Generate hash sequence: Hashj �CalSIFT (Ij)
(6) Update retrieval database: R � update (Video ID, Feature ID, Position ID)
(7) End for
(8) Extract audio from video vi: X(n) �ExtracAud (vi)
(9) Generate hash sequence of the short-term energy features: HashSTE �CalSTE (X(n))
(10) For j� 1 to Length (HashDWT)
(11) Update retrieval database: R� update (Video ID, Feature ID, Position ID)
(12) END for
(13) Generate hash sequence of the DWT coefficient features: HashDWT �CalDWT (X(n))
(14) For j� 1 to Length (HashDWT)
(15) Update retrieval database: R� update (Video ID, Feature ID, Position ID
(16) END for
(17) Vi � vi

(18) If ∀r ∈ R, r≠ Null then
(19) Return R, V
(20) End if
(21) End for

ALGORITHM 1: Establishment of the retrieval database.

Input: Video database v � v1, v2, . . . , va , Secret information S� S1, S2, . . . , SLS
 

Output: Carrier videos V � V1, V2, . . . , Vb , Retrieval information C� C1, C2, . . . , CLP
 

(1) Construct retrieval database R and obtain carrier videos V
(2) Segment the secret information: S’� segment (S)
(3) Padding the bytes sequence: P� pad (S′)
(4) For i� 1 to LP

(5) Search in the index information Ci corresponding to Pi

(6) End for
(7) Send the retrieval information C and carrier videos V to the receiver

ALGORITHM 2: Transmission of secret information.

Input: Carrier videos V � V1, V2, . . . , Vb , Retrieval information C� C1, C2, . . . , CLP
 

Output: Secret information S� S1, S2, . . . , SLS
 

(1) Receive retrieval information C and carrier videos V.
(2) For i� 1 to LP

(3) Obtain the byte sequence Pi according to Ci and mapping method
(4) End for
(5) Remove the padding bytes at the end of the byte sequence P : S’�Remove (P)
(6) Connect byte sequence S′ to restore secret information sequence: S �Connect (S′)

ALGORITHM 3: Recovery of secret information.
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scheme. However, the other three schemes cannot use audio
to map bits, but our method canmap and generate 8 × (C1 +

C2) bits using the features of audio. Ideally, when the video
length is long enough, the number of hash bits mapped by
audio of our scheme is sufficient and the capacity of the
solution can exceed the capacity of Tan’s scheme.

4.2. Robustness. In the process of transmission, the carrier
videos will be affected by noise or external attacks.)erefore,
the robustness is an important indicator. We use external
noise or attack to affect frame images and audios of the
carrier video, and evaluate the robustness according to the
similarities and differences between the byte sequence P1(t)

recovered from the retrieval information and the byte se-
quence P0(t) obtained from the original secret information
segmentation, which is calculated as

Rblock �


LP

t�1 Ac(t)

Lp

, Ac(t) �
1, if P0(t) � P1(t)

0, otherwise

⎧⎪⎨

⎪⎩
, (18)

where LP is the byte number of sequences P0(t) and P1(t).
)e paper [24] used the bit error rate to measure the

robustness of the algorithm, which was calculated as

Rblock �


LP

t�1 Ac(t)

Lp

, Ac(t) �

1, if P0(t) � P1(t)

0, otherwise

⎧⎪⎨

⎪⎩
, (19)

where p0(t) and p1(t) represent t-th bit of sequence P0(t)

and P1(t), respectively, and Lc is the total bit number.

4.2.1. Robustness Based on Audio Features. )e audio is
mainly affected by external Gaussian white noise. In this
section, we use seven kinds of Gaussian noise under different

SNRs to test the robustness of two audio features. We test the
experiment 20 times, remove the maximum and minimum
values of the results, and take the average in the rest of
results.

We compare the robust performance of short-term
energy features with different frame numbers L0. Our
method uses the accumulated value of 180 frames of short-
term energy of the audio signal as the mapping. Table 2
shows the experimental test results of the robustness of
short-term energy feature with different frame numbers L0.
It can be seen that the robustness of short-term energy
feature increases slowly with the increase of the number of
frames. Moreover, the capacity will decrease if increasing L0.
)erefore, in order to balance robustness and capacity, we
set L0 � 180 for better performance.

We compare the robustness performance of DWT co-
efficient with different segment numbers L1 in Table 3. Our
method uses the cumulative sum of 2750 segment values of
U as the mapping. It can be seen that there is no big dif-
ference in the antinoise performance of DWT coefficient
with different segment numbers L1. And there is a negative
correlation between the size of L1 and the capacity of the
algorithm. In order to balance robustness and capacity, we
set L1 � 2750 for better performance.

We compare the robust performance of DWTcoefficient
feature with different times c of DWT in Table 4. It can be
seen that at the beginning, with the increase of the number of
DWT, the robustness is improved, but if c is greater than 4,
the robustness decreases. )erefore, we set c� 4 for better
performance.

We compare the robust performance of DWTcoefficient
feature with different wavelet basis functions in Table 5. It
can be seen that when the wavelet basis function is rbio3.1,
the comprehensive robustness of DWT coefficient is better;
therefore, we set the wavelet basis function as rbio3.1.

Figure 8: )e samples of our database.

Figure 9: )e samples of database UCF101.

Table 1: Capacity comparison of different methods.

Method Capacity (bits/image) Capacity (bits/audio) Capacity (bits/video)
Ours 16 8 × (C1 + C2) 8 × (C1 + C2 + 2 × M)

Tan’s [24] 32 — 32 × M
Pan’s [25] 8 — 8 × M

Zou’s [27] 16 — 16 × M

Security and Communication Networks 9



Table 2: Rblock of short-term energy with different frame numbersL0.

L0
Gauss noise

snr� 0 snr� 3 snr� 5 snr� 10 snr� 15 snr� 20 snr� 30

180 0.8607 0.9070 0.9276 0.9600 0.9775 0.9867 0.9952
360 0.8894 0.9264 0.9420 0.9674 0.9810 0.9895 0.9964
540 0.9010 0.9325 0.9493 0.9721 0.9845 0.9908 0.9968
720 0.9150 0.9436 0.9568 0.9772 0.9875 0.9924 0.9975
900 0.9154 0.9484 0.9584 0.9783 0.9882 0.9935 0.9983
1080 0.9187 0.9478 0.9592 0.9793 0.9886 0.9939 0.9984
1260 0.9229 0.9515 0.9615 0.9802 0.9891 0.9936 0.9981
1440 0.9288 0.9511 0.9640 0.9802 0.9880 0.9922 0.9979
1620 0.9323 0.9539 0.9650 0.9805 0.9891 0.9938 0.9978
1800 0.9335 0.9557 0.9664 0.9824 0.9906 0.9945 0.9982

Table 3: Rblock of short-term energy with different segment numbersL1.

L1
Gauss noise

snr� 0 snr� 3 snr� 5 snr� 10 snr� 15 snr� 20 snr� 30

1375 0.8334 0.8773 0.9015 0.9423 0.9659 0.9800 0.9923
2750 0.8688 0.9061 0.9238 0.9567 0.9743 0.9849 0.9942
5500 0.8803 0.9160 0.9341 0.9654 0.9811 0.9898 0.9958
8250 0.8880 0.9208 0.9379 0.9663 0.9813 0.9882 0.9953
11000 0.8853 0.9211 0.9350 0.9667 0.9816 0.9905 0.9967

Table 4: Rblock of DWT coefficient with different times c.

c Gauss noise
snr� 0 snr� 3 snr� 5 snr� 10 snr� 15 snr� 20 snr� 30

1 0.8053 0.8606 0.8875 0.9390 0.9684 0.9818 0.9940
2 0.8397 0.8846 0.9105 0.9503 0.9727 0.9853 0.9953
3 0.8565 0.8980 0.9194 0.9559 0.9758 0.9864 0.9956
4 0.8688 0.9061 0.9238 0.9567 0.9743 0.9849 0.9942
5 0.8646 0.9024 0.9225 0.9547 0.9738 0.9845 0.9948
6 0.8351 0.8791 0.9021 0.9445 0.9678 0.9815 0.9935
7 0.7294 0.7963 0.8314 0.8990 0.9404 0.9644 0.9875

Table 5: Rblock of DWT coefficient with different wavelet basis functions.

Wavelet
Gauss noise

snr� 0 snr� 3 snr� 5 snr� 10 snr� 15 snr� 20 snr� 30
db5 0.8574 0.8975 0.9182 0.9541 0.9749 0.9864 0.9953
db15 0.8527 0.8925 0.9132 0.9518 0.9724 0.9848 0.9946
coif1 0.8569 0.8982 0.9181 0.9541 0.9730 0.9850 0.9949
coif5 0.8540 0.8960 0.9148 0.9511 0.9714 0.9832 0.9935
fk4 0.8555 0.8956 0.9167 0.9510 0.9718 0.9835 0.9938
fk18 0.8547 0.8954 0.9162 0.9515 0.9726 0.9842 0.9947
sym2 0.8556 0.8957 0.9167 0.9519 0.9729 0.9843 0.9947
sym8 0.8578 0.8989 0.9168 0.9532 0.9726 0.9847 0.9944
dmey 0.8547 0.8970 0.9184 0.9535 0.9732 0.9841 0.9946
bior1.1 0.8498 0.8925 0.9149 0.9525 0.9710 0.9830 0.9941
bior3.1 0.5131 0.6424 0.7118 0.8323 0.9048 0.9465 0.9827
rbio3.1 0.8697 0.9094 0.9270 0.9574 0.9758 0.9859 0.9951
rbio3.3 0.8709 0.9053 0.9252 0.9559 0.9752 0.9854 0.9949
rbio3.5 0.8683 0.9054 0.9230 0.9554 0.9737 0.9854 0.9942
rbio4.4 0.8587 0.8992 0.9190 0.9545 0.9749 0.9858 0.9948
rbio5.5 0.8452 0.8895 0.9117 0.9496 0.9713 0.9834 0.9953
rbio6.8 0.8600 0.8986 0.9206 0.9555 0.9754 0.9854 0.9948
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)e overall robustness performance of the two audio
features is shown in Table 6. We set the short-term energy
feature parameter as L0 � 180, the DWT coefficient feature
parameter as L1 � 2750, the wavelet basis function as rbio3.1,
and the number of DWT as c� 4. It can be seen that the
robustness of the audio feature mapping method is strong,
which can reach 86% under the Gaussian noise with SNR of 0.

4.2.2. Robustness Based on Frame Image Features. In this
section, we use a variety of geometric attacks and noise
attacks with different parameters to test the robustness of
different methods on our video data set. According to the
setting of paper [25], the j of Pan’s scheme is set to 9. )e
experimental results of different methods on our database
are shown in Table 7.

It can be seen that the robust performance of our method
is better than that of Zou’s and Pan’s method under most
external image attacks. Because these two schemes use the
neural network to directly extract the features of the frame
images, the influence of the pixel values has a great impact
on the output results of the network, resulting in the weak
anti-interference ability to noise. In particular, the pixel
matrix of the frame image will be quite different from the
original matrix if the video encounters geometric attack.
Affected by the prior knowledge of the training set, the
extracted features of the neural network may be quite

different from the original features. With the scale invari-
ance of SIFT, our method can stably extract the feature
points of the frame images and has good robustness to noise
attack and geometric attack.

In order to compare the experiment with the state-of-
the-art scheme [24], we use equation (19) to compare the
robustness experiments with Pan’s scheme and Tan’s
scheme on the data set UCF101. According to the setting
of paper [24], the bin number N is set to 8, and the
subblock number S is set to 4; according to the setting of
paper [25], j is set to 9. )e results are shown in Table 8.
We can see that most of the experimental data of our
scheme is stronger than the other two schemes, especially
the anticompression performance. Compared with other
antinoise performance, anticompression performance is
particularly important for coverless steganography based
on video. Because carrier video generally undergoes a
compression step before sending, which often damages
the video content.

4.3. Efficiency Analysis. )e complexity and efficiency will
affect the feasibility and practicability of the steganog-
raphy scheme. )e cost of our scheme is mainly related to
the map of hash bits and three features, because it in-
volves the calculation and mapping of three features. We
measure the efficiency of the schemes based on the time

Table 6: Rblock of two audio features.

Gauss noise snr� 0 snr� 3 snr� 5 snr� 10 snr� 15 snr� 20 snr� 30
Robustness 0.8624 0.9068 0.9270 0.9599 0.9768 0.9867 0.9950

Table 7: Rblock of different methods on our database.

Attack Parameter Pan’s [25] Zou’s [27] Ours

Salt and pepper noise σ � 0.001 0.7335 0.7323 0.8765
σ � 0.005 0.4776 0.4252 0.7595

Gauss noise
σ � 0.001 0.2269 0.5739 0.6864
σ � 0.005 0.2267 0.2374 0.5104
σ � 0.01 0.2250 0.1330 0.4252

Speckle noise σ � 0.01 0.4291 0.5151 0.6224
σ � 0.05 0.2949 0.2070 0.4162

JPEG compression
Q� 10 0.0886 0.1752 0.5990
Q� 70 0.5863 0.8030 0.8029
Q� 90 0.7221 0.8897 0.8601

Centred cropping Ratio� 10% 0.2267 0.0467 0.3672
Ratio� 20% 0.0853 0.0213 0.1512

Edge cropping Ratio� 10% 0.2436 0.1909 0.7410
Ratio� 20% 0.1472 0.0877 0.5730

Rotation Rotation angle� 10° 0.0333 0.0131 0.2351
Rotation angle� 15° 0.0333 0.0067 0.1551

Translation (16, 10) 0.1741 0.1665 0.5820
(40, 25) 0.0557 0.0627 0.3238

Mean filtering Window size: 3× 3 0.5958 0.5822 0.6155
Window size: 5× 5 0.3542 0.2788 0.4847

Gamma correction Factor� 0.8 0.4395 0.4579 0.7271
Colour histogram equalization None 0.0906 0.0465 0.3441
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required to hide a byte, and the unit is “s/B.” From the
results in Table 9, it can be seen that the time required in
our scheme is the least, which is about one quarter of the
time cost of Tan’s method and about one seventh of the
time cost of Zou’s and Pan’s methods. )erefore, the cost
of our scheme is the lowest, which undoubtedly enhances
the feasibility of our scheme.

4.4. Hiding Success Rate. Information hiding algorithm
should not only consider the capacity of the method but also
pay attention to the hiding success rate, which can be
expressed by the number of different bytes that a video can
hide. Hiding success rate can reflect the effectiveness of the
algorithm, and its calculation formula is shown in

S �
Q

2w, (20)

where Q is the total number of bit sequences generated by
multiple videos and w � 8 in this experiment.

We use 85 videos in the video data set to test our
method and Pan’s method, and the results are shown in
Figure 10. )e hiding success rate of our method is al-
ways higher than that of Pan’s method, and only 9 videos
are enough to map 256 types of different bit sequences.
)is is because we use three features and bit inversion
operation, and thus, a video can generate a variety of
hash sequences. )e hiding success rate of Pan’s method
can only approach 99% with 85 videos, which means that
the redundancy of bit sequences generated by multiple
videos is high and a large number of videos are needed to
map all kinds of bit sequences.

4.5. Security Analysis. )e coverless video steganography
based on audio and frame features proposed in this paper
has multiple securities as follows:

(1) We use three features of video to map the hash bit
sequences and hide the secret information, rather
than modifying the carrier video. )erefore, this
method could resist steganalysis tools, which could
ensure the security of secret information.

(2) )e carrier video used by our method is from the
abundant short videos on the Internet, which could
greatly reduce the attention of the outside world to
the secret communication, so as to improve the
security of communication.

5. Conclusion

A coverless video steganography based on audio and frame
features is proposed in this work, which makes full use of
short-term energy feature, DWT coefficient feature, and
SIFT feature of video to map hash bit sequences and hide
secret information. )e experimental results show that,
compared with the existing coverless video steganography,
our method has larger capacity, less time cost, higher success
rate of hiding, and stronger robustness to most external
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Figure 10: Comparison of hiding success rate.

Table 8: Rbit of different methods on database UCF101.

Attack Parameter Tan’s [24] Pan’s [25] Ours

Salt and pepper noise
σ � 0.001 0.9986 0.9559 0.9763
σ � 0.005 0.9923 0.9063 0.9504
σ � 0.01 0.9877 0.8731 0.9186

Gauss noise
σ � 0.001 0.7005 0.7889 0.9139
σ � 0.005 0.6485 0.7889 0.8292
σ � 0.01 0.6198 0.7821 0.7473

Speckle noise
σ � 0.001 0.8235 0.9150 0.9466
σ � 0.005 0.8098 0.8698 0.8829
σ � 0.01 0.8000 0.8431 0.7952

Compressed MPEG-4 file with H.264 (.mp4 file) None 0.9589 0.9172 0.9594
Compressed motion JPEG 2000 file (.mj2 file) None 0.8476 0.9676 0.9790

Table 9: Time cost comparison of different methods.

Method Tan’s [24] Pan’s [25] Zou’s [27] Ours
Time cost 0.7416 s/B 1.3769 s/B 1.2994 s/B 0.1755 s/B
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attacks. In the future, we will try to further improve the
robustness and capacity.

Data Availability

)e video database we built can be obtained upon request to
the corresponding author. )e UCF101 data used to support
the findings of this study are available at https://www.crcv.
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Aiming at the problem of face morphing attack detection under mobile and resource-constrained conditions, a face morphing
detection method based on patch-level features and lightweight networks is proposed. It utilizes the combination of three blocks’
structures for learning. By outputting the probability of each bona fide or morphed face patches, the whole face features are
integrated for recognition. Experimental results and analysis show this method can significantly improve the detection accuracy of
face morphing attacks. Compared with the existing methods, this method has the characteristics of high computational efficiency
and strong robustness. It has great application potential in enhancing the security of the face recognition system.

1. Introduction

As an important biometric technology, face recognition has
been widely used for banks, hotels, transportation, and other
areas for identity verification. After the human’s face was
chosen by International Civil Aviation Organization (ICAO)
as a biometric feature in electronic machine-readable travel
documents (eMRTD) for assisting identity verification, face
recognition technology was gradually applied to Automatic
Border Control (ABC) system [1]. Recently, a variety of
attacks against face recognition systems appeared, among
which face morphing attack posed a serious threat to the
security of the existing face recognition systems (FRS) [2].

Face morphs include splicing morphs, complete morphs
[3], and combined morphs [4]. Generally, a morphed face
image is generated by two subjects. Complete morphs are a
result of warping and blending the entire image. Splicing
morphs use the convex hull representing a face and it is cut
from the input images. Combined morphs use Poisson
image editing to hide face and background. (en warp and
blend operations are performed. For splicing morphs and

combined morphs, the morphed image looks realistic be-
cause it is performed only in the face areas of two subjects,
while for the complete morphs, the morphing operation is
performed on the entire face, which usually leads to spurious
shadows and tremendous visual inconsistencies in the hair
region; therefore complete morphs are not appropriate for
the morphing attack. Ferrara et al. showed the feasibility of
face morphing attacks [2]. A criminal and an accomplice
generate a morphed face image, and it is visually similar to
the face images of criminal and accomplice, and it has both
biological characteristics.

An example of a morphed facial image is shown in
Figure 1. (e pictures are from the publicly available face
dataset Utrecht ECVP (http://omen.cs.unimagdeburg.de/
disclaimer/index.php). If the morphed face image is used
to apply for eMRTD, both the criminal and the accomplice
can use this eMRTD to cross the boundary, as well as the
FRS. Furthermore, the subsequent studies also proved the
vulnerability of the FRS to face morphing attacks [5–7].

To countermeasure face morphing attacks, some
methods have been proposed in recent years. Typical
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approaches include texture difference-based methods
[8–17], image source feature-based methods [18–21], image
quality-based methods [3, 22–24], and deep learning-based
methods [25–37]. Among them, deep learning-based
methods generally achieve good detection performance due
to their strong feature description and learning ability, and
deep learning can use nonlinear models to convert the
original input data layer by layer into high-level abstract
features. (erefore, methods based on deep learning have
generally achieved good detection performance in the fields
of image classification [38], image forensics [39, 40], face
antispoofing [41, 42], and face morph attack detection.
However, since deep learning models generally have large
computing costs and high source requirements, the existing
deep learning-based methods cannot be applied to resource-
constrained application scenarios, such as mobile and em-
bedded systems. To solve this problem, some lightweight
networks such as SENet [43], SqueezeNet [44], Mobile-
NetV2 [45], MobileNet-V3 [46], ShuffleNet [47], Shuff-
NetV2 [48], and Xception [49] have been successively
proposed, and they are designed for common image rec-
ognition tasks.

To detect morphed face images, a novel method based on
face patch-level features and lightweight networks is pro-
posed in this paper. (is method aims to make full use of the
existing dataset and extract features by using lightweight
convolution network. (e main contributions are summa-
rized as follows.

(i) A face patch-level feature learning approach is
proposed and a two-level classification model is
adopted. (e use of patch-level features can expand
the dataset and facilitate the extraction of identifi-
cation information.(e first-level classification uses
the lightweight network to output the probability
value of the face patch, and the second level of
classification integrates the patch features of the
whole face for discrimination. (e two-level clas-
sification helps to improve the detection
performance.

(ii) A lightweight network architecture for morphing
attack detection is designed. (e network adopts a
combination of three-block structures, and a lighter
ECA-Net attention mechanism module is added to
the inverted residual structure, which can reduce the
number of network parameters and maintain de-
tection accuracy.

(iii) A new face morphed dataset named FERET_M is
constructed based on the existing dataset. It in-
cludes 606 bona fide and 674 morphed face images.
(e experiments and cross-validation on three
datasets demonstrate that the proposed method can
achieve better face morphing attack detection
performance compared with the existing methods.

(e rest of the paper is organized as follows. (e related
work is introduced in Section 2. (e proposed method is

(a) (b) (c)

Figure 1: Example for a morphed face image (b) of subject 1(a) and subject 2(c). (e middle face images in the first, second, and third row are
called a splicing morphed image, combinedmorphed image, and complete morphed image, respectively. (a) Subject 1. (b) Morph. (c) Subject 2.

2 Security and Communication Networks



described in Section 3. Experimental results and discussion
are provided in Section 4. Finally, some conclusions and
future works are drawn in Section 5.

2. Related Work

Currently, the existing face morphing attack detection
methods can be divided into four categories according to the
detection features used, namely, texture difference-based
methods, image source feature-based methods, image
quality-based methods, and deep learning-based methods.

2.1. Texture Difference-Based Method. In the proposed se-
cure scan design, the test authorization code is used to
manage scan operation. Normal scanning operation can
only be enabled by entering the correct test authorization
code. Due to the different texture features between the
morphed face image and the bona fide face image, some
image descriptors, such as Local Binary Patterns (LBP) [8],
Binarized Statistical Image Features (BSIF) [9], and Histo-
gram of Oriented Gradient (HOG) [10], have been suc-
cessively used for face morphing attack detection. In [11],
the authors proposed to identify the authenticity of the face
image using BSIF and Support Vector Machine (SVM).
Scherhag et al. proposed a multialgorithm fusion approach
to detect morphing attacks using LBP, BSIF, HOG, and other
features [12]. (en, a morphed face detection scheme based
on hybrid color features was put forward in [13]. A novel
algorithm is presented to detect the morphed images by
leveraging the collaborative representation of microtexture
features and deriving the information from different color
spaces [14]. In [15], the authors designed a morph attack
detection algorithm that leveraged an undecimated 2D
Discrete Wavelet Transform (2D-DWT) for identifying
morphed face images. Another work [16] also employed 2D-
DWT to highlight inconsistencies between a real and a
morphed image. In [17], a texture difference-based method
was the morphed face detection using facial landmarks. (e
current texture difference-based methods were all tested by a
single image dataset, and they have poor adaptability.

2.2. Image Source Feature-Based Method. Motivated by
image source identification, Zhang et al. proposed to detect
morphed faces by using the Fourier spectrum of sensor
pattern noise (FS-SPN) [18]. FS-SPN is extracted based on
guided image estimation, and the statistics of the specific
frequency difference between the morphed face image and
the bona fide face image are obtained and then input to SVM
for morphed face detection. In [19–21], Photo Response
Non-Uniformity (PRNU) is implemented for morphed face
detection. More specifically, the method in [20] is mainly
focused on the variance of PRNU-based features across
image cells, while the method in [19] is mainly based on the
analysis of spectral variation of PRNU caused by the
morphing process. In [21], it analyzes the spatial and spectral
features from PRNU patterns across image cells. Differences
features between bona fide and morphed images are esti-
mated during a threshold-selection stage using the Dresden

image database which is specifically built for PRNU analysis
in digital image forensics. However, image source features-
based methods are influenced by individual face morphing
algorithms, and the detection accuracy needs to be
improved.

2.3. Image Quality-Based Methods. Neubert et al. proposed
to detect face morphing attacks based on image degradation
[22]. By continuously analyzing the degradation process
(e.g., JPEG compression) and manually generating several
reference face images, the differences between the reference
images and the original images are analyzed for face
morphing attacks detection. Based on the observation that
real face images comply with Benford’s law, while morphed
face images do not follow this law,Makrushin et al. proposed
to detect face morphing forgeries based on Benford’s law
[23]. (e detection is carried out by fitting a logarithmic
curve to nine Benford features extracted from quantized
DCT coefficients, which is the decomposition of JPEG
compressed original and morphed face images. Besides, an
automatic morphed face generation and detection of visually
faultless facial morphs method was proposed in [3]. In [24],
a demorphing approach is proposed. (e live face image
captured in real-time is subtracted from the morphed face
image stored in the electronic document to obtain a
demorphed image, and then the demorphed image is
compared with the live face image by a specified threshold to
determine whether it is the bona fide face. However, since
the generation of the demorphed image depends on the prior
knowledge of the morphing operation and parameters, the
accuracy of demorphing is very limited.

2.4. Deep Learning-Based Methods. Presently, there are two
types of approaches for detecting face morphing attacks
using deep neural networks. One is to train a neural network
from scratch, and the other is to use a pretrained neural
network. In [25], a pretrained VGG19 [26] network was
utilized to detect face morphing attacks. In [27], three
convolutional neural networks, which were VGG19, Goo-
gLeNet [28], and AlexNet [29], were utilized for face
morphing attacks detection. After that, another morphing
attacks detection method based on CNNs was put forward in
[30]. (e feature level fusion of the first fully connected
layers of VGG19 and AlexNet is specifically fine-tuned. In
[31], the research showed that the facial features calculated
by the general face recognition system can be used for
morphing detection, while in [32], it was demonstrated that
the features extracted by the deep learning-based FRS are
feasible for differential morphing attack detection. A face
morphing attack using Generative Adversarial Networks
[33] was proposed in [34]. From a new perspective, an
innovative demorphing approach using a Generative
Adversarial Network, which was named as FD-GAN, was
proposed by Peng et al. [35]. (e symmetric dual network
architecture and two-level recovery losses were utilized to
separate the identity feature of the morphing accomplices.
Besides, a partial face manipulation-based morphing attack
was proposed to compromise the uniqueness of face
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templates in [36]. (e authors of [37] presented a novel
differential morph detection framework by utilizing land-
mark and appearance disentanglement.

From the above analysis, the detection error rate of the
general descriptors used for cross database face morphing
attack detection is still high, and the generalization of the
traditional algorithms is poor. (e image source features-
based methods are greatly affected by face morphing
processes, and the detection performance of the image
quality features-based methods is far from satisfactory.
Although the deep learning-based face morphing detection
methods can achieve good performance, it needs enough
datasets support. Meanwhile, the datasets samples are
limited in number of faces and attack types. If it is only
effective for a single morphed attack method, the algorithm
is easy to overfit. Furthermore, most of the existing
methods utilize whole face as the input of face morphing
detection, and the patch-level features of the face are not
fully considered. Because some algorithms can only achieve
good detection performance on a single dataset, it is
necessary to improve the robustness and generalization
ability across datasets. (erefore, a face morphing attack
detection method based on patch-level features and
lightweight networks is proposed in this paper to improve
the generality of the algorithm.

3. The Proposed Method

In this section, we will introduce the details of the proposed
method. (e overall framework is illustrated in Figure 2,
where face image preprocessing, lightweight network feature
extraction, and two-level classification are the essential parts
of the proposed method.

3.1. Face Image Preprocessing. (e motivations of using
patch-level features for image preprocessing are summarized
as follows:

(i) Discriminative information of face morphing de-
tection is presented in the whole facial area, while
the background region is redundant and will in-
terfere with the information. (e whole face is di-
vided into several fixed nonoverlapping regions and
the patch-level features of the face are used as the
input, which is helpful to extract more identification
information from the network. Furthermore, patch-
level feature analysis has achieved good detection
performance in image source feature-based
methods [19, 20].

(ii) (e patch-level features can be used to perform data
argumentation to datasets. For example, only 81
bona fide samples in FEI_M dataset are used for
training. After a segmentation with a specific patch
number N, the bona fide samples increase to 81×N.
Data augmentation can effectively increase the
amount of training data and improve the general-
ization and robustness of the detection model based
on deep learning.

(iii) Face morphing detection can be regarded as a bi-
nary classification problem. (e use of patch-level
features can effectively train the network model
proposed in this paper. Meanwhile, BagNet [38]
shows that a powerful image classification model
can be developed by using patch-level features.

Firstly, the face detection algorithm is used to detect the
input face image. Figure 3 shows the processing procedure of
the face datasets. For all bona fide or morphed faces, we use
OpenCV tool library to detect faces and obtain face images
and face rectangles. (e face rectangle lacks a certain
background area, so the interference information is reduced.
(en, for the detected face images, the face location algo-
rithm in the Dlib (http://dlib.net/) toolkit is used to detect 68
key points of the face, and the coordinates of the key points
are obtained. After obtaining the face region according to the
key point coordinates and face rectangle, the face is divided
into different patches by using the face patch-level algo-
rithm. Specifically, the length N of the local feature to be
designed is set to be 16 in this paper. (en, according to the
input requirements of the lightweight network, the cropped
face area is determined by the coordinates of the eye key
points, so as to obtain cropped local patch with the same size
96× 96 pixels [41]. (e usual patch-based approach divides
the whole face into several fixed overlapping regions. Each
patch is used to train an independent subnetwork. In this
paper, for each image, we train a lightweight CNN on
random patches extracted from the faces. We randomly crop
the face region according to the position of the eyes without
scaling the area and maintain the original resolution, so as to
maintain the discrimination ability.

3.2. Lightweight Network. In the face morphing attacks
detection algorithms, the networks with good detection
performance are generally very complex and have high
requirements for hardware resources. (e existing face
morph detection networks have the problems of large pa-
rameters and weak generalization ability. (erefore, this
paper focuses on the lightweight of network. One way is to
compress the trained network to obtain a relatively small
model. Another way is to design a small, representative
lightweight network design for training.

(erefore inspired by FeatherNets [42], a lightweight
network is proposed.(e following is a detailed introduction
to the lightweight network.

3.2.1. 2e Components of the Proposed Network. (e pro-
posed lightweight network is shown in Figure 4. It consists of
Block_1, Block_2, and Block_3. In particular, Block_1 is
reverse residual structure mentioned in MobileNetV2 [45],
which is mainly composed of Depthwise Separable Con-
volutions including a 1× 1 pointwise convolution, 3× 3
depthwise convolution, 1× 1 pointwise convolution, and
residual concatenation. Given the kernel size is n× n, k and
k’ are the input and output channels, respectively. (e
parameter of standard convolution is n× n× k× k’, and the
Depthwise Separable Convolution is n× n+ k× k’.
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(erefore, the deep separable convolution is used as the
main convolution in this paper. Block_2 is composed of two
parallel branches. (e right branch is a Depthwise Separable
Convolution, while the left branch includes a 3× 3 depthwise
convolution and a 1× 1 pointwise convolution. (e two
branches are connected, and it can learn more features
through the two branches. As illustrated in Xception [49],
deepening the network width can improve the network
performance. (us, Stride� 2 is assigned in the depthwise
convolution of Block_2, and it is also named as the
downsampling module. Here, Block_3 is specifically
designed in this paper. In order to solve the problem of
losing important feature information in the reduced con-
volution calculation, the channel attention module helps the
information flow in the network by learning the information
to be emphasized or suppressed. As a result, it adds the ECA-
Net module [50] to the reverse residual structure.

Attention mechanisms are essentially similar to human
selective visual attention. Generally speaking, it pays more

attention to key points and ignores other unimportant
factors. For example, when we look at a picture of someone
holding a table and a tree, when we look at it with our eyes,
people will become the focus of what we see. But for machine
detection, all objects are of equal importance.

As shown in Figure 3, although most face morph attack
detection algorithms perform face cropping preprocessing
steps, the importance of the four corners in the face and the
image is different, because in the existing face fusion al-
gorithms, only the face part is partially morphed, and the
edge information such as hair is redundant information.
(erefore, we believe that the attention mechanism can
improve the detection effect of facemorph attacks, allows the
network to adaptively learn more important features, and is
suitable for face morph attack detection, so we introduce the
attention mechanism into the lightweight network.

ECA-Net is an improvement of SENet. It does not reduce
the channel dimension, and it generates channel weights by
performing 1D convolution with size k. Here, k is adaptively

(a) (b) (c) (d)

Figure 3: Preprocessing procedure of face dataset. (a) Input face image. (b) Face location and location of 68 key points. (c) Rectangular
frame and face cropping. (d) Extract the face image patches; in this paper, the block length N is 16.
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Figure 4: (e main components of the proposed lightweight network. (a) Block_1. (b) Block_2. (c) Block_3.
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determined by a function of channel dimension C, and it is a
more lightweight channel attention mechanism, which has
been successfully employed to improve the accuracy of CNN
classification models. (erefore, the Block_3 can signifi-
cantly reduce the number of parameters while maintaining
performance gains. Attention-based layers can help to learn
feature regions to detect bona fide and morphed faces. (us,
Block_1, Block_2, and Block_3 constitute the main com-
ponents of the proposed lightweight network.

3.2.2. 2e Network Architecture. (e details of the proposed
lightweight network architecture are listed in Table 1. At the
beginning of the network, the input dimension of the patch-
level features of the face is 96× 96× 3, and the regular
convolution Conv2d (stride� 2) is used to extract and retain
more features. (e number of convolution kernels is 16, and
the size of the convolution kernel is 3× 3. (en, the
downsampling strategy of the Block_2 is used to reduce the
input to 24× 24× 24, which allows rapid reduction of the
feature map size. It greatly reduces the calculation workload
and parameters and can achieve faster speed. Block_1
module is the simplest one and it requires the least pa-
rameters among the three modules, so Block_1 is often used
in the network. Block_3 is applied after Block_2 to minimize
the loss of feature information due to downsampling of the
channel attention mechanism. Block_3 can be used for all
input channels above 40 to enhance the information in-
teraction between deep network channels. Additionally, an
ECA-Net module is also inserted after the second normal
convolution layer to improve the accuracy of the model with
appropriate parameters. (e subsequent pool layer and the
regular convolution layer are the final processes. (e use of
pool layers simplifies the model complexity and reduces
computation and memory consumption. Finally, a fully
connected layer acts as a classifier for the whole network.

In the deeper layers of the network, H-swish activation
function [46] is used, and it is defined by

h − swish[x] � x
RELU6(x + 3)

6
. (1)

(e use of H-swish can effectively improve the accuracy
of deep networks. (erefore, due to the computation
complexity, H-swish activation function is replaced with
Rectified Linear Unit and Sigmoid only when the input
channel of the proposed network is not less than 40. (at is,
in the proposed lightweight network, h-swish() is used when
nl�HS, and the ReLU() activation function is used when
nl�RE.

3.3. Classification. (e input faces will be divided into face
patches with fixed size. For each patch, it will be input to
the proposed lightweight network and converted into
probability value of each face patch. (e first-level
judgment is performed on each patch to determine
whether it is a bona fide one or a morphed one, and then
the second-level judgment is performed to make a final
decision. If the number of face patches determined as a
bona fide one is greater than that of face patches

determined as morphed ones, this input face is deter-
mined as a bona fide face; otherwise, the input face is
determined as a morphed face.

4. Experiment

In this section, we evaluate the effectiveness of the proposed
method. Since complete morphs will lead to apparent ar-
tifacts, they are not suitable for a morphing attack unless
they have undergone a manual retouch. (us, the experi-
ments are only carried out for splicing morphs and com-
bined morphs.

4.1. Datasets. In the experiments, three face morph datasets
FEI_M [18], HNU_FM [35], and a self-built FERET_M
dataset are used.

Each of the three datasets is divided into a noncrossed
training set, a validation set, and a test set, respectively. (e
training set is used to train the networkmodel, the validation
set is applied to adjust the hyperparameters, and the test set
is used to verify performance of the model.

(e FEI_M dataset is based on the public FEI face
datasets, constructed according to the face morph algorithm
in [3] with a fusion factor α� 0.5. It consists of 200 subjects
with 100 females and 100 males. FERET_M dataset is a new
dataset built by us, and it is derived from the FERETdataset
[51], which is a public face image dataset containing male
and female images taken under different acquisition con-
ditions with varying poses, facial expressions, and ages. (e
subjects suitable for face morph are manually selected from
the color FERET dataset to build the new face morphing
dataset with the standard morphing algorithm [4], where the
pixel fusion factor α is fixed as 0.5. It consists of 303 subjects
with 98 females and 205 males. (e details of the FEI_M
dataset and FERET_M dataset are listed in Table 2.

HNU_FM dataset is composed of four subdatasets
FaceMDB1, FaceMDB2, FaceMDB3, and FaceMDB4, which
are generated according to different pixel fusion factors α
and location fusion factors β. (ere are 63 subjects, in-
cluding 27 females and 36 males. A detailed description of
the HNU_FM dataset is provided in Table 3. For FaceMDB1
dataset, the pixel fusion factors α and the location fusion
factors β are both 0.5. For the FaceMDB2 dataset, the pixel
fusion factor α is fixed to 0.5 and the location fusion factor β
varies between 0.1 and 0.9. For the FaceMDB3 dataset, the
pixel fusion factor α varies between 0.1 and 0.9, and the
location fusion factor β is fixed to 0.5. For FaceMDB4, the
pixel fusion factor α and the location fusion factor β both
vary between 0.1 and 0.9.

4.2. Experimental Setup and Evaluation Criteria. Instead of
the input of the traditional convolutional neural networks,
the input size is 96× 96 and Stochastic Gradient Descent
(SGD) is utilized as the optimizer. (e learning rate starts
from 0.1 and it is adjusted using cosine annealing [52] with a
cross-entropy loss function. Weight decay and momentum
are set to 0.0001 and 0.9, respectively.
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(e standardized ISO metrics Attack Presentation
Classification Error Rate (APCER), Bona Fide Presentation
Error Rate (BPCER), and Average Classification Error Rate
(ACER) are used to evaluate the overall detection perfor-
mance. APCER, BPCE, and ACER are, respectively, defined
as follows:

APCER: proportion of attack presentations incorrectly
classified as bona fide presentations in a specific scenario.

BPCER: proportion of bona fide presentations incor-
rectly classified as presentation attacks in a specific scenario.

ACER: the average of the sum of APCER and BPCER.

4.3. Experimental Results and Discussion. As complete
morphs can lead to obvious artifacts unless they are man-
ually trimmed, they are not suitable for morphing attacks.

(us, the experiments are only performed to splicing
morphs and combined morphs.

Similarly, the general steps of automatically generating
the morphed facial image are as follows [35]. (a) Locate the
key points of the morphed facial image, (b) warp the
morphed facial image through Delaunay triangulation, and
(c) blend the morphed facial image through pixel fusion.

For nondeep learning methods, public codes are often
used for preprocessing and experiments [18]. According to
the face deformation algorithm, the identification infor-
mation of face deformation attack detection often exists in
the face, and the background area is redundant, which is the
interference information of face fusion attack detection.
(erefore, in the preprocessing stage for the method
based on deep learning, the face detector of Dlib library
(http://dlib.net/) is used to detect the face of the input image,

Table 3: HNU_FM dataset.
Dataset Subset #Bona fide #Splicing morphs

FaceMDB1
Training set 1121 1121
Validation set 564 330
Testing set 566 377

FaceMDB2
Training set 1121 1125
Validation set 564 567
Testing set 566 567

FaceMDB3
Training set 1121 1125
Validation set 564 567
Testing set 566 567

FaceMDB4
Training set 1121 1134
Validation set 564 567
Testing set 566 567

Table 1: (e details of the proposed lightweight network.
Input Operator Exp size #out NL
96× 96× 3 Conv2d — 16 RE
48× 48×16 Block_2 24 24 RE
24× 24× 24 Block_1 24 24 RE
24× 24× 24 Block_3 24 24 RE
24× 24× 24 Block_2 96 40 RE
12×12× 40 4×Block_1 160 40 RE
12×12× 40 Block_3 160 40 RE
12×12× 40 Block_2 120 48 HS
6× 6× 48 Block_3 144 48 HS
6× 6× 48 Block_3 240 96 HS
6× 6× 96 Block_3 480 96 HS
6× 6× 96 Conv2d — 256 HS
6× 6× 256 Pool,6× 6 — — —
1× 1× 256 Conv2d — 1024 HS
1× 1× 1024 Conv2d — 2

Table 2: FEI_M dataset and FERET_M dataset.
Dataset Subset #Bona fide #Splicing morphs

FEI_M
Training set 81 6480
Validation set 20 380
Testing set 99 3702

FERET_M
Training set 459 516
Validation set 46 54
Testing set 101 104
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and the detected face is aligned with the face. It combines
with clipping operations to ensure that the algorithm is only
used for face regions. In this paper we add patch-level
processing to face preprocessing.

4.3.1. Single Dataset Test. To evaluate the detection per-
formance of the proposed method, a comparative analysis is
performed on the HNU_FM, FEI_M, and FERET_M
datasets with 7 methods.

(e experimental results on the HNU_FM dataset are
listed in Table 4. It can be found that FS-SPN [18] can
achieve the best APCER, while ResNet50 [53], MobileNetV2
[45], and the proposed method can obtain the best BPCER
from FaceMDB1 to FaceMDB2 datasets (all are 0). Mobi-
leNetV2 [45] achieved the best ACER on FaceMDB2, FS-
SPN [18] achieved the best ACER on FaceMDB4, and the
best detection results on FaceMDB1 and FaceMDB3
belonged to the proposed method. Meanwhile, comparing
the results on FaceMDB1 with those on FaceMDB3, the
overall detection performance on FaceMDB3 is better than
that on FaceMDB1. (is is because the pixel fusion factor α
of the FaceMDB3 dataset is not 0.5, and they are less likely to
pass the face recognition system. In addition, the experi-
mental results also demonstrate that the location fusion
factor β has little impact on the detection.

(e experimental results on FEI_M dataset are listed in
Table 5. It can be found that FS-SPN [18] can achieve the best
BPCER and ACER, while for the proposed method, it can
obtain the best BPCER, and its ACER ranks the second after
FS-SPN [18]. Since the number of bona fide on the FEI_M
dataset is much smaller than the number of morphed face
images, the samples of the dataset are unbalanced.(erefore,
in general, BPCER is higher than APCER.

(e experimental results on FERET_M dataset are listed
in Table 6. It can be found the proposed method can achieve
the best BPCER and ACER.

Considering the results on three image datasets, FS-SPN
[18] can obtain the best performance among the nondeep
learning methods. However, the detection performance of
the deep learning-based methods is better than that of the
nondeep learning methods on the whole. As the data volume
is important to the performance of deep learning-based
methods, the results on large sample image dataset are more
convincing than those on small sample image dataset. (e
results of the proposedmethod onHNU_FM and FERET_M
outperform most of the existing methods, which indicates
the good performance of the proposed method on single
dataset test.

4.3.2. Across Dataset Test. To evaluate the generality of the
proposed method, comparative experiments are conducted
to seven methods. In the across dataset test, one of three
image datasets FEI_M, FaceMDB1, and FERET_M is used as
training dataset, and the other two image datasets are used as
test datasets; the results are listed in Tables 7–9, respectively.

As shown in Table 7, when the detection methods are
trained by FEI_M and tested by FaceMDB1, it can be found
that FS-SPN [18] can achieve the best APCER, while the

proposed method can obtain the best BPCER. When the
detection methods are trained by FEI_M and tested by
FERET_M, FS-SPN [18] can achieve the best APCER, while
the proposed method can obtain the best BPCER and ACER.

Although the APCER of FS-SPN [18] is low, the BPCER
is very high. (e experimental results based on nondeep
learning methods further illustrate that the generalization
performance of traditional texture feature methods is poor.
From the experimental results of ResNet [53] and Mobi-
leNetV2 [45], the method based on deep learning has good
generalization ability.

Because of the imbalance of the FEI_M dataset, larger-
scale samples may lead to overfitting and it is also easy to
reduce the generalization ability of the model. When it is
trained on the FEI_M dataset, the detection accuracy of most
samples is high, and that of a few samples is low. Due to the
use of a large number of datasets for enhancement, the
method proposed in this paper suppresses this problem to a
certain extent. (erefore, from the overall experimental
results, a better ACER can be achieved.

As seen in Table 8, when the detection methods are
trained by FaceMDB1 and tested by FEI_M dataset, it can be
found that FS-SPN [18] can achieve the best APCER,
MobileNetV2 [45], and the proposed method can obtain the
best BPCER. MobileNetV2 [45] can achieve the best ACER.
When the detection methods are trained by FaceMDB1 and
tested by FERET_M, the proposed method can obtain the
best BPCER and the best ACER.

From the overall experimental results in Table 8, the
generalization performance of HOG [9], BSIF [10], and FS-
SPN [18] tested on the FEI_M and FERET_M datasets is also
very poor. (e ACER results of the three methods are about
50%, which is close to random guess. (e detection per-
formance of the method based on deep learning is also better
than the above three methods.

As seen in Table 9, when the detection methods are
trained by FERET_M and tested by FEI_M, it can be found
that BSIF [10] can achieve the best APCER, the proposed
method can obtain the best BPCER, and ResNet50 [53] can
achieve the best ACER. When the detection methods are
trained by FERETM and tested by FaceMDB1, BSIF [10] can
achieve the best APCER and the proposed method can
obtain the best ACER. MobileNetV2 [45] and the proposed
method can obtain the best BPCER.

From the experimental results of Table 8 and Table 9, the
difference between the datasets has a great impact on the
detection results. When tested on the FaceMDB1 dataset
(trained on the FERET_M dataset), the detection perfor-
mance of all algorithms is much lower than that on the
FERET_M dataset. (is result is attributed to the difference
between the bond fide of the two datasets.

In summary, when the detection methods are tested on
FERET_M and FEI_M datasets, the overall detection per-
formance is very poor due to the small number of the
validation sets in the two datasets. (us, it can be found that
the number of positive and negative samples in the dataset
has significant impact on the generalization performance of
the face morphing attack detection, especially for methods
based on deep learning. It can be also found that the model
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Table 4: Performance comparison of different methods on HNU_FM dataset (%).

Method FaceMDB1 FaceMDB2 FaceMDB3 FaceMDB4
APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

HOG [9] 41.33 8.33 24.83 48.68 0.17 24.43 45.86 0.88 23.37 48.68 0.35 24.52
BSIF [10] 28.64 16.96 22.80 35.44 13.25 24.35 30.15 30.56 30.36 31.39 37.27 34.33
FS-SPN [18] 0 1.86 0.93 0 2.12 1.06 0 2.30 1.15 1.40 0.18 0.79
VGG19 [26] 27.32 1.22 14.27 23.28 0.88 12.08 37.21 0.35 18.78 36.86 1.06 18.96
ResNet50 [53] 3.98 0 1.95 2.12 0 1.06 2.47 0 1.24 3.35 0 1.68
SqueezeNet1_1 [39] 7.96 0 3.98 5.29 0.88 3.09 2.29 0.35 1.32 5.47 5.30 5.39
MobileNet V2 [40] 4.51 0 2.26 0.70 0 0.35 11.99 1.06 6.53 6.02 0 3.01
Proposed 1.33 0 0.67 1.76 0 0.88 1.23 0 0.62 1.59 0 0.80

Table 5: Performance comparison of different methods on FEI_M dataset (%).
Method APCER BPCER ACER
HOG [9] 9.33 11.01 10.17
BSIF [10] 3.13 13.13 8.13
FS-SPN [18] 1.12 0 0.56
VGG19 [26] 1.94 4.04 2.99
ResNet50 [53] 0 3.03 1.56
SqueezeNet1_1 [44] 0.27 5.05 2.66
MobileNet V2 [45] 0 3.03 1.52
Proposed 1.98 0 0.99

Table 6: Performance comparison of different methods on FERET_M dataset (%).
Method APCER BPCER ACER
HOG [9] 38.46 33.66 36.06
BSIF [10] 16.35 29.70 23.03
FS-SPN [18] 19.80 15.38 17.59
VGG19 [26] 23.07 17.68 20.38
ResNet50 [53] 12.73 7.07 11.80
SqueezeNet1_1 [44] 14.59 10.42 12.51
MobileNetV2 [45] 9.91 3.89 6.9
Proposed 9.91 1.98 5.95

Table 7: Comparative results of cross dataset test (trained by FEI_M) (%).

Method
Trained by FEI_M

Tested by FaceMDB1 Tested by FERET_M
APCER BPCER ACER APCER BPCER ACER

HOG [9] 15.38 72.61 44.00 21.78 72.12 46.95
BSIF [10] 14.42 66.61 40.52 2.97 89.11 46.04
FS-SPN [18] 5.30 68.90 37.10 1.98 89.11 45.55
VGG19 [26] 18.04 57.07 37.55 25.96 69.31 47.64
ResNet50 [53] 7.96 42.40 25.18 8.65 50.50 29.58
SqueezeNet1_1 [44] 10.61 44.17 27.39 14.42 54.46 34.44
MobileNet V2 [45] 7.96 35.51 21.74 12.50 35.64 24.07
Proposed 21.22 0 10.61 27.72 0 13.86

Table 8: Comparative results of cross dataset test (trained by FaceMDB1) (%).

Method
Trained by FaceMDB1

Tested by FEI_M Tested by FERET_M
APCER BPCER ACER APCER BPCER ACER

HOG [9] 28.40 64.00 46.20 77.88 34.65 56.27
BSIF [10] 29.92 55.56 42.74 72.12 27.72 49.92
FS-SPN [18] 0.63 92.93 46.78 77.88 3.96 40.92
VGG19 [26] 25.77 45.45 35.61 52.88 39.60 46.24
ResNet50 [53] 15.46 30.30 22.88 37.50 25.74 31.62
SqueezeNet1_1 [44] 17.53 34.34 25.94 40.38 29.70 35.04
MobileNet V2 [45] 8.14 0 4.07 12.73 7.07 9.9
Proposed 9.07 0 4.54 8.65 3.89 6.27
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strategy trained on the FERET_M dataset is better than the
other two datasets. (is is because the face images in
FERET_M dataset contain more changes. (e above results
show that the generalization ability of deep learning-based
methods outperforms nondeep learning methods, and the
proposed method can achieve the better overall perfor-
mance. However, it can be seen from the results that the
proposed method is more biased towards bona fides, so the
generalization performance still needs to be improved.

4.4. Analysis of NetworkModel Parameters. To further verify
whether the proposed network meets the requirements of a
lightweight network, the parameter sizes of different net-
works are compared and analyzed. (e metrics for evalu-
ating the size of network parameters include the parameter
size of the networkmodel generated by Pytorch (Parameter).
In addition, the number of floating-point operations per
second (FLOPS) is also presented. (e Params and FLOPS
for different models are listed in Table 10. It can be seen that
the parameter size of the proposed method is only 0.57M
and its FLOPS is only 25.10M, which are significantly lower
than those of the other networks.

5. Conclusion and Future Works

In this paper, a face morphing attack detection method
based on patch-level features and lightweight networks is
proposed. By using patch-level features, not only is the
dataset increased, but the ability of face representation is
improved. Meanwhile, the proposed three-block combined
lightweight networks help to reduce the number of network
parameters. (e experiments on 3 datasets and comparative
analysis with some state-of-the-art methods show that the
proposed method can achieve better detection performance
with less network model parameters and operations. Fur-
thermore, the cross datasets test also illustrates the good
robustness ability of the proposed method. However, since

the dataset in this paper is not comprehensive enough and
the postprocessing of morphing attack using digital images is
not considered, the performance of the method needs fur-
ther analysis and validation. In the evaluation criteria, the
threshold relationship in the selected indicators is not
considered. (ese are the places we will consider in the
future. Our future work will also focus on how to enhance
the robustness and generality of lightweight network against
morphing attacks.
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Modern steganalysis has been widely investigated, most of which mainly focus on dealing with the problem of detecting whether
an inquiry image contains hidden information. However, few articles in the literature study the location of secret bits hidden by
modern adaptive steganography. In this paper, we propose a novel algorithm for locating steganographic payload in the spatial
domain. We first predict the steganographic scheme and its payload, which is used for generating a random bitstream. +en, the
random bits are embedded in the stego image based on the cost matrix in the framework of Syndrome-Trellis Codes (STCs). Next,
relying on the differences between two stego images, the extended modification map in couple with the neighboring weight
algorithm can be acquired, leading to the location of the hidden bits. Compared with the prior art, the extensive experiments verify
that our proposed locating algorithm performs better, in terms of locating accuracy and efficiency.

1. Introduction

Steganography is the science and art of covertly transmitting
the secret message in a carrier, such as widely adopted
multimedia content. In general, an empirical cover carries
the secret message under the supervision of the warden while
the recipient extracts it to accomplish covert communica-
tion. In the past two decades, image steganography has made
great progress. To counter against steganography, the
analysis technique of detecting a steganographic image,
defined as steganalysis, has also been advanced.

To ensure the undetectability of image steganography, a
practical and common manner is to change cover pixels
slightly by ±1. In particular, in the early stage of the study in
this field, LSBR (Least Significant Bit Replacement) is
designed, which randomly spreads the modification changes
to the whole cover image; LSBM (Least Significant Bit
Matching) is proposed to avoid the asymmetry artifacts by
randomly modifying LSBs. In the current image steganog-
raphy, the study of image content-adaptive schemes is
usually given the first priority. One of the most successful

adaptive models rather treats the message embedding as a
source coding problem with a fidelity constraint [1], instead
of taking the cover source distribution into account. In this
framework of minimizing the distortion caused by em-
bedding, the establishment of the cost function becomes
fundamentally important for the steganographer who pre-
fers hiding information in the texture region of a cover
image.

Many modern adaptive steganographic algorithms have
been proposed, such as in spatial domain Highly Unde-
tectable steGo (HUGO) [2], Wavelet Obtained Weights
(WOW) [3], Spatial UNIversal WAvelet Relative Distortion
(S-UNIWARD) [1], HIgh-pass, Low-pass, and Low-pass
(HILL) [4], and in JPEG domain JPEG UIversal WAvelet
Relative Distortion (J-UNIWARD) [1], Uniform Embedding
Distortion (UED) [5], and Uniform Embedding Revisited
Distortion (UERD) [6]. Moving the study from laboratory to
real world, however, most of the current steganographic
methods have poor performance of resisting JPEG com-
pression or rescaling attack. +us, some robust steganalysis
detectors are recently proposed to address that challenge
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such as [7–10]. +e steganographic algorithms always aim to
hide the secret information in an imperceptible manner to
ensure that the stego image visually and statistically behaves
very similar to its counterpart cover source.

In the face of the challenge proposed by steganography,
the task of steganalysis is to classify between the cover and
stego source. Specifically, in the generalized framework of
steganalysis, steganalysis aims to (1) detect the existence of
hidden information (see [11–14]), namely, binary classifi-
cation, (2) predict the size of the payload, also defined as
quantitative steganalysis (see [15]), (3) locate the stegano-
graphic payload, and (4) extract the secret information (see
[16–18]), also defined as forensic steganalysis. In the recent
studies of steganalysis, most researchers focus on detecting if
the secret information is hidden in an image. Relying on the
rich models, together with the ensemble learning-based
mechanism, the state of the arts (see [19–22]) perform very
well in dealing with the problem of classifying between cover
and stego images. Recently, in the framework of deep
learning [23, 24], instead of hand-crafted feature extraction,
the realization of end-to-end automatic image steganalysis
gradually becomes widespread (see [25–33]). Furthermore,
quantitative steganalysis algorithms have also been inves-
tigated (see [34]).

In this paper, we mainly study the algorithm of payload
location, which currently receives less attention compared
with both binary classification and quantitative steganalysis.
By predicting the cover source (or specifically by calculating
the differences between inquiry stego and predicted cover
source), a series of steganalysis locators targeting LSBR or/
and LSBM embedding steganography have been designed,
such as [35–39]. Without loss of generality, the problem of
locating hidden bits can be smoothly transferred as binary
classification. Based on the prescribed threshold, each pixel
is classified as an innocent or stego sample. Also, the fol-
lowing established algorithms obey the rule of binary
classification by using hand-crated SPAM features [40] of
[41] or deep-learning-based features [42]. Recently, [43, 44]
propose locating hidden bits in the DCT domain, mainly
targeting JSteg and F5 steganography, whose stego key can
be recovered in [45].

In fact, most prior locating algorithms have two re-
markable limitations. When dealing with modern adaptive
steganography, it probably becomes invalid. Furthermore,
most algorithms are designed for one targeted steganog-
raphy, such as LSBR or LSBM, which cannot be used for
universal location. To overcome the current limitations, let
us establish a universal detector of locating the payload of
adaptive steganography, only dependent on a single inquiry
image. +e core idea behind our proposed algorithm is that
modern adaptive steganography is prone to embed secret
bits into the texture region of an image. It should be noted
that our proposed algorithm can only locate the flipped
hidden bits (±1 happens) not including nonflipped bits. In
fact, when the embedding procedure cannot modify the bits
of a cover image, those nonflipped bits are hard to be
located due to their unchanged property during embed-
ding. +en, the main contributions are listed in the
following:

(1) In virtue of the intrinsic property of adaptive steg-
anography, we propose to design the steganalysis
algorithm toward payload location relying on a
single inquiry image

(2) Based on the proposed neighboring weight algo-
rithm (NWA), we establish the extended modifica-
tion map and its refined version for predicting the
flipped-hidden-bit location, which further narrows
down the prediction error and improves the location
accuracy

(3) For practical use, we propose four cases of locating
steganographic payload, referring to as KPKS, UPKS,
KPUS, and UPUS (see details in Table 1)

(4) Numerical experiments empirically verify the ef-
fectiveness of the proposed location algorithm,
which can deal with different modern adaptive
steganographic algorithms such as WOW, S-UNI-
WARD, and HILL. Moreover, compared with the
prior arts, our scheme performs its superiority

+e rest of the paper is organized as follows. We first
overview the state of the arts concerning the study of lo-
cating hidden bits. We present the core idea of designing a
detector for payload location in Section 3. In Section 4, the
detailed steps of locating hidden bits by adaptive steg-
anography are extended. Furthermore, our proposed
neighboring weight algorithm is specifically described. Next,
the numerical experimental results are provided in Section 5,
including the evaluation of our proposed algorithm as well as
the comparison with the prior arts. Finally, we conclude this
paper in Section 6.

2. State of the Arts

In this paper, we mainly focus on the study of locating
payload. In general, the problem of locating hidden bits is
always solved by biclassifying each pixel of the inquiry
image. For clarity, let us define a cover image as a vector
c � cl , l ∈ 1, . . . , L{ } and a corresponding stego image
described as a vector s � sl , l ∈ 1, . . . , L{ }. +en, the dis-
crimination factor dl, denoted as residual noise between
stego and predicted cover source, is formulated as

dl�idcfl ∈ 1, . . . , L{ }

withfidc[a, b] �
1, if a≠ b,

0, otherwise,


(1)

where the indicator function fidc[·] is used to label the
predicted pixel with/without hidden bits, and the estimated
cover pixel is denoted as cl. On the assumption that all the
hidden bits are embedded in the same position for a number
of images, it holds true that the stego pixels can be suc-
cessfully located by averaging the dl. In this scenario, the
expected value of the averaged differences is denoted as
E[dl]. In detail, when the cover pixel is used for embedding,
including the cases of flipping and nonflipping, E[dl] equals
0.5; when the cover pixel is not selected for embedding,E[dl]

equals 0. Next, by calculating the average value of each pixel
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among a group of stego images, we can predict the position
of hidden bits. Meanwhile, the optimal threshold arrives at
0.25 lying between two expected values. Immediately, let us
extend the related works of the locating algorithms.

In [35], inspired by the Weighted Stego (WS) image
steganalysis method, a steganalysis algorithm is designed for
locating hidden bits embedded by LSBR. Specifically, the
linear filter is used for predicting the average residual value
of each pixel, in which a residual-based threshold is em-
pirically prescribed for locating embedding positions. Next,
to deal with the problem of LSBM steganography, [36]
proposes adopting a Wavelet Absolute Moment (WAM)
filer to extract the residual, which characterizes the distin-
guishable features between the cover and stego pixels. By
estimating cl or directly calculating the dl, two aforemen-
tioned methods have verified their effectiveness in locating
hidden bits. Although the payload of the old steganography
is successfully located, the limitations of the aforementioned
methods are as followss: a large number of stego images have
to share the same size; the secret bits are hidden in the same
positions for each image; a locating algorithm is only ap-
plicable for one targeted steganographic algorithm, such as
LSBR or LSBM.

In the following studies, high-order features represented
by residuals are used to locate the steganographic payload
embedded by LSBM (see [37]). To unify the location of
hidden bits embedded by LSBR or LSBM, relying on the
theory of Maximum A Posteriori (MAP) [38] designs a
detector which remarkably improves the location perfor-
mance. +e accurately estimated cover source brings more
discriminative residuals, which straightforwardly leads to
improved location accuracy. Next, [39] designs an effective
algorithm to extract the hidden bits independent of the
embedding key. In fact, the algorithms mainly put the focus
either on the estimation of cover source cl [38, 39] or directly
on calculating the weighted average of residual noise [37]. It
makes sense that the fidelity of the cover source estimation
directly impacts the accuracy of payload location (see [38]
for details). Nevertheless, the methods still need large-scale
stego images within embedding the same payload location.

Inspired by the work [40], [41] proposes dealing with the
location problem by classifying each pixel into binary types:
payload and nonpayload. Although the framework equation
(1) is not used, the hidden bits can be successfully located by
investigating the features of each pixel. +e discriminative
features (72-dimensional features for each pixel) charac-
terized by neighboring pixel-value differences are used for
training a Support Vector Machine (SVM) classifier, which
serves for binary classification during the stage of locating
hidden bits. Although the learning-based method improves
the accuracy and efficiency of locating, the performance is
degraded when the payload is increased. Recently, to solve

the problem of inaccuracy location within the small payload,
[42] proposes an efficient detector for locating hidden bits
relying on the deep neural networks. However, still, it can
only be applied to the stego image generated by old steg-
anography, such as nonadaptive LSBM.

To our knowledge, few studies focus on locating adaptive
steganographic payload. +e article [46] opens a way to
investigate the location of the steganographic payload em-
bedded by modern adaptive algorithms. By reembedding
randomly generated bits into the stego image, the hidden
bits are generally located. However, when both the em-
bedding scheme and the size of the payload are unknown,
the accuracy of location cannot be guaranteed. +us, in this
paper, to further improve the location accuracy and reduce
the prediction error, let us design an effective detector based
on the proposed neighboring weight algorithm (NWA).

3. Statement of the Problem

In the community of data hiding, most literature studies focus
on the establishment of locating algorithms for nonadaptive
steganography while the challenging problem of payload lo-
cation for adaptive steganography has not been widely in-
vestigated. For simplicity and clarity, it is proposed to illustrate
the pipeline of our locating algorithm (see Figure 1). When an
inquiry image is used for location, we first have to estimate its
embedding payload and predict the embedding scheme. Be-
cause our proposed algorithm only works well in the scenario
that the inquiry image has been confirmed as stego one with
acquiring its steganographic scheme, subsequently, we can
generate a random bitstream based on the payload.+en, let us
reembed the randombits into the stego image based on the cost
matrix in the framework of STCs. Next, relying on the dif-
ferences between two stego images, the modification map can
be obtained. By using the proposed neighboring weight al-
gorithm, the modificationmap is further extended. Finally, our
proposed algorithm is capable of locating flipped bits. For
clarity, the main mathematical notations used in this paper are
summarized in Table 2.

3.1. Establishment ofModificationMAP. Bymodifying pixels
within texture regions, modern adaptive steganography
performs very well and especially remains its high unde-
tectability. +at property inspires us to investigate if the
modified pixels are selected again when reembedding
happens, meaning that the locations of the steganographic
payload are overlapped between a stego image and its
reembedding version. +at is because the cost matrix of the
two images nearly remains unchanged.

First, let us embed a random bitstream into a grey-level
cover image C � ci,j , i ∈ 1, . . . , I{ }, j ∈ 1, . . . , J{ }, lead-
ing to the generation of a stego image S(1) � s

(1)
i,j . Next, by

modifying the original stego image S(1) acquired from C, let
us use the same bitstream to generate a new stego image
S(2) � s

(2)
i,j  . It should be noted that regardless of hidden

bits (the same, flipped or random ones), we denote the first
stego image generated from the cover C as S(1) while the
second stego image from S(1) as S(2). It is worth noting that

Table 1: Abbreviation of location scenarios in the framework of
our proposed algorithm.

Known scheme Unknown scheme
Known payload KPKS KPUS
Unknown payload UPKS UPUS
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in the framework of STCs, the cost function (see [1] for
instance) guides us to select the ready-to-embed pixels and
to generate both S(1) and S(2). +en, the modification map
can be straightforwardly formulated as

M(1)
(i, j) �

255, if the pixel ci,j is flipped,

0, otherwise,
 (2)

where both cover and stego images share the same size of the
modificationmapM(1). As Figure 2 illustrates, an 8-bit cover
image with the size of 512 × 512 and the modification maps
come from its corresponding stego images. M(1) is acquired
by making difference between C and S(1), which visually
labels the flipped pixels caused by embedding. Meanwhile,
M(2) can be obtained from both S(1) and S(2). It should be
noted that four different practical scenarios are considered
in our proposed algorithms, referring to KPKS, UPKS,
KPUS, and UPUS (see details in Table 1 of Section 3.2). Two
embedding operations both prefer embedding the bits nearly
at the same locations, referring to the texture region. Fur-
thermore, few locations have the value 255 in the same
position of two modification maps, meaning that few pixels
at the positions experience twice modification. +us, we
need to extend the modification map M(2) for digging out
more hidden bits (see details in Section 4).

3.2. Practical Scenario of Locating Steganographic Payload.
In this paper, to overall evaluate the effectiveness of the
proposed locating algorithm, we intend to address that

challenging problem in the four practical scenarios (see
Table 1 for details). Before locating the flipped bits by
adaptive steganography, it is proposed to emphasize a
prerequisite that the inquiry image has been detected as
stego one with secret information. +us, we list two as-
sumptions: known payload or unknown payload. When the
payload is known, the steganalyst is capable of conducting
the locating algorithm straightforward; when the payload is
unknown, the prediction algorithm (or defined as quanti-
tative steganalysis), such as [15], has to be conducted first. It
is worth noticing that when the predicted payload α is larger
than the given threshold τ, the inquiry image is detected as
stego. Besides, in the procedure of locating flipped bits using
the proposed algorithm, reembedding is obligatory. How-
ever, when a stego image is obtained, it hardly holds true that
we can acquire the embedding scheme used for the stego
image. +us, another two assumptions should also be
addressed, referring to as a known scheme or an unknown
scheme. +e specific experimental results are extended in
Section 5.

In the framework of our proposed locating algorithm,
the key point is how to confirm the adjacent regions for
reembedding. If the large size of the adjacent region is se-
lected, many incorrectly classified pixels will be included,
leading to the decreased accuracy of the location. On the
contrary, if the small size of the adjacent region is selected,
possibly some missing-classified pixels that are actually
flipped by adaptive steganography cannot be accurately
located. To deal with that trade-off problem, we thus propose
improving the performance of locating hidden bits based on
the neighboring weight algorithm. In the following section,
we first specifically describe our proposed locating algo-
rithm. More importantly, the NWA is designed to further
reduce location errors.

4. Proposed Work

In this section, we first introduce the general steps of locating
a steganographic payload algorithm. Next, the establishment
of the extended modification map is specifically presented.

Pre-processing

Estimating
embedding payload

Predicting
embedding scheme

Confirming
stego image

An inquiry image

Re-embedding

Generating 
random bits

Calculating
cost matrix

Embedding
bits by STCs

Locating flipped bits

Obtaining
modification map

Re-calculating cost matrix
based on neighboring

weight algorithm

Extending
modification map

Figure 1: Pipeline of our proposed method.

Table 2: Notations.
C Grey-level cover image
S(1) Original stego image by the first embedding
S(2) New stego image by reembedding
M(1) Modification map
M(e) Extended modification map
M(o) Refined modification map
m Hidden bits
ρ Cost matrix
ω Weight factor
d Euclidean distance
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+en, we develop two novel schemes dealing with the
problem of refining the extended modification map.

4.1. Description of Our Locating Algorithm. +e description
of our locating algorithm can be summarized in
Algorithm 1.

Generating a random bit stream: a random bitstream m
with the length L is generated. Note that L � Num × αwhere
Num denotes the total amount of pixels, and α is the relative
payload. Calculating the cost matrix: relying on an adaptive
steganographic algorithm, a bank of designed filters is then
utilized to obtain the cost matrix of the stego image. For
simplicity and clarity, let us denote the stego image as S, and
the cost matrix as ρ referring to [1]. Embedding secret
message using STCs: without loss of generality, STCs are used
to embed message m into the stego S(1) on the principle of
minimizing the distortion function based on the cost matrix
ρ. In such a manner, the stego version of image S(1) after
modification is denoted as S(2). Obtaining the modification
map: based on the differences between the two stego images,
the modification map M is obtained as described in Section
3.1. Extending the modification map: to locate hidden bits, we
intend to extend the modification map M(o) to M(e) in a
given margin value N. Refining the extended modification
map: to locate the modified pixels as more as possible and
reduce the number of incorrectly predicted bits, the refined
extended modification mapM(o) is established based on the
redesigned cost matrix ρ′.

Without loss of generality, the selection of N, denoted as
margin value, is actually a trade-off problem in the design of
the extended modification map. In detail, the value N would
increase if we intend to locate the modified pixels as more as
possible. While as the margin value N becomes larger, more
andmore innocent pixels (without beingmodified) would be
also involved. In this context, the designed extended

modification map should follow two requirements: (1) more
hidden bits are contained in the map, denoting the location;
(2) less innocent bits are excluded in the map.

In the following sections, let us specifically introduce the
design of the extended modification map. More importantly,
based on the proposed neighboring weight algorithm, the
map is further refined for locating more hidden bits and
abandoning more innocent bits.

4.2. Design of ExtendedModificationMAP. In fact, based on
the intrinsic property of the content-adaptive scheme, it
hardly holds true that modern adaptive steganography
modifies the pixel of the same location twice when em-
bedding the same random bits. Andmeanwhile, the adjacent
region of the pixel modified by the first embedding probably
contains the modified pixels caused by the second embed-
ding. Immediately, based on the results of Figure 2, it is
proposed to extend the M(1) by covering each pixel’s
neighbors, that is formulated as

M(e)
(i + p, j + p) �

255, if the pixel at (i, j) is flipped,

0, otherwise,


(3)

where p ∈ [−N, N] represents an integer controlled by the
extension maximum, margin value N. Next, the adjacent
regions of a pixel in variant margin value N are illustrated in
Figure 3(a). Figure 3(b) illustrates M(e) with the margin
value N � 3, where the bright regions (the pixels in the
regions equal to 255) definitely cover a large portion of pixels
flipped by the first embedding. When the margin value
equals N, the size of its adjacent region is calculated by the
following function (2N + 1) × (2N + 1). Obviously, when
N � 0, the modification map M(e) is equivalent to M(2).
Furthermore, let us define the rate r � m/n, where n is the

Embedding Re-embedding

Cover image C Original stego image S(1)

New stego image S(2)Modification map M(1) Modification map M(2)

KPKS

KPUS

UPUS

UPKS

Figure 2: Illustration of our proposed framework.
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number of pixels flipped by the first embedding (those pixels
equal to 255 in M(1)). Besides, m denotes the number of
pixels that are flipped by the first and second embedding, in
which the pixels equal 255 in both M(1) and M(2). r denotes
the ratio of the number of pixels correctly predicted by the
second embedding to the number of pixels modified by the
first embedding.

To evaluate the feasibility of our proposed location al-
gorithm, let us conduct the heuristic experiments over 10000
8-bit images from the BOSSbase ver.1.01 [47]. +e experi-
mental results in variant margin value are listed in Table 3. It
should be noted that bpp denotes bits per pixel for abbre-
viation. One can observe that, at a fixed payload, the rate r

can be increased as the margin value N becomes larger. +at
is because the larger adjacent regions can cover more pixels

used for information hiding. Besides, in a fixed margin value
N, the more the bits embedded into, the larger proportion
the modified pixels can be located. In addition, as Table 3
reports, r nearly remains stable with the large N and pay-
load. We assume that the cost value of the pixels modified by
the first embedding is slightly changed (see [20] for details).
+at is because those pixels are merely modified by ±1.
When we reembed the same bits into the stego image S,
some pixels carrying the payload might not be flipped again.

In fact, through investigating the possibility of locating a
steganographic payload, we assume that the reembedding is
conducted based on the known random bits used for the first
embedding. However, it cannot hinder us from locating
hidden bits, even the random bits are unknown or manually
totally different from the first one. +e results of those

Input: Stego image S(1), steganographic payload α
Output: Predicted locations of steganographic payload

(1) //Generating a random bit streammNum � fnum[S(1)], function fnum[·] for calculating the number of input data L � Num × α,
denoting the number of bits; m � G[L], function G[·] for generating random bits

(2) //Calculating the cost matrix ρ
(3) //Embedding secret message mS(2) � femb[S(2),m, ρ], function femb is used for embedding bits m into S(1) in the framework of

STCs
(4) //Obtaining the modification map M(1)←fdiff[S(1), S(2)], function fdiff[·] calculates the differences between S(1) and S(2) to

generate the modification map
(5) //Extending the modification map M(e)←M(1)

(6) //Refining the extended modification map M(o) � f[M(e)] by redesigning the cost matrix ρ′, function f[·] refines the original
extended modification map M(e). M(o) labels all the predicted locations via our proposed algorithm

ALGORITHM 1:Procedure to Locate Steganographic Payload.

(a)

(b)

M(e) with N = 3(N = 1)

+ (N = 2)

+ + (N = 3)

Central pixel

Figure 3: Illustration of neighboring regions of a central pixel in different margin values, and the extended modification map M(e) with
margin value N � 3.
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scenarios have been exemplified in our prior work (see [46]
for details). Besides, the designed extended modification
mapM(e) can to some degree predict the hidden bits but also
incorrectly cover the innocent pixels. +erefore, in this
paper, it is of great importance that we need to further refine
the proposed extended modification map.

4.3. Refinement of Extended Modification MAP Based on
Neighboring Weight Algorithm (NWA). As our aforemen-
tioned discussion, the selection of N is a trade-off problem.
Although the increased N brings a high recall ratio, the
number of incorrectly located bits is also raised. For clarity, it
is worth noticing that in the design ofM(e) , (2N + 1)2 pixels
in the neighboring region (see the colored region in Figure 3
for instance) are contained, namely, labeled as the predicted
hidden bits. To refine the extended modification map, we
need to choose the bits, which are probably used for the first
embedding. +en, let us formulate the refined modification
map as

M(o)
� f M(e)

 , (4)

where function f[·] refines the original extended modifi-
cation map. To this end, the problem of predicting steg-
anographic payload transfers to designing the manner of
refining the extended modification map.

For simplicity, inspired by the calculation of the cost
matrix ρ of stego image S(1), we intuitively sort the cost value
ρ of each pixel in ascending order. In the stage of generating
a stego image S(1), based on the calculated cost value of C,
the modern adaptive algorithm tries its best to embed the
hidden bits into the locations carrying low-cost values, with
modification as less as possible. +us, it makes sense that we
assume the cost value of each pixel from S(1) is similar to that
of C. +en, the cost value ρ guides us to complete the design
of the refinement function f[·]. Specifically, K-minimum ρ
is selected, corresponding to the predicted location in the
extended modification map M(e). In other words, the lo-
cations of the set ρ1, . . . , ρK  are selected as the optimal
position. As Figure 4 illustrates, a portion of the cost matrix
of a natural grey-level image is extracted for a clear dem-
onstration. In particular, when the margin value N is set as 2
in the map M(e), only six ρ (K � 6) are selected for refining
the extended modification map. It should be noted that if the
value K equals (2N + 1)2 − 1 , the refined map M(o) de-
generates back to the original extended map M(e). +e ef-
fectiveness of our proposed refinement scheme will be
verified in the extensive experiments.

In fact, with increasing N, a labeled region where the
value equals 255 (see (3)) contains more and more bits
nearly irrelevant to the central pixel (labeled as 255 in the
modification map M(o)), possibly leading to incorrectly
predicting the hidden bits when still using the aforemen-
tioned refinement function f[·]. For instance, the pixels
located far from the central pixel carrying a low-cost value
are probably selected for refinement while they have a low
possibility for the first embedding. In our assumption, the
hidden bits usually are embedded in the neighboring region
around the central pixel. In this context, we need to consider
the neighboring weight to redesign the refinement function
f[·]. Immediately, let us recalculate the cost value of each
pixel by

ρ′ � ω · ρ, (5)

where ρ denotes the original cost value while ρ′ denotes a
weighted cost value, and ω denoting neighboring weight
factor that is formulated by

ω �
��
d

√
, (6)

where d �
��������������������
(xp − x0)

2 + (yp − y0)
2


represents the Euclid-

ean distance between the central pixel (x0, y0) and any
extended pixel (xp, yp), p ∈ 1, . . . , P{ } in the extended
modification mapM(e). Obviously, P is the number of pixels
carrying the recalculated cost value ρ′ which equals
(2N + 1)2 − 1. Still, among all ρ′ in each map, we select the
K-minimum ρ′.

For clarity, let us give an exemplary flowchart (see
Figure 5) to illustrate the procedure of calculating ρ′ in each
extended modification map. As Figure 5 reports, although
the original cost value ρ of Figure 5 is the same as that of
Figure 4, the refined modification map using our proposed

6.71 6.52 6.35 6.37 5.50

6.45 6.12 5.63 5.80 5.33

6.06 5.68 5.29 5.41 5.31

5.82 5.83 6.57 5.87 5.78

5.56 5.86 5.66 6.04 5.93

ρ4

ρ2

ρ1ρ3

ρ6ρ5

Figure 4: Illustration of the selection for K-minimum ρ, where
K � 6, and the margin value N � 2 (at the center of value 5.29).+e
portion of a cost matrix (left) corresponds to the selected location
in the extended modification map (right) in ascending order.

Table 3: r statistics on p within the margin value N when reembedding same bits.

Payload α
N

0 1 2 3 4 5 6 7 8 9 10
0.05 bpp 0.064 5 0.3441 0.558 7 0.688 4 0.7701 0.823 9 0.860 9 0.887 2 0.906 3 0.920 5 0.931 0
0.10 bpp 0.086 3 0.434 0 0.665 5 0.790 6 0.8621 0.905 0 0.931 8 0.948 8 0.959 7 0.966 9 0.971 7
0.20 bpp 0.117 0 0.544 7 0.779 9 0.887 5 0.9391 0.964 5 0.9771 0.983 6 0.987 0 0.989 0 0.990 2
0.30 bpp 0.142 7 0.624 3 0.849 8 0.936 4 0.9701 0.983 5 0.989 0 0.991 6 0.992 9 0.993 6 0.9941
0.40 bpp 0.165 9 0.687 7 0.897 2 0.963 4 0.9841 0.991 0 0.993 6 0.994 8 0.995 4 0.995 8 0.996 0
0.50 bpp 0.189 0 0.7431 0.931 4 0.9791 0.991 2 0.994 7 0.9961 0.996 7 0.997 0 0.997 2 0.997 3
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neighboring weight algorithm (see (6)) is different from the
strategy by directly sorting the cost value ρ in ascending
order (see Figure 4).

Furthermore, it is proposed to establish a more general
weight factor by reformulating (6) as

ω � d
n
, (7)

where n denotes the exponent of d, which is represented by

n � 0, if ρ is directly sorted in ascending order;

n≠ 0, else.
 (8)

Obviously, when n≠ 0 holds, n � 1/2 represents a typical
case of our redefined neighboring weight algorithm. Simi-
larly, when n � 0 holds, the weight factor ω acts as a constant
identity, leading to the fact that the recalculated cost value ρ′
equals its original version ρ. +erefore, we propose studying
the neighboring weight algorithm in the general unified
framework. +en, the “square-root calculator” is replaced by
a “n-root calculator” by unifying all possible cases in our
proposed framework. In the following section, we first
discuss the selection of parameters n (see Section 5.2) based
on the empirical experiments. Next, it is proposed to verify

the effectiveness of the proposed steganographic payload
location algorithm. Finally, we compare our location algo-
rithm with some prior arts to further validate the superiority
of our algorithm.

5. Experimental Results

5.1. Experiment Setups. It is proposed to conduct numerical
experiments on the baseline BOSSbase ver.1.01 [47], where
all 10000 8-bit grey-level images are acquired from eight
different digital still cameras in the size of 512× 512. +e
experimental settings are illustrated in Table 4. Besides, to
comprehensively evaluate the performance of the stegano-
graphic payload location algorithm, we propose using the
following metrics:

(i) Precision VP is defined as the percentage of cor-
rectly located samples among the total number of
samples (all predicted pixels containing positive and
negative samples). It is formulated by

VP �
Dtp

Dtp + Dfp

, (9)

ρ5ρ2

ρ3 ρ1

ρ4

ρ′ cost value

ρ cost value

ρ6

6.71 6.52 6.35 6.37 5.50

8 5 4 5 8

5 2 1 2 5

4 1 1 4

5 2 1 2 5

8 5 4 5 8

coordinate

d Euclidean distance

Square-root
calculator

6.45 6.12 5.63 5.80 5.33

6.06 5.68 5.29 5.41 5.31

5.82 5.83 6.57 5.87 5.78

5.56 5.86 5.66 6.04 5.93

(2, -2) (2, -1) (2, 0) (2, 1) (2, 2)

(1, -2) (1, -1) (1, 0) (1, 1) (1, 2)

(0, -2) (0, -1) (0, 0) (0, 1) (0, 2)

(-1, -2) (-1, -1) (-1, 0) (-1, 1) (-1, 2)

(-2, -2) (-2, -1) (-2, 0) (-2, 1) (-2, 2)

11.28 9.74 8.98 9.54 9.25

9.64 7.28 5.63 6.90 7.97

8.57 5.68 5.41 7.51

8.70 6.93 6.57 6.98 8.63

9.35 8.76 8.00 9.03 9.97

Multiplier

Figure 5: Illustration of the selection for K-minimum ρ′, where K � 6, and the margin value N � 2 (at the center of value 5.29) as Figure 4.
+e square-root calculator is designed based on equation (6); the multiplier is designed based on equation (5).
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where the number of true positive samples is
denoted as Dtp, and the number of false-positive
samples (the incorrectly located pixels without
flipping when embedding) is denoted as Dfp.

(ii) RecallVR is the ratio of the number of samples Dtp

to Dtp plus Dfn; it is given by

VR �
Dtp

Dtp + Dfn

, (10)

where Dfn denotes the number of false-negative
samples (the flipped pixels without being correctly
located).

(iii) F1-score VF considers both precision and recall,
and it is calculated by

VF � 2 ×
VP × VR

VP + VR

. (11)

It is worth noticing that the averaged value of each
metric for all inquiry images is used to evaluate the
performance of the proposed locating algorithm.

5.2. Parameter Selection of Neighboring Weight Algorithm.
In this section, we empirically verify the selection of the
neighboring weight parameter for optimal location. First, it
is proposed to randomly choose 1000 grey-level images from
the benchmark dataset BOSSbase. Next, by adopting
S-UNIWARD steganography, we embed secret bits into the
cover source with a 0.3 payload. In virtue of our proposed
algorithm, the weight factor ωmainly controls the cost value
ρ (see (5) and (7)) for each ready-to-located pixel. Moreover,
the dimension of the ready-to-located region containing
both flipped and nonflipped pixels is directly decided by the
parameter K. +erefore, let us empirically select the optimal
parameters for the proposed locating algorithm. To com-
prehensively evaluate the performance of the proposed
neighboring weight algorithm, we report the location results
using three metrics, referring to as precision, recall, and F1-
score (see Figure 6).

As Figure 6(a) illustrates, with increasing the K value, the
VP is gradually falling down, meaning that more and more
nonflipped (or innocent) pixels are incorrectly located. Since
the large K probably generates the high-dimensional region

including innocent pixels, the locating precision is deceased
when the increased number of correctly located pixels
cannot match the increased number of incorrectly located
pixels. Additionally, at the small K (not larger than 6), the
differences of theVP using various n behave very similarly.
When K equals 1, VP with n � 0 is remarkably better than
the others. +at is because the proposed algorithm carefully
selects one minimum cost ρ′ without considering the
neighboring weight factor ω. In this scenario, it cannot hold
true that the information of distance impacts the precision of
payload location. On the contrary, when the K is enlarged,
the performance of the locating algorithm is obviously
declined. It is worth noting that the slope ofVP with n � 0 is
steeper than the others. +at is because when more payloads
need to be located, we intend to centralize them around the
central pixel while not locating pixels with low cost possibly
in the far edge (the case of n � 0), which are impossibly used
for embedding in our assumption. Accordingly, only relying
on the empirical analysis of precision VP, the selection of
n � 1/4 is capable of bringing us the optimal locating result.

In Figure 6(b), we also investigate the performance of the
proposed locating algorithm by comparing the K ranging
from 1 to 12 and n lying between 0 and 2. With increasing
the K value, the recall VR parameterized with different
weight factors is improved. In fact, when calculating the
value of recall rate, the Dfp is not counted. In this scenario,
as the dimension of locating region is enlarged, more Dtp is
counted while ignoring the number of pixels incorrectly
located. Obviously, based on the investigation of locating
performance relying on the recall VR, the K equal to 12,
together with n � 2, is our optimal choice, which is totally
different from the result of parameter selection based onVP

(see Figure 6(a)).
Without loss of generality, the precisionVP denotes the

rate of locating accuracy, and the recall VR represents if all
the flipped pixels are comprehensively located. To strike the
balance of two metrics for ideal selection, let us demonstrate
the results of the F1-score VF in Figure 6(c). As we ex-
pected, when the K approaches 4, the F1-score value ba-
sically remains stable while achieving the maximum value at
K equal to 6. Meanwhile, the n equal to 1/2 is the optimal
choice for our proposed locating algorithm, which will be
applied in the following experiments.

5.3. Case Studies for Locating Hidden Bits. Let us first
evaluate the performance of our proposed locating algo-
rithm in four cases, which has been specifically described in
Section 3.2.

5.3.1. KPKS (Known Payload and Known Scheme). 10000
cover images from BOSSbase ver.1.01 are used for generating
stego images, among which we adopt well-performed
S-UNIWARD and HILL steganography, respectively. To
overall verify the effectiveness of the locating algorithm, it is
proposed to use various payloads ranging from 0.1 to 0.5 at
step 0.1. Besides, as the prior work [46], it is compared with
our proposed algorithm. For simplicity and clarity, let us
name the algorithm [46] as LAS (see the description in the

Table 4: Experimental settings.

Image source BOSSbase ver.1.01
Image color Grey-level
Image size 512× 512
Image format Uncompressed
Number of original
images 10 000

Payload 0.05 ∼ 0.5 bpp

Steganographic schemes WOW, S-UNIWARD, HILL, LSBR,
LSBM

Locating method [35, 36, 38, 39, 46], ours
CPUs 4× intel xeon E7-4820 2.0 GHz CPUs
RAM 16G
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following section) without NWA while our proposed
scheme LAS with NWA.+at is because the main differences
between them are whether the locating scheme is designed
based on the neighboring weight algorithm (NWA).

As Figure 7 illustrates, our proposed LAS with NWA
slightly performs better than that of LAS without NWA at all
the given payloads. Meanwhile, with increasing the payload,
the performances of both algorithms are gradually im-
proved. +at is because the large payload brings more
hidden bits embedded in the region, where the extended
modification map can cover. Moreover, by assigning the
weight, LAS with NWA further improves the performance of
locating algorithms targeting modern adaptive steganog-
raphy. It should be noted that the performance gap of two

compared locating algorithms is gradually narrowed down
as payload increases. +at is because more hidden bits
(payload 0.5 for instance) embedded into the carrier source
nearly cover both texture and nontexture region, leading to
the fact that the effectiveness of the selection of pixels with
minimizing embedding distortion is not as remarkable as
that of the small payload (a 0.1 payload for instance). In fact,
when designing adaptive steganographic schemes, a similar
case also happens.

Besides, by comparing S-UNIWARD with HILL, obvi-
ously, the hidden bits from stego image adopted by HILL are
easier to be located. To our knowledge, the detection error of
steganalysis (only targeting the problem of binary classifi-
cation between the cover and stego source), referring to as

n = 1/4
n = 1/3
n = 1/2

n = 1
n = 2
n = 0

2 4 6 8 10 120
K
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(c)

Figure 6: Illustration of location performance using different n, whichmainly controls the general weight factorω � dn, where d denotes the
Euclidean distance; three metrics, namely, precision, recall, and F1-score, are used for evaluation: (a) precision, (b) recall, and (c) F1-score.
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Eoob or PE, is usually adopted to evaluate the undetectability
of steganography. In such a manner, HILL steganography is
always regarded as the better choice than its opponent
S-UNIWARD [4] while it hardly holds true that S-UNI-
WARD performs worse than HILL as the localization re-
sistance of steganography is considered at the same time,
which is empirically verified via our proposed locating
algorithm.

5.3.2. KPUS (Known Payload and Unknown Scheme).
Practically, a steganalyzer possibly has no idea of the specific
algorithm used for data hiding. In such a case, it is proposed
to evaluate the performance of the proposed LAS with NWA
using the cost function from different adaptive steganog-
raphy methods, also compared to LAS without NWA. 10000
cover images are used for generating stego images with a 0.3
payload, among which WOW, S-UNIWARD, and HILL are
adopted.

As Table 5 reports, we list 9 pairs of comparison data,
where the former data corresponds to F1-score from LAS
with NWA, and the latter underlined data are obtained from
LAS without NWA. It can be obviously observed that our
proposed LAS with NWA performs better than LAS without
NWA. Basically, when predicting the embedding scheme
correctly, we can acquire the larger F1-score, meaning the
better location result. Even if the steganographic method is
predicted incorrectly, the performance is not decreased
sharply, implying that the cost function from various
adaptive steganographic methods cannot serve as a decisive
factor for locating hidden bitts. In fact, whatever adaptive
scheme is adopted, it always searches for the texture region
in the image for minimizing embedding cost.

In addition, when adopting the cost function from
WOW steganography, LAS with NWA performs best in not
only the correctly predicted label but also the mismatched

label, S-UNIWARD for instance. +at is because WOW is
prone to modify pixels centralized in the regions that are
difficult to model while S-UNIWARD to some extent dis-
perses its modification for security. Nevertheless, when not
knowing the adaptive scheme, it can be predicted as WOW
steganography.

5.3.3. UPKS (Unknown Payload and Known Scheme).
Before locating the hidden bits, it is required to know the
specific amount of payload of an inquiry image. However, in
the more practical case that the payload is unknown, we have
to predict it prior to locating hidden bits. +en, effective
quantitative steganalysis [15] is adopted for accurately
predicting the payload. To verify the effectiveness of the
prediction algorithm, 4000 stego images are experimentally
tested by, respectively, using S-UNIWARD and HILL
steganography, in which half of them is with the payload 0.3
and half of them with the payload 0.5. +us, the number of
each type of stego images is 1000. +en, the histograms of
prediction error are illustrated in Figures 8(a) and 9(a). It
can be observed that the prediction error is relevantly small,
where most of the data are concentrated around zero
(perfectly correct prediction). +us, the quantitative steg-
analysis is reliable enough, which can serve our proposed
locating algorithm. Besides, with increasing payload, the
overall error is narrowed down, meaning that the more
payload is given, themore accurate prediction we can obtain.

Next, let us further investigate whether the hidden bits
can be successfully located relying on the predicted payload.
In such a case, it is proposed to compare the F1-score result
of UPKS with that of KPKS serving as the baseline ground
truth. When the payload is 0.3, two modern steganographic
schemes are adopted. Two histograms in each figure are
nearly overlapped, meaning that the F1-score of UPKS
basically matches that of KPKS (see Figures 8(b) and 9(b) for
details). Besides, at the payload 0.5, the comparison results
are illustrated in Figures 8(c) and 9(c), respectively, which
also verify the effectiveness of our proposed locating algo-
rithm. Moreover, we calculate the statistical parameters of
the histogram, referring to mean and variance values of both
compared histograms. In Figure 8(c), for instance, both
mean and variance values of KPKS and UPKS are equal to
0.2556 and 0.0028. +erefore, the experimental results
empirically verify that thanks to the accurate prediction of
payload, our proposed LAS with NWA can still work very
well for locating hidden bits in the case of UPKS.

5.3.4. UPUS (Unknown Payload and Unknown Scheme).
Finally, let us evaluate the effectiveness of the proposed
locating algorithm in the most difficult scenario, referring to
as neither knowing payload nor specific adaptive embedding
scheme. In this case, relying on the empirical analysis from
KPUS and UPKS, it is proposed to first predict the payload
and then locate hidden bits by using our proposed LAS with
NWA based on the cost function of WOW steganography.

Also, the results of KPKS serve as the baseline for
comparison. As Figure 10 illustrates, by comparing the F1-
score between KPKS and UPUS, the overall result of KPKS is
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Figure 7: Averaged F1-score comparison between LAS without
NWA [46] and our proposed LAS with NWA, in the case of KPKS.
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obviously superior to that of UPUS, especially at the large-
value bin of histogram, meaning that the performance of
locating is slightly degraded in the case UPUS. Moreover, the
error histogram is also illustrated by making differences
between F1-scores of two cases (the results of KPKS minus
that of UPUS). As Figure 11 reports, most of the data larger
than zero directly validates the better performance of the
locating algorithm in the case KPKS. Lack of enough in-
formation about a specific amount of payload and

embedding scheme unavoidably leads to the fact that the
extended modification map is hardly constructed, which
more or less impacts the accuracy of locating hidden bits.

5.4.ComparisonwithPriorArts. Compared with the baseline
prior arts, the superiority of our proposed locating algorithm
is experimentally verified. For simplicity and clarity, let us
describe the prior arts, referring to as 5 algorithms

Table 5: Averaged F1-score comparison between LAS with NWA and LAS without NWA [46] at the payload 0.3, in the case of KPUS.

True scheme
Predicted scheme

WOW S-UNIWARD HILL
WOW 0.318 5, 0.307 6 0.231 1, 0.253 2 0.263 6, 0.272 8
S-UNIWARD 0.255 5, 0.219 2 0.198 3, 0.191 7 0.220 9, 0.200 2
HILL 0.268 7, 0.2651 0.196 6, 0.224 6 0.281 2, 0.277 0
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Figure 8: : Performance of our proposed locating algorithm targeting S-UNIWARD. (a) Error histogram between the predicted payload and
its ground truth. (b) Histogram of F1-score in the case UPKS and KPKS at the payload 0.3. (c) Histogram of F1-score in the case UPKS and
KPKS at the payload 0.5.
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[35, 36, 38, 39, 42] toward nonadaptive steganography, a
novel algorithm [46] toward adaptive steganography, and
adaptive steganalysis (not originally designed for locating
hidden bits) [48, 49]. Each algorithm is elaborated as follows.

WSR [35]: by using the linear filter, each cover pixel can
be approximately estimated. +en, each residual noise is
calculated by making the differences between the stego pixel
and its estimated cover one. +e stego pixel carrying hidden
bit is located by comparing the averaged residual noise with
the preset threshold, such as 0.25 for instance. Furthermore,
by assigning weight to residual noise, the performance of the
Weighted Stego Residual (WSR) algorithm is improved. +e
limitation of it is that the secret key for each image should
remain unchanged; it is designed only for LSBR. WAM [36]:
relying on an 8-tap Daubechies kernel, pixels in the spatial

domain are converted to coefficients in the wavelet domain.
After removing low-frequency coefficients (corresponding
to subband LL), the remaining residual coefficients in
subbands LH, HL, and HH are required by adopting
Wavelet Absolute Moment (WAM) filter. Similar to WAR,
the inversely converted residual noise in the spatial domain
is used for location by comparing its magnitude with the
preset threshold. +e limitation of WAM is that all possible
stego images share the same secret key; it is designed only for
LSBM. MAP [38]: dependent on the theory Maximum A
Posteriori, together with the Viterbi algorithm, the esti-
mation of cover pixels is optimized. Similar to WSR, the
residual noise is calculated between stego and cover source.
Like WAM and WAS, the limitation of it is that all hidden
bits are embedded in the same position for all stego images.
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Figure 9: Performance of our proposed locating algorithm targeting HILL. (a) Error histogram between the predicted payload and its
ground truth. (b) Histogram of F1-score in the case UPKS and KPKS at the payload 0.3. (c) Histogram of F1-score in the case UPKS and
KPKS at the payload 0.5.
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It is worth noticing that MAP is available for both LSBR and
LSBM. MRF [39]: in virtue of the Markov Random Field
(MRF), a cover image is predicted by using a given stego one.
In particular, dependent on pairwise constraints, the sta-
tistical features of a cover image are captured. +en, the
designed locator is well performed targeting both LSBR and
LSBM. DNN [42]: by taking the problem of payload location
as binary classification, relying on the trained model, each
pixel is treated as the predicted sample (carrying hidden bit
or not), where the mean square of neighboring pixel dif-
ferences serves as the key element for feature extraction.
Moreover, the hand-crafted features are fed into the well-
designed DNN for training an efficient model, which is
available for both LSBR and LSBM. LAS [46]: by reem-
bedding the bits into the stego image, the modification map
is obtained. With the help of embedding cost, the extended
version of the modification map guides us to locate the

flipped bits in the stego image. +e strength of this locating
algorithm is to directly target adaptive steganography (LAS),
which is totally different from prior arts such as WSR,
WAM,WAP, or MRF. Hu’s method [48] and Tang’s method
[49]: these two methods were originally designed for image
steganalysis, where the regions [48] or bits [49] with high
embedding probability are preferably selected for training an
efficient classifier.+us, we insist on conducting comparison
experiments with them.

Also, 10000 grey-level images from BOSSbase ver.1.01
[47] are used for comparing the performance of different
locating algorithms. Here, two payloads 0.3 and 0.5 are used
to generate the stego images. To enrich the experimental
data, it is proposed to adopt both modern adaptive steg-
anography and old nonadaptive steganography. It is worth
noting that the number of pixels with hidden bits is fixed
when LSBR or LSBM is adopted. For instance, 78643 lo-
cations need to be predicted in a 512× 512 stego image with a
0.3 payload. It should be noted that MAP [38] and MRF [39]
are supervised algorithms, which need to construct the
trained model prior to locating hidden bits. +us, in that
case, at the given payload, half the number of images is used
for training; another half is used for testing while the
remaining algorithms are training-free. For a fair compar-
ison, we should ensure that all the same 5000 images with the
same payload are used for locating. Still, the F1-score serves
as the comparison metric for evaluating the performance of
the locating algorithm.

As Table 6 illustrates, in the case of payload 0.3, WSR is
good at locating hidden bits embedded by LSBR while not
LSBM. On the contrary, WAM performs very well when
LSBM is used for embedding. +ose results perfectly match
those of [35, 36]. For supervised locating algorithms, MAP
cannot only locate secret bits hidden by LSBR but also by
LSBM. In addition, DNN performs very close to MAP.
However, MRF cannot perform very well.+e default setting
of the MRF model parameter ω1 equals 0.9986, which is
acquired from the database BOSSbase ver.0.92 of [39]. +at
probably leads to unsatisfying results. When the payload is
increased, 0.5 for instance, the performance of MRF can be
further improved, which nearly matches the results of [39].
All the hidden bits embedded by LSBR or LSBM nearly can
both be located (see Table 7 for details). +at empirically
verifies that with increasing the payload, the impact of the
inaccurate MRF model parameter is able to be mitigated.

Moreover, it is noticeable that the aforementioned lo-
cating algorithms [35, 36, 38, 39, 42] only work when the
stego images with hidden bits are embedded in the same
position in the spatial domain. +e strong assumption
largely limits the extension to hidden bits location of
adaptive steganography. Since modern adaptive steganog-
raphy prefers to embed bits relying on the content of the
cover image, it hardly holds true that the pixels in the same
positions are used for embedding toward different cover
images. +us, the performance of locating algorithms
[35, 36, 38, 39, 42] targeting modern steganography is not
illustrated. For clarity, we utilize the notation “/” in Tables 6
and 7 denoting the invalid results. However, when targeting
old steganography, our proposed LAS algorithms and two
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adaptive steganalysis types [48, 49] fail. Due to the fact that
the hidden bits are embedded randomly, the methods
designed by the characteristic of modern steganography
become invalid when dealing with LSBR or LSBM. Never-
theless, as Table 6 reports, when locating secret bits hidden
by modern steganography, our proposed LAS with NWA
outperforms the prior arts.

Additionally, we illustrate the F1-score performance of
locating algorithms at the given payload 0.5 in Table 7. As we
expected, whatever modern or old steganography is adopted,
the performance of locating algorithms is improved com-
pared to the results in Table 6. In fact, when more secret bits
are embedded into the cover image, more location hints
caused by bit modification can be provided, which definitely
results in better detection. It is worth noting that our
proposed LAS with NWA performs better than the others
when dealing with WOW and HILL and slightly worse than
Tang’s method [49] when dealing with S-UNIWARD.

6. Conclusion and Limitation

In this paper, we address the problem of locating the hidden
bits embedded by modern adaptive steganography. In virtue
of the intrinsic property of adaptive steganography, through
reembedding secret bits into stego images, we acquire the
modification map. Next, based on the extended modification
map, together with the neighboring weight algorithm
(NWA), the location of hidden bits is further refined, leading
to better performance. More importantly, for practical use,
we verify the effectiveness of locating hidden bits in the four

possible cases. Prior to our study, most literature focused on
locating hidden bits embedded by old steganography while
ignoring the research of modern adaptive steganography.
Meanwhile, a strong assumption should be given, referring
to as secret bits embedded in the same position in the spatial
domain for many stego images while, in our locating al-
gorithm, only one single stego image is enough to be used for
locating hidden bits.

+emain limitation of the proposed algorithm is that the
predicted flipped bits should be embedded by modern
adaptive steganography. In other words, it fails when the old
steganographic algorithm is adopted. When comparing the
F1-score, we have to admit that the location accuracy of our
proposed algorithm is not as good as that of the algorithms
specialized in targeting old steganography (see Tables 6 and
7). In further study, we need to further improve the location
accuracy targeting adaptive steganography.

Additionally, in the more generalized framework of
steganalysis, on the one hand, the steganalyzer usually
passively completes the task of binary classification (cover
versus stego source), the amount of payload prediction
(quantitative steganalysis), payload location, and hidden bits
extraction (forensic steganalysis); on the other hand, he/she
can also adopt the strategy of actively attacking towards
steganography [50], such as interruption of covert com-
munication or disturbing the stego carrier. However, the
active disturbance is possibly nontargeted, leading to the fact
that if the disturbance is too strong, referring to as randomly
adding noise to overwrite the hidden bits in the stego image,
for instance, the distortion of stego carrier is not acceptable;

Table 6: F1-score comparison of locating performance from different steganalysis methods, using both modern adaptive steganography
(WOW, S-UNIWARD, and HILL) and old nonadaptive steganography (LSBR and LSBM) at the given payload 0.3.

Steganalysis locating method, steganography WOW S-UNIWARD HILL LSBR LSBM
WSR [35] / / / 1.000 0 0.280 5
WAM [36] / / / 0.304 2 1.000 0
MAP [38] / / / 1.000 0 1.000 0
MRF [39] / / / 0.625 2 0.8031
DNN [42] / / / 0.946 4 0.941 2
Hu’s method [48] 0.124 9 0.105 9 0.126 5 / /
Tang’s method [49] 0.221 4 0.172 2 0.208 5 / /
LAS without NWA [46] 0.307 6 0.191 8 0.277 0 / /
LAS with NWA (ours) 0.318 4 0.198 3 0.281 2 / /

Table 7: F1-score comparison of locating performance from different steganalysis methods, using both modern adaptive steganography
(WOW, S-UNIWARD, and HILL) and old nonadaptive steganography (LSBR and LSBM) at the given payload 0.5.

Steganalysis locating method, steganography WOW S-UNIWARD HILL LSBR LSBM
WSR [35] / / / 1.000 0 0.8081
WAM [36] / / / 0.498 4 1.000 0
MAP [38] / / / 1.000 0 1.000 0
MRF [39] / / / 0.988 9 0.963 6
DNN [42] / / / 0.941 8 0.936 8
Hu’s method [48] 0.193 7 0.167 2 0.195 3 / /
Tang’s method [49] 0.356 4 0.276 7 0.338 0 / /
LAS without NWA [46] 0.372 5 0.255 4 0.3471 / /
LAS with NWA (ours) 0.375 3 0.258 7 0.348 7 / /
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on the contrary, too weak disturbance can hardly achieve the
task of active attack.

Nevertheless, in this context, our proposed algorithm
raises the promising study of payload location targeting
modern adaptive steganography. Although the locations of
hidden bits are not very accurately predicted, the modifi-
cation region caused by embedding can be accurately lo-
cated, which can indeed further help the steganalyzer
actively and purposely disturb the stego image over the
targeted region carrying hidden bits while mitigating the
distortion caused by additional noise. +us, it is of great
importance that further steps are taken to achieve the goal of
active steganalysis. Besides, we can also extend the proposed
locating method to the adaptive steganalysis instead of
overall feature extraction, such as [48, 49], whose effec-
tiveness has been verified in two references, namely,
channel-aware or channel-selection steganalysis for more
accurate detection.
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Face tampering is an intriguing task in video/image genuineness identification and has attracted significant amounts of attention
in recent years. In this work, we propose a face forgery detection method that consists of preprocessing, an improved Siamese
network-based feature extractor (including a feature alignment module), and postprocessing (a voting principle). Roughly
speaking, our method extracts the features in the grey space of face/background image pairs and measures the difference to make
decisions. Experiments on several standard databases prove the effectiveness of our method, and especially on the low-quality
subdataset of the FaceForensics++ , our method achieves a competitive result.

1. Introduction

In recent years, image/video tampering methods have de-
veloped rapidly [1], including Deepfake [2], Face2Face [3],
FaceSwap [4], and Neural Textures [5]. +ese methods rely
on advanced image/video processing algorithms and are
embedded within many applications in the market. Because
visual contents can be easily manipulated, the detection of
tampered contents is of practical significance and readily
attracts attention [6]. In this work, we are interested in face
forgery detection.

Many methods have been proposed for detection of
tampered face images and videos, and the accuracy mainly
depends on the selection of features and classifiers. +e state-
of-the-art methods roughly consist of two stages: feature ex-
traction and classification. Several methods segregate these
stages as separate subproblems [7–10], while some methods
integrate the two stages in sequence based on deep neural
networks (DNNs) [1, 11–18]. Regarding face forgery detection,
there are two main types of selections of features: one is based
on single-image features [1, 7–29], while the other is based on
between-frame feature differences in videos [30–39]. Note that
various types of classifiers are used (e.g., SVM, CNN, RNN, and
MLP) and that SVM and CNN are relatively more popular.

+e existing methods have achieved excellent detection
accuracy on public datasets, including [1, 23, 40–43].
However, there are still problems yet to be solved. +e first
problem is that most methods offer poor robustness. +ey
can achieve satisfactory accuracy on uncompressed or lightly
compressed images and videos, but for content that is
compressed with high intensity, the detection accuracy is
greatly reduced because the compression may significantly
eliminate the traces of forgery. +e quality of images and
videos also decreases after rounds of postprocessing, which
greatly compromises the performance of the existing
methods. +e second problem is that almost all of the
methods use only the features of the facial area or the fusion
boundary area of the face and background but discard the
features of the background. Although normally only the
facial area is tampered, it is worth noting that, for untam-
pered images, the facial area and the background are con-
sistent at a certain feature level, which stands in contrast with
forged images. +erefore, in this work, we address the face-
background difference-based features.

In this paper, we propose a method based on the im-
proved Siamese network [44]. +e Siamese network was
originally proposed to learn a similarity metric with ap-
plication to face verification. We use the Siamese network to
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measure the similarity between the face area and the
background of the video frames. Before being saved in
memory, a captured video is processed through a series of
steps, including quantization, denoising, color correction,
gamma correction, filtering, white balance, and even JPEG
compression [45]. +is series of processing steps involves
unique statistical characteristics, and in an untampered
video, the face area and the background of the video frames
exhibit high similarity. In a tampered video, the similarity
between the face area and the background is low because
they originate from different videos. It is worth noting that
this specialty is video-level; that is, the similarity relationship
between the face area and the background between different
frames in the video conforms to this law, because all pro-
cessing is carried out on the whole video, that is, all frames.
Our improved Siamese network can measure the similarity
in order to distinguish genuine and tampered images and
videos. +e general pipeline of our method is depicted in
Figure 1, and our contribution can be roughly concluded as
follows: First, we design a preprocessing module that obtains
a large number of image patch pairs of face area and
background. Next, we present our improved Siamese net-
work, which consists of two submodules, i.e., feature ex-
traction and feature alignment. In the feature extraction
module, we grey the image patch pairs and then input the
pairs to a two-stream convolutional neural network with
shared weights to extract features in the grey space of the
images. In the feature alignment module, we align the
features to measure the similarity between the face area and
the background of images and obtain the final authenticity
judgement result. During testing, we define a voting prin-
ciple to correct our results by cropping multiple pairs of face
area and background from a video frame. +en, we define a
voting principle to correct the classification results. Last,
through experiments, we show that our method outperforms
the state-of-the-art methods on challenging low-quality
datasets.

2. Related Work

2.1. Face Forgery. +e most widely used face tampering
methods include Deepfake [2], Face2Face [3], FaceSwap [4],
and Neural Textures [5]. Examples of these methods are
depicted in Figure 2.

+e core of the application of Deepfake to facial video
tampering is the parallel training of two autoencoders with
shared parameters.+e production process has two stages: the
training stage and the generation stage. In the training stage,
two autoencoders with shared parameters extract the features
of two faces that belong to different persons and then input
two autodecoders with independent parameters. In the
generation stage, the facial features extracted by the
autoencoder are input into the autodecoder corresponding to
another different face to generate a mixed face. Finally, the
mixed face is blended with the rest of the image using Poisson
image editing [46]. Face2Face is a technology that can modify
the expression and mouth shape of the target character. +e
main advancement of Face2Face lies in deforming various
algorithms, including improvements in RGB tracking

algorithms, transfer functions, and the establishment of
mouthmodels. FaceSwap is used to transfer the face area from
the source video to the target video. For the source video, the
method first extracts the facial area of the source video and its
corresponding facial landmarks and then fits a 3D model. For
the target video, the method uses the same approach to fit the
3D model, which is rendered by the texture coordinates
obtained from the 3D model of the source video to produce
the final face-changing video. Neural Textures uses expression
migration to modify the texture map of the target actor’s face
to match the expression of the source actor. +is texture map
is used to sample the neural texture of the target character.
+en, the method inputs the sampled neural texture map to
the delayed neural renderer and outputs the final repro-
duction result after end-to-end training.

2.2. Detection of Face Forgery. With the development of face
tampering technology, the forged images and videos pro-
duced are close to genuine, which has aroused concerns and
attracted attention to research on detection technology for
face tampering. Existing detection methods can be roughly
divided into two types: detection for tampered images and
videos.

2.2.1. Detection Methods for Tampered Images. +is type of
method aims to extract the features of the single image for
classification. Some traditional manual features such as
speeded up robust features (SURF) [7], photo response
nonuniformity (PRNU) [8], local binary pattern (LBP) [9],
image quality measures (IQM) [10], etc., can be used to
detect tampered images. However, the accuracy of these
methods is not competitive on large datasets. With the rapid
development of deep learning, face forgery detection has also
made extensive use of deep learning. Deep neural networks
(DNN) are used to extract the features of a single image or as
classifiers. Some methods use DNN to extract the frequency
features of the images [19–22]. For example, Luo et al. [20]
found that current CNN-based detectors tend to overfit to
method-specific color textures and thus fail to generalize, so
they proposed to utilize the high-frequency noises for face
forgery detection by devising three functional modules
observing image noises remove color textures and expose
discrepancies between authentic and tampered regions.
Besides, the unique biological features of face images are
used as classification features by some methods [23–26].
Matern et al. [24] proposed a method to detect Deepfake
videos based on the visual features of eyes, teeth, and facial
contours. However, this method has certain requirements
for the test images, such as that the images need to include
clear eyes or teeth. References [27–29] effectively used the
texture or boundary features of the images and had a certain
improvement in cross-database detection performance.
+ere are some methods that use specific neural networks to
detect tampered images with end-to-end training
[1, 11–15, 39] and some methods [16–18] also introduce
attention mechanism on this basis. +ese methods rely on
the powerful adaptive learning ability of the neural network
and the focus of the methods is therefore on the construction
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of the backbone network or attention network and good
performance has been achieved. It is emphasized that
methods based on features of the individual image can also
be used to determine the authenticity of the videos.

2.2.2. Detection Methods for Tampered Videos. +is type of
method mainly uses the continuity and consistency of
various features between video frames to determine au-
thenticity. +erefore, it relies on the timing of the video

(a) (b) (c) (d) (e)

Figure 2: Examples of genuine images and four tampering methods. (a) Genuine images. (b) Deepfake. (c) Face2Face. (d) FaceSwap.
(e) Neural Textures.
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Figure 1: Overview of the proposed method. Our detection framework includes three modules. +e preprocessing module is used to crop
face area patches and background patches of video frames, where IBi and IFi (i� 1, 2, . . ., N) represent the face patch and the background
patch, respectively. N represents the number of videos. +e feature extraction module converts patch pairs into greyscale, i.e., IBGi and IFGi,
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alignment module mines their similarity by concatenating features from different areas and obtains the final classification result. CWi
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frames, and the detection object can only be a video, not a
single image [30–38]. Haliassos et al. [38] proposed a de-
tection called LipForensics which targets high-level semantic
irregularities in mouth movements, which are common in
many generated videos. But it requires a large-scale labelled
dataset for pretraining. Zheng et al. [32] explored taking full
advantage of the temporal coherence for video face forgery
detection utilizing a novel end-to-end framework, which
consists of two major stages. +e temporal consistency of
video frames is also used in [30–33]. Li et al. [36] proposed a
long-term recurrent convolutional network (LRCN) to
detect the blinking frequency of people in the videos and to
compare it with the blinking frequency of normal people to
distinguish between genuine and tampered videos. However,
because the blinking frequency in high-quality tampered
videos is almost the same as that of normal people, the
prospective application of this method is not ideal. Agarwal
et al. [37] used an open-source facial behavior analysis
toolkit, Openface, to model the faces of five political ce-
lebrities in order to distinguish the authenticity of the videos.
However, because there are not as many genuine and
tampered videos for ordinary people as for politicians, this
method has limited applications.

2.3. SiameseNetwork. +e Siamese network is used to learn a
function that maps the inputs into a target space such that
the L1 norm in the target space approximates the semantic
distance in the input space.+e details of the architecture are
given in Figure 3. X1 and X2 are the inputs shown to the
network, W is the shared parameter vector between CNNs,
and GW (X1) and GW (X2) are the two points in the low-
dimensional space that are generated by mapping X1 and X2.
EW is a function that measures the compatibility between X1
and X2.

3. Proposed Method

As shown in Figure 1, our method consists of three modules,
i.e., preprocessing (Subsection III-A), feature extraction
(Subsection III-B), and feature alignment (Subsection III-C).
In addition, we introduce the voting principle in Subsection
III-D.

3.1. Preprocessing. +e feature extraction module takes
image patch pairs as input, so we need to crop each video
frame into image patch pairs. For each video in the datasets,
we first use the software package dlib [47] to detect the face
area of each frame in the video, and we crop a fixed-size face
image patch according to the center of the face. We crop
three corner background patches of the image to the same
size as face image patches, excluding the lower right corner.
It should be noted that the three corners are selected to
facilitate cropping and improve the efficiency of pre-
processing. In fact, it can be cropped anywhere on the
background of images. And the number of cropped back-
ground patches can also be any odd number which is
convenient for the voting principle (which will be intro-
duced in Subsection D) other than three. +e three

background patches are later used by the voting principle to
calibrate our test results. In the preprocessing stage, we fi-
nally process the videos in each dataset Fi(i� 1, 2, . . ., N),
where N represents the number of videos, into face patches
IFi and background patches IBi, as described in detail in
Algorithm 1.

3.2. Feature Extraction. Artefacts may be left on videos due
to hardware and software differences and manufacturing
imperfections. In one genuine video, the artefacts are
consistent and continuous in general, such that the facial
area and the background have high similarity, while in the
tampered video (e.g., generated by Deepfake and FaceSwap),
the similarity between the face area and the background is
lower. +e tampered videos generated by Face2Face and
Neural Textures only modify the facial expression and some
attributes and are not directly derived from different videos,
but the tampering still impacts the consistency of the
artefacts.

To this end, we use the improved Siamese network to
measure the similarity between the face area and the
background of the video frames. We employ the Xception
network [48] as the backbone of the Siamese network. +e
Xception network is currently one of the most effective and
widely used networks, as in [1, 19, 20, 22], for face forgery
detection.+e advantage of deep learning lies in its powerful
computing ability and autonomous learning ability.
+rough end-to-end training and supervised learning, the
convolutional neural network extracts the suitable and ef-
fective features in the grey space of the images.

After the preprocessing module, we obtain a pair of
image patches. In the feature extraction module, we first
convert the pair of image patches to greyscale. Since the
semantic content of the face patch and the background patch
is very different, greying the pair of patches can reduce the
impact of the semantic content so that the network can

CNN

X1 X2

EW

GW (X1)

||GW (X1)-GW (X2)||

GW (X2)

CNNW

Figure 3: +e architecture of the Siamese network.
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concentrate more on the low-level features with better
generalization performance. +en the pair of patches are
given to the Xception networks with shared weights to get
the 512-dimension feature maps in the grey space. Sharing
weights ensures that the two streams of the networkmine the
features of the same space, and at the same time it is
equivalent to enriching the feature data of each stream,
making the network more efficient. And the feature maps
can be regarded as features of the noise distribution of the
image patches.

3.3. Feature Alignment. After obtaining the features of the
face patch GWFi (i� 1, 2, . . ., N), where N represents the
number of videos, and the features of the background patch
GWBi in the grey space, it is significant to measure their
similarity in order to distinguish whether they are from
genuine images or tampered images. +e most direct way to
accomplish this goal is to perform a residual operation on
two feature maps, similar to what the original Siamese
network does, but this is not suitable for image patches with
large differences in semantic content. +us, in the feature
alignment module, we concatenate GWFi and GWBi and
acquire the aligned features, which are 1024-dimensional
feature maps, i.e., CWi, defined as

CWi � GWFi ⊗GWBi. (1)

⊗ represents concatenating GWFi and GWBi. CWi is then
input to the fully connected layers behind. +ere are three
fully connected layers that have 256, 10, and 2 nodes in
sequence. +e aligned features retain all the feature infor-
mation of the image patch pair so that the following fully
connected layers can fully mine the similarity between them
and make the learning process more stable and robust in
order to achieve more satisfactory performance.

+e aligned features are very robust for classification.
Limited by current technical conditions, no matter what
kind of face tampering technology is employed, the focus is
on the continuity of semantic content, and damage to the
continuity of the noise artefacts in certain feature spaces is
inevitable. +erefore, compared with the genuine videos,
even if tampered videos undergo a variety of postprocessing
operations, the similarity between the face patch and the
background patch remains at a relatively low level.
Extracting the features in the grey space of the images and
measuring the similarity by concatenating features greatly
reduce the influence of the semantic content of the images.

+is approach enables our method to maintain satisfactory
detection performance for tampered images and videos with
high compression factors.

Under the supervised and end-to-end training, the
feature alignment module can measure the similarity be-
tween the face patch and the background patch and produce
the final classification result. We train our network by
minimizing the cross-entropy loss function, which is defined
as

Loss � − [y · log(y)̂ +(1 − y) · log(1 − (y)̂)]. (2)

y represents the labels of image patches and ŷ represents the
classification results output by the network. +e fully con-
nected layers of the feature alignment module act as a
classifier.

Algorithm 2 describes the entire training process in detail.

3.4. Voting Principle. To obtain more accurate classification
results, we define a voting principle in the test stage to
modify them. +e difference from the training is when we
randomly select an image patch, we will select three patches
from the same frame as the face patch and make them form
three patch pairs by copying the face image patch with the
three background patches. +e three pairs of patches are
then input into our trained feature extraction module and
feature alignment module, and three binary predicted labels
are obtained. Finally, according to the voting principle that
the minority obeys the majority, the predicted label, that is,
the classification result of the image to which the face patch
and background patches belong, is obtained. At the same
time, as we emphasized in Subsection III-A, the number of
background patches can also be any odd number other than
three. +e details of the voting principle can be found in
Figure 4. Let IF be the face patch and let IB1, IB2, and IB3 be
the three corresponding background patches. Let Y1, Y2, Y3,
and Yt be the prediction labels of three patch pairs and the
final prediction label, respectively. Yt � 1 means that the
image is genuine and Yt � 0 means that image is tampered.
Table 1 illustrates the voting principles between Yt and the
labels of the three patch pairs.

4. Experiments

In this section, we first introduce the datasets that we used in
the experiment, and then, we introduce our experimental
setup and detailed training process. Finally, we report the

Input: Videos of the dataset: Fi, i� 1, 2, . . ., N, N: +e number of videos
Output: Images patches IB and IF, IBi: background patches, IF i: face patch
for each Fi do
if Fi is a real video then

Assign Fi to the set Fr
else

Assign Fi to the set Ft
crop face patch IFi which is assigned to the set Ff and three background patches IBi which are assigned to the set Fb

ALGORITHM 1: Preprocessing.
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performance of our proposed method and analyze the ex-
perimental results in detail.

4.1.Datasets. We used three datasets in our experiments: the
FaceForensics++ dataset [1], the Celeb-DF(v2) dataset [40],
and the UADFV dataset [23]. FaceForensics++ is a forensics
dataset consisting of 1000 original video sequences that have
been manipulated with four automated face manipulation
methods: Deepfake (DP), Face2Face (F2), FaceSwap (FS),

Input: +e pair of image patches: IFi and IBi,i� 1, 2, . . ., N
N: +e number of videos

Output: +e prediction label Yti, IBi: background patches, IF i: face patch
while epoch≤ 30 do

for each pair of IFi and IBi do
if IFi and IBi are from Fr then

label l� 1
else

IFi and IBi are from Ft, label l� 0
Greying IFi to IFGi and IBi to IBGi
Mapping IFGi to GW Fi and IFGi to GW Bi with shared weights W
Concatenating GWBi and GWFi to CWi
Mapping CWi to get label Yti

return Siamese network model

ALGORITHM 2: Training.

IB1 IB2 IB3

IF IF IF

Fingerprint extraction and
alignment

voting

1or0 1or0

1or0

1or0

Y1 Y2

Yt

Y3

Figure 4: +e details of the voting principle. It is used in the test stage to modify the classification results. IF is the face patch, while IB1, IB2,
and IB3 are the three corresponding background patches. Y1, Y2, and Y3 are the prediction labels of three patch pairs, and the final predicted
label, Yt, is obtained according to the voting principle from Y1, Y2, and Y3.

Table 1: +e voting principles between Yt and Y1, Y2, and Y3. Yt � 1
means that the image is genuine and Yt � 0 means that the image is
tampered.

Y Binary label
Y1 1 1 1 0 1 0 0 0
Y2 1 1 0 1 0 1 0 0
Y3 1 0 1 1 0 0 1 0
Yt 1 1 1 1 0 0 0 0
+e bold results are the final prediction label.
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and Neural Textures (NT); i.e., it contains four subdatasets.
+e data have been sourced from 977 YouTube videos, and
all videos contain a trackable mostly frontal face without
occlusions, which enables automated tampering methods to
generate realistic forgeries. All videos have three resolutions,
i.e., raw quality without compression, high quality with a
light compression using a quantization of 23, and low quality
with a heavy compression using a quantization of 40.

+e UADFV dataset contains 98 videos, with 49 genuine
videos and 49 tampered videos. All tampered videos are
generated by the method of Deepfake. Each video has one
subject and lasts approximately 11 seconds, with a typical
resolution of 294 500 pixels. +e Celeb-DF(v2) dataset is a
large-scale challenging dataset for Deepfake forensics. It
includes 590 original videos collected from YouTube, with
subjects of different ages, ethnic groups, and genders, and
5639 high-quality Deepfake videos generated using an im-
proved synthesis process. +e overall visual quality of the
synthesized Deepfake videos in the Celeb-DF dataset is
greatly improved when compared to other datasets, with
significantly fewer notable visual artefacts. In addition, the
genuine video shows a wide range of changes in the subject’s
face size, orientation, lighting conditions, and background.

4.2. Implementation Details. In our experiment, we used the
software package dlib [47] to detect faces in the frames of the
videos and extract the face area, but we decided to eliminate
some videos in the datasets for which the face extraction failed.
For every subdataset of the FaceForensics++ dataset, we select
976 tampered videos, among which 681 videos were used as the
training set, 145 videos are used as the validation set, and the
other 145 videos are used as the test set. For the UADFV
dataset, we selected 43 tampered videos, of which 31 videos are
used as the training set, 6 videos are used as the validation set,
and the other 6 videos are used as the test set. +e number of
genuine videos is the same as the number of tampered videos.
In each video, we randomly select 50 pairs of face patches and
background patches for training and 150 pairs of patches for
validation and testing due to the need for the voting principle.

For the Celeb-DF(v2) dataset, because the number of
genuine videos is far less than that of tampered videos, we
use two methods to divide the dataset in order to ensure the
balance of genuine and tampered data during the training
process. One method is to divide the data according to the
quantity balance; that is, for both genuine and tampered
videos, 400 videos are selected for training, 50 videos for
validation, and 50 videos for testing, and 50 pairs of patches
are randomly selected in each video for training and 150
pairs of patches are selected for validation and testing. +e
other method is based on the proportional balance; that is,
the genuine videos are divided in the same way as the
previous method, but for tampered videos, 4,000 are selected
for training, 500 for validation, and 500 for testing, while
only 5 pairs of patches for training and 15 pairs of patches for
validation and testing in each video are randomly selected in
order to keep the quantities of tampered data and genuine
data the same. +e precise numbers of the patch pairs for
each dataset can be found in Table 2.

All networks have been implemented with Python 3.7
using PyTorch. Weight optimization of the network is
achieved with successive batches of 16. +e sizes of face
patches and background patches are both 256 256. +e
networks are optimized via Adam [49] with default pa-
rameters (β1� 0.9 and β2� 0.999). We adjust the learning
rate by combining warm-up and stepwise methods. We set
the base learning rate as 0.0001. Every training process
contains 30 epochs: 10 are used to warm-up, 10 are main-
tained at the base learning rate, and then, the learning rate is
divided by 10 every 5 epochs.

4.3. Evaluation Metrics. We apply the accuracy score (Acc)
and the area under the receiver operating characteristic
(ROC) curve (AUC) values that are commonly used in face
forgery detection as our evaluation metrics. In addition, we
apply precision (P), recall (R), and the F1 score on the
challenging low-quality data from the FaceForensics++
dataset [1] to better evaluate the performance of our method.

4.4. Results. We first compare the performance of our
network with the three most widely used networks based on
the four subdatasets of the FaceForensics++ dataset with
different quality. +e results are listed in Table 3.

As these results show, except for the subdataset of Neural
Textures (NT) with high quality, our method outperforms all
the reference methods and different face manipulation
methods with respect to all quality settings. It is worth noting
that our method achieves Acc values of 84.14%, 97.97%,
98.88%, and 98.21% on the subdatasets of Deepfake (DP),
Face2Face (F2), FaceSwap (FS), and Neural Textures (NT)
with low quality, respectively. +e performance of our
method far exceeds that of the reference methods; in par-
ticular, the performance becomes even better after use of the
voting principle to correct the results, with values of 84.14%,
96.62%, 99.49%, and 98.90% achieved. Moreover, compared
to the results on the same subdataset with raw quality and
high quality, the Acc scores of reference methods have
significantly declined. However, except on the DP sub-
dataset, the performance of our method on low-quality
datasets is close to that of raw quality. +e previous methods
for face forgery detection can mine the differences in feature
distribution between genuine and tampered images to find
the traces of tampered images. +e image compression
eliminates the forgery traces to a certain extent so that the
differences in the feature distribution of genuine and
tampered images are reduced.+erefore, the performance of
the network will also be reduced accordingly. However, our
method determines the authenticity of the images by

Table 2: Precise numbers of patch pairs for training, validation,
and testing of the three datasets.

Dataset
Number of pairs

Training Validation Test
FaceForensics++ [1] 68600 43500 43500
UADFV [23] 3100 1800 1800
Celeb-DF(v2) [40] 40000 15000 15000
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comparing the similarity between the face area and the
background of the images, which greatly enhances the robust
performance of the network so that postprocessing similar to
image or video compression has a relatively small impact on
the performance. In addition, from the results in Table 3, it
can be concluded that the voting principle does not achieve
better results on the DP subdataset; specifically, on the
datasets with raw and low quality, the Acc scores are equal to
those of the method not employing the voting principle, and
on the high-quality dataset, the score even becomes slightly
lower. Overall, however, the voting principle is still beneficial
to the results.

We then evaluate our method on the UADFV and Celeb-
DF(v2) datasets. +e results are shown in Table 4. +e
proposed method achieves 99.94% Acc performance on the
UADFV dataset, and the score even reaches 1.00 by voting,
although this is only a small improvement compared to the
Xception network. With respect to the ways that the Celeb-
DF(v2) dataset is divided according to the proportional
balance and the quantity balance, our method achieves
92.61% and 94.94%, respectively, exhibiting remarkable
improvement compared to the reference methods. +ese
results prove the superiority of our method.

To better evaluate the performance of our method on the
low-quality datasets, we calculate precision (P), recall (R), and
the F1 score of all methods, as shown in Table 5, and generate
ROC curves of different methods as shown in Figure 5 on the
FaceForensics++ dataset with low quality. It can be seen from
the results in Table 5 that, compared with the reference
methods, our method has achieved better performance with
respect to all evaluation metrics on the four subdatasets. +e
AUC values of the proposed method, i.e., the area values in
Figure 5, are far ahead, with the exception that the results on
the DP subdataset are close to those of Xception.

4.4.1. Comparison with Recent Works on the Low-Quality
Datasets of FaceForensics++ [1]. In order to demonstrate the
competitive results of our method on low-quality datasets,
we compared our results with recent methods
[14, 19, 20, 22, 25, 28, 39, 50–52]. Since the experimental sets
between us and others are almost the same, we directly used
the results in these papers. +e results are shown in Table 6.

Accuracy scores marked in bold represent the highest
accuracy scores. +e Acc of our method in some categories
exceeds all the reference methods, i.e., F2, FS, NT. +ese
results fully demonstrate that our method exhibits very good

and robust performance and generalization ability on
challenging low-quality datasets and that the impact of
compression processing is very small, which is extremely
important for the practical application and promotion of the
detection methods.

4.5. Discussion on Other Influencing Factors

4.5.1. Effect of Size of Image Patches. To evaluate the impact
of image patch size on network performance, we used the
patch sizes of 256× 256, 192×192, and 128×128 to conduct
ablation tests on the FaceForensics++ dataset with low
quality. +e results are shown in Table 7. +e size of the
image patches exerts an obvious influence on the perfor-
mance of our method. For the size of 256× 256, our method
including the voting principle achieves the leading perfor-
mance on all datasets, but for the sizes of 192×192 and
128×128, our method offers better performance on only
three datasets.+e impact of the size also differs according to
different tampering methods. For Deepfake, the result for
the size of 192×192 is the best, but for the other three
methods, the results are best for the size of 256× 256. In
general, our method performs best for the size of 256× 256.

4.5.2. Effects of Different Tampering Methods. From Table 3,
it can be concluded that our method has a higher accuracy rate
for the tampered images generated by FaceSwap with different
quality. +is is because FaceSwap has a simpler production
principle and process than the other three methods. +e most
difficult tampering methods to detect for our method are
Deepfake, Neural Textures, and Face2Face on the datasets of

Table 3: Acc score on the FaceForensics++ dataset. LQ represents low quality, HQ represents high quality, and Raw represents raw quality.

Method
Dataset

LQ HQ Raw
DP F2 FS NT DP F2 FS NT DP F2 FS NT

Meso4 [11] 77.68 83.65 79.92 77.74 89.77 94.25 95.50 78.70 96.37 97.95 98.17 93.30
MesoInception4 [11] 74.20 78.75 79.72 67.94 83.74 91.48 94.34 75.06 88.34 97.65 97.81 92.52
Xception [48] 83.70 87.21 83.17 87.90 95.15 97.07 95.96 87.99 98.31 97.75 98.10 96.45
Our method 84.14 97.97 98.88 98.21 95.79 97.11 97.37 84.69 98.72 97.91 98.75 97.33
Our method (voting) 84.14 98.62 99.49 98.90 95.77 97.12 97.37 84.71 98.72 97.92 98.77 98.18
+e bold results show the best.

Table 4: Acc score on the UADFV and Celeb-DF(v2) datasets. C P
and C Q represent the way in which the Celeb-DF dataset is divided
according to the proportional balance and the quantity balance,
respectively.

Method

Dataset

UADFV [23]
Celeb-DF(v2)

[40]
CP CQ

Meso4 [11] 82.67 87.10 83.75
MesoInception4 [11] 96.33 88.10 70.15
Xception [48] 99.33 90.78 89.64
Our method 99.94 92.61 94.94
Our method (voting) 100.00 92.62 94.93
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Figure 5: ROC curves of different methods based on the FaceForensics++ dataset with low quality. (a) Deepfake. (b) Face2Face. (c) FaceSwap.
(d) Neural Textures.

Table 5: Precision (P), Recall (R), and F1 score on the FaceForensics++ dataset with low quality.

Method
P R F1

DP F2 FS NT DP F2 FS NT DP F2 FS NT
Meso4 [11] 77.88 82.71 78.07 80.13 77.32 85.08 83.21 73.77 77.60 83.88 80.56 76.82
MesoInception4 [11] 80.91 87.91 92.49 86.48 63.35 66.68 64.69 42.54 71.06 75.83 76.13 57.03
Xception [48] 82.96 86.01 81.41 85.02 84.82 88.88 85.97 92.01 83.88 87.42 83.63 88.38
Our method 83.36 98.15 98.85 98.34 85.84 97.78 98.91 97.91 84.58 97.97 98.88 98.12
+e bold results show the best.
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low quality, high quality, and raw quality, respectively.
+erefore, different tampering methods should be tested with
different preprocessing operations in practical applications.

4.5.3. Effects of Different Image Modes. In our basic ex-
periment, we have processed all image patches into greyscale
mode. To compare the impacts of different image modes on
the classification performance, we used the image patches of
the RGB mode to conduct a comparative experiment. +e
experiment is performed on the FaceForensics++ dataset
with low quality. Figure 6 shows the results of the com-
parison experiment. It can be determined that the classifi-
cation performance in the greyscale mode is better than that
in the RGB mode for each subdataset, and it is even more
superior than Face2Face and FaceSwap. +is result shows
that our method can find amore suitable feature distribution
in the grey space to distinguish between real and tampered
images. And the reason may be that the grey domain reduces
the relevant semantic features produced by colors compared
to the RGB domain, so that our network can find more
general features.

4.5.4. Effect of Concatenating Features. We use feature
subtraction instead of concatenation in the feature align-
ment module to conduct a comparative experiment, and the
experiment is performed on the FaceForensics++ dataset
with low quality. +e results are shown in Figure 7. It is

obvious that concatenating features is more effective. In fact,
the subtraction operation is more suitable for use in face
recognition tasks with image pairs including similar se-
mantic content. In our task, the face area and the back-
ground area are divergent in semantic content, the effect of
the subtraction operation is greatly reduced, and the effect is
almost completely lost for Face2Face and FaceSwap. +e
concatenation operation allows the fully connected layer to
be classified under richer feature conditions, resulting in
better performance.

Table 6: Comparative analysis of detection performance with recent methods on the low-quality datasets of FaceForensics++ [1]. +e
performances of [19, 25, 28, 39], [50, 51, 52] are obtained from [28], and others are from the original papers, respectively.

Method
Dataset

DP F2 FS NT
Durall et al. [50] 71.69 65.66 65.43 59.34
DSP-FWA [25] 93.60 91.77 90.73 83.15
Liu et al. [51] 92.39 90.67 91.99 84.69
Qian et al. [19] 96.01 93.62 94.33 86.37
Bondi et al. [52] 94.95 91.33 94.26 87.79
Bonettini et al. [39] 96.13 92.93 94.09 88.15
Khalid et al. [14] 88.40 71.20 86.10 97.50
Liu et al. [22] 93.48 86.02 92.26 76.78
Luo et al. [20] 98.60 95.70 92.90 —
Yang et al. [28] 97.88 96.85 96.87 88.47
Our method 84.14 97.97 98.88 98.21
Our method (voting) 84.14 98.62 99.49 98.90
+e bold results show the best.

Table 7: Acc scores of different sizes of image patches based on the FaceForensics++ dataset with low quality.

Method
Dataset

256× 256 192×192 128×128
DP F2 FS NT DP F2 FS NT DP F2 FS NT

Meso4 [11] 77.68 83.65 79.92 77.74 56.16 55.54 61.98 51.81 57.59 56.64 56.26 50.06
MesoInception4 [11] 74.20 78.75 79.72 67.94 76.23 64.25 63.46 71.40 67.97 64.15 70.22 64.41
Xception [48] 83.70 87.21 83.17 87.90 78.47 67.84 71.95 82.86 77.26 61.75 73.86 63.59
Our method 84.14 97.97 98.88 98.21 84.74 66.33 78.52 94.01 76.05 65.18 74.06 79.31
Our method (voting) 84.14 98.62 99.49 98.90 84.74 66.34 78.54 95.74 76.06 65.17 74.15 80.72
+e bold results show the best.
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Figure 6: Results for the impacts of different image modes on
classification performance. +e classification performance in the
greyscale mode is better than that in the RGB mode on all sub-
datasets, especially for Face2Face and FaceSwap.
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4.5.5. Effects of Different Backbones of the Feature Extraction
Module. We chose Xception [48], which is currently the
most widely used network in the field of face forgery de-
tection, as the backbone of the feature extraction module.
However, the backbone of our feature extraction module
based on the Siamese framework can also be some general
classification networks. To explore the universality of our
method, we use VGG13 [53] and ResNet18 [54] to conduct a
comparative experiment: the experiment is performed on
the FaceForensics++ dataset with low quality. As shown in
Figure 8, the overall performance of the detection frame-
work using Xception because of the backbone is slightly
better than that of ResNet18, but slightly worse than VGG13.
+is finding shows to a certain extent that our method still
has the potential to continue to improve and that it can be
adapted to some general classification networks.

+rough these ablation experiments, we explore the
impacts of different conditions on our methods. At the same

time, it can also be learned that, for images and videos with
different resolution and those generated by different forgery
methods, we should use the framework with different details
to achieve the best results. +e generalization performance
of the method will be the focus of future work.

5. Conclusion

+e development of deep learning has significantly im-
proved the quality and efficiency of generating forged face
images and videos. In this paper, we propose an innovative
face forgery detection framework based on the improved
Siamese network, which extracts and aligns the features of
the face area and the background of the image and then
mines the similarity between them to determine the au-
thenticity of the image. +is framework not only offers great
robustness and generalization performance but also makes
full use of the feature information of the image background.
We evaluate our method on several different datasets, thus
proving its effectiveness in practice, especially that it ach-
ieves impressive results on low-quality datasets.
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With the advent of the era of multimedia and in-depth development, the whole human society has been produced and spread a
huge amount of image data, but at the same time, in view of the digital image and tamper with the attack of piracy phenomenon
also more andmore serious, malicious attacks will produce serious social, military, and political influence, therefore, to protect the
authenticity of the original image content, which is also more andmore important. In order to further improve the performance of
image hashing and enhance the protection of image data, we proposed an end-to-end dual-branchmultitask neural network based
on VGG-19 to produce a perceptual hash sequence and used prepart of network of pretrained VGG-19 model to extract image
features, and then, the image features are transformed into a hash sequence through a convolutional and fully connected network.
At the same time, in order to enhance the function of the network and improve the adaptability of the proposed network to using
scenarios, the rest part of the network layer of the VGG-19 model was used as another branch for image classification, so as to
realize the multitask characteristics of the network. 'rough the experiment of the testing set, the network can not only resist
many kinds of attack operations (content retention operations), but also realize accurate classification about the image, and has a
satisfactory tampering detection ability.

1. Introduction

Since the beginning of this century, the technologies of
Internet and multimedia develop rapidly, and information
interaction mode of people has been transformed from text
message to multidirectional fusion presentation of text
message, image, and video information. With the wide
application of powerful image editing tools, massive digital
images are easily tampered; thus, the protection of the real
content of the image is increasingly important. Due to the
influence of technology, equipment, time, and other factors,
an image is often distributed without any protection after it
is produced, which makes the image more vulnerable to
piracy, tamper, and other attack operations. In order to deal
with a variety of malicious attacks, image hashing tech-
nology can be used to generate a unique and unidirectional
perceptual image hash sequence for the original image.
Image hashing, also known as “image fingerprint,” verifies
image piracy or tamper by comparing the similarity of hash
sequences. Imagine a scenario that there is an image that is

so important for the owner. But he does not know if his
image was tampered or pirated, and it is so difficult for him
to check in the image dataset, which has so many images. So,
the image hashing can help him to find the similar images
quickly by comparing the similarity of hash sequences ef-
fectively and judge whether they are tampered or piracy
images to protect the copyright.

With the in-depth research and development of image
hashing schemes, a variety of schemes have been proposed
by researchers according to various requirements of mul-
timedia security. Generally speaking, a typical perceptual
image hashing scheme has the following three properties: (1)
perceptual robustness—the generated hash sequence of the
image without changing the visual content after the content
retention operations should be similar or the same as the
hash sequence of the original image; (2) discriminative/
anticollision—two hash sequences correspond to two
completely different images should be completely different;
and (3) security—the hash sequence needs to have key de-
pendence to ensure the security of scheme; that is, the hash
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sequence generated with the wrong key is completely dif-
ferent from the sequence generated with the right key. 'e
perceptual image hashing scheme includes three main
stages: preprocessing, feature extraction, and hash genera-
tion. According to the methods of feature extraction, per-
ceptual image hashing schemes can be divided into four
main types: methods based on spatial domain, transform
domain, dimensionality reduction, and deep learning.

In the methods based on the spatial domain, Schneider
and Chang [1] used the histogram features of the image to
generate hash sequence, which opened up the research in the
field of image hashing. Yan et al. [2] proposed adaptive local
feature extraction technology to obtain the location infor-
mation of features and achieve image tampering positioning.
In order to resist the attack of image rotation from any
Angle, some scholars [3] used MDS (Multidimensional
Scaling Technology) [4] on the basis of ring-based coding
scheme, ring division, and invariant vector distance [5], and
experimental results show that the hash sequences generated
by this scheme are robust and unique for common image
content retention operations. 'e scheme in [6] used the
relationship between local feature points to overcome the
problem, which feature point distribution is ignored. Qin
et al. [7] proposed a robust image hashing scheme based on
perceived texture and structural features; furthermore, local
texture features and color vector angle features were con-
sidered simultaneously in [8]. Shen et al. [9] extracted the
color opposition component from the secondary image and
applied quadtree decomposition to connect the generated
color feature vector with the structural feature vector and
then combined with pseudo-random key scrambling to
generate the final hash sequence. For the content of image in
screen, the scheme in [10] extracted the maximum gradient
and the corresponding direction information from R, G, and
B color components and counted the relevant data to
construct the image hash sequence. 'ere are also some
research studies about retrieval, and the scheme in [11]
proposed a content-based image retrieval scheme in multi-
user scenarios, which used Euclidean distance comparison
technology to sort the similarity of image feature vectors and
return top-K results to achieve the retrieval purpose. Li et al.
[12] proposed an encrypted image retrieval system sup-
porting multiple keys with edge computing based on local
sensitive hashing, secure neighbor, and proxy re-encryption
technologies, which improved the efficiency and accuracy of
image retrieval.

In the methods based on the transform domain, some
early schemes used DCT [13] (discrete cosine transform)
and DFT (discrete Fourier transform) to design schemes.
From the perspective of human visual characteristics,
Watson was used to adjust the corresponding frequency
domain coefficients to improve the robustness and dis-
crimination of the scheme in [14]. Some scholars also used
the DFT [15] to extract robust frequency features in the
secondary image, and nonuniform sampling was used to
combine with low and intermediate frequency components
to obtain a secure hash sequence. In the work of [16], the
CSLBP (center symmetric local binary pattern) was applied
to DWT (discrete wavelet transform) to generate compact

image hashing. A geometric invariant vector distance
method based on both the spatial domain and the frequency
domain was proposed in [17]. In the dimensional-reduction
method, NMF (non-negative matrix factorization), PCA
(principal component analysis), and SVD (singular value
decomposition) often occur as important steps. In [18], hash
sequences were generated by combining BTC (block trun-
cation coding) with PCA. A scheme based on low-rank
sparse decomposition was proposed in [19].

In recent years, with the continuous improvement of
GPU performance, and continuous development of deep
learning, so many researchers have used deep neural net-
works to achieve image retrieval and the performance is
much better than the traditional image retrieval schemes
[20–23]. But, generally speaking, there are relatively few
research studies on perceptual robust hashing used deep
neural networks. In the methods based on deep neural
networks, the scheme in [24] proposed a robust image
hashing scheme, which is based on deep learning. And this
work was an early scheme to perceptual image hashing with
deep neural networks, and it has better performance than
traditional schemes. In the work of [24], researchers have
used pretrained DAE (auto encoder denoising) to enhance
robustness and used fine-tuning to improve the accuracy of
image detection. In [25], an image hashing scheme based on
CNN (convolutional neural network) with multiple con-
straints was proposed, and the experimental results showed
that it can obtain a good balance between robustness and
discrimination. In order to strengthen the functional
properties of the neural network and make more efficient
and reasonable use of existing computing resources, there
are also some other schemes about deep learning in the field
of image authentication. 'e scheme in [26] introduced two
subnetworks to improve the BusterNet for image copy-move
forgery localization with source/target region distinguish-
ment, and these subnetworks were the copy-move similarity
detection network (CMSDNet) and the source/target region
distinguishment network (STRDNet). 'e face detection is
also important. Reference [27] used RGB and YCbCr color
spaces, and introduced the convolutional block attention
module and multilayer feature aggregation module into the
Xception model to achieve better performance for detecting
postprocessed face images.

We proposed a perceptual image hashing scheme based
on the multitask neural network.'e mainly innovation and
contribution are as follows:

(1) Efficient end-to-end framework. Instead of the tra-
ditional strong explanatory method with low effi-
ciency and weak generalization ability, an advanced
and efficient deep learning method is adopted to
collect image features and generate hash sequence.
Based on the excellent performance of the con-
volutional network and fully connected network, the
end-to-end hash sequence generated framework is
realized by integrating feature extractor and hash
generator.

(2) Multitask intensifies the applicability of network
model to multiple scenarios. In order to improve the
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applicability of the neural network model to multiple
scenarios and use an excellent pretrained model,
based on the pretrained model of VGG-19 neural
network, we added a dual-branch layer after the
feature extractor, so as to achieve the purpose of
multitask.

In Section 2, the structure of the proposed network, loss
function, and other related contents will be introduced. In
Section 3, the experimental results of the proposed neural
network based on a specific training strategy will be in-
troduced. 'e advantages of our scheme will be summarized
in Section 4.

2. Proposed Scheme

At present, the field of deep learning is developing rapidly, a
large number of network structures have emerged, and the
use of pretrained models is becoming more and more
systematic. Many network structures are used for different
tasks. On the basis of realizing the image hash process, the
proposed scheme has added the function of image classi-
fication, so that the final neural network not only can
generate the hash sequence of the image but also has
function in the image classification, which is adapted to
more application scenarios.

2.1. Network Structure. In the structure of the proposed
neural network, we comprehensively considered the task
requirements on the number of network layers and network
structure, and selected VGG-19 as the basic structure to use.
We first use part of VGG-19 network layer as the image feature
extractor. Note that, because the function of image classifi-
cation should be considered, this part of VGG-19 does not
participate in the parameter updating of the training in
proposed neural network, but uses the fixed parameters. 'e
main structure of the proposed neural network is described in
Figure 1. 'e feature extractor is connected with a small
convolutional network of six layers and constructed hash
generation network, which is named Branch I, and the con-
nected point of this generated network is named branch point.
'e proposed network has selected the output in the second
pooling of the VGG-19 network as the branch point through
testing in the network training process. Specific test and
evaluation will be discussed in Subsection 2.2. At the same
time, the rest part (Branch II) of the network layer in VGG-19
also is remained and connected with the feature extractor
through branch point to realize the function of image clas-
sification. Branch II was composed of twelve convolutional
layers and three FC (Fully connected) layers, and the activation
function was ReLU. So that, due to branch point, multitask is
achieved and constructed the dual-branch neural network.

During the processing stage of the image hashing neural
network, the feature extractor is used to collect features of
the image. 'en, the features are input into the small
convolutional network to generate the hash sequence, and
the small convolutional network is mainly composed of four
blocks (convolutional layer + BN+ReLU) and two FC layers.
Image features and intermediate features are so important,

and the convolutional layer is a useful filter to extract them.
'us, we used four convolutional blocks in the hashing
neural network to further extract useful features, and two FC
layers were used to compress and transform the features into
a hash sequence. As for the other branch, it is used to process
features, which can classify images and realize the multitask
capability. Due to the use of FC and average pool layers, the
input size of image was limited, and the size was 128×128.

2.2. Loss Function. In order to measure the similarity of
generated hash sequences, we use MSE (mean square error)
as the measurement tool to calculate the hash distance
among original image, similar images, and different images.
However, due to the large numerical span of the generated
hash sequence, direct use of MSE will make the network
convergence unstable, so the activation function named
Sigmoid is used to normalize the values obtained by MSE.

We define that there are n similar images and n different
images (the specific composition of the dataset will be in-
troduced in Subsection 2.3, Subsection 3.1, and Subsection
3.2), so that, in the situation of including the original image,
2n＋1 hash sequences are generated, which is given in the
following equation:

H(χ), H χ[1] , . . . , H χ[n] , H κ[1] , . . . , H κ[n] , (1)

where H(·) represents the whole end-to-end hashing neural
network, χ is the original image, χ[i] is similar image (i� 1, 2,
. . ., n), and κ[i] represents the different image (i� 1, 2, . . ., n).
'e hash sequences of images are generated, and the MSE is
used to measure the distance of sequences, which are given as
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where |·|2 represents the Euclidean norm, l is the length of hash
sequence, and φ(i)

sh and φ(i)
dh represent the hash distance of

similar image pair and different image pair, respectively. 'e
hash distance between original and similar image, and between
similar and similar images should be small; on the other hand,
the hash distance between original and different images should
be large. So, as for the proposed scheme, φ(i)

sh should be as small
as possible, and φ(i)

dh should be as larger as possible. In order to
obtain useful loss value, the Sigmoid is used to normalize the
value of MSE to [0.5, 1], as shown in the following equation:

S(x) �
1

1 + e
−x, (3)

where S (·) is the function of Sigmoid, and the whole loss
function is

min Γ � α1
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dh ,

s.t. α1, α2 ∈ [0, 1],

(4)
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where Γ represents the whole loss function, and α1 and α2
both represent the super parameters, which are used to adjust
the loss function. As for the pretrained model of VGG-19, the
CEL (cross-entropy loss) function is used during the training.
Denote a sample’s tag target as {t1, t2, ..., t10}, the predicted
output of the model is {o1, o2... o10], and then the value of CEL
of the network is

L � − 
10

i�1
tilog oi( . (5)

In particular, the following is used to measure and decide
the best branch point among these max pooling layers:

ς � max
j�1,2,...,mv
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where φ(i)
sh and φ(i)

dh represent the hash distance of perceptual
similar pair and different image pair, respectively. 'e mv is
the quantity of batches in the test image set, and nv is the
quantity of similar images or different images in one batch.
'e smaller the ς, the more suitable the connection point is.

2.3. Training Strategy. Based on the pretrained model of
VGG-19, we use the prepart of the network of it as the
feature extractor, but the parameters of it are fixed, which
will not be updated during the training of the hash sequence
generation network. Note that, after the testing of equation
(6), the second max pooling of VGG-19 is selected as the
branch point, and the whole structure of the network and
classification branch is shown in Table 1.

First, before the training of VGG-19, the CIFAR-10
training dataset is used in our scheme, and the optimizer is

SGD. In the training, the training momentum is 0.9, the
weight attenuation is 5×10−4, and according to the number
of training epochs, the value of the learning rate is constantly
adjusted to accelerate the convergence of the network and
improve the accuracy of classification.

During the training and testing of the network, the super
parameters α1 and α2 are both set as 1, at the same time, the
optimizer Adam is used for the training of the proposed
network (II branch), the learning rate is 0.001, and the value
of epoch is 200.

'e training dataset of the proposed neural network in-
cludes η original images, which are randomly selected from the
COCO dataset [28]. Each original image would be transformed
into 67 similar images through the attack operations given in
Table 2, and we also added 67 different images with the original
image.'e original image, similar images, and different images
have been combined into an image group, and therefore, we
will obtain η image groups. Each time, we input an image
group into proposed network for training.

3. Experimental Results and Comparisons

In order to evaluate the effectiveness and superiority of
proposed scheme, the proposed neural network model in the
aspects of perceptual robustness, discrimination, perfor-
mance of content authentication, image classification, and
computational complexity was tested and compared. 'e
MSE is used to measure the hash distance as follows:

D Q(1)
,Q(2)

  �
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l

j�1
Q(1)

j − Q(2)
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2
, (7)

where l represents the length of the hash sequence, and Qj
(1)

and Qj
(2) are j-th values of hash sequences Q(1) and Q(2),
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Figure 1: Structure of the dual-branch multitask neural network.
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respectively. During the measurement of hash distance D, if
D is smaller than threshold θ, the image pair are defined as
similar images; on the contrary, they are defined as different
images. Note that, the hardware environment of all exper-
iments was uniform, and the CPU was i9-10900X, the GPU
was RTX 2080 Ti, and the RAM was 32GB.

3.1. RobustnessAnalysis. In the robustness test, 1,000 images
(not in the training dataset) from the COCO dataset [28]
were randomly sampled as original images for content re-
tention attack operations. Common robust attacks included
speckle noise, median filtering, and rotation and cropping.

Specific operations and parameter settings are shown in
Table 2. Each image generated 67 perceptually similar im-
ages, and a total of 67,000 similar images were obtained.
Meanwhile, 67,000 hash distances were obtained by using
equation (7). Table 3 shows the extreme value, mean value,
and standard deviation of each attack operation. 'e ex-
treme max and min values are used to indicate the overall
numerical range, and the mean and standard deviation
values represent the situation of hash distance fluctuations.
However, as the robustness testing data of all 1,000 images
were difficult to display, five typical standard images, named
Airplane, Baboon, Boat,House, and Peppers, were selected to
display, as shown in Figure 2. After the content retention
attack operations with eight different parameters as shown
in Table 2 were used for these five images, the distance
measurement was carried out according to the hash se-
quence generated from the original image and 67 similar
images by using equation (7). Figure 3 shows the changes of
5× 67 hash distances and demonstrates the superior ro-
bustness of the proposed scheme.

As shown in Figure 3, for JPEG compression, speckle
noise, circle average filtering, median filtering, and scaling
attack operations, the hash distances are small, less than 0.25.
In the Gaussian filtering operation, with the increase of
variance, the hash distance of Boat increases greatly com-
pared with that of the other four images, but it is still in an
acceptable range. Although the rotation and cropping and
gamma correction operations have strong changes, com-
pared with other attack operations, the average values of
hash distances of these two operations are 0.3724 and 0.2089,
respectively. As observed in Table 3, the performance of the
proposed scheme was still excellent under rotation and
cropping and gamma correction operations.

3.2. Discrimination Capability. To verify the discrimination
capability of the proposed scheme, we used the UCID da-
tabase [29], which contains 1,338 different images with sizes
of 512× 384 and 384× 512. First, we generated hash se-
quences of the first 1,000 images in [29]. 'en, we calculated
the hash distance D between each image and other 999
images. So that, we obtained (1,000× 999)/2� 495,500 hash
distances. 'rough the analysis of this experiment, and
estimated according to values, the distribution of these hash
distances followed the data distribution of mean μ� 1.871
and standard deviation σ � 2.258. Obviously, the smaller the
threshold θ, the lower the collision probability, which means
better discrimination capability. When the hash distance D
of two images is less than the preset threshold value θ, two
images are defined as perceptual similar image pair. If the
threshold value θ is too small, the network will distinguish
some similar images as different ones, thus affecting the
robustness performance of the proposed scheme. 'erefore,
we need to choose an appropriate threshold θ to achieve a
balance between perceptual robustness and discrimination.

As can be seen from Table 3, the average hash distance of
perceptually similar images in common image content re-
tention operations is less than 0.4. In addition, when the
threshold value θ� 0.4, the collision probability of the

Table 1: Structure of the multitask neural network.

Input (32× 32 RGB image)
conv3-64 +ReLU
conv64-64 +ReLU

MaxPooling
Conv64-128 +ReLU
Conv128-128 +ReLU

MaxPooling
Branch I Branch II

Conv128-256 +ReLU
Conv128-256 +BN+ReLU
Conv256-256 +BN+ReLU

Conv256-256 +ReLU
Conv256-256 +ReLU
Conv256-256 +ReLU

MaxPooling MaxPooling
Conv256-512 +ReLU

Conv256-512 +BN+ReLU
Conv512-512 +BN+ReLU

Conv512-512 + ReLU
Conv512-512 + ReLU
Conv512-512 + ReLU

MaxPooling AvgPooling
Conv512-512 + ReLU

FC-512 +ReLUConv512-512 + ReLU
Conv512-512 + ReLU
Conv512-512 + ReLU

MaxPooling

FC-50
FC-512 +ReLU
FC-256 +ReLU

FC-10
Softmax

Table 2: Eight common content retention operations (attack
operations) for images.

Operations Parameter
name Values of parameter

Speckle noise Variance 0.01, 0.05, 0.1, 0.2, 0.3
Scaling Scaling ratio 0.2, 0.3, 0.4, 0.5, 1.5, 2, 4
Median filtering Filter size 1, 3, 5, 7, 9, 11, 13, 15, 17, 19
Circle average
filtering Filter size 1, 5, 10, 15, 20, 25, 30, 35, 40

JPEG compression Quality
factor 1, 5, 10, 30, 50, 70, 90, 95

Rotation and
cropping

Rotation
angle 1, 2, 3, 4, 5, 6, 8, 10, 12

Gamma correction Γ 0.55, 0.65, 0.75, 0.85, 0.95,
1.05, 1.15, 1.25, 1.35, 1.45

Gaussian filtering Variance 0.01, 0.02, 0.03, 0.04, 0.05,
0.1, 0.15, 0.2, 0.25
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proposed scheme is 0.0607, which is shown in Table 4; that is,
93.93% of different images are correctly judged. Although
hash distances between some perceptually similar images in
Table 3 are greater than 0.4, they are only a very small part of

the results and have little impact on the overall performance.
'erefore, in the proposed scheme, we set the threshold
θ� 0.4 to achieve the balance of perceptual robustness and
discrimination.

Table 3: Statistics of hash distances under image content retention operations.

Operations Min. Max. Mean Std.
Speckle noise 1.8×10−4 0.1751 0.0253 0.0377
Scaling 8.0×10−5 0.0550 0.0046 0.0109
Median filtering 0 0.0091 0.0026 0.0025
Circle average filtering 0 0.2417 0.0512 0.0646
JPEG compression 1.3×10−4 0.1138 0.0131 0.0253
Rotation and cropping 1.6×10−3 3.2829 0.3724 0.7473
Gamma correction 5.9×10−4 2.7986 0.2089 0.5312
Gaussian filtering 7.9×10−4 0.1424 0.0268 0.0321

(a) (b) (c) (d) (e)

Figure 2: Five standard images for testing. (a) Airplane. (b) Baboon. (c) Boat. (d) House. (e) Peppers.
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Figure 3: Test curves of five standard images in different image attack operations. (a) Speckle noise. (b) Scaling. (c) Median filtering.
(d) Circle average filtering. (e) JPEG compression. (f ) Rotation and cropping. (g) Gamma correction. (h) Gaussian filtering.
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3.3. Performance of Content Authentication. In order to il-
lustrate the superiority of the proposed scheme, the per-
ceptual robustness and discrimination were considered, and
we compared the proposed scheme with other four classical
image hashing schemes: DCP [7], RP-IVD [4], RP-NMF [3],
and DAE NN-based [24]. 'e first three schemes used
traditional methods, and the last method used deep learning.
Because the perceptual robustness and discrimination of the
scheme are contradictory, when the perceptual robustness of
the scheme is strong, the discrimination must be relatively
weak, and vice versa. In order to compare the proposed
scheme fairly with the other four schemes, we considered the
combined performance of perceptual robustness and dis-
crimination of each scheme as the content authentication
ability to perceptually similar and different images.

In this experiment, we randomly selected 1,000 images
(not in the training dataset) from [28] to construct a testing
image dataset. Each image of this dataset corresponded to 67
perceptual similar images generated by the image content
retention operations shown in Table 2 and 67 different
images were randomly selected from this dataset. 'rough
setting different values of θ, PFAR and PFRR can be calculated
by the following equation:

PFAR(θ) � Pr D H(1)
,H(2)

 ≤ θ ,

PFRR(θ) � Pr D H(1)
,H(2)

 > θ ,
(8)

where PFAR is the probability of the hash distance less than θ.
On the contrary, PFRR is the probability of the hash distance
larger than θ, and Pr(·) is the function of probability. F1 score
is an important quantitative index used to measure the
accuracy of content authentication, and when the F1 score is
larger, the performance of content authentication is better.
'e calculated method of F1 score is

F1 � max
θ

2 · 1 − PFAR(θ)  · 1 − PFRR(θ) 

1 − PFAR(θ)  + 1 − PFRR(θ) 
 . (9)

Table 5 lists the comparation of F1 scores of four schemes
in different image content retention operations, and bold
one of F1 scores in each line is the best one. 'e proposed
scheme is almost ahead of existing four excellent image
hashing schemes in the eight attack operations, and the
mean of F1 score in our scheme is the largest among them, as
shown in Table 5. In particular, compared with DAE NN-
based [24], four F1 scores of our scheme are significantly
ahead, and other four F1 scores are also very close. To further
demonstrate the overall performance of content

authentication based on perceptual robustness and discrim-
ination, we used ROC (receiver operating characteristic) to
demonstrate the overall performance of our scheme and other
four schemes. In Figure 4, the abscissa is PFRR, the ordinate is
1−PFAR, and the ROC curves are closer to top left corner,
which means that the better performance of content au-
thentication. 'rough ROC curves of four schemes in Fig-
ure 4, the curve of our scheme is closer to top left corner than
other curves. Although the curve of the scheme [24] is close to
ours, our scheme is better from the small graph magnified in
the lower right. To sum up, according to the quantization
results and ROC curves, our scheme had satisfactory per-
formance than [3, 4, 7, 24] in image content authentication.

'e generalization ability of our scheme was also tested,
different image datasets were used, including COCO dataset
[28], UCID dataset [29], Imagenet dataset [30], and
NUS_WIDE dataset [31]. ROC curves generated by our
scheme for different image datasets are shown in Figure 5. As
observed from Figure 5, our scheme has good generalization
ability in different image datasets, and at the same time, our
scheme has satisfactory adaptive capacity.

3.4. Performance of Image Classification. Because the mul-
titask neural network was used in the proposed scheme,
apart from the function of hash authentication, the network
also has the function of image classification. We used
original images of CIFAR-10 dataset to test the accuracy rate
of image classification in our pretrained VGG-19 neural
network.'ere are 1,000 images in this testing dataset. Some
results of the image classification of our pretrained network
are displayed in Figure 6. 'e images of the first and second
lines are completely correctly identified, but ship (as shown
in the red box) is mistakenly identified as truck in the third
line, which can be explained that ship had relatively similar
characteristics to truck. 'e accuracy of classification in the
final line is 90%. After the test of all images, the final ac-
curacy rate was 93.42%, which means that our multitask
neural network can do the task of image classification well.

3.5. Computational Complexity. In actual application, the
performance of proposed scheme will face a variety of
hardware resources and environment constraints.'erefore,
considering the actual use and deployment of the scheme, it
is necessary to test and compare the computational com-
plexity of those schemes. In order to avoid the contingency,
we randomly selected 100 images from [27] to generate the
hash sequences and recorded the running time. Meanwhile,
the same test would be carried out on other schemes to
compare the advantages. 'e results are shown in Table 6,
although the computational complexity and hash length are
not best, considering the influence of multitask function and
the tiny gap between ours and the best ones, our scheme is
still the leading one in comprehensive performance.

3.6. Application of Tampering Detection. 'e tampering
authentication is also important, and the relative test was
also performed for the proposed scheme. Tampered images

Table 4: 'e collision probability Pc under different threshold θ

'reshold θ Collision probability Pc
0.90 0.2741
0.80 0.2284
0.70 0.1827
0.60 0.1385
0.50 0.0972
0.40 0.0607
0.30 0.0308
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Table 5: F1 scores of different schemes in different content retention operations.

Operations Proposed DCP [7] RP-IVD [4] RP-NMF [3] DAE NN-based [24]
Speckle noise 0.9996 0.9340 0.9409 0.9299 0.9995
Scaling 0.9996 0.8487 0.8909 0.9665 0.9993
Median filtering 0.9996 0.9631 0.9782 0.9891 0.9998
Circle average filtering 0.9988 0.9063 0.7121 0.7889 0.9895
JPEG compression 0.9993 0.7957 0.9383 0.9925 0.9998
Rotation and cropping 0.9990 0.6339 0.9936 0.9983 0.9961
Gamma correction 0.9987 0.9518 0.9903 0.8418 0.9999
Gaussian filtering 0.9991 0.9195 0.8148 0.8656 0.9992
Mean 0.9992 0.8708 0.9074 0.9216 0.9979
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Figure 4: ROC curves about comprehensive performance of five schemes.
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Figure 5: ROC curves of the proposed scheme in each image dataset.
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can be judged by comparing the hash distance between
original image and other images efficiently in a large image
dataset. In order to test the tampering detection capability of
proposed scheme, we randomly selected some original
images and corresponding tampered versions from [32]. In
Figure 7, we displayed six pair original-tampered images
and, in each pair, original image in left, tampered image in
right.

'e hash distances of different tampered image pairs in
Table 7 are larger than θ� 0.4, which indicates the hash
sequences are significantly different between the original

image and corresponding tampered version. 'erefore, the
proposed scheme has good tampering authentication per-
formance in practical application, and it can be applied to
certain tampering detection scenarios.

4. Conclusion

In order to improve the performance of the image hashing
scheme and the reusability of the neural network, we
proposed a dual-branch multitask neural network with
functions of hash sequence generation and image clas-
sification. By looking for the branch point in multiple max
pooling layers of VGG-19 network and adding two branch
networks, the proposed neural network could have two
functions and used one feature extractor. In the two
branch networks, one is the original network for image
classification after the branch point of the VGG-19 net-
work, and the other is the proposed network to generate
the hash sequence. In order to ensure the network con-
verges to the target result, a loss function is proposed to
measure the hash distance, which is combined with the
MSE and Sigmoid function. 'e experimental results

car

horse

truck

Figure 6: Partial results of image classification.

Table 6: 'e computational complexity and hash length of each scheme.

Indicator Proposed DCP [7] RP-IVD [4] RP-NMF [3] DAE NN-based [24]
Computational complexity (ms) 48.5 154.62 435.2 645.2 17.9
Hash length (digits) 50 64 40 64 50
Multitask function √ × × × ×

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7: Six pairs of representative tampered test images in the IMD2020 database.

Table 7: Hash distance between the original image and corre-
sponding tampered version.

Image pair Hash distance D
(a) and (b) 1.36722
(c) and (d) 6.77353
(e) and (f) 1.5763
(g) and (h) 2.50353
(i) and (j) 1.02164
(k) and (l) 1.14891
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show that the proposed scheme has superior robustness
and discrimination, and the testing results of image
classification are better than the existing classical schemes.
'e proposed scheme can resist speckle noise, median
filtering, rotation and cropping, etc., and it also has ad-
vantage in content authentication performance. 'rough
the comparation of ROC curves with other schemes, it can
be seen that the proposed scheme is still ahead of them in
comprehensive performance. In addition, it has some
superiority and applicability in computational complexity
and tampering detection applications. In terms of task of
image classification, it can be applied to common task of
image classification to ensure the function of multitask
and improve the applicability of the proposed network to
multiple scenarios.
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